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Abstract—A transport model for describing electron and ion plasmatemperatures is developed on the basis of
the canonical profile theory for a tokamak with an arbitrary cross section. A comparison with the data from
experiments on eight different tokamaks shows that the model is capable of adequately simulating plasmadis-
charges. A scaling for the behavior of the relative temperature gradient at half the plasma minor radiusis con-
structed based on both an analysis of the experimental data and the results of humerical calculations. © 2004

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In order to describe relaxed plasma states in toka-
maks, Kadomtsev [1] and other authors[2, 3] proposed
to use the following two principles: (i) at a given total
plasma current, the free plasma energy in the relaxed
stateisminimum, and (ii) the profiles of the plasmacur-
rent and plasma pressure are self-consistent. In [1-3],
the relaxed states of a plasma cylinder with a circular
cross section were studied. More recently, solutions
minimizing the free energy functional were called
canonical profiles. The problem of canonical profilesin
a tokamak with an arbitrary cross section was consid-
ered in our earlier paper [4]. In the present study, we
develop a transport model with critical gradients by
using the canonical profiles obtained in that paper. The
model proposed here is tested by comparing the com-
puted results with experimental data from different
tokamaks. By analyzing the experimental results and
those calculated with our model, we also construct a
scaling for the relative temperature gradients [5].

2. CANONICAL PROFILE FOR A TOKAMAK
WITH AN ARBITRARY CROSS SECTION
OF THE PLASMA COLUMN

First, we present a brief derivation of the equation
for the canonical profile [4]. We assume that the equi-
librium problem (i.e., the Grad—Shafranov equation for
the poloidal magnetic flux function ) is solved for
given distributions of the plasma current and plasma
pressure. The equation | = const determines the mag-
netic surfaces. We parameterize the magnetic surfaces

by the variable p defined in terms of the toroidal mag-
netic flux asfollows:

MpB, = ®, & = IB s, (1)
S

where B, is the vacuum toroidal magnetic field at the
center of the chamber. At the plasma surface, we have
P = Prax = s, Where a; isthe effective plasmaradius.
For a large-aspect-ratio tokamak, the effective plasma

radius at alow pressureisequal to a,; = /ka, wherea
is the plasma minor radius and k is the plasma elonga-
tion.

Under the condition that the total plasma current is
conserved, the free energy functional has the form

F = I(B;,,/zam p/(y—l))d3x+Alfj¢dS. )
\ S

Here, B,,, isthe poloidal magnetic field, p isthe plasma
pressure, A, is a Lagrange multiplier, and V is the
plasma volume. The last term on the right-hand side of
expression (2), Sj¢dS = |,,, describes the conservation
of the total plasma current.

In order to eliminate the plasma pressure from func-
tional (2) and reduce the problem of minimizing this

functional to a one-dimensional one, we use the profile
consistency conditions [1]

P=pM), Jo = Je(H): Jo(H) = Ap(W), )

wherep = 1/g = 1/(21B,p)dY/0p and A = const(l) is
aproportionality coefficient. Minimizing functional (2)
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Fig. 1. (a) Canonical profiles p./u(0) and (b) critical gradi-
ents RT,. /T for two tokamaks with alarge and a moderate

aspect ratio, R/a =5 and R/a = 3, respectively, and fora=1
mand g, =7.

under conditions (3) yields the following Euler equa
tion for the function p(p) [4]:

p°Gau’Iap + (M2)aldp((1/V)a/ap(V'GpHL))

= CpopJap/V'. “)
Here, V' and G = RX[{([p )*/r*Care metric coefficients
that can be determined by solving the equilibrium prob-
lem, the prime denotes the derivative with respect to p,
the integration constant C and parameter A are to be
determined from the boundary conditions, and the sub-
script ¢ stands for the canonical profile.

Kadomtsev [1] implicitly employed the following
boundary conditionsfor atokamak with acircular cross
section—the so-called circular cylinder approximation
(CCA):

He(0) =0, W (a) = p(a) = U,
limp(p — ) = 0,

Hc(0) = o, 5)

where p, ~ 1 and , is the boundary value of the func-
tion p(p), which is a solution to the set of transport
equations. In the CCA, we have |, = RBy/aB, =
0.2RI/a’B,. The last of the boundary conditions (5)
impliesthat the canonical profile can be chosen with no
regard for the actual physical circumstances at the
plasma boundary. Such boundary conditions will be
referred to as “soft” conditions. Also, Eqg. (4) with
boundary conditions (5) in the CCA will be referred to
asthe Kadomtsev problem and the corresponding solu-
tions will be marked by the superscript K. The solution
to the Kadomtsev problem has the form [1]

e = Ko = Ho/(1+p7/a)), a = a’dy/(da—dp)- (6)

For atoroidal plasmathat is bounded by the separa-
trix it isimpossible to impose the boundary condition at
infinity. In this case, it is convenient to formulate the

boundary conditions at the plasma surface using the
first-order impedance:

X =i(ag)/(2G(ag) M (aur)) (7

where i = (UR/Byjy = (1/V)9/0p(GV'pp) is the
dimensionless current. For the Kadomtsev problem, the
impedance has the form XK = p(a.q)/p(0).

The boundary conditions for a circular plasma cyl-
inder,

H.(0) = p(0), pc(0) =0,
L(a) = p(a), X, = X = p(a)/pu(o)

are equivalent to conditions (5). In what follows, we
will assume that, in the general case of a toroidal
plasma column, boundary conditions (8) single out the
special “Kadomtsev” solutions of interest to us. These
solutions for the canonical profiles p(p) are weakly
sensitive to variations in the physical parameters of the
plasma at its boundary (such as changes in the bound-
ary temperature, radiative losses, and impurity seed-
ing).

To determine canonical profiles of the temperature
and density, T.(p) and n(p), we recall that, in a steady
state, the current and temperature profiles should devi-

ate only dlightly from being canonical. That iswhy the
canonical profiles of the current and temperature

should approximately satisfy Ohm'’s law, j(p) ~ TC2 °.
Thislaw and conditions (3) yield the relationships

®)

T Oj, nOTH j°. )

In transport models, the expressions for the fluxes
contain critical gradients. Canonical profiles determine
thetarget of relaxation. When the profiles of the plasma
parametersare canonical, the fluxes should be small. As
aconseguence, the dimensionless critical gradients Q.
are determined by the canonical profiles of the current
and, by virtue of relationships (9), have the form:

Qr.=R/L;=-RT./T, = «(23)Rj/jc,

. . (10)
an = _Rnc/nc = _(1/3) RJC/JC

Calculations show that canonical profiles become
flatter as the aspect ratio A = R/a decreases and/or the
elongation k and triangularity & increase [4]. This flat-
tening isillustrated by Fig. 1, which shows the normal-
ized profiles p(p)/u(0) for two different aspect ratios
A=3and5 (Fig. 1a) and the profiles of the critical gra-

dients, -RT /T,, for the same parameters (Fig. 1b). The

results of calculating the canonical profiles are dis-
cussed in more detail in [4].
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3. MODIFIED CANONICAL PROFILE
TRANSPORT MODEL

The set of transport equationsin question consists of
equations for the poloidal magnetic field and the elec-
tron and ion temperatures, T, and T,. For simplicity, we
do not consider here the equation for the density. The
equilibrium is found by solving the Grad-Shafranov
equation. In contrast to our earlier works in which
canonical profiles were caculated from Kadomtsev
solution (6), the canonical profiles are now obtained by
solving Eq. (4) with boundary conditions (8). The
sequence of operations in the canonical profile trans-
port model (CPTM) isshown in Fig. 2.

We assume that the critical gradients of theion and
electron temperatures are the same, Qg = Qe = O,
where Q. is given by the first of formulas (10), and
choose the heat flux in the L mode in the form

Q= Q+QC (k=i,e), (11)

= NXy, (12)

Q- = Ky (TUR)(Qr = Q) H(Qr— Qo). (13)

Here, H(X) is the Heaviside step function defined as
H(x) =1forx=0and H(x) =0 for x<0and

Qq = —RT/T, (14)
aretherelative gradients of the el ectron and ion temper-
atures. Heat fluxes (12), which arelabeled by the super-
script |, are proportional to the temperature gradients.
Heat fluxes (13), which are labeled by the superscript

PC, are proportional to the difference between therela
tive and critical temperature gradients. In tokamaks, the

stiffness KE s usually much larger than the thermal

conductivity KL . The transport coefficients are chosen
in the form [6-10]

KEC = afc(llM)(a/R)O'75Q(aeff/2)qcyl

(15)
x (T, (ag:/4))*°n(3/R) /B, = const(p),

| - (To(au/2))”
= const = O y
X (P) = A, 72)Raam) o
| neo 53-280
Xk = Xi » eyt = R

p

withal© =35, a7 =5,and d, =2. Here, Mistheion-
to-proton mass ratio and the physical quantities are
expressed in thefollowing units: TinkeV, B,in T, aand
Rinm, nin 10" m=3, x, inm?s?, and Kk, in 10" m' s,

PLASMA PHYSICS REPORTS  Vol. 30

No.1 2004

Transport Canonical
models profiles
Te’ Ti’ n,u,j Hes Jes TC'/TC’ I’lé/l’l(

Equilibrium
p,V',G

Fig. 2. Flow chart of the modified transport model.

4. VALIDATION OF THE CANONICAL PROFILE
TRANSPORT MODEL

Thetransport model was validated by using the data
from 45 tokamak discharges. Specifically, we used the
published data on seven discharges with off-axisECRH
in ASDEX-U [11-13] and the data on six discharges
from the MAST tokamak database. We also used the
data on 32 discharges in DIII-D, JET, JT-60U, TFTR,
ASDEX-U, T-10, and TEXTOR from the ITER Profile
Database [14]. We tried to choose data on OH- and
L-mode discharges; however, in someof the DI11-D and
JET discharges and in most of the MAST discharges,
the plasma was apparently in the H mode. In making
the choice, we discarded severa (about five) H-mode
discharges in DIII-D since the electron temperature
profilesfor them were very flat and thus disagreed with
fairly sharply peaked ion temperature profiles. The dis-
charges that were used to test the model arelisted in the
table. Almost all of them were simulated using the

List of the selected discharges

Tokamak Shot number

DIlI-D 69627, 69648, 713783, 71378b, 71384,
78106, 78109, 78281, 78283, 78316, 78328,
81499, 90105, 90118

ASDEX-U | 6136, 6905, 135580h, 13558a, 13558b,
136540h, 13654, 156000h, 15600

JET 196490h, 19649, 196910h, 19691, 26087,
26095, 32745

MAST 4505-H, 6252-H, 6326-H, 6762-H, 6952-H,
9005-L

Jr-60U 21795, 21796, 21810, 21811

TEXTOR |68812

T-10 47379, 47405

TFTR 103648, 103808
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Fig. 3. (a) Temperature profiles and (b) relative and critical
gradients during Ohmic (OH) and off-axis ECRH in shot
no. 15 600 in ASDEX-U.

CPTM by means of the ASTRA code [15]. The plasma
density profiles were taken from experiments. The
H-mode pedestals were described by artificialy
increasing the electron and ion temperatures at the
boundary.

Here, we analyze only the electron temperature pro-
files and do not consider data on the ions. We compare
the calculated electron temperature profiles T.(p) with

the experimental profiles TS (p). We also compare the
calculated and experimental relative temperature gradi-
ents, Qre = ~RT, /T, and Q. ., = -RT," /T¢", and
present the profiles of the ::ritical gradient Q. =
—-RT. /T, (for brevity, a4 is replaced with a).

The calculations were compared with experiments
by using the following two types of metricsthat charac-
terize the deviation of the calculated results from the
experimental data:

dt2 = < T.—T2 S T®, (17)
3 [Te-TWy

0.2a 0.2a
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Qp
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Fig. 4. Profiles of the relative and critical gradients in
(8) shot no. 69 648in DIII-D and (b) shot no. 19691 in JET.

dtn2 = Z|Te/Te(0.2a)
0.2a ) (18)
—T§X“/T§X"(o.2a)|/zT§XP/T§X"(0.2a).

0.2a

Here, the summation is performed starting from the
point p=0.2ain order to avoid errorsintroduced by the
sawtooth oscillations, which were ignored in calcula
tions. Metric (18) compares the profiles normalized to
the temperature values at the radius p = 0.2a. In fact,
this indicates that we compare the averaged tempera-
ture gradients.

Figures 3-5 show a comparison between the calcu-
lated and experimental results for ASDEX-U, DIII-D,
JET, and MAST. The accuracy of modeling the T, pro-
filesisillustrated in Figs. 3aand 5a. Therelative gradi-

ents Qre = ~RTe/Te, Q oy = —RT¢" /Te® and the

critical gradients Q.= —RT_ /T, for these four toka-
maks are presented in Figs. 3b, 4a, 4b, and 5b. The pro-
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APPLICATION OF THE CANONICAL PROFILE THEORY 5

files are seen to be flat in the gradient region; conse-
guently, the gradients can be characterized by their
mid-radius values. The temperature gradients were cal-
culated in natural coordinates determined from the
solution to the equilibrium Grad—Shafranov equation;
this indicates that, for atoroidal plasma with a noncir-
cular cross section, the gradients are averaged over the
magnetic surfaces.

5. SCALINGS FOR THE TEMPERATURE
GRADIENTS

A comparison between the calculated and experi-
mental relative temperature gradients, Q. and Q. eo, is

shown in Fig. 6. We can see that the calculated and
experimental relative temperature gradients are in rea-
sonably good agreement with one another. The error

bar (about +15-20%) in determining Q e for one

ASDEX-U discharge is aso shown. According to this
figure, the dimensionless gradients Q.. change over a
broad range—from Q. ~ 2 for MAST to Q. ~ 10-12
for T-10. In [4], it was shown that the larger the aspect
ratio A = R/a and/or the quantity g, the more peaked the
canonical profile (or, equivalently, the larger the rela-
tive gradient Q). It can also be seen that the peaked-
ness of the canonical profile increases with decreasing
the elongation k and/or triangularity 8. Consequently,
the parameter { = gA?/k can serve as a scaling (self-
similar) parameter for the rel ative temperature gradient.
The scaling parameter can also depend on the triangu-
larity; however, this dependence is not considered here
because it is weaker than the dependence on the elon-
gation [4]. The aspect ratio in the parameter  israised
to the second power because the gradient is normalized
to the plasmamajor radius. The expression for the scal-
ing parameter can be refined by using the asymptote of
the critical gradient Q. in the Kadomtsev case (6),

16 Aq

Q= Fgva

(19)

where A > 1. Thisimplies, in particular, that it would
be better to use a weaker dependence on q, & =
gA?/(k(g + 4)), for the scaling parameter. Of course, the
above considerations help merely to estimate which of
the scaling parameters is most suitable for describing
the calculated and experimental relative temperature
gradients, Q. and Q e A search for amore realistic

scaling requires substantial computational work aimed
at the statistical analysis of the deviations of the calcu-
lated results from the experimental data. This is why
only afew examples will be discussed here.

Figure 7 shows the dependence of the experimental
relative gradients QTexp at mid-radius, p = a/2, on the

scaling parameter & = gA?%/(k(q + 4)) for al of the cho-
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Fig. 5. (a) Temperature profiles and (b) critical gradients at
t =265 msin shot no. 6252 in MAST.

QFP = —R(TS*PYTS*P)  (experiment)
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Fig. 6. Comparison between the measured and calculated
relative gradients.

sen discharges in the eight tokamaks. We emphasize
that Fig. 7 presents only experimental data. The theory
of canonical profiles merely hel psto choose the form of
the scaling parameter . All the experimental points are
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Fig. 7. Dependence of the measured relative gradient of the
electron temperature on the scaling parameter & =

qA2/(k(q + 4)). The cross indicates the value of the critical
gradient calculated from Kadomtsev asymptotic formula
(29) for the corresponding T-10 shot.

seen to lie near a certain smooth convex curve. On the
one hand, the scatter of the points around the curve is
fairly large; on the other hand, the experimenta errors

in calculating Q ., are also large. As the aspect ratio

increases, critical gradient (19) in the case of the
Kadomtsev solution increases without saturation. The
rightmost experimental point in Fig. 7 refersto adis-
chargein T-10 with an aspect ratio of A= 6 and aminor
radius of a = 25 cm. Since thisradius valueis not typi-
cal of the T-10 tokamak, the reliability of the measure-
ments of the temperature profile during the discharge
was low. Nevertheless, this experimental point is close

QTe
15+
TEXTOR
ASDEX-U
10+ Vy y = 18.43 — 18.04*exp(—x/7.106)

| | | | | | | |
0 2 4 6 8 10 12 14 16
qA*[(k(q +4)

Fig. 8. Dependence of the calcul ated relative gradient of the
electron temperature on the scaling parameter & =

aA%/(K(q + 4)).

to the point predicted by formula (19) and is marked by
thecrossin Fig. 7.

Based on the results shown in Fig. 7, we can try to
predict Q. values for the ITER-FEAT project. For a
dischargewith the parametersR=6m, a,,=2m, A=3,
k=1.7, and g = 3.5, we obtain & = 2.45, in which case
the results of Fig. 7 yield Q. = 5.6. Since this is an
interpolation problem (rather than an extrapol ation one,
asisthe case with the problem of predicting the energy
confinement time), the prediction should be sufficiently
reliable.

Figure 8 showstherelative temperature gradient Q-+,
calculated at mid-radius as a function of the parameter
¢ for the same discharges. Also shown in the figure is
the approximating curve, whichisseento differ dightly
in shapefrom that in Fig. 7. However, thevalue Q.= 6
predicted for ITER-FEAT remains amost the same.

The dependence of the critical gradient Q. on the
parameter & is displayed in Fig. 9. The approximating
curveis also similar in shape to those in Figs. 7 and 8.
Figure 10 shows how the calculated relative tempera-
ture gradient Q. depends on the calculated critical gra-
dient Q.. The elevation of the points above the diagonal
corresponds to the deviation of the temperature profile
from a canonical. The mean deviation is seen to be
about 10%. The deviation itself depends on the power

input to the plasma and aso on the stiffness x, = Kkpc/n

in heat flux (13). Our model has a moderate stiffness.
For typica JET parameters, the stiffness is about x; ~

7.5 and X, ~ 5 m?/s. In stiff models, like the IFS/PPPL
model [16], the stiffness is about X; ~ 20 m?/s, so that

the deviation of the calculated gradients from the criti-
cal ones should be smaller.

The accuracy of predictions derived from the CPTM
is illustrated in Fig. 11, which shows the correlation

QTC
12~

y=11.62 — 12.22*exp(—x/4.45)

1
0 2 4 6 8 10 1214 16
gA[(k(q + 4))

Fig. 9. Dependence of the critical temperature gradient on
the scaling parameter & = gAZ/(k(q + 4)).
PLASMA PHYSICS REPORTS  Vol. 30
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Q7. =-R(T,/T,) (calculation)

15 .

10

. . .
0 2 46 g 10 12

Q. = -R(T./T,)(critical)
Fig. 10. Dependence of the calculated relative gradient Qe

on thecritical gradient Q. The dashed line showsthe linear
approximation, while the solid line is the diagonal.

dtn2
03+ P
7 ﬁ/
mom
0.2 e ’ o u
e o "
. | |
[} ’/ /-‘- - | ] " . n
L7 [ ] LRI
0.1+ . .-_ .
/-/ [ ] u [ ]
o .
i | | |
0 0.1 0.2 0.3 dt2

Fig. 11. Normalized deviation of T, from Teexp vs. thelinear

deviation of T, from TEXp.

between the normalized and linear deviations for the
discharges chosen above. First, we can see that the
mean linear deviation is about 20-22%. Such a large
mean deviation can be partially explained by the fact
that, in simulations, we neglected someimportant phys-
ical processes, such as sawtooth oscillations and
plasma emission. From Fig. 11, we aso see that nor-
malized deviations (18) are about two times smaller
than linear deviations (17). This indicates that, in
describing the temperature gradients, the processes
ignored in the analysis are of minor importance. As a
result, with the model proposed here, the description of
the gradients is less sensitive to various types of error

PLASMA PHYSICS REPORTS  Vol. 30
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than the description of the absolute values of the elec-
tron temperature.

6. CONCLUSIONS

Based on the canonical profile theory devel oped for
tokamak plasmas with arbitrary cross sections, we have
proposed a modified transport model in which the crit-
ical temperature gradient Q. = R/L; in the expressions
for the heat flux is determined in terms of the calculated
canonical profile. The model was validated by compar-
ing the computed results with experimental data from
eight different tokamaks. Modeling of a set of 45 dis-
chargesyields good agreement between the experimen-
tal and calculated temperature profiles. An analysis of
the measured and cal cul ated rel ative temperature gradi-

ents Q.= —RT, /T, makes it possible to determine a

reasonable scaling parameter, gA%/(k(gq + 4)), for the
temperature gradient. The scaling obtained here can be
used to predict the shapes of the electron and ion tem-
perature profiles in present-day and future tokamaks.
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Abstract—Results of particle-in-cell simulations are presented that demonstrate characteristic interaction
regimes of high-power laser radiation with plasma. It is shown that the maximum energy of fast ions can sub-
stantially exceed the electron energy. A theoretical model is proposed of ion acceleration at the front of arela-
tivistic electron cloud expanding into vacuum in the regime of strong charge separation. The model describes
the electric field structure and the dynamics of fast ionsinside the el ectron cloud. The maximum energy theions
can gain at the front of the expanding electron cloud is found. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Over the past few decades, the problem of the gen-
eration of charged particle beams in the interaction of
high-power electromagnetic radiation with plasma
have attracted great interest [1]. This interest stems
from the fact that the interaction of a high-power laser
pulse with a collisionless plasma results in the genera
tion of large-scale collective electric fields in which
electrons and ions can be accelerated up to extremely
high energies. The high ion-acceleration efficiency
observed in experiments [2-10] has stimulated discus-
sion about the possibility of using laser-accelerated
ions in various applications. Among them, we note the
use of such ions in controlled fusion research (with in
the framework of the concept of fast ignition of prelim-
inary compressed thermonuclear targets [11, 12]), the
hadron therapy of oncological diseases [13-16], and
the diagnostics of ultrafast plasma processes[17, 18].

Numerous experimental studies (see, e.g., [2-10])
have been devoted to the investigation of different
regimes of fast-ion generation in the interaction of mul-
titerawatt and petawatt laser radiation with thin solid
targets (foils). In some papers, it was asserted that both
the ions initially located at the front side and those
located at the rear side of the target are involved in the
acceleration process. We note that such acceleration
was previously observed in computer simulations [19,
20]. Computer simulations have also demonstrated the
high efficiency of ion acceleration in the interaction of
high-power laser radiation with plasma[21-27]. More-
over, 3D simulations have demonstrated that the trans-
verse and longitudinal emittances of the ion beam can
be controlled by varying the target parameters [28-33].

The interpretation of the results of the above exper-
imentsand of computer simulations demandsthe devel -
opment of atheory of such acceleration. In particular,
the theoretical models should be able to describe the
maximum ion energy and the shape of the energy spec-
trum of fast ions as functions of the laser-pulse and tar-
get parameters. Although various mechanisms of ion
acceleration (see, e.g., [1, 19-36]) have been discussed
in the literature, two of them traditionally attract the
greatest interest. According to the first mechanism, the
ions are accelerated in a target surface layer in which
thestrong electricfield islocalized. The field amplitude
and the width of the surface layer are such that the elec-
tric potential drop ison the order of the electron thermal
energy and, accordingly, the ion energy is on the order
of the electron thermal energy times the ion charge
number. The second mechanism assumes that the ions
are accelerated at the front of a plasma expanding into
vacuum [37-45]. Inthismodel, the accel erating el ectric
field is assumed to be generated due to space charge
separation in a narrow layer at the front of the plasma
cloud, which, on the whole, is electrically neutral. In
this case, the energy of fast ions does not depend on
their charge and can substantially exceed the electron
energy, as was observed experimentally in [46].

A transition to electromagnetic radiation powers
corresponding to relativistically strong fields radically
changes the acceleration regime. In particular, com-
puter smulations [21, 25, 28, 29] show that the interac-
tion of petawatt laser radiation with foils results in the
formation of extended regions with a strong electric
field. In these regions, the plasma quasineutrality is
strongly violated, which should necessarily be taken
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into account when describing ion accel eration theoreti-
cally.

One well-known example of efficient ion accelera-
tion under conditions of strong charge separation isthe
Coulomb explosion of a cluster [34, 47-49]. In this
case, the electrons escape from the cluster under the
action of strong electromagnetic radiation and the col-
lective eectric field of the expanding ion component
plays akey rolein the acceleration process. In other sit-
uations (e.g., in the regime considered in [31-33]), a
small number of light ions gain energy in a time-inde-
pendent electric field near the target surface and their
dynamics can be described in the test-particle approxi-
mation.

In the next section, we describe the results of parti-
cle-in-cell (PIC) simulations demonstrating laser—
plasma interaction regimes in which the energy of fast
ions substantially exceeds the electron energy. In Sec-
tion 3, we present a theoretical model of the accelera-
tion of arelatively small group of ions at the front of a
relativistic electron cloud expanding into vacuum in the
regime of strong charge separation. The model explains
the acceleration of fast ions up to energies higher than
the electron energy. The results obtained within this
model describe the electric-field structure and the
dynamics of fast ions inside the electron cloud. The
maximum energy the ions can gain at the front of the
expanding electron cloud is found.

2. RESULTS OF COMPUTER SIMULATIONS

OF ION ACCELERATION UP TO ENERGIES

SUBSTANTIALLY EXCEEDING ELECTRON
ENERGY

Numerical simulations of charged particle accelera
tionintheinteraction of ultrashort laser pulseswiththin
targets were performed with a2D version of the REMP
code [50]. This is a relativistic electromagnetic code
based on the PIC method [51-53]. It iswell known that
PIC simulations allow one to take into account various
nonlinear and kinetic processes occurring in the inter-
action of high-power laser radiation with targets. On
the other hand, such simulations make it possible to
reveal the distinctive features of particle accelerationin
one- and multidimensional models. Here, we consider
the acceleration of protons and pions (1t") in the inter-
action of laser radiation with two-layer targets. In both
cases, the target is an aluminum foil with athin hydro-
gen or pion-containing layer on its rear side. The effi-
ciency of pion generation in laser plasma was calcu-
lated in [54]. We note that ultrashort laser pulses are
considered to be a very promising means for accelerat-
ing short-lived particles (see[1]) because the character-
istic time needed to accelerate such particles to relativ-
istic energies can be substantially shorter than their
decay time. For example, the decay time of a pion is
2.6 x 10% s, whereas the characteristic acceleration
time can be shorter than several hundred femtoseconds.
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In the case of proton acceleration, simulations were
performed in a 120A x 60A region with a mesh size of
0.1A x 0.1A, where A = 21IC/W S the laser wavelength,
with w being the laser frequency. The total number of
particles was about 107. The particles and electromag-
netic radiation were absorbed at the boundaries of the
simulation region; however, the influence of the bound-
ary conditions was negligible because of the suffi-
ciently large dimensions of the ssimulation region. The
target was a 3A-thick aluminum foil with a0.25A-thick
hydrogen layer on its rear side. The aluminum ions
were assumed to betriply ionized. The electron density
inside the aluminum foil was equal to n, = 4n_,, where
n., = MW?/4TE? is the critical density. The proton den-
sity in the hydrogen layer was n, = 1.33n.,. The proton-
to-electron mass ratio was m,/m, = 1836, and the alu-
minum-to-proton nuclear mass ratio was m,,/m, =
26.98. The target was located near the x = 40A plane.
The laser pulse entered the simulation region from the
left boundary, which was located at x = 0. The electric
field of incident radiation was directed along the y axis
(p-polarized radiation). The dimensionless amplitude
of the laser pulse was g, = eE,/m.wc = 3, which corre-
sponded to an intensity of | = 1.2 x 10" W/cn?* for a
laser wavelength of A = 1 um. The width and length of
the laser pulse were 30A and 90A, respectively, which
corresponded approximately to 350-TW laser power.

The simulation results are shown in Figs. 1-3. Here
and below, the units of length and time are the laser
wavelength and period, respectively. Figure 1 shows
the energy spectra of (a) electrons, (b) protons, and
(c) duminum ions at t = 650 (the instant by which the
maximum energies of protons and electrons have
already reached their quasi-steady values). It can be
seen that the maximum proton energy (15 MeV) is
approximately three times the maximum electron
energy (5MeV) and thirty times the aluminum-ion
energy per nucleon. The protons are accelerated in the
electric field produced by fast electrons, which gain
energy in the interaction with laser radiation and then
get into the region behind the target. Figure 2 showsthe
distributions of the (a) x and (b) y components of the
electric field in the (X, y) plane at t = 100 (the instant at
which the proton energy spectrum varies most rapidly).
It can be seen that the transverse component of the el ec-
tromagnetic field does not penetrate to the rear side of
the target and that the longitudinal electric field (it is
thisfield that accel erates protons) occupies an extended
region behind the target. Figure 3 shows the distribu-
tions of the () electron, (b) proton, and (¢) aluminum-
ion densitiesin the (x, y) plane at t = 300.

In the case of pion acceleration, simulations were
performed in the 160A x 60A region. The target was a
3A-thick aluminum foil with a 0.25A-thick pion-con-
taining layer on itsrear side. The pion-to-electron mass
ratio was m,/m, =279. The other simulation parameters
werethe same asin the case of proton acceleration. The
simulation results are shown in Figs. 4-6. Figure 4
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Fig. 1. Energy spectra of (a) electrons, (b) protons, and (c)
auminumions at t = 650.

showsthe energy spectraof (a) electrons, (b) pions, and
(c) duminum ions at t = 250 (the instant by which the
maximum energies of pions and el ectrons have already
reached their quasi-steady values). It can be seen that
the maximum pion energy (12 MeV) is approximately
two-and-a-half times the maximum electron energy
(5MeV) and is much higher than the aluminum-ion
energy per one nucleon. As in the previous case, the
pions are also accelerated in a quasistatic electric field
produced by fast electrons on the rear side of the target.
Figure 5 shows the distributions of the (a) x and (b) y
components of the electric field at t = 87.5, while Fig. 6
shows the distributions of the (a) eectron, (b) pion, (¢)
and aluminum-ion densities in the (X, y) plane at t =
212.5.

3. INTERACTION OF IONS
WITH A COLLECTIVE ELECTRIC FIELD
GENERATED DURING THE EXPANSION
OF A RELATIVISTIC ELECTRON CLOUD
INTO VACUUM

3.1. Electric Field Sructure near the Front
of the Electron Cloud

Let us consider the acceleration of ions during the
“vacuum heating” of electrons. We assume that the first
(heavy-ion) layer of a two-layer target of width |
remainsat rest during theinteraction. Thelightionsare
described in the test-particle approximation. The lower
indicesi, a, and e stand for heavy ions, light ions, and
electrons, respectively.

We assume that the electrons are initially located
inside the target (in the interval —1/2 < x < 1/2). Under
the action of a short laser pulse, the electrons gain a
momentum p,, , directed along the x axis. The expan-
sion of the electron cloud into vacuum is determined by
the self-consistent electric field, which also accelerates
light ions. This acceleration mechanism can be
regarded as an extension of the well-known mechanism
of ion acceleration during the expansion of plasmainto
vacuum [37, 38] to the case in which plasma quasineu-
trality isstrongly violated and the particles haverelativ-
istic energies.

To describe the expansion of an eectron cloud into
a vacuum, we will use one-dimensional equations of
electron hydrodynamics:

ane a(neve) —_

ot T O M)

Ope . 9Pe _

¥ +V, % eE, 2)
0E _ = 4me(Zn(X) —n,), 3)

ox

where n, is the electron density, the electron velocity
and momentum are related to each other by the expres-

sion v, = cpe/(Mc” + p2)'2, and the ion density n;(x)

is assumed to be uniform inside the interval —1/2 < x <
[/2 and equal to zero outside of it.

To find the solution to Egs. (1)—(3), we switch from
the Euler variables x and t to the Lagrange variables x,
and t. Here, X, is the coordinate of an element of the
electron fluid at theinitial instantt =0 (—1/2 < x, < 1/2).
The Euler and Lagrange variables are related to each
other by the expression

X = XO + Ee(XO! t)v (4)
No. 1
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Fig. 2. Distributions of the (&) x and (b) y components of the electric field in the (x, y) plane at t = 100.

where &(x,, t) is the distance by which an element of
the electron fluid is displaced from its initial position
over thetimet. At theinitial instant, we have &.(X,, 0) =
0. In the Lagrange variables, Egs. (1)—(3) become (see
[55-57])

Ee(Xo 1)

0pe _ 2
St = ~4nZE [ ni(x+s)ds, ®)
0
GIR Pe
] S o — (6)
ot (mic’+pd)”

In our case, the density profile of heavy ionsn;(X) is
given by the expression n;(x) = n,0(l/2 — x), where 6(x)
is the Heaviside step function: 8(x = 0 a x < 0 and
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B(x) = 1 at x > 0. As a result, the right-hand side of
Eq. (5) takesthe form
eE(Xxg, t)
O/2—X%,, 1/12<Xy+ &(Xor 1)
= —4nz, noez%e(xo, 1), —1/2<Xo+Eo(Xo t) <172
H 12 %9, %o+ EolXo 1) <112

(M

We are first of al interested in the dependence of the
electric field on the coordinate and time near the front
of the electron cloud. It followsfrom Eq. (7) that, inthe
Lagrange variables, the el ectric field has the form E(x,,
t) =—4m,Z &1 /2 — X,). To find the electric field profile
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asafunction of the Euler coordinatex, it is necessary to

C 1/2
use the solutions to Egs. (5) and (6): e(Xor 1) = ﬁ{ [Mec” + pao(%o)]

Pe(Xort) = Peo(Xo) —2TIZiN€" (I —2X)t,  (8) —[MEC + (e o X0) = K (X)) 3,
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where the function p, ((X,) describestheinitial distribu-
tion of the electron momentum in the cloud and

K(X) = 2nnoZie2(I —2Xp). (10)

It can be seen that the displacement of an electron from
its initial position (&%, 0) = 0) first increases as

Ee(Xp, 0) = Ve of, where v o = €pe, o/(mic” + péo )2 is
the initial electron velocity. In a time of t, =
Pe o(X0)/[TNeZ; €21 — X1, the displacement reaches its

maximum value & (%) = c{[mic” + pao ()" ~
m.C}/K(%,) and then decreases. It follows from the
expressions obtained that the closer the Lagrange coor-
dinate x, of an element of the electron fluid to the
boundary of the plasma layer, the longer the time
required for the element to return to itsinitial position
(=t,). For x, — 1/2 (which correspondsto the particles
located at the front of the electron cloud), the return
time tends to infinity. Near the front of the electron
cloud, where k(%)) —= 0, we have

pe, O(Xo)t

(m2c”+ p2 o(xo))

2 3,2
0 mct

— 21Ny Z; eZE‘— —Xq
2 mec + p2 o (xo)) ™

We assume that, near the front of the cloud, the ini-
tial distribution of the electron momentum pe o(X) is
uniform; i.e., pe o does not depend on the coordinate X,.
Using Egs. (4) and (10), we find the relation between
the Lagrange and Euler coordinates:

(X t)=cC

(11)

_4(X—=Vt) +bIt?
2(2 + bt

(12)

where

2 23
4mingZ;e"mgc

(m2c”+ p2 o(xo)) ™

It followsfrom thisthat the electric field profile near the
front of the electron cloud is described by the expres-
sion

b =

(13)

E(x, t)

2(X—=Vgol)— (14)
= _4T[n Z e e, t A .
Ze=s s oot + 3 —f

It can be seen that the electric field vanishes at the front
of thecloud (i.e., at x=1/2 + v, ot). The gradient of the
electric field is proportional to the electron density and
depends on time as

(15)
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3.2. Acceleration of lons at the Front
of the Electron Cloud

Let us consider the acceleration of ions with a mass
m, and charge Z.e in the eectric field described by
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expression (15). The equation of motion of an ion in
thisfield has the form

Pa
_ 2Xa—Ve’0t—|/2 | 0 (16)
= —41nyZ,Z,€ —1 b2 GE\/G, ot + 5~ X4
%= e (17)

(mic’®+ p2)

where the superior dot stands for the time derivative
and p, and x, are the momentum and coordinate of an
ion, respectively.

3.2.1. Nonrédativistic limit. In the case of nonrela-
tivistic ion energies, Egs. (16) and (17) can be trans-
formed into one equation for x,;

20 [ 2V, ot +I
%, +bH . = pp=e (18)
5 4 ptH 2 + bt?

where
Z 2_3/2
p=" g (19)

The solution to Eq. (18) can be expressed in terms of
hypergeometric functions:

_ | I .. bt
Xa(t) = E"'%a,o—ﬂ:ﬂ:a}-ﬁ, Y; >0
) (20)
+1 + (X =N v+ 1 PO
|:Ve,0 (Xa,O_Ve,O) D—B,—G,V ,_ZD]

Here, x, o and X, , aretheinitial coordinate and veloc-
ity of an ion and F(a, B; y; 2) is the hypergeometric
function [58], whose parameters a, 3, and y are related
to U by the expressions

1_i(8p—1)”2

12
a=-—-= 7 |£§_H'.:__.1).__

-_1,
4 4

@)

~<
I
NIk ™

Let, at the initial instant t = 0, an ion be at rest and
located at the point x, , = 1/2 (i.e., at the front of the
electron cloud). Inthiscase, we should set x, ,=1/2 and
PLASMA PHYSICS REPORTS  Vol. 30

No.1 2004
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Xa 0 = 01in Eq. (20). It then follows from Eq. (20) that
the ion coordinate depends on time as

X(t) = 3

(22)
d-@1-8w"” 1+@1-8w)" 3. bt
+ Ve o | 1P, = 5 2

It can be seen that the second term on the right-hand
side of this expression increases with time. At the
instant t = t*, which is determined by the equation

1 12 _ 1/2 %12
el (1-8u) ’1+(1 8u) ;§; b(t)Dzo’(B)
0 4 4 2 2 U
PLASMA PHYSICS REPORTS Vol.30 No.1 2004

the ion coordinate becomes x, ((t*) =1/2 + v, ot *; i€,
inthe course of acceleration, theion crosses the front of
the electron cloud and leaves it behind. As aresult, the
ion gains the velocity

ub(t*)* -5 (1-8w™
24 0 :

X(t*) = Vgo+ Veo 2
(24)

5+(1-8W". 5. b(t)’n
4 12 2 U

Since, after crossing the front of the electron cloud,
the ion velocity becomes higher than the maximum
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electron velocity, which is, in turn, assumed to be non-
relativistic, the ion energy should be no higher than
m,c?. Using the asymptotic of the hypergeometric func-
tionat z— oo,

F((X, B, Y, Z) = M(_Z)—U

T (y—a) 03)
SLOT=B) s
r@ry-p "

wefind from Eq. (23) that, inthelimitt* — oo, theion
gains the velocity

]-[1/221/4u P18
8 [

Xa(1%) = Vg oL +
0
(26)
r(J/1-8u/2)
F[(5+ J1—8p)/4]°

" t*)(A/l—Bp—l)IZE

It can be seenthat, at t* > 1, theion velocity is approx-
imately equal to the expansion velocity of the electron

cloud. Therefore, in the nonrelativistic limit, the char-
acteristic energy of fast ionsis equal to

2
MaVeo_ Mag
m, °

€a = > Y

27)

Asin the approach of [38], this energy does not depend
on the ion charge; this fact, in both cases, reflects the
kinematic relationship corresponding to a situation in
which the ion overtakes the front of the electron cloud.

3.2.2. Ultrarelativistic limit. Let us consider ion
acceleration at the front of the electron cloud in the case
of relativistic ion energies. We rewrite Egs. (16) and
(17) inthe form

Ba = —£—2-0(0,), (28)
1+t

da = Lazl/z_ﬁe,o' (29)
(1+p?)

Here, € = Y/8, Be o = Ve o/C, thetimeisin unitsof T =

2121 + (pe 0/rnec:)z)»*/“co;i, and the momentum is in
units of m,c. In passing over from Egs. (16) and (17) to
Egs. (28) and (29), we switched from the coordinate x,
to the new coordinate

0, = (Xa—Veot—I/2)/cT, (30)
which is the distance between the current ion position
and thefront of the electron cloud. Figure 7 presentsthe
results of the numerical integration of Egs. (28) and
(29). Figure 7a shows the time dependence of the ion
momentum p,(t), while Fig. 7b shows the time depen-
dence of the distance between the ion and the front of
the electron cloud g,(t) = X,(t) — Be ot — /2. Curves 1,
2, and 3 correspond to 3¢ , values of 0.35, 0.5, and 0.6,
respectively. The initial conditions are chosen so that
p,(0) = 0 and 0,(0) = 0. Such initial conditions corre-
spond to asituationin which, at t =0, anion with azero
velocity is located at the front of the electron cloud. It
can be seen that, in the initial stage of acceleration, the
function o4(t) is negative and increases in absolute
value. This corresponds to the increase in the distance
between the current position of the accelerated ion and
the front of the electron cloud. This distance then starts
to decrease until the ion overtakes the front. At the
instant the ion crosses the front, the ion velocity is
higher than the electron velocity; i.e., the higher the
expansion velocity of the cloud, the higher the ion
energy. The ion energy satisfies the inequality

2
m,c

€, > = Mage |

a2 = (31)
(1-B2p)"* M
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which givesalower estimate of the maximum energy of
the ions accelerated in the course of expansion of arel-
ativistic electron cloud into a vacuum. Obviously, this
isageneralization of expression (27) to the case of rel-
ativistic ion energies.

Let us now analyze a Situation in which an ion gets
into the acceleration regime at the ingtant t, > 1, by
which the dectron cloud has aready substantialy
expanded. We consider the casein which the characteris-

tic accelerationtimet,.. = [(1 + t; )/e]"2 ismuch lessthan
t,. This condition can be satisfied only when the param-
eter € islarge enough. Theinequdity € > 1 isequivaent
to the condition that the electron energy is ultrarelativis-
tic. In this limit, the right-hand side of Eq. (28) can be
approximated by the expression —€[a, /(1 + t;)18(~0,).
Asaresult, the set of Egs. (28) and (29) takes a Hamil-
tonian form with the Hamiltonian

H(py 0a) = (1+p2)"°

2 (32)

Oa
- paBe, ot€ 2 9(—0'3).
2(1+tp)

The fact that Hamiltonian (31) does not depend
explicitly ontime (#(p,, 0,) = h) alowsusto calculate
the momentum the ion gains due to the interaction with
the expanding electron cloud. We note that the instant
at which the ion crosses the front of the electron cloud
corresponds to a zero value of g,(t). Att=t, theion
crosses the front of the electron cloud for the first time.
From here, we find that h = (1 + p;O)V2 — Pa oBe.or
where p, ( istheinitial value of the ion momentum. At
theinstant t = t*, the accel erated ion catches up with the
front of the cloud and crossesit. Thisinstant also corre-
sponds to a zero value of g,(t): g,t) = 0. It follows
from Eq. (32) that the resulting ion momentum is

_ Beoh + [BEoh*—(1-h")(1-Beo)]
1-Beo

Lettheionbeinitialy at rest; i.e., p, o = 0. Wethen have
h=1and

Pa (33)

2B oh
1-p2,

which is equal to the momentum the particle gains due
to an elastic reflection from awall moving with aveloc-
ity cBe o close to the speed of light. In dimensional
units, formula (34) can be rewritten in the form

(34)

a

m,C o€
€p= —— =2m.c’H eg (35)
1_Be,0 E}nec
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3.2.3. Simple particle acceleration model. The
basic features of the above mechanism of charged par-
ticle acceleration can be illustrated using the following
simple model. A similar model was used in [59] to ana-
lyze the problem of the charge neutralization of an ion
beam interacting with a plasma slab. We assume that
the relativistic electrons form athin bunch oriented per-
pendicularly to the x axis. We also assume that the
bunch propagates with aconstant velocity cf3, , and that
its shape does not change with time. Between the elec-
tron bunch and the target, there is a homogeneous el ec-
tricfield E = 2ren,Ax, where n,Ax isthe number of elec-
trons per unit areaof the bunch. Inthiselectricfield, the
momentum and coordinate of an ion of species a with
acharge of Z,e depend on time as

p.(t) = Z,eEt, (36)

[m§c4 + (ZaeEct)z] v2_ mac2

Z,eE

Xq(t) = (37)

We assume that the initial coordinate of anionis zero.
Attheinstant t = t*, theion catches up with an electron
bunch. The acceleration time t*, which can be found
from the condition x,(t*) = ¢3¢ ot* isequal to

t* = 2morCBe,O

s Sl (38)
(1-Beo)ZseE

We find from here that the energy of the accelerated ion

is € = 2m,C°Be o(€e/mc?)?, which agrees with for-

mula (35).

4. DISCUSSION OF THE RESULTS OBTAINED

In this paper, we have found the maximum energy of
thefast ions accelerated at the front of an electron cloud
expanding into a vacuum. The energy of the fast elec-
trons generated in the interaction of high-power laser
radiation with a target can be estimated from below as
a,m.c?, which correspondsto the kinetic energy of elec-
trons oscillating in the field of an electromagnetic wave
with a dimensionless amplitude of a, = eE/mcw > 1
[60]. Then, using Egs. (33) and (34), we find that the
maximum energy of fast ions is on the order of
2m,,c2a§ . For example, a a, = 1 (which correspondsto
alaser intensity of about 10'® W/cm?), the plasma el ec-
trons can gain an energy of afew megael ectronvolts. In
this case, according to Egs. (33) and (34), the energy of
fast ions can reach afew gigaelectronvolts. Obviously,
under real experimental conditions, there are some fac-
tors (such as the finite transverse dimensions of the
laser pulse and the target) that violate the one-dimen-
sional approximation used in deducing Egs. (33) and
(34). As aresult, the energy of fast ions will be some-
what lower. This also concerns the results of computer
simulations presented in Section 2, in which the finite
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dimensions of the simulation region were an additional
factor limiting theion energy. Neverthel ess, the conclu-
sion that moderate-power laser pulses can, in principle,
be used to generate high-energy ions seems to be
important when considering methods for optimizing
the parameters of |aser accelerators.
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Abstract—The implosion of wire arraysis studied at the Angara-5-1 facility with the help of an X-ray pinhole
camera. It is shown that the drift of the plasmatoward the axis occursin the form of a“plasmarainstorm.” The
data constituting a part of the experimental database are presented. Based on these data, it is established that
the spatial structure of an imploding plasmais highly inhomogeneous, so that it makes no senseto talk about a
plasma shell that implodes as a single entity. In this case, plasmainhomogeneities arising due to a*“ cold start”
and prolonged plasma production have a decisive impact on the final parameters of a hyper-terawatt Z-pinch.

© 2004 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

At present, the implosion of wire arrays (liners) is
being studied extensively [1-3]. In the stage of the
maximum liner compression, a high-power soft X-ray
(SXR) pulse is generated that can be used in inertia
confinement fusion (ICF) research.

According to the concept of prolonged plasma pro-
duction [4], the implosion of wire arrays proceeds as
follows: Just after the current beginsto flow through the
wirearray, aplasmais produced on the wire surface and
the discharge current switches from the wires to this
low-density plasma corona. The wire cores, which
remain in their initial positions over most of the dis-
charge phase, play the role of stationary plasma
sources. The plasmacorona, through which most of the
current flows, drifts toward the array axis under the
action of the Ampére force.

It was shown in [5] that, at a current of ~1 MA, the
mass of the dense wire cores 70 ns after the beginning
of the current pulse is ~70% of their initial mass. Orig-
inaly, the wire array is a set of wires equally spaced
along acylindrical surface. Therefore, the plasmaflows
produced at the wires are azimuthally nonuniform from
the very beginning of the discharge. Moreover, the
plasma produced from an individual wire is also non-
uniform in the axial direction.

The azimuthal and axial inhomogeneities of the
plasma produced from the liner wires give rise to
plasma jets that can merge and undergo self-focusing
under the action of their magnetic self-field. In [6], this
phenomenon was called “the radial plasma rainstorm.”

In the present paper, we will show that the inhomo-
geneities of the imploding plasma that appear due to
both the “ cold start” of the Z-pinch and the subsequent
prolonged plasma production decisively affect the final
parameters of an emitting hyper-terawatt Z-pinch.

In this paper, the data constituting a part of the
experimental database are presented. It is on the basis
of these data that the main conclusions of [6] were for-
mulated.

2. EXPERIMENTAL AND DIAGNOSTIC
TECHNIQUES

The experiments were performed at the Angara-5-1
facility [7]. As aload, we used arrays assembled of 30
to 120 tungsten wires 5-8 um in diameter. The array
diameter was varied in the range of 8-20 mm, and the
length was varied in the range of 1-1.5 cm. We aso
used composite liners consisting of two coaxial wire
arrays and alow-density solid agar-agar cylinder onthe
liner axis.

The main diagnostics used in this study was the
high-resolution imaging of the Z-pinch with the help of
time-integrating X-ray pinhole cameras. Time-integrat-
ing pinhole cameras are widely used as a simple, reli-
able, and informative diagnostic tool in experiments
with fast Z-pinches (see, eg., [8]). To image the
imploding liner in different spectral ranges, the pinhole
cameras were equipped with filters. The spatial resolu-
tion of the images in the 1-keV photon energy range
was 30 pm. The high spatial resolution of time-integrat-
ing pinhole cameras allowed us to obtain information
on extremely short-duration implosion phases. Indeed,
for one to obtain a sharp image of an emitting object
having a characteristic size Ax and moving with a
velocity v, the object should emit no longer than atime
At ~ Ax/v. Assuming that the velocity of the imploding
plasma is about the Alfvén velocity, v ~ 3 x 107 cm/s,
we find that the lifetime of an emitting object with a
size of Ax ~ 100 um should be a fraction of a nanosec-
ond; otherwise the object imagewill be smeared out. To
obtain the more complete information on pinch inho-
mogeneities, we sometime used two pinhole cameras

1063-780X/04/3001-0030$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Typical waveforms of the (1) current J and (2) SXR
(~200 eV) emission power W.

that produced X-ray imagesin two perpendicul ar direc-
tions. Having two such mutually orthogonal projec-
tions, we were able to determine the spatial structure of
the object.

Besides pinhole cameras, we also used other diag-
nostics. Here, we list only the diagnostics from which
the results presented in this paper were obtained:

(i) magnetic probesinstalled at a distance of 55 mm
from the liner axis for measuring the liner current;

— - [J0.8 mm

(ii) a frame X-ray image tube (XRIT) based on a
microchannel (MCP) camera;

(iii) frame laser shadowgraphy; and

(iv) SXR diagnostics based on four vacuum X-ray
diodes (XRD) with different absorbent filters for
recording the waveforms of the emission power in a
photon energy range of 0.1-2 keV.

3. EXPERIMENTAL RESULTS

The experiments carried out at the Angara-5-1 facil-
ity showed that the implosion of wire arrays 10-15 mm
in length and 8-20 mm in diameter resulted in the for-
mation of a pinch on the liner axis. The pinch length
was equal to thelength of the array, and the pinch diam-
eter was less than 1 mm. The pinch mainly emitted in
the photon energy range 0.05-1.5 keV. Figure 1 shows
typical waveforms of the load current and SXR signals.
The ratio of the initial liner radius R to the minimum
Z-pinch radius r (recorded by the pinhole camera)
allows us to evaluate the compression ratio of the load.
In our experiments, thisratioisR/r =10. The SXR emis-
sion power is~5 TW, the duration of the SXR pulseis
about 6 ns, and the total emission energy is about 40 kJ.
Figure 2 shows typical SXR images of Z-pinches.

3.1. Structure of the Emitting Plasma Generated
on the Wires

In time-integrated pinhole images (Fig. 3), one can
see a plasma that |eaves the wires in the form of indi-

— =— 0.4 mm

Cathode

a e
LSRN

Anode

(b)

Fig. 2. Time-integrated X-ray pinholeimages of an emitting Z-pinch: (a) hv >200 eV and (b) hv > 600 eV (thepinch lengthis1cm).
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» Cathode

Fig. 3. Time-integrated X-ray pinhole image (hv > 50 eV)
of the outer part of theliner: (7) liner axis, (2) plasmaleav-
ing the wires in the form of jets, and (3) wire shadows
against the background plasma.

vidual jets and then drifts toward the axis. The mean
axial distance between the plasma jets generated from
asinglewireis 150 um. Further, the primary jets merge
into larger jets (see Fig. 4). The axial distance between
the secondary jetsisabout 1 mm. Thesejetsfill theliner
cavity with plasma and produce a plasma precursor

Cathode

Fig. 4. Time-integrated X-ray pinholeimage (hv > 150 eV)
of an 8-mm-diameter liner: the plasma in the form of jets
drifts from the periphery toward the axis.

near the axis (the so-called “ prepinch”), which emitsin
the photon energy range 100-300 eV.

The nonuniformity of the produced plasma is aso
seen in both the laser shadow image and XRIT frame
images taken with a time resolution of ~2 ns in the
~200-eV photon energy range (Fig. 5). It can be seen

' Anode

Cathode

Fig. 5. Plasmajets leaving the array wires: (a) laser shadow image taken 54 ns after the beginning of the current pulse (25 kA per
wire) and (b) frame X-ray pinhole image (hv ~ 200 eV) taken 77 ns after the beginning of the current pulse (50-55 kA per pulse).

PLASMA PHYSICS REPORTS Vol. 30 No.1 2004
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Cathode

k. 40 Anode

Fig. 6. Frame X-ray pinhole image (hv > 150 eV) of the
liner wire shadows against the background of the prepinch
plasmaat 70 ns after the beginning of the current pulse.

that the characteristic scale length of the plasma non-
uniformity along each wireis 100200 um. The plasma
leavesthe wiresin the form of jets~1 mminlength and
then drifts toward the axis. Thus, time-resolved mea-
surements, as well as the time-integrated pinhole cam-
era images, demonstrate the existence of extended
plasma jets starting from each wire.

The cores of the liner wires in pinhole images
(Figs. 3, 4) are seen as light vertical lines against the
background of radiation emitted by the plasma leaving
the wires. This means that the wires are opaque to
plasma emission and produce shadows in the images.
The wire diameter that is reached during the expansion
of the dense core is estimated at 50 pum. Since the
described pinhole image is integrated over time, it is
obvious that the core shadows can be seen against the
background of the emitting jets only if the wires disap-
pear after (or simultaneously with) the jets.

The wire shadows in SXR emission were also
observed in XRIT frameimages taken with an exposure
of 2 ns(Fig. 6). The XRIT shutter operated 70 ns after
the beginning of the current pulse. At that instant, the

PLASMA PHYSICS REPORTS  Vol. 30
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Anode

Plasma
bunches

Cathode

Fig. 7. Time-integrated frame X-ray pinhole image (hv >
1 keV) of a pinch segment of length ~5 mm with off-axis
plasma bunches.

wire shadows and the plasma leaving the wires can be
seen against the background of the plasma filling the
liner interior. We note that the plasma generation on the
liner wires is nonuniform in the axial direction. The
characteristic scale length of the plasmanonuniformity
is 100-200 pm, and the width of the wire shadow varies
from 200 to 400 um. This size is one order of magni-
tude larger than the wire diameter estimated from the
time-integrated pinhole images. The reason for this is
that the time-integrating pinhole camera records the
minimum shadow width of a wire surrounded by the
plasma corona over the entire implosion process,
whereas the XRIT records the shadow width of awire
surrounded by the plasmaagainst the background of the
prepinch plasma at theinstant of the MCP shutter oper-
ation.

3.2. Off-Axis Plasma Bunches

The drift of the plasma leaving the wires and the
merging of the primary jetsinto larger onesresult in the
self-focusing of some of the jets near the liner axis. We
also observed the collision of the plasma jets heated to
afew tens of electronvolts near the axis. Thisresultsin
the generation of plasma bunches, one of which can be
seen in the pinhole image shown in Fig. 7.
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Cathode 1 2 3

Fig. 8. Time-integrated X-ray pinhole images of the
(a) cathode and (b) anode regions of a 1.5-cm-long pinch:
(1) hv > 150 eV, (2) hv > 1 keV, and (3) hv > 2 keV.

The bunches emit in the photon energy range of 0.2—
2 keV and higher. The emission power of these sources
is comparable to the emission power of the plasma col-
umn of the Z-pinch in the energy range 0.2-1 keV and
is even higher at higher photon energies. The instant of
the maximum pinch emission does not coincide with
the instant of emission from the off-axis plasma
bunches. Asaresult, the SXR pulseturns out to be pro-
tracted, which leads to a decrease in the emission
power. The emission peaks corresponding to the plasma
bunches lag behind the peak of the pinch emission by
5-15 ns. In most of the shots, up to three plasma
bunches were produced in the cathode region of the
pinch. This can be seen in pinhole images recorded
with the use of different filters (Fig. 8). In this case, a
wire array consisting of thirty 6-um tungsten wires
arranged on acircle 12 mm in diameter was used as a
load. A 5-mm-diameter tube made of agar-agar foam
with amass per unit length of 400 pg/cm was placed at
the axis on the anode side. The tube length was one-half
theliner length.

In the cathode region of the pinch, one can see bright
spots that emit over a wide photon energy range
(including photon energies above 2 keV).

Figure 9 shows XRD signals obtained with different
filters and cathodes and the waveform of the liner cur-
rent for the shot presented in Fig. 8. Signal 7 wastaken
from an XRD that was sensitive to photons with ener-
gies above 1 keV and was aimed at the cathode region
of the pinch. Signa 2 was taken from an identical
detector aimed at the anode region. The difference
between the signals shows that the cathode plasma
bunches emit in the harder spectral range. In theimages
shown in Fig. 8, one can see four plasma bunches cor-
responding to four peaks in signal /. Such bunches
result in the widening of the SXR pulse (signals 3 and
4). Signal 3 reflects al the SXR bursts seenin signal 1.
The time spread of the emission bursts from different

J, MA
P, arb. units

35F
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Fig. 9. Waveforms of the (5) current J and signals P from
XRD detectors sensitive in the energy ranges (1) hv > 1 keV
(cathode region), (2) hv > 1 keV (anode region), (3) hv =
200400 eV, and (4) hv = 400-1000 eV for the shot pre-
sented in Fig. 8.

plasma bunches (which is seen in signal 1) resultsin a
protracted SXR pulse integrated over the entire spec-
trum.

3.3. Sudies of the Cathode Plasma

In the early stage of implosion, a so-called cathode
plasma that has an axial velocity component is gener-
ated at the cathode surface and also in the region where
the liner wires contact with the cathode. It can be seen
in the pinhole image presented in Fig. 10 that this
plasmais conical in shape.

Cathode plasma

p

Fig. 10. X-ray pinhole image (hv > 50 €V) of the conical
cathode plasma. The size of the cone base (12 mm) corre-
sponds to the array diameter.
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Fig. 11. X-ray pinhole image of a 15-mm-long composite
pinch: (1) hv > 50 eV, (2) hv > 1 keV, and (3) hv > 2 keV.
The outer 12-mm-diameter liner consists of thirty 5-pum
tungsten wires, while the inner 6-mm-diameter liner con-
sists of twenty 6-pum tungsten wires.

The coneisformed due to the high axial velocity of
the cathode plasma. The generation of plasma bunches
is probably provoked by an uncontrolled increasein the
plasma mass due to cathode phenomena. When the
liner length was increased from 1 to 1.5 cm, the effect
of the cathode plasma became |less pronounced.

The pinch compression ratio aso increased when,
instead of single arrays, we used composite liners con-
sisting of two coaxia wirearrays(seeFig. 11). Figure 12
shows the waveforms of the SXR emission power and
theliner current. For composite arrays, the compression
ratio was R/r = 30 and plasma bunches leading to an
increasein the SXR pul se duration almost disappeared.

3.4. Plasma Nonuniformity inside the Z-Pinch

Figure 13 shows pinhole images taken in two per-
pendicular directions. One can see regions with a low
emission intensity inside the Z-pinch. The low-inten-
sity regions are present in al images and correlate with
one another, which means that these structures are
three-dimensional. It is possible that the presence of
such structures inside the pinch hinders further pinch
compression.

The appearance of such regions can be explained as
follows. During a prolonged plasma production, aswas
described above, plasma jets are generated that are
directed toward the liner axis by the Ampére force.
Near the axis, the jets collide. Extending along the axis,
the jets form current filaments that are independent of
one another; intertwining, these filaments form the
pinch body. The chaotic character of this processresults
in the appearance of regions with a higher magnetic
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Fig. 12. Waveforms of the (1) current and (2) SXR
(hv ~200 eV) emission power for the shot presented in
Fig. 11.
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Fig. 13. Fragments of X-ray pinhole images of a Z-pinch:
(1) hv > 1 keV, (2) hv > 150 eV, and (3) hv > 1 keV. Images
1 and 2 are taken in one direction, whileimage 3istakenin
aperpendicular direction.
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Fig. 14. X-ray pinhole images of the pinch structure: (a) hv > 1 keV and (b) hv > 150 €V. The enlarged fragments of the pinch

structure taken at hv > 150 €V are shown on theright.

field. Inside these regions, the plasma density islow in
comparison to the density in the jets; hence, the emis-
sion intensity from these regionsis low.

In the experiments described below, arrays made of
wires spaced a distance of 0.2 to 0.6 mm from each
other were used as loads. This distance is dightly
smaller than theinterwire distancein linersinwhich the
highest SXR emission power (>3 TW) was obtained.

Regions with low emission intensity can extend
along the liner axis under the action of the pressure of
the imploding shell. In the pinhole images presented in
Fig. 14, one can clearly see a complicated, spatially
periodic structure with a characteristic scale length of
180 um. Such apinch structure can adversely affect the
final compression ratio and, consequently, the SXR
emission power, which, in this case, turned out to be
~1TW.

We note again that the low-intensity regions inside
the pinch were observed during the implosion of liners
with an interwire distance of less than 0.6 mm. Similar
structureswith smaller characteristic scalelengthswere
probably produced in liners with interwire distances
larger than 0.6 mm. In this case, they, however, could
not be detected because of an insufficiently high spatial
resolution of the pinhole camera.

4. SUMMARY

Based on the acquired experimental data on the
implosion of wire arrays, the following scenario of an
implosion may be inferred.

When the electric current flows through the liner
wires, they generate a plasmathat is nonuniform in the
axial direction, the characteristic scale length of the
nonuniformity being 100200 pum. In the azimuthal
direction, the nonuniformity scale length is determined
by the distance between the wires. The plasma leaving
the wires drifts toward the axis under the action of the
Ampére force. Due to axia and azimuthal modulation,
the plasma flow acquires the form of individual plasma
jets. Theinitial asymmetry and self-focusing of the jets
lead to the formation of bright plasma bunches in the
axia region (at a distance of 0.5-2.0 mm from the
pinch axis). This results in the generation of a pro-
tracted SXR pulse. The off-axis plasma bunches are
more often produced in the cathode region of the liner
and emit in a photon energy range above 2 keV. Asthe
liner implodes toward the array axis, the radii of the
plasma bunches decrease and the bunches can merge
into individual current-carrying plasma filaments
extended along the discharge axis.

5. CONCLUSIONS

The spatia structure of the imploding plasmais so
nonuniform that it makes no sense to tak about a
plasma shell that implodes as a single entity. Under
these conditions, adescription of the Z-pinchimplosion
in terms of the Rayleigh—Taylor instability or the clas-
sical “snow plow” model is certainly incorrect.

The cathode plasma generated in the early stage of
implosion has been investigated. In pinhole images,
PLASMA PHYSICS REPORTS  Vol. 30
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this plasma is seen to be conica in shape. When the
liner length wasincreased from 1to 1.5 cm, the cathode
plasma became less pronounced. The presence of the
cathode plasma and the generation of plasma bunches
located mainly in the cathode region of the liner are
probably interrelated and are caused by the uniformity
of the liner current.

The plasma bunches produced near the Z-pinch axis
decrease the SXR emission power.

1.5-cm-long double arrays provide a higher com-
pression ratio (R/r = 30) as compared to simple wire
arrays.

The complicated, spatialy periodic structure of a
Z-pinch with a characteristic scale length of ~200 pm
has been observed. In some cases, the pinch looks like
a system of two (or more) independent plasma fila-
ments located near the axis.
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Abstract—Ilon emission from the plasma of a micropinch discharge is studied by analyzing the plasma flow
from the discharge region with the help of time-of-flight technique and probe diagnostics. Concurrently, soft X-
ray emission from the micropinch is recorded. The experimental data are interpreted using the radiative con-

traction model. © 2004 MAIK “ Nauka/Interperiodica” .

In[1, 2], passive particle diagnostics were shown to
be applicable to studying the plasma of a micropinch
discharge. In[2], the energy spectraof neutralsand sin-
gle-charged ions leaving the discharge region were
recorded using atime-of-flight techniquein the particle
energy range from 10 eV to 100 keV. The particle
groups that were formed in different stages of the dis-
charge were distinguished. In [1], the energy spectra of
high-energy (~50 keV) single- and multicharged ions
emitted from the plasma of a micropinch discharge
were studied using the Thomson technique. The results
of these studies provided information on the mecha-
nismsfor theion flow formation and other processesin
micropinch plasma. A characteristic feature of these
studies (as compared to the earlier papers [3, 4], in
which ion emission from the plasma of fast Z-pinches
produced in plasmas of high-Z elementswas also inves-
tigated) is the close examination of the discharge oper-
ation.

To increasethereliability and informativeness of the
experimental results, it is of interest to perform simul-
taneous measurements of the ion emission parameters
and other characteristics of the discharge plasma, as
well as to widen the range of the particle diagnostics
employed. Inthe present study, we used passive particle
diagnostics concurrently with the measurements of soft
X-ray emission. A schematic of the experiment is
shown in Fig. 1. A micropinch discharge was produced
in alow-inductive vacuum spark device. The cylindri-
cal cathode and conical anode (both made of iron) were
placed into a vacuum chamber with aresidual pressure
of no higher than 10 torr. The working medium was
the vapor of the electrode material. The discharge was
ignited with the help of an auxiliary erosion discharge
produced near the cathode surface. A bank of high-volt-
age low-inductance capacitors served as apower supply
of themain discharge. The discharge current reached its
maximum 1 us after the beginning of the discharge.

The discharges were observed with the help of an
X-ray pinhole camera that produced images of the dis-
charge plasma in the photon energy range hv = 3 keV.
The spatial resolution was no worse than 100 um. The
tempora characteristics of the discharge were deter-
mined using amagnetic probe recording the time deriv-
ative of the current.

The ion emission was studied using time-of-flight
diagnostics with a path base length of 0.5-1.6 m. The

Fig. 1. Schematic of the experiment: (/) main discharge cir-
cuit, (2) electrode system, (3) auxiliary (trigger) discharge
circuit, (4) X-ray recording system, (5) ion recording sys-
tem, and (6) input of an oscilloscope or analog-to-digital
converter.

1063-780X/04/3001-0038%$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 2. Typical ion spectra emitted from the discharge
plasma in the axia direction at I,5 < I (curve 1) and

Imax > lor (Curve 2).

ion flow was intercepted by a passive collector, which
was biased with respect to the grounded discharge
chamber, and was recorded with either a storage oscil-
loscope or a high-speed analog-to-digital converter
connected to a PC. The results of [1, 2] show that the
recorded ion flow consists mainly of single-charged Fe
ions. The ion spectrum dN/dV was derived from the
recorded dependence of the ion current |; on the flight
time:
_ dN _ dN|ddg
(T edv‘thtD’ )
where eisthe electron charge, | isthe path base length,
and V = |/t istheion velocity. Expression (1) yields

dN _ It

dv ~ el’

The zero time (i.e., the instant at which the recorded
ion flow was generated) was determined by the photo-

current pulse caused in the collector circuit by short-
wavelength plasma emission.

The integral soft X-ray (SXR) yield from the dis-
charge was measured with a dosimeter based on a pho-
tomultiplier operating in the integrating regime. A
0.5-mm-thick organic scintillator was used for the
down-conversion of X-ray photons. The scintillator and
photomultiplier were prevented from long-wavelength
radiation by a 100-pm-thick absorbing Be filter. The
dosimeter was calibrated using synchrotron radiation
from a circular electron accelerator. The calibration

2
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Fig. 3. Typical ion spectra emitted from the discharge
plasma in the radia direction at 1,5 < I (curve 1) and

Imax > lor (curve 2).

showed that the dosimeter efficiently recorded radiation
in the photon energy range of 1-3 keV.

According to the radiative contraction model [5],
which most adequately describes most of the experi-
mental data, the plasma column constriction narrowsto
a micron size (i.e., a micropinch forms) at currents
higher than the critical current determined by the bal-
ance between the radiative losses and Joule heating in
the discharge channel. For a Fe plasma, the critical cur-
rentisl, ~ 50 kA.

Figures 2 and 3 present characteristic ion spectra
obtained with a collector that was negatively biased
with respect to the ground in order to cut off the elec-
tron component. The spectrawere recorded in the axial
and radial directions at discharge currents of 40 kA
(Imax < ) @d 150 KA (1o > 1) TO record the particle
flows in the axial direction, we used a cathode with an
axial hole 3 mm in diameter and four auxiliary erosion-
type sources located symmetrically about the discharge
axis. In a regime with I, < |, when there was no
micropinch in the discharge plasma, the spectra exhib-
ited pronounced maxima corresponding to particle
velocities of (1-1.5) x 10* m/sand (2-2.5) x 10* m/s. In
aregime with |, > I, when a micropinch formed in
each discharge, another maximum corresponding to a
particle velocity of 4 x 10* m/s appeared in the spec-
trum.

A comparative analysis of the spectra obtained by
recording the particleflowsintheaxial and radial direc-
tions allows us to identify the first of the above veloci-
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Fig. 4. Current—voltage characteristics of the plasma flow
emitted from the dischargeregion at |5 < I (curve 1) and

Imax > lor (Curve 2).

tieswith an averageion thermal velocity in the stage of
a steady-state plasma column [6]. The second velocity
can be attributed to the vel ocity of the axial plasmaflow
that is generated when the current-carrying plasma
shell converges toward the discharge axisin the course
of the implosion of the ionized vapor of the electrode
material and the formation of the plasma column. The
third of the observed maxima probably corresponds to
the group of particles that are generated when the
pinching process convertsinto radiative contraction [2].

Apparently, the reason why the third maximum
occurswhentheionsarerecorded intheradial direction
and does not occur when they are recorded in the axial
direction is that the relatively fast particles emitted
from the micropinch region are scattered by the slower
particles of the periphera plasma. The scattering
reduces the vel ocities of fast particlesand result in their
departure from the recording area. This mechanism of
deforming the initial spectrum is most efficient when
the ions are recorded in the axial direction because, in
this case, the parameter oL (where o isthe scattering
cross section, [MOis the average density of slow parti-
cles, and L is the length of the peripheral plasma) is
much higher and the solid angle within which the ions
can reach the collector is much smaller than in the case
when theions are recorded in the radia direction.

Particles with velocities of lower than 0.5 x 10* m/s
remain virtually undetected by the apparatus empl oyed.
This may be explained by their charge neutrality [2].
Particles with velocities of higher than 7 x 10* m/s are
not present in the spectra because of insufficient resis-
tance of the recording system to the high-frequency
interferences induced in the recording apparatus in the
initial stage of the discharge.

We note that the shape of the collector signals
showed good reproducibility from shot to shot regard-
less of the bias magnitude and polarity. This hinted that
we should use the collector as a plane electric probein
the plasma flow. We measured the current—voltage
characteristics in which, at a given bias potential, the
current averaged over the signal duration was taken as
a collector current. Evidently, these collector current—
voltage characteristics are averaged over both space
(the collector area) and time (the duration of the
recorded signal). Hence, the electron temperature of the
plasma flow obtained from the slope of the electron
branch of the characteristic can only be regarded as an
estimate (Fig. 4). For both recording directions (axial
and radial), the electron temperature was found to be
T.=25%5 eV for asubcritical discharge current (1,5 =
40 kA) and T, = 18 = 5 eV for a supercritical current
(Imax = 150 kA). This result agrees with the model pre-
diction because, in the radiative contraction model of
Fe plasma, the temperature T, 120 eV corresponds to
the stage of plasma column formation. The fact that the
electron temperature recorded at I, < I €xceeds that
recorded at | ., > |, IS confirmed by observations of the
structure of the discharge plasmaemitting in the photon
energy rangehv > 1keV (Fig. 5). Intheformer case, the
radiation source is the plasma column as a whole,
whereas in the latter case, the radiation source in the
above spectral rangeisonly the constriction region, i.e.,
the micropinch. As the constriction narrows, which is
possible at discharge currents higher than the critical
current, the particle density per unit length sharply
decreases and the specific plasmaresistance in the con-
striction increases due to the matter outflow in the axial
direction. As a result, the discharge current decreases,
whereas the Joule heating power in the micropinch
increases [5].

To increase the reliability of the experimental
results, we also employed probe diagnostics. Two iden-
tica 3-mm-diameter plane probes located symmetri-
cally about the discharge chamber axis within the
1.3-m-long axialy oriented path base were used
(because of the design features of the facility, it was
impossible to orient the probes radially). Shifting the
probes in the radial direction at a fixed distance from
the discharge region allowed us to trace the radial pro-
file of the electron density. We obtained the waveforms
of the prabe current in different discharges at a fixed
probe potential with respect to the chamber. Inthisway,
we acquired the statistics of the waveforms at a fixed
PLASMA PHYSICS REPORTS  Vol. 30
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probe potential. According to [13], such an approachis
quite justified.

As in the case of collector measurements, when
plotting the probe current—voltage characteristics, the
average current was taken as a probe current.

Within the measurement accuracy, the electron tem-
peratureisnearly independent of the probe location and
is different for subcritical and supercritical discharge
currents. As is the case with collector measurements,
the average electron temperature in the former case is
higher than in the latter; however, the statistical scatter
in the T, value actually overlaps both ranges. In our
opinion, it isreasonable to determine the most probable
T, value over a set of the measurement results (Fig. 6).
For the supercritical discharge current, we obtain T, =
17 £2 eV, whereasfor the subcritical discharge current,
weobtain T,=27 £ 4 eV.

In some cases, it was also possible to monitor the
time evolution of T, in the plasma flow. When treating
the time-resolved current—voltage characteristics, we
did not observe any significant deviation of T, from its
time-averaged value.

The determination of T, by the slope of the electron
branch of the current—voltage characteristics is based
on thefact that the obtained temperature corresponds to
the r.m.s. electron thermal velocity, which isV, 03 x

10° m/s, whereas the mean velocity of the plasma flow
isV ~10*m/s. Thus, in view of thefact that V < V,, the

electron branch of the characteristic is nearly the same
asfor aplasmathat is at rest with respect to the collec-

tor [7].

Simultaneous measurements of the parameters of
ion emission in the radial direction and the SXR yield
in a photon energy range of 1-3 keV were performed
when the discharge current exceeded the critical value.
A comparative analysis of the dosimeter readings and
pinhole images unambiguously shows that a
micropinch is present in a pinhole image (the so-called
“hot spot”) only if the energy recorded by the dosimeter
exceeds a certain threshold level Ey,.. Theion emission
parameters were measured in a discharge regime such
that the recorded energy was high enough (namely, E =
(1.5-4.5)E,) and the process of plasma pinching led to
the formation of a micropinch in each discharge.

The spectra recorded at different E diverge at high
particle velocities (higher than 4 x 10* m/s): the higher
E, the larger the contribution of the fast particlesto the
ion spectrum. Simultaneous measurements of the ion
velacity distribution and SXR yield enable amore reli-
ableinterpretation of the distribution character as com-
pared to the previous studies, in which such interpreta-
tion was based on the comparison of the recorded char-
acteristic ion velocities with theoretical predictions.

According to the model predictions [8], which are
confirmed by the experimental results[9], the first con-
traction can be considered as a transition to an equilib-
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rium state whose parameters are governed by the dis-
charge current. This circumstance accounts for good
reproducibility of the pinch plasma parameters during
the first contraction. After the first contraction is com-
pleted, energy balance is established between Joule
heating, radiative losses, and energy loss due to the
plasma outflow from the constriction. The plasma tem-
perature in the constriction is determined by the rela
tion

— ol ?
Te = gL+ N )
where | isthe current through the constriction, N; isthe
plasma ion density per unit length, z is the average
charge number, and k is the Boltzmann constant. In this
stage, the electron and ion temperatures are equalized,
T =T.[2].

The second contraction begins due to the violation
of the energy balance, when the plasmadensity per unit
length decreases substantialy and the temperature
increases to 0.5 keV, so that the ionization from the L
shell of Feions begins, which leads to a sharp increase
in radiative losses. The second contraction stops
because of the onset of the plasma anomalous resistiv-
ity [5]. Hence, this contraction can be regarded as a
transition to a thermodynamically nonequilibrium
state, via which the Z-pinch converts into an arc dis-
charge operating in a dlightly inhomogeneous cold
plasma. For this reason, the reproducibility of the
plasma parameters from shot to shot is poor during the
second contraction.

The spectral range of radiation recorded by the
X-ray dosimeter correspondsto that of the photorecom-
bination emission from FeXVII-FeXXIV ions that
arise as a result of the ionization from the L shell. The
emission accompanying the ionization from the K shell
is aimost absent [10]. The heating of the plasmato a
temperature that is sufficient for the efficient ionization
from the K shell of Feions occursin the stage of anom-
alous resitivity, i.e., when the pinching process termi-
nates because of the decrease in the plasma density per
unit length and the increase in the current density [8].
However, the situation can even be more complicated if
one takes into account a small amount of the plasma
laying beyond the micropinch region. In this case, the
current is intercepted (at least partially) by the outer
plasma, which leads to a change in the Z-pinch dynam-
ics[11].

The correlation between the X-ray yield from the
micropinch plasmain the spectral range corresponding
to the photorecombination emission from the L-shell
ions and the spectrum of ion emission in the velocity
range V, = 4 x 10* m/s can be explained asfollows. It is
reasonable to suggest that the onset of the anomalous
plasma resistivity in different discharges interrupts the
pinching process at its different stages, depending on
certain situational factors. According to model predic-

tions, this interruption occurs almost instantaneously
[5]. The main fraction of the radiant energy should be
emitted after the plasma becomes transparent to its
intrinsic emission (L-shell emission). The fact that we
observe a hot spot (an image of a micropinch emitting
in the K-shell spectrum of Fe ions) in each discharge
means that the plasma al so becomestransparent in each
discharge. Consequently, the high plasma density is
achieved that isnecessary for the efficient conversion of
the plasma thermal energy into the energy of K-shell
emission when the plasma resistivity becomes anoma-
lous. An additional confirmation of the fact that the
micropinch plasma becomes transparent is the magni-
tude of the measured level of the X-ray yield: on the
average, E = (2-3)Ey,. The higher the plasma density
during the transparency stage, the higher the effective
temperature of the micropinch plasma in the stage of
anomalous resistivity and expansion, which isrecorded
by means of diffraction spectroscopy. Typicaly, this
temperatureis T, ~ 2-3 keV [12], which correspondsto
a Fe ion thermal velocity of V; O (8-10) x 10* m/s.
According to the model predictions, the temperature of
the micropinch plasmaat the end of the second contrac-
tion phase is T, [10.8-1 keV, which, under the condi-
tions of quasi-equilibrium, correspondsto aFeion ther-
mal velocity of V, J(5-6) x 10* m/s[8§].

The observed ion spectra differ in the energy range
corresponding to the ion emission in the contraction
stage, which allows one to assume that there are certain
situational factors that affect the micropinch dynamics
in this stage. Such a factor can be the degree to which
the current flowing through a micropinch is shunted by
the periphera plasma. This degree definitely impacts
the rate of implosion and heating of the micropinch
plasma and, consequently, the ion emission spectrum
and the intensity of the emitted radiation.
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Abstract—A new approach to the perturbation theory for the Vlasov equation is discussed. The approach is
based on the expansion of the Hamiltonian in powers of the canonical variables about their equilibrium values.
Unlike the traditional approach, the proposed perturbation theory provides energy conservation in every order.
In particular, solutions to linearized equations are constructed that carry certain energy and momentum. The
influence of decay processes on the kinetic beam—plasma instability is also discussed. © 2004 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION
The present paper deals with the Vlasov equation—
the simplest kinetic equation implemented in plasma
theory:

6f(t,r,v) af(t,r,v)
ot ar
(D
_eog(t, r)of(t,r,v) _
m or ov

Here, the potential ¢(r) satisfies Poisson’s equation
A@(t,r) = —4me(n(t,r) —ng) )

where

n(t,r) = J'dvf(t, r,v) 3)

is the particle number density and n, is the density of
the neutralizing background. Traditionally, the dynam-
icsof collisionless plasmaisstudied in terms of the per-
turbation theory; i.e., the distribution functioniswritten
asf(t, r, v) =fy(v) + f,(t, r, v), where the deviation f,(t,
r, v) ison the order of the @(t, r), and the expansion in
powers of @(t, r) is then performed. As the first step of
this procedure, we have the linearized Vlasov equation

6f1(t,r,v)+vaf1(t,r,v)
ot or

_edq(t, r)9fo(v)
m or ov

C))
=0.

It iswell known that there are various ways of solv-
ing the initial problem for this equation. The Landau
method based on the Laplace transform is widely
spread. There is also the Van Kampen approach using
the representation in terms of the eigenfunction of the
linearized Vlasov equation. Of course, both methods
are mathematically equivaent and yield the same
results.

At first sight, what arethereasonsto describeal this
again? There is not enough space here to list all text-
books and monographs discussing the Vlasov equation.
The problem of ballistic modes (or quasi-waves) aris-
ing in Van Kampen approach, as well as relations
between various methods, is aso well illuminated in
the literature [1-6].

However, there are questions concerning Eq. (1) that
have no satisfactory (at least from the methodol ogical
viewpoint) answers. One of them is the problem of
energy balance. With a distribution function being a
solution to Eq. (1) the net energy

1 ot ryr

H —Idrdv f(t,r,v)+J’dr el or O (5)
remains constant. Thisis easy to check by differentiat-
ing Eqg. (5) with respect to time, integrating the second
term by parts, and taking into account the Vlasov equa-
tion (1) and Poisson’s equation (2). Inserting f(t, r, v) =
fo(v) + f,(t, r, v) into Eq. (5) and assuming that f, ~ ¢,
the energy takes the form of an expansion in powers of
the potential, H = H, + H, + H,, where H, ~ ¢. If the
deviation f, satisfies linearized Vlasov equation (4),
then thefirst two terms of the energy expansion are con-
stant, but the time derivative of the electric field energy
H, is nonzero.

On the other hand, with anisotropic equilibrium dis-
tribution f,(v) = f,(v2), the following quadratic expres-
sion is constant:

1(t’ r, V)

= J’dd v

At first sight, it isimpossible to get this quantity with
the help of the straightforward expansion of energy (5).
In fact, how did it occur that the unperturbed distribu-
tion function appeared in the denominator? However,
expression (6) is entirely meaningful, as will be dis-
cussed below.

1ot rys
d8T[D or O ©)
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The linearized Vlasov equation meets with one
more adversity. There are many exact solutions to non-
linear equation (1), e.g., the Bernstein-Green—Kruskal
(BGK) waves and their various generalizations. One
can evaluate energy (5) of aBGK wave. With the ampli-
tude of aBGK wave going to zero, it transformsto alin-
ear Van Kampen wave, but for the latter, energy (5) is
not defined. Since Van Kampen waves form a complete
set, every nonlinear wave may be represented as their
combination. A periodic nonlinear wave with a period
L isexpressed in terms of all harmonics with the wave
vectorsk,=2mm/L (n=0, 1, £2, ...). It wasfound that,
even for small-amplitude BGK waves, the convergence
of corresponding seriesis very slow and one must take
into account all harmonics[7].

Thus, the traditional perturbation theory used in
plasma physics violates energy conservation at its first
step, which cannot help but annoy a physicist. They
usually reconcile this nuisance by assuming that the
problem of energy balance may be resolved by the non-
linear theory. The well-known physical reason for the
violation of energy conservation isthe resonant interac-
tion between particles and waves, which is described,
e.g., by the quasilinear theory.?

In thisrespect, plasmaphysicsdiffersradically from
other areas of physics. Dealing with a conservative sys-
temweare, asarule, ableto use the perturbation expan-
sion that conserves energy in every order. Studying,
e.g., oscillations of a crystalline lattice, one starts from
introducing normal modes, each of them carrying acer-
tain energy. Onethen takesinto account anharmonicity,
electron—phonon interaction, and a great many other
processes; however, in every order of perturbation the-
ory, a conserving quantity (which may be identified
with energy) is found. There is a fairly regular algo-
rithm called the classical or canonical perturbation the-
ory, which is based on the expansion of the Hamilto-
nian in powers of deviation from an equilibrium state
and the consequent elimination of the nonresonant
terms. This approach is successful in various areas of
physics (see, eg., [8, 9]).

The procedure of classical perturbation theory may
be briefly outlined as follows. Let us suppose that we
are dealing with aphysical system described by Hamil-
ton’s equations.

0 _ O0H Odp; _ dH

9t ~ dp’ ot g’

where the generalized momentum p, and the general-
ized coordinate g; are distributed quantities that depend
on the configuration space coordinates and, possibly,
some additional variables. The Hamiltonian H(p;, g;) is
afunctional of p; and q;, and dH/dp; standsfor the func-
tiona derivative. The temporal evolution of any quan-

)

L1t should be noted however that, although the quasilinear theory
was formulated more than forty years ago, its applicability range
is till under discussion.
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tity g depending on p; and q; is described with the help
of the Poisson bracket: g = {g, H}.

Expanding the Hamiltonian H in powers of the devi-
ations Ap; and Ag; of the canonical variables from their
steady-state values, we obtain quadratic (H,), cubic
(H,), etc., terms. A linear change of variables reduces a
guadratic Hamiltonian of a stable homogeneous
medium to the form

H, = ZJ’dkwj(k)ajkafk, (8)
i

where oy (k) are the eigenfrequencies of a medium and
g arethe corresponding complex amplitudes. The next
terms of the expansion (H,, H,, etc.) are also writtenin
terms of the complex amplitudes. Then, an appropriate
canonical transform eliminates nonresonant parts of the
interaction Hamiltonians. For example, the only non-

zero terms remaining in H; are such that w; (k) =

procedure in application to many physical problems
may be found in the reviews|[8, 9].

Asarule, relations between natural physical quanti-
ties and the generalized coordinates and momenta are
fairly involved. The most complicated part of the prob-
lemisfor the search an appropriate change of variables.
However, the problem is solved for seemingly al of the
hydrodynamic plasmamodels (see, e.g., [8-10]). Asfor
theVlasov equation, the situation is more sophisticated.
Below, we will discuss this problem in more detail. It
should be aso pointed out that the Hamiltonian
approach to evolutionary equations (in particular, to the
Vlasov equation) is closely related to various varia
tiona principles. There are many (at least six) such
principles known for the Vlasov equation [11, 12].

The natural impulse arises to attempt applying the
Hamiltonian mechanics to kinetic phenomenain colli-
sionless plasmas—the problem on which the present
paper is focused. The first step in using the canonical
perturbation theory isto rewrite Eq. (1) in the Hamilto-
nian form. Thisis discussed in Section 2. Various ways
of introducing the canonical variables are briefly
reviewed in Section 3. One particular way is used in
Section 4 to derive linearized equations resulting from
the expansion of the Hamiltonian in powers of devia-
tions of the canonical variables. Unlike the solutions to
the linearized Vlasov eguation, one may attribute
energy to the obtained linear eigenmodes. The influ-
ence of the three-wave decay on the evolution of the
beam instability is studied in Section 5 as an example
of anonlinear process. The relation between some ver-
sions of the perturbation theory is discussed in Section
6.
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2. THE HAMILTONIAN FORM
OF THE VLASOV EQUATION

One may identically rewrite Eq. (1) as

of _
= (LB, ©)

where E(v, r) = mv %/2 + eq(r) isthe energy per particle
and [, 1., isthe familiar mechanical Poisson bracket

19AB 0AIB

[A Bl = mlovor odr ov)

(10)

In contrast to what is written in many textbooks,
representation (9) is not the Hamiltonian form yet. The
phase space now is infinite-dimensional and is com-
posed of al distribution functions f(r, v). An appropri-
ate form of theVlasov equation should look asfollows:

of(t, r,v)
ot

where H is Hamiltonian (5). The Poisson bracket { A,
B} in Eq. (11) should be a bilinear antisymmetric oper-
ation acting on arbitrary functionals of the distribution
function, A(f) and B(f), and must satisfy the Jacobi
identity. It iseasy to verify that the following operation:

_ S5A 3B
(AB = Idvdrf(r,v)[éf(w),éf(r’v)lv, (12)

which is called the Lie—Poisson bracket, meets al the
above requirements and Vlasov equation (9) indeed
takes form (11). Here, the potentia @(r) is considered
to be a functional of f(r, v) defined by the solution to
Poisson’'s equation (2). For completeness, it useful to
write down the evaluation of the electric energy varia-
tion:

e'>8info|r(wp(r))2 - %T[J’drV(p(r) VEQ(r)

= {f(t,r,v), H}, (11)

(13)
= —AfirJd”P(f)A&p(r) = eJ’drdvcp(r)éf(r,v),

Thisform of the Vlasov equation was first proposed
by Morrison [13]. A more compl ete set of the Vlasov—
Maxwell equations is also written in the Hamiltonian
form [13], and asimilar representation is known for the
Klimontovich eguation [14]. The physical meaning of
representation (11) and braces (12) isfairly arcane. Itis
clear that net energy (5) is the averaged single-particle
energy, but it is not so clear why Poisson bracket (10)
should be averaged.

Besides the energy, there are other integrals of
motion associated with theVlasov equation. First, there
is the net momentum related to the trandational sym-
metry:

P = J’dvdrmvf(r,v). (14)

Then, there is the infinite set of the so-called
Casimir invariants

Ce = J’dvdrF(f(r,v)), (15)

where F(f) isan arbitrary function of itsargument. The
Casimir invariants are rel ated to the specific structure of
bracket (12): they commute not only with the Hamilto-
nian but also with an arbitrary functional A(f) ({Cs,
A(f)} = 0). An infinite number of conservation laws
arise because EqQ. (1) describes the motion of an incom-
pressible fluid in the single-particle phase space (r, v).
For example, this may be illustrated by the following
reasoning: If we choose an arbitrary functionas F(f) =
0(g - f), then the invariability of integral (15) means
that, in the course of evolution, the phase space volume
surrounded by the surface f(r, v) = g remains constant.
There are only two macroscopic observable quantities
among Casimir invariants: the net number of particles
(F(f)=f) and the entropy (F(f) =—fInf).

Operation (12) is an example of a noncanonical
Poisson bracket. Its main distinction from ordinary
mechanical bracket (10) isthat it explicitly depends on
the phase-space coordinates, i.e., in our particular case,
on the distribution function. Such structures (which
often appear in physics) have been intensively studied
in recent years. The smplest and best-known example
isthe motion of arigid body described by Euler's equa-
tions. Further details about noncanonical brackets may
be found in the reviews [9, 10] (see also the references
cited therein).

The origin of the problems of the traditional pertur-
bation theory discussed in theintroduction isclear from
representation (11). Besides the energy and the
momentum, integrals (15) should remain constant in
the course of evolution. In other words, the phase-space
point f(t) aways belongs to a manifold Cr = congt,
which is called a symplectic leaf. In solving an initial
problem, we choose an initial distribution function
fo(r, v) and, therefore, a certain symplectic leaf. As a
result, the net phase space isfoliated into a set of sym-
plectic leaves. When we perform the straightforward
expansion of Egs. (1) and (2) in powers of the distribu-
tion function deviations f,, we ignore the additional
integrals of motion. Moreover, besides the energy, Lie—
Poisson bracket (12) should be also expandedin powers
of f, duetoitsexplicit dependence on f. Althoughitisa
feasible procedure (see below, Section 3.4), the linear
dynamics was only described in this way, while the
investigation of wave interactions with the help of the
classical perturbation theory seems to be a difficult
task. In order to use the classical perturbation theory,
one should find canonica variables for Eq. (11), i.e.,
change the phase-space coordinates in such away that
the Poisson bracket is independent of coordinates. Var-
ious ways of achieving this goal are discussed in the
next section.

PLASMA PHYSICS REPORTS  Vol. 30

No.1 2004



VLASOV EQUATION IN TERMS OF CANONICAL VARIABLES 47

3. CANONICAL VARIABLES
3.1. Multiflow Hydrodynamics

It was known long ago [15] that, instead of Vlasov
equation (1), collisionless kinetics may be described by
the infinite set of hydrodynamic equations:

an_(té:-w) +0On(t,r,wV(tr,v) =0, (16)
W (VL r,w) IVV(L 1, w)

(17)
= —%V(p(t, r.

Here, w is a Lagrangian label distinguishing various
flows in phase space (r, v). For example, one may
assume that there are no perturbationsat r — o and
V(, r, w) = w. These hydrodynamic variables are
linked with the distribution function by the relation

f(t,r,v) = J'dwn(t,r,w)é(v—V(t,r,w)), (18)
i.e., the net particle number density is

n(t,r) = J’dwn(t, r,w). (19)
It is easily verified by straightforward substitution
that with n(t, r, w) and V(t, r, w) satisfying Egs. (16)
and (17) the distribution function f(t, r, v) satisfiesVla-
sov equation (1).
The net energy in terms of the hydrodynamic vari-
ables appears thus:

H = Idr dwgn(t, r,W)VA(L, 1, w)
. (20)
+ 8—,_Jdr(ch(t, r))z,

where the potential is considered as a functional of the
densities, n(t, r, w).

Canonica variables for hydrodynamics are well
known. In particular, limiting ourselves to vortex-free
solutionsto Egs. (16) and (17) and introducing the mass
density p(t, r, w) = mn(t, r, w) and the vel ocity potential
V(, r,w) = VU, r, w), Egs. (16) and (17) are written
as

dp _6H oy _ dH

ot oy’ ot op’
It was pointed out in review [9] that thisway of writing
yields the Hamiltonian form of Vlasov equation (11)
with the Poisson bracket given by Eq. (12). In principle,
writing the kinetic equation in form (21) alows one to
implement classical perturbation theory.

It isimportant to note the following. From the view-
point of physics, hydrodynamic equations (16) and (17)
and the Vlasov equation describe the same system.
However, they are in no way equivalent mathemati-
caly: thisisclear from just counting down the number

21
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of degrees of freedom. With a given distribution func-
tion it isimpossible to reconstruct the densities n(t, r,
w) and the velocities V(t, r, w) of each flow. For exam-
ple, one can always make a change of variablesw = u(t,
r, w') in Eq. (18), where u are some functionsand w' is
a new Lagrangian label. The functions n(t, r, w) and
V(, r, w) will then ater, but the form of Egs. (16) and
(17) will not change; this gives us reason to speak about
the gauge invariance of hydrodynamics[9]. The hydro-
dynamic variables contain more information than the
distribution function. Meanwhile, they are observable,
at least, in a computational experiment. To reconstruct
the hydrodynamic variables from the computational
results, one has to monitor the motion of every particle;
this is one of the most often used diagnostics. Mean
while, to determine the distribution function, the instant
snapshot of the particle positions in phase space is
enough. Finaly, there is one more circumstance: Egs.
(16) and (17) are able to describe rotational motions,
which results in reasonable solutions to the Vlasov
equation. Thus, the assertion of [9], according to which
representation (21) introduces the canonica variables
to the Vlasov equation, is hardly well-based. However,
Egs. (16) and (17) are areasonabl e alternative that may
be used asastarting point for classical perturbation the-
ory. Beware: one can foresee that unphysical ghost lin-
ear waves will appear along this route.

3.2. Symplectic Leaf Parametrization

Another way is to introduce a special coordinate
system in phase space. In avery simplified and lapidary
paraphrase, the procedure, which has been discussed in
anumber of papers (e.g., [16—18]2), consistsin the fol-
lowing. It iswell known that the formal solution to the
Vlasov equation with the initial distribution f(0, r, v) =
fo(r, v) isf(t, r, v) = fy(ry, vy), where the initial coordi-
nates and velocities of particles, r, and v,, are linked
with their current values r and v by Newton's equa-
tions, i.e.,, by some canonical transform A. In short-
hand notation, thisis written as f(t) = f, ° A. Since the
canonical transforms preserve the phase-space volume,
Casimir invariants (15) remain constant under the
action of a canonical transform. The symplectic leaf
passing through agiven initial point f, in the functional
phase space is parameterized by a group of canonical
transforms connected with a unity. Thus, one may look
for a canonical transform such that f(t) =f, o A(t) isa
solution to the Vlasov equation and A(0) = 1.

Canonical transforms are defined by generating
functions. The action of the canonical transform with
the generating function S on the initial distribution
function iswritten symbolicaly as

F(t) = e °f,, 22)

2 To familiarize oneself with the mathematics used in these papers,
the books [19-21], listed in order of growing size and complexity,
are recommended.
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fo(W/

Fig. 1. Construction of afunction V(t, X, w).

1;) \'/(w)

v;/ ‘./(w)

where the action of the operator £ (caled the Lie
derivative) on an arbitrary function g(r, v) is defined by
therule £g, =[S g] and [, ] is Poisson bracket (10). It
is readily seen from Eq. (22) that the generating func-
tion Splaystherole of the coordinates at the symplectic
leaf. Distribution functions given by EQ. (22) are
dynamically accessible; i.e., only such functions may
appear as aresult of continuous evolution of the initial
distribution f,,.

An eguation for the generating function Sequivalent
to the Vlasov equation was derived in [16-18] in the
form of infinite series. It was proved that this equation
is Hamiltonian and that the Poisson bracket is indepen-
dent of the coordinates at the symplectic leaf. Regard-
less of all the elegance of the geometric approach, this
way can hardly yield concrete results that are interest-
ing from the viewpoint of physics.

3.3. One-Dimensional Vlasov Equation

In one important particular case, the arbitrariness of
the Lagrangian label W, mentioned in Section 3.1, may
be utilized to get rid of the redundant degrees of free-
dom in Egs. (16) and (17) and to designate the explicit
parametrization of the symplectic leaf (see Section
3.2). Let us consider one-dimensional solutions to the
Vlasov equation. Let all variables depend on one spatial
coordinate x only. Dependence on the transverse veloc-
ity isirrelevant, and we can rid of it by integration. The
hydrodynamic velocities are conveniently introduced
in the following way [22]: We consider a solution V(t,
X, W) to the equation

f(t, x, V(t, x,w)) = fy(w), (23)

wheref,(w) isadistribution function; e.g., f,(w) = f(t, X,
W), . « Thesolution to Eq. (23) isuniqueif both func-
tionsf(t, x, w) and f,(w) have the same number of max-
ima and minima with respect to w and their values at
extremal points coincide (Fig. 1).

Let f(t, X, v) be a solution to Eg. (1), velocities
u; (t, X) correspond to the extremal points of the distri-
bution (9f(t, x, v)/ov |, - y = 0) and f; =f(t, x, u). Then,
asfollowsfrom Eq. (1), of,/ot + u,0f,/ox = 0; i.e., there
exist solutionswith f; = const. If werestrict ourselvesto
functions of thiskind only, then the solution to Eq. (23)
is single-valued, with oV, x, w)/ow > 0 and

V(t, X, W), _ 10 — . Theintroduced hydrodynamic
variables V(t, x, w) arethelevel lines of the distribution
function and each of them is equipped with its own
label w. The same representation is actualy imple-
mented in the well-known “waterbag” method, which
is sometimes used to numerically solve the Vlasov
equation [23].

The equation for V(t, x, w) immediately follows
from Eq. (1):

oV(t, X, w) oV(t x,w) _ _edq(t, x)
ot 0X m 0x

wherethe potential still satisfies Poisson’s equation (2),
while the density is expressed in terms of the hydrody-
namic velocities

+ V(t, X, W) , (24)

n(t, x) = —fdwfy(w)V(t, X, w). (25)

Therefore, the Lagrangian description introduced
by Eg. (23) yields constant hydrodynamic densities
reducing Eq. (16) to an identity, and the dynamics is
described with Euler equation (24). Theintegrals of the
Vlasov equation are also easily expressed in terms of
thevelocities V(t, X, w). Energy (5) and momentum (14)
are

H = _mfdxdwfé(W)Va(t, X, W)

(26)
rJdXBaq’(t X)1"
_ m . 2
P = —EIdxdwfo(w)V (t, X, w), (27)
and Casimir invariants (15) are written as
Cr = —J’dxdWV(t, X, W)‘W. (28)

Finally, the Hamiltonian form of Vlasov equation
(11) isreduced to

oV (t, x,w)
ot

_ 1 90 oH [

mf o(w)OXLBV(t, X, W)’

where Poisson bracket (12) interms of V(t, X, w) is
{A By

1 A 5 3B
mf o (w)OV(t, X, w)dxdV(t, X, w)’

= {V(t.x,w), H}y
(29)

(30)

= Idxdw

This is easy to verify, considering that the varia-
tional derivative of Hamiltonian (26) is

oH
— +
(X, w) (W)[ =V (t X, W) + eq(t, x)} 31
PLASMA PHYSICS REPORTS Vol. 30 No.1 2004
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The zeros f, (w) in the denominators of Egs. (29) and

(30) are harmless, because they aways cancel out. In
fact, one might get rid of them by redefining V(t, x, w),
but this results in inconvenient bulky expressions.

The advantages and disadvantages of the chosen
way are readily seen from Egs. (24)—29). As it has
been already pointed out, condition (15) defines aman-
ifold in phase space. Using Eq. (23), we change from
the distribution function to the velocities and introduce
aspecial coordinate system in phase spacein thevicin-
ity of a point f,(w) in which the symplectic leaf Cr =
const takes a very simple form. Introducing in Eq. (28)
velocity perturbations V(t, x, w) = w+ U(t, X, w) the cor-
responding constraint defining the symplectic leaf is
reduced to the condition

J’de(t, X, w) = 0, (32)
which is easily met in every order of the perturbation
theory.

Hamiltonian (26) now contains terms that are qua-
dratic and cubic in U and are associated with the energy
of the system eigenmodes and, correspondingly, with
the interaction energy. The Poisson bracket given by
Eq. (30) isnow independent of the coordinate V(t, X, w).
Thus, EQ. (24) isagood starting point for classical per-
turbation theory.

On the other hand, solutions to Eq. (24) may exist
for a certain limited time period; sooner or later, the
wavebreaking resulting in singularities may occur, after
which Eq. (24) failsto hold. In terms of the distribution
function, this corresponds to the formation of phase-
space vortices; however, theVlasov equationisapplica-
ble even in this stage of evolution. This means that the
introduced functions V(t, x, w) form an appropriate
coordinate system in a finite phase-space area. Thisis
fairly natural from the viewpoint of topology because
one can hardly hope to cover the net manifold Cg =
const with a single coordinate chart.

However, as the amplitude of perturbations
decreases, the time during which singularities are
formed tends to infinity. That is why, in using the per-
turbation theory, the temporal limitations do not mani-
fest themselves. Below (see Sections 4 and 5), the lin-
ear eigenmodes and their interactions are studied with
the help of Eq. (24).

3.4. “Free Energy” of Collisionless Plasma

Prior to investigating specific processes, wewill dis-
Ccuss one more approach to the linearized Vlasov equa-
PLASMA PHYSICS REPORTS  Vol. 30
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tion. Integral (6) of the one-dimensional linearized Vla-
sov equation has the form

v

fg(v)fl(t’ X, V)

-_m
H = 2Idxdv
(33)
1 , 2
+§FJdX(p(t’ X)".

In [24, 25], this expression was obtained according
to the following reasoning: Suppose we are interested
inthe stability of a steady state with a distribution func-
tion f,(v). The stability may be studied with the help of
acorresponding Lyapunov function and its dependence
on small perturbations. It has aready been pointed out
that the straightforward expansion of the Hamiltonian,
which is often used to investigate conservative systems,
takes us nowhere. In [24, 25], this expansion was per-
formed for perturbations satisfying the dynamical
accessibility constraint Cr = const [see Eq. (15)], rather
than for arbitrary perturbations f,. This resulted in
expression (33), which wasrather conventionally called
“free energy.”

It was also shown that the linearized Vlasov equa-
tion is written in the canonical form with Hamiltonian
(33) if onetakesthe zero-order term in the expansion of
Lie—Poisson bracket (12) in powers of f,, i.e., replaces
f(r, v) with f,(v). The Van Kampen eigenfunctions of
Eq. (4) reduce Hamiltonian (33) to form (8). Therefore,
every Van Kampen wave is attributed with free energy,
which may be either positive or negative. It should be
noted that the expansion procedure used in [23, 24] is
rather cumbersome and it is unclear whether it may be
used to investigate the next orders of the perturbation
theory and wave interactions.

4. LINEAR EIGENMODES

Here, we sketch the perturbation theory [22] based
on the parametrization of the symplectic leaf discussed
in Section 3.3. Introducing the small deviations from
the equilibrium, V(t, X, w) = w + U(t, X, w), we expand
Hamiltonian (26) in powers of U. Assuming that the

function fy(w) in Eq. (23) isnormalized as [dwf ,(w) =

n, and the perturbations meet constraint (32), the linear
term of expansion isidentically zero and the quadratic
termis

H, = _gfdxdwwf(')(W)Uz(t, X, W)

L gy DO X 9
Y X0 ox 0
where the potential obeys Poisson’s equation
2
oot x) amefdwiy(WU(L X W).  G9)
0Xx
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The problem is to find a linear change of variables
U(t, x, w) that transforms Hamiltonian (34) into some
simple form similar to Eq. (8). Evidently, the problem
is reduced to the solution of linearized Euler equation
(24)

ouU(t, x, W) . 6U(t X, W) _
ot 0X

and may be solved in a standard fashion similar to the
Van Kampen method. First, we perform the Fourier
transformation

_edg(t, x)
m 0Xx

(36)

U(t, x,w) = J'—e'kXUk(t W)

and represent the time dependence of a perturbation as
U, (t, w) = exp(-ikAt)g,(w, A). Then, taking into account
Eq. (35), Eq. (36) isrewritten as

(W=N)ge(w, A) = 4T

fo(Wp)g(wy, A). (37)

One can easily recognize in this expression the
adjoint Vlasov equation, which appears in the frame-
work of the Van Kampen approach to Eq. (4) [1, 2]. It
isof interest that the implementation of the adjoint Vla-
sov equation is traditionally regarded as a formal trick
without any physical sense. In fact, asfollows from Eq.
(37), the adjoint Vlasov equation describes the oscilla-
tions of the level lines of the distribution function.

The solutions to Eq. (37) are called the adjoint Van
Kampen functions. As is well-known, there are two
types of solutions. First, there are the solutions corre-
sponding to an arbitrary real value of the phase velocity
A. The corresponding eigenmodes belonging to the
continuous spectrum are written as

ex(A) P
O(W, ) = 2=
where the sign P denotes principal-value integration.

The functions €, ,(A) are the real and imaginary parts
of the ordinary dielectric permittivity

5 HEw(A)B(W=A),  (38)

4T[e

o(W) (39)

T[e

4
ex(A) =
mk®

fo(A). (40)

Here, it is convenient to treat the dielectric permittivity
as afunction of the phase velocity A = wk, rather than
the frequency .

Solutionsto adjoint Vlasov equation (37) of the sec-
ond kind appear if the eigenvalue A is complex. These
solutions exist under the condition

e(\) = 0, (41)

where

(0 = -2 ran M) @)

are the analytic continuations of the complex dielectric
permittivity to the upper, ImA >0 (sf:) (A)), and corre-

spondingly, to the lower, ImA <0 (sﬁ_) (A)) half-planes.

The existence of the roots of dispersion relation (41)
indicates the medium is unstable. We denote the roots

of €. (\) from the upper half-plane as A(k), where s =

1, 2, ..., and the roots of e ()\) from thelower half-
planeareequped withtheindicesA,=-1,-2, .... Itis
evident from Eq. (42) that A(K) are even funct| ons of k.
Moreover, since the roots of €2(\) are obtained from
the roots of €*(A\) by complex conjugation, we can
aways number the eigenvalues in such a way that
A_«(K) = A«(K)*. The solutionsto Eq. (37) corresponding
to the eigenvalues A(K) are very simple:

ge(w) = m

Thus, an arbitrary solution to Eq. (36) may be writ-
ten as

(43)

U (t,w) = Id}\gk(w, Na(t, A)

. . (44)
+ Z ge(W)a,(t),
s=+1,%2...
where the complex amplitudes obey equations
a(t,A) = —ikAa,(t, A) (45)
and
a,(t) = —ikA(K)ag(t). (46)

Since U,(t, w) is the Fourier transform of a rea
quantity; i.e., U_(t, w) = Uy (t, w), Van Kampen func-
tions (38) and (43) and the roots of dispersion relation

(41) are even functions of k, and the complex ampli-
tudes satisfy the conjugation conditions

ax(A) = a/(A), (47)

The introduced complex amplitudes describe two
types of oscillations. The amplitudes a,(A) correspond
to the oscillations of the continuous spectrum, or quasi-
waves. The spectral parameter A is an arbitrary real
number; consequently, the oscillation frequency isarbi-
trary. The second type of oscillations described by the

amplitudes a; is characterized by acertain dependence
of the phase velocity on the wavenumber. The number
of these modes coincides with the number of roots of
dispersion relation (41); in particular, there are no such
modes in a stable medium. According to the accepted

s sk
a, = a .
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numeration, the modes with s > 0 describe growing
oscillations, while those with s < 0 correspond to the
decaying oscillations. When the unperturbed distribu-
tion fy(w) is varied, the number of discrete spectrum
modes may change; however, the wave branches
always appear and disappear by pairs.

Relation (44) is an integral transform, which allows
one to reconstruct the hydrodynamic velocities from
the given complex amplitudes. Using this relation, one
may easily expressvarious vel ocity-averaged quantities
in terms of the complex amplitudes, e.g., density per-
turbation (25) and the electric field potential

(M)

O = J’d)\Tak()\) + Zaﬁ. (48)

Using the known properties of the Van Kampen
functions, transform (44) can be inverted,

a () = Wlm) [Ea (W)W, N)Ui(w), (49)
s _ 1 dw
ak - T[Rs(k)IW—)\S(k) 8ZK(V\/)UK(W)! (50)

. 2
where RO\ = £,V + £,M)? = 67V, Rk =

ef)'()\s(k)), and the plus or minus sign in the latter
expression corresponds to the sign of s.

Thus, the oscillations described by Eq. (36) are very
similar to theVan Kampen waves. At first sight, thereis
only one minor distinction: the dependence of the
eigenmodes on w is given by the adjoint Van Kampen
functions. There is, however, one extremely important
consideration: we can assign the energy and the
momentum to the modes characterized by the ampli-

tudes a,(\) and a, , while thisis impossible to do with

Van Kampen waves. With the help of transform (44),
guadratic Hamiltonian (34) may be written as

€x(A)

SR @)’

1 20
H, = =[dkk dAA
k|
(51)

XYCLICE

It may be also shown that transform (44) converts
general equation (29) to the set of equations for the
complex amplitudes,

da (\) _ i 5H

o Ken VRNV’ (52)
da, i OH
B KR b, 9
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Substituting the quadratic Hamiltonian (51) to these
expressions, we again obtain linearized equations (45)
and (46). Finally, the difference between net momen-
tum (27) and Hamiltonian (51) is in the absence of the
factors A and A(Kk) only:

ex(A)

1 o0 2
P = 2J'dkk B—Id)\ - Re(A)|a ()|

(54)
s —S*% D
+ Z Ri(K)axa, O
< O

It is clear from EqQ. (51) that the posed problem of
reducing Hamiltonian (34) to the diagona form is
nearly solved. In order to write the contribution of the
continuous spectrum in the form of Eq. (8), it is suffi-
cient to renormalize the amplitudes ayA) with the
appropriate factors. However, we avoid this because we
otherwise have to watch out for possible changesin the
sign of g,(A) [see Eq. (40)], which results in fairly
complicated expressions.

It follows from Egs. (51) and (54) that we can
attribute every oscillation with the amplitude a (M) to
the definite energy and momentum, which are con-
served in the absence of dissipation and nonlinear inter-
actions. In this sense, the quasi-particleswe are dealing
with are well-defined physical objects. Thisisthe cause
of the evanescence of the usual Van Kampen waves: if
we are unabl e to characterize something by conserving
quantities, there are no reasons to regard this as a phys-
ical object. As in the case of the Van Kampen waves,
every (uasi-particle described by the solution to
Eqg. (36) consist of an additional beam of particles and
a corresponding perturbation of the electric field. One
may say, by analogy with quantum mechanics, that the
amplitudes a(A) correspond to the dressed states of
particles.

Besides the continuous spectrum, there are also dis-

crete spectrum modes with the amplitudes a; in an
unstable medium. It was already pointed out that they

always appear in pairs: for every growing wave a; ~

exp(yt — iwt), thereis a decaying wave a,° ~ exp(—yt —
iwt), and the only time-independent combination of the

complex amplitudes is afaks* . It is according to this
rule that the growing and decaying waves are arranged
in integrals of motion (51) and (54). In contrast to the
continuous spectrum, the quasi-particles are character-
ized by two amplitudes instead of one. One may
attribute the energy and the momentum only to such an
object. This quite general conclusion also followsfrom
the analysis of the energy and momentum balance in
the electrodynamics of continuous media[26].

We must al so discussthe sign of the energy of linear
waves:. In astable medium, f,(w) <0 at w > 0and the
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integrand in Eq. (51) is aways positive. Therefore, the
energy of a wave in the continuous spectrum is also
positive. Evidence of the instability is the fact that the
imaginary part of dielectric permittivity (40) changes
its sign; continuous spectrum waves with the corre-
sponding value of the phase velocity A carry negative
energy. Since the last term in the integrand of Eq. (51)
is not sign-definite, the question of the sign of the
energy of discrete spectrum modesis meaningless. This
viewpoint differs from that accepted in [24, 25], where
growing or decaying solutions were attributed to zero
energy. Aswas pointed out in [26], there are no physical
objects with identically zero energy because an infini-
tesimal interaction (e.g., in the course of measurement)
would convert such an object to something else.

The initial problem for Eq. (36) is solved like the
initial problem for the Vlasov equation in aframework
of the Van Kampen approach [1, 2]. The initial values

of amplitudes a (0, ) and a; (0) are evaluated from the
initial value of U,(w)|; -, with the help of Egs. (49) and
(50). Then, using Egs. (45) and (46), one can reproduce
the temporal evolution of any averaged quantity, e.g.,
potential (48). In a stable medium, the asymptotic
expansion of potential (48) at t —» oo accounts for
Langmuir oscillations and Landau damping. Evidently,
the leading term of the expansion is determined by the
values of A corresponding to the minimum of the func-
tion R(A) in EQ. (49), i e by the zero of the complex

dielectric permittivity s ()\) nearest to the real axis.
5. NONLINEAR INTERACTION

The wave interaction energy is given by the cubic
term of expanded Hamiltonian (26):

Hy = —g [ (m)U°(x, w). (55)

Using Eq. (44), one can easily express the interac-
tion Hamiltonian in terms of the complex amplitudes.
For example, the interaction of one unstable mode that

consists of two complex amplitudes a; (s = *1) with
two continuous spectrum waves is described by the
Hamiltonian

1
H, = z J'dkdkldkzdxldxzﬁa(w ki +Kz) 56)
x Ty, ko (A1 Az)a:akl()‘l)akz()‘Z)’

where the element of the interaction matrix is given by
theintegral

T by, (A1 A2)

M eaw (W) as (57)
= — [ To(W)G (WG, (W, A1) G, (W, Ao).

All other terms of the interaction Hamiltonian (e.g.,
those describing the interaction of three continuous
spectrum waves) are arranged in a similar way. One
may express integrals like those in Eq. (57) in terms of
the Van Kampen functions (38), (43); however, instead
of writing down general bulky expressions, we would
rather consider a particular example.

Suppose we are dealing with the kinetic beam insta-
bility near its threshold. There is then a single root of

Eq. (41), e ()\0 +1iy) =0, in the upper half-plane (y >
0). Let k = k, be the wave vector corresponding to the
maximum growth rate, which is assumed to be small,
Yy < A,. We consider the resonant three-wave interaction
of this single unstable mode with continuous spectrum
waves.

If the wave vectors of two other waves arek; ,, then
we have k, = k; + k,. The condition of the tree-wave
synchronism for the continuous spectrum waves with
the phase velocities A, , iswritten askyhg = KA | + KA,.
Inparticular, waveswith A, , = A, satisfy thiscondition;
i.e., al waves with A, , — A, ~ y can take part in the
three-wave interaction. Taking into account Eq. (47),
the complex amplitudes of the interacting oscillations
arerepresented as

1 —ikoAot |k0 ot

& = m( b Kt b’y k- k) (58)
_ TU
AN = e R 59

—ikgAot |ku o

bak—k, (A =Ao) + € by (A =Ag)].

a=12

It is assumed here that the envel ope amplitudes b; and
b, »4(A) are sharp functions of g of vanishing width and,
inaddition, b, ,4(A) arelocdizedat A <y.

In evaluating matrix element (57), it should be

remembered that, in the first order of the expansion in
powers of y, the real part of the dielectric permittivity

vanishes, €y (A)) = O; hence, &, ,(A) ~ 1 and
SZkLZ()\O) ~ VA, Therefore, the first term in Van

Kampen functions (38) is small. Moreover, in the
vicinity of the resonance, weignore the dependence of
matrix element (57) on the wave vectors, which
resultsin

T kg (A1, A2)

1k( 0)51k (Ao)
A —Ag—isy

L (60)
= émfo()\o)é()\l A2)

Then, we discard the dependence of al the coeffi-
cientsin Eq. (51) on g and perform the Fourier transfor-

mation by (t) —= bXX), bygA) — b(A, X). Equar
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tions (52) and (53) are now written in the truncated
form

g = i 0H -ip(n200)
ob A —isy (61)
s = %1,
: . OH ,
bi(A) = = —ik,Aby(A
1(A) Iébf()\) ik;Aby(A)
(62)
- b®
B0 5 ey
: . OH :
bo(A) = = —ik,Aby(A
2(A) I5b§()\) iKoAby(A)
(63)
— b°
BT 5 ey
where the Hamiltonian is the energy density
H=yYS isbh™ —fd\ § Akg|b(A)|?
s:zil I G:ZI,Z
(64)

b® bl (A)b3 (A)
+2[3ReZIdA hoisy

s=+1

and the dimensional coefficient 3 is

_omt [ kik
ame’ kosllko(ho).

Equations (61)—«63) describe the influence of
plasma echo on the development of the beam instabil-
ity. Their structure resembles usua three-wave equa-
tions. There are two basic distinctions. First, as has
already been pointed out, the high-frequency mode is
described by two complex amplitudes (61); the energy
of this mode is given by the first term in Hamiltonian
(64). Second, the low-frequency modes are wave
packets with a phase velocity spread. Due to phase
mixing, the spread yields the Landau damping of the
Fourier components of the electric field with the wave
vectorsk ,.

In studying wave interactions with allowance for
Landau damping, the damping is often approximated
as dissipation. For example, awave is described by an
equation like & = —y,a + nonlinear terms. Strictly
speaking, this approximation is absolutely unjusti-
fied. Landau damping arises as an asymptotic expan-
sion of a solution to a linear problem, which is valid
at long enough times, t > y; . If we ignore the non-

linear term in Eq. (62), then the potentia @, ~
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J’ dAb; (0, Mexp(-ik,At) behaves asymptotically like

@, ~ exp(-k AAt), where AA is the width of the wave

packet. However, al the experience of nonlinear phys-
ics demonstrates that the most interesting things hap-
pen when the time scales of two different processes
coincide. Here, we are focused on the coinciding time
scales of phase mixing (tph = 1/k; ,AN) and nonlinear
interaction (t, ~ B|b%)/AM). Itisevident that, in this case,
Landau damping should be explicitly described as a
result of phase mixing and the possible nonlinear corre-
lations between various waves must be taken into
account.

Besides energy (64), Egs. (61)—(63) preserve addi-
tional integrals of motion that are analogous to the
Manley—Row integrals. One can easily verify that

S0~ [0 = 0, (6

Dz b’b ™ —J’d)\|b1()\)|% = 0.

—+l

(66)

One may treat these rel ations asthe balance of the num-
ber of quasi-particles in the three-wave interaction. In
particular, implying the condition k, = k; + k,, weobtain
the conservation of the net momentum.

Despite the additional integrals of motion, it is
impossible to solve Egs. (61)—(63) analytically. Quali-
tatively, one may conjecture that the three-wave inter-
action accelerates the kinetic instability, making it
explosive. Energy conservation condition (64) com-
bined with Manley—Row integrals (65) and (66) allow
an unlimited growth of the amplitude, which is typical
of explosive-type instabilities.

The numeric solution to Egs. (61)—<63) depicted in
Figs. 24 confirm this qualitative reasoning. For
numeric solutions, the scales of the amplitude, time, and
phase vel ocity were chosen to make all the dimensional
parameters equal to unity (k,=1,y=1,and 3 =1). The
continuous distribution over A was approximated by a
discrete one (500 points). The figures demonstrate a
particular case with k, =k, = 0.5 and b,(A) = b,(A). The
initial conditionswere b*(0) =0.01, b-'(0) = 0.01i, and
b,(0, A) =0.01/(A% + 0.5) (J]A| < 5).

The function [b,(t, A)| for different instants is
depicted in Fig. 2. At t = t, = 4, the central part of the
distribution startsto reduce; somelater, |ateral satellites
appear, which become visible at t = 4.5. At approxi-
mately the same time, the phase argb,(t, A) begins to
deviate strongly from the linear dependence 0.5At. The
dependence of the energy of the unstable mode (i.e., the
first term in Hamiltonian (64)) is shown in Fig. 3. This
value is initiadly zero and the well-marked energy
exchange starts simultaneously with the distortion of
the low-frequency spectrum at t = t,,.
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Ib1

t=3 t=3.5
0.015 + -
0.010 + -
0.005 - -
t=4 t=4.5
0.015F -
0.010 - -
0.005 -
-5 5 =5 5

Fig. 2. Continuous spectrum evolution.
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6.6 6.7 6.8 69 |1t
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Fig. 3. Unstable mode energy vs. time.

Fig. 4. Low-frequency potential vs. time.

Figure 4 shows the evolution of the potential of the
low-frequency subharmonic, i.e., the integral @,(t) =

dAb, (t,A). Inthelinear stage (t < t,), Landau damping
provided by phase mixing is observed.

In the nonlinear stage (t > t,), all the variables dem-
onstrate fast growth (faster than in the exponentia one).
The numerical results show that the amplitudes behave

like 1/(t — t,)?, where the time of explosionist, =7. A
reduction in the initial amplitude results in an increase

inthetimet,, while over thetimeinterval t, <t <t,, the
evolution remains qualitatively the same.

One may say that the evolution of thelow-frequency
potential (Fig. 4) demonstrates the competition
between Landau damping and parametric decay insta-
bility inthefield of the high-frequency wave. Intheini-
tial stage, Landau damping dominates; however, later
decay instability overpowers.

The explosive character of the instability does not
necessarily mean that we are here faced with the above-
mentioned inapplicability of Eq. (24) at long times.
Getting rid of the non-resonant terms in the cubic
Hamiltonian resultsin correctionsto the energy that are
proportional to the amplitudes in the forth power. In
particular, these corrections provide a nonlinear fre-
guency shift. How these effects influence beam insta-
bility is still unknown.

6. CONCLUSIONS

The main thesis of this paper may be formulated as
follows: If we describe the collisionless kinetics in
terms of some new variable instead of the distribution
function, we are able to construct a perturbation theory
that preserves energy in its every order. In particular,
one can speak of the energy of linear waves and intro-
duce well-defined quasi-particles, while in the frame-
work of the traditional approach, the definition of the
energy of Langmuir waves is rather conventional. The
theory formulated here uses the expansion of the
Hamiltonian and, to a great extent, is analogous to the
classical perturbation theory known from mechanics.
However, compared to the familiar procedures of
plasma electrodynamics, it is more complicated. It
should be stressed that two versions of the perturbation
theory arein no way equivalent.

The relation between the distribution function and
the velocity used here, V(t, X, w) = w + U(t, X, w), isthe
nonlinear functional transform (23). Exact equations
(2) and (24) are equivalent but there is no smple corre-
spondence between their expansions in the powers of
small deviations. For example, using Eq. (23), we may
expand the distribution function into a seriesin powers
of U(t, X, w):

f(t,x,v) = fo(v)=U(t, x,v)fy(v)
10, ,2 . ©7)
+§57(U (t,x, v)fo(v))+....

If we represent the correction to the distribution as the
second term in Eq. (67), f,(t, X, v) = -U(t, X, v) f 5 (V),
then we obtain linearized Euler equation (36) from lin-
earized Vlasov equation (4). However, the result would
bedifferent if we expand Eq. (1) in powers of the poten-
tial and Eq. (24) in powersof U(t, X, v) up to the higher
orders.

If we take the solution to linearized equation (36)
corresponding to a Langmuir wave, substitute it in
PLASMA PHYSICS REPORTS  Vol. 30
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transform (67), and then average over the oscillation
period, we obtain an equation for the averaged distribu-
tion that is analogous to the quasilinear equation.
Therefore, the linear equations discussed above and the
quasilinear theory are of the same asymptotic accuracy.

It should be noted that the author isnot calling for a
complete revision of traditional plasma electrodynam-
ics, or to haveit rewritten in new terms and concepts. It
is sometimes just useful to have alook at very familiar
things from a new viewpoint.
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Amplification of Surface Wavesin a Plasma Waveguide
by a Straight Relativistic Electron Beam
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Abstract—The problem of the excitation of electron wavesin athin-walled annular cold plasmainacylindrical
waveguide by a straight relativistic electron beam in afinite magnetic field is considered. The dispersion prop-
erties of awaveguide system with parameters close to the experimental ones are investigated. It is shown that
the growth rate of the excited high-frequency plasma wave is comparable to that of the low-frequency wave,
which is weakly sensitive to the strength of the longitudinal magnetic field. © 2004 MAIK “ Nauka/ I nterperi-

odica” .

In recent years, the excitation of surface plasma
waves in beam—plasma systems has been actively stud-
ied both experimentally and theoretically [1-3]. In its
simplest form, such a system is a circular metal
waveguide of radius R in which there are a thin-walled
annular plasma and a thin-walled annular beam with
mean radii r, and ry, respectively. The thicknesses of
the plasma and the beam, &, and &, are much smaller
than their radii. The system is usually placed in an
external uniform longitudinal magnetic field in which
the beam and plasma electrons become fully magne-
tized. The applicability condition of the corresponding
approximation, in which the external magnetic field is
assumed to beinfinitely strong, isthat the characteristic
frequencies of the system (the radiation frequency and
the electron Langmuir frequencies of the plasma and
the beam, w, and w,) arelow in comparison to the elec-
tron cyclotron frequency Q.. In actual experiments, the
beam density is much lower than the plasma density, so
that the condition for the beam electrons to be fully
magnetized is, as a rule, satisfied with good accuracy.
As for the plasma electrons, the corresponding condi-
tion is more stringent, especially in the range of short
wavelengths.

An annular plasma of finite thickness is difficult to
describe analytically even in the cold plasma approxi-
mation, because it is a system with an infinite number
of degrees of freedom [4]. Under the assumptions that
the plasmathicknessis small and that the external mag-
netic field isinfinitely strong, an annular plasma can be
described asatubewith an infinitely thinwall, in which
only one surface wave can propagate in the chosen
direction. These assumptions make the system simple
enough to be described analytically. For an external
magnetic field of finite strength, the infinitely thin

plasma approximation fails to hold because of the pos-
sible transverse plasma polarization.

In order to describe the surface waves of a thin-
walled annular plasmain alongitudinal magnetic field
of finite strength, one of us [5] proposed approximate
boundary conditions at the plasma tube and showed
that they can be successfully used in the theory of
plasma microwave electronics. In the present paper,
following [5], we derive a dispersion relation for a
beam—plasma system in a longitudinal magnetic field
of finite strength and determine the instability growth
rate as a function of the system parameters.

In waveguide regions free of plasma, the electro-
magnetic field isdescribed by thefollowing set of equa-
tions for the longitudinal components of the electric

—iwt+ik,z

and magnetic fields, E,, B,~ e

ALE,—XeE, = 0,

) (M
ADBZ_XOBZ 0

These eguations, which describe azimuthally symmet-
ric modes, are written in cylindrical coordinates with
——rE and x2 =K -
rdr dr 0"
w?/c? and are supplemented by the boundary conditions
E/R) =0and E4(R) ~ B(R) = 0 at the metal waveguide
surface and the conditions for the field to be finite at
r = 0. If there is a plasmatube with the mean radiusr =
r, and thickness 9, then the corresponding equations
should be written for the plasma region and the solu-
tions obtained should be matched at the inner and outer
boundaries of the plasma tube [6, 7]. In what follows,
wewill assume that the plasmatube is sufficiently thin,
k0, < 1.

the Laplace operator Ay =

1063-780X/04/3001-0056$26.00 © 2004 MAIK “Nauka/ Interperiodica’



AMPLIFICATION OF SURFACE WAVES IN A PLASMA WAVEGUIDE 57

In the general case of a cold thin-walled annular
plasma, there are two dispersion curves that describe
surface waves. low-frequency and high-frequency (in
the range w < k,C) [4—6]. For strong magnetic fields
such that Q. > wy, the low-frequency dispersion curve
is analogous to that in the case of a fully magnetized
plasma and, in the short-wavelength limit k, — oo, it
asymptotically approaches wy,. For large k, values, the
high-frequency branch of the dispersion curve is char-
acterized by an anomalous dispersion and approaches
the frequency Q. from above. The cutoff frequency of
the high-frequency wave, w (k, = 0), is determined by
the frequency wy, and isindependent of Q.. The highest
frequency of this wave does not exceed the upper

hybrid frequency Q, = A/ooﬁ + Qs. In aweak magnetic
field such that Q. < wy, the low-frequency dispersion
curve in the short-wavelength limit approaches the fre-

quency Q/~/2 from below, while, in the samelimit, the
disperson curve of the high-frequency wave
approaches this frequency from above, indicating that
the dispersion of the high-frequency wave is anoma-
lous.

Based on an analysis of transverse structures of the
electromagnetic field components, one of us [5] formu-
lated approximate conditions at the plasma tube. With
these boundary conditions, which differ between the
low- and high-frequency waves, there is no need to
solve the wave equation in the plasma region: the solu-
tion sought is derived by matching the solutions
obtained for vacuum regions. Also, there is no need to
distinguish between the cases of a weak and a strong
longitudinal magnetic field. For the low-frequency
branch, the matching conditions have the form

{E(ro)} =0,

(dE, (2)
E_(rp)D - - pXO z(rp)

Here and bel ow, we use the definition { X(X)} = X(x+ 0) —
X(x—0). Conditions (2) coincide with the exact match-
ing conditions obtained in the limit of an infinitely
strong magnetic field by integrating the wave equation
over r in the vicinity of a plasmawith a density profile
such that mi — 6pw§6(r —rp) [8]. Consequently, the
low-frequency branch is weskly sensitive to the
strength of the external magnetic field. We can readily
seethat Egs. (1) with boundary conditions (2) allow the
wave field to be separated into E and B waves. The
waves that are important for the purposes of plasma
microwave electronics are those with a nonzero longi-
tudinal electric-field component E, (the E waves) and
with phase velocities below the speed of light, w/k, < ¢
[4, 8]. For such waves, the solution to Egs. (1) supple-
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mented with boundary conditionsatr =0andr = R has
the form

%AIO(XOr)!

%B[I o(Xor) —Ko(Xor)
O

r<rp

3)

IO(XOR)} r <r<R
b p 1

Ko(XoR)

where |, and K, are zero-order modified Bessel func-
tions. Substituting solution (3) into boundary condi-
tions (2) and eiminating the constants A and B, we
arrive at the following dispersion relation, which deter-
mines the dependence w(k,) at the lower branch of the
dispersion curve:

Ko(Xolp) Ko(XoR)} 4)

lo(Xo"p)  To(XoR)

Dispersion relation (4) coincides with that for aplasma
wavein aninfinitely strong magnetic field. Thisreflects
afact that has already been mentioned, namely, that the
low-frequency branch is weakly sensitive to the
strength of the external magnetic field [5].

Unlike in the previous case, the high-frequency
wave field cannot be separated into E and B waves. The
matching conditions for the high-frequency branch are
written in the form [5]

r 6pXo pIo(Xo p)|:

[dE, dB 0
O (r )D =0, g—=(r,0 =0,
Ddl’ P Ddr DD
(,o dB,
{ELr,) =5 ’2( (1) + k8,0 L T,
XOSD Xo€o (5)
_s 102, g'wids,
{Bz(rp)} _6p_2 _ZDW p)
Xo
, w g dE,
—Ikzépgz— dr (rp).
o€n

Here, X2 = k% — e,w?/c? and g, and g are the elements
of the dielectric tensor of acold magnetized plasma[9],

E € ig OD
&j = E—Ig € 0% (6)
00 0 ¢
where
oo 0, Q%
€n = 1- 2 2! - 2
_Qe (*)(w _Qe)
, @)
w,
g = 1-—.
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We insert solution (3) to the first of Egs. (1) and the
solution

r<r,

ECI O(XOr)!
E (8)
DD[l o(Xor) + Ko(Xor)
O

Il(XOR)} r.<r<R
1 p H

K1(XoR)

to the second of the equationsinto the conditions relat-
ing the fields at the inner and outer surfaces of the
plasmatube. Asaresult, we obtain adispersion relation

B, =

for the hi gh-frequency wave:
[1+6r }[1+6r5( 9—‘*’56}
)
2 2W
= Kooor2e zgze G
€

Here, we have introduced the following notation for the
geometric factors:

o Ki(Xol'p) , Ko(XoR)

Ge = Il(Xorp)[hl(Xoorpp) ' IS(XOOR)] (10)
o Ki(Xofp) Ki(XoR)

Gg = |1(Xorp)[ |1(x00r:) - |1(X00R)]

The right-hand side of dispersion reation (9) is qua-
dratic in the small parameter k0, < 1 of asystem with
athin-walled annular plasma. Consequently, to second
order in this parameter, the dispersion relation for the
high-frequency wave has the form [5]

2

1+6rX—GE—0 (11)

We now consider a plasmawaveguide system with a
beam that will betreated under the same assumptionsas
those which were made for the plasma. Specifically, we
consider an annular thin-walled beam with thickness &,
and mean radiusry, <r,,. In experiments[2, 3], the beam
density isusually low enough for the beam electronsto
be regarded as being fully magnetized and for their
transverse motion to be ignored, in which case the
beam can be assumed to be infinitely thin. In this
approximation, the beam is described solely through
the boundary conditions for matching the fields in the
regionsr < r,andr > r,. These boundary conditions are
well known [4, 8]:

WE, O ey
(Era} =0, G = ~SXi——Elr),
gdr o (w—k,u
(12)
4B,
(B(ro) = 0. S0 =0,

wherey = (1 — u?*/c*)~'2 and u is the beam velocity. In
describing the excitation of the low-frequency wave, it
is sufficient to use only the first two of conditions (12),
because this wave is essentially an E wave [5]. The
plasma and beam divide the cylindrical waveguide into
three regions, in which the equations for an E wave
have the solutions

EAlo(Xor)a r<ry,
E, = EBlo(Xor)JfCKo(Xor), p<r<r, (13
Plo(Xor) + EKo(Xor), rp<r<R.

Using matching conditions (12) and (2) at the beam and
plasma, respectively, and the condition that the field
component E, vanishes at the metal waveguidewall and
eliminating the arbitrary constants, we arrive a a dis-
persion relation describing the excitation of the low-
frequency wave by the beam:

2 -3
{1 8,r pXo }[1—6brbx§ bl )ZG}
’ (14)
205 WY~ To(Xofs)
= 6 r 6b bXo ~t 2 020 b pr

W’ (0=kU) 15 (Xof p)

where the geometric factors of the beam and the plasma
have the form

Ko(Xof p.b) _ Ko(XoR)
lo(Xo"p6)  To(XoR)

In order to derive the dispersion relation for the high-
frequency wave, we substitute expressions (13) for E,
and the analogous expressionsfor B, into conditions (5)
and (12) and the boundary conditions at the meta
waveguide wall. Then, after some laborious manipula
tions, we obtain

Gpp = |§(Xorp,b)[ } (15)

2 2 -3
wy,
1ranke }[1 6bbeoﬁG}
(16)
wkz)y-s O(XOrb)
= Bprpé ébrb)(0

(w-k U) IO(XOrp)
We convert Egs. (14) and (16) into aform more con-
venient for our analysis:
(0 - Qp)(w-ku)’-Qp) = ©,Q;, Q;
for a low-frequency wave and
2 2 2 2 2 2 2 (17)
(@ -0y + Q7 ) ((0-ku)’ - Q;) = 0,07, 0;

for a high-frequency wave.
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w, 1010571

1 1 1 1 ]
0 2 4 6 8 10
ky, cm™!

Fig. 1. Dispersion curves of a beam—plasma system (cw, =
8x10'%s!, Q. =15 x 10'° 571 in a strong magnetic field

(a) without and (b) with allowance for the beam—plasma
interaction.

Here, we have introduced the notation
2 2 2 2 2 2 2
Qp, = 0 Xowp Gy, Qpy = Jpr pX (W — Q) G,

Q§ = 5brbX§w§v_ng,

Ko(Xorp) ~ Ko(XoR)
lo(Xolp)  lo(XoR)

© Ko(Xo'n) _ Ko(XoR)’ (18)
lo(Xor)  To(XoR)
K1(Xolp) + Ko(XoR)
o = 1(Xop)  lo(XoR)
" Ko(Xorb) ~ Ko(XoR)"
lo(Xor)  To(XoR)

Each of Egs. (17) describes a system of two coupled
oscillators. If we formally set the coupling coefficients
O, and ©, equal to zero, then we can see that the oscil-
lators in each of the systems are decoupled and can be
described by independent equations. In the absence of
abeam, the dispersion relations take the form

w-02 =0
for a low-frequency wave and
W -Qi+05 =0

for a high-frequency wave.

(19)
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Fig. 2. Dispersion curves of a beam—plasma system (cw, =
22x 1010571, Q=15 x 10'° s71) in aweak magnetic field

(a) without and (b) with allowance for the beam—plasma
interaction.

Theserelationsimplicitly describe the dispersion prop-
erties of a plasma waveguide in a magnetic field of
finite strength.

The dispersion relations obtained were analyzed
numerically for the parameters of a beam—plasma sys-
tem that were close to those adopted in actual experi-
ments [2, 3]: the waveguide radius was R = 2 cm; the
mean radii of the plasma and beam tubes were r, =
1.05 cm and r, = 0.65 cm, respectively; the thicknesses
of the plasmaand beam were §, = &, = 0.1 cm, the beam
current was i, = 1.7 kA, and the beam velocity corre-
sponded to the relativistic factor y = 2. The cyclotron
frequency was taken to be Q. = 15 x 10'° 57!, and the
plasma frequency was varied within the interval w, =

(8-22) x 10'°s~1, Figures 1aand 2ashow the dispersion
curves obtained by numerically solving dispersion rela-
tions (19) for a plasma waveguide in a longitudinal
magnetic field of finite strength at wy, = 8 x 10'° s~! and
22 x 10'° s71, respectively. These figures also show two
dispersion curves calculated for a plasma waveguide
with a beam. The dispersion curve in Fig. l1a differs
from a traditional dispersion curve in the limit of an
infinitely strong longitudinal magnetic field in that it
has an upper branch. For large k, values, this branch is
characterized by an anomal ous dispersion; however, for
the above parameter values, its existence is incompati-
ble with the above assumption that the plasma tube is
thin-walled. As the magnetic field increases, the upper
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Fig. 3. Frequency dependence of the spatial growth rate for
wp=(1)22x10',(2) 17 x 10", (3) 13 x 10'°, and (4) 8 x
1010571,

branch isdisplaced toward higher frequencies. Inthe case
at hand, the parameter values are chosen so that the low-
frequency plasma wave does not resonate with the beam
and the high-frequency plasma wave is excited at a fre-
quency of w =16.1 x 10'° s (k,= 6.5 cm™). Figure 2a
refers to a waveguide in a weak magnetic field (Q, <
wy,). We can see that there are two points of resonant
interaction: the point w =6.2 x 10'° s’!, k, = 2.6 cm’!
and the point w =20.6 x 10'° s°!, k, = 8.3 cm™!, which
are the intersections of the lower branch of the beam
dispersion curve with the plasma dispersion curves.
Figures 1b and 2b show the solutionsto Egs. (17), i.e.,
the dispersion curves calculated with allowance for the
interaction between the beam waves and the plasma
waves. In astrong magnetic field (Fig. 1b), thereisonly
one instability region, which is fairly narrow and is
associated with the excitation of the high-frequency
mode of the plasmawaves. In Fig. 2b, Cherenkov reso-
nance conditions for both high-frequency and low-fre-
quency waves are satisfied in two instability regions.
From these figures we can see that all the instabilities
under consideration are of a convective nature [10].

In order to determine the amplification coefficients
ok, of thewaves (i.e., their spatial growth rates), werep-
resent the wavenumber in the form k, = wyu + ok,. For
alow-density beam, we have dk, < w/u. We substitute
the representation adopted for k, into Egs. (17), expand
every term in the resulting equations in powers of ok,
and retain only thelowest order (nonvanishing) termsin
the expansions to obtain the following two cubic equa-
tions, which determine the spatial growth rates of each
of the plasmawaves.

2
2 o2 99 5 0
9= Q. {1~ g Oke

2
x %zékf—Qs%—%ékg

2 2
_ o Wn2 20, 99,95, Qp
= 0, 5% gt ok, ok,

for a low-frequency wave and

2 2 2 0Q; 0
%o —Qu+Q, + ak‘jékZD

(20)

2
x @Zakf-gég%-%ékg

2 2
- o M2 MWg20w, 99,9, Qy
= OTEUDQF” EUDQbEUDJr 3k, ok,

for a high-frequency wave.

Figure 3 shows the dependence of the growth rate
Im ok, on the frequency w for the following values of
the plasma frequency: w, = (1) 22 x 10'°, (2) 17 x 10'°,
(3) 13 x 10'°, and (4) 8 x 10'° s’!. As the plasma fre-
guency decreases, the low-frequency plasmabranch is
displaced toward lower frequencies and, accordingly,
the Cherenkov resonance frequency and the maximum
growth rate both decrease. Below a certain critical fre-
guency, there is no Cherenkov interaction at the lower
branch and the spatial growth rate vanishes. For ahigh-
frequency branch too, theinstability region isdisplaced
toward lower frequencies and narrows as the plasma
density decreases. In this case, however, the spatial
growth rate increases to about 8k, = 0.12 cnr!, which is
comparable to the growth rate in the range of low fre-
guencies.

In this paper, we have investigated the dispersion
properties of a beam—plasma waveguide system with
typical experimental parametersin alongitudinal mag-
netic field of finite strength. We have determined how
the spatial growth rates of the instability depend on the
system parameters. We have shown that the amplifica-
tion of high-frequency plasmawavesin the linear stage
iscomparableto or may be even greater than the ampli-
fication of low-frequency waves, with which plasma
microwave electronicsis usually concerned.
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Abstract—A pure amplification regime (without accompanying generation) at two frequencies of 9.1 and
13 GHz isachieved in a plasma relativistic microwave amplifier. It is shown experimentally that an amplifica-
tion regime with an output power of 40 MW can be achieved at both frequencies without changing the param-
eters of the system. This fact, along with the results of calculations, allows one to assert that the relative band-
width of the amplifier is no less than 40%. It is shown experimentally that, by changing only one parameter,
namely, the plasma density, the frequency corresponding to the maximum amplification can be varied from
9.1 to 13 GHz, which agrees with the results of calculations by a nonlinear model. At afrequency of 9.1 GHz,

the maximum output power amounts to P = 40 MW, the efficiency is n = 4%, and the power gain is K, =
800 (29 dB). At afrequency of 13 GHz, these parameters are P = 60 MW, n = 6%, and K, = 1000 (30 dB). 'Iphe
measured plasmadensity range in which the amplification is observed agreeswith cal cul ations of the excitation
of an E;; mode of a plasma waveguide. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

One promising line of research on the creation of
high-power microwave devices are the studies of the
Cherenkov excitation of eigenmodes of a plasma
waveguide by a high-current relativistic electron beam
(REB). The plasma waveguide is a smooth cylindrical
metal waveguide that is completely or partialy filled
with plasma. In the absence of plasma, the electron
beam is stable because only fast modes with a phase
velocity higher than the speed of light can exist in a
metal tube with a constant radius. If ametal waveguide
is filled with plasma, slow waves exist whose phase
velocities are below the speed of light and depend on
the plasma density. If the plasma density exceeds the
threshold density at which the phase velocity of a slow
wave becomes equal to the REB velocity, then the REB
energy can be transferred to the electromagnetic wave,
i.e., thewave isamplified [1].

The main advantage of plasma relativistic micro-
wave devices over vacuum onesisthat the frequency of
output radiation can be tuned over a wide range by
varying the plasma density. Figure 1 shows the calcu-
lated frequency dependence of the gain factor calcu-
lated by the linear theory at different plasma densities.
The curveswere cal cul ated for the same geometry of an
REB and plasma as was used in the experiment
described in this paper. It can be seen from the figure
that, as the plasma density increases from 10! to 7 x
1013 cm, the frequency at which the gain factor is
maximum increases from 8 to 35 GHz. At the same
time, the spectral width varies from 40% at low fre-
quencies to 20% at high frequencies.

This conclusion is valid for both microwave ampli-
fiers and noise masers. Experimental results were first
obtained for masers. The first successful experiment in

which microwaves were generated via the excitation of
the eigenmodes of a plasma waveguide by an REB [2]
demonstrated the main features of a plasma relativistic
maser: awide (~40%) emission band and the possibil-
ity of atwofold variation in the mean generation fre-
guency. Later, a high-power (~250 MW) maser in
which thefrequency could be varied by afactor of more
than 2 [3] and a maser in which the frequency could be
tuned in the range 4-28 GHz at a power level of 30—
50 MW [4] were created. In both cases, the relative
width of the emission spectrum was no less than 20%.
Around that time, the studies on the creation of plasma
relativistic microwave amplifiers were started; how-
ever, the first successful results were obtained some
what |ater, because the problem of the suppression of
microwave generation accompanying the amplification
turned out to be fairly complicated.

3
K, 10

0 10 20 30 40
f,GHz

Fig. 1. Frequency dependences of the power gain calculated
by thelinear theory for an interaction length of 20 cm at dif-

ferent values of the plasma density: n, = (1) 10'?, (2) 2 x
10"3, (3) 4x 10"3, (4) 55 % 10'3, and (5) 7 x 10'3 cm™3.
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The experiment in [5] demonstrated the possibility
of amplifying the input signal in a narrow interval of
plasma densities near the threshold density. The ampli-
fication regime was rather unstable and was accompa-
nied by generation at frequencies different from the
input signal frequency. The use of a broadband
absorber made it possible to improve the amplifier
parameters [6]. In that experiment, the possibility of
amplifying the input signal at both 9.1 and 12.9 GHz
was demonstrated for the first time. Furthermore, there
was arange of plasmadensitieswithin which the output
radiation lay inside the 0.5-GHz band at an input fre-
guency of 9.1 GHz. At the same time, there was gener-
ation at other plasma densities, which resulted in the
broadening of the output spectrum. For the same rea
son, attemptsto achieve stable amplification at an input
frequency of 12.9 GHz did not met with success. A fur-
ther modification of the experimental device, aswell as
the use of other types of microwave absorbers, made it
possible to suppress generation over a wide range of
plasmadensities. Asaresult, it became possible to mea-
sure the main characteristics of the amplifier and opti-
mize the system in terms of maximizing the output
power. The results of this study are presented in the
present paper.

We note that, at present, studies on high-power
microwave amplifiers based on the effect of the slow-
ing-down of wavesin avacuum (without plasmafilling)
corrugated waveguide are being carried out. Thus, in
[7], an output power of 1 GW at a frequency of 9 GHz
was achieved; however, the amplification bandwidth
was lower than 1%. In [8], the amplification bandwidth
was 20% (8.4-10.4 GHz), but the output power was as
low as 1 MW. The microwave amplifier described in the
present paper has an output power of ~50 MW and its
amplification bandwidth attains 40% (9-13 GHz); i.e.,
it possesses a unique combination of parameters.

2. EXPERIMENTAL DEVICE

A schematic of the deviceisshownin Fig. 2. Annu-
lar plasma / with a mean radius of 8 mm and a thick-
ness of 1 mm was created in smooth cylindrical
waveguide 2 of radius 22 mm. The plasma was pro-
duced by an annular electron beam (with an electron
energy of 600 eV and a current of 5-20 A) in xenon at
apressure of 2.5 x 10~ torr over atime of about 30 us
[9]. The system was embedded in a strong uniform lon-
gitudinal magnetic field B. Annular REB 3 with amean
radius of 10 mm, athickness of 1 mm, and an electron
energy of 500 keV was injected into the system from a
diode located on the left (not shown in the figure). The
FWHM duration of the voltage pulse at the diode could
be varied over arange of up to 120 ns. The REB current
could also be varied. These experiments were carried
out at currentsof | = 1 and 2 kA. Microwave converter 4,
which converted the TE, mode of a rectangular
waveguide onto the TEM mode of the input coaxial
waveguide, was placed at the entrance to the system.
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Fig. 2. Schematic of the relativistic microwave amplifier:
(1) plasma, (2) metal waveguide, (3) REB, (4) amplifier
input, (5) coaxial emitting horn, (6) microwave absorber,
and (7) central conductor of the input coaxial waveguide.

The TEM wave was then converted into a slow plasma
wave, amplified by the REB, and emitted by coaxial
horn 5 with an inner diameter of 10 cm and outer diam-
eter of 25 cm. To suppress microwave generation in the
system, we used ceramic microwave absorber 6 of
length 14 cm. The length L of the output part of the
amplifier could bevaried (Fig. 2). The maximum REB—
plasmainteraction length was 30 cm.

An input microwave signal with a duration on the
order of several microseconds was generated by one of
the two pulsed magnetrons operating at frequencies of
9.1 and 13.0 GHz. The output magnetron power could
be varied within the range 2060 kW by varying the
magnetron anode voltage.

3. MEASUREMENT TECHNIQUE

Experiments of [4] showed that, in the case of
microwave generation, the width of the output radiation
spectrum was 20—40% of the mean frequency. In [10],
it was shown that, in some time intervals, the spectrum
of the generated microwave pulse was rather narrow
(Af/f < 5%); however, the spectrum of the entire pulse
was aways wider than 20%. In the case of the amplifi-
cation of a narrowband input signal, the output radia-
tion should aso be narrowband throughout the entire
microwave pulse. In addition, the maser frequency
depends on the plasma density, whereas the output fre-
guency of amicrowave amplifier isonly determined by
the frequency of the input signal and is independent of
the plasma density within awide density range. Hence,
by measuring the spectral width of the output radiation,
it is possible to distinguish the regimes of amplification
and generation. To estimate the spectral width of the
output radiation, we used a receiving transmission line
consisting of two detectors and a narrowband filter
(Fig. 3). One of the detectors (a broadband receiver)
measured the total incident microwave power. At the
input of the other detector (a narrowband receiver), we
placed anarrowband filter (Af/f = 5%) that wastuned to
the frequency of the input signal. The sensitivities of
the detectors were chosen such that, in the case of anar-
rowband (<5%) signal at the input to the receiving line,
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Fig. 3. Scheme of measurements: (1) coaxial emitting horn,
(2) microwave calorimeter, (3, 4) microwave detectors, and
(5) narrowband microwave filter (Af/f = 5%).

the signals from both detectors were identical in shape
and amplitude. If the width of the radiation spectrum
exceeded 5%, then the amplitude of the signal from the
narrowband receiver was smaller than that from the
broadband receiver. Thus, we could estimate the width
of the spectrum of the output microwave radiation.

Thetotal energy of the output microwave pulse was
measured by a broadband large-area (30 cm in diame-
ter) microwave calorimeter [11] (see Fig. 3). Knowing
the energy of the microwave pulse and its envelope, we
could calculate the power of the output microwave radi-
ation.

4. EXPERIMENTAL RESULTS

The operation of the measuring system isillustrated
by Fig. 4, which showsthe waveforms of the broadband
(curves 1) and narrowband (curves 2) receiver signas
and the diode voltage pulse (curves 3) for three differ-
ent cases. Figures 4a and 4b correspond to input fre-
quencies of 9.1 and 13 GHz, respectively, and Fig. 4c
corresponds to the absence of an input signal. As was
mentioned above, when the output radiation spectrum
is narrower than the passband of the narrowband filter
(5%), the signals from the broadband and narrowband
receivers should be identical in shape and amplitude. It
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Fig. 4. Waveforms of the broadband (curves 1) and narrow-
band (curves 2) receiver signals and the diode voltage pulse
(curve 3) at input frequencies of (a) 9.1 and (b) 13.GHz and
(c) in the absence of an input signal.

isjust the case of Figs. 4aand 4b: the signals are iden-
tical to within pickups. This operating mode of the
amplifier, in which the output radiation spectrum
remains narrow throughout the entire pulse, we call the
pure amplification regime (without accompanying gen-
eration).

It is important that the pure amplification regime
was achieved at input powers of 2060 kW throughout
the entire plasma density range under study (5 x 10'?—
5 x 10" cm™), throughout the entire range of the
lengths of the output part of the amplifier L, (from -1
to +7 cm, Fig. 2), for both values of the REB current
(L and 2kA), and at both frequencies (9.1 and 13 GHz).
Thisresult differsradically from the result described in
our previous paper [6] and was obtained here for the
first time.

By varying some parameters (e.g., by reducing the
absorber volume), the pure amplification regime could
be changed to the generation mode (Fig. 4c). In this
case, the amplitude of the broadband receiver signal (1)
was substantially larger than that of the narrowband
PLASMA PHYSICS REPORTS  Vol. 30
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P, MW
(a) °

(b)

100
Ny, 102 ¢m™3

Fig. 5. (8) Measured output microwave power and (b) the
gain factor calculated by the linear theory as functions of
the plasmadensity at an input frequency of 9.1 GHz, Ly =
3cm, and | = 2 kA. Curve ] corresponds to the E; mode,
and curve 2 corresponds to the E;; mode.

receiver signal (2) and the signal shapes differed from
each other. This means that the output radiation spec-
trum was substantially wider than the filter passband.

As was mentioned above, the theory predicts that
the frequency corresponding to the maximum amplifi-
cation of the input signal in the Cherenkov plasma
amplifier can be markedly varied by varying the plasma
density (Fig. 1). In order to verify this prediction exper-
imentally, it would be expedient to measure the ampli-
fier output power as a function of the input signal fre-
guency. However, since we did not have an appropriate
microwave source with an output power on the order of
several tens of kilowatts and afrequency tunable in the
range from 8 to 30 GHz (to be fed to the amplifier
input), we had to use asimplified measuring procedure:
the measurements were performed at two input fre-
guencies, 9.1 and 13 GHz.

Figures 5 and 6 show the measured output micro-
wave power (Figs. 5a, 6a) and the gain factor calculated
in accordance with the linear theory (Figs. 5b, 6b) as
functions of the plasma density. The curves presented
in Figs. 5b, 6b, 7, and 8 were caculated by
M.V. Kuzelev. The calculations were performed for the
three lowest modes of the plasma waveguide. Curve /
correspondsto the azimuthally symmetric mode E;, with
the lowest radial index, while curve 2 correspondsto the
E,; mode. In addition, the calculations were performed
for the E, mode. For this mode, the plasma density at
which the gain becomes nonzero isequd to 3 x 10 cn.
Figures 5 and 6 corresponds to an input frequency of
9.1 and 13 GHz, respectively, al other parameters of
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Fig. 6. The same asin Fig. 5, but for an input frequency of
13 GHz.

the system being the same. It can be seen from Fig. 5
that the plasmadensity range in which the amplification
at an input frequency of 9.1 GHz isobserved (8 x 10—
2.5 x 10" cm) agrees well with the calculated plasma
density range for the E,, mode (Fig. 5b). For an input
frequency of 13 GHz (Fig. 6), the operating plasma
density range shiftstoward higher densities (1.3 x 103—
5 x 10" cm3), which also agreeswell with calculations
(Fig. 6b).

A characteristic feature of the Cherenkov plasma
microwave amplifier is a wide amplification band, i.e.,

P, MW
3001

250} 2
200
1501 )i

100

50

J
0 10 20 30 40
L,cm

Fig. 7. Calculated power of the plasmawave (Ej; mode) in
the amplifier as a function of the interaction length at an
input frequency of 9.1 GHz for REB currents of (/) 1 and
(2) 2kA.
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Fig. 8. Thesame asin Fig. 7, but for an input frequency of
13 GHz.

the possibility of amplifying input radiation over awide
frequency range without changing the system parame-
ters. A comparison of Figs. 5 and 6 shows that, at a
plasma density of 1.5 x 103 cm, amplification is
observed at both frequencies of 9.1 and 13 GHz with an
output power on the order of 40 MW. Correlating this
fact with the calcul ated width of the amplification band
(Fig. 1), we can assert that, at this plasmadensity, asig-
nal at any frequency in the range 9.1-13 GHz will be
amplified to a substantial output power; i.e., the width
of the amplification band amounts to 40%.

Figures 7 and 8 show the calculated power of the
plasma wave (E,; mode) in the amplifier as a function
of the interaction length for frequencies of 9.1 and
13 GHz, respectively. Curves I and 2 correspond to
REB currents of 1 and 2 kA, respectively. The signal
power at the entrance to the amplifier (L = 0) was
assumed to be 50 kW. It was al so assumed in the calcu-
lations that the energy of the REB electronsis 511 keV,
the plasmawaveguide contains no microwave absorber,
and reflections are absent (the approximation of an infi-
nitely long waveguide). Under actual experimental con-
ditions, the energy of the REB electrons varies during
the pulse, an absorber is present in the plasma
waveguide, and there are reflections from the
waveguide ends. For this reason, one cannot directly
compare these plots with the experimental results. Nev-
ertheless, these plots provide an insight into the quali-
tative features of the system that can manifest them-
selves in the experiment.

Thus, under idealized conditions, for both input fre-
guencies, the calculations predict the same amplifica-
tion length L* at which the output power is maximum.
For a current of 1 kA, we have L* = 30-31 cm. For a
current of 2 kKA, thislength amountsto L* = 21-23 cm.
The power level P at both frequencies is nearly the
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Fig. 9. Measured output microwave power as a function of
the length of the output part of the amplifier at a frequency
of 9.1 GHz for REB currents of 1 (circles) and 2 kA (trian-

gles).

same; P = 120-140 MW for acurrent of 1 kA, and P =
270-290 MW for acurrent of 2 KA.

In the experiment, the amplification length was var-
ied by varying the length L, of the output part of the
amplifier (see Fig. 2), the total length being equal to
L =L+ 23 cm. The measurement results are shownin
Figs. 9 and 10, which correspond to input frequencies
of 9 and 13 GHz, respectively.

Each point in these figures represents the output
radiation power averaged over 10-15 pulses, and the
bars show the mean square deviation. All the parame-
ters of the system (except for L) were fixed. We had
to use this procedure because of the wide scatter in the
output power in different pulses.

Returning to Figs. 9 and 10, we note that, in al
cases, the optimum amplification length L* (i.e., the
length above which the output power does not increase
with increasing length) was achieved. At afrequency of
9.1 GHz (Fig. 9), thislength is L* = 28-29 cm (L =
5-6 cm) for an REB current of 1 kA, and it isL* =
25 cm (Lo = 2 cm) for acurrent of 2 kA. Hence, asthe
REB current increases, L* decreases, which agrees
gualitatively with calculations. For an input frequency
of 13 GHz (Fig. 10), the optimum length for both cur-
rents is nearly the same, L* = 28 cm (L, = 5 cm),
which contradicts the calculations. The maximum out-
put powers are nearly the same for both frequencies:
Pow = 20 MW for a current of 1 kA, and P, = 40—
60 MW for acurrent of 2 KA. This result agrees quali-
tatively with the calculated results, although the mea-
sured power is substantially lower than the calculated
one.

Thus, the presence of a microwave absorber, reflec-
tionsfrom the waveguide ends, and the pul sed character
of the process lead to an appreciable discrepancy
between the experimental and calculated results. This
PLASMA PHYSICS REPORTS  Vol. 30
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Fig. 10. Thesameasin Fig. 9, but for an input frequency of
13 GHz.
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Fig. 11. Waveforms of the broadband (curve /) and narrow-
band (curve 2) receivers signals and the diode voltage pulse
(curve 3) at an input frequency of 9.1 GHz, | = 2 kA, n, =

1.2 x 10" em™, Py, = 60 kW, and P = 47 MW.
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Fig. 12. Output amplifier power vs. input power at input fre-
quencies of 9.1 (circles) and 13 GHz (triangles) for an REB
current of | = 2 kA. The dashed lines show the straight-line
fits.
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meansthat it is necessary to carry out calculationsusing
amore complicated model.

Oneremarkableresult isthat thereisaconfiguration
such that the maximum gain is achieved at both fre-
guencies. Comparing Fig. 9 and Fig. 10, we can see
that, for L, =5 cmand an REB current of 2 kA, ampli-
fication can be achieved at both afrequency of 9.1 GHz
(to apower of ~40 MW) and afrequency of 13 GHz (to
a power ~60 MW). The only parameter that should be
changed to this end is the plasma density. If necessary,
this parameter can be changed rapidly (in a time of
~10 ps) [9].

It can be seen from Figs. 9 and 10 that the maximum
output power is40 MW at afrequency of 9.1 GHz and
60 MW at afrequency of 13 GHz, which correspond to
efficiencies of 4 and 6%, respectively. These values far
exceed the efficiencies that were achieved in our previ-
ous study [6].

We recall that the above power values were obtained
by averaging over a sequence of pulses; i.e., in some
pulses, the power was even higher. Figure 11 shows
waveforms of the broadband (curve 1) and narrowband
(curve 2) receiver signals and the diode voltage pulse
(curve 3) at an input frequency of 9.1 GHz. The power
in this pulse attained 47 MW.

Figure 12 shows the amplifier output power as a
function of the input power for input frequencies of
9.1 GHz (circles) and 13 GHz (triangles). The dashed
lines show the straight-line fits. For both input frequen-
cies, a decrease in the input power results in a propor-
tional decrease in the output power. In principle, it
might be supposed that the amplifier under consider-
ation is, in fact, a frequency-locked oscillator; i.e., the
input power is merely an initial noise for exciting the
oscillator. However, in this case, the output power
would be independent of the input power and only the
time during which the oscillation regime is established
would change. Quite a different form of the depen-
dences presented in Fig. 12 clearly shows that, in our
case, amplification (rather than frequency-locked exci-
tation) of microwave oscillations takes place.

It follows from Fig. 12 that the power gain is 800
(29 dB) for a frequency of 9.1 GHz, and it is 1000
(30 dB) for afrequency of 13 GHz.

5. CONCLUSIONS

(i) The regime of pure amplification (without
accompanying generation) of a monochromatic micro-
wave signal in a plasma relativistic microwave ampli-
fier was achieved for the first time at frequencies of
both 9.1 and 13 GHz. At both frequencies, the spectral
width of the output radiation was no greater than 5% of
the input signal frequency.

(i) The coincidence of the measured plasma density
ranges with the results of calculations allows us to con-
clude that an azimuthally-symmetric plasma
waveguide mode with the lowest radial index isexcited.



68 PONOMAREV, STRELKOV

(iii) It was shown experimentally that an output
power of 40 MW can be achieved by amplifying the
input signal at a frequency of 9.1 or 13 GHz without
changing the parameters of the system. Thisfact, along
with the results of calculations, implies that the ampli-
fication bandwidth is no less than 40%.

(iv) The calculations show that the optimum length
of the amplifier is amost the same for frequencies of
9.1 and 13 GHz. The measurements have shown that
there is a length such that the maximum gain can be
achieved at both 9.1 and 13 GHz by changing only one
parameter, namely, the plasma density.

(v) The range of input powers was determined in
which theamplifier operatesin thelinear regime at both
frequencies.

(vi) At afrequency of 9.1 GHz, the maximum output
power was P = 40 MW, the efficiency was n = 4%, and
the power gain was K, = 800 (29 dB). At afrequency of
13 GHz, these parameters were P = 60 MW, n = 6%,
and K, = 1000 (30 dB). At both frequencies, the length
of the output section was L = const =5 cm.
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Abstract—Theregimes of theinstabilities of an annular relativistic electron beam in awaveguide with an annu-
lar plasma are systematically analyzed and classified. The growth rates of theinstabilities are calculated in dif-
ferent limiting cases, and the resonance conditions for the development of the instabilities are determined. The
fastest growing instability of a high-current relativistic electron beam in a waveguide with a dense plasma is
considered. The possible onset of a low-frequency instability of a beam in a waveguide with a low-density
plasmaisinvestigated. Typical examples of how the growth rates depend on the perturbation wavenumbers are
presented for systems with parameters close to the experimental ones. © 2004 MAIK “ Nauka/Interperiodica” .

Itiswell known that the way in which the instability
of a dtraight electron beam develops in a plasma
waveguide depends strongly on the beam and plasma
densities and on their distributions over the waveguide
cross section. In waveguides with high-current and
ultrarelativistic beams, the well-studied single-particle
and collective Cherenkov effects may manifest them-
selves in various forms. Although the mechanisms for
the interaction between a beam and a plasma in a
waveguide have been widely discussed in the literature
[1, 2], we consider once again this problem because it
is necessary to make some significant improvements
and because some regimes of the beam—plasma insta-
bility have not yet been studied. The necessity for clas-
sifying the electromagnetic phenomena that occur in
the beam—plasma interaction arises from the needs of
relativistic plasma microwave electronics [3-5]—a
branch of physicsthat is now being actively developed.

We start with the following dispersion relation, well
known from the linear theory of beam—plasmainstabil-
ities[2, 5]:

(0 - Q) ((0-ku) -Qp) = Q08 ()
Here,

© 2 2
o 2 p (m) (2)
2 - W X Pmlry)
= "S"mzl X [0l

are the squared electron Langmuir frequencies of the
beam and of the plasma,® x2 = k; — w?/c?, wand k, are

1 The frequencies w(ky of Langmuir waves in the beam and the
pl asmaare implicitly determlned from the relationships w = ku +
Qu(x?) and = £Qu(X?).

the wavelength of the wave and its longitudinal wave-
number, ¢,(rp) is the eigenfunction in the transverse
cross section of a waveguide without a plasma and

2 . . .

beam, k5, isthe corresponding eigenvalue, w, , arethe
electron Langmuir frequencies of the beam and the
plasma, S, , are the cross-sectiona areas of the beam
and the plasma, uisthe beam electron velocity, and y =
(1 — u?/c®>)"'2 is the relativistic factor. Dispersion rela-
tion (1) aso contains the coefficient of coupling
between the plasma waves and el ectron-beam waves:

[ z 1 ¢m(rp)¢m(rb)|:|
e o’ ©
= — = 2 X" [oal” 3
g 1 q)m(rp)gg (rb)lj

1

0

Dn;kém X [0nf’ DDZ Kom + X ||¢m|| 0
where ry, , are the radii of the beam and the plasma.
Recall that dispersion relation (1) and formulas (2) and
(3) were obtained for a waveguide with an arbitrary
cross section in which there are a thin-walled annular
plasma and a thin-walled annular electron beam in a
strong longitudinal magnetic field. In arecent paper [6],
it was shown that, in the frequency range w < w,, dis-
persion relation (1) and formulas (2) and (3) are valid
for waveguides with magnetic fields of arbitrary
strength, in particular, for a waveguide with no mag-
netic field present.

In order to simplify transcendental equation (1), we
represent the frequency win the form
w = ku(1+9), (g <1), )

where d isthe dimensionless growth rate of the Cheren-
kov beam instability. Substituting representation (4)
into dispersionrelation (1) and expanding the quantities
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Q2. Qf, and & in powers of & (the power series
expansions are valid under the inequality kél +

K2y > 2K (W/c)d), we rewrite the dispersion rela-
tion as

ap, dk, U
< %Z—Gb%—0%+k§zdlg:§% 5)

- Loo-of ]

where we have introduced the notation

2 2 -3
_ W WY ~ 2,2 2
ap = = pz 2 a 7 220 & kDkabSpG'
Kopu'y KrpU
2
_ LU 2 _1 10
0O = —Zy ] nO - ag_aplj!
w© 1 (6)
0 1 dm(ra)
ké = @] Z 2 2 _2 - az 1 = 1p!
D mzlkDm+kzy ”q)m” D

N ol
The quantitiesk, and ko, in formulas (6) are transverse
wavenumbers of the low-frequency E-type surface

eigenmodes of athin-walled annular beam and a thin-
walled annular plasmain a waveguide [5]. The param-

eter a is the coefficient of coupling between these
waves. It coincides with the coupling coefficient in for-
mula (3), in which x? is replaced with kzzy_2 . Itiseasy
to see that the parameter a satisfiestheinequalities 0 <

a <1, inwhich the equality sign refersonly to the case
I‘b = rp.

e 1 bn(re)dm(ry)
zk§m+k '

m=1

In numerical analysis, some results of which will be
presented below, we retained all of the terms in disper-
sion relation (5). In analytical study, we simplify the
fairly complicated expressions by discarding the cor-
rection terms in dispersion relation (5),

K,dInkGp o
2 dk,

k.dInG
2 dk; '

which can be neglected in the range of small wavenum-
bersk,. We also restrict ourselvesto the case of adense

2The expressions for quantities (2), (3), and (6) in cylindrical
geometry can befoundin [3, 5].

plasma, oa, > 1 and write dispersion relation (5) inthe
form

(5-8)(8-8")(no-8) = -G=2(1-08)", (7)

where the quantities

1 g 4 U
3V=—a,00+ |1+ ,
27°7g abcr%

10O 4
5=08=_Za,ofl— [1+ ,
2770 abo%

with allowance for representation (4), determine the
spectra of the slow and fast beam waves, respectively,
and the quantity d = 8© = n, gives the spectrum of the
plasma wave. The wavenumbers k, corresponding to
the single-particle and collective Cherenkov reso-
nances between the electron beam and the plasmawave
are calculated from the equations

Ne=0 and no = 8" )

by using formulas (6). The instability growth rates are
usually maximum under any of resonance conditions
(9). Below, wewill show that thisisnot alwaysthe case.

Depending on the values of the parameters g, a , ay,
ap, and n, in dispersion relation (7), the instability may
proceed by different mechanisms, which we are going
to analyze and classify below. To begin, we assume that
the following inequality is satisfied:

ol <1, (10)

As will be clear later, this inequality implies that the
electron beam density islow.

The condition a = 1 corresponds to a strong cou-
pling between the plasma and the beam and holds when
the beam and plasmaradii are close to one another (r, =
rp)- In this case, under any of resonance conditions (9)
and under inequality (10), the growth rate d isdescribed
by the expression

o=
®)

2 Ug O 2 OO -

Theinstability with this growth rate originates from the
stimulated single-particle Cherenkov effect. Using
expression (11), we rewrite inequaity (10) as
(6(020(b)‘/3 < 1. In what follows, we will write such
inequalities by neglecting constant factors on the order
of unity and omitting power indices. So, inequality
(20), which isthe condition of the single-particle Cher-
enkov effect and under which theinstability growth rate
is described by expression (11), takes the form

~ 1 1
5 = LHIBRAC 1HBE ()

0,0° < 1. (12)
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As was shown in [7], inequality (12) implies that the
beam current islow in comparison with the limiting vac-
uum current in the waveguide under consideration [8].
Now, assuming, as before, that inequality (10) is sat-
isfied, we consider the condition a < 1, which corre-
sponds to a weak coupling between the plasma and
beam waves and holds when the beam and the plasma
are separated in space (ry, # rp). We aso assume that
inequality (12) is met. In this situation, the spectrum of
the slow wave of the el ectron beam isdetermined by the
formulad® =—,/a, [see expressions(8)] and theinsta-

bility growth rate is maximum when the plasma wave
and the slow beam wave are in resonance, i.e., when

No = 87 = /o, (13)

In this case, dispersion relation (6) has the solution
1
-~ g
= — Jo, +9d, 6=|59—2—5—%. (14)
Since |3| < ./, , we can readily seethat inequality (10)
again reduces to condition (12), which was used to
derive solution (14). The instability with growth rate

(14) results from the stimulated collective Cherenkov
effect in awaveguide with alow-density electron beam.

We now consider the inequality opposite to inequal-
ity (10), i.e,

old > 1. (15)

Under thisinequality, dispersion relation (7) reducesto
the following form, which is valid for any value of a :

(3+ 0,0)(Ne—3) = —aa,(—2+0d). (16)

One of the solutionsto this dispersion relation is

1 -
6 = 5(No—(1-0a)a,0

(17)

+ (o= (1-8)01,0)” + 4(Ng01,0 — 28 a1,)).

Let us analyze solution (17) in different limiting
cases under the inequality opposite to inequality (12),
namely,

0,0 > 1. (18)

To do this, we use the fact that, under inequality (18),
the spectrum of the slow beam waveis given by the for-
mula & = —a,0 [see expressions (8)].

If a =1, then, for azero detuning (1, = 0), solution
(17) becomes

o =i, /20a,=i./2a,. (19)

The ingtability with growth rate (19) stems from the
negative permittivity of the plasma. In the literature,
PLASMA PHYSICS REPORTS  Vol. 30
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this instability is sometimes called the negative-mass
instability [7, 9]. Under the conditions a = 1 and

no = 8" = (20)

= —0,0,
i.e., when the slow beam wave and the plasmawave are
in resonance, the instability growth rate is determined
by the formula

6=—ab0%—%—i &%—%

=3(-1+i/3)a,0.

Although growth rates (19) and (21) are obtained at the
resonance pointsn, = 0 and n, = 3V, they are not max-
imum: by virtue of inequality (18), growth rate (21) is
faster than growth rate (19). From solution (17), it fol-
lows that the maximum instability growth rateis given
by the expression

21

5 = —0,0(1—ifa)=(-1+i)a,0 (22)
and is reached under the condition
No = — 0,0 — 00,0 =—20,0. (23)

The instabilities with growth rates (21) and (22) stem
from the negative plasma permittivity and from the
strong coupling between the slow beam wave and the
plasma wave.

Using expressions (19), (21), and (22), we can see
that inequality (15) reduces to inequality (18), which
was employed to obtain dispersion relation (16) and is
opposite to condition (12). Inequality (18) implies that
the electron beam current is high.

We now assume that inequality (15) is satisfied and

consider the condition a < 1 of a weak coupling
between the slow beam waves and the plasmawave. In
this case, according to solution (17), the maximum
growth rate

5 = a,0(—1+i./a) (24)

is achieved under condition (20), i.e., at resonance
between the slow beam wave and the plasmawave. The
instability with growth rate (24) originates from the
stimulated collective Cherenkov effect in a waveguide
with a high-density electron beam. It is easy to see that
the condition for the applicability of solution (24)
reduces to inequality (18).

Finaly, in the case of a single-particle Cherenkov
resonance (N, = 0 and a < 1), the imaginary part of
solution (17) vanishes regardless of the value of the
electron beam density; this indicates that the beam-—
plasma system is stable.

The above results of an approximate analytical solu-
tion of dispersion relation (5) are systematized in the
table (in which the factors on the order of unity in the
expressions for the growth rates, inequalities, and reso-
nance conditions are omitted).
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Table
Effect Restrictions Resonance Complex
on the parameters condition growth rate
1
Stimulated single-particle Cherenkov effect 0o’ <l a=1 [n=0,ny=-Ja,|g = L* /3P
2 UoU
. . . . 1
StegmjlatedcollectlveCherenkoveffectforalow-densty 0,02 <1,8 <1 |ny= _@ 5= —JOT +i§‘«/°‘7d]2
b ' og O
Stability of the system a,0°<1,0 <1 [Ny=0 Imd=0
Negative-mass instability a,0°>1,a =1 No=0 5 =i,/2a,
Negative-mass instability + collective Cherenkov effect | 0,02 > 1, a =1 No=-0,0 o= %(—1 + iﬁ)abo
Instability with the maximum growth rate a,0>>1,a =1 No=-a,0(1 +a) [8=(-1+i)a,0
g/tltr)nelglrated collective Cherenkov effect for a high-densi- 00?51, & <1 |Ny=-0,0 8= 0,01 +i/a)
Stability of the system a,0°>1,a <1 [ny=0 Imd=0

We now turn to an analysis of the beam instabilities
in waveguides with a plasma of comparatively low den-
sity. It is well known that, in a beam-plasma
waveguide, instability can occur only when the plasma
density is higher than a certain minimum threshold
value. Thus, in a waveguide with an electron beam of
low (or, more precisdly, infinitely low) density, the
threshold plasma density is determined from the rela-
tionship ny(k, —= 0) = 0 [3, 5], which, in accordance
with formulas (6), reduces to the relationship

gk, —=0)=1 (0 — 0). (25)

Hence, in a waveguide with a beam of infinitely low
density, instability occurs only when the plasmadensity
exceeds the threshold value determined by formula
(25). Let us anayze the situation with an el ectron beam
of finite density. Thisway, we do not make the assump-
tion used in deriving dispersion relation (7), namely,
that the plasma density is high.

From dispersion relation (5) in which the parameter
oa,, is assumed to be arbitrary, we obtain, instead of
dispersion relation (7), the relation

(8-3")(3-8")(No=P,8) = -G 2(1-08)", 26)

where the quantities 8V and &® are given by expres-
sions (8) and, in place of B, = 1 in dispersion relation
(7), we use the quantity 3, = 1 + 2/(0a).

We are working under conditions corresponding to
alow (but finite) beam density:

0|8 <1, a,0° <1 27)

Under these conditions, dispersion relation (26)
becomes

(8+ /o) (/o) (N = Byd) = ~&=2(1-208).(28)

Let us further assume that dispersion relation (28) has
solutions of the form

5= Ju,+& |3 < Ja,

We substitute solution (29) into dispersion relation (28)

and ignore the quantity & in parentheses in the second
factor on the left-hand side of the resulting relation to
obtain the quadratic equation

(29)

[0

Bed —(No* (By +6)/,)3+G%5 2 = 0, (30)

one of whose roots is given by the formula

5= Zi%[nmsw&)m
(31)

+J(no+(3p+&)@>2—M}

The radicand in this expression is negative (which
means that there is an instability) when

o< [2Bel%e_ g 1) o,

(32)
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The maximum instability growth rate is reached at

No = —(By + )./, (33)
and isequal to
=~ a. /o,
o= '4/20(1+2/(oap))' 4

In the case of adense plasmasuch that theinequality
a,0 > 1 issatisfied, expression (34) passes over to the
growth rate (14) of a conventional instability driven by
the collective Cherenkov effect in a waveguide with a
low-density beam. In this case, to within terms on the

order of a, expression (33) coincides with formula
(13). For small a, vaues satisfying the condition
a,0 < 1, maximum instability growth rate (34)

becomes
5= %A/&apja_b.

The dependence of growth rate (35) on a,, is qualita-
tively different: the growth rate is proportiona to the
plasma density.

By virtue of the inequality in solution (29), expres-
sion (34) for the growth rateisvalid under the condition

a < 2,Ja,0(1+2/(oa,)). (36)

In the case of a dense plasma such that a,0 > 1, ine-
quality (36) is satisfied only for a < 1, by virtue of
conditions (27). For a,0 < 1, inequality (36) can aso
hold when a = 1, i.e., when the coupling between the
beam wave and the plasma wave is strong. The latter
case was considered in [10] for awaveguide filled uni-
formly with a beam and plasma. This case refers to the
instability originating from the collective Cherenkov
effect when thereis a strong coupling between the slow
beam wave and the plasmawave. Usually, thisinstabil-
ity does not occur because, under conditions (27), it
turns out to be overpowered by the instability resulting
from the singe-particle Cherenkov effect [see expres-
sion (11) for the growth rate]. The instability in ques-
tion, which can develop only when the plasma density
is sufficiently low, may be of interest for creating
plasma microwave emitters operating at wavelengths
much larger than the transverse dimensions of the
plasma waveguide.

The above analysis of the solutions to dispersion
relation (5) in different limiting cases is interesting
more from a theoretical than from a practical point of
view. The reason is that the parameters of the new
experimental beam—plasma systems that are currently
under development [3, 4] lie in ranges intermediate to
the limits under consideration. Thus, the beam current
parameter a,0% usualy ranges from several tenths to
several units (in which case the relativistic parameter o
isabout several units). That iswhy, in order toillustrate

(35)
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Fig. 1. Instability growth ratesfor r, = 0.65 cm and w, =2 %

10 s™1. Here and in the subsequent figures, curves 1, 2,
and 3 were obtained for beam currents of 1, 2, and 3 kA,
respectively.

the typical growth rates, frequencies, and instability
ranges, we present some results of exact calculations
carried out for an existing experimental system [3, 4]
with thefollowing parameters: the radius of the circular
cross section of the waveguide is R = 2 cm; the radius
of an annular beam is r, = 0.65 cm; the beam thickness
isA, = 0.1 cm; therelativistic factor of the beamisy =
2 (0 = 6); the thickness of an annular plasmais A, =
0.1 cm; and the beam currents are I, = 1, 2, and 3 KA.
For this set of parameters, we consider several different
values of the annular plasma radius r, and several dif-
ferent values of the Langmuir frequency w, of the
plasma electrons.

Figure 1 shows the dimensional growth rate dw =
Im(kud), calculated as afunction of the wavenumber k,
for r, = 0.65 cm, w, =2 x 10" s, and three different
values of the electron beam current. In this and other
figures, curves 1, 2, and 3 were obtained for beam cur-
rents of 1, 2, and 3 kA, respectively. In Fig. 1, the
plasma and beam radii are the same, r, = r,,, so that we

have a = 1. In this case, depending on the beam cur-
rent, the instability may develop in one of the two lim-
iting regimes: it may be driven by the stimulated single-
particle Cherenkov effect and grow at maximum rate
(11) or it may stem from the negative plasma permittiv-
ity and the strong coupling between the slow beam
wave and the plasma wave and grow at maximum rate
(22). From Fig. 1 we see that, as the beam current
increases, the maximum growth rate becomes faster
and is displaced toward longer wavelengths k, and the
wavelength range over which the instability occurs
becomes wider. All three curvesin Fig. 1 are similar in
structure and are satisfactorily described by formula
(17) with a = 1; thisindicatesthat theinstability results
from the negative plasma permittivity and the coupling
between the beam wave and the plasma wave. As for
the instability associated with the single-particle Cher-
enkov effect, it occurs at substantially lower beam cur-
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Fig. 2. Instability growth ratesfor r, = 1.2 cm and w, = 2 %
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Fig. 3. Instability growth ratesfor r, = 0.65 cm and wy, = 3 x
10t s,
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Fig. 4. Instability growth ratesfor r, = 1.2 cm and w, = 3 x
10t st

rents, the remaining parameters of the system being the
same.

In Fig. 2, the Langmuir frequency of the plasma
electrons is taken to be the same asin Fig. 1, W, =2 X
10'" s, but the plasma radius is increased to r, =
1.2cm, in which case the coupling coefficient is
smaller than unity, a < 1. However, the decreasein the

coupling coefficient is insufficient to qualitatively
change the shape of the curves. The only effect is that
the growth rates become slower and the wavelength
range over which the instability occurs becomes nar-

rower. This effect stems from aslight decreasein a .

In Fig. 3, the plasma radius is again equal to the
beam radius, r, = 0.65 cm = r,, but the Langmuir fre-
quency of the plasma electronsisincreased to w, = 3 x
10" s, Inasense, Fig. 3isidentical to Fig. 1 because
a = 1. Theonly differenceisthat, in Fig. 3, the growth
rates are faster, their maxima are displaced to the right,
and the range of k, values over which the instability
occurs becomes wider. This discrepancy is associated
with an increase in the electron Langmuir frequency of
the plasma. The increase in the growth rate stems from
an increase in the resonance values of ku, while the
dimensionless growth rate & decreases as the electron
Langmuir frequency of the plasma increases. Thus, in
Fig. 1, the dimensionless growth rate is J,,,, = 0.13,
while, inFig. 3, wehaved,,,, =0.1. Notethat, in al cal-
culations, the maximum d value was smaller than 0.14;
this guarantees the validity of dispersion relation (5),
which was obtained using the inequality in representa-
tion (4).

In Fig. 4, the Langmuir frequency of the plasma
electronsistakentobew, =3 x 10'' s and the plasma
radiusisincreased to r,=212cm.lIn this case, the coef-

ficient a decreasesto agreater extent than that in Fig. 2
because the Langmuir frequency is higher. The conse-
guences of such a significant decrease are clearly seen
in Fig. 4: the growth rate becomes substantially slower
and the instability range narrows. In particular, the
instability does not occur in the range of small wave-
numbers k,. The curves in Fig. 4 are satisfactorily

described by formula (17) with the corresponding o

values. Thisallowsusto concludethat Fig. 4 (at least at
I, = 3 kA) refers to the instability originating from the
collective Cherenkov effect in awaveguide with ahigh-
density beam.

We now consider the instabilities occurring at alow
plasma density. Figure 5 shows the instability growth
rates calculated for wy, = 10** s* and different plasma
radii: r, = (a) 0.65, (b) 0.8, and (c) 1.1 cm (at larger
plasmaradii, the instability does not occur). We can see
that, at a high beam current, the growth rates are fast
and are maximum at small wavenumbers k,. Thus, for
r,=0.8cmand I, =2KkA, the maximum growth rate is
about 2 x 10° st and isreached at k,u=3 x 10'° s In
a waveguide of radius 2 cm, this instability generates
waves with wavelengths of A = 6 cm.

In conclusion, note that, for beam—plasma systems
with parameters close to those chosen for our analysis,
the most typical instability is the one associated with
both the interaction between the beam wave and the
plasma wave and the negative (within the instability
PLASMA PHYSICS REPORTS  Vol. 30
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Fig. 5. Instability growth rates at alow plasmadensity (w, =

10 s71) for different radiii of the plasmatube: r, = (a) 0.65,
(b) 0.8, and (c) 1.1 cm.

range) permittivity of the plasma. Because of the hybrid
nature of the instability, its growth rate is fast and the
range of wave numbersover whichit occursiswide. As
the electron Langmuir frequency of the plasma
increases, the instability evolves to the regime of the
collective Cherenkov effect in awaveguide with ahigh-
density beam. As a result, the instability growth rate
decreases and the instability range narrows (i.e., the
resonant properties of the beam-plasma system

PLASMA PHYSICS REPORTS Vol. 30 No.1 2004

become more pronounced). Otherwise, as the electron
Langmuir frequency of the plasma decreases, the reso-
nant properties of an unstable beam—plasma system
become worse because of a decrease in the frequency
k,u and growth rate dw
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Abstract—A study is made of the interaction of an electron beam focused by a positive ion background with
electromagnetic waves in a pasotron—a modern plasma microwave electronics device with long-term interac-
tion in the ion focus regime. © 2004 MAIK “ Nauka/Interperiodica” .

Pasotrons! constitute a new class of high-power
plasmamicrowave oscillators and amplifiers[1-6] hav-
ing two essential elements: (i) an electron gun with a
plasma cathode for producing an intense el ectron beam
and (ii) agas-filled slow-wave el ectrodynamic structure
in which a plasma channel is created through the ion-
ization of gas atoms by the injected electron beam. In a
pasotron, an electron beam passes through the interac-
tion space in theion focus regime, in which the plasma
produced by ionizing a neutral gas (hydrogen, helium,
or xenon) neutralizes the beam space charge and creates
afairly strong focusing force that compresses the beam
injected into the interaction space.

Such a method of transporting an electron beam
through the interaction space makes it possible to sub-
stantially reduce the weight and overal dimensions of
high-power linear microwave sourcesin which electron
beams should be focused in one way or another.?

Two types of experimental pasotrons are presently
being developed: pasotrons operating as backward-
wave tube oscillators (BWT pasotrons) and pasotrons
operating as traveling-wave tube amplifiers (TWT
pasotrons). Depending on the frequency range and out-
put power, various periodic slow-wave electrodynamic
structures (corrugated waveguides, helices, coupled-
resonator chains, etc.) are used in these devices. This
allows one to assign pasotrons to devices with long-
term O-typeinteraction and ion focusing of the electron
beam. As was mentioned above, the electron beamin a
pasotron is generated using an electron gun with a

1 The term pasotron is derived from the words Plasma Assisted
Slow Wave Oscillator.

2The idea of the ion focusing of electron beams in devices with
long-term interaction was proposed and examined as early as the
1950s-1960s (see, e.g., [7-11]). However, this idea did not find
wide practical application at that time and surfaced again only in
the 1990s in connection with the development of high-power
compact microwave amplifiers and oscillators with long-term
interaction.

plasma cathode [12-15]. This makesit possible to effi-
ciently form an electron beam in systems in which the
transportation and interaction regions are entirely filled
with plasma.

The aim of this study is to analyticaly (in a linear
approximation) investigate theinteraction of atraveling
electromagnetic wave with an electron beam focused
by a positiveion space charge. The analysisisbased on
both the mathematical apparatus of the theory of the
interaction of curved electron beams with electromag-
netic waves [16, 17] and the results of theoretical stud-
ies of the nonmagnetic transportation of electron beams
intheion focus regime[7, 9-11].

Let us consider a simplified pasotron model in
which an electron beam focused by the ion space
charge propagates with avelocity v, along aslow-wave
structure and interacts with the traveling electromag-
netic wavesin atransmission line under Cherenkov res-
onance conditions. It is assumed that the plasma chan-
nel through which the beam is transported has already
been formed and the system has already relaxed to a
steady state.

L et the beam el ectrons move along the z axis, which
coincides with the symmetry axis of the interaction
region of the system under study. With allowance for
axial symmetry, the equations of motion of the beam
electronsin the presence of adenseion background can
be written in the form

dr _ h e

i n(fi+ fe+py), (1)
2
3—;= 0. 2)

Here, z= v, (t-t,) = v,T (i.e, itisassumed that the lon-
gitudinal electron velocity v, does not vary), f; is the
focusing force produced by theions, f, isthe defocusing

1063-780X/04/3001-0076$26.00 © 2004 MAIK “Nauka/ Interperiodica’



LINEAR THEORY OF THE INTERACTION 77

force produced by the electron space charge, p, is the
effective force related to the electron thermal motion,
and n is the specific electron charge.

We assume that the space charge density is uniform
over the beam cross section and the axial wavelength of
the beam surface perturbationsis smaller than the beam
diameter. Then, using Gauss's theorem and the adia-
batic equation of state for the electron gas [7—9], we
arrive at thefollowing eguation of motion of an electron
beam in the ion focus regime:

G mar, 1o ool
dz’ Vo rVoVo Vr

where p; is the mean ion density in a given transverse
cross section of the beam; |, and V,, are the beam cur-
rent and potential, respectively; ¢ = kT/e, withkan T
being the Boltzmann constant and the temperature of
the electrons emitted from the cathode; and ry is the
radius characterizing the position of the electrons at the
cathode.

We will assume that the amplitude of transverse
fluctuations of the focused beam is small. The static
radius of the beam can then be represented in the form

P=ro(l+7), |f] <r,. 4)

3 3)

Here, r, is the equilibrium radius of the beam and T is
the perturbation of the beam radius. Under the adopted
assumptions, the equation for the perturbation T
reduces to the linear equation

d’y

— +3% = 0, (5)
dz*

where the quantity & determines the axial wavelength

21y of the beam surface perturbations. In the case (p; —
Pe)/Pe << 1, Which is of practical interest, the quantity &

isequal to[8]
0 = 2sP./m/m,. ©6)

Here, m and m, are theion and el ectron masses, respec-
tively; sisthe specific ionization; and P is the gas pres-
sure.

The solution to Eq. (5) is

I = acosdz+ bsindz, 7
where the coefficients a and b are determined by the

boundary conditionsatz=0:a=r|,., and b:gf :
Z|,= 0
Let us now consider the problem of high-frequency
beam oscillations in the one-dimensional approxima-
tion without allowance for the gradients of static fields
and the high-frequency fields produced by the space

31t was shown in [7-9] that ignoring the transverse thermal elec-
tron motion in the ion focus regime leads to significant errorsin
determining the parameters of the transported beam.
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charge of the beam. Assuming that all the perturbed
guantities depend on time as exp( jwt), the equation for
the bunched current in the high-frequency field of a
traveling wave can be written in the form

orts . [ o
Jo+sgi= jRelog 1, 5, 1. ®)
Vo
Here, B. = w/v,, |, istheinjected beam current, and the

high-frequency field E isequal to [17]

E(r“ Zl,T) _ E e JBOZ —Bof; 13021 (9)
where [3, is the longitudinal wavenumber of an electro-
magnetic wave in the transmission line.

The equation for bunched current is more conve-
nient to analyze in the integral (rather than in the differ-
ential) form. Taking into account that z = v,,t (which
implies that the amplitude of the high-frequency field

|E| is small), we transform differential equation (8)
into the integral equati on

iBe

- i jE(r (8).2,(8), 8™ (z—8)k, (10)

whereV, = vg /2n isthe accelerating voltage.

We expand the exponential factor exp(—[Bf;)
(where t; is determined by formulas (4) and (7)) in
expression (9) in a Fourier series and restrict ourselves

to the terms with the numbers k = 0 and +1. We then
obtain

e_BOrl

= e—2j62((1 + o

)11(aBors) — €'l 5(aBory))
x (€7 = 1)1, (bBory) — &I o(bBory)).
Here, I, and |, are the first- and zero-order modified

Bessel functions.
Let us consider the casea # 0 and b = 0, which cor-

responds to the boundary condition dr/dz|,., = 0.

This boundary condition corresponds to a beam
injected paralel with the system axis. Integrating
Eqg. (10) with this boundary condition, we find

(1)

Bel 0 JBeZe Bory
2V, o

88020 (3 _
e

jBeZ l|3oZ

i@ =]

Bo)’ —43")’
(—e (1+z(Be—

X ((Be—Bo)>—3°) I o(aBor )

x[e

—jZ(Be—23)

x (e Bo)))
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3jdz

+(Ba—Bo) (7" (8- Be + Bo)”
+ eiéz(6+ Be_Bo)z
ej(zzs—(Be—rso))z(zﬁg+ iBS—zB2 + Ba(j — 3zB.)

+]8 +ZBeS’ + Bo(32Be — 2B —257)))

(12)

+2]

x1,(aBof ) 1/((Be—Bo)*(5° = (Be—Bo)?)’

x (48" = (Be—B0)")").

Expression (12) for bunched current shows that
transverse beam dynamics (periodic oscillations with a
spatial period of 219d) substantially affects electron
bunching. Let us consider this point in more detail. To
this end, we will find the high-frequency field induced
by the bunched current in the transmission line and,
thus, the power transferred to the high-frequency field
from the electron beam in the ion focus regime.

We will separately consider the interaction of the
focused electron beam with a forward and a backward
wave in a transmission line (a TWT and a BWT
pasotrons, respectively).

Pasotron operating as a traveling-wave tube
amplifier (TWT pasotron). We use expression (12)
for bunched current and the time-independent integral
equation describing the excitation of aforward wave by
acurved beam in the transmission line [16, 18],

. 2 Z~ B (z—
£() = £ - B iy (e ™ Ve, 13
0

where ¢ (r) is the transverse profile of high-frequency
field (9) in the transmission line* and K isthe coupling
impedance. Taking into account that the amplitude of
transverse beam oscillations is small (|f| < r,), after
not complicated but rather cumbersome algebra, we
obtain the expression for the total field at the output of
the waveguide system (x = 1) in the ion focus regime,

E(l) - EOe—jBo|e—Bori
(14)

X [1—(2MCN)*(Fo(®o, &, X) + jFe(Po, 6, X))],
where
lo(X)(2(1 - cosd,) + Pysind,)
®;
N 41 ,(X) Dy(cosd, — cosd)
(@5 -6%)’

F, =
(15)

+21,(X) Sin®,,

4The function $(r) determines the value of the high-frequency

field of the wave at the point r through which the beam (which is
assumed to be thin) passes at a given instant.

lo(X)(28iN®, — Py(1— cosP,))

P (16)
4 200((Po + 9%)sing + ¢ (Po—§° — 2Posindy))

(05 -7’ |
Here, @, = (. — By)l is the relative transit angle of an
electron in the interaction region, ¢ =0dl, C* =

oK By’
4V0 q?’e[l ’

tube length to the wavelength of the excited wave (the
electric length of the tube).

Thefunctions F,(®,, ¢, X) and F.(P,, ¢, X) describe
theinteraction of the focused electron beam with atrav-
elingwavein apasotronintheionfocusregimeand are
proportional to the active and reactive components of
the electron interaction power P,.. The above expres-
sions are valid when the transmission line is nondissi-
pative; i.e., the wavenumber of the wave propagating in
the transmission lineisreal.

We notethat, in the limiting case of a constant beam
crosssection (X — 0, & — 0), the above expressions
for F (@, ¢, X) and F,(D,, ¢, ¥) transform into the
well-known expressions describing beam bunching in
conventional O-type devices[18, 19].

We aso note that, when the resonance condition
Be — By = o issatisfied, both F, and F, increase without
bound, whereas the true solution must be finite at any
relationship between 3., B,, and . Thisisrelated to the
fact that we restricted our analysis to small perturba-
tions of the static beam trajectory in the ion focus
regime and a small number of the expansion terms.
Hence, we will not further consider the case 3. — B, =
+0. Thisis quite reasonable because the value of || =
|l | estimated by the data from pasotron experiments| 3,
4] shows that the |dl | value is fairly large and falls into
therange @, = (Be — By)!l T (31T 310), whichis of inter-
est to us.

Figure 1 shows the function F (®,, ¢, X) versus the
relative transit angle ®, under the assumption that vari-
ationsin this angle are caused by variationsin the wave
phase velocity at constant values of I, w, and v,,. The
curves are caculated at ¢ = 20 and different values of
the parameter x (which can be interpreted as different
ion focus regimes in the pasotron). The curve X =0in
Fig. 1 corresponds to the active component of the inter-
action power of electrons confined by an infinitely
strong magnetic field (a conventional TWT amplifier)
[18, 19].

It can be seen from Fig. 1 that, in the range of rela-
tivetransit angles-1t< @, < 11, the inequality |F,(P,, ¢,
X)| £ Fi(P,, 0, 0)| holds; i.e., the efficiency of the elec-
tron—wave interaction is increased in this range. It also
follows from the figure that the larger the parameter x
(which can be interpreted as the amplitude of the trans-

F, =

X = aByry,, and N = Bl /2mistheratio of the

PLASMA PHYSICS REPORTS Vol. 30 No.1 2004
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Fig. 1. Function F (P, §, X) vs. relativetransit angle &, for
¢ =20 and different values of x.

verse oscillations of the electron bean in the ion focus
regime), the larger the |F,| value. Thisisrelated to the
increase in the effective coupling impedance of the
pasotron slow-wave system with increasing beam
radius. In the ranges ®, > Ttand ®,, < —T1, the efficiency
of the electron—wave interaction is lower than in acon-
ventional TWT amplifier. The degree to which the
interaction efficiency increases or decreases depends
significantly on the parameters ¢ and X, which charac-
terize the ion focus regime.

Let us consider this point in more detail. In the
experimental papers [2-4], particular attention was
paid to the dependence of the pasotron characteristics
(first al, the output power) on the parameters of the
working gas, which is ionized when the beam is
injected into the system.

Taking into account expression (6) for & and formula
(15) for F,, we find the active interaction power as a
function of the mass of the ions filling the interaction
space. Figure 2 showsthe normalized activeinteraction
power F, (m)/F,(my) versus the ion-to-proton mass
ratio. In the figure, the points corresponding to the
gases that are most frequently used in pasotron experi-
ments (He, Ar, and Kr) are indicated. It is seen that the
larger the mass of the ions that are used to focus the
electron beam in a pasotron, the higher the active
beam—wave interaction power; thisis confirmed by the
experimental results of [1, 4].

Another important pasotron characteristic is the
power gain factor G, which is defined as

G [dB] = 10log(|E (1)/E(0)P),
where the field amplitude E(I) at the output of the

amplifier is determined by formula (14).

Figure 3 shows the pasotron power gain factor as a
function of the parameter CN for different values of the
ion-focusing parameter x. These curves can be inter-
preted as the dependences of the power gain factor on

the beam current (CN O |§3) or the interaction length

PLASMA PHYSICS REPORTS Vol. 30 No.1 2004
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Fig. 2. F4(my)/F4(my) ratio as afunction of the ion-to-pro-
ton massratio for ®, =-1.51, ¢ = 20, and x = 0.05.

(CN O 1). It can be seen that, at small values of CN, the
wave power varies insignificantly along the tube. This
is related to the fact that, at small interaction lengths,
the beam is yet aimost unbunched and inefficiently
interactswith the forward el ectromagnetic wave. Asthe
parameter CN increases, the amplitudes of both the

G,dB X =030

0.20
0.10

30 0.05

20

10

Fig. 3. Power gain factor G of aTWT pasotron amplifier vs.
dimensionless tube length CN for ¢ = 15, & = (a) —0.541
and (b) —1.2m, and different values of x. The dashed lines
correspond to the case of aTWT tube with an electron beam
in an infinitely strong magnetic field (x = 0).
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Fig. 4. Power gain factor G of aTWT pasotron amplifier vs. relative transit angle @, for ¢ = 15; dimensionless tube lengths of CN =

(a) 0.2, (b) 0.3, (¢) 0.6, and (d) 0.8; and different values of X.

bunched current and the field in the tube increase,
which resultsin arapid increase in the power gain fac-
tor.

It can be seen in Fig. 3a, which isdrawn for the rel-
ativetransit angle ®, > —T1, that the pasotron power gain
factor increases with increasing parameter x. As has
already been pointed out, this is related to an increase
in the effective beam—wave coupling impedance at
| Py | < Tt (see Fig. 1).

At ®, < -1t (Fig. 3b), the situation isthe opposite. In
this case, the power gain factor G decreases with
increasing X, which isrelated to the decreasein |F,| at |
|®y| > T It can also be seen in Fig. 3b that, at large val-
ues of theion-focusing parameter (¥ > 0.22), the depen-
dence G(CN) becomes nonmonotonic.

In order to examine in more detail the problem of
signal amplification in a pasotron, we consider the
dependence of the power gain factor on the relative
transit angle ®,. Note that, at a fixed signal frequency
w, the relative transit angle characterizes the detuning
from the “cold” beam—wave synchronism, i.e., the dif-
ference between the phase velocity v/, of a“cold” wave
in the transmission line and the electron beam velocity
V,,. Asfollows from the definition of the relative transit

angle, the case v,, > v, correspond to @, < 0 and vice
versa. Figure 4 showsthe power gain factor G asafunc-
tion of ®, for different values of the parameter x and
the dimensionless pasotron length CN. The case x = 0
corresponds to the power gain factor of a conventional
TWT amplifier calculated in the first order of the
method of successive approximations (see [18, 19] for
details), whichisvalid at CN < 1.0.

The transit-angle dependences of the power gain
factor G(®,) calculated at different dimensionless tube
lengths CN (different beam currents) show that the
shape of the dependence becomes more intricate as the
parameter x increases. Thus, at x < 0.03, the depen-
dence of the power gain factor on the relative transit
angle @, (or the wave frequency) is close to the corre-
sponding curve calculated for a conventional TWT
amplifier (x = 0). However, at x > 0.03, the shape of the
function G(®,, x) changes radicaly and the depen-
dence G(®,) becomes highly nonmonotonic as the
parameter CN increases. The latter is a very adverse
feature, because, inthis case, aTWT pasotron will sub-
stantialy distort a broadband signal even when operat-
ing in the linear regime.

A pasotron operating as a backwar d-wave tube
amplifier or oscillator (BWT pasotron). Let us now
PLASMA PHYSICS REPORTS  Vol. 30
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consider an electron beam interacting with a backward
wave in the slow-wave structure of a pasotron. In this
case, instead of integral equation (13), describing the
amplification of a forward wave by a curved electron
beam, one must use the following equation describing
the excitation of a backward wave [18, 19]:

e = E%¢7 ) B 0.y ™ Ve 17)

After mathematical manipulations similar to those per-
formed for the case of aTWT pasotron, we arrive at an
expression for the total field at the output of the system
(x=0). Inthefirst-order approximation, it hasthe form

E(O) - EOeiBo|e—Bori
(18)

X [1+ (21CN)’(F (Do, ¢, X) + JFe(Do, 0, X))],

where the functions F, and F, are defined by formulas
(15) and (16) and the other notation is the same as in
formula (14).

By analogy to a TWT pasotron, we can introduce
the power gain factor of a BWT pasotron:

G [dB] = 101og(|E(0)/E()|?),

where E(1) isthe amplitude of the input signal and E(0)
is the amplitude of the output signal, as described by
expression (18).

Figure 5a shows the power gain factor of a BWT
pasotron as afunction of @, (theinput signal frequency
w) for different values of the ion-focusing parameter x
and the same value of CN =0.3 (the same beam cur-
rent). It can be seen from this figure that, at the same
beam current (the parameter CN) and the optimum
electron transit angle, the larger the parameter x, the
higher the power gain factor G and the narrower the
amplification band G(®,) (which is defined as the
width of the A®, peak at alevel of 3 dB). Therelative
amplification bandwidth Aw/w is related to A®,, by the
formulaAw/w = Ady/2TN(1 — v, /vy, where v, isthe
wave group velocity in the transmission line [18]. We
note that, as the parameter X increases, the second
amplification region appears at d, = -2.5Tt

The aboveisillustrated by Fig. 5b, which showsthe
maximum value of the power gain factor G,,,, and the
amplification bandwidth Aw as functions of the param-
eter x at ¢ = 15. All the quantities are normalized to
their values a x = 0. It can be seen that, in the frame-
work of linear theory, the increase in the amplitude of
the beam oscillations is accompanied by both the
increase in the power gain factor from 16 to 24 dB and
the narrowing of the relative amplification bandwidth.
Such behavior of the power gain factor isrelated, ashas
already been pointed out, to an increasein the effective
beam—wave coupling impedance in the transmission
line with increasing ion-focusing parameter x.
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Fig. 5. (a) Power gain factor G of aBWT pasotron amplifier
vs. relative transit angle @, for the same values of X asin

Fig. 4; (b) the maximum value of the power gain factor
Gax and the amplification bandwidth Aw as functions of

at ¢ = 15.

We note that, in contrast to the TWT pasotron, we
are now dealing with a regenerative amplification.
Hence, at certain parameters of the system, the regime
of backward-wave generation can be achieved. For
such aBWT pasotron oscillator to be excited, it is nec-
essary that either the gain factor tend to infinity or the
field amplitude at the collector end of the tube vanish
(E(l) = 0). Then, from expression (18) and formulas
(15) and (16), we obtain the starting conditions for a
BWT oscillator operating in the ion focus regime
(BWT pasotron):

1+ (2MCNg)°Fo(®os, §,X) = O,
Fr(q)05’¢1X) = O,

where the lower index s stands for the parameter values
corresponding to the self-excitation of aBWT pasotron
oscillator.

The solution of Egs. (19) shows that the starting
conditions for a pasotron oscillator depend weakly on
the ion-focusing parameters and are close to those for
an O-type BWT tube: @, = -1mtand CN; = 3.0. It dso
followsfrom Egs. (19) that the higher oscillation modes
are easier to excite in a pasotron oscillator than in con-

(19)
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ventional BWT oscillators; however, to determine the
starting conditions for the excitation of these modes, it
IS necessary to use higher orders of the successive
approximation method.

Therefore, in this study, we have anaytically (in a
linear approximation) investigated the interaction of an
electron beam with aforward and a backward wavesin
atransmission lineintheionfocusregime. Theanaysis
is based on the method of successive approximations
that was earlier used successfully in studying devices
with long-term interaction. The results of the investiga-
tion of theinteraction of an el ectron beam with slowed-
down electromagnetic waves in the ion focus regime
comply well with a simple qualitative picture of the
physical processesin a pasotron.

ACKNOWLEDGMENTS

We are grateful to Prof. Yu.P. Bliokh (Technion,
Israel) for fruitful discussions of pasotron physics. This
study was supported in part by Russian Federal Pro-
gram for Support of Leading Scientific Schools, the
State Research and Education Center for Nonlinear
Dynamics and Biophysics at the Chernyshevsky Sara-
tov State University, and the U.S. Civilian Research and
Development Foundation for the Independent States of
the Former Soviet Union (grant no. REC-006).

REFERENCES

1. G. S. Nusinovich,Yu. Carmel, and T. M. Antonsen, | EEE
Trans. Plasma Sci. 26, 628 (1998).

2. D. M. Goebel, J. M. Butler, R. W. Schumacher, et al.,
|EEE Trans. Plasma Sci. 22, 547 (1994).

3. E. S. Ponti, D. M. Goebel, J. R. Feicht, and J. Santoru,
Proc. SPIE 2557, Paper 2557-09 (1995).

4. D. M. Goebdl, E. S. Ponti, J. R. Feicht, and R. M. Wat-
kins, Proc. SPIE 2843, 69 (1996).

5.

6.

10.

11

12.

13.

14.

15.
16.

17.

18.

19.

PLASMA PHYSICS REPORTS  Vol. 30

G. S. Nusinovich and Yu. P. Bliokh, Phys. Rev. E 62,
2657 (2000).

Yu. P. Bliokh, G. S. Nusinovich, J. Felsteiner, and
V. L. Granatstein, Phys. Rev. E 66, 056503 (2002).

M. M. Bredov, in Collection of Scientific Works Dedi-
cated to the 70th Anniversary of Academician A. F. loffe
(Akad. Nauk SSSR, Moscow, 1950), p. 155.

B. I. Davydov and S. I. Braginskii, in Collection of Sci-
entific Works Dedicated to the 70th Anniversary of Aca-
demician A. F. loffe (Akad. Nauk SSSR, Moscow, 1950),
p. 72.

Yu. D. Zharkov, Izv. Vyssh. Uchebn. Zaved. Radicfiz. 4,
446 (1961).

L. E. Bakhrakh and Yu. D. Zharkov, Radiotekh. Elek-
tron. (Moscow) 7, 976 (1961).

B. S. Dmitriev, V. G. Medoks, and I. L. Sokolov, Elek-
tron. Tekh., Ser. 1: Elektron. SVCh, No. 1, 61 (1966).
E. S. Ponti, D. M. Goebel, R. L. Poeschel, and
R. M. Watkins, Proc. SPIE 2843, 240 (1996).

D. M. Goebel, R. W. Schumacher, and R. M. Watkins, in
Proceedings of the 9th International Conference on
High-Power Particle Beams, Washington, 1992, Vol. 11,
p. 1093.

D. M. Goebel and R. W. Schumacher, US Patent
No. 5537005 (1996).

D. M. Goebel, Rev. Sci. Instrum. 67, 3136 (1996).

A. V. Gaponov, Izv. Vyssh. Uchebn. Zaved., Radicfiz. 2,
443 (1959).

A. V. Gaponov, |zv. Vyssh. Uchebn. Zaved., Radiofiz. 2,
451 (1959).

V. N. Shevchik and D. |. Trubetskov, Analytical Methods
in Microwave Electronics (Sov. Radio, Moscow, 1970).

D. |. Trubetskov and A. E. Khramov, Lectures on Micro-
wave Electronicsfor Physicists (Nauka, Moscow, 2003),
Vol. 1.

Trandlated by A.S. Sakharov

No.1 2004



Plasma Physics Reports, Vol. 30, No. 1, 2004, pp. 83-90. Translated from Fizika Plazmy, Vol. 30, No. 1, 2004, pp. 88-95.

Original Russian Text Copyright © 2004 by Khantadze, Aburjania, Jandieri, Chargazia.

IONOSPHERIC

PLASMA

On the M echanism for the Generation of aVortex Electric Field
in the lonospheric E-Region

A. G. Khantadze*, G. D. Aburjania**, G. V. Jandieri**, and Kh. Z. Chargazia**
* Thilis Sate University, Chavchavadze ave. 1, Thilisi, 380128 Georgia
** \iekua Ingtitute of Applied Mathematics, Thilisi Sate University, University str. 2, Thilisi, 380043 Georgia
Received May 15, 2002; in final form, January 15, 2003

Abstract—A mechanism is proposed for the generation of a vortex electric field in the ionospheric E-region.
It is shown that long-scale (with awavelength of L > 10° km) synoptically short-period (from several minutes
to several hours) fast (with a propagation velocity higher than 1 km/s) processes excite a vortex electric field
that may be much higher than the dynamo field generated in this region by ionospheric winds. © 2004 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

It iscommonly accepted [1-3] that, in the E-region,
ionospheric winds can only result in the excitation of an
electrostatic polarization field via the dynamo mecha-
nism: E, =-V® =—(V, xHy)/c, where V , isthe veloc-
ity of the neutral component (wind), H, is the geomag-
netic field, @ is the electrostatic potential, and ¢ is the
speed of light. In this approach, only the currents j
excited in the ionospheric E-region are usualy consid-
ered, whereas the geomagnetic field perturbations h
produced by these currents are ignored. It is clear, how-
ever, that the description of magnetohydrodynamic
(MHD) waves (and, thus, a vortex electric field) is
impossible in disregard of a vector equation for h
(0h/ot =—V X E).

Meanwhile, measurements performed with a global
network of ionospheric and magnetic observatories [4—
6] clearly show that, during earthquakes, major artifi-
cia explosions, and magnetic storms and substorms,
long-scale (with awavelength of A 010°~10* km) elec-
tromagnetic perturbations are excited in the iono-
spheric E-region and propagate in the latitudinal direc-
tion around the Earth with relatively high (1-20 km/s)
phase velocities. The characteristic period of such per-
turbations varies from several minutesto several hours,
and their daytime and nighttime phase velocities differ
by one order of magnitude.

We note that, in [7-9], theoretical models were pro-
posed in which geomagnetic pulsations in the above
frequency and phase-velocity ranges are interpreted as
long-wavelength MHD perturbations. The maximum
wavelength of these perturbations is less than 103 km
(for longer perturbations with wavelengths of 10°-
10* km, it becomes necessary to take into account the
inhomogeneity of the geomagnetic field and the angu-
lar velocity of the Earth’s rotation). The phase velocity
of MHD wavesis proportional to the Alfvén velocity in

terms of the neutral particle density [1-3, 9] (in contrast
to fully ionized plasma, in which the Alfvén velocity is
determined by theion density). Therefore, the observed
difference in the daytime and nighttime phase veloci-
ties of long-scale (10°~10* km) electromagnetic iono-
spheric perturbations under consideration does not
allow one to identify these perturbations as Alfvén,
magnetosonic, or gyrotropic waves.

The existence of fast planetary electromagnetic
waves in the ionospheric E-region was theoretically
predicted by one of usin [10]. This approach was fur-
ther developed in[11, 12]. In those papers, it was a pri-
ori assumed that both electrostatic and vortex electric
fields are present in the E-region. It was shown that the
electrostatic polarization field E, generates slow
Rossby waves in the E-region that propagate in the lat-
itudinal direction with a phase velocity on the order of

the mean zonal wind velocity C,, = Vi — neHy(1 +

3sin29')1/2/(McrOkf), whereas the vortex electric field
E, =—C'0A/0t generates fast planetary electromagnetic
waves propagating in the latitudinal direction with the
phase velocity C,, = Cyy = CHy(1 + 3sin?0")"2/(41eeNr ).
Here, A isthe vector potential; Con = w/k, is the wave
phase velocity; wisthe wave frequency; k=217 isthe
zonal wavenumber; V, is the velocity of ionospheric
zonal wind; n = N/N, isthe degree of ionization; N and
N, are the éectron and neutral-particle densities,
respectively; 8' = 90°—¢' is the complement of the geo-
magnetic latitude; r, is the Earth’s radius; e is the ele-
mentary charge; M is the mass of an ion (or a mole-

cule); Hy(1 +3sin?0) 2y = (B; + B3)"2, By = OH,/dy,
B, = H,/dy, 3/0y = —ro' 0 /08", Ho, = —2H,cos8', Ho, =

—Hysin@'; and Hy = 3.2 x 10~ T is the magnetic field
strength on the geomagnetic equator. Slow Rossby

1063-780X/04/3001-0083$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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waves were theoretically predicted in [13, 14]. In con-
trast to ordinary Rossby waves, which propagate only
at mid- and higher atitudes, these long-scale iono-
spheric waves are planetary in character and can prop-
agate at any geomagnetic atitude. On the magnetic
equator (¢' = 0), their phase velocity is maximum.
Thesewavesare, in fact, eigenmodes of theionospheric
E-region [10-12].

Observations of fast planetary electromagnetic
waves [15-18] indicate the existence of a source gener-
ating a vortex electric field in the E-region.

In this paper, a mechanism for the generation of a
vortex electric field in the E-region is proposed and the
generated field is estimated. It is shown that the above
slow and fast planetary waves play an important rolein
the generation of avortex electric field.

2. PROBLEM FORMULATION
AND BASIC DYNAMIC EQUATIONS

Theionospheric mediumisapartially ionized three-
component plasma. It can be described by quasi-hydro-
dynamic equations that are similar to hydrodynamic
ones, the only difference is the presence in the former
of friction terms related to collisions between particles
of different species [1, 19, 20]. Quasi-hydrodynamic
equations allow one to completely describe the electric
current, particle flows, and diffusion processes in the
ionospheric plasma. For the long-wavelength (A >
10% km) ionospheric perturbations under consideration,
atmosphere inhomogeneity, plasma compressibility,
and diffusion processes are of minor importance. Inthis
case, gquasi-hydrodynamic equations can be substan-
tially ssimplified and reduced to the following set of lin-
earized equations |1, 9, 19, 20]:

Pnagin = Fo=PeVen(Vh— Vo) —piVin(V, = V), (1)
peave = Fe_pevei(ve_vi)
ot o
_peVen(Ve_Vn)—eNE—%Vex HO,
pi% = Fi_pevei(vi_ve)
(3)

—pPiVin(Vi—=V,) +eNE + ECNVi x H,,

VOV,=0, VIV,=0, VIV, = 0. (4

Here, lower indices n, e, and i stand for the quantities
related to the neutral, electron, and ion components,
respectively; V is the hydrodynamic velocity; p, =
MN,, pe = MmN, and p; = MN are the mass densities of
the plasma components; m is the mass of an electron;
V4, Ve, @Nd v, are the electron-ion, electron-neutral,
and ion—neutral collision frequencies, respectively; and

F,, F., and F; are nonelectromagnetic forces that gener-
ally contain the gradients of the tensor of the momen-
tum flux density for the corresponding plasma compo-
nents.

Equations (1)—(4), along with Maxwell’s equations
and equations of state and heat transfer for each of the
component, form a closed set, which can be further
simplified using the results of observations of dynamic
processes in the ionospheric E-region.

We note that the forces F,, F;, and F,, are propor-
tiona to the densities of the corresponding plasma
components. The degree of ionization n of the iono-
spheric plasma at atitudes of 80-500 km varies from
10 to 10 [1-3, 9, 19, 20]. This means that the elec-
tron and ion inertia play a negligible role as compared
to theinertia of the neutral component and, thus, can be
ignored. Taking this into account and allowing for the
factthat, at n < 1, theinequality F,, > F, F; issatisfied,
we sum up Egs. (1)—(3) to arrive at the following equa-
tion of motion for the ionospheric medium in the E-
region:

v,
pn at

= Fy+ i xHo, )

where j = eN(V; — V,) is the current density. We aso
take into account that, in view of theinequality n < 1,
the nonelectromagnetic forcesF, and F; are too weak to
excite appreciable ionospheric currents at altitudes of
80-500 km. Then, ignoring the electron inertia, Egs. (2)
and (3) can be written in the form

Vi \Y
_aE:(Ve_Vi) - ae:(ve_vn)

(6)

+VD><ho = Vexho,

10V _ Vg Vin
a,—(')-t— - _(.Oe(Vi_Ve)_(A)i (Vi_Vn) (7)

+V;xhg—Vp xh,

where V = cE x Hy/ HS is the electric drift velocity,
h, = Hy/H, is the unit vector directed along the geo-
magnetic field, and w, = eH,/(m,C), (0 = e, i) is the
electron (ion) gyrofrequency. Taking into account that
the electron and ion gyrofrequencies in the ionosphere
arew, =107 s7' and wy = (1.5-3) x 10? s, respectively,
and the collision frequencies at altitudes of 80-500 km
reach their maximum values (vVg, ~ 10° s71, v;, ~ 10* s7,
and v4 ~ 10* s71) in the lower layers and rapidly
decrease with altitude, we obtain vg4/w, < 1 and
Ven/W, < 1; i.€., the electron component is always mag-
netized in this upper atmosphere region. Moreover, the
frequency of the perturbations under study satisfies the
inequalities w < 102 s7' and w/w, < 10* < 1. With
PLASMA PHYSICS REPORTS  Vol. 30
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allowance for the above inequalities, Egs. (6) and (7)
take the form

VpXxhg = VyxhyO E=—%Ve><h0, ®)

V, = Vn+ﬂViXho—ﬂVDXho. ©)
Vin Vin

It followsfrom Eq. (8) that the hydrodynamic veloc-
ity of the electron component is equal to the electric
drift velocity (V.= Vp) and the geomagnetic field H, is
always frozen in the electron flow (0h/ot =V x (V x
H,)). Taking the scalar product of Eqg. (8) with H,,, we
obtain the important relationship E - H, = 0, which
shows that the generated electric field is orthogonal to
the geomagnetic field H,,.

As concerns Eq. (9) for ions, we note that, at alti-
tudes of 80-150 km, the inequality w, Vi, ~ 102 < 1 is
satisfied. Hence, in thisregion, we can omit the two last
terms on the right-hand side of Eq. (9), which is thus
reduced to the equality

Vi=Vy (10)

i.e., the ion component in the E-region is completely
entrained by the neutral wind. Indeed, numerous radio-
physical observations of the motion of plasmainhomo-
geneities in the E-region [1, 2, 9], as well as observa-
tions of neutral windswith the help of artificial glowing
clouds [2, 3, 19], clearly show that the ion component
in this upper atmosphere region exactly follows the
neutral wind.

The set of simplified motion equations (8), (10), and
(5) for electrons, ions, and neutral particles, which is
obtained from the general set of quasi-hydrodynamic
equations (1)—(4), is traditionally used to describe the
ionospheric plasma[1-3, 9].

Thus, in the ionospheric E-region, the el ectron com-
ponent travels under the action of the internal electric
field E with the electric drift velocity and the ion com-
ponent is entrained by the dominant zona neutral

winds flowing with a velocity V. This means that the
generated internal electric field E, which is orthogonal
to the geomagnetic field, should have both the zonal
and meridional components E, and E,. In this case, the
electrons will travel in the meridional direction under
the action of the electric field component E, caused by
the Lorentz force F, = —eV,H,,/c = —eE, (the Hall
effect) and the ions will move in the zonal direction.
The direction of the total current depends on the rela-
tion between the Pedersen and Hall conductivities.
Since the Hall conductivity g, in thisupper atmosphere
region is much higher than the Pedersen conductivity
0,, the net current should flow mainly in the meridional
direction.

Note that the assumption of plasma quasineutrality
in the ionospheric E-region does not mean that we
ignore the charge separation effect. Charge separation
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istaken into account implicitly by introducing theinter-
nal electric field E caused largely by the Hall effect.

To close the set of Egs. (4), (5), and (8), we will use
Maxwell equations

oh _ . _ C
E——CVXE, ]—4T[V><h,

(11)
where E =-V® — c'0A/0t and h =V x A. Excluding
E and j by means of Eq. (11) and omitting the lower
index n by the neutral component velocity, we arrive at
thefollowing set of MHD equationsfor the ionospheric
E-region:

F
oV =—VDED+Vx2mO+g+—A, (12)

ot ChH Pr

oh k4

— = Vx(VxHy)—ap,V x 3=

ot (V>Ho) —apaV x5 5 (13)

= Vx(VexHy),

Fa 1. 1

— = —jxHy;=-—=(Vxh)xH

o pnCJ 0 4T[pn( ) 0 (14)

= VXZQi—VDXZQi = szgi.

Here, P is the gas-kinetic pressure, m, is the vector of
the Earth’s rotation rate, g is the free fall acceleration,
U=V -V, 2Q, =neH,/(Mc) = nw;; a = c*/(o,H,) =
c*/(eN) is the Hall parameter, and o, = €N/(mw,) is the
Hall conductivity. In Eq. (13), we aso took account of
the equality V,=V,=V.

It follows from Eq. (14) that the Ampére force per
unit mass F,/p, = U x 2Q; has exactly the same struc-
ture as the Coriolis acceleration V x 2Q;. Hence, the
Ampére force should act on the ionospheric mediumin
the same way as the Coriolisforce. It can be seen from
Eq. (14) that thisinteraction is determined by both the
ionospheric wind flowing with a velocity V and the
electric fields (Vp # 0) generated in this upper atmo-
sphere region.

Later, we will be interested in long-wavelength ion-
ospheric perturbations for which latitudinal variations
in neither the Earth’ srotation rate w,(0) (where 8 isthe
complement of the geographic latitude) nor the geo-
magnetic field Hy(6") can beignored. Therefore, likein
dynamical meteorology, such large-scale perturbations
are to be described by the Helmholtz equation for vor-
ticity, which naturally incorporates the latitudinal vari-
ationsin w, and Hy, rather than by equation of motion
(12). The Hemholtz equation can be obtained by
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applying the operator Vx to both sides of Eq. (12).
Finally, MHD equations (12)—14) take the form

oV xV
ot

= Vx(V,2m,)

1 (15)

41p,

+V><[ (VXh)XHO},

dh
2= Vx(VxH)

cpy 1
-V [4m(v x h) x HO}.

The closed set of Egs. (15) and (16) yields six scalar
equations for six unknowns V,, V,, V,, h,, h,, and h,.
After finding V and h from this set, the pressure P can
be expressed in quadratures using Eqg. (12); the current
density and the electric field are determined from Max-
well’s equations (11); and the electron and ion veloci-
ties are found from the equalities V.= Vpand V=V;,,
respectively. Thus, in the linear approximation, the
problem of three-component plasma dynamics in the
ionospheric E-region is solved completely, provided
that the proper initial and boundary conditions are
imposed.

Equations (15) and (16) (with allowance for the
solenoidal character of the vectors V and h) are the
basic onesin solving the problem of generating the vor-
tex electric field E, = —c"'0A/ot.

When deriving Egs. (15) and (16), it was assumed
that the equilibrium densities of the charged and neutral
components do not vary in space and time: N = const
and N, = const. Actually, the charged particle density in
the E-region varies by almost one order of magnitudein
mornings and evenings. With allowance for spatiotem-
poral variations of N(r, t) and N4(r, t), Egs. (15) and
(16) become partial differential equations with variable
coefficients and can hardly be solved analytically. For
this reason, the further analysis of Egs. (15) and (16)
will be performed for near-midday and near-midnight
hours, when it can be approximately assumed that N =
const and N,, = const.

(16)

3. GENERATION OF A VORTEX
ELECTRIC FIELD

Before studying the mechanism for the generation
of avortex electric field in theionospheric E-region, let
us briefly analyze the excitation of large-scal e weather-
forming solitary vortices (cyclonesand anticyclones) in
the Earth’s troposphere by planetary Rossby waves.

Since the wavelengths of planetary wavesis compa-
rable to the Earth’sradiusr,, it is natural to use spheri-
cal coordinates when solving the problem of generating
large-scale vortices in the Earth’'s atmosphere. How-
ever, the difficulties that arise in analytically studying
the equations obtained cause usto consider the problem

of vortex generation in a“standard” coordinate system
[21]. Thisisalocal Cartesian systeminwhichthexaxis
is directed eastward (adlong a pardlel), the y axis is
directed northward (along ameridian), and the zaxisis
directed upward. The differentials dx, dy, and dz are
related to the spherical coordinates A, 6, and r by the
approximate formulas dx = r,sin@dA, dy = —r,d8, and
dz=dr. Thevelocity components arerelated asfollows:
V=V, Vy = -V, and V, = V.. Here, 6 is the comple-
ment to the geographic latitude, A is the longitude, and
theradia coordinater is counted from the Earth’s cen-
ter. The above coordinate system is not equivalent to an
ordinary Cartesian system because the directions of the
axes vary when passing from one spatial point to
another. However, when considering large-scale pro-
cesses, the terms that appear in the equations of atmo-
sphere hydrodynamics due to variations in the direc-
tions of the coordinate axes can be ignored in the first
approximation (see [21, 22]); as aresult, the equations
of motion in spherical coordinates (with allowance for
the above relationships between the coordinates) take
the same form as in Cartesian coordinates. Such a pro-
cedure significantly simplifies the investigation of
large-scale processes in the atmosphere [21].

Below, we will aso use the so-called method of
“freezing” the coefficients in dynamic equations—the
method known in meteorology as the 3-approximation
method [21]. In this approximation, the parameters
20, = 2uycos8, and B = 0wy, /0y = 2w,sinB,/r, are
assumed to be constant when integrating the Helmholtz
vorticity equation. Here, 6, is an average value of the
complement of the geographic latitude ¢, in the vicin-
ity of which the problem is solved. In this case, the
Helmholtz equation transforms into an equation with
constant coefficients, which can then be investigated
using an expansion in plane waves. The B-approxima-
tion (or B-plane) method provides relatively simple
results that nevertheless allow oneto reveal the distinc-
tive features of hydrodynamic motion on a rotating
sphere as compared to motion on a rotating plane.
Rossby was the first to show that large-scale weather-
forming planetary waves in the troposphere are hori-
zontal-transverse waves (9V,/0x + 0V, /oy = 0, V, = Q).
In these waves, the atmosphere particles oscillate in the
meridional direction, whereas the wave itself propa-
gatesin thelatitudinal direction (eastward or westward,
depending on the wavelength). In planetary waves, the
particle motion is characterized by a nonzero vorticity,
V x V # 0. Vertica tropospheric vortices (cyclones or
anticyclones) are generated due to the 3 effect [21]:

AV XV),
et Py

i.e., by meridional winds (V,) and variationsin the vec-
tor of the Earth’s rotation rate (3). At present, this con-
cept of generating weather-forming vortices (cyclones
and anticyclones) is commonly accepted in dynamic
meteorology. Along with the baroclinic effect and the

(17)
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relief effect of the underlying surface, the 3 effect is
considered one of the main mechanisms for generating
vortices in the Earth’s troposphere.

Below, this important mechanism for generating
vortices in the rotating ionosphere will be used in solv-
ing the problem of the excitation of a vortex electric
field in the E-region.

We employ Eg. (8) to exclude the term V x

[41?[-91(V xh) x HO} from Eq. (16) and introduce the

vector potential A viathe foormulah =V x A, Asa
result, we obtain the following eguation:
0V x A
ot

=Vx (V X HO)
18

oV xV (18)

ot '’
which will be used to determine the vortex electric
field.

At high and temperate latitudes (where H, =
Ho(8)e,, o) = wy£, and A = A(x, t)e,, with e, and e,
being the unit vectors directed along the y and z axes,

respectively), the vertica component of Eqg. (18) has
the form

A(VxA), A(V xV),
at = —BVy-ap, ot

+0ap,V X (V X 20,) —0py—7—

(19)

Here, B' = B, + Bap, and B, = 0H,/dy = —2H,sin 8, /r
is the magnetic Rossby parameter (later, we will
assume that the geographic and geomagnetic latitudes
coincide: ¢' = ¢ and ©' = 0).

If a wave perturbation propagates in the latitudinal
direction (V,(x, t) ~ exp{i(kx — wt)}), then from
Eqg. (19) we obtaln an expression similar to Eq. (17):

a(VXA)Z _ B%L

where Cy, = wk; is the phase vel 00|ty of the perturba-
tion and C,, = —B‘/(apnkf ) is the phase velocity of a
slow planetary Rossby wave, which is on the order of
the local wind velocity, C,, = C, = 100-300 m/s. The

perturbation wavelength is A ~ 10°-10* km and the
period varies from one day to two weeks (or even
longer) [12, 19, 21].

It follows from Eq. (20) that, similarly to the gener-
ation of large-scale tropospheric vortices (cyclones and
anticyclones) due to the (3 effect [see Eq. (17)], the
vortex component of the internal electric field E, =
—-c'0A /ot should be generated in the E-region due to
the latitudinal inhomogeneity of the geomagnetic field
(B,), meridional winds (V,), and the effect related to the
finite propagation velocity of an ionospheric wave per-
turbation (Cy, # 0).

p“D (20)
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L et us estimate the vortex electric field generated by
fast long-wavelength (A ~ 10°-10* km) perturbations
and compareit with thedynamo field E;=V xHy/c gen-
erated by the meridional wind. To this end, we rewrite
expression (20) in the form

(VxE,), = ER -

Taking into account that C, = CH, Cy/Cyr> 1, and
B' ~ B, =Hy,/r, and introducing the characteristic scale
length of the perturbation along the x axis, L = A/21T, we
obtain from Eq. (21) the following estimate for theratio
of the vortex field E, , to the dynamo field E4 , =
—-VyHy,/C:

i’ = L CH = A CH
Edax ToCpno 2mroCpy

For A = 3000 km, C, = 2 kmV/s, and C,,_ = 100 m/s, we
have E, ,/Eqx = 1.5; for A = 6000 km, we have
E, ,/Eq x=3; for A = 10*km, we have E, ,/E, ,=5; and
for C,; =20 km/sand A = 3000 km, we have E, ,/Eq « =
15. It can be seen from these estimates that, in the case
of fast planetary ionospheric perturbations, the gener-
ated vortex electric field should play a decisive role in
the electrodynamic processes occurring in the E-
region.

We note that parameters of a wave perturbation (in
particular, the electric field amplitude) propagating in
the ionospheric layer under study (the Hall layer) also
depend on the Pedersen conductivity o,. This problem
was considered in [23], in which the Pedersen and Hall
conductivities, both of the components of the geomag-
netic field (H,, and Hy,), and the four gradients of the
geomagnetic field (B, = dH,,/0y, B, = dH,,/dy, B; =
0H,,/0z, and B, = dH,,/02) were taken into account. It
was shown that, in the upper layers of the E-region (at
altitudes of 100-150 km), fast waveswith awavelength
of 2000 km are significantly damped due to the Peder-
sen conductivity. However, longer waves are damped
weakly. For example, at an altitude of 120 km, theratio
between the damping rates y of waves with the wave-
lengths A\, = 2000 km and A, = 10* kmisy, /y, = 20-50.
It was also shown that the longer the wavelength of fast
el ectromagnetic waves, the wider the layer inwhich the
damping rate related to the Pedersen conductivity is
low. Therefore, in this paper, in considering long-wave-
length perturbationswith A ~ 10* km, we neglect for the
sake of simplicity the Pedersen conductivity in the Hall
layer, assuming that H, = H.e,.

PhD (1)

(22)

4. CONDITION FOR THE GEOMAGNETIC FIELD
TO BE FROZEN IN THE PLASMA
IN THE IONOSPHERIC E-REGION

To reveal the specific features of the mechanism for
generating an internal electric field E, we will consider
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the condition for the geomagnetic field to be frozen in
the plasmain the ionospheric E-region. To thisend, we
rewrite Helmholtz vorticity equation (15) and Max-
well’s equation (16) in the form

oV xV
= Vx(Vx2(m,+Q;
k. (V2o @)
-V x(Vp*x2Q),
oh _ -
I Vx(VexHp) = apV x(Vp x2Q;).  (24)

To obtain these equations, we use expression (14) for
the Ampére force and the equality Vo= Vp.

It follows from Eq. (24) that, in the ionospheric
E-region, the geomagnetic field is completely frozen in
the electron component, whereas the ion component is
frozenin only partialy. Indeed, using the equality V.=
V;—j/eN, we excludethe el ectron vel ocity from Eq. (24)
to obtain the equation for the partially frozen-in ion
component:

oh _ . 0
i VX(ViXHO)_GVx[EJXHq]- (25)

In the B-plane approximation, for high and temper-
ate latitudes (where Hy = Hy(¢")e, and V. = Vg e,), we
obtain from Eq. (24) the conservation condition for the
total magnetic field H = H; + h:

d
d_t(hz+ HOz) = 01 (26)

where d/dt = 0/0t + V,,0/0y.
It follows from Eq. (26) that thereis an invariant:

h,+H,, = h,—2H_sin¢' = const. 27)

From Eq. (27) we find that, in the absence of a
meridional electron flow (Ve = 0), 2Hsin¢' = const. In
the case of a northward meridional e ectron flow, sind'
increases and, for condition (27) to hold, apositive per-
turbation of the geomagnetic field h, should be gener-
ated. In the case of a southward electron flow, sind'
decreases and the generated perturbation of the geo-
magnetic field should be negative (h, = —|h,]). If the
electron component is perturbed by a horizontaltrans-
verse planetary wave, then the generated magnetic field
oscillates with the wave frequency. For fast planetary
waves, as was shown above, the time derivative dh/ot
givesriseto asignificant vortex electric field. When the
electron component oscillates with a period of slow
horizontal-transverse waves (from one day to longer
than two weeks), the time derivative oh/ot is negligibly
small and no vortex electric field is excited in the iono-
spheric E-region.

Since the equality V. = V holdsin the E-region, the
el ectrodynamic interaction caused by the Ampére force
F./p, = (V = Vp) x2Q; is determined by the value of
the electric drift velocity.

1. For Vp > V = V,, theion and neutral components
of the ionospheric plasma can be considered immov-
able as compared to the electron component (V. = Vp).
Then, from the expression j = eN(V, - V,) we obtain the
approximate equality V., = —j/eN, and the electrody-
namic problem of the generation of a vortex electric
field reduces to one induction equation,

oh _ 0l ,.
3t =~V % et X Mol

C
= “amen? (Vx> Ho),

from which, in the (-plane approximation, we obtain
(assuming that H, = H(8")e, and h, = h(x, t)) the equa
tion for fast planetary waves:

oh,  cB; oh, 0V, _ CBy 0V,

Bt - ameNax & ot - ameNox - &Y

For h, V, ~ exp{i(kx — wt)}, we find that the wave

phase velocity is

(28)

C aHOz
41eN oy -

Therefore, fast waves in the ionospheric E-region
propagate against a practically immovable ion—neutral
background. It is only the electron component with the
frozen-in geomagnetic field that oscillates, thus giving
rise to the induced magnetic field h and the vortex elec-
tric field (V x E # 0). In fact, introducing the electron
displacement &(V,, = dé./dt), from frozen-in condition
(26) we have h, = —3,¢,. Then, using the second equa-
tion in (29), we arrive at the linear-oscillator equation
o€, /dt* + oof)Ey = 0 with the eigenfrequency w = w, =
k.cB,/(4eN). A comparison of expression (30) with the
phase velocity of short-wavelength whistling atmo-
spherics (helicons) [24] C,, = cHgk/4TeN shows that
both types of waves are of the same physical nature and
represent oscillations of the electron component frozen
inthe geomagnetic field. The only differenceisthat, for
whistling atmaospherics, the phase velocity depends on
the vertical component of the geomagnetic field H,, and
the vertical component of the wavenumber k,, whereas
for C, waves, it depends on the magnetic field gradient
0H,,/0dy, which naturally determines the large-scale
nature of C, waves. Hence, at V, > V =V, the ectro-
magnetic interaction of theinternal electric field E with
the plasma in the ionospheric E-region is associated
with fast planetary perturbations and the method for
determining the eigenfrequencies of these perturba
tions may be called the inductive MHD approximation.

2. For Vp = V =V, electrodynamic processes in the
E-region result in slow perturbations propagating with
the local wind velocity. Since, in this case, both of the
charged ionospheric plasma components are com-
pletely entrained by the wind, the electric current den-

w
Con. = ¢ = Cn = (30)
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sty j = eN(V,; - V,) vanishes and dynamic egquations (23)
and (24) take the form

aVa>t<v = V x (VX 2ay), 31)
I = V(v xHy). (32)

In view of the fact that slow planetary Rossby waves

(withthe phase velocity C, =—f3/ kf and aperiod from
one day to longer than two weeks) are exact solutions
to Eg. (31), we can ignore the time derivative dh/dt in
Maxwell’s eguation. This means that, for slow long-
wavelength perturbations, theinternal field is potential :
V x E = 0. This condition, along with the equation V x
(V, Hy) =0, alows us to unambiguously determine the
polarization electric field generated in the ionospheric
E-region by the neutral wind:

Ep = -VO = —%v x Ho.

(33)
This approximation, as was mentioned above, may be

referred to as the noninductive MHD approximation
[19, 20].

3. The case Vp < V =V, corresponds to ultrasiow
electrodynamic processesin which the el ectron compo-
nent, in view of the equality V, = Vp, can be considered
amost immovable, so that the current j is mainly pro-
duced by the ion component. It follows from Eg. (8)
that, inthiscase, E = 0. Then, from Maxwell’s equation
oh/ot = —cV x E, we have oh/ot = 0. Therefore,
ultraslow processes in the E-region do not lead to the
generation of an internal electric field. If an electric
field is, nevertheless, present in such slow ionospheric
processes, then one may conclude that thisfield is pro-
duced due to certain external effects (e.g., the penetra-
tion of electric fields from the magnetosphere and
auroral regions). In this case, Egs. (23) and (24) can be
reduced to one closed Helmholtz equation

oV xV
ot

Exact solutions to this equation are ultraslow planetary
Rosshy waves propagating in the E-region with the
phase velocity C,, =—(B + )/ kf , where 3 = 02wy,,/0y
and B, = 02Q;,/0y = (eN/(N,Mc))oH,,/dy. Since w,, and
H,, are oppositein sign (uw,, > 0 and H,, < 0), the phase
velocity of ultraslow planetary waves is lower than the
phase velocity of ordinary Rossby waves, which are
described by Eqg. (31). Numerical results show that, in
the nighttime, the quantity 3 + B vanishes at an altitude
of 150 km, and in the daytime, it vanishes at an altitude
of 115 km. Accordingly, ultraslow planetary wave
should not exist at these altitudes in the corresponding
periods of time[12].

= VX[V x2(w,+Q)]. (34)
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5. CONCLUSIONS

A physical mechanism for the generation of an
internal electric field by long-wavelength (A ~ 10°-
10* km) perturbations in the ionospheric E-region has
been investigated using athree-fluid model of theiono-
spheric plasma.

It is shown that the electrostatic polarization field
Ey = -V is generated by slow planetary hydrody-
namic waves with a period from one day to two weeks
(or even longer). Such long-period processes are
described by MHD equations in the noninductive
approximation. In this case, the electrostatic field E, is
generated due to the dynamo effect. Diurna tidal
motions (thermal tide) and the accompanying slow
planetary waves are the main source for the generation
of §, currents in the ionospheric E-region [1-3]. It has
been found that ultrasiow planetary Rossby waves are
not accompanied by the generation of internal electric
fields in the E-region. If an electric field is, neverthe-
less, present in such slow (almost stationary) iono-
spheric processes, then one may conclude that thisfield
is produced dueto certain externa effects.

It has been shown that fast planetary waves in the
ionospheric E-region perturb only the electron compo-
nent and the geomagnetic field frozen in it. In this case,
aninternal vortex dectric field is naturally generated. It
has been found that the vortex electric field is severa
times higher than the polarization field generated dueto
the dynamo effect. It has been shown that fast iono-
spheric processes can be adequately described in the
inductive approximation. A formula has been derived
[see Eq. (21)] that allows one to unambiguously deter-
minethe character (potential or vortex) of the generated
internal field from the measured phase velocity of
large-scale wave perturbations in the ionospheric
E-region.
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Abstract—Results are presented from experiments on the injection of solid pellets into a plasma heated by an
electron beam in the GOL -3 device. For this purpose, two pellet injectorswereinstalled in the device. Thetarget
plasmawith adensity of ~10'5 cm~ was produced in a solenoid with afield of 4.8 T and was heated by a high-
power electron beam with an electron energy of ~1 MeV, aduration of ~7 s, and atotal energy of 120-150 kJ.
Before heating, the pellet was injected into the center of the plasma column transversely to the magnetic field.
Theinjection point was located at a distance of 6.5 or 2 m from the input magnetic mirror. Polyethylene pellets
with amass of 0.1-1 mg and lithium-deuteride pellets with a mass of 0.02-0.5 mg were used. A few microsec-
onds after the electron beam starts to be injected into the plasma, a dense plasmabunch isformed. In theinitial
stage of expansion, the plasma bunch remains spherically symmetric. The plasma at the periphery of the bunch
isthen heated and becomes magnetized. Next, the dense plasma expands along the magnetic field with aveloc-
ity on the order of 300 km/s. A comparison of the measured parameters with calculations by a hydrodynamic
model shows that, in order to provide such a high expansion velocity, the total energy density deposited in the
pellet must be ~1 kJecm?. This value substantially exceeds the energy density yielded by the target plasma; i.e.,
the energy is concentrated across the magnetic field onto a dense plasma bunch produced from the evaporated

particle. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

One of the alternative magnetic fusion devicesisthe
so-called multimirror system, in which an increase in
the plasma confinement timeis achieved dueto acorru-
gated configuration of the magnetic field [1]. The con-
cept of multimirror confinement implies that the ion
mean free path should be much shorter than the full
length of the device. Hence, in order to achieve reactor
parameters at reasonable device dimensions, the
plasma density should be ~10'7 cm and, accordingly,
the (3 value should be larger than unity (see [2] for
details). The problem of producing such a plasma is
still unsolved.

Experiments in the GOL-3 device are primarily
aimed at studying the physics of the production and
confinement of ahot dense plasmain amultimirror sys-
tem [3]. The experimental layout is shown in Fig. 1. A
hydrogen or deuterium plasmawith adensity of 10'* to
10' cm3 is produced by a special linear discharge in
the longitudinal magnetic field. Typical parameters of
the pellet-injection experiments under consideration
are as follows. The length and diameter of the plasma
column are ~12 m and 7 cm, respectively (the diameter
is given for a magnetic field of 4.8 T). The magnetic
field isproduced by a solenoid. The magnetic induction
in the region where the field is uniform and in the end
magnetic mirrorsis4.8 and 9 T, respectively. Near each
of the solenoid ends, ten magnetic cellsareformed. The

length of each cell is22 cm, and the minimum magnetic
induction in each cell is 3.3 T. Thus, two end sections
with a corrugated magnetic field are created. The
plasmais heated by arelativistic electron beam with a
maximum electron energy of ~1 MeV, maximum cur-
rent of ~30 kA, full duration of ~7 s, total energy of
120-150 kJ, and diameter of 6 cm (for amagnetic field
of 4.8T).

Let usbriefly consider the physics of plasmaheating
by an injected beam under the conditions of our exper-
iment (see [3—6]). Due to the collective beam—plasma
interaction, resonant plasma oscillations are excited to
which the beam transfers a fraction of its energy. The
nonlinear relaxation of these oscillations leads to the
heating of the plasma electrons. It was shown experi-
mentally that the beam can lose up to 30-40% of its
energy as it passes through the 12-m-long plasma col-
umn. During the beam injection, the electron tempera-
ture increases, and, at a plasmadensity of 10" cm3, it
canreach 2 keV. Theion temperature remainsrelatively
low because of the short lifetime of the hot plasma.

As the plasma density increases, the efficiency of
beam relaxation degrades and the maximum electron
temperature decreases. On the other hand, the concept
of multimirror confinement requires a high-tempera-
ture plasmawith adensity of ~10'7 cm. Such adensity
is too high for efficient beam relaxation due to collec-
tive effects. In order to achieve a high-temperature in

1063-780X/04/3001-0009$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. Schematic of the GOL-3 device: (/) U-2 electron beam generator, (2) system for generating the electron beam (the ribbon
diode and the beam magnetic-compression region), (3) sections with a corrugated field, (4) solenoid, and (5) exit unit (system for
generating the target plasma and the beam receiver). Arrows indicate the locations of the two pellet injectors.

the dense plasma, the so-called method of thetwo-stage
heating of adense plasmawasimplemented for thefirst
time in the GOL-3 device [7]. The method implies that
a short plasma bunch with a density of 10'7-10'® cm™
is produced in along plasma column with a density of
~10% cmr3. The target plasmais heated due to electron
beam relaxation, and the temperatures of the bunch and
the target plasma are then equalized due to binary col-
lisons.

Experiments by this scheme were conducted using
gas puffing in order to form the required plasma density
profile along the device. The plasma pressure increased
by afactor of up to 3 as compared to the pressure of a
uniform plasma with the density optimum for beam
relaxation. The ion temperature in dense plasma
bunches was closeto the el ectron one (the measured ion
temperature was up to 150 eV at a density higher than
5 %10 cm= [5]). A further increase in the temperature
of the dense plasma bunch was limited by longitudinal
heat conduction and the rapid longitudinal expansion of
the bunch.

The experiments demonstrated the feasibility of the
scheme for the two-stage heating of a dense plasma. At
the same time, the method for producing dense plasma
bunches by gas puffing has a number of limitations:

() The dense gas fills the entire cross section of the
chamber, rather than only the region occupied by the
plasma column. The presence of the dense gas at the
periphery of the plasma column increases charge-
exchange and ionization losses and leads to the cooling
of the peripheral plasma.

(i) The presence of the dense cold peripheral
plasma hampers (or even makes impossible) the use of

conventional diagnostics, such as the analysis of
charge-exchange neutrals and measurements of the
intensity and profiles of spectral lines.

(iif) The increase in the gas cloud density promotes
the onset of kink instability. The reason for thisis that
the initial degree of gas ionization becomes too low as
the density increases above acertain level. Thisleadsto
the deterioration of the conditions for beam current
neutralization in the plasma. The high unneutralized
beam current causes the loss of the macroscopic stabil-
ity of the beam when the Kruskal—Shafranov limit is
exceeded.

(iv) The element composition of gases introduced
into the plasmais limited.

In this paper, we describe experiments on the pro-
duction of dense plasmabunches by injecting solid pel-
lets. A pellet consisting of about 10?° atomsis injected
at a certain point of the plasma column. The pellet is
rapidly destroyed and evaporated under the action of
the high-energy electron beam, and its material is then
ionized. The dense, weakly ionized vapor can expand
over adistance of ~1 cm acrossthe magnetic field. After
the ionization of the pellet materia is completed, the
produced dense plasma becomes magnetized and its
further heating proceeds in the same way asin the two-
stage scheme described above. This scenario of the pro-
duction of a dense plasma bunch is free of the above
disadvantages of pulsed gas puffing. In addition to the
production of a dense high-pressure plasma bunch, the
proposed technol ogy can be used to solve the following
physical problems: local diagnostics of the plasma
parameters (together with optical methods), creation of
a bright source of line emission from multiply charged
PLASMA PHYSICS REPORTS  Vol. 30
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ions with a given element composition, and study of
material ablation in a high-temperature plasma.

The method for injecting solid pelletsinto plasmais
well known and isused in anumber of devicesfor diag-
nostic purposes, to fuel the plasma, and to control the
plasma density profile (see, e.g., [8-10]). The range of
physical parameterstypical of the GOL-3 deviceallows
usto use anontraditional method of pellet injection and
to significantly simplify and cheapen the required
equipment. The plasma lifetime is fairly short; there-
fore, the pellet can be injected at the required point
before the onset of the discharge. This alows us to
avoid the passage of the pellet through the high-temper-
ature plasma (in this case, the initial injection velocity
can be decreased and the evaporation of the outer layers
of the pellet at the plasma periphery is precluded). In
this stage of an experiment, radiative losses from the
plasmacan beignored even at arelatively high impurity
concentration; hence, we used pellets made of hydro-
gen-containing materials (polymers, lithium hydride,
etc.). Diagnostic pellets can have any chemical compo-
sition.

2. EXPERIMENTAL AND DIAGNOSTIC
TECHNIQUES

The pellet injector was designed according to an
electrodynamic scheme. The parameters of the injector
were chosen to satisfy by the following technical
requirements: (i) the system operation should be inde-
pendent of the material and weight (within the range
0.1-10 mg) of the pellet, (ii) theinjector should provide
five pulses without vacuum failure in the device, and
(iii) the injector should be exactly synchronized with
the other systems of the device. The electrodynamic
system of the injector consists of a plane coil and a
driver disk adjacent to the coil. The current flowing
through the coil induces the eddy currentsin the driver
disk. The latter is accelerated and knocks the injector
striker containing a pellet in its central hollowing. A
scheme with the hard stopping of the striker was chosen
in order to guarantee the detachment of the pellet from
the striker. The pellet isinjected from bottom to top.

The current pulse in the injector coil is produced by
a source consisting of a 160-pF, 500-V MBGV capaci-
tor and a thyristor switch. The electric-circuit parame-
tersare chosen such that the current pulse durationison
the order of the penetration time of the magnetic field
into the driver disk. The current amplitude at a capaci-
tor voltage of 350 V amountsto ~1.5 kA. The duration
of the current pulse is ~75 ps. The exact positioning of
the pellet inthe chamber at theinstant of beam injection
isprovided by choosing the operating voltage at a fixed
triggering time of the thyristor switch (13 530 psbefore
the start of the beam, i.e., somewhat earlier than the
magnetic system is switched on). Theinitial velocity of
the pellet varies in the range 1025 m/s as the supply
voltage varies from 200 to 350 V. The scatter in the pel-
No. 1
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let positions from shot to shot is~2 cm around the cen-
ter of the plasma chamber.

Two injectors were fabricated and ingtalled in the
device. The first injector was placed at the diagnostic
port located between the 59th and 60th coils, nearly at
the center of the GOL-3 solenoid (at a distance of Z =
662 cm from the center of the input magnetic mirror,
taken asthe coordinate origin). The second pellet injec-
tor was placed at Z = 219 cm (between the 19th and
20th coils).

Several methods were used to diagnose the parame-
ters of the dense plasma. At the location of the first
(central) injector, the dense plasma bunch was photo-
graphed with the help of adigital photographic camera
and a digital VUV pinhole camera with a frame dura-
tion of ~1 s (the radiation fell directly on the surface
of the microchannel plate). The visible emission from
the dense plasma bunch was recorded by adigital spec-
trograph with spatial resolution. The electron density in
the bunch was measured by the broadening of the
hydrogen H,, line with the help of adigital spectral sys-
tem consisting of two components. a high-resolution
spectrometer (a detector based on a photodiode array)
with a frame duration of ~1 us and a system with a
moderate spectral resolution, which scanned the line
profile with a period of 5-20 us. The light was fed to
this diagnostics through a fiber whose receiving end
could be placed at different distances from the pellet
injector. The plasma density at a distance of ~1.9 m
from the injector was measured using a Michelson
interferometer operating at a wavelength of 1.15 pm.
Another similar interferometer was placed at Z =
84 cm. The temperature profile across the plasma
bunch was assessed from the intensity ratio of the spec-
tral lines of ions in different ionization states. For this
purpose, we used aframe VUV spectrograph with spa-
tial resolution and a frame duration of ~1 us. VUV
plasma emission was also measured by several vacuum
photodiodes positioned at different distances from the
pellet injector. We also used other conventional diag-
nostics.

At the location of the second injector (Z = 219 cm),
we used different diagnostic equipment providing us
with additional information on the parameters of the
dense plasmabunch. Immediately at theinjection point,
an optical spectrometer with spatial resolution and a
sixteen-channel VUV pinhole camera with aluminum
photocathodes were installed. A Thomson scattering
system (a ruby laser, 694.3 nm, 5 J) that was located
33 cm from the injection point measured the electron
temperature and density immediately inside the plasma
bunch. Between the injector and Thomson scattering
system, there were three detectors measuring plasma
diamagnetism. On the other side, detectors of soft
X-ray plasma emission (one covered with an 8-um
beryllium foil with a cutoff energy of 0.8 keV and the
other with a 100-um beryllium foil with a cutoff energy
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Fig. 2. Intensity of VUV emission from dense plasmain different stages of the plasma bunch formation: (&) 2 ps from the beginning
of the beam injection (the formation of a spherical bunch and 3D expansion), (b) 4 us (the transition to the magnetization regime),
and (c) 6 ps (1D expansion). The contours lines of the intensity with alevel exceeding the emission intensity of the surrounding
target plasma are shown. The exposuretimeis 1 us. The spatial scale isthe same for al the frames.

of 2.2 keV) were installed at a distance of 22 cm from
the injection point.

3. GENERAL PATTERN OF THE FORMATION
AND EXPANSION OF A DENSE PLASMOID

A preliminary (target) plasmain the GOL-3 device
was produced by a special linear discharge. The cham-
ber was filled with hydrogen with the help of pulsed
valves. By theinstant when the discharge began, the gas
had filled a part of the vacuum system of the device
(from the compression region of the electron beam to
the location of the annular cathode of the linear dis-
charge[6]). The generation region of the electron beam
and the region of the beam receiver remained at work-
ing vacuum. Due to creating the target plasma in this
way, the plasma density is nonuniform along the sys-
tem. In experiments with pellets, the initial density of
the target plasma in the central part of the chamber (at
the location of the first injector) was ~10' cm™.
Toward the solenoid ends, the initial density decreased
by afactor of 2-3.

On the whole, the formation of a dense plasma
bunch and its expansion proceed as was described in
the Introduction. The dynamics of pellet expansion can
be seen in brightness maps (Fig. 2) obtained with the
help of the VUV pinhole camera with an exposure of
1 ps. In these experiments, we used a 0.15-mg polyeth-
ylene pellets. Before the beam injection (when the pel-
let moves through the neutral gas or through the low-
temperature target plasma of the linear discharge), no
signs of pellet evaporation are seen.

The pellet startsto evaporate just after the beginning
of the electron beam injection, when the temperature of
the surrounding plasma is still rather low. Under our
experimental conditions, the solid pellet is destroyed in
an explosive manner due to volumetric energy deposi-
tion by the fast beam electrons (see [11]). In this stage,
the expansion of the dense plasma bunch is spherically
symmetric (see Fig. 2a). A characteristic feature of the

GOL-3 experiments is a wide electron energy spec-
trum, which isaresult of the collective rel axation of the
beam in the plasma (see [5]). Under these conditions,
the spectrum of fast electrons (within measurement
accuracy) decreases monotonically toward higher ener-
gies. Electrons with energies of up to 1.3-1.5 MeV
were detected, which far exceeds the energy of the
injected beam electrons. Estimates show that the energy
deposited in the pellet in the first stage of the processis
primarily associated with fast electrons with energies
from ~1 MeV (the mean free path of such electronsis
much longer than the effective thickness of the plasma
bunch) down to ~10 keV. As the cross section of the
plasma bunch grows, the power deposited in the pellet
plasma increases because of the growing contribution
from electrons with relatively low energies (i.e., from
electrons whose mean free path in the dense plasma
bunch is comparable to its effective thickness, which
decreases as the bunch diameter increases).

For sometime, the center of the bunch remains cold.
In experiments with arelatively massive 1-mg polyeth-
ylene pellet, the central bunch temperature calculated
from the intensity ratio of the ClIl 57.4-nm and CIV
154.8-nm lines at the time interval 4-6 us from the
beginning of the beam injection was found to be
~2.5 eV. The estimated ion plasma density at this time
is3 x 10'8 cm3, whilethe electron density isnearly two
times higher. Under our experimental conditions, the
plasma begins to be magnetized approximately at
nT—32 ~ 10'® cm=3 eV-32. The above parameters of the
dense plasmain the time interval 4—6 s do not satisfy
this condition; i.e., the dense plasma still remains
unmagnetized at thistime.

As the bunch expands, its density decreases,
whereas the heating power per particle and the temper-
ature increase. For this reason, the plasma bunch fairly
rapidly becomes completely magnetized. After the
diameter of the bunch reaches ~1.5 cm, the transverse
expansion comes to an end (see Fig. 2b).

PLASMA PHYSICS REPORTS  Vol. 30
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One-dimensiona expansion of the dense plasma
along the magnetic field then begins (Fig. 2c). An
important factor affecting the character of expansion of
the dense plasma bunch in this stage is the heat trans-
port along the magnetic field. Let us recall that, under
conditions of nonlinear beam relaxation, the thermal
conductivity of a strongly turbulent hot plasma is
anomalously low because the longitudinal-transport
coefficients are suppressed by a factor of 10°-10° in
comparison to their classical values[12]. By the end of
the beam pulse, when the plasma el ectron temperature
is on the order of 1 keV and the heating power begins
to decrease, the anomalous thermal conductivity disap-
pears and the transport coefficients rapidly restore to
their classical values. Over atime on the order of afew
microseconds, the thermal energy that is stored in the
12-m plasma column within the magnetic flux tube
filled with the pellet material istransferred to the dense
plasmabunch and is rapidly thermalized. In thiscase, a
local peak of the plasma pressure appears for a short
time at the point of pellet injection.

The time evolution of the dense plasma bunch can
be analyzed using a simple hydrodynamic model pro-
posed in [13]. In this model, the expansion of a dense
plasma bunch into vacuum is considered in the local
thermodynamic equilibrium approach. For some inter-
esting practical profiles of energy deposition in the
plasma (e.g., auniform or parabolic profile), this model
gives analytic solutions for the size and expansion rate
of the dense plasma bunch. In this case, the asymptotic
expansion rate of the bunch, v, turnsout to berelated
to the deposited energy density through a simple

expression
Vmax = /\/6Q0/u1

where Q, is the total energy deposited per unit trans-
verse area of the bunch from externa heating sources
and [ isthe mass per unit area of the bunch. The result-
ant expansion rate v,,,, is approximately equal to the
ion-sound velocity. Thus, using the simple models
described above, the energy transferred from the target
plasma to the pellet material can be determined from
the measured time evolution of the bunch density
(below, such measurementswill be discussed in detail).

Let us briefly consider the problem of stahility of a
plasma column with along higher density plasma fila-
ment at its axis. The experiments show that the pres-
ence of apellet inthetarget plasmaonly dightly affects
the operation of the linear discharge producing this
plasma. The injection and transport of the relativistic
beam also have no considerable impact on the target
plasma, in contrast to the previously used pulsed gas
puffing. We note that, in special experiments with the
second injector, special conditions were produced for
the occurrence of disruptions related to the appearance
of a low-temperature dense plasma occupying the
entire cross section of the plasma column (this situation
istypical of experimentsin which dense plasmais pro-
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Fig. 3. Disruption of the discharge with injection of aLiD
powder into the chamber: (a) a0.3-mg LiD pelletisinjected
and (b) ~1 mg of fine LiD powder isinjected. Signals from
a diamagnetic coil located at Z = 209 cm (10 cm from the
pellet injector) are shown.

duced by pulsed gas puffing). An example of device
operation in such a regime is shown in Fig. 3. We
injected ~1 mg of finelithium deuteride powder into the
vacuum chamber. After the evaporation of the powder,
a region occupied by dense plasma was formed. This
region spanned almost the entire cross section of the
plasma column. After the end of beam injection, the
plasma pressure (which is determined from diamag-
netic measurements) rapidly fell to zero. At the same
time, the signal from awall calorimeter located a dis-
tance of 66 cm from the injector increased by a factor
of 3and Nal (adoublet of 589.0 and 598.6 nm) and Sil|
(595.8 and 597.9 nm) lines appeared in the plasma
emission spectrum, which indicates the evaporation of
the surface of a Zerodur-like protection of the diamag-
netic coils.

4. PARAMETERS OF THE DENSE PLASMA
BUNCH

The first series of experiments was performed with
aninjector located at Z = 662 cm. We mainly used poly-
ethylene pellets with a mass of 0.1 to 1 mg. Time-
resolved measurements of the plasma density evolution
at the injection point were performed by measuring the
Stark broadening of the H,, line. The brightness of the
surrounding target plasmawas several orders of magni-
tude lower and did not influence the line profile. The
measured full width of the line profile exceeded 10 nm
(approximately 500 measured points with a step of
0.03 nm, see Fig. 4). In this profile, a structure corre-
sponding to the first several even harmonics of the
cyclotron frequency is clearly seen; there is probably
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Fig. 4. Typica H, line profile measured in the pellet injec-
tion experiments: (a) the line profile obtained using a sys-
tem with a high spectral resolution (the calculated line pro-
fileforng=1.7x10'” cm= and T, =4 eV isalso shown) and

(b) a signal from the system for scanning the line profile
with 10-ns discretization (the emission intensity is mea-
sured at a distance of ~50 cm from the injector).

some contribution from the ClI 657.8-nm and CII
658.3-nm lines.

In the course of one-dimensional expansion of the
magnetized plasma, its density decreases from 10'8 to
10'® cm= over ~30 ps (Fig. 5). The rate at which the
plasma density decreases within this time interval is
determined by the longitudinal bunch expansion veloc-
ity. The measured time dependence of the plasma den-
sity agrees well with the prediction of the above simple
one-dimensional gasdynamic model of the expansion
of a dense plasma bunch under energy deposition con-
ditionstypical of the GOL-3 experiments, in which the
heating power grows linearly during the beam injec-
tion. A comparison with the experiment shows that, to
fit the observed time evolution of the plasma density,
the bunch expansion rate (which is two times the front
velocity) should be about 6.2 x 107 cm/s. This corre-
sponds to a directed kinetic energy of hydrogen ions at
the bunch front of ~0.5 keV, which is substantially
higher than the temperature of the dense plasma at the
point of pellet injection. The model calculations were
fitted to the experimental data by varying a single free
parameter, namely, the energy deposited in the dense

plasma, which turned out to be ~1 kJJcm?. The other
parameters of the model are the known pellet mass per
unit area of the bunch and the mean ion charge in the
bunch, i.e., the ratio between the electron and ion den-
sities. For adense plasma, these parameters can be esti-
mated with sufficient accuracy from the measured tem-
perature.

The second injection point, located at Z =219 cm, is
of interest for several reasons. A principal differencein
the physics of plasma bunch formation here is that this
point is located close to the boundary of the region of
maximum heating (the electron temperature here is
twice as high as that at the location of the first injector
and is substantialy nonuniform in the longitudina
direction, whereas the first injector is located in the
region with a low temperature gradient). In addition,
there is a 2.2-m-long section with a corrugated mag-
netic field between the input magnetic mirror and this
point. In the classical scheme of multimirror confine-
ment, the plasma ions can undergo the action of a sort
of frictional force exerted by the corrugated field,
which decreases the longitudinal expansion rate. This
theory implies a sufficiently long system in which the
distribution function is close to isotropic and differs
markedly from the case with a high-velocity directed
plasmaflow. However, in our case, we also could expect
some effect related to the field corrugation.

The experiments at this point were carried out with
0.15- to 0.4-mg polyethylene pellets and 0.02- to
0.5-mg lithium-deuteride pellets. Some experiments
were conducted with the simultaneous injection of sev-
era pellets, including some made of different materials.
On the whole, the character of pellet evaporation and
theinitial expansion of the dense plasma was the same
as described above. The time evolution of the plasma
density at the injection point almost coincides with the
dataobtained for thefirst injector (see Fig. 5). The same
figure shows the data obtained with a0.1-mg LiD pellet
and a receiving fiber located at Z = 350 cm. It can be
seen that, in this case, the local density increases by a
factor of more than 2 within the time interval 40—
120 ps. Most likely, thisis dueto the decel eration of the
expanding bunch in the target plasma (whichisignored
in the model).

In the model calculations, we also used data on the
transverse dimensions of the dense plasma bunch at the
injection point; these were measured with the help of a
VUV pinhole camera. Figure 6 shows typica wave-
forms of signals from several channels of the pinhole
camera and the brightness map of the injection region,
which was constructed using the nine central channels.
It can be seen that VUV emission appears just after the
beginning of beam injection; however, the signal level
remains relatively low for several microseconds. A
bright VUV burst is seen to appear by the end of the
electron beam pulse. Such signal behavior may be
related to the disappearance of the anomalous longitu-
dinal electron thermal conductivity and the abrupt dep-
PLASMA PHYSICS REPORTS  Vol. 30
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Fig. 5. Time evolution of the plasma bunch density by the data from spectroscopic measurements. The circles correspond to the
injector located at Z = 662 cm; the observations are made at the injection point. The sguares and triangles correspond to the injector
located at Z = 219 cm; the observations are made at the injection point and at a distance of 1.4 m along the beam propagation direc-
tion (the measurement accuracy in the latter case is higher because of a smaller change in the signal level).
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Fig. 6. Time evolution of the intensity of VUV emission from the dense plasma bunch: (@) signals from the channels of the VUV
pinhole camerawith lines of sights passing at distances from the pellet center of 0.5, 1.7, 2.1, and 2.9 cm (from top to bottom) and
(b) contour lines of the signal magnitude (the distance between contour linesis 0.02 V; the coordinate is counted from the chamber

axis). The beam injection begins at 2.5 ps.

osition of arelatively high energy in the dense plasma
bunch.

In addition to the time evolution of the plasma
bunch density, the model calculations also give the
change in the dense plasma temperature. The same
change was also measured experimentally (from pre-
cise measurements of the time evolution of the H, line
2004

PLASMA PHYSICS REPORTS Vol. 30 No. 1

profile). Figure 7 shows the time evolution of the
plasma pressure in the bunch (by the data from the
injector located at Z =662 cm). The axial magnetic field
at the injection point amounts to 3.8 T. Hence, in the
initial stage of pellet expansion, the measured 3 value
isat least afew tens of percent (with respect to the vac-
uum field). Formally, the model allows one to extrapo-
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Fig. 7. Time evolution of the dense plasma pressure at the injection point. The circles and triangles show the data from two shots
with the first injector, the solid line shows the results of model calculations, and the dashed line shows the level of the magnetic

pressure at the injection point (3.8 T).

late 3 to values exceeding unity; however, for a dense,
weakly magnetized plasma, such an extrapolation
seems to make no physical sense.
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Fig. 8. Thomson scattering diagnostics in the pellet injec-
tion experiments: (/) projection of the entrance dlit of the
spectrograph (the dlit is widened for a clearer illustration),
(2) cross section of a dense plasma bunch, and (3) focused
laser beam. The circles and squares show the measured scat-
tered spectrum for two different shots. The solid line shows

the fit with ng = (0.37 £ 0.05) x 10'> cm™ and T, = 150 +
30 eV, and the dashed line showsthe fit with ng= (2.4 £ 1) x
109 ecm3 and To= 11 £3 eV.

When operating with the injector located at Z =
219 cm, the parameters of the dense plasmabunch were
measured for the first time with the help of Thomson
scattering diagnostics. Since the observation point was
located a distance of 33 cm from the pellet injection
point, it was decided to perform laser measurements at
afixed time of 15 us after the beginning of beam injec-
tion (by thistime, the brightness of the bunch emission
decreases and becomes acceptable for measuring scat-
tered light). A specific feature of these measurementsis
the approximate equality of the three values: the diam-
eter of the dense plasma filament (about 1.5-2 cm), the
scatter in the pellet positions in the chamber (-2 cm),
and the dimension of the light-collection region of the
Thomson scattering system (2 cm). For this reason, the
laser beam in every experiment passed at a certain dis-
tance from the bunch center. The measured temperature
varied in the range from 170 eV at a density of 0.7 x
10" cm™ to 10 eV at adensity of 2.4 x 10'5 cm (typ-
ical scattering spectra are presented in Fig. 8). These
results are in fair agreement with the above data from
spectroscopic and other measurements.

In the experiments on pellet injection, we also mea-
sured plasma diamagnetism at different distances from
the injection point (altogether, there were 25 diamag-
netic cails). Unfortunately, we cannot unambiguously
conclude that the diamagnetism changed in the pres-
ence of a pellet. The fact is that, even at high specific
parameters of the dense plasma (e.g., at B ~ 1), itsrela
PLASMA PHYSICS REPORTS  Vol. 30
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tive contribution to the total diamagnetic signal does
not exceed 5-20% because of the small cross-sectional
area of the dense bunch. The scatter in the plasma
energy lifetime leads to similar variations in the time
behavior of diamagnetic signals, thus masking the
effects associated with the presence of the pellet.

5. CONCLUSION

On the whole the experiments on pellet injection in
the GOL-3 device confirm our notion of the character
of the formation and expansion of a dense plasma
bunch produced by the explosive (volumetric) evapora
tion of a pellet. With 0.3-mg pellets, the measured
expansion rate of the dense plasma corresponds to a
maximum proton energy of ~500 eV, which means that
the energy density deposited in the pellet attains ~1
kJcm?. This value substantially exceeds the averaged
energy density that can be provided by the ambient
plasma (the total plasma energy at the maximum tem-
perature amounts to 5-10 kJ, and the plasma cross-sec-
tional areais~30 cm? in the region where the magnetic
field produced by the solenoid is uniform). This differ-
ence can be attributed to the transverse energy transport
(the concentration of energy in the dense plasma bunch)
by both fast electrons and heat conduction.

We plan to further improve the method for produc-
ing dense plasma bunches and to carry out experiments
on the injection of pellets in the region with a corru-
gated magnetic field. We are al so considering the possi-
bility of injecting cryogenic hydrogen pellets.
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Abstract—The structure of an electrode microwave discharge in hydrogen at pressures of 1-8 torr and incident
powers of 20100 W is studied using optical spectroscopy. A two-dimensional computer code is developed for
self-consistently simulating a self-sustai ned steady-sate el ectrode microwave discharge ignited at the end of the
inner conductor of a coaxia line. The model is based on simultaneously solving time-dependent Maxwell’s
equations, the balance equations for charged particles, and a homogeneous Boltzmann equation. The numerical
results referring to the electrode region of the discharge are in fair agreement with the experimental data. This
confirms the early suggestion (inferred from experimental data) of the combined “ self-sustai ned—non-self-sus-
tained” character of the electrode discharge. It is shown that the self-sustained discharge domain is located in
the electrode region of the discharge. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

L ow-pressure microwave discharges existing near
an electrode through which energy is supplied under
conditions such that the plasma domain is much less
than the discharge chamber are a striking example of
plasma structurization. Experimental data on the prop-
erties of such discharges and the physical processes
occurring inside them have been accumulated since the
late 1990s [1-5]. Dischargesin molecular gases consist
of athin bright electrode sheath and aless bright spher-
ical region surrounding the electrode and separated by
a sharp interface from the dark outer space. In [6],
based on the measurements of the electron density and
electric field in plasma, it was suggested that the elec-
trode microwave discharge consisted of the three
regions: a self-sustained discharge (electrode sheath), a
non-self-sustained discharge (spherical region), and an
afterglow region separated from the discharge by an
electric double layer.

This study is aimed at investigating the electrode
region of the discharge. In [3], the degree of dissocia
tion in the electrode plasma of an electrode microwave
discharge was studied using optical spectroscopy. It
was shown that the degree of dissociation was low and
the excitation of the emitting states of hydrogen mole-
cules and atoms, as well as their ionization, proceeded
from the ground state via direct electron impacts.

In this paper, we present the results of spectroscopic
measurements of the structure of the el ectrode region of
an electrode microwave discharge in hydrogen and the
results of self-consistent two-dimensional computer
simulations of a diffuse discharge in an nonregular
coaxial system. An example of such asystemisthedis-
charge section used in our experiments, in which the

dischargeis produced at the end of the inner conductor
of acoaxial line. A comparison of the numerical results
with the experimental data allows usto cometo anum-
ber of conclusions about the physical processes occur-
ring in the electrode region of the discharge.

2. EXPERIMENTAL SETUP

The experiments were carried out with a hydrogen
discharge at a pressure of 1-8 torr and an incident
microwave power of 2090 W, the absorbed power
being 2-12 W. The microwave oscillator with a maxi-
mum output power of 170 W operated at afrequency of
2.45 GHz. The discharge chamber was ametal cylinder
8.5 cm in diameter (see [1-3] for details). The micro-
wave antenna(acylindrical stainless-steel tube 6 mmin
diameter) was inserted in the chamber through its end
viaavacuum joint. The antennawas a part of acoaxial-
to-waveguide converter, which was adjusted with the
help of a shorting plunger. The experiments were car-
ried out in a gas flow. The gas was supplied through a
channel in the upper wall of the discharge chamber and
pumped out through a channel in the lower wall. The
working gas was hydrogen with a 5% admixture of
argon. Argon was added for diagnostic purposes and
had virtually no effect on the properties of the hydrogen
plasma.

The discharge was ignited around the antenna (the
exciting electrode). The discharge dimensions were
much less than the chamber diameter and the distance
from the lower end of the chamber. The discharge emis-
sion was output through a window on the side wall of
the discharge chamber. The spatia resolution of the
measurements was about 0.5 mm. Plasma emission in

1063-780X/04/3001-0091$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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the spectral range 400-800 nm was studied using an
MDR-23 monochromator. An FEU-79 photomultiplier
was used as an emission detector. The optical system
was calibrated with the help of an SI-8-200 tungsten
band lamp.

3. MODEL

To study the processes in a nonequilibrium plasma
of an electrode microwave discharge, we developed a
self-consistent model based on simultaneously solving
time-dependent Maxwell’s eguations and balance
equations for charged particles. The local plasma elec-
tron parameters needed to solve these equations were
obtained by numerically solving a homogeneous Bolt-
Zmann equation [7].

3.1. Computation of the Electromagnetic Field
in an Nonregular Coaxial System Partially Filled
with Plasma

To study the distributions of the electric field and
microwave energy density in a plasma-filled chamber
with a given configuration, we developed a computer
code for solving Maxwell’s equations in a dispersive
medium. The electromagnetic fields inside the plasma
reactor were described by time-dependent Maxwell’s
equations

- _1oH

OxE = ==, ey
_ 10D

OxH =235 2

The permittivity € isafunction of the frequency w,

2 2 2
W O R W
£=1-—L-+i5Pt--=1-—"P— (3
W+V w+vw W +ivw

where w, = A/4ne2ne/m is the electron plasma fre-

guency, w isthe circular microwave frequency, v isthe
collision frequency of electrons with heavy particles,
and n, isthe electron density.

Equations (1) and (2) were solved in the (r, t) coor-
dinates (rather than in the (k, w) coordinates). Hence, a
conventional constitutive equation

D(w)

g(w) = E(w)

“)
should be transformed into an equation relating D(t)
and E(t). Following [8], we substitute € in form (3) into
Eq. (4) for the complex permittivity to obtain

(W +ivo— p)E(w) = (0 +ivw)D(w).  (5)

Applying the inverse Fourier transformation

+o00

f(t) = J’f(w)exp(—imt)dt, (6)

to Eq. (5), we obtain the second-order differential equa-
tion relating D(t) and E(t):
2

oD
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Equations (1), (2), and (7) comprise a complete set
of equations describing the propagation of electromag-
netic waves in dispersive media. The numerical algo-
rithm is arranged as a three-stage successive procedure
of calculating the electromagnetic fields. The algorithm
is based on an explicit finite-difference scheme of inte-
grating Maxwell’s equations, which was originaly
applied to nondispersive media [9].

The equations are written in cylindrical coordinates
(r, ¢, 2 under the assumption of axial symmetry:
0/0¢ = 0. We used a square mesh with dimensions h, =
h, = h. We represent the vector equations in finite dif-
ferences and use the leap-frog scheme of second order
accuracy [10]:
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The new E"+! value is calculated from Eq. (7) rep-
resented in finite differences by using the known values
PLASMA PHYSICS REPORTS  Vol. 30
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of EN, D"*!, and D", aswell as the values of E"-! and
D"-1, calculated at the preceding time step:

(Erso)
X{= (W +VT +2)(E, , )" +4(E )"
+ (=T + 2)(Dr,zv¢)n_1—4(Dryzy¢)n
+(VT+2)(D,YZ’¢)H+1}.

a
"= (VT +2)

(14)

Here, T isthe time step; k and i are the mesh cell num-
bers along the z and r axes, respectively; and n is the
time step number. The variables in Egs. (8)(14) are
normalized as follows:

r c. eR_
r"ﬁ’ t"tR, E mCZEl
. o (15)
D—ED; H— EH;
mcC mcC

where the characteristic size of the system is chosen to
beR=1cm.

Theboundary conditionsfor the fields on a perfectly
conducting metal wall are E;|s= 0 and H,|s = 0. The
subscripts T and n stand for the tangential and normal
components of the fields at the metal surfaces of the
chamber and the central electrode.

3.2. Balance Equation for Charged Particles

The distribution of the charged particle densitiesin
the discharge chamber are found by solving the charged
particle balance equation that accounts for diffusion,
ionization, and volume recombination:

on _ 10y g 20
at rOrEDa(E)rarD
(16)

+ 200, (B)3H+ v (B)n-a,(E)n”

It isassumed that the plasmais quasineutral and the
diffusive losses of charged particles are governed by
ambipolar diffusion with the diffusion coefficient D,. In
the plasma of an electrode discharge in hydrogen, the
working-gas particles are excited and ionized from the
ground state via el ectron impacts[3]. The charged par-
ticles are recombined via the volumetric dissociative

recombination of H; ions (the cross section is taken
from [11]). To calculate the local values of D,(E),

v;(E), and a,( E ), we used the el ectron energy distribu-
tion functions (EEDFs) obtained by solving a homoge-
neous Boltzmann equation with a self-consistent set of
cross sections for hydrogen taken from [12]. The mean
electric field E, which is needed to solve the Boltz-
mann equation, is found by solving Maxwell’'s equa-
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Fig. 1. Schematic diagram of the discharge chamber used in
the calculations: (/) central electrode, (2) cylindrical dis-
charge chamber, (3) plasma, (4) wave excitation plane
(TEM-wave generator), (5) wave propagating from region
A to region B, and (6) reflected wave disappearing at the
a-b plane.

tions. The gas temperature is assumed to be spatialy
uniform and equal to 300 K.

3.3. Computation Procedure

A schematic diagram of the discharge chamber used
in the calculationsis shown in Fig. 1. The computation
region (the rz half-plane) is divided into two parts. The
incident-wave generator lies at the very left of region A.
It generates a 2.45-GHz TEM wave propagating to the
right. The wave traverses empty region A of length A/2
and enters region B (the discharge chamber). It is
assumed that the reflected wave (which propagates to
the left) vanishes at the left boundary of region B and
does not interact with the incident wave arriving from
region A. Thus, thereisa TEM wave propagating to the
right in region A and a standing wave in region B. The
computation time t should be sufficiently long for a
steady-state field distribution to be established in a
working chamber partially filled with plasma (gener-
ally, t > 3L/c, where L isthe total length of the compu-
tation region and c is the speed of light).

At each time step, al the electromagnetic wave
components (H, D, and E) are calculated by formu-
las(8)—(14) at each point of the rz half-plane: first, in
region A and, then, in region B. The length of region A
was chosen such that easy comparison of the ampli-
tudes and phases of the reference and established waves
in the chamber was possible.

In the calculations, the total length of the system
was 28 cm, the diameter of the working chamber was
8 cm, and the diameter of the inner core was 0.6 cm.
The distance between the end of the central electrode
and the chamber bottom was 4 cm. These dimensions
were identical to the experimental ones. The mesh size
was 0.03 cm. The parameters of the problem were the
incident-wave power and the gas pressure in the dis-
charge chamber.

The computation procedure was as follows:
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First, an arbitrary distribution of the electron density
in the discharge chamber is specified. A microwave
wave then enters the chamber. It is partially absorbed
by and reflected from the plasma. Relaxation to an
equilibrium steady-state field distribution generally
takes a few microwave periods. In this stage, the elec-
trodynamic part of the problem is solved.

Next, based on the average calculated fields and
using the Boltzmann equation, the coefficients are
determined that are necessary to solve the balance
equation for charged particles at each point of the spa-
tial mesh in the discharge chamber. A new steady-state
solution n(r, 2) to the balance equation for charged par-
ticles with given coefficients is found by the Gauss—
Zeidel method.

The above two-stage procedureisrepeated for anew
distribution of the electron density. The process is
repeated until it converges to a steady-state to within a
given accuracy, i.e., until steady-state spatial distribu-
tions of the densities and fields are reached.

Let usanalyze in more detail the applicability range
of the model.

The procedure of solving a set of Maxwell’s equa-
tionsallows oneto cal culate the time-resol ved structure
of electromagnetic fieldsin any dissipative system (v #
0). The charged particle distribution is obtained from
the balance equation. The parameters of the plasma
electron component are calculated using a homoge-
neous Boltzmann equation in the local two-term
approximation for the steady-state isotropic part of the
EEDF. It isthe use of the Boltzmann equationin such a
form that determines the applicability range of the
model.

It is well known that the nonlocal character of the
EEDF manifests itself when the characteristic electron
energy relaxation length A, exceeds the characteristic
plasma scale length A [13]. For the diffuse discharge
under consideration, we have A, ~ (D,T,)"? and 1, =
1V, ~ 1/0v4, Where D, is the ambipolar diffusion coef-
ficient, o is the average fraction of the electron energy
transferred to heavy particlesin one collision event, and
v, isthe effective collision frequency of electronswith
heavy particles. For hydrogen at a pressure of 1 torr, we
have v, ~ 10° s, & = 102, D, ~ 10* cm?/s, and A, <
1 mm. At a characteristic discharge scale length of A ~
10 mm, we obtain A, < A. Thisis certainly the case at
higher pressures. Hence, for any molecular gas, the
nonlocal character of the EEDF can beignored at pres-
sures higher than 1 torr. For noble gases, the lowest
pressure at which the nonlocal character of the EEDF
can be ignored shifts toward higher pressures because
of the larger energy relaxation length.

These estimates also show that the EEDF becomes
isotropic at scale lengths much shorter than 1 mm,
which validates the use of the two-term expansion of
the EEDF in spherical harmonics.

Itisknown that, in aquasi-homogeneous alternating
field, an electron acquires energy only in collisionswith
heavy particles (Joule heating). This mechanism is
characteristic of moderate- and high-pressures plasmas.

In alow-pressure plasma (w > v,;), there are narrow
localized plasmaresonance regions (with acharacteris-
ticsizeof A) inwhichthe electric field can bevery high.
In astrongly nonuniform field, there is an extramecha-
nism for the acceleration (heating) of electrons—the
so-caled “stochastic heating.” This process enriches
the high-energy part of the EEDF as compared to a
homogeneous plasma. Such an effect has been
observed experimentally; however, it disappears at
pressures higher than 50 mtorr [14, 15]. Hence, under
the conditions concerned, stochastic heating and, con-
sequently, the emergence of fast electrons is of minor
importance.

Thus, apressure of 0.5-1 torr is the lowest pressure
at which the model adequately describes the experi-
ment.

At high pressures, the limitation of our model is
related to the violation of the steady-state character of
the EEDF isotropic part. At low pressures, when w >
V., the EEDF is certainly steady-state. At pressures of
15-20 torr, we have v; ~ w < 1/1,, and the isotropic
part of the EEDF becomes non-steady-state at high
energies. At these pressures, the modeling can be inad-
equate, so that it is necessary to use a time-dependent
Boltzmann equation. At v, > w (which corresponds to
pressures of 50-100 torr), the EEDF is in equilibrium
with the microwavefield; hence, to calcul ate the EEDF,
one can use a time-independent Boltzmann equation
and the instant values of the fields obtained by solving
the electrodynamic problem.

4. RESULTS AND DISCUSSION

The experiments show that the bright electrode
sheath of an electrode microwave discharge is highly
inhomogeneous.

When viewed from the e ectrode end, the electrode
sheath is a glowing toroid. The intensities of the line
and band emission sharply increase inside the toroid.
The emission intensity is maximum near the sharp edge
of the electrode end.

It is well known that the electric field increases in
the vicinity of sharp inhomogeneities (like corners and
points). Our modeling of thefield structurein aplasma:
filled coaxia system showed that, inside the electrode
sheath, where the emission intensity is maximum, the
microwave field is enhanced. The field is maximum on
the bisectrix of the right-angle electrode edge and
sharply decreases with distance from the electrode. The
maximum electric field istwo to three times higher than
that in a uniform coaxial line. Such an increase is in
good agreement with the calculated field in the near-
field zone of an isolated antenna[16].
PLASMA PHYSICS REPORTS  Vol. 30
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Fig. 2. Self-consistently calculated distributions of the specific energy deposition in the plasmafor (a) a pressure of 1 torr, aninci-
dent power of 30 W, and an absorbed power of 18 W and (b) a pressure of 8 torr, an incident power of 30 W, and an absorbed power

of 20 W.

The increase in the electric field near the end of the
central electrode shows that this region plays an impor-
tant role in igniting and sustaining the discharge.

Figure 2 shows the distribution of the specific
energy deposition in plasma calculated using the self-
consistent model. One can see atoroidal region of the
maximum energy deposition near the edge of the elec-
trode end. Since the energy deposition and the plasma
emission intensity behave in the same manner, the
results of the calculations agree with the experimental
data.

Figure 3 shows the radial profiles of the density of
the excited hydrogen atoms responsible for Hg line
emission near the electrode end for different incident
powers and pressures. It can be seen that the profilesare
nonmonotonic: thereisamaximum near the edge of the
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electrode end (about 3 mm from the axis). The maxi-
mum is caused by the enhanced electric field in this
region. At higher distances from the axis, akind of pla-
teau is seen, which shrinks with increasing pressure.

The closer to the system axis, the lower the density
of the excited particles and the Hg line emission inten-
sity. It is shown experimentally that this effect is more
pronounced in cross sections closer to the electrode
edge. At large distances, the density has a maximum on
the discharge axis. The experiments also showed that
the higher the emission excitation threshold, the more
pronounced this effect. The observed distribution of the
emission intensity can be explained by the specific fea-
tures of the electric field distribution in the electrode
sheath.
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Fig. 3. Radia profiles of the densities of the excited hydrogen atoms (in the n = 4 state) determined from the emission intensity in
the Balmer-series Hp 486.1-nm linein a plane located 0.16 cm below the tube electrode end for (a) a pressure of 1 torr and incident

powers of Wi, = 80 (circles), 60 (closed triangles), 40 (open triangles), and 20 W (squares) and (b) an incident power of 80 W and
pressures of 1 (circles), 2 (closed triangles), 4 (open triangles), and 8 torr (squares).

The calculated radial profiles of the specific energy
deposition at different distances from the electrode end
are shown in Fig. 4. It can be seen that the calculated
profiles are in fair agreement with those shown in
Fig. 3. The maximum electron density in the electrode
sheath is dightly higher than 10'" cm=, which also
agrees with the experimental value. Thus, at low pres-
sures, there is aregion with a supercritical plasma den-
sity in the electrode sheath (at afrequency of 2.45 GHz
and v/w < 1, we have n, =7.6 x 10'° cm3). Hence, the
observed plateau on the profile of the specific energy

deposition can be attributed to the effect of the plasma
resonance. At high pressures, collisions reduce this
effect and the shapes of the profiles depend only
slightly on the ratio between the el ectron density and n,,
(at afrequency of 2.45 GHz and pressure of 8 torr, we
have n, = 3 x 10'' cm™). In this pressure range, the
maximum electron density increases proportionally to
the power absorbed in the plasma. Another characteris-
tic feature is that, over the entire pressure range under
study, the specific energy deposition is maximum at a
distance of ~3 mm from the axis. This fact indicates
PLASMA PHYSICS REPORTS  Vol. 30
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Fig. 4. Calculated radial profiles of the (a, ¢) specific energy deposition and (b, d) electron density at different distances Az from the
electrode end: (1) 0.03, (2) 0.06, (3) 0.18, and (4) 0.36 cm. The incident power is 30 W. The pressure and the absorbed power are

(a, b) Ltorr and 18 W and (c, d) 8 torr and 20 W.

that it is the presence of a sharp edge at the electrode
end that causes the increase in the electric field.

Thus, the numerical simulations of a self-sustained
diffuse microwave discharge satisfactorily describe the
electrode plasma of an electrode microwave discharge
in hydrogen. This confirms the assumption of [6] that
the electrode plasmais aregion of a self-sustained dis-
charge.

5. CONCLUSIONS

A two-dimensional computer code has been devel-
oped for self-consistently simulating a self-sustained
steady-state electrode microwave discharge operating
at the end of the inner conductor of a coaxial line. The
parameters of a diffuse discharge in hydrogen at pres-
sures of 1-8torr and incident powers of 20-100W have
been calculated. The discharge structure has been stud-
ied using optical spectroscopy. The numerical results
referring to the electrode region of the discharge arein
fair agreement with the experimental data. This con-
firms the early suggestion (inferred from experimental
data) about the combined “ self-sustained—non-self-sus-
tained” character of the electrode discharge. It has been
shown that the self-sustained discharge domain is
located in the electrode region of the discharge.
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