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Abstract—The toroidal magnetic field frozen in the relativistic plasma ejected by pulsars must play a
significant role in the formation of jet-like features observed in the central parts of plerions. We performed a
semiquantitative analysis and calculations of the plasma flow in a plerion using the perturbation theory. We
show that for the latitudinal magnetic-field distribution expected during the interaction of the pulsar wind
with the interstellar medium, the magnetic field will have an appreciable effect on the flow primarily near the
rotation axis. In the equatorial region, the effect of the magnetic field is negligible up to distances of 7rsh.
c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

TheCrabNebula is one of themost interesting and
best studied sources in the sky. This object has been
observed over a wide wavelength range, from radio to
gamma rays with a photon energy of 50 TeV (Aha-
ronian et al. 2000; Hester 1998; Shklovskii 1968).
One of the most interesting peculiarities of the Crab
Nebula is the discovery of a toroidal structure sur-
rounding the pulsar PSR 0531+21 in its central part
and two jet-like features arranged perpendicularly to
the torus and emerging from the pulsar (Weisskopf
et al. 2000). Such a structure is not something spe-
cial. It was also detected in other plerions. Chandra
observations revealed similar structures in the Vela
(Pavlov et al. 2000, 2001; Helfand et al. 2001) and
PSR 1509−58 (Kaspi et al. 2001) plerions and in the
supernova remnants G0.9+1 (Gaensler et al. 2001)
and G54.1+0.3 (Lu et al. 2002).

The mechanism of the formation of the Crab
Nebula through the ejection of e± pairs from a pulsar
and the generation of a toroidal magnetic field in a
plerion was suggested by Kardashev (1964). These
ideas formed the basis of the present-day approach
to interpreting the toroidal structure observed in
the central part of the Nebula (Aschenbach and
Brinkmann 1975). Recently, we have offered (Bogo-
valov and Khangoulian 2002a) a simple and natural
explanation of the formation of toroidal and jet-like
structures in plerions based on the MHD model

*E-mail: khangul@mpi-hd.mpg.de
1063-7737/03/2908-0495$24.00 c©
of Kennel and Coroniti (1984). The new element
that was added to the model is a realistic latitu-
dinal distribution of the energy flux density in the
pulsar wind. This element made it possible to easily
reproduce the toroidal structure of the synchrotron
radiation in plerions. In this model, jet-like features
are obtained along the rotation axis if the postshock
plasma is assumed to spread more or less radially.
The surface brightness of the synchrotron radiation
is then close to the observed one (Bogovalov and
Khangoulian 2002b).

To improve the suggested model, we are currently
performing numerical simulations of the interaction of
the pulsar wind with the interstellar medium (Bogo-
valov et al. 2002). Our simulations in the hydrody-
namic approximation (when the effect of a magnetic
field on the plasma dynamics is disregarded) con-
firm our conclusion about the formation of a toroidal
structure. However, the effect of plasma-flow com-
pression to the equatorial plane is so strong that all of
the postshock plasma flow transforms into a disklike
flow along the equatorial plane. There is absolutely no
plasma flow along the rotation axis. This raises the
question of how a toroidal magnetic field affects the
formation of jets in a plerion. The effect of a mag-
netic field on the dynamics of a subsonic plasma flow
was discussed in several papers in connection with
various astrophysical phenomena. In particular, the
role of a magnetic field was considered by Bisnovatyi-
Kogan (1970) in connection with amagnetorotational
supernova explosion. This question was qualitatively
2003 MAIK “Nauka/Interperiodica”
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discussed by Lyubarsky (2002) in connection with
plerions. Here, our goal is to quantitatively analyze
the situation.

ESTIMATING THE EFFECT OF A
MAGNETIC FIELD ON THE PLASMA

DYNAMICS
IN THE CRAB NEBULA

Analysis of the observations of the Crab Nebula
indicates that the pulsar wind from PSR 0531+21
is weakly magnetized. The ratio of the magnetic-
energy density to the kinetic-energy density of the
plasma is only 0.3%. Therefore, in our previous study
(Bogovalov and Khangoulian 2002a), we disregarded
the effect of a magnetic field on the passage of the
pulsar wind through a shock wave and on the plasma
flow in a plerion. In this paper, we first give simple
quantitative estimates of the magnetic-field effect on
the postshock flow and then solve this problem using
the perturbation theory.

The magnetic-field distribution in the preshock
pulsar wind can be determined from the condition of

magnetic-field freezing in plasma E +
1
c
[v ×B] = 0.

The electric field in the wind is related to the poloidal

magnetic field Bp by E =
r sin θΩ
c

Bp (Mestel 1968),

where r is the distance to the pulsar, θ is the polar
angle, and Ω is the angular velocity of the pulsar.
Then,

r sin θΩBp +Bϕvp = vϕBp. (1)

At distances r� c/Ω, the angular velocity of the
plasma tends to zero, because the angular momen-
tum of the plasma particles (r sin(θ)vϕ) is limited
above. In this limit, the toroidal magnetic field at large
distances from the pulsar is

Bϕ =
r sin θΩ
vp

Bp. (2)

To estimate the preshock magnetic field, we assume
that during themotion away from the pulsar, the same
fraction of the initial Poynting vector flux transforms
into the kinetic energy of the plasma. The ratio of
the energy flux density of the electromagnetic field to
the kinetic-energy flux density of the plasma will then
be independent of the angle θ, except for a narrow
region near the rotation axis where the kinetic-energy
flux density exceeded the energy flux density of the
electromagnetic field from the very outset. To take
this circumstance into account, we introduced the

additional factor
γm sin2 θ

γ1
on the right-hand side of
relation (4):

Ba(θ)2

4πn1mc2γ2
1

= σ
γm sin2 θ

γ1
. (3)

Here, n1(r) is the preshock plasma density, γ1 =
γ0 + γm sin2 θ is the Lorentz factor, and Ba(θ) is the
toroidal magnetic field at distance a from the pulsar.
The value of a can be determined from the condition
that particle acceleration takes place at r < a. Then,
the following relation holds:

Ba(θ) =
√

4πσmc2γ1n1γm sin θ, (4)

with γ1n1 being independent of the polar angle.

The radius of the shock front rsh(θ) is defined as
(Bogovalov and Khangoulian 2002a)

rsh =

√
3
2

(
3√
8

) δ
δ−1 γ1mc2Ṅ

4πPextc
, (5)

where Pext is the pressure of the interstellar medium,
δ = 4/3 is the polytropic index of an ultrarelativisti-
cally hot plasma, and Ṅ is the rate of particle injection
by the pulsar.

In the limit γm � γ0 of interest, we can assume
that everywhere, except for the narrow range of an-
gles θ <

√
γ0/γm, the radius of the shock front is

rsh = req| sin θ|. It follows from expression (4) and the
freezing-in condition that the preshock magnetic field
is

B1 = const
a

rsh
sin θ. (6)

Taking into account the expression that defines rsh,
we see that the magnetic field will be constant on
the shock surface. At the shock, the magnetic field
increases by a factor of 3. As long as the field remains
weak, it is easy to understand what will happen to
it subsequently. Because of the freezing-in condition,
the ratio of the magnetic-field strength to the density
will be proportional to the field-line length (Landau
and Lifshitz 1982). For a toroidal magnetic field, the
field-line length is proportional to the distance from
the rotation axis. Since the plasma density varies only
slightly in the postshock subsonic flow, the postshock
magnetic field on a streamline can be written as

B2 = Bsh

(
χ

χsh

)
. (7)

Here, χsh = rsh sin θ is the distance to the rotation
axis at the shock, χ is the distance to the rotation
axis at an arbitrary postshock point, and Bsh is the
magnetic field immediately behind the shock. It is
important to bear in mind that this expression does
not depend on the form of the postshock streamlines.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Let us estimate the ratio of the magnetic pressure to
the hydrodynamic pressure:

pm
ph

=
1
8π

Bsh
2

(
r

rsh

)2

2
3n1mc2γ1

2
(8)

=
27
4
σ

(
γm sin2 θ

γ1

)(
χ

χsh

)2

.

For the Crab Nebula, σ = 3 × 10−3. Therefore, the
magnetic field for the Nebula begins to affect the
plasma dynamics when the streamline goes to dis-
tance χ from the rotation axis,

χ ∼ 7χsh. (9)

Since χsh ≈ req sin2 θ, it is clear that for the stream-
lines near the equator, the magnetic field in the for-
mation region of the toroidal structure in the Crab
Nebula is of no importance, because this region lies
within 3–4req. Recall that the shock radius for the
Crab Nebula at the equator is 0.1 pc, while the outer
radius of the torus is∼0.4 pc (Weisskopf et al. 2000).
In contrast, for all of the streamlines near the rotation
axis that emerge from the pulsar within the polar

angle sin θ <
1√
7
, the magnetic field will affect the

postshock plasma dynamics evenwhen they lie within
χ = req from the rotation axis.

Partially, the effect of magnetic field on the plasma
dynamics becomes clear even from the study of Ken-
nel and Coroniti (1984). When the magnetic pressure
becomes equal to the plasma particle pressure, the
magnetic field ceases to grow and the dynamics of the
plasma motion changes. However, it is obvious that
this is not all. Kennel and Coroniti (1984) assumed
that the postshock plasma spreads purely radially.
Clearly, when the magnetic pressure becomes equal
to the plasma-pressure, the radial pattern of motion
also breaks down. To understand the nature of this
breakdown, it is interesting to consider the analytical
solution of the problem in terms of the perturbation
theory.

EFFECTS OF A MAGNETIC FIELD
ON POSTSHOCK STREAMLINES

In an actual pulsar wind, the particle energy
strongly depends on the latitude. The ratio γm/γ0 is of
the order of 104. However, to estimate the magnetic-
field effect, it is interesting to consider the flow for
an isotropic kinetic energy flux of particles but in the
presence of a weak magnetic field. This can be done
in terms of the perturbation theory. In this case, it
is important to take into account the fact that for
a Lorentz factor γ > 200, the magnetic collimation
ASTRONOMY LETTERS Vol. 29 No. 8 2003
of the preshock plasma is negligible (Beskin et
al. 1998; Bogovalov and Tsinganos 1999; Bogov-
alov 2001). The wind from the pulsar may be assumed
to spread radially, because at relativistic velocities of
the preshock plasma with γ > 200, the magnetic-
field effect (the Ampère force [j ×B]) is actually
completely offset by the electric field (the Coulomb
force). Estimates indicate that the angle through
which the streamline deflects from the radial direction
is of the order of δθ =

σ

γ2
0

ln
rsh
Rl

, where Rl is the

radius of the light cylinder (Bogovalov 2001). For the

Crab Nebula,
rsh
Rl

∼ 109. Therefore, the deflection of

motion from the radial direction upstream the shock
is only δθ = 1.5 × 10−6 for γ0 = 200. In practice, this
implies that the magnetic collimation of the preshock
pulsar winds may be completely disregarded.

The situation changes after the shock passage.
Qualitatively, this can be understood in the case of
a perpendicular shock wave. The collimating force is
proportional to the differenceB2

sh −E2. Upstream the
shock, E = vBsh/c. Therefore, the collimating force
is proportional to B2

sh/γ
2. After the shock passage,

the electric field does not change, while the magnetic
field in a strong shock almost triples. As a result,
the Ampère force immediately behind the shock is
almost a factor of 9 larger than the Coulomb force (the
forces are proportional to the squares of the fields).
The collimating force becomes proportional to 8B2

sh.
This sharp increase in the collimating force is of con-
siderable interest to us.

The problem is axisymmetric. Let us introduce
the stream function ψ. It is related to the physical
quantities by

nur =
1

r sin θ
∂ψ

r∂θ
, (10)

nuθ = − 1
r sin θ

∂ψ

∂r
, (11)

where n is the proper particle number density and
ur and uθ are the corresponding four-velocity com-
ponents. It is convenient to use the equations for
the stream function in spherical coordinates. The
equation in question is an analogue of the Grad–
Shafranov equation (the material on this subject is
available in the review by Beskin 1997). It follows
from the complete system of magnetohydrodynamic
equations for the flow geometry under consideration,
assuming that the magnetic field and the deviation of
the flow from a spherically symmetric one are small:

u2

u2
s − u2

{(
u2
s − u2

r

)
ψrr +

(
u2
s − u2

θ

)ψθθ
r2

(12)
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− 2uθur
ψrθ
r

− u2
snur cos θ

+ nuθ sin θ
(
2u2

r + u2
θ

)}
=
u2n2r2 sin2 θ

u2
s − u2

×
[
δ − 1
δ

(
u2
s − u2

)∂ lnS
∂ψ

+ γ2u2
s

∂ lnA/S
∂ψ

]

+
u2
s

u2
s − u2

1
4πA(u2

s − u2)
B2

γn
ψiuk

∂uk
∂xi

+
γ2u2

s(
u2
s − u2

) 1
4πA

B2

γn
ψi

×
(
∂ lnS
∂ψ

ψi + 2
1
γ2
uk
∂uk
∂xi

− 1
B2

B
∂B
∂xi

)

−ψi
w

{
Eρ+

1
c

[
jB
]}

i
.

Here, u2
s =

δ − 1
2 − δ and δ = 4/3 is the polytropic index

of the ultrarelativistically hot plasma,

S(ψ) =
p

nδ
. (13)

Since the motion is adiabatic, S is conserved along
the streamline and depends only on ψ. The Bernoulli
integral

A =
wγ

n
+

1
4π
B2

γn
(14)

is also conserved along the streamline. Here, w is the
thermal function per particle in the intrinsic coordi-
nate system and p is the proper pressure. This form
of the Bernoulli integral corresponds to the geometry
of the problem under consideration. The complete
version of the Grad–Shafranov equation contains five
integrals of motion. The absence of three conserved
quantities stems from the fact that we consider a
region far from the pulsar. Therefore, the effects re-
lated to the angular momentum Lz and the corota-
tion angular velocity ΩF (we use the notation from
Beskin 1997) are negligible. The ratio of the particle
flux to the magnetic flux η drops out of the equations
because the magnetic field is considered as a pertur-
bation.

In the ultrarelativistic case, w and p are related

by the equation of state w =
δ

δ − 1
p. In the case of a

weakly magnetized wind, we solve Eq. (12) using the
perturbation theory.

The equation of the zeroth approximation corre-
sponds to a radial flow in the absence of a magnetic
field,

us
2ψθθ − us2nur cos θ = 0. (15)
Its solution is
ψ = u2n2r

2
sh0(1 − cos θ), (16)

where u2 and n2 are the plasma velocity and density at
rsh0, respectively. In the first order of the perturbation
theory, the stream function is

ψ = u2n2r
2
sh0(1 − cos θ + σ0f(r, θ)), (17)

where σ0 =
Beq

2

4πn1u1γ1mc2
. Here, Beq corresponds to

the preshock equatorial magnetic field. The equation
for the correction f(r, θ) can be written as

σ0n2u2r
2
sh0

{(
us

2 − u2
)
frr (18)

+ us
2(1 − η2)

fηη
r2

− 2u2 fr
r

}
= n2r2 sin2 θ

×
[
δ − 1
δ

(
us

2 − u2
) ∂ lnS
∂ψ

+ γ2u2
s

∂ lnA/S
∂ψ

]

+
γ2us

2

u2

1
4πA

B2

γn

∂ lnS
∂ψ

ψiψi

+
us

2 − u2

wu2

1
2πγ2

ψθ
r2
B2 cot θ.

The physical quantities on the right-hand side of (18)
correspond to an unperturbed flow, η = cos θ, and the
magnetic field can be determined from the freezing-in
condition (33).

To determine A and S, we use the shock-adiabat
relations for a relativistic oblique shock with a non-
zero magnetic field. They can be derived from the ex-
pressions given by Kennel and Coroniti (1984) using
the Lorentz transformations. For a weak magnetic
field, the deviations from a radial flow will be small.
Therefore, the general expressions can be simplified:

u2
2 =

1
8

(1 + 9σ) , (19)

γ2
2 =

9
8

(1 + σ) , (20)

B2 = 3B1 (1 − 4σ) , (21)

w2 =
8
3
n1mc

2u1
2 (1 − 7σ) , (22)

n2 = n1u1

√
8(1 − 9

2
σ), (23)

where σ =
B1

2

4πn1u1γ1mc2
. The physical quantities

with the subscript “2” refer to the region immediately
behind the shock, and the quantities with the sub-
script “1” describe the pulsar wind. These relations
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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correspond to a zero preshock plasma temperature;
i.e., p1 = 0, e1 = mc2n1. The thermodynamic quan-
tities of the plasma after the shock passage are defined
by relations (19)–(23) and by the assumption that the
plasma is injected by the pulsar isotropically; i.e., the
wind density is

n1 =
(rsh0
r

)2
nw, (24)

where nw is the density at rsh0.
Under the action of a magnetic field, the shock

surface can be deformed. Therefore,

rsh = rsh0

(
1 + σ0

∑
m

RmPm(cos θ)

)
, (25)

where Pm are the Legendre polynomials, and Rm are
constants. In this case, the preshock plasma density
in the first order in σ is

n1 = nw

(
1 − 2σ0

∑
m

RmPm(cos θ)

)
(26)

and, according to (6), the magnetic field is

B1 = Beq
rsh0
rsh

sin θ = Beq
rsh0
rsh0

(27)

×
(

1 − σ0

∑
m

RmPm(cos θ)

)
sin θ = Beq sin θ.

For convenience, a was chosen to be rsh0. Then,

u2
2 =

1
8
(
1 + 9σ0 sin2 θ

)
, (28)

γ2
2 =

9
8
(
1 + σ0 sin2 θ

)
, (29)

B2 = 3B1, (30)

w2 =
8
3
nwmc

2u1
2 (31)

×
(

1 − 7σ0 sin2 θ − 2σ0

∑
m

RmPm(cos θ)

)
,

n2 = nwu1

√
8 (32)

×
(

1 − 9
2
σ0 sin2 θ − 2σ0

∑
m

RmPm(cos θ)

)
.

The freezing-in condition determines the depen-
dence of the magnetic field downstream of the shock,

B = B2
r

rsh0

n

n2
= B2

r

rsh0

u2rsh0
2

ur2
(33)

= 3Beq
r

rsh0

u2rsh0
2

ur2
sin θ.
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Expressions (28)–(32) allow us to determine S and
the Bernoulli integral downstream of the shock,

S =
p2

nδ2
= S0 (34)

×
(

1 +
(

9δ
2

− 7
)
σ0 sin2 θ + 2(δ − 1)σ0

×
∑
m

RmPm(cos θ)

)
.

Since the Bernoulli integral is conserved along the
streamline,

A =
w1γ1

n1
+

1
4π

B1
2

γ1n1
(35)

=
w1γ1

n1

(
1 +

1
4π

B1
2

w1γ1
2

)
= mc2γ1

(
1 + σ0 sin2 θ

)
.

The expressions on the right-hand side of (18) can
be transformed as

us
2 − u2

wu2

1
2πγ2

ψθ
r2
B2 cot θ (36)

=

(
us

2 − u2
)

γ2
18σ0

w1u
2
1n

wu

(
r

rsh0

)2

×
(
u2r

2
sh0

ur2

)2

cos θ sin2 θ

because the unperturbed flow is radial, nur2 =
n2u2r

2
sh0. Equation (18) then takes the form(
u2
s − u2

)
fxx + u2

s(1 − η2)
fηη
x2

− 2u2 fx
x

(37)

= 2(1 − η2)
n2x2

(nux2)2

[
− 1

4
(
u2
s − u2

)

×
(
η +

1
3

∑
m

RmP
′
m(η)

)

+ γ2u2
s

(
2η +

1
3

∑
m

RmP
′
m(η)

)]

− 27
8

(
u2
s − u2

)
γ2

1
u2

(
1
ux2

)δ ( 1
ux2

)2

η(1 − η2),

where x = r/rsh0.
Let us expand f in the series

f(x, η) =
∑
k

fk(x)Qk(η), (38)

where
(1 − η2)Qmηη = −m(m+ 1)Qm, (39)

Qm = −(1 − η2)Pm′(η); (40)
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Fig. 1. The solution of Eq. (37).

Q2 = −3(1 − η2)η and Eq. (37) takes the form(
us

2 − u2
)
fmxx − us2m(m+ 1)

fm
x2

− 2u2 fmx
x
(41)

=
δ2m
3

{(
us

2 − u2
)

2u2x2
− 4

γ2us
2

u2x2

+
27
8

(
us

2 − u2
)

γ2

1
u2

(
1
ux2

)δ ( 1
ux2

)2
}

− 2Rm
3u2x2

[
γ2us

2 −
(
us

2 − u2
)

4

]
.

The general solution of Eq. (41) is

fm(x) = gm(x) + h(x)δ2m +Rmjm(x), (42)

where the functions gm(x), jm(x), and h(x) satisfy
the equations(
us

2 − u2
)
gmxx − us2m(m+ 1)

gm
x2

− 2u2 gmx
x

= 0,

(43)

(
us

2 − u2
)
hxx − 6us2

h

x2
− 2u2hx

x
(44)

=
1
3

(
us

2 − u2
)

2u2x2
− 4

3
γ2us

2

u2x2

+
9
8

(
us

2 − u2
)

γ2

1
u2

(
1
ux2

)δ ( 1
ux2

)2

,

(
us

2 − u2
)
jmxx − us2m(m+ 1)

jm
x2

− 2u2 jmx
x
(45)

= − 2
3u2x2

[
γ2us

2 −
(
us

2 − u2
)

4

]
,

with the boundary conditions
gm(1) = 0, (46)

h(1) = 0, h′(1) = 0, (47)

jm(1) = 0, jm
′(1) = 0. (48)

The first boundary condition at the shock front is
the continuity of ψ. Therefore,

f (m)(1) = 0. (49)

The second boundary condition follows from the
shock-adiabat relations for an oblique shock (Bogo-
valov and Khangoulian 2002a):

fm
′(1) = 2Rm. (50)

Then, (42) takes the form
fm(x) = h(x)δ2m +Rm (2jm(x) + gm(x)) (51)

and
g′m(1) = 1. (52)

is added to condition (46).
A boundary condition at infinity should be added to

these boundary conditions. This additional condition
determines the coefficients Rm and, hence, the shape
of the shock. However, since the perturbation theory
becomes inapplicable at infinity, the solution at r � 1
is physically meaningless. For a subsonic flow, the
perturbations at infinity will have an effect in the entire
volume of the flow and on the shape of the shock.
However, solution (51) is peculiar in that it is a super-
position of the rapidly increasing function h(x), which
is nonzero only because the magnetic field is nonzero,
and the slowly increasing part R2 (2g2(x) + j2(x))).
The function h(x) increases with x as x6, while the
function R2 (2g2(x) + j2(x))) increases only as x4.
Therefore, irrespective of the coefficient R2, the flow
pattern will be determined by the function h. For
certainty, we assume that the shock surface is not
deformed. Then,

Rm = 0 (53)

for all values of m. The solution with these boundary
conditions is shown in Fig. 1. The behavior of the
streamlines that corresponds to this solution is shown
in Fig. 2. Thus, a magnetic field causes the stream-
lines to deviate toward the rotation axis of the pulsar.
Recall that we have previously shown (Bogovalov and
Khangoulian 2002) that the major factor responsible
for the formation of jets is a high plasma density in
regions of a small polar angle. Of course, we cannot
speak here about the behavior of the solution at large
distances from the shock front. Our solution at these
distances can yield a qualitatively incorrect result.
However, we see that in the jet-formation region at
small distances from the shock front, the streamlines
deviate toward the polar axis.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 2. The distribution of streamlines for a flow with
σ = 0.003. The streamline deviations are an additional
factor of the formation of jet-like features.

CONCLUSIONS

We have reached two important conclusions.
First, although the preshock energy density of the
electromagnetic field is only 0.3% of the kinetic
energy density of the plasma, the postshock field
increases by a factor of 3 and then grows linearly until
the field-energy density becomes equal to the plasma-
energy density. Further out, the plasma dynamics
changes. Instead of decelerating, the plasma moves
at a constant velocity (Kennel and Coroniti 1984).
Here, we showed that if we take into account the
latitudinal distribution of the energy flux density in
the wind from the pulsar, then the magnetic field
begins to have an effect primarily on the streamlines
located closer to the rotation axis. In this case, its role
is probably insignificant in the region of the toroidal
structures. Second, the magnetic field changes not
only the magnitude of the particle velocity but also the
direction of the motion, which results in a collimation
of the initially noncollimated plasma flow. Thus, we
confirm the idea put forward by Lyubarsky (2002)
that the plasma collimation toward the rotation axis
in a plerion is one of the factors responsible for the
formation of jetlike features in the Crab Nebula.
Therefore, the magnetic field should be taken into
account in numerical simulations of the interaction
of the pulsar wind with the Crab Nebula and the
formation of jetlike features.
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Abstract—We discuss the correlations between the luminosities of radio pulsars in various frequency
ranges and the magnetic fields on the light cylinder. These correlations suggest that the observed emission
is generated in outer layers of the pulsar magnetospheres by the synchrotron mechanism. To calculate
the distribution functions of the relativistic particles in the generation region, we use a model of quasi-
linear interactions between the waves excited by cyclotron instability and particles of the primary beam
and the secondary electron–positron plasma. We derive a formula for calculating the X-ray luminosity Lx

of radio pulsars. A strong correlation was found between Lx and the parameter Ṗ−15/P
3.5, where P

is the neutron-star rotation period, in close agreement with this formula. The latter makes it possible
to predict the detection of X-ray emission from more than a hundred (114) known radio pulsars. We
show that the Lorentz factors of the secondary particles are small (γp = 1.5–8.5), implying that the
magnetic field near the neutron-star surface in these objects is multipolar. It follows from our model
that almost all of the millisecond pulsars must emit X-ray synchrotron radiation. This conclusion differs
from predictions of other models and can be used to test the theory under consideration. The list of
potential X-ray radiators presented here can be used to search for X-ray sources with existing instruments.
c© 2003 MAIK “Nauka/Interperiodica”.

Key words: pulsars, neutron stars, and black holes; X-ray sources.
1. INTRODUCTION

By now, X-ray emission from 41 radio pulsars has
been detected by space telescopes (Possenti et al.
2002). Many attempts have been made to find corre-
lations between the X-ray luminosities Lx and other
parameters of these objects. In particular, a posi-
tive correlation was found between Lx and the rate
of rotational energy losses Ėr = IΩΩ̇ (Becker and
Trümper 1997). Here, Ω is the angular velocity of the
neutron star and I is its moment of inertia. Malov and
Malov (1995) showed that the integrated radio lumi-
nosity of the pulsars Lr also increased with increas-

ing Ėr (Lr ∝ Ė
1/3
r ∝ Ṗ 1/3P−1). Such correlations

seem quite natural, because the rotational energy of
radio pulsars is believed to be the primary energy
source for all types of their emission, although the
exact dependence of L on Ėr is still unknown. Thus,
Possenti et al. (2002) showed that Lx ∝ Ė1.34 ∝
Ṗ 1.34P−4. The dependence L(Ėr) will probably differ
for different samples, and wewill not consider it below.

There are two points of view on the localization of
the region where the X-ray emission of radio pulsars
is generated. One group of authors (e.g., Zhang and

*E-mail: malov@prao.psn.ru
1063-7737/03/2908-0502$24.00 c©
Harding 2000) believe that this region is located in
the acceleration zone, near the neutron-star surface.
Other authors (e.g., Romani and Yadigaroglu 1994)
assume that the hard (X-ray and gamma-ray) emis-
sion originates in the outer gap, on the periphery of
the magnetosphere. In our papers (Malov and Mach-
abeli 1999, 2001, 2002; Malov 2001b), we showed
that the optical and X-ray emissions of radio pulsars
must be generated in the outer layers of the magneto-
sphere, near the light cylinder, and there is no need to
postulate an outer gap and an additional acceleration
of relativistic particles.

Here, we once again discuss arguments for the
generation of hard emission at large distances from
the surface of a neutron star by the synchrotron
mechanism (Section 2) and describe our synchrotron
model (Section 3). Subsequently, we consider the
possibilities for detecting X-ray emission from a
number of known radio pulsars (Section 4) and
summarize our main results (Section 5).

2. ARGUMENTS FOR THE SYNCHROTRON
MODEL

Shortly after the detection of optical emission from
the Crab pulsar, Shklovsky (1970) and Pacini (1971)
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The relationship between the radio luminosity of
pulsars and the magnetic field at the light cylinder.

put forward the idea of using the synchrotron mecha-
nism to explain this emission. They assumed that the
generation region was located near the light cylinder
(r ∼ RLC = c/Ω). Subsequently, a number of authors
(Zheleznyakov 1971; Smith 1973; Ferguson 1981)
suggested that the radiation from radio pulsars in
all wavelength ranges was generated near the light
cylinder. This extreme point of view was later trans-
formed into the hypothesis of two types of pulsars
(Malov and Suleymanova 1982; Malov 1987). Pul-
sars with long periods (P = Ω/2π ∼ 1 s) and with
the generation of radio emission inside the magne-
tosphere at distances r � RLC by the curvature ra-
diation mechanism are objects of the first type. Pul-
sars with short periods (P � 0.1 s) belong to the
second group of objects. The observed radiation is
generated in these objects near the light cylinder by
the synchrotron mechanism. Pulsars with interme-
diate periods can show properties characteristic of
both types. There are various pieces of evidence for
this division of radio pulsars (see, e.g., Malov 1997).
However, in our view, the most convincing argument
for this hypothesis is the high correlation between the
integrated radio luminosity Lr and the magnetic field
on the light cylinder BLC (Malov 1999) (Fig. 1).

A strong argument for the generation of the entire
observed emission in the same region is the simi-
larity of the pulse profiles for the Crab pulsar PSR
B0531+21 in all wavelength ranges, from radio to
gamma rays (Smith 1977). Another argument for
the localization of this region on the light cylinder is
the high correlation between the optical luminosity
of radio pulsars and the magnetic field BLC (Shearer
et al. 2000) (Fig. 2).
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 2. The relationship between the optical luminosity of
radio pulsars and themagnetic fieldBLC (the diagramwas
taken from the paper of Shearer et al. 2000).

It is interesting to look at the dependence
Lx(BLC). Using data for 41 pulsars (Possenti et
al. 2002), we obtain the following relationship be-
tween Lx (2–10 keV) and BLC (Fig. 3):

logLx(erg s−1) = (1.61 ± 0.27) logBLC(G) (1)

+ 24.94 ± 1.25

with the correlation coefficient k = 0.69 ± 0.12. This
correlation shows that the X-ray emission of radio
pulsars is also generated near the light cylinder.

The calculations of the magnetic field at the light
cylinder were carried out by assuming a dipole field
structure in the entire pulsar magnetosphere:

BLC = Bs

(
R∗
RLC

)3

=
(

2πR∗
c

)3 Bs
P 3

, (2)

where R∗ is the neutron-star radius, or for the mag-
netodipole model of neutron-star braking:

BLC = 5.9 × 108

(
Ṗ

P 5

)1/2

G. (3)

It should be emphasized that relation (1) must be
corrected with an allowance made for two factors.
First, it is necessary to subtract the part associated
with the thermal radiation of the neutron-star surface
from the observed flux to calculate the nonthermal
(synchrotron) luminosity. Second, we should take
into account the fact that the angles β between the
rotation axes and the magnetic moments µµµ of pulsars
can be different. In this case, it is necessary to use
B = BLC sin3 β (Fig. 4) instead of BLC. It is hoped
that an allowance for these two factors will lead to a
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Fig. 3. The observed relationship between the X-ray lu-
minosity of radio pulsars and the magnetic field at the
light cylinder.

higher correlation between log Lx and logBLC. Note
that five radio pulsars with detected optical signals
are simultaneously X-ray sources. This implies that
their optical radiation is related to the tail of higher-
energy emission, and the correlations Lx(BLC) and
Lopt(BLC)may not be independent.

The relationships shown in Figs. 1–3 allow us
to use the synchrotron model to explain the obser-
vational data. This model is described in the next
section.

3. DESCRIPTION OF THE MODEL

The total power of the synchrotron radiation emit-
ted by a single electron is given by the expression
(Pacholczyk 1970)

p =
2e4B2γ2 sin2 ψ

3m2c3
. (4)

Therefore, the synchrotron luminosity of any ob-
ject depends on the distribution of the emitting par-
ticles in energy ε (or Lorentz factor γ = ε/mc2), on
their pitch angles ψ (the angle between the particle
velocity and the magnetic field), and on the magnetic
field strength in the region where the radiation is
generated. The distribution function shown in Fig. 5
is formed near the neutron-star surface (Arons 1981).

Here, γb characterizes the primary beam, and γp
and γt characterize the secondary plasma. This func-
tion is one-dimensional, because any transverse mo-
mentum is lost by synchrotron radiation in less than
10−15 s. However, an anisotropic plasma is unstable
 

r

 

*

 
Ω µ

β

 

R

 

LC

Fig. 4. The scheme to explain the decrease of the mag-
netic field strength in the generation region.

(Sagdeev and Shafranov 1960) and certain types of
waves will be excited. Their interaction with particles
can give rise to appreciable pitch angles of the parti-
cles at sufficiently large distances from the neutron-
star surface. Malov and Machabeli (2002) analyzed
the steady-state kinetic equation

∂

∂p||

{[
αsψ

2
0

( p||
mc

)2
+ αc

( p||
mc

)4
(5)

−2π2ψ0
mc

p||
reωknk

]
f||

}
= 0,

where αs = 2e2ω2
B/(3c

2), αc = 2e2/(3ρ2), ρ is the
radius of curvature of the magnetic field lines, ωB =
eB/(mc) is the cyclotron frequency, nk is the num-
ber of plasmons, and re = e2/(mc2) is the electron
radius. They took into account the quasi-linear dif-
fusion and the braking forces produced by the syn-
chrotron and curvature radiations.

The solution of Eq. (5) can be sought in the form
f(p) = χ(ψ)f(p).

If the cyclotron resonance is associated with the beam
particles, then the distribution functions are

χ(ψ) = C1e
−A1ψ2

, f|| ∝ γ−4. (6)

If the particles of the high-energy tail of the seconda-
ry-plasma distribution play a leading role, then the
corresponding distribution functions at large dis-
tances from the neutron-star surface will be

χ(ψ) = C2e
−A2ψ4

, (7)
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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the pulsar magnetosphere.

f
(1)
|| ∝ γ, f

(2)
|| ∝ γ−2. (8)

In formulas (6) and (7), A1, A2, C1, and C2 are con-
stants. These distributions make it possible to calcu-
late the synchrotron spectra. In particular, if γb ∼ 106,
γp ∼ 10, and γt ∼ 105, then the maximum frequency
for PSR B0656+14 should be 7.5 × 1016 Hz (∼0.5
keV) (Malov and Machabeli 2002), which is con-
sistent with observations (Koptsevich et al. 2001).
According to dependence (8), the intensity slowly
decreases at high frequencies as ν−0.5.

Malov and Machabeli (2002) gave a formula for
the synchrotron luminosity of radio pulsars:

L =
π2e4IγrṖψ

2B2

4m3c5P 2
, (9)

where γr is the Lorenz factor of the resonant particles.
Here, we assume that the synchrotron radiation em-
anates from the part of the torus that is on the light
cylinder and that one-half of the rotational energy
losses is transferred by emitting particles. The high-
energy tail particles (γr = γt) mainly contribute to the
luminosity, and much of the radiation is emitted in the
X-ray range. In this case, themean Lorentz factor can
be estimated from distribution (7); for

A2 =
4e6

3π3m5c7
B4P 3γ4

pγ
2
r

γ3
b

it is equal to (Malov and Machabeli 2002)

ψ0 ≈ 1
2

(
3π3m5c7γ3

b

4e6B4P 3γ4
pγ

2
r

)1/4

. (10)

The total luminosity can be calculated using the for-
mula

L =
√

3
32

π7/2eIṖ γ
3/2
b

m1/2c3/2P 7/2γ2
p
. (11)

The first detailed model of synchrotron radiation
from a radio pulsar was developed by Zheleznyakov
and Shaposhnikov (1972) for PSR B0531+21. This
ASTRONOMY LETTERS Vol. 29 No. 8 2003
 
38

34

30

26

0 4 8
log(

 

P

 

.

–15

 

/

 

P

 

3.5

 

)

lo
g

 

L

 

x

 

, e
rg

 s

 

–
1

Fig. 6. The observed dependence of the X-ray luminosity
of radio pulsars on the parameter Ṗ /P 3.5.

model was critically analyzed in our other papers (see,
e.g., Malov and Machabeli 2001). Here, we only em-
phasize that these and other investigators of the syn-
chrotron model arbitrarily assumed the pitch angle to
be ψ ∼ 1. However, ψ � 1 in the magnetospheres of
pulsars (including PSR B0531+21) (Machabeli and
Usov 1989; Malov and Machabeli 2001). Indeed, if
γb = 106, γp = 10, γt = 105,P = 0.1 s, and r = RLC ,
then ψ0 ∼ 10−3.

Formula (11) makes it possible to relate the mea-
sured X-ray luminosity of radio pulsars to the ob-
served parameter Ṗ /P 3.5 if we assume that γ1.5

b /γ2
p =

const. A comparison of Lx and Ṗ /P 3.5 for 41 radio
pulsars gives (Fig. 6)

logLx = (1.32 ± 0.10) log
Ṗ−15

P 7/2
+ 26.12 ± 0.48

(12)

with the correlation coefficient k = 0.91 ± 0.07.
Dependence (11) describes the relationship be-

tween the X-ray luminosity and other parameters of
radio pulsars more accurately than the correlation
Lx −BLC does. This relationship includes no mag-
netic field. This is a fortunate circumstance, because
the magnetic field on the neutron-star surface Bs is
estimated in the magnetodipole model, but it may
be incorrect when there are other pulsar slowdown
mechanisms (Malov 2001a, 2003). Our subsequent
calculations are free from such an uncertainty. In
addition, it is not necessary to take into account any
difference in the angles β for different pulsars in our
model.
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The high correlation coefficient between Lx and
Ṗ /P 3.5 implies that the model under consideration is
correct and that the contribution of thermal radiation
to Lx is basically small.

4. APPLICATIONS AND PREDICTIONS

The coefficient at log Ṗ /P 3.5 in Eq. (12) slightly
differs from unity. If we assume that it is exactly equal
to one, then we can calculate the mean value of the
parameter γ1.5

b /γ2
p for 41 pulsars from relation (11):

logLx = logA+ log
Ṗ−15

P 7/2
. (13)

The most probable value of logA = 27.6 corresponds
to the parameter

γ
3/2
b

γ2
p

= 4.37 × 108. (14)

We obtain γp = 1.5–8.5 for γb = 106–107. Such
Lorentz factors of the secondary plasma can be
achieved if the magnetic field near the neutron-star
surface has a nondipolar structure (Machabeli and
Usov 1989). Indeed, if the radius of curvature of
the magnetic field lines is small (ρ ∼ R∗), then a
large number of curvature and synchrotron photons
are emitted by each primary electron and much
more electron–positron pairs than in the case of a
dipole magnetic field, for which ρ ∼ 108 cm 
 R∗,
are produced. Here, R∗ is the neutron-star radius.
Therefore, the mean energy (Lorentz factor) of the
secondary particles in a multipole field (γp � 10) is
lower than that for a dipole field (γp ∼ 103).

The minimum X-ray flux F in the range 2–10 keV
is 8 × 10−16 erg s−1 cm−2 for the sample of 41 pul-
sars under consideration. Using this value, we can
predict the detection of X-ray emission from other
radio pulsars in the catalogues of Taylor et al. (1995),
Manchester et al. (2001), and Morris et al. (2002).
We obtain from formulas (11) and (14)

F =
L

4πd2
=

√
3π5/2eIṖ γ

3/2
b

128m1/2c3/2P 7/2γ2
pd

2
(15)

= 3.34 × 10−17 Ṗ−15

P 7/2d2
kpc

,

which corresponds to the condition

η =
Ṗ−15

P 7/2d2
kpc

≥ 24. (16)

The table lists the pulsars for which condition (16)
is satisfied.We see that one might expect X-ray emis-
sion to be detected from more than 100 objects with
the current sensitivity. For completeness, we also in-
cluded pulsars with measured X-ray fluxes (Possenti
et al. 2002) in the table. They are marked by aster-
isks. The expected fluxes F were also calculated for
them using formula (15). This formula makes it pos-
sible to predict the detection of X-ray emission from
newly discovered radio pulsars using their periods, the
derivatives of the periods, and the distances.

5. DISCUSSION AND CONCLUSIONS

The table shows that almost all of the known
millisecond radio pulsars must be X-ray emitters. The
very low values of Ṗ for these objects are offset by
the smallness of the factor P 3.5. Zhang and Hard-
ing (2000) concluded that the pulsed X-ray emission
from most of the millisecond pulsars had a thermal
nature. Future observations of these sources will al-
low the choice of a correct model to be made.

Below, we summarize our main results.
(1) We gave several arguments for the synchrotron

model of X-ray emission from radio pulsars. A corre-
lation was found between the X-ray luminosity and
the magnetic field on the light cylinder, suggesting
the generation of X-ray emission from these objects
near the light cylinder.

(2) We briefly described a model for the forma-
tion of the electron-distribution function. This model
is based on a quasi-linear interaction of the waves
excited by the cyclotron instability in the magneto-
sphere with particles of the primary beam and the tail
of the secondary plasma. A formula was derived to
calculate the X-ray luminosity Lx of radio pulsars.

(3) We found a high correlation between Lx and
the parameter Ṗ−15/P

3.5 (the correlation coefficient
is k = 0.91± 0.07). This correlationmakes it possible
to predict the detection of an X-ray flux from known
and newly discovered radio pulsars.

(4) We gave a list of 114 objects whose X-ray
emission can be detected at the current instrument
sensitivity. If the search is successful, the number of
radio pulsars with measured X-ray fluxes will at least
double.

(5) We showed that the Lorentz factors at the
maximum of the secondary-plasma distribution func-
tion lie within a very narrow range, γp = 1.5–8.5.
This result implies that the magnetic field near the
neutron-star surface is multipolar.

(6) The suggested model can be tested by search-
ing for the predicted X-ray fluxes from the radio pul-
sars listed in the paper. In particular, synchrotron
X-ray radiation must be detected from most of the
known millisecond pulsars. This prediction is a cru-
cial test that makes it possible to discriminate be-
tween the model under consideration and the model
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Table

No. PSR log η − logF No. PSR log η − logF

1 J0024−0534 4.38 12.10 41∗ J1119−6127 <3.57 <12.91

2∗ J0030+0451 4.37 12.11 42∗ J1124−5916 4.55 11.93

3 B0053+47 1.69 14.79 43 B1133+16 1.45 15.03

4∗ B0114+58 <3.59 <12.89 44 B1133−55 1.62 14.86

5 B0136+57 2.09 14.39 45 J1138−6207 1.57 14.91

6∗ J0205+6449 5.59 10.89 46 B1143−60 1.39 15.09

7∗ J0218+4232 3.56 12.92 47 B1257+12 8.19 8.29

8∗ B0355+54 2.84 13.64 48 B1259−63 3.65 12.83

9∗ J0437−4715 2.52 13.96 49 J1301−6305 2.59 13.89

10 B0450+55 2.21 14.27 50 B1317−53 1.65 14.83

11∗ B0531+21 7.21 9.27 51 B1336−64 1.61 14.87

12∗ J0537−6910 4.63 11.85 52 B1338−62 3.03 13.45

13∗ J0538+2817 3.02 13.46 53 B1356−60 2.39 14.09

14∗ B0540−69 3.85 12.63 54 J1406−6121 2.17 14.31

15 B0540+23 2.22 14.26 55 J1412−6145 1.81 14.67

16 J0613−0200 3.20 13.28 56∗ J1420−6048 5.40 11.08

17 B0611+22 2.14 14.34 57∗ J1435−6100 1.43 15.05

18 J0631+1036 2.28 14.20 58 B1449−64 2.52 13.96

19∗ B0633+17 4.85 11.63 59 B1508−57 1.78 14.70

20∗ B0656+14 3.44 13.04 60∗ B1509−58 4.77 11.71

21 J0729−1448 2.88 13.60 61 B1516+02A 1.98 14.50

22 B0740−28 3.39 13.09 62 J1530−5327 2.26 14.22

23∗ J0751+1807 2.90 13.58 63 B1534+12 2.70 13.78

24∗ B0823+26 2.04 14.44 64 B1535−56 1.63 14.85

25∗ B0833−45 6.38 10.10 65 J1548−5607 2.03 14.45

26 J0901−4624 1.43 15.05 66 B1556−44 1.65 14.83

27 B0905−51 1.51 14.97 67 B1557−50 1.61 14.87

28 B0906−17 1.61 14.87 68 J1601−5335 2.48 14.00

29 B0906−49 2.94 13.54 69 B1607−52 2.56 13.92

30 B0919+06 <1.47 <15.01 70 B1610−50 3.19 13.29

31 J0940−5428 3.95 12.53 71∗ J1617−5055 4.88 11.60

32∗ B0950+08 3.29 13.19 72 B1620−26 3.24 13.24

33∗ J1012+5307 3.71 12.77 73 B1634−45 2.57 13.91

34∗ J1016−5819 2.22 14.26 74 J1640+2224 3.07 13.41

35∗ J1024−0719 3.39 13.09 75 J1643−1224 <2.32 <14.16

36 J1045−4509 1.70 14.78 76 B1643−43 2.60 13.88

37∗ B1046−58 4.21 12.27 77 B1702−19 2.31 14.17

38∗ B1055−52 2.87 13.61 78∗ B1706−44 4.92 11.56

39∗ J1105−6107 3.71 12.77 79 J1713+0747 3.04 13.44

40 J1112−6103 <2.70 <13.78 80 B1718−35 1.73 14.75
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Table (Contd.)

No. PSR log η − logF No. PSR log η − logF

81 J1718−3825 3.25 13.23 119 J1839−0321 1.60 14.88

82 B1719−37 2.43 14.05 120 J1841−0348 2.93 13.55

83 J1723−3659 2.06 14.42 121 B1841− 05 1.48 15.00

84 B1727−33 3.67 12.81 122 B1842−04 2.00 14.48

85 J1730−2304 3.18 13.30 123 B1844−04 1.50 14.98

86 B1730−37 1.75 14.73 124∗ J1846−0258 3.01 13.47

87 B1734−35 1.48 15.00 125 J1849−0317 1.45 15.03

88 B1736−29 1.60 14.88 126 J1853+0056 2.10 14.38

89 B1737−30 2.39 14.09 127∗ B1853+01 3.29 13.19

90 J1737−3137 1.83 14.65 128 B1855+09 3.29 13.19

91 J1738−2955 1.98 14.50 129 J1900+0227 2.00 14.48

92 J1739−3023 3.29 13.19 130 J1908+0734 2.75 13.73

93 B1742−30 1.92 14.56 131 J1909+0912 2.01 14.47

94 J1743−3153 1.72 14.76 132 J1913+0832 1.93 14.55

95∗ J1744−1134 4.11 12.37 133 J1913+1011 4.27 12.21

96 B1749−28 1.41 15.07 134 B1914+09 1.47 15.01

97 B1754−24 2.23 14.25 135 B1915+13 2.12 14.36

98∗ B1757−24 3.87 12.61 136 B1916+14 1.69 14.79

99∗ B1800−21 3.99 12.49 137 J1918+1541 2.25 14.23

100 B1802−07 1.43 15.05 138∗ B1929+10 3.86 12.62

101 J1809−1917 4.06 12.42 139 B1930+22 2.72 13.76

102∗ J1811−1926 4.02 12.46 140∗ B1937+21 4.73 11.75

103 B1820−30A 3.65 12.83 141∗ B1951+32 4.88 11.60

104 B1820−31 1.94 14.54 142 B1953+29 1.74 14.74

105∗ B1821−19 1.82 14.66 143 B1957+20 4.63 11.85

106 B1821−24 4.53 11.95 144 J2010+2425 3.36 13.12

107 B1822−09 2.11 14.37 145 B2020+28 1.68 14.80

108 B1822−14 1.83 14.65 146 B2022+50 1.39 15.09

109∗ B1823−13 4.13 12.35 147 J2043+2740 3.59 12.89

110 B1828−10 2.03 14.45 148 B2127+11E 2.41 14.07

111 J1828−1101 3.45 13.03 149 B2127+11F 1.89 14.59

112 B1830−08 3.20 13.28 150∗ J2124−3358 4.39 12.09

113 B1832−06 1.80 14.68 151 J2229+2643 2.81 13.67

114 J1835−1020 1.76 14.72 152∗ J2229+6114 5.44 11.04

115 J1837−0559 1.56 14.92 153 J2317+1439 2.45 14.03

116 J1837−0604 3.63 12.85 154 J2322+2057 3.32 13.16

117 B1838−04 1.94 14.54 155∗ B2334+61 2.57 13.91

118 J1838−0453 1.70 14.78
∗ Pulsars with measured X-ray fluxes (Possenti et al. 2002).
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for the generation of X-ray emission from these ob-
jects by the thermal mechanism near the neutron-star
surface.
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Abstract—Themost recent fission-barrier calculations based on improvedmass formulas indicate that the
adopted values are underestimated. We analyze the dependence of the fission rates on the fission barrier and
show that an increase in the fission barriers leads not so much to a decrease in the importance of fission as
to the possible synthesis of heavier elements in the r-process. The rates of induced fission of most isotopes
with Z > 80 at astrophysical energies have been calculated for the first time for fission barriers obtained
from different theoretical models. c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

One of the most important questions in r-process
studies is the nucleosynthesis pattern in the region
of transuranium nuclei, where fission hampers the
passage of the nucleosynthesis wave in the region
of actinides and the production of superheavy ele-
ments. In particular, an allowance for fission leads to a
change in the actinide yields and, hence, to a change
in the age of the Galaxy estimated by the isotopic-
ratio method.

After the observations of elemental abundances in
very old metal-poor stars were published (see, e.g.,
Sneden et al. 2000), it became clear that, at least
in one of the naturally occurring r-process scenarios,
the characteristic duration of rapid nucleosynthesis τr
is longer than the time τf it takes for the nucleosyn-
thesis wave to reach the region of fissionable nuclei,
and because of the high fission rates, the r-process
returns to the region of fission-product nuclei with
the establishment of a quasi-steady current of nuclei
at τr − τf > τс (where τс is the cycle time it takes
to double the absolute densities of heavy nuclei).
More reliable calculations of the fission rates for most
transuranium nuclei are required to model this nucle-
osynthesis.

Analysis of the observations of old metal-poor
stars showed that the region of nuclei with masses
110 < A < 130 is of importance in understanding the
role of fission in the r-process. It was noticed that the
abundances of these nuclei are much lower than the

*E-mail: Igor.Panov@itep.ru
1063-7737/03/2908-0510$24.00 c©
r-element abundances in the Solar system. There-
fore, the r-element abundance curve must have at
least two components: one component dominates at
A > 130 and the other (weak) component dominates
at A < 130 (Wasserburg et al. 1996). Observations
of the main component in metal-poor stars and
observations for A < 130 can provide appropriate
information for determining the fission parameters,
because the following explanation of the abundances
of elements heavier than iron seems plausible: (i) the
expansion of highly neutronized low-entropy matter,
which results in the nucleosynthesis looping due to
fission and in the formation of nuclei with masses
A ≥ 130 in the main r-process; (ii) the formation of
lighter elements in the weak r-process, which pro-
ceeds in astrophysical objects of a different type (for
more detail, see, e.g., Panov and Chechetkin 2002).
However, the underestimated yield of nuclei with
masses A = 100–120 can also be explained by the
peculiarities of the fission-product mass distribution
during the fission of nuclei of the dominant r-process
component.

Since our prime objective is to determine the con-
tribution of fission to rapid nucleosynthesis, we will
not discuss here the possible explanations of the ob-
served heavy-element abundances based on the su-
perposition of computational data (Hill et al. 2002;
Qian and Wasserburg 2002). We chose the group
of scenarios (neutron-star mergers) under consid-
eration because in them there are conditions under
which the r-process cannot be modeled without the
inclusion of fission.

It is well known that heavy nuclei can undergo
induced fission through neutron capture and delayed
2003 MAIK “Nauka/Interperiodica”
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fission through β-decay, and some of the nuclei with
a low fission barrier can undergo spontaneous fis-
sion. Spontaneous fission seems to be of secondary
importance in the r-process, because the r-process
must overcome the region of nuclei (Z > 80) in which
the probability of induced or delayed (Z > 88) fission
is high before the nucleosynthesis wave reaches the
region of nuclei (Z > 92) for which the probability
of spontaneous fission becomes significant. However,
the specific contributions of different fission types to
the yields of elements in the r-process can be deter-
mined only by means of consistent calculations.

On the other hand, fission can also be important
for the dynamics of formation of the light fraction
of heavy nuclei—through the formation from fission
fragments due to the transfer of much of the matter
into the actinide region by the r-process with the
r-process conditions preserved.

Our goal is to calculate the rates of induced fission
for the entire region of nuclei involved in the r-process
in terms of a statistical model and to compare the
rates of different reactions, primarily for the specific
conditions of some astrophysical scenarios.

Nuclear data for fissionable and mostly deformed
nuclei (fission cross sections, fission barriers, neu-
tron binding energies, and masses of fission-product
nuclei) can currently be obtained only (with a few
exceptions) by means of calculations. Therefore, our
second objective is to estimate the sensitivity of the
results of calculations to the accuracy of the nuclear
data used and attempt to estimate their reliability. It
is important to emphasize that, although the mass
distribution of the fission-product nuclei for long-
lived fissionable nuclei has been adequately studied
experimentally, the pattern of the fission-fragment
mass distribution for short-lived neutron-rich ac-
tinides is unknown and studying the effect of various
mass-distribution shapes on the astrophysical results
(Panov et al. 2000) can also be useful in understand-
ing the formation physics of fission fragments.

BINDING ENERGIES AND FISSION
BARRIERS

When the nucleosynthesis wave reaches the re-
gion of actinides, new reaction channels open. These
primarily include the delayed fission that was first
considered by Berlovich and Novikov (1969). It
competes with the emission of delayed neutrons
and, depending on the nucleus characteristics, can
reach 100%. If, however, the delayed-fission proba-
bility is appreciably lower than 100% and the neutron
density is not high enough for the induced fission to be
of great importance, then the nucleosynthesis wave
can reach the region of spontaneous fission. If, alter-
natively, the density of free neutrons nn > ncr, then
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 1. The neutron binding energies calculated using
different mass formulas: (1) from Hilf et al. (1976), (2)
from Myers and Swiatecki (1998), and (3) the fission
barriers of Howard and Möller (1980) for the isotopes of
(a) uranium and (b) curium.

induced fission will dominate and spontaneous fission
will be of minor importance. Although induced fission
is well known and the necessity of its inclusion in
the r-process was discussed previously (Kodama and
Takahashi 1975; Hillebrandt and Thielemann 1977)
and Thielemann et al. (1989) calculated the rates of
induced fission for uranium isotopes, no attention was
given to this process in the r-process calculations.
We wish to emphasize that induced fission should be
taken into account in nucleosynthesis calculations,
because, as we show below, the rates of induced
fission can be very high, especially for the isotopes of
transuranium elements. They can exceed the β-decay
rates by several orders of magnitude even near the
neutron stability line. Therefore, induced fission can
be a more important reaction channel than delayed
fission, especially when the duration of the r-process
is τr > τf .

Figure 1 shows the neutron binding energies
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and fission barriers for several uranium and curium
isotopes calculated using different mass formulas.
One of the mass formulas (Hilf et al. 1976) predicts
much lower neutron binding energies and, hence,
smaller sizes of the r-process region, while most of
the other recent mass calculations (see, e.g., Myers
and Swiatecki 1998; Mamdouh et al. 1998) yield a
weaker dependence of the neutron binding energy
on the neutron excess. As a result, the neutron
stability boundary passes over much more massive
nuclei. This behavior is of great importance for some
of the r-process scenarios, because it leads to a
displacement of the r-process path into the region
of shorter-lived nuclei.

In the region of actinides with mass numbers
A > 250 under consideration, the errors in Bn and
particularly in Bf can reach 1 MeV or more, which
introduces a large uncertainty into the fission rates.
That is why fission-barrier calculations are crucially
important. Recently, new fission-barrier calculations
based on the liquid-drop model (Myers and Swiate-
cki 1998) and on the ETFSI (Extended Thomas-
Frermi + Strutinsky Integral) model have appeared
(Mamdouh et al. 1998). The predicted barriers, espe-
cially those obtained by Mamdouh et al. (2001), for
some isotopes are severalfold larger than the standard
values of Howard and Möller (1980).

The calculated fission barriers for uranium,
curium, and californium isotopes are compared in
Fig. 2. As we clearly see from this figure, the depen-
dences of the fission barrier on the neutron excess
are similar in pattern for different approaches but
their values differ greatly, especially in the region of
isotopes with ≈184 neutrons. The calculations of
Mamdouh et al. (2001) show a lack of deformation
and very high fission barriers. The presented data well
reflect the basic trends in the dependence of the fission
barriers on the neutron excess for all actinides.

Undoubtedly, using new data in the r-process
calculations can significantly change the yields of
heavy elements in the region of actinides. However,
it seems to us that, first, the causes of such a large
discrepancy in the predicted fission barriers should be
analyzed and only then should the binding energies
and reactions rates reconciled with the mass formulas
be used in the r-process calculations. New consistent
calculations of the β-decay strength functions are
required to calculate the rates of delayed fission.

FISSION CHANNELS FOR TRANSURANIUM
NUCLEI

In rapid nucleosynthesis models, all three (de-
layed, induced, and spontaneous) fission channels
were not considered simultaneously, with the prob-
able exception of the estimates by Goriely and Cler-
baux (1999). In their r-process calculations, most of
the authors considered fission in a simplified form. In
general, fission was assumed to take place instantly
with a 100% probability when a region of extremely
neutron-rich transuranium nuclei was reached. Some
authors set the boundary of fissionable nuclei by
choosing a limiting mass number A > Afis (e.g.,
Freiburghaus et al. (1999b) and Cowan et al. (1999)
assumed that Afis = 240 and Afis = 256, respec-
tively), while others (starting with Seeger et al. 1965)
specified the boundary of the fission region through
the atomic number: Z > Zfis. These simplifications
allowed the nucleosynthesis properties to be studied
when the r-process was looped, but, certainly, the
accuracy of calculating the yields of several nuclei,
primarily cosmochronometers, decreased. In addi-
tion, because of the high delayed-fission probability,
the remaining fission channels were ignored without
sufficient justification, which also, at least for several
scenarios, reduced the accuracy of calculating the
yields of heavy nuclei.

In discussing the influence of fission on nucle-
osynthesis, we bear in mind that the duration of the
r-process τr > τf . In this case, the nucleosynthesis
wave will reach the region of transuranium elements
and all fission types should be taken into account in
the calculations.

In our view, spontaneous fission is not so impor-
tant as induced and delayed fission for the following
reasons. First, a high neutron density is required to
reach the region of spontaneous fission; therefore, the
rates of induced fission will be high. Second, because
of the high neutron density, the delayed-fission prob-
abilities will be close to 100% and, hence, the nucle-
osynthesis flux will decrease sharply toward larger Z.
This was confirmed by our special calculations in
which, apart from the induced and delayed fission, we
took into account spontaneous fission.

The underestimation of the role of induced and
delayed fission compared to spontaneous fission
based on overestimated fission barriers near the neu-
tron stability-boundary (Goriely and Clerbaux 1999)
causes an appreciable increase in the cycle duration
and actually reduces the allowance for fission to the
simplified fission models described above.

Of course, all three fission channels should be
taken into account in consistent r-process scenarios,
but in this paper and our next paper (Panov and
Thielemann 2003) devoted to specific calculations
of the r-process in neutron-star mergers, we give
particular attention to induced and delayed fission
as the principal fission channels that are of greatest
importance in the r-process and to their compara-
tive role. In some of our calculations, we formally
introduced spontaneous fission for nuclei withZ > 92
andN > 158. However, the inclusion of spontaneous
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 2. The inner (a, b, c) and outer (d, e, f) fission barriers for uranium, curium, and californium isotopes calculated using
different mass formulas: (1) from Myers and Swiatecki (1998), (2) from Howard and Möller (1980), and (3) from Mamdouh
et al. (2001).
fission affected the formation of transuranium nuclei
only slightly.

Delayed Fission
The role of delayed fission in the r-process was

assessed long ago (see, e.g., Thielemann et al. 1983;
ASTRONOMY LETTERS Vol. 29 No. 8 2003
Cowan et al. 1991; Lyutostankiı̆ et al. 1990). These
authors determined the delayed-fission parameters
from microscopic calculations and assumed that fis-
sion was most important for the formation of cos-
mochronometer nuclei (Cowan et al. 1987, 1999;
Lyutostanskiı̆ et al. 1988). It was also noticed that
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this effect, at least within the scope of the classi-
cal r-process model with a nucleosynthesis duration
τr ∼ τf , weakly affected the yields of most heavy ele-
ments for realistic fission barriers (Cowan et al. 1991;
Thielemann et al. 1989).

Such nucleosynthesis calculations in scenarios
with a long r-process, τr − τf ≈ τс (Rauscher et
al. 1994; Panov et al. 2001), and with an allowance
made for delayed fission at all rapid nucleosynthe-
sis stages show that this fission appreciably affects
the yields of the heavy elements produced in the
r-process. Therefore, fission should be taken into ac-
count more accurately, particularly in the calculations
of the yields of cosmochronometer nuclei.

Such characteristics of the nuclei as the reac-
tion thresholds, delayed-process probabilities, and
fission-barrier penetrability (Thielemann et al. 1983)
must be known to calculate the delayed fission. In
addition, the β-decay strength functions must be
calculated. Their accuracy, as well as the accuracy
of the nuclear characteristics, strongly affects the
end results—the delayed-fission probabilities (Meyer
et al. 1989; Lyutostanskii et al. 1990)—which gives
an estimate of the maximum delayed-fission proba-
bility within the range from 30 to 100%. Although the
most recent fission-barrier calculations (Mamdouh
et al. 2001) are based on a consistent microscopic
approach (Mamdouh et al. 1998), they give very large
fission barriers for several extremely neutron-rich iso-
topes. Therefore, the barriers calculated byMyers and
Swiatecki (1998), which also show better agreement
with the experimental data (Smirenkin 1993), seem
more reliable.

There are two calculations of the delayed-fission
probabilities Pβdf for all of the nuclei for which the
delayed fission is possible. They are based on two
distinct theoretical models (Thielemann et al. 1983;
Staudt and Klapdor-Kleingrothaus 1992); in these
calculations, the Pβdf values reach 100% for a large
number of nuclei but for slightly different regions of
isotopes (Fig. 3).

The main difference between these calculations
lies in the different models of the β-decay strength
function used. The approach of Thielemann et al. (1983)
is based on the strength-function calculations in the
Tamm–Dankov approximation. In their Pβdf calcu-
lations, Staudt and Klapdor-Kleingrothaus (1992)
used the pn-QRPA (proton–neutron quasi-particle
random-phase approximation) model with an al-
lowance made for the residual Gamow–Teller inter-
action to describe the strength function. In the pn-
QRPAmodel, the states are mixed in the same way as
they are in the random phase approximation (RPA).
However, because of the phase factor, even a small
fraction of the Gamow–Teller interaction strength
at low energies dominates over the strength of the
transition to states with energies above the fission
barriers, which causes the fission rates to decrease
in comparison with those obtained in the earlier
calculations of Thielemann et al. (1983).

The dependence of the delayed-fission rates on the
β-decay strength function was calculated by Meyer
et al. (1989) for the isotopes of several chemical ele-
ments. The delayed-fission probability was calculated
for several tens of nuclei with various assumptions
about the structure of the residual interaction and
with artificially overestimated and underestimated fis-
sion barriers. It follows from the estimates that im-
plicitly take into account the nuclear deformation (as
in Staudt and Klapdor-Kleingrothaus 1992) that the
calculations of Howard and Möller (1980) gave over-
estimated fission barriers.

For some of the protactinium isotopes (Z = 91),
Fig. 3 shows the values of Pβdf calculated by Meyer
et al. (1989) with different assumptions about the
β-decay strength function (squares) and with a sys-
tematic model overestimation (triangles) and under-
estimation (circles) of the fission barriers. We see
from this figure that the values of Pβdf calculated
by Thielemann et al. (1983) were overestimated for
A < 260 and underestimated for A > 260. The au-
thors suggested that this change in the fission bar-
riers resulted from an implicit allowance for the defor-
mation. Their estimates showed a strong dependence
of the delayed-fission probability on the fission barri-
ers.

According to the classical model of the r-process,
its pathmust run in the region of nuclei with a neutron
binding energy of Sn ≈ 2MeV, for which the delayed-
fission probabilities in the region of transuranium
nuclei, at least for the fission barriers of Howard
and Möller (1980), are highest and reach 100%.
According to this view and the calculated rates
of delayed fission (Thielemann et al. 1983), the
r-process must terminate in the region of actinides
with A ≈ 250–260. Therefore, the model of instant
fission with a 100% probability in the region A ∼ 260
(for simplicity, A = 260) suggested by Rauscher
et al. (1994) was a satisfactory approximation (see
also similar simplifications in Cowan et al. (1999)
and Thielemann et al. (1989)).

When considering the full nuclear reaction net-
work rather than the simplified waiting-point ap-
proximation models and, in particular, in the spe-
cific scenario with rapidly changing nucleosynthesis
conditions, the path of the r-process continuously
changes with time (Panov 2003) and, as a result, both
the yield of fission-product nuclei and the duration of
the cycle change (Panov and Thielemann 2003). In
particular, in the neutron-star merger model under
consideration (Rosswog et al. 1999; Freiburghaus
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 3. The delayed-fission probability Pβdf versus the mass number for (a) thorium, (b) protactinium, (c) uranium, and
(d) neptunium isotopes based on the calculations of Staudt and Klapdor-Kleingrothaus (1992) (1) and Thielemann et al.
(1983) (2). Different symbols indicate the values of Pβdf calculated by Meyer et al. (1989).
et al. 1999a), the path of the r-process runs mainly
along the neutron-stability boundary because of the
very high density of free neutrons. In this case, for the
delayed-fission rates from Thielemann et al. (1983),
the bulk of the nucleosynthesis flux goes some dis-
tance away from the nuclei with maximum (100%)
delayed-fission probabilities. Therefore, if the induced
fission is disregarded, then a certain number of nuclei
with Z > 100 and A > 300 can be formed.

Other calculations (Staudt and Klapdor-Klein-
grothaus 1992) of the delayed-fission probabilities
differ greatly from the calculations of Thielemann
et al. (1983) mainly because a different model of the
β-decay strength function was used. The main differ-
ences between the calculations can be seen from the
comparison made in Fig. 3. Using different delayed-
fission data leads to striking changes in the yields
in both masses and chemical elements, particularly
in the mass range A < 100. Using the fission rates
of Staudt and Klapdor-Kleingrothaus (1992) can
terminate the nucleosynthesis in the region of ac-
tinides under the extreme conditions achieved during
neutron-star mergers when A smaller than those in
the calculations with the fission rates of Thielemann
et al. (1987) are reached.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
Induced Fission

In the region of actinides, induced fission can also
be an important reaction channel in the r-process.
The rates of the various reactions that proceed in
the r-process are compared in Fig. 4, where the
rates are shown at T = 109 К. Clearly, if ρYe > 10−5,
which corresponds to a neutron density nn > 1022,
then the induced fission for nuclei with A > 250 will
be the principal reaction channel. In this case, the
nucleosynthesis wave will stop advancing into the
region of even heavier nuclei because of the induced
fission and the looping of the r-process, especially,
as was pointed out above, when the data of Thiele-
mann et al. (1983) are used. In the neutron-star
merger scenario (Rosswog et al. 1999; Freiburghaus
et al. 1999a), these conditions can be maintained for
a long (by the r-process scales) time, τ ∼ 0.5–1 s) in
highly neutronized matter.

Based on the standard statistical model of Hauser
and Feshbach (1952), which is used to calculate the
reaction cross sections and rates at astrophysical en-
ergies (Thielemann et al. 1987), we calculated the
rates of induced fission for all isotopes withZ > 80 for
the same fission barriers of Howard andMöller (1980)
with which the delayed-fission rates were previously
calculated by using the same model (Thielemann
et al. 1983).
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Fig. 4. The rates of neutron capture (1), induced fis-
sion (2), and β-decay (3) for (a) uranium and (b) cali-
fornium isotopes.

The most recent calculations of Myers and Swia-
tecki (1998) (MS) and Mamdouh et al. (2001)
(MPRT) indicate that the fission barriers of Howard
and Möller (1980) (HM) were most likely underes-
timated. In some cases, the MS and MPRT fission-
barrier calculations can give values that are several
MeV higher than those given by theHMcalculations.
Therefore, in our calculations of the reaction rates,
we used both the fission barriers calculated using
different approaches and the HM fission barriers for
uranium and curium isotopes artificially increased by
2 MeV (Tables 1–3).

It is clear from a comparison of the fission bar-
riers calculated using the three (MS, MPRT, and
HM) mass formulas given in Table 3 and shown in
Fig. 2 that, in most cases, the HM fission barriers
were underestimated by less than 2 MeV and only
in the region of the neutron stability boundary does
the difference between the HM,MS, and, particularly,
theMPRT fission barriers significantly exceed 2MeV.
This may stem from the fact that the MPRT model is
more sensitive to the internal parameters than theMS
model. Therefore, we also performed methodological
calculations of the fission rates with the HM barriers
artificially increased by 2 MeV (some of the calcula-
tions are given in Tables 1–3). A comparison of the
calculations with different fission barriers shows that
increasing the fission barriers for uranium isotopes by
2 MeV causes a decrease in the induced-fission rates
by several orders of magnitude and a sharp decrease in
the importance of induced fission for uranium isotopes
in the r-process. However, as the atomic number in-
creases, the picture slightly changes. For example, for
curium isotopes, increasing the fission barriers also
causes the fission rates to decrease, but they continue
to be large and the fission of neutron-rich curium
isotopes in the r-process will remain a major reaction
channel. The influence of errors in the fission-barrier
calculations on the element yields in the r-process
will be discussed in our next paper (Panov and Thiele-
mann 2003).

We believe that induced fission is particularly im-
portant in the cycling of the r-process when the
density of free neutrons is still sufficiently high. In
this case, the rates of induced fission are so high
(Tables 1–3; see also Thielemann et al. 1989) that
this reaction channel will continue to be important
even with the higher fission barriers obtained recently
(Mamdouh et al. 2001).

The Mass Distribution of Fission-Product Nuclei

The mass distribution of fission-product nuclei is
a separate question. There are at least two impor-
tant consequences of the pattern of mass distribu-
tion. First, if the total yield of the fission fragments
is strongly asymmetric, then a significant number
of isotopes with masses 90 < A < 120 can be pro-
duced. Second, if τr ≈ τf , then different representa-
tions of the mass distribution and, hence, different
neutron yields can also affect the yields of the isotopes
for masses 130 < A < 190 and actinides at the final
stage of the r-process (Panov and Thielemann 2003).

Cowan et al. (1999) and Rauscher et al. (1994)
assumed that the mass distribution during delayed
fission could be only symmetric. If we consider the
classical model of the r-process with the nucleosyn-
thesis proceeding along nuclei with a binding energy
of ≈2MeV and if the delayed-fission probabilities are
close to those calculated by Thielemann et al. (1983),
then the symmetric distribution is a good approxima-
tion, because the path of the r-process runs precisely
along the nuclei with A ≈ 260. Besides, the delayed-
fission probability for these nuclei is at a maximum.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Table 1. The reaction rates 〈σv〉NA for the neutron-rich uranium isotopes produced in the r-process

A(Z = 92) Sn Bf1 Bf2 λn,γ λn,f (Bfi) λn,f (Bfi + 2) Pβdf λβ

248 3.22 3.69 4.86 0.168E+07 9.96D+02 3.21D−08 0.020 0.569E−01
249 4.60 3.67 4.72 0.948E+06 6.25D+08 7.30D+01 0.010 0.468E−01
250 2.95 3.52 4.30 0.943E+06 1.99D+04 8.28D−07 0.440 0.947E−01
251 4.32 3.64 4.18 0.992E+05 7.84D+08 8.06D+02 0.140 0.138E+00

252 2.67 3.47 3.79 0.534E+06 1.43D+05 1.37D−05 0.930 0.179E+00

253 4.04 3.60 3.69 0.187E+05 8.39D+08 8.36D+03 0.280 0.310E+00

254 2.40 3.33 3.27 0.302E+06 2.11D+06 1.42D−03 0.950 0.423E+00

255 3.77 3.28 3.03 0.308E+04 8.42D+08 1.76D+05 0.460 0.579E+00

256 2.13 2.97 2.58 0.123E+06 1.23D+07 4.93D−02 0.980 0.778E+00

257 3.49 3.00 2.40 0.209E+05 6.42D+08 2.46D+02 0.850 0.128E+01

258 1.86 0.0 3.09 0.855E+05 1.90D+03 6.18D−08 0.980 0.210E+01

259 3.22 0.0 3.37 0.226E+06 1.42D+08 1.28D+00 1.000 0.164E+01

260 1.60 0.0 3.32 0.414E+05 1.32D+01 4.22D−10 1.000 0.475E+01

261 2.96 0.0 3.54 0.189E+06 2.70D+07 5.23D−02 1.000 0.597E+01

262 1.34 0.0 3.36 0.184E+05 1.11D+00 3.38D−11 1.000 0.820E+01

263 2.70 0.0 3.50 0.789E+05 5.27D+07 5.71D+02 1.000 0.461E+01

264 1.11 3.61 1.01 0.806E+04 4.08D+01 5.14D−06 1.000 0.861E+00

265 2.52 4.03 1.17 0.716E+05 8.43D+05 5.04D+00 0.480 0.251E+02

266 1.40 4.02 1.10 0.193E+05 3.35D+01 7.25D−06 0.130 0.658E+01

267 2.90 4.41 1.21 0.159E+06 4.75D+06 4.08D+01 0.570 0.694E+01

268 1.33 4.38 1.12 0.122E+05 1.17D+00 2.69D−07 0.010 0.382E+01

269 2.69 4.75 1.26 0.583E+05 3.83D+05 2.50D+00 0.270 0.101E+02

270 1.12 4.65 1.11 0.446E+04 1.81D−03 4.96D−10 0.010 0.105E+02

271 2.48 5.33 1.18 0.206E+05 1.05D+05 7.21D−01 0.210 0.142E+02

272 0.92 4.66 0.83 0.163E+04 9.05D−03 5.46D−09 0.010 0.115E+02

273 2.27 4.79 0.79 0.798E+04 9.46D+04 6.77D−01 0.130 0.149E+02

274 0.72 4.44 0.29 0.408E+03 5.92D−02 1.61D−08 0.000 0.184E+02

275 2.07 4.28 0.08 0.000E+00 1.69D+05 1.72D+00 0.070 0.228E+02
However, for more realistic nucleosynthesis scenar-
ios, as in the case where the delayed-fission proba-
bilities differ from those calculated by Thielemann et
al. (1983), most of themasses of the fissionable nuclei
are not equal to 260. The mass distribution of the
fission-product nuclei can then be asymmetric, which
may lead to significant yields of the isotopes in the
mass range 80 < A < 120.

In the most general case, the ratio of the fission-
product yields through different (symmetric or asym-
metric) fission modes of transuranium nuclei can be
ASTRONOMY LETTERS Vol. 29 No. 8 2003
written as

Rfis
βf =

∑
Ai,Zj

P
asym
βf YAj ,Zjλ

ij
β∑

Ai,Zj
P
symm
βf YAj ,Zjλ

ij
β

. (1)

This ratio Rfis
βf strongly depends primarily on the

branching ratios of the most abundant nuclei that are
produced during the nucleosynthesis and, hence, on
the nuclear data used.

Since the mass distribution for the short-lived nu-
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Table 2. The reaction rates 〈σv〉NA for the neutron-rich curium isotopes produced in the r-process

A(Z = 96) Sn Bf1 Bf2 λn,γ λn,f (Bfi) λn,f (Bfi + 2) Pβdf λβ

251 5.74 4.53 3.80 0.922E+07 6.58D+08 6.58D+08 0.000 0.504E−04
252 4.09 4.29 3.36 0.106E+08 1.47D+02 1.47D+02 0.000 0.292E−04
253 5.46 4.37 3.25 0.180E+08 3.19D+08 3.19D+08 0.000 0.144E−03
254 3.81 4.11 2.80 0.624E+07 1.59D+02 1.59D+02 0.000 0.321E−03
255 5.18 4.22 2.69 0.190E+08 1.78D+08 1.78D+08 0.000 0.148E−02
256 3.54 3.92 2.24 0.366E+07 4.82D+01 4.82D+01 0.010 0.250E−02
257 4.90 3.98 2.08 0.213E+08 3.30D+07 3.30D+07 0.000 0.925E−02
258 3.27 3.59 1.60 0.216E+07 4.25D+02 4.25D+02 0.080 0.119E−01
259 4.63 3.53 1.34 0.938E+07 1.02D+08 1.02D+08 0.020 0.206E−01
260 3.00 3.04 0.79 0.246E+04 3.87D+08 6.51D+04 0.810 0.330E−01
261 4.35 2.88 0.40 0.101E+04 7.12D+08 5.85D+07 0.330 0.904E−01
262 2.74 0.0 2.62 0.193E+05 3.23D+08 7.15D−01 1.000 0.877E−01
263 4.08 0.0 2.86 0.205E+04 7.01D+08 2.55D+06 0.990 0.691E+00

264 2.47 0.0 2.78 0.130E+06 6.00D+07 8.51D−03 1.000 0.121E+00

265 3.82 0.0 2.97 0.229E+04 6.91D+08 2.17D+05 1.000 0.142E+00

266 2.21 0.0 2.76 0.253E+05 1.49D+08 2.61D+02 0.990 0.199E+01

267 3.55 2.88 0.0 0.210E+04 6.83D+08 5.58D+06 0.990 0.649E+00

268 1.96 2.96 0.0 0.619E+05 4.07D+06 1.35D+00 0.970 0.844E−01
269 3.29 3.31 0.0 0.178E+05 5.84D+08 2.15D+05 0.990 0.284E+01

270 1.71 3.26 0.0 0.587E+05 2.00D+05 4.22D−02 0.790 0.602E+00

271 3.05 3.52 0.0 0.794E+05 2.99D+08 1.48D+04 0.970 0.714E+00

272 1.54 3.44 0.0 0.429E+05 5.03D+03 8.52D−04 0.450 0.332E+00

273 3.48 3.70 0.0 0.120E+06 6.48D+08 1.84D+05 0.900 0.126E+01

274 2.02 3.57 0.0 0.108E+06 4.23D+05 9.60D−02 0.420 0.153E+01

275 3.36 3.76 0.0 0.190E+06 6.59D+08 8.24D+04 0.970 0.153E+01

276 1.81 3.54 0.0 0.545E+05 2.09D+05 5.67D−02 0.870 0.130E+01

277 3.15 3.64 0.0 0.714E+05 5.49D+08 7.81D+04 0.990 0.205E+01

278 1.61 3.35 0.0 0.953E+04 4.30D+04 1.78D−02 0.710 0.290E+01
clei under consideration is not known, we considered
several different models.

In our calculations, we assumed that the fission
is completely symmetric only for the region of nuclei
with masses A > 255. For the nuclei with A ≈ 260,
this symmetry agrees with the observations, while the
mass distribution of the high-mass fissionable nuclei
is unknown. In other cases (A < 255 and forZ < 90),
the fission was assumed to be asymmetric.

Based on the available experimental and theoret-
ical data (Itkis et al. 1989; Schmidt et al. 2001),
we considered two simple models of the mass dis-
tribution for the fission products (Panov and Thiele-
mann 2003).

In the case of asymmetric fission, the masses and
charges of the fission products (the subscripts “H”
and “L” denote heavy and light fragments, respec-
tively) were defined as follows (model M1):

AH = 0.57A, AL = 0.43A, (2)

ZH = 0.57Z, ZL = 0.43Z.
ASTRONOMY LETTERS Vol. 29 No. 8 2003



FISSION AND THE r-PROCESS 519
Table 3. The induced-fission rates 〈σv〉NA for some of the uranium and curium isotopes calculated with various fission-
barrier models

Element Models 250 255 260 265 270 275 280 285

U HM 1.99D4 8.42D8 1.32d1 8.43d5 1.81d−3 1.69d5 − −
U HM+2MeV 8.28d−7 1.76d5 4.22d−10 5.04 4.96d−10 1.72 − −
U MS 1.3d3 2.14d7 13.9 1.3d5 3.65d−7 7.69d−3 6.97d−4 948.

U MPRT 8.0d−5 396 4.8d−14 4.d−18 7.7d−43 0 − −
Cm HM 2.86d3 1.78d8 3.87d8 6.91d8 2.0d5 6.59d8 − −
Cm HM+2MeV 2.86d3 1.78d8 6.51d4 2.17d5 4.22d−2 8.24d4 − −
Cm MS 5.09d8 7.63d8 3.88d8 6.93d8 3.14d8 9.63d8 2.37d4 9.3d8

Cm MPRT 1.35d4 7.64d8 2.17d6 6.93d8 31.4 332 2.7d−27 3.2d−3
In the neutron-star merger scenario, we also con-
sidered two fission modes, as in the schematic model
of the r-process, but the charge and mass numbers
of the fragments were defined as prescribed by Itkis
et al. (1989) (model M2):

AH = 130, AL = A−AH, (3)

ZH = 52 − (Z − 80)/10, ZL = A−AH.

Most of our calculations were performed with dif-
ferent delayed-fission rates (Thielemann et al. 1983;
Staudt and Klapdor-Kleingrothaus 1992) for the
mass distribution of the fission fragments specified by
model M2, which gave us preliminary information on
the influence of the fission rates (and the contribution
of different fissionmodes) on the final elemental abun-
dances. The ratio Rfis

βf integrated over time and over
all nuclei for the model of Thielemann et al. (1983)
in our calculations with different assumptions about
the mass distribution of the fission products suggests
approximately equal contributions of the symmetric
and asymmetric modes to the abundances of the
final (mostly secondary) nuclei. For this model, Rfis

βf

for the region of nuclei with Z ≤ 96 (from which
the nucleosynthesis does not emerge) is 0.5 (in the
neutron-star merger scenario) and 0.75 (in the simple
schematic model of the r-process) when the delayed-
fission reaction rates from Thielemann et al. (1983)
are used. For other delayed-fission data (Staudt and
Klapdor-Kleingrothaus 1992), the relative contribu-
tion of the symmetric and asymmetric fission will be
different, more specifically, Rfis

βf ≈ 1.9.

A comparison of the results of our calculations
indicates that the shape of the mass distribution
(M1 and M2) for the data of Staudt and Klapdor-
Kleingrothaus (1992) weakly affects the parameter
Rfis
βf for the nuclei withN > 155 and Z > 92.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
Although the contributions of the symmetric and
asymmetric fission are comparable, specific numbers
can vary, because we only took into account delayed
fission in our calculations of Rfis

βf .

We analyzed in detail the influence of the mass
distribution of the fission-product nuclei on the yields
of various nuclei in nucleosynthesis, in particular, the
cosmochronometer nuclei, the knowledge of whose
abundances is of great importance in determining the
age of the Galaxy, in a separate paper (Panov and
Thielemann 2003).

CONCLUSIONS

The delayed- and induced-fission rates are com-
pared in Fig. 5, where the circles and squares of
different sizes represent different fission rates. Clearly,
the delayed fission for Z ≤ 87 is the principal fis-
sion mode. In the range Z = 88–90, induced and
delayed fission compete with each other, while for
the isotopes of the chemical elements with Z > 91,
the induced fission dominates. (Of course, the pro-
duction rate of secondary nuclei through induced
fission also strongly depends on the density of free
neutrons at the r-process site.) The open squares
represent the nuclei with a low delayed-fission rate.
This is possible for the region of nuclei with a
large neutron excess (N > 160), because the neu-
tron binding energies are low (Sn < Bf ) and the
daughter nucleus decays mainly through neutron
evaporation rather than through fission. The path
of the r-process (Panov 2003) that is determined
by the most abundant isotopes of each chemical
element ((A,Z) > 1%Y (Z)) is indicated by crosses
and pluses at the beginning (when nn > 1026 cm−3)
and end (when the neutron density is less than
1019 cm−3) of the r-process, respectively.
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Fig. 5.Amap of the rate ratio λn,f/λβdf . The most abundant nuclei along the path of the r-process are represented by crosses
(when nn ≥ 1026) or pluses (when nn falls below ∼1019); the lines indicate the neutron-stability boundary (solid line), the
positions of the nuclei with a neutron binding energy Sn ≈ 2 MeV (dashed line), and the boundary of the nuclei with β-decay
energiesQβ ∼ Sn (dotted line).
It follows from our analysis of the influence of the
fission barriers on the reaction rates that not only
delayed fission but also induced fission can be of great
importance under the conditions of naturally occur-
ring rapid nucleosynthesis scenarios. The induced-
fission rates at astrophysical energies have been cal-
culated for the first time for a large number of isotopes
(about 400). Thus, we can compute the r-process
by taking into account not only delayed fission but
also induced fission and determine their compara-
tive role during nucleosynthesis. Our estimates also
indicate that an increase in the fission barriers, as
suggested by the most recent calculations (Myers
and Swiatecki 1998; Mamdouh et al. 2001), leads
not so much to a decrease in the importance of fission
as to the possible synthesis of heavier elements than
those for the Howard–Möller fission barriers (Panov
and Thielemann 2003) in the r-process.
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Original Russian Text Copyright c© 2003 by Fadeyev, Novikova.
Radial Pulsations of Helium Stars with Masses from 1 to 10 MMM���

Yu. A. Fadeyev* and M. F. Novikova
Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, Moscow, 109017 Russia

Received March 5, 2003

Abstract—We present the results of our hydrodynamic calculations of radial pulsations in helium stars
withmasses 1 M� ≤ M ≤ 10 M�, luminosity-to-mass ratios 1× 103L�/M� ≤ L/M ≤ 2× 104L�/M�,
and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y = 0.98 and heavy
elements Z = 0.02. We show that the lower boundary of the pulsation-instability region corresponds to
L/M ∼ 103L�/M� and that the instability region for L/M � 5 × 103L�/M� is bounded by effective
temperatures Teff � 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part
of the Hertzsprung–Russell diagram and radial pulsations can arise in stars with effective temperatures
Teff � 105 K at L/M � 7× 103L�/M�. The velocity amplitude for the outer boundary of the hydrodynamic
model increases with L/M and lies within the range 200 � ∆U � 700 km s−1 for the models under
consideration. The periodic shock waves that accompany radial pulsations cause a significant change
of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height
comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the
outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass
ratio L/M ∼ 3 × 104L�/M�. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: stars—variable and peculiar, stellar pulsations, helium stars, and Wolf–Rayet stars.
INTRODUCTION

The ionization of iron-group elements at a gas
temperature T ∼ 2 × 105 K is accompanied by a sig-
nificant increase in the opacity of matter and can
lead to a pulsation instability of the star. In par-
ticular, early-type helium stars are pulsating vari-
ables with this instability-excitationmechanism. Un-
til recently, radial pulsations have been observed in
the variables V652 Her and BX Cir, which belong
to the group of low-mass (M � 1 M�, L ∼ 103L�)
helium stars. However, since pulsations have been
detected in some of the Wolf–Rayet stars (Monderen
et al. 1988; Bratschi and Blecha 1996; Marchenko
et al. 1998; Morel et al. 1999; Veen et al. 2002a,
2000b, 2000c), analysis of the pulsation instability of
high-mass helium stars arouses particular interest.

A linear analysis of the pulsation instability indi-
cates that both radial and nonradial pulsation modes
can be excited in high-mass early-type helium stars
(Glatzel and Mehren 1996; Glatzel et al. 1993;
Gautschy 1995; Kiriakidis et al. 1996). This circum-
stance seems to be of crucial importance, because the
periodic shock waves produced by pulsations cause
the gas density in the outer stellar atmospheric layers
to significantly increase. In turn, the assumption of

*E-mail: fadeyev@inasan.rssi.ru
1063-7737/03/2908-0522$24.00 c©
a higher gas density near the sonic point makes
it possible to bring the calculations of a steady-
state stellar wind into much better agreement with
observational data (Heger and Langer 1996) and to
explain the fact that the momentum of the outflowing
gas in Wolf–Rayet stars always exceeds the photon
momentum (Heger and Langer 1996; Hamann and
Koesterke 1998; Herald et al. 2000; Nugis and
Lamers 2000): Ṁv∞c/L > 1, where Ṁ is the mass-
loss rate and v∞ is the terminal velocity of the gas
flow.

Among several studies (Glatzel et al. 1999; Cox
and Cahn 1988; Maeder 1985; Schaller 1990) in
which the pulsation instability of Wolf–Rayet stars
was modeled, only the calculations of Glatzel et al.
were carried out using new data on the opacity and
the equation of state of stellar matter. The three mod-
els of helium stars with masses of 6, 14, and 64 M�
considered by these authors showed a radial-mode
instability with a gas-velocity amplitude at the outer
boundary of the model ∆U � 102 km s−1, indicating
the necessity of further work in this direction.

In this paper, we analyze the radial pulsations of
helium stars. Compared to the nonradial oscillations,
the spherically symmetric gas motions are only a
special case of stellar pulsations. Nevertheless, the
necessity of analyzing the spherically symmetric mo-
tions stems from the fact that the radial pulsations
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The instability boundaries of radially pulsating
helium stars with masses of 1 and 10 M�. The dashed
lines represent the boundaries of the fundamental-mode
pulsation region.

have a much larger amplitude than the nonradial os-
cillations and, hence, they prove to be an incompa-
rably more efficient mass-loss mechanism. Moreover,
the radial pulsations can be analyzed much more
thoroughly by using the nonlinear theory. In partic-
ular, nonlinear calculations allow us to determine the
amplitude of the motions and estimate the extent to
which the stellar pulsations affect the gas density
distribution in the stellar atmosphere.

THE MODEL

The results of calculations presented below cover
the mass range 1 ≤ M/M� ≤ 10. Thus, they supple-
ment our previously computed (Fadeyev and Noviko-
va 2003) grid of model helium stars with masses
0.5 M� ≤ M ≤ 0.9 M�. The only significant distinc-
tion compared to our previous work is that we used
the OPAL tables (Rogers et al. 1996; Iglesias and
Rogers 1996) to calculate the equation of state and
opacity of the stellar gas. We used these data in-
stead of the OP tables (Seaton et al. 1994) that we
used previously because the OPAL tables cover wider
temperature and density ranges. This circumstance is
of particular importance in considering helium stars
with effective temperatures Teff � 3 × 104 K. More-
over, according to the calculations of Iglesias and
Rogers (1995), the OP opacities underestimate the
atomic level populations at high temperatures, which
results in smaller photoionization cross sections and,
hence, in underestimated mean Rosseland opacities.

As in our previous paper (Fadeyev and Noviko-
va 2003), here we consider the self-excited, spheri-
cally symmetric stellar pulsations that develop from
a hydrostatic and thermal equilibrium under the
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 2. (a) The normalized radial displacement ampli-
tude∆R/R at the outer boundary of the model versus the
effective temperature Teff; (b) a similar dependence for the
velocity amplitude∆U . The luminositiesL are given near
the curves. The individual models are represented by the
filled circles.

effect of small initial perturbations. The computa-
tional noise, i.e., the approximation errors related to
the finite-difference representation of the differential
equations, acts as such perturbations. The smallness
of these errors follows from the fact that the initial
kinetic energy of the stellar envelope is several orders
of magnitude lower than the limiting value that
corresponds to the regime of self-excited oscillations.
Moreover, in limit-cycle models, the values of the
hydrodynamic variables in all of the Lagrangian zones
are repeated in every oscillation cycle with a relative
error ε � 10−4.

Since we used from 200 to 500 Lagrangian in-
tervals for the finite-difference representation of our
hydrodynamic models, from 104 to 5× 104 integration
steps in time twere required to compute one pulsation
cycle. Most of the models (more than 200) were com-
puted for helium and heavy-element mass fractions
of Y = 0.98 and Z = 0.02, respectively. To assess the
role of heavy elements in the growth of pulsation
instability, we computed several tens of models for
Y = 0.99, Z = 0.01 and Y = 1, Z = 0. We analyzed
the hydrodynamic models that showed strictly repet-
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Fig. 3. Normalized phase diagrams of the funda-
mental Fourier harmonic for model helium stars with
M = 10 M�, L = 105L�, and Z = 0.02. The bold seg-
ments of the curves represent the excitation regions of the
pulsation instability, and the filled circles indicate the layer
with maximum mechanical work per cycle. The effective
temperatures are given near the curves.

itive limit-cycle oscillations by the Fourier decompo-
sition of the solution (Fadeyev 1994) and used the dis-
crete Fourier transform of the velocity U and radius r
of all Lagrangian layers in the time interval t spanning
from 102 to 103 pulsation cycles for the models with
irregular oscillations (Fadeyev 1998, 2000).

THE PULSATION-INSTABILITY STRIP
IN THE HERTZSPRUNG–RUSSELL

DIAGRAM

We can get a general idea of the properties of
pulsating helium stars by examining the pulsation-
instability region in the Hertzsprung–Russell (HR)
diagram. At fixed values ofM , Y , andZ, the boundary
of this region is the line of zero instability growth
rate η = Πd lnEK/dt = 0, where Π is the pulsation
period and EK is the kinetic energy of the pulsat-
ing envelope. The η = 0 lines for helium stars with
masses of 1 and 10 M� are shown in Fig. 1. Since
the growth rate η increases with stellar luminosity L,
the stars that are unstable against radial oscilla-
tions are located in the HR diagram above the re-
gion boundary. Figure 1 also shows the boundaries of
the fundamental-mode radial oscillations. The helium
stars located in the HR diagram to the left of this
boundary pulsate in overtones.

In Fig. 2, the normalized radial-displacement am-
plitude ∆R/R and the velocity amplitude ∆U at the
outer boundary of themodel are plotted against the ef-
fective temperature Teff for several sequences of model
helium stars with a massM = 10 M�. A comparison
of Figs. 1 and 2 shows that the increase in Teff in the
lower part of the instability region at constant lumi-
nosity L is accompanied by a simultaneous decrease
in the radial-displacement amplitude ∆R/R and the
velocity amplitude ∆U of the outer boundary. This
behavior is attributable to the existence of a high-
temperature boundary of the pulsation-instability re-
gion that coincides with the boundary of the funda-
mental mode. As the luminosity rises, the instabil-
ity boundary moves toward higher effective temper-
atures; the velocity amplitude even slightly increases
with decreasing radial-displacement amplitude and
reaches a maximum at Teff ≈ 7 × 104 K.

Such a different behavior of the plots of ∆R/R
and∆U against Teff at high luminositiesL stems from
the fact that the instability-excitation zone moves
closer to the photospheric level as the effective tem-
perature rises. For pulsations in a particular overtone,
it is necessary that the instability-excitation zone not
overlap with the nodes of this overtone and be near
one of its antinodes. Therefore, the decrease in the
thickness of the ionization zone and its displacement
toward the stellar surface are mainly responsible for
the transition to pulsations in higher order overtones.
In turn, the reduction in the pulsation period with
increasing overtone order at a constant velocity am-
plitude ∆U causes the radial-displacement ampli-
tude ∆R/R to decrease.

The transition from the fundamental mode to over-
tones can be clearly traced by examining the phase
diagram of the fundamental Fourier harmonic in the
complex (ξr, ξi) plane, where ξr and ξi are the real
and imaginary parts of the normalized radial dis-
placement amplitude ∆r/R. Each Lagrangian layer
of a pulsating model star is represented in the phase
diagram by a point whose radius vector is proportional
to the displacement amplitude, and the displacement
phase is equal to the angle made by the radius vector
with the horizontal axis: ϕ = tan−1(ξi/ξr). Adiabatic
standing-wave-type oscillations of the �th overtone
are represented in the phase diagram by a straight
line that crosses the coordinate origin � times, while
the phase diagram for adiabatic fundamental-mode
(� = 0) oscillations is a straight line that emerges
from the coordinate origin.

Figure 3 shows the phase diagrams of the funda-
mental Fourier harmonic of the radial displacement
for three model helium stars with a massM = 10 M�
and effective temperatures Teff = 2.5 × 104, 5 × 104,
and 7.5 × 104 K. The instability-excitation region is
highlighted in each curve by a bold segment and the
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Parameters of helium stars in the upper part of the pulsation instability region

M/M� L/103L� Teff/103 K ∆U , km s−1 ∆R/R Π, days Q, days Umax/ve R̄/Rph

1 10 40 221 0.164 0.1159 0.03836 0.25 1.19

1 10 80 248 0.047 0.00629 0.01667 0.12 1.03

1 10 100 248 0.032 0.00265 0.01373 0.09 1.01

1 20 60 395 0.735 0.07124 0.04732 0.46 1.74

1 20 80 571 0.833 0.08245 0.1298 0.68 2.30

1 20 100 672 0.507 0.06084 0.1871 0.49 2.05

10 100 40 334 0.132 0.1387 0.02581 0.22 1.05

10 100 60 313 0.041 0.02280 0.01432 0.11 1.03

10 100 80 314 0.023 0.00746 0.01112 0.08 1.01

10 100 100 200 0.010 0.00270 0.00787 0.05 1.00

10 200 40 417 0.590 0.4350 0.04813 0.47 1.42

10 200 60 618 0.552 0.3873 0.1447 0.38 1.66

10 200 80 652 0.235 0.08834 0.07820 0.26 1.64

10 200 100 681 0.193 0.03371 0.05830 0.17 1.33
layer with maximum positive work per cycle
∮

PdV ,

where P is the total pressure and V is the specific
volume, is indicated by a filled circle. As we see from
this figure, all of the phase diagrams exhibit apprecia-
ble variations in the phase ϕ along the curve, which
is indicative of significantly nonadiabatic pulsations
in the outer layers of a pulsating star. In particular,
the phase decreases with increasing layer radius r up
to the instability-excitation zone and increases above
this zone. This behavior suggests the presence of two
traveling waves that emerge at the time of maximum
compression in the instability-excitation zone and
propagate in opposite directions.

As we see from Fig. 3, the radial pulsations at
M = 10 M�, L = 105L�, and Teff = 2.5 × 104 result
from the instability of the fundamental mode. From
the inner boundary of the model to the layer of max-
imum positive work, the phase of the fundamental
Fourier harmonic changes by less than 0.05 radi-
ans, and the nonadiabaticity effects show up mostly
in the outer layers of the stellar envelope. The os-
cillations at Teff = 5 × 104 are in the first overtone,
because the instability excitation zone is above the
overtone node. Because of significant nonadiabaticity,
the radial-displacement amplitude has only a shallow
minimum at the node and the phase continuously
changes with increasing radius r. Therefore, the over-
tone node in the phase diagram can be determined
ASTRONOMY LETTERS Vol. 29 No. 8 2003
by the segment of the curve closest to the coordinate
origin.

At Teff = 7.5 × 104 K, the pulsations result from
the instability of the overtones of orders k � 6. The
phase diagram shown in Fig. 3 for this model rep-
resents the variations only in the outer layers with
a radius r � 0.9R, while in deeper layers the radial
dependence of the amplitude has several minima and
the phase of the pulsation wave changes several times
by π/2 radians.

The continuous change in the phase with in-
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The effective temperatures are given near the curves.
creasing distance from the stellar center and the
fact that the phase difference between the inner
and outer boundaries of the model is not a multiple
of π/2 radians suggest that the pulsations cannot
be described in terms of standing waves. For this
reason, the transition to oscillations in higher order
modes is accompanied by a continuous change in
the pulsation constant Q. This peculiarity clearly
distinguishes helium stars from classical pulsating
δ Cep and RR Lyr variables, in which the transition
from fundamental-mode oscillations to first-overtone
oscillations is accompanied by an abrupt change in
the pulsation constant. The pulsation constant Q
is plotted against f = log[(M/M�)/(R/R�)] for
M = 10 M� and several luminosities L in Fig. 4; the
pulsation periods Π and the values of Q for helium
stars with luminosity-to-mass ratiosL/M = 103 and
2 × 103L�/M� are given in the table.

The increase in the effective temperature of the star
at Teff � 5 × 104 K and the transition to pulsations
in higher-order overtones eventually cause the pulsa-
tions to become irregular. To elucidate the reason why
the pulsations become nonperiodic, we considered the
spectral density of the kinetic energy of the stellar
envelope

EK(ν) =
1
2

M∫
0

U(ν)2dm, (1)

where dm = 4πr2ρ(r)dr is the element of mass, ρ(r)
is the gas density in a layer of radius r, and

U(ν) =

∞∫
−∞

U(m, t)e2πiνtdt (2)

is the Fourier transform of the velocity U(m, t) of
the Lagrangian layer with the mass coordinate m.
Figure 5 shows a sequence of EK(ν) plots for M =
10 M�, L = 105 L� and several values of Teff. For the
convenience of graphical representation, we use the
dimensionless frequency ν/ν1 = Π1/Π, where Π1 is
the period that corresponds to the principal maximum
in the spectrum EK(ν), as an independent variable.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 6. (a) The radii of the outer Lagrangian layers (solid
lines) and the photospheric radius (dashed line) versus
the pulsation phase t/Π for a model with M = 10 M�,
L = 2 × 105L�, and Teff = 8 × 104 K. The Lagrangian-
layer numbers are given near the curves. The j = 500
layer is the outer boundary of the model. (b) The propaga-
tion of the velocity jump (filled circles) near the minimum
of the photospheric radius.

For strictly periodic pulsations to exist, the max-
ima of the kinetic-energy spectral density EK(ν)
must have a power-law distribution. For the models
shown in Fig. 5, this condition is satisfied only at
Teff = 5 × 104 K. At higher values of Teff, two or
even more overtones are simultaneously excited (the
models with Teff ≥ 7× 104 K in Fig. 5), which causes
the pulsations to become nonperiodic.

STELLAR ATMOSPHERES
UNDER PULSATION CONDITIONS

Because of significant nonadiabaticity, the pulsa-
tions of the outer layers of the stellar envelope lag
behind those of the deeper layers. The lag is illus-
trated by Fig. 6a, in which the photospheric radius
and the radii of three Lagrangian layers are plotted
against t/Π for amodel helium star withM = 10 M�,
L = 2 × 105 L�, and Teff = 8 × 104 K. The j = 500
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 7. The gas density ρ of the outer layers versus the
distance from the center r for a model helium star with
M = 10 M�, L = 2 × 105L�, and Teff = 8 × 104 K at
t/Π = 0. The dashed line indicates the segment of the
curve within which the gas-density distribution is de-
scribed by the dynamic scale height Hp,d.

layer is the outer boundary of the model, and the
time t is measured from the time the photospheric
radius is at a minimum. The radial dependence of the
pulsation phase suggests the presence of a traveling
wave that emerges in each oscillation cycle at the time
of maximum compression in the instability-excitation
zone. The trajectory of the traveling wave is shown
in Fig. 6b for the same model on an enlarged scale.
Note that the discontinuous pattern of variations in
the coordinates of the traveling wave stems from the
fact that the hydrodynamic model is discrete. Above
the photospheric level, the traveling wave transforms
into a shock wave.

The propagation of the shock wave through the
stellar atmosphere during each pulsation cycle pro-
duces two important effects. First, the shock am-
plitude in a medium with a decreasing gas density
increases with distance from the stellar center, so the
expansion velocity of the outermost layers becomes
comparable to the local escape velocity ve. The max-
imum ratios of the expansion velocity for the outer
boundary of the model to the local escape velocity,
Umax/ve, are given in the table. As follows from the
data in this table, both an increase in L/M and a
decrease in Teff, i.e., an enhancement of the pulsation
nonadiabaticity and a decrease of the gravity in the
outer layers of the pulsating star, favor the shock gas-
acceleration mechanism.

Second, an important consequence of periodic
shock waves is the fact that after the completion of the
stage of amplitude growth, the mean radii of the outer
layers appreciably exceed the values that correspond
to the initial hydrostatic and thermal equilibrium. This
is clearly seen from the plots shown in Fig. 6, where
all quantities are given in units of the equilibrium
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photospheric radius Rph. For example, the radius of
the outer boundary in an equilibrium is larger than the
photospheric radius by less than one percent, while
the mean radius of the outer boundary for the dynamic
model R̄ can be more than twice as large as Rph. The
values of R̄/Rph are given in the last column of the
table.

The increase in the mean radius of the outer layers
is accompanied by significant changes in the distri-
bution of the gas density ρ in the stellar atmosphere.
In Fig. 7, the gas density ρ is plotted against the
distance from the stellar center r at the time t/Π = 0
that immediately precedes the onset of photospheric
expansion. As we see from this plot, the gas-density
distribution in the stellar atmosphere can be described
in terms of the dynamic scale height Hp,d, whose
value is more than an order of magnitude larger than
the static scale height Hp = P/(ρg). For example,
for the model withM = 10 M�,L = 2 × 105 L�, and
Teff = 8 × 104 K shown in Fig. 7, the ratio of the static
scale height to the equilibrium photospheric radius is
Hp/Rph ≈ 0.006, while the dynamic scale height is
Hp,d ≈ 0.23Rph.

CONCLUSIONS

It follows from the results of our hydrodynamic
calculations presented above that for a heavy-element
mass fractionZ ≥ 0.01 and a luminosity-to-mass ra-
tio L/M � 103L�/M�, the instability of helium stars
against radial pulsations shows up in a wide range
of effective temperatures. The general trends char-
acteristic of helium stars with masses 1 M� ≤ M ≤
10 M� and a heavy-element mass fraction Z = 0.02
are as follows. Pulsations emerge near the lower
boundary of the instability region (L/M ∼ 103L�/M�)
at Teff � 3 × 104 K; they are attributable to the in-
stability of the fundamental mode. As the luminosity
increases, the temperature boundary of the instability
region moves into the left part of the HR diagram
and goes beyond Teff ≈ 105 K at L/M � 104L�/M�.
In high-luminosity helium stars, fundamental-mode
pulsations emerge at Teff � 4× 104 K, while at higher
effective temperatures the pulsations result from the
instability of the overtones. The pulsations become
nonperiodic both because of the nonlinearity at
∆R/R ∼ 1 and at high effective temperatures. In
the latter case, the periodicity is disrupted, because
two or more overtones with nonmultiple periods are
simultaneously excited. This peculiarity can cause
difficulty in identifying the frequencies of the observed
light variations with pulsation modes.

The velocity amplitude of the outer layers ∆U in-
creases with luminosity, and the dynamic-instability
boundary that corresponds to the expansion of the
outer layers at the velocity equal to the escape ve-
locity for Teff ≈ 7 × 104 K is roughly determined by a
ratio L/M ∼ 3 × 104L�/M�. However, it should be
emphasized that even at Umax < ve, radial stellar pul-
sations cause significant changes in the gas-density
distribution in the stellar atmosphere. These changes
can be described in terms of the dynamic scale height,
which is more than an order of magnitude larger than
the equilibrium scale height.

We chose data on 25 Wolf–Rayet stars with
masses M � 10 M� from Hamann et al. (1993,
1995), Hamann and Koesterke (1998), Nugis and
Lamers (2000), Heger and Langer (1996), and
de Marco and Schmutz (1999) and compared their
positions in the HR diagram with the results of our
calculations. All of these stars proved to be within
the pulsation-instability region. Thus, taking into
account the existing uncertainties in the estimated
masses, luminosities, and effective temperatures of
Wolf–Rayet stars, we, nevertheless, can assume with
confidence that the significant increase in the gas
density needed to reconcile the radiative stellar wind
model with the observed mass-loss rates can be pro-
duced by the periodic shock waves that accompany
radial stellar pulsations.

In our next study, we will compute the radial pul-
sations of helium stars with massesM > 10 M� and
pay much more attention to the dynamics of the outer
atmospheric layers in pulsating stars.
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Abstract—We investigated the acceleration of solar cosmic rays (SCRs) by the shock waves produced
by coronal mass ejections. We performed detailed numerical calculations of the SCR spectra produced
during the shock propagation in the solar corona in terms of a model based on the diffusive transport
equation using a realistic set of physical parameters for the corona. The resulting SCR energy spectrum
N(ε) ∝ ε−γ exp [− (ε/εmax)

α] is shown to include a power-law portion with an index γ � 2 that ends with
an exponential tail withα � 2.5− β, where β is the spectral index of the background Alfvén turbulence. The
maximum SCR energy lies within the range εmax = 1–300MeV, depending on the shock velocity. Because
of the steep spectrum of the SCRs, their backreaction on the shock structure is negligible. The decrease in
the Alfvén Mach number of the shock due to the increase in the Alfvén velocity with heliocentric distance r
causes the efficient SCR acceleration to terminate when the shock reaches a distance of r = 2–3R�. Since
the diffusive SCR propagation in this case is faster than the shock expansion, SCR particles intensively
escape from the shock vicinity. A comparison of the calculated SCR fluxes expected near the Earth’s orbit
with available experimental data indicates that the theory satisfactorily explains all of the main observed
features. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: solar corona, shock waves, particle diffusive shock acceleration, solar cosmic rays, and
Alfvén waves.
INTRODUCTION

The so-called gradual enhancements (or events)
of solar energetic particles (which are called solar
cosmic rays (SCRs) below) are currently believed
to be generated in the solar corona at the shock
fronts produced by coronal mass ejections (CMEs)
(see, e.g., the review articles by Reames (1996, 1999,
2000); the book byMiroshnichenko (2001) and refer-
ences therein). While the relationship between grad-
ual SCR enhancements and CMEs directly follows
from measurements (Kahler et al. 1978; see also
the review article by Reames (2000) and references
therein), a detailed theoretical analysis is required to
determine the SCR acceleration mechanism.

Diffusive shock acceleration, which was originally
established by Krymskii (1977) and Axford et al.
(1977) (see also the review article by Berezhko and
Krymskii (1988) and the monograph by Berezhko
et al. (1988)), is considered as the most appropriate
SCR acceleration mechanism.

The first attempts to apply the theory of diffu-
sive shock acceleration to the solar coronal condi-
tions (Ellison and Ramaty 1985; Lee and Ryan 1986)
showed that SCR spectra with the required properties

*E-mail: taneev@ikfia.ysn.ru
1063-7737/03/2908-0530$24.00 c©
could be generated in principle. At the same time,
these studies contain several significant simplifica-
tions that restrict their predictive possibilities. One
of them, the plane-wave approximation (Ellison and
Ramaty 1985; Zank et al. 2000), disregards the finite
shock size and its time dependence. This approxima-
tion is valid for the bulk of the accelerated particles
that form a power-law spectrum near the shock front
at each current instant of time. At the same time,
it breaks down near or above the maximum energy
where the accelerated-particle spectrum undergoes
an exponential cutoff. In many cases, the finiteness
of the shock size is the major physical factor that de-
termines the maximum energy εmax and the particular
features of the spectral shape at ε � εmax.

The exponential cutoff in the accelerated-particle
spectrum takes place in the range of energies at which
the diffusion length l = κ(ε)/VS reaches lmax =
l(εmax) � 0.1RS. Here, RS and VS are the shock
size and velocity, respectively, and κ(ε) is the parti-
cle diffusion coefficient. Hence, a realistic diffusion
coefficient κ(ε) should be used to properly describe
the particle acceleration in the range of maximum
energies. Such important SCR characteristics as
their maximum energy εmax and spectral shape at
ε � εmax cannot be reproduced using a model with
2003 MAIK “Nauka/Interperiodica”
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an ε-independent diffusion coefficient κ (Lee and
Ryan 1986).

The particular features of the exponential por-
tion of the spectrum are of special interest, because
the highest-energy SCRs recorded during the most
intense events by ground-based detectors (neutron
monitors and meson telescopes) belong precisely to
the exponential part of the SCR spectrum.

An important property of the SCRs observed far
from the Sun, r � R�, is the fact that particles with
energy ε � 1 MeV come to the observer much earlier
than the shock. Since we deal with the same shock
that produced SCRs at the onset of its propaga-
tion from the Sun, the acceleration efficiency signif-
icantly changes or, more specifically, decreases as the
shock propagates. As we show below, the accelera-
tion efficiency decreases within heliocentric distances
r < 4R� because the shock weakens (i.e., its Alfvén
Mach number Ma decreases) and the diffusion co-
efficient κ(ε, r) increases with distance r. For this
reason, most of the SCRs are produced at r < 3R�.
Subsequently, the diffusive SCR propagation prevails
over the shock-expansion velocity. Therefore, a re-
mote observer records the SCR arrival much earlier
than the shock arrival.

Here, ourmain goal is to theoretically calculate the
shock-generated spectra in the solar corona and to
compare the results of our calculations with experi-
mental data. In contrast to previous studies, our cal-
culations are based on realistic parameters of the solar
corona and shock velocities as well as on an SCR
diffusion coefficient that is consistent with current
views of the Alfvén turbulence in the solar corona. As
we show below, the theory satisfactorily explains all
of the main features of the SCR streams in gradual
events observed near the Earth’s orbit.

PARTICLE ACCELERATION

The problem under consideration was formulated
in general terms previously (Berezhko et al. 1998,
2001a, 2001b). Here, we describe the main content
of the model in more detail.

The front of a CME-driven shock probably has
a complex, nonspherical shape. It may be assumed
that the particle acceleration is most efficient at the
shock forefront with the highest velocity VS and that
the magnetic-field lines B make a small angle θ with
the normal to the shock front. Therefore, we will
represent the front of a traveling shock as a segment
of a spherical surface of radius RS(t) that increases
with time at a constant velocity VS = dRS/dt and
that corresponds to the solid angle ΩS. Within this
segment, the shock is assumed to be purely parallel.

In the range of heliocentric distances r < 10R�
under consideration, we assume that the magnetic
ASTRONOMY LETTERS Vol. 29 No. 8 2003
field B is directed radially as the flow velocityw. Since
the half-width of the characteristic cross section L⊥
of the forefront (i.e., the acceleration region) is fairly
large (L⊥ ∼ RS) and since fast particles are strongly
magnetized (κ‖ � κ⊥), the approximation of spher-
ical symmetry in our case implies that all physical
quantities are functions of only one spatial variable—
the heliocentric distance r. In this case, the diffusive
transport equation for the particle-distribution func-
tion f(r, p, t) is

∂f

∂t
=

1
r2

∂

∂r

(
κ‖r

2∂f

∂r

)
− w′∂f

∂r
(1)

+
p

3r2

∂(w′r2)
∂r

∂f

∂p
− f

τ⊥
,

where κ‖ (κ⊥) is the parallel (perpendicular) (with
respect to the magnetic field B) particle diffusion
coefficient and p is the particle momentum. Since
Alfvén waves in the solar corona travel mostly away
from the Sun (see, e.g., Velli and Pruneti (1997) and
references therein), the scattering centers at r > RS
have the velocityw′ = w + ca, where ca = B/

√
4πρ is

the Alfvén velocity and ρ is the density of the medium.
In the downstream region (r < RS), the propaga-
tion of Alfvén waves is largely isotropized; therefore,
w′ = w.

The third term on the right-hand side of Eq. (1)
describes the adiabatic particle deceleration in an ex-
panding flow. This is one of the factors that limits the
accelerated-particle spectrum at high energies.

The last term in Eq. (1) effectively describes the
particle escape from the acceleration region through
perpendicular diffusion with the time scale τ⊥ =
L2
⊥/κ⊥. The actual values of the diffusion coeffi-

cient κ⊥ are such that the term f/τ⊥ has only a weak
effect on the particle acceleration. As in the case of
particle acceleration by interplanetary shocks (i.e.,
at distances r > 0.1 AU) (Berezhko et al. 1998),
we assume that L⊥ = 0.6RS, which corresponds to
ΩS = 1.26 sr.

Note that the angle ΩS affects only the total num-
ber of shock-produced SCRs (which is directly pro-
portional to ΩS) and has absolutely no effect on their
distribution within the cone angle ΩS.

We disregard the shock modification by the back-
reaction of the accelerated SCRs, because their pres-
sure, as we show below, is much lower than the
dynamic pressure ρV 2

S . Therefore, the shock front is
treated as a discontinuity at which the velocity of
the medium relative to the shock front u = VS − w
abruptly changes from u1 at r = RS + 0 to u2 = u1/σ
at r = RS − 0, where

σ = 4
/(

1 + 3/M2
1

)
(2)
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is the shock compression ratio, M = u/cs is the
Mach number, cs =

√
γgkBT/m is the speed of

sound, T is the temperature, kB is the Boltzmann
constant, m is the proton mass, and the polytropic
index of the plasma was taken to be γg = 5/3; the
subscript “1” (“2”) refers to points just ahead of
(behind) the shock front.

The distribution function at the shock front (r =
RS) satisfies the condition

u′1 − u2

3
p
∂f

∂p
=
(
κ‖

∂f

∂r

)
1

−
(
κ‖

∂f

∂r

)
2

+ Q0, (3)

in which u′1 = u1 − ca and

Q0 = u1
Ninj

4πp2
inj
δ(p − pinj) (4)

is the source concentrated at the shock front that in-
jects a fraction η = Ninj/Ng1 of the gas particle num-
ber density Ng1 = Ng(r = RS + 0) into acceleration.
For simplicity, we restrict our analysis to protons—
the main type of ions in the coronal plasma, which is
assumed to be a purely hydrogen plasma. Therefore,
the coronal density ρ and the proton number den-
sityNg are related by ρ = mNg, wherem is the proton
mass.

Since the diffusive particle mobility increases with
energy, the most energetic particles of the medium af-
ter their shock heating can again cross the shock front
in the opposite direction, which implies their injection
into acceleration. Theoretical analysis (Malkov and
Völk 1995), numerical simulations of collisionless
shocks (Scholer et al. 1992), and measurements
at the Earth’s bow shock (Trattner et al. 1994)
strongly suggest that there is an efficient injection
of superthermal particles: apart from the thermal
(Maxwellian) peak, the ion energy distribution at the
front of a quasi-parallel shock has a high-energy
power-law tail that is formed by diffusive shock
acceleration. These particles, which we arbitrarily call
cosmic rays, are the subject of our study, as applied to
the shock propagation in the solar corona.

Since there is no well-developed theory of the
injection mechanism (or, to be more precise, theory
of the strong shock transition), η is a free parameter
in our model. Based on the analysis of experimental
data (Trattner et al. 1994) and numerical simulations
of collisionless shocks (Scholer et al. 1992; Trattner
and Scholer 1993), we can only specify the possible
range of values for this parameter, η = 10−3–10−2.

At the same time, we do not rule out a situation
where the actual injection rate can be much lower
(η � 10−3) than that for a quasi-parallel shock, be-
cause a significant part of the shock front at each
current instant of time is quasi-perpendicular. The
reason is that the rate of particle injection into accel-
eration rapidly decreases with increasing angle θ for
θ � 45◦ (Ellison et al. 1995; Malkov and Völk 1995).
The quasi-perpendicular parts of the front can pre-
vail either because of the corresponding large-scale
magnetic-field structure or in the presence of large-
amplitude background turbulence. It may well be that
both these factors are important in the solar corona.

The choice of the injected-particle momentum pinj
that, by its meaning, separates the slow (thermal)
and fast (accelerated) particles is, to some extent,
arbitrary. In fact, it is limited only by the valid-
ity condition for the entire range p ≥ pinj of the
diffusion approximation based on Eq. (1). There-
fore, we assume, as usual, that pinj = λmcs2, where
λ > 1 (see, e.g., Berezhko et al. 1996) and cs2 =

u1

√
γg(σ − 1) + σ/M2

1

/
σ is the speed of sound

downstream of the shock front. In our calculations,
we used λ = 4.

Since the shock front is the only source where
particles are injected into acceleration, the problem
should be solved under the following initial and
boundary conditions:

f(r, p, t0) = 0, f(r = ∞, p, t) = 0, (5)

which imply the absence of background particles in
the solar wind with energies in the range under con-
sideration.

As in previous studies, we assume that the me-
dium in the downstream region r < RS is perturbed
much more strongly than it is in the upstream region
(r > RS), which ensures that κ‖2 � κ‖1.

This assumption allows the second term on the
left-hand side of Eq. (3) to be disregarded. As a result,
the solution of the problem does not depend on any
singularities of the region r < RS. In this case, the
particle distribution function in this region can easily
be determined from Eq. (1) if we disregard the diffu-
sion term, which is justified by the adopted condition,
for any given velocity field w:

f(r, p, t) = fR(pR, tR), (6)

where fR(p, t) = f(r = RS, p, t) is the particle-dis-
tribution function at the shock front; pR = ap;

a = exp


1

3

t∫
tR

∇w(s, t′)dt′


 (7)

is the factor that describes the adiabatic particle de-
celeration in the downstream region r < RS; and s(t)
is the solution of the equation

ds/dt = w(s, t) (8)
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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with the boundary conditions

s(tR) = RS(tR), s(t) = r. (9)

To determine the distribution function of the down-
stream accelerated particles requires specifying the
velocity field w(r) in this region. Since there is no
reliable information on the distribution w(r) in the
literature, we take it here in the form

w = w2r/RS, (10)

which corresponds to a constant ∇w = 3w2/RS at
r < RS.

The diffusion coefficients in Eq. (1) are defined by
the relations (Lee 1982, 1983)

κ‖ =
v2B2

32π2ωBE
(
k = ρ−1

B

) , κ‖κ⊥ =
ρ2
Bv

2

3
,

(11)

where v is the particle velocity, ρB = v/ωB is the gy-
roradius, ωB = eB/mc is the gyrofrequency, e is the
elementary charge, c is the speed of light, andE(k) =
d(δB2/8π)/d ln k is the energy density of the Alfvén
waves. Particles are scattered due to their interaction
only with the waves whose wave number k is equal to
the inverse particle gyroradius ρB .

PARAMETERS OF THE SOLAR CORONA

For the radial proton-density distribution in the
low-latitude corona, we use a semiempirical model of
Sittler and Guhathakurta (1999):

Ng(r) = N0

[
a1e

a2zz2(1 + a3z + a4z
2 + a5z

3)
]
,

(12)

where N0 = 108 cm−3, a1 = 3.2565 × 10−3, a2 =
3.6728, a3 = 4.8947, a4 = 7.6123, a5 = 5.9868, and
z = R�/r. For simplicity, we ignore all types of ions
except protons. Therefore, the density of the medium
in our case is ρ = Ngm.

The velocity of themedium can be determined from
the continuity condition for the flow of matter under
the assumption of spherical symmetry:

w(r) = we
[
Ne/Ng(r)

]
(re/r)2, (13)

where we = w(re) = 450 km s−1 andNe = Ng(re) =
8 cm−3 are, respectively, the velocity and density of
the solar wind near the Earth’s orbit r = re = 1 AU.

The temperature is taken to be T = 1.2 × 106 K, a
value that agrees with the data of Hundhousen (1972)
in the distance range r < 3R� of interest. On the
other hand, Reames (2000) obtained T � 2 × 106 K.
This uncertainty in T is not important for our model,
because, as we show below, the SCR acceleration
efficiency is determined mainly by the Alfvén Mach
ASTRONOMY LETTERS Vol. 29 No. 8 2003
 

10

 

3

 

10

 

2

 

10

 

1

 

10

 

0

 

10

 

8

 

10

 

7

 

10

 

6

 

10

 

5

 

10

 

4

 

1051

 V
el

oc
ity

, k
m

 s

 

–
1

 

D
en

si
ty

, c
m

 

–
3

 

r

 

/

 

R

 

�

 

c

 

a

 

w

N

 

g

 

V

 

S

Fig. 1. The proton density of the medium Ng, its veloc-
ity w, and the Alfvén velocity ca versus the heliocentric
distance. The dashed lines correspond to the shock veloc-
ities VS = 750, 1000, 1500, and 2000 km s−1; the crosses
indicate the size of the efficient SCR acceleration region.

number Ma1 = u1/ca rather than by the sonic Mach
numberM1 = u1/cs, which depends on the tempera-
ture of the medium.

The radial magnetic-field distribution B(r) in the
model of Sittler and Guhathakurta (1999) differs from
the dependence B ∝ r−2 only at very small distances
r−R� � R�. Therefore, as in the solar wind, we use
the distribution

B(r) = B�(R�/r)2, (14)

where we took B� = 2.3 G for the solar surface
magnetic-field strength, a value that is characteristic
of the low heliolatitudes.

The radial profiles of proton densityNg(r), velocity
of the medium w(r), and Alfvén velocity ca(r) in the
distance range 1 ≤ r/R� ≤ 10 are shown in Fig. 1.

The least studied characteristic of the solar corona
is the Alfvén-wave spectrum E(k, r), which is im-
portant for the acceleration process. There are only
a few general constraints that we use here. First,
as in the solar wind (i.e., at distances r > 10R�),
the dependence of the Alfvén-wave energy content
on the wave number k and heliocentric distance r is
commonly represented as a power law

E(r, k) = E0(k/k0)−β(r/r0)−δ, (15)

where it would be most natural to take R� as r0 for
the corona.

Since the wave–particle interaction is resonant in
nature—waves with a wave number k scatter par-
ticles with a gyroradius ρB = 1/k—and since the
particle-energy range of interest is bounded by several
hundreds of MeV, we choose k0 = 1.4 × 10−6 cm−1,
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which corresponds to the gyroradius of a particle with
momentum p = 0.5mc in a magnetic field B = B� =
2.3Gas the parameter k0. Undoubtedly, there are also
longer waves with k < k0 in the solar corona. How-
ever, this circumstance is unimportant for subsequent
analysis, because, in general, the long-wavelength
part of the spectrum is accounted for by a minor frac-
tion of the total energy content (Tu and Marsh 1995;
You Qiu Hu et al. 1999).

The total energy content of the Alfvén waves with
k > k0 at the base of the solar corona is Ew = E0/β.
The Alfvén-wave fluxes into the solar corona at its
base are considered one of the main energy sources
that heat up the corona and produce the solar wind.
Since the energy flux density required to produce the
solar wind is known, Fw � 5 × 105 erg cm−2 s−1, it
may be considered as an upper limit for the Alfvén
wave energy flux Fw = 2caEw. Therefore, given that
ca � 300 km s−1 at the base of the corona, the
calculations presented below were performed for
E0 ∼ 10−3 erg cm−3.

The parameters β and δ that determine the de-
pendence of the Alfvén-wave energy content on the
wave number and heliocentric distance, respectively,
are well known only for large distances r � 0.5 AU,
i.e., for the solar-wind regionwhere β = 0.5 and δ = 4
(recall that we use the Alfvén-wave energy content
per unit interval of the logarithm of the wave number
as the spectrum E(k)).

At smaller heliocentric distances 3 ≤ r/R� ≤ 16,
information on the Alfvén-wave spectrum can be
extracted from coronal radio-sounding experiments.
Analysis of such measurements indicates that the
spectral index β slightly increases as one approaches
the Sun and that the spatial dependence of the
Alfvén turbulence at r < 6R� is determined by δ �
8 (Andreev et al. 1997). Since, according to the
calculations presented below, the SCRs are efficiently
accelerated at r < 4R�, we used β = 0.5–1.5 and
δ = 8 in our calculations.

THE SCR PROPAGATION

Problem (1)–(11) to determine the distribution
function of the accelerated particles can be solved
numerically within the time interval from the onset of
shock propagation t0 to the time tf the acceleration
becomes inefficient. The shock size at tf is RS =
Rf = 1.3–3R�, depending on the shock velocity VS.

Since the SCR fluxes are most frequently mea-
sured near the Earth’s orbit, i.e., at distances much
larger than Rf , a relationship should be established
between the SCR spectrum formed during the ac-
celeration and the expected SCR flux at succeeding
times at large distances r � R�.
A simplified formulation of the problem on the
propagation of shock-accelerated SCRs appears as
follows. The resulting differential momentum spec-
trum of the SCRs produced by the time tf is defined
by the expression:

Nf (p) = ΩS

∞∫
0

f(r, p, tf )r2dr. (16)

The SCR propagation in interplanetary space is
a difficult problem in itself. A detailed description of
this process is based on the kinetic equation that ad-
equately describes the pitch-angle SCR diffusion in
the interplanetary magnetic field (Toptygin 1983). At
the same time, if the SCR scattering mean free path λ
is small, λ � r, then the diffusion approach (Kota
et al. 1982) based on the diffusive transport equa-
tion (1) becomes acceptable. A further simplification
is achieved if the condition κ � rw, which allows the
effect of convective SCR transport in the solar wind
to be disregarded, is also satisfied. At r = 1 AU, the
two conditions are satisfied for λ ∼ 0.1 AU, which
are typical of the SCRs (Toptygin 1983; Mirosh-
nichenko 2001). In this case, the SCR propagation
in interplanetary space can be described by the sim-
plified diffusive transport equation

∂n

∂t
=

1
r2

∂

∂r

(
κr2∂n

∂r

)
+ Q (17)

for the differential number density n(r, p, t) =
4πp2f(r, p, t), where the source term

Q =
Nf (p)
4πR2

f

δ(r −Rf )δ(t − tf ) (18)

corresponds to the release of particles with the spec-
trum Nf (p) at distance r = Rf at time t = tf . Dis-
regarding Rf compared to r � Rf under considera-
tion, we can write the solution of Eq. (17) as (Krim-
igis 1965)

n(r, t) =
Nf

Ωs

[
(2 − µ)

4+µ
2−µ Γ

(
3

2 − µ

)
(a∆t)

3
2−µ

]−1

(19)

× exp
[
− r2−µ

a∆t(2 − µ)2

]
,

where Γ(x) is the gamma function, ∆t = t− tf , and
the radial dependence of the SCR diffusion coefficient
is taken to be a power law, κ(p, r) = a(p)rµ.

Since the magnetic field is nearly radial at r <
1 AU, we may assume that κ � κ‖. As in the acceler-
ation region, the diffusion of the SCRs is determined
by their interaction with Alfvén waves. Therefore,
the diffusion coefficient is defined by expression (11),
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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in which the Alfvén-wave spectrum E(k, r) corre-
sponds to measurements near r = 1 AU. As follows
from the analysis of the experimental data (Rus-
sell 1972) presented in Lee (1982), the spectrum near
the Earth’s orbit typical of quiet conditions can be
represented as (15) with βe ≈ 0.5 and δe = 4. If we
take r0e = 1 AU as r0 in this expression and k0e =
1.1 × 10−9 cm−1, which corresponds to a particle
energy of 0.1 MeV, then the spectrum amplitude will
be E0e ∼ 10−13 erg cm−3 (the parameters marked by
the subscript “e” specify the Alfvén-wave spectrum
in interplanetary space 10R� < r ≤ 1 AU).

For the specified radial dependence of the wave
energy density E ∝ r−4 and with the adopted depen-
dence B ∝ r−2, the SCR diffusion coefficient in the
solar wind varies with distance as κ ∝ r (µ = 1).

CALCULATIONS: SCR SPECTRA
IN THE SOLAR CORONA

The results of our calculations presented below
were obtained by numerically solving the problem
formulated above.

According to observations (Kahler et al. 1999),
only the fastest CMEs with velocities above
500 km s−1 are accompanied by detectable SCR
fluxes. On the other hand, the number of CMEs
whose velocities appreciably exceed 1200 km s−1

is small (Burkepile and Cyr 1993). Therefore, we
restricted our analysis to CME-driven shocks with
velocities VS = 750, 1000, 1500, and 2000 km s−1.

One might expect the velocity of the shock to
change during its propagation in the solar corona.
However, there are no reliable data on this point. We
only know from observations that the velocity of the
shock as it propagates up to r = 1 AU decreases by
less than a factor of 2 (Reames 1999). Therefore, we
restricted our analysis to the simplest case of shocks
with a constant velocity. This assumption is also jus-
tified by the fact that, according to our calculations
presented below, an efficient SCR acceleration ends
when the shock size reaches RS = 2–3R�.

Figure 2 presents the results of our calcula-
tions for η = 10−4, VS = 1000 km s−1, E0 = 1.2 ×
10−3 erg cm−3, and δ = 8. Figure 2a shows the
differential (with respect to kinetic energy ε) intensity
of the shock-accelerated protons,

J(ε) = p2f(r = RS, p, t), (20)

and Fig. 2b shows the calculated differential (with re-
spect to kinetic energy ε) number of protons produced
by time t,

N(ε) =
4πp2ΩS

v

∞∫
0

f(r, p, t)r2dr, (21)
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Fig. 2. (a) The differential intensity of the shock-
accelerated protons and (b) their resulting spectrum
versus the kinetic energy for a shock velocity VS =

1000 km s−1, injection rate η = 10−4, Alfvén-wave en-
ergy densityE0 = 1.2× 10−3 erg cm−3, and index δ = 8.
For the spectral index β = 0.5 (solid lines), the spectra
marked by numbers 1–4 correspond to shock sizes of
RS/R� = 1.015, 1.049, 1.183, and 1.634, respectively.
The spectra that correspond to β = 1 (dashed line) and
β = 1.5 (dash–dotted line) are shown for RS/R� =
1.634.

where ε =
√
p2c2 + m2c4 −mc2.

For β = 0.5, the calculations are presented for four
sequential times in order to show the contribution of
different shock evolution phases to the resulting SCR
spectrum Nf (ε) = N(ε, tf ). For the other two cases,
β = 1 and 1.5, the calculations are presented only
for the time tf = 434 s, when the shock size reaches
RS(tf ) = 1.63R� and the acceleration becomes inef-
ficient.

The evolution of the accelerated-particle spectrum
at the shock front consists in the formation of a
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power-law spectrum (see, e.g., Berezhko et al. 1988)

f =
qNinj

4πp3
inj

(
p

pinj

)−q
(22)

in the momentum range pinj ≤ p < pmax with a spec-
tral index

q = 3σeff/(σeff − 1), (23)

where

σeff = u′1/u2 = σ(1 − 1/Ma1), (24)

σ = u1/u2 is the shock compression ratio, andMa1 =
u1/ca(RS) is the current Alfvén Mach number. Fig-
ure 3 shows that the increase in Alfvén velocity ca
causes the spectral index q to increase as the shock
propagates. The behavior of the maximum momen-
tum pmax(t) is similar to the case of an interplanetary
shock (Berezhko et al. 1998). Initially, pmax(t)mono-
tonically increases with time, as in the case of a plane
shock, in accordance with the equation

dpmax

dt
=

pmax

τa
, (25)

where τa = 3κ(RS)/[u′1(u
′
1 − u2)] is the accelera-

tion time. At p � pmax, the distribution function
undergoes an exponential cutoff. We use the stan-
dard (in the theory of cosmic-ray acceleration) def-
inition of the maximum momentum pmax: pmax is
the momentum at which the accelerated-particle
distribution function f(p) is a factor of e smaller
than the power-law spectrum f ∝ p−q, i.e.,
f(pinj)(pmax/pinj)−q/f(pmax) = e.

The intensity J(ε) shown in Fig. 2a behaves ac-
cordingly: a power-law portion J(ε) ∝ ε−γ with an
index γ = (q − 2)/2 is formed in the range εinj ≤ ε <

εmax = p2
max/2m.

For the case shown in Fig. 2, the maximum en-
ergy εmax(t) virtually ceases to increase starting from
the time that corresponds to RS � 1.2R�, because
the geometrical factor whose effect is related to the
finite shock size becomes amore important factor that
limits the accelerated-particle spectrum. In this case,
the maximummomentum can be determined from the
relation (Berezhko 1996)

g(pmax) ≡
RSu1

κ‖(pmax)
=

q(δ − 2β − 2)
2 − β

. (26)

The quantity g(p) is called the modulation parameter.
An efficient acceleration, as at a plane shock front
when the effect of the finite shock sizemay be ignored,
takes place in the range of momenta for which g(p) �
g(pmax).

Formula (26) accurately defines the maximum
momentum for a strong shock when the index q � 4
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Fig. 3. The spectral index of the SCR spectrum at the
shock front versus its radius RS for various shock veloci-
ties VS.

slowly changes with time (Berezhko et al. 1996,
1998). As applied to the case under consideration,
formula (26) is useful for a qualitative analysis and
rough estimation of pmax, because it disregards the
significant changes in q(RS).

Formula (26) establishes a relationship between
the maximum momentum and the parameters of the
problem, which in the nonrelativistic case is

pmax ∝
(
E0u1/R

δ−2β−2
S

)1/(2−β)
. (27)

Thus, in particular, we see that the maximum mo-
mentum decreases with increasing RS, which re-
sults in the so-called runaway effect (Berezhko
et al. 1996). Its essence is that at each time of
shock evolution t > 0, the particles with momenta
p > pmax(t) that were produced at preceding stages
when pmax was larger than the current value of pmax(t)
are increasingly accumulated in the upstream region.
The propagation of these particles is weakly affected
by the shock; the volume occupied by these particles
due to their diffusion increases more rapidly than the
shock size. For this reason, they are called escaping
particles.

Escaping particles show up in the spectrum J(ε)
as an increasingly hard part near the maximum en-
ergy of ε ∼ 100 MeV (see Fig. 2a). The formation
of this high-energy bump is also facilitated by the
fact that the purely power-law portion of the spec-
trum J(ε) ∝ ε−γ at low energies, which consists of
freshly accelerated particles, becomes increasingly
soft with increasingRS because of the decrease in the
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Alfvén Mach number (see Fig. 3). For these reasons
(the steepening of the spectrum of freshly accelerated
particles and the decrease in their maximum energy
starting from a certain time), the contribution of sub-
sequent evolutionary stages to the resulting spectrum
of the produced SCRsN(ε) becomes negligible start-
ing from some time tf .

As we see from Fig. 2, the increase in the max-
imum energy εmax and the change in the resulting
SCR spectrum N(ε) greatly slow down even when
RS = 1.2R� and virtually cease when the shock size
reaches RS = 1.63R� at tf = 434 s.

In contrast to the current SCR spectrum at the
shock front J(ε), the resulting spectrum N(ε) has a
simpler shape that can be roughly represented as

N(ε) ∝ ε−γ exp [− (ε/εmax)
α] . (28)

The parameter α is difficult to predict analytically,
because the index q changes significantly in the ac-
celeration region. Analysis of the computed spec-
tra N(ε) shown in Fig. 2b indicates that α � 2.5 − β
and that the maximum energy is εmax = p2

max/2m =
116, 75, and 16 MeV for β = 0.5, 1, and 1.5, respec-
tively. Formula (26) gives a reasonable estimate of the
maximum energy: thus, for β = 0.5, it gives εmax �
100 MeV (in this case,RS = 1.2R� should be taken).

The spectral index is γ � 2 in all cases and the ex-
ponential part of the spectrum is smoother at large β,
in accordance with expression (28). For this reason,
the total energy content of the accelerated SCRs is
larger for smaller β: Ec = 2.1 × 1030, 1.8 × 1030, and
1.1 × 1030 erg for β = 0.5, 1, and 1.5, respectively.

For technical reasons, the solution of the problem
is currently very difficult to extend to much later evo-
lutionary stages t � tf until the bulk of the SCRs
produced in the solar corona reaches the Earth’s or-
bit to directly compare calculations with SCR flux
measurements, which are most often made near the
Earth’s orbit. The existence of the escaping effect al-
lows this difficulty to be overcome. It may be assumed
that at tf all of the SCRs produced in the solar corona
propagate purely diffusively into outer space without
being appreciably affected by the shock.

Figure 4a shows the calculations of the resulting
SCR spectrum N(ε) for the same shock velocity
VS = 1000 km s−1 but in the case where the Alfvén
turbulence decreases with radial distances more
slowly, δ = 6. Comparison with Fig. 2b shows that
decreasing the parameter δ causes the maximum
energy εmax to increase, because a decrease in δ
causes the turbulence level to increase at r > R�.

In accordance with relation (27), the increase
in the maximum energy εmax is more significant at
larger β: at δ = 6, εmax = 172, 124, and 38 MeV for
β = 0.5, 1, and 1.5, respectively (see Fig. 4a).
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 4. Same as Fig. 2b for (a) δ = 6 and (b) E0 = 3.7 ×
10−3 erg cm−3.

Figure 4b shows the calculations of N(ε), which
differ from the case of Fig. 2b by a factor of 3.2 higher
turbulence level. A comparison of Figs. 2b and 4b
indicates that increasing the amplitude of the Alfvén
turbulence spectrum E0 causes the maximum en-
ergy εmax to increase in the spectrum N(ε), because
the diffusion coefficient κ‖ is inversely proportional
to E0. Therefore, from relation (25), one would ex-

pect the maximum momentum pmax ∝ E
1/(2−β)
0 to

increase with E0; the larger the spectral index β, the
larger the increase, as confirmed by our calculations:
for the case shown in Fig. 4b, εmax = 460, 548, and
494 MeV for β = 0.5, 1, and 1.5, respectively.

On the one hand, a change in the shock velocity VS
leads to the same effect as does a change in E0,

because pmax ∝ u
1/(2−β)
1 . On the other hand, the in-

crease in velocity is accompanied by the formation of
a harder power-law portion of the accelerated-particle
spectrum at the same distances RS because of the
increase in the Alfvén Mach number: as we see from
Fig. 3, the spectral index q significantly decreases
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E0 = 1.6 × 10−3 erg cm−3.

with increasing VS. Therefore, one would expect the
resulting SCR spectrum N(ε) to be much more sen-
sitive to VS than to E0.

This is confirmed by the calculations shown
in Fig. 5a for VS = 1500 km s−1 and E0 = 8 ×
10−4 erg cm−3. Although the turbulence level is a
factor of 1.5 lower than that in the case of Fig. 2b,
the maximum SCR energy is much higher: εmax =
227, 227, and 136 MeV for β = 0.5, 1, and 1.5,
respectively.

At the same time, increasing the shock velocity
only by a quarter, as a comparison of Figs. 2b
and 5b (where the computed resulting SCR spec-
trum N(ε) is shown for VS = 750 km s−1 and
E0 = 1.6 × 10−3 erg cm−3) indicates, causes the
maximum energy εmax to significantly decrease:
εmax = 48, 16, and 1.5 MeV for β = 0.5, 1, and 1.5,
respectively.

The calculations presented above allow the back-
reaction of the accelerated particles on the shock-
transition structure to be estimated. The main physi-
cal factor that determines the nonlinear shock modi-
fication is the accelerated-particle pressure

Pc =
4π
3

∞∫
pinj

p3vfdp. (29)

Using expression (22) for the distribution function at
the shock front and taking into account the fact that,
in our case, q > 5, pmax � pinj, and pinj � 2mu1, we
obtain

Pc =
4ηq

3(q − 5)
ρ1u

2
1. (30)

Substituting in the typical index q = 6 yields the ratio
of the SCR pressure to the dynamic pressure of the
shock Pc/(ρ1u

2
1) = 8η. Thus, we see that one might

expect the shock to be significantly modified by the
pressure of the shock-accelerated particles at injec-
tion rates much higher than η = 10−3. As we show
below, it follows from our comparison of calculations
with experimental data that the required injection
rates are η � 10−5. This implies that Pc � ρ1u

2
1 and,

hence, the shock modification by the accelerated-
SCR pressure is negligible.

Another important aspect of the backreaction of
the accelerated particles on the shock is the excitation
of Alfvén waves in the upstream region r > RS by
the SCR streaming instability. Based on the linear
growth rate of the Alfvén waves, we can easily deter-
mine their energy density at the shock front (see, e.g.,
Lucek and Bell 2000):

E′
w = EB

u1

ca1

Pc
ρ1u

2
1

, (31)

where EB = B2/8π is the energy density of the reg-
ular magnetic field. Taking into account the above
estimate for the SCR pressure and the fact that most
of the SCRs are produced at a stage when Ma1 � 2,
we obtain

E′
w/EB = 16η. (32)

The influence of the waves excited by SCR par-
ticles on the acceleration is determined by the rela-
tionship between their amplitude and the background
turbulence amplitude. According to expressions (14)
and (15), the energy content of the background tur-
bulence at a shock front of radius RS can be repre-
sented as

Ew
EB

=
8πE0

βB2
�

(
RS

R�

)−4

. (33)

Hence, given that E0/β � 10−3 erg cm−3 and B� =
2.3 G, the energy ratio of the excited and background
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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waves is

E′
w

Ew
= 3 × 103η

(
RS

R�

)4

. (34)

Thus, we see that the role of the turbulence excited
by SCR particles depends on the injection rate η.
The critical injection rate η∗ that corresponds to the
condition E′

w/Ew = 1 is given by the expression

η∗ = 3 × 10−4 (RS/R�)−4 . (35)

Since the maximum shock sizes lie within the range
from 1.3R� to 2.7R� when the shock velocity VS
changes from 750 to 2000 km s−1, we conclude that
the critical injection rate η∗ changes from 10−4 for
VS = 750 km s−1 to 6 × 10−6 for VS = 2000 km s−1.

As we show below, η ≤ 10−5 satisfy the experi-
mental requirements. It thus follows that the exci-
tation of Alfvén waves by accelerated particles can
play a role only at extremely high shock velocities,
VS > 1000 km s−1. Since the lowest-energy particles
with p ∼ pinj mainly contribute to the pressure Pc be-
cause of the steep SCR spectrum, one might expect
that the excitation of long waves interacting with the
highest-energy particles (ε ∼ εmax) is negligible in all
cases and cannot cause a significant increase in the
maximum energy εmax.

A detailed conclusion about the role of the self-
consistent generation of Alfvén waves during SCR
acceleration in the solar corona can be drawn from
quasi-linear calculations, which we are planning in
the immediate future.

COMPARISON OF CALCULATIONS
WITH EXPERIMENTAL DATA

Using the computed resulting spectrum Ng(p) of
the SCRs accelerated in the solar corona and the
simplified procedure described in the section entitled
“The SCR propagation”, we can calculate the ex-
pected SCR fluxes J(r, ε, t) far from the Sun and
compare them with the measurements for specific
events. The difficulties arising in such a compari-
son lie in the fact that several important parameters
that significantly affect the SCR acceleration are not
known well.

Thus, for example, the shock velocity, which was
shown above to play a crucial role in the formation
of the SCR spectrum, is known only in some cases
(to be more precise, information on the CME velocity
that must directly determine the shock velocity can
be obtained from observations). It is also unclear to
what extent the Alfvén turbulence level and spectral
shape in the solar corona are subjected to variability
from event to event. In addition, as was noted above,
the injection rate η cannot currently be predicted with
ASTRONOMY LETTERS Vol. 29 No. 8 2003
the required accuracy. In our case of the linear theory,
η affects only the amplitude of the SCR spectrum.

Despite these difficulties, it is of interest to com-
pare the results of calculations with experimental
data. The goal of this comparison is to determine
whether the theory can reproduce the observed SCR
fluxes and the shape of the SCR energy spectrum for
the expected shock velocities of 500–2000 km s−1

and for Alfvén turbulence spectra that agree with the
general energy constraints.

In our comparison with experiments, the parame-
ters that determine the spectrum of the SCRs accel-
erated in the solar corona Nf (ε) (shock velocity VS,
injection rate η, and turbulence level E0) and the
parameters βe, δe, andE0e that determine the Alfvén-
wave spectrum at large distances r > 10R� and that
directly affect the SCR propagation, were chosen so
as to achieve the best agreement of the time varia-
tions in the SCR intensities J(r, ε, t) at the point of
observation r = 1 AU during the time interval ∆t for
the energies ε for which intensity J measurements
are available. ∆t = t2 − t1 corresponds to the time
interval from the beginning of the event t1 recorded
by X-ray bursts in the Hα line until the time t2 > t1
that was chosen in such a way that the interval ∆t
included the peak of the SCR intensity J(r, ε, t) and,
at the same time, was well ahead of the time of shock
arrival at the point of observation in order to elimi-
nate the influence of the shock-accelerated particles
near the point of observation. Using the SCR inten-
sity J(r, ε, t) calculated in this way, we can determine
the SCR spectrum at the point of observation

I(ε) = Jmax(ε), (36)

where Jmax(ε) = J(r, ε, tmax) is the peak intensity of
the SCRs with energy ε at the point of observa-
tion r and tmax(r, ε) is the time the peak value Jmax
is reached. As follows from relation (19), the inten-
sity I(ε) determined in this way is identical in shape
to the spectrum vNf (ε) of the particles produced in
the source (the corona): I(ε) ∝ vNf (ε).

In Fig. 6, the SCR energy spectra for the Septem-
ber 29, 1989, event measured on IMP 8 and GOES
and with neutron monitors (Lovell et al. 1998) are
compared with the calculations.

The theoretical spectra were computed for a set
of parameters in the acceleration region (in the
corona)—VS = 2000 km s−1, E0 = 6 ×
10−4 erg cm−3, δ = 8, η = 4.2 × 10−6—and at large
heliocentric distances r > 10R�—E0e = 5 ×
10−14 erg cm−3, βe = 1, δe = 4, ∆t = 0.8 days.
We see from the figure that the shape of the SCR
spectrum at energies ε < 300 MeV depends only
slightly on the spectral index β. At higher energies
ε > 300 MeV, the SCR spectrum is much harder
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Fig. 6. The differential SCR intensity near the Earth’s
orbit versus the kinetic energy for the September 29,
1989 event. The IMP 8, GOES 7, and neutron-monitor
(shaded region) measurements were taken from Lovell
et al. (1998). The calculations were performed for
VS = 2000 km s−1; E0 = 6 × 10−4 erg cm−3; δ = 8;
β = 0.5; 1, and 1.5, which correspond to η = 4.2 × 10−6;
as well as E0e = 5 × 10−14 erg cm−3; βe = 1; δe = 4;
and ∆t = 0.8 days.

for large β. It may be concluded with an allowance,
made for the significant uncertainties in ground-
based measurements, that calculations with β = 1
and 1.5 satisfactorily agree with the experimental data
for quite a reasonable set of the remaining physical
parameters. A similar situation takes place for the
May 7, 1978, event, for which the SCR spectrum is
shown in Fig. 7. The calculations were performed for
VS = 1500 km s−1, E0 = 8 × 10−4 erg cm−3, δ = 8,
η = 9 × 10−7, E0e = 5 × 10−14 erg cm−3, βe = 0.5,
δe = 2.5, and ∆t = 1 day. As we see, in the energy
range ε < 300 MeV in which IMP-8 measurements
are available (http://hurlbut.jhuapl.edu/IMP/data/
imp8/cpme/cpme_1h/protons/flux/), the computed
spectra depend weakly on β and agree well with the
experimental data.

Since the shock velocity required for agreement
with the experimental data in this case is lower than
that in the previous case, the SCR spectrum at rela-
tivistic energies ε � 300 MeV is much steeper. Anal-
ysis of the responses of ground-based facilities indi-
cates (Miroshnichenko 2001) that the total SCR flux
at ε > 435 MeV is I � 1 cm−2 s−1 sr−1, a value that
is nearly equal to the calculated value, which is almost
independent of β.

A strong dependence of the observed SCR fluxes
on the CME velocity is a distinctive feature of gradual
 

10

 

0

 

10

 

1

 

10

 

2

 

10

 

3

 

10

 

4

 

ε

 

, MeV

10

 

2

 

10

 

0

 

10

 

–2

 

10

 

–4

 

10

 

–6

 

10

 

–8

 

I

 

, p
ar

tic
le

s 
cm

 

–
2

 

 s

 

–
1

 

 s
r

 

–
1

 

 M
eV

 

–1

 

β

 

0.5
1

1.5

May 7, 1978

Fig. 7. The differential SCR intensity near the Earth’s
orbit versus the kinetic energy for the May 7, 1978, event.
The IMP-8 measurements and the calculations per-
formed for VS = 1500 km s−1; E0 = 8 × 10−4 erg cm−3;
δ = 8; β = 0.5, 1, and 1.5, which correspond to η = 9 ×
10−7; as well as E0e = 5 × 10−14 erg cm−3; βe = 0.5;
δe = 2.5; and ∆t = 1 day, are shown.

events. This dependence is illustrated by Fig. 8, in
which themeasured peak SCR fluxes Jmax(ε) at ener-
gies ε = 2 MeV (Fig. 8a) and ε = 20 MeV (Fig. 8b)
are plotted against the CME velocity Vp. This figure
also shows the results of our calculations at VS ≥
400 km s−1 for η = 10−5 and β = 0.5, 1, 1.5.

Since the relationship between the CME veloc-
ity Vp and the CME-driven shock velocity VS is not
known from observations, we used the relation

VS = Vpσ/(σ − 1), (37)

which is valid for a piston moving at a constant veloc-
ity Vp.

If we assume that the spectral indices of the Alfvén
turbulence are different for different events, β =
0.5–1.5, then we may conclude that the calculations
satisfactorily agree with the observations. If, however,
we assume that the shape of the Alfvén turbulence
spectrum in the solar corona is stable, then the spread
in peak SCR fluxes at a fixed shock velocity can be
attributed to the variability of the injection rate η.
The latter possibility seems preferred, because the
values of η lie in the range 10−6–10−5 when analyzing
individual events, which can be explained by the
influence of the coronal magnetic-field structure.

As regards the shock velocities VS < 750 km s−1,
the computed SCR fluxes rapidly decrease with
decreasing VS and lie well below the measured
fluxes shown in Fig. 8 for VS ≤ 500 km s−1. Such
ASTRONOMY LETTERS Vol. 29 No. 8 2003



SHOCK ACCELERATION OF SOLAR COSMIC RAYS 541

 

10

 

3

 

10

 

1

 

10

 

–1

 

10

 

–3

 

10

 

3

 

10

 

1

 

10

 

–1

 

10

 

–3

 

β

 

0.5
1

1.5

 

ε

 

 = 20 MeV

 

ε

 

 = 2 MeV (a)

(b)

WIND-LASCO
HELIOS-SOLWIND

J
 

m
ax

 
, p

ar
tic

le
s 

cm
 

–
2

 
 s

 
–

1
 

 s
r

 
–

1
 

 M
eV

 
–1

 

100 1000

 

V

 



 

, km s

 

–1

Fig. 8. The peak intensity of the SCRs with ener-
gies of (a) ε = 2 MeV and (b) ε = 20 MeV versus
the CME velocity. The WIND and HELIOS (Kahler
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resent the calculations of the SCR intensities expected
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β = 0.5, 1, and 1.5, which correspond to η = 10−5; as
well asE0e = 5 × 10−14 erg cm−3; βe = 0.5; δe = 4; and
∆t = 1.5 days.

a strong dependence of the SCR production on VS
can be explained by the relatively high Alfvén ve-
locity in the solar corona: as we see from Fig. 1,
ca = 300 km s−1 even at the base of the corona. As
the AlfvénMach numberMa = (VS − ca −w)/ca de-
creases, the accelerated-particle spectrum becomes
increasingly steep (see Fig. 3), so the production
of particles with energies ε > 10 MeV becomes
inefficient at VS < 500 km s−1. Thus, the presence
of measured SCR fluxes (although their number
ASTRONOMY LETTERS Vol. 29 No. 8 2003
is small) in Fig. 8 at Vp < 500 km s−1 cannot be
described by our theory.

This inconsistency can be resolved by assuming
that the Alfvén velocity ca undergoes variations on
the solar surface near the base of the corona. The
experimental data in Fig. 8 at Vp < 500 km s−1 can
be explained by assuming that there are local regions
where ca is a factor of 2 or 3 lower (e.g., because of the
lower magnetic-field strength).

The calculations for Vp = 270 km s−1 (the shock
velocity is VS = 400 km s−1) (Fig. 8) were performed
for B� = 1.15 G with the same values of the remain-
ing parameters as those in the previous case. In this
case, the Alfvén velocity is a factor of 2 lower than that
in Fig. 1. We see from Fig. 8 that the assumption of
this kind can account for the SCR fluxes observed at
low CME velocities Vp.

On the other hand, according to Reames et al.
(1997), only coronal mass ejections whose velocities
exceed 500 km s−1 generate SCRs; those of them
whose velocities are higher than 750 km s−1 are
always accompanied by SCR events. This behavior
closely matches the predictions of the theory pre-
sented above.

CONCLUSIONS

Our analysis of the SCR generation in the solar
corona is based on the linear theory of diffusive shock
acceleration, which disregards the backreaction of the
accelerated-particle pressure on the shock-transition
structure and the generation of Alfvén waves by the
SCR streaming instability in the upstream region.
This approximation is justified, on the one hand,
by the small Alfvén Mach numbers (Ma < 4) in
the coronal region where the bulk of the SCRs are
produced and, on the other hand, by the low injection
rate (η � 10−5) required to produce the observed
SCR fluxes.

The steep spectrum of the accelerated SCRs is
the reason why the SCR pressure at all reasonable
injection rates η < 10−3 is negligible in comparison
with the dynamic pressure in the shock. Accordingly,
the shock modification by the accelerated-particle
pressure is negligible.

As our analysis showed, the generation of Alfvén
waves by accelerated particles can be significant ei-
ther at an injection rate much larger than η = 10−5 or
at extremely high shock velocities VS � 2000 km s−1.
However, even in the latter case, intense generation of
Alfvén waves is expected only at short wavelengths.
At the same time, the excitation of the waves that
interact with particles of extremely high energies ε ∼
εmax is negligible in all cases.
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Our calculations for realistic parameters of the
solar corona and for the observed range of shock ve-
locities indicate that an accelerated-particle spectrum
that well agrees with the experimental requirements
is formed when the shock propagates in the region
r < 2–3R�. In this case, the spectral shape of the
produced SCRs is mainly determined by two physical
parameters: the shock velocity VS and the spectral
index of the Alfvén turbulence β. Comparisons of the
computed SCR spectra with those observed near the
Earth’s orbit for several individual events that show
β = 1–1.5, which is consistent with available theo-
retical models, satisfy the experimental requirements.
The shock velocity strongly affects both the total
number of shock-produced SCRs and their maxi-
mum energy, in good agreement with the experiment.

Thus, our calculations lead us to conclude that the
main observed features of the SCRs in the class of
gradual events can be satisfactorily explained in terms
of the diffusive shock acceleration theory.
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Abstract—We suggest a nonstandard methodology for studying the influence of Jupiter on the secular
orbital evolution of a distant satellite of Saturn. This influence is tangible only in short time spans near
the times of the smallest separation between Jupiter and Saturn, i.e., when the heliocentric longitudes of
the two planets coincide. These times are spaced about 20 years apart. To describe the jumplike behavior
of perturbations, we suggest approximating the principal part of the perturbing function averaged over the
satellite’smotion by a two-parameter exponential wavelet-type (burst) function. The subsequent averaging
(smoothing) of the perturbing function allows us to eliminate the 20-year-period terms and obtain an
approximate analytical solution in a special case of the problem. The results are illustrated by plots of
the variations in the averaged perturbing function and the orbital eccentricity of Saturn’s outer satellite
S/2000 S1, which is most strongly perturbed by Jupiter. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: celestial mechanics, orbital evolution, and wavelet approximation.
INTRODUCTION

Recently, satellite systems that are far removed
both from the giant planets themselves and from the
orbits of their inner satellites have been discovered.
The main force that perturbs the elliptical motion
of the new outer satellites is solar attraction, which
exceeds the combined effect of the largest inner satel-
lites and the oblateness of the central planet by sev-
eral orders of magnitude. The strongest planetary
perturbations, in particular, of Saturn’s satellites are
attributable to the influence of only the most massive
planet, Jupiter. In addition, these perturbations show
up only near the times tk (k = 1, 2, . . .) of the small-
est separation between Jupiter and Saturn. Such a
“burstlike” behavior of the perturbations is difficult to
describe by means of the commonly used Fourier se-
ries, because a large number of harmonics is required
to approximate the perturbing function of Jupiter.

In this paper, we suggest a nonstandard procedure
that uses a special two-parameter burst-type func-
tion and the basics of wavelet analysis (Chui 2001)
to study the main perturbations from Jupiter. The
parameters of this function are chosen to best approx-
imate the actual perturbing function of the evolution
problem. In particular, the times tk that correspond to

*E-mail: vashkov@keldysh.ru
1063-7737/03/2908-0543$24.00 c©
the strongest perturbations from Jupiter for sequen-
tial values of k = 1, 2, . . . are spaced

T =
T1T2

T1 − T2
≈ 20 years

apart (here T1 and T2 are the orbital periods of Saturn
and Jupiter, respectively). At these times, the he-
liocentric longitudes of Saturn, λ1, and Jupiter, λ2,
satisfy the equality

λ2k = λ1k + 2kπ. (1)

Below, to eliminate the terms with the 20-year period
from the perturbing function W , we smooth or, in a
sense, average the bursts of the perturbing function
by a method similar to that used in wavelet analysis.
The resulting averaged perturbing function W be-
comes (along with the semimajor axis of the satellite
orbit) the first integral of the system of five evolution
equations. When applied to the farthest satellite of
Saturn, S/2000 S1, this method yielded an approx-
imate analytical solution of the equation for the ec-
centricity variation because of the peculiar features of
its orbit (its inclination is close to 180◦). Compared
to the eccentricity, the remaining orbital elements are
only slightly perturbed by Jupiter.

FORMULATION OF THE PROBLEM

Let us consider the motion of a distant satellite of
Saturn under the attraction of the Sun and Jupiter.
2003 MAIK “Nauka/Interperiodica”
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We assume that Jupiter and Saturn move heliocen-
trically in circular orbits that lie in the plane of the
ecliptic. The Saturnocentric motion of the satellite
is elliptical and three-dimensional. Denote the helio-
centric radius vectors of Saturn and Jupiter by r1 and
r2, respectively; the Saturnocentric radius vectors of
the satellite and Jupiter by r and ρ, respectively;
and the masses of the Sun, Saturn, and Jupiter by
mj (j = 0, 1, and 2, respectively). The mass of the
satellite is assumed to be infinitesimal. Since the
values of r/r1 ≈ 0.016 and r/ρ ≤ 0.035 are relatively
small for the farthest discovered satellite of Saturn,
S/2000 S1, we can retain only the principal terms
in the perturbing function R of the attraction of the
Sun and Jupiter, i.e., restrict our analysis to the Hill
approximation. In this case,

R = R1 +R2, (2)

R1 =
fm0

2r31

[
3
r21

(r,−r1)
2 − r2

]
, (3)

R2 =
fm2

2ρ3

[
3
ρ2

(r, ρ)2 − r2
]
, (4)

where (x, y) denotes the scalar product of the vectors
x and y,

r =



r(1)

r(2)

r(3)


 ,

r1 = a1




cos λ1

sinλ1

0


 , r2 = a2




cos λ2

sinλ2

0


 ,

ρ = r2 − r1 =



a2 cosλ2 − a1 cos λ1

a2 sinλ2 − a1 sinλ1

0


 (5)

= ρ




cosϕ

sinϕ

0


 ,

ρ2 = a2
1 + a2

2 − 2a1a2 cos(λ2 − λ1). (6)

Here, f is the gravitational constant; a1 and a2 are the
radii of the heliocentric orbits of Saturn and Jupiter,
respectively; and ϕ is the Saturnocentric longitude of
Jupiter. Our objective is to analyze the secular orbital
evolution of the satellite and, primarily, the evolu-
tion of the eccentricity as the orbital element that is
most strongly perturbed by Jupiter. To facilitate the
allowance for the influence of rare bursts of Jupiter’s
attraction on the orbital evolution, we perform a num-
ber of transformations of the perturbing function.

PRELIMINARY AVERAGING
TRANSFORMATIONS

Let us eliminate the short-period terms related to
the orbital motion of the satellite (the orbital period of
S/2000 S1 is about 3.64 years) from the perturbing
function. This elimination is achieved by averaging
the functionR over themean longitude of the satellite.

To eliminate the longer-period terms requires av-
eraging over the motion of the Sun (Saturn) and
Jupiter. The former is relatively easy to perform in
the absence of Jupiter (m2 = 0) and yields the stan-
dard integrable doubly averaged Hill problem (Lidov
1961; Kozai 1962). This averaging procedure elimi-
nates the terms with the orbital period of Saturn T1 ≈
29.5 years from the perturbing function.

As a result of the above transformations, we obtain
the following preaveraged perturbing function:

W =
1

4π2

2π∫
0

2π∫
0

R1dλdλ1 +
1
2π

2π∫
0

R2dλ (7)

=
3fm0a

2

16a3
1

{
(1 + ν)[2(e2 − sin2 i)

+ e2 sin2 i(5 cos 2ω − 3)] + ν[2 sin2 i

+ 10e2 cos 2ω + e2 sin2 i(3 − 5 cos 2ω)]

× cos 2(ϕ− Ω) + 10νe2 cos i sin 2ω sin 2(ϕ − Ω)
}
,

where a, e, i, ω, and Ω are the standard designations
for the Keplerian orbital elements of the satellite; ν =

ν(t) =
m2

m0

[
a1

ρ(t)

]3
, ϕ = ϕ(t), and ρ = ρ(t) can be

determined from formulas (5) and (6); and longitudes
λ1 and λ2 are linear functions of time:

λj = λj0 +
2π
Tj

(t− t0), (j = 1, 2). (8)

Form2 = ν = 0, formula (7) describes the perturbing
function of the doubly averaged Hill problem. When
m2 �= 0, the system of five evolution equations with
the perturbing functionW takes the form

da

dτ
= 0, (9)

de

dτ
= 10e

√
1 − e2

[
(1 + ν) sin2 i sin 2ω

+ C
(
2 − sin2 i

)
sin 2ω − 2S cos i cos 2ω

]
,

di

dτ
= − 2 sin i√

1 − e2
{
5 (1 + ν −C) e2 cos i sin 2ω
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+ S
[
2 + e2 (3 + 5 cos 2ω)

]}
,

dω

dτ
=

2√
1 − e2

{
(1 + ν) [4 + e2 − 5 sin2 i

+ 5
(
sin2 i− e2

)
cos 2ω]

+ C
[
5
(
2 − e2 − sin2 i

)
cos 2ω

+ 5 sin2 i− 2 − 3e2
]

+ 5S(2 − e2) cos i sin 2ω
}
,

dΩ
dτ

= − 2√
1 − e2

×
{
(1 + ν − C)

[
2 + e2 (3 − 5 cos 2ω)

]
cos i

+ 5Se2 sin 2ω
}
,

C = ν cos 2(ϕ− Ω), S = ν sin 2(ϕ − Ω), (10)

τ =
3m0a

3

16m1a3
1

n (t− t0) ;

n =

√
fm1

a3
is the mean motion of the satellite; and

the normalized time τ acts as an independent variable.
Since the functionW depends on all of the orbital

elements and explicitly on time and system (9) has
only one first integral a = const, we solve it mainly
numerically.

We numerically integrate system (9) with the ini-
tial data that correspond to the orbit of Saturn’s satel-
lite S/2000 S1 (Marsden 2001):

JD(t0) = 2452200.5, a = 0.1557901 AU,
e = 0.374658,

i = 172◦
.74556, ω = 42◦

.43394, Ω = 207◦
.06661.

The initial longitudes of Saturn and Jupiter are
λ10 ≈ 72◦ and λ20 ≈ 89◦, respectively. We apply
the fourth-order Runge–Kutta method, which is
successfully used for the evolution problems that do
not require calculating the position of the satellite in
its orbit. The integration step automatically changed
from 0.1 to 1 year.

The thin solid line in Fig. 1 indicates the time de-
pendence of the function W normalized to
3fm0a

2/16/a3
1 and calculated using Eqs. (9) for a

250-year-long interval. For comparison, the dashed
line marks the constant value ofW0 normalized in the
same way, which is the first integral of the evolution
system for m2 = 0. Clearly, the perturbations from
Jupiter are strongest near the times tk, when condi-
tion (1) is satisfied. In this case,

ρ = ρmin = a1 − a2, (11)

ϕ = λ2k − π = λ1k + 2kπ − π,
λ1k = λ2k − 2kπ
ASTRONOMY LETTERS Vol. 29 No. 8 2003
= (λ10n2 − λ20n1 + 2kπn1)/(n2 − n1),

and the times tk themselves are defined by the formula

tk = t0 + (λ10 − λ20 + 2kπ)/(n2 − n1), (12)

k = 1, 2, . . . ,

where n1 = 2π/T1 and n2 = 2π/T2 are themean mo-
tions of Saturn and Jupiter, respectively. With the
adopted λ10 and λ20, t1 ≈ t0 + 18 years and the re-
maining tk are spaced about 20 years apart.

Note that, over 250 years, the amplitude of the per-
turbation bursts from Jupiter at times tk may change
by severalfold, being at a minimum at t4 ≈ 78 years
and t5 ≈ 98 years. Qualitatively, these minima can
be explained by the peculiar features of the orbit of
S/2000 S1 and its evolution. Since the inclination
of this orbit is close to 180◦ (sin2 i ≈ 0.016), we may
assume, to a first approximation, that cos i ≈ −1 and
disregard the terms ∼ν sin2 i in the expression for the
perturbing function (7). We then obtain

W ≈ 3fm0a
2

16a3
1

{
2
(
e2 − sin2 i

)
(13)

+ e2 sin2 i (5 cos 2ω − 3)

+ 2νe2 [1 + 5 cos 2(ϕ− Ω + ω]
}
.

Here, ϕ varies together with the longitudes λ1 and λ2,
while Ω and ω evolve under the effect of solar pertur-
bations. The last term∼ν describes the perturbations
from Jupiter. Having constructed the function

f(t) = 1 + 5 cos 2[ϕ(t) − Ω(t) + ω(t)]

on the given time interval or, more precisely, having
calculated this function using Eqs. (9), we can verify
that two of its zeros are reached at times close to
t4 and t5. This implies that the amplitudes of the
corresponding burstsW (t4) andW (t5) relative toW0

are close to zero (see Fig. 1).

Because of the burstlike variation in the perturb-
ing function W , we can hardly hope to successfully
approximate it by a manageable number of Fourier
harmonics. Such an approximation can be obtained
by using two-parameter burst functions similar to
those used in wavelet analysis.

WAVELET APPROXIMATION
OF THE PERTURBING FUNCTION

The simplest and roughest approximation of the
functionW could be realized by assuming the pulsed
pattern of the perturbations that act only at times tk.
In this case, ρ, ϕ, and λ1k should be formally substi-
tuted with the quantities defined by formulas (11), and



546 VASHKOV’YAK

 

1
2

3

 

0 80 160 240

 

t

 

, year

0.232

0.240

0.248

0.256

 

W

Fig. 1. Time dependences of the averaged perturbing function: (1)W0 (m2 = 0) = const; (2)W (m2 �= 0); and (3)Wa.
the part of the perturbing function W ∼ ν should be
multiplied by the function

δ(t− tk) =

{
1, t = tk

0, t �= tk,
(14)

where tk is defined by formula (12). However, func-
tion (14) contains only one parameter and cannot
accurately describe the perturbation bursts.

Actually, the perturbing effect of Jupiter is
“smeared” in time relative to the times tk. In addition,
it also shows up (although much more weakly)
between these times. It seems natural to describe
such a burstlike process by a system of special two-
parameter functions

ψ(t, s, σ) = ψ

(
t− s
σ

)
. (15)

We use the function

ψ = exp

[
−
(
t− s
σ

)2
]
, (16)
which is suitable for approximating bell-shaped per-
turbations, and call the corresponding approximation
a wavelet approximation. The parameters s and σ in
function (16) are determined by the specific problem.
The parameter s specifies the times of maximum ac-
tion of the perturbations, and σ specifies the width
of the bell-shaped function at height ψσ = 1/e (here,
e = 2.718 . . .). In our case, the parameters s and σ
(in contrast to strict wavelet analysis) are, as it were,
preassigned and constant: s are the times tk and σ is
the empirical value of two years chosen from the best
approximation condition. As a result, the functionW
is described by the formula

Wa =
3fm0a

2

16a3
1

{(1 + µ(t))[2(e2 − sin2 i) (17)

+ e2 sin2 i(5 cos 2ω − 3)] + µ(t)[2 sin2 i

+ 10e2 cos 2ω + e2 sin2 i(3 − 5 cos 2ω)]

× cos 2(λ1k − Ω)

+ 10µ(t)e2 cos i sin 2ω sin 2(λ1k − Ω)},
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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where

µ(t) =
m2

m0

(
a1

a1 − a2

)3

exp

[
−
(
t− tk
σ

)2
]

(18)

and λ1k and tk are defined by formulas (11) and
(12), respectively. Formula (17) can be derived from
Eq. (7) by formally substituting µ for ν and λ1k for
ϕ. In Fig. 1, the normalized function Wa is indi-
cated by the heavy curve. This function satisfactorily
approximates the maximum perturbation bursts and
its deviations from the function W show up only
between bursts (“wavelet segments”) except for the
neighborhoods of t4 and t5, where the perturbations
from Jupiter are at a minimum. The difference in the
levels of the horizontal segments of Wa stems from
the fact that this function was calculated by using
the differential equations that describe the variations
in the orbital elements of the satellite. If their initial
values are used to calculate the functionWa, then all
horizontal segments will be at the level ofW0.

Below, we describe the variations in the orbital
eccentricity of the satellite S/2000 S1. This orbital
element, which characterizes the shape of the orbit,
is most strongly affected by the perturbing influence
of Jupiter, which clearly shows up against the back-
ground of secular solar perturbations. For better il-
lustration, we restrict our analysis to a 90-year-long
interval, which slightly exceeds the period of the long-
period eccentricity variations due to solar perturba-
tions (about 73 years). Figure 2 shows the eccen-
tricity variations that were determined by numerically
solving system (9). The dashed line corresponds to
the solar perturbations alone (m2 = 0). The solid lines
represent the dependences e(t) for m2 �= 0; the thin
line corresponds to the equations with the perturb-
ing function W , and the heavy line corresponds to
the wavelet approximation of this function, Wa. The
thin line can be barely distinguished from the heavy
line only in some time intervals near t ≈ 17, 37, and
57 years. The dependences indicated by the dots and
filled triangles are explained in the next section.

THE AVERAGING TRANSFORMATION
OF THE FUNCTION Wa

When the wavelet approximation is used, the part
of the function Wa that is proportional to µ depends

explicitly on time through exp

[
−
(
t− tk
σ

)2
]
; tk, as

well as λ1k, is a piecewise constant function of the

number k = E

(
λ2(t) − λ1(t) + π

2π

)
. Denoting the
ASTRONOMY LETTERS Vol. 29 No. 8 2003
difference betweenWa andW0 = W (m2 = 0) = con-
st by∆W (k), we obtain

∆W (k) = Ak(e, i, ω, λ1k − Ω) exp

[
−
(
t− tk
σ

)2
]
.

(19)

Here,

Ak =
3fm2a

2

16a3
1

(
a1

a1 − a2

)3

{2(e2 − sin2 i) (20)

+ e2 sin2 i(5 cos 2ω − 3) + [2 sin2 i+ 10e2 cos 2ω

+ e2 sin2 i(3 − 5 cos 2ω)] cos 2(λ1k − Ω)

+ 10e2 cos i sin 2ω sin 2(λ1k − Ω)}.
The time-averaged value of the function ∆W (k)

on the individual complete kth wavelet segment can
be calculated using the formula

∆W (k) =
1

2βσ

tk+βσ∫
tk−βσ

Ak exp

[
−
(
t− tk
σ

)2
]
dt,

(21)

where β is a positive number that is determined by
the maximum separation between the opposite fronts
of the burst or by its maximum width equal to 2βσ.

In the example under consideration, this width is
about eight years, or β ≈ 4. The difference between
∆W (k) and the values corresponding to the hor-
izontal parts of the function W is of the order of
exp(−16) ≈ 10−7 if |t− tk| ≥ 4σ (or eight years); i.e.,
the methodological parameter β determines the burst
boundaries beyond which the function ψ may be set
equal to zero.

To approximately calculate the integral (21), we
assume that the satellite orbital elements on which
Ak depend are constant within the kth integration
interval; i.e., Ak are time-independent. Therefore, we
ignore the difference between the levels of the hori-
zontal portions of the function∆W (k). We then have

∆W (k) =
Ak
βσ

tk+βσ∫
tk

exp

[
−
(
t− tk
σ

)2
]
dt (22)

=
Ak
β

β∫
0

exp
[
−θ2
]
dθ =

√
πAk
2β

Φ(β).

Here, θ = (t− tk)/σ; Φ(β) is a special function, the
so-called error function. For β = 4, we have Φ(4) =
1 + О(10−7) (Abramowitz and Stegun 1964). Disre-
garding the deviation of Φ(4) from unity, we obtain

∆W (k) =
√
πAk
8

, (23)
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Fig. 2. The time dependence of the orbital eccentricity of the satellite S/2000 S1: (1) m2 = 0; (2) m2 �= 0; (3) m2 �= 0, the
wavelet approximationWa; (4)m2 �= 0, the averaged functionWa; and 5, the approximate analytical solution.
where Ak is defined by formula (20).

The final averaging over all kth segments yields
the function ∆W as an arithmetic mean of the func-
tions∆W (k):

∆W =
1
К

K∑
k=1

∆W (k), (24)

where K is the number of complete bursts (wavelet
segments) in a specified time interval. For the 250-
and 90-year intervals shown in Figs. 1 and 2, K =
12 and 4, respectively. When calculating the finite

sums
K∑
k=1

sin

cos
(λ1k − Ω), we use formulas (11) and
the relations

K∑
k=1

sin

cos
(kx) =

sin
(
Kx

2

)

sin
(x

2

)

 sin

cos

(
K + 1

2
x

)
 .
(25)

Assuming that x =
4πn1

n2 − n1
, we obtain the following

expression for the averaged perturbing function Wa

(the averaging eliminates all of the terms with periods
of 30, 20, and 3.64 years):

Wa = W0 + ∆W =
3fm0a

2

16a3
1

(26)

× {(1 + ζ)[2(e2 − sin2 i) + e2 sin2 i(5 cos 2ω − 3)]
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+ η[2 sin2 i+ 10e2 cos 2ω

+ e2 sin2 i(3 − 5 cos 2ω)] cos 2(χ− Ω)

+ 10ηe2 cos i sin 2ω sin 2(χ− Ω)}.
In this expression, ζ , η, and χ are the constants
defined by the formulas

ζ =
√
π

8
m2

m0

(
a1

a1 − a2

)3

, η =
ζ

K

sin (Ky)
sin y

, (27)

y =
x

2
=

2πn1

n2 − n1
,

χ =
1

n2 − n1
[λ10n2 − λ20n1 + (K + 1) πn1] .

The function Wa is the first integral of the evolution
system that is derived from (9) by formally substi-
tuting ζ for ν, ν cos 2(ϕ − Ω) for η cos 2(χ− Ω), and
η sin 2(χ− Ω) for ν sin 2(ϕ−Ω).

In this case, the constant of the integral is deter-
mined by K or the length of the time interval under
consideration. As an example, we give the normalized
values

Wa(K = 4) = 0.24388,

Wa(K = 12) = 0.24361,W0 = 0.24313.

Note thatWa(K → ∞) →W0 particularly rapidly
for alternating bursts.

The large dots in Fig. 2 indicate the variations
in the orbital eccentricity of the satellite S/2000 S1
determined by numerically integrating the evolution
system with the averaged perturbing function Wa.
This dependence smoothes the heavy line that corre-
sponds to the unaveraged functionWa.

AN APPROXIMATE SOLUTION
FOR sin i ≈ 0

The two existing first integrals a = const and
Wa = const are not enough to find the general solu-
tion of the evolution system. However, the particular
solution sin i = sin i0 = 0 exists for i0 = 0, π, while
an approximate analytical solution can be obtained
for the variation of the most perturbed orbital element
(eccentricity) in the actual case of sin i ≈ 0.

Disregarding the terms ∼ν sin2 i in formula (26),
we obtain, by analogy with (13),

Wa ≈
3fm0a

2

16a3
1

{2(e2 − sin2 i) (28)

+ e2 sin2 i(5 cos 2ω − 3)

+ 2e2[ζ + 5η cos 2(ϕ− Ω + ω]}.
Let us assume that

e = e+ δe, i = i+ δi, (29)
ASTRONOMY LETTERS Vol. 29 No. 8 2003
ω = ω + δω, Ω = Ω + δΩ,

where e, i, ω, and Ω are the functions of time that sat-
isfy the system of evolution equations with m2 = 0.
In the averaged problem, the variation in eccentricity
with time can be roughly described by the equation

de

dt
= −

√
1 − e2
ena2

∂Wa

∂ω
=

15fm0

8a3
1n

(30)

× e
√

1 − e2
[
sin2 i sin 2ω + 2η sin 2(χ− Ω + ω)

]
.

In this case,

de

dt
=

15fm0

8a3
1n

e
√

1 − e2 sin2 i sin 2ω, (31)

dδe

dt
= b1δe+ b2δi+ b3δω (32)

+
15fm0

4a3
1n

e
√

1 − e2η sin 2(χ− Ω + ω).

Since the coefficients bj (j = 1, 2, 3) are the partial
derivatives of the right-hand side of Eq. (31) with
respect to the orbital elements e, i, andω, respectively,
their order of smallness is not larger than sin i in
the case under consideration (sin i ≈ 0). Disregard-
ing the products δe sin2 i, δi sin i, and δω sin2 i in
Eq. (32) and assuming (to a first approximation) that

e = e0, ω = ω0 + ω̇(t− t0), (33)

Ω = Ω0 + Ω̇(t− t0)

on the right-hand side of this equation, where ω̇ =
2π/Tω , Ω̇ = 2π/TΩ, we obtain

δe(t) =
15fm0

8a3
1n

e0
√

1 − e20
ω̇ − Ω̇

(34)

× η
[
cos 2 (ω0 − Ω0 + χ) − cos 2

(
ω − Ω + χ

)]
.

Note that the circulation periods ω and Ω for
the satellite S/2000 S1 are approximately equal to
146 and 250 years, respectively. The filled triangles
in Fig. 2 indicate the dependence e(t) = e(t) + δe in
which e(t) is determined by the general solution of
the doubly averaged Hill problem (Vashkov’yak 1999)
and δe(t) is defined by formula (34).

The difference between the dependences e(t) is
more marked for the orbit of Saturn’s fictitious satel-
lite S/2000 S1f, which differs from the actual or-
bit only by one element—the inclination (if = 176◦).
They are shown in Fig. 3.
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same as that in Fig. 2.
CONCLUSIONS

We have revealed a methodological possibility of
using the wavelet approximation of the perturbing
function in one specific evolution problem of celestial
mechanics. In our opinion, using even a very simple
burst function led to a good qualitative and a satisfac-
tory quantitative description of the long-period orbital
evolution of Saturn’s most distant satellite, which is
perturbed by Jupiter.

A better approximation could probably be obtained
by using more complex “Mexican hat” or Morlet-
type wavelets. The former contains the expression
1 −
(
t− tk
σ

)2

as a cofactor to function (16). Using

the latter wavelet involves separating out the real part
of the product of function (16) by exp[

√
−1α(t− tk)],

where α is a parameter. Based on such more complex
functions, we hope to describe not only the maximum
bursts of W but also its lower-amplitude wavelike
variations between the times tk.

It seems of interest to determine whether the
wavelet approximation can also be applied to strongly
perturbed problems of celestial mechanics, in partic-
ular, to the problem of close encounters of comets and
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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asteroids with planets, as well as to the problem of the
gravitational maneuvering of a spacecraft.
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Abstract—We use the alternative MEGNO (Mean Exponential Growth of Nearby Orbits) technique
developed by Cincotta and Simó to study the stability of orbital–rotational motions for plane oscillations
and three-dimensional rotations. We present a detailed numerical–analytical study of a rigid body in the
case where the proper rotation of the body is synchronized with its orbital motion as 3 : 2 (Mercurian-
type synchronism). For plane rotations, the loss of stability of the periodic solution that corresponds to a
3 : 2 resonance is shown to be soft, which should be taken into account to estimate the upper limit for
the ellipticity of Mercury. In studying stable and chaotic translational–rotational motions, we point out
that the MEGNO criterion can be effectively used. This criterion gives a clear picture of the resonant
structures and allows the calculations to be conveniently presented in the form of the corresponding
MEGNO stability maps for multidimensional systems. We developed an appropriate software package.
c© 2003 MAIK “Nauka/Interperiodica”.

Key words: celestial mechanics; Solar System—planets, comets, minor bodies, and heliosphere.
INTRODUCTION

In general, the spatial motions of the bodies in our
Solar System have a complex pattern that is deter-
mined both by perturbations from other bodies and
by their own internal structures. Nevertheless, many
large planets and planetary satellites are character-
ized by a common feature or, more specifically, by a
dynamically stable resonant behavior. Because of this
behavior, the motions can persist for a long period. In
this case, resonant couplings are observed not only
between the orbital motions of planets and satellites
(see, e.g., Molchanov 1973) but also between their
orbital and rotational motions (see, e.g., Beletskii
and Khentov 1995). Thus, the Moon is a classical
example of a 1 : 1 resonance. However, because of the
perturbations, the resonance ratios are never strictly
fixed but are only near an exact resonance; i.e., the so-
called librations are observed. Analysis of the stability
conditions for quasi-stationary resonant motions al-
lows us not only to interpret the available information
on the motions of celestial bodies but also to predict
some of the characteristics of the bodies themselves
(see Beletskii and Khentov 1995; Beletskii 1967). In

*E-mail: apavlov@inasan.rssi.ru,pavlov@ari.
uni-heidelberg.de

**E-mail: maciejka@dede.ia.uz.zgora.pl
1063-7737/03/2908-0552$24.00 c©
particular, as we point out below, this analysis makes
it possible to estimate the upper limit for the oblate-
ness of a model Mercury.

The application of a reliable and sensitive tech-
nique is required to consider the range of problems
pertaining to the analysis of the stability conditions for
the motions of celestial bodies. This technique would
allow the regular and stochastic components of the
phase space of dynamical systems to be estimated
rapidly and effectively.

Interestingly, the search for solutions of the celes-
tial-mechanical equations led Poincaré to suggest
that the solutions of many dynamical problems are
sensitive to initial conditions. Therefore, the partic-
ular features of the orbital motions of bodies prove to
be unpredictable. The salient feature of a chaotic mo-
tion is its strong sensitivity to small variations in the
initial conditions. In conservative systems, chaotic
trajectories uniformly fill all parts of some subspace
in the phase space; i.e., they are characterized by a
uniform probability density in a bounded phase space.
In the course of time, nearby trajectories diverge ex-
ponentially, in contrast to regular trajectories whose
divergence is only linear.1 A quantitative estimate of

1Note that such a divergence, clearly, cannot continue indefi-
nitely in bounded space.
2003 MAIK “Nauka/Interperiodica”



AN EFFICIENT METHOD FOR STUDYING THE STABILITY 553
the divergence rate for trajectories can be represented
in terms of Lyapunov indicators, which serve as a
measure of the mean divergence rate of closely spaced
trajectories.

The main difficulties in representing the evolu-
tion of a trajectory in phase space are related to di-
mensionality. Even for a system with two degrees of
freedom whose phase space is four-dimensional (in
the conservative case, the energy surface is three-
dimensional), motion is difficult to trace, especially
when we deal with the two-dimensional sheet of paper
on which the image must be. One of the most valuable
methods, known as the Poincaré section, which was
developed by Poincaré (1971) and Birkhoff (1927), is
associated with the solution of this problem. It is con-
venient for studying the dynamics of low-dimensional
systems. For systems with a large number of degrees
of freedom, such a measure of trajectory divergence as
the Lyapunov indicator is still applicable.

Another method of studying the behavior of tra-
jectories involves calculating their power spectrum
(see, e.g., Tabor 1989), which is defined as the Fourier
transform of the correlation function of a certain vari-
able. In a chaotic regime, the spectrum of an irregular
trajectory is much more complex than the spectrum of
a regular trajectory: “islands of noise” appear around
the main peaks. In general, the difference between the
spectra of regular and irregular motions is very large
and gives a clear idea of the dynamical systems. The
FMA (Frequency Map Analysis) method developed
by Dumas and Laskar (1993) and Laskar (1993) is a
powerful tool that allows the frequencies associated
with the Kolmogorov–Arnold–Moser tori to be ac-
curately determined. However, in studying a motion
that encompasses a sufficiently large part of the phase
space, the FMA method proves to be less efficient
than a direct calculation of the Lyapunov indicator. In
turn, the slow convergence of the Lyapunov indicator
imposes severe restrictions on computer resources.
Therefore, new methods for analyzing the phase space
were developed recently.

One of these new methods for studying the dy-
namical behavior of systems is the MEGNO indi-
cator of chaos that was developed by Cincotta and
Simó (2000). It makes it possible to analyze systems
faster than with other indicators of chaos. As we show
below, having a number of advantages over other
techniques, this method allows the calculations to be
conveniently presented in the form of the correspond-
ing MEGNO stability maps when studying systems
with a large number of degrees of freedom, in par-
ticular, when investigating the rotational dynamics of
celestial bodies.

Despite the progress in computer technology and
the construction of complex models for studying the
ASTRONOMY LETTERS Vol. 29 No. 8 2003
stability of the Solar system (Laskar 1989), the per-
turbed rotational motions of celestial bodies can be
described only roughly. Therefore, it seems reasonable
to consider models with a gradual complication of
their parameters to explain the various evolutionary–
dynamical effects of the resonant motions of celestial
bodies.

In Section 1, we briefly describe the MEGNO
technique. In Sections 2 and 3, it is used to analyze
the plane oscillations of Mercury and spatial rota-
tions. In Section 2, we study a plane resonant rota-
tion, i.e., a rotation where one of the principal central
axes of inertia of the celestial body coincides with the
normal to the Keplerian orbital plane of this body,
which allows the spin–orbit interaction to be ade-
quately studied. The Poincaré mapping method and
the Floquet–Lyapunov theory are used to investigate
the stability of the periodic solution of Mercury’s rota-
tion. In Conclusions, we show the distinctive features
of the MEGNO indicator that make it possible to an-
alyze the system both in the case of plane oscillations
and in a more complex spatial model.

1. THE MEGNO TECHNIQUE

Below, we briefly describe the fundamentals of the
MEGNO indicator based on its close relationship to
the Lyapunov indicator.

As was noted in the Introduction, Lyapunov in-
dicators are very useful in describing dynamical sys-
tems, and they make it possible to directly calculate
the hyperbolicity. In order not to lose the integrity in
the presentation of our material, let us first consider
an autonomous system that is described by the differ-
ential equations

d

dt
x = F(x). (1)

We linearize the equations of motion near an arbitrary
basic trajectory

d

dt
δ = A(t)δ, (2)

where A(t) = Aij(t) is the matrix of the linearized
system with the corresponding elements,

Aij(t) =
∂Fi
∂xj

(x(t)).

The norm

||δ(t)|| =

√√√√ n∑
i=1

δ2
i (t)

specifies the measure of divergence of two nearby tra-
jectories, i.e., the basic trajectory and the neighboring
trajectory with the initial conditions x(t0) + δ(t0).
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The mean rate of exponential divergence is defined
as

σ := lim
t→∞

σ(t), (3)

σ(t) := lim
||δ(t0)||→0

(
1
t

)
ln
(

||δ(t)||
||δ(t0)||

)
.

Thus, for multidimensional mappings (x and F are
n-dimensional vectors), we have a set of n char-
acteristic Lyapunov indicators that correspond to n
eigenvalues of the corresponding tangent mapping.
These quantities are called the characteristic Lya-
punov indicators and can be ordered as

σ1 ≥ σ2 ≥ · · · ≥ σn. (4)

In practice, calculating the indicators for n-dimen-
sional fluxes reduces to calculating the largest Lya-
punov indicator σ1 from set (4), because it can be
shown that, in the course of time, a small element
of volume will be extended to the greatest extent in
the direction that corresponds to the largest indicator,
i.e., σ = limt→∞ σ1(t). Benettin et al. (1980) gave
a practical scheme for calculating both the largest
Lyapunov indicator and the complete spectrum σi.

Since σ can be analytically calculated only in very
rare cases, numerical algorithms are mainly used.
Their main problem is a large expenditure of com-
puter time, because the convergence of σ(t) → σ is
slow. Therefore, new approaches that allow the phase
space to be studied on relatively short time scales
were actively developed in recent years: the fast Lya-
punov indicators (Froeschle et al. 1997; Froeschle
and Lega 2000), the dynamical spectra (Voglis et al.
1999), and the FMA method mentioned in the Intro-
duction.

The MEGNO indicator of chaos belongs to the
family of fast indicators. It possesses properties that
have significant advantages in studying the dynamics
of planetary systems and is based on serious analyti-
cal and numerical studies.

Before writing the definition of the MEGNO in-
dicator, we turn to the definition of the Lyapunov
indicator (3), which can be represented as

σ := lim
t→∞

1
t

t∫
0

δ̇(s)
δ(s)

ds =
〈 δ̇

δ

〉
,

where

δ = ||δ||, δ̇ =
d

dt
δ =

δ̇ · δ
||δ|| .

The MEGNO indicator can then be defined as (Cin-
cotta and Simó 2000)

Y (t) :=
2
t

t∫
0

δ̇(s)
δ(s)

sds; (5)
here, the value of Y (t) is used together with its mean

Ȳ (t) :=
1
t

t∫
0

Y (s)ds.

It can be shown (Cincotta and Simó 2000; Cincotta
et al. 2003) that:

(A) If x(t) is a regular, stable solution with a linear
divergence of nearby trajectories, then for a quasi-
periodic solution,

lim
t→∞

Ȳ (t) = 2. (6)

(B) If x(t) is a stable, periodic solution, then

lim
t→∞

Ȳ (t) = 0. (7)

(C) For a chaotic behavior of x(t),

Ȳ (t) ≈ σ

2
t for t → ∞,

where σ is the largest Lyapunov indicator for x(t).
If Ȳ (t) approaches a certain fixed value that differs

from 2, then the closely spaced trajectories diverge as
a power law.

The MEGNO time evolution can be represented in
a universal form for any type of motion. This impor-
tant property of the MEGNO indicator significantly
distinguishes it from the Lyapunov indicator. Indeed,
representations (A)–(C) can be combined, because
the asymptotic behavior of Ȳ (t) is expressed as

Ȳ (t) � at + d,

where a = 0, d � 0 or 2 for stable periodic and quasi-
periodic motions or a = σ/2, d � 0 for an irregular
stochastic motion.

This property can be used to effectively estimate σ,
which can be determined by linearly approximat-
ing Ȳ (t). This method for calculating the Lyapunov
indicator requires much less computer time and is
more efficient and sensitive to the structure of the
phase space, because Ȳ (t) contains the complete
dynamical information on the system obtained over
the entire integration time. These properties make
the MEGNO indicator a useful tool for studying fine
structures in phase space: they reveal resonances
and allow their widths to be estimated. In this paper,
we use some of these properties to study spin–orbit
interactions.

The following estimates clearly show that the
MEGNO indicator converges faster than the Lya-
punov indicator (t → ∞):

Y (t)
t

� 2
t

(8)
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for a regular solution and

Y (t)
t

� σ (9)

for chaotic behavior. Thus, for regular motion, Y (t)/t
converges to zero faster than σ (whose convergence
rate is (1/t) ln t), while for chaotic motion, the rate
of convergence to a certain nonzero value is approxi-
mately the same.

As was noted by Goździewski et al. (2001), the
algorithm for calculating the MEGNO indicator is
simple: it is necessary to write the equations of motion
of the system (1) together with its variational equa-
tions (2) and then add two more equations:

d

dt
y =

δ̇ · δ
δ · δ t,

d

dt
w = 2

y

t
;

then, Y (t) = 2y(t)/t and Ȳ (t) = w(t)/2.
The dynamics of the motion proves to be hidden

when the Lyapunov indicator is calculated, because
integrating the system over a long but finite period
(∼106–108 characteristic time scales of the system),
we obtain only one number. When performing nu-
merical calculations of the dynamics of the system
over a finite period whose net result is determined
by a finite nonzero value of σ, it is difficult and, in
several cases, virtually impossible to confirm that the
Lyapunov indicator points to a regular case. An ex-
ample of such a situation when calculating σ can be
found in the paper of Sussman and Wisdom (1988)
who analyzed the orbital stability of Pluto. After more
than 108 years of quasi-regular behavior, the sys-
tem exhibited a nonzero σ with a convergence rate
of 10−7.3 yr−1. Thus, the Lyapunov indicator does
not always allow regular and chaotic motions to be
classified reliably and rapidly.

The MEGNO technique is a powerful tool for
identifying the regular and stochastic components of
the system, because the chaotic effects in the behavior
of the solutions to the variational equations are en-
hanced (see definition 5). Thus, we can analyze the
system, on average, two to four orders of magnitude
faster than with the Lyapunov indicator.2 Such an
efficiency is an indispensable factor in studying the
global dynamics, which requires analyzing a large set
of initial data. This method for analyzing planetary
systems was first implemented by Goździewski et al.
(2001) and Goździewski and Maciejewski (2001).

We will not consider in detail the convergence
properties of the MEGNO indicator, which are dis-
cussed both in the series of papers of its authors

2Note that this estimate for the speed of the MEGNO indica-
tor does not follow from the estimates of the convergence rate
(8), (9), but it was estimated by Cincotta and Simó (2000)
and Goździewski et al. (2001) numerically.
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Fig. 1. The geometry of model plane resonant rotations:
ϕ is the angle between the principal central axis of inertia
of the body and the radius vector R of its center of mass,
ν is the true anomaly, T is the orbital period of Mercury,
and C.P. is the central planet (Sun).

(Cincotta and Simó 2000; Cincotta et al. 2003) and
in the paper of Goździewski et al. (2001), but focus
our attention on the possibility of using MEGNO to
study the fine resonant structures in the rotation of a
celestial body in 3 : 2 synchronism as an example.

For these purposes, we developed a software pack-
age in the IDL interactive programming language
using the ODEX numerical integrator (Hairer and
Wanner 1995) to solve systems of ordinary differential
equations. This software package has a sophisticated
graphical user interface with a branched menu, which
allows us to change system parameters and form
images interactively.

2. ANALYSIS OF THE PLANE RESONANT
ROTATIONS OF A BODY

The model resonant rotation of a celestial body
in an unperturbed Keplerian orbit about one of its
principal axes of inertia perpendicular to the orbital
plane allows the resonant spin–orbit couplings to be
adequately analyzed.3 Figure 1 shows a schematic
view of the Sun–Mercury system. We see that the
Mercurian type of motion traces the pericentric radius
vector of the orbit.

Let us write the equation for the plane rotation of
a celestial body (Mercury) in the gravitational field
of a mass point (Sun) by concentrating the entire

3Various aspects of the resonant rotations of celestial bodies
are considered in the book by Beletskii and Khentov (1995).
Note that Celleti and Falcolini (1992) and Celleti and Chier-
chia (2000) investigated the dynamics and stability of the
spin–orbit interactions in terms of perturbation theory.
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Fig. 2. The Poincaré sections. The stability of the solution as a function of the ellipticity parameter of the body d and the orbital
eccentricity e: (a) d = 0.1, e = 0.001; (b) d = 0.1, e = 0.1; (c) d = 0.195, e = 0.2056; and (d) d = 0.197, e = 0.2056.
mass of the Sun at its center of mass and analyze a
Mercurian-type resonant rotation following Beletskii
and Khentov (1995). In this case, Mercury is treated
as an absolutely rigid body. Thus, we leave aside the
questions related to the change of its shape, which
corresponds to the neglect of tidal effects. In turn,
tidal effects introduce dissipation into the spin–orbit
interaction and, in general, can affect the dynamical
evolution of the system on long time scales.

The motion under consideration can be described
by the second-order differential equation (Belet-
skii 1965)

(1 + e cos ν)
d2φ

dν2
− 2e sin ν

dφ

dν
(10)

+ d sinφ cos φ = 2e sin ν,

where φ is the angle between the principal central
axis of inertia of a body that lies in the plane of an
elliptical orbit of eccentricity e and the radius vector R
of its center of mass and ν is the true anomaly. The
ellipticity parameter of the body is defined as

d = 3(B −A)/C;

A, B, and C denote the principal central moments of
inertia of the celestial body.

After the standard reduction of the second-order
differential equation to a system of first-order ordinary
differential equations (FODEs), we performed our
calculations numerically by using the ODEX inte-
grator. The ODEX integrator, which was developed
by Hairer (Hairer and Wanner 1995), includes the
Bulirsch–Ster extrapolation method (see, e.g., Press
et al. 1992), and, in addition to computational accu-
racy, it has a high speed.

The Poincaré Section. The Soft Loss of Stability

We present the results of our calculations after
each complete period by taking into account the fact
that, for the resonance under consideration, the an-
gle φ must change by 2π over two orbital revolutions.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 3. The stability of the solution as a function of the body’s ellipticity parameter d.
Thus, we construct a Poincaré section that is used to
simplify the observed pattern of complex time regimes
and pass from the flux to a lower-dimension mapping.

Our numerical calculations for various values of e
and d presented in Fig. 2 show a strong dependence
of the pattern of motion on the system’s parame-
ters.4 We see that the region around the resonance in
3 : 2 synchronism (marked by the asterisk) changes,
becoming much smaller with increasing (e, d). The
chaotization of the system’s motion is a manifestation
of the instability of the phase trajectories that arises
under certain conditions. Nevertheless, the region of
quasi-stationary motions is still large enough even for
a large ellipticity parameter of the planet.

Let us now analyze the stability of the system’s
periodic solution (asterisk) as a function of the el-
lipticity parameter of the celestial body by fixing the
eccentricity that corresponds to the Mercurian orbit
(Figs. 2c, 2d). For this purpose, we consider the pe-
riodic solution of our system with a period T (x(t +
T ) = x(t)).

As a rule, periodic solutions are analytically stud-
ied in a general form. The Poincaré section is most
commonly constructed, using which studying the
properties of a periodic trajectory reduces to analyzing
the properties of a fixed point of some mapping—
the Poincaré mapping. In studying the stability of
this fixed point, we linearize the equations of motion

4Figures 2c and 2d present the calculations that correspond
to the eccentricity of Mercury.
Y LETTERS Vol. 29 No. 8 2003
in its vicinity (see Eq. (2)). Since the fundamental
matrix Φ(t) satisfies the equation Φ̇ = A(t)Φ,

Φ̇(t + T ) = A(t + T )Φ(t + T ) = A(t)Φ(t + T );

i.e., Φ̇(t + T ) is another fundamental matrix. Since
any solution can be expressed as a combination of the
fundamental solutions,

Φ̇(t + T ) = Φ(t)M,

where M is a constant matrix called a monodromy
matrix. Thus, the Poincaré section and the Floquet–
Lyapunov theory (see, e.g., Kozlov 1996) allow the
problem of the stability of a periodic solution to be
reduced to the problem of the stability of a fixed
mapping point, which is very useful in investigating
the bifurcations of the periodic regimes. Integrating
the variational equation (2) over the complete period
yields a monodromy matrix whose eigenvalues µi
(Floquet multipliers) control the growth rate of the
perturbation.

In our case, the characteristic equation for the
linear second-order differential equation with a 2π
period coefficient can be written as (Malkin 1966)

λ2 − 2Cλ + 1 = 0;

the coefficient C is defined as

C =
1
2

TrM,

where TrM = [y1(2π) +
dy2

dν
(2π)] is the trace of the

monodromy matrix. In this case, the functions y1(ν)
and y2(ν) are the fundamental system of solutions for
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Fig. 4. The Poincaré section: the bifurcation of the periodic solution (d = 0.2).
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Fig. 5. The maximum deviation of the separatrix in Φ from the unstable periodic solution as a function of the body’s ellipticity
parameter d.
the variational equation that was normalized at the
initial point ν = 0, i.e., satisfies the initial conditions

y1(0) = 1,
dy1

dν
(0) = 0,

y2(0) = 0,
dy2

dν
(0) = 1.

The periodic solution of Eq. (10) is stable in
the linear approximation if C2 < 1 and unstable if
C2 > 1. The condition C2 = 1 specifies the boundary
of the stability region for the periodic solution. In our
calculations, we used the method of Brent (1973)
both to find the periodic solution (by scanning the
Poincaré section) and to search for the boundary
of the stability region C2 = 1, which, together with
the ODEX integrator, allowed us to achieve a result
with a computational accuracy of ∼10−16–10−14.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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with its contour mapping; (b) direct evidence of the periodic solution for Ȳ (t) � 0.
Since Brent’s method includes the bisection method
and quadratic interpolation, the algorithm rapidly and
assuredly converge with a prespecified accuracy.

The results of our analysis of the system’s stability
as a function of the ellipticity parameter are presented
in Fig. 3, in which the boundary between the stable
ASTRONOMY LETTERS Vol. 29 No. 8 2003
and unstable periodic solutions is indicated by the
dash–dotted line.

As was noted above, the periodic solution of
Eq. (10) under consideration may, in a sense, be
considered as modeling the observed resonant ro-
tation of Mercury, and the results obtained can be
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Fig. 7. The system’s stability maps obtained by using (a) MEGNO and (b) the maximum Lyapunov indicator; the parameters d
and e correspond to Fig. 2b.
used to estimate the upper limit for the ellipticity
of Mercury. Our estimate of the critical ellipticity
parameter (d = 0.19626) is slightly larger than that
found by Beletskii and Khentov (1995) (d = 0.1961).5

Figures 2а–2c and Figs. 2d and 4 present the
results of our calculations for sets of the stable and
unstable periodic solutions of the 3 : 2 resonance
under consideration. The Poincaré section in Fig. 2d
and, more clearly, in Fig. 4 shows the bifurcation
of the periodic solution: starting from d = 0.19626,
we obtain three periodic solutions that correspond
to 3 : 2 synchronism, two of which are stable and
one is unstable. The so-called soft loss of stability
is observed. In other words, when the periodic solu-
tion under consideration becomes unstable, the phase
curves with initial conditions close to it remain near
the periodic solution in question.

In this case, according to Treshchev (1992), the
maximum size of the separatrix for a deviation from
the critical parameter dcr must increase as

∆ ∼ K
√

ε, where ε = d− dcr.

5Note that this discrepancy in the estimated ellipticity pa-
rameters probably stems from the fact that we used more
accurate numerical algorithms.
The coefficient K = 4.26 for the resonance under
consideration was determined by fitting the numerical
calculations shown in Fig. 5 in the form of rhombuses.
In calculating the maximum deviation from the peri-
odic solution, we determined one of the eigenvectors
of the monodromy matrix (see the vector in Fig. 4),
whose direction specified the subsequent integration
along the separatrix.

Thus, the periodic solution becomes unstable at
dcr = 0.19626, which may serve as an upper limit on
the ellipticity parameter for Mercurian-type motion.
However, near dcr, the instability of this periodic so-
lution does not imply the catastrophic chaotization of
the system and may be considered as a “fuzziness” of
the body’s critical ellipticity parameter dcr. Analysis
of the system’s behavior as the ellipticity parameter
increases further is indicative of a large deviation from
the periodic solution along the separatrix.

MEGNO Maps
Let us now present the results of our stability

analysis for the system under consideration by using
the MEGNO indicator. In contrast to the Poincaré
section, the calculations should be presented in three-
dimensional space (see Fig. 6a), because now we
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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periodic solution, two stable solutions are observed.
are deducing not the system’s solution but the value
of Ȳ (t) that shows the stability of the system un-
der consideration for the specified initial conditions φ

and φ̇. The complexity of such a presentation be-
comes clearer when using a contour mapping on the
(φ, φ̇) plane, which either can be included as part of
the figure (the upper and lower parts of Fig. 6a) or can
be presented as a separate figure (Fig. 7).

Certainly, using the MEGNO indicator for plane
oscillations is somewhat artificial, because complete
information can be obtained with the Poincaré section
(Fig. 2). However, the system in question, whose dy-
namical properties can be obtained from the Poincaré
section, allows us to clearly show the distinctive fea-
tures of the MEGNO indicator.

The MEGNO mapping shown in Fig. 7a reveals
the fine structures of the phase space and the pe-
ASTRONOMY LETTERS Vol. 29 No. 8 2003
riodic solutions, which is a remarkable property of
the MEGNO indicator. Indeed, according to (B),
Ȳ (t) � 0 for a stable periodic solution, while for a
quasi-periodic solution, it tends to 2 (A). Figure 6b,
which is an enlargement of the 3 : 2 resonance region,
clearly shows this feature of the MEGNO indicator.
The presentation of the mapping using the Lyapunov
indicator (Fig. 7b) gives a similar picture and hyper-
bolicity estimate but does not explicitly indicate the
periodic solutions. Note that neither of the methods
reveal any unstable periodic solutions. At the same
time, the characteristics of the regions of chaotic mo-
tions can be determined using the MEGNO indicator
much more efficiently, which allows the mappings to
be rapidly constructed when studying the complex
structure of the phase space (Fig. 8). More specifi-
cally, the MEGNO efficiency, together with its dis-
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tinctive features discussed above, is an indispensable
factor in studying multidimensional systems where
the Poincaré section cannot be constructed and a
large set of initial conditions should be considered.

3. THE SPATIAL ROTATIONS
OF A CELESTIAL BODY IN AN ELLIPTICAL

ORBIT

We now turn to a much more complex model to
study the spatial rotations of a celestial body with
an arbitrary central ellipsoid of inertia. Let the or-
bit of the body lie in the i1i2 plane of the inertial
frame of reference I(i1, i2, i3) (see Fig. 9). Denote
the corresponding unit vectors of the orbital frame of
reference O by e1, e2, e3. Then, assuming that

γ = e1 = −r/r,

we can write the equations of motion as (Beletskii
1965)

d

dt
M = M × Ω + 3Sγ × Iγ,

d

dt
γ = γ × (Ω − ωn),

d

dt
n = n × Ω, Ω = I−1M, (11)

where Ω and M = IΩ are the angular velocity and
angular momentum of the rigid body, respectively; n
is a unit vector perpendicular to the orbital plane; and
I is the inertia tensor of the body; i.e.,

I =




A 0 0

0 B 0

0 0 C


 .

In turn, ω and S are expressed as

ω =
dν

dt
=

√
µa(1 − e2)

R2
, S = µ/R3,

where ν is the true anomaly; µ is the gravitational
parameter of the Sun; and e and a are the orbital
eccentricity and semimajor axis for Mercury, respec-
tively. R is defined as

R = a(1 − e cosE),

where E is the eccentric anomaly calculated from the
Kepler equation

E − e sinE =
√

µ/a3(t − τ),

where τ is the time of periastron passage.
System (11) has three geometrical integrals,

h1 = (γ,γ), h2 = (n,n), h3 = (γ,n),

and, for a circular orbit (ω = const, S = ω2), has the
energy integral

H = H(M,γ,n) =
1
2
(M, I−1M)

− ω(M,n) +
3
2
ω2(γ, Iγ).

The classical description of the position of a body
in six-dimensional phase space is based on the
parametrization of its representation by three Euler
angles (φ, θ, ψ) and the corresponding angular
velocities. Having fixed four of the six variables under
consideration, we can study the structure of this
phase space by varying the two remaining variables
in a certain range. Thus, we obtain a stability map
of the system under consideration by scanning the
domain of the two chosen variables and calculating
the MEGNO indicator at each point of the plane. A
set of such maps gives a comprehensive idea of the
system’s stability.

Figures 10 and 11 present such stability maps for
the spatial rotation of a model Mercury for nutation
angles of 1◦ and 10◦, respectively.

In exactly the same way, we construct such
MEGNO maps by fixing φ and φ̇ and varying the an-
gle θ and the body’s ellipticity parameter d. In Fig. 12,
we analyze the system’s stability as a function of
the angle θ ∈ [−π, π] and the ellipticity parameter
d ∈ [0.1955, 0.2] for φ and φ̇ corresponding to the
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 10. The spatial model: the МЕGNO indicator for a set of initial conditions φ and φ̇ (see Fig. 4) at θ = 1◦.
periodic solution in the case of plane oscillations
(θ = 0; see the preceding section). This picture allows
us to determine the instability regions for the system’s
solution, which becomes appreciably more complex
than that for plane oscillations. The auxiliary two-
dimensional plots allow the behavior of the system to
be traced for a certain set of initial conditions:

– the left curve, the projection of the three-
dimensional pattern at θ = 0◦, shows the transition
from the region of the stable periodic solution to the
region of the unstable solution at d = 0.19626 (we see
the jump in the indicator);

– the other two curves, which were brought to the
foreground of the image for clarity, show the change
in the system’s stability with θ for the stable (d =
0.1955, solid line) and unstable (d = 0.2, dash–dotted
line) periodic solutions in the case of Mercury’s plane
oscillations.
STRONOMY LETTERS Vol. 29 No. 8 2003
We see from the figures that, making a cut in
the multidimensional phase space, we can con-
veniently study the behavior of the system using
MEGNO maps.

We will not consider the possibility of refining the
two-sided estimate of Mercury’s ellipticity. We only
note that Beletskii and Khentov justified and devel-
oped the fundamental hypothesis that Cassini’s laws,
which describe the rotation of the Moon, are general-
ized and are used to describe the resonant rotations of
other celestial bodies. Based on these laws and obser-
vational data, Beletskii and Khentov (1995) obtained
two-sided estimates for the ellipticity of Mercury.

CONCLUSIONS

The main goal of this paper is to show that the
MEGNO indicator can be used to effectively study
the behavior of regular and chaotic trajectories both
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Fig. 11. The spatial model: the МЕGNO indicator for a set of initial conditions φ and φ̇ (see Fig. 4) at θ = 10◦.
for systems with a small number of degrees of freedom
(plane oscillations) and for dynamical systems with
a large number of degrees of freedom (spatial rota-
tions).

The MEGNO indicator allows the regular and
stochastic components of the system to be reliably
identified, because the chaotic effects in the behav-
ior of the solutions to the variational equations are
enhanced. This makes it possible not only to ana-
lyze the stability of the system faster than with other
indicators of chaos but also to obtain additional in-
formation on the stability of resonant structures. We
showed that this method allows the calculations to
be conveniently presented in the form of MEGNO
stability maps for multidimensional systems and, in
combination with other methods, is an efficient tool
for studying the stability of spin–orbit couplings.

We investigated the stability, to a first approxi-
mation, of the periodic solution for a Mercury-type
system (3 : 2 resonance). We showed that the loss of
stability is accompanied by the bifurcation of the pe-
riodic solution: when the ellipticity parameter reaches
its critical value, we observe the appearance of two
new periodic solutions close to the solution being
studied, which, in turn, shows the soft loss of stability.
We refined the upper limit of the ellipticity parameter
for a model Mercury in the case of plane oscillations
(dcr = 0.19626) and derived the dependence of the
region of soft loss of stability on the ellipticity pa-
rameter of the body. We showed that the instability
of the given periodic solution near dcr does not imply
a catastrophic chaotization of the system and can
be treated as a “fuzziness” of the critical ellipticity
parameter of the body.
ASTRONOMY LETTERS Vol. 29 No. 8 2003
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Fig. 12. The spatial model: the МЕGNO indicator for θ ∈ [−π, π], and the ellipticity parameter d ∈ [0.1955, 0.2].
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