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Abstract—A transport model for describing electron and ion plasma temperatures is developed on the basis of
the canonical profile theory for a tokamak with an arbitrary cross section. A comparison with the data from
experiments on eight different tokamaks shows that the model is capable of adequately simulating plasma dis-
charges. A scaling for the behavior of the relative temperature gradient at half the plasma minor radius is con-
structed based on both an analysis of the experimental data and the results of numerical calculations. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In order to describe relaxed plasma states in toka-
maks, Kadomtsev [1] and other authors [2, 3] proposed
to use the following two principles: (i) at a given total
plasma current, the free plasma energy in the relaxed
state is minimum, and (ii) the profiles of the plasma cur-
rent and plasma pressure are self-consistent. In [1–3],
the relaxed states of a plasma cylinder with a circular
cross section were studied. More recently, solutions
minimizing the free energy functional were called
canonical profiles. The problem of canonical profiles in
a tokamak with an arbitrary cross section was consid-
ered in our earlier paper [4]. In the present study, we
develop a transport model with critical gradients by
using the canonical profiles obtained in that paper. The
model proposed here is tested by comparing the com-
puted results with experimental data from different
tokamaks. By analyzing the experimental results and
those calculated with our model, we also construct a
scaling for the relative temperature gradients [5].

2. CANONICAL PROFILE FOR A TOKAMAK 
WITH AN ARBITRARY CROSS SECTION 

OF THE PLASMA COLUMN

First, we present a brief derivation of the equation
for the canonical profile [4]. We assume that the equi-
librium problem (i.e., the Grad–Shafranov equation for
the poloidal magnetic flux function ψ) is solved for
given distributions of the plasma current and plasma
pressure. The equation ψ = const determines the mag-
netic surfaces. We parameterize the magnetic surfaces
1063-780X/04/3001- $26.00 © 20001
by the variable ρ defined in terms of the toroidal mag-
netic flux as follows:

(1)

where B0 is the vacuum toroidal magnetic field at the
center of the chamber. At the plasma surface, we have
ρ = ρmax = aeff , where aeff is the effective plasma radius.
For a large-aspect-ratio tokamak, the effective plasma

radius at a low pressure is equal to aeff = , where a
is the plasma minor radius and k is the plasma elonga-
tion.

Under the condition that the total plasma current is
conserved, the free energy functional has the form

(2)

Here, Bpol is the poloidal magnetic field, p is the plasma
pressure, λ1 is a Lagrange multiplier, and V is the
plasma volume. The last term on the right-hand side of

expression (2),  = Ip, describes the conservation

of the total plasma current.

In order to eliminate the plasma pressure from func-
tional (2) and reduce the problem of minimizing this
functional to a one-dimensional one, we use the profile
consistency conditions [1]

(3)

where µ = 1/q = 1/(2πB0ρ)∂ψ/∂ρ and Ä = const(µ) is
a proportionality coefficient. Minimizing functional (2)
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under conditions (3) yields the following Euler equa-
tion for the function µ(ρ) [4]:

(4)

Here, V ' and G = R2〈(∇ρ )2/r2〉  are metric coefficients
that can be determined by solving the equilibrium prob-
lem, the prime denotes the derivative with respect to ρ,
the integration constant C and parameter λ are to be
determined from the boundary conditions, and the sub-
script c stands for the canonical profile.

Kadomtsev [1] implicitly employed the following
boundary conditions for a tokamak with a circular cross
section—the so-called circular cylinder approximation
(CCA):

(5)

where µ0 ~ 1 and µa is the boundary value of the func-
tion µ(ρ), which is a solution to the set of transport
equations. In the CCA, we have µa = RBθ/aB0 =
0.2RIp/a2B0. The last of the boundary conditions (5)
implies that the canonical profile can be chosen with no
regard for the actual physical circumstances at the
plasma boundary. Such boundary conditions will be
referred to as “soft” conditions. Also, Eq. (4) with
boundary conditions (5) in the CCA will be referred to
as the Kadomtsev problem and the corresponding solu-
tions will be marked by the superscript K. The solution
to the Kadomtsev problem has the form [1]

(6)

For a toroidal plasma that is bounded by the separa-
trix it is impossible to impose the boundary condition at
infinity. In this case, it is convenient to formulate the
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Fig. 1. (a) Canonical profiles µc /µ(0) and (b) critical gradi-

ents /Tc for two tokamaks with a large and a moderate

aspect ratio, R/a = 5 and R/a = 3, respectively, and for a = 1
m and qa = 7.

RTc'
boundary conditions at the plasma surface using the
first-order impedance:

(7)

where i = (µ00R/B0)jϕ = (1/V ')∂/∂ρ(GV 'ρµ) is the
dimensionless current. For the Kadomtsev problem, the
impedance has the form XK = µ(aeff)/µ(0).

The boundary conditions for a circular plasma cyl-
inder,

(8)

are equivalent to conditions (5). In what follows, we
will assume that, in the general case of a toroidal
plasma column, boundary conditions (8) single out the
special “Kadomtsev” solutions of interest to us. These
solutions for the canonical profiles µc(ρ) are weakly
sensitive to variations in the physical parameters of the
plasma at its boundary (such as changes in the bound-
ary temperature, radiative losses, and impurity seed-
ing).

To determine canonical profiles of the temperature
and density, Tc(ρ) and nc(ρ), we recall that, in a steady
state, the current and temperature profiles should devi-
ate only slightly from being canonical. That is why the
canonical profiles of the current and temperature

should approximately satisfy Ohm’s law, jc(ρ) ~ .
This law and conditions (3) yield the relationships

(9)

In transport models, the expressions for the fluxes
contain critical gradients. Canonical profiles determine
the target of relaxation. When the profiles of the plasma
parameters are canonical, the fluxes should be small. As
a consequence, the dimensionless critical gradients ΩTc

are determined by the canonical profiles of the current
and, by virtue of relationships (9), have the form:

(10)

Calculations show that canonical profiles become
flatter as the aspect ratio A = R/a decreases and/or the
elongation k and triangularity δ increase [4]. This flat-
tening is illustrated by Fig. 1, which shows the normal-
ized profiles µc(ρ)/µc(0) for two different aspect ratios
A = 3 and 5 (Fig. 1a) and the profiles of the critical gra-

dients, –R /Tc, for the same parameters (Fig. 1b). The
results of calculating the canonical profiles are dis-
cussed in more detail in [4].
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APPLICATION OF THE CANONICAL PROFILE THEORY 3
3. MODIFIED CANONICAL PROFILE 
TRANSPORT MODEL

The set of transport equations in question consists of
equations for the poloidal magnetic field and the elec-
tron and ion temperatures, Ti and Te. For simplicity, we
do not consider here the equation for the density. The
equilibrium is found by solving the Grad–Shafranov
equation. In contrast to our earlier works in which
canonical profiles were calculated from Kadomtsev
solution (6), the canonical profiles are now obtained by
solving Eq. (4) with boundary conditions (8). The
sequence of operations in the canonical profile trans-
port model (CPTM) is shown in Fig. 2.

We assume that the critical gradients of the ion and
electron temperatures are the same, ΩTci = ΩTce = ΩTc,
where ΩTc is given by the first of formulas (10), and
choose the heat flux in the L mode in the form

(11)

(12)

(13)

Here, H(x) is the Heaviside step function defined as
H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0 and

(14)

are the relative gradients of the electron and ion temper-
atures. Heat fluxes (12), which are labeled by the super-
script l , are proportional to the temperature gradients.
Heat fluxes (13), which are labeled by the superscript
PC, are proportional to the difference between the rela-
tive and critical temperature gradients. In tokamaks, the

stiffness  is usually much larger than the thermal

conductivity . The transport coefficients are chosen
in the form [6–10]

(15)

(16)

with  = 3.5,  = 5, and  ≈ 2. Here, M is the ion-
to-proton mass ratio and the physical quantities are
expressed in the following units: T in keV, B0 in T, a and
R in m, n in 1019 m–3, χk in m2 s–1, and κk in 1019 m–1 s–1.
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4. VALIDATION OF THE CANONICAL PROFILE 
TRANSPORT MODEL

The transport model was validated by using the data
from 45 tokamak discharges. Specifically, we used the
published data on seven discharges with off-axis ECRH
in ASDEX-U [11–13] and the data on six discharges
from the MAST tokamak database. We also used the
data on 32 discharges in DIII-D, JET, JT-60U, TFTR,
ASDEX-U, T-10, and TEXTOR from the ITER Profile
Database [14]. We tried to choose data on OH- and
L-mode discharges; however, in some of the DIII-D and
JET discharges and in most of the MAST discharges,
the plasma was apparently in the H mode. In making
the choice, we discarded several (about five) H-mode
discharges in DIII-D since the electron temperature
profiles for them were very flat and thus disagreed with
fairly sharply peaked ion temperature profiles. The dis-
charges that were used to test the model are listed in the
table. Almost all of them were simulated using the

Transport
models

Te, Ti, n, µ, j

Canonical
profiles

µc, jc, Tc'/Tc, nc' /nc

Equilibrium
ρ, V ', G

Fig. 2. Flow chart of the modified transport model.

List of the selected discharges

Tokamak Shot number

DIII-D 69627, 69648, 71378a, 71378b, 71384, 
78106, 78109, 78281, 78283, 78316, 78328, 
81499, 90105, 90118 

ASDEX-U 6136, 6905, 13558oh, 13558a, 13558b, 
13654oh, 13654, 15600oh, 15600

JET 19649oh, 19649, 19691oh, 19691, 26087, 
26095, 32745 

MAST 4505-H, 6252-H, 6326-H, 6762-H, 6952-H, 
9005-L

JT-60U 21795, 21796, 21810, 21811 

TEXTOR 68812

T-10 47379, 47405

TFTR 103648, 103808
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CPTM by means of the ASTRA code [15]. The plasma
density profiles were taken from experiments. The
H-mode pedestals were described by artificially
increasing the electron and ion temperatures at the
boundary.

Here, we analyze only the electron temperature pro-
files and do not consider data on the ions. We compare
the calculated electron temperature profiles Te(ρ) with

the experimental profiles (ρ). We also compare the
calculated and experimental relative temperature gradi-

ents, ΩTe = – /Te and  = – / , and

present the profiles of the critical gradient ΩTc =

− /Tc (for brevity, aeff is replaced with a).

The calculations were compared with experiments
by using the following two types of metrics that charac-
terize the deviation of the calculated results from the
experimental data:

(17)
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Fig. 3. (a) Temperature profiles and (b) relative and critical
gradients during Ohmic (OH) and off-axis ECRH in shot
no. 15 600 in ASDEX-U.
(18)

Here, the summation is performed starting from the
point ρ = 0.2a in order to avoid errors introduced by the
sawtooth oscillations, which were ignored in calcula-
tions. Metric (18) compares the profiles normalized to
the temperature values at the radius ρ = 0.2a. In fact,
this indicates that we compare the averaged tempera-
ture gradients.

Figures 3–5 show a comparison between the calcu-
lated and experimental results for ASDEX-U, DIII-D,
JET, and MAST. The accuracy of modeling the Te pro-
files is illustrated in Figs. 3a and 5a. The relative gradi-

ents ΩTe = – /Te,  = – /  and the

critical gradients ΩTc = – /Tc for these four toka-
maks are presented in Figs. 3b, 4a, 4b, and 5b. The pro-
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Fig. 4. Profiles of the relative and critical gradients in
(a) shot no. 69 648 in DIII-D and (b) shot no. 19 691 in JET.
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APPLICATION OF THE CANONICAL PROFILE THEORY 5
files are seen to be flat in the gradient region; conse-
quently, the gradients can be characterized by their
mid-radius values. The temperature gradients were cal-
culated in natural coordinates determined from the
solution to the equilibrium Grad–Shafranov equation;
this indicates that, for a toroidal plasma with a noncir-
cular cross section, the gradients are averaged over the
magnetic surfaces.

5. SCALINGS FOR THE TEMPERATURE 
GRADIENTS

A comparison between the calculated and experi-
mental relative temperature gradients, ΩTe and , is

shown in Fig. 6. We can see that the calculated and
experimental relative temperature gradients are in rea-
sonably good agreement with one another. The error
bar (about ±15–20%) in determining  for one

ASDEX-U discharge is also shown. According to this
figure, the dimensionless gradients ΩTe change over a
broad range—from ΩTe ~ 2 for MAST to ΩTe ~ 10–12
for T-10. In [4], it was shown that the larger the aspect
ratio A = R/a and/or the quantity q, the more peaked the
canonical profile (or, equivalently, the larger the rela-
tive gradient ΩTe). It can also be seen that the peaked-
ness of the canonical profile increases with decreasing
the elongation k and/or triangularity δ. Consequently,
the parameter ζ = qA2/k can serve as a scaling (self-
similar) parameter for the relative temperature gradient.
The scaling parameter can also depend on the triangu-
larity; however, this dependence is not considered here
because it is weaker than the dependence on the elon-
gation [4]. The aspect ratio in the parameter ζ is raised
to the second power because the gradient is normalized
to the plasma major radius. The expression for the scal-
ing parameter can be refined by using the asymptote of
the critical gradient Ωc in the Kadomtsev case (6),

, (19)

where A @ 1. This implies, in particular, that it would
be better to use a weaker dependence on q, ξ =
qA2/(k(q + 4)), for the scaling parameter. Of course, the
above considerations help merely to estimate which of
the scaling parameters is most suitable for describing
the calculated and experimental relative temperature
gradients, ΩTe and . A search for a more realistic

scaling requires substantial computational work aimed
at the statistical analysis of the deviations of the calcu-
lated results from the experimental data. This is why
only a few examples will be discussed here.

Figure 7 shows the dependence of the experimental
relative gradients  at mid-radius, ρ = a/2, on the

scaling parameter ξ = qA2/(k(q + 4)) for all of the cho-
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sen discharges in the eight tokamaks. We emphasize
that Fig. 7 presents only experimental data. The theory
of canonical profiles merely helps to choose the form of
the scaling parameter ξ. All the experimental points are
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Fig. 5. (a) Temperature profiles and (b) critical gradients at
t = 265 ms in shot no. 6252 in MAST.
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seen to lie near a certain smooth convex curve. On the
one hand, the scatter of the points around the curve is
fairly large; on the other hand, the experimental errors
in calculating  are also large. As the aspect ratio

increases, critical gradient (19) in the case of the
Kadomtsev solution increases without saturation. The
rightmost experimental point in Fig. 7 refers to a dis-
charge in T-10 with an aspect ratio of A = 6 and a minor
radius of a = 25 cm. Since this radius value is not typi-
cal of the T-10 tokamak, the reliability of the measure-
ments of the temperature profile during the discharge
was low. Nevertheless, this experimental point is close

Ω
Te

exp

2
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4

6
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10
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18

MAST-H

DIII-D
JET
ASDEX-U
TFTR
JT-60
TEXTOR
T-10
ITER
Kadomtsev

MAST-L

y = 12.78 – 12.56*exp(–x/4.55)

qA2/(k(q + 4))

ΩT
exp

Fig. 7. Dependence of the measured relative gradient of the
electron temperature on the scaling parameter ξ =
qA2/(k(q + 4)). The cross indicates the value of the critical
gradient calculated from Kadomtsev asymptotic formula
(19) for the corresponding T-10 shot.
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ASDEX-U
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T-10

y = 18.43 – 18.04*exp(–x/7.106)

JT-60U

qA2/(k(q + 4))

Fig. 8. Dependence of the calculated relative gradient of the
electron temperature on the scaling parameter ξ =
qA2/(k(q + 4)).
to the point predicted by formula (19) and is marked by
the cross in Fig. 7.

Based on the results shown in Fig. 7, we can try to
predict ΩTe values for the ITER-FEAT project. For a
discharge with the parameters R = 6 m, am = 2 m, A = 3,
k = 1.7, and q = 3.5, we obtain ξ = 2.45, in which case
the results of Fig. 7 yield ΩTe = 5.6. Since this is an
interpolation problem (rather than an extrapolation one,
as is the case with the problem of predicting the energy
confinement time), the prediction should be sufficiently
reliable.

Figure 8 shows the relative temperature gradient ΩTe

calculated at mid-radius as a function of the parameter
ξ for the same discharges. Also shown in the figure is
the approximating curve, which is seen to differ slightly
in shape from that in Fig. 7. However, the value ΩTe ≈ 6
predicted for ITER-FEAT remains almost the same.

The dependence of the critical gradient Ωc on the
parameter ξ is displayed in Fig. 9. The approximating
curve is also similar in shape to those in Figs. 7 and 8.
Figure 10 shows how the calculated relative tempera-
ture gradient ΩTe depends on the calculated critical gra-
dient Ωc. The elevation of the points above the diagonal
corresponds to the deviation of the temperature profile
from a canonical. The mean deviation is seen to be
about 10%. The deviation itself depends on the power

input to the plasma and also on the stiffness χk = /n
in heat flux (13). Our model has a moderate stiffness.
For typical JET parameters, the stiffness is about χi ~
7.5 and χe ~ 5 m2/s. In stiff models, like the IFS/PPPL
model [16], the stiffness is about χi ~ 20 m2/s, so that
the deviation of the calculated gradients from the criti-
cal ones should be smaller.

The accuracy of predictions derived from the CPTM
is illustrated in Fig. 11, which shows the correlation

κ k
PC
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ΩTc
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Fig. 9. Dependence of the critical temperature gradient on
the scaling parameter ξ = qA2/(k(q + 4)).
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APPLICATION OF THE CANONICAL PROFILE THEORY 7
between the normalized and linear deviations for the
discharges chosen above. First, we can see that the
mean linear deviation is about 20–22%. Such a large
mean deviation can be partially explained by the fact
that, in simulations, we neglected some important phys-
ical processes, such as sawtooth oscillations and
plasma emission. From Fig. 11, we also see that nor-
malized deviations (18) are about two times smaller
than linear deviations (17). This indicates that, in
describing the temperature gradients, the processes
ignored in the analysis are of minor importance. As a
result, with the model proposed here, the description of
the gradients is less sensitive to various types of error

5

20 4 6 8 10 12

10

15

ΩTc = –R(Tc' /Tc)(critical)

ΩTe = –R(Te' /Te)  (calculation)

Fig. 10. Dependence of the calculated relative gradient ΩTe
on the critical gradient Ωc. The dashed line shows the linear
approximation, while the solid line is the diagonal.

0.1

0.10

0.2

0.3

0.2 0.3 dt2

dtn2

Fig. 11. Normalized deviation of Te from  vs. the linear

deviation of Te from .

Te
exp

Te
exp
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than the description of the absolute values of the elec-
tron temperature.

6. CONCLUSIONS

Based on the canonical profile theory developed for
tokamak plasmas with arbitrary cross sections, we have
proposed a modified transport model in which the crit-
ical temperature gradient Ωc = R/LT in the expressions
for the heat flux is determined in terms of the calculated
canonical profile. The model was validated by compar-
ing the computed results with experimental data from
eight different tokamaks. Modeling of a set of 45 dis-
charges yields good agreement between the experimen-
tal and calculated temperature profiles. An analysis of
the measured and calculated relative temperature gradi-

ents ΩTe = – /Te makes it possible to determine a
reasonable scaling parameter, qA2/(k(q + 4)), for the
temperature gradient. The scaling obtained here can be
used to predict the shapes of the electron and ion tem-
perature profiles in present-day and future tokamaks.
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Abstract—Results of particle-in-cell simulations are presented that demonstrate characteristic interaction
regimes of high-power laser radiation with plasma. It is shown that the maximum energy of fast ions can sub-
stantially exceed the electron energy. A theoretical model is proposed of ion acceleration at the front of a rela-
tivistic electron cloud expanding into vacuum in the regime of strong charge separation. The model describes
the electric field structure and the dynamics of fast ions inside the electron cloud. The maximum energy the ions
can gain at the front of the expanding electron cloud is found. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the past few decades, the problem of the gen-
eration of charged particle beams in the interaction of
high-power electromagnetic radiation with plasma
have attracted great interest [1]. This interest stems
from the fact that the interaction of a high-power laser
pulse with a collisionless plasma results in the genera-
tion of large-scale collective electric fields in which
electrons and ions can be accelerated up to extremely
high energies. The high ion-acceleration efficiency
observed in experiments [2–10] has stimulated discus-
sion about the possibility of using laser-accelerated
ions in various applications. Among them, we note the
use of such ions in controlled fusion research (with in
the framework of the concept of fast ignition of prelim-
inary compressed thermonuclear targets [11, 12]), the
hadron therapy of oncological diseases [13–16], and
the diagnostics of ultrafast plasma processes [17, 18].

Numerous experimental studies (see, e.g., [2–10])
have been devoted to the investigation of different
regimes of fast-ion generation in the interaction of mul-
titerawatt and petawatt laser radiation with thin solid
targets (foils). In some papers, it was asserted that both
the ions initially located at the front side and those
located at the rear side of the target are involved in the
acceleration process. We note that such acceleration
was previously observed in computer simulations [19,
20]. Computer simulations have also demonstrated the
high efficiency of ion acceleration in the interaction of
high-power laser radiation with plasma [21–27]. More-
over, 3D simulations have demonstrated that the trans-
verse and longitudinal emittances of the ion beam can
be controlled by varying the target parameters [28–33].
1063-780X/04/3001- $26.00 © 0018
The interpretation of the results of the above exper-
iments and of computer simulations demands the devel-
opment of a theory of such acceleration. In particular,
the theoretical models should be able to describe the
maximum ion energy and the shape of the energy spec-
trum of fast ions as functions of the laser-pulse and tar-
get parameters. Although various mechanisms of ion
acceleration (see, e.g., [1, 19–36]) have been discussed
in the literature, two of them traditionally attract the
greatest interest. According to the first mechanism, the
ions are accelerated in a target surface layer in which
the strong electric field is localized. The field amplitude
and the width of the surface layer are such that the elec-
tric potential drop is on the order of the electron thermal
energy and, accordingly, the ion energy is on the order
of the electron thermal energy times the ion charge
number. The second mechanism assumes that the ions
are accelerated at the front of a plasma expanding into
vacuum [37–45]. In this model, the accelerating electric
field is assumed to be generated due to space charge
separation in a narrow layer at the front of the plasma
cloud, which, on the whole, is electrically neutral. In
this case, the energy of fast ions does not depend on
their charge and can substantially exceed the electron
energy, as was observed experimentally in [46].

A transition to electromagnetic radiation powers
corresponding to relativistically strong fields radically
changes the acceleration regime. In particular, com-
puter simulations [21, 25, 28, 29] show that the interac-
tion of petawatt laser radiation with foils results in the
formation of extended regions with a strong electric
field. In these regions, the plasma quasineutrality is
strongly violated, which should necessarily be taken
2004 MAIK “Nauka/Interperiodica”
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into account when describing ion acceleration theoreti-
cally.

One well-known example of efficient ion accelera-
tion under conditions of strong charge separation is the
Coulomb explosion of a cluster [34, 47–49]. In this
case, the electrons escape from the cluster under the
action of strong electromagnetic radiation and the col-
lective electric field of the expanding ion component
plays a key role in the acceleration process. In other sit-
uations (e.g., in the regime considered in [31–33]), a
small number of light ions gain energy in a time-inde-
pendent electric field near the target surface and their
dynamics can be described in the test-particle approxi-
mation.

In the next section, we describe the results of parti-
cle-in-cell (PIC) simulations demonstrating laser–
plasma interaction regimes in which the energy of fast
ions substantially exceeds the electron energy. In Sec-
tion 3, we present a theoretical model of the accelera-
tion of a relatively small group of ions at the front of a
relativistic electron cloud expanding into vacuum in the
regime of strong charge separation. The model explains
the acceleration of fast ions up to energies higher than
the electron energy. The results obtained within this
model describe the electric-field structure and the
dynamics of fast ions inside the electron cloud. The
maximum energy the ions can gain at the front of the
expanding electron cloud is found.

2. RESULTS OF COMPUTER SIMULATIONS
OF ION ACCELERATION UP TO ENERGIES 
SUBSTANTIALLY EXCEEDING ELECTRON 

ENERGY

Numerical simulations of charged particle accelera-
tion in the interaction of ultrashort laser pulses with thin
targets were performed with a 2D version of the REMP
code [50]. This is a relativistic electromagnetic code
based on the PIC method [51–53]. It is well known that
PIC simulations allow one to take into account various
nonlinear and kinetic processes occurring in the inter-
action of high-power laser radiation with targets. On
the other hand, such simulations make it possible to
reveal the distinctive features of particle acceleration in
one- and multidimensional models. Here, we consider
the acceleration of protons and pions (π+) in the inter-
action of laser radiation with two-layer targets. In both
cases, the target is an aluminum foil with a thin hydro-
gen or pion-containing layer on its rear side. The effi-
ciency of pion generation in laser plasma was calcu-
lated in [54]. We note that ultrashort laser pulses are
considered to be a very promising means for accelerat-
ing short-lived particles (see [1]) because the character-
istic time needed to accelerate such particles to relativ-
istic energies can be substantially shorter than their
decay time. For example, the decay time of a pion is
2.6 × 10–8 s, whereas the characteristic acceleration
time can be shorter than several hundred femtoseconds.
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
In the case of proton acceleration, simulations were
performed in a 120λ × 60λ region with a mesh size of
0.1λ × 0.1λ, where λ = 2πc/ω is the laser wavelength,
with ω being the laser frequency. The total number of
particles was about 107. The particles and electromag-
netic radiation were absorbed at the boundaries of the
simulation region; however, the influence of the bound-
ary conditions was negligible because of the suffi-
ciently large dimensions of the simulation region. The
target was a 3λ-thick aluminum foil with a 0.25λ-thick
hydrogen layer on its rear side. The aluminum ions
were assumed to be triply ionized. The electron density
inside the aluminum foil was equal to n0 = 4ncr, where
ncr = meω2/4πe2 is the critical density. The proton den-
sity in the hydrogen layer was n0 = 1.33ncr. The proton-
to-electron mass ratio was mp/me = 1836, and the alu-
minum-to-proton nuclear mass ratio was mAl/mp =
26.98. The target was located near the x = 40λ plane.
The laser pulse entered the simulation region from the
left boundary, which was located at x = 0. The electric
field of incident radiation was directed along the y axis
(p-polarized radiation). The dimensionless amplitude
of the laser pulse was a0 = eE0/meωc = 3, which corre-
sponded to an intensity of I ≈ 1.2 × 1019 W/cm2 for a
laser wavelength of λ = 1 µm. The width and length of
the laser pulse were 30λ and 90λ, respectively, which
corresponded approximately to 350-TW laser power.

The simulation results are shown in Figs. 1–3. Here
and below, the units of length and time are the laser
wavelength and period, respectively. Figure 1 shows
the energy spectra of (a) electrons, (b) protons, and
(c) aluminum ions at t = 650 (the instant by which the
maximum energies of protons and electrons have
already reached their quasi-steady values). It can be
seen that the maximum proton energy (15 MeV) is
approximately three times the maximum electron
energy (5 MeV) and thirty times the aluminum-ion
energy per nucleon. The protons are accelerated in the
electric field produced by fast electrons, which gain
energy in the interaction with laser radiation and then
get into the region behind the target. Figure 2 shows the
distributions of the (a) x and (b) y components of the
electric field in the (x, y) plane at t = 100 (the instant at
which the proton energy spectrum varies most rapidly).
It can be seen that the transverse component of the elec-
tromagnetic field does not penetrate to the rear side of
the target and that the longitudinal electric field (it is
this field that accelerates protons) occupies an extended
region behind the target. Figure 3 shows the distribu-
tions of the (a) electron, (b) proton, and (c) aluminum-
ion densities in the (x, y) plane at t = 300.

In the case of pion acceleration, simulations were
performed in the 160λ × 60λ region. The target was a
3λ-thick aluminum foil with a 0.25λ-thick pion-con-
taining layer on its rear side. The pion-to-electron mass
ratio was mπ/me ≈ 279. The other simulation parameters
were the same as in the case of proton acceleration. The
simulation results are shown in Figs. 4–6. Figure 4
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shows the energy spectra of (a) electrons, (b) pions, and
(c) aluminum ions at t = 250 (the instant by which the
maximum energies of pions and electrons have already
reached their quasi-steady values). It can be seen that
the maximum pion energy (12 MeV) is approximately
two-and-a-half times the maximum electron energy
(5 MeV) and is much higher than the aluminum-ion
energy per one nucleon. As in the previous case, the
pions are also accelerated in a quasistatic electric field
produced by fast electrons on the rear side of the target.
Figure 5 shows the distributions of the (a) x and (b) y
components of the electric field at t = 87.5, while Fig. 6
shows the distributions of the (a) electron, (b) pion, (c)
and aluminum-ion densities in the (x, y) plane at t =
212.5.
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Fig. 1. Energy spectra of (a) electrons, (b) protons, and (c)
aluminum ions at t = 650.
3. INTERACTION OF IONS 
WITH A COLLECTIVE ELECTRIC FIELD 
GENERATED DURING THE EXPANSION
OF A RELATIVISTIC ELECTRON CLOUD 

INTO VACUUM

3.1. Electric Field Structure near the Front 
of the Electron Cloud

Let us consider the acceleration of ions during the
“vacuum heating” of electrons. We assume that the first
(heavy-ion) layer of a two-layer target of width l
remains at rest during the interaction. The light ions are
described in the test-particle approximation. The lower
indices i, α, and e stand for heavy ions, light ions, and
electrons, respectively.

We assume that the electrons are initially located
inside the target (in the interval –l/2 < x < l/2). Under
the action of a short laser pulse, the electrons gain a
momentum pe, 0 directed along the x axis. The expan-
sion of the electron cloud into vacuum is determined by
the self-consistent electric field, which also accelerates
light ions. This acceleration mechanism can be
regarded as an extension of the well-known mechanism
of ion acceleration during the expansion of plasma into
vacuum [37, 38] to the case in which plasma quasineu-
trality is strongly violated and the particles have relativ-
istic energies.

To describe the expansion of an electron cloud into
a vacuum, we will use one-dimensional equations of
electron hydrodynamics:

(1)

(2)

(3)

where ne is the electron density, the electron velocity
and momentum are related to each other by the expres-

sion v e = cpe/(  + )1/2, and the ion density ni(x)
is assumed to be uniform inside the interval –l/2 < x <
l/2 and equal to zero outside of it.

To find the solution to Eqs. (1)–(3), we switch from
the Euler variables x and t to the Lagrange variables x0

and t. Here, x0 is the coordinate of an element of the
electron fluid at the initial instant t = 0 (–l/2 < x0 < l/2).
The Euler and Lagrange variables are related to each
other by the expression

(4)

∂ne
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Fig. 2. Distributions of the (a) x and (b) y components of the electric field in the (x, y) plane at t = 100.
where ξe(x0, t) is the distance by which an element of
the electron fluid is displaced from its initial position
over the time t. At the initial instant, we have ξe(x0, 0) =
0. In the Lagrange variables, Eqs. (1)–(3) become (see
[55–57])

(5)

(6)

In our case, the density profile of heavy ions ni(x) is
given by the expression ni(x) = n0θ(l/2 – x), where θ(x)
is the Heaviside step function: θ(x = 0 at x < 0 and

∂ pe
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-------- 4πZie

2
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θ(x) = 1 at x > 0. As a result, the right-hand side of
Eq. (5) takes the form

(7)

We are first of all interested in the dependence of the
electric field on the coordinate and time near the front
of the electron cloud. It follows from Eq. (7) that, in the
Lagrange variables, the electric field has the form E(x0,
t) = –4πn0Zie(l/2 – x0). To find the electric field profile

eE x0 t,( )

=  –4πZin0e
2

l/2 x0, l/2– x0 ξe x0 t,( )+<
ξe x0 t,( ), –l/2 x0 ξe x0 t,( ) l/2<+<

l/2– x0, x0– ξe x0 t,( ) l/2.–<+




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Fig. 3. Distributions of the (a) electron, (b) proton, and (c) aluminum-ion densities in the (x, y) plane at t = 300.
as a function of the Euler coordinate x, it is necessary to
use the solutions to Eqs. (5) and (6):

(8)pe x0 t,( ) pe 0, x0( ) 2πZin0e
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PLAS
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where the function pe, 0(x0) describes the initial distribu-
tion of the electron momentum in the cloud and

. (10)

It can be seen that the displacement of an electron from
its initial position (ξe(x0, 0) = 0) first increases as

ξe(x0, 0) ≈ v e, 0t, where v e, 0 = cpe, 0 /(  + )1/2 is
the initial electron velocity. In a time of tm =
pe, 0(x0)/[πn0Zie(2l – x0)], the displacement reaches its

maximum value ξe, m(x0) = c{[  + (x0)]1/2 –
mec}/κ(x0) and then decreases. It follows from the
expressions obtained that the closer the Lagrange coor-
dinate x0 of an element of the electron fluid to the
boundary of the plasma layer, the longer the time
required for the element to return to its initial position
(≈tm). For x0  l/2 (which corresponds to the particles
located at the front of the electron cloud), the return
time tends to infinity. Near the front of the electron
cloud, where κ(x0)  0, we have

(11)

We assume that, near the front of the cloud, the ini-
tial distribution of the electron momentum pe, 0(x0) is
uniform; i.e., pe, 0 does not depend on the coordinate x0.
Using Eqs. (4) and (10), we find the relation between
the Lagrange and Euler coordinates:

(12)

where

(13)

It follows from this that the electric field profile near the
front of the electron cloud is described by the expres-
sion

(14)

It can be seen that the electric field vanishes at the front
of the cloud (i.e., at x = l/2 + v e, 0t). The gradient of the
electric field is proportional to the electron density and
depends on time as

(15)
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3.2. Acceleration of Ions at the Front 
of the Electron Cloud

Let us consider the acceleration of ions with a mass
ma and charge Zae in the electric field described by
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Fig. 4. Energy spectra of (a) electrons, (b) pions, and
(c) aluminum ions at t = 250.
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expression (15). The equation of motion of an ion in
this field has the form

(16)

(17)

where the superior dot stands for the time derivative
and pa and xa are the momentum and coordinate of an
ion, respectively.

3.2.1. Nonrelativistic limit. In the case of nonrela-
tivistic ion energies, Eqs. (16) and (17) can be trans-
formed into one equation for xa:

(18)
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The solution to Eq. (18) can be expressed in terms of
hypergeometric functions:

(20)

Here, xa, 0 and  are the initial coordinate and veloc-
ity of an ion and F(α, β; γ; z) is the hypergeometric
function [58], whose parameters α, β, and γ are related
to µ by the expressions

(21)

Let, at the initial instant t = 0, an ion be at rest and
located at the point xa, 0 = l/2 (i.e., at the front of the
electron cloud). In this case, we should set xa, 0 = l/2 and
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Fig. 6. Distributions of the (a) electron, (b) pion, and (c) aluminum-ion densities in the (x, y) plane at t = 212.5.
xa, 0 = 0 in Eq. (20). It then follows from Eq. (20) that
the ion coordinate depends on time as

(22)

It can be seen that the second term on the right-hand
side of this expression increases with time. At the
instant t = t*, which is determined by the equation

(23)
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the ion coordinate becomes xa, 0(t*) = l/2 + v e, 0t*; i.e.,
in the course of acceleration, the ion crosses the front of
the electron cloud and leaves it behind. As a result, the
ion gains the velocity

(24)

Since, after crossing the front of the electron cloud,
the ion velocity becomes higher than the maximum

ẋa t*( ) v e 0, v e 0,
µb t*( )2
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---------------
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electron velocity, which is, in turn, assumed to be non-
relativistic, the ion energy should be no higher than
mac2. Using the asymptotic of the hypergeometric func-
tion at z  ∞,

(25)

we find from Eq. (23) that, in the limit t*  ∞, the ion
gains the velocity

(26)

It can be seen that, at t* @ 1, the ion velocity is approx-
imately equal to the expansion velocity of the electron
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Fig. 7. Time dependence of (a) the ion momentum and
(b) the distance between the accelerated ion and the front of
the electron cloud for βe, 0 = (1) 0.35, (2) 0.5, and (3) 0.6.
cloud. Therefore, in the nonrelativistic limit, the char-
acteristic energy of fast ions is equal to

(27)

As in the approach of [38], this energy does not depend
on the ion charge; this fact, in both cases, reflects the
kinematic relationship corresponding to a situation in
which the ion overtakes the front of the electron cloud.

3.2.2. Ultrarelativistic limit. Let us consider ion
acceleration at the front of the electron cloud in the case
of relativistic ion energies. We rewrite Eqs. (16) and
(17) in the form

(28)

(29)

Here, ε = µ/8, βe, 0 = v e, 0 /c, the time is in units of τ =

21/2(1 + (pe, 0 /mec)2)3/4 , and the momentum is in
units of mac. In passing over from Eqs. (16) and (17) to
Eqs. (28) and (29), we switched from the coordinate xa

to the new coordinate

, (30)

which is the distance between the current ion position
and the front of the electron cloud. Figure 7 presents the
results of the numerical integration of Eqs. (28) and
(29). Figure 7a shows the time dependence of the ion
momentum pa(t), while Fig. 7b shows the time depen-
dence of the distance between the ion and the front of
the electron cloud σa(t) = xa(t) – βe, 0t – l/2. Curves 1,
2, and 3 correspond to βe, 0 values of 0.35, 0.5, and 0.6,
respectively. The initial conditions are chosen so that
pa(0) = 0 and σa(0) = 0. Such initial conditions corre-
spond to a situation in which, at t = 0, an ion with a zero
velocity is located at the front of the electron cloud. It
can be seen that, in the initial stage of acceleration, the
function σa(t) is negative and increases in absolute
value. This corresponds to the increase in the distance
between the current position of the accelerated ion and
the front of the electron cloud. This distance then starts
to decrease until the ion overtakes the front. At the
instant the ion crosses the front, the ion velocity is
higher than the electron velocity; i.e., the higher the
expansion velocity of the cloud, the higher the ion
energy. The ion energy satisfies the inequality

(31)
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which gives a lower estimate of the maximum energy of
the ions accelerated in the course of expansion of a rel-
ativistic electron cloud into a vacuum. Obviously, this
is a generalization of expression (27) to the case of rel-
ativistic ion energies.

Let us now analyze a situation in which an ion gets
into the acceleration regime at the instant t0 @ 1, by
which the electron cloud has already substantially
expanded. We consider the case in which the characteris-

tic acceleration time tacc ≈ [(1 + )/ε]1/2 is much less than
t0. This condition can be satisfied only when the param-
eter ε is large enough. The inequality ε @ 1 is equivalent
to the condition that the electron energy is ultrarelativis-
tic. In this limit, the right-hand side of Eq. (28) can be

approximated by the expression –ε[σa/(1 + )]θ(–σa).
As a result, the set of Eqs. (28) and (29) takes a Hamil-
tonian form with the Hamiltonian

(32)

The fact that Hamiltonian (31) does not depend
explicitly on time (*(pa , σa) = h) allows us to calculate
the momentum the ion gains due to the interaction with
the expanding electron cloud. We note that the instant
at which the ion crosses the front of the electron cloud
corresponds to a zero value of σa(t). At t = t0, the ion
crosses the front of the electron cloud for the first time.

From here, we find that h = (1 + )1/2 – pa, 0βe, 0,
where pa, 0 is the initial value of the ion momentum. At
the instant t = t*, the accelerated ion catches up with the
front of the cloud and crosses it. This instant also corre-
sponds to a zero value of σa(t): σa(t) = 0. It follows
from Eq. (32) that the resulting ion momentum is

(33)

Let the ion be initially at rest; i.e., pa, 0 = 0. We then have
h = 1 and

(34)

which is equal to the momentum the particle gains due
to an elastic reflection from a wall moving with a veloc-
ity cβe, 0 close to the speed of light. In dimensional
units, formula (34) can be rewritten in the form

(35)
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3.2.3. Simple particle acceleration model. The
basic features of the above mechanism of charged par-
ticle acceleration can be illustrated using the following
simple model. A similar model was used in [59] to ana-
lyze the problem of the charge neutralization of an ion
beam interacting with a plasma slab. We assume that
the relativistic electrons form a thin bunch oriented per-
pendicularly to the x axis. We also assume that the
bunch propagates with a constant velocity cβe, 0 and that
its shape does not change with time. Between the elec-
tron bunch and the target, there is a homogeneous elec-
tric field E = 2πen0∆x, where n0∆x is the number of elec-
trons per unit area of the bunch. In this electric field, the
momentum and coordinate of an ion of species α with
a charge of Zαe depend on time as

, (36)

(37)

We assume that the initial coordinate of an ion is zero.
At the instant t = t*, the ion catches up with an electron
bunch. The acceleration time t*, which can be found
from the condition xα(t*) = cβe, 0t* is equal to

(38)

We find from here that the energy of the accelerated ion
is %α = 2mαc2βe, 0(%e/mec2)2, which agrees with for-
mula (35).

4. DISCUSSION OF THE RESULTS OBTAINED

In this paper, we have found the maximum energy of
the fast ions accelerated at the front of an electron cloud
expanding into a vacuum. The energy of the fast elec-
trons generated in the interaction of high-power laser
radiation with a target can be estimated from below as
a0mec2, which corresponds to the kinetic energy of elec-
trons oscillating in the field of an electromagnetic wave
with a dimensionless amplitude of a0 = eE/mecω @ 1
[60]. Then, using Eqs. (33) and (34), we find that the
maximum energy of fast ions is on the order of

2mαc2 . For example, at a0 ≈ 1 (which corresponds to
a laser intensity of about 1018 W/cm2), the plasma elec-
trons can gain an energy of a few megaelectronvolts. In
this case, according to Eqs. (33) and (34), the energy of
fast ions can reach a few gigaelectronvolts. Obviously,
under real experimental conditions, there are some fac-
tors (such as the finite transverse dimensions of the
laser pulse and the target) that violate the one-dimen-
sional approximation used in deducing Eqs. (33) and
(34). As a result, the energy of fast ions will be some-
what lower. This also concerns the results of computer
simulations presented in Section 2, in which the finite

pα t( ) ZαeEt=

xα t( )
mα

2
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dimensions of the simulation region were an additional
factor limiting the ion energy. Nevertheless, the conclu-
sion that moderate-power laser pulses can, in principle,
be used to generate high-energy ions seems to be
important when considering methods for optimizing
the parameters of laser accelerators.
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Abstract—The implosion of wire arrays is studied at the Angara-5-1 facility with the help of an X-ray pinhole
camera. It is shown that the drift of the plasma toward the axis occurs in the form of a “plasma rainstorm.” The
data constituting a part of the experimental database are presented. Based on these data, it is established that
the spatial structure of an imploding plasma is highly inhomogeneous, so that it makes no sense to talk about a
plasma shell that implodes as a single entity. In this case, plasma inhomogeneities arising due to a “cold start”
and prolonged plasma production have a decisive impact on the final parameters of a hyper-terawatt Z-pinch.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the implosion of wire arrays (liners) is
being studied extensively [1–3]. In the stage of the
maximum liner compression, a high-power soft X-ray
(SXR) pulse is generated that can be used in inertial
confinement fusion (ICF) research.

According to the concept of prolonged plasma pro-
duction [4], the implosion of wire arrays proceeds as
follows: Just after the current begins to flow through the
wire array, a plasma is produced on the wire surface and
the discharge current switches from the wires to this
low-density plasma corona. The wire cores, which
remain in their initial positions over most of the dis-
charge phase, play the role of stationary plasma
sources. The plasma corona, through which most of the
current flows, drifts toward the array axis under the
action of the Ampére force.

It was shown in [5] that, at a current of ~1 MA, the
mass of the dense wire cores 70 ns after the beginning
of the current pulse is ~70% of their initial mass. Orig-
inally, the wire array is a set of wires equally spaced
along a cylindrical surface. Therefore, the plasma flows
produced at the wires are azimuthally nonuniform from
the very beginning of the discharge. Moreover, the
plasma produced from an individual wire is also non-
uniform in the axial direction.

The azimuthal and axial inhomogeneities of the
plasma produced from the liner wires give rise to
plasma jets that can merge and undergo self-focusing
under the action of their magnetic self-field. In [6], this
phenomenon was called “the radial plasma rainstorm.”

In the present paper, we will show that the inhomo-
geneities of the imploding plasma that appear due to
both the “cold start” of the Z-pinch and the subsequent
prolonged plasma production decisively affect the final
parameters of an emitting hyper-terawatt Z-pinch.
1063-780X/04/3001- $26.00 © 20030
In this paper, the data constituting a part of the
experimental database are presented. It is on the basis
of these data that the main conclusions of [6] were for-
mulated.

2. EXPERIMENTAL AND DIAGNOSTIC 
TECHNIQUES

The experiments were performed at the Angara-5-1
facility [7]. As a load, we used arrays assembled of 30
to 120 tungsten wires 5–8 µm in diameter. The array
diameter was varied in the range of 8–20 mm, and the
length was varied in the range of 1–1.5 cm. We also
used composite liners consisting of two coaxial wire
arrays and a low-density solid agar-agar cylinder on the
liner axis.

The main diagnostics used in this study was the
high-resolution imaging of the Z-pinch with the help of
time-integrating X-ray pinhole cameras. Time-integrat-
ing pinhole cameras are widely used as a simple, reli-
able, and informative diagnostic tool in experiments
with fast Z-pinches (see, e.g., [8]). To image the
imploding liner in different spectral ranges, the pinhole
cameras were equipped with filters. The spatial resolu-
tion of the images in the 1-keV photon energy range
was 30 µm. The high spatial resolution of time-integrat-
ing pinhole cameras allowed us to obtain information
on extremely short-duration implosion phases. Indeed,
for one to obtain a sharp image of an emitting object
having a characteristic size ∆x and moving with a
velocity v, the object should emit no longer than a time
∆t ~ ∆x/v. Assuming that the velocity of the imploding
plasma is about the Alfvén velocity, v  ~ 3 × 107 cm/s,
we find that the lifetime of an emitting object with a
size of ∆x ~ 100 µm should be a fraction of a nanosec-
ond; otherwise the object image will be smeared out. To
obtain the more complete information on pinch inho-
mogeneities, we sometime used two pinhole cameras
004 MAIK “Nauka/Interperiodica”
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that produced X-ray images in two perpendicular direc-
tions. Having two such mutually orthogonal projec-
tions, we were able to determine the spatial structure of
the object.

Besides pinhole cameras, we also used other diag-
nostics. Here, we list only the diagnostics from which
the results presented in this paper were obtained:

(i) magnetic probes installed at a distance of 55 mm
from the liner axis for measuring the liner current;

0
740720
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Fig. 1. Typical waveforms of the (1) current J and (2) SXR
(~200 eV) emission power W.
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(ii) a frame X-ray image tube (XRIT) based on a
microchannel (MCP) camera;

(iii) frame laser shadowgraphy; and
(iv) SXR diagnostics based on four vacuum X-ray

diodes (XRD) with different absorbent filters for
recording the waveforms of the emission power in a
photon energy range of 0.1–2 keV.

3. EXPERIMENTAL RESULTS

The experiments carried out at the Angara-5-1 facil-
ity showed that the implosion of wire arrays 10–15 mm
in length and 8–20 mm in diameter resulted in the for-
mation of a pinch on the liner axis. The pinch length
was equal to the length of the array, and the pinch diam-
eter was less than 1 mm. The pinch mainly emitted in
the photon energy range 0.05–1.5 keV. Figure 1 shows
typical waveforms of the load current and SXR signals.
The ratio of the initial liner radius R to the minimum
Z-pinch radius r (recorded by the pinhole camera)
allows us to evaluate the compression ratio of the load.
In our experiments, this ratio is R/r ≈ 10. The SXR emis-
sion power is ~5 TW, the duration of the SXR pulse is
about 6 ns, and the total emission energy is about 40 kJ.
Figure 2 shows typical SXR images of Z-pinches.

3.1. Structure of the Emitting Plasma Generated 
on the Wires

In time-integrated pinhole images (Fig. 3), one can
see a plasma that leaves the wires in the form of indi-
∅ 0.8 mm ∅ 0.4 mm

Cathode

Anode

(‡) (b)

Fig. 2. Time-integrated X-ray pinhole images of an emitting Z-pinch: (a) hν > 200 eV and (b) hν > 600 eV (the pinch length is 1 cm).
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vidual jets and then drifts toward the axis. The mean
axial distance between the plasma jets generated from
a single wire is 150 µm. Further, the primary jets merge
into larger jets (see Fig. 4). The axial distance between
the secondary jets is about 1 mm. These jets fill the liner
cavity with plasma and produce a plasma precursor

3

2

100 µm

1

Anode

Cathode

Fig. 3. Time-integrated X-ray pinhole image (hν > 50 eV)
of the outer part of the liner: (1) liner axis, (2) plasma leav-
ing the wires in the form of jets, and (3) wire shadows
against the background plasma.
near the axis (the so-called “prepinch”), which emits in
the photon energy range 100–300 eV.

The nonuniformity of the produced plasma is also
seen in both the laser shadow image and XRIT frame
images taken with a time resolution of ~2 ns in the
~200-eV photon energy range (Fig. 5). It can be seen

8 mm

Anode

Cathode

1 mm

Plasma

Fig. 4. Time-integrated X-ray pinhole image (hν > 150 eV)
of an 8-mm-diameter liner: the plasma in the form of jets
drifts from the periphery toward the axis.

jets
Anode

Cathode

Plasma jets

∅ 8 m ∅ 12 mm

Anode

Cathode

(‡) (b)

Fig. 5. Plasma jets leaving the array wires: (a) laser shadow image taken 54 ns after the beginning of the current pulse (25 kA per
wire) and (b) frame X-ray pinhole image (hν ~ 200 eV) taken 77 ns after the beginning of the current pulse (50–55 kA per pulse).
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that the characteristic scale length of the plasma non-
uniformity along each wire is 100–200 µm. The plasma
leaves the wires in the form of jets ~1 mm in length and
then drifts toward the axis. Thus, time-resolved mea-
surements, as well as the time-integrated pinhole cam-
era images, demonstrate the existence of extended
plasma jets starting from each wire.

The cores of the liner wires in pinhole images
(Figs. 3, 4) are seen as light vertical lines against the
background of radiation emitted by the plasma leaving
the wires. This means that the wires are opaque to
plasma emission and produce shadows in the images.
The wire diameter that is reached during the expansion
of the dense core is estimated at 50 µm. Since the
described pinhole image is integrated over time, it is
obvious that the core shadows can be seen against the
background of the emitting jets only if the wires disap-
pear after (or simultaneously with) the jets.

The wire shadows in SXR emission were also
observed in XRIT frame images taken with an exposure
of 2 ns (Fig. 6). The XRIT shutter operated 70 ns after
the beginning of the current pulse. At that instant, the

Wire 

Cathode

Anode

0.4 mm

Fig. 6. Frame X-ray pinhole image (hν > 150 eV) of the
liner wire shadows against the background of the prepinch
plasma at 70 ns after the beginning of the current pulse.

shadows
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wire shadows and the plasma leaving the wires can be
seen against the background of the plasma filling the
liner interior. We note that the plasma generation on the
liner wires is nonuniform in the axial direction. The
characteristic scale length of the plasma nonuniformity
is 100–200 µm, and the width of the wire shadow varies
from 200 to 400 µm. This size is one order of magni-
tude larger than the wire diameter estimated from the
time-integrated pinhole images. The reason for this is
that the time-integrating pinhole camera records the
minimum shadow width of a wire surrounded by the
plasma corona over the entire implosion process,
whereas the XRIT records the shadow width of a wire
surrounded by the plasma against the background of the
prepinch plasma at the instant of the MCP shutter oper-
ation.

3.2. Off-Axis Plasma Bunches

The drift of the plasma leaving the wires and the
merging of the primary jets into larger ones result in the
self-focusing of some of the jets near the liner axis. We
also observed the collision of the plasma jets heated to
a few tens of electronvolts near the axis. This results in
the generation of plasma bunches, one of which can be
seen in the pinhole image shown in Fig. 7.

Anode

Cathode

Plasma 

Fig. 7. Time-integrated frame X-ray pinhole image (hν >
1 keV) of a pinch segment of length ~5 mm with off-axis
plasma bunches.

bunches
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The bunches emit in the photon energy range of 0.2–
2 keV and higher. The emission power of these sources
is comparable to the emission power of the plasma col-
umn of the Z-pinch in the energy range 0.2–1 keV and
is even higher at higher photon energies. The instant of
the maximum pinch emission does not coincide with
the instant of emission from the off-axis plasma
bunches. As a result, the SXR pulse turns out to be pro-
tracted, which leads to a decrease in the emission
power. The emission peaks corresponding to the plasma
bunches lag behind the peak of the pinch emission by
5–15 ns. In most of the shots, up to three plasma
bunches were produced in the cathode region of the
pinch. This can be seen in pinhole images recorded
with the use of different filters (Fig. 8). In this case, a
wire array consisting of thirty 6-µm tungsten wires
arranged on a circle 12 mm in diameter was used as a
load. A 5-mm-diameter tube made of agar-agar foam
with a mass per unit length of 400 µg/cm was placed at
the axis on the anode side. The tube length was one-half
the liner length.

In the cathode region of the pinch, one can see bright
spots that emit over a wide photon energy range
(including photon energies above 2 keV).

Figure 9 shows XRD signals obtained with different
filters and cathodes and the waveform of the liner cur-
rent for the shot presented in Fig. 8. Signal 1 was taken
from an XRD that was sensitive to photons with ener-
gies above 1 keV and was aimed at the cathode region
of the pinch. Signal 2 was taken from an identical
detector aimed at the anode region. The difference
between the signals shows that the cathode plasma
bunches emit in the harder spectral range. In the images
shown in Fig. 8, one can see four plasma bunches cor-
responding to four peaks in signal 1. Such bunches
result in the widening of the SXR pulse (signals 3 and
4). Signal 3 reflects all the SXR bursts seen in signal 1.
The time spread of the emission bursts from different

b

‡

Anode

Cathode 1 2 3

Fig. 8. Time-integrated X-ray pinhole images of the
(a) cathode and (b) anode regions of a 1.5-cm-long pinch:
(1) hν > 150 eV, (2) hν > 1 keV, and (3) hν > 2 keV.
plasma bunches (which is seen in signal 1) results in a
protracted SXR pulse integrated over the entire spec-
trum.

3.3. Studies of the Cathode Plasma

In the early stage of implosion, a so-called cathode
plasma that has an axial velocity component is gener-
ated at the cathode surface and also in the region where
the liner wires contact with the cathode. It can be seen
in the pinhole image presented in Fig. 10 that this
plasma is conical in shape.

0
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3.5

Fig. 9. Waveforms of the (5) current J and signals P from
XRD detectors sensitive in the energy ranges (1) hν > 1 keV
(cathode region), (2) hν > 1 keV (anode region), (3) hν =
200–400 eV, and (4) hν = 400–1000 eV for the shot pre-
sented in Fig. 8.

Cathode plasma

Fig. 10. X-ray pinhole image (hν > 50 eV) of the conical
cathode plasma. The size of the cone base (12 mm) corre-
sponds to the array diameter.
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The cone is formed due to the high axial velocity of
the cathode plasma. The generation of plasma bunches
is probably provoked by an uncontrolled increase in the
plasma mass due to cathode phenomena. When the
liner length was increased from 1 to 1.5 cm, the effect
of the cathode plasma became less pronounced.

The pinch compression ratio also increased when,
instead of single arrays, we used composite liners con-
sisting of two coaxial wire arrays (see Fig. 11). Figure 12
shows the waveforms of the SXR emission power and
the liner current. For composite arrays, the compression
ratio was R/r ≈ 30 and plasma bunches leading to an
increase in the SXR pulse duration almost disappeared.

3.4. Plasma Nonuniformity inside the Z-Pinch

Figure 13 shows pinhole images taken in two per-
pendicular directions. One can see regions with a low
emission intensity inside the Z-pinch. The low-inten-
sity regions are present in all images and correlate with
one another, which means that these structures are
three-dimensional. It is possible that the presence of
such structures inside the pinch hinders further pinch
compression.

The appearance of such regions can be explained as
follows. During a prolonged plasma production, as was
described above, plasma jets are generated that are
directed toward the liner axis by the Ampère force.
Near the axis, the jets collide. Extending along the axis,
the jets form current filaments that are independent of
one another; intertwining, these filaments form the
pinch body. The chaotic character of this process results
in the appearance of regions with a higher magnetic

1 2 3

400 µm

Anode

Cathode

Fig. 11. X-ray pinhole image of a 15-mm-long composite
pinch: (1) hν > 50 eV, (2) hν > 1 keV, and (3) hν > 2 keV.
The outer 12-mm-diameter liner consists of thirty 5-µm
tungsten wires, while the inner 6-mm-diameter liner con-
sists of twenty 6-µm tungsten wires.
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Fig. 12. Waveforms of the (1) current and (2) SXR
(hν ~200 eV) emission power for the shot presented in
Fig. 11.

0.3 mm
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1 2 3

Fig. 13. Fragments of X-ray pinhole images of a Z-pinch:
(1) hν > 1 keV, (2) hν > 150 eV, and (3) hν > 1 keV. Images
1 and 2 are taken in one direction, while image 3 is taken in
a perpendicular direction.
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180 µm

Anode

Cathode
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Fig. 14. X-ray pinhole images of the pinch structure: (a) hν > 1 keV and (b) hν > 150 eV. The enlarged fragments of the pinch
structure taken at hν > 150 eV are shown on the right.
field. Inside these regions, the plasma density is low in
comparison to the density in the jets; hence, the emis-
sion intensity from these regions is low.

In the experiments described below, arrays made of
wires spaced a distance of 0.2 to 0.6 mm from each
other were used as loads. This distance is slightly
smaller than the interwire distance in liners in which the
highest SXR emission power (>3 TW) was obtained.

Regions with low emission intensity can extend
along the liner axis under the action of the pressure of
the imploding shell. In the pinhole images presented in
Fig. 14, one can clearly see a complicated, spatially
periodic structure with a characteristic scale length of
180 µm. Such a pinch structure can adversely affect the
final compression ratio and, consequently, the SXR
emission power, which, in this case, turned out to be
~1 TW.

We note again that the low-intensity regions inside
the pinch were observed during the implosion of liners
with an interwire distance of less than 0.6 mm. Similar
structures with smaller characteristic scale lengths were
probably produced in liners with interwire distances
larger than 0.6 mm. In this case, they, however, could
not be detected because of an insufficiently high spatial
resolution of the pinhole camera.

4. SUMMARY

Based on the acquired experimental data on the
implosion of wire arrays, the following scenario of an
implosion may be inferred.
When the electric current flows through the liner
wires, they generate a plasma that is nonuniform in the
axial direction, the characteristic scale length of the
nonuniformity being 100–200 µm. In the azimuthal
direction, the nonuniformity scale length is determined
by the distance between the wires. The plasma leaving
the wires drifts toward the axis under the action of the
Ampére force. Due to axial and azimuthal modulation,
the plasma flow acquires the form of individual plasma
jets. The initial asymmetry and self-focusing of the jets
lead to the formation of bright plasma bunches in the
axial region (at a distance of 0.5–2.0 mm from the
pinch axis). This results in the generation of a pro-
tracted SXR pulse. The off-axis plasma bunches are
more often produced in the cathode region of the liner
and emit in a photon energy range above 2 keV. As the
liner implodes toward the array axis, the radii of the
plasma bunches decrease and the bunches can merge
into individual current-carrying plasma filaments
extended along the discharge axis.

5. CONCLUSIONS

The spatial structure of the imploding plasma is so
nonuniform that it makes no sense to talk about a
plasma shell that implodes as a single entity. Under
these conditions, a description of the Z-pinch implosion
in terms of the Rayleigh–Taylor instability or the clas-
sical “snow plow” model is certainly incorrect.

The cathode plasma generated in the early stage of
implosion has been investigated. In pinhole images,
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this plasma is seen to be conical in shape. When the
liner length was increased from 1 to 1.5 cm, the cathode
plasma became less pronounced. The presence of the
cathode plasma and the generation of plasma bunches
located mainly in the cathode region of the liner are
probably interrelated and are caused by the uniformity
of the liner current.

The plasma bunches produced near the Z-pinch axis
decrease the SXR emission power.

1.5-cm-long double arrays provide a higher com-
pression ratio (R/r ≈ 30) as compared to simple wire
arrays.

The complicated, spatially periodic structure of a
Z-pinch with a characteristic scale length of ~200 µm
has been observed. In some cases, the pinch looks like
a system of two (or more) independent plasma fila-
ments located near the axis.
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Abstract—Ion emission from the plasma of a micropinch discharge is studied by analyzing the plasma flow
from the discharge region with the help of time-of-flight technique and probe diagnostics. Concurrently, soft X-
ray emission from the micropinch is recorded. The experimental data are interpreted using the radiative con-
traction model. © 2004 MAIK “Nauka/Interperiodica”.
In [1, 2], passive particle diagnostics were shown to
be applicable to studying the plasma of a micropinch
discharge. In [2], the energy spectra of neutrals and sin-
gle-charged ions leaving the discharge region were
recorded using a time-of-flight technique in the particle
energy range from 10 eV to 100 keV. The particle
groups that were formed in different stages of the dis-
charge were distinguished. In [1], the energy spectra of
high-energy (~50 keV) single- and multicharged ions
emitted from the plasma of a micropinch discharge
were studied using the Thomson technique. The results
of these studies provided information on the mecha-
nisms for the ion flow formation and other processes in
micropinch plasma. A characteristic feature of these
studies (as compared to the earlier papers [3, 4], in
which ion emission from the plasma of fast Z-pinches
produced in plasmas of high-Z elements was also inves-
tigated) is the close examination of the discharge oper-
ation.

To increase the reliability and informativeness of the
experimental results, it is of interest to perform simul-
taneous measurements of the ion emission parameters
and other characteristics of the discharge plasma, as
well as to widen the range of the particle diagnostics
employed. In the present study, we used passive particle
diagnostics concurrently with the measurements of soft
X-ray emission. A schematic of the experiment is
shown in Fig. 1. A micropinch discharge was produced
in a low-inductive vacuum spark device. The cylindri-
cal cathode and conical anode (both made of iron) were
placed into a vacuum chamber with a residual pressure
of no higher than 10–4 torr. The working medium was
the vapor of the electrode material. The discharge was
ignited with the help of an auxiliary erosion discharge
produced near the cathode surface. A bank of high-volt-
age low-inductance capacitors served as a power supply
of the main discharge. The discharge current reached its
maximum 1 µs after the beginning of the discharge.
1063-780X/04/3001- $26.00 © 0038
The discharges were observed with the help of an
X-ray pinhole camera that produced images of the dis-
charge plasma in the photon energy range hν ≥ 3 keV.
The spatial resolution was no worse than 100 µm. The
temporal characteristics of the discharge were deter-
mined using a magnetic probe recording the time deriv-
ative of the current.

The ion emission was studied using time-of-flight
diagnostics with a path base length of 0.5–1.6 m. The
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Fig. 1. Schematic of the experiment: (1) main discharge cir-
cuit, (2) electrode system, (3) auxiliary (trigger) discharge
circuit, (4) X-ray recording system, (5) ion recording sys-
tem, and (6) input of an oscilloscope or analog-to-digital
converter.
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ion flow was intercepted by a passive collector, which
was biased with respect to the grounded discharge
chamber, and was recorded with either a storage oscil-
loscope or a high-speed analog-to-digital converter
connected to a PC. The results of [1, 2] show that the
recorded ion flow consists mainly of single-charged Fe
ions. The ion spectrum dN/dV was derived from the
recorded dependence of the ion current Ii on the flight
time:

(1)

where e is the electron charge, l is the path base length,
and V = l/t is the ion velocity. Expression (1) yields

(2)

The zero time (i.e., the instant at which the recorded
ion flow was generated) was determined by the photo-
current pulse caused in the collector circuit by short-
wavelength plasma emission.

The integral soft X-ray (SXR) yield from the dis-
charge was measured with a dosimeter based on a pho-
tomultiplier operating in the integrating regime. A
0.5-mm-thick organic scintillator was used for the
down-conversion of X-ray photons. The scintillator and
photomultiplier were prevented from long-wavelength
radiation by a 100-µm-thick absorbing Be filter. The
dosimeter was calibrated using synchrotron radiation
from a circular electron accelerator. The calibration
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Fig. 2. Typical ion spectra emitted from the discharge
plasma in the axial direction at Imax < Icr (curve 1) and
Imax > Icr (curve 2).
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showed that the dosimeter efficiently recorded radiation
in the photon energy range of 1–3 keV.

According to the radiative contraction model [5],
which most adequately describes most of the experi-
mental data, the plasma column constriction narrows to
a micron size (i.e., a micropinch forms) at currents
higher than the critical current determined by the bal-
ance between the radiative losses and Joule heating in
the discharge channel. For a Fe plasma, the critical cur-
rent is Icr ~ 50 kA.

Figures 2 and 3 present characteristic ion spectra
obtained with a collector that was negatively biased
with respect to the ground in order to cut off the elec-
tron component. The spectra were recorded in the axial
and radial directions at discharge currents of 40 kA
(Imax < Icr) and 150 kA (Imax > Icr). To record the particle
flows in the axial direction, we used a cathode with an
axial hole 3 mm in diameter and four auxiliary erosion-
type sources located symmetrically about the discharge
axis. In a regime with Imax < Icr, when there was no
micropinch in the discharge plasma, the spectra exhib-
ited pronounced maxima corresponding to particle
velocities of (1–1.5) × 104 m/s and (2–2.5) × 104 m/s. In
a regime with Imax > Icr, when a micropinch formed in
each discharge, another maximum corresponding to a
particle velocity of 4 × 104 m/s appeared in the spec-
trum.

A comparative analysis of the spectra obtained by
recording the particle flows in the axial and radial direc-
tions allows us to identify the first of the above veloci-
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Fig. 3. Typical ion spectra emitted from the discharge
plasma in the radial direction at Imax < Icr (curve 1) and
Imax > Icr (curve 2).
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ties with an average ion thermal velocity in the stage of
a steady-state plasma column [6]. The second velocity
can be attributed to the velocity of the axial plasma flow
that is generated when the current-carrying plasma
shell converges toward the discharge axis in the course
of the implosion of the ionized vapor of the electrode
material and the formation of the plasma column. The
third of the observed maxima probably corresponds to
the group of particles that are generated when the
pinching process converts into radiative contraction [2].

Apparently, the reason why the third maximum
occurs when the ions are recorded in the radial direction
and does not occur when they are recorded in the axial
direction is that the relatively fast particles emitted
from the micropinch region are scattered by the slower
particles of the peripheral plasma. The scattering
reduces the velocities of fast particles and result in their
departure from the recording area. This mechanism of
deforming the initial spectrum is most efficient when
the ions are recorded in the axial direction because, in
this case, the parameter σ〈n〉L (where σ is the scattering
cross section, 〈n〉  is the average density of slow parti-
cles, and L is the length of the peripheral plasma) is
much higher and the solid angle within which the ions
can reach the collector is much smaller than in the case
when the ions are recorded in the radial direction.
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Fig. 4. Current–voltage characteristics of the plasma flow
emitted from the discharge region at Imax < Icr (curve 1) and
Imax > Icr (curve 2).
Particles with velocities of lower than 0.5 × 104 m/s
remain virtually undetected by the apparatus employed.
This may be explained by their charge neutrality [2].
Particles with velocities of higher than 7 × 104 m/s are
not present in the spectra because of insufficient resis-
tance of the recording system to the high-frequency
interferences induced in the recording apparatus in the
initial stage of the discharge.

We note that the shape of the collector signals
showed good reproducibility from shot to shot regard-
less of the bias magnitude and polarity. This hinted that
we should use the collector as a plane electric probe in
the plasma flow. We measured the current–voltage
characteristics in which, at a given bias potential, the
current averaged over the signal duration was taken as
a collector current. Evidently, these collector current–
voltage characteristics are averaged over both space
(the collector area) and time (the duration of the
recorded signal). Hence, the electron temperature of the
plasma flow obtained from the slope of the electron
branch of the characteristic can only be regarded as an
estimate (Fig. 4). For both recording directions (axial
and radial), the electron temperature was found to be
Te = 25 ± 5 eV for a subcritical discharge current (Imax =
40 kA) and Te = 18 ± 5 eV for a supercritical current
(Imax = 150 kA). This result agrees with the model pre-
diction because, in the radiative contraction model of
Fe plasma, the temperature Te ≅ 20 eV corresponds to
the stage of plasma column formation. The fact that the
electron temperature recorded at Imax < Icr exceeds that
recorded at Imax > Icr is confirmed by observations of the
structure of the discharge plasma emitting in the photon
energy range hν > 1 keV (Fig. 5). In the former case, the
radiation source is the plasma column as a whole,
whereas in the latter case, the radiation source in the
above spectral range is only the constriction region, i.e.,
the micropinch. As the constriction narrows, which is
possible at discharge currents higher than the critical
current, the particle density per unit length sharply
decreases and the specific plasma resistance in the con-
striction increases due to the matter outflow in the axial
direction. As a result, the discharge current decreases,
whereas the Joule heating power in the micropinch
increases [5].

To increase the reliability of the experimental
results, we also employed probe diagnostics. Two iden-
tical 3-mm-diameter plane probes located symmetri-
cally about the discharge chamber axis within the
1.3-m-long axially oriented path base were used
(because of the design features of the facility, it was
impossible to orient the probes radially). Shifting the
probes in the radial direction at a fixed distance from
the discharge region allowed us to trace the radial pro-
file of the electron density. We obtained the waveforms
of the probe current in different discharges at a fixed
probe potential with respect to the chamber. In this way,
we acquired the statistics of the waveforms at a fixed
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
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probe potential. According to [13], such an approach is
quite justified.

As in the case of collector measurements, when
plotting the probe current–voltage characteristics, the
average current was taken as a probe current.

Within the measurement accuracy, the electron tem-
perature is nearly independent of the probe location and
is different for subcritical and supercritical discharge
currents. As is the case with collector measurements,
the average electron temperature in the former case is
higher than in the latter; however, the statistical scatter
in the Te value actually overlaps both ranges. In our
opinion, it is reasonable to determine the most probable
Te value over a set of the measurement results (Fig. 6).
For the supercritical discharge current, we obtain Te =
17 ± 2 eV, whereas for the subcritical discharge current,
we obtain Te = 27 ± 4 eV.

In some cases, it was also possible to monitor the
time evolution of Te in the plasma flow. When treating
the time-resolved current–voltage characteristics, we
did not observe any significant deviation of Te from its
time-averaged value.

The determination of Te by the slope of the electron
branch of the current–voltage characteristics is based
on the fact that the obtained temperature corresponds to
the r.m.s. electron thermal velocity, which is Ve ≅  3 ×
106 m/s, whereas the mean velocity of the plasma flow
is V ~ 104 m/s. Thus, in view of the fact that V ! Ve, the
electron branch of the characteristic is nearly the same
as for a plasma that is at rest with respect to the collec-
tor [7].

Simultaneous measurements of the parameters of
ion emission in the radial direction and the SXR yield
in a photon energy range of 1–3 keV were performed
when the discharge current exceeded the critical value.
A comparative analysis of the dosimeter readings and
pinhole images unambiguously shows that a
micropinch is present in a pinhole image (the so-called
“hot spot”) only if the energy recorded by the dosimeter
exceeds a certain threshold level Ethr. The ion emission
parameters were measured in a discharge regime such
that the recorded energy was high enough (namely, E =
(1.5–4.5)Ethr) and the process of plasma pinching led to
the formation of a micropinch in each discharge.

The spectra recorded at different E diverge at high
particle velocities (higher than 4 × 104 m/s): the higher
E, the larger the contribution of the fast particles to the
ion spectrum. Simultaneous measurements of the ion
velocity distribution and SXR yield enable a more reli-
able interpretation of the distribution character as com-
pared to the previous studies, in which such interpreta-
tion was based on the comparison of the recorded char-
acteristic ion velocities with theoretical predictions.

According to the model predictions [8], which are
confirmed by the experimental results [9], the first con-
traction can be considered as a transition to an equilib-
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Fig. 5. (a) Area of pinhole measurements (dark rectangle)
and (b, c) characteristic pinhole images of the discharge
area in the photon energy range hν > 1 keV for (b) Imax < Icr
and (c) Imax > Icr.
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rium state whose parameters are governed by the dis-
charge current. This circumstance accounts for good
reproducibility of the pinch plasma parameters during
the first contraction. After the first contraction is com-
pleted, energy balance is established between Joule
heating, radiative losses, and energy loss due to the
plasma outflow from the constriction. The plasma tem-
perature in the constriction is determined by the rela-
tion

 (3)

where I is the current through the constriction, Ni is the
plasma ion density per unit length, z is the average
charge number, and k is the Boltzmann constant. In this
stage, the electron and ion temperatures are equalized,
Ti = Te [2].

The second contraction begins due to the violation
of the energy balance, when the plasma density per unit
length decreases substantially and the temperature
increases to 0.5 keV, so that the ionization from the L
shell of Fe ions begins, which leads to a sharp increase
in radiative losses. The second contraction stops
because of the onset of the plasma anomalous resistiv-
ity [5]. Hence, this contraction can be regarded as a
transition to a thermodynamically nonequilibrium
state, via which the Z-pinch converts into an arc dis-
charge operating in a slightly inhomogeneous cold
plasma. For this reason, the reproducibility of the
plasma parameters from shot to shot is poor during the
second contraction.

The spectral range of radiation recorded by the
X-ray dosimeter corresponds to that of the photorecom-
bination emission from FeXVII–FeXXIV ions that
arise as a result of the ionization from the L shell. The
emission accompanying the ionization from the K shell
is almost absent [10]. The heating of the plasma to a
temperature that is sufficient for the efficient ionization
from the K shell of Fe ions occurs in the stage of anom-
alous resistivity, i.e., when the pinching process termi-
nates because of the decrease in the plasma density per
unit length and the increase in the current density [8].
However, the situation can even be more complicated if
one takes into account a small amount of the plasma
laying beyond the micropinch region. In this case, the
current is intercepted (at least partially) by the outer
plasma, which leads to a change in the Z-pinch dynam-
ics [11].

The correlation between the X-ray yield from the
micropinch plasma in the spectral range corresponding
to the photorecombination emission from the L-shell
ions and the spectrum of ion emission in the velocity
range Vi ≥ 4 × 104 m/s can be explained as follows. It is
reasonable to suggest that the onset of the anomalous
plasma resistivity in different discharges interrupts the
pinching process at its different stages, depending on
certain situational factors. According to model predic-

Te

µ0I2

8πk 1 z+( )Ni

--------------------------------,=
tions, this interruption occurs almost instantaneously
[5]. The main fraction of the radiant energy should be
emitted after the plasma becomes transparent to its
intrinsic emission (L-shell emission). The fact that we
observe a hot spot (an image of a micropinch emitting
in the K-shell spectrum of Fe ions) in each discharge
means that the plasma also becomes transparent in each
discharge. Consequently, the high plasma density is
achieved that is necessary for the efficient conversion of
the plasma thermal energy into the energy of K-shell
emission when the plasma resistivity becomes anoma-
lous. An additional confirmation of the fact that the
micropinch plasma becomes transparent is the magni-
tude of the measured level of the X-ray yield: on the
average, E = (2–3)Ethr. The higher the plasma density
during the transparency stage, the higher the effective
temperature of the micropinch plasma in the stage of
anomalous resistivity and expansion, which is recorded
by means of diffraction spectroscopy. Typically, this
temperature is Te ~ 2–3 keV [12], which corresponds to
a Fe ion thermal velocity of Vi ≅  (8–10) × 104 m/s.
According to the model predictions, the temperature of
the micropinch plasma at the end of the second contrac-
tion phase is Te ≅  0.8–1 keV, which, under the condi-
tions of quasi-equilibrium, corresponds to a Fe ion ther-
mal velocity of Vi ≅  (5–6) × 104 m/s [8].

The observed ion spectra differ in the energy range
corresponding to the ion emission in the contraction
stage, which allows one to assume that there are certain
situational factors that affect the micropinch dynamics
in this stage. Such a factor can be the degree to which
the current flowing through a micropinch is shunted by
the peripheral plasma. This degree definitely impacts
the rate of implosion and heating of the micropinch
plasma and, consequently, the ion emission spectrum
and the intensity of the emitted radiation.
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Abstract—A new approach to the perturbation theory for the Vlasov equation is discussed. The approach is
based on the expansion of the Hamiltonian in powers of the canonical variables about their equilibrium values.
Unlike the traditional approach, the proposed perturbation theory provides energy conservation in every order.
In particular, solutions to linearized equations are constructed that carry certain energy and momentum. The
influence of decay processes on the kinetic beam–plasma instability is also discussed. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The present paper deals with the Vlasov equation—
the simplest kinetic equation implemented in plasma
theory:

(1)

Here, the potential φ(r) satisfies Poisson’s equation

(2)

where

(3)

is the particle number density and n0 is the density of
the neutralizing background. Traditionally, the dynam-
ics of collisionless plasma is studied in terms of the per-
turbation theory; i.e., the distribution function is written
as f(t, r, v) = f0(v) + f1(t, r, v), where the deviation f1(t,
r, v) is on the order of the φ(t, r), and the expansion in
powers of φ(t, r) is then performed. As the first step of
this procedure, we have the linearized Vlasov equation

(4)

It is well known that there are various ways of solv-
ing the initial problem for this equation. The Landau
method based on the Laplace transform is widely
spread. There is also the Van Kampen approach using
the representation in terms of the eigenfunction of the
linearized Vlasov equation. Of course, both methods
are mathematically equivalent and yield the same
results.
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At first sight, what are the reasons to describe all this
again? There is not enough space here to list all text-
books and monographs discussing the Vlasov equation.
The problem of ballistic modes (or quasi-waves) aris-
ing in Van Kampen approach, as well as relations
between various methods, is also well illuminated in
the literature [1–6].

However, there are questions concerning Eq. (1) that
have no satisfactory (at least from the methodological
viewpoint) answers. One of them is the problem of
energy balance. With a distribution function being a
solution to Eq. (1), the net energy

(5)

remains constant. This is easy to check by differentiat-
ing Eq. (5) with respect to time, integrating the second
term by parts, and taking into account the Vlasov equa-
tion (1) and Poisson’s equation (2). Inserting f(t, r, v) =
f0(v) + f1(t, r, v) into Eq. (5) and assuming that f1 ~ φ,
the energy takes the form of an expansion in powers of
the potential, H = H0 + H1 + H2, where Hi ~ φi. If the
deviation f1 satisfies linearized Vlasov equation (4),
then the first two terms of the energy expansion are con-
stant, but the time derivative of the electric field energy
H2 is nonzero.

On the other hand, with an isotropic equilibrium dis-
tribution f0(v) = f0(v 2), the following quadratic expres-
sion is constant:

(6)

At first sight, it is impossible to get this quantity with
the help of the straightforward expansion of energy (5).
In fact, how did it occur that the unperturbed distribu-
tion function appeared in the denominator? However,
expression (6) is entirely meaningful, as will be dis-
cussed below.
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The linearized Vlasov equation meets with one
more adversity. There are many exact solutions to non-
linear equation (1), e.g., the Bernstein–Green–Kruskal
(BGK) waves and their various generalizations. One
can evaluate energy (5) of a BGK wave. With the ampli-
tude of a BGK wave going to zero, it transforms to a lin-
ear Van Kampen wave, but for the latter, energy (5) is
not defined. Since Van Kampen waves form a complete
set, every nonlinear wave may be represented as their
combination. A periodic nonlinear wave with a period
L is expressed in terms of all harmonics with the wave
vectors kn = 2πn/L (n = 0, ±1, ±2, …). It was found that,
even for small-amplitude BGK waves, the convergence
of corresponding series is very slow and one must take
into account all harmonics [7].

Thus, the traditional perturbation theory used in
plasma physics violates energy conservation at its first
step, which cannot help but annoy a physicist. They
usually reconcile this nuisance by assuming that the
problem of energy balance may be resolved by the non-
linear theory. The well-known physical reason for the
violation of energy conservation is the resonant interac-
tion between particles and waves, which is described,
e.g., by the quasilinear theory.1 

In this respect, plasma physics differs radically from
other areas of physics. Dealing with a conservative sys-
tem we are, as a rule, able to use the perturbation expan-
sion that conserves energy in every order. Studying,
e.g., oscillations of a crystalline lattice, one starts from
introducing normal modes, each of them carrying a cer-
tain energy. One then takes into account anharmonicity,
electron–phonon interaction, and a great many other
processes; however, in every order of perturbation the-
ory, a conserving quantity (which may be identified
with energy) is found. There is a fairly regular algo-
rithm called the classical or canonical perturbation the-
ory, which is based on the expansion of the Hamilto-
nian in powers of deviation from an equilibrium state
and the consequent elimination of the nonresonant
terms. This approach is successful in various areas of
physics (see, e.g., [8, 9]).

The procedure of classical perturbation theory may
be briefly outlined as follows. Let us suppose that we
are dealing with a physical system described by Hamil-
ton’s equations:

(7)

where the generalized momentum pi and the general-
ized coordinate qi are distributed quantities that depend
on the configuration space coordinates and, possibly,
some additional variables. The Hamiltonian H(pi , qi) is
a functional of pi and qi , and δH/δpi stands for the func-
tional derivative. The temporal evolution of any quan-

1 It should be noted however that, although the quasilinear theory
was formulated more than forty years ago, its applicability range
is still under discussion.
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tity g depending on pi and qi is described with the help
of the Poisson bracket:  = {g, H}.

Expanding the Hamiltonian H in powers of the devi-
ations ∆pi and ∆qi of the canonical variables from their
steady-state values, we obtain quadratic (H2), cubic
(H3), etc., terms. A linear change of variables reduces a
quadratic Hamiltonian of a stable homogeneous
medium to the form

(8)

where ωj(k) are the eigenfrequencies of a medium and
ajk are the corresponding complex amplitudes. The next
terms of the expansion (H3, H4, etc.) are also written in
terms of the complex amplitudes. Then, an appropriate
canonical transform eliminates nonresonant parts of the
interaction Hamiltonians. For example, the only non-
zero terms remaining in H3 are such that (k1) =

(k2) + (k3) and k1 = k2 + k3. The details of this
procedure in application to many physical problems
may be found in the reviews [8, 9].

As a rule, relations between natural physical quanti-
ties and the generalized coordinates and momenta are
fairly involved. The most complicated part of the prob-
lem is for the search an appropriate change of variables.
However, the problem is solved for seemingly all of the
hydrodynamic plasma models (see, e.g., [8–10]). As for
the Vlasov equation, the situation is more sophisticated.
Below, we will discuss this problem in more detail. It
should be also pointed out that the Hamiltonian
approach to evolutionary equations (in particular, to the
Vlasov equation) is closely related to various varia-
tional principles. There are many (at least six) such
principles known for the Vlasov equation [11, 12].

The natural impulse arises to attempt applying the
Hamiltonian mechanics to kinetic phenomena in colli-
sionless plasmas—the problem on which the present
paper is focused. The first step in using the canonical
perturbation theory is to rewrite Eq. (1) in the Hamilto-
nian form. This is discussed in Section 2. Various ways
of introducing the canonical variables are briefly
reviewed in Section 3. One particular way is used in
Section 4 to derive linearized equations resulting from
the expansion of the Hamiltonian in powers of devia-
tions of the canonical variables. Unlike the solutions to
the linearized Vlasov equation, one may attribute
energy to the obtained linear eigenmodes. The influ-
ence of the three-wave decay on the evolution of the
beam instability is studied in Section 5 as an example
of a nonlinear process. The relation between some ver-
sions of the perturbation theory is discussed in Section
6.

ġ

H2 kωj k( )a jka jk* ,d∫
j

∑=
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2. THE HAMILTONIAN FORM 
OF THE VLASOV EQUATION

One may identically rewrite Eq. (1) as

(9)

where E(v, r) = mv 2/2 + eφ(r) is the energy per particle
and [, ]r, v is the familiar mechanical Poisson bracket

(10)

In contrast to what is written in many textbooks,
representation (9) is not the Hamiltonian form yet. The
phase space now is infinite-dimensional and is com-
posed of all distribution functions f(r, v). An appropri-
ate form of the Vlasov equation should look as follows:

(11)

where H is Hamiltonian (5). The Poisson bracket {A,
B} in Eq. (11) should be a bilinear antisymmetric oper-
ation acting on arbitrary functionals of the distribution
function, A( f ) and B( f ), and must satisfy the Jacobi
identity. It is easy to verify that the following operation:

, (12)

which is called the Lie–Poisson bracket, meets all the
above requirements and Vlasov equation (9) indeed
takes form (11). Here, the potential φ(r) is considered
to be a functional of f(r, v) defined by the solution to
Poisson’s equation (2). For completeness, it useful to
write down the evaluation of the electric energy varia-
tion:

(13)

This form of the Vlasov equation was first proposed
by Morrison [13]. A more complete set of the Vlasov–
Maxwell equations is also written in the Hamiltonian
form [13], and a similar representation is known for the
Klimontovich equation [14]. The physical meaning of
representation (11) and braces (12) is fairly arcane. It is
clear that net energy (5) is the averaged single-particle
energy, but it is not so clear why Poisson bracket (10)
should be averaged.

Besides the energy, there are other integrals of
motion associated with the Vlasov equation. First, there
is the net momentum related to the translational sym-
metry:

(14)
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Then, there is the infinite set of the so-called
Casimir invariants

(15)

where F( f ) is an arbitrary function of its argument. The
Casimir invariants are related to the specific structure of
bracket (12): they commute not only with the Hamilto-
nian but also with an arbitrary functional A( f ) ({CF,
A( f )} = 0). An infinite number of conservation laws
arise because Eq. (1) describes the motion of an incom-
pressible fluid in the single-particle phase space (r, v).
For example, this may be illustrated by the following
reasoning: If we choose an arbitrary function as F( f ) =
θ(g – f ), then the invariability of integral (15) means
that, in the course of evolution, the phase space volume
surrounded by the surface f(r, v) = g remains constant.
There are only two macroscopic observable quantities
among Casimir invariants: the net number of particles
(F( f ) = f) and the entropy (F( f ) = – f ln f ).

Operation (12) is an example of a noncanonical
Poisson bracket. Its main distinction from ordinary
mechanical bracket (10) is that it explicitly depends on
the phase-space coordinates, i.e., in our particular case,
on the distribution function. Such structures (which
often appear in physics) have been intensively studied
in recent years. The simplest and best-known example
is the motion of a rigid body described by Euler’s equa-
tions. Further details about noncanonical brackets may
be found in the reviews [9, 10] (see also the references
cited therein).

The origin of the problems of the traditional pertur-
bation theory discussed in the introduction is clear from
representation (11). Besides the energy and the
momentum, integrals (15) should remain constant in
the course of evolution. In other words, the phase-space
point f (t) always belongs to a manifold CF = const,
which is called a symplectic leaf. In solving an initial
problem, we choose an initial distribution function
f0(r, v) and, therefore, a certain symplectic leaf. As a
result, the net phase space is foliated into a set of sym-
plectic leaves. When we perform the straightforward
expansion of Eqs. (1) and (2) in powers of the distribu-
tion function deviations f1, we ignore the additional
integrals of motion. Moreover, besides the energy, Lie–
Poisson bracket (12) should be also expanded in powers
of f1 due to its explicit dependence on f. Although it is a
feasible procedure (see below, Section 3.4), the linear
dynamics was only described in this way, while the
investigation of wave interactions with the help of the
classical perturbation theory seems to be a difficult
task. In order to use the classical perturbation theory,
one should find canonical variables for Eq. (11), i.e.,
change the phase-space coordinates in such a way that
the Poisson bracket is independent of coordinates. Var-
ious ways of achieving this goal are discussed in the
next section.

CF v rF f r v,( )( ),dd∫=
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3. CANONICAL VARIABLES
3.1. Multiflow Hydrodynamics

It was known long ago [15] that, instead of Vlasov
equation (1), collisionless kinetics may be described by
the infinite set of hydrodynamic equations:

(16)

(17)

Here, w is a Lagrangian label distinguishing various
flows in phase space (r, v). For example, one may
assume that there are no perturbations at r  ∞ and
V(t, r, w) = w. These hydrodynamic variables are
linked with the distribution function by the relation

(18)

i.e., the net particle number density is

(19)

It is easily verified by straightforward substitution
that with n(t, r, w) and V(t, r, w) satisfying Eqs. (16)
and (17) the distribution function f(t, r, v) satisfies Vla-
sov equation (1).

The net energy in terms of the hydrodynamic vari-
ables appears thus:

(20)

where the potential is considered as a functional of the
densities, n(t, r, w).

Canonical variables for hydrodynamics are well
known. In particular, limiting ourselves to vortex-free
solutions to Eqs. (16) and (17) and introducing the mass
density ρ(t, r, w) = mn(t, r, w) and the velocity potential
V(t, r, w) = —ψ(t, r, w), Eqs. (16) and (17) are written
as

(21)

It was pointed out in review [9] that this way of writing
yields the Hamiltonian form of Vlasov equation (11)
with the Poisson bracket given by Eq. (12). In principle,
writing the kinetic equation in form (21) allows one to
implement classical perturbation theory.

It is important to note the following. From the view-
point of physics, hydrodynamic equations (16) and (17)
and the Vlasov equation describe the same system.
However, they are in no way equivalent mathemati-
cally: this is clear from just counting down the number
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of degrees of freedom. With a given distribution func-
tion it is impossible to reconstruct the densities n(t, r,
w) and the velocities V(t, r, w) of each flow. For exam-
ple, one can always make a change of variables w = u(t,
r, w') in Eq. (18), where u are some functions and w' is
a new Lagrangian label. The functions n(t, r, w) and
V(t, r, w) will then alter, but the form of Eqs. (16) and
(17) will not change; this gives us reason to speak about
the gauge invariance of hydrodynamics [9]. The hydro-
dynamic variables contain more information than the
distribution function. Meanwhile, they are observable,
at least, in a computational experiment. To reconstruct
the hydrodynamic variables from the computational
results, one has to monitor the motion of every particle;
this is one of the most often used diagnostics. Mean
while, to determine the distribution function, the instant
snapshot of the particle positions in phase space is
enough. Finally, there is one more circumstance: Eqs.
(16) and (17) are able to describe rotational motions,
which results in reasonable solutions to the Vlasov
equation. Thus, the assertion of [9], according to which
representation (21) introduces the canonical variables
to the Vlasov equation, is hardly well-based. However,
Eqs. (16) and (17) are a reasonable alternative that may
be used as a starting point for classical perturbation the-
ory. Beware: one can foresee that unphysical ghost lin-
ear waves will appear along this route.

3.2. Symplectic Leaf Parametrization

Another way is to introduce a special coordinate
system in phase space. In a very simplified and lapidary
paraphrase, the procedure, which has been discussed in
a number of papers (e.g., [16–18]2), consists in the fol-
lowing. It is well known that the formal solution to the
Vlasov equation with the initial distribution f(0, r, v) =
f0(r, v) is f(t, r, v) = f0(r0, v0), where the initial coordi-
nates and velocities of particles, r0 and v0, are linked
with their current values r and v by Newton’s equa-
tions, i.e., by some canonical transform Λ. In short-
hand notation, this is written as f(t) = f0 + Λ. Since the
canonical transforms preserve the phase-space volume,
Casimir invariants (15) remain constant under the
action of a canonical transform. The symplectic leaf
passing through a given initial point f0 in the functional
phase space is parameterized by a group of canonical
transforms connected with a unity. Thus, one may look
for a canonical transform such that f(t) = f0 + Λ(t) is a
solution to the Vlasov equation and Λ(0) = 1.

Canonical transforms are defined by generating
functions. The action of the canonical transform with
the generating function S on the initial distribution
function is written symbolically as

(22)

2 To familiarize oneself with the mathematics used in these papers,
the books [19–21], listed in order of growing size and complexity,
are recommended.

f t( ) e
+S f 0,=
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where the action of the operator +S (called the Lie
derivative) on an arbitrary function g(r, v) is defined by
the rule +Sg = [S, g] and [, ] is Poisson bracket (10). It
is readily seen from Eq. (22) that the generating func-
tion S plays the role of the coordinates at the symplectic
leaf. Distribution functions given by Eq. (22) are
dynamically accessible; i.e., only such functions may
appear as a result of continuous evolution of the initial
distribution f0.

An equation for the generating function S equivalent
to the Vlasov equation was derived in [16–18] in the
form of infinite series. It was proved that this equation
is Hamiltonian and that the Poisson bracket is indepen-
dent of the coordinates at the symplectic leaf. Regard-
less of all the elegance of the geometric approach, this
way can hardly yield concrete results that are interest-
ing from the viewpoint of physics.

3.3. One-Dimensional Vlasov Equation

In one important particular case, the arbitrariness of
the Lagrangian label W, mentioned in Section 3.1, may
be utilized to get rid of the redundant degrees of free-
dom in Eqs. (16) and (17) and to designate the explicit
parametrization of the symplectic leaf (see Section
3.2). Let us consider one-dimensional solutions to the
Vlasov equation. Let all variables depend on one spatial
coordinate x only. Dependence on the transverse veloc-
ity is irrelevant, and we can rid of it by integration. The
hydrodynamic velocities are conveniently introduced
in the following way [22]: We consider a solution V(t,
x, w) to the equation

(23)

where f0(w) is a distribution function; e.g., f0(w) = f(t, x,
w)|x → ∞. The solution to Eq. (23) is unique if both func-
tions f(t, x, w) and f0(w) have the same number of max-
ima and minima with respect to w and their values at
extremal points coincide (Fig. 1).

Let f(t, x, v ) be a solution to Eq. (1), velocities
ui(t, x) correspond to the extremal points of the distri-
bution (∂f(t, x, v )/∂v  = 0) and fi = f(t, x, ui). Then,
as follows from Eq. (1), ∂fi/∂t + ui∂fi/∂x = 0; i.e., there
exist solutions with fi = const. If we restrict ourselves to
functions of this kind only, then the solution to Eq. (23)
is single-valued, with ∂V(t, x, w)/∂w > 0 and

f t x V t x w, ,( ), ,( ) f 0 w( ),=

|v ui=

f0(w)
f(x, v)

w V(w) V(w)w

Fig. 1. Construction of a function V(t, x, w).
V(t, x, w)|w → ±∞  ±∞. The introduced hydrodynamic
variables V(t, x, w) are the level lines of the distribution
function and each of them is equipped with its own
label w. The same representation is actually imple-
mented in the well-known “waterbag” method, which
is sometimes used to numerically solve the Vlasov
equation [23].

The equation for V(t, x, w) immediately follows
from Eq. (1):

(24)

where the potential still satisfies Poisson’s equation (2),
while the density is expressed in terms of the hydrody-
namic velocities

(25)

Therefore, the Lagrangian description introduced
by Eq. (23) yields constant hydrodynamic densities
reducing Eq. (16) to an identity, and the dynamics is
described with Euler equation (24). The integrals of the
Vlasov equation are also easily expressed in terms of
the velocities V(t, x, w). Energy (5) and momentum (14)
are

(26)

(27)

and Casimir invariants (15) are written as

(28)

Finally, the Hamiltonian form of Vlasov equation
(11) is reduced to

(29)

where Poisson bracket (12) in terms of V(t, x, w) is

(30)

This is easy to verify, considering that the varia-
tional derivative of Hamiltonian (26) is

(31)

∂V t x w, ,( )
∂t

------------------------- V t x w, ,( )
∂V t x w, ,( )

∂x
-------------------------+  = 

e
m
----∂φ t x,( )

∂x
-------------------,–

n t x,( ) w f 0' w( )V t x w, ,( ).d∫–=

H
m
6
---- x w f 0' w( )V

3
t x w, ,( )dd∫–=

+
1

8π
------ x

∂φ t x,( )
∂x

------------------- 
 

2

,d∫

P
m
2
---- x w f 0' w( )V

2
t x w, ,( ),dd∫–=

CF x wV t x w, ,( )
∂F f 0 w( )( )

∂w
--------------------------.dd∫–=

∂V t x w, ,( )
∂t

-------------------------- V t x w, ,( ) H,{ } V=

=  
1

m f 0' w( )
------------------- ∂

∂x
------ δH

δV t x w, ,( )
-------------------------- 

  ,

A B,{ } V

=  x w
1

m f 0' w( )
------------------- δA

δV t x w, ,( )
-------------------------- δ

δx
------ δB

δV t x w, ,( )
--------------------------.dd∫

δH
δV t x w, ,( )
-------------------------- f 0' w( ) m

2
----V

2
t x w, ,( ) eφ t x,( )+ .–=
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The zeros (w) in the denominators of Eqs. (29) and
(30) are harmless, because they always cancel out. In
fact, one might get rid of them by redefining V(t, x, w),
but this results in inconvenient bulky expressions.

The advantages and disadvantages of the chosen
way are readily seen from Eqs. (24)–(29). As it has
been already pointed out, condition (15) defines a man-
ifold in phase space. Using Eq. (23), we change from
the distribution function to the velocities and introduce
a special coordinate system in phase space in the vicin-
ity of a point f0(w) in which the symplectic leaf CF =
const takes a very simple form. Introducing in Eq. (28)
velocity perturbations V(t, x, w) = w + U(t, x, w) the cor-
responding constraint defining the symplectic leaf is
reduced to the condition

(32)

which is easily met in every order of the perturbation
theory.

Hamiltonian (26) now contains terms that are qua-
dratic and cubic in U and are associated with the energy
of the system eigenmodes and, correspondingly, with
the interaction energy. The Poisson bracket given by
Eq. (30) is now independent of the coordinate V(t, x, w).
Thus, Eq. (24) is a good starting point for classical per-
turbation theory.

On the other hand, solutions to Eq. (24) may exist
for a certain limited time period; sooner or later, the
wavebreaking resulting in singularities may occur, after
which Eq. (24) fails to hold. In terms of the distribution
function, this corresponds to the formation of phase-
space vortices; however, the Vlasov equation is applica-
ble even in this stage of evolution. This means that the
introduced functions V(t, x, w) form an appropriate
coordinate system in a finite phase-space area. This is
fairly natural from the viewpoint of topology because
one can hardly hope to cover the net manifold CF =
const with a single coordinate chart.

However, as the amplitude of perturbations
decreases, the time during which singularities are
formed tends to infinity. That is why, in using the per-
turbation theory, the temporal limitations do not mani-
fest themselves. Below (see Sections 4 and 5), the lin-
ear eigenmodes and their interactions are studied with
the help of Eq. (24).

3.4. “Free Energy” of Collisionless Plasma

Prior to investigating specific processes, we will dis-
cuss one more approach to the linearized Vlasov equa-

f 0'

xU t x w, ,( )d∫ 0,=
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tion. Integral (6) of the one-dimensional linearized Vla-
sov equation has the form

(33)

In [24, 25], this expression was obtained according
to the following reasoning: Suppose we are interested
in the stability of a steady state with a distribution func-
tion f0(v ). The stability may be studied with the help of
a corresponding Lyapunov function and its dependence
on small perturbations. It has already been pointed out
that the straightforward expansion of the Hamiltonian,
which is often used to investigate conservative systems,
takes us nowhere. In [24, 25], this expansion was per-
formed for perturbations satisfying the dynamical
accessibility constraint CF = const [see Eq. (15)], rather
than for arbitrary perturbations f1. This resulted in
expression (33), which was rather conventionally called
“free energy.”

It was also shown that the linearized Vlasov equa-
tion is written in the canonical form with Hamiltonian
(33) if one takes the zero-order term in the expansion of
Lie–Poisson bracket (12) in powers of f1, i.e., replaces
f(r, v) with f0(v ). The Van Kampen eigenfunctions of
Eq. (4) reduce Hamiltonian (33) to form (8). Therefore,
every Van Kampen wave is attributed with free energy,
which may be either positive or negative. It should be
noted that the expansion procedure used in [23, 24] is
rather cumbersome and it is unclear whether it may be
used to investigate the next orders of the perturbation
theory and wave interactions.

4. LINEAR EIGENMODES

Here, we sketch the perturbation theory [22] based
on the parametrization of the symplectic leaf discussed
in Section 3.3. Introducing the small deviations from
the equilibrium, V(t, x, w) = w + U(t, x, w), we expand
Hamiltonian (26) in powers of U. Assuming that the

function f0(w) in Eq. (23) is normalized as  =

n0 and the perturbations meet constraint (32), the linear
term of expansion is identically zero and the quadratic
term is

(34)

where the potential obeys Poisson’s equation

(35)

HL
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v
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∂x

------------------- 
 
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,d∫

∂2φ t x,( )
∂x

2
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The problem is to find a linear change of variables
U(t, x, w) that transforms Hamiltonian (34) into some
simple form similar to Eq. (8). Evidently, the problem
is reduced to the solution of linearized Euler equation
(24)

(36)

and may be solved in a standard fashion similar to the
Van Kampen method. First, we perform the Fourier
transformation

and represent the time dependence of a perturbation as
Uk(t, w) = exp(–ikλt)gk(w, λ). Then, taking into account
Eq. (35), Eq. (36) is rewritten as

(37)

One can easily recognize in this expression the
adjoint Vlasov equation, which appears in the frame-
work of the Van Kampen approach to Eq. (4) [1, 2]. It
is of interest that the implementation of the adjoint Vla-
sov equation is traditionally regarded as a formal trick
without any physical sense. In fact, as follows from Eq.
(37), the adjoint Vlasov equation describes the oscilla-
tions of the level lines of the distribution function.

The solutions to Eq. (37) are called the adjoint Van
Kampen functions. As is well-known, there are two
types of solutions. First, there are the solutions corre-
sponding to an arbitrary real value of the phase velocity
λ. The corresponding eigenmodes belonging to the
continuous spectrum are written as

(38)

where the sign P denotes principal-value integration.
The functions ε1, 2k(λ) are the real and imaginary parts
of the ordinary dielectric permittivity

(39)

(40)

Here, it is convenient to treat the dielectric permittivity
as a function of the phase velocity λ = ω/k, rather than
the frequency ω.

Solutions to adjoint Vlasov equation (37) of the sec-
ond kind appear if the eigenvalue λ is complex. These
solutions exist under the condition

(41)
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---------------------------+

e
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2π
----------e

ikx
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w λ–( )gk w λ,( ) 4πe
2

mk
2

----------- w1 f 0 w1( )gk w1 λ,( ).d∫=

gk w λ,( )
ε2k λ( )

π
--------------- P

w λ–
------------- ε1k λ( )δ w λ–( ),+=

ε1k λ( ) 1
4πe

2

mk
2

----------- w
P

w λ–
------------- f 0' w( ),d∫–=

ε2k λ( ) 4π2
e

2

mk
2

-------------- f 0' λ( ).=

εk
±( ) λ( ) 0,=
where

(42)

are the analytic continuations of the complex dielectric

permittivity to the upper, Imλ > 0 ( (λ)), and corre-

spondingly, to the lower, Imλ < 0 ( (λ)) half-planes.
The existence of the roots of dispersion relation (41)
indicates the medium is unstable. We denote the roots

of (λ) from the upper half-plane as λs(k), where s =

1, 2, …, and the roots of (λ) from the lower half-
plane are equipped with the indices λs = –1, –2, …. It is
evident from Eq. (42) that λs(k) are even functions of k.
Moreover, since the roots of ε(–)(λ) are obtained from
the roots of ε(+)(λ) by complex conjugation, we can
always number the eigenvalues in such a way that
λ−s(k) = λs(k)*. The solutions to Eq. (37) corresponding
to the eigenvalues λs(k) are very simple:

(43)

Thus, an arbitrary solution to Eq. (36) may be writ-
ten as

(44)

where the complex amplitudes obey equations

(45)

and

(46)

Since Uk(t, w) is the Fourier transform of a real

quantity; i.e., U–k(t, w) = (t, w), Van Kampen func-
tions (38) and (43) and the roots of dispersion relation
(41) are even functions of k, and the complex ampli-
tudes satisfy the conjugation conditions

(47)

The introduced complex amplitudes describe two
types of oscillations. The amplitudes ak(λ) correspond
to the oscillations of the continuous spectrum, or quasi-
waves. The spectral parameter λ is an arbitrary real
number; consequently, the oscillation frequency is arbi-
trary. The second type of oscillations described by the
amplitudes  is characterized by a certain dependence
of the phase velocity on the wavenumber. The number
of these modes coincides with the number of roots of
dispersion relation (41); in particular, there are no such
modes in a stable medium. According to the accepted
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numeration, the modes with s > 0 describe growing
oscillations, while those with s < 0 correspond to the
decaying oscillations. When the unperturbed distribu-
tion f0(w) is varied, the number of discrete spectrum
modes may change; however, the wave branches
always appear and disappear by pairs.

Relation (44) is an integral transform, which allows
one to reconstruct the hydrodynamic velocities from
the given complex amplitudes. Using this relation, one
may easily express various velocity-averaged quantities
in terms of the complex amplitudes, e.g., density per-
turbation (25) and the electric field potential

(48)

Using the known properties of the Van Kampen
functions, transform (44) can be inverted,

(49)

(50)

where Rk(λ) = ε1k(λ)2 + ε2k(λ)2 = , Rs(k) =

(λs(k)), and the plus or minus sign in the latter
expression corresponds to the sign of s.

Thus, the oscillations described by Eq. (36) are very
similar to the Van Kampen waves. At first sight, there is
only one minor distinction: the dependence of the
eigenmodes on w is given by the adjoint Van Kampen
functions. There is, however, one extremely important
consideration: we can assign the energy and the
momentum to the modes characterized by the ampli-

tudes ak(λ) and , while this is impossible to do with
Van Kampen waves. With the help of transform (44),
quadratic Hamiltonian (34) may be written as

(51)

It may be also shown that transform (44) converts
general equation (29) to the set of equations for the
complex amplitudes,

(52)

(53)
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Substituting the quadratic Hamiltonian (51) to these
expressions, we again obtain linearized equations (45)
and (46). Finally, the difference between net momen-
tum (27) and Hamiltonian (51) is in the absence of the
factors λ and λs(k) only:

(54)

It is clear from Eq. (51) that the posed problem of
reducing Hamiltonian (34) to the diagonal form is
nearly solved. In order to write the contribution of the
continuous spectrum in the form of Eq. (8), it is suffi-
cient to renormalize the amplitudes ak(λ) with the
appropriate factors. However, we avoid this because we
otherwise have to watch out for possible changes in the
sign of ε2k(λ) [see Eq. (40)], which results in fairly
complicated expressions.

It follows from Eqs. (51) and (54) that we can
attribute every oscillation with the amplitude ak(λ) to
the definite energy and momentum, which are con-
served in the absence of dissipation and nonlinear inter-
actions. In this sense, the quasi-particles we are dealing
with are well-defined physical objects. This is the cause
of the evanescence of the usual Van Kampen waves: if
we are unable to characterize something by conserving
quantities, there are no reasons to regard this as a phys-
ical object. As in the case of the Van Kampen waves,
every quasi-particle described by the solution to
Eq. (36) consist of an additional beam of particles and
a corresponding perturbation of the electric field. One
may say, by analogy with quantum mechanics, that the
amplitudes ak(λ) correspond to the dressed states of
particles.

Besides the continuous spectrum, there are also dis-

crete spectrum modes with the amplitudes  in an
unstable medium. It was already pointed out that they

always appear in pairs: for every growing wave  ~

exp(γt – iωt), there is a decaying wave  ~ exp(–γt –
iωt), and the only time-independent combination of the

complex amplitudes is . It is according to this
rule that the growing and decaying waves are arranged
in integrals of motion (51) and (54). In contrast to the
continuous spectrum, the quasi-particles are character-
ized by two amplitudes instead of one. One may
attribute the energy and the momentum only to such an
object. This quite general conclusion also follows from
the analysis of the energy and momentum balance in
the electrodynamics of continuous media [26].

We must also discuss the sign of the energy of linear
waves: In a stable medium, (w) < 0 at w > 0 and the
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integrand in Eq. (51) is always positive. Therefore, the
energy of a wave in the continuous spectrum is also
positive. Evidence of the instability is the fact that the
imaginary part of dielectric permittivity (40) changes
its sign; continuous spectrum waves with the corre-
sponding value of the phase velocity λ carry negative
energy. Since the last term in the integrand of Eq. (51)
is not sign-definite, the question of the sign of the
energy of discrete spectrum modes is meaningless. This
viewpoint differs from that accepted in [24, 25], where
growing or decaying solutions were attributed to zero
energy. As was pointed out in [26], there are no physical
objects with identically zero energy because an infini-
tesimal interaction (e.g., in the course of measurement)
would convert such an object to something else.

The initial problem for Eq. (36) is solved like the
initial problem for the Vlasov equation in a framework
of the Van Kampen approach [1, 2]. The initial values

of amplitudes ak(0, λ) and (0) are evaluated from the
initial value of Uk(w)|t = 0 with the help of Eqs. (49) and
(50). Then, using Eqs. (45) and (46), one can reproduce
the temporal evolution of any averaged quantity, e.g.,
potential (48). In a stable medium, the asymptotic
expansion of potential (48) at t  ∞ accounts for
Langmuir oscillations and Landau damping. Evidently,
the leading term of the expansion is determined by the
values of λ corresponding to the minimum of the func-
tion Rk(λ) in Eq. (49), i.e., by the zero of the complex

dielectric permittivity (λ) nearest to the real axis.

5. NONLINEAR INTERACTION

The wave interaction energy is given by the cubic
term of expanded Hamiltonian (26):

(55)

Using Eq. (44), one can easily express the interac-
tion Hamiltonian in terms of the complex amplitudes.
For example, the interaction of one unstable mode that

consists of two complex amplitudes  (s = ±1) with
two continuous spectrum waves is described by the
Hamiltonian

(56)

where the element of the interaction matrix is given by
the integral

(57)
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w λ2,( ).d∫
All other terms of the interaction Hamiltonian (e.g.,
those describing the interaction of three continuous
spectrum waves) are arranged in a similar way. One
may express integrals like those in Eq. (57) in terms of
the Van Kampen functions (38), (43); however, instead
of writing down general bulky expressions, we would
rather consider a particular example.

Suppose we are dealing with the kinetic beam insta-
bility near its threshold. There is then a single root of

Eq. (41), (λ0 + iγ) = 0, in the upper half-plane (γ >
0). Let k = k0 be the wave vector corresponding to the
maximum growth rate, which is assumed to be small,
γ ! λ0. We consider the resonant three-wave interaction
of this single unstable mode with continuous spectrum
waves.

If the wave vectors of two other waves are k1, 2, then
we have k0 ≈ k1 + k2. The condition of the tree-wave
synchronism for the continuous spectrum waves with
the phase velocities λ1, 2 is written as k0λ0 ≈ k1λ1 + k2λ2.
In particular, waves with λ1, 2 ≈ λ0 satisfy this condition;
i.e., all waves with λ1, 2 – λ0 ~ γ can take part in the
three-wave interaction. Taking into account Eq. (47),
the complex amplitudes of the interacting oscillations
are represented as

(58)

(59)

It is assumed here that the envelope amplitudes  and
b1, 2q(λ) are sharp functions of q of vanishing width and,
in addition, b1, 2q(λ) are localized at λ ≤ γ.

In evaluating matrix element (57), it should be
remembered that, in the first order of the expansion in
powers of γ, the real part of the dielectric permittivity
vanishes, (λ0) = 0; hence, (λ0) ~ 1 and

(λ0) ~ γ/λ0. Therefore, the first term in Van
Kampen functions (38) is small. Moreover, in the
vicinity of the resonance, we ignore the dependence of
matrix element (57) on the wave vectors, which
results in

(60)

Then, we discard the dependence of all the coeffi-
cients in Eq. (51) on q and perform the Fourier transfor-

mation (t )  bs(x), bαq(λ)  bα(λ, x). Equa-
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tions (52) and (53) are now written in the truncated
form

(61)

(62)

(63)

where the Hamiltonian is the energy density

(64)

and the dimensional coefficient β is

Equations (61)–(63) describe the influence of
plasma echo on the development of the beam instabil-
ity. Their structure resembles usual three-wave equa-
tions. There are two basic distinctions. First, as has
already been pointed out, the high-frequency mode is
described by two complex amplitudes (61); the energy
of this mode is given by the first term in Hamiltonian
(64). Second, the low-frequency modes are wave
packets with a phase velocity spread. Due to phase
mixing, the spread yields the Landau damping of the
Fourier components of the electric field with the wave
vectors k1, 2.

In studying wave interactions with allowance for
Landau damping, the damping is often approximated
as dissipation. For example, a wave is described by an
equation like  = –γLa + nonlinear terms. Strictly
speaking, this approximation is absolutely unjusti-
fied. Landau damping arises as an asymptotic expan-
sion of a solution to a linear problem, which is valid

at long enough times, t @ . If we ignore the non-

linear term in Eq. (62), then the potential  ~

ḃ
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(0, λ)exp(−ik1λt) behaves asymptotically like

 ~ exp(–k1∆λt), where ∆λ is the width of the wave
packet. However, all the experience of nonlinear phys-
ics demonstrates that the most interesting things hap-
pen when the time scales of two different processes
coincide. Here, we are focused on the coinciding time
scales of phase mixing (tph = 1/k1, 2∆λ) and nonlinear
interaction (tnl ~ β|bs |/∆λ). It is evident that, in this case,
Landau damping should be explicitly described as a
result of phase mixing and the possible nonlinear corre-
lations between various waves must be taken into
account.

Besides energy (64), Eqs. (61)–(63) preserve addi-
tional integrals of motion that are analogous to the
Manley–Row integrals. One can easily verify that

(65)

(66)

One may treat these relations as the balance of the num-
ber of quasi-particles in the three-wave interaction. In
particular, implying the condition k0 = k1 + k2, we obtain
the conservation of the net momentum.

Despite the additional integrals of motion, it is
impossible to solve Eqs. (61)–(63) analytically. Quali-
tatively, one may conjecture that the three-wave inter-
action accelerates the kinetic instability, making it
explosive. Energy conservation condition (64) com-
bined with Manley–Row integrals (65) and (66) allow
an unlimited growth of the amplitude, which is typical
of explosive-type instabilities.

The numeric solution to Eqs. (61)–(63) depicted in
Figs. 2–4 confirm this qualitative reasoning. For
numeric solutions, the scales of the amplitude, time, and
phase velocity were chosen to make all the dimensional
parameters equal to unity (k0 = 1, γ = 1, and β = 1). The
continuous distribution over λ was approximated by a
discrete one (500 points). The figures demonstrate a
particular case with k1 = k2 = 0.5 and b1(λ) = b2(λ). The
initial conditions were b+1(0) = 0.01, b–1(0) = 0.01i, and
b1(0, λ) = 0.01/(λ2 + 0.5) (|λ| < 5).

The function |b1(t, λ)| for different instants is
depicted in Fig. 2. At t = t0 ≈ 4, the central part of the
distribution starts to reduce; some later, lateral satellites
appear, which become visible at t = 4.5. At approxi-
mately the same time, the phase argb1(t, λ) begins to
deviate strongly from the linear dependence 0.5λt. The
dependence of the energy of the unstable mode (i.e., the
first term in Hamiltonian (64)) is shown in Fig. 3. This
value is initially zero and the well-marked energy
exchange starts simultaneously with the distortion of
the low-frequency spectrum at t = t0.

λb1d∫
φk1

d
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b2 λ( ) 2
–( ) 0,=

d
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----- b

s
b

s– *

s 1±=

∑ λ b1 λ( ) 2
d∫–

 
 
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Figure 4 shows the evolution of the potential of the
low-frequency subharmonic, i.e., the integral φ1(t) =

(t, λ). In the linear stage (t < t0), Landau damping

provided by phase mixing is observed.

In the nonlinear stage (t > t0), all the variables dem-
onstrate fast growth (faster than in the exponential one).
The numerical results show that the amplitudes behave
like 1/(t – t1)2, where the time of explosion is t1 ≈ 7. A
reduction in the initial amplitude results in an increase

λb1d∫
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|b1|

0.015
0.010
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t = 4 t = 4.5
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Fig. 2. Continuous spectrum evolution.
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Fig. 3. Unstable mode energy vs. time.
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φ1

Fig. 4. Low-frequency potential vs. time.
in the time t0, while over the time interval t0 < t < t1, the
evolution remains qualitatively the same.

One may say that the evolution of the low-frequency
potential (Fig. 4) demonstrates the competition
between Landau damping and parametric decay insta-
bility in the field of the high-frequency wave. In the ini-
tial stage, Landau damping dominates; however, later
decay instability overpowers.

The explosive character of the instability does not
necessarily mean that we are here faced with the above-
mentioned inapplicability of Eq. (24) at long times.
Getting rid of the non-resonant terms in the cubic
Hamiltonian results in corrections to the energy that are
proportional to the amplitudes in the forth power. In
particular, these corrections provide a nonlinear fre-
quency shift. How these effects influence beam insta-
bility is still unknown.

6. CONCLUSIONS

The main thesis of this paper may be formulated as
follows: If we describe the collisionless kinetics in
terms of some new variable instead of the distribution
function, we are able to construct a perturbation theory
that preserves energy in its every order. In particular,
one can speak of the energy of linear waves and intro-
duce well-defined quasi-particles, while in the frame-
work of the traditional approach, the definition of the
energy of Langmuir waves is rather conventional. The
theory formulated here uses the expansion of the
Hamiltonian and, to a great extent, is analogous to the
classical perturbation theory known from mechanics.
However, compared to the familiar procedures of
plasma electrodynamics, it is more complicated. It
should be stressed that two versions of the perturbation
theory are in no way equivalent.

The relation between the distribution function and
the velocity used here, V(t, x, w) = w + U(t, x, w), is the
nonlinear functional transform (23). Exact equations
(1) and (24) are equivalent but there is no simple corre-
spondence between their expansions in the powers of
small deviations. For example, using Eq. (23), we may
expand the distribution function into a series in powers
of U(t, x, w):

(67)

If we represent the correction to the distribution as the
second term in Eq. (67), f1(t, x, v ) = –U(t, x, v ) (v ),
then we obtain linearized Euler equation (36) from lin-
earized Vlasov equation (4). However, the result would
be different if we expand Eq. (1) in powers of the poten-
tial and Eq. (24) in powers of U(t, x, v ) up to the higher
orders.

If we take the solution to linearized equation (36)
corresponding to a Langmuir wave, substitute it in

f t x v, ,( ) f 0 v( ) U t x v, ,( ) f 0' v( )–=

+
1
2
--- ∂

∂v
------- U

2
t x v, ,( ) f 0' v( )( ) ….+

f 0'
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transform (67), and then average over the oscillation
period, we obtain an equation for the averaged distribu-
tion that is analogous to the quasilinear equation.
Therefore, the linear equations discussed above and the
quasilinear theory are of the same asymptotic accuracy.

It should be noted that the author is not calling for a
complete revision of traditional plasma electrodynam-
ics, or to have it rewritten in new terms and concepts. It
is sometimes just useful to have a look at very familiar
things from a new viewpoint.
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Abstract—The problem of the excitation of electron waves in a thin-walled annular cold plasma in a cylindrical
waveguide by a straight relativistic electron beam in a finite magnetic field is considered. The dispersion prop-
erties of a waveguide system with parameters close to the experimental ones are investigated. It is shown that
the growth rate of the excited high-frequency plasma wave is comparable to that of the low-frequency wave,
which is weakly sensitive to the strength of the longitudinal magnetic field. © 2004 MAIK “Nauka/Interperi-
odica”.
In recent years, the excitation of surface plasma
waves in beam–plasma systems has been actively stud-
ied both experimentally and theoretically [1–3]. In its
simplest form, such a system is a circular metal
waveguide of radius R in which there are a thin-walled
annular plasma and a thin-walled annular beam with
mean radii rp and rb, respectively. The thicknesses of
the plasma and the beam, δp and δb, are much smaller
than their radii. The system is usually placed in an
external uniform longitudinal magnetic field in which
the beam and plasma electrons become fully magne-
tized. The applicability condition of the corresponding
approximation, in which the external magnetic field is
assumed to be infinitely strong, is that the characteristic
frequencies of the system (the radiation frequency and
the electron Langmuir frequencies of the plasma and
the beam, ωp and ωb) are low in comparison to the elec-
tron cyclotron frequency Ωe. In actual experiments, the
beam density is much lower than the plasma density, so
that the condition for the beam electrons to be fully
magnetized is, as a rule, satisfied with good accuracy.
As for the plasma electrons, the corresponding condi-
tion is more stringent, especially in the range of short
wavelengths.

An annular plasma of finite thickness is difficult to
describe analytically even in the cold plasma approxi-
mation, because it is a system with an infinite number
of degrees of freedom [4]. Under the assumptions that
the plasma thickness is small and that the external mag-
netic field is infinitely strong, an annular plasma can be
described as a tube with an infinitely thin wall, in which
only one surface wave can propagate in the chosen
direction. These assumptions make the system simple
enough to be described analytically. For an external
magnetic field of finite strength, the infinitely thin
1063-780X/04/3001- $26.00 © 0056
plasma approximation fails to hold because of the pos-
sible transverse plasma polarization.

In order to describe the surface waves of a thin-
walled annular plasma in a longitudinal magnetic field
of finite strength, one of us [5] proposed approximate
boundary conditions at the plasma tube and showed
that they can be successfully used in the theory of
plasma microwave electronics. In the present paper,
following [5], we derive a dispersion relation for a
beam–plasma system in a longitudinal magnetic field
of finite strength and determine the instability growth
rate as a function of the system parameters.

In waveguide regions free of plasma, the electro-
magnetic field is described by the following set of equa-
tions for the longitudinal components of the electric

and magnetic fields, Ez, Bz ~ :

(1)

These equations, which describe azimuthally symmet-
ric modes, are written in cylindrical coordinates with

the Laplace operator ∆⊥  =  and  =  –

ω2/c2 and are supplemented by the boundary conditions
Ez(R) = 0 and Eϕ(R) ~ Bz(R) = 0 at the metal waveguide
surface and the conditions for the field to be finite at
r = 0. If there is a plasma tube with the mean radius r =
rp and thickness δp, then the corresponding equations
should be written for the plasma region and the solu-
tions obtained should be matched at the inner and outer
boundaries of the plasma tube [6, 7]. In what follows,
we will assume that the plasma tube is sufficiently thin,
kzδp ! 1.

e
iωt– ikzz+

∆⊥ Ez χ0
2
Ez– 0,=

∆⊥ Bz χ0
2
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1
r
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-----r
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2
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2
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In the general case of a cold thin-walled annular
plasma, there are two dispersion curves that describe
surface waves: low-frequency and high-frequency (in
the range ω < kzc) [4–6]. For strong magnetic fields
such that Ωe > ωp, the low-frequency dispersion curve
is analogous to that in the case of a fully magnetized
plasma and, in the short-wavelength limit kz  ∞, it
asymptotically approaches ωp. For large kz values, the
high-frequency branch of the dispersion curve is char-
acterized by an anomalous dispersion and approaches
the frequency Ωe from above. The cutoff frequency of
the high-frequency wave, ω (kz = 0), is determined by
the frequency ωp and is independent of Ωe. The highest
frequency of this wave does not exceed the upper

hybrid frequency Ωh = . In a weak magnetic
field such that Ωe < ωp, the low-frequency dispersion
curve in the short-wavelength limit approaches the fre-

quency Ωh/  from below, while, in the same limit, the
dispersion curve of the high-frequency wave
approaches this frequency from above, indicating that
the dispersion of the high-frequency wave is anoma-
lous.

Based on an analysis of transverse structures of the
electromagnetic field components, one of us [5] formu-
lated approximate conditions at the plasma tube. With
these boundary conditions, which differ between the
low- and high-frequency waves, there is no need to
solve the wave equation in the plasma region: the solu-
tion sought is derived by matching the solutions
obtained for vacuum regions. Also, there is no need to
distinguish between the cases of a weak and a strong
longitudinal magnetic field. For the low-frequency
branch, the matching conditions have the form

(2)

Here and below, we use the definition {X(x)} = X(x + 0) –
X(x – 0). Conditions (2) coincide with the exact match-
ing conditions obtained in the limit of an infinitely
strong magnetic field by integrating the wave equation
over r in the vicinity of a plasma with a density profile

such that   (r – rp) [8]. Consequently, the
low-frequency branch is weakly sensitive to the
strength of the external magnetic field. We can readily
see that Eqs. (1) with boundary conditions (2) allow the
wave field to be separated into E and B waves. The
waves that are important for the purposes of plasma
microwave electronics are those with a nonzero longi-
tudinal electric-field component Ez (the E waves) and
with phase velocities below the speed of light, ω/kz < c
[4, 8]. For such waves, the solution to Eqs. (1) supple-

ωp
2 Ωe

2
+

2

Ez rp( ){ } 0,=

dEz

dr
-------- rp( )

 
 
 

δpχ0
2ωp

2

ω2
------Ez rp( ).–=

ωp
2 δpωp

2δ
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mented with boundary conditions at r = 0 and r = R has
the form

(3)

where I0 and K0 are zero-order modified Bessel func-
tions. Substituting solution (3) into boundary condi-
tions (2) and eliminating the constants A and B, we
arrive at the following dispersion relation, which deter-
mines the dependence ω(kz) at the lower branch of the
dispersion curve:

(4)

Dispersion relation (4) coincides with that for a plasma
wave in an infinitely strong magnetic field. This reflects
a fact that has already been mentioned, namely, that the
low-frequency branch is weakly sensitive to the
strength of the external magnetic field [5].

Unlike in the previous case, the high-frequency
wave field cannot be separated into E and B waves. The
matching conditions for the high-frequency branch are
written in the form [5]

(5)

Here, χ2 =  – ε⊥ ω2/c2 and ε⊥  and g are the elements
of the dielectric tensor of a cold magnetized plasma [9],

(6)
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We insert solution (3) to the first of Eqs. (1) and the
solution

(8)

to the second of the equations into the conditions relat-
ing the fields at the inner and outer surfaces of the
plasma tube. As a result, we obtain a dispersion relation
for the high-frequency wave:

(9)

Here, we have introduced the following notation for the
geometric factors:

(10)

The right-hand side of dispersion relation (9) is qua-
dratic in the small parameter kzδp ! 1 of a system with
a thin-walled annular plasma. Consequently, to second
order in this parameter, the dispersion relation for the
high-frequency wave has the form [5]

(11)

We now consider a plasma waveguide system with a
beam that will be treated under the same assumptions as
those which were made for the plasma. Specifically, we
consider an annular thin-walled beam with thickness δb

and mean radius rb < rp. In experiments [2, 3], the beam
density is usually low enough for the beam electrons to
be regarded as being fully magnetized and for their
transverse motion to be ignored, in which case the
beam can be assumed to be infinitely thin. In this
approximation, the beam is described solely through
the boundary conditions for matching the fields in the
regions r < rb and r > rb. These boundary conditions are
well known [4, 8]:
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where γ = (1 – u2/c2)–1/2 and u is the beam velocity. In
describing the excitation of the low-frequency wave, it
is sufficient to use only the first two of conditions (12),
because this wave is essentially an E wave [5]. The
plasma and beam divide the cylindrical waveguide into
three regions, in which the equations for an E wave
have the solutions

(13)

Using matching conditions (12) and (2) at the beam and
plasma, respectively, and the condition that the field
component Ez vanishes at the metal waveguide wall and
eliminating the arbitrary constants, we arrive at a dis-
persion relation describing the excitation of the low-
frequency wave by the beam:

(14)

where the geometric factors of the beam and the plasma
have the form

(15)

In order to derive the dispersion relation for the high-
frequency wave, we substitute expressions (13) for Ez

and the analogous expressions for Bz into conditions (5)
and (12) and the boundary conditions at the metal
waveguide wall. Then, after some laborious manipula-
tions, we obtain

(16)

We convert Eqs. (14) and (16) into a form more con-
venient for our analysis:
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Here, we have introduced the notation

(18)

Each of Eqs. (17) describes a system of two coupled
oscillators. If we formally set the coupling coefficients
Θ↓ and Θ↑ equal to zero, then we can see that the oscil-
lators in each of the systems are decoupled and can be
described by independent equations. In the absence of
a beam, the dispersion relations take the form

(19)
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2ωp
2
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2 δprpχ
2 ω2 Ωe
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---------------------–
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---------------------–

-------------------------------------------------,=
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---------------------+
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---------------------–

--------------------------------------------------.=

ω2 Ωp↓
2

– 0=

for a low-frequency wave and

ω2 Ωh
2

– Ωp↑
2

+ 0=

for a high-frequency wave.
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Fig. 1. Dispersion curves of a beam–plasma system (ωp =

8 × 1010 s–1, Ωe = 15 × 1010 s–1) in a strong magnetic field
(a) without and (b) with allowance for the beam–plasma
interaction.
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These relations implicitly describe the dispersion prop-
erties of a plasma waveguide in a magnetic field of
finite strength.

The dispersion relations obtained were analyzed
numerically for the parameters of a beam–plasma sys-
tem that were close to those adopted in actual experi-
ments [2, 3]: the waveguide radius was R = 2 cm; the
mean radii of the plasma and beam tubes were rp =
1.05 cm and rb = 0.65 cm, respectively; the thicknesses
of the plasma and beam were δp = δb = 0.1 cm, the beam
current was ib = 1.7 kA, and the beam velocity corre-
sponded to the relativistic factor γ = 2. The cyclotron
frequency was taken to be Ωe = 15 × 1010 s–1, and the
plasma frequency was varied within the interval ωp =
(8–22) × 1010 s–1. Figures 1a and 2a show the dispersion
curves obtained by numerically solving dispersion rela-
tions (19) for a plasma waveguide in a longitudinal
magnetic field of finite strength at ωp = 8 × 1010 s–1 and
22 × 1010 s–1, respectively. These figures also show two
dispersion curves calculated for a plasma waveguide
with a beam. The dispersion curve in Fig. 1a differs
from a traditional dispersion curve in the limit of an
infinitely strong longitudinal magnetic field in that it
has an upper branch. For large kz values, this branch is
characterized by an anomalous dispersion; however, for
the above parameter values, its existence is incompati-
ble with the above assumption that the plasma tube is
thin-walled. As the magnetic field increases, the upper
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Fig. 2. Dispersion curves of a beam–plasma system (ωp =

22 × 1010 s–1, Ωe = 15 × 1010 s–1) in a weak magnetic field
(a) without and (b) with allowance for the beam–plasma
interaction.
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branch is displaced toward higher frequencies. In the case
at hand, the parameter values are chosen so that the low-
frequency plasma wave does not resonate with the beam
and the high-frequency plasma wave is excited at a fre-
quency of ω ≈ 16.1 × 1010 s–1 (kz ≈ 6.5 cm–1). Figure 2a
refers to a waveguide in a weak magnetic field (Ωe <
ωp). We can see that there are two points of resonant
interaction: the point ω ≈ 6.2 × 1010 s–1, kz ≈ 2.6 cm–1

and the point ω ≈ 20.6 × 1010 s–1, kz ≈ 8.3 cm–1, which
are the intersections of the lower branch of the beam
dispersion curve with the plasma dispersion curves.
Figures 1b and 2b show the solutions to Eqs. (17), i.e.,
the dispersion curves calculated with allowance for the
interaction between the beam waves and the plasma
waves. In a strong magnetic field (Fig. 1b), there is only
one instability region, which is fairly narrow and is
associated with the excitation of the high-frequency
mode of the plasma waves. In Fig. 2b, Cherenkov reso-
nance conditions for both high-frequency and low-fre-
quency waves are satisfied in two instability regions.
From these figures we can see that all the instabilities
under consideration are of a convective nature [10].

In order to determine the amplification coefficients
δkz of the waves (i.e., their spatial growth rates), we rep-
resent the wavenumber in the form kz = ω/u + δkz . For
a low-density beam, we have δkz ! ω/u. We substitute
the representation adopted for kz into Eqs. (17), expand
every term in the resulting equations in powers of δkz,
and retain only the lowest order (nonvanishing) terms in
the expansions to obtain the following two cubic equa-
tions, which determine the spatial growth rates of each
of the plasma waves:
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2 ω
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2
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× u
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2
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----------δkz– 
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Fig. 3. Frequency dependence of the spatial growth rate for
ωp = (1) 22 × 1010, (2) 17 × 1010, (3) 13 × 1010, and (4) 8 ×
1010 s–1.
(20)

for a high-frequency wave.

Figure 3 shows the dependence of the growth rate
Imδkz on the frequency ω for the following values of
the plasma frequency: ωp = (1) 22 × 1010, (2) 17 × 1010,
(3) 13 × 1010, and (4) 8 × 1010 s–1. As the plasma fre-
quency decreases, the low-frequency plasma branch is
displaced toward lower frequencies and, accordingly,
the Cherenkov resonance frequency and the maximum
growth rate both decrease. Below a certain critical fre-
quency, there is no Cherenkov interaction at the lower
branch and the spatial growth rate vanishes. For a high-
frequency branch too, the instability region is displaced
toward lower frequencies and narrows as the plasma
density decreases. In this case, however, the spatial
growth rate increases to about δkz ≈ 0.12 cm–1, which is
comparable to the growth rate in the range of low fre-
quencies.

In this paper, we have investigated the dispersion
properties of a beam–plasma waveguide system with
typical experimental parameters in a longitudinal mag-
netic field of finite strength. We have determined how
the spatial growth rates of the instability depend on the
system parameters. We have shown that the amplifica-
tion of high-frequency plasma waves in the linear stage
is comparable to or may be even greater than the ampli-
fication of low-frequency waves, with which plasma
microwave electronics is usually concerned.
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Abstract—A pure amplification regime (without accompanying generation) at two frequencies of 9.1 and
13 GHz is achieved in a plasma relativistic microwave amplifier. It is shown experimentally that an amplifica-
tion regime with an output power of 40 MW can be achieved at both frequencies without changing the param-
eters of the system. This fact, along with the results of calculations, allows one to assert that the relative band-
width of the amplifier is no less than 40%. It is shown experimentally that, by changing only one parameter,
namely, the plasma density, the frequency corresponding to the maximum amplification can be varied from
9.1 to 13 GHz, which agrees with the results of calculations by a nonlinear model. At a frequency of 9.1 GHz,
the maximum output power amounts to P = 40 MW, the efficiency is η = 4%, and the power gain is Kp =
800 (29 dB). At a frequency of 13 GHz, these parameters are P = 60 MW, η = 6%, and Kp = 1000 (30 dB). The
measured plasma density range in which the amplification is observed agrees with calculations of the excitation
of an Ö01 mode of a plasma waveguide. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One promising line of research on the creation of
high-power microwave devices are the studies of the
Cherenkov excitation of eigenmodes of a plasma
waveguide by a high-current relativistic electron beam
(REB). The plasma waveguide is a smooth cylindrical
metal waveguide that is completely or partially filled
with plasma. In the absence of plasma, the electron
beam is stable because only fast modes with a phase
velocity higher than the speed of light can exist in a
metal tube with a constant radius. If a metal waveguide
is filled with plasma, slow waves exist whose phase
velocities are below the speed of light and depend on
the plasma density. If the plasma density exceeds the
threshold density at which the phase velocity of a slow
wave becomes equal to the REB velocity, then the REB
energy can be transferred to the electromagnetic wave,
i.e., the wave is amplified [1].

The main advantage of plasma relativistic micro-
wave devices over vacuum ones is that the frequency of
output radiation can be tuned over a wide range by
varying the plasma density. Figure 1 shows the calcu-
lated frequency dependence of the gain factor calcu-
lated by the linear theory at different plasma densities.
The curves were calculated for the same geometry of an
REB and plasma as was used in the experiment
described in this paper. It can be seen from the figure
that, as the plasma density increases from 1013 to 7 ×
1013 cm–3, the frequency at which the gain factor is
maximum increases from 8 to 35 GHz. At the same
time, the spectral width varies from 40% at low fre-
quencies to 20% at high frequencies.

This conclusion is valid for both microwave ampli-
fiers and noise masers. Experimental results were first
obtained for masers. The first successful experiment in
1063-780X/04/3001- $26.00 © 0062
which microwaves were generated via the excitation of
the eigenmodes of a plasma waveguide by an REB [2]
demonstrated the main features of a plasma relativistic
maser: a wide (~40%) emission band and the possibil-
ity of a twofold variation in the mean generation fre-
quency. Later, a high-power (~250 MW) maser in
which the frequency could be varied by a factor of more
than 2 [3] and a maser in which the frequency could be
tuned in the range 4–28 GHz at a power level of 30–
50 MW [4] were created. In both cases, the relative
width of the emission spectrum was no less than 20%.
Around that time, the studies on the creation of plasma
relativistic microwave amplifiers were started; how-
ever, the first successful results were obtained some
what later, because the problem of the suppression of
microwave generation accompanying the amplification
turned out to be fairly complicated.
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Fig. 1. Frequency dependences of the power gain calculated
by the linear theory for an interaction length of 20 cm at dif-
ferent values of the plasma density: np = (1) 1013, (2) 2 ×
1013, (3) 4 × 1013, (4) 5.5 × 1013, and (5) 7 × 1013 cm–3.
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The experiment in [5] demonstrated the possibility
of amplifying the input signal in a narrow interval of
plasma densities near the threshold density. The ampli-
fication regime was rather unstable and was accompa-
nied by generation at frequencies different from the
input signal frequency. The use of a broadband
absorber made it possible to improve the amplifier
parameters [6]. In that experiment, the possibility of
amplifying the input signal at both 9.1 and 12.9 GHz
was demonstrated for the first time. Furthermore, there
was a range of plasma densities within which the output
radiation lay inside the 0.5-GHz band at an input fre-
quency of 9.1 GHz. At the same time, there was gener-
ation at other plasma densities, which resulted in the
broadening of the output spectrum. For the same rea-
son, attempts to achieve stable amplification at an input
frequency of 12.9 GHz did not met with success. A fur-
ther modification of the experimental device, as well as
the use of other types of microwave absorbers, made it
possible to suppress generation over a wide range of
plasma densities. As a result, it became possible to mea-
sure the main characteristics of the amplifier and opti-
mize the system in terms of maximizing the output
power. The results of this study are presented in the
present paper.

We note that, at present, studies on high-power
microwave amplifiers based on the effect of the slow-
ing-down of waves in a vacuum (without plasma filling)
corrugated waveguide are being carried out. Thus, in
[7], an output power of 1 GW at a frequency of 9 GHz
was achieved; however, the amplification bandwidth
was lower than 1%. In [8], the amplification bandwidth
was 20% (8.4–10.4 GHz), but the output power was as
low as 1 MW. The microwave amplifier described in the
present paper has an output power of ~50 MW and its
amplification bandwidth attains 40% (9–13 GHz); i.e.,
it possesses a unique combination of parameters.

2. EXPERIMENTAL DEVICE

A schematic of the device is shown in Fig. 2. Annu-
lar plasma 1 with a mean radius of 8 mm and a thick-
ness of 1 mm was created in smooth cylindrical
waveguide 2 of radius 22 mm. The plasma was pro-
duced by an annular electron beam (with an electron
energy of 600 eV and a current of 5–20 A) in xenon at
a pressure of 2.5 × 10–4 torr over a time of about 30 µs
[9]. The system was embedded in a strong uniform lon-
gitudinal magnetic field B. Annular REB 3 with a mean
radius of 10 mm, a thickness of 1 mm, and an electron
energy of 500 keV was injected into the system from a
diode located on the left (not shown in the figure). The
FWHM duration of the voltage pulse at the diode could
be varied over a range of up to 120 ns. The REB current
could also be varied. These experiments were carried
out at currents of I = 1 and 2 kA. Microwave converter 4,
which converted the íÖ01 mode of a rectangular
waveguide onto the TEM mode of the input coaxial
waveguide, was placed at the entrance to the system.
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
The TEM wave was then converted into a slow plasma
wave, amplified by the REB, and emitted by coaxial
horn 5 with an inner diameter of 10 cm and outer diam-
eter of 25 cm. To suppress microwave generation in the
system, we used ceramic microwave absorber 6 of
length 14 cm. The length Lout of the output part of the
amplifier could be varied (Fig. 2). The maximum REB–
plasma interaction length was 30 cm.

An input microwave signal with a duration on the
order of several microseconds was generated by one of
the two pulsed magnetrons operating at frequencies of
9.1 and 13.0 GHz. The output magnetron power could
be varied within the range 20–60 kW by varying the
magnetron anode voltage.

3. MEASUREMENT TECHNIQUE

Experiments of [4] showed that, in the case of
microwave generation, the width of the output radiation
spectrum was 20–40% of the mean frequency. In [10],
it was shown that, in some time intervals, the spectrum
of the generated microwave pulse was rather narrow
(∆f/f < 5%); however, the spectrum of the entire pulse
was always wider than 20%. In the case of the amplifi-
cation of a narrowband input signal, the output radia-
tion should also be narrowband throughout the entire
microwave pulse. In addition, the maser frequency
depends on the plasma density, whereas the output fre-
quency of a microwave amplifier is only determined by
the frequency of the input signal and is independent of
the plasma density within a wide density range. Hence,
by measuring the spectral width of the output radiation,
it is possible to distinguish the regimes of amplification
and generation. To estimate the spectral width of the
output radiation, we used a receiving transmission line
consisting of two detectors and a narrowband filter
(Fig. 3). One of the detectors (a broadband receiver)
measured the total incident microwave power. At the
input of the other detector (a narrowband receiver), we
placed a narrowband filter (∆f/f = 5%) that was tuned to
the frequency of the input signal. The sensitivities of
the detectors were chosen such that, in the case of a nar-
rowband (<5%) signal at the input to the receiving line,

4 2 7 1 3 6 5

Pin
Lout

Pout

Pout

B

Fig. 2. Schematic of the relativistic microwave amplifier:
(1) plasma, (2) metal waveguide, (3) REB, (4) amplifier
input, (5) coaxial emitting horn, (6) microwave absorber,
and (7) central conductor of the input coaxial waveguide.
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the signals from both detectors were identical in shape
and amplitude. If the width of the radiation spectrum
exceeded 5%, then the amplitude of the signal from the
narrowband receiver was smaller than that from the
broadband receiver. Thus, we could estimate the width
of the spectrum of the output microwave radiation.

The total energy of the output microwave pulse was
measured by a broadband large-area (30 cm in diame-
ter) microwave calorimeter [11] (see Fig. 3). Knowing
the energy of the microwave pulse and its envelope, we
could calculate the power of the output microwave radi-
ation.

4. EXPERIMENTAL RESULTS

The operation of the measuring system is illustrated
by Fig. 4, which shows the waveforms of the broadband
(curves 1) and narrowband (curves 2) receiver signals
and the diode voltage pulse (curves 3) for three differ-
ent cases. Figures 4a and 4b correspond to input fre-
quencies of 9.1 and 13 GHz, respectively, and Fig. 4c
corresponds to the absence of an input signal. As was
mentioned above, when the output radiation spectrum
is narrower than the passband of the narrowband filter
(5%), the signals from the broadband and narrowband
receivers should be identical in shape and amplitude. It

1

2

35

4 

Fig. 3. Scheme of measurements: (1) coaxial emitting horn,
(2) microwave calorimeter, (3, 4) microwave detectors, and
(5) narrowband microwave filter (∆f/f = 5%).
is just the case of Figs. 4a and 4b: the signals are iden-
tical to within pickups. This operating mode of the
amplifier, in which the output radiation spectrum
remains narrow throughout the entire pulse, we call the
pure amplification regime (without accompanying gen-
eration).

It is important that the pure amplification regime
was achieved at input powers of 20–60 kW throughout
the entire plasma density range under study (5 × 1012–
5 × 1013 cm–3), throughout the entire range of the
lengths of the output part of the amplifier Lout (from –1
to +7 cm, Fig. 2), for both values of the REB current
(1 and 2 kA), and at both frequencies (9.1 and 13 GHz).
This result differs radically from the result described in
our previous paper [6] and was obtained here for the
first time.

By varying some parameters (e.g., by reducing the
absorber volume), the pure amplification regime could
be changed to the generation mode (Fig. 4c). In this
case, the amplitude of the broadband receiver signal (1)
was substantially larger than that of the narrowband
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Fig. 4. Waveforms of the broadband (curves 1) and narrow-
band (curves 2) receiver signals and the diode voltage pulse
(curve 3) at input frequencies of (a) 9.1 and (b) 13.GHz and
(c) in the absence of an input signal.

U, arb. units
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004



        

A 50-MW BROADBAND PLASMA MICROWAVE AMPLIFIER 65

             
receiver signal (2) and the signal shapes differed from
each other. This means that the output radiation spec-
trum was substantially wider than the filter passband.

As was mentioned above, the theory predicts that
the frequency corresponding to the maximum amplifi-
cation of the input signal in the Cherenkov plasma
amplifier can be markedly varied by varying the plasma
density (Fig. 1). In order to verify this prediction exper-
imentally, it would be expedient to measure the ampli-
fier output power as a function of the input signal fre-
quency. However, since we did not have an appropriate
microwave source with an output power on the order of
several tens of kilowatts and a frequency tunable in the
range from 8 to 30 GHz (to be fed to the amplifier
input), we had to use a simplified measuring procedure:
the measurements were performed at two input fre-
quencies, 9.1 and 13 GHz.

Figures 5 and 6 show the measured output micro-
wave power (Figs. 5a, 6a) and the gain factor calculated
in accordance with the linear theory (Figs. 5b, 6b) as
functions of the plasma density. The curves presented
in Figs. 5b, 6b, 7, and 8 were calculated by
M.V. Kuzelev. The calculations were performed for the
three lowest modes of the plasma waveguide. Curve 1
corresponds to the azimuthally symmetric mode E01 with
the lowest radial index, while curve 2 corresponds to the
E11 mode. In addition, the calculations were performed
for the E02 mode. For this mode, the plasma density at
which the gain becomes nonzero is equal to 3 × 1014 cm–3.
Figures 5 and 6 corresponds to an input frequency of
9.1 and 13 GHz, respectively, all other parameters of
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Fig. 5. (a) Measured output microwave power and (b) the
gain factor calculated by the linear theory as functions of
the plasma density at an input frequency of 9.1 GHz, Lout =
3 cm, and I = 2 kA. Curve 1 corresponds to the E01 mode,
and curve 2 corresponds to the E11 mode.
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the system being the same. It can be seen from Fig. 5
that the plasma density range in which the amplification
at an input frequency of 9.1 GHz is observed (8 × 1012–
2.5 × 1013 cm–3) agrees well with the calculated plasma
density range for the E01 mode (Fig. 5b). For an input
frequency of 13 GHz (Fig. 6), the operating plasma
density range shifts toward higher densities (1.3 × 1013–
5 × 1013 cm–3), which also agrees well with calculations
(Fig. 6b).

A characteristic feature of the Cherenkov plasma
microwave amplifier is a wide amplification band, i.e.,
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Fig. 6. The same as in Fig. 5, but for an input frequency of
13 GHz.
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Fig. 7. Calculated power of the plasma wave (E01 mode) in
the amplifier as a function of the interaction length at an
input frequency of 9.1 GHz for REB currents of (1) 1 and
(2) 2 kA.
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the possibility of amplifying input radiation over a wide
frequency range without changing the system parame-
ters. A comparison of Figs. 5 and 6 shows that, at a
plasma density of 1.5 × 1013 cm–3, amplification is
observed at both frequencies of 9.1 and 13 GHz with an
output power on the order of 40 MW. Correlating this
fact with the calculated width of the amplification band
(Fig. 1), we can assert that, at this plasma density, a sig-
nal at any frequency in the range 9.1–13 GHz will be
amplified to a substantial output power; i.e., the width
of the amplification band amounts to 40%.

Figures 7 and 8 show the calculated power of the
plasma wave (E01 mode) in the amplifier as a function
of the interaction length for frequencies of 9.1 and
13 GHz, respectively. Curves 1 and 2 correspond to
REB currents of 1 and 2 kA, respectively. The signal
power at the entrance to the amplifier (L = 0) was
assumed to be 50 kW. It was also assumed in the calcu-
lations that the energy of the REB electrons is 511 keV,
the plasma waveguide contains no microwave absorber,
and reflections are absent (the approximation of an infi-
nitely long waveguide). Under actual experimental con-
ditions, the energy of the REB electrons varies during
the pulse, an absorber is present in the plasma
waveguide, and there are reflections from the
waveguide ends. For this reason, one cannot directly
compare these plots with the experimental results. Nev-
ertheless, these plots provide an insight into the quali-
tative features of the system that can manifest them-
selves in the experiment.

Thus, under idealized conditions, for both input fre-
quencies, the calculations predict the same amplifica-
tion length L* at which the output power is maximum.
For a current of 1 kA, we have L* = 30–31 cm. For a
current of 2 kA, this length amounts to L* = 21–23 cm.
The power level P at both frequencies is nearly the
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Fig. 8. The same as in Fig. 7, but for an input frequency of
13 GHz.
same: P = 120–140 MW for a current of 1 kA, and P =
270–290 MW for a current of 2 kA.

In the experiment, the amplification length was var-
ied by varying the length Lout of the output part of the
amplifier (see Fig. 2), the total length being equal to
L = Lout + 23 cm. The measurement results are shown in
Figs. 9 and 10, which correspond to input frequencies
of 9 and 13 GHz, respectively.

Each point in these figures represents the output
radiation power averaged over 10–15 pulses, and the
bars show the mean square deviation. All the parame-
ters of the system (except for Lout) were fixed. We had
to use this procedure because of the wide scatter in the
output power in different pulses.

Returning to Figs. 9 and 10, we note that, in all
cases, the optimum amplification length L* (i.e., the
length above which the output power does not increase
with increasing length) was achieved. At a frequency of
9.1 GHz (Fig. 9), this length is L* = 28–29 cm (Lout =
5–6 cm) for an REB current of 1 kA, and it is L* =
25 cm (Lout = 2 cm) for a current of 2 kA. Hence, as the
REB current increases, L* decreases, which agrees
qualitatively with calculations. For an input frequency
of 13 GHz (Fig. 10), the optimum length for both cur-
rents is nearly the same, L* = 28 cm (Lout = 5 cm),
which contradicts the calculations. The maximum out-
put powers are nearly the same for both frequencies:
Pout = 20 MW for a current of 1 kA, and Pout = 40–
60 MW for a current of 2 kA. This result agrees quali-
tatively with the calculated results, although the mea-
sured power is substantially lower than the calculated
one.

Thus, the presence of a microwave absorber, reflec-
tions from the waveguide ends, and the pulsed character
of the process lead to an appreciable discrepancy
between the experimental and calculated results. This
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Fig. 9. Measured output microwave power as a function of
the length of the output part of the amplifier at a frequency
of 9.1 GHz for REB currents of 1 (circles) and 2 kA (trian-
gles).
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Fig. 10. The same as in Fig. 9, but for an input frequency of
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Fig. 11. Waveforms of the broadband (curve 1) and narrow-
band (curve 2) receivers signals and the diode voltage pulse
(curve 3) at an input frequency of 9.1 GHz, I = 2 kA, np =

1.2 × 1013 cm–3, Pin = 60 kW, and Pout = 47 MW.
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Fig. 12. Output amplifier power vs. input power at input fre-
quencies of 9.1 (circles) and 13 GHz (triangles) for an REB
current of I = 2 kA. The dashed lines show the straight-line
fits.
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means that it is necessary to carry out calculations using
a more complicated model.

One remarkable result is that there is a configuration
such that the maximum gain is achieved at both fre-
quencies. Comparing Fig. 9 and Fig. 10, we can see
that, for Lout = 5 cm and an REB current of 2 kA, ampli-
fication can be achieved at both a frequency of 9.1 GHz
(to a power of ~40 MW) and a frequency of 13 GHz (to
a power ~60 MW). The only parameter that should be
changed to this end is the plasma density. If necessary,
this parameter can be changed rapidly (in a time of
~10 µs) [9].

It can be seen from Figs. 9 and 10 that the maximum
output power is 40 MW at a frequency of 9.1 GHz and
60 MW at a frequency of 13 GHz, which correspond to
efficiencies of 4 and 6%, respectively. These values far
exceed the efficiencies that were achieved in our previ-
ous study [6].

We recall that the above power values were obtained
by averaging over a sequence of pulses; i.e., in some
pulses, the power was even higher. Figure 11 shows
waveforms of the broadband (curve 1) and narrowband
(curve 2) receiver signals and the diode voltage pulse
(curve 3) at an input frequency of 9.1 GHz. The power
in this pulse attained 47 MW.

Figure 12 shows the amplifier output power as a
function of the input power for input frequencies of
9.1 GHz (circles) and 13 GHz (triangles). The dashed
lines show the straight-line fits. For both input frequen-
cies, a decrease in the input power results in a propor-
tional decrease in the output power. In principle, it
might be supposed that the amplifier under consider-
ation is, in fact, a frequency-locked oscillator; i.e., the
input power is merely an initial noise for exciting the
oscillator. However, in this case, the output power
would be independent of the input power and only the
time during which the oscillation regime is established
would change. Quite a different form of the depen-
dences presented in Fig. 12 clearly shows that, in our
case, amplification (rather than frequency-locked exci-
tation) of microwave oscillations takes place.

It follows from Fig. 12 that the power gain is 800
(29 dB) for a frequency of 9.1 GHz, and it is 1000
(30 dB) for a frequency of 13 GHz.

5. CONCLUSIONS

(i) The regime of pure amplification (without
accompanying generation) of a monochromatic micro-
wave signal in a plasma relativistic microwave ampli-
fier was achieved for the first time at frequencies of
both 9.1 and 13 GHz. At both frequencies, the spectral
width of the output radiation was no greater than 5% of
the input signal frequency.

(ii) The coincidence of the measured plasma density
ranges with the results of calculations allows us to con-
clude that an azimuthally-symmetric plasma
waveguide mode with the lowest radial index is excited.
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(iii) It was shown experimentally that an output
power of 40 MW can be achieved by amplifying the
input signal at a frequency of 9.1 or 13 GHz without
changing the parameters of the system. This fact, along
with the results of calculations, implies that the ampli-
fication bandwidth is no less than 40%.

(iv) The calculations show that the optimum length
of the amplifier is almost the same for frequencies of
9.1 and 13 GHz. The measurements have shown that
there is a length such that the maximum gain can be
achieved at both 9.1 and 13 GHz by changing only one
parameter, namely, the plasma density.

(v) The range of input powers was determined in
which the amplifier operates in the linear regime at both
frequencies.

(vi) At a frequency of 9.1 GHz, the maximum output
power was P = 40 MW, the efficiency was η = 4%, and
the power gain was Kp = 800 (29 dB). At a frequency of
13 GHz, these parameters were P = 60 MW, η = 6%,
and Kp = 1000 (30 dB). At both frequencies, the length
of the output section was Lout = const = 5 cm.
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Abstract—The regimes of the instabilities of an annular relativistic electron beam in a waveguide with an annu-
lar plasma are systematically analyzed and classified. The growth rates of the instabilities are calculated in dif-
ferent limiting cases, and the resonance conditions for the development of the instabilities are determined. The
fastest growing instability of a high-current relativistic electron beam in a waveguide with a dense plasma is
considered. The possible onset of a low-frequency instability of a beam in a waveguide with a low-density
plasma is investigated. Typical examples of how the growth rates depend on the perturbation wavenumbers are
presented for systems with parameters close to the experimental ones. © 2004 MAIK “Nauka/Interperiodica”.
It is well known that the way in which the instability
of a straight electron beam develops in a plasma
waveguide depends strongly on the beam and plasma
densities and on their distributions over the waveguide
cross section. In waveguides with high-current and
ultrarelativistic beams, the well-studied single-particle
and collective Cherenkov effects may manifest them-
selves in various forms. Although the mechanisms for
the interaction between a beam and a plasma in a
waveguide have been widely discussed in the literature
[1, 2], we consider once again this problem because it
is necessary to make some significant improvements
and because some regimes of the beam–plasma insta-
bility have not yet been studied. The necessity for clas-
sifying the electromagnetic phenomena that occur in
the beam–plasma interaction arises from the needs of
relativistic plasma microwave electronics [3–5]—a
branch of physics that is now being actively developed.

We start with the following dispersion relation, well
known from the linear theory of beam–plasma instabil-
ities [2, 5]:

(1)

Here,

(2)

are the squared electron Langmuir frequencies of the

beam and of the plasma,1 χ2 =  – ω2/c2, ω and kz are

1 The frequencies ω(kz) of Langmuir waves in the beam and the
plasma are implicitly determined from the relationships ω = kzu ±
Ωb(χ2) and ω = ±Ωp(χ2).
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the wavelength of the wave and its longitudinal wave-
number, ϕm(r⊥ ) is the eigenfunction in the transverse
cross section of a waveguide without a plasma and

beam,  is the corresponding eigenvalue, ωb, p are the
electron Langmuir frequencies of the beam and the
plasma, Sb, p are the cross-sectional areas of the beam
and the plasma, u is the beam electron velocity, and γ =
(1 – u2/c2)–1/2 is the relativistic factor. Dispersion rela-
tion (1) also contains the coefficient of coupling
between the plasma waves and electron-beam waves:

(3)

where rb, p are the radii of the beam and the plasma.
Recall that dispersion relation (1) and formulas (2) and
(3) were obtained for a waveguide with an arbitrary
cross section in which there are a thin-walled annular
plasma and a thin-walled annular electron beam in a
strong longitudinal magnetic field. In a recent paper [6],
it was shown that, in the frequency range ω ! ωp, dis-
persion relation (1) and formulas (2) and (3) are valid
for waveguides with magnetic fields of arbitrary
strength, in particular, for a waveguide with no mag-
netic field present.

In order to simplify transcendental equation (1), we
represent the frequency ω in the form

(4)

where δ is the dimensionless growth rate of the Cheren-
kov beam instability. Substituting representation (4)
into dispersion relation (1) and expanding the quantities
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, , and  in powers of δ (the power series

expansions are valid under the inequality  +

 @ 2 (u2/c2)δ), we rewrite the dispersion rela-
tion as

(5)

where we have introduced the notation

(6)

The quantities k⊥ b and k⊥ p in formulas (6) are transverse
wavenumbers of the low-frequency E-type surface
eigenmodes of a thin-walled annular beam and a thin-
walled annular plasma in a waveguide [5]. The param-
eter  is the coefficient of coupling between these
waves. It coincides with the coupling coefficient in for-

mula (3), in which χ2 is replaced with . It is easy

to see that the parameter  satisfies the inequalities 0 <
 ≤ 1, in which the equality sign refers only to the case

rb = rp.
2 

In numerical analysis, some results of which will be
presented below, we retained all of the terms in disper-
sion relation (5). In analytical study, we simplify the
fairly complicated expressions by discarding the cor-
rection terms in dispersion relation (5),

which can be neglected in the range of small wavenum-
bers kz. We also restrict ourselves to the case of a dense

2 The expressions for quantities (2), (3), and (6) in cylindrical
geometry can be found in [3, 5].

Ωp
2 Ωb

2
q̃2

k ⊥ 1
2

kz
2γ 2–

kz
2

η0
2

σα p

---------- 1
kz

2
----

d k ⊥ p
2–

ln
dkz

-----------------+ + 
  δ– 

 

× δ2 αb 1 σ 1
kz

2
----

d k ⊥ b
2–

ln
dkz

-----------------+ 
  δ– 

 – 
 

=  –
α̃αb

σ
---------- 1 σ 1

kz

2
----d Gln

dkz

-------------+ 
  δ– 

 
2

,

α p

ωp
2

k ⊥ p
2

u
2γ2

-------------------, αb

ωb
2γ 3–

k ⊥ b
2

u
2γ2

-------------------, α̃ k ⊥ p
2

k ⊥ b
2

SpG
2
,= = =

σ 2
u

2

c
2

-----γ2
, η0

1
σ
--- 1 1

α p

------– 
  ,= =

k ⊥α
2

Sα
1

k ⊥ m
2

kz
2γ 2–

+
---------------------------

ϕm
2 rα( )

ϕm
2

-----------------
m 1=

∞

∑ 
 
 

1–

, α b p,,= =

G
1

k ⊥ m
2

kz
2γ 2–

+
---------------------------

ϕm rb( )ϕm rp( )

ϕm
2

---------------------------------.
m 1=

∞

∑=

α̃

kz
2γ 2–

α̃
α̃

kz

2
----

d k ⊥ b p,
2–

ln
dkz

--------------------- and
kz

2
----d Gln

dkz

-------------,
plasma, σαp @ 1 and write dispersion relation (5) in the
form

(7)

where the quantities

(8)

with allowance for representation (4), determine the
spectra of the slow and fast beam waves, respectively,
and the quantity δ = δ(0) ≡ η0 gives the spectrum of the
plasma wave. The wavenumbers kz corresponding to
the single-particle and collective Cherenkov reso-
nances between the electron beam and the plasma wave
are calculated from the equations

(9)

by using formulas (6). The instability growth rates are
usually maximum under any of resonance conditions
(9). Below, we will show that this is not always the case.

Depending on the values of the parameters σ, , αb,
αp, and η0 in dispersion relation (7), the instability may
proceed by different mechanisms, which we are going
to analyze and classify below. To begin, we assume that
the following inequality is satisfied:

(10)

As will be clear later, this inequality implies that the
electron beam density is low.

The condition  ≈ 1 corresponds to a strong cou-
pling between the plasma and the beam and holds when
the beam and plasma radii are close to one another (rb ≈
rp). In this case, under any of resonance conditions (9)
and under inequality (10), the growth rate δ is described
by the expression

(11)

The instability with this growth rate originates from the
stimulated single-particle Cherenkov effect. Using
expression (11), we rewrite inequality (10) as

( )1/3 ! 1. In what follows, we will write such
inequalities by neglecting constant factors on the order
of unity and omitting power indices. So, inequality
(10), which is the condition of the single-particle Cher-
enkov effect and under which the instability growth rate
is described by expression (11), takes the form
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As was shown in [7], inequality (12) implies that the
beam current is low in comparison with the limiting vac-
uum current in the waveguide under consideration [8].

Now, assuming, as before, that inequality (10) is sat-
isfied, we consider the condition  ! 1, which corre-
sponds to a weak coupling between the plasma and
beam waves and holds when the beam and the plasma
are separated in space (rb ≠ rp). We also assume that
inequality (12) is met. In this situation, the spectrum of
the slow wave of the electron beam is determined by the

formula δ(1) = –  [see expressions (8)] and the insta-
bility growth rate is maximum when the plasma wave
and the slow beam wave are in resonance, i.e., when

(13)

In this case, dispersion relation (6) has the solution

(14)

Since  < , we can readily see that inequality (10)
again reduces to condition (12), which was used to
derive solution (14). The instability with growth rate
(14) results from the stimulated collective Cherenkov
effect in a waveguide with a low-density electron beam.

We now consider the inequality opposite to inequal-
ity (10), i.e.,

(15)

Under this inequality, dispersion relation (7) reduces to
the following form, which is valid for any value of :

(16)

One of the solutions to this dispersion relation is

(17)

Let us analyze solution (17) in different limiting
cases under the inequality opposite to inequality (12),
namely,

(18)

To do this, we use the fact that, under inequality (18),
the spectrum of the slow beam wave is given by the for-
mula δ(1) = –αbσ [see expressions (8)].

If  ≈ 1, then, for a zero detuning (η0 = 0), solution
(17) becomes
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The instability with growth rate (19) stems from the
negative permittivity of the plasma. In the literature,
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this instability is sometimes called the negative-mass
instability [7, 9]. Under the conditions  ≈ 1 and

(20)

i.e., when the slow beam wave and the plasma wave are
in resonance, the instability growth rate is determined
by the formula

(21)

Although growth rates (19) and (21) are obtained at the
resonance points η0 = 0 and η0 = δ(1), they are not max-
imum: by virtue of inequality (18), growth rate (21) is
faster than growth rate (19). From solution (17), it fol-
lows that the maximum instability growth rate is given
by the expression

(22)

and is reached under the condition

(23)

The instabilities with growth rates (21) and (22) stem
from the negative plasma permittivity and from the
strong coupling between the slow beam wave and the
plasma wave.

Using expressions (19), (21), and (22), we can see
that inequality (15) reduces to inequality (18), which
was employed to obtain dispersion relation (16) and is
opposite to condition (12). Inequality (18) implies that
the electron beam current is high.

We now assume that inequality (15) is satisfied and
consider the condition  ! 1 of a weak coupling
between the slow beam waves and the plasma wave. In
this case, according to solution (17), the maximum
growth rate

(24)

is achieved under condition (20), i.e., at resonance
between the slow beam wave and the plasma wave. The
instability with growth rate (24) originates from the
stimulated collective Cherenkov effect in a waveguide
with a high-density electron beam. It is easy to see that
the condition for the applicability of solution (24)
reduces to inequality (18).

Finally, in the case of a single-particle Cherenkov
resonance (η0 = 0 and  ! 1), the imaginary part of
solution (17) vanishes regardless of the value of the
electron beam density; this indicates that the beam–
plasma system is stable.

The above results of an approximate analytical solu-
tion of dispersion relation (5) are systematized in the
table (in which the factors on the order of unity in the
expressions for the growth rates, inequalities, and reso-
nance conditions are omitted).
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Table

Effect Restrictions
on the parameters

Resonance
condition

Complex
growth rate

Stimulated single-particle Cherenkov effect αbσ2 ! 1,  ≈ 1 η0 = 0, η0 = 

Stimulated collective Cherenkov effect for a low-density 
beam αbσ2 ! 1,  ! 1 η0 = 

Stability of the system αbσ2 ! 1,  ! 1 η0 = 0 Imδ = 0

Negative-mass instability αbσ2 > 1,  ≈ 1 η0 = 0

Negative-mass instability + collective Cherenkov effect αbσ2 > 1,  ≈ 1 η0 = –αbσ

Instability with the maximum growth rate αbσ2 > 1,  ≈ 1 η0 = –αbσ(1 + ) δ = (–1 + i)αbσ
Stimulated collective Cherenkov effect for a high-densi-
ty beam αbσ2 > 1,  ! 1 η0 = –αbσ δ = αbσ(–1 + i )

Stability of the system αbσ2 > 1,  ! 1 η0 = 0 Imδ = 0

α̃ – αb δ –1 i 3+
2

---------------------
αb

σ
------ 

 
1
3
---

=

α̃ – αb δ – αb i
α̃ αb

2σ
-------------- 

 
1
2
---

+=

α̃

α̃ δ i 2αb=

α̃ δ 1
2
--- –1 i 3+( )αbσ=

α̃ α̃

α̃ α̃

α̃

We now turn to an analysis of the beam instabilities
in waveguides with a plasma of comparatively low den-
sity. It is well known that, in a beam–plasma
waveguide, instability can occur only when the plasma
density is higher than a certain minimum threshold
value. Thus, in a waveguide with an electron beam of
low (or, more precisely, infinitely low) density, the
threshold plasma density is determined from the rela-
tionship η0(kz  0) ≥ 0 [3, 5], which, in accordance
with formulas (6), reduces to the relationship

αp(kz  0) = 1 (αb  0). (25)

Hence, in a waveguide with a beam of infinitely low
density, instability occurs only when the plasma density
exceeds the threshold value determined by formula
(25). Let us analyze the situation with an electron beam
of finite density. This way, we do not make the assump-
tion used in deriving dispersion relation (7), namely,
that the plasma density is high.

From dispersion relation (5) in which the parameter
σαp is assumed to be arbitrary, we obtain, instead of
dispersion relation (7), the relation

(26)

where the quantities δ(1) and δ(2) are given by expres-
sions (8) and, in place of βp = 1 in dispersion relation
(7), we use the quantity βp = 1 + 2/(σαp).

We are working under conditions corresponding to
a low (but finite) beam density:

(27)

δ δ 1( )
–( ) δ δ 2( )

–( ) η0 βpδ–( ) α̃
αb

σ
----- 1 σδ–( )2

,–=

σ δ  ! 1, αbσ
2
 ! 1.
Under these conditions, dispersion relation (26)
becomes

(28)

Let us further assume that dispersion relation (28) has
solutions of the form

(29)

We substitute solution (29) into dispersion relation (28)

and ignore the quantity  in parentheses in the second
factor on the left-hand side of the resulting relation to
obtain the quadratic equation

(30)

one of whose roots is given by the formula

(31)

The radicand in this expression is negative (which
means that there is an instability) when

(32)

δ αb+( ) δ αb–( ) η0 βpδ–( ) = α̃
αb

σ
----- 1 2σδ–( ).–

δ αb– δ̃; δ̃  ! αb.+=

δ̃

βpδ̃
2

η0 βp α̃+( ) αb+( )δ̃– α̃
αb

2σ
----------+ 0,=

δ̃ 1
2βp

--------- η0 βp α̃+( ) αb -----+=

+ η0 βp α̃+( ) αb+( )2 2α̃βp α p

σ
-----------------------– .

η0
2α̃βp αb

σ
----------------------- βp α̃+( ) αb.–<
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The maximum instability growth rate is reached at

(33)

and is equal to

(34)

In the case of a dense plasma such that the inequality
αpσ @ 1 is satisfied, expression (34) passes over to the
growth rate (14) of a conventional instability driven by
the collective Cherenkov effect in a waveguide with a
low-density beam. In this case, to within terms on the
order of , expression (33) coincides with formula
(13). For small αp values satisfying the condition
αpσ ! 1, maximum instability growth rate (34)
becomes

(35)

The dependence of growth rate (35) on αp is qualita-
tively different: the growth rate is proportional to the
plasma density.

By virtue of the inequality in solution (29), expres-
sion (34) for the growth rate is valid under the condition

(36)

In the case of a dense plasma such that αpσ @ 1, ine-
quality (36) is satisfied only for  ! 1, by virtue of
conditions (27). For αpσ < 1, inequality (36) can also
hold when  ≈ 1, i.e., when the coupling between the
beam wave and the plasma wave is strong. The latter
case was considered in [10] for a waveguide filled uni-
formly with a beam and plasma. This case refers to the
instability originating from the collective Cherenkov
effect when there is a strong coupling between the slow
beam wave and the plasma wave. Usually, this instabil-
ity does not occur because, under conditions (27), it
turns out to be overpowered by the instability resulting
from the singe-particle Cherenkov effect [see expres-
sion (11) for the growth rate]. The instability in ques-
tion, which can develop only when the plasma density
is sufficiently low, may be of interest for creating
plasma microwave emitters operating at wavelengths
much larger than the transverse dimensions of the
plasma waveguide.

The above analysis of the solutions to dispersion
relation (5) in different limiting cases is interesting
more from a theoretical than from a practical point of
view. The reason is that the parameters of the new
experimental beam–plasma systems that are currently
under development [3, 4] lie in ranges intermediate to
the limits under consideration. Thus, the beam current
parameter αbσ2 usually ranges from several tenths to
several units (in which case the relativistic parameter σ
is about several units). That is why, in order to illustrate

η0 βp α̃+( ) αb–=

δ̃ i
α̃ αb

2σ 1 2/ σα p( )+( )
-----------------------------------------.=

α̃

δ̃ i
2
--- α̃α p αb.=

α̃  ! 2 αbσ 1 2/ σα p( )+( ).

α̃

α̃

PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
the typical growth rates, frequencies, and instability
ranges, we present some results of exact calculations
carried out for an existing experimental system [3, 4]
with the following parameters: the radius of the circular
cross section of the waveguide is R = 2 cm; the radius
of an annular beam is rb = 0.65 cm; the beam thickness
is ∆b = 0.1 cm; the relativistic factor of the beam is γ =
2 (σ = 6); the thickness of an annular plasma is ∆p =
0.1 cm; and the beam currents are Ib = 1, 2, and 3 kA.
For this set of parameters, we consider several different
values of the annular plasma radius rp and several dif-
ferent values of the Langmuir frequency ωp of the
plasma electrons.

Figure 1 shows the dimensional growth rate δω =
Im(kzuδ), calculated as a function of the wavenumber kz

for rp = 0.65 cm, ωp = 2 × 1011 s–1, and three different
values of the electron beam current. In this and other
figures, curves 1, 2, and 3 were obtained for beam cur-
rents of 1, 2, and 3 kA, respectively. In Fig. 1, the
plasma and beam radii are the same, rp = rb, so that we
have  = 1. In this case, depending on the beam cur-
rent, the instability may develop in one of the two lim-
iting regimes: it may be driven by the stimulated single-
particle Cherenkov effect and grow at maximum rate
(11) or it may stem from the negative plasma permittiv-
ity and the strong coupling between the slow beam
wave and the plasma wave and grow at maximum rate
(22). From Fig. 1 we see that, as the beam current
increases, the maximum growth rate becomes faster
and is displaced toward longer wavelengths kz and the
wavelength range over which the instability occurs
becomes wider. All three curves in Fig. 1 are similar in
structure and are satisfactorily described by formula
(17) with  = 1; this indicates that the instability results
from the negative plasma permittivity and the coupling
between the beam wave and the plasma wave. As for
the instability associated with the single-particle Cher-
enkov effect, it occurs at substantially lower beam cur-
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Fig. 1. Instability growth rates for rp = 0.65 cm and ωp = 2 ×
1011 s–1. Here and in the subsequent figures, curves 1, 2,
and 3 were obtained for beam currents of 1, 2, and 3 kA,
respectively.
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rents, the remaining parameters of the system being the
same.

In Fig. 2, the Langmuir frequency of the plasma
electrons is taken to be the same as in Fig. 1, ωp = 2 ×
1011 s–1, but the plasma radius is increased to rp =
1.2 cm, in which case the coupling coefficient is
smaller than unity,  < 1. However, the decrease in theα̃

0.05

10 2 3 4 5 6

0.10
0.15
0.20
0.25
0.30
0.35
0.40

kz, cm–1

δω, 1010 s–1

1

2
3

Fig. 2. Instability growth rates for rp = 1.2 cm and ωp = 2 ×
1011 s–1.
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Fig. 3. Instability growth rates for rp = 0.65 cm and ωp = 3 ×
1011 s–1.
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Fig. 4. Instability growth rates for rp = 1.2 cm and ωp = 3 ×
1011 s–1.
coupling coefficient is insufficient to qualitatively
change the shape of the curves. The only effect is that
the growth rates become slower and the wavelength
range over which the instability occurs becomes nar-
rower. This effect stems from a slight decrease in .

In Fig. 3, the plasma radius is again equal to the
beam radius, rp = 0.65 cm = rb, but the Langmuir fre-
quency of the plasma electrons is increased to ωp = 3 ×
1011 s–1. In a sense, Fig. 3 is identical to Fig. 1 because

 = 1. The only difference is that, in Fig. 3, the growth
rates are faster, their maxima are displaced to the right,
and the range of kz values over which the instability
occurs becomes wider. This discrepancy is associated
with an increase in the electron Langmuir frequency of
the plasma. The increase in the growth rate stems from
an increase in the resonance values of kzu, while the
dimensionless growth rate δ decreases as the electron
Langmuir frequency of the plasma increases. Thus, in
Fig. 1, the dimensionless growth rate is δmax ≈ 0.13,
while, in Fig. 3, we have δmax ≈ 0.1. Note that, in all cal-
culations, the maximum δ value was smaller than 0.14;
this guarantees the validity of dispersion relation (5),
which was obtained using the inequality in representa-
tion (4).

In Fig. 4, the Langmuir frequency of the plasma
electrons is taken to be ωp = 3 × 1011 s–1 and the plasma
radius is increased to rp = 1.2 cm. In this case, the coef-
ficient  decreases to a greater extent than that in Fig. 2
because the Langmuir frequency is higher. The conse-
quences of such a significant decrease are clearly seen
in Fig. 4: the growth rate becomes substantially slower
and the instability range narrows. In particular, the
instability does not occur in the range of small wave-
numbers kz. The curves in Fig. 4 are satisfactorily
described by formula (17) with the corresponding 
values. This allows us to conclude that Fig. 4 (at least at
Ib = 3 kA) refers to the instability originating from the
collective Cherenkov effect in a waveguide with a high-
density beam.

We now consider the instabilities occurring at a low
plasma density. Figure 5 shows the instability growth
rates calculated for ωp = 1011 s–1 and different plasma
radii: rp = (a) 0.65, (b) 0.8, and (c) 1.1 cm (at larger
plasma radii, the instability does not occur). We can see
that, at a high beam current, the growth rates are fast
and are maximum at small wavenumbers kz. Thus, for
rp = 0.8 cm and Ib = 2 kA, the maximum growth rate is
about 2 × 109 s–1 and is reached at kzu ≈ 3 × 1010 s–1. In
a waveguide of radius 2 cm, this instability generates
waves with wavelengths of λ ≈ 6 cm.

In conclusion, note that, for beam–plasma systems
with parameters close to those chosen for our analysis,
the most typical instability is the one associated with
both the interaction between the beam wave and the
plasma wave and the negative (within the instability
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α̃

α̃

PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004



CLASSIFICATION OF THE REGIMES OF CHERENKOV BEAM INSTABILITIES 75
range) permittivity of the plasma. Because of the hybrid
nature of the instability, its growth rate is fast and the
range of wave numbers over which it occurs is wide. As
the electron Langmuir frequency of the plasma
increases, the instability evolves to the regime of the
collective Cherenkov effect in a waveguide with a high-
density beam. As a result, the instability growth rate
decreases and the instability range narrows (i.e., the
resonant properties of the beam–plasma system
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Fig. 5. Instability growth rates at a low plasma density (ωp =

1011 s–1) for different radii of the plasma tube: rp = (a) 0.65,
(b) 0.8, and (c) 1.1 cm.
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become more pronounced). Otherwise, as the electron
Langmuir frequency of the plasma decreases, the reso-
nant properties of an unstable beam–plasma system
become worse because of a decrease in the frequency
kzu and growth rate δω.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of
Education of the Russian Federation (project no. E02-
3.2-447); the Russian Foundation for Basic Research
(project no. 01-02-17265); and the Ministry of Indus-
try, Science, and Technologies of the Russian Federa-
tion under the Program for Government Support of
Leading Scientific Schools (project no. 1962.2003.2).

REFERENCES
1. A. F. Aleksandrov, M. V. Kuzelev, and A. N. Khalilov,

Zh. Éksp. Teor. Fiz. 93, 1714 (1987) [Sov. Phys. JETP
66, 978 (1987)].

2. A. F. Aleksandrov, M. V. Kuzelev, V. A. Panin, et al., Fiz.
Plazmy 18, 40 (1992) [Sov. J. Plasma Phys. 18, 20
(1992)].

3. M. V. Kuzelev, O. T. Loza, A. A. Rukhadze, et al., Fiz.
Plazmy 27, 710 (2001) [Plasma Phys. Rep. 27, 669
(2001)].

4. P. S. Strelkov and D. K. Ul’yanov, Fiz. Plazmy 28, 748
(2002) [Plasma Phys. Rep. 28, 690 (2002)].

5. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov,
Plasma Relativistic Microwave Electronics (Mosk. Gos.
Tekhn. Univ. im. N. É. Baumana, Moscow, 2002).

6. M. V. Kuzelev, Fiz. Plazmy 28, 544 (2002) [Plasma
Phys. Rep. 28, 501 (2002)].

7. M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of
Dense Electron Beams in Plasma (Nauka, Moscow,
1990).

8. L. S. Bogdankevich and A. A. Rukhadze, Usp. Fiz. Nauk
103, 609 (1971) [Sov. Phys. Usp. 14, 163 (1971)].

9. V. V. Bogdanov, M. V. Kuzelev, and A. A. Rukhadze, Fiz.
Plazmy 10, 548 (1984) [Sov. J. Plasma Phys. 10, 319
(1984)].

10. Yu. P. Bliokh, V. I. Karas’, M. G. Lyubarskiœ, et al., Dokl.
Akad. Nauk 275, 56 (1984) [Sov. Phys. Dokl. 29, 205
(1984)].

Translated by I.A. Kalabalyk



  

Plasma Physics Reports, Vol. 30, No. 1, 2004, pp. 76–82. Translated from Fizika Plazmy, Vol. 30, No. 1, 2004, pp. 80–87.
Original Russian Text Copyright © 2004 by Trubetskov, Khramov.

                                         

PLASMA
ELECTRONICS

       
Linear Theory of the Interaction of an Electron Beam 
with Electromagnetic Waves in the Ion Focus Regime

in a Pasotron
D. I. Trubetskov and A. E. Khramov

“College” State Research and Education Center, Chernyshevsky Saratov State University, 
Astrakhanskaya ul. 83, Saratov, 410026 Russia

Received April 23, 2003

Abstract—A study is made of the interaction of an electron beam focused by a positive ion background with
electromagnetic waves in a pasotron—a modern plasma microwave electronics device with long-term interac-
tion in the ion focus regime. © 2004 MAIK “Nauka/Interperiodica”.
Pasotrons1 constitute a new class of high-power
plasma microwave oscillators and amplifiers [1–6] hav-
ing two essential elements: (i) an electron gun with a
plasma cathode for producing an intense electron beam
and (ii) a gas-filled slow-wave electrodynamic structure
in which a plasma channel is created through the ion-
ization of gas atoms by the injected electron beam. In a
pasotron, an electron beam passes through the interac-
tion space in the ion focus regime, in which the plasma
produced by ionizing a neutral gas (hydrogen, helium,
or xenon) neutralizes the beam space charge and creates
a fairly strong focusing force that compresses the beam
injected into the interaction space.

Such a method of transporting an electron beam
through the interaction space makes it possible to sub-
stantially reduce the weight and overall dimensions of
high-power linear microwave sources in which electron
beams should be focused in one way or another.2 

Two types of experimental pasotrons are presently
being developed: pasotrons operating as backward-
wave tube oscillators (BWT pasotrons) and pasotrons
operating as traveling-wave tube amplifiers (TWT
pasotrons). Depending on the frequency range and out-
put power, various periodic slow-wave electrodynamic
structures (corrugated waveguides, helices, coupled-
resonator chains, etc.) are used in these devices. This
allows one to assign pasotrons to devices with long-
term O-type interaction and ion focusing of the electron
beam. As was mentioned above, the electron beam in a
pasotron is generated using an electron gun with a

1 The term pasotron is derived from the words Plasma Assisted
Slow Wave Oscillator.

2 The idea of the ion focusing of electron beams in devices with
long-term interaction was proposed and examined as early as the
1950s–1960s (see, e.g., [7–11]). However, this idea did not find
wide practical application at that time and surfaced again only in
the 1990s in connection with the development of high-power
compact microwave amplifiers and oscillators with long-term
interaction.
1063-780X/04/3001- $26.00 © 0076
plasma cathode [12–15]. This makes it possible to effi-
ciently form an electron beam in systems in which the
transportation and interaction regions are entirely filled
with plasma.

The aim of this study is to analytically (in a linear
approximation) investigate the interaction of a traveling
electromagnetic wave with an electron beam focused
by a positive ion space charge. The analysis is based on
both the mathematical apparatus of the theory of the
interaction of curved electron beams with electromag-
netic waves [16, 17] and the results of theoretical stud-
ies of the nonmagnetic transportation of electron beams
in the ion focus regime [7, 9–11].

Let us consider a simplified pasotron model in
which an electron beam focused by the ion space
charge propagates with a velocity v 0 along a slow-wave
structure and interacts with the traveling electromag-
netic waves in a transmission line under Cherenkov res-
onance conditions. It is assumed that the plasma chan-
nel through which the beam is transported has already
been formed and the system has already relaxed to a
steady state.

Let the beam electrons move along the z axis, which
coincides with the symmetry axis of the interaction
region of the system under study. With allowance for
axial symmetry, the equations of motion of the beam
electrons in the presence of a dense ion background can
be written in the form

(1)

(2)

Here, z = v 0(t – t1) = v 0τ (i.e., it is assumed that the lon-
gitudinal electron velocity v 0 does not vary), fi is the
focusing force produced by the ions, fe is the defocusing

d
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dt
2

-------- η f i f e p1+ +( ),=

d
2
z

dt
2

-------- 0.=
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force produced by the electron space charge, p1 is the
effective force related to the electron thermal motion,3

and η is the specific electron charge.
We assume that the space charge density is uniform

over the beam cross section and the axial wavelength of
the beam surface perturbations is smaller than the beam
diameter. Then, using Gauss’s theorem and the adia-
batic equation of state for the electron gas [7–9], we
arrive at the following equation of motion of an electron
beam in the ion focus regime:

(3)

where ρi is the mean ion density in a given transverse
cross section of the beam; I0 and V0 are the beam cur-
rent and potential, respectively; ϕT = kT/e, with k an T
being the Boltzmann constant and the temperature of
the electrons emitted from the cathode; and rk is the
radius characterizing the position of the electrons at the
cathode.

We will assume that the amplitude of transverse
fluctuations of the focused beam is small. The static
radius of the beam can then be represented in the form

(4)

Here, r0 is the equilibrium radius of the beam and  is
the perturbation of the beam radius. Under the adopted
assumptions, the equation for the perturbation 
reduces to the linear equation

(5)

where the quantity δ determines the axial wavelength
2π/δ of the beam surface perturbations. In the case (ρi –
ρe)/ρe ! 1, which is of practical interest, the quantity δ
is equal to [8]

(6)

Here, mi and me are the ion and electron masses, respec-
tively; s is the specific ionization; and P is the gas pres-
sure.

The solution to Eq. (5) is

(7)

where the coefficients a and b are determined by the

boundary conditions at z = 0: a =  and b = .

Let us now consider the problem of high-frequency
beam oscillations in the one-dimensional approxima-
tion without allowance for the gradients of static fields
and the high-frequency fields produced by the space

3 It was shown in [7–9] that ignoring the transverse thermal elec-
tron motion in the ion focus regime leads to significant errors in
determining the parameters of the transported beam.
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charge of the beam. Assuming that all the perturbed
quantities depend on time as exp( jωt), the equation for
the bunched current in the high-frequency field of a
traveling wave can be written in the form

(8)

Here, βe = ω/v 0, I0 is the injected beam current, and the

high-frequency field  is equal to [17]

(9)

where β0 is the longitudinal wavenumber of an electro-
magnetic wave in the transmission line.

The equation for bunched current is more conve-
nient to analyze in the integral (rather than in the differ-
ential) form. Taking into account that z = v 0τ (which
implies that the amplitude of the high-frequency field

 is small), we transform differential equation (8)
into the integral equation

(10)

where V0 = /2η is the accelerating voltage.

We expand the exponential factor exp(– )

(where  is determined by formulas (4) and (7)) in
expression (9) in a Fourier series and restrict ourselves
to the terms with the numbers k = 0 and ±1. We then
obtain

(11)

Here, I1 and I0 are the first- and zero-order modified
Bessel functions.

Let us consider the case a ≠ 0 and b = 0, which cor-
responds to the boundary condition  = 0.
This boundary condition corresponds to a beam
injected parallel with the system axis. Integrating
Eq. (10) with this boundary condition, we find
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(12)

Expression (12) for bunched current shows that
transverse beam dynamics (periodic oscillations with a
spatial period of 2π/δ) substantially affects electron
bunching. Let us consider this point in more detail. To
this end, we will find the high-frequency field induced
by the bunched current in the transmission line and,
thus, the power transferred to the high-frequency field
from the electron beam in the ion focus regime.

We will separately consider the interaction of the
focused electron beam with a forward and a backward
wave in a transmission line (a TWT and a BWT
pasotrons, respectively).

Pasotron operating as a traveling-wave tube
amplifier (TWT pasotron). We use expression (12)
for bunched current and the time-independent integral
equation describing the excitation of a forward wave by
a curved beam in the transmission line [16, 18],

, (13)

where ϕ⊥ (r) is the transverse profile of high-frequency
field (9) in the transmission line4 and K is the coupling
impedance. Taking into account that the amplitude of
transverse beam oscillations is small (  ! r0), after
not complicated but rather cumbersome algebra, we
obtain the expression for the total field at the output of
the waveguide system (x = l) in the ion focus regime,

(14)

where

(15)

4 The function ϕ⊥ (r) determines the value of the high-frequency
field of the wave at the point r through which the beam (which is
assumed to be thin) passes at a given instant.
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Here, Φ0 = (βe – β0)l is the relative transit angle of an
electron in the interaction region, ϕ = δl, C3 =

, χ = aβ0rb, and N = βel/2π is the ratio of the

tube length to the wavelength of the excited wave (the
electric length of the tube).

The functions Fa(Φ0, ϕ, χ) and Fr(Φ0, ϕ, χ) describe
the interaction of the focused electron beam with a trav-
eling wave in a pasotron in the ion focus regime and are
proportional to the active and reactive components of
the electron interaction power Pe. The above expres-
sions are valid when the transmission line is nondissi-
pative; i.e., the wavenumber of the wave propagating in
the transmission line is real.

We note that, in the limiting case of a constant beam
cross section (χ  0, ϕ  0), the above expressions
for Fa(Φ0, ϕ, χ) and Fr(Φ0, ϕ, χ) transform into the
well-known expressions describing beam bunching in
conventional O-type devices [18, 19].

We also note that, when the resonance condition
βe – β0 = ±δ is satisfied, both Fa and Fr increase without
bound, whereas the true solution must be finite at any
relationship between βe, β0, and δ. This is related to the
fact that we restricted our analysis to small perturba-
tions of the static beam trajectory in the ion focus
regime and a small number of the expansion terms.
Hence, we will not further consider the case βe – β0 =
±δ. This is quite reasonable because the value of |ϕ| =
|δl | estimated by the data from pasotron experiments [3,
4] shows that the |δl | value is fairly large and falls into
the range Φ0 = (βe – β0)l ∈  (–3π, 3π), which is of inter-
est to us.

Figure 1 shows the function Fa(Φ0, ϕ, χ) versus the
relative transit angle Φ0 under the assumption that vari-
ations in this angle are caused by variations in the wave
phase velocity at constant values of l, ω, and v 0. The
curves are calculated at ϕ = 20 and different values of
the parameter χ (which can be interpreted as different
ion focus regimes in the pasotron). The curve χ = 0 in
Fig. 1 corresponds to the active component of the inter-
action power of electrons confined by an infinitely
strong magnetic field (a conventional TWT amplifier)
[18, 19].

It can be seen from Fig. 1 that, in the range of rela-
tive transit angles –π < Φ0 < π, the inequality |Fa(Φ0, ϕ,
χ)| ≤ Fa(Φ0, 0, 0)| holds; i.e., the efficiency of the elec-
tron–wave interaction is increased in this range. It also
follows from the figure that the larger the parameter χ
(which can be interpreted as the amplitude of the trans-

Fr

I0 χ( ) 2 Φ0sin Φ0 1 Φ0cos–( )–( )

Φ0
3

------------------------------------------------------------------------------=

+
2I1 χ( ) Φ0

2 ϕ2
+( ) ϕsin ϕ Φ0

2 ϕ2
– 2Φ0 Φ0sin–( )+( )

ϕ Φ0
2 ϕ2

–( )
2

--------------------------------------------------------------------------------------------------------------------------.

I0K
4V0
---------

β0

βe

----- 
 

2

PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004



LINEAR THEORY OF THE INTERACTION 79
verse oscillations of the electron bean in the ion focus
regime), the larger the |Fa | value. This is related to the
increase in the effective coupling impedance of the
pasotron slow-wave system with increasing beam
radius. In the ranges Φ0 > π and Φ0 < –π, the efficiency
of the electron–wave interaction is lower than in a con-
ventional TWT amplifier. The degree to which the
interaction efficiency increases or decreases depends
significantly on the parameters ϕ and χ, which charac-
terize the ion focus regime.

Let us consider this point in more detail. In the
experimental papers [2–4], particular attention was
paid to the dependence of the pasotron characteristics
(first all, the output power) on the parameters of the
working gas, which is ionized when the beam is
injected into the system.

Taking into account expression (6) for δ and formula
(15) for Fa, we find the active interaction power as a
function of the mass of the ions filling the interaction
space. Figure 2 shows the normalized active interaction
power Fa(mi)/Fa(mH) versus the ion-to-proton mass
ratio. In the figure, the points corresponding to the
gases that are most frequently used in pasotron experi-
ments (He, Ar, and Kr) are indicated. It is seen that the
larger the mass of the ions that are used to focus the
electron beam in a pasotron, the higher the active
beam–wave interaction power; this is confirmed by the
experimental results of [1, 4].

Another important pasotron characteristic is the
power gain factor G, which is defined as

G [dB] = 10 (l)/E(0)|2),
where the field amplitude E(l) at the output of the
amplifier is determined by formula (14).

Figure 3 shows the pasotron power gain factor as a
function of the parameter CN for different values of the
ion-focusing parameter χ. These curves can be inter-
preted as the dependences of the power gain factor on

the beam current (CN ∝  ) or the interaction length

(|Elog

I0
1/3

0.1

2.5
χ = 0 7.55.0

–2.5

–5.0–7.5

0.2

Fa

Φ0

0.01
0.02
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0.080.05

Fig. 1. Function Fa(Φ0, ϕ, χ) vs. relative transit angle Φ0 for
ϕ = 20 and different values of χ.
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(CN ∝  l). It can be seen that, at small values of CN, the
wave power varies insignificantly along the tube. This
is related to the fact that, at small interaction lengths,
the beam is yet almost unbunched and inefficiently
interacts with the forward electromagnetic wave. As the
parameter CN increases, the amplitudes of both the

0.65

1510

0.70

Fa(mi)/Fa(mH)

5 20 25 30 35

0.75

mi/mH
He Ar

Kr

0.55

Fig. 2. Fa(mi)/Fa(mH) ratio as a function of the ion-to-pro-
ton mass ratio for Φ0 = –1.5π, ϕ = 20, and χ = 0.05.
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Fig. 3. Power gain factor G of a TWT pasotron amplifier vs.
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and (b) –1.2π, and different values of χ. The dashed lines
correspond to the case of a TWT tube with an electron beam
in an infinitely strong magnetic field (χ = 0).
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bunched current and the field in the tube increase,
which results in a rapid increase in the power gain fac-
tor.

It can be seen in Fig. 3a, which is drawn for the rel-
ative transit angle Φ0 > –π, that the pasotron power gain
factor increases with increasing parameter χ. As has
already been pointed out, this is related to an increase
in the effective beam–wave coupling impedance at
|Φ0 | < π (see Fig. 1).

At Φ0 < –π (Fig. 3b), the situation is the opposite. In
this case, the power gain factor G decreases with
increasing χ, which is related to the decrease in |Fa | at |
|Φ0 | > π. It can also be seen in Fig. 3b that, at large val-
ues of the ion-focusing parameter (χ > 0.22), the depen-
dence G(CN) becomes nonmonotonic.

In order to examine in more detail the problem of
signal amplification in a pasotron, we consider the
dependence of the power gain factor on the relative
transit angle Φ0. Note that, at a fixed signal frequency
ω, the relative transit angle characterizes the detuning
from the “cold” beam–wave synchronism, i.e., the dif-
ference between the phase velocity v ph of a “cold” wave
in the transmission line and the electron beam velocity
v0. As follows from the definition of the relative transit
angle, the case v0 > vph correspond to Φ0 < 0 and vice
versa. Figure 4 shows the power gain factor G as a func-
tion of Φ0 for different values of the parameter χ and
the dimensionless pasotron length CN. The case χ = 0
corresponds to the power gain factor of a conventional
TWT amplifier calculated in the first order of the
method of successive approximations (see [18, 19] for
details), which is valid at CN < 1.0.

The transit-angle dependences of the power gain
factor G(Φ0) calculated at different dimensionless tube
lengths CN (different beam currents) show that the
shape of the dependence becomes more intricate as the
parameter χ increases. Thus, at χ < 0.03, the depen-
dence of the power gain factor on the relative transit
angle Φ0 (or the wave frequency) is close to the corre-
sponding curve calculated for a conventional TWT
amplifier (χ = 0). However, at χ > 0.03, the shape of the
function G(Φ0, χ) changes radically and the depen-
dence G(Φ0) becomes highly nonmonotonic as the
parameter CN increases. The latter is a very adverse
feature, because, in this case, a TWT pasotron will sub-
stantially distort a broadband signal even when operat-
ing in the linear regime.

A pasotron operating as a backward-wave tube
amplifier or oscillator (BWT pasotron). Let us now
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
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consider an electron beam interacting with a backward
wave in the slow-wave structure of a pasotron. In this
case, instead of integral equation (13), describing the
amplification of a forward wave by a curved electron
beam, one must use the following equation describing
the excitation of a backward wave [18, 19]:

(17)

After mathematical manipulations similar to those per-
formed for the case of a TWT pasotron, we arrive at an
expression for the total field at the output of the system
(x = 0). In the first-order approximation, it has the form

(18)

where the functions Fa and Fr are defined by formulas
(15) and (16) and the other notation is the same as in
formula (14).

By analogy to a TWT pasotron, we can introduce
the power gain factor of a BWT pasotron:

G [dB] = 10 ,

where E(l) is the amplitude of the input signal and E(0)
is the amplitude of the output signal, as described by
expression (18).

Figure 5a shows the power gain factor of a BWT
pasotron as a function of Φ0 (the input signal frequency
ω) for different values of the ion-focusing parameter χ
and the same value of CN =0.3 (the same beam cur-
rent). It can be seen from this figure that, at the same
beam current (the parameter CN) and the optimum
electron transit angle, the larger the parameter χ, the
higher the power gain factor G and the narrower the
amplification band G(Φ0) (which is defined as the
width of the ∆Φ0 peak at a level of 3 dB). The relative
amplification bandwidth ∆ω/ω is related to ∆Φ0 by the
formula ∆ω/ω ≈ ∆Φ0/2πN(1 – v 0/v g)–1, where v g is the
wave group velocity in the transmission line [18]. We
note that, as the parameter χ increases, the second
amplification region appears at Φ0 ≈ –2.5π.

The above is illustrated by Fig. 5b, which shows the
maximum value of the power gain factor Gmax and the
amplification bandwidth ∆ω as functions of the param-
eter χ at ϕ = 15. All the quantities are normalized to
their values at χ = 0. It can be seen that, in the frame-
work of linear theory, the increase in the amplitude of
the beam oscillations is accompanied by both the
increase in the power gain factor from 16 to 24 dB and
the narrowing of the relative amplification bandwidth.
Such behavior of the power gain factor is related, as has
already been pointed out, to an increase in the effective
beam–wave coupling impedance in the transmission
line with increasing ion-focusing parameter χ.
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---------- ĩ ξ( )ϕ⊥ ri( )e

jβ0 z ξ–( )–
ξ .d

z

l

∫–=

E 0( ) E
0
e

jβ0l
e

β0ri–
=

× 1 2πCN( )3
Fa Φ0 ϕ χ, ,( ) jFr Φ0 ϕ χ, ,( )+( )+[ ] ,

E 0( )/E l( ) 2( )log
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
We note that, in contrast to the TWT pasotron, we
are now dealing with a regenerative amplification.
Hence, at certain parameters of the system, the regime
of backward-wave generation can be achieved. For
such a BWT pasotron oscillator to be excited, it is nec-
essary that either the gain factor tend to infinity or the
field amplitude at the collector end of the tube vanish
(E(l) = 0). Then, from expression (18) and formulas
(15) and (16), we obtain the starting conditions for a
BWT oscillator operating in the ion focus regime
(BWT pasotron):

(19)

where the lower index s stands for the parameter values
corresponding to the self-excitation of a BWT pasotron
oscillator.

The solution of Eqs. (19) shows that the starting
conditions for a pasotron oscillator depend weakly on
the ion-focusing parameters and are close to those for
an O-type BWT tube: Φ0s ≈ –π and CNs ≈ 3.0. It also
follows from Eqs. (19) that the higher oscillation modes
are easier to excite in a pasotron oscillator than in con-
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Fig. 5. (a) Power gain factor G of a BWT pasotron amplifier
vs. relative transit angle Φ0 for the same values of χ as in
Fig. 4; (b) the maximum value of the power gain factor
Gmax and the amplification bandwidth ∆ω as functions of χ
at ϕ = 15.
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ventional BWT oscillators; however, to determine the
starting conditions for the excitation of these modes, it
is necessary to use higher orders of the successive
approximation method.

Therefore, in this study, we have analytically (in a
linear approximation) investigated the interaction of an
electron beam with a forward and a backward waves in
a transmission line in the ion focus regime. The analysis
is based on the method of successive approximations
that was earlier used successfully in studying devices
with long-term interaction. The results of the investiga-
tion of the interaction of an electron beam with slowed-
down electromagnetic waves in the ion focus regime
comply well with a simple qualitative picture of the
physical processes in a pasotron.
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Abstract—A mechanism is proposed for the generation of a vortex electric field in the ionospheric E-region.
It is shown that long-scale (with a wavelength of L > 103 km) synoptically short-period (from several minutes
to several hours) fast (with a propagation velocity higher than 1 km/s) processes excite a vortex electric field
that may be much higher than the dynamo field generated in this region by ionospheric winds. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is commonly accepted [1–3] that, in the E-region,
ionospheric winds can only result in the excitation of an
electrostatic polarization field via the dynamo mecha-
nism: EΦ = –—Φ = –(Vn × H0)/c, where Vn is the veloc-
ity of the neutral component (wind), H0 is the geomag-
netic field, Φ is the electrostatic potential, and c is the
speed of light. In this approach, only the currents j
excited in the ionospheric E-region are usually consid-
ered, whereas the geomagnetic field perturbations h
produced by these currents are ignored. It is clear, how-
ever, that the description of magnetohydrodynamic
(MHD) waves (and, thus, a vortex electric field) is
impossible in disregard of a vector equation for h
(∂h/∂t = –c— × E).

Meanwhile, measurements performed with a global
network of ionospheric and magnetic observatories [4–
6] clearly show that, during earthquakes, major artifi-
cial explosions, and magnetic storms and substorms,
long-scale (with a wavelength of λ ≅ 103–104 km) elec-
tromagnetic perturbations are excited in the iono-
spheric E-region and propagate in the latitudinal direc-
tion around the Earth with relatively high (1–20 km/s)
phase velocities. The characteristic period of such per-
turbations varies from several minutes to several hours,
and their daytime and nighttime phase velocities differ
by one order of magnitude.

We note that, in [7–9], theoretical models were pro-
posed in which geomagnetic pulsations in the above
frequency and phase-velocity ranges are interpreted as
long-wavelength MHD perturbations. The maximum
wavelength of these perturbations is less than 103 km
(for longer perturbations with wavelengths of 103–
104 km, it becomes necessary to take into account the
inhomogeneity of the geomagnetic field and the angu-
lar velocity of the Earth’s rotation). The phase velocity
of MHD waves is proportional to the Alfvén velocity in
1063-780X/04/3001- $26.00 © 20083
terms of the neutral particle density [1–3, 9] (in contrast
to fully ionized plasma, in which the Alfvén velocity is
determined by the ion density). Therefore, the observed
difference in the daytime and nighttime phase veloci-
ties of long-scale (103–104 km) electromagnetic iono-
spheric perturbations under consideration does not
allow one to identify these perturbations as Alfvén,
magnetosonic, or gyrotropic waves.

The existence of fast planetary electromagnetic
waves in the ionospheric E-region was theoretically
predicted by one of us in [10]. This approach was fur-
ther developed in [11, 12]. In those papers, it was a pri-
ori assumed that both electrostatic and vortex electric
fields are present in the E-region. It was shown that the
electrostatic polarization field EΦ generates slow
Rossby waves in the E-region that propagate in the lat-
itudinal direction with a phase velocity on the order of
the mean zonal wind velocity Cph– =  – ηeHp(1 +

3sin2θ')1/2/(Mcr0 ), whereas the vortex electric field
Ev = –c–1∂A/∂t generates fast planetary electromagnetic
waves propagating in the latitudinal direction with the
phase velocity Cph+ = CH = cHp(1 + 3sin2θ')1/2/(4πeNr0).
Here, Ä is the vector potential; Cph = ω/kx is the wave
phase velocity; ω is the wave frequency; kx = 2π/λ is the

zonal wavenumber;  is the velocity of ionospheric
zonal wind; η = N/Nn is the degree of ionization; N and
Nn are the electron and neutral-particle densities,
respectively; θ' = 90°–ϕ' is the complement of the geo-
magnetic latitude; r0 is the Earth’s radius; e is the ele-
mentary charge; M is the mass of an ion (or a mole-

cule); Hp(1 + 3sin2θ')1/2/r0 = (  + )1/2, β1 = ∂H0z/∂y,

β2 = ∂H0y/∂y, ∂/∂y = – /∂θ', H0z = −2Hpcosθ', H0y =
–Hpsinθ'; and Hp = 3.2 × 10–5 T is the magnetic field
strength on the geomagnetic equator. Slow Rossby
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waves were theoretically predicted in [13, 14]. In con-
trast to ordinary Rossby waves, which propagate only
at mid- and higher altitudes, these long-scale iono-
spheric waves are planetary in character and can prop-
agate at any geomagnetic altitude. On the magnetic
equator (ϕ' = 0), their phase velocity is maximum.
These waves are, in fact, eigenmodes of the ionospheric
E-region [10–12].

Observations of fast planetary electromagnetic
waves [15–18] indicate the existence of a source gener-
ating a vortex electric field in the E-region.

In this paper, a mechanism for the generation of a
vortex electric field in the E-region is proposed and the
generated field is estimated. It is shown that the above
slow and fast planetary waves play an important role in
the generation of a vortex electric field.

2. PROBLEM FORMULATION
AND BASIC DYNAMIC EQUATIONS

The ionospheric medium is a partially ionized three-
component plasma. It can be described by quasi-hydro-
dynamic equations that are similar to hydrodynamic
ones; the only difference is the presence in the former
of friction terms related to collisions between particles
of different species [1, 19, 20]. Quasi-hydrodynamic
equations allow one to completely describe the electric
current, particle flows, and diffusion processes in the
ionospheric plasma. For the long-wavelength (λ >
103 km) ionospheric perturbations under consideration,
atmosphere inhomogeneity, plasma compressibility,
and diffusion processes are of minor importance. In this
case, quasi-hydrodynamic equations can be substan-
tially simplified and reduced to the following set of lin-
earized equations [1, 9, 19, 20]:

(1)

(2)

(3)

(4)

Here, lower indices n, e, and i stand for the quantities
related to the neutral, electron, and ion components,
respectively; V is the hydrodynamic velocity; ρn =
MNn, ρe = mN, and ρi = MN are the mass densities of
the plasma components; m is the mass of an electron;
νei , νen, and νin are the electron–ion, electron–neutral,
and ion–neutral collision frequencies, respectively; and

ρn

∂Vn

∂t
--------- Fn ρeνen Vn Ve–( )– ρiν in Vn Vi–( ),–=

ρe

∂Ve

∂t
--------- Fe ρeνei Ve Vi–( )–=

– ρeνen Ve Vn–( ) eNE–
eN
c

-------Ve– H0,×

ρi

∂Vi

∂t
-------- Fi ρeνei Vi Ve–( )–=

– ρiν in Vi Vn–( ) eNE
eN
c

-------Vi H0,×+ +

— Vn⋅ 0, — Ve⋅ 0, — Vi⋅ 0.= = =
Fn, Fe, and Fi are nonelectromagnetic forces that gener-
ally contain the gradients of the tensor of the momen-
tum flux density for the corresponding plasma compo-
nents.

Equations (1)–(4), along with Maxwell’s equations
and equations of state and heat transfer for each of the
component, form a closed set, which can be further
simplified using the results of observations of dynamic
processes in the ionospheric E-region.

We note that the forces Fe, Fi, and Fn are propor-
tional to the densities of the corresponding plasma
components. The degree of ionization η of the iono-
spheric plasma at altitudes of 80–500 km varies from
10–9 to 10–4 [1–3, 9, 19, 20]. This means that the elec-
tron and ion inertia play a negligible role as compared
to the inertia of the neutral component and, thus, can be
ignored. Taking this into account and allowing for the
fact that, at η ! 1, the inequality Fn @ Fe , Fi is satisfied,
we sum up Eqs. (1)–(3) to arrive at the following equa-
tion of motion for the ionospheric medium in the E-
region:

(5)

where j = eN(Vi – Ve) is the current density. We also
take into account that, in view of the inequality η ! 1,
the nonelectromagnetic forces Fe and Fi are too weak to
excite appreciable ionospheric currents at altitudes of
80–500 km. Then, ignoring the electron inertia, Eqs. (2)
and (3) can be written in the form

(6)

(7)

where VD = cE × H0/  is the electric drift velocity,
h0 = H0/H0 is the unit vector directed along the geo-
magnetic field, and ωα = eH0/(mαc), (α = e, i) is the
electron (ion) gyrofrequency. Taking into account that
the electron and ion gyrofrequencies in the ionosphere
are ωe ≈ 107 s–1 and ωi ≈ (1.5–3) × 102 s–1, respectively,
and the collision frequencies at altitudes of 80–500 km
reach their maximum values (νen ~ 105 s–1, νin ~ 104 s–1,
and νei ~ 104 s–1) in the lower layers and rapidly
decrease with altitude, we obtain νei/ωe ! 1 and
νen/ωe ! 1; i.e., the electron component is always mag-
netized in this upper atmosphere region. Moreover, the
frequency of the perturbations under study satisfies the
inequalities ω ≤ 10–2 s–1 and ω/ωi ≤ 10–4 ! 1. With

ρn

∂Vn

∂t
--------- Fn

1
c
--- j H0,×+=

νei

ωe

------ Ve Vi–( )–
νen

ωe

------- Ve Vn–( )–

+ VD h0× Ve h0,×=

1
ωi

-----
∂Vi

∂t
--------

νei

ωe

------ Vi Ve–( )–
ν in

ωi

------ Vi Vn–( )–=

+ Vi h0 VD– h0,××

H0
2
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allowance for the above inequalities, Eqs. (6) and (7)
take the form

(8)

(9)

It follows from Eq. (8) that the hydrodynamic veloc-
ity of the electron component is equal to the electric
drift velocity (Ve = VD) and the geomagnetic field ç0 is
always frozen in the electron flow (∂h/∂t = — × (Ve ×
H0)). Taking the scalar product of Eq. (8) with ç0, we
obtain the important relationship Ö · ç0 = 0, which
shows that the generated electric field is orthogonal to
the geomagnetic field ç0.

As concerns Eq. (9) for ions, we note that, at alti-
tudes of 80–150 km, the inequality ωi /νin ~ 10–2 ! 1 is
satisfied. Hence, in this region, we can omit the two last
terms on the right-hand side of Eq. (9), which is thus
reduced to the equality

Vi = Vn; (10)

i.e., the ion component in the E-region is completely
entrained by the neutral wind. Indeed, numerous radio-
physical observations of the motion of plasma inhomo-
geneities in the E-region [1, 2, 9], as well as observa-
tions of neutral winds with the help of artificial glowing
clouds [2, 3, 19], clearly show that the ion component
in this upper atmosphere region exactly follows the
neutral wind.

The set of simplified motion equations (8), (10), and
(5) for electrons, ions, and neutral particles, which is
obtained from the general set of quasi-hydrodynamic
equations (1)–(4), is traditionally used to describe the
ionospheric plasma [1–3, 9].

Thus, in the ionospheric E-region, the electron com-
ponent travels under the action of the internal electric
field Ö with the electric drift velocity and the ion com-
ponent is entrained by the dominant zonal neutral
winds flowing with a velocity . This means that the
generated internal electric field Ö, which is orthogonal
to the geomagnetic field, should have both the zonal
and meridional components Ex and Ey . In this case, the
electrons will travel in the meridional direction under
the action of the electric field component Ey caused by
the Lorentz force Fy = –eVxH0z/c = –eEy (the Hall
effect) and the ions will move in the zonal direction.
The direction of the total current depends on the rela-
tion between the Pedersen and Hall conductivities.
Since the Hall conductivity σ2 in this upper atmosphere
region is much higher than the Pedersen conductivity
σ1, the net current should flow mainly in the meridional
direction.

Note that the assumption of plasma quasineutrality
in the ionospheric E-region does not mean that we
ignore the charge separation effect. Charge separation

VD h0× Ve h0 E⇒× 1
c
---Ve– h0,×= =

Vi Vn

ωi

ν in

------Vi h0

ωi

ν in

------VD– h0.××+=

V x
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is taken into account implicitly by introducing the inter-
nal electric field Ö caused largely by the Hall effect.

To close the set of Eqs. (4), (5), and (8), we will use
Maxwell equations

(11)

where Ö = –—Φ – c–1∂Ä/∂t and h = — × Ä. Excluding
Ö and j by means of Eq. (11) and omitting the lower
index n by the neutral component velocity, we arrive at
the following set of MHD equations for the ionospheric
E-region:

(12)

(13)

(14)

Here, P is the gas-kinetic pressure, w0 is the vector of
the Earth’s rotation rate, g is the free fall acceleration,
U = V – VD, 2Wi = ηeH0/(Mc) = ηωi; α = c2/(σ2H0) =
c2/(eN) is the Hall parameter, and σ2 = e2N/(mωe) is the
Hall conductivity. In Eq. (13), we also took account of
the equality Vi = Vn = V.

It follows from Eq. (14) that the Ampère force per
unit mass FA/ρn = U × 2Wi has exactly the same struc-
ture as the Coriolis acceleration V × 2Wi . Hence, the
Ampère force should act on the ionospheric medium in
the same way as the Coriolis force. It can be seen from
Eq. (14) that this interaction is determined by both the
ionospheric wind flowing with a velocity V and the
electric fields (VD ≠ 0) generated in this upper atmo-
sphere region.

Later, we will be interested in long-wavelength ion-
ospheric perturbations for which latitudinal variations
in neither the Earth’s rotation rate ω0(θ) (where θ  is the
complement of the geographic latitude) nor the geo-
magnetic field ç0(θ') can be ignored. Therefore, like in
dynamical meteorology, such large-scale perturbations
are to be described by the Helmholtz equation for vor-
ticity, which naturally incorporates the latitudinal vari-
ations in w0 and ç0, rather than by equation of motion
(12). The Helmholtz equation can be obtained by

∂h
∂t
------ c—– E, j× c

4π
------— h,×= =

∂V
∂t
------- — P

ρn

----- 
 – V 2w0 g

FA

ρn

------,+ +×+=

∂h
∂t
------ — V H0×( ) αρn—–

FA

ρn

------ 
 ××=

=  — Ve H0×( )× ,

FA

ρn

------
1

ρnc
-------- j H0× 1

4πρn

------------ — h×( ) H0×= =

=  V 2Wi VD– 2Wi×× U 2Wi.×=
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applying the operator —× to both sides of Eq. (12).
Finally, MHD equations (12)–(14) take the form

(15)

(16)

The closed set of Eqs. (15) and (16) yields six scalar
equations for six unknowns Vx , Vy , Vz , hx , hy , and hz .
After finding V and h from this set, the pressure P can
be expressed in quadratures using Eq. (12); the current
density and the electric field are determined from Max-
well’s equations (11); and the electron and ion veloci-
ties are found from the equalities Ve = VD and V = Vi,
respectively. Thus, in the linear approximation, the
problem of three-component plasma dynamics in the
ionospheric E-region is solved completely, provided
that the proper initial and boundary conditions are
imposed.

Equations (15) and (16) (with allowance for the
solenoidal character of the vectors V and h) are the
basic ones in solving the problem of generating the vor-
tex electric field Öv = –c–1∂Ä/∂t.

When deriving Eqs. (15) and (16), it was assumed
that the equilibrium densities of the charged and neutral
components do not vary in space and time: N = const
and Nn = const. Actually, the charged particle density in
the E-region varies by almost one order of magnitude in
mornings and evenings. With allowance for spatiotem-
poral variations of N(r, t) and Nn(r, t), Eqs. (15) and
(16) become partial differential equations with variable
coefficients and can hardly be solved analytically. For
this reason, the further analysis of Eqs. (15) and (16)
will be performed for near-midday and near-midnight
hours, when it can be approximately assumed that N =
const and Nn = const.

3. GENERATION OF A VORTEX 
ELECTRIC FIELD

Before studying the mechanism for the generation
of a vortex electric field in the ionospheric E-region, let
us briefly analyze the excitation of large-scale weather-
forming solitary vortices (cyclones and anticyclones) in
the Earth’s troposphere by planetary Rossby waves.

Since the wavelengths of planetary waves is compa-
rable to the Earth’s radius r0, it is natural to use spheri-
cal coordinates when solving the problem of generating
large-scale vortices in the Earth’s atmosphere. How-
ever, the difficulties that arise in analytically studying
the equations obtained cause us to consider the problem

∂— V×
∂t

------------------ — V 2w0,( )×=

+ — 1
4πρn

------------ — h×( ) H0×× ,

∂h
∂t
------ — V H0×( )×=

–
cρn

eN
--------— 1

4πρn

------------ — h×( ) H0×× .
of vortex generation in a “standard” coordinate system
[21]. This is a local Cartesian system in which the x axis
is directed eastward (along a parallel), the y axis is
directed northward (along a meridian), and the z axis is
directed upward. The differentials dx, dy, and dz are
related to the spherical coordinates λ, θ, and r by the
approximate formulas dx = r0sinθdλ, dy = –r0dθ, and
dz = dr. The velocity components are related as follows:
Vx = Vλ, Vy = –Vθ, and Vz = Vr. Here, θ is the comple-
ment to the geographic latitude, λ is the longitude, and
the radial coordinate r is counted from the Earth’s cen-
ter. The above coordinate system is not equivalent to an
ordinary Cartesian system because the directions of the
axes vary when passing from one spatial point to
another. However, when considering large-scale pro-
cesses, the terms that appear in the equations of atmo-
sphere hydrodynamics due to variations in the direc-
tions of the coordinate axes can be ignored in the first
approximation (see [21, 22]); as a result, the equations
of motion in spherical coordinates (with allowance for
the above relationships between the coordinates) take
the same form as in Cartesian coordinates. Such a pro-
cedure significantly simplifies the investigation of
large-scale processes in the atmosphere [21].

Below, we will also use the so-called method of
“freezing” the coefficients in dynamic equations—the
method known in meteorology as the β-approximation
method [21]. In this approximation, the parameters
2ω0z = 2ω0cosθ0 and β = ∂ω0z/∂y = 2ω0sinθ0/r0 are
assumed to be constant when integrating the Helmholtz
vorticity equation. Here, θ0 is an average value of the
complement of the geographic latitude ϕ0 in the vicin-
ity of which the problem is solved. In this case, the
Helmholtz equation transforms into an equation with
constant coefficients, which can then be investigated
using an expansion in plane waves. The β-approxima-
tion (or β-plane) method provides relatively simple
results that nevertheless allow one to reveal the distinc-
tive features of hydrodynamic motion on a rotating
sphere as compared to motion on a rotating plane.
Rossby was the first to show that large-scale weather-
forming planetary waves in the troposphere are hori-
zontal–transverse waves (∂Vx/∂x + ∂Vy/∂y = 0, Vz = 0).
In these waves, the atmosphere particles oscillate in the
meridional direction, whereas the wave itself propa-
gates in the latitudinal direction (eastward or westward,
depending on the wavelength). In planetary waves, the
particle motion is characterized by a nonzero vorticity,
— × V ≠ 0. Vertical tropospheric vortices (cyclones or
anticyclones) are generated due to the β effect [21]:

(17)

i.e., by meridional winds (Vy) and variations in the vec-
tor of the Earth’s rotation rate (β). At present, this con-
cept of generating weather-forming vortices (cyclones
and anticyclones) is commonly accepted in dynamic
meteorology. Along with the baroclinic effect and the

∂ — V×( )z

∂t
------------------------ βVy,–=
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relief effect of the underlying surface, the β effect is
considered one of the main mechanisms for generating
vortices in the Earth’s troposphere.

Below, this important mechanism for generating
vortices in the rotating ionosphere will be used in solv-
ing the problem of the excitation of a vortex electric
field in the E-region.

We employ Eq. (8) to exclude the term — ×

 from Eq. (16) and introduce the

vector potential Ä via the formula h = — × A. As a
result, we obtain the following equation:

(18)

which will be used to determine the vortex electric
field.

At high and temperate latitudes (where H0 =
H0z(θ')ez, w0 = ω0zez, and A = Ay(x, t)ey, with ey and ez

being the unit vectors directed along the y and z axes,
respectively), the vertical component of Eq. (18) has
the form

(19)

Here, β' = β1 + βαρn and β1 = ∂H0z/∂y = –2Hpsin /r0

is the magnetic Rossby parameter (later, we will
assume that the geographic and geomagnetic latitudes
coincide: ϕ' = ϕ and θ' = θ).

If a wave perturbation propagates in the latitudinal
direction (Vy(x, t) ~ exp{i(kxx – ωt)}), then from
Eq. (19) we obtain an expression similar to Eq. (17):

(20)

where Cph = ω/kx is the phase velocity of the perturba-

tion and Cph– = –β'/(αρn ) is the phase velocity of a
slow planetary Rossby wave, which is on the order of

the local wind velocity, Cph– =  ≈ 100–300 m/s. The
perturbation wavelength is λ ~ 103–104 km and the
period varies from one day to two weeks (or even
longer) [12, 19, 21].

It follows from Eq. (20) that, similarly to the gener-
ation of large-scale tropospheric vortices (cyclones and
anticyclones) due to the β effect [see Eq. (17)], the
vortex component of the internal electric field Öv =
−c−1∂Ä/∂t should be generated in the E-region due to
the latitudinal inhomogeneity of the geomagnetic field
(β1), meridional winds (Vy), and the effect related to the
finite propagation velocity of an ionospheric wave per-
turbation (Cph ≠ 0).

1
4πρn

------------ — h×( ) H0×

∂— A×
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+ αρn— V 2w0×( ) αρn
∂— V×
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∂ — A×( )z

∂t
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∂ — V×( )z
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------------------------.–=

θ0'
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Let us estimate the vortex electric field generated by
fast long-wavelength (λ ~ 103–104 km) perturbations
and compare it with the dynamo field Ed = V × H0/c gen-
erated by the meridional wind. To this end, we rewrite
expression (20) in the form

(21)

Taking into account that Cph = CH, CH/Cph @ 1, and
β' ~ β1 ≈ H0z/r0 and introducing the characteristic scale
length of the perturbation along the x axis, L = λ/2π, we
obtain from Eq. (21) the following estimate for the ratio
of the vortex field Ev, y to the dynamo field Ed, x =
−VyH0z/c:

(22)

For λ = 3000 km, CH = 2 km/s, and Cph– = 100 m/s, we
have Ev, y/Ed, x ≈ 1.5; for λ = 6000 km, we have
Ev, y/Ed, x ≈ 3; for λ = 104 km, we have Ev, y/Ed, x ≈ 5; and
for CH = 20 km/s and λ = 3000 km, we have Ev, y/Ed, x ≈
15. It can be seen from these estimates that, in the case
of fast planetary ionospheric perturbations, the gener-
ated vortex electric field should play a decisive role in
the electrodynamic processes occurring in the E-
region.

We note that parameters of a wave perturbation (in
particular, the electric field amplitude) propagating in
the ionospheric layer under study (the Hall layer) also
depend on the Pedersen conductivity σ1. This problem
was considered in [23], in which the Pedersen and Hall
conductivities, both of the components of the geomag-
netic field (H0y and H0z), and the four gradients of the
geomagnetic field (β1 = ∂H0z/∂y, β2 = ∂H0y/∂y, β3 =
∂H0z/∂z, and β4 = ∂H0y/∂z) were taken into account. It
was shown that, in the upper layers of the E-region (at
altitudes of 100–150 km), fast waves with a wavelength
of 2000 km are significantly damped due to the Peder-
sen conductivity. However, longer waves are damped
weakly. For example, at an altitude of 120 km, the ratio
between the damping rates γ of waves with the wave-
lengths λ1 = 2000 km and λ2 = 104 km is γ1/γ2 ≈ 20–50.
It was also shown that the longer the wavelength of fast
electromagnetic waves, the wider the layer in which the
damping rate related to the Pedersen conductivity is
low. Therefore, in this paper, in considering long-wave-
length perturbations with λ ~ 104 km, we neglect for the
sake of simplicity the Pedersen conductivity in the Hall
layer, assuming that H0 = H0zez .

4. CONDITION FOR THE GEOMAGNETIC FIELD 
TO BE FROZEN IN THE PLASMA
IN THE IONOSPHERIC E-REGION

To reveal the specific features of the mechanism for
generating an internal electric field Ö, we will consider

— Ev×( )z
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c
---- 1
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the condition for the geomagnetic field to be frozen in
the plasma in the ionospheric E-region. To this end, we
rewrite Helmholtz vorticity equation (15) and Max-
well’s equation (16) in the form

(23)

(24)

To obtain these equations, we use expression (14) for
the Ampére force and the equality Ve = VD.

It follows from Eq. (24) that, in the ionospheric
E-region, the geomagnetic field is completely frozen in
the electron component, whereas the ion component is
frozen in only partially. Indeed, using the equality Ve =
Vi – j/eN, we exclude the electron velocity from Eq. (24)
to obtain the equation for the partially frozen-in ion
component:

(25)

In the β-plane approximation, for high and temper-
ate latitudes (where H0 = H0z(ϕ')ez and Ve = Veyey), we
obtain from Eq. (24) the conservation condition for the
total magnetic field H = H0 + h:

(26)

where d/dt = ∂/∂t + Vey∂/∂y.
It follows from Eq. (26) that there is an invariant:

(27)

From Eq. (27) we find that, in the absence of a
meridional electron flow (Vey = 0), –2Hpsinϕ' = const. In
the case of a northward meridional electron flow, sinϕ'
increases and, for condition (27) to hold, a positive per-
turbation of the geomagnetic field hz should be gener-
ated. In the case of a southward electron flow, sinϕ'
decreases and the generated perturbation of the geo-
magnetic field should be negative (hz = –|hz|). If the
electron component is perturbed by a horizontal–trans-
verse planetary wave, then the generated magnetic field
oscillates with the wave frequency. For fast planetary
waves, as was shown above, the time derivative ∂h/∂t
gives rise to a significant vortex electric field. When the
electron component oscillates with a period of slow
horizontal–transverse waves (from one day to longer
than two weeks), the time derivative ∂h/∂t is negligibly
small and no vortex electric field is excited in the iono-
spheric E-region.

Since the equality Ve = VD holds in the E-region, the
electrodynamic interaction caused by the Ampére force
FA/ρn = (V – VD) × 2Wi  is determined by the value of
the electric drift velocity.

∂— V×
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– — VD 2Wi×( )× ,

∂h
∂t
------ — Vc H0×( )× αρ— VD 2Wi×( )× .= =

∂h
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------ — Vi H0×( ) α—–

1
c
--- j H0× 

 ×× .=

d
dt
----- hz H0z+( ) 0,=

hz H0z+ hz – 2H p ϕ'sin const.= =
1. For VD @ V = Vi, the ion and neutral components
of the ionospheric plasma can be considered immov-
able as compared to the electron component (Ve = VD).
Then, from the expression j = eN(Vi – Ve) we obtain the
approximate equality Ve ≈ –j/eN, and the electrody-
namic problem of the generation of a vortex electric
field reduces to one induction equation, 

(28)

from which, in the β-plane approximation, we obtain
(assuming that H0 = H0z(θ')ez and hz = hz(x, t)) the equa-
tion for fast planetary waves:

(29)

For hz, Vy ~ exp{i(kxx – ωt)}, we find that the wave
phase velocity is

(30)

Therefore, fast waves in the ionospheric E-region
propagate against a practically immovable ion–neutral
background. It is only the electron component with the
frozen-in geomagnetic field that oscillates, thus giving
rise to the induced magnetic field h and the vortex elec-
tric field (— × E ≠ 0). In fact, introducing the electron
displacement ξe(Vey = dξe/dt), from frozen-in condition
(26) we have hz = –β1ξy. Then, using the second equa-
tion in (29), we arrive at the linear-oscillator equation

d2ξy/dt2 +  = 0 with the eigenfrequency ω = ω0 =
kxcβ1/(4πeN). A comparison of expression (30) with the
phase velocity of short-wavelength whistling atmo-
spherics (helicons) [24] Ch = cH0zkz/4πeN shows that
both types of waves are of the same physical nature and
represent oscillations of the electron component frozen
in the geomagnetic field. The only difference is that, for
whistling atmospherics, the phase velocity depends on
the vertical component of the geomagnetic field H0z and
the vertical component of the wavenumber kz , whereas
for CH waves, it depends on the magnetic field gradient
∂H0z/∂y, which naturally determines the large-scale
nature of CH waves. Hence, at VD @ V = Vi, the electro-
magnetic interaction of the internal electric field E with
the plasma in the ionospheric E-region is associated
with fast planetary perturbations and the method for
determining the eigenfrequencies of these perturba-
tions may be called the inductive MHD approximation.

2. For VD = V = Vi, electrodynamic processes in the
E-region result in slow perturbations propagating with
the local wind velocity. Since, in this case, both of the
charged ionospheric plasma components are com-
pletely entrained by the wind, the electric current den-
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sity j = eN(Vi – Ve) vanishes and dynamic equations (23)
and (24) take the form

(31)

(32)

In view of the fact that slow planetary Rossby waves

(with the phase velocity Cph– = –β/  and a period from
one day to longer than two weeks) are exact solutions
to Eq. (31), we can ignore the time derivative ∂h/∂t in
Maxwell’s equation. This means that, for slow long-
wavelength perturbations, the internal field is potential:
— × E = 0. This condition, along with the equation — ×
(V, H0) = 0, allows us to unambiguously determine the
polarization electric field generated in the ionospheric
E-region by the neutral wind:

(33)

This approximation, as was mentioned above, may be
referred to as the noninductive MHD approximation
[19, 20].

3. The case VD ! V = Vi corresponds to ultraslow
electrodynamic processes in which the electron compo-
nent, in view of the equality Ve = VD, can be considered
almost immovable, so that the current j is mainly pro-
duced by the ion component. It follows from Eq. (8)
that, in this case, Ö ≈ 0. Then, from Maxwell’s equation
∂h/∂t = –c— × E, we have ∂h/∂t = 0. Therefore,
ultraslow processes in the E-region do not lead to the
generation of an internal electric field. If an electric
field is, nevertheless, present in such slow ionospheric
processes, then one may conclude that this field is pro-
duced due to certain external effects (e.g., the penetra-
tion of electric fields from the magnetosphere and
auroral regions). In this case, Eqs. (23) and (24) can be
reduced to one closed Helmholtz equation

(34)

Exact solutions to this equation are ultraslow planetary
Rossby waves propagating in the E-region with the

phase velocity Cph– = –(β + βH)/ , where β = ∂2ω0z/∂y
and βH = ∂2Ωiz/∂y = (eN/(NnMc))∂H0z/∂y. Since ω0z and
H0z are opposite in sign (ω0z > 0 and H0z < 0), the phase
velocity of ultraslow planetary waves is lower than the
phase velocity of ordinary Rossby waves, which are
described by Eq. (31). Numerical results show that, in
the nighttime, the quantity β + βH vanishes at an altitude
of 150 km, and in the daytime, it vanishes at an altitude
of 115 km. Accordingly, ultraslow planetary wave
should not exist at these altitudes in the corresponding
periods of time [12].
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5. CONCLUSIONS

A physical mechanism for the generation of an
internal electric field by long-wavelength (λ ~ 103–
104 km) perturbations in the ionospheric E-region has
been investigated using a three-fluid model of the iono-
spheric plasma.

It is shown that the electrostatic polarization field
EΦ = –—Φ is generated by slow planetary hydrody-
namic waves with a period from one day to two weeks
(or even longer). Such long-period processes are
described by MHD equations in the noninductive
approximation. In this case, the electrostatic field ÖΦ is
generated due to the dynamo effect. Diurnal tidal
motions (thermal tide) and the accompanying slow
planetary waves are the main source for the generation
of Sq currents in the ionospheric E-region [1–3]. It has
been found that ultraslow planetary Rossby waves are
not accompanied by the generation of internal electric
fields in the E-region. If an electric field is, neverthe-
less, present in such slow (almost stationary) iono-
spheric processes, then one may conclude that this field
is produced due to certain external effects.

It has been shown that fast planetary waves in the
ionospheric E-region perturb only the electron compo-
nent and the geomagnetic field frozen in it. In this case,
an internal vortex electric field is naturally generated. It
has been found that the vortex electric field is several
times higher than the polarization field generated due to
the dynamo effect. It has been shown that fast iono-
spheric processes can be adequately described in the
inductive approximation. A formula has been derived
[see Eq. (21)] that allows one to unambiguously deter-
mine the character (potential or vortex) of the generated
internal field from the measured phase velocity of
large-scale wave perturbations in the ionospheric
E-region.

REFERENCES
1. B. I. Gershman, Dynamics of the Ionospheric Plasma

(Nauka, Moscow, 1974), p. 163.
2. É. S. Kazimirovskiœ and V. D. Kokourov, Ionospheric

Motions (Nauka, Novosibirsk, 1979), p. 34.
3. V. M. Polyakov, L. A. Shepkin, É. S. Kazimirovskiœ, and

V. D. Kokourov, Ionospheric Processes (Nauka, Novosi-
birsk, 1968), p. 288.

4. V. A. Liperovskiœ, O. A. Pokhotelov, and S. A. Shalimov,
Ionospheric Precursors of Earthquaks (Nauka, Moscow,
1992).

5. V. I. Drobzhev, G. R. Moloetov, Z. S. Sharadze, et al.,
Ionosfer. Issled., No. 39, 61 (1986).

6. L. A. Haykowicz, Planet. Space Sci. 39, 583 (1991).
7. V. I. Sorokin, Geomagn. Aeron. 26, 640 (1986); 28, 490

(1988).
8. N. D. Borisov, Geomagn. Aeron. 28, 469 (1988); 29, 614

(1989).
9. V. M. Sorokin and G. V. Fedorovich, Physics of Slow

MHD Waves in Ionospheric Plasma (Énergoizdat, Mos-



90 KHANTADZE et al.
cow, 1982); Izv. Vyssh. Uchebn. Zaved. Radiofiz. 25,
490 (1982).

10. A. G. Khantadze, Soobshch. Akad. Nauk Gruz. SSR,
No. 1, 69 (1986).

11. A. G. Khantadze, Dokl. Akad. Nauk 376, 703 (2001).
12. G. D. Aburjania and A. G. Khantadze, Geomagn. Aéron.

42, 1 (2002).
13. I. Tolstoy, J. Geophys. Res. 7, 1435 (1967).
14. A. G. Khantadze, Tr. Inst. Geofiz. Akad. Nauk Gruz.

SSR 28, 112 (1967).
15. Z. S. Sharadze, G. A. Dzhaparidze, and G. B. Kikvilash-

vili, Geomagn. Aéron. 28, 797 (1988).
16. L. S. Al’perovich, V. N. Drobzhev, V. M. Sorokin, et al.,

Geomagn. Aéron. 22, 797 (1982).
17. W. Baumjohann, R. A. Treumann, T. Labelle, et al., J.

Geophys. Res. 94 (A11), 221 (1989).
18. T. M. Bauer, W. Baumjohann, R. A. Treumann, et al.,

J. Geophys. Res. 100 (A6), 9605 (1995).
19. A. G. Khantadze, Some Problems of the Dynamics of a
Conducting Atmosphere (Nauka, Tbilisi, 1973), p. 88.

20. S. I. Braginskiœ, Zh. Éksp. Teor. Fiz. 37, 1417 (1959)
[Sov. Phys. JETP 10, 1005 (1959)].

21. L. S. Gandin, D. L. Laœkhtman, L. T. Matveev, and
M. I. Yudin, Fundamentals of Dynamic Meteorology
(Gidrometizdat, Leningrad, 1955), p. 62.

22. P. D. Thompson, Numerical Weather Analysis and Pre-
diction (McMillan, New York, 1961; Inostrannaya Lite-
ratura, Moscow, 1962).

23. Z. L. Kobaladze and A. G. Khantadze, Soobshch. Akad.
Nauk Gruz. SSR 134 (1), 97 (1989).

24. B. B. Kadomtsev, Collective Phenomena in Plasma
(Nauka, Moscow, 1988). 

Translated by A.S. Sakharov
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004



  

Plasma Physics Reports, Vol. 30, No. 1, 2004, pp. 9–17. Translated from Fizika Plazmy, Vol. 30, No. 1, 2004, pp. 11–20.
Original Russian Text Copyright © 2004 by Akent’ev, Arzhannikov, Astrelin, Burdakov, Ivanov, Ko

 

œ

 

dan, Mekler, Polosatkin, Postupaev, Rovenskikh, Sinitski

 

œ

 

.

                             

MAGNETIC CONFINEMENT 
SYSTEMS

                   
Experimental Study of the Evaporation and Expansion 
of a Solid Pellet in a Plasma Heated by an Electron Beam

R. Yu. Akent’ev, A. V. Arzhannikov, V. T. Astrelin, A. V. Burdakov, I. A. Ivanov, V. S. Koœdan, 
K. I. Mekler, S. V. Polosatkin, V. V. Postupaev, A. F. Rovenskikh, and S. L. Sinitskiœ

Budker Institute of Nuclear Physics, Russian Academy of Sciences, Siberian Division, 
pr. Akademika Lavrent’eva 11, Novosibirsk, 630090 Russia

Received February 4, 2003; in final form, June 3, 2003

Abstract—Results are presented from experiments on the injection of solid pellets into a plasma heated by an
electron beam in the GOL-3 device. For this purpose, two pellet injectors were installed in the device. The target
plasma with a density of ~1015 cm–3 was produced in a solenoid with a field of 4.8 T and was heated by a high-
power electron beam with an electron energy of ~1 MeV, a duration of ~7 µs, and a total energy of 120–150 kJ.
Before heating, the pellet was injected into the center of the plasma column transversely to the magnetic field.
The injection point was located at a distance of 6.5 or 2 m from the input magnetic mirror. Polyethylene pellets
with a mass of 0.1–1 mg and lithium-deuteride pellets with a mass of 0.02–0.5 mg were used. A few microsec-
onds after the electron beam starts to be injected into the plasma, a dense plasma bunch is formed. In the initial
stage of expansion, the plasma bunch remains spherically symmetric. The plasma at the periphery of the bunch
is then heated and becomes magnetized. Next, the dense plasma expands along the magnetic field with a veloc-
ity on the order of 300 km/s. A comparison of the measured parameters with calculations by a hydrodynamic
model shows that, in order to provide such a high expansion velocity, the total energy density deposited in the
pellet must be ~1 kJ/cm2. This value substantially exceeds the energy density yielded by the target plasma; i.e.,
the energy is concentrated across the magnetic field onto a dense plasma bunch produced from the evaporated
particle. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the alternative magnetic fusion devices is the
so-called multimirror system, in which an increase in
the plasma confinement time is achieved due to a corru-
gated configuration of the magnetic field [1]. The con-
cept of multimirror confinement implies that the ion
mean free path should be much shorter than the full
length of the device. Hence, in order to achieve reactor
parameters at reasonable device dimensions, the
plasma density should be ~1017 cm–3 and, accordingly,
the β value should be larger than unity (see [2] for
details). The problem of producing such a plasma is
still unsolved.

Experiments in the GOL-3 device are primarily
aimed at studying the physics of the production and
confinement of a hot dense plasma in a multimirror sys-
tem [3]. The experimental layout is shown in Fig. 1. A
hydrogen or deuterium plasma with a density of 1014 to
1016 cm–3 is produced by a special linear discharge in
the longitudinal magnetic field. Typical parameters of
the pellet-injection experiments under consideration
are as follows. The length and diameter of the plasma
column are ~12 m and 7 cm, respectively (the diameter
is given for a magnetic field of 4.8 T). The magnetic
field is produced by a solenoid. The magnetic induction
in the region where the field is uniform and in the end
magnetic mirrors is 4.8 and 9 T, respectively. Near each
of the solenoid ends, ten magnetic cells are formed. The
1063-780X/04/3001- $26.00 © 20009
length of each cell is 22 cm, and the minimum magnetic
induction in each cell is 3.3 T. Thus, two end sections
with a corrugated magnetic field are created. The
plasma is heated by a relativistic electron beam with a
maximum electron energy of ~1 MeV, maximum cur-
rent of ~30 kA, full duration of ~7 µs, total energy of
120–150 kJ, and diameter of 6 cm (for a magnetic field
of 4.8 T).

Let us briefly consider the physics of plasma heating
by an injected beam under the conditions of our exper-
iment (see [3–6]). Due to the collective beam–plasma
interaction, resonant plasma oscillations are excited to
which the beam transfers a fraction of its energy. The
nonlinear relaxation of these oscillations leads to the
heating of the plasma electrons. It was shown experi-
mentally that the beam can lose up to 30–40% of its
energy as it passes through the 12-m-long plasma col-
umn. During the beam injection, the electron tempera-
ture increases, and, at a plasma density of 1015 cm–3, it
can reach 2 keV. The ion temperature remains relatively
low because of the short lifetime of the hot plasma.

As the plasma density increases, the efficiency of
beam relaxation degrades and the maximum electron
temperature decreases. On the other hand, the concept
of multimirror confinement requires a high-tempera-
ture plasma with a density of ~1017 cm–3. Such a density
is too high for efficient beam relaxation due to collec-
tive effects. In order to achieve a high-temperature in
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of the GOL-3 device: (1) U-2 electron beam generator, (2) system for generating the electron beam (the ribbon
diode and the beam magnetic-compression region), (3) sections with a corrugated field, (4) solenoid, and (5) exit unit (system for
generating the target plasma and the beam receiver). Arrows indicate the locations of the two pellet injectors.
the dense plasma, the so-called method of the two-stage
heating of a dense plasma was implemented for the first
time in the GOL-3 device [7]. The method implies that
a short plasma bunch with a density of 1017–1018 cm–3

is produced in a long plasma column with a density of
~1015 cm–3. The target plasma is heated due to electron
beam relaxation, and the temperatures of the bunch and
the target plasma are then equalized due to binary col-
lisions.

Experiments by this scheme were conducted using
gas puffing in order to form the required plasma density
profile along the device. The plasma pressure increased
by a factor of up to 3 as compared to the pressure of a
uniform plasma with the density optimum for beam
relaxation. The ion temperature in dense plasma
bunches was close to the electron one (the measured ion
temperature was up to 150 eV at a density higher than
5 × 1015 cm–3 [5]). A further increase in the temperature
of the dense plasma bunch was limited by longitudinal
heat conduction and the rapid longitudinal expansion of
the bunch.

The experiments demonstrated the feasibility of the
scheme for the two-stage heating of a dense plasma. At
the same time, the method for producing dense plasma
bunches by gas puffing has a number of limitations:

(i) The dense gas fills the entire cross section of the
chamber, rather than only the region occupied by the
plasma column. The presence of the dense gas at the
periphery of the plasma column increases charge-
exchange and ionization losses and leads to the cooling
of the peripheral plasma.

(ii) The presence of the dense cold peripheral
plasma hampers (or even makes impossible) the use of
conventional diagnostics, such as the analysis of
charge-exchange neutrals and measurements of the
intensity and profiles of spectral lines.

(iii) The increase in the gas cloud density promotes
the onset of kink instability. The reason for this is that
the initial degree of gas ionization becomes too low as
the density increases above a certain level. This leads to
the deterioration of the conditions for beam current
neutralization in the plasma. The high unneutralized
beam current causes the loss of the macroscopic stabil-
ity of the beam when the Kruskal–Shafranov limit is
exceeded.

(iv) The element composition of gases introduced
into the plasma is limited.

In this paper, we describe experiments on the pro-
duction of dense plasma bunches by injecting solid pel-
lets. A pellet consisting of about 1020 atoms is injected
at a certain point of the plasma column. The pellet is
rapidly destroyed and evaporated under the action of
the high-energy electron beam, and its material is then
ionized. The dense, weakly ionized vapor can expand
over a distance of ~1 cm across the magnetic field. After
the ionization of the pellet material is completed, the
produced dense plasma becomes magnetized and its
further heating proceeds in the same way as in the two-
stage scheme described above. This scenario of the pro-
duction of a dense plasma bunch is free of the above
disadvantages of pulsed gas puffing. In addition to the
production of a dense high-pressure plasma bunch, the
proposed technology can be used to solve the following
physical problems: local diagnostics of the plasma
parameters (together with optical methods), creation of
a bright source of line emission from multiply charged
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
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ions with a given element composition, and study of
material ablation in a high-temperature plasma.

The method for injecting solid pellets into plasma is
well known and is used in a number of devices for diag-
nostic purposes, to fuel the plasma, and to control the
plasma density profile (see, e.g., [8–10]). The range of
physical parameters typical of the GOL-3 device allows
us to use a nontraditional method of pellet injection and
to significantly simplify and cheapen the required
equipment. The plasma lifetime is fairly short; there-
fore, the pellet can be injected at the required point
before the onset of the discharge. This allows us to
avoid the passage of the pellet through the high-temper-
ature plasma (in this case, the initial injection velocity
can be decreased and the evaporation of the outer layers
of the pellet at the plasma periphery is precluded). In
this stage of an experiment, radiative losses from the
plasma can be ignored even at a relatively high impurity
concentration; hence, we used pellets made of hydro-
gen-containing materials (polymers, lithium hydride,
etc.). Diagnostic pellets can have any chemical compo-
sition.

2. EXPERIMENTAL AND DIAGNOSTIC 
TECHNIQUES

The pellet injector was designed according to an
electrodynamic scheme. The parameters of the injector
were chosen to satisfy by the following technical
requirements: (i) the system operation should be inde-
pendent of the material and weight (within the range
0.1–10 mg) of the pellet, (ii) the injector should provide
five pulses without vacuum failure in the device, and
(iii) the injector should be exactly synchronized with
the other systems of the device. The electrodynamic
system of the injector consists of a plane coil and a
driver disk adjacent to the coil. The current flowing
through the coil induces the eddy currents in the driver
disk. The latter is accelerated and knocks the injector
striker containing a pellet in its central hollowing. A
scheme with the hard stopping of the striker was chosen
in order to guarantee the detachment of the pellet from
the striker. The pellet is injected from bottom to top.

The current pulse in the injector coil is produced by
a source consisting of a 160-µF, 500-V MBGV capaci-
tor and a thyristor switch. The electric-circuit parame-
ters are chosen such that the current pulse duration is on
the order of the penetration time of the magnetic field
into the driver disk. The current amplitude at a capaci-
tor voltage of 350 V amounts to ~1.5 kA. The duration
of the current pulse is ~75 µs. The exact positioning of
the pellet in the chamber at the instant of beam injection
is provided by choosing the operating voltage at a fixed
triggering time of the thyristor switch (13 530 µs before
the start of the beam, i.e., somewhat earlier than the
magnetic system is switched on). The initial velocity of
the pellet varies in the range 10–25 m/s as the supply
voltage varies from 200 to 350 V. The scatter in the pel-
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
let positions from shot to shot is ~2 cm around the cen-
ter of the plasma chamber.

Two injectors were fabricated and installed in the
device. The first injector was placed at the diagnostic
port located between the 59th and 60th coils, nearly at
the center of the GOL-3 solenoid (at a distance of Z =
662 cm from the center of the input magnetic mirror,
taken as the coordinate origin). The second pellet injec-
tor was placed at Z = 219 cm (between the 19th and
20th coils).

Several methods were used to diagnose the parame-
ters of the dense plasma. At the location of the first
(central) injector, the dense plasma bunch was photo-
graphed with the help of a digital photographic camera
and a digital VUV pinhole camera with a frame dura-
tion of ~1 µs (the radiation fell directly on the surface
of the microchannel plate). The visible emission from
the dense plasma bunch was recorded by a digital spec-
trograph with spatial resolution. The electron density in
the bunch was measured by the broadening of the
hydrogen çα line with the help of a digital spectral sys-
tem consisting of two components: a high-resolution
spectrometer (a detector based on a photodiode array)
with a frame duration of ~1 µs and a system with a
moderate spectral resolution, which scanned the line
profile with a period of 5–20 µs. The light was fed to
this diagnostics through a fiber whose receiving end
could be placed at different distances from the pellet
injector. The plasma density at a distance of ~1.9 m
from the injector was measured using a Michelson
interferometer operating at a wavelength of 1.15 µm.
Another similar interferometer was placed at Z =
84 cm. The temperature profile across the plasma
bunch was assessed from the intensity ratio of the spec-
tral lines of ions in different ionization states. For this
purpose, we used a frame VUV spectrograph with spa-
tial resolution and a frame duration of ~1 µs. VUV
plasma emission was also measured by several vacuum
photodiodes positioned at different distances from the
pellet injector. We also used other conventional diag-
nostics.

At the location of the second injector (Z = 219 cm),
we used different diagnostic equipment providing us
with additional information on the parameters of the
dense plasma bunch. Immediately at the injection point,
an optical spectrometer with spatial resolution and a
sixteen-channel VUV pinhole camera with aluminum
photocathodes were installed. A Thomson scattering
system (a ruby laser, 694.3 nm, 5 J) that was located
33 cm from the injection point measured the electron
temperature and density immediately inside the plasma
bunch. Between the injector and Thomson scattering
system, there were three detectors measuring plasma
diamagnetism. On the other side, detectors of soft
X-ray plasma emission (one covered with an 8-µm
beryllium foil with a cutoff energy of 0.8 keV and the
other with a 100-µm beryllium foil with a cutoff energy
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Fig. 2. Intensity of VUV emission from dense plasma in different stages of the plasma bunch formation: (a) 2 µs from the beginning
of the beam injection (the formation of a spherical bunch and 3D expansion), (b) 4 µs (the transition to the magnetization regime),
and (c) 6 µs (1D expansion). The contours lines of the intensity with a level exceeding the emission intensity of the surrounding
target plasma are shown. The exposure time is 1 µs. The spatial scale is the same for all the frames.
of 2.2 keV) were installed at a distance of 22 cm from
the injection point.

3. GENERAL PATTERN OF THE FORMATION 
AND EXPANSION OF A DENSE PLASMOID

A preliminary (target) plasma in the GOL-3 device
was produced by a special linear discharge. The cham-
ber was filled with hydrogen with the help of pulsed
valves. By the instant when the discharge began, the gas
had filled a part of the vacuum system of the device
(from the compression region of the electron beam to
the location of the annular cathode of the linear dis-
charge [6]). The generation region of the electron beam
and the region of the beam receiver remained at work-
ing vacuum. Due to creating the target plasma in this
way, the plasma density is nonuniform along the sys-
tem. In experiments with pellets, the initial density of
the target plasma in the central part of the chamber (at
the location of the first injector) was ~1015 cm–3.
Toward the solenoid ends, the initial density decreased
by a factor of 2–3.

On the whole, the formation of a dense plasma
bunch and its expansion proceed as was described in
the Introduction. The dynamics of pellet expansion can
be seen in brightness maps (Fig. 2) obtained with the
help of the VUV pinhole camera with an exposure of
1 µs. In these experiments, we used a 0.15-mg polyeth-
ylene pellets. Before the beam injection (when the pel-
let moves through the neutral gas or through the low-
temperature target plasma of the linear discharge), no
signs of pellet evaporation are seen.

The pellet starts to evaporate just after the beginning
of the electron beam injection, when the temperature of
the surrounding plasma is still rather low. Under our
experimental conditions, the solid pellet is destroyed in
an explosive manner due to volumetric energy deposi-
tion by the fast beam electrons (see [11]). In this stage,
the expansion of the dense plasma bunch is spherically
symmetric (see Fig. 2a). A characteristic feature of the
GOL-3 experiments is a wide electron energy spec-
trum, which is a result of the collective relaxation of the
beam in the plasma (see [5]). Under these conditions,
the spectrum of fast electrons (within measurement
accuracy) decreases monotonically toward higher ener-
gies. Electrons with energies of up to 1.3–1.5 MeV
were detected, which far exceeds the energy of the
injected beam electrons. Estimates show that the energy
deposited in the pellet in the first stage of the process is
primarily associated with fast electrons with energies
from ~1 MeV (the mean free path of such electrons is
much longer than the effective thickness of the plasma
bunch) down to ~10 keV. As the cross section of the
plasma bunch grows, the power deposited in the pellet
plasma increases because of the growing contribution
from electrons with relatively low energies (i.e., from
electrons whose mean free path in the dense plasma
bunch is comparable to its effective thickness, which
decreases as the bunch diameter increases).

For some time, the center of the bunch remains cold.
In experiments with a relatively massive 1-mg polyeth-
ylene pellet, the central bunch temperature calculated
from the intensity ratio of the CIII 57.4-nm and CIV
154.8-nm lines at the time interval 4–6 µs from the
beginning of the beam injection was found to be
~2.5 eV. The estimated ion plasma density at this time
is 3 × 1018 cm–3, while the electron density is nearly two
times higher. Under our experimental conditions, the
plasma begins to be magnetized approximately at
nT−3/2 ~ 1016 cm–3 eV–3/2. The above parameters of the
dense plasma in the time interval 4–6 µs do not satisfy
this condition; i.e., the dense plasma still remains
unmagnetized at this time.

As the bunch expands, its density decreases,
whereas the heating power per particle and the temper-
ature increase. For this reason, the plasma bunch fairly
rapidly becomes completely magnetized. After the
diameter of the bunch reaches ~1.5 cm, the transverse
expansion comes to an end (see Fig. 2b).
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
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One-dimensional expansion of the dense plasma
along the magnetic field then begins (Fig. 2c). An
important factor affecting the character of expansion of
the dense plasma bunch in this stage is the heat trans-
port along the magnetic field. Let us recall that, under
conditions of nonlinear beam relaxation, the thermal
conductivity of a strongly turbulent hot plasma is
anomalously low because the longitudinal-transport
coefficients are suppressed by a factor of 102–103 in
comparison to their classical values [12]. By the end of
the beam pulse, when the plasma electron temperature
is on the order of 1 keV and the heating power begins
to decrease, the anomalous thermal conductivity disap-
pears and the transport coefficients rapidly restore to
their classical values. Over a time on the order of a few
microseconds, the thermal energy that is stored in the
12-m plasma column within the magnetic flux tube
filled with the pellet material is transferred to the dense
plasma bunch and is rapidly thermalized. In this case, a
local peak of the plasma pressure appears for a short
time at the point of pellet injection.

The time evolution of the dense plasma bunch can
be analyzed using a simple hydrodynamic model pro-
posed in [13]. In this model, the expansion of a dense
plasma bunch into vacuum is considered in the local
thermodynamic equilibrium approach. For some inter-
esting practical profiles of energy deposition in the
plasma (e.g., a uniform or parabolic profile), this model
gives analytic solutions for the size and expansion rate
of the dense plasma bunch. In this case, the asymptotic
expansion rate of the bunch, vmax, turns out to be related
to the deposited energy density through a simple
expression

where Q0 is the total energy deposited per unit trans-
verse area of the bunch from external heating sources
and µ is the mass per unit area of the bunch. The result-
ant expansion rate vmax is approximately equal to the
ion-sound velocity. Thus, using the simple models
described above, the energy transferred from the target
plasma to the pellet material can be determined from
the measured time evolution of the bunch density
(below, such measurements will be discussed in detail).

Let us briefly consider the problem of stability of a
plasma column with a long higher density plasma fila-
ment at its axis. The experiments show that the pres-
ence of a pellet in the target plasma only slightly affects
the operation of the linear discharge producing this
plasma. The injection and transport of the relativistic
beam also have no considerable impact on the target
plasma, in contrast to the previously used pulsed gas
puffing. We note that, in special experiments with the
second injector, special conditions were produced for
the occurrence of disruptions related to the appearance
of a low-temperature dense plasma occupying the
entire cross section of the plasma column (this situation
is typical of experiments in which dense plasma is pro-

v max 6Q0/µ,=
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
duced by pulsed gas puffing). An example of device
operation in such a regime is shown in Fig. 3. We
injected ~1 mg of fine lithium deuteride powder into the
vacuum chamber. After the evaporation of the powder,
a region occupied by dense plasma was formed. This
region spanned almost the entire cross section of the
plasma column. After the end of beam injection, the
plasma pressure (which is determined from diamag-
netic measurements) rapidly fell to zero. At the same
time, the signal from a wall calorimeter located a dis-
tance of 66 cm from the injector increased by a factor
of 3 and NaI (a doublet of 589.0 and 598.6 nm) and SiII
(595.8 and 597.9 nm) lines appeared in the plasma
emission spectrum, which indicates the evaporation of
the surface of a Zerodur-like protection of the diamag-
netic coils.

4. PARAMETERS OF THE DENSE PLASMA 
BUNCH

The first series of experiments was performed with
an injector located at Z = 662 cm. We mainly used poly-
ethylene pellets with a mass of 0.1 to 1 mg. Time-
resolved measurements of the plasma density evolution
at the injection point were performed by measuring the
Stark broadening of the çα line. The brightness of the
surrounding target plasma was several orders of magni-
tude lower and did not influence the line profile. The
measured full width of the line profile exceeded 10 nm
(approximately 500 measured points with a step of
0.03 nm, see Fig. 4). In this profile, a structure corre-
sponding to the first several even harmonics of the
cyclotron frequency is clearly seen; there is probably

0.8

0.6

0.4

0.2

0

0

〈neTe + niTi〉 , 1015 keV/cm3

5 10 15 20
t, µs

‡

b

Fig. 3. Disruption of the discharge with injection of a LiD
powder into the chamber: (a) a 0.3-mg LiD pellet is injected
and (b) ~1 mg of fine LiD powder is injected. Signals from
a diamagnetic coil located at Z = 209 cm (10 cm from the
pellet injector) are shown.
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some contribution from the CII 657.8-nm and CII
658.3-nm lines.

In the course of one-dimensional expansion of the
magnetized plasma, its density decreases from 1018 to
1016 cm–3 over ~30 µs (Fig. 5). The rate at which the
plasma density decreases within this time interval is
determined by the longitudinal bunch expansion veloc-
ity. The measured time dependence of the plasma den-
sity agrees well with the prediction of the above simple
one-dimensional gasdynamic model of the expansion
of a dense plasma bunch under energy deposition con-
ditions typical of the GOL-3 experiments, in which the
heating power grows linearly during the beam injec-
tion. A comparison with the experiment shows that, to
fit the observed time evolution of the plasma density,
the bunch expansion rate (which is two times the front
velocity) should be about 6.2 × 107 cm/s. This corre-
sponds to a directed kinetic energy of hydrogen ions at
the bunch front of ~0.5 keV, which is substantially
higher than the temperature of the dense plasma at the
point of pellet injection. The model calculations were
fitted to the experimental data by varying a single free
parameter, namely, the energy deposited in the dense

1

0

1

0 20 40 60
t, µs

650 660 λ, nm

U, arb. units
(‡)

(b)

Fig. 4. Typical Hα line profile measured in the pellet injec-
tion experiments: (a) the line profile obtained using a sys-
tem with a high spectral resolution (the calculated line pro-
file for ne = 1.7 × 1017 cm–3 and Te = 4 eV is also shown) and
(b) a signal from the system for scanning the line profile
with 10-ns discretization (the emission intensity is mea-
sured at a distance of ~50 cm from the injector).
plasma, which turned out to be ~1 kJ/cm2. The other
parameters of the model are the known pellet mass per
unit area of the bunch and the mean ion charge in the
bunch, i.e., the ratio between the electron and ion den-
sities. For a dense plasma, these parameters can be esti-
mated with sufficient accuracy from the measured tem-
perature.

The second injection point, located at Z = 219 cm, is
of interest for several reasons. A principal difference in
the physics of plasma bunch formation here is that this
point is located close to the boundary of the region of
maximum heating (the electron temperature here is
twice as high as that at the location of the first injector
and is substantially nonuniform in the longitudinal
direction, whereas the first injector is located in the
region with a low temperature gradient). In addition,
there is a 2.2-m-long section with a corrugated mag-
netic field between the input magnetic mirror and this
point. In the classical scheme of multimirror confine-
ment, the plasma ions can undergo the action of a sort
of frictional force exerted by the corrugated field,
which decreases the longitudinal expansion rate. This
theory implies a sufficiently long system in which the
distribution function is close to isotropic and differs
markedly from the case with a high-velocity directed
plasma flow. However, in our case, we also could expect
some effect related to the field corrugation.

The experiments at this point were carried out with
0.15- to 0.4-mg polyethylene pellets and 0.02- to
0.5-mg lithium-deuteride pellets. Some experiments
were conducted with the simultaneous injection of sev-
eral pellets, including some made of different materials.
On the whole, the character of pellet evaporation and
the initial expansion of the dense plasma was the same
as described above. The time evolution of the plasma
density at the injection point almost coincides with the
data obtained for the first injector (see Fig. 5). The same
figure shows the data obtained with a 0.1-mg LiD pellet
and a receiving fiber located at Z = 350 cm. It can be
seen that, in this case, the local density increases by a
factor of more than 2 within the time interval 40–
120 µs. Most likely, this is due to the deceleration of the
expanding bunch in the target plasma (which is ignored
in the model).

In the model calculations, we also used data on the
transverse dimensions of the dense plasma bunch at the
injection point; these were measured with the help of a
VUV pinhole camera. Figure 6 shows typical wave-
forms of signals from several channels of the pinhole
camera and the brightness map of the injection region,
which was constructed using the nine central channels.
It can be seen that VUV emission appears just after the
beginning of beam injection; however, the signal level
remains relatively low for several microseconds. A
bright VUV burst is seen to appear by the end of the
electron beam pulse. Such signal behavior may be
related to the disappearance of the anomalous longitu-
dinal electron thermal conductivity and the abrupt dep-
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
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Fig. 5. Time evolution of the plasma bunch density by the data from spectroscopic measurements. The circles correspond to the
injector located at Z = 662 cm; the observations are made at the injection point. The squares and triangles correspond to the injector
located at Z = 219 cm; the observations are made at the injection point and at a distance of 1.4 m along the beam propagation direc-
tion (the measurement accuracy in the latter case is higher because of a smaller change in the signal level).
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Fig. 6. Time evolution of the intensity of VUV emission from the dense plasma bunch: (a) signals from the channels of the VUV
pinhole camera with lines of sights passing at distances from the pellet center of 0.5, 1.7, 2.1, and 2.9 cm (from top to bottom) and
(b) contour lines of the signal magnitude (the distance between contour lines is 0.02 V; the coordinate is counted from the chamber
axis). The beam injection begins at 2.5 µs.
osition of a relatively high energy in the dense plasma
bunch.

In addition to the time evolution of the plasma
bunch density, the model calculations also give the
change in the dense plasma temperature. The same
change was also measured experimentally (from pre-
cise measurements of the time evolution of the çα line
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
profile). Figure 7 shows the time evolution of the
plasma pressure in the bunch (by the data from the
injector located at Z = 662 cm). The axial magnetic field
at the injection point amounts to 3.8 T. Hence, in the
initial stage of pellet expansion, the measured β value
is at least a few tens of percent (with respect to the vac-
uum field). Formally, the model allows one to extrapo-
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Fig. 7. Time evolution of the dense plasma pressure at the injection point. The circles and triangles show the data from two shots
with the first injector, the solid line shows the results of model calculations, and the dashed line shows the level of the magnetic
pressure at the injection point (3.8 T).
late β to values exceeding unity; however, for a dense,
weakly magnetized plasma, such an extrapolation
seems to make no physical sense.

2
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0 200 400300100
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Fig. 8. Thomson scattering diagnostics in the pellet injec-
tion experiments: (1) projection of the entrance slit of the
spectrograph (the slit is widened for a clearer illustration),
(2) cross section of a dense plasma bunch, and (3) focused
laser beam. The circles and squares show the measured scat-
tered spectrum for two different shots. The solid line shows
the fit with ne = (0.37 ± 0.05) × 1015 cm–3 and Te = 150 ±
30 eV, and the dashed line shows the fit with ne = (2.4 ± 1) ×
1015 cm–3 and Te = 11 ± 3 eV.
When operating with the injector located at Z =
219 cm, the parameters of the dense plasma bunch were
measured for the first time with the help of Thomson
scattering diagnostics. Since the observation point was
located a distance of 33 cm from the pellet injection
point, it was decided to perform laser measurements at
a fixed time of 15 µs after the beginning of beam injec-
tion (by this time, the brightness of the bunch emission
decreases and becomes acceptable for measuring scat-
tered light). A specific feature of these measurements is
the approximate equality of the three values: the diam-
eter of the dense plasma filament (about 1.5–2 cm), the
scatter in the pellet positions in the chamber (~2 cm),
and the dimension of the light-collection region of the
Thomson scattering system (2 cm). For this reason, the
laser beam in every experiment passed at a certain dis-
tance from the bunch center. The measured temperature
varied in the range from 170 eV at a density of 0.7 ×
1015 cm–3 to 10 eV at a density of 2.4 × 1015 cm–3 (typ-
ical scattering spectra are presented in Fig. 8). These
results are in fair agreement with the above data from
spectroscopic and other measurements.

In the experiments on pellet injection, we also mea-
sured plasma diamagnetism at different distances from
the injection point (altogether, there were 25 diamag-
netic coils). Unfortunately, we cannot unambiguously
conclude that the diamagnetism changed in the pres-
ence of a pellet. The fact is that, even at high specific
parameters of the dense plasma (e.g., at β ~ 1), its rela-
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
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tive contribution to the total diamagnetic signal does
not exceed 5–20% because of the small cross-sectional
area of the dense bunch. The scatter in the plasma
energy lifetime leads to similar variations in the time
behavior of diamagnetic signals, thus masking the
effects associated with the presence of the pellet.

5. CONCLUSION
On the whole the experiments on pellet injection in

the GOL-3 device confirm our notion of the character
of the formation and expansion of a dense plasma
bunch produced by the explosive (volumetric) evapora-
tion of a pellet. With 0.3-mg pellets, the measured
expansion rate of the dense plasma corresponds to a
maximum proton energy of ~500 eV, which means that
the energy density deposited in the pellet attains ~1
kJ/cm2. This value substantially exceeds the averaged
energy density that can be provided by the ambient
plasma (the total plasma energy at the maximum tem-
perature amounts to 5–10 kJ, and the plasma cross-sec-
tional area is ~30 cm2 in the region where the magnetic
field produced by the solenoid is uniform). This differ-
ence can be attributed to the transverse energy transport
(the concentration of energy in the dense plasma bunch)
by both fast electrons and heat conduction.

We plan to further improve the method for produc-
ing dense plasma bunches and to carry out experiments
on the injection of pellets in the region with a corru-
gated magnetic field. We are also considering the possi-
bility of injecting cryogenic hydrogen pellets.
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Abstract—The structure of an electrode microwave discharge in hydrogen at pressures of 1–8 torr and incident
powers of 20–100 W is studied using optical spectroscopy. A two-dimensional computer code is developed for
self-consistently simulating a self-sustained steady-sate electrode microwave discharge ignited at the end of the
inner conductor of a coaxial line. The model is based on simultaneously solving time-dependent Maxwell’s
equations, the balance equations for charged particles, and a homogeneous Boltzmann equation. The numerical
results referring to the electrode region of the discharge are in fair agreement with the experimental data. This
confirms the early suggestion (inferred from experimental data) of the combined “self-sustained–non-self-sus-
tained” character of the electrode discharge. It is shown that the self-sustained discharge domain is located in
the electrode region of the discharge. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Low-pressure microwave discharges existing near

an electrode through which energy is supplied under
conditions such that the plasma domain is much less
than the discharge chamber are a striking example of
plasma structurization. Experimental data on the prop-
erties of such discharges and the physical processes
occurring inside them have been accumulated since the
late 1990s [1–5]. Discharges in molecular gases consist
of a thin bright electrode sheath and a less bright spher-
ical region surrounding the electrode and separated by
a sharp interface from the dark outer space. In [6],
based on the measurements of the electron density and
electric field in plasma, it was suggested that the elec-
trode microwave discharge consisted of the three
regions: a self-sustained discharge (electrode sheath), a
non-self-sustained discharge (spherical region), and an
afterglow region separated from the discharge by an
electric double layer.

This study is aimed at investigating the electrode
region of the discharge. In [3], the degree of dissocia-
tion in the electrode plasma of an electrode microwave
discharge was studied using optical spectroscopy. It
was shown that the degree of dissociation was low and
the excitation of the emitting states of hydrogen mole-
cules and atoms, as well as their ionization, proceeded
from the ground state via direct electron impacts.

In this paper, we present the results of spectroscopic
measurements of the structure of the electrode region of
an electrode microwave discharge in hydrogen and the
results of self-consistent two-dimensional computer
simulations of a diffuse discharge in an nonregular
coaxial system. An example of such a system is the dis-
charge section used in our experiments, in which the
1063-780X/04/3001- $26.00 © 20091
discharge is produced at the end of the inner conductor
of a coaxial line. A comparison of the numerical results
with the experimental data allows us to come to a num-
ber of conclusions about the physical processes occur-
ring in the electrode region of the discharge.

2. EXPERIMENTAL SETUP

The experiments were carried out with a hydrogen
discharge at a pressure of 1–8 torr and an incident
microwave power of 20–90 W, the absorbed power
being 2–12 W. The microwave oscillator with a maxi-
mum output power of 170 W operated at a frequency of
2.45 GHz. The discharge chamber was a metal cylinder
8.5 cm in diameter (see [1–3] for details). The micro-
wave antenna (a cylindrical stainless-steel tube 6 mm in
diameter) was inserted in the chamber through its end
via a vacuum joint. The antenna was a part of a coaxial-
to-waveguide converter, which was adjusted with the
help of a shorting plunger. The experiments were car-
ried out in a gas flow. The gas was supplied through a
channel in the upper wall of the discharge chamber and
pumped out through a channel in the lower wall. The
working gas was hydrogen with a 5% admixture of
argon. Argon was added for diagnostic purposes and
had virtually no effect on the properties of the hydrogen
plasma.

The discharge was ignited around the antenna (the
exciting electrode). The discharge dimensions were
much less than the chamber diameter and the distance
from the lower end of the chamber. The discharge emis-
sion was output through a window on the side wall of
the discharge chamber. The spatial resolution of the
measurements was about 0.5 mm. Plasma emission in
004 MAIK “Nauka/Interperiodica”
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the spectral range 400–800 nm was studied using an
MDR-23 monochromator. An FEU-79 photomultiplier
was used as an emission detector. The optical system
was calibrated with the help of an SI-8-200 tungsten
band lamp.

3. MODEL

To study the processes in a nonequilibrium plasma
of an electrode microwave discharge, we developed a
self-consistent model based on simultaneously solving
time-dependent Maxwell’s equations and balance
equations for charged particles. The local plasma elec-
tron parameters needed to solve these equations were
obtained by numerically solving a homogeneous Bolt-
zmann equation [7].

3.1. Computation of the Electromagnetic Field
in an Nonregular Coaxial System Partially Filled 

with Plasma

To study the distributions of the electric field and
microwave energy density in a plasma-filled chamber
with a given configuration, we developed a computer
code for solving Maxwell’s equations in a dispersive
medium. The electromagnetic fields inside the plasma
reactor were described by time-dependent Maxwell’s
equations

(1)

(2)

The permittivity ε is a function of the frequency ω,

(3)

where  =  is the electron plasma fre-
quency, ω is the circular microwave frequency, ν is the
collision frequency of electrons with heavy particles,
and ne is the electron density.

Equations (1) and (2) were solved in the (r, t) coor-
dinates (rather than in the (k, ω) coordinates). Hence, a
conventional constitutive equation

(4)

should be transformed into an equation relating D(t)
and E(t). Following [8], we substitute ε in form (3) into
Eq. (4) for the complex permittivity to obtain
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Applying the inverse Fourier transformation

(6)

to Eq. (5), we obtain the second-order differential equa-
tion relating D(t) and E(t):

(7)

Equations (1), (2), and (7) comprise a complete set
of equations describing the propagation of electromag-
netic waves in dispersive media. The numerical algo-
rithm is arranged as a three-stage successive procedure
of calculating the electromagnetic fields. The algorithm
is based on an explicit finite-difference scheme of inte-
grating Maxwell’s equations, which was originally
applied to nondispersive media [9].

The equations are written in cylindrical coordinates
(r, ϕ, z) under the assumption of axial symmetry:
∂/∂ϕ = 0. We used a square mesh with dimensions hz =
hr  = h. We represent the vector equations in finite dif-
ferences and use the leap-frog scheme of second order
accuracy [10]:
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of En, Dn + 1, and Dn, as well as the values of En – 1 and
Dn – 1, calculated at the preceding time step:

(14)

Here, τ is the time step; k and i are the mesh cell num-
bers along the z and r axes, respectively; and n is the
time step number. The variables in Eqs. (8)–(14) are
normalized as follows:

(15)

where the characteristic size of the system is chosen to
be R = 1 cm.

The boundary conditions for the fields on a perfectly
conducting metal wall are Eτ |S = 0 and Hn |S = 0. The
subscripts τ and n stand for the tangential and normal
components of the fields at the metal surfaces of the
chamber and the central electrode.

3.2. Balance Equation for Charged Particles

The distribution of the charged particle densities in
the discharge chamber are found by solving the charged
particle balance equation that accounts for diffusion,
ionization, and volume recombination:

(16)

It is assumed that the plasma is quasineutral and the
diffusive losses of charged particles are governed by
ambipolar diffusion with the diffusion coefficient Da. In
the plasma of an electrode discharge in hydrogen, the
working-gas particles are excited and ionized from the
ground state via electron impacts [3]. The charged par-
ticles are recombined via the volumetric dissociative

recombination of  ions (the cross section is taken

from [11]). To calculate the local values of Da( ),

νi( ), and αr( ), we used the electron energy distribu-
tion functions (EEDFs) obtained by solving a homoge-
neous Boltzmann equation with a self-consistent set of
cross sections for hydrogen taken from [12]. The mean
electric field , which is needed to solve the Boltz-
mann equation, is found by solving Maxwell’s equa-
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tions. The gas temperature is assumed to be spatially
uniform and equal to 300 K.

3.3. Computation Procedure

A schematic diagram of the discharge chamber used
in the calculations is shown in Fig. 1. The computation
region (the rz half-plane) is divided into two parts. The
incident-wave generator lies at the very left of region A.
It generates a 2.45-GHz TEM wave propagating to the
right. The wave traverses empty region A of length λ/2
and enters region B (the discharge chamber). It is
assumed that the reflected wave (which propagates to
the left) vanishes at the left boundary of region B and
does not interact with the incident wave arriving from
region A. Thus, there is a TEM wave propagating to the
right in region A and a standing wave in region B. The
computation time t should be sufficiently long for a
steady-state field distribution to be established in a
working chamber partially filled with plasma (gener-
ally, t > 3L/c, where L is the total length of the compu-
tation region and c is the speed of light).

At each time step, all the electromagnetic wave
components (H, D, and E) are calculated by formu-
las(8)–(14) at each point of the rz half-plane: first, in
region A and, then, in region B. The length of region A
was chosen such that easy comparison of the ampli-
tudes and phases of the reference and established waves
in the chamber was possible.

In the calculations, the total length of the system
was 28 cm, the diameter of the working chamber was
8 cm, and the diameter of the inner core was 0.6 cm.
The distance between the end of the central electrode
and the chamber bottom was 4 cm. These dimensions
were identical to the experimental ones. The mesh size
was 0.03 cm. The parameters of the problem were the
incident-wave power and the gas pressure in the dis-
charge chamber.

The computation procedure was as follows:

1

2

3

5
6

A Br

z

a–b
λ/2

4 6

Fig. 1. Schematic diagram of the discharge chamber used in
the calculations: (1) central electrode, (2) cylindrical dis-
charge chamber, (3) plasma, (4) wave excitation plane
(TEM-wave generator), (5) wave propagating from region
Ä to region B, and (6) reflected wave disappearing at the
a−b plane.
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First, an arbitrary distribution of the electron density
in the discharge chamber is specified. A microwave
wave then enters the chamber. It is partially absorbed
by and reflected from the plasma. Relaxation to an
equilibrium steady-state field distribution generally
takes a few microwave periods. In this stage, the elec-
trodynamic part of the problem is solved.

Next, based on the average calculated fields and
using the Boltzmann equation, the coefficients are
determined that are necessary to solve the balance
equation for charged particles at each point of the spa-
tial mesh in the discharge chamber. A new steady-state
solution n(r, z) to the balance equation for charged par-
ticles with given coefficients is found by the Gauss–
Zeidel method.

The above two-stage procedure is repeated for a new
distribution of the electron density. The process is
repeated until it converges to a steady-state to within a
given accuracy, i.e., until steady-state spatial distribu-
tions of the densities and fields are reached.

Let us analyze in more detail the applicability range
of the model.

The procedure of solving a set of Maxwell’s equa-
tions allows one to calculate the time-resolved structure
of electromagnetic fields in any dissipative system (ν ≠
0). The charged particle distribution is obtained from
the balance equation. The parameters of the plasma
electron component are calculated using a homoge-
neous Boltzmann equation in the local two-term
approximation for the steady-state isotropic part of the
EEDF. It is the use of the Boltzmann equation in such a
form that determines the applicability range of the
model.

It is well known that the nonlocal character of the
EEDF manifests itself when the characteristic electron
energy relaxation length λε exceeds the characteristic
plasma scale length Λ [13]. For the diffuse discharge
under consideration, we have λε ~ (Daτε)1/2 and τε =
1/νε ~ 1/δνef, where Da is the ambipolar diffusion coef-
ficient, δ is the average fraction of the electron energy
transferred to heavy particles in one collision event, and
νef is the effective collision frequency of electrons with
heavy particles. For hydrogen at a pressure of 1 torr, we
have νef ~ 109 s–1, δ ≥ 10–2, Da ~ 104 cm2/s, and λε <
1 mm. At a characteristic discharge scale length of Λ ~
10 mm, we obtain λε ! Λ. This is certainly the case at
higher pressures. Hence, for any molecular gas, the
nonlocal character of the EEDF can be ignored at pres-
sures higher than 1 torr. For noble gases, the lowest
pressure at which the nonlocal character of the EEDF
can be ignored shifts toward higher pressures because
of the larger energy relaxation length.

These estimates also show that the EEDF becomes
isotropic at scale lengths much shorter than 1 mm,
which validates the use of the two-term expansion of
the EEDF in spherical harmonics.
It is known that, in a quasi-homogeneous alternating
field, an electron acquires energy only in collisions with
heavy particles (Joule heating). This mechanism is
characteristic of moderate- and high-pressures plasmas.

In a low-pressure plasma (ω @ νef), there are narrow
localized plasma resonance regions (with a characteris-
tic size of ∆) in which the electric field can be very high.
In a strongly nonuniform field, there is an extra mecha-
nism for the acceleration (heating) of electrons—the
so-called “stochastic heating.” This process enriches
the high-energy part of the EEDF as compared to a
homogeneous plasma. Such an effect has been
observed experimentally; however, it disappears at
pressures higher than 50 mtorr [14, 15]. Hence, under
the conditions concerned, stochastic heating and, con-
sequently, the emergence of fast electrons is of minor
importance.

Thus, a pressure of 0.5–1 torr is the lowest pressure
at which the model adequately describes the experi-
ment.

At high pressures, the limitation of our model is
related to the violation of the steady-state character of
the EEDF isotropic part. At low pressures, when ω @
νef, the EEDF is certainly steady-state. At pressures of
15–20 torr, we have νef ~ ω ! 1/τε, and the isotropic
part of the EEDF becomes non-steady-state at high
energies. At these pressures, the modeling can be inad-
equate, so that it is necessary to use a time-dependent
Boltzmann equation. At νef @ ω (which corresponds to
pressures of 50–100 torr), the EEDF is in equilibrium
with the microwave field; hence, to calculate the EEDF,
one can use a time-independent Boltzmann equation
and the instant values of the fields obtained by solving
the electrodynamic problem.

4. RESULTS AND DISCUSSION

The experiments show that the bright electrode
sheath of an electrode microwave discharge is highly
inhomogeneous.

When viewed from the electrode end, the electrode
sheath is a glowing toroid. The intensities of the line
and band emission sharply increase inside the toroid.
The emission intensity is maximum near the sharp edge
of the electrode end.

It is well known that the electric field increases in
the vicinity of sharp inhomogeneities (like corners and
points). Our modeling of the field structure in a plasma-
filled coaxial system showed that, inside the electrode
sheath, where the emission intensity is maximum, the
microwave field is enhanced. The field is maximum on
the bisectrix of the right-angle electrode edge and
sharply decreases with distance from the electrode. The
maximum electric field is two to three times higher than
that in a uniform coaxial line. Such an increase is in
good agreement with the calculated field in the near-
field zone of an isolated antenna [16].
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Fig. 2. Self-consistently calculated distributions of the specific energy deposition in the plasma for (a) a pressure of 1 torr, an inci-
dent power of 30 W, and an absorbed power of 18 W and (b) a pressure of 8 torr, an incident power of 30 W, and an absorbed power
of 20 W.
The increase in the electric field near the end of the
central electrode shows that this region plays an impor-
tant role in igniting and sustaining the discharge.

Figure 2 shows the distribution of the specific
energy deposition in plasma calculated using the self-
consistent model. One can see a toroidal region of the
maximum energy deposition near the edge of the elec-
trode end. Since the energy deposition and the plasma
emission intensity behave in the same manner, the
results of the calculations agree with the experimental
data.

Figure 3 shows the radial profiles of the density of
the excited hydrogen atoms responsible for çβ line
emission near the electrode end for different incident
powers and pressures. It can be seen that the profiles are
nonmonotonic: there is a maximum near the edge of the
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
electrode end (about 3 mm from the axis). The maxi-
mum is caused by the enhanced electric field in this
region. At higher distances from the axis, a kind of pla-
teau is seen, which shrinks with increasing pressure.

The closer to the system axis, the lower the density
of the excited particles and the çβ line emission inten-
sity. It is shown experimentally that this effect is more
pronounced in cross sections closer to the electrode
edge. At large distances, the density has a maximum on
the discharge axis. The experiments also showed that
the higher the emission excitation threshold, the more
pronounced this effect. The observed distribution of the
emission intensity can be explained by the specific fea-
tures of the electric field distribution in the electrode
sheath.
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Fig. 3. Radial profiles of the densities of the excited hydrogen atoms (in the n = 4 state) determined from the emission intensity in
the Balmer-series çβ 486.1-nm line in a plane located 0.16 cm below the tube electrode end for (a) a pressure of 1 torr and incident
powers of Winc = 80 (circles), 60 (closed triangles), 40 (open triangles), and 20 W (squares) and (b) an incident power of 80 W and
pressures of 1 (circles), 2 (closed triangles), 4 (open triangles), and 8 torr (squares).
The calculated radial profiles of the specific energy
deposition at different distances from the electrode end
are shown in Fig. 4. It can be seen that the calculated
profiles are in fair agreement with those shown in
Fig. 3. The maximum electron density in the electrode
sheath is slightly higher than 1011 cm–3, which also
agrees with the experimental value. Thus, at low pres-
sures, there is a region with a supercritical plasma den-
sity in the electrode sheath (at a frequency of 2.45 GHz
and ν/ω ! 1, we have ncr ≈ 7.6 × 1010 cm–3). Hence, the
observed plateau on the profile of the specific energy
deposition can be attributed to the effect of the plasma
resonance. At high pressures, collisions reduce this
effect and the shapes of the profiles depend only
slightly on the ratio between the electron density and ncr

(at a frequency of 2.45 GHz and pressure of 8 torr, we
have ncr ≈ 3 × 1011 cm–3). In this pressure range, the
maximum electron density increases proportionally to
the power absorbed in the plasma. Another characteris-
tic feature is that, over the entire pressure range under
study, the specific energy deposition is maximum at a
distance of ~3 mm from the axis. This fact indicates
PLASMA PHYSICS REPORTS      Vol. 30      No. 1      2004
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Fig. 4. Calculated radial profiles of the (a, c) specific energy deposition and (b, d) electron density at different distances ∆z from the
electrode end: (1) 0.03, (2) 0.06, (3) 0.18, and (4) 0.36 cm. The incident power is 30 W. The pressure and the absorbed power are
(a, b) 1 torr and 18 W and (c, d) 8 torr and 20 W.
that it is the presence of a sharp edge at the electrode
end that causes the increase in the electric field.

Thus, the numerical simulations of a self-sustained
diffuse microwave discharge satisfactorily describe the
electrode plasma of an electrode microwave discharge
in hydrogen. This confirms the assumption of [6] that
the electrode plasma is a region of a self-sustained dis-
charge.

5. CONCLUSIONS

A two-dimensional computer code has been devel-
oped for self-consistently simulating a self-sustained
steady-state electrode microwave discharge operating
at the end of the inner conductor of a coaxial line. The
parameters of a diffuse discharge in hydrogen at pres-
sures of 1–8 torr and incident powers of 20–100 W have
been calculated. The discharge structure has been stud-
ied using optical spectroscopy. The numerical results
referring to the electrode region of the discharge are in
fair agreement with the experimental data. This con-
firms the early suggestion (inferred from experimental
data) about the combined “self-sustained–non-self-sus-
tained” character of the electrode discharge. It has been
shown that the self-sustained discharge domain is
located in the electrode region of the discharge.
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