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Abstract—The schemes for division of holohedral simple forms of crystals into conjugated simple forms are
derived by decomposition of the symmetry group of the primitive sublattice into double cosets. The number of
equivalently oriented simple forms in the intergrowth of crystals, whose primitive space sublattices are parallel
to one another, is equal to the number of holohedral permutational conjugated simple forms, which has the value
992 for all the 32 symmetry classes. © 2000 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

If the point group GK of the crystal does not coincide
with the space group Gsp of the lattice, the faces of the
crystal equivalently oriented with respect to the three-
dimensional lattice are nonequivalently oriented with
respect to the crystal structure. As a results of this non-
equivalence, the holohedral form decomposes into con-
jugated simple forms allowed by the group GK [1, 2].
The division of holohedral forms into conjugated sim-
ple ones was derived geometrically rigorously in [1–4]
on the basis of the theory of crystal symmetry. The
present study is aimed to derive the schemes of division
of holohedral forms caused by lowering of the symme-
try of the point group GK with respect to the group of
the primitive sublattice Gssp (a holohedral group) by the
group-theoretical method.

Under the condition that GK ⊂  Gssp, the crystal struc-
ture can have nK equivalent orientations with respect to
the primitive space sublattice [1]:

(1)

where [Gssp : GK] is the index of the group GK in Gssp,
and g(Gssp) and g(GK) are the orders of the groups Gssp
and GK, respectively. The number nK is the number of
individual crystals with parallel primitive sublattices in
the intergrowth, called hereafter holohedral inter-
growth. Various individual crystals in the intergrowth
have different orientations and differently interact with
applied magnetic fields. The possible formation of
intergrown crystals of a substance is used in the inter-
pretation of the nature of modulated crystal structures
[5, 6] and is also taken into account in the studies of
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disymmetrization [7]. If the orientations of the space
lattices of individual crystals of the intergrowth coin-
cide, the detection of such crystals by the diffraction [6]
and electron paramagnetic resonance (EPR) methods
becomes rather difficult because their diffraction pat-
terns and EPR spectra become indistinguishable. The
present article is aimed at studying the intergrowth of
individual crystals with the parallel primitive sublat-
tices by the methods of the abstract theory of groups
and representations. We also consider their possible
detection by the EPR method. The study is performed
in two main stages: (i) decomposition of the space
group of the primitive space sublattice Gssp into the
adjacent classes with respect to the subgroup GK and
double cosets by modulus (GK, GH), where GH is the
group of a face of the holohedral simple form, and (ii)
derivation of simple forms for cubic and rhombohedral
crystals from their holohedral forms. The mathematical
apparatus of the abstract group theory [8] used in our
study corresponds to the merohedry method of the the-
ory of crystal form [1, 2].

GROUP–THEORETICAL METHOD 
OF DERIVATION OF CONJUGATED SIMPLE 

FORMS OF CRYSTALS 
FROM THEIR HOLOHEDRAL FORMS

There are seven system space groups Gsp for crystals
of various systems—Ci, C2h, D2h, D3d, D4h, D6h, and Oh

[9, 10]. Only for the trigonal system (Gsp = D3d), the
primitive sublattice is characterized by the group differ-
ent from Gsp (Gssp = 
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6

 

h

 

)

 

, which reduces the number of
holohedral groups to six [1, 2, 11, 12].

Consider the holohedral class of crystals, 
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 be the symmetry group of the face of the holo-
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hedral form. This face can be divided into gH equivalent
elementary (nonsymmetric) parts with respect to the
symmetry elements of the group GH, where gH is the
order of the group GH. If one of these parts, f, is multi-
plied by the symmetry elements of the group GH, we
arrive at the face GH f. Using the elements hi ∈ Gssp for
GH f, we arrive at all the other faces hiGH f of the simple

form, namely, GH f. Applying the elements of the
group Gssp to f, we can also represent this simple form
as Gssp f. Equating the holohedral forms obtained by
these two methods, we obtain

(2)

where hiGH is the right coset with respect to GH [8]. To
each face of the simple form in (2) there uniquely cor-
responds one coset. The index nH of the subgroup GH in
Gssp is equal to the number of faces of the holohedral
simple form. Hereafter, for the sake of brevity, the sim-
ple forms are referred to as forms.

Let a crystal of the system Gssp have the point group
GK ⊂ Gssp. In order to determine the number of conju-
gated forms l and their faces nKiH, apply the group oper-
ations of GK to the face hiGH f of the holohedral form.
With this aim, multiply hiGH in (2) by GK on the left-
hand side. The product GKhiGH is the double coset by
modulus (GK, GH) [8]. The product GKhiGH contains all
the cosets corresponding to the faces equivalent with
respect to GK. The GKhiGH class uniquely corresponds
to one simple form of the crystal with GK. The number
nKiH equals the number of the right cosets with respect
to GH in the product GKhiGH. Multiplying the left-hand
side of (2) by GK, we arrive at the expansion

. (3)

Expansion (3) is, in fact, the scheme for making the
faces of the holohedral form nonequivalent. Using the

conjugated groups hiGH , we can represent expan-
sion (2) in the form

(4)

where the group hiGH  is the symmetry group of the
ith face of the holohedral form, and hi f is one of the ele-
mentary parts of this face. The symmetry group of the
face of the ith conjugated form (3) is determined as the

intersection of the groups GK and hiGH ,

(5)

The number nKiH of the faces of the ith conjugated form

hi∑

Gssp hiGH

i

∑= , 1 i nH, nH≤ ≤ Gssp: GH[ ] ,=

GKGssp nKiH

i 1=

l

∑ GKhiGH, nH nKiH

i 1=

l

∑= =

hi
1–

Gssp f hiGHhi
1–( ) hi f( ), 1 i nH,≤ ≤

i

∑=

hi
1–

hi
1–

GKiH hiGHhi
1–  ∩ GK , 1 i l.≤ ≤=
C

                                                                                

is equal to the index [GK : GKiH] of the group GKiH in GK:

(6)

The groups GK of the crystals of the system under con-
sideration are invariant subgroups of the group Gssp
and, therefore, expansion (3) acquires the form

(7)

The product (GKGH) in (7), which acts onto the elemen-
tary part of f, yields one conjugated form

(8)

It follows from (7) and (8) that all the conjugated forms
are of the same type. Therefore, we restrict our consid-
eration to only one conjugated form GK(GH f). The
group of the face GF of conjugated form (8) is deter-
mined as the intersection GF = GH ∩ GK (5). Form (8)
can be obtained by multiplying the face (GF f) with the
aid of the coset representatives in the expansion of GK

with respect to the subgroup GF:

(9)

The number l of the conjugated forms is calculated by
the formula

(10)

If GK ' = GK × G and GF' = GF × G at G ≠ C1 , then the
substitution of GK by GK ' and GF by GF ' in (9) does not
change the system of the coset representatives {hi}. In
this case, the same form can be used for crystals with
different symmetries, and the condition for the exist-
ence of the same simple form can be written as

(11)

If GF = GF ', then the condition for the admission of the
same simple form reduces to the condition of “equal
power” of the systems of representatives (11). In this
case, the groups GK and GK ' are of the same order.

SIMPLE FORMS AND INTERGROWN 
CUBIC CRYSTALS

For the cubic system, Gssp = Gsp = Oh. If GK = Oh, all
the simple forms—a cube, a rhombododecahedron, tet-
rahexahedron, octahedron, tetragon-trioctahedron,
trigon-trioctahedron, and hexakis octahedron—are
holohedral. The following holohedral forms possess

nKiH = g GK( )  :  g G KiH ( ) G K  :  G KiH [ ] , 1 i l . ≤ ≤≡

GKGssp nKiHhi GKGH( ).
i 1=

l

∑=

GKGH( ) f GK GH f( ).=

GK h j GH ∩ GK( )
j 1=

∑ h jGF,
j 1=

∑= =

1 j GK  :  G F [ ]≤ ≤  n KH .=

l gssp : gH[ ]  : gK  : gF[ ]=

≡ Gssp : GH[ ]  : GK  : GF[ ] .

GK hiGF, GK'

i

∑ hi'GF',
i

∑= =

hi hi', 1 i nKH.≤ ≤=
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the maximum number of faces having the highest pos-
sible symmetry.

A cube has the face group GH = G4V .  At GK = Oh, O,
Td, Th, T the face groups are GF = GH ∩ GK = C4V ∩ GK –
C4V, C4, C2V, C2V , and C2, respectively. The decomposi-
tion (9) of the group GK is performed with the use of the
same system of the coset representatives {hi} = (1 + 31 +

 + 32 +  + 2x):

(12)

whence it follows that a cube, being a simple form, can
exist in crystals of all the five types of symmetry of the
cubic system. The number nK of individual crystals
given by formula (1) in the intergrown crystals with
GK = Oh, O, Td, Th, T equals to the corresponding index:

(13)

It is seen from (13) that there are eleven different cubes.

The individual crystals of the intergrowth with GK

are transformed into one another by the coset represen-
tative in the decomposition of the group Gssp = Oh with
respect to the subgroup GK:

(14)

where m is the operation of reflection with respect to
any of the symmetry planes of the group Oh; my is the
reflection with respect to the symmetry plane normal to
the crystallographic Y-axis; mxy is the reflection with
respect to the symmetry plane diagonal with respect to
the crystallographic X- and Y-axes; and 4 is the rotation
by an angle of π/4. The individual crystals of the inter-
growth differ from one another (have differently
hatched faces of the simple forms) [1].

The rhombododecahedron has GH = C2V . The sub-
groups of GH = C2V in the groups GK = Oh, O, Td, Th, T
are the face groups: GF = C2V, C2, CSyz, CSx, C1. The sys-
tem of representatives {hi} in this case forms the
group T:

(15)

Decomposition (15) indicates that the crystals of all
the five types of cubic-system symmetry can have a
rhombododecahedron. According to (13), there are
eleven different types of dodecahedra (differently
hatched faces).

The tetrahexahedron has GH = CSx. The decompo-
sition of GK with respect to the subgroup GF = CSx ∩ GK

31
2 32

2

Oh hi{ } C4V ; O hi{ } C4; Td hi{ } C2V ;= = =

Th hi{ } C2V ; T hi{ } C2,= =

Oh : Oh[ ] 1; Oh : O[ ] 2; Oh : Td[ ] 2;= = =

Oh : Th[ ] 2; Oh : T[ ] 4.= =

Oh = 1Oh, Oh = 1O mO, Oh+  = 1Td myTd,+

Oh = 1Th mxyTh, Oh+  = 1T mxT mxyT 4T ,+ + +

Oh T{ } C2V ; O T{ } C2; Td T{ } CSyz;= = =

Th T{ } CSx; T T{ } C1.= =
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has the form
tetrahexahedra                  pentagon-dodecahedra

(16)

The system of the coset representatives (16) in the
decomposition of Oh with respect to CSx coincides with
the groups Td or O. The decomposition of the groups O
and Td with respect to GF = C1 is provided by the use of
the representatives of cosets {O} and {Td}, respec-
tively. The crystals with GK = Oh, O, Td can have tetra-
hexahedra. In accordance with (13), there are five dif-
ferent types of tetrahexahedra. The number of represen-
tatives in the decomposition of Th and T is two times
less than Oh, and equals 12.

At GK = Th, pentagon-dodecahedra with the corre-
spondingly hatched faces have the symmetry Th. The
combination of these conjugated forms has the symme-
try group Gssp = Oh. From the decomposition Oh = Th +
mxyTh = {T}CSx + mxy{T}CSx (14) and (16), it follows
that two conjugated pentagon-dodecahedra are trans-
formed into one another by the operation mxy of the
group Oh. The faces of these conjugated forms have dif-
ferent properties. In accordance with (14), a crystal
with two conjugated pentagon-dodecahedra can consist
of two individual crystals in the intergrowth that are
also transformed into one another by the operation mxy.
Altogether, there are only twelve different pentagon-
dodecahedra.

The octahedron has GH = C3V . The decomposition
with respect to the group GF = C3V ∩ GK has the form

         octahedra                               tetrahedra

(17)

For crystals with GK = Td, T, the holohedral form (octa-
hedron) can be represented by two conjugated tetrahe-
dra l(Td) = 2 and l(T) = 2. According to (13), the num-
ber of various tetrahedra equals l(Td)[Oh : Td] +
l(T)[Oh : T] = 2 × 2 + 2 × 4 = 12.

The tetragon–trioctahedron has GH = CSxy . The
decomposition of GK with respect to GF = CSxy ∩ GK has
the form

tetragon-trioctahedra                trigon-tritetrahedra

(18)

There are five types of tetragon-trioctahedra and twelve
types of trigon-tritetrahedra, respectively.

Oh = Td{ } CSx = O{ } CSx,

O = O{ } C1,

Td = Td{ } C1,

Th = T{ } CSx, l = 2,

T  = T{ } C1, l = 2.

Oh = D2h{ } C3V  = D4{ } C3V ,

O = D4{ } C3,

Th = D2h{ } C3,

Td = D2{ } C3V , l = 2,

T  = D2{ } C3, l = 2.

Oh = O{ } CSxy = Th{ } CSxy,

O = O{ } C1,

Th = Th{ } C1,

Td = T{ } CSxy, l = 2,

T  = T{ } C1, l = 2.
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The trigon-trioctahedron has GH = GSyz. The
decomposition of GK with respect to the subgroup GF =
CSyz ∩ GK takes the form:

trigon-trioctahedra tetragon-trioctahedra

(19)

with five types of trigon-trioctahedra and twelve types
of tetragon-tritetrahedra.

The hexakis octahedron has GH = C1. Since the
GF = C1 ∩ GK = C1, the decomposition of the GK system
of the coset representatives coincide with the group GK

itself: Oh = {Oh}C1 yields a hexakis octahedron, 

O = {O}C1, l = 2 yield pentagon-trioctahera;

Td  = {Td}C1, l = 2 yields hexakis tetrahedra; (20)

Th = {Th}C1, l = 2 are didodecahedra;

T = {T}C1, l = 4 yields pentagon-tritetrahedra.

SIMPLE FORMS AND CRYSTALS 
INTERGROWTHS OF TRIGONAL SYSTEM

In this case, Gsp = D3d and Gssp = D6h. The rhombo-
hedral space lattices can have the crystals with GK =
D3d, D3, C3v, C3i, C3. In accordance with GK, the num-
ber nK of individual crystals (1) can have the following
values:

(21)

Simple holohedral forms are a pinacoid, hexagonal

prisms of the { } and { } types, hexagonal

dipyramids of the {2h l} and {h0 l} types, a dihex-
agonal dipyramid, and a dihexagonal prism. The crys-
tallographic X- and Y-axes are directed along the two-
fold axes of the group Gsp = D3d with the angle γ = 120°.
The representations of these holohedral forms for crys-
tals with GK ≤ D3d are as follows.

Oh = O{ } CSyz  = Th{ } CSyz,

O = O{ } C1,

Th = Th{ } C1,

Td = T{ } CSyz, l = 2,

T  = T{ } C1, l = 2

D6h : D3d[ ] 2; D6h : D3[ ] 4;= =

D6h : C3v[ ] 4;=

D6h : C3i[ ] 4; D6h : C3[ ] 8.= =

2110 1010

hh h
C

The pinacoid has GH = C6V . The decomposition of
GK into cosets with respect to GF = C6V ∩ GK takes the
form D6h = (C2x)C6V = (Ci)C6V and C2x = (1 + 2x):

       pinacoids                  monohedra

(22)

A { }-type hexagonal prism has GH = C2xV .
The decomposition has the form D6h = {C6}C2xV =
{C3V}C2xV = {C3i}C2xV :

    hexagonal prisms                  trigonal prisms

(23)

A { }-type hexagonal prism has GH = C2V .
The decomposition of the GK groups of the rhombohe-
dral system with respect to the subgroup GF = C2V ∩ GK

has the form D6h = {C6}C2V = {C3V}C2V = {C3i}C2V =
{D3}C2V :

hexagonal prisms                  trigonal prisms

(24)

Dihexagonal prism has GH = CS. The decomposi-
tion yields the following prisms:

 D3d = {D3d}C1, l = 1 dihexagonal;

D3 = {D3}C1, l = 2 ditrigonal; 

      C3V = {C3V}C1, l = 2 ditrigonal; (25)

C3i = {C3i}C1, l = 2 hexagonal;

C3 = {C3}C1, l = 4 trigonal.

A {h0 l}-type hexagonal dipyramid has GH = CS.
The decomposition GK with respect to the subgroup
GF = CS ∩ GK yields the following results D6h =
{D6}CS = {C6h}CS :

D3d = C2x{ } C3V ,

D3 = C2x{ } C3,

C3i = Ci{ } C3,

C3V  = C1{ } C3V , l = 2,

C3 = C1{ } C3, l = 2.

2110

D3d = C3V{ } C2 = C3i{ } C2,

C3V  = C3V{ } C1,

C3i = C3i{ } C1,

D3 = C3{ } C2, l = 2,

C3 = C3{ } C1, l = 2.

1010

D3d D3{ } C3,=

C3i C3i{ } C1,=

C3 D3{ } C1,=

C3V C3{ } CS, l 2,= =

C3 C3{ } C1, l 2.= =

h

(26)

rhombohedra

D3d D3{ } CS C3i{ } C2, l 2,= = =

D3 D3{ } C1 l, 2= = ,

C3i C3i{ } C1, l 2,= =

ÚË„ÓÌ‡Î¸Ì˚Â ÔË‡ÏË‰˚

C3V C3{ } CS, l 4,= =

C3 C3{ } C1, l 4.= =

trigonal pyramids
A {2h l}-type hexagonal dipyramid has GH =
CS. The results of the decomposition of the groups GK

hh
 with respect to the subgroup GF = CS ∩ GK are repre-
sented in the form D6h = {D6}CS = {C6h}CS = {D3d}CS:
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Table 1.  Conjugated simple forms and their holohedral permutational varieties for cubic crystals

Oh, holohedry O, enantiomorphic 
hemihedry

Td , hemimorphic 
hemihedry Th, hemihedry T, paramorphic

tetartohedry
Form/conju-
gation ratio*

Cube Cube Cube Cube Cube 5/11

Rhombododecahe-
dron

Rhombododecahe-
dron

Rhombododecahe-
dron

Rhombododecahe-
dron

Rhombododecahe-
dron

5/11

Tetrahexahedron Tetrahexahedron Tetrahexahedron 2 Pentagon-dodeca-
hedra

2 Pentagon-dodeca-
hedra

7/17

Octahedron Octahedron 2 Tetrahedra Octahedron 2 Tetrahedra 7/17

Tetragon-trioctahe-
dron

Tetragon-trioctahe-
dron

2 Trigon-tritetrahe-
dra

Tetragon-trioctahe-
dron

2 Trigon-tritetrahe-
dra

7/17

Trigon-trioctahedron Trigon-trioctahedron 2 Tetragon-tritetra-
hedra

Trigon-trioctahedron 2 Tetragon-tritetra-
hedra

7/17

Hexakis octahedron Pentagon-trioctahe-
dron

2 Hexakis tetrahedra 2 Didodecahedra 4 Pentagon-triocta-
hedron

11/29

7 × 1 = 7** 8 × 2 = 16** 11 × 2 = 22** 9 × 2 = 18** 14 × 4 = 56** 49/119

  * Number of simple forms conjugated with the given holohedral form divided into number of all the holohedral permutational
     conjugations.
** Number of conjugations multiplied by multiplicity nK of the orientational degeneracy of the crystal structure with respect to holohedry
     equal to the number of the holohedral permutational conjugations.
D3d = {D3d}C1 hexagonal dipyramid;

C3i = {C3i}C1, l = 2 rhombohedra; 

(27)

C3V = {C3V}C1, l = 2 hexagonal pyramids; 

C3 = {C3}C1, l = 4 trigonal pyramids.

Dihexagonal dipyramid has GH = C1. The decom-
position of the groups GK is written in the form: 

D3d = {D3d}C1, l = 2 trigonal scalenohedra;

D3 = {D3}C1, l = 4 trigonal trapezohedra; 

 (28)

C3i = {C3i}C1, l = 4 rhombohedra; 

C3 = {C3}C1, l = 8 trigonal pyramids. 

It is seen from (26) and (28) that in the transition
from Gssp = D6h to Gsp = D3d, only the holohedral hex-
agonal and dihexagonal dipyramids are divided into
rhombohedra and trigonal scalenohedra, respectively,
because rhombohedra and trigonal scalenohedra can
have different reticular densities [9]. The results of the
decomposition for all the 32 crystal classes are given in
Tables 1–5.

DISCUSSION AND CONCLUSIONS

Except for the rhombohedral system, the faces of
various conjugated simple forms of crystals are charac-
terized by the same nodal nets but have different struc-

D3 D3{ } C1,=

l 2  trigonal pyramids;=

C3V C3V{ } C1,=

l 4  ditrigonal pyramids;=
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tures. The holohedral form can conjugate and develop
on crystals differently. This nonequivalence allows one
to consider the crystal faceting for drawing certain con-
clusions about the type of crystal symmetry. This phe-
nomenon underlies the theory of holohedry and mero-
hedry [1, 2]. The empirical methods for dividing crys-
tals into holohedral and merohedral classes were
refined and developed by Gadolin [3] on the basis of
32 types of the crystal symmetry. The theory of mero-
hedry, once the empirical method of crystal classifica-
tion, has been developed into the theory of the external
shape of crystalline materials. The abstract method of
the group theory used in the present study relates the
theory of crystal forms to the theory of representation
of groups by transitive substitution groups [8]. Decom-
position (3) is in fact the division of the system of
cosets into the transitivity systems of the substitution
groups.

The directional deposition of the substance onto a
crystal can be described by the corresponding represen-
tations of the three-dimensional lattice by the methods
of the group–theoretical analysis. Such a necessity can
arise in the studies of intergrowths with GK = Gssp. It
should be indicated that a three-dimensional lattice of
cubic crystals can be represented by an orthorhombic
lattice with respect to one of the threefold axes L3 .
A rhombohedron in the unit cell of a primitive three-
dimensional sublattice of the symmetry D6h has two
equivalent settings transformed into one another by a
180° rotation around the L3 axis. This equivalence
explains the wide spread occurrence of cubic twins
with the common axis L3 [13].

A three-dimensional lattice of trigonal crystals also
possess two equivalent settings with respect to the sub-
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Table 2.  Conjugated simple forms and their holohedral permutational varieties for tetragonal crystals

D4h D4 C4V C4h D2d S4 C4
Form/conju-
gation ratio*

Pinacoid Pinacoid 2 Monohedra Pinacoid Pinacoid Pinacoid 2 Monohedra 9/23
Tetragonal 
dipyramid

Tetragonal 
dipyramid

2 Tetragonal 
pyramids

Tetragonal 
dipyramid

Tetragonal 
dipyramid

2 Tetragonal 
tetrahedra

2 Tetragonal 
pyramids

10/27

Tetragonal 
prism {100}

Tetragonal 
prism

Tetragonal 
prism

Tetragonal 
prism

Tetragonal 
prism

Tetragonal 
prism

Tetragonal 
prism

7/17

Ditetragonal 
prism

Ditetragonal 
prism

Ditetragonal 
prism

2 Tetragonal 
prisms

Ditetragonal 
prism

2 Tetragonal 
prisms

2 Tetragonal 
prisms

10/27

Tetragonal 
prism {110}

Tetragonal 
prism

Tetragonal 
prism

Tetragonal 
prism

Tetragonal 
prism

Tetragonal 
prism

Tetragonal 
prism

7/17

Tetragonal 
dipyramid

Tetragonal 
dipyramid

2 Tetragonal 
pyramids

Tetragonal 
dipyramid

2 Tetragonal 
tetrahedra

2 Tetragonal 
tetrahedra

2 Tetragonal 
pyramids

11/29

Ditetragonal 
dipyramid

2 Tetragonal 
trapezohedron

2 Ditetragonal 
pyramids

2 Tetragonal 
dipyramids

2 Tetragonal 
scalenohedra

4 Tetragonal 
tetrahedra

4 Tetragonal 
pyramids

17/49

7 × 1 = 7** 8 × 2 = 16** 11 × 2 = 22** 9 × 2 = 18** 9 × 2 = 18** 13 × 4 = 52** 14 × 4 = 56** 71/189

Note: for * and ** see Table 1.
Table 3.  Conjugated simple forms and their holohedral permutational varieties for hexagonal crystals

D6h,
holohedry

D3h, trigonal 
holohedry

D6, enantio-
morphic holo-

hedry

C6V, hemimor-
phic hemihe-

dry

C6h, paramor-
phic hemihe-

dry

C3h, trigonal 
paramorphic 
hemihedry

C6, hemimor-
phic tetartohe-

dry

Forms/conju-
gation ratio*

Pinacoid Pinacoid Pinacoid 2 Monohedra Pinacoid Pinacoid 2 Monohedra 9/23
Hexagonal 
dipyramid 
{2h l}

2 Trigonal 
dipyramids

Hexagonal 
dipyramid

2 Hexagonal 
pyramids

Hexagonal 
dipyramid

2 Trigonal 
dipyramids

2 Hexagonal 
pyramids

11/29

Hexagonal 

prism {2 0}

2 Trigonal 
prism

Hexagonal 
prism

Hexagonal 
prism

Hexagonal 
prism

2 Trigonal 
prism

Hexagonal 
prism

9/23

Dihexagonal 
prism

2 Ditrigonal 
prism

Ditrigonal 
prism

Ditrigonal 
prism

2 Hexagonal 
prism

4 Trigonal 
prism

2 Hexagonal 
prism

13/37

Hexagonal 

prism {10 0}

Hexagonal 
prism

Hexagonal 
prism

Hexagonal 
prism

Hexagonal 
prism

2 Trigonal 
prism

Hexagonal 
prism

8/21

Hexagonal 
dipyramid 
{h0hl}

Hexagonal 
dipyramid

Dihexagonal 
dipyramid

2 Hexagonal 
pyramids

Hexagonal 
dipyramid

2 Trigonal 
dipyramids

2 Hexagonal 
pyramids

10/27

Dihexagonal 
dipyramid

2 Ditrigonal 
dipyramid

2 Hexagonal 
trapezohedra

2 Ditrigonal 
pyramids

2 Hexagonal 
dipyramid

4 Trigonal 
dipyramids

4 Hexagonal 
pyramids

17/49

7 × 1 = 7** 11 × 2 = 22** 8 × 2 = 16** 11 × 2 = 22** 9 × 2 = 18** 17 × 4 = 68** 14 × 4 = 56** 77/209

Note: * and ** see Table 1.

hh

11

1

lattice of the symmetry D6h [14]. This equivalence man-
ifests itself, e.g., in twinning observed in calcite and
dolomite crystals [6] and can be detected by the EPR
method.

The centosymmetricity of the EPR spectra allows
the use of this method only for crystals providing the
modulated spectra from each individual crystal with
equally oriented primitive cubic lattices. The EPR
spectra can detect such twins only for cubic, hexagonal,
and tetragonal crystals with several Laue classes.

Simple forms of the crystals are classified mainly by
two methods [15]: (i) the derivation of less symmetric
C

forms from more symmetric ones and (ii) the derivation
of highly symmetric forms from less symmetric ones.
Using the first method, one can determine the holohe-
dral simple forms. The cubic, hexagonal, tetragonal,
and orthorhombic systems have seven holohedral sim-
ple forms each. The monoclinic system has three sim-
ple forms, and the triclinic systems, only one. Among
these 32 holohedral forms, only 18 are characterized by
different symmetry groups: seven holohedral forms in
the cubic system; hexagonal prism and dipyramid,
dihexagonal prism and dipyramid in the hexagonal sys-
tem; tetragonal prism and dipyramid, ditetragonal
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Table 4.  Conjugated simple forms and their holohedral permutational varieties for trigonal crystals

D3d, rhombohedral 
holohedry

C3V, hemimorphic 
hemihedry

C3i, hexagonal
tetartohedry

D3, enantiomorphic 
hemihedry

C3, rhombohedral 
tetartohedry

Form/conjuga-
tion ratio*

Pinacoid 2 Monohedra Pinacoid Pinacoid 2 Monohedra 7/34

Hexagonal dipyra-
mids 

2 Hexagonal pyra-
mids

2 Rhombohedra 2 Trigonal dipyra-
mids 4 Trigonal pyramids 11/58

Hexagonal prism 
Hexagonal prism Hexagonal prism 2 Trigonal prisms 2 Trigonal prisms 7/34

Dihexagonal prism 2 Ditrigonal prisms 2 Hexagonal prism 2 Ditrigonal prisms 4 Trigonal prisms 11/58

Hexagonal prism 
2 Trigonal prisms Hexagonal prism Hexagonal prism 2 Trigonal prisms 7/34

2 Rhombohedra 4 Trigonal pyramids 2 Rhombohedra 2 Rhombohedra 4 Trigonal pyramids 14/68

2 Trigonal scaleno-
hedra

4 Ditrigonal pyra-
mids

4 Rhombohedra 4 Trigonal trapezo-
hedra

8 Trigonal pyramids 22/116

9 × 2 = 18** 17 × 4 = 68** 13 × 24 = 52** 14 × 4 = 56** 26 × 8 = 208** 79/402

Note: for * and ** see table 1.

2hhhl{ }

2110{ }

1010{ }
Table 5.  Conjugated simple forms and their holohedral permutational varieties for orthorhombic, monoclinic, and triclinic
crystals

Orthorhombic system

D2h, holohedry D2, enantiomorphic hemihedry C2V, hemimorphism Form/conjugation ratio*

Pinacoid {001} Pinacoid 2 Monohedra 4/7

Rhombic prism {0kl} Rhombic prism 2 Dihedra 4/7

Pinacoid {100} Pinacoid Pinacoid 3/5

Rhombic prism {hk0} Rhombic prism Rhombic prism 3/5

Pinacoid {010} Pinacoid Pinacoid 3/5

Rhombic prism {h0l} Rhombic prism 2 Dihedra 4/7

Rhombic dipyramid 2 Rhombic tetrahedra 2 Rhombic dipyramid 5/9

7 × 1 = 7** 8 × 2 = 16** 11 × 2 = 22** 26/45

Monoclinic system

C2h, holohedry C2, hemihedry CS, hemimorphism Form/conjugation ratio*

Pinacoid {001} 2 Monohedra Pinacoid 4/7

Pinacoid {hk0} Pinacoid 2 Monohedra 4/7

Rhombic prism 2 Dihedra 2 Dihedra 5/9

3 × 1 = 3** 5 × 2 = 10** 5 × 2 = 10** 13/23

Triclinic system

Ci, holohedry C1, hemihedry Form/conjugation ratio*

Pinacoid 2 Monohedra 3/5

1 × 1 = 1** 2 × 2 = 4** 3/5

Note: * and ** see Table 1.
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prism and dipyramid, and orthorhombic dipyramid in
the tetragonal system; rhombic dipyramid in the orthor-
hombic system; rhombic prism in the orthorhombic and
monoclinic systems, and a pinacoid in all the systems
except of the cubic system. The enclosure of each of the
32 holohedral forms into the corresponding GK classes
yields 318 [4] holoherally conjugated simple forms
(Tables 1–5). In the cubic system, there are 49 such
simple forms; in the hexagonal system, 156; in the tet-
ragonal system, 71; in the orthorhombic system, 26; in
the monoclinic system, 13; and in the triclinic system,
3 holohedral conjugated simple forms. Among 318
conjugations, 231 are nonequivalent with respect to the
connectedness domain [16], 200 are holohedrally non-
equivalent, and 146 are nonequivalent with respect to
the normalizer of point groups [4, 17], and, finally, 47
conjugations are nonequivalent with respect to the
complete symmetry group. Each of 318 conjugations
can take nK (1) holohedral permutational positions. The
number of all the holohedral permutational conjuga-
tions for 32 crystal classes is equal to 992: 119 in the
cubic system (Table 1), 189 in the tetragonal system
(Table 2), 611 in the hexagonal system (Table 3), 45 in
the orthorhombic system, 23 in the monoclinic system,
and 5 in the triclinic system (Table 5).

The derivation of the simple forms from the holohe-
dral ones corresponds to the crystal classification
according to the scheme Gssp ⊇ Gsp ⊇ GK and reflects
the ability of crystals to intergrow. It also allows the
graphic representation of holohedral permutational
conjugated simple forms in terms of elementary parts
of the holohedral simple form developed equivalently
with respect to GK [1].
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Abstract—Using three-dimensional point and tablet antisymmetry groups and also rosette and zero-dimen-
sional groups of generalized antisymmetry that model all possible subgroups of four-dimensional crystallo-
graphic point groups, we determined the number of various symmetry groups forming the four-dimensional
crystallographic classes for each category of such subgroups. These results allowed us to establish (without the
use of the complete catalogue of the groups themselves) that 168 four-dimensional crystallographic classes pre-
serve not only the point but also some other geometrical objects. The remaining 103 classes preserve only one
invariant point of the four-dimensional Euclidean space. © 2000 MAIK “Nauka/Interperiodica”.
1. Broun et al. [1] described the four-dimensional
symmetry groups of the G40 category (four-dimen-
sional crystallographic classes). Zamorzaev et al. [2]
derived all kinds of their subgroups (hypercrystallo-
graphic with an invariant hyperplane and a singular
point on it, i.e., the groups of the G430 category copying
the groups of the G410 category; bi-rosette groups with
an invariant two-dimensional plane and a point on it,
i.e., the groups of the G420 category; hypertablet groups
with an invariant hyperplane into which an invariant
two-dimensional plane with singular point is embed-
ded, i.e., the groups of the G4320 category coinciding
with the groups of the G4210 and G4310 categories, and
also the symmetry groups of the G43210 category). How-
ever, these groups and their subgroups need further
structural study.

By definition, the four-dimensional crystallographic
classes preserve at least one stationary point of the
space. Clearly, among these groups, there are groups
that preserve only one point of space. At the same time,
there are also some groups that in addition to a point,
preserve unchanged also some other geometrical
objects of the four-dimensional space. However, the
number of groups with the above properties among the
four-dimensional crystallographic classes is unknown.
It is also unknown how many four-dimensional crystal
classes G40 are contained within each category of sub-
groups of four-dimensional point groups. The present
paper is aimed at elucidating the above-mentioned geo-
metrical features of the four-dimensional crystallo-
graphic classes and to determine all kinds of their non-
trivial subgroups.

2. Zamorzaev et al. [2] interpreted all the groups of
the G420 category in terms of the rosette groups of the

symmetry G20 and the antisymmetry  and also of

the Belov groups of complete color symmetry  and

G20
1

G20
p

1063-7745/00/4504- $20.00 © 20537
the Pawley color antisymmetry  at p = 2, 3, 4, 6 by
applying a complex geometrical interpretation of signs
“+” and “–,” indices 1, …, p, or the indices with signs

1, …, p and , …, . This procedure is analogous to
bringing into correspondence the one-dimensional

point groups of P-symmetry  and the tablet groups
of symmetry G320 in Table 1 from [3]. On the basis of
the general theory and classification of the groups of P-
symmetry (sections 2 and 3, ch. I [2]), and the results of
calculations for the nontrivial generalization of the G20

category (sections 2 and 3, ch. II), one can see that

10G20 + (11M + 10C)  + (11M + 10C)  + (4M +

10C)  + (2 + 10 + 11)  (junior, senior, and

2-intermediate) + (2 + 10 + 11 + 4)  (junior, senior, 3-,

and 2-intermediate) + (6 + 10 + 2 × 11)  (junior,

senior, (1')- and 2-intermediate) + (4 + 10 + 11)
(junior, senior, and 3-intermediate) + (2 + 10 + 2 × 11 +

6)  (junior, senior, (2')-, 4-, and 2-intermediate) +

(2 + 10 + 2 × 11 + 6 + 4)  (junior, senior, (3')-, 6-, 3-,
and 2-intermediate) rosette groups (whose complete
derivation is considered for the first time below) model
263 different four-dimensional symmetry groups that
preserve two mutually orthogonal two-dimensional
planes intersecting at the singular point (cf. with [4]).
Note that not only one-to-one but also strong isomor-
phic correspondence exists between the indicated

rosette groups  and the groups of the G420 category,

i.e., the structure of each  group considered exactly
reflects the structure of the corresponding G420 group [5].

G20
p'

1 p

G10
P

G20
1 G20

2

G20
3 G20

4

G20
6

G20
2'

G20
3'

G20
4'

G20
6'

G20
p

G20
P
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Let us write the above-mentioned  groups,
which interprete 263 different four-dimensional point
symmetry groups of the G4201 category in Shubnikov’s
notation.1

G20: 10 generating (1, 2, 3, 4, 6, m, 2 · m, 3 · m, 4 · m,
6 · m).

: 11 junior (2', 4', 6', m', 2' · m, 2 · m', 3 · m', 4' · m,
4 · m', 6' · m, 6 · m'), 10 senior (1 × 1', 2 × 1', 3 × 1', 4 ×
1', 6 × 1', m × 1, 2 · m × 1', 3 · m × 1', 4 · m × 1', 6 · m × 1').

: 11 junior (2(2), 4(2), 6(2), m(2), 2(2) · m, 2 · m(2),
3 · m(2), 4(2) · m, 4 · m(2), 6(2) · m, 6 · m(2)), 10 senior (1 ×
1(2), 2 × 1(2), 3 × 1(2), 4 × 1(2), 6 × 1(2), m × 1(2), 2 · m ×
1(2), 3 · m × 1(2), 4 · m × 1(2), 6 · m × 1(2)).

: 4 junior (3(3), 3(–3), 6(3), 6(–3)), 10 senior (1 ×
1(3), 2 × 1(3), 3 × 1(3), 4 × 1(3), 6 × 1(3), m × 1(3), 2 · m ×
1(3), 3 · m × 1(3), 4 · m × 1(3), 6 · m × 1(3)).

: 2 junior (4(4), 4(–4)), 10 senior (1 × 1(4), 2 × 1(4),
3 × 1(4), 4 × 1(4), 6 × 1(4), m × 1(4), 2 · m × 1(4), 3 · m ×
1(4), 4 · m × 1(4), 6 · m × 1(4)), 11 2-intermediate (2(4),
4(4) × 1(2), 6(4), 2(4) · m, 2 · m(4), 3 · m(4), 4(4) · m, 4 · m(4),
6(4) · m, 6 · m(4), m(4)).

: 2 junior (6(6), 6(–6)), 10 senior (1 × 1(6), 2 × 1(6),
3 × 1(6), 4 × 1(6), 6 × 1(6), m × 1(6), 2 · m × 1(6), 3 · m ×
1(6), 4 · m × 1(6), 6 · m × 1(6)), 11 3-intermediate (2(2) ×
1(3), 4(2) × 1(3), 6(2) × 1(3), m(2) × 1(3), 2(2) · m × 1(3),
2 · m(2) × 1(3), 3 · m(2) × 1(3), 4(2) · m × 1(3), 4 · m(2) × 1(3),
6(2) · m × 1(3), 6 · m(2) × 1(3)), 4 2-intermediate (3(3) × 1(2),
3(−3) × 1(2), 6(3) × 1(2), 6(–3) × 1(2)).

: 6 junior (2(2 · m'), 2') · m(2, 4(2 · m'), 4') · m(2,
6(2 · m'), 6') · m(2), 10 senior (1 × 1(2 · 1'), 2 × 1(2 · 1'), 3 ×
1(2 · 1'), 4 × 1(2 · 1'), 6 × 1(2 · 1'), m × 1(2 · 1'), 2 · m × 1(2 ·
1'), 3 · m × 1(2 · 1'), 4 · m × 1(2 · 1'), 6 · m × 1(2 · 1')), 11
(1')-intermediate (2(2 · 1'), 4(2 · 1'), 6(2 · 1'), m(2 · 1'), 2(2 ·
m · 1'), 2 · m(2 · 1'), 3 · m(2 · 1'), 4(2 · m · 1'), 4 · m(2 · 1'), 6(2 ·
m · 1'), 6 · m(2 · 1')), 11 2-intermediate (2') × 1(2, 4') × 1(2,
6') × 1(2, m') × 1(2, 2') · m × 1(2, 2 · m') × 1(2, 3 · m') × 1(2,
4') · m × 1(2, 4 · m') × 1(2, 6') · m × 1(2, 6 · m') × 1(2).

: 4 junior (3(3 · m'), 3(–3 · m'), 6(3 · m'), 6(–3 · m')), 10
senior (1 × 1(3 · 1'), 2 × 1(3 · 1'), 3 × 1(3 · 1'), 4 × 1(3 · 1'),
6 × 1(3 · 1'), m × 1(3 · 1'), 2 · m × 1(3 · 1'), 3 · m × 1(3 · 1'),
4 · m × 1(3 · 1'), 6 · m × 1(3 · 1')), 11 3-intermediate (2') ·
1(3), 4') · 1(3), 6') · 1(3), m') · 1(3, 2') · m · 1(3, 2 · m') · 1(3, 3 ·
m') · 1(3, 4') · m · 1(3, 4 · m') · 1(3, 6') · m · 1(3, 6 · m') · 1(3).

: 2 junior (4(4 · m'), 4(–4 · m')), 10 senior (1 × 1(4 ·
1'), 2 × 1(4 · 1'), 3 × 1(4 · 1'), 4 × 1(4 · 1'), 6 × 1(4 · 1'), m ×

1 Enantiomorphism of the two-dimensional point groups  and

 corresponds to that of four-dimensional groups G420.

G20
P

G20
p

G20
p'

G20
1

G20
2

G20
3

G20
4

G20
6

G20
2'

G20
3'

G20
4'
C

1(4 · 1'), 2 · m × 1(4 · 1'), 3 · m × 1(4 · 1'), 4 · m × 1(4 · 1'),
6 · m × 1(4 · 1')), 11 (2')-intermediate (2(4 · 1'), 4(4 · 1(2 ·
1'), 6(4 · 1'), m(4 · 1'), 2(4 · m · 1'), 2 · m(4 · 1'), 3 · m(4 · 1'),
4(4 · m · 1'), 4 · m(4 · 1'), 6(4 · m · 1'), 6 · m(4 · 1')), 11 4-inter-
mediate (2') · 1(4, 4') · 1(4, 6') · 1(4, m') · 1(4, 2') · m · 1(4, 2 ·
m') · 1(4, 3 · m') · 1(4, 4') · m · 1(4, 4 · m') · 1(4, 6') · m · 1(4,
6 · m') · 1(4), 6 2-intermediate (2(4 · m'), 2') · m(4, 4(4 · m')

· 1(2, 4') · m(4, 6(4 · m'), 6') · m(4).

: 2 junior (6(6 · m'), 6(–6 · m')), 10 senior (1 × 1(6 ·
1'), 2 × 1(6 · 1'), 3 × 1(6 · 1'), 4 × 1(6 · 1'), 6 × 1(6 · 1'), m ×
1(6 · 1'), 2 · m × 1(6 · 1'), 3 · m × 1(6 · 1'), 4 · m × 1(6 · 1'),
6 · m · 1(6 · 1')), 11 (3')-intermediate (2(2 × 1(3 · 1'), 4(2 ×
1(3 · 1'), 6(2 × 1(3 · 1'), m(2 × 1(3 · 1'), 2(2 · m × 1(3 · 1'), 2 ·
m(2 × 1(3 · 1'), 3 · m(2 × 1(3 · 1'), 4(2 · m × 1(3 · 1'), 4 · m(2 ×
1(3 · 1'), 6(2 · m × 1(3 · 1'), 6 · m(2 × 1(3 · 1')), 11 6-inter-
mediate (2') · 1(6, 4') · 1(6, 6') · 1(6, m') · 1(6, 2') · m · 1(6, 2 ·
m') · 1(6, 3 · m · 1(6, 4') · m · 1(6, 4 · m') · 1(6, 6') · m · 1(6, 6 ·
m') · 1(6), 6 3-intermediate (2(2 · m') · 1(3, 2') · m(2 · 1(3, 4(2 ·
m') · 1(3, 4') · m(2 · 1(3, 6(2 · m') · 1(3, 6') · m(2 · 1(3), 4 2-
intermediate (3(3 · m') × 1(2, 3(–3 · m') × 1(2, 6(3 · m') × 1(2,
6(–3· m') × 1(2).

Note that the rosette symmetry groups G20 can be
interpreted both as three- and four-dimensional sym-
metry groups [6].

3. Consider the category G420. In addition to a point,
the groups of symmetry transformations preserve two
mutually orthogonal planes intersecting at the singular
point indicated above. Let us check the number of point
groups of the category G40 that the category G420
includes. It is clear that the above mutually orthogonal
planes play different geometrical parts in the groups of
the category G420. However, they play the same part in
the groups of the category G40. Hence, the lists of the

groups G20, , , and  at p = 2, 3, 4, 6, which
interpret the category G420, contain numerous equiva-
lent groups (connected to them by a tilde) under the
assumption that they interpret the category G40. For
example, 2 ~ 1(2) ~ m', 3 ~ 1(3), 6 ~ 1(6), 2 × 1(3) ~ 3 × 1(2)

etc., and 2(4) ~ 4(2), 2(2) × 1(3) = 2(6) ~ 6(2), 3(–3) × 1(2) =
3(6) ~ 6(3), 3(3) × 1(2) ~ 6(–3), 4(2) × 1(3) ~ 6(4), 2 · m') ~
m') × 1(2, 3 · m' ~ m') · 1(3, 4 · m' ~ m') · 1(4, 6 · m') ~ m') ·
1(6, 2 × 1(2 · 1') ~ 2 · m × 1(2), 3 · m(2 · 1') ~ 2') · m × 1(3, 3 ·
m × 1(2) ~ 2 × 1(3 · 1'), 6(2 · 1') ~ 2(2) · m × 1(3), etc.

As a result, we obtain that there are 152G40 groups
among 263G420 groups. In particular, the groups from
263G420 groups interpreting 152G40 are the following:
1, 2, 3, 4, 6, m, 2 · m, 3 · m, 4 · m, 6 · m; 2', 4', 6', 2' · m,
2 · m', 3 · m', 4' · m, 4 · m', 6' · m, 6 · m'; 3 × 1', 4 × 1',
6 × 1', 2 · m × 1', 3 · m × 1', 4 · m × 1', 6 · m × 1'; 2(2),
4(2), 6(2), 2(2) · m, 2 · m(2), 3 · m(2), 4(2) · m, 4 · m(2), 6(2) · m,
6 · m(2); 2 × 1(2), 3 × 1(2), 4 × 1(2), 6 × 1(2), 2 · m × 1(2),
3 · m × 1(2), 4 · m × 1(2), 6 · m × 1(2); 2(2 · m'), 2') · m(2,
4(2 · m'), 4') · m(2, 6(2 · m'), 6') · m(2; 3 × 1(2 · 1'), 4 × 1(2 · 1'),

G20
6'

G20
1 G20

p G20
p'
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6 × 1(2 · 1'), 2 · m × 1(2 · 1'), 3 · m × 1(2 · 1'), 4 · m × 1(2 · 1'),
6 · m × 1(2 · 1'); 4(2 · 1'), 6(2 · 1'), 2(2 · m · 1'), 2 · m(2 · 1'),
3 · m(2 · 1'), 4(2 · m · 1'), 4 · m(2 · 1'), 6(2 · m · 1'), 6 · m(2 · 1');
4') × 1(2, 6') × 1(2, 2 · m') × 1(2, 3 · m') × 1(2, 4') · m × 1(2,
4 · m') × 1(2, 6') · m × 1(2, 6 · m' × 1(2; 3(3), 3(–3), 6(3), 6(–3);
3 × 1(3), 4 × 1(3), 6 × 1(3), 3 · m × 1(3), 4 · m × 1(3), 6 · m ×
1(3); 4(4), 4(–4); 4 × 1(4), 6 × 1(4), 3 · m × 1(4), 4 · m × 1(4),
6 · m × 1(4); 4(4) × 1(2); 6(4), 3 · m(4), 4(4) · m, 4 · m(4),
6(4) · m, 6 · m(4); 6(6), 6(–6); 6 × 1(6), 3 · m × 1(6), 4 · m × 1(6),
6 · m × 1(6); 6(2) × 1(3), 3 · m(2) × 1(3), 4(2) · m × 1(3),
4 · m(2) × 1(3), 6(2) · m × 1(3), 6 · m(2) × 1(3); 6(3) × 1(2),
6(−3) × 1(2), 3(3 · m'), 3(–3) · m'), 6(3 · m'), 6(–3 · m'); 3 · m ×
1(3 · 1'), 4 · m × 1(3 · 1'), 6 · m × 1(3 · 1'); 3 · m') · 1(3, 4') ·
m · 1(3, 4 · m') · 1(3, 6') · m · 1(3, 6 · m') · 1(3; 4(4 · m'), 4(−4 ·
m'); 4 · m × 1(4 · 1'), 6 · m × 1(4 · 1'); 4(4 · 1(2 · 1'), 4(4 · m ·
1'), 4 · m(4 · 1'), 6(4 · m · 1'), 6 · m(4 · 1'); 4 · m') · 1(4, 6') · m ·
1(4, 6 · m') · 1(4; 4(4 · m') · 1(2, 4') · m(4, 6(4 · m'), 6') · m(4;
6(6 · m'), 6(–6 · m'); 6 · m × 1(6 · 1'); 6(2 × 1(3 · 1'), 6(2 · m ×
1(3 · 1'), 6 · m2) × 1(3 · 1'); 6 · m') · 1(6; 6(2 · m') · 1(3, 6') · m(2 ·
1(3; 6(3 · m') × 1(2, 6(–3 · m') × 1(2.

One can readily see that there are only 42 non-iso-
morphic groups among 152 groups of the category G40.
For example, such groups are: 1–4, 6, 2 · m, 3 · m, 4 · m,
6 · m; 4 × 1', 6 × 1', 2 · m × 1', 4 · m × 1', 6 · m × 1'; 4 ×
1(2 · 1'), 6 × 1(2 · 1'), 2 · m × 1(2 · 1'), 4 · m × 1(2 · 1'), 6 ·
m × 1(2 · 1'); 3 × 1(3), 4 × 1(3), 6 × 1(3), 3 · m × 1(3), 4 · m ×
1(3), 6 · m × 1(3); 4 × 1(4), 6 × 1(4), 3 · m × 1(4), 4 · m × 1(4),
6 · m × 1(4); 6(4) · m, 6 · m(4); 6 × 1(6), 3 · m × 1(6), 4 · m ×
1(6), 6 · m × 1(6); 3 · m × 1(3 · 1'), 4 · m × 1(3 · 1'), 6 · m ×
1(3 · 1'); 4 · m × 1(4 · 1'), 6 · m × 1(4 · 1'), 6 · m × 1(6 · 1').

The matrix representation of 32 crystallographic
classes given in [7] can be readily extended to the four-
dimensional crystallographic classes obtained in this
study. For example, in terms of the orthogonal four-
dimensional matrices, the groups 2(4), 6(6 · m'), 4(2 · m ×
1(3 · 1') can be written as follows:

1– 0 0 0

0 1– 0 0

0 0 1– 0

0 0 1 0 
 
 
 
 
 

 
 
 
 
 
 
 

,

1/2 3/2– 0 0

3/2 1/2 0 0

0 0 1/2 3/2–

0 0 3/2 1/2 
 
 
 
 
 
 

1– 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1– 
 
 
 
 
 

,

 
 
 
 
 
 
 

,
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4. Now, let us determine how many different G40
groups are interpreted by 125 symmetry groups of the
category G4320.

According to [2] (section 1, ch. IV), 125 groups of
the category G4320 are interpreted by the symmetry and

the antisymmetry groups of tablets  or by

125 groups of twofold rosette antisymmetry 
described in detail in Table 11 [8]. To answer the ques-

tion raised above, it is sufficient to write the  groups
as the groups of (2')-symmetry (complete and incom-
plete, degenerating into (1')- and 2-symmetries) and to
leave only one group of each set of the coinciding
groups in the list thus obtained as the G40 groups.

All 125  in the form of G20, , , and 
(complete P-symmetries) were written in section 2.

Therefore, if all the  and  (at p = 3, 4, 6) groups
from the list of 152G420 groups interpreting different
G40 are rejected, then the first 75 remaining groups will
model different G40 included in the category G4320. It is
explained by the fact that the above-mentioned 152
G420 groups, which are different when modeling G40,

are singled out from the list of 263  groups arranged

in the sequence G20, , , , , and  (at
p = 3, 4, 6) by removing from each group all the subse-
quent groups coinciding with it when modeling G40.

Taking into account all the above arguments, it is
easy to determine the number of four-dimensional
point symmetry groups in the category G430 that are
interpreted by 122 Shubnikov antisymmetry classes

 [7, 8]. Indeed, all 16  groups of cubic system
model 16 different groups of the category G40. The
remaining 122 – 16 = 106 three-dimensional point
groups of symmetry and antisymmetry correspond to

tablet groups . However, as has been pointed out,

among 125 , there are only 75 groups as different

0 1– 0 0

1 0 0 0

0 0 1– 0

0 0 0 1– 
 
 
 
 
  1– 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1– 
 
 
 
 
 

,,









1 0 0 0

0 1 0 0

0 0 1/2– 3/2–

0 0 3/2 1/2– 
 
 
 
 
 
 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1– 
 
 
 
 
 

,









.

G320
1

G20
2

G20
2

G20
2 G20

1 G20
2 G20

2'

G20
p G20

p'

G20
P

G20
1 G20

2 G20
2' G20

p G20
p'

G30
1 G30

1

G320
1

G320
1
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as G40. Hence, the category G430 includes altogether 75
+ 16 = 91 different G40 groups.

5. Finally, let us determine the number of groups as
different as G40 among 67G43210 . According to [2], all
the groups of the category G43210 are modeled by sym-

metry and antisymmetry groups of finite ribbons ,
or by symmetry and twofold antisymmetry groups of

finite borders , or by symmetry and threefold anti-

symmetry groups of segments , or, finally, by sym-
metry and fourfold antisymmetry groups of asymmet-

ric dot  (these groups are listed in Table 12 [8]). The
easiest way of solving our problem is to write all the
fourfold antisymmetry groups of zero-dimensional

space  and to retain in the list obtained only the
groups that interpret different G40. Being fully classi-

fied (according to sections 1 and 2, ch. 2 [8]), all the 
groups are exhausted by the generating group and all
kinds of the senior groups of certain species: G; C1, C2,
C3, C4, C12, C13, C14, C23, C24, C34, C123, C124, C134, C234,
C1234; C1C2, C1C3, C1C4, C1C23, C1C24, C1C34, C1C234,
C2C3, C2C4, C2C13, C2C14, C2C34, C2C134, C3C4, C3C12,
C3C14, C3C24, C3C124, C4C12, C4C13, C4C23, C4C123,
C12C13, C12C14, C12C34, C12C134, C13C14, C13C24, C13C124,
C14C23, C14C123, C23C24, C23C124, C24C123, C34C123;
C1C2C3, C1C2C4, C1C2C34, C1C3C4, C1C3C24, C1C4C23,
C1C23C24, C2C3C4, C2C3C14, C2C4C13, C2C13C14,
C3C4C12, C3C12C14, C4C12C13, C12C13C14; C1C2C3C4
(altogether 67 groups).

According to Mackay [9], among the listed 67 zero-
dimensional groups of four-fold antisymmetry, there
are only 16 different groups: G; Ci, Cij, Cijk, C1234; CiCj,
CiCjk, CiCjkl, CijCik, CijCkl, CijCikl; CiCjCk, CiCjCkl,
CiCjkCjl, CijCikCil; C1C2C3C4. Of these groups only 5
groups are not isomorphic: G, C, C2, C3, and C4, i.e.,
the generating and four senior of l independent species
at l = 1, 2, 3, and 4 [8].

It is not difficult to prove that 16  groups singled
out are also as different as G40. With this aim, one has
to write their matrix representation. Thus, among
67 groups of the category G43210 only 16 groups are dif-
ferent as of G40, and only 5 of these 16 groups are noni-
somorphic.

6. Using the planar point symmetry groups studied,
one can consider some geometrical features of the four-
dimensional crystallographic classes of G40. Consider
again the sets G430 and G420. Now, assume that their ele-
ments are only groups as different as G40. Let us intro-
duce two more new elements, the junction G430 ∪  G420
and the intersection G430 ∩ G420 . Further, we denote the
capacity of these sets by the symbols m|G430|, m|G420|
etc. Since the category (G4320) coincides with the inter-

G3210
1

G210
2

G10
3

G0
4

G0
4

G0
4

G0
4

C

section of the categories (G430) and (G420), one has
m|G430 ∩ G420| = m|G4320|. However, as is well-known,
m|G430 ∪  G420| = m|G430| + m|G420| – m|G4320|. Hence,
m|G430 ∪  G420| = 91 + 152 – 75 = 168.

As a result, we obtain that among 271G40 groups,
168 groups preserve not only a point but also other geo-
metrical objects. The remaining 271 – 168 = 103 groups
preserve only a point.

Thus, knowing the number of groups different as
G40 and contained in the point symmetry groups of the
categories G420, G430, and G4320, we established (with-
out use of the catalogue of four-dimensional crystallo-
graphic classes) that 168 classes preserve not only zero-
dimensional but also other nontrivial subspaces in the
four-dimensional Eucledian space.

7. The results obtained in this paper can schemati-
cally be represented as follows:

where the coefficients not enclosed into parentheses
and those in the parent theses before the category sym-
bol denote the number of groups and the number of
groups different as four-dimensional crystallographic
classes contained by this category, respectively. The
symbol  indicates that the subsequent category is
included into the previous one (cf. with Fig. 15 [2]).
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DIFFRACTION AND SCATTERING 
OF X-RAYS AND SYNCHROTRON RADIATION
X-ray Diffraction from Ideal Mosaic Crystals 
in External Fields of Certain Types, Part II: Changes 
in the Temperature Factor and Diffraction Pattern1
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Moscow State Academy of Geological Prospecting, Moscow, Russia
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Abstract—The changes in the X-ray temperature factor of a single crystal in external fields of running electro-
magnetic and acoustic waves has been analyzed. The evaluation of these changes shows the importance of a
thorough choice of crystals and experimental conditions for recording the variations in the structure factors
(intensities). The relationships derived allow one to predict the type of a diffraction pattern formed in a field of
a standing wave applied to the crystal. The position, shape, and the height of the main and auxiliary peaks are
analyzed as functions of the applied-field parameters. © 2000 MAIK “Nauka/Interperiodica”.
1VARIATION OF TEMPERATURE FACTOR 
AS FUNCTION OF A HARMONIC FIELD 

APPLIED TO A CRYSTAL

The variation of a temperature factor in a crystal can
be estimated using the expression for the isotropic tem-
perature factor

(1)

where 〈u2〉1/2 is the root-mean square deviation of struc-
ture atoms averaged over all the vibration directions
and time, θ is the diffraction angle, and λ is the wave-
length. It is assumed that the displacements of all the
atoms in the crystal are equal. This approximation is
sufficient for the estimates which will he made below.

Denote the instantaneous displacement of an atom
caused by thermal vibrations in the absence of any
external factor by uT, and the displacement of this atom,
caused by an applied harmonic field of frequency ω1 ,
by u(ω1). Then the resulting displacement is u1(ω1) =

uT + u(ω1), and, therefore, 〈 (ω1)〉  = 〈 〉  + 〈u2(ω1)〉
(because all the cross products become zeroes upon
averaging the harmonic terms over time). It is natural to
assume that formula (1) would also be valid for a crys-
tal in various electromagnetic and acoustic fields, there-
fore

(2)

where T(sinθ/λ) is the temperature factor recorded in
traditional X-ray studies (without external fields).

1 For Part I see [1].

T
θsin

λ
----------- 

  8π2
u

2〈 〉 θsin
2

λ 2
------------– 

  ,exp=

u1
2

uT
2

T1
θsin

λ
----------- 

  T
θsin

λ
----------- 

  8π2 u
2 ω1( )〈 〉 θsin

2

λ 2
------------– 

  ,exp=
1063-7745/00/4504- $20.00 © 20541
Thus, the determination of the temperature-factor vari-
ations reduces to evaluation of 〈u2(ω1)〉 .

The case of a running wave  = cos(w1t –
k1x). Consider first an electromagnetic field, i.e., sub-

stitute  and  by Eext and , and evaluate
〈u2(ω1)〉  for a linear dielectric and the refractive index
n(ω1) as a macroscopic parameter characterizing its
properties. Then the polarizability is written as P =
[n2(ω1) – 1]ε0E, where ε0 is the dielectric constant, and
E is the macroscopic field in the material. It is expedi-
ent to pass from the field E to Eext. In accordance with
the Fresnel formulas for a polarized wave incident onto
the crystal at a small angle, we have E0 = [2/(n +

1)] , where E0 is the amplitude of the wave E. Then

(3)

The total polarizability P under the effect of an
external field is provided by the displacements of ions,
u, from different sublattices of the crystal with respect
to one another (the photon polarization) and the dis-
placements of electrons with respect to nuclei (the elec-
tron polarization). Thus, for optical phonons, we can
write Pph(ω1) = NQ*u(ω1) where N is the number of
atoms per unit volume and Q* is the effective charge
([2], p. 198). Thus, we have

(4)

It was assumed that the longitudinal and the transverse
particle displacements in an elastic wave caused by the
effect of an electromagnetic field are approximately
equal.

Aext A0
ext

Aext A0
ext E0

ext

E0
ext

P 2ε0 n ω1( ) 1–[ ] Eext
.=

u
2 ω1( )〈 〉

1/2 2ε0

NQ*
------------ n ω1( ) 1–[ ] E0

ext
.=
000 MAIK “Nauka/Interperiodica”
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A similar expression can also be written for the elec-
tron component, because Pe(ω1) = NqÂue(ω1) (where qÂ
is the atomic charge and ue(ω1) is the displacement of
electrons with respect to the nucleus), moreover, in
some cases, Q* ≈ qÂ ([2], p. 199).

Assuming that in (4) N ≈ 1029 m–3, Q* ≈ qÂ = 1.6 ×
10–19 C, and n = 3 (the nonresonance value), we see that

in order to make 〈u2(ω1)〉 and 〈 〉 of the same order of
magnitude (with due regard for the fact that the value
~10–2 Å2 is often encountered in X-ray studies), one has

to apply the field  ~ 5 × 109 V/m. For high refrac-
tive indices, such as n ≈ 50 (e.g., for a tetragonal mod-
ification of a BaTiO3 crystal ([3], p. 190)), we obtain

 ≈ 2 × 108 V/m. Since the field E0 inside the speci-
men is less by a factor of n/2 than the external field

, in order to create a field E0 ≈ 8 × 106 V/m one has
to apply the potential difference U ≈ 8 kV to the
opposite faces of the crystal (at the specimen thickness
l ≈ 1 mm), which seems to be quite a reasonable value.

It should be indicated that, because of the reso-
nance, the value of 〈u2(ω1)〉  in piezoelectrics can be
increased by several orders of magnitude if the fre-
quency of an applied electric field coincides with one of
the natural frequencies of the mechanical oscillations
of the specimen. Thus, for a quartz in a constant field
U ≈ 3 kV,  the change in the plate thickness (length)
∆l = dU is as small as ~7 × 10–7 cm (where d is the cor-
responding piezoelectric modulus). However, in the
case of the resonance, the vibration amplitude of the
quartz X-cut increases by a factor of ρ0c0/ρc(2k – 1)π
with respect to the value for the static mode (ρ0c0 and
ρc are the wave resistances of the quartz plate and the
medium where the acoustic waves are emitted, respec-
tively, k is the number of the natural-frequency har-
monic of the vibrating plate). Thus, if l = 1 mm and the
frequency is f1 ~ 8 × 106 Hz, the value of k is about 3. If
one assumes that the ultrasonic waves are emitted into
the air, the vibration amplitude increases by a factor of
2 × 103, i.e., it attains a value of ~1.4 × 10–3 cm, which
corresponds to 〈u2(ω1)〉  ≈ 5 × 10–3 Å2 (at the lattice
parameter a ~ 5 Å). The latter can be recorded by the
X-ray diffraction method, because σ〈u2〉  often has the
value of the order of ~(10–4–10–5) Å2 .

Thus, the above orders of quantities 〈u2(ω1)〉  indi-
cate the necessity of rigorous allowance for various fac-
tors that can affect the diffraction patterns from crys-
tals.

Now, consider the variation of the temperature fac-
tor (in the nonresonance case) under the effect of a pla-
nar running acoustic wave incident onto a crystal. The

mean square deviation is denoted as 〈 (ω1)〉 . Then
ua(ω1) is understood as the vibrational displacement of
the particles in the medium under the effect of a sonic-

uT
2

E0
ext

E0
ext

E0
ext

ua
2

C

wave field. We should like to estimate 〈 (ω1)〉  and,
therefore, as earlier, use the average characteristics. In
particular, the properties of the medium are character-
ized by the average velocity c of wave propagation in
the crystal having the density ρ. Instead of the stress
tensor, we use the sound pressure p. The relation
between the pressure p in the medium and the external
pressure pext depends on the boundary conditions [4],
§137. We assume that these boundary conditions are
such that p = pext. Under these assumptions, the real
amplitude of the vibrational displacement for a plane

wave is u = /ω1ρc. Thus, the averaged squared
atomic displacement is

(5)

where  = ( )2/2ρc is the intensity of sound. When
averaging the displacements, we assumed that the
atomic displacements caused by longitudinal and trans-
verse vibrations are approximately equal. Then the

sought estimates of 〈 (ω1)〉  follow from formula (5).

Let  ≈ 5 W/cm2 (this is really observed in the
microwave range in a magnetostriction frequency con-
verter), ρ ≈ 5 × 103 kg/m3, and c ~ 5 × 103 m/s. Then, in
the range of high ultrasonic frequencies f1 ≈ 108 Hz, we

have 〈 (ω1)〉 ~ 1 Å2; at f1 ≈ 109 Hz, we have 〈 (ω1)〉 ≈
0.01 Å2; and in the range of hypersound f1 ≈ 1011 Hz, we
have ~10–6 Å2. Thus, in the frequency range we are
most interested in, the intensity of the diffraction pat-
tern can vary considerably in the range of moderate and
high ultrasonic and low hypersonic frequencies. In the
transition to hypersonic frequencies, one has to
increase the intensity of the external field or use the res-
onance modes for vibrations of the crystal lattice and an
applied acoustic field.

DIFFRACTION PATTERNS FROM A CRYSTAL 
IN A FIELD OF A STANDING WAVE

Let a standing wave A(x, t) = 2A0cosk1xcosω1t of an
electromagnetic or an acoustic nature propagate in a
crystal. The relation between the amplitudes A0 and

 of running waves, for this case was considered
earlier. The force field of the standing wave generates a
standing wave of atomic displacements from their equi-
librium positions: u(x, t) = 2u(ω1)cosk1xcosω1t. Upon
raising u(x, t) to the second power and averaging it over
time and vibration directions (at each point x of atom
location), we obtain

(6)
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2 ω1( )〈 〉 2I

ext
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ext
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ext
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where 〈u2(ω1)〉1/2 is expressed in terms of (4) and (5),
and therefore the proportionality coefficient q(ω1)
equals 2ε0(n – 1)/NQ* for the electromagnetic waves

and 1/ω1ρc for the acoustic waves. The amplitude 

plays the role of  and  in the above external
fields. All the X-ray diffraction methods use the dimen-
sionless coordinate x, and therefore the wave number k1

has the sense of k1 = 2πa/λ1.

Under the effect of a standing-wave field, the initial
periodicity of the crystal is disturbed and, therefore,
similar to the case considered in part I of this article [1],
we have to introduce the structure factor of scattering
for a crystal, Fcr(S). For the case of a standing wave, the
expression for the structure factor of a crystal is written
in the form

(7)

where the notation is the same as in [1].

In equation (7), the total displacement of the centers
of gravity of atoms averaged over time is zero. Then, it
is convenient to pass from summation over mnp in (7)
to integration over the crystal volume v. This can be
done because we assume that the number of unit cells
in a real crystal is very large, whereas the function
under the summation sign over mnp smoothly varies
with the transition from one cell to another under the
given value of S in the vicinity of the reciprocal lattice
point. Now, introduce a new vector e ≡ S – H to
describe the distribution of the structure factor (inten-
sity) in the vicinity of the reciprocal-lattice point H.
Then, (7) with due regard for (6), we can rewrite (7) in
the form

(8)

where V is the unit-cell volume. It is also assumed that,
within a diffraction peak, the structure factor of scatter-
ing by the unit cell is F(S) ≈ F(H) and that
expi2πSRmnp = expi2πeRmnp (because the components
of the vectors H and Rmnp are integers). Taking into
account that in many particular cases, the exponent in
the first term in (8) is small compared with unity (see
the above estimates of 〈u2(ω1)〉), we can retain only two
first terms in its expansion. Then, one can represent
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Fcr(S) in the form

(9)

The first term in (9) describes the diffraction peaks
from unperturbed crystal. Their heights are equal to
F(H), the shapes are set by the function

εlMl/πεl, and they are centered at positions
εl = 0. The second term characterizes the changes in
Fcr(S) caused by the effect of an external standing-wave
field. These changes are proportional to the squared

amplitude of the external field ( )2 and the structure
factor F(H) and also depend on sin2θ/λ2 and on the
crystal properties set by the coefficient q. The sche-
matic diffraction pattern along the a*-axis is deter-
mined by the functional dependence of the integral in
(9) on s1, and can be written as

(10)

Expressions (9) and (10) determine the diffraction
pattern in the space of structure factors. The above for-
mulas do not take into account the divergence of the
primary beam, the finite width of its spectral range, and
other experimental characteristics. Obviously, the exist-
ence of these factors should broaden the diffraction
peaks. However, the theoretical consideration should
deal, first and foremost, with an ideal experiment,
because the main quantities used in the theory are inde-
pendent of the concrete details of the experimental setup.

Now, analyze formulas (9) and (10) for an ideal
experiment. According to (9) and (10), there are three
peaks around the reciprocal lattice point H. The main
peak is centered in the position H, but its height is less
than that for an unperturbed crystal and is equal to

F(H)[1 – 4(πqsinθ/λ )2]. This reduced peak height
shows itself mainly in high-angle reflections. At
〈u2(ω1)〉  ≈ (10–3–10–2) Å2 (see the above estimates), the
peak height is ~(0.97–0.75) F(H) and, therefore, the
intensities of such reflections can be reduced by factors
of ~(1.06–1.77) in comparison with the intensities of an
unperturbed crystal. As earlier, the shape of this peak is

Fcr S( )
πεlMlsin
πεl

----------------------F H( ) 8 πqA0
ext θsin

λ
----------- 

 
2

–
l 1=

3

∏=

× F H( )
πεlMlsin
πεl

---------------------- k1x i2πε1x( )expcos
2

x.d

M1

2
-------–

+
M1

2
-------

∫
l 2=

3

∏

πsin
l 1=
3∏

A0
ext

k1x i2πε1x( )expcos
2

xd

M1

2
-------–

+
M1

2
-------

∫

=  
1
2
---

πε1M1sin
πε1

------------------------
k1 πε1±( )M1[ ]sin

2 k1 πε1±( )
--------------------------------------------

±
∑+

 
 
 

.

A0
ext
0



544 TREUSHNIKOV
described by the function sinπεlMl)/πεl. Two

other, auxiliary, maxima are centered in the positions
s1 = h1 ± k1/π, s2 = h2, and s3 = h3; their heights are equal

to 2(πqsinθ/λ )2F(H), and the shape along the a*-
axis is set by the function sin[(k1 ± πε1)M1]/(k1 ± πε1).
The heights of the auxiliary maxima are determined by
the parameter 〈u2(ω1)〉 . At the same orders of magni-
tude of 〈u2(ω1)〉  ≈ (10–3–10–2) Å2 , the heights of these
peaks are ~1.2 × (10–2–10–1)F(H) (for high-angle
reflections). Therefore, the auxiliary peaks can be
experimentally recorded only with the use of either
intense sources of X-ray radiation or at considerably
longer exposures. Only if 〈u2(ω1)〉  ≈ 8 × 10–2 Å2 (see the
above estimates for acoustic factors), the heights of
auxiliary maxima can attain the values comparable
with the value of the main maximum.

(
l 1=
3∏

A0
ext

|Fcr(s1)|2

1 – (k1/π) 1 + (k1/π) 2 + (k1/π)
2/M12/M1

s1

Schematic one-dimensional section of the peaks of the func-
tion |Fcr(S)|2 at two reciprocal-lattice points, h1 = 1 and h1 = 2,

in an external field of a standing wave (x, t) =

2 cosk1xcosω1t. The case λ1 < L1.

A
ext

A0
ext

h1 = 1 h1 = 2
C

Formulas (9) and (10) yield the condition at which
the main and the auxiliary maxima can overlap (an
ideal experiment). The bases of the peaks start overlap-
ping at λ1 = L1. In this case, a standing wave in a crystal
has two antinodes (or two nodes). The maximum over-
lap is observed at λ1 = 2L1, i.e., in the situation where
the center of an auxiliary maximum coincides with the
edge of the main maximum, because a periodic effect
of a standing wave under the conditions λ1 > 2L1 makes
no sense at all. The auxiliary peaks on the diffraction
pattern are explained by an additional periodicity pro-
vided by the dependence of the field amplitude of the
standing wave on x. This situation is somewhat similar
to the case of a periodic force field considered earlier,
which resulted in the static atomic displacement from
their equilibrium positions. However, in our case, an
increase in the auxiliary-peak heights depends not on
sin2θ/λ2 and an external-field amplitude but on their

squared values, sin2θ/λ2 and ( )2, which is the man-
ifestation of the specific features of modulation under
the effect of the temperature factor and not of the dis-
placement field of the atomic coordinates.
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DIFFRACTION AND SCATTERING 
OF X-RAYS AND SYNCHROTRON RADIATION
X-ray Diffraction from Ideal Mosaic Crystals 
in External Fields of Certain Types, 

Part III: Changes in Space Symmetry and Symmetry 
of Diffraction Pattern1

E. N. Treushnikov
Moscow State Academy of Geological Prospecting, Moscow, Russia
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Abstract—The change in the space symmetry and the symmetry of the corresponding diffraction pattern occur-
ring under the effect of uniform electric and magnetic fields applied to a crystal have been analyzed. The tables
of point symmetry groups for various directions of applied magnetic fields are constructed. It is shown that in
the absence of an external field, the diffraction patterns are described by nine possible point groups; in an elec-
tric field, they are described by eleven point groups; and in a magnetic field, by only five point groups. The the-
oretically calculated diffraction parameters are compared with the corresponding experimental values. © 2000
MAIK “Nauka/Interperiodica”.
1SPACE SYMMETRY AND SYMMETRY 
OF DIFFRACTION PATTERN OF CRYSTALS 

UNDER THE EFFECT OF EXTERNAL ELECTRIC 
AND MAGNETIC FIELDS

In order to determine the symmetry of a crystal in
external fields, one has to invoke the Curie principle
([1], p. 44). If one applied a uniform electric field to a
crystal, the Curie principle is used in the form

(1)

where î and î1 are the space groups of the crystal
symmetry prior to and upon the field application, ∞mm
is the point symmetry group of an external field, and

 is the group of continuous three-dimensional
translations. The signs ∩ and ⊗  denote the intersection
and the direct multiplication, respectively.

If the initial space group of the crystal is known,
condition (1) provides the determination of possible
space groups under the effect of various external fac-
tors. It is clear that î1 depends on the direction of an
external field Eext with respect to the a-, b-, and c-axes,
which are assumed to be normal to the faces of a pris-
matic crystal. As an example, consider the space groups
P21/c and Pca21. If the external field Eext is applied
along the a- and c-axes, the sp. gr. P21/c is changed to
the sp. gr. Pc, if the field Eext is applied along the b-axis,
it is changed to P21. For the space group Pca21, the
application of an external field along the a-, b-, and c-
axes lead to the space groups Pa, Pc, and Pca21, respec-
tively. The preservation of the translations in the newly

1 For parts I and II see [2] and [3].

î1 î ∞mm T τ1τ2τ3
,⊗∩=

T τ1τ2τ3
1063-7745/00/4504- $20.00 © 20545
formed î1 groups is provided by the presence of the
group of continuous translations  in Eq. (1). Of
course, if the initial space group î does not contain
these translations, they cannot appear in new groups
either. Thus, in the sp. gr. P2/m and Pmmm, with the
external field Eext being applied along the a-, b-, or c-
axes, these groups are transformed into Pm, P2, Pm and
P2mm, Pm2m, and Pmm2, respectively. Thus, all the
above space groups are transformed into noncen-
trosymmetric space groups. This is also the general rule
in an applied electric field, because the field Eext is
described by a polar (and, therefore, noncentrosymmet-
ric) vector. In a similar way, one can also analyze any
of 230 space groups.

The symmetry of a diffraction pattern is determined
by the point groups (crystallographic classes). The
changes in the symmetry of the corresponding diffrac-
tion patterns of a crystal in various applied fields can
also be obtained with the aid of the Curie principle in
the form

(2)

where K and K1 are the point groups prior to and upon
the application of an external field to the crystal. Since
the structure factor is F1(H) = (–H), the symmetry
of the diffraction pattern can be obtained by applying
the center of inversion to the point group K1. The pos-
sible symmetry groups of the diffraction pattern and
also the point groups arising under the effect of an
external uniform electric field applied along the a-, b-,
and c-axes of the crystal are listed in Table 1. It is seen
that the point symmetry of the crystal in a uniform elec-

T τ1τ2τ3

K1 K ∞mm,∩=

F1*
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Table 1.  Effect of application of a uniform electric field, Eext, on the symmetry of the crystal and its diffraction pattern

Point symmetry
group of crystal

Symmetry of
diffraction pattern

Point symmetry group (left column) and the symmetry of
the diffraction pattern (right column) in an external field

without field Eext || a Eext || b Eext || c

1 1 1 1

1 1 1

2(||c) 1 1 2 2/m

m(⊥ c) 2/m m 2/m m 2/m 1

2/m m 2/m m 2/m 2 2/m

mm2 m 2/m m 2/m mm2 mmm

222 mmm 2 2/m 2 2/m 2 2/m

mmm 2mm mmm m2m mmm mm2 mmm

3(||c) 1 1 3

 (||c) 1 1 3

3m* 1 1 3m m

32 m 2 2/m 2 2/m 3

m 2 2/m 2 2/m 3

4(||c) 1 1 4 4/m

(||c) 4/m 1 1 2 2/m

4/m m 2/m m 2/m 4 4/m

2m 2 2/m 2 2/m mm2 mmm

4mm m 2/m m 2/m 4mm 4/mmm

422 4/mmm 2 2/m 2 2/m 4 4/m

4/mmm 2mm mmm m2m mmm 4mm 4/mmm

6 (||c) 1 1 6 6/m

 (||c) 6/m m 2/m m 2/m 3

6/m m 2/m m 2/m 6 6/m

2m m 2/m m 2/m 3m m

6mm 6/mmm m 2/m m 2/m 6mm 6/mmm

622 2 2/m 2 2/m 6 6/m

6/mmm 2mm mmm m2m mmm 6mm 6/mmm

23
m3

2 2/m 2 2/m 2 2/m

m3 2mm mmm m2m mmm mm2 mmm

3m 2mm mmm m2m mmm mm2 mmm

432 m3m 4 4/m 4 4/m 4 4/m

m3m mm4(4||a) mm4/m m4m(4||b) m4/mm 4mm 4/mmm

* Point group 3m. The crystallographic a- and b-axes lie between the planes m.

1
1 1 1

1 1 1 1

1 1

1

3
1 1 3

3 1 1 3

1 1 3

3 3

3 3

1 1

4 1 1

4

1 1

6 3

6 3

4
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X-RAY DIFFRACTION FROM IDEAL MOSAIC CRYSTALS 547
tric field is determined by ten noncentrosymmetric
groups corresponding to ten polar classes ([1], p. 36).
The symmetry of the corresponding diffraction patterns
can be described by nine centrosymmetric point

groups: , 2/m, mmm, , m, 4/m, 4/mmm, 6/m, and
6/mmm, whereas in the absence of perturbations, it is
described by eleven groups.

If a uniform magnetic field is applied to a crystal,
the Curie principle is written in the form similar to
Eq. (1), with the symbol of the point symmetry of an
electric field being substituted by the symbol of the
point symmetry of a magnetic field (∞/m).

Naturally, the groups î1, in the case of a magnetic
field, do not coincide with the groups in the case of an
electric field. Thus, the application of a magnetic field
along the a-axis results in the change of the groups ana-
lyzed above, P21/c, Pca21, P2/m, and Pmmm, to the

groups P , Pc, P , and P2/m, respectively. The appli-
cation of a magnetic field along the b-axis results in the
change of the above groups to P21/c, Pa, P2/m, and
P2/m, respectively, and, finally, the application of a
magnetic field along the c-axis change these groups to

P , P21, P , and P2/m, respectively. Unlike the case
of an electric field, the application of a magnetic field
can give rise to formation of both centrosymmetric and
noncentrosymmetric groups, in full accordance with
the initial space group of the crystal. This fact is
explained by different symmetries of the polar, Eext,
and axial, Hext, vectors.

The point group symmetry for the case of an exter-
nal magnetic field is illustrated by Table 2. In this case,
32 point groups are transformed into 13 symmetry
classes of magnetics ([1], p. 36). Then, the symmetry of
the diffraction pattern is determined by five point

groups , , 2/m, 4/m, and 6/m. If both nonuniform
electric and magnetic fields are applied to a crystal, the
latter loses its property of periodicity. Then the symme-
try of the crystal can be described by point groups. The
Curie principle in this case has its conventional form
([1], p. 42).

The data listed in Tables 1 and 2 can also be used to
select appropriate objects for study. Indeed, if the
change in the diffraction-pattern symmetry under the
effect of an applied field can be recorded experimen-
tally, this shows that one can determine the field-
induced changes in the diffraction parameters. The cor-
responding estimates of the intensity variations arising
in this case were considered in [2].

COMPARISON OF THEORETICAL ESTIMATES 
OF DIFFRACTION PARAMETERS 

WITH THE CORRESPONDING EXPERIMENTAL 
DATA

A number of diffraction parameters were estimated
in [2, 3]. These are the values of the averaged atomic

1 3 3

1 1

1 1

1 3
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displacements 〈∆x〉 numbered by the subscript s and the
directions numbered by the subscript l = 1–3; the
changes in the intensities |∆I| of main and subsidiary
peaks; the changes in the temperature factor ∆B, and
some other parameters arising under the effect of vari-
ous external factors. It is also expedient to compare
these theoretical estimates with the corresponding
experimentally determined values.

Fujimoto [4] performed the X-ray diffraction study
of LiNbO3 and LiTaO3 crystals in an external electric
field Eext ≈ 50 kV/cm using alternating positive and neg-
ative rectangular pulses at a frequency of 19 Hz. He
measured the integrated intensities of a number of dif-
fraction reflections under the effect of both positive and
negative pulses. The displacements ∆z of heavy Nb and
Ta ions were of the order of 5.5 × 10–4 Å, whereas those
of light Li ions were of the order of 1.3 × 10–3 Å.

It was indicated [2] that the most appropriate object
for recording the variations in the atomic coordinates in
an applied electric field are piezoelectrics, and first of
all, displacive-type ferroelectrics (i.e., LiNbO3 and
LiTaO3 [4]) possessing high values of the piezoelectric
modulus d (here we do not use the tensor notation). Fujim-
oto also indicated how it is possible to estimate the average
shifts in the atomic coordinates 〈∆x〉 at the given d and Eext

values and also some other parameters. Thus, for LiNbO3
at the averaged values of the nonzero components of the
piezoelectric modulus 〈d〉 ≈ 2.3 × 10–11 C/N, the hexago-
nal unit-cell parameter 〈a〉 ≈ 8 Å, dielectric constant
〈ε〉 ≈ 45 ([5], p. 22), and Eext ≈ 50 kV/cm, we obtain
〈∆x〉 ≈ 0.2 × 10–4 Å. Similar estimates were also made
for LiTaO3, 〈∆x〉  ≈ 0.1 × 10–4 Å. Thus, the numerical
values of these estimates are considerably less than
their experimental values, which can be explained as
follows. First, the above estimates are macroscopic
quantities, and, therefore, they include not only the dis-
placements of the Nb, Ta, and Li atoms (ions) but also
the displacements of oxygen atoms not taken into
account in [4]. Second, since oxygen atoms form face-
sharing octahedra, one can assume that the displace-
ments of oxygen ions are insignificant. Third, it is very
important that the refinement of the atomic coordinates
was performed in [4] only over seven independent
reflections, which, as a rule, is insufficient for the pre-
cision determination of coordinates.

The complete X-ray diffraction study of a LiNbO3:
Fe (0.01–0.02 at %) and triglycine sulfate
C6H17N3O10S: Cr (0.002 at %) (TGS) single crystals
was performed [6] under the effect of weak electromag-
netic radiation (λ = 532 and 630 nm, the power density
(0.2–0.3) W/cm2). In this case [6], no variations in ther-
mal or positional parameters of structure atoms struc-
tures were recorded. However, in both crystals, an
increase of the extinction parameters responsible for
the angular misorientation of the blocks of mosaics in
the structure was recorded. Thus, the angular block
misorientation upon the irradiation of a LiNbO3: Fe
0
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Table 2.  Effect of applied uniform magnetic field Hext on the symmetry of the crystal and its diffraction pattern

Point group
of crystal

Symmetry of
diffraction pattern

Point group of symmetry (left column) and symmetry
of diffraction pattern (right column) in an external field

without field Hext||a Hext||b Hext||c

1 1 1 1

2(||c)

2/m

1 1 2 2/m

m(⊥ c) 1 1 m 2/m

2/m 2/m 2/m

mm2

mmm

m 2/m m 2/m 2 2/m

222 2 2/m 2 2/m 2 2/m

mmm 2/m 2/m 2/m 2/m 2/m 2/m

3(||c) 1 1 3

(||c)

3m*

m

m 2/m m 2/m 3

32 2 2/m 2 2/m 3

m 2/m 2/m 2/m 2/m

4(||c)

4/m

1 1 4 4/m

(||c) 1 1 4/m

4/m 4/m 4/m

2m

4/mmm

2 2/m 2 2/m 4/m

4mm m 2/m m 2/m 4 4/m

422 2 2/m 2 2/m 4 4/m

4/mmm 2/m 2/m 2/m 2/m 4/m 4/m

6(||c)

6/m

1 1 6 6/m

(||c) 1 1 6/m

6/m 6/m 6/m

2m

6/mmm

m 2/m m 2/m 6/m

6mm m 2/m m 2/m 6 6/m

622 2 2/m 2 2/m 6 6/m

6/mmm 2/m 2/m 2/m 2/m 6/m 6/m

23
m3

2 2/m 2 2/m 2 2/m

m3 2/m 2/m 2/m 2/m 2/m 2/m

3m
m3m

4/m 4/m 4/m

432 4 4/m 4 4/m 4 4/m

m3m 4/m 4/m 4/m 4/m 4/m 4/m

* For notation, see Table 1.

1
1 1 1

1 1 1 1 1 1 1

1 1

1 1

1 1 1 1

3
1 1 3

3 1 1 1 1 3 3

3

3

3

3 3 3

1 1

4 1 1 4

1 1 1 1

4 4

1 1

6 1 1 6

1 1 1 1

6 6

4 4 4 4
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sample was 8.6(3)'', whereas prior to irradiation, it was
equal to 5.1(3)''. The corresponding values for TGS
crystals were 0.91(1)'' and 0.61(1)''.

It was indicated [2] that no atomic displacements
occur in external electromagnetic fields. In [3], the
mean square displacements of atoms from their equilib-
rium position 〈u2(ω1)〉1/2 were observed under the effect
of the variation in ∆B. These displacements allow the
estimation of the variation in ∆B; a considerable value
of ∆B (~10–2 Å2) can be obtained only in strong external
fields (Eext ≈ 108 V/m). For the case under consider-
ation, we obtain in weak external fields (Eext ≈ 9 ×
102 V/m) that ∆B ! σ(∆B). Thus, the theoretical esti-
mates made in [2, 3] are in good accord with the corre-
sponding experimental values. The variations in the
extinction parameters were not estimated, because their
values depend on the growth conditions and can con-
siderably vary for different specimens. However, one
can readily predict an increase in the secondary-extinc-
tion parameter with an increase of the integrated inten-
sity of the small-angle reflection [6]. It follows from the
essence of the extinction phenomenon ([7], p. 74). Var-
ious methods for calculating the corresponding param-
eters were considered in [8], ch. 7.

The X-ray study of a K0.30MoO3 crystal with a quasi-
one-dimensional conductivity in an alternating electric
field (positive and negative current (voltage) pulses
alternating at a certain frequency was performed in
[9, 10]. The application of an external field to a crystal
resulted in formation of satellite peaks associated with
charge-density waves in the crystal [9, 10].

The type of the diffraction pattern formed due to
application of an external force field of the form

(x) = cos2πk1x resulted in the periodic dis-
placements of atoms from their equilibrium position [2]
and the formation of an additional periodic electron
density. This situation is analogous to that observed in
[9, 10] and is caused by the formation in a crystal of a
periodic structure of the charge-density waves induced
by an alternating current (voltage) field. The analysis of
the expression for the structure factor Fcr(S) in this case
revealed some additional satellite reflections on the dif-
fraction pattern, which is quite consistent with the
above experimental results. The positions and the
intensities of satellites with respect to the main maxima
were analyzed in [2, 9, 10].

The effect of an applied electric field (Eext =
39 kV/cm) on the integrated intensities of a number of
reflections for an organic 2-methyl-4-nitroaniline
(MNA) crystal possessing high nonlinear optical char-
acteristics was analyzed in [11]. It was shown that the
relative changes in the integrated intensities of some
reflections range within ~(0.03–1.81) × 10–3, i.e., on the
average, are equal to ~0.09%.

The analysis of the average atomic displacements
and the corresponding changes in the integrated inten-

A
ext

A0
ext
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sities in a crystals placed into an electric field was per-
formed in [2]. For MNA crystals at d ≈ (38–250) pm/V
([12], p. 269) and ε ≈ 3 (the dielectric constant for the
related compounds considered elsewhere ([12], p. 418),
we have that the relative displacement in atomic coor-
dinates should be (0.5–3.2) × 10–4. 

However, no atomic coordinate displacements were
estimated in [1], probably because of a small number
(six) of measured reflections. The theoretically calcu-
lated displacement yields the following relative varia-
tion in the integrated intensity |∆I|/I ≈ (0.004–0.2) ×
10−3 (∆I = I1 – I, sinθ/λ ≈ 0.4 Å–1) or ~0.01%, which is
nine times lower than the observed value. It was indi-
cated [2], that, in some cases, the estimate of the change
in the relative intensity |∆I|/I provided by the atomic-
coordinate displacements is a lower boundary of the
relative change in the intensity under the effect of an
external electric field. It can also indirectly indicate the
considerable deformation of the electron density of
chemical bonds of this organic compound occurring
under the effect of an external electric field and pro-
vides an additional contribution to |∆I|/I. However, the-
oretically, it is impossible to estimate the effect of this
factor on the intensity variation in our case.

The above estimates are very useful. They show that
each reflection requires an exposure time of 1–2 days,
which explains the small number of reflections
recorded by the authors [11]. This estimate also allows
one to develop an appropriate strategy of the experi-
ment [2]. Indeed, if the study is aimed to obtain a most
complete set of diffraction data for the detailed X-ray
study, then it is necessary to use powerful synchrotron
sources of X-ray radiation.

CONCLUSIONS

The presented cycle of studies ([2, 3] and the present
article) provides the theoretical consideration of the
basic problems of X-ray diffraction from ideal mosaic
crystals in electric, magnetic, and electromagnetic
fields and under acoustic perturbations. A more
detailed consideration of these and some other prob-
lems can be found in [13] and include the intensity scat-
tered by an electron, an atom, and a crystal; the modifi-
cation of the Bragg equation, the expression for the
integrated intensity, the allowance for the thermal
vibrations of atoms and extinction in external fields.

The above theoretical analysis of the effect of exter-
nal field on the diffraction parameters provides a more
reasonable choice of objects for such studies and also
the strategy and the tactics for experiments. Other use-
ful data can be obtained from the analysis of the crystal
symmetry and its variation under the effect of magnetic
and electric fields.

In many instances, small displacements in atomic
coordinates often recorded in various applied fields are
themselves unimportant, but they can give rise to the
considerable deformation of the outer (valence) elec-
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tron density (see, e.g., [4]). The electron distribution
can affect the optical, electric, and other properties of
crystals (see the Hohenberg–Kohn theorem [14]).
Therefore, the study of the electron-density distribution
in crystals in applied fields seems to be of great impor-
tance.

The further detailed theoretical description should
include the introduction of the characteristics of other
external factors into the derived formulas and calcula-
tion of typical diffraction patterns from these formulas
and estimation of their main parameters. In the study of
highly intense external factors, one has to take into
account all the nonlinear effects.

The above consideration can serve as the basis for
studying dynamic X-ray diffraction in external fields.
Indeed, one of the main theoretical parameters is the
dielectric polarizability (susceptibility), χ(H). It is the
variation of this parameter in external fields that deter-
mines the redistribution of X-ray intensities in the the-
ory of dynamical diffraction in comparison with their
distribution in the unperturbed case.
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Abstract—The conditions for synthesis and the range of existence of the monoclinic TlS modification in the
Tl–S system have been determined by means of differential thermal, X-ray diffraction, and microstructural
analyses. It was shown that the monoclinic phase is a structural analogue of TlGaSe2. Possible variants of for-
mation of structural sheets and the nature of phase transitions in the monoclinic TlS modification are discussed.
© 2000 MAIK “Nauka/Interperiodica”.
1 As is well known, thallium halcogenides and their
triple ABX2 analogues, where A is Tl, B is Ga or In, and
X is S, Se, or Te, crystallize in the tetragonal system and
form chainlike structures [1]. The specific feature of
these structures is the occurrence of thallium in mono-
and trivalent states with the coordination numbers
equal to eight and four (polyhedra in the shapes of
cubooctahedra and tetrahedra), respectively. Substitu-
tion of Ga, In, Fe, etc., for Ta3+ and of K and Rb for Tl+

results in the formation of a series of triple compounds,
with different structures of the chainlike TlSe type,
layer TlGaSe2 type [2], or a close-packed type similar
to the nonlayer low-symmetry variant of MoS2 [3].

According to the data in [4, 5], the unit-call param-
eters of the monoclinic TlS modification at room
temperature are a = 11.018, b = 11.039, c = 4 ×
15.039 Å; and β = 100.69°. The value of the c period
indicates that the crystal structure is an eight-sheet
polytype of the TlGaSe2 structure. The polytype is
characterized by the fourfold pseudoperiod along the c-
axis. In view of this fact, one can expect the formation
of a polytype with the double period c = 2 × 15.039 Å.
The temperature dependence of dielectric constant ε(T)
showed that the monoclinic TlS phase undergoes a
first-order phase transitions at 318.6 K and then exists
as an incommensurate phase up to 341.1 K [4]. At the
latter temperature, a second-order phase transition is
observed, and the pseudoperiod disappears.

The present study was aimed to establish (1)
whether the low-temperature TlS phase is formed mon-
oclinic (2) whether the TlSmonocl  TlStetr transition
really occurs and (3) if so, what are the conditions for
this transition.

The phase diagrams of the Tl–S system reported in
[5, 6] are inconsistent and should be refined since none
of them reflects solid-state transformations in TlS. With
this aim we synthesized a number of alloys with the 47–

1 e-mail: bahruz@usa.net
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53 at. % S corresponding to the stoichiometric compo-
sitions TlS, TlS + 2% S, TlS + 4% S, and TlS + 6% S.

The synthesis was performed by alloying the com-
ponents in evacuated quartz ampules at a residual pres-
sure of 10–4 mm Hg and 623 K. The alloys were
annealed for 45 days at 343 K. The annealed specimens
were studied by the DTA, X-ray powder diffraction,
and microstructural analyses. The X-ray diffraction
pattern corresponding to the composition TlS + 4% S
was closer to that from the monoclinic lattice than to
the patterns of the remaining three types of the speci-
mens synthesized. The polycrystals of this composition
were ground, loaded into an evacuated ampule, and

20 30 40 50 60
2θ, deg

5

4

3

2

1

I, arb. units

Fig. 1. X-ray diffraction patterns of the (TlS + 4 at % S)
specimens annealed at the temperatures: (1) 261; (2) 303;
(3) 323; (4) 373; and (5) 423 K.
000 MAIK “Nauka/Interperiodica”
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Observed interplanar spacings of the (TlS + 4% S) specimens annealed at various temperatures

Present study Data [7]

dobs (at 261 K) h k l dobs (at 303 K) h k l dobs (at 423 K) h k l dobs (tetr. TlS) h k l

4.9279 201 3.927 220 3.8277 200 3.893 200

3.7603 202 3.627 221 3.3958 002 3.396 002

3.6449 220 3.408 310 3.1160 211 3.080 211

3.5092 221 3.296 311 2.7587 220 2.746 220

3.3070 310 3.249 312 2.5384 202 2.557 202

3.1688 311 3.053 313 2.1283 222 2.140 222

3.0562 312 3.022 314 1.9458 400 1.946 400

2.9383 313 2.758 400 1.7371 420 1.745 420

2.9122 314 2.504 402 1.6867 402 1.691 402

2.8400 315 2.464 222 1.5537 422 1.550 422

2.6650 410 2.138 407 1.446 224

2.5481 331 1.949 440 1.374 440

2.5108 402 1.892 441 1.296 600

2.4057 314 1.834 442 1.277 442

2.3026 421 1.740 620 1.229 620

2.2496 422 1.680 623 1.212 124; 602

2.2251 423 1.553 629 1.156 622

2.1127 510

1.87984 511

2.85610 600

1.77829 601

1.72527 533

1.67062 444

1.59009 625

1.53206 624
annealed for 10 days at 261 K. Then diffraction patterns
were recorded (Fig. 1, curve 1). The measurements
were performed on a DRON-3 diffractometer using
CuKα radiation. The interplanar spacings and reflection
indices in the monoclinic subunit are listed in the table
(the column of the data obtained in this study). Then,
the same specimen was loaded into an evacuated
ampule again, annealed for 10 days at 303 K, and sub-
jected to the X-ray powder analysis (Fig. 1, curve 2).
Similar experiments were repeated at 323, 373, and
423 K. The corresponding X-ray diffraction patterns
are shown in Fig. 1, curves 3–5.

The DTA curves heated and cooled alloys annealed
at 261, 303, 323, 373, and 423 K were recorded on a
Q-derivatograph under the same conditions in the 286–
623 K range. The error in the temperature measure-
ments ranged within ±1 K.

The DTA curves recorded on cooling were used to
construct the phase diagram of the Tl–S system in the
range 47–53 at. % S (Fig. 2). According to the data
obtained, the TlS compound is formed by the peritectic
C

                           

reaction at 460 K and undergoes solid-state transforma-
tions at 290 and 352 K. The Tamman triangle reveals
the phase transition at 290 K in the alloys containing
50–51.7 at. % S. The maximum and minimum thermal
effects are observed for compositions 51.2 at. % S (that
is, TlS + 4 at. % S) and TlS, respectively. The tempera-
ture of the peritectic decomposition is lower than that
reported in literature.

Thus, the data of X-ray powder and DTA analyses
indicate that the specimens containing 50–51.2 at. % S
are appropriate for studying solid-state transformations
observed.

The microstructural analysis of the alloys annealed
at 261, 303, 323, 373, and 423 K was performed on a
MIM-7 microscope. It was found that layer and needle
microstructures coexist in the specimens annealed at
303 K. In the alloys annealed at 423 K, only the needle
microstructure is observed. The structures of all the
specimens under study were characteristic of the alloys
with the peritectic type of melting.
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A visual examination of the diffraction spectra
(Fig. 1) shows that they change when the temperature
rises: a more complex spectrum of the low-temperature
phase becomes simpler because of the disappearance of
weak reflections. At 353 K, the specimen is trans-
formed into the high-temperature phase, whose diffrac-
tion data completely agree with the literature data for
the tetragonal TlS [7] (table). The differences between
the diffraction spectra are insignificant. This indicates
that no incommensurate phase was formed in our
experiments. The simplest way of forming such phases
in the structure type under consideration is the change
in the thickness of the structural sheets caused by a
larger number of polyhedral layers of Tl atoms.

Determination of possible variants of formation of
structural sheets and an understanding of the nature of
the phase transitions in the monoclinic TlS require
detailed crystal-chemical analysis of the TlGaSe2-type
structure. Note that a crude crystallochemical analysis
of the structures of this type was performed in [2, 8].
However, such an analysis is inadequate for the expla-
nation of the details of the structural phase transition or
the prediction of a possible formation of the incom-
mensurate phase.

Each sheet consists of two identical layers of metal-
atom polyhedra (Fig. 3) and is bound with other sheets
by weak van der Waals interactions.

On one side of each polyhedral layer, all the halco-
gen atoms are located in the same plane (have the same
z coordinate); on the other side of the layer, the halco-
gen atoms coordinating Tl+ and Tl3+ (Ga) ions are at
different z levels. The layers consist of the columns,
which are formed by the Tl+ prisms, and the chains of
Tl3+ (Ga) tetrahedra. In TlGaSe2, the adjacent layers are
rotated by 90°. In the sheets, the tetrahedra share verti-
ces to form (Tl4S10) Ga4Se10 groups. The tetrahedral
Tl4S10 groups are arranged in a way to form octahedral
voids (suitable for accommodation of Tl+, In, Ga, Fe,
and similar metals) and vacant semioctahedra “cap-
ping” one of the three faces of the prism (Fig. 3).

The prisms of Tl+ ions form columns connected
with chains of tetrahedra and, thus, form empty semio-
ctahedra (“caps”) above the prism faces. In this case,
the location of atoms inside the tetrahedra and prisms
gives rise to considerable structural strain, since the
resulting Tl+–Tl+ and Tl+–Tl3+ distances are almost
equal (≅ 3.80 Å), which is energetically unfavorable for
the Tl+ and Tl3+ ions having different radii (1.36 and
1.05 Å, respectively). Apparently, this fact partly
explains the instability of the structure and formation of
polytypes.

In addition to the above-described variant of the for-
mation of sheets from identical polyhedral layers, three
more variants of sheets can be modeled. In two of them,
the width of the sheets and the c parameter are the same
as in TlGaSe2. In the first variant, two parallel layers
are linked into the sheet without 90° rotation and the
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
                                                                

columns of prisms overlap in a way similar to that
observed in the GaSe, MoS

 

2

 

, and TlInS2 III structures.
In this variant, two sheets are formed by the layers hav-
ing orientations (1) and (4) in Fig. 3. The tetrahedral
Tl4S10 groups share edges to form double tetrahedral
ribbons with octahedral voids.

The second sheet variant differs from the first one in
the shift of its layers by the length of the prism or tetra-
hedron edge. Here, the prisms are interlinked by semi-
octahedra, and the coordination number of Tl+ ions
increases from six to seven. In the variants discussed,
the monoclinicity angle of the cell apparently
decreases, thus increasing the structure tetragonality.

Finally, the third variant is derived from the second
by turning both polyhedral layers over 180° and linking
the upper layer of the first sheet with the bottom layer
of the second sheet [orientations (1) and (2) in Fig. 3].
In this case, the columns of prisms of Tl+ ions are
bound by the chains of tetrahedra of Tl3+ ions and form
a sheet, whose thickness is slightly less than the thick-
nesses of the three previous variants. The thickness of
this sheet changes, because halcogens of the prisms and
the tetrahedra are located at different levels (spaced by
~1.75 Å). In the process of compound synthesis and
single-crystal growth, one of the above variants is
implemented or all the variants can coexist. Probably,

480

460

440

360

340

290

280

–4 –2 TlS 2 4 6 8

290 K

352 K

Tl4S3 + TlS TlS + TlS2

Tl4S3 + Liquid

Liquid

48.8 49.5 50.0 50.5 51.2 51.5 52.0 at. %STl
T, K

Composition, at. %S

Fig. 2. Phase diagram of the Tl–S system in the range of
existence of the monoclinic phase of TlS. (The Tamman tri-
angles are based on the DTA data.)
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this can explain the inconsistent data on polytypism and
phase transitions in the structures of this type and pos-
sible formation of incommensurate phases.

The diffractometry data for polycrystalline TlS
specimens at varying temperature lead to the conclu-
sions that (1) below 320 K, polycrystalline TlS is a
polytype with parameter c = 4 × 15.04 Å and that (2) the
temperature rise decreases the pseudoperiod along the
c-axis. The corresponding structure is a four- and two-
sheet polytype. The structure transformation to the tet-
ragonal phase is observed at about 353 K. Note that the
transition of the monoclinic phase to the tetragonal one
can proceed by levelling of the z-coordinates of Tl1+

atoms.
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and In1 – xTlxTe Solid Solutions
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Abstract—The local environment of Ga, Tl, and Se atoms in InTe-based solid solutions have been studied by
the method of EXAFS spectroscopy. It is shown that these atoms can be regarded as substitutional impurities
occupying the In(1), In (2), and Te positions in the InTe structure. Electric measurements showed that the
In1 − xGaxTe and InTe1 – xSex solid solutions are semiconductors at x > 0.24 and x > 0.15, respectively. © 2000
MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

An interest in InTe-based solid solutions is stimu-
lated by the search for new narrow-band semiconduc-
tors that can be formed as a result of semimetal–semi-
conductor transitions occurring during the isoelec-
tronic substitutions in these crystals. An example of
such solid solution is In1 – xTlxTe, where substitution of
some indium atoms by thallium results in the appear-
ance of semiconductor properties at x > xc ≈ 0.07 [1, 2].

Since the physical properties of solid solutions are
determined by the positions of introduced atoms, the
structural studies of such solutions are quite timely.

Below, we report the results of the study of the InTe-
based solid solutions of the compositions InTe:
In1 − xGaxTe, InTe1 – xSex, and In1 – xTlxTe crystallizing
in the tetragonal system, sp. gr. I4/mcm (the TlSe struc-
ture type).

Metal atoms in the InTe structure occupy two posi-
tions (Fig. 1). The In(1) atoms in the 4(b) position are
tetrahedrally coordinated with four chalcogen atoms
and form the chains along the c-axis. The In–Te bond in
these chains is mainly of the covalent nature. The In(2)
atoms in the position 4(a) also form chains, but they
are surrounded with eight chalcogen atoms occupying
the 8(h) positions. The atoms in the In(1) position have
a valence +3, the atoms in the In(2) position, the
valence +1.

The present study was aimed to substitute all the Te
positions in InTe structure by the Se atoms in order to
obtain the semiconductor properties. Proceeding from
the data known for InTlTe2 [3], we assumed that Tl+1

would substitute indium atoms in the position In(2),
whereas small Ga3+ ions would occupy the In(1) posi-
tions.

1 e-mail: swan@mch.chem.msu.su, ail-f@scon.phys.msu.su
1063-7745/00/4504- $20.00 © 20555
The nearest environment of Ga, Se, and Tl atoms in
the solid solutions were determined by the method of
EXAFS spectroscopy [4]. The EXAFS data were com-
plemented with the X-ray data and provided the deter-
mination of the existence range and the ranges of the
variations of the crystal-lattice parameters for the above
solid solutions.

SPECIMENS

Polycrystal and single crystal specimens of
InTe1 − xSex, In1 – xGaxTe, and In1 – xTlxTe solid solutions
were synthesized from binary InTe, InSe, GaTe, and
TlTe compounds in sealed quartz ampoules. The sin-
gle-phase solid solutions were synthesized at composi-
tions with x ≤ 0.5 for the first and the third solid solu-
tions, and with x ≤ 0.4 for the second solid solution.

The EXAFS and X-ray measurements were per-
formed on annealed polycrystal alloys. Prior to EXAFS
measurements, the alloys were ground into powders,
screened through a sieve, and then applied onto an
adhesive plastic tape. The optimum thickness of the

In(1)

In(2)

Te

1/4

1/4

1/4

1/4

1/4
1/4

1/4

3/4

3/4
1/43/4 3/4

3/43/4
3/4

3/4

Fig. 1. InTe structure projected onto the ab plane. Indium
atoms form chains along the c-axis and are located at
heights 0 and 1/2.
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Fig. 2. EXAFS spectra obtained (a) at the K-absorption edge of Ga in an In0.8Ga0.2Te specimen, (b) at the K-absorption edge of Se
in an InTe0.8Se0.2 specimen, (c) at the LIII absorption edge of Tl atoms in an In0.8Tl0.2Te specimen. Filled squares indicate the exper-
imental data plotted on the theoretically calculated line.
absorbing layer was attained by folding the tape and
usually consisted of eights layers.

Since the parameter x of the Bridgman-grown single
crystals varied along the growth direction, the speci-
mens of different compositions were prepared from
various parts of the ingot. Prior to the determination of
the specimen composition, we determined the a- and c-
parameters by the X-ray diffraction method on a dif-
fractometer (CoKα radiation). The a(x) and c(x) depen-
dences were calibrated using the standard InTe1 – xSex

and In1 – xGaxTe specimens with x = 0, 0.1, 0.2, 0.3, 0.4,
and 0.5. The In1/2Ga1/2Te specimen (x = 0.5) consisted
of several phases and, therefore, was not used for the
construction of the calibration curves. The data
obtained were processed by the least squares method
and yielded the following lines:

a(x) = 8.4343 – 0.284x,
c(x) = 7.1452 – 0.381x (InTe1 – xSex),

a(x) = 8.4320 – 0.084x,

c(x) = 7.1482 – 0.656x (In1 – xGaxTe).

The composition parameter x was determined from the
lattice parameter c strongly dependent on the composi-
C

tion. The error in the x determination did not exceed
2%.

The X-ray data showed that the composition param-
eter x in InTe1 – xSex crystals increased along the ingot
length, whereas in the In1 – xGaxTe crystals, it slowly
decreased along the ingot length.

The electric measurements were made by the four-
probe method on specimens cleaved along the c-axis of
the single crystals in the shape of 1 × 1 × 5-mm sticks.
The low-resistance (closed) current and potential con-
tacts were prepared by soldering with indium using the
NH4Cl fusing agent.

EXPERIMENTAL

The EXAFS measurements. The EXAFS spectra
were measured in the transmission geometry at 80 K on
the 7.1 station of the synchrotron radiation source
(2 GeV, 240 mA) of the Daresbury Laboratory, UK.
The spectra were obtained on K-absorption edges of Ga
(10367 eV) and Se (12658 eV) and the LIII-absorption

edge of Tl (12658 eV). The parameter  (describing a
decrease of the oscillation amplitude due to inelastic

S0
2
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Parameters of the local structure for InTe and InTe-based solid solutions 

Specimen InTe* In0.8Ga0.2Te InTe0.8Se0.2 InTe0.7Se0.3 In0.8Tl0.2Te** InTl

Standard InSb Ga2Te3 InSe InSe TlI TlI

R1, Å 2.821(2) 2.643(4) 2.607(3) 2.605(3) 3.541(9) 3.561(6)

N1 2.1(1) 4.2(3) 1.8(1) 1.7(1) 10.6(13) 12.3(14)

, Å2 0.0021(3) 0.0043(5) 0.0016(4) 0.0013(4) 0.0138(15) 0.0134(8)

R2, Å 3.541(8) 3.497(28) 3.526(43) 3.528(53) 4.313(25) 4.278(16)

N2 6.4(4) 2.1(2) 3.5(2) 3.3(2) 4.2(5) 4.9(6)

, Å2 0.0117(10) 0.0038(40) 0.049(10) 0.055(13) 0.0245(55) 0.0203(32)

R3, Å 4.215(12) 4.272(28) 3.823(15) 3.821(16)

N3 6.4(4) 4.2(3) 1.8(1) 1.7(1)

, Å2 0.0136(19) 0.0179(56) 0.0027(14) 0.0015(15)

* Spectra recorded at the K-absorption edge of In were obtained experimentally at the X23A2 NSLS station. When calculating the
     theoretical spectra, we took into account the fact that In atoms occupy two different positions and have different local environments. 
** Processing the data obtained at the Tl-absorption edge, we assumed that eight Te atoms and two metal atoms are located at the same distance.

Te2
**

σ1
2

σ2
2

σ3
2

and multielectron effects [4]) necessary for the correct
determination of the coordination numbers was mea-
sured on the standard compounds—InSe (the Se edge),
Ga2Te3 (the Ga edge), and TlI (the Tl edge).

The details of the experiment and processing of
EXAFS spectra were described elsewhere [5].

Figure 2a shows the characteristic EXAFS spectrum
for the In0.8Ga0.2Te specimen. The analysis of the first
coordination sphere showed that gallium atoms are sur-
rounded with four tellurium atoms at distances 2.64 Å
(see table), which indicates that Ga atoms occupy the
In(1) positions in the solid solution. These distances are
close to the Ga–Te (2.61 Å) distances determined ear-
lier for Ga2Te3, where Ga atoms are tetrahedrally coor-
dinates with Te, which indicates the covalent character
of the Ga–Te bonds in the solid solution studied. The
location of Ga atoms is confirmed by the analysis of Ga
positions in the second and third coordination spheres
within the same chain along the c-axis and normally to
it. The distances to these atoms obtained from the
EXAFS data are consistent with the X-ray data. These
distances are slightly shorter than the corresponding
In–In distances in InTe, whereas the Ga–Te distance is
shorter by 0.18 Å than the In(1)–Te distance in InTe
(see table).

Figure 2b shows the typical EXAFS spectrum of the
InTe0.8Se0.2 specimen, where Se atoms are surrounded
with In atoms spaced by 2.61 Å. The latter distance is
close to the length of the covalent In–Se bond in InSe
(2.615 Å), which indicates that In–Se bond in the solid
solution studied is also of the covalent nature. The same
coordination numbers for Se and Te atoms in the InTe
structure and the corresponding bond lengths lead to
the conclusion that selenium atoms substitute Te atoms
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
in the solid solution. The Se–In(1) distance is shorter by
0.22 Å than the Te–In(1) distance in InTe. The second
coordination sphere of the selenium atom (four atoms
in the In(2) position) is rather spread and is character-
ized by a surprisingly high value of the Debye–Waller
factor. However, the analysis shows a considerable con-
tributions from the atoms of the third coordination
sphere (the closest chalcogen atoms in a slightly dis-
torted square antiprism).

The analysis of the EXAFS spectrum of the
In0.8Tl0.2Te specimen (Fig. 2c) shows that Tl atoms sub-
stitute In in the In(2) position. The Tl–Te distances in
the In0.8Tl0.2Te solid solution and in the InTlTe2 com-
pound (isostructural to InTe)2 are close to the In(2)–Te
distance in InTe. One should pay attention on rather
high values of the Debye–Waller factors obtained for
the Tl–Se bonds.

Electrical properties. The ρ(T) curves were studied
for the InTe1 – xSex and In1 – xGaxTe solid solutions.3

Figure 3a shows the (103/T) curves for the
In1 − xGaxTe specimens. The temperature dependences
of resistivity of all the specimens are of the thermoacti-
vation nature. The curves have two clearly seen por-
tions characterized by different activation energies and
a kink in the vicinity of 140 K. We identified the high-
temperature portion of the curve with intrinsic conduc-
tivity, and the low-temperature one, with impurity or
hopping conductivity. The inset in Fig. 3a shows the
band gap Eg (calculated as a double activation energy

2 The InTlTe2 compound is the limiting case of the In1 – xTlxTe
solid solution, where all the In(2) positions are occupied with Tl
and all the In(1) positions, with indium.

3 The electrical properties of the In1 – xTlxTe solid solution are
studied in detail elsewhere [1, 2, 6].

ρlog
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Fig. 3. Characteristic temperature dependences of resistivity for (a) In1 – xGaxTe and (b) InTe1 – xSex specimens. In the inset: the
band gap as a function of the composition parameter.
on the high-temperature portion) as a function of the
composition parameter x. Extrapolation of this depen-
dence to the values Eg  0 yielded composition
parameter xc ≈ 0.24, above which the In1 – xGaxTe crys-
tals acquire semiconductor properties.

Figure 3b shows the (103/T) curves for the
InTe1 – xSex specimens. Various crystals showed both
the thermoactivated ρ(T) curves and the metallic (tem-
perature-independent) ρ curves. The band gap (calcu-
lated as the double activation energy at the portion with
the maximum slope) as a function of x is shown in the
inset in Fig. 3b. It is seen that InTe1 – xSex crystals
acquire the semiconductor properties at x > xc ≈ 0.15.

DISCUSSION

The data obtained allow the determination of the
atomic portions in InTe-type structures.

The EXAFS data show that Ga and Tl atoms occupy
the highly symmetric In(1) and In(2) positions in the
InTe structure, respectively. The positions of chalcogen
atoms in the InTe structure are described by the param-
eter u. Unfortunately, the exact determination of this
parameter in solid solutions is impossible because of
the random character of atomic substitutions. There-
fore, we considered the limiting compositions of the
solid solutions studied, namely, the hypothetical com-
pound of the composition In1/2Ga1/2Te,4 in which all the
In(1) positions are occupied by Ga atoms and also the
hypothetical compound InSe with the InTe structure. In
order to determine the parameter u, we used the crystal-
lattice parameter and the Ga–Te and In(1)–Se distances
determined by the EXAFS method. The a- and c-
parameters of these hypothetical compounds were
obtained by extrapolating the dependences of the lattice
parameters determined for the solid solutions. The

4 The attempts to determine the structure of the In1/2Ga1/2Te com-
pound undertaken in [7] failed because the specimens contained
several phases.

ρlog
C

interatomic distances in the above compounds were
assumed to be equal to the distances determined for the
solid solutions. This approximation was based on the
well known fact that the chemical bond length only
weakly depends on the solid-solution composition,
which is also confirmed by our experimental data.

The parameter for Te atoms in In1/2Ga1/2Te was
determined as uTe = 0.170, whereas the calculated
In(2)–Te distance is equal to 3.55 Å, i.e., almost coin-
cides with that given for InTe (see table). In the hypo-
thetical InSe compound with the InTe structure uSe =
0.172, whereas the In(2)–Se distance equals 3.46 Å.
Upon the Te  Se substitution, In(1)–chalcogen dis-
tance is shortened by 0.22 Å, whereas the In(2)–chalco-
gen distance, only by ~0.1 Å.

The EXAFS data for the InTlTe2 compound agree
with the results of X-ray studies.5 As was indicated
above, the distance between the metal atom in the In(2)
position and the tellurium atom in the In1 – xTlxTe solid
solution only slightly changes upon the substitution of
indium by thallium and is less than the difference
between the ionic radii of Tl+ and In+ (0.06 Å [9]).

The positions of chalcogen atoms determined indi-
cate the distortions in the structures of the solid solu-
tions studied. As is well known, a tetrahedron around
In(1) atoms in the InTe structure is slightly elongated in
the c-direction, and the corresponding Te–In(1)–Te (θ)
angle equals 101°15′. In all the solid solutions, the tet-
rahedral distortion is more significant than in InTe: it is
minimal for In1/2Tl1/2Te (θ = 101°1′), more pronounced
in In1/2Ga1/2Te (θ = 99°31′), and is maximal in the hypo-
thetical InSe with the InTe structure (θ = 99°2′).
5 Similar to [8], the small discrepancy between the Tl–Te distances

determined from the EXAFS data (3.56 Å) and X-ray measure-
ments (3.595 Å) can be explained by the static error in the calcu-
lation of the amplitudes and the phases for back scattering by
heavy atoms in the FEFF program. The distances for the Pb atom
(neighboring Tl in the Periodic table) determined from the
EXAFS data are underestimated by 0.025 Å.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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The results obtained clarify the role of atoms occu-
pying the In(2) position in the InTe structure. High
Debye–Waller factors determined from the EXAFS
spectra for the In(2)–Te distances in InTe and
InTe1 − xSex, and the Tl–Se distances in In1 – nTlxTe (see
table), the surprisingly small change in the distance
between the metal in the In(2) position and the chalco-
gen upon the In  Tl (<0.04 Å) and Te  Se (about
0.1 Å) substitutions indicate weak chemical bonding
between the metal atoms in this position with the sur-
rounding chalcogen atoms. In other words, the In(2)
position in the InTe structure plays the part of a specific
cavity for single-charged ions in order to provide the
electrical neutrality of the specimen as a whole. This
role of the In(2) position allows the interpretation of the
experimental fact that the substitution of In(2) atoms
with the single-charged ions with considerably differ-
ent radii (Na, K, and Tl) provides the preservation of
the InTe structure.

It seems that a drastic increase of the Debye–Waller
factor for the In(2)–Se distances in the InTe1 – xSex solid
solution is associated with the noticeable displacement
of In(2) atoms from the highly symmetric position
because of the changed symmetry of their environment
caused by random substitution of chalcogen atoms. The
low values of the small Debye–Waller factor for the
In(1)–Se and Se–chalcogen distances show that the dis-
placement of In(1) and chalcogen atoms in the solid
solution is insignificant.

Comparing the electric properties of various InTe-
based solid solutions, one cannot help but notice the
anomalous behavior of the ρ(T) curves in the
InTe1 − xSex specimens showing the semiconductor
properties. In the high-temperature range, these curves
considerably deviate from the expected thermoactiva-
tion dependences (this was never observed for the
In1 − xGaxTe and In1 – xTlxTe solid solutions [2]). High
values of the Debye–Waller factors for atoms in the
In(2) position in all the studied solid solution, and sur-
prisingly large In(2)–Se distances in the hypothetical
InSe compound with the InTe structure, indicate a con-
siderable increase of the size of the cavity filled with
In(2) atoms. A considerable increase of the anharmo-
nicity of In(2) motion can make the temperature varia-
tion in the band gap nonlinear, which, finally, results in
the deviation of the ρ(T) curves from thermally acti-
vated curves in the high-temperature range.

Concluding the article, we should like to indicate
that all the InTe-based solid solutions have a character-
istic feature. The substitutions of atoms in all the posi-
tions result in the formation of semiconductor proper-
ties. Qualitatively, this can be interpreted in the follow-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
ing way. The character of filling of the energy bands in
indium telluride is close to that in semiconductors.
However, some individual characteristics of the constit-
uent atoms make the bottom of the conduction band in
InTe slightly lower than the ceiling of the valence band,
which results in a semimetal behavior. The strengthen-
ing of covalent bonding (because of a reduction of
interatomic bonds within tetrahedra) upon the substitu-
tion of atoms in the In1 – xGaxTe and InTe1 – xSex solid
solutions increases the splitting of the hybridized orbit-
als, “opens” the energy gap in the electron spectrum,
and finally provides the appearance of semiconductor
properties. In the In1 – xTlxTe solid solution, the cova-
lent bond lengths remain constant, and the semiconduc-
tor properties are caused by another reason. Since the
contribution of the s-states into the states of the valence
band are usually more pronounced than they are to the
states of the conduction band, and 6s states of Tl are
deeper than the 5s states of In (because of considerable
relativistic corrections), the In  Tl substitutions
shift the valence band lower, an energy gap is formed in
the electron spectrum, and crystals acquire semicon-
ductor properties.
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Abstract—It is established that a one-layer polytype 1T with the unit-cell parameters a = 3.758, c = 12.135 Å,
sp. gr. P3m1 and the structure module hThéhíhE is mixed with the three-layer polytype 3R with the unit-cell
parameters a = 3.758, c = 36.405 Å, sp. gr. R3m and the structure module hícécíhE, where T and O are two-
dimensional nets of tetrahedra and octahedra, respectively, E is the empty intermediate layer, and h and c indi-
cate the hexagonal and cubic packings of atomic planes S. The microdiffraction pattern in the hexagonal basis

shows a monoclinic superlattice with the parameters A = a, B = a, γ = 110.485° related to the main

hexagonal lattice as A = [520] and B = [ 30]. © 2000 MAIK “Nauka/Interperiodica”.

19 13

1

1 The CoInGaS4 compound was obtained by the sin-
tering of CoS and GaInS3 in the equimolecular ratio in
a sealed (p ≤ 10–2 Pa) quartz ampule. The solid-phase
synthesis was performed for 120 h at the temperature
1100 K. Then the temperature in the furnace was
decreased (at a rate of 30 K/h) to 900 K. To provide the
completion of the solid-state reaction, the ampule was
kept for 240 h at 900 K, then the temperature in the fur-
nace was lowered to 600 K, the reaction products were
annealed at this temperature for quite a long time.

The specimens for electron diffraction study were
obtained by precipitating microcrystals from the aque-
ous suspension onto the metal grid coated with a cellu-
loid film with the thickness of about several tens of ang-
stroms. Electron diffraction patterns were obtained in
an electron diffraction camera (produced at Institute of
Geology of Ore Deposits, Petrography, Mineralogy,
and Geochemistry, RAS), the microdiffraction pattern
was obtained in a BS-500 electron microscope (Czech-
oslovakia).

The oblique-texture type electron diffraction pat-
terns (Fig. 1) showed that CoInGaS4 consists of two
polytypes 1T and 3R [1] also observed in the layer com-
pounds ZnIn2S4 [2, 3] and CdInGa(Al)S4 [4, 5]. In our
case, the one-layer hexagonal 1T polytype had the unit-
cell parameters a = 3.758, c = 12.135 Å, γ = 120°,
sp. gr. P3m1 and the structure module híhéhíhE. The
three-layer 3R polytype has the lattice parameters a =
3.758, c = 36.405 Å, sp. gr. R3m and the structure mod-
ule hícécíhE, where T and O indicate tetrahedra and
octahedra, respectively, E is the empty intermediate
layer, h and c indicate the atomic planes S in the hexag-
onal and cubic close packings [1].

The microdiffraction pattern of the basis plane
(Fig. 2) shows a system of weak reflections against the

1 e-mail: physic@lan.ab.az
1063-7745/00/4504- $20.00 © 20560
background of strong ones. The weak net corresponds
to the major periodicity of the atomic packing S and is
a two-dimensional hexagonal lattice in the reciprocal
space with the parameters  =  = a* and the angle
γ* = 60°. The unit cell of the first lattice can be chosen
by six ways that differ by rotation for angles multiple to
60°. The second net corresponds to the superperiodicity
rationally related to the periodicity of the first net,
because the reflections of the first net coincide with
some reflections of the second net. The unit cell of the
second net A*, B*, γ* is monoclinic and can be chosen
by a large number of ways. If the first cell is chosen
with the angle γ* close to 90°, then, in accordance with
the spot-type electron-diffraction pattern shown in
Fig. 2, the unit-cell parameters of these lattices are
related as  = 5A* – B* and  = 2A* + 3B* and
characterized by the matrix (5, –1/2, 3) with the deter-
minant equal to 17.

a1
* a2

*

a1
* a2

*

Fig. 1. Texture-type electron diffraction pattern from
CoInGaS4.
000 MAIK “Nauka/Interperiodica”
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Fig. 2. Electron diffraction patterns from a CoInGaS4 single crystal.
The inverse transformation at  =  = a* yields

Indeed, the spot-type electron diffraction pattern in
Fig. 2 has some weak superreflections along the [31]-
and [25]-directions which divide the distances between
the main reflections by 17 equal parts. This provides the
determination of the superlattice A*, B* at the fixed
parameters ,  of the main cell.

Using the well-known formulas of the electron dif-
fraction analysis [6], we established that the above lin-
ear equations correspond to the following relationships
between the lattice parameters in the direct space
(which are characterized by the transposed matrices)

The formation of a superperiodicity in the basis
plane for similar compounds studied earlier [1, 7] was
interpreted as the result of ordering of vacancies and
isomorphous substitutions in the T and O nets and par-
tial filling of an empty intermediate layer. Similar to the
initial unit cells, the supercells were hexagonal and
were multiple to three, four or seven primitive cells
(multiplicity N = 3, 4, and 7). One crystal can have dif-
ferent N values for different substructures consisting
either of T- or O-nets alone.

a1
* a2

*

A* 3a1
* a2

*+( )/17 31[ ]a*/17,= =

B* 2a1
*– 5a2

*+( )/17 25[ ]a*/17.= =

a1
* a2

*

A 5a1 2a2+ 52[ ]a, a1 3A 2B–( )/17,= = =

B a1– 3a2+ 13[ ]a, a2 A 5B+( )/17.= = =
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One can readily see that calculating the absolute
magnitudes of the vectors by the vector relationships,
one can obtain their scalar and vector products with due
regard for the hexagonal basis (a1 = a2 = a = 3.758 Å,
cosγ = –1/2) and the direct and reciprocal lattice param-
eters:

The area of the superlattice is equal to

Thus, unlike the case described in [1, 7], in our case,
the formation of a monoclinic superlattice on the basis
of the hexagonal lattice was observed. This monoclinic
superlattice is related to the initial lattice by the above
linear vector equations illustrated for the direct and the
reciprocal lattice vectors against the background of the
hexagonal point net in Fig. 3. In fact, this net cannot be
the same for the direct and the reciprocal vectors. On an
arbitrary scale, it can only show the relation between
their directions (perpendicularity of A and B*, etc.).

According to the formula of the compound, the
superperiodicity in the absence of vacancies can be

A*
13

17
----------a1*, B*

19
17

----------a2*,= =

γ* A*B* 69.515°,= =

A 19a, B 13a, ∠ A B,( ) 110.485°.= = =

S A  *  B [ ] a 1   a 2 [ ] 5 2

1 3
17 a 1  a 2 [ ] 17 s .= = = =    
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explained by ordering and isomorphous substitutions
of Co, In, and Ga cations, which results in various occu-
pancies of primitive unit cells within the superlattice, so
that these cells stop being identical. If such ordering
occurred by different laws for each of the T- and the O-
nets, then the substructures with different superlattices
would have overlapped. Then these superlattices would
have differed not only by orientations [1, 7, 8] and mul-
tiplicities N [1, 7], but also, as it became clear in this

B

17A*

a1

a1*

a2*

a2

17B*

A

Fig. 3. Schematic hexagonal net for main spot-type reflec-
tions in the microdiffraction pattern shown in Fig. 2 and the

linear relationships for the ,  and 17A*, 17B* vectors

and also, on an arbitrary scale, for the a1, a2 and A, B vec-
tors (for a more clear representation, weak superreflections
are omitted).

a1* a2*
C

study, by their geometries (monoclinic, orthogonal).
Although we observed no such combinations, in princi-
ple they are quite possible in similar compounds.
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Abstract—Two crystalline modifications of NaH5(PO4)2 are obtained by the reaction of Na2CO3 with an
excess of orthophosphoric acid. The crystal structures of α- and β-NaH5(PO4)2 are determined by X-ray dif-
fraction analysis. The crystal data are a = 8.484(4) Å, b = 7.842(3) Å, c = 10.353(4) Å, β = 90.50(3)°,
V = 689.3(3) Å3, space group P21/c, Z = 4, and R1 = 0.0250 for the α modification and a = 7.127(2) Å, b =
13.346(4) Å, c = 7.177(2) Å, β = 95.5(2)°, V = 679.5(3) Å3, space group P21/c, Z = 4, and R1 = 0.0232 for the
β modification. Based of the hydrogen-bond system, the formulas of the α and β modifications can be repre-
sented as Na(H2PO4)(H3PO4) and Na[H(H2PO4)2], respectively. They correspond to the stable and metastable
forms of the compound. © 2000 MAIK “Nauka/Interperiodica”.
Formation of alkali-metal and ammonium “super-
acid” phosphates with the MH5(PO4)2 composition was
first observed many years ago in the studies of the ter-
nary M2O–H2O–P2O5 systems at high P2O5 concentra-
tions [1–4]. Early structural studies of pentahydrogen-
diphosphates were performed by Norbert [5–8] and
were confined to determining the unit cell parameters
and possible space groups and included indexing the
powder diffraction patterns. Later, the crystal structures
of potassium [9], rubidium [10], cesium [11], and thal-
lium [12] pentahydrogendiphosphates were determined
by single-crystal X-ray diffraction analysis. A single
crystal of KH5(PO4)2 was studied by neutron diffraction
[13] in order to reveal the positions of hydrogen atoms
and to characterize the hydrogen-bond system.
Recently, the crystal structure of (NH4)H5(PO4)2 was
determined, and the structural phase transition was
observed in this material at 180–210 K [14].

Although the majority of “superacid” phosphates
have been characterized rather completely, the only
data available in the literature on the sodium salt
NaH5(PO4)2 are the unit-cell parameters [5, 6]. Appar-
ently, the incompleteness of data is a consequence of
the difficulties encountered in performing the experi-
mental studies with the compound that readily hydrates
and, as a result, decomposes in air. In the present work,
we made an attempt to fill this gap with the X-ray sin-
gle-crystal structure analysis of two crystalline modifi-
cations of NaH5(PO4)2.

EXPERIMENTAL

Synthesis. A 83% solution of orthophosphoric acid
(Merck) and sodium carbonate (analytical grade), pre-
1063-7745/00/4504- $20.00 © 20563
liminarily calcined to a constant mass, were used as the
starting reactants for the preparation of sodium pen-
tahydrogendiphosphate. The modification of
NaH5(PO4)2, which is described in the literature [5] and
denoted in the present study as the α modification, is
usually formed as colorless needles upon slow crystal-
lization from an aqueous solution. The α modification
was synthesized in a solution containing a 40% excess
of H3PO4 according to the procedure described in [6].
Single crystals suitable for X-ray structure analysis
were prepared by allowing the solution to stand in an
evacuated desiccator under P2O5 for two months. The
formation of the single-phase product containing only
the α modification was verified by comparison of its
X-ray powder diffraction pattern with the data reported
in [6]. Colorless prismatic crystals of the metastable
β modification were obtained from a saturated solution
within several hours upon rapid cooling from 85°C to
room temperature. It was found that crystals of the α
modification separated from the mother liquor are sta-
ble for a long time. On the contrary, crystals of the
β modification contacting the mother liquor transform
into the stable α modification for 1–2 days. Both mod-
ifications of NaH5(PO4)2 easily hydrate in air. Hence,
we prepared the samples for X-ray powder diffraction
analysis and chose single crystals in a dry box.

X-ray diffraction study. The X-ray structure anal-
ysis of single crystals that were chosen under a polariz-
ing microscope and loaded in capillaries was per-
formed at room (298 K) and low (180 K) temperatures.
The X-ray diffraction data were collected at room tem-
perature on an Enraf–Nonius CAD4 four-circle auto-
mated diffractometer and at a low temperature on a
Stoe STADI4 four-circle automated diffractometer (in
000 MAIK “Nauka/Interperiodica”
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both cases, MoKα radiation, graphite monochromator,
and ω/2θ scan mode). For both modifications of
NaH5(PO4)2, the results of the low- and room-tempera-
ture studies closely agree. Below, we report only the
data of the low-temperature studies, which are charac-
terized by slightly lesser R factors.

The crystallographic parameters and details of
structure refinement are summarized in Table 1. The
data were corrected for absorption by using ψ-scans of
6–8 reflections and a numerical method allowing for
the real crystal shape. Further calculations were per-
formed with the corrected data sets that resulted in
lesser R factors.

The non-hydrogen atoms were located by the direct
method (SHELXS86 [15]) and refined in the anisotro-
pic approximation (SHELXL93 [16]). Low values of
the residual electron density allowed location and iso-
tropic refinement of all the hydrogen atoms in both
structures. In the structure of the β modification, two
hydrogen atoms appeared to be disordered over two
positions each with 0.5 occupancy.

The atomic coordinates and equivalent (isotropic for
H atoms) thermal parameters in crystal structures of α-
and β-NaH5(PO4)2 are listed in Table 2.

RESULTS AND DISCUSSION

Crystallization of metastable modifications is not an
uncommon phenomenon; nonetheless, it has not been

Table 1.  Crystal data, data collection, and refinement pa-
rameters for the α and β modifications of NaH5(PO4)2

Modification α β
Crystal system Monoclinic Monoclinic

Space group P21/c P21/c

a, Å 8.484(4) 7.127(2)

b, Å 7.842(3) 13.346(4)

c, Å 10.353(4) 7.177(2)

β, deg 90.50(3) 95.51(2)

V, Å3 689.3(3) 679.5(3)

Z 4 4

ρ(calcd), g/cm3 2.100 2.131

µ(MoKα), cm–1 6.96 7.06

Crystal size, mm 0.8 × 0.2 × 0.2 0.5 × 0.3 × 0.3

θ range, deg 2.4–28.0 2.9–31.0

No. of unique reflections 1395 2153

No. of reflections and 
parameters in the least-
squares refinement

1243/121 1897/129

No. of reflections with
I > 2σ(I)

1166 1772

R1 0.0250 0.0232

wR2(F2) 0.0590 0.0619
C

Table 2.  Atomic coordinates and equivalent thermal para-
meters (Uiso for H atoms) in the structures of the α and β mo-
difications of NaH5(PO4)2

Atom x y z Ueq/Uiso, Å
2

α-NaH5(PO4)2

Na 0.2210(1) 0.5869(1) 0.6633(1) 0.013(1)

P(1) 0.4158(1) 0.0056(1) 0.6939(1) 0.010(1)

P(2) 0.0388(1) 0.7416(1) 0.9299(1) 0.009(1)

O(1) 0.4879(2) 0.1474(2) 0.6162(1) 0.014(1)

O(2) 0.2607(2) 0.0556(2) 0.7550(1) 0.014(1)

O(3) 0.3853(2) –0.1570(2) 0.6096(1) 0.016(1)

O(4) 0.5369(2) –0.0478(2) 0.8012(2) 0.016(1)

O(5) 0.1047(2) 0.5869(2) 0.8656(1) 0.012(1)

O(6) 0.1504(2) 0.8965(2) 0.9396(1) 0.013(1)

O(7) –0.1137(2) 0.8046(2) 0.8580(1) 0.014(1)

O(8) 0.0016(2) 0.7145(2) 1.0756(1) 0.013(1)

H(1) 0.426(3) –0.151(4) 0.548(3) 0.033(8)

H(2) 0.526(4) –0.131(5) 0.832(4) 0.06(1)

H(3) 0.173(4) 0.947(4) 0.868(3) 0.051(9)

H(4) –0.155(3) 0.721(4) 0.818(3) 0.036(8)

H(5) –0.023(3) 0.635(4) 1.087(3) 0.017(9)

β-NaH5(PO4)2

Na 0.3218(1) 0.1175(1) 0.1428(1) 0.013(1)

P(1) 0.7977(1) 0.1407(1) 0.0276(1) 0.009(1)

P(2) 0.2584(1) 0.1084(1) 0.6205(1) 0.011(1)

O(1) 0.8547(1) 0.2373(1) –0.0584(1) 0.015(1)

O(2) 0.6957(1) 0.0659(1) –0.1073(1) 0.013(1)

O(3) 0.6615(1) 0.1582(1) 0.1845(1) 0.014(1)

O(4) 0.9826(1) 0.0914(1) 0.1219(1) 0.011(1)

O(5) 0.3685(1) 0.1133(1) 0.8125(1) 0.015(1)

O(6) 0.0795(1) 0.0454(1) 0.6357(1) 0.014(1)

O(7) 0.3762(1) 0.0698(1) 0.4683(1) 0.015(1)

O(8) 0.1956(1) 0.2170(1) 0.5628(2) 0.017(1)

H(1) 0.710(3) 0.191(2) 0.268(3) 0.036(6)

H(2) 0.960(4) 0.049(2) 0.180(3) 0.037(7)

H(3) 0.079(4) 0.221(2) 0.525(4) 0.046(7)

H(4)* 0.595(4) 0.081(3) –0.130(7) 0.03(1)

H(5)* 0.481(8) 0.095(4) 0.818(8) 0.05(1)

H(6)* 0.028(7) 0.022(4) 0.550(7) 0.03(1)

H(7)* 0.440(7) 0.029(3) 0.506(7) 0.05(2)

*  Site occupancy is 0.5.
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Fig. 1. Projections of the crystal structure of α-NaH5(PO4)2 along (a) the x-axis and (b) the y-axis. Hydrogen bonds are shown by
dashed lines.
observed for “superacid” salts in the M2O–H2O–P2O5

systems, where M is an alkali metal or ammonium.
A reversible structural phase transition was found only
for the ammonium salt (NH4)H5(PO4)2: it occurs in the
temperature range 180–210 K and is accompanied by
minor changes in the hydrogen-bond system [14]. In
distinction to this, the crystalline modifications of
NaH5(PO4)2 differ in mutual arrangement of the struc-
tural units.

The structure of the α modification of NaH5(PO4)2

is built of independent structural units such as the
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
Na+ cations, H2P  ions (P1), and H3PO4 molecules
(P2); therefore, the formula of the compound can be
represented as Na(H2PO4)(H3PO4). The Na+ cation is
coordinated by the O atoms, which form a distorted
octahedron with the Na–O distances of 2.324(2)–
2.586(2) Å. There are two shorter P–O distances
[1.506(2) and 1.517(2) Å] and two longer P–OH dis-

tances [1.564(2) and 1.566(2) Å] in the H2P  anion.
These distances differ fundamentally and are compara-
ble to the corresponding values in K, Rb, and Cs pen-
tahydrogendiphosphates, in which the shorter and

O4
–

O4
–

0
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Fig. 2. Projection of the crystal structure of β-NaH5(PO4)2 along the z-axis. The hydrogen bonds involving the ordered and
disordered H atoms are shown by dashed and dotted lines, respectively. The H⋅⋅⋅O contacts in the hydrogen bonds are as follows:
H(1, 2, 3)⋅⋅⋅O(1, 6, 1), 1.74(3)–1.81(3) Å; H(4)⋅⋅⋅O(5), 1.69(3) Å; H(5)⋅⋅⋅O(2), 2.01(6) Å; H(6)⋅⋅⋅O(6)a, 1.73(4) Å, and H(7)⋅⋅⋅O(7)a,
1.86(3) Å.

O(7)
longer distances fall in the ranges 1.503–1.518 and
1.550–1.563 Å, respectively [9–11]. In the H3PO4 mol-
ecule, one P–O distance is short [P(2)–O(5), 1.495(2) Å]
and three P−OH distances are longer (1.543–1.567 Å).
All the hydrogen atoms are ordered and involved in the
O−H⋅⋅⋅O hydrogen bonds. The lengths of these bonds
(2.48–2.59 Å) indicate that they are strong or very
strong. One of the hydrogen bonds is slightly shorter
than the others [O(6)–H(3)⋅⋅⋅O(2), 2.475 Å]. Consider-
ation of the structural functions of the O atoms in the
formation of hydrogen bonds (a donor or an acceptor of
an H atom) allows us to explain the difference in the
P−O bonds. The longest P–O bonds involve the O
atoms, which acts as donors of the H atoms. The P–O
bonds with the O(1) and O(2) atoms, which serve as
acceptors in two hydrogen bonds each, are significantly
shorter. The shortest P–O bond is formed by the O(5)
atom, which withdraws a hydrogen atom in one hydro-
gen bond. Additional participation in the coordination
of sodium cations has no noticeable effect on the
lengths of the P–O bonds.

In the structure of α-NaH5(PO4)2, the centrosym-
metric dimers are distinguished. They consist of two
identical tetrahedra interlinked by two hydrogen bonds.
Thus, the H2PO4 tetrahedra are linked into the P1–P1
dimers by pairs of the O(3)–H(1)⋅⋅⋅O(1) hydrogen
bonds (2.585 Å), and the H3PO4 tetrahedra form the
P2–P2 dimers through two O(8)–H(5)⋅⋅⋅O(5) hydrogen
C

bonds (2.604 Å) (Fig. 1a). The O(4)–H(2)⋅⋅⋅O(1)
hydrogen bonds (2.548 Å) link the P1–P1 dimers into
layers, which are aligned parallel to the yz plane and
pass at the height x = 0.5. The P2–P2 dimers are located
in parallel planes at the height x = 0. The P1–P1 and
P2–P2 dimers of the neighboring layers are linked by
the O(6)–H(3)⋅⋅⋅O(2) (2.475 Å) and O(7)–H(4)⋅⋅⋅O(2)
(2.591 Å) hydrogen bonds into a three-dimensional
network (Fig. 1b).

The structural units of the β modification are the

sodium cation and two independent H2P  ions linked
by a hydrogen bond into the [H(H2PO4)2]– anionic com-
plex; therefore, the formula of this modification is rep-
resented as Na[H(H2PO4)2]. A distorted octahedral
environment of the sodium cation is formed by oxygen
atoms at the Na–O distances (2.417–2.464 Å). There
are three types of interatomic P–O distances in the
structure: the short P(1)–O(1) distance (1.501 Å), four
intermediate distances (1.520–1.540 Å), and three long
distances (1.561–1.573 Å). These differences in the
P−O distances are due to the different functions of the
O atoms in the hydrogen bonds. By the type of ordering
of the H atoms, the hydrogen bonds in the structure can
be divided into three types (Table 2). The H(1), H(2),
and H(3) atoms occupy ordered positions, and the
remaining two H atoms are disordered over two posi-
tions each with 0.5 occupancy. The H(6) and H(7)

O4
–
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atoms participate in the symmetric hydrogen bonds
O(6)⋅⋅⋅O(6)a and O(7)⋅⋅⋅O(7)a, respectively, which are
characterized by two maxima of electron density. The
H(4) and H(5) atoms (both with 0.5 occupancy) are
involved in the asymmetric O(2)⋅⋅⋅O(5) hydrogen bond,
which is also characterized by two maxima.

The system of hydrogen bonds in β-NaH5(PO4)2 is
more complex than that in the α modification. We could
not distinguish here the layers similar to those in the
structure of the α modification. Let us consider the sys-
tem of hydrogen bonds in the decreasing order of their
strength. The strongest hydrogen bond O(2)⋅⋅⋅O(5) is
2.431 Å long; it links the P(1)O4 and P(2)O4 tetrahedra
into the P1–P2 dimers (Fig. 2). The O(6)–H(6)⋅⋅⋅O(6)a

hydrogen bond is the next in strength; it is 2.474(2) Å
long and links the dimers into the P1–P2⋅⋅⋅P2–P1 tet-
ramer “clusters.” The remaining hydrogen bonds
[2.574(2)–2.600(1) Å] link the tetramers into a com-
plex three-dimensional system.

Thus, the α and β modifications of sodium pentahy-
drogendiphosphate crystallize in the same space group
P21/c, but their structures are quite different as is
expressed by the formulas Na(H2PO4)(H3PO4) and
Na[H(H2PO4)2]. The unit cell parameters are also quite
different. It is remarkable that the volume per formula
unit for the stable α modification is noticeably larger
than that for the metastable β modification (172.3 and
169.9 Å3, respectively). The difference in the volumes
by 1.4% observed at 180 K remains approximately the
same at room temperature. Note that the phase transi-
tions from an unstable to a stable modification are
rarely accompanied by an increase in the unit cell
volume.

The incongruent melting of the compound should be
considered among the factors responsible for the for-
mation of the metastable modification of NaH5(PO4)2.
According to the phase diagram of the Na2O–H2O–
P2O5 system [4], crystals of NaH2PO4 (rather than crys-
tals of the starting salt) precipitate first from the liquid
phase obtained by melting sodium pentahydrogen-
diphosphate. Sodium dihydrogenphosphate also crys-
tallizes in the monoclinic space group P21/c, and its
unit cell parameters are close to those of the β modifi-
cation of NaH5(PO4)2 (Table 1): a = 6.808 Å, b =
13.491 Å, c = 7.331 Å, and β = 92.9° [17]. Since the tet-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
rahedral PO2(OH)2 groups and the sodium cations in
both structures form similar arrangements, it seems
fairly probable that the formation of the β modification
is initiated by microcrystals of NaH2PO4 during rela-
tively rapid crystallization from the saturated solution.
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Abstract—The Na2MnP5O15 compound containing a cyclopentaphosphate anion was obtained for the first
time by the direct synthesis from the melt of polyphosphoric acids in the presence of Na+ and Mn4+ ions. The
parameters of the monoclinic unit cell are a = 5.176, b = 13.541, and c = 8.771 Å; β = 103.61°; sp. gr. P21/m,
and Z = 2. The cyclopentaphosphate anions and the manganese atoms in the structure are octahedrally coordi-
nated with oxygen atoms and are linked into layers. Sodium anions crosslink the neighboring layers into a three-
dimensional framework. © 2000 MAIK “Nauka/Interperiodica”.
This study continues our investigation of metal
compounds of condensed phosphates with different
forms of anions synthesized by crystallization from
melts of polyphosphoric acids. We aimed to synthesize
and study the structure of the Na2MnP5O15 cyclopenta-
phosphate.

The only cyclopentaphosphate reported in literature
is NH4Na4P5O15 · 4H2O [1, 2]. It was obtained by mul-
tiple fractionation of the Graham salt (vitreous sodium
polyphosphate) containing 0.2% sodium cyclopenta-
phosphate along with other forms of condensed phos-
phates. Until now, all the attempts of direct synthesis of
cyclopentaphosphates were unsuccessful.

Synthesis of Na2MnP5O15

With the aim to obtain the Na2MnP5O15 cyclopenta-
phosphate, we studied the low-temperature region
(230–320°C) of the Na2O–MnO2–P2O5–(H2O) system.
At higher temperatures (350–400°C), we obtained
Na3MnIIIP8O23 ultraphosphate [3] and NaMnII(PO3)3
polyphosphate [4]. The initial compounds were sodium
nitrate, manganese dioxide, and 85% phosphoric acid.
The mixture of these substances with the Na : Mn : P =
5 : 1 : 15 atomic ratio was heated in a Teflon crucible at
230°C to yield gaseous nitrogen dioxide, oxygen, and
some water. In the homogeneous melt formed, the oxi-
dation state of manganese reduced from four to three,
whereas the phosphoric acid exists as a combination of
condensed forms. After three days, a crystalline sub-
stance precipitated from the melt. It consisted of brown
crystals of an unknown compound and an admixture of
colorless Na2H2P4O12 crystals (JCPDS 9-100). The
X-ray diffraction study revealed that the brown com-
pound was Na2MnP5O15 cyclopentaphosphate. The
precipitate was washed with hot water to remove the
melt of polyphosphoric acids and then was dried in air.
1063-7745/00/4504- $20.00 © 20568
In order to separate Na2H2P4O12, the specimen was
treated with hot hydrochloric acid readily dissolving
Na2H2P4O12, but not reacting with Na2MnP5O15. Thus,
new condensed phosphate, Na2MnP5O15 cyclopenta-
phosphate, was prepared by the direct synthesis and
isolated as a single-phase substance. Single crystals of
Na2MnP5O15 for X-ray structure analysis were obtained
at a higher temperature (320°C); however, in this case,
the reaction product contained admixtures of
Mn(PO3)3, NaMn(PO3)3, and Na3MnP8O23, which
could not be removed by any chemical method. There-
fore, the optimum temperature for obtaining pure
Na2MnP5O15 is 230–250°C. The X-ray diffraction pat-
tern calculated with the use of the atomic coordinates
known for Na2MnP5O15 coincided with the pattern
obtained for the brown crystals synthesized at 230–
250°C and treated with HCl (Guinier–de Wolf camera,
CuKα radiation, and Ge-standard).

Crystal Structure of Na2MnP5O15

The parameters of the data collection and the main
crystallographic characteristics are summarized in
Table 1. The positions of the P and Mn atoms were
determined from the Patterson map, and the remaining
atoms were located on a difference Fourier map
(SHELXS86 [5]). All the atoms were refined in the
anisotropic approximation by the least-squares proce-
dure using the SHELXL93 program [6]. The atomic
coordinates and thermal parameters are listed in Table 2.
Selected interatomic distances and angles are given in
Table 3.

The structure is built by layers consisting of cyclic

phosphate anions P5  and MnO6-octahedra and
linked by common oxygen vertices, which are perpen-
dicular to the [001]-direction (Fig. 1). The pentaphos-

O15
5–
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phate rings located in the layers are arranged in such a
way that the plane of the ring is perpendicular to the
layer and the “diameter” of the ring determines the
layer width (Fig. 2). Sodium cations are located
between these corrugated layers and are surrounded
with six oxygen atoms. An anion of cyclic phosphate
consists of five PO4-tetrahedra interlinked by bridging
O(3), O(4), and O(7) atoms. The crystallographic sym-
metry of this anion is m. As shown in Fig. 1, the P(2)O4
tetrahedron shares two terminal oxygen atoms with the
manganese octahedra; in the P(1)O4-tetrahedron, only
the O(1) atom lies within the coordination sphere of
manganese, whereas the O(2) atom is bound to the
sodium atom. Two sodium atoms of the P(3)O4-tetrahe-
dron, O(8) and O(9) are coordinated with sodium
atoms. Table 3 shows that the external cationic environ-
ment of the phosphorus–oxygen tetrahedra signifi-
cantly affects the phosphorus–oxygen bond lengths in
PO4 tetrahedra: these bonds lengths are shortened in the
row P–O(P), P–O(Mn), P−O(Na) because of a decrease
in electronegativity of atoms in passing from phospho-
rus to manganese and sodium. The P–O–P angles in the
ring increase in the row P(1)–O–P(3) to P(1)–O–P(2)
and to P(2)–O–P(2), which can also be attributed to the
difference in the external cationic environment of phos-
phorus–oxygen tetrahedra.

Four of the six manganese–oxygen distances in the
Mn-octahedron are equal, whereas two distances are
longer because of the Jahn–Teller effect. The sodium
atom has six nearest neighbors. One of the Na–O dis-
tances is significantly longer than the remaining ones
(2.84 and 2.380–2.529 Å, respectively).

RESULTS AND DISCUSSION

The Na2MnP5O15 cyclopentaphosphate is the first
cyclophosphate with an odd number of phosphorus
atoms in the ring (>3) obtained by the direct synthesis
from melt of polyphosphoric acids. Up to now, this pro-
cedure was successfully used to prepare metal cyclo-
phosphates with even numbers (four, six, eight, ten, and
twelve) of phosphorus atoms in the ring. Among them,
there are double and triple cyclophosphates that synthe-
sized earlier—cyclotetraphosphates MIMIIIP4O12,

where MI = Cs or  and MIII is a rare-earth element
of the cerium subgroup [7]; cyclohexaphosphates
CsMIIMIIIP6O18 (MII = Co, Mg, Zn, or Mn and MIII = V,

Ga, Fe, or Mn) and Cs3 MIII(P6O18)2 (MII  = Zn, Cd,
or Mg and MIII = Mn, In, or V) [8, 9]; cyclooctaphos-

phates P8O24 (MI = K or Rb and MIII = Ga, V, or

Fe) [10]; and cyclododecaphosphates Cs3 P12O36

(MIII = Ga, V, or Fe) [10]—and the Ba2Zn3P10O30
cyclododecaphosphate synthesized by Bagieu-Beucher
et al. [11]. We see that metal cations with a similar size

NH4
+

M3
II

M2
I M2

III

M3
III
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Table 1.  Main crystallographic data and the parameters of
data collection and structure refinement

Crystal system Monoclinic

a, Å 5.1768(6)

b, Å 13.541(2)

c, Å 8.771(1)

β, deg 103.61(1)

Sp. gr. P21/m

Z 2

V, Å3 597.6(1)

ρcalc, g/cm3 2.755

µ, mm–1 1.94

2θmax, deg 60

Crystal dimensions, mm 1.2 × 0.3 × 0.2

Diffractometer* Enraf-Nonius CAD-4

Scan mode ω/2θ

1750

1696

112

R1 0.033

wR2 0.072

Gof 1.036

w 1/(σ2(F) + 0.0001 F2)

  ∗ λMoKα, graphite monochromator and ψ-correction of the data
     set.
** Na is the number of reflections with F > 0, No is the number of
     reflections with F > 4σ(F), and Np is the number of parameters
     in the refinement.

Na
**

No
**

N p
**

Table 2.  Atomic coordinates and thermal parameters

Atom x/a y/b z/c Beq, Å2

Mn(1) 1/2 1/2 1/2 0.659(9)

Na(1) 0.0781(3) 0.3910(1) 1.1291(1) 1.73(2)

P(1) 0.3499(1) 0.42147(5) 0.8095(1) 0.74(1)

P(2) –0.0176(1) 0.35938(4) 0.5127(1) 0.66(1)

P(3) 0.5438(2) 1/4 1.0050(1) 0.83(2)

O(1) 0.4929(4) 0.4869(1) 0.7157(2) 1.01(3)

O(2) 0.2163(4) 0.4698(1) 0.9190(2) 1.15(3)

O(3) 0.5607(4) 0.3414(1) 0.8874(2) 1.19(3)

O(4) 0.1382(4) 0.3554(1) 0.6897(2) 1.26(3)

O(5) –0.3066(4) 0.3787(1) 0.5067(2) 1.11(3)

O(6) 0.1204(4) 0.4226(1) 0.4181(2) 0.92(3)

O(7) 0.0082(5) 1/4 0.4581(3) 0.81(4)

O(8) 0.2834(6) 1/4 1.0451(3) 1.46(5)

O(9) 0.7936(6) 1/4 1.1254(3) 1.44(5)
0
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Table 3.  Selected interatomic distances (d, Å) and angles (ω, deg)

Bond d Angle d

Mn(1)–O(1) 1.909(2) × 2 P(2)–O(4) 1.573(2)

Mn(1)–O(5) 1.918(2) × 2 P(2)–O(5) 1.507(2)

Mn(1)–O(6) 2.193(2) × 2 P(2)–O(6) 1.487(2)

Na(1)–O(1) 2.845(2) P(2)–O(7) 1.572(1)

Na(1)–O(2) 2.380(2) P(3)–O(3) 1.627(2) × 2

Na(1)–O'(2) 2.398(2) P(3)–O(8) 1.471(3)

Na(1)–O(6) 2.529(2) P(3)–O(9) 1.464(3)

Na(1)–O(8) 2.384(2)

Na(1)–O(9) 2.407(2) Angle ω

P(1)–O(1) 1.515(2) P(1)–O(3)–P(3) 131.6(1)

P(1)–O(2) 1.464(2) P(1)–O(4)–P(2) 137.9(1)

P(1)–O(3) 1.575(2) P(2)–O(7)–P(2) 140.9(2)

P(1)–O(4) 1.601(2)
and equal charge vary within each type of compounds
with the only exception—Ba2Zn3P10O30.

Our attempts to prepare Na2MnP5O15 cyclopenta-
phosphate analogues with other of alkaline and triva-
C

lent metal cations failed, although it is well known that
in condensed phosphates, Mn(III) is easily replaced by
Fe(III), V(III), Cr(III), and other cations. Possibly, our
failure is associated with the stressed state of the
Na2MnP5O15 structure caused by nonequivalent links of
P(2a)P(2a)P(2a) P(2)P(2)P(2)

P(3)P(3)P(3) O(3)O(3a)

P(1a)P(1a)P(1a) P(1)P(1)P(1)
O(2)O(2)O(2)
Mn(1)Mn(1)Mn(1)

O(1)O(1)O(1)

O(6)

O(5)

O(7)

O(8)

O(9)

O(4)

Fig. 1. Fragment of the Na2MnP5O15 structure.
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Fig. 2. Na2MnP5O15 structure projected along [100]. 
the pentaphosphate ring. The same reasons seem to

explain the hydrolytic instability of the P5  ring in
aqueous solutions and the low content of cyclopenta-
phosphate in comparison with cyclotetra- and cyclo-
hexaphosphates in the Graham salt observed in [1, 2].
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Abstract—The crystal structure of α-RbB3O5 was refined by the Rietveld method with due regard for aniso-
tropic vibrations of rubidium atoms to Rp = 2.93, Rwp = 3.80, RB = 2.53, RF = 2.84, and s = 1.54. The compound
is isostructural to CsB3O5: it is orthorhombic, sp. gr. P212121, a = 8.209(1), b = 10.092(1), c = 5.382(1) Å, and

V = 445.9 Å3. The framework structure is formed by the boron–oxygen [ BIVO5]– rings consisting of two
[BO3]-triangles and a [BO4]-tetrahedron. The rings are linked to form systems of helical chains running along
the twofold screw axes parallel 21 to the a- and b-axes and infinite channels parallel to the a- and c-axes, which
accommodate Rb atoms. The data were collected on an ADP-2 diffractometer [CuKα radiation, Ni-filter,
12.00° < 2θ < 110.00°, a step in 2θ equal to 0.02°, count time 8 s per step, and 711 reflections (α1 + α2)]. All
the calculations were performed using version 3.3 of the WYRIET program. The comparison of the structures
of α- and β-RbB3O5 and CsB3O5 revealed that the type of deformations in the framework structures of alkali-
metal borates due to the changes of the temperature or the substitution of cations is determined by the role
played by metal atoms, and especially, by large and heavy ions. © 2000 MAIK “Nauka/Interperiodica”.

B2
III
INTRODUCTION

A possible existence of polymorphic modifications
of RbB3O5 was first discussed in [1–2]. It was found
that the earlier unindexed Debye patterns of compound
RbB3O5 were, in fact, the combinations of either two
modifications of RbB3O5 [3] or Rb2B8O13 and two
modifications of RbB3O5 [4]. The powder data obtained
showed [1, 2, 5] that the low-temperature α-RbB3O5
modification is isostructural to CsB3O5, and has a
framework structure. The determination of the structure
of the high-temperature β-RbB3O5 modification [5–7]
revealed that, although the structural types of two mod-
ifications are different, their boron–oxygen frameworks
are topologically identical. In situ thermal X-ray stud-
ies [5, 6] showed that the polymorphic transformation
proceeds through partial amorphization with a jump-
wise change of the volume, but without a rupture of the
boron–oxygen framework.

Similar to other alkali-metal borates with the gen-
eral formula MB3O5, where M = Li, Na, K, Rb, or Cs,
the α- and β-RbB3O5 modifications belong to the com-
pounds with mixed anions, because boron atoms in the
structures are located in the [BO3]3– triangles and the
[BO4]5– tetrahedra. The most characteristic structural
unit of these compounds is the boron–oxygen [B3O5]
ring (the so-called triborate group, whose structural
1063-7745/00/4504- $20.00 © 20572
formula is written as [ BIVO5]– [8]) formed by con-
densation of two triangles and a tetrahedron.

The frameworks of alkali-metal borates with such
stoichiometry (the oxide ratio M2O : B2O3 is 1 : 3), the
only exception being sodium borate, are topologically
identical and built by only such triborate rings despite
the large difference in the cation sizes (the ionic radii of
Li+ and Cs+ are 0.90 and 1.95 Å, respectively [9]).
Although CsB3O5 [10, 11] and α- and β-RbB3O5 [1, 6,
7] represent different structural types, their crystals
belong to the same space group P212121 and the rings in
their frameworks are linked to form the systems of heli-
cal boron–oxygen chains and channels running along
two directions; the channels are populated with alkali-
metal cations. The space groups of the LiB3O5 (Pna21)
[12, 13] and KB3O5 (P21/c) structures [14] contain only
one system of twofold screw axes; therefore, the helical
chains of the boron–oxygen rings and the channels
filled with alkali cations are formed only along one
direction.

In this study, the α-RbB3O5 structure was refined by
the Rietveld method with the use of the atomic coordi-
nates of CsB3O5. The results are compared with the
corresponding data for the β-RbB3O5 and CsB3O5

structures.

B2
III
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Table 1.  Characteristics of the experiments and crystallographic data for α- and β-RbB3O5 and CsB3O5

Formula α-RbB3O5 (present study) β-RbB3O5 [7] CsB3O5 [11]

System Orthorhombic Orthorhombic Orthorhombic

Sp. gr. P212121 P212121 P212121

a, Å 8.209(1) 8.438(6) 8.521(1)

b, Å 10.092(1) 8.719(4) 9.170(2)

c, Å 5.382(1) 6.240(3) 6.213(1)

V, Å3 445.9 459.1(8) 485.5

Z 4 4 4

ρcalc, g/cm3 3.097 2.863(5) 3.357

Radiation MoKα MoKα CuKα

Method of data collection Rietveld Syntex P21 Picker

Number of reflections 711* 980 1262

RF 0.028 0.065 0.039

RP 0.029

Rwp 0.038

RB 0.025

s** 0.015

  * Number of reflections (α1 + α2).
** s = Rwp/Rexp, where Rexp is the expected value of Rwp .
EXPERIMENTAL

A polycrystalline α-RbB3O5 specimen was synthe-
sized by the solid-state reaction by heating the charge
for two weeks at 600°C. Rubidium carbonate and boric
acid (both of reagent grade) were used as starting mate-
rials. An X-ray pattern obtained on a DRON-2 diffrac-
tometer was indexed using the program for automatic
indexing (written by A.D. Krasil’nikov from the
Burevestnik Research and Production Association) in
the orthorhombic system; the unit-cell parameters were
determined as a = 8.217(3), b = 10.095(3), and c =
5.391(2) Å. The comparison of the unit-cell parameters
and relative intensities of the patterns from α-RbB3O5
and CsB3O5 led to the assumption on their isostructur-
ality (Table 1).

The X-ray diffraction spectra were obtained on an
ADP-2 diffractometer (CuKα, Ni-filter) by 2θ scans at
a step of 0.02° and count time of 8 s. All the computa-
tions were performed with the WYRIET program, ver-
sion 3.3 [15]. The structure was refined within the sp.
gr. P212121 using the unit-cell parameters calculated for
α-RbB3O5 and the atomic coordinates of CsB3O5 [11].
The refinement of the scale coefficient, unit-cell param-
eters, zero point, background, and the displacement of
the sample from the goniometer axes was followed by
the refinement of the structural and profile parameters.
The peak shapes were described with the use of the
pseudo-Voigt function at 6FWHM.1 Asymmetry was
refined at 2θ < 40°. In calculations, we used the scatter-

1 FWHM is the mean width of a peak at its half-maximum height.
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ing functions for ions. The refinement was performed
by a gradual addition of the parameters at a continuous
graphical modeling of the background until the attain-
ment of stable R factors of the parameters refined. The
structural parameters were refined in two stages: first,
we refined the positional atomic parameters; then, the
positional parameters simultaneously with the isotropic
thermal parameters, and, finally, anisotropic thermal
parameters of Rb atoms and site occupancies. The
occupancies of all the positions were equal to unity
(within an error of 0.05). The observed (dots) and cal-
culated (solid curve) X-ray diffraction spectra of α-
RbB3O5 are shown in Fig. 1. The crystallographic data
and the parameters of the experiment are represented in
Table 1. The final atomic coordinates and isotropic
thermal parameters are listed in Table 2. Unfortunately,
the accuracy in the determination of thermal parame-
ters from powder data, especially for light boron atoms,
was rather low.

DESCRIPTION OF THE STRUCTURE

Similar to CsB3O5, the compound α-RbB3O5 has a
framework structure. It is built by boron–oxygen
groups of one type ([B3O5]-rings). The channels
formed accommodate alkali-metal cations. Each ring
consists of two [BO3]-triangles and a [BO4]-tetrahe-
dron (Fig. 2) and is connected with four other rings in
such a way that the triangles alternate with the tetrahe-
dra of the neighboring rings; all the oxygens are bridg-
ing atoms. The rings are linked into the chains with a
0
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Fig. 1. Measured (dots) and calculated (solid curve) X-ray diffraction spectra for α-RbB3O5.
period of two rings along the twofold screw axes paral-
lel to the a- and c-directions of the structure (Fig. 2).
The chains running along the a-axis are relatively
stretched (a = 8.209 Å), and the chains running in the c

Table 2.  Atomic coordinates and thermal parameters in α-
RbB3O5

Atom x/a y/b z/c Biso/Beq

Rb 2942(2) 1310(2) 992(1) 2.90(4)*

O(1) 555(1) 056(1) 432(2) 0.6(1)

O(2) 544(1) 257(1) 705(2) 0.3(1)

O(3) 727(2) 072(1) 815(2) 0.8(1)

O(4) 777(1) 213(1) 431(2) 0.9(1)

O(5) 996(1) 090(1) 632(2) 0.6(1)

B(1) 885(4) 030(3) 775(5) 3.1(3)

B(2) 942(3) 182(2) 472(7) 1.8(3)

B(3) 644(3) 153(2) 600(4) 0.4(3)

* Beq = [B11a*2a2 + … + 2B12 a* b* a b cos(γ) + …].
1
3
---
C

direction are considerably corrugated (c = 5.382 Å).
Wide channels with columns of rubidium atoms are
also formed along the a- and c-axes (Figs. 2, 3).

The mean B–O bond lengths are within the allowed
range (1.36 and 1.52 Å for triangles and tetrahedra,
respectively). However, the mean bond length in the
tetrahedron is larger than the bond lengths in rubidium
borates (1.47–1.48 Å) reported earlier [7] or the corre-
sponding bond length in CsB3O5 [11]. Note that the
spread in bond lengths and angles (1.31–1.40 Å and
112°–126° for triangles; 1.44–1.58 Å and 104°–116°
for tetrahedra) is more pronounced than usually
observed for polyhedra of this type in single-crystal
studies.

The rubidium atoms are located inside wide chan-
nels in such a way that it is difficult to single out their
coordination polyhedra. Assuming that Rb–O distances
differing by the value of 0.25 Å form different coordi-
nation spheres, the coordination number of rubidium
is 9. The rubidium atoms most closely approaching
each other are related by a twofold screw axis. They are
separated by a distance of 3.841 Å and form zigzag col-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000



CRYSTALLOGR

CRYSTAL STRUCTURE OF THE LOW-TEMPERATURE MODIFICATION 575
1/4
1/41/4

1/4 1/4 1/4
c

a

O(1)

B(2)
B(1)

B(3)

O(4)
O(3)

O(5)

O(2)

Rb

Fig. 2. Projection of the α-RbB3O5 structure onto the ac plane.
umns along the c-axis (Figs. 2, 3a). In the columns par-
allel to the a-axis, the distances between the rubidium
atoms are 4.756 Å. The ellipsoids of thermal vibrations
of rubidium atoms have two relatively long axes and are
flattened along the direction close to the direction of the
a-axis.

COMPARISON OF THE α- AND β-RbB3O5 
AND CsB3O5 STRUCTURES

In different compounds of the MB3O5 series with the
size of the alkali cation varying from 0.90 (Li+ with
c.n. = 6) to 1.95 Å (Cs+ with c.n. = 10) [9], the boron–
oxygen frameworks are topologically identical. In four
structures (LiB3O5, α- and β-RbB3O5, and CsB3O5),
two of which are the end members of the series, such
framework is formed by helical chains of triborate
groups with a period of two groups. In the structures
containing large cations, the helical chains of triborate
APHY REPORTS      Vol. 45      No. 4      2000
groups are formed along two directions: in α-RbB3O5

and CsB3O5, such chains and channels are filled with
cations and are parallel to the a- and c-axes; in
β-RbB3O5, the chains are parallel to the a- and b-axes
and the channels, to the a- and c-axes. It is somewhat
surprising that CsB3O5 is isostructural to the low-tem-
perature α-RbB3O5 modification and not to the high-
temperature one. It was expected that with an increase
of the temperature, the amplitudes of atomic vibrations
have also to increase, thus making the size of rubidium
atoms closer to that of cesium atoms. As a result, the
compound CsB3O5 should have been isostructural
rather to β-RbB3O5. The substitution of the Cs+ ion
(R = 1.95 Å for c.n. = 10) for the smaller Rb+ ion (R =
1.80 Å for c.n. = 10) [9] results in an increase of the
unit-cell volume from 445.9 to 485.5 Å3. As was
expected, the a parameter increased from 8.209 Å in α-
RbB3O5 to 8.521 Å in CsB3O5. The changes in two
other unit-cell parameters are surprising again: b is
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Fig. 3. Illustrating the continuous orientational changes during the α–β transformation
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reduced by almost 1 Å (from 10.092 to 9.170 Å),
whereas c increases by 1 Å (from 5.382 to 6.213 Å).
Apparently, the pronounced anisotropy of lattice defor-
mation on the substitution of cesium for rubidium can-
not be attributed to the difference in the ion sizes alone.

The atomic coordinates in α-RbB3O5 and CsB3O5
are close; the largest difference (0.4 Å) is observed in
the y coordinate of the cation. Apparently, such a con-
siderable displacement of the large metal ion is respon-
sible for the pronounced anisotropy of lattice deforma-
tions in CsB3O5, including the lattice contraction along
the b-axis in comparison with the case of α-RbB3O5
[5, 6, 16].

The restructuring of RbB3O5 at the α–β transforma-
tion leads to even more pronounced anisotropy. Figure 3
shows the projections of these structures showing the
orientational behavior of the structure due to transfor-
mation: the channels with a rhomboid cross section in
the structure of the α-modification (Fig. 3a) are trans-
formed into the channels with an oval cross section in
the β-phase (Fig. 3b). Following the contour of each
channel, one can see their topological identity. The dif-
ference between the structures consists in the location
of the cations. In the polymorphic α–β transformation,
these cations change their location in the jumplike man-
ner, which results in severe deformations of the frame-
work and the whole structure: cα = 5.382 Å  bβ =
8.719 Å, bα = 10.092 Å  cβ = 6.240 Å, and aα =
8.209 Å  aβ = 8.438 Å.

The above consideration confirms the earlier
assumption [7, 16, 17] that the deformation in the
framework structures of alkali-metal borates observed
under temperature changes, and the cation substitution
is determined by the role played by metal atoms and,
especially, by large and heavy ions.

As seen from Figs. 2 and 3, the location of the metal
ions inside the wide channels in the framework is
caused by their “adhesion” to the channel walls. Obvi-
ously, the sites of “adhesion” are discrete and are con-
siderably spaced. Jumping from one position to
another, ions can severely distort the boron–oxygen
framework, which, finally, results in the transformation
of the structure into another polymorphic modification.
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Abstract—The crystal structure of the synthetic Ge-modification of the mineral natisite, Na2{TiOGeO4}, has
been refined by X-ray diffraction method (a four-circle diffractometer, 2θ/θ scanning, MoKα-radiation, θmax =
50°: a = 6.658(1), c = 5.161(1) Å, sp. gr. P4/nmm, Z = 2, ρcalcd = 3.58 g/cm3, R1 = 0.030, s = 1.131, wR(F2) =
0.058 (352 reflections with I ≥ 2σI). The comparative crystallochemical analysis of the related (including hypo-
thetical) phases with the anionic {MTO5} radicals (M = Ti, V, Ge; T = Ge, Si, P) is performed with the aim of
revealing a possible relationship between the composition and the structure type of the compounds. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

A considerable interest in the studies of titanium-
containing crystalline compounds is associated with
their valuable physical properties, of which the most
important are the nonlinear optical properties. Most
often, titanium in crystalline oxygen-containing com-
pounds is characterized by the coordination number six
(the coordination polyhedron is an octahedron),
although some compounds also show the tetrahedral or
the fivefold titanium coordination [1]. The relationship
between the nonlinear optical characteristics of the Ti-
containing oxosalts [one of the typical representative of
which is an acentric KTiOPO4 (KTP) phase] and the
distorted Ti-octahedron is confirmed by numerous
studies, e.g., [2].

According to [3], the bond between the transition
metal and oxygen is the most important parameter of
nonlinear-optical materials with the composition indi-
cated above. From this standpoint, of great interest are
the compounds with the structures close to that of the
mineral natisite Na2TiOSiO4 [4]. The distortion of Ti-
octahedra in the structures of such compounds is so
pronounced that the coordination polyhedron of Ti can
be considered as a tetragonal pyramid with four close
Ti–O bonds (≈1.97 Å) and one shortened Ti–O bond
(≈1.70 Å) (the sixth Ti–O distance exceeds 3 Å). The
deformation electron density in Ti-octahedra in titanite
(CaTiOSiO4) with the similar distribution of Ti–O
bonds [5] justifies the separation of a such titanyl group
characterizing the anomalously strong interaction

† Deceased.
1063-7745/00/4504- $20.00 © 20578
between the titanium atom and one of the oxygen atoms
in the minerals and synthetic phases.

The solution of the structure of the acentric orthor-
hombic modification of the low-temperature
Na2TiOSiO4 modification [6], a synthetic analogue of
the mineral paranatisite [7], allowed the interpretation
of this phase as a probable nonlinear-optical material.
The test for the second-harmonic generation showed
the positive result over the wide temperature range (up
to T = 800°C).

The well known ability of germanium to be located
in both octahedra and tetrahedra (even within one struc-
ture) is explained by the amphoteric properties of its
oxocomplexes, which can perform both the cationic
(octahedra) and the anionic (tetrahedral complex GeO4
anions) functions. Single crystals of the tetragonal Ge-
analogue of the mineral natisite were obtained in the
crystallization of the orthorhombic Na2TiOGeO4 mod-
ification, a phase isostructural to the orthorhombic
Na2TiOSiO4 crystals, which can possess high nonlinear
optical properties.

The crystal structure of the Ge-analogue of natisite
[8] synthesized under the hydrothermal conditions was
solved by the photographic method (the 0kl–4kl and
hk0–hkl layer lines) and then refined up to Rhkl = 12.8%
in 1970. We undertook the structure refinement of the
tetragonal Na2TiOGeO4 phase belonging to this struc-
ture type because of its promising physical properties.
The results of this refinement and the comparative crys-
tallochemical analysis of the related phases were per-
formed with the aim of establishing the dependence
between the composition of the compound and its
structure type.
000 MAIK “Nauka/Interperiodica”
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EXPERIMENTAL. STRUCTURE REFINEMENT

Ge-natisite was synthesized in the shape of flattened
prismatic colorless transparent crystals with the pyra-
midal end faces. The crystal lengths varied from 0.1 to
0.2 mm. The crystals were grown by the hydrothermal
method from an alkaline solution (the NaOH concen-
tration was equal to ≈25%) at P = 900 atm and T =
450°C. The composition of the initial charge was 10 g
GeO2 and 10 g TiO2 per 30 ml of the solvent. The
experiment was performed for 14 days in titanium-
lined steel autoclaves.

The data of the X-ray spectral analysis and the dif-
fractometric powder measurements allowed us to iden-
tify the samples as Na2TiOGeO4. The tetragonal unit-
cell parameters and the crystal symmetry were refined
on an isometric ~0.1 mm-long crystal on a four-circle

SINTEX P  diffractometer. The crystallographic char-
acteristics of the crystals, the data on processing of the
experimental data, and the refined structure parameters
are listed in Table 1.

All the computations were performed by the
SHELXL programs [9]. We used the atomic scattering
curves and introduced the corrections for anomalous
dispersion [10]. The structure was refined in the full-
matrix anisotropic approximation up to R = 0.0304.
The coordinates of the basis atoms with the equivalent
temperature factors are listed in Table 2.

DISCUSSION OF RESULTS

The coordination polyhedron of a Ti atom in the Ge-
natisite, Na2TiOGeO4, is a hemioctahedron (a tetrago-
nal pyramid). In accordance with its symmetry, D4v,
four oxygen atoms are located at equal distances from
titanium (Ti–O(1) = 1.993(2) Å), and one more oxygen
atom is located at the pyramid vertex and is character-
ized by a somewhat shortened distance, Ti–O(2) =
1.708(5) Å. The corresponding interatomic Ti–O dis-
tances in the pyramid base of the isostructural synthetic
natisite, Na2TiOSiO4 [4], are equal to Ti–O 1.990(2) Å,
whereas the Ti–O distance characterizing of the titanyl
group is 1.695(5) Å. In addition to sodium-containing
phases, there are two lithium-containing isotypes:
Li2TiOSiO4 [11] and Li2VOSiO4 [12]. In the first com-
pound, four Ti–O distances in the pyramid base are
equal to 1.967(1) Å, the distance to the vertex equals
1.698(3) Å. The corresponding interatomic distances in
the five-vertex polyhedron are shorter—1.955(3) and
1.623(6) Å, respectively. As is seen, the vanadyl group
in Li2VOSiO4 is recorded even more accurately than
the titanyl group in the titanium-containing phases of
this structure type.

The Ge–O distances in almost regular germanium
tetrahedra in the Na2TiOGeO4 structure are equal to
1.748(2) Å. There are two groups of the cation–oxygen
distances describing the centrosymmetric Na-octahe-
dra (with the symmetry C2h): Na–O(1) = 2.307(1) (four

1
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distances) and Na–O(2) = 2.669(2) Å (two distances),
with the average distance being 〈2.428 Å〉 .

The crystal structure of sodium titanogermanate has
anionic layers of the mixed {TiO[GeO4]}-type, which
are topologically identical to the Ti,Si-layers formed by
Ti-hemioctahedra and Ge-tetrahedra located in the

Table 1.  Crystallographic characteristics of Ge-natisite and
parameters of the diffractometric experiment and the structu-
re refinement

Crystallographic characteristics

Chemical formula Na2{TiO[GeO4]}

Absorption, µ, mm–1 8.42

Sp. gr.      P4/nmm

Unit-cell parameters, Å

a 6.658(1)

c 5.161(1)

Z 2

Density ρcalc , g/cm3 3.578

Characteristics of diffractometric measurements

Crystal dimensions, mm 0.1 × 0.1 × 0.1

Diffractometer     SINTEX P

Monochromator     Graphite

Radiation     MoKα

Scanning mode     2θ : θ
2θmax, deg 100

Number of measured reflections 369

Number of independent reflections
with I ≥ 2σ(I)

352

Parameters of structure refinement

Absorption correction     DIFABS

Tmax, Tmin 1.000, 0.760

Program complex     SHELXL97
(refinement by F2)

Extinction coefficient 0.001(2)

R1 0.0304

s 1.131

wR(F2) 0.0576

1

Table 2.  Coordinates of basis atoms and equivalent tempe-
rature factors (Å2)

Atom x/a y/b z/c Ueq

Ge 0.75 0.25 0.5 0.0053(1)

Ti 0.25 0.25 0.5743(2) 0.0056(2)

Na 0.5 0 0 0.0167(4)

O(1) 0.75 0.0346(3) 0.3062(4) 0.0081(4)

O(2) 0.25 0.25 0.2432(9) 0.0141(9)
0
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TiTiTi

Ge

a

b
c

Fig. 1. Na2{TiOGeO4} crystal structure. Sodium atoms are shown by spheres.
chess-board like manner in the ab plane and connected
via the oxygen vertices. Along the c-axis, these layers
alternate with layers of Na+-cations occupying the octa-
hedra sharing edges and vertices (Fig. 1).

As indicated above, four phases are crystallized in
the natisite structure type (sp. gr. P4/nmm). They form
a morphotropic series of isotypes described by the gen-
eral formula A2{MTO5}, where A is the alkali metal
(Na, Li) occupying an octahedron, M is the transition
metal (Ti, V) occupying a five-vertex polyhedron, and
T is Ge or Si occupying a tetrahedron. It should be
emphasized that the complete isostructurality in this
series is preserved upon the substitution of atoms in all
the three types of cationic positions: in A position
(Na2TiOSiO4–Li2TiOSiO4), in the M position
(Li2TiOSiO4–Li2VOSiO4), and in the T position
(Na2TiOGeO4–Na2TiOSiO4).

The crystallochemical characteristics, and, first of
all, the charges and the ionic radii of the elements form-
ing the mixed {MTO5}-layers in the natisite structure

type (  = 0.68,  = 0.63,  = 0.59,  = 0.53,

 = 0.42, and  = 0.35 Å) are such that a wide
spectrum of potential isotypes and structurally related
phases can be formed. Let us construct a composition
tetrahedron for probable compounds with the anionic
radicals of the mixed {MTO5}-type. With this aim,
place the M and A atoms (the already considered set of
monovalent cations is complemented with potassium)

RTi
4+

RV
4+

RV
5+

RGe
4+

RSi
4+

RP
5+
C

at the vertices, and place the T atoms at the centers of
the edges of the basis face (Fig. 2). Thus, we arrive at
the complete list of the natural, synthesized, and hypo-
thetical phases described by the formulas A2{MTO5}
and A{MTO5}. Taking into account the amphoteric
nature of germanium, this list can be considerably
increased if one assumes that the Ge4+ cations fill not
only tetrahedral (T), but also the octahedral (hemiocta-
hedral) positions (M).

As is seen from Fig. 2, no A2{GeTO5} compounds
crystallizing in the natisite structure type are known. In
the crystal structures of the lithium and sodium natisite
analogues, Li2{GeGeO5} [13], Li2{(Ge, Si)2O5} [14],
and Na2{GeGeO5} [15], Ge4+ cations can occupy only
tetrahedra, and, therefore, their structure types differ
from natisite. The Li2{GeGeO5} and Na2{GeGeO5}
crystal structures with tetrahedrally-coordinated ger-
manium are the layer network structures built by ger-
manium tetrahedra separated by the layers of Li- or Na-
polyhedra (Fig. 3). The tetrahedral nets in the sodium-
containing phase (the Na2Si2O5 structure type [16]) can
be considered as fragments of the β-tridymite structure.

Among the structure types with the anionic
{MTO5}-type radicals [17], the most widespread are

(1) the natisite structure type, in which all the above
four phases (Na2TiOSiO4, Na2TiOGeO4, Li2TiOSiO4,
and Li2VOSiO4) and the mineral natisite are crystal-
lized;
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Fig. 2. Composition tetrahedra showing the existing and the hypothetical phases. The anionic {MTO5}-radical is indicated in paren-
theses. The vertices of the tetrahedron bases are occupied by A atoms; the fourth vertex of the tetrahedron is occupied by an M atom,
and T atoms are located in the middles of the base edges. Any ATM-triangle of the composition tetrahedron indicates the correspond-
ing phase composition. Asterisks indicate unknown phases, primes indicate that the phases have two polymorphs.
(2) the titanite structure type CaTiOSiO4 character-
istic of isotypes NaTiOPO4 [18] and NaVOPO4 [19]
with the space group of sphene, P21/c, and lithium
phosphates—LiTiOPO4 [20, 21] and LiVOPO4 [22,
23]—both having the orthorhombic (sp. gr. Pnma) and

triclinic (sp. gr. P ) modifications, which are topolog-
ically identical to the structure of the mineral titanite
(sphene);

(3) the KTP structure type (KTiOPO4) known for
the compound KTiOPO4 (after which this structure
type is named) and also for KVOPO4 [24] and
KGeOPO4 [25]. In the latter case, since a more active

1
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phosphorus readily forms PO4 groups, Ge4+ cations are
located in octahedra.

In addition to the above four structure types, a new
structure type was established for the low-temperature
Na2TiOSiO4 modification (an orthorhombic polymorph
also occurring in nature as mineral paranatisite) [6].
The crystal structure of the synthetic analogue of
paranatisite is described by the acentric sp. gr. Pmc21
and consists of the same structural elements as its tet-
ragonal modification, namely, of Ti-hemioctahedra, Si-
tetrahedra, and Na-octahedra. The interatomic Ti–O
distances in two independent five-vertex polyhedra of
the symmetry Cs are such that each five-vertex polyhe-
dron has four close distances [Ti(1)–O = 1.951(5) × 2,
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Fig. 3. A2{GeTO5} crystal structures, where T = Ge, Si (the formula analogues of the mineral natisite with tetrahedrally coordinated
Ge atoms in both positions). (a) Li2Ge2O5 and (b) Na2Ge2O5.

LiLiLi

GeGeGe

a
c

bbb

GeGeGe

(b)

(a)

y z

x

Ti(1)–O = 1.974(5) × 2, Ti(2)–O = 1.964(5) × 2, and
Ti(2)–O = 1.990(5) × 2 Å] and one shortened distance
[Ti(1)–O = 1.705(7) and Ti(2)–O = 1.703(8) Å, respec-
tively] characterizing the titanyl groups. The sixth oxy-
gen atoms, which build-up the Ti-polyhedra to octahe-
dra, are spaced by 3.110(7) and 3.481(8) Å from the
Ti(1) and Ti(2), respectively. Both orthorhombic and
tetragonal Na2TiOSiO4 polymorphs have similar struc-
tural fragments (polysomes). These are ribbons of tet-
ragonal Ti-pyramids located on the four-angle faces
and edge-oriented Si-tetrahedra of the edge orientation.
Each Ti-hemioctahedron in the ribbon shares four basis
vertices with four Si-tetrahedra. In the tetragonal mod-
ification, each SiO4-tetrahedron is shared by two such
C

ribbons elongated in the [110]-direction, which results
in the formation of the layers parallel to the ab plane
formed by alternating Ti-hemioctahedra and Si-tetrahe-
dra along the a- and b-axes (Fig. 1). The anionic
{TiOSiO4}2–-layers alternate with the layers of Na-
octahedra along the c-axis.

The relationship between the unit-cell parameters of
the tetragonal and orthorhombic polymorphs can
roughly be determined from the following vector rela-
tionships: a0 ≈ c0 ≈ at and b0 ≈ ct. The crystal structure
of the orthorhombic phase consists of the ribbons
described above and located along c-axis in the ac-
plane and along the b-axis in the ab-plane. Each SiO4-
tetrahedron shares two vertices with the neighboring
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Fig. 4. Crystal structure of the orthorhombic modification of Na2{TiOSiO4} in the axonometric projection.
hemioctahedra of one ribbon and two other vertices with
the neighboring hemioctahedra of the other perpendicu-
lar ribbon. Displacing the hemioctahedron along the
diagonal of the ab face of the tetragonal phase by a half
of the second diagonal in the same plane and then dis-
placing it downward along the c-axis (and thus changing
the vertex orientation to the face orientation), we arrive
at the orthorhombic Na2TiOSiO4 structure, in which the
mixed anionic layers consisting of Si-tetrahedra and Ti-
hemioctahedra are transformed into the framework
described by the same formula {TiOSiO4}2– (Fig. 4).

The framework structure, with the parameters very
close to those of the tetragonal unit cell described by
the same space group and topologically identical to the
natisite structure in the basis projection, is characteris-
tic of vanadyl phosphate VOPO4 (the α-phase) [26].
Removing the layer of monovalent cations from the
layer natisite (or Li2VOSiO4) structure and simulta-
neously substituting silicon in tetrahedra by phospho-
rus, we arrive at the situation where (V, P) layers along
the c-axis are combined together, and V4+ hemioctahe-
dra are transformed into V5+ octahedra. The phase thus
obtained can be interpreted as another (quasimorpho-
tropic) member of the natisite structural series.
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Abstract—Crystal structure of Fe-rich triclinic astrophyllite K2NaFe7[Ti2Si8O26F](OH)4 is refined (a Syntex P
automatic diffractometer, 3809 reflections, 2θ/θ scan, R = 0.041): a = 5.365(2), b = 11.88(1), c = 21.03(2) Å,

α = 84.87(6)°, β = 92.25(5)°, γ = 103.01(4)°, sp. gr. A , Z = 2, dcalcd = 3.29 g/cm3. The refined structure is
identical to that reported earlier. The structure is built by three-layer TOT sheets in which an O layer of Fe-octa-
hedra is sandwiched between the T layers consisting of Si-tetrahedra and Ti-octahedra. It is established that dif-
ferently chosen unit cells of the mineral are interrelated. © 2000 MAIK “Nauka/Interperiodica”.

1

1

1 INTRODUCTION

Astrophyllite, a mica-like titanium silicate, is
known to have several polymorphic modifications with
different symmetries and compositions. The crystal
structure of the monoclinic modification was deter-
mined in [1, 2], and that of one of the triclinic modifi-
cations, in [3]. Yet, the quality of crystal samples used
in [3] was low. As a result, it was impossible to deter-
mine the positional parameters with a sufficient accu-
racy (one of the parameters was roughly estimated).
The final reliability factor was R = 0.10. These facts and
the discrepancy of the unit-cell parameters of triclinic
astrophyllites determined from numerous X-ray data
stimulated a new refinement of the crystal structure of
this mineral.

The astrophyllite samples studied were obtained
from the crystals from the Khibiny deposit (Cola Pen-
insula). Their composition is described by the approxi-
mate formula 

(microprobe analysis data).

The mineral is the richest in Fe and poorest in Mn
and Al, compared with all the other astrophylites from
the Khibiny deposit. It is thus the sample closest to the
end compound of the series that has the composition
NaK2Fe7Ti2Si8O26F(OH)4.

1 e-mail: elbel@geol.msu.ru

Na2 K3.95Ba0.01Na0.04( )Σ4 Fe1.52
2+

Fe0.48
3+( )Σ2

× Fe2.00
2+

Mn1.04Ca0.76Na0.20( )Σ4 Fe6.76
2+

Mg1.24( )Σ8

× Ti3.95Nb0.03Zr0.02( )Σ4 F1.20OH0.80( )

× Si15.70Al0.30( )Σ16O48[ ] O4 OH( )8
1063-7745/00/4504- $20.00 © 0585
DIFFRACTION EXPERIMENT 
AND STRUCTURE REFINEMENT

The sample was a 0.1 × 0.15 × 0.3 mm-large astro-
phyllite single crystal.

The symmetry and unit-cell parameters of the tri-
clinic unit cell were determined by the photomethod

and then were refined on a Syntex P  automatic single-
crystal diffractometer: a' = 21. 498(1), b' = 11. 884(2),
c' = 5.365(2) Å, α ' = 103.08(4)°, β' = 102.19(5)°, and
γ' = 82.73(6)°. The crystal data collected in the trigonal
setting are given in Table 1. The calculation of the |Fhkl|
amplitudes from the reflection intensities and all the
other computations were performed by the AREN com-
plex of programs [4]. The extinction laws for the hkl
reflections (with h + k = 2n) indicated the base-cen-
tered Bravais lattice and, correspondingly, two possible
space groups, C1 and C . Since the unit-cell parame-
ters measured were different from those reported in [3],
the structure of the mineral was solved by a direct
method with the use of the automatic procedure of
model selection and successive approximations. The
final structure refinement was performed by the least
squares method, within in the centrosymmetric space
group C  in the isotropic approximation to Riso = 0.067.
The distribution of K+, Na+, Fe2+, Fe3+, Mn2+, Mg2+, and
Ca2+ over the crystallographic positions was deter-
mined upon the refinement of the occupancies of these
positions at the fixed Biso with the use of appropriate
mixed atomic-scattering curves and with due regard for
the data of chemical analysis, the effective ionic radii,
the average cation–oxygen distances, and the values of
the temperature factors. The minimum reliability factor
Raniso = 0.041 was obtained for the formula

1

1

1
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Table 1.  Numerical characteristics of the diffraction experiment on Fe-rich astrophyllite

Sample dimensions 0.1 × 0.15 × 0.3 mm

Automatic single-crystal diffractometer Syntex 
Radiation MoKα
Monochromator Graphite

Sp. gr.

Unit-cell constants (Å, deg) of the initial structure model for which the data 
were collected (left) and of the transformed structure model for which the final 
positional atomic parameters were determined (on the right)

a' = 21.50(2) a = 5.365(2)
b' = 11.88(1) b = 11.88(1)
c' = 5.365(2) c = 21.03(2)
α' = 103.08(4)° α = 84.87(6)°
β' = 102.19(5)° β = 92.25(5)°
γ' = 82.73(6)° γ = 103.01(4)°

Number of formula units per unit cell, Z V = 1300.5(1)  2
Scan 2θ : θ
Maximum sinθ/λ 1.08
Scan rate 6–24 deg/min
Number of measured reflections with I > 1.96σ(I) 3809
Number of reflections used in the final least-squares procedure 3778
Complex of programs AREN
Final reliability factor R(hkl):

isotropic approximation 0.067
anisotropic approximation 0.041

Weighting scheme used in the least-squares procedure w = 1/(A + F + BF2)
A = 2FminB = 2/Fmax

P1

C1 A1
Table 2.  Unit-cell constants (Å, deg) of some variants of triclinic astrophyllite structure and the matrices of the correspond-
ing transformations

Initial, experimentally deter-

mined unit cell C, sp. gr. 

Unit cell A (sp. gr. ) ob-
tained by the transformation

of the C-cell using the matrix:
Unit cell A (sp. gr. )

suggested in [3]

Primitive unit cell (sp. gr. ) 
obtained by the transformation 
of A unit-cell from [3] using 

the matrix:

a' = 21.498, α' = 103.08° a = 5.365, α = 84.87° aw = 5.36, αw = 85.13°  = 5.36,  = 64.85°

b' = 11.884, β' = 102.19° b = 11.881, β = 92.25° bw = 11.76, βw = 90.00°  = 11.76,  = 72.09°

c' = 5.365, γ' = 82.73° c = 21.029, γ = 103.01° cw = 21.08, γw = 103.22°  = 13.06,  = 103.22°

Primitive unit cells obtained by transformation of the C-cell using various matrices

Variant 1 Variant 2 Variant 3 Variant 4

a1 = 5.365, α1 = 63.97° a2 = 5.365, α2 = 56.69° a3 = 5.365, α3 = 118.13° a4 = 5.365, α4 = 115.52°
b1 = 11.881, β1 = 73.76° b2 = 11.881, β2 = 98.03° b3 = 11.881, β3 = 61.47° b4 = 11.881, β4 = 85.43°
c1 = 12.924, γ1 = 103.01° c2 = 12.531, γ2 = 103.01° c3 = 13.168, γ3 = 103.01° c4 = 11.605, γ4 = 103.01°

C1

A1

MC A→

0 0 1

0 1 1

1 0 1 
 
 
 

=

A1

P1

MA P→

1 0 0

0 1 0

1 
1
2
--- 

1
2
--- 

 
 
 
 

=

aw' αw'

bw' βw'

cw' γw'

MC P→

0 0 1

0 1 1

1
2
--- 

1
2
--- 0 

 
 
 
 
 

= MC P→

0 0 1

0 1 1

1
2
--- 

1
2
--- 1 

 
 
 
 
 

= MC P→

0 0 1

0 1 1

1
2
--- 

1
2
---1 

 
 
 
 
 

= MC P→

0 0 1

0 1 1

1
2
--- 

1
2
--- 0 

 
 
 
 
 

=
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a' = 21.5Å
c = cw= 21.1Å

c2 = 12.5Å

c1 = 12.9Å
c3 = 13.2Å

c4 = 11.6Å

c' = 5.4Å

b' = 11.9 Å

b = b1 = b2 = b3 = b4 ≈ bw ≈ 11.9 Å

a = a1 = a2 = a3 = a4 = aw = 5.4 Å

Fig. 1. Primitive and centered unit cells possible for triclinic astrophyllite. The a, b, and c parameters coincide with those given in
Table 2.
(K0.85Na0.15)2(Na0.73K0.27)( Mg0.16)4( ) ·

( Mn0.26Ca0.19Na0.05)2[(Ti0.99(Nb, Zr)0.01)2(Si0.98Al0.02)8 ·
O26(OH, F)](OH)4 (Z = 2, dcalcd = 3.29 g/cm3). The ide-
alized formula is K2NaFe7[Ti2Si8O26F](OH)4. The sub-
stitution of Al for Si and Nb and Zr for Ti was estab-
lished by the chemical analysis. The substituents in
such low concentrations could not be detected by X-ray
methods.

The O2– and OH– (F–) positions were separated by
calculating the local balance of bond strengths with due
regard for the cation–anion distances [5]. The posi-
tional and thermal parameters of two independent
hydrogen atoms were determined from the three-
dimensional difference electron-density map and were
refined by the least-squares method.

The comparison of our structure model with the
model described in [3] in terms of crystal chemistry
showed their identity. However, the comparison of the

base-centered structure (sp. gr. C , unit-cell parame-
ters a', b', and c'; see Table 2), suggested and refined in
the present study with the face-centered structure (sp.
gr. A , unit-cell parameters aw, bw, and cw; see Table 2)
suggested in [3], made it necessary to consider first the
primitive triclinic structure (sp. gr. P ) with the unit-
cell parameters , , and  (Table 2) and compare
it with the initially chosen four primitive structures
(Fig. 1). The unit-cell parameters of one of these prim-
itive structures, a1, b1, and c1 , are close to , , and

. Then, the appropriate matrix of the C–A transfor-

Fe0.84
2+

Fe0.76
2+

Fe0.24
3+

Fe0.50
2+

1

1

1
aw' bw' cw'

aw' bw'

cw'
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
mation (Table 2) was determined, and the correspond-
ing recalculation of the unit-cell parameters was per-
formed. Finally, the atomic coordinates (Table 3) were
calculated with respect to the common reference point
of both structures under the assumption that the center
of inversion coincides with the position of a Fe atom
from the layer of Fe-octahedra. As is seen from Table 3,
the atomic parameters of both structures differ insignif-
icantly, which indicates that our samples and the sam-
ples examined in [3] have identical structures. The
average cation–oxygen distances in the coordination
polyhedra are: 2.125, 2.186, 2.153, and 2.138 Å for the
Fe(1)-, Fe(2)-, Fe(3)-, and Fe(4)-octahedra, respec-
tively; 1.954 Å for the Ti-octahedhra; 2.601 Å for ten-
apex Na-polyhedra; and 3.199 Å for nine-apex K-poly-
hedra. The Si–O distances in Si tetrahedra are within
the standard limits. The lengths and the angles of oxy-
gen–hydrogen bonds are given in Table 4.

DISCUSSION OF RESULTS

Table 2 and Fig. 1 show that the structure under consid-
eration can be described by different unit cells with close
a, b, and c parameters. This explains the diversity of pub-
lished data and the difficulty in choosing the structure vari-
ant to compare it with that considered in [3].

The unit cell of triclinic astrophyllite suggested in
[6] (a = 13.14, b = 12.82, c = 5.42 Å, α = 93°34′, β =
101°40′, γ = 113°38′) is the closest to the primitive unit
cell of variant 4 (Table 2).

The projection of the mineral structure given in [6]
seems to be consistent with our refined model, despite
0
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Table 3.  Positional and thermal atomic parameters of Fe-rich astrophyllite

Atom Position 
multiplicity Position occupancy x/a y/b z/c Beq, Å2

Fe(1) 2 Fe 0 0 0 0.92(1)
Fe(2) 4 0.5Fe + 0.26Mn + 0.19Ca + 0.05Na 0.8574(1) 0.7159(1) 0.991(1) 0.73(2)

0.86 0.716 0.99
Fe(3) 4 0.84Fe + 0.16Mg 0.7127(1) 0.4272(1) 0.0046(1) 0.64(1)

0.71 0.426 0.006
Fe(4) 4 0.84Fe + 0.16Mg 0.4296(1) 0.8596(1) 0.9942(1) 0.60(1)

0.43 0.859 0.993
Ti 4 Ti 0.5069(1) 0.7373(1) 0.8511(1) 0.62(1)

0.51 0.738 0.847
Si(1) 4 Si 0.0941(1) 0.9053(1) 0.8656(1) 0.64(2)

0.09 0.904 0.865
Si(2) 4 Si 0.0742(1) 0.4354(1) 0.1327(1) 0.64(2)

0.09 0.436 0.132
Si(3) 4 Si 0.7699(1) 0.8309(1) 0.1247(1) 0.66(2)

0.76 0.83 0.122
Si(4) 4 Si 0.7930(1) 0.7973(1) 0.3765(1) 0.61(2)

0.81 0.799 0.38
Na 2 0.73Na + 0.27K 0 0.25 0.25 1.00(4)
K 4 0.85K + 0.15Na 0.6333(3) 0.5199(1) 0.2480(1) 2.83(3)

0.60 0.515 0.248
O(1) 4 O 0.7631(4) 0.8458(2) 0.0478(1) 0.83(4)

0.76 0.843 0.047
O(2) 4 O 0.0944(4) 0.8767(2) 0.9429(1) 0.90(4)

0.10 0.874 0.944
O(3) 4 O 0.2035(4) 0.7125(2) 0.0460(1) 0.88(4)

0.19 0.713 0.048
O(4) 4 O 0.4889(5) 0.2744(2) 0.0639(1) 0.97(4)

0.47 0.276 0.063
O(5) 4 (OH) 0.6633(5) 0.0107(2) 0.9500(1) 0.97(4)

0.67 0.015 0.951
O(6) 4 O 0.0557(5) 0.4295(2) 0.0557(1) 0.94(4)

0.05 0.429 0.057
O(7) 2 (OH, F) 0.5 0.25 0.25 1.56(7)
O(8) 4 O 0.0116(5) 0.7390(2) 0.3485(1) 1.50(5)

0.03 0.735 0.349
O(9) 4 O 0.1616(7) 0.0460(2) 0.8453(1) 1.85(6)

0.19 0.051 0.848
O(10) 4 (OH) 0.6250(4) 0.5694(2) 0.0468(1) 1.08(5)

0.62 0.572 0.046
O(11) 4 O 0.4893(5) 0.7637(3) 0.1519(1) 1.55(7)

0.48 0.756 0.152
O(12) 4 O 0.1478(7) 0.0694(2) 0.6525(1) 1.88(8)

0.12 0.071 0.651
O(13) 4 O 0.7040(6) 0.6228(3) 0.8360(1) 2.49(9)

0.79 0.64 0.836
O(14) 4 O 0.1920(7) 0.1230(3) 0.3346(1) 2.32(8)

0.27 0.106 0.335
O(15) 4 O 0.8185(7) 0.8568(3) 0.8341(1) 2.36(8)

0.80 0.872 0.835
O(16) 4 O 0.6933(6) 0.1439(3) 0.1673(1) 2.36(8)

0.71 0.157 0.167
H(1) 4 H 0.328(5) 0.503(1) 0.597(1) 6.6(1)
H(2) 4 H 0.383(5) 0.936(1) 0.412(1) 4.6(1)

Note: Thermal parameters of hydrogen atoms are isotropic; the positional parameters indicated in the second row of each entry were
derived from those given in [3].
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Na K

Ti
Si

OH

Fe

c1

b · sinγ = b1

c · sinβ

Fig. 2. Projection of the astrophyllite structure along the [100] direction in the A  setting. The b1 and c1 parameters are those of the
primitive unit cell of variant 1 (Table 2). Centers of inversion are denoted by small open circles.

1

the fact that the authors of [6] indicated no positional
parameters.

The crystal structure of mica-like triclinic astro-
phyllite consists of three-layer TOT sheets parallel to
the (001) plane (Fig. 1). The central sheet layer (O) is
formed by Fe octahedra. The peripheral layers are built
of ribbonlike silicon–oxygen radicals [Si4O12]8– located
along the shortest (5.4 Å) unit-cell parameter and
linked via the Ti-octahedra (Fig. 2). Three-layer sheets
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
linked by Ti-octahedra sharing the (OH, F)-apices and
large K and Na cations in the intersheet cavities form a
three-dimensional framework of the structure.

The triclinic astrophyllite structure established in
the present study is identical to that of the most proba-
ble the polytypic astrophyllite modifications suggested
by Zvyagin [7]. This modification, denoted as modifi-
cation (3) in [7], is characterized by uniform Ti
distribution caused by the mutual shifts of (Si, Ti) net-
works on both sides of the octahedron layer. The
Table 4.  Parameters of H-bonds in Fe-rich astrophyllite

D–H ⋅ ⋅ ⋅ ⋅ ⋅A D–H, Å H–A, Å D–A, Å D–H–A, deg 

O(5)–H(1) ⋅ ⋅ ⋅ ⋅ ⋅O(9) 1.03(2) 2.85(3) 3.458(4) 118.2(2)

O(10)–H(2)····O(12) 0.86(2) 2.92(3) 3.455(4) 121.5(1)
0
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Fe

Ti

1/4

1/4

1/4

1/4

1/4

1/4

b · sinα

b''

Si

Fig. 3. Idealized fragment of the triclinic astrophyllite structure showing a TOT sheet projected along the [001] direction and the
monoclinic unit cell with the parameters a'' and b''.

a  · sinβ = a''
monoclinic symmetry is also established for another
polytype, which is denoted as modification (1) in [7]
and seems to be the least stable one. This modification
is enriched with Na (the excessive Na+ ions are
located  in the layer of octahedra) and differs from the
triclinic one by the arrangement of T layers
with respect to one another and to the central O layer
of  in the three-layer sheet. The monoclinic astrophyl-
lite modification is described by the formula
K2NaNa(Fe, Mn)4Mg2Ti2[Si4O12]2(OH)4(OH,F)2; its
parameters are a = 5.322(1), b = 23.129(5), c =
10.842(3) Å, β = 109.40(2)°, Z = 2, sp. gr. C2 [1, 2]. In
this structure, T layers lying on both sides of the O layer
are bound by the twofold rotation axis lying in the plane
of the O layer. Two of the three unit-cell parameters of
the monoclinic and triclinic unit cells (those parallel to
the mica-like layer (Fig. 3)) are related as a'' = a = 5.4
and b'' = a + 2b = 23 Å. The third unit-cell parameter is
determined in each structure independently because of
different mutual arrangement of the adjacent shifted
TOT sheets. Yet, since this parameter is determined by
the translation of TOT sheets along the c axis, it can be
assumed that c'' ≈ 1/2c (21 : 2 = 10.5 Å).
C
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Crystal Structure of a New Mn, Na-Ordered Analogue 
of Eudialyte with the Symmetry R3
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Abstract—The crystal structure of a new representative of the eudialyte family was studied. This mineral is
characterized by a low calcium content and by ordering the elements that isomorphically replace calcium,
which lowers the symmetry from R3m to R3. The structure of the sample under study consists of the six-mem-
bered rings with two octahedra of substantially different volumes, one occupied mainly by manganese and the
other, mainly by sodium and characterized by the average distances of 2.22 and 2.45 Å, respectively. The for-
mation of such octahedra is the most characteristic structural feature of the third low-symmetry mineral of the
eudialyte family. © 2000 MAIK “Nauka/Interperiodica”.
1 In recent years, the eudialyte family has been com-
plemented with several new representatives, including
minerals with an unusually low symmetry, R3 [1, 2].
Such a low symmetry of the eudialyte structural type is
explained by the deficiency of calcium and a differenti-
ation of the elements isomorphically replacing calcium
in the octahedra entering six-membered rings. In this

1 e-mail: rast@rsa.crystal.msk.su
1063-7745/00/4504- $20.00 © 20591
work, the crystal structure of a new mineral of the eud-
ialyte family with an anomalously low calcium content
was studied. This mineral was found in alkaline-, vola-
tile-, and rare-element supersaturated pegmatites at the
Alluaiv mountain of the Lovozero alkaline massif (the
Kola Peninsula). The mineral occurs as pinkish-yellow
grains of sizes ranging from 3 to 5 mm. The grains are
optically uniaxial positive crystals with No = 1.610 and
Ne = 1.619; ρcalcd = 2.8 g/cm3. The major structural
Table 1.  Structural data and details of X-ray diffraction study

Characteristic Value

Unit-cell parameters, Å a = 14.205(7), c = 30.265(15) 

Unit-cell volume, Å3 V = 5288.8

Sp. gr., Z R3; 3

Radiation, λ, Å MoKα; 0.71073

Crystal dimensions, mm 0.15 × 0.20 × 0.28

Diffractometer Syntex P21

Scanning mode ω/2θ
sinθ/λ, Å–1 <0.77

Range of data collection –21 < h < 21, –21 < k < 21, 0 < l <46

Rint for equivalent reflections 0.014

Total number of reflections 6788 I > 2σ(I)

Number of independent reflections 4004 |F | > 4σ(F) 

Program used for calculations AREN [3]

Absorption correction DIFABS [4]

Number of independent positions 69

R factor for anisotropic refinement 0.036
000 MAIK “Nauka/Interperiodica”
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Table 2.  Atomic coordinates, equivalent thermal parameters, multiplicities (Q), and occupancies (q) of the positions

Atom x/a y/b z/c Beq, Å2 Q q

Zr(1) 0.3334(1) 0.1582(1) 0.1666(1) 1.89(1) 9 1

M(1)* –0.0001(1) 0.2726(1) –0.0002(1) 1.41(1) 9 1

M(1)'* 0.2435(1) 0.2435(1) –0.0003(1) 1.52(1) 9 1

Si(1) –0.0108(2) 0.6090(1) 0.0965(1) 1.47(3) 9 1

Si(1)' –0.0050(1) 0.3968(1) 0.0963(1) 1.40(3) 9 1

Si(2) 0.1403(1) 0.0571(1) 0.0811(1) 1.60(5) 9 1

Si(3) 0.0634(1) 0.3285(1) 0.2374(1) 1.42(4) 9 1

Si(3)' 0.2754(1) 0.3223(1) 0.2373(1) 1.46(4) 9 1

Si(4) 0.2085(1) 0.4170(1) 0.0750(1) 1.77(4) 9 1

Si(5) 0.5264(1) 0.2499(1) 0.2528(1) 1.61(4) 9 1

Si(6) 0.4581(1) 0.5419(1) 0.2586(1) 1.81(4) 9 1

O(1) 0.1709(3) 0.3593(3) 0.0288(1) 2.3(2) 9 1

O(2) 0.1840(3) 0.3537(3) 0.2210(1) 2.3(1) 9 1

O(3) 0.6259(3) 0.5837(3) 0.0446(1) 3.2(5) 9 1

O(3)' 0.6367(4) 0.0407(3) 0.0452(1) 2.2(2) 9 1

O(4) 0.2557(4) 0.0224(3) 0.2071(1) 2.6(1) 9 1

O(4)' 0.2630(3) 0.2269(3) 0.2060(1) 3.3(5) 9 1

O(5) 0.4758(4) 0.2220(4) 0.2042(1) 4.3(3) 9 1

O(6) 0.2250(4) 0.0918(4) 0.0417(1) 3.2(3) 9 1

O(7) 0.1914(3) 0.0797(4) 0.1293(1) 2.8(3) 9 1

O(8) 0.1070(4) 0.3937(5) 0.1076(1) 3.5(3) 9 1

O(8)' 0.2726(3) 0.3708(3) 0.1058(1) 2.1(2) 9 1

O(9) 0.4423(4) 0.1996(4) 0.2922(1) 2.8(3) 9 1

O(10) 0.6167(3) 0.2104(3) 0.2569(1) 3.0(3) 9 1

O(11) 0.0729(3) 0.1233(3) 0.0772(1) 3.2(4) 9 1

O(12) 0.0579(5) 0.4379(4) 0.2261(1) 3.1(4) 9 1

O(12)' 0.3948(3) 0.4310(3) 0.2282(1) 2.1(2) 9 1

O(13) 0.0255(3) 0.5045(3) 0.3053(1) 2.4(1) 9 1

O(14) 0.4048(4) 0.2978(4) 0.1280(1) 3.2(5) 9 1

O(14)' 0.4115(4) 0.1011(4) 0.1267(1) 2.5(2) 9 1

O(15) 0.0454(3) 0.3002(3) 0.2895(1) 2.3(4) 9 1

O(15)' 0.2625(3) 0.2926(3) 0.2885(1) 1.9(2) 9 1

O(16) 0.0210(3) 0.5175(3) 0.1125(1) 2.3(2) 9 1

O(17) 0.2861(5) 0.5465(4) 0.0714(2) 5.9(4) 9 1

O(18a) 0.2095(6) 0.610(1) 0.2534(4) 2.9(2) 9 0.41(1)

O(18b) 0.374(1) 0.590(1) 0.2669(3) 3.5(2) 9 0.59(1)

Si(7a) 0.3333 0.6667 0.0435(1) 2.1(1) 3 0.64(1)

Si(7b) 0.3333 0.6667 0.0882(3) 2.7(2) 3 0.36(1)

Si(8a) 0.3333 0.6667 0.2458(3) 1.9(1) 3 0.25(1)

Si(8b)* 0.3333 0.6667 0.2897(1) 2.19(5) 3 0.75(1)

M(2a)* 0.1842(2) 0.3526(2) 0.3315(1) 2.27(5) 9 0.40(1)

M(2b)* 0.460(1) 0.528(1) 0.0035(3) 2.7(1) 9 0.10(1)

Fe 0.0162(1) 0.5163(1) 0.0013(1) 3.1(1) 9 0.50(1)
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Table 2.  (Contd.)

Atom x/a y/b z/c Beq, Å2 Q q

Na(1a) 0.189(2) 0.621(2) 0.1601(7) 8.1(4) 9 0.20(1)

Na(1b) 0.186(1) 0.577(1) 0.1499(5) 5.3(3) 9 0.25(1)

Na(1c) 0.245(1) 0.515(1) 0.1819(6) 5.0(3) 9 0.25(1)

Na(1d) 0.227(2) 0.573(2) 0.1647(7) 6.1(3) 9 0.20(1)

Na(2a)* 0.1201(3) 0.2300(4) 0.1521(1) 2.5(1) 9 0.46(1)

Na(2b) 0.092(2) 0.177(2) 0.1668(5) 5.3(5) 9 0.22(1)

Na(2c) 0.105(1) 0.206(1) 0.1552(4) 4.9(3) 9 0.32(1)

Sr 0.2346(7) 0.1127(7) 0.2820(3) 4.1(1) 9 0.10(1)

Na(3) 0.1988(3) 0.0966(2) 0.2883(1) 3.2(1) 9 0.90(1)

Na(5a) 0.4411(5) 0.2165(4) 0.0510(2) 3.1(1) 9 0.52(1)

Na(5b)* 0.4722(3) 0.2334(3) 0.0420(1) 2.7(1) 9 0.48(1)

Na(6a) 0.5607(3) 0.1081(3) 0.1806(1) 2.7(1) 9 0.67(1)

Na(6b) 0.5729(8) 0.4128(9) 0.1689(5) 2.5(4) 9 0.14(1)

Na(6c) 0.605(2) 0.431(2) 0.166(1) 7(5) 9 0.19(1)

OH(1) 0.0 0.0 0.3304(8) 5.8(4) 3 0.52(3)

OH(2) 0.3333 0.6667 0.1390(7) 3.2(5) 3 0.37(3)

OH(3) 0.3333 0.6667 0.1889(7) 3.2(3) 3 0.39(2)

OH(4a) 0.609(3) 0.387(3) –0.0064(8) 6.9(4) 9 0.40(1)

OH(4b) 0.6667 0.3333 0.007(2) 7.3(6) 3 0.70(1)

OH(5) 0.408(2) 0.603(2) 0.0029(8) 4.9(7) 9 0.30(3)

H2O(1a) 0.0 0.0 0.2348(8) 3.6(5) 3 0.47(3)

H2O(1b) 0.0 0.0 0.268(3) 9(1) 3 0.25(4)

H2O(3a) 0.6667 0.3333 0.1033(7) 4.2(6) 3 0.50(3)

H2O(3b) 0.6667 0.3333 0.141(2) 8(1) 3 0.20(2)

Cl(1a)* 0.6667 0.3333 0.0437(7) 3.7(3) 3 0.30(2)

Cl(1b) 0.6667 0.3333 0.080(1) 3.7(3) 3 0.10(2)

Note: The notation of the atomic positions correspond to that used in [1]; the positions crystallographically independent in the sp. gr. R3
are primed.

        * The position compositions are as follows: M(1) = 0.7Mn + 0.24Ca + 0.06Ce; M(1)' = 0.45Na + 0.35Ca + 0.15Ce + 0.05Sr; M(2a) =
            0.21Zr + 0.19Na; M(2b) = 0.056Ti + 0.044Nb; Si(8b) = 0.65Si + 0.1Al; Na(2a) = 0.4Na + 0.06K; Na(5b) = 0.43Na + 0.05Sr; Cl(1a) =
           0.2Cl + 0.1H2O.
characteristics and the details of single-crystal X-ray
diffraction study are summarized in Table 1. The
atomic coordinates are listed in Table 2.

The preliminary data on the chemical composition
of the mineral (the microprobe analysis) correspond to
the empirical formula (with respect to 26(Si + Al))
Zr3.63Ti0.12Nb0.34Hf0.04Ca1.75Mn1.91Si25.91Al0.09Fe1.55K0.12 ⋅
Na16.34Sr0.53Ce0.63.

The crystallochemical formula of the sample (Z = 3),

Zr3[(Mn2.1Ca0.72Ce0.18)(Na1.35Ca1.05Ce0.45Sr0.15)] ×
[Si3O9]2[Si9O27]2[F (Z N )(Ti0.15Nb0.12)[V]] ×e1.55

IV[ ]
r0.6

V[ ]
a0.58

VI[ ]
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[Si1.9A ](Na14Sr0.4K0.2)(OH, O)4(F, Cl)0.7 · 1.1H2O,
reflects the ordered distribution of Mn and Na atoms
over two crystallographically independent sites of the
six-membered ring (the first square brackets). The aver-
age cation–anion distances in the Ca-octahedra of eud-
ialytes are in the range of 2.32–2.37 Å, whereas the
replacement of Ca cations by smaller Mn cations
reduces this distance to 2.26 Å [1]. On the contrary, the
presence of larger cations, along with Ca cations,
results in an increase of the octahedron dimensions. For
example, the corresponding distance in the structure
studied in [1] is 2.41 Å. The sample studied consists of
six-membered rings built by octahedra of considerably

l0.1
VI[ ]
0
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ZrZrZrTiTiTi

Si

SiNaNaNa
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Fragment of the crystal structure projected onto the (001) plane. The octahedra occupied mainly by manganese atoms entering six-
membered rings are hatched with solid lines. The Si(7,8)-tetrahedra are located on threefold axes. 
different volumes. These octahedra are occupied
mainly by manganese and sodium atoms and are char-
acterized by the average distances of 2.22 and 2.45 Å,
respectively. The presence of such octahedra is the
most characteristic structural feature of the third repre-
sentative of the eudialyte family with the symmetry R3
(figure). The sample under study is also characterized
by a high silica content, which favors the transforma-
tion of the nine-membered Si-rings into ten-membered
planar radicals containing statistically disordered addi-
tional Si-tetrahedra.
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STRUCTURE OF COORDINATION COMPOUNDS
Geometrical Model of the Structure of the Heterocomplex 
Compound [Cr(OCN2H4)6]3+[Co(DH)2(NO2)2  · 2H2O

V. G. Rau, T. F. Rau, G. O. Lebedev, and E. N. Kurkutova
Vladimir State Pedagogical University, Vladimir, Russia
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Abstract—The structural organization of the new heterocomplex compound with carbamide has been consi-
dered on the basis of division of the crystal space into Dirichlet polyhedra of the system of Delone points (cen-
ters of the complex ions). It is demonstrated that the coordination numbers for all domains (Dirichlet domains)
of the complex ions in the structure obey the “rule of fourteen,” whereas the polyhedra providing the structural
organization of the crystal are distorted Fedorov cuboctahedra. © 2000 MAIK “Nauka/Interperiodica”.

]3
–

Generally, investigations of crystal structures of var-
ious substances are based on a certain geometrical
model of these structures, which approximate the real
structure taking into account some specific conditions.
Thus, the ionic compounds, in particular, minerals, are
considered on the basis of a polyhedral model of the
crystalline state (the so-called Pauling–Belov polyhe-
dra [1]). This crystalline state of these objects is ana-
lyzed by considering their anionic or cationic packing.
The crystals consisting of organic molecules are usu-
ally considered on the basis of the principle of intermo-
lecular polyhedra suggested by Fischer and Koch [2]
and generalizing the Kitaigorodsky’s ideas [3]. Galiulin
suggested the most general geometrical approach for
studying the structural organization of crystals, which
is based on the construction of a Delone partition and
Dirichlet partition dual to Delone partition for the
Delone point system [4]. The result of such an analysis
depends on the choice of the system “points” (localized
electron density, atomic nuclei, centers of mass of the
structural fragments, complex-forming atoms, etc.).
The use of the terms “packing of complex anions” and
“packing of complex cations” instead of “packing of
anions and cations” [5] resulted in a new concept of the
intercoordination complex polyhedron (ICP) [5]. It is
evident that the presence of an integral number of ICP’s
densely filling the space in the unit cell of a crystal, i.e.,
of packing polyhedra with the known shape provides,
in fact, the knowledge of the structural organization of
the crystal. At the microlevel, the structure is deter-
mined by individual elements of the intercoordination
polyhedron.

Over a number of years, Rau et al. [5] studied the
structures of complicated heterocomplex compounds
built by various complex anions—from relatively sim-
ple, such as Cl–, (I3)–, (NO3)–, (SO4)2–, and (ClO4)–, to
rather complicated such as [Cr2O7]2–,
[Co(NH3)2(NO2)4]–, [Co(DH)2(NO2)2]– (where DH is
the dimethylglyoxonium ion, [PtCl5OH]2–, and the
1063-7745/00/4504- $20.00 © 20595
octahedral [M(OCN2H4)6]2+, 3+ cations of di- and triva-
lent M metals (Co, Mg, Ni, Zn, Cr, etc.) with carbam-
ide). These studies demonstrated that the major form of
intercoordination polyhedron for cations of bivalent
metals is characterized by four-fold coordination, and
of trivalent metals, by a hexagonal anionic prism with
the complex cation located on the axis of this prism.
When analyzing coordination, the neutral water mole-
cules were ignored. In fact, the use of the concept of an
intercomplex polyhedron continues the common prac-
tice of employing Belov’s polyhedra at the macrolevel.
Nevertheless, this approach can be combined with the
Fischer and Koch approach [2] if the “molecules” are
understood as complex anions, complex cations, and
neutral molecules of water or a solvent. In this case, we
are concerned with heteromolecular compounds, and
packing can be analyzed within the framework of the
discrete-modeling method [6], successfully used in the
description of the crystalline state of homomolecular
compounds. The method is based on the concept of the
packing space and three-dimensional polyominoes,
either dividing this space or filling it at a given packing
coefficient [7]. The main problems facing the method at
the present stage of its development is the approxima-
tion of molecules with three-dimensional polyominoes
and determination of the coordination numbers for each
molecule, which present some difficulties for real struc-
tures.

To solve the latter problem, we use below the
method for constructing Dirichlet domains for
complex ions. The package of programs was
designed and first used by Panov for describing homo-
molecular organic compounds [8]. It appeared that
the potentialities of this procedure were so promising
that we used it to describe the structure of a new
heterocomplex compound with carbamide
[Cr(OCN2H4)6]3+[Co(DH)2  × 2H2O. The
determination of the coordination polyhedron (Fis-
cher’s and Koch’s terminology [2]) at the final stage of

NO2( )2 ]3
–
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Coordinates of nonhydrogen atoms (×104) and hydrogen atoms (×103) and equivalent isotropic thermal parameters Beq

Atom x y z Beq, Å2 Atom x y z Beq, Å2

Cr(1) 0 0 0 0.86(1) C(203) 1489(2) –6089(2) 5615(2) 1.47(8)

Co(2) 5000 5000 0 0.79(1) C(204) 2195(3) –5594(2) 3397(2) 1.50(8)

Co(3) 2501(1) –2481(1) 4873(1) 1.29(1) C(301) 3220(2) –104(2) 4621(2) 1.28(8)

O(1) 1909(2) 185(2) –160(1) 1.23(5) C(302) 2848(2) –357(2) 5661(2) 1.19(8)

O(2) –314(2) 101(2) 1396(1) 1.33(5) C(303) 3630(3) 1096(2) 4152(2) 2.10(9)

O(3) 283(2) –1780(1) 62(1) 1.37(5) C(304) 2872(3) 582(2) 6370(2) 1.91(9)

O(101) 4814(2) 3266(2) 1560(1) 1.21(5) H(11) 361(3) –31(2) 55(2)

O(102) 4047(2) 2593(1) 197(1) 1.22(5) H(12) 445(3) –120(2) –11(2)

O(201) 1537(2) –3949(2) 6567(1) 1.72(6) H(13) 371(3) –175(2) –144(2)

O(202) 2916(2) –3155(2) 2921(1) 1.76(6) H(14) 247(3) –113(3) –152(2)

O(301) 3401(2) –1009(2) 3190(1) 1.52(5) H(21) –15(3) 91(3) 282(2)

O(302) 2113(2) –1860(2) 6823(1) 1.88(6) H(22) 74(3) –9(3) 313(2)

O(11) 2875(2) 6681(2) 472(1) 1.44(6) H(23) 82(3) –188(2) 142(2)

O(12) 2357(2) 4917(2) 1108(1) 1.50(5) H(24) 131(3) –184(3) 229(2)

O(21) –183(2) –1880(2) 5713(1) 1.47(6) H(31) 66(3) –419(3) –92(2)

O(22) 371(2) –1595(2) 4188(1) 2.25(6) H(32) 148(3) –358(3) –46(2)

O(31) 5210(2) –2887(2) 4039(1) 1.69(6) H(33) –140(3) –323(2) –84(2)

O(32) 4613(2) –3463(2) 5511(2) 1.97(6) H(34) –170(3) –204(2) –45(2)

O(01) –464(2) –4512(2) 1810(1) 1.85(6) H(1) 441(3) 297(3) 99(3)

O(02) 6485(2) –754(2) –1738(2) 2.09(6) H(2) 313(3) –237(3) 297(3)

N(1) 3203(2) 5607(2) 602(1) 1.23(6) H(3) 185(3) –279(3) 679(3)

N(2) 676(2) –1914(2) 4935(2) 1.67(7) H(131) 590(3) 402(3) 274(2)

N(3) 4328(2) –3021(2) 4798(2) 1.50(7) H(132) 531(3) 523(3) 312(3)

N(101) 5167(2) 4407(2) 1203(2) 0.92(6) H(133) 673(3) 499(3) 263(3)

N(102) 5707(2) 6404(2) 373(1) 0.88(5) H(141) 650(3) 802(3) 125(2)

N(201) 1867(2) –3910(2) 5610(1) 1.12(6) H(142) 592(3) 745(3) 230(2)

N(202) 2538(2) –3529(2) 3860(2) 1.33(6) H(143) 736(3) 712(3) 165(3)

N(301) 3122(2) –1050(2) 4140(2) 1.29(6) H(231) 60(3) –604(3) 607(2)

N(302) 2497(2) –1468(2) 5891(2) 1.22(6) H(232) 145(3) –665(3) 518(2)

N(11) 3796(2) –706(2) 33(2) 1.44(6) H(233) 220(3) –631(3) 595(2)

N(12) 3053(2) –1184(2) –1252(2) 1.63(7) H(241) 284(3) –619(3) 343(2)

N(21) 408(2) 287(2) 2697(2) 1.66(7) H(242) 135(3) –600(3) 359(2)

N(22) 871(2) –1491(2) 1875(2) 1.55(7) H(243) 237(3) –520(3) 280(2)

N(31) 839(2) –3586(2) –627(2) 2.05(7) H(331) 445(3) 103(3) 364(2)

N(32) –1145(2) –2591(2) –661(2) 1.42(6) H(332) 378(3) 162(3) 453(2)

C(1) 2899(2) –557(2) –454(2) 0.96(7) H(333) 290(3) 146(3) 392(2)

C(2) 310(2) –377(2) 1937(2) 1.39(7) H(341) 224(3) 123(3) 629(2)

C(3) –13(2) –2639(2) –405(2) 1.13(7) H(342) 262(3) 24(3) 699(2)

C(101) 5648(2) 5133(2) 1688(2) 1.08(7) H(343) 372(3) 91(3) 626(3)

C(102) 5954(2) 6330(2) 1202(2) 1.25(7) H(101) –68(3) –486(3) 234(2)

C(103) 5885(2) 4795(2) 2626(2) 1.73(9) H(102) 42(3) –451(3) 164(2)

C(104) 6481(2) 7334(2) 1634(2) 1.65(8) H(201) 643(3) –20(3) –232(3)

C(201) 1830(2) –4876(2) 5139(2) 1.11(7) H(202) 749(3) –118(3) –197(3)

C(202) 2204(2) –4641(2) 4093(2) 1.23(7)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Fig. 1. The unit cell of the crystal structure and the system of points–atoms.
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the study leads, in essence, to the global Delone system
of points, where “points” are understood as molecules
and complexes rather than as individual atoms. Per-
forming Delone triangulation, one can describe the
structural organization of any chosen compound. The
theoretical grounds of this approach call for special
analysis and are beyond the scope of the present study.

Consider the stages of geometrical analysis of the
crystal structure under consideration. These are:

System of points (atoms) (Fig. 1)

Dirichlet polyhedra for atoms (Fig. 2)

Dirichlet domains for complex ions (Fig. 3)

Delone system of points 

Dirichlet polyhedra for the centers
of complex ions (Fig. 4)

(centers of complex ions)
APHY REPORTS      Vol. 45      No. 4      2000
We believe that such an analysis would provide the
complete description of the structure.

The X-ray diffraction data were collected by
Bondar’ and Potekhin and processed to Rhkl = 0.025
(4822 reflections). Then these data were used for
subsequent structure determination and establishment
of the geometric features of the heterocomplex
compound. The unit cell with the parameters a =
10.389(4), b = 10.974(4), c = 14.523(4) Å, α =
87.46(3)°, β = 73.92(3)°, γ = 86.98(3)°, V = 1588 Å3,

sp. gr. P  contains two formula units of the above-
mentioned composition. The atomic coordinates are
given in the table. The structure contains two indepen-
dent complex anions [Co(2, 3)(DH)2(NO2)2]– (Co–N,
1.887–1.943 Å) and the cation [Cr(1)(OCN2H4)6]3+

(Cr–O, 1.953–1.969 Å). The three-dimensional crystal
structure is shown in Fig. 1.

The nonequivalent complex anions Co(3) and Co(2)
that occupy the general and the special positions at the
center of inversion (1/2, 1/2, 0) have similar structures
with the octahedral coordination of Co atoms. The NO2
groups occupy the trans-positions in the octahedra.
Both (N2O2C4H7)– dimethylglyoxonium ions lie in the

1
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Cr(1) Co(2) Co(3)

(a) (b) (c)
O(01) O(02)

(d) (e)

Fig. 2. Dirichlet domains for the (a) Cr(1), (b) Co(2), and (c) Co(3) complex-forming atoms and (d) O(01) and (e) O(02) atoms of
water molecules.
same plane (within 0.02 Å). The differences in the
structure of the complex anions are reflected in the
types of the Dirichlet regions for the central Co(2) and
Co(3) atoms (Figs. 2b, 2c). It is evident that the Co(2)
polyhedron has a higher approximate symmetry, 2/m.
The polyhedron of Cr(1) in the center of the complex
cation (Fig. 2a) at the origin of the coordinate system is
even more symmetrical. Similar to the complex cation
as a whole, the core of this complex has the symmetry

 and not 32, as was the case in the
[Cr(OCN2H4)6][Co(NH3)2(NO2)4][Co(DH)2(NO2)2]
structure [9]. The shapes of the Dirichlet regions for
water molecules located in the general nonequivalent
positions in the unit cell are essentially different. Nev-
ertheless, the average dimensions of their faces and vol-
umes are close (Figs. 2d, 2e). Figures 2a–2e are drawn
on the same scale.

The structural organization of crystals is determined
by the type, dimensions, and coordination of the
Dirichlet domains characterizing the volumes of the
unit-cell parts occupied by each complex anion, cation,
and water molecule. For comparison, Figs. 3b and 3c
present the domains of Co(2) and Co(3) projected onto
the plane perpendicular to the N–Co–N' vector of NO2

3

C

groups in the trans-positions. The approximate symme-
try of the domains of the Co(2) and Co(3) complex
anions is the same, mmm, despite the different positions
occupied by these anions in the unit cell. The Cr(1)
domain is projected along a threefold axis of the oxy-
gen octahedron about the Cr atom (Fig. 3a). The coor-
dination numbers of each anion and cation domains
were determined upon discarding the boundary areas of
the polyhedra (less than 2% of its total surface) and
neglecting water molecules. Our calculations demon-
strated that the numbers of “neighbors” for all the struc-
ture domains obeys the “rule of fourteen” [10].

At this stage, one can pass to the Dirichlet polyhedra
of complexes in accordance with the geometrically rig-
orous definition of a polyhedron within the framework
of the crystallographic geometry [4] (i.e., the distances
between the points of the Delone system are divided
into two). Then, the Delone system of points is a set of
the centers of the complex-ion domains, i.e., coincides
with the positions of the Cr(1), Co(2), and Co(3) atoms.
In molecular compounds, such centers are not neces-
sarily the positions of the real atoms. The construction
of Dirichlet polyhedra for the Delone system of domain
centers is illustrated by Figs. 4a–4c. In all the cases,
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Cr(1) Co(2)

Co(3)

Fig 3. Dirichlet domains for the complexes containing (a) Cr(1), (b) Co(2), and (c) Co(3) complex-forming atoms.

(a) (b)

(c)
RYSTA
Cr(1) Co(2) Co(3)

(a) (b) (c)

Fig. 4. Dirichlet polyhedra around the centers of the (a) Cr(1), (b) Co(2), and (c) Co(3) complex ions.
these polyhedra are distorted Fedorov cuboctahedra.
The set of cuboctahedra for the Cr(1), Co(2), and Co(3)
complex ions determines the structural organization of
a single crystal of the heterocomplex compound under
study.
LLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Crystal Structures of Copper(II) Compounds 
with Racemic Threonine
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Abstract—Crystals structures of two modifications of the copper(II) compound with racemic threonine Cu(D-
Tre)(L-Tre) are determined by the electron diffraction technique. The unit cell parameters, space group, and
number of formula units per unit cell for the crystals of two modifications are as follows: a = 11.10(3) Å, b =
9.56(2) Å, c = 5.11(2) Å, γ = 92.6(2)°, space group P21/b, and Z = 2 (I); and a = 22.20(3) Å, b = 9.56(2) Å, c =
5.11(2) Å, γ = 92.6(2)°, space group C21/b, and Z = 4 (II). The structures are polytypic modifications of the
same compound. © 2000 MAIK “Nauka/Interperiodica”.
Earlier [1–3], we studied a series of copper(II) coor-
dination compounds with racemic forms of α-amino
acids. The results of our studies of copper(II) salts with
DL-threonine were reported in [1]. Crystals of a
hydrate form Cu(D-Tre)(L-Tre) ⋅ 4.5H2O and three
anhydrous modifications of this compound were inves-
tigated.

In the course of these studies, the crystal structures
of two anhydrous modifications with the Cu(D-Tre)(L-
Tre) composition were determined by the electron dif-
fraction technique. Since threonine contains two chiral
centers, it can exist in four stereoisomeric forms (two
optical antipodes due to α-carbon, and two optical
antipodes, to β-carbon). Therefore, from the crystal-
chemical standpoint, it is of interest, on one hand, to
reveal the arrangement of the threonine antipodes rela-
tive to the copper ion and, on the other hand, to deter-
mine the conformation of the threonine residues.

CRYSTAL STRUCTURE OF Cu(D-Tre)(L-Tre), 
MODIFICATION I

Crystals of Cu(D-Tre)(L-Tre) are monoclinic. The
unit cell parameters are a = 11.10(3) Å, b = 9.56(2) Å,
c = 5.11(2) Å, γ = 92.6(2)°, space group P21/ b, and
Z = 2. The b and c parameters were determined from
the point electron diffraction patterns, and the a and γ
parameters were found using the electron diffraction
patterns taken from the textures [4–6]. More than
260 reflections revealed on the electron diffraction pat-
terns of the textures were used to determine the coordi-
nates of the non-hydrogen atoms in the structure. At
first stage, the coordinates of the copper atoms were
determined from the analysis of the three-dimensional
Patterson function. Next, the remaining non-hydrogen
atoms in the structure were located from the Fourier
maps. A series of iterations of the structure refinement
1063-7745/00/4504- $20.00 © 20601
[4–8] resulted in R = 16%. The atomic coordinates are
listed in the table, and a fragment of the structure is
shown in the figure.

The crystal structure of Cu(D-Tre)(L-Tre) (modifi-
cation I) consists of discrete centrosymmetric com-
plexes. In the complexes, the trans octahedral coordi-
nation of the copper ions is formed by two carboxyl
oxygen atoms and two nitrogen atoms of the bidentate
D- and L-threonine ligands and two carboxyl oxygen
atoms of the threonine residues of the neighboring
complexes (figure).

A specific feature of the structure is its layered type.
The structure consists of identical layers formed by the
Cu(D-Tre)(L-Tre) complexes. The layers are aligned
parallel to the bc coordinate plane and repeat at a period
of a (a = 11.10 Å). Within the layer, the arrangement of
the complexes follows a pattern of the centered rectan-

Coordinates (×103) of non-hydrogen atoms in the crystal
structure of Cu(D-Tre)(L-Tre), modification I

Atom x/a y/b z/c

Cu 000 000 000

O(1) –47(6) 157(6) –196(6)

O(2) –171(6) 337(6) –208(6)

O(3) –327(6) –16(6) –88(6)

N(1) –127(6) 48(6) 242(6)

C(1) –131(8) 229(8) –116(8)

C(2) –194(8) 154(8) 117(8)

C(3) –324(8) 123(8) 18(8)

C(4) –397(8) 124(8) 284(8)
000 MAIK “Nauka/Interperiodica”
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X
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Crystal structure of Cu(D-Tre)(L-Tre), modification I.

N(1a)
gular motif; the neighboring complexes are linked by
the bonds between copper ions and oxygen atoms of the
carboxyl groups [Cu''⋅⋅⋅O(2) and Cu''⋅⋅⋅O(2a'), 2.83 Å],
as well as by the network of hydrogen bonds [O(3a)–
H⋅⋅⋅O(2''), 2.51; N(1'')–H⋅⋅⋅O(2), 3.15; and N(1'')–
H⋅⋅⋅O(1''), 2.82 Å]. All the above bonds arrange the
complexes within the layer in such a way that the
C(4a)H3, C(4')H3, and C(4'')H3 methyl groups of the
threonine residues are located in the interlayer space
and form interlayer contacts C(4a)H3⋅⋅⋅C(4')H3 (3.90 Å)
and C(4')H3⋅⋅⋅C(4'')H3 (4.25 Å). Each methyl group of
a layer contacts two methyl groups of the neighboring
layer to form an infinite ⋅⋅⋅C(4a)H3⋅⋅⋅C(4')H3⋅⋅⋅C(4'')H3⋅⋅⋅
chain.

CRYSTAL STRUCTURE OF Cu(D-Tre)(L-Tre), 
MODIFICATION II

The unit cell of the Cu(D-Tre)(L-Tre) crystals (mod-
ification II) was determined from the electron diffrac-
tion patterns taken from the single crystals and textures.
The unit cell is twice as large as the unit cell of modifi-
cation I: a = 22.20(3) Å, b = 9.56(2) Å, c = 5.11(2) Å,
γ = 92.6(2)°, space group C21/b (in a nonstandard set-
C

ting), and Z = 4. The positions of the non-hydrogen
atoms were determined with the same procedure as
those in the structure of modification I. For both struc-
tures, the numbers of the reflections used and the dis-
crepancy factors R almost coincide.

Analysis of the structural data obtained by electron
diffraction showed that the crystal structure of modifi-
cation II is formed from the centrosymmetric Cu(D-
Tre)(L-Tre) complexes, which are the same as in the
structure of modification I. These complexes are
packed in similar layers that repeat parallel to the coor-
dinate plane bc at a period of 1/2a (a = 22.20 Å). How-
ever, the repetition patterns in the structures of modifi-
cations II and I differ from each other. In the crystal
structure of modification II, the neighboring layers are
shifted by 1/2b relative to each other. At the same time,
the spacings between the layers and the conditions of
their neighborhood [C(4a)H3⋅⋅⋅C(4')H3, 4.06 and
C(4')H3⋅⋅⋅C(4'')H3, 4.12 Å] are identical in both modifi-
cations. Thus, the two structures studied are polytypic
modifications of the same compound.
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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SPECIFIC FEATURES OF THE ELECTRON 
DIFFRACTION PATTERNS FROM TEXTURES 

OF TWO MODIFICATIONS 
OF THE Cu(D-Tre)(L-Tre) CRYSTALS

It was shown in [5, 6, 9] that, due to the specific
geometry of three-dimensional sets of reflections and
the regularity in distribution of intensities, the electron
diffraction patterns taken from the textures serve as an
efficient experimental base for revealing and describing
the polytypic crystal structures. Below, by concrete
examples of the above copper compounds with racemic
threonine, we illustrate how the difference in polytypic
crystal structures is reflected in the electron diffraction
patterns from the textures.

The unit cells of the two modifications differ only
by the a parameters, one of which is twice as large as
the other. The identity of the b, c, α, and β parameters
appears on the electron diffraction patterns from the
textures of both modifications as identical sets of
ellipses. The electron diffraction patterns are also simi-
lar in systematic absences of hk0 reflections with k =
2n + 1 and 00l reflections with l = 2n + 1. These simi-
larities of the diffraction patterns characterize the iden-
tical symmetry of the mutual arrangement of the cen-
trosymmetric Cu(D-Tre)(L-Tre) complexes within the
layers that constitute both structures. The structural
data obtained indicate that the studied modifications of
the structure differ only by the shifts of the neighboring
layers along the b-axis. For the crystals of modification
I, the shifts along the b-axis are zero, and for the crys-
tals of modification II, the shifts are ±1/2b. The elec-
tron diffraction patterns from the textures clearly
revealed the diffraction differences resulting from the
shifts of the layers. In the diffraction pattern of the crys-
tals of modification II, the hkl reflections with h + k =
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
2n + 1 are absent, whereas in the diffraction pattern of
the crystals of modification I, this type of systematic
absences is not observed. Note also identical splittings
of the corresponding reflections in the electron diffrac-
tion patterns from the textures, which indicate that
unique angles of the unit cells in both modifications are
identical.
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Abstract—The crystal structures of (S,S)-o-(α-dimethylaminoethyl)phenyl]phenyl-2,4-dimethylphenyl-
carbinol (I) and (S,S)-o-(α-dimethylaminoethyl)phenyl]phenyl-2,4,5-trimethylphenylcarbinol (II) are deter-
mined by X-ray diffraction. The molecular and crystal structures of I and II are similar. The crystal structures
of I and II are compared based on the analysis of the geometric characteristics of the Voronoœ–Dirichlet packing
polyhedra. The circular dichroism spectra of amino alcohols I and II revealed a strong positive Cotton effect in
the region of 230 nm, which correlates with the S-configuration of the chiral carbinol center. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In recent years, considerable attention has been
given to the search for new chiral reagents for asym-
metric synthesis [1, 2]. The properties of these reagents
are determined by their structure and configuration of
their asymmetric centers.

Condensation of lithiated (S)(–)-N,N-dimethyl-α-
phenylethylamine with 2,4-dimethyl- [3] or 2,4,5-trim-
ethylbenzophenones affords (S,S)-o-(α-dimethylami-
noethyl)phenyl]phenyl-2,4-dimethylphenylcarbinol (I)
or (S,S)-o-(α-dimethylaminoethyl)phenyl]phenyl-
2,4,5-trimethylphenylcarbinol (II), respectively. A spe-
cific feature of the circular dichroism (CD) spectra of
these two amino alcohols is a strong positive Cotton
effect in the region of 230 nm.

In order to establish correlations between the abso-
lute configuration and the CD data, we determined the
single-crystal structures of these δ-amino alcohols by
X-ray diffraction.

An analysis of structures I and II revealed their sim-
ilarity on the molecular and crystal-packing level. The
quantitative evaluation of the degree of distinction
between molecular packings of compounds I and II
was made by comparing the geometric characteristics
of the Voronoœ–Dirichlet packing polyhedra of their
molecules.

† Deceased.
1063-7745/00/4504- $20.00 © 20604
EXPERIMENTAL

Crystals I are orthorhombic; at 20°C, a = 8.315(2) Å,
b = 8.367(3) Å, c = 30.239(8) Å, V = 2104(2) Å3, space
group P212121, Z = 4, and dcalcd = 1.14 g/cm3. Crystals II
are orthorhombic; at –120°C, a = 8.276(7) Å, b =
8.511(5) Å, c = 30.63(1) Å, V = 2157(2) Å3, space
group P212121, Z = 4, and dcalcd = 1.15 g/cm3. The unit
cell parameters and the intensities of diffraction reflec-
tions (1586 and 1457 unique reflections with I > 2σ(I)
for I and II, respectively) were measured on a Siemens
P3/PC automated diffractometer (λMoKα, θ/2θ scan
mode, θ < 23°). Both structures were solved by the
direct method. The correct enantiomorphs were chosen
based on the known absolute configuration of one of
the two asymmetric centers in the molecules.

The hydrogen atom of the hydroxyl group was
located on a difference map of electron density, and the
positions of the remaining H atoms were calculated.
The refinement of the structures in the anisotropic
approximation (isotropic for the hydroxyl H atom),
with the remaining hydrogen atoms treated within the
riding-atom model at fixed values of the isotropic ther-
mal parameters, led to R = 0.060 and Rw = 0.062 for
structure I, and R = 0.052 and Rw = 0.050 for struc-
ture II. The coordinates and equivalent isotropic ther-
mal parameters Ueq of the non-hydrogen atoms are
listed in Tables 1 and 2.
000 MAIK “Nauka/Interperiodica”
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COMPARISON OF MOLECULAR 
STRUCTURES I AND II

Perspective views of molecules I and II and the
atomic numberings are shown in Fig. 1. There are two
asymmetric centers in both molecules. The absolute
configuration of the carbinol C(1) center was deter-
mined as S on the basis of the known S-configuration of
the C(8) asymmetric center.

Molecules I and II differ in that the methyl group in
II substitutes for the H(16) hydrogen atom in I. The fol-
lowing two factors are apparently responsible for the
absence of a fundamental difference in the geometric
structure of the molecules upon substitution. First, the
above methyl group in molecule II is “external;” that is,
it has no short intramolecular nonbonded contacts with
other atoms of the molecule, except the C(19) atom.

Table 1.  Coordinates (×104) and equivalent isotropic ther-
mal parameters (Å2 × 103) of non-hydrogen atoms in struc-
ture I

Atom x y z Ueq

O 4141(5) 4398(6) 1694(1) 49(1)

N 6587(6) 5108(7) 2309(2) 56(2)

C(1) 5010(6) 3856(7) 1308(2) 38(2)

C(2) 6330(7) 2680(7) 1469(2) 39(2)

C(3) 7574(7) 3185(7) 1764(2) 40(2)

C(4) 8655(8) 2032(8) 1908(2) 55(2)

C(5) 8549(8) 449(9) 1789(2) 63(3)

C(6) 7339(8) –29(8) 1505(2) 57(2)

C(7) 6261(7) 1092(7) 1349(2) 45(2)

C(8) 7702(7) 4885(9) 1928(2) 49(2)

C(9) 9445(8) 5425(10) 2012(2) 70(3)

C(10) 6332(11) 6779(10) 2411(3) 95(4)

C(11) 7066(8) 4249(11) 2709(2) 79(3)

C(12) 5639(6) 5271(7) 1037(2) 36(2)

C(13) 4666(7) 6590(7) 936(2) 43(2)

C(14) 5265(8) 7794(8) 661(2) 52(2)

C(15) 6814(8) 7741(8) 480(2) 51(2)

C(16) 7757(8) 6439(7) 581(2) 50(2)

C(17) 7187(7) 5215(8) 847(2) 44(2)

C(18) 2947(7) 6808(9) 1100(2) 63(2)

C(19) 7401(10) 9106(9) 200(2) 80(3)

C(20) 3788(7) 2995(7) 1010(2) 41(2)

C(21) 2330(8) 2436(9) 1178(2) 63(3)

C(22) 1282(8) 1614(11) 906(3) 85(3)

C(23) 1664(9) 1302(10) 471(3) 79(3)

C(24) 3086(8) 1878(8) 301(2) 57(2)

C(25) 4149(7) 2719(8) 568(2) 49(2)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
The C(19)⋅⋅⋅C(20) contact is a 1⋅⋅⋅4-type contact
between the substituents of the aryl ring. Therefore, its
formation can result only in the deformation of the aryl
ring but cannot change the conformation of the mole-
cule as a whole. Second, as shown below, both mole-
cules are rather rigid; that is, the rotation of their frag-
ments about single bonds is essentially hindered by
short intramolecular nonbonded contacts.

Both molecules involve the intramolecular O–H⋅⋅⋅N
bond (O⋅⋅⋅N, 2.820(8) and 2.809(5); H⋅⋅⋅N, 2.1 (1) and
1.84(6) Å; and O–H⋅⋅⋅N, 163(5)° and 153(3)° in I and
II, respectively). This hydrogen bond closes the seven-
membered C(1)C(2)C(3)C(8)NH(1)O heterocycle and,
as a consequence, fixes the orientation of the
C(2)C(3)C(4)C(5)C(6)C(7) aryl ring (ring A) relative
to the C(1)–C(2) bond [the O–C(1)–C(2)–C(3) torsion

Table 2.  Coordinates (×104) and equivalent isotropic ther-
mal parameters (Å2 × 103) of non-hydrogen atoms in struc-
ture II

Atom x y z Ueq

O 6917(4) 6702(3) 776(1) 30(1)

N 7653(5) 9098(5) 178(1) 34(1)

C(1) 6378(5) 7546(5) 1160(2) 26(1)

C(2) 5206(5) 8854(5) 1001(1) 24(1)

C(3) 5712(5) 10073(5) 714(2) 26(1)

C(4) 4584(6) 11170(5) 578(2) 33(2)

C(5) 2966(6) 11075(6) 701(2) 38(2)

C(6) 2477(6) 9887(6) 971(2) 33(1)

C(7) 3578(6) 8784(5) 1116(2) 28(1)

C(8) 7453(5) 10197(5) 551(2) 26(1)

C(9) 8009(6) 11884(6) 469(2) 38(2)

C(10) 9356(8) 8816(8) 81(2) 56(2)

C(11) 6787(8) 9532(6) –215(2) 45(2)

C(12) 7816(5) 8188(5) 1422(1) 24(1)

C(13) 9167(6) 7234(5) 1515(2) 28(1)

C(14) 10380(6) 7852(6) 1778(2) 30(1)

C(15) 10338(6) 9369(6) 1954(2) 33(2)

C(16) 8988(6) 10303(6) 1864(2) 30(2)

C(17) 7764(6) 9677(5) 1607(2) 27(1)

C(18) 9402(6) 5582(6) 1340(2) 38(2)

C(19) 11748(7) 9992(7) 2212(2) 50(2)

C(20) 8859(7) 11946(6) 2038(2) 45(2)

C(21) 5522(6) 6345(5) 1458(2) 26(1)

C(22) 4942(6) 4931(6) 1296(2) 37(2)

C(23) 4159(7) 3875(6) 1569(2) 45(2)

C(24) 3921(7) 4219(6) 2000(2) 44(2)

C(25) 4486(6) 5627(6) 2169(2) 35(2)

C(26) 5285(6) 6670(5) 1894(2) 30(2)
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Fig. 1. Perspective views of molecules (a) I and (b) II. All hydrogen atoms, except those of the hydroxyl group and the C(8) asym-
metric center, are omitted. The intramolecular hydrogen bond is denoted by the dashed line.

C(16)
angle is –61.5(6)° in both molecules]. This orientation
of ring A gives rise to a short intramolecular nonbonded
contact of the 1⋅⋅⋅5 type between atoms C(8) and C(12).
The C(8)⋅⋅⋅C(12) distances are 3.21 and 3.18 Å in mol-
C

ecules I and II, respectively, whereas the double van
der Waals radius of the carbon atom is 3.42 Å [4].

The orientation of the
C(12)C(13)C(14)C(15)C(16)C(17) aryl ring (ring B)
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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relative to the C(1)–C(12) bond is also rigidly fixed: the
O–C(1)–C(12)–C(13) torsion angles are –46.1(6)° and
–46.2(5)° in molecules I and II, respectively. Changes
of this torsion angle [the rotation of ring B relative to
the C(1)–C(12) bond] are hindered by an intramolecu-
lar nonbonded 1⋅⋅⋅6-type contact between atoms C(8)
and C(17) and two 1⋅⋅⋅5-type contacts O⋅⋅⋅C(18) and
C(3)⋅⋅⋅C(17). The C(8)⋅⋅⋅C(17) distances are 3.31 and
3.28 Å, and the C(3)⋅⋅⋅C(17) distances are 3.27 and
3.24 Å in molecules I and II, respectively. The
O⋅⋅⋅C(18) distances are 2.88 and 2.85 Å in I and II,
whereas the mean-statistic value of the van der Waals
O⋅⋅⋅C contact is 2.97 Å [4].

The orientation of the phehyl ring (ring C) in mole-
cules I and II is also fixed by intramolecular non-
bonded contacts. The O–C(1)–C(20)–C(21) torsion
angle in molecule I is –19.2(6)°, and the corresponding
O–C(1)–C(21)–C(22) angle in molecule II is
−20.0(5)°. A decrease in this angle is hindered by the
C(7)⋅⋅⋅C(25) contact (3.24 Å) in molecule I and the
C(7)⋅⋅⋅C(26) contact (3.30 Å) in molecule II, and an
increase in this angle is hindered by the C(17)⋅⋅⋅C(25)
contact (3.38 Å) in molecule I and the C(17)⋅⋅⋅C(26)
contact (3.40 Å) in molecule II.

Thus, the orientations of all three rings (A, B, and C)
are fixed rather rigidly in both molecules, and, as a con-
sequence, molecules I and II have almost identical geo-
metric forms.

The intramolecular hydrogen bond and a large num-
ber of short intramolecular nonbonded contacts
(including the 1⋅⋅⋅4-type contacts) result in the defor-
mation of bond lengths and angles in molecules I and
II. As an example, note an increase in the C(9)–C(8)–N
bond angle to 114.9(5)° in I and 115.5(4)° in II and the
elongation of the C(2)–C(3) bond to 1.429(8) in I and
1.422(6) Å in II in comparison with the mean Car–Car

bond length (1.390 Å) for these two molecules.

COMPARISON OF CRYSTAL 
STRUCTURES I AND II

As noted above, molecules I and II are close in geo-
metric structure. Substitution at the C(16) atom (methyl
group for hydrogen) increases the volume of crystal
space per molecule by only 2.5%. However, the simi-
larity of the molecular packings I and II is not evident
even for the structures characterized by the same space
group and small difference in the corresponding param-
eters of the unit cells.

In order to reveal the specific features of molecular
packings and to describe quantitatively the degree of
distinction between the packings, we compared the
Voronoœ–Dirichlet packing polyhedra [5, 6] of mole-
cules I and II.

It was found that the coordination numbers of mol-
ecules are fourteen in both structures, and, moreover,
the coordination polyhedra belong to the same
2(4)8(5)4(6)I packing type (according to Fischer and
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
Koch [6]). Therefore, the packing polyhedra of mole-
cules (PPM) I and II have 14 boundary surfaces each
(the boundary surface (BS) is an assembly of faces
shared by two packing polyhedra of the adjacent mole-
cules). The area of a BS and the areas of its constituent
faces are determined by the relative positions of atoms
of the adjacent molecules in the crystal. Therefore, the
difference in areas of the corresponding BS can be con-
sidered as an indicator of distinction between the
molecular packings [7].

To characterize the degree of distinction between
two molecular packings belonging to the same packing
type, it is expedient to use the Dt coefficient of nonco-
incidence of the relative BS areas

(1)

where S1i and S2i are the areas of the ith BSs; and S1 and
S2 are the areas of the PPM surfaces in the first and the
second structures, respectively. It is evident that com-
parison between two crystal structures by using for-
mula (1) is possible only if the BSs of their packing
polyhedra show a one-to-one correspondence. More-
over, as a rule, if this correspondence even exists, we do
not know about it a priori. Therefore, it is necessary to
find out preliminarily if this correspondence exists and
to consider all possible ways of having the two PPMs
coincide.

The existence of the one-to-one correspondence
between the BSs of the packing polyhedra of molecules
in crystal structures I and II follows from the same
packing type of the coordination polyhedra in these
structures. For the 2(4)8(5)4(6)I packing type, there are
only four topologically equivalent ways of bringing
into coincidence two coordination polyhedra (and,
hence, the packing polyhedra also). Calculation of the
Dt coefficients for each of the four variants of PPM
coincidence revealed that one of the variants [Dt(1)]
significantly differs from the others: Dt(1) = 0.02,
Dt(2) = 0.11, Dt(3) = 0.13, and Dt(4) = 0.16. A small
value of the Dt(1) coefficient indicates that crystal
structures I and II are very close in geometry. Based on
the correspondence between the PPMs, we can estab-
lish the correspondence between the crystallographic
axes in structures I and II: xI  yII, yI  xII, and
zI  –zII. Figure 2 shows the projections of crystal
structures I and II along the xI- and yII-axes, respec-
tively.

A more detailed analysis shows that we can estab-
lish the correspondence between not only BSs, but sep-
arate PPM faces of I and II also. This allows the use of
three more coefficients—di, DS, and νi [7]—which are
more sensitive than Dt to the distinctions in the mutual
arrangement of molecules relative to one another in the
compared crystal structures.

Dt
1
2
---

S1i

S1
------

S2i

S2
------– ,

i

∑=
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Fig. 2. Projections of crystal structures (a) I along the x-axis and (b) II along the y-axis. Numbering of the molecules that surround
the reference molecules corresponds to that in Table 3.
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Table 3.  Characteristics of the boundary surfaces of the packing polyhedra of molecules in structures I and II

BS num-
ber i

Position of the ith molecule BS area
∆S, Å2 di νi, %

I II S1i , Å
2 S2i , Å

2

1 x, y – 1, z x – 1, y, z
53.1 52.8 –0.3 0.07 4.3

2 x, y + 1, z x + 1, y, z

3 x – 1, y, z x, y – 1, z
41.3 45.4 4.1 0.31 16.2

4 x + 1, y, z x, y + 1, z

5 1 – x, y – 1/2, 1/2 – z x – 1/2, 3/2 – y, –z
39.6 40.2 0.6 0.04 1.8

6 1 – x, y + 1/2, 1/2 – z x + 1/2, 3/2 – y, –z

7 x – 1/2, 3/2 – y, –z 2 – x, y – 1/2, z
28.2 28.0 –0.2 0.48 16.2

8 x + 1/2, 3/2 – y, –z 2 – x, y + 1/2, z

9 x – 1/2, 1/2 – y, –z 1 – x, y – 1/2, z
22.2 21.0 –1.2 0.28 7.2

10 x + 1/2, 1/2 – y, –z 1 – x, y + 1/2, z

11 2 – x, y – 1/2, 1/2 – z x – 1/2, 5/2 – y, –z
21.9 21.6 –0.3 0.03 0.8

12 2 – x, y + 1/2, 1/2 – z x + 1/2, 5/2 – y, –z

13 x – 1, y – 1, z x – 1, y – 1, z
8.5 11.0 2.5 0.29 3.4

14 x + 1, y + 1, z x + 1, y + 1, z

Total 429.7 439.7 10.0 DS = 0.19 100.0
Coefficients of relative distinction between the
boundary surfaces are defined as

(2)

where σ1j and σ2j are the areas of the jth faces; and S1i

and S2i are the areas of the ith BSs of the packing
polyhedra in the first and the second structures, respec-
tively. Summation is made over all pairs of faces of the
ith BSs.

The coefficient of noncoincidence of packings DS is
defined as

(3)

where summation extends over all BSs; and S1 and S2
are the areas of the PPM surfaces in the first and the
second structures, respectively.

The contribution of the ith BS to the coefficient of
noncoincidence of packings DS is defined as

(4)

Table 3 represents the characteristics of the bound-
ary surfaces of PPMs: the position of the adjacent mol-
ecule sharing the BS under consideration with the ref-
erence molecule (the position of the reference molecule
in the unit cell is x, y, z); the BS areas S1i and S2i for the
first and the second structures, respectively; and the dif-

di

σ1 j σ2 j–
j

∑
S1i S2i+

-------------------------------,=

Ds

di S1i S2i+( )
i

∑
S1 S2+

------------------------------------,=

νi

di S1i S2i+( )
Ds S1 S2+( )
----------------------------.=
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ference between these areas ∆Si. The last two columns
contain the relative differences in the areas of the BS
faces di and contribution νi of a BS to the coefficient of
noncoincidence of packings DS (expressed in percent).
All the BSs are divided into pairs, since those related by
a translation or a twofold screw axis have identical
numerical characteristics.

The areas of most PPM boundary surfaces in struc-
tures I and II differ insignificantly; the exception is pro-
vided by BSs 13, 14 (∆Si = 2.5 Å2) and 3, 4 (∆Si =
4.1 Å2). However, the BS area is not a rigorous charac-
teristic of the degree of distinction between mutual
arrangements of adjacent molecules, since approximate
equality of the BS areas may conceal large differences
in the areas of separate constituent faces.

A more sensitive characteristic of the distinction
between the corresponding BSs is the di coefficient. As
is seen from Table 3, the largest differences are
observed for BSs 3, 4 (di = 0.31) and 7, 8 (di = 0.48).
This result is explained by the structural distinctions
between molecules I and II. The differences in the
areas of the faces that characterize the contacts of the
“surplus” methyl group of molecule II are the main
contributors to the di coefficient for the above BS
pairs—81% (3 and 4) and 71% (7 and 8). It is also nota-
ble that the least difference is observed between BSs
11, 12 (di = 0.03) and 5, 6 (di = 0.04), whose faces do
not involve the “surplus” methyl group.

The above four BSs (3, 4, 7, and 8) with the largest
di values are the largest contributors to the coefficient of
noncoincidence of packings (νi = 16.2%). Almost 65%
0
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of the distinctions between PPMs of I and II are due to
these BSs.

The integral coefficient of noncoincidence of pack-
ings of DS for crystal structures I and II is equal to 0.19.
It is comparable with the same criterion (DS = 0.16) for
the crystal structures of (+)-3-diazacamphor and (+)-3-
bromocamphor [7], which also have close molecular
packings despite the difference in molecular structure.

Thus, compounds I and II have similar crystal struc-
tures characterized by the same packing type. More-
over, there is the correspondence between separate
faces of the packing polyhedra of their molecules.
A strong positive Cotton effect observed in the region
of 230 nm of the CD spectra of I and II correlates with
the S-configuration found in the chiral carbinol center
of molecules I and II. This allows application of the CD
method to determination of the absolute configuration
of the carbinol center in δ-amino alcohols—the diaryl-
and triarylcarbinol derivatives.
C
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Abstract—The crystal structure of 5N-ethyl-8-carboxy-9-oxo-11-methyl-pyrido[2,1-b]quinazoline
(C16H16N2O3) has been determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic
crystal system (space group P21/c) with the unit cell parameters a = 9.775(1) Å, b = 15.868(1) Å, c =
9.799(1) Å, β = 113.50(1)°, Z = 4. The benzene ring is planar, the pyrimidine ring exists in 11β-sofa conforma-
tion, and the pyridone ring deviates slightly from planarity. The crystal packing exhibits intra- and intermole-
cular interactions of the O–H⋅⋅⋅O, C–H⋅⋅⋅O, and C–H⋅⋅⋅N types. © 2000 MAIK “Nauka/Interperiodica”.
12 5N-ethyl-8-carboxy-9-oxo-11-methyl-pyrido[2,1-
b]quinazoline has been prepared by refluxing 2,4-dim-
ethyl-2,3-dihydroquinazoline and diethyl ethoxy meth-
ylene malonate [1]. The present work has been under-
taken as a part of our systematic research on the
crystallographic analysis of several important organic
molecules [2–12].

EXPERIMENTAL

Rectangular shaped crystals of 5N-ethyl-8-carboxy-
9-oxo-11-methyl-pyrido[2,1-b]quinazoline were
grown from chloroform at room temperature. Three-
dimensional intensity data were collected on an Enraf–

1 This article was submitted by the authors in English.
2 Author for correspondence; e-mail: rajni_kant_verma@hot-

mail.com
1063-7745/00/4504- $20.00 © 20611
Nonius CAD4 single-crystal X-ray diffractometer at
the Indian Institute of Technology (Chennai). The unit
cell parameters were refined by the least-squares proce-
dure. The data were corrected for Lorentz and polariza-
tion factors, but no absorption or extinction corrections
were made.

The crystal structure has been determined by direct
methods using the SHELXS86 software package [13].
The full-matrix least-squares refinement of the struc-
ture has been carried out by using the SHELXL93 soft-
ware package [14]. All the H atoms were located from
the difference Fourier map. Three cycles of refinement
of the positional and anisotropic thermal parameters for
the non-hydrogen atoms and the positional and isotro-
pic thermal parameters for the hydrogen atoms yielded
R = 0.048. The crystallographic data are summarized in
Table 1.
Table 1.  Crystal data and experimental details

Crystal habit Light yellow rectangular Absorption coefficient, mm–1 0.777

Chemical formula C16H16N2O3 F(000) 600

Molecular weight 284.3 Crystal size, mm 0.40 × 0.25 × 0.20

Crystal system Monoclinic Refinement of unit cell 25 reflections, 26° ≤ 2θ ≤ 42°
Unit cell parameters θ range for entire data collection 1° ≤ θ ≤ 70°
a, Å 9.775(1) No. of measured reflections 2852

b, Å 15.868(1) No. of unique reflections 2580

c, Å 9.799(1) No. of observed reflections [F > 4σ(F)] 2578

β, deg 113.50(1) No. of parameters refined 255

Unit cell volume, Å3 1393.9 Final R-factor 0.048

Density (calculated), g/cm3 1.355 wR 0.143

No. of molecules per unit cell 4 Weighting scheme 1/[σ2(Feq)
2 + 0.0774P2 + 0.35P]

Space group P21/c Final residual electron density e ⋅ Å–3 –0.21–+0.22

Wavelength λ CuKα Maximum ratio –0.105[xH(2)]
000 MAIK “Nauka/Interperiodica”
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Table 2.  Atomic coordinates and equivalent isotropic (isotropic for hydrogen atoms) thermal parameters (Å2)

Atom x y z Ueq/ Atom x y z Ueq/

C(1) 0.5204(2) 0.7712(1) –0.0278(2) 0.057(1) C(16) 0.4116(3) 0.4466(1) –0.2562(3) 0.062(1)

O(1) 1.1543(2) 0.4009(1) 0.3496(2) 0.079(1) C(17) 1.1039(2) 0.4718(1) 0.3288(2) 0.055(1)

C(2) 0.3694(3) 0.7822(1) –0.1095(3) 0.068(1) C(18) 0.8398(2) 0.7315(1) –0.0643(2) 0.053(1)

O(2) 1.1695(2) 0.5331(1) 0.4262(2) 0.074(1) H(1) 0.577(2) 0.812(1) 0.050(2) 0.06(1)

C(3) 0.2914(2) 0.7235(1) –0.2150(3) 0.065(1) H(2) 0.325(3) 0.832(2) –0.089(3) 0.09(1)

O(3) 0.9898(1) 0.6410(1) 0.2639(1) 0.057(1) H(3) 0.189(3) 0.731(2) –0.276(3) 0.09(1)

C(4) 0.3606(2) 0.6521(1) –0.2393(2) 0.055(1) H(4) 0.308(2) 0.611(1) –0.308(2) 0.06(1)

N(5) 0.5906(2) 0.5678(1) –0.1687(1) 0.042(1) H(6) 0.715(2) 0.418(1) –0.099(2) 0.06(1)

C(6) 0.7689(2) 0.4597(1) –0.0346(2) 0.046(1) H(7) 0.925(2) 0.379(1) 0.105(2) 0.06(1)

C(7) 0.8928(2) 0.4384(1) 0.0903(2) 0.046(1) H(11) 0.796(2) 0.716(1) 0.122(2) 0.05(1)

C(8) 0.9703(2) 0.4967(1) 0.1974(2) 0.043(1) H(151) 0.586(2) 0.477(1) –0.315(2) 0.06(1)

C(9) 0.9236(2) 0.5822(1) 0.1770(2) 0.042(1) H(152) 0.454(2) 0.544(1) –0.380(2) 0.05(1)

N(10) 0.7968(1) 0.6018(1) 0.0500(1) 0.038(1) H(161) 0.463(3) 0.410(1) –0.177(3) 0.07(1)

C(11) 0.7588(2) 0.6927(1) 0.0239(2) 0.042(1) H(162) 0.335(3) 0.477(2) –0.220(3) 0.11(1)

C(12) 0.5929(2) 0.7013(1) –0.0520(2) 0.043(1) H(163) 0.361(3) 0.409(2) –0.335(4) 0.10(1)

C(13) 0.5131(2) 0.6409(1) –0.1554(2) 0.043(1) H(17) 1.113(3) 0.586(2) 0.381(3) 0.10(1)

C(14) 0.7177(2) 0.5424(1) –0.0532(2) 0.038(1) H(181) 0.812(2) 0.703(1) –0.164(2) 0.06(1)

C(15) 0.5132(2) 0.5076(1) –0.2899(2) 0.048(1) H(182) 0.820(2) 0.790(2) –0.077(2) 0.07(1)

H(183) 0.951(3) 0.722(1) –0.004(3) 0.07(1)

* Ueq = (1/3) .

U iso
* U iso

*

Uijai
*a j

* ai a j⋅( )
j∑i∑
Table 3.  Torsion angles (deg) for non-hydrogen atoms and dihedral angles (deg) between the planes of benzene (1), pyrimi-
dine (2), and pyridone (3) rings of the molecule (e.s.d.'s are given in parentheses)

C(12)–C(1)–C(2)–C(3) –0.0(3) C(6)–C(7)–C(8)–C(9) –1.7(3)

C(2)–C(1)–C(12)–C(13) –1.9(3) C(7)–C(8)–C(9)–N(10) 2.2(3)

C(1)–C(2)–C(3)–C(4) 1.4(3) C(8)–C(9)–N(10)–C(14) 0.1(2)

C(2)–C(3)–C(4)–C(13) –0.8(3) C(14)–N(10)–C(11)–C(12) 37.3(2)

C(3)–C(4)–C(13)–C(12) –1.1(3) C(9)–N(10)–C(14)–C(6) –2.8(2)

C(14)–N(5)–C(13)–C(12) 23.5(2) C(11)–N(10)–C(14)–N(5) –9.5(2)

C(13)–N(5)–C(14)–N(10) –23.1(2) N(10)–C(11)–C(12)–C(13) –36.0(2)

C(14)–C(6)–C(7)–C(8) –1.1(3) C(1)–C(12)–C(13)–C(4) 2.4(3)

C(7)–C(6)–C(14)–N(10) 3.3(3) C(11)–C(12)–C(13)–N(5) 8.6(3)

Plane Plane Angle 

1 2 16.12(5)

1 3 28.61(5)

2 3 12.77(5)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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RESULTS AND DISCUSSION

The final atomic coordinates and equivalent isotro-
pic thermal parameters for the non-hydrogen (isotropic
for hydrogen) atoms are given in Table 2. The endocy-
clic torsion angles and dihedral angles between differ-
ent least-squares planes are listed in Table 3. A general
view of the molecule and the atomic numbering scheme
[15] is shown in the figure.

The bond distances of the molecule, on the whole,
agree with the values reported for some analogous
structures containing quinazoline or pyrimidine rings
[16–19]. The mean value [1.392(2) Å] of the two
C(sp2)–N bonds, i.e., N(5)–C(13) [1.419(2) Å] and
N(5)–C(14) [1.366(2) Å], is in agreement with the stan-
dard mean value of 1.385 Å[20]; the length of the bond
N(5)–C(13) is close to the values obtained in E- and Z-
isomers of 1-(-2-amino-1-cyano-2-thioethylene)pyri-
dinium-ylide [21]. The C(9)=O(3) bond length [1.255(2)
Å] is greater than its theoretical value [1.199 Å], and it
may probably be due to the strong intramolecular
O(2)–H(17)⋅⋅⋅O(3) hydrogen bond. The benzene ring is

C(3)

C(4)

C(2)

C(1)

C(13)

C(12)

C(11)

C(18)

C(16)

C(15) C(6)
C(7)

C(8)

C(9)

C(17)

O(1)

O(2)

O(3)

N(10)

A general view of the molecule and atomic numbering
scheme. 

N(5)

C(14)

Table 4.  Inter- and intramolecular hydrogen bonds

Bond
D–H···A H···A, Å D···A, Å D–H···A, 

deg

C(11)–H(111)···O(3) 2.19(2) 2.658(2) 109(1)

C(18)–H(183)···O(3) 2.81(2) 3.285(2) 109(2)

O(2)–H(17)···O(3) 1.56(3) 2.514(2) 156(3)

C(15)–H(152)···O(2)(i) 2.67(2) 3.426(2) 131(1)

C(4)–H(4)···O(2)(i) 2.70(2) 3.594(2) 159(2)

C(16)–H(162)···N(10)(ii) 2.78(4) 3.479(4) 123(2)

Note: Symmetrical transformations: (i) –1 + x, y, −1 + z; (ii) 1 – x,
1 – y, –z).
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perfectly planar, and the pyridone ring deviates slightly
from planarity [the maximum deviation is –0.023 Å for
the C(14) atom]. The pyrimidine ring has an 11β-sofa
conformation with the asymmetry parameter ∆Cs
[C(11)] = 0.87 [22]. The dihedral angle between the
least squares plane of benzene and pyridone rings is
28.61(5)°, indicating that the molecule is somewhat
folded, may be due to the sofa conformation of the pyri-
midine ring.

The molecular packing in the crystal is of the her-
ring-bone type. The following intra- and intermolecu-
lar bonds have been found to contribute to the stability
of the crystal structure: O–H···O, C–H···O, and
C−H···N (Table 4).
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STRUCTURE OF ORGANIC COMPOUNDS
Crystal and Molecular Structures 
of (1,3,4-Thiadiazolyl-2)aminodipropionic 

and (5-Methyl-1,3,4-Thiadiazolyl-2)aminodipropionic Acids
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Abstract—Crystal structures of (1,3,4-thiadiazolyl-2)aminodipropionic (I) and (5-methyl-1,3,4-thiadiazolyl-
2)aminodipropionic (II) acids are determined [R = 0.0363 and 0.0529 for 2706 and 1614 reflections with
I > 2σ(I) for I and II, respectively]. The similarity and distinctions in the hydrogen-bond systems and molecu-
lar-packing motifs of crystals I and II are discussed. © 2000 MAIK “Nauka/Interperiodica”.
(5-R-1,3,4-Thiadiazolyl-2)aminodipropionic acids
are new aminocarboxylate ligands containing a specific
heterocyclic substituent. The synthesis of these com-
pounds with R = H, Me, and iso-Pr, their IR spectra, and
complex formation with Zn2+, Cd2+, and Hg2+ ions were
described in [1–3]. In the present work, we report the
results of the X-ray diffraction study of (1,3,4-thiadia-
zolyl-2)aminodipropionic (I) and (5-methyl-1,3,4-thia-
diazolyl-2)aminodipropionic (II) acids. Our data can
serve as a basis for the correct interpretation of the
spectra.

EXPERIMENTAL

Crystals of compounds I and II are triclinic, space
group P , and Z = 2.

Compound I: C8H11N3O4S, a = 5.2080(8), Å b =
9.975(2) Å, c = 10.156(2) Å, α = 91.03(2)°, β =
92.25(1)°, γ = 103.31(2)°, V = 512.8(2) A3, dcalcd =
1.588 g/cm3, and µ(Mo) = 0.32 mm–1 (CAD-4 diffrac-
tometer, λMoKα, graphite monochromator, ω scan
mode, 2θmax = 64°).

Compound II: C9H13N3O4S, a = 7.144(1) Å, b =
8.921(2) Å, c = 10.494(2) Å, α = 72.71(2)°, β =
73.97(2)°, γ = 67.82(1)°, V = 581.1(2) Å3, dcalcd =
1.482 g/cm3, and µ(Mo) = 0.29 mm–1 (Syntex P21 dif-
fractometer, λMoKα, graphite monochromator, ω/2θ
scan mode, 2θmax = 56°).

Both structures were solved by the direct method
with the SHELXS86 program [4]. The hydrogen atoms
were located from difference Fourier syntheses. Struc-
ture I was refined by the least-squares procedure in the
anisotropic approximation for the non-hydrogen atoms
and in the isotropic approximation for hydrogen atoms
with the SHELXL93 program [5]. The discrepancy fac-

1
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tors were R1 = 0.0491 and wR2 = 0.1245 for a complete
set of 3300 unique reflections and R1 = 0.0363 and
wR2 = 0.1168 for 2706 reflections with I > 2σ(I), and
S = 1.121. In structure II, the non-hydrogen atoms were
refined in the anisotropic approximation. The hydrogen
atoms were refined within the riding-atom model, and
their thermal parameters Uiso were fixed by the values
of 0.01 Å2 larger than the Ueq values of the atoms to
which they are attached. The refinement for a set of
1614 unique reflections with I > 2σ(I) led to R = 0.0529,
wR = 0.0733, and S = 1.0885 (SHELX76 [6]).

The atomic coordinates and parameters of thermal
vibrations for structures I and II are listed in the table.
Fragments of crystal structures I and II are shown in
Figs. 1 and 2, respectively.

RESULTS AND DISCUSSION

The five-membered thiadiazole rings in molecules I
and II are planar within ±0.002 and ±0.008 Å, respec-
tively. In I, the N(3) atom deviates from the plane of the
ring by 0.029 Å. In II, the N(3) and C(9) substituents
deviate from the plane of the ring in opposite direc-
tions, by 0.047 and 0.033 Å, respectively. The dihedral
angle between the plane defined by the C(1), C(3), and
C(6) atoms that form the environment of the N(3) atom
and the plane of the five-membered ring is 1.4° in I and
6.3° in II. The environment of the N(3) atom has a flat-
tened pyramidal configuration with a pyramid height of
0.041 Å in I and 0.188 Å in II. The heights of the N(3)
pyramids correlate with the N(3)–C(1) bond lengths
[1.343(2) and 1.369(6) Å in I and II, respectively]: the
flatter pyramid in I corresponds to a shorter bond. Both
factors indicate that the lone electron pair of the N(3)
atom in I is conjugated with the thiadiazole ring to a
greater extent than in II.
000 MAIK “Nauka/Interperiodica”
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Atomic coordinates and equivalent thermal parameters Ueq (for H atoms, Uiso) in structures I and II

Atom x y z Ueq/Uiso, Å2

I
S(1) 0.3827(1) 0.2433(1) –0.0089(1) 0.031(1)
O(1) 0.5428(3) 0.3060(1) 0.6779(1) 0.038(1)
O(2) 0.2844(2) 0.4402(1) 0.6053(1) 0.028(1)
O(3) 0.2489(3) –0.0598(2) 0.1643(1) 0.047(1)
O(4) 0.1485(3) –0.1371(1) 0.3649(1) 0.042(1)
N(1) 0.5688(2) 0.4026(1) 0.1884(1) 0.024(1)
N(2) 0.7498(2) 0.4373(1) 0.0915(1) 0.029(1)
N(3) 0.1667(2) 0.2491(1) 0.2309(1) 0.023(1)
C(1) 0.3628(2) 0.3011(1) 0.1513(1) 0.021(1)
C(2) 0.6784(3) 0.3641(2) –0.0146(1) 0.030(1)
C(3) 0.1687(3) 0.3135(1) 0.3619(1) 0.023(1)
C(4) 0.3580(3) 0.2657(1) 0.4586(1) 0.024(1)
C(5) 0.4005(3) 0.3403(1) 0.5911(1) 0.023(1)
C(6) –0.0610(3) 0.1396(1) 0.1883(1) 0.025(1)
C(7) –0.0944(3) 0.0145(1) 0.2750(2) 0.026(1)
C(8) 0.1202(3) –0.0630(1) 0.2607(1) 0.026(1)
H(2O) 0.354(6) 0.513(3) 0.695(3) 0.065(8)
H(4O) 0.264(7) –0.191(4) 0.341(3) 0.077(9)
H(2) 0.766(6) 0.368(3) –0.092(3) 0.054(7)
H(3A) 0.205(4) 0.404(2) 0.350(2) 0.023(4)
H(3B) –0.013(4) 0.283(2) 0.394(2) 0.031(5)
H(4A) 0.304(5) 0.174(3) 0.475(2) 0.040(6)
H(4B) 0.527(4) 0.273(2) 0.420(2) 0.036(5)
H(6A) –0.217(4) 0.177(2) 0.192(2) 0.035(5)
H(6B) –0.035(5) 0.116(3) 0.100(2) 0.039(6)
H(7A) –0.257(5) –0.044(3) 0.244(2) 0.040(6)
H(7B) –0.112(4) 0.036(2) 0.367(2) 0.029(5)

II
S(1) 0.2779(2) – 0.0968(2) –0.2798(1) 0.0296(6)
O(1) –0.2500(7) 0.4338(6) –0.0524(4) 0.043(2)
O(2) –0.4887(7) 0.5092(5) –0.1784(4) 0.045(2)
O(3) 0.2671(8) –0.0360(5) 0.1626(4) 0.055(2)
O(4) 0.2110(8) 0.2019(5) 0.2178(4) 0.049(2)
N(1) 0.1872(8) 0.1806(5) –0.4528(4) 0.031(2)
N(2) 0.2353(8) 0.0553(6) –0.5207(4) 0.032(2)
N(3) 0.1752(7) 0.2135(5) –0.2359(4) 0.028(2)
C(1) 0.2064(8) 0.1182(6) –0.3255(5) 0.024(2)
C(2) 0.2839(9) –0.0926(7) –0.4472(5) 0.029(2)
C(3) 0.0785(9) 0.3922(6) –0.2808(5) 0.030(2)
C(4) –0.1446(9) 0.4448(7) –0.2918(5) 0.034(2)
C(5) –0.2981(9) 0.4621(7) –0.1623(5) 0.033(2)
C(6) 0.157(1) 0.1354(7) –0.0907(5) 0.032(2)
C(7) 0.229(1) 0.2145(7) –0.0118(5) 0.034(2)
C(8) 0.2384(9) 0.1097(7) 0.1321(5) 0.032(2)
C(9) 0.335(1) –0.2460(7) –0.4978(6) 0.042(3)
H(2O) –0.591 0.520 –0.105 0.055
H(4O) 0.264 0.125 0.296 0.059
H(3A) 0.158 0.442 –0.362 0.040
H(3B) 0.095 0.449 –0.220 0.040
H(4A) –0.167 0.375 –0.325 0.059
H(4B) –0.003 0.124 –0.043 0.042
H(6A) –0.171 0.542 –0.350 0.059
H(6B) 0.261 0.029 –0.091 0.042
H(7A) 0.392 0.226 –0.061 0.044
H(7B) 0.150 0.318 –0.007 0.044
H(9A) 0.202 –0.285 –0.466 0.052
H(9B) 0.458 –0.331 –0.482 0.052
H(9C) 0.398 –0.206 –0.615 0.052
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000



CRYSTALLOGRAPH

CRYSTAL AND MOLECULAR STRUCTURES 617
N(2)
C(2)

S(1) N(1)

C(1) N(3)
C(3)

C(5)C(6)

C(7)

C(8)

C(4)

O(1)

O(2) N(1a)

O(3)

O(1b)

O(1a)

O(2)

C(5)

O(1)C(4)

C(3)
C(7)

O(4)

C(8)

O(3)
C(6)

N(3)
C(1)

N(1)

N(2)

C(2)
C(9)

N(2b)

Fig. 1. A fragment of structure I.

Fig. 2. A fragment of structure II.

O(4)

S(1)
In the unsubstituted 1,3,4-thiadiazole [7] and its
symmetrically substituted 2,5-dimethyl [8] and 2,5-
diamino [9] derivatives, the five-membered rings have
a symmetric structure (in the first two compounds, the
molecules occupy special positions). Asymmetric sub-
stitution in the thiadiazole ring results in the inequality
of the endocyclic C–N bonds and the SCN and NNC
angles. The N(2)–C(2) bond lengths in I and II are
approximately identical [1.283(2) and 1.286(7) Å]. The
Y REPORTS      Vol. 45      No. 4      2000
N(1)–C(1) bonds are elongated; this elongation is more
distinct in I than in II [1.331(2) and 1.310(6) Å]. The
N(1)–N(2) bonds in both molecules [1.382(2) and
1.387(6) Å] are shortened relative to the standard single
N–N bond (1.420 Å [10]). As noted earlier [11, 12], this
shortening indicates the conjugation of bonds in the
ring. The endocyclic CNN and SCN angles in I and II
differ noticeably (by 2.2°–3.0°). The geometric param-
eters of the thiadiazole ring in II are close to the corre-
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sponding values in 2-amino-5-methyl-1,2,4-thiadiazole
[13]. As far as we know, crystal structures of monosub-
stituted 1,2,4-thiadiazoles have not been studied.

In structures I and II, molecules are linked by the
hydrogen bonds into double chains differing in the pat-
tern of their arrangement. In I, the chains are formed by
the alternation of centrosymmetric pairs of bonds of
two types: O(2)–H(2O)⋅⋅⋅N(1) (1 – x, 1 – y, 1 – z)
[O⋅⋅⋅N, 2.577(2); O–H, 1.15(3); H⋅⋅⋅N, 1.43(3) Å; and
OHN, 177(3)°] and O(4)–H(4O)⋅⋅⋅O(1) (1 – x, y, 1 – z)
[O ⋅⋅⋅O, 2.625(2); O–H, 0.93(3); H⋅⋅⋅O, 1.70(4) Å; and
OHO, 170(3)°]. In II, the O(4)–H(4O)⋅⋅⋅N(2) (x, y, z +
1) hydrogen bonds [O⋅⋅⋅N, 2.689(6); O–H, 0.96; H⋅⋅⋅N,
1.82 Å; and OHN, 149°] link the molecules related by
the translation along the z-axis into chains, and the
O(2)–H(2O)⋅⋅⋅O(1) (–x – 1, 1 – y, –z) bonds [O⋅⋅⋅O,
2.670(6); O–H, 0.91; H⋅⋅⋅O, 1.79 Å; and OHO, 164°]
link the chains in pairs. In structure II, the O–H⋅⋅⋅O
bonds are formed between the same carboxyl groups,
thus closing eight-membered centrosymmetric
OCOHOCOH rings. In I, the O–H⋅⋅⋅O bonds are
formed between different carboxyl groups; and due to
these bonds, twenty-membered centrosymmetric
(HOC3NC3O)2 rings are closed. Different atoms—N(1)
and N(2)—serve as acceptors in the O–H⋅⋅⋅N hydrogen
bonds in structures I and II, respectively. The rings
closed by the O–H⋅⋅⋅N hydrogen bonds also differ in
size: the sixteen-membered (NCNC3OH)2 ring in I and
the 38-membered (including the O–H⋅⋅⋅O bonds)
(N2CNC3OHOC3NC3OH)2 ring in II. Both hydrogen
bonds in compound I are shorter than those in com-
pound II.
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Abstract—The crystal structure of the cyclic hexadepsipeptide antibiotic enniatin C c[-(L-MeLeu-D-Hyi)3-],
C34H59N3O9 , was established by X-ray structure analysis (sp. gr. P21, a = 20.205(5) Å, b = 8.702(2) Å, c =
25.587(6) Å, γ = 97.0(5)°, V = 4465.3(18) Å3, Z = 4, R = 0.089 for 3601 reflections with I > 2σ(I)). The unit
cell contains two independent molecules of enniatin C, one ethanol molecule disordered over two positions, and
approximately two water molecules occupying four positions and forming hydrogen bonds with each other. The
independent antibiotic molecules adopt virtually identical conformations similar to those observed in the struc-
tures of enniatin B and its Na,Ni-complex. These conformations are characterized by alternating upward and
downward orientations of the carbonyl groups and pseudoequatorial orientations of side radicals. The Leu resi-
dues have stretched conformations. The N-methylamide groups of the independent antibiotic molecules face
each other, whereas the molecules are displaced by approximately 8.4 Å with respect to each other along the
mean planes of the rings. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Enniatin C is a representative of antibiotics of the
enniatin series, which also includes enniatin A, enniatin
B, and beauvericin. All these antibiotics are cyclic
hexadepsipeptides and contain alternating residues of
amino and oxy acids. For enniatin C, acids are residues
of N-methylleucine and α-oxyisovaleric acid.

The physiological function of enniatin on iono-
phorous antibiotics is to induce the transport of alkali
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and alkaline-earth metal ions through biological mem-
branes. Molecules of these antibiotics adopt two prefer-
ential conformations, namely, the N conformation typ-
ical of the nonpolar media and the P conformation
characteristic of polar media [1] and the crystalline
state [2–5]. According to the results of IR and NMR
spectroscopy, both conformations have trans-N-methy-
lamide bonds [1, 6]. Ultrasonic absorption measure-
ments demonstrated that the N conformation is a mix-
ture of two conformers which undergo rapid intercon-
version [7, 8]. The theoretical analysis of enniatins
revealed five possible asymmetric low-energy confor-
mations, namely, N1–N5 [9], and one symmetrical P
conformation [9, 10], whose conformational parame-
ters of were calculated. According to the CD spectral
curves, enniatins adopt the P conformation upon the
formation of complexes with metal ions [11, 12]. Actu-
ally, enniatin B has such a conformation in the crystal
of its complex with KI [13] and in the Na,Ni-complex
[14]. The same conformation was also observed in the
crystals of hydrated synthetic enniatin B [4–6] and nat-
ural enniatin B [15].

The enniatin B was repeatedly studied, whereas the
crystal structure of enniatin C was not studied at all.
However, proceeding from the fact that the chemical
structures of these two compounds are similar, one can
expect that the crystals of enniatin C grown in the pres-
ence of KSCN would also adopt the P conformation. In
this study, we established the crystal structure of enni-
atin C by the method of X-ray diffraction analysis.
000 MAIK “Nauka/Interperiodica”
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Table 1.  Atomic coordinates and thermal parameters

Atom x/a y/b z/c Ueq

Molecule I
N(1) 0.5830(4) –0.0415(9) 0.3028(4) 0.059(2)
C(1A) 0.6421(6) 0.0426(13) 0.2783(4) 0.066(3)
C(1') 0.6238(7) 0.1242(15) 0.2310(6) 0.079(4)
O(1) 0.5709(5) 0.1024(12) 0.2083(5) 0.111(3)
C(1) 0.5493(7) –0.1789(16) 0.2766(5) 0.088(4)
C(1B) 0.6941(6) –0.0689(14) 0.2641(6) 0.079(3)
C(1G) 0.7143(6) –0.1612(14) 0.3097(6) 0.088(4)
C(1D1) 0.7655(8) –0.2683(19) 0.2932(8) 0.114(5)
C(1D2) 0.7437(7) –0.0660(15) 0.3574(5) 0.084(4)
O(2') 0.6740(4) 0.2219(10) 0.2116(4) 0.080(2)
C(2A) 0.6637(6) 0.3056(14) 0.1627(5) 0.074(3)
C(2') 0.6145(5) 0.4224(15) 0.1752(5) 0.064(3)
O(2) 0.6282(5) 0.5134(11) 0.2089(5) 0.100(3)
C(2B) 0.7306(9) 0.3775(18) 0.1433(8) 0.115(6)
C(2G1) 0.7764(9) 0.2478(26) 0.1328(10) 0.152(8)
C(2G2) 0.7198(10) 0.4709(28) 0.0936(11) 0.160(9)
N(3) 0.5623(4) 0.4325(9) 0.1420(3) 0.056(2)
C(3A) 0.5206(7) 0.5529(15) 0.1551(6) 0.086(4)
C(3') 0.4545(6) 0.4778(20) 0.1823(5) 0.070(3)
O(3) 0.4283(5) 0.3567(14) 0.1781(5) 0.107(3)
C(3) 0.5399(7) 0.3196(19) 0.1037(5) 0.099(4)
C(3B) 0.4991(9) 0.6356(23) 0.1046(6) 0.125(7)
C(3G) 0.5552(12) 0.6936(27) 0.0709(11) 0.168(11)
C(3D1) 0.5304(15) 0.7642(43) 0.0212(10) 0.240(18)
C(3D2) 0.6011(12) 0.8241(28) 0.1029(15) 0.206(16)
O(4') 0.4350(4) 0.5917(10) 0.2121(3) 0.078(2)
C(4A) 0.3737(5) 0.5577(13) 0.2422(4) 0.060(3)
C(4') 0.3926(6) 0.4701(13) 0.2907(5) 0.061(3)
O(4) 0.4355(4) 0.5297(10) 0.3202(4) 0.088(3)
C(4B) 0.3468(7) 0.7046(15) 0.2564(4) 0.078(3)
C(4G1) 0.3342(9) 0.7943(15) 0.2045(7) 0.109(5)
C(4G2) 0.2832(8) 0.6698(16) 0.2892(7) 0.113(6)
N(5) 0.3590(4) 0.3294(10) 0.3040(4) 0.065(3)
C(5A) 0.3801(5) 0.2487(12) 0.3498(4) 0.057(3)
C(5') 0.4216(6) 0.1248(13) 0.3348(6) 0.064(3)
O(5) 0.4285(6) 0.0783(11) 0.2922(4) 0.103(3)
C(5) 0.3102(8) 0.2468(17) 0.2695(7) 0.109(5)
C(5B) 0.3194(7) 0.1866(17) 0.3849(6) 0.091(4)
C(5G) 0.2804(8) 0.3049(26) 0.4058(8) 0.122(6)
C(5D1) 0.2180(11) 0.2190(51) 0.4373(20) 0.344(32)
C(5D2) 0.3199(15) 0.4272(32) 0.4415(10) 0.175(11)
O(6') 0.4484(3) 0.0693(9) 0.3769(3) 0.071(2)
O(6A) 0.4902(5) –0.0516(13) 0.3680(5) 0.071(3)
C(6') 0.5576(6) 0.0347(17) 0.3406(5) 0.069(3)
O(6) 0.5800(5) 0.1544(12) 0.3611(5) 0.110(4)
C(6B) 0.5061(8) –0.1085(19) 0.4235(6) 0.105(5)
C(6G1) 0.4360(8) –0.2001(37) 0.4438(10) 0.197(14)
C(6G2) 0.5532(9) –0.2230(23) 0.4218(7) 0.127(6)

Molecule II
N(1) 0.2474(4) 0.3901(9) 0.0635(4) 0.053(2)
C(1A) 0.2293(5) 0.2505(10) 0.0950(5) 0.056(3)
C(1') 0.1965(6) 0.2888(14) 0.1445(5) 0.063(3)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Table 1.  (Contd.)

Atom x/a y/b z/c Ueq

Molecule II
O(1) 0.2111(5) 0.4033(10) 0.1723(4) 0.095(3)
C(1) 0.3013(6) 0.5037(12) 0.0842(5) 0.075(4)
C(1B) 0.2870(5) 0.1571(13) 0.1071(4) 0.063(3)
C(1G) 0.3263(6) 0.1126(13) 0.0597(5) 0.073(3)
C(1D1) 0.3832(7) 0.0212(19) 0.0776(7) 0.105(5)
C(1D2) 0.2864(7) 0.0290(18) 0.0176(6) 0.101(4)
O(2') 0.1508(4) 0.1737(7) 0.1596(3) 0.065(2)
C(2A) 0.1159(5) 0.1827(12) 0.2070(4) 0.058(3)
C(2') 0.0524(5) 0.2616(15) 0.1970(5) 0.068(3)
O(2) 0.0127(5) 0.1955(10) 0.1652(4) 0.095(3)
C(2B) 0.0972(5) 0.0209(12) 0.2281(5) 0.068(3)
C(2G1) 0.1600(7) –0.0577(13) 0.2347(7) 0.094(4)
C(2G2) 0.0578(9) 0.0290(17) 0.2781(6) 0.102(5)
N(3) 0.0414(5) 0.3965(10) 0.2206(4) 0.064(3)
C(3A) –0.0192(5) 0.4657(14) 0.2071(4) 0.067(3)
C(3') 0.0000(7) 0.6012(10) 0.1703(4) 0.051(3)
O(3) 0.0549(5) 0.6617(9) 0.1628(4) 0.089(3)
C(3) 0.0912(5) 0.4801(12) 0.2561(5) 0.067(3)
C(3B) –0.0561(8) 0.5150(16) 0.2560(6) 0.098(5)
C(3G) –0.0713(7) 0.3936(18) 0.2956(7) 0.098(5)
C(3D1) –0.0935(8) 0.4677(25) 0.3469(7) 0.124(6)
C(3D2) –0.1170(12) 0.2669(30) 0.2769(11) 0.171(11)
O(4') –0.0548(4) 0.6434(9) 0.1493(3) 0.079(2)
C(4A) –0.0447(6) 0.7765(15) 0.1145(5) 0.075(3)
C(4') –0.0088(7) 0.7245(15) 0.0654(4) 0.070(3)
O(4) –0.0331(5) 0.6053(11) 0.0441(4) 0.093(3)
C(4B) –0.1150(6) 0.8216(16) 0.1014(6) 0.091(4)
C(4G1) –0.1495(9) 0.8655(25) 0.1525(8) 0.137(7)
C(4G2) –0.1089(8) 0.9614(19) 0.0659(6) 0.111(5)
N(5) 0.0442(4) 0.8203(8) 0.0461(3) 0.049(2)
C(5A) 0.0779(5) 0.7665(13) 0.0025(4) 0.063(3)
C(5') 0.1381(5) 0.6932(11) 0.0219(5) 0.054(3)
 O(5) 0.1607(4) 0.6926(10) 0.0634(4) 0.083(2)
C(5) 0.0759(7) 0.9570(13) 0.0749(5) 0.077(3)
C(5B) 0.0934(5) 0.8903(13) –0.0399(4) 0.059(3)
C(5G) 0.0351(6) 0.9732(12) –0.0581(5) 0.066(3)
C(5D1) 0.0609(7) 1.0907(17) –0.0988(6) 0.093(4)
C(5D2) –0.0173(7) 0.8664(21) –0.0811(7) 0.110(5)
O(6') 0.1652(3) 0.6286(8) –0.0213(3) 0.063(2)
C(6A) 0.2263(6) 0.5542(13) –0.0105(4) 0.065(3)
C(6') 0.2091(6) 0.4169(12) 0.0229(4) 0.050(3)
O(6) 0.1625(4) 0.3228(10) 0.0086(3) 0.077(2)
C(6B) 0.2545(6) 0.5159(11) –0.0642(4) 0.061(3)
C(6G1) 0.2687(6) 0.6592(20) –0.0980(7) 0.108(5)
C(6G2) 0.3166(7) 0.4341(16) –0.0583(5) 0.083(4)

O(al) 0.1462(20) 0.6709(50) 0.4918(13) 0.312(19)
C(1al) 0.1274(20) 0.6822(26) 0.4330(14) 0.210(15)
C(2al1) 0.1054(31) 0.5233(77) 0.4194(26) 0.048(37)
C(2al2) 0.1571(38) 0.8188(73) 0.3866(36) 0.422(55)
O(w1) 0.6092(20) 0.4709(49) 0.3231(13) 0.224(24)
O(w2) 0.5290(14) 0.4238(37) 0.3941(19) 0.241(24)
O(w3) –0.0623(42) 0.3127(53) 0.0809(33) 0.279(43)
O(w4) 0.0164(12) 0.3244(37) 0.0063(25) 0.278(29)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Fig. 1. Conformation of a molecule (I) of enniatin C in the crystal structure.
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O(w4)O(w3)

O(al)

2.86 Å 3.31 Å

2.74 Å

Fig. 2. Scheme of hydrogen bonding in the structure of enniatin C.
EXPERIMENTAL

Colorless crystals of the nominal composition enni-
atin C · nKSCN, grown at the Shemyakin–Ovchinnikov
Institute of Bioorganic Chemistry of the Russian Acad-
emy of Sciences, belong to the sp. gr. P21, a = 20.205(5),
b = 8.702(2), c = 25.587(6) Å, γ = 97.0(5)°, V =
4465.3(18) Å3, Z = 4. There are two formula units per
asymmetric unit. The reflection intensities were mea-
sured on a four-circle Syntex-P21 diffractometer (CuKα
radiation, graphite monochromator, d ≥ 1.0 Å, θ/2θ
scanning technique). Of the total 4936 measured reflec-
C

tions, 3601 reflections with I > 2σ(I) were used in fur-
ther computations.

The structure was solved by the direct method using
the MULTAN84 program [16] and was then refined
using the SHELXL93 program package [17]. The elec-
tron density syntheses revealed all the atomic positions
of two independent enniatin C molecules and also a
number of additional peaks. Proceeding from the nom-
inal composition (enniatin C · nKSCN), we made an
attempt to reveal K, S, C, and N atoms. However, the
refinement of the structure and the analysis of the
geometry of the arrangement and the weights of the
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Table 2.  Conformational angles (deg) in molecules I and II of enniatin C

Molecule I

Angle i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

ϕi –95.4(12) 69.1(13) –102.1(12) 79.6(11) –99.9(11) 71.1(12)

ψi 170.1(10) –133.4(10) 154.1(10) –126.5(10) 170.6(8) –140.5(10)

ωi 177.2(10) –176.6(9) 179.5(9) 178.7(9) –180.0(8) 178.4(9)

χi –55.5(13) –57.4(12) 60.0(16)

–179.5(11) 177.2(22) 175.8(21)

–57.4(14) –63.7(18) –61.3(20)

60.6(19) 57.5(13) 70.6(17)

–178.6(14) –178.7(11) –175.2(13)

Molecule II

Angle i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

ϕi –101.8(10) 89.0(11) –102.9(11) 68.9(12) –95.9(10) 66.7(10)

ψi 147.2(9) –119.3(11) 166.9(8) –134.5(10) 174.2(8) –136.0(8)

ωi 176.7(9) 177.5(9) 177.6(9) 177.5(8) 178.2(8) 178.6(9)

χi –53.1(13) –53.7(18) –50.9(13)

179.3(10) 165.0(13) 178.7(10)

–54.5(14) –63.8(18) –62.4(14)

57.5(13) 60.9(16) 57.6(12)

–177.9(10) –179.4(12) –178.4(9)

Note: The conformational parameters ϕi, ψi, ωi, , , , and  correspond to the angles: C(i'–1)–N(i)[O(i')]–C(iA)–C(i'),

N(i)[O(i')]–C(iA)–C(i')–O(i' + 1) [N, (i')], C(iA)–C(i')–O(i')[N(i)]–C[(i + 1)A], N(i)[O(i')]–C(iA)–C(iB)–C(iG1), N(i)[O(i')]–C(iA)-
C(iB)–C(iG2), C(iA)–C(iB)–C(iG)–C(iD1), and C(iA)–C(iB)–C(iG)–C(iD2), where i is the number of a residue.

δi
1
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2

χ i
1

χ i
2

δi
1

δi
2

χ i
1

χ i
2

χi
1 χi

2 δi
1 δi

2

localized peaks revealed only a disordered ethanol mol-
ecule and about two water molecules (occupying four
positions) along with the antibiotic molecules, but no
potassium ions and rhodano groups. The final electron-
density synthesis revealed 104 non-hydrogen atoms.
These atoms were refined anisotropically. The hydro-
gen atoms of the antibiotic molecules were placed in
positions calculated and isotropically refined using the
riding model. The R factor, calculated over 3601 reflec-
tions with I > 2σ(I), was 0.089. The atomic coordinates
and equivalent thermal parameters are given in Table 1.

RESULTS AND DISCUSSION

The unit cell of the structure under study contains
two crystallographically independent molecules (I and
II) of enniatin C, a disordered ethanol molecule, and
about two water molecules occupying four positions.
One of the enniatin molecules (I) is shown in Fig. 1.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
The ethanol molecule is disordered over two positions,
characterized by different angles of rotation about the
O–C bond and the occupancies 0.86 and 0.14, respec-
tively. The water molecules are distributed over four
positions, (O(w1), O(w2), O(w3), and O(w4), with the
occupancies of 0.60, 0.65, 0.33, and 0.49, respectively).
The pairs of these positions (O(w1) and O(w2); O(w3)
and O(w4)) are located in the vicinity of antibiotic mol-
ecules I and II, respectively. The water molecules are
linked to the enniatin C molecules via weak H bonds
(2.71(6)–2.96(4) Å) formed by the carbonyl oxygen
atoms of the peptide groups (Fig. 2). One of the carbo-
nyl oxygen atoms of each enniatin C molecule forms
hydrogen bonds with two adjacent water molecules,
while each of the remaining two carbonyl oxygen
atoms forms a hydrogen bond only with one water mol-
ecule. The water molecules (with partial occupancies of
the positions) are linked in pairs through strong hydro-
gen bonds O(w1)⋅⋅⋅O(w2) (2.44(6) Å) and
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Fig. 3. Conformational maps for the amino- and oxy-acid residues of enniatin C molecules (rectangles), crystal hydrate of enniatin
B (empty circles), and its Na,Ni-complex (solid circles) in the crystal structures.

φ(Cα – O)
Fig. 4. Projection of the structure of enniatin C along the plane passing through N atoms of molecule I. The N, O, and C atoms of
the structure are represented by solid, hatched, and empty circles, respectively. 
O(w3)⋅⋅⋅O(w4) (2.48(11) Å). The water molecules of
the second pair form weak hydrogen bonds with the
O(al) atom of the alcohol molecule [the O(al)⋅⋅⋅O(w3)
and O(al)⋅⋅⋅O(w4) distances are 2.86(8) and 3.31(5) Å,
respectively]. Apparently, these interactions are
responsible for the low occupancies of the positions of
the O(w3) and O(w4) molecules, compared to those of
the O(w1) and O(w2) molecules.

In the crystal structure, both enniatin C molecules
adopt virtually identical conformations, which are sim-
ilar to those of the enniatin B molecule in the hydrated
state [4, 5, 15] and in its Na,Ni complex [14]. The enni-
atin C molecules are characterized by alternating
C

upward and downward orientations of the carbonyl
groups, pseudoequatorial orientations of the side valine
radicals, and by stretched conformations of the side
chains of the leucine residues with a pseudoequatorial
arrangement of the Cα–Cβ–Cγ fragments.

All amino acid residues adopt similar conforma-
tions in both independent enniatin C molecules
(Table 2). The ϕ and ψ angles characterizing these con-
formations range from –95.4° to –103.0° and from
147.2° to 170.6°, respectively. The same is true for the
oxy acid residues for which the ϕ and ψ angles range
from 66.7° to 89.0° and from –119.4° to –140.5°,
respectively. The corresponding points in the confor-
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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mation maps for the model compounds Ac–L-MeVal–
OMe and Ac–D-Hyi–NMe2 [18] fall within the regions
restricted by rectangles (Fig. 3) displaced to the periph-
ery, and they are close to the k minimum for the angles
of the amino acid residues and to the q border of the
p−q minimum for the angles of the oxy acid residues. 

Noteworthy is the fact that the rectangles are located
much closer to the ϕ, ψ points for the Na,Ni complex of
enniatin B [14] (solid circles) than to the ϕ, ψ points for
hydrated enniatin B [4, 5] (empty circles). In other
words, the “bottom” of the enniatin C molecule is more
open than the “bottom” of the molecule of native enni-
atin B [4]. Undoubtedly, this is associated with some-
what different molecular packings of the molecules in
the crystals and with their different interactions with
water molecules.

The mutual arrangement of two crystallographically
independent molecules of enniatin C and alcohol and
water molecules in the crystal structure is shown in
Fig. 4. Molecules I and II of enniatin C are almost par-
allel to each other. Their slightly open N-methylamide
“bottoms” and the valine radicals face each other. The
molecules are displaced by about 8.4 Å with respect to
each other along the mean plane of molecule I. The car-
bonyl oxygen atoms of the N-methylamide groups that
form the polar edge are located on the other sides of
molecules I and II (where also pairs of water molecules
are located). The disordered alcohol molecule is
located between the antibiotic molecules. The bond
lengths and the bond angles in of enniatin C molecules
I and II are similar to those observed in the structures
of hydrated enniatin B [4, 5], anhydrous enniatin B
[19], and its Na,Ni-complex [14, 19]. As was expected,
these parameters for the structure under study coincide
most closely with the values obtained for the first two
compounds.
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Abstract—Crystallochemical classification of eleven compounds from the Li-germanate family is suggested.
Depending on the set of the primary building units (PBU) (M-octahedra of the composition [GeO6] and T-tet-
rahedra of the composition [GeO4]) and the type of their “condensation,” these germanates are divided into
three crystallochemical groups: framework MT-structures (four phases), condensed MT-structures (two phases),
and tetrahedral T-condensed structures (five phases). The structural characteristics of the framework Li,Ge-ger-
manates are considered, i.e., their symmetry, crystallographically independent sets of the primary building
units, framework architecture, and the types of chains and layers of the (Ge,O)-radicals. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The family of Li-germanates includes eleven com-
pounds [1–9] and is the largest of all the families of
A-germanates/silicates (A = Li, Na, K, Rb, and Cs).
Lithium germanates include the compounds containing
anionic groups in the form of [GeO4]-tetrahedra—the
main characteristic used for classification of oxygen-
containing salts. The Li/Ge ratio in these germanates
ranges over the wide ranges from 8 : 1 to 2 : 7. The
structural variety of these germanates is explained by
(a) the possible simultaneous localization of germa-
nium in M-octahedra of the composition [GeO6], and
the T-tetrahedra of the composition [GeO4], i.e., by the
formation of two types of primary building units (PBU)
by Ge atoms of two types and (b) the geometric variety
of polyhedron condensation in three-dimensional crys-
tal structures (vertex- or edge-sharing polyhedra). No
natural lithium germanates have been observed. All the
compounds analyzed in this article were synthesized
under laboratory conditions by the methods of solid-
phase synthesis, crystallization from low- and high-
temperature aqueous solutions, and crystallization
from melt. Germanates of various compositions are of
great interest for establishing the crystallochemical
analogy in the behavior of germanium atoms under
“milder” temperatures and pressures, and silicon atoms
under high temperatures and pressures existing in the
depth of the earth crust.

Of special interest for crystal chemistry are Ge- ger-
manates, the compounds, where germanium is located
in both octahedra and tetrahedra. Such behavior is char-
acteristic only of germanium and manifests itself in the
interaction of GeO2 with oxides of one-, two, and three-
charged metal cations. Using the analogy with silicates,
the crystallochemical systematization of the 20 Ge-ger-
1063-7745/00/4504- $20.00 © 20626
manates known by 1985 (including four Li-ger-
manates) and based on the separation of the motif of
[GeO4]-tetrahedra (ortho- and diorthotetrahedra,
chains, and layers) was suggested in [10]. At present,
the number of Ge-germanates, including alkali and
alkali earth germanates, amounts to forty.

The structural determinations of Li- germanates
provided the establishment of all the atomic coordi-

nates (with the only exception of Li3H O16 ·
3H2O, for which the Li positions have not been deter-
mined).

The present study was aimed to the crystallochemi-
cal classification of the family of Li-germanates, estab-
lishing their structural characteristics (symmetry, the
crystallographically independent sets of primary build-
ing units, framework architecture, and geometric types
of tetrahedral Ge-radicals). At the same time, we also
analyzed the bond lengths of the behavior of frame-
work-forming octahedrally-coordinated GeVI atoms
and the tetrahedrally-coordinated GeIV atoms. The clas-
sification of Li-germanates continues our studies on the
crystal chemistry of ternary NaMe-germanates/silicates
and K, Me-silicates (Me = Ti, Zr, Sn, and K) [11–14].

CRYSTALLOCHEMICAL CLASSIFICATION 
OF Li-GERMANATES

The analysis of the known structural data on Li-ger-
manates shows that their structures always contain one
of two possible sets of primary building units PBU rep-
resented by either M and T (six compounds) or only by
T (five compounds). Unlike alkali metal titanates, there
are no germanates containing only M-octahedra. The
condensation of primary building units—[Ge,O]-tetra-
hedra and octahedra—occurs only along the shared

Ge4
VIGe3

IV
000 MAIK “Nauka/Interperiodica”
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vertices and edges. Depending on the type of condensa-
tion and the PBU sets, all the germanates can be divided
into three crystallochemical groups: framework MT-
structures, MT-condensed structures, and tetrahedral T-
structures. The compositions of these phases are indi-
cated in Fig. 1.

The group of framework MT-structures (PBU:
M and T, condensation only at vertices) consists of

four      germanates: Li2Ge
VI

O15 (Li2Ge7O15),

Li4 O20 (Li4Ge9O20), Li2Ge
VI

O9 (Li2Ge4O9),

and Li2GeVI O6(OH)2 (Li2Ge3O6(OH)2). The
detailed analysis of their structures is given below.

The group of MT-condensed structures (PBU:
M and T; condensation of (M + M) along the edges and
(M + T) along vertices) consists of the
Li3H O16 · 3H2O (Li3HGe7O16 · 3H2O) and

Li4 O12 (Li4Ge5O12) germanates. The struc-

tures of these germanates allow the substitution of Li
by Na, K, Rb, and Cs (the structural type of alkali-free

pharmacosiderite O12(OH)4 · 5H2O).

The group of tetrahedral and T-condensed struc-
tures (a PBU: T; condensation occurs only at vertices)
includes Li2 O5, Li2GeIVO3, Li6 O7,
Li4GeIVO4, Li8GeIVO6 (Li8O2GeO4) germanates. The
analogous of for all the germanates are the well-known
Li2Si2O5, Li2SiO3, Li6Si2O7, Li4SiO4 and Li8SiO4 sili-
cates with the same type of the T-radical (Si2O5-layers,
[SiO3]-chains, [Si2O7] diorthogroups, and [SiO4] ortho-
tetrahedra).

Below, we consider the structural characteristics of
framework germanates in the order of an increase in the
tetrahedral component within the framework of the
atomic–polyhedral model, with the separation of poly-
hedra only for the framework-forming Ge atoms and
with lithium atoms being statistically or orderly distrib-
uted over the framework voids.

STRUCTURES OF THE FRAMEWORK 
Li,Ge-GERMANATES

The Li2GeVI O6(OH)2 germanate (q = T/M =
2). The crystal structure with the unit-cell parameters
a = 9.988, b = 5.151, and c = 11.701 Å, γ = 110.79° was
refined in the anisotropic approximation up to R = 0.03
(575 reflections), sp. gr. B2/b [1]. The crystallographi-
cally independent PBU set consists of one M-octahe-

Ge6
IV

Ge2
VIGe7

IV Ge3
IV

Ge2
IV

Ge4
VIGe3

IV

Ge3
VIGe2

IV

Fe4
VIAs3

IV

Ge2
IV Ge2

IV

Ge2
IV
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dron, one T-tetrahedron, and two Li atoms. Hydrogen
atoms were localized in [2], R = 0.042 (865 reflections).

A fragment of the crystal structure projected onto
the XZ plane is shown in Fig. 2. The structure consists
of isolated [GeO4(OH)2]-octahedra with two OH-verti-
ces not participating in the condensation of Ge-polyhe-
dra. The T-radical consists of infinite [GeO3]-chains.
The M-octahedra of the composition [GeO4(OH)2] are
connected to four endless chains normal to the drawing
plane located at the heights x = 0.25 and 0.75 in the YZ
plane and forming the MT-framework. The chains are
parallel to the Y-axis, with their tetrahedra looking at
one another; the repetition period equals two.

The geometric model. The Li and GeVI atoms in the
structure form the layers of the composition (2Li + Ge)
in the YZ plane at a height of x = 0.50. The layers are
separated by the [GeO3]-chains. Within the framework
of the geometric model with the layer and chain struc-
tural fragments alternating along the Y-axis, the struc-
ture can be represented as:

Li2O

GeIVO2 GeVIO2

7

8

9
10

11

6
5

4
3

2
1 I

II

III

Fig. 1. The Li2O–GeIVO2–GeVIO2–H2O system. The
composition tetrahedron projected onto the Li2O–GeIVO2–
GeVIO2 plane. The regions of formation of (I) MT-framework
structures, (II) MT-condensed structures, (III) tetrahedral T-
structures are hatched in different ways. Black circles
show   the phases synthesized under the hydrothermal

conditions:
 

(1) Li2Ge
VI

O15, (2) Li4 O20,

(3) Li2Ge
VI

O9, (4) Li2Ge
VI

O6(OH)2,

(5) Li3H O16 · 3H2O, (6) Li4 O12,

(7) Li2 O5, (8) Li2GeIVO3, (9) Li6 O7,

(10) Li4GeIVO4, (11) Li8GeIVO6.

Ge6
IV

Ge2
VI

Ge7
IV

Ge3
IV

Ge2
IV

Ge4
VI

Ge3
IV

Ge3
VI

Ge2
IV

Ge2
IV

Ge2
IV
(2Li + Ge)-layer      –     [GeO3]-chains        –      (2Li + Ge)-layer       –       [GeO3]-chains

located at the heights X:  0 0.25 0.50 0.75
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Fig. 2. Li2Ge
VI

O6(OH)2. A fragment of the structure projected onto the XZ plane. The (2Li + GeVI) layers are located normally
to the drawing plane at a height of x = 0.50 (circles denote Li-atoms, Ge-atoms are located in octahedra). The layers are connected
by [GenO3n]-chains running along the Y-axis. The structurally equivalent fragments located at various heights are differently shad-
owed and hatched. The solid lines single out the repeating structural fragment of the composition M2T4. The figures indicates the
coordinates of metal atoms along the Y axis.

Ge2
IV
The model with the localized hydrogen atoms [2] is
characterized by narrow ranges of the Ge–O bond
lengths, with the pronounced difference between the
GeIV–O bond lengths for the end (1.727–1.737 Å) and
bridging (1.769–1.789 Å) O-atoms in T-tetrahedra and
difference between the bond lengths for germanium
atoms localized in the T- and M-polyhedra. Two O-
atoms in the OH groups form GeVI–O bonds (1.855 Å)
shortened in comparison with all the other bonds
(1.890–1.896 Å).

The Li2GeVI O9 germanate (q = T/M = 3). The
complete structural study was performed only for the

germanate of the composition LiNaGeVI O9 [3–5].

The first structural data for Li2GeVI O9 (formed
together with four other germanates by solid-phase
reactions in the Li2O–GeO2 system) were published in

[3]. The structure of the LiNaGeVI O9 phase (a

member of the Li2GeVI O9–Li1.5Na0.5GeVI O9–

LiNaGeVI O9 row) was refined up to R = 0.086,
sp. gr. Pcca in [4]. The parameters of the orthorhombic
unit cell are a = 9.31, b = 4.68, c = 15.88 Å. The crys-
tallographically independent set of PBU consists of one
M-octahedron, two T-tetrahedra, one Li-, and one Na-
atom.

Ge3
IV

Ge3
IV

Ge3
IV

Ge3
IV

Ge3
IV Ge3

IV

Ge3
IV
C

A fragment of the structure projected onto the XZ
plane is shown in Fig. 3 and consists of isolated
[GeO6]-octahedra. The T-radical is represented by infi-
nite [GeO3]-chains. All the polyhedra share vertices.
The model suggested in [4] has a split Li(1)-position
and a fully occupied Na-position. The M-octahedra (y =
0.5), connected by [GeO3]-chains lying in the XZ-plane
at heights y = 0 and 1, form the MT-framework. The
corrugated chains run along the X-axis. The repetition
period is much larger (six) in comparison with that in

Li2GeVI O6(OH)2 germanate (two).

The geometric model. The Li-, Na-, and GeVI-
atoms form the layers in the XZ-plane at the height y =
0.5 and are separated by [GeO3]-chains. Within the
geometric model with alternating structural fragments
along the Y-axis lying at the heights y = 0 and y = 0.5,
the structure of this germanate can be represented as:

[GeO3]∞-chains—(Na + Li + Ge)-layers.

Similar to the case of the refined model of

LiNaGeVI O9, the structure of the orthorhombic

Li2GeVI O6(OH)2 is characterized by rather close
Ge–O distances. The GeIV–O distances for the end O-
atoms (1.716–1.758 Å) and the bridging O-atoms
(1.757–1.789 Å) in the T-tetrahedra are essentially dif-
ferent. The Ge–O distances in the T- and M-polyhedra
are also different.

Ge2
IV

Ge3
IV

Ge2
IV
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Fig. 3. LiNaGeVI O9. A fragment of the structure projected onto the XZ-plane. The Li- (small circles), Na- (large circles), and

GeVI-atoms (in octahedra) form the (Li + Na + Ge) layers in the XZ-plane at a height of y = 0.50, connected by corrugated [GenO3n]-
chains (n = 6, solid lines) along the X-axis in the XZ plane. The repeated structural fragment of the composition M2T6 is hatched.
Figures indicate the heights along the y-axis; the figures at Li-atoms show the heights of the centers of split positions. The inset
shows that all the polyhedra share vertices (the Ge–O bonds).

Ge3
IV
The LiNaGeGe3O9 structure is characterized by its
low symmetry, sp. gr. Pca21 [5]. The structure model is
characterized by fully occupied Li- and Na-positions.
The structure was refined to R = 0.071 (560 reflections).
Within the framework of this model, the accuracy of the
determined positional parameters of the atoms is com-
paratively low, which, in turn, deteriorates the geomet-
ric characteristics of PBU. The Ge–O bond lengths for
Ge in the tetrahedron (1.67–1.80 for the end O atoms
and 1.71–1.86 Å for bridging ones) and in the octahe-
dron (1.81–1.93 Å) are very close. Therefore, in what
follows, we use only the centrosymmetric model of
LiNaGeGe3O9 suggested in [4].

The Li4 O20 germanate (q = T/M = 3.5).

The crystal structure was refined to R = 0.082 [6]. The
parameters of the monoclinic unit cell are a = 12.43,
b = 8.00, c = 7.49 Å, β = 91.0°. The structure was

Ge2
VIGe7

IV
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solved within the sp. gr. C2. The crystallographically
independent PBU set consists of one M-octahedron,
four T-tetrahedra, and three Li-atoms.

The fragment of the structure projected onto the XZ-
plane is shown in Fig. 4. The structure is characterized
by isolated [GeO6]-octahedra. The T-radical consists of
a [Ge7O20]-layer formed by (Ge,O)-chains. The model
has two fully occupied Li-positions. Two Li-atoms are
located in positions on the twofold axis (at heights y =
0.17 and y = –0.20); one Li-atom occupies the general
position (Fig. 3, y = –0.12). The M-octahedra of the
composition [GeO6] are connected by Ge,O-chains and
form the MT-framework. The [Ge7O20]-layers are par-
allel to the (210) plane. The repetition periods for a
[GeO4]-tetrahedron located on the 2-axis in the (Ge,O)
net is 8 (along the b-axis) and 10 (along the translation
vector (a + b)).
0
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Fig. 4. Li4 O20. A fragment of the structure projected onto the XZ-plane. Asterisks indicate the sections of the (210) planes

in which the Li and GeVI atoms form the (2Li + Ge)-layers connected by (Ge,O)-layers also parallel to the (210)-planes. The struc-
turally-equivalent fragments lying at different heights along the Y-axis are differently shadowed and hatched. The repeating struc-
tural M2T6-unit is indicated by solid lines.

Ge2
VI

Ge7
IV
The geometric model. The Li(1)-, Li(2)-, Li(3)-, and
GeVI-atoms in the structure form the (2Li + Ge)-layers
parallel to the (210) plane. These layers are separated by
C

the GeVI,O-layers. Within the geometric model with layer
structural fragments alternating along the (210) direction,
the structure can be represented as a sequence of the layers
                       (2Li + Ge)-layers      –     Ge7O20-layers     –   (2Li + Ge)-layers     –    Ge7O20-layers

With the heights along the (210) 
direction equal to

0 0.25 0.50  0.75
Unlike LiGeVI O6(OH)2, the structure of the
monoclinic germanate under consideration is charac-
terized by considerable scatter in all the Ge–O bond
lengths for the end (1.713–1.800 Å) and bridging
(1.711–1.815 Å) O-atoms in the T-tetrahedra, and
almost equal to Ge–O distances in the T- and M-poly-
hedra. Within the framework of the sp. gr. C2, the geo-
metric characteristics of the model, in particular the
ranges of Ge–O length variations, should be further
refined. The average values of the Ge–O bond lengths
in octahedra and tetrahedra are quite reasonable.

The Li2GeVI O15 germanate (q = T/M = 6).
The crystal structure of this germanate was solved in
[7] by X-ray diffraction methods within the sp. gr.
Pbcn, R = 0.072. The neutron diffraction determination
was performed on single crystals in the anisotropic
approximation to R = 0.067 (1580 reflections) [8]. The
parameters of the orthorhombic unit cell are a = 7.369,
b = 16.736, and c = 9.710 Å. The structure was solved

Ge2
IV

Ge6
IV
under the assumption that the Li(2)-position is slightly
split, and confirmed the model suggested in [7]. The set
of crystallographically independent PBU consists of one
M-octahedron, three T-tetrahedra, and two Li-atoms.

A fragment of the structure projected onto the YZ
plane is shown in Fig. 5. The structure is characterized
by isolated [GeO6]-octahedra. The T-radical consists of
infinite Ge,O-chains forming the corrugated layer of
the composition [Ge6O15]. Similar to the

LiNaGeVI O9 model, the model suggested in [8] has
a slightly split Li(2)-position (in Fig. 5, the Li(2)-atoms
are located in the center) and a fully occupied Li(1)-
position. The M-octahedra [GeO6] we linked by four infi-
nite [GeO3]-chains in the YZ plane at heights x = 0.3 and
0.7, and form the MT-framework. The chains are aligned
along the Z-axis and the repetition period equals 6.

The geometric model. The Li(1), Li(2) and GeVI-
atoms in the structure form the chain-like substructures

Ge3
IV
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Fig. 5. Li2Ge
VI

O15. A fragment of the structure projected onto the YZ-plane. The chains of Ge-tetrahedra at heights x = 0.78

and x = 0.72 (solid lines) connect isolated [GeO6]-octahedra. The Li- and GeVI-atoms form the substructures related by the 21-axis
in the YZ-plane at heights x = 0.50 and x = 1.0.

Ge6
IV

0.50
of the composition (2Li + Ge) in the YZ-plane at the
height of x = 0.5. These chains are related by the 21-axes.

The results obtained in [8] indicate the considerable
reduction of all the of bond-length ranges for the end
and bridging O-atoms in the T-tetrahedra compared
with the data indicated in [7], and also the pronounced
difference between the Ge–O bond lengths in the T- and
M-polyhedra.

DISCUSSION

The analysis of the structures of the framework
Li,Ge-germanates revealed three characteristic features
distinguishing them from similar A, Me4+-germanates/sil-
icates (A = Li, Na, K, Rb, Cs; Me4+ = Ge, Ti, Zr, Sn).

Nonisotrucurality of germanates. All the ger-
manates have original structures and have no analogues
among alkali A, Me(IV)-germanates/silicates. Nor do
they have analogues among alkali-free phosphates or
sulfates. It should be emphasized that germanates of
other alkali metals, e.g., three from five known Na,Zr-
germanates with framework structures, have the struc-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
tural analogues among alkali-free compounds [11],
whereas two well-known K,Zr-germanates have no
analogues at all.

Type of T-radical. The T-radical is represented by
isolated infinite chains of [GeO4]-tetrahedra (in two
cases) and by the same chains forming layers (in two
other cases). The repetition periods in the chain or in
the layer range from 2 to 10. In five framework structures
of Na,Zr-germanates [11], all the T-radicals are of the
island-type and are [GeO4]-orthotetrahedra, [Ge2O7]-
diorthogroups, and five-link [Ge5O16]-chains. In two
K,Zr-germanates [12], the T-radicals are [Ge2O7]-dior-
thogroups and [Ge3O9]-rings, respectively [12].

Content of the T-component. Unlike the case of
Na,Zr-germanates (q = 1, 1.5, 2, 2.5) and K,Zr ger-
manates (q = 2, 3), the q ratio equal to the number of
[GeO4]-tetrahedra to the number of [GeO6]-octahedra
in Li,Ge-germanates, q = T/M, varies in a wider range
(q = 2, 3, 3.5, 6).

At the minimum q-value, q = 2, the tetrahedra in the

LiGeVI O6(OH)2 framework forms chains with theGe2
IV
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repetition period 2T. Similar chains are also typical of
Li,Al(Sc,Fe)-silicates with close “PBU stoichiometry”
(2[SiO4][AlO6]), although they form the MT condensed
structures of the pyroxenetype LiAlSi2O6 instead of MT
framework structures.

At q = 3, the end compounds in the row of alkali

germanates Li2GeVI O9–LiNaGeVI O9–

Na2GeVI O9 have different Ge,O-radicals. The
[Ge3O9]-chains in two first phases and the three-mem-
bered [Ge3O9]-rings in the Na-containing phase are
explained by the different structures of the main crys-
tal-forming complexes [10].

The framework Li4 O20 structure (q = 3.5)

is characterized by the T/M ratio never encountered ear-
lier in the crystal chemistry of the M, T-frameworks—
T/M = 3.5 (7 : 2).

The MT-framework of the composition MT6 is often
encountered among alkali silicates (LiNaZrSi6O15,
K2ZrSi6O15, Na2LnSi6O15, Ln–RE, etc.). There are
more than ten topologically different variants of such
frameworks. The Li-germanate of the composition

Li2GeVI O15 has its own variant of PBU condensa-
tion and its own MT6-framework.

The geometric criteria of the structural-solution
quality for germanates are: the existence of narrow
ranges of Ge–O distance variations within each type of
polyhedra; the clearly pronounced difference between
the distances to the end and the bridging O-atoms in
T-tetrahedra; and a considerable difference in the Ge–
O distances for germanium located in tetrahedra and
octahedra. In this approach, a lower R-factor for a less
symmetric space group is not the necessary decisive
factor for the choice of the final structure.

Three geometric models of germanates considered
above satisfy these criteria. The monoclinic
Li4 O20 and LiNaGeGe3O9 do not satisfy it:

the symmetry is lowered from Pcca to Pca21 [8], which
results in three-to-five times broadening of the range of
all the Ge–O distances—for both end and bridging O-
atoms in tetrahedra and octahedra in comparison with
the distances conventionally observed in germanates.

The analysis of the crystallochemical characteristics
of the framework lithium germanates (symmetry, PBU
sets, framework architecture, geometric types of tetra-
hedral Ge-radicals) is the basis for the further study of
the crystallization processes of germanates. Earlier, a
similar analysis and the simulation of the processes of
structure formation were performed for Na,Me-ger-
manates [10].

The structural data show that the framework Li-ger-
manates are crystallized within low-symmetric space
groups—monoclinic C2 and B2/b and orthorhombic
Pcca and Pbcn. One structure is described by the acen-

Ge3
IV Ge3

IV

Ge3
IV

Ge2
VIGe7

IV

Ge6
IV

Ge2
VIGe7

IV
C

tric group C2, the other structures are described by the
centrosymmetric groups. All the structures are charac-
terized by a relatively low number of crystallographi-
cally independent PBU in the unit cell—only one
M-octahedron, one-to-four T-tetrahedra, and two-to-
three Li-atoms.

It seems that the most important fact is that all the
[GeO6]-octahedra in the unit cell are related by Sym-
metry elements. This fact is of great importance for the
simulation of the process of forming germanate struc-
tures in the solution by combining secondary building
units (SBU) (the simplest combinations of the primary
building units), i.e., of M-octahedra, T-tetrahedra, and
Li-atoms. Thus, the secondary building units for simu-
lating the crystallization processes of Li,Ge-ger-
manates should be selected with due regard for the
obligatory symmetric relations at all the stages of for-
mation of secondary structural building units, the pre-
cursors of the crystal-structure formation of framework
germanates.
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Abstract—The concept of Cl-aggregation in chlorine-containing organic compounds and the principles of their
classification are briefly discussed. The method for singling out Cl-aggregates in substances with high chlorine
content is considered, using the examples of hexachlorobenzene and pentachlorobenzene. It is established that
Cl-aggregates in these compounds are three dimensional (i3-aggregates) and contain subaggregates of lower
dimensionalities. The results obtained agree with the earlier assumptions about an important role of the chlo-
rophobic effect in Cl-aggregation. © 2000 MAIK “Nauka/Interperiodica”.
The present article is part of the crystallochemical
study of the structural characteristics of chlorine-con-
taining organic crystals. Earlier [1], on the basis of
energy calculations, we put forward the hypothesis of
an important role of the chlorophobic effect in
Cl-aggregation. Below, we analyze the manifestation
of the chlorophobic effect in crystals with high chlorine
content, using examples of the crystal structures of
hexaclorobenzene and pentachlorobezene.

SHORTENED Cl···Cl DISTANCES 
AND Cl-AGGREGATION

With the accumulation of new X-ray diffraction
data, the systematic study of organic crystals becomes
ever more informative. The analysis of these data leads
to conclude that they are characterized by shortened
intermolecular Cl···Cl distances in comparison with
double van der Waals radii characteristic of chlorine-
containing organic crystals [2], and that some crystal
properties (i.e., the ability to photochemical reactions)
are dependent on the existence of such distances [3].
The specific features of chlorine-containing organic
crystals were repeatedly studied, but the authors often
used the reduced value of the van der Waals radius of a
chlorine atom (1.76 Å) [4] and, thus, considered only
the shortest (less than 3.5 Å) intermolecular Cl···Cl dis-
tances. For many years, the study of chlorine-contain-
ing organic crystals reduced to the statistical analysis of
the geometric characteristics of the Cl···Cl contacts
(e.g., the review article [5]). A rather formal classifica-
tion of the structures with short intermolecular Cl···Cl
distances was suggested in [6] and then was refined and
developed in [7–9] (this classification will be consid-
ered in detail later). The Cl···Cl contacts obtained by a
number of researchers were reviewed elsewhere [8, 9].

However, is seems that the formation of the struc-
ture depends not only on the presence of some short-
ened Cl···Cl distances, but also on the arrangement of
1063-7745/00/4504- $20.00 © 20633
all the chlorine atoms in the crystal space. The analysis
of organic crystals shows that the specific contacts have
a tendency toward aggregation, including the aggrega-
tion of short intermolecular Cl···Cl distances [10, 11]. It
should be emphasized that we mean here not only the
shortest Cl···Cl distances, but also those distances
which only slightly exceed the double value of the
“normal” van der Waals radius of a chlorine atom
(1.9 Å [12]). In other words, the crystal structure has a
number of rather short (about 4.2–4.3 Å) distances non-
uniformly distributed in the space, i.e., located only
within certain regions.

The specific manifestations of this effect in the crys-
tal structures of three substances (chlorobenzene and
two dichloronaphthalenes with low chlorine content)
were discussed in [13], undertaken with the aim to
study Cl-aggregation. In an earlier study [14], the
author indicated the characteristic feature of three mod-
ifications of p-dichlorobenzene—the layers formed due
to Cl···Cl interactions. Studying the thermal expansion
of the crystals, Wheeler and Colson [14] concluded that
the layers in p-dichlorobenzene polymorphs are formed
due to attractive interactions between chlorine atoms.
However, the results obtained in our previous study to
the effect [1] led us to another assumption—Cl-aggre-
gation, at least in some cases, is caused by the chloro-
phobic effect, which reduces to the following. Since the
most energetically advantageous interactions are those
between the benzene rings, chlorine atoms are “pushed
away” from the regions of these interactions, which, in
turn, results in the formation of Cl-aggregates.

In this connection, we performed the crystallochem-
ical analysis of the structures with both low and high
chlorine content. In the latter case, the chlorophobic
effect resulted in a grouping of the intermolecular
Cl···Cl distances in only some regions of the crystalline
substance, whereas purely attractive interactions
between chlorine atoms would have resulted in their
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Hexaclorobenzene (viewed along the Y-axis). The dashed lines in Figs. 1–5 indicate intermolecular Cl⋅⋅⋅Cl contacts; figures
indicate independent chlorine atoms. For notation of ribbons forming Cl-aggregates, see Fig. 3; the ribbons are numbered in the
order of an increasing d or d1 distance.
homogeneous distribution over the crystal space. Our
assumption is justified only if the interactions between
chlorine atoms produce a strong influence on the for-
mation of the crystal structure. Obviously, the arrange-
ment of molecules in a crystal is determined by a num-
ber of factors, and the Cl···Cl interactions do not neces-
sarily play the decisive role in the structure formation.

The phenomenon of Cl-aggregation is almost
unstudied, and no Cl-aggregates formed by shortest
intermolecular Cl···Cl distances are classified. As
already indicated, Sarma and Desiraju [6, 7] suggested
a classification of structures with short intermolecular
Cl···Cl distances. They invoked the concept of the
β-structure (or 4 Å-structure) first introduced by
Schmidt [3] for structures in which the shortest lattice
period was equal to ~4 Å. These structures (of which
C

most are formed by planar aromatic molecules) are
often encountered among chlorine-containing organic
crystals. The classification suggested in [6–9] is based
on several typical two-dimensional motifs stabilized by
attractive Cl···Cl interactions. These motifs are formed
by planar ribbons, planar layers, corrugated layers, and
double-corrugated layers, whose short Cl···Cl intermo-
lecular distances lie almost in the molecule plane. The
fragments thus constructed are connected via stacking
of benzene rings, and form a 4 Å-structure. Desiraju [8]
considers hexachlorobenzene and the β-modification
(triclinic) of 1,4-dichlorobenzene as representatives of
the structures with ribbons and planar layers. Accord-
ing to Desiraju [8], the pentachlorobenzene structure
has a double corrugated layer. In our opinion, an essen-
tial shortcoming of this classification is the rather for-
mal attempt to find some relation between the space
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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groups and the two-dimensional motifs (e.g., an
orthogonal structure and a double corrugated layer). In
some cases, this leads to a rather unusual description of
the structures. This is true for both compounds consid-
ered in the present study, and especially, for hexachlo-
robenzene.

It should be indicated that Desiraju and his coau-
thors give different definitions of short Cl···Cl dis-
tances. Analyzing the number of short distances per
molecule, Sarma and Desiraju [6] use a somewhat
ambiguous criterion of selecting short Cl···Cl distances,
which states that the atoms in the structure should be
spaced by a distance shorter than the distance providing
an –0.05 kJ/mol energy contribution to the crystal sta-
bilization. Unfortunately, they did not indicated this
distance, but, the indirect data allowed us to assume
that it ranged within 3.8–3.9 Å. It was also indicated [6]
that the distances exceeding 3.6 Å existed in both 4 Å-
structures and structures not related to this type. There-
fore, these distances could not be structure-forming and
were ignored. However, refining their classifications
for chlorine-containing 4 Å-structures, Sarma and
Desiraju [7] included into consideration Cl···Cl dis-
tances up to 4.1 Å, whereas, somewhat later, calculat-
ing the Cl···Cl contacts, Desiraju and Parthasarathy
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
[15] took into account Cl···Cl distances less than
3.52 Å.

OBJECTS OF STUDY

In the present study, we analyzed the data of the
X-ray diffraction study of hexachlorobenzene [16, 17]
and pentachlorobenzene [18] in terms of crystal chem-
istry. Desiraju et al. [6–9] and considered the data of the
first complete structural determination of crystalline
hexaclorobenzene [16], where most of the short inter-
molecular Cl···Cl distances were indicated, although
we used more accurate results from a more recent study
[17]. It should be indicated that the difference between
the unit-cell parameters in [16] and [17] ranges within
0.03–0.05 Å. For most of the intermolecular Cl···Cl dis-
tances, the maximum discrepancy is 0.13 Å. However,
arranging the Cl···Cl distances in the order of their
increase, we revealed that, in three instances, the dis-
tances given in [16] and [17] are slightly inconsistent.
March and Williams [18] claimed that their aim was to
obtain a more detailed information on Cl···Cl intermo-
lecular interactions in organic crystals, but, in fact, they
discussed in detail only the molecule geometry. The
major data on the crystal structures of hexachloroben-
zene and pentachlorobenzene are as follows:
Substance Structure class a b c β Number of indepen-
dent Cl atoms

Hexaclorobenzene P21/n, Z = 2( ) 8.0476 3.8363 14.8208 92.134 3

Pentachlorobezene Pca21, Z = 4(1) 16.802 3.856 13.279 5

1

It was shown [19] that benzene rings make three
main types of the contacts: sandwich-type, oblique, and
orthogonal contacts. In turn, each of these contacts has
several stereotypes. Below, we use the concept of the
0

S-structure, i.e., the structure with aggregation of sand-
wich-type contacts (in this case the difference between
the stereotypes is ignored). These structures are formed
by stacks of benzene rings. As is seen from Figs. 1 and
Short intermolecular distances in the hexachlorobenzene and pentachlorobenzene structures

Hexaclorobenzene Pentachlorobezene Hexaclorobenzene Pentachlorobezene

r(Cl···Cl), Å Cl···Cl type 
r(Cl···Cl)

r(Cl···Cl), Å Cl···Cl type 
r(Cl···Cl)

r(Cl···Cl), Å Cl···Cl type 
r(Cl···Cl)

r(Cl···Cl), Å Cl···Cl type 
r(Cl···Cl)

3.447 1…3 inter 3.885 3…3 inter 3.885 1…2 intra

3.516 2…3' inter 3.539 2…4 inter 3.917 1…2 intra 3.891 3…5 inter

3.563 1…2 inter 3.562 1…4 inter 3.963 1…3' inter 3.985 2…5 inter

3.701 2…2 inter 3.700 1…4 inter 4.001 4…5 intra

3.711 1…1' inter 3.709 1…5 inter 4.049 4…5 inter

3.736 1…1' inter 3.748 2…5 inter 4.155 2…3' intra 4.181 2…3 intra

3.779 1…3' inter 3.829 1…3 inter (4.413) 2…3' (4.412) 3…5

3.836 period 3.856 period (4.662) 1…2 (4.638) 1…5

Note: Cl···Cl distances between the benzene-ring stacks are indicated as inter, those inside such stacks are indicated as intra.
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Fig. 2. Pentachlorobezene (viewed along the y-axis).
2, the hexachlorobenzene and pentachlorobenzene
structures belong to the S-group, and, therefore, it is
natural to assume that the mutual stack orientation is
determined mainly by Cl···Cl interactions.

METHODS OF CRYSTALLOCHEMICAL 
ANALYSIS AND MAIN RESULTS

We believe that studying the structural characteris-
tics of chlorine-containing organic crystals, it is prefer-
able to classify them by the type of Cl-aggregates
formed by intermolecular Cl···Cl contacts. A Cl-aggre-
gate can be finite or infinite in one, two or three dimen-
sions (the i1-, i2-, and i3-aggregates, respectively). Thus,
the study of chlorine aggregation is based on the sepa-
C

ration of intermolecular Cl···Cl distances, which are
called short Cl···Cl distances or Cl···Cl contacts and
which form Cl-aggregates.

We do not use energy characteristics for selecting
Cl···Cl distances because the potentials indicated by
various authors are inconsistent and lead to obvious
ambiguities. Moreover, the contributions to the crystal
energy come not only from Cl···Cl interactions, but also
from the Cl···C and Cl···H interactions. Therefore, as
follows from [1], the dependence between the energy
contributions of the interactions with participation of
chlorine atoms and the Cl···Cl distances is somewhat
ambiguous.

We calculated the intermolecular distances from
each symmetrically independent chlorine atom of the
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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d1

d2

d

t t

Fig. 3. Elements of Cl-aggregates characteristic of chlorine-
containing crystals of the S-type: (a) p-type ribbons, (b) z-
type ribbons for d1 ≠ d2 and ze-type ribbons for d1 = d2; t is
the stack period (the shortest translation).

(a) (b)
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
initial hexachlorobenzene and pentachlorobezene mol-
ecules to all the chlorine atoms of the molecules in the
nearest environment. These values are listed in the table
in the order of their increase. In parentheses, the short-
est of the long distances are also indicated. It is seen
that the total number of the shortest intermolecular
Cl···Cl distances and their values are rather close. In the
pentachlorobenzene crystal, the short and the long dis-
tances considerably differ—up to the distance 4.18 Å,
the difference between two neighboring distances does
not exceed 0.14 Å; the next distance is longer by
0.23 Å. For hexachlorobenzene, the longest of short
distances can be selected as either 3.963 Å (the gap to
the next distance equal to 0.19) or as 4.155 Å (the gap
of 0.26 Å). The longest of the short distances for
hexachlorobenzene is chosen to be 4.155 Å. The allow-
ance for all the contacts indicated in the table leads to
the formation of a i3-aggregate.

We described Cl-aggregates in S-structures with the
aid of two main elements—ribbons of two types
(Fig. 3) running along the stacks. It has already been
0 x

z

0 x

z

0 x

z

0 x

z

(a) (b)

(c) (d)

Fig. 4. Cl-aggregates in hexachlorobenzene at different lengths of the contact under consideration. The maximum contact lengths
(a) 3.836, (b) 3.885, (c) 3.963, and (d) 4.155 Å.
0
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indicated that, to a large extent, the Cl···Cl interactions
determine the mutual stack orientations. Therefore, we
considered first Cl-aggregates formed by the shortest
S-inter-contacts (the contacts between the stacks). As is
seen from table, all the contacts in both crystals shorter
than the translation t are S-inter-contacts, and, there-

0

x

z

0

x

z

0

x

z

(a)

(b)

(c)

Fig. 5. Cl-aggregates in pentachlorobenzene at different
lengths of the contact under consideration. The maximum
contact lengths (a) 3.856, (b) 4.049, (c) 4.181 Å.
C

fore, we considered Cl-aggregates formed by the con-
tacts either shorter than or equal to t. Moreover, in
hexachlorobenzene, we also considered a Cl-aggregate
with due regard for the first contact exceeding t because
it is also an S-inter-contact. As is seen from Figs. 4a and
5a, Cl-aggregates formed by the contacts t are periodic
only in two dimensions (i.e. are i2-aggregates). In
hexachlorobenzene, the allowance for the next S-inter-
contact results in the formation of a i3 aggregate
(Fig. 4b). It should also be noted that, according to
[16], a i3 aggregate in hexachlorobenzene can be sin-
gled out by considering the contacts of lengths ≤t alone.
Thus, the allowance for only the shortest S-inter-con-
tacts does not change the dimensionality of a Cl-aggre-
gate in hexachlorobenzene, but reduces its dimension-
ality in pentachlorobenzene.

Since the longest contacts in the pentachloroben-
zene and hexachlorobenzene structures differ from the
preceding ones (and are, in fact, S-intra-contacts, i.e.,
the contact inside the stack), we considered Cl-aggre-
gates containing all the Cl···Cl contacts except for the
longest one. It was established that, in this case as well,
a Cl-aggregate in pentachlorobenzene is periodic in
two dimensions and, thus, is a complex layer (Fig. 5b)
which can be represented as a set of edge-sharing rods.
Similar rods are also present in a Cl-aggregate in
hexachlorobenzene (Fig. 4c) with only one difference:
in the latter case, they are connected by z- and ze-rib-
bons along two directions (Fig. 3). Thus, a i3-aggregate
in pentachlorobenzene (Fig. 5c) is formed only with the
participation of the longest contact 4.181 Å: these lay-
ers are connected by the p-type ribbons. In hexachlo-
robenzene, a i3-aggregate (with due regard for all the
contacts, Fig. 4d) resembles the corresponding aggre-
gate in pentachlorobenzene: the layers, which can be
called two-row corrugated layers are connected by the
z-type ribbons. It should also be indicated that in pen-
tachlorobenzene and hexachlorobenzene, the shortest
of the long distances also lie in such layers.

Thus, the study of Cl-aggregation in pentachlo-
robenzene and hexachlorobenzene shows that Cl-
aggregates in these crystals are heterogeneous, i.e.,
most of the Cl···Cl contacts are located within the sub-
aggregates of lower dimensionality, and only a small
number of the contacts connect subaggregates into an
aggregate. Also, despite the fact that the chlorine posi-
tions in molecules are distributed rather uniformly
(especially in hexachlorobenzene) and the chlorine
concentration is rather high, the crystals also contain
well-pronounced subaggregates. Our study shows that
the contacts providing the merge of these subaggre-
gates can be either the longest ones (pentachloroben-
zene) or can also be of moderate lengths (hexachlo-
robenzene). The first variant seems to be more typical,
whereas the second variant is provided by a high sym-
metry of the molecule.

The existence of subaggregates in Cl-aggregates of
higher dimensionality is consistent with the assumption
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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that the key role in the formation of these Cl-aggregates
is played by the chlorophobic effect [1], which provides
the most compact arrangement of the shortest intermo-
lecular Cl···Cl contacts.
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Abstract—The Kolmogorov approach is used to describe the transition from the metastable to the stable state
of a linear system, as a statistical process of multiple formations of nuclei of a new state and their merging.
Within the framework of the model of a random-force field decelerating the motion of the boundaries between
various states, it is shown that the kinetics of state switching undergoes a drastic change in the vicinity of a cer-
tain critical driving-force F = Fc. At F < Fc the switching process is considerably decelerated because of the
anomalous boundary motion. The theory can also be used to calculate the influence of defects on the interphase
domain boundaries on substrates, crystal growth by step mechanism, plastic flow of materials due to dislocation
motion in the Peierls–Nabarro relief, and kinetics of their physical processes. © 2000 MAIK “Nauka/Interpe-
riodica”.
1 INTRODUCTION

The kinetics of state switching in linear systems
determines the characteristics of many physical pro-
cesses such as the dynamics of spin chains, polymers,
domain boundaries on two-dimensional substrates [1],
crystal growth via step motion on the surface [2], plas-
tic flow of materials due to dislocation motion in the
Peierls–Nabarro relief [3], etc.

The characteristics of state switching in a linear sys-
tem with several degrees of freedom are essentially dif-
ferent from the well known exponential kinetics of
relaxation of one-dimensional systems Q(t) =
Q0exp(−t/τ), where Q(t) is the fraction of the initial state
at the moment t. As shown by A.N. Kolmogorov in
1937 [4], the mutual effect of various degrees of free-
dom changes the temporal law of relaxation even in
spatially-homogeneous materials.

For example, consider a spin chain. Leaving aside
the fluctuations, one can state that there are two
states—with all the spins being directed either upward
or downward. These states are separated by an energy
barrier. In the absence of a magnetic field, these states
are degenerate. The application of a magnetic field
makes one of these states more favorable and aligns the
spins along the field. The change of the magnetic-field
sign makes this state metastable and gives rise to a driv-
ing force for spin reorientation (switching) and to a
transient process of state switching. In other systems,
the driving force can be of another physical nature, but
the process proceeds similarly.

We shall also consider mixed states, i.e., the situa-
tions where some parts of the system are in different
states, i.e., can be considered as different phases.
A great contribution to the kinetics of state switching in

1  e-mail: petukhov@ns.crys.ras.ru
1063-7745/00/4504- $20.00 © 0640
linear systems comes from the motion of the so-called
kink–solitons or simply kinks [5], which are, in fact,
interphase boundaries. These boundaries can be con-
sidered as specific one-dimensional quasiparticles. If
the driving force is relatively weak, the process is
quasiequilibrium, i.e., proceeds via the motion of
kinks–solitons, which are in the thermal equilibrium.
However, below, we consider rather pronounced driv-
ing forces and essentially nonequilibrium processes, so
that the contribution of thermal kinks can be ignored.

Switching the global state of the system proceeds in
two stages. First, a thermal fluctuation gives rise to a
local transition of a small portion of the system, which
overcomes an energy barrier equal to the energy of the
formation of two boundaries between the phases, and
takes quite a long time. This portion can be considered
as a “nucleus” of a new state, limited by two kinks sep-
arating different states. Then, under the effect of the
applied external force, the kinks spread over the linear
system until they meet the kinks from another nuclei
formed statistically independently and are annihilated.
Upon the merging of all the nuclei, the switching pro-
cess is completed.

The problem of state switching kinetics in spatially
homogeneous material (for a system of any dimension)
was solved by A.N. Kolmogorov [4]. If the frequency
of nucleus formation per unit length per unit time is
denoted by J and the velocity of kink spreading, by v,
the fraction of the initial phase Q(t) by the moment t can
be written as [4]:

(1)

In real materials, kink motion is affected by defects
because of the one-dimensional nature of quasiparticles
(in the one-dimensional case, quasiparticles cannot go
around a barrier). A well-known example of the anom-

Q t( ) Jv t2–( ).exp=
2000 MAIK “Nauka/Interperiodica”
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alous behavior of a one-dimensional particle in random
potentials is the quantum localization of such particles
[6]. In [7], a specific classical analogue of this phenom-
enon was predicted—with a decrease of the driving
force F, a particle should demonstrate the anomalous
drift:

(2)

In the presence of a broad spectrum of random barriers
and at F = 0, the particle should undergo anomalous
diffusion [8]

. (3)

There are numerous review articles to this effect
[9−11]. This phenomenon is also known as “quasilocal-
ization” [9], nonlinear drift in a “field of a random
force” [10, 12], the motion in the “creep phase” [13],
and the “heterogeneous dynamics” [14]. Recently, the
anomalous drift of dislocation kinks was observed in
experiments on the dislocation mobility in Ge [15].

We aimed to study the effect of point defects on the
switching kinetics in linear systems. Randomly
arranged point defects and their accumulations create a
spectrum of random barriers that decelerate the kink
motion and change the characteristics of the switching
process. The calculation of these characteristics
requires the further development of the probabilistic
approach to the description of the statistical process of
multiple formation and merge of nuclei. This approach
will allow, in particular, the study of the transition from
the mode of the normal kink drift (the Kolmogorov
case) to the anomalous drift with the corresponding
change of the general kinetics of the global-state
switching of the system. Because of the microscopic
nature of the kinks, the study of the general kinetics of
state switching is often the only possibility of obtaining
the information on kink dynamics.

If the times of a free-kink motion between the barri-
ers are short in comparison with the times of their pin-
ning at the barriers, the kinetics can be considerably
different. Below, we consider just this situation, and
therefore the contribution of the free-drift time of the
kink to the total time of kink motion can be ignored.

KINETICS OF STATE SWITCHING 
FOR AN ARBITRARY SPECTRUM 

OF THE KINK-MOTION BARRIERS

Consider the changes in the system state at a certain
arbitrarily chosen point with time. It is convenient to
divide the system into the intervals of length ∆l compa-
rable to the typical size of the barrier (the details will be
considered later). A kink τi is characterized by the delay
time characteristic of each interval, whereas the density
of the delay-time distribution, P(τ), is assumed to be
the same in all the intervals. The total delay time for a
kink passed n intervals equals Tn = .

x t( ) tδ F( ) δ F( ) 1<( ).∼

x t( ) t( )ln
2∼

τ ii 1=
n∑
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By the moment t, an arbitrarily chosen reference
point will be in a new “switched” state if the boundary
of a new state of the nucleus generated at a moment of
time t' within a certain interval n has enough time to
attain the point under consideration prior to the
moment t, or, in other words, if the delay time Tn during
the kink motion from the site of its generation to the
point under consideration is shorter than t – t'. The
probability of nucleus generation within the time inter-
val ∆t' equals J∆l(n)∆t'. The additional quantity (1 –
J∆l(n)∆t ') is the probability that, within the given length
and time intervals, no nucleus is generated. The proba-
bility qn(t) that the nth interval would not be a source of
the state switching at all equals the product of the
probabilities that no nuclei would be generated in all
the time intervals between the moments t ' = 0 and t ' =
t – Tn, i.e.,

(4)

The total probability of the preservation of the initial
state Q(t) at the given point is the product of the proba-
bilities that no nuclei appear in any intervals for which
the time necessary for the kink to reach the chosen
point is less than t. The sets of such intervals exist
both on the left and on the right of the point under con-
sideration. Since the barriers are independent, Q(t) can
be represented as the probability product, Q(t) =
q0(t)Q+(t)Q(t), where q0(t) = exp(–J∆lt) is the probabil-
ity that no nucleus can appear in the interval to which
the point under consideration belongs. The probability
Q+(t) that no nuclei appearing on one side of the point
(e.g., only on the right-hand side) can change the state
(and, in a similar way Q–(t)) is a product of probabilities
qn(t) (for all the intervals ∆l(n) from unity to the maxi-
mum value N satisfying the condition TN < t < TN + 1)

(5)

The exponent in Eq. (5) was transformed with due
regard for the relationships

(6)

The probability Q+(t), averaged over all the points of
the system or, which is the same, over all the possible
barrier positions and the equal value of the averaged

qn t( ) 1 J∆l n( )∆tα'–( ) J∆l n( ) t Tn–( )–( ).exp≈
α

∏=

Q+ t( ) J∆l t Tn–( )–( )exp
n 1=

N

∏=

=  J∆l N t T N–( ) iτ i

i 1=

N

∑+
 
 
 

–
 
 
 

.exp

T N

n 1=

N

∑ τ i

i 1=

n

∑
n 1=

N

∑ N i–( )τ i

i 1=

N

∑= =

=  NT N iτ i.
i 1=

N

∑–
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probability Q–(t) are written in the form

(7)

Here, P(τ)dτ is the probability that the delay time range
within τ and τ + dτ. Integration is performed over all the

τm whose sum is less than t and P1(t)= (τ)dτ is the

probability that the delay time would exceed t. By def-
inition of N, the factor P1(t – TN) takes into account the
fact that the interval following the Nth interval will
have the delay time, which, being added to TN, would
exceed t.

Now, calculate the characteristic function for Q+(t),
which is the Laplace transform of 〈Q+(t)〉:

(8)

Changing the integration order with respect to t, and the
summation order with respect to N, we can calculate the
integral over t with due regard for the condition t > TN:

Here (s) is the Laplace transform of P(τ), and (s) =

P(τ)dτ.

The remaining integral over {τm} is the product of
integrals and can be readily expressed in terms of the

product of the Laplace transforms (s):

(9)

Q+ t( )〈 〉 Q– t( )〈 〉=

=  P τm( )
m 1=

N

∏ τmQ+ t( )P1 t T N–( ).d∫
N 1=

∞

∑

P
t

∞∫

Q̂ s( ) dte st– Q+ t( )〈 〉 td

0

∞

∫ dte st–

0

∞

∫= =

× e
J∆lN t T N–( )–

P1 t T N–( ) e
J∆lmτm–

P τm( )
m 1=

N

∏ τm.d∫
N 1=

∞

∑

dte
s J∆lN+( )t– J∆lNT N+

P1 t T N–( )
T N

∞

∫

=  e
sT N–

dt'e s J∆lN+( )t'– P τ( ) τd

t'

∞

∫
0

∞

∫

=  e
sT N–

1 P̂ s J∆lN+( )–( )/ s J∆lN+( ).

P̂ P̂

e sτ–

0

∞∫

P̂

Q̂ s( )

= 1 P̂ s J∆lN+( )–( )/ s J∆lN+( )( )
N 1=

∞

∑

× P̂ s J∆lm+( ).
m 1=

N

∏

C

GAUSSIAN FIELD OF A RANDOM FORCE

A kink moves in a potential consisting of a ran-
domly varying energy of the interactions between the
system and defects, U(x), during the change of the state
within the length x, and a regular term –Fx due to the
driving force F. In the model under consideration, U(x)
is a random quantity performing “the Brownian
motion” with the “diffusion coefficient” σ on the
energy scale. The examples of the physical implemen-
tation of the model of a random potential, the so-called
“field of a random force,” are considered in [7–13].
Thus, for point defects randomly distributed in the sys-
tem with the average linear density ρ, the change in the
energy of their interaction with the system during its
state switching is ±u, σ = ρu2.

Consider a certain barrier formed by the peak of the
potential U(x), and calculate the delay time of a kink
due to this potential. The kink can overcome the barrier
due only to a favorable thermal fluctuation. The expec-
tation time τ of such thermal activation is described by
the formula [16, 17]

(10)

Here Dk is the diffusion coefficient of the kink and ∆l is
the characteristic dimension of the kink localization in
front of the barrier determined by the length at which
the potential is changed by a value of the order of the
heat energy kT. We are not interested in the exact value
of the preexponential factor in Eq. (10) and restrict our-
selves to a mere estimation of ∆l proceeding from the
following simple considerations. The potential in
Eq. (10) is a sum of an arbitrarily diffusing component
of U(x) whose typical amplitude increases with x as
(σx)1/2 and a regular “drift term” Fx. At small lengths,
the potential shows the “diffusion behavior,” whereas at
x ~ xb = σ/F2, it behaves differently, and, at x > xb, the
contribution of Fx starts prevailing. In the latter case, ∆l
is estimated from the relationship F∆l ~ kT as ∆l ~ kT/F.
The condition of the applicability of this estimate is
∆l > xb, i.e., δ = kTF/σ > 1. In the other limiting case,
δ < 1, the value of ∆l is estimated from the relationship
(σ∆l)1/2 ~ kT as ∆l ~ (kT)2/σ.

For the distribution function P(τ), the following
relationship was obtained [7, 10]

(11)

where s0 = σDk/((kT)2∆l) and Γ(δ) = e–xdx. The

Laplace transform P(τ) is written as

(12)

Here Kδ(x) is Macdonald’s function [18]. To calculate

the product in (9), one has to know the behavior of (s)

τ ∆l/Dk( ) e U x( ) Fx–( )/kT x.d

0

∞

∫=

P τ( )
1/ s0τ( )–( )exp

Γ δ( )s0
δτδ 1+

-----------------------------------,=

xδ 1–

0

∞∫

P̂ s( ) 2/Γ δ( )( ) s/s0( )δ/2Kδ 2 s/s0( )1/2( ).=

P̂
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at small values of the argument. Using the expansion of
Kδ, we obtain

(13)

We retain two s-dependent terms of the expansion,
because we are also interested in the region δ ~ 1,
where the contributions of these terms are competing.
Using the above formula, we obtain

(14)

Here λ = J∆l/s0 and ε = δ – 1. The parameter λ = J∆l/s0,
determined by the probability of generation of a
nucleus within one microscopic interval ∆l for the time
1/s0, is assumed to be small. The switching time is
determined by the generation of nuclei at system por-
tions large compared to ∆l. Thus, only large N-values are
important in the sum of Eq. (9), and therefore the sum-
mation over m in Eq. (14) can be substituted by integra-
tion. Moreover, in the same approximation, we have

(15)

Consider the case of high (δ > 1) and low (δ < 1) val-
ues of the driving force.

1. The case d > 1. The last term in expansion (13)
can be ignored everywhere with the exception of a nar-
row neighborhood of small ε (which deserves a special
consideration). Thus, we have

(16)

The inverse Laplace transformation yields [19]

(17)

At ∆l = kT/F, the above expression can be written as
〈Q±(t)〉  = exp{–(1/2)(1 – 1/δ)v0Jt2}, where v0 =
DkF/(kT) is the velocity of the free kink drift. Thus, if
δ @ 1 (the effect of a random energy addition to the
potential in which the kink moves is negligible), the
expression obtained is consistent with Kolmogorov for-
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mula (1). (We should like to remind that 〈Q(t)〉 =
〈q0(t)Q+(t)Q–(t)〉). In this case, the switching time is
short in comparison with the time of nucleus formation
within one interval, and therefore, q0(t) ≈ 1 and 〈Q(t)〉 ≈
〈Q±(t)〉2. At δ ~ 1, the formula has the same form as the
Kolmogorov formula, but the kink velocity is renormal-
ized, v = (1 – 1/δ)v0. The procedure of averaging the
fraction of the initial state over the barrier spectrum
reduces to the simple substitution of the kink velocity
by its average value.

Thus, in this range of parameters, the kink deceler-
ation by random barriers results in a reduction of the
average kink velocity, and the dependence of the kink
velocity on the driving force acquires a certain thresh-
old. This process is accompanied by a noticeable decel-
eration of the switching process (Fig. 1). At a certain
critical value of the driving force, F = Fc, determined
by the condition δ(Fc) = 1, the average kink velocity
goes to zero, and the character of the kink motion is
changed. The region under the driving-force threshold
requires special consideration.

2. The case d < 1. In this case, the major contribu-

tion to (s) comes from the third term of (13). Then

(18)

where 

ta = , Γ(a, z) = e–xdx.

At δ  1, expression (18), with due regard for the
relationship Γ(1/2, x2) = (π)1/2erfc(x), acquires func-
tional form Eq. (16), and the inverse Laplace transfor-
mation leads to the Kolmogorov dependence 〈Q(t)〉  =
exp(–const · t2), but with the coefficient in the exponent
differing from that in the case ε > 0 (17). The cause of
such a jump will be discussed later.

As is seen from Eq. (18), the dependence of the
averaged switching kinetics on the parameter λ enters
only the scale factor ta. The same will also be true upon
the inverse Laplace transformation 〈Q±(t)〉  = fδ(t/ta),
where fδ(x) is the function dependent on the parameter

δ alone. Using the asymptotic expansion of (s)
Eq. (18) at high and low s values, one can readily obtain
the explicit analytical expression for fδ(x) at high and
low values of the argument

(19)

(20)

Formulas (19) and (20) provide a sufficiently com-
plete description of the kinetics of the state switching
for a linear system characterized by the average frac-
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tion of the initial state 〈Q(t)〉  = exp(–J∆lt)〈Q±(t)〉2. The
behavior of such a system is illustrated by Fig. 2 (with
the use of the numerical calculation at the intermediate
t ~ ta values).

With a decrease of δ to values lower than unity, the
switching process is decelerated. At high t values, the
exponential dependence of Kolmogorov type (1) is
changed to power dependence of type (19).

1 t3 50

0.2

0.6

1.0

Q(t)

1

2

3

Fig. 1. Decrease of the initial state fraction Q(t), with time
at various values of the driving force F > Fc characterized
by the parameter δ = kTF/σ. δ = (1) 5, (2) 1.5, (3) 1.1. Time
is measured in the 1/(s0(λ)1/2) units. For comparison, the
dashed line shows the switching kinetics at δ = 0.8 (F < Fc).

40 t80 2000

0.2

0.6

1.0
Q(t)

1

2

3

120 160

4

Fig. 2. Switching kinetics at the prethreshold value of the
driving force. δ = (1) 0.8, (2) 0.6, (3) 0.5, and (4) 0.4. Time
is measured in the 1/(s0(λ)1/2) units; ln(1/λ) = 25.
C

The case of an extremely strong effect of a random
field δ  0 deserves special consideration. At δ ! 1,

the quantity (s) (18) is transformed to the form

(21)

where E1(x) =  and the inverse Laplace trans-

formation yields [19]

(22)

As is seen from (22), the characteristic switching
time in this particular case becomes comparable with
the generation time of the nucleus of a new state, within
the minimum length interval t0 = 1/(J∆l). At large δ-
values, the switching time is much shorter than t0 and is
determined mainly by “sweeping” of a new state with
the boundaries of nuclei generated far from the point
under consideration. In this instance, the characteristic
switching time is equal to the average switching time.

SWITCHING TIME

An important integral characteristic of the kinetics
of system-state change is the average switching time
determined by the formula

(23)

At δ > 1, the use of the explicit form of 〈Q(t)〉  (17)

Q̂

Q̂ s( ) 1
sλ
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J∆l
-------- 

  E1
s

J∆l
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  ,exp≈
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t

-----
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1 J∆lt+
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Fig. 3. Normalization factor for the average time 〈t〉  of state
switching described by (25) for 0 < δ < 1.
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yields

(24)

At δ < 1, the dependence of the average time on ta

can also be obtained in the explicit form with the aid of
the scale analysis

(25)

where C(δ) = (x)dx. The numerical calculation

shows (Fig. 3) that C depends on δ and varies within a
narrow range of the values from unity to (π/2)1/2 at the
δ varying from 0 to 1.

Of a certain interest is also the average time of the
“one-sided sweep” of the reference point by the bound-
aries of the nuclei t1 formed on one side of this point

(26)

It is seen from Eq. (18) that if δ < 1, then t1 = Γ(δ/(1 +
δ))ta. The Gaussian form of 〈Q(t)〉  at δ  1 yields

(27)

With the use of general formulas (13)–(15) that yield

(s) at both δ > 1 and δ < 1, relationship (27) provides
a more accurate description of the transitional region
δ  1. For ε ! 1, we have

(28)

The above equation describes the continuous transition
from the region ε > 0 to the region ε < 0, i.e., provides
the smooth transformation of Eq. (24) into (25).
Eq. (28) shows that the dependence of the average
switching time on the driving force is considerably
changed in the vicinity of δ = 1, and, at ε < 0, |ε| >
1/ln(1/λ), we arrive at the exponential increase of 〈t〉
with ε, namely, 〈t〉  ~ 1/λε/4 = exp(|ε|)ln(1/λ)/4). The
dimension of the transitional region can be estimated as
∆|ε| ~ 2/ln(1/λ), i.e., the transitional region is quite
narrow.

In the problems of step, domain boundary, and dis-
location motion, where, in the absence of the driving
force, the system state is multiply degenerate with the
period equal to the crystal-lattice parameter a, the
quantity 〈t〉  determines the characteristic time neces-
sary for the system displacement for one period. This
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allows one to estimate the rate V of the system “trans-
lation” while considering with the “switching on” of
the driving force

(29)

Figure 4 illustrates the dependence of the translation
rate of the system on the driving force in the transitional
region F ~ Fc. This dependence is characterized by a
smooth threshold.

CONCLUSION

Thus, it was shown that the process of state switch-
ing in a disordered linear system shows considerable
changes at certain critical values of the driving force
F = Fc. At F > Fc, the process can be described by the
Kolmogorov kinetics with the renormalized kink veloc-
ity v = (1 – 1/δ)v0 (compared to that of the free kink
drift). The formula containing a “threshold term,” 1 –
1/δ(F), shows that the character of the kink motion is
changed with a decrease of δ down to unity with the
corresponding changes of the problem parameters, e.g.,
of F. It was established [7] that this is associated with
the fact that the average time necessary for a kink to

overcome a barrier, 〈τ〉  = P(τ)dτ, tends to infinity,

because of a slow decrease of the distribution function
P(τ) for large τ at δ ≤ 1. As a result, the kink decelera-
tion is determined not by all the barriers, but mainly by
the highest ones encountered at the kink path with the
probability of the order of unity (the heterogeneous
deceleration). Therefore, the temporal variation in the

V a/ t〈 〉 .∼

τ
0

∞∫

1 F2 3 4

0.2

0.4

0.6

1.0
V/V0

0.8

Fig. 4. Dependence of the state-switching rate V ~ 1/〈t〉 on
the driving force F in the anomalous region, F ~ Fc. The rate
V is normalized to V0 (the switching rate in the absence of
decelerating barriers); F is measured in the σ/kT units.
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kink paths with time can be determined from the rela-
tionship (x(t)/∆l)P1(t) ~ 1, whence, in accordance with
(11), it follows that at large t, we have x(t) ~ t δ(δ ≤ 1)
[i.e., (2)].

To avoid any misunderstanding, we should like to
emphasize the probabilistic character of the so-called
law of nonlinear drift. Thus, trying to generalize the
Kolmogorov formula (1) by the changing the law of lin-
ear drift x(t) = vt by relationship (2), one arrives at
Q(t) = exp(–constt1 + δ) inconsistent with a more rigor-
ous calculation (see formula (19)). This indicates a con-
siderable contribution to the switching kinetics of fluc-
tuations in the distribution of the barriers decelerating
the kinks. Therefore, statistical fluctuations present in
the barrier distribution should rigorously be taken into
account when calculating switching kinetics.

Thus, the calculation of the kinetics of state switch-
ing for a disordered linear system provided the estab-
lishment of the transition from the exponential Kol-
mogorov-type kinetics to the diffuse kinetics with the
asymptotic power behavior at the late stages of the pro-
cess. This transition is caused by the changes in the
kink–soliton motion from the homogeneous (on the
average) drift, with a finite velocity to the heteroge-
neous deceleration by the highest barriers on the kink
paths. The dependence of the average state switching
rate, V ~ 1/〈t〉 , on the driving force F is obtained. At
F > Fc, this dependence is characterized by a certain
threshold. In the narrow vicinity of Fc, the threshold
becomes rather smooth, and, at F < Fc, the rate V expo-
nentially decreases with a decrease of the driving force.
Such behavior qualitatively agrees with the experimen-
tally observed dislocation mobility in Ge crystals [20].
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Abstract—The characteristic pseudosymmetry observed in the crystal structures of KTiOPO4-type ferroelec-
trics have been analyzed. The low-symmetry phases of all the crystals under consideration are characterized by
a pronounced pseudosymmetry. The transition temperature monotonically decreases with an increase of the
pseudosymmetry parameter of the crystal structure of the ferroelectric phase. The approach suggested to
evaluate the transition temperature is more precise and universal than the Abrahams–Jamieson–Kurtz criterion.
© 2000 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

The establishment of the relationship between the
atomic structure of a crystal and its physical properties
involves the determination of integrated geometric
parameters of the atomic structure, determining some
properties of the crystal, and the examination of the
mechanism of this effect. One of the integrated geomet-
ric parameters is symmetry, i.e., the invariance of the
atomic structure with respect to a particular group of
isometric transformations. Symmetry determines a
possible spectrum of physical properties of the crystal,
irrespectively of its chemical composition, with the
symmetry group determining only some necessary con-
ditions providing the manifestation of different proper-
ties. In the search for the geometric parameters that
influence physical properties of the crystal but do not
depend on the chemical composition, it is reasonable to
analyze fine features of the symmetry of the crystal
structure. One of such features is the Fedorov pseudo-
symmetry, i.e., the invariance of a substantial portion of
the electron density with respect to a particular space
supergroup of the symmetry group of the crystal [1]. In
pseudosymmetrical crystals, the specific structural fea-
tures manifest themselves as symmetrical characteris-
tics, which allows one to analyze them and their effect
on the physical properties by the group-theoretical and
crystallophysical methods. 

RESULTS AND DISCUSSION

Consider the role of Fedorov pseudosymmetry in
the description of second-order structural phase transi-
tions in crystals. It is well known [2] that such phase
transitions can be characterized by a scalar, a vector, or
a tensor quantity, continuously varying in the course of
the phase transition and describing the distortion of the

1 e-mail: elbel@geol.msu.ru
1063-7745/00/4504- $20.00 © 0647
structure of a high-symmetry phase. This quantity, or
the so-called order parameter, also characterizes the
change in the symmetry in the course of the phase tran-
sition. Generally, the order parameter is determined by
the displacements of a relatively small number of atoms
in the crystal unit cell [2]. This signifies that a rather
large number of atoms are still related by the symmetry
operations of the highly symmetric phase, whereas the
structure as a whole is invariant only with respect to the
symmetry group of the low symmetric phase.

Comparing the electron densities of the highly and
low symmetric structures, one can state that a substan-
tial portion of the electron density remains undistorted
and is described by the symmetry group of the highly
symmetric phase. The use of a quantitative parameter
relating the symmetrical and the asymmetrical portions
of the electron density allows one to evaluate the order
parameter irrespectively of its form—scalar, vector, or
tensor—and thus describe the degree of structure dis-
tortion in the course of the phase transition. On the
other hand, it is evident that the transition to the phase
with a symmetry described by the supergroup of the
space group of the initial phase, which is accompanied
by small structural distortions, can occur only if a con-
siderable portion of the electron density of the initial
phase obeys the symmetry of the highly symmetric
phase, i.e., if it is pseudosymmetrical.

One can use as the quantitative structural character-
istic of the crystal pseudosymmetry the following func-
tional proposed in [3]:

where ρ(x) is the function of the electron density in the
crystal, and t is the symmetry operation, which belongs
to the symmetry group of the high-symmetry phase and
is absent in the symmetry group of the low-symmetry
phase. 
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If ρ(x) is fully invariant with respect to the operation
t, then ηt[ρ(x)] = 1. If ηt[ρ(x)] = 0, then ρ(x) is fully
asymmetric with respect to the t operation.

This approach was applied to the analysis of the 25
best studied pyroelectric crystals (tourmaline, barium
and lead titanates, Li2B4O7, etc.) [4]. It was shown that
on the constructed diagram most of these crystals are
located in the vicinity of the pseudosymmetry region
(0.9–1.0).

We studied the pseudosymmetry of the atomic
structures on the KTiOPO4-type (KTP) crystals. The
KTiOPO4 crystals are essentially nonlinear-optical
material widely used in practice in recent years. All
crystals of this structure type are characterized by the
temperature-induced second-order ferroelectric phase
transition, which proceeds with the change of the polar
space group Pna21 to a nonpolar space group.

The determination of the pseudosymmetry crystal
structure of the initial ferroelectric phase, the space
group of the paraphase (Pnan), and the symmetries of
all the atomic positions were first reported in [5, 6]. The
mixed framework formed by P-tetrahedra and Ti-octa-
hedra in the ferroelectric phase was successfully
described by the above-mentioned supergroup with the
only exception—the K(1) and K(2) atoms did not obey
this symmetry. The pseudopositions of the K(I) and
K(II) atoms, related to the initial positions either by a
twofold pseudosymmetry axis parallel to the b-axis or
by the pseudoplane n perpendicular to the c-axis shown
in the polyhedra, are shown in the figure published in
[5]. It is obvious that K cations undergo considerable
displacements and, to a great extent, are responsible for
the phase transition to the high-temperature modifica-
tion.
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Temperature of the phase transition in KTP-type crystals as
a function of the degree of pseudosymmetry with respect to
the glide symmetry plane nz.
C

The paraphase of TlTiOPO4 was first studied in [7],
where it was concluded that the second-order phase
transition is of the displacive type. The splitting of one
Tl-position (instead of two positions in the space group
with a higher symmetry) was not established owing to
poor quality of the experimental data. The splitting of
the K positions in the high-temperature KTiOPO4 mod-
ification studied in [8] was not examined at all,
although the pronounced anisotropy of thermal vibra-
tions of cations along the c-axis was revealed in both
cited structure refinements. However, such splitting was
established for the TlSbOGeO4 structure that possessed
the parastate (Tc = 292 K) even at room temperature [9].

The detailed studies of phase transitions in ger-
manates, (KTP analogues) [10] demonstrated that the
phase transitions are of dual nature,—they demonstrate
both displacive and order–disorder transitions, because
the positions of large cations in all the high-temperature
phases appeared to be split. The distances between
these positions in the series of TlSbOGeO4,
RbSbOGeO4, and KTaOGeO4 increase from 0.56 Å for
Tl to 0.71 and 0.99 Å for Rb and K, respectively. The
transition temperatures increase from 272 to 700 K in
parallel with an increase in the above-mentioned dis-
tances, which is associated with the degree of pseudo-
symmetry in the crystal structure. The larger the dis-
placements in the course of the phase transition to the
ferroelectric phase, the more pronounced the distances
between the split positions in the high-temperature
phase and the higher the transition temperatures [10].
The TlSbOGeO4 crystal structure, which possesses the
lowest transition point among all the crystals consid-
ered above, is characterized by the smallest atomic dis-
placements in the ferroelectric phase compared to those
in the high-temperature phase and by the least marked
splitting of the cationic positions in the high-symmetry
phase. The ferroelectric low-temperature phase of this
compound exhibits the most pronounced pseudosym-
metry of all the three compounds considered above.

It is of interest to evaluate the degree of pseudosym-
metry in the KTP-type crystal structures with the polar
phase, with respect to the glide plane n perpendicular to
the c-axis at z = 0.5. We calculated the degree of pseu-
dosymmetry using the results of X-ray diffraction stud-
ies of four compounds—TlSbOGeO4, RbSbOGeO4,
KTaOGeO4, and KTiOPO4—whose Curie points lie
within the temperature range of 272–1207 K [6, 9, 11].

The calculations performed by the above equation
demonstrated that the degree of pseudosymmetry is
0.73, 0.69, 0.63, and 0.50 for TlSbOGeO4 (Tc = 272 K),
RbSbOGeO4 (Tc = 450 K), KTaOGeO4 (Tc = 700 K),
and KTiOPO4 (Tc = 1207 K), respectively.

Figure illustrates the relationship between the above
values and the transition temperature. The energy spent
in distorting the crystal structure linearly depends on
the parameter describing this distortion. The smaller
the distortion of the low-symmetry phase compared
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000



        

PSEUDOSYMMETRY AND FERROELECTRIC PHASE TRANSITIONS 649

                                   
with the high-symmetry phase, the lower the energy
spent for displacing the atoms in the course of the phase
transition. This fact agrees with the assumptions [12]
about the relationships between the low Tc values and
the pronounced pseudosymmetry in the series of ger-
manate analogues of KTP crystals.

CONCLUSIONS

In 1968, Abrahams suggested evaluating the rela-
tion between the transition temperature (Curie point Tc)
and the atomic displacements by the following equa-
tion: Tc = (K/2k)(∆z)2 K, where K is the force constant,
k is the Boltzmann constant, and ∆z is the value charac-
terizing the atomic displacements along the direction of
spontaneous polarization [13]. In this case, the temper-
ature is given in Kelvins. However, it is evident that the
atomic displacements responsible for the phase transi-
tion (for germanate analogs of KTP, the displacements
of large cations differ by an order of magnitude from
those of the cations located in the octahedra [10]), can-
not occur only along one axis. Also, the structure as a
whole is distorted, which is difficult to take into
account within this approach. The attempts to calculate
the group displacements encounter the difficulty in the
choice of the coordinate origin. Algorithm (1) proposed
in this work is free from the above-mentioned draw-
backs. The approach developed is universal and pro-
vides a rigorous solution of the problem. Moreover, the
fact that the phase transitions considered are not a pure
displacive type (as is implied by the Abrahams algo-
rithm) but are dual natured, does not complicate the
solution of the problem with the use of the algorithm
suggested in the present study.

Therefore, the example of the KTP crystals shows
that the pseudosymmetry of the crystal structures in the
low-symmetry phase is a necessary condition for the
occurrence of the second-order phase transitions. It was
also shown that functionals of type (1) can successfully
be used for the evaluation of structural distortions (the
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
order parameters) observed in the course of phase tran-
sitions.
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Abstract—Diffuse X-ray scattering from a V3Si single crystal was studied at room temperature. It was
demonstrated that the structure possesses instability regions associated with the formation of a new phase.
The characteristic features of the q dependence of diffuse scattering are indicative of the presence of two-types
of domains—those randomly distributed over the crystal and those forming a spatially periodic distribution.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The V3Si compound belongs to crystals character-
ized by the lattice instability. The instability manifested
itself as a rather weak martensite transformation from
the cubic to the tetragonal system at T ≈ 27 K [1].
Below this temperature, a gradual increase in the
parameter c ≅  4.7185 Å is observed, being especially
fast at T ≈ 21 K. The saturation was attained for cmax ≈
4.7258 Å at about Tc ≈ 17 K (the temperature of the
superconducting transition). The parameter a slightly
decreased. In the tetragonal phase, we have (c/a)max =
1.0024 ± 0.0002 at amin ≅  4.7145 Å and a/b = 1.0 ±
0.00006 (Figs. 6, 8 in [1]). Upon transformation from
the cubic to the tetragonal system, the single-crystal
structure of the sample is not retained, instead a twin
domain structure is formed.

Above the phase transition point, V3Si crystals
strongly exhibit a temperature dependence of magnetic
susceptibility up to room temperature [2]. The charac-
ter of this dependence in the vicinity of room tempera-
ture is similar to that observed for systems containing
localized electrons with the uncompensated magnetic
moment. The physical nature of this unusual situation
is, most likely, associated with defects in the real struc-
ture of this compound. In this connection, this work
aimed to obtain experimental data necessary for mak-
ing conclusions about the mutual arrangement of these
defects, their size, shape, and symmetry.

This work is the second part of a combined X-ray
diffraction study of the decrease in the intensity of dif-
fraction maxima I1 and the intensity distribution of
X-ray diffuse scattering I2 from a V3Si single crystal at
300 K. In the first part of our investigations [3], we
showed that this crystal is characterized by partly
ordered defects of different types, giving rise to ori-
ented displacement fields. According to the É15(+) and
É12(+) irreducible representations of the cubic group,
which were found in [3], the displacements of the V
1063-7745/00/4504- $20.00 © 0650
atoms from their ideal positions in the unit cell may be
associated with pronounced antiphase fluctuations.

The above effects noticeably change the diffuse scat-
tering pattern. The study of this pattern makes it possible
to reveal characteristic signs of lattice instability.

EXPERIMENTAL AND DATA ANALYSIS

Measurements of the intensity distribution of X-ray
diffuse scattering from a V3Si single crystal were made
on an X-ray diffractometer, using the monochromated
CuKα radiation, according to a procedure reported in
[4]. The scattering from a platelet-like single-crystal
sample with the surface being cut parallel to the (120)
plane was recorded in the (001) plane of the reciprocal
space. The measured intensities were converted to elec-
tronic units by comparing them with the scattering
intensity from amorphous quartz. The fluorescence
radiation was eliminated with the aid of a Ni filter
placed before the counter.

Diffuse scattering I2 consists of scattering caused by
thermal atomic vibrations in the crystal (IT) and of addi-
tional scattering IST resulting from static lattice defects.
The measured diffuse scattering also involves the
Compton scattering and other secondary components,
which were eliminated by well known techniques [5].
The distribution of the scattering intensity IT, about
each reciprocal-lattice point (relpoints), can be calcu-
lated from the elastic moduli of the crystal reported in
[4, 6]. The distribution of the scattering intensity IST can
involve different components depending on the type,
concentration, strength, and symmetry of defects, as
well as on the diffraction (Q) and wave (q) vectors.

Thus, according to [7], the contribution of symmet-
rical Huang scattering IH ≈ q–2 should predominate in
the vicinity of relpoints. The presence of randomly dis-
tributed strong defects in the material under study leads
to a contraction of the region, where the dependence
2000 MAIK “Nauka/Interperiodica”
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IH ≈ q–2 is fulfilled. It is also possible to establish the
range of the q values for the asymptotical scattering
IA ≈ q–4. The transition point q0, between regions with
different scattering laws, IH and IA, is related to the
defect radius R0 by the approximate relationship q0 ≈

. If defects are aligned along particular directions in
the crystal, one can expect a more gradual decrease in
the displacement fields than that leading to the Huang
scattering. In this case, the scattering should obey the

law IST ≈ , where q1 is the projection of q onto
the plane perpendicular to the crystallographic direc-
tions along which the defects are located. The wave
vector can be written as q = Q – H, where Q =
4πsinθhkl/λ, θhkl is the Bragg angle, and H is the
reciprocal-lattice vector. In other words, to observe
this  intensity dependence, one has to make measure-
ments in the reciprocal-space plane perpendicular
to     the line of defect alignment. Here, B =

4πn(C 2H 2/t||){(1/ν) 1 – (mnα)2]}, where C is
the defect strength, m = Q/Q, nα are the unit vectors
parallel to the lines α, ν is the number of the systems of
lines, and t|| is the average distance between possible
defects located on a straight line. The expression in
square brackets demonstrates that the B value strongly
depends not only on the reciprocal-lattice vector, but
also on the mutual orientation of the diffraction vector
Q and the separated lines.

RESULTS OF MEASUREMENTS

In this study, the diffuse-scattering intensity in the
vicinity of the 040, 220, and 330 relpoints in the (001)
plane of the reciprocal space was measured for a V3Si
single crystal at room temperature. The choice of the
relpoints for the analysis is dictated by the fact that the
relationships between the quasi-Debye factor D and the
diffraction vector for these relpoints appeared to be dif-
ferent [3]. Thus, for the 040 relpoint, this dependence
was quadratic (D = M = M0Q2), whereas for the 220 and
330 relpoints, it took the form D = M + M'. Here, the
addition M' ≅  B[ln(L/ζR0)] (where L is crystal dimen-
sion, ζ ≈ 1, and R0 is the largest of the CQ/t|| and R0 val-
ues) is indicative of the existence of regions with partly
ordered defects [7]. The M' value for the 220 relpoint is
three times lower than for the 330 relpoint [3].

The measured diffuse-scattering intensity from the
sample was rather high. Therefore, the elimination of
the spurious components and the thermal diffuse scat-
tering component (calculated from the elastic moduli
[8]) did not noticeably changed the intensity distribu-
tion of diffuse scattering. In this experiment, these fac-
tors became noticeable only at q ≈ 0.1 Å–1. For all the
dependences shown in the figures, the experimental
errors lie within the dots of experimentally measured
values.

R0
1–

q1
2 B–( )–

[α 1=
ν∑
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
The diffuse scattering patterns in the vicinity of dif-
ferent relpoints in the crystal structure of V3Si were dis-
similar and rather complex. The pronounced Huang
scattering (IH ≈ q–2) was observed at small q only in the

vicinity of the 040 relpoint in the [110] and [0 0] direc-
tions. With an increase of q, the scattering intensity
along the [110] direction is changed, IA ≈ q–4 (Fig. 1),
which indicates that the sample contains strong ran-
domly distributed defects. The transition point q0/Q ≈
0.0037 corresponds to q0 ≈ 0.02 Å–1, and the defect size
is R0 ≈ 50 Å. It is seen from Fig. 1 that the dependence
I(q) in the region between q/Q ≈ 0.0085 (q ≈ 0.04 Å–1)
and q/Q ≈ 0.01 differs from IA ≈ q–4. At q/Q ≈ 0.01, the
dependence is again described by IA ≈ q–4.

Along the [0 0] direction, with an increase of q, the
intensity dependence changes from the Huang form to
IST ≈ q–10/3 (Fig. 1). This shows that small-sized disloca-
tion loops or looplike clusters are located on the (010)
planes [7]. Since the IST ≈ q–5 dependence typical of dis-

location loops was not observed at q @  [9], it is
most probable that the observed dependence, IST ≈
q−10/3, is associated with the formation of nonspherical
clusters in the sample.

In the neighborhood of the 220 relpoint, the q
dependence of the scattering intensity, both along the

[1 0] and [ 10] directions, is described by the equation
IST ≈ q–(2 – B). This fact indicates that the scattering under
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Fig. 1. Typical q/Q dependence of the X-ray diffuse-scatter-
ing intensity in a V3Si single crystal (1 and 2) in the vicinity
of the 040 relpoint corresponding to planar randomly dis-
tributed defects and (3) in the vicinity of the 220 relpoint
corresponding to defects located along the [001] direction.
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Fig. 2. Intensity of X-ray diffuse scattering from planar interstitial defects in a V3Si single crystal as a function of q in the vicinity
of the 040 relpoint in the [010] direction; the intensity of the regular reflection is shown by a solid line at  q = 0: (1) the experimental
points; (2) the points of the theoretical curve for the additional maximum caused by the local tetragonal distortions of the lattice
parameters in the vicinity of defects; (3) the points of the difference curve between the experimental and calculated data.
consideration is caused by defects aligned in the [001]

direction. Averaging the values along the [1 0] direc-
tion perpendicular to the H vector (Fig. 1), we obtain
the value B = 0.3. At q/Q ≈ 0.017 (corresponding to q ≈
0.062 Å–1), the dependence IST ≈ q–(2 – B) is changed to
IST ≈ q–4. If defects are located along the separated lines

of the finite length L0 , the dependence IST ≈ 
(according to [7]) should be valid only at q ! π/L0,
whence it follows that the size of these defects should
obey the condition L0 ! π/q ! 50 Å.

In the immediate vicinity of the 040 (Fig. 2) and 330
relpoints, additional maxima are observed along both
H vectors on the side of larger Bragg angles. This is a
characteristic indication of the existence of the lattice
instability associated with intraphase fluctuations. The
degree of distortions in the lattice parameters of the
cubic matrix was determined from the reflections
observed in the vicinity of the 220, 040 (Fig. 2), and
330 relpoints in the H directions. In all three cases, the
lattice parameters of the cubic matrix a = b = 4.7286 Å
decreased to a = b = 4.7163 Å.

It is well known that if the inclusions of a new phase
appear in inhomogeneous solid solutions. Then, if the
average atomic volumes of the phases are different, the
formation of anisotropic inclusions of the new phase is
energetically more favorable [7]. In this case, at a cer-
tain orientations of these inclusions with respect to
crystallographic axes, the elastic energy of the system
drastically decreases. With an increase of inclusions
dimensions, the local distortions in the vicinity of

1

q1
2 B–( )–
C

defects also increase. If the structures of the phases are
identical, these distortions give rise to a formation of
satellites around each relpoint of the matrix. If the
phases have different structures, the scattering from the
regions of the new phase does not contribute to the scat-
tering amplitude in the neighborhood of the relpoints of
the matrix [7].

As was demonstrated above, the inclusions of the
new phase in a V3Si single crystal are located along the
[001] direction. According to [7], the lattice parameters
in the planes corresponding to this direction should
remain equal to the lattice parameters of the matrix.
Tetragonal distortions appear only along the directions
perpendicular to these planes. This is confirmed by the
fact that localized tetragonal distortions of the lattice
parameters of the matrix along the [010]- and [110]-
directions are observed only in the vicinity of defects.
Only the c-parameter of the cubic matrix remains
unchanged (4.7286 Å). That is why the close value of
the ratio of the lattice parameters of the matrix
observed for these regions (c/a = 1.0026 ± 0.00005) to
the corresponding value determined in [1] is not acci-
dental.

The detection of an additional reflection due to tet-
ragonal distortion in the vicinity of the 040 relpoint
along the [010] direction, provided the determination of
the symmetric component and elimination of the asym-
metric component of the scattering intensity. The latter
is proportional to the change in the unit-cell volume ∆τ.
The scattering intensity shown in Fig. 2 is higher on the
side of larger angles (∆τ > 0), which indicates that the
formation of interstitials is preferable [7]. This fact
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000



EFFECTS OF STRUCTURE INSTABILITY 653
confirms the presence of particles of the new phase in
the system. For the symmetric component of the inten-
sity, the dependence TH ≈ q–2 changes to IST ≈ q–10/3

(Fig. 3) at the same q values as in Fig. 1.

After the separation of analogous reflections caused
by the tetragonal distortion, the dependence of the
intensity in the vicinity of the 220 and 330 relpoints
along the [110] direction can be written as IST ≈ q–(2 – B)

(Fig. 3, the inset). This dependence breaks down at q =
0.024–0.028 Å–1, thus indicating possible lengths of the
lines, L0 ! 130 Å. For the 220 relpoint, B = 0.3, as
determined above. For the 330 relpoint, B = 1.0, which
is three times higher than that for 220. The latter result
is consistent with the data on the ratio of the additions
M' reported in [3]. With a further increase in q along the
[110] direction, the intensity of diffuse scattering in the
vicinity of the 220 and 330 relpoints starts oscillating
about the curve IST ≈ q–10/3 (Fig. 3). Note that oscilla-
tions in the vicinity of the 330 relpoint are observed at
lower values of q than those in the vicinity of 220. In
the vicinity of the 330 relpoint, satellites are located on
both sides of the [100]-direction and are located at the
equal distances from the main line, whereas along the
[010] line, they are observed only from the side of
larger angles (Fig. 4). In the vicinity of the 220 relpoint,
no satellites along these directions are observed.

RESULTS AND DISCUSSION

Since the diffraction pattern shows effects associ-
ated with atomic displacements in the unit cell, the
change in the structure amplitude caused by the pres-
ence of defects their concentration in the sample under

0.02
q, Å–1

0.04 0.06 0.080
0

1

2

3

4
(I/F2) × q10/3 × 10–3

0.02 0.04

30
20
10
0

(I/F2) × q(2 – B)

-[010]-1
-[110]-2
-[110]-3

q, Å–1

Fig. 3. Typical q dependence of the intensity of X-ray dif-
fuse scattering from a V3Si single crystal corresponding to
the inclusions of the new phase randomly arranged in the
(010) planes and to inclusions that start forming a spatially
periodic distribution in the (110) planes. Points indicate
the  values experimentally measured in the vicinity of the
(1) 040, (2) 220, and (3) 330 relpoints.
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study should be rather high. This is also evidenced by
the value B = 1 determined in the vicinity of the 330
relpoint [7].

Apparently, the high concentration of strong defects
in the V3Si single crystal should lead to their elastic
interactions and ordering. This, in turn, provides a cer-
tain orientation of the inclusions of the new phase, for
example, along the [001]-direction. The separated lines
have finite lengths L0, which do not exceed 130 Å in
some planes and 50 Å in some other planes. Partial
ordering is also responsible for the spatially periodic
distribution of the defect concentration due to self-
organization [10]. According to [11], this fact accounts
for the presence of satellites along the [100] and [010]
directions in the vicinity of the 330 relpoint. Oscilla-
tions of the scattering intensity about the curve IST ≈
q−10/3 along the [110] direction in the vicinity of the 220
and 330 relpoints (Fig. 3) are also indicative of a certain
tendency to the ordered mutual arrangement of inclu-
sions in the (110) plane. The law IST ≈ q–10/3, observed
along certain directions, indicates that planar pileups of
randomly distributed defects in the planes perpendicu-
lar to the above directions [7]. Thus, it was found that
randomly arranged planar inclusions have the size R0 ≈
50 Å and are located in the (010) planes (Fig. 1). It is
likely that in the (110) planes, the spatially periodic
concentration distribution of the inclusions of the new
phase takes place. It can be assumed that the sample
under study contains two systems of lines of aligned
defects. This assumption is consistent with the data
reported in [3] (Fig. 3). Probably, “threads” of a nucle-
ating superconducting phase observed belong to one of
these systems.
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Fig. 4. Intensity of X-ray diffuse scattering from a V3Si sin-
gle crystal as a function of q corresponding to the spatially
periodic concentration distribution of the particles of the
new phase in the vicinity of the 330 relpoint; the intensity of
the regular reflection is shown by a solid line at q = 0; points
indicate the experimentally measured values.
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To summarize, the results obtained in this study
demonstrate that a V3Si single crystal is, in fact, an
essentially complex inhomogeneous system containing
the regions or particles of the new phase, which are
either randomly distributed in space or aligning to form
spatially periodic distributions in the (110) planes. The
latter inclusions give rise to localized tetragonal distor-
tions of lattice parameters of the matrix (c/a = 1.0026),
which is a characteristic sign of the lattice instability.
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Abstract—The article continues a series of publications on the technologically important multilayer InxGa1 –

 xAs–GaAs/GaAs system with the 3-, 6-, and 9 nm-thick layers (quantum wells). The collimation system of the
incident beam is improved. The dimensions of quantum wells and the interfaces between these wells are deter-
mined. The qualitative picture of quantum well “spreading” is described. The experimental diffraction reflec-
tion curves are measured from three different parts of the specimen. Their analysis shows how homogeneous
the structure grown is. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier [1–4], we demonstrated the possibilities of
the standard double-crystal X-ray diffractometry in the
analysis of the GaAs–InxGa1 – xAs-type systems with
the nanometer-thick layers. The existence of such lay-
ers with well developed boundaries predetermine a
large number of oscillations on the diffraction reflec-
tion curve within the range of ten thousand of angular
seconds. In this case, the reflection diffraction curve
contains a large volume of information on the structure
parameters. The use of the adequate mathematical
apparatus allows the determination not only of the main
parameters of the structure layer (set by the growth con-
ditions), but also of the characteristics of interfaces
between these layers. Such curves provide a unique
possibility to control structural dimensions within sev-
eral nanometers for the layers located far from the sur-
face. Thus, double crystal X-ray diffractometry is one
of the most important and perspective methods for ana-
lyzing multilayer structures with nanometer-thick
layers.

The present article continues our studies of the
GaAs–InxGa1 – xAs systems and differ from the earlier
publications [1, 4] by the dimensions of the main layers
and the modified growth conditions. We also improved
the experimental method by using a less divergent
X-ray beam and a more sophisticated scanning system.
The study of different regions of each specimen
allowed us, first, to estimate the surface homogeneity of
the heterosystem and, second, to compare the diffrac-
tion reflection curves from various regions, and thus to
estimate the method resolution. We managed to show
that the method used provides the reliable detection of
variations in the layer thicknesses within fractions of a
nanometer.
1063-7745/00/4504- $20.00 © 20655
EXPERIMENTAL

The multilayer InxGa1 – xAs–GaAs/GaAs structure
was grown by the method of molecular-beam epitaxy
(MBE) on a RIBER-32P setup described elsewhere [1].
We studied a multilayer structure depicted in Fig. 1.
Various quantum wells, i.e., InxGa1 – xAs (x = 0.12) lay-
ers, had different indium content, the thickness of GaAs
layers was 50 nm, and the substrate temperature was
470°C.

The experiment was performed on a computer-con-
trolled (via a MATEX controller) triple-crystal diffrac-
tometer with parallel crystals providing the quasidis-
persionless (n, –m) geometry. The diffraction reflection
curves were obtained from the (004) planes. The inci-
dent X-ray beam was formed by a grooved threefold
Ge(004) monochromator, which provided a higher
angular resolution of the method without a noticeable
decrease of the recorded intensity in comparison with
the intensity obtained from a flat monochromator with
the single reflection. The collimated X-ray beam had
the crossover 200 µm in width and 4 mm in height. In
order to reduce the contributions from the background
and diffuse components to the total scattering signal,
we also used a horizontal slit with the angular aperture
of 8 angular minutes in front of the detector. The radia-
tion source was a 1.1 kW X-ray tube with a copper
anode. Similar to [1], the specimen surface deviated
from the diffracting planes (the wedge angle) by 3°.
Since the Bragg angle for the chosen reflection was
~33°, the angular position of the detector during scan-
ning (±4 angular minutes and higher) was corrected for
the dependence of the angular positions of the Bragg
scattering component on the asymmetry coefficient β.
Instead of traditional θ/2θ scanning, we used
θ/(1 + β)θ scanning. The diffraction reflection curves
000 MAIK “Nauka/Interperiodica”
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were recorded at a step of 5 angular seconds; the central
part of the curve was recorded at a step of 1 angular
second. The intensities were measured in the statistical
mode (up to 1000 pulses at each point of the curve).
The minimum and the maximum recording times were
2 and 100 s, respectively.

Reflection diffraction curves from the (400) plane of
the specimen were measured in several regions of the plate
surface (vertical primes) in Fig. 2 (1 and 2 in the plate cen-
ter and 3 at its edge); the location of these regions on the
plate surface is shown in the inset in Fig. 2.

GaAs

InGaAs

GaAs

InGaAs

GaAs

InGaAs

GaAs buffer

Substrate

50 nm

3 nm

50 nm

6 nm

50 nm

9 nm

300 nm

Fig. 1. Schematic profile of a multilayer InxGa1 − xAs–GaAs
structure corresponding to the growth conditions. 
C

METHOD OF ANALYSIS

Mathematical modeling of the experimental data
was performed by the method described in [1]. Each of
the layers were characterized by thickness lj, crystal-
lattice parameter aj, and the static Debye-Waller factor
fj = exp(–wj) (setting the degree of the layer amorphiza-
tion). As the initial approximation, we used the struc-
ture parameters set by the growth conditions. Solid
lines in Fig. 2 illustrate the calculations for a seven-
layer model with variable quantum-well parameters
lj, aj, and fi and the GaAs-layer parameters lj and fi (lay-
ers 1, 3, and 5 in Fig. 1). The lattice parameters for the
last layers were considered to be equal to the corre-
sponding parameters of the substrate. The variation of
these parameters did not improve the fitting quality, and
their deviation from the growth parameter only slightly
exceeded their root-mean square error. We also varied
the Debye–Waller factor in the buffer. The results of fit-
ting are shown in Fig. 2; the layer parameters obtained
and their root-mean square deviations are listed in
Table 1.

The model used allowed us qualitatively describe all
the details of the diffraction reflection curve, despite the
fact that this curve was rather complicated and had a
large number of oscillations. However, the quantitative
evaluation of fitting by the χ2 criterion (equal to 5.8,
3.4, and 3.7 for the central 1 and 2 and the peripheral 3
regions of the plate, respectively) showed the necessity
of further improvements. Although in the modern the-
ory of experimental data, processing the model is con-
sidered to be satisfactory if the χ2-value lies in the range

χ2 = 1 ± , where nf = n – np is the number of the
degrees of freedom in fitting, n is the number of the
experimental points, and np is the number of the varying
parameters [5]. In our case, this interval was 1 ± 0.05,
with the so-called first-order error (i.e., the risk to reject
the model with χ2 = 5 and at the same time to make a mis-
take) being negligibly small (of the order of 10–40) [5].

2/n f
Table 1.  Layer parameters in a seven-layer model

j
Region 1 (χ2 = 5.8) Region 2 (χ2 = 3.4)

lj, nm ∆a⊥ /aj, % fj lj, nm ∆a⊥ /aj, % fj

1 50.9(2) 0 0.85(3) 50.8(1) 0 0.78(2)

2 4.4(3) 0.96(7) 0.89(4) 4.5(2) 0.96(4) 0.87(3)

3 52.4(2) 0 0.97(3) 52.5(2) 0 0.98(2)

4 7.2(2) 1.19(4) 0.94(2) 7.4(1) 1.11(2) 1.00(2)

5 51.4(2) 0 0.88(2) 50.9(1) 0 0.83(2)

6 10.9(2) 1.15(4) 0.82(3) 11.1(2) 1.13(2) 0.80(2)

Buffer 0.88(3) 0.83(2)
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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Fig. 2. Experimental diffraction reflection curves (vertical bars) of the multilayer InxGa1 – xAs–GaAs/GaAs structure (x = 0.13) mea-
sured from different regions of the specimen and the calculated curves (solid lines) for the seven-layer model (χ2 = 5.8, 3.4, and 3.7,
respectively). The regions 1 and 2 are located at the layer center and region 3, at its edge.
Thus, in this situation, we had to search for more ade-
quate models.

With this aim, we introduced into consideration
some additional layers at the boundaries between the
quantum wells and the main layers [1], and an addi-
tional layer on the specimen surface. The initial param-
eters lj of these additional layers were taken to be equal
to 1 nm, whereas the values of the parameters aj and fi

were taken to be equal to half-sums of the correspond-
ing parameters for the neighboring layers. In the course
of subsequent fitting, we varied all the parameters of
both initial and additional layers. In this case, some
parameters for the lower- and upper sublayers of the
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
3nm-thick layer were somewhat ambiguous, i.e., the
root-mean square deviations of the parameters of these
sublayers exceeded their average values. Therefore,
such layers were rejected from the further analysis.
This resulted in a much better agreement for the
twelve-layer model (seven initial and five additional
boundary sublayer, Table 2). In this case, the value of
the parameter χ2 decreased to 1.30 and 1.26 for the
regions 1 and 2, respectively.

Thus, the fitting quality was so high that the experi-
mental and theoretically calculated curves on the draw-
ing scale showed no noticeable differences. Therefore,
in such cases the results are usually represented in the
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Table 2.  Layer parameters in a twelve-layer model

j
Region 1 (χ2 = 1.30) Region 2 (χ2 = 1.26)

lj , nm ∆a⊥ /aj , % fj lj , nm ∆a⊥ /aj, % fj

1 2.9(1) 0 0.45(2) 2.8(1) 0 0.39(3)

2 49.3(1) 0 0.92(1) 49.7(1) 0 0.87(1)

3 5.0(1) 0.86(2) 0.84(1) 4.5(2) 0.95(4) 0.85(2)

4 51.4(1) 0 0.95(1) 50(1) 0 0.96(1)

5 3.3(6) 0.84(7) 0.87(1) 2.8(9) 0.2(1) 0.94(2)

6 3.6(8) 1.4(1) 0.99(3) 5.5(7) 1.23(4) 1.00(2)

7 3.2(3) 0.28(7) 1.00(2) 2.6(2) 0.4(2) 0.94(4)

8 46.6(6) 0 0.93(1) 46.5(9) 0 0.87(1)

9 3.9(3) 0.14(3) 0.80(2) 4.1(6) 0.15(5) 0.87(2)

10 7.7(2) 1.41(3) 0.79(1) 8.7(3) 1.23(2) 0.83(1)

11 3.6(1) 0.41(4) 0.94(2) 2.9(2) 0.44(8) 0.84(2)

Buffer 0.96(2) 0.88(1)
form of the normalized residual differences

where  and  are the observed and the calculated
intensities and si is the experimental error. Figure 3
shows the σi values for two regions of the specimen for
the seven- and twelve-layer models. The twelve-layer
model describes the experimental data much better:
almost all the σi layers fit the interval from –3 to +3, in
full accordance with the theory of high-quality fitting.

σi

Ii
e( ) Ii

c( )–
si

--------------------,=

Ii
e( ) Ii

c( )
C

It should also be noted that the determination of the
distribution profiles for the parameters is not unique,
because in the experiment, one measures only the
intensity of the reflected wave whereas, within the
framework of the method, it is almost impossible to
extract any information on the wave phase. If the region
with the distorted parameters is rather small (about sev-
eral monolayers), one should use the method described
in [6], which provides the determination of all the equiv-
alent solutions. The number of possible equivalent
solutions increases as 2N, where N is the number of lay-
ers. In our case, the structure consists of about a thou-
6
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Fig. 3. Deviations σ of the calculated diffraction reflection curve from the experimental one obtained from regions 1 and 2 for the
(a) seven- and (b) twelve-layer models.
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Table 3.  Indium content in structure layers (in monolayer units)

Region 1 Region 2

seven-layer model twelve-layer model seven-layer model twelve-layer model

j yj k yj yk j yj k yk yj

2 1.06(1) 3 1.07(1) 1.07(1) 2 1.06(1) 3 1.06(1) 1.06(1)

5 0.73(3) 5 0.14(4)

4 2.10(3) 6 1.21(2) 2.11(5) 4 2.03(4) 6 1.67(2) 2.07(6)

7 0.22(3) 7 0.26(5)

9 0.13(6) 9 0.15(2)

6 3.09(2) 10 2.68(4) 3.18(9) 6 3.10(2) 10 2.64(3) 3.11(4)

11 0.37(5) 11 0.32(1)
sand of monolayers, and the number of such equivalent
solutions is enormous. One can assume that among
these solutions there should also be some solutions that
adequately describe the structure studied. Moreover,
there are also some random solutions with close χ2 val-
ues. To prove that the solutions obtained are unique, we
performed some additional studies. First of all, in the
transition to the twelve-layer model, the additional sub-
layers were introduced either gradually (one by one) in
different sequences, or by groups in different combina-
tions and sequences. All the parameters in the solutions
thus determined were arbitrarily varied within 15% of
their average value. Then, these values were considered
as starting values again, and a new cycle of fitting was
made. In all the cases, the solutions “came back” to the
starting variant and no additional close solutions were
revealed. This procedure will be described in the forth-
coming article in more detail.

It should be indicated that the experimental diffrac-
tion reflection curve similar to those shown in Fig. 2
(~2000 points) is recorded for 24 h: their processing on
a Pentium-200 computer took from two to several
hours, depending on the number of the layers analyzed.

DISCUSSION OF RESULTS

As is seen from Fig. 2, the reflection diffraction
curve from region 3 lying at a distance of 1 mm from
the plate edge is strongly diffused and shows no fea-
tures characteristics of the curves from regions 1 and 2.
This fact alone, without any additional mathematical
analysis, indicates that region 3 is characterized by pro-
nounced deviations of the structure from the structure
set by the growth conditions. The mathematical analy-
sis confirms this obvious conclusion. The fitting within
the seven-layer model (solid line in Fig. 2) shows that
in 3- and 6 nm-thick layers, the In-content is either very
low, or is distributed along the layer thickness, so that,
within this model, these layers cannot be seen. As to the
9 nm-thick layer, it contains only 25% of deposited
indium, whereas the remaining indium is distributed
over the structure thickness.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
For two other regions of the plate located at the dis-
tances of ~5 and 10 mm from the plate edge, the param-
eters of the multilayer structure are rather close to one
another. It is seen from Table 1 that the parameters of
the main Ga-containing layers correspond to the
growth conditions, the thicknesses of most of the layers
correspond (within 5%) to the values set by the growth
conditions. As to the quantum wells, or the InxGa1 – xAs
layers in the seven-layer model, they are thicker than it
was expected: a layer expected to be 3 nm-thick is
thicker by a factor of 1.5, and the layers expected to be
6- and 9 nm-thick are thicker for about 20%). However,
the variation of the interplanar spacings is less than pre-
dicted on the basis of the indium concentration (12%).
Such indium concentration should provide the spacing
variation within ∆a/a = 1.65%. In this connection, it
was expedient to determine the total indium content yj

in the quantum wells, because this quantity can be con-
trolled during structure growth. The variations in the
crystal-structure parameter aj, caused by the substitu-
tion of gallium by indium, can readily be related to the
indium concentration (Vegard’s law) and, most impor-
tantly, to the total indium content in the layers using the
relationship:

where νInGaAs(x) is Poisson’s ratio for InxGa1 – xAs. The
calculations performed by the above formula are listed
in Table 3. It is seen that the total indium contents in
these layers coincide, within the error, with the content
dictated by the growth conditions.

The twelve-layer model allows one to interpret the
structure of quantum wells and the indium distribution
in the layers. As follows from Table 2 (see also Fig. 4),
the 9 nm-thick layer consists of the central core with the
dimensions close to those set by the growth conditions
(for region 2, within an error, the corresponding values
coincide), but with somewhat reduced indium content.
For both regions, this central part contains about 80%
of the total indium content, whereas the remaining 20%

∆a⊥

a
---------

aInGaAs x( ) aGaAs–
aGaAs

-------------------------------------------
1 νInGaAs x( )+
1 νInGaAs x( )–
----------------------------------⋅ ,=
0
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of indium are distributed within 3–4 nm distance from
the central part, with 2/3 of this amount being located
at the boundary far from the surface and 1/3, at the
boundary close to it.

The quantum-well parameters for a 6 nm-thick
InxGa1 – xAs layer are essentially different from those
set by the growth conditions. Its structure varies from
point to point on the surface, and, as is seen from
Table 2 and Fig. 4, this is associated mainly with the
character of indium distribution in the quantum well,
although, within the error, the total indium content
(parameter yj, Table 3) remains constant. For a 3 nm-
thick layer, no more detailed information on the indium
distribution was obtained. However, the average layer
thickness and the indium content (or the variation of the
interplanar spacing) can be determined. These parame-
ters for different points on the surface are rather close
(Tables 1–3). In both cases, the layer is “spread” for
4.5 nm, i.e., is 1.5 times thicker than was expected from
the growth conditions.

Thus, the main qualitative results of our analysis are
as follows. (1) The growth conditions (470°C) provide
the formation of a 9 nm-thick homogeneous
InxGa1 − xAs layer with slightly diffused edges; (2) the
indium distribution in a 6nm-thick InxGa1 – xAs layer
varies from point to point on its surface; (3) the total
indium content in all the layers corresponds to the con-
tent set by the growth conditions. It should be empha-
sized that the indium distributions in quantum wells are
determined quite reliably. Thus, the use of the structure
parameters determined at point 1 for the description of

0

100

∆a/a, %

150 z, nm

0.5

1.0

0

0.5

1.0 1

2

Fig. 4. Profiles of the lattice-parameter variation over the
structure depth and in the direction normal to the surface
∆a⊥ /a for the central regions of the specimen (1 and 2) for a
12-layer model.
C

the experimental data at point 2 considerably deterio-
rates the fitting quality— the parameter χ2 increases
from 1.26 to 3.8, i.e., by more than three times.

CONCLUSION

The above analysis demonstrates the possibilities
provided by the standard method of double crystals dif-
fractometry for determining the parameters of multi-
layer structures with nanometer-thick layers, under the
condition that the method used in the mathematical
analysis is adequate. This is associated, first and fore-
most, with the high angular resolution of the method.
The intensity of diffraction scattering considerably
exceeds the intensities of diffuse scattering and second-
ary radiation in the methods of X-ray standing waves
[7]. Thus, the information obtained with the aid of the
above method is very rich and allows one to establish
fine details of the multilayer structure. It should also be
indicated that the volume of the information extracted
from the diffraction reflection curves can be consider-
ably increased by using powerful X-ray sources such as
generators with rotating anodes or synchrotron radia-
tion.
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Abstract—A complex investigation into the structural perfection of the Si/SiGe superlattices grown by molec-
ular-beam epitaxy at different temperatures of the Si substrate has been carried out by high-resolution X-ray
diffraction analysis, secondary ion mass spectrometry (SIMS), and transmission electron microscopy (TEM).
It is demonstrated that the combination of these methods makes it possible to describe in sufficient detail the
distributions of the strains and Ge concentrations in the elastically strained superlattices and also to evaluate the
sharpness of the layer interfaces. It is shown that the densitometry of electron microscope images of the super-
lattice cross-sections permits characterization of the relative sharpness of the layer interfaces and a qualitative
representation of the Ge distribution throughout the thickness of the SiGe layers. © 2000 MAIK “Nauka/Inter-
periodica”.
1 INTRODUCTION

The relaxation of misfit stresses in elastically
strained epitaxial Si/SiGe heterostructures leads to the
smearing (disturbance of planarity and sharpness) of
layer interfaces on the nanometer scale. These transfor-
mations of the interfaces can be caused by different
processes accompanying the epitaxial growth of SiGe
layers, including the Ge segregation, the interdiffusion,
and the development of wavy roughness at the surface
of a growing layer. The investigation into the structural
perfection of interfaces calls for the use of different
experimental techniques, which should be sensitive to
the crystal lattice deformation and the Ge content in a
solid solution and enable one to directly examine the
interfaces. The X-ray diffraction analysis, the second-
ary ion mass spectrometry (SIMS), and the transmis-
sion electron microscopy (TEM) are the techniques
most frequently employed for the study of multilayer
heterostructures. In the present work, we undertook a
complex investigation of the Si/SiGe superlattices by
using the aforementioned techniques, with the aim of
revealing the structural perfection of superlattice.

EXPERIMENTAL

Superlattices involving five periods of alternating
3-nm-thick Si1 – xGex/Si and 30-nm-thick Si layers with
the expected Ge content x = 0.22 in a solid solution
were grown on Si(001) substrates by molecular-beam
epitaxy using a VG Semicon V90S apparatus at differ-

1 e-mail: icpm@mail.girmet.ru
1063-7745/00/4504- $20.00 © 20661
ent substrate temperatures in the range 550–810°C.
A 225-nm-thick Si buffer layer was preliminarily
grown on the substrates, and a 200-nm-thick Si cap
layer was grown on the superlattices.

X-ray diffraction analysis. The high-resolution
X-ray diffraction experiments were carried out on a
Philips MRD diffractometer (X-ray source power,
1.5 kW; tube with a copper anode). The high resolution
was achieved by using a fourfold Ge(220) Bartel mono-
chromator consisting of two double Ge(220) slit mono-
chromators with the (n, n) arrangement, which provides
a high monochromatization of a beam (dispersion,
~10−5). The beam diffracted by the studied sample was
analyzed with a double Ge(220) slit monochromator.
For this configuration, the divergence of primary and
diffracted beams was equal to ~12′′ . The structure
parameters of superlattices were determined by com-
puter simulated rocking curves experimentally
recorded in the receiving slit and triple-crystal modes.
The reciprocal lattice maps in the neighborhood of the
[[004]] and [[224]] points were constructed for analysis
of stresses.

Secondary ion mass spectrometry. The Ge depth
profiles were determined by the SIMS technique with

an ultralow energy of the  ion beam. Measurements
were performed on an EVA 3000 instrument with a
unique floating low-energy gun, which permits one to

obtain the  ion beams with a minimum energy of
150 eV and a diameter of ~50 µm [1]. The depth reso-
lution was estimated using a high-quality delta layer
[2]. At an ion primary beam energy of 500 eV, the res-
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olutions for the leading and trailing SIMS edges in a Ge
layer were equal to 0.3 and 1.3 nm, respectively. Super-
lattices similar to those studied in the present work,
were investigated in [3]. It was shown that the concen-
tration profiles of Ge in samples grown at different sub-
strate temperatures are different, and these differences
are not caused by instrumental errors of the technique.

Transmission electron microscopy. The direct
TEM examination of the superlattice cross-sections
prepared by the ionic etching was carried out on a
JEOL 200CX microscope (accelerating voltage,
200 kV). The thicknesses of layers in the superlattices
were preliminarily measured accurate to within
±0.5 nm from electron microscope images with the use
of a Videoplan image analysis system. In this case, the
location of layer interfaces was visually determined
from the “jump” of the density. The concentration inho-
mogeneity of the SiGe layers was qualitatively evalu-
ated from the distribution of the transmitted electron
beam intensity in the cross-sectional plane {110}. The
distribution of the beam intensity was determined from
the negative density measured on a Microdensitometer
3CS unit.

In the TEM analysis, the superlattice cross-sections
were examined in a bright field by using multibeam and
double-beam (reflections g = 〈220〉 , 〈111〉 , and 〈004〉)
diffraction modes. The examination of the superlattices
in the multibeam (the electron beam almost coincides
with the [110] zone axis) and double-beam (with reflec-
tion g = 〈004〉) diffraction modes is preferable for mea-
suring the layer thickness, because the effect of sample
deviation is eliminated from consideration. The images
with the most uniform distribution of the contrast over
the sample were obtained with the reflection g = [004]
(s < 0). This mode was employed for recording the
images for the densitometric analysis.

The microdensitometry of electron microscope
image negatives is usually applied to determine the dis-
tribution of the electron beam intensity over the sample
[4]. In the present work, we attempted to use densito-
grams for analysis of the composition inhomogeneity
and the sharpness of the SiGe layer interfaces in the
superlattices. In the densitometer, the negative was
scanned by way of its uniform displacement with
respect to the stationary light beam (perpendicular to
the negative plane) along the straight line (normal to the
superlattice surface). A narrow beam was cut with a
rectangular slit from a plane light beam passing
through the negative. The intensity of the narrow beam
was measured using an optical wedge, and the profile of
the negative density was recorded. The following
parameters were used in the experiments: effective slit
width (with allowance made for the magnification of
the microdensitometer objective lens), 45 µm; effective
slit height, 200 µm; optical wedge, 1.00D; magnifica-
tion, 10 : 1, 20 : 1, and 50 : 1. The minimum require-
ments to the negative quality involve the correspon-
dence of the studied image density to a linear portion in
C

the curve of blackening density, and the correspon-
dence between the density ranges of the negative and
the optical wedge. The densitometric technique was
tested with reference samples, the best of which was the
negative with the image of a pointer located above the
luminescent screen in the electron microscope. This
reference sample was a narrow (1 mm wide) bright strip
with sharp edges and uniform density.

RESULTS

High-Resolution X-ray Diffraction

Inspection of the Si1 – xGex layers for pseudomor-
phism. The stress relaxation in the superlattices studied
was analyzed using the symmetrical (004) and asym-
metrical (224) reflections. The reflection of the sub-
strate and the satellites of the superlattice are clearly
seen in the reciprocal lattice maps in the neighborhood
of the [[004]] and [[224]] points (Fig. 1). Note that the
SL ± 1 and SL ± 2 satellites lie in the line passing
through the (224) reflection of the Si substrate, and this
line is parallel to the [001] direction (Fig. 1b). Accord-
ing to [5], this arrangement of the satellites in the recip-
rocal space upon asymmetric recording indicates that
the superlattice is fully strained. Therefore, the super-
lattices under consideration are fully strained, and the
layers of the Si1 – xGex solid solution are pseudomor-
phous.

Evaluation of layer thickness and Ge concentra-
tion in the Si1 – xGex solid solution. The layer thick-
ness and the mean Ge concentration in the SiGe layers
were determined from the data obtained in the receiv-
ing slit mode. Figure 2 depicts the rocking curves for
two superlattices grown at the lowest and highest sub-
strate temperatures. These curves exhibit the satellites
up to the seventh order, which suggests a high structural
perfection of both superlattices. The rocking curves
simulated on the basis of the dynamic diffraction theory
[6] are also displayed in Fig. 2. A wide halo of diffuse
scattering was observed for all the samples. Hence, the
rocking curves were simulated with the static Debye–
Waller factor including the coherent scattering losses.
These curves were calculated using the thicknesses of
the Si and Si1 – xGex layers, the Si cap, and the Ge con-
centration in the solid solution, which were obtained in
the course of the optimization procedure. This proce-
dure is based on the Levenberg–Marquardt method [7]
and involves the minimization of the functional

where n is the number of points in the rocking curve,

and  and  are the calculated and measured
intensities (in pulses) at the ith point. The structure was
separated into the layers, each described by the follow-
ing parameters: the thickness, the crystal lattice strain
in the growth direction, and the static Debye–Waller
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Fig. 1. Reciprocal lattice maps in the neighborhood of (a) [[004]] and (b) [[224]] points for sample 35/27.
factor. In order to decrease the number of variables, it
was assumed that the layer parameters do not vary from
period to period. The diffuse scattering was approxi-
mated by a Lorentzian, which made it possible to
improve the convergence of the optimization proce-
dure. The static Debye–Waller factors for the superlat-
tice layers appeared to be larger than 0.99. Therefore,
LOGRAPHY REPORTS      Vol. 45      No. 4      200
the substrate is responsible for the diffuse scattering.
Table 1 lists the structure parameters of the Si/Si1 – xGex

superlattices, which were determined from the optimi-
zation procedure.

The Ge concentration in the solid solution layers
was evaluated from the strain ε⊥  within the bilayer
0
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Fig. 2. Experimental and calculated rocking curves for the samples grown at temperatures of (a) 550 and (b) 810°C. (004) reflection.
For clarity, the calculated curves are shifted with respect to the experimental curves.
approximation of the elasticity theory
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Here, aSiGe = aSi + 0.02δ + 0.0026δ2 (nm) [3], where δ
is the Ge concentration (in relative units), and aSi =
0.54309 nm.
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Table 1.  Structure parameters of the Si/Si1 – xGex superlattices

Sample Substrate
 temperature, °C Layer Thickness, nm Ge, % 〈ε⊥ 〉**

35/27 550 Si 33.1 0 0 7.8 × 10–4

SiGe 4.0 22.6 0.0152

Si-cap 225.0 0 0

35/31 650 Si 33.1 0 0 7.6 × 10–4

SiGe 4.0 22.2 0.0149

Si-cap 222.0 0 0

35/25 700 Si 33.5 0 0 7.8 × 10–4

SiGe 4.0 22.6 0.0152

Si-cap 222.0 0 0

35/28 810 Si 33.3 0 0 7.9 × 10–4

SiGe 4.0 23.5 0.0158

Si-cap 223.0 0 0

∗ ε ⊥  = , where  is the lattice parameter of the layer in the direction perpendicular to the sample surface, and  aSi is the

     lattice parameter of silicon. It is assumed that the substrate is unstrained.
** 〈ε⊥ 〉  is the strain averaged over the superlattice thickness.

ε⊥
*

a⊥
layer

a
Si

–

a
Si

-------------------------- a⊥
layer
The C11 and C12 elastic moduli were taken from [8]

The strains ε⊥  (Table 1) were converted to the intrin-

sic strains of the solid solution layers  and :

where aSi is the lattice parameter of silicon, and aSiGe is
the lattice parameter of the unstrained Si1 – xGex layer,
calculated from the Vegard law.

The stresses σxx in the interface plane were deter-
mined from the Hooke law [9]

The intrinsic strains and stresses σxx in the interface
plane are given in Table 2. Note that, for sample 35/28,
a stress of –1.51 GPa is in reasonable agreement with
the stress (–1.28 GPa) obtained from the Raman spec-
trum in the range 500–530 cm–1 [10].

Analysis of the quantitative structure parameters for
the given superlattices demonstrates that they were
grown with a high reproducibility in the thickness of all

Si Ge

C11 (1010 Pa) 16.58 12.85

C12 (1010 Pa) 6.39 4.83

ε||
layer ε⊥

layer

ε||
layer aSi aSiGe–

aSiGe
-----------------------,=

ε⊥
layer aSi 1 ε⊥+( ) aSiGe–

aSiGe
-------------------------------------------,=

σxx  =  ε || 
layer
 C 11 C 12 + ( ) ε ⊥ 

layer
 C 12 + .=                                                             
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the layers. A certain scatter in the Ge content in the
solid solution and also in the mean strain of the super-
lattice indicates no correlation between these quantities
and the substrate temperature.

Secondary Ion Mass Spectrometry

The Ge depth profiles in one superlattice period for
three samples are shown in Fig. 3. There is a clear ten-
dency for the broadening of the profiles with an
increase in the substrate temperature. The major feature
of the profile shapes is the presence of two linear por-
tions in the peak slope corresponding to the Si-on-SiGe
interface: the concentration varies in the range from 4 ×
1021 to 8 × 1020 cm–3 in portion 1 (near the maximum of
the peak), and from 8 × 1020 to 5 × 1019 cm–3 in portion 2.
At the same time, the other peak slope is approximated
by the linear portion 3 that corresponds to the change in
the concentration from 4 × 1021 to 5 × 1019 cm–3.

Transmission Electron Microscopy

Figure 4 demonstrates the TEM images of cross-
sections of the superlattices whose rocking curves are
represented in Fig. 2. The absence of dislocations in the
superlattices is in agreement with the data of X-ray dif-
fraction analysis. The main difference in the structural
features of the studied samples resides in the sharpness
of layer interfaces in the superlattices. As can be seen
in the sample grown at a temperature of 550°C, the
sharpnesses of the upper (Si-on-SiGe) and lower
(SiGe-on-Si) interfaces of the SiGe layers are identical.
At the same time, in the sample grown at a temperature

                        
0
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of 810°C, the upper interfaces are sharper than the
lower interfaces.

The densitograms of the reference sample and one
SiGe layer in the real superlattice are compared in
Fig. 5. The densitogram of the reference sample exhib-
its a peak with a flattened maximum and linear slopes,
which are well approximated by straight tangents
(Fig. 5a) whose slope angles (αA and αB) are equal to
each other (Table 3). In the general case, the slope
angles of tangents depend on the negative contrast,
instrumental parameters (magnification of densito-
gram, slit width, etc.), and the sharpness of the corre-

Table 2.  Intrinsic strains and stresses σxx in the interface
plane

Sample σxx , GPa

35/27 6.54 × 10–3 –8.52 × 10–3 –1.46

35/31 6.41 × 10–3 –8.36 × 10–3 –1.43

35/25 6.54 × 10–3 –8.52 × 10–3 –1.46

35/28 6.79 × 10–3 –8.86 × 10–3 –1.51

ε⊥
layer ε||

layer
C

sponding interface in the image. The full width at half
maximum (FWHM) corresponds to the stripe width
(pointer projection) in the negative.

The characteristic feature of the densitograms of the
SiGe layers in the superlattice (Fig. 5b) is that, in the
peaks, the slope A, corresponding to the lower layer
interfaces (SiGe-on-Si), is well approximated by a
straight line. On the other hand, the slope correspond-
ing to the upper layer interfaces (Si-on-SiGe) involves
two portions B and C, each also approximated by a
short straight line. The portion B near the maximum of
the peak is always steeper than the lower portion C. The
peak tails (portions C) considerably differ in shape and
length along the direction of epitaxial growth. The
slope angle of a tangent to the portion B (αB) is always
less than that of a tangent to the portion A (αA). Since
the slope angle of the tangent to the peak slope depends
on the sharpnesses of the corresponding interface in the
negative, all other factors (conditions of recording the
densitograms) being the same, it can be assumed that
the sharpness of the lower and upper SiGe layer inter-
faces are different. Note that the inequality αA > αB

indicates that the SiGe-on-Si interface is sharper.
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Fig. 3. SIMS Ge profiles in the region of the period closest to the surface for superlattices grown at different temperatures.
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The densitometric analysis and measurements of the
SiGe layer thickness in the superlattices were carried
out for three samples grown at temperatures differing
by about 200 K (Table 3). The layer thickness was
determined from the electron micrographs with the use
of the image analysis system. For five layers each in the
superlattices, the thickness was measured at 100 points
shifted along the layer. In superlattices 35/27 and 35/30
grown at relatively low temperatures, the scatter in
thickness is absent or falls within the limits of experi-
mental error (±0.5 nm). A substantial scatter in thick-
ness (from 4.0 to 7.0 nm) is found for superlattice
35/28. For this sample, we analyzed the nonuniformity
of the SiGe layer thickness along the direction of epi-
taxial growth. In order to determine the layer thickness
more correctly, the measurements were conducted with
densitograms recorded for each of five layers upon
scanning of the negative along the same line. The full
widths at half maximum are as follows: 5.5 nm for three
layers inside the superlattice, 6.0 nm for the upper
layer, and 6.5 nm for the lower layer. Analysis of the
slope angles of tangents to the peaks demonstrates that
the αA angles for all the SiGe layers are identical within
the limits of experimental error, whereas the αB angles
turn out to be different. The αB angles are the smallest
for the layer adjacent to the substrate and are approxi-
mately the same for the other layers.

Taking into account the above scatter in the param-
eters of the SiGe layers in the direction of the epitaxial
growth, different superlattices were compared using the
data (layer thicknesses and the slope angles of tangents
to the peaks) obtained for the middle SiGe layers. The
results of the corresponding measurements are pre-
sented in Table 3. It can be seen that an increase in the
substrate temperature leads to an increase in the layer
thickness and a deterioration of the interface sharpness.
Note that the smearing of the upper layer interfaces is
considerably larger than that of the lower interfaces.

The nonuniformity of the thickness of the middle
SiGe layer in the growth plane was analyzed for sample
35/28. For this purpose, a series of densitograms was
recorded at points shifted with a step of 20 nm along
the layer within a region of length 0.5 µm. The data
obtained show that, within the limits of experimental
error, the αA angles in all the densitograms are virtually
identical. The mean αA angle is equal to 86.9° ± 0.5°.
For other peak slopes corresponding to the Si-on-SiGe
interfaces, the scatter in the αB angles is equal to ~3°
(Table 3). The scatter in the layer thicknesses measured
from the full width at half maximum is small, and the
mean thickness is equal to 5.5 ± 0.5 nm.

DISCUSSION

The SIMS concentration profiles of Ge on the semi-
log scale are identical for all the periods in the superlat-
tice for each sample. This allows us to use the profiles
of one period in the superlattices for comparison of dif-
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
ferent samples (Fig. 3). As follows from comparison of
the profiles for different samples, an increase in the
temperature leads to the broadening of peaks. In this
case, the slope of linear portions 1 and 3 in the peaks
decreases, which suggests an increase in the smearing
of the upper and lower SiGe layer interfaces. At the
same time, the slope of linear portions 2 increases.

It should be noted that the shapes of the SIMS pro-
files and densitograms resemble each other. Since the
blackening density of the negative is proportional to the
logarithm of the product of the illumination intensity
(the electron beam intensity J) into the exposure time
[11], the densitogram, in actual fact, is the dependence
of logJ on the coordinate along the normal to the super-
lattice surface. This makes it possible to qualitatively
compare the densitograms with the Ge depth profiles of
layers. Comparison demonstrates that the peaks in the
experimental curves of both types exhibit a similar
asymmetry, and there is a well-defined correlation

Si

Si

SiGe

Si-substrate

Si-substrate
(b)

(a)

50 nm

Fig. 4. TEM micrographs of the cross-sections of the super-
lattices grown at temperatures of (a) 550 and (b) 810°C.
0
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between the slopes of three linear portions in these
peaks and the temperature of epitaxial growth. Under
conditions of diffraction contrast, the intensity of the
passed electron beam is proportional to the Ge concen-
tration in the solid solution (the larger the Ge content in
the SiGe layer, the higher the beam intensity). Conse-
quently, the concentration distribution of Ge in the
layer can be qualitatively judged from the densitomet-
ric profile.

Table 3.  Densitometric characteristics of the middle layer in
the SiGe/Si superlattice

Sample Growth tem-
perature, °C

FWHM, 
±0.5 nm αA , ±0.5° αB , ±0.5°

Reference 
sample

88.5 88.5

35/27 550 4.0 87.5–88.0 87.5–88.0

35/30 750 4.2 87.0–87.5 86.0–86.5

35/28 810 5.5 86.5–87.0 82.0–85.5
C

The SiGe layer thicknesses calculated from the
high-resolution X-ray diffraction data differ from those
directly measured by the densitometric technique
(Tables 1, 3). Only for the sample grown at a tempera-
ture of 550°C, both methods lead to the same thickness
(4.0 nm). At higher substrate temperatures, the SiGe
layer thickness does not change according to the X-ray
diffraction data, whereas the TEM and SIMS data indi-
cate a pronounced increase in the layer thickness up to
5.5 nm (at 810°C). This difference is explained by the
fact that the X-ray diffraction analysis is the integral
method, and its sensitivity to a weak change in the
strain profile with a change in the concentration profile
of Ge in a particular thin SiGe layer is appreciably less
compared to those of the TEM and SIMS techniques.

The set of the data obtained permits us to make cer-
tain conclusions concerning the nature of phenomena
occurring at the interfaces in the superlattices in the
course of their growth. The presence of two linear por-
tions 1 and 2 (corresponding to the Si-on-SiGe inter-
faces) in the slopes of the SIMS and densitometric pro-
files is the characteristic indication of the Ge segrega-
tion at the surface of the growing SiGe layer [12]. The
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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smearing of the Ge profile at the opposite interface is
likely brought about by the germanium diffusion.

CONCLUSION

The combination of TEM, SIMS, and high-resolu-
tion X-ray diffraction techniques enabled us to describe
in sufficient detail the distribution of the strains and the
Ge concentration in the Si/SiGe superlattices and to
evaluate the sharpness of interfaces. Different sensitiv-
ities of the methods to lattice strain and (or) the Ge con-
tent lead to considerable differences in the thicknesses
of the SiGe layers and the Ge content, which were
obtained by a particular technique. Comparison of
these data shows that virtually all germanium is local-
ized within the grown layer (according to the X-ray dif-
fraction data), and the smearing of the Ge profile
(according to the SIMS and TEM data) results in insig-
nificant strain gradients in the interface regions, which
are not recorded by the high-resolution X-ray diffrac-
tion technique. At the same time, the last method
revealed that the samples under consideration are fully
strained.

It was demonstrated that the densitometric profile of
electron microscope images of the superlattices reflects
the change in the logarithm of the Ge concentration in
the solid solution and can be used for the qualitative
evaluation of the Ge distribution over the layer thick-
ness. The correct photographic recording of real super-
lattices and reference samples (the use of the same pho-
tosensitive material and simultaneous development)
provides a way of applying the densitometric analysis
of images to the characterization of the interface sharp-
ness.
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research, project no. 96-02-18608.

REFERENCES
1. M. G. Dowsett, N. S. Smith, R. Bridgeland, et al., in Sec-

ondary Ion Mass Spectrometry, SIMS, Ed. by X. A. Ben-
nighoven et al. (Wiley, Chichester, 1997).

2. M. G. Dowsett, G. Rowlands, P. N. Allen, et al., Surf.
Interface Anal. 21, 310 (1994).

3. O. A. Mironov, P. J. Phillips, E. H. C. Parker, et al., Thin
Solid Films 306, 307 (1997).

4. A. F. de Jong and K. T. F. Janseen, J. Mater. Res. 5, 578
(1990).

5. G. Bauer, J. Li, and E. Koppensteiner, J. Cryst. Growth
157, 61 (1995).

6. C. R. Wie, T. A. Tombrello, and T. Vreeland, Jr., J. Appl.
Phys. 59, 3743 (1986).

7. Numerical Recipes in C: The Art of Scientific Comput-
ing, Ed. by W. H. Press et al. (Cambridge Univ. Press,
Cambridge, 1995), 2nd ed.

8. A. Segmuller and M. Murakami, in Treatise on Materi-
als Science and Technology, Ed. by K. N. Tu and
R. Rosenberg (Academic, New York, 1988), Vol. 27,
p. 143.

9. J. F. Nye, Physical Properties of Crystals (Clarendon,
Oxford, 1964), p. 322.

10. O. A. Mironov, P. J. Phillips, E. H. C. Parker, et al., Proc.
SPIE-Int. Soc. Opt. Eng. 3182, 216 (1997).

11. W. Krug and H. Weide, Wissenschaftliche Photographie
in der Anwendung (Akademische Verlagsgesellschaft,
Leipzig, 1972; Mir, Moscow, 1975).

12. S. Fukatsu, K. Fujita, H. Yaguchi, et al., Appl. Phys. Lett.
59, 2103 (1991).

Translated by O. Borovik-Romanova



  

Crystallography Reports, Vol. 45, No. 4, 2000, pp. 670–675. Translated from Kristallografiya, Vol. 45, No. 4, 2000, pp. 731–737.
Original Russian Text Copyright © 2000 by Alshits, Lyubimov.

                           

PHYSICAL PROPERTIES OF CRYSTALS

         
Orientation of Optical Axes in Absorptive Crystals 
with Arbitrary Permittivity Tensors

V. I. Alshits and V. N. Lyubimov
Shubnikov Institute of Crystallography, Russian Academy of Sciences, 

Leninskiœ pr. 59, Moscow, 117333 Russia
Received June 18, 1998

Abstract—The direct relation has been established between the orientations of the optical axes and the com-
ponents of the inverse complex permittivity tensor of an absorptive crystal possessing an arbitrary symmetry.
The particular forms of the general relationships for triclinic crystals, characterized by an arbitrary degree of
absorption, are obtained for crystals of all the other symmetry systems. The relationships obtained acquire a
substantially simplified form for weakly absorptive crystals. The consideration is based on the relationship
established for the components of the inverse permittivity tensor in the Cartesian coordinates and the diadic
form of this tensor, which is related to the directions of the optical axes. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is well known [1–3], the optical properties of
absorptive crystals are considerably different from
those of transparent crystals. Absorption cannot be
reduced to a simple decrease of the wave intensities
during their propagation, and results in qualitatively
new characteristics of electromagnetic wave fields. It is
especially clearly seen in the directions close to optical
axes. The waves of two different independent polariza-
tions propagating along these directions have not only
the same phase velocities, but also the same absorption
coefficients. Two independent waves can always prop-
agate along any direction in an anisotropic crystal. In
the general case, these waves have different velocities
and absorption coefficients. While a transparent opti-
cally anisotropic crystal has one or two optical axes, an
absorptive crystal has four such axes. The absorption-
induced optical axes drastically change the wave-field
pattern [1–3].

As is well known, all the optical properties of
absorptive crystals are determined by complex permit-
tivity tensor. For triclinic crystals, this tensor has
twelve independent parameters—six components of
the real part and six component of the imaginary one.
In particular, these twelve components also determine
the orientations of the optical axes of the crystal. How-
ever, the determination of the orientations of the optical
axes from the given components of the complex permit-
tivity tensor for a triclinic crystal with an arbitrary
absorption has not been solved as yet. In the present
article, we aimed to close this gap.

Below, we study the geometry of optical axes in an
absorptive crystal of an arbitrary symmetry. The gen-
eral relationships obtained for triclinic crystals with an
arbitrary degree of absorption are then analyzed for
crystals of higher crystal systems. We also consider the
1063-7745/00/4504- $20.00 © 20670
case of weakly absorptive crystals, for which all the
relationships are considerably simplified. The compli-
cated calculations for low-symmetric (triclinic and
monoclinic) crystals are associated with the fact that
the real and the imaginary parts of the complex permit-
tivity tensor cannot be reduced to the diagonal form in
the same coordinate system, whereas the orientations
of the optical axes of the crystal are directly determined
by this complex tensor. We shall establish the direct
relation between the components of the inverse permit-
tivity tensor and the orientations of the optical axes of
an absorptive crystal of an arbitrary symmetry. Our
approach is based on the relationship established for
the components of the inverse permittivity tensor given
in the Cartesian coordinate system and the diadic form
of the tensor. We shall show that the complex vectors of
the diadic representation and the directions of the opti-
cal axes are related by a rather simple way.

INITIAL RELATIONSHIPS IN THE FEDOROV 
FORMALISM

To solve the problem of optical-axis orientations
formulated above, we have to study the behavior of the
complex refractive indices N of electromagnetic waves
harmonic both in time t and space r, which propagate
along the wave normal m with a frequency of ω:

(1)

where E and H are the vectors of alternating electric
and magnetic fields, E0 and H0 are their amplitudes,
and c is the velocity of light in vacuum.

E
H

E r t,( )

H r t,( )
≡ E0

H0

eiω Nmr c⁄( ) t–[ ] ,=
000 MAIK “Nauka/Interperiodica”
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In absorptive anisotropic media, the Maxwell equa-
tions satisfied by the wave fields of Eq. (1) are reduced
to the following vector equations [1, 2]:

(2)

where D is the electric induction, and  + i  is the
complex permittivity tensor whose imaginary part
determines absorption.

Eliminating the electric field E from Eqs. (2), we
arrive at the expression for the magnetic field H:

(3)

where  is the inverse permittivity tensor of a crystal

(4)

which is both complex and symmetric and, thus, non-
Hermitian.

For the further analysis, it is convenient to use the
formalism suggested by Fedorov [1] and represent the

tensor  in the diadic form,

(5)

where a is any of the eigenvalues of the tensor , and
the dot between the complex vectors C1 and C2 symbol-
izes the diadic multiplication. For some problems, the
explicit form of scalars a and b and vectors C1 and C2
is unessential [1], but for the problems formulated
above, it is very important to establish the concrete
relationships between these parameters and the tensor
components Bij set in the Cartesian coordinates.

Substituting the tensor  in diadic form Eq. (5) into
(3), we have

(6)

where, for the sake of brevity, we introduced the nota-
tion p1, 2 = [mC1, 2]. Eq. (6) yields the expressions for
the refractive indices and the polarization vectors of
isonormal waves

(7)

(8)

It is seen from Eq. (7) that the degeneracy condition,
i.e., the condition for the coincidence of the complex
refractive indices of two isonormal waves (N+ = N–), is

fulfilled either at  = 0 or at  = 0 only for the fol-
lowing propagation directions

(9)

D ε̂ iε'ˆ+( )E N mH[ ] ,–= =

H N mE[ ] ,=

ε̂ ε'ˆ

H N2 m B̂ mH[ ],[ ] ,–=

B̂

B̂ ε̂ iε'ˆ+( ) 1– β̂ iβ'ˆ ,–= =

B̂

B̂ a b C1 C2⋅ C2 C1⋅+( ),+=

B̂

B̂

a 1 N2⁄( )– b p1 p2 p2 p1⋅+⋅( )+{ } H 0,=

1 N±
2⁄ a b p1p2 p1

2p2
2±( ),+=

H±   ||  p 1 p 2
2 p 2 p 1

2 . ±

p1
2 p2

2

m1 2,
± C1 2, C1 2,

*2 C1 2,* C1 2,
2 i C1 2, C1 2,*[ ]±+

C1 2,
2 C1 2,

2+
------------------------------------------------------------------------------------------.=
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Subscripts 1 or 2 and the signs “+” or “–” in the left-
and the right-hand sides of Eq. (9) are chosen in the
same way. Both isonormal waves propagating along

any of the four directions  (9) have the same phase
velocities and the same absorption coefficients.

The diadic form of the tensor , Eq. (5), and expres-
sion (9) for the directions of the optical axes determined
by this diadic form are not related to any concrete coor-

dinate system, but, in practice, the tensor  for crystals
is always set by its components Bij (i, j = 1, 2, 3) in a cer-
tain crystallophysical coordinate system [4].

In this study, we aimed to determine the orientations
of the optical axes of absorptive crystals of different
systems characterized by the tensor Bij set by its com-
ponents in a Cartesian coordinate system. Using
Eq. (9), we have to express the complex vectors C1, 2 in
terms of the components Bij, which can be done if we
manage to establish the relation between the diadic and

the coordinate forms of the tensor .

ORIENTATIONS OF OPTICAL AXES 
IN ABSORPTIVE CRYSTALS OF DIFFERENT 

SYSTEMS

 

1.Triclinic Crystals

 

A. The case of arbitrary absorption.

 

 In this case,
no specific constraints on the components of the tensor

 

B

 

ij

 

 are imposed. According to Eq. (5), these components
can be written in the Cartesian coordinate system as

 

(10)

 

where 

 

i

 

, 

 

j

 

 = 1, 2, 3

 

, 

 

δ

 

ij

 

 is the unit matrix, and the scalar

 

a

 

 is any of the roots of the characteristic equation of the
tensor 

 

B

 

ij

 

:

 

(11)

 

Six equations of type (10) and condition (11) allow
us to express the scalar 

 

b

 

 and the components of the
complex vectors 

 

(

 

C

 

1, 2

 

) 

 

in terms of the components 

 

B

 

ij

 

.
Omitting the algebraic details,

 

1

 

 we only indicate here
the final results valid for the general case of a triclinic
crystal with an arbitrary inverse tensor of the complex
dielectric constant:  

(12)

(13)

 

Hereafter, we use the following notation for the
differences between the diagonal components of the

 

1

 

The numerical algorithm for solving the problem under consider-
ation is given elsewhere [5].

m1 2,
±

B̂

B̂

B̂

Bij aδij b C1( )i C2( ) j C2( )i C1( ) j+{ } ,+=

Bij aδij– 0.=

b D31 2,⁄=

C1 2,

=  B13 R13± B23 R23+− B33 a–, ,( ) D31 B33 a–( ).⁄
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x2

x1

(a) (b) (c) (d)

Fig. 1. Configurations of optical axes (stereographic projections) in absorptive crystals of different systems: (a) triclinic crystals

(classes G = , 1); (b) monoclinic crystals (G = 2/m, 2, m); (c) orthorhombic crystals (G = mmm, mm2, 222), (d) absorptive and
nonabsorptive crystals of intermediate systems. For (a–c), the highest-order symmetry elements of the groups  G in the correspond-
ing systems are shown in the standard notation used in [4].

1

            
tensor Bij:

(14)

The radicals Ri3 in Eq. (13) have the form

(15)

The radicals R13 and R23 in Eq. (13) are related as

(16)

because the scalar a satisfies the characteristic equation
(11).

The tensor Bij, which, in the general case, has three
eigenvalues [see Eq. (11)], can be represented in diadic
form (5), (10), (12), and (13) by three different but
equivalent methods.

The above general relationships can be somewhat
simplified in the system of coordinates in which the
tensor βij (4) is diagonal. Then, only the diagonal com-
ponents of the tensor βij have the nonzero values

(17)

In this case, the nondiagonal components of the tensor

Bij are determined by the tensor  (4) alone,

(18)

In triclinic absorptive crystals, the orientations of

four optical axes  can be established from the
given components of the tensor Bij with the aid of Eqs.
(9) and (13). In the general case, each of the complex

vectors C1 and C2 generates a pair of optical axes 

and , respectively, with these four directions being
nonequivalent (Fig. 1a).

B. The case of weak absorption. In this case, gen-
eral relationships (11)–(16) are considerably simpli-
fied. Using the system of coordinates in which the ten-
sor βij is diagonal, i.e., Eqs. (17) and (18) are valid, we
can assume that the absolute values of all the compo-

Dij Bii B jj.–=

Ri3 Bi3
2 Bii a–( ) B33 a–( )– .=

R13R23 B12 B33 a–( ) B13B23–=

β11 β1, β22 β2, β33 β3.≡≡≡

βij'

B12 iβ12'– , B13 iβ13' , B23– iβ23' .–= = =

m1 2,
±

m1
±

m2
±

C

nents of the tensor  are much less than those of the
diagonal components βi (17). Under these conditions,
formulas (11)–(16) yield the following approximate
relationships:

(19)

(20)

where the following notation is used

(21)

The real vectors m1, 2 in (20) have the sense of the direc-
tions of optical axes in the absence of absorption

(22)

where

(23)

The vectors m1 and m2 are symmetrically located in the
coordinate plane x1x3 and form an angle of 2α (Figs. 2a,
2b). Without any loss of presentation generality, the
coordinate system can be chosen in such a way that the
diagonal components βi are numbered as follows:

(24)

whereas the radicals in (23) are real. The vectors 
in (20) arise due to absorption

(25)

The components of these vectors are linearly dependent
on the absorption parameters, i.e., on the components
of the tensor 

(26)

βij'

a β2 iβ22' , b– d31 id31'–( ) 2,⁄= =

C1 2, m1 2, ic1 2,' ,+=

dij βi β j, dij'– βii' β jj' .–= =

m1 2, αsin± 0 αcos, ,( ),=

αsin d21 d31⁄ , αcos d32 d31⁄ .= =

β1 β2 β3,≤ ≤

c1 2,'

c1 2,' κ β̃13'–± β̃12' β̃23'–± κ̃, , 
  .=

βij'

κ d31' d31⁄ d21' d21⁄–( ) α ,sin=

κ̃ d31' d31⁄ d32' d32⁄–( ) α ,cos=
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(a) (b)

Fig. 2. Optical axes m1 and m2 in a transparent triclinic crystal and their splitting (m1  , m2  ) due to “switching-

on” of absorption: (a) spatial configuration (only the vectors m1 and m2 lie in the x1x3 plane); (b) stereographic projection.

m1
± m2

±

m2
+

m1
–

m1
+

m2
+

m2
–

m1
+

(27)

(28)

The absorption parameters κ and  (26) depend on the

diagonal components of the tensor  alone and have
the nonzero values for crystals of the lower and inter-

mediate systems. At the same time, the parameters 

(27) and  (28), which are determined by the nondi-

agonal components of the tensor , have the nonzero

values only for crystals of lower systems—  for tri-

clinic and  for monoclinic and triclinic ones.

β̃12' β12' d31d21,⁄=

β̃i3' βi3' d31d32 i 1 2,=( ).⁄=

κ̃
βij'

β̃12'

β̃i3

βij'

β̃i3'

β̃12'
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The above approximate relationships allow us to

find the directions of four optical axes  for weakly
absorptive triclinic crystals. Thus, vector C1 (20) gen-
erates a pair of optical axes whose directions are set by
the relationship

(29)

where the vectors m1 and  are set by the relationships
(22) and (25). The second term in the right-hand part of
(29) describes splitting of the optical axis (with the
direction m1) of a transparent triclinic crystal under the
effect of absorption. Using relationships (22) and (25),
we can directly relate this splitting to the components
of the tensor  characterizing absorption:

m1 2,
±

m1
± m1 m1c1'[ ] ,±=

c1'

βij'
(30)m1c1'[ ] β̃23' β̃12'– 
  αcos κ β̃13'– 

  α κ̃ αsin–cos β̃12' β̃23'– 
  αsin, ,

 
 
 

.=
The second pair of the optical axes is set by the formula

(31)

where the term describing splitting can be set by rela-
tionship (30) with the following substitution:

m2
± m2 m2c2'[ ] ,±=
(32)

so that we have

α α , κ κ , β̃12' β̃12' ,––sin–sin
(33)m2c2'[ ] β̃23' β̃12'– 
  αcos κ β̃13'+ 

 – α κ̃ αsin+cos β̃12' β̃23'+ 
  αsin, ,

 
 
 

.=
As is seen from (31), the angle formed by the optical

axes  and  is proportional to the absorptionm1
+ m1

–

parameters and set by the formula

(34)m1
+m1

– 2 m1c1'[ ] .=
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The optical axes  and  are oriented symmetri-
cally with respect to the initial axis m1, with all three

vectors, , , and m1, being located in one plane.

In a similar way, the angle between the optical axes

 and  is

(35)

The vectors , , and m2 also lie in one plane.

2. Monoclinic Crystals

For monoclinic crystals, the axis x3 in the crystallo-
physical coordinate system is either parallel to the two-
fold symmetry axis or perpendicular to the symmetry
plane (see [4]). In this case, the following components
of the tensor Bij go to zero

(36)

Then general characteristic equation (11) “splits.” It is
convenient to choose one of two roots of the “split qua-
dratic equation” as a parameter a:2

(37)

Then, expression (13) for the vectors C1, 2 is simplified,

(38)

For monoclinic crystals, the problem of optical-axis
orientations for arbitrary absorption is solved with the
use of relationships (9) and (38). Because of the sym-
metry, both pairs of the optical axes are equivalent
(Fig. 1b), which can readily be seen if one takes into
account that the components of the vectors C1 and C2
(38) differ only by their signs.

If absorption is weak, the expression for the vectors
 (25) is simplified:

(39)

In this case, splitting of optical axes of a transparent
monoclinic crystal is still determined by expressions
(29) and (31), but with

(40)

2 In this case, the “split eigenvalue” a = B33 cannot be used,
because it would lead to the 0/0-type indeterminate form, which
requires a special consideration.

m1
+ m1

–

m1
+ m1

–

m2
+ m2

–

m2
+m2

– 2 m2c2'[ ] .=

m2
+ m2

–

B13 B23 0.= =

B11 a–( ) B22 a–( ) B12
2– 0.=

C1 2,

=  a B11–± B12+− a B11–⁄ B33 a–, ,( ) D31⁄ .

c1 2,'

c1 2,' κ± β̃12'± κ̃, , 
  .=

m1c1'[ ]

=  β̃12' αcos– κ α κ̃ αsin–cos β̃12' αsin, , 
  ,
C

(41)

Vectors (40) and (41) differ only by the signs of their
components (the manifestation of the monoclinic sym-
metry).

3. Orthorhombic Crystals

In the standard crystallophysical coordinate system,
with the coordinate axes parallel to the twofold symme-
try axes or perpendicular to the symmetry planes, the
complex tensor Bij is diagonal, with the only nonzero
components being

(42)

Under the assumption that B12 = 0 in (37) and (38), we
arrive at the simplified equations

(43)

(44)

The optical-axis orientations in orthorhombic crys-
tals can be determined from (9) and (44). Because of
the symmetry, all four optical axes are equivalent
(Fig. 1c). This also follows from the fact that the differ-
ence between the vectors C1 and C2 reduces to different
signs of only one of their components [see (44)].

If absorption is weak, the vectors  can be writ-
ten as

(45)

Splittings of the optical axes of a transparent crystal
under the effect of absorption [see (29) and (31)] are
determined by the vectors

(46)

The symmetry of orthorhombic crystals manifests itself
in the above simple formula, relating the splittings of
two different optical axes, m1 and m2.

4. Crystals of Intermediate Systems

The intermediate systems include the trigonal, tet-
ragonal, and hexagonal crystals. In the standard crystal-
lophysical setting, the x3-axis is directed along the
highest-order symmetry axis, the tensor Bij is not only
diagonal, but also has two coinciding principal values

(47)

In this particular case, relationship (44) takes the form

(48)

m2c2'[ ]

=  β̃12' αcos κ– α κ̃ αsin+cos β̃12' αsin, , 
  .

B11 B1, B22 B2, B33 B3.≡≡≡

a B2,=

C1 2, D21± 0 D32, ,( ) D31.⁄=

c1 2,'

c1 2,' κ± 0 κ̃, ,( ).=

m1c1'[ ] m2c2'[ ]– 0 κ α κ̃ α 0,sin–cos,( ).= =

B1 B2.=

C1 C2≡ 0 0 1, ,( ).=
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The vectors C1 and C2 of these crystals of intermediate
systems are equal, real, and independent of the material
characteristics. Under these conditions, the crystals
have only one optical axis coinciding with the principal
symmetry axis, irrespective of the degree of absorption
(Fig. 1d)

(49)

Obviously, this optical axis is not split.

DISCUSSION
Thus, if the components of the inverse permittivity

tensor Bij for an absorptive crystal of an arbitrary sym-
metry are known, it is possible to establish the orienta-
tions of its optical axes. The general relationships
obtained do not depend on the absorption degree. How-
ever, it should be emphasized that if the components of
the imaginary part of the tensor Bij are of the same order
of magnitude as the components of the real part, the
electromagnetic waves can propagate only for rather
small distances of the order of a wavelength.3 In these
cases, the role of absorption can be studied, e.g., on thin
crystalline films or electromagnetic wave reflection
from the surface of a bulky crystal.

The order of magnitude of the splitting angle of the
optical axes in a transparent crystal caused by absorp-
tion is determined by the ratio ~β'/d [see Eqs. (34) and
(35)]. Here β' is of the order of the component of the
tensor  and d is of the order of the difference
between the components of the tensor βij (d character-
izes the anisotropy of the tensor βij). Thus, ~1° -split-
ting arises at β'/d ≈ 1/50. This can happen, e.g., if β' ≈
0.01 and d ≈ 0.5. The angles between the optical axes
in absorptive crystals were also estimated in [6].

3 The collapse (annihilation) of optical axes considered in [1] cor-
responds just to such situations. Collapses arising due to random
degeneracy (only if the specific relationships for the complex
components Bij are valid) are not very probable.

m1 m2≡ 0 0 1, ,( ).=

βij'
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It should be indicated that in the limit of zero
absorption, we always assumed that both optical axes
in transparent crystals of lower systems were located in
the coordinate plane x1x3 [see (22) and Fig. 2], which
was determined by the fact that, in the coordinate sys-
tems considered, the diagonal components βi were
located in the order dictated by relationships (24).

Cubic crystals, being optically isotropic, required
no consideration at all, because in these crystals, degen-
erate electromagnetic waves can propagate along any
direction.

ACKNOWLEDGMENTS

The authors are grateful to A. F. Konstantinova for
useful discussions. This study was supported by the
Russian Foundation for Basic Research, project no.
98-02-16069.

REFERENCES

1. F. I. Fedorov, Theory of Gyrotropy (Nauka i Tekhnika,
Minsk, 1976).

2. A. F. Konstantinova, B. N. Grechushnikov, B. V. Bokut’,
and E. G. Valyashko, Optic Properties of Crystals
(Navuka i Tékhnika, Minsk, 1995).

3. A. M. Goncharenko, S. V. Grum-Grzhmaœlo, and
F. I. Fedorov, Kristallografiya 9, 589 (1964) [Sov. Phys.
Crystallogr. 9, 504 (1964)].

4. Yu. I. Sirotin and M. P. Shaskol’skaya, Foundations of
Crystal Physics (Nauka, Moscow, 1975).

5. B. N. Grechushnikov and I. N. Kalinkina, in Covarian
Methods in Theoretical Physics. Optics and Acoustics.
Collection of Articles (Inst. Fiziki, Minsk, 1981), p. 102.

6. A. I. Okorochkov and A. F. Konstantinova, Kristal-
lografiya 30, 105 (1985) [Sov. Phys. Crystallogr. 30, 57
(1985)].

Translated by L. Man



  

Crystallography Reports, Vol. 45, No. 4, 2000, pp. 676–677. Translated from Kristallografiya, Vol. 45, No. 4, 2000, pp. 738–739.
Original Russian Text Copyright © 2000 by Golovin, Morgunov, Julikov, Dmitrievski

 

œ

 

 .

                                                                                                              

PHYSICAL PROPERTIES OF CRYSTALS
Aging-Induced Shift of the Optical Quenching Maximum 
of the Magnetoplastic Effect in NaCl Crystals
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Abstract—The shift of the optical quenching maximum due to the magnetoplastic effect in NaCl crystals
caused by one-year aging at T = 293 K after heat treatment has been found. It was established that the spectral
characteristics of crystal sensitivity to light were changed and, at the same time, the crystals became insensitive
to magnetic fields. © 2000 MAIK “Nauka/Interperiodica”.
1 In [1], the displacement of dislocations in ionic
crystals during their exposure to a dc magnetic field
(MF) in the absence of external mechanical loading
have been established. Later, it was also established
that this magnetoplastic effect (MPE) can be sup-
pressed if, prior to the MF application, a crystal free of
“fresh” dislocations was illuminated by the ultraviolet
light of a certain wavelength with the quantum energy
E being substantially less than the forbidden band gap
[2]. The most probable cause of the effect of the UV
light on the magnetoplastic effect is a change in the
state of the point defects that cease to oppose the dislo-
cation motion in MF [2]. The bell-like shape of the
dependence of mean dislocation paths on energy in
magnetic fields [2] allows one to considere this depen-
dence as a prototype of the absorption curve of the
point defects studied. It is well known that the absorp-
tion spectra of point defects are sensitive to their state
and change after thermal, electric, and other types of
crystal treatment [3]. The present paper was aimed to
study the effect of aging in dislocation-free NaCl crys-
tals at T = 293 K on the spectral characteristics of the
optical quenching of the magnetoplastic effect.

The magnetoplastic effect was experimentally stud-
ied in nominally pure NaCl single crystals annealed for
5 days at 700 K and cooled to T = 293 K at a mean rate
of 1–2 K/min. Some of these crystals (NaCl(I)) were
studied immediately after the thermal treatment. The
other part of the crystals (NaCl(II)) were kept for one
year at T = 293 K and then studied. Edge dislocations
were introduced by the standard method of scratching.
Their dislocation displacements were measured upon
double chemical etching of the samples. Before the dis-
location introduction, the crystals were illuminated for
15 min with a monochromatic light of the wavelength
λ = 400–800 nm. Two fundamentally different methods
were used to initiate displacement of dislocations—(i)
MF pulses of the duration 10 ms and the amplitude 7 T
all the experiments and having the form of half-period

1 e-mail: golovin@main.tsu.tambov.ru
1063-7745/00/4504- $20.00 © 20676
of a sinusoid; (ii) rectangular mechanical compression
pulses of duration 200 ms and the amplitude 400 kPa.
In the first case, the external factor facilitated disloca-
tion depinning only from the magnetosensitive pinning
centers. The dislocations then moved under the effect
of random fields of internal stresses. In the second case,
the uniform field of mechanical stresses provided
depinning of dislocations from all the pinning centers
and their motion in a certain direction. The magnetic-
field and mechanical-stress values were such that the
mean paths of dislocations, Lf and Lm, under the MF and
mechanical loading effects, were the same in crystals
not preliminarily subjected to photoexposure, i.e., in
“dark” crystals, we had Lf = Lm = L0.

In the first run of the experiments, we studied the
effect of light on the dislocation paths Lf and Lm. The
preliminary photoexposure of NaCl(I) crystals
decreased Lf and increased Lm in comparison with L0;
the most pronounced deviations in both cases being
achieved (similar to [2]) at λ = 350 ± 20 nm (Fig. 1). In
NaCl(II) crystals, the preliminary photoexposure
decreased both Lf and Lm in comparison with L0, with
the maximum deviation of Lf and Lm from L0 being
achieved at λ = 250 ± 20 nm (Fig. 1). Thus, the effect
of light on the dislocation paths initiated by the mag-
netic field was dependent on the thermal pre-history of
the crystals.

In the second run of the experiments, we used MF
pulses instead of photoexposure. Since an MF pulse
was switched-on prior to the introduction of “fresh”
dislocations, then, similar to photoexposure, it could
affect only the state of point defects. This effect can be
estimated from the changes in dislocation paths Lf0 ini-
tiated by the second MF pulse in comparison with paths
L0 in crystals not subjected to the effect of a MF prior
to dislocation introduction. It has been established that
in NaCl(I) crystals, Lf0 < L0 , whereas in NaCl(II) Lf0 =
Lf (Fig. 2), i.e., in the crystals kept for a year after heat
treatment at T = 293 K, the maximum of optical
000 MAIK “Nauka/Interperiodica”
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quenching of magnetoplastic effect is shifted to the
short-wavelength range and the point defects become
insensitive to a magnetic field.

Apparently, a year storage of crystals at a constant
temperature can lead only to the relaxation of metasta-
ble states of point defects. The corresponding changes
in the response of the crystals to light and magnetic
fields are likely to be mutually related. We measured
the absorption spectra of crystals in a Hitachi spectro-
photometer and detected no absorption maxima in the
range studied. This bears witness to a small concentra-
tion of magnetosensitive defects and the high sensitiv-
ity of the method of “dislocation” probing of point
defects used in our experiments.

Thus, the magnetosensitive defects in NaCl crystals
are long-lived metastable complexes. The products of
their relaxation are insensitive to magnetic fields, but
change their state under ultraviolet light.

300 λ, nm500 700

10

15

20

25

30

Lf, Lm, µm

0
~~ ~~

1

2

3

4
Ph σ* * tLm

Ph B* * tLf

Fig. 1. Mean paths of dislocations, Lf (1, 2) and Lm (3, 4),
whose motion was initiated by a MF pulse and mechanical
loading, respectively, as functions of the wavelength λ of the
light used for the preliminary photoexposure. (1, 3) NaCl(I)
crystals; (2, 4) NaCl(II) crystals. Dashed and dot-dashed
lines indicate dislocation paths L0 in NaCl(I) (“dark”) and
NaCL(II) crystals, respectively. In inset: the sequence of
procedures in the experiments in MF and under mechanical
loading. Arrows indicate introduction of dislocations, star
indicates etching, B is a MF-pulse, and Ph is a photoexpo-
sure.
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Fig. 2. Dislocation paths L of MF-pulse-initiated dislocation
motion in NaCl(I) and NaCl(II) crystals; L0 and Lf 0 are
paths without and with the application of a magnetic field,
respectively, before the introduction of dislocations. In
inset: the sequence of procedures used in measuring L0 and
Lf 0. For notation see Fig. 1.
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PHYSICAL PROPERTIES OF CRYSTALS
Nuclear 57Fe Relaxation in Fe2+-Containing NiFe2O4 and CoFe2O4 
Single Crystals
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Abstract—Spin-lattice (T1) and spin-spin (T2) relaxation times of 57Fe nuclei in the single-crystal NiFe2O4 and
CoFe2O4 ferrites containing Fe2+ ions have been studied in the temperature range of 4.2–100 K by a spin-echo

technique. The peaks of relaxation rates  and  caused by the presence of Fe2+ ions were observed for
both ferrites in the ranges 38–42 and 28–32 K, respectively. The analysis of the results obtained with invocation
of the data on ferromagnetic resonance and the measurements of the temperature dependence of resistivity

shows that the mechanism of nuclear relaxation responsible for “impurity” peaks  and  is a slow relaxa-

tion process caused by electron exchange Fe2+  Fe3+, characterized by a low activation energy. © 2000
MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The nuclear relaxation in magnetic oxides in the
presence of paramagnetic impurity ions is determined
mainly by the transfer of the energy of nuclear spin
oscillations to the lattice, because of the interactions
between the nuclei and impurity ions, whose energy
state is determined by the exchange and the crystal
fields. Such interactions are especially strong for cer-
tain ions of the iron group with partly “quenched”
orbital momentum (Fe2+, Co2+).

The most often encountered impurity in ferrite sin-
gle- and polycrystals affecting their properties (e.g.,
resistivity ρ and high-frequency behavior) is a divalent
Fe2+ ion. These ions also affect the processes of nuclear
relaxation in magnetic oxides. The temperature depen-

dence of the spin-lattice ( ) and spin-spin ( )
relaxation rates for all the ferrites with Fe2+ ions for
57Fe nuclei studied had the peaks. Such peaks were
observed to magnetite Fe3O4 [1], where Fe2+ ions
occupy 1/3 of the total amount of iron ions, in Y3Fe5O12
garnet [2], in impurity-containing hematite α-Fe2O3
[3], in hexagonal barium ferrite BaFe12O19 [4], and also
in lithium ferrite Li0.5Fe2.5O4 [5].

There are two approaches to the interpretation of the
relaxation mechanism, which are based on the so-
called slow and fast relaxation theories. These theories
were developed in the sixties to interpret the anomalies
in the temperature dependence of the ferromagnetic-
resonance (FMR) linewidth ∆H in ferrites. The detailed
consideration of these problems can be found else-
where [6, 7]. Later, these theories were used to interpret

T1
1–

T2
1–
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the nuclear relaxation, because both damping of the
electron spins in FMR and nuclear relaxation in NMR
are caused by the relaxation properties of an impurity
ion determined by its relaxation time τ.

In our case the relaxation rate 1/τ describes interac-
tion between Fe2+ ion and the lattice. It is also possible
to introduce the frequency ωAB, which is the measure of
the exchange interaction between Fe2+ ions occupying
“octahedral” (B) positions in the spinel structure and
Fe3+ ions occupying the “tetrahedral” (A) sites (the AB-
interactions are the determining interactions in spinel
ferrites). According to the slow relaxation theory, the
frequency ω of an external alternating magnetic field,
which at resonance is equal to the NMR frequency,
should be comparable with 1/τ but, at the same time,
considerably lower than ωAB. In other words, the fol-
lowing condition should be fulfilled:

(1)

Contrary to the slow relaxation theory, the fast
relaxation theory is developed under the assumption
that the interaction of Fe2+ ions with the lattice is so
pronounced that the 1/τ is comparable with ωAB and is
considerably higher than ω. In other words, this theory
requires the fulfillment of the condition:

(2)

According to [6, 7], even the FMR experiments give
no grounds to determine which of these two theories
should be applied to each concrete situation. The situa-
tion is even much more complicated for NMR experi-
ments.

ωAB   @  1/ τ ω . ≈

ωAB 1/τ   @  ω . ≈                                      
000 MAIK “Nauka/Interperiodica”
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In the present paper, we describe the first study of
the nuclear relaxation in Fe2+-containing nickel and
cobalt ferrite single crystals in the temperature range
from 4.2 to 100 K. The study was undertaken to clarify
the applicability of the existing theories to describe the
impurity mechanisms of nuclear relaxation, and also to
confirm that the fluctuations in local magnetic fields
caused by Fe2+  Fe3+ electron exchange are respon-
sible for the observed relaxation processes. To solve the
formulated problems, we invoke the FMR data and
measured resistivity of one of the single crystals at dif-
ferent temperatures.

SAMPLES AND EXPERIMENT

We studied Verneuil grown nickel and cobalt ferrite
single crystals [8]. The disklike or platelike samples
were cut out from homogeneous parts of the boules and
had an arbitrary crystallographic orientation. The
chemical analysis showed that the crystals had the com-
positions Ni0.76 O4 and

Co0.89 O4 . For the sake of brevity, hereafter

we shall use the formulas NiFe2O4 and CoFe2O4. The
number of Fe2+ ions in the NiFe2O4 and CoFe2O4 fer-
rites amounted to 8.5 and 8.4% of the total number of
iron ions. The samples for NMR experiments were 1 to
2 g in weight. They were placed into a measuring coil
so that the rf field was in the disk plane. The NMR was
observed by a spin-echo method in the zero external
field with the aid of a pulsed spectrometer manufac-
tured by the Institute of Radioengineering and Elec-
tronics of the Russian Academy of Sciences. The tem-
perature was controlled within ±0.1 K by blowing
helium vapors.

With the change of the temperature, the value of T1

changed by almost three orders of magnitude, therefore
the longitudinal relaxation time was measured by dif-
ferent methods (because of the spectrometer limita-
tions). Thus, high T1 values (>5 ms) were measured by
the method of the restoration of the longitudinal com-
ponent of nuclear magnetization, with an increase of
the repetition period of exciting pulse pairs (the satura-
tion method). For T1 values less than 5 ms, we used the
so-called stimulated echo method (three-pulse
method). The transverse relaxation time, T2, was mea-
sured by the decay of an echo amplitude with an
increase of time between two exciting pulses. The error
in the measurements of T1 and T2, determined mainly
by the signal-to-noise ratio, was 20–50%.

The resistivity was measured by a conventional dc
four-probe method.
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RESULTS AND DISCUSSION

Figures 1a and 1b show the relaxation rates  and

 measured for NiFe2O4 and CoFe2O4, respectively,
in the interval of temperatures from 4.2 to 100 K. The
relaxation rates were measured for 57Fe nuclei at the A-
and B-positions in the spinel structure. The resonance
frequencies of 57Fe for the A- and B-positions for these
ferrites, in the interval of 4.2–77 K, are located at 71
and 76 MHz, respectively. Within the experimental
error (30–50%), the T1 and T2 values for A- and B-sites
are indistinguishable, therefore the experimental points
in Figs. 1a and 1b can be attributed to any of iron posi-

tions. The temperature dependences of  and  for
both ferrites are almost identical (both quantitatively

and qualitatively). For both ferrites, the  and 
maxima are located at 40 ± 2 and 30 ± 2 K, respectively.
At the temperatures exceeding the peak temperatures,
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T1 ≈ T2; at lower temperatures, T1/T2 ≈ 10. The similar
behavior of the relaxation time are observed in magne-
tite [1], where Fe2+ ions play the main part in the relax-
ation processes. To analyze the results, we use the stan-
dard expressions for relaxation times in the form given
in [9]:

(3)

(4)

where γn is a nuclear gyromagnetic ratio, , , 
are mean-square components of a fluctuating magnetic
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Fig. 2. The frequencies of the magnetic resonance ν = ω/2π

and the temperature positions of the ∆H (FMR) and 

(NMR) maxima for a NiFe2O4 crystal in the Arrhenius coor-

dinates. (1), (2) FMR data [10], (3) the region of the 

peak in the 57Fe NMR experiment. The straight line corre-
sponds to the activation energy E = 0.027 eV.
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Fig. 3. Temperature dependence of resistivity ρ of a
NiFe2O4 single crystal.
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field at the nucleus, and τ is the correlation time of the
general theory [9]; the physical sense of τ for our case

will become clear later. It follows from (3) that  has
a maximum at ωτ = 1.

Now, return to the applicability of the fast and slow
relaxation theories. Similar to (3), the final formulas for
∆H in the FMR and T1 in the NMR in both theories con-
tain the Loretzian factor responsible for the maximum

of ∆H or , but the frequencies ω in these theories
have different senses. In the fast relaxation theory, ω is
the measure of the exchange energy (denoted above by
ωAB), while in the slow relaxation theory, ω is the obser-
vation frequency of FMR or NMR. Then, one of the
most important properties follows, which provides the
establishment of the applicability of these theories.
According to condition (2), the temperature position of
the maximum in the slow relaxation theory is indepen-
dent of the observation frequency. On the other hand,
the slow relaxation theory [condition (1)] predicts this
dependence with due regard of the fact that τ is the tem-
perature-dependent quantity.

To solve the problem of applicability of both theo-
ries, consider the FMR study of NiFe2O4 [10]. The sam-
ple used in [10] had the composition
(Ni0.75 O4), i.e., was almost the same as our

sample, which justifies the comparison of these data.
Galt and Spenser [10] observed the peaks of ∆H at the
temperatures 145 and 100 K and at the frequencies 24
and 9.2 GHz, respectively.

We assume that τ is determined by the activation
mechanism and depends on temperature by the Arrhe-
nius law:

(5)

where k is the Boltzman constant, and E is the activa-
tion energy. Under this assumption, the logarithm of ω
is a linear function of the reciprocal temperature of the

maxima of ∆H and . It is seen from Fig. 2 that such
a linear dependence really takes place. Thus, in this
case, the relaxation mechanism satisfies the require-
ments of the slow relaxation theory, whereas the activa-
tion mechanism is responsible for the temperature
behavior of τ.

As follows from the graph in Fig. 2, E = 0.027 ±
0.001 eV and τ∞ = (7.3 ± 1) × 10–13 s. The dependence
(5) with such parameters is characteristic of the elec-
tron exchange Fe2+  Fe3+ in ferrites (the so-called
“hopping” or “jumping” mechanism). For example, the
parameters for electron hopping in magnetite are E =
0.03–0.055 eV [1, 7], τ∞ = 3.7 × 10–13 s [1]. Thus, the
parameter τ acquires the meaning of the time of elec-
tron hopping. This mechanism is known to be responsi-
ble for a high conductivity of Fe2+-containing ferrites
[7]. Compare the E value obtained from the magnetic
resonance data with the activation energy obtained
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from conductivity measurements. Figure 3 shows the
measured resistivity ρ of a NiFe2O4 single crystal plot-
ted in the lnρ, 1/T coordinates. The approximation by a
straight line yields the averaged activation energy Eρ =
0.06 ± 0.01 eV. The E and Eρ are of the same order of
magnitude and differ by about 2 times. This difference
can be explained by the fact that the Eρ was measured
in the steady-state mode, while E was measured in a
microwave field. It is also conceivable that along with
the hopping mechanism Fe2+  Fe3+, there exists a
certain parallel conductivity mechanism.

The relationship T1 ≈ T2, which holds at T > 50 K, is
explained by the fact that, with an increase of the tem-

perature and the distance from the peak of , the time
of electron hopping τ decreases so that the condition
ωτ ! 1 becomes valid. As follows from (3) and (4), in

an isotropic fluctuating field,  =  = , the above
condition results in the equality of the longitudinal and
the transverse relaxation times, T1 and T2.

On the other hand, with an increase of the distance

from the value of , under conditions of the expo-

nential increase in τ, the value of  continues
increasing because of the contribution of the longitudi-
nal field component Hz into T2 (the so-called secular or
adiabatic contribution [9]). As follows from (4), this
contribution results in a higher value of the T1/T2 ratio,
which attains a certain limiting value. This contribution

shifts the  peak to somewhat lower temperatures

than the temperature of the  peak.

Concluding the discussion, consider the physics of
the slow relaxation process under the conditions where
the impurity channel of nuclear relaxation is provided
by the electron exchange Fe2+  Fe3+.

The valence exchange between the Fe2+ and Fe3+

ions in this modification of the slow relaxation theory
plays the role of quantum transitions, changing the pop-
ulation in a two-level system. The oscillations of a mag-
netization under the action of a microwave field change
the angles between the magnetization and the local
symmetry axes for nonequivalent B-sites and also
change the energy levels of an ion Fe2+  Fe3+ pair,
thus providing a certain preferable direction of transi-
tions, which is also dependent on the applied microwave
field. The transitions delayed with respect to the changes
in the microwave field provide the energy dissipation
into the lattice. The mean time τ, necessary for the
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valence exchange, is the characteristic of a relaxation
time of the impurity Fe2+ ion. Historically, it was the first
mechanism suggested for the interpretation of the tem-
perature dependence of ∆H in FMR in ferrites [11].

CONCLUSIONS
The NiFe2O4 and CoFe2O4 crystals with the same

concentration of impurity Fe2+ ions (8.5% of the total
number of iron ions) show the identical temperature
variations of the spin-lattice, T1, and spin-spin, T2,

relaxation times of 57Fe nuclei with the maxima of 

and  rates at 40 ±

 

 2 and 30 

 

±

 

 2 K, respectively. The
impurity peaks can be explained within the theory of
slow relaxation, with the time of electron hopping

 

Fe

 

2+ 

 

 Fe

 

3+

 

 being the parameter of the impurity
relaxation. The value of the activation energy obtained
by various methods support the idea that the electron
exchange determines the temperature behavior of the
nuclear relaxation times.
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Abstract—Polymorphism and polar properties of an antiferroelectric (R)-2-methylheptyloxycarbonylphenyl-
4-[(4-decyloxy-3-fluoro)benzoyloxy]benzoate liquid crystal are studied. The phases are identified, and the
phase transition points are determined. Dielectric constant, dielectric losses, and pyroelectric properties are
studied for the orthogonal smectic SmA and tilted smectic Sm , SmC*, Sm , and Sm  phases. The tem-
perature dependence of spontaneous polarization is measured by the repolarization current technique and inte-
gration of the pyroelectric constant. © 2000 MAIK “Nauka/Interperiodica”.

Cα* Cγ* CA*
INTRODUCTION

At present, a large variety of chiral liquid–crystal-
line (LC) compounds with tilted smectic C-phases
(SmC*) possessing ferroelectric properties have been
synthesized for research and optimization of display
characteristics [1]. Ferroelectricity in LCs was pre-
dicted by Meyer in 1974 [2], and in 1975, the first fer-
roelectric LC compounds were synthesized [3]. About
a decade later, LC compounds with antiferroelectric
properties were discovered among tilted chiral C-smec-
tics [4]. A number of specific features (e.g., tristable
switching) provide their widespread use in display
technology and make them more advantageous than
ferroelectric LCs [5]. In this connection, extensive
search for new compounds of this type is now
underway.

The most widespread subphases of antiferroelectric
LCs are the ferroelectric SmC*, the antiferroelectric
Sm , and the ferrielectric Sm , Sm , FIL, and
FIH phases. Structural and physical properties of the
latter phases were studied to a lesser degree [6]. Usu-
ally, the subphases are studied by the methods of X-ray
and IR spectroscopy [7, 8], high resolution calorimetry
[9], electrooptic measurements [10], dielectric relax-
ation spectroscopy [11], and many other methods [12].

CA* Cα* Cγ*
1063-7745/00/4504- $20.00 © 20682
Below, we describe the study of polymorphism of
antiferroelectric LCs by measuring dielectric constant
ε', dielectric losses ε'', and pyroelectric constant. The
study was performed on a new ester with ferro-, anti-
ferro-, and ferrielectric phases which is based on 4-(4-
hydroxybenzoyloxy)alkylbenzoate and 4-(4-alkoxy-3-
fluoro)benzoic acid synthesized by one of the authors
(Nguyen).

EXPERIMENTAL

The LC compound under study, (R)-2-methylhepty-
loxycarbonyl-phenyl-4-[(4-decyloxy-3-fluoro)benzoy-
loxy]benzoate (JCR541), with the molecular structure
shown in Fig. 1, has a number of polar and nonpolar
phases. The points of the phase transitions were deter-
mined by the method of differential scanning calorim-
etry (DSC) in the range 96–118°C. The DSC spectrum
(Fig. 2) displays a double exothermic peak consisting
of the two merged peaks formed at the temperatures of
114.4 and 114°C, and the two single peaks at 104.5°
(SmC*–SmFI* transition) and 103°C (SmFI*–Sm
transition), with SmFI* being one of the ferroelectric
phases. The existence of the double peak can be indic-
ative of the transition from SmA to SmC* via the Sm

CA*

Cα*
(R) – C10H21O COO COO COOC
*
H(CH3)C6H13

Fig. 1. Structural formula of a JCR541 liquid–crystal.

F

000 MAIK “Nauka/Interperiodica”



        

DIELECTRIC AND PYROELECTRIC STUDIES 683

                                                                                      
phase, existing within a narrow temperature range 114–
114.4°C. The complete sequence of phase transitions
for JCR541, including the crystalline (Cr) and isotropic
(I) phases, may be written as:

The cells for pyroelectric and dielectric measure-
ments were fabricated from glass plates with a conduc-
tive indium tin oxide (ITO) layer applied onto one side.
The planar LC orientation was attained by rubbing
polyamide films deposited onto the electrodes. The
working area of cells was 4.5 × 4.5 mm2, their thickness
was d ≈ 9 ± 0.5 µm.

The real ε' and the imaginary ε'' parts of dielectric
constant were measured on a HP-4192A impedance
analyzer at a measuring voltage of 0.1 V and the bias
voltage ranging within 0–13 V. The temperature depen-
dence of spontaneous polarization was studied by the
repolarization current [14] and pyroelectric [15] tech-
niques. Polarization switching was induced by alternat-
ing rectangular voltage pulses (±10 V, frequency
100 Hz).

Pyroelectric properties were measured by the
method described in [15]. The temperature dependence
of the pyroelectric constant, γ(T), was measured under
sample cooling from the SmA phase. The temperature
dependence of polarization was determined by integrat-
ing the pyroelectric constant [16] and measuring the
repolarization currents.

RESULTS AND DISCUSSION

Figure 3 presents the temperature dependences of
the spontaneous polarization Ps determined from repo-
larization current measurements made under LC sam-
ple cooling from 118 to 96°C and heating from 96 to
102°C. In SmA phase, spontaneous polarization is due
to the electroclinic effect. With a decrease in tempera-
ture, it first steeply rises in the vicinity of the points of
the SmA–Sm  and the Sm –SmC* phase transi-
tions and then gradually increases in the SmC* phase.
At the temperature of 102°C, the spontaneous polariza-
tion drops to the level of ~1/3Psm (where Psm is the max-
imum value of the spontaneous polarization in the
SmC* phase) and then, with the further temperature
decrease, approaches zero. In the antiferroelectric
Sm  phase, Ps = 0, which signifies that the measuring

voltage (10 V) is too low to induce the Sm –SmC*
transition in an electric field. A decrease of spontaneous
polarization at 102°C and not at the temperature of the
SmC*–SmFI* phase transition (104.5°C) is explained
by the shift of the phase transition point in an electric

Cr–89.3–SmCA*–103–SmFI*–104.5–SmC*

–114–SmCα*–114.4–SmA–128.5°C–I .

Cα* Cα*

CA*

CA*
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
field. The spontaneous polarization in the SmFI* phase
equals ~1/3Psm, which shows that it is the well-known
ferrielectric Sm  phase.

The measurements during heating of the LC showed
no spontaneous polarization Ps in ferrielectric phase.
Only close to the transition point to the ferroelectric
SmC* phase, spontaneous polarization sharply
increases and attains the maximum value equal to the
spontaneous polarization Psm for the SmC* phase. Such
temperature behavior of the polarization may evidence
the morphotropic nature of the ferrielectric Sm
phase in the LC.

Cγ*

Cγ*

–0.8

–0.9

–1.0

–1.1

Q, mW

96 100 104 108 112 116
T, °C

SmCA
*

SmFI*

SmC* SmA

SmCα
*

Fig. 2. DSC spectrum from a JCR541 sample (19.9 mg) dur-
ing its cooling; Q is the heat flux.

140

100

60

20

0

Ps, nC/cm2

96 100 104 108 112 116
T, °C

Fig. 3. The temperature dependence of spontaneous polar-
ization of the JCR541 compound obtained by repolarization
current method during cooling (d) and heating (s) or by the
pyroelectric method (–) during cooling of the LC cell.
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The temperature dependence of the pyroelectric
constant is shown in Fig. 4. Close to the Sm –SmC*
phase transition, the pyroelectric constant reaches its
maximum (~40 nC/cm2K) and then gradually decreases
with cooling of the SmC* phase. In the transition range
from the SmC* to the Sm  phase, the curve has a
bending point, and the pyroelectric constant drops
faster in the Sm  than in the SmC* phase. The tem-
perature dependence of spontaneous polarization, in
the ferroelectric SmC* phase obtained by integration of
the pyroelectric constant (Fig. 3, solid line), agrees with
the results obtained in repolarization measurements.
However, the data obtained by both methods for the fer-
rielectric Sm  phase are inconsistent, which cannot
be explained at the moment.

Dielectric constant ε of chiral tilted smectics is
determined by two low-frequency orientational pro-
cesses (modes), namely, the Goldstone mode,

(1)

associated with molecular rotation around the helicoid
axis at constant tilt angle of the molecules in smectic
layers, and the soft mode,

(2)

associated with the change in the tilt angle [17]. In the
SmA phase, there is no Goldstone mode, and, therefore,
the dielectric constant is determined by the soft mode
alone,

(3)

Cα*

Cγ*

Cγ*

Cγ*

∆εGMC 2πC
2χ0

2
/Kq

2
,=

∆εSMC 2πC
2χ0

2
/ Kq

2
2α TC T–( )+[ ] ,=

∆εSMA 4πC
2χ0

2
/ Kq

2 α T TC–( )+[ ] .=

40

30

20

10

0

96 100 104 108 112 116
T, °C

γ, nC/cm2ä

Fig. 4. Pyroelectric constant of the JCR541 compound as a
function of temperature during cooling of the LC cell. The
voltage of an applied dc field is 10 V.
C

In Eqs. (2) and (3), α is the first Landau coefficient
in the expansion of the free-energy density in powers of
the orientational parameter of the transition, i.e., in the
angle of the LC director tilt with respect to the smectic-
layer normal, TC is the temperature of the SmA–SmC*
transition, K is the elastic constant, q is the wavevector
modulus of the chiral structure, C is piezoelectric coef-
ficient, and χ0 is dielectric susceptibility associated
with the noncollective mechanisms of polarizability.
Figure 5 depicts the real ε' and the imaginary ε'' parts of
dielectric constant of the JCR541 compound measured
at the frequency of 1 kHz at various temperatures. An
increase of ε' in the SmA phase, as the temperature
decreases is determined by the contribution of the soft
mode (3), with the maximum (∆εSMA ≈ 40) at the tem-

perature of the SmA–Sm  phase transition. With the

further decrease of the temperature of the Sm  phase,
the contribution of the soft mode rapidly decreases
Eq. (2) with the distance from the SmA–Sm  transi-
tion. However, the total dielectric constant continues
increasing because of the Goldstone-mode contribu-
tion. The Sm –SmC* phase transition is not accom-
panied by a substantial change in the ε' value or its tem-
perature dependence. In the SmC* phase, the most pro-
nounced contribution to the dielectric constant comes
from the Goldstone mode Eq. (1), whose temperature
dependence is determined mainly by the temperature
dependence of the modulus of the wavevector q of the
chiral structure. In the region of the transition from the
ferroelectric SmC* to the ferrielectric Sm  phase, the
dielectric constant and the dielectric losses decrease
monotonically. It is worth noting that the SmC*–Sm
transition in thin oriented cells occurs at a lower tem-
perature (103°C) than in the bulk sample (104.5°C)
used in the studies of phase transitions by DSC tech-
nique. In the ferroelectric Sm  phase, both ε' and ε''
continue decreasing and become almost equal to the
corresponding values in the SmA phase. It should be
emphasized that neither the Sm –Sm  nor the

Sm –SmC* phase transitions were recorded on the
ε'(T) and ε''(T) curves.

To study the effect of an electric field on the dielec-
tric constant and the phase transition points of LC, we
measured the temperature dependence of the real and
the imaginary parts of the dielectric constant at various
bias voltages Vb (Fig. 6). The Goldstone mode is sup-
pressed by the dc bias voltage, which is seen from a
decrease of ε' and ε'' in the Sm , SmC*, and Sm

phases. The soft mode in the vicinity of the SmA–Sm
transition also decreases with the bias voltage accord-

ing to the law ∆εSMA ≈ 4π(Cχ0)4/3 /3b1/3, where b is
the second Landau coefficient in the expansion of the

Cα*

Cα*

Cα*

Cα*

Cγ*

Cγ*

CA*

Cγ* CA*

Cα*

Cα* Cγ*

Cα*

Eb
2/3–
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free energy density in powers of the orientational
parameter of the transition, and Eb is the bias field [18].
Moreover, with an increase in bias voltage, the dielec-
tric-constant maxima are shifted towards lower temper-
atures. This shift seems to be associated with the shift
of the temperature of the SmC*– Sm  transition in an
electric field as in the case of antiferroelectric
MHPOBC (4-(1-methylheptyloxycarbonyl)phenyl 4'-
octyloxybiphenyl-4-carboxylate) [19], where the ferri-
electric Sm  phase is also located between the ferro-

electric SmC* and the ferrielectric Sm  phases. It is
noteworthy that at lower temperatures in the transition
from SmC* to Sm , and then also to the Sm  phase,
the ε' and ε'' dielectric parameters monotonically (and
not jumpwise) decrease within the temperature interval
of several degrees centigrade. The examination of LC
textures in a polarizing microscope within this temper-
ature range showed that the LC layer is a system of
alternating linear domains of adjacent phases parallel to
the smectic layers. Thus, one can state that, similar to
the case of 3MC2PCPOPB (4'-(3-methoxycarbonyl-2-
propoxycarbonyl)phenyl-4-(4-[n-octyloxy]phenyl)ben-
zoate) [20], two adjacent phases coexist in this case.
The dielectric constant measured in this range is, in
fact, the average of the values for ferro- and ferrielectric
phases or for ferri- and antiferroelectric ones. The
absence of clearly pronounced phase transitions in the
temperature dependence of the dielectric parameters
follows from the fact of phase coexistence. The temper-
ature dependence of the dielectric constant and sponta-
neous polarization exhibit hystereses in the vicinity of
the SmC*– Sm  phase transition during heating–cool-
ing cycles.

The suppression of the Goldstone mode by a bias
field provides the manifestation of the soft-mode peak
related to the SmA–Sm  transition (114.4°C). An
increase of the bias voltage shifts this peak towards
higher temperatures. For the SmA–SmC* transition, the
shift of the phase transition point induced by an electric
field is estimated as [21]

(4)

where Tm and Tc are the temperatures of the phase tran-
sition in an applied electric field and in the zero field,
respectively; ε0 = 8.85 × 10–12 F/m is dielectric constant
in vacuum; and the coefficient sT is of the order of
0.02 K3/2/V [21]. Using this sT value for the SmA–

Sm  transition, we arrive at the following estimate of
shift of the phase transition point at Vb = 13 V:
(∆Tmc)3/2 = 0.02 × 13 = 0.26 or ∆Tmc = (0.26)2/3 ≈ 0.4 ä,
which agrees with the experimental value (Fig. 6).

Cγ*

Cγ*

CA*

Cγ* CA*

Cγ*

Cα*

Tm Tc–( )3/2 ∆Tmc( )3/2
=

=  3 3χ0ε0C/4αd( ) b/α( )1/2
Vb sTVb,=

Cα*
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Figures 6 and 7 show that the bias field provides the
determination of another dielectric constant peak at
~112.7°C, which seems to be determined by the contri-
bution of the soft mode in the vicinity of the Sm –Cα*

120

80

40

0

ε', ε''

96 100 104 108 112 116
T, °C

ε'

ε''

Fig. 5. Real ε' and imaginary ε'' parts of the dielectric con-
stant of the JCR541 compound as functions of temperature
(no bias field was applied).
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Fig. 6. Real ε' and imaginary ε'' parts of the dielectric con-
stant of the JCR541 compound as functions of temperature.
The bias voltage Vb: (a) 7 (1), 9 (2), 11 (3), and 13 V (4) and
(b) 9 (1), 11 (2), and 13 V (3).
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SmC* transition shifted to the lower temperatures due
to the effect of an applied electric field.

CONCLUSIONS
The measurements of the dielectric constant and

dielectric losses associated with the low-frequency soft
mode showed the shift of the phase transition points in
the JCR541 compound in an applied electric field: the
points of the Sm –SmC* and the SmC*–Sm  tran-
sitions are shifted to lower temperatures, while the
point of the SmA–Sm  transition is shifted to a higher
temperature. The types of the phases are identified, and
the temperature dependences of the pyroelectric con-
stant and spontaneous polarization are studied for all
the phases. Spontaneous polarization of the ferroelec-
tric SmC* phase unwound by external electric field at
the lower temperature limit of the range of its existence
is about 120 nC/cm2, whereas that of the ferrielectric
Sm  phase is about 40 nC/cm2.
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Abstract—Forsterite layers are grown by the method of liquid phase epitaxy from supercooled PbO–B2O3-
based fluxes. © 2000 MAIK “Nauka/Interperiodica”.
Chromium-activated Mg2SiO4 single crystals [1–3]
are promising material for tunable lasers and, in partic-
ular, for fabricating radiation sources for high-speed
fiber-based communication lines. The falerication of
integrated circuits based on such sources requires the
production of single-crystal layers with optical
waveguides.

In order to grow single-crystal layers of various
materials, one often uses the PbO–B2O3-based fluxes as
parent phases [4–8]. The present study was aimed to
grow single-crystal forsterite layers by the method of
liquid-phase epitaxy (LPE) from such a flux.

The compositions of the starting charges are given
in table. A sample in a platinum crucible was melted in
air and heated for about 10 h at a temperature of 1000–
1100°C, for sample homogenization. Then, the heater
was switched off, the sample was cooled in the furnace
and its cooling curve was recorded. Then, the sample
was heated again at a constant heater power and its
heating curve was recorded within the same time period
1063-7745/00/4504- $20.00 © 20687
(Fig. 1). The data obtained provided the determination
of the temperature range of possible epitaxial growth of
forsterite.

The optimum conditions for epitaxial growth of for-
sterite were determined as follows. A sample of forster-
ite single crystals of known weight was placed into a
feux for 10–90 min at various temperatures, and rotated
there at a velocity of 40–150 rpm. Upon cooling, single
crystals were taken out of the furnace, washed with
boiling 25% nitric acid, and weighed again. Since the
crystals had irregular shapes, the growth rate of epitax-
ial layer (epilayer) was characterized by the relative
increase ∆m in the crystal weight,

where m1 and m2 are the crystal weights prior to and
upon growth of the layer. Growth rates of 0.01–
0.1 mg/min were measured on crystals which initially
weighed 40–90 mg.

v m2 m1–( )/t,=
0
t, min

10 20 30 40 50

600

800

1000

T, °C

1

2
3

1

2
3

Fig. 1. Typical heating and cooling curves for compositions 1–3 (see table).
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The results of the growth experiments are mapped
onto the composition triangle of the pseudoternary sys-
tem (PbO–B2O3)–MgO–SiO2 (Fig. 2). The composi-
tions which provide the growth of forsterite epilayers

10

20

30

10

20

30

80 60 40 20

SiO2, mol %

SiO2, mol % MgO, mol %

PbO–B2O3, mol %

Fig. 2. Fragment of the composition triangle of the pseudot-
ernary (PbO–B2O3)–MgO–SiO2 system.

Flux compositions at which cooling and heating curves were
recorded

Experiment
Composition, mol %

PbO B2O3 MgO SiO2

1 84.1 4.9 7.3 3.7

2 85.0 5.0 5.0 5.0

3 85.0 5.0 3.7 7.3
C

are shown by solid circles; the compositions unsuitable
for such growth are indicated by open circles. It is seen
that epilayers can be grown from both stoichiometric
and SiO2-enriched nutrients.

Thus, the conditions for growth of single-crystal
forsterite epilayers from supercooled PbO–B2O3-based
fluxes by the LPE method are established. The results
obtained seem to be promising for of growing epilayers
of more complicated compositions.
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Abstract—The structure of subsurface Be+ and Se+ doped GaAs layers was studied by the X-ray diffraction
technique. The implantation of Be+ ions into gallium arsenide substrates causes the formation of distorted layers
with elastic strains. With an increase of the energy of implanted ions from 50 to 100 keV, the maximum distor-
tion remains almost constant, whereas the thickness of the distorted layer, with a lattice constant which exceeds
that of the host material, increases. At higher energies (≥150 keV), the thickness of the distorted layer continues
increasing, but the maximum strain drops. The Se+ ions implantation into the GaAs substrates also provides the
formation of layers distorted by positive tensile strain. The analysis of defect distributions and concentrations
at various irradiation doses and the implanted-ion energies shows that the latter does not considerably affect
these parameters. At the same time, an increase of the implanted-ion dose from 5 × 1014 to 5 × 1015 cm–2

increases the strains observed. The role of the Frenkel-pair annihilation and ion channeling in the formation of
a defect layer is also discussed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The design and manufacturing of electronic devices
with the use of ion implantation techniques calls for
precise data concerning the distribution of the
implanted dopant. The processes involving the diffu-
sion-induced redistribution of the dopant in the course
of the post-implantation annealing are determined, to a
large extent, by the concentration of defects arising dur-
ing the ion implantation and the profile of their distri-
bution. Radiation defects cause distortions in the crys-
tal lattice and can affect the direction of the dopant flux
in the course of the diffusion-induced dopant redistri-
bution, which accompanies activating annealing. The
defects in the semiconductor substrate, their structural
state, and their distribution over the distorted-layer
depth affect the activation of implanted dopants. This is
especially important for the AIIIBV compounds, such as
GaAs. Moreover, the implantation-induced defects also
cause the changes in the electrical characteristics of
semiconductors.

It is most expedient to study the distortions in a
semiconductor crystal by the nondestructive method of
high-resolution X-ray diffractometry method sensitive
to the slightest changes in the lattice constant of the
material. Analyzing the variations in the lattice con-
stants of atomic layers located at different depths of the
crystal from the diffraction reflection curves, one can
estimate the concentration and distribution of point
defects.

This paper is aimed to study the defect formation in
GaAs layers implanted with Be+ and Se+ ions, in partic-
ular, to reveal the relationship between the characteris-
tics of defect formation and the implanted-ion energy to
1063-7745/00/4504- $20.00 © 0689
determine the optimum implantation conditions and the
limitations imposed on the mass of implanted ions.

EXPERIMENTAL

We studied the (100)GaAs plates implanted with 50,
100, 150, and 250 keV Be+ ions at a dose of 5 ×
1014 cm–2 (which is lower than the amorphization dose
at all the ion energies indicated above). We also studied
similar plates implanted with 100, 150, and 200 keV
Se+ ions at a dose of 5 × 1014 cm–2 and with 150 keV Se+

ions at a dose of 5 × 1015 cm–2. The implantation was
performed at the HVE-350 facility (with an angle of 7°
between the normal to the surface and the incident
beam). To avoid the substrate heating, we used low den-
sities of the ion flux.

The studies were performed on a UAR-PP-80.001
spectrometer. The rocking curves were measured in the
dispersion-free scheme of a double-crystal X-ray dif-
fractometer with the single symmetric Bragg reflection
in the (n, –n) geometry. The monochromators were
high-quality (100)Ge crystals.

Rocking curves were modeled using the computer
program based on the algorithm suggested in [1]. We
constructed the deformation profiles and use them to
estimate the total number of Frenkel defects from the
experimental data the influence of Frenkel defects on
the lattice constant [2].

The normalization of model curves for strains deter-
mined from the rocking curves with respect to the
actual defect concentration was performed in the fol-
lowing way. Since upon implantation, no misfit dislo-
cations were observed between the layer and the sub-
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Fig. 1. X-ray rocking curves for GaAs implanted with 50- and 100-keV Be+ ions (panel a, curves 1 and 2), 150 and 250 keV (panel b,
curves 1 and 2).
strate, the tensor βii, describing the lattice mismatch
and determined by the point-defect concentration, is
expressed in terms of lattice strain εzz along the direc-
tion normal to the surface

(1)

where εzz is the strain in the direction normal to the sur-
face and q3 is the factor dependent on the surface orien-
tation. In our case, this factor can be written as [3]

where C11 and C12 are the components of the elastic
rigidity tensor in the matrix notation. For GaAs, we
have q3 = 0.5. Finally, the concentration of the Frenkel

βzz
0

q3εzz,=

q3

C11

C11 2C12+
-------------------------,=
C

defects was determined from the strain by the formula

(2)

where ∆a/a is the strain determined from the X-ray
rocking curves, and ∆r/r is the relative change in the
lattice constant caused by a single Frenkel defect. Since
the relative change in the radii of a vacancy and a host
atom equals approximately –0.15, and the relative dif-
ference in the sizes of an interstitial and tetrahedral
pores equals approximately +0.3, then ∆r/r is about
0.15 [2]. Here, N is the number of atoms per 1 cm3 of
GaAs (4.66 × 1022 cm–3).

In addition, we performed the Monte-Carlo calcula-
tions of the defect-distribution profiles for the afore-
mentioned implantation doses [4] under the assumption
that the average energy of atomic displacements in
GaAs lattice is 9.45 eV [5].

Nstrain
∆a/a
∆r/r
------------N ,=
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The results of X-ray diffraction studies and calcula-
tions were compared with the depth profiles of the
dopant distribution based on the secondary ion mass
spectrometry (SIMS) data.

RESULTS AND DISCUSSION

The rocking curves from the GaAs plates implanted
with Be+ ions are shown in Fig. 1a (curves 1 and 2). At
the ion energy equal to 50 keV, the rocking curve had
two peaks corresponding to the reflections from the
substrate and the distorted layer. Between these peaks,
one observes interference intensity oscillations of the
reflected beam. For 100-keV ions, the oscillation
period decreases, whereas the intensity peak due to the
distorted layer increases, which indicates that the thick-
ness of the distorted layer increases (Fig. 1b). However,
the diffraction pattern does not undergo any qualitative
changes.

The rocking curves in Figs. 1a and 1b were used to
calculate the strain profiles. The distributions of the
Frenkel defects calculated by Eq. (2) are shown in Fig. 2.
The defect-concentration profile reproduces the strain
profile [these profiles linearly depend on one another,
see Eq. (2)]. It is clear that higher energies provide an
increase in the layer thickness rather than the strain
magnitude. Figure 2 also shows the Frenkel-defect dis-
tributions calculated from the rocking curves and the
corresponding data of the Monte-Carlo calculations.

The defect distributions obtained by the Monte-
Carlo calculations have a clearly pronounced bell-like
shape. The peak of the profile shifts deeper into the
crystal at higher energies. The profile broadens, and the
peak height reduces with an increase of the ion energy.
However, the area under the curve shows that the total
number of defects per ion increases for higher ion ener-
gies.

The strain profiles obtained from the X-ray diffrac-
tion data for the samples implanted with 50- and
100-keV ions differ from those obtained from the
Monte-Carlo modeling. The former are characterized
by higher defect concentrations in the close vicinity of
the surface and do not exhibit any peaks, which can be
explained by the fact that the concentration of defects
remaining in the crystal is determined not only by their
generation in collisions with high-energy particles, but
also by the annihilation of Frenkel defects (vacancies
and interstitials) in the sublattices during irradiation.
The annihilation rate of defects in the sublattice is pro-
portional to the vacancy concentration in the A sublat-
tice and to the concentration of interstitials Ai. A similar
relationship is also valid for the B sublattice. Thus, we
have

where vA, B is the annihilation rate for the Frenkel pairs
in the A(B) sublattice and k is the constant characteriz-
ing the reaction rate.

v A V A[ ] Ai[ ]k1; v B V B[ ] Bi[ ]k2,= =
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However, we did not observe any intense diffuse
scattering from the microscopic defects. This means
that the process responsible for lower defect concentra-
tion is annihilation rather than cluster formation. The
total annihilation rate for Frenkel defects is vA + vB = v.
Apparently, it is the rate of the second-order reaction
proportional to [VA]2 + [VB]2 (under the assumption that
[VA] ~ [Ai] during Frenkel defect formation).

The Be-distribution profiles obtained by SIMS are
shown in Fig. 3, curves 1–3. The depth corresponding
to the profile peak increases with energy almost propor-

tionally to , whereas the peak height decreases. For
all the ion energies, the peaks of the Be distribution are
located deeper than the peaks on the Monte-Carlo pro-
files. The depth of the Monte-Carlo peaks is propor-
tional to ion energies. The difference in the distribution
profiles for dopants and defects is also associated with
the phenomenon of channeling the more pronounced,
higher, ion energy. Channeling is seen on the “tail” of
the defect concentration profile on the side of more pro-
nounced depths and increases with energy. At the ion
energy of 150 keV (Fig. 1b), the rocking curve under-
goes significant changes compared with the rocking
curves for 50- and 100-keV ions. The peak intensity
corresponding to the distorted layer increases, and the
peak itself rapidly approaches the peak due to the sub-
strate. A further growth of ion energy up to 250 keV
results in no qualitative changes in the rocking curve,
although the intensity of the peak due to distorted layer
continues increasing.

Comparing the profiles in Fig. 2, one can clearly see
some characteristic features of their variation.

For implantation with 50-keV ions, results in the
formation of three distinct ranges on the profiles. I. The
range, where the strain remains almost unchanged (d ≤
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Fig. 2. Comparison of the defect concentration obtained
from the X-ray data (solid curves 1–3) and the model defect
distributions calculated by the Monte-Carlo method (dashed
lines 4–6) for implantation with to 50-keV (curves 1, 4),
100-keV (curves 2, 5), and 150-keV ions (curves 3, 6).
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Fig. 3. Be+ distribution in the GaAs substrate obtained by SIMS upon implantation with 50-keV (1), 100-keV (2), and 150-keV ions (3).
2000 Å); II. the range of the steep strain decrease
(2000 ≤ d ≤ 3000 Å); III. the range of the gradual strain
decrease.

Compared with the previous cases, the strain profile
for implantation with 150 keV Be+ ions (Fig. 2,
curves 3, 6) is characterized by the drastic decrease of
the maximum strain (approximately by a factor of 2.5).
As a result, the profile changes its shape, region II is
absent, and the strain gradually decreases throughout
the depth of the layer.

For implantation with 100 keV Be+ ions, the first
range ends at the depth twice as deep as that of the pro-
file corresponding to 50 keV ions. The energy increases
by a factor of two (d is about 4000 Å). The second
(crossover) region broadens and is feebly marked
(4000 ≤ d ≤ 7000 Å), and, finally, the third region is
located at 7000 ≤ d ≤ 9000 Å.

For implantation with 150 keV ions, it is difficult to
distinguish the above three ranges, but the depth of the
profile “tail” remains the same as in the case of 100 keV
ions (d ≤ 9000 Å).

One can assume that the third range is associated
with channeling. This effect can be prevalent at ion
C

energies exceeding 150 keV for light Be+ ions with a
small covalent radius.

It is clear from Fig. 2 that the first range ends at the
same position as the calculated Monte-Carlo defect dis-
tribution profile.

Considerable discrepancies between profiles, deter-
mined from the X-ray rocking curves and Monte-Carlo
calculations, also affect the estimations of the concen-
tration level of defects. Modeling of implantation with
50- and 100-keV ions yields the defect concentration
four times, exceeding the values determined from the
X-ray diffraction data. At 150 and 250 keV ion ener-
gies, the difference is even more pronounced. This dis-
agreement seems to be caused by certain drawbacks of
the TRIM program used for the Monte-Carlo calcula-
tions, where the recombination of radiation defects and
the effects of rechanneling.

Thus, the strain profile undergoes qualitative
changes with an increase of the ion energy. For 50- and
100-keV ions, the thickness of the layer containing
most Frenkel defects increases proportionally to the ion
energy. The X-ray diffraction data indicate that the total
number of defects in the distorted layer also increases
proportionally to the ion energy. The number of defects
calculated by the Monte-Carlo method grows much
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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more slowly, but nevertheless it considerably exceeds
the values obtained from the X-ray diffraction data.
This indicates the important role played by the annihi-
lation processes in forming the defect distribution pro-
file.

At higher energies, the annihilation becomes less
important, and channeling begins to dominate in the
formation of a defect profile. Under these conditions,
the total number of Frenkel defects decreases much
faster than in the Monte-Carlo calculations.

Now, consider the defect formation during implan-
tation with larger Se+ ions having a larger mass than
Be+ ions. In this case, the effects of channeling should
not be less important in the ion-energy range of 100–
200 keV.

The rocking curves for the samples implanted with
Se+ ions of energies of 100, 150, and 200 keV, at a dose
equal to 5 × 1014 cm–2, are presented in Fig. 4a,
curves 1–3. For higher energies of Se+ ions, we also
observed a slight decrease in the strains, and, thus also,
in the concentration of Frenkel defects. The strain
decreased by 4% with an energy increase from 100 to
150 keV and by another 4% with the energy increase up
to 200 keV. The typical strain profile is shown in Fig. 5.
In contrast to doping with beryllium ions, the profile
has only two first regions. In this case, the “tail” asso-
ciated with channeling can hardly be distinguished.

The comparison of strain profiles for implantation
with 100-keV Be+ and Se+ ions demonstrates that the
thickness of the distorted layer, Se+, corresponding to
the first profile range, is almost twice less at nearly the
same strain. It is clear that the total number of Frenkel
defects per layer for implantation with Se+ ions is also
twice as small. For the same target (GaAs), the doses
and the energies of implanted ions and the number of
arising defects are almost the same (at Ei @ Ed, where
Ei is the ion energy and Ed is the threshold energy for
the defect formation). In addition, a dose of 5 ×
1014 cm–2 of Se+ ions is close to the amorphization dose
at the aforementioned energy. All these facts allow us to
suggest that half the number of residual Frenkel defects
arising, due to implantation with Se+ ions, is explained
by fact that the defect concentration increases, and
therefore the interdefect spacing decreases, thus pro-
viding a more intense annihilation. Finally, this leads to
the mentioned difference in the residual defect concen-
tration. Thus, the annihilation processes play an impor-
tant role in the formation of the implanted layer struc-
ture.

Note that all the rocking curves have shoulders from
the side of larger angles, which was ignored when cal-
culating the corresponding profiles. This shoulder is
most pronounced at the rocking curve from the sample
implanted with 150 keV ions, at a dose equal to 5 ×
1014 cm–2 (Fig. 4a, curve 2). The shoulder can arise due
to coherent scattering by a layer with the lattice con-
stant less than that of the substrate, or due to the diffuse
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      200
scattering by “interstitial” microscopic defects. Using
the triple-crystal scheme, we measured the intensity
distribution along the direction perpendicular to the
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Fig. 4. X-ray rocking curves for GaAs implanted with Se+
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reciprocal lattice vector, at angles characterizing the
sample deviation from the exact Bragg position corre-
sponding to the shoulder location. At this cross section,
one can see a narrow peak centered along the direction
of the reciprocal lattice vector in the vicinity of the
reciprocal lattice, where almost no diffuse scattering is
observed. This indicates that a vacancy-enriched layer
is formed at the crystal surface upon ion implantation.

The rocking curves for samples implanted with
150-keV Se+ ions at doses of 5 × 1014 and 5 × 1015 cm–2

are shown in Fig. 4b, curves 1 and 2.

These curves also exhibit the peaks due to the sub-
strate and the distorted layer separated by 330′′  and
375′′  at the implantation doses 5 × 1014 and 5 × 1015 cm–2,
respectively. The intensities of reflection peaks for
these two samples are almost equal and are independent
of the implantation dose. With an increase of the
implantation dose, the peak due to the distorted layer is
shifted toward angles smaller by 45′′ . If a dose
increases by a factor of ten, the strain and the number
of residual defects increases by only 14%. This also
shows that defect annihilation plays a considerable role
in the formation of the distorted layer.

CONCLUSIONS

Implantation with ions of small and moderate
masses of the layers having the orientation inconsistent
with channeling, the formation of defect-enriched layer
is affected by two mechanisms that manifest them-
C

selves differently during implantation with Be+ and Se+

ions.
In implantation with Be+, both annihilation of radi-

ation-induced defects and channeling are important,
but the latter becomes more pronounced at higher ion
energies. At ion energies exceeding 150 keV, channel-
ing becomes the key factor determining the number of
residual radiation-induced defects.

During implantation with Se+ ions with the energy
ranging within 100–200 keV, channeling almost does
not affect the defect formation. In this case, at doses
close to or higher than the amorphization dose, annihi-
lation of radiation defects and the mean free path of
dopants determine the number and the distribution of
radiation defects in the implantation layer, respectively.

REFERENCES

1. C. R. Wie, T. A. Tombriello, and T. Vreeland, J. Appl.
Phys. 59 (11), 3743 (1986).

2. V. T. Bublik and M. G. Milvidskiœ, Materialoved., No. 1,
21 (1997).

3. Yu. P. Khapachev and F. N. Chukhovskiœ, Kristal-
lografiya 34 (3), 785 (1989).

4. V. S. Vavilov, Usp. Fiz. Nauk 167 (4), 407 (1997) [Phys.
Usp. 167 (4), 387 (1997)].

5. F. Reyhaud and B. Legros-de Mauduit, Radiat. Eff. 88
(1–2), 1 (1985).

Translated by K. Kugel
RYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000



  

Crystallography Reports, Vol. 45, No. 4, 2000, pp. 695–697. Translated from Kristallografiya, Vol. 45, No. 4, 2000, pp. 759–761.
Original Russian Text Copyright © 2000 by Sorokin, Krivandina, Zhmurova, Lyamina, Sobolev.

                                                                                                                           

CRYSTAL GROWTH

                                                     
Growth of Single Crystals and Optimization of Anionic 
Transport in La1 – xNdxF3 Solid Solutions with Tysonite-type 

Structure by Isovalent Substitutions
N. I. Sorokin*, E. A. Krivandina*, Z. I. Zhmurova*, O. I. Lyamina**, 

and B. P. Sobolev*
* Shubnikov Institute of Crystallography, Russian Academy of Sciences, 

Leninskiœ pr. 59, Moscow, 117333 Russia1

** Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 
Leninskiœ pr. 31, Moscow, 117907 Russia

Received September 8, 1998

Abstract—The study of the effect of isomorphous isovalent substitution on the fluoride-ion conductivity in
La1 – xNdxF3 solid solutions was aimed at optimizing the anionic transport in solid electrolytes with the tysonite-
type (LaF3) structure. A series of La1 – xNdxF3 single crystals with 0.1 ≤ x ≤ 0.9 was grown for the first time by
the Bridgman–Stockbarger method in the fluorinating atmosphere. The ionic conductivity was measured at fre-
quencies ranging from 5 to 500 kHz by the method of impedance spectroscopy (with the use of graphite con-
tacts). The conductivity is maximal at the composition La0.37Nd0.63F3. © 2000 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Earlier [1], to establish the effect of lattice geometry
of the solid solution with the tysonite-type structure
(LaF3) on the fluoride-ion conductivity σ, we measured
the conductivity of LaF3, NdF3, and three solid solu-
tions La1 – xPrxF3 with x = 0.25, 0.5, and 0.75. The
results obtained in [1] and the known conductivity data
for RF3 (R = La, Ce, Pr, Nd) and La1 – xPrxF3 solid solu-
tions show that the conductivity σ of tysonite-type
materials is maximal for the ions with the radius rcat  =
1.270–1.285 Å (the rcat values are given in the Shannon
system of ionic radii, where the fluoride ion has the
radius  = 1.19 Å [2]). Below, we report our further

study of tysonite-type solid electrolytes [1] using the
method of isomorphous isovalent substitution aimed to
optimize the fluoride ion transport in La1 – xNdxF3 (0.1 ≤
x ≤ 0.9) single crystals with continuously varying cat-
ion radius rcat from 1.3 (La3+) to 1.249 Å (Nd3+).

EXPERIMENTAL

According to the phase diagram, the LaF3–NdF3 is a
pseudobinary system forming the continuous series of
La1 – xNdxF3 solid solutions which can be obtained as
single crystals [3]. A number of La1 – xNdxF3 single
crystals were grown from LaF3 (special-purity grade)
and NdF3 (reagent-purity grade) starting materials.
Prior to growth, the LaF3 and NdF3 melts were fluori-

1 e-mail: sorokin1@mail.ru

r
F

–
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nated to remove oxygen. Single-crystal boules 10 mm
in diameter and 20 mm in length were grown in a
helium atmosphere by the Bridgman–Stockbarger
method. Special-purity PbF2 (5 wt %) added to the
starting charge served as fluorinating agent. Graphite
crucibles were pulled down at the rate of 5.15 ±
0.15 mm/h.

Electric properties were measured on the samples
10 mm in diameter and 2 mm in thickness, which were
cut from the central parts of the boules normally to the
growth direction. Chemical composition of the samples
differed from the calculated one by not more than 0.3–
0.7 mol % and was checked by X-ray fluorescence
analysis examining the La-Lβ and Nd-Lα lines on a Carl
Zeiss VRA-33 analyzer (Cr anode, 30 kV accelerating
voltage, 30 mA current).

Electrical measurements were made in a vacuum of
~10–1 Pa in the temperature range 293–716 K. Fluoride
ion conductivity was determined by the complex
impedance method. The impedance was measured at
the frequencies 5 Hz–500 kHz on a Tesla BM-507
impedance meter. The electrodes were prepared from
the DAG-580 graphite paste.

RESULTS AND DISCUSSION

The temperature dependence of conductivity for all
the La1 – xNdxF3 samples has a kink in the temperature
range TC = 415–500 K. All the dependences of conduc-
tivity σ on the reciprocal temperature consist of two lin-
000 MAIK “Nauka/Interperiodica”
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Temperatures TC, constants A, and enthalpy constant ∆Hm, v for La1 – xNdxF3 single crystals

Composition , K
T < TC T > Tc

log A, Ω–1 cm–1 K ∆Hm, v, eV log A, Ω–1 cm–1 K ∆Hm, v, eV

LaF3 [1] 405 3.90 0.408 2.56 0.301

La0.89Nd0.11F3 415 3.3(3) 0.386(2)** 2.46(7) 0.316(8)

La0.78Nd0.22F3 420 3.5(2) 0.40(1) 2.27(7) 0.299(8)

La0.71Nd0.29F3 445 3.2(3) 0.38(2) 2.7(1) 0.34(1)

La0.60Nd0.40F3 430 3.82(3) 0.432(2) 2.46(6) 0.316(5)

La0.53Nd0.47F3 435 3.5(2) 0.41(1) 2.15(7) 0.294(7)

La0.42Nd0.58F3 490 3.2(1) 0.38(1) 2.1(1) 0.27(1)

La0.37Nd0.63F3 500 3.4(1) 0.359(8) 2.1(1) 0.230(9)

La0.21Nd0.79F3 470 3.4(1) 0.37(1) 1.94(9) 0.23(1)

La0.11Nd0.89F3 475 3.4(1) 0.387(1) 1.9(1) 0.241(7)

NdF3 [1] 445 4.56 0.46 2.85 0.31

* The values calculated by the formula TC = (∆H1 – ∆H2)/k(lnA1 – lnA2).
** Standard deviations are given in brackets.

TC
*

ear segments—where T < TC and where T > TC, which
obey the Arrhenius–Frenkel equation

where A is a constant and ∆Hm, v is the enthalpy of
migration of fluoride vacancy. The TC, A, and ∆Hm, v
values are given in table.

The figure shows the conductivity of the La1 – xNdxF3
as a function of composition at 500 K. In the composi-
tion range 0 < x < 0.5, the conductivity is almost con-
stant, but then it starts increasing and attains the maxi-
mum at x = 0.63. The average cationic radius in
La0.37Nd0.63F3 showing the highest conductivity is rcat =

σ A/T( ) ∆Hm v, /kT–( ),exp=
C

(1 – x)  + x  = 1.267 Å, which is consistent with

the average cationic radius rcat = 1.27–1.285 Å deter-
mined in our earlier study [1]. This confirms the impor-
tant role of the dimensional factor on the charge trans-
port in tysonite-type structures with a charge homoge-
neity in the cationic sublattice.

Isostructural LaF3 and NdF3 compounds and their

solid solutions La1 – xNdxF3 are trigonal, sp. gr. P c1,
z = 6 [4–6]. The cation positions in the La1 – xNdxF3

structure are statistically occupied by La3+ and Nd3+

ions. As found in [7–9], the transport of fluoride ions
proceeds by a migration of mobile fluoride vacancies
over various nonequivalent lattice positions.

r
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Conductivity as a function of the composition of the La1 – xNdxF3 solid solutions at 500 K. The hatched region corresponds to rcat =
1.27–1.285 Å.
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The substitution of La3+ by Nd3+ does not lead to the
formation of new fluoride vacancies. Yet, since the
ionic radii of substituted cations and substituents are
different, the parameters of the tysonite lattice change
from a = 7.1862, c = 7.3499 Å in LaF3 to a = 7.0299,
c = 7.1959 Å in NdF3 [10]. The analysis of the A and
∆Hm,v for various compositions shows that
La0.37Nd0.63F3 has the lowest activation enthalpy of con-
ductivity (∆Hm, v = 0.36 eV at T < TC and ∆Hm, v =
0.23 eV at T > TC) and, consequently, also the lowest
potential barrier for fluoride ion migration. This fact
seems to determine the optimum fluoride-ion conduc-
tivity of the La1 – xNdxF3 solid solution with x = 0.63.
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Abstract—The complex study of barium metaborate crystals has been undertaken with the aim to determine
the conditions of their growth with the minimum density of inclusions. It is shown that almost all the inclusions
are multiphase formations of the melt type, and, in addition to the mixture of the main components of the qua-
sieutectic composition, they can also be enriched with gas-forming impurities not removed during barium
metaborate synthesis. It is shown that the amount and the composition of melt-like inclusions in crystals
depends on the removal of by-products of the reactions used for barium metaborate synthesis from the system,
the patterns of the convective flows in the flux, the character of its flow under the interface, the axial temperature
gradient in the solution, and the temperature fluctuations at the crystallization front. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Single crystals of the low-temperature modification
of barium metaborate (β-BaB2O4, BMB) are widely
used as highly effective converters of lasing radiation in
optoelectronic engineering [1]. This explains the high
requirements of the structural quality of BMB used in
the preparation of various elements for nonlinear
optics.

One of the most typical defects in BMB crystals
grown from viscous flux under specific conditions [2]
are various inclusions [2–6]. These inclusions are
almost always located in the central axial zone of the
crystals, and, under unfavorable conditions at a certain
stage of crystal growth, they can also be formed in the
whole crystal bulk. Therefore, the study of these inclu-
sions in BMB crystals, depending on the synthesis and
growth conditions, is quite timely and will provide the
establishment of the relationship between various tech-
nological processes in the cycle and the optimization of
this cycle for growth of crystals with the minimum
inclusion density.

Earlier, it was reported that such inclusions are
enriched with sodium [5]. Some authors also assumed
the presence of CO2 in these inclusions [4] and the for-
mation of solid-phase inclusions in the form of small
elongated (presumably BMB) crystals. [3, 6].

Among the possible causes of inclusion capture by
BMB crystals are nonoptimum temperature distribu-
tion and considerable temperature fluctuations in the
flux [3–5], its poor stirring and high viscosity [4], and
the evolution of dissolved gases at the crystallization
front [5].
1063-7745/00/4504- $20.00 © 20698
Below, we report our study of the conditions, pro-
viding the formation and accumulation of impurities in
fluxes and also of these inclusions, their formation and
composition.

EXPERIMENTAL

BMB crystals were grown from 80 ± 2 mol % BMB
solutions in the Na2O melt by the Czochralski tech-
nique. BMB synthesis was performed using high-purity
or chemically-pure BaO, BaCO3, Ba(CH3COO)2,
B2O3, and H3BO3 . The weights in the corresponding
proportions were thoroughly mixed and sintered in a
platinum crucible at the given temperature. To follow
the synthesis dynamics, the sintered mass was regularly
weighted to determine the content of gaseous products
(impurities) not removed from the mixture. Then, three
probes of this mass were taken for the X-ray phase
analysis performed with the use of a TUR-62M diffrac-
tometer. The synthesis was completed with mixture
melting and kept for 40–50 h at 1150°C. Formally, the
BMB synthesis can be described by the reactions

(1)

, (2)

. (3)

The BMB melt thus obtained was quenched by pouring
it into a platinum crystallization vessel outside the fur-
nace with the addition of the corresponding amount of
Na2CO3 (the starting compound of the solvent). Then
the crystals were grown. The apparatus, methods, and

Ba CH3COO( )2 2H3BO3 2O2+ +

BaB2O4 6H2Ο↑ 2CO2↑,++

BaCO3 2H3BO3 BaB2O4 3H2Ο↑ CO2↑++ +

BaO 2H3BO3 BaB2O4 3H2Ο↑+ +
000 MAIK “Nauka/Interperiodica”
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growth conditions for BMB crystals were reported ear-
lier [2]. The microthermometric studies of the melt-like
inclusions were performed in a specially designed
microthermometric chamber filled with an inert gas
(Ar) [7]. The chemical composition of crystalline inclu-
sions was determined by the method of X-ray
microanalysis with the use of a JSM-35 scanning elec-
tron microscope–analyzer and a CAMEBAX micro-
probe.

The chromatographic analysis of the gases evolved
as the material was heated on a chromatographic setup
for the simultaneous detection of CO2, CO, N2, H2,
H2O, O2, etc. The setup was assembled using three
industrial LKhM-80 chromatographs and was supplied
with specially designed devices for the thermal and
mechanical extraction of the gases [8]. In this case,
annealing of the samples (grind fragments of BMB
crystals with high inclusion density) was performed in
a stepwise manner (∆T ≈ 100°C) in the temperature
range 200–900°C. The analysis of the gaseous and
solid inclusions was performed by the method of the
Raman spectroscopy on a RAMANOR U-1000 one-
channel spectrometer, with the use of an Ar-laser by the
method described elsewhere [9].

RESULTS AND DISCUSSION

Inclusions in BMB crystals. BMB crystals grown
by different techniques from the charge prepared under
various crystallization conditions had different densi-
ties and distributions of inclusions [regions of different
(foreign) phases of different dimensions]. It was estab-
lished that all the boules of the BMB crystals had a con-
siderable amount of inclusions with the characteristic
distribution over the crystals and, at the same time, also
had a rather large volume zones free of any inhomoge-
neities. All the crystals had, to a larger or lesser degree,
a divergent “column” of inclusions in the central axial
(“subseeding”) zone of the boule. Usually, the inclu-
sions density was higher in the axial part and was sur-
rounded with an external layer, where the inclusion
density was much lower. In the axial part of the column,
one usually observed vertical chain structures and
sometimes also thin channels with a diameter up to
100–200 µm extended for tens of millimeters from the
seed into the crystal depth. In the external layers of
such columns, the foreign-phase inclusions formed the
volume–zonal distribution with the threefold axial
symmetry.

Some BMB boules had belts of inclusions, which
sometimes had the form of island accumulations in the
peripheral subsurface zone. In the cases where cellular
substructures were formed at the interface, we also
observed the zones of continuous fields of foreign-
phase inclusions in the boules formed as a result of a
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
cellular growth. These fields also had local density
maxima with the threefold symmetry.

The examination of polished plates sawn from the
zones of the maximum inclusion densities in the crys-
tals grown showed that all the inclusions can reliably be
related to the melt type. Only some of them resembled
0.5 mm-long solid-phase inclusions (microcrystals)
[3, 6]. The morphologies of the melt-like inclusions
(multiphase formations) were rather diverse and, in
many respects, resembled morphology described in
[4, 5]. The crystallized melt is an aggregation of micro-
crystals of various phases, which deform the gas-phase
bubble with an increase in the temperature of up to
430°C; the inclusions undergo phase transitions, and
the texture of a finely grained aggregate is changed. An
increase up to 750°C results in the start of the solid-
phase recrystallization, accompanied by its clarifica-
tion and gradual change of the grain shape and dimen-
sions. At the 770°C, the first sign of melting appears.
The crystalline phases decrease in dimensions and
become mobile. The first solid phase, still existing upon
recrystallization, disappears at 800°C. The dimensions
of all the other phases decrease and at 820°C, the gas
bubble and the last crystalline phase almost simulta-
neously disappear, i.e., inclusions become homoge-
neous. Upon homogenization at 860°C, one observes
phase refaceting with the formation of an isometric
negative crystal; finally, at 940°C, the total dissolution
of the BMB matrix forming their walls begins. Upon
quenching, the formation of a gas bubble is observed in
all the inclusions. The melt (or glass) is stable up to
580°C; then its rapid crystallization starts.

Being “pushed” to the surface, the materials of the
foreign phases both subjected and not subjected to
heating behave in different ways. The heated crystalline
phases remain the same upon “opening,” whereas unan-
nealed phases are gradually “swelling.” This process
occurs within several hours upon opening and seems to
be associated with the hydration process. This conclu-
sion is confirmed by the Raman spectroscopy (Fig. 1).
In the range 800–1400 cm–1, the Raman spectra of
unopen and unannealed inclusions have only one
intense line at 1326 cm–1 (Fig. 1, curve d). The unan-
nealed inclusions were studied within 2 h upon their
opening, and showed two more lines at 1052 and
1351 cm–1 (Fig. 1, curve c); upon 20 days after their
opening in air, only the last two rather intense lines are
observed (Fig. 1, curve b). The disappearance of the
line at 1326 cm–1 indicates the composition of the
inclusion changed due to hydration of the correspond-
ing solid phases. The foreign inclusions heated up to
820°C showed no characteristics lines upon their open-
ing in the range studied (Fig. 1, curve e).

The X-ray microanalysis showed that the inclusions
consist mainly of Ba and Na (B and C could not be
quantitatively measured). Being recalculated to the
oxide form, the content of the components recorded
during the analysis was: BaO 62.1, Na2O 6.9,
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Fig. 1. Infrared spectra of: (a) a BMB crystal, (b, c)
unheated open melted inclusion stored (b) for more than
20 days in air and (c) for not more than 2 h, (d) unheated
unopen melted inclusion and (e) inclusion heated up to
820°C, quenched, and then open.
SiO2 0.37, Al2O3 0.22, Cl 0.1, MgO 0.08, K2O 0.04,
and CaO 0.03 wt %. On the whole, the Ba and Na con-
tent do not reflect their ratio in the crystalline phases in
the eutectic crystallization of the drops of the depleted
solutions caught by the crystal in the quasibinary
BaB2O4–BaB2O4 · Na2O system [5]. A special scanning
mode provided the detection of carbon in foreign
phases in some crystals in the amount considerably
exceeding the background value (Fig. 2).

The comparison of the batches of crystals grown
from the solutions obtained with the use of BMB, syn-
thesized by different reactions, showed that the amount
of melted inclusions can considerably vary. However,
the amount of such inclusions increases if one uses
complex barium salts and decreases the time of the cor-
responding reaction. The content of the gaseous prod-
ucts not removed from foreign phases was determined
by the chromatographic analysis. Figure 3 shows the
results of such analysis for the crystal grown with the
use of BMB synthesized by reaction (1) for 20 h. The
sample was prepared from the cellular zone of the crys-
tal and had a high density of foreign inclusions. Prior to
the analysis, it was ground and kept out in the air for
more than 30 days. The intense dehydration at the
beginning of the sample heating was followed by an
intense evolution of CO2, with the maximum at 600°C.
The data of homogenization, Raman spectroscopy, and
X-ray microprobe analysis led us to assume the exist-
ence of a certain hydrated form of sodium–barium car-
bonate (conditionally, NaxBay[CO3]z · nH2O) as a mod-
ified solid-phase inclusion, binding the gas-forming
impurity components accumulated in front of the crys-
tallization phase. This assumption is confirmed by the
character and the temperature range of H2O separation,
and the character of CO2 evolution during stepwise
annealing, which indicates the thermal decomposition
of low-temperature carbonate phases. We also observed
the evolution of CO (in less quantities), correlating with
the CO2 content. The above fact of the intense hydra-
tion of the material of unheated inclusions seems to be
associated with its partial hydration from the very
beginning. Upon opening, the sample was further
hydrated up to the saturation of the corresponding crys-
tal-hydrate forms with water. This leads to an assump-
tion that the flux contained some residual water not
removed during crystal growth. The control analysis of
the BMB samples, without visual inclusions, showed
much less intense (by two orders of magnitude) gas
evolution, which seems to be associated with the
removal of adsorbed atmospheric vapors from the sam-
ple. Other components of the gas mixture which
evolved during sample heating were either absent or
had the “trace” concentrations.

BMB synthesis. We performed the comparative
analysis of various variants of the BMB synthesis in
order to estimate their contribution into the impurity
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
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content in fluxes and their effect on the density of inclu-
sions and their nature. The conditions for the analysis
and the main results are indicated in table.

The BMB synthesis, according to reaction (1), is
hindered by product degassing, as seen from a rela-
tively large mass fraction of impurities compared with
that observed in reactions (2) and (3) for comparable
times. The main impurity is carbon separated during
Ba(CH3COO)2 decomposition, and slowly burning
away under the conditions of a relative oxygen deficit
in the muffle furnace. Therefore, the synthesis by reac-
tion (1) of the product with 99.95 wt % BMB content
requires at least two days, whereas its synthesis by
reactions (2) and (3) yields the same result for only one
day. The necessity of a thorough, maximum removal of
carbon in the solid-phase BMB synthesis is dictated by
the fact that its complete removal from the melt
requires prolonged annealing at ~1200–1300°C and is
accompanied, as showed the analysis, by the active
transport of NaBO2 (and possibly also B2O3) and the
change of the given flux composition.

The X-ray microprobe analysis of the product sam-
ples show the presence of both BMB modifications at
the synthesis temperatures higher than 950°C, whereas
at lower temperatures, only the low-temperature
β-BaB2O4 modification is synthesized. Melting of the
low-temperature modification, with the short-time
overheating of the melt up to 1200°C and its subse-
quent quenching, shows the metastable crystallization
of β-BBO. If melting occurs prior to complete occur-
rence of the synthesis reaction, the impurities still con-
tained in the mixture enter the melt and are captured
there by a growing crystal as inclusion components.

Causes of inclusion capture. The major cause of
the capture of any inclusions by a growing crystal is its
deficient feeding caused by the presence of impurities
pushed away to the crystallization front. In distinction
from the total deficiency in feeding, resulting in growth
cessation, the local deficient feeding results in the for-
mation of various systems of inclusions—from individ-
ual inclusions to their periodic structures. The model
schemes of inclusion capture were considered earlier,
e.g., in [10].

Insufficient local feeding seems to be caused by the
interaction between the free and forced convections in
the solution bulk, which, in turn, is determined by the
temperature distribution in the system and the parame-
ters of the crystal motion. Thus, under certain condi-
tions, localization of inclusions at the crystallization
front with respect to the closed solution zone [2] would
result in its fast depletion and the formation of a con-
cave interface, the periodic capture of individual inclu-
sions, which is more intense the more pronounced the
temperature fluctuations at the crystallization front are.
At the same time, since the free convection dominates
in the solution, some stagnation zones can be formed in
its bulk. The saturation of these zones increases, and,
finally, results in the unnormalized supersaturation of
CRYSTALLOGRAPHY REPORTS      Vol. 45      No. 4      2000
the solution as the crystal and the mass capture of impu-
rities accumulated at the crystallization front [2]. The
atomic structure of a nonsingular growth surface of
BMB crystals provides its morphological instability
and the mass capture of inclusions.

Our experiments showed that, under the given ther-
mal conditions, the free flow of the saturated solution
under the crystallization front is attained due to the
optimization of the velocity of crystals rotation [2].
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Conditions and results of BMB synthesis

Composition
of starting mixture

Synthesis tem-
perature, °C

Time of 
synthesis, h

Results of the X-ray 
phase analysis*

Impurity con-
tent, wt %** Notes

Ba(CH3COO)2 + H3BO3 2 BMB α + β 0.82 Continuous black carbon layer 
on the surface

Continuation of synthesis 4 BMB α + β 0.56 Island-like black-grey layer on 
the surface

20 BMB α + β 0.33 Individual black inclusions

42 BMB α + β 0.08 Clean (white) surface without 
visible trances of carbon

Ba(CH3COO)2 + H3BO3 16 BMB β 0.48 Surface coated with grey 
island-like layer

β-BMB (melting) 1200 5 BMB β 0.14 Crystallized grey melt

BaCO3 + H3BO3 20 BMB β 0.15 Clean surface

Continuation of synthesis 25 BMB α + β 0.08 Clean surface

BaO + H3BO3 20 BMB α 0.06 Clean surface

  * The X-ray phase analysis of all the three sampling yields the same result.
** Averaging over all the three probes.
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This provides crystal growth with the minimum capture
of inclusions, and the selection from all the boules only
those that can give the material of a high optical quality.
Of great importance is also the axial temperature gradi-
ent, which not only increases the crystallization pres-
sure and the efficiency of impurity pushing, but also
provides a lower solution temperature prior to the
attaining supersaturation in the stagnation zones of
free-convective cells. All these factors open new possi-
bilities for reproducible growth of bulk single crystals
with a minimum inclusion density.

CONCLUSIONS

Most inclusions in BMB crystals consist of the crys-
tallized flux of the quasieutectic composition. If the
gas-forming impurities are removed from the material
synthesized in the solid phase only partly, the gas inclu-
sions content in flux is rather high, and the total number
of inclusions in the crystal considerably increases.

The BMB synthesis should be performed with the
use of the oxide forms (not hydrated and salt ones) of
the starting components (BaO and B2O3) (which are the
real sources of inclusions in the melt and in crystals). If,
for reason, one has to use such crystals, the synthesis
should be performed until the complete removal of the
C

gas-forming components from the system, with due
regard of the kinetics of the corresponding reactions
under the given conditions.

The synthesis of only low-temperature BMB modi-
fication, with all the precautions made against the
growth of its low-temperature modification, occurs at
T < 900°C. Under such conditions, the use of the oxide
forms of the components, the gas-forming impurities
are removed from the synthesis product within 25–
30 h. The use of the salt forms requires not less than
40–50 h for obtaining the same result.

The considerable decrease of the inclusion content in
BMB crystals is provided by the mutually related opti-
mization of the thermal and dynamic parameters of crys-
tallization, determining the configuration of the inter-
phase surface and the feeding mode, e.g., a decrease of
the velocity of the crystal rotation to 1–2 rpm under the
axial temperature gradients in the subsurface zone of
the solution equal to ~8–10°C/mm, etc.
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Al’bert Anatol’evich Katsnelson
(On the Occasion of His 70th Birthday)
On April 14, 2000 Al’bert Anatol’evich Katsnelson,
a prominent Russian scientist, an honored scientist of
the Russian Federation, an honored professor of Mos-
cow University, a winner of the Fedorov Prize of the
Academy of Sciences of the USSR, professor of the
Department of Solid State Physics of the Physics Fac-
ulty of Moscow State University, celebrates his seven-
tieth birthday.

Professor Katsnelson made a considerable contribu-
tion to the development of solid state physics. He
guided extensive studies in the field of atomic ordering,
the theory of local atomic order, the electron theory of
1063-7745/00/4504- $20.00 © 0704
imperfect crystals, X-ray diffraction by imperfect crys-
tals, multiwave interference transmission of X-rays in
ideal and real crystals, and X-ray diffraction and phys-
ics of open nonequilibrium solid-state systems. Cur-
rently, he concentrates on the experimental and theoret-
ical studies of the metal–hydrogen systems, in which
the oscillation-type phase and structural transforma-
tions were first discovered.

For almost half a century, Katsnelson has been
working in Moscow University, and for about thirty
years he has been a professor of this university. In fact,
he created a scientific school. More than 60 of his
former students defended candidate dissertations, of
them, seven became Doctors of Sciences. Katsnelson
published eleven textbooks and monographs (three of
them were translated into English and published in the
United States) and more than 400 articles in Russian
and international journals. His textbooks and mono-
graphs are popular among students, postgraduates, and
researchers working in the field of solid state physics.
Katsnelson is deeply engaged in pedagogical activity.
He developed several new courses of lectures, which
are always popular with the audience.

Professor Katsnelson is a member of the Interna-
tional Informatization Academy. He was awarded an
honorary diploma of the International Association for
Hydrogen Energy and the title of Soros Professor.

Katsnelson is a member of specialized qualification
councils for the conferment of scientific degrees and an
expert of several international and Russian science
foundations.

Al’bert Anatol’evich Katsnelson meets his jubilee
absorbed in new ideas and plans. The Editorial Board
of Kristallografiya, the scientists of Moscow Univer-
sity, colleagues, and friends congratulate Al’bert Ana-
tol’evich on his birthday and wish him good health and
many years of fruitful activity, and happiness.

Translated by I. Polyakova
2000 MAIK “Nauka/Interperiodica”
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