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Abstract—The cluster of galaxies A754 is undergoing a merger of several large structural units. X-ray
observations show the nonequilibrium state of the central part of the cluster, in which a cloud of cold
plasma ∼500 kpc in size was identified amid the hotter cluster gas. The X-ray image of A754 exhibits a
brightness discontinuity, which can be interpreted as a shock wave in front of a moving cloud of dense
gas. The shock parameters are determined from the jump in intergalactic gas density using the ROSAT
image. The estimated Mach number is M1 = 1.71+0.45

−0.24 at a 68% confidence level. c© 2003 MAIK “Nau-
ka/Interperiodica”.
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INTRODUCTION

Clusters of galaxies are the largest gravitationally
bound objects in the Universe. Mergers of clusters
result in the release of potential energy into the in-
tergalactic medium at a level of 1063 erg, mainly in the
form of heating by shock waves. Consequently, obser-
vations of shock waves in the intergalactic medium,
which provide information for studying the physical
processes that accompany the formation of clusters,
are of practical interest.

Here, we study A754, a rich cluster of galaxies at
z = 0.0541 in the stage of violent formation. ASCA
data clearly indicate that the central part of the clus-
ter is in a nonequilibrium state and hot and cold
regions are identifiable in it (Henriksen and Marke-
vitch 1996). The pattern probably represents the mo-
tion of a cold dense cloud through a hotter ambi-
ent gas. Structures of this kind were observed by
the Chandra satellite in several clusters (Markevitch
et al. 2000, 2001; Vikhlinin et al. 2001). The merging
parts of the clusters are expected to move at a su-
personic speed, which leads to the formation of shock
waves.

The ROSAT X-ray image of the cluster of galax-
ies A754 exhibits a surface-brightness discontinuity,
which can be interpreted as a shock wave in front of
a moving cloud of dense gas. The amplitude of the
surface-brightness discontinuity makes it possible to
determine the jump in gas density at the shock front
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and, hence, the Mach number M = v/vs, where v
is the shock velocity and vs is the speed of sound
in the medium. Unfortunately, the ROSAT energy
range (0.5–2.5 keV) does not allow us to determine
the gas temperature at the shock boundary; i.e., we
cannot independently verify the interpretation of the
brightness discontinuity as a shock wave using the
temperature jump.

Here, we estimate the distances by assuming that
H0 = 50 km s−1 Mpc−1. The measured velocity and
Mach number do not depend on H0.

DATA ANALYSIS
Figure 1 shows the ROSAT image of the cluster

of galaxies A754. The region of cold gas appears as
a bright cloud at the image center. By its shape and
position, the brightness discontinuity to the left from
the center can be interpreted as a shock in front of a
cloud of cold gas moving at a supersonic speed.

Quantitative information about the gas density
distribution can be obtained by analyzing the bright-
ness profile. The shape of the front of the putative
shock is well described by a circle with a radius of
∼1 Mpc. The circle center is taken as the refer-
ence point of distances. To determine the surface-
brightness profile, we took a ±15◦ sector with respect
to the front symmetry axis.1 The cluster-brightness

1The sector opening angle was determined by the size of the
brightness discontinuity region; the brightness profile for the
outer part of the shock was obtained in a wider sector (±20◦)
to improve the statistics.
2003 MAIK “Nauka/Interperiodica”



426 KRIVONOS et al.

 

1 Mpc

 

Cold cloud

Shock

Fig. 1. The ROSAT X-ray image of the cluster of galaxies A754 in the energy range 0.7–2.0 keV. The brightness discontinuity
to the left of the central body most likely corresponds to the shock.
profile was measured in concentric rings of equal
logarithmic width; the ratio of the inner and outer ring
radii was 1.01. We verified that varying the reference
point changed the measured jump in gas density only
slightly.

Measuring the gas-density distribution at large
radii requires a careful processing of X-ray images;
special attention should be given to the proper back-
ground subtraction and the correction for the loss of
sensitivity at large deviations from the optical axis.
The images that we used were obtained with the soft-
ware package of S. Snowden (Snowden et al. 1994),
which allows the periods of an anomalously high
background of particles and scattered solar X-ray
emission to be detected and eliminated. In addition,
the exposure maps are computed and all of the known
background components are fitted. The final result is
an image in a given energy range that contains only
the cluster radiation, pointlike X-ray sources, and the
persistent cosmic X-ray background. An optimal ra-
tio of the cluster surface brightness to the background
level is achieved by using data above 0.7 keV.

When measuring the X-ray brightness profile, we
eliminated all of the detectable pointlike sources and
all the extended sources unrelated to the main radi-
ation from the cluster. The cluster gives an appre-
ciable contribution to the total brightness even at
large distances from the center (∼2 Mpc). Therefore,
the region that could be used to directly determine
the background level is difficult to identify. For this
reason, we derived the background level by fitting the
brightness profile at large distances by the β model
(Cavaliere and Fusco-Femiano 1976) as follows:

I(r) = I0

(
1 + (r/rc)

2
)−3β+1/2

+ Ib, (1)

where I(r) is the surface brightness, Ib is the back-
ground intensity, and rc is the cluster core radius.

FITTING THE BRIGHTNESS PROFILE

The main parameter of the shock motion is the
Mach number, M = v/vs. The Mach number can
be expressed in a standard way (Landau and Lif-
shits 1988) in terms of the jump in any of the gas
parameters (density, pressure, temperature) at the
shock front. The most easily measurable quantity is
the density jump, because the gas density is related
to the emissivity by a simple relation: ε ∼ ρ2. Con-
sequently, the problem reduces to deprojecting the
brightness discontinuity.

The brightness profile can be best deprojected by
fitting the data by some analytic dependence. Since
the outer part of the cluster is most likely to have not
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 2. (a) The surface-brightness profile in the shock region. T
front along the direction of the shock propagation; the solid line
emissivity model (b) along the line of sight.

yet been perturbed by the shock, we can assume that
the gas-density profile is described by the standard β
model. Inside the shock front, we will be concerned
with a narrow range of radii in which the density
profile can be assumed, to sufficient accuracy, to be
a power-law one. Thus, we have the following model
of the plasma emissivity:

ε(r) =

{
ε2(r/R)α if r � R

εβ(1 + r2/r2c )−3β if r > R,
(2)

where R is the front position, ε2 is the postshock
emissivity, and εβ is the central emissivity for the β
model. The core radius rc was fixed at a typical value
of 250 kpc (Jones and Forman 1984).

The model emissivity profile was numerically in-
tegrated along the line of sight and folded with the
angular resolution of the telescope (∼25′′). Note that
the normalization of the β model in formula (2) can
be expressed in terms of the preshock emissivity ε1.
To determine the parameters of the above model,
we minimized the χ2 value for four parameters (ε2,
ε2/ε1, β, α). Figure 2 shows the derived model of the
gas emissivity distribution (Fig. 2b) and the surface-
brightness profile (Fig. 2a).

RESULTS
The emissivity jump obtained by fitting the bright-

ness profile is trivially transformed into the density
jump (ε2/ε1):

ρ2

ρ1
=
(
ε2
ε1

)1/2

= 1.98+0.44
−0.32. (3)
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he distances are measured from the center of curvature of the
represents the fitting curve obtained by integrating the plasma

The quoted errors at a 68% confidence level corre-
spond to ∆χ2 = 1 when one parameter concerned
is varied. From the ρ2/ρ1 ratio, we find the Mach
number of the shock with respect to the ambient gas:

ρ2

ρ1
=

(1 + γ)M2
1

2 + (γ − 1)M2
1

, (4)

where γ = 5/3 is the adiabatic index for monatomic
gas. From (4), we obtain M1 = 1.71+0.45

−0.24 at a 68%
confidence level (see Fig. 3).

The derived value of M1 corresponds to the gas
temperature jump T2/T1 = 1.72+0.55

−0.28. In principle,
measuring such a temperature discontinuity would be
an independent test of the validity of the interpretation
of the observed structure as a shock wave. Unfortu-
nately, the available Chandra and XMM observations
of A754 do not allow us to determine the gas tem-
perature outside the shock because of the low signal-
to-noise ratio. Inside the shock, the temperature is
measured reliably, T2 = 10 keV (Markevitch et al.
2003), from the Chandra data.

A useful quantity is the shock velocity relative to
the gas on the inner side of the discontinuity:

M2 =
(

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

)1/2

= 0.66 ± 0.07. (5)

The measured value of T2 allows us to deter-
mine the speed of sound and, hence, the absolute
shock velocity: v2 = 1070 ± 115 km s−1 and v1 =
2100+200

−150 km s−1.
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Fig. 3. The 68% and 90% confidence regions for two parameters of our model of intergalactic-gas radiation: the gas density
ratio at the shock boundary and the parameter β in the outer part of the cluster (see Eq. (2)). (a) The cross marks the point that
corresponds to the best-fit parameters; (b) χ2 versus Mach number.
The measured Mach number of the shock wave in
the cluster of galaxies A754 is close to its theoreti-
cally expected values for merging clusters: M = 2–3
(Sarazin 2002). This study is valuable in that the
measurements of shock parameters in clusters are
still quite scarce (Cyg A, Markevitch et al. 1999;
A3667, Vikhlinin et al. 2002; 1E0657−56, Marke-
vitch et al. 2002).
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Abstract—We discuss the integrated kinematic parameters of 20 M 51-type binary galaxies. A comparison
of the orbital masses of the galaxies with the sum of the individual masses suggests that moderately
massive dark halos surround bright spiral galaxies. The relative velocities of the galaxies in binary systems
were found to decrease with increasing relative luminosity of the satellite. We obtained evidence that the
Tully–Fisher relation for binary members could be flatter than that for local field galaxies. An enhanced
star formation rate in the binary members may be responsible for this effect. In most binary systems,
the direction of the orbital motion of the satellite coincides with the direction of the rotation of the main
galaxy. Seven candidates for distant M 51-type objects were found in the Northern and Southern Hubble
Deep Fields. A comparison of this number with the statistics of nearby galaxies provides evidence for the
rapid evolution of the space density of M 51-type galaxies with redshift z. We assume that M 51-type
binary systems could be formed through the capture of a satellite by a massive spiral galaxy. It is also
possible that the main galaxy and its satellite in some of the systems have a common cosmological origin.
c© 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

M 51-type (NGC 5194/95) binary systems con-
sist of a spiral galaxy and a satellite located near the
end of the spiral arm of the main component. Previ-
ously (Klimanov and Reshetnikov 2001), we analyzed
the optical images of about 150 objects that were
classified by Vorontsov-Vel’yaminov (1962–1968) as
galaxies of this type. Based on this analysis, we made
a sample of 32 objects that are most likely to be M 51-
type galaxies. By analyzing the sample galaxies, we
were able to formulate empirical criteria for classifying
a binary system as an object of this type (Klimanov
and Reshetnikov 2001): (1) the B-band luminosity
ratio of the components ranges from 1/30 to 1/3 and
(2) the satellite lies at a distance that does not exceed
two optical diameters of the main component.

Klimanov et al. (2002) presented the results of
spectroscopic observations of 12 galaxies from our
list of M 51-type objects, including rotation curves
for the main galaxies and line-of-sight velocities for
their satellites. Together with previously published
results of other authors, we have access to kinematic
data for most (20 objects) of our selected M 51-
type galaxies. Here, we analyze the observational data
for the galaxies of our sample. All of the distance-
dependent quantities were determined by using the

*E-mail: resh@astro.spbu.ru
1063-7737/03/2907-0429$24.00 c©
Hubble constant H0 = 75 km s−1 Mpc−1 (except in
Section 4).

2. MEAN PARAMETERS OF THE GALAXY
SAMPLE

The kinematic parameters for 12 binary systems
were published by Klimanov et al. (2002) (see Fig. 1
and the table in this paper). The corresponding data
for eight more systems from our list (object nos. 6,
10, 13, 14, 19, 21, 25, and 27; see Table 7 and Fig. 7
in Klimanov and Reshetnikov 2001) were taken from
the LEDA and NED databases.

The meanB-band absolute magnitude of the main
galaxy for 20 binary systems is −20m. 6 ± 0m. 3 (below,
the standard deviation from the mean is given as the
error). Therefore, the main components are relatively
bright galaxies comparable in luminosity to the Milky
Way. The mean luminosity ratio of the satellite and
the main galaxy is 0.16 ± 0.04. The mean appar-
ent flattenings of the main galaxy (〈b/a〉 = 0.61 ±
0.04) and its satellite (0.66 ± 0.03) roughly corre-
spond to the expected flattening of a randomly ori-
ented thin disk (2/π = 0.64). The satellites lie at a
projected distance of 〈X〉 = 19.0± 2.7 kpc or, in frac-
tions of the standard optical radius R25 measured
from the µ(B) = 25m arcsec−2 isophote, at a dis-
tance of (1.39± 0.11)R25. In going from the projected
linear distance to the true separation, we find that
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) The distribution of observed line-of-sight velocity differences between the main galaxy and its satellite. (b) The
velocity difference between the main galaxy and its satellite versus the projected linear separation between them.
the satellites are separated by a mean distance of
≈4/π × 1.39R25 = 1.8R25.

The mean maximum rotation velocity of the main
galaxy corrected for the inclination of the galactic
plane and for the deviation of the spectrograph slit
position from the major axis (see the next section
for more details) is 〈Vmax〉 = 190 ± 19 km s−1. If we
exclude the galaxies with b/a > 0.7 seen almost face-
on, then this value increases to 203 ± 16 km s−1

(12 pairs).
The mean difference between the line-of-sight ve-

locities of the galaxies and their satellites is 〈∆V 〉 =

Candidates for M 51-type galaxies in the Hubble Deep
Fields

Name I814 z
Spectral

type X

n45 21.26 1.012 Scd 2′′.95

n78 25.30 1.04: Irr

n350 21.27 0.320 Scd 3.36

n351 24.03 0.24: Irr

n888a 23.88 0.559 Irr 0.72

n888b 25.75

n938a 23.11 0.557 Scd 1.37

n938b 25.85

SB-WF-2033-3411a 22.76 0.55: Irr 1.44

SB-WF-2033-3411b 24.94

SB-WF-2736-0920a 22.01 0.59: Scd 1.54

SB-WF-2736-0920b 24.30

SB-WF-2782-4400a 23.05 0.53: Irr 0.89

SB-WF-2782-4400b 24.58
−9± 35 km s−1. The absolute value of this difference,
i.e., the difference with no sign, is 115 ± 18 km s−1.
The relatively low values of ∆V suggest that all ob-
jects of our sample are physical pairs. Remarkably,
the mean absolute value of the velocity difference for
M 51-type galaxies is close to that (137 ± 6 km s−1)
for 487 galaxy pairs from the catalog of Karachen-
tsev (1987) with a ratio of the orbital mass of the
pair to the total luminosity of its components f <
100. Note also that the measurement error of ∆V in
Klimanov et al. (2002) is, on average, only 20 km s−1.

Figure 1a (left panel) shows the observed ∆V
distribution. To a first approximation, this distribution
can be described by a Gaussian with the standard de-
viation σ = 140 km s−1 (dotted line). Figure 1b shows
a plot of the difference ∆V against the projected
linear separation between the main galaxy and its
satellite. The dashed lines in the figure represent the
expected (Keplerian) dependences for a point mass
with M tot = 2 × 1011M� located at the center of the
system.

Let us compare the mean values of the individual
and orbital mass estimates for M 51-type galaxies.
For a sample of binary galaxies with a randomly
oriented plane of the circular orbit with respect to
the line of sight, the total mass of the components
can be found as Morb = (32/3π)(X∆V 2/G), where
G is the gravitational constant (Karachentsev 1987).
For the objects of our sample, 〈Morb〉 = (2.9 ± 1.0) ×
1011M�. We will determine the individual masses of
the main components by using the maximum rota-
tion velocities (see the next section) and by assum-
ing that the rotation curves of the galaxies within
their optical radii are flat. For a spherical distribu-
tion of matter, we then obtain the mean mass of the
main galaxy, 〈Mmain〉 = (1.6 ± 0.4) × 1011M�, and
the mass-to-luminosity ratio, 〈Mmain/Lmain(B)〉 =
4.7 ± 0.9M�/L�,B . The ratio of the orbital mass of
M 51-type systems to the mass of the main galaxy
for the objects under consideration is 1.9± 0.5. Given
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 2. The relation between the satellite’s relative orbital
velocity and the luminosity ratio of the satellite and the
main galaxy.

the satellite’s mass, the ratio of the orbital mass of
the system to the total mass of the two galaxies
is ≈1.6 (for a fixed mass-to-luminosity ratio and a
mean luminosity ratio of the satellite and the main
galaxy equal to 0.16). If the orbits of the satellites
are assumed to be not circular but elliptical with a
mean eccentricity e = 0.7 (Ghigna et al. 1998), then
the orbital mass estimate increases by a factor of 1.5
(Karachentsev 1987). The ratio of the orbital mass of
the system to the total mass of the two galaxies also
increases by a factor of 1.5 (to 2.4). Consequently,
we obtained evidence for the existence of moder-
ately massive dark halos around bright spiral galaxies
within (1.5–2)R25.

In Fig. 2, k = |∆V |/Vmax is plotted against the
ratio of the observedB-band luminosities of the satel-
lite and the main galaxy (Ls/Lm), where Vmax is
the maximum rotation velocity of the main galaxy.
If |∆V |/Vmax is close to unity, then the relative ve-
locity of the satellite is approximately equal to the
disk rotation velocity of the main galaxy; if k ≈ 0,
then the satellite’s observed velocity is close to the
velocity of the main galaxy. We see a clear trend in the
figure: relatively more massive satellites show lower
values of k. If we restrict our analysis to satellites with
Ls/Lm < 0.5 (circles), then the correlation coefficient
of the dependence shown in Fig. 2 is −0.77; i.e.,
the correlation is statistically significant at P > 99%
(the diamond in the figure indicates the parameters
of the system NGC 3808A,B with Lc/Lm = 0.64).
The corresponding linear fit is indicated in the figure
by the dashed straight line. Low-mass satellites with
Lc/Lm < 0.2 are located, on average, on the exten-
sion of the rotation curve for the main galaxy and have
velocities close to Vmax (for them, 〈k〉 = 1.13 ± 0.19).
More massive satellites with 0.2 < Ls/Lm < 0.5 have
a lower relative velocity: 〈k〉 = 0.52 ± 0.15.
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 3. The relation between the observed optical radius of
the satellite and the projected linear distance to the main
galaxy. The parameters of the satellites with Ls/Lm >
0.1 and Ls/Lm ≤ 0.1 are indicated by the circles and
diamonds, respectively. The straight line indicates the
expected values of the tidal radius for a central point mass
(which approximates the main galaxy) and a mass ratio of
the satellite and the main galaxy equal to 1/3.

There is another curious trend: more distant satel-
lites are, on average, more massive. This trend can be
explained by observational selection when choosing
candidates for M 51-type galaxies. Another plausi-
ble explanation is that the massive satellites located
near the main galaxy have a shorter evolution scale,
because the characteristic lifetime of a satellite near
a massive galaxy due to dynamical friction is in-
versely proportional to the satellite’s mass (Binney
and Tremaine 1987).

The optical radius of the satellite is plotted against
the projected linear distance to the center of the main
galaxy in Fig. 3. The dashed straight line in the figure
indicates the expected tidal radius of the satellite as
a function of the distance to the point mass (Binney
and Tremaine 1987); the mass ratio of the satellite
and the main galaxy was taken to be 1/3 (this was
done in accordance with our formal criterion for clas-
sifying a system as being of the M 51 type (see the
Introduction)). As we see from the figure, in general,
the satellites satisfy the tidal constraint imposed on
their sizes. Moreover, the relatively more (circles) and
less (diamonds) massive satellites show steeper and
flatter dependences, respectively. If the satellite’s size
is limited by the tidal effect of the main component,
then this is to be expected, because the tidal radius is
roughly proportional to (Ms/Mm)1/3, where Ms/Mm
is the mass ratio of the satellite and the main galaxy
(Binney and Tremaine 1987).

In ten of the twelve binary systems whose ob-
servations are presented in Klimanov et al. (2002),
the satellite moves relative to the dynamic center
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Fig. 4. The Tully–Fisher relation for M 51-type galaxies.
The parameters of the main galaxies and their satellites
are indicated by the circles and diamonds, respectively.
The heavy solid straight line represents the TF relation for
spiral galaxies as constructed by Tully et al. (1998) and
the dashed line represents our TF relation for M 51-type
galaxies; the thin straight line indicates the TF relation for
spiral galaxies at z ∼ 0.5 (Ziegler et al. 2002).

of the main component in the same direction as
the direction of rotation of the part of the main
galaxy’s disk facing it. In two cases (NGC 2535/36
and NGC 4137), the motion of the satellite may
be retrograde, although both main galaxies in these
systems are seen almost face-on and this conclusion
is preliminary.

3. THE TULLY–FISHER RELATION

The relation between luminosity and rotation
velocity (the Tully–Fisher (TF) relation) is one of
the most fundamental correlations for spiral galaxies.
This relation is widely used to study the large-
scale spatial distribution of galaxies. In addition, it
is an important test for the various kinds of models
that describe the formation and evolution of spiral
galaxies.

The observed rotation curves of M 51-type galax-
ies are often highly irregular (see Fig. 1 in Klimanov
et al. 2002). Therefore, to estimate the maximum ro-
tation velocity, we used the empirical fit to the rotation
curve suggested by Courteau (1997):

v(r) = v0 + vc(1 + x)β(1 + xγ)−1/γ ,

where r is the distance from the dynamical center, v0
is the line-of-sight velocity of the dynamical center,
vc is the asymptotic rotation velocity, and x = rt/r
(β, γ, and rt are the parameters). This formula well
represents the rotation curves for most spiral galaxies
(Courteau 1997).
Figure 4 shows the distribution of the parameters
of M 51-type galaxies in the absolute magnitude
(M(B))—maximum rotation velocity (Vmax) plane.
The values of M(B) for the sample objects were
corrected for internal extinction, as prescribed by the
LEDA database. We took the values of vc (see above)
obtained by fitting the observed rotation curves as
the maximum rotation velocity for most objects. In
addition, these values were corrected in a standard
way for the disk inclination to the line of sight and
for the deviation of the spectrograph slit position from
the galaxy’s major axis. For eight galaxies, we esti-
mated Vmax from the LEDA H I line widths.

As we see from Fig. 4, the parameters of M 51-
type galaxies are located along a flatter relation than
are those of nearby spiral galaxies. The mean relation
for the objects of our sample indicated by the dashed

straight line is L(B) ∝ V
−(2.2±0.6)

max , while the relation

for local field spiral galaxies is L(B) ∝ V
−(3.1–3.2)

max
(Tully et al. 1998; Sakai et al. 2000). The bright
(massive) binary members are located near the stan-
dard relation (Fig. 4). This location is consistent with
the conclusion that the TF relation for giant spiral
galaxies does not depend on their spatial environment
(Evstigneeva and Reshetnikov 2001). The M 51-type
galaxies with Vmax ≤ 150 km s−1 lie, on average,
above the relation for single galaxies and, at a fixed
Vmax, show a higher luminosity (or, conversely, at
the same luminosity, they are characterized by, on
average, lower observed values of Vmax).

A similar fact (a different TF relation for the mem-
bers of interacting galaxy systems and an excess
luminosity of the low-mass members of these sys-
tems) was, probably, first pointed out by Reshet-
nikov (1994). The members of close pairs of galax-
ies also exhibit a flatter TF relation: L(R) ∝ V −2.2

max
(Barton et al. 2001). Barton et al. (2001) argue that
interaction-triggered violent star formation in galax-
ies could be mainly responsible for the different slope
of the TF relation for the binary members. Starbursts
more strongly affect the observed luminosities of the
low-mass galaxies by taking them away from the
standard TF relation.

Violent star formation also appears to be respon-
sible for the flatter TF relation for M 51-type galax-
ies. As we showed previously (Klimanov and Reshet-
nikov 2001), IRAS data on the far-infrared radiation
from galaxies suggest an enhanced star-formation
rate in M 51-type systems compared to local field
objects. Unfortunately, the IRAS angular resolution
is too low to separate the contributions from the main
galaxy and its satellite to the observed radiation. Fig-
ure 4 provides circumstantial evidence for violent star
formation in both binary components.
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Interestingly, a flatter TF relation has also been
recently found (Ziegler et al. 2002) for spiral galaxies
at redshifts z ∼ 0.5 (see Fig. 4). The similarity be-
tween the TF relations for nearby interacting/binary
galaxies and distant spirals suggests that violent star
formation triggered by interaction (mergers) could be
responsible for the observed luminosity evolution in
distant low-mass galaxies. The rate of interactions
and mergers between galaxies rapidly increases to-
ward z ∼ 1 (Le Fevre et al. 2000; Reshetnikov 2000).
This mechanism must undoubtedly contribute to the
luminosity evolution and, hence, to the observed TF
relation.

4. EVOLUTION OF THE FREQUENCY OF
OCCURRENCE OF M 51-TYPE GALAXIES

Let us consider how the space density of M 51-
type galaxies changes with increasing redshift z. To
this end, we studied the original frames of the North-
ern and Southern Hubble Deep Fields (Ferguson
et al. 2000) and selected candidates for distant ob-
jects of this type. In selecting objects, we used the
same criteria as those used to make the sample of
nearby galaxies. Unfortunately, there are no pub-
lished spectroscopic z estimates simultaneously for
the main galaxy and for its satellite for any of the
systems.

Each of the Deep Fields contains several thousand
galaxies; the images of many of them are seen in pro-
jection closely or superimposed on one another, which
makes it difficult to select candidates for M 51-type
objects. Therefore, we restricted our analysis only to
relatively bright and nearby galaxies (z < 1.1).

The candidates for distant M 51-type objects are
listed in the table. The first column of the table gives
the galaxy name from the catalog of Fernandez-Soto
et al. (1999) (the first four and last three objects
are located in the Northern and Southern Fields,
respectively); the second column gives the galaxy’s
apparent magnitude in the HST I814 filter (for the
first two systems, we took the estimates from the
catalog of Fernandez-Soto et al.; for the remain-
ing systems, we provided our own magnitude esti-
mates); the third column gives the redshift (the spec-
troscopic z estimates (Cohen et al. 2000) are given
with three significant figures; the photometric z esti-
mates (Fernandez-Soto et al. 1999) are marked by
a colon); the fourth column gives the spectral type,
which characterizes the galaxy’s spectral energy dis-
tribution (Fernandez-Soto et al. 1999); and the last
column contains our measurements of the angular
separation between the nuclei of the main galaxy and
its satellite.

The integrated parameters of the selected candi-
dates for M 51-type systems are close, within the
ASTRONOMY LETTERS Vol. 29 No. 7 2003
error limits, to those of nearby systems (see Sec-
tion 2). Thus, the ratio of the observed luminosities
of the satellite and the main galaxy is 0.13 ± 0.07
(in the I814 filter, which roughly corresponds to the
B band in the frame of reference associated with
the objects themselves at the mean redshift of the
sample under consideration); the mean observed
separation between the main components and their
satellites is 12 ± 7 kpc. The absolute magnitude of
the main galaxies that was estimated by applying
the k correction (Lilly et al. 1995) is M(B) =
−19m. 4 ± 1m. 4. (These values, as well as those given
below, were calculated for a cosmological model with
a nonzero Λ term: Ωm = 0.3, ΩΛ = 0.7, and H0 =
65 km s−1 Mpc−1.

To estimate the evolution rate of the space density
of galaxies with z, we use the same approach that was
used by Reshetnikov (2000). By assuming that the
space density of M 51-type galaxies changes as

n(z) = n0(1 + z)m

(n(z) is the number of objects per unit volume (Mpc3)
at redshift z and n0 = n(z = 0)), we calculate the
expected number of galaxies in the direction of the
Deep Fields in the z range of interest for various
exponents m.

The most important parameter required for this es-
timation is the spatial abundance of M 51-type galax-
ies in the region of the Universe close to us (n0). Ac-
cording to Klimanov (2003), M 51-type galaxies ac-
count for 0.3% of the field galaxies and about 4% of the
binary galaxies. Interestingly, this estimate is close to
the frequency of occurrence estimated by Vorontsov-
Vel’yaminov (1975), who assumed that M 51-type
galaxies accounted for about 10% of the interacting
galaxies. Assuming that about 5% of the galaxies
are members of interacting systems (Karachentsev
and Makarov 1999), we find that M 51-type systems
account for ≈0.5% of all galaxies. By integrating
the luminosity function of the field galaxies taken
from the SDSS and 2dF surveys (Blanton et al.
2001; Norberg et al. 2002) in the range of absolute
magnitudes M(B) from −17m to −22m. 5, we can
estimate the space density of field galaxies in this
luminosity range as 0.017 Mpc−3 and, hence, n0 =
5.1 × 10−5 Mpc−3.

Integrating the expression n0(1 + z)m over the z
range from 0.2 to 1.1, we found that in the absence
of density evolution (m = 0), the expected number
of M 51-type galaxies in the two fields is 0.8. The
observed number of objects (seven) exceeds their ex-
pected number by more than two standard Poisson
deviations (σ =

√
7 = 2.65). Despite the poor statis-

tics, this result provides evidence for the evolution of
the spatial abundance of M 51-type objects with z.
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The exponent m = 3.6 corresponds to the observed
number of galaxies. The formal spread in this value
that corresponds to the range of the number of objects
from 7 −

√
7 to 7 +

√
7 is +0.5

−0.8. The actual error in the
m estimate may be much larger, for example, because
of the uncertainty in n0.

Of course, the estimated evolution rate depends
on the assumed cosmological model. For example,
for a flat Universe with a zero Λ term and H0 =
75 km s−1 Mpc−1, the exponent m increases to 4.8.

5. DISCUSSION

A typical M 51-type binary system is a bright spi-
ral galaxy with a relatively low-mass satellite physi-
cally associated with it located near the boundary of
its disk. In most cases, the satellite shows prograde
motion; i.e., it rotates in the same direction as the
main galaxy (see Section 2). Observational selection
may be responsible for this peculiarity, because the
satellite whose direction of orbital motion coincides
with the direction of rotation of the main galaxy can
excite and maintain a large-scale two-arm pattern
in the galactic disk. If the motion of the satellite
is retrograde, then the tidal response will be much
weaker. The presence of a spiral pattern is one of
the criteria for classifying a galaxy as an M 51-type
object, and three quarters of them show a large-scale
two-arm pattern (Klimanov and Reshetnikov 2001).
Consequently, the predominance of prograde motions
of the satellites in objects with a well-developed two-
arm spiral pattern can serve as a confirmation of the
tidal nature of the spiral arms in such galaxies.

Other indications of the mutual influence of the
galaxies in M 51-type systems include an enhanced
star-formation rate (as evidenced by the high far-
infrared luminosities of the systems (Klimanov and
Reshetnikov 2001) and, possibly, by a flatter Tully–
Fisher relation (Fig. 4)) and the existence of a tidal
constraint on the sizes of the satellites (Fig. 3).

M 51-type binary systems are relatively rare ob-
jects. According to Klimanov (2003), only ∼0.7% of
the spiral galaxies in the range of absolute B mag-
nitudes from −16m to −22m have a relatively bright
satellite near the end of the spiral arm and can be
classified as objects of this type.

As was shown in the preceding section, the frac-
tion of M 51-type galaxies increases with redshift.
Interestingly, within the error limits, the rate of
increase in the relative abundance of these objects
(m = 3.6+0.5

−0.8) roughly corresponds to the rate of
increase in the number of binary and interacting
galaxies. Thus, the fraction of galaxies with tidal
features is proportional to (1 + z)m with m = 4 ± 1
(Reshetnikov 2000); the fractions of merging and
binary galaxies evolve with m = 3.4 ± 0.6 and 2.7 ±
0.6, respectively (Le Fevre et al. 2000).

Let us now try to describe the possible origin and
evolution of M 51-type binary systems. Numerical
calculations of the formation of galaxies performed
in terms of CDM (cold dark matter) models indicate
that galaxies are formed inside extended dark halos;
many less massive subhalos must be contained inside
a massive halo (see, e.g., Kauffmann et al. 1993;
Klypin et al. 1999). Thus, the halo of a galaxy with a
mass comparable to the mass of the Milky Way must
include several tens of satellites of different masses
within its virial radius of 200–300 kpc (Benson et al.
2002a). Numerical calculations suggest that ≤5% of
the galaxies similar to the Milky Way have satellites
with a V -band luminosity of −18m (Benson et al.
2002b). Consequently, such satellites (their luminos-
ity is typical of the satellites of M 51-type objects)
are relatively but not extremely rare. Recall that our
Galaxy has such a satellite, the Large Magellanic
Cloud, at a distance of about 50 kpc.

What is the subsequent fate of the relatively mas-
sive satellites formed in the halos of galaxies similar to
the Milky Way? The evolution of the satellites will be
governed mainly by two processes: (1) dynamical fric-
tion, which will cause the satellite’s orbital decay until
the satellite merges with the main component; and (2)
tidal stripping, which causes a decrease in the satel-
lite’s mass and, as a result, an increase in the lifetime
of its separate existence from the main galaxy. Recent
studies suggest that the lifetime of a satellite under
dynamical friction can be much longer than assumed
previously (see, e.g., Colpi et al. 1999; Hashimoto et
al. 2003). In addition, this lifetime weakly depends
on the orbital eccentricity of the satellite (Colpi et
al. 1999).

Cosmological calculations indicate that the satel-
lites formed within the massive halo of a central object
are in highly elongated orbits with a mean eccentricity
of e = 0.6–0.8 (Ghigna et al. 1998). If such satellites
are assumed to be observed in M 51-type systems
mostly near the orbital pericenter (in this case, their
tidal effect on the disk of the main galaxy is at a
maximum), i.e., rΠ = 24 kpc, then the distance at
the apocenter is 100–150 kpc and the orbital period
of the satellite is 3–6 Gyr. In Hubble time, such a
satellite would make only 2 to 4 turns and might not
be absorbed by the central galaxy by z = 0. During its
first encounter with the main galaxy, the satellite can
lose ∼50% of its mass, which significantly increases
the time of its orbital evolution (Colpi et al. 1999).
Consequently, the “cosmological” satellites formed
on the periphery of the halos of central galaxies could
in several cases survive by z = 0 and be observed
together with the main components as M 51-type
binary systems.
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Another, apparently more plausible scenario for
the formation of the binary systems under consider-
ation is the capture of a relatively low-mass object
by a central galaxy during their chance encounter.
At present, the interactions of galaxies are relatively
rare events, but they are observed more and more
often with increasing z (at least up to z ≈ 1). Whereas
only ≈5% of the galaxies at z = 0 are members of in-
teracting systems with clear morphological evidence
of perturbation (Karachentsev and Makarov 1999),
this fraction at z = 1 is ≈50% (Reshetnikov 2000;
Le Fevre et al. 2000). Thus, an event during which
a massive galaxy at z ≥ 0.5 captures a satellite seems
quite likely. This event is all the more likely since the
peculiar velocities of the galaxies were earlier lower
and, hence, their chance encounters occurred with
lower relative velocities and, more often, led to the
formation of bound systems or mergers (see, e.g.,
Balland et al. 1998). The orbital period in a circular
orbit with a semimajor axis of a = 24 kpc around
a galaxy similar to the Milky Way after 0.5–1 Gyr.
Consequently, in several Gyr (recall that an age equal
to about half of the Hubble time corresponds to z =
1), most of such satellites will be absorbed by the main
galaxies (Colpi et al. 1999; Penarrubia et al. 2002);
by the time that corresponds to z = 0, they should
be observed rarely. This scenario is confirmed by our
evidence for the relatively rapid evolution of the space
density of M 51-type objects with z.

Thus, the currently observed M 51-type systems
could have both a primordial origin and a more re-
cent origin—through the capture of a satellite by the
main galaxy. Mixed scenarios are also possible, for
example, when an encounter with another galaxy can
change the orbit of the peripheral satellite and push it
closer to the main galaxy. Of course, the actual pat-
tern of formation and evolution of the binary systems
under consideration is much more complex, and it
should be tested by numerical calculations.

How does the galaxy M 51, the prototype of
this class of objects, fit into the scenarios described
above? It should be noted that in some respects,
this binary system is not a typical representative of
the M 51-type systems. For example, the mass ratio
of the satellite and the main galaxy for it is 1/3 or
even 1/2, a value that is larger than that for a typical
binary system of this type. The dynamical structure
of the binary system is not completely understood
either. The apparent morphology and kinematics of
M 51 can be explained both in terms of the models
according to which we observe the separation of the
galaxies after their first encounter (Durrell et al.
2003) and in terms of the approach according to
which multiple encounters of the satellite and the
main galaxy have already taken place in this system
(Salo and Laurikainen 2000). In the former case, the
ASTRONOMY LETTERS Vol. 29 No. 7 2003
system M 51 has, probably, formed recently (we are
observing it several hundred Myr after the passage
of the satellite through the pericenter) during a close
encounter of the galaxies NGC 5194 and NGC 5195;
in the latter case, this system is much older and its
age can reach several Gyr.

In conclusion, note that because of the relatively
small number of systems studied, some of our results
(a different slope of the TF relation and an increase
in the frequency of occurrence of M 51-type galaxies
with z) are preliminary and should be confirmed using
more extensive observational data.
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Abstract—We consider the effects of projection, internal absorption, and gas- or stellar-velocity dispersion
on the measured rotation curves of galaxies with edge-on disks. Axisymmetric disk models clearly show
that the rotational velocity in the inner galaxy is highly underestimated. As a result, an extended portion
that imitates nearly rigid rotation appears. At galactocentric distances where the absorption is low (i.e., it
does not exceed 0.3–0.5m kpc−1), the line profiles can have two peaks, and a rotation curve with minimum
distortions can be obtained by estimating the position of the peak that corresponds to a higher rotational
velocity. However, the high-velocity peak disappears in high-absorption regions and the actual shape
of the rotation curve cannot be reproduced from line-of-sight velocity estimates. In general, the optical
rotation curves for edge-on galaxies are of little use in reconstructing the mass distribution in the inner
regions, particularly for galaxies with a steep velocity gradient in the central region. In this case, estimating
the rotation velocities for outer (transparent) disk regions yields correct results. c© 2003 MAIK “Nau-
ka/Interperiodica”.

Key words: galaxies—rotation and internal absorption.
1. INTRODUCTION

The rotation curve V (r) is the most important
characteristic of disk galaxies. It not only provides
information about the mass distribution but also al-
lows empirical methods for determining the luminos-
ity (distance) from the maximum rotational velocity
to be used. For spiral galaxies with edge-on disks,
constructing the rotation curve is difficult because of
the following two complicating factors: projection and
internal absorption. The two effects depend both on
the shape of the rotation curve and on the distribution
of the radiation sources and the absorbing medium in
the galaxy.
The rotation curves or, to be more precise, one-

dimensional line-of-sight velocity distributions over
the disk were obtained for many edge-on galaxies.
A distinctive feature of many of these galaxies is an
extended region of rigid rotation (a monotonic in-
crease in the velocity). A nearly linear increase in the
line-of-sight velocity up to large galactocentric dis-
tances was pointed out in the first kinematic studies
of galaxies with thin disks (Goad and Roberts 1981).
These authors were, probably, the first to note that the
rigidly rotating part of the rotation curve in edge-on
galaxies could be an artifact and that the effects of a
nonuniform dust distribution require drawing the en-
velope an that bounds the positions of the data points

*E-mail: zasov@sai.msu.ru
1063-7737/03/2907-0437$24.00 c©
in the radius–measured rotational velocity diagram
from above. Bosma et al. (1992) clearly showed the
effect of absorption on the shape of the rotation curve
by comparing the optical and radio rotation curves
for two edge-on galaxies (NGC 801 and NGC 100).
As was shown by these authors using simple dust-
containing disk models as an example, absorption
rather than light scattering by dust affects the ob-
served rotation-velocity estimates. They found that
the absorption effect significantly decreases only if the
disk orientation differs from the “edge-on” orientation
by more than 5◦.
Subsequently, comparison of the shape of the ro-

tation curve in the inner region with the disk in-
clination to the line of sight for a large number of
galaxies confirmed that the gradient in the measured
rotational velocity in the inner galaxy is actually lower
for strongly inclined disks, and this effect is more
pronounced for luminous galaxies, which, on average,
exhibit stronger internal absorption (Giovanelli and
Haynes 2002).
Curiously, at a sufficiently high optical depth, the

effect of the diffuse dust medium on the mass estimate
may prove to be significant not only for disk galaxies
but also for slowly rotating (elliptical) galaxies (see
Baes and Dejonghe (2000) and references therein).
More than 300 rotation curves for edge-on galax-

ies (from the Flat Galaxy Catalog (FGC) of Kara-
chentsev et al. 1993) were obtained with the 6-m
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Examples of the observed rotation curves for edge-on galaxies: (a) typical rotation curves; (b) examples of galaxies with
a step on the rotation curve, and (c) examples of galaxies with different distributions of themeasured velocities on different sides
of the center. The filled and open circles correspond to the receding and approaching sides of the galaxy, respectively (Makarov
et al. 1997, 1999; Karachentsev and Zhou Shu 1991). The galaxy number in the FGC catalog (Karachentsev et al. 1993) is
indicated.
telescope at the Special Astrophysical Observatory
of the Russian Academy of Sciences (see Makarov
et al. (2000) and references therein). The measure-
ments confirmed that the overwhelming majority of
these galaxies have an extended rigidly rotating por-
tion, which occasionally extends to the outer bound-
ary of the measured rotation curve, although there
are exceptions (Makarov et al. 1997a, 1997b, 1999).
As an example, Fig. 1a shows several typical rotation
curves for galaxies from Makarov et al. 1997a). Fig-
ures 1b and 1c illustrate less common features of the
rotation curves, which are discussed below (in Sub-
sections 3.2 and 3.3). The following questions arise
in connection with the interpretation of the rotation
curves: How do various effects affect the measured
rotation velocities of such galaxies, and can the actual
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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rotation curve of the galaxy and an estimate of the
maximum disk rotational velocity be directly obtained
from observations?
Here, for axisymmetric galaxy models with given

rotation curves, we compute the line-of-sight velocity
distributions Vs(x) along the major axis of an edge-
on disk under various assumptions about the spatial
distribution of the gas (star) density—both in the
absence and in the presence of internal absorption in
the galaxy.

2. GALAXY MODELS

2.1. Absorption-Free Models

The case with low internal absorption can actually
apply to rotation-velocity measurements in the radio
wavelength range or in galaxies with a very low inter-
stellar dust abundance or to velocity measurements in
the outer galaxy with a small optical depth τ .
In the absence of internal absorption, the maxi-

mum values of the Doppler rotational velocity compo-
nent correspond to the regions located near a line per-
pendicular to the line of sight that crosses the galaxy
along its diameter (we will arbitrarily call it the major
axis of the galaxy). Therefore, the maximum-velocity
estimates for sources at a given galactocentric dis-
tance must represent (to within the velocity disper-
sion) the actual circular rotational velocity. However,
in general, this velocity will not necessarily corre-
spond to the centroid (barycenter) of the line profile,
because its position depends on the distribution of not
only the velocity but also the volume luminosity along
the line of sight.
We assume that the rotational velocity of the disk,

as well as its brightness in the spectral line used
to measure the velocity, are distributed axisymmet-
rically. Denote the volume luminosity in the line by
S(r). Let the x axis correspond to the major axis of
the galaxy and the y axis be directed along the line
of sight (Fig. 2a). The specific luminosity-weighted
mean velocity along the line of sight is then given by
the expression

Vs(x) =

y0∫
−y0

S(r)Vϕ(r) x√
x2 + y2

dy

y0∫
−y0

S(r)dy
, (1)

where R is the disk radius, r =
√
x2 + y2, and the

integration limit is y0 =
√
R2 − x2.

Since the models are axisymmetric, below we as-
sume that the distance from the disk center in the x
projection is always positive.
Let us consider how the actual shape of the ro-

tation curve Vϕ(r) and the peculiarities of the mass
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 2. (a) Determining the rotational velocity for an
edge-on disk of radiusR. At the point (x, y), the disk has
the rotational velocity Vϕ. The integration is performed
from −y0 to y0. (b) The three types of rotation curves Vϕ

considered here (see also the text). (c) The line-of-sight
velocity distribution relative to the center of the galaxy
along its major axis Vs(x) for the rotation curves shown
in Fig. 2b without an allowance for internal absorption.

distribution in the disk affect the dependence Vs(x)
(the observed rotation curve).
Let the disk volume luminosity in the spectral line

used to estimate the velocity decrease exponentially
with r:

S(r) = S0 exp(−r/L), (2)
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Fig. 3. The line-of-sight velocity distributions Vs(x) for a
gaseous disk with a chosen rotation curve (heavy lines).
The models differ by the radial scale lengths L of the
emission gas: L = (1) 3, (2) 1.5, (3) 6, and (4) 6 kpc with
an allowancemade for the central ring; (a) for the rotation
curve Vϕ of the first type (line 1 in Fig. 2b), (b) for the
rotation curve Vϕ of the third type (line 3 in Fig. 2b).

where L is the radial scale length of the disk bright-
ness in the emission line or, in the case where the
velocities are determined from absorption lines, the
radial scale length of the stellar disk. We assume,
for certainty, that R = 4L. The disk contribution to
the observed line profile is assumed to be zero at
galacticentric distances r > R. As an illustration, we
restrict our analysis to the following three types of
rotation curves with different shapes in the inner disk
(r � 2L) (Fig. 2b):
(1) the rotation curve Vϕ1 typical of galaxies with-

out massive bulges (the dotted line in Fig. 2b),
(2) the rotation curve of the second type Vϕ2 that

takes place in the case of a low-mass bulge responsi-
ble for the steeper velocity gradient in the inner galaxy
(the dashed line in Fig. 2b), and
(3) the rotation curve Vϕ3 with a circumnuclear

rotation velocity maximum (the solid line in Fig. 2b)
that reflects the existence of a massive concentrated
bulge.
In all of these cases, the rotation curve flattens out

at large r.
Figure 2c shows the radial dependences of the disk

velocity along the line of sight Vs(x) calculated using
formula (1) for the three types of rotation curves under
consideration in the absence of absorption. As we see,
in all of these cases, the rotational velocity in the en-
tire disk is significantly underestimated, particularly
in the central region r � 2L. The difference between
the curves of the first and second types virtually van-
ishes and the underestimation of the rotational veloc-
ity is largest for the rotation curve Vϕ3. Only at the
very edge of the disk does the approximate equality
Vs � Vϕ holds. Since the velocity curves Vs(x) de-
pend only slightly on the actual shape of the rotation
curve Vϕ(r), they do not allow the mass distribution
in the galaxy to be reconstructed.
For any of the adopted dependences Vϕ(r), the

velocity Vs(x) rapidly increases with decreasing ra-
dial brightness scale length L in the spectral line,
approaching Vϕ(r) (Figs. 3a and 3b). However, in
general, the shape of the curve Vs(x) weakly depends
on L for any type of rotation curve.
The emission-gas distribution often appreciably

deviates from an exponential one, particularly in the
central region. In many spiral galaxies, gas forms a
wide ring: the density exponentially decreases only at
large r, while the central region exhibits a deficit of
gas (Van den Bosch et al. 2000):

S(r) ∝ rβ exp
(
−r/Lgas

)
, (3)

where the values of β lie within a wide range, β =
0.2–8 (Van den Bosch 2000).
The model with a gas ring at the radius of r = Lgas

for β = 1 yields the observed rotation curve Vs(x)
shown in Figs. 3a and 3b (line 4). The brightness
decline in the central part of the galaxy causes an even
more significant decrease in the measured Vs(x). This
effect is enhanced with increasing β. As a result, we
can obtain a nearly linear dependence of the line-of-
sight velocity for most of the disk.

2.2. Models with Absorption

When light passes through the disk matter, the
contribution from the farther regions of the galaxy is
smaller than the contribution from its regions located
closer to the observer. As an illustration, Fig. 4 shows
the lines of equal optical depth τ . Dust-containing
galaxies are virtually opaque to the light that prop-
agates in the disk at a small angle to its plane. There-
fore, we can assume that the light from the farthest
region does not reach the observer. The light from
the middle region, where the line-of-sight rotational
velocity is at a maximum, is significantly attenuated;
the closer the center of the system, the stronger the
absorption effect. As a result, in the central region
of the galaxy (r � R/2), the nearest region, in which
the line-of-sight velocity is low, mainly contributes to
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 4.A scheme that shows the effect of internal absorp-
tion in the galaxy on the measured rotational velocity. The
dotted lines represent τ ≈ 1, and the solid lines represent
the growth of τ along the line of sight.

the light. When corrected for absorption, relation (1)
takes the form

Vs(x) =

y0∫
−y0

S(r) exp(−τ(x, y))Vϕ(r)
x√

x2 + y2
dy

y0∫
−y0

S(r) exp(−τ(x, y))dy
,

(4)

where the quantity τ(x, y), which characterizes the
optical depth per unit length in the disk plane, is de-
termined by the dust distribution function fdust(x, y):

τ =

y∫
y0

fdust (x, ξ) dξ. (5)

For simplicity, we restrict our analysis to an ax-
isymmetric exponential dust distribution:

fdust(x, y) = αd exp

(
−
√
x2 + ξ2

Ld

)
, (6)

where Ld is the radial scale length of the distribution
of the absorbing medium and αd is the normaliza-
tion parameter. Following the gas-density distribu-
tion, the function τ(x) decreases with galactocentric
distance and becomes zero at r = R. Let us define the
parameter τ0(x) as the optical depth per unit length
(1 kpc) on the major axis of the galaxy at the galac-
tocentric distance r = x. Being proportional to fdust,
this quantity reflects the density of the absorbing
medium at a given galactocentric distance x. When
we constructed the model dependences of the line-of-
sight velocity along the galactic disk, we varied the
parameter αd between 0 and 6, which corresponds
to a variation of the optical depth τ0 between 0 and
2.2 kpc−1 at a galactocentric distance x = 3 kpc.1

1The opacity in units of τ kpc−1 roughly corresponds to the
attenuation in magnitudes per 1 kpc.
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Fig. 5. The absorption-corrected line-of-sight velocity
distributions Vs(x) for the radial scale length of the dust
distribution L = Ld = 3 kpc. (a) The dependences Vϕ(r)
(a bulgeless model) and Vs(x) for various optical depths
at r = 3 kpc: (1) τ0 = 0, (2) 0.37, (3) 0.73, (4) 1.46, and
(5) 2.2 kpc−1. (b) The same for the rotation curve of the
third type (see Fig. 2b).

Figure 5 shows the results of our calculations
using formula (4) with an allowance made for re-
lations (2), (5), and (6) for the radial scale lengths
of the distributions of the emission-line brightness
and the dust density equal to L = 3 kpc and Ld =
3 kpc, respectively, at various values of τ0. In all
cases, the absorption greatly decreases the velocity
Vs(x), except for the outer, relatively transparent part
of the galaxy. As a result, the observed rotation curve
straightens out. Therefore, in a very dusty disk, a
nearly linear increase in Vs(x) can be traced to the
outer disk boundary, irrespective of the actual shape
of the rotation curve (see Fig. 5). The presence of a
ring and a central hole (see formula (3)) in the gas dis-
tribution enhances this feature in the behavior of the
curve Vs(x) even further in models with absorption.

3. EFFECTS OF RANDOM MOTIONS

3.1. The Model

In the models considered above, we assumed that
the velocity dispersion of the radiation sources was
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equal to zero and that there was only regular rotation.
Let us now take into account the residual velocities,
which we will characterize by the dispersions of the
radial (cr) and azimuthal (cϕ) velocities. If the rotation
curve is estimated from stellar spectra, then we can
assume, in accordance with observations (see, e.g.,
Bottema 1993), that both cr and cϕ decrease with
increasing galactocentric distance. For cr, we adopt
the simple expression

cr = cr0 exp(−r/Lc). (7)

As a rule, the radial scale length Lc of the velocity dis-
persion is several times larger than the density scale
length L. We choose a velocity distribution function
in the form

F = F0 exp

{
− (Vϕ − vϕ)2

2c2ϕ
− v2

r

2c2r

}
, (8)

where cr and cϕ are the velocity dispersions for the
random velocity components vr and vϕ, respectively.
The line profile, which reflects the velocity variation
along the line of sight, at a fixed observed distance
from the center of the galactic disk is given by the
expression

I(vy, x) = I0

y0∫
−y0

S(x, y) exp(−τ)F (x, y, vy)dy, (9)

where I0 is the normalization constant and τ is deter-
mined by integral (5).

3.2. The Observed Rotation Curves for Gaseous and
Stellar Disks

Let us consider separately the effects of the factors
described above on the observed rotation curves of the
dynamically hot (stellar disk) and cold (gaseous disk)
subsystems for edge-on galaxies. For the gaseous
disk, cr/Vmax � 1 (where Vmax is the maximum
rotational velocity) and the velocity distribution is
isotropic (cr = cϕ). Figure 6 shows the velocity
profiles (Doppler line profiles) I(V ) = I(vy, x) at
various distances from the disk center. In the absence
of dust (Fig. 6a), the profiles differ greatly for different
distances x. A characteristic feature of the profiles is
their asymmetry and, for the central region (Fig. 6a,
curves 1–3), the presence of two peaks or a long wing
with a “step” in place of the second peak (curves 4–
7). The first peak (at high velocities) is attributable
to the rapid rotation of matter in the region |ϕ| � 1
near the “major axis” (see Fig. 2a). The second peak
or the step (at lower velocities) is associated with two
factors: the presence of residual velocities, and, to a
greater extent, the large decrease in the line-of-sight
velocity component Vϕ at |ϕ| > π/4.
The situation qualitatively changes in a very dusty
disk (Fig. 6b). All I(V ) profiles in the central region
exhibit only one peak (of the two peaks observed in
the previous case, only the peak that corresponds to
the lower velocity remains). The peak at the higher
velocity emerges only when the absorption is low
enough tomake it possible to observe the regions near
the major axis at a given distance x.

The velocity dispersion for the stellar disk is higher
than that for the gas. For an axisymmetric model,

cϕ =
κ

2Ω
cr, where the epicyclic frequency κ and the

angular velocity Ω can be calculated from the depen-
dence Vϕ(r). Figures 6c and 6d show the distribu-
tions I(V ) for a stellar disk with a central stellar radial
velocity dispersion cr(0)/Vmax = 0.5 (where I(V ) is
taken in absolute value, because we deal with absorp-
tion lines). In this case, as in the case of emission
gas, the I(V ) peaks shift toward lower velocities in
the presence of absorption.

The complex shape of the line profiles results in
a difference between the line-of-sight velocities es-
timated from the measurement of the wavelengths
that correspond to the intensity peak and the wave-
lengths of the line “barycenter.” Figure 7 shows the
dependences Vϕ(r) and Vs(x) constructed from the
positions of the peaks in the I(V ) profiles shown in
Figs. 6a–6d. According to what was said above, in
the presence of two peaks, we chose the peak at the
higher velocity. In the model of an absorption-free
gaseous disk (Fig. 6a), this method of estimating the
velocity yields a small difference between the actual
rotational velocity Vϕ and Vs(x) (curves 1 and 2 in
Fig. 7). In our case, it does not exceed 7% (see Fig. 7).

The difference Vϕ − Vs(x) is much higher for a
stellar population with a large velocity dispersion,
cr(0)/Vmax = 0.5. However, in this case, the internal
peak is also clearly traceable in the rotation curve
(curve 3), although its amplitude is appreciably
smaller.
Thus, the approach based on the determination

of the I(V ) peak yields a more accurate result when
constructing the rotation curve than does the method
of the weighted mean line-of-sight velocity deter-
mined from the line “barycenter” (see Section 2). Un-
fortunately, changing the shape of the line profile with
an accuracy sufficient for a detailed comparison with
the model profiles presented here requires a spectral
resolution that is difficult to achieve. Besides, the line
profiles in real galaxies are usually distorted by the
nonuniform distribution of the emission regions and
absorbing medium. However, the asymmetry of the
profile, if present, can be measured and taken into
account when estimating the velocity.
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 6. (a) The line profiles I(V ) at various galactocentric distances for a model gaseous disk with a velocity dispersion
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Fig. 7. The specified galactic rotation curve (Vϕ(r),
curve 1) in comparison with the measured rotation ve-
locities Vs(x) constructed from the maxima of the func-
tion I(V ) (see the text) for the following models: (2)
an absorption-free gaseous disk; (3) an absorption-free
stellar disk; (4) a gaseous disk with strong absorption
(τ0 = 2.2 kpc−1); (5) a stellar disk with strong absorption
(τ0 = 2.2 kpc−1), and (6) a gaseous disk with weak ab-
sorption (τ0 = 0.73 kpc−1). In all cases, the radial scale
length of the gas and dust distribution was assumed to be
3 kpc, and τ0 refers to 3 kpc.

In a very dusty disk, the dependences Vs(x) derived
by the two methods differ little for the gaseous and
stellar populations (curves 4 and 5 in Fig. 7). In both
cases, the inferred rotation curve Vs(x) does not give
a correct idea of the shape of the actual rotation curve
in the inner disk.
Of greatest interest is the intermediate case where

the absorption is strong in the central region of the
galaxy (the line profile exhibits only one peak, at low
velocities), and, starting from some value of x, the
regions near the major axis that are responsible for
the high-velocity peak significantly contribute to the
observed radiation. In this case, the rotation curve
constructed from the positions of the peaks in the
line profiles exhibits a sharp “jump” from velocities
much lower that the rotational velocity to velocities
close to the latter (curve 6 in Fig. 7). The weaker the
absorption in the galaxy, the closer to the center this
transition occurs. By varying τ0 in the models under
consideration, we found that the rise in the measured
rotational velocity occurs at a radius r at which the
absorption drops below 0.3–0.5m per 1 kpc. Such
a step in the rotation curve is actually observed in
several edge-on galaxies (see the example in Fig. 1b).
The calculations described in Subsections 3.2 and

3.3 refer to the rotation curve Vϕ,3 (see Fig. 2b). The
main conclusions remain valid for the cases Vϕ,2 and
Vϕ,1.
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Fig. 8. The radial profile of the actual rotational veloc-
ity for a model galaxy (Vϕ, curve 1) and the measured
velocities for an edge-on galaxy (the same as Fig. 7)
for the following models: (2) a gaseous disk with strong
absorption and a smooth dust distribution; (3 and (4) a
disk with the same parameters and a random distribution
of absorbing regions (the filled and open symbols refer to
the two halves of the disk), and (5) a fitting curve.

3.3. Models with a Nonuniform Dust Distribution

As observations indicate, the dust distribution
in the disks of galaxies is highly asymmetric and
nonunofirm on small scales (�L). As an illustration,
let us consider amodel inwhich the absorbing regions
are distributed by “spots” randomly scattered over the
disk. We will characterize the concentration of dust in
the ith cloud (i = 1, ...,m) with central coordinates
(x(i)
d , y

(i)
d ) by the quantity τ (i), which obeys law (6).

In this model, the cloud sizes l(i)d were specified

randomly from the interval 0.1L ≤ l
(i)
d ≤ 0.5L.

Figure 8 shows the radial dependence of the ve-
locity Vs(x) in the model with m = 50 and τ0 = 2.2
(symbols 3 and 4). Clearly, the scatter of points or the
irregular shape of the curve Vs(x), which is asymmet-
ric relative to the center of the galaxy, result from the
existence of randomly located transparency corridors,
which allow the regions located deep in the disk to
be observed in some directions. The amplitude of the
velocity variations can be significant, and, as was
suggested by Goad and Roberts (1981), to obtain
the rotation curve, we must draw the upper envelope
of the points in the Vs(x) diagram. However, even
in this case, the shape of the rotation curve can be
traced only approximately. If the mean dust density is
sufficiently low, so that we observe the regions located
near the major axis at different distances x, the above
procedure actually makes it possible to obtain the
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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rotation curve. However, this is most likely true for
the outer regions of the galaxy where τ0 is small. For
the model under consideration, even the envelope of
the data points in the Vs − r diagram (the dotted line
in Fig. 8) is far from the specified shape of the rotation
curve.
It would be natural to expect another effect pro-

duced by a nonuniform dust distribution for galax-
ies with a well-developed spiral structure. A certain
orientation of the spiral arms toward which the in-
terstellar medium concentrates leads to different disk
transparencies on different sides of the center. Where
the spiral arm is located on the side of the galaxy
facing the observer, the line of sight penetrates the
disk to a smaller depth, which decreases the rotation
velocity estimate. As a result, the measured curves
Vs(x) are asymmetric relative to the center. Such
cases are actually observed (see Fig. 1c). The curve
drawn through higher measured velocities should be
considered to be closer to the actual shape of the
rotation curve.
At large x, all of the observed rotation curves

(Vs(x)) in the models considered in this and previous
sections flatten out , which corresponds to the speci-
fied rotational velocity of the model galaxy. Therefore,
themeasured maximum rotation velocities of edge-on
disks must differ little from the actual values.

4. DISCUSSION AND CONCLUSIONS

Simple axisymmetric disk models for edge-on
galaxies clearly show that the effects of geometrical
projection, internal absorption, and velocity disper-
sion are the factors that can irreparably distort the
observed shape of the rotation curve, particularly
in the inner galaxy, making it similar to the shape
imitating rigid rotation. For this reason, the rotation
curves with a large velocity gradient in the central
region undergo the greatest distortion, while the
rotation curves of low-mass galaxies, which usually
monotonically rise to the optical disk boundaries,
undergo the smallest distortion. That is why in
many cases, the observed rotation curves of edge-on
galaxies rise almost linearly out to the peripheral disk
regions.
The errors in the measured velocities of the stellar

disk (as estimated from absorption lines) increase ap-
preciably due to the higher (than for the gas) velocity
dispersion of the disk stars. For the central region of
the galaxy, the error in the estimated velocity can be
20–50% even in the absence of absorption.
The projection effect, as well as the absorption

effect, tends to straighten out the observed rotation
curve. However, its role can be significantly reduced
if the velocity at a given galactocentric distance is
measured from the position of the high-velocity peak
ASTRONOMY LETTERS Vol. 29 No. 7 2003
(or the high-velocity cutoff) in the line profile rather
than from its centroid. In this case, in the absence of
absorption, the actual shape of the rotation curve of
the galaxy can be accurately reproduced from obser-
vations even for the inner disk. This method of mea-
surement may be applied to lenticular galaxies with
a low dust content and to galaxies whose rotation
curves are constructed from radio observations.2

Unfortunately, the low intensity of the emission
and the nonuniform distribution of the emission
regions and absorbing medium make it difficult to
measure the shapes of the optical line profiles for
actual edge-on galaxies with spectral and spatial
resolutions that would allow detailed comparisons
with model profiles. However, the asymmetry or the
double-peaked line profiles for regions with moderate
absorption that follows from the models can be found
and taken into account when analyzing the observed
rotation curve (see Subsection 3.2).
Strong internal absorption in the disk qualitatively

changes the situation. As the models show, the two
methods of measuring the velocity (from the posi-
tion of the line peak and centroid) yield a mono-
tonically (almost linearly) rising Vs(x) curve up to
galactocentric distances of several radial brightness
scale lengths L. The double-peaked pattern of the
line profiles disappears. This effect is only enhanced
if there is a shortage of gas in the central region of
the galaxy. The actual shape of the rotation curve in
the opaque disk region can no longer be reconstructed
from observations without using additional data. The
transition from underestimated to actual rotation ve-
locities occurs at a galactocentric distance where the
absorption is equal to several tenths of a magnitude
per 1 kpc. In this case, the observed rotation curve
can exhibit a step, which is actually observed in some
galaxies (see Subsection 3.2).
Curiously, contrary to the expectations, the line-

of-sight velocity curves Vs(x) for some edge-on
galaxies exhibit no rigid rotation. In these galaxies,
the central region is characterized by a high line-
of-sight velocity gradient (Fig. 1c). Such a behavior
implies either a very low dust content in the galaxy
or (more likely) a significant deviation of the disk
inclination from i = 90◦. A deviation of several de-
grees can be enough for the effects of projection
and internal absorption to become negligible (the
accurate estimate of this angle depends on the disk
thickness and the spatial distribution of the radiation
sources and absorbing medium). The projection effect
depends not only on the disk inclination i but also

2This approach is similar to the method for constructing the
rotation curve by drawing the envelope in the position–
velocity diagram based on radio observations (the envelope-
tracing method) (Sofue 1996).
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on the spectrograph slit width. Thus, if the slit is
along the major axis of the galaxy and if its width
is comparable to the apparent disk thickness (more
precisely, to the size of the minor axis of the ellipse
that bounds the disk region being measured), then
the disk will be perceived as seen edge-on even if its
inclination differs from 90◦.
To summarize, note that although the shapes of

the rotation curves of edge-on galaxies are generally
of little use in estimating the masses of the individual
components (particularly for galaxies with steep cen-
tral gradients in the rotation velocity), their analysis
can yield a correct estimate of the rotation velocities
for the outer-disk regions and, consequently, a rough
estimate of the total mass within a sufficiently large
radius. In some cases, analysis of the observed rota-
tion curve can provide information about the distribu-
tion of the absorbing medium in the galaxy.
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Abstract—We give arguments for a basically unified formation mechanism of slow (Lynden-Bell) and
fast (common) galactic bars. This mechanism is based on an instability that is akin to the well-known
instability of radial orbits and is produced by the mutual attraction and alignment of precessing stellar
orbits (so far, only the formation of slow bars has been explained in this way). We present a general theory
of the low-frequency modes in a disk that consists of orbits precessing at different angular velocities. The
problem of determining these modes is reduced to integral equations of moderately complex structure. The
characteristic pattern angular velocities Ωp of the low-frequency modes are of the order of the mean orbital
precession angular velocity Ω̄pr. Bar modes are also among the low-frequency modes; while Ωp ≈ Ω̄pr for
slow bars, Ωp for fast bars can appreciably exceed even the maximum orbital precession angular velocity
in the disk Ωmax

pr (however, it remains of the order of these precession angular velocities). The possibility of
such an excess of Ωp over Ωmax

pr is associated with the effect of “repelling” orbits. The latter tend to move in
a direction opposite to the direction in which they are pushed. We analyze the pattern of orbital precession
in potentials typical of galactic disks. We note that the maximum radius of an “attracting” circular orbit rc
can serve as a reasonable estimate of the bar length lb. Such an estimate is in good agreement with the
available results ofN-body simulations. c© 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Presently, all galactic bars are separated into
two types: common, fast and Lynden-Bell, slow
bars (see, e.g., Sellwood and Wilkinson 1993; Po-
lyachenko 1994). This separation is made along
several lines. On the one hand, it is believed that
different bar angular velocities can manifest them-
selves in the fact that the former (common) bars end
near corotation (or the 4 : 1 resonance), while the
latter (Lynden-Bell) bars end not far from the inner
Lindblad resonance. Different bar names, fast and
slow, correspond to this formal difference. On the
other hand, distinctly different formation mechanisms
are ascribed to these two types of bars. Whereas
the physical mechanism is absolutely transparent for
slow, Lynden-Bell bars (the mutual attraction and
coalescence of slowly precessing orbits), the situation
for fast bars is so far uncertain and confused. Fast
bars in galactic stellar disks have long been thought
to be formed when the disks rapidly rotate, much
as is the case with classical incompressible strongly
flattened (and, hence, rapidly rotating) Maclaurin
spheroids. However, as was first convincingly showed
by Toomre (1981), galactic bar modes actually have
little in common with incompressible “edge” modes.

*E-mail: epolyach@inasan.rssi.ru
1063-7737/03/2907-0447$24.00 c©
Therefore, a different formation mechanism must
correspond to them. As this mechanism, Toom-
re (1981) suggested swing amplification, which is
now an almost universally accepted mechanism that
accounts for the origin of normal (SA) spirals. How-
ever, a simple extension of the Toomre mechanism
to SB galaxies is hardly possible. In particular, the
existence of the traveling spiral density waves with
which the swing amplification is associated (it must
occur outside the bar, near corotation) is difficult to
suspect in these galaxies. The attempt to associate
fast bar modes in specific model stellar disks with
swing amplification that was made, for example, by
Athanassoula and Sellwood (1986) appears rather ar-
tificial. It seems more natural to find a bar-formation
mechanism (recall that we consider here fast bars)
that would be directly related to the instability of the
innermost region of the galactic disk.

The properties of the families of periodic orbits in
rotating bar potentials found by Contopoulos (1975)
and Contopoulos and Mertzanides (1977) are of fun-
damental importance for the theory of galactic bars.
Among them, the so-called x1 family of orbits elon-
gated along the bar within the corotation circle plays
a central role. It is assumed (quite reasonably) that
the figures of the galactic bars are composed of these
periodic and almost periodic orbits. We emphasize,
2003 MAIK “Nauka/Interperiodica”
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however, that the aforesaid applies only to the theory
of already formed bars and, strictly speaking, has no
direct bearing on the bar-formation mechanism itself.
In particular, this is true for the linear stage of the bar-
forming instabilities. Clearly, the orbits considered by
Contopoulos are captured ones in the bar potential
and the capture itself is, of course, a nonlinear pro-
cess.
Nevertheless, it is common practice to draw some

natural, at first glance, conclusions about the bar-
formation mechanisms (including the possible insta-
bilities at the linear stage) from the described picture
of the bar-forming orbits. The angular velocityΩp of a
fast bar is higher (occasionally much higher) than the
maximum precession angular velocity Ωmax

pr . At the
same time, our intuition tells us that the angular mod-
ulation of the distribution of precessing orbits (i.e., the
figure of the bar formed by the Lynden-Bell mecha-
nism) must rotate with a velocity of the order of the
mean orbital precession angular velocity. This con-
clusion would imply that the Lynden-Bell mechanism
is unsuitable for explaining the formation of fast bars.
Therefore, it is generally believed that, actually, the
growing bar causes the orbits to change their shape
by adjusting to the bar that gains in strength and
becomes increasingly thin. The fact that this effect
can be significant even at the linear stage is justified
in the theory of a weak bar (see, e.g., Sellwood and
Wilkinson 1993). These authors showed in terms of
the linear theory that initially circular orbits in the bar
potential transform into slightly flattened or elongated
ovals oriented relative to the bar in the same way as
the general orbits of the x1 family.
However, the following two objections can be

raised with regard to what has been said in the last
paragraph.
(1) Circular orbits cannot be typical representa-

tives of the orbits of an unperturbed disk (except for
the model of a cold disk that is of little interest in
our case) until the bar-perturbed velocities exceed the
velocity dispersion in the initially axisymmetric disk.
Clearly, this is primarily true for the initial growth
stage of the instability (from a sufficiently low level).
(2) The conclusion suggested by our intuition that

the angular velocityΩp of the density wave in a system
of precessing orbits cannot be higher than the maxi-
mum precession angular velocity Ωmax

pr is supported
by the practice of similar calculations of unstable
modes in numerous models of galactic disks. These
calculations indicate that, in all cases, the wave an-
gular velocity Ωp is lower than the maximum angular
velocity Ωmax of the disk stars.1 However, the analogy

1Note that there is, probably, no general proof of this property
of the oscillation-frequency spectrum for a gravitating disk.
is incomplete because of the possible “donkey” be-
havior of stellar orbits that was discovered by Lynden-
Bell and Kalnajs (1972): the orbit accelerates when
it is pulled back and decelerates when it is pushed
forward. This behavior takes place when the following
condition derived by Lynden-Bell (1979) is satisfied:
(∂Ωpr/∂L)|Jf

< 0, where L is the angular momen-
tum of the star, Jf = Jr + L/2 is the Lynden-Bell
adiabatic invariant, and Jr is the radial action. As we
show below, if stellar orbits with donkey behavior are
involved in the bar-forming instability, then the bar
angular velocity can be higher than Ωmax

pr .

The latter remark opens up the possibility of
constructing a theory of fast bar modes as the
corresponding density waves of precessing orbits,
i.e., quite similar to the theory of Lynden-Bell bars.
Note that Kalnajs (1973) was the first to give atten-
tion to the possible alignment of freely precessing
orbits (and the formation of a bar in this way) in
his theory of kinematic waves. Of great importance
for Kalnajs’ theory, who considered nearly circular
orbits, was the fact that the precession angular
velocity Ωpr(r) = Ω(r) − κ(r)/2 (where Ω(r) is the
disk angular velocity, κ(r) is the epicyclic frequency,
and κ2 = 4Ω2 + rdΩ2/dr) was independent of the
radius. Note, incidentally, that Lynden-Bell (1979)
also required the same condition of approximate
constancy for Ωpr(r) in his more general treatment
of the problem.

Actually, different stars in a galaxy precess with
different angular velocities. However, it is important
that the precession angular velocities (as in most
cases the bar angular velocities Ωp) are much lower
than the characteristic azimuthal frequencies Ω2 of
the disk stars, let alone the radial frequencies Ω1. If
the inequality

|Ωp − Ωpr|/Ω1 � 1 (1)

is valid for some orbit, then this orbit as a whole
(rather than individual stars in it) will act as an ele-
mentary object during the interaction with the gravi-
tational field of the bar. If condition (1) is satisfied for
most of the disk orbits involved in the bar formation,
then we consider the processes (e.g., bar instabilities)
in a model disk that consists of a system of precessing
orbits. As Lynden-Bell (1979) noted, condition (1)
implies that the adiabatic invariant Jf = Jr + L/2 is
conserved. In fact, this conservation makes the prob-
lem of the bar instability one-dimensional: it will suf-
fice only to trace the change in the angular positions
of the orbital semimajor axes under the gravitational
attraction from the bar.
Wewill solve the problem of the bar density wave of

orbits precessing at different angular velocities, which
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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is quite similar to the standard statement of the prob-
lem of the density waves (in particular, barlike ones)
of stars in differentially rotating disks. It appears that
inequality (1) is not satisfied with a margin for all of
the orbits involved in the bar mode, in particular, of
course, for fast bars. Nevertheless, in the latter case,
|Ωp − Ωpr| ∼ Ωpr ∼ ΩG, where ΩG ∼

√
GMd/a3 is

the characteristic gravitational (Jeans) frequency (G
is the gravitational constant, Md is the mass of the
(active) disk, and a is its radius); at Ωpr/Ω1 � 1, we
then remain within the scope of approximation (1).
However, even if the weaker inequality Ωpr/Ω1 < 1
(e.g., by several times rather than by an order of mag-
nitude) is satisfied for some of the orbits, our model
will, probably, yield qualitatively correct results. In
any case, this approach is better justified than, for
example, the analysis of the spiral structure in the
galaxy M 33 (Shu et al. 1971) using the formulas
of the Lin–Shu theory. Strictly speaking, the latter
is applicable only to tightly wound multiturn spirals
(note that quite reasonable results are obtained even
in this case!).
The material in this paper is presented in the fol-

lowing order.
In Section 2, we describe the model of precessing

orbits in a general form and derive the basic equa-
tions of the theory that are suitable for analyzing the
disk low-frequency modes concerned. These equa-
tions can be most easily derived from the general
kinetic equation for a stellar disk by using the action–
angle variables (I1, I2; w1, w2). The derivation in-
volves introducing the slow angular variable w̄2 =
w2 − w1/2 and averaging over the fast angular vari-
able w1 (actually, over the radial stellar oscillations).
In simple cases, the problem directly reduces to an-
alyzing moderately cumbersome dispersion relations.
In more general cases, integral equations of various
complexity are obtained. However, even in the most
general situation, the integral equation obtained in
the model of the disk of orbits does not compare in
complexity with the very cumbersome integral equa-
tions of Kalnajs (1965) and Shu (1970) for the normal
modes of the stellar disk. It should be remembered
that, in contrast to the incomparably simpler prob-
lem of analyzing tightly wound spirals, using these
integral equations to analyze the large-scale modes
(primarily the bar modes) generally remains the only
possibility (except, of course, the N-body methods).
As we see, the actual simplification is achieved in
analyzing the low-frequency modes. Note that, in
this case, the description of gravitating systems is
similar to the drift approximation in plasma physics
(see, e.g., Chew et al. 1956) but for orbits of a much
more general form. In our opinion, themost important
advantage of our approach is that the simple physical
ASTRONOMY LETTERS Vol. 29 No. 7 2003
mechanisms of the processes (instabilities) develop-
ing in the disk become absolutely transparent. At the
same time, the possibility of elucidating these phys-
ical mechanisms when using the general Kalnajs–
Shu integral equations orN-body simulations is lost
almost completely.

In Section 3, we analyze the dispersion relation
for a model disk composed of two types of orbits
that differ by the precession angular velocities Ω1

pr

and Ω2
pr (Ω

2
pr > Ω1

pr) and, in general, by the signs of
the Lynden-Bell derivative (∂Ωpr/∂L)|Jf

≡ Ω′
pr. For

opposite signs of this quantity, the angular velocity
of the unstable wave is shown to be ReΩp > Ω2

pr,
i.e., higher than the maximum precession angular
velocity of the orbits in the disk. We believe that this
result is an important argument for a basically unified
formation mechanism of slow and fast bars. At the
end of Section 3, we also give other arguments for the
possibility that Ωp > Ωmax

pr .

In Section 4, we present the results of our calcu-
lations of the precession angular velocities Ωpr and
the quantity Ω′

pr, which is of greatest importance
for the theory, for several typical potentials. In par-
ticular, we determine the regions where Ω′

pr > 0 or
Ω′
pr < 0. We make the natural assumption that the

bar is formed by “attracting” orbits with Ω′
pr > 0.2

The bar length lb must then be equal to the max-
imum radius of the apocenter rmax calculated from
the sufficiently populated orbits from the region where
Ω′
pr > 0. Therefore, in general, apart from the overall

pattern of orbital precession (it is determined by the
potential Φ0), calculating lb also requires specifying
the equilibrium distribution function f0. However, as
a first approximation, we can probably assume that
lb ≈ rc, where rc is the radius of the circular orbit in
which Ω′

pr = 0 (these radii were calculated for all of
the potentials that we considered); in circular orbits,
Ω′
pr > 0 at r < rc and Ω′

pr < 0 at r > rc. Clearly, the
estimate lb ≈ rc must satisfactorily correspond to the
true bar length lb primarily for fast bars.

Note that our determination of the length of the
forming bar has nothing in commonwith the standard
determinations that relate this length to the position
of one of the resonances: the corotation resonance
(CR), the inner Lindblad resonance (ILR), or the 4 : 1
resonance. Clearly, depending on the disk potential
and the stellar distribution function, our estimated bar

2Note that “repelling” orbits withΩ′
pr < 0 can also be involved

in the formation of the entire bar mode, i.e., not only the
central bar but also the spirals adjacent to it (as was pointed
out above, this can even be of importance in explaining the
phenomenon of a fast bar).
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length can take on widely differing values (including
values close to any of the above three resonances).
Interestingly, this is, probably, also true for slow bars
(slow in the sense that for them, Ωp ≈ Ω̄pr, where
Ω̄pr is the mean precession angular velocity of the
orbits involved in bar formation). Thus, we call into
question the earlier view (see, e.g., Lynden-Bell 1979;
Polyachenko and Polyachenko 1995) that slow bars
must necessarily end near the ILR. Strictly speaking,
our estimate of the bar length refers to the bars being
formed by instability (rather than the already formed
bars) at the initial linear stage. However, we doubt
that, subsequently, the bar length can significantly
change.
In Section 5, we briefly formulate the most impor-

tant conclusions and discuss some of the immediate
prospects for the work in this field.

2. BASIC EQUATIONS FOR STUDYING
THE LOW-FREQUENCY MODES

AND THEIR PRELIMINARY ANALYSIS

2.1. Derivation of the Basic Equations

To derive the basic equations of our theory, it is
most convenient to use the description of the stel-
lar disk using the action–angle variables (I;w) =
(I1, I2;w1, w2) that properly takes into account the
double periodicity of the stellar motion in an equilib-
rium axisymmetric potential. Note that I1 = Jr (Jr

is the radial action) and I2 = L (L is the angular
momentum). We proceed from the linearized kinetic
equation in its standard form (see, e.g., Fridman and
Polyachenko 1984)

∂f1

∂t
+ Ω1

∂f1

∂w1
+ Ω2

∂f1

∂w2
=
∂f0

∂I1

∂Φ1

∂w1
+
∂f0

∂I2

∂Φ1

∂w2
,

(2)

where f0(I) and f1(I,w, t) are the unperturbed and
perturbed distribution functions, respectively; Φ1

is the gravitational-potential perturbation; Ω1 and
Ω2 are the radial and azimuthal stellar oscillation
frequencies in the equilibrium potential Φ0(r), re-
spectively; and Ωi = ∂E(I)/∂Ii (E is the energy
expressed in terms of I, i = 1, 2 ). By substituting
w̄2 = w2 − w1/2 and w̄1 = w1, we reduce Eq. (2) to

∂f

∂t
+ imΩprf + Ω1

∂f

∂w1
=
∂f0

∂I1

∂Φ
∂w1

(3)

+ imΦ
(
∂f0

∂I2
− 1

2
∂f0

∂I1

)
,

where the perturbations are assumed to be propor-
tional to exp(imw̄2):

Φ1 = Φ exp(imw̄2), f1 = f exp(imw̄2),
m is the azimuthal number (integer and even) and
Ωpr(I) = Ω2 −Ω1/2 is the precession angular velocity
of the orbit with the actions (I1, I2). If, in addition,
we change from the actions (I1, I2) to (E, L) (the
equilibrium distribution function is most often speci-
fied in the variables (E,L)), then the linearized kinetic
equation takes the form

∂F

∂t
+ imΩprF + Ω1

∂F

∂w1
= Ω1

∂F0

∂E

∂Φ
∂w1

(4)

+ imΦ
(
∂F0

∂L
+ Ωpr

∂F0

∂E

)
,

where F0(E,L) = f0(I1, I2). Note that Eq. (4) in this
form is also valid when the potential Φ0 is an “almost
Coulomb” one, i.e., is mainly determined by the large
central mass. In this case, w̄2 and Ωpr must only be
defined differently: w̄2 = w2 −w1 andΩpr = Ω2 − Ω1.
Disregarding the self-gravitation of the system and
the quadrupole moment of the central body, we then
have Ωpr = 0, as it should be for closed Keplerian
orbits. The azimuthal number m in this case can be
even and odd.
As was noted by Lynden-Bell (1979) and ex-

plained in detail in Section 1, Jf = I1 + I2/2 and
L = I2 are the most appropriate variables that should
be used in place of (I1, I2) or (E, L) to study the low-
frequency modes.
It is easy to see that Jf and L are the actions

that are canonically conjugate with the angular vari-
ables w̄1 and w̄2 introduced above. Indeed, by the
formal change of variables (I1, I2;w1, w2) ≡ (I,w)
→ (Jf , L; w̄1, w̄2) ≡ (J, w̄), we make sure that the
canonical Hamilton equations in the variables (I,w)

İ1 = − ∂H

∂w1
, İ2 = − ∂H

∂w2
, (5)

ẇ1 =
∂H

∂I1
, ẇ2 =

∂H

∂I2
,

whereH(I1, I2;w1,w2) = H0(I1, I2) + Φ1(I1, I2;w1,
w2) is the Hamiltonian, in the variables (J, w̄) also
retain the canonical form

J̇f = − ∂H̄

∂w̄1
, İ2 = − ∂H̄

∂w̄2
, (6)

˙̄w1 =
∂H̄

∂Jf
, ˙̄w2 =

∂H̄

∂L
,

where H̄(Jf , L; w̄1, w̄2) = H(I1, I2;w1, w2).
In the unperturbed state when H̄ = H̄0(Jf , L) =

H(I1, I2), we have

w̄
(0)
2 = Ωprt (Ωpr = Ω2 − Ω1/2).

This equation clearly shows that the angular vari-
able w̄2 is slow, because |Ωpr| � |Ω2|, |Ω1|. In this
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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situation, averaging over the fast variable, in our case,
w̄1, is relevant to the study of the low-frequency
modes with frequencies of the order of Ωpr. The aver-
aging procedure yields (see, e.g., Arnold et al. 2002)

J̇f ≈ − 1
2π

2π∫
0

∂H̄

∂w̄1
dw̄1 = 0, (7)

L̇ ≈ − 1
2π

2π∫
0

∂H̄

∂w̄2
dw̄1 = − ∂Φ̄

∂w̄2
,

˙̄w2 ≈ 1
2π

2π∫
0

∂H̄

∂L
dw̄1 = Ωpr(Jf , L) +

∂Φ̄
∂L

.

The first of these equations implies the adiabatic
invariance of Jf . Lynden-Bell (1979) introduced the
quantity Jf based on the standard definition of the
adiabatic invariant (Arnold et al. 2002):

Jf =
∮

vdr,

where the integral is taken over the complete radial
stellar oscillation in a quadratic potential. We then
have

Jf =
∮
vrdr +

1
2

∮
vϕrdϕ =

∮
vrdr

+
1
2

∮
I2dϕ = I1 +

1
2
I2,

where we took into account the fact that the star
makes two complete radial oscillations in the time of
its complete turn in azimuth.
Changing to the variables (Jf , L; w̄1, w̄2) in

Eq. (3), we obtain a kinetic equation in the form that
is most convenient for subsequent use:

∂F
∂t

+ imΩprF + Ω1
∂F
∂w1

=
∂F0

∂Jf

∂Φ
∂w1

+ imΦ
∂F0

∂L
,

(8)

where F0(Jf , L) = f0(I1, I2) and we took into ac-
count the fact that ∂f0/∂I2 − 1

2∂f0/∂I1 = ∂F0/∂L.
Let us assume that the scatter of precession an-

gular velocities about some mean value Ω̄pr, ∆Ωpr =
[(Ωpr − Ω̄pr)2]1/2, and the characteristic gravitational
frequency ωG are small: Ω̄pr, ωG � Ω1 (for the def-
inition of ωG, see Section 1). These inequalities are
the easiest to justify by assuming that we consider a
system of stars with almost the same (in reality, low
compared to Ω1) precession angular velocities inside
a massive halo that is not involved in the perturba-
tions but that gives a dominant contribution to the
equilibrium potentialΦ0. It should be understood that
ASTRONOMY LETTERS Vol. 29 No. 7 2003
the actual massive spherical component of the galaxy
does not need to play the role of the halo, because, in
general, different groups of orbits take a completely
different part in the instability; as a first approxima-
tion, an active group of orbits can be commonly as-
sumed to be inside a massive halo composed of other
disk stars. A low-frequency mode (∝ exp(−iω̄t)) in
the frame of reference that rotates with the angu-
lar velocity Ω̄pr, with ω̄ ≡ ω −mΩ̄pr ∼ ωG, ∆Ωpr, in
which the slow precession-induced dispersion of the
orbits is offset by their mutual gravitational attraction,
can exist under the conditions written above. It would
be natural to expect that when the self-gravitation
dominates over the orbital precession velocity dis-
persion, an instability that leads to the deformation
of the system (under the effect of the largest-scale
growing modes) must develop. However, it is easy to
understand that even for systems with nearly radial
orbits, this is true only if the torque that changes the
angular momentum of the stars in orbits also causes
their precession angular velocity to change in the
same direction (see Section 1 and the discussion in
Subsection 2.2).
We find the sought-for solution for the low-

frequency modes from the perturbation theory.We as-
sume that F = F (1) + F (2), where F (1) corresponds
to the permutational mode that is obtained from
Eq. (8) if the terms proportional to ∆Ωpr and Φ ∝ G

are discarded: ω = 0 (or ω = mΩ̄pr at Ω̄pr �= 0)3 and
∂F (1)/∂w1 = 0; i.e., F (1) = F (1)(Jf , L) is a (so far)
arbitrary function of the integrals of motion, which
is subsequently specified by using the periodicity
condition for the solution of the next approximation.

The equation for F (2) is

−iωF (1) + imΩprF (1) + Ω1
∂F (2)

∂w1
(9)

=
∂F0

∂Jf

∂Φ
∂w1

+ imΦ
∂F0

∂L
.

Given the periodicity of the functions F (2) and Φ,
averaging (9) over w1 in the interval (0, 2π) yields

−(ω̄ −mδΩpr)F (1) ≈ m
∂F0

∂L

1
2π

2π∫
0

Φdw1, (10)

where δΩpr = Ωpr − Ω̄pr.

Note that Eq. (10) can also be obtained from the
Fourier expansions that were used by Lynden-Bell

3Note that, actually, it is only required that the inequality
|ω − mΩpr| ∼ |Ωp − Ωpr| � Ω1 be satisfied; the frequency ω
(or the wave angular velocity Ωp = ω/m) is not determined
in the first approximation.
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and Kalnajs (1972) in their study of the resonant
interactions of spiral density waves with disk stars.
Naturally, it is more convenient to proceed from the
transformed system (6) rather than from system (5),
used by Lynden-Bell and Kalnajs. The stellar orbits
can be determined from the perturbation theory. The
first-order orbits are sought by solving Eqs. (6) with
the unperturbed orbits substituted into their right-
hand sides (when calculating the forces). For the
first-order correction ∆1Ji to Ji (J1 = Jf , J2 = L),
we then obtain ∆1Ji = ∂χ/∂w̄i, where at a fixed az-
imuthal numberm,

χ =
1

2π

∑
l

ψlm(J)
exp[i(lw̄1 +mw̄2 − ωt)]
i(lΩ1 +mΩpr − ω)

(11)

and ψlm(J) are the Fourier expansion coefficients
Φ1(J, w̄, t) (12)

=
1

2π

∑
l

ψlm(J) exp[i(lw̄1 +mw̄2 − ωt)].

Since Ωpr � Ω1, we can separate out the dominating
term in (11) (with l = 0, when a small denominator
appears under the assumption of ω = mΩp ∼ Ωpr):

χ =
1

2π
ψ0m(J)

exp[i(mw̄2 − ωt)]
i(mΩpr − ω)

. (13)

As is clear from (12),

1
2π
ψ0m(J) = Φ̄1 ≡ 1

2π

2π∫
0

Φ1dw̄1.

Consequently,

∆1Jf =
∂χ

∂w̄1
= 0, (14)

∆1L =
∂χ

∂w̄2
= −Φ̄1

m

ω −mΩpr
,

where the factor exp[i(mw̄2 − ωt)] was omitted. Fi-
nally, we obtain the perturbation of the distribution
function as

F1 = F0(Jf , L + ∆L) −F0(Jf , L) ≈ ∆L
∂F0

∂L

= −∂F0

∂L
Φ̄1

m

ω −mΩpr
,

which closely matches (10). Of course, the calcula-
tions could be reduced to a minimum if we immedi-
ately used the averaged equations (7).
Let us return to the derivation of the basic equa-

tions. Having relation (10) and using the Poisson
equation, we obtain after simple transformations

Φ = −G
∫
dJ′F (1)(J′) (15)
×
∫
dw̄′Γ(r, r′, ϕ′ − ϕ) exp[im(w̄′

2 − w̄2)],

where dJ′ = dJ ′
fdL

′; dw̄′ = dw̄′
1dw̄

′
2; and Γ is

Green’s function:

Γ =
1
r12

, r12 = [r2 + r′2 − 2rr′ cos(ϕ′ − ϕ)]1/2.

(16)

Relation (15) is an integral equation for function
Φ(J, w1) when we take into account expression (10)
for F (1) in terms of Φ. The coordinates of the stars r,
ϕ, r′, and ϕ′ in (15) and (16) must be expressed in
terms of J, J′, w̄, and w̄′, with

r = r(J, w1), r′ = r′(J′, w′
1),

w̄′
2 − w̄2 = (w′

2 −w2) − (w′
1 −w1)/2,

ϕ′ − ϕ ≡ δϕ = w′
2 − w2 + φ(J,J′, w1, w

′
1);

we are not writing out the expression for the func-
tion φ. Since the perturbed potential can always be
written as

Φ1(r, ϕ) = Φ̄1(r) exp(imϕ) = Φ exp(imw̄2),

we have

Φ = Φ̄1(r) exp[imδ(J, w1)].

(δ = ϕ− w̄2 is a known function of J and w1); there-
fore, the integral equation (15) is actually the equation
for the unknown function Φ1(r) of only one variable.
The same can also be said about the integral equa-
tions of Kalnajs and Shu mentioned in Section 1,
though; however, our equation is incomparably sim-
pler. Equation (15) is rather asymmetric but it can be
simplified. The right-hand side of Eq. (15) depends
on w1 only via Γ and exp[im(w̄′

2 − w̄2)]. Therefore,
averaging (15) over w1, for the function

χ(J) = Φ̄ =
1

2π

2π∫
0

Φdw1,

we obtain the integral equation

χ(J) =
Gm

2π

∫
dJ′Π(J,J′)

∂F0(J′)/∂L′

ω −mδΩpr(J′)
χ(J′),

(17)

where

Π(J,J′) =
∫
dw1dw

′
1dδw2Γ(r, r′, δϕ) (18)

× exp(imδw2) exp[−im(w′
1 −w1)/2]

=
∫
dw1dw

′
1dδw̄2Γ(r, r′, δϕ) exp(imδw̄2),

δw2 ≡ w′
2 − w2, δw̄2 ≡ w̄′

2 − w̄2. (19)
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The physical meaning of Π(J,J′) is that the
torque δM acting on some isolated (trial) orbit with
the action J from all of the orbits with a fixed action J′,
i.e., identical in shape but with all of the possible
orientations of the major axes, is proportional to it:

δM =
imG

2π
exp(imw̄2)Π(J,J′)F (1)(J′)dJ′. (20)

For an almost Coulomb field Φ0(r), JC
f = I1 + I2

takes the place of the Lynden-Bell invariant Jf =
I1 + I2/2 in (17) and exp[−im(w′

1 − w1)] (with an
arbitrarym) appears in (19) in place of exp[−im(w′

1 −
w1)/2] (with the condition of an evenm).

2.2. The Instability of Elongated Orbits

We hope to reduce Eq. (17) to one-dimensional
integral equations in the following two extreme cases:
(1) when the distribution function F0(J) is similar
to the δ function in L near some L0; we will note
this circumstance by writing F0 = ∆1(Jf , L−L0) ≈
δ(L − L0)ϕ0(Jf ), and (2) for systems with nearly
circular orbits; in this case, f0 = ∆2(I1, I2), where
∆2 ≈ δ(I1)ϕ̄0(I2). Below, we consider the first case
in detail. Technically, the second case is slightly more
complex; we will return to it in a separate paper.

Thus, we assume that F0 = ∆1(Jf , L− L0).
Since the functions Π and χ change only slightly on
the characteristic scale of the change of the function
(∂F0/∂L

′)/[ω̄ −mδΩpr(J ′
f , L

′)] in L′, Eq. (17) can
be reduced to the following integral equation for the
function of one variableψ(J) ≡ χ(J,L′ = L0) (below,
for brevity, we omit the subscript f in the Lynden-Bell
integral Jf ):

ψ(J) =
Gm

2π

∫
dJ ′P (J, J ′)S0(J ′)ψ(J ′), (21)

where

P (J, J ′) = Π(J, J ′, L = L0, L
′ = L0), (22)

S0(J ′) =
∫
dL′ ∂F0(J ′, L′)/∂L′

ω̄ −mδΩpr(J ′, L′)
. (23)

A more convenient form for the function S0is ob-
tained after the integration of (23) by parts:4

S0(J ′) = −m
∫
dL′F0(J ′, L′)∂Ωpr(J ′, L′)/∂L′

[ω̄ −mδΩpr(J ′, L′)]2
,

(24)

4It is easy to see that in going from (17) to (21) with the
function S0 in form (24), we disregard the terms that contain
additional smallness of the order of Ωpr/Ω1.
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where the derivative ∂Ωpr/∂L
′ can be calculated at

L′ = L0 and factored outside the integral sign overL′.
For nearly radial orbits, we can set L0 = 0 when

calculating the function P (J, J ′). In addition, it is
easy to verify that δϕ ≡ ϕ′ − ϕ ≈ w̄′

2 − w̄2 for such
orbits. Therefore, the function Π can be represented
in this case in a slightly simpler form:

Π(J,J′) =
∫
dw1dw

′
1Jm[r(J, w1), r(J′, w′

1)], (25)

where

Jm(r, r′) =
1

2π

2π∫
0

dαΓ(r, r′, α) cosmα. (26)

If the orbits are purely radial (an azimuthally
“cold” system); i.e., F0 = δ(L)ϕ0(J), then

S0(J ′) = −m

ω̄2
A(J ′)ϕ0(J ′), (27)

where

A(J ′) =
∂Ωpr(J ′, L′)

∂L′

∣∣∣∣
L′=0

. (28)

Accordingly, the integral equation (21), which then
describes the instability of the radial orbits in a cold
system, is

ψ(J) = −Gm2

2πω2

∫
dJ ′P (J, J ′)A(J ′)ϕ0(J ′)ψ(J ′).

(29)

It is easy to prove the positiveness of the func-
tion Jm(r, r′) from (26) and, hence, Π(J,J′) in (25)
and, above all, the functionP (J, J ′) from (22) atL0 =
0, which appears in Eq. (29). Let us do this explicitly.
Expanding the function (r2 + r′2 − 2rr′ cosα)−1/2 in
terms of Legendre polynomials, we obtain

Jm(r, r′) =
∞∑

n=0

Fn(r, r′)
1
π

π∫
0

dαPn(cosα) cosmα,

where
Fn(r, r′) = rn

</r
n+1
> , r< ≡ min(r, r′), (30)

r> ≡ max(r, r′),

and Pn are the Legendre polynomials. The positive
definiteness of Jm now follows from the fact that
Pn(cosα), in turn, can be expanded in terms of the
cosines of the multiple angles with positive coeffi-
cients (Gradshtein and Ryzhik 1971),

Pn(cosα) =
(2n− 1)!!

2n−1n!

×
[
cosnα+

1
1

n

2n − 1
cos(n− 2)α + . . .

]
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≡
∑

k

′
A

(n)
k cos kα,

with allA(n)
k > 0 (the prime implies that the evenness

of k must be identical to the evenness of n), as well as
from the inequality

1
π

π∫
0

dα cosmα cosnα =
δmn

2
.

As a result, we also obtain a convenient represen-
tation of Jm(r, r′) in the form of a simple series:

Jm(r, r′) =
1
2

∑
n≥m

′
Fn(r, r′)A(n)

m > 0.

With the proved positiveness of the function
P (J, J ′), the sign of the integrand in (29) and, hence,
the sign of ω2 (i.e., the stability or instability of a
system with purely radial orbits) depend on the sign
ofA(J ′) defined by equality (28). IfA > 0 for all orbits
of the system under consideration (i.e., for all values
of J or, equivalently, for any energies of the radial
stellar oscillations E), then ω2 < 0. Consequently,
for A > 0, the radial orbit instability takes place. In
contrast, for A < 0, a purely oscillation mode takes
the place of the instability. The most compact formula
to calculate the quantity A(E) is

A(E) =
1

(2E)1/2

×

lim
r0→0




rmax∫
r0

dx

x2[1 − Φ0(x)/E]1/2
− 1
r0




rmax∫
0

dx

[2E − 2Φ0(x)]1/2

,

where Φ0(rmax) = E.

The inequality (∂Ωpr/∂L)|L=0 > 0 is only a nec-
essary (but not sufficient) condition for the instability
of radial orbits and, in particular, the bar formation.
The insufficiency of this criterion is clear even from
the fact that the decelerating torque from the bar may
be ineffective for high (on average) orbital preces-
sion angular velocities. To determine the true bar-
formation conditions, we must solve the problem on
the stabilization of the radial orbit instability by a
finite precession velocity dispersion (while also mak-
ing sure that the bar mode (m = 2) is preferential).
Actually, the bar-formation criterion is nothing but
the instability condition for the bar mode of the type
under consideration. Therefore, we turn to the deriva-
tion of the stabilization conditions for the instability in
systems with nearly radial orbits.
For certainty, we adopt the Maxwell distribution
function in L:

F0 =
1√
πLT

exp(−L2/L2
T )ϕ0(J), (31)

where LT is the thermal spread. Assuming in (23)
that ω̄ = ω = 0, L0 = 0, δΩpr = Ωpr ≈ A(J)L, we
will then have for the stability boundary of the system

S0(J ′) = 2ϕ0(J ′)/mL2
TA(J ′),

so the integral equation (21) takes the form

ψ(J) =
G

πL2
T

∫
dJ ′P (J, J ′)

ϕ0(J ′)
A(J ′)

ψ(J ′). (32)

This equation is almost identical to Eq. (29). A com-
parison of these two equations leads us to conclude
that there is a simple relationship between the in-
stability increment γ for a system with purely radial
orbits, γ2 = −ω2, and the orbital angular momentum
dispersion that is minimally required for the stabiliza-
tion of this instability:

(LT )min = 21/2γ/mĀ, (33)

where Ā is a quantity averaged over the orbits of
different energies E.
Relation (33) acquires a definite meaning when all

of the stars have almost the same energy E ≈ E0,
because in this case we can set Ā = A(E0). If we
change to the distribution in precession angular ve-
locities Ωpr = AL in (31), then we will have a clearer
relation in place of (33):

(Ωpr)T = 21/2γ(m)/m, (34)

where (Ωpr)T denotes the thermal spread of preces-
sion angular velocities, and the instability increment γ
is written as γ(m) to emphasize that, in general, it
depends on the azimuthal numberm. However, since
the dependence γ(m) is weak,5 it follows from (34)
that the modes with the minimum possible m are
most difficult to stabilize (in this sense, they are most
unstable). For nearly radial orbits, mmin = 2, which
corresponds to the formation of an elliptical bar from
an initially circular disk. All of the modes with oddm,
in particular, them = 1 mode, are suppressed in this
case: for these modes, oppositely directed (and equal
in magnitude) torques would act on the two halves of
the elongated orbit; they break but do not rotate such
orbits—“spokes.”

5For example, γ(m) ∝ m1/2 form � 1. Form � 1, expres-
sion (25) for the function Π simplifies, because in this case
Jm ≈ δ(r − r′)/m. Therefore, one of the integrations in (25)
is removed. It is most convenient to derive the asymptotic
expression for Jm directly from the Poisson equation by
assuming thatm2Φ1/r2 � |d2Φ1/dr2|, |r−1dΦ1/dr|.
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On the other hand, it can be shown that, for ex-
ample, for nearly circular orbits in a potential similar
to the potential of a central point mass, precisely the
m = 1mode is preferential.
To conclude this section, we give the integral

equation of type (21) in a form convenient for calcu-
lating the low-frequency modes of a stellar disk with
the equilibrium distribution function f0(E,L) that
contains an appreciable fraction of elongated orbits:

f(E1) =

Emax∫
Emin

K(E1, E2)f(E2)dE2, (35)

where

K(E1, E2) = − π

M1(E1)
(36)

×
Lmax∫
0

f0(E1, L1)

(Ωp − Ω(1)
pr )2

Ω′
pr(E1, L1)dL1

×
a∫

0

a∫
0

dxdyρ(E1)(x)ρ(E2)(y)Jm(x, y).

We assume that the torque produced by the attraction
of two elongated orbits can be approximately calcu-
lated by replacing each actual oval orbit with a pre-
cessing spoke that coincides with the semimajor axis

of the oval; the linear density of the spoke is ρ(E)
l =

1/vr(E) = 1/
√

2E − 2Φ0(r), E is the energy of the

star, vr is its radial velocity,M1(E) =
∫ a
0 ρ

(E)
l (r)dr is

themass of the half-spoke, and 2a is the spoke length:

Ω′
pr(E,L) =

∂Ωpr

∂L

∣∣∣∣
Jf

=
∂Ωpr

∂L
+ Ωpr

∂Ωpr

∂E
.

Using Eq. (35) (which is given without its deriva-
tion), one of us (Polyachenko 1992) calculated the
“anomalously low-frequency” bar modes that Atha-
nassoula and Sellwood (1986) encountered in their
N-body simulations of the linear stability of some
accurate models for stellar disks. These frequencies
were anomalously low in comparison with the fre-
quencies of the standard (fast) bars that the above
authors obtained for most of the models studied.
Actually, the angular velocities of the low-frequency
modes are approximately equal to the mean orbital
precession angular velocities in the central disk
region. Therefore, we can say that, here, the instability
of elongated orbits takes place. Figures 1a and 1b
show how the typical orbit involved in the instability
of a slow bar mode appears; it corresponds to the
energy and angular momentum of the star averaged
over the bar region. The orbit is actually strongly
elongated, which justifies the use of Eq. (35) with
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 1. Typical stellar orbits in the Shuster models con-
sidered by Athanassoula and Sellwood (1986) (a) in the
models with the lowest mean precession angular veloc-
ities and angular momenta; (b) the same as (a) in the
frame of reference that corotates with the precessing or-
bit; (c) in most models; and (d) the same as (c) in the
frame of references that corotates with the precessing
orbit.

kernel (36). The calculated instability increments
(Polyachenko 1992) proved to be in good agreement
with those obtained in their N-body simulations by
Athanassoula and Sellwood (1986). On the other
hand, Figures 1c and 1d show a similar typical orbit
for the models in which only a fast bar orbit develops.
This mode is much rounder than that in Figs. 1a
and 1b. Therefore, to find the low-frequency eigen-
modes in these models, it seems more appropriate to
use the general integral equation (15) or (17). How-
ever, even the integral equation (35), (36), although it
is definitely a rough approximation for these models,
may give satisfactory numerical agreement with the
N-body results of Athanassoula and Sellwood. We
plan to study all of these questions in a separate paper.

3. DISCUSSION OF THE POSSIBLE
EXISTENCE OF EIGENMODES

WITH RELATIVELY HIGH FREQUENCIES
(ReΩp > Ωmax

pr )

3.1. The Bar Mode in a Two-Component Model Disk

We write the dispersion relation that is derived
from (35) and (36) for a one-component system with
the equilibrium distribution function f0 = Aδ(E −
E

(1)
0 )δ(L − L

(1)
0 ) as

1 +
g1

(Ωp − Ω1)2
= 0, (37)
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Fig. 2. Trajectories of the unstable root in a two-
component model with g1 < 0 and g2 > 0 for several
values of the coefficient α: 0, 0.2, . . . , 0.7. The absolute
value of g1 increases along the trajectory; the starting
point corresponds to g1 = 0.

where Ω1 ≡ Ωpr(E
(1)
0 , L

(1)
0 ) and we use the notation

g1 ∝ Ω′
pr(E

(1)
0 , L

(1)
0 ) for the coefficient whose exact

expression can be easily obtained from (35) and (36)
by substituting the δ-shaped distribution function.
The instability in (37) corresponds to g1 > 0.
Let us now consider a two-component sys-

tem with the distribution function f0 = Aδ(E −
E

(1)
0 )δ(L − L

(1)
0 ) +Bδ(E −E

(2)
0 )δ(L − L

(2)
0 ). Sim-

ple manipulations with the equation that is obtained
after substituting this expression into (35) and (36)
then yield the dispersion relation

1 +
g1

(Ωp − Ω1)2
+

g2
(Ωp − Ω2)2

(38)

+ α
g1g2

(Ωp − Ω1)2(Ωp − Ω2)2
= 0,

where g2 ∝ Ω′
pr(E

(2)
0 , L

(2)
0 ) is similar to the earlier

introduced coefficient g1 for the first component,Ω2 ≡
Ωpr(E

(2)
0 , L

(2)
0 ), and the following notation is used:

α = 1 − I2
0 (E(1)

0 , E
(2)
0 )

I0(E(1)
0 , E

(1)
0 )I0(E(2)

0 , E
(2)
0 )

, (39)

I0(E(i)
0 , E

(j)
0 ) ≡

ai∫
0

aj∫
0

dxdyρ(Ei)(x)ρ(Ej)(y)Jm(x, y).

(40)

The possible positions of ReΩp for unstable roots
(γ ≡ ImΩp > 0) turn out to significantly depend on
whether the signs of the coefficients g1 and g2 are
identical (positive in the case of instability) or dif-
ferent, i.e., on whether there are orbits with donkey

behavior in the disk for which g1 ∝ Ω′
pr(E

(1)
0 , L

(1)
0 ) <

0 (we assume that g2 > 0).
Let us first prove that the inequality Ω1 ≤ ReΩp ≤

Ω2 holds at positive g1 and g2. To prove this, it will
suffice to calculate

A1,2 ≡ Im
g1,2

(Ωp − Ω1,2)2
= − 2g1,2γ∆1,2

(∆2
1,2 + γ2)2

,

∆1,2 ≡ ReΩp − Ω1,2;

B ≡ Im
αg1g2

(Ωp − Ω1)2(Ωp − Ω2)2

= − 2g1g2αγ
(∆2

1 + γ2)2(∆2
2 + γ2)2

× [(∆2
2 + γ2)∆1 + (∆2

1 + γ2)∆2].

If ReΩp > Ω2, then ∆1 > 0, ∆2 > 0. Thus, in
this case, the imaginary part of the left-hand side of
Eq. (38) would be strictly negative for γ > 0:

A1 +A2 +B < 0

(rather than equal to zero) when it is considered
that α > 0. The latter follows from the Cauchy–
Bunyakowsky inequality (the positiveness of the
weighting function J2(x, y) was proven in the pre-
vious section).
Similarly, for ReΩp < Ω1, all of the inequalities

reverse (except, of course, α > 0)∆1 < 0,∆2 < 0:
A1 +A2 +B > 0.

The situation for g2 > 0 and g1 < 0 is completely
different. Figure 2 shows the trajectories of the only
unstable root in the complex Ωp plane for a fixed
g2 = 0.052 > 0 (Ω1 = 0 and Ω2 = 0.25 are also fixed)
and negative g1 that change along each trajectory
from g1 = 0 to some (g1)min at which this root also
becomes real. Different trajectories correspond to dif-
ferent values of the parameter α.
An important point is not only the fact that ReΩp

can be larger than Ω2 but also the fact, following
from our calculations, that ReΩp can significantly
exceed Ω2 (in our example, by a factor of approxi-
mately 1.5).

3.2. Additional Arguments

The sources of the increase in ReΩp discussed in
this section when repelling orbits are taken into ac-
count can be found even in the dispersion relation (37)
for a one-component system. Indeed, for g1 > 0 (the
unstable case where the orbits under consideration
are attracting), we have

Ωp = Ω1 ± i
√
g1. (41)
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Therefore, here, ReΩp = Ω1; i.e., ReΩp matches Ω̄pr
(or Ωmax

pr , which is equivalent in this case). On the
other hand, for g1 < 0 (the stable case that corre-
sponds to repelling orbits),

Ω±
p = ReΩ±

p = Ω1 ±
√
−g1. (42)

In this case, the rootΩ+
p corresponds toReΩp > Ωmax

pr
(while for the second root, we can see that ReΩp <

Ωmin
pr ).

The dispersion relation (37) for g1 < 0, to within
the notation, is identical to the dispersion relation for
the electron Langmuir oscillations of a cold plasma:

1 −
ω2
p

(ω − kV )2
= 0, (43)

where ωp =
√

4πe2/me is the plasma frequency (e
and m are the electron charge and mass, respec-
tively); k is the perturbation wave number; and, for
the completeness of the analogy, we use the frame of
reference in which the plasma moves at a velocity V .
This analogy, of course, is by no means surprising,
because repelling orbits (for g1 < 0) are actually quite
similar to (also repelling!) electrons. By analogy with
our two solutionsΩ±

p , in the plasma case (43) we have(ω
k

)±
− V = ±ωp

k
, (44)

which corresponds to two oppositely traveling (in the
frame of reference comoving with the plasma) sym-
metric electron density waves. Clearly, the orbit den-
sity waves can be interpreted in exactly the same way
(in the frame of reference rotating with the precession
velocity Ω1).
However, the real situation in which the disks

have a continuous distribution of orbits in energy and
angular momentum (and, accordingly, in precession
angular velocity) rather than a δ-shaped distribution
introduces a certain asymmetry by setting off the
faster mode. The point is that, actually, the precession
angular velocities Ωpr occupy the entire band from
zero to some Ωmax

pr : 0 ≤ Ωpr ≤ Ωmax
pr . Therefore, a

slower wave with Ω−
p < Ω̄pr will be damped because

of its resonant interaction with corotating6 orbits,
which are certain to be found. This damping in the
usual description of the disk as a group of stars
(rather than orbits) corresponds to the standard
damping at the inner Lindblad resonance (see, e.g.,
Lynden-Bell and Kalnajs 1972). Expressions for the
damping decrements can be derived (in a way sim-
pler than the standard method) from the dispersion

6In our case, this implies orbits with Ωpr = Ωp; in the usual
description, this is the inner Lindblad resonance rather than
the corotation one!
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relations that generalize (37) to the distributions
of orbits spread over Ωpr; for very simple cases,
these dispersion relations also appear quite similar
to the corresponding dispersion relation for the os-
cillations of a warm electron plasma (Polyachenko
1991).

For a fast wave, Ω+
p can easily become larger than

Ωmax
pr ; clearly, such a wave will be undamped (in our

approximation), because there are no orbits corotat-
ing with the wave in this case. The search for (to
be more precise, the simplest description in terms of
our theory) such undamped modes seems of relevant
interest for future studies. Incidentally, the standard
(Lynden-Bell and Kalnajs 1972) resonant instability
of the wave generated by “ordinary” corotation, where
Ωp = Ω(rCR) and Ω(r) is the angular frequency of the
star in circular orbits, can cause a slight growth of
these modes. However, the treatment of this instabil-
ity is outside the validity range of our theory.

To conclude this section, we note that we used
an approximation that was quite justifiable only for
sufficiently elongated orbits. At the same time, the
repelling orbits must be fairly round. Therefore, let us
introduce the dispersion relation for a one-component
system with arbitrarily elongated orbits based on the
general integral equation (17). Substituting the dis-
tribution function

F0(J′) = Aδ(J ′ − J0)δ(L′ − L0)

into (17) yields

ψ(L) = −GA
2π

[( Ω′
pr(L0)

(Ωp − Ωpr(L0))2
π(L,L0) (45)

+
1

Ωp − Ωpr(L0)
∂π(L,L′)

∂L′

∣∣∣∣
L0

)
ψ(L0)

+
π(L,L0)

Ωp − Ωpr(L0)
ψ′(L0)

]
,

where ψ(L) = χ(J0, L) and π(L,L′) ≡
Π(J0, L;J0, L

′). Differentiating (45) with respect toL
and assuming that L = L0, we obtain an equation
that, together with Eq. (45), atL = L0 forms a homo-
geneous system of equations for the unknowns ψ(L0)
and ψ′(L0). Setting the determinant of this system
equal to zero, we derive a dispersion relation that can
be transformed into

1 +
GA

2π
π(L0, L0)Ω′

0

(Ωp − Ω0)2
+
GA

2π
π(L0, L0) (46)

×

∂ lnπ(L,L′)
∂L′

∣∣∣∣
L0

+
∂ lnπ(L,L0)

∂L

∣∣∣∣
L0

Ωp − Ω0
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Fig. 3. (a) The pattern of orbital precession for the isochronic model in the Lynden-Bell (Jf , L) plane. The straight line
Jf = L/2 corresponds to circular orbits. The isolines for the Lynden-Bell derivative Ω′

pr are shown. (b) The disk angular
velocityΩ(r), the rotation curve V0(r), and the precession angular velocity of circular orbitsΩpr(r) for the isochronic model.

−
(
GA

2π

)2

π2(L0, L0)

∂2 lnπ(L,L′)
∂L∂L′

∣∣∣∣
L0

(Ωp − Ω0)2
= 0,

where we denoted Ω0 ≡ Ωpr(J0, L0) and Ω′
0 ≡

Ω′
pr(J0, L0) and took into account the fact that

π(L0, L0)
∂2π(L,L′)
∂L∂L′

∣∣∣∣
L0

− ∂π(L0, L
′)

∂L′

∣∣∣∣
L0

∂π(L,L0)
∂L

∣∣∣∣
L0

π2(L,L0)
=

∂2 lnπ(L,L′)
∂L∂L′

∣∣∣∣
L0

.

In general, all of the terms that appear in the
dispersion relation (46) are of the same order of mag-
nitude. Only for strongly elongated orbits (small L)
can the last two terms be discarded as containing
additional smallness of the order of Ωpr/Ω1. Thus, the
dispersion relation

1 +
GA

2π
π(L0, L0)Ω′

0

(Ωp − Ω0)2
= 0, (47)

which, as can be easily seen, corresponds to the
Lynden-Bell pattern of instability growth, is strictly
justifiable only in this case. However, at low values
of the ratio ωG/Ω0 (ω2

G = g in the notation of this
section), the two additional (compared to (47)) terms
of the dispersion relation (46) are small in comparison
with the remaining terms exactly in the ratio ωG/Ω0

and, then, as before, Ω+
p ≈ Ω0 + ωG > Ω0. Clearly, in

this situation, for example, a twofold excess of Ω+
p

above Ω0 (which corresponds to the validity boundary

of approximation (47)) would come as no surprise.

However, an accurate analysis of Eq. (46) becomes

model-dependent and will be the subject of a future,

more detailed analysis. This is also true for the cor-

responding refinements of the dispersion relation for

two-component models.
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 4. Same as Fig. 3 for the Schuster potential.
4. THE PATTERN OF ORBITAL PRECESSION
IN SOME POTENTIALS

Figures 3a, 4a, 5a, and 6a show the lines of
constant derivative Ω′

pr ≡ (∂Ωpr/∂L)Jf
in the (Jf , L)

plane for several typical potentials. Figures 3b, 4b, 5b,
and 6b show the angular velocities Ω(r) of the stars
in circular orbits, the rotation curves V0(r) = rΩ(r),
and the precession angular velocities of nearly circular
orbits Ωpr(r) = Ω(r) − κ(r)/2 (where κ(r) is the
epicyclic frequency) for the same potentials.

The first pair of these figures (Figs. 3a, 3b) corre-
sponds to the isochronic potential

Φ0(r) = − 1
1 +

√
1 + r2

.

This case was considered by Lynden-Bell (1979).
Here, the frequencies Ω1(Jf , L) and Ω2(Jf , L), along
with the quantities Ωpr(Jf , L) = Ω2(Jf , L) −
Ω1(Jf , L)/2 and Ω′

pr(Jf , L) concerned, can be cal-
culated analytically. For us, the example of the
isochronic potential served as a test for the general
numerical scheme of calculating Ωpr and Ω′

pr for
arbitrary potentials Φ0(r).
NOMY LETTERS Vol. 29 No. 7 2003
In addition to the isochronic potential, we per-
formed calculations for the Schuster potential

Φ0(r) = − 1√
1 + r2

(Figs. 4a, 4b), the logarithmic potential Φ0(r) = ln r,
which corresponds to a flat rotation curve V0 = const
(Figs. 5a, 5b), and the potential of an exponential disk
(Freeman 1970)

Φ0(r) = rI1(r/2)K0(r/2),

where I1 and K0 are the corresponding Bessel func-
tions (Figs. 6a, 6b).
Qualitatively, Figs. 3а, 4a, 6a and 3b, 4b, 6b are

similar but differ greatly from Figs. 5a and 5b for
the logarithmic potential (which is quite natural). Of
greatest interest in Figs. 3a, 4a, and 6a seems to
be the possibility of determining the critical values
(Lc) that separate the regions of attracting (for L <
Lc) and repelling (for L > Lc) nearly circular orbits.
The critical radii (rc) that correspond to these Lc are
shown in Figs. 3b, 4b, and 6b. It would be natural
to take rc as an estimate of the length lb of the bar
that is formed by the instability mechanism under
consideration, at least at the linear stage. In all cases,
rc is much larger than the radii rm and r′m that cor-
respond to the maxima of the rotation curve V0(r)
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Fig. 5. Same as Fig. 3 for the logarithmic potential.
and the function Ωpr(r). If we assume (as is com-
monly done for fast bars) that the bar ends near
corotation, then we will have the following estimate
of the bar angular velocity for the Schuster potential
at lb ≈ rc: Ωp ≈ 0.23 (see Fig. 4b). The correspond-
ing frequency ω = 2Ωp ≈ 0.46 is typical of most of
the models (in the Schuster potential) studied by
Athanassoula and Sellwood (1986). These bars were
commonly classified as fast ones, having in mind,
primarily, the putative non-Lynden-Bell mechanism
of their formation. However, we see that the Lynden-
Bell mechanism may, probably, lead to the formation
of such bars.

Below, we also point out some other curious prop-
erties, which are apparently common to the pattern of
orbital precession in potentialsΦ0(r) of the types that
correspond to Figs. 3a, 4a, and 6a:

(1) The precession angular velocity Ωmax
pr that cor-

responds to the maximum of the curve Ωpr(r) in cir-
cular orbits is an absolute maximum for the preces-
sion angular velocities Ωpr(Jf , L) of any orbits; Ωmax

pr

for the three models is given in the first row of the
table.

(2) Ω′max
pr is reached in circular orbits at the disk
center (Jf → Jr → 0, L→ 0); Ω′max
pr for the three

models are given in the third row of the table.

(3) Ω′min
pr is also reached at some point in a circular

orbit; Ω′min
pr are given in the fourth row of the table.

A few words should be said separately about the
precession pattern in the logarithmic potential, which
is typical of most of the disks of many spiral galax-
ies (Fig. 5a). Here, of greatest interest is the fact
that Ω′

pr < 0 in a narrow sector adjacent to the line
of circular orbits Jf = L/2. However, the narrow-
ness of this sector is apparent: actually, the orbits of
all stars in any reasonable model of a spiral galaxy
lie in the (Jf , L) plane deep inside this sector, in
the immediate vicinity of the line of circular orbits.
Using the epicyclic approximation (which is quite
natural in our case), we can easily show that the
straight lines in the (Jf , L) plane are the lines of con-
stant ratio (cr/V0), where V0 and cr are the circular
and radial velocities, respectively so L = rV0 and the
epicycle size is a = cr/κ, I1 = κa2/2. The equations
of these straight lines are I1 = βL (or Jf = (0.5 +
β)L), where the coefficient β = α2/2

√
2 is numeri-

cally small (α ≡ cr/V0).
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 6. Same as Fig. 3 for the potential of an exponential disk.
To conclude this section, we note that the arrays
of values obtained above for the functions Ωpr(Jf , L)
and Ω′

pr(Jf , L) will subsequently be used in solving
integral equations (17) and (21) to determine the
eigenfrequencies and shapes of the bar modes (pri-
marily for stellar models in the Schuster potential).

5. CONCLUSIONS

Below, we formulate and discuss some of the con-
clusions that were drawn from our theory.
(1) We gave several arguments for the universality

of the bar-formation mechanism that may be respon-
sible for the formation of not only slow bars but also
fast bars. It would be natural to formulate the essence
of this mechanism by representing the stellar disk as
a group of precessing orbits. This representation ade-
quately fits the problem under consideration, because
the angular velocities of the bars (including fast ones)
are much lower than the characteristic oscillation
frequencies of individual stars (Ω1 andΩ2) but are just
of the order of the orbital precession angular velocities
(Ωpr). In such a disk, we search for unstable normal
modes (primarily the bar mode) as the density wave
of precessing orbits that “rigidly” travels in azimuth
at some velocity Ωp, although different orbits precess
at different angular velocities (an analogue of the
NOMY LETTERS Vol. 29 No. 7 2003
differentiality of the disk rotation when the disk of a
spiral galaxy is viewed as a group of individual stars).
An unstable bar mode is formed if there is a suffi-

ciently massive group of attracting orbits in the cen-
tral disk region (the location of the future bar) that
meet the Lynden-Bell requirement Ω′

pr > 0 and, at
the same time, if the precession velocity dispersion
of these active orbits is not too large (otherwise, the
orbits will just “run away” from the perturbation re-
gion under the effect of “thermal” motion). The latter
condition is natural for the basically Jeans mecha-
nism of the instability under consideration. Accurate
instability criteria can be obtained by solving the basic
equations that were derived in Section 2; for some
simple cases, the corresponding dispersion relations
are given there in explicit form. The bar angular veloc-
ityΩp significantly depends on the extent to which the
repelling orbits of stars with Ω′

pr < 0 (i.e., the orbits
with donkey behavior) are involved in the bar forma-
tion. If such orbits are only slightly involved in the
bar formation, then Ωp ≈ Ω̄pr; such bars it would be
natural to call slow. If, however, the role of “repelling”
orbits is significant, then we can obtain fast bars
with Ωp that considerably exceeds Ω̄pr (nevertheless,
Ωp can still be of the order of Ω̄pr, remaining within
the scope of our theory). In Section 3, we showed
this possibility by using a two-component disk model
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Table 1

Parameter Isochronic model Schuster model Exponential disk

Ωmax
pr 0.058 0.13 0.087

rc 3.7 2.4 4.3

Ω′max
pr 0.3–0.35 0.4–0.45 0.35

Ω′min
pr −0.0105 −0.021 −0.025
as a simple example. Thus, from our point of view,
the difference between slow and fast bars is mainly
quantitative and is not fundamental in nature: they are
formed by the same physical mechanism. Note that
even from general considerations, the Jeans mecha-
nism (to which our mechanism essentially belongs)
is always most natural and preferred in gravitational
problems.
(2) So far, the theory suggested above has been

confirmed only by the calculation of the lowest fre-
quency modes for disk models in the Schuster poten-
tial and by the comparison with the N-body results
of Athanassoula and Sellwood (1986). These modes
clearly correspond to slow bars: for them, Ωp ∼ Ω̄pr.
A crucial decisive test for the most interesting predic-
tion of our theory—its applicability to fast bars—will
be the correspondence of the mode eigenfrequencies
calculated from the integral equations that we de-
rived above (see Section 2) to the frequencies of fast
bars obtained in N-body simulations (in particular,
to most of the bar modes from Athanassoula and
Sellwood (1986)). This problem will be the subject
of our study in the immediate future. For now, we
have restricted our analysis only by pointing out some
of the favorable facts that follow from the general
analysis of the pattern of orbital precession for sev-
eral potentials that we performed in Section 4. These
facts are consistent the formation of a fast bar by the
alignment of attracting orbits. First, we noted that
the maximum radius (rc) of nearly circular orbits with
Ω′
pr > 0, which can serve as a natural estimate of the

bar length lb, is much larger than the size of the region
(∼rm) of nearly rigid disk rotation in all reasonable
models. Moreover, if we take the standard condi-
tion lb ∼ rCR (where rCR is the corotation radius),
then, for lb ∼ rc, we obtain an estimate (ω ≈ 0.46)
for the models in the Schuster potential studied by
Athanassoula and Sellwood (1986) for a typical mode
eigenfrequency that is in good agreement with their
results.
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Estimating the Interstellar Extinction and the Contribution
from an Accretion Shock to the Formation of Emission Continuum

in DS Tau and DG Tau
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Abstract—We analyze the UV spectra of the young stars DG Tau and DS Tau taken with the STIS
spectrograph from the Hubble Space Telescope. For these stars, we found the upper limits of the inter-
stellar extinction AV . Their values proved to be lower than those obtained by other authors from optical
observations. For DS Tau, DG Tau, and TW Hya, we also determined the ratio of the flux in the C IV
1550 doublet lines to the excess continuum flux. It proved to be an order of magnitude lower than its
value predicted by the accretion-shock (AS) models of Lamzin (1998) and Calvet and Gullbring (1998).
It thus follows that for these stars, the emission continuum originates mainly in the accretion disk and/or
the boundary layer rather than in the AS, as has been thought previously. Since a similar conclusion
has previously been reached for DR Tau, T Tau, and RY Tau, we may assume that the disks around
most young stars reach the stellar surface and accretion mainly proceeds through the boundary layer.
c© 2003 MAIK “Nauka/Interperiodica”.

Key words: Т Tauri stars, disk accretion, stellar wind.
INTRODUCTION

T Tauri stars are young stars with masses �1M�
at the stage of contraction to the main sequence. Ac-
cording to current views, their activity is attributable
to mass accretion from the protoplanetary disk onto
the central star with a large-scale magnetic field
∼103 G in strength, which stops the disk at a distance
of ∼3–5R∗ from the stellar surface. It is generally
believed that the disk matter becomes frozen in
magnetic field lines and falls to the star along them,
accelerating to a velocity of ∼300 km s−1, and then
decelerates in a shock wave. In this model, the line
and continuum emission observed in classical T Tauri
stars is attributed to the radiation from an accretion
shock (AS) (see Najita et al. (2000) and references
therein).

Kravtsova and Lamzin (2002a, 2002b) have found
that the disks around T Tau, RY Tau, and DR Tau
reach the stellar surface; the bulk of the accreted
matter settles in the equatorial plane of the star and
only a small fraction of it flows through the magneto-
sphere. This conclusion was drawn from comparison
of the computed (Lamzin 1998, 2003; Calvet and
Gullbring 1998) and observed ratios of the flux in
the C IV 1550 doublet lines to the bolometric flux
of the emission continuum. Here, we determine this

*E-mail: kravts@sai.msu.ru
1063-7737/03/2907-0463$24.00 c©
ratio for three more young stars: DS Tau, DG Tau,
and TW Hya. We also estimate an upper limit for the
interstellar extinction toward DS Tau and DG Tau,
because the true flux in the C IV 1550 doublet lines
cannot be determined without it.

OBSERVATIONAL DATA

The spectra of DS Tau and DG Tau that we
analyze here were obtained in 2000–2001 with the
Space Telescope Imaging Spectrograph (STIS) in
the medium-resolution mode (programs ID 8206
and 8627). These spectra were taken from the HST
archival database (http://archive.stsci.edu/hst/tar-
get_descriptions. html). We processed the spectra
using the IRAF v2.11 (http://iraf.noao.edu/iraf)
and STSDAS/TABLES v2.02 (http://ra.stsci.edu/
STSDAS) software packages and the standard tech-
niques described in Chapter 21 of the “HST Data
Handbook” (http://www. stsci.edu/documents/data-
handbook.html). For each star, Table 1 gives the dates
of observations, the spectrum identification numbers
in the archive, and the wavelength range covered.

ESTIMATING THE INTERSTELLAR
EXTINCTION AV

We determined the interstellar extinction for
DS Tau and DG Tau from their UV spectra. Our
2003 MAIK “Nauka/Interperiodica”
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Table 1. Information on the STIS observations

Star Date Spectrum code ∆λ, Å

DS Tau Aug. 24, 2000 o5cf01010 1650–2300

o5cf01020 2275–3000

o5cf01030 1200–1715

o5cf01040 1200–1715

DG Tau Feb. 20, 2001 o63l03010 2275–3000

o63l03020 2275–3000

o63l03030 2275–3000

o63l03040 2275–3000

method is based on the fact that the interstellar
extinction curve has a maximum near 2200 Å (Bless
and Savage 1972), which produces a local dip in
the observed spectrum of the star. If we correct the
observed continuum energy distribution for inter-
stellar extinction with different values of AV , then
the dip will disappear at some value of AV and a
hump will appear near 2200 Å in place of the dip at
larger values. Using this method, we cannot accu-
rately determine AV without prior knowledge of the
undistorted spectral energy distribution for the star.
However, an upper limit for AV can be obtained even
without this information: although the position of the
hump and its width depend on the star’s spectral
energy distribution, it would be natural to attribute
the very appearance of a hump near 2200 Å starting
from some AV to interstellar extinction; for more
details, see Kravtsova and Lamzin (2002a, 2002b).

Figures 1a and 1c show the observed spectra of
DS Tau and DG Tau smoothed over 100 data points
for clarity. We determined the continuum levels for
these stars in several spectral regions examples of
which are shown in Fig. 2; here, the smoothing was
performed over eight data points. Since these spectral
regions contain absorption and emission lines, the
continuum level can be determined reliably.1 Through
these data points, we drew a fifth-degree polynomial
fit for DG Tau and a cubic spline for DS Tau. They
were subsequently taken as the continuum level (see
the lower curves in Figs. 1b and 1d). These figures
show the spectral energy distributions for DS Tau
and DG Tau corrected for interstellar extinction with
different values of AV .

1As we see from Table 1, the archive contains spectra for
DS Tau in the wavelength range from 1700 to 2300 Å.
However, they have such a low quality that the continuum
level in this range cannot be drawn reliably. For this reason,
the corresponding spectral region is not shown in Fig. 1c.
As we see from Fig. 1, the hump mentioned above
appears in the curves for DGTau atAV > 0m. 8, which
allows AV = 0m. 8 to be taken as an upper limit of
the interstellar extinction for this star. Similarly, it is
reasonable to take AV = 0m. 5 as an upper limit for
DS Tau. Note that we used the so-called standard in-
terstellar extinction law Aλ(λ) (Seaton 1979). How-
ever, Kravtsova and Lamzin (2002b) showed that the
final AV value depends only slightly on the chosen
extinction law.

For comparison, we give the AV values obtained
by analyzing the optical spectra of DS Tau and
DG Tau: 0m. 9 and 1m. 41, respectively (White and
Ghez 2001). As we see from Fig. 1, these values yield
anomalously large humps. Kravtsova and Lamzin
(2002a, 2002b) obtained a similar discrepancy for
nine other young stars, suggesting the presence of a
systematic effect. Analysis of the nature of this effect
is beyond the scope of our work. We only point out
that it may result from a deviation of the extinction
law in the dense dust cloud that surrounds young
stars from the standard law typical of the interstellar
medium.

THE CONTRIBUTION OF THE FLUX
IN THE C IV 1550 LINE DOUBLET
TO THE TOTAL LUMINOSITY

If the excess continuum of young stars originates
in the AS, then more than 2% of the entire accre-
tion energy must be radiated in the C IV 1550 Å
doublet lines (Lamzin 1998, 2003; Calvet and Gull-
bring 1998). However, for T Tau, DR Tau, and RY
Tau, this value proved to be almost two orders of mag-
nitude lower than the computed value (Kravtsova and
Lamzin 2002a, 2002b). It thus follows that in these
stars, only a small fraction of the veiling continuum
originates in the accretion shock. Since this conclu-
sion is of great importance, below we determine the
relative intensity of the C IV 1550 Å lines for three
more stars: TW Hya, DG Tau, and DS Tau.

Let us first compare the fluxes in the С IV 1550
doublet lines and in the UV (1200–3000 Å) contin-
uum for DGTau and DSTau usingHST/STIS spec-
tra. The point is that K5-type stars, which DG Tau
and DS Tau are, emit virtually no UV radiation.
Therefore, the measured flux in the wavelength range
from 1200 to 3000 Å is completely attributable to the
accretion luminosity.

All our measurements for DS Tau were carried
out by using HST/STIS spectra. As the continuum
level, we took the fitting curve obtained above; we
determined the flux in the C IV 1550 doublet lines
from the spectral region shown in Fig. 3. For DGTau,
the continuum flux in the range 2275–3000 Å, where
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Fig. 1. The UV spectra of DG Tau and DS Tau: (a and c) the observed spectra and (b and d) the continuumenergy distributions
corrected for interstellar extinctionwith different values ofAV . In the case of DG Tau, the curveswithAV = 0m. 8 and 1m. 2were
compressed along the y axis by factors of 1.4 and 2.2, respectively, for clarity. The spectral flux density is along the y axis. The
triangles indicate the continuum level determined directly from the spectra.
the bulk of the UV radiation from the star is concen-
trated, was also determined fromHST/STIS spectra.
However, since no observations were made from the
Hubble Space Telescope in the wavelength range
λ < 2275 Å, we took the flux in the C IV 1550 doublet
lines from Valenti et al. (2000), who gave the flux
averaged over three IUE spectra.

Our results are presented in Table 2. All fluxes
were corrected for interstellar extinction with the AV

values given in the table; they are in units of 10−10

and 10−13 erg cm−2 s−1 for the continuum and the
lines, respectively. We see that even the ratio ξUV =
FCIV/FUV is slightly lower than that predicted by
theory and is virtually independent of the existing
uncertainty in AV . It can be shown that ξUV also
weakly depends on the chosen extinction law.

Since the theory uses the bolometric luminosity of
the emission continuum, the ratio ξ = FCIV/Fac must
be even smaller than ξUV . To determine precisely how
much smaller it is, let us estimate the total accretion
luminosities of DG Tau and DS Tau.
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DS Tau. Figure 4 shows the spectral energy dis-
tribution for this star constructed from its mean U ,B,
V , Rc, Ic, K, and L magnitudes (Kenyon and Hart-
mann 1995) and from our UV data. All fluxes were
corrected for interstellar extinction with AV = 0m. 5.
This distribution is the superposition of the radiation
from the star itself and the accretion radiation. A
lower limit for the accretion luminosity can be esti-
mated by fitting the theoretical energy distribution of
a K5-type subgiant (Pickles 1998) indicated by the
heavy line in Fig. 4 to the observed continuum. The

Table 2.UV fluxes

Star AV FCIV
−13 F c,UV

−10 ξUV

DG Tau 0.8 3.4 0.2 0.017

1.4 14 0.93 0.015

DS Tau 0.5 12 0.74 0.016

0.9 30 2.1 0.014
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Fig. 2. Examples of the spectral regions for DS Tau and
DG Tau in which the continuum level was determined.

difference between the total and fitted energy distribu-
tions gives a lower limit for the accretion luminosity of
DS Tau.

The accretion flux from DS Tau determined in this
way is 9.7 × 10−10 erg cm−2 s−1, which corresponds
to ξ � 2 × 10−3. If 0m. 9 (White and Ghez 2001) is
taken as AV , then ξ will only increase by a factor
of 1.5; if the spectral type of the star is assumed to be
K5 V rather than K5 IV, then ξ will also increase, but
only by 25%. On the other hand, recall that the Fac
value obtained above is only a lower limit. Therefore,
the actual value of ξ for DS Tau must be lower.

DG Tau. The emission continuum of this star is
so strong that almost no photospheric lines can be
seen in its spectrum (Hessman and Guenter 1997).
Therefore, we can assume that virtually the entire
observed luminosity of DG Tau is attributable to ac-
cretion, while the contribution of the radiation from
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Fig. 3. The spectral regions of DS Tau near the C IV 1550
doublet lines.
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Fig. 4. The spectral energy distribution of DS Tau cor-
rected for interstellar extinction with AV = 0m. 5. The
wavelength in µm is along the x axis and the spectral flux
density in 10−14 erg cm−2 s−1 is along the y axis. The
heavy line represents the spectral energy distribution for
a K5-type subgiant.

the star itself is negligible. White and Ghez (2001)
calculated the bolometric luminosity of DG Tau by
assuming thatAV = 1m. 4. In order that our ξ estimate
be self-consistent, we took the flux in the C IV 1550
doublet lines obtained with the sameAV fromTable 2.
Since the distance to the star is 140 pc, Fac = 2 ×
10−9 erg cm−2 s−1 and ξ is equal to 7 × 10−4.

According to our data, AV for DG Tau does not
exceed 0m. 8. It can be easily seen that decreasing AV

will result in even smaller ξ because, as in the case of
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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DS Tau, the bulk of the stellar luminosity is emitted
in the infrared.

DISCUSSION

We found that the ratio ξ of the luminosity in the
C IV 1550 doublet lines to the bolometric luminos-
ity of the emission continuum is ∼0.2 and ∼0.07%
for DS Tau and DG Tau, respectively. At the same
time, theory predicts that ξ must be more than ∼2%
if the entire emission continuum originates in the
AS. Consequently, there is also a powerful source of
continuum in these stars. It cannot be explained by
the radiation from the disk, because the latter cannot
emit more than half of the total accretion luminos-
ity (Lipunov 1989). Hence, accretion onto the star
proceeds not only through the magnetosphere and
the AS but also through the disk, which touches the
stellar surface. Thus, the low value of ξ implies that
the bulk of the matter falls to the star in the equatorial
plane and the emission continuum originates mainly
in the boundary layer.

It turns out that a similar conclusion can also be
reached for TW Hya. According to Batalha et al.
(2002), the accretion rate onto the surface of TWHya
is �3 × 10−9M� yr−1 and the gas infall velocity is
V = 300 km s−1. These data allow us to estimate
the accretion luminosity of the star, Lac = ṀV 2/2,
and the bolometric flux near the Earth by assuming
that the distance to TW Hya is 50 pc (Soderblom
et al. 1998). The C IV line flux from TW Hya is
1.2 × 10−12 erg cm−2 s−1 (Valenti et al. 2000) and
AV = 0.1 ± 0.1 (Batalha et al. 2002). We infer from
these data that ξ � 10−3 for AV = 0 and approxi-
mately twice as large for AV = 0.3. Thus, we again
obtain a value that is an order of magnitude lower
than the theoretical value. Therefore, the magnetic
field of TW Hya does not hold the disk, although the
accretion rate in this case is two orders of magnitude
lower than, for example, that for DR Tau (Kravtsova
and Lamzin 2002a).

CONCLUSIONS

Having analyzed the UV spectra, we obtained
an upper limit of the interstellar extinction AV for
the young stars DS Tau and DG Tau. These values
proved to be lower than those inferred by White and
Ghez (2001) from optical observations. Previously,
Kravtsova and Lamzin (2002a, 2002b) found a similar
discrepancy for nine more T Tauri stars. The cause of
this effect requires special investigation.

We also found that the ratio of the flux in the C IV
doublet lines to the emission continuum flux for the
stars DS Tau, DG Tau, and TW Hya is at least an
order of magnitude smaller than that predicted by
ASTRONOMY LETTERS Vol. 29 No. 7 2003
theory. Such a discrepancy also takes place for the
stars DR Tau, T Tau, and RY Tau (Kravtsova and
Lamzin 2002a, 2002b). Thus, in all six stars, which
were actually chosen at random, accretion proceeds
mainly not through the magnetosphere but through
the disk into the equatorial region of the star. In
other words, the disk is not halted by the star’s mag-
netic field and reaches its surface even in the case of
TW Hya with a low accretion rate. This conclusion
may imply that a similar situation takes place in most
young stars.
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Abstract—We present a new electronic version of the second volume of the fourth edition of the General
Catalogue of Variable Stars (GCVS), which contains data on 13 480 variable stars in the constellations
Cygnus–Orion (the order of constellations in the Catalogue follows the Latin alphabet). The new version
takes into account the Name Lists of Variable Stars from no. 67 to 76 for the same constellations. The
main distinctive feature of the new version is that it contains improved equatorial J2000.0 coordinates
for 13 446 stars (including those for 5052 stars with an allowance made for proper motions), based on
the identifications with positional catalogs using finding charts, as well as on our new measurements.
We searched for a number of stars on original plates from the collections of several observatories and
using digital sky survey images. The new version also includes a file of remarks to the second and third
GCVS volumes. Apart from a complete update of the positional information, we took into account several
corrections that were found to be necessary after the publication of the second GCVS volume (1985). We
present a list of references to new Internet resources. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: stars—variable and peculiar.
INTRODUCTION

This paper is a continuation of our previous pub-
lication on the new electronic version of Volume I
of the General Catalogue of Variable Stars (GCVS)
with improved coordinates (Samus’ et al. 2002) and
presents a similar version for Volume II of the GCVS.
The new electronic version is based on the fourth

edition of the GCVS (Kholopov et al. 1985–1988).
Volumes I–III of the latter contain data on 28 435
variable stars of our Galaxy (without including the
named variables that proved to be nonexistent, e.g.,
minor planets mistaken for stars, artifacts due to
double plate exposures, etc.). Given the subsequent
ten Name Lists of Variable Stars (nos. 67 to 76), the
number of Galactic variables named in 2001 exceeded
37 300. The standard accuracy of the variable star
coordinates presented in the GCVS (to within 1 s in
right ascension and 0.1 arcmin in declination, with a
substantial fraction of all GCVS stars having even
less accurate coordinates than the standard accu-
racy or just erroneous coordinates) does not meet
the present-day requirements that were formulated

*E-mail: samus@sai.msu.ru
1063-7737/03/2907-0468$24.00 c©
in more detail by Samus’ et al. (2002). Therefore,
we decided to prepare a new GCVS version with
improved coordinates for all of the catalogued stars,
where possible, which also takes into account the
proper motions of the stars if they can be found in
existing positional catalogs.

METHODS FOR PREPARING
THE CATALOGUE

Themethods for preparing the Catalogue were de-
scribed in detail by Samus’ et al. (2002). In general,
they did not change. In the past year, the possibilities
for the effective identification of variable stars with
positional catalogs have further improved. Apart from
the sources listed in Samus’ et al. (2002), we actively
used several new catalogs in our work on the new
version of the GCVS Volume II: the US Naval Ob-
servatory CCDAstrograph Catalog (Zacharias et al.
2000), which contains more than 27 000 000 stars;
the 2.2 µm LMASS All Sky Survey (Skrutskie et
al. 2000), whose current version covers almost half
of the sky area and includes more than 162 000 000
stars; and the Guide Star Catalogue, version 2.2
(STScI 2001), which includes more than 435 000 000
2003 MAIK “Nauka/Interperiodica”
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stars. Unfortunately, inmost cases where theUCAC1
catalogue could be the only source of a variable star’s
proper motion, the errors in the catalogued proper
motions were too large, so we could not make use of
such proper-motion information. By the end of our
work on the new version of Volume II, we gained
access to the B1.0 Catalog of the US Naval Obser-
vatory (Monet et al. 2003), which contains more than
1 000 000 000 objects; so far, we have used it only in a
few cases.
As before, our main tool for visualizing astro-

nomical catalogs and retrieving data from them
was the SIMFOV code written by A.A. Volchkov
(A. Volchkov and O. Volchkov 2003). During our
work on the electronic version of the GCVS Vol-
ume II, changes were made to the code, which
allowed us to use also the 2MASS and UCAC1
catalogues for our identifications. Recall that this
code makes it possible to display a chart of the
selected sky field on the required scale, which shows
objects of the catalogs from the selected list, and then
view it by zooming in and out and retrieve information
in the corresponding catalog pertaining to any image.
The same code enables the automatic identifica-
tion of user lists with catalogs by coordinates with
(or without) an allowance for the similarity of the
magnitudes. Viewing images, retrieving information,
and comparing lists are possible for the coordinates
referred to any equinox. Thanks to the database on
variable stars supported by the GCVS team, we have
at our disposal the most complete information about
the published finding charts for variables; unpublished
charts for several thousand stars were provided by
their discoverers and other researchers. In particular,
the photographic finding charts for hundreds of stars
in the constellations Libra and Ophiuchus sent to the
GCVS team in the 1960s by the discoverer of their
variability, Dr. L. Plaut (the Netherlands), helped us
immensely in preparing the new version of the GCVS
Volume II.
The numerous publications that appeared in re-

cent years and that contain identifications and ac-
curate coordinates of variable stars from selected
lists (see, e.g., López and Girard 1990; Kato 1999a,
1999b; Skiff 1999a, 1999b, 1999c; Kinnunen and
Skiff 2000a, 2000b, 2000c; López and Lépez 2000;
Webbink et al. 2002) were very helpful in checking
our results. However, we identified all of the stars
from these papers independently; we found a number
of mistakes both in our original identifications and in
some of the cited papers. Examples of the mistakes
found in these publications are described below in the
remarks on individual stars.
In several cases, especially in very crowded star

fields, it was difficult to identify the computer-dis-
played chart showing objects of a catalog(s) with
ASTRONOMY LETTERS Vol. 29 No. 7 2003
the variable star’s published drawn or photographed
finding chart. In such situations, we examined images
of the Digitized Sky Survey (DSS; the Hubble Space
Telescope Science Institute) or images from the Al-
adin Sky Atlas (the Strasbourg Astronomical Data
Center,) and the US Naval Observatory Image and
Catalog Archive. These archives contain several im-
ages of the same field, which often makes it possible
to rediscover a variable star without examining plate
stacks. However, if necessary, we used the plate col-
lections of the Sternberg Astronomical Institute and
the Harvard Observatory and rediscovered the vari-
able stars that were “lost” because of the absence of
finding charts and inaccurate coordinates. We widely
used the marks of the discoverers on the plates of the
Harvard stacks and the discoverers’ notebooks in the
Harvard archive (among some 13 000 variable stars
discovered at the Harvard Observatory, about 3000
objects have no published finding charts).
If a variable star was absent in the existing posi-

tional catalogs, then we measured the coordinates on
original plates or available digitized sky images. This
was also often done to determine the coordinates for
the variable components of visual double stars or the
coordinates of variable stars in clusters.
Specific problems were associated with variable

stars in nebulae. Whereas solving these problems for
numerous stars in nebulae in Monoceros actually re-
duced to measuring the coordinates for an unusually
large fraction of variables in this constellation using
DSS images, the images of the DSS and other simi-
lar surveys for the region of the Orion Nebula, which
is even richer in variable stars, are often overexposed
and do not allow the identification of stars.
Jones and Walker (1988) presented photographic

I-band charts and coordinates for 1053 variable
stars in the central part of the Orion Nebula; in
the absence of a particular star in the positional
catalogues, we used the coordinates measured by
these authors. Immediately after the publication of
the paper by Jones and Walker (1988), the GCVS
authors meticulously compared the photographic
charts of Jones and Walker with the available charts
of variable stars in the Orion Nebula. As a result,
we compiled a table of identifications of the objects
from the list of Jones andWalker with known variable
stars, which is still used by the GCVS team. We have
now opened electronic access to this table, along with
other our tables of identifications of variable stars
(ftp://ftp.zeus.sai.msu.ru/pub/groups/cluster/gcvs/
gcvs/iv). Identifications using the tables at this
address are provided to users of the GCVS elec-
tronic version when they request information on
any variable star via the search engine of our site
(http://www.sai.msu.su/groups/cluster/gcvs/cgi-
bin/search_new.html).
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Table 1. Corrected data for the variable stars in Orion
discovered by Maffei (1963)

No. in
Maffei’s
chart

GCVS Max Min Type

25 V796 Ori 15.5 16.4 I IN

26 V798 Ori 15.2 17.2 P INS

27 V802 Ori 15.6 18.0 B UVN

28 V810 Ori 15.5 16.5 I IN

29 V811 Ori 15.8 16.8 I IN

30 V814 Ori 15.5 17.3 B IN

31 V819 Ori 15.6 17.4 P IN

32 V832 Ori 14.5 16.6 P INS

33 V838 Ori 16.6 17.3 P IN

Initially, we took the positions of 163 variables in
the Orion Nebula from the list of Jones and Walker
(1988) and independently measured the coordinates
for 70 other variable stars in this region. Subse-
quently, we were able to identify 80% of these stars
absent in the positional catalogs that we used with
the 2MASS catalogue (Skrutskie et al. 2000); the
identifications were checked by using the J ,H , andK
images of the 2MASS survey provided by the Aladin
Star Atlas.
We also encountered great difficulties in identi-

fying the nine Orion variables discovered by Maffei
(1963). In the 1960s, when compiling another Name-
List of Variable Stars, P.N. Kholopov noticed that
the coordinates of these variables (nos. 25–33 in Ta-
ble IV from Maffei 1963) published by the discoverer
disagreed with the chart presented by this author.
According to the GCVS tradition of considering a
finding chart as a major tool for identifying variable
stars, it was then decided to correct the coordinates
in accordance with the chart; all of the other infor-
mation in each row of the table was taken without
any changes. When preparing our new version of the
GCVS Volume II, we found that such a correction
of the discoverer’s table leads to incorrect informa-
tion about the variability ranges and types, while the
remarks to Table IV refer to the correct stars. We
have decided not to change the now traditional corre-
spondence between the GCVS names of these stars
and their numbers in the chart and in the remarks
published by Maffei. Table 1 presents corrected data
on the variability ranges and types for the stars of this
list. The notation is standard for the GCVS.
Previously (Samus’ et al. 2002), we noted our

cautious attitude toward the charts from the atlas of
Tsesevich and Kazanasmas (1971), which, in general,
is helpful and, in many cases, the only available tool
for identifying variable stars. In compiling the new
version of the GCVS Volume II, we again found
numerous mistakes in this atlas. Particularly many
mistakes were found for variables in Norma. Thus, for
example, five of the 12 charts (for BF, CG, CI, CT, and
DE Nor) on sheet IV-28 of the atlas alone proved to
be erroneous; besides, the chart for AX Nor on the
same sheet is upside down.

During our work, we found dozens of omissions
in the tables of identifications of variable stars with
the principal catalogs (BD, CoD, CPD, HD, etc.) in
the GCVS Volume IV. We made appropriate changes
to the electronic version of the catalogue. After fin-
ishing the preparation of the electronic version of the
catalogue, we checked it through its automatic (by
coordinates) identification with the GSC; as a result,
we revealed and corrected several errors.

RESULTS

The electronic version of Volume II is available at
ftp.zeus.sai.msu.ru/pub/groups/cluster/gcvs/gcvs/
vol2/ or www.sai.msu.su/groups/cluster/gcvs/gcvs/
vol2/.

The new electronic version of the GCVS Vol-
ume II contains, in its main table (vol2.dat), infor-
mation about 13 480 objects (except for the stars
that were erroneously named for the second time
or proven to be nonexistent) in the constellations
Cygnus–Orion, which are mostly variable stars of
our Galaxy discovered and named before 2001; i.e.,
it covers the variable stars of the fourth edition of
the GCVS and the Name-Lists nos. 67–76 (for the
same constellations). For 13 446 variable stars, our
version presents new equatorial J2000.0 coordinates
(vol2_pos.dat); propermotions are taken into account
for 5052 of these stars. We have not yet been able to
determine accurate coordinates for 34 variable stars
because of the absence of finding charts or the lack
of information for star identification. Recall that the
new version of the GCVS Volume I (Samus’ et al.
2002) did not present accurate coordinates for 209 of
the 10 558 stars; given that this version was continu-
ously corrected, the number of GCVS Volume I stars
without accurate coordinates reduced to 182 by the
end of 2002. The main table is supplemented with a
list of remarks to Volumes II and III (rem.txt), which
has been published electronically for the first time. A
detailed description of the files can be found in the file
readme.txt of the electronic version.
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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The vol2.dat File

The structure of the main table (vol2.dat) corre-
sponds to the structure of the combined table in the
4th GCVS edition and the Name Lists (Kholopov
et al. 1998; see also www.sai.msu.su/groups/cluster/
gcvs/gcvs/iii/iii.dat). The differences between these
tables were described in detail by Samus’ et al.
(2002); here, we repeat this information for the
convenience of users.
(1) Instead of the B1950.0 coordinates, we present

new improved equatorial J2000.0 coordinates (right
ascensions to within 0s.1 and declinations to within
1′′). The coordinates that could not be improved were
recalculated to the equinox J2000.0 from old rough
coordinates by taking precession into account.
(2) The latest Name Lists, up to no. 76, were

included.
(3) We rectified the serious mistakes that were

found during our work on theGCVS in other columns
of the main table, in the references, and in the
remarks. For the stars without published finding
charts but identified by us in the GSC (Lasker et al.
1990), GSC2.2, or US Naval Observatory (USNO)
A1.0/A2.0/B1.0 catalogs, we now give the symbol of
the corresponding catalog (GSC, GSC2.2, USNO)
as a reference to the finding chart.
The main table is presented in the standard (for

the GCVS) form, i.e., in the order of constellations
and GCVS variable-star names. The table includes
the following information: J2000.0 equatorial coordi-
nates, variability types, magnitudes at maximum and
minimum light, photometric systems of magnitudes,
epochs of minima or maxima, periods of brightness
variations, durations of brightness rise fromminimum
to maximum or eclipse durations, spectral types, and
references. For the stars from the Name List nos. 67–
76, which appeared after the publication of the GCVS
4th edition, we present not all of the columns of
the table but only the coordinates, variability types,
magnitudes, and references; the missing data will be
added to the 5th edition of the GCVS.

The vol2_pos.dat File

The positional information based on our identifi-
cations with principal astrometric catalogs, on pub-
lished data, or on our new measurements (see below)
is provided for 13 446 variable stars of the new version
of Volume II (including stars of the new Name Lists
in the same constellations) in the table vol2_pos.dat.
This table is presented in the same order as the main
table and consists of the following columns:
(1) The star number in the system traditional for

the electronic GCVS versions;
(2) The GCVS star name;
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(3) Improved equatorial J2000.0 coordinates (right
ascensions to within 0s.01 and declinations to within
0′′
.1);
(4) A flag indicating that the coordinates are ac-

tually rougher than the new accuracy standard of the
catalogue, because we were unable to determine more
accurate coordinates and find them in source catalogs
or journal publications. The flag is a colon (:) in the
position that follows the coordinates;
(5) Propermotions (in arcseconds per year for both

coordinates), to within 0′′
.001 per year;

(6) The epoch of the given coordinates. No epoch
is presented when published coordinates are used
unless it was specified in the paper and could be
established;
(7) A flag indicating uncertainty in a variable star’s

identification with the corresponding source catalog
(a question mark in the corresponding position);
(8) A brief designation of the source of astrometric

data. In several cases, the designation of a catalog
is followed by the symbol “+pm,” implying that this
catalog contains the position for a certain epoch that
we reduced to the epoch 2000.0 using information
about the star’s proper motion from another source.
Below, we provide a list of principal catalogs and

data sources approximately in the order of our pref-
erence during the identifications of variable stars (see
also a description of the catalogs for A.A. Volchkov’s
SIMFOV visualization code that we used at the site
www.simfov.ru). Note that most of the deviations from
this order of preference stem from the fact that the
SIMFOV code does not yet work with the GSC2.2,
FASTT, and USNO B1.0 catalogs. In fact, we con-
sidered the coordinates from several positional cata-
logs based on the plates of Schmidt surveys or cata-
logs of comparable accuracy as being equal in value.
Hip is the Hipparcos Catalogue (ESA 1997).
Tyc2 is the Tycho Catalogue (Høg et al. 2000). In

the only case in Volume II (V2238 Cyg) where the
star was absent in the second Tycho catalogue but
present in the first catalogue (ESA 1997), the source
is indicated as Tyc1.
PPM is the Positions and Proper Motions (Röser

et al. 1991–1993).
NPM is the Lick Northern Proper Motion Pro-

gram (Klemola et al. 1987).
AC is the Four-Million Star Catalogue (see Gu-

lyaev and Nesterov 1992).
ACT is the ACT Reference Catalog (Urban et al.

1997).
FASTT lists the coordinates of variable stars (in

the equatorial region of the sky) measured with the
Flagstaff Astrometric Scanning Transit Telescope of
theUSNaval Observatory (Henden and Stone 1998).



472 SAMUS’ et al.

 

A2.0
34%

GSC
22%

Hip
16%

Tyc2
10%

NPM
7%

AC
4%

Others
7%

The sector diagram illustrating the distribution of stars
from the new version of the GCVS Volume II in the
sources of accurate coordinates.

GSC2.2 is the Guide Star Catalogue, Version 2.2
(STScI, 2001).

UCAC1 is US Naval Observatory CCD Astro-
graph Catalog (Zacharias et al. 2000).

GSC is the Guide Star Catalog (Lasker et al.
1990). The symbol “ns” that accompanies the GSC
reference means that the object is marked in the cited
catalogue as nonstellar.

A2.0, B1.0 is a Catalog of Astrometric Standards
(Monet et al. 1998) (there are a few cases where the
star could be found only in the previous version of
the catalog; they are marked as A1.0); The Whole-
Sky USNO-B1.0 Catalog of 1 045 913 669 Sources
(Monet et al. 2003).

2MASS is the TwoMicron All Sky Survey (Skru-
tskie et al. 2000).

IRAS is the Infrared Astronomical Satellite Cat-
alogue of Point Sources (Neugebauer et al. 1988).
We used this catalogue only when it was impossible
to identify a star with a positional catalog or to find
a star in the optical range and independently measure
its coordinates. There is only one such case in Volume
II (V2294 Oph).

For some 330 stars (2.5% of all of the stars in
the new version), we measured the coordinates using
Digitized Sky Survey images, plates from different
collections, or other images. In these case, the source
of the coordinates is indicated as “GCVS authors.”
As a rule, we employed theGSC2.2 or A2.0 catalogue
stars as reference stars in our measurements using
the Digitized Sky Survey. To measure the rectangular
coordinates, we manually pointed the cursor at the
photometric centers of stars in commercially available
image processing applications with a high magnifi-
cation. The measurements were reduced by Turner’s
linear method. The accuracy of our measurements
was typically about 0′′

.5 both in right ascension and
declination. The coordinates taken from current as-
tronomical periodicals are marked “Literature.”
We present a fragment (the first 20 stars) of the
table vol2_pos.dat as a guide to its contents (Table 2).
The distribution of stars from the new version of

the GCVS Volume II in the sources of their coor-
dinates is shown in the figure; the GCVS authors
and Literature sources as well as some rarely used
catalogs were combined into a sector called “Others.”

The rem.txt File
The list of remarks for Volumes II and III (rem.txt)

includes information that supplements the main table
for 6362 stars. In contrast to the printed bilingual
version of the 4th GCVS edition (Kholopov et al.
1985–1988), all remarks in the file are given only in
English; in general, they correspond to the English
text of remarks in the printed edition or to the re-
marks from the Name Lists. The remarks provide,
in particular, information about variables in binaries,
period variations, the secondary minima of eclipsing
variables, and a star’s proximity on the sky to star
clusters or nebulae. The remarks for unique variable
stars contain detailed descriptions of the variability
pattern.

COMMENTS ON SOME PROBLEM STARS
OF THE ELECTRONIC VERSION

Below, we give comments on individual stars of the
GCVS Volume II. We did not set the goal of listing
here all of the complex cases that we encountered
during our work on the catalogue. It seems that the
examples collected below give a good idea of the
typical problems the compilers of the catalogue have
to solve. The coordinates and identifications adopted
for the stars described in the comments are presented
in Table 3.

IY Gem. The previous attempt to identify this star
using its finding chart (Skiff 1999c) failed.

KN Gem. After we reported (Samus 2001) that the
classification of this object as a Mira variable resulted
from its misidentification (actually, the Mira is the
neighboring variable BR Gem), it was identified with
the minor planet (123) Brunhild (Schmeer 2002).
This object was not included in Table 3.

VW Gru. López and Lépez (2000) misidentified
this Mira star. The variable is absent in positional
catalogs, because it is close in the sky to the very
bright star HD 213009.

V403 Her – V405 Her. Our reliable identifications
of these three RR Lyrae variables differ from those
suggested by Skiff (1999b).

ZZ Hyi. We identified this object, which was previ-
ously classified as a likely RR Lyrae variable (Geßner
1981a), with the poorly studied galaxy PGC 232232
(Pastukhova 2001).
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Table 2. A fragment of the electronic table vol2_pos.dat

GCVS J2000.0 pm (as/yr) Epoch Source

310001 R Cyg 193649.38 +501159.5 +0.003 –0.009 2000.0 PPM

310002 S Cyg 200529.85 +575909.5 1952.617 A2.0

310003 T Cyg 204710.75 +342226.8 +0.039 +0.008 2000.0 Hip

310004 U Cyg 201936.59 +475339.1 –0.002 +0.001 2000.0 Hip

310005 V Cyg 204118.27 +480828.8 –0.006 –0.013 2000.0 Hip

310006 W Cyg 213602.49 +452228.5 +0.064 +0.002 2000.0 Hip

310007 X Cyg 204324.19 +353516.1 –0.006 –0.003 2000.0 Hip

310008 Y Cyg 205203.58 +343927.5 +0.003 –0.017 2000.0 Hip

310009 Z Cyg 200127.46 +500232.6 1983.449 GSC

310010 RR Cyg 204604.56 +445209.7 +0.001 –0.001 2000.0 Tyc2

310011 RS Cyg 201323.66 +384344.5 +0.008 +0.002 2000.0 Hip

310012 RT Cyg 194337.77 +484641.3 –0.009 +0.014 2000.0 Hip

310013 RU Cyg 214039.09 +541928.9 –0.008 –0.012 2000.0 Hip

310014 RV Cyg 214316.33 +380103.0 –0.006 –0.008 2000.0 Hip

310015 RW Cyg 202850.59 +395854.4 –0.003 –0.006 2000.0 Hip

310016 RX Cyg 201049.59 +474847.2 –0.004 –0.002 2000.0 Hip

310017 RY Cyg 201023.42 +355649.4 +0.003 +0.001 2000.0 Tyc2

310018 RZ Cyg 205153.19 +472120.4 –0.000 –0.002 2000.0 AC

310019 SS Cyg 214242.79 +433509.9 +0.107 +0.030 2000.0 Tyc2

310020 ST Cyg 203233.48 +545700.5 –0.011 –0.001 2000.0 Tyc2
DM Lac and HQ Lac. Miller and Wachmann
(1971) give accurate coordinates for these two stars,
but the designations in their charts were mixed up.
We adopted the identification based on the coordi-
nates rather than the charts; it is also confirmed by the
fact that the number of comparison stars presented
by Miller and Wachmann in their table for DM Lac
corresponds to their chart for HQ Lac, and vice versa.

EG Lac. As was noted by Kinnunen and Skiff
(2000c), Downes and Shara (1993) gave the wrong
chart. The object that was classified as aUGSS dwarf
nova is bright on the infrared plates of the second
Palomar survey (epochs 1993.6003 and especially
1993.7070). Thus, its classification should be refined.
Appropriate changes based on our information have
presently been made to the catalog of Downes et al.
(2003).

EU Lac. The chart of Miller and Wachmann
(1971) is wrong, but it was possible to make the
identification using other published charts and the
sufficiently accurate coordinates given by Miller and
Wachmann.
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IS Lac and PU Lac. The variability of IS Lac
was discovered byMiller andWachmann (1971), who
pointed out the star’s very red color. The discover-
ers provide the star’s coordinates with a high formal
accuracy. There are no red stars at this position, and
the chart of Miller and Wachmann corresponds to the
carbon variable star PU Vul discovered by Alksne
and Alksnis (1972), which lies more than 8′ to the
south. In our new GCVS version, we declare that
these two stars are identical, retaining PU Lac as the
main designation. We were able to find IS Lac thanks
to the notes left by the late A.P. Gulyaev (Sternberg
Astronomical Institute).

EN Lib and GT Lib. The variability of GT Lib
was first announced by Lampland (1914). The star
was included in the GCVS based on data of Luyten
(1937), who reported its independent discovery and
large variability amplitude. Hoffmeister (1949) found
the Mira variable EN Lib whose coordinates differed
from the adopted position of GT Lib by 3′

.5. The
identity of Luyten’s star and EN Lib was confirmed
by our searches in the Harvard Observatory archives.
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Although, strictly speaking, it is not known what star
was observed by Lampland, we declared that these
two stars are identical in the new GCVS version.

EX Lib. This star was identified using the unpub-
lished chart of L. Plaut. The coordinates of this star
in our paper (Antipin et al. 1994a) on the positions of
variable stars in Plaut’s field 1 (Plaut 1966) are erro-
neous by 1m in right ascension because of a misprint.

AZ Lup. The star could be identified using its
correct chart from Tsesevich and Kazanasmas (1971)
only after our search in the Harvard Observatory
archives that revealed an error of 3◦ in declination in
the coordinates published by the discoverers (Swope
and Caldwell 1930). The star lies north of their posi-
tion.

DY Lup and DZ Lup. These two variable stars
were discovered by Hoffleit (1936). She indicated a
large (about 3m) variability amplitude for the first star
(HV 7442) and a comparatively small (0m. 4) ampli-
tude for the second star. Subsequently, McLeod and
Swope (1941) pointed out that HV 7441 was a Mira
variable with a variability amplitude of larger than
3m. 5 and a period of 434d. The atlas of Tsesevich and
Kazanasmas (1971) contains charts for both stars.
Using the Harvard Observatory archives, we found
that Hoffleit erroneously gave the coordinates of the
low-amplitude variable for the Mira star and vice
versa. We retained the traditional name DY Lup for
theMira variable and the name DZ Lup for the lower-
amplitude variable. It turns out for these identifica-
tions that the chart for the bona fide DY Lup is labeled
DZ Lup in the atlas of Tsesevich and Kazanasmas
(1971). The chart labeled DY Lup is incorrect for both
of these two variables.

BV Lyr. Several existing charts do not confirm the
identification by Skiff (1999a).

V369 Lyr. We found and measured this possible
Nova discovered by Kurochkin (1968) on the original
plates of the Sternberg Institute’s stacks.

V408 Lyr. The discoverer, Kurochkin (1971), pub-
lished erroneous coordinates. The star was found on
the Sternberg Institute’s plates using the marks of
N.E. Kurochkin on the plates.

V479 Lyr and V480 Lyr. In the report on the
discovery of these two stars (S 10845 and S 10846)
(Geßner 1981b), preliminary numbers in the Son-
neberg Observatory system were assigned to them
and to one more object in order of increasing right
ascensions. The chart for S 10845 corresponds to the
coordinates for S 10846 and vice versa. We retained
the traditional names V479 Lyr (according to Geßner
(1983), this is a reddish slow irregular variable fainter
in photographic light than V480 Lyr) and V480 Lyr
(Geßner (1983) believes it to be a possible β Lyrae
variable with a period of about 100d) in order of their
right ascension. This identification is supported by the
magnitudes in positional catalogs. According to the
ROTSE1 catalogue (Akerlof et al. 2000), the star at
the position that we adopted for V480 Lyr is a Cepheid
with a period of 44d.5, which alsomost likely argues for
our identification. Note, however, that Geßner (1983)
mentions a faint companion to V479 Lyr, while our
identification suggest a faint companion to V480 Lyr.

UW Men. Our quite reliable identification differs
from that suggested by López and Girard (1990).

V567 Mon. It was identified reliably. Kato (1999b)
identified this variable with another star in the same
group of faint objects.

RV Mus and FI Mus. By the suggestion of
A.P. Gulyaev, we assume that the Mira star FI Mus,
which was identified using the chart of Goossens
et al. (1980) who announced its discovery, is identical
to the Mira RV Mus discovered by Bailey (1923)
much earlier. For the latter star, its discoverer gave
coordinates that were virtually identical to the ac-
curate coordinates of FI Mus and a possible period
that did not differ too much from the period found by
Goossens et al. but did not publish a finding chart.
Our identification of this star, which is confirmed
by its variability revealed on DSS images, differs
from that suggested for FI Mus by López and Girard
(1990). Note that the large errors of the coordinates
from Goossens et al. (1980) caused significant diffi-
culties in identifying other variable stars as well.

RX Mus and FN Mus. This case, which is similar
to the previous one, was found by us. The identifi-
cation by López and Girard (1990) is correct. This
identification was also confirmed by our findings in the
Harvard archives.

YZ Mus and GH Mus. Another similar case: the
first discovery was by Swope (1931); the Mira period
is virtually equal to the value given by Goossens et al.
(1980). The identification is based on the chart from
Shapley and Swope (1931).

AV Mus. Our identification, which was con-
firmed by information from the Harvard Observatory
archives, differs from that suggested by López and
Girard (1990).

CR Mus and FP Mus, DY Mus and FX Mus.
The stars were named for the second time because of
the erroneous coordinates in Goossens et al. (1980);
their identity was first noted by López and Girard
(1990).

SS Nor and QR Nor. The identity of the stars was
confirmed by information from the Harvard archive.
Morel (1994) gives two different identifications for
these stars. His identification of SS Nor is correct,
and his candidate for QR Nor is a new, as yet un-
studied, red variable whose variability is confirmed by
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Table 3. Examples of the coordinates and identifications for problem stars

Star α2000.0 δ2000.0 Epoch µα µδ Source Identifications

IY Gem 06h28m53s.52 +18◦09′54′′.3 1955.861 A2.0

VWGru 22 29 03.2 –43 29 01 1990.781 GCVS IRAS 22260–4344

authors

V403 Her 17 27 28.94 +22 14 30.3 2000.0 −0′′.010 +0′′.004 NPM

V404 Her 17 27 41.47 +26 57 49.8 1950.462 A2.0

V405 Her 17 27 46.96 +26 55 52.2 2000.0 –0.002 –0.002 NPM

ZZ Hyi 00 27 48.07 –78 37 44.8 1977.769 A2.0 GSC 9350.01587

DM Lac 22 04 35.65 +52 53 58.8 1952.702 A2.0 IRAS 22027+5239

EG Lac 22 50 38.89 +55 14 52.1 1991.7 B1.0

EU Lac 22 25 31.93 +51 43 38.9 2000.0 0.005 –0.001 AC GSC 3619.01864

HQ Lac 22 04 25.04 +52 54 26.4 1952.702 A2.0

PU Lac 22 09 05.52 +50 27 57.8 1952.713 A2.0 IS Lac,

GSC 3614.00609,

IRAS 22071+5013

EN Lib 15 44 41.06 –28 39 55.1 2000.0 +0.003 –0.003 AC GT Lib,

GSC 6789.00928,

IRAS 15416–2830

EX Lib 15 55 41.00 –12 47 33.8 1954.268 A2.0

AZ Lup 15 22 38.85 –43 06 18.4 1978.227 A2.0 IRAS 15193–4255

DY Lup 14 39 57.20 –43 14 09.2 1980.819 A2.0 IRAS 14367–4301

DZ Lup 14 39 46.13 –43 15 46.7 2000.0 –0.011 –0.004 Tyc2 Tyc2 7818 118 1,

GSC 7818.00118,

IRAS 14365-4302

BV Lyr 19 17 42.92 +32 57 30.7 2000.0 –0.002 +0.004 Tyc2 Tyc2 2657 1380 1,

GSC 2657.1380

V369 Lyr 19 11 55.40 +32 12 07.5 1960.619 GCVS

authors

V408 Lyr 18 59 02.34 +27 28 19.8 1992.422 GSC2.2

V479 Lyr 18 37 14.65 +42 49 28.5 1982.389 GSC GSC 3113.00241

V480 Lyr 18 40 23.37 +43 56 20.8 1993.393 GSC2.2 GSC 3130.01641,

ROTSE1 J184023.50

+435622.4

UWMen 07 14 09.36 –84 45 47.2 1978.102 GSC GSC 9497.01189,

IRAS 07229–8440

V567 Mon 07 01 56.54 –01 46 30.2 1992.908 GSC2.2

RVMus 12 49 07.92 –70 02 46.2 1978.103 A2.0 FI Mus

RXMus 12 54 13.78 –72 12 24.7 1978.103 A2.0 FNMus
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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Table 3. (Contd.)

Star α2000.0 δ2000.0 Epoch µα µδ Source Identifications

YZ Mus 13h31m13s.18 −67◦41′36′′.2 1978.103 A2.0 GHMus

AVMus 13 47 12.64 –70 38 11.8 1999.140 GSC2.2

CRMus 12 58 38.12 –74 17 10.7 2000.0 −0′′.018 +0′′.013 AC FP Mus

DYMus 13 16 58.04 –67 52 30.9 1987.083 GSC FXMus,

GSC 9242.00218,

IRAS 13135–6736

SS Nor 16 13 21.89 –59 46 56.6 1987.384 GSC QR Nor,

GSC 8723.00573,

IRAS 16090–5939

EG Nor 16 22 11.68 –61 15 55.0 2000.0 –0.004 –0.008 Tyc2 Tyc2 9037 2327 1,

GSC 9037.2327,

IRAS 16177–6108

QT Nor 16 34 03.96 –59 05 12.8 1997.318 GSC2.2 GG Nor

RROct 20 55 42.61 –74 58 22.3 2000.0 –0.003 –0.019 Tyc2 SV Oct,

Tyc2 9333 1112 1,

GSC 9333.01112,

IRAS 20500–7509

PU Oph 17 01 24.74 –30 06 31.7 1988.395 GSC2.2 V29, V28

(NGC 6266)

V362 Oph 17 09 39.59 –28 45 58.6 1997.321 GSC2.2 NSV 20993

V483 Oph 18 01 19.57 +02 58 01.5 1991.458 GSC2.2 GSC 434.02819,

IRAS 17588+0258

V586 Oph 18 27 13.95 +04 17 15.3 2000.0 –0.001 +0.007 AC GSC 441.00699

V838 Oph 18 01 44.73 +10 23 42.6 2000.0 +0.007 –0.006 Tyc2 Tyc2 1012 997 1,

GSC 1012.00997,

IRAS 17593+1023

V886 Oph 18 24 14.90 +09 59 43.0 1950.541 A2.0 Uncertain identification

V898 Oph 18 38 27.64 +07 05 21.7 1991.387 GSC2.2

V1069 Oph 17 41 56.33 –01 01 27.6 1982.627 GSC GSC 5081.02167

V1077 Oph 17 52 09.68 +06 58 13.0 1953.613 A2.0

V1110 Oph 18 36 02.59 +07 27 08.8 1990.633 GSC2.2 IRAS 18336+0724

V1111 Oph 18 37 19.26 +10 25 42.4 1991.387 GSC2.2 IRAS 18349+1023

V1113 Oph 18 39 16.55 +08 39 41.0 1991.387 GSC2.2 IRAS 18368+0836

V1496 Oph 17 10 01.87 –17 25 17.9 1980.896 A2.0

V2040 Oph 18 27 30.89 +10 09 05.9 1993.535 GSC2.2 GSC 1027.01788

(NE component)

V2137 Oph 17 09 59.97 –26 33 56.9 1997.326 GSC2.2 V2 (NGC 6293);

Uncertain identification
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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the Schmidt sky survey images presented by the US
Naval Observatory archive.

EG Nor. This virtually unstudied variable, discov-
ered by Hoffleit (1931), was found thanks to the Har-
vard archives, 1◦ south of the discoverer’s position.
The same result was also reported by Webbink et al.
(2002), who noted that, with corrected coordinates,
the star is in the constellation Triangulum Australe.
We retain its traditional name.

GG Nor and QT Nor. As was correctly pointed
out by Webbink et al. (2002), the coordinates of
GG Nor published by its discoverer (Hoffleit 1931)
were erroneous by 1◦ in declination (the star lies north
of the published position). After its coordinates were
corrected, the variable could be identified with the star
QT Nor (Luyten 1935; Hoffmeister 1963) that later
received its GCVS name. Since correct coordinates
were adopted for the latter star from the outset, and
we adopted QT Nor as the main name for this object.

RR Oct and SV Oct. The discoverer of the
Mira SV Oct, Gerasimovich (1927), published a
position for this star that was in error by more than
1◦ in declination. The bona fide SV Oct, which is
located north of the earlier position, was found using
Gerasimivich’s notebooks stored at the Harvard
Observatory and turned out to be identical to theMira
RR Oct, as confirmed by the similarity of the periods
in the catalogue. We adopt RR Oct as the primary
name.

BE Oph. We failed to find any variable stars
at the position given by the discoverer (Beljawsky
1927). Thus, this star was not included in Table 3.
Hughes Boyce (1942) reported the study of BE Oph,
a Mira variable. However, we found the star that
she studied by using information from the Harvard
archives at 20′ from the position published by Bel-
jawsky. We consider it impossible to identify this star
with BE Oph. On the other hand, the star studied
by Hughes Boyce is undoubtedly identical to the
variable NSV 07549 = BV 1679, whose discovery
was reported by Strohmeier and Knigge (1975). We
will include this star in one of the next Name Lists as
a new variable.

PU Oph. For historical reasons, this GCVS name
refers to a blend of two RR Lyrae variables, V28 and
V29, in the globular cluster NGC 6266. The coordi-
nates in Table 3 correspond to V29; the star V28 lies
four arcseconds to the north.

V362 Oph. After its coordinates were improved,
the object NSV 20993 turned out to be identical to
this variable.

V483 Oph. Our identification of this Mira star
using the discoverer’s chart (Hoffmeister 1957) lead
to a significant change in the right ascension. The
identification is confirmed by the unusual color index
(BJ −R = −0.8) in the GSC2.2 catalogue. Richter
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(1965) pointed out that the star is very red and close to
the limit of the “blue” Palomar print; this description
contradicts our identification.

V586 Oph. Kinnunen and Skiff (2000a) correctly
identified this variable with the GSC, but their coor-
dinates based on the Tyc2 catalogue are inaccurate.
A large proper motion is given for the object named
Tyc2 441 1241 1 in the latter catalogue; this proper
motion is probably due to the erroneous combination
of the second epoch for GSC 0441.01241 with the
first epoch for V586 Oph =GSC 0441.00699.

V838 Oph. The two finding charts available for
this variable in the literature (Hoffmeister 1933; Tse-
sevich 1952) seem incompatible. We think that they
refer to the same star but are severely distorted. This
star is identical to a variable point source in the IRAS
catalogue. Paloque et al. (1961) adopted a different
identification , which, in our opinion, is erroneous.

V886 Oph. Our slightly unreliable identification
differs from that suggested by Kinnunen and Skiff
(2000b).

V898 Oph. We identify this object with a star
whose variability was confirmed by using electronic
image archives. The identification of Kinnunen and
Skiff (2000b) is wrong.

V1069 Oph. The identification problems resulted
from the wrong sign of the declination in the report on
the discovery of this near-equator variable (Hoffmeis-
ter 1966).

V1077 Oph. Layden (1998) identifies this variable
incorrectly.

V1110 Oph, V1111 Oph, and V1113 Oph. In our
opinion, the identifications of these three red vari-
ables by Kato (1999a) are erroneous. In the case
of V1110 Oph, the variability of our candidate was
confirmed by digital survey images.

V1496 Oph. The coordinates published by the
discoverer (Plaut 1968) contradict the unpublished
chart that he made available to us. Based on the
star’s brightness, we preferred the identification in
accordance with the chart.

V1548 Oph. Schmeer (2000) identified this dubi-
ous Nova (Plaut 1968), for which Plaut sent to us a
wrong chart (Antipin et al. 1994b), with the minor
planet (336) Lacadiera. This object was not included
in Table 3.

V2040 Oph. Our identification, which is con-
firmed by the presence of a close companion south-
west of the variable (Götz and Wenzel 1956), differs
from that suggested by Kinnunen and Skiff (2000b).

V2061 Oph. The coordinates published by Kukar-
kin (1962) are, probably, seriously in error. The field
shown in the finding chart from this paper could not
be found in a rather wide neighborhood on plates of
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the Moscow stacks. This star was not included in
Table 3.

V2063 Oph. It was found on the Harvard plate of
July 19–20, 1932, where it was discovered by Luyten
(1937), and identified with the minor planet (64) An-
gelina. This object was not included in Table 3.

V2137 Oph. Our identification with a star in a
blend of two or more components is based on the
chart from Clement et al. (1982). It remains unreli-
able, because the chart from Sawyer (1943) leads to a
different star.

CONCLUSIONS

Below, we list the Internet addresses that corre-
spond to the new resources presented in this paper.

The version of the GCVSVolume II with improved
coordinates is available at ftp://ftp.zeus.sai.msu.ru/
pub/groups/cluster/gcvs/gcvs/vol2/ or at
http://www.sai.msu.su/groups/cluster/gcvs/gcvs/
vol2/. The corrections made to the new version of
the GCVS Volume II were taken into account in the
catalogue’s search engine at http://www.sai.msu.su/
groups/cluster/gcvs/cgi-bin/search_new.html.
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12. H. Geßner, Mitt. Veränd. Sterne 9, 57 (1981a).
13. H. Geßner, Mitt. Veränd. Sterne 9, 115 (1983).
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The Candidate Protoplanetary Object IRAS 22223+4327
Is a Pulsating Variable Star
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Abstract—We present our photoelectric UBV observations of the candidate protoplanetary object
IRAS 22223+4327 during four visibility seasons. The star exhibited periodic brightness variations with the
maximum amplitudes∆U = 0m. 23,∆B = 0m. 18, and∆V = 0m. 12 and a time scale of about 90 days, which
is equal to the period derived by other authors from radial velocities. During these brightness variations,
a correlation is observed between the (B − V ) color index and brightness, which is characteristic of
pulsations. We estimated the star’s spectral type from our photometric data to be F8 I. We detected a
“deficit” of light in the U band. The star’s mean brightness and its spectral type appear to have not changed
in the past half a century. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: pulsating variable stars, protoplanetary objects, photoelectric observations.
INTRODUCTION

After its discovery, the IR source
IRAS 22223+4327 (22h24m30s.67, +43◦43′0′′
(2000)) was identified with the star BD + 42◦4388 =
GSC 3212.676 = DO 41288. The star is located at
the Galactic latitude b = −12◦. IRAS 22223+4327
was selected as a candidate protoplanetary object
by its characteristic position in the two-color IRAS
diagram (Likkel 1989).

The star’s spectral type was first determined dur-
ing a survey of red stars at the Dearborn Observatory
(Lee et al. 1947). The authors of the survey classified
it as a K5 star.

In 1989–1990, Hrivnak (1995) studied its optical
spectrum using medium-resolution observations,
estimated its spectral type using different criteria
as F8–G0Ia, and detected strong Swan absorption
bands of С2 and weaker С3 bands in the spectrum. He
pointed out a discrepancy between the spectral types
estimated using criteria in the blue and red spectral
ranges. The high carbon abundance in the stellar
atmosphere was confirmed by observations of the
СО(2-1) and НСNmolecules in the millimeter wave-
length range (Loup et al. 1993). In addition, the star
exhibits a prominent emission feature at 21µm (Kwok
et al. 1995), which is currently believed to be from
carbon compounds. Apart from carbon lines, Hriv-
nak found enhanced absorption lines of s-process
elements (Ba, Sr, and Y) in the star’s spectrum. As
a result of these studies, IRAS 22223+4327 was

*E-mail: vera@sai.msu.ru
1063-7737/03/2907-0480$24.00 c©
classified as a carbon protoplanetary object. Eleven
such objects are known to date (Hrivnak 1997).

Like many protoplanetary objects,
IRAS 22223+4327 reveals an iron underabundance,
[Fe/H] = −0.4, which is attributable to the presence
of a dust envelope around the star.

Decin et al. (1998) carried out a detailed anal-
ysis of the star’s chemical composition using high-
dispersion spectrograms. They determined the at-
mospheric parameters Te = 6500 K, log g = 1.0, and
χt = 4.0 km s−1, which correspond to an F5 I su-
pergiant on the temperature scale of high-luminosity
stars, and pointed out a significant discrepancy be-
tween the star’s temperature obtained by them and
earlier estimates. They also found large overabun-
dances of s-process elements, carbon, and nitrogen.
In light of the modern theory of stellar evolution,
this result may be indicative of a third dredge-up
at the stage of the asymptotic giant branch for
IRAS 22223+4327, which is believed to be typical
of the evolution of the most massive (≥0.7M�)
candidate protoplanetary objects. The presence of
21-µm emission, which is observed in more massive
candidates, can also indicate that the star’s mass
exceeds its mean value.

The only UBV RcIc observations of the star were
performed in August 1989 by Kwok et al. (1995),
who obtained V = 9m. 69, B = 10m. 61, U = 11m. 41,
Rc = 9m. 15, and Ic = 8m. 63. Table 1 lists the pub-
lished near-IR observations of the star. The discrep-
ancy between the J magnitudes estimated by different
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The V light curve and U − B, B − V color curves of IRAS 22223+4327 in 1999–2002.
authors is about 0m. 3, indicating that the star may be
variable.

This study was aimed at searching for the optical
photometric variability of IRAS 22223+4327 and de-
termining the variability type. It is part of our program
of searching for photometric variability of protoplan-
etary objects, which has been carried out since 1990.
As a result of our program, we have already found or
refined the pattern of brightness variations for more
than ten supergiants with IR excesses (Arkhipova
et al. 2000, 2001, 2002). In addition, one of our ob-
jectives was to study the secular photometric behavior
of IRAS 22223+4327 in connection with the fact that
it may belong to more massive and rapidly evolving
objects. The latter was also suggested by the discrep-
ancy between the temperatures estimated for the star
in the past half century. Finally, it was of considerable
interest to estimate the circumstellar component of
the total extinction for the star surrounded by a dust
envelope.

UBV OBSERVATIONS OF IRAS 22223+4327
AND DATA ANALYSIS

Our UBV observations of IRAS 22223+4327,
which were aimed at searching for possible photo-
metric variability, began in 1999. From October 1999
until December 2002, we obtained 56 magnitude es-
timates for the star with a photoelectric photometer
TRONOMY LETTERS Vol. 29 No. 7 2003
attached to the 60-cm Zeiss-600 telescope at the
Crimean Station of the Sternberg Astronomical In-
stitute. A 27′′ photometer aperture was used for the
observations. The comparison star was HD 212247;
its magnitudes (V = 7m. 97, B = 9m. 10, U = 10m. 22)
were determined by using the photometric standard
HD 199216 as a reference (Hiltner 1956). The mea-
surement accuracy was ∼0m. 01. Table 2 presents the
UBV observations of the star in 1999–2002, and
Fig. 1 shows the V light curve and U −B, B − V
color curves. The mean magnitudes estimated from
all our observations were 〈V 〉 = 9m. 70, 〈B〉 = 10m. 65,
and 〈U〉 = 11m. 46. The season of 2001, which spans
the time interval JD 2452079–52220 (141 days),
wasmost completely covered by observations. During
this period, the star clearly showed sine-wave bright-
ness variations with the maximum amplitudes ∆U =
0m. 23, ∆B = 0m. 18, and ∆V = 0m. 12. The two light
maxima in this interval occurred at JD 2452110 and
JD 2452200 separated by ∆t = 90 days. Our search
for periodicities made by using the entire series of
observations with the code written by Yu.K. Kolpakov
(Fourier analysis of the time series) revealed the pe-
riod P = 90d.1 ± 5d.1. The phase B light curve folded
with a 90d.1 period is shown in Fig. 2. This period
determination is preliminary, because the number of
observations is small. However, it is equal, within the
error limits, to the period P = 89d derived by Hriv-
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Table 1. The near-IR observations of IRAS 22223+4327

Date J H K Author

August 17, 1989 7.89 7.46 7.25 Kwok et al. (1995)

November–December 1989 8.15 7.72 7.25 Garcia-Lario et al. (1997)

±0.03 ±0.03 ±0.03

June 1990 7.87 7.43 7.20 Garcia-Lario et al. (1997)

±0.02 ±0.02 ±0.02
nak (1997) from the unpublished radial velocities of
the star. Over the entire period of our observations,
themaximum amplitudes of the (B−V ) and (U −B)
color variations were ∆(U −B) ≈ 0m. 08 and ∆(B −
V ) ≈ 0m. 05. The star’s brightening is accompanied
by a decrease in the (B − V ) color index, which is
most probably related to a temperature rise as the
brightness maximum is approached (see Fig. 3). The
correlation between (U −B) and brightness is much
weaker.

There are discrepancies in the more recent deter-
minations of the spectral type for IRAS 22223+4327:
F8–G0 I (Hrivnak 1995) and F5 I (Decin et al. 1998).
To improve the spectral type, we can try to use
photometric data by simultaneously estimating the
star’s interstellar reddening.

An allowance made for the interstellar redden-
ing based on the standard law, (E(U −B)/E(B −
V ) = 0.72 + 0.05E(B − V )) (Straizys 1977), does
not bring the star into the sequence of normal su-
pergiants in the two-color U −B, B − V diagram
(Fig. 4). Since the observations of Kwok et al. (1995)
are in good agreement with our UBV measurements,
there are no systematic errors in the photometry. We
can assume that one or both color indices of the star
are not equal to the normal colors of supergiants.
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Fig. 2. The B-band phase light curve of
IRAS 22223+4327 folded with a 90d.1 period.
To test this assumption, we constructed the two-
colorB − V , V −Rc diagram (Fig. 5) and plotted the
measurements of Kwok et al. (1995) on it. We see
no anomaly in the star’s position in this diagram and
its B − V and V −Rс color indices quite agree with
those for a normal F8 I supergiant with a color excess
ofE(V −Rc) = 0.25 orE(B− V ) = 0.30. Therefore,
the U −B color index is anomalous; it is redder than
it should be for an F8 I star. This ultraviolet deficit
may result from the star’s chemical peculiarities that
appeared during its evolution. Note also that the U −
B color index poorly follows the star’s pulsations.

The discrepancies between the recent determina-
tions of the spectral type for the star may well at-
tributable to temperature variations during the pul-
sation cycle, as is confirmed by the B − V color vari-
ations that we detected.

The maximum interstellar extinction in the Galaxy
at the latitude b = −12◦ was estimated using Pare-
nago’s formula (Sharov 1963) to be AV = 0m. 87 or
E(B − V ) = 0m. 28. The maximum reddening was es-
timated from the distribution of neutral hydrogen in
the Galaxy and from galaxy counts (Heiles 1976) to
be E(B − V ) = 0m. 3. It thus follows that the circum-
stellar extinction in IRAS 22223+4327 is most likely
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Fig. 3. The color–magnitude diagram for
IRAS 22223+4327.
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Table 2. The UBV observations of IRAS 22223+4327 in 1999–2002

JD 2400000+ U B V U −B B − V JD 2400000+ U B V U −B B − V

51402 11.409 10.590 9.656 0.819 0.934 52172 11.622 10.819 9.817 0.803 1.002

51424 11.438 10.654 9.700 0.784 0.954 52174 11.640 10.807 9.813 0.833 0.994

51452 11.400 10.601 9.678 0.799 0.923 52175 11.608 10.786 9.794 0.822 0.992

51455 11.382 10.589 9.671 0.793 0.918 52186 11.457 10.636 9.686 0.821 0.950

51677 11.525 10.677 9.718 0.848 0.959 52187 11.452 10.624 9.671 0.828 0.953

51678 11.464 10.670 9.712 0.794 0.958 52193 11.363 10.519 9.620 0.844 0.899

51722 11.441 10.629 9.680 0.812 0.949 52195 11.309 10.506 9.608 0.803 0.898

51752 11.426 10.646 9.732 0.780 0.914 52197 11.296 10.477 9.592 0.819 0.885

51765 11.525 10.665 9.728 0.860 0.937 52209 11.331 10.500 9.599 0.831 0.901

51777 11.545 10.693 9.712 0.852 0.981 52217 11.400 10.603 9.672 0.797 0.931

51779 11.486 10.711 9.737 0.775 0.974 52220 11.492 10.652 9.696 0.840 0.956

51781 11.524 10.697 9.717 0.827 0.980 52455 11.337 10.564 9.654 0.773 0.910

51834 11.359 10.588 9.670 0.771 0.918 52459 11.322 10.532 9.633 0.790 0.899

51840 11.340 10.565 9.655 0.775 0.910 52461 11.283 10.522 9.621 0.761 0.901

51842 11.346 10.572 9.662 0.774 0.910 52470 11.218 10.466 9.586 0.752 0.880

51850 11.311 10.561 9.661 0.750 0.900 52515 11.585 10.748 9.775 0.837 0.973

51853 11.333 10.557 9.658 0.776 0.899 52518 11.546 10.737 9.755 0.809 0.982

52079 11.631 10.795 9.784 0.836 1.011 52521 11.544 10.712 9.731 0.832 0.981

52093 11.446 10.648 9.703 0.798 0.945 52528 11.514 10.679 9.698 0.835 0.981

52100 11.356 10.583 9.657 0.773 0.926 52572 11.442 10.628 9.690 0.814 0.938

52101 11.288 10.545 9.638 0.743 0.907 52586 11.550 10.706 9.729 0.844 0.977

52104 11.314 10.553 9.643 0.761 0.910 52587 11.583 10.726 9.738 0.857 0.988

52119 11.333 10.557 9.647 0.776 0.910 52594 11.560 10.726 9.731 0.834 0.995

52132 11.518 10.700 9.752 0.818 0.948 52597 11.561 10.732 9.750 0.829 0.982

52133 11.596 10.717 9.760 0.879 0.957 52613 11.546 10.645 9.700 0.811 0.945

52138 11.619 10.758 9.780 0.861 0.978 52618 11.410 10.605 9.660 0.805 0.945

52142 11.691 10.823 9.820 0.868 1.003 52620 11.394 10.593 9.668 0.801 0.925

52166 11.723 10.827 9.833 0.839 0.994 52634 11.398 10.618 9.675 0.780 0.943
low. This result disagrees with the data of Kwok et al.
(1995). Based on their model of a star with a dust
envelope, they found an appreciable optical depth of
the circumstellar dust in the visible wavelength range.
It should be noted that Kwok et al. (1995) used the
maps of Neckel and Klare (1980), which do not cover
the Galactic regions with |b| > 10◦, to estimate the
interstellar reddening for IRAS 22223+4327.
ASTRONOMY LETTERS Vol. 29 No. 7 2003
THE PHOTOMETRIC HISTORY
OF IRAS 22223+4327 AND ITS SPECTRAL

TYPE IN THE PAST

As was noted above, there is evidence that
IRAS 22223+4327 can belong to the group of more
massive post-AGB stars. Hence, one may expect the
star’s rapid evolution toward planetary nebulae—an
increase in the temperature at constant luminosity—
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Fig. 4. IRAS 22223+4327 in theU −B,B −V diagram.
The solid line indicates the normal colors of supergiants,
as prescribed by Straizys (1977); the dashed line repre-
sents the interstellar reddening line for the normal law;
the dots represent our observations; and the asterisk rep-
resents the observations of Kwok et al. (1995).

especially since the current spectral classification of
the star implies a much higher temperature than its
historical spectral classification of the 1940s, K5 (Lee
et al. 1947). If the time variation of the star’s spectral
type is real, then it must be reflected in its photometric
behavior.

According to Flower (1996), the difference be-
tween the bolometric corrections for K5 I and F8 I
is −1.53–(−0.06) = −1.47 and, in the case of tem-
perature evolution at constant luminosity, the star
should have brightened by more than a magnitude
since the epoch of the Dearborn Observatory (DO)
catalog. Its magnitude in the DO catalog derived
from panchromatic plates is 9m. 8. We compared the
magnitudes from the DO catalog (Lee et al. 1947)
with Johnson’s V magnitudes taken from the Tycho
catalog. We made a sample of 41 stars from the DO
catalog with coordinates from 22h17m. 9 to 22h22m. 6
(1900) in right ascension and from +40◦ to +55◦
in declination and studied the correlation between
their VJ magnitudes from the Tycho catalog and the
m(DO) magnitudes (Fig. 6). The relation is linear,
VJ = 0.924m(DO) + 0.728; the deviations from this
linear law for individual stars do not exceed 0m. 36.
Thus, the magnitudes from the DO catalog are close
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gram. The solid line indicates the normal colors of super-
giants; the dashed line represents the interstellar redden-
ing line; and the asterisk represents the observations of
Kwok et al. (1995).

to the VJ magnitudes in the m(DO) range under
consideration.

In August 1989, Kwok et al. (1995) obtained V =
9m. 69. In the Tycho catalog, IRAS 22223+4327 =
Tycho 3212-676-1 has the mean magnitude VJ =
9m. 78, as inferred from the observations from Decem-
ber 24, 1989, through February 20, 1993. The mean
magnitude in 1999–2002 was 〈V 〉 = 9m. 70. Thus, in
more than 50 years, the star’s mean brightness has
not changed and the discrepancies in the spectral-
type determinations can be explained, in part, by the
use of different spectral classification criteria.

We compared the spectral classifications of stars
in the DO catalog with the current determinations of
the spectral types for stars in the same region of the
sky that was used to study the photometric system
of the DO catalog. Unfortunately, current spectral-
type estimates are available only for 12 stars in this
region. Our comparison shows that the spectral types
of normal K–M stars in the DO catalog tend to be
later than those given by other authors. Besides, it
is improper to use the G band for the classification
of carbon stars, to which IRAS 22223+4327 clearly
belongs, and the intensity of this band may have
been one of the classification criteria for stars in the
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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DO catalog. Therefore, it seems that one should not
attach much weight to the star’s classification as K5
in the 1940s.

CONCLUSIONS

Our program of searching for and studying vari-
ability in supergiant stars with IR excesses, which are
candidate protoplanetary nebulae, has revealed the
photometric variability of one more object,
IRAS 22223+4327. This star was found to be a
pulsating variable with a period of about 90 days.
Previously, an 89-day period was derived by Hriv-
nak (1997) from the star’s radial velocities. Our
optical photometric data, except for theU band, agree
with the F8 I spectral type estimate for the star. A
deficit of light is observed in the U band; this deficit
may stem from the fact that the star is a carbon
representative of protoplanetary objects. Although
there is evidence that the star can belong to the group
of more massive post-AGB stars, we found no clear
ASTRONOMY LETTERS Vol. 29 No. 7 2003
variations of its mean brightness and spectral type in
the past half a century.

ACKNOWLEDGMENTS

We are grateful to the Russian Foundation for
Basic Research for financial support, project no. 01-
02-16530.

REFERENCES
1. V. P. Arkhipova, N. P. Ikonnikova, R. I. Noskova,

et al., Pis’ma Astron. Zh. 27, 187 (2001) [Astron.
Lett. 27, 156 (2001)].

2. V. P. Arkhipova, N. P. Ikonnikova, R. I. Noskova, and
G.V. Komissarova, Pis’maAstron. Zh. 28, 298 (2002)
[Astron. Lett. 28, 257 (2002)].

3. V. P. Arkhipova, N. P. Ikonnikova, R. I. Noskova,
and G. V. Sokol, Pis’ma Astron. Zh. 26, 705 (2000)
[Astron. Lett. 26, 609 (2000)].

4. L. Decin, H. Van Winckel, C. Waelkens, and
E. Bakker, Astron. Astrophys. 332, 928 (1998).

5. P. J. Flower, Astrophys. J. 469, 355 (1996).
6. P. Garcia-Lario, A. Manchado, W. Pych, and

S. R. Pottasch, Astron. Astrophys., Suppl. Ser. 126,
479 (1997).

7. C. Heiles, Astrophys. J. 204, 379 (1976).
8. W. A. Hiltner, Astrophys. J., Suppl. Ser. 2, 389

(1956).
9. B. J. Hrivnak, Astrophys. J. 438, 341 (1995).

10. B. J. Hrivnak, IAU Symp. 180: Planetary Nebulae,
Ed. by B. J. Habing and H. J. G. L. M. Lamers
(Kluwer Acad., Dordrecht, 1997), p. 303.

11. S. Kwok, B. J. Hrivnak, and T. R. Geballe, Astrophys.
J. 454, 394 (1995).

12. O. J. Lee, G. D. Gore, and T. J. Bartlett, Ann. Dear-
born Observ. Vol. V, Part 1c (1947).

13. L. Likkel, Astrophys. J. 344, 350 (1989).
14. C. Loup, T. Forveille, A. Omont, and J. F. Paul, As-

tron. Astrophys., Suppl. Ser. 99, 291 (1993).
15. T. H. Neckel and G. Klare, Astron. Astrophys., Suppl.

Ser. 42 , 251 (1980).
16. A. S. Sharov, Astron. Zh. 40, 900 (1963) [Sov. Astron.

Rep. 7, 689 (1963)].
17. V. L. Straizys, Multicolor Stellar Photometry

(Mokslas, Vilnius, 1977).

Translated by N. Samus’



Astronomy Letters, Vol. 29, No. 7, 2003, pp. 486–493. Translated from Pis’ma v Astronomicheskĭı Zhurnal, Vol. 29, No. 7, 2003, pp. 552–559.
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Abstract—We suggest a way of self-consistently solving the problem of the excitation and rapid damping
of coronal loop oscillations observed from the TRACE (Transition Region and Coronal Explorer) satellite.
Oscillations are excited on the dispersion branch of fast magnetoacoustic waves, which propagate mainly
across the magnetic field. The rapid damping of the observed oscillations is governed by the dispersion
spreading of the pulse of these waves that was produced, for example, by a solar flare. The fundamental
oscillation period is close to the period of the fundamental mode. Dissipative processes attributable to the
nonideality of the plasma and the coronal-loop footpoints play no fundamental role. c© 2003 MAIK “Nau-
ka/Interperiodica”.

Key words: Sun.
INTRODUCTION

TRACE (Transition Region andCoronal Explorer)
observations of transverse oscillations in coronal
loops have prompted a number of questions to which
there are no convincing answers as yet. Parameters of
the observed oscillations, possible ways of explaining
them, and the difficulties emerging in this case have
recently been presented by Schrijver et al. (2002) and
Aschwanden et al. (2002). Only the conclusion that
the appearance of oscillations reflects the response
of the magnetosphere of an active region to an
internal or external magnetohydrodynamic (MHD)
disturbance seems beyond question. The sources of
such disturbances are solar flares or filament erup-
tions. The putative correspondence of the observed
oscillations to the axisymmetric fundamental kink
mode of a single coronal loop raises two questions
at once: how to excite this mode and how to explain
the rapid damping of the oscillation process. The third
question as to why oscillations are observed only in a
small group of ultraviolet loops also arises.
The question about the excitation of oscillations is

considered only speculatively. It can simply be pos-
tulated that in an isolated, denser coronal loop, MHD
oscillations, which are its eigenmodes, appear instan-
taneously. In this case, however, unrealistically large
(eight or nine orders of magnitude higher than the
classical values) values of the viscosity or resistivity
of the coronal plasma (Nakariakov et al. 1999) are
required to explain their rapid damping (the mean
number of clearly observed oscillation periods is equal

*E-mail: uralov@iszf.irk.ru
1063-7737/03/2907-0486$24.00 c©
to four), even in terms of such an efficient mechanism
as resonant absorption. At the same time, Solov’ev et
al. (2002) believe that the kink oscillations of a single
loop can also be rapidly damped in an ideal plasma
due to its radiative losses through the emission of
magnetoacoustic waves into the ambient space. The
oscillation period and damping of an isolated mag-
netic field line can also be assumed to be entirely de-
termined by the parameters of the oscillation process
in the photospheric region from which this field line
emerges (Schrijver and Brown 2000). These authors
also show that the field lines that pass near the sepa-
ratrix surfaces have the largest displacements during
the motion of photospheric magnetic charges. In this
case, the displacements of field lines on either side
of this surface have opposite signs. These circum-
stances are invoked to account for the occasionally
observed antiphase behavior of the oscillations of two
closely spaced loops and should probably be taken
into consideration in answering the third question in
some cases. However, a different explanation is also
possible.

Here, we use a plane homogeneous model magne-
tosphere of an active region as an example to show a
way of self-consistently solving the first and second
questions. The resonant excitation of oscillations and
their rapid damping can be naturally explained by the
appearance of a dispersion wake behind the moving
MHD pulse. The wake shape depends on the sizes
and geometry of the pulse source. This dependence
creates an uncertainty in the problem being solved.
The pulse source is assumed to be plane and ex-
tended. In the section entitled “The model and the
2003 MAIK “Nauka/Interperiodica”
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Assumptions,” we discuss our assumptions and the
equation that describes the response of the model
magnetosphere to a disturbance moving across the
magnetic field. In the section entitled “The Resonant
Excitation of Oscillations,” we present some of the
solutions of this equation. The flare-induced distur-
bance is modeled by specifying a boundary regime.
We estimate the effect of the presence of a rectangu-
lar inhomogeneity whose parameters are assumed to
correspond to the parameters of the denser loops ob-
served from TRACE in the ultraviolet. In conclusion,
we discuss the advantages and disadvantages of the
model.

THE MODEL AND THE ASSUMPTIONS

The basic equation for our analysis is the wave
equation that follows from the linearized equations
of ideal magnetohydrodynamics in the absence of
gravity and under the additional condition γ = const,
where γ is the adiabatic index:

∂2ξ

∂t2
= C2

s∇(∇ · ξ) +
M

4πρ0
, (1)

M = (∇×B0) × B′ + (∇× B′) × B0,

B′ = ∇× (ξ × B0).

Here, C2
s = γP0/ρ0 is the square of the speed of

sound; ξ, ρ, and P are the displacement, density,
and pressure of plasma, respectively; and B0 is the
force-free magnetic field (∇× B0) × B0 = 0. The
subscript “0” denotes the unperturbed quantities.
There are no steady plasma flows. Disregarding the
gravity is justifiable when the following inequality
is satisfied: T � TA = 2π/ΩA, where ΩA = Cs/2H ,
H = C2

s /γg, and g is the acceleration of gravity. The
acoustic cutoff period TA at a coronal temperature of
106 Kand γ = 5/3 is∼76min. According to Schrijver
et al. (2002) and Aschwanden et al. (2002), the
observed coronal-loop oscillation periods T lie within
the range 2–33 min, but values in the range 2–7 min
dominate. Therefore, T � TA for most events.

A Uniform Magnetic Field

In real situations, the magnetic field lines of an
active region have the shape of loopswhose footpoints
are fixed in the photosphere. With an eye to obtain
analytic solutions, let us discuss a model in which
the magnetic field is horizontal, B0 = B0ex, and the
ends of the field lines are rigidly fixed on the vertical
x = 0 and x = L planes. This geometry is used, for
example, in analyzing the oscillations or stability of a
single coronal loop. In contrast, we are interested in
analyzing the oscillations of not a single loop but the
ASTRONOMY LETTERS Vol. 29 No. 7 2003
entire ensemble of magnetic loops that constitute the
magnetosphere of an active region. Therefore, in the
homogeneous model discussed below, the magnetic
loops, as such, are not yet isolated in any way.
Supplementing Eq. (1) with appropriate boundary

and initial conditions, we can solve the problem either
on the propagation of the boundary regime or on
the decay of the initial disturbance. In the absence
of rigid fixing and for B0 = const, Cs = const, and
ρ0 = const, ∂ξ/∂y = 0, the elementary solution of
Eq. (1) is a plane wave ξ ∝ exp(iωt− ikzz − ikxx).
This wave satisfies the standard dispersion relation
for fast (+) and slow (−) magnetoacoustic waves
(Kulikovskii and Lyubimov 1962):

2ω2
+,− =

{(
C2
s + V 2

A

)
k2 (2)

± k2
√(

C2
s + V 2

A

)2 − 4C2
s V

2
Ak

2
x/k

2

}
,

k2 = k2
x + k2

z ,

where V 2
A = B2

0/4πρ0 is the square of the Alfvén
velocity. For plasma displacements across, ξz, and
along, ξx, the equilibriummagnetic field, the following
expression is valid:

ξx/ξz = kxkzC
2
s /(ω

2 − k2
xC

2
s ). (3)

The rigid fixing condition ξ(x = 0, L) = 0 is satisfied
in the standard way. For this purpose, the solution
is sought in the form of a superposition of two plane
oblique waves:

ξ ∝ (1/2) {exp(ikxx+ φ) + exp(−ikxx− φ)}
× exp(iωt− ikzz).

Hence, we obtain

ξ ∝ sin (Knx) exp(iωt− ikzz), (4)

Kn = πn/L, n = 1, 2, 3, . . . .

We are concerned with the transient wave pro-
cess that accompanies the propagation of an arbi-
trary disturbance along the Z axis. The transient pro-
cess arises from the group-velocity dispersion of the
spectral components in the original signal. From (2)
and (4), we obtain for the group-velocity compo-
nent Vgz across the magnetic field

Vgz =
∂ω

∂kz
=
ωkz

k2
+

C2
s V

2
Ak

2
xkz

ω
{
2ω2 − k2(C2

s + V 2
A )
} ; (5)

kx = Kn, ω = ω+,−.

The value of Vgz becomes zero at kz = 0, which,
according to (2), corresponds to the frequencies

Ω2
n = K2

n

{
C2
s + V 2

A ±
(
C2
s − V 2

A

)}
/2, Cs > VA,

(6)
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Ω2
n = K2

n

{
C2
s + V 2

A ±
(
V 2
A − C2

s

)}
/2, Cs < VA.

The case Cs = VA constitutes an exception. Here, the
wave energy is also transferred across the magnetic
field at kz = 0 (Sivukhin 1966).

The Approximation of a Strong Magnetic Field

In the approximation of a strong magnetic field, it
is convenient to use the shortened dispersion relations
that can be derived from (2) by discarding small terms
of the order of C2

s /V
2
A . The shortened dispersion rela-

tion for a fast magnetoacoustic wave is

ω2
+
∼=
(
C2
s + V 2

A

)
k2

z + Ω2
n, Ω2

n = V 2
AK

2
n, (7)

Kn =
πn

L
.

This dispersion relation corresponds to the wave
equation

∂2ξz
∂t2

=
(
C2
s + V 2

A

) ∂2ξz
∂z2

+ V 2
A
∂2ξz
∂x2

(8)

with the boundary condition ξz(t;x = 0, L; z) = 0.

According to (3), at C2
s � V 2

A , motions across,
ξz � ξx, and along, ξx � ξz, themagnetic field domi-
nate in the fast and slowmodes, respectively. Because
of the condition kx = Kn, a slow magnetoacoustic
wave propagates across a strong magnetic field with
a low group velocity Vgz � Cs if ω > Ωn = KnCs (6).
As a result, a strong fast magnetoacoustic distur-
bance will reach a given magnetic flux tube first and
a weak slow magnetoacoustic perturbation will reach
this tube only after a long time. Below, we only dis-
cuss the fast mode.

THE RESONANT EXCITATION
OF OSCILLATIONS

The appearance of resonance oscillations is at-
tributable to a term in Eq. (8). The physical meaning
of this term is easy to understand if we recall that
the relation ∂2ξz(t, x, z)/∂x2 ∼= −1/R(t, x, z), where
R(t, x, z) is the local radius of curvature of the per-
turbed field line, is valid for small displacements ξz �
L/n. Therefore, V 2

A∂
2ξz/∂x2 = FR/ρ0 is the acceler-

ation due to the force FR
∼= −B2

0/4πR, which pre-
vents the bending of the initially straight field line.
Equation (8) can be said to describe the behavior of
an ensemble of stretched “magnetic strings” placed
in an elastic liquid.
The Excitation of the Fundamental Mode. Basic
Equations and Green’s Function

We will discuss the excitation of resonance oscil-
lations in terms of the boundary-value problem. A
flare-induced or other disturbance is modeled by an
impenetrable piston with a generally arbitrary shape.
The motion of the piston is assumed to be known.
Let us assume that its vertical velocity U(t, x, z) ≡
Uz(t, x, z) is given, with U(t;x = 0, L; z) = 0. Differ-
entiating Eq. (8) with respect to time and denoting
the plasma velocity across the magnetic field by u ≡
∂ξz(t, x, z)/∂t, we have

∂2u

∂t2
=
(
C2
s + V 2

A

) ∂2u

∂z2
+ V 2

A
∂2u

∂x2
, (9)

u(t;x = 0, L; z) = 0.

Under the assumption of small displacements, the
piston is replaced with a velocity source U(t, x) lo-
cated at the bottom of the atmosphere z = 0:

u(t, x; z = 0) = U(t, x) =
∞∑

n=1

Un(t) sin (Knx) .

(10)

In expression (10), the boundary regime is expanded
into a series with the condition U(t;x = 0, L) = 0.
The expansion coefficients are the functions Un(t)
that describe the time behavior of the fundamen-
tal (n = 1) and remaining (n = 2, 3, 4, . . . ) modes at
z = 0. Supplementing Eqs. (9) and (10) with zero ini-
tial conditions, we can seek a solution of the problem
on the propagation of the boundary regime in the form
of a series of all modes.
We restrict our analysis to the fundamental mode

n = 1. The lowest value of the frequency Ωn, Ω1 =
K1VA = πVA/L, and the broadest frequency spec-
trum of traveling (ω > Ω1) waves correspond to this
mode. Relations (9) then reduce to one equation,

∂2u

∂t2
=
(
C2
s + V 2

A

) ∂2u

∂z2
− Ω2

1u. (11)

Here, we took into account the fact that ∂2u/∂x2 =
−k2

xu = −K2
1u for the fundamental mode. The initial

and boundary conditions for Eq. (11) are

u(t = 0; z) = (∂u/∂t)t=0 = 0, 0 < z <∞, (12)

u(t; z = 0) = U1(t), 0 < t <∞.

The solution of problem (11), (12) is known (Budak
et al. 1972) and can be written as

u(t′, z) = U1(t′ − τ ′) − τ ′
t′−τ ′∫
0

U1(λ)
J1(η)
η

dλ, (13)
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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where t′ = tΩ1, τ ′ = τΩ1, τ = z/
√
C2
s + V 2

A , η =√
(t′ − λ)2 − τ ′2, and J1 is the Bessel function. Note

that Eq. (11) is similar to the equation

∂2ξ
′
z

∂t2
= C2

s
∂2ξ

′
z

∂z2
− Ω2

Aξ
′
z, (14)

which describes the vertical acoustic motions in
an atmosphere in a gravitational field. Here, ξ

′
z =

ξz exp(z/2H) and ΩA is the aforementioned acous-
tic cutoff frequency. Despite the outward similarity,
Eqs. (11) and (14) are different in origin. Equa-
tion (14) corresponds to the situation when (i) the
gravity plays a fundamental role; and (ii) the plasma
motions are longitudinal and exactly along the strong
vertical magnetic field. Equation (11) was obtained
under completely different conditions, when (i) the
gravity plays no fundamental role and (ii) plasma
motions across the strong magnetic field dominate.

In a stratified atmosphere, solution (13) describes
the resonant excitation of oscillations whose fre-
quency is close to the acoustic cutoff frequency. As
a result, a wave wake appears behind the moving
disturbance (Lamb 1932). This property of the so-
lutions of Eq. (14) was used in solar physics in
attempts to explain the 5-min oscillations (Schmidt
and Zirker 1963; Stein and Schwartz 1972; Kneer
and Nakagawa 1976) and longitudinal oscillations in
thin magnetic-flux tubes (Rae and Roberts 1982).
Zandanov and Uralov (1983a, 1983b, 1984) ex-
plained the origin of the 3-min oscillation trains
observed in the microwave emission from sunspots
by this effect. The 3-min oscillations were analyzed
by Fleck and Schmitz (1991), Kalkofen et al. (1994),
Schmitz and Fleck (1995), and Sutmann et al.
(1998). The results of these authors left no shadow
of doubt that the 3-min oscillations in the actual
solar atmosphere owe their origin to the fundamental
effect of the resonant excitation of oscillations with a
frequency close to the acoustic-cutoff frequency.

Themain feature of solution (13)—the appearance
of a wave wake when an arbitrary velocity source
switches on or off—clearly shows up in the simplest
case of a pulse in the shape of the δ function:

U1(t′) = U0δ(t′), (15)

whereU0 has the dimensions of velocity. Solution (13)
is now Green’s function of problem (11), (12). In
ordinary variables, it is

u(t, z) = U0δ(t− τ) − (τU0)
J1

(
Ω1

√
t2 − τ2

)
√
t2 − τ2

.

(16)
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The form of solution (16) at various distances z =

τ
√

C2
s + V 2

A from the piston,U0 = 1. The plasma veloc-
ity is along the vertical axis. The dimensionless time t/T1,
where T1 = 2π/Ω1, is along the horizontal axis. Each
curve shows the behavior in time of the velocity of the
plasma at a fixed point in space z(τ ) after the δ-function
pulse arrived at this point: τ = (1) 0.1T1, (2) 0.2T1, (3)
0.4T1, and (4) 0.8T1. After one or two rapidly damped
oscillations, the periodicity of wave motions at a fixed
point of space is virtually equal to T1. The oscillation
amplitude increases with distance from the piston.

Using the representation of the Bessel function for
large arguments yields the behavior of solution (16)
at t2 � τ2 + Ω−2

1 :

u(t, z) ∼= −U0
z√

C2
s + V 2

A

√
2
πΩ1

1
t3/2

(17)

× cos
(

Ω1t−
3π
4

)
.

The curves in the figure show the time behavior of
solution (16) at various distances from the piston (the
place of impulsive energy release). As one recedes
from the piston, the amplitude of the wave wake in
solution (16) indefinitely increases proportionally to z.
This circumstance is attributable to two factors. First,
the wave energy contained in the δ-function pulse is
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infinitely large. Second, there is persistent dispersion-
induced outflow of this energy into the growing wave
tail.

The Model of a Piston
with a Finite Time of Action

Since in practice there are no phenomena de-
scribed by the δ function, we replace it with a short,
∆t′ = Ω1∆t� 1, rectangular velocity pulse:

U1(t′) = U0ψ(t′), ψ(t′) ≡ H(t′) −H(t′ − ∆t′),
(18)

where H(t′) is the Heaviside function. In contrast
to the previous case where

∫
U0δ(t′)dt′ = U0, now∫

U0ψ(t′)dt′ = U0∆t′. Therefore, for a very short
pulse, ∆t′ � 1, the following analogue of expres-
sion (16) is an approximation to the exact solution:

u(t, z) ∼= U0ψ(t− τ) − zΩ1√
C2
s + V 2

A

(U0∆t) (19)

×
J1

(
Ω1

√
t2 − τ2

)
√
t2 − τ2

.

Expression (19) describes the amplitude and shape
of the entire wake behind the short pulse. Compar-
ison of the exact (13) and approximate solutions for
t→ τ gives a constraint on the validity of expres-

sion (19): τ = z/
√
C2
s + V 2

A � 2/
(
Ω2

1∆t
)
. The small

decrease in the amplitude of the leading edge (dis-
continuity) of the pulse may be ignored within this
distance range. In the exact solution, the amplitude
of the leading discontinuity remains constant. Note
that, for a smoothly inhomogeneous medium, the dis-
continuity amplitude varies according to the laws of
linear acoustics as long as the nonlinearity may be
disregarded. In an asymptotic representation, t2 �
τ2 + Ω−2

1 , the inaccuracy of expression (19) lies in
the absence of an additional phase shift of the order
of Ω1∆t� 1, which is unimportant.
The first term on the right-hand side of (19)

describes the propagation of the pulse at velocity√
C2
s + V 2

A without any distortion of its shape. The

second term describes the excitation of oscillations at
an arbitrary point z after the passage of the leading
edge of the initial disturbance through this point.
If the velocity pulse is positive, U0 > 0, then the
strongest first oscillation that follows it corresponds
to the rarefaction phase. For the amplitude umax of
this oscillation, we can easily find from (19) for t→ τ
that umax ≈ U0τ

(
Ω2

1∆t
)
/2. The asymptotic solution

is reached quickly, after two or three oscillations. The
characteristic oscillation frequency approaches the
resonance frequency Ω1 and the oscillation amplitude
begins to smoothly decrease as 1/t3/2. An important
circumstance follows from (19): in the case of an
impulsive disturbance, the intensity of the wave wake
is determined by the parameter U0∆t. This parameter
is equal to the area of the initial velocity pulse in
variables (u, t) and is nothing but the maximum
displacement of the piston located at the bottom of
the atmosphere.
Let us estimate the ratio of the energy E of the

wave wake to the (kinetic plus magnetic) energy,

E0 ≈ ρU2
0 ∆t

√
C2
s + V 2

A , of the initial wave distur-

bance generated by the piston. Taking

T1

√
C2
s + V 2

A ≈ 2L, where T1 = 2π/Ω1, as the char-

acteristic scale length, we have E ≈ 2L
(
ρu2
)
≈

Lρu2
max. Therefore, E/E0 ≈ π4z2(VA∆t)/(4L3). The

energy of the wave wake rapidly increases with dis-
tance. This is true as long as E < E0 (and u < umax),
which is equivalent to the validity condition for solu-
tion (19). Formally, assuming that z = L/π, which is
equal to the radius of a semicircular loop, we derive
the order-of-magnitude relation

(E/E0)z=L/π ∼ π2(VA∆t)/(4L) = π2∆t/(2T1),

∆t/T1 � 1.

For a pulse duration ∆t ≈ 0.2T1, the energy of the
wave wake is of the order of the energy of the flare-
induced disturbance.
The switching of a periodic velocity source,

U1(t) = U0H(t) cos ωt, is also accompanied by a
transient process whose characteristic period corre-
sponds to the frequency Ω1. The transient process is
indistinct at ω � Ω1 and clearly shows up at ω � Ω1.
The transition of the entire atmosphere from rest to
motion with a piston velocity U0 corresponds to the
case ω = 0. This transition is also accompanied by
the excitation of oscillations with a period ∼= T1 =
2L/VA, which are damped roughly as 1/t3/2.

The Effect of a “Heavy” Layer on the Transient
Process

The plasma of coronal loops seen in ultraviolet iron
lines is cooler and, apparently, denser than the ambi-
ent plasma (Aschwanden et al. 2002). These condi-
tions are likely to be satisfied only for loops adjacent to
the separatrix surfaces of the coronal magnetic field.
Therefore, the bulk of themagnetic flux involved in the
oscillatory motion of all or part of the magnetosphere
of an active region described above is simply unseen.
The energy of this motion can be high, because, as we
ASTRONOMY LETTERS Vol. 29 No. 7 2003
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saw above, the energy of the wave wake sufficiently
far from the flare location is comparable to the energy
of the initial disturbance. At the same time, it seems
clear that, if the gas mass in a coronal loop is too
large, then, because of the large inertia, this loop
will inhibit general oscillatory motion. The inverse
effect of a group of such loops located, for example,
along a separatrix surface on the transient process
described above can be stronger. Let us attempt to
establish a criterion whose satisfaction will allow the
effect of “heavy” coronal loops on the parameters
of the transient process to be disregarded. For this
purpose, we postulate the presence of a homoge-
neous plasma layer inside of which the coefficients
of Eq. (11) differ from those outside. An exact solu-
tion of the boundary-value problem described in the
preceding section similar to expression (13) is now
difficult to obtain. Therefore, we restrict our analysis
to estimating the effect of such a layer on the spectral
composition of the transient process.
We use the results of the solution of the standard

problem on the transmission of a monochromatic
wave, ξ ∝ exp (−iωt), through a layer 0 ≤ z ≤ d. In-
side of the layer, the speed of sound and the Alfvén
velocity are C2 and V2, respectively. Outside of the
layer, in the half-spaces z < 0 and z > d (media 1
and 3), the plasma parameters are identical and the
speed of sound and the Alfvén velocity are denoted by
Cs and VA, respectively, as previously. There are inci-
dent and reflected waves in the half-space z < 0, ξ1 ∝
A1 exp(ikz) +B1 exp(−ikz), and only a transmitted
wave in the half-space z > d, ξ3 ∝ A3 exp(ik(z− d)).
The continuity of ξ and dξ/dz at z = 0 and z = d

gives a familiar (see, e.g., Grechko et al. 1972)
expression for the transmission coefficient, W =
|A3/A1|2, of a particle through a potential barrier
or above a potential well. At ω ≥ Ω1, when k =√(

ω2 − Ω2
1

)
/
(
C2
s + V 2

A

)
and k2 =√

(ω2 − (Ω∗
1)2) /

(
C2

2 + V 2
2

)
are valid, the following

expression holds:

W =
[
1 +

(k2 − k2
2)

2

4k2k2
2

sin2 k2d

]−1

= (1 + α)−1.

(20)

The potential well corresponds to the“heavy” layer:
Ω∗

1 < Ω1, where Ω∗
1 = V2K1 = πV2/L. The disper-

sion of traveling waves ω ≥ Ω1 at low frequencies
is responsible for the appearance of the wave wake
described in the preceding section. The distortion of
the wake is attributable to the reflection of the spectral
components ω → Ω1, when k → 0, from the layer.
At k = 0, the reflection is total, W = 0. The reflec-
tion is significant, W (ω) > 0.5, at frequencies in the
ASTRONOMY LETTERS Vol. 29 No. 7 2003
range from Ω1 to some frequency determined from
the condition α(ω) ≈ 1. Let us estimate the relative
width, of this range, ∆ω/Ω1 = (ω − Ω1)/Ω1. We use
the fact that the observed oscillation periods and the
corresponding wavelengths are so large and the loop
diameters so small that k2d� 1. To estimate k2, it
will suffice to use the condition k = 0. Disregarding
the speed of sound, we then derive an equality equiv-
alent to the condition α ≈ 1:(

ω2

Ω2
1

− 1
)

≈ 1
4

(
πd

L

)2(ρ2

ρ
− 1
)2

,

where ρ2 and ρ are the plasma densities inside
and outside of the layer, respectively. The following
inequality corresponds to the smallness condition
∆ω/Ω1 � 1 for the spectral range of the waves
reflected from the layer:

∆ω
Ω1

≈ 1
8

(
πd

L

)2(ρ2

ρ
− 1
)2

� 1. (21)

If inequality (21) is satisfied with a margin, then
the presence of a “heavy” layer will scarcely affect
the parameters of the transient process. Let us
estimate ∆ω/Ω1 in order of magnitude. According
to the measurements presented in Aschwanden et
al. (2002), the lengths of oscillating loops lie within
the range 74 000–582 000 km, with a mean value
being L ≈ 220 000 km. The loop diameters lie within
the range 5500–16 800 km, with a mean value of
d ≈ 8700 km. The plasma density inside and outside
of the loops is highly uncertain. Its mean value inside
of the loops was estimated by the above authors to be
6 × 108 cm−3. If we take a typical value of 108 cm−3

for the ambient plasma density, then ρ2/ρ ≈ 6. We
then obtain from (21): ∆ω/Ω1 ≈ 0.037. It should be
noted that the actual value of d in expression (21) can
be even smaller than 8700 km if the observed loops
are assumed to consist of a web of thinner structures.
Their presence is clearly felt when examining the
images. At the same time, we cannot rule out the
possibility that, actually, ρ2/ρ < 6.

CONCLUSIONS

The homogeneous model magnetosphere of an
active region only shows the main physical effect—
the resonant excitation of a rapidly damped wake
behind the MHD disturbance that propagates across
the magnetic field. Oscillations are excited on the
dispersion branch of fast magnetoacoustic waves.
The rapid damping of the observed oscillations is
governed by the dispersion spreading of the pulse of
these waves produced by a solar flare or a filament
eruption. The oscillations of the magnetic field lines
are also transverse and their fundamental period is
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close to the period of the fundamental mode. The
phenomenon is completely described in terms of ideal
magnetohydrodynamics. It is important to note that
we discussed the transient wave process for the plane
case and only for the fundamental mode, n = 1, of
the expansion of the boundary regime (10). Thus,
the size (along the X axis) of the piston that models
the impulsive disturbance is equal to the length of
the oscillating field lines. If the piston size is small,
then the subsequent modes, n > 1, should be taken
into account. The latter will lead to a more complex
structure of the “transient” solution.
The approximation of a strong magnetic field

implies a negligible role of the gas pressure and,
accordingly, the dissipative factors that change its
value. Such insignificant factors include heat con-
duction and coronal-plasma losses through intrinsic
radiation, however large they are. There is also no
need to invoke any reasoning about the waveguide
properties of isolated, denser magnetic loops and the
resonant absorption (viscosity and electrical con-
ductivity) of the natural oscillations excited in them.
The presence of such loops undoubtedly modifies the
solution but does not change its global character.
The small width (21) of the spectral range of the
waves reflected from a “heavy” layer provides evi-
dence for the following conclusion. “Heavy” coronal
loops must be forcedly displaced in time by the
motions described by expression (13). Thus, the
oscillations observed from TRACE are, to a greater
extent, determined not by the intrinsic parame-
ters (magnetic field, enhanced density, length) of
the oscillating loop itself but by the parameters
of the transient wave process in the surround-
ing magnetospheric area of an active region. We
cannot but take into account this circumstance
when developing the technique for determining the
coronal magnetic field strengths from the parame-
ters of the coronal loop oscillations observed from
TRACE.
The occasionally observed puzzling antiphase be-

havior (Schrijver et al. 2002) of the oscillations of two
closely spaced loops can also be naturally explained
in terms of our model. In particular, if the two loops
are the structural elements of a bipolar magnetic field,
then the in-phase behavior of their oscillations in the
radial (relative to the bipolar field center) direction
automatically implies a periodic convergence and di-
vergence of the oscillating loops. If the line of sight
lies in the middle plane that spatially separates the
two loops, then the loop displacements transverse
to the line of sight will be perceived as occurring in
antiphase.
The characteristics of the transient process de-

scribed above are the result of the solution of the
plane problem. In particular, this implies that the
source of the impulsive disturbance (piston) must be
extended enough in all directions for the use of the
one-dimensional Green’s function (16) to be justified.
In real situations, the pistonmay prove to be compact.
The curvature of the equilibrium magnetic field and,
possibly, the regular inhomogeneity of the coronal
plasma itself should also be taken into account. These
factors can modify the amplitude and shape of the
response of the magnetosphere of an active region to
the impulsive disturbance generated, for example, at
its bottom. The same factors imply the necessity of an
allowance for the linear interaction between various
types of MHD waves in the wavelength range con-
cerned and, in particular, the possible resonant trans-
formation of a fraction of the energy of a fast mag-
netoacoustic wave into Alfvén energy (like the field-
line resonance in the Earth’s magnetosphere). At the
same time, it is not quite clear what distribution of the
magnetic field and the coronal-plasma parameters
should be used in this case. The set of oscillating
magnetic domains that constitute the magnetosphere
of an actual active region is also a complex resonant
system. Another crucially important fact is also the
tangible anisotropy in the propagation of almost any
impulsive disturbance generated inside or outside an
active region.
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Abstract—We derive an equation that relates the contour of an orbit and a stable periodic orbit.
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A periodic orbit can result either from the merging
of two sides of a box-shaped orbit or from the merging
of two shells of a shell-like orbit. The result depends
on the form of the potential U(r, z) and on the speci-
fied energy integral I.
Let the contour of an orbit in the meridional plane

of a rotationally symmetric potential U(r, z) be given
by the equality

F (r, z) = 0. (1)

The curvature of this contour is defined by the
expression

k =

∣∣∣∣∣∣∣∣∣
F

′′
rr F

′′
rz F

′
r

F
′′
zr F

′′
zz F ′

z

F
′
r F

′
z 0

∣∣∣∣∣∣∣∣∣
: (F

′2
r + F

′2
z )

3
2 . (2)

For the contour of the orbit to coincide with a stable
periodic orbit, it is necessary and sufficient that the
curvature of the contour of the orbit be equal to the
curvature of a trajectory in the field of the potential
U(r, z).
The equation of a trajectory was derived byAgekyan

(1972):

∂f

∂l
=
∂f

∂r
cos f +

∂f

∂z
sin f (3)
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=
1

2(U(r, z) + I)

(
−∂U
∂r

sin f +
∂U

∂z
cos f

)
,

where
∂f

∂l
is the curvature of the trajectory, f is the

angle between the tangent to the trajectory in the
meridional plane and the abscissa R, l is the direction
along the tangent to the trajectory, and I is the energy
integral.
Consequently, the equation∣∣∣∣∣∣∣∣∣

F
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×
(
−∂U
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sin f +
∂U
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)
= 0

determines the position of a stable periodic orbit.
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