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Abstract—We performed accurate numerical calculations of angle-, time-, and frequency-dependent
radiative transfer for the relativistic motion of matter in gamma-ray burst (GRB) models. Our technique
for solving the transfer equation, which is based on the method of characteristics, can be applied to the
motion of matter with a Lorentz factor up to 1000. The effect of synchrotron self-absorption is taken into
account. We computed the spectra and light curves from electrons with a power-law energy distribution
in an expanding relativistic shock and compare them with available analytic estimates. The behavior of the
optical afterglows from GRB 990510 and GRB 000301c is discussed qualitatively. c© 2003 MAIK “Nau-
ka/Interperiodica”.

Key words: plasma astrophysics, hydrodynamics, and shock waves; gamma-ray bursts.
INTRODUCTION

The nature of the central sources of cosmic
gamma-ray bursts (GRBs) has not yet been estab-
lished. However, it is clear that GRBs with afterglows
are at cosmological distances and release energy
∼1051 erg on a time scale of the order of 100 s. The
observed GRB peculiarities (nonthermal spectra and
rapid temporal variability) require an ultrarelativistic
motion of the emitting plasma with characteristic
Lorentz factors Γ ∼ 100–300 (see Piran 2000; Blin-
nikov 2000).

In the standard GRB model (Rees and Mészáros
1992), a photon–lepton fireball is produced (see
Postnov 1998; Piran 2000). Initially, however, the
GRB energy can also be electromagnetic (Usov 1994;
Spruit 1999; Blandford 2002), and it probably prop-
agates in a narrow cone (jet). The observed gamma-
ray photons are generated by a nonthermal mecha-
nism at the fronts of relativistic shocks (although the
apparent nonthermal spectrum can also be explained
in terms of the model of optically thick shells moving
at relativistic velocities; see Blinnikov et al. 1999).

Here, we develop a technique for solving the
angle-, time-, and frequency-dependent transfer
equation, which is based on the method of charac-
teristics. It can be applied to the motion of matter
with a Lorentz factor up to 1000. The main object
of application of this technique must be the early
generation phases of gamma-ray emission (during

*E-mail: sergei.blinnikov@itep.ru
1063-7737/03/2906-0353$24.00 c© 2
collisions between internal shocks), for which the
optical-depth effects can be noticeable. For now,
however, we consider the radiation from the matter
behind the front of an external shock and use an
analytic solution (Blandford and McKee 1976) to
describe the postshock matter by taking into account
the synchrotron self-absorption (cf. Downes et al.
(2002), where the self-absorption was disregarded
but the hydrodynamics and spectrum of the ultrarel-
ativistic particles were computed in a self-consistent
way). We computed the spectra and light curves from
electrons with a power-law energy distribution in an
expanding relativistic shock and compare them with
available analytic estimates.

FORMULATION OF THE PROBLEM

One of the most popular models for GRB after-
glows involves the propagation of a relativistic shell
being decelerated by an external medium. The rela-
tivistic shock heats up the captured matter as it enters
the shell and causes the particles to be accelerated
to ultrarelativistic energies. The X-ray and optical
afterglows from GRBs in these models are associated
with the nonthermal (synchrotron) the radiation of the
relativistic particles at the front of an external shock
being decelerated in a circumstellar or interstellar
medium (Mészáros and Rees 1997). We consider this
problem in more detail by highlighting the most im-
portant points.
003 MAIK “Nauka/Interperiodica”
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Fig. 1. The shape of the surface (the quasi-ellipsoid on the right) from which photons reach a remote observer (on the left)
simultaneously. The explosion center is located at the vertex of the angle α. The farthest point of the visible surface lies at a
small distance of∼(1− β) of the semimajor axis from the explosion center; the semiminor axis is∼1/γ of the semimajor axis.
The Propagation of Radiation from a Relativistic
Shell

Because of the high shock velocity, light from the
ellipsoidal structure shown in Fig. 1 reaches the ob-
server at a certain time. Let us determine the shape of
the surface more accurately.

Consider an emitting spherical shell of initial
radius R(t0) = R0 with an observer located at a
distance D from its center. The shell begins to
expand as R = R(t). We assume that the time t0
at which the shell expansion begins corresponds
to the time t0obs at which the observation begins;
t0obs = t0 + (D −R0)/c, where c is the speed of light.

The radiation from points of a sphere with a radius
depending on the cosine of the angle µ = cosα will
reach the observer at some time tobs. For convenience,
tobs is defined in such a way that it is equal to zero at
the arrival time of the first signal of the shell motion.
To determine the shape of the surface from which the
radiation arrives, we take into account the fact that
the time at which the propagation of photons from
points of a sphere with a µ-dependent radiusR begins
is the same and specified only by tobs.

In other words,

t+
(D2 +R2 − 2RDµ)1/2

c
= tobs + t0obs.

The surface shape can be determined from this
equation by substituting in t = R−1(t). If we consider
the simplest shell propagation equation

R = R0 + βc(t− t0), 0 < β < 1,

where β is the v/c ratio and γ = (1 − β2)−1/2 is the
Lorentz factor, then we obtain the equation of the
surface

R−R0

βc
+ t0 +

(D2 +R2 − 2RDµ)1/2

c

= tobs + t0obs,

R =
βctobs +R0(1 − β)

1 − µβ
(D � R).
As we see, in the approximation D � R, this
equation is the equation of an ellipse (Rees 1967).
In Fig. 1, the shape is more complex, because it
corresponds to a variable velocity, as suggested by
the solution of Blandford and McKee (1976).

Each point on the sphere is characterized by the
intensity I0(µ, r, ν0, cos δ0) in the comoving frame of
reference. In the observer’s frame of reference, we
write this intensity as I(µ, r, ν, cos δ).

The intensity along the line of light propagation
does not change in the absence of emission and ab-
sorption sources, and at the point of observation it
will be the same as that at the point of radiation.
Therefore, denoting µ′ = cos θ, we have for the flux

Fν = 2π

1∫

cos θmax

I(µ, r, ν, cos δ)µ′dµ′.

Here, it is more convenient to pass from integration
over θ to integration over α (Fig. 1):

Fν = 2π

1∫
µmin

I(µ, r, ν, cos δ)µ′(µ)dµ′(µ).

We denote R(µ)/D = p(µ) and express cos θ and
d cos θ in terms of p(µ) and µ. The dependence R(µ)
appears in the observer’s frame of reference. It should
be remembered that p also depends on t and t, in turn,
can be expressed in terms of tobs. However, to simplify
our formulas, we will omit this dependence. For our
subsequent calculations, we will need the following
geometrical relations between the angles:

cos θ =
1 − µp(µ)

l(µ)
, d cos θ = p2µ− p(µ)

l3(µ)
,

cos δ =
µ− p(µ)
l(µ)

, cos δ0 =
cos δ − β

1 − β cos δ
,

ν

ν0
=

1
γ(µ)(1 − cos δβ(µ))

,
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where l(µ) = (1 + p2(µ) − 2p(µ)µ)1/2. For the flux,
we then have

Fν(tobs) = 2π

1∫
µmin

(µ− p(µ))(1 − µp(µ))
(1 + p2(µ) − 2p(µ)µ)2

p2I0 (1)

×
(
r(µ), ν

(ν0

ν

)
, cos δ0(cos δ)

) ( ν
ν0

)3
dµ.

When the flux is calculated, the condition imposed
on the lower integration limit µmin is determined by
the angle that corresponds to the maximum angular
size of the shell from the point of observation:

p
′
µ(1 − µ2) − p(µ− p) = 0.

Our subsequent calculations are associated with
a specific expression for the intensity I(r, ν0, cos δ0)
on the shell surface and a specific shell propagation
law R(t).

The Transfer Equation

For the intensity on the surface of a relativistic
emitting shell to be calculated, we must solve the
transfer equation in a comoving frame of reference.
This is Eq. (2.12) from Mihalas (1980):

γ

c
(1 + βµ)

∂I(µ, ν)
∂t

+ γ(µ+ β)
∂I(µ, ν)

∂r
(2)

+ γ(1 − µ2)
[(1 + βµ)

r
− γ2

c
(1 + βµ)

∂β

∂t

− γ2(µ+ β)
∂β

∂r

]∂I(µ, ν)
∂µ

− γ
[β(1 − µ2)

r

+
γ2

c
(1 + βµ)

∂β

∂t
+ + γ2µ(µ+ β)

∂β

∂r

]
ν
∂I(µ, ν)
∂ν

+ 3γ
[β(1 − µ2)

r
+
γ2µ

c
(1 + βµ)

∂β

∂t

+ γ2µ(µ+ β)
∂β

∂r

]
I(µ, ν) = η(ν) − χ(ν)I(µ, ν).

Here, η is the emission coefficient and χ is the absorp-
tion coefficient; the subscript 0 was omitted, because
all quantities refer to the comoving frame.

Our numerical method of solution is described in
the next section.

Hydrodynamics

The transfer equation (2) explicitly or implicitly
(via η and χ) includes variables of the medium: its
velocity, density, temperature, etc. For these variables
to be determined, we must solve the system of hydro-
dynamic equations. In general, the transfer and hy-
drodynamic equations constitute a combined system
of equations. In our problem, however, we solve the
ASTRONOMY LETTERS Vol. 29 No. 6 2003
transfer equation separately from the hydrodynamic
equations. At the same time, to determine the vari-
ables of the medium, we use a self-similar solution
for a relativistic shock (with a Lorentz factor of the
postshock matter γ � 1) in the spherically symmetric
case for an ultrarelativistic gas (Blandford and Mc-
Kee 1976). Let us give the formulas of this solution
that we will need below.

Taking the law of time variations in the shock-
front Lorentz factor in the form Γ2 ∝ t−m and choos-
ing, for convenience, the self-similar variable ζ = [1 +
2(m+ 1)Γ2](1− r/t), we derive the following expres-
sions for the pressure, velocity, and density of the
postshock matter from the conditions at the shock
front:

p =
2
3
w1Γ2f(ζ), γ2 =

1
2
Γ2g(ζ), (3)

n′ = 2n1Γ2h(ζ).

Here, w1 is the enthalpy of the preshock matter, n1

is its density, Γ is the shock-front Lorentz factor,
and n′ is the density of the post-shock matter in the
observer’s frame of reference. The matter density in
the comoving frame of reference is related to the latter
by n′ = γn.

Substituting Eqs. (3) into the hydrodynamic
equations yields a system of equations for f(ζ), g(ζ),
and h(ζ) parameterized by m. Consider the case
m = 3, which corresponds to the conservation of total
shell energy. The shock energy contained in the layer
between the radii R0(t) and R1(t) is given by the
expression

E(R0, R1, t) =

R1∫

R0

16πpγ2r2dr.

If we substitute in the solution for the functions f(ζ),
g(ζ), and h(ζ) atm = 3:

f = ζ−17/12, g = ζ−1, h = ζ−7/4, (4)

then the total energy will be E = 8πw1 ×
×t3Γ2/17, which gives the proportionality constant
between Γ2 and t−3.

Synchrotron Radiation

An accurate calculation of the spectrum requires
knowing not only the hydrodynamic quantities but
also the electron energy spectrum and the magnetic-
field strength.

We assume that the electrons have a power-law
distribution and that their total energy behind the
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shock front accounts for a fraction εe of the internal
energy:

N(γ) = K0γ
−p, γ ≥ γmin,0 =

εee0
n0mec2

,

where me is the electron rest mass and K0 = (p −
1)n0γ

p−1
min,0.

The magnetic field is parameterized by the quan-
tity εB, which is equal to the fraction of the inter-
nal energy contained in the magnetic field: B2 =
8πεBe. The magnetic field is randomly oriented and
decreases with time due to the adiabatic shell ex-
pansion. Other assumptions about the magnetic-field
evolution and orientation weakly affect the resulting
spectrum (Granot 1999).

After the electrons have derived energy immedi-
ately behind the shock front, they begin to lose it
through adiabatic cooling determined by the solu-
tion of Blandford and McKee (1976) and through
synchrotron radiation. This process was described in
more detail by Granot and Sari (2001). We present
only the basic formulas for synchrotron radiation used
in our calculations.

The spectral power of a single electron averaged
over the pitch angle is

P (ω) =
35/2

8π
Psync

ωc
F
( ω
ωc

)
,

where

Psync =
1
6π

σTcB
2(γ2

e − 1), ωc =
3π
8

eB

mec
γ2

e

and F (u) is the standard function of synchrotron radi-
ation (Rybicki and Lightman 1979). The synchrotron
absorption coefficient is specified by the formula

χ =
1

8πmeν2

γmax∫
γmin

dγ
N(γ)
γ2

d

dγ

(
γ2P (ω, γ)

)
.

NUMERICAL SOLUTION
OF THE TRANSFER EQUATION

The numerical solution of the problem is based on
the simple and well-known method of characteristics
(Mihalas 1980). We consider the relativistic transfer
equation (2) in the spherically symmetric case in a
comoving frame of reference.

The main complexity of the equation is the pres-
ence of four independent variables. The linearity of
the equation allows its complexity to be decreased by
constructing the characteristics for a given velocity
field along which the differential operator is a total dif-
ferential. If we choose the rays by describing them by
a set of parameters and define s as some length along
the ray, then we can determine the characteristics, the
paths [t(s), r(s), µ(s), ν(s)], in such a way that

dI

ds
=
dr

ds

∂I

∂r
+
dµ

ds

∂I

∂µ
+
dν

ds

∂I

∂ν
+
dt

ds

∂I

∂t
.

We then derive the following system of equations that
describe the characteristics from Eq. (2):

dt

ds
=
γ

c
(1 + βµ),

dr

ds
= γ(µ+ β),

dµ

ds
= γ(1 − µ2)

[1 + βµ

r
− γ2

c
(1 + βµ)

∂β

∂t

− γ2(µ+ β)
∂β

∂r

]
,

dν

ds
= γ

[β(1 − µ2)
r

+
γ2

c
(1 + βµ)

∂β

∂t

+ γ2µ(µ+ β)
∂β

∂r

]
ν.

With the introduction of the characteristic rays,
the transfer problem simplifies to

dI(s)
ds

= η(s) − χ′(s)I(s),

where

χ′(s) = χ(s) + 3γ
[β(1 − µ2)

r

+
γ2µ

c
(1 + βµ)

∂β

∂t
+ γ2µ(µ+ β)

∂β

∂r

]
.

The characteristics are numerically computed by
the fourth-order Runge–Kutta method with an adap-
tive step. The step is adaptive, because for β close to
unity, a small increment along the ray can lead to a
significant angular jump comparable to the angular
size of the emitting region.

Note also that the variable quantities in the
method must be of the order of unity, as follows from
the constraint imposed on the cosine of the angle.
Therefore, it is convenient to use a new system of
units. We denote the physical and dimensionless
(used in the program) quantities by the subscripts r
and p, respectively. So, let

rr = Rrp, tr = Ttp, mr = Mmp.

Denoting

cr = Ccp, Ir = Y Ip,

ηr = Jηp, χr = Xχp,

where c is the speed of light and R, T , C, Y , J ,and X
are constants, we then derive the following expression
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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for C, Y , J , and X in terms of R, T , and M after
simple work with the dimensions:

C = RT−1, Y = MT−2,

J = MR−1T−2, X = R−1.

The Analytic Solutions Used to Test the Numerical
Method

Below, we give some of the analytic solutions that
we used to test the numerical method.

Let us first consider the time- and frequency-
independent transfer equation (2):

γ(µ+ β)
∂I(r, µ)
∂r

+ γ(1 − µ2)

×
[1 + µβ

r
− γ2(µ+ β)

∂β

∂r

]∂I(r, µ)
∂µ

+ 3γ
[β(1 − µ2)

r
+ γ2µ(µ+ β)

∂β

∂r

]
I(r, µ)

= η(r, µ) − χ(r, µ)I(r, µ).

For constant emission and absorption coefficients
and β = 0, the characteristics have the shape of
straight lines r

√
1 − µ2 = p (p is the parameter) and

the equation has the analytic solution

I(r, µ)

=
η

χ

[
1 − exp

{
− χ

(
µr +

√
R2 − r2(1 − µ2)

)}]
.

If we now assume β to be constant, then the shape of
the characteristics changes: p(1 + βµ) = r

√
1 − µ2,

and the solution becomes slightly more complex,

I(s) = I(r, µ)

=
η

χ

{
1 − exp

[
− χ

( γµr

1 + βµ
− γξ(p)R

1 + βξ(p)

)]}
,

where

ξ(p) =
−βp2 −

√
β2p4 + (R2 + βp2)(R2 − p2)

R2 + β2p2
.

In the absence of absorption and for a constant
emission coefficient on the right-hand side of the
transfer equation, the analytic solution for the central
characteristic (µ = ±1) is

I(0) =
ηR

γ(1 − β)
, I(R) = 2ηRγ,

at β = const and

I(0) = ηR
[
2
ln(1 +B)

B
− 1
]
,

I(R) = 2ηR
(1 −B

1 +B

)3/2[ 1
B

ln
1 +B

1 −B
− 1
]
,
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Fig. 2. Instantaneous afterglow spectra at various times
t = 10N s, where N is the number near the curve;Fm and
νa are the analytically estimated flux and self-absorption
frequency, respectively.

where B = β(R), at β ∼ r.
To test the temporal component, we used the

problem of the change in intensity near the surface
of an emitting static transparent spherical shell with
time when the emission coefficient abruptly changes
from η0 to η1. If we use the notation p = R/D is
the ratio of the shell radius to the distance from the
shell center to the point of observation, t+ is the time
measured from the beginning of the intensity change
at the point of observation, c is the speed of light,
τ = t+c/D, and d = 1 − p+ τ , then the solution for
this problem is

F1(τ) = G1(η1, (1 − p)2) −G1(η1, d
2)

+G1(η0, d
2) −G1(η0, 1 − p2),

G1(η, x) =
πηR

4p

[2
3

(1 − p2)3

x3/2
− 2

(1 − p2)2

x1/2

+ 2(1 − p2)x1/2 − 2
3
x3/2

]
.

Here, τ changes from 0 to τ∗ =
√

1 − p2 − 1 + p, i.e.,
within the interval during which the changes at the
point of observation occur, and F1(τ) is the flux. In
the static case, this flux is

F = 2π

p∫

0

(µ− p)(1 − µp)p2

(1 + p2 − 2pµ)2
I (µ∗) dµ,

where

µ∗ =
µ− p

(1 + p2 − 2pµ)1/2
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Fig. 3. Afterglow light curves for a set of frequencies
ν = 10N Hz, where N is the number near the curve.

is the cosine of the angle to the normal to the sphere
surface on which the intensity depends.

Comparison of the solutions considered above
with the calculations based on our numerical method
shows that the numerical method is applicable to the
motion of matter up to Lorentz factors γ ∼ 1000 with
an error of less than 1%.

RESULTS OF THE NUMERICAL SOLUTION

We chose the following parameters for our nu-
merical calculations of the afterglow spectra. These
include the parameters that describe the hydrody-
namics: the energy E0 released through the process
that leads to a GRB and the ambient density n1; the
parameters that describe the radiation: the fraction of
the internal energy contained in the magnetic field εB ,
the fraction of the internal energy transferred to elec-
trons εe, and the power-law index in the electron
energy distribution p; and one more parameter: the
photometric distance to the GRBD.

Our main calculation, whose results are presented
here, is based on the following published parame-
ters: E0 = 1053 erg, n1 = 1 cm−1, εe = 0.5, εB = 0.1,
p = 2.5, and D = 1027 cm.

The large amount of released energy E0 is related
to the spherical symmetry of the problem, while the
observed GRBs can represent a jet with a solid an-
gle Ω. The total energy will then be lower by a factor
of Ω/4π.

The computed spectra and light curves are shown
in Figs. 2 and 3. Here and below, the time is measured
in the observer’s frame of reference. Let us compare
our results with available theoretical estimates (Hur-
ley et al. 2002). In these estimates, the synchrotron
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spectrum is described by the maximum flux Fmax and
three characteristic frequencies (νmin, νcool, νa), where
νmin is the synchrotron frequency of the electron with
minimum energy whose Lorentz factor is γmin,0, νcool
is the cooling frequency, and νa is the self-absorption
frequency. For these four parameters, the theoretical
estimates are given by the formulas

νa = 2 × 109 Hz E1/5
52 n

3/5
1 ε−1

e ε
1/5
B = 4 × 109 Hz,

νcool = 9 × 1012 Hz E−1/2
52 n−1

1 ε
−3/2
B t

−1/2
day

= 2.66 × 1016 Hz t−1/2
s ,

νmin = 5 × 1015 Hz E1/2
52 ε2eε

1/2
B t

−3/2
day
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Fig. 5. Comparison of the times that correspond to the
maximum flux of the light curves in the numerical calcu-
lations and analytic estimates.
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= 3.80 × 1022 Hz t−3/2
s ,

Fmax = 20 mJy E52n
1/2
1 ε

1/2
B d−2

28 = 6.32 × 10−23 mJy.

Between these frequencies, the spectrum is a
power law with indices (2, 1.3,−1/2,−p/2) for t <
t0 = 4.2 × 105 s and (2, 1.3,−(p − 1)/2,−p/2) for
t > t0.

Let us also compare the computed light curves
with theoretical estimates (Sari et al. 1998), in which
the characteristic times (tmin, tcool) were calculated
from the flux Fmax and the characteristic frequencies
(νmin, νcool, νa):

tcool = 7.3 × 10−6E−1
52 n

−2
1 ε−3

B ν2
15 day = 63ν−2

15 s,

tmin = 0.69E1/3
52 ε4/3

e ε
1/3
B ν

−2/3
15 day

= 2.37 × 104ν
−2/3
15 s.

By introducing the frequency ν0 = νcool(t0) =
tmin(t0) = 1.14 × 1013 Hz, we separate two cases:
tmin < tcool for ν > ν0 and tmin > tcool for ν < ν0.

The results of our comparison are presented in
Figs. 4 and 5. These figures show the frequencies for
the spectra and the times for the light curves that
correspond to the maximum flux calculated numer-
ically and analytically, in accordance with the above
estimates.

The plot of afterglow intensity versus observation
angle (α ∼ θ) (Fig. 6) at different frequencies reveals
a bright ring attributable to the hotter matter at the
early afterglow stages. The higher the radiation fre-
quency, the larger the contrast between the center and
the edge of the image. The same result was obtained
by Granot et al. (1999).

The GRB energy must be released in a narrow
cone, a jet. However, at early stages, the pattern for
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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an observer near the cone axis will differ only slightly
from the pattern produced by a spherical shock. At
late stages, the jet becomes spherical.

In Fig. 7, the part of the theoretical light curve near
the R and K bands is highlighted. We see that the
light curve goes into a decline more slowly at longer
wavelengths than it does at shorter wavelengths. This
chromatic behavior is characteristic of the optical af-
terglows from GRB 990510 (Stanek et al. 1999) and
GRB 000301c (Jensen et al. 2001).

These objects deserve more detailed study, but
so far our model disregards several physical effects
(inverse Compton radiation, the Klein–Nishina ef-
fect, the non-power-law shape of the self-consistent
electron spectrum, and others). Therefore, it cannot
be directly used to interpret the spectra of early GRB
afterglows. The work to take these effects into ac-
count is continuing.

CONCLUSIONS

The most popular method for analytically estimat-
ing the spectra and light curves of GRB afterglows
involves deriving the characteristic frequencies and
times, determining their behavior, and calculating the
corresponding flux and constructing the power-law
segments of the spectra and light curves from the de-
rived values. These methods are extensively presented
in the literature (Granot and Sari 2001; Sari et al.
1998; Wijers and Galama 1999; Waxman 1997). The
characteristic frequencies in different papers of the
same cases occasionally differ by a factor of 70, in-
cluding those of the same authors, suggesting that
these treatments are insufficient.

Our calculations unambiguously describe the af-
terglow spectra and light curves in terms of the model
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under consideration by removing the uncertainty
in the characteristic parameters and without using
the subsequent approximations. The behavior of our
results shows a relationship to the observed after-
glows, which gives us confidence that our technique
can be used to study the early generation phases
of gamma-ray emission (during collisions between
internal shocks).
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Abstract—The expansion of a two-component Universe with an arbitrary spatial curvature is considered.
It is shown that the Friedmann integrals of an almost flat Universe do not coincide. c© 2003 MAIK “Nau-
ka/Interperiodica”.
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The photometric distance–redshift relation for
type Ia supernovae is known to reveal an acceleration
of the cosmological expansion (Riess et al. 1998;
Perlmutter et al. 1999). The latter is possible if
there is a cosmological repulsion, which is usually
described by the Λ term in the Einstein equations
or, equivalently, by the presence of a vacuumlike
medium with a negative pressure. The expansion be-
comes accelerated when the doubled vacuum density
exceeds the decreasing matter density. These two
components are described by two evolution constants
of the Universe called Friedmann integrals. Recently,
Chernin (2001, 2002) has claimed that the coinci-
dence of the Friedmann integrals should be added to
the well-known cosmic coincidences (Garriga and
Vilenkin 2001) and investigated the possible causes
and effects of this coincidence. In this paper, we
show that the Friedmann integrals of our almost flat
Universe do not and cannot coincide.

The dynamics of the two-component Universe is
described by the Einstein field equation for the expan-
sion factor a:

ȧ2 =
Am

a
+
a2

A2
v

− k, (1)

where k = 1, 0, and −1 for positive, zero, and neg-
ative spatial curvature in a frame comoving with the
cosmological expansion. The factor a has the mean-
ing of the radius of space curvature for k = ±1 and
is defined to within an arbitrary scale transformation
for the flat Universe k = 0. Below, we use a system of
units with c = 1.

The Friedmann integrals Am and Av,

Am =
8π
3
Gρma

3, A−2
v =

8π
3
Gρv =

Λ
3
, (2)

*E-mail: karpov@msmu.ru
1063-7737/03/2906-0361$24.00 c©
determine the evolution of the Universe. Here, ρm
is the matter density, including hidden mass (dark
matter); ρv is the vacuum energy density; Λ is the
cosmological constant; and G is the gravitational
constant. Denote

Um = −Am

a
, Uv = − a2

A2
v

, U = Um + Uv.

The functions Um(a), Uv(a), and U(a) are plotted in
the figure.

For k = 1, the Friedmann integralAm is the maxi-
mum radius of curvature in the standard Λ = 0 model;
the integral Av is equal to the initial value of a in the
de Sitter Universe ρm = 0. At the point a = ã,

ã3 =
1
2
AmA

2
v, (3)

the maximum Ũ of the potential barrier U(a) is lo-
cated:

Ũ = U(ã) = −
(
αAm

Av

)2/3

, (4)

where α = 3
√

3/2. At this point, a balance between
matter gravitation and vacuum antigravitation is
reached, ρm = 2ρv, and the deceleration parameter q
changes its sign:

q = − äa
ȧ2

=
ã3 − a3

a3 − aA2
v + 2ã3

. (5)
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The density parameters are Ωm = ρm/ρc and Ωv =
ρv/ρc, where ρc is the critical density, ρc = 3H2/8πG,
H = ȧ/a is the Hubble constant. The Einstein field
equation (1) relates the density parameters and the
Friedmann integrals by

(Ω − 1)3 =
(
Av

Am

)2

Ω2
mΩvk

3, (6)

where Ω is the total density parameter, and Ω = 1 for
the flat universe; in model (1), Ω = Ωm + Ωv.

As we see from the figure, the Friedmann integrals
coincide if the point of intersection of the Um(a) and
Uv(a) curves is at the level U = −1. If the U = −1
level line passes through the vertex of the potential
barrier, thenAv = αAm. For |Ũ | > 1, i.e., whenAv >
αAm, the closed universe cannot overcome the po-
tential barrier and cannot expand with acceleration.

According data from Chernin (2001, 2002), Av

differs from Am by no more than an order of mag-
nitude;1Av > Am and the scale factor a0 is currently
equal to Av. For our almost flat Universe, Ωv � 0.7
and Ωm � 0.3. As we see from relation (6), irrespec-
tive of the curvature sign, the ratio of the Friedmann
integrals Av/Am is related to the degree of spatial
flatness of the Universe: Ω → 1 ⇔ Av/Am → 0, and
the vertex of the potential barrier Ũ (4) goes down-
ward from the U = −1 level. For this reason, a0 and
Av for the almost flat Universe are not equal either:(

a0

Av

)3

=
Ωv

Ωm

Am

Av
	 1, (7)
1In Chernin (2002), the dark-matter Friedmann integral AD

is related to the integral Am (2) by the relation Am = 2AD.
and a/Av → ∞ when Ω → 1. In this case,(
a0

Am

)3

=
Ωv

Ωm

Av

Am
� 1. (8)

The latest data on the cosmic microwave background
anisotropy constrain the spatial curvature of the Uni-
verse (Benoit et al. 2002): |Ω − 1| ≤ 0.03. According
to (6), this corresponds to Av/Am ≤ 2 × 10−2. We
emphasize that the foregoing assertions regarding
the ratio of the Friedmann integrals are valid for
k = ±1. A flat space is the limiting case of a curved
space where Av/Am → 0. The latter can also be seen
from the fact that Av does not depend on the radius
of curvature and Am ∝ a3 (2). For the formally flat
Universe when k = 0, Eq. (6) turns into an identity
and the parameter a in Eq. (1) becomes an arbitrary
scale factor. Redefining the latter, we can make Am

arbitrary and the ratio of the Friedmann integrals
becomes meaningless.
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Abstract—Multicolor BV RI surface photometry of the low-luminosity (MV ≈ −18m) spiral galaxy
NGC 4136 is presented. The photometric parameters of its components and the color distribution over
the galactic disk are estimated. The color indices and the corresponding effective ages are determined for
the brightest star-forming regions. The disk-to-dark halo mass ratio is derived from the measured rotation
curve of the galaxy. The disk mass dominates within the optical boundaries of the galaxy, so its disk can be
considered as a self-gravitating system. c© 2003 MAIK “Nauka/Interperiodica”.
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1. GENERAL INFORMATION

The goal of our study is to perform detailed
multicolor surface photometry of the spiral galaxy
NGC 4136 and its brightest star-forming regions.

NGC 4136 is a nearby SBc spiral galaxy observed
almost face-on. The most important parameters of
the galaxy adopted here are listed in Table 1. Figure 1
reproduces our V -band CCD image of the galaxy. Its
distance is highly uncertain: the line-of-sight velocity
relative to the Local Group is less than 600 km s−1

and the distance is 7.6 Mpc for the Hubble constant
H0 = 75 km s−1 Mpc−1.1 The galaxy has a bar and
a ring, as well as a well-developed spiral structure
in its outer disk (Fig. 1). The galaxy luminosity is
unusually low: for the assumed distance, the absolute
magnitude isMV ≈ −18m.

Surface photometry of NGC 4136 was published
in several reviews: in the B, V (Gavazzi et al. 1994),
r (Grosbol 1985), R and J (Conselice 1997) bands.
However, no detailed photometric studies of the
galaxy have been carried out previously.

Measurements show that the brightness of the
galactic disk exponentially decreases with distance r
from its center with a radial scale length of 25.6

′′

*E-mail: gusev@sai.msu.ru
**E-mail: zasov@sai.msu.ru

***E-mail: kaj@rebus.sao.ru
1Given that the velocity field is anisotropic in the vicinity
of the Local Group, the distance to NGC 4136 is 8 Mpc
with a probable error of ±1–2 Mpc (D.I. Makarov, private
communication).
1063-7737/03/2906-0363$24.00 c©
(Grosbol 1985; Baggett et al. 1998), while the
decrease in bulge brightness follows de Vaucouleurs’
law with an effective radius of 76.2

′′
(Baggett et al.

1998). However, the bulge contribution to the total
galaxy luminosity is extremely small (less than 1%)
(Grosbol 1985). According to the classification
scheme for the central regions of galaxies by
van den Bergh (1995), a diffuse nucleus is located at
the center of NGC 4136. Conselice (1997) pointed
out that the brightness of the outer regions in
NGC 4136 are azimuthally asymmetric. A short,
thick bar with an axial ratio of b/a = 0.7 (Mar-
tin 1995; Chapelon et al. 1999) that stretches to the
ring of NGC 4136 is observed (Fig. 1).

An H I study of the galaxy (Allsopp 1979) showed
a marked difference between the radial velocities of

Table 1. Basic Parameters of NGC 4136

Parameters Values

Type SBc

mB , mag. 11.83

M0,i
B , mag. –18.41

VLG, km s−1 568

R, Mpc (Н0 = 75 km s−1 Mpc−1 7.6

D25, arcmin 3.93

i, deg 22.4

P.A., deg 72
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. A V -band CCD image of NGC 4136. The size is
2.5′ × 4.0′.

NGC 4136 determined from optical and
21-cm observations (445 ± 50 and 596 ± 13 km s−1,
respectively). The H I mass in the galaxy recal-
culated to the assumed distance of 7.6 Mpc is
M(H I) = 4.8 × 108M⊙ , while the total mass of
NGC 4136 within 3.3′ of its center is 9.6 × 109M⊙
(Allsopp 1979). The mass-to-light ratio of the galaxy
is reported to be low, (M/L)total = 4.6 ± 1.5(M/L)� .
However, this quantity is uncertain, because the
inclination of NGC 4136 to the line-of-sight is small
(Allsopp 1979).

The H2 mass in the galaxy is lower than the H I
mass:M(H2) = 3.3 × 108M⊙ (Sage 1993).

The disk-to-dark halo mass ratio for the galaxy
has not been estimated previously.

Basic information on the galaxy is presented in
Table 1, where all of the data were taken from the RC3
(de Vaucouleurs et al. 1991) and LEDA catalogs,
except for the position angle of NGC 4136. The value
determined by Fridman et al. (2003) from kinematic
and photometric data is given for the latter.

2. OBSERVATIONS AND DATA REDUCTION

NGC 4136 was observed on January 22/23,
1998, with a regular CCD photometer (Zin’kovskiı̆
et al. 1994) attached to a 1-m Zeiss-1000 telescope
at the Special Astrophysical Observatory (with a
focal length of 13.3 m). A K585 CCD camera used
in combination with broadband B, V , R, and I
filters reproduced a photometric system similar to
the standard Johnson–Cousins BV RI system. The
CCD array size is 530 × 580 pixels, which provides
a 143′′ × 212′′ field of view for an image scale of
0.28′′ × 0.37′′ per pixel.

Three exposures were taken in each photometric
band; the telescope was slightly displaced by several
arcseconds between these exposures to reduce the
effect of CCD defects. The duration of each exposure
in all bands was 600 s. The seeing was 2.0′′–3.0′′.

Standard stars from the list of Мajewski et al.
(1994) (PG0220, PG1407, RU149, and S101429),
whose images were obtained on the same observing
night, were used for photometric calibration. We also
used the aperture photometry of galaxies taken from
the catalog of Prugniel and Heraudeau (1998).

The primary image processing was performed at
the Special Astrophysical Observatory. A dark frame,
which is a mean of several exposures taken with the
same integration time as the object when the shut-
ter was closed, was subtracted from the integrated
images of the object and the standard stars to allow
for the electronic zero shift and for the effect of hot
pixels. The integrated twilight-sky images taken in
each band with a signal-to-noise ratio of at least 60–
80 were used as a flat field. All images were divided by
the flat field to allow for a nonuniform detector pixel
sensitivity.

The subsequent processing was performed at the
Sternberg Astronomical Institute on the basis of a
standard procedure using the ESO–MIDAS image
processing systems. The main processing stages in-
cluded the following:

(a) an image reduction to the same scale (0.37′′
per pixel) and galaxy image matching (to within
0.1 pixel); due to the image displacement relative
to one another, we managed to effectively remove
cosmic-ray particle hits and the effects of individual
hot pixels and bad CCD columns;

(b) the sky-background determination and sub-
traction from each image;

(c) the addition of galaxy images taken in the same
bands;

(d) and allowance for the air mass;
(e) the transformation of counts to a logarithmic

scale (magnitudes per square arcsec) based on pho-
tometric calibration;

(f) a correction for the difference between the
instrumental photometric system and the standard
Johnson–Cousins system (an allowance for the color
equations derived from standard stars);
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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(g) the comparison of galaxy images taken in dif-
ferent bands and a mapping of the color distribution.

The photometric calibration accuracy was 0.04m

in B, V , and I and 0.06m in R.
We corrected all of our data (brightnesses and

color indices) for galactic extinction (using the cat-
alog of de Vaucouleurs et al. 1991). In constructing
the two-color diagrams, we formally applied a cor-
rection for the disk inclination to the color excesses,
although it is small (≈0.01m) in our case. The color
excesses for B − V , V −R, and R− I are 0.06m,
0.03m, and 0.04m, respectively. Below, the corrected
quantities are denoted by the indices 0, i.

The image scale for the assumed distance to the
galaxy is 13.6 pc per pixel.

3. ANALYSIS OF THE PHOTOMETRIC
MEASUREMENTS

3.1. Photometric Profiles and Morphology
of the Galaxy

A bright region (the central part of a bulge or
a circumnuclear disk) can be distinguished at the
galactic center (Figs. 2a–2c). The maximum surface
brightness within several pixels at the galactic center
(in the region 12′′ = 0.45 kpc in diameter) is mV =
18.7m arcsec−2. Outside the circumnuclear region,
the bulge has a low luminosity and cannot be traced
by the photometric profiles. A short, bright bar with
a flat photometric profile can be distinguished in the
inner galaxy (Fig. 2b). The length of the semima-
jor axis of the bar is 0.55 kpc (15′′) and its mean
surface brightness ismV = 20.75 ± 0.05m arcsec−2.
The bar position angle is 22◦ ± 2◦; i.e., the bar is
almost perpendicular to the major axis of the galaxy
(Figs. 2c and 3b). The isophotal ellipticity of the bar
is e = 0.18 ± 0.04; this parameter suggests that the
bar belongs to the category of weak bars.

Two bright, short symmetric arms and two long,
tightly wound spiral arms emerge from the bar ends,
with the short and long spiral arms being wound in
opposite directions (Figs. 1 and 2c). The oppositely
wound arms intersect to form a ring 2.4 kpc (65′′)
in diameter. The ring position angle (P.A. = 120◦ ±
10◦) slightly increases with passband wavelength but
remains close to the position angle of the galaxy as a
whole (Fig. 3b). The isophotal ellipticity of the ring
reaches its maximum at the distance r = 25′′ from
the center, being 0.21 ± 0.01 in B, V , and R and
0.33 ± 0.01 in I (Fig. 3a). The azimuthally averaged
disk surface brightness of NGC 4136 within the ring
decreases only slightly with distance, being, on aver-
age, 21.3 ± 0.1m arcsec−2 in V (Figs. 2a and 2c).
ASTRONOMY LETTERS Vol. 29 No. 6 2003
Table 2. Parameters of the disk and bulge in NGC 4136 (in
the V band)

Parameters Disk Inner disk Bulge

r, arcsec 20–80 20–46 2–6

µV (0) 20.39 ± 2.66 20.29 ± 0.39 17.67

µV (re) – – 25.99± 0.92

r0, kpc 1.08 ± 0.28 1.02 ± 0.02 –

r0, arcsec 29.34 ± 7.63 27.87 ± 0.71 –

re, kpc – – 0.58 ± 0.11

re, arcsec – – 15.73± 2.99

Several bright and many faint diffuse regions (H II
regions) are observed in the outer disk in the galac-
tic spiral arms; their color indices are considered in
Subsect. 3.4. The two bright starlike objects east
of NGC 4136, one object in the northeast (see the
lower part of Fig. 1) and the other, brightest object
in the southeast, turned out to be the stars of our
Galaxy projected onto NGC 4136. The starlike object
east of NGC 4136 belongs to the galaxy itself (see
Subsect. 3.4).

A large difference between the galaxy position
angles in I and in B, V , R is observed in Fig. 3b
at r = 40′′. This difference results from the influence
of radiation from the spiral arms of NGC 4136 at
this galactocentric distance. In the I band, the outer
parts of the spiral arms are visually unseen and give
no contribution when plotting P.A. against distance.
Nevertheless, the position angle of the major axis
cannot be accurately determined without invoking
additional data on the galaxy. The position angles of
the major axis estimated for the galactic region under
consideration (outside the bar) from the orientation
of the major axes of isophotes fitted with ellipses lie
within the range 90◦–140◦, which differs from the
estimate (72◦) obtained by Fridman et al. (2003) from
averaging up to large galactocentric distances. The
small disk inclination prevents an accurate estimation
of P.A. For definiteness, the photometric profiles in
Figs. 2a, 4, and 5a are shown for P.A. = 135◦.

The isophotes on the periphery of NGC 4136 are
nearly circular. Their ellipticity reaches a minimum
of 0.05 ± 0.01 at r = 40′′ (Fig. 3a). The sharp in-
crease in isophotal ellipticity at r = 50′′ is an artifact
associated with the influence of a bright field star
and bears no relation to NGC 4136. The isophotal
ellipticities obtained for the I-band galaxy images at
r > 25′′ are 0.1 larger than those for the B, V , and
R bands. This is attributable to the locations of the
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Fig. 3. (a) Isophotal ellipticity e = 1 − b/a and (b) position angle of NGC 4136 versus the distance r from the galactic center
in B, V , R, and I .
spiral arms in NGC 4136, which stretch it in width
in shorter-wavelength bands. In general, the galactic
disk inclination determined from the isophotal ellip-
ticity at r ≈ 1′ is i = 35◦ ± 3◦. This value is slightly
larger than the value presented in the LEDA (i =
22◦) or RC3 (de Vaucouleurs et al. 1991) catalogs
(according to RC3, the logarithm of the galaxy axial
ratio is log a/b = 0.03 ± 0.03, which corresponds to
i = 0◦–30◦) and the value of i = 18◦+5◦
−10◦ from Frid-

man et al. (2003).
Figure 4 shows the averaged photometric profiles

constructed for the derived P.A. and b/a. The local
increase in surface brightness at r = 54′′ can be
explained by the influence of a field star. Analysis
of the photometric profiles indicates that the disk
brightness of NGC 4136 within r = 20

′′
–46′′ de-
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creases exponentially with a scale length of 1.02 ±
0.03 kpc (27.9′′ ± 0.7′′) in the V band and a central
surface brightness µV (0) = 20.29 ± 0.39m arcsec−2.
The profile decomposition into a disk with an ex-
ponential brightness decrease and a bulge shows
that the decrease in brightness at r = 2′′–6′′ fol-
lows de Vaucoulers’ law. The galactic bulge has
the following parameters in the V band: an effec-
tive radius re = 0.58 ± 0.11 kpc (15.3′′ ± 3.0′′) and
µV (re) = 26.0 ± 0.9m arcsec−2. These data confirm
the conclusion of van den Bergh (1995) about the
presence of a compact bulge (nucleus) in NGC 4136,
in contrast to the conclusion of Baggett et al. (1998)
about the presence of an extended bulge in this galaxy.

The total V luminosity of the galactic bulge is
L
bulge
V = (0.006 ± 0.002)Ldisk

V .

The decrease of the disk brightness in I is appre-
ciably larger than that in bluer bands (Fig. 4). This
is probably because the relative number of young,
hot stars increases to the periphery of the galaxy.
Unfortunately, because of the high sky background
level in I and, as a result, the low signal-to-noise
ratio, we could not study the parameters of the outer
disk in NGC 4136 in this band.

The integrated bulge and disk parameters are
given in Table 2.

3.2. The Color Distribution in the Disk of NGC 4136

The total color index of NGC 4136 is B − V =
0.6m (de Vaucouleurs et al. 1991), which is typical
of late-type galaxies. Note, however, that our mea-
surements refer only to the inner galactic region with
a diameter that is approximately halfD25.

The galactic nucleus is moderately red; its color
indices are B − V = 0.76m ± 0.03m, V −R =
0.52m ± 0.03m, and R− I = 0.73m ± 0.08m

(Figs. 5a–5e), with the central region of the galaxy
within 2

′′
of its center being bluer than its surround-

ings by 0.05m inB − V and V −R. The galaxy blues
to B − V = 0.55m ± 0.10m, V −R = 0.3m ± 0.1m,
andR− I = 0.35m ± 0.05m with increasing distance
from its center (Figs. 5a, 5c–5e), which reflects an
increase in the relative number of young stars in the
outer galaxy.

The bar of NGC 4136 also becomes bluer to-
ward the periphery. Despite the small length of the
bar, its color indices appreciably decrease with in-
creasing galactocentric distance from 0.76m ± 0.01m

to 0.65m ± 0.01m in B − V , from 0.58m ± 0.01m to
0.40m ± 0.02m in V −R, and from 0.65m ± 0.01m to
0.49m ± 0.02m inR− I (Fig. 5b). Such an enhance-
ment of the star-formation rate on the bar periphery is
a frequent occurrence (Gusev 2000).
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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Fig. 4. Averaged B, V , R, and I photometric profiles of
NGC 4136 (in mag. arcsec−2).

The color of the inner disk in NGC 4136 within
the ring changes only slightly with distance from
its center. The color indices in this region are, on
average, 0.65m ± 0.05m in B − V , 0.38m ± 0.03m in
V −R, and 0.50m ± 0.05m inR− I (Fig. 5a); beyond
the ring, the disk becomes bluer (Figs. 5a, 5c–5e).

An astonishingly sharp decrease in R− I is ob-
served along the minor axis of NGC 4136 (Fig. 5b).
As was noted in Subsect. 3.1, this decrease can be
explained by the contribution from young stars in the
spiral arms. Their radiation gives a small contribution
in I and a larger contribution in R (apart from the
stellar radiation, the Hα emission line of H II regions
also falls within this band).

The bright diffuse regions in the spiral arms on
the periphery of the galaxy, which are sites of star
formation, are bluest in NGC 4136. For them, R−
I = 0.0m, which corresponds to an extremely young
stellar population (for more details, see Subsect. 3.4).

3.3. Two-Color Diagrams

Figures 6a–6d show two-color (B − V )i0–(V −
R)i0 and (B − V )i0–(V − I)i0 diagrams for various
regions of NGC 4136. The numbers in Figs. 6a and 6c
denote the following galactic regions: 1, the nucleus
color of NGC 4136 within 2.7′′ of its center; 2, the
bulge color within the range 3′′ to 5.5′′ from its center;
3, the color of the spiral arms in NGC 4136; 4, the
color of the galactic disk; and 5–7, the bar colors at
galactocentric distances of 0.26, 0.40, and 0.51 kpc
(7′′, 11′′, and 14′′), respectively.

In general, the scatter of points in the two-color
diagrams for various components of NGC 4136 is
small (Figs 6a, 6c). The color indices suggest that
there are no powerful starbursts. The galactic center,
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and (b) along the major axis of the galactic bar and (c) B − V , (d) V − R, and (e) R − I color maps of the galaxy.
the circumnuclear region, and the inner bar (points 1,
2, and 5, respectively) have almost the same colors
and are located in the two-color diagrams near the
normal color sequence (NCS) for galaxies in the re-
gion occupied by stellar systems with predominantly
old stellar populations and moderate color excesses
related to intrinsic extinction. The outer bar and the
spiral arms of NGC 4136 (points 6, 7, and 3, respec-
tively) have a normal stellar population for galaxies,
with the fraction of young stars increasing to the pe-
riphery of the galaxy. Curiously, the disk of NGC 4136
between the main spiral arms proved to be no less
bluer in V −R and V − I than the galactic spiral
arms. Star-forming regions in this galaxy are scat-
tered over the entire disk, being encountered both in
and between the spiral arms.

Thus, NGC 4136 is a nearby low-luminosity spiral
galaxy with a moderate star-formation rate in which
blue stars in the inner disk weakly concentrate to-
ward the spiral arms and the contribution of young
stars toward the total radiation increases toward the
periphery.

3.4. Sites of Star Formation in the Galaxy

We distinguished the eleven brightest small blue
regions, which are sites of star formation, in the spiral
arms of NGC 4136. Figures 6b and 6d show their
positions in the two-color (B − V )i0–(V −R)i0 and
(B − V )i0–(V − I)i0 diagrams. To estimate the color
indices of these blue regions, we determined their
brightness in each band by subtracting the bright-
ness of the adjacent disk regions. The positions of
the sites of star formation in the two-color diagrams
allow their ages to be estimated by using the evolu-
tionary tracks of aging stellar systems for Z = 0.008,
0.02, and 0.05 obtained by means of the PEGASE2
program (Fioc and Rocca-Volmerange 1997). The
differences between the assumed metallicities Z give
a scatter that we took into account when estimating
the errors in the ages. The age-estimation proce-
dure was described in more detail by Gusev (2002).
Table 3 gives the derived parameters of the objects:
the coordinates from the galactic center in arcsecs
(column 2); the (B − V )i0, (V −R)i0, and (V − I)i0
color indices (columns 3–5); the diameters of the
regions in parsecs (column 6); and the effective ages
(column 7).

The sizes of the sites of star formation in
NGC 4136 under consideration lie within the range
from 100 to 170 pc. There are no large young stellar
complexes in the galaxy. The sizes of the observed
star-forming regions are in good agreement with
those of large stellar associations (according to the
hierarchical star formation scale of Efremov (1989)).

Seven of the star-forming regions under con-
sideration (2–5, 7–9) are located at deprojected
distances of 1.6–1.9 kpc from the galactic center,
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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at the outer ring boundary of NGC 4136. According
to Elmegreen (1994), favorable conditions for the
formation of young stellar complexes in late-type
galaxies are produced in the inner Lindblad resonance
(ILR) region. On the other hand, the short bars
in late-type galaxies can stretch to distances that
are limited by the ILR radius (B. Elmegreen and
D. Elmegreen 1985). Thus, based on the bar and
ring sizes, we can assume that the ILR radius in
NGC 4136 is 1.7 ± 0.15 kpc.

The ages of most of the star-forming regions in
NGC 4136 under consideration do not exceed 107 yr
(Table 3), although the age of one of the regions under
study (6) can reach 3.5 × 108 yr.

3.5. The Mass Distribution in the Galaxy
The rotation curve of the galaxywas first measured

by Allsopp (1979) in the H I line. This author found
the rotational velocity to slowly increase up to approx-
imately 30sin−1i at 200′′. However, the derived shape
ASTRONOMY LETTERS Vol. 29 No. 6 2003
of the rotation curve cannot be considered to be re-
liably determined, because the beam size of the radio
telescope was larger than the galaxy size. Fridman et
al. (2003) has recently obtained an optical rotation
curve of the galaxy from Hα observations with a
Fabry–Perot interferometer. The shape of the V (r)
curve for the inner galactic region r < 70′′, where
it was determined most reliably, is shown in Fig. 7
for the assumed i = 18◦ (from Fridman et al. 2003).
Below, however, we show that this value of i is proba-
bly underestimated. The isolated point at r ≈ 7.6 kpc
corresponds to themaximum rotational velocity of the
galaxy: approximately 100 km s−1 at r = 206′′, as
measured by Allsopp (1979).

However, the uncertainty in i is still large and can
lead to an error in the estimated rotational velocity by
a factor of the order of 2. The decrease in velocity at
r ≈ 40′′ cannot be explained for any of the acceptable
mass distributions and, clearly, this feature in the
rotation curve is associated with local noncircular
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Table 3. Parameters of the sites of star formation

№ Coordinates,
arcsec

(B − V )i
0 (V −R)i

0 (V − I)i
0 d, pc τ, 106 yr

1 2 3 4 5 6 7

1 58.8 N, 0.6 W 0.30 0.35 0.10 140 2.7 ± 1.3

2 42.3 N, 28.0 W 0.29 0.40 0.21 120 4.0 ± 1.6

3 38.3 N, 25.8 W 0.17 0.13 –0.22 175 4.4 ± 2.6

4 32.8 N, 33.9 W 0.29 0.36 0.36 115 5.2 ± 0.4

5 24.3 N, 43.1 W –0.01 – 0.01 100 4.6 ± 0.8

6 0.5 N, 23.6 W 0.34 0.49 – 160 <350

7 11.2 S, 33.2 W 0.10 0.27 0.47 150 6.4 ± 0.8

8 31.4 S, 6.4 W 0.18 0.20 0.50 120 6.4 ± 1.0

9 12.6 N, 28.0 E 0.09 0.24 0.92 145 16 ± 10

10 24.7 N, 39.0 E 0.06 0.27 –0.23 95 3.4 ± 2.1

11 5.6 N, 67.2 E 0.37 0.37 –0.10 110 2.7 ± 0.8
gas motions (note that the brightest H II regions are
observed at this distance).

The thin lines in Fig. 7 indicate the contribution
from the galactic disk with the photometrically de-
termined radial scale length and the dark halo. The
bulge mass is too low to be reliably estimated from
available data. The absence of a massive bulge and
the fixing of a radial disk scale length, to a large
extent, alleviate the problem of the nonuniqueness of
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Fig. 7. The rotation curve of NGC 4136 (squares), as
constructed by Fridman (2003). The isolated point is the
rotational velocity, as derived by Allsopp (1979). Lines 1
and 2 represent the components of the rotation curves
associated with the disk and the halo, respectively, and
line 3 represents a model rotation curve of the galaxy.
the solution when separating the rotation curve into
components.

As we see from the model rotation curves, the disk
is self-gravitating almost over its entire length: the
dark-halo mass begins to dominate only on the far
periphery of the galaxy (the optical disk is traceable
up to approximately 4 kpc). Within four radial scale
lengths, the disk mass is almost twice the halo mass,
while for spiral galaxies the halo mass within this ra-
dius generally dominates (Bottema 1993; Khoperskov
et al. 2001). The total disk massMd is 6.7× 109 M�.
For the assumed disk luminosity (see above), the total
mass-to-light ratio for the disk is Md/Ld ≈ 4. The
derived value is at least twice as high as the value that
follows from evolutionary models of stellar systems
with the color indices observed for NGC 4136 (B −
R = 0.8m–1.2m) and a Salpeter initial mass function
(IMF) (see Fig. 2 in Bell and de Jong (2001)). This
indicates that either the contribution from low-mass
stars to the total disk mass was underestimated in
comparison with the Salpeter IMF or, what is much
more likely, the mass of all of the galactic components
was overestimated because of the underestimated an-
gle i. If we assume that i = 35◦, which corresponds to
the isophotal flattening in the inner galaxy, then the
mass and, accordingly, theMd/Ld ratio will decrease
by a factor of 2.2. However, this uncertainty does
not affect the estimated component mass ratio and
the conclusion that the observed spiral structure of
the galaxy is located in the region where the disk
mass dominates. A low-mass galaxy may preserve
its ordered spiral pattern precisely because its disk is
self-gravitating.
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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4. CONCLUSIONS

We have performed detailed photometry of the
galaxy NGC 4136 up to a distance of ∼1′ from its
center, within which an ordered galactic structure is
located (a bulge, a bar, a ring, and spiral arms). Al-
though the galaxy orientation does not allow the disk
position angle and inclination to be reliably estimated,
it is favorable for investigating the brightness and
color distributions over the disk of NGC 4136. We
also estimated the photometric parameters and total
luminosity of the galactic bulge and disk. The galaxy
(including its bar) becomes bluer with increasing
distance from its center, but its spiral arms differ in
color from the interarm segments only slightly. We
estimated the color indices and ages of the brightest
star-forming regions. The ages of most of them do not
exceed 107 yr. Analysis of the available rotation curve
indicates that, within the optical boundaries of the
galaxy, the disk dominates in mass over the spherical
components, which makes NGC 4136 atypical of
the low-luminosity galaxies characterized by a large
contribution from the dark halo to the total mass (see,
e.g., Persic and Salucci 1996).
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Abstract—The empirically found universal power-law form of the X-ray luminosity function for a popu-
lation of high-mass X-ray binaries in galaxies can be explained by the fundamental mass–luminosity and
mass–radius relations for massive stars. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: X-ray and gamma-ray sources.
The unique capabilities of the modern Chandra
and XMM-Newton spaceborne X-ray observatories
allow us to observe point sources in nearby galaxies
and thereby study the formation and evolution of close
binary systems. Recently, Grimm et al. (2002, 2003)
have found that the differential luminosity function
of point X-ray sources in a wide luminosity range
(Lx ∼ 1034–1040 erg s−1) has a universal power-law
form:

dN

dLx
∝ SFR× L−α

x ,

where SFR is the star-formation rate in a specific
galaxy and α = 1.61 ± 0.12.

Let us show that the empirically found luminosity
function is naturally determined by the pattern of
mass accretion onto the compact object in a close
binary system. In high-mass X-ray binaries, accre-
tion onto the compact object proceeds from the stellar
wind of the optical component—an early-type star. In
such stars, the radiation pressure plays a crucial role
in plasma acceleration. Therefore, the stellar-wind
outflow rate is

Ṁw ∝ Lo

v∞
, (1)

where Lo is the luminosity of the star and v∞ is the
stellar-wind velocity at infinity. With a high accuracy,
the latter is proportional to the parabolic velocity vp
near the stellar photosphere, v∞ ≈ 3vp. Formula (1)
qualitatively agrees with the results of observations
(De Jager 1980).

It is well known that for stationary main-sequence
stars, there are power-law mass–luminosity (M–L)
and mass–radius (M–R) relations (see, e.g.,
Schwarzschild 1958). For massive stars, the M–L
relation is specified by the condition of outward

*E-mail: pk@sai.msu.ru
1063-7737/03/2906-0372$24.00 c©
diffuse heat transfer from the stellar interiors L ∝
1/(κρ)∇T 4 (ρ is the density and κ is the opacity) and
by the virial relation T ∝M/R for stationary stars.
In such stars, the opacity is mainly determined by
Thomson scattering and L ∝M3 (Eddington 1926).
The empirically found exponent for early-type stars
is close to the theoretically expected value of 3 (De
Jager 1980).

TheM–R relation can be derived from the balance
of the energy release per gram at the stellar center
due to thermonuclear reactions ε ∼ ρT n (ρ is the
density at the stellar center) and from the condition
of diffuse radiative transfer: R ∝M (n−1)/(n+3). For
massive stars (the CNO cycle), n ≈ 10–27, depend-
ing on the central temperature. The empirical mass–
radius relation for main-sequence stars,R ∝M0.8, in
a wide mass range is in good agreement with these
concepts. We will use it below.

The rate of mass accretion Ṁa onto the compact
star from the stellar wind is determined by its orbital
velocity (vorb), the binary component mass ratio (Mx

and Mo for the compact and optical stars, respec-
tively), and the stellar-wind velocity. In the case of a
fast stellar wind (vw > vorb) for Bondi–Hoyle accre-
tion, the following relation holds:

Ṁa ∝ Ṁw
M2

x

a2v4
w
,

where a is the semimajor axis of the binary system.
Substituting in formula (1) for the stellar-wind out-
flow rate and using theM–L andM–R relations, we
obtain the X-ray luminosity in the case of accretion
from the stellar wind:

Lx ∼ Ṁa ∼
Lo

a2v5
w
∼ M2.5

o

a2
.

The distribution of binary systems in semimajor
axes is also known from observations to be flat,
2003 MAIK “Nauka/Interperiodica”
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dN/d log a = const (Masevich and Tutukov 1988)
and, thus, does not depend on the mass of the optical

star. Therefore,Mo ∼ L
2/5
x , and dMo/dLx ∼ L

−3/5
x .

For the X-ray luminosity distribution function of
the sources accreting from the stellar wind,

dN

dLx
=

dN

dMo

dMo

dLx
,

using the power-lawmass function ofmain-sequence
stars dN/dMo ∼M−β

o , we obtain a power-law de-
pendence:

dN

dLx
∼ L(−2/5)β−3/5

x . (2)

For instance, we can obtain dN/dLx ∼ L−1.54
x for the

Salpeter stellar mass function (with a slope β = 2.35)
and dN/dLx ∼ L−1.6

x for the Miller–Scalo fit (β =
2.5) for stars with masses of the order of 10M⊙ ,
which corresponds to the observed law. A high mass-
loss rate by early-type stars naturally results in a
steeper slope of the observed mass function than the
initial distribution. This effect changes the exponent
in formula (2) in the desired direction (makes α closer
to the observed value).

In the case of a slow stellar wind vw < vorb, the
mass accretion is determined mainly by the orbital
velocity of the compact star. For high-mass binaries
with Mo/Mx � 1, the latter is related to the mass of
the optical star in the same way as the escape velocity
from its surface, so the above qualitative result will not
change.

Note that although the role of chemical composi-
tion is important for the absolute values of the lumi-
nosities and radii of main-sequence stars, as well as
for the mass-loss rate, it does not affect the functional
relations that define the form of the luminosity func-
tion used above.

Curiously, a relation similar to the derived law is
also formally obtained in the case of accretion with the
ASTRONOMY LETTERS Vol. 29 No. 6 2003
optical component filling its Roche lobe, because in
this case the time scale of the mass loss by the optical
star is, with a high accuracy, close to the thermal time
scale and the mass transfer rate is Ṁo ∼Mo/τKH ∼
Lo/(Mo/Ro). However, in actual high-mass X-ray
binaries, mass transfer on the thermal time scale leads
to supercritical accretion. In this accretion regime,
the X-ray luminosity of the source Lx is of the order
of the Eddington luminosity and does not depend on
the mass of the optical star and can be lower because
of absorption in the strong wind outflowing from the
accretion disk (SS 433 is an example of such a sys-
tem). Such sources are few in number and cannot
significantly affect the form of the X-ray luminosity
function.
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Abstract—We consider the generation of a magnetic field in the Galaxy by the electric currents excited
by cosmic-ray particles in the disk and halo. We assume that the sources of relativistic particles are
distributed continuously and uniformly in the Galactic disk, their total power is equal to the observed
value, and the particles themselves undergo anisotropic diffusion in a homogeneous medium. We take into
account the differential rotation of the Galactic disk but disregard the turbulence gyrotropy (the α effect).
The strength of the generated magnetic field in our model is shown to strongly depend on the symmetry
of the relativistic proton and thermal electron diffusion tensors, as well as on the relations between the
tensor components. In particular, if the diffusion is isotropic, then no magnetic field is generated. For
the independent tensor components estimated from observed parameters of the Galactic medium and
with a simultaneous allowance made for the turbulent field dissipation processes, the mechanism under
consideration can provide an observable magnetic-field strength of the order of several microgauss. This
mechanism does not require any seed magnetic field, which leads us to suggest that relativistic particles
can give an appreciable and, possibly, determining contribution to the formation of the global Galactic
magnetic field. However, a final answer can be obtained only from a nonlinear self-consistent treatment,
in which the symmetry and magnitude of the particle diffusion tensor components should be determined
together with the calculation of the magnetic field. c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The large set of observational data suggests that
there are magnetic fields of various scales in galax-
ies, both regular fields with scales of the order of
the stellar-system size and small-scale stochastic
magnetic inhomogeneities. The informative review of
Ruzmaikin et al. (1988) presents observational da-
ta on galactic magnetic fields and existing theories
of their origin. Explaining the origin of the large-
scale magnetic field has long involved the greatest
difficulties and only in the last two or three decades
has a dynamo theory been developed. This theory
is currently purporting to consistently interpret the
basic patterns.

However, the dynamo theory is still far from com-
plete, and it leaves a number of fundamental questions
unanswered. Some of these questions have been dis-
cussed recently (see, e.g., the review article of Beck
et al. 1996). In particular, at present, the dynamo
theory does not allow the calculation of the Galactic
magnetic field to be brought to a number. A major
problem is that the existing kinematic dynamo the-
ories are linear, while nonlinear effects can restrict
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the growth of the large-scale magnetic field at a low
level (Gruzinov and Diamond 1994, 1996). The dif-
ference between the growth rates of harmonics with
different wave numbers by many orders of magnitude
(Vainshtein and Rossener 1991; Kalsrud and Ander-
son 1992) makes the applicability of the commonly
used approximation of zero correlation time problem-
atic. The limited accuracy of the observations compli-
cates a detailed comparison between the predictions
of the existing theory and the observational data. This
is particularly true for the poloidal Galactic field com-
ponents, which are difficult to observe. Some facts are
apparently difficult to explain in terms of the dynamo
theory in the first place, for example, the existence
of a noticeable large-scale magnetic field in irregular
galaxies such as the Magellanic Clouds (Chi and
Wolfendale 1993). No noticeable differential rotation
needed for dynamo action is observed in them.

All of these circumstances make the investiga-
tion of other magnetic-field generation mechanisms
in galaxies of current interest. Analysis of the role of
the relativistic Galactic-plasma (cosmic-ray) com-
ponent in producing the large-scale Galactic mag-
netic field seems highly promising, especially because
the cosmic-ray composition and energy spectrum, as
2003 MAIK “Nauka/Interperiodica”
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well as the power and distribution of the sources,
have been extensively studied in preceding decades.
Protons with an energy of ∼1 GeV constitute a ma-
jor fraction of the relativistic particles in the Galaxy.
Being accelerated in various objects (probably mainly
by shock waves in supernova remnants and in strong
stellar winds) located mostly in the disk, they dif-
fuse to great distances up to the boundaries of the
Galaxy and leave it in a time of ∼(1–3) × 108 yr. The
total power of the relativistic particle sources in the
Galaxy is estimated to beQE ≈ (1–3) × 1040 erg s−1

(Berezinskiı̆ et al. 1990). With the mean particle en-
ergy being∼1 GeV, the generation power of relativis-
tic particles is Q0 ≈ 1043 particles s−1. Spreading
over the Galaxy and interacting with the background
plasma, the relativistic and background particles pro-
duce a net electric current, which can serve as a
source of the large-scale magnetic field. Here, our
goal is to calculate this field and to compare it with
observational data.

In Section 1, we refine the initial model parameters
and formulate the basic equations. The density of
the electric current generated by energetic particle
sources is calculated in Section 2. The current is
produced mainly by relativistic protons and back-
ground electrons. In Section 3, we use published data
to estimate the diffusion coefficients for relativistic
and thermal particles and discuss the structure of
the diffusion tensors. The magnetic field generated by
energetic particles is calculated in Section 4. In Sec-
tion 5, we take into account the differential rotation
of the Galaxy, which enhances its toroidal field, and
discuss our results. Our conclusions are formulated
in the final section.

Note that the resonant generation of various
plasma waves and their inherent magnetic fields
with scales of the order of the Larmor radius of
relativistic particles has previously been considered
repeatedly by different authors (see, e.g., Völk and
McKenzie 1982). As far as we know, the generation of
the large-scale Galactic magnetic field by relativistic
particles is studied here for the first time.

1. THE INITIAL MODEL AND BASIC
EQUATIONS

It is well known (Berezinskii et al. 1990) that pro-
tons and helium nuclei constitute a major fraction of
the relativistic charged particles in the Galaxy, while
the fraction of electrons and heavy nuclei is probably
close to 1%. Since the number of relativistic particles
rapidly decreases with increasing energy (as E−2.7),
it will suffice to consider a simple three-component
Galactic plasma model to fundamentally elucidate
the generation mechanism of the large-scale mag-
netic field. We take into account relativistic protons
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(with a mean kinetic energy E = 1 GeV and density
N ∼ 10−9 cm−3) and background particles—protons
and electrons with densities n0 � N . We also take
into account neutral hydrogen, which determines the
magnetic viscosity in neutral clouds and at the warm
phase of the interstellar medium.

Since the distribution of actual discrete relativistic
particle sources in the Galaxy is known only approx-
imately, we use a disk-averaged steady-state model
distribution with a small number of parameters. We
choose the total generation power Q0 of relativistic
particles, the half-thickness h of the distribution of
sources in the disk, and its effective radius R as these
parameters. The distribution of sources in the disk is
assumed to be azimuthally symmetric.

It is convenient to write the density of the relativis-
tic proton sources in Fourier representation as

Qk =
πQ0

2h
e−k⊥R

h∫

0

cos
(

πζ

2h

)
cos k‖ζdζ, (1)

where (k⊥, φ, k‖) are the cylindrical coordinates of the
wave vector k. In cylindrical coordinates (r, α, z), the
distribution of sources (1) takes the form

Q(r, z) =
Q0

8

(
R

h

)
Θ(h + z)Θ(h − z) cos(πz/2h)

(r2 + R2)3/2
,

(2)

where Θ(z) is the step function. The sources are
located symmetrically in azimuth inside a disk of
thickness 2h and are absent outside the disk; their
density for r � R decreases as r−3. The actual de-
crease is probably more rapid, but this is of little im-
portance when determining the magnetic field inside
the Galactic disk. Here, we will not discuss the field
distribution in the halo and outside the Galaxy. To
compensate for the electric charge of the relativistic
protons, we must specify the same source of nonrela-
tivistic electrons:

Qe(r, z) = Qp(r, z) = Q(r, z). (3)

At distances of the order of the Galaxy size, rel-
ativistic and thermal particles undergo anisotropic
diffusion attributable to the regular large-scale mag-
netic field, small-scale turbulent fields, collisions with
charged and neutral particles, and random (turbulent)
motions of the background plasma. At the appropri-
ate stage of our calculations, we will also take into
account the differential rotation of the Galactic disk.
Since no reliable data are available, our model does
not include the regular motion of the medium, for
example, of the type of Galactic wind. We denote the
diffusion coefficients that take into account the above
factors by κµν and Dp,e

µν for relativistic protons and for
thermal protons and electrons, respectively.
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The currents produced by protons and electrons
can be written as

jp
µ = −eκµν

∂N

∂xν
− eDp

µν

∂np

∂xν
+ σp

µνEν , (4)

je
µ = eDe

µν

∂ne

∂xν
+ σe

µνEν , (5)

where σp,e
µν are the electrical conductivities produced

by background protons and electrons whose densi-
ties acquire the nonequilibrium additions np and ne

because of the presence of accelerated protons. A
macroscopic electric field E can appear for the same
reason. It satisfies the electrostatic equations

E = −∇ϕ, ∇2ϕ = −4πe(N + np − ne). (6)

This field generates electron and proton currents that
can be expressed in terms of the corresponding elec-
trical conductivities σe,p

µν .

In the steady-state case, the total current jcr =
je + jp satisfies the continuity equation ∇·jcr = 0,
while the proton and electron currents individually
satisfy the following inhomogeneous equations with
sources:

∇·jp = eQ(r, α, z), ∇·je = −eQ(r, α, z). (7)

Assuming that all of the diffusion coefficients and
electrical conductivities are constant, we write the
system of equations to determine N,np, ne, ϕ as

−eκµν
∂2N

∂xµ∂xν
= eQ, (8)

−eDp
µν

∂2np

∂xµ∂xν
− σp

µν

∂2ϕ

∂xµ∂xν
= 0, (9)

eDe
µν

∂2ne

∂xµ∂xν
− σe

µν

∂2ϕ

∂xµ∂xν
= −eQ. (10)

Equation (6) should be added to Eqs. (8)–(10). In
writing Eq. (8), we disregarded the effect of the self-
consistent electric field on the motion of relativistic
protons, which is a universally accepted approxima-
tion in cosmic-ray physics (see Berezinskiı̆ et al.
1990).

After calculating the particle densities, the elec-
tric field, and the total current generated by rela-
tivistic protons, we can determine the magnetic field
produced by this current in the turbulent Galactic
medium. Turbulence plays a crucial role in our prob-
lem, because it acts as a major factor that causes
the large-scale magnetic field to dissipate. It is also
responsible for the diffusion pattern of the particle
motion.
When the displacement current is ignored, the
magnetic field H, unaveraged over the turbulent mo-
tions of the medium, satisfies the equation

∇× H =
4π
c

(jin + jext), (11)

where

jinµ = σ̃µν(E +
1
c
v × H)ν (12)

is the unaveraged background plasma current that
exists in the absence of relativistic particles and jext
is the extra current generated by cosmic rays. In
Eq. (10), σ̃µν is the local (microscopic) electrical
conductivity, which is different at different phases of
the interstellar medium. Averaging the two sides of
Eq. (11) over the turbulent motions and phase states
yields

∇× B =
4π
c

(jpl + jcr), (13)

where B = 〈H〉 and the averaged currents now ap-
pear on the right-hand side. The cosmic-ray cur-
rent jcr should be calculated from the above equa-
tions (4)–(10). We determine the averaged back-
ground plasma current as follows. We write

E = σ̂−1jin − 1
c
v × H (14)

and average the two sides by assuming that σµν =
const (incompressible motions; the density and tem-
perature do not fluctuate) and v = u + u′, 〈v〉 =
u, 〈u′〉 = 0, where u is the regular velocity of the
medium and u′ is the fluctuating turbulent addition.
The mean 〈u′ × H〉 is given in the reviews of Vain-
shtein et al. (1980) and Ruzmaikin et al. (1988) for
isotropic turbulence:

〈u′ × H〉 = −νturb∇× B, νturb =
1
3
〈u′2〉τc, (15)

where τc is the correlation time of the turbulent mo-
tions and νturb is the turbulent diffusion coefficient
of the magnetic field (turbulent magnetic viscosity).
Having averaged (14) using (15) and (11), we obtain

c〈E〉 = cE = −c〈σ̃−1jext〉 (16)

+
c2

4π
〈σ̃−1∇× H〉 − u× B + νturb∇× B.

To estimate the terms being averaged, we sub-
stitute the inverse tensor σ̃−1 with the scalar quan-
tity 1/σ and disregard the correlations:

〈σ̃−1jext〉 =
1
σ
jcr, 〈σ̃−1∇× H〉 =

1
σ
∇× B.

(17)
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Next, we apply the operation∇× to equality (16) and
eliminate ∇× E by using the law of electromagnetic
induction. We obtain an equation for the magnetic-
field evolution that includes the extraneous current of
relativistic particles:

∂B
∂t

= ν∇2B + ∇× [u× B] +
4πνm

c
∇× jcr. (18)

Here, νm = c2/4πσ is the local magnetic viscosity
and ν = νm + νturb is the total magnetic viscosity.
Since the turbulent viscosity in the Galaxy exceeds
the local magnetic viscosity νm by many orders of
magnitude, ν ≈ νturb.

In the static case and in the absence of regular
motion, we derive the following equation from (18):

∇2B = −4π
c

νm
νturb

∇× jcr. (19)

Note the small factor νm/νturb on the right-hand side
of Eq. (19). Its presence reflects the dissipation of
the large-scale magnetic field through turbulent dif-
fusion.

2. CALCULATING THE ELECTRIC CURRENT
DENSITY

We seek a solution of Eqs. (6)–(10) by assuming
that the Galactic medium is homogeneous, i.e., for
the case where the diffusion and electrical conductiv-
ity tensors do not depend on the coordinates. These
tensors for charged particles are related by (Alfvén
and Feldhammer 1963)

σe,p
µν =

De,p
µν

4πr2
D

, (20)

where rD =
√

T/4πn0e2 is the Debye radius and n0

is the equilibrium density of the background electrons
and ions.

Applying a Fourier transform in coordinates yields
an exact solution to the system of equations (6)
and (8)–(10) for the Fourier amplitudes:

ϕk =
4πe

k2
(Nk + np

k − ne
k), (21)

Nk =
Qk

κ̃
,

np
k = −Qk

κ̃

1
1 + k2r2

D

+
Qk

D̃e

1
2 + k2r2

D

,

ne
k =

Qk

κ̃

1
1 + k2r2

D

+
Qk

D̃e

1 + k2r2
D

2 + k2r2
D

.

Here, we denote

κ̃ = κµνkµkν , D̃e = De
µνkµkν . (22)
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The diffusion coefficient for relativistic protons in the
Galaxy is much larger than that for thermal elec-
trons and κ̃ � D̃e. Therefore, the nonequilibrium ad-
ditions np

k and ne
k to the thermal particle densities

are large compared to the relativistic proton number
density Nk. Using (21) and formulas (4) and (5), we
find the Fourier transform of the total current

jcrkµ = je
kµ + jp

kµ = ieQk

(
De

µνkν

D̃e

− κµνkν

κ̃

)
. (23)

It follows from the latter expression that the electric
current is produced by relativistic protons and nonrel-
ativistic electrons of the background plasma. Accord-
ing to Eqs. (18) and (19), the magnetic field in our
model is determined by the curl of the current. Note
the following important property of the derived cur-
rent: its curl becomes zero if the diffusion coefficients
and the electrical conductivities are isotropic. Cal-
culating [k× jcrk ]α = eαβµkβjcrkµ, we obtain the zero
combination of the tensors eαβµkβkµ = 0 for κµν =
κδµν .

Thus, a magnetic field in a homogeneous system
can be generated by a current of diffusing energetic
particles only if the medium has anisotropic proper-
ties. This assertion is valid irrespective of the distri-
bution pattern of the sources. This result can be eas-
ily understood from qualitative considerations: in the
case of isotropic diffusion, a small source of relativistic
particles will produce a spherically symmetric current
that does not generate any magnetic field. Therefore,
the field strength is very sensitive to the symmetry of
the diffusion tensors and to the relationship between
their components.

It should be noted, however, that in an inhomo-
geneous system, which the Galaxy and, in particular,
the Galactic disk actually are, the curl of the cur-
rent of extraneous sources can be nonzero because
the diffusion coefficients are nonuniform, i.e., because
they depend on coordinates. This possibility, which
was not explored in our homogeneous model, is prob-
ably of great importance during the initial period of
disk existence. There may have been no global large-
scale magnetic field at that time, but local fields of
presupernovae and supernova remnants, which pro-
duced an inhomogeneous medium, arose. An asym-
metric electric current of accelerated particles in such
a medium could serve as a source of the large-scale
magnetic field.

3. THE DIFFUSION COEFFICIENTS

The longest-range particles are relativistic pro-
tons, for which the Galaxy-averaged value is κ ≈
5 × 1028 cm2 s−1 (Berezinskii et al. 1990). Although
the local diffusion tensor is sharply anisotropic,
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κ⊥/κ‖ ≈ 10−13, because of the presence of a large-
scale stochastic magnetic field with δB/B0 ≈ 1 in
the Galaxy, global particle transport takes place
with a much more isotropic diffusion tensor, for
which κ‖ and κ⊥ are of the same order of magnitude
(but, of course, they are generally unequal). This
question was extensively covered by Bykov and
Toptygin (1992). These authors provided equations
that allow the longitudinal and transverse diffusion
coefficients to be calculated for an arbitrary amplitude
of the large-scale stochastic magnetic field. The Hall
diffusion tensor components are negligible, because
the Larmor proton radius is small compared to the
transport mean free path. Thus, in a coordinate
system with the polar axis directed along the large-
scale magnetic field, the diffusion tensor of relativistic
protons is symmetric and has the components κ‖ �=
κ⊥ that are comparable in order of magnitude.

According to observational data (Ruzmaikin et al.
1988), the regular magnetic field in the Galactic disk
has spiral field lines that lie in the disk plane. How-
ever, for generality, we also take into account the
possibility of the existence of a small magnetic field
component perpendicular to the disk plane. Its pres-
ence is by no means ruled out by the available low-
accuracy observations. In the presence of all three
regular magnetic field components along the cylindri-
cal coordinate axes at all points of space, the symmet-
ric diffusion tensor κµν will have six different nonzero
components, including the cross (κrα, κrz, καz) com-
ponents, whose role is great in the problem under
consideration. This follows from both our results (see
the next section) and general considerations. Numer-
ous antidynamo theorems (Cowling, Elsasser, Zel-
dovich, and others) suggest that a magnetic field can
be generated in asymmetric systems. In the problem
under consideration, this implies that the axes of sym-
metry of the diffusion tensor will not coincide with the
axes of cylindrical symmetry of the Galaxy.

Denoting the angle between a field line and the
cylindrical unit vector ez by θ and the angle between
the field projection onto the (x, y) plane and the unit
vector er by γ, we write the diffusion tensor compo-
nents in cylindrical (r, α, z) coordinates as
κµν =




(κ‖ − κ⊥) sin2 θ cos2 γ + κ⊥ (κ‖ − κ⊥) sin2 θ sin γ cos γ (κ‖ − κ⊥) sin θ cos θ cos γ

(κ‖ − κ⊥) sin2 θ sin γ cos γ (κ‖ − κ⊥) sin2 θ sin2 γ + κ⊥ (κ‖ sin γ − κ⊥ cos γ) sin θ cos θ

(κ‖ − κ⊥) sin θ cos θ cos γ (κ‖ sin γ − κ⊥ cos γ) sin θ cos θ κ‖ cos2 θ + κ⊥ sin2 θ


 .

(24)
If the toroidal (Bα)magnetic field dominates, then the
angles θ and γ must be close to π/2.

Since the general structure of the diffusion ten-
sor De

µν for nonrelativistic background electrons is
determined by the geometry of the large-scale mag-
netic field, it also has the form (24). Of course, the
components of this tensor are much smaller than
those for relativistic protons. However, their absolute
values are of little importance, because the electric
current, according to (23), depends on the ratio of
the different components rather then on their absolute
values.

According to Eqs. (18) and (19), the magnetic-
field strength also significantly depends on the mag-
netic viscosities νturb and νm. The turbulent diffu-
sion coefficient νturb of the magnetic field is easi-
est to estimate. Taking a commonly used value of
L ≈ 100 pc for the energy-containing interstellar tur-
bulence scale length and u′ ≈ 10 km s−1 for the char-
acteristic turbulent velocity, we obtain an estimate
of νturb ≈ u′L/3 ≈ 1026 cm2 s−1. Ruzmaikin et al.
(1988) estimated νm at different phases of the inter-
stellar medium. In cold dense nonionized hydrogen
clouds and in a warm phase with a large fraction of
nonionized atoms, the magnetic field dissipation is
attributable mainly to the ambipolar diffusion of elec-
trons and ions through a neutral gas. The ambipolar
diffusion coefficient νm at these phases is 3 × 1021

and 3 × 1020 cm2 s−1, respectively. In hot bubbles,
the collisionless wave damping leads to a much lower
value of νm ≈ 5 × 1017 cm2 s−1. As a result, the
value averaged over the Galactic disk is νm ≈ 3 ×
1020 cm2 s−1 and the ratio in Eq. (19) is

νm
ν

≈ νm
νturb

≈ 3 × 10−6. (25)

Below, we use this value in our numerical estimates.

4. CALCULATING THE MAGNETIC FIELD

In the steady-state formulation, the problem re-
duces to solving Eq. (18), in which we should set u =
rΩ(r)eα (the differential rotation velocity of the disk)
and ∂B/∂t = 0. In projection onto the coordinate unit
vectors, it takes the form

Br −
Br

r2
=

4πνm
cν

∂jcrα

∂z
, (26)
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Bα − Bα

r2
=

4πνm
cν

(
∂jcrr

∂z
− ∂jcrz

∂r

)
− Br

ν

dΩ
dr

r,

Bz =
4πνm
cνr

∂rjcrα

∂r
.

As follows from these equations, rotation does not
affect the Br and Bz components. The solution

for Bα = B
(1)
α + B

(2)
α can be represented as the sum

of two terms: one corresponds to the current term on
the right-hand side and the other owes its presence
to the poloidalBr component and rotation. Therefore,
we will first solve Eqs. (26) without rotation.

Going to a Fourier representation in the equivalent
equation (19), we express the magnetic field in the
form of a three-dimensional integral:

B(r, z) =
4πνm
cν

∫
k−2[ik × jcrk ] exp[ik⊥r (27)

× cos(φ − α) + ik‖z]
k⊥dk⊥dφdk‖

(2π)3
,

where the Fourier transform of the current is given
by expression (23). The subsequent passage to the
cylindrical unit vectors er, eα, and ez in the integrand
of (27) allows the cylindrical components of the curl
of the current density to be expressed as

[ik × jcrk ]r = −eQk{Tαz [k2
‖ − k2

⊥ sin2(φ − α)] (28)

+ Trαk‖k⊥ cos(φ − α)} − eQk{(Tαα − Tzz)k‖k⊥
− Trzk

2
⊥ cos(φ − α) sin(φ − α)},

[ik × jcrk ]α = eQk{Trz[k2
‖ − k2

⊥ cos2(φ − α)]

+ (Trr − Tzz)k‖k⊥ cos(φ − α)}
+ eQk

{
[Trαk‖k⊥−Tαzk

2
⊥ cos(φ − α)] sin(φ − α)

}
,

[ik × jcrk ]z = eQkk
2
⊥
{
Trα[2 cos2(φ − α) − 1]

+(Tαα − Trr) sin(φ − α) cos(φ − α)}
+ eQkk‖k⊥ {Tαz cos(φ − α) − Trz sin(φ − α)} .

Here, we denote

Tµν =
κµν

κ̃
−

De
µν

D̃e

, (29)

where, according to (22),

κ̃ = [καα + (κrr − καα) cos2(φ − α) (30)

+ 2κrα cos(φ − α) sin(φ − α)]k2
⊥

+ 2[κrz cos(φ − α) + καz sin(φ − α)]k⊥k‖ + κzzk
2
‖ .

The quantity D̃e can be expressed in a similar way.
The integrand of the three-dimensional integral

in (27) with (28)–(30) and (1) is very cumbersome,
and reasonable approximations should be used when
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calculating it. When integrating over φ, we use the
fact that the denominator of integrand (30) is positive
for all values of φ. This becomes clear if we write this
invariant quantity in a system of axes in which the
tensor κµν is diagonal: κ̃ = κ⊥k

′2
⊥ + κ‖k

′2
‖ > 0. Since

the relative change in κ̃ is small in the integration
range 0 ≤ φ ≤ 2π, we substitute this quantity in the
integrand with its angle-averaged value:

κ̃ =
1
2
(καα + κrr)k2

⊥ + κzzk
2
‖ ≡ κzz(k2

‖ + a2k2
⊥),

(31)

a =
√

καα + κrr

2κzz
.

Wemake a similar substitution in the second denom-
inator:

D̃e = De
zz(k

2
‖ + b2k2

⊥), b =

√
De

αα + De
rr

2De
zz

. (32)

After this simplification of the integrand, all of the
integrals can be calculated without difficulty. The in-
tegrals over φ can be expressed in terms of the Bessel
function J0(k⊥r) and its derivatives using the formula∫ 2π
0 exp(ik⊥r cos ϕ)dϕ = 2πJ0(k⊥r). In this case,
the integrals containing sin(φ− α) in the numerators
of expressions (28) become zero. The integration
over k‖ between infinite limits is performed by going
to a complex plane and closing the integration con-
tour by an arc of infinite radius. Finally, the integration
over k⊥ between the limits 0 ≤ k⊥ ≤ ∞ is performed
by using the formula

∫∞
0 exp(−k⊥R)J0(k⊥r)dk⊥ =√

r2 + R2. After all of the integrations, we determine
the magnetic field components, which we give for the
Galactic-disk region z ≤ h, i.e., with an allowance
made for the terms no higher than the first order in
the small parameter h/R � 1:

Br(r, z) = B0(r) (33)

×
{(

καz

κzza(a + 1)
− De

αz

De
zzb(b + 1)

)

×
(

1 − R√
r2 + R2

)
R

r

+
(

καz(a − 1)
κzza(a + 1)

− De
αz(b − 1)

De
zzb(b + 1)

)
r√

r2 + R2

−
(

καz

κzz(a + 1)
− De

αz

De
zz(b + 1)

)
rRf(z)

(r2 + R2)3/2

+
(

κrα

κzz(a + 1)
− De

rα

De
zz(b + 1)

)
r2z

(r2 + R2)3/2

}
,

B(1)
α (r, z) = B0(r) (34)
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×
{(

κrz

κzza(a + 1)
− De

rz

De
zzb(b + 1)

)

×
(

1 − R√
r2 + R2

)
R

r

+
(

κrz

κzz(a + 1)
− De

rz

De
zz(b + 1)

)
r√

r2 + R2

−
(

κrz

κzz
− De

rz

De
zz

)
rRf(z)

(r2 + R2)3/2

−
(

κrr − κzz

κzz(a + 1)
− De

rr − De
zz

De
zz(b + 1)

)
r2z

(r2 + R2)3/2

}
,

Bz(r, z) = B0(r) (35)

×
{(

κrα

κzza(a + 1)
− De

rα

De
zzb(b + 1)

)

×
[(

1 − R√
r2 + R2

)
2R
r

− r√
r2 + R2

]

−
(

καz

κzz(a + 1)
− De

αz

De
zz(b + 1)

)
r2z

(r2 + R2)3/2

}
.

Here, B0(r) is a dimensional factor,

B0(r) =
eQ0νm
cνturbr

, (36)

f(z) =

{
|z|, |z| > h

h
[
1 − 2

π cos
(πz

2h

)]
, |z| < h.

These magnetic field strengths are established on
time scales of the order of the time it takes for the
Galaxy to be filled with accelerated particles, i.e.,
≈108 yr, and are maintained as long as the parti-
cle sources work. Expressions (33)–(35) for the field
components have a similar structure. Let us esti-
mate the individual factors for the neighborhood of
the Solar system (r = 10 kpc, z ≈ h = 0.2 kpc, R =
16 kpc, Q0 = 1043 particles s−1). We take (25) for
the ratio of the magnetic viscosities. In this case,
the dimensional factor is B0(r) ≈ 1.5 × 10−5 G. The
coordinate-dependent dimensionless factors in curly
braces can be divided into two classes. Those of
them that do not depend on z are equal to unity in
order of magnitude. The z-containing factors are of
the order of |z|/

√
r2 + R2 ≈ 10−2. All of the large

and small terms also have the factors that are the
differences between the ratios of the diffusion tensor
components for relativistic protons and background
electrons, with the principal terms containing the
cross tensor components κrα, κrz, καz . The final esti-
mate of the magnetic field strength depends on these
differences of the type, for example,

καz

κzza(a + 1)
− De

αz

De
zzb(b + 1)

. (37)
According to (24), these differences can be nonzero
if the magnetic field has nonzero components along
all three cylindrical unit vectors. In this case, each
of the terms in (37) is nonzero and a significant
smallness of the difference compared to each of the
terms would imply that the diffusion coefficients of
relativistic protons and thermal electrons are closely
correlated. Since there are no physical grounds for
such a correlation, it would be natural to estimate the
difference of type (37) as a quantity of the order of
the first term καz/κzza(a + 1). In this case, taking
cos θ ≈ cos γ ≈ 0.1 and assuming that κ‖ and κ⊥
are of the same order of magnitude, we obtain an
estimate of 10−2 for the differences of type (37) and
Br ≈ Bz ≈ 1.5 × 10−7 G for the poloidal field. This
yields approximately 0.1 of the observed large-scale
magnetic field strength in the disk. The same estimate

is also applicable to the part of the toroidal field B
(1)
α

that is directly produced by the cosmic-ray current
and described by formula (34). However, there is also

an extra toroidal fieldB
(2)
α attributable to the Galactic

rotation.

5. ALLOWANCE FOR THE GALACTIC
ROTATION AND DISCUSSION

OF THE RESULTS

The differential rotation of the Galaxy causes the
Br poloidal field component to be elongated in the
direction of the linear velocity and transform into the

toroidal field B
(2)
α , according to Eq. (18), in which we

should set jcr = 0:

∂B
(2)
α

∂t
= ν

(
B(2)

α − B
(2)
α

r2

)
+ Br(r, z)

dΩ
dr

r. (38)

Here, the component Br(r, z) is given by expression
(33) and is assumed to be a known function of the
coordinates.

Bearing in mind the relative youth of our Universe
and the small number of turns made by the Galactic
disk in its lifetime, we solve Eq. (38) by the method
of successive approximations. In the first approxi-
mation, we omit the dissipative term from (38) by
assuming that dissipation initially plays a minor role.
The remaining equation gives the solution

B(2)
α (r, z, t) = Br(r, z)

dΩ
dr

rt. (39)

The validity range of this solution in time is deter-
mined by the requirement that the discarded dissi-
pative term not exceed the remaining term. When
substituting solution (39) into (38), we make sure
that the main contribution to the omitted term comes
from the term in expression (33) that contains f(z)
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and that was doubly differentiated with respect to z,
which is (in order of magnitude)

νt

hr
Br

dΩ
dr

r.

Thus, solution (39) can be used on time scales t <
hr/ν. Substituting the numerical values of the quan-
tities yields t < 6 × 1016 s ≈ 6 × 109 yr. Since the
derived time interval is apparently close to the lifetime
of the Galactic disk, solution (39) faithfully describes
the toroidal field at the current epoch. Let us estimate
its numerical value at r ≈ 10 kpc by taking

dΩ
dr

r ≈ 30 km s−1 × kpc ≈ 10−15 s−1

from Fig. 5.2 of the review by Ruzmaikin et al. (1988)
and assuming that t ≈ 6 × 109 yr and Br ≈ 1.5 ×
10−7 G. We obtain Bα ≈ 9 × 10−6 G, i.e., an en-
hancement of the initial poloidal field by several tens
of times. Given that our estimates are approximate,
this field strength is in good agreement with the ob-
served values of Bαobs ≈ (2–3) × 10−6 G (see, e.g.,
Beck 2001). The overall geometry and magnitudes of
the field vector components along the cylindrical unit
vectors are consistent (at the estimation level) with
the assumptions about the relative values of the diffu-
sion tensor components for relativistic particles made
in Section 3. The Bα field component has a value
close to the observed value. The poloidal components
are an order of magnitude smaller, which is consistent
with the available observational data. Their role in the
model under consideration reduces to maintaining a
sufficient degree of anisotropy of the diffusion tensors.

In the homogeneous model considered above, we
primarily wanted to estimate the absolute value of
the magnetic field strength in the Galaxy and did not
set a goal of investigating the details of its structure,
symmetry, etc. To solve these questions requires a
more detailed allowance for the distribution of the
relativistic particle sources in the Galaxy and, in par-
ticular, its nonuniformity.

The energy balance considerations also confirm
that the above field estimate is correct. Ruzmaikin
et al. (1988) estimated the regeneration time of
turbulent motions and the magnetic field in the
disk due to supernova explosions to be ∼107 yr.
In this time, supernova remnants (L = 100 pc, su-
pernovae explode once every 30 years) fill out the
disk, distorting and turbulizing the magnetic field.
However, the sources of relativistic particles are
continuously working and gain energy of the order
of 3 × 1040 erg s−1 ×1014 s = 3 × 1054 erg in this
time. How much energy is required to restore the
regular magnetic field B = 3 × 10−6 G destroyed by
supernova explosions? Multiplying the disk volume
ASTRONOMY LETTERS Vol. 29 No. 6 2003
Vd ≈ 4 × 1066 cm3 by the magnetic energy den-
sity B2/8π, we obtain 1.6 × 1054 erg. A significant
faction of this energy is replenished through the
differential rotation of the disk. Therefore, the cosmic-
ray energy is quite sufficient to maintain the large-
scale magnetic field in theGalaxy at the observed level
and provide an approximate equipartition between the
magnetic (wB) and cosmic-ray (wcr ≈ wB) energy
densities (Berezinskii et al. 1990).

Note that the dynamo model considered above
(an enhancement of the toroidal field through the
poloidal field during the differential rotation) does
not lead to any field decay for t → ∞. This behavior
is characteristic of antidynamo theorems (see, e.g.,
Elsasser 1946; Zel’dovich 1956) if no cosmic-ray
sources turn off. On long time scales, Eq. (38) has
a steady-state solution that corresponds to a nonzero
field. This solution can be written as the Fourier inte-
gral

B(2)
α (r, z) =

∞∫
−∞

Bα(r, λ) exp(iλz)
dλ

2π
,

where the Fourier transform in z can be calculated
from the steady-state equation (38) and is

B
(2)
α (r, λ) = I1(|λ|r)

∞∫
r

K1(|λ|r′)Br(r′, λ)
r
′2

ν

× dΩ
dr′

dr′ + K1(|λ|r)
r∫

0

I1(|λ|r)Br(r′, λ)
r
′2

ν

dΩ
dr′

dr′.

Here, I1(x) and K1(x) are the modified Bessel func-
tions and Br(r, λ) is the Fourier transform of the
r field component. Expression (33) can be used to
estimate the steady-state field in the disk. This ex-
pression yields

B(2)
α |t→∞ ≈ Br

r2

ν

dΩ
dr

r ≈ 1.5 × 10−3G,

which is established on time scales t � hr/ν ≈ 6 ×
109 yr.

CONCLUSIONS

Our model for the generation of a large-scale
Galactic magnetic field is an example of the self-
organization of the highly nonequilibrium Galactic
plasma. Discrete sources in the disk (exploding
stars) generate relativistic particles, which perturb
the ambient plasma and produce an electric current.
The current asymmetrically flowing out of the Galaxy
generates a global magnetic field whose spatial scale
length is much larger than the size of the region



382 DOLGINOV, TOPTYGIN
occupied by the current sources. The large-scale
magnetic field changes the kinetic coefficients of the
background plasma by introducing anisotropy into
the system and, thereby, maintaining the asymmetry
in the current distribution needed to maintain the
magnetic field.

This process begins immediately as the sources of
relativistic particles turn on in the Galactic disk. The
local magnetic fields required for effective acceleration
are probably characteristic of most of the exploding
stars, which are the sources of the accelerated parti-
cles. In contrast to the (α,Ω)-dynamo mechanism,
our mechanism does not require the presence of a
weak seed large-scale magnetic field. Initially, in the
absence of a large-scale field, the required anisotropy
in the current distribution can be produced through
system inhomogeneity; i.e., due to the fact that the
outflow of relativistic particles from the disk region
is predominantly in the direction normal to its plane.
Of course, this factor of system inhomogeneity and
increase in the particle transport mean free paths
outside the disk, which was not properly taken into
account in our model, also acts in the subsequent
evolutionary phases of the Galactic medium.

The suggested mechanism can produce magnetic
fields in galaxies without noticeable rotation and in
the absence of turbulence helicity if they contain ex-
ploding stars with a sufficient generation power of rel-
ativistic particles and a noticeable inhomogeneity of
the interstellar medium, which can provide the proper
asymmetry of the electric current. This mechanism is
apparently possible in irregular galaxies.

In this case, the possible field strength and geom-
etry, of course, require separate treatment.

As applied to our Galaxy, the simple, non-self-
consistent model considered here suggests that the
observed generation power of relativistic particles, to-
gether with the observed differential rotation velocity
of the disk, is enough to explain the magnetic field
observed in the Galactic disk without invoking the
helicity properties of turbulent motion. To refine our
conclusions, we should have solved a self-consistent
problem in which the magnetic field generated by
relativistic particles, gyrotropic turbulence, and dif-
ferential rotation must be calculated simultaneously
with the calculation of the diffusion coefficients for
relativistic and background particles, which depend
on the global and small-scale fields, and the diffusion
coefficients for the magnetic field itself. Since this
problem is complex, its solution does not appear to
be a matter of the near future.
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Abstract—Analysis of the RXTE slew data in October 1996 revealed a weak X-ray burst from the
millisecond pulsar SAX J1808.4−3658. The 3–20-keV energy spectrum of the source can be described
by a power law with an index of 2.0 and a (3- to 20 keV) luminosity of ∼1.4 × 1035 erg s−1 (the distance
to the source was taken to be 2.5 kpc). Because of the short exposure time, we failed to detect weak
pulsations at a frequency of 401 Hz in the source. The (2σ) upper limit of the pulse fraction is ∼13%.
c© 2003 MAIK “Nauka/Interperiodica”.

Key words: RXTE, pulsars, neutron stars and black holes, X-ray binaries, SAX J1808.4−3658.
INTRODUCTION

As the sensitivity of X-ray astronomical instru-
ments increases, weak outbursts of X-ray binary
sources increasingly attract the attention of re-
searchers. The all-sky monitor of the RXTE obser-
vatory can detect short (with a duration of several
days or weeks) outbursts of Galactic sources with
peak luminosities up to 1035–1036 erg s−1 (see, e.g.,
Bradt et al. 2000). Observations of several neutron
stars have shown that they are highly variable in this
luminosity range. In particular, such behavior was
observed in the transient systems Aql X-1 (Campana
et al. 1998), 4U 1608−52 (Bradt et al. 2000), and
SAX J1808.4−3658 (Gilfanov et al. 1998; Wijnands
et al. 2001).

In 2000, the light curve of the millisecond pul-
sar SAX J1808.4−3658 was studied in detail us-
ing more sensitive instruments—the main instru-
ments of the RXTE and BeppoSAX observatories. It
was shown that on time scales of several days, the
source’s X-ray (1–5 keV) flux could change by more
than a factor of 1000, with the peak luminosity being
∼2.5 × 1035 erg s−1 (this corresponds to a flux of
∼15 mCrab). Thus, in studying the long-term evo-
lution of X-ray sources, instruments with a threshold
sensitivity of the order of or better than 1 mCrab for
an exposure time shorter than 1 day acquire great im-
portance. The RXTE slew data almost ideally satisfy
this criterion.

Here, we analyze the RXTE slew data and show
that on October 29, 1996, a weak X-ray outburst

*E-mail: revnivtsev@hea.iki.rssi.ru
1063-7737/03/2906-0383$24.00 c©
was detected from the millisecond pulsar
SAX J1808.4−3658.

ANALYSIS OF THE OBSERVATIONS
AND RESULTS

We use observational data from the PCA spec-
trometer of theRXTEobservatory (Bradt et al. 1993).
The spectrometer is sensitive in the 2–60 keV energy
range, its effective area at an energy of ∼7 keV is
∼6400 cm2, and its energy resolution at this energy
is ∼18%. The field of view of the spectrometer—a
circle with a radius of∼1◦—is limited by a collimator
with a linear dependence of the transmission function
on the distance from the center of the field of view.

Having no spatial resolution, the PCA spectrome-
ter can be successfully used to localize X-ray sources.
For this purpose, the RXTE observations are carried
out in the scanning mode. In the absence of large
intrinsic flux variations in the source, the localization
accuracy can reach 1′–2′.

We processed the data using the standard LHEA-
SOFT 5.2 software package.

The burst from the millisecond pulsar
SAX J1808.4−3658 was detected from the RXTE
slew data that began at 0400 UT on October 29,
1996. The observed flux peak was recorded at
MJD 50385.167808. In Fig. 1, the dashed line
indicates the passage of the center of the PCA
field of view and the true position of the source
SAX 1808.4−3658. The X-ray flux recorded by
the spectrometer at this time is shown in Fig. 2.
The relatively high significance of the observed flux
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The (1-, 2-, and 3-σ) localization error contours
for the source as constructed from the data used. The
white cross marks the position of SAX J1808.4–3658.
The dashed line indicates the path of the center of the
PCA field of view during repointing.

allows us to accurately determine the Galactic lon-
gitude of the source (the statistical uncertainty is
∼1′–2′). However, since no scanning was made in
Galactic latitude, it can only be determined with
an accuracy of no higher than ∼0.5◦. The 1-, 2-,
and 3-σ localization error contours are shown in
Fig. 1. The cross marks the exact source position
obtained from optical observations (Roche 1998).
In view of such a close coincidence of the above
position with the position of the millisecond pulsar
SAX J1808.4−3658 and as there are no other bright
X-ray sources near it, we believe that the observed
flux belongs to SAX J1808.4−3658.

The time the source stays within the central 0.5 ◦

of the PCA field of view (outside which the detector
effective area decreases by more than a factor of 2) is
only ∼14 s. This exposure time is too short to record
the weak pulsations at a frequency of 401 Hz that
were detected in this source during its burst in the
spring of 1998. The upper (2σ) limit on the pulse
fraction is∼13%.

The energy spectrum of the source obtained dur-
ing the detected outburst of October 29, 1996, is
shown in Fig. 3. For comparison, this figure shows
the typical energy spectrum that SAX J1808.4−3658
exhibited during the brighter outburst in the spring
of 1998. We see that the overall shape of the spec-
tra is almost identical. However, because of the low
statistical significance of the October 29, 1996, da-
ta, the weak spectral features, such as the fluores-
cence iron line at energy ∼6–7 keV, observed during
the outburst in the spring of 1998 (see Gilfanov et
al. 1998; Heindl and Smith 1998), cannot be stud-
ied. The flux from SAX J1808.4−3658 recorded on
October 29, 1996, in the 3- to 20-keV energy range
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Fig. 2. PCA flux versus Galactic longitude of the center
of the PCA field of view during the scanning observation
used. The arrow indicates the sky position of the millisec-
ond pulsar SAX J1808.4–3658.

is F ∼ 2 × 10−10 erg s−1 cm−2, which corresponds
to a luminosity L ∼ 1.4 × 1035 erg s−1 (we assumed
the distance to the source to be 2.5 kpc; in’t Zand
et al. 1998, 2001). Note that the observations of the
millisecond pulsar SAX J1808.4−3658 performed at
approximately the same time with the WFC coded-
mask telescope of the BeppoSAX observatory (in’t
Zand et al. 2001) failed to detect a statistically sig-
nificant flux from the source, because the sensitivity
of this telescope is lower than that of the PCA/RXTE
spectrometer.

Using the PCA scanning data alone, we cannot
rule out the possibility that the peak luminosity
in the observed outburst was much higher than
that recorded on October 29, 1996. However, the
combined PCA and ASM data (Fig. 4) suggest
that the peak luminosity was most likely L � 2–3 ×
1035 erg s−1.

Interestingly, the previous flux measurement of
SAX J1808.4−3658 as obtained from the RXTE
slew data on October 3, 1996 (∼TJD 10360), yields
only an upper limit of ∼2 mCrab (Fig. 4); as-
suming a power-law spectrum with an index of
2.0, this corresponds to an X-ray luminosity of
<1034 erg s−1 (3–20 keV, a distance of 2.5 kpc).
Thus, the outburst observed on October 29, 1996, is
not a continuation of the bright outburst that began
in September of that year (in’t Zand et al. 1998).

We analyzed all of the RXTE slew data for the
period April 1996–November 1997. During this pe-
riod, the millisecond pulsar SAX J1808.4−3658 fell
within the PCA field of view 19 times. The scan dates
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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Fig. 3. The energy spectrum of SAX J1808.4–3658
on October 29, 1996 (open circles). For compari-
son, the filled circles indicate the energy spectrum of
SAX J1808.4–3658 during its brighter outburst in the
spring of 1998.

(MJD) are 50194.86, 50216.47, 50255.28, 50255.35,
50255.42, 50255.48, 50257.28, 50257.48, 50289.66,
50291.66, 50306.59, 50360.27, 50385.17, 50399.45,
50403.04, 50504.32, 50552.8, 50734.3, and 50769.5.
The typical upper limits on the flux are approximately
3–5 mCrab.

DISCUSSION

In the last several years, binary systems with neu-
tron stars (e.g., Aql X-1 and SAX J1808.4−3658)
have been used as an example to show that at lumi-
nosities of∼1035 erg s−1, these systems often exhibit
large variability (flux variations by a factor of 1000)
on time scales of several days (Campana et al. 1998;
Gilfanov et al. 1998; Wijnands et al. 2001). It seems
unlikely that such large and rapid luminosity varia-
tions resulted from the development of any instabil-
ities in the accretion disk, because the flux increase
or decrease, which is assumed to be caused by such
instabilities, is generally much smoother (see, e.g.,
Chen et al. 1997).

One of the plausible explanations for the observed
behavior of these binary systems can be the switch-
ing of the accretion flow between two distinct states
caused by small changes in the accretion rate. For
rapidly rotating neutron stars (the rotation periods of
the neutron stars in Aql X-1 and SAX J1808.4−3658
are 1.8 ms and 2.5 ms, respectively; Zhang et al.
1998; Wijnands and van der Klis 1998), two distinct
states of the accretion flow can result from its interac-
tion with the neutron-star magnetic field (Illarionov
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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Fig. 4. The light curve of SAX J1808.4–3658 as con-
structed from the ASM/RXTE data. The open circle in-
dicates the source flux as determined from the PCA data
used in this paper (∼TJD 10385). The previous flux mea-
surement of SAX J1808.4–3658 using PCA scanning
data yields only an upper limit of ∼2 mCrab, which is
indicated by the arrow (∼TJD 10360).

and Sunyaev 1975). As the accretion rate decreases,
the size of the neutron-star magnetosphere increases
and can reach the corotation radius, causing the ac-
cretion to stop due to centrifugal forces. If we assume
that the threshold luminosity for the centrifugal bar-
rier in SAX J1808.4−3658 is L ∼ 1035 erg s−1, then
we can estimate the surface magnetic field strength
of the neutron star. A simple estimate was given, for
example, by Gilfanov et al (1998):

B ∼ 3 × 107M
1/3
1.4 R

−8/3
6 P

7/6
2.5 (1)

×
(

Lx

1035 erg s−1

)1/2

G.
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Abstract—We present the results of our simultaneous observations of giant pulses from the Crab pulsar
B0531+21 at frequencies of 594 and 2228MHzwith a high (62.5 ns) time resolution. The pulse broadening
by scattering was found to be 25 and 0.4 µs at 594 and 2228 MHz, respectively. We obtained the
original giant-pulse profiles compensated for interstellar scattering. The measured profile widths at the
two frequencies are approximately equal, ≈0.5 µs; i.e., the giant pulses are narrower than the integrated
profile by a factor of about 1000. We detected an extremely high brightness temperature of radio emission,
Tb ≥ 1036 K radio emission, which is higher than the previous estimates of this parameter by five orders of
magnitude. The decorrelation bandwidth of the radio-spectrum diffraction distortions has been determined
for this pulsar for the first time: 10 kHz at 594 MHz and 300 kHz at 2228 MHz. c© 2003 MAIK “Nau-
ka/Interperiodica”.

Key words: pulsars, giant pulses, scattering.
INTRODUCTION

Giant pulses (GPs)—sudden increases in inten-
sity—are a rare phenomenon that has been detected
only in four pulsars: the Crab pulsar B0531+21
(Staelin and Reifenstein 1968; Argyle and Gower
1972; Friedman and Boriakoff 1992; Lundgren et al.
1995), the millisecond pulsars B1937+21 (Sallmen
and Backer 1995) and B1821–24 (Romani and John-
ston 2001), and the pulsar B1112+50 (Ershov and
Kuzmin 2003). This phenomenon ismost pronounced
in the first two pulsars; the intensity of their individual
pulses exceeds the intensity of the integrated pulse by
hundreds or thousands of times. GPs from the pulsar
B0531+21 were first detected by Staelin and Reifen-
stein (1968). The pulse intensity for the Crab pulsar
has a two-component distribution: a lognormal one
for most pulses and a power-law one for GPs with
intensities above a certain level that corresponds to
approximately a 30-fold intensity of the integrated
pulsar profile (Lundgren et al. 1995).

GPs are observed in both the main pulse and the
interpulse. The distribution of time intervals between
neighboring GPs corresponds to a Poisson process
(Lundgren 1994), suggesting that each GP is emitted

*E-mail: vlad@asc.rssi.ru
1063-7737/03/2906-0387$24.00 c©
independently of other GPs (Lundgren et al. 1995;
Sallmen et al. 1999).

Sallmen et al. (1999) carried out simultane-
ous observations of GPs at frequencies 600 and
1400 MHz. About 70% of the pulses were detected
at the two frequencies simultaneously, implying an
emission mechanism with a bandwidth larger than
800 MHz. It was also established that the GP shape
has a complex structure. At 1400 MHz, most of the
observed pulses consisted of several closely spaced
components.

Simultaneous observations of the Crab pulsar at
several frequencies were also carried out by other
authors (Moffett and Hankins 1996; Hankins 2000).
GPs can occur everywhere within the integrated pro-
file but are never observed at the precursor phase.
Moffett (1997) observed GPs at frequencies of 1.4
and 4.8 GHz, suggesting an emission band wider
than 3 GHz. However, if the fine GP structure is
considered, then the emission band proves to be com-
paratively narrow. Eilek et al. (2002) argue that the
GP substructure is well correlated only at close fre-
quencies: 1.4–1.7, 4.5–5.0, and 8.4–8.5 GHz. The
correlation between GPs in the broader range 1.4–
4.8 GHz is much weaker. These observational data
are in good agreement with the model of Weather-
all (1998).
2003 MAIK “Nauka/Interperiodica”
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However, the basic parameters of the Crab pul-
sar GPs themselves—their durations, flux densities,
and brightness temperatures of radio emission—have
been studied inadequately. The GP duration is known
to be much shorter than the duration of the integrated
profile. Heiles et al. (1970) determined the GP width
WGP

50 < 100 µs at 430 MHz. Given this estimate,
the observed GP peak flux densities correspond to a
brightness temperature Tb > 1031K. Kuzmin et al.
(2002) found the GP scattering time at a close fre-
quency (406 MHz) to be 180 ± 80 µs. Given the
measurement errors, this value corresponds to the
GP widths measured by Heiles et al. (1970). The
possibility of measuring shorter pulses is limited by
the pulse broadening by interstellar scattering.

Isaacman and Rankin (1977) observed the Crab
pulsar for five years at frequencies from 73.8 to
430 MHz. These authors studied the integrated pul-
sar profiles, for which they determined the scattering
time scale by means of modeling. The model of a
scattering medium in which the bulk of the scattering
matter is contained in a very limited region proved
to correspond best to the observed integrated-profile
shapes. The Crab Nebula, in which there are areas
with a matter density much higher than the interstel-
lar density, may well be this region. This explanation
was first offered by Matveenko and Lotova (1970).
Kuzmin et al. (2002) measured the frequency depen-
dence of the broadening time of GPs from the Crab
pulsar in the range from 40 to 2228 MHz. The form of
the frequency dependence corresponds to the normal
distribution of interstellar irregularities.

To reduce the effect of the interstellar medium on
the pulsar radio emission, observations should be car-
ried out at high frequencies, at which the scattering
effect is smaller. However, even at frequencies of 600
and 1400 MHz, at which the GPs from this pulsar
were studied by Sallmen et al. (1999), the GP width
measurements are limited by the pulse broadening by
scattering. According to the authors, this broadening
is 95 µs at 600 MHz and 2.5 µs at 1400 MHz.

We observed GPs from the pulsar B0531+21 at
frequencies of 594 and 2228 MHz and determined
their durations, flux densities, and brightness tem-
peratures. To restore the true pulsar GP profile, we
compensated the GPs for the pulse broadening by
scattering (Kuzmin and Izvekova 1993). The decor-
relation bandwidth of the radio-spectrum diffraction
distortions for this pulsar has been determined for the
first time.

OBSERVATIONS AND DATA PROCESSING

We observed the pulsar B0531+21 on May 19
and 20, 2000, with the 64-m radio telescope at
the Kalyazin Radio Astronomy Observatory (Astro-
space Center, Lebedev Institute of Physics, Russian
Academy of Sciences) at frequencies of 594 and
2228 MHz simultaneously. Radio emission with
left-hand circular polarization was received at each
frequency. We used the S2 data recording system
designed for VLBI observations (Cannon et al. 1997;
Wietfeldt et al. 1998). The signal in a 16-MHz fre-
quency band was continuously recorded on magnetic
tapes. The signal was digitized by a two-bit binary
code with four quantization levels at the Nyquist fre-
quency. The time resolution of the recording system
was 62.5 ns at 2228 MHz and 125 ns at 594 MHz.
Next, information from the magnetic tapes was read
into the computer memory using the S2-TCI system
(Kempner et al. 1997; Popov et al. 2002a; Popov et
al. 2002b). The received data, presented in the in-
ternal S2-TCI format, were decoded and the original
video signal was written on computer hard disk.

Subsequently, the signal was corrected for dis-
persion by the predetection dispersion method (Han-
kins 1971, 1974). The dispersion measure DM =
56.754 pc cm−3 was used to restore the signal. This
value was taken from the ephemeris of the disper-
sion measure for the Crab pulsar for May 15, 2000
(the date closest to the time of our observations),
which are computed at the Jodrell Bank Observatory
(England) for the middle of each month (Jodrell Bank
Crab Pulsar Monthly Ephemeris). During the data
processing, we refined this dispersion measure (see
below in this section).

The correction for the receiver band-pass ampli-
tude irregularities wasmade by the method suggested
by Semenkov et al. (2003). The idea is to construct
an average power spectrum of the record at a noise
window, which is the amplitude–frequency charac-
teristic (AFC) of the receiver band-pass. For this
AFC, we chose an appropriate “ideal band” and then
calculated the correcting function.

We searched for GPs over the entire length of
the record. Only for performing the searching pro-
cedure did we average the detected signal corrected
for dispersion smearing and the receiver band-pass
amplitude irregularities with a time constant of 28 µs
for the record at 594 MHz and 312.5 ns for the record
at 2228 MHz. In our subsequent data processing,
unless otherwise specified, we used records with an
original time resolution of 62.5 ns at 2228 MHz and
125 ns at 594 MHz. Then, we searched for GPs.
We analyzed the record portions in which the sig-
nal level exceeded a threshold value; the remaining
part of the records was not processed. The threshold
was 5σ (310 Jy) at 594 MHz and 10σ (2700 Jy) at
2228 MHz. The flux-density calibration procedure is
described in more detail in the subsection entitled
“GP Flux Densities and Brightness Temperatures.”
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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Fig. 1. The giant pulse detected simultaneously at the two frequencies. The pulse at 2228 MHz is shown with an original time
resolution of 62.5 ns. The pulse at 594 MHz was averaged with a time constant of 1.5625 µs.
The selected data were checked for the presence of
GPs. The following two criteria were used for GP
selection: (i) an excess over a specified threshold at
the phase of the integrated profile and (ii) the charac-
teristic GP scattering profile. The noise spikes were
excluded from the data processing.

The duration of an observing session was 6 h.
By now, we have processed the data which contain
36 364 pulsar period in a 20-min-long record. At
594 MHz, we detected 349 GPs: 300 (about 86%)
and 49 (14%) were observed at the phases of the main
pulse and the interpulse, respectively. At 2228 MHz,
we found 65 pulses: 56 (86%) and 9 (14%) at the
phases of the main pulse and the interpulse, respec-
tively. OneGPwith an intensity higher than the above
threshold occurred, on average, in 100 pulsar periods
at 594 MHz and in 560 periods at 2228 MHz; 22 of
these pulses were observed simultaneously at the two
frequencies (one such pulse is shown in Fig. 1). Based
on the dispersion delay of the pulses simultaneously
ASTRONOMY LETTERS Vol. 29 No. 6 2003
observed at the two frequencies, we refined the dis-
persion measure, DM = 56.764 ± 0.001 pc cm−3.

ANALYSIS AND RESULTS
Pulse Broadening by Scattering

Averaging the GPs aligned by the peak flux den-
sity, we obtained the integrated GP profile. Note that
averaging the GPs by the peak flux density leads to
a certain narrowing of the derived integrated profiles.
In our case, however, this narrowing may be ignored,
because the width of the scattered profile is much
larger than the sampling interval. Subsequently, we
determined the broadening of the derived integrated
GP profiles by modeling the scattering effect. To this
end, we folded the template that represented the orig-
inal pulsar GP profile with the truncated exponential
function

g(t) =

{
exp(−t/τsc) for t ≥ 0
0 for t < 0,

(1)



390 KOSTYUK et al.
Parameters of GPs from the pulsar B0531 + 21

Frequency,
MHz

N
τsc,
µs

S obs
max,
kJy

W obs
50 ,
µs

S GP
max,
kJy

W GP
50 ,
µs

594 300 25 2.5 30 150 0.5

2228 56 0.4 9 1 18 0.5

Note: N is the number of observed GPs (at the phase of the main
pulse); τsc is the time of pulse broadening by scattering; S obs

max is
the N-averaged GP peak flux density; W obs

50 is the mean width
of the observed GP at half maximum; S GP

max is the mean peak flux
density of the GPs compensated for scattering; and W GP

50 is the
measured width of the GP profiles compensated for scattering at
half maximum. All of the measured parameters in this table were
obtained by analyzing the GPs that were observed only at the
phase of the main pulse.

that represented the scattering by a thin screen. The
observed integrated profile was fitted (by the least
squares method) with the modeled profile. A Gaus-
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Fig. 2. The scattering-compensated integrated GP pro-
files at frequencies of 594 and 2228 MHz.
sian profile was specified as the template. The broad-
ening by scattering τsc, the template profile width,
and the time delay of the scattered model profile were
the sought-for parameters. The integrated GP pro-
file at 594 MHz was averaged over ten data counts
(312.5 ns). The measured pulse broadening by scat-
tering is τsc = 25 and 0.4 µs at 594 and 2228 MHz,
respectively (see the table).

The difference between the durations of the ob-
served pulsar pulses does not correspond to the ac-
tual difference between the original pulsar pulses.
The observed pulsar GPs are distorted by interstellar
scattering, which limits the possibility of measuring
pulses shorter than the broadening by scattering. Us-
ing our scattering data, we restored the original GP
profile by the method of Kuzmin and Izvekova (1993).
This method is based on the classical solution of
the relationship between the pulse parameters at the
input and output of some element (medium) with
the transfer function g(t) through which the pulse
passes; that is known in the theory of transient pro-
cesses. The frequency spectra of the original, x(t),
and observed, y(t), pulses are related by X(f) =
Y (f)/G(f), where G(f) is the frequency response of
the scattering medium,

G(f) =
1
2π

∫
g(t) exp(−j2πtf)dt.

The frequency spectrum of the observed pulse is de-
termined by the Fourier transform

Y (f) =
1
2π

∫
y(t) exp(−j2πtf)dt.

The scattering-compensated pulse is determined by
the inverse Fourier transform of its spectrum

x(t) =
1
2π

∫
X(f) exp(j2πtf)df.

In our case, the transfer element is the interstel-
lar medium whose transfer function g(t) is given by
formula (1).

The scattering-compensated integrated GP pro-
files are shown in Fig. 2. The widths of the restored
GP profiles are approximately equal at the two fre-
quencies,WGP

50 ≈ 0.5 µs = 0.015 mP (see the table),
which is a thousand times smaller than the width of
the integrated pulsar profile.

The Decorrelation Band

To determine the decorrelation bandwidth ∆νs, we
constructed the autocorrelation function (ACF) of the
scintillation frequency structure. For this purpose, we
constructed the ACFs of the power spectra for each
GP on a record portion with a length of 512 µs at
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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Fig. 3. The autocorrelation functions of the scintillation frequency structure at 594 and 2228 MHz. The arrows indicate the
characteristic ∆νs scales: 10 and 300 kHz at 594 and 2228 MHz, respectively. The sampling intervals at 594 and 2228 MHz
are 2 and 62.5 kHz, respectively.
594 MHz and 16 µs at 2228 MHz, which provided a
frequency resolution of 2 and 62.5 kHz, respectively.
The derived ACFs were then averaged between them-
selves. The frequency ACF on the noise record portion
was constructed in a similar way and then subtracted
from the ACF for the GP. The decorrelation band-
width was determined from the characteristic scale of
the derived ACF (see Fig. 3): 10 kHz at 594MHz and
300 kHz at 2228 MHz.

GP Flux Densities and Brightness Temperatures

The calibration was made as follows. The sys-
tem equivalent flux density (SEFD) of the radio tele-
scope σs was 170 Jy at 594 MHz and 160 Jy at
2228 MHz. In our case, however, σs was determined
mainly by the contribution from the radio emission of
the Crab Nebula. At 594 and 2228 MHz, the beam
width is 27′ and 7′, respectively, which is larger than
the angular size of the CrabNebula. Therefore, σs was
ASTRONOMY LETTERS Vol. 29 No. 6 2003
determined by the total contribution from the back-
ground of the entire Crab Nebula at the observation
frequencies and the noise of the antenna–feeder sys-
tem. The flux densities of the Crab Nebula at 594 and
2228 MHz are 1100 and 710 Jy, respectively. These
flux densities were obtained by interpolating the data
published by Ivanov et al. (1994) and Velusamy et
al. (1992). The final SEFD of the radio telescope σs
is 1300 and 800 Jy at 594 and 2228 MHz, respec-
tively.

We calculated the fluctuation rms outside the
pulse window. The GP flux density SGP was defined
by the expression

SGP = σs × (S/N),

where (S/N) is the signal-to-noise ratio.
The peak flux density averaged over 300 observed

pulses at 594MHzwas 2500 Jy. The peak flux density
averaged over 56 observed pulses at 2228 MHz was
9000 Jy.
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The measured flux density at the maximum of
the observed pulse Sobs

max was recalculated with the
conservation of the pulse energy to the scattering-
compensated GP maximum as SGP

max = Sobs
max ×

(W obs
50 /WGP

50 ), where W obs
50 is the width of the ob-

served GP and WGP
50 is the scattering-compensated

GP width.
The mean peak flux densities of the scattering-

compensated GPs at 594 and 2228 MHz are 150 and
18 kJy, respectively, which exceed the flux density at
the maximum of the integrated profile by factors of
60 000 and 500 000, respectively.

Our results are presented in the table.

The brightness temperature is Tb = SGP
maxλ

2/2kΩ,
where λ is the wavelength of the received radio emis-
sion; k is the Boltzmann constant; and Ω is the solid
angle of the radio-emitting region, Ω ∼= θ2 = (l/d)2.
Assuming that the distance to the pulsar is d = 2 kpc
(Taylor et al. 1995) and that the size of the radio-
emitting region is l ≤ cWGP

50 , where WGP
50 = 0.5 µs

is the GP width, we obtain Tb ≥ 2 × 1036 and Tb ≥
1.6 × 1034 K at 594 and 2228 MHz, respectively.

The GP Emission Frequency Band

We observed 22 pulses simultaneously at the two
frequencies, 594 and 2228MHz, suggesting an emis-
sion mechanism.

DISCUSSION

The widths of the scattering-compensated GP
profiles at 594 and 2228 MHz are approximately
equal, suggesting that the derived profile is similar
to the original pulsar GP profile.

The (period-averaged) flux densities of the inte-
grated pulsar pulse at 594 and 2228 MHz were found
by extrapolating the data from the catalog of Taylor
et al. (1995) to be 220 and 3.2 mJy, respectively; they
are equal to 2400 and 35 mJy at the pulse maximum.
Thus, in the observedGPs, the flux densities averaged
over 300 and 56 strong GPs at 594 and 2228MHz are
150 and 18 kJy, respectively, which exceed the mean
level by factors of 60 000 and 500 000.

The GP brightness temperature is Tb ≥ 1036 K,
a value that is five orders of magnitude higher
than the previous estimates of this parameter. The
brightness temperature estimated bySoglasnov et al.
(2003) for the millisecond pulsar B1937+21, which
also exhibits GPs, are >1038 K, while Kuzmin and
Losovsky (2002) gave ≈1035 K, which is equal in
order of magnitude to the value obtained for the Crab
pulsar.
An independent measurement of the decorrelation
band and the pulse broadening by scattering at the
same frequency and for a common sample of pulses
made it possible to experimentally determine the rela-
tion between these parameters, 2πτsc∆νs = K. Our
measured τsc = 25 µs and∆νs = 10 kHz at 594MHz
and τsc = 0.4 µs and ∆νs = 300 kHz at 2228 MHz
correspond to the recalculation coefficients K = 1.57
and 0.75, respectively. The coefficient K depends on
the spectrum of the interstellar plasma irregulari-
ties in the line of sight. For a Gaussian irregularity
spectrum, K = 1, although, as was shown by Rick-
ett (1977), the same is also roughly valid for a power-
law spectrum. The K range for the two frequencies
used here contains the theoretical value for this co-
efficient. This coefficient was also measured by other
authors. Slee et al. (1980) obtainedK = 1.0± 0.1 for
the pulsar B0833–45.

CONCLUSIONS
We observed giant pulses from the Crab pulsar

B0531+21 at frequencies of 594 and 2228 MHz.
We obtained the GP profiles of this pulsar that

were compensated for interstellar scattering. The pro-
file width isWGP

50 ≈ 0.5 µs.
The GP peak flux densities at 594 and 2228 MHz

are 150 and 18 kJy, respectively, which exceed the flux
density at the maximum of the integrated profile by
factors of 60 000 and 500 000, respectively.

We detected an extremely high GP brightness
temperature, Tb ≥ 1036 K, which is five orders of
magnitude higher that the previous estimates of this
parameter.

The frequency bandwidth of theGP radio emission
is not less than 1.5 GHz.

We carried out the first direct measurements of the
decorrelation band for this pulsar. The decorrelation
bandwidth ∆νs is 10 kHz at 594 MHz and 300 kHz
at 2228 MHz.
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Abstract—A comparison between the stellar-wind interaction model with electron heat conduction and
the ASCA X-ray observations of the (WR+O) binary system WR 140 has been made for the first time. This
comparison shows that good agreement with observations can be achieved by varying the physical stellar-
wind parameters within the ranges allowed by the accuracy of their determination. The self-consistent
two-temperature model with heat conduction is an outgrowth of the model of interacting winds in such
systems, which is required to properly interpret future detailed X-ray observations on the Chandra and
Newton-XMM satellites. c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Because of substantial progress in sensitivity and
spectral resolution, X-ray spectroscopy has become
one of the most powerful tools for studying the prop-
erties of stellar winds and interstellar environments
of Wolf–Rayet (WR) stars. X-ray spectra provide
detailed information on the temperature distribution
behind the shock waves generated in strong winds
from these stars. In the long run, they are capable
of providing reliable information on the wind chem-
ical composition, which is used to test evolutionary
models. Most of the studies are focused on WR+O
binary systems, because the X-ray brightness of the
interaction region of the stellar winds from their com-
ponents can significantly exceed the brightness of
single WR and O stars (Pollock 1987). Of particular
interest are the X-ray spectra of the binaries WR 140
(WC7 + O4-5V) and γ2 Vel (WC8 + O9I) that
have recently been obtained on the ASCA (Advanced
Satellite for Cosmology and Astrophysics) space-
craft. These spectra have a high signal-to-noise ratio
and, hence, are suitable for a detailed comparison with
theoretical models. A comparison between the ASCA
spectra of γ2 Vel obtained at different orbital phases
and the spectra computed in the model of radiative
interacting winds (Stevens et al. 1992) was made
by Stevens et al. (1996). Unfortunately, as Myas-
nikov et al. (1998) showed, the numerical models of
radiative interacting winds cannot yet be considered

*E-mail: myas@ipmnet.ru
1063-7737/03/2906-0394$24.00 c©
acceptable not only for a quantitative analysis but
also for a qualitative analysis of the processes in close
binary systems, where the effect of radiative energy
losses in the interaction region plays a significant role.

In contrast to γ2 Vel, the separation between the
components in WR 140 is so large (Williams et al.
1990) that the radiative effects may be disregarded
(Stevens et al. 1992; Myasnikov and Zhekov 1993).
A detailed comparison of the spectra for WR 140 with
the synthetic spectrum generated by gas-dynamical
models was made by Zhekov and Skinner (2000).
The main goal of their comparison was to study the
question of whether the adiabatic model of interact-
ing winds (Lebedev and Myasnikov 1988, 1990) is
suitable for a detailed reproduction of the observed
spectra. Although the adiabatic model was found to
be capable of accurately reproducing the spectra of
WR 140 at various orbital phases, allowing for the
difference between the electron and ion temperatures
in the interaction region leads to a better reproduction
of the observational data.

At the same time, the effect of electron heat con-
duction on the structure of the stellar-wind inter-
action region in WR 140 can also be significant.
Recently, Myasnikov and Zhekov (1998) suggested
an interaction model of stellar winds in binary sys-
tems, in which the effect of electron heat conduction
on the flow pattern was considered in the single-
temperature approximation. The authors showed that
electron heat conduction could significantly change
the flow parameters. As a result, the X-ray spectrum
2003 MAIK “Nauka/Interperiodica”
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becomes softer and the luminosity increases in com-
parison with the purely adiabatic case.

Here, we investigate the effects of electron heat
conduction on the X-ray parameters of the stellar-
wind interaction region in the binary system WR 140.

THE MODEL

We took the stellar-wind outflow parameters, the
binary orbital parameters, and the distance to the
object from Williams et al. (1990) as the basic data
for using the gas-dynamical model in our computa-
tions. The outflow parameters are: Ṁ(WR) = 5.7 ×
10−5 M� yr−1, v∞(WR) = 2860 km s−1, Ṁ(O) =
1.8× 10−6 M� yr−1, and v∞(O) = 3200 km s−1. The
binary orbit has the semimajor axis a = 14.7 AU, the
eccentricity e = 0.84 ± 0.04, the orbital inclination
i = 60◦, the period P = 2900 (±10) days = 7.94 yr,
and the time of periastron passage T0(1985.26) =
JD2446160 (±29). The distance to the object was
assumed to be 1.3 kpc.

Since the binary system is wide and the parame-

ter Λ =
ṀWRVWR

ṀOVO
is equal to 28.3, the shock-wave

structure is located far enough from the two stars to
assume that the velocities of the two winds reach their
terminal values long before the shock waves (Lebe-
dev and Myasnikov 1990). In addition, the orbital
velocities around the common center of mass in wide
binary systems are low compared to the terminal wind
velocities, so we may disregard the spatial effects of
the orbital motion and consider the structure of the
interaction region in the axisymmetric approxima-
tion. In this case, the solution of the gas-dynamical
problem is completely determined by the stellar-wind
outflow parameters and the separation between the
components. The density in the interaction region
is known to decrease with increasing separation be-
tween the components at a fixed parameter Λ, causing
the effect of radiative energy losses on the structure of
the interaction region to weaken (Stevens et al. 1992;
Myasnikov and Zhekov 1993). The separation be-
tween the components in WR 140 is so large that we
may completely disregard the radiative energy losses
in the interaction region. At the same time, the pos-
sible effect of electron heat conduction is enhanced
as the separation between the components increases,
causing (at a fixed Λ) the density in the interaction
region and ahead of the shock fronts to decrease
(Myasnikov and Zhekov 1998). Therefore, we used
the model with electron heat conduction that was
suggested and developed previously (Myasnikov and
Zhekov 1998) in our computations of the structure of
the stellar-wind interaction region in WR 140. In this
ASTRONOMY LETTERS Vol. 29 No. 6 2003
Table 1. Basic parameters of the gas-dynamical models of
interacting winds in WR 140

Parameter Model A Model B

Ṁ(WR),M� yr−1 2.90 × 10−5 3.23 × 10−5

V (WR), km s−1 2860 2430

Ṁ(O), M� yr−1 9.20 × 10−7 1.02 × 10−6

V (O), km s−1 3200 2720

a sin i, AU 23.1 30.3

i, deg 60 60

model, the flow structure is described by the system
of equations in dimensionless form

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv
∂t

+ ∇ · (ρv ⊗ v + pI) = 0, (1)

∂e

∂t
+ ∇ · ((e+ p)v) = −Γthc∇ ·W,

where ρ, p, v, and e denote the density, pressure,
velocity, and total energy density, respectively; ⊗ is
the tensor product; I is a unit matrix; and W is
the isotropic heat flux defined by the relation W =
−T 5/2∇T (Braginskii 1957), T = p/ρ. At a fixed
adiabatic index, γ = 5/3, the flow structure in the
hypersonic approximation is described by the dimen-
sionless parameters

Λ =
ṀWRVWR

ṀOVO
, χ =

VWR

VO
,

Γthc = 0.0742
ε(Z)
Z

µ3.5V 5
O(8)D12Ṁ

−1
O (6)

where µ is the mean particle atomic weight, Z is the
mean ion charge, ε(Z) is a function with the asymp-
totic values ε(1) = 3.1616 and ε(∞) = 12.47 (Bra-
ginskii 1957),D(12) = D/1012 cm (2D = a), VO(8) =
VO/108 cm s−1, and ṀO(6) = ṀO/10−6M� yr−1.

In contrast to the adiabatic model (Myasnikov and
Zhekov 1993), we disregarded the different chem-
ical compositions of the stellar winds in our gas-
dynamical computations with an allowance made
for heat conduction. Since the X-ray parameters
of the interaction region are determined mainly by
the wind radiation from a WR star (Myasnikov and
Zhekov 1993), the chemical composition in our gas-
dynamical computations was assumed to be a helium
one: µ = 4/3, Z = 2, and ε(Z) = 4.89.
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Table 2. Comparison of our computations with observationsa

Model Parameter 93Ab 93Bb 97Ab 97Bb

A . . . . χ2
red 1.09 0.71 1.18 1.33

Kc 238 200 178 178

NH
d 3.01 [2.93–3.09] 1.08 [1.03–1.13] 0.32 [0.30–0.33] 0.32 [0.30–0.33]

Norme 1.00 [0.98–1.03] 1.00 [0.97–1.03] 0.96 [0.93–0.98] 0.98 [0.95–1.00]

FX
f 3.42 3.23 2.38 2.50

B . . . . χ2
red 1.01 0.69 0.91 1.05

Kc 238 200 178 178

NH
d 3.32 [3.24–3.40] 1.24 [1.19–1.29] 0.37 [0.35–0.39] 0.37 [0.36–0.39]

Norme 1.00 [0.98–1.03] 0.97 [0.94–1.01] 0.90 [0.88–0.92] 0.92 [0.89–0.94]

FX
f 3.32 3.10 2.26 2.38

a The comparison was made by using XSPEC based on the gas-dynamical model with electron heat conduction. The 90% confidence
interval is given in square brackets. The distance to WR 140 was assumed to be 1.3 kpc.
b The dates of observations are denoted as follows: 93A for June 10, 1993; 93B for October 26, 1993; 97A for May 14, 1997; and 97B
for November 21, 1997.
c The degrees of freedom in the χ2 fit.
d The column density (1022 cm−2) of the extra X-ray absorption (interstellar and circumstellar). The absorption by the stellar wind
was also taken into account in our computations of the X-ray emission.
e A dimensionless quantity that gives the observed-to-theoretical flux ratio. Norm = 1.0 corresponds to a perfect match between the
quantities being compared.
f The observed X-ray (0.5–10 keV) fluxes in 10−11 erg cm−2 s−1.
Because of the large eccentricity, the separation
between the components significantly varies with or-
bital phase. This variation is taken into account in our
steady-state model by the dependence of Γthc on the
orbital parameter D(12). This approximation is valid
for WR 140, because its orbital period is much longer
than the gas-dynamical time scale of the problem
(P � τd = D/VO).

To take into account the effect of the entire plasma
capable of emitting in the X-ray range, we performed
our computations of the interaction region up to dis-
tances of 7.5 a from the axis of symmetry, where
the temperature of the emitting plasma was T ≥ 5 ×
105 K.

The X-ray emission from the interaction region
was determined from the model of an optically thin
plasma by using the approximation of Raymond and
Smith (1977). In computing the X-ray parameters,
we used the chemical composition characteristic of
a WC star, as in Zhekov and Skinner (2000). The
absorption in the winds was determined by integrat-
ing the absorption coefficient over the line of sight
for each element (Balucinska-Church and McCam-
mon 1992) with an allowance made for the wind
chemical composition. Although the solution of the
gas-dynamical problem is two-dimensional, three-
dimensional integration should be performed to de-
termine the absorption at various orbital phases.

RESULTS

As was noted above, X-ray observations are the
best method for testing the models of interacting
stellar winds in binary systems. Therefore, we com-
pared the computed X-ray spectrum of the inter-
action region with the ASCA spectra taken during
1993–1997. A description of these observations
and their reduction can be found in Zhekov and
Skinner (2000). Here, we only note that the spectra
were obtained on June 10, 1993 (93A); October 26,
1993 (93B); May 14, 1997 (97A); and November 21,
1997 (97B). The quality of the X-ray spectra is
high: each has more than 10 000 photons in the
energy range (0.5–10) keV, which allows a detailed
comparison with theoretical models. To this end,
we used the XSPEC X-ray spectrum processing
package (version 11.0; Arnaud 1996).

First, we computed spectra with the parameters
of the two adiabatic models by Zhekov and Skin-
ner (2000) (see Table 2 in this paper) that provide the
best fit to the observations. Recall that these models
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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differ by the stellar-wind velocities. More specifically,
the stellar-wind velocities in one of them are 15%
lower than the standard values from Williams et al.
(1990), which is within the limits of the errors in the
wind velocities of hot stars (Prinja et al. 1990). The
corresponding shapes of the theoretical spectra also
turned out to be acceptable in the heat-conducting
case. However, the X-ray flux in the two models in-
creased by 40–50% compared to the adiabatic case,
which corresponds to our general predictions (Myas-
nikov and Zhekov 1998).

To achieve the best agreement between the the-
oretical and observed spectra, we varied the mass-
loss rates of the stars and the separations between the
components in each of the models. In this case, the
ratio of dynamic wind pressures Λ was constant.

Table 1 gives the parameters of the two models
that provide the best fit to the observational data.
Figure 1 shows the temperature distributions in the
stellar-wind interaction region in WR 140 obtained
for model A by computing a two-dimensional ax-
isymmetric flow with electron heat conduction at or-
bital phases near periastron and apastron (Figs. 1a,
1b). For comparison, Fig. 1c also shows the tem-
perature distributions computed for model A in the
adiabatic approximation (at Γthc = 0). The theoretical
and observed spectra are compared in Table 2 and
Fig. 2. This comparison shows that the interacting-
wind models with heat conduction are in good agree-
ment with the observations if the orbital semima-
jor axis of WR 140 lies within the range a sin i =
20–30 AU. These values slightly exceed those ob-
tained by Zhekov and Skinner (2000) for the adiabatic
case. However, they are consistent with the obser-
vations, because the orbital inclination of WR 140 is
known with a low accuracy. For example, the analysis
by Williams et al. (1990) indicated that any values
in the range i = 30◦–90◦ were possible, while in our
analysis we took the standard value of i = 60◦. In
addition, as in the adiabatic case (Zhekov and Skin-
ner 2000), the mass loss rates of the two winds proved
to be lower than those of Williams et al. (1990), but
they remained within the range of the characteristic
accuracy of these parameters.

It should be noted that, in addition to the models
whose parameters are given in Table 1, other so-
lutions that provide acceptable agreement with the
observations are also possible. For example, the gas-
dynamical solution has such a structure that any
combination of the physical parameters of the binary
system (the stellar mass loss rates, the wind veloc-
ities, and the separation between the components )
that yield the same values of Λ and χ and small
changes in Γthc (≤30%) as in models A and B, while
preserving the Ṁ2

WR/D ratio, will reproduce the X-
ray spectra of WR 140 with an acceptable accuracy.
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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Fig. 1. The temperature distributions in the range
1 × 107–1 × 108 K near the axis of symmetry of the
stellar-wind interaction region in WR 140. The distribu-
tions were obtained for model A (see Table 1) by com-
puting a two-dimensional axisymmetric flow with elec-
tron heat conduction at orbital phases near (a) apastron
and (b) periastron. The temperature distributions com-
puted for model A in the adiabatic approximation (c)
are also shown for comparison. The linear sizes refer to
half the separation between the components, D = 3.54×
1014 cm in case (a) and D = 1.24 × 1014 cm in cases (b)
and (c).
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Fig. 2. The ASCA spectra of WR 140 obtained on (a) June 10, 1993; (b) October 26, 1993; (c) May 14, 1997; and (d)
November 21, 1997. The heavy solid lines indicate the theoretical spectra in the heat-conducting model B with X-ray
absorption by the stellar winds and the interstellar medium. The model parameters and the results of our comparison are given
in Tables 1 and 2. The lower panels of each figure show the differences between the observed and model spectra (residuals).
Our analysis of the X-ray spectra for WR 140
based on a numerical interacting-wind model with
heat conduction confirmed the conclusion drawn
from the adiabatic model. More specifically, the X-
ray absorption toward the object at orbital phases
near apastron (97A and 97B) is mainly determined
by the interstellar medium (based on E(B − V ) =
0.79 from Williams et al. (1990), we found the
expected column density of the interstellar medium to

be NH = 5.4 × 1021 cm−2). Extra X-ray absorption
higher than the interstellar one is observed near
periastron (93A and 93B) (Table 2; we took into
account the absorption in the stellar winds when
computing the X-ray emission). As was discussed by
Zhekov and Skinner (2000), the origin of this excess
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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X-ray absorption is not yet known and we hope that
Chandra observations will be useful in this respect.

Summarizing the results of our analysis of the
X-ray spectrum for WR 140, we can say that the
adiabatic and dissipative models of interacting winds
indicate that the parameters giving softer emission
are in better agreement with the observational data
(cf. χ2

red for models A and B from Table 3 in Zhekov
and Skinner (2000) and Table 2 in this paper). Softer
X-ray emission can be obtained if (1) we decrease
the stellar-wind velocities (model B in comparison
with model A); (2) abandon the hypothesis that the
electron and ion temperatures become equal at the
shock fronts; and (3) the electron heat conduction
significantly affects the structure of the interaction
region. Note that in the case of WR 140, allowing
for the effect of electron heat conduction causes the
luminosity to increase, while the relaxation of the
electron temperature causes it to decrease compared
to the adiabatic model (see Table 2 in Zhekov and
Skinner (2000)) an admissible change in the orbital
parameter a sin i. A self-consistent allowance for the
combined action of these effects can be useful in
interpreting more detailed observations of this object.

Finally, it should be noted that WR 140 is a well-
known source of nonthermal radio emission among
the WR+O binaries (Abbott et al. 1986), which is
produced by the accelerated motion of relativistic par-
ticles in a magnetic field. The latter, in turn, signifi-
cantly reduces the thermal conductivity in the direc-
tion perpendicular to the magnetic field lines (Bra-
ginskii 1957). The following question naturally arises:
How much will the interaction of a magnetic field with
the heat conduction in wide binary systems change
the results of our analysis of the X-ray emission from
WR 140. The solution of the gas-dynamical prob-
lem with anisotropic heat conduction is technically
difficult to obtain and requires a three-dimensional
approach. However, one might expect that the results
obtained above will not change qualitatively, because
the magnetic field in the binary cannot be parallel to
the shock fronts everywhere.

CONCLUSIONS

A comparison between the stellar-wind interac-
tion model with electron heat conduction and the
X-ray observations of the WR+O binary system
ASTRONOMY LETTERS Vol. 29 No. 6 2003
WR 140 has been made for the first time. Comparison
with ASCA spectra shows that good agreement with
observations can be achieved by varying physical
stellar-wind parameters within the ranges allowed
by the accuracy of their determination. This confirms
that electron heat conduction plays a significant role
in the physics of interacting stellar winds in wide
binary systems. The self-consistent two-temperature
model with heat conduction that we are currently
developing is an outgrowth of the model of interacting
winds in such binary systems, which is required to
properly interpret detailed X-ray observations.
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Eight New Magnetic Stars with Large Continuum Depressions
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Abstract—Observations with the 6-m telescope revealed eight new magnetic, chemically peculiar stars:
HD 29925, HD 40711, HD 115606, HD 168796, HD 178892, HD 196691, HD 209051, and BD+
32◦2827. Zeeman observations of all these objects have been carried out for the first time. We selected
candidates by analyzing the depression profile at a wavelength of λ5200 Å. This technique for selecting
candidate magnetic stars was shown to be efficient: we found magnetic fields in 14 of the 15 objects that we
selected for our observations with a Zeeman analyzer. A maximum longitudinal field strengthBe exceeding
8 kG was found in HD 178892; in HD 209051 and HD 196691, Be reaches 3.3 and 2.2 kG, respectively.
For the remaining stars, we obtained lower limits of the longitudinal field (more than several hundred G).
c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

In this paper, we continue to publish the results
of our searches for new magnetic stars based on the
observations performed in 2000–2002 with the 6-m
Special Astrophysical Observatory (SAO) telescope.
The formulation of the problem, the observing tech-
nique, and the first measurements that revealed six
new magnetic stars were presented previously (El’kin
et al. 2002). Here, we consider the technique for
selecting candidate magnetic stars in more detail.

Although the first magnetic star was discovered
by Babcock back in 1947, only a little more than
200 of them are known to date (Romanyuk 2000),
which is not enough to carry out statistical stud-
ies. High-resolution Zeeman spectra, which can be
obtained only with large telescopes whose observ-
ing time is highly deficient, are needed for direct
magnetic-field measurements. The direct result of
Zeeman-spectrum measurements is only the longi-
tudinal magnetic-field componentBe, which depends
on the rotation phase. Hence, it is necessary to mea-
sure at least three or four spectra of each star at
different rotation phases to get an idea of its field
strength. Therefore, seeking for effective criteria for
selecting real candidate magnetic stars is of consid-
erable importance.

Our suggested technique for selecting candidates
is based on the analysis of the depression profile at a
wavelength of λ5150 Å. We selected 15 CP stars with

*E-mail: dkudr@sao.ru
1063-7737/03/2906-0400$24.00 c©
the most prominent feature at λ5150 Å. Previously
(El’kin et al. 2002), we reported the discovery of six
new magnetic stars; in this paper, we present the
results of our new measurements that revealed mag-
netic fields in eight more CP stars. The last star from
this list, HD 161321, was found to be an SB2 binary
Am star. The results of our measurements of Zeeman
spectra for this object will be published separately.

OBSERVATIONS
Since the essence of our star-selection technique

for observations with the 6-m telescope equippedwith
a Zeeman analyzer has not been described previously
in sufficient detail (El’kin et al. 2002), let us fill in the
gap. The technique is as follows.
(1) Objects with large photometric indices charac-

teristic of CP stars (e.g., the index∆a (Maitzen 1976)
or the z parameter of the Geneva photometric system
(Cramer and Maeder 1980)) are selected from the
literature; the comments on individual stars made
by analyzing objective-prism (Bidelman 1981, 1985)
and other surveys are taken into account. We selected
more than 500 objects as preliminary candidates for
our subsequent observations.
(2) The stars selected by the method described

above are observed using the UAGS spectrograph
with a low spectral resolution attached to the 1-m
SAO telescope in the region of the well-known de-
pression at a wavelength of λ5200 Å. Such observa-
tions are not very time-consuming; the necessary da-
ta for more than 30 objects can be obtained on a suc-
cessful night. When reducing these (low-resolution)
2003 MAIK “Nauka/Interperiodica”
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Table 1.General parameters of the sample CP stars

Star
Alternative name

Coordinates (2000.0) V
magnitude

Spectral
typeHD/HDE α δ

HD 29925 BD+00◦830 04h 43m 00s.4 +01◦ 06′ 28′′ 8.3 B9 Si

HD 40711 BD+10◦973 06 01 01.3 +10 24 05 8.6 A0 SrCrEu

HD 115606 BD+13◦2653 13 18 02.5 +13 00 00 8.6 A2 Sr

BD+32◦2827 16 59 23.5 +32 27 08 9.9 Ap SrEuCr

HD 168796 BD+13◦3612 18 21 02.6 +13 49 00 7.9 A0 SiCrSr

HD 178892 BD+14◦3811 19 09 54.7 +14 57 58 8.9 B9 SrCrEu

HD 196691 BD−06◦5545 20 39 10.6 −06 09 27 8.6 A0 Si

HD 209051 BD−07◦5683 22 00 40.2 −06 25 57 8.8 A0 SrCrEu
spectra, we detected a characteristic feature within
the depression at a wavelength of λ5150 Å. Its in-
tensity well correlates with the field strength of the
known magnetic stars that we took as standards
for various calibrations. Moreover, we found that the
presence of this feature in the profile of the broad and
shallow depression in the spectrum is an effective in-
dicator of the presence of a magnetic field in a star. We
compiled a list that currently contains about 100 CP
stars with a distinct feature at λ5150 Å, which we
consider to be real candidate magnetic CP stars. Only
special observations with a Zeeman analyzer can give
the ultimate answer to the question of whether there
is a magnetic field in the stellar atmosphere.
Magnetic observations of our selected CP stars

with strong depressions were carried out in 2000–
2002 using the Main Stellar Spectrograph (MSS) of
the 6-m telescope equipped with a Zeeman analyzer
(Naidenov and Chuntonov 1976; Chuntonov 1997).
The detector was a 1160× 1040 pixel CCD array. The
current status of the MSS and its technical char-
acteristics were presented by Panchuk (2001), our
technique for measuring stellar magnetic fields was
detailed by Romanyuk et al. (1998), and the data
reduction procedures were described by Kudryavtsev
(2000).
Table 1 presents data on the eight CP stars that

we observed. It gives the HD or HDE star numbers,
alternative names, equatorial coordinates α and δ
for 2000, visual V magnitudes, spectral types, and
types of chemical anomalies.
All of the observations were carried out in the

spectral range 4450–4620 Å. The spectral resolution
(two CCD pixels) was 0.3 Å, or 20 km s−1. For five
of the eight stars, the value of v sin i was below this
limit; in these cases, we give only the upper limits for
the projected rotational velocity v sin i ≤ 20 km s−1.
ASTRONOMY LETTERS Vol. 29 No. 6 2003
RESULTS OF OUR MEASUREMENTS

Since we found no published information on the
photometric and spectroscopic variability for any of
the eight stars, our magnetic-field measurements
were performed at random rotation phases.
The results of our measurements are presented in

Table 2. As an illustration, the figure shows portions
of the spectra for the three stars with the strongest
magnetic fields. The solid and dashed lines indicate
the spectra in right- and left-hand circular polariza-
tions, respectively. The observed shift (in Å) and the
corresponding effective magnetic field Be are shown.
The Zeeman shift in the star HD 178892 with a
strong magnetic field can be seen by eye. The effect
is not so pronounced for stars with weaker fields. The
figure shows only short parts of the spectra; actually,
however, we measured the magnetic field by using
a large number of spectral lines (about 50), which
allows it to be measured with a sufficient accuracy
(see Table 2).
For all of our program stars, we determined the

projected rotational velocities v sin i by comparing
their synthetic and observed spectra. To eliminate the
effect of magnetic line broadening, whose contribu-
tion can be significant, preference should be given to
a comparison of the observed and computed profiles
for lines with a low sensitivity to a magnetic field.
In our spectral range, it is most convenient to work
with the Fe II λ4508 Å line, whose effective Lande
factor is z = 0.5. We used the VALD database (Kup-
ka et al. 1999) for line identifications. As was noted
above, because of the insufficient spectral resolution,
we were able to derive accurate values of v sin i only
for three of the eight stars; for the remaining stars, we
give the upper limit v sin i ≤ 20 km s−1.
Below, we present the results of ourmeasurements

and comments for each of our program stars.
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HD 178892 Be = 6320 G (0.147 Å)
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HD 209051 Be = –3300 G (–0.079 Å)

HD 196691 Be = 2290 G (0.054 Å)
1
20.2

Zeeman shifts for the three stars with the strongest magnetic fields: the spectra in right-hand circular polarization (1) and
left-hand circular polarization (2). The Zeeman shifts averaged over all lines (in Å) and the corresponding effective magnetic
fields Be are shown.
1. HD 29925. HD 29925 was first classified as a
peculiar Si star by Bidelman andMacConnell (1973).
Maitzen and Vogt (1983) found∆a for this star to be
large, 0.48; for this reason, it was included in the list of
objects for observations with the 1-m telescope. The
λ5150 Å feature is prominent; the predicted maximum
field strength Be can be 3–4 kG.
The Zeeman spectra taken with the 6-m tele-

scope show that the star has narrow and sharp lines.
All of the four field measurements made over a year
yielded Be of negative polarity. Since our data are too
scarce to plot the curve of longitudinal-field varia-
tions, it is difficult to predictBe at maximum. There is
no information on the photometric and spectroscopic
variability. We determined the projected rotational
velocity from the profile of the Fe II λ4508 Å line,
v sin i = 23 km s−1.

2. HD 40711. This is an A0-type SrCrEu star. It
was first classified as a peculiar star by Bidelman and
MacConnell (1973). Maitzen and Vogt (1983) found
∆a = 0.43, which was a strong reason for including
the star in the list of candidates for observations.
The four Zeeman spectra that we obtained with

the 6-m telescope indicate a longitudinal magnetic
field of variable polarity. The spectrum contains many
narrow and sharp lines, which makes it possible to
perform highly accurate observations. Unfortunately,
the observational data are too scarce to determine the
rotation period. The low rotational velocity derived
from the Fe II λ4508 Å, v sin i ≤ 20 km s−1, only
suggests that the star’s rotation period is most likely
longer than a week.

3. HD 115606. In the catalog of Renson et al.
(1991), it is listed as an A2-type Sr star. However,
previously, it was studied photoelectrically several
times (see, e.g., Oja 1985) and showed no variabil-
ity, and it is used as a photometric standard with
the parameters V = 8m. 547, B − V = 0m. 313, and
U −B = 0m. 108. In his list of effective temperatures,
Glagolevskij (1994) gives Te = 10000 for this star.
Temperature calibrations based on Strömgren pho-
tometry give Te ∼ 8200.
The spectrum taken with the 1-m telescope shows

that the λ5150 Å feature is strong, suggesting that
a magnetic field with a longitudinal component of
3–4 kG at maximum can exist. For this reason, we
included the star in our program of Zeeman observa-
tions with the 6-m telescope.
The star has numerous narrow and sharp lines. It

has v sin i ≤ 20 km s−1. Our Zeeman spectra taken
at random rotation phases confirm that the star has a
magnetic field. The Be curve is alternating.

4. BD+++ 32◦◦◦2827. It was first classified as a pe-
culiar star by Bidelman (1985). Our low-resolution
observations with the 1-m SAO telescope revealed
a distinct feature, which suggests the existence of
a magnetic field with a strength of 4–5 kG. The
star’s spectrum is rich in narrow and sharp lines,
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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and v sin i ≤ 20 km s−1. Two of the three measured
spectra suggest the existence of a magnetic field.

5. HD 168796. It was cataloged as a pecu-
liar SiCrSr star by Bertaud (1965). Hauck and
North (1982) found a large depression at λ5200 Å
in this star from its measurements in the Geneva sys-
tem. Therefore, we included this star in our program of
observations with the 1-m telescope. Low-resolution
spectroscopy revealed a feature in the depression
profile indicative of a field with a strength of∼5 kG.
We took four Zeeman spectra with the 6-m tele-

scope; the presence of a magnetic field is beyond
question. The lines in the star’s spectrum are nar-
row and sharp and the projected rotational velocity is
v sin i ≤ 20 km s−1. The period of the Be variations
exceeds 4 days.

6. HD 178892. Bond (1970) found the star to be
peculiar during objective-prism observations. In the
SIMBAD database, it is listed as a star in a binary
system.
Our observations with the 1-m telescope revealed

a prominent feature at a wavelength near λ5150 Å.
We were able to obtain four Zeeman spectra for this
star. It possesses a strong magnetic field, whose lon-
gitudinal component is not less than 8 kG. At present,
we know only one star (HD 215441) whose longi-
tudinal component Be exceeds this value and one
star (HD 175362) with a comparable longitudinal
component (see the catalog of Romanyuk (2000)).
HD 215441 is a hot silicon star (Te = 16000 K),
while HD 175362 is a star with anomalous helium
lines (Te = 17000 K) (Glagolevskij 1994). Among
the numerous and cooler (with Te of the order of
8000 К) SrCrEu stars, HD 178892 can be a record
holder with its magnetic field strength. Undoubtedly,
its observations with the Zeeman analyzer attached
to the 6-m telescope will be continued.
The star has numerous lines in its spectra. The

projected rotational velocity is v sin i ≤ 20 km s−1.
7. HD 196691. Bidelman (1981) found it to be

a peculiar Si star during an objective-prism survey.
Our observations with the 1-m telescope suggest the
existence of amagnetic field with a strength of∼4 kG.
All of the four measurements made over a year

yielded a field of positive polarity; the star is probably
nonreversible, although the period can be of the order
of a week. The projected rotational velocity is v sin i =
20–22 km s−1.

8. HD 209051. Bidelman (1981) found the star to
be peculiar. It has SrCrEu anomalies. Our observa-
tions with the 1-m telescope suggest that a magnetic
field with a strength of about 4 kG can exist.
Our four Zeeman spectra taken over a year re-

vealed a strongmagnetic field of negative polarity. The
ASTRONOMY LETTERS Vol. 29 No. 6 2003
Table 2. The measured longitudinal magnetic-field com-
ponents

JD 2450000+ t, min S/N [n] Be ± σ, G

HD 29925 = BD+ 00◦830

1807.508 30 100 60 −1100 ± 190

2129.543 30 80 40 −200 ± 360

2153.521 50 80 41 −810 ± 250

2189.458 40 180 46 −890 ± 150

HD 40711 = BD+ 10◦973

1807.554 25 130 65 −230 ± 60

1892.538 15 60 68 330 ± 110

2130.553 15 50 50 −630 ± 310

2153.557 50 90 56 −650 ± 90

HD 115606 = BD+ 13◦2653

1952.438 25 60 55 −210 ± 130

2333.454 30 100 62 680 ± 120

2333.479 30 100 65 640 ± 110

2417.254 30 90 63 −760 ± 150

BD+ 32◦2827

2191.208 40 70 56 −770 ± 180

2417.341 60 100 45 −470 ± 150

2457.417 40 100 49 +60 ± 130

HDE 168796 = BD+ 13◦3612

2129.291 20 160 60 −610 ± 110

2130.291 20 190 60 −290 ± 110

2190.225 20 130 65 −870 ± 90

2458.396 20 90 59 510 ± 110

HD 178892 = BD+ 14◦3811

2459.450 30 80 60 6320 ± 480

2459.473 30 70 58 6260 ± 530

2625.140 45 130 82 8150 ± 390

2626.139 30 110 92 8490 ± 380

HD 196691 = BD− 06◦5545

2130.304 30 140 45 1940 ± 240

2417.500 40 60 43 2290 ± 360

2454.473 30 70 47 1920 ± 240

2457.419 30 70 47 630 ± 250

HD 209051 = BD− 07◦5683

2130.456 30 140 25 −3300 ± 580

2191.258 30 120 31 −2580 ± 460

2454.498 30 70 26 −2980 ± 730

2458.420 40 50 18 −1040 ± 700
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lines in the star’s spectrum are significantly broad-
ened by rotation (v sin i = 75 km s−1). Therefore, the
field model in which the star is seen mainly from its
negative pole and the rotation period is several days
seems plausible.

CONCLUSIONS

We have completed the first stage of our search
for new magnetic stars among the stars with large
continuum depressions at λ5200 Å. We found phe-
nomenological evidence suggesting the possible
presence of a magnetic field: the unidentified feature
at a wavelength of about λ5150 Å in the profile of
this depression that is discernible in low-resolution
spectra. Of the 15 preselected candidates with the
most prominent feature, 14 were found to be real
magnetic CP stars; the fifteenth star, HD 161321, is
an SB2 Am star with both components represented
in its spectrum, which needs a detailed study whose
prime objective is to separate the binary components.
The results of our Zeeman-spectrum reduction for
this star will be published separately. Thus, we can
assert that our criterion, the presence of a distinct
feature at λ5150 Å in the continuum depression
profile, is effective in searching for magnetic stars,
at least among cool CP stars.
We intend to continue our searches for new mag-

netic stars based on our list of candidates. Particular
attention will be given to observations of objects in
clusters and groups of different ages. This is neces-
sary for the observational test of various theories for
the origin and evolution of stellar magnetism.
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Detection of Lithium in the Spectrum
of the Symbiotic Mira Star V407 Cygni
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Abstract—We detected the resonance lithium doublet, 7LiI λ6708, in the spectra of the symbiotic Mira
V407 Cyg (P ≈ 763d) obtained with a resolution R = λ/∆λ ≈ 18 500. The line equivalent width is
∼0.34 Å. The presence of lithium in the atmosphere of the Mira, which, judging by its period, appreciably
ascended the asymptotic giant branch (AGB), can be explained by the penetration of its convective envelope
into the hot-bottom-burning (HBB) hydrogen-shell source. At the same time, the spectrum of V407 Cyg
does not reveal the ZrO λ5551, 6474 absorption bands, which are used to classify S-type stars from low-
resolution spectra. We found only weak ZrO λ5718, 6412 bands, which are, however, invisible in low-
resolution spectra. Thus, the Mira star V407 Cyg should be classified as being of the spectral type M.
In general, the spectrum of V407 Cyg is similar to the spectrum of the red giant in the symbiotic star
CHCyg, but the latter exhibits no lithium lines. The switch-on of the HBB process without any significant
enrichment of the atmosphere of an AGB star with s-process elements implies that the third dredge-up is
not efficient for some of these stars. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: symbiotic stars, spectroscopic studies, lithium.
INTRODUCTION

Lithium is one of the key elements related stellar
evolution and nucleosynthesis. An unusually intense
7Li I λ6708 Å line (the resonance doublet) was first
detected in the spectrum of the carbon star WZ Cas
(McKellar 1940). The red asymptotic-giant-branch
(AGB) stars, to whichWZCas belongs, are currently
believed to be among the major suppliers of lithium
in the Galaxy (Travaglio et al. (2001) and references
therein). An additional amount of 7Li appears in the
atmosphere of a red giant when the bottom of its
convective envelope reaches the hydrogen burning
shell and penetrates it (hot bottom burning or HBB
for short) as it evolves along the AGB.
Since the nuclear reactions proceed already at the

bottom of the convective envelope, the nucleosynthe-
sis products can be dredged up into the outer, cooler
atmospheric layers in a short time. These products
include 7Be produced in the 3He(4He, γ)7Be reaction
at a temperature exceeding ∼2 × 107 K. In the outer
layers, 7Be captures a free electron to form 7Li. The
latter can avoid the subsequent rapid destruction in a
reaction with a proton because of the low temperature

*E-mail: yudin@sai.msu.ru
1063-7737/03/2906-0405$24.00 c©
(<3 × 106 K). This mechanism of lithium formation
in the atmospheres of AGB stars was suggested by
Cameron and Fowler (1971).

Detailed computations of the stellar evolution
show that stars with initial masses of 4–6 M� pass
through the HBB stage. Their absolute bolometric
magnitudes during the formation of lithium range
fromMbol ≈ −6 toMbol ≈ −7. A high lithium abun-
dance is maintained for 104–105 years. Its maximum
value can reach log ε(7Li) ≈ 4.5 (Sackmann and
Boothroyd 1992). The current cosmic lithium abun-
dance, in particular, in meteorites, is log ε(7Li) ≈ 3.3.
Four superlithium AGB stars whose atmospheric

lithium abundances appreciably exceed the cosmic
value are known in the Galaxy to date: WZ Cas,
WX Cyg, IY Hya, and T Sgr (Abia et al. 1991;
Abia and Isern 2000). The first three of them are
carbon stars, while T Sgr is classified as an S-type
star. Thirty-five red giants with a lithium line in their
spectra (log ε(7Li) = 1–4) were detected in the LMC
and the SMC. Twenty-six and six of them belong to
S-type and carbon stars, respectively (Smith et al.
1995). The intensity of the lithium line decreases
as one passes to later spectral types for normal
giants (Merchant 1967), and it virtually disappears
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. A portion of the spectrum for V407 Cyg near the
Li I λ6708 line. This spectrum was taken on July 30,
1997.

for late M-type red giants. The observations of
Boesgaard (1970) revealed no “lithium” stars among
the MS-type red giants. Thus, the stellar atmosphere
seemed to be enriched with lithium when it was
significantly enriched with s-process elements during
the third dredge-up. However, having detected the
lithium line in the spectra of several red giants with a
photometric variability characteristic of Mira stars,
Garcia-Lario et al. 1999) found neither the ZrO
λ6470 band nor the lines of s-process elements in
the spectral range 7400–7600 Å.
In this paper, we report on the detection of the

7Li I λ6707 doublet in the spectrum of the symbiotic
Mira V407 Cyg. Among the known symbiotic Mira
stars, V407 Cyg has the longest pulsation period of
its cool component (Mira), P ≈ 763d. This means
that the red giant of the symbiotic binary V407 Cyg
has appreciably advanced along the AGB. The pul-
sation amplitude in the K and B spectral bands is
∼0m. 9 and at least 3m. 5, respectively. In addition to
periodic variations, the Mira’s brightness undergoes
noticeable irregular variations. The Mira is classified
by the intensity of the TiO λ7055 band as M6–M7.
Its spectrum also exhibits VO bands. Thus, the cool
component of V407 Cyg belongs to the group of
oxygen Mira stars (Kolotilov et al. 1998).

THE DETECTION OF Li I

The high-resolution (R = λ/∆λ ≈ 18 500) spec-
tra of V407 Cyg in which we detected the resonance
Li I λ6707.76, 6707.91 doublet were obtained with
an echelle spectrograph mounted at the Cassegrain
focus of the 1.82-m telescope at the Padua and Asi-
ago astronomical observatories (Asiago, Italy). The
spectral range of the spectrograph is 4500–9000 Å.
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Fig. 2. A portion of the spectrum for V407 Cyg near
the ZrO absorption band. This spectrum was taken on
July 30, 1997.

However, the observations of V407 Cyg were often
carried out in a narrower spectral range that did not
include the lithium line. Figure 1 shows a portion
of the spectrum near the lithium line. This spectrum
was taken on July 30, 1997, when the hot component
was in the “off” state. The equivalent width of the
Hα line was only ∼3 Å. The star was classified by
the intensity of the TiO λ5448, 7125 bands as M6–
M7. Thus, we can say that at least in this spectral
range, the cool component dominated the radiation
from V407 Cyg. On other dates, the hot component
was in an active state, which was reflected in a de-
crease of the lithium-line equivalent width. However,
we cannot completely rule out the intrinsic variability
of this line in the Mira’s atmosphere, say, with its
brightness phase.

Among the late-type red giants, R CMi, SUMon,
R Cyg, and HR 8714 exhibit approximately the
same equivalent widths of the lithium line (Boes-
gaard 1970). They are all S-type stars. At the
same time, the ratio of the equivalent widths of the
lithium line and the Ca I λ6573 line for V407 Cyg
is slightly higher than that for the above stars. This
may be indicative of a higher lithium abundance in
the atmosphere of V407 Cyg. The equivalent widths
of the lithium and calcium lines in the spectrum of
V407 Cyg are ∼0.34 and ∼0.17 Å, respectively. In
the LMC, for example, the S-type star HV 5584
exhibits such an equivalent width of the lithium
line. Its effective temperature is ∼3200 K; i.e., it
roughly corresponds to the spectral type M6, and the
lithium abundance in its atmosphere is log ε(7Li) ≈
2.8 (Smith et al. 1995). We found no ZrO molecular
bands at wavelengths of 6474 and 5751 Å. These
bands are used to classify S-type stars from low-
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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resolution spectra (Keenan 1954). Their absence
implies that the Mira V407 Cyg is not an S-type star.
Note that, in the absence of the ZrO λ6474 band,
the nearby TiO λ6479 band appears intense, so it is
clearly seen in low-resolution spectra. It is this band
rather than the ZrO band that we observe in these
spectra. Based on low-resolution spectra alone, we
cannot determine which molecule is responsible for
this absorption, because the wavelength difference
between these two bands is small.
Jurdana-Sepic and Kotnik-Karuza (2002) found

weak ZrO λ5718, 6412 bands in the absence of the
ZrO λ5551, 6474 bands in the high-resolution spec-
trum of the symbiotic star CH Cyg, whose red giant
is classified as M7. The spectrum of V407 Cyg also
exhibits shallow absorption features at wavelengths of
5718 and 6412 Å (Fig. 2), which, following the exam-
ple of the above authors, we can attribute to the ZrO
molecular bands. In the green part of the spectrum for
CH Cyg, Jurdana-Sepic and Kotnic-Karuza (2002)
detected lines of rare-earth elements, in particular,
the Ba II λ4334 and La II λ4827 lines. These lines
are also present in the spectrum of V407 Cyg. In
other words, there is a close similarity between the
spectra for the cool components of the symbiotic
stars V407 Cyg and CH Cyg, which also belong to
the same spectral type. However, the spectrum of
CH Cyg exhibits no lithium lines; i.e., its red giant
has not yet reached the HBB stage. We estimated
its maximum bolometric magnitude (the giant shows
appreciable brightness variations) to beMbol ≈ −4.8.
It falls outside the range in which the HBB stage
begins in simulations. The distance to CH Cyg was
determined from its parallax estimate. Such an es-
timate is not available for V407 Cyg. In addition, if
the Mira is at the HBB stage, then its luminosity can
no longer be estimated from the period–luminosity
(P , L) relation.
In their lithium stars, Garcia-Lario et al. (1999)

found neither the ZrO λ6474 band nor lines of
s-process elements in the spectral range 7400–
7600 Å, which is free from TiO molecular bands.
Such lines, in particular, Zr I λ7440 and Nd II λ7514,
are present in the spectrum of V407 Cyg in this
spectral range. Only one star in the list of lithium
stars by Garcia-Lario et al. (1999) has a period
longer than 700 days (its name is not given), although
they attempted to study 14 such long-period giants.
However, 13 of them could not be detected because
of the presence of thick dust envelopes around these
stars, which greatly reduce their brightness. The dust
envelope of V407 Cyg is optically thin (Kolotilov et
al. 1998), probably because of the influence of the hot
component.
Thus, we found the first symbioticMira star whose

cool component exhibits a strong (for late-type red
ASTRONOMY LETTERS Vol. 29 No. 6 2003
giants) Li I λ6708 line in its spectrum. The Mira
star V407 Cyg is the second discovered long-period
(P > 700d) red giant with the lithium line. Judging
by the equivalent width of this line in the spectrum
of V407 Cyg, the lithium abundance in the atmo-
sphere of thisMira may be considered to be moderate.
The preferred mechanism of lithium formation is the
HBB process. According to simulations, this process
switches on only in sufficiently massive stars dur-
ing their formation (M = 4–6M�), whose bolometric
magnitudes on the AGB ranges from Mbol ≈ −6 to
Mbol ≈ −7 (Sackmann and Boothroyd 1992). The
exact lower limit of the mass depends on the metal-
licity in the stellar atmosphere. At the same time, if
the star passes through theHBB stage, themaximum
lithium abundance in its atmosphere (log ε(7Li) ≈ 4)
does not depend on its initial mass and metallicity
(Travaglio et al. 2001). Superlithium stars, for which
the lithium-line equivalent width is several Å (Abia
et al. 1991; Abia and Isern 2000), i.e., an order of
magnitude larger than the equivalent width of the
lithium line in the spectrum of V407 Cyg, exhibit
such a lithium abundance. Therefore, either the HBB
process in V407 Cyg has just begun or it has already
finished, and lithium is destroyed in a reaction with a
proton. In the latter case, however, the Mira probably
should have been an S-type red giant, which it is not.
If, as is customary, the red giant is classified from

low-resolution spectra, then the Mira V407 Cyg
should be attributed to M-type stars, because its
ZrO bands are invisible in these spectra. At the same
time, several weak ZrO molecular bands can still be
detected in its high-resolution spectra. The spectrum
for the Mira star V407 Cyg is similar to the spectrum
for the red giant of the symbiotic star CH Cyg,
which, however, is not a lithium star. Thus, the HBB
can switch on when the red giant’s atmosphere has
not yet been significantly enriched with s-process
elements, which appear in the star during the third
dredge-up. For some reasons, the third dredge-up is
inefficient in some stars like the Mira V407 Cyg.
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Abstract—We investigate the particle acceleration in a magnetic trap with converging mirrors, which
is a constituent part of the magnetic reconnection mechanism in solar flares. We take into account the
effect of Coulomb collisions on the formation of the accelerated-electron distribution function. The solution
of the kinetic equation shows that the Coulomb scattering of anisotropic accelerated electrons leads to
their isotropization. As a result, the fraction of trapped particles increases and the acceleration efficiency
significantly rises. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: solar flares, magnetic fields, particle acceleration, Coulomb collisions.
INTRODUCTION

Collapsing magnetic traps are an integral part
of the mechanism of three-dimensional collisionless
magnetic reconnection in the solar corona (Somov
and Kosugi 1997; McKenzie and Hudson 1999).
Hard X-ray observations of solar flares with high
spatial and temporal resolutions using the X-ray
telescopes onboard the Yohkoh and RHESSI satel-
lites suggest that reconnecting high-temperature
turbulent current sheets are the primary sources
of flare energy (Somov et al. 1999, 2002). Here,
magnetic energy rapidly transforms into other forms:
plasma heating to anomalously high temperatures
(T(e) � 100 MK), plasma acceleration to super-
Alfvén velocities, and electron and ion acceleration
by an electric field.

Reconnected field lines, together with heated
plasma, flow out of the current sheet at a super-
Alfvén velocity and produce traps with rapidly de-
creasing lengths in the corona above the photo-
spheric magnetic-field sources. If the conservation
conditions for the longitudinal adiabatic invariant,
which were considered for solar flares by Somov
and Kosugi (1997) and Somov (2000), are satisfied,
then the longitudinal (parallel to the magnetic field)
particle momentum and, hence, energy rapidly in-
crease. Thus, dynamic magnetic traps with converg-
ing mirrors can be among the sources of high-energy
particles in solar flares. As Somov and Kosugi (1997)

*E-mail: vkovalev@izmiran.troitsk.ru
1063-7737/03/2906-0409$24.00 c©
and Bogachev and Somov (1999) showed, the effi-
ciency of this acceleration process in the collisionless
approximation is high in solar flares. This is because
the process under consideration is basically the first-
order acceleration mechanism of Fermi (1954).

A comparative analysis of the various accelera-
tion mechanisms in solar flares based on currently
available observations and theoretical concepts can
be found, for example, in the monograph of Aschwan-
den (2002). The acceleration in collapsing magnetic
traps can successfully perform the role of the second
stage in two-stage particle acceleration to high ener-
gies (Somov and Kosugi 1997). In this case, however,
it is important to strictly determine the validity range
of the model by taking into account the many effects
that affect the actual particle acceleration efficiency in
flares.

Previously (Kovalev and Somov 2002), we calcu-
lated the acceleration by taking into account the elec-
tric potential that arises between the plasma in a trap
and the magnetic mirrors because of the difference in
the behaviors of electrons and ions. We showed that,
for a positive electric potential (the result of faster
electron escape), the confinement and acceleration
efficiencies increase for electrons and decrease for
ions. This effect is sensitive to anisotropy in the ini-
tial particle distribution (Kovalev and Somov 2003).
Coulomb collisions, even rare ones, can also sig-
nificantly affect the particle acceleration efficiency in
magnetic traps. An analysis of this phenomenon is the
subject of our work.

The role of Coulomb collisions in the so-called
open traps with stationary magnetic mirrors under
2003 MAIK “Nauka/Interperiodica”
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laboratory conditions was first considered by Bud-
ker (1958). Such magnetic traps are known to have
a high allowable ratio of the plasma pressure to the
magnetic pressure (β) and to be stable against rough
hydrodynamic perturbations. As applied to solar
flares, this implies that a large number of electrons
and ions can be accelerated without fearing that
the collapsing traps will be destroyed even at the
initial acceleration stage. In this case, the classical
escape of particles from a magnetic trap caused by
Coulomb scattering into the loss cone can actually
be of fundamental importance. In contrast to the
anomalous escape attributable to the particle–wave
interaction, the classical escape is always present
and, thus, determines the minimum level of possi-
ble plasma losses from the trap (Pastukhov 1984).
In addition, Coulomb collisions tend to bring the
particle distribution function to an equilibrium state,
which generally restricts the class of possible kinetic
instabilities. The effect of the nonuniformity of the
magnetic field of a trap on the kinetics of energetic
electrons was studied by Kovalev and Korolev (1981).

In general, allowing for Coulomb collisions is a
complex mathematical problem that reduces to nu-
merically solving a system of equations for various
plasma components. Here, apart from the general
formulation, we consider some of the particular as-
pects of this problem related to elucidating the ef-
fect of Coulomb scattering on the electron accelera-
tion. Simplifying the problem, we use the perturbation
method, with the solution of the problem without
Coulomb collisions in the adiabatic approximation
being taken as the initial approximation. The per-
turbation method suggests that the sought-for cor-
rection is small. In other words, Coulomb collisions
must be sufficiently rare: the time between successive
collisions must be much longer than the time of flight
of particles between the magnetic mirrors in the trap.

CHARGED PARTICLES
IN A MAGNETIC TRAP

In the simplest model of a magnetic mirror trap
(the so-called long trap with short mirrors), the mag-
netic field, being uniform in the largest part of it,
sharply increases from B1 to B2 in the magnetic
mirrors. The quantityB2/B1 is called the mirror ratio.
If a super-Alfvén flow of heated plasma with a frozen-
in magnetic field generates a shock wave near a re-
connecting current sheet (Somov and Kosugi 1997),
then the mirror ratio strongly depends on the cooling
regime of the postshock compressed plasma (Bo-
gachev et al. 1998). In the case of slow reconnection
without a shock, the mirror ratio is determined by
the geometry of the magnetic field or, to be more
precise, by the increase in magnetic-field strength as
its photospheric sources are approached.

Let the lengthL of a collapsing magnetic trap with
mirrors moving at velocity vm vary as

l(t) = L(t)/Lo = 1 − t/to. (1)

Here, Lo is the initial trap length at t = 0 and to
is the collapse time, which is defined as the time at
which the top of the trap passes through the shock
front (for more detail, see Somov and Kosugi 1997;
Somov 2000):

to =
Lo

2vm
. (2)

In formula (1), we assumed the mirror velocity to be
constant.

In the absence of Coulomb collisions and at a suf-
ficiently high particle velocity, the first or transverse
adiabatic invariant takes place:

v2
⊥/B = const.

As a result, when a particle moves into the region
of a stronger field, i.e., into the magnetic mirror, the
velocity component transverse to the magnetic-field
direction increases. In the long-trap approximation,
the transverse velocity can be assumed to be con-
served everywhere inside the trap except, of course,
the mirrors themselves:

v⊥ = const.

The longitudinal velocity v|| increases during each
particle reflection from the magnetic mirrors that
move at velocity vm:

dv||
dt

= 2vm
dN
dt

� 2vm

v||
L

or
v|| = v||o + 2vmN ,

where N is the number of successive particle reflec-
tions from the magnetic mirrors. If this number is
large and if the longitudinal particle velocity is high
compared to the mirror velocity, then the second or
longitudinal adiabatic invariant is conserved. In the
long-trap approximation, this invariant can be writ-
ten as

v||l = const. (3)

In a collapsing magnetic trap, the so-called transit
particles escape from the trap as the longitudinal
velocity increases. The velocities of these particles
satisfy the particle-charge-independent relation

v|| + vm ≥ v⊥oR, (4)

where we introduced the dimensionless parameter

R = (B2/B1 − 1)1/2.
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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In the presence of Coulomb collisions, the adia-
batic invariants are not conserved. If, however, the
collisions are sufficiently rare, then their effect is de-
termined by a small correction to the collisionless
solution. In the opposite case of frequent collisions,
heating rather than acceleration takes place in a col-
lapsing magnetic trap.

As was noted in the Introduction, the criterion of
allowance for Coulomb collisions is determined by the
ratio of the time of flight of a chosen particle (in our
case, an electron), which is commonly called a test
particle, in the trap between the mirrors τ = L/v|| to
the time scale of its collisions with other (field) plasma
particles (electrons and ions) τs inside the trap:

τs =
√
me T

3/2

√
2πne4Λ

. (5)

The effect of collisions may be ignored if τ � τs or

vo|| � Lol
2/τs. (6)

Let us obtain the corresponding estimates for a
completely ionized plasma inside amagnetic trapwith
a particle density n ≈ 2 × 109 cm−3 and temperature
108 K. The Coulomb logarithm

Λ = ln

(
104T

2/3

n1/3

)
(7)

is � 15. The Coulomb collision time scale is then
τs � 8 s. The time of flight of the thermal electrons in a
magnetic trap with a length Lo ≈ 2 × 109 cm is 0.4 s.
The plasma with a temperature Te � 30–40 MK in
solar flares is commonly called superhot. It is ob-
served with telescopes in hard X-rays and, in general,
is located above the cooler and denser loops observed
in soft X-rays, as shown in the figure.

The above estimates indicate that, to a first ap-
proximation, the superhot plasma injected from a
high-temperature turbulent current sheet (for more
detail, see Somov and Kosugi 1997) can be consid-
ered to be collisionless with respect to the accelera-
tion in a collapsing magnetic trap. However, the col-
lisions cannot be completely ignored, because condi-
tion (6) is satisfied without a comfortable margin.

As regards the ions, they are known to be scattered
a factor of approximately

√
mi/me more slowly than

electrons with the same energy. To remain quasi-
neutral on the large scale L, the superhot plasma
inside the trap acquires a positive potential relative to
the ends (magnetic mirrors). In this case, the region of
adiabatic electron confinement in velocity space has
the shape of a two-sheet hyperboloid (Kovalev and
Somov 2003):

v2
o|| ≤ l2

(
v2
o⊥R

2 + 2eϕ/me

)
,
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where ϕ is the electric potential.
An electric field selectively acts on particles with

different electric charges. It hampers the escape of
electrons from the trap. The slowest electrons whose
energy is too low to overcome the potential barrier
remain trapped. For traps with stationary mirrors, this
phenomenon was considered for solar flares by Spicer
and Emslie (1988). To consider the effect of Coulomb
collisions in pure form, below we disregard the elec-
tric field. Moreover, below we take into account the
effect of Coulomb collisions only on the accelerated
electrons.

A KINETIC DESCRIPTION

The Collisionless Solution

We use the collisionless solution obtained by Bo-
gachev and Somov (1999) for the initial Maxwellian
distribution of a superhot plasma:

f(v, l) = A(l)Θ
(
Rv⊥ − v||

)
exp

(
−
v2
||l

2

V 2
T

− v2
⊥
V 2

T

)
,

(8)

where

A(l) =

√
1 +R2l2

π3/2V 3
TR

.

We rewrite this solution as

f(x, µ, l) = A(l)Θ (µcr − µ) e−x2
ex

2µ2(1−l2), (9)

where

µ = cos θ, µcr =
(

1 − B1

B2

)1/2

,

x =
v

VT
, VT =

√
2kBT
me

,

θ is the pitch angle, Θ is the step function:

Θ(x) =

{
1, x > 0
0, x < 0.

When the following condition is satisfied:

x2µ2
(
1 − l2

)
� 1,

which is valid at the initial trap compression stage,
solution (9) can be represented as the sum of a quasi-
isotropic Maxwellian function and an anisotropic ad-
dition:

f(x, µ, l) = A(l)e−x2
[1 + x2

(
1 − l2

)
µ2]Θ(µcr − µ).

(10)

Naturally, the solution of the collisional problem in the
limiting case τ−1

s = 0 must transform into (10).
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HXR

SW

SXR

Hα

NL

B

The two-level structure of coronal loops in a flare (Somov 2000): Hα is the loops observed in the Hα line with ground-based
optical telescopes; SXR is the arcade of loops observed in soft X-rays onboard satellites; SW is the presumed location of the
shock front; HXR is the coronal hard X-ray source also observed with satellite telescopes; NL is the line of magnetic-field
polarity reversal in the photosphere (neutral line); and B is coronal magnetic field lines.
The Collision Integral

We will use the collision operator St[fα] in the
form (Rosenbluthe et al. 1957; Trubnikov 1958)

St[fα] = 2π
∑
β

Λα/β e4

m2
α

∂

∂vj
(11)

×
(

∂2gβ

∂vj∂vk

∂fα

∂vk
− 2

mα

mβ
fα
∂hβ

∂vj

)
.

Here, the indices α and β refer to the types of test and
field particles, respectively. The indices j and k take
on values of 1, 2, and 3. The first and second terms on
the right-hand side of (11) describe the diffusion and
dynamic friction in velocity space, respectively.

The functions

gβ =
∫

|v − v′|fβ(v′)dv′, hβ =
∫

fβ(v′)
|v − v′|dv

′,

which are related by

∆vgβ = 2hβ , ∆vhβ = −4πfβ,

where ∆v is the Laplacian in velocity space, are called
the Rosenbluthe–Trubnikov potentials.

The problem on the evolution of the distribu-
tion function in six-dimensional phase space in the
rare-collision approximation generally reduces to
the problem about the evolution of the distribution
function f in the space of two variables, v⊥ and v||.
In the presence of Coulomb collisions, the small-
angle scattering dominates and the evolution of f is
diffusion spreading (Trubnikov 1963).

The Kinetic Equation for Electrons

During collisions with ions, electrons change their
direction but conserve their energy. In contrast, col-
lisions with electrons result in both scattering and
energy transfer. Using formula (11) with Λα/β � Λ
and α = β for electrons, we obtain a collision integral
in the form

St[f ] = 2πΛ
e4

m2
(12)

×
[
∂

∂vj

(
∂2g

∂vj∂vk

∂f

∂vk

)
− ∂f

∂vj

∂

∂vj
(∆vg) + 8πf2

]
.

Thus, to determine the distribution function of the
electrons in a collapsingmagnetic trap, we must gen-
erally solve a complex integro-differential equation
with the nonlinear right-hand side (12). However, as
applied to solar-flare conditions, some simplifications
ASTRONOMY LETTERS Vol. 29 No. 6 2003



THE ROLE OF COLLISIONS 413
are possible. Using the expression for the divergence
in velocity space in a spherical coordinate systemwith
the axis directed along the velocity vector, we derive
the equation (Pastukhov 1984)

τs
n

∂(nF )
∂t

= 4πF 2 +
1
2
∂2G

∂x2

∂2F

∂x2
(13)

+
1
x2

∂G

∂x

∂F

∂x
+

1
2x3

∂G

∂x

∂

∂µ

(
1 − µ2

) ∂F
∂µ

,

where

F = V 3
T f/n, G = g/nVT .

The commonly used simplification that is justly
associated with the diffusion approximation is that
the coefficient G is calculated from a specified, in
particular, Maxwellian distribution (Trubnikov 1963;
Sivukhin 1964):

G =
(
x+

1
2x

)
erf(x) +

1√
π
e−x2

, (14)

where

erf(x) =
2√
π

∫ x

o
e−ξ2

dξ.

In the latter case, we obtain an equation that can
be applied to states that are not too different from a
thermodynamic equilibrium. To be more precise, in
the approximation under consideration, we assume
that all of the trapped electrons can be divided into
two groups: (i) main-group electrons with an almost
Maxwellian distribution function and (ii) fast elec-
trons. If the density of the latter is low compared
to the density of the main-group electrons, then the
scattering by fast electrons can be disregarded. It
will suffice to take into account the scattering of fast
electrons by main-group electrons and ions.

In the high-velocity limit x� 1 (in practice, for
x > 2), Eq. (13) for exponentially decreasing electron
distribution functions takes the form

τs
n

∂(nF )
∂t

=
1
x2

∂

∂x

(
F +

1
2x

∂F

∂x

)
(15)

+
1
x3

∂

∂µ

(
1 − µ2

) ∂F
∂µ

.

For magnetic traps with stationary mirrors, Pas-
tukhov (1984) solved Eq. (15) by taking into account
the small parameter that corresponded to the ratio
of the electron and ion collision times. In the zero
approximation in this parameter, the function F must
satisfy the steady-state equation with the solution
that shows that the Coulomb losses increase with
decreasing µ, i.e., with increasing pitch angle. Note
that, strictly speaking, the latter equation can be used
for distribution functions that do not differ greatly
ASTRONOMY LETTERS Vol. 29 No. 6 2003
from the Maxwellian function, because the corre-
sponding potentials were used to derive it.

In our case of collapsing magnetic traps, the ac-
celeration of all superhot plasma particles can be sig-
nificant in the solar corona. The distribution is close
to an equilibrium one only at the initial trap com-
pression stage, i.e., for 1− l � 1. To obtain a solution
during the entire stage of decrease in the trap length,
when the distribution becomes highly anisotropic, we
must use an exact expression for the Rosenbluthe–
Trubnikov potential gβ .

For the initial trap compression stage (l > 0.9),
the longitudinal temperature of the accelerated elec-
trons is T|| = T||o/l

2 < 2 × 108 K. Therefore, using
the nonrelativistic approximation for most electrons
is justifiable. However, the electrons soon become
relativistic (Bogachev and Somov 2001), which com-
plicates the problem only slightly.

Evolution of the Angular Electron Distribution

By taking into account Coulomb collisions, we
can consider the main effect—the angular electron
scattering. Meanwhile, the changes in electron en-
ergy during Coulomb collisions are small compared to
the energy changes due to the more frequent particle
reflections from the moving magnetic mirrors. This
effect was included in the collisionless solution (8).
Therefore, retaining only the angular part of the col-
lision operator in Eq. (15), we consider the simpler
equation

τs
∂F

∂t
=

1
x3

∂

∂µ

(
1 − µ2

) ∂F
∂µ

. (16)

Using the standard method of separation of vari-
ables, we seek a solution of Eq. (16) in the form

F (t, µ) = X(t)Y (µ).

We obtain the equation

∂X

∂t
+

1
τs

λ

x3
X = 0

for the time dependence and the Legendre equation

∂

∂µ

(
1 − µ2

) ∂Y
∂µ

+ λY = 0

for the angular dependence, where λ is the separation
constant. Using definition (1), we obtain the sought-
for solution

F (l, µ) =
∞∑

n=o

Qnexp
[
to
τs

λn

x3
(1 − l)

]
Pn(µ), (17)

where Pn(µ) are Legendre polynomials of the first
kind, λn = n(n+ 1), n = 0, 1, 2, .... The coeffi-
cients Qn can be determined from the condition that
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the derived solution (17) for τ−1
s = 0 transforms into

the collisionless solution (10). Finally, we have

Θ−1(µcr − µ)A(l)−1ex
2
F = 1 +

x2

3
(1 − l2) (18)

×
[
1 − e−α(1−l)

]
+ µ2x2

(
1 − l2

)
e−α(1−l),

where

α =
6
x3

to
τs
.

We see from (10) and (18) that collisions cause
the anisotropic (∼ µ2) addition to decrease. Elec-
tron scattering gives rise to an additional isotropic
component—the second term on the right-hand side
of Eq. (18).

In the case of the initial acceleration stage under
consideration, weak isotropization takes place in a
collapsing trap for x = 2, l = 0.9, and to = 10 s:
α(1 − l) � 0.1. This is because the isotropization
time scale determined by the collision time τs � 8 s
is too large. It exceeds the loss-cone depletion time
tc = L/2v = 0.2 s.

Possible Restrictions on the Particle Acceleration

So far we have considered the approximation of
an ideal magnetic trap with β � 1, where β is the
gaseous-to-magnetic pressure ratio. Theoretically,
such a trap with an initial length Lo between the mir-
rors converging at velocity vm has the lifetime to (1).
Meanwhile, the longitudinal velocity of the accel-
erated plasma particles rises and the longitudinal
particle temperature increases hyperbolically: T|| =
To||/l

2. As l decreases, the particle density in the trap

n(l)
no

=
R√

1 +R2l2
,

the longitudinal gaseous pressure of the accelerated
particles

P||(l) = 2n(l)kBT|| = 2nokBTo||
R

l2
√

1 +R2l2
,

and the plasma parameter

β =
8πP||
B2

1

=
β||(1)
l2

√
1 +R2

1 +R2l2

increase. When the parameter β|| reaches a critical
value, the inverse effect of the accelerated particles on
the magnetic field trap becomes significant.

Let us estimate the length lcr by assuming the
critical value to be β|| = 1. At the initial time, l = 1
for a solar flare with no ≈ 2 × 109 cm−3, To ≈ 108 K,
and B1 ≈ 10 G, B2 ≈ 40 G (the last two parameters
correspond to an adiabatic shock wave). In that case,
β||(1) ≈ 0.03. However, as the length l decreases,
this parameter increases and reaches unity even at
lcr ≈ 0.24. The corresponding maximum longitudinal
temperature is T|| ≈ 1.3 × 109 K. A further particle
acceleration seems problematic, because a further
rise in the pressure of the accelerated particles can
lead to the instability and destruction of the magnetic
flux tube long before collapse.

An alternative putative scenario is associated with
the possible effect of the accelerated particles on
the shock front. If the mirror ratio B1/B2 decreases
with decreasing l, then the particle flux into the loss
cone increases and the gas pressure drops. Further,
if the shock front with converging mirrors is restored,
then the acceleration process resumes before β ∼ 1
is reached. A critical situation arises again and the
process is repeated. The particle acceleration takes
place in a pulsating regime. In addition, a stopped-
front regime, when the mirror motion and, accord-
ingly, the acceleration cease and the trap passes to
a quasi-steady-state regime with thermal balance,
is also possible, in principle. The hot sources at the
tops of the X-ray and radio magnetic loops may be
associated with this effect. The trap dynamics can be
accompanied by an increase in plasma diamagnetism,
which decreases the magnetic field in the central part
of the trap, and by a rise in the flux of precipitating
energetic particles, which is tantamount to loop
cooling.

However, in studying the dynamic properties of
a collapsing magnetic trap, it is important to take
into account the rapid plasma cooling behind the
shock front (Bogachev et al. 1998). In the regime of
rapid cooling, plasma compression leads to a sharp
increase in the mirror ratio and, accordingly, an im-
provement of the acceleration conditions in the col-
lapsing trap.

CONCLUSIONS

When particular acceleration mechanisms in a
cosmic plasma are considered, the role of Coulomb
collisions generally reduces to the energy losses of
the accelerated particles and, in particular, to the
presence of a “loss barrier” at low velocities (see,
e.g., Korchak 1980; Bykov et al. 2000). As a result,
Coulomb collisions decrease the efficiency of any
acceleration mechanism. In magnetic traps with
stationary mirrors, Coulomb collisions inevitably pro-
duce a leakage of particles from the trap attributable
to the particle diffusion into the loss cone. Contrary
to the aforesaid, we showed here that Coulomb
collisions in collapsing magnetic traps play a much
less trivial and not so passive role.
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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We analyzed the effect of Coulomb collisions on
the formation of the distribution function of the ac-
celerated electrons in a magnetic trap with converg-
ing mirrors in the regime of rare collisions. In the
collisionless case, as the trap length decreases, the
anisotropy increases because of the increase in longi-
tudinal particle velocity. At the same time, Coulomb
collisions of the accelerated particles result in their
scattering, i.e., in isotropization of the angular dis-
tribution. Thus, Coulomb collisions increase the vol-
ume of the region of phase space of the electrons
involved in the acceleration. In other words, Coulomb
collisions cause an increase in the fraction of the
trapped electrons, an increase in the electron accel-
eration time, and a significant rise in the acceleration
efficiency.

Since the collision frequency decreases with in-
creasing particle velocity, Coulomb collisions are
most efficient at low velocities. In contrast, the effi-
ciency of the Fermi accelerationmechanism increases
with velocity. Coulomb collisions help the Fermi
acceleration mechanism in such an unexpected way
precisely where this help is actually needed. Our
conclusions can serve as a test for more complete
numerical models. As examples of numerical calcula-
tions that are close to the model under discussion, we
point out the studies of Zharkova et al. (1995) and
Wu et al. (2000).

When analyzing the particle acceleration in a dy-
namic collapsing magnetic trap, one should take into
account the inverse effect of the accelerated particles
on the trap. This effect can result in a rearrangement
of the acceleration regime, its cessation, or even the
destruction of the magnetic trap. A more complex
self-consistent model, whose development is well be-
yond the scope of this paper, is required to investigate
these processes.
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22. B. A. Trubnikov, Zh. Éksp. Teor. Fiz. 34, 1341 (1958)
[Sov. Phys. JETP 7, 926 (1958)].

23. G. Wu, A. X. Xu, and G. Huang, Astrophys. Rep. 36,
99 (2000).

24. V. V. Zharkova, J. C. Brown, and D. V. Syniavskii,
Astron. Astrophys. 304, 284 (1995).

Translated by V. Astakhov



Astronomy Letters, Vol. 29, No. 6, 2003, pp. 416–423. Translated from Pis’ma v Astronomicheskĭı Zhurnal, Vol. 29, No. 6, 2003, pp. 473–480.
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Abstract—A modified method for averaging the perturbing function in Hill’s problem is suggested. The
averaging is performed in the revolution period of the satellite over the mean anomaly of its motion with
a full allowance for a variation in the position of the perturbing body. At its fixed position, the semimajor
axis of the satellite orbit during the revolution of the satellite is constant in view of the evolution equations,
while the remaining orbital elements undergo secular and long-period perturbations. Therefore, when the
motion of the perturbing body is taken into account, the semimajor axis of the satellite orbit undergoes
the strongest perturbations. The suggested approach generalizes the averaging method in which only the
linear (in time) term is included in the perturbing function. This method requires no expansion in powers
of time. The described method is illustrated by calculating the perturbations of the semimajor axes for two
distant satellites of Saturn, S/2000 S1 and S/2000 S5. An approximate analytic solution is compared
with the results of numerical integration of the averaged system of equations of motion for these satellites.
c© 2003 MAIK “Nauka/Interperiodica”.

Key words:Hill’s problem, averaging of perturbing function, Saturn’s satellites.
INTRODUCTION: FORMULATION
OF THE PROBLEM

Various methods for substituting the complete
perturbing function R with its average are used to
analyze the evolution of orbits in the restricted three-
body problem. Thus, in analyzing the evolution on
time scales much longer than the revolution periods
of a zero-mass point P and a perturbing point P ′

and when their mean motions are incommensurable,
independent double averaging over the mean longi-
tudes λ and λ′ of points P and P ′, respectively, is used
in the first approximation of the perturbation theory.
This Gaussian averaging scheme requires calculating
the integral

W (a, e, i, ω) (1)

=
1

4π2

2π∫

0

2π∫

0

R(a, e, i, ω,Ω, λ, λ′)dλdλ′.

Here, a and e are the semimajor axis and eccentricity
of the orbit of point P , respectively; and i and ω are
the orbital inclination and the pericenter argument
referred to the orbital plane of point P ′, respectively.
In the simplest case, point P ′ is assumed to move
in a circle of radius a′ relative to a central attractive
point S and perturb the Keplerian elliptical orbit of

*E-mail: vashkov@spp.keldysh.ru
1063-7737/03/2906-0416$24.00 c©
point P . In calculating integral (1), we assume that
the orbital elements of point P (a, e, i, ω, Ω) are
constant.

Single averaging of the perturbing functionR only
over the mean longitude λ of point P is used to
analyze the evolution of the orbit of point P on time
scales of the order of the revolution period of the
perturbing point P ′ under the condition a(1 + e) < a′
(the internal case of the problem). The corresponding
averaging scheme of N.D. Moiseev (Moiseev 1945)
requires calculating the integral

V (a, e, i, ω,Ω − λ′) (2)

=
1
2π

2π∫

0

R(a, e, i, ω,Ω, λ, λ′)dλ.

When calculating this integral, we assume that the
orbital elements of point P (a, e, i, ω, Ω) are also
constant; averaging over λ can be substituted with
averaging over the mean anomalyM . The mean lon-
gitude λ′ varies linearly with time, and the function R
can be represented as a power series on small time
scales:

R = R(t∗) +
dR

dt
(t− t∗) (3)

+
1
2
d2R

dt2
(t− t∗)2 + . . . ,
2003 MAIK “Nauka/Interperiodica”
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where t∗ is the time that corresponds to a particular
current position of point P within the revolution (e.g.,
its passage through the apocenter). This approach
was first applied by M.L. Lidov, who used averaging
of the perturbing accelerations (which is equivalent to
averaging of the perturbing function) to calculate the
gravitational perturbations of planetary satellites (Li-
dov 1961), and by Batrakov and Chernetenko (1994).
Note that if only the first term is retained in series (3),
then the problem becomes conservative (∂R/∂M =
0) and, as a result, the semimajor axis a of the orbit
of point P remains constant. Actual perturbations of
the semimajor axis can be revealed only by taking into
account the remaining terms of this series.

Here, we suggest a method for calculating the av-
eraged perturbing function of Hill’s problem in closed
form without using any expansion in powers of time.
An approximate solution of the equation

da

dt
=

2
na

∂V

∂M0
, (4)

where n and M0 are the mean motion of point P
and its mean anomaly at initial epoch t0, respectively,
allows us to determine the perturbations of the semi-
major axis of the orbit of point P attributable to the
motion of the perturbing point P ′.

Consider the satellite case of the restricted circular
three-body problem, which is also called Hill’s prob-
lem, where point P moves near a central point S of
massm so that the following condition is satisfied:

a(1 + e) � a′. (5)

A perturbing point P ′ of mass m′ moves in a circular
orbit of radius a′, and its orbital plane is taken as
the principal coordinate plane (xSy). The perturbing
function of the problem is

R(a, e, i, ω,Ω,M, λ′) = R0(a, e, i, ω,Ω,M) (6)

+R1(a, e, i, ω,Ω,M, λ′),

where

R0(a, e, i, ω,Ω,M) =
µ′

2a′3

[
3
2
(x2 + y2) − r2

]
, (7)

R1(a, e, i, ω,Ω,M, λ′) (8)

=
3µ′

4a′3
[(
x2 − y2

)
cos 2λ′ + 2xy sin 2λ′

]
.

Here, µ′ is the product of the gravitational con-
stant and the mass of the perturbing point; r is
the radius vector of the satellite; and x and y are
its Cartesian coordinates, which are related to the
orbital elements by the standard formulas of unper-
turbed Keplerian elliptical motion and which are 2π-
periodic functions of the mean longitude λ, the mean
ASTRONOMY LETTERS Vol. 29 No. 6 2003
anomalyM , and the eccentric anomaly E:

1
a


x
y


 = (cosE − e)


P1

P2


 (9)

+
√

1 − e2

Q1

Q2


 sinE,

r

a
= 1 − e cosE,

P1 = cos Ω cosω − sin Ω sinω cos i, Q1 =
∂P1

∂ω
,

(10)

P2 = sin Ω cosω + cos Ω sinω cos i, Q2 =
∂P2

∂ω
.

The mean longitude λ′ of the perturbing point de-
pends linearly on time and, consequently, on M and
M0 via the formulas

λ′ = λ′0 + n′(t− t0) = λ′0 + δ(M −M0), (11)

where

δ =
n′

n
, n′ =

√
µ+ µ′

a′3/2
, n =

√
µ

a3/2
,

and µ is the product of the gravitational constant by
the mass of the central point.

The perturbing function V averaged over the satel-
lite revolution can be obtained more easily by aver-
aging over the eccentric anomaly E of the satellite
(given that it is related to M by Kepler’s equation
E − e sinE = M ):

V (a, e, i, ω,Ω,M0) = V0(a, e, i, ω) (12)

+ V1(a, e, i, ω,Ω,M0),

where

V0 =
1
2π

2π∫

0

R0(E)(1 − e cosE)dE, (13)

V1 =
1
2π

2π∫

0

R1(E,λ′)(1 − e cosE)dE. (14)

The function R1 depends not only on the elements
in (12) but also on the rapid variable

λ′ = λ′0 + δ(E − e sinE −M0). (15)

CALCULATING THE AVERAGED
PERTURBING FUNCTION

The standard expression for the function V0 can
be taken, in particular, from Lidov (1961) and Kozai
(1962):

V0 =
µ′

a′3
a2G(e, i, ω), (16)
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where

G(e, i, ω) =
3
8

[
2
3

+ e2 − sin2 i (17)

+
1
2
e2 sin2 i (5 cos 2ω − 3)

]
.

Introducing a new integration variable to simplify
the subsequent calculations,

ξ = E − π, (18)

we derive the following general expression for the
function V1:

V1 =
µ′a2

4πa′3

π∫
−π

f(ξ, cos ξ, sin ξ)dξ, (19)

where f is a polynomial function of the above vari-
ables. Since the part of this function that is odd in ξ
vanishes when integrated from−π to π, retaining only
the terms that are even in ξ in the integrand f , we
obtain

V1 =
µ′a2

2πa′3

π∫

0

{
3∑

k=0

(−1)kĀk cosk ξ (20)

× cos [2δ(ξ + e sin ξ)] + Ā4[(1 + e2) cos ξ

+ e(1 + cos2 ξ)] sin[2δ(ξ + e sin ξ)] sin ξ

}
dξ.

Here,

Āk = Ak cos 2D +Bk sin 2D, k = 0, 1, 2, 3,

Ā4 = B4 cos 2D −A4 sin 2D,

D = λ′0 + δ(π −M0),

and the coefficientsAk,Bk are defined by the formulas

A0 =
3
2
[
e2
(
P 2

1 − P 2
2

)
+
(
1 − e2

) (
Q2

1 −Q2
2

)]
,

(21)

A1 =
3
2
e[
(
2 + e2

) (
P 2

2 − P 2
1

)
+
(
1 − e2

) (
Q2

2 −Q2
1

)
],

A2 =
3
2
[(1 + 2e2)

(
P 2

1 − P 2
2

)
+
(
1 − e2

) (
Q2

2 −Q2
1

)
],

A3 =
3
2
e
[(
P 2

2 − P 2
1

)
+
(
1 − e2

) (
Q2

1 −Q2
2

)]
,

A4 = 3
√

1 − e2 (P1Q1 − P2Q2) ,

B0 = 3
[
e2P1P2 +

(
1 − e2

)
Q1Q2

]
,

B1 = −3e
[
(2 + e2)P1P2 +

(
1 − e2

)
Q1Q2

]
,

B2 = 3
[
(1 + 2e2)P1P2 −

(
1 − e2

)
Q1Q2

]
,

B3 = 3e
[
−P1P2 +

(
1 − e2

)
Q1Q2

]
,

B4 = 3
√

1 − e2(P1Q2 + P2Q1).

Using expressions for the powers of trigonometric
functions in terms of the functions of multiple argu-
ments, we obtain

V1 =
µ′a2

2πa′3
∑
l=±1

3∑
k=k∗

Ck,l (22)

×
π∫

0

cos[(k + 2lδ)ξ + 2lδe sin ξ]dξ.

Here,

k∗ = (1 − l)/2, Ck,l = Gk,l cosϕ+Hk,l sinϕ,
(23)

ϕ = 2(Ω −D) = 2[Ω − λ′0 + δ(M0 − π)],

Gk,l = Ĝk,l + Ḡk,l cos 2ω, Hk,l = H̄k,l sin 2ω,

and the coefficients Ĝk,l , Ḡk,l , H̄k,l can be expressed
in terms of the orbital elements as

Ĝ0,1 =
3
8
(2 + 3e2) sin2 i, Ḡ0,1 =

15
8
e2(2 − sin2 i),

H̄0,1 = −15
4
e2 cos i,

Ĝ1,−1 =
9
32
e(4 + e2) sin2 i, Ḡ1,−1 =

3
32
e[20

+ 2e2 − 10 sin2 i− 5e2 sin2 i+ 20
√

1 − e2 cos i],

H̄1,−1 = −15
16
e[(2 + e2) cos i+

√
1 − e2(2 − sin2 i)],

Ĝ1,1 = Ĝ1,−1,

Ḡ1,1 =
3
32
e[20 + 2e2 − 10 sin2 i

− 5e2 sin2 i− 20
√

1 − e2 cos i],

H̄1,1 = −15
16
e[(2 + e2) cos i−

√
1 − e2(2 − sin2 i)],

Ĝ2,−1 =
9
16
e2 sin2 i, Ḡ2,−1 =

3
16

[4 + 2e2

− 2 sin2 i− e2 sin2 i+ 4(1 + e2)
√

1 − e2 cos i],
ASTRONOMY LETTERS Vol. 29 No. 6 2003
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H̄2,−1 = −3
8
[(2 + e2) cos i− (1 + e2) (24)

×
√

1 − e2(2 − sin2 i)], Ĝ2,1 = Ĝ2,−1,

Ḡ2,1 =
3
16

[4 + 2e2 − 2 sin2 i

− e2 sin2 i− 4(1 + e2)
√

1 − e2 cos i],

H̄2,1 = −3
8
[(2 + e2) cos i

+ (1 + e2)
√

1 − e2(2 − sin2 i)],

Ĝ3,−1 =
3
32
e3 sin2 i, Ḡ3,−1 =

3
32
e[4 − 2e2

− 2 sin2 i+ e2 sin2 i+ 4
√

1 − e2 cos i],

H̄3,−1 =
3
16
e[(e2 − 2) cos i

−
√

1 − e2(2 − sin2 i)], Ĝ3,1 = Ĝ3,−1,

Ḡ3,1 =
3
32
e[4 − 2e2 − 2 sin2 i

+ e2 sin2 i− 4
√

1 − e2 cos i],

H̄3,1 =
3
16
e[(e2 − 2) cos i+

√
1 − e2(2 − sin2 i)].

Wederived formulas (22)–(24) by substituting ex-
pressions (10) into (21) and taking into account (18)
and (20).

The definite integral in formula (22) can be calcu-
lated by using special functions.

We have from reference books
π∫

0

cos(νξ − z sin ξ)dξ = πJν(z), (25)

where Jν(z) is the Anger function, which is a gener-
alization of the Bessel function for noninteger values
of the parameter ν. In addition, the Anger functions
are known to be related to the Lommel (sρ,ν(z)) and
hypergeometric F (α, β, γ; ζ) functions:

Jν(z) =
1
π

sin νπ[s0,ν(z) − νs−1,ν(z)], (26)

sρ,ν(z) =
zρ+1

(ρ− ν + 1)(ρ + ν + 1)
(27)

× F (1,
ρ− ν + 3

2
,
ρ+ ν + 3

2
;−z

2

4
).

In the latter expression, none of the numbers ρ± ν
are integers.
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In our case,

ν = k + 2lδ; z = −2lδe; ρ = 0,−1, (28)

and, in addition, the following equalities hold for l =
±1:

−z
2

4
= −δ2e2

and

sin νπ = (−1)k sin 2lδπ = (−1)kl sin 2δπ.

Transforming expression (22) yields the final formula
for the perturbing function V of Hill’s problem aver-
aged over the satellite revolution:

V =
µ′a2

a′3

{
G+

sin 2πδ
2π

∑
l=±1

3∑
k=k∗

Φk,l (29)

×
[(
Ĝk,l + Ḡk,l cos 2ω

)
cosϕ+ H̄k,l sin 2ω sinϕ

]}
,

where

Φk,l(e) = (−1)k

[
l

ν
F

(
1,

2 − ν
2
,
2 + ν

2
;−δ2e2

)

(30)

− 2δe
1 − ν2

F

(
1,

3 − ν
2

,
3 + ν

2
;−δ2e2

)]
,

ϕ(Ω,M0, λ
′
0), Ĝk,l(e, i), Ḡk,l(e, i), H̄k,l(e, i) are given

by formulas (23), (24).

THE DERIVATIVES OF THE AVERAGED
PERTURBING FUNCTION WITH RESPECT

TO ORBITAL ELEMENTS

Since we are not concerned with the specific posi-
tion of the satellite in its orbit in the averaged problem,
we can eliminate the equation for the variation of
M0 from the system of six evolution equations and,
hence, do not need to calculate the derivative of V
with respect to a.

The derivatives of the function V with respect to
Ω and М0 are easiest to calculate, because only the
angle ϕ depends on these elements. Therefore,

∂V

∂Ω
= 2

∂V

∂ϕ
,

∂V

∂M0
= 2δ

∂V

∂ϕ
, (31)

where

∂V

∂ϕ
=
µ′a2 sin 2πδ

2πa′3
∑
l=±1

3∑
k=k∗

Φk,l[−(Ĝk,l (32)

+ Ḡk,l cos 2ω) sinϕ+ H̄k,l sin 2ω cosϕ].
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The derivative of V with respect to ω is also easy
to determine:

∂V

∂ω
=
µ′a2

a′3

{
−15

8
e2 sin2 i sin 2ω

+
sin 2πδ
π

∑
l=±1

3∑
k=k∗

Φk,l[−Ḡk,l sin 2ω cosϕ

+ H̄k,l cos 2ω sinϕ]

}
.

The derivative of V with respect to i can be calcu-
lated using the formula

∂V

∂i
=
µ′a2

a′3

{
∂G

∂i
+

sin 2πδ
2π
×
∑
l=±1

3∑
k=k∗

Φk,l

[(
∂Ĝk,l

∂i
+
∂Ḡk,l

∂i
cos 2ω

)
cosϕ

+
∂H̄k,l

∂i
sin 2ω sinϕ

]}
,

where
∂G

∂i
=

3
8
[
e2 (5 cos 2ω − 3) − 2

]
sin i cos i,

∂Ĝ0,1

∂i
=

3
4
(
2 + 3e2

)
sin i cos i,

∂Ḡ0,1

∂i
= −15

4
e2 sin i cos i,

∂H̄0,1

∂i
=

15
4
e2 sin i,

∂Ĝ1,−1

∂i
=

9
16
e
(
4 + e2

)
sin i cos i,

∂Ḡ1,−1

∂i
= −15

16
e
[
(2 + e2) cos i+ 2

√
1 − e2

]
sin i,

∂H̄1,−1

∂i
=

15
16
e
(
2 + e2 + 2

√
1 − e2 cos i

)
sin i,

∂Ĝ1,1

∂i
=
∂Ĝ1,−1

∂i
,

∂Ḡ1,1

∂i
= −15

16
e
[
(2 + e2) cos i− 2

√
1 − e2

]
sin i,

∂H̄1,1

∂i
=

15
16
e
(
2 + e2 − 2

√
1 − e2 cos i

)
sin i,

∂Ĝ2,−1

∂i
=

9
8
e2 sin i cos i,

∂Ḡ2,−1

∂i
= −3

8

[
(2 + e2) cos i

+2(1 + e2)
√

1 − e2
]
sin i,

∂H̄2,−1

∂i
=

3
8

[
2 + e2 − 2(1 + e2)

√
1 − e2 cos i

]
sin i,

∂Ĝ2,1

∂i
=
∂Ĝ2,−1

∂i
,

∂Ḡ2,1

∂i
= −3

8

[
(2 + e2) cos i

−2(1 + e2)
√

1 − e2
]
sin i,
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∂H̄2,1

∂i
=

3
8

[
2 + e2 + 2(1 + e2)

√
1 − e2 cos i

]
sin i,

∂Ĝ3,−1

∂i
=

3
16
e3 sin i cos i,

∂Ḡ3,−1

∂i
=

3
16
e
[
(e2 − 2) cos i− 2

√
1 − e2

]
sin i,

∂H̄3,−1

∂i
=

3
16
e
(
2 − e2 + 2

√
1 − e2 cos i

)
sin i,

∂Ĝ3,1

∂i
=
∂Ĝ3,−1

∂i
,

∂Ḡ3,1

∂i
=

3
16
e
[
(e2 − 2) cos i+ 2

√
1 − e2

]
sin i,

∂H̄3,1

∂i
=

3
16
e
(
2 − e2 − 2

√
1 − e2 cos i

)
sin i.

The expression for the derivative of V with respect
to e is the most cumbersome one:

∂V

∂e
=
µ′a2

a′3

〈
∂G

∂e
+

sin 2πδ
2π

×
∑
l=±1

3∑
k=k∗

{
Φk,l

[(
∂Ĝk,l

∂e
+
∂Ḡk,l

∂e
cos 2ω

)
cosϕ

+
∂H̄k,l

∂e
sin 2ω sinϕ

]
+
dΦk,l

de

[
(Ĝk,l

+Ḡk,l cos 2ω) cosϕ+ H̄k,l sin 2ω sinϕ
]}〉

,

where
∂G

∂e
=

3
4
e

[
1 +

1
2

sin2 i (5 cos 2ω − 3)
]
,

∂Ĝ0,1

∂e
=

9
4
e sin2 i,

∂Ḡ0,1

∂e
=

15
4
e(2 − sin2 i),

∂H̄0,1

∂e
= −15

2
e cos i,

∂Ĝ1,−1

∂e
=

9
32
(
4 + e2

)
sin2 i,

∂Ḡ1,−1

∂e
=

3
32

[
20 + 6e2 − 10 sin2 i

−15e2 sin2 i+
20 cos i√
1 − e2

(1 − 2e2)
]
,

∂H̄1,−1

∂e
= −15

16
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×
[(

2 + 3e2
)
cos i+

2 − sin2 i√
1 − e2

(1 − 2e2)
]
,

∂Ĝ1,1

∂e
=
∂Ĝ1,−1

∂e
,

∂Ḡ1,1

∂e
=

3
32

[
20 + 6e2 − 10 sin2 i

− 15e2 sin2 i− 20 cos i√
1 − e2

(1 − 2e2)
]
,

∂H̄1,1

∂e
= −15

16

[(
2 + 3e2

)
cos i

− 2 − sin2 i√
1 − e2

(1 − 2e2)
]
,

∂Ĝ2,−1

∂e
=

9
8
e sin2 i,

∂Ḡ2,−1

∂e
=

3
8
e

[
2 − sin2 i+

2cos i√
1 − e2

(1 − 3e2)
]
,

∂H̄2,−1

∂e
= −3

8
e

[
2 cos i− 2 − sin 2i√

1 − e2
(1 − 3e2)

]
,

∂Ĝ2,1

∂e
=
∂Ĝ2,−1

∂e
,

∂Ḡ2,1

∂e
=

3
8
e

[
2 − sin2 i− 2 cos i√

1 − e2
(1 − 3e2)

]
,

∂H̄2,1

∂e
= −3

8
e

[
2 cos i+

2 − sin 2i√
1 − e2

(1 − 3e2)
]
,

∂Ĝ3,−1

∂e
=

9
32
e2 sin2 i,

∂Ḡ3,−1

∂e
=

3
32

[
4 − 6e2 − 2 sin2 i

+ 3e2 sin2 i+
4cos i√
1 − e2

(1 − 2e2)
]
,

∂H̄3,−1

∂e
=

3
16

[(
3e2 − 2

)
cos i

− 2 − sin2 i√
1 − e2

(1 − 2e2)
]
,

∂Ĝ3,1

∂e
=
∂Ĝ3,−1

∂e
,

∂Ḡ3,1

∂e
=

3
32

[
4 − 6e2 − 2 sin2 i+ 3e2 sin2 i

− 4 cos i√
1 − e2

(1 − 2e2)
]
,
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∂H̄3,1

∂e
=

3
16

[(
3e2 − 2

)
cos i+

2− sin2 i√
1 − e2

(1 − 2e2)
]
.

We differentiate the function Φk,l(e) using the
standard relation
dF (α, β, γ; z)

dz
=
αβ

γ
F (α + 1, β + 1, γ + 1; z);

therefore,

dΦk,l

de
= 2(−1)kδ

×
[

2δ2e2(3 − ν)
(1 − ν2)(3 + ν)

F

(
2,

5 − ν
2

,
5 + ν

2
;−δ2e2

)

− lδe(2 − ν)
ν(2 + ν)

F

(
2,

4 − ν
2

,
4 + ν

2
;−δ2e2

)

− 1
1 − ν2

F

(
1,

3 − ν
2

,
3 + ν

2
;−δ2e2

)]
.

Thus, this section contains the complete set of
formulas required to explicitly calculate the partial
derivatives of the function V with respect to the el-
ements e, i, ω, Ω, andM0 and the right-hand sides of
the averaged equations that describe the evolution of
the satellite orbit.

APPROXIMATE CALCULATION
OF THE TIME DEPENDENCE
OF THE SEMIMAJOR AXIS
OF THE SATELLITE ORBIT

In this paper, we focus on the variation of the
semimajor axis, which cannot be found if only the first
term

V0 =
µ′a2

a′3
G (33)

is retained in the function V (29).

Given formulas (31) and (32), Eq. (4) takes the
form

da

dt
=

2µ′an′ sin 2πδ
πa′3n2

∑
l=±1

3∑
k=k∗

Φk,l (34)

×
[
−
(
Ĝk,l + Ḡk,l cos 2ω

)
sinϕ

+ H̄k,l sin 2ω cosϕ
]
.

To properly apply the derived equation on a time
scale longer than the satellite-revolution period T ,
the quantity ϕ should be assumed to be a discrete
function of the satellite revolution number m = 1 +

E

(
t− t0
T

)
. Setting M0 = π (the initial position of
the perturbing body corresponds to the time the satel-
lite passes through the apocenter) and taking into ac-
count the fact that the mean longitude λ′ changes by

n′T = 2π
n′

n
= 2πδ in time T (∆m = 1), we conclude

that ϕ should be calculated using the formula

ϕ =
[
Ω − λ′0 − 2 (m− 1) πδ

]
. (35)

For an approximate analysis, in the equations that
describe the variations in the remaining satellite or-
bital elements e, i, ω, and Ω, we use the truncated
expression (33) for the function V .

Thus, the standard system of four evolution equa-
tions for the double-averaged Hill problem, where a
is assumed to be a variable quantity, is supplemented
with the fifth equation (34) for the variation in the
semimajor axis. Below, we compare the results by
numerically integrating the averaged system con-
structed in this way both in the case of discrete ϕ
variation, according to (35), and in the continuously
differentiable case:

m = 1 +
t− t0
T

, (36)

ϕ = 2
[
Ω − λ′0 − 2

t− t0
T

π
n′

n

]
= 2

[
Ω − λ′

]
.

In this case, we can also derive the analytic depen-
dence a(t). We use dependence (36) and assume, to a
first approximation, that the orbital elements a, e, and
i on the right-hand side of Eq. (34) are constant and
that the angular variables ω andΩ are linear functions
of time:

ω = ω0 + ω̇(t− t0), Ω = Ω0 + Ω̇(t− t0),
where

ω̇ =
2π
Tω
, Ω̇ =

2π
TΩ
.

Integrating (34) under the above assumptions
yields

a = a0

[
1 +

µ′n′ sin 2πδ
πa′3n2

∑
l=±1

3∑
k=k∗

Φk,lg(t)

]
, (37)

where

g(t) =
1
2ζ

{
Ḡk,l + H̄k,l

1 − ω̇
ζ

[cos(2ω − ϕ) (38)

− cos(2ω0 − ϕ0)] +
Ḡk,l − H̄k,l

1 + ω̇
ζ

[cos(2ω + ϕ)

− cos(2ω0 + ϕ0)] + 2Ĝk,l(cosϕ− cosϕ0)

}
,
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ζ = Ω̇ − n′.
In the case of librational variation inω, we can roughly
assume that ω = ±π/2 and ω̇ = 0.

The figure compares the calculated variations in
the orbital semimajor axes of two recently discovered
Saturn’s satellites. For the satellite S/2000 S1, TΩ ≈
250 years, Tω ≈ 146 years, and ω exhibits circulation-
type variations. For S/2000 S5, TΩ ≈ 838 years and
ω exhibits libration-type variations. The dots in the
figure indicate the a values obtained from formulas
(37) and (38). The solid lines represent the results
obtained by numerically integrating the averaged sys-
tem in elements (the thin lines correspond to dis-
crete variation in ϕ and the heavy lines correspond
to variation in ϕ according to formula (36)). On the
century-long interval, the two figures show distinct
variations (which are particularly discernible for the
satellite S5) with a period equal to half the revolution
period T ′ of the perturbing body (the Sun), or about
15 years. The variations for the satellite S5 with this
period (T ≈ 1.23 years) have an amplitude of about
8000 km. The corresponding amplitude for S1 (T ≈
3.64 years), which is Saturn’s most distant discovered
satellite and the one most strongly perturbed by the
Sun, is about 150 000 km. The degree of closeness of
the analytic and numerical solutions decreases with
increasing δ.

CONCLUSIONS

Since the part of the perturbing function R1 that
depends on both E and λ′ is not a periodic (or, to be
ASTRONOMY LETTERS Vol. 29 No. 6 2003
more precise, is an almost periodic) function of E for
arbitrary n and n′, in general, a time average should
be calculated when averaging it. This averaging op-
erator is used in the generalized Delone–Hill scheme
(Moiseev 1945) and involves calculating the integral

V̄ = lim
τ→∞

1
τ

τ∫

0

R[λ(t), λ′(t)]dt.

However, we can avoid calculating it on short time
intervals by using function (29) and relations (35) and
(36).

In actual motion, in addition to perturbations with
a period T ′/2, the semimajor axes of satellite or-
bits also undergo short-period perturbations with the
satellite revolution periods. These perturbations can
be determined only by constructing a complete ana-
lytic or numerical theory.
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