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Abstract—The problem of plasma MHD stability in the T-15M tokamak is considered in realistic geometry.
Stability of the external kink modes with the toroidal wavenumbers n = 1, 2, and 3 is numerically investigated
in equilibrium configurations similar to the systematically analyzed steady-state configurations with reversed
shear in ITER. The stability limits in T-15M are found with and without account taken of the stabilizing influ-
ence of the first wall. The results of the calculations are used to compare T-15M with ITER. The stabilizing
effect resulting from reducing the distance between the first wall and the plasma in T-15M is evaluated. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The projects of upcoming fusion devices are based
on thoroughly elaborated physical evaluations provid-
ing a clear idea of the operational limits [1–17]. One of
the major characteristics is the β limit (the ratio of the
plasma pressure to the magnetic pressure) since, at a
given magnetic field, the specific fusion power is pro-
portional to β2. Continuous attention to the problem of
β limits is also related to the fact that even in tokamaks,
which are closer to a reactor than other systems, the
achievable values of β are obviously insufficient for
reliable extrapolations and the decisive step toward a
reactor. Theoretical and experimental results inevitably
lead to the conclusion that, at present, a prototype of a
fusion reactor can only be a tokamak operating in a
rather extreme regime, actually near the β limit. There-
fore, an increase in the β limit and the study of the phys-
ics of high-β plasma discharges in tokamaks remain the
main problems of present-day research on tokamaks.

In recent years, the possibility of constructing the
T-15M tokamak at the Kurchatov Institute has been
discussed [18]. The achievement of high β values is
considered to be one of the main objectives of the
T-15M experimental program. On the whole, the
dimensions and main engineering parameters of this
device have already been specified. The present study is
a first step in the physical evaluation of the T-15M
project from the viewpoint of operational β limits.

It is known that the problems of plasma equilibrium
in tokamaks are being solved quite efficiently, and that
the restrictions on β arise from plasma instabilities [1].
It is also known that the predictions of MHD theory
provide a reliable guide in estimating the β limits [1,
19]. In all the projects of fusion devices, MHD calcula-
tions are a necessary and rather important element of
the physical assessment. Such work must be done
before arriving at a final decision on the T-15M project.
Here, we consider the problem of plasma stability in the
1063-780X/03/2912- $24.00 © 21009
T-15M tokamak within classical ideal magnetohydro-
dynamics. The purpose of the present study is to deter-
mine the MHD limits caused by the ideal modes for a
given geometry of T-15M with account taken of the sta-
bilizing influence of its first wall. The shape of the wall
is a factor that substantially affects the result and is the
reason for the difference between T-15M and ITER,
from the standpoint of the MHD ideal limits.

The T-15M tokamak is being planned as an ITER-
like device. Its operation should be coordinated with
the ITER program in order to contribute as much as
possible to solving the basic problems of the tokamak
reactor. Naturally, any theoretical analysis of T-15M
should be organized so that the results obtained can be
easily compared with those for ITER. Following this
principle, we lean here on the earlier results of MHD
and transport calculations for ITER [20, 21], using
them as initial data. The calculations for T-15M are per-
formed here in the same way, using the same means as
described in [21].

In Section 2, the statement of the equilibrium prob-
lem for an ITER-like configuration with T-15M param-
eters is described. In Section 3, the results of calcula-
tions of the plasma stability limits set by the ideal exter-
nal kink modes in T-15M are discussed. In the
conclusion, the results obtained are summarized.

2. EQUILIBRIUM CONFIGURATIONS

To study the plasma stability in T-15M, we chose
scenarios similar to the 4A ITER scenario with nonin-
ductive (stationary) current drive, described in detail in
[20, 21]. To obtain ITER-like equilibrium plasma con-
figurations with the T-15M dimensions, we rescale the
initial ITER configurations so that the radius of the
plasma center is R = 1.55 m. In so doing, the dimen-
sionless parameters describing the plasma shape are
kept unchanged. The basic characteristics of the equi-
003 MAIK “Nauka/Interperiodica”
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librium configurations, whose stability is analyzed
below, are given in the table. Here, as in [21], we solve
the equilibrium problem for T-15M with a fixed plasma
boundary whose shape exactly replicates a standard
separatrix in the 4A ITER scenario.

The first equilibrium corresponds exactly to one of
the equilibrium configurations adopted for ITER sce-
narios (the fourth column in Table 1 in [21], the 4A sce-
nario), differing only in smaller a and R and smaller
values of the magnetic field and net current. Briefly, the
plasma shape prescribed in our calculations for T-15M
is the ITER shape with a separatrix at the boundary. The
values of q95 and qmin also coincide here with those in
ITER, so the first equilibrium is an exact analogue of
the 4A scenario [21]. The second equilibrium differs
from the first by the choice of the profiles, in particular
by a smaller value of q95 and larger peaking factor of the
plasma pressure, p0/  = 3.1, where p0 is the plasma
pressure at the magnetic axis and  is the volume-aver-
aged pressure. As a measure of β, we use here the
widely accepted Troyon factor

(1)

where a is the minor radius of the plasma, B is the mag-
netic field, and I is the net current in the plasma.

Let us note in advance that the βN values given in the
table for the two equilibrium states in T-15M are actu-
ally far in the unstable region. However, the first equi-
librium would be stable if the first wall of T-15M were
similar to the ITER wall.

p
p

βN β %[ ] a m[ ]  B T[ ]
I  MA[ ]

-------------------------------,=

Main parameters of the analyzed equilibrium configurations
in the T-15M

Equilibrium 1 2

a, m 0.5 ″

δ95 0.39 ″

κ95 1.76 ″

R, m 1.55 ″

B(R), T 2.5 ″

I, MA 1.4125 ″

q95 4.14 4.14

qmin 2.16 1.66

βN 3.53 3.74

p0/ 2.55 3.1

li 0.58 0.74

p

The problem of plasma equilibrium in a tokamak is
reduced to solving the Grad–Shafranov equation [22],
which can be written as

(2)

where ψ is the poloidal flux, related to the magnetic
field B by the equality

(3)

and jϕ is the toroidal component of the current density
j = — × B/µ0 (in SI units), which, for an axially symmet-
ric equilibrium configuration, is explicitly expressed
through poloidal current F and the plasma pressure p:

(4)

Hereinafter, r, ϕ, and z are the cylindrical coordinates
attached to the main axis of the tokamak.

Following the procedure in [21], we consider below
equilibrium configurations with the parameters given in
the table. The toroidal current density jϕ in Eq. (2) is
given by the formula

(5)

where jn is a constant determining the net current in the
plasma; G and H are the functions corresponding at α = 1
to self-consistently calculated steady state ITER sce-
narios [21]; R is, generally speaking, an arbitrary con-
stant not necessarily equal to the major radius of the
device. Let us say that α = 1 gives the main equilibrium
state. Varying α at fixed G and H and, accordingly, the
given profiles of the pressure and current density, we
can consider similar equilibria with different values of
β. The profiles of the current density, pressure, and
other characteristics of the main state (the first equilib-
rium) are shown in Fig. 1. In the main state, we have
p0/  = 2.55, where p0 is the plasma pressure at the
magnetic axis and  is the volume-averaged pressure.
In addition to the main state, we will also consider the
second equilibrium with a larger pressure peaking fac-
tor, p0/  = 3.1. The peakedness of the pressure profile
is an important factor determining the plasma stability,
especially in configurations with reversed shear. The
profiles of the equilibrium plasma parameters for the
second scenario considered here are shown in Fig. 2.
The bootstrap current density shown in Figs. 1 and 2
was calculated by Hirshman’s formulas [23] in the low-
collisional approximation (the “banana” regime) at
similar profiles of the density and temperature.

Under the procedure in given boundary conditions,
the properties of equilibrium configurations are com-
pletely determined by the functions G and H in Eq. (5).
One can express them explicitly through the equilib-

µ0 jϕ
r

2π
------—–

—ψ
r

2
--------,⋅=

2πB —ψ —ϕ F—ϕ ,+×=

2πp' ψ( ) j —ϕ FF ' ψ( )
2πµ0r

2
------------------.–⋅=

jϕ jn
r
R
---αG ψ( ) R

r
--- H ψ( ) αG ψ( )–[ ]+

 
 
 

,=

p
p
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Fig. 1. Calculated profiles of the equilibrium plasma parameters for the main scenario with a pressure peaking factor of p0/  =
2.55. All the parameters, except for the safety factor q, are normalized to their maximum values. On the left, the profiles are shown
as functions of the square root of the normalized poloidal flux of the magnetic field (zero at the magnetic axis and unity at the plasma
boundary). On the right, the profiles are shown in the equatorial plane, which passes through the magnetic axis, as functions of the
major radius normalized to the radius R0 of the magnetic axis. In addition to the profile of 〈j · B〉/〈B · —ϕ〉 , the dashed line shows,
in the same units, the profile of 〈jbs · B〉/〈B · —ϕ〉 , where jbs is the bootstrap current density calculated in the low-collisional approx-
imation (the “banana” regime) [23] at similar profiles of the density and temperature. In addition to the profile of p' = dp/dψ, the
dashed line shows the limit of p' set by ballooning instability. Here, p0 = 2.5 × 105 Pa, jmax = 2.9 × 106 A/m2, R0 = 1.66 m, β =
0.039884, IN = 1.13, and βN = 3.5296.

p

rium characteristics, comparing Eq. (5) with a conse-
quence of Eq. (4),

(6)

where

(7)

is the longitudinal current flowing inside a magnetic
surface; V is the volume enclosed by this surface; and
the angular brackets stand for the canonical averaging

jϕ 2πR
r
R
--- p' ψ( ) R

r
--- R

2

r
2

------
1–

dJ
dV
------- p' ψ( )–+

 
 
 

,=

J
1

2π
------ j

V

∫ —ϕ Vd⋅=
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over the volume between the neighboring magnetic sur-
faces, 

(8)

In a general case, we have

(9)

(10)

At any R, the function G is determined by the plasma
pressure profile only. The function H can be made

X〈 〉 d
dV
------- X V .d

V

∫=

jnαG ψ( ) 2πR p' ψ( ),=
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Fig. 2. Calculated profiles of the same equilibrium parameters as those in Fig. 1, but for a scenario with an increased pressure peak-
ing factor, p0/  = 3.1. Here, p0 = 3.2 × 105 Pa, jmax = 3.1 × 106 A/m2, R0 = 1.66 m, β = 0.0422, IN = 1.13, and βN = 3.7377.p
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Fig. 3. Functions G (solid line) and H (dashed line) for
series of equilibrium configurations with p0/  = 2.55, illus-
trated by Fig. 1.

p

dependent only on the current profile by choosing R sat-
isfying the condition 〈R2/r2〉  = 1. It is clear that the
dependence of H on J also remains dominant at other R
close to this value. For example, one can take R to be
equal to the radius of the plasma column axis. With
such a choice, by varying α, we obtain a series of equi-
librium configurations with almost the same profile of q.

The functions G and H, which are used here to spec-
ify the current density, are shown in Figs. 3 and 4.
These functions were obtained in a series of self-con-
sistent transport calculations [21] with the use of the
ASTRA code [24]. The purpose of these calculations
was the optimization of the ITER discharge scenarios
over a number of parameters. With given sources of
plasma heating (neutral beams) and with lower hybrid
current drive at the plasma periphery, it was required to
obtain a steady-state scenario with an internal transport
barrier, reversed shear in the central region, a given
peakedness of the pressure profile, a large fraction of
the bootstrap current, and an acceptable level of con-
vective and diffusive losses through the separatrix.
Accordingly, realistic self-consistent boundary condi-
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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tions for the ion and electron densities and temperatures
were set at the separatrix, and moderate absolute values
of the transport coefficients were used in calculations.

In both experiment and theory, a combination of
necessary tokamak characteristics can only be obtained
by carefully balancing mutually exclusive require-
ments. Whether or not it will be possible to realize them
in T-15M depends on the device instrumentation. Here,
we use the ITER functions G and H for the purpose of
easy comparison of the results obtained for T-15M with
those for ITER. For an ITER-like device, such an
approach is quite logical (especially as a first step), tak-
ing into account that the possible scenarios of T-15M
operation are not yet finally determined.

3. STABILITY LIMITS FOR IDEAL EXTERNAL 
KINK MODES

It is known that the ideal MHD stability theory gives
reliable predictions of the β limits, which indeed mani-
fest themselves as real restrictions in tokamak experi-
ments [1, 19]. The most dangerous of these are the
large-scale modes seizing the greater part of the plasma
column. Here, we study the stability of plasma equilib-
rium in the T-15M tokamak against external kink
modes with the toroidal wavenumbers n = 1, 2, and 3.
The calculations show that, for the configurations under
study, the lowest level of the β limit is set by the n = 1
mode. It is these limits that are discussed below.

The plasma stability in T-15M was simulated with
the help of the KINX code [25]. This code allows one
to investigate the stability of equilibrium in axially
symmetric systems (including configurations with a
separatrix) within the linear ideal magnetohydrody-
namics. The KINX code was successfully applied to
studying the global kink mode stability in various equi-
librium configurations, such as conventional tokamaks
[21], configurations with several magnetic axes and
internal separatrix (“doublets”) [25], and tokamaks
with a small aspect ratio [26]. The code was also used
to calculate the stability of MHD modes that have large
toroidal wavenumbers and are localized near the
plasma boundary [27], i.e., modes that can be responsi-
ble for so-called ELMs.

We obtained a series of equilibrium configurations
with various values of the normalized βN = 100β/IN by
varying the parameter α in Eq. (5) while keeping fixed
the normalized current

(11)

where I is the net plasma current, a is the minor plasma
radius, and B0 is the vacuum magnetic field at the
plasma center. Here, β is defined by the equality β =

2µ0 / . The value of IN is controlled by changing jn

in Eq. (5).

IN
I  MA[ ]

a m[ ]  B0 í[ ]
---------------------------------,≡

p B0
2
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In a tokamak, the stability of ideal kink modes
essentially depends on the boundary conditions, in par-
ticular, on the position of the conducting wall with
respect to the plasma [1, 28]. This was always known in
theory and quite recently this was convincingly con-
firmed by the experiments carried out in the DIII-D
tokamak [29, 30]. It is now an established fact that, in a
tokamak with low or reversed shear and a large fraction
of the bootstrap current (the so-called “advanced oper-
ation” regime [31–33]) large β could be obtained if the
kink modes with low n were stabilized by a conducting
wall [34].

A real wall with finite conductivity can stabilize
external kink modes only during a finite time interval of
about the diffusion time of the magnetic field through
the wall, τw, which, in the cylindrical approximation, is
defined by the formula τw = µ0σwdwrw, where σw, rw, and
dw are the conductivity, minor radius, and thickness of
the wall, respectively (estimates for T-15M yield τw =
6.35 × 10–3 s). The wall reacts as an ideal conductor to
fast perturbations with a characteristic time smaller
than τw, whereas for very slow perturbations, the influ-
ence of the wall on the perturbation structure can be
completely ignored. Thus, two representative parame-
ters naturally appear in the problem:

(i) the parameter , which is the stability limit
for ideal MHD modes with account taken of the wall as
an ideal conductor, and

(ii) the parameter , which is the MHD limit
calculated for the same configuration, but without a
conducting wall.

These values can be precisely determined only with
the help of MHD codes. Here, they are calculated for
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Fig. 4. Functions G (solid line) and H (dashed line) for a
series of equilibrium configurations with p0/  = 3.1, illus-
trated by Fig. 2.
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the T-15M tokamak with the use of the KINX code
[25]. The geometry of the tokamak, the shape of the
vacuum chamber, and its parameters (the thickness and
conductivity of the wall) are taken from the technical
project of the T-15M tokamak [18]. The geometry of
the problem is illustrated by Fig. 5 [35].

Numerous computational and experimental data [1,
36] show that

(12)

where li is the internal inductance of the plasma column
per unit length. The value defined by formula (12) is
called an empirical scaling or a rigid limit on β. The
approximate equality in formula (12) reflects rather
substantial scatter in the data. More precisely, the quan-
tity 4li should be regarded as an estimate of the upper
limit, since a resistive wall mode (RWM) can become
unstable even at an appreciably smaller βN, e.g., at βN =
2.5li [19]. It was stated in [19] that the dependences
observed in the DIII-D tokamak can be described by a
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Fig. 5. Poloidal cross-section of the T-15M tokamak [35]:
(CS1–CS6) sections of the central solenoid, (PF1–PF6)
windings of the poloidal magnetic field, (VV) vacuum ves-
sel, and (P1–P3) windings of the passive stabilization sys-
tem. The ψ = const contours are shown for the stationary
phase of the Ohmic discharge scenario.
scaling  = kli with k ≤ 4, where k is constant for
a given discharge. In any case, these scalings empha-

size the dependence of  on li .

The internal inductance li is an integral characteris-
tic of the current profile. Here, it is defined as

(13)

where Bθ is the poloidal field and V is the plasma vol-
ume. For a circular plasma, this definition reduces to

(14)

where BJ = Bθ(b) is the poloidal field at the plasma
boundary. Large li can be obtained only for peaked dis-
tributions of jϕ. However, an advanced operation
regime with low or negative shear requires wide current
distributions that yield small li and, accordingly, the low

 limit.

The results of numerical calculations of the limits

 and  in the T-15M tokamak for the n = 1
mode at different values of the normalized current are
shown in Fig. 6. The calculations were performed for
an ITER-like configuration with parameters given in

the table. Therefore, the  values shown in Fig. 6
equally represent both T-15M and ITER. However, the

βN
no wall

βN
no wall

li 2Bθ
2
V / µ0

2
I

2
R( ),=

li Bθ
2
/BJ

2
,=
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Fig. 6. Dependence of the n = 1 mode stability limit βN on
the normalized current IN for scenarios with reversed shear
in the T-15M tokamak. The circles show the results of cal-
culations for p0/  = 2.55, and the squares are for p0/  =
3.1. The open symbols correspond to β limits without wall

stabilization ( ), and the closed symbols show the

 limit for the case in which the T-15M wall is consid-

ered ideal. The dashed line shows qmin for a configuration

with p0/  = 2.55 and α = 1.

p p
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Fig. 7. Structure of the n = 1 mode for a plasma with different values of the normalized current: IN = 1.13 (on the left) and IN = 1.53

(on the right). In both cases, βN = 3.5 and p0/  = 2.55. The instability growth rates calculated with account taken of the stabilizing
influence of the T-15M wall, which are shown by the bold contour, satisfy γτA = 0.02 and 0.01, respectively, where τA is the Alfvén
time. The calculated structure of the modes is shown by the contour lines of ξn, which is the component of the plasma displacement
normal to the magnetic surfaces.

p

values of  in T-15M and ITER should certainly be
different because the shape and position of the vacuum
vessel with respect to the plasma is different in these
devices. This point will be discussed in more detail
below.

The calculated  limits shown by the open
symbols in Fig. 6 are, on average, close to scaling (12),
which yields βN ≈ 2.4 for an ITER-like configuration
(the first equilibrium). At the same time, for the second
equilibrium with a larger pressure peakedness, we have
obtained (in the obvious contradiction with formula

(12)) a lower  limit at a larger internal induc-
tance (the open squares in Fig. 6). Thus, as well as in
the above case with DIII-D [19], the dependence

 = kli should be regarded as more correct. For all

the cases considered here, the /li variation cov-
ers a range from 2.7 to 4.5 (the value 2.7 is obtained for
p0/  = 3.1 and qmin = 1.8). In particular, for the maxi-

mum values of  in Fig. 6, in both cases corre-
sponding to the same values of qmin but different values

βN
wall

βN
no wall

βN
no wall

βN
no wall

βN
no wall

p

βN
no wall
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of p0/ , the simulations give k ≡ /li = 4.5 for a

maximum  = 2.7 on the lower curve and k = 3.2

for  = 2.4 (the upper open square). Note that, in
addition to the pressure peakedness, the second impor-

tant factor determining the value of  in configu-
rations with reversed shear is the position of qmin with
respect to the surfaces with resonant q values of 2 and

3. The maximum value of  (  = 2.7) on the
lower curve is achieved at an intermediate value of qmin.

The calculated values of  for the n = 2 and
n = 3 modes are much larger than those for the most
unstable n = 1 mode. For example, for the first equilib-

rium, the  stability limits for these higher modes
are 3.7 and 4.3, respectively.

The quantity  is the ideal limit, so that it is
impossible to achieve higher βN in a tokamak under any

conditions. The higher the value of  with respect to

, the stronger the stabilizing influence of the

p βN
no wall

βN
no wall

βN
no wall

βN
no wall

βN
no wall βN

no wall

βN
no wall

βN
no wall

βN
wall

βN
wall

βN
no wall
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wall. Figure 6 shows that, in the T-15M tokamak, the
gap between these limits is not large. This actually
means that the wall is far from the plasma. To increase

 in T-15M, it is necessary to place the vacuum
chamber closer to the plasma.

The main scenario, the parameters of which are
given in the table, corresponds to IN = 1.3. Varying jn at
given G, H, and α in Eq. (5) and at a given vacuum
magnetic field, we obtain a series of equilibrium con-
figurations with different IN. The calculations show

that, for the main equilibrium, the difference  –

  starts to increase with increasing IN in the range
IN > 1.3 (see Fig. 6). In other words, in this range of IN,
the stabilizing influence of the wall becomes stronger.
This can be explained by the fact that the mode struc-
ture changes with changing IN; i.e., the mode becomes
more extended in the external region (which is illus-
trated in Fig. 7) and, therefore, reacts more strongly to
the wall. Let us note that the zone between the two dis-
cussed MHD limits widens due to the two effects: the

increase in  and the reduction in . Operating
in this parameter range would be very interesting from
the standpoint of verifying the MHD theory predictions
in T-15M experiments.

MHD limits depend substantially on the plasma
pressure profile. As the pressure peakedness increases,

βN
wall

βN
wall

βN
no wall

βN
wall βN

no wall

Fig. 8. Dependence of the βN limits on qmin in the T-15M
tokamak plasma for different positions of the conducting
wall. In all cases, p0/  = 2.55. In addition to the two curves

presented in Fig. 6 (open circles for  and closed cir-

cles for ), the  limits are shown by squares for a

configuration with an ITER-like wall and by dashed lines
for a T-15M configuration with a plasma shifted by 10 cm
along the R axis (small circles) and along both axes (dots).
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the value of  becomes smaller and, at IN > 1, the

 limit also goes down, as is shown in Fig. 6 by

squares for a configuration with p0/  = 3.1. Then, for
the considered equilibrium T-15M tokamak configura-
tions, the gap between these limits appreciably
decreases.

In Fig. 8, results for the first equilibrium (p0/  =
2.55) identical to those in Fig. 6 are shown as depen-
dences of the βN limits on the value of 1/qmin (the max-
imum rotational transformation) in the plasma. The
quantity 1/qmin is plotted as an abscissa in Fig. 8 to facil-
itate the comparison of the results for series of equilib-
rium configurations with different plasma boundaries
(corresponding to different shifts of the boundary along
the R axis), since the local minima of the βN limit are
associated with the approaching of qmin to resonant sur-
faces. At the same plasma boundary and fixed G and H,
the qmin value is, with good accuracy, inversely propor-
tional to the normalized current IN. In particular,
qminIN ≈ 2.5 for the initial plasma boundary. For defi-
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Fig. 9. Plasma boundary (light solid line) and the position
of the T-15M wall (heavy line). The dashed and dotted lines
show the plasma boundary shifted outward by 10 cm and
the rescaled ITER wall, respectively.
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niteness, the correspondence between the normalized
current IN (which is prescribed in our calculations) and
the qmin value is specified for equilibrium configura-
tions with α = 1 in Eq. (5).

For the sake of comparison, in Fig. 8 we also display

the results of calculations of  for the same plasma
configuration, but with an ITER-like wall shown by the

dotted line in Fig. 9. One can see that the  limit in
T-15M is noticeably lower than the same limit in ITER.
In this sense, T-15M lags substantially behind the
ITER.

Figure 8 is a quantitative illustration of the above
statement that the wall in T-15M is far from the plasma.
It is also shown there what would happen if the wall
were closer to the plasma. The dashed lines show the

calculated  limit in T-15M, but with a plasma
shifted by 10 cm toward the wall along either one or
two axes simultaneously. The effect of such a shift is
rather strong: the difference βwall – βno wall is almost
twice as large as that calculated for the initial configu-
ration and is closer to the ITER values. The position of
the plasma with respect to the wall for the shifted con-
figuration is shown by the dashed curve in Fig. 9.

The  value can be called the RWM limit
because it manifests itself as a stability limit for the
RWMs, whose growth rate is on the order of 1/τw [34,
36–41]. This limit can be exceeded and β can be

increased to  either in short pulses or at completely
stabilized RWMs. Physically, this stabilization reduces
to compensating for the resistive losses in the wall and
the maintenance of the currents induced in the wall by
the plasma-produced perturbation, at the level at which
they would be for an ideal wall.

An analysis of the RWM stabilization requires a
detailed description of the stabilizing system and possi-
ble algorithms of its operation. This brings to the prob-
lem a distinctly applied aspect with strict engineering
restrictions. For T-15M, they are not yet formulated,
therefore the question of the possibility of stabilizing
RWMs in T-15M still remains open. The results shown
in Fig. 6 prove that RWM stabilization in T-15M could
be useful for extending the operational β limits, espe-
cially at IN > 1.3.

4. CONCLUSIONS

The results of the calculations presented in Fig. 6
show that βN = 3.2 can be regarded as the stability limit
of the ideal kink modes for the steady-state operation of
T-15M. This value is obtained for an equilibrium con-
figuration with p0/  = 2.55 and parameters corre-
sponding to the ITER scenario 4A [21]. Figure 6 also
shows that even a small increase in the pressure peaking
factor can result in a substantial reduction of this limit:

βN
wall

βN
wall

βN
wall

βN
no wall

βN
wall

p
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 < 2.6 at p0/  = 3.1. Earlier, the same strong
dependence of the β stability limit on the plasma pres-
sure peaking factor was found in calculations for ITER
[21].

The βN = 3.2 limit for a scenario with p0/  = 2.55 is
obtained with account taken of the stabilizing influence
of the first wall (vacuum vessel) in T-15M. Without
wall stabilization, the limit drops to βN = 2.6–2.7. These
are rather low values. If one of the main objectives of
the T-15M experimental program will be, as is pre-
sumed in the technical project [18], to study the possi-
bility of operating at high βN, it is necessary to take spe-
cial measures in order to increase the β limit in T-15M

above the calculated  value.

The most simple means could be the equipment of
T-15M by a system of active stabilization of kink
modes. A similar system, known as a system for RWM
stabilization, is already in successful operation in the
DIII-D tokamak [34, 36–41].

Generally speaking, RWM stabilization in T-15M
could allow steady-state operation in the entire area (in
an ideal case) or in a part of the area between the curves
passing through the calculated points (circles) in Fig. 6.
It would yield a gain in β. However, even in this case,
the upper limit on β in T-15M would be low. This is
clearly seen when comparing T-15M with ITER in
Fig. 8. Let us also recall the JT-60SC project, in which
steady-state operation with βN = 3.5–5.5 [17] is consid-
ered, whereas in T-15M (even in the best case), RWM
stabilization would allow one to increase the limit to

not higher than , i.e., only to βN = 3.2 at p0/  =
2.55.

It is also expedient to compare the calculated ideal
limits with the βN values already achieved in tokamaks.
Let us mention two examples of successful operation at

βN above the calculated  limit for T-15M. In JT-
60U, plasma with βN > 2.7 was sustained for more than
seven seconds [42]. In the ASDEX Upgrade tokamak,
steady-state operation was demonstrated with βN > 3
(up to βN = 3.5) [43].

A relatively low β limit in T-15M is a consequence
of a too large distance between the plasma and the first
wall and, accordingly, the weak stabilizing effect of the
wall. The dashed curves in Fig. 8 show how strong an
effect would result from the reduction of this distance.
Placing the wall closer to the plasma in T-15M should
be considered inevitable if the objective of T-15M is to
operate with βN above the upper limit shown in Fig. 6.

RWM stabilization in the T-15M tokamak and the

possibility of operating at βN >  will be investi-
gated in a separate paper. However, the problem of
positioning the first wall closer to the plasma goes
beyond the scope of formal theory.
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Abstract—It is shown that the relative intensity of the second harmonic of gyrotron radiation on the axis of a
microwave beam after quasi-optical filtering in a four-mirror quasi-optical transmission line is about –50 dB of
the total radiation intensity. The second-harmonic radiation is used in collective-scattering diagnostics of tur-
bulent density fluctuations in the plasma column of the L-2M stellarator. At an electron temperature of 0.8–
1.0 keV and average plasma density of 2.0–2.5 × 1013 cm–3 (a plasma energy of about 0.6 kJ), which was
achieved after the boronization of the vacuum chamber, spatiotemporal structures in plasma density fluctuations
were observed in the central region of the plasma column. The correlation time between the structures was
found to be on the order of 1 ms. It is shown that the spectrum of the signal from the second-harmonic scattering
extends to higher frequencies compared to that from the fundamental-harmonic scattering. © 2003 MAIK
“Nauka/Interperiodica”.
1. Millimeter and submillimeter microwaves are
widely used in plasma diagnostics. The oscillator
power in this wavelength range is usually around sev-
eral dozen milliwatts and rarely attains that of a few
watts. This requires very high sensitivity and noise
immunity of the receiving facility, especially when
radiation scattering by plasma density fluctuations is
used to diagnose plasma oscillations. On the other
hand, microwave oscillators with powers of several
hundred kilowatts are used in most experiments on
plasma production and heating in magnetic confine-
ment systems. Due to nonlinear effects, the output radi-
ation of these oscillators contains harmonics of the fun-
damental frequency. The power of these harmonics,
even though they are –40 to −50 dB of the output
power, substantially exceeds the power of the conven-
tional oscillators used in plasma diagnostics. Our
experiments on electron-cyclotron resonance (ECR)
plasma heating and microwave discharges in gases have
shown that the second-harmonic component with a
fairly high power is certainly present in the gyrotron
radiation.

This is why, in the L-2M experiments, we decided to
measure the intensity of the second harmonic of
gyrotron radiation after quasi-optical filtering at the exit
from a four-mirror quasi-optical transmission line, and
to study plasma density fluctuations in the central
region of the plasma column by using collective scatter-
ing of the second-harmonic radiation.

2. The parameters of the L-2M stellarator and its
gyrotron complex were described in our previous
papers (see, e.g., [1, 2]). The plasma was produced and
heated by microwave radiation at the second harmonic
1063-780X/03/2912- $24.00 © 21019
of the electron gyrofrequency. The magnetic field at the
axis of the vacuum chamber was 1.35 T.

In our experiments, we used two GYCOM
gyrotrons of the Brider-1 type with an operating fre-
quency of 75.3 GHz and a pulse duration of 1–12 ms.

The signals at the second harmonic of the gyrotron
frequency (at 150 GHz) were measured with the help of
a collimator that was a cylinder made of an absorbent
rubber placed in a plexiglass shell. The cones of the
absorbent rubber protruded into the cylinder interior so
as to form a corrugated waveguide with absorbent
walls. A waveguide transition from the 7.2 × 3.4- to
1.6 × 0.8-mm section was attached to the bottom of the
plexiglass shell at its axis. The waveguide transition
was connected to a 1.6 × 0.8-mm rectangular
waveguide section (or two sections placed one after
another), which ended with a detector unit sensitive to
the 150-GHz radiation.

Thus, the gyrotron radiation at a frequency of
75 GHz was attenuated by a below-cutoff waveguide of
length 25 or 50 mm. The absorbent rubber cylinder
served as a beam collimator. All the waveguide junc-
tions and the detector unit were shielded by the absor-
bent rubber. The entire assembly was placed inside an
absorbent rubber cylinder.

The gyrotron second harmonic was separated out
with the help of a filter made of two plane-parallel mica
plates placed between the last mirror of the quasi-opti-
cal transmission line and the window of the stellarator
vacuum chamber. The filter plates were oriented at an
angle of π/4 to the beam axis. The filter was tuned so
that it was almost transparent (the transmission coeffi-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental arrangement: (1) vacuum chamber of L-2M, (2) quasi-optical detector unit, (3) quasi-optical coupler with a
detector unit for monitoring the gyrotron incident power, (4) quasi-optical filter, (5) detector unit for measuring the second-harmonic
power, (6) stellarator input window, (7) detector unit for measuring the scattered signal at the fundamental or second harmonic, and
(8) detector unit for measuring the passed fundamental-harmonic power.
cient was no less than 0.9) at a wavelength of 4 mm (the
fundamental harmonic) and, at the same time, reflected
up to 80% of radiation at a wavelength of 2 mm (the
second harmonic). After leaving the quasi-optical trans-
mission line, the second-harmonic beam was deflected
by the filter placed at an angle of π/2 toward the detec-
tor unit positioned at a distance of 67 cm from the cen-
ter of the filter, i.e., at the same distance as the inner
wall of the stellarator vacuum chamber. The detector
unit was calibrated in a microwave beam from a stan-
dard-signal generator, whose output power was mea-
sured with the help of a calorimeter. The experimental
arrangement is shown in Fig. 1. Figure 2 shows exam-
ples of the detected signals. The signal at the funda-
mental harmonic of the gyrotron radiation, having
passed through the filter, was measured by a detector
installed behind the inner port of the stellarator. Mea-
surements showed that, within the measurement error
(~10%) of the microwave pulse amplitude, there was no
difference between the signals in the presence and in
the absence of the resonance filter. Hence, we can con-
clude that no more than 10% of the fundamental-har-
monic power was directed by the filter into the detector
unit measuring the second-harmonic radiation.

The second-harmonic signal was at maximum when
the filter was tuned to the resonance frequency. If the
filter was out of the resonance, the signal was almost
one order of magnitude lower. The maximum second-
harmonic power measured by the detector unit was
about 10 mW, which corresponded to an intensity of
40 W/cm2 at the beam axis. On the other hand, the cal-
culated intensity of the gyrotron beam at the same dis-
tance from the focal plane is about 4 × 103 W/cm2.
Hence, the second-harmonic intensity in the gyrotron
beam after filtration in the quasi-optical transmission
line is 10–5 of the fundamental-harmonic intensity. To
determine the total second-harmonic power, it is neces-
sary to know the field distribution across the beam.
Unfortunately, we could not perform such measure-
ments. To estimate this power, we calculated the param-
eters of the second-harmonic radiation after the focus-
ing by the mirrors of the quasi-optical transmission
line, assuming the beam to be Gaussian at the gyrotron
output window. In calculations, the characteristic
radius of the Gaussian beam was varied from 5 to
40 mm. The calculations showed that the second-har-
monic beam should have a smaller divergence as com-
pared to the fundamental-harmonic beam, and its radius
at the focal plane should also be smaller. Based on the
calculated beam radius, we can conclude that the total
second-harmonic power is no less than 0.3 W. Such a
power at the input window of the stellarator is sufficient
for the diagnostics of plasma density fluctuations and
exceeds the output power of the conventional oscilla-
tors used in plasma diagnostics. We also measured the
degree of polarization of the second-harmonic radia-
tion. For this purpose, we measured the signals at two
orientations of the receiving waveguide: its wide wall
was oriented perpendicular or parallel to the plane of
incidence of the gyrotron radiation onto the mica plates
of the filter. The measurements showed that the polar-
ization was the same for the second and fundamental
harmonics: the electric field vector lay in the plane of
incidence, the ratio of the signals measured at two
mutually orthogonal orientations being no less than
10 dB.

We measured the dependence of the second-har-
monic intensity on the gyrotron power at different cath-
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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Fig. 2. Examples of signals recorded in studying the second harmonic of the gyrotron radiation at a gyrotron output power of (a) 89
and (b) 150 kW. From top to bottom: the second-harmonic signal reflected from the quasi-optical filter, the incident-radiation signal,
gyrotron voltage, and gyrotron-beam current.
ode voltages and beam currents. It turned out that, as
the gyrotron output power varied from 84 to 155 kW,
the amplitude of the second-harmonic signal varied
only slightly. The variations in the second-harmonic
signal were more pronounced when we varied the beam
current: an increase in the current by 10% at ±1%
variations in the cathode voltage resulted in a tenfold
increase in the signal amplitude. A four- to fivefold
increase in the second-harmonic signal was observed
when the cathode voltage was decreased by 2.5%,
while the current was decreased only slightly (by 0.6%)
and the fundamental-harmonic power also changed
insignificantly.

In a gyrotron, as in any self-oscillator, the active
medium (in our case, a nonequilibrium electron beam)
is nonlinear. This is the main cause of the saturation of
the medium conductivity, which results in steady self-
oscillations. Along with this, the action of an alternat-
ing electromagnetic field on the nonlinear active
medium produces the current harmonics (which are
multiples of the fundamental frequency), which, in
turn, produce the harmonics of the output radiation.

Specifically, in a gyrotron, the current harmonics are
generated due to the orbital bunching of electrons due
to relativistic effects. Note that the relativistic depen-
dence of the gyrofrequency of electrons on their energy
leads to the anomalous (in comparison with a traveling-
wave tube, klystron, and other conventional devices)
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
effect of a negative mass, resulting in a Coulomb attrac-
tion between electrons, which favors bunching [3].

The larger the excess of the electron current over the
start value, the higher the amplitude of the self-oscilla-
tions and the higher the intensity of harmonics in the
electron current spectrum. In a steady-state operating
mode with a high gyrotron efficiency, the second and
third harmonics of the electron current can be compara-
ble in amplitude with the fundamental harmonic. Nev-
ertheless, the fundamental mode is dominant in the
spectrum of the generated electromagnetic field
because it is excited in a resonant fashion. Except for
certain special cases,1 the second harmonic of the cur-
rent excites only travelling waves in the gyrotron elec-
trodynamic system. The coupling between the second
harmonic and these waves is a factor of ~1/Q lesser
than that of the gyrotron fundamental mode (here, Q is
the quality factor of the fundamental mode, which is
usually on the order of 103).

Another important factor is that modern high-power
gyrotrons include a built-in mirror converter that trans-
forms the generated mode into a Gaussian beam,

1 The efficiency of an n-fold frequency multiplication can be
higher when the nth harmonic of the electron current is in reso-
nance with a gyrotron cavity eigenmode, providing that the latter
possesses an adequate symmetry. Such a situation can occur, e.g.,
in a quasi-axisymmetric gyrotron if the secondary mode has an
azimuthal index that is n times the azimuthal index of the primary
mode excited at the fundamental cyclotron resonance [3].
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which, in turn, feeds an external overmoded filtering
waveguide (e.g., a mirror line) transmitting the micro-
wave power to the load. For modes other than funda-
mental, the power-transfer coefficient from the output
of the gyrotron cavity to the output of the transmission
line can be estimated at 10–2–10–4. It can then be
expected that, at the output of the system, the second-
harmonic power will be 10–5–10–7 of the fundamental-
harmonic power.

3. The second-harmonic beam, as well as the main
gyrotron beam, was used to study the collective scatter-
ing of radiation by plasma density fluctuations in the
heating region of the L-2M stellarator. By the main
beam, we mean the beam at the fundamental frequency
(ω0), which was used for the ECR heating of the plasma
at the second harmonic of the electron gyrofrequency
(2ΩÂ). The results of collective-scattering measure-
ments at two probing frequencies were then compared
with each other.
As was mentioned above, the parameters of the
L-2M stellarator are described in [1, 2]. The plasma
column was heated with two Brider-1 gyrotrons, oper-
ating at a frequency of 75.3 GHz. The distance between
the heating regions of these gyrotrons along the stellar-
ator axis was 1/14 of the axis length (≈6 m). The exper-
iments were conducted after the boronization of the
vacuum chamber, which resulted in the reduction of the
radiation power to 40–55 kW at a total heating micro-
wave power of 250–350 kW. The line-averaged elec-
tron density, which was measured by a microwave
interferometer, amounted to 2.0–2.5 × 1013 cm–3. The
central electron temperature, measured from the soft
X-ray spectra and from the spectra of thermal micro-
wave plasma emission at the second harmonic of the
electron gyrofrequency (76 GHz), was 0.8–1.0 keV.
The plasma energy, measured from the plasma diamag-
netism, was about 0.5–0.6 kJ. The experimental
arrangement for the scattering diagnostics is shown in
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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Fig. 1. It can be seen from Fig. 1 that the radiation scat-
tered by plasma density fluctuations is measured at an
angle of nearly π/2 to the axis of the probing beam. As
detectors, we used a detector unit identical to that for
measuring the gyrotron radiation. The collimator of the
detector unit allowed the reception of the scattered sig-
nals within the angle ∆θ = ±0.1 rad. Direct detection of
the scattered signals was used for probing at both the
fundamental and second harmonics of the gyrotron
radiation. The amplitude of the scattered signal at the
fundamental harmonic was chosen such that the detec-
tor operated in the linear range of its characteristic, so
that we had Uω ∞ Psct. The amplitude of the second-har-
monic signal was about 1 mV. At such small ampli-

tudes, we had U2ω ∞ . The measuring circuit for the
second-harmonic signal included an amplifier with a
gain factor of 102. The scattered signals were digitized
with a sampling rate of 1 MHz.

Psct
3
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When measuring the second-harmonic scattering,
we detected only radiation with the electric field vector
lying in a plane orthogonal to the axis of the vacuum
chamber (the wide wall of the receiving waveguide was
parallel to the axis of the vacuum chamber).

The signal from stray radiation produced by multi-
ple scattering by the vacuum chamber wall and falling
into the detector unit was at a level of 0.016 of the sec-
ond-harmonic signal. Such a value of the stray signal is
quite acceptable in measurements of the collective scat-
tering by plasma fluctuations. The stray signal was
observed at the leading edge of the scattered signal for
1.0–1.5 ms, which corresponds to the time interval dur-
ing which the electron density in the plasma column
rapidly grows. It can be seen from Fig. 3a that the
amplitude of the scattered signal is several times the
amplitude of the stray signal. This means that the power
of the scattered signal is comparable to the power of the
stray signal. The stray signal can be regarded as a refer-
ence signal in the homodyne detector circuit. The inter-
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ferometric data show that the electron density varies
only slightly during the discharge, so that the phase of
the reference signal can be assumed constant when
measuring oscillations with frequencies above 3 kHz.
Higher frequency fluctuations of the reference-radia-
tion power that are caused by the effect of small-angle
scattering are estimated to be about 0.01 of the power
of the reference signal.

A similar situation occurred when we measured the
scattering of the fundamental-harmonic radiation
(Fig. 4a). In this case, we only detected the scattered
radiation with the electric field vector parallel to the
axis of the vacuum chamber (the wide wall of the
receiving waveguide was perpendicular to the chamber
axis), which corresponded to the scattering of the ordi-
nary wave that arose due to the splitting of the linearly
polarized gyrotron radiation in the plasma of the L-2M
stellarator [4, 5].
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Fig. 5. Temporal wavelet spectra of the detector signals
from the scattering at the (a) second (shot no. 54215) and
(b) fundamental harmonic (shot no. 54482) of the gyrotron
radiation.
It can be seen from Figs. 3a and 4a that the scattered
signals of both harmonics show a similar behavior. The
level of stray radiation can be judged from the time
delay before breakdown. In the early stage of the dis-
charge (1.0–1.5 ms), when the plasma density grows,
we observe a sharp peak in the scattered radiation inten-
sity. Then, as the electron temperature increases, the
amplitude of the scattered signal decreases. A compar-
ison of the scattered signals for different average densi-
ties shows that the amplitude of the scattered signal
increases with increasing plasma density.

4. The results of the spectral and statistical analysis
of the scattered signals are shown in Figs. 3 and 4.2 The
Fourier and wavelet spectra were computed with the
use of a 2-kHz filter. Figures 3d, 3e, 4d, and 4e show
such spectra averaged over a time interval of 2 ms (from
52 to 54 ms in a real time of the stellarator shot, as is
indicated by a shaded rectangular in Figs. 3a and 4a).
For the probing at both the fundamental and second-
harmonic frequencies, the spectral density of the scat-
tered signal falls by a factor of 10–100 at frequencies of
100–150 kHz. At the same time, for the second-har-
monic scattering, the signal spectrum extends to higher
frequencies compared to the fundamental-harmonic
scattering.

The autocorrelation functions (ACFs) for both prob-
ing frequencies (Figs. 3c, 4c) demonstrate the presence
of long-term correlation, which indicates the existence
of spatiotemporal structures in the plasma density fluc-
tuations. The formation and time evolution of such
structures is seen in Fig. 5. This figure shows the wave-
let spectra of the scattered signals at the (a) second and
(b) fundamental harmonics of the gyrotron radiation.
The temporal spectra are collected by interpolating 25
successive wavelet spectra constructed on equal time
intervals of 0.5 ms. The time variations in the temporal
wavelet spectrum can be related to the presence of sto-
chastic plasma structures in the heating region. The
presence of long-term correlation in the ACF implies
that the density fluctuations cannot be regarded as sta-
tistically independent. In this case, the increments of
the fluctuation amplitudes can be statistically indepen-
dent, as is the case with local particle fluxes in probe
measurements [7]. However, as can be seen from
Figs. 3c and 4c, the magnitude of the ACF of the incre-
ments is much greater than the instrumentation noise,
which is about 0.02. This clearly demonstrates the pres-
ence of long-term correlation in the processes of the
growth and decay of plasma fluctuations.

The probability density function (PDF) of the
amplitudes of the fluctuation signals in the case of the
second-harmonic scattering is close to a Gaussian dis-
tribution and is slightly asymmetric (with a skewness of
m3 = 0.1), whereas a rather strong asymmetry with a
heavy “tail” of large amplitudes (in comparison with a
Gaussian distribution) is observed in the case of the

2 The spectral and statistical processing of signals was performed
using the programs developed by B. Milligen [6].
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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fundamental-harmonic scattering. This difference may
be attributed to the different scales of scattering fluctu-
ations for the second and fundamental harmonics (3
and 6 mm, respectively). On the other hand, we may
suppose that the PDF is less sensitive to the spatiotem-
poral coupling of fluctuations than the ACF.

Up to this point, we have analyzed the signals from
the detectors of scattered radiation. However, the
amplitude of plasma density fluctuations in the case of
second-harmonic scattering is proportional to the sixth
root of the signal amplitude, whereas it is proportional
to the square root in the case of fundamental-harmonic
scattering. In our case, the amplitude resolution was
sufficient to perform the corresponding processing of
the scattered signals (the amplitude resolution of the
detector signals was 1 mV, whereas the fluctuation
amplitude was 102–103 mV). Figures 6 and 7 show the
results of such a processing. We can see that all the
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
characteristic features of the ACFs, Fourier spectra, and
PDFs persist in this case too. Therefore, we can con-
clude that the formation of spatiotemporal structures
and the correlation between them are also typical for
the density fluctuations of charged particles in the
region of ECR plasma heating at the second harmonic
of the electron gyrofrequency.

5. The measurements of the second-harmonic radia-
tion intensity of the Brider-1 gyrotron at the output
from the quasi-optical line, which is used to transport
and focus the gyrotron radiation, have shown the pres-
ence of a second-harmonic component with an inten-
sity on the order of 10–5 of the total radiation intensity.
The power of the second-harmonic radiation inside the
plasma column has been found to be much higher than
the power of microwave beams produced by conven-
tional diagnostic oscillators. It is shown that the sec-
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ond-harmonic radiation has the same polarization as
the fundamental-frequency radiation.

The possibility has been demonstrated of using the
second-harmonic radiation for collective-scattering
diagnostics of the plasma density fluctuations. It is
shown that, in the plasma column of the L-2M stellara-
tor with an electron temperature of 0.8–1.0 keV and
average electron density of 2.0–2.5 × 1013 cm–3 (a
plasma energy of about 0.6 kJ), which were achieved
after the boronization of the vacuum chamber, the fluc-
tuation behavior derived from the measurements of the
second-harmonic scattering is consistent with the pre-
vious observations. In particular, the formation of spa-
tiotemporal structures and a long-term correlation
between them have been observed. The fluctuation
spectra corresponding to different spatial scales show
different behaviors: the spectrum of the signal from the
second-harmonic scattering decays with increasing fre-
quency more slowly than that from the fundamental-
harmonic scattering.

Note that the second-harmonic gyrotron radiation
can also be used in other plasma diagnostics, e.g., in
plasma interferometry.
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Abstract—Results are presented from experiments on studying the plasma behavior in the L-2M stellarator in
regimes with a high power deposition in electrons during electron cyclotron heating at the second harmonic of
the electron gyrofrequency (X mode) at heating powers of Pin = 120–400 kW and average plasma densities from
ne ≤ 3 × 1019 to 0.3 × 1019 m–3. It is shown that, as the plasma density decreases and the heating power increases,
the electron cyclotron emission spectrum is modified; this may be attributed to a deviation of the electron energy
distribution from a Maxwellian and the generation of suprathermal electrons. At low plasma densities, the emis-
sion intensity at the second harmonic of the electron gyrofrequency increases, whereas the plasma energy mea-
sured by diamagnetic diagnostics does not increase. This poses the question of the correctness of determining
the plasma electron temperature by electron cyclotron emission diagnostics under these conditions. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, great attention has been devoted to
the plasma behavior in both tokamaks and stellarators
during electron cyclotron resonance heating (ECRH) at
the fundamental and second harmonics of the electron
gyrofrequency. To achieve high energy deposition and
high electron temperature, the input microwave power
Pin generated by gyrotrons is increased or the average
plasma density ne is decreased. An electron temperature
as high as 10 keV was achieved in the T-10 tokamak [1]
at ne = 1.5 × 1019 m–3 and an absorbed power of Pab =
2.2 MW and in the LHD stellarator [2] at ne = 0.5 ×
1019 m–3 and an input power of Pin = 1 MW. In both stel-
larators and tokamaks, a deviation of the electron
energy distribution from a Maxwellian and the genera-
tion of suprathermal electrons were observed at a
reduced plasma density and increased input power. This
phenomenon is described in considerable detail in
many papers (see, e.g., [3–13]).

At a reduced plasma density and a specific magnetic
field structure (the presence of a local minimum or rip-
ples of the magnetic field), a number of interesting
effects have been observed in the power absorption
region [14] of stellarators. These effects are related to a
peculiar behavior of suprathermal electrons: their trap-
ping in magnetic ripples and their fast escape from the
plasma. As a result, a sheared radial electric field is gen-
erated and the plasma thermal conductivity changes,
which gives rise to an internal transport barrier. In this
case, the radial profile of the electron temperature Te(r)
1063-780X/03/2912- $24.00 © 21028
changes and the lifetime of the bulk electrons increases.
This effect was described, e.g., in [14–18]. The effect of
suprathermal electrons was also studied in the L-2M
stellarator [19], which, however, possesses a different
configuration of the magnetic field.

The main objective of the experiments described in
the present paper was to study the characteristic fea-
tures in the behavior of the plasma energy and electron
cyclotron emission (ECE) in the L-2M stellarator at
input powers of Pin = 120–400 kW and average electron
densities within the range ne = (3–0.3) × 1019 m–3.

2. EXPERIMENTAL CONDITIONS

The L-2M stellarator has two-pole helical windings
(l = 2) and 28 toroidal-field coils. The number of the
helical-field periods is M = 14, the major radius of the
torus is R0 = 1 m, and the mean plasma radius is ap =
0.11 m. The rotational transform at the axis of the
plasma column is ι  = 0.2, and its equal to ι  = 0.8 at the
plasma boundary. The plasma volume in the stellarator
is about 2.6 × 105 cm3.

The plasma cross section is elliptical. In the “stan-
dard” section, the ellipse is inclined to the major radius
R0 at an angle of α = 45°, whereas in the “nonstandard”
cross section, it is inclined at an angle of α = 90°. The
75-GHz microwave radiation generated by gyrotrons
with a total power of up to 400 kW was launched from
the low-field side (LFS) in the standard section.
003 MAIK “Nauka/Interperiodica”
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Receiving horns of superheterodyne receivers were
placed both on the high-field side (HFS) and LFS of the
torus. The ECE receiving system consisted of three
double-conversion superheterodyne receivers (10 chan-
nels in total). Four channels (f = 68–74 GHz) were posi-
tioned on the LFS in the standard section. These chan-
nels received emission from the plasma regions corre-
sponding to the flux surfaces with the normalized radii
r/ap = 0.11 (74 GHz), 0.29 (72 GHz), 0.46 (70 GHz),
and 0.67 (68 GHz). The other four channels (f = 76–
81 GHz) were positioned on the HFS: r/ap = –0.15
(76 GHz),–0.3 (78 GHz), –0.46 (79.5 GHz), and –0.6
(81 GHz). In addition, two channels receiving signals
from the HFS were placed in the nonstandard section:
r/ap = 0.58 (71 GHz) and 0.63 (77 GHz). To prevent
gyrotron radiation from falling into the receiver mixers,
we used band-pass and notch filters with a passwidth of
∆f = 75.3 ± 1 GHz. The intermediate frequency of the
receivers was 200 MHz; for the magnetic-field gradient
in L-2M, this corresponded to a spatial resolution on
the order of 1 cm. The time resolution was limited to
~50 µs by the data acquisition system of L-2M.

The outward (Shafranov) shift of the center of the
flux surfaces (the initial coordinate was Rax(0) = 0.97 m)
during plasma heating amounted to ∆r = 1.8–3.3 cm;
i.e., the magnetic axis came close to the center of the
vacuum chamber (R0 = 1 m).

The magnetic system created a field configuration in
which the absolute value of the magnetic field |B | varied
along the major circumference (see Fig. 1). The
focused microwave beam entered the plasma at the
slope of a local magnetic well produced by stellarator
magnetic traps. The magnetic traps and the associated
magnetic wells were located asymmetrically about the
section in which the microwave beam was launched.
The ripple depth (and, accordingly, the population of
the trapped particles) increased toward the plasma
boundary. For the magnetic field structure of L-2M, the
depth of the local magnetic well at the center of the
plasma column (in the microwave absorption region) is
very small; accordingly, the population of the trapped
particles is here also very small. It is well known that
the number of trapped electrons in the microwave
absorption region can affect the generation of the radial
electric field, thereby changing the rate of plasma diffu-
sion. Hence, the L-2M stellarator differs radically in
this aspect from the devices mentioned above [14–18].

The plasma energy W was measured from diamag-
netic signals, using a technique described in detail in
[20]. In that paper, the influence of the vacuum chamber
on the results of diamagnetic measurements was
assessed. It was shown that these results must be cor-
rected when calculating the microwave power absorbed
by the plasma. The value of the absorbed microwave
power was calculated from the dW/dt signal at the
instant when the microwave power was switched off
[21].
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
In our experiments, the diamagnetic diagnostics was
chosen as the “reference” diagnostics because it is reli-
able and efficient in operation. The plasma energy can
be expressed in terms of the average density and the
central temperature: W ~ KneT(0), where K is the form-
factor, which depends only on the shape of the density
and temperature profiles and which varied only slightly
in the experiment. In addition, the plasma energy was
estimated from the measurements of the Pfirsch–
Schlüter field, which depends on the profile of the stel-
larator rotational transform and the pressure profile and
anisotropy. A comparison of the results from both diag-
nostics for measuring the plasma energy provides infor-
mation about possible changes in the shape of the pres-
sure profile. The accuracy of the diamagnetic measure-
ments was ~10%.

The plasma behavior at high power depositions per
electron was studied in experiments in which the
plasma density was reduced from 3 × 1019 to 0.3 ×
1019 m–3 and the microwave power was increased to
400 kW at a frequency of 75 GHz (the second har-
monic, X mode). To provide the possibility of varying
the plasma density in such a wide range, we took appro-
priate measures to reduce the plasma–wall interaction.
As a result, radiative energy losses were considerably
reduced. For this purpose, the vacuum chamber was
repeatedly boronized in addition to the routine proce-
dures of baking the chamber at temperatures of about
200°C and cleaning by a glow discharge. Due to these
procedures, radiative losses measured by a bolometer
were insignificant (no larger than 5–10 kW).

3. EXPERIMENTAL RESULTS

Figure 2 shows the radial profiles of the electron
temperature determined from ECE measurements at
different plasma densities ne and input powers of Pin =
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Fig. 1. Profile of the absolute value of the magnetic field
along the magnetic axis of the L-2M stellarator (ϕ is the tor-
oidal angle in radians). The external vertical magnetic field
is 0.5% of B0.
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120–400 kW. It can be seen from the figure that, even at
densities of ne = 0.5 × 1019 m–3 (Pin = 120 kW), ne =
0.52 × 1019 m–3 (Pin = 170 kW), and ne = 0.7 × 1019 m–3

(Pin = 400 kW), the curves Te(r/ap) become distorted
and an enhanced emission appears at frequencies f =
72–68 GHz. For a thermal (optically thick) plasma,
these frequencies correspond to the plasma regions
lying on the LFS from the magnetic axis at radii of
r/ap = +0.4 to +0.7. Such an enhanced emission inten-
sity may be related to a distortion of the Maxwellian
electron energy distribution function and the appear-
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Fig. 2. Radial profile of Te, rad for different plasma densities
and heating power of (a) 120, (b) 170, and (c) 400 kW.
ance of suprathermal electrons. Note that, in this case,
ECE emission was sensed by a receiver positioned on
the LFS. Therefore, it may be suggested that the emis-
sion intensity (Trad) was actually even higher, since
suprathermal electrons emit radiation with lower fre-
quencies because of the relativistic shift of their gyrof-
requency. Passing through the absorbent plasma layers,
this radiation is additionally attenuated [6]. It can be
seen from Fig. 2 that, even near the center of the plasma
column, the radiation temperature at low plasma densi-
ties can be as high as several kiloelectronvolts. If the
plasma optical depth is high (τ > 1), then the radiation
emitted by suprathermal electrons can remain undetec-
ted when measurements are performed from the LFS.
However, the presence of these electrons in the plasma
can manifest itself, e.g., as the abnormally fast ablation
of a pellet injected into the plasma [22].

Analyzing the shapes of the curves in Fig. 2, we can
conclude that, in the L-2M stellarator, we do not
observe effects similar to those described, e.g., in [14–
18], in which it was shown that, as the plasma density
decreases, the curve Te(r/ap) becomes peaked, the cen-
tral temperature increases, and an internal transport
barrier forms. This is probably due to the specific mag-
netic field structure of L-2M, which does not have sub-
stantial magnetic ripples in the central region of the
plasma (in the microwave absorption region).

Figure 3 shows the generalized dependence of the
electron temperature measured near the plasma center,
Te, rad(r/ap = –0.15), on the parameter Pin/ne. It can be
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Fig. 3. Te, rad vs. Pin/ne for Pin = 120–400 kW.
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Fig. 4. Decay of the electron temperature determined from the ECE intensity at different frequencies after the microwave pulse is
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seen from the figure that this dependence is approxi-
mately linear only up to Pin/ne =250 kW/1019 m–3. As
the parameter Pin/ne increases further, the curve departs
strongly from the straight line, which indicates a devia-
tion of the electron velocity distribution from a Max-
wellian.

Figure 4 illustrates the temperature decay curves
after the microwave pulse is switched off in experi-
ments with two different plasma densities. At a lower
plasma density (Fig. 4a), the radiative temperature
determined from the emission intensity Trad at frequen-
cies f = 71, 72, and 70 GHz, which reflects the behavior
of suprathermal electrons, decays more rapidly com-
pared to that at other frequencies (e.g., at a frequency of
71 GHz, it halves in 300 µs, whereas at a frequency of
76 GHz, it halves in 1200 µs). This means that the life-
time of suprathermal electrons is much shorter than that
of bulk electrons. A qualitatively different behavior is
seen in Fig. 4b, which shows the decay curves for a
thermal plasma. In this case, the highest value of Te

refers to the normalized radius r/ap = –0.15 ( f =
76 GHz) and the temperature determined from the ECE
intensity at the other frequencies decays over longer
times.

Comparing the results of measurements of the elec-
tron temperature from the ECE intensity with the data
from diamagnetic measurements of the plasma energy,
we can determine the experimental conditions (the
range of the plasma densities and heating powers) in
which ECE measurements provide the correct value for
the temperature. In Fig. 5, the plasma energy W derived
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
from diamagnetic measurements is plotted against the
parameter neTe, rad. Since the Te(r/ap) profile at low
plasma densities is substantially distorted in the region
r/ap > 0, we analyzed the temperature value at r/ap =
−0.15, which is close enough to the center of the plasma
column. It can be seen from the figure that even such a
simple analysis allows us to distinguish two regimes
that differ in plasma density. In the “thermal” regime
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Fig. 5. Plasma energy W as a function of the parameter
neTe, rad for the (1) thermal regime (ne = (0.77–3) × 1019 m–3)

and (2) nonthermal regime (ne = (0.3–0.75) × 1019 m–3).



1032 AKULINA et al.
(1), the plasma energy increases substantially with
increasing density. However, one can see that, at low
plasma densities, ne = (0.3–0.7) × 1019 m–3, a “nonther-
mal” regime (2) takes place, the Maxwellian velocity
distribution function is distorted, and the radial profiles
Te (r/ap) are nonmonotonic (Fig. 2). Although the val-
ues of neTrad are fairly high in this case, the plasma
energy is substantially lower than at the same values of
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Fig. 7. Radial profile of the electron temperature and com-
parison with the TRANSZ code for the densities ne =

(1) 0.8 × 1019 and (2) 1.3 × 1019 m–3. The solid line shows
the results of calculations by the TRANSZ code, and the
dashed line shows the experimental data.

0.2

5045 55 60 65

0.4
0.6
0.8
1.0
1.2

1.4
1.6

0

1.8

0.5

0

1.5

Te

P
1

t, ms

Te, keV P, 100 kW

Fig. 6. Time behavior of the electron temperature Te and
comparison with the TRANSZ code (circles) for the density
ne = 0.8 × 1019 m–3 and heating power Pin = 140 kW.
neTe, but at higher densities. For example, we can com-
pare two discharges presented in Fig. 2c. For ne = 1.5 ×
1019 m–3 and Te (r/ap = –0.15) = 1300 eV, we have W =
530 J, whereas for ne = 0.7 × 1019 m–3 and Trad (r/ap =
−0.15) = 2800 eV, we have W = 250 J. This fact allows
us to conclude that, in the latter case, the temperature
deduced from ECE measurements is not the true
plasma temperature and can only be characterized as a
radiative temperature Trad. These specific features of the
plasma behavior should be taken into consideration
when determining the electron temperature by the ECE
technique at low plasma densities and high input power.

The departure of the electron distribution function
from a Maxwellian even for the bulk electrons at high
input powers in large devices, such as JET and FTU,
was discussed in [23, 24]. Note that, in those studies,
the electron temperature was measured using both the
ECE and Thomson scattering techniques. It should be
remembered that, according to Kirchhoff’s law, the
idea of temperature refers to blackbody radiation from
an optically thick plasma with a Maxwellian electron
velocity distribution.

The reliability of ECE measurements of the temper-
ature in a plasma with moderate and high densities was
additionally confirmed by the results of calculations
performed using the TRANSZ transport code, elabo-
rated for the L-2M stellarator and described in [25].
Figures 6 and 7 compare the experimental dependences
with calculations by the TRANSZ code. By slightly
varying the gas-puffing parameter in the TRANSZ
code, good agreement was achieved with the measured
time dependence of the electron temperature Te(t)
(Fig. 6) at a Te(r) profile close to the experimental one
(Fig. 7). In particular, the simulation results agree with
measurements of the plasma density profile, which
yield a density distribution of the form 1 – xn, where
n = 4–6 and x = r/ap.

4. CONCLUSIONS

(i) ECRH experiments in regimes with high energy
deposition in electrons have been carried out in the
L-2M stellarator at heating powers of Pin = 120–400 kW
and plasma densities of (0.3–3.0) × 1019 m–3.

(ii) For the L-2M magnetic field structure, in which
substantial magnetic ripples are absent in the power
absorption region, no internal transport barriers similar
to those observed at high input energies in CHS,
W7-AS, TJ-II, LHD, etc., have been detected.

(iii) At plasma densities of ne > 1019 m–3, the ECE
spectrum is symmetric and the plasma energy is pro-
portional to neTe (the thermal regime). A decrease in the
plasma density or an increase in the heating power
leads to a distortion of the radial plasma temperature
profile. In this case, in spite of the increase in the emis-
sion intensity, the plasma energy measured by diamag-
netic diagnostics does not increase (the nonthermal
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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regime). Hence, the results of temperature measure-
ments by the ECE method should be interpreted with
caution and additional experiments are required to
determine the range of experimental conditions (the
density, heating power, etc.) under which this method
gives correct results.

(iv) The results of calculations of the discharge
parameters by the TRANSZ transport code are in good
agreement with the experimental data.
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Abstract—The features are studied of plasma production in the initial stage of implosion of hollow cylindrical
wire arrays at electric-field growth rates of 1012 V/(cm s). The results are presented from the analysis of both
UV emission from the wire plasma and the discharge parameters in the initial stage of the formation of a
Z-pinch discharge. It is found that, a few nanoseconds after applying voltage to a tungsten wire array, a plasma
shell arises on the wire surface and the array becomes a heterogeneous system consisting of metal wire cores
and a plasma surrounding each wire (a plasma corona). As a result, the current switches from the wires to the
plasma. A further heating and ionization of the wire material are due primarily to heat transfer from the plasma
corona. A model describing the primary breakdown along the wires is created with allowance for the presence
of low-Z impurities on the wire surface. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Implosion of cylindrical arrays (liners) made of
micron tungsten or aluminum wires under the action of
nanosecond current pulses has been studied since the
late 1980s [1–4]. Due to the implosion of the wire array
material, a Z-pinch discharge is formed near the array
axis. In the final stage of the Z-pinch implosion, an
intense soft X-ray pulse is generated that can be used in
inertial confinement fusion (ICF) research, in studying
fundamental physical problems (such as the equation of
state of a substance with extreme parameters), and in
certain practical applications.

In [1], it was shown that the main factor governing
the implosion dynamics of a cylindrical wire array is
the prolonged (up to the current maximum) production
of the wire plasma. Recent studies [5–7] showed that
the plasma on the wire surface is produced in the first
few nanoseconds after the current starts to flow through
the wire array. After the plasma is produced, the current
switches from the wires to the plasma corona. In this
case, the wire array becomes a heterogeneous system
consisting of a cylindrical metal wire core and a plasma
corona surrounding the wires. A further heating and
ionization of the wire material is primarily due to heat
transfer from the plasma corona. Plasma production
from a single wire by microsecond current pulses was
described in [8]. In the nanosecond range, plasma pro-
duction was studied in detail in [9].

Important factors characterizing the initial state of
the plasma-producing medium are the nonuniformity of
the distribution of the plasma sources and the nonuni-
formity of the plasma production rate along the wires.
1063-780X/03/2912- $24.00 © 1034
The nonuniformity of the distribution of the plasma
sources can lead to the onset of various instabilities dur-
ing plasma implosion, whereas the nonuniformity of
the plasma production rate can result in a nonsimulta-
neous radial implosion of the plasma in different points
along the array axis. Both these factors impede syn-
chronous and compact implosion and, accordingly,
decrease the emission power.

In this paper, we present the results of studying the
initial stage of plasma production on the surfaces of
tungsten wires during the implosion of a cylindrical
wire array. By the initial stage of the formation of a
Z-pinch discharge from a wire array, we mean the first
10–15 ns from the beginning of the current pulse, when
the discharge current through a single wire is lower
than 5 kA.

2. ARRANGEMENT OF THE EXPERIMENT

As wire liners, we used cylindrical hollow arrays
assembled of eight or sixteen tungsten wires that were
equally spaced along a cylindrical surface 8 or 20 mm
in diameter. The array length was 10 mm. The diameter
of the tungsten wires varied from 4 to 10 µm.

The scheme of connection of the wire array to the
voltage source is shown in Fig. 1. The wire array was
placed in the vacuum chamber of the ANGARA-5-1
facility [10]. The chamber was evacuated by oil-diffu-
sion pumps. As a voltage source, we used one of the
modules of the ANGARA-5-1. Because of this, the
results obtained with arrays made of eight or sixteen
wires in a single module could be compared with the
2003 MAIK “Nauka/Interperiodica”
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implosion of arrays assembled of much greater number
of wires (64 or 128) in the full-scale experiments car-
ried out in the ANGARA-5-1.

The microsecond prepulse of the voltage generator
was suppressed by using a prepulse spark gap placed in
front of the wire liner. The prepulse was suppressed to
such extent that the electric field strength at the array
was lower than 10 V/cm and the increase in the wire
temperature during the prepulse was lower than 10°C.

To study the initial stage of plasma generation, the
discharge current through the array was measured
simultaneously with the voltage drop across the array.
The current through the array was measured by a shunt
with a time resolution of 5 ns.

A resistive divider for measuring the voltage on the
axis of the wire array was connected coaxially to the
anode and, with the help of a metal rod aligned with the
array axis, to a cathode. The time resolution of the
divider was 2 ns.

Since, in these experiments, we were dealing with
rapidly varying currents, the voltage measured by the
divider differed from the voltage across the wire by an
inductive term proportional to the rate at which the
magnetic flux in the circuit formed by the wire surface
and divider connectors varied. In order to determine the
voltage across the wire surface, this term should be sub-
tracted from the divider readings. A specific feature of
the voltage measurements on the array axis is that the
contribution of the inductive term is very small and can
be ignored. The reason for this is that the magnetic field
produced by the current flowing through the array is
mainly localized on the outside of the array and the
interlinkage between the generator circuit and the
divider circuit is weak.

Plasma generation on the wire surface was detected
by the appearance of UV emission. As a UV detector,
we used a diamond sensor made of natural Yakut dia-
mond. The detector was devised and fabricated in the
Troitsk Institute for Innovation and Fusion Research
[11, 12].

The detector was placed at a distance of 3.6 m from
the wire array. A 1-mm-thick quartz glass was placed in
front of the detector. The relative spectral sensitivity of
the detector with the quartz glass is shown in Fig. 2. The
time resolution of the detector was 2 ns.

The time resolution of the optical frame system for
recording the wire array images was 10 ns. The spatial
resolution of the images was 40 µm, the depth resolu-
tion being about 2 mm. The dynamic range of the mea-
surement system was about 20.
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
3. EXPERIMENTAL RESULTS AND THEIR 
COMPARISON WITH NUMERICAL 

SIMULATIONS

3.1. Breakdown along the Wire Surface

The waveforms of the voltage on the axis of the sys-
tem for several shots made with wire arrays and a single
shot without wires (the no-load operating regime) are
shown in Fig. 3. Without a wire array, the voltage on the
axis during the first 50 ns was equal to the generator
output voltage. During the first 20 ns, the maximum
voltage drop across tungsten arrays with different outer
diameters, different number of wires, and different wire
diameters was in the range from 5 to 18 kV. The mea-
sured voltage pulses turned out to be substantially
lower and shorter than the those measured in the no-
load operating regime (without an array).

1

2

3

45 10 mm

Fig. 1. Scheme of connection of the wire array and voltage
divider to the voltage source: (1) anode of the ANGARA-5-1
facility, (2) wires, (3) metal rod connecting the voltage
divider to the cathode, (4) cathode of the facility, and
(5) cathode electrode of the wire array.
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Fig. 2. Relative spectral sensitivity S of a diamond detector
with a quartz glass.
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Estimates of the wire resistance at the instant corre-
sponding to the maximum voltage showed that it was
lower than the initial resistance of the cold wires. Note
that the decrease in the resistance of the heated current-
carrying metal wires can only be explained by the pro-
duction of a low-resistive plasma on the wire surface.

Figure 4 shows the maximum voltage at the array as
a function of the diameter of tungsten wires. It can be
seen that the maximum voltage at the array somewhat
increases with increasing wire diameter.

Figure 5 shows the waveforms of the voltage on the
wire array axis and the intensity of UV emission. The
presence of UV emission means that a plasma is pro-
duced on the wire surface. The delay time of the UV
pulse with respect to the voltage pulse varies from 6 to
10 ns in different shots.

Figure 6a shows typical waveforms of the voltage
on the liner axis, U(t), and the current per one wire, J(t),
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Fig. 3. Waveforms of the voltage on the axis for several
shots with a wire array and a single shot without wires (the
no-load operating mode).
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Fig. 4. Peak amplitude of the liner voltage U as a function
of the tungsten wire diameter.
for a 8-mm-diameter wire array consisting of eight
10-µm tungsten wires. The results of processing of
these signals are shown in Fig. 6b. These are three kinds
of resistance per one wire: the total load resistance,
Rl(t); the wire resistance itself, Rw(t); and the resistance
of the plasma on the wire surface, Rp(t). The total load
resistance was calculated as the ratio Rl(t) = U(t)/J(t). It
can be seen that the ratio U(t)/J(t) first increases due to
the Joule heating of the wire and then decreases. The
resistance Rw(t) of a metal wire was calculated from the
signal U(t), taking into account the thermal resistivity
coefficient, assuming that the entire electric power
U2(t)/Rw(t) deposited in the wire is converted into heat,
and ignoring energy losses by radiation and heat trans-
fer. The plasma resistance Rp(t) was calculated assum-
ing that the plasma and metal wires are connected in-
parallel and using the formula: J(t)/U(t) = 1/Rw(t) +
1/Rp(t). A comparison of the time evolution of the
plasma resistance with the recorded UV signal shows
that the UV emission appears when the wire array resis-
tance is already completely determined by the plasma
resistance.

From the measurements of the load current and volt-
age in the initial stage of the process (before the plasma
was produced on the wire surface), we could calculate
the energy deposited in the wires due to ohmic heating.
The calculations showed that, in most shots, the maxi-
mum temperature to which the tungsten wires were
heated before the plasma was produced was lower than
2000°ë. This temperature is substantially lower than
the melting temperature of tungsten (3380°ë).

The natural question arises as to why a plasma is
produced on the wire surface.

The increase in the wire temperature during heating
leads to the evaporation of low-Z impurities from the
wire surface. As a result, a thin gas shell is formed near
the surface. This shell is then broken, which results in
plasma production. Additional experiments in which a
current of ~3 A per wire was passed through the wire
array for a time longer than 5 µs showed that a temper-
ature of 300–400°ë was sufficient to evaporate the
layer of a low-Z coating material and produce plasma
near the wire surface. Due to the rapid plasma expan-
sion, the cross section of the current-carrying plasma
channel increases, which leads to a sharp decrease in
the channel resistance. The results of numerical simula-
tions of the plasma production on the surface of a tung-
sten wire with a low-Z impurity coating is presented in
the next section.

As was shown in [13], the breakdown of the pro-
duced gas shell can be initiated by electron emission
from the wire surface. The emission is enhanced by the
strong radial electric field that appears at some segment
of a small-diameter wire at a certain configuration of
electrodes. This field can exceed the axial electric field
at the wire by a factor of 10 to100. The dependence of
this effect on the wire diameter will be discussed at the
end of the present paper.
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Due to the presence of plasma on the wire surface,
the current switches from the wires to the plasma. The
main current begins to flow through the plasma, thereby
heating it. A further heating of the wires is mainly due
to heat transfer from the hot plasma to the wire surface.
In this case, the contribution of the current flowing
directly through the wires is relatively small.

We note that the warming of wires in vacuum to red-
ness before an experiment had little effect on both the
production of the surface plasma and the time evolution
of the array resistance.

3.2. Numerical Simulations of Plasma Production
on the Surface of a Tungsten Wire

with and without Coating

To gain a better insight into the above experiments
on measuring the time evolution of the resistance of a
wire array under the action of a high-power current
pulse, we carried out numerical simulations of this pro-
cess. The simulations were performed using the
NPINCH one-dimensional (radius–time) magnetohy-
drodynamic code [14, 15]. This code was improved by
introducing an equation of state for metals over a wide
range of densities and temperatures [16]. The equation
of state takes into account the phase transition from a
condensed to a gaseous state, and then to plasma, but
ignores the transitions between the solid and liquid
states. To calculate the kinetic coefficients of a con-
densed substance (the electron thermal conductivity,
electric conductivity, heat exchange rate between ions
and electrons, etc.), we used the procedure described in
[17]. For the gas–plasma domain, we used the proce-
dure described in [18]. The latter procedure is based on
the well-known formulas for a hot magnetized plasma
[19]. We simulated the time evolution of a 6-µm tung-
sten wire under the action of a given current pulse with
a maximum amplitude of about 1 kA and a rise time of
20 ns.

The simulations were performed for both uncoated
tungsten wires and wires coated by a thin layer of a
low-Z material (carbon), which modeled a low-Z impu-
rity on the tungsten surface. The calculation results are
shown in Fig. 7.

The given time dependence of the current through
an uncoated wire and the calculated waveform of the
electric field strength on the wire axis are shown in
Fig. 7a. It can be seen that, in this case, the electric field
reaches 120 kV/cm, which is several times higher than
the experimental value. This result confirms our
assumption that, in real experiments, wires can never be
considered clean. The decrease in the amplitude of the
liner voltage can be explained by the presence of a thin
low-Z coating on wires. Such a coating may be due to
the deposition of vacuum oil vapor on a wire or the
technology of wire fabrication.

To clarify the influence of the low-Z impurity coat-
ing on the electric characteristics of a wire, we divided
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
a simulation into two stages. In the first stage (up to
6.75 ns), the heating of a clean wire was calculated. At
the end of this stage, the temperature on the tungsten
wire surface was 0.05 eV. The calculation was then con-
tinued assuming that the wire was coated with a 0.3-µm
carbon layer in a gaseous state (with a mass per unit
length of 1.8 × 10–10 g/cm). Thus, we simulated the pri-
mary evaporation of the low-Z coating. The calculated
waveform of the voltage across a coated wire is shown
in Fig. 7b. In this case, both the voltage amplitude and
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Fig. 5. Waveforms of the voltage on the array axis (U) and
intensity of UV emission (IUV) for an array consisting of
eight 6-µm tungsten wires.
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Fig. 8. Visible-light image of an array consisting of 7.5-µm
eight tungsten wires with a current of 3 kA per wire. A sche-
matic of the wire array and the viewing direction are shown
at the bottom.
the shape of the voltage pulse are much closer to the
experimental results. Breakdown along the wire is
delayed from the beginning of the second stage by
2.5 ns, which is required for the necessary reduction in
the density of the evaporated material due to expansion.
Just after the breakdown of the gas shell and the forma-
tion of a plasma corona, the main current begins to flow
through the corona, thereby heating it, and the Joule
heating of the wire almost terminates. Up to this time,
the characteristic tungsten temperature is 0.23 eV.

The above numerical simulations are only a rough
approximation to the actual processes of the generation
of a primary plasma and subsequent plasma production.
Nevertheless, our model at least does not contradict the
experimental data.

3.3. Spatial Nonuniformity of Plasma Generation

To study the process of energy deposition in a wire
liner in the initial stage of implosion, we took frame-
by-frame photographs of the liner in visible light. An
image of an array consisting of eight 7.5-µm tungsten
wires at the instant when the current reached a value of
3 kA per wire is given in Fig. 8. A characteristic feature
of the liner image is a pronounced nonuniformity of the
distribution of the emission intensity along the wire.
The emission intensities of the individual wires are also
slightly different. In the image, one can see well-
defined regions with a nonuniform distribution of emis-
sion. The liner images testify to a nonuniform energy
deposition in the wires in the initial stage of implosion.
Note that the oscillations of the voltage on the array
axis (see Fig. 5) may be attributed to the jitter in the
breakdown time of the individual wires. This may be
caused both by the factors affecting plasma production
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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(e.g., the nonuniformity of the impurity distribution
along the wire) and by the onset of thermal and ioniza-
tional instabilities.

We note that the nonuniformity of the emission
intensity along the wires begins to decrease when the
current exceeds 5 kA per wire.

4. DISCUSSION OF THE RESULTS

4.1. Role of the Wire Diameter

Measurements of the electric characteristics of dis-
charges through cylindrical hollow arrays made of
tungsten wires showed that the wire-material plasma,
which is generated near the wires several nanoseconds
after the beginning of the current pulse, plays the dom-
inant role in the development of the discharge. From
this moment on, the wire array can be regarded as a het-
erogeneous system consisting of dense wire cores and
a plasma corona surrounding the wires. Hence, the
question arises as to mechanisms for plasma generation
at such low values of the tangential electric field on the
wire surface.

In [9], it was supposed that the radial electric fields
can play an important role in initiating the breakdown
of the gas evaporated from the wire surface. Because of
the small wire diameter, the radial electric field can be
higher than the axial field by a factor of 100 [13]. The
smaller the wire diameter, the higher the radial electric
field, all other factors being the same. This field is pro-
duced by the charges that are accumulated on the wires
in the initial stage of the voltage pulse before break-
down (i.e., before the plasma is produced on the wire
surface). After breakdown, these charges flow down
onto the electrodes of the liner unit. The direction and
strength of the radial electric field on the wire surface
depend on the electrode configuration. When the wire is
connected perpendicularly to two infinite plane-parallel
electrodes that are at different potentials, the radial
electric field is zero. For other electrode configurations,
the radial field is nonzero. It may happen that, on one
segment of the wire, the field is directed toward the
wire, whereas on the other segment, it is directed away
from the wire.

The field directed toward the wire can enhance elec-
tron emission from the wire surface and cause the elec-
tron-impact ionization of the gas shell surrounding the
wire. In [13], it was shown that electron emission from
the wire results in an electron current in crossed electric
and magnetic fields outside the wire. Electrons from
this flow can cause the heating and evaporation of not
only impurities, but also of a thin (~10–3 µm) layer of
the main wire material.

Gas breakdown occurs and plasma is produced at
the instant when the gas density and electric field reach
certain values. If surface gas breakdown on wires with
different diameters takes place in the same radial field,
then, for a thinner wire, gas breakdown will occur at
lower values of the axial electric field because of the
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
higher radial field on the wire surface. This conclusion
is supported (in spite of the few statistics available and
the large scatter in the data) by the results presented
Fig. 4.

4.2. Estimates of the Plasma Parameters

Under some assumptions, we can estimate the
parameters of the produced plasma from the observed
time dependences of the liner voltage and current, as
well as from the plasma resistance calculated using
these dependences. Let us consider a rather rough
model. Let the electron temperature of the plasma sur-
rounding each wire be Te [eV]. We assume that the
plasma conductivity obeys the Spitzer law, the average

ion charge number Z is proportional to , and the
velocity of plasma expansion into vacuum is deter-
mined by its temperature. It turns out that this model
agrees best with the measured liner voltage and current
for a tungsten plasma with an electron temperature of
Te ~ 20–30 eV. Figure 9 shows the waveforms of the
ratio of the plasma resistance near a single wire to the
initial resistance of a cold wire. One of the profiles is
calculated from the measured voltage and current (cir-
cles), while the other profile is calculated using the
above model for a tungsten plasma with an electron
temperature of Te ~ 24 eV (solid curve). The vertical
line near 5.5 ns indicates the time when the plasma
resistance becomes equal to the initial wire resistance.
In this case, the velocity of plasma expansion into vac-
uum is ~106 cm/s. Hence, 10 ns after the plasma
appears on the wire surface, the radius of the plasma
column reaches ~100 µm. These simple estimates are
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Fig. 9. Time evolution of the ratio of the plasma resistance
near a single wire, R(t), to the initial resistance of a cold
wire, R0. The circles show the experimental data, and the
solid curve shows the result of simulations of an expanding
plasma with an electron temperature of Te ~ 24 eV. The
instant at which the plasma resistance becomes equal to the
resistance of the cold wire is indicated.
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qualitatively consistent with the above numerical simu-
lations of plasma production on the surface of a tung-
sten wire.

Unfortunately, such estimates cannot be extended to
longer times because, at these times, the plasma radius
becomes larger than the skin depth. In addition, the
model ignores a very important factor, namely, the
presence of a magnetic field. First, the magnetic field
produced by the current flowing through the wire
should impede plasma expansion. Second, the total
magnetic field of all the wires should result in the accel-
eration of the current-carrying plasma toward the array
axis under the action of the Ampére force.

The magnetic field produced by the wire array is
lower than the magnetic field of a single wire by a fac-
tor d/2πr, where d is the distance between the wires and
r is the wire radius. In view of the fact that the gas-
kinetic plasma pressure on the wire surface exceeds the
pressure of the magnetic field produced by the current
flowing through a single wire, the Ampére force caused
by the total current cannot substantially affect the
expansion of the plasma column as a whole during the
first 10 ns. This conclusion, however, results from the
roughness of the model. The density of the tungsten
ions on the boundary of the plasma column decreases
smoothly. Inside the array, there is a region where the
Ampére force can accelerate a small amount of a low-
density plasma toward the array axis. This results in the
appearance of a plasma precursor [1], whose velocity
(~107 cm/s) is one order of magnitude higher than the
expansion velocity of the plasma column [13].

There are also other factors that are not taken into
account by the above model, in particular, the nonuni-
form plasma production along the wires and the nonsi-
multaneous plasma production on different wires. That
these factors really do exist can be seen in Fig. 8. How-
ever, even such a rough model has allowed us to esti-
mate the plasma temperature and to obtain the lower
estimate for the tungsten ion density from the measured
current–voltage characteristics.

5. CONCLUSIONS

It has been found that, a few nanoseconds after the
beginning of the current pulse, a plasma is produced on
the wire surfaces and the wire array becomes a hetero-
geneous system consisting of the metal wires and the
plasma on their surfaces. The current switches from the
wires to the plasma. As a result, the resistance of the
system decreases and, accordingly, the voltage drop
across the array decreases. A further heating of the
wires is primarily provided by the current flowing
through the plasma and by heat transfer from the
plasma, rather than by the current flowing through the
wires.
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Abstract—A study is made of the effect of the heating of plasma electrons in the field of a potential surface
wave on the wave dispersion properties. The wave is assumed to propagate along the boundary between a metal
and a finite-pressure plasma. Different mechanisms for electron energy losses are considered in the weak heat-
ing approximation. The spatial distribution of the plasma electron temperature under nonlocal heating condi-
tions is derived on the basis of the electron energy balance equation. Expressions for the spatial damping rate
and the nonlinear shift of the wavenumber are analyzed for different values of the plasma parameters. The
results obtained are valid for both semiconductor and gaseous plasmas. © 2003 MAIK “Nauka/Interperiod-
ica”.
1. INTRODUCTION

In recent years, the properties of surface waves
(SWs) in plasma–metal structures have been actively
studied both theoretically and experimentally [1, 2].
Interest in such structures is associated with their
numerous applications in plasma and semiconductor
electronics, gas discharges, and various plasma tech-
nologies [1]. The linear theory of SWs in plasma–metal
structures has been developed quite well [2, 3]. How-
ever, the behavior of an SW can become essentially
nonlinear even when the amplitude of its field is fairly
small [4–6]. Depending on the values of the plasma
parameters, different nonlinear self-interaction mecha-
nisms such as the resonant generation of the second
harmonic of an SW [2], the nonlinear damping of SWs
[2, 7], the self-interaction of SWs due to the nonlinear-
ities of quasi-hydrodynamic equations [2, 8], and the
ionizational [9, 10] and thermal [11] nonlinearities of
SWs, can be dominant.

The objective of the present paper is to investigate
the thermal nonlinearity–induced self-interaction of
SWs at the boundary between a metal and a warm
plasma.

2. FORMULATION OF THE PROBLEM

We consider the nonlinear self-interaction of a
finite-amplitude potential SW caused by the heating of
plasma electrons in its field. We assume that the wave
propagates along the interface between a metal and a
finite-pressure plasma. We also assume that the plasma
occupies the half-space x > 0 and is bounded at x = 0 by
a perfectly conducting plane metal surface. It is well
known that the properties of SWs in an inhomogeneous
plasma are governed essentially by the character of the
spatial distribution of the plasma density in the transi-
1063-780X/03/2912- $24.00 © 21041
tion layer. In plasmas with large and small density inho-
mogeneities, the properties of SWs are determined by
the integral parameters of the plasma in the region
where the wave field is localized. [7]. In these cases, the
plasma–metal boundary can be considered sharp and
the plasma density can be assumed to be uniform and
equal to its mean value in the localization region of the
SW. This approach was found to be efficient and to
agree well with the experimental data, in particular,
with those from experimental investigations of gas dis-
charges maintained by SWs. In what follows, we will
assume that the plasma–metal interface is sharp and the
plasma is homogeneous.

The effective collision frequency of electrons with
scattering centers, ν = νcol + ν∗  + νi (where νcol is the
elastic collision frequency, ν∗  is the excitation fre-
quency, and νi is the ionization frequency), is assumed
to be much lower than the wave frequency ω. In a gas-
eous plasma, the role of the scattering centers can be
played by ions, working-gas particles, and impurities.
In a semiconductor plasma, the electrons can also be
scattered by optical and acoustic phonons [12–14].

The mechanism for the self-interaction of an SW
operates as follows [2, 11]. The plasma electrons
acquire additional energy from the wave and then trans-
fer it to the scattering centers via collisions. As a result,
the spatial distribution of the electron temperature,
which determines the electron collision frequency and
the electron pressure in the plasma, changes. These pro-
cesses alter the electrodynamic parameters of the
plasma, which govern the dispersion properties of SWs.

It should be noted that the thermal mechanism for
self-interaction is closely related to the ionization non-
linearity [2, 9, 10]. The effect of the ionization nonlin-
earity is that, as the wave amplitude increases, the spa-
tial distribution of the electron temperature changes; as
003 MAIK “Nauka/Interperiodica”
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a consequence, the spatial distribution of the plasma
density also changes, since the rates of elementary pro-
cesses in the plasma depend on the electron tempera-
ture. Hence, an increase in the wave amplitude alters
the dispersion properties of SWs. When the amplitude
of an SW is small (i.e., the nonlinearity is weak), the
wave-produced perturbations of the plasma parameters
(the electron temperature, electron pressure, electron
collision frequency, etc.) are much smaller than their
unperturbed values. In this case, the effect of thermal
and ionization nonlinearities on the dispersion proper-
ties of SWs can be described in the additive manner [2].
This circumstance allows the two self-interaction
mechanisms to be studied independently.

3. RESULTS OF THE LINEAR THEORY

The dispersion properties of an SW propagating
along the interface between a metal and a free plasma,
as well as the spatial distribution of its potential, were
investigated in [3] in the linear wave-field approxima-
tion. In that paper, it was shown that a necessary condi-
tion for the existence of SWs at a plasma–metal bound-
ary is that the thermal velocity of the plasma electrons,

VTe =  (where Te is the plasma electron tem-
perature and me is the mass of an electron), should be
finite. In the general case of a collisional semiconductor
plasma, the equation for the SW potential Ψ has the
form

(1)

where ε0 is the permittivity of a semiconductor crystal
lattice (for a gaseous plasma, we set ε0 = 1), ωpe is the
electron plasma frequency, ω' = ω + iν, and k2 is the
complex wavenumber.

By analogy with [3], we seek the spatial distribution
of the SW potential in the form

(2)

where A1 and A2 are constants and the quantities λ1, 2
characterize the penetration of the SW field into the
plasma. The expressions for λ1, 2 can be derived by sub-
stituting representation (2) into Eq. (1) for the potential:

(3)

Using boundary conditions implying that the SW
potential and the normal component of the hydrody-
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namic electron velocity vanish at the plasma–metal
interface, we can obtain the dispersion relation

(4)

where rDe =  is the electron Debye radius.
The solution k2 to this dispersion relation can be repre-
sented as

(5)

According to solution (5), electron collisions cause an
SW to be damped (the spatial damping rate of the wave
is determined by the imaginary part of the wavenumber
k2). Since solution (5) is rather complicated, we restrict
ourselves to investigating the self-interaction of an SW
under the assumption that the plasma is sufficiently

dense for the condition ω2 !  to be satisfied. In
this case, expressions (3) and (5) simplify to

(6)

(7)

It should be noted that the expressions obtained are
valid in the potential approximation for the waves
under consideration. In the case of a sufficiently dense
plasma, this approximation imposes the following
restriction on the thermal velocity of plasma electrons:

VTe ! c ω/ωpe, where c is the speed of light in vac-
uum. An analysis of expression (6) shows that the phase
velocity of an SW is much higher than the electron ther-
mal velocity, which means that the hydrodynamic
plasma description used here to investigate SWs is
valid. Such a large difference between the phase veloc-
ity of an SW and the electron thermal velocity allows us
to ignore collisionless Landau damping.

4. SPATIAL DISTRIBUTION 
OF THE ELECTRON TEMPERATURE

We consider a weak thermal nonlinearity, such that
the perturbation of the electron temperature, δT, pro-
duced by heating in the SW field is much smaller than the
equilibrium temperature T0: T = T0 + δT, with δT ! T0.
We assume that the perturbation of the collision fre-
quency, δν = δνcol + δν∗  + δνi, is much less than the
unperturbed collision frequency ν in the absence of an
SW. In this case, the frequency of electron collisions at
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a temperature close to the unperturbed temperature T0
can be described by the expressions

(8)

Here, according to [9, 15, 16], the excitation and ioniza-
tion frequencies have the form

(9)

where U∗  and Ui are the excitation and ionization ener-
gies of the first atomic level and the temperature T is
given in energy units.

When the wave frequency ω is much higher than the
characteristic frequency  of the energy transfer due to
the presence of an SW in the system, the transfer of
energy from electrons to scattering centers can be
assumed to be quasi-steady [17]. In this case, the elec-
tron temperature perturbation depends on the coordi-
nates and the averaged (over the wave period) squared
wave amplitude, δT = δT(x, y, |A1|2). The spatial distri-
bution of the electron temperature perturbation can be
determined from the energy balance equation averaged
over the wave period:

(10)

where Q is the vector heat flux carried by the electrons,
j is the high-frequency electron current density, and E*
is the complex-conjugate electric field of the wave. The
term P(T) = −n0 (T0)(T – T0) describes the energy
transferred from electrons to scattering centers in a unit
volume with the characteristic frequency

(11)

where n0 is the unperturbed plasma density and the
quantity γ = 2meM/(me + M)2 is the fraction of energy
transferred in elastic collisions from electrons to scat-
tering centers of masses M. It should be noted that, in
the general case, the characteristic frequency  is
determined both by the elastic collision frequencies and
by the excitation and ionization frequencies of the neu-
tral gas particles. The contribution of these processes to
energy transfer essentially depends on the plasma pres-
sure. Thus, at high pressures, the main energy-loss
mechanism is due to elastic collisions, whereas at low
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pressures, it is due to inelastic collisions, which result
in the excitation and ionization of the working-gas par-
ticles.

The left-hand side of energy balance equation (10)
describes the dissipative heating of plasma electrons in
the SW field. The terms on the right-hand side of the
equation account for electron energy losses in a unit
volume due to the finite plasma conductivity and
energy transfer to the scattering centers. The vector
heat flux Q in Eq. (10) is given by the expression Q =
−χ∇ T, where χ is the thermal conductivity of the
plasma electrons. With this expression, Eq. (10)
becomes

(12)

Here,  =  is the characteristic
scale on which the electron thermal conductivity varies
[17, 18] and the quantity

(13)

describes the relative change in the electron tempera-
ture under local heating conditions such that |∇  · Q| !
|P(T)|. Assuming that the wave propagates in the posi-
tive direction along the y axis and taking into account
expressions (2), (6), and (7), which are obtained using
linear theory, we can rewrite expression (13) as

(14)

where the parameter µ = e |A1|/(me ) characterizes
the ratio of the energy of an electron in the wave field
to its thermal energy. The spatial temperature distribu-
tion of the plasma electrons under local heating condi-
tions [see expression (13) for (δT/T0)loc] is shown in
Fig. 1. It should be noted that a corresponding approach
is used in many studies (see, e.g., [2, 9, 12, 13, 19–21]).
However, under the above assumptions that the fre-
quencies ν and  are low, this approach fails to hold
because the local heating conditions can be reduced to

the inequality /( ) ! 1. Consequently, in the
problem in question, the electron heating is essentially
nonlocal and the quantity (δT/T0)loc characterizes
merely the spatial distribution of the SW power trans-
ferred to the electrons in the wave field due to their col-
lisions with scattering centers.
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The spatial distribution of the electron temperature
under the conditions of nonlocal heating of the plasma
electrons in the SW field should be determined from
Eq. (12) with expressions (14). In accordance with the
boundary condition implying that the heat flux at the
plasma–metal boundary is continuous, and in view of
the fact that the thermal conductivity of the metal is
much higher than that of the plasma, the heating of the
metal is negligible compared to that of the plasma. As
for the plasma electron temperature, it should be deter-
mined from the following integral form of the law of
energy conservation during the heating of plasma elec-

trons:  = . As a result, theδT /T0 xd
0

∞∫ δT /T0( )loc xd
0

∞∫
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Fig. 1. Spatial profiles of the perturbed electron temperature
under local heating conditions for the following values of

the parameters , ν/ω, , and µ: (1) 0.2, 0.1,

103, and 0.1; (2) 0.4, 0.05, 103, and 0.1; (3) 0.2, 0.2, 103, and
0.1; (4) 0.2, 0.1, 2 × 103, and 0.1; and (5) 0.2, 0.1, 103, and
0.15.

ε0ω/ωpe ν/ν̃

Fig. 2. Spatial profiles of the perturbed electron temperature
near the source of perturbation for the same parameter val-
ues as in Fig. 1.
expression for the relative change in the plasma elec-
tron temperature takes the form

(15)

where we have introduced the notation

(16)

An analysis of expression (15) shows that the relative
change in the electron temperature reaches its maxi-
mum value

(17)

at distances from the plasma–metal boundary that are
on the order of the electron Debye radius. Conse-
quently, due to the heating of the plasma electrons,
there is a heat flux into the plasma interior. Of course,
there also exists a heat flux from the plasma to the
grounded metal surface. However, in the case under
consideration, this flux is negligibly small in compared
to that into the plasma interior (Fig. 2).

The condition that the heating be weak, δT ! T0,
|δν| ! ν(T0), yields the following limitation on the
wave field amplitude:

(18‡)

On the other hand, it is also necessary to take into
account the fact that the results of linear theory that are
used in the present study are valid under the condition

µ ! 1. (18b)

The results of the numerical analysis that are presented
in Fig. 2 show that condition (18) is well satisfied at
field amplitudes such that µ ≤ 0.1.

As was expected, an increase in the normalized
wave amplitude µ and normalized electron collision
frequency ν/ω leads to an increase in the Joule loss
power and, thus, has a significant impact on the electron
heating process. An increase in the parameter ν/  leads
to an increase in the characteristic scale on which the

electron thermal conductivity varies (  ∝  ),
and to a more gradual decrease in the electron temper-
ature toward the plasma interior (Fig. 2, curve 4).
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5. NONLINEAR DISPERSION RELATION

Recall that a change in the plasma electron temper-
ature produces a corresponding correction δν in the col-
lision frequency [see formulas (8)]. We take into
account this correction and the correction δp = n0δT to
the plasma electron pressure in the equation of electron
motion

(19)

We then solve this equation simultaneously with the
electron continuity equation and Poisson’s equation to
obtain the following equation for the wave potential:

(20)

Equation (20) with zero on the right-hand side is the
equation for the SW potential to first order in the wave
field amplitude [see Eq. (1)]. The right-hand side of
Eq. (20) accounts for nonlinear effects due to the elec-
tron heating in the SW field:

(20‡)

(20b)
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Taking into account these expressions for Rδν and Rδp,
we represent the sought solution to Eq. (20) for the SW
potential as

(21)

The nonlinear corrections Ψδν and Ψδp in representation
(21) are related to the perturbations of the collision fre-
quency and electron pressure and are described by the
expressions

(22‡)

(22b)
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tron velocity vanish at the plasma–metal boundary. As
a result, we obtain the nonlinear dispersion relation

(23)

where

(24)

The complex wavenumber k2 satisfying this disper-
sion relation has the form

(25)

In the limit |A1|  0, nonlinear dispersion relation
(23) and its solution (25) transform into linear disper-
sion relation (4) and linear solution (6), respectively.

6. RESULTS AND DISCUSSIONS

According to expressions (24) and solution (25), a
change in the electron pressure produces a positive non-
linear shift of the real part of the wavenumber (ReSδp > 0)
and reduces the damping rate of the SW (ImSδp < 0). In
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Fig. 3. Dependence of the real part of the coefficient Sδν on
the wave frequency for the following values of the parame-
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and 0.05; (3) 0.02, 103, and 0.1; and (4) 0.01, 2 × 103, and 0.1.

ν/ν̃
this case, the nonlinear correction to the real part of the
wavenumber exceeds that to the imaginary part:

(26)

From expressions (24), we see that the effect of a
change in the electron collision frequency on the SW
dispersion is governed by the dependence of the colli-
sion frequency on the electron temperature. First, we
consider the case in which the electron collision fre-
quency increases with temperature,  > 0. This

takes place, e.g., in a semiconductor plasma in which
the electrons are scattered by optical and acoustic

phonons, ν(T) ∝  , T3/2 [12–14], or in a low-pressure
gas-discharge plasma in which the electron collision
frequency is determined by inelastic collisions, which
result in the ionization and excitation of the working-
gas particles [see expressions (9)]. In this situation, the
nonlinear shift of the real part of the wavenumber k2 is
negative (ReSδν < 0, see Fig. 3) and the nonlinear damp-
ing rate (25) is lower (ImSδν < 0, see Fig. 4) than its lin-
ear value (6).

In the case in which the electron collision frequency
decreases as the electron temperature increases,

 < 0 (as is the case, e.g., with elastic collisions

of electrons with ions or impurities in a gaseous
plasma, ν(T) ∝  T–3/2, T–1/2 [14]), the situation is oppo-
site: the shift of the real part of the wavenumber is pos-
itive and the damping rate of the wave is higher than its
linear value. In this case, in contrast to relationships
(26), the nonlinear corrections to the real and imaginary
parts of the wavenumber that are introduced by the per-
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turbation of the electron collision frequency can be of
the same order of magnitude:

(27)

A comparison between the effects produced by the per-
turbation of the electron collision frequency and by the
change in the electron pressure on the self-interaction
of an SW shows that the latter is of minor importance;
thus, the contribution from the nonlinear corrections
decreases with the wave frequency (Figs. 3, 4).

We note that the nonlinear corrections to the imagi-
nary part of the wavenumber are also determined by the
mechanism for electron energy losses, ReSδν ∝ ν / .
Thus, in a semiconductor plasma or a high-pressure
gas-discharge plasma, the dominant energy-loss mech-
anism is by elastic electron collisions [17]. In this case,
the ratio of the collision frequency ν to the characteris-
tic frequency of energy transfer, , is described by the
expression

(28)

As the electron pressure decreases, the loss mechanism
involving inelastic electron collisions [16, 17] that
excite the neutral gas particles becomes dominant and
this ratio decreases:

(29)

Hence, an analysis of relationships (28) and (29)
allows us to conclude that, for a high-pressure plasma,
the nonlinear corrections to the real part of the wave-
number that are introduced by the electron heating in
the SW field are the most important.

Let us compare the efficiencies of the thermal and
ponderomotive mechanisms for the self-interaction of
an SW. It is well known that the ponderomotive nonlin-
earity results in plasma density perturbations, δn/n0 ≅

−µ2 , in the region where the wave energy density
is the highest. In Eq. (25), this density perturbation can
be taken into account by the term Sδn = (δk2/k)st ≅

0.5µ2 , which is dominant for a low-pressure
plasma:

(30)

Hence, the thermal nonlinearity plays a governing role
at sufficiently high plasma pressures, such that the con-

dition ω/ν !  is satisfied.
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7. CONCLUSIONS

We have investigated the effect of electron heating
on the self-interaction of a weakly nonlinear potential
SW propagating along a plasma–metal interface.

We have obtained the spatial distribution of the elec-

tron temperature in a dense plasma (ω2 ! /ε0) in the
weak heating approximation such that the perturbation
of the electron temperature in the wave field is small
compared to the unperturbed electron temperature. We
have shown that, in this case, the electron heating is
essentially nonlocal and the electron temperature is
determined predominantly by heat transport processes
in the plasma.

We have derived and investigated the nonlinear dis-
persion relation for an SW under nonlocal heating con-
ditions. We have also obtained analytic expressions for
the nonlinear shift of the wavenumber and for the spa-
tial damping rate of an SW.

We have shown that the self-interaction of an SW
due to the thermal nonlinearity is governed by the
dependence of the electron collision frequency on tem-
perature and that, at sufficiently high plasma pressures,
the effect of the self-interaction is greatest.

The results obtained are applicable to both semicon-
ductor and gaseous plasmas.
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Abstract—The transverse oscillations of a coronal magnetic loop whose ends are rigidly fixed in the photo-
sphere are investigated. The loop is assumed to be inhomogeneous and to comprise two internal structural com-
ponents: a central dense hot filament and a coaxial rarefied shell around it, in which the plasma density is lower
than the density of the surrounding coronal plasma. The Alfvén speed in the shell, VAm, is higher than that in
the central filament and in the corona: VAm > VAe > VAi . It is shown that, in the perfectly conducting plasma
approximation, such a loop can generate two fast magnetosonic waves. The higher velocity wave is emitted in
a radial direction, thereby ensuring the effect of the radiative damping of oscillations at the frequency of the
m = 1 cylindrical mode. The results of calculating the effect of radiative losses show that, for typical loop
parameters (corresponding to those of the loops observed in the solar corona), the quality factor of oscillations
may be fairly low (Q ≈ 40). Under the conditions in question, the second (lower velocity) fast magnetosonic
wave is not emitted (in contrast to the first) but rather turns out to be trapped in the magnetic flux tube. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The oscillations of arch loops that were revealed by
the TRACE (Transition Region and Coronal Explorer)
spacecraft in the solar corona [1–4] have drawn
increased attention to the problem of the propagation
and damping of MHD waves in the solar corona and
also to the more general problem of heating the coronal
plasma to temperatures of about 1 MK. Direct observa-
tions by a UV telescope on the TRACE spacecraft made
it possible to detect and thoroughly investigate not only
the transverse oscillations of long thin coronal loops
(such that the transverse displacement of the loop may
sometimes be larger than the diameter of its cross sec-
tion) [1, 2] but also the longitudinal perturbations
within the loops (which are presumably of MHD ori-
gin) [3, 4]. There is some observational evidence that
the internal structure of coronal loops is inhomoge-
neous: according to [4], the loop may consist of a fila-
ment and a coaxial shell or may be composed of indi-
vidual filaments with different temperatures.

One of the main difficulties in a theoretical analysis
of the oscillatory properties of coronal loops by means
of a linearized set of MHD equations is the following
[5–10]: The internal structure of a coronal loop is usu-
ally described using the model of a homogeneous mag-
netic flux tube in the form of a circular cylinder, on the
inside and outside of which the plasma density and
magnetic induction are uniform and their values, as
well as the values of the gas pressure, are different but
are consistent with the condition of equilibrium in the
radial direction. In a thin tube approximation such that
the tube radius is much smaller than the wavelength, the
dispersion relation for transverse oscillations of the
1063-780X/03/2912- $24.00 © 1049
loop at the frequencies of cylindrical modes with m ≥ 1
has the form

(1)

Here, ρ0i and ρ0e are the unperturbed values of the
plasma density on the inside and outside of the tube, VAi

and VAe are the corresponding values of the Alfvén
speed, and kz is the wavenumber along the tube (the lon-
gitudinal wavenumber). Since, for coronal tubes, the
inequality VAi < VAe (or, equivalently, ρ0i > ρ0e) is obvi-
ously satisfied, it follows from dispersion relation (1)
that the phase velocity of the oscillations should be
lower than the Alfvén speed on the outside of the tube,
ω/kz < VAe. Under this condition, the radial wavenumber
of the wave on the outside is purely imaginary [see
expression (8) below]; consequently, the wave cannot
propagate in the radial direction in the space surround-
ing the tube, or, in other words, it cannot be emitted.
The transverse wave satisfying dispersion relation (1) is
a fast magnetosonic (FMS) wave; the wave at the fre-
quency of the m = 0 mode is a slow magnetosonic wave,
which also can propagate only along the tube.

Hence, a thin coronal loop modeled by a homoge-
neous magnetic flux tube is merely a waveguide that
does not emit MHD waves into the surrounding space.
This circumstance has given new impetus to the search
for other mechanisms for the damping of oscillations,
specifically, those that are not associated with the emis-
sion of wave energy (e.g., the anomalous plasma vis-
cosity and/or anomalous plasma resistivity [2] and the
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2
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resonant absorption of MHD waves in a narrow bound-
ary layer of the tube [10]).

In our earlier paper [11], we showed that a magne-
tized plasma cylinder performing one-dimensional
finite-amplitude transverse oscillations in an external
uniform magnetic field aligned with it efficiently gener-
ates outwardly propagating FMS waves. The energy
flux carried away from the surface of an oscillating cyl-
inder by the MHD waves per unit time turns out to be
so intense that the energy stored in the cylinder under
the action of the initial perturbation that has driven the
oscillations is dissipated during a time as short as sev-
eral periods of free oscillations. In [11], in order to sim-
plify the problem to the ultimate possible extent and to
capture the main effect, namely, the radiative damping
of oscillations, we considered only the side displace-
ments of a magnetized cylinder with free ends. In the
case of such displacements, the perturbed magnetic
field has only the longitudinal component and the oscil-
lations of the cylinder are dissipationless: k = ω/VSA,

where VSA = (  + )1/2, with CS being the speed of
sound. Also, in [11], we did not solve MHD equations
inside the cylinder.

In the present paper, we consider the oscillatory
properties of a coronal magnetic loop containing two
structural components: a central filament and a sur-
rounding cylindrical shell. Below, we will show that,
under certain conditions, such a loop is capable of emit-
ting MHD waves. For this to occur, it is necessary that
the central part (filament) of the loop be surrounded by
a coaxial cylindrical shell in which the Alfvén speed
VAm is higher than those in the filament and in the envi-
ronment:

VAm > VAe > VAi . (2)

Here and below, the subscripts i , m, and e refer, respec-
tively, to the internal region (the filament), the interme-
diate region (the shell), and the external region (the sur-

CS
2

V A
2

y

r

a

x

z

0

ϕ

B0

–L/2

+L/2

Fig. 1. Representation of a coronal loop in the form of a
straight circular cylinder with length L and cross-sectional
radius a in the cylindrical and Cartesian coordinate systems.
rounding coronal plasma). Since the magnetic induc-
tion in the filament differs insignificantly from that in
the shell, the above condition implies that the plasma
density in the shell should be lower than the density of
the surrounding medium. We thus are dealing with a
model in which the central (denser and hotter) part of
the loop is surrounded by a rarefied shell. As will be
shown below, such a loop (tube) is capable of generat-
ing two FMS waves at the frequency of the m = 1 cylin-
drical mode. One of these waves is emitted into the sur-
rounding space, while the other propagates within the
tube, never leaves it, and thus appears to be trapped by
it. The latter effect is of great interest for the problem of
heating coronal loops. It should be noted that, under
certain conditions, this second wave can also be emitted
into space; however, under the conditions adopted in
our study, it always remains within the tube.

Our paper is organized as follows: In Section 2, we
present the model of a coronal loop in the form of a fil-
ament surrounded by a shell and write out the solutions
to a linearized set of MHD equations for three regions:
the internal region (the filament), the intermediate
region (the shell), and the external region (the sur-
rounding coronal plasma). In Section 3, we derive the
dispersion relation and describe oscillations at the fre-
quency of the first (m = 1) cylindrical mode. In Section 4,
we calculate the damping rate of the oscillations. And
finally, in Section 5, we discuss the results obtained.

2. SOLUTION OF LINEARIZED MHD 
EQUATIONS

We will work in the cylindrical (r, ϕ, z) and Carte-
sian (x, y, z) coordinate systems (Fig. 1). In the region
–L/2 < z < +L/2, we consider a straight magnetic flux
tube with length L and cross-sectional radius a, whose
ends are fixed at the planes z = +L/2 and z = –L/2. Since
the loops observed in the solar corona are thin (L @ a)
and are curved only slightly, this geometric model of a
loop in the form of a straight magnetic flux tube of finite
length provides a fairly adequate description of the
actual loop structure.

We consider a loop with nonuniform radial profiles
of the plasma density and magnetic induction and
approximate the profiles by step functions like that
shown in Fig. 2. In this model of the loop, there are
three different regions in the radial direction: the inter-
nal region r < b, the intermediate region b < r < a, and
the external region r > a. The internal region is the cen-
tral part of the loop (a filament with an elevated plasma
density), the external region is the space surrounding
the loop, and the intermediate region is a rarefied shell.
In each of these three regions, the unperturbed mag-
netic field is uniform, the only nonzero component of
the magnetic induction being the z component. In an
unperturbed state, the transverse equilibrium condition
has the form
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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(3)

Let the loop be displaced from its equilibrium posi-
tion only in the x direction, the displacement amplitude
being X0. We describe the displacement by the formula

(4)

where kz = nπ/L with n = 0, 1, 2, …. The value n = 0 cor-
responds to the transverse displacements of a loop as a
whole, i.e., to transverse oscillations of a loop with free
ends. The oscillations of a loop with fixed ends are
described by odd values of n. The value n = 1 corre-
sponds to the half-wave transverse oscillations of a
loop; it is this oscillation mode that was detected by the
TRACE UV telescope. The values n @ 1 correspond to
short-wavelength perturbations.

We assume that the coronal loop executes small
oscillations that can be described in a linear approxima-
tion. The linearized set of ideal MHD equations has the
form

(5)

where B0 and ρ0 are the unperturbed magnetic induc-
tion and unperturbed plasma density and B, ρ, and v are
perturbations of the induction, density, and velocity,
respectively. In accordance with the geometry of the
perturbation under analysis, we seek a solution to
Eqs. (5) in the form of a superposition of cylindrical
modes. In what follows, we will describe the perturba-
tions of the radial velocity component, pressure, and
longitudinal magnetic induction by functions of the
form of f(r, t) = f(r)cosϕcos(kzz)exp(–iωt).

From Eqs. (5) we obtain the following equations for
the radial component of the perturbed velocity, v r(r),
and the perturbed total pressure P(r) = p(r) +
B0Bz(r)/4π:

(6)

In turn, from Eqs. (6) we see that the perturbed total
pressure P satisfies the Bessel equation

(7)
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where we have introduced the notation

(8)

In each of the above three spatial regions, the per-
turbed total pressure P satisfies the same equation (7)
and, accordingly, expression (8) for the radial wave-
number takes the same form but with different values of
the sound and Alfvén speeds. In what follows, we will
denote the radial wavenumber k in the three regions by
the corresponding subscripts: ki , km, and ke. The values
of the parameter kz in the regions are chosen to be the
same in order to satisfy the condition for the global
solution to be continuous.

Let us write out the solutions for each of the three
regions. The solution for the internal region (filament)
is expressed through the Bessel function that has no sin-
gularity at the loop axis (r = 0):

(9)

where X0i is the amplitude of the radial oscillations
within the filament.

A distinctive feature of the solution for the interme-

diate region is the inequality  < 0 (see Section 3 for
details), which implies that the oscillations in the shell
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Fig. 2. Model step profile of the plasma density in a coronal
loop containing two structural components: b is the radius
of the central part (filament) of a loop with an elevated
plasma density, and a is the radius of a shell with a reduced
density.
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are of the nature of surface waves. The solution in the
intermediate region should be expressed in terms of the
Hankel and Bessel functions K1 and I1. Since this region
neither includes the loop axis nor extends to infinity, we
retain both of the arbitrary constants in the general solu-
tion to the modified Bessel equation:

(10)

The solution to the problem for the external region
is expressed through the Hankel function of the first
kind, which describes the waves propagating away
from the cylinder to infinity:

(11)

3. OSCILLATION MODES
IN A TUBE WITH A SHELL

The relationships between the coefficients X0e, X0i ,
A, and C can be obtained from the matching conditions,
which imply that the radial component of the perturbed
velocity, v r, and the perturbed total pressure P are con-
tinuous at the boundaries between the three regions.
From the boundary conditions for the perturbed radial
velocity at the filament surface (r = b) and at the outer
surface of the shell (r = a) we obtain

(12)

(13)

The corresponding boundary conditions for the per-
turbed total pressure yield

(14)
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We thus arrive at the set of four linear equations (12)–
(15) for the four coefficients X0e, X0i , A, and C. An equa-
tion stating that the determinant of this set is zero is pre-
cisely the sought-for dispersion relation:

(16)

In general, Eq. (16) is rather difficult to solve. How-
ever, for our purposes here, it is sufficient to consider its
solution in a thin tube approximation such that the fila-
ment radius b and the shell radius a are small in com-
parison with the wavelengths of the waves in question.
We assume that the inequalities kib ! 1, kea ! 1, lmb ! 1,
and lma ! 1 hold, which allows us to use series expan-
sions for the solutions to the Bessel equation. In each of
the expansions, we retain the lowest order term to
obtain the zero-order dispersion relation

(17)

The frequency ω that satisfies dispersion relation (17)
is real and provides a zero-order approximation to the
solution of dispersion relation (16). Equation (17) has
two solutions corresponding to two different modes of
magnetosonic waves. Since Eq. (17) contains Alfvén
speeds and does not include sound speeds, both of the
modes are FMS ones; the higher velocity mode will be
referred to as a fast mode, and the lower velocity mode
will be referred to as a slow mode. Dispersion relation
(17) is a quadratic equation for the squared phase veloc-

ity v 2 = ω2/  and thus is easy to solve, but its solutions
are quite lengthy and we will not reproduce them here.

Let us consider the values of the phase velocities in
the limits b  0 and b  a. In the first case, the lim-
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iting velocity of the fast mode is v 2   and that

of the slow mode is v 2  , where

In the second case (b  a), the limiting velocities of

the fast and slow modes are as follows: v 2   =

 and v 2   = (ρ0i  + ρ0e )/(ρ0i + ρ0e).
Comparing the latter relationship with dispersion rela-
tion (1), we can see that a FMS wave with m = 1, which
is generated in a homogeneous tube, is nothing more
than a slow mode in the limit b  a.

In order to clarify whether one or another mode can
be emitted into the surrounding space, we consider

expression (8) for  in the third (external) region.
Using the conditions VAe > CSe > CTe, which are satisfied

for the solar corona, we arrive at the inequality  > 0,
which holds for v  > VAe. In this case, the wave will
propagate in the radial direction or, in other words, it
will be emitted into the surrounding space. In order to
check the condition v  > VAe, we consider the differ-
ences

(18)

For 0 < b < a, the phase velocity of the fast mode lies
within the range v 10 < v  < v 1a = VAm. Taking into
account conditions (2), we can state that, for all values
of the filament and shell radii satisfying the inequalities
0 < b < a, the fast mode can be emitted. The phase
velocity of the slow mode lies within the range v 20 >
v  > v 2a. If we consider transverse equilibrium condi-
tion (3) in the solar corona and ignore the gas pressure,
then, under the inequality

(19)

we can see that the condition v 2a > VAe can hold, in
which case the second of the differences (18) is positive
and the slow mode also can be emitted. Consequently,
for all parameter values satisfying conditions (2) in the
limit b  a, the slow mode cannot be emitted and
thus appears to be trapped; however, under condition
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(19), there exists a narrow range of b values that are
close to zero and at which the slow mode can be emit-
ted. The dependence of the phase velocities of the fast
and slow modes on the ratio b/a is shown in Fig. 3.

In side the shell, the wave that can be emitted into
space is a surface wave and, at the same time, it is an
internal wave in the filament. Such a wave is generated
within the filament and then is emitted from the outer
surface of the shell. In the emission process, the wave
is emitted only after it has penetrated the shell; in this
sense, the emission process resembles the quantum tun-
neling of a particle through a potential barrier [12].

4. DAMPING OF THE OSCILLATIONS 
OF A CORONAL LOOP

According to the above analysis, a fast mode that is
generated within a magnetic flux tube and is then emit-
ted into the surrounding space can cause the oscilla-
tions of the tube to be damped. The damping is
described by the imaginary part of the solution to dis-
persion relation (16). Recall that, in the zeroth approx-
imation, the solution is purely real; consequently, the
damping effect should manifest itself in the first
approximation. We seek a solution to Eq. (16) in the
form ω = ω0(1 + ε), where ω0 is the zero-order approx-
imation and ε ! 1 is the first-order correction. The
quality factor of the oscillations can naturally be
defined as Q = 1/(2 |Imε|). We calculate only the imag-
inary part of the correction ε because its real part makes
only a small contribution to the real part of the fre-
quency ω0. In the series expansions that will be used
below, the quantity v  = ω0/kz is treated as the phase
velocity of the fast mode in the zeroth approximation.
In dispersion relation (16), we take into account the first

0.5
0.20 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

b/a

v , 108 cm/s

Fig. 3. Dependence of the phase velocities of FMS waves
on the ratio of the filament radius to the shell radius. The
upper and lower curves refer to the fast and slow modes,
respectively.
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two terms in the series expansions for the solutions to
the Bessel equation. As a result, we obtain

(20)

Dispersion relations (17) and (20) provide the solu-
tion to the problem about the damping of transverse
oscillations of a magnetic flux tube with a shell. In par-
ticular, they make it possible to numerically calculate
how the quality factor of oscillations depends on the
ratio b/a. The results of such calculations are illustrated
in Fig. 4. The calculations were carried out for the fol-
lowing values of Alfvén speeds in the unperturbed
media: VAe = 0.7 × 108 cm/s in the external region (in
agreement with the observational data from [1]), VAi =
0.39 × 108 cm/s in the filament, and VAm = 3.5 ×
108 cm/s in the shell. The equilibrium values of the
remaining model parameters correspond to transverse
equilibrium condition (3) and the assumption that the
gas pressure is negligible in comparison with the mag-
netic pressure. When Alfvén speeds in the shell and in
the surrounding medium differ by a factor of 5, the den-
sities in these two regions differ by a factor of 25.
According to [13], the plasma density in the loops in the
solar corona can be higher than that in the surrounding
medium by a factor of 8 to 18. We assume that the den-
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Fig. 4. Dependence of the quality factor Q of oscillations at
the frequency of the fast mode on the ratio b/a of the fila-
ment radius to the shell radius. The upper and lower curves
are calculated for b = 2000 km and b = 3100 km, respec-
tively.
sity of the shell plasma can be lower than that of the sur-
rounding plasma by approximately the same factor.

For the longitudinal wavenumber kz = π/L of oscilla-
tions with the period T = 256 s that were observed in a
coronal loop of length L = 130000 km [2], we obtain
kz = 0.024 × 10–8 cm–1; in this case, the phase velocity
of oscillations is equal to v  = 1.02 × 108 cm/s, which
corresponds to the fast mode. In Fig. 3, this value of the
phase velocity corresponds the ratio b/a ≈ 0.3. For the
above values of Alfvén speeds, the condition for the
slow mode to be emitted [i.e., dispersion relation (20)]
is not satisfied, which indicates that, under the condi-
tions adopted in our model, it remains trapped. From
Fig. 4 we can see that, for the above value of the ratio
b/a and for b = 3100 km, the quality factor of the fast
mode is about Q ≈ 40, which coincides in order of mag-
nitude with the values determined from observations.

5. DISCUSSIONS AND CONCLUSIONS

The quality factor obtained above is several times
higher than the Q value found in our earlier paper [11]
(Q ≈ 9), in which it was calculated by estimating the
potential energy that is stored in the loop under the
action of an initial external perturbation and is
expended in emitting MHD waves into the surrounding
space. In the present paper, we have treated the problem
in a traditional formulation; i.e., instead of the initial
perturbation of a given amplitude driven by an external
action, we have considered infinitely small perturba-
tions that are generated spontaneously in the system.
We also assumed that the effect of radiative damping of
oscillations is a priori small—the imaginary part of the
frequency is a second-order quantity in the small
parameter kza. A fundamentally important point in the
model developed here is that an oscillating coronal loop
with a nonuniform radial distribution of the plasma
parameters is subject to a considerable radiative damp-
ing. Our preliminary estimates show that, in a more
complicated model in which not only the nonunifor-
mity of the plasma density but also that of the magnetic
field in the loop is taken into account, the effect under
consideration will be even more pronounced. The
investigation of such a model is the subject of an ongo-
ing investigation.

In order to provide a more realistic description of the
one-dimensional oscillations of a coronal magnetic
loop, we have developed a model that assumes that the
ends of the loop are fixed in the photosphere and the
internal loop structure is inhomogeneous. This model
has allowed a significant amount of progress to be made
in the investigation of the oscillatory properties of coro-
nal loops. The main conclusions of our study can be
formulated as follows:

(i) In contrast to the model of a homogeneous loop,
the model of a magnetic flux tube with a shell yields a
precise formulation of the problem of the radiative
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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damping of the transverse oscillations of a coronal
loop.

(ii) The model with a shell makes it possible to
describe two FMS waves whose propagation conditions
are essentially different. The higher velocity mode can
be emitted into the surrounding space; as a result, an
oscillating loop becomes subject to radiative damping.
The shell of the loop, within which FMS waves are of
the same nature as surface waves, plays the role of a
potential barrier through which the waves propagating
from the central dense region pass into the environ-
ment.

(iii) Under the conditions in question, the other
(lower velocity) FMS wave appears to be trapped in the
central region of the tube. This effect is of interest for
the problem of heating coronal loops. However, under
appropriate model conditions, the lower velocity FMS
mode also can be emitted from the loop.

(iv) In our model, the loop is assumed to comprise
two internal structural components. The plasma density
in the shell is lower than that in the filament and in the
surrounding environment. The shell is thus a rarefied
cavity surrounding a well pronounced hot and dense
central region of the coronal loop.
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Abstract—Results are presented from measurements of the electron distribution function in a glow discharge
in hydrogen with the help of a plane probe by the second-harmonic method. The parameters are determined for
a model description of the distribution function of thermal and suprathermal electrons. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

When a current flows through an ionized gas, the
velocity distributions of positive and negative charge
carriers are always anisotropic: each of the functions
has a component describing the directed current of the
corresponding type of carrier. The anisotropy can arise,
e.g., due to the energy and particle input in the plasma.
The directed motion of plasma electrons is described by
an anisotropic electron distribution function (EDF). A
detailed study of the processes occurring in gas dis-
charges requires a determination of the suprathermal
anisotropic part of the EDF.

The parameters of the EDF in a plasma can be esti-
mated from the probe current–voltage (I–V) character-
istic in terms of the Langmuir theory [1] only under the
assumption that charged particles obey isotropic Max-
wellian velocity distributions. However, this assump-
tion significantly limits the possibility of measuring the
EDF. Under actual gas-discharge conditions, there is a
vast variety of factors resulting in plasma anisotropy.
This is why probe diagnostic methods [2–9] need to be
modified. The relative motion of the plasma and the
probe can also be considered as a kind of anisotropy.
The results of measurements [2–7] show that the EDF
not only deviates substantially from being Maxwellian
but also is often anisotropic.

The problem of investigating the anisotropic EDF
can be successfully solved by spectropolarimetric
methods [10–14]. This implies solving the inverse
problem in which the parameters of the anisotropic
EDF are determined from the measured degree of the
linear polarization of atomic line emission, provided
that the model anisotropic EDF is prescribed [12]. In
[12–14], it was shown that the anisotropic EDF can be
described well by the expression

(1)f ε θ ϕ, ,( )
N t

4π
------ f t ε( ) Nst f st ε θ,( ) f st ε( ),+=
1063-780X/03/2912- $24.00 © 21056
where Nt is the density of thermal electrons, ft (ε) is
their Maxwellian energy distribution function with the
temperature T0, Nst is the density of suprathermal elec-
trons, and fst(ε) is their energy distribution function.

An analysis of the results of calculations of the
intensities of spectral lines by means of a Maxwellian
and a power-law distribution function shows that the
power-law function is more appropriate for describing
suprathermal electrons:

(2)

where ε1 and γ are the constants of the distribution.

We specify the angular dependence of the distribu-
tion function of suprathermal electrons in the following
form:

(3)

where a = , with ε2 being the anisotropy constant.

Thus, for an electron beam, we have a  ∞, whereas,
as a  0, the distribution tends to become isotropic.

Unfortunately, the validity of expression (1) has not
yet been confirmed by the probe measurements of the
anisotropic EDF in spectropolarimetric studies. In the
present paper, which is aimed at measuring the aniso-
tropic EDF by probes and determining the parameters
of a model distribution function in a glow discharge in
hydrogen, we bridge this gap.

2. FORMULATION OF THE PROBLEM

By measuring the second derivative of the probe
current I with respect to the probe voltage U at different
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Fig. 1. Circuit diagram of the experimental setup: (1) B3-3 power source for supplying the probes; (2) transformer; (3) probes P1
and P2; (4) U2-8 narrowband amplifier; (5) oscilloscope; (6) gas-discharge tube; (7) BPN-01F analog-to-digital converter, con-
trolled by an IBM PC; and (8) power supply unit for the gas-discharge tube.

~∆U
values of the latter, we can completely determine the
EDF [2]:

(4)

where S is the surface area of the probe and Ne is the
electron density.

There are several approaches to solving the problem
of probe measurements in an anisotropic plasma [3, 6–
8]. In these approaches, which apply to an axisymmet-
ric plasma, the electron velocity distribution function is
specified in spherical coordinates with the polar axis
pointing along the symmetry axis of the plasma and can
be expanded in a series in Legendre polynomials. Mea-
surements by a double-sided plane probe and a cylin-
drical probe make it possible to determine the coeffi-
cients of the even terms of the series expansion. The
coefficients of both the even and odd terms of the
expansion can be determined from measurements by a
one-sided and a double-sided plane probe. Thus, in [7],
the potentialities of this approach were demonstrated
experimentally by investigating low-voltage arc dis-
charges in helium with the help of two cylindrical
probes oriented along and perpendicular to the symme-
try axis of the discharge gap.

The first and second derivatives of the probe current
with respect to the probe voltage can be determined
graphically from the probe I–V characteristic. However,
this method may lead to significant errors. This is why
Zakharov [9] proposed an experimental method for
directly determining the second derivative of the probe
I–V characteristic. In this method, the probe is held at a
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voltage that is the sum of a slowly varying voltage U0
and a voltage U1 varying rapidly at the frequency ω:

U = U0 + U1cos(ωt). (5)

In this case, the current to the probe is described by the
expression

I = f(U0 + U1cos(ωt)). (6)

If the voltage amplitude U1 is sufficiently small, we can
expand the current in harmonics of the frequency ω:

(7)

This expansion shows that the coefficient A2 of the sec-
ond current harmonic is determined by the second
derivative to within terms of higher orders. The second
harmonic of the probe current is singled out using a fil-
ter or a narrowband amplifier.

3. EXPERIMENTAL SETUP

The anisotropic EDF was measured in glow dis-
charges in hydrogen at a pressure of about 10–2 mm Hg
(Fig. 1). The positive discharge column in hydrogen is
stratified, which means that the EDF is spatially nonuni-
form. The distance between the indirectly heated cath-
ode and the anode in the discharge tube was 135 mm.
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The measurements were carried out by two 1.5-mm-
diameter plane probes soldered into the discharge tube
at distances of 35 and 80 mm from the cathode along
the discharge axis. The tube was 40 mm in diameter.
The dc voltage between the cathode and anode was sup-
plied from a B3-3 power source (PS1). The distribution
function was measured in regimes with discharge cur-
rents of 30, 35, and 42 mA, the voltages between the
cathode and anode being 250, 300, and 350 V, respec-
tively. The probes were held at a dc voltage that was
varied between –30 and +60 V and was supplied from a
B3-3 power source (PS2) (1). At higher voltages, the
probes begin to function as anodes, which may cause
their destruction.

2 4 6 8 10 12 14 16–2–4–6–8 0

1

3

5

7

9

11

I, mA

U, V
–10

Fig. 2. I–V characteristic of probe P1: the points show the
experimental data and the solid curve was obtained by their
linear interpolation.
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Fig. 3. Dependence of the amplitude A2 of the second har-
monic of the current to plane probe P1 on the voltage ampli-
tude U0 for different voltages between the anode and cath-
ode: 250 V (diamonds), 300 V (crosses), and 350 V (cir-
cles).
At the same time, an ac voltage was supplied to the
probes by means of transformer 2. The ac voltage
amplitude U1 was 0.1 V, which did not exceed the 0.1
of the dc voltage amplitude U0 over the entire range of
measurements. As an ac voltage source, we used a sine-
wave oscillator operating at a frequency of 500 Hz.

The voltage signal from the measuring resistor R
was fed to a U2-8 narrowband amplifier (4), which was
used to single out the second harmonic (with a fre-
quency of 1000 Hz). The amplified ac signal was then
fed to an oscilloscope and, simultaneously, to a rectify-
ing diode. The rectified signal was digitized by a BPN-
01F analog-to-digital converter and was stored in an
IBM PC for further processing.

4. RESULTS FROM PROBE MEASUREMENTS
The measurements were carried out with two plane

probes placed at different distances from the cathode.
The data from each of the probes were obtained for
three different values of the voltage between the cath-
ode and anode: 250, 300, and 350 V.

In the first stage of the experiment, we measured the
I–V characteristic of each of the probes by the Lang-
muir single-probe method [1].

The plasma potential near probe P1 was determined
from the position of the inflection point in the I–V char-
acteristic and was found to be 8 V. This potential corre-
sponded to a “zero” energy for the EDF [1] (see Fig. 2).
Accordingly, when determining the anisotropic EDF,
the results of the second-harmonic measurements
(Fig. 3) were shifted along the energy axis by an
amount equal to this plasma potential, 8 V. Under the
assumption that the plasma electrons obey a Max-
wellian velocity distribution, we can calculate the tem-
perature of the thermal electrons [1],

where k is Boltzmann’s constant.
Measurements with probe P1 yielded an electron

temperature of 22500 K (or 2.3 eV).
In the second stage of the experiment, we measured

the EDF with both probes by the second-harmonic
method [9]. Figure 3 shows the amplitude of the second
harmonic of the anode current (7) measured by probe
P1 in three different discharge regimes, while Fig. 4
illustrates the results of measurements with probe P2.
The probes were oriented so that the normals to their
surfaces were perpendicular to the discharge axis
(Fig. 1).

As can be seen from Figs. 3 and 4, the EDF is
weakly sensitive to the discharge regime.

However, the two probes gave somewhat different
results. By averaging the results of measurements over
different regimes and by shifting them along the energy
axis by an amount equal to the plasma potential
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k
d I( )ln

dU
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obtained from the probe I–V characteristic, we can
compare the EDFs measured by the two probes (Fig. 5).
The results derived in this way show clearly that the
anisotropic EDF has a component with energies of up
to 5 eV; this component corresponds to thermal elec-
trons with a Maxwellian distribution. The temperature
of these thermal electrons was determined from the
position of the first peak in the EDF and was found to
be about 2 eV, which coincides with the temperature
value obtained from the I–V characteristic by the
method developed by Langmuir and Mott-Smith [1].
Since the data on the EDF from each probe in all dis-
charge regimes are highly reproducible and since the
second-harmonic method and the single-probe method
yield nearly the same temperatures of the thermal elec-
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U0, V
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Fig. 4. Dependence of the amplitude A2 of the second har-
monic of the current to plane probe P2 on the voltage ampli-
tude U0 for different voltages between the anode and cath-
ode: 250 V (diamonds), 300 V (crosses), and 350 V (cir-
cles).
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Fig. 5. EDFs obtained from measurements by probe P1 (cir-
cles) and probe P2 (diamonds).
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trons, it is justifiable to presume that the probes only
slightly perturb the plasma and thereby have an insig-
nificant impact on the measurement accuracy.

At energies higher than 5 eV, the EDF is seen to
deviate substantially from a Maxwellian function. This
energy range corresponds to anisotropic suprathermal
electrons.

The second peak in the measured EDF in the energy
range 30–40 eV can be associated with the initially
Maxwellian electrons that are emitted from the cathode.

The accuracy of measurements of the anisotropic
EDF by the second-harmonic method is determined by
the extent to which the measured results are reproduc-
ible. In the energy range around the first peak, where
the EDF character changes radically, the measurement
error was no larger than 10%. At other energies, the
measurement error was less than 3%.

5. DETERMINATION OF THE PARAMETERS 
FOR A MODEL DESCRIPTION OF THE EDF

From Fig. 6, we can see that, in the energy range
corresponding to thermal electrons, the EDF measured
by probe P2 is well approximated by the Maxwellian
function

with the temperature T = 2 eV.
The remaining part of the EDF corresponds to

suprathermal electrons and can be approximated by
power-law function (2). In contrast to the thermal elec-
trons, which obey an isotropic Maxwellian distribution,
the suprathermal electrons are described by anisotropic
distribution function (3). Consequently, the conditions
under which these two groups of electrons contribute to
the resulting probe current are different. This is why a
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Fig. 6. Approximation of the experimental EDF (circles) by
a Maxwellian function (dashed curve).
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Parameters of the model distribution

250 V 300 V 350 V

T, ε1, γ, δ T, ε1, γ, δ T, ε1, γ, δ

Probe P1 2.3; 10; 1.7; 88% 2.3; 10; 1.7; 90% 2.0; 10; 1.7; 90%

Probe P2 2.0; 10; 1.8; 85% 2.0; 10; 1.8; 85% 2.0; 10; 1.8; 85%
comparison of the parts of the anisotropic EDF that cor-
respond to thermal and suprathermal electrons does not
provide adequate information about the numbers of
these electrons.

In order to estimate the accuracy with which the
parameters T, ε1, and γ of the power-law EDF are
adjusted to fit the experimental data, we determine how
the ratio

δ
Spl Sexp–

Sexp
-----------------------=
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0
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Fig. 7. Dependence of the parameter δ on γ for ε1 = (1) 5,
(2) 7, and (3) 10.
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Fig. 8. Comparison of the anisotropic EDF obtained exper-
imentally from probe P1 (crosses) with a Maxwellian func-
tion (dashed curve) and a power-law distribution function of
suprathermal electrons (solid curve).
depends on these parameters. Here, Spl is the area under
the curve of the power-law EDF and Sexp is the area
under the curve of the experimentally obtained EDF.

As an example, Fig. 7 shows the plot of the ratio of
these areas versus the parameter γ.

It was found that the most suitable parameter values
for a model EDF approximating the EDF obtained
experimentally by the first probe are γ = 1.7 and ε1 =
10 eV. For these parameter values, we have δ = 90%.
The plot of the power-law EDF with these parameter
values in the energy range above 10 eV is shown in
Fig. 8.

The values of the parameters T (in eV), ε1 (in eV),
and γ obtained from probes P1 and P2 in all regimes
and the accuracy δ with which the parameters were
determined are given in the table.

The peak in the energy range around 40 eV in Fig. 8
can be approximated, e.g., by a Gaussian function.
However, the fraction of these electrons in the total
number of suprathermal electrons is as small as 15%.
Consequently, in expression (1) for the anisotropic
EDF, this electron subgroup can be neglected, the loss
of accuracy being just 15%. Otherwise, expression (1)
should be supplemented with the corresponding term
describing these electrons.

6. CONCLUSIONS

The results of measuring the EDF in a glow dis-
charge in hydrogen show that there is a substantial
amount of suprathermal electrons that should be taken
into account when analyzing the kinetics of the dis-
charge processes. These suprathermal electrons can be
described by the power-law distribution function whose
parameters have been determined in our study. The
description of suprathermal electrons by a Maxwellian
distribution function is far less accurate, which agrees
with the conclusions obtained from an analysis of the
optical spectra [14]. The anisotropy parameter ε2 of
model distribution function (3) is reliably determined
by spectropolarimetric methods [13, 14], while the
probe method for measuring the anisotropic EDF fails
to determine it.
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Abstract—A spherical glow discharge with a pointlike anode is considered in a self-consistent drift-diffusion
approximation. The model includes the time-dependent continuity equations for ions and electrons in the drift-
diffusion approximation and Poisson’s equation for the radial electric field. In finding steady-state distributions,
Ohm’s law is used to relate the discharge voltage and discharge current. Steady-state distributions of the plasma
parameters across the discharge gap, current–voltage characteristics, and cathode characteristics for an abnor-
mal spherical discharge in molecular nitrogen are obtained. In a subnormal glow-discharge regime, oscillations
in the conduction current, potential, and other discharge parameters are revealed. Similar regimes are also
observed in conventional discharges in tubes. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, glow dc discharges in tubes [1, 2] are one
of the best studied types of glow discharges. In recent
years, volume discharges with a pointlike anode [3–7]
have attracted considerable interest. A spherical glow
discharge with a central small-size anode enclosed by a
large-area spherical cathode was investigated in [5–7].
Studies of a spherical discharge with a pointlike anode
show that the discharge structure is qualitatively the
same as that of a plane discharge. In particular, the cath-
ode sheath and the positive column are formed and the
electric properties and cathode characteristics of a
spherical glow discharge, on the whole, correspond to
those of discharges in tubes. At the same time, spherical
discharges differ substantially from conventional glow
discharges in tubes. For example, the spatial distribu-
tions of the electron and ion densities in the positive
column of a spherical discharge are highly nonuniform.
At high discharge voltages, the charged particle densi-
ties decrease in inverse proportion to the square of dis-
tance from the pointlike anode. In contrast to the
plasma of the positive column in tubes, the space
charge is nonzero and decreases in inverse proportion
of the distance from the anode.

In this paper, a spherical glow discharge is consid-
ered using a self-consistent time-dependent drift-diffu-
sion model for the entire discharge gap. We use a spher-
ically symmetric one-dimensional model in which all
the parameters depend only on the distance from the
anode center. We also assume that the cathode is
entirely occupied by the discharge current. Such a
model, in spite of its simplicity, yields qualitatively cor-
rect radial distributions of the plasma parameters in a
spherical abnormal discharge. To describe the normal
regime of a spherical glow discharge, when the spheri-
1063-780X/03/2912- $24.00 © 21062
cal symmetry is lost, it is necessary to consider a two-
dimensional problem.

One of the classical problems of gas discharge phys-
ics is the study of different discharge regimes. There are
subnormal, normal, and abnormal regimes of a glow
discharge, which occur over a wide range of gas pres-
sures p, discharge voltages Ud, and discharge currents
Jd [8]. In many experimental studies, it was pointed out
that, in subnormal discharges in tubes (i.e., in the tran-
sition region between a Townsend discharge and a nor-
mal glow discharge), there is a regime of self-sustained
oscillations of the discharge current [8–12]. When
studying spherical discharges, it was also found that, in
the parameter range corresponding to a subnormal dis-
charge, the system changes to an oscillatory regime if
the power source voltage is insufficient for sustaining a
discharge with a well-formed cathode sheath.

2. MODEL

In this paper, a spherical glow discharge in a low-
density (0.1 ≤ p ≤ 5 torr) molecular nitrogen was simu-
lated using time-dependent equations for ion and elec-
tron transport in a self-consistent electric field that was
determined from Poisson’s equation. Steady-state solu-
tions were found by the relaxation method over the
entire discharge gap (from the anode to the cathode).
The radii of the spherical anode and the surrounding
cathode (a = 0.5, Rc = 12.5) were chosen in accordance
with the geometrical dimensions of the devices in
which spherical stratified discharges have been investi-
gated [5–7]. In view of their spherical symmetry, all of
the plasma parameters were assumed to depend only on
the radial coordinate.
003 MAIK “Nauka/Interperiodica”
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It was assumed that the chamber contained neutral
nitrogen with a molecular density of Ng ~ 1016 cm–3 at
room temperature, ions with a density ni, and electrons
with a density ne. The electron and ion flows were con-
sidered in the drift-diffusion approximation:

(1)

(2)

where µe (µi) is the electron (ion) mobility and De (Di)
is the electron (ion) diffusion coefficient. The particle
densities satisfy the continuity equations

(3)

(4)

where the ionization coefficient αi , the diffusion coeffi-
cients of electrons and ions, and their drift velocities
(We, i = µe, iE) were specified in the local field approxi-
mation. The diffusion coefficients and the mobilities of

electrons and  ions in molecular nitrogen and the
electron-impact ionization coefficients for nitrogen as
functions of the reduced electric field were taken from
[13, 14]. The coefficient of electron dissociative recom-
bination in nitrogen βr was assumed to be constant and
equal to 2 × 10–7 cm–3 [15].

The radial distribution of the electric field in the dis-
charge gap was found from Poisson’s equation

(5)

Equations (1)–(5) were solved numerically by the
relaxation method on a uniform mesh (500–
1000 nodes) using an implicit scheme. The initial con-
ditions were specified throughout the entire discharge
gap. The boundary conditions for the electron and ion
flows were imposed at the anode and cathode. The ini-
tial electron and ion densities were assumed to be uni-
form and equal to a certain small value (ni(r, t = 0) =
ne(r, t = 0) = const ~ 104 cm–3). The grounded cathode
(r = Rc) was maintained at a zero potential. At the
anode, the initial potential was equal to the power sup-
ply voltage (see Fig. 1).

The initial distributions of the potential and the elec-
tric field in the discharge gap were given in the form

Γ e neµeE– De

∂ne

∂r
--------,–=

Γ i +niµiE Di

∂ni

∂r
-------,–=

∂ne

∂t
--------

1

r
2

---- ∂
∂r
----- r

2Γ e( )+ Ngα i Te( ) Γ e βrneni,–=

∂ni

∂t
-------

1

r
2

---- ∂
∂r
----- r

2Γ i( )+ Ngα i Te( ) Γ e βrneni,–=

N2
+

1

r
2

---- ∂
∂r
----- r

2∂ϕ
∂r
------ 

 – 4πe ni ne–( ), E r( ) ∂ϕ
∂r
------.–= =

U r t = 0,( ) U ps r
1–

Rc
1–

–( )/ a
1–

Rc
1–

–( ),=

E r t = 0,( )
U ps

r
2

--------/ a
1–

Rc
1–

–( ),=
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
where Ups is the power supply voltage. The boundary
conditions were imposed as follows:

(i) At the cathode, we specified the condition of sec-
ondary electron emission, Γe = –γTΓi , where γT is the
second Townsend coefficient. The values of the effec-
tive secondary-emission coefficient for various gases
and materials lie in the range 10–2–10–1 [1] and some-
what increase with increasing reduced field E/Ng. In
this paper, the coefficient γT is assumed to be indepen-
dent of E/Ng and equal to 0.05.

(ii) The second spatial derivative of the ion density
at the cathode was taken to be zero, ∂2ni /∂r2 |c = 0. This
is the so-called free-inflow condition, which limits nei-
ther the value of the ion density ni (r = Rc) nor its deriv-
ative ∂ni /∂r at the cathode.

(iii) The ion flux density at the anode was assumed
to be zero, Γi = 0.

(iv) The free-inflow condition for electrons was
imposed at the anode, ∂2ne/∂r2 |a = 0.

The calculations showed that the choice of other
boundary conditions for ions at the cathode and for
electrons at the anode affected the results obtained
insignificantly.

Subtracting Eq. (3) from Eq. (4) and substituting the
result into Eq. (5), we find the expression for the total
discharge current,

(6)

where the first term is the conduction current Jcond and
the second term is the displacement current Jdisp. It fol-
lows from the derivation of Eq. (6) that Jd should be
spatially uniform; i.e., it should be independent of the
radius. The constancy of the total current Jd(t) through-
out the entire discharge gap in the course of the dis-
charge served as an additional criterion of the correct-
ness of the simulation results. The displacement current
Jdisp differed from zero only in unsteady and oscillatory
regimes.

Jd 4πer
2 Γ i Γ e–( ) r

2∂E
∂t
------,+=

R

Ups C Jcap

Jres Jd = Jcond + Jdisp

Cathode

Anode

Fig. 1. Electric circuit: Ups is the power supply, R is the
resistance of the external circuit, and C is the capacitance.
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In numerical simulations, the time step ∆t depended
on the gas pressure and was varied from 10–6 to 10–4 µs.
Poisson’s equation for the potential was solved by the
sweep method with a zero boundary condition at the
cathode, U(r = Rc, t) = 0. The positive potential at the
anode Ud was recalculated at every time step using the
feedback equation.

Figure 1 shows the diagram of the electric circuit,
which contains a power supply with a voltage of Ups =
0.5–6 kV, an external-circuit resistance of R = 20 kΩ , a
capacitance of C = 500 pF, and the spherical discharge
chamber. As a feedback equation, we use Ohm’s law,
relating the discharge voltage Ud to the discharge cur-
rent Jd (for a given power supply voltage Ups):

(7)

where Jres is the electric current in the external circuit,
which is equal to the sum of the currents flowing
through the discharge and the capacitor of the external
circuit: Jres = Jd + Jcap. The current through the capacitor
can be represented in the form

(8)

The presence of the capacitive current leads to a change
in the voltage across the capacitor. This change is equal
to the change in the discharge voltage. As a result, the

Ud U ps RJ res,–=

Jcap
U ps Ud–

R
--------------------- Jcond Jdisp+( ).–=

4 8 12
r, cm

10–3

10–2

10–1

100

102

ni, ne, ∆n, 108 cm–3

ni > ne ~ 1/r2

∆n = ni – ne ~ 1/r

101

Fig. 2. Radial steady-state distribution of the ion density
ni(r) (solid line), electron density ne(r) (dashed line), and
positive charge density ∆n(r) (dots).
change in the anode voltage ∆U during the time step ∆t
can be represented as follows:

(9)

3. RESULTS OF CALCULATIONS 
AND DISCUSSION

The computational procedure was as follows. The
time-dependent problem (1)–(5) was solved for a cer-
tain gas pressure lying in the above range and a suffi-
ciently high power supply voltage (Ups > 2000 V). The
plasma parameters in the discharge gap evolved from
the initial distribution to a certain steady-state distribu-
tion. The temporal stages of the evolution of a spherical
discharge are described in detail in [16]. As a result,
after 107–108 time steps that corresponded to times of a
few hundred microseconds, a steady-state equilibrium
distribution of the plasma parameters was established,
including the cathode sheath and the positive column
(PC), in which the radial electric field depended
slightly on the radius.

Figure 2 shows an example of the radial distribu-
tions of the electron and ion densities, ne(r) and ni(r),
and their difference ∆n(r) at the time t ≈ 100 µs. The
cathode radius is Rc = 12.5 cm, and the anode radius is
a = 0.5 cm. The power supply voltage is Ups = 2 kV. The
nitrogen pressure is p = 0.5 torr. By this time, the con-
duction current Jcond and the total current Jd = 70 mA
become constant throughout the entire discharge gap,
whereas the displacement current almost completely
vanishes (the relative value of the displacement current
is less than 10–5). This regime can be regarded as com-
pletely established, and the parameters in the discharge
can be considered steady-state. One can see the formed
cathode sheath with a length of dc ~ 1–2 cm, in which
the ion density substantially exceeds the electron den-
sity, and the PC. Here, by PC, we traditionally mean the
region in which the ion density differ only slightly from
the electron density. Under these conditions, the elec-
tric field strength at the cathode is on the order of
Ec(r) ~ 200 V/cm. In the PC, the reduced electric field
depends only slightly on the radius and is on the order
of E/p ~ 10 V/(cm torr). The electron and ion density
distributions in the PC vary as ni(r) ~ ne(r) ~ 1/r2. The
space charge in the PC is nonzero, ∆n = (ni – ne) ~ 1/r,
which is a characteristic feature of a spherical dis-
charge. It can be seen that the quasineutrality condition
in the PC is satisfied accurate to within a value on the
order of |∆n |/ni ~ 10–3–10–2. Indeed, it follows from
Poisson’s equation (5) that, in the spherical case, the
space charge density at a constant field E(r) = E0 should
vary in inverse proportion to r:

∆U
1
C
----Jcap∆t.=

∆n ni ne–( ) 1
2πe
---------

E0

r
-----,= =
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whereas in the case of plane geometry and a constant
field, we have ∆n = 0.

After a steady-state discharge regime had been
reached for one value of the power supply voltage, the
value of Ups was changed by ∆Ups = 50–500 V at a fixed
gas pressure. The previously calculated radial distribu-
tions of the plasma parameters (the charged particle
densities and the electric field strength) were then used
as initial data. After a relaxation process that lasted sev-
eral dozen microseconds, the system arrived at a new
steady state with new values of the potential and the
discharge current. In this way, the current–voltage char-
acteristic of the discharge was calculated for a fixed gas
pressure. The gas pressure was then altered somewhat,
and the procedure was repeated. As a result of such
numerical experiments, the current–voltage character-
istics were obtained for different gas pressures. 

Figure 3 shows typical current–voltage characteris-
tics of a spherical discharge for different nitrogen pres-
sures. The minimum pressure is p = 0.1 torr (at pres-
sures of p ≤ 1 torr the curves everywhere have a positive
slope). As the pressure increases, both the slope of the
curves and the discharge voltage Ud decrease. For p =
0.8–1.0 torr, the discharge voltage Ud is minimum. At
pressures above 1 torr, a minimum appears in the cur-
rent–voltage characteristic in the current range under
consideration. The minima of the current–voltage char-
acteristics for p = 2, 3, 4, and 5 torr are indicated by
large crosses and are joined by the dashed line. It can be
seen that, as the discharge current increases, the cur-
rent–voltage characteristics come closer to the lowest
current–voltage characteristic, corresponding to the
pressure p ≈ 1 torr.

It is well known that the higher the gas pressure, the
higher the power supply voltage Ups required for main-
taining the abnormal regime of a glow discharge. From
Fig. 3, it can be seen that, as the pressure increases, the
minima of the current–voltage characteristics shift
toward high currents, which corresponds to higher
power supply voltages. At the left branches of the cur-
rent–voltage characteristics, the discharge becomes
unstable. As the power supply voltage decreases, the
length of the cathode sheath increases and the electric
field at the cathode decreases. As a result, a regime is
established in which all the discharge parameters oscil-
late. Similar oscillations were observed experimentally
in tubes in the parameter range corresponding to a sub-
normal glow discharge [8–12] (these oscillations will
be described below in more detail). As the power sup-
ply voltage decreases further, the oscillatory discharge
changes to a Townsend discharge.

Let us draw an analogy with the classification of dif-
ferent regimes of discharges in tubes and propose a
classification of the observed regimes of a spherical dis-
charge. It should be remembered that the one-dimen-
sional model under consideration is inapplicable to the
description of the normal regime of a glow discharge,
when the cathode surface is only partially occupied by
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
the discharge current. The right branches of the cur-
rent–voltage characteristics for pressures of p > 1 torr
and all of the characteristics for pressures below 1 torr
correspond to the abnormal regime of a spherical dis-
charge. As the discharge current increases, the dis-
charge voltage increases too. The oscillatory regimes
that fall to the left of the minima of the voltage–current
characteristics for p > 1 torr will be referred to as sub-
normal regimes. The regime corresponding to a single
minimum in the current–voltage characteristic for a
given gas pressure will be conventionally referred to as
a normal regime.

The phenomena occurring in the cathode sheath
play a decisive role in the formation of a glow dis-
charge. In our study, we analyzed the main cathode
characteristics of a spherical discharge. The cathode
sheath length dc is most conveniently defined as the dis-
tance between the cathode surface and the radius at
which the rate of electron-impact ionization of the gas
is maximum. The cathode fall voltage Uc was defined as
the voltage drop over the cathode sheath length dc.

Figure 4 shows the cathode fall voltage as a function
of the product pdc. All of the calculated points are seen
to fall on a single curve. Interestingly, all the points cor-
responding to the normal regime at different pressures
turn out to fall in a very narrow parameter range near
the point (Uc = 230 ± 5 V, pdc = 1.01 ± 0.05 torr cm),
which is indicated by the cross. All the points corre-
sponding to the abnormal regime fall to the left of this
point.

It is well known that, in the case of an abnormal dis-
charge in a tube, the discharge current Jd can be

0 100

400

200 300
Jd, mA

1200

800

Ud, V

Fig. 3. Current–voltage characteristics of a spherical dis-
charge at different nitrogen pressures: (e) 0.1, (n) 0.2,
(h) 0.4, (q) 0.6, (s) 0.8, (r) 1.0, (m) 2.0, (j) 3.0, (w) 4.0,
and (d) 5.0 torr.
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increased by increasing the power supply voltage Ups or
decreasing the external-circuit resistance R. The higher
the discharge current Jd, the higher the discharge volt-
age Ud. At the same time, the increase in the discharge
current is accompanied by an increase in the cathode
fall voltage Uc and a decrease in the cathode sheath
length dc [17]. On the other hand, below the so-called
normal cathode drop Un, which depends on the sort of
gas and the cathode material, the discharge changes to
the normal regime, in which Uc = Un and pdc = pdn.
Hence, in the case of a discharge in a tube, the curve
Uc(pdc) terminates at the point (Un, pdn). Nevertheless,
the points corresponding to the subnormal regime are
shown in Fig. 4. It is worth noting that the farther the
point from the normal regime, the more pronounced the
oscillations of the discharge parameters.

Figure 5 shows the cathode fall voltage Uc as a function
of j/p2. All the data also fall on a single curve. The charac-
teristic value of j/p2 corresponding to the normal regime is
equal to ( j/p2)n = (7.4 ± 1.2) × 10–3 mA/(cm2 torr2). The
current density was calculated as the ratio of the current
at the cathode to the cathode area. It will be remem-
bered that the current density in discharge tubes is con-
stant over the tube length, whereas the current density
in a spherical discharge decreases in inverse proportion
to the square of the distance from the anode. If we use
the geometric mean of the current density over the gap
when calculating the value of ( j/p2)n, then the obtained
value ( j/p2)n = 0.185 mA/(cm2 torr2) will almost coin-
cide with the usual value of this parameter for nitrogen
discharges in tubes.

0.5 0.7
0

400

0.6 0.8 0.9 1.0 2.0
pdc, torr cm

800

1200

Uc, V

Abnormal
regime

Oscillations

Fig. 4. Cathode fall voltage Uc vs. product pdc. The symbols
correspond to the same pressures as in Fig. 3.
The transition and quenching regimes of the dis-
charge require particular consideration. In numerical
simulations, relaxation oscillatory regimes with oscilla-
tions of the discharge parameters were observed to the
left of the minimum of the current–voltage characteris-
tic. When passing to a new value of Ups at sufficiently
high power supply voltages, aperiodic oscillations of
the discharge parameters and their subsequent rapid
relaxation to new steady-state values are observed. Fig-
ure 6 shows an example of such a relaxation of the elec-
tric field strength at the cathode at a nitrogen pressure
of p = 3.5 torr. Curve 1 corresponds to a change from a
power supply voltage of Ups = 1500 V to a lower voltage
of Ups = 1400 V, whereas curve 2 corresponds to a
change from Ups = 1350 to 1400 V. It can be seen that
the oscillatory transition from different states results in
a new steady state that corresponds to a new power sup-
ply voltage. The lower the final value of the power sup-
ply voltage, the larger the oscillation amplitude and the
lower the oscillation frequency and the damping rate.
Similar oscillations are also observed in other discharge
parameters.

At a certain critical value of the power supply volt-
age, , the relaxation oscillatory regime changes to
a harmonic undamped self-sustained regime. However,
such a transition occurs only at gas pressures higher
than a certain critical pressure p*, which depends on the
cathode radius. For example, for Rc = 12.5 cm and an
external-circuit resistance of R = 20 kΩ , the critical
pressure above which oscillatory regimes are observed
is equal to p* ≈ 1.9 torr. At this pressure, the critical
voltage is  ≈ 800 V and the oscillation frequency is

U ps*

U ps*

10–3
0

400

10–1

800

1200

Uc, V

Abnormal
regime

Oscillations

10–2 100

j/p2, mA/(cm2 torr2)

Fig. 5. Dependence of Uc on j/p2. The symbols correspond
to the same pressures as in Fig. 3.
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f ≈ 30 kHz. At a pressure of p = 3.5 torr, the critical volt-
age is  ≈ 1250 V. This regime is represented by
curve 3 in Fig. 6. It can be seen that, under these condi-
tions, almost sinusoidal oscillations with a frequency of
f = 60 kHz take place.

The mechanism for these oscillations can be inter-
preted as follows. The ions generated by the electrons
in the cathode sheath arrive at the cathode and cause
secondary emission. A new portion of the emitted elec-
trons is accelerated in the field of the cathode sheath.
The ionization of atoms by these electrons produces a
new number of ions moving toward the cathode, and so
on. The electron velocity is higher than the ion one; for
this reason, the oscillation frequencies (f ~ 0.1 MHz)
correspond to the time it takes for the ions to move from
the center of the cathode sheath to the cathode surface.
The oscillation frequency can be estimated as follows:

f ≈ 〈v i 〉/∆Rc, (10)

where ∆Rc is the characteristic length of the cathode
sheath, 〈v i 〉  ~ µiEc is the ion velocity, and Ec is the elec-
tric field in the cathode sheath.

The spatial distributions of the discharge parameters
(the total current, the electron density, the electric field,
etc.) vary substantially during the oscillation period
throughout the entire discharge gap, rather than only in
the cathode region. Figure 7 shows the radial distribu-
tion of the electric field at two instants with an interval
of ∆t = 12.5 µs, corresponding to opposite oscillation
phases at Ups = 1250 V and p = 3.5 torr. The oscillation
amplitude of the electric field at the cathode is 30 V/cm

U ps*

0 200
200

300

400 600 800
t, µs

400

500

600
Ec, V/cm

1

2

3

4

5

Fig. 6. Oscillatory relaxation processes (curves 1–3) for dif-
ferent ∆Ups and damped regimes (curves 4, 5)
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at a mean value of the cathode field 〈Ec〉 ≈ 456 V/cm. In
the PC, the electric field is on the order of 50 V/cm and
its oscillation amplitude is comparable to its mean
value. It can be seen that the spatial distributions of the
electric field differ substantially at instants correspond-
ing to opposite oscillation phases; i.e., the so-called
“breathing” regime of the discharge is realized.

It was found that, in regimes with Ups ≤ (p), the
second mode of oscillations with a double period
arises. The amplitude of this mode increases with
increasing ∆Ups = (p) – Ups. For a gas pressure of
p = 4 torr, the voltage at which oscillations appear is

 = 1300 V. Figure 8 shows the oscillations of the
electric field at the cathode Ec(t) for ∆Ups = 25 V. The
frequencies of the first and second modes of oscilla-
tions of all the discharge parameters are f1 ≈ 45.5 kHz
and f2 ≈ 22.7 kHz, respectively. The mechanism for the
second-mode generation can be explained as follows.
At power supply voltages Ups below the critical value

(p), the cathode sheath length ∆Rc varies periodi-
cally from the minimum to maximum value (twofold
for the regime under consideration). The stopping
points of the cathode sheath, which occur each half-
period of oscillations, correspond to the two frequen-
cies defined by relation (10).

At Ups < (p), the discharge passes to a damped
regime. The cathode sheath becomes substantially
wider, the cathode electric field averaged over the oscil-
lation period decreases (the cathode sheath is

U ps*

U ps*

U ps*

U ps*

U ps*

84
101

102

12
r, cm

103

1

E, V/cm

2

Fig. 7. Radial profiles of the electric field at instants 1 and 2
with an interval of ∆t = 12.5 µs, corresponding to opposite
oscillation phases.



1068 SUKHININ, FEDOSEEV
destroyed), and the period-averaged values of the space
charge and current densities decrease over the entire
discharge gap. The damping rate of the average current,
as well as the amplitude and frequency of oscillations,
depends on the value of ∆Ups = (p) – Ups. At suffi-
ciently high values of ∆Ups, oscillations become aperi-
odic and the discharge passes to a Townsend regime
(see Fig. 6; curves 4, 5).

4. CONCLUSIONS

A novel numerical method has been elaborated for
simulating spherical glow discharges. The model
includes time-dependent continuity equations in the
drift-diffusion approximation and Poisson’s equation
for the electric field. The adopted spherical symmetry
makes it possible to consider the problem in the one-
dimensional approximation.

The time-dependent drift-diffusion model under
consideration, which includes the external electric cir-
cuit (feedback), is the simplest self-consistent model of
a glow discharge. It allows one to consider the entire
discharge gap (from the anode to the cathode). The
relaxation method used in calculations allows the dis-
charge to either relax to a steady state or to pass to an
oscillatory regime. With this model, we have consid-
ered the abnormal regime of a spherical glow discharge
and determined the main characteristics of this dis-
charge, such as steady-state radial distributions of the
space charge, electric field, and potential. On the

U ps*

500 600
350

400

700 800
t, µs

550

500

450

Ec, V/cm

Fig. 8. Bifurcation of the oscillation period of the electric
field at the cathode Ec(t). The curve is a superposition of
two modes with the frequencies f1 ≈ 45.5 kHz and f2 ≈
22.7 kHz and the amplitudes E1 ≈ 52 V/cm and E2 ≈
27 V/cm, respectively.
whole, the characteristics of a spherical glow discharge
correspond to those of classical glow discharges in
tubes; in particular, a positively charged cathode sheath
with a strong electric field is formed. The main differ-
ence from discharges in tubes is that, in a spherical dis-
charge, the space charge in the PC behaves as ∆n ∝  1/r.
The relative deviation from neutrality amounts to
∆n/ni ~ 10–2.

The numerical simulations carried out over a wide
range of gas pressures and electric circuit parameters
yielded the discharge current–voltage characteristic
and the parameters of the cathode sheath. The results
obtained also cover the parameter range corresponding
to the abnormal regime of a glow discharge. On each of
the current–voltage characteristics obtained for differ-
ent values of the gas pressure, a point corresponding to
a transition from the abnormal to the normal regime is
determined. Thus, we have obtained the parameter
ranges corresponding to the normal characteristics of
the cathode sheath: Un = 230 ± 5 V, pdn = 1.01 ±
0.05 torr cm, ( j/p2)n = (7.4 ± 1.2) × 10–3 mA/(cm2 torr2).
We note that the calculated value of pdn is somewhat
higher than the values usually obtained for glow dis-
charges in tubes [1, 17, 18]. The value of the normal
current density is almost one order of magnitude lower
than that for glow discharges in tubes; this can be
explained by the specific features of a spherical dis-
charge. A similar behavior in the cathode characteris-
tics of discharges in tubes was observed experimentally
and in numerical simulations [18]. Under certain condi-
tions, oscillations of the plasma parameters arise. This
regime lies on the left of the minimum of the current–
voltage characteristic. This regime of a spherical dis-
charge was called a subnormal regime.

In the calculations, we observed three types of self-
sustained oscillations of a spherical glow discharge: an
oscillatory regime, undamped harmonic oscillations of
the plasma parameters, and an aperiodic damped
regime. Oscillations were observed in all of the plasma
parameters throughout the entire discharge gap (from
the anode to the cathode). The oscillations are associ-
ated with periodic gas ionization in the cathode sheath,
ion drift onto the cathode, and secondary emission of
electrons from the cathode due to the bombardment by
ions. The oscillation frequency lies in the range 10–
100 kHz and depends on the gas pressure, the applied
voltage, and the length of the discharge gap. Under cer-
tain conditions, bifurcation of the oscillation period has
been observed. Similar oscillations of the discharge
parameters have been observed experimentally in
tubes. Various theoretical models have been proposed
to explain this effect. In particular, in [8–12, 19], it was
pointed out that this effect is two-dimensional in nature
and depends on both the area of the region occupied by
the current at the cathode and the rate of transverse ion
diffusion. The results obtained in our study for a spher-
ical discharge gap show that the oscillations of the dis-
charge current in the parameter range corresponding to
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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a subnormal discharge can be attributed to the radial ion
drift toward the cathode.

To describe the structure of the cathode sheath and
to model the effect of stratification of the PC, it is nec-
essary to consider both the electron beam generated in
the cathode sheath and nonlocal kinetic processes. The
most appropriate method of solving this problem is to
use a hybrid model that has been actively developed in
recent years (see, e.g., [20–22]). In the hybrid model,
the nonlocal Boltzmann equation for the electron distri-
bution function or the Monte Carlo method is used to
describe fast electrons. From the electron distribution
function determined in this way, one can find the source
terms (the ionization rate and inelastic electron energy
losses) that are used in the hydrodynamic equations for
slow electrons and ions. Apparently, the only way to
provide an adequate description of a spherical dis-
charge is to use an approach that simultaneously takes
into consideration both the nonlocal kinetic and collec-
tive processes in low-temperature plasma.
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Yakov Borisovich Faœnberg
(in Honor of His 85th Birthday)
On September 7, 2003, we celebrated the 85th birth-
day of Yakov Borisovich Faœnberg, an academician of
the National Academy of Sciences of Ukraine. The
name of this eminent scientist is inseparably connected
with the development of the physics and technology of
accelerators, nonrelativistic and relativistic plasma
electronics, plasma physics, and controlled fusion
research.

In 1940, Faœnberg graduated from Kharkov State
University with a degree in an experimental speciality,
Electronuclear Physics. He took part in World War II.
After demobilization, he began work at the Theoretical
Department of the Kharkov Institute of Physics and
Technology (KhIPT). To put his ideas into practice and
to prove them experimentally, in 1957, Faœnberg
became head of the experimental laboratory and, in
1972, the experimental–theoretical department.
1063-780X/03/2912- $24.00 © 21070
His more than half a century of scientific activity is
indissolubly linked to the KhIPT. He carried out funda-
mental studies on the theory of linear accelerators. His
pioneering works (together with works by V.P. Veksler
and G.I. Budker) laid the foundations for the collective
methods of acceleration. Modifications of the method
of charged-particle acceleration proposed by Faœnberg
have been widely adopted and are now considered the
most promising among the new methods of accelera-
tion. Based on his theoretical investigations and calcu-
lations, the first linear electron accelerators in the
Soviet Union were built at the KhIPT. Under his lead-
ership, the theory of high-energy linear accelerators
was developed. In particular, the calculations were per-
formed for the 2-GeV linear accelerator (the largest in
Europe), which was built at the KhIPT. Faœnberg pro-
posed and implemented a number of new ideas in this
field, in particular, a fundamentally new method for the
simultaneous radial and longitudinal stabilization of
particles in a linear accelerator—the so-called method
of alternating phase focussing. Based on this method,
new types of linear ion accelerators were developed. In
1996, his work was awarded the Ukraine State Prize in
Science and Technology.

Faœnberg contributed significantly to plasma phys-
ics. The studies carried out by him and his colleagues
resulted in the development of a new branch of plasma
physics—nonrelativistic and relativistic plasma elec-
tronics. In 1948, he (together with A.I. Akhiezer)
described and investigated the beam–plasma instability,
the most widely occurring microinstability of a non-
equilibrium plasma. It is difficult to overestimate the
importance of this result, which has already become
classical and is included in each monograph on plasma
physics. He and his pupils were the first to observe
beam–plasma instability and to develop methods for
controlling it. They were the first to discover a new type
of gas discharge, the beam–plasma discharge, and
developed a new collisionless method for plasma heat-
ing—beam heating.

Together with his colleagues, he carried out the first
theoretical and experimental investigations of the inter-
action of relativistic electron beams with plasmas and
demonstrated that this interaction is very efficient.
These investigations led to the development of a new
line of research—relativistic plasma electronics—
which resulted in the creation of high-power micro-
wave oscillators and lasers.
003 MAIK “Nauka/Interperiodica”
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Faœnberg also made a great contribution to the devel-
opment of fundamentally new high-current inductive
plasma accelerators of electrons and ions.

In his scientific work, fundamental studies have
always been closely connected with applied problems
(in particular, defense problems). It should be noted
that, under his leadership, very effective defense sys-
tems were developed for the Defense Ministry. Faœn-
berg has conducted important organizing work: he is
the chairman of the Scientific Council on Plasma Elec-
tronics and New Acceleration Methods of the National
Academy of Sciences of Ukraine. He created a power-
ful scientific school of plasma electronics and new
methods of acceleration (more than 25 doctors and
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
35 candidates of sciences), which is now well known
all over the world. For more than 25 years, he con-
ducted pedagogical work at Kharkov State University,
at which he created special courses on accelerator phys-
ics, plasma physics, and plasma electronics. For his
major contributions to science and the training of qual-
ified specialists, Honored Scientist of Ukraine
Ya.B. Faœnberg was awarded the Order of the Red Ban-
ner of Labor and a number of medals.

The scientific community heartily congratulates
Yakov Borisovich on his eighty fifth birthday and
wishes him good health and many years of fruitful work
and creative achievement.
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Abstract—A fast algorithm is elaborated for determining the position and shape of the plasma column from
measurements performed with magnetic probes located outside the vacuum vessel of the GLOBUS-M toka-
mak. The algorithm is based on the modeling of the plasma current by movable current filaments and allows
one to take into account the effect of eddy currents induced in the vacuum vessel. The algorithm was tested in
a series of model discharges under conditions characteristic of the GLOBUS-M tokamak and serves now as a
software component of its magnetic diagnostic system. By employing a conventional PC (Pentium 1 GHz,
200-MHz data bus), the calculation time of the plasma column parameters at one instant in time does not exceed
3 ms, which offers the possibility of controlling the plasma parameters during a discharge. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

One of the main problems in the magnetic diagnos-
tics of plasmas in present-day tokamaks is the real-time
acquisition of data on the position and shape of the
plasma column for the purpose of controlling the
plasma, as well as the determination of certain equilib-
rium plasma parameters (the ratio of the gas-kinetic
plasma pressure to the pressure of the poloidal mag-
netic field, the internal inductance, etc.). The theoretical
grounds of the magnetic diagnostic technique were laid
by L.E. Zakharov and V.D. Shafranov (see, e.g., [1]).
Quite soon, a wide range of magnetic diagnostic meth-
ods for tokamak plasma were formulated mathemati-
cally and implemented in the form of computer codes
(see [2, 3]). Since that time, the methods of magnetic
diagnostics have been mainly developed toward the
optimization of the computational accuracy and speed.
The problems of magnetic diagnostics can be placed
among the so-called inverse problems of mathematical
physics [4, 5], which significantly complicates the
arrangement of the calculation process and calls for
applying a regularization procedure.

Most of the magnetic diagnostic methods are based
on an a priori parametrical representation of the plasma
flux function and differ only in the form of representa-
tion. The parameters of any specific representation are
obtained by minimizing the discrepancy between the
measured and calculated plasma parameters. Generally
speaking, each method exploits its own set of the mea-
sured parameters. Computer codes based on the models
of a continuous plasma distribution are generally the
1063-780X/03/2912- $24.00 © 0997
most accurate but least rapid. Moreover, they are rather
cumbersome. They are mainly applied to the analysis of
the discharge in pauses between shots (the so-called
off-line mode).

To quickly determine the plasma parameters,
including the position and shape of the plasma column,
one needs simplified models (methods). Simple models
are of especial necessity in resolving the problem of
controlling the plasma discharge in real time (the on-
line mode), when the computational speed becomes of
crucial importance (the characteristic calculation times
should not exceed several milliseconds). An analysis of
the available methods for determining the position of
the plasma boundary from external magnetic measure-
ments that are appropriate for real-time plasma control
and enable the required accuracy in reconstructing the
plasma boundary shows that such methods are very
limited in number (see review [6]).

The method of harmonics [7–12] is based on the
expansion (generally in toroidal geometry) of the flux
function in terms of the eigenfunctions of the Grad–
Shafranov differential operator. The parameters to be
determined are the radius of the base circle of the toroi-
dal coordinate system and the coefficients by several
first harmonics.

In the method of a local approximation [7, 13–15],
the flux function is represented by a segment of a Tailor
expansion in the vicinity of some characteristic points
in the plasma, i.e., only some of the most important
(from the standpoint of controlling) points of the
plasma boundary (rather than the entire boundary) are
2003 MAIK “Nauka/Interperiodica”
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determined. The model parameters to be determined
are the coefficients in the Tailor series.

The method of a simple-layer potential [16–18] is
based on the replacement of the plasma column with a
closed surface that is located inside the plasma and does
not necessarily coincide with the plasma boundary. The
whole of the plasma current is assumed to flow along
this surface. The model parameters are related to the
location of this surface.

The method of current filaments is based on a model
representation of the plasma current as a system of a
few thin ring currents. Within this model, one can dis-
tinguish two methods that differ in the set of parameters
to be reconstructed. In the method of fixed current fila-
ments, one needs to determine only the magnitudes of
the ring currents, whereas the location of the current fil-
aments is given [10, 15, 19–21]. In the method of mov-
able current filaments [15, 22, 23], it is necessary to
determine both the current magnitudes and the coordi-
nates of the current filaments. The latter method seems
to be the most efficient in terms of a compromise
between computational speed and accuracy in recon-
structing the plasma boundary. It is this method that
will be discussed in detail in this paper.

The purpose of our study is to develop a numerical
simulation technique and an algorithm for determining
the position and shape of the plasma column in toka-
maks, including those with strongly elongated plasma
cross sections and divertor configurations. The problem
should be resolved on the basis of the data from exter-
nal magnetic measurements, with allowance for the
screening effect of eddy currents induced in the vacuum
vessel of a tokamak. As applied to the GLOBUS-M
tokamak [24–26], we should limit ourselves to the data
from the magnetic probes placed exclusively outside
the vacuum vessel.

An important additional requirement is that the
algorithm should be sufficiently fast for it to be applied
to real-time data processing (on-line mode). This
means that the data should be acquired over a time
period on the order of a few milliseconds (less than
3 ms for the GLOBUS-M tokamak). The developed
algorithm meets this condition when being imple-
mented with a conventional PC (Pentium 1 GHz,
200-MHz data bus). This provides the possibility of
controlling the plasma discharge in the GLOBUS-M
tokamak. However, application of the results obtained
to the problem of active plasma control is beyond the
scope of this study.

Based on the algorithm proposed, the ROMS
(Reconstruction of Magnetic Surfaces) code was devel-
oped. It is quite universal and can be applied to different
facilities of the tokamak type. The ROMS code has
been tested in a series of model calculations of plasma
discharges in the ITER and GLOBUS-M tokamaks and
serves as a software component of the magnetic diag-
nostic system of the GLOBUS-M.
In this paper, we present the results of testing the
algorithm for numerically reconstructing the position
and shape of the plasma column boundary with allow-
ance for eddy currents under conditions typical of the
GLOBUS-M tokamak.

2. FORMULATION OF THE PROBLEM

Figure 1 presents the main notations and outlines a
cross section of the GLOBUS-M tokamak in the plane
ϕ = const of a cylindrical coordinate system (r, ϕ, z). It
is assumed that all the physical quantities possess axial
symmetry (do not depend on ϕ).

The vectors of the plasma current density j and mag-
netic field B can be decomposed into the sum of poloi-
dal and toroidal components:

The poloidal magnetic field Bp measured by the
probes is a superposition of the fields produced by the
plasma current, poloidal coils, and eddy currents
induced in the vacuum vessel. The poloidal magnetic
field is measured by a set of Np two-component mag-
netic probes placed along the vacuum vessel wall
(beyond the region occupied by the plasma) and consti-
tuting the measuring contour L.

The poloidal components of the current and mag-
netic field are represented by the two scalar functions ψ
and F in the form [27]

where the functions ψ and F are related to the toroidal
components of the vector potential Aϕ and magnetic
field Bϕ via the relations (in CGS units)

,

,

and represent the total magnetic flux and total current
through a ring loop with coordinates r and z.

An equilibrium plasma in a strong magnetic field is
described by the well-known set of the ideal magneto-
hydrodynamic (MHD) equations [27]
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Fig. 1. Schematic of the plasma control system of the GLOBUS-M tokamak and the boundary of the limiter plasma for Ip = 176 kA.
The solid line shows the limiter plasma boundary, ψ/ψlim = 1. The dashed lines show the surfaces ψ/ψlim = 1 ± 0.03. The dashed-
and-dotted line shows the outer separatrix, ψ/ψlim = 0.9873.
where p is the gas-kinetic plasma pressure and j is the
plasma current density. Equations (1) describe the equi-
librium of a real plasma with macroscopic parameters
varying slowly in time [1, 28, 29].

In the case of axial symmetry, Eqs. (1) reduce to the
equation for the flux function ψ,

(2)

∆*ψ r
2∇ ∇ψ

r
2

-------- 
 ⋅=

=  
∂2ψ
∂r

2
--------- 1

r
---∂ψ
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-------– ∂2ψ
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---------+
8π2

c
--------r jϕ ,–=
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which is known in the theory of MHD plasma equilib-
rium as the Grad–Shafranov equation. Here,

is the density of the toroidal plasma current.
In terms of the flux function, the problem of deter-

mining the plasma boundary reduces to finding a mag-
netic surface defined by the equation ψ(r, z) = ψ0,
where ψ0 is the magnetic flux (i) at the point of contact
between the limiter and the plasma (rlim, zlim) for a lim-
iter configuration and (ii) at the X point (rs, zs) for a
divertor configuration (hereafter, the data related to the

jϕ r z,( ) 2πcr
dp
dψ
------- 2F

cr
------- dF

dψ
-------+=
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limiter and separatrix are marked with indices lim and
s, respectively). Such a magnetic surface is usually
referred to as the outermost magnetic surface.

It is known [29] that, in tokamaks, surfaces with
ψ > ψ0 are always closed and located inside the outer-
most magnetic surface. To illustrate, Fig. 1 shows the
contour of the outermost magnetic surface ψ(r, z) =
ψ0 = ψlim (solid line) for a limiter plasma configuration
and the contour ψ/ψ0 = 1.03 (the closed dashed line
within the contour of the outermost magnetic surface).
The contours are calculated using the PET MHD equi-
librium code [30]. The contour ψ = ψS corresponds to
the separatrix, which, in this case (the limiter regime),
is not the outermost magnetic surface determining the
plasma boundary. In Fig. 1, the contours corresponding
to ψ/ψ0 ≈ 0.9873 (the separatrix) and ψ/ψ0 = 0.97 (the
outer open dashed line) are also shown.

The outermost magnetic surface (the plasma bound-
ary) is determined as follows:

(i) Based on the results of external observations, the
required set of parameters that determine the mathe-
matical model of plasma in an approximation adopted
for describing physical phenomena under consideration
is sought. Since the problem of reconstructing the field
sources by the fields they produce is an inverse problem
of mathematical physics—one which reduces to the
Cauchy problem for elliptic equations, and various
parametric plasma models are generally used to resolve
it. Here, we use a model in which the plasma current is
represented by a discrete set of movable current fila-
ments (see Section 3). The parameters to be determined
are the coordinates of these current filaments and the
and currents in them.

(ii) For a known set of external currents at a certain
instant, the plasma configuration (the limiter or divertor
one) and the base point (r0, z0) lying on the outermost
magnetic surface are determined. This point is the lim-
iter contact point for a limiter configuration and the
X point for a divertor configuration. First, the X point is
deduced from the condition |Bp | = 0. If the condition
ψ(rS, zS) > ψ(rlim, zlim) is satisfied for all the points of the
limiter, then we have a divertor configuration; other-
wise, we have a limiter configuration, determined by
the point (rlim, zlim) in which the magnetic flux is maxi-
mum.

(iii) Knowing the flux function ψ0 = ψ(r0, z0) at one
point on the outermost magnetic surface, one can
reconstruct the entire surface consisting of the points
(r, z) determined by the equation ψ(r, z) = ψ0.

To calculate the flux function at the observation
point (r, z) and the magnetic field produced at this point
by the current ring with coordinates (rc, zc) and the cur-
rent Ic, the following relations are used [27]:

ψ r z,( ) 8π
Ic

c
----

rcr
k

----------- 1 k
2

2
----– 

  K k( ) E k( )– 
  ,=
where K(k) and E(k) are complete elliptic integrals of
the first and second kind, respectively. In order to
reduce the computation time, they are calculated using
the Landen transformation.

3. METHOD OF MOVABLE CURRENT 
FILAMENTS

In this study, the algorithm for reconstructing the
plasma boundary is based on the method of movable cur-
rent filaments and is aimed at using it in real time. It was
proposed in [15, 22] and is described in detail in [23].

Here, we suggest that the field of the plasma current
can be deduced from the magnetic measurements,
assuming the currents in the external conductors are
known (the fields of these currents are determined
numerically). Provided that the plasma field is smooth
enough, this procedure enables the required accuracy of
calculating the relevant circulation integrals along the
measuring loop. The algorithm of taking into account
the eddy currents induced in the vacuum vessel will be
discussed in Section 4.

Using the above introduced Grad–Shafranov opera-
tor ∆* (2), we can use the so-called second Green for-
mula for arbitrary functions u and v  [31]:

(3)

where S is a two-dimensional area in the plane ϕ =
const and L is the smooth boundary of this area. In what
follows, by L we mean a closed measuring loop passing
through all the magnetic probes.

Using the latter formula for the two arbitrary functions
u = χ and v  = ψ satisfying the equations ∆*χ = 0 and
∆*ψ = –(8π2/c)rjϕ, we obtain the following relation [32]:

Using a linear combination of the normal and tan-
gential components of the poloidal magnetic field (Bn =

 and Bτ = – , respectively), this identity

can be rewritten in the form [32]
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where ξ is a function conjugated with χ and defined by
the equation ∇ (r–1ξ) = ∇χ × ∇ϕ . It can be shown [32]
that the function ξ  satisfies the equation ∆(r–1ξ) = 0,
where ∆ is the Laplacian in cylindrical coordinates.

The plasma current can be represented as a discrete
set of N circular current filaments, each of which is
characterized by the two coordinates ri and zi and the
current magnitude Ii, where i = 1…N. The total plasma
current is

Hence, the problem reduces to determining the coordi-
nates of the current filaments and the currents in them
at a given instant.

If we choose the function χ in the form of homoge-
neous polynomials,

then the functions χm conjugated with ξm are [2, 32]

The moments of the toroidal current density in
plasma, Ym, are related to the pair of functions χm and
ξm by the relationship

(5)

where S is the area enclosed by the measuring loop L
and Bτ and Bn are the field components tangential and
normal to this loop.

For a system of current filaments, the distribution of
the current density jϕ(r, z) can be represented via the δ
functions in the form

Therefore, Eq. (5) takes the form

(6)

where the moments of the current density Ym are calcu-
lated via circulation integrals (5).

For a single current filament (N = 1) and correspond-
ing pairs of the functions χ and ξ, the moments of the
current density have a clear physical meaning. For the
normalized (generally, to the major radius of the torus)

I p jϕ Sd

S( )
∫ Ii.

i 1=

N

∑= =

χm r z,( ) m 1–( )!/2
k! k 1+( )! m 2k– 1–( )!
--------------------------------------------------------r

2 2k+
z

m 2k– 2–
,

k 0=

n/2[ ]
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ξm r z,( ) m!
k!k! m 2k– 2–( )!
------------------------------------------r

1 2k+
z

m 2k– 1–
.

k 0=

n 1/2+[ ]

∑=

Ym jϕχm Sd

S( )
∫ Bτχm Bnξm+( ) L,d

L( )
∫°= =

jϕ r z,( ) Iiδ r ri– z zi–,( ).
i 1=

N

∑=

Iiχm ri zi,( )
i 1=

N

∑ Ym,=
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values of r and z, these moments can be calculated in
the explicit form [32]

The moment Y0 represents an integral form of Max-
well’s equation and allows one to find the total plasma
current. Using the moments Y1 and Y2, one can find the
mean vertical coordinate and the mean major radius of
the plasma column.

It is reasonable to use the above solution for N = 1
to determine the shape of an arbitrarily shifted plasma
column with a nearly circular cross section (in particu-
lar, in the initial stage of the discharge [22]).

To determine the shape of an elongated plasma col-
umn, a larger number of current filaments is required.
However, the increase in the order of the current density
moment (and, thus, the degree of polynomials χm and
ξm) drastically aggravates the conditionality of the set
of Eqs. (6), which adversely affects both the computa-
tion accuracy and time.

For these reasons, the following two-step algorithm
was proposed in [23]. At the first step, the currents are
assumed to be known and the coordinates ri and zi of all
the current filaments are determined by solving the set
of Eqs. (6). At the second step, the current amplitudes
are determined by minimizing the residual functional
between the calculated and measured poloidal field
components at the measuring loop. The procedure is
repeated until a self-consistent solution with the
required accuracy is obtained.

In this study, we implemented the following algo-
rithm: To solve the set of Eqs. (6), we choose a certain

initial approximation ( , ) and start the iteration
process on the basis of the Newton method. Let the

pairs of coordinates ( , ) be known on the pth iter-

ation step. To obtain the (p + 1)th iteration (  =

 + ∆ri ,  =  + ∆zi), one needs to solve the fol-
lowing set of linear algebraic equations for ∆ri and ∆zi:

m = 1…2N.

I1 I p Y0
c

4π
------ Bτ l,d

L( )
∫= = =

z1 Y1
c

4πI p

----------- r rBnln– zBτ+( ) l,d
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∫°= =

r1
2

Y2
c

4πI p

----------- 2rzBn r
2
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zi
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zi
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i 1=

N

∑–



1002 AMOSKOV et al.
The solution is assumed to be found when the pre-
scribed accuracy criterion,  < ε, is

achieved. It should be noted that the derivatives in the
latter expression are determined analytically since the
functions ξ and χ are known polynomials.

At the second step, the currents in the filaments are
determined. The currents are found by minimizing the
residual functional W,

(7)

where ,  and ,  are the calculated and
measured field components, respectively, at K points on
the measuring loop. The coordinates of the current fila-
ments are assumed to be known.

The algorithm uses certain initial values of the coor-
dinates of all the filaments and currents in them. Given
the currents, the solution of the set of Eqs. (6) by the
Newton method provides new coordinate values. Given
the coordinates, the minimization of residual functional
(7) provides new values of the current in the filaments.
The iteration process is repeated as long as the residual
functional decreases. In the general case, taking into
account the inexactness of the initial data that stems
from magnetic measurement errors, model approxima-
tion errors, and rounding-off errors, a generalized solu-
tion reaching the minimum of functional (7) is sought
[4, 5]. After the second stage is completed, both the
coordinates of all the current filaments and the currents
in them turn out to be found.

We note that, under real experimental conditions, it
makes sense to use the data on the plasma column
parameters obtained at the previous instant of time as
an initial approximation to calculate these parameters
at the next instant. Such a “tracking” regime signifi-
cantly reduces the computation time, which is the most
crucial requirement for algorithms operating in real
time.

Based on the calculated coordinates of the filaments
and the currents in them, and taking into account the
contributions from the poloidal coils and eddy currents,
the points lying on the outermost magnetic surface
ψ(r, z) = ψ0 are determined.

Based on this algorithm, the ROMS computer code
was developed. At the stage of testing the algorithm and
software, the reconstructed outermost magnetic surface
was compared to the test plasma boundary obtained
using the PET equilibrium code [30]. Figure 2 shows
typical results of the reconstruction of the plasma
boundary (for a divertor configuration, as an example)
for different numbers of the current filaments. As a cri-
terion, one can use the maximum local deviation ∆max
between the reconstructed and test outermost magnetic
surfaces (the solid and dashed lines, respectively), i.e.,
the max-norm ||· ||∞. The data presented in Fig. 2 (as well

∆ri ∆zi,( )
i

max

W Bi
n( )

Bi
n( )

–( )
2

Bi
τ( )

Bi
τ( )

–( )
2

+{ } ,
i 1=

K

∑=

Bi
τ( )

Bi
n( )

Bi
τ( )

Bi
n( )
as similar data from other numerical simulations) show
that it is quite sufficient to use three to four current fil-
aments to model the plasma current.

Figure 3 presents the field maps obtained using the
equilibrium code (Fig. 3a) and the model of three cur-
rent filaments (Fig. 3b). It can be seen that, in Figs. 3a
and 3b, the contours of the module of the poloidal mag-
netic field are nearly identical beyond the vacuum ves-
sel, in the region where the magnetic probes are
located. As the plasma boundary is approached, a slight
discrepancy arises. Finally, inside the plasma, the field
structure provided by the model is completely incor-
rect.

Figure 3 can serve to illustrate a doubt frequently
discussed in the literature about the possibility of
reconstructing the plasma current profile (as well as the
pressure profile, etc.) based exclusively on the data
from external magnetic measurements (see, e.g., [33]).
However, this doubt certainly does not apply to the pos-
sibility of determining the position and shape of the
plasma column from magnetic measurements. Indeed,
the boundary of a divertor plasma in Figs. 2 (for N = 3)
and 3b is correctly determined using only three current
filaments.

To conclude this section, we note that (in our opin-
ion) the relation between the method of fixed current
filaments, in which the filament positions are pre-
scribed, and the method of movable current filaments
can be likened to the relation between the methods of
the Newton numerical integration, in which the nodes
are fixed, and the Gauss methods, in which both the
nodes and the coefficients in quadrature formulas are to
be found. The reason why the number of elementary
currents used in the method of movable current fila-
ments is significantly less than that in the methods
using fixed current filaments lies in the fact that not
only the currents in the filaments (the analogue of the
coefficients in quadrature formulas) but also the fila-
ment positions (analogue of the quadrature nodes) must
be determined.

4. ALGORITHM FOR TAKING EDDY CURRENTS
INTO ACCOUNT 

Taking into account that the magnetic probes mea-
sure the total magnetic field produced by the plasma,
poloidal coils, and eddy currents induced in the vacuum
vessel, the correct determination of the parameters of
the adopted model of the plasma current distribution
requires extracting the component directly related to
the plasma contribution from these measurement
results. Evaluating the contribution from the poloidal
coils presents no difficulties because the currents in the
coils are measured and the coil positions are known.
Below, we describe the algorithm for taking into
account the effect of eddy currents induced in the vac-
uum vessel. To verify the algorithm and software, we
performed a set of test calculations of the discharge
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
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Fig. 2. Reconstruction of the boundary of a divertor plasma in the GLOBUS-M tokamak by the ROMS code for different numbers
of the current filaments (shown by crossed squares). The solid line shows the plasma boundary calculated by the PET MHD equi-
librium code, and the dashed line shows the reconstructed plasma boundary.
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behavior with allowance for eddy currents. Figure 4
shows the calculated time evolution of the plasma col-
umn shape within the time interval 10–40 ms (from the
onset of the discharge) with a time step of 3 ms. Figure 5
shows the calculated dynamics of the plasma current
and the total eddy current induced in the vacuum vessel
during the discharge. Only the initial stage of the dis-
charge, during which the effect of eddy current is max-
imum, was considered.
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The vortex e.m.f. induced along the major circum-
ference of the torus was measured by seven toroidal
loops that were set along the wall of the vacuum vessel
of the GLOBUS-M tokamak (Fig. 4). To take into
account the effect of eddy currents, the vacuum vessel
was modeled by a finite set of conducting rings located
along the vessel wall coaxially with the major axis of
the torus. Eddy currents induced in these rings act as
extra sources of the magnetic field (in addition to the
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poloidal coils and plasma current). The discrete axi-
symmetric model of the vacuum vessel used in the sim-
ulations is shown in Fig. 6. There are no conducting
rings near the equatorial plane at the outer side of the
vessel; this is related to the presence of relatively large
horizontal ports in this region. In the model, this region
is considered nonconducting. The analysis of eddy cur-
rents with allowance for three-dimensional effects can
be performed using the numerical simulation technique
proposed in [34]. The vessel model shown in Fig. 6 is
probably nonoptimal. It will be further refined using the
results of simulations with allowance for the calculated
spatial distribution of eddy currents in the vessel.

For a sufficiently large number of the conducting
rings modeling the vacuum vessel, we can assume that
the current distribution in each ring is uniform. Then
the total current flowing through the a given ring is
equal to

Il
vv Ul

vv

Rl

----------.=
Here,  is the voltage along the major circumfer-
ence of the torus for the lth conducting ring and Rl is its
resistance,

where rl is the mean radius of the lth ring, ∆rl∆zl is the ring
cross-sectional area, and ρ0 is the resistivity of the vacuum
vessel. It was assumed that ρ0 = 0.7 × 10–6 Ohm m, which
corresponded to the resistivity of stainless steel.

The resistance of each conducting ring modeling the
vacuum vessel was calculated in advance and was
assumed to be constant during the entire discharge
phase.

The vortex e.m.f. induced in any conducting ring
can be found by interpolating the signals from the tor-
oidal loops measuring the e.m.f. along the major cir-
cumference of the torus.

The solid lines in Fig. 7 show the eddy current dis-
tributions computed using the PET code for two differ-
ent instants [30]. The dashed lines show the current dis-

Ul
vv

Rl ρ0

2πrl

∆rl∆zl

---------------,=
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tributions calculated under the assumption that the vor-
tex e.m.f. is uniform. The dashed-and-dotted lines show
the eddy current distributions obtained by the linear
interpolation

where indices 1 and 2 refer to the toroidal loops neigh-
boring to the lth conducting ring, L12 is the distance
between the toroidal loops measured along the vessel
wall, and Ll1 and Ll2 are the distances from the lth con-
ducting ring to the corresponding toroidal loops.

An analysis of Fig. 7 shows that the linear interpola-
tion is quite adequate for describing the eddy current
distribution.

5. RESULTS OF NUMERICAL SIMULATIONS 
AND TESTING THE ALGORITHM

First, we investigated the possibility of reconstruct-
ing the outermost magnetic surface (plasma boundary)
in the GLOBUS-M tokamak using the algorithm based

Ul
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Fig. 4. Calculated time evolution of the plasma discharge in
the GLOBUS-M tokamak. Closed solid lines show the posi-
tions of the outermost magnetic surface (plasma boundary)
within the time interval 10–40 ms (from the onset of the dis-
charge). The numerals by the lines show the time (in ms).
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on the method of movable current filaments for the
instants at which the effect of eddy currents induced in
the vessel can be ignored (see Fig. 2) [35]. The measur-
ing loop was composed of 32 two-component magnetic
probes. A circular cubic spline was used to provide the
required smoothness of the contour passing through
these probes when calculating circulation integrals (5).

The results of these investigations are as follows
[35]:

(i) For the measuring system of the GLOBUS-M
tokamak, assuming that the magnetic measurement
error is zero, it is sufficient to use three to four current
filaments in order to reconstruct the plasma boundary
with an error less than 5 mm. At the very beginning of
the discharge, when the plasma column is almost circu-
lar, two (or even one) current filaments are quite suffi-
cient. We note that the reduction in the number of the
current filaments significantly increases the computa-
tion speed.

(ii) The accuracy of reconstructing the boundary of
a strongly elongated limiter plasma is generally worse
than that of a divertor plasma because the field gradient
in the limiter point (rlim, zlim) is usually higher than that
in the X point (Fig. 1).

(iii) When the calculated field components at the
location points of the magnetic probes contain a pertur-
bation caused by standard random error with an r.m.s.
deviation of σ = 2%, the maximum error (by the max-
norm) in reconstructing the outermost magnetic surface
increases to 10 mm. For σ = 5%, this error increases to
20 mm.

We then studied the possibility of reconstructing the
outermost magnetic surface in the initial stage of the
discharge, when the effect of eddy currents is maxi-
mum (Figs. 4, 5).

I, kA

150

100

50

0 10 20 30 t, ms

Ip

Ivv

Fig. 5. Calculated time evolution of the plasma current Ip
(dashed-and-dotted line) and the total eddy current Ivv
induced in the vacuum vessel (solid line).
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Figure 8 shows the results of reconstructing the
position and shape of the plasma column with allow-
ance for eddy currents induced in the vacuum vessel for
four characteristic instants of the discharge evolution
presented in Fig. 4. The plasma current is modeled by
three current rings. A random error corresponding to a
normal distribution with σ = 2% around the exact field
value was artificially introduced in the magnetic fields
at the measurement points.

The characteristic time over which the position and
shape of the plasma column should be controlled is on
the order of several milliseconds. This time sets the
requirements for the computation speed of the control-
ling algorithm. We note, however, that for a real or cal-
culated plasma discharge, the data obtained at the pre-
vious instant can be used as an initial approximation for
the current instant. This makes it possible to restrict
oneself to only one iteration step when determining the
positions of the current filaments and the currents in
them at each time step without loss of accuracy in
reconstructing the plasma boundary. Estimates of the
algorithm speed with the use of a conventional PC
(Pentium 1 GHz, 200-MHz data bus) showed that the
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Fig. 6. Axisymmetric vacuum vessel model containing 128
conducting rings with rectangular cross section for taking
eddy currents into account. The solid line corresponds to the
medial line of the vacuum vessel wall.
calculation time of the plasma column position in such
a tracking regime was less than 3 ms, which offers the
possibility of controlling the plasma parameters during
the discharge.

Eddy currents are of significance in the initial stage
of the discharge, when the plasma current is low and the
plasma column is only slightly elliptic. In this case, the
plasma boundary can be quite satisfactorily determined
using a single movable current filament, in which case
the computation speed increases due to the simplicity
of the model. As the ellipticity of the plasma column
increases with time (to k > 1.2), the required accuracy
in reconstructing the plasma boundary can be provided
for quite varied column shapes by employing a model
with two to three movable current filaments.
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Fig. 7. Profiles of the eddy current density in the vacuum
vessel vs. the poloidal angle θ (see Fig. 1) for the times t =
19 and 40 ms from the onset of the discharge. The solid
lines show the eddy current profiles calculated by the PET
code, the dashed lines show the profiles calculated under the
assumption that e.m.f. is uniform along the poloidal circum-
ference of the vessel, and the dashed-and-dotted lines corre-
spond to the linear interpolation of the vortex e.m.f.
between the toroidal loops.
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Fig. 8. Outermost magnetic surface reconstructed using the model of three current filaments, with allowance for eddy currents
induced in the vacuum vessel of the GLOBUS-M tokamak in the case of a limiter plasma: (1) magnetic probes, (2) limiter, and
(3) vacuum vessel. The current rings are shown by crossed squares, and the toroidal loops are shown by asterisked squares. A ran-
dom error with σ = 2% is artificially introduced in the magnetic field at the measurement points. The dashed lines show the outer-
most magnetic surface calculated by the PET code for the instants t = 10, 19, 28, and 37 ms from the onset of the discharge. The
solid line shows the reconstructed outermost magnetic surface for Ip = 26, 72, 119, and 162.7 kA and ∆max ≈ 2, 6, 8, and 7 mm,
respectively.
6. CONCLUSIONS

(i) Based on the method of movable current fila-
ments, an algorithm and software have been proposed
that allow the real-time determination of the position
and shape of the plasma column from external mag-
netic measurements. The algorithm takes into account
PLASMA PHYSICS REPORTS      Vol. 29      No. 12      2003
eddy currents induced in the vacuum vessel using the
data from toroidal loops on the distribution of the vor-
tex e.m.f. along the poloidal circumference of the ves-
sel.

(ii) The algorithm and software have been tested
under conditions typical of the GLOBUS-M tokamak
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and serve as a software component of its magnetic diag-
nostic system. The algorithm is quite universal: it is
almost independent of the type of measurement system
and can be applied to other magnetic confinement facil-
ities.

(iii) Using the above algorithm, the following prob-
lems have been resolved in the preliminary stage of
investigations: (a) the determination of the required
number of magnetic probes and toroidal loops and the
optimization of their locations and (b) the analysis of
the influence of random measurement error on the
accuracy with which the plasma boundary is deter-
mined.

(iv) It has been shown that, under conditions typical
of the GLOBUS-M tokamak, the time required to com-
pute the plasma boundary from external magnetic mea-
surements with the help of a conventional PC amounts
to ~3 ms (further progress in PC performance will nat-
urally reduce this time). The algorithm satisfies the
requirement that the error in determining the plasma
boundary be less than a few millimeters. This allows
one to use the algorithm for real-time control of the
tokamak plasma for the purpose of sustaining a stable
plasma column inside the vacuum vessel throughout
the entire discharge phase.

(v) The software developed can also be used to cal-
culate the main integral equilibrium plasma parameters
(plasma current Ip, poloidal beta βp, linear internal
plasma inductance li, etc.) in pauses between shots.
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