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Abstract—The features of the tearing mode dynamics in a tokamak that manifest themselves in an irregular
mode rotation are demonstrated by using an algorithm for data processing that is based on the concept of the
instantaneous frequency of an analytic signal. A model is developed in which the tearing mode is treated as an
object to be controlled by means of an external quasistatic magnetic field with an appropriate spatial structure.
It is shown that the model dynamics of the mode agrees well with the dynamics of tearing modes observed in
experiments in which they are influenced by the magnetic field of the halo current. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, tearing-mode instabilities have
attracted great interest in connection with work on the
designs for large devices, including the ITER tokamak
reactor, because the potential danger of triggering neo-
classical tearing modes restricts the variety of possible
discharge regimes with improved confinement. The sit-
uation is aggravated by the fact that a rotating tearing
mode can be locked by an external action, so that the
rotation slows down and the mode may even stop rotat-
ing (the so-called mode locking effect), which often
leads to discharge disruption. A possible explanation
for this is that, in experimental devices, there exist error
fields, one of the spatial harmonics of which may cor-
respond to the tearing mode. This harmonic may affect
the instability dynamics and sometimes bring the rotat-
ing mode to a stop. One of the most efficient ways of
stabilizing the tearing modes is to use a feedback sys-
tem to control the instability. The development of such
systems requires a detailed knowledge of the dynamics
of tearing modes in the presence of error fields and the
development of a model in which the tearing-mode
instability is treated as an object to be controlled.

In tokamaks, the dynamics of tearing modes is usu-
ally investigated by means of MHD diagnostics. In
classical MHD diagnostics, information about MHD
plasma processes is derived by analyzing the signals
from magnetic pick-up coils (Mirnov probes). The
Mirnov signals have the form of (sometimes nonlinear)
oscillations whose frequencies and amplitudes vary
over time. These oscillations are associated with the
rotation of magnetic islands produced in a plasma due
to the onset of tearing-mode instability. Generally, the
frequency of the signal oscillations is equal to fMHD =
mfθ ± nfφ, where m and n are the poloidal and toroidal
wavenumbers and fθ and fφ are the frequencies of rota-
tion of the magnetic islands in poloidal and toroidal
1063-780X/04/3004- $26.00 © 0277
directions. The sign of the second term is determined
by the twist direction of the magnetic field line.

The theory predicts that the tokamak plasma rotates
predominantly in the toroidal direction, because its
poloidal rotation is rapidly damped by high neoclassi-
cal viscosity [1]. This prediction is confirmed by the
experimental data from different tokamaks [2, 3]. This
is why, when speaking about rotation, we mean pre-
cisely the toroidal rotation of the plasma and of mag-
netic islands, assuming that the frequency of the signal
oscillations is equal to fMHD = nfφ. Because of the heli-
cal nature of tearing modes, their toroidal rotation pro-
duces the illusion of poloidal rotation with the fre-
quency fθ = (n/m) fφ when measuring these modes with
poloidally arranged Mirnov probes.

The unsteady character of the signals from Mirnov
probes considerably complicates their processing by
standard spectral methods. For this reason, the methods
of the theory of time–frequency distributions (TFD) [4]
turn out to be more efficient because they make it
possible to follow the time evolution of the frequency
spectra.

Modern TFD theory rests on such mathematically
rigorous and highly developed methods as the wavelet
transform, the windowed Fourier transform, and others.
However, these methods are all subject to a serious
restriction: they are unable to ensure good spatial and
temporal resolution simultaneously, because reduction
of the time window used to analyze the spectral distri-
bution leads to a poorer frequency resolution. An alter-
native approach, free from this restriction, is based on
the representation of experimental data in the form of
the so-called analytic signal and makes use of the
related notion of instantaneous frequency [5, 6].
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2. ANALYTIC SIGNAL AND THE NOTION 
OF INSTANTANEOUS FREQUENCY

The analytic signal z(t) is a complex function,

(1)

whose real part is an original signal u(t) and whose
imaginary part is the Hilbert transformed original sig-
nal,

(2)

where v.p. stands for the Cauchy principal value. The
relationships

(3)

(4)

(5)

determine, respectively, the amplitude A(t) of the enve-
lope of the signal, its generalized phase ϕ(t), and the
instantaneous frequency f(t).

Although the instantaneous frequency is defined for
any signal u(t), it is physically meaningful only for the
so-called monocomponent signal [7], which has the fol-
lowing two characteristic properties: (i) the number of
its local extremes and the number of zeros are either the
same or differ by no more than unity and (ii) its upper
and lower envelopes are symmetric with respect to its
zero level. Such a signal corresponds to an individual
(generally nonlinear) oscillatory process whose fre-
quency and amplitude vary over time [8].

In practice, an analytic signal is constructed by
using spectral representations. With allowance for the
fact that H[u(t)] is the convolution u(t) × 1/πt, the spec-
tral representations satisfy the relationship

(6)

where F[…] is the Fourier-transform operator and U( f )
is the spectrum of the original signal u(t). In an algo-
rithm that makes use of the spectral representation, the
analytic signal z(t) is constructed from the original sig-
nal u(t) in accordance with the expressions

(7)

It can be seen from this expression that the Fourier
spectrum of an analytic signal is nonzero only for pos-
itive frequencies.
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According to formula (5), the instantaneous fre-
quency is calculated from the expression

(8)

where the prime denotes the derivative with respect to t.

3. INSTANTANEOUS FREQUENCY 
AND FEATURES OF THE DYNAMICS 

OF A TEARING MODE

Let us consider a particular example of how the con-
cept of instantaneous frequency can be used in experi-
ments on studying the locking of a rotating tearing
mode in the T-10 tokamak [9]. The mode locking
means that the rotation frequency of the m/n = 2/1 tear-
ing mode becomes equal to the frequency of the halo
current Jhalo flowing along the rail limiter–plasma–vac-
uum chamber–high-power amplifier–rail limiter cir-
cuit. For a pulse of a unipolar halo current of several
hundred amperes flowing through the circuit, mode
locking resulted in the stopping of mode rotation. The
mechanism underlying this effect is the influence of the
corresponding spatial harmonic of the magnetic field of
the halo current on the tearing mode dynamics. Here,
we focus on the shape and instantaneous frequency of
the poloidal magnetic field rather than on the mode
locking phenomenon.

In the experiments under review, the working gas
was deuterium and the discharge parameters were as
follows: the magnetic field was BT = 2.5 T, the dis-
charge current was Ip = 250 kA, and the mean plasma
density was 〈ne〉 ≈ 6 × 1018 m–3. The minor plasma
radius was determined by the position of the movable
rail limiter and was a = 0.27 m.

Large-scale perturbations of the poloidal magnetic
field due to tearing-mode instability were measured by
poloidally arranged Mirnov probes. The fields of the
perturbations were expanded in the sine, Bs(t), and
cosine, Bc(t), quadrature components of the spatial
Fourier harmonics by processing the signals from the
probes with the help of analog schemes.

The measurements were carried out in discharge
regimes with a steady-state poloidal-field perturbation
with an amplitude of B ≈ 8 × 10–4 T and a frequency of
about 1 kHz. The spatial structure of the perturbation
corresponded to the m/n = 2/1 tearing mode. The
quadrature components shown in Fig. 1 have different
shapes and are nonharmonic, while being highly peri-
odic. Figure 1 also shows the instantaneous frequencies
fc(t) and fs(t) of the components. The good coincidence
between fc(t) and fs(t) indicates that the instantaneous
frequency can be determined from any of the two com-
ponents.

The shape of the observed oscillations of the
quadrature components and the large-amplitude oscil-
lations of the instantaneous frequencies clearly demon-
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strate the irregular character of the rotation of magnetic
islands during the steady discharge stage, even when
the islands do not stop rotating spontaneously. Earlier,
an analogous feature of the behavior of magnetic
islands in a situation in which they may spontaneously
come to a stop was thoroughly investigated in the T-10
tokamak. It was suggested that a possible reason why
the islands stop rotating spontaneously is steady-state
magnetic perturbations due to imperfections in the
assembly of the tokamak magnetic system [10].

The irregular character of the rotation of a tearing
mode under the action of the corresponding spatial har-
monic of a static magnetic field was also demonstrated
theoretically by Fitzpatrick [11].

4. DYNAMIC MODEL 
OF THE TEARING MODE

In order to describe the behavior of a tearing mode
in a tokamak under the action of external currents hav-
ing a spatial structure similar to that of the mode, we
use a single-mode model in which the mode dynamics
is described by a set of ordinary differential equations.
This fairly efficient approach is often used to analyze
systems for controlling the tearing-mode instability in
tokamaks [12–14]. The model approach to describing
the dynamics of a tearing mode under an external action
begins with the following equation for the nonlinear
evolution of the mode [15]:

(9)

Here, ψ is the perturbation of the helical magnetic flux,
η is the plasma resistivity, and the width w of the mag-
netic island is related to the perturbed flux ψ(rs) at a res-
onant magnetic surface of radius rs by the relationship

(10)

where q(r) = (rBT)/(RBP). In different studies, the val-
ues of the coefficient C lie in the range C ≈ 1–3.

We approximate the function ∆'(w) by the widely
used expression (w) = (1 – w/wst), which
describes how a magnetic island of width w widens at a
progressively decreasing rate until it saturates at w =
wst. The parameter  is equal to the jump in the loga-
rithmic derivative of ψ at the resonant magnetic surface
at which the tearing mode under analysis develops. The
effect of an external current on the tearing mode evolu-
tion is described through the replacement ∆'(w) 
∆'(w) + ψ–1(rs)∂ψh(rs)/∂r, where ψh(r) is the amplitude
of the corresponding spatial harmonic of the helical
magnetic flux perturbed by an external current.

The radial and poloidal components of the perturbed
magnetic field are related to ψ by the relationships Br =
(1/r)∂ψ/∂θ and Bθ = –∂ψ/∂r, respectively. Outside the
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plasma column, at the radius rp at which the Mirnov
probes are located, the helical magnetic flux perturba-
tion obeys the relationship ψ(r) ~ r–m. In the free-
boundary plasma problem, the poloidal and radial com-
ponents of the magnetic field of the tearing mode at this
radius have the same amplitude, Bθ = Br = (m/r)ψ, but
their phases are shifted with respect to one another by
π/2. Below, we will denote the poloidal component Bθ
by B.

Taking into account the above relationships, we
arrive at the following equation describing the evolu-
tion of the poloidal magnetic field of the tearing mode
at the radius rp outside the plasma:

(11)

where j [A/m] is the corresponding spatial harmonic of
the surface density of the external current at the radius
rc and Bst [T] is the perturbed field of the saturated mag-
netic island. The coefficients in the equation, g [s–1] and
h [(T m)/(A s)], depend on rs, rc, and rp and also on the

inverse skin time ωR = η/(µ0 ) and the plasma current
density distribution.

Following [12, 17], we account for the plasma rota-
tion by introducing the cosine and sine quadrature com-
ponents of the poloidal magnetic field of the tearing
mode, namely, Bc(t) and Bs(t), whose spatial structures
are described by the functions cos(mθ + nφ) and
sin(mθ + nφ), respectively. Using Eq. (11), we obtain
the following equations for the evolution of these com-
ponent under an external action:
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Fig. 1. Evolution of the quadrature components Bc(t) and
Bs(t) of the magnetic field and their instantaneous frequen-
cies fc(t) and fs(t).
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(12)

(13)

where ω(t) is the toroidal rotation frequency of the

plasma, B = (  + )1/2, and jc(t) and js(t) are the
cosine and sine components of the external current.

In order to describe the evolution of the rotation fre-
quency ω(t), we apply the approach proposed in [11,
13, 14], in which the motion of the plasma within mag-
netic islands is considered as a toroidal rotation of a
solid body in a viscous medium, with the frequency ω
and the angular momentum

(14)

where ρ is the plasma density within the island. The
body is subjected to a rotational torque in the toroidal
direction that arises from the interaction of an external
current j with the radial magnetic field Br of the tearing
mode:

(15)

The plasma within the island is also subjected to a fric-
tional torque Mfr produced by the frictional force in a
plasma that surrounds the island and rotates with the
frequency ωpl:

(16)

where ν is the plasma viscosity and d is the boundary
layer thickness. We take into account the relationship

dBc

dt
--------- g

Bst

B
------ 1– Bc nωBs– h

Bst

B
------ jc,+=

dBs

dt
--------- g

Bst

B
------ 1– Bs nωBc h

Bst

B
------ js,+ +=

Bc
2

Bs
2

I 4π2
R

3
rswρ,=

Mφ R Br j v .d∫–=

M fr 8π2ν
d
---R

3
rs ωpl ω–( ),=

493.6
0

494.0 494.4 494.8 495.2 495.6 496.0

1

2

493.2
t, ms

–5
–10

0
5

10

–5
–10

0
5

10
f,

 f s
, k

H
z

B
s, 

10
–

4  T
B

Ò, 
10

–
4  T

Fig. 2. Comparison of the calculated evolution (dotted
curves) of the quadrature components Bc(t) and Bs(t) of the
magnetic field and of the instantaneous frequency f(t) with
the experimental data (solid curves).
(17)

to see that, in a simple dynamic model, the evolution of
the rotation frequency ω(t) is described by the equation

(18)

where the coefficient p depends on R, rs, rp, rc, w, and ρ
and the coefficient q depends on R, rs, rp, w, ρ, and ν/d.
In model calculations, the ratio ν/d is adjusted to
achieve the best possible agreement with experiment.

5. INTERPRETATION OF EXPERIMENTAL DATA 
AND NUMERICAL RESULTS

As was mentioned above, one of the factors influ-
encing the dynamics of a tearing mode in a tokamak is
the presence of error fields that are relatively weak in
comparison with the field of the discharge current. One
of the spatial harmonics of the error fields may corre-
spond to the spatial structure of the tearing mode devel-
oped in the plasma and can thereby affect the mode
dynamics. Similar effects were investigated in toka-
maks, with emphasis on the remarkable phenomenon
known as the spontaneous stopping of rotation [10].

Here, we focus on the relatively weak effect of the
external magnetic fields on the tearing mode, as a result
of which the rotation of magnetic islands becomes
irregular. In order to interpret the experimental data
presented above, we carried out a mathematical model-
ing of the effect of the halo current on the dynamics of
a tearing mode in a tokamak discharge with parameters
corresponding to those in the experiment. In simula-
tions, we assumed that the effect of the field of the halo
current described by the density jer with the quadrature
components jerc and jers is analogous to that of the error
fields.

As input to model simulations, we used the experi-
mental parameters BT = 2.5 T, Ip = 250 kA, Bst = 8 ×
10−4 T, R = 1.5 m, a = rc = 0.27 m, and rp = 0.42 m.
Under the assumption that the plasma current density in
the region r > rs is zero, the radius of the resonant mag-
netic surface and the island width are estimated to be
rs ≈ 0.24 m and w ≈ 0.07 m. Setting the plasma temper-
ature and ion density within the magnetic island equal
to Te ≈ 100 eV and ni ≈ 2 × 1018 m–3, respectively, and
making the same assumption about the distribution of
the plasma current density, we obtain the following val-
ues of the coefficients in Eqs. (12), (13), and (18): g ≈
500 s–1, h ≈ 0.3 × 10–4 T/(A s), p ≈ 2.5 × 108 m/(T A s2),
and q ≈ 104 s–1. In the set of Eqs. (12), (13), and (18),
describing the evolution of the fields of the perturbation
in terms of these dimensional parameters, the fields are
expressed in teslas, the external current density and
angular frequency being given in units of A/m and
rad/s, respectively. In model computations, we set ωpl =

I
dω
dt
------- Mφ M fr,+=

dω
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frequency f(t), calculated for a given time evolution of the halo current Jhalo(t).
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8700 rad/s and varied the ratio ν/d in the small vicinity
of 2 × 10–6 n s m–3.

The spatial phase and the quantity jer were adjusted
so that the calculated shapes of oscillations of the
quadrature components of the field B were as close as
possible to the experimental shapes. In Fig. 2, the
numerically calculated time evolutions of the quadra-
ture components Bc(t) and Bs(t) and of the frequency
f(t) = ω(t)/2π are compared with the experimentally
obtained evolutions of Bc and Bs and of the instanta-
neous frequency fs of the component Bs. In these com-
putations, the poloidal field near the plasma boundary
that corresponds to the given value of jer was ~1.5 ×
10−3 T.

Having adjusted the jer value, we additionally spec-
ified the surface current density jh to correspond to the
experimentally measured halo current Jhalo. The poloi-
dal field near the plasma boundary that corresponds to
the maximum amplitude of Jhalo was ~6 × 10–4 T. A
comparison of our numerical results (Fig. 3) with the
experimental data (Fig. 4) shows good agreement
between the numerical and experimental time evolu-
tions of the sine and cosine components of the poloidal
magnetic field of the m/n = 2/1 tearing mode and
between the calculated time evolution of the frequency
f(t) = ω(t)/2π and instantaneous frequency fs(t).

It was because of the low output resistance of the
high-power amplifier that the experimentally measured
halo current Jhalo contained an oscillating component
that was coherent with the poloidal field oscillations.
This phenomenon is analogous to that investigated ear-
lier in the T-10 tokamak—the synchronism between the
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Fig. 5. Numerical simulation of an experiment on the
spinup of a tearing mode by an alternating halo current: evo-
lutions of the halo current amplitude Jhalo(t), quadrature
components Bc(t) and Bs(t) of the magnetic field, and
instantaneous mode frequency f(t).
MHD mode and the current oscillations in a circuit con-
taining a rail limiter connected electrically to the cham-
ber [16]. In those studies, the amplitude of the current
oscillations was observed to reach values of about 60 A.
When the amplitude of the current was at its maximum
value, the MHD mode frequency decreased by 25%. In
the case of interest to us, the current oscillation ampli-
tude was as large as 25 A, which, according to [16], cor-
responds to a deviation in the MHD mode frequency by
an amount of 10%. Since, in our model experiment, the
frequency deviation was ~ 100%, the oscillating com-
ponent of Jhalo was ignored in simulations.

We also applied our dynamic model to simulate
experiments that had earlier been carried out in the T-10
tokamak [9], namely, the spinup of a stopped tearing
mode by an alternating halo current. The results of
these simulations are illustrated in Fig. 5.

6. CONCLUSIONS

The results obtained in this work provide evidence
that the method based on the concept of the instanta-
neous frequency of an analytic signal holds promise for
experimental investigation of the dynamics of MHD
perturbations. This method can be extended to the case
of frequency deviation during the oscillation period,
which would make it possible to examine the fine struc-
ture of the spectral dynamics of the MHD perturba-
tions.

The dynamic model described above can be used to
develop a system for controlling tearing-mode instabil-
ity. This model has an important feature peculiar to the
model developed in [12, 17, 18]: it is capable of
describing a forced perturbation in the form of a tearing
mode excited by an external current. In this respect, the
model is quite different from another widely accepted
model in which the rotation of magnetic islands is
attributed exclusively to plasma rotation [11, 13, 14]. It
should be noted that, for a highly viscous dense plasma,
the effect of external fields on the plasma rotation
within a magnetic island can be neglected, in which
case the model proposed here reduces to that of [12, 17,
18].
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Abstract—A comparative analysis of various dissipative processes occurring on ion-acoustic time scales dur-
ing the excitation and propagation of nonlinear dust ion-acoustic perturbations in a complex (dusty) plasma is
performed in terms of a purely kinetic approach and a hydrodynamic approach. It is found that the most impor-
tant dissipative processes are the charging of dust grains, the absorption of ions by grains, the transfer of the ion
momentum to the grains, and Landau damping. The damping rate of dust ion-acoustic waves is derived based
on a purely kinetic approach to describing complex plasmas; this makes it possible to eliminate all of the earlier
contradictions in the description of Landau damping in a complex plasma. The relative roles played by dissipa-
tive processes in different laboratory experiments with dusty plasmas are compared. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

At present, the problem of the excitation and propa-
gation of nonlinear ion-acoustic perturbations occupies
an important place in the physics of complex (dusty)
plasma. Since 1996, dust ion-acoustic shock-wave and
soliton-like structures have been actively studied both
theoretically [1–7] and experimentally [8–10]. Interest
in this kind of research is associated primarily with the
fact that the processes of dust grain charging are far
from equilibrium precisely on ion-acoustic time scales,
so that the anomalous dissipation, which, by its very
nature, originates from the charging process, often
plays a decisive role [1, 11]. It is this anomalous dissi-
pation mechanism that is responsible for the existence
of a new kind of shock wave that is “collisionless” in
the sense that it is almost completely insensitive to elec-
tron–ion collisions. However, in contrast to classical
collisionless shock waves, the dissipation due to dust
charging involves interaction of electrons and ions with
dust grains through microscopic electron and ion cur-
rents to the grain surfaces. This anomalous dissipation
plays a very important role in the propagation of the so-
called “weakly dissipative” dust ion-acoustic solitons
[7], whose shape is described by soliton solutions in a
certain range of values of the Mach number. Because of
anomalous dissipation, these solitons are slowed down
and damped.

Dust structures are usually described theoretically
by solving a set of hydrodynamic equations that is spe-
cially derived for a complex plasma from the kinetic
equations for electrons, ions, and dust grains [12]. Of
course, in this derivation, such an important, purely
kinetic effect as Landau damping is not taken into con-
sideration. However, there is indirect evidence that, in
1063-780X/04/3004- $26.00 © 20284
some situations, Landau damping can play an impor-
tant role. Thus, in a paper by Luo et al. [9], the fact that,
in laboratory experiments at the University of Iowa,
dust ion-acoustic waves were not observed at quite low
dust densities was attributed precisely to this damping.

It should be noted that there are different approaches
to describing Landau damping. First of all, we must
mention the papers in which the corresponding damp-
ing rates were calculated without allowance for grain
charging (see, e.g., [13]). As early as 1993 [11], it
became clear that the charging of dust grains has a sig-
nificant impact on the damping described at the kinetic
level (which will be referred to below as kinetic damp-
ing), part of which is Landau damping. Consequently,
dust grain charging should be taken into account in cal-
culations. Nevertheless, theoretical studies (see, e.g.,
[9, 14]) are still often conducted based on the results of
[13], in particular, because the expression for the
kinetic damping rate of ion-acoustic waves that takes
dust grain charging into account and could be used to
analyze the results of dusty plasma experiments has not
yet been derived in a compact form. As for the results
that are presented in [11, 15] and could be used to cal-
culate the corresponding damping rates, they either
have a complicated integro-operator form or refer to
limiting cases irrelevant to the present-day experi-
ments. Moreover, in [11, 15], the final formula for the
dielectric function of a dusty plasma, which is impor-
tant for deriving the expression for the kinetic damping
rate, involves contradictions. All this goes to show that
it is necessary to refine the expression for the kinetic
damping rate of dust ion-acoustic waves and to reduce
it to a compact form convenient for analyzing the
experimental results.
004 MAIK “Nauka/Interperiodica”
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Since dissipation is one of the processes that play a
key role in the formation and propagation of such non-
linear structures as shock waves and solitons, the
hydrodynamic approach to describing these structures
is valid only if the dissipative processes that are taken
into account in the hydrodynamic equations turn out to
be more important than Landau damping. Hence, it is
important to classify dissipative processes and deter-
mine the ranges of plasma parameters in which some
particular processes dominate.

Our objective here is to analyze the dissipative pro-
cesses that occur during the propagation of ion-acoustic
structures in a dusty plasma. In Section 2, we derive an
expression for the kinetic damping rate of the ion-
acoustic waves on the basis of a purely kinetic approach
to describing a dusty plasma. In Section 3, we analyze
anomalous dissipative processes in terms of hydrody-
namic equations, which are usually used to describe
nonlinear dust ion-acoustic structures. In Section 4, we
describe the main results of experiments that have so far
been carried out on the generation of dust ion-acoustic
shock waves. We also present the results of numerical
simulations of shock waves in these experiments by
means of a hydrodynamic ionization source model. In
Section 5, we investigate the effect of kinetic damping
and compare this effect with the relative effects of
anomalous dissipative processes in different experi-
ments with nonlinear dust ion-acoustic structures. In
Section 6, we summarize the main results and conclu-
sions of our study.

2. KINETIC DAMPING OF DUST
ION-ACOUSTIC WAVES

The dust ion-acoustic mode in a complex plasma is
analogous to the ion-acoustic mode in a conventional
two-component plasma consisting of electrons and one
ion species. The difference in the dispersion relations
for the modes is explained as being due to the effects
peculiar to dusty plasmas (processes at the surfaces of
dust grains, fluctuations of the grain charges, recombi-
nation of electrons and ions on the grain surfaces, etc.).
An essential feature of dust ion-acoustic waves is that
they can exist at Te ~ Ti , where Te(i) is the plasma elec-
tron (ion) temperature [16]. We present the derivation
of a dispersion relation and expressions for the kinetic
damping rate of dust ion-acoustic waves on the basis of
a standard, purely kinetic approach, with the use of the
method developed by Tsytovich and de Angelis [15].

2.1. Dielectric Function

We begin with the derivation of an expression for
the dielectric function of a dusty plasma. Since we are
interested here in ion-acoustic time scales, each dust
grain can be considered to be immobile. We assume
that the grains are influenced by an electrostatic field
(the extent of this influence is determined by the vari-
able grain charge q) and also by the plasma particles
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
(electrons and ions). The cross section for the interac-
tion of plasma particles with dust grains is given by the
formula (see, e.g., [17])

(1)

Here, a is the grain size; eα, mα, and vα are the charge,
mass, and velocity of plasma particles of species α; and
the subscript α = e, i stands for the electrons and ions,
respectively.

The distribution function of the plasma particles of
species fα(t, r, p) is chosen to be normalized to their
density nα as follows:

(2)

Since the dust grains are assumed to be immobile,
their distribution function depends only on their charge
q, fd(q). The normalization of the grain distribution
function is chosen to satisfy the relationship

(3)

where nd is the dust density.

The distribution function of dust grains can be rep-
resented as the sum of the unperturbed function Φd =
〈 fd〉 and the perturbation δfd, which is induced, e.g., by
the electric field of a dust ion-acoustic wave. Here, the
angle brackets stand for averaging over the statistical
ensemble. Since the distribution of plasma particles is
also perturbed in their interaction with dust grains, we
can write

(4)

The currents to a dust grain can also be represented as
the sum of the unperturbed and perturbed components.

The interaction of plasma electrons and ions with
dust grains is described by the equation

(5)

where the terms Sα account for all external sources of
the particles of species α.

The kinetic equation for dust grains has the form

(6)
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where Iα(q, r, t) are the electron and ion currents to a
grain at the point r and at the time t. The remaining cur-
rents, which are generated, e.g., by the photoelectric
effect and/or secondary electron emission, are incorpo-
rated into the term Iext.

The currents to a dust grain of charge q at the point
r can be determined using interaction cross sections
(1):

(7)

The equation for the unperturbed distribution func-
tion of the plasma particles can be written as

(8)

where

(9)

and the collision integral Jα has the form

(10)

For the perturbed distribution function, we obtain

(11)

We ignore the nonlinear terms in the equation for the
perturbed distribution function and assume that the
terms containing the perturbed quantities change only
slightly over time. As a result, we arrive at the following
equation for the Fourier components:

(12)

where δνd, α, k, ω = (q, v)δfd(q)dq.
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The unperturbed part of the distribution function of
the dust grains is given by the equation

(13)

whose right-hand side describes the kinetics of dust
charging.

Assuming that all the currents to a dust grain, except
for the currents of the plasma electrons and ions, are
unperturbed, we obtain from kinetic equation (6) the
following equation for the perturbed part of the distri-
bution function of the dust grains:

(14)

Again, we ignore the nonlinear terms and assume
that the terms containing the perturbed quantities are
nearly constant over time in order to arrive at the fol-
lowing expression for the Fourier component of the
perturbed distribution function of the dust grains:

(15)

where

(16)

Equations (12) and (15) constitute a set of equations for
describing the perturbations of the plasma and of the
dust.

The general solution δfd to Eq. (15) is the sum of the

homogeneous solution , which satisfies Eq. (15)
with zero on the right-hand side and describes free fluc-
tuations of the dust grain charges, and the inhomoge-

neous solution , which describes the perturba-
tions of the dust distribution function that are induced
by the electric field of a dust ion-acoustic wave and by
the perturbed currents to the grain surfaces. To deter-

∂Φd

∂t
----------

=  –
∂

∂q
------ Iext Iα q( )〈 〉

α
∑+

 
 
 

Φd δIα q( )δ f d q( )〈 〉
α
∑+

 
 
 

,

∂δ f d

∂t
------------

∂
∂q
------ Iext Iα q( )〈 〉

α
∑+

 
 
 

δ f d q( )




–=

+ δIα q( )Φd q( ) δIα q( )δ f d q( )
α
∑+

α
∑

– δIα q( )δ f d q( )〈 〉
α
∑ 




.

iω δf d k ω, , q( )( ) ∂
∂q
------ Iext Iα q( )〈 〉

α
∑+

 
 
 

δ f d k ω, ,–

=  
∂

∂q
------ δIα k ω, , q( )

α
∑ 

 
 

Φd ,

δIα k ω, , q( ) eα v σα q v,( )δ f α k ω, ,
d

3p

2π( )3
-------------.∫=

δ f d
0( )

δ f d
ind( )
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004



DISSIPATIVE PROCESSES DURING THE PROPAGATION 287
mine the plasma dielectric function, it is sufficient to
take into account only the perturbed distribution func-

tion . Hence, in what follows, we will assume

that δfd = .

In order to solve Eq. (15), we consider an equation
determining the equilibrium charge q0 of a grain, i.e.,
the charge at which the averaged current to the grain
surface vanishes:

(17)

If we regard the quantity ∆q = q – q0 as a new vari-
able, then, for small ∆q values, we can use the expan-
sion

(18)

We introduce the slowly varying rate of charging νq

through the standard relationship [17]

(19)

In terms of charging rate (19), the dynamic equation for
the charge of a dust grain,  = Iext +  = 0, has the
form

(20)

and Eq. (15) becomes
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where Rk, ω(q) denotes the right-hand side of Eq. (15)
and  = ∆q/∆qt = 0. The quantity ∆qt = 0 is the solution to
Eq. (20) at the initial time t = 0 and has the meaning of
the initial charge of a dust grain.

The solution to inhomogeneous equation (21) can
be written in terms of Green’s function:

(22)

Since Rk, ω(q) = (∂/∂q){( (q))Φd} is the total
derivative with respect to q, the Green’s function has
the form [15]
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The perturbed currents to a dust grain are described
by an integral equation that can be solved approxi-
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mately under the condition that the charge of the dust
grains is close to the equilibrium charge. Using expres-
sion (16) and Eq. (12), we get

(24)

where Ek, ω = (k/k)Ek, ω and

(25)

(26)

Substituting solution (22) into formula (24) and
integrating over q' under the assumption that the charge
of the dust grains is nearly equilibrium, we obtain an

algebraic equation for (q). The solution to

this equation has the form
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for the perturbed distribution function of the plasma
particles to

(31)

Using Poisson’s equation

(32)

we arrive at the equation

(33)

which can be rewritten as iεk, ω|k |δEk, ω = 0, where the
dielectric function εk, ω of the dusty plasma is given by
the formula

(34)

In the notation of Tsytovich and Havnes [11], expres-
sion (34) coincides with the expression presented by
them for the dielectric function of a dusty plasma.
Note that, in paper [15] by Tsytovich and de Angelis,
the more general expression for εk, ω contains a mis-
print: the sign between the terms in the brackets in the
second row of formula (55) is incorrect. In particular,
for dust grains with a zero velocity, formula (55) of
[15] does not pass over to the formula that was
obtained earlier in [11] for the dielectric function of a
dusty plasma.

2.2. Kinetic Damping Rate

The expression for the damping rate of the dust ion-
acoustic waves can be derived using formula (34). We
will restrict ourselves to considering Maxwellian equi-
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librium distribution functions Φα. The unperturbed
charge q0 of a dust grain is determined from Eq. (17),
which, in the case at hand, has the form

(35)

where t = Ti/Te , z = Zde2/aTe , –e is the charge of an elec-

tron, q = –Zde,  = 4πnα0e2/mα,  = Tα /mα, and
the subscript 0 specifies unperturbed values of the
quantities. The equilibrium charging rate of the dust
grains is described by the expression (see, e.g., [17])

(36)

Our objective here is to investigate the dispersion
relation εk, ω = 0 in the frequency range |k |v Ti ! ω !
|k |vTe of ion-acoustic waves. This will be done by using
the following small parameters:
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The last small parameter has a simple physical
meaning: it implies that the perturbation wavelength
does not exceed the mean free path of dust grains with
respect to their interaction with one another. The
assumption that this parameter is small is quite justi-
fied because, on ion-acoustic time scales, the dust
grains can be treated as being immobile. We also
assume that the charging rate of the dust grains is much
less than the wave frequency, νq ! ω. This case, which
has not yet been considered in the most general, purely
kinetic approach that accounts for dust grain charging,
is of primary interest for the description of dust ion-
acoustic perturbations because the main contribution
to their spectrum comes, as a rule, from modes with
frequencies ω @ νq. As will be shown below, the
results of analyzing this case by the kinetic approach
that incorporates dust grain charging differ qualita-
tively from the results obtained by Rosenberg [13] in
the approach in which dust grain charging was not
taken into account.

The electron, ion, and dust densities are assumed to
satisfy the plasma quasineutrality condition
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In the approximation adopted here, the dielectric
function of a dusty plasma has the form

(39)

where λDe = v Te /ωpe is the electron Debye radius, erf(x)

is the error function, and Γ(α, z0) = exp(–x)dx.

Note that expression (39) contains terms propor-
tional to ξdw. It is these terms that account for the pres-
ence of dust grains with variable charges. The largest of
them is the last term with the small quantity ξe in the
denominator and it is the only one among the terms pro-
portional to ξdw that will be considered hereafter. This
term can be interpreted as a correction that takes into
account the presence of dust grains with variable
charge in the conventional expression for the plasma
dielectric function, which was used, e.g., in [13], where
the dust can only be accounted for in terms of the
dependence of the ion plasma frequency and electron
Debye radius on the ion density and electron density,
respectively. In [13], no account was taken of the effect
of the variable dust charge on the plasma dielectric
function and, accordingly, the terms proportional to ξdw
were not taken into consideration.

The dispersion relation εk, ω = 0 has a solution in the

form ωk =  + , which yields the well-known dis-
persion relation for ion-acoustic waves,

, (40)

and the new expression for the kinetic damping rate,
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the second describes damping due to the interaction of
electrons and ions with dust grains. The rates of these
two damping processes are both referred to as the
kinetic damping rate. The introduction of the common
term is justified because, in a dusty plasma, these pro-
cesses are inseparable. This is most strikingly exempli-
fied in [11], in which the damping of dust ion-acoustic
waves was considered in the case ω ! νq, opposite to
the case treated here. It follows from this example that,
even when the resonant denominators describing the
damping in the dielectric response functions of the
electrons and ions correspond to conventional Landau
poles, a new kind of collisionless damping arises that
differs from ordinary Landau damping and is associ-
ated with the dust grain charging processes.

Relationships (40) and (41) constitute a solution to
the initial-value problem, specifically, they determine
the complex solutions ωk to the dispersion relation at
real k values. In order to describe experiments, how-
ever, it is often of interest to know the solution to a
boundary-value problem in which the frequency ω is
real and the complex values of k are determined from
the dispersion relation εk, ω = 0.

For weakly damped waves, the real part of the wave
vector k is determined from the equation Re(εk, ω) = 0
and has the form

(42)

where λDi = vTi/ωpi is the ion Debye radius. The imagi-
nary part of the wave vector is given by the expression
[18]

(43)

In the case at hand, this expression reduces to

(44)

which can also be rewritten as

(45)

In [13], only the first term (which does not contain
νq) in kinetic damping rate (41) was taken into account.
However, in some situations typical of present-day
experiments with complex plasmas, the second term
(which contains νq) predominates over the first. In fact,
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for Zd0d ~ 1, the second term (with νq) in relationship
(41) is larger than the first under the conditions

(46)

The conditions under which the second term (with νq)
in expression (45) predominates over the first are also

given by inequalities (46) but with  replaced by ω.
Conditions (46) are easily satisfied for multimode ion-
acoustic perturbations, because experiments are usually
carried out with fairly heavy ions (Cs+, Ar+, etc.). We
thus arrive at the conclusion that dust grain charging
processes can substantially modify the rate of kinetic
damping of dust ion-acoustic perturbations; moreover,
in many situations, it is these charging processes that
dominate the kinetic damping mechanism.

3. HYDRODYNAMIC MODELS
OF A COMPLEX PLASMA

Since nonlinear processes occurring in a complex
plasma are very difficult to describe by solving kinetic
equations, they are often described in terms of hydrody-
namic models. For shock-wave structures and solitons,
a reasonably good agreement between theory and
experiment is provided by the so-called ionization
source model developed in [5, 19], or by its modified
version [6, 7]. The necessity of modifying the model
arises from the fact that, under different experimental
conditions, the medium is ionized by different mecha-
nisms, described by different ionization source terms.

The evolutionary equations of the ionization source
model are obtained from kinetic equations (5) for
plasma particles. An important point here is the deriva-
tion of the rates of dissipative processes [12, 20].

Let us consider the modified version of the ioniza-
tion source model that was developed in [6] and made
it possible to describe all the main features of labora-
tory experiments with dust ion-acoustic shock waves in
a double plasma device [8] modified to enable the dust
to be present in the plasma, and in a Q-machine device
[9]. In the modified version of the model, the evolution-
ary equations for the ions in plane geometry have the
form

(47)

(48)

Here, v i is the directed ion velocity; Si is the ionization
source term; ϕ is the electrostatic potential; νch is the
rate of absorption of the ions by dust grains,

(49)
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 is the rate at which the ions lose their momentum as
a result of their absorption on the grain surfaces and
their Coulomb collisions with dust grains; and 

(50)

where Λ = ln(λDi/max{a, b}) is the Coulomb logarithm,
λDi = ωpi/vTi is the ion Debye radius, and b = Zd0e2/Ti.
Note that expressions (49) and (50) are valid in the
range v i/cs < 1.

For the experimental conditions of [8, 9], the ioniza-
tion source term Si in the evolutionary equations for the
ion density differs from the term that accounts for the
conventional electron-impact ionization of neutrals and
is traditionally used to describe dusty plasma. In fact, in
the experiments of [8], the electron mean free paths
were so long that the neutrals were most likely ionized
in collisions with the wall. Thus, under the experimen-
tal conditions of [8] (the partial pressure of a neutral gas
(argon) was (3–6) × 10–4 torr and the electron tempera-
ture was Te = 0.1 eV), the electron mean free path with
respect to electron–neutral collisions was on the order
of 104 cm, which was much larger than the length
(90 cm) and diameter (40 cm) of the device [21]. In the
laboratory experiments of [9], a hot (~2000–2500 K)
plate installed in the end region of the device was irra-
diated with a beam of cesium atoms, so that the cesium
ions in the plasma were produced through ionization of
cesium atoms at the plate surface. Hence, the ionization
source term Si is independent of the electron density
and thus can be assumed to be constant.

In the evolutionary equation for the electron density,
plasma electrons are described by the Boltzmann distri-
bution (it is assumed that trapped electrons play an
insignificant role):

(51)

The model equations also include Poisson’s equa-
tion for the electrostatic potential,

(52)

and the equation for the variable charge of dust grains,

(53)

where the electron and ion microscopic currents to a
grain are obtained from formulas (7) and (1) under the
assumption that the ions (moving with a finite directed
velocity v i) and electrons obey Maxwellian distribution
functions:

(54)
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(55)

We linearize Eqs. (47), (48), and (51)–(55) and carry
out a Fourier transformation to obtain the following dis-
persion relation for ion-acoustic waves:

(56)

This dispersion relation has a solution in the form ωk =
ωR + iγk, which, under the third of inequalities (37) and

under the conditions {νch, , νq} ! , gives the dis-

persion relation ωR =  for ion-acoustic waves [see
dispersion relation (40)] and also yields the following
expression for the damping rate:

(57)

Other modified versions of the ionization source
model that make use of the constant ionization source
term Si lead to analogous results. Among these is the
modified model that was utilized in [7, 20] to describe
solitons with trapped electrons. In this way, switching
to the electron distribution function proposed by
Gurevich [22] produces the same final result.

Under conditions of a complex plasma in typical
experiments with glow discharges or with high-fre-
quency discharges (see, e.g., [23, 24]), the main mech-
anism for ionizing neutrals is, as a rule, conventional
electron-impact ionization. In this case, the ionization
source term Si is proportional to the electron density
[25], Si = νi ne , where νi is the gas ionization rate,
which increases exponentially with the electron tem-
perature Te and depends also on the neutral gas param-
eters. The equations of the relevant modified version of
the ionization source model are presented, e.g., in [5,
19]. They differ from Eqs. (47) and (48) in two
respects: first, in Eqs. (47) and (48), the ionization
source term is represented in another form; second, in
[5, 19], the effect of the gas-kinetic ion pressure on the
evolution of the system was not taken into consider-
ation. An analysis of the dispersion properties of ion-
acoustic waves on the basis of the set of equations pre-
sented in [5, 19] yields results that differ from those fol-
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lowing from formulas (56) and (57). Thus, the disper-
sion relation has the form

(58)

and the imaginary part of the frequency is equal to

(59)

The second term on the right-hand side of expression
(59) is positive. The situation in which the second term
becomes larger than the first corresponds to the devel-
opment of the ionization instability. Nevertheless, as in
expression (57), the dissipation in expression (59) is
also characterized by the term Γ.

From expression for Γ, it is clear that, in terms of the
ionization source model, the dissipation in a complex
plasma is governed by the processes of the absorption
of ions by dust grains and also by Coulomb collisions
between ions and dust grains. All these processes are
closely related to the mechanisms by which the grains
are charged. In fact, on the one hand, we have Γ ∝ ν q;
and, on the other, we see that the absorbed ions partici-
pate directly in dust grain charging. However, it is not
the only mechanism for anomalous dissipation peculiar
to a complex plasma. An important role can also be
played by the kinetic damping mechanism—the damp-
ing described at the kinetic level, including the Landau
damping—which is not taken into account in the ion-
ization source model. In the next section, we will ana-
lyze the ratio between the kinetic damping rate and Γ.
Then, based on the results of this analysis, we will dis-
cuss the role of the kinetic damping mechanism and
investigate the conditions under which it operates as the
main mechanism for generating nonlinear waves in a
complex plasma.

Along with the ionization source model for describ-
ing nonlinear dust ion-acoustic structures, a hydrody-
namic model [8, 26] was developed that leads to the
Korteweg–de Vries–Burgers (KdVB) equation with the
dissipative viscosity coefficient proportional to the ion–
grain collision rate. Note, however, that, in a classical
approach to describing dusty plasmas in terms of
Eqs. (1)–(7), it is impossible to derive a general hydro-
dynamic equation that would describe the evolution of
the momentum of the ions and would contain the vis-
cosity term in conventional hydrodynamic form (it is
precisely this general equation that served as the basis
for deriving the KdVB equation used in [8, 26]).
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4. INTERPRETATION OF EXPERIMENTS
IN TERMS OF THE IONIZATION SOURCE 

MODEL

As was noted above, the ionization source model [6]
makes it possible to describe all the main results of lab-
oratory experiments that have been carried out so far on
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Fig. 1. Time evolutions of the ion density ni at different dis-
tances from the grid for two different values of the dust den-
sity: nd0 = (a) 0 and (b) 1.46 × 104 cm–3. The remaining
dusty plasma parameters are Te = Ti = 1.5 eV, ni0 = 2.3 ×
108 cm–3, and a = 4.4 µm. As in the experiment of [8], the
oscillations in the shock wave profile due to the separation
of charges (electrons and ions) are suppressed by the dust.
the generation of dust ion-acoustic shock waves [8, 9].
We now describe these experiments and present the
main conclusions derived from them.

4.1. Experiment at the Institute of Space
and Astronautical Science (Japan)

This experiment [8] revealed the following main
feature of ion-acoustic waves in a dusty plasma:

In the absence of dust, there are oscillations in the
vicinity of the front of shock waves due to the separa-
tion of charges (electrons and ions). The presence of
dust suppresses these oscillations.

In the experiments of [8], the parameters of the
dusty plasma were as follows: Te ≈ 1–1.5 eV, Ti < 0.1 eV,
ne0 ~ 108–109 cm–3, and a ≈ 4.4 µm. The dust density
was varied from 0 to about 105 cm–3. Ion-acoustic shock
waves were excited by applying a triangular voltage
pulse with a peak amplitude of 2.0 V and a duration of
≈10 µs to the driver anode.

In [6], the calculations were performed for different
dust densities and for Te = Ti = 1.5 eV, ni0 = 2.3 ×
108 cm–3 (the ion background density was the same for
all cases), and a = 4.4 µm. The width of the perturbation
(∆x ≈ 20 cm) and its shape were determined self-consis-
tently, in accordance with the method for exciting a
shock wave. It should be noted that Nakamura and
Bailung [21] compared the theoretical results on the
dependence of the potential difference between a grain
and a plasma on the plasma parameters with the mea-
surement data obtained with the same device under
essentially the same conditions as those prevailing in
the experiment of [8]. They found that, although the ion
temperature was significantly lower than the electron
temperature (Ti ! Te), the experimental results were
best fitted by the theoretical curve calculated for Ti = Te .
They attributed this circumstance to the possible ion
acceleration to energies comparable to the electron
energy. That is why, in our calculations, the values of Ti

and Te were taken to be the same.
In Fig. 1 (which is analogous to Fig. 3 from [8]), we

illustrate the time evolution of the ion density at differ-
ent distances from the grid. The evolutions were calcu-
lated for (a) nd0 = 0 (the electron density being ne0 =
2.3 × 108 cm–3) and (b) nd0 = 1.46 × 104 cm–3 (the elec-
tron density being ne0 = 4.6 × 108 cm–3). We can see that,
in both theory and experiment, oscillations in the
shock-wave profile due to the separation of charges
(electrons and ions) are suppressed by the dust. The
theoretically calculated duration of the shock front is
about 5 µs, which corresponds to the measurement
data.

According to [27], Fig. 1a, which was obtained in
terms of the ionization source model, correctly reflects
qualitatively the experimentally observed effect that
cannot be captured, e.g., by a model based on the
KdVB equation [8]—the excitation of oscillations in
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
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the shock-wave profile due to charge separation. Fig-
ure 1a shows the onset of a perturbation in the shock
front at a distance of 3 cm from the grid; at longer dis-
tances from the grid, this perturbation is seen to develop
into oscillations in the shock front that are attributed to
the separation of charges. This picture of the excitation
of oscillations agrees completely with the experimental
observations.

Hence, the ionization source model is capable of
describing the main features of the experiment in [8].
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(a)ni, arb. units
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(b)
ni, arb. units

0 0.5 1.0 t, µs

50

55

60

Fig. 2. Time evolutions of the ion density ni (heavy curves)
at different distances from the grid for eZd0 = (a) 0 and
(b) 0.75. The remaining parameters of the dusty plasma and
of the perturbation are as follows: Te = Ti = 0.2 eV, ni0 =

1.024 × 107 cm–3, a = 0.1 µm, ∆x = 25 cm, and ∆ni /ni0 = 2.
The light lines show the widening of the wave front (at
eZd0 = 0) and its steepening (at eZd0 = 0.75), which agrees
with the experimental data of [9].
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
4.2. Experiment at the University of Iowa

The main results of the experiment in a Q-machine
device [9] are as follows:

(i) Dust ion-acoustic shock waves form at suffi-
ciently high dust densities (under the experimental con-
ditions of [9], at dust densities such that eZd0 ≡
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Fig. 3. Relief of the ratio /Γ on the plane (nie
2/ndaTi,

ni/ne) for the plasma parameters (a) in the experiment of [9]

(Te = Ti = 0.2 eV, ni = 1.024 × 107 cm–3, Cs+ ions, a =
0.1 µm) and (b) in the experiments of [8, 10] (Te = 1.5 eV,

Ti < 0.1 eV, ni = 2.3 × 108 cm–3, Ar+ ions, a = 4.4 µm). The
closed circle in plot (a) corresponds to eZd0 = 0.75 and to
the plasma parameters in the experiment of [9]. The closed
triangle in plot (b) corresponds to eZd0 = 0.5 and to the
plasma parameters in the experiments of [8, 10]. The heavy
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nd0Zd0/ni0 ≥ 0.75). In [9], the conclusion regarding the
formation of a shock wave was drawn from the fact that
the perturbation front steepens as time elapses. At suf-
ficiently low dust densities, the perturbation front does
not steepen but widens instead.

(ii) When the shock wave structure has formed, the
shock front width ∆ξ corresponds to the following the-
oretical estimate, which is based on the model devel-
oped in [1]:

(60)

where Mcs is the speed of the shock wave structure and
M is the Mach number.

(iii) The velocity of the dust ion-acoustic waves
increases considerably with increasing eZd0.

The plasma parameters in the experiment of [9]
were as follows: Te ≈ Ti ≈ 0.2 eV, ni0 ~ 106–107 cm–3,
and a ~ 0.1–1 µm. The parameter eZd0 was varied from
0 to 0.95. The goal of the experiment was to study the
evolution of a rectangular perturbation that was initi-
ated in the initial ion density profile by a grid held at an
electrostatic potential of about –6 V with respect to the
potential of the hot plate. The width of the initial pertur-
bation was about 25 cm [28].

In [6], the calculations were carried out based on the
ionization source model for different values of the
parameter eZd0 and for the following values of the
plasma parameters: the electron and ion temperatures
were equal to one another, Te = Ti = 0.2 eV; the back-
ground ion density ni0 = 1.024 × 107 cm–3 was the same
for all cases; the grain radius was a = 0.1 µm; the width
of the rectangular initial perturbation was ∆x = 25 cm;
and the excess initial perturbed ion density above the
background ion density in the remaining unperturbed
plasma of the device was ∆ni/ni0 = 2 (see Fig. 2 in [9]).

The ionization source model made it possible to
explain [6] all of the above three features of the experi-
ment carried out in [9]. In this section, we present only
the profiles of nonlinear perturbations in a plasma with
and without dust. In Fig. 2 (which is analogous to Fig. 2
from [9]), the heavy curves show the time evolutions of
the ion density at different distances from the grid for
eZd0 = (a) 0 and (b) 0.75. The light lines show the wid-
ening of the wave front (at eZd0 = 0) and its steepening
(at eZd0 = 0.75), which agrees with the experimental
data of [9].

5. THE EFFECT OF KINETIC DAMPING

Here, we apply the results of the above analysis to
investigate the effect of the damping described at the
kinetic level (including Landau damping) and to under-
stand its relative role versus other dissipative processes
in different experiments with complex plasmas. Histor-
ically, the most typical dusty plasma experiments were
carried out with glow discharges or with RF discharges
(see, e.g., [23, 24]), whereas nonlinear dust ion-acous-

∆ξ Mcs/νq,∼
tic structures were observed in a double plasma device
(modified to enable the dust to be present in the plasma)
[8, 10] and in a Q-machine device [9]. This is why it is
of interest to examine the relative roles of the damping
described at the kinetic level and of the dissipative pro-
cesses described in the hydrodynamic approach for the
above four kinds of experiments.

It should be noted that, although the theoretical ion-
ization source model, which does not take into account
Landau damping, is capable of interpreting all the main
experimental results on dust ion-acoustic shock waves,
the fact that, in the experiment at the University of
Iowa, such waves were observed to be excited at suffi-
ciently high dust densities was explained in terms of the
dissipation associated with Landau damping [9]. More-
over, the kinetic damping rate was described without
allowance for the processes of dust grain charging [13].
Following the logic of [9], the presence of negatively
charged dust weakens the Landau damping because the
phase velocity of linear dust ion-acoustic waves
increases with the dust density (or, more precisely, with
the parameter eZd ≡ Zdnd/ni).

However, in terms of the description developed by
Rosenberg [13], the Landau damping rate increases with
the dust density at a faster rate than the phase velocity

vph of the waves. In fact, vph ≡ /|k| ∝  =

1/  (see dispersion relation (40)), while, in
Rosenberg’s description [13], the Landau damping rate
has the form

(61)

which gives  ∝ ni/ne = 1/(1 – eZd). Consequently,
an increase in the parameter eZd implies that Landau
damping plays an increasingly important role; but this
result contradicts the above conclusion in [9]. If the
Landau damping rate begins to exceed in absolute value
the frequencies νch, νq, and , then either the shock
waves cannot exist at all or they will be different in
nature from the shock waves associated with anoma-
lous dissipation (it is most likely that they will occur as
a sort of collisionless shock waves).

Note that the above conclusions were reached on the
basis of the portion of the kinetic damping rate that is
given by formula (61), but they can actually be some-
what refined by using the general formula (41) for the
kinetic damping rate. First, the characteristic width ∆ξ
of the front of the shock wave associated with anoma-
lous dissipation is given by expression (60). This
implies that the characteristic wave vector correspond-
ing to the shock-wave profile has the form |k| ~ 2π/∆ξ ~
νq/Mcs. Substituting this characteristic wave vector into
dispersion relation (40) and kinetic damping rate (41)
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enables us to compare the first and second terms in the
latter formula. The result is that the second term

(62)

is approximately  times larger than the first

term .
The characteristic value of |k | in the wave spectrum

corresponding to a particular shock-wave profile can be
estimated by taking the Fourier transform of the profile.
Thus, for the shock-wave profile that is shown Fig. 2b
and is calculated for a distance of 60 cm from the grid,
we obtain |k| ≈ 0.12 cm–1. For this |k | value, the term

 is about one order of magnitude larger than the

term  in the kinetic damping rate.

Since the term  in the kinetic damping rate
accounts for dust grain charging, the shock waves under
consideration are dominated by anomalous dissipation.
The question then arises of whether this situation can be
described in terms of the ionization source model. The
above hydrodynamic model can be applied if the term

Γ in expression (57) is larger than . Hence, it is of
interest to determine the ranges of plasma parameters in

which Γ exceeds .

Figures 3 and 4 present the relief of the ratio /Γ
on the plane (nie2/ndaTi, ni/ne) for the parameters of
complex plasmas in experiments in a Q-machine
device, a double plasma device, and devices based on
glow discharges and high-frequency discharges. Fig-
ure 3a corresponds to the experimental conditions of
[9] (Te = Ti = 0.2 eV, ni = 1.024 × 107 cm–3, Cs+ ions,
a = 0.1 µm). The closed circle in Fig. 3a corresponds to
eZd0 = 0.75. Figure 3b was drawn for the experimental
conditions of [8, 10] (Te = 1.5 eV, Ti < 0.1 eV, ni = 2.3 ×
108 cm–3, Ar+ ions, a = 4.4 µm). The closed triangle in
Fig. 3b corresponds to eZd0 = 0.5. It can be seen that the
experimental parameters of [8–10] satisfy the inequal-

ity /Γ < 1. This indicates that the ionization source
model is applicable to nonlinear dust ion-acoustic
structures in a double plasma device and a Q-machine
device. Figure 4a refers to the plasma parameters of
experiments carried out on board the International
Space Station [24] (Te ≈ 1 eV, Ti ≈ 0.03 eV, ni ≈ 2 ×
109 cm–3, Ar+ ions, a = 3.4 µm). Figure 4b was obtained
for the plasma parameters in experiments with glow
discharges [23] (Te ≈ 3 eV, Ti ≈ 0.03 eV, ne ≈ 109 cm–3,
Ne+ ions, a ≈ 4 µm). We can see that, for ni/ne =
1/(1 − eZd) > 3 in the experiments of [24] and for ni/ne =
1/(1 – eZd) > 1 in the experiments of [23], the ratio

/Γ is always larger than unity. This means that,
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over fairly wide ranges of the dust grain parameters,
dust ion-acoustic structures in typical experiments car-
ried out with complex plasmas on devices based on
glow and RF discharges should be described in terms of

kinetic theory. Thus, the condition /Γ > 1 serves as
a criterion for determining whether or not the kinetic
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Fig. 4. Relief of the ratio /Γ on the plane (nie
2/ndaTi,

ni/ne) for the plasma parameters (a) in the experiment of

[24] (Te ≈ 1 eV, Ti ≈ 0.03 eV, ni ≈ 2 × 109 cm–3, Ar+ ions,
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Ti ≈ 0.03 eV, ne ≈ 109 cm–3, Ne+ ions, a ≈ 4 µm). The heavy

curves correspond to  = Γ.
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approach is applicable to the nonlinear dust ion-acous-
tic structures observed in experiments.

It should be noted that, in applying the ionization
source model to explain the fact that, in the experiment
in [9], the dust ion-acoustic shock waves formed at suf-
ficiently high dust densities, a fairly important role was
played by the boundary condition that was imposed on
the hot plate in the end region of the Q-machine device
(this boundary condition is analogous to the relevant
boundary condition in the surface evaporation problem
[29]). A cesium atom striking the hot plate becomes
ionized. The newly produced cesium ion flies away
from the plate at a certain directed velocity. Hence, we
can expect that, in the immediate vicinity of the plate,
an ion flux will be generated whose intensity and den-
sity are strongly sensitive to the plate temperature. The
boundary condition in question, which reflects the fact
that a cesium vapor plasma is created through surface
ionization, was obtained under the following assump-
tions:

(i) at the plate surface, not only are the atoms ion-
ized, but the inverse process also takes place—the sur-
face recombination of the ions that strike the plate;

(ii) all the ions striking the plate recombine;

35 cm

40

45

ni, arb. units

0 0.5 1.0 t, ms

50

55

60

Fig. 5. Time evolutions of the ion density at different dis-
tances from the grid for eZd0 = 0.75. The parameters of the
dusty plasma and of the perturbation correspond to those in
the experiment of [9]: Te = Ti = 0.2 eV, ni0 = 1.024 × 107 cm–3,
a = 0.1 µm, ∆x = 25 cm, and ∆ni/ni0 = 2. The heavy curves
show the time evolutions of the ion density calculated by
using the ionization source model. The light curves illus-
trate the deviations from these time evolutions due to kinetic
damping (including Landau damping).
(iii) at the initial instant (just before the perturbation
starts evolving), the ionization and recombination pro-
cesses are in dynamic equilibrium (i.e., the ion gas tem-
perature is equal to the plate temperature and the inten-
sity of the flux of the ions that strike the plate and
recombine on it is the same as the intensity of the flux
of the ions that fly away from the plate surface); and

(iv) the ions flying away from the plate obey a Max-
wellian distribution function with a temperature Ti

equal to the plate temperature, the directed ion velocity
is zero, and the ion density is equal to the initial density
of the ion gas.

During the evolution of the initial perturbation, the
ions in the vicinity of the plate acquire a nonzero
directed velocity v i , so that their density ni and their
temperature Ti both change. These three parameters of
the ions are calculated from the conservation conditions
for the ion flux from the plate surface and the ion
momentum flux. As at the initial instant, the ions are
assumed to obey a Maxwellian distribution function
that now corresponds to a nonzero directed ion velocity
and an ion density different from the initial ion density
near the plate surface.

This model of the ionization process implies that,
within the volume of the Q-machine device, the ion
temperature Ti is at least two times lower than the elec-
tron temperature Te, which is equal to the plate temper-
ature (Ti ≈ 0.503Te). Possible turbulent electron heating
should produce a further increase in the ratio Te /Ti in
the device. In this case, the necessary condition for the
existence of dust ion-acoustic perturbations (which fol-
lows from the inequality ω @ |k |vTi),

(63)

is easily satisfied. This indicates that relationship (41)
can be used to describe the kinetic damping rate, which
turns out to be negligibly slow for the experimental
conditions of [9]. The small effect of the kinetic damp-
ing on the evolution of the dust ion-acoustic structures
in the experiment of [9] is illustrated in Fig. 5, which
was obtained for the same parameter values as in
Fig. 1b, but with allowance for the change in the rates
characterizing dissipative processes in the ionization
source model. Hence, in order to reflect the fact that, in
the experiment of [9], dust ion-acoustic shock waves
formed at sufficiently high dust densities, it is sufficient
to correctly incorporate the ionization process into the
hydrodynamic ionization source model.

6. CONCLUSIONS

We have presented the main models used in the
kinetic and the hydrodynamic description of nonlinear
dust ion-acoustic perturbations. The kinetic damping
rate, which includes the Landau damping rate, was
derived on the basis of a purely kinetic approach to

Te

Ti

----- 1 eZd–>
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describing complex plasmas. The expression for the
kinetic damping rate is found to contain the conven-
tional terms that account for Landau damping in a
plasma consisting of electrons, ions, and dust grain
with a constant (unperturbed) charge and the terms that
arise from the variable charge of the dust grains. It is
shown that, in certain situations, the latter group of
terms may play a dominant role. In particular, the con-
dition under which the terms incorporating the variable
grain charge into the kinetic damping rate predominate
over the remaining terms is easily satisfied for multi-
mode ion-acoustic perturbations in a plasma with fairly
heavy ions (Cs+, Ar+, etc.), as is often the case in exper-
iments with complex plasmas. These latter terms play a
leading role in describing the propagation of dust ion-
acoustic shock waves that dissipate their energy in the
dust grain charging processes, in the absorption of ions
by dust grains, and in the Coulomb collisions between
ions and grains. For dust ion-acoustic shock-wave
structures and solitons, a fairly good agreement
between theory and experiment is provided by the
hydrodynamic ionization source model. In this model,
the dissipation in a complex plasma is governed by the
processes of absorption of ions by dust grains and also
by Coulomb collisions between ions and grains. All
these processes are closely related to the mechanisms
by which the grains are charged. The ionization source
model is applicable to the nonlinear dust ion-acoustic
structures in a double plasma device and Q-machine
device, in which case the dissipation due to kinetic
damping (including Landau damping) turns out to be
negligibly low. However, in order to provide an ade-
quate description of experimental situations, it is neces-
sary to correctly take into account the ionization pro-
cesses in the plasma. In typical experiments with com-
plex plasmas in devices based on glow and RF
discharges, the effect of kinetic damping on the gener-
ation and propagation of dust ion-acoustic structures is
significant over fairly wide ranges of the dust grain
parameters; it therefore becomes necessary to apply the
kinetic approach. We have derived a criterion for deter-
mining whether or not the kinetic approach is applica-
ble to nonlinear dust ion-acoustic structures observed in
experiments.

The nonlinear dust ion-acoustic structures described
in this paper may have important applications in the
description of natural phenomena (such as those occur-
ring in the interaction of the solar wind with dusty
cometary comas [30]) and may also find significant
technological applications in, e.g., so-called hypersonic
aerodynamics. The main difficulties of hypersonic
flight in the atmosphere are associated with the genera-
tion of shock waves; this leads to heavy mechanical and
thermal loads on the structural components of an air-
craft, considerably increases the resisting forces, and
lowers the engine efficiency. Usually, these negative
effects are reduced through the optimum streamlining
of the aircraft. However, a more promising possibility
seems to be changing the properties of the air surround-
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
ing the aircraft. In this way, the negative effects may be
lessened by modifying the mechanisms for the forma-
tion and propagation of shock waves by plasma meth-
ods (such as the local heating of air around the aircraft).
However, the dust (aerosol) that is produced due to con-
densation from the surrounding air can, in turn, modify
the behavior of the shock-wave structures. This is why
an understanding of the dissipation mechanisms in
shock-wave structures is of key importance in such sit-
uations.
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Abstract—Exact steady-state analytic solutions describing kinetic processes in a low-density plasma layer near
a dielectric surface are found in a time-dependent one-dimensional model with allowance for secondary elec-
tron emission. It is shown that, at low electron temperatures, both the electric potential and electron density
monotonically decrease toward the dielectric surface (Debye layer). As the electron temperature increases, an
anti-Debye layer first forms, in which the potential monotonically increases toward the wall, and regimes with
a nonmonotonic potential profile then arise. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There is an extensive literature (both general theo-
retical and special purpose) concerning the structure of
Debye layers (DLs), which always emerge in plasma
near dielectric surfaces (see, e.g., [1–3]). In these stud-
ies, the temperature is generally assumed to be suffi-
ciently low in order for secondary electron emission
(SEE) to be of minor importance, and the problem can
be reduced to an analysis of the balance between the
fluxes of charged particles onto the dielectric wall:

, (1)

where jen and jin are the electron and ion flux densities
far from the Debye layer, σ is the SEE coefficient, and
UD > 0 is the Debye potential jump. In some cases, the
DL’s properties determine the plasma behavior as a
whole, which corresponds to a much more intricate
situation than that described by Eq. (1). In particular,
this concerns the processes occurring in the plasma of
stationary plasma thrusters (SPTs) [1, 4, 5], where
there is always a significant fraction of hot electrons
with energies ε corresponding to the SEE coefficient
σ(ε) > 1.

The development of adequate theoretical DL mod-
els applicable to a wide temperature range is a very
important problem, primarily, because such models
will allow one to determine the near-wall electron con-
ductivity and heat fluxes onto the wall in various
plasma devices [4–8]. To do this requires knowledge of
the distribution function of the secondary electrons.
For a given distribution of the incident particles, the
DL theory should be based on the Vlasov equation for
the electron distribution function (EDF) f(t, r, v) in a

1 σ–( ) jen

eUD

kTe

----------– 
 exp jin=
1063-780X/04/3004- $26.00 © 0299
self-consistent electric field E and a given magnetic
field H,

(2)

supplemented with the relevant boundary conditions. In
a number of important applications, the effect of the
magnetic field on the electrons can be ignored because
the Debye length is usually one order of magnitude less
than the electron Larmor radius.

In [9], we proposed a time-dependent one-dimen-
sional kinetic model that was aimed at describing the
general features of DLs with allowance for SEE over a
wide temperature range. In this model, a number of
simplifying assumptions were made. The main
assumptions (besides ignoring the effect of the mag-
netic field) were as follows: (i) the velocity and density
of the incident ions are fixed and (ii) the electrons arriv-
ing at the wall from infinity obey a Maxwellian distri-
bution. For low electron temperatures, the model pre-
dicts that, regardless of the initial conditions, a steady-
state Debye layer with a width on the order of the
Debye length forms near the wall, the wall is charged
negatively, and the electron density is minimal near the
wall. When the electron temperature exceeds a certain
critical value, the situation changes radically and an
anti-Debye layer forms near the wall, that is, the wall is
positively charged, so that its potential is higher than
the plasma potential and the electron density is maxi-
mal near the wall. This regime turned out to be non-
steady. Further analysis showed that the nonsteady
behavior of the layer stems from the boundary condi-
tion for plasma electrons: regardless of the processes in
the layer, the density of the incident electrons was
assumed to be fixed and, therefore, the plasma

∂f
∂t
----- v

∂f
∂r
-----⋅ e

m
---- E

1
c
---v H×+ 

  ∂f
∂v
------⋅–+ 0,=

∆Φ 4πe ni f vd∫–( )–=
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quasineutrality condition could be violated at large dis-
tances from the wall. The boundary condition used in
[9], while quite reasonable from both mathematical and
physical points of view, corresponds, however, to a
somewhat different physical situation. It therefore
becomes necessary to answer the questions about the
existence and properties of steady-state solutions of the
anti-Debye type and to give an adequate formulation of
the problem. It is these issues that will be considered in
the present paper.

2. TIME-DEPENDENT ONE-DIMENSIONAL 
MODEL

In [9], we proposed one of the possible formulations
of a time-dependent one-dimensional problem of the
DL structure near a dielectric wall with allowance for
SEE. The model can be briefly described as follows:
Let x be a coordinate across the DL (x = 0 corresponds
to a certain plane located in the plasma far away from
the wall, while x = L corresponds to the wall position)
and V be the x component of the electron velocity. For
the electron distribution function f(t, x, V), we have

, (3)

where E is the x component of the electric field, whose
potential φ(x) satisfies Poisson’s equation

(4)

with the boundary condition φ(0) = 0.
In [9], the ion density ni and velocity Vi were

assumed to be fixed within the layer: ni = ni0 ≡ const,
and Vi = Vi0 ≡ const. If the potential decreases monoton-
ically toward the wall, then the deviation of the ion
velocity and density from being constant can easily be
found in the hydrodynamic approximation:

(5)

The boundary condition for the EDF in plasma is set
as follows: at x = 0 and V > 0, the electrons obey the
Maxwellian distribution

(6)

where ne0 and Te0 are the plasma electron density and
temperature, which are assumed to be known.

In order to deduce the equation for the surface
charge density ρ on the dielectric wall and to set the
boundary condition for f at x = L, it is necessary to
assume a certain model of SEE at the wall. We suppose
that, when an electron with energy εp collides with the
wall, one of three possible events occurs: (i) the inci-

∂f
∂t
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∂ niVi
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2πTe0
-------------- 

  1/2 mV
2

2Te0
-----------– 

 exp f 0
mV

2

2
---------- 

  ,≡=
dent electron disappears and the wall acquires a nega-
tive charge, (ii) one secondary electron with energy ε is
knocked out of the wall, and (iii) two secondary elec-
trons with energies ε1 and ε2 are knocked out of the
wall. Let P0(εp) be the probability of the first event,
P1(ε, εp) be the probability of the second event, and
P2(ε1, ε2, εp) be the probability of the third event. We
introduce the following quantities: W0(εp) = P0(εp),

W1(εp) = (ε, εp)dε (the probability of one secondary

electron emerging), and W2(εp) = (ε1, ε2, εp)dε1dε2

(the probability of two secondary electrons emerging).
We then find that the SEE coefficient σ(εp), which is the
average number of the secondary electrons knocked out
by an electron with energy εp, is

,

and the normalizing condition is

. (7)

We also introduce the quantity P21(ε, εp) = P22(ε, εp) =

(ε1, ε2, εp)dε1, which is the probability that exactly

two secondary electrons are emitted, one of which has
energy ε.

Assuming that every ion incident onto the wall is
neutralized by an electron residing on the wall, the
equation for the surface charge density ρ can be written
in the form

(8)

To set the boundary condition for EDF at x = L, we first
write out the expression for the number of secondary
electrons

where the functions F+(ε) and F–(ε) are the electron
energy distribution functions of the primary (incident)
and secondary (reflected) electrons, respectively.
Finally, in terms of velocity distribution, we have

(9)

P1∫
P2∫

σ εp( ) W1 εp( ) 2W2 εp( )+=

W0 εp( ) W1 εp( ) W2 εp( )+ + 1=

P2∫

dρ
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V F
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=  V pF
+ εp( ) εp P1 ε εp,( ) 2P21 ε εp,( )+[ ] ε ,dd

0

∞

∫

f t L V, ,( )
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The functions describing SEE were chosen as follows:1

(10)

The function W1(ε) was then determined from normal-
izing condition (7). The parameters P0, α0, and α2 must
be chosen such that W1(ε) ≥ 0. The model functions
describing the spectrum of secondary electrons are cho-
sen to agree with expressions (10). It is also taken into
account that the total energy of secondary electrons
cannot exceed the energy of the incident electron. We
assume that

(11)

(12)

where P10 and P20 are functions of εp. We then obtain

P10(εp) = W1(εp) and P20(εp) = W2(εp). We also

have

(13)

Equations (3)–(5) and (8) are the basic equations of our
time-dependent model. To complete the formulation of
the problem, we also need to set a certain boundary
condition for φ at x = L.

3. TIME-INDEPENDENT ONE-DIMENSIONAL 
MODEL

The main aim of this paper is to obtain and investi-
gate steady-state solutions to the problem formulated
above. The basic equations then reduce to

, (14)

, (15)

1 As far as we know, these functions have not yet been determined
experimentally.

W0 ε( ) = P0
ε2

α0
2

------–
 
 
 

, W2 ε( )exp  = 1 ε2

α2
2

------–
 
 
 

.exp–

P1 ε εp,( )
4P10

ε
εp

----- 1 ε
εp

-----– 
  , ε εp,≤

0, ε εp,>





=

P2 ε1 ε2 εp, ,( )

=  
4P20

ε1 ε2+
εp

--------------- 1
ε1 ε2+

εp

---------------– 
  , ε1 ε2 εp,≤+

0, ε1 ε2 εp,>+





3
2εp

-------- 3

εp
2

-----

P21 ε εp,( )

=  
2

W2 εp( )
εp

----------------- 2
ε
εp

----- 
  3

3
ε
εp

----- 
  2

– 1+ , ε εp,≤

0, ε εp.>





V
∂f x V,( )

∂x
-------------------- e

m
----E x( )∂f x V,( )

∂V
--------------------– 0=

d
dx
------ niVi( ) 0,

d
dx
------ niVi

2( )
eni

M
-------E= =
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
, (16)

(17)

where ne(x) = (x, V)dV and E(x) = – , and the

boundary conditions are

(18)

(19)

Here, the potential φ, which is still unknown, can be
either positive or negative (at φL < 0, we have |φL | = UD)
and 

For ions, we have

Our main aim here is to find layer-type solutions to
Eqs. (14)–(17). In this case, the plasma parameters vary
significantly only near the wall (within a layer with a
thickness on the order of the Debye length). As the dis-
tance from the wall increases, all the parameters must
tend to constant values. The method for solving the
problem depends significantly on the function φ(x),
which, in turn, is mainly determined by the electron
temperature Te0 and the SEE parameters P0, α0, and α2.
For definiteness, we set P0 = 0.9 and assume the length
L to be much longer than the Debye length rD (L = 10rD,

where  = Te0/(4πe2ni0)).

4. THE CASE OF LOW ELECTRON 
TEMPERATURES (DEBYE LAYER)

We will vary the electron temperature Te0 starting
from a sufficiently low value (more exactly, sufficiently
high values of the parameters α0/Te0 and α2/Te0). Figure 1
shows, as an example, the SEE parameters W0(ε),
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Fig. 1. SEE functions for α0/Te0 = 1.5 and α2/Te0 = 6:
(1) W0(ε), (2) W1(ε), (3) W2(ε), and (4) σ(ε).
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Fig. 2. Electron phase portraits for (a) low and (b) high elec-
tron temperatures.
W1(ε), W2(ε), and σ(ε) as functions of the electron
energy for α0/Te0 = 1.5 and α2/Te0 = 6. We assume that
the potential φ(x) decreases monotonically, so that φL < 0.
The electron phase portrait for this case is shown in
Fig. 2a, where Vc = (–2eφL/m)1/2. The problem is solved
as follows: Any solution to Eq. (14) is a function of the
total electron energy ε = mV2/2 – eφ(x). Phase space in
Fig. 2a can be divided into three domains: (I) ε > –eφL,
V > 0; (II) ε ≤ –eφL; and (III) ε > –eφL, V < 0. Within
domains I and II, the EDF is dominated by the electrons
arriving from the left boundary. Hence, in these
domains, we have f(x, V) = f0(mV2/2 – eφ(x)), and the
EDF at x = L can be expressed through the potential:
f(L, V) = f0(mV2/2 – eφL) for V > 0. From balance rela-
tion (17), we determine φL (the parameters of the prob-
lem must be such that φL < 0). From boundary condition

(19), we then find that f(L, V) = (L, Vp)dVp for

Vp < 0. Finally, integrating the kinetic equation along
characteristics, we find the EDF in domain III: f(x, V) =

f . Thus, we have found the

EDF and, therefore, the electron density ne(φ) = 

as functions of the potential φ. Hence, the problem is
reduced to a nonlinear boundary-value problem for the
electric potential:

(20)

where ni(φ) = . By solving (20), we find

φ(x), ni(x), Vi(x), and f(x, V).

For the chosen SEE parameters, balance relation (17)
yields the following equation for φL:

(21)

Here,

 = ,

where erf(x) is the error function.
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At low electron temperatures (i.e., at α0/Te0 @ 1 and
α2/Te0 @ 1), we have A ≈ P0 > 0 and, accordingly, φL < 0.
In this case, it is natural to assume that ne0 ≈ ni0 and
Vi0 ! Ve0. We will assume below that Vi0 = 0.1Ve0 and
ne0 = 1.05ni0 (we recall that ne0 is the density of the elec-
trons incident onto the wall). For definiteness, we will
also assume in our numerical calculations, that α2 =
4α0. For µ = m/M < 0.01, the ion motion affects the pro-
files of the potential and the electron density only
slightly. In this case, the only parameter on which the
solution to the problem depends is λ0 = α0/Te0. As an
illustration, the table presents φL and ne(L) as functions
of this parameter (the case of low temperatures, consid-
ered in this section, corresponds to the first three rows).
The profiles of the potential and the electron density are
shown in Figs. 3 and 4 (curves 1–3). Finally, Fig. 5
shows the EDFs at three spatial points corresponding to
three values of the potentials for two different values of
the parameter λ0.

Therefore, when the electron temperature is low
enough, both the potential and the electron density
monotonically decrease toward the wall. At the wall,
the potential φL and the electron density ne(L) increase
with temperature. The wall surface is charged nega-
tively. It can be seen from Fig. 2 that the EDF has a dis-
continuity at the electron characteristic passing through
the point x = L, V = 0. The amplitude of this discontinu-
ity depends on the SEE parameters.

There is a critical temperature (more exactly, a crit-
ical value of the parameter λ0) at which the functions
φ(x) and ne(x) become constants. This value can be

2
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Fig. 3. Spatial profiles of the electric potential for different

values of the parameter λ0 =  = (1) 3, (2) 1.5, (3) 0.75,

(4) 0.625, and (5) 0.5.
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found from the condition φL = 0, from which we obtain
the equation for λ0

. (22)

Under the above assumptions, the critical value of
the parameter λ is equal to  ≈ 0.71. At larger values
of λ, there is no solution corresponding to an ordinary
Debye layer.

5. THE CASE OF HIGH ELECTRON 
TEMPERATURES (ANTI-DEBYE LAYER)

As the electron temperature increases (λ0
decreases), the solution changes qualitatively and the
potential φ(x) becomes a monotonically increasing
function. Let us briefly describe the method for solving
the problem in this case. Figure 2b shows the electron

P0ς λ0( ) ς 4λ0( )+ 1 2π
Vi0ni0

Ve0ne0
---------------+=

λ0*

Table

λ0 eφL/Te0 ne(L)/ni0

3 –1.15 0.21

1.5 –0.85 0.32

0.75 –0.11 0.85

0.625 0.24 1.22

0.5 0.38 1.72

0.25 0.34 3.3

0.15 –0.16 8.8
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Fig. 4. Spatial profiles of the electron density for different

values of the parameter λ0 =  = (1) 3, (2) 1.5, (3) 0.75,

(4) 0.625, and (5) 0.5.
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Fig. 5. Electron distribution function at three points corre-
sponding to three values of the potential, φ = (1) 0,
(2) 0.5φL, and (3) φL, in the case of a Debye layer for λ0 =
(a) 3 and (b) 1.5.
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Fig. 6. Electron distribution function at three points corre-
sponding to three values of the potential, φ = (1) 0,
(2) 0.5φL, and (3) φL, in the case of an anti-Debye layer for
λ0 = (a) 0.625 and (b) 0.5.
phase portrait, where now Vc = (2eφL /m)1/2. There are
three characteristic domains in Fig. 2b: (I) ε > 0, V > 0;
(II) ε ≤ 0; and (III) ε > 0, V < 0, where, as before, ε =
mV2/2 – eφ(x) is the total electron energy. A character-
istic feature of the phase portrait in this case is the pres-
ence of the secondary electrons that return to the wall
(domain II). In domain I, the EDF is determined only
by the electrons arriving from infinity, so that we have
f(x, V) = f0(mV2/2 – eφ(x)) (specifically, f(L, V) =
f0(mV2/2 – eφL) for V > Vc). Obviously, f(L, V) =
f(L, −V) for 0 ≤ V < Vc. In view of the boundary condi-
tion (19), we have

Thus, we obtain an integral equation for the distribu-
tion function of secondary electrons at the wall (x = L,
V < 0):

(23)

with s(V) = (  – φL)dVp. This func-

tion depends parametrically on φL. By solving Eq. (23),
we find the EDF at x = L (this equation can easily be
solved by the method of successive approximations;
even the zero approximation yields a quite satisfactory
result).

Next, we determine φL using balance relationship
(17). Integrating the kinetic equation along characteris-
tics at a given potential at the wall (φL > 0), we find the
EDF as a function of φ and V over the entire phase
space. As a result, we again arrive at nonlinear Pois-
son’s equation (20), but with another function ne(φ) on
the right-hand side.

To illustrate solutions with a monotonically increas-
ing potential, Figs. 3 and 4 show the profiles of the elec-
tric potential and the electron density, respectively, for
λ0 = 0.625 and λ0 = 0.5. As before, Vi0 = 0.1Ve0 and
ne0 = ni0. The corresponding values of φL and ne(L) are
shown in the table. Figure 6 shows the EDFs at three
spatial points: x = 0, x = L, and the point corresponding
to φ = 0.5φL. The discontinuity in the distribution func-
tion is now on a characteristic lying in the upper half-
plane of electron phase space. In the case of an anti-
Debye potential layer, the problem of the role of ions is
more complicated. The above solutions correspond to
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µ = m/M = 0.001. For ions, the hydrodynamic approxi-
mation is certainly invalid when the ion energy at infin-

ity is lower than the wall potential,  < eφL, so an
ion is reflected from the wall.

Thus, we have shown that, at sufficiently high elec-
tron temperatures (such that λ0 < ), there exists a
steady-state solution corresponding to an anti-Debye
potential layer. The case of even higher temperatures
(λ0 ≤ 0.3) has not yet been studied analytically.

6. NON-STEADY-STATE SOLUTIONS 
AT HIGH ELECTRON TEMPERATURES

An alternative way of finding steady-state solutions
is to solve the time-dependent problem numerically by
the relaxation method, starting from rather arbitrary ini-
tial data. In this case, the question arises as to adequate
boundary conditions for the EDF at x = 0. The previous
boundary condition (6) does not automatically guaran-
tee the physically obvious condition ni(0) = ne(0), cor-
responding to plasma quasineutrality at large distances
from the wall. For this reason, we set the condition ne(t,
0) = ni0 at x = 0. We also assume that f(t, 0, V) =
B(t)g(V), where g(V) = (m/2πTe0)1/2exp(–mV2/2Te0) is a
known function and B(t) is an unknown function to be

determined from the quasineutrality condition (t, 0,

V)dV = ni0. If we arrive at a steady-state solution at
t  ∞, we then have B(∞) = ne0, which is the density
of the incident particles in the steady-state case. It is in
this boundary condition and the account taken of the
ion dynamics in the hydrodynamic approximation [see
Eqs. (5)] that the given model differs from the one pro-
posed previously in [9]. The kinetic equation was
solved numerically on 100 × 100 and 200 × 200 meshes

MVi0
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Fig. 7. Profiles of the electric potential calculated analyti-
cally (solid lines) and numerically (dashed lines) for λ0 =
(1) 1.5 and (2) 0.5.
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
by the finite difference method with an increased
approximation order [10, 11].

The computations performed within the parameter
range of interest (basically the parameter λ0) show that
the solution always relaxes to a steady-state one. The
computed steady-state profiles of the potential and the
electron density are very close to those obtained analyt-
ically (see Fig. 7). The EDF discontinuity in analytic
solutions corresponds to a rather narrow zone in which
the numerically calculated EDFs vary sharply.

Let us now consider the new features that are char-
acteristic of numerical solutions only. The computa-
tions show that, as the temperature (λ0 ≤ 0.3) increases
further, the potential is no longer a monotonic function
of x. Figure 8 shows the profiles of the potential for
λ0 = 0.25 and λ0 = 0.15. Note that the electron density
profiles remain monotonic (the values of the electron
density at the wall are given in the table).

In fact, the above plasma quasineutrality condition,
which was used to find the EDF, is only a certain ideal-
ization. It is of interest to study the effect of various
non-steady-state perturbations on the solutions
obtained. For this purpose, we performed calculations
with a perturbed boundary condition, namely, it was
assumed that the quasineutrality condition at x = 0 is
slightly violated and holds only on average: ne(t, 0) =
ni0[1 + δsin(ωt)]. The calculations were performed at

δ = 0.05, ω = kωp,  = 4πni0e2/m, and k = 0.5–2.0. The
results obtained show that the oscillation amplitude of
a periodic solution depends on k and is maximal at
k = 1. The wall potential oscillates with the highest
amplitude, and this amplitude increases with tempera-
ture. The evolution of φ(t, L) for three values of λ0 is
shown in Fig. 9. The time-averaged profiles of the
potential and the electron density are close to the corre-
sponding steady-state profiles. Thus, perturbations do

ωp
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Fig. 8. Nonmonotonic profiles of the electrical potential for
λ0 = (1) 0.25 and (2) 0.15.



306 MOROZOV, SAVEL’EV
not affect the time-averaged (on a time scale much
longer than the plasma period) profiles of the main
plasma parameters. This is evidence in favor of the sta-
bility of the steady-state solutions obtained.

7. CONCLUSIONS

Exact steady-state analytic solutions describing
kinetic processes in a low-density plasma layer near a
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2.0

0.5

0

–0.5

–1.0

eφ(L)/Te0

(b)

1.5

1.0

2.0

0.5
0

–0.5

–1.5

eφ(L)/Te0

(‡)
1.5
1.0

–2.0

–1.0

Fig. 9. Evolution of the wall potential for λ0 = (a) 1.5,
(b) 0.5, and (c) 0.15.
dielectric surface have been found in a time-dependent
one-dimensional kinetic model with allowance for sec-
ondary electron emission [9]. It has been shown that, at
low electron temperatures, a Debye layer forms, in
which the plasma potential and the electron density
monotonically decrease toward the dielectric wall. As
the electron temperature increases, an anti-Debye layer
first forms, in which the potential monotonically
increases toward the wall, and then regimes with a non-
monotonic potential profile arise. The solutions
obtained are relatively stable against any small varia-
tion in the boundary conditions.
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Abstract—A description of ion heating by ion-acoustic turbulence in a plasma containing two ion species of
different charge-to-mass ratio is presented. It is shown that, when collisions between ions of different species
are ignored, only one of the ion species is heated substantially while the temperature of the other species
approaches a constant value that differs insignificantly from the initial ion temperature. The only exception to
this is a case in which the plasma parameters are in a particular relationship. For an example of a fully ionized
HO plasma, it is shown that taking into account the collisional energy exchange between different ion species
removes this restriction on the ion temperature. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that, in a plasma with a developed
ion-acoustic turbulence (IAT), the bulk of thermal ions
with velocities lower than the ion-acoustic velocity are
subject to efficient heating (see, e.g., [1, 2]). In the IAT
theory, turbulent ion heating is attributed to the stimu-
lated scattering of ion-acoustic waves by ions [3, 4]. In
this case, the time scale on which the ion temperature
doubles is much less than the inverse effective fre-
quency of the energy relaxation in electron–ion colli-
sions. There are a fairly large number of studies on the
theory of turbulent ion heating in a plasma with a single
ion species (see, e.g., [5–10]). Thus, Rudakov [6] for-
mulated turbulent heating equations that qualitatively
characterize the relationship between the energy trans-
ferred from the ion-acoustic waves to the ions and the
energy lost by the ions in, e.g., collisions with elec-
trons. Like Kovrizhnykh in his earlier paper [5], Ruda-
kov pointed out that, because of the quasilinear reso-
nant interaction with waves, the ions whose velocities
exceed the ion-acoustic velocity are heated at a faster
rate than the slower ions that are the subject of the
present study. Kingsep [7] systematically derived equa-
tions for the ion distribution function from the nonlin-
ear theory of wave interaction and noticed that, when
ion–ion collisions are ignored, the solution to these
equations can be substantially non-Maxwellian. In [8,
9], anisotropic turbulent ion heating was described in
terms of the self-consistent IAT theory. However, for a
plasma with several ion species, the theory of IAT spec-
tra and the theory of turbulent ion heating yield a num-
ber of qualitatively new effects that stem primarily from
the fact that, in a plasma containing several ion species
of different charge-to-mass ratio, the probability of
stimulated scattering is higher than in a plasma with a
single ion species [11]. Interest in a plasma with several
ion species has persisted for quite a long time (see, e.g.,
[12–18]); however, the IAT spectrum for such a plasma
has been obtained only recently [11, 19, 20]. A descrip-
1063-780X/04/3004- $26.00 © 0307
tion of turbulent ion heating in a plasma with two ion
species of the same charge-to-mass ratio was given in
our earlier paper [21], in which it was shown that, under
conditions of turbulent ion heating, the temperatures of
the two ion species are the same and increase linearly at
equal rates, as is the case in a plasma with a single ion
species. In the present work, we quantitatively describe
a turbulent heating of the bulk of thermal ions in a
plasma with two ion species of different charge-to-
mass ratio.

In the next section, we will present the required
information on the IAT spectrum in a plasma with sev-
eral ion species. Then, using the ion kinetic equations,
we will derive equations for the temperatures of differ-
ent ion species. Further, we will investigate the time
evolution of the ion temperatures in a turbulent plasma
with two ion species. We will show that, when colli-
sions between ions of different species are ignored, the
temperature of only one ion species increases continu-
ously over time while the temperature of the other spe-
cies approaches a constant value, the only exception
being a case in which the plasma parameters are in a
particular relationship. Finally, we will demonstrate
that, under conditions of collisional energy exchange
between ions of different species, their temperatures
both increase over time, but the rates at which they
increase may be different.

2. IAT SPECTRUM

In this section, following [20], we present the main
results on the IAT spectrum that are required for a fur-
ther description of ion heating in a plasma with two
species of ions of masses m1 and m2 such that m1 < m2.
We are working under the conditions

(2.1)rDe @ rDα , ZαTe @ Tα .
2004 MAIK “Nauka/Interperiodica”
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Here, rDα = , nα, eα – Zα |e |, and Tα are
the Debye radius, density, charge, and temperature of
the ions of species α = 1 and 2; e, Te , and rDe are the
charge, temperature, and Debye radius of the electrons;
and κ is Boltzmann’s constant. The dispersion relation
of the ion-acoustic waves that can exist under these
conditions has the form

(2.2)

where v s = ωLrDe is the ion-acoustic velocity,  =

 + , and ωLα =  is the Langmuir
frequency of the ions of species α. Generally, in a
plasma with two ion species of vastly different masses,
there may be, in addition to waves with frequency (2.2),
low-frequency ion-acoustic waves with a much lower
phase velocity. However, as was shown in [20], such
low-frequency waves can exist only if the ratio of the
Debye radius of the lighter ions to the Debye radius of
the heavier ions is much larger than unity. Since the

ratio rD1/rD2 is equal to ( )1/2, the condi-
tion rD1 > rD2 is satisfied for a comparatively high den-

sity of heavier ions such that n2/n1 @ ( )(T2/T1). In
what follows, however, we assume that this condition is
not satisfied, thereby restricting ourselves to consider-
ing plasmas in which the only possible waves are those
that obey dispersion law (2.2).

We consider a situation in which the IAT is driven
by a force with the density R = (0, 0, R) acting on the
electrons. Here, R = eneE – ∂p/∂z > 0, where ne and p are
the electron density and electron pressure. When the
electron drift velocity is higher than the ion-acoustic
velocity, the stimulated Cherenkov emission of ion-
acoustic waves comes into play. In this case, the quasi-
steady level to which the ion-acoustic noise relaxes in
the plasma is determined by the competition between,
on the one hand, Cherenkov emission of waves by elec-
trons, and, on the other, Cherenkov absorption of waves
by ions and nonlinear damping of ion-acoustic waves
by stimulated scattering by ions of both species. The
resulting distribution of the number N of ion-acoustic
waves over the wavenumbers k and over the angles θ
determining the orientation of the wave vector has the
form [11, 20]

(2.3)
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where θ is the angle between k and R, ωLe is the elec-

tron Langmuir frequency, and vTα =  is the
thermal velocity of the ions of species α. The IAT spec-
trum in a plasma with two ion species can be described
by formula (2.3) when the charge-to-mass ratios of the
species differ greatly from one another:

(2.4)

If condition (2.4) fails to hold, the IAT spectrum
depends on k in the same manner as in a plasma with a
single ion species. In distribution (2.3), the explicit
form of the angular dependence Φ(cosθ) is determined
by the value of the turbulent Knudsen number:

(2.5)

where λ ≅ 0.55. In what follows, we need only the

moments Mn ≡ (x)xn of the function Φ(cosθ). In

the limit of small Knudsen numbers, KN < (1 + δ)2, the
moments Mn have the form

(2.6)

Here, the small parameters ε and αε are given by the
approximate expressions [11] αε ≅ ln2/ln[(1 + δ)2/KN]
and ε ≅ 2KN/[3π(1 + δ)2αε], with δ = δ1 + δ2, in which the

parameter δα =  is propor-
tional to the ratio of the value of the distribution func-
tion of hot resonant ions of species α to the value of the
electron distribution function at v  = v s. In the opposite
limit KN @ (1 + δ)2, the angular distribution contains the

factor  and its moments are equal to [11]

(2.7)

3. EQUATIONS FOR THE ION TEMPERATURES

Here, using the above information on the IAT spec-
trum, we derive equations for the temperatures of the
bulk of thermal ions with velocities v  < v s. The kinetic
equation for thermal ions of species α has the form

(3.1)
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where the Landau collision integral St[ fα, fβ] describes
collisions between ions of species α and ions of species

β and the diffusion tensor  in velocity space
describes the stimulated scattering of waves by ions.
We restrict ourselves to a Maxwellian distribution of
ions with velocities v  < v s:

(3.2)

This can be the case if the frequencies of collisions
between ions of species α are low in comparison with
the characteristic frequencies of the interaction
between ions of this species with waves [see formulas
(3.9), (3.20) below]. The desired equations for the ion
temperatures can be obtained from Eq. (3.1) by multi-

plying it by  and then by integrating over veloc-

ities:

(3.3)

Here, the effective time scales on which the energy is
transferred between ions and from ions to electrons are
given by the expression [22]

(3.4)

with Λ the Coulomb logarithm. The diffusion tensor in
Eq. (3.3) has the form

(3.5)

Here, k'' = k – k' and ω'' = ω – ω' are the wave vector
and beat frequency of the interacting waves and the
amplitude Λα(k, k') under condition (2.4) is equal to
[20]

(3.6)
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where

(3.7)

are the dielectric susceptibilities of the ions of different
species at the beat frequency of the interacting waves
and

(3.8)

We calculate the integrals over velocities in expres-
sion (3.4) in terms of the center-of-mass variables
vαβ = vα – vβ and P = mαvα + mβvβ for which we have
dvαdvβ = (mα + mβ)–3dvαβdP. As a result, we obtain

(3.9)

Below, we will be interested in the case of a plasma
with two ion species of very different masses, m2 @ m1.
In this case, expression (3.9) yields

(3.10)

The assumption that the ion species have appreciably
different masses is not of fundamental importance for
our analysis but it makes it possible to simplify an ana-
lytic description of the effect of ion–ion collisions on
the heating of ions of different species.

We now consider the first term on the right-hand
side of Eq. (3.3). In our analysis, this is the ion heating
source term. Since the values of the ion distribution
function at v  ~ v s are exponentially small, the main
contribution to the integral comes from the velocity
range v  ~ vTα ! v s. In this range, the δ function in for-
mula (3.5) can be expanded in powers of the small
parameter v k''/ω'' ~ v /v s ! 1, in which case the first
term on the right-hand side of Eq. (3.3) becomes
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Then, using IAT spectrum (2.3), we reduce expression
(3.11) to

(3.12)

where η ≅ 1.09. According to formula (2.6), the bilinear
combination of the moments in the square brackets in
expression (3.12) is equal to 8KN/(3π) in the limit KN <
(1 + δ)2 and, in the opposite limit KN @ (1 + δ)2, it is
equal to 1.12 KN. Substituting formula (2.5) for KN into
expression (3.12), we arrive at the following final
expression for the first term on the right-hand side of
Eq. (3.3):

(3.13)

where A = η/(3λ) ≅ 0.66 for KN < (1 + δ)2 and
A = 1.12ηπ/(8λ) = 0.87 for KN @ (1 + δ)2. With expres-
sion (3.13), Eq. (3.3) takes the form

(3.14)

where α ≠ β. We multiply Eqs. (3.14) by κnα and add
the resulting equations to obtain the equation describ-
ing the heating of the ion plasma component as a
whole:

(3.15)

The first term on the right-hand side of Eq. (3.15)
describes the collisionless heating of plasma ions, and
the second and third terms account for the heat redistri-
bution between electrons and ions. From Eq. (3.15) we
see that, under the inequality

(3.16)

the ion heating is governed primarily by stimulated
scattering. Such is the case when the IAT is excited far
above the threshold, i.e., when

(3.17)
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Under the conditions adopted in our study, the thresh-
old for ion-acoustic instability is considerably
exceeded, so that inequality (3.16) holds automatically.
Along with condition (3.17), we assume that the second
term on the right-hand side of Eq. (3.14) is much
smaller than the first term, i.e., that the energy gained
by ions in their collisions with electrons is low in com-
parison with the energy transferred from waves to ions
in the stimulated scattering process. The consistency of
this assumption with the above assumption that the ion
distribution is Maxwellian [see formula (3.2)] is
ensured by the large factor mα /me, which characterizes
the ratio ταe/ταα. Taking into account this circumstance
and ignoring ion–electron collisions, we obtain from
Eq. (3.14) the following equations for the temperatures
of each of the ion species:

(3.18)

(3.19)

Here,  = ,

(3.20)

Ti0 = T1(0) = T2(0) is the initial ion temperature, and the
effective time scales for energy transfer in ion–ion col-
lisions are given by expression (3.10) and change with
the temperature of ions of species 1 according to the

law . The above equations for the ion temperatures
will serve as the basis for describing turbulent ion heat-
ing.

4. ION HEATING

In studying ion heating, we first consider the sim-
plest limiting case in which the energy exchange in col-
lisions between ions of different species is negligible.
This is indeed the case at the very beginning of the heat-
ing, because, in the problem as formulated, it is
assumed that, in the initial heating stage, the tempera-
tures of the ion species are the same. The effect of col-
lisions on ion heating in the case in which the tempera-
tures of the ion species are markedly different will be
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considered in the next section. In the limiting case in
question, Eqs. (3.18) and (3.19) reduce to

(4.1)

(4.2)

From this, in particular, we obtain the following equa-
tion, which describes the ratio of the temperatures of
two ion species in the case of purely turbulent heating:

(4.3)

Assuming that T1(0) = T2(0) = Ti0, we write the solution
to Eq. (4.3) in the form

(4.4)

At the very beginning of the heating, the temperatures
of the ion species differ insignificantly from Ti0. Conse-
quently, we can represent the ion temperatures as T1 =
Ti0 + ∆T1 and T2 = Ti0 + T2 to arrive at the relationship

(4.5)

according to which the parameter  defined in
formula (3.20) describes the ratio of the rates at which
the ion temperatures increase at the very beginning of
the heating.

Solution (4.4) implies that the stage of strongly tur-
bulent heating (T1 @ Ti0, T2 @ Ti0) begins when

(4.6)

in which case, according to Eq. (4.3), we have

(4.7)

Under condition (4.6), Eqs. (4.1) and (4.2) take the
same form dT/dt = Ti0/τ0 and, accordingly, have the
solution

(4.8)

If condition (4.6) is not satisfied, then solution (4.4)
imposes an upper limit on the increase in the tempera-
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ture of one of the ion species. Specifically, for  >

, we rewrite solution (4.4) as

(4.9)

to obtain the limitation

(4.10)

which is valid for any positive values of T1 and T2
because solution (4.9) increases monotonically with T1
and, as T1  ∞, it approaches the value given by the
right-hand side of this limitation. Analogously, for

 > , we arrive at the limitation

(4.11)

Hence, we have shown that, when condition (4.6) is not
satisfied, the temperature of one of the ion components
increases insignificantly. Figure 1 shows T2/Ti0 versus
T1/Ti0 for three different values of the parameter

: 0.1, 1, and 10. The straight line refers to the
case given by formulas (4.6) and (4.7). In this case, an
increase in the temperatures of both ion species is lim-
ited only by the applicability conditions of Eqs. (4.1)
and (4.2). The curve that is below the straight line refers
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to the case  = 10 , in which limitation (4.10)
gives T2/Ti0 < 10/9. The curve that is above the straight
line refers to the case T1/Ti0 = 10/9; in accordance with
limitation (4.11), it asymptotically approaches the ver-

tical line  = 0.1. It should be noted that Fig. 1
does not reflect the temporal behavior of the ion tem-
peratures.

We now describe how the temperatures of the ion
species change in time. For example, inserting solution
(4.9) into Eq. (4.1), we obtain the following equation
for T1(t):

(4.12)

Note that, since the right-hand side of Eq. (4.12) is pos-
itive, the temperature T1(t) increases monotonically
over time. The solution to this equation can be repre-
sented as

(4.13)

Solutions (4.9) and (4.13) provide an analytic descrip-
tion of the time evolutions of the ion temperatures.

Let us consider some limiting cases allowed by
solutions (4.9) and (4.13). First, we consider the case
given by the conditions
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lent to
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In this case, solution (4.13) can be approximately rep-
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contains the large factor  @ 1, solution (4.16) can

be written in the form

(4.17)

in which case solution (4.9) becomes

(4.18)

Solution (4.18) describes slight changes in the tempera-

ture T2 around the value Ti0 on time scales of about .
We emphasize that the limiting value T2(∞) ≅  Ti0(1 +

) differs from the initial temperature Ti0 by the

small amount Ti0 . This indicates that, under
conditions (4.14), the heavier ion species is heated only
slightly, whereas the temperature of the lighter ion spe-
cies increases according to the law

(4.19)

until the heating process becomes dominated by colli-
sions. In Fig. 1, this case corresponds to the lower
curve.

The opposite limiting case is given by the conditions
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On the other hand, substituting solution (4.22) into
Eq. (4.9) yields

(4.24)

Equation (4.22) describes slight changes in the temper-
ature T1 around the value Ti0 on time scales of about

. At the same time, the temperature T2 of the heavier
ion species increases almost linearly according to law
(4.24). In Fig. 1, this case corresponds to the upper
curve: the heavier ions are rapidly heated to a consider-
able extent, whereas the temperature of the lighter ions
remains essentially the same. This unusual situation, in
which the heavier ions are heated faster than the lighter
ions, is associated with the fact that the ratio of the
probability of stimulated scattering by heavier ions to
the probability of stimulated scattering by lighter ions
increases as the density of the heavier ion species
decreases, so that, when the number of heavier ions is
sufficiently small, the wave energy is transferred pre-
dominantly to them. Note that, in this case, restriction
(4.21) on the density of heavier ions is very stringent.
Thus, for a fully ionized HO plasma, it yields n2/n1 !
10–3.

Finally, for sufficiently large values of the parameter

, there exists a fairly wide range of values

of the ratio  that lies between ranges (4.14) and
(4.20) and is determined by the inequalities

(4.25)

or, equivalently,

(4.26)

Under the condition

, (4.27)

the solution to Eqs. (4.1) and (4.2) in this parameter
range has the form

(4.28)

(4.29)

At the initial instant, this solution satisfies condition

(4.27). However, on time scales of t ~ , solution
(4.29) increases rapidly, so that condition (4.27) fails to
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hold. For t @ , the condition opposite to condition
(4.27) is satisfied, in which case Eqs. (4.1) and (4.2)
have the solution

(4.30)

(4.31)

Hence, under conditions (4.25), as well as under condi-
tions (4.20), the heavier ions are heated faster than the
lighter ones. For a fully ionized HO plasma, restriction
(4.26) yields 10–3 ! n2/n1 ! 3 × 10–2, which indicates
that the density of heavier ions can be somewhat higher
than that consistent with conditions (4.20).

5. ION HEATING DUE TO COLLISIONAL 
ENERGY EXCHANGE

Here, we consider the situation in which the energy
redistribution during turbulent heating is dominated by
collisional energy exchange between two ion species.
As before, we assume that m2 @ m1 and that the heavier
ion species is present as an admixture; i.e., n1 @ n2.
According to expression (3.10), the latter assumption,
in particular, yields the condition

(5.1)

This condition allows us to make the following two
assumptions. First, the lighter ions are heated in the
interaction with waves and their cooling by collisions
with heavier ions proceeds at a comparatively slow rate.
Second, heating of the heavier ions is basically gov-
erned by the energy transferred to them via collisions
with lighter ions. Under these assumptions and under
conditions (4.14), which imply that the heavier ion spe-
cies is only slightly heated by turbulence, we can ignore
the turbulent heating of the heavier ions in comparison
with the energy transfer from the lighter ions. As a
result, the heating of the heavier ions is described by the
equation

(5.2)

From Eq. (4.1) under conditions (4.14), we obtain the
equation describing the heating of the lighter ions

(5.3)

In Eq. (5.3), we ignored collisions, and, in Eq. (5.2) for
the heavier ions, we ignored turbulent heating. In order
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for these simplifications to be justified, it is necessary
to satisfy the conditions

(5.4)

which take the following form in terms of the explicit
expressions for the effective collision times:

(5.5)

By virtue of conditions (4.15), implying that the param-

eter  is small, the parameter range sat-
isfying conditions (5.5) is fairly wide. The solution to
Eq. (5.3) for the time evolution of the temperature of
the lighter ions has the form (4.19). In accordance with
Eq. (5.2), the temperature of the heavier ions is lower
than the temperature of the lighter ions, but the greater
the difference between the temperatures of the ion spe-
cies, the higher the rate of heating of the heavier ions.
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Fig. 2. Solution to Eqs. (5.2) and (5.3) for τ21(Ti0)/  = 0.1.

Curves 1 and 2 show the time dependences of T1/Ti0 and
T2/Ti0, respectively.
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The temperature difference on time scales of t < 
can be deduced from Eqs. (5.2) and (5.3):

(5.6)

We see that, on time scales of about , the difference
in the temperature of the two ion species is about

Ti0τ21(Ti0)/ . If the collisions are sufficiently frequent,

then, on time scales of  @ τ21(Ti0), the difference is
much less than Ti0. On time scales much longer than

, the temperature of the lighter ions becomes much
higher than its initial value, so that the effective colli-
sion time τ21(T1) increases [see expression (3.10)] and,
according to Eq. (5.2), the heavier ions are heated at a
progressively decreasing rate. Figure 2 illustrates how
the temperatures of the lighter ions (curve 1) and of the

heavier ions (curve 2) increase with time . The
time evolutions shown in the figure are solutions to

Eqs. (5.2) and (5.3) for τ21(Ti0)/  = 0.1. In accor-
dance with solution (4.19), the temperature of the
lighter ions increases linearly. As for the heavier ions,
they are initially (on time scales of t > τ21(Ti0)) heated
at a rate very close to the rise in the temperature of the
lighter ion species; however, as the lighter ions are
heated further, the heating rate of the heavier ions
becomes progressively slower. In this situation, the
lighter ions are heated by turbulence, while the heavier
ions are heated at the expense of collisional energy
transfer from the lighter ions.

When condition (5.4) fails to hold, the ion heating
should be described by general equations (3.18) and
(3.19). One possible reason for the violation of condi-
tion (5.4) is a rapid increase in the ratio T2/T1 in the
early (collisionless) heating stage. This possibility can
be illustrated with an example of a fully ionized HO

plasma, for which  = 1024(n2/n1)2. Figure 3
illustrates how the temperatures of the lighter ions
(curve 4) and of the heavier ions (curves 1–3, 5)

increase with time . The time evolutions shown in
the figure are solutions to Eqs. (3.18) and (3.19) for

τ21(Ti0)/  = 0.01 and  = 1024(n2/n1)2 and for
different values of the ratio n2/n1: 0.005, 0.01, 0.011,
0.03, and 0.1. The lowermost light curve is the time
evolution T2(t) for n2/n1 = 0.1. In this case, we have

 ≅ 10; consequently, in accordance with condi-
tions (4.14), the lighter ions are heated faster than the
heavier ions and the heating process is similar to that

illustrated in Fig. 2. For n2/n1 = 0.03, we have  ≅  ,
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so that the time evolutions T2(t) and T1(t) coincide. The
three lowest values of the density of the heavier ion spe-
cies, n2/n1 = 0.005, 0.01, and 0.011, satisfy condition
(4.25), under which the temperature of the heavier ions
increases faster than that of the lighter ions. In Fig. 3,
these densities refer to the three uppermost curves. It
can be seen that, although collisions are fairly frequent,
the temperature of the heavier ions can increase signif-
icantly faster than that of the lighter ions and, moreover,
the heavier ions can be heated at a progressively
increasing rate. In all these cases, the laws according to
which the temperature of the lighter ions increases are
almost linear and the heavy curve in Fig. 3 satisfies
these laws to within 5%. Hence, in contrast to the case
of collisionless heating, in which the temperature of the
lighter ions approaches a constant value given by solu-
tion (4.30), we see that, under conditions (4.25), the
energy transfer from the heavier ion species, rapidly
heated by turbulence, can increase the rate of heating of
the lighter ions, which, however, always remains slower
than the heating rate of the heavier ion species.

Figure 4 illustrates how the temperatures of the
lighter ions (solid curves) and the heavier ions (dashed

curves) increase with time  when the density of
the heavier ions is not low. The three solid curves and
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(5) 0.1. Curves 1–3 and 5 illustrate the dependence of T2/Ti0

on the time t/ , and curve 4 shows the same dependence
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the three dashed curves were obtained for τ21(Ti0)/  =

0.1 and  = 1024(n2/n1)2 and for different values
of the ratio n2/n1: 0.2, 1, and 3 (from top to bottom). In
each of the three cases, we can see that the lighter ions
are hotter than the heavier ions and that the higher the
density of the heavier ions, the slower the rates of heat-
ing of both ion species and the smaller the temperature
difference between them at a given time. The lighter
ions are heated according to a linear law. As for the
heavier ions, they are heated at a progressively decreas-
ing rate when n2/n1 < 1 and at a constant rate when their
density is high. In the case illustrated in Fig. 4, as in that
shown in Fig. 2, the lighter ions are heated in the inter-
action with waves, while the heating of the heavier ions
is governed by collisional energy transfer from the
lighter ions.

6. CONCLUSIONS

Having considered ion heating in a plasma with two
ion species of different charge-to-mass ratio, we can
formulate the following results. First, the ion species

for which the parameter  is smaller is heated at
a faster rate. Second, under conditions in which colli-
sions are unimportant, both of the ion species are
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heated to a fairly large extent only when  ~

, in which case their temperatures increase at

equal rates. When the parameter  differs con-
siderably between the two ion species, and when colli-
sions are unimportant, only one of the species is heated
substantially at a fast rate, while the temperature of the
other species rapidly approaches a constant value that
differs insignificantly from the initial temperature.
Finally, taking into account energy exchange in colli-
sions between ions of different species removes this
limitation on the temperature of the ion species heated
at a slower rate. In this case, if the masses of the ion spe-
cies are significantly different, then the lighter ions are
almost always heated at a constant rate, in which case,
however, the temperature difference between the spe-
cies can grow over time, in particular, at a progressively
increasing rate.

As an example of a plasma system in which the con-
ditions adopted in our study are satisfied, we consider
the GOL-3 multi-mirror device [23, 24]. The parame-
ters of HO plasmas in the previous and planned GOL-3
experiments are as follows: Te ~ 2 keV, Te/Ti ~ 102, ne ~
nH ~ 1015 cm–3, and n0/nH ! 1. For our estimates, we
assume that the plasma is fully ionized and that the oxy-
gen concentration is comparatively low, n0/nH ~ 10–2. In
the GOL-3 plasma, the electron temperature gradients
are fairly large: in a certain small plasma region, they
are as strong as 1 keV/40 cm, and, in a larger region,
they are weaker (about 1 eV/cm). We also assume that
|∂T/∂z | ~ 1 eV/cm; this value exceeds the threshold for
IAT by a factor of about 50. The strong damping of the
low-frequency mode is ensured by the condition
rD1/rD2 ~ 0.8 < 1. In turn, condition (2.4), under which
the IAT spectrum can be described by formula (2.3), is
satisfied by a large margin: its right-hand side is larger
than the left-hand side by a factor of 10. In this case, the
characteristic frequencies of turbulent heating of the

ion species are equal to ( )–1 ≅ 2.2 × 106 s–1 and

( )–1 ≅ 2.2 × 107 s–1, which indicate that oxygen ions
are heated at a faster rate than hydrogen ions. Since the
turbulent heating rates are low in comparison with the
characteristic frequencies of collisions among ions of
the same species, (τ11)–1 ≅ 1.7 × 107 s–1 and (τ22)−1 ≅
1.0 × 108 s–1, the bulk of the ions in the plasma obey
Maxwellian distribution (3.2). The electron–ion energy
exchange can be ignored because the terms in
Eq. (3.14) that describe corresponding exchanges with
lighter (hydrogen) ions and heavier (oxygen) ions are
smaller than the term accounting for turbulent ion heat-
ing by a factor of 25 and of 100, respectively. In this
case, the parameter characterizing the role of colli-
sional energy exchange is approximately equal to

τ21/  ≅ 3.2 × 10–2, so that the ion heating is described
by a dependence analogous to that given by curve 2 in
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Fig. 3. The above estimates show that the properties of
turbulent ion heating that have been revealed in our
study can be used to interpret the results of experiments
similar to those in the GOL-3 device.

In conclusion, note that condition (2.4), which leads
to formula (2.3) for the IAT spectrum, is not always sat-
isfied in a plasma with two ion species of different
charge-to-mass ratio. In such a situation, the IAT spec-
trum can no longer be described by formula (2.3) and
the properties of turbulent plasma heating will gener-
ally differ from those revealed above (see [21] for
details).
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Abstract—Results are presented from experimental studies of promising output units for high-current pulsed
generators within the framework of the program on inertial confinement fusion research with the use of fast
Z-pinches. The experiments were carried out on the S-300 facility (4 MA, 70 ns, 0.15 Ω). Specifically, sharp-
ening systems similar to plasma flow switches but operating in a nanosecond range were investigated. Switch-
ing rates to a load as high as 2.5 MA per 2.5 ns, stable switching of a 750-kA current to a low-size Z-pinch, and
the radiative temperature of the load cavity wall of up to 50 eV were achieved. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

One of the most promising research trends in
designing high-power pulsed sources of soft X-ray
(SXR) emission for inertial confinement fusion, as well
as in studying the properties of materials under the
destractive action of high-power radiation, is based on
using pulsed current generators of megaampere (and, in
the near future, multimegaampere) range. In these
experiments, an imploding Z-pinch with a characteris-
tic lifetime on the order of a few tens of nanoseconds is
used as a load. This enables SXR pulses with a power
of several hundred terawatts to be generated [1]. In par-
ticular, experiments are performed with cylindrical
arrays (liners) in the form of a squirrel cage made of
micron-diameter wires.

The radial implosion of a liner whose mass is ini-
tially distributed over a cylindrical surface of radius r
and length l is accompanied by the heating of the liner
material and conversion of the magnetic energy into
thermal radiation, which is emitted within an extremely
short time interval. Such experiments are presently
being carried out in a number of large facilities, includ-
ing the Angara-5-1 [2] and S-300 [3] facilities (Russia),
the MAGPIE facility [4] (Great Britain), and the
world’s largest Z facility [1] (the United States). At the
Z facility (with a current of ~20 MA), the generation of
an SXR burst with a duration of several nanoseconds
and total energy of about 1.8 MJ has been achieved.
Such parameters open up the possibility of carrying out
experiments with hohlraum targets at energies close to
those required for thermonuclear ignition. Unfortu-
nately, in this scheme for the conversion of magnetic
energy into X radiation, the latter is emitted into a 4π
solid angle and occupies the entire (relatively large)
1063-780X/04/3004- $26.00 © 20318
volume of the liner unit. This circumstance signifi-
cantly reduces the energy density stored in this unit
and, consequently, the equivalent radiative tempera-
ture.

It is because of this feature that the heating of a tar-
get to the temperature needed for the initiation of ther-
monuclear reaction requires the creation of super-high-
power pulsed generators with a current pulse amplitude
of 50–60 MA and a duration of 100–150 ns. However,
the physics of the above processes can be studied even
now with present-day generators operating at lower
currents and stored energies. In particular, in experi-
ments on the implosion of a liner with a relatively low
mass, a maximum velocity of Vmax ~ 108 cm/s, which is
required for the efficient generation of thermal radia-
tion, can in principle be achieved. It is also possible to
study the formation of a current-carrying cylindrical
plasma shell, i.e., to model the initial stage of the pro-
cesses that will occur in future, higher power facilities.
The increase in the intensity of the radiation flux onto
the target in a cavity can be achieved by decreasing the
cavity size, i.e., the cavity volume and the surface area
of the reradiating wall. This obviously requires decreas-
ing the initial liner radius r from which the liner mass is
accelerated toward the axis. Since the energy needed
for the liner mass acceleration should be deposited in a
time τ ~ r/Vmax, the decrease in the liner radius means
that the current pulse must be significantly sharpened.

In this study, we present the results of experiments
carried out with small-size loads on the S-300 facility
(see [5]) at the Russian Research Centre Kurchatov
Institute and the results of numerical simulations of the
output unit of a high-current generator. We also con-
sider questions related to diagnostic problems.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of the output unit with a small-size plasma flow switch and a load.
2. EXPERIMENTAL DESIGN AND RESULTS

Figure 1 shows an output unit designed for experi-
ments with small-size cylindrical liners (r ≈ 1 mm, l ≈
10 mm) on the S-300 facility with a concentrator based
on a system of vacuum transmission lines. The genera-
tor produces a current pulse with an amplitude of 2.5–
3 MA and a rise time of Tpulse ~ 70 ns through an induc-
tive load with L ~ 10 nH. A cylindrical load (the liner or
a metal wire substitute) is placed at the axis of a cavity
whose side wall is a metal tube with an inner radius of
1.7–2.0 mm and a length of 10 mm. One load end is
connected to the end of the inner cylinder of the coaxial
feeder, which, in turn, is connected to the generator
cathode. Another load end is connected to the generator
anode through a cylindrical resistor (noninductive
shunt) measuring the current, the side wall of the cavity,
and the outer cylinder of the coaxial feeder. The shunt,
which is made from 8- to 25-µm constantan foil, pro-
vides time resolution of ∆τ ~ 1–2 ns. The foil is chosen
to be thick enough for it not to be destroyed during the
current pulse; in our experiments, the foil thickness
happened to be on the order of the skin depth. (Opera-
A PHYSICS REPORTS      Vol. 30      No. 4      2004
tion of a shunt with a thickness close or larger than the
skin depth is described in the Appendix.) The computa-
tion results show that, during the current pulse, varia-
tions in the shunt signal caused by the foil heating are
less than 10%. Between the cavity end and the end of
the cathode cylinder, there was a gap, the length of
which was varied from 1 to 2.6 mm. The total current
flowing through the disc line (the anode–cathode in
Fig. 1) was monitored by averaging and integrating sig-
nals from eight dIin /dt detectors arranged over a circle
of radius ~5 cm (see Fig. 1).

To sharpen the current pulse to a few nanoseconds,
we used a switch with an accelerated current-carrying
plasma bridge. A similar system operating in a micro-
second range is called the plasma flow switch. Up to
now, it was used in regimes with an input-current rise
time of several microseconds and allowed one to obtain
current pulses with an amplitude on the order of 107 A
and a rise time of 500–600 ns, whereas, in our case, the
characteristic times were on the order of a few nanosec-
onds. At given pulse parameters, the material, size, and
other characteristics of the object from which the
plasma bridge is produced should be chosen experi-



 

320

        

BAKSHAEV 

 

et al

 

.

                                                                                                     
mentally to enable a regime of intense radiative plasma
cooling, otherwise the gap will be bridged by a plasma
cloud and, consequently, the current will not be
switched to the load.

In our experiments, the plasma bridge was created
by the electric breakdown and subsequent ionization of
a polymer film (in some experiments, coated with a thin
metal layer) placed in the annular gap of the feeding
line, r1 < r < r2 (see Fig. 2). The pulse voltage in the
open circuit can increase over a time of Tpulse ~ 70 ns to
U ~ 1 MV, which significantly exceeds the breakdown
voltage. Hence, the breakdown and ionization of the
film occur at the very beginning of the pulse, and then
almost the entire current flows through the bridge,
which begins to be accelerated along the coaxial line

under the action of the ponderomotive force j × B.

Taking into account that B ∝  1/r and the corresponding
magnetic pressure PB is proportional to 1/r2, we can
estimate the acceleration of the plasma, assuming that
the film is uniform and the magnetic field does not pen-
etrate to the rear surface of the plasma bridge: a ≈
PB/ρδ, where ρ is the plasma density and δ is the thick-
ness of the plasma bridge. Accordingly, the axial dis-
placement of the plasma bridge should depend on the
radius as 1/r2. In other words, the plasma bridge will
bend. The bridge positions at successive instants of
time t0, t1, t2, and t3 are shown in Fig. 2. Near the elec-

1
c
---

r1
r2

t0

t1

t2

t3

Fig. 2. Central part of the output unit.
trode surface, the bridge acceleration should decrease
because of the formation of a boundary layer consisting
of dense plasma produced due to the evaporation and
ionization of the electrode material. A counteracting
process is the thinning of the bridge due to the plasma
being pushed away from the surface of the inner cylin-
der. This can even result in the detachment of the
plasma bridge from the wall and the formation of an
erosion plasma opening switch in the gap. This picture
of bridge motion follows from a qualitative consider-
ation and rough analytical estimates. To consider the
dynamics of this type of plasma flow switch in more
detail, we performed numerical simulations, the results
of which are presented in Section 3.

When the current-carrying plasma bridge crosses
the gap between the ends of the inner coaxial cylinders
(in the time interval between the instants t2 and t3; see
Fig. 2), the load is incorporated the current circuit (i.e.,
the magnetic flux penetrates into the load cavity). The
characteristic duration of such a commutation can be
estimated as the effective length of the switching region
(the width of the end gap + the thickness of the current-
carrying sheet in the bridge) divided by the current
sheet velocity near the surface of the cathode cylinder.
In our experiments on the implosion of liners with an
initial radius of ~1 mm, it was necessary to sharpen the
leading edge of the current pulse to a few nanoseconds;
for this purpose, the plasma bridge should be acceler-
ated to velocities higher than 5 × 107–108 cm/s.

The plasma bridge was first produced from a 5- to
10-µm aluminum foil. Then, in order to decrease the
mass of the accelerated bridge, 2- to 5-µm polymer
Mylar films were used, along with nitrocellulose films
having a thickness less than 1 µm, and others. The uni-
formity of the film breakdown was qualitatively esti-
mated by the uniformity of the discharge glow in frame
images recorded with an image tube. The images were
taken from the top (see Fig. 1) in the absence of the
shunt unit. The velocity with which the plasma bridge
moved along the inner electrode was determined by
taking streak images of the discharge glow through
~1-mm-diameter holes made in the sidewall of the
outer cylinder along the cylinder generatrix (see Fig. 1).
One such streak image is shown in Fig. 3.

The highest experimentally observed velocity of the
plasma bridge was about 108 cm/s. This velocity was
achieved with a 1.5-µm annular plastic washer coated
with a thin Al layer. The best results were achieved
when the Al coating was deposited from the generator
side. In the first experiments, 0.5- to 2-mm-diameter
metal wires in a 4-mm-diameter tube were used to imi-
tate the liner; in this case, the load inductance (includ-
ing the shunt) was ~2–3 nH. The shunt signals were
used to detect the switching of a significant fraction of
the current to the load. The characteristic rise time of
the load current ranged from 2.5 to 10 ns in different
experiments. The duration of the current pulse through
the load varied from 7 to 20 ns, depending on the length
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
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of the gap between the ends of the coaxial line (the
longest duration was observed for gap lengths of 1.6–
1.8 mm). The pulse duration was evidently determined
by the amount of the bridge plasma entering the load
cavity through the gap, as well as by the gap break-
down. In some experiments, we recorded current pulses
through the load with an amplitude of up to 2.5 MA and
a rise time of about 2.5 ns (see Fig. 4, curve 1). Figure 4
also shows the waveform of the total current that
increases to ~3 MA in 70 ns (curve 2). Thus, a 25-fold
sharpening of the leading edge of the current pulse and
an increase in the current growth rate to dIL/dt ~ 1015 A/s
were achieved for the first time in these experiments.
These results, however, are poorly reproducible. It
seems that they are close to the limiting characteristics
of the switch and can be achieved only for a certain
optimum combination of the experimental parameters.

20 ns

1 
cm

Fig. 3. Visible-light streak image of the plasma bridge
motion. The image of the cylinder sidewall is projected onto
the streak camera slit. The lower strip corresponds to the
initial position of the plasma bridge.
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In most of the experiments, the current growth rate was
dIL/dt ~ (1–3) × 1014 A/s, which is sufficient for study-
ing the formation of a current-carrying plasma shell and
the generation of SXR emission.

To form a plasma bridge with a sharper boundary,
we used double washers made of two 1.5-µm Mylar
films spaced by a distance of 1–2 mm. In this case, the
second film acts as a barrier and explodes after the first
film strikes it. In addition, to prevent the premature
detachment of the bridge from the inner electrode of the
coaxial line (before the bridge reaches the end of the
coaxial line) and the subsequent plasma erosion, as
happens in ordinary plasma opening switches, we
sometimes used a tapered inner electrode (shown by the
dashed line in Fig. 2), whose diameter increased in the
propagation direction of the bridge. The corresponding
waveforms are shown in Fig. 5. Here, curve 4 shows the
shunt signal indicating the switching of the current to
the load. The signal of pulsed SXR emission from the
switch is shown by curve 5. The first spike in this signal
corresponds to the instant of collision between the first
film and the barrier (the second film), while the second
spike corresponds approximately to the instant at which
the current is switched to the load. The fact that the sec-
ond spike occurs somewhat before the current is
switched to the load can be attributed to the aforemen-
tioned process of plasma erosion, during which both
the plasma bridge resistance and the voltage between
the switch electrodes sharply increase. In this particular
experiment, the current through the load reached
~750 kA and the switching time was about 5 ns. In con-
trast to the case with the maximum switching rate
(Fig. 4), the current through the load reached its ampli-
tude value over a time that was significantly longer than
the switching time.
0 40 80 120 160 200

2.5 åÄ

2.6 åÄ

1

2

I,
 J

L,
 å

Ä

t, ns

Fig. 4. Waveforms corresponding to the rapid switching of the current to the load: (1) current through the load IL and (2) input cur-
rent I.
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Fig. 5. Commutation of the current to the load with the help of a double plasma bridge and a conical inner electrode: (1) total current I
obtained by the analog integration of the signal from diagnostic loops, (2) total current I obtained by the numerical integration,
(3) dI/dt signal, (4) the current IL through the load, and (5) SXR signal P from the current commutation region.
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2 × 10–5

Sensitivity, A/W

Fig. 6. Sensitivity of an XRD with a Ni cathode and
Mylar filters with surface mass densities of (1) 0.36 and
(2) 0.67 mg/cm2.
In experiments on liner implosion, arrays consisting
of eight to sixteen tungsten wires with diameters of 5–
6 µm arranged in the form of a squirrel cage with a
radius of ~1 mm were used as loads. The arrays were
placed on the axis of a metal tube with an inner diame-
ter of 3.8–4.0 mm. The length of the liner was 10 mm.
In addition to monitoring the electric signals, we also
measured the pulsed X-ray emission with photon ener-
gies of hν ≥ 50 eV. The measurements were carried out
with the help of two vacuum X-ray diodes (XRDs)
equipped with Ni cathodes and Mylar filters with a sur-
face mass density of 0.34 or 0.67 mg/cm2. The XRD
sensitivity curves are shown in Fig. 6. No special cali-
bration of the diodes was performed, and their sensitiv-
ity was calculated using the literature data to within a
factor of 2.

We present the results of our X-ray measurements
below. In some experiments with liners consisting of
sixteen tungsten wires arranged over a 2-mm-diameter
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
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Fig. 7. Waveforms of (1) the output current and (2, 3) the XRD signals P1 and P2 from detectors equipped with Mylar filters:

(2) 0.36 mg/cm2 (reduction factor of 1 : 20) and (3) 0.67 mg/cm2 (reduction factor of 1 : 10).
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cylindrical surface, the measurements were performed
through a 2-mm-diameter hole in the top end of the load
cavity. The detectors were set on the liner axis at a dis-
tance of 1.1 m from the hole. Figure 7 shows, as an
example, two signals with durations of about 10 ns. The
radiative temperature was estimated from the ratio
between the signals from two XRDs under the assump-
tion of a Planckian emission spectrum. Estimates show
that the radiative temperature was T ≅ 140 eV, the emit-
ted energy was Ehν ≈ 20 J, and the area of the emissive
surface was on the order of 2 × 10–5 cm2.

The above interpretation of the results of X-ray
measurements is somewhat ambiguous. This is related
to the possible presence of hot spots near the liner axis
in the final stage of the Z-pinch implosion and the pres-
ence of regions with different temperatures in the liner
plasma. We believe it would be more informative and
unambiguous to measure the radiative temperature of
the inner surface of the load cavity. This surface is
heated by both the liner emission and the electric cur-
rent.

We carried out a series of experiments in which
XRDs monitored the inner surface of the cavity through
a 1-mm-diameter hole made in the cavity wall (Fig. 8).
The loads were the same as in the previous experi-
ments. The lines of sight of the detectors were oriented
so that the liner wires did not fall within the detectors’
field of view. The XRDs were placed at a distance of
L = 2.3 m from the liner axis. The effective area of the
hole was 0.5 mm2. In these experiments, signals
observed from behind a 0.36-mg/cm2 filter corre-
sponded to a wall temperature of 38–48 eV, assuming
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
that the emission spectrum from the hole followed the
blackbody spectrum.

3. NUMERICAL SIMULATIONS
OF A FAST PLASMA FLOW SWITCH

3.1. Mathematical Model

A system consisting of two rigid coaxial electrodes
is connected to a pulsed current generator. The inter-

1 mm

Direction
of observation

Multiwire
array

Direction
of the current

Observation
window

Cylindrical
load cavity

Fig. 8. Schematic of the measurements of X-ray emission
from the load cavity.
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electrode space (R1 < r < R2, 0 < z < Z) is occupied with
a plasma (Fig. 9). It is assumed that, at the initial instant
(t = 0), the electron temperature Te is equal to the ion
temperature Ti, the plasma is at rest, and the specific
mass density ρ of the plasma is constant throughout the
entire plasma volume. The electrodes are assumed to be
at a zero temperature. The magnetic field at the elec-
trode walls and the upper boundary of the plasma is set
at zero: B(R1) = B(R2) = B(Z) = 0. At the lower plasma–
vacuum interface (z = 0), the magnetic field is related to
the total current in the external electrical circuit by the
following relationship, written in dimensionless units
(see below):

where  is the current in the external

circuit, Tpulse is the current rise time, and r is the dis-
tance from the system axis. The motion of a two-tem-
perature plasma in a magnetic field is described by the
magnetohydrodynamic (MHD) equations [6–8] with
allowance for radiative heat transfer. It is assumed that
the magnetic field induction B has only the ϕ compo-
nent: B = Bϕe4. The evolution of the magnetic field in

Bϕ
0.2I t( )

r
-----------------,=

I I0
πt

2Tpulse
---------------sin=

0

R1 R2

I(t)

z

r
ϕ

ρ(r, z) Τ(r, z)

B

Fig. 9. The model of the plasma flow switch.
plasma is described by the equations of electron mag-
netohydrodynamics (EMHD) [9]

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where n is the electron density, Te is the electron tem-
perature (in energy units), and σ is the plasma conduc-
tivity. The difference between the ion and electron
velocities is taken into account by introducing the elec-
tron current velocity j/ne into Eq. (5).

We note that in the problem under study, the initial
characteristic scale length is by one order of magnitude
higher than c/ωpi , so that it could be expected that the
EMHD effects would be of minor importance. How-
ever, the results of numerical simulations show that this
is not the case. The simulation results obtained in the
EMHD and MHD approximations turn out to be quite
different, which is related to the emergence of space
scales significantly smaller than the initial one over the
course of MHD evolution, especially near the elec-
trodes.

The above set of equations was solved numerically
using a conservative difference scheme on a curvilinear
variable mesh constructed by the integro-interpolation
method with the splitting of the physical processes
[10].

The set of equations (1)–(4) was solved with respect
to the magnetic field inductance Bϕ. We note that, after
excluding the current density by means of Eq. (3), this
set becomes nonlinear with respect to Bϕ. The calcula-
tions were performed by an inexplicit scheme with
intermediate iterations over nonlinearity on the current
time layer. In the region occupied by the plasma, a reg-
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Fig. 10. Distributions of the magnetic field induction Bϕ, the mass density ρ, the electron temperature Te, and the logarithm of the
parameter β at t = 20 ns. The mesh is composed of 20 × 20 Lagrange cells.
ular Lagrange mesh was defined. To diminish the defor-
mation of Lagrange cells in the course of computation,
the mesh nodes were rearranged using an optimizing
procedure with the subsequent conservative recalcula-
tion onto a new mesh. The algorithm for the mesh opti-
mization was based on the method described in [11].
The procedure was applied after a preset number of
time steps or when a “reversed” cell occurred at the cur-
rent time step. In the latter case, the time step was
decreased.

In numerical simulations, we used dimensionless
variables normalized to the following characteristic
scales: 100 ns for time, 1 cm for length, 1 mg/cm3 for
the mass density, 1 keV for the temperature, 1 MA for
the current, and 1 MG for the magnetic induction.

3.2. Simulation Results

The numerical simulations were performed for dif-
ferent parameters of the plasma and the current pulse in
the external circuit. The typical results presented below
correspond to the following parameters: R1 = 0.2 cm,
R2 = 0.5 cm, Tpulse = 100 ns, pulse amplitude I0 =
2.5 MA, Hall parameter ωBeτe = 0.1, ρ = 0.3 mg/cm3,
and the initial temperatures Te = Ti = 10 eV. As in the
experiment, the outer electrode acted as an anode. The
plasma material was pure carbon. The computational
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
results are shown in Figs. 10–12. The dimensionless
parameter β (the ratio of the plasma pressure to the
magnetic pressure) is shown within a range covering
four orders of magnitude.

Under the above initial conditions, plasma is origi-
nally in the MHD regime. After the start of the current
pulse, the field starts to diffuse into the plasma from the
lower boundary of the switch (see Fig. 9). Simulta-
neously, the plasma expands into a vacuum. This
expansion is accompanied by a decrease in the temper-
ature to 5 eV. Near the electrodes, the expansion rate is
lower than that in the interelectrode gap because, in the
latter, the temperatures of the plasma components
decrease more rapidly. At the very beginning of the pro-
cess (at t < 10 ns), the applicability range of EMHD
corresponds to a thin layer near the lower boundary;
hence, the role of the EMHD terms in Eq. (1) is insig-
nificant. In this stage, a correction to the magnetic field
due to the thermoelectronic shift in the electrode
regions at the plasma–vacuum interface is about 10 G,
which is much lower than the field variations caused by
resistive diffusion. Due to the imposed boundary condi-
tions, the electron current density is higher at the lower
boundary, near the electrodes. It is maximal near the
cathode, where a significant local Joule heating of elec-
trons occurs.
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Fig. 11. Distributions of the magnetic field induction Bϕ, the mass density ρ, the electron temperature Te, and the logarithm of the
parameter β at t = 40 ns. The mesh is composed of 20 × 20 Lagrange cells.
By the time t = 10 ns, the magnetic and plasma pres-
sures near the anode are equal to each other, after which
a shock wave (SW) is formed. At t = 20 ns (see Fig. 10),
a “snow plow” is being formed behind the SW front.
The ions are heated to a temperature of 11–12 eV; the
electrons, to 7–10 eV. The temperatures are maximum
at the plasma–vacuum interface, near the anode:
Te ≅ 12 eV and Ti ≅ 32 eV. The velocity of the free
boundary reaches 6.8 × 106 cm/s.

By the time t = 30 ns, the velocity of the boundary
reaches 1.2 × 107 cm/s, and the temperatures reach Te ≅
29 eV and Ti ≅ 100 eV. By this time, the plasma bound-
ary has traveled a distance of 0.3 cm.

By the 40th nanosecond (Fig. 11), the role of the
density and electron temperature variations near the
inner electrode significantly increases and the EMHD
effects come into play. At this time, the electron and ion
temperatures near the inner electrode are Te ≅ 38 eV
and Ti ≅ 715 eV, and the substance is fully ionized. Cal-
culations show that a low-density toroidal “bubble” is
formed near the anode. This bubble is initially adjacent
to the SW and exists until the end of the calculation.
Inside the bubble, the field has local maxima and min-
ima; this corresponds to the formation of current loops.
The bubble volume increases with time, while its den-
sity decreases. The maximum magnetic field at the
lower boundary is 1.86 MG, and it is 0.8 MG inside the
bubble. The plasma density reaches its maximum value
of 0.38 mg/cm3 at the SW front, and the maximum
velocity of the free boundary is 1.6 × 107 cm/s. By this
time, the plasma boundary has traveled a distance of
0.65 cm.

By the time t = 60 ns (Fig. 12), the ion temperature
reaches its maximum value of 3 keV near the anode at
the lower plasma boundary. The rapid deformation of
the Lagrange cells is then observed at the lower bound-
ary of the bubble, the velocity of the mesh nodes being
as great as 7 × 108 cm/s. It thus becomes necessary to
recalculate the mesh at each time step. As a result, we
had to terminate our computations at t = 62 ns.

Numerical simulations carried out with finer meshes
(up to 100 Lagrange cells in each direction) also dem-
onstrate the formation of bubbles near the anode (and in
certain versions, near the cathode as well). Due to a sig-
nificant deformation of the Lagrange cells, the compu-
tation time in this case was limited by 40–47 ns. When
the radial variations in the plasma density and/or the
temperatures of the plasma components are taken into
account, the plasma dynamics exhibits EMHD features.
These results will be presented in a separate paper.

A characteristic feature of the process under study
(in both the MHD and EMHD models) is the high sen-
sitivity of the plasma bridge to the initial conditions.
Thus, varying the initial temperature from 7 eV (a situ-
ation similar to that discussed above) to 5 eV leads to a
significant modification of the plasma dynamics. By the
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
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Fig. 12. Distributions of the magnetic field induction Bϕ, the mass density ρ, the electron temperature Te, and the logarithm of the
parameter β at t = 60 ns. The mesh is composed of 20 × 20 Lagrange cells.
40th nanosecond, the radial plasma velocity becomes
higher than the axial (twice as high by the end of the
calculation), and a vortex emerges in the electrode
region. In our opinion, the further evolution of this vor-
tex can result in a transition from a hydrodynamic
regime to a regime in which the space charge plays a
significant role on a characteristic spatial scale of c/ωpe.
The latter regime corresponds to the final stage of ero-
sion switch operation. Perhaps it is the high sensitivity
to the initial conditions that is responsible for the poor
reproducibility of the extreme regimes of the current
commutation to the load.

An important computational result is the rapid
increase in the perturbation at the inner electrode. It
was due to this circumstance that we had to employ a
cascade experimental scheme.

4. CONCLUSIONS

The results of experiments performed in the S-300
high-current pulsed generator with imploding wire
arrays placed inside a closed cavity provide a good
basis for future experiments with hohlraum targets in
present-day facilities. The output units operating on the
principle of a plasma flow switch that were employed in
our experiments were shown to be capable of operating
in a nanosecond range. In some experiments, a switch-
ing rate to the load as high as 2.5 MA per 2.5 ns was
achieved. Using a cascade scheme enables stable oper-
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
ation regimes with a switching rate of up to 750 kA per
5 ns. The radiative temperature of the cavity wall was
40–50 eV.

Two-dimensional numerical simulations of a
plasma flow switch were performed using a two-com-
ponent magnetohydrodynamic model with allowance
for radiative heat transfer. The first stage of the output
unit operation (up to the switching instant) was numer-
ically investigated in more detail.
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APPENDIX

Let us solve the time-dependent problem of deter-
mining the current flowing through a thin-walled hol-
low cylinder from the electric-field measurements at
the inner surface of the cylinder with allowance for the
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skin effect. It is well known that almost all the inverse
problems refer to the class of ill-posed problems. In the
case at hand, the problem is, in essence, ill-posed
because of the exponential decay of a high-frequency
electromagnetic field in a conductor (with the decay
rate increasing without bound as the current frequency
increases). Since only weak echoes of the correspond-
ing harmonics reach the inner surface of the cylinder,
even small errors in their determination can lead to a
significant discrepancy between the calculated and true
current values. The methods for overcoming the ill-pos-
edness consist in abandoning physically unreliable
information and reconstructing only the smooth (on the
characteristic skin-time scale) current components.

The skinning of an electromagnetic field in a homo-
geneous metal cylinder with a conductivity σ is
described by conventional diffusion equations. For an
axially symmetric distribution of the current flowing
along the cylinder, all the quantities depend on the
radius only and the problem becomes one-dimensional.
We may also exploit the fact that the thickness of the
cylinder wall δ is small compared to its outer radius.
Hence, the set of equations for the azimuthal magnetic
field and axial electric field can be reduced to a case of
plane geometry with the x axis directed inward along
the radius (in this case, the inaccuracy will be on the
order of δ/R ! 1; note that the exact solution presents
no difficulties except for some rather cumbersome alge-
bra):

Obvious boundary conditions for this set of equations
are B|x = 0 = 2I(t)/cR and B|x = δ = 0, whereas the initial
condition is B|t = 0 = 0. Upon solving this set of equa-
tions, we obtain the relation between B|x = 0 ⇔ I(t) and
∂B/∂x |x = δ ⇔ Ein.

The simplest way to find the distribution of the
skinned magnetic field in the cylinder is to apply the
Laplace transformation in time: B(x, t)  Bp(x). Sim-
ple calculations result in the relationship

The inverse transformation relates the measured elec-
tric field and the total current via a convolution integral
over time. However, it is very problematical to directly
use this relation, because the Laplace transform of the

function , with which Ein(t) is to
be convoluted, has a singularity at the point t = 0 (the
Laplace transform increases without bound as p  ∞,
whereas even for a Dirac delta function, it tends to a
finite value). This is a mathematical manifestation of
the claimed ill-posedness.

To recover the smooth components (harmonics) of
the current that are slightly skinned over the wall thick-

∂B
∂t
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c
2

4πσ
----------∂2

B

∂x
2

---------, E
c

4πσ
----------∂B

∂x
------.–= =

dBp

dx
---------–

x δ=

p/D

p/Dδ( )sinh
---------------------------------Bp x 0= , D

c
2

4πσ
----------.= =

p/Dδ( )/ p/Dsinh
ness δ, one can expand the function

 into a series in the small param-

eter  and keep the first three terms:

The first of these terms corresponds to the absence of
skinning, the second is the required correction, and the
third serves to verify the accuracy of the model (it
should be small compared to the second term, although
it is reasonable to take it into consideration near the
extrema of I(t)). It can be seen that, due to the rapid
decrease in the coefficients by the expansion terms, the
series is well convergent even when the skin effect
plays an important role (the decay factor over the wall
thickness δ is on the order of unity).

Taking into account the relationship pn ⇔ (d/dt)n,
which is valid at zero initial conditions, we finally
obtain

where V(t) is the signal from the detector placed at the
inner surface of the cylinder and C is the scaling factor
(for example, if one measures the voltage between two
electrodes separated by the distance l along the system
axis, this factor is equal to 2πδσR/l). The ill-posedness
manifests itself in this formula as an increased sensitiv-
ity to high-frequency harmonics. This sensitivity stems
from the series expansion in the derivatives of succes-
sively increasing order; however, operating with
smoothed dependences V(t) causes no problems.

The same formula is obtained if one uses the time
hierarchy in the explicit form in ordinary space, repre-
senting the solution to the initial diffusion equation
with the same boundary conditions in the form of a
series B(x, t) = B0 + B1 + …, whose terms are obtained
from the chain relationships

Accordingly, there is no need to consider questions
about the relation between the convergence in the space
of ordinary functions and their Laplace transforms.
When the time derivatives of V(t) are not too large, the
formula proposed correctly describes (both qualita-
tively and quantitatively) such important consequences
of the skin effect as the signal delay and the damping of
the peaks of I(t), while simultaneously offering a sim-
ple means of maintaining the proper accuracy.
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Abstract—The local dispersion relation obtained for an inhomogeneous anisotropic high-pressure plasma in
the Chew–Goldberger–Low approximation is used to qualitatively study small-scale MHD plasma instabilities
in alternative magnetic configurations in which the plasma compressibility plays a significant stabilizing role.
It is established that it is important to satisfy the Bernstein–Kadomtsev condition in order to reduce the growth
rate of the quasi-flute oscillations. Moderate plasma anisotropy is shown not to have a substantial destabilizing
effect on the MHD plasma stability under the Bernstein–Kadomtsev condition in alternative systems. The situ-
ation in which the electron compressibility vanishes while the ion compressibility is nonzero is discussed; it is
shown that, in this situation, the Bernstein–Kadomtsev condition becomes more stringent as the longitudinal
wavenumber increases. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, there is increased interest in magnetic
systems for confining hot plasmas in weak magnetic
fields (at high β values). Much of this interest stems
from advanced ideas about the improvement of mag-
netic confinement by optimizing the magnetic field
geometry and by modifying the schemes for MHD
plasma stabilization [1]. The objective of the present
paper is to analyze the MHD stability of plasmas in
alternative toroidal systems such as small-aspect-ratio
tokamaks, stellarators, and systems with closed mag-
netic field lines [2–4]. These plasma confinement
devices were chosen for analysis because they share a
common property—the significant stabilizing effect of
plasma compression, on which the present-day modifi-
cation of MHD plasma stabilization schemes has been
based. Technologically, the key element in this modifi-
cation is a toroidal magnetic divertor, which ensures
that the magnetic separatrix exhibits a field null. A
peculiar feature of the alternative configurations under
discussion is that the magnetic field in them is strongly
rippled along the field lines. Therefore, one of the goals
of the present work is to investigate how the stabiliza-
tion by compressibility is affected by the nonisothermal
nature of the plasma and its anisotropy, as well as by
high β values.

To analyze the stability of different MHD modes in
magnetic confinement systems is a complicated task
and, as a rule, requires numerical simulations. It turns
out, however, that a fundamental physical picture of the
stability of ideal modes can be derived from analysis of
a comparatively simple local dispersion relation. This
analysis also shows that the natural oscillations of a
1063-780X/04/3004- $26.00 © 0330
homogeneous plasma and unstable MHD modes that
arise in an inhomogeneous plasma are mutually cou-
pled to one another [5].

It is simplest to derive the local dispersion relation
for the local modes of a plasma cylinder at β ! 1 [1].
Recall that the derivation consists of the following
steps. The key point is to obtain an expression for the
perturbed plasma pressure  in terms of only the radial
displacement ξr . In the one-fluid approximation, the
continuity equation and the adiabatic equation yield

 = –ξrp' – γ0p— · x, where x is the plasma displace-
ment vector, γ0 is the adiabatic exponent, and the prime
denotes the derivative with respect to the radius r. The
equation of plasma motion along the magnetic field

lines gives — · x = [ω2/(ω2 – )]— · x⊥ , where x⊥  is
the displacement vector transverse to the magnetic
field, ω is the oscillation frequency, k|| = (kzBz +
mBϕ /r)/B is the longitudinal wavenumber, B is the
absolute value of the magnetic field, Bz, ϕ are the mag-
netic field components, m is the azimuthal mode num-
ber, kz is the wavenumber along the cylinder axis, cs =

 is the speed of sound, and ρ is the plasma mass
density. Assuming that β is low and using the definition
of the drift velocity VE in the electric field of the wave,
dx⊥ /dt = VE, we obtain — · x⊥  = 2ξr/R, where R =

rB2/  is the radius of curvature of the magnetic field
line (for details, see, e.g., [6], Section 4). The result is

 = –ξr(p' + 2γ0pω2/R(ω2 – )). Substituting this
expression into the equation for small MHD oscilla-
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tions yields the following local dispersion relation for
small-scale modes [1, 5]:

(1)

where VA =  is the Alfvén speed, the wavenum-
ber in the direction of the binormal is denoted as kb =
(−kzBϕ + mBz/r)/B, and the wavenumber kr in the direc-

tion of the normal is defined by  =  + .

In the quasiclassical approximation, in which all
wavenumbers are assumed to be sufficiently large, the
form of dispersion relation (1) for toroidal systems of
arbitrary geometry should be the same. This assertion
can be exemplified by the well-known equations for
ideal ballooning modes (see, e.g., [7], Section 6)

(2)

Here, ξ and τ are the transverse (along the normal to the
magnetic surface) and longitudinal (along the magnetic
field lines) plasma displacements, respectively; k =

 is the curvature vector of the magnetic field

line; k is the wave vector; k⊥  =  and kb =

 are the normal and azimuthal compo-

nents of the wave vector; a is the label (“radius”) of the
equilibrium magnetic surface; and the prime denotes
the derivative with respect to a. In the quasiclassical
approximation, the perturbations in Eqs. (2) are repre-
sented as

(3)

where C1, 2 are slowly varying functions along the mag-
netic field lines. In this case, the second of Eqs. (2)
gives the relationship between C1 and C2,
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and the first of Eqs. (2) yields the dispersion relation

(5)

where R = –Bkb/[B × k] · k⊥  is radius of curvature of the
magnetic field line. Note that dispersion relation (5)
contains a combination of parameters that is indepen-
dent of the choice of the magnetic surface label a. For
β ! 1, this dispersion relation formally coincides with
dispersion relation (1), the only difference being that
the magnetic field lines can be of variable curvature and
the wavenumbers can change along them.

Dispersion relation (5) makes it possible to qualita-
tively demonstrate the well-known results on the stabil-
ity of ideal MHD modes.

(i) For flute oscillations in systems with closed mag-
netic field lines, we have k|| ≡ 0, so that dispersion rela-
tion (5) yields the Bernstein–Kadomtsev stability con-
dition

(6)

Note that this condition is independent of the choice of
the magnetic surface label.

(ii) In systems with a nonzero rotational transform,
magnetic shear determines the finite value of k|| (in this
case, k|| = 0 only at a rational magnetic surface), so that
dispersion relation (5) yields a Sydam–Mercier stabil-
ity condition1 

(7)

(iii) An analogous condition is also obtained for the
stabilization of flute oscillations by the ends in an open
device in which the plasma is in good electrical contact
with the metal ends along the magnetic field lines and
the finite value of k|| is determined by the finite device
length.

(iv) At the stability boundary ω = 0, dispersion rela-

tion (5) yields  = – . This indicates that the

longitudinal wavenumber k|| is real only in the regions
of an unfavorable curvature of magnetic field lines, in
which p'/R < 0 (it is assumed that p' < 0). It is well
known that the physical meaning of ballooning pertur-
bations is associated specifically with this property. The
threshold for the onset of a ballooning mode can be

estimated from the condition  ~ 1, where the

integration is carried out along a magnetic field line
between the points at which the field line curvature van-
ishes (k|| = 0). We can see that the ballooning instability

1 To reduce the Sydam–Mercier criterion to its usual form, it is
necessary to determine the radial dependences of MHD modes
(see, e.g., [1]), i.e., to find the values of the wave vectors.

ω2
 = k ||

2
VA

2 2kb
2

k ⊥
2

R
2

------------ p'R
ρ

--------
2ω2

cs
2

ω2
1 γ0 p/B

2
+( ) cs

2
k ||

2
–

------------------------------------------------------+
 
 
 

,+

p'R 1 γ0 p/B
2

+( )/ p 2γ0 0.≥+

k ||
2

k ||0
2> 2kb

2
p'/ k ⊥

2
RV A

2 ρ( ).–=

k ||
2 2kb

2
p'

k ⊥
2

B
2
R

----------------

k || ld
l1

l2∫



332 SKOVORODA
must necessarily have a threshold in terms of the
plasma pressure.

(v) For a finite k|| value, the situation in which Bern-
stein–Kadomtsev condition (6) is satisfied while
Sydam–Mercier criterion (7) is not corresponds to an
instability growing at the rate of acoustic perturbations,
γ ~ k||cs, which is considerably slower than the rate of
Alfvén perturbations, γ ~ k||VA, in a low-β plasma. An
analogous conclusion is also true for ballooning modes.

The above results are also confirmed by a nonlocal
analysis with allowance for the actual magnetic field
geometry (see [1] for details). Hence, the above form of
the local dispersion relation is universal. Physically, the
choice of the longitudinal wavenumber depends on the
particular problem to be solved.

Dispersion relationship (5) makes it possible to
determine the relationship between the types of oscilla-
tions in a homogeneous plasma and unstable MHD
modes in an inhomogeneous plasma. For magnetic con-
figurations in which the curvature of the magnetic field
lines is zero, dispersion relation (5) implies that there
are two types of waves: Alfvén waves (with the fre-
quency ω = k||VA) and acoustic waves (with the fre-
quency ω = k||cs). When the magnetic field line curva-
ture is finite (nonzero), these types of waves turn out to
be coupled to one another, and the Bernstein–Kadomt-
sev condition determines which type is more important.
However, the most usual practice is to use the Bern-
stein–Kadomtsev condition to decide whether or not the
plasma compressibility must be taken into account. It
should be emphasized that magnetoacoustic oscillations
(with the frequency ω = kVA) are not described by dis-
persion relation (5) (see further analysis and Section 5
in [5]).

Since, in actual experiments (see, e.g., [2]), the
parameters of the electron plasma component can differ
substantially from those of the ion plasma component,
we consider how dispersion relation (5) can be general-
ized to an anisotropic plasma of finite pressure. To do
this, we will use the kinetic results that were obtained
in Section 15 of [5] in the Chew–Goldberger–Low
approximation, in which the plasma length is assumed
to be large, ωτ @ 1, where τ is the period of revolution
of a particle along the magnetic confinement system
(see, e.g., [6], Section 4). The main purpose of the gen-
eralization is to reveal new effects that influence the
MHD plasma stability and that have not yet been taken
into account.

2. KINETIC THEORY OF LOCAL MHD 
PERTURBATIONS

The most complete description of the kinetic theory
of local perturbations with frequencies ω below the ion
cyclotron frequency ωci in the approximation in which
the Larmor radii of the particles are assumed to be zero
(i.e., the characteristic frequencies of the perturbations
are assumed to be much higher than the drift and mag-
netic drift frequencies and the terms on the order of

 are ignored in comparison with unity) was
given in Section 15 of [5]. We use the general disper-
sion relation that was obtained in the limit in which the
plasma conductivity along the magnetic field lines is
infinitely high (the longitudinal component of the
dielectric tensor tends to infinity, ε33  ∞):

(8)

Here, the components of the dielectric tensor have the
form (we follow the notation used in [5] for the argu-
ments of the distribution function f(E, µ), namely, E =

V2/2 is the energy per unit mass M and µ = /2B is the
magnetic moment per unit mass)

(9)

where the prime denotes the derivative with respect to
radius, the angular brackets stand for averaging over the
distribution function, and the summation is over all par-
ticle species (electrons and ions) (for details, see [5],
Section 1).

k ⊥
2
V ⊥

2
/ωci

2

ε11
c

2
k ||

2

ω2
----------–

 
 
 

ε22
c

2
k

2

ω2
----------– 

  ε12
2

+ 0.=

V ⊥
2

ε11
c

2

VA
2

-------
c

2
k ||

2σ–

ω2
----------------

kb
2
c

2

ω2
k ⊥

2
R

2
B

2
------------------------- R p||' p⊥'+( )–+ +=

– B
2 σ– σ⊥+( ) M

ω V ||
2 1

2
---V ⊥

2
+ 

 
2

ω k ||V ||–
----------------------------------- ∂f

∂E
------∑+ ,

ε12 i
kbc

2

ω2
RB

2
----------------–=

× B
2 σ– σ⊥+( )– M

ω V ||
2 1

2
---V ⊥

2
+ 

  V ⊥
2

2 ω k ||V ||–( )
---------------------------------------- ∂f

∂E
------∑+ ,

ε22
c

2

V A
2

------
c

2
k ||

2σ–

ω2
----------------+=

+
k ⊥

2
c

2

ω2
B

2
------------ B

2σ⊥– M
ωV ⊥

4

4 ω k ||V ||–( )
---------------------------- ∂f

∂E
------∑+ ,

σ–

p|| p⊥–

B
2

-----------------, σ⊥
1

B
2

------ M
V ⊥

4

4B
------- ∂f

∂µ
------ ,∑–= =
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004



MHD PLASMA STABILITY IN ALTERNATIVE TOROIDAL SYSTEMS 333
For small values of the parameter β (ε12  0), gen-
eral dispersion relation (8) describes two types of inde-
pendent oscillations with the dispersion relations

(10)

(11)

Dispersion relation (10) describes Alfvén and
acoustic waves and is a generalization of dispersion
relation (5). Dispersion relation (11) describes magne-
toacoustic oscillations. In an anisotropic high-β plasma
in a nonuniform magnetic field, acoustic, magnetoa-
coustic, and Alfvén waves are mutually coupled to one
another.

In order to determine the conditions under which
these waves become coupled, we analyze dispersion

ε11 c
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ε22 c
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k
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relation (8) in a number of important cases with quasi-
flute oscillations (k|| ! k⊥ ).

2.1. Isotropic Isothermal Maxwellian Plasma

In this case, magnetoacoustic perturbations are sta-
ble (ε22 – c2k2/ω2 ≠ 0), and the dispersion relation can
be rewritten in the form

(12)

Using the equation  = –  for a Maxwellian distri-

bution function, we represent dispersion relation (8) as
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where zj = ω/k||VTj ,  = 2T/Mj , and β = 2p/B2. The
function W(z), which is widely used in the electrody-
namics of Maxwellian plasmas, is given by the formula

(14)

Introducing the growth rate γ of the MHD instability by
the definition ω = iγ and using the relationship

−izW(z) = exp( )erfc( ), where  = γ/k||VT and
erfc(x) is the probability integral of the real argument,
we readily see that dispersion relation (13) reduces to
the equation for determining the real value γ > 0. This
result reflects the well-known fact that, in the approxi-
mation in which the Larmor radii of the particles are
assumed to be zero, the rapid oscillations under consid-
eration do not interact resonantly with the plasma par-
ticles (see, e.g., [5], Section 2).
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A simple analysis of dispersion relation (13) shows
that, for γ = 0 and k|| ≠ 0 (  = 0), it yields Sydam–Mer-

cier stability criterion (7) and, for k|| ≡ 0 (  @ 1), it

leads to the adiabatic exponent γ0 = γ0e = γ0i = 

(see [8], p. 89) and also gives Bernstein–Kadomtsev
stability criterion (6). Hence, the above kinetic analysis
makes it possible to determine the adiabatic exponents
for electrons and ions in the Bernstein–Kadomtsev sta-
bility criterion and does not reveal any changes in the
stability criteria. As an example, Fig. 1 illustrates how
the solution to dispersion relation (13) depends on the
longitudinal wavenumber (the magnetic shear) for dif-
ferent values of the parameters –Rp'/p and β.

Since  @ , we can see that, for finite k|| values,
there exists a transition region in which the electron
compressibility in the Bernstein–Kadomtsev condition
vanishes (  ~ 1) while the ion compressibility does not

(  @ 1). In this transition region, the coefficient 2
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ẑe i,
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ẑi



334 SKOVORODA
0.2

1
2
3

k||/k||0

0.7

0

0.6

0.5

0.4

0.3

0.2

0.1

0.4 0.6 0.8 1.0

β = 0.2

γ/k||0VA

0.2

1
2
3

k||/k||0

0.7

0

0.6

0.5

0.4

0.3

0.2

0.1

0.4 0.6 0.8 1.0

β = 0.02

γ/k||0VA

Fig. 1. Dependence of the dimensionless growth rate on the
dimensionless longitudinal wavenumber for (1) –Rp'/p = 1
(the Bernstein–Kadomtsev criterion is satisfied), (2) –Rp'/p =
2 (the transition region), and (3) –Rp'/p = 4 (the Bernstein–
Kadomtsev criterion is violated).
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Fig. 2. Dependence of the dimensionless growth rate on the
dimensionless pressure gradient. The arrows indicate the
transition region between the regions in which the Bern-
stein–Kadomtsev condition is satisfied and is violated (the
region of strong instability is to the right of the arrows).
drops out of Bernstein–Kadomtsev condition (6),
which thus becomes more stringent. Figure 2 shows
how the solution to dispersion relation (13) depends on
the pressure gradient for a small shear (a small longitu-
dinal wavenumber) and for different β values. It can be
seen that the instability growth rate is slow only when
the more stringent Bernstein–Kadomtsev condition
(without the coefficient 2) is satisfied. Hence, we arrive
at the following conclusion: the stability condition for a
plasma with hot electrons, namely, the requirement that
the longitudinal wavenumber be close to zero, is more
stringent than the same stability condition for a plasma
with hot ions.

It turns out that this conclusion can also be derived
by generalizing dispersion relation (1) in the two-fluid
ideal MHD approximation.

Two-fluid ideal MHD approximation at b ! 1. In
the two-fluid ideal MHD approximation, the perturbed
plasma pressure  has the form

(15)

where the plasma pressure p is the sum of the ion pres-
sure pi and electron pressure pe . The part of the pertur-
bation that is associated with the compressibility of the
ions and electrons is described by the formula

(16)

where ρj , ξ||j , and γ0j are the mass density, longitudinal
displacement, and the adiabatic exponent of the elec-
tron and ion fluids. Repeating the derivation given in
the Introduction yields

(17)

where  = γ0e, i pe, i/ρe, i .

Setting γ0 = γ0e = γ0i and using expression (17), we
obtain the local dispersion relation [cf. dispersion rela-
tion (1)]

(18)

where  = γ0Te/Mi , with Te the electron temperature
and Mi the mass of an ion.
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As is seen, dispersion relation (18) does not lead to
any changes in the form of the stability criteria. The
only change in the quantities is that the values of the
instability growth rates as functions of the longitudinal
wavenumber now differ from the values obtained
above, the difference being especially pronounced at
longitudinal wavenumbers close to k|| = 0. Let us obtain

the equation for the derivative y = dω2/  at the initial
portion (k|| = 0) of the dispersion curve ω = 0 in the case
of an isothermal plasma (Te = Ti). To do this, we first

differentiate dispersion relation (18) with respect to .
The same dispersion relation (18) then helps us to elim-
inate some terms in the resulting relation. Finally, set-

ting ω2 = , we arrive at the desired equation for y:

(19)

Under the Bernstein–Kadomtsev condition

, one of the two solutions to Eq. (19) is

always negative (which corresponds to the instability of
the acoustic mode). Further, in the transition region (1 +

 > 0), the derivative y =  in

the unstable solution is large (see Fig. 3). Under the
more stringent Bernstein–Kadomtsev condition (1 +

 < 0), however, the derivative is appreciably

smaller, y = . Figure 3 illustrates the

results of a numerical solution of dispersion relation (18)
in the transition region for different values of the longi-
tudinal wavenumber. A comparison with an analogous
calculation carried out in [1] shows that a third stable
solution appears and that the growth rate of the acoustic
instability becomes markedly faster because, in the
transition region, the electron compressibility vanishes
in the Bernstein–Kadomtsev condition. Figure 3 agrees
with the corresponding kinetic calculation, the results
of which are shown in Fig. 1.

2.2. Anisotropic Maxwellian Plasma

It is well known that the anisotropy of the distribu-
tion function can give rise to new MHD instabilities,
namely, firehose and mirror instabilities. Let us con-
sider how they manifest themselves in the local disper-
sion relation. Using the distribution function

(20)
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we represent dispersion relation (8) as

(21)

,

where β⊥  = , β|| = , zj = ,

 = , and where we have introduced the func-

tion F(z) = 1 + .

Dispersion relation (21) implies that the firehose
instability develops under the condition (1 + β⊥  – β||) < 0
and that the condition for the onset of the mirror insta-

bility has the form 1 + 2β⊥  –  < 0
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(see [8], p. 81). It should be stressed that the mirror
instability is driven by magnetoacoustic oscillations.

An anisotropic plasma of practical interest is that in
which T⊥  > T||. Such plasmas are often encountered in
rippled confinement systems utilizing electromagnetic
wave heating methods and neutral-beam injection heat-
ing methods. Arsenin and Kuyanov [9] noted that the
conditions in an anisotropic plasma such that T⊥  > T||
may be favorable for the MHD stabilization by com-
pressibility. This is why it is expedient to examine this
point in more detail.

Since the compressibility shows itself at ze, i @ 1, a
decrease in T|| when the total pressure is kept fixed may
be beneficial for stabilization. For k|| = 0 (ze, i  ∞),
the mirror and firehose instabilities do not occur and the
Bernstein–Kadomtsev condition for an anisotropic
plasma takes the form

(22)

It is seen that even strong plasma anisotropy (T⊥  @ T||)
has little effect on condition (22) for stability of the
flute modes. However, the situation in which ω = 0 and
k|| ≠ 0 (ze, i = 0) is radically different. In this case, the sta-
bility condition has the form
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Fig. 4. Dependence of the dimensionless growth rate on the
dimensionless longitudinal wavenumber for different
degrees of ion anisotropy T⊥ i/T||i = (1) 1, (2) 2, (3) 3.5,
(4) 4.5, (5) 5, and (6) 5.5 at T⊥ e = T||e = T||i, −R(p⊥  + p||)'/(p⊥  +
p||) = 1 (a more stringent version of the Bernstein–Kadomt-
sev condition is satisfied), β = 0.2, and k||0 /k⊥  = 0.001. At
T⊥ /T|| ~ 5, the condition for the onset of the mirror instabil-
ity is satisfied.
(23)

where  = – (p⊥  + p||)'/( ). We can see that
the Sydam–Mercier criterion for stability of a plasma
with a sufficiently strong anisotropy can change radi-
cally even when the parameter β is small.

The dependence of the growth rates of unstable
oscillations on the longitudinal wavenumber at differ-
ent degrees of plasma anisotropy is shown in Fig. 4,
which illustrates the results of calculations from disper-
sion relation (21) under condition (22). We can see that,
at small longitudinal wavenumbers, the dispersion rela-
tion is essentially independent of the degree of anisot-
ropy. When the anisotropy is sufficiently large, the con-
dition for the onset of the mirror instability is satisfied
and an additional magnetoacoustic instability branch
appears that grows at a rate on the order of the growth
rate of the ion acoustic oscillations. Hence, moderate
plasma anisotropy does not substantially degrade the
stabilization of quasi-flute oscillations by plasma com-
pressibility.

Figure 4 also implies that, in an anisotropic plasma,
Alfvén, ion acoustic, and magnetoacoustic oscillations
are mutually coupled to one another, giving rise to
quasi-flute MHD instabilities of an inhomogeneous
plasma.

3. CONCLUSIONS

The local dispersion relation derived above for an
inhomogeneous plasma provides a convenient tool for
studying the qualitative picture of small-scale MHD
instabilities in magnetic confinement systems. With
this relation, it has been possible to establish that, in
alternative configurations, it is important to satisfy the
Bernstein–Kadomtsev condition in order to reduce the
growth rate of the quasi-flute oscillations. It has been
shown that moderate plasma anisotropy does not have
a considerable destabilizing effect on the MHD plasma
stability in alternative systems under the Bernstein–
Kadomtsev condition.

The local dispersion relation shows that the natural
oscillations of a homogeneous plasma—such as
Alfvén, ion acoustic, and magnetoacoustic oscilla-
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tions—and unstable quasi-flute MHD oscillations of an
inhomogeneous anisotropic plasma are mutually cou-
pled to one another.
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Abstract—It is proposed to use fractional spatial derivatives to describe the effect of anomalous diffusion of
fast electrons in a stochastic magnetic field on the shape of the distribution function. A self-similar kinetic equa-
tion is considered. The use of self-similar variables makes it possible to determine the velocity range in which
the distribution function is distorted to the greatest extent. Calculations show that the quantities associated with
the stochasticity of the magnetic field lines can be estimated from the experimentally measured characteristic
energies of suprathermal electrons in the energy range in which the behavior of the distribution function
changes substantially. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The theoretical description of anomalous transport
processes in plasma often involves the use of scalings.
In transport theory, one of the most widely applicable
scalings is that for the root-mean-square deviation R of
a randomly walking particle in terms of the Hurst expo-
nent H [1]:

(1)

where t is the observation time. This scaling describe
both the superdiffusion (1/2 < H < 1) and subdiffusion
(0 < H < 1/2) of a particle. The case H = 1/2 corre-
sponds to the classical diffusion. The results of an anal-
ysis of anomalous diffusion processes in tokamak plas-
mas in the self-organized criticality model [2, 3] have
attracted widespread attention. It turns out that the
exponent H varies in a fairly narrow range, H = 0.62–
0.72. It is possible to study the relations between differ-
ent scalings describing different physical parameters of
the same system, e.g., the relation of the Hurst exponent
to the exponent describing the power-law tail of the
autocorrelation function [4].

The purely empirical character of scalings of form
(1) makes it necessary to search for quasi-diffusion
equations that would provide a more rigorous justifica-
tion of the scalings. One possible approach to solving
this problem is to describe superdiffusion and subdiffu-
sion by equations with fractional derivatives [5, 6].
Originally, this approach was employed to analyze
anomalous diffusion in conventional coordinate space.
Thus, the familiar Richardson law for the relative diffu-
sion [7] of particles in turbulent flow,

, (2)

R t
H

,∝
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2
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3
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2

t
------ R

4/3∝≈∝
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can be rewritten as the following equation with a frac-
tional spatial derivative:

(3)

Here, D is the particle diffusion coefficient, ε is the
mean energy dissipation rate in turbulent flow, and n is
the particle density. A rigorous mathematical justifica-
tion of this approach was given in book [8] and reviews
[9–11]. However, information about the behavior of
solutions to quasi-diffusion equations can often be
derived from elementary dimensionality consider-
ations. Thus, a dimensionality analysis of Eq. (3) yields
the simple relationship

(4)

which is, in fact, Richardson scaling (2).

Another possible approach involves the use of equa-
tions with a fractional derivative with respect to time.
For instance, the relevant equation obtained by Chuk-
bar [13] in the Dreœzin–Dykhne model [12] has the
form

(5)

where Deff is the effective particle diffusion coefficient.
Sometimes, this form of the equation is more correct.
Chukbar [13] discussed the advantages and disadvan-
tages of each of these two approaches. The next logical
step was to describe non-Maxwellian particle distribu-
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tion functions f in terms of fractional derivatives in
velocity space [14, 15]:

(6)

where Dv is the particle diffusion coefficient in phase
space and σ is the fractional order of the derivative. It
should be noted that the form of kinetic equations is
significantly affected by the processes associated with
the inhomogeneity of the medium. Even in classical
theory, these processes give rise to terms containing
spatial derivatives of the distribution function. In some
cases, these derivatives can be fractional.

In this paper, we propose to use fractional spatial
derivatives to describe the effect of anomalous diffu-
sion of fast electrons in a stochastic magnetic field on
the shape of the distribution function. We will consider
a self-similar kinetic equation and establish the rela-
tionship between the Hurst exponent for anomalous
spatial diffusion of fast electrons and the exponents
characterizing the behavior of the distribution function
of suprathermal electrons. Moreover, it will be shown
that, in terms of self-similar variables, it is possible to
determine the velocity range in which the distortion of
the distribution function is especially great. It will also
be shown that, based on the results of calculations, the
quantities associated with the stochasticity of the mag-
netic field lines can be estimated from the experimen-
tally measured characteristic energies of suprathermal
electrons in the energy range in which the behavior of
the distribution function changes substantially.

2. APPROXIMATE DESCRIPTION
OF THE EFFECTS OF THE STOCHASTIC 

MAGNETIC FIELD IN THE KINETIC EQUATION

The solution of the total kinetic equation describing
the effect of the stochastic magnetic field on the elec-
tron distribution function is a very difficult task. This
is why even the first studies relied on a host of simpli-
fying assumptions [16]. Thus, Gurevich et al. [16] con-
sidered only suprathermal electrons and represented
the distribution function in a self-similar form. Later,
Aleksandrov et al. [17] proposed self-similar variables
that made it possible to apply classical methods for
solving the kinetic equation for runaway electrons
[18–20] to steady-state spatially nonuniform models
[21, 22].

Gurevich et al. [16] used the following diffusive
approximation of the collisional term describing the
effect of the stochastic magnetic field on the behavior
of fast electrons in the kinetic equation with a Fokker–
Planck collision integral:

∂f t v,( )
∂t

------------------- Dv
∂σ

f t v,( )
∂v

σ-----------------------,=
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(7)

Here, f(x, v , µ) is the electron distribution function, Dm

is the anomalous diffusion coefficient, νe is the electron
collision frequency, Te is the bulk electron temperature,
ne is the electron density, and θ and v  are the pitch angle
and absolute value of the electron velocity. This form of
the collisional term agrees well with the generally
accepted expression for the magnetic diffusion coeffi-
cient [23, 24]:

(8)

where ∆ is the distance by which a magnetic field line
is displaced in the transverse direction as passing over
a distance l in the longitudinal direction.

However, as the understanding of turbulent diffu-
sion in a stochastic magnetic field deepened, nondiffu-
sive approximations have also come into use. In the
present paper, it is proposed to approximate the term
accounting for the effect of the stochastic magnetic
field by the derivatives of fractional order γ:

(9)

The value of γ can be chosen to satisfy a particular non-
diffusive scaling describing turbulent diffusion in a sto-
chastic magnetic field. Thus, the widely used percola-
tion approach [25, 26] yields the expression

(10)

where R = b0  @ 1 is the Kubo number, b0 is the rela-

tive amplitude of the magnetic field fluctuations, and

ν = 4/3 and DH = 1 +  are the percolative exponents.

In fact, this expression generalizes the Kadomtsev–
Pogutse scaling DT ≈ b0∆ [27] to a form in which the
magnetic diffusion coefficient depends parametrically
on the Kubo number with an arbitrary exponent w:

(11)

If we assume that Dm ≈ const, then we arrive at the non-
diffusive scaling
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For w = 1, the result reduces to expression (8). The case
w = 3/10 corresponds to percolation limit (10). Note
that, in order to derive the scaling for turbulent diffu-
sion, it is necessary to make an additional assumption
about the law l = l(t) of the longitudinal particle
motion. Dimensionality considerations yield the fol-
lowing relationship between the exponent γ, which
determines the order of the fractional derivative, and
the exponent w:

(13)

Of course, this is not the only possible way of using
nondiffusive scalings to obtain kinetic equations with
fractional spatial derivatives. In what follows, we will
consider a more general case. It has been repeatedly
suggested [28] that the coefficient of turbulent diffusion
of fast electrons can depend on their longitudinal veloc-
ity in radically different manners. Thus, for classical
magnetic diffusion, this dependence is DT ≈ Dmv || ∝  v ||
and, for turbulent diffusion in crossed fields, it is DT ∝
1/v ||. This is why, in the present paper, it is proposed to
approximate the term accounting for the effect of a sto-
chastic magnetic field by the expression

(14)

where D∗  is the proportionality coefficient and the
quantities β and γ characterize the model chosen to
describe anomalous transport processes.

3. SELF-SIMILAR ANALYSIS 
OF THE KINETIC EQUATION

Here, we analyze the character of self-similar solu-
tions to the time-independent kinetic equation describ-
ing the distortion of the tail of the distribution function
of suprathermal electrons due to their anomalous diffu-
sion in a stochastic magnetic field:

(15)

We ignore the term accounting for the effect of the elec-
tric field E [16], because the corresponding distortion is
significant only at sufficiently high electron energies,

(16)
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Usually, the electric field is as strong as E ≈ 5 ×
10−2 V/cm, so that for a plasma density of n ≈ 2 ×
1013 cm–3, we obtain ε ≈ 100 keV.

Following [17, 21, 22], we represent the distribution
function of suprathermal electrons in the self-similar
form

(17)

where the dimensionless variable ξ =  = 

characterizes the electron energy, vT is the electron
thermal velocity, and α is the self-similarity exponent.
This representation allows us to reduce the problem of
describing a spatially inhomogeneous medium to that
of solving an equation that is very similar in structure
to the equation for runaway electrons in a homoge-
neous plasma [18–20]. The technique for solving such
equations is well developed and makes it possible to
qualitatively analyze the behavior of the solutions by
comparing the orders of terms in a nondimensionalized
kinetic equation [16–22]. In fact, in the solution to the
kinetic equation, the effects of the spatial inhomogene-
ity are accounted for by the parameter α, which serves
to control the temperature and density profiles. This
simplification is quite justified for problems associated
with the analysis of localized regions in which mag-
netic field lines show stochastic behavior. Based on the
experience gained in working with self-similar vari-
ables [17, 21, 22], we can retain only the lowest order
term in the expression describing the effect of the sto-
chastic magnetic field in the kinetic equation written in
a self-similar form:

(18)

where the parameter  = T(x)  character-

izes the plasma inhomogeneity. Since we will be inter-
ested only in power-law plasma profiles, we assume
that Te(x) ∝  xη. We can now rewrite the basic kinetic
equation as

(19)

where the quantity δ =  includes the terms

describing the spatial inhomogeneity of the plasma.
According to [17, 21, 22], we impose the condition δ =
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const to obtain an equation that is similar in structure to
the kinetic equation describing suprathermal electrons
in a constant electric field. This condition, which is sup-
plementary to representation (17), enables us to relate
the temperature and density profiles in the plasma. For
the conditions prevailing in a tokamak plasma, namely,
T ≈ 2 keV, n ≈ 2 × 1013 cm–3, b0 ≈ 5 × 10–5, D ≈ 1 m2/s,

and λ ≈  ≈ 20 cm, we obtain the estimate

δ ≈ 5 × 10–4. Using the methods developed in the theory
of runaway electrons, we can determine the energy
ranges in which the distribution function behaves in dif-
ferent ways.

The term describing the effect of the stochastic mag-
netic field is considered as a perturbation, and the
parameter δ is assumed to be small. Then, by compar-
ing the term describing the effect of the stochastic mag-
netic field with the term describing scattering, we can
determine the energy range in which the electron distri-
bution function is close to a spherically symmetric
Maxwellian function:

(20)

or, equivalently, ξ < . In this parameter range,

it is expedient to expand the function F in Legendre
polynomials:

(21)

In the range in which the distribution function is sig-
nificantly distorted, we compare the term describing the
effect of the stochastic magnetic field with those
accounting for friction and diffusion in velocity space:

(22)

In the range ξ < , the distortions of the distri-

bution function are great enough for the solutions to be
sought in the form proposed in [18–20]:

(23)

where the function G is expanded in powers of the
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the self-similar solution behaves asymptotically as a
power-law tail of the distribution function:

(25)

in which case, however, it is impossible to determine
the specific form of the function Φ.

Thus, we have briefly characterized the solution to
the kinetic equation [16–21]. However, the main objec-
tive of the present paper is to determine the limits of the
range in which the distribution function is distorted to
the greatest extent, specifically, the limits

(26)

which can be used to analyze the data from measure-
ments of the distribution function. Note that the case
γ = 2 refers to diffusive transport. For the above values
of the plasma parameters, the energies corresponding to
limits (26) are estimated to be ε1 ≈ 20 keV and ε2 ≈
30 keV. These energies are appreciably lower than the
threshold for generating runaway electrons, εE ≈
100 keV, which makes it possible to investigate anom-
alous diffusion effects experimentally. The distribution
function of suprathermal electrons is unlikely to be
measured with the accuracy required to verify theoreti-
cal predictions. This way, however, it seems possible to
obtain a quite realistic qualitative picture of how the
distribution function changes its behavior [16–20]. This
is why the main goal of the present paper is to derive
scalings for the limits ξ1 and ξ2. Measurements of these
limits from the characteristic changes in the distribution
function will provide information about the mechanism
for anomalous transport in a stochastic magnetic field.

Let us now make several remarks on the structure of
the kinetic equations under discussion. With the above
results in mind, we simplify Eq. (15) to the maximum
possible extent by keeping only the terms with the high-
est order derivatives in the range where the distribution
function is highly non-Maxwellian:

(27)

If we take into account the fact that the variable ξ runs
through all values from zero to infinity, then we can
draw an analogy between this kinetic equation and
approximate nonlocal diffusion equations with frac-
tional spatial derivatives, such as the equation

(28)

We take the second time derivative of Eq. (28) to obtain
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Here, the range κ < 2 corresponds to superdiffusion in
coordinate space. In the kinetic equation under consid-
eration, the role of time is played by the variable ξ, so
that similar regimes occur for γ < 4.

In accordance with the particle conservation condi-
tion, the self-similar character of the variables leads to
the following relationship between the temperature and
density profiles:

(30)

Using the constancy of the self-similarity parameter,
δ = const, we can arrive at the condition for the self-
similar profiles to be consistent with the exponents
used:

(31)

Assuming that, in the range under analysis, the temper-
ature behaves according to a power law, Te(x) ∝  xη, we
obtain the equation

(32)

Resolving this equation yields the model profiles of the
plasma parameters:

(33)

Of particular interest is the fact that, for α > 3/2, the
monotonic behavior of Te(x) differs from that of ne(x).
Thus, in the direction chosen in our analysis, the profile
Te(x) decreases, while the profile ne(x) increases.
Hence, the problem of describing the wall regions can
be treated in self-similar variables.

4. CONCLUSIONS

A time-independent kinetic equation with a Fokker–
Planck collision integral has been proposed that describes
the effect of the stochastic magnetic field on the distribu-
tion function of suprathermal electrons by means of the
term with a fractional spatial derivative. Self-similar solu-
tions to this equation have been analyzed for approximate
power-law profiles of the plasma temperature and density.
The ranges where the distribution function is significantly
distorted have been determined, and the energies at which
the distribution function changes its behavior have been
estimated. With the parametric scalings obtained in this
study, it is possible to use the results from measurements
of the distribution function of suprathermal electrons to
analyze the mechanisms for turbulent transport in a sto-
chastic magnetic field.
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Abstract—A slipping surface discharge excited along a multielectrode metal–dielectric system in a chemically
active (combustible) CH4–O2 mixture has been studied experimentally. Results obtained with the help of high-
speed photography, shadowgraphy, optical spectroscopy, and piezoelectric measurements are presented. It is
shown that the slipping surface discharge is a source of high-temperature, thermally equilibrium metal plas-
moids whose lifetime is much longer than the plasma recombination time (long-lived plasmoids). The experi-
mental investigation of the evolution of plasmoids introduced into a combustible gaseous medium allows one
to conclude that the medium significantly increases the lifetime of plasmoids and that plasmoids, in turn, play
an important role in the initiation of gas-mixture combustion. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Plasma objects with abnormally long lifetime (long-
lived plasmoids) have been observed in laser sparks [1,
2], microwave discharges [3, 4], high-current arcs [5,
6], and other types of discharges. Interest in long-lived
plasmoids generated under laboratory conditions can
be attributed primarily to attempts at modeling ball
lightning—an intriguing phenomenon that is still
poorly understood [7, 8].

In recent years, however, the area of possible appli-
cations for long-lived plasmoids has expanded, particu-
larly, in connection with the problem of the electric-dis-
charge initiation of combustion in supersonic (hyper-
sonic) gas flows.

Such flows are difficult to ignite with the help of
conventional spark systems (analogous to a spark plug)
in particular because of the short time τc ≈ δ/v  during
which a gas jet interacts with an electric-discharge
plasma (here, δ is a characteristic discharge size and v
is the flow velocity). At relatively small δ and large v,
the interaction time can become shorter than the char-
acteristic induction time τi required for igniting a mix-
ture (τc < τi).

There are some straightforward ways of increasing
τc up to values exceeding τi. One of them is to signifi-
cantly increase δ as compared to the size of the usual
spark produced between two electrodes. To implement
this method of increasing the interaction time, it is nec-
essary to create ignition systems extended in the flow
direction.

There is, however, another method of solving this
problem. The method implies that the electric discharge
should be arranged in such a way that the plasma is
detached from the discharge source and is injected in
1063-780X/04/3004- $26.00 © 0343
the form of a plasmoid into the gas flow, which entrains
the plasmoid and carries it downstream from the
source. In this case, the plasma–flow interaction time is
determined by the plasmoid lifetime (τc ≈ τp). So, if the
latter exceeds the characteristic induction time τi , then
the moving gaseous medium can be ignited. This
method is similar to the ignition method in which
highly heated small metal grains are injected into a gas
flow [9], the only difference being that, here, long-lived
plasmoids play the role of hot grains.

Both of the above methods can be implemented with
the help of the multielectrode discharge systems that
were designed at the Prokhorov Institute of General
Physics, Russian Academy of Sciences, and are pres-
ently used in various applications, including the initia-
tion of combustion in static (stationary) gas mixtures
(see [10–12]). In this paper, it is demonstrated for the
first time that the high-current slipping surface dis-
charges excited in multielectrode discharge systems
can be used as sources of long-lived plasmoids injected
into a chemically active medium (combustible CH4–O2
or CH4–OCH4 + O2–CFC mixtures).

2. EXPERIMENTAL SETUP

Figure 1 shows a schematic of a reactor with elec-
tric-discharge initiation of combustion.

Reactor chamber 2 is a cylindrical quartz tube with
the diameter Dc ≅  50 mm and length Lc ≅  100–200 mm.
The chamber is evacuated to a pressure of p ≤ 10–2 torr
and filled with a working gas at a pressure of 100 ≤ p ≤
500 torr.

Combustion is initiated by multielectrode discharge
system 1 described, e.g., in [13, 14]. The multielectrode
discharge system used in this study is shown schemati-
2004 MAIK “Nauka/Interperiodica”
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cally in Fig. 2. This is a system of annular electrodes
arranged on a dielectric (ceramic, fluoroplastic, or
Plexiglass) tube with the diameter Dd ≅  6 mm. The
return wire passes through the tube as is shown in
Fig. 2. The multielectrode system is designed so that an
applied high-voltage pulse with a sufficiently sharp
leading edge generates a fast ionization wave that prop-
agates along the multielectrode system and, in a frac-
tion of a microsecond, shorts it out, thus resulting in a
high-current (I ≤ 1–10 kA) low-threshold slipping sur-
face discharge consisting of a train of plasmoids gener-
ated in the interelectrode gaps. In our experiments, the
slipping discharge was excited by high-voltage pulses
with an amplitude of U ≥ 20 kV and a pulse duration of
τh ≅  10–20 µs. Typical oscillograms of the discharge
voltage and current are shown in Fig. 3.

1
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13

1011
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8
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z

Fig. 1. Experimental setup: (1) multielectrode discharge
system, (2) reactor chamber, (3, 10) FÉR-7 streak cameras,
(4) nitrogen laser, (5) telescope, (6) lens, (7) diaphragm,
(8) UFS6 filter, (9) photographic camera, (11) spectrograph
(S 2000 or HR 2000), (12) photomultiplier, and (13) piezo-
electric transducer.

1

4

1

3

5
2

Fig. 2. Schematic of the multielectrode discharge system:
(1) annular electrodes, (2) dielectric (quartz, ceramic, or flu-
oroplastic) tube, (3) return current conductor, (4) slipping-
discharge plasma, and (5) quartz insulating tube.
The evolution of the discharge emission was studied
with the help of FÉR-7 streak cameras (Fig. 1, items 3,
10). The camera slits could be oriented either along or
across the chamber axis (the z axis) in order to trace the
evolution of the axial and radial profiles of the dis-
charge emission. The evolution of the emission inte-
grated over the spectrum was measured with an FEU-
106 photomultiplier (Fig. 1, item 12).

The emission spectra were studied using S 2000 and
HR 2000 (Ocean Optics) spectrographs (Fig. 1, item 11).

Gas-dynamic perturbations of the working medium
were recorded using the laser shadowgraphy technique
based on a UV nitrogen laser (Fig. 1, item 4).

Gas pressure variations at the chamber wall were mea-
sured with a piezoelectric transducer (Fig. 1, item 13).

3. EXPERIMENTAL RESULTS

We studied the evolution of both the axial and radial
profiles of the discharge emission. In the former case,
the FÉR-7 slit was aligned with the chamber axis so as
to view one of the interelectrode gaps, and in the latter
case, the slit was oriented across the chamber axis. The
measurements were performed for both chemically
passive gaseous media (oxygen, argon, or methane) and
chemically active (combustible) methane–oxygen and
methane–oxygen–CFC mixtures.

The discharge stages preceding combustion were
photographed with a sweep speed in the image plane of
75–250 µs/cm, while the time interval corresponding to
volume combustion was examined at a sweep speed of
750 µs/cm.

Typical streak images are presented in Figs. 4–6. An
analysis of the streak images shows the following:

(i) In all of the gaseous media (both chemically
active and passive), the discharge gaps are sources of
plasmoids that detach from the multielectrode dis-
charge system and drift along the reactor axis (Figs. 4,
6a).

(ii) When the reactor is filled with a one-component
gas (argon, methane, or oxygen), plasmoids generated
by the multielectrode system exist for 200–300 µs,
which is much longer than the discharge duration (~10–
20 µs) and the characteristic recombination time. The
plasmoids travel over a distance of 2–3 cm from the
region of their origin and then disappear (Figs. 4, 6).
The axial velocity of the plasmoids is usually lower
than or close to the speed of sound.

(iii) The plasmoid lifetime significantly increases
when the discharge chamber is filled with a combusti-
ble gas mixture (CH4–O2 or CH4–O2–CFC). The plas-
moids move along the chamber axis for 1–3 ms until
volume combustion begins, after which the original
plasmoids transform into smaller and less bright plas-
moids that continue moving in the axial direction
(Fig. 5).
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(vi) Streak images taken with slits oriented along
and perpendicular to the z axis (Fig. 6) show that the
transverse sizes of both the transformed (secondary)
and original plasmoids are comparable to their axial
sizes and are much smaller than the chamber radius.

The emission spectra of original plasmoids recorded
with the S 2000 and HR 2000 spectrographs contain
both the line and continuous components. Typical UV
emission spectra are shown in Fig. 7. Figure 8 presents
the continuum spectrum in the wavelength range
4500 ≤ λ ≤ 6500 Å. The spectral intensity Iλ in this
wavelength range is close to the equilibrium one [15]:

(1)

Since the inequality exp(hc/λkT) @ 1 is satisfied in
this spectral range, Eq. (1) can be reduced to

(2)

where λ is in Å, T is the emitter (plasmoid) temperature
in K, Iλ is in arbitrary units, and B is a constant indepen-
dent of λ.

To determine the plasmoid temperature, we switch
from the spectral intensity of the continuum and the
wavelength to the variables x = ln(Iλλ4) and y =
1.4388 × 108/λ (Fig. 8). According to Eq. (2), the tem-
perature is calculated from the slope of the averaged
linear dependence y(x). Thus, for the radiative temper-
ature of the original plasmoid, we obtain T ≅  5000 K.

An analysis of the UV line spectrum shows that the
main contribution to the spectrum comes from electron-
ically excited atoms and ions of the electrode material
(in Fig. 7, this is Ti).

A streak image shown in Fig. 9 illustrates the evolu-
tion of a discharge over a relatively long time interval
(about 3 ms). The reactor chamber is filled with a meth-
ane–oxygen mixture. The streak-camera slit is oriented
along the z axis. In this photograph, one can distinguish
several phases. The vertical line on the left of the figure
corresponds to an emission burst related to the active
phase of the multielectrode system operation. This
phase lasts for several tens of microseconds (∆t1 ≅  10–
20 µs). The inclined line originating at the multielec-
trode system is the trajectory of a plasmoid that is gen-
erated on the surface of the multielectrode system and
is then accelerated along the z axis. The wider initial
segment of the line corresponds to the motion of the
original plasmoid that is generated in all of the gaseous
media, regardless of their chemical activity. This phase,
with a duration of ∆t2 ≅  300 µs, is represented in more
detail in Figs. 4 and 5. The thinner extension of the line
corresponds to the motion of the transformed plas-
moids that exist in combustible mixtures only. The
axial velocity of the plasmoid is (1–2) × 104 cm/s. Sev-
eral oscillations of the long-lived plasmoid between the
chamber ends (with a total duration of ∆t3 0.5–1.0 ms)
are followed by volume combustion rapidly expanding
over the chamber.

Iλ const/λ 4( ) hc/λkT( )exp 1–[ ] 1–
.=

1.4388 10
8
/λ× B T Iλλ 4( ),ln–=
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The behavior of the gas mixture combustion is
reflected in the signals from the photomultiplier and
piezoelectric transducer (see Fig. 10a). For compari-
son, Fig. 10b shows the corresponding signals for the
case of a chemically passive medium (air). The wave-
form of the photomultiplier signal has a sharp peak cor-
responding to the emission burst in the active phase of
the discharge. Nearly 500 µs later, a component corre-
sponding to volume combustion appears in the photo-
multiplier signal shown in Fig. 10a. The duration of the
mixture combustion is about 1.0–1.5 ms. The oscillo-
grams clearly exhibit spikes corresponding to emission
oscillations against the background of uniform com-
bustion (see Fig. 9).

The signal from the piezoelectric transducer also
demonstrates oscillations correlating with emission
modulations from the burning gas mixture.

The shadowgraphs in Fig. 11 indicate the presence
of a shock wave generated by the multielectrode dis-
charge system, as well as perturbations related to the
axial motion of plasmoids. The shock-wave velocity in
one-component gases is nearly the same as in combus-
tible gas mixtures and amounts to ~4.6 × 104 cm/s. The
axial velocity of the gas perturbations accompanying
the shock wave propagation in a methane–oxygen mix-

2

1

Fig. 3. Oscillograms of the (1) discharge voltage (5 V/divi-
sion) and (2) current (200 A/division) in the multielectrode
discharge system (discharge in air, p = 200 torr). The time
scale is 500 µs/division.

1

2
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(‡) (b)

(c)

250 µs

1 cm

Fig. 4. Streak images of discharges in (a) oxygen, (b) argon, and (c) methane at a pressure of p = 150 torr. The camera slit is oriented
along the z axis.
ture (Figs. 11a–11e) is close to the plasmoid velocity
and amounts to (1–2) × 104 cm/s.

4. DISCUSSION OF EXPERIMENTAL RESULTS

Electric discharges are widely applied to initiate the
combustion of gas mixtures (see, e.g., monographs

1 
cm

250 µs

Fig. 5. Streak image of a discharge in the combustible
CH4 : O2 (45 : 180 torr) mixture. The camera slit is oriented
along the z axis.
[16–18]). As a rule, a low-power spark excited between
two electrodes imbedded in a combustible gaseous
medium (analogous to the spark plugs employed in
internal-combustion engines) is used for this purpose.
In this study, as in our previous works [10–12], the ordi-
nary spark is replaced with a high-current pulsed slip-
ping surface discharge.

The use of this type of initiator significantly changes
the character of the gas combustion far from the initia-
tor as compared to the case of the usual low-power ini-
tiation or initiation with the help of a filament heater.
When combustion is initiated by a slipping surface dis-
charge, the ordinary combustion dynamics, which is
described by a heat or detonation wave propagating
from the breakdown region, is replaced with a compli-
cated sequence of phenomena. A very short initiating
discharge (from several tens of nanoseconds to several
microseconds) is followed by a long (from 0.5 to 2 ms)
pause (the induction phase). The gas mixture then
ignites almost simultaneously throughout the entire
reactor chamber. Both the induction time and the com-
bustion duration depend significantly on the energy
released in the slipping surface discharge; specifically,
they increase as the released energy decreases.
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
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In this case, the problem of the mechanisms respon-
sible for the activation of a gaseous medium during the
induction phase becomes of primary importance. In
[10–12], it was found by analyzing streak images (sim-
ilar to those in Fig. 9) that, in the induction phase, there
is a glow region propagating along the z axis and oscil-
lating between the ends of the reactor. However, the
nature of this glow, which is apparently related to pro-
cesses resulting in the activation of a gaseous medium,
remained poorly understood, and the phenomenon
itself was called “the incomplete-combustion wave.”

Based on the results of the present experiments, we
can assume that the activation of the gaseous medium
(which gives rise to chain branching reactions consti-
tuting the basis for an explosive combustion) is a con-
sequence of the generation of long-lived high-tempera-
ture plasmoids interacting with the ambient gas.

The original plasmoids generated near the surface of
the multielectrode system and accelerated along the
chamber axis are plasma objects that are in a nearly
equilibrium thermal state with a temperature of Tp ≅
5000 K. This explains the fact that plasmoids continue
to exist after the active discharge phase over a time that
is much longer than the recombination time. The plas-
moids are apparently generated in the course of micro-
scopic explosions on the electrode surface. It was
shown in [13] that, in vacuum discharges excited by
multielectrode systems similar to the one used in the
present experiments, plasmoids ejected from the dis-
charge system are plasma objects consisting mainly of
metal ions of the electrode material. In a more recent
paper by Batrakov et al. [19], it was shown experimen-
tally that metal drops leaving the cathode spot of a vac-
uum arc evaporate intensively and convert into plasma
bunches in the immediate vicinity of the cathode sur-
face. The present study demonstrates for the first time
that explosive-emission effects accompanied by the
generation of metal plasmoids occur not only in high
vacuum, but also in gases at high pressures (up to atmo-
spheric). This result is of great interest and deserves
particular consideration.

Penetrating into a one-component (chemically pas-
sive) gaseous medium, a primary plasmoid is cooled
mainly through radiative losses. The lifetime of a
plasma bunch in this case is determined by its charac-
teristic cooling time.

The situation is quite different when a plasmoid falls
into a combustible (chemically active) gaseous
medium. The high temperature of the plasma bunch
stimulates the combustion processes in the ambient gas
and thus forms an oppositely directed (from the outside
into the plasmoid) heat flux that compensates for the
radiative losses. As a result, favorable conditions arise
for a substantial increase in the lifetime of the plas-
moid, whose interaction with a CH4–O2 mixture stimu-
lates exoenergic oxidation processes and formaldehyde
production. If the formaldehyde content exceeds a cer-
tain critical value, then chain branching processes come
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
into play [20], which results in the fast (explosive) com-
bustion of the gas in the reactor volume.

The axial propagation of a plasmoid may be attrib-
uted to the motion of the heated gas behind the front of
a shock wave propagating from the multielectrode sys-
tem, as is seen in the shadowgraph shown in Fig. 11.
The original plasmoids can also acquire an axial
momentum due to the action of electrodynamic forces
on the slipping-discharge plasma. These forces should
certainly be present in our multielectrode discharge
system because of the specific arrangement of the
return current conductor (see Fig. 2).

The qualitative picture discussed above is also con-
firmed by estimates showing that the model proposed is
basically applicable to the phenomena observed in our
experiments.

First of all, let us estimate the lifetime τp of an orig-
inal, thermally equilibrium plasma bunch (more
exactly, the characteristic decay time of the bunch
glow) in a chemically passive gaseous medium assum-

75 µs

(‡)

(b)

1 
cm

Fig. 6. Streak images of a discharges in (a) argon (p =
200 torr) and (b) the combustible CH4 : O2 mixture (45 :
80 torr) at distances of L = (a) 2.0 and (b) 2.5 cm from the
multielectrode system along the z axis. The camera slit is
orthogonal to the z axis.
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ing that the bunch is primarily cooled through radiative
losses. In the isobaric approximation, the time in which
the emission power decreases by a factor η is deter-
mined by the expression

(3)

where p0 is the pressure (both inside and outside the
plasmoid), J(T) is the integral (over the spectrum)

∆tη cp/k( )p0 T '/ T 'J T '( )( ),d

Tη

T0

∫=
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plasma emissivity, T0 is the initial plasmoid tempera-
ture, and Tη is the plasmoid temperature corresponding
to the emission power Pη ≈ P0/η (P0 is the plasmoid
emission power at T = T0).

Spectral measurements show that, at p0 ≅  200 torr,
the temperature of an original titanium plasmoid is T0 ≅
5000 K. From this, it is easy to estimate the density of
titanium ions (nTi+) and atoms (nTi), as well as the elec-
tron density ne in the plasmoid:
(4)
nTi T0( ) p0/kT0 4 10

17
 Òm

3–
,×≈=

ne T0( ) nTi+ T0( ) nTi T0( ) 2uTi+ T0( )/uTi T0( )( ) mekT0/2π"
2( )

3/2
ITi/kT0–( )exp 1.34 10

16
 Òm

3–
.×≈ ≈=
Here, uTi+ and uTi are the electronic static sums of Ti+

ions and Ti atoms, respectively, and Ii is the ionization
energy of titanium atoms (ITi ≅  6.8 eV).

If radiative losses related to line emission are
ignored, then we have [21]

(5)

where Eg = –(ITi – E*), with E* being the energy of the
lower electronically excited atomic state (E* ≅
0.813 eV).

If the plasmoid temperature is somewhat lower, e.g.,
T1 ≅  4700 K, then we find

nTi(T1) = 4.25 × 1017 cm–3;

J T0( ) 1.42 10
37–

T0
1/2

nTi+ T0( )ne T0( )×=

× 1 Eg /kT0+( ) 2.71 10
2–
 kW/cm

3
,×≅

0.75 ms t

z

Fig. 9. Typical streak image of combustion initiation in a
CH4 : O2 mixture. The camera slit is oriented along the z
axis. Bright crosses on the left of the figure are markers.
ne(T1) = nTi+(T1) ≅  8.05 × 1015 cm–3;

J(T1) ≅  9.98 × 10–3 kW/cm3.

In this case, we have

(6)

Defining the plasmoid lifetime as the time during
which the plasmoid emission power decreases by a fac-
tor of 3, we find

(7)

which is close to the lifetime determined experimen-
tally from streak images similar to those presented in
Fig. 4.

Let us assume that the primary (titanium) plasmoid
radiates the power given by expression (5) and consider
the case in which this plasmoid falls into a chemically
active gaseous medium. A situation can then occur in
which the plasmoid radiative losses are compensated
for by the energy influx from the ambient medium. In
this case, the lifetime of the plasma bunch can increase
to values substantially exceeding the induction time τi.
The energy balance in this case is written as

(8)

where Vp and Sp are the volume and the surface area of
a spherical plasmoid, Γ ≅ –D0∇ n0 is the flux density of
chemically active particles with a density n0 arriving
from the ambient medium (in our experiments, meth-
ane and oxygen molecules) into the plasma bunch, D0
is the diffusion coefficient of these particles, and εc is
the chemical energy released in the oxidation reactions

η P0/P1 J T0( )V p 0( )/J T1( )V p 1( )= =

≅ J T0( )T0/J T1( )T1 3.≈

τ p ∆tη 3=≅ 2.5 p0 T '/ T 'J T '( )( )d

T1

T0

∫ 270 µs,≅=

JV p ΓεcSp,≈
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Fig. 10. Signals from (1) the piezoelectric transducer (5 V/division in plot (a) and 500 mV/division in plot (b)) and (2) the collimated
photomultiplier (500 mV/division) for the cases of (a) the combustible CH4 : O2 mixture (60 : 240 torr) and (b) a chemically passive
gas (air) at a pressure of p = 300 torr. The time scale is 500 µs/division.
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stimulated by the high-temperature plasmoid. It follows
from equality (8) that, at a certain radiative loss power
J, radiative losses can be compensated for by an oppo-
sitely directed heat flux only at a sufficiently small size
of the plasmoid: rp ≤ rk. Assuming that rp ≅  0.05 cm and
J ≅  2 × 10–2 kW/cm3, we find that, at p0 = 300 torr,
equality (8) holds even at εc values as low as ≈10–3 eV.

A plasmoid converts the chemical energy of a meth-
ane–oxygen mixture into heat and partially returns it
into the ambient medium through radiation and heat
conduction. This results in the heating of the surround-
ing gas and the gasdynamic perturbations that accom-
pany this heating. The aforesaid, in our opinion, is dem-
onstrated by the shadowgraphs presented in Fig. 11.

The hard component of the plasmoid emission prob-
ably plays a significant role in the heating of the ambi-
ent gaseous medium by activating the combustible gas
mixture, as was pointed out in [11].

Comparing typical streak images (Fig. 9) with shad-
owgraphs (Fig. 11) and the signals from the multiplier
and piezoelectric transducer (Fig. 10), we can conclude
that plasmoids moving in a combustible gaseous
medium are sources of gasdynamic perturbations that
result in both repetitive “impacts” on the opposite end
of the chamber and reflections of combustion-initiating
plasmoids from this end.

In the monograph [8], a conclusion was drawn based
of a number of accidental observations and a limited
number of not very enlightening experiments that metal
plasma bunches can sustain themselves in the atmo-
sphere regardless of the mechanism for their formation.
We consider the analogies with ball lightning drawn in
[8] to be insufficiently justified and remark only that
our experiments, which were performed with a multi-
electrode discharge system generating a train of metal
plasmoids, have revealed a substantial increase in the
lifetime of plasma bunches in a chemically active gas-
eous medium.

The investigations reported in the present paper
show, in our opinion, that the study of the behavior of a
small gas volume heated in one way or another to a high
(on the order of (4–5) × 103 K) temperature and intro-
duced into a chemically active (combustible) gas mix-
ture is a very challenging problem. This problem was
earlier considered in a number of papers (see, e.g., [18,
22, 23]); however, the inverse effect of the medium on
the introduced local temperature perturbation through
the oppositely directed flux of electrochemical energy,
as well as the fact that the medium can be activated by
radiation from the local high-temperature region, was
not taken into account. Thus, the model proposed by
Zel’dovich [22, 23] considers a point heat source
(spark) that liberates a certain amount of heat Qcal at the
time t = 0. Using this model, the cooling by heat con-
duction, the expansion of the energy liberation region,
and the initiation of combustion under given initial con-
ditions of energy liberation were calculated. Taking
into account not only heat conduction losses, but also
radiative losses and the inverse action of the medium on
the gas volume heated by a spark and the change in the
medium state under the action of the emitted radiation
(see [11]), can substantially affect the lifetime of the
locally heated gas volume and the character of combus-
tion initiation.

The results obtained in this paper are of interest, in
particular, for solving the problem of combustion initi-
ation in supersonic (hypersonic) flows of combustible
gas mixtures. A plasmoid introduced into the flow can
move with the gas for quite a long time until it provokes
an explosive combustion far from the discharge initia-
tor. The distance traveled by a plasmoid from the point
of its generation to the region where the volume com-
PLASMA PHYSICS REPORTS      Vol. 30      No. 4      2004
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bustion occurs depends on both the flow velocity and
the energy released in the electric discharge initiating
combustion.

1 
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(‡)

(d)

(b)

(e)

(c)

(f)

z

Fig. 11. Shadowgraphs of combustion initiation in (a)–
(e) the CH4 : O2 mixture (60 : 240 torr) and (f) a chemically
passive gas (air) at different instants: ∆t = (a) 50, (b) 70,
(c) 100, (d) 130, (e) 160, and (f) 50 µs.
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5. CONCLUSIONS

Our experiments have shown that a slipping surface
discharge excited along a multielectrode metal–dielec-
tric system is a source of long-lived, thermally equilib-
rium plasmoids with a lifetime much longer than the
plasma recombination time. When these plasmoids are
injected into a chemically inactive gaseous medium,
their lifetime is determined by the radiative loss time.
On the other hand, when plasmoids are injected into a
chemically active (combustible) gaseous medium, their
lifetime increases substantially, which may be attrib-
uted to the balance between radiative losses and the
energy influx from the chemically reacting particles of
the combustible gas mixture. The plasmoid sustained
by a chemically active medium, in turn, affects the lat-
ter by activating the gas mixture and promoting its com-
bustion.

The results obtained show that the generation of
long-lived plasmoids holds promise as a method for ini-
tiating combustion in supersonic gas flows.
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