
  

Plasma Physics Reports, Vol. 30, No. 5, 2004, pp. 353–362. Translated from Fizika Plazmy, Vol. 30, No. 5, 2004, pp. 387–397.
Original Russian Text Copyright © 2004 by Shurygin.

                                                                        

TOKAMAKS

                           
Drift-Alfvén Turbulence in a Tokamak Wall Plasma
R. V. Shurygin

Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
Received July 7, 2003

Abstract—The behavior of turbulent fluxes in the vicinity of a resonant point m/n = q(xres) in a plane wall
plasma layer in a tokamak is studied by numerically analyzing the nonlinear MHD equations in a four-field
electromagnetic model. Simulations show that, as the electron temperature at the plasma edge increases, the
intensity of turbulent particle flux decreases, reaching its minimum value, and then increases. Such behavior is
found to be due to the stabilizing effect of the electron drift velocity (Vy0 ~ dTe0/dx) in the equation for the lon-
gitudinal component of the magnetic potential. It is shown that, at a strong toroidal magnetic field, turbulent
transport processes conform to the gyro-Bohm scaling, which gradually passes over to the Bohm scaling as the
field decreases. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the challenging problems in controlled ther-
monuclear fusion research is that of obtaining reliable
estimates for transport fluxes at the plasma edge in a
tokamak. Besides being of general theoretical signifi-
cance, this problem is important from the standpoint of
overcoming technological and engineering difficulties
that may arise in designing future facilities. One of the
most powerful approaches in this way is to simulate tur-
bulent plasma dynamics numerically. In recent years,
many groups of theoreticians have succeeded in con-
structing numerical codes capable of adequately simu-
lating complicated physical processes in a tokamak
plasma. The first codes were based on solving the MHD
equations in the electrostatic approximation, which is
valid for β ! 1 and in which the magnetic field fluctu-
ations in the plasma are ignored. Although this
approach makes it possible to obtain reliable estimates
for the anomalous transport coefficients, it fails to
describe such phenomena as L–H transitions, the for-
mation of magnetic islands, coherent self-oscillations
at the plasma edge, and so on. From an analysis of
recent numerical results, it has become clear that, in
order provide an adequate description of the behavior
of a turbulent plasma, it is necessary to take into
account magnetic fluctuations. Theory [1] shows that
electromagnetic effects play an important role when the
parameter βM = β(Mi/me), with β = 4πNT/B2, is larger
than unity. Thus, for parameters typical of a low-tem-
perature wall plasma, N = 4 × 1013 cm–3, T = 150 eV,
and B = 2 T, we have βM = 1.107, which indicates that
the magnetic field fluctuations should be taken into
consideration.

This paper presents the results of numerical simula-
tions of the turbulent plasma dynamics in a plane wall
layer in a tokamak. The simulations are based on solv-
ing the reduced nonlinear quasi-two-dimensional Bra-
ginskii equations with allowance for the electron
1063-780X/04/3005- $26.00 © 20353
dynamics in an electromagnetic field and with the lon-
gitudinal differentiation operator, which was modified
nonlinearly to include the magnetic field fluctuations
(the magnetic flatter effect). One of the goals of the
present work is to investigate the dependence of turbu-
lent fluxes on the temperature of the edge plasma. It is
shown that, as the electron temperature at the plasma
edge (the so-called “pedestal” temperature) increases,
the intensity of the turbulent particle flux decreases
until the plasma remains in the electrostatic regime and
then, after the plasma has evolved into the electromag-
netic regime, it begins to increase. Simultaneously, the
turbulent heat flux increases monotonically as the edge
temperature increases.

Numerical calculations of the dependence of the tur-
bulent transport coefficients on the magnitude of the
toroidal magnetic field show that, in the parameter
range under consideration, the wall plasma turbulence
at a strong toroidal magnetic field B0 conforms to the
gyro-Bohm scaling, which gradually passes over to the
Bohm scaling as the field decreases. Also, the results of
calculating the scalings of turbulence transport coeffi-
cients in terms of magnetic shear are presented, along
with the results of investigations of the role of the zonal
magnetic field By0. The computations were carried out
with an electromagnetic version of the numerical code
developed in [2].

2. BASIC EQUATIONS

Based on the reduced two-fluid Braginskii equations
that have been derived recently by Zeiler et al. [3], we
assume that Ti ! Te and ignore both the longitudinal ion
velocity (u|| = 0) and thermal current to obtain the fol-
lowing set of nonlinear four-field {φ, n, Te, A} MHD
004 MAIK “Nauka/Interperiodica”
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equations describing the behavior of a low-temperature
plasma in a plane wall layer in a tokamak:

(1)

(2)

(3)

(4)

(5)

In deriving Eqs. (1)–(5), we used the following repre-
sentation of the tokamak magnetic field in a Cartesian
coordinate system (x, y, z):

(6)

where Beq is the equilibrium tokamak magnetic field, q
is the safety factor, ε = r/R0, and r and R0 are the minor
and major radii of the torus. The rest of the notation in
Eqs. (1)–(6) is as follows: n(x, y, t) is the density; Te(x,
y, t) is the temperature; φ(x, y, t) and A(x, y, t) are the
electrostatic and vector potentials, describing the oscil-
lations of the electric and magnetic fields; VE =

, ∆⊥  =  + , ∇ || = b · —; and µ⊥ , D⊥ ,

and χ⊥ , || are the dissipation coefficients.
It is convenient to nondimensionalize Eqs. (1)–(5)

by switching to the new variables

t  t/t∗ , (x, y)  (x/x∗ , y/x∗ ), φ  eφ/T∗ ,

n  n/n∗ , T  Te/T∗ , A  A/A∗ ,

A∗  = B0x∗ β, q||  q||/(n∗ T∗ V∗ ), ky  kyx∗ ,

where t∗  = , ρS = , V∗  = , ωci, e = ,

η = , νei is the electron–ion collision frequency,

and x∗  is the width of the computation region. The nor-
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malizing density and normalizing electron temperature
were taken to be n∗  = 1013 cm–3 and T∗  = 100 eV. Sin-
gling out the zeroth harmonics in the expression for the
convective term (see below), we convert Eqs. (1)–(5)
into the form

(7)

(8)

(9)

(10)

(11)

where 

χ|| = , and p = Te0n + N0T. Note that the dimen-

sionless poloidal ion velocity U0y is related to the radial

electric field by the relationship Uy0 = –  = 

and that, by virtue of the assumption Ti ! Te, the ion
pressure in calculations was ignored.

The numerical technique used in the code is a quasi-
spectral approach based on the Galerkin method. All
functions f = {n, φ, T, A} are chosen to be the sum of
helical waves with the same helicity, f(x, y, z, t) =

(x, t)exp[i(kyy – kzz)], where kz/ky = const. It is
well known that this approach reduces the problem of
solving three-dimensional equations to that of solving
two-dimensional equations. We switch to the new heli-

cal variable Y  y –  and assume that the follow-
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ing Fourier series is valid for each of the above func-
tions f:

(12)

where ky0 = m0x∗ /a, a is the tokamak minor radius, and
m0 is the minimum number of a Fourier harmonic.

Substituting Fourier series (12) into Eqs. (7)–(11),
we obtain a set of equations for the poloidal harmonics
{fSm, fCm}.

The equations for the zeroth harmonics f0 = {N0, Uy0,
Te0, A0} (which are usually referred to as background
quantities) can easily be obtained by averaging
Eqs. (7)–(11) over Y and by supplementing the right-
hand sides of the resulting equations with the necessary
dissipative and source terms:

(13)

(14)

(15)

(16)

The diffusion coefficient D0 and thermal conductivity
χ0 were calculated from their neoclassical formulas in
the plateau regime. The quantity νneo was calculated
from the following formula, obtained by Su et al. [4]:

.

With allowance for the zeroth harmonics, the operator
of differentiation in the longitudinal direction can be
written as

(17)

Under the assumption that the waves are of the same
helicity, we can use the expansion kz/ky = ε/q(xres) at the
resonant point to obtain the following representation
for ∇ ||0 f in a thin plane layer:
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With allowance for the second term on the right-hand
side of formula (17) for ∇ ||, we obtain

(19)

where

(20)

Taking into account formula (19), we write Eq. (10) as

(21)

(21a)

Note that the velocity Vy0 in the induction equation
corresponds to the poloidal electron velocity and repre-
sents the sum of the poloidal ion velocity and the poloi-
dal electron drift velocity. To convince ourselves of this,
we merely need to calculate the diamagnetic current
density jy from the equilibrium equation j × B = c—pe

(recall that pi = 0). The calculations give

Nondimensionalizing this equality in the above manner
yields relationships (21a) with Vy0 = uey/V∗ , Uy0 =

uiy/V∗ , and VyDe = – , where pe0 = N0Te0.

It can be seen that formula (20) contains not only the
familiar term that is proportional to ~∆x/LS and is
responsible for the magnetic shear stabilization effect,
but also the term that is associated with the magnetic
field By0 and accounts for the zeroth harmonic of the
vector potential A0(x, t). It will be shown below that it
is this term in formula (20) for γ|| that describes an
increase in turbulent fluxes.

In Eqs. (13)–(16), the turbulent fluxes are described
by the following expressions:
the particle flux is 
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the heat flux is

,

the momentum flux is

,

the longitudinal heat flux is

,

∇ || f γ||
∂f
∂Y
------ bx f 0' β A f,{ } , bx–+ β∂A

∂Y
------,= =

γ||
x*
Ls

------ x xres–( )– By0, By0+ βA0' .–= =

β ∂A
∂t
------

Vy0

ρ
--------∂A

∂Y
------ φ A,{ } 1

N0
------ p A,{ }–+ +

=  η0J γ||
∂

∂Y
------ φ p/N0–( ),–

Vy0 Uy0 VyDe, VyDe+ ρ κ0N0' Te0'+( ).–= =

jy en uiy uey–( ) c
B0
-----

d pe

dx
--------.= =

ρ
N0
------

d pe0

dx
-----------

Q TV x〈 〉 Y bxJ〈 〉 Y+=

Π ρ V xVY〈 〉 Y
1

βρ
------ bxbY〈 〉 Y–=

q|| χ|| γ|| bxTY'〈 〉 Y bx
2〈 〉 Y

dTe0

dx
----------- bx A T,{ }〈 〉 Y–+–=



356 SHURYGIN
and the flux of the longitudinal component of the vector
potential is 

.

Here, the angular brackets denote averaging over the

periodic coordinate Y: 〈 f 〉Y = , with LY =

2π/k0y. Obviously, the contribution to the fluxes comes
only from the harmonics {fSm, fCm}. Although the zeroth
harmonics do not contribute to the fluxes, they never-
theless play an important role in the turbulent plasma
dynamics because they act as driving sources for turbu-
lence.

In order to analyze the relative effects of the pro-
cesses described by different terms in the set of
Eqs. (7)–(11) on the turbulent plasma dynamics, it is
expedient to write the energy equation for this set.
Because Eqs. (9) and (10) contain the parameter
Te0/N0 = κ0(x, t), which depends on the coordinate and
time, the energy conservation law cannot be written in
a compact form. However, this can readily be done in
the case κ0 = const. Performing the required averaging
procedures, we arrive at the following evolutionary
equation for the energy density of fluctuations:

(22)

Here, we have introduced the notation

where J0(x, t) and J00(x) are the longitudinal current
driven by fluctuations and the equilibrium longitudinal
current, respectively, and Sdiss is the sum of the dissipa-
tive terms that account for collisional processes associ-
ated with viscosity, diffusion, and heat conduction. The
double angular brackets denote averaging over two
coordinates.

Computations were carried out over the region 0 <
x < 1 for parameters close to those of the DIII-D toka-
mak: R0 = 170 cm, a = 67 cm, B0 = 2 T, x∗  = 4 cm, Zeff =
1.6, and mi = 2mh. The resonant point xres was such that
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q(xres) = 4 was at the center of the computation region,
xres = 0.5. The dimensionless wave vector ky0 = m0x∗ /a
determined the minimum widths of the fm harmonics
along the Y coordinate. In calculations, the minimum
harmonic number was m0 = 20. The harmonic number
was varied within the interval 1 < m < M, and the max-
imum number of harmonics was varied within the inter-
val M = 13-21. The boundary conditions were chosen to
be

φ(0) = w(0) = n(0) = T(0) = A(0) = 0,

φ(1) = w(1) = n(1) = T(1) = A(1) = 0

for m ≠ 0 and

Te0(0) = Tb, N0(0) = Nb, Uy0(0) = 0, By0(0) = 0,

Te0(1) = Ts, N0(1) = Ns, Uy0(1) = 0, By0(1) = 0

for m = 0.
The main goal of the simulations was to investigate

the dependence of the parameters of turbulent pro-
cesses on the so-called pedestal temperature Tb. The
remaining parameters in the boundary conditions were
set to be Nb = 2–3, Ns = 0.6, and Ts = 0.2Tb. In the equa-
tions for the harmonics, the dissipation coefficients
were chosen to be equally small, D⊥  = χ⊥  = µ⊥  = 0.002.

Numerical simulations were carried out based on a
simple two-level predictor–corrector scheme:

where  and  are the linear and nonlinear operators
in Eqs. (7)–(10). At each time step, the difference equa-
tions were solved by the sweep method.

According to the Fourier series method used in this
paper, the set of equations describing the drift-Alfvén
(DA) turbulence can be regarded as being composed of
the two subsets of equations that describe two interact-
ing subsystems of turbulent modes. The first subsystem
is represented by the small-scale harmonics fm(x, t),
which determine the dependence on the poloidal coor-
dinate Y, and the second subsystem is represented by
the evolving large-scale harmonics f0(x, t) = {N0, Te0,
Uy0, By0}, which are independent of Y. As follows from
Eqs. (13)–(16), these large-scale harmonics are gener-
ated by the gradients of the corresponding turbulent
fluxes, which are expressed in terms of the nonlinear
sums over small-scale harmonics. In turn, the harmon-
ics f0 influence the generation of the small-scale har-
monics fm. Calculations show that, in the range of actual
tokamak parameters, the equations describing the
dynamic system in question have no solutions in a tra-
ditional sense (∂/∂t = 0). In such a system, all the quan-
tities are oscillating; moreover, the oscillations are
irregular and chaotic. As a result of the interaction of
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the above two subsystems of turbulent modes, the
dynamic system evolves into a self-consistent regime
with incoherent self-oscillations; this regime is such that,
during the evolution of the oscillating and background
quantities, the turbulence becomes self-sustaining.

That a mechanism for generating self-sustaining tur-
bulence does indeed exist is readily seen from Eq. (22),
which describes the evolution of the fluctuation energy.
Over the width of the computation region, the time-
averaged turbulent fluxes of heat and particles remain
positive, Γ > 0 and Q > 0, whereas the time-averaged
density and temperature gradients are negative,
dN0/dx < 0 and dTe0/dx < 0. In this case, the source
terms are positive, SN > 0 and ST > 0, which indicates
that the fluctuations are generated by turbulent fluxes;
i.e., we can speak of the existence of a plasma state with
self-sustaining turbulence. The source term SJ, contain-
ing the current density gradient, plays a role analogous
to that of the terms SN and ST. However, for the plasma
edge, this source term is so small that, in calculations,
it had little influence on the final results. The physical
meaning of the source term SU is that it accounts for the
work done by the turbulent force (turbulent Reynolds
stress) on the turbulent flux. Since the quantities dU0/dx
and Π are not of fixed sign, the sign of the term SU can
generally be arbitrary. The quantity DJ > 0 corresponds
to the power of the Joule dissipation of the longitudinal
turbulent current.

3. NUMERICAL RESULTS

First, we consider the effect of the temperature Te0
on turbulent transport at different values of the pedestal
temperature Tb = T(x = 0). The pedestal temperature Tb

and pedestal density Nb are among the most important
parameters of the tokamak wall plasma because it is
known from experiments that, depending on the values
of these two parameters, the plasma can be confined in
essentially different modes.

Figure 1 shows the dependence of the time-averaged
transverse turbulent fluxes of particles and heat, {〈Γ〉 }
and {〈Q〉}, on the pedestal temperature Tb. Here, the
braces and angular brackets indicate averaging over the
computation time t and over the transverse coordinate x
of the plane layer:

According to Fig. 1, the dependence of the turbulent
particle flux {〈Γ〉 } on the temperature Tb has the shape
of a well, while the turbulent heat flux increases with
pedestal temperature. This behavior of the fluxes is
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caused by two factors: the dependence of the terms ∇ ||J
in Eqs. (7)–(9) on temperature and the presence of the
term proportional to ~Vy0(x, t) in the induction equa-
tion. The contribution of the terms with the current J
can be estimated by considering the temperature depen-
dence of the Joule dissipation power DJ in Eq. (22) for
the fluctuation energy density WFL. Keeping only the
leading-order terms in this equation, we rewrite it as

(23)

For negative gradients of the density and temperature,
the first two terms describe the generation of fluctuations
and the last two terms describe their suppression. We first
consider the electrostatic regime (Tb < 3, βM < 1). Omit-
ting the terms proportional to ~β in Eq. (20), we arrive
at the following expression for the current J:

(24)

With Eq. (23), the expression for DJ becomes

(25)

Since η0 ∝ , it is clear that the Joule dissipation
power DJ increases with the pedestal temperature Tb,
which leads to a decrease in the fluctuation energy and,
accordingly, in turbulent fluxes. Figure 2 shows how the
averaged fluctuation amplitudes {〈A〉}, {〈φ〉}, {〈n〉},
and {〈T 〉} depend on the pedestal temperature Tb. We
can see that the amplitude of the density fluctuations
decreases, while the temperature fluctuations increases.
A decrease in {〈n〉} with temperature stems from an
increase in the term ∇ ||J (because of the increase in
{〈A〉}) in Eq. (8) for the density. On the other hand,
despite the presence of an analogous term in Eq. (9) for
the temperature, the amplitude {〈T 〉} of the temperature
fluctuations increases. This behavior of the temperature
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Fig. 1. Dependence of the particle and heat turbulent fluxes
on the pedestal temperature Tb.
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fluctuations is attributed to the presence of the term

 in Eq. (9): an increase in this term increases

the amplitude {〈T 〉}. Hence, a decrease in {〈n〉} reduces
the turbulent particle flux, while an increase in {〈T 〉}
causes the turbulent heat flux to become higher.

Te0' ∂φ/∂y
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0.04

0.02

0 1 2 3 4 5
Tb

{〈φ〉}
{〈A〉}
{〈n〉}
{〈T〉}

Fig. 2. Dependence of the averaged amplitudes {〈φ〉},
{〈A〉}, {〈n〉}, and {〈T 〉} on the pedestal temperature Tb.
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Fig. 3. Dependence of the particle turbulent flux on the ped-
estal temperature Tb at dTe0/dx = 0.
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Fig. 4. Dependence of the Joule dissipation power DJ on the
pedestal temperature Tb.
In order to consider the electromagnetic regime
(Tb > 3, βM > 1), we must systematically take into
account magnetic fluctuations and calculate the fluctu-
ation-driven current from Ampére’s law J = ∆⊥ A. An
analysis of the results of the corresponding computa-
tions shows that, in this case, a new effect that is asso-
ciated with the poloidal electron velocity Vy0(x, t) =
Uy0 + VyDe in the induction equation comes into play. It
is known from linear theory [5, 6] that the electron drift
velocity suppresses the tearing instability. Nonlinear
calculations are also capable of capturing this effect. As
a result, the electron drift velocity VyDe also increases
with temperature, thereby stabilizing the turbulence;
decreasing the fluctuation amplitudes; and, accord-
ingly, reducing the turbulent particle flux. For T > 3.5,
the destabilizing effect of magnetic field line curvature,
which is described by the term proportional to ~gB, pre-
dominates over the above stabilizing effect of the elec-
tron drift velocity VyDe, so that the development of a lin-
ear instability enhances the turbulent flux.

Figure 3 shows the dependence of the turbulent par-
ticle flux on the pedestal temperature for the following
two cases:

(i) the term dTe0/dx in the expression VyDe =

−ρ(κ0  + ) for the electron drift velocity [see for-
mulas (21a)] is taken into account in a conventional
manner (curve 1) and

(ii) this term in the expression for VyDe is ignored,
dTe0 /dx = 0 (curve 2).

We can see that, in the second case, in which the
temperature gradient is zero (the velocity VyDe is low),
the particular flux 〈Γ〉  is far more intense than in the first
case. This result confirms the conclusion about the sta-
bilizing effect of the electron drift velocity.

The effect of the term in question on the amplitude
of the magnetic fluctuations is analogous to that of the
poloidal sheared velocity Uy0(x, t), which is accounted
for by the term Uy0∂W/∂y in Eq. (7). As is well known
[7–9], the poloidal sheared velocity acts to break the
convective cells into smaller cells, thus eventually
reducing the turbulent flux. Analogously, the tempera-
ture gradient, described by the term  in the expres-

sion Vy0 = Uy0 – ρ(κ0  + ) for the poloidal electron
velocity [see the term Vy0∂A/∂y in Eq. (21)], initiates the
breaking of the tearing-mode magnetic islands into
smaller islands and, as a consequence, increases the
current J =  + . As was explained above, the
result of this increase in J is a decrease in the turbulent
particle flux 〈Γ〉 .

Note that the current J increases in such a way that
the Joule dissipation power DJ = 〈η 0J2〉  also increases
with Tb. According to Eq. (22), this increase leads to a
decrease in the fluctuation energy density. However, it
can be seen from Fig. 4 that, in the range 1.5 < Tb < 2.2,

N0' Te0'

Te0'

N0' Te0'

Axx'' Ayy''
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004



DRIFT-ALFVÉN TURBULENCE IN A TOKAMAK WALL PLASMA 359
DJ increases more slowly because, in this range, the

resistance decreases according to the law η0 ∝ ,
which results in a more gradual decrease in the turbu-
lent particle flux 〈Γ〉  in the electromagnetic regime.

It is well known that, in the linear approximation,
the DA modes are stabilized by the magnetic field shear
[5, 6]. Let us consider the numerical results that illus-
trate the effect of the shear on the nonlinear transport
processes. The solid curve in Fig. 5 shows the turbulent
particle flux {〈Γ〉 } calculated as a function of the mag-
netic shear parameter s. The dotted curve is the analytic
approximation {〈Γ〉 } ≈ 0.016/s2, indicating that the par-
ticle flux decreases in inverse proportion to the squared
shear s. A theoretical estimate confirming this depen-
dence is easy to obtain. To do this, we consider the elec-
trostatic regime with β ! 1 and assume for simplicity
that T ! n. In this case, Eq. (10) yields the following
formula for the longitudinal current J:

(26)

Omitting the nonlinear term {φ, W} in Eq. (7), we
reduce this equation to the quasi-steady equation

With formula (26), this equation gives the following
expression for Vx:

We average the product nVx over Y to arrive at

(27)
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Fig. 5. Dependence of the particle turbulent flux on the
magnetic field shear s.
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We thus have derived approximate formula (26) for
the turbulent particle flux. With allowance for formula
(20), which gives γ|| ~ s, formula (26) yields the depen-
dence Γ ~ 1/s2. This strong dependence on s shows that
a change in the current profile can trigger the L–H tran-
sition. Figure 6 illustrates the possibility of such a tran-
sition when the shear increases instantaneously from
s = 0.5 to 0.75 at t = 400.

Note that the shear term ∆x/LS enters into the expres-
sion for the function γ||(x, t), which also contains the
zonal magnetic field By0. It is clear that the changes in
the function γ||(x, t) at the expense of the magnetic field
By0 and of the magnetic shear s should have an equally
strong impact on turbulent fluxes.

In order to check this conclusion, a series of numer-
ical simulations was carried out in which the quantity
SA = ∂2ΓA/∂x2 in Eq. (16) was multiplied by a certain
coefficient, αB. Since the quantity SA describes a source
that generates the field By0 (the turbulent dynamo
effect), the values αB > 1 should increase By0. Figures 7
and 8 show how the quantities {By0(x)} and {γ||(x)}
depend on the x coordinate for αB = 0.2, 1, and 2. We
can see that the magnetic field By0 at αB = 2 is stronger
than that at αB = 0.2. The profile By0(x) is such that the
quantity γ|| decreases; this indicates that the stabilizing
shear term is canceled by the field term By0. Calcula-
tions show that the value of the zonal magnetic field is
too small to substantially change γ||. As a result, a small
decrease in γ|| leads to a slight increase in the turbulent
fluxes of particles and heat:{〈Γ〉 } (αB = 0.2) = 0.75,
{〈Γ〉 } (αB = 1) = 0.9, and {〈Γ〉 } (αB = 2) = 0.12.

Note, however, that the field By0 can in principle be
changed significantly at the expense of the external
steady-state poloidal field. We can therefore conceive
of a situation in which the field By0 precisely cancels the
shear term ∆x/LS. In this case, the magnetic shear loses
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its stabilizing effect and the turbulence becomes much
stronger. Another possible (at least theoretically) situa-
tion is that in which |By0 | @ |∆x/Ls |. In this case, the role
of the stabilizing term in the expression for γ|| is played
by the field By0 (rather than by the magnetic shear term)
and turbulence is suppressed. An example of the
numerical calculations of such external influence under
the conditions of DA wall plasma turbulence was pre-
sented in my earlier paper [10], in which the field By0
was changed by changing the boundary condition
By0(x = 1) = bext at the plasma surface. Hence, numeri-
cal simulations show that, under actual conditions, the
large-scale poloidal magnetic field generated in a toka-
mak wall plasma is too weak to have any appreciable
effect on turbulence. However, it should be kept in
mind that, if the zonal magnetic field By0 is subject to an
external influence, then, depending on the extent of this
influence, turbulent fluxes can be either markedly
enhanced or markedly reduced.

One more scaling that was investigated numerically
is the dependence of turbulent fluxes on the toroidal
magnetic field B0. In the case under consideration, the
dimensionless turbulent particle flux Γ = 〈nVx〉  is
related to the dimensional physical flux Γph by the
expression Γ = Γph/ΓB. Here, the Bohm flux is given by
the formula

The problem of investigating the dependence of the
turbulent transport coefficients on the magnetic field
usually reduces to that of searching for the dependence
Γ = f(ρ), where ρ = ρS/x∗ . Then, if f = const, turbulent
diffusion conforms to the Bohm scaling (in terms of the
normalized fluxes); i.e., Γph ~ ΓB ~ 1/B0. If f = const ρ,
we are dealing with a plasma in the gyro-Bohm regime,
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Fig. 7. Coordinate dependence of the averaged magnetic
field {By0(x)} for different values of the parameter αB:
0.2, 1, and 2.
in which case the fluxes scale as Γph ~ ρΓB ~ 1/ . In
actuality, the dependence f(ρ) is more complicated
because it incorporates transitions from one regime to
another. Recently, Ottaviani and Manfredi [11] carried
out MHD simulations of a turbulent tokamak plasma
with ion-temperature-gradient driven instability. They
showed that, over a wide parameter range, transport pro-
cesses conform to the gyro-Bohm scaling; this is in con-
trast to linear theory, which predicts the Bohm scaling.

In the present paper, a study is also made of a fully
developed plasma turbulence far from the instability
threshold. Figure 9 shows the dependence of the turbu-
lent fluxes of particles and heat on the parameter
ρ ~ 1/B for two values of the pedestal temperature: TB =
1 and TB = 3. We see that, at large values of B0 (i.e., at
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Fig. 8. Coordinate dependence of the averaged quantity
{γ||(x)} for different values of the parameter αB: 0.2, 1,
and 2.
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small ρ values), the turbulent fluxes increase almost lin-
early, which indicates that the plasma is in the gyro-
Bohm regime. At small values of the toroidal magnetic
field (i.e., at large ρ values), the turbulent fluxes are
independent of ρ, which indicates a transition to the
Bohm regime. Figure 10 presents contours of constant
electrostatic potential, φ(x, y) = const, for TB = 1 and for
two values of the toroidal magnetic field: B0 = 1 and
3 T. We can be seen that, at small values of B0 (in the
Bohm regime), turbulent plasma is characteristically
dominated by large-size convective cells stretched in
the X direction. Such structures with kx ! 1 are custom-
arily called streamers. It is known that the presence of
these structures in the edge plasma enhances turbulent
transport. On the other hand, at large values of B0 (in the
gyro-Bohm regime), the convective cells are smaller in
size and are stretched in the Y direction.

Calculations show that an increase in the field B0
leads to an increase in the zonal flow velocity Uy0. In
this case, the vortices break into smaller vortices by the
known mechanism [6, 7] associated with the shear of
the velocity Uy0. Figure 11 depicts the correlation func-
tion C(∆) calculated from the formula

for two magnitudes of the toroidal magnetic field. We
see that, as the field increases from B0 = 1 T to B0 = 3 T,
the correlation function becomes narrower and the cor-
relation length decreases from ∆0(1) = 0.32 to ∆0(3) =
0.26. These numerical results agree with the results
obtained by Ottaviani and Manfredi [11], who showed
that, in the regime of fully developed plasma turbu-
lence, the behavior of the nonlinear eigenfunctions dif-
fers greatly from that of the linear eigenfunctions. In
this case, an increase in B0 (a decrease in ρ) gives rise
to a fairly intense poloidal zonal flow, which stimulates
the vortices to break into smaller vortices and shortens
the mean correlation length of a convective cell. As a
result, turbulent transport decreases.

It follows from Fig. 9 that, as the pedestal tempera-
ture increases from Tb = 1 to Tb = 3, and as the parame-
ter ρ increases, the transition to the Bohm regime of tur-
bulence occurs at larger values of the field B0. In other
words, as B0 decreases (i.e., as ρ increases), the transi-
tion to the Bohm regime occurs first at a higher pedestal
temperature, Tb = 3 (when B0 ≈ 1.75 T and ρ ≈ 0.02). At
a lower pedestal temperature, Tb = 1, and at the above
B0 values, the plasma still remains in the gyro-Bohm
regime. The transition to the Bohm regime occurs when
the field B0 has decreased to about B0 ≈ 1.3 T (ρ ≈
0.027). Hence, it is clear that, at low pedestal tempera-
tures, the sheared flow velocity Uy0, which governs
transitions from one regime to another, has a greater
stabilizing effect than it does at high pedestal tempera-
tures. Moreover, simulations show that, although the
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poloidal velocity Uy0 at a higher plasma temperature
(Tb = 3) somewhat exceeds that at a lower temperature
(Tb = 1), the stabilization in the latter case is neverthe-
less more efficient. In order to explain such a property
of transitions from one regime to another, we recall [12]

y y

xx

B0 = 3 íB0 = 1 í

Fig. 10. Contours of constant potential φ(x, y) for two values
of the toroidal magnetic field: B0 = 1 and 3 T.
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that, along with the flow velocity Uy0(x, t), an important
parameter determining the stabilizing effect of the
sheared flow is also the rate of change of the flow veloc-
ity. Physically, it is clear that, if the rate of change of the
sheared flow velocity is higher than the rotation rate of
a vortex cell, then the effect of breaking the cells into
smaller cells is far less pronounced. Figure 12 shows
the frequency Fourier spectra F{Uy0(x, t)} of the veloc-
ity Uy0(x0, t) at x0 = 0.5 for two different pedestal tem-
peratures, Tb = 0.7 and 4.0. It can be seen that, at the
higher temperature, the mean rate of oscillations of the
velocity Uy0 exceeds that at the lower temperature.
Hence, we arrive at the following qualitative conclu-
sion: the reduction in the efficiency of stabilization by
a sheared flow is presumably associated with the fact
that the rate of oscillations in the flow velocity
increases with plasma temperature. To obtain the quan-
titative characteristics of this phenomenon requires
more detailed computations; this, however, goes
beyond the scope of the present paper.

4. CONCLUSIONS

Numerical simulations of the nonlinear turbulent
plasma dynamics in a wall layer in a tokamak have been
carried out using an electromagnetic MHD model
based on the reduced four-field {φ, A, n, Te} Braginskii
equations with cold ions (Ti ! Te). The behavior of tur-
bulent fluxes in the vicinity of a resonant point such that
m/n = q(xres) has been investigated in the plane layer
approximation. The simulations show that, as the elec-
tron temperature at the plasma edge increases, the
intensity of turbulent particle flux decreases, reaching
its minimum value, and then increases. Such behavior
is found to be due to the stabilizing effect of the poloi-
dal electron drift velocity (VyDe ~ dTe0/dx) in the equa-
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Fig. 12. Time Fourier spectra of the velocity Uy0 for two
values of the pedestal temperature: Tb = 0.7 and 4.0.
tion for the longitudinal component of the magnetic
potential. It is shown that, at a strong toroidal magnetic
field B0, turbulent transport processes conform to the
gyro-Bohm scaling, which gradually passes over to the
Bohm scaling as the field decreases. In the Bohm
regime, turbulent plasma convection is dominated by
vortices stretched in the radial direction (kx ! 1). Dur-
ing the transition to the gyro-Bohm regime, the velocity
of the zonal flow (the poloidal velocity Uy0) increases; as
a result, the vortex cells break into smaller cells, their
correlation length decreases, and turbulent transport is
reduced. As the plasma temperature in the wall layer
increases, the frequency of oscillations in the sheared
velocity becomes higher, so that the sheared velocity
progressively loses its stabilizing effect on turbulent fluc-
tuations. As a consequence, the transition to the Bohm
regime occurs at a stronger toroidal magnetic field.

It follows from the results of numerical modeling
that, in the range of plasma parameters under analysis,
the intensity of turbulent fluxes decreases abruptly as
the magnetic field shear increases. The simulations
show that the strength of the large-scale (zonal) mag-
netic field By0 is insignificant, so that this field does not
substantially affect turbulent transport processes.

ACKNOWLEDGMENTS
This work was supported in part by the Federal Pro-

gram for State Support of Leading Scientific Schools
(project no. NSh-2024.2003.2) and the Department of
Atomic Science and Technology of the Ministry of
Atomic Industry of the Russian Federation.

REFERENCES
1. B. D. Scott, Plasma Phys. Controlled Fusion 39, 1635

(1997).
2. R. V. Shurygin, Fiz. Plazmy 27, 19 (2001) [Plasma Phys.

Rep. 27, 18 (2001)].
3. A. Zeiler, J. F. Drake, and B. Rogers, Phys. Plasmas 4,

2134 (1997).
4. X. N. Su, P. N. Yushmanov, J. Q. Dong, and W. Horton,

Phys. Plasmas 1, 1905 (1994).
5. B. D. Scott, J. F. Drake, and A. B. Hassam, Phys. Rev.

Lett. 54, 1027 (1985).
6. T. M. Antonsen, Phys. Rev. Lett. 41, 33 (1978).
7. H. Biglari, P. H. Diamond, and P. W. Terry, Phys. Fluids

B 2, 1 (1990).
8. Y. Z. Zhang and S. M. Mahajian, Phys. Fluids 4, 1385

(1992).
9. S. J. Camargo, D. Biskamp, and B. D. Scott, Phys. Plas-

mas 2, 48 (1995).
10. R. V. Shurygin, in Proceedings of the 29th EPS Confer-

ence on Plasma Physics and Controlled Fusion, Mon-
treux, 2002, p. 1.108.

11. M. Ottaviani and G. Manfredi, Phys. Plasmas 6, 3267
(1999).

12. P. W. Terry, Rev. Mod. Phys. 72, 109 (2000).

Translated by I.A. Kalabalyk
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004



  

Plasma Physics Reports, Vol. 30, No. 5, 2004, pp. 363–369. Translated from Fizika Plazmy, Vol. 30, No. 5, 2004, pp. 398–405.
Original Russian Text Copyright © 2004 by Shatalin, Vekshina, Goncharov, Esipov, Lashkul.

                                                                 

TOKAMAKS

       
Peripheral Fluctuations and Particle Transport
during an L–H Transition in the FT-2 Tokamak

S. V. Shatalin*, E. O. Vekshina*, P. R. Goncharov*, L. A. Esipov**, and S. I. Lashkul**
*St. Petersburg State Technical University, Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russia

**Ioffe Physicotechnical Institute, Russian Academy of Sciences, 
Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

Received April 22, 2003; in final form, September 15, 2003

Abstract—Experimental data on the processes in edge plasma that accompany the transition to an improved
confinement regime during lower hybrid heating in the FT-2 tokamak are presented. The poloidal and radial
distributions of the plasma parameters and drift particle fluxes were measured with the use of mobile mulitielec-
trode Langmuir probes and were found to be substantially nonuniform in the poloidal direction. The evolution
of the plasma parameters in the course of heating and during an L–H transition is investigated. It is shown that,
in FT-2 experiments, the drift of plasma particles in a slowly varying (quasi-steady) electric field and the fluc-
tuation-induced particle fluxes make comparable contributions to the radial particle transport, whereas the con-
tribution of fluctuations to poloidal plasma fluxes is negligibly small. The effective coefficient of radial diffu-
sion is determined. The measurement results show that the L–H transition is accompanied by a substantial
decrease in this coefficient. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The edge plasma in magnetic confinement systems
is characterized by complicated physical processes that
are closely related to the confinement parameters in the
plasma core and can play a decisive role under certain
experimental conditions. The scrape-off layer (SOL)—
the plasma region lying outside the last closed flux sur-
face (LCFS)—presents some problem for the diagnos-
tics and interpretation of experimental data. Unlike the
plasma core, where the plasma parameters can be
assumed to depend on the radius of the magnetic-flux
surface only (as is usually assumed in modeling and
diagnostics), the SOL plasma is two-dimensional in the
poloidal cross section. The full mapping of this region
is a rather difficult task, one which is usually almost
impossible to accomplish in large devices. At the same
time, the poor understanding of the processes occurring
in SOL plasma is a serious obstacle on the way to con-
trolled fusion [1]. In this context, the plasma of small
tokamaks, which is a more flexible and quite easily
diagnosed subject, can provide useful experimental
information.

In this paper, the main results are presented of a
long-term experimental study of the particle transport
in the edge plasma and its evolution during the transi-
tion to an improved confinement regime (L–H transi-
tion). The data were obtained from probe measure-
ments in the FT-2 tokamak with a major radius of R =
55 cm and a radius of the poloidal limiter of a = 7.9 cm.
L–H transitions were observed in experiments on addi-
tional on-axis lower hybrid heating (LHH) under con-
ditions of the efficient absorption of the electromag-
netic wave energy (f = 920 MHz, P ≤ 120 kW) in the
1063-780X/04/3005- $26.00 © 20363
resonance region. The LHH pulse with a duration of
∆tLHH = 5 ms was switched on during the steady-state
phase of the discharge at the following values of the
main experimental parameters: the toroidal magnetic
field was Btor = 22 kG, the plasma current was Ipl =
22 kA, and the duration of the steady-state phase was
∆tpl = 40 ms. During LHH, we observed substantial
variations in the profiles of the plasma density (n) and
the electron and ion temperatures (Te, Ti), an increase in
the plasma energy (W), and a decrease in the emission
intensity of neutral hydrogen (çβ). An analysis of the
experimental data allowed us to conclude that an exter-
nal transport barrier had formed by the end of the LHH
pulse. The values of Te and n and the energy confine-
ment time τpl, which increased during the LHH phase
by a factor of 2 to 3, retained in the post-heating phase
of the discharge. This fact, along with a decrease in the
intensity of the çβ line, testifies to an L–H transition
[2–4].

As an illustration of a typical change in the dis-
charge parameters during LHH, Fig. 1 shows the evolu-
tion of the loop voltage, the average plasma density, the
intensity of the çβ line, and the plasma energy. The ver-
tical dashed lines indicate the beginning and end of the
radio-frequency (RF) LHH pulse. The displacement of
the flux surface with a radius of 13 cm (where the
Mirnov coils were located) along the major radius R is
also shown. We note that the change in the equilibrium
state (∆R) is caused not only by the change in the
plasma energy W, but also by the control fields that hold
the plasma column at the axis of the vacuum vessel. The
displacement ∆R reflects the general features of the W
004 MAIK “Nauka/Interperiodica”
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variations related to the rapid increase in the plasma
energy during auxiliary heating and to the subsequent
action of the control fields.

2. SCHEME OF THE EXPERIMENT

The processes in the SOL that accompany the L–H
transition were studied using three mobile multielec-
trode probes that were arranged along the poloidal
direction in the same cross section of the chamber and
provided information about the peripheral region of the
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Fig. 1. (a) Typical waveforms of the discharge parameters:
∆R is the shift of the center of a magnetic flux surface with
a radius of r = 13 cm (where the Mirnov coils were located),
Upl is the loop voltage, ne is the average charged particle
density, çβ is the intensity of the çβ line, PRF is the power
of the RF pulse. (b) A typical waveform of a diamagnetic
signal (plasma energy) during additional heating [4] (the RF
pulse starts at 29 ms).
plasma (Fig. 2). This diagnostics allowed us to study
the evolution of the local values of the plasma potential
and the electron density and temperature, as well as the
two-dimensional (in the poloidal section) particle flux
caused by the drift in the crossed poloidal electric field
Ö and toroidal magnetic field Ç [5–7]. This flux can be
represented as a sum of a quasi-steady and a fluctuating
component. The density of the quasi-steady flux is
given by the expression

G0(t) = cn0(t)[E0(t) × B]/B2. (1)

The fluctuation-induced flux is caused by the corre-
lation of the particle density fluctuations n~ and the
electric field E~,

G~(t) = c[〈n~(t)E~(t)〉 × B]/B2. (2)

Here, the angle brackets stand for time averaging. To
determine the density of quasi-steady flux (1), we used
slowly varying (smooth) components of the probe sig-
nals. The processing of these signals allowed us to
determine the time dependence of the local values of Te,
n, and E0 [5]. Fluctuating component (2) could be
found using either analog or digital processing of the
signals. In the former case, we used the analog multipli-
cation of the fluctuating component (in the frequency
band of up to 500 kHz) of the ion saturation current at
the probe by a fluctuating component of the potential
difference between two floating electrodes, after which
the results were averaged. The floating electrodes were
located symmetrically on both sides of the point at
which the ion current was measured. This procedure
allowed us to determine two orthogonal components of
flux (2), assuming that Te fluctuations are small. In the
case of digital processing, the signals were recorded at
a sampling rate of 1 MHz.

The probe measurements were performed with a
step of 20°–30° in the poloidal direction and a step of
1 mm along the minor radius, which allowed us to mea-
sure the time evolution of the poloidal and radial distri-
butions of the plasma parameters and particle fluxes in
the SOL. When measuring these distributions, the
poloidal angle Θ was counted from the equatorial plane
on the low-field side of the plasma column in the direc-
tion of the electron diamagnetic drift (upward in the
poloidal cross section, as is shown in Fig. 2). The
design features of the tokamak did not allow us to per-
form probe measurements near the equatorial plane on
the high-field side of the plasma column (at poloidal
angles of Θ = 160°–190°). As was mentioned above, the
plasma column in the heating phase shifted outward
along the major radius of the tokamak (Fig. 1). The
position of the LCFS in this case was determined by the
point at which the plasma contacted the high-field side
of the poloidal limiter in the preheating (ohmic heating)
phase, while in the post-heating phase (H-mode), it was
determined by the point at which the plasma contacted
the low-field side of the poloidal limiter. Thus, probe
measurements could not be performed over the entire
region overlapped by the moving LCFS. In the poloidal
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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Fig. 2. (a) Arrangement of three mobile five-electrode probes in the poloidal cross section of the chamber and (b) a schematic of the
measuring head of the probe. The central and two side electrodes are intended to measure the floating potential. The electrodes
labeled with n were connected as a single or double probe and were used to measure the plasma density and temperature.
cross section, this region was a superposition of all the
instantaneous positions of a circle of radius r < a, which
moved from the high-field to the low-field side of the
limiter. In the course of measurements, a mobile probe
was displaced from shot to shot along the minor radius
toward the axis of the plasma column until an apprecia-
ble influence on the discharge parameters (an increase
in the particle density measured by an interferometer, a
change in the equilibrium state, or partial disruptions)
was detected. This influence was interpreted as the fact
that the probe reached the boundary of the region over-
lapped by the LCFS (or, probably, a magnetic surface
close to the LCFS) in the course of its motion along the
major radius. The positions of such “boundary” points
corresponding to the minimal values of the minor
radius at which the measurements could be performed
fit well with the horizontal motion of a circle with a
radius of 70–71 mm and with the center located some-
what below (~4 mm) the geometrical center of the
poloidal cross section of the chamber. Obviously, this
diagnostics of the LCFS position is rather rough; how-
ever, the hypothesis of the motion of a circle with a
radius of ~70 mm does not contradict the data of the
interferometric and magnetic measurements. We note
that this evolution of the plasma column substantially
complicates the interpretation of experimental data.

3. EXPERIMENTAL RESULTS

The poloidal and radial distributions of the plasma
parameters in the SOL were found to be highly inhomo-
geneous in the poloidal direction. The LHH and the
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
subsequent L–H transition were accompanied by an
appreciable redistribution of the plasma parameters.

3.1. Charged Particle Density

In the ohmic heating (OH) phase of the discharge,
the charged particle density was maximum at poloidal
angles of Θ = 100°–150° and was about (6–8) ×
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Fig. 3. Radial profiles of the density and temperature in the
SOL for four values of the poloidal angle Θ that correspond
to the maxima of the local density in the OH phase (t =
30 ms, Θ = 153°) and in the H-mode (t = 37 ms, Θ = –5°)
and to the regions outside the local maxima (92° and 270°).
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1012 cm–3 at the boundary points, while the central
plasma density was ≈4 × 1013 cm–3. The second region
with an increased density of (2–4) × 1012 cm–3 was
observed at Θ = 200°–240°. Taking into account that
measurements in the region Θ = 160°–190° were not
performed, we can conclude that, in the OH phase, the
particle density was higher on the high-field side. Dur-
ing LHH, the particle density on the low-field side
increased substantially, and, by the end of the RF pulse,
the density became maximum there. Thus, at Θ = 0°,
the value of n at the boundary point increased from
≈3 × 1012 cm–3 to ≈1.3 × 1013 cm–3, and this value was
retained for several milliseconds after the end of an RF
pulse. The central density in this case also increased (to
≈5 × 1013 cm–3). The particle density at the boundary
points lying outside the local maxima was (1–3) ×
1012 cm–3 and varied insignificantly in the course of
LHH and during an L–H transition. At the same time,
the radial gradient of n increased substantially at almost
all values of Θ. Figure 3 shows the change in the radial
density profiles in the SOL for four values of Θ corre-
sponding to four characteristic regions: a local maxi-
mum in the OH phase (153°), a local maximum in the
H-mode (−5°), and regions outside local maxima (92°
and 270°). Different radial ranges in these plots are
explained by the motion of the LCFS, as was discussed
above.

3.2. Electron Temperature

The poloidal and radial distributions of Te also var-
ied substantially in the course of LHH and during an L–H
transition. In general, these variations can be described
as follows. In the OH phase, the maximum values of the
electron temperature (up to 40 eV at the boundary
points) were observed at angles of Θ = 90°–150° and
220°–250°, where the density was maximum. A less
pronounced peak (  ≈ 20 eV) was observed on the
low-field side (Θ ~ 0°). During LHH, the temperature
distribution became more flattened in the poloidal
direction, whereas the value of Te, on average,
increased; 3 ms after the beginning of the heating pulse,
the average value of Te increased from ≈10 eV in the
OH phase to ≈20 eV. All three of the above regions of
local maxima with nearly the same values of  ≈
40 eV retained in this phase. In the post-heating phase
(H-mode), the distribution of Te was strongly inhomo-
geneous with a pronounced maximum on the low-field
side (  ≈ 20 eV). The value of Te decreased, on
average, to 8–10 eV. We note that the cooling of the
edge plasma was accompanied by an increase in Te in
the plasma core by a factor of 1.5–2 [2–4]. The evolu-
tion of the radial profiles of the electron temperature for
four values of the poloidal angle is shown in Fig. 3. We
also note that the radial profile of Te at t = 37 ms and
Θ = 270° is nonmonotonic with a minimum at r =
81.5 mm. Similar distributions of Te were also observed

Te
max

Te
max

Te
max
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Fig. 5. Time evolution of the fluctuation-induced particle
flux per unit length of the contour passing through the
boundary points. The LHH pulse lasts from 32 to 36 ms.

in other SOL regions, which indicates that the plasma
parameters in the SOL are governed not only by radial
heat fluxes, but also by other factors (e.g., poloidal par-
ticle fluxes).

3.3. Fluctuation-Induced Particle Fluxes

The results of measurements of fluctuation-induced
particle fluxes are presented in Fig. 4 in the form of dia-
grams illustrating the poloidal distribution of two
orthogonal components of the particle-flux density 

and  at the boundary points. When constructing
these diagrams, the step in Θ was chosen to be 10°. At
the angles at which measurements were not performed,
the flux density was calculated as the mean of two val-
ues measured at the neighboring angles Θ. The dia-
grams correspond to three instants: 30, 33, and 37 ms,
corresponding to the OH phase, LHH, and H-mode,
respectively.

It can be seen from Fig. 4 that, in the OH phase, the
region with an enhanced fluctuation-induced radial
transport is located on the high-field side. The radial
particle flux in this region increases substantially dur-
ing the first half of the RF pulse (33 ms). Note that the
fluxes are negative (directed to the center of the plasma
column) in the region Θ = 60°–90°. These fluxes also
vary substantially during LHH. We also note that such
flux behavior at nearly the same values of Θ was
observed in the previous FT-2 experiments on studying
the OH regime [6]. In the post-heating phase (H-mode),
the average radial fluctuation-induced flux decreased;
however, some local regions with enhanced transport
were retained in this case too (at Θ = 0°, 30°, and 120°–
140°).

The results obtained allow us to calculate the radial
fluctuation-induced particle flux through the entire

Γ r
~

ΓΘ
~
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poloidal contour (the sum of the products of the mea-
sured flux density by the length of the corresponding
segment of the poloidal contour). The time behavior of
this flux, which is the total fluctuation-induced particle
flux per unit length of the major circumference, is
shown in Fig. 5. This flux increases during the first half
of the LHH pulse and then decreases. In the H-mode,
the value of the total radial flux is reduced by nearly
one-half in comparison with the preheating phase of the
discharge.

The evolution of the poloidal component of the fluc-
tuation-induced particle flux  can also be traced in
Fig. 4. We note that there are oppositely directed fluxes
both on the low-field side and on the high-field side in
the OH and LHH phases. In the H-mode, the poloidal
fluctuation-induced transport is almost totally sup-
pressed (except for local regions on the low-field side).

3.4. Contribution from Quasi-Steady Fluxes

Similar distributions were also obtained for quasi-
steady components G0 of the drift particle fluxes in the
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−5° and 270°: (1) fluctuation-induced flux, 30 ms; (2) quasi-
steady flux, 30 ms; (3) fluctuation-induced flux, 37 ms; and
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Γ r
~

SOL. Figure 6 illustrates, as an example, the radial dis-
tributions of the fluxes Γ0r and  for two values of the
poloidal angle, so we can compare the quasi-steady and
fluctuation-induced particle fluxes. This figure demon-
strates a complicated structure of the drift fluxes in the
SOL. Two components of the radial flux at different
spatial points can differ not only in the magnitude, but
also in the direction. Since both components are of the
same order of magnitude, they make comparable con-
tributions to the total particle transport.

The radial profiles of the poloidal fluxes Γ0Θ and 
are shown in Fig. 7. This figure illustrates the dominant
contribution of the quasi-steady flux to the total poloidal
flux and a substantial increase in Γ0Θ in the H-mode. Note
that the quasi-steady flux changes its sign at r = 81.5 mm
(Θ = 270°). This could be the reason for a nonmonotonic
Te profile with a minimum at r = 81.5 mm (Fig. 3).

3.5. Effective Coefficient of Radial Diffusion

Using the measured poloidal and radial distributions
of the charged particle density and radial drift fluxes
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(both quasi-steady and fluctuation-induced), we can
determine the effective coefficient Deff of radial diffu-
sion in the SOL from the expression Γr = –Deff · grad rn,

where Γr = Γ0r +  (the classical diffusion transport is
negligibly small and can be ignored). Such a descrip-
tion implies that the particle transport in the SOL is a
diffusion process in spite of the fact that drift fluxes (at
least, the quasi-steady drift) are not related to the actual
diffusion of particles. Figure 8 shows the radial and
poloidal profiles of Deff calculated by this formula for
two instants in the OH phase and in the H-mode. It can
be seen from the figure that the coefficient of radial dif-
fusion decreases substantially after the transition to the
improved confinement regime. The presence of nega-
tive values of Deff indicates once again the complicated
structure of the drift fluxes in the SOL.

4. CONCLUSIONS

A large amount of experimental data on the evolu-
tion of the poloidal and radial distributions of the
plasma parameters and particle fluxes in the SOL dur-
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ing an L–H transition have been obtained in the course
of probe measurements in the FT-2 tokamak.

It is shown that, under our experimental conditions,
the fluctuation-induced and quasi-steady drift fluxes
make comparable contributions to the radial particle
transport, whereas the contribution of fluctuations to
poloidal plasma fluxes in the SOL is negligibly small.

The L–H transition is accompanied by a substantial
decrease in the effective coefficient of radial diffusion.

The results obtained, as well as the data from other
(few in number) studies, show that the processes in the
SOL are characterized by a fairly complicated structure
of plasma flows. Fluctuation-induced fluxes contribute
significantly to the total radial particle transport. The
understanding of these processes and the search for
ways of controlling the particle fluxes require further
theoretical and experimental investigations. It is also
necessary to study the nature of plasma fluctuations and
the mechanism of fluctuation-induced transport. Probe
measurements still remain one of the basic diagnostic
tools in these studies.
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Abstract—A new approach to the processing of experimental data from MHD diagnostics is developed for the
purpose of investigating the spatial structure of large-scale MHD instabilities in a tokamak. The empirical mode
decomposition method is applied to expand a multimode MHD perturbation in individual modes, which are
then identified by constructing a spatial analytic signal with the help of the Hilbert transform. The method can
be used to analyze the structure of the tearing instability and of the resistive wall modes. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The problem of identifying the mode composition
of large-scale MHD perturbations in a tokamak has
recently attracted increased interest because of the
development of active research aimed at determining
the restrictions imposed on the possible operating
regimes of large tokamak devices by the onset of the
neoclassical tearing modes and resistive wall modes
(RWMs). One way of stabilizing these dangerous insta-
bilities is to use feedback control systems. In order to
provide such systems, it is necessary to develop meth-
ods by which the mode composition of an instability
can be identified in real time.

The mode composition of an MHD instability is
usually derived by analyzing the data from probe mea-
surements of the spatiotemporal evolution of the pertur-
bations of the poloidal magnetic field of a plasma col-
umn.

The distortions of the spatial structure of the pertur-
bations due to toroidicity and due to some other factors
limit the possibilities for identifying the mode compo-
sition of the instability by standard spectral methods. In
some cases, an approach based on the representation of
the experimental data under analysis in the form of a
so-called analytic signal [1] may be considered as a via-
ble alternative to the spectral methods. Such a represen-
tation makes it possible to correctly determine the
instantaneous amplitudes and phases of the unsteady
oscillating functions. In our earlier paper [2], we suc-
cessfully applied this approach to identify the spatial
structure of a single mode of a tearing instability. How-
ever, the approach is subject to a serious restriction: the
basic oscillating function should be monocomponent
[3].

The analysis of an MHD instability that occurs in
the form of several modes with different spatial struc-
1063-780X/04/3005- $26.00 © 20370
tures requires the use of mode decomposition. This
problem can be solved by the recently developed
empirical mode decomposition (EMD) method, in
which a basic polyharmonic function f(x) is decom-
posed into the components imfi(x) having the shape of
oscillations simultaneously modulated in amplitude
and in frequency [3]. Each of these components, called
intrinsic mode functions (IMFs), has the following
properties: (i) the number of its local extremes and the
number of points where it intersects its zero level differ
by no more than unity and (ii) its upper and lower enve-
lopes are symmetric with respect to its zero level. By
constructing an analytic signal for each of the IMFs, it
is possible to identify instability modes with the help of
the algorithm proposed earlier in [2]. The attractiveness
of the EMD method for MHD diagnostics is that, in a
tokamak, the spatial distribution of the tearing pertur-
bations in the poloidal direction has the shape of oscil-
lations with a variable amplitude and variable fre-
quency—a feature peculiar to IMFs.

2. EMPIRICAL MODE DECOMPOSITION 
ALGORITHM

An algorithm for decomposing the function f(x), x ∈
[a, b], was proposed by Huang et al. [3]. It involves the
following steps:

(i) Initialization: i = 0, ri(x) = f(x), x ∈  [a, b].

(ii) Initialization: j = 0, gj(x) = ri(x), x ∈  [a, b].

(iii) Determination of the extremes of gi(x).

(iv) Calculation of the envelopes maxj(x) and
minj(x) by spline-interpolation using the extremes
obtained.

(v) Calculation of the mean envelope: mj(x) =
(maxj(x) + minj(x))/2.
004 MAIK “Nauka/Interperiodica”
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(vi) Elimination of the local trend: gj + 1(x) = gj(x) –
mj(x).

(vii) Determination of whether or not gj(x) satisfies
a stopping criterion. If not, the j = j + 1 iterate is taken
and step (iii) is repeated.

(viii) Extraction of the IMF: imfi(x) = gj(x).
(ix) Elimination of the extracted IMF: ri + 1(x) =

ri(x) – imfi(x).
(x) If ri(x) is not sufficiently small or is monotonic,

the i = i + 1 iterate is taken and step (ii) is repeated.
The algorithm yields the decomposition f(x) =

 + rn(x) in terms of the resulting set of n
IMFs and the trend rn(x). The stopping criterion (step
(vii)) has the form 〈|ai(x) – ai + 1(x)|2〉/〈ai(x)2〉  < ε, where
ε is specified in advance (we have adopted ε = 0.01).

The mean frequency of oscillations of the first IMF
is maximum, and the mean frequency of each of the
next IMFs is lower than that of the previous one. Hence,
each IMF is characterized by its own frequency scale,
and the problem of calculating the IMF reduces to that
of eliminating the local trend corresponding to its fre-
quency scale.

Assigning to the expansion of the function f(x) the
analytic signal Z(x) = (x)exp(iϕj(x)), where

Aj(x) = ( (x) + (H[imfj(x)])2)1/2, ϕj(x)) =

[imfj(x)]/imfj(x)), and H[…] is an operator
defining the Hilbert transform (HT), we can generalize
the algorithm proposed in [2] to a multimode MHD
instability.

One of the difficulties arising in the practical imple-
mentation of the algorithm is the fact that, in calculat-
ing the upper and lower envelopes of the IMFs, the
functions grow without bound at the end portions of the
closed intervals on which they are defined. As the algo-
rithm operates, these end portions become increasingly
longer, which distorts the shapes of the resulting IMFs.
For IMFs defined on short closed intervals, the algo-
rithm produces uncertain expansions. One possible way
of eliminating this numerical effect is to extrapolate the
IMF beyond the closed interval by the method of neu-
ron grids [4].

Our numerical algorithm is free of this drawback,
because the spatial perturbation of the magnetic field is
periodic in the poloidal angle θ, which allows the EMD
method to be used with periodic cubic splines.

3. EXAMPLES OF THE MODE DECOMPOSITION 
OF TEST DISTRIBUTIONS

As an example, we show how to identify the mode
composition of the tearing instability. In a multimode
case, the modes of the perturbation of the poloidal mag-
netic field can be identified unambiguously because the
perturbed field can be expanded into spatial compo-

imf j x( )∑

A j∑
imf j

2

(Harctan
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
nents, each of which corresponds to the specific struc-
ture of the magnetic islands (i.e., to the intrinsic tearing
mode). In the general case, such an identification is
problematic; however, in the vast majority of standard
discharge regimes with q ≤ 3.5 in tokamaks, the most
probable tearing modes are those with m/n = 2/1, 3/1,
3/2, and 5/2. The modes with different n can easily be
singled out by a spatial Fourier analysis. The modes
with m/n = 2/1 and 3/1, as well as the modes with m/n =
3/2 and 5/2, can be resolved by the EMD method.

The EMD algorithm was checked against the test
distributions that model the toroidal and ballooning dis-
tortions of MHD perturbations. The poloidal magnetic
field was described by the distribution B(θ) = B1(θ) +
B2(θ), where Bi(θ) = A(θ)cos(mi(θ – λisinθ) – αi);
A(θ) = 1 + kcosθ is the amplitude variation, mi is the
number of the mode, λi is the parameter determining
the level of the distortions, and αi is the phase shift. Fig-
ure 1 shows the distribution B(θ) with the parameters
m1 = 5, m2 = 3, λ1 = 0.33, λ2 = 0.3, k = 0.2, α1 = 0, and
α2 = π/2. The results of applying the EMD algorithm to
this distribution B(θ) are illustrated in Fig. 2, which
shows the upper and lower envelopes, the mean of the
envelopes, and the extracted components imf0(θ) and
imf1(θ). We can see that the extracted IMFs coincide
almost completely with the prescribed components
B1(θ) and B2(θ). Each IMF was processed by the algo-
rithm for identifying an individual mode on the basis of
the HT [2]. The mode composition obtained in this way
is given in Fig. 3. For comparison, the figure also pre-
sents the mode composition obtained by the method of
expansion in cylindrical Fourier harmonics, which pos-
sess a far richer spatial spectrum. We can see that the
algorithm proposed here produces more reliable results
than the conventional Fourier expansion method, which
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Fig. 1. First test distribution B(θ) and its components B1(θ)
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yields a large number of harmonics in comparison with
that contained in the initial distribution B(θ).

The algorithm described above was also applied to
the test distribution B(θ) with the parameters m1 = 3,
m2 = 2, λ1 = 0.6, λ2 = 0.4, k = 0, α1 = π/2, and α2 = 0
(Fig. 4). The extracted components (which are plotted
in polar coordinates in Figs. 5, 6) are also seen to coin-
cide with the prescribed components to within several
percent. The mode compositions obtained by the pro-
posed algorithm and by the conventional Fourier
expansion method are depicted in Fig. 7. As in the pre-
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Fig. 2. Distribution B(θ) and the components imf0(θ) and
imf1(θ) extracted by the EMD method.
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Fig. 4. Second test distribution B(θ).
vious case, the results of the algorithm are certainly
more reliable than those of the conventional Fourier
expansion.

4. EXAMPLE OF THE PROCESSING 
OF AN EXPERIMENTAL DISTRIBUTION 

OF MHD PERTURBATIONS

The algorithm was also used to process experimen-
tal signals from the magnetic pick-up coils (Mirnov
probes) in the T-10 tokamak. The measurements were
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Fig. 3. Comparison between the mode compositions of the
test distribution B(θ) obtained by the fast Fourier transform
(FFT) and by the EMD + HT method.
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carried out in a discharge with the following parame-
ters: the magnetic field was BT = 2.5 T, the discharge
current was IP = 250 kA, the mean plasma density was
〈ne〉  ≈ 1.2 × 1019 m–3, the plasma minor radius was a =
0.27 m, and the safety factor at the plasma boundary
was q(a) = 2.4. During the discharge, the poloidal mag-
netic field was strongly perturbed, the perturbation
amplitude being B ≈ 5 × 10–4 T. The signals from
Mirnov probes were recorded at the time t = 763 ms
after the beginning of the discharge.

The results of signal processing by the algorithm
and by the method of expansion in cylindrical Fourier
harmonics are demonstrated in Figs. 8–12. The algo-
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rithm shows that the perturbation is largely dominated
by the second and third modes, whereas the Fourier
expansion contains a far larger number of harmonics.
Since, in this discharge regime, q ≈ 2.4 and the m/n =
3/1 tearing mode cannot be excited, this result presum-
ably indicates the simultaneous development of the
m/n = 2/1 and 3/2 tearing modes.

To obtain additional information that would provide
a more reliable identification of the tearing modes
present in the perturbation, we consider how MHD per-
turbations evolve over time. Figure 13 shows the time
evolutions of the second and third spatial Fourier har-
monics of a perturbed poloidal magnetic field, obtained
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Fig. 7. Mode compositions of B(θ) obtained by the fast Fou-
rier transform (FFT) and by the EMD + HT method.
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by processing the signals from Mirnov probes by ana-
log schemes. The frequencies of the main components
of each of the signals are different, which indicates the
presence of at least two tearing modes. The frequency
of the main component of the signal corresponding to
the third spatial Fourier harmonic is two times higher
than that corresponding to the second harmonic.
Assuming that the plasma rotates predominantly in the
toroidal direction, we can conclude that the signal with
the higher frequency corresponds to the tearing mode
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Fig. 12. Mode compositions of the experimental distribu-
tion B(θ) obtained by the fast Fourier transform (FFT) and
by the EMD + HT method.
whose toroidal number n is two times larger. This con-
clusion agrees with the above experimental result about
the simultaneous detection of the m/n = 2/1 and 3/2
tearing modes.

5. CONCLUSIONS

The algorithm described in the present paper is
based on a combination of the EMD method and the
method developed earlier in [2]. This algorithm, which
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makes it possible to resolve the individual modes in an
MHD perturbation and to identify them, produces far
more reliable results than the conventional method of
expansion in cylindrical Fourier harmonics. Also, the
algorithm can be implemented to operate in real time
and thus is potentially applicable in systems for con-
trolling tearing modes and RWMs. This feature gives
the algorithm a distinct advantage over the singular
value decomposition (SVD) method [5], which requires
a time sample of several milliseconds. Although a rig-
orous mathematical justification of the EMD method is
still lacking, it has been actively developed in recent
years and has rapidly found increasingly wider applica-
tion [6–8].
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Abstract—In plasma microwave oscillators, electrons fall onto the surface of a graphite collector, which leads
to the generation of secondary electrons. The influence of the electrons reflected from the collector on the
parameters of a high-current relativistic electron beam propagating in a strong longitudinal magnetic field was
studied experimentally and by numerical simulations. It is shown that the penetration of the reflected electrons
into the drift space can lead to a substantial increase in the depth of the potential well in the drift space, a
decrease in the velocity of the beam electrons, and a broadening of the electron energy distribution function.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The efficiency of a microwave device depends

largely on the quality of an electron beam. High effi-
ciency can be achieved by using a monoenergetic beam
with a small angular spread in velocity space. It is also
important that the beam potential related to the beam
space charge be low. For this reason, thin-walled annu-
lar high-current relativistic electron beams (REBs) are
usually used in relativistic microwave electronics. The
beam is transported in a strong uniform magnetic field
and is separated from the wall of the electrodynamic
structure by a rather narrow gap comparable to the
beam wall thickness. It is desirable that the wall thick-
ness of the annular beam be as small as possible,
because when this thickness is sufficiently small, all the
electrons are uniformly decelerated by the space-
charge electric field and, in the case of an azimuthally
symmetric microwave field, they interact identically
with the exited electromagnetic field. This makes it
possible to create highly efficient microwave devices.

It is well known that, when the beam electrons fall
onto the collector, they cause secondary electron emis-
sion. If the secondary-electron energy is higher than the
work needed to overcome the electron beam potential,
these electrons can penetrate into the drift space and
substantially affect the beam parameters: the spread of
electrons over energy, the angular spread in velocity
space, and the beam wall thickness. Since the beam
potential in all relativistic microwave electronics
devices is higher than 1 kV, original secondary elec-
trons (with energies lower than 50 eV) do not affect the
REB parameters. In contrast, secondary electrons with
energies close to the energy of incident electrons,
namely, the electrons that undergo elastic or inelastic
reflections, can penetrate into the drift space of the
beam. The influence of the reflected electrons on the
1063-780X/04/3005- $26.00 © 20376
parameters of a high-current REB was studied in [1, 2].
In [2], an REB was investigated in the absence of a
magnetic field, whereas in [1], the beam propagated in
a strong longitudinal magnetic field and the experimen-
tal conditions were similar to those used in the present
study. It was experimentally shown in [1] that the pen-
etration of the reflected electrons into the drift space
leads to a 5–10% decrease in the beam current and to a
30% increase in the space-charge density of the beam.
In that paper, an analytical model that offered a qualita-
tive explanation of the observed effects was developed;
this model, however, did not provide quantitative agree-
ment with experiment. Moreover, in [1], the beam cur-
rent was fixed and equal to 0.65I0, where I0 is the limit-
ing current in a vacuum [3].

In the present study, the influence of the reflected
electrons on the beam parameters is investigated at
beam currents from I0 to 0.45I0. It is shown that the
influence of the reflected electrons is higher at low
beam currents. For example, at a current of 0.45I0, the
reflected electrons can increase the beam space charge
in the drift space by 100%. The experimental results are
compared with numerical simulations. The numerical
model includes some effects that were not taken into
account in [1]. The experimental data are in quantitative
agreement with calculations.

2. EXPERIMENT

A schematic of the experimental setup is shown in
Fig. 1. Thin-walled electron beam 1 was formed at
cylindrical explosive-emission cathode 2 with a radius
of r2 = 0.5 cm and propagated in a uniform magnetic
field of B = 1.5 T along the axis of the vacuum chamber.
The metal vacuum chamber consisted of anode tube 4,
transition tube 5, and drift tube 6, whose radii satisfied
004 MAIK “Nauka/Interperiodica”
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the inequalities r4 > r6 > r5 (r4 = 5.6 cm, r5 = 0.7 cm,
and r6 = 1.8 cm). The beam electrons arrived at collec-
tor 7. The experiments were performed with three types
of collectors made of different materials: graphite,
stainless steel, and tungsten.

The voltage pulse with an amplitude of 540 kV and
a full width at half-maximum of 35 ns was applied to
the accelerator cathode. The beam current was varied
by varying the distance d between cathode 2 and anode
plane 3. When the condition d @ r4 – r2 is satisfied, the
beam current is limited by the beam space charge in
tube 4. This current, which is usually referred to as the
limiting current of a coaxial magnetically insulated
diode, is equal to [4]

 [kA], (1)

where γ = 1 + eU/(mc2), e is an electron charge, U is the
cathode potential, mc2 is the electron rest energy, and

γ0 =  – 0.5. The current Im is the minimum
beam current that can be achieved using the system
shown in Fig. 1a. Figure 1b qualitatively shows the pro-
file of the beam potential along the system axis. In tubes
5 and 6, the external electric field is low; therefore, the
beam potential is primarily determined by the field of
the beam space charge. The beam potential is equal to

, (2)

where Q is the charge per unit length of the beam, r is
the tube radius, and rb is the beam radius. It follows
from this that the absolute value of the beam potential
is minimum in tube 5 (Fig. 1).

As the gap d decreases, the current injected in tube
5 increases; however, the current cannot exceed the
vacuum limiting current [3] for drift tube 6:

 [kA]. (3)

In this case, the beam potential in drift tube 6 cannot be
higher than

 [kV]. (4)

Strictly speaking, the above formulas are valid in the
case of an infinitely strong magnetic field. It was also
assumed in deducing formulas (3) and (4) that a metal
foil perfectly transparent to electrons and electrically
connected to tube 6 is installed at the entrance to tube 6
and the electron energy at the entrance to this tube is
equal to eU. In our case, these formulas are approxi-
mately valid only if r5 ≈ r2. Under this condition, the
decrease in the potential in tube 5 is small and the elec-
tron kinetic energy at the entrance to tube 6 is close to
eU; i.e., conditions of experiments with a foil in which
the electron kinetic energy at the entrance to tube 6 is
exactly equal to eU are approximately satisfied.
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The problem of the limiting current in a metal cham-
ber consisting of two tubes with different diameters was
considered in [5].

The scheme of the REB formation shown in Fig. 1
is widely used in relativistic microwave electronics.
The electrodynamic structure of a microwave device
was located in drift tube 6. Since the microwave oscil-
lator efficiency decreases with increasing beam current
at a fixed electron energy, the beam currents in straight
relativistic vacuum microwave-electronics devices are
usually no higher than 0.2I0, which is achieved by
adjusting the distance d and the ratio r4/r2.

In our experiments, the beam space charge in the
central part of the drift tube was measured by capacitive
divider 8 (see Fig. 1) with a length of 10 cm. The trans-
verse size of the electron beam was measured from its
print on a dielectric target that was transparent to the
beam electrons and was also installed in the central part
of the drift tube.

From the measured beam space charge per unit
length Q, the potential Φ at the outer beam radius r = rb

can be estimated by formula (2), assuming that the
beam charge density is uniform in the longitudinal and
azimuthal directions. At typical parameter values R/rb = 3
and Q = –10–7 C/cm, we find Φ = – 200 kV.

3. EXPERIMENTAL RESULTS

Figure 2a shows the beam current at the collector as
a function of the distance d between the cathode and
plane 3 (Fig. 1). One can see that the current reaches its

d

Q

12 3 4 5 6 8 7
(a)

(b)

d

U

Fig. 1. (a) Schematic of the experimental setup: (1) REB,
(2) cathode, (3) anode plane, (4) anode tube, (5) transition
tube, (6) drift tube, (7) collector, and (8) beam space charge
meter, and (b) the REB potential profile along the system
axis.
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maximum value equal to 3.1 kA at d = 0.9 cm and then
decreases to 1.4 kA at d = 3 cm. The beam current
depends on the collector material. When a collector
made of graphite (which has a low electron reflection
coefficient) is replaced with a collector made of tung-
sten (which has a high electron reflection coefficient),
the beam current decreases by 6–10%.

In every measurement of the beam current, we
simultaneously measured the beam space charge (see
Fig. 2b). One can see that, when graphite is replaced
with tungsten, the increase in the flux of reflected elec-
trons leads to an increase in the beam space charge.
This effect is most pronounced at low currents (d =
3 cm), Qw/Qc = 1, where Qw and Qc are the beam
charge densities per unit length for collectors made of
tungsten and graphite, respectively.

The dependence shown in Fig. 2a can be explained
as follows: As was mentioned above, for d @ r4 – r2, the
current of the beam entering tube 6 is equal to the cur-
rent of a magnetically insulated diode for tube 4 [see
formula (1)]. At γ = 2.06, r2 = 0.5 cm, and r4 = 5.6 cm,
we have Im = 1.28 kA. At d = 3 cm (i.e., at d ≈ r4 – r2),
the beam current should be higher than the current of a
magnetically insulated diode. Calculations show, how-
ever, that this difference is small, so that for d = 3 cm <
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Fig. 2. Measured dependences of the (a) beam current and
(b) beam space charge per unit length on the distance d for
different collector materials. Triangles, squares, and aster-
isks correspond to graphite, stainless steel, and tungsten,
respectively.
r4 – r2 = 5.1 cm, the measured current turns out to be
close to the current of a magnetically insulated diode.
As the gap becomes narrower (d < 3 cm), the current
injected into tube 6 increases; however, the current
measured at the collector cannot exceed the vacuum
limiting current for tube 6. According to formula (3),
for γ = 2.06, r2 = 0.5 cm, and r6 = 1.8 cm, the vacuum
limiting current is I0 = 3.2 kA. Thus, the increase in the
beam current from 1.4 kA to 3.1 kA as the distance d
decreases from 3 cm to 0.9 cm finds a natural explana-
tion.

At d > 0.9 cm, the beam current is limited by the
space charge in the diode (tube 4). The electrons
reflected from the collector can penetrate into the
diode; as a result, the beam space charge increases,
whereas the beam current decreases. This fact explains
the decrease in the beam current when a graphite col-
lector is replaces with a tungsten collector.

The influence of the reflected electrons on the beam
space charge should be more pronounced at low beam
currents. The point is that, at a high beam current equal
to I0, the beam potential in the drift tube Φ0 is close to
the cathode potential. According to formula (4), this
potential is equal to –400 kV when the cathode poten-
tial is –540 kV. Therefore, only a small fraction of the
reflected electrons, namely, the electrons that have
energies above 400 keV and escape from the collector
at small angles to the tube axis, can enter the drift tube.
When the beam current is low, the potential in the drift
tube is low and the fraction of the reflected electrons
that can enter the drift tube increases.

Figure 2 also shows the results obtained with a stain-
less-steel collector. One can see that, when a graphite
collector is replaced with a stainless-steel collector, the
beam current changes only slightly, while the space
charge varies significantly. Since the reflection coeffi-
cient for iron is smaller than for tungsten and is larger
than for carbon, the curves for stainless steel lie
between those for tungsten and graphite.

4. NUMERICAL SIMULATIONS

In simulations of the electron reflection from a solid
surface, we used the data presented in [6]. These data
include experimental dependences of the electron
reflection coefficient, the energy E of the reflected par-
ticles, and the angle at which they leave the surface on
the energy E0 and the angle of incidence of the incident
particles. For example, when electrons with an energy
of E0 = 540 keV are incident normally onto a surface
(i.e., the angle of incidence is zero), the total electron
reflection coefficient equals 0.45 for tungsten, 0.22 for
iron, and 0.08 for graphite. As the angle of incidence
increases, the total electron reflection coefficient for all
materials increases to unity. The distribution function
of the reflected electrons over energy E depends on the
target material. Thus, when electrons are incident nor-
mally onto a tungsten surface, this function equals zero
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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Fig. 3. Electron phase portrait (z, Pz) calculated for d = 3 cm and a tungsten collector. The points refer to the primary beam electrons,
while the crosses indicate the reflected and re-reflected electrons.
at an energy equal to the energy of incident electrons,
reaches its maximum at E = 0.9E0, and then decreases
to 0.1 of its maximum value at E = 0.3E0. The depen-
dence is qualitatively similar for all materials; however,
the maximum shifts toward lower energies and is less
pronounced for low-Z materials. For example, for iron,
the electron energy distribution function reaches its
maximum at E = 0.7E0 and decreases to 0.5 of its max-
imum value at E = 0.3E0. The angle at which the
reflected electrons leave the surface depends only
slightly on the target material. For normal incidence,
the angular distribution of the reflected electrons is
close to a cosine function.

Numerical simulations were performed using the
two-dimensional axisymmetric version of the KARAT
particle-in-cell electromagnetic code [7]. The code
solved a set of Maxwell’s equations and the relativistic
equations of motion for electrons. The geometry of the
cathode and vacuum chamber was the same as in the
experiment. The magnetic induction was 1.5 T. The
shape of the cathode voltage pulse was close to that
used in the experiment: the duration of the leading edge
was 10 ns, and the duration of the plateau was 20 ns.
The pulse amplitude was 540 kV. Note that in both the
experiments and simulations, the REB parameters were
determined during the plateau of the voltage pulse
(from 15 to 25 ns).

A boundary condition corresponding to the reflec-
tion of a fraction of incident particles was set at the col-
lector surface. The energies and angles at which the
reflected electrons left the surface were chosen by the
Monte Carlo method and were used as initial values for
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
calculating the trajectories of these electrons. After the
reflected particles returned to the collector (after being
re-reflected from the cathode or a potential well in the
drift tube near the collector), they again underwent a
partial reflection according to the above simulation pro-
cedure.

A typical electron phase portrait (z, Pz) calculated
for a tungsten collector and d = 3 cm (I = 0.45I0) is
shown in Fig. 3. Let us trace the behavior of electrons
using this phase portrait. The emitted electrons are
accelerated to the maximum energy in the gap between
the cathode and plane d in the positive direction along
the z axis (Fig. 1). After entering the drift tube, they are
slightly decelerated. Note that the beam current and the
energy of the beam electrons are unsteady in this cross
section. This fact requires additional study; however,
we can conclude that, when the beam current is compa-
rable to the limiting current, the regions where the
beam is accelerated and decelerated act as a virtual
cathode modulating the current and energy of electrons.
After arriving at the collector (z = 35 cm), electrons can
be reflected with a certain probability, after which they
begin to move in the opposite direction (in Fig. 3, these
electrons are marked by crosses). When the reflected
electrons pass from the drift tube to the narrow drift
tube 5 (Fig. 1), they are accelerated and are then re-
reflected from the cathode, after which they follow the
path of the primary electrons; however, they have a
lower energy and a significant spread in transverse
velocities. On the collector, they can be reflected again,
and so on.
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5. COMPARISON OF THE EXPERIMENTAL 
RESULTS WITH SIMULATIONS

Figure 4 shows the calculated beam current and
space charge density per unit length as functions of the
distance d for tungsten and graphite collectors and an
ideal collector with a zero reflection coefficient. One
can see that, for a graphite collector, the effect of the
reflected electrons on the REB parameters is weaker.
The electrons reflected from a graphite collector
decrease the beam current by no more than 7% and
increase the space charge by no more than 16%.

Let us compare the experimental dependences of the
beam current to those calculated for graphite and tung-
sten (see Fig. 5a). The measured and calculated values
of the beam current for d = 0.9 cm and d = 3 cm coin-
cide for both graphite and tungsten. For intermediate
values of d, the calculated current is lower than the
experimental one for both materials. The maximum
discrepancy is 17% for graphite and 25% for tungsten.

For tungsten, the measured and calculated values of
the space charge almost coincide, whereas the calcu-
lated values for graphite are somewhat smaller than the
experimental ones; however, the discrepancy does not
exceed 20% (Fig. 5b). Thus, the simulations qualita-
tively agree with the experimental dependences of the

Fig. 4. Calculated dependences of (a) the beam current and
(b) the beam space charge per unit length on the distance d
for different collector materials. The circles refer to a mate-
rial that does reflect electrons, the triangles refer to graphite,
and the crosses refer to tungsten.
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beam current and the beam space charge on d and on
the collector material. The discrepancy between the
measured and calculated values does not exceed 25%.

In the experiments, the shape of the REB print on
the target depended markedly on the collector material
(see Fig. 6). This change can be explained by the
increase in the wall thickness of an annular beam with
increasing number of reflected electrons. However, in
simulations, the thickness of an annular beam turned
out to be independent of the collector material (see
Fig. 7); the only difference is that the space charge den-
sity increased slightly near the beam axis in the case of
a tungsten collector. A substantial difference between
the prints in Fig. 6 can be explained by the fact that the
reflected and re-reflected electrons have low kinetic
energies. A 70-µm-thick heat-sensitive paper turns out
to be opaque for these electrons, so that the paper is
heated much more efficiently. The presence of a large
number of low-energy reflected and re-reflected elec-
trons in the drift tube is confirmed by the simulation
results (Fig. 8).

The penetration of the reflected electrons to the drift
space leads not only to a decrease in the average kinetic
energy of the beam electrons, but also to a significant
broadening of their energy distribution function
(Fig. 8a). In the case of a graphite collector, these

Fig. 5. Comparison of the measured and calculated depen-
dences shown in Figs. 2 and 4 for a graphite collector (tri-
angles) and a tungsten collector (asterisks and crosses). The
solid lines show the experimental results, and the dashed
lines show the results of calculations.
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Fig. 6. Beam prints on a heat-sensitive paper for (a) a graphite collector and (b) a tungsten collector (d = 3 cm).

(a) (b)
effects are reduced (Fig. 8b), but are not eliminated
completely. The broadening of the energy distribution
function in the presence of reflected electrons can be
attributed to the onset of electron two-stream insta-
bility.

In vacuum relativistic microwave electronics, spe-
cial precautions are usually taken in order to prevent the
penetration of reflected electrons into the drift space. To
this end, the collector is placed in the region of a weaker
magnetic field, so that the electrons reflected from the
collector have to pass through a magnetic mirror. This
makes it possible to significantly decrease the number
of reflected electrons in the drift space; however, the
flux of reflected electrons cannot be completely elimi-
nated in this way. On the other hand, the present study
has demonstrated that, in principle, the reflected elec-
trons can catastrophically deteriorate the beam param-
eters. The adverse effect of the reflected electrons on
the operation of relativistic microwave devices was
described, e.g., in [8, 9]. Note that, in [8], a method was

0 0.5 1.0

10

20

r, cm

q, 10–8, C/cm3

Fig. 7. Calculated radial profiles of the beam space charge
density for a graphite collector (triangles) and a tungsten
collector (asterisks) (d = 3 cm).
A PHYSICS REPORTS      Vol. 30      No. 5      2004
proposed for completely eliminating the penetration of
the electrons reflected from the collector into the drift
space. However, the application of this method to actual
microwave devices significantly complicates their
design. For this reason, in existing vacuum microwave
sources, the side wall of the metal cylindrical chamber
that is situated in a weaker magnetic field serves as a
beam collector. In plasma microwave oscillators [10],
electrons are incident normally onto the graphite col-

0 200 400

1

4

12 (‡)
dN/dE, 10–9, cm–1 keV–1

8

2
3

0 200 400

1

4

12 (b)

Ö, keV

8

2
3

Fig. 8. Calculated energy distribution functions of the elec-
tron density per unit length at d = 3 cm for (a) a tungsten
collector and (b) a graphite collector: (1) primary electrons
and (2) reflected electrons. For comparison, curves 3 show
the electron energy distribution functions in the absence of
reflected electrons.
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lector surface. Therefore, measurements and simula-
tions similar to those described in our paper would be
of interest for any study on relativistic microwave elec-
tronics.
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Abstract—A nonlinear theory of the instability of a straight relativistic dense electron beam in a plasma
waveguide is derived for conditions of the stimulated collective Cherenkov effect. A study is made of a
waveguide with a dense plasma such that the plasma wave excited by the beam during the instability can be
described, with a good degree of accuracy, as a potential wave. General relativistic nonlinear equations are
obtained that describe the temporal dynamics of beam–plasma instabilities with allowance for plasma nonlin-
earity and the generation of harmonics of the initial perturbation. Under the assumption that the resonant inter-
action between the beam waves and the plasma waves is weak, the general equations are reduced to relativistic
equations with cubic nonlinearities by using the method of expansion in small perturbations of the trajectories
and momenta of the beam and plasma electrons. The reduced equations are solved analytically, the time scales
on which the instability saturates are determined, and the nonlinear saturation amplitudes are obtained. A com-
parison between analytical solutions to the reduced equations and numerical solutions to the general nonlinear
equations shows them to be in good agreement. Nonlinear processes caused by the relativistic nature of the
beam are found to prevent stochastization of the system in the nonlinear stage of the well-developed instability.
In contrast, a nonrelativistic electron beam is found to be subject to significant anomalous nonlinear stochasti-
zation. © 2004 MAIK “Nauka/Interperiodica”.
1. It is well known that the Cherenkov instability of
an electron beam in a plasma waveguide can occur only
when the plasma density is higher than a certain thresh-
old value determined by the beam velocity and the
geometry of the system. Thus, in a magnetized
waveguide with a low-density beam, a necessary condi-
tion for the onset of the Cherenkov instability has the
form [1]

(1)

where ωp is the Langmuir frequency of the plasma elec-
trons, u is the beam electron velocity, γ = (1 – u2/c2)–1/2

is the relativistic factor, and k⊥  is the smallest transverse
wavenumber of the main plasma E wave in the
waveguide. When the Langmuir frequency ωp is close
to the threshold frequency Ω0, the instability develops
in the long-wavelength range at a frequency ω that is
low in comparison with the frequency ωp. In this case,
an unstable plasma wave excited by an electron beam
propagating with a relativistic velocity u is essentially
nonpotential. The long-wavelength beam–plasma
instability is of interest in connection with the problem
of creating relativistic plasma microwave oscillators
and amplifiers [2, 3]. Under the condition

(2)

the instability develops in the short-wavelength range.
The plasma wave excited during the instability is nearly

ωp
2

k ⊥
2
u

2γ2 Ω0
2
,≡>

ωp @ Ω0,
1063-780X/04/3005- $26.00 © 20383
potential and has a frequency close to ωp. The short-
wavelength beam–plasma instability may be of interest
in solving such problems as plasma heating and raising
the efficiency of energy input into plasma waves [4, 5].

Here, the plasma is considered to be dense if strong
inequality (2) is satisfied. In such a plasma, the Cheren-
kov beam instability gives rise to quasi-potential
plasma waves at a frequency of ω ~ ωp. As an example,
we consider a particular laboratory experiment with a
circular waveguide of radius R = 2 cm and with an
annular plasma that has an inner radius of r1 = 0.7 cm
and an outer radius of r2 = 1 cm and is assumed to be
completely magnetized by a strong external magnetic
field directed along the waveguide axis. Figure 1 shows
the ωp dependence of the quantity

(3)

where ω0 is the frequency of the single-particle Cheren-
kov resonance between a plasma E01 wave in a
waveguide and a beam propagating with the velocity
u = 2.6 × 1010 cm/s (γ = 2). For the waveguide under
consideration, the threshold frequency is equal to Ω0 ≈
1011 rad/s. Figure 1 implies that the plasma in which the
electron Langmuir frequency is only one order of mag-
nitude higher than this threshold frequency can already
be considered dense.

P
ωp ω0–

ωp

------------------,=
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The dispersion of a low-frequency E01 wave in a
strong magnetic field in a plasma waveguide is deter-
mined by the relation [6]

(4)

where χ2 =  – ω2/c2, G2(χ2) is a geometric factor, and
kz is the longitudinal wavenumber. For a waveguide in
which the plasma is inhomogeneous over the cross sec-
tion, the function G2(χ2) is transcendental and Eq. (4) is
fairly complicated. In solving a nonlinear problem,
when it is impossible to introduce the notion of the fre-
quency ω (or of the longitudinal wavenumber kz), dis-
persion relation (4) is a pseudodifferential equation [7]
for determining the electric field vector in a plasma
waveguide. Solving such an equation runs into serious
mathematical difficulties. However, if the plasma is
assumed to be dense, this can be done without diffi-
culty. In fact, under inequality (2), the frequency is
ω ~ ωp. In this case, under the Cherenkov resonance

condition ω ≈ kzu, we have χ2 ≈ /(u2γ2), which
allows us to rewrite inequality (2) as

(5)

In the most general case, it is possible to show [6, 8]
that, under inequality (5), the transcendental function
G2(χ2) is close to unity. This also follows from disper-
sion relation (4) with ω ~ ωp. Accordingly, dispersion
relation (4) reduces to an elementary algebraic relation
and the corresponding pseudodifferential equation
passes over to the equation for a harmonic oscillator. It
is precisely for this purpose that we make the main sim-

ω2 Ωp
2 ωp

2
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2 χ2( ),≡=

kz
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 @ k ⊥

2
.

0.2

500 100 150

0.4

0.6

0.8

1.0

200
ωp, 1010 rad/s

P

Fig. 1. Explanation of the notion of a dense plasma: depen-
dence of the relative frequency P of the single-particle
Cherenkov resonance on the Langmuir frequency of the
plasma electrons.
plifying assumption that the plasma density is high:
under this assumption, the fields and the spectra in the
nonlinear problem under study can be calculated ana-
lytically. This is also true in the case without an external
magnetic field, the only difference being that, under
inequality (5), the function G2(χ2) is close to 1/2.

2. We consider the evolution of an original harmonic
perturbation driven at the time t = 0 in a waveguide with
a fully magnetized thin-walled plasma and a fully mag-
netized thin-walled relativistic electron beam. We begin
with the general nonlinear equations derived in our ear-
lier paper [9]. In the case of a relativistic electron beam
and under conditions (1) and (5), these equations take
the form

(6)

Here, kz is the wavenumber of the original harmonic
perturbation, yp(t, y0) = kzzp(t, z0), yb(t, y0) = kzzb(t, z0),
y0 = kzz0, zp(t, z0) and zb(t, z0) are the coordinates of the
plasma and beam electrons that were at the point z0 at
the time t = 0, v b(t, z0) is the velocity of a beam electron,

 = ,  = , ωb is the Langmuir frequency
of the beam electrons, Sp and Sb are the plasma and
beam cross-sectional areas, the quantity gpn denotes the
right-hand side of Eq. (4), the quantity gbn is the beam
analogue of gpn, and the parameter qn determines the
coupling between the plasma waves and the beam
waves. Equations (6) account for the nonlinear excita-
tion of the modes of the original perturbation, namely,
the waves with the wavenumbers nkz, where n = 1, 2, …
is the mode number. The dimensionless amplitudes of
the harmonics of the plasma and beam densities are
given by the formulas

(7)

It should be noted that, in terms of Eqs. (6), the
plasma and the beam are described nonlinearly in a way

d
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that is exactly equivalent to a description of the systems
of charged particles in a model based on the Vlasov
kinetic equation. Equations (6) themselves are derived
from the Maxwell–Vlasov equations by integrating
over the initial conditions [10]—a method that is
widely used in the theory of plasma relativistic micro-
wave electronics.

The above explanations concerning dispersion rela-
tion (4) imply that, for a waveguide with a dense
plasma, we can set, with a good degree of accuracy,

gpn =  (and, analogously, gbn = ) for all modes of
the original perturbation. However, we do not do so in
order to treat the problem in the most general way. We
also do not specify here the parameters qn describing
the coupling between the plasma waves and the beam
waves. For a dense plasma, we can use the order-of-

magnitude estimate q1 ~ exp(–2ωpu–1γ–1 |rb – rp |),
where Sw is the cross-sectional area of the waveguide
and |rb – rp| is the radial separation between the beam
and the plasma (of course, it is assumed that |rb – rp| ≠ 0,
because otherwise, the exponential in the expression
for q1 reduces to unity). If the plasma is dense, then, by
virtue of inequality (2), the parameter q1 is small, and
the parameters qn with n ≥ 2 are even smaller. In addi-
tion to the assumption of a dense plasma, the second
main assumption used in our analysis is that the cou-
pling parameters qn are small. For qn = 0, the set of
Eqs. (6) splits into two independent subsets, one for the
plasma and one for the beam. Consequently, for small
qn values, we can speak of a weak interaction between
the beam and the plasma. In plasma microwave elec-
tronics, such interaction is called interaction in the
regime of the collective Cherenkov effect [2, 3, 6, 8].
Our problem now is to solve the set of complicated non-
linear equations (6) analytically. In this way, we utilize
the expansion methods that were proposed in [11–13]
and were described in detail in [8], specifically, the
method of expansion in small perturbations of the tra-
jectories and momenta of the beam and plasma elec-
trons. In the expansions, we retain nonlinear terms up
to third order, in which case, in the basic equations (6),
it is sufficient to take into account only the first two (n =
1, 2) modes of the original perturbation.

3. We introduce the dimensionless variables and
parameters

(8)

and write the coordinates of the beam electrons as

(9)

ωp
2 ωb
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in order to convert Eqs. (6) to the form

(10)

Here, p is the momentum of a beam electron and

. (11)

Following the above expansion methods, we write the
functions yp, y, and p in the form

(12)

Here, the functions wp(τ) and wb(τ) describe the
changes in the directed motion of plasma electrons in
the laboratory frame of reference and in the directed
motion of beam electrons in a reference frame moving
with the velocity u. It may be said that the functions
wp(τ) and wb(τ), as well as the function δ(τ), account for
the nonlinear excitation of zeroth spatial modes of the
perturbations in the plasma and in the beam (i.e., the
excitation of the constant components of the perturba-
tions). In turn, the coefficients apm(τ), abn(τ), and An(τ)
in expansions (12) account for nonzeroth spatial modes
of the perturbations in the plasma and in the beam and
describe the interaction between the plasma wave and
the beam wave and the nonlinear excitation of the
higher spatial modes of original perturbations.

Let us derive expressions for the expansion coeffi-
cients in representations (12). To do this, we combine
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the second and third of Eqs. (10) into one equation:

(13)

Substituting expansions (12) into Eqs. (7), (11), and
(13) and assuming that the perturbations of the coordi-
nates yp and y and the momentum p are small, i.e.,

we expand the nonlinear terms in Eqs. (7), (11), (10),
and (13) in powers of these perturbations and retain
terms up to third order. Further, using the orthogonality
of the functions exp(iny0), we equate to zero the coeffi-
cients in front of these functions in Eqs. (7), (10), (11),
and (13). As a result, we arrive at Eqs. (A.1)–(A.4)
given in the Appendix (see also [8, 11] for details). We
seek solutions to these equations in the form

(14)

where , , , , , and  are slowly vary-
ing amplitudes. Inserting solutions (14) into
Eqs. (A.1)–(A.4) yields Eqs. (A.5)–(A.10), which will
serve as the basis for our analysis.

Equations (A.1)–(A.10) have the first integrals

(15)

(16)

the latter of which can be obtained directly from the
first and third of Eqs. (10). In deriving integrals (15)
and (16), we used the following initial conditions for
Eqs. (A.5)–(A.10):

(17)
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These conditions imply that, first, the electron beam is
initially modulated in density at the wavelength 2π/kz

(the relative modulation depth being ~a0) and, second,
there are no other perturbations at the initial time. From
Eqs. (A.3) and integral (16), we obtain the relationship

(18)

This relationship and Eqs. (A.4) yield the following
third-order equation:

. (19)

4. Now, we take into account Eqs. (15) and (19) and
make a change of variables in Eqs. (A.5)–(A.10):

(20)

In view of the nonresonant nature of the excitation of
the second modes, we neglect the derivatives of the

slowly varying amplitudes , , and . As a
result, we arrive the following set of three first-order
equations with cubic nonlinearities:

(21)
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ãp2 ãb2 Ã2
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Before proceeding to a solution of Eqs. (21)–(23),
we write them in the first-order approximation in the
amplitudes, in which case Eq. (23) drops out of the
analysis:

(24)

The growing solution to Eqs. (24) describes the reso-
nant beam–plasma instability in the regime of the col-
lective Cherenkov effect:

(25)

where δ0 is the dimensionless growth rate of the beam
instability in question and

(26)

is its dimensional growth rate. Obviously, the require-
ment that the amplitudes in solution (14) be slowly
varying reduces to the inequality

(27)

which indicates that the interaction between the plasma
wave and the beam wave is weak.

Equations that are similar to Eqs. (21)–(23) and con-
tain cubic nonlinearities are well known in nonlinear
plasma theory (see, e.g., [14]). Their solutions are
expressed in terms of elliptic functions and are rather
complicated. However, in the form in which they are
presented here, Eqs. (21)–(23) cannot be solved analyt-
ically. That is why we simplify the equations by keep-
ing only their linear terms. Then, from Eq. (23), we
obtain an approximate expression for B1 (B1 ≈ ibb1/2)
and substitute this expression into Eqs. (21) and (22).
As a result, taking into account initial conditions (17),
we can reduce Eqs. (21) and (22) to a single equation
for the quantity x = |bb1|2:

(28)

Here, we have introduced the notation (x0 = )
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(29)

where the quantities αp and αb are given by the formu-
las

(30)

Below, these quantities, which play an important
role in our analysis, will be called the coefficients of
nonlinear stabilization of the instability.

The terms in coefficients (30) are of different ori-
gins. For instance, the term proportional to µ0 describes
the nonlinear dependence of the frequency of the beam
wave on its amplitude due to relativistic effects. An
analogous term for the plasma is absent since the
plasma is nonrelativistic. The terms containing the fac-
tor 3/2 account for the dependence of the frequencies of
the beam wave and plasma wave on their amplitudes
due to nonrelativistic effects. For a dense plasma such

that inequality (2) is satisfied, we have gb2 ≈ gp1 ≈ ,

gb2 ≈ gb1 ≈ , so that, in coefficients (30), these terms
are unimportant. This reflects the well-known fact that
the frequency of a one-dimensional potential plasma
wave is independent of its amplitude [15]. One more
nonlinear mechanism for stabilization of the beam and
plasma waves is the change in the mean velocity of the
beam and plasma electrons, with the result that reso-
nance condition fails to hold. In expansions (12), this
mechanism is described by the terms wp(τ) and wb(τ),
and, in coefficients (30), it is accounted for by the terms
that are equal to unity.

Performing the corresponding manipulations, we
reduce the solution to Eq. (28) to the form
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Here, cn(y, r) and sn(y, r) are the Jacobian elliptic func-
tions, whose argument and modulus are given by the
expressions

(32)

where δ0 is defined in formulas (25) and the quantity

 is

(33)

The instability saturation time, i.e., the time during
which amplitude (31a) saturates, is determined by the
expression

(34)
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cisely, to the switching-on of the field in the infinite
past, |bb1, p1|τ → –∞  0), Eq. (28) simplifies substan-
tially and its solution is given by the formula

(35)

For both nonadiabatic and adiabatic initial conditions,
the plasma wave amplitude |bp1| can be calculated using
the following first integral of Eqs. (21) and (22):

(36)

For adiabatic initial conditions, we obtain
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For nonadiabatic initial conditions, the squared abso-
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Formula (31a) shows that, for x0 ! x, the maximum
value of the solution is approximately equal to xmax ≈

; i.e., we have  = . Consequently, for

x0 ! , expression (35) for the time of the nonlinear

2 x̃ bb1 max
2 2 x̃

x̃

saturation of the instability can be substantially simpli-
fied:

. (38)τ0
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PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004



NONLINEAR THEORY OF THE COLLECTIVE CHERENKOV INTERACTION 389

a
o
h

T
m
s
o
tu
d
a
in
p
b

It follows from Eqs. (7), (9), (11), (12), (14), (20),
nd (36) that the maximum dimensionless amplitudes
f the first modes of the beam wave and plasma wave
ave the form

(39)

he maximum dimensional amplitudes, which deter-
ine the absolute depth of the nonlinear electron den-

ity modulation of the beam and the plasma, are
btained by multiplying expressions (39) by the unper-
rbed beam density n0b and by the unperturbed plasma

ensity n0p, respectively. We thus arrive at the following
pplicability condition for the expansion method used
 our study, namely, the method of expansion in small

erturbations of the trajectories and momenta of the
eam and plasma electrons:

(40)
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Fig. 2. Dependence of the amplitudes of the first and second
harmonics of (a) the density of a nonrelativistic (γ  1)
beam and (b) the plasma density on the dimensionless
time τ.
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Formulas (39) for the maximum amplitudes of the
beam wave and plasma wave are valid not only for the
perturbations that are switched on adiabatically in the
infinite past; they are also approximately valid in a gen-
eral case [see solutions (32)] under the condition that
the initial beam modulation depth is small, which
reduces to the condition x0 ! .

5. In order to determine more realistic applicability
limits of the nonlinear analytic theory developed here,
it is necessary to compare the exact solutions to Eqs. (6)
or (10) with the solutions to Eqs. (21)–(23) that are
obtained by means of the above expansion methods to
within terms containing cubic nonlinearities. Equations
of form (6) can only be solved numerically by using a
macroparticle method [16]. To make the problem as
simple as possible while still preserving all its main
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Fig. 3. Phase planes of the electrons of a nonrelativistic
(γ  1) beam before the instability saturation, at the time
of saturation, and after the saturation. In this and other fig-
ures, j = 1, 2, 3, … is the number of the beam electron.
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mathematical properties, we reduce the number of free
parameters. To do this, we set

(41)

which, in fact, indicates that the beam and plasma den-
sities are the same. In this case, we have µ0 = 2(γ2 – 1)(1 +
γ3/2), ξ = 1 + γ3/2, and Eqs. (6) or (10) take the form [see
expressions (8), (9), (11)]
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Fig. 4. Dependence of the amplitudes of the first and second
harmonics of (a) the density of a beam with γ = 3 and (b) the
plasma density on the dimensionless time τ.

(a)

(b)
is the normalized parameter determining the coupling
between the beam wave and the plasma wave. It can
be shown that this parameter lies within the range 0 <

 ≤ 1 [6].

We also write out formulas (39) and inequality (27)
for a particular case corresponding to conditions (41):

(39a)

(27a)

where αb = 1 + (3/4)µ0 and αp = 1. The problem given
by Eqs. (42), formulas (39a), and inequality (27a) con-
tains only two parameters, γ and . Let us analyze the
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Fig. 5. Phase planes of the electrons of a beam with γ = 3
before the instability saturation, at the time of saturation,
and after the saturation.
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results of solving this problem numerically for  =
0.1, for the initial beam modulation depth a0 = 10–5, and
for different values of the relativistic factor γ of the
beam.

Figures 2 and 3 illustrate the results of a numerical
solution of Eqs. (42) for a nonrelativistic electron beam
(γ  1). Figure 2 shows how the dimensionless
amplitudes of the harmonics of the beam and plasma
densities depend on the dimensionless time τ. In this
figure, curve 1b is for |ρ1(τ)| = |bb1(τ)|, curve 2b is for
|ρ2(τ)| = |bb2(τ)|, curve 1p is for |ρp1(τ)| = |bp1(τ)|, and
curve 2p is for |ρp2(τ)| = |bp2(τ)|. Figure 3 shows the
phase planes of the beam electrons at three characteris-
tic times. The vertical axis in the phase plane represents

(τ) and the horizontal axis represents yj(τ), where j is
the number of a beam electron, or, more precisely, of a
macroparticle that models the beam electrons. It can be
seen in Fig. 2 that the amplitudes of the harmonics of
the beam and plasma densities behave in essentially the
same manner. The explanation for this result is quite
clear: the beam is nonrelativistic (γ  1) and the
unperturbed electron densities of the beam and the
plasma are the same [see conditions (41)]. On the time
scales on which the instability saturates (τ < 240–250),
analytical solutions agree well with the numerical ones.
However, just after the instability saturation, the beam–
plasma system rapidly becomes completely stochastic.
This stochastization (or phase mixing) is also seen in
the phase planes of the beam electrons (Fig. 3). Thus, at
τ = 150 and τ = 240, the distributions of the beam elec-
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Fig. 6. Dependence of the amplitudes of the first and second
harmonics of (a) the density of a beam with γ = 6 and (b) the
plasma density on the dimensionless time τ.
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trons over the phase planes are regular, which is charac-
teristic of the linear and slightly nonlinear stages of the
quasi-harmonic wave process. However, already at τ =
270, the distribution is seen to be completely irregular.
We do not yet know the causes of such an anomalous
stochastization of the beam–plasma system, but we are
sure that it does not stem from numerical effects in
computations. The small values of the saturation ampli-
tudes (|bb1| ≈ |bp1| < 0.4) and the structure of the phase
planes provide evidence that the anomalous stochasti-
zation cannot be associated with such well-studied non-
linear processes as trapping of the beam electrons by
the plasma wave [17] or their self-trapping by the wave
of the beam charge density [18].

The results of simulations of a relativistic beam with
γ = 3 are illustrated in Figs. 4 and 5, which show the
amplitudes of the harmonics of the beam and plasma
densities and the phase planes of the beam electrons
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Fig. 7. Phase planes of the electrons of a beam with γ = 6
before the instability saturation, at the time of saturation,
and after the saturation.
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(the notation is the same as in Figs. 2, 3). The solutions
are seen to differ radically from those for a nonrelativ-
istic beam. In Fig. 4, the dependence of the amplitudes
of the harmonics on the time τ is essentially regular and
soliton-like in character. The time evolutions of the
amplitudes are satisfactorily described by formulas
(32). The maximum modulation depth of the beam den-
sity is less than that of the plasma density, for which the
obvious reason is the relativistic nature of the beam. On
the other hand, the amplitude of the second harmonic of
the beam density is larger than the amplitude of the sec-
ond harmonic of the plasma density. Since the higher
harmonics are excited due to nonlinear effects, it can be
expected that, for a beam with a large γ value, the rela-
tivistic nonlinearities will play a dominant role. That
the system exhibits no stochastic behavior is also evi-
denced by the phase planes shown in Fig. 5. In this fig-
ure, the phase plane at τ = 78 corresponds to the insta-
bility saturation. At a later time (τ = 90), the beam elec-
trons are distributed over the phase plane in essentially
the same manner as in the stage before the saturation
(τ = 60). It can be said that, after the instability satu-
rates, the electron beam tends to relax to its weakly per-
turbed initial state. The same is true of the plasma elec-
trons, the phase planes of which are not presented here.

Figures 6 and 7 illustrate the results obtained for an
electron beam with a larger relativistic factor, γ = 6. All
of the above features of the behavior of a plasma
waveguide system with such a beam are seen to be even
more pronounced. Generally, the best agreement (not
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Fig. 8. Dependence of the amplitudes of the first and second
harmonics of (a) the density of a beam with γ = 9 and (b) the
plasma density on the dimensionless time τ.
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only qualitative but also quantitative) between the pre-
dictions of the analytic theory developed here and the
solution to the exact nonlinear problem is observed for
beams with relativistic factors in the range γ ≈ 2–6.

Figures 8 and 9 refer to an electron beam with γ = 9.
The solutions are seen to be similar in character to those
obtained above. This is especially true for the time evo-
lutions of the amplitudes of the harmonics of the
plasma density (curves 1p, 2p). However, some features
of the time evolutions of the amplitudes of the harmon-
ics of the beam density (curves 1b, 2b) cannot be
described in terms of solution (32a). The phase planes
of the beam electrons in Fig. 9 also differ from those in
Figs. 7 and 5: the electron distributions before (τ = 15)
and after (τ = 30) the instability saturation are both seen
to be highly asymmetric. The larger the relativistic fac-
tor γ, the more pronounced the difference between ana-
lytical and numerical solutions.

The discrepancy between analytical and numerical
solutions for large γ values cannot be explained either
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Fig. 9. Phase planes of the electrons of a beam with γ = 9
before the instability saturation, at the time of saturation,
and after the saturation.
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in terms of the violation of inequality (27a) (for γ = 9,
this inequality is still satisfied by a large margin) or in
terms of the increase in the modulation depth of the
beam density (as can be seen from the figures, the mod-
ulation depth decreases as γ increases). The reason is
that, for γ @ 1, the perturbation  in the representation
p = 1 +  of the momentum is large [see the third of
expansions (12)]. In this case, it is mathematically ille-
gitimate to expand the right-hand side of the second of
Eqs. (10) in powers of . Hence, the problem is to
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Fig. 10. Dependence of the dimensionless time τ0 of the
instability saturation on the relativistic factor γ. Curve 1
shows the results of numerical simulations, and curve 2 is
calculated from formula (35).
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develop a correct description of the relativistic nonlin-
earities in the equation of motion for beam electrons.
This problem is postponed to a future paper.

Nevertheless, there exists a considerable range of γ
values in which analytical solutions agree fairly well
with the numerical ones. To complete the analysis, we
present some results that confirm the efficiency and
reliability of the analytic methods developed above.
The dependence of the instability saturation time on γ
is demonstrated in Fig. 10, in which curve 1 shows the
results of numerical simulations and curve 2 shows the
results of analytical calculations from expression (35).
At γ  1, the discrepancy between analytical and
numerical results is slight, but it becomes significant at
large γ values. Moreover, the instability saturation time
calculated from formula (35) becomes negative at a suf-
ficiently large value of γ. That is why the instability in
a plasma waveguide with an ultrarelativistic electron
beam requires a separate study.

In order not to come to the erroneous conclusion
that the time scale on which the instability develops
decreases as the relativistic factor of the beam
increases, recall that the dimensional time t is related to
the dimensionless time τ by the formula t = constγ3/2τ
[see expressions (8)]. Figure 11 illustrates the numeri-
cally calculated dependence of the instability saturation
time on the relativistic factor γ. In this figure, curve 2,
which coincides with the corresponding curve in
Fig. 10, shows the dimensionless saturation time, and
curve 1 was computed with allowance for the multipli-
cation factor γ3/2. The actual instability saturation time
is given precisely by curve 1; i.e., it increases with
increasing γ.
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Fig. 12. Dependence of the amplitude of the first harmonic
of the beam density at the time of saturation of the instabil-
ity on the relativistic factor γ. Curve 1 shows the results of
numerical simulations, and curve 2 was calculated analyti-
cally from the first of formulas (39).
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Finally, the dependence of the amplitude of the first
harmonic of the beam density in the instability satura-
tion stage is illustrated in Fig. 12, in which curve 1 was
obtained numerically and curve 2 was calculated from
the first of formulas (39). The fact that these curves dif-
fer somewhat in shape is associated with the assump-
tions that were made in transforming Eq. (23). On the
whole, we can conclude that the methods of expansion
in small perturbations of the trajectories and momenta
of the beam and plasma electrons provide an efficient
and effective tool for the analytic description of the
radiative instabilities of relativistic dense electron
beams in dense plasmas in the regime of the collective
Cherenkov effect.
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APPENDIX

By equating to zero the coefficients in front of the
exponentials exp(iny), we obtain the equations

(A1)

d
2
ab1

dτ2
------------- i iab1– i 1

gb2

gb1
-------– 

  ab1* ab2+




–=

+
1
2
--- 1

gb2

gb1
-------– 

  ab1
2
ab1 – 3iδab1

–
9
4
---µ0 A1 ab1

2
A1*ab1

2
+( ) 3

2
---iµ0ab1* µ0A1

2
A2–( )–

+
ω̃p

2 q1

gb1
------------ iap1–

1
2
---iap1* ap2–

i
8
--- ap1

2
ap1

i
4
--- ab1

2
ap1+ +



– 3iap1 δ µ0
2

A1
2

i
µ0

4
----- A1ab1* A1*ab1+( )–+ 

 



× i ξτ wb wp–+( )( )exp i
ω̃p

2 q1

2gb1
------------ap1* iab2

1
4
---ab1

2
+

+

– 3µ0 µ0A1
2

A2–( )
 i ξτ wb wp–+( )–( )exp

+
3
4
---

gb2

gb1
-------µ0A1* 2iab2 ab1

2
+( )

–
ω̃p

2 q2

4gb1
------------ 2iap2 ap1

2
+( ) 2iab1* 3µ0A1*–( )
.

In the same way, from the first of Eqs. (10), we obtain
the following equations for ap1 and ap2:

(A2)

Substituting representations (12) into the third of
Eqs. (10) yields the equations for the coefficients A1
and A2 and for the nonoscillating momentum compo-
nent δ:
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(A3)

Finally, from the first and second of Eqs. (10), we
obtain the equations for wp and wb:
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We analyze Eqs. (A.1)–(A.4) for the case of nonres-
onant excitation of the second harmonics of the beam-
density and plasma-density perturbations: gp2 ≠ 4gp1

and gb2 ≠ 4gb1 (i.e., ω2(2kz) ≠ 4ω2(kz), where ω(kz) is the
dispersion law). Note that, for a dense plasma, these
conditions are satisfied automatically, because, under

inequality (2), we have gp2 ≈ gp1 ≈  and, analogously,

gb2 ≈ gb1 ≈ . We seek solutions to Eqs. (A.1)–(A.4) in
the form of expressions (14). The physical meaning is
conveyed predominantly by the first and third of
expressions (14) and can easily be understood from
Eqs. (A.1) and (A.2). In the linear approximation and
for qn = 0, Eq. (A.1) describe free linear Langmuir
oscillations of an electron beam that proceed according
to the law qb1 = constexp(iτ). Using the definition of the
dimensionless time τ [see expressions (8)] and ignoring
the Doppler shift kzu, we find that the frequency of the

beam wave is equal to . Consequently, the first
of expressions (14) describes the beam wave, in which
case the amplitude (τ) is slowly varying because
the interaction of the beam with the plasma is weak.
The same considerations apply to the Eq. (A.2) and the
third of expressions (14), because free linear plasma
oscillations proceed according to the law ap1 =

constexp(−i τ) = constexp(–i ).

In order to derive reduced equations for the slowly
varying amplitudes, we substitute expressions (14) into
Eqs. (A.1)–(A.4) and take into account the condition of
the collective Cherenkov resonance between the
plasma wave and the slow beam wave,

or, in terms of the dimensional frequencies,

. As a result, we arrive at the
following reduced equations, in which we discard the
second derivatives of the slowly varying amplitudes
with respect to τ:

ωp
2

ωb
2

gb1γ
3–
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2
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d Ã2

dτ
--------- 2i Ã2–
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Substituting expressions (14) into Eqs. (A.3) and (A.4)
does not change the structure of the equations for δ, wp,
and wb; the only difference is that the constant phase
shift ξτ  drops out of the exponentials and the ampli-
tudes are indicated by a tilde. To save space, we do not
write out these resulting equations, especially because
Eqs. (A.5)–(A.10) provide a complete analysis of the
problem.

Note that the above collective Cherenkov resonance
condition should be regarded as an equation for deter-
mining the wavenumber kz at which the beam–plasma
instability under discussion grows at the fastest rate.
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ãp1

–
ω̃b

2q1

gb1
----------- ãb1
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ãb1–

1
4
--- ãp1
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Abstract—A theory is developed that makes it possible to calculate RF power absorption in an inductive
plasma source. Conditions are determined under which most of the power is deposited in the plasma. It is shown
that these conditions correspond to the excitation of spatial waves (an oblique Langmuir wave and a helicon
wave). A simple self-consistent model of a plasma source is proposed that describes all of the experimentally
observed distinctive properties of plasma sources well. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Papers [1–3] presented a series of investigations on
the development and construction of an RF plasma
source whose operation is based on the excitation of
electrostatic waves in a plasma in a permanent external
magnetic field. The ion source that was designed had a
diameter of 92 mm, operated at frequencies of 41–
81 MHz, and made it possible to produce beams of ions
of noble and chemically active gases with currents of 5–
150 mA (the current density being 0.05–2.5 mA/cm2) at
input powers of 10–150 W. While being tested as part
of industrial technological devices, the ion source
proved capable of operating reliably and stably, espe-
cially in such applications as the modification of mate-
rial surfaces, ion assistance, and reactive etching. How-
ever, the tests revealed a number of drawbacks of the
source, such as the saturation of the extracted ion cur-
rent when the RF power was increased above 150 W, a
high external magnetic field (20–40 mT), and low
operation efficiency at an industrial frequency of
13.56 MHz. It is most likely that these drawbacks are
related both to the method for exciting an electrostatic
wave with the help of a zigzag antenna [1] (which
induces a surface charge on the side wall of the source)
and to the short length (3 cm) of the gas-discharge
chamber of the source.

In order to overcome the above drawbacks, the
authors of [1–3] began a new series of investigations on
the development of ion and plasma sources that would
be capable of operating highly efficiently at an indus-
trial frequency of 13.56 MHz and in which the plasma
would be created and maintained by an inductive RF
discharge in an external magnetic field. One of the
goals of these investigations was to develop large-diam-
eter ion and plasma sources. However, since strong
magnetic fields in large volumes are technically diffi-
cult to produce, the problem was to reduce the working
1063-780X/04/3005- $26.00 © 200398
external magnetic field to the lowest possible level. The
first results of experimental research in this direction
[4] confirmed that such an approach holds considerable
promise: the source operated stably at a frequency of
13.56 MHz in an external magnetic field no stronger
than 10 mT, and the extracted ion current increased
with increasing input power. At the same time, the first
experiments revealed some features of the discharge
that were not observed in the source operating with a
zigzag antenna, namely, discharge disruptions at a cer-
tain magnetic field (which depended on both the input
power and the magnitude of the extracted ion current)
and a hysteresis effect in the dependence of the plasma
parameters on the external magnetic field. It is obvious
that these purely physical effects can have negative
effect on the operation of a plasma source.

In this review, in order to understand the physical
reasons for the new features of the discharge that were
observed in experiments and to analyze the possibility
of developing workable sources, we present the results
of mathematical simulations of the operation of an ion
source based on an inductive RF discharge in an exter-
nal magnetic field. We consider the case in which the
plasma is heated by its eigenwaves excited by a purely
inductive ring antenna positioned at the side surface of
the gas-discharge chamber. Earlier, plasma heating by
eigenwaves excited by antennas of different shapes was
studied in [5–9]. In the present paper, we investigate the
mechanism for depositing the RF power into a plasma
with a relatively low density (109–1012 cm–3) in a weak
external magnetic field (1–100 mT). We analyze the
operation of the source using a self-consistent model
that makes it possible to calculate the RF fields in the
plasma from the geometric parameters of the source
and from the parameters of the plasma maintained by
the absorbed RF power. Numerical simulations were
04 MAIK “Nauka/Interperiodica”
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carried out for argon as the working gas and for an ion
source 5–50 cm in diameter and 5–30 cm in length.

2. EXCITATION OF EIGENWAVES 
IN AN INDUCTIVE RF PLASMA SOURCE

IN AN EXTERNAL MAGNETIC FIELD
2.1. Formulation of the Problem

The load, consisting of an antenna and a plasma
coupled to it, is supplied by the RF power from an oscil-
lator through a matching device, which, in turn, serves
to maximize the input power. When the load is matched
to the oscillator, the oscillator power P is related to the
antenna power Pant and to the power Ppl deposited in the
plasma through the expression

P = Pant + Ppl. (2.1)

Obviously, the optimum operating modes of the plasma
sources are those in which the following condition is
satisfied:

P ≈ Ppl @ Pant. (2.2)

One possible way to satisfy this condition is to
excite eigenwaves, because they are efficiently
absorbed by a low-pressure plasma in a permanent
external magnetic field [4–9]. In order to determine the
conditions for exciting eigenwaves in particular models
of the plasma source, we solved the electrodynamic
problem of calculating the electric and magnetic RF
fields in a cylindrical source of radius R and length L
(see Fig. 1) in which the plasma is maintained by an
azimuthal surface current I of frequency ω:

(2.3)

where the current density is given by the expression
jϕ0(z, t) = j0exp(i(πz/L – ωt)), with j0 being a constant. 

In investigating plasma sources analytically, the fol-
lowing inequalities need to be satisfied:

Ωi ! ωLi ≤ ω, VTe/R, VTe/L ! Ωe ! ωLe. (2.4)

Here, ωLi and ωLe are the Langmuir frequencies of the
ion and electron plasma components with given densi-

ties ni and ne, ω is the RF field frequency, VTe = 
is the electron thermal velocity, and Ωe, i are the elec-
tron and ion gyrofrequencies in a uniform magnetic
field B0 || z.

The typical experimental parameters and conditions
are as follows. The source radius and length are R ~ 2–
10 cm and L ~ 5–15 cm, the electron plasma density is
ne ~ 1010–1012 cm–3, the uniform magnetic field is B0 ~ 1–
10 mT, the electron temperature is 3–8 eV ~ (3–9) ×
104 K, and the working gas pressure is p0 ~ 10–4–
10−2 torr (i.e., n0 ~ 3 × 1012–3 × 1014 cm–3). The degree
of ionization is fairly high, so that the electron collision
frequency is about νe ~ νei + νen ~ (1–10) × 106 s–1,

I jϕ0 z t,( ) z,d

L/2–

L/2

∫=

Te/m
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where νei and νen are the electron–ion and electron–neu-
tral collision frequencies, respectively. The experi-
ments are usually carried out with heavy gases whose
atomic masses are about 102 of that of hydrogen. Under
these conditions, the ions are unmagnetized (ω @ Ωi);
moreover, in solving the problem, the ion contribution
can always be neglected. For a magnetic field of about
1 mT, the working frequency is only two times lower
than the electron gyrofrequency Ωe. This indicates that
the next to last (strong) inequality in conditions (2.4)
fails to hold (we will take this point into account in fur-
ther analysis). As for the last inequality, it is satisfied by
a large margin. By the way, it is this circumstance that
makes it possible to ignore the ion contribution regard-
less of the value of the ratio ω/Ωe.

The basic equations for the problem as formulated
are Maxwell’s equations. For simplicity, we restrict
ourselves to axisymmetric geometry and assume that
∂/∂ϕ = 0. Using the representation f(r)eı(–iωt + ikzz)
for all the quantities that depend on time and coordi-
nates, we write the following equations for the fields
within the plasma volume in cylindrical coordinates:

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)

ckzEϕ ωBr,–=

ikzcEr c
∂Ez

∂r
-------- 

 – iωBϕ ,=

cr
1– ∂ rEϕ( )

∂r
----------------- 

  iωBz,=

kzcBϕ ω ε⊥ Er igEϕ+( ),=

ikzcBr c
∂Bz

∂r
-------- 

 – iω igEr– ε⊥ Eϕ+( ),–=

+.

I

II

R

z B0

L

Fig. 1. Schematic of a plasma source.
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(2.5.6)

Here, kz = π/L and the plasma dielectric tensor εij(ω)
has the form

(2.6)

where

(2.7)

In these equations, we take into account both of the
mechanisms for the absorption of the RF field by the
plasma: collisional absorption and collisionless (Cher-
enkov and cyclotron) absorption. The reason is that, in
a weak magnetic field region in which ω is slightly
lower than Ωe and is slightly higher than (kzVTe), these
absorption mechanisms are both important.

On the other hand, it should be noted that, since the
plasma density is high [see inequalities (2.4)], all the
elements of the tensor εij(ω) are large. Thus, for the
above parameters, we have kzVTe ~ 108 s–1, so that the
tensor elements are estimated as

(2.8)

Equations (2.5) are solved separately for the plasma
region (r < R) and for the region outside the plasma
(r > R). In Fig. 1, these regions are indicated as region I
and region II, respectively. The solutions obtained are

cr
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then joined at the plasma surface with the help of the
boundary conditions

(2.9)

At this point, the formulation of the problem is com-
plete. To conclude this section, we present the formula
[10, 11] that was used in numerical simulations to
determine the RF field power deposited in the plasma:

(2.10)

2.2. Solution to the Electrodynamic Problem
for Arbitrary Magnetic Fields

Without loss of generality, it is convenient to reduce
Eqs. (2.5) to two coupled second-order equations for
the Ez and Bz field components:1 

(2.11)

Here, we have introduced the notation ∆⊥  = .

We find it convenient to reduce Eqs. (2.5) to
Eqs. (2.11) because, if Eqs. (2.11) were decoupled,
which is the case for small values of the parameter

ω2ε⊥ / , then the first of them would describe a
purely longitudinal wave and the second would
describe a purely transverse wave (a helicon) [10, 11].

The solution to Eqs. (2.11) within the plasma should
be sought in the form

(2.12)

Substituting representations (2.12) into Eqs. (2.11), we

obtain two independent biquadratic equations for 

and :

(2.13)

1 In the literature, in solving particular problems, Eqs. (2.5) are
conveniently reduced either to two second-order equations for
two of the field components or to one fourth-order equation for
one of the field components (see, e.g., [10, 11]).

BzII BzI– 4πjϕ0 z t,( )/c, EzII– EzI– 0,= =

Bϕ II Bϕ I– 0, Eϕ II Eϕ I– 0.= =
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Lω
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These equations have the solutions

(2.14)

where we have introduced the notation

We again substitute representations (2.12) into
Eqs. (2.11) to obtain the relationships between Ez1, 2
and Bz1, 2:

(2.15)

Outside the plasma (ε⊥  = ε|| = 1, g = 0), Eqs. (2.11)
split into two independent equations:

(2.16)

which have the following solutions in the frequency
range ω < kzc:

(2.17)

where p =  ≈ kz.

In order to join solutions (2.11) with solutions
(2.16), we use boundary conditions (2.9) for the field
components Ez, Bz, Eϕ, and Bϕ. Inside the plasma, the
last two components are given by the expressions

(2.18)

and, outside the plasma, they are given by

(2.19)

As a result, boundary conditions (2.9) for Bz and Ez

become

(2.20)
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and, for Bϕ and Eϕ, they take the form

(2.21)

Taking into account relationships (2.15), we obtain
from boundary conditions (2.20) and (2.21) the follow-
ing expression for the amplitude of the longitudinal
electric field component:

(2.22)

where

Substituting formulas (2.12), (2.15), and (2.22) into
Eqs. (2.5), we can determine the amplitudes of the
remaining field components:

(2.23)

Formula (2.10) for the power Ppl deposited in the
plasma now yields

Ppl = RplI2, (2.24)

where Rpl is the equivalent active resistance of the
plasma, which determines the RF power deposited in it.
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Fig. 2. Ranges of existence of the spatial waves corresponding to the first and the second solution to Eq. (2.14) for two sources
having equal radii but different lengths: (a) R = 2.5 cm and L = 10 cm and (b) R = 2.5 cm and L = 30 cm.
Below, we will be interested in the magnitude of the
deposited power.

The RF fields and the equivalent plasma resistance
were calculated from formulas (2.22)–(2.24) using spe-
cially developed software. The calculations were car-
ried out for plasma sources 5–50 cm in diameter and 5–
30 cm in length and for an argon plasma with an elec-
tron density of 109–1013 cm–3 at a pressure of 10–4–
10−2 torr in an external magnetic field of 1–100 mT.

2.3. Numerical Results

In presenting the numerical results, we first consider
the range of the plasma source parameters in which the
solutions to Eq. (2.14) describe spatial waves with fre-
quencies ω ! Ωe. Recall that, to zero order in the small

parameter ω2ε⊥ /  ! 1, the first solution to Eq. (2.14)
describes an oblique Langmuir wave and the second
describes a helicon [10, 11]. In the literature, oblique
Langmuir waves are often referred to as a Trivelpiece–
Gould waves [5–9]. Below, the wave described by the
solution with the argument ϕ1r will be called a Trivel-
piece–Gould wave, and the wave described by the solu-
tion with the argument ϕ2r will be called a helicon. Fig-
ure 2 illustrates the ranges of magnetic fields B and

electron densities ne in which  > 0 and in which
spatial waves exist in two plasma sources of different
lengths.

The lower bound on the range in which internal
waves can exist is the same for the two solutions and is

given by the condition ω2ε⊥  < , while the upper
bound refers only to the helicon and is determined by
the equality of the two terms in the numerator of for-
mula (2.14).

kz
2
c

2

ϕ1 2,
2

kz
2
c

2

As was expected, for each value of the magnetic
field, there exists a threshold electron density below
which a spatial helicon cannot be excited; moreover,
the weaker the magnetic field, the lower the threshold
electron plasma density. However, in each plasma
source, a spatial helicon cannot be excited at electron
densities below a certain minimum threshold density,
regardless of the value of the magnetic field. From
Fig. 2, we see that, as the length of the plasma source
decreases, the minimum threshold electron plasma den-
sity increases considerably and the range in which a
spatial helicon can exist becomes narrower.

We consider the behavior of the electric field com-
ponents under conditions in which spatial waves can be
generated over a wide range of plasma parameters. Fig-
ure 3 illustrates how the amplitudes of the electric field
components corresponding to the first and second solu-
tions to the electrodynamic problem [see formulas
(2.12)] depend on the magnetic field. The results shown
in the figure pertain to a relatively long plasma source
(L ≥ 10 cm) operating at a low argon pressure p (p ~
10−3 torr).

As was expected, for the electron density range
under consideration and for magnetic fields stronger
than 2–3 mT, the azimuthal component of the electric
field corresponding to the first solution exceeds the azi-
muthal component of the electric field corresponding to
the second solution; moreover, the stronger the mag-
netic field, the larger the difference between the compo-
nents. In contrast, for electron densities of ne < 1012 cm–3,
the longitudinal and radial components of the helicon
electric field are, respectively, smaller than the longitu-
dinal and radial components of the electric field of an
oblique Langmuir wave. However, at high electron den-
sities (ne ≥ 1012 cm–3), the relationship between the lon-
gitudinal components and that between the radial com-
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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ponents depend substantially on the magnetic field and
gas pressure, as well as on the diameter and length of
the gas-discharge chamber of the source. Figure 4
shows the dependence of the amplitudes of the longitu-
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Fig. 3. Dependence of the amplitudes of the (a) azimuthal,
(b) longitudinal, and (c) radial components of the RF elec-
tric field on the external magnetic field in a source with R =
5 cm and L = 50 cm. Curves 1–3 were calculated for elec-
tron densities of 1010, 1011, and 1012 cm–3, respectively.
Subscript 1 refers to the Trivelpiece–Gould wave, and sub-
script 2 stands for the helicon.
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dinal electric fields of a Trivelpiece–Gould wave and a
helicon on the magnetic field, calculated for an electron
density of 3 × 1012 cm–3 in the following three cases:
with allowance for electron–neutral and electron–ion
collisions, with allowance for electron–neutral colli-
sions only, and without allowance for electron colli-
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Fig. 4. Amplitude of the longitudinal component of the RF
electric field calculated as a function of the magnetic field
for R = 5 cm, L = 20 cm, and ne = 3 × 1012 cm–3 (a) with
allowance for both electron–neutral and electron–ion colli-
sions, (b) with allowance for electron–neutral collisions
only, and (c) without allowance for collisions. Curves 1
refer to the Trivelpiece–Gould wave, and curves 2 refer to
the helicon.
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sions. As is seen, the characteristic feature of the solu-
tions obtained in the collisionless limit is that the
behavior of the longitudinal electric field as a function
of the magnetic field is oscillatory, with a short period
in the magnetic field. Electron collisions are seen to
suppress the oscillations and completely stabilize them.
Such behavior of the solutions can be explained using
formula (2.22). When electron collisions are ignored,
oscillations in the solutions are associated with oscilla-
tions in the functions J0(ϕ1r) when the magnetic field is
varied. When electron collisions are taken into account,
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Fig. 5. Radial profiles of the amplitude of the longitudinal
electric field of the Trivelpiece–Gould wave for R = 5 cm,
L = 20 cm, ne = 3 × 1011 cm–3, and B = 500 G. Curve 1 was
calculated with allowance for both electron–neutral and
electron–ion collisions, curve 2, with allowance for elec-
tron–neutral collisions only, and curve 3, without allowance
for collisions.
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Fig. 6. Dependence of the effective plasma resistance on the
magnetic field for R = 5 cm and L = 20 cm. Curves 1–3 were
calculated for electron densities of 1010, 1011, and 1012 cm–3,
respectively.
i.e., when  >  ≈ , the oscillations are stabi-

lized. However, the stabilization of oscillations is not
the only consequence of a transition to a collision-dom-
inated plasma. From Fig. 4, we can also see that, under
the conditions in question, when electron–ion colli-
sions dominate over electron–neutral collisions, elec-
tron collisions considerably reduce the amplitude of the
Trivelpiece–Gould wave but essentially do not change
the helicon amplitude. This effect is explained by the
facts that the collisional dissipation of a helicon is weak

(is proportional to the very small parameter  ≈ )

and that the collisional dissipation of a Trivelpiece–
Gould wave is strong (is proportional to the large
parameter νe /ω). Moreover, as the collision frequency
increases, a spatial Trivelpiece–Gould wave evolves
into a surface Trivelpiece–Gould wave, while the pene-
tration depth of the helicon into the plasma does not
change. This effect is readily seen in Fig. 5. Figures 4
and 5 clearly demonstrate why an increase in the elec-
tron density in the range ne ≥ 1012 cm–3 lowers the
amplitudes of the electric field components of the Triv-
elpiece–Gould wave to a much greater extent than those
of the helicon. At low electron densities, the collision
frequency is determined by the frequency of the elec-
tron–neutral collisions and is independent of ne, so that
the ratio of the amplitudes of the longitudinal electric
fields of the waves does not depend on the electron den-
sity. However, at high electron densities, electron–ion
collisions dominate: the electron–ion collision fre-
quency increases with ne, reducing the amplitudes of
the electric field components of the Trivelpiece–Gould
wave. The collision frequency also increases with gas
pressure; consequently, an increase in the gas pressure
lowers the amplitudes of the longitudinal and radial
components of the electric field of the Trivelpiece–
Gould wave to a greater extent than those of the heli-
con, so that the spatial Trivelpiece–Gould wave
becomes a surface wave.

The above features of the excitation of waves in
plasma sources can also be seen in the dependence of
the equivalent plasma resistance Rpl on the magnetic
field. Figure 6 shows representative profiles of Rpl cal-
culated as functions of the magnetic field for an argon
pressure of 10–3 torr and for different electron densities.
The functions Rpl are seen to exhibit an oscillatory
behavior; moreover, the oscillation period at low elec-
tron densities (ne < 1012 cm–3) differs markedly from
that at high densities (ne ≥ 1012 cm–3). The amplitude of
oscillations in the equivalent plasma resistance decreases
with increasing pressure and vanish at 10–2 torr.

Another interesting feature of the behavior of the
equivalent plasma resistance is illustrated in Fig. 7. An
increase in the electron density leads to a considerable
displacement of the maximum in the equivalent plasma
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resistance toward stronger magnetic fields. This indi-
cates that, at a fixed value of B0, the resistance Rpl
decreases as the electron density increases above a cer-
tain high critical density. The stronger the magnetic
field, the higher the critical plasma density, an increase
above which is accompanied by a decrease in the equiv-
alent plasma resistance.

To conclude this section, we consider the results that
are of practical interest. Figures 8–10 show how the
plasma resistance depends on the magnetic field in
plasma sources of different radii and lengths. In prac-
tice, for a plasma source of diameter 5 cm and length
10 cm, it is difficult to satisfy condition (2.2), i.e., to
deposit power into the plasma, because the plasma
resistance is lower than 1 Ω . Plasma sources with gas-
discharge chambers of lengths 15–20 cm are expected
to be the most beneficial in providing power deposition
in the plasma because, in such sources, the plasma
resistance is high over a broad range of magnetic field
strengths at electron densities typical of practical appli-
cations. Since plasma sources should be capable of
operating over a wide range of ion current densities, it
seems that, in large-diameter ion sources, too, it is
worthwhile to use gas-discharge chambers of the same
length (15–20 cm). The reason is that, for longer gas-
discharge chambers, the main maximum in the plasma
resistance is displaced toward stronger magnetic fields.
However, this last effect is undesirable from the point
of view of designing working models of sources. Cal-
culations carried out for different operating frequencies
of a source showed that an increase in frequency also
leads to a displacement of the main maximum in the
plasma resistance toward stronger magnetic fields.

According to the above results, the equivalent
plasma resistance Rpl depends on the strength of the
external magnetic field as well as on the discharge
parameters: the electron density, the electron tempera-
ture, the neutral density, etc. When a certain power is to
be fed into a source, the plasma parameters should have
quite specific values that would unambiguously deter-
mine the plasma resistance and, accordingly, the frac-
tion of the input power that is deposited in the discharge
plasma. Hence, in order to simulate the operation of a
plasma source and to optimize the source parameters, it
is expedient to construct a self-consistent model incor-
porating the interrelationships between the electron
density, the plasma resistance, and the power absorbed
by the plasma.

3. RELATIONSHIP OF THE PLASMA 
PARAMETERS TO THE RF POWER DEPOSITED 

IN PLASMA

The relationship between the power deposited in the
plasma and the plasma parameters can be determined
from a simple model of an RF ion source.

The model is based on the following assumptions:
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(i) the electron energy distribution function is Max-
wellian,

(ii) the ionization is dominated by direct electron-
impact ionization,
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Fig. 7. Dependence of the equivalent plasma resistance on
the electron density at a pressure of 10–3 torr and at mag-
netic fields of (1) 50 and (2) 100 G.
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(b) 15 cm. Curves 1–3 were calculated for electron densi-
ties of 1010, 1011, and 1012 cm–3, respectively.
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(iii) the density of highly ionized atoms is negligibly
low, and

(iv) the density of the ion current to the walls of an
ion source is constant at any point.

The model equations are the balance equations for
the numbers of ions, electrons, and heavy neutral parti-
cles, the power balance equation, and the quasineutral-
ity condition.

The ion balance equation expresses the equality of
the number of ions produced within a source of volume
V and the number of ions escaping from the plasma vol-
ume to the gas-discharge chamber wall of area S:

(3.1)

The electron balance equation expresses the equality
of the number of electrons produced within a source
of volume V and the number of electrons escaping

Vn0neZ ion 0.4niS
2kTe

M
-----------.=
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Fig. 9. Dependence of the equivalent plasma resistance on
the magnetic field for R = 5 cm and L = (a) 10 and (b) 20 cm.
Curves 1–3 were calculated for electron densities of 1010,
1011, and 1012 cm–3, respectively.
from the plasma volume to the gas-discharge cham-
ber wall:

(3.2)

where Se is the area of the wall surface on which the
electrons can be lost. In the case when the external
magnetic field is absent and the ions are not extracted,
the electrons can be lost over the entire surface of the
gas-discharge chamber wall; i.e., we have Se = S.
Because of the large difference between the ion acous-
tic velocity and the electron thermal velocity, the possi-
bility of equating the right-hand sides of Eqs. (3.1) and
(3.2) is provided by the term that accounts for the neg-
ative potential difference φ between the plasma and the
wall. In the case when the external magnetic field is
absent and the ions are extracted, the electrons can be
lost over the entire surface of the gas-discharge cham-
ber wall, except for the holes of area Si through which
the ions are extracted; i.e., we have Se = S – Si . In this
case, the potential difference between the gas-discharge

Vn0neZ ion
1
4
---neSe

8kTe
πm

------------ eφ
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  ,exp=
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Fig. 10. Dependence of the equivalent plasma resistance on
the magnetic field for R = 10 cm and L = (a) 10 and (b) 20 cm.
Curves 1–3 were calculated for electron densities of 1010,
1011, and 1012 cm–3, respectively.
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chamber wall and the plasma will obviously be lower.
Since the external longitudinal magnetic field reduces
the electron mobility in the transverse direction, we can
assume for simplicity that, in the presence of the exter-
nal field, the electrons can only be lost on the end walls
of the gas-discharge chamber, except for the holes
through which the ions are extracted. Obviously, the
smaller the area Se, the lower the potential difference ϕ.

The balance equation for heavy neutral particles,

(3.3)

expresses the equality of the number N ' of atoms (or
molecules) of the working gas supplied into the gas-
discharge chamber per unit time and the number of
atoms (or molecules) and their ions that escape from the
chamber through the holes in the ion-optical system at
thermal and ion-acoustic velocities, respectively. The
transparency of the ion-optical system to atoms can dif-
fer from its transparency to ions; that is why, in
Eq. (3.3), we have introduced the notation Si and Sa to
denote the areas of the holes through which the ions and
atoms are extracted.

N ' 0.4niSi

2kTe

M
-----------

1
4
---n0Sa

2kTg

πM
------------,+=
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The power balance equation expresses the equality
of the power deposited into the plasma, on the one
hand, and the power carried to the wall by electrons and
atoms (as well as the power expended on ionizing and
exciting particles in the volume of the system), on the
other hand:

, (3.4)

where W(kTe) is the fraction of power expended on the
excitation of atoms (followed by the emission of energy
from the system).

The quasineutrality condition has the standard form

ne = ni . (3.5)

In Eqs. (3.2)–(3.5), ne and ni are the electron and ion
densities, Te and Tg are the electron and atom tempera-
tures, M and m are the masses of a heavy particle and
an electron, φ is the plasma potential relative to the
wall, Ui is the ionization potential, W(kTe) is the frac-
tion of power lost by radiation from the atoms, and Ppl
is the RF power fed into the plasma.

The ionization rate is given by the formula

Ppl = 0.4eniS
2kTe

M
----------- φ

2kTe

e
----------- Ui 1 W kTe( )+( )+ + 
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(3.6)

and the fraction of power lost by radiation from the
atoms is expressed as

(3.7)

Here, σion is the effective ionization cross section, σex is
the total excitation cross section for argon, ε is the elec-
tron energy, f(ε) is the electron energy distribution
function, and  is the mean excitation energy.

The set of nonlinear equations (3.1)–(3.7) was
solved by the method of iteration. The required values
of the experimental cross sections were taken from
[12, 13].

Z ion
2m
M
------- σion ε( ) ε f ε( ) ε,d∫=

W
Ek σ0k ε( ) ε f ε( ) εd∫∑

Z ion
---------------------------------------------------------=

∼
E σex ε( ) ε f ε( ) εd∫

Z ion
-----------------------------------------------.
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Fig. 12. Solutions to the self-consistent problem for a
source of radius 5 cm and length 10 cm at an RF oscillator
power of 300 W and at argon gas pressures of p = (a) 10–4

and (b) 6 × 10–3 torr.
Let us briefly discuss the results of calculating the
plasma parameters on the basis of the above simple
physical model of the source. These results are illus-
trated in Fig. 11 in the form of the dependence of the RF
power required to extract an ion current of given mag-
nitude, the electron temperature, and electron density
on the argon flow rate. According to Fig. 11, we can dis-
tinguish between two different modes of operation of
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Fig. 13. Solutions to the self-consistent problem for a
source of radius 5 cm and length 15 cm at a pressure of
10−3 torr and at RF oscillator powers of (a) 100, (b) 500, and
(c) 2500 W.
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an RF ion source: the mode with a low flow rate and
that with a high flow rate. The characteristic feature of
the first mode is that the RF power deposited in the dis-
charge plasma and the plasma electron temperature
both increase sharply as N' decreases. The characteris-
tic feature of the second mode is that the RF power
deposited in plasma depends very little on N'. Another
important feature of the second mode is that the elec-
tron density changes in proportion to the deposited
power while the electron temperature remains essen-
tially constant.

We rewrite power balance equation (2.1) as

P = I2(Rant + Rpl).

Generally, the power I2Rpl deposited in plasma is a
complicated nonlinear function of the plasma parame-
ters. Recall, however, that, under conditions corre-
sponding to relatively high flow rates of the working
gas, the electron density is nearly proportional to the
deposited power, the electron temperature being essen-
tially constant. In this case, power balance equation
(3.4) becomes

(3.8)

The set of nonlinear equations (3.1)–(3.8) was
solved by iteration. When the calculated values of the
electron density were lower than 109 cm–3, the equa-
tions were regarded as having no solution because such
density values are too low to satisfy inequalities (2.4).

Numerical simulations allowed us to explain the fol-
lowing experimentally observed distinctive features of
the discharge [4, 7]: discharge disruptions at certain
magnetic field strengths, a hysteresis effect in the
dependence of the plasma parameters and extracted ion

I
2
Rpl ne Te P B R L, , , , ,( ) αne=

≡ 0.4eniS
2kTe

M
----------- φ

2kTe

e
----------- Ui 1 W kTe( )+( )+ + 

  .

5.0 × 1010

0

ne, cm–3

40 60 80 100 120

1.0 × 1011

2.5 × 1011

1.5 × 1011

2.0 × 1011

B, G

Fig. 14. Solution to the self-consistent problem for a source
of radius 2.5 cm and length 15 cm at an RF oscillator power
of 700 W and at a pressure of 5 × 10–4 torr.
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current on the external magnetic field [9, 14], and the
fact that, at some magnetic field strengths, the plasma
parameters reach their saturation values as the RF oscil-
lator power increases [2, 4, 15].

First of all, simulations showed that, in a number of
cases, the problem has several solutions for the same
external magnetic field B and the same RF oscillator
power P; i.e., there are several values of the electron
density that satisfy Eqs. (3.1)–(3.8). Figure 12 shows
representative solutions calculated for quite different
argon pressures. We can see that, at a fixed RF oscillator
power, the electron density increases and reaches its
maximum at a comparatively weak magnetic field. A
further increase in the field up to a certain value B* is
accompanied by a decrease in the electron density. For
stronger magnetic fields, there may exist a second solu-
tion, which corresponds to electron densities that are
approximately one order of magnitude lower than the
densities corresponding to the first stable solutions. The
presence of several values of the electron density at a
fixed value of B and of P shows that the system can
exhibit a hysteresis effect with respect to an increase
and a decrease in the external magnetic field. An analy-
sis shows that the extent to which the solutions are sta-
ble against small variations in the electron density is
different for different strengths of the external magnetic
field. The existence of several solutions for the same
magnetic field strength and the absence of stable solu-
tions may provide a plausible explanation of the phe-
nomenon that was observed experimentally by Light
et al. [14], namely, low-frequency oscillations of the
electron density at magnetic fields above certain critical
values.

There is one more important feature of Eqs. (3.1)–
(3.8) that deserves mention here: for a magnetic field
above the critical value Bcr, they have no solutions in a
given range of plasma parameters. The nonexistence of
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Fig. 15. Dependence of the electron density on the RF oscil-
lator power for a source of radius 5 cm and length 20 cm at
a pressure of 10–3 torr and at magnetic fields of 50 and 100 G.
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solutions for strong magnetic fields can be explained as
follows: since the equivalent plasma resistance
decreases as the magnetic field increases, most of the
RF oscillator power is lost in the antenna and the power
deposited in the plasma is insufficient to maintain the
electron density at a level of 109 cm–3 and higher. Note
that, as the pressure increases, the right bound of the
range where the solutions can exist is displaced toward
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Fig. 16. (a) Electron density, (b) antenna current, and (c) the
efficiency of power deposition in a plasma calculated as
functions of the external magnetic field from the solution to
the self-consistent problem for a source of radius 5 cm and
length 15 cm.
larger values of B. Recall that an increase in the electron
density is accompanied by the displacement of the
maximum in the dependence of Rpl on B toward stron-
ger magnetic fields. Consequently, as the RF oscillator
power increases, the right bound of the range where the
solutions can exist is also displaced toward stronger
fields. This result is clearly demonstrated in Fig. 13.
However, the following paradoxical situation shown in
Fig. 13c is also possible: An increase in the RF oscilla-
tor power at weak magnetic fields first leads to an
increase in the electron density relative to its values
obtained for lower powers. After the critical electron
density has been reached, the source loses its ability to
operate in a mode with high electron density. Finally, at
very strong magnetic fields, the source again becomes
capable of operating in such a mode. This unusual fea-
ture can be explained by reference to Fig. 7, which
illustrates how the equivalent plasma resistance
depends on the electron density. At relatively weak
magnetic fields, an increase in the electron density
above the critical level leads to a sharp decrease in the
equivalent plasma resistance and, accordingly, in the
power deposited in the discharge plasma. A substantial
increase in the magnetic field is accompanied by an
increase in both the critical electron density and the
equivalent plasma resistance; as a result, the operating
mode with a high electron density again becomes pos-
sible. It should also be noted that the nonlinear depen-
dence of Rpl on B and ne has the following two interest-
ing consequences. For a low argon gas pressure, the
dependence of Rpl on B is essentially nonmonotonic,
which manifests itself in a very nonmonotonic depen-
dence of the electron density on the magnetic field B
(see Fig. 14). As was shown above, an increase in the
electron density in the range of its high values is accom-
panied by a decrease in the equivalent plasma resis-
tance. This explains the phenomenon that was observed
experimentally in [2, 4, 15]—the saturation of the
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Fig. 17. Electron density calculated as a function of the
external magnetic field from the solution to the self-consis-
tent problem for a source of radius 5 cm and length 10 cm
at antenna resistances of (1) 1, (2) 2, (3) 3, and (4) 5 Ω .
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plasma density with increasing RF oscillator power.
Figure 15 displays the electron density profiles calcu-
lated as functions of the oscillator power for several dif-
ferent values of the magnetic field. It can be seen that
the calculated profiles are analogous to those observed
experimentally.
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Shamrai and Taranov [16] showed that discharge
disruptions in plasma sources can also be caused by a
decrease in the power deposited in the plasma due to the
decoupling between an RF oscillator and a plasma. This
decoupling is the result of a change in the active and
reactive components of the load resistance when the
external magnetic field changes. The phenomenon
mentioned in [16] can and must make the above effects
more pronounced.

Let us consider in more detail what happens in a
plasma source when the magnetic field increases. Fig-
ure 16 shows the dependence of the electron density,
the antenna current, and the efficiency of power deposi-
tion in the plasma on the magnetic field B. In the range
in which the solution corresponding to high electron
densities ne can exist, an increase in the magnetic field
is, as a rule, initially accompanied by an increase in the
electron density. As the plasma density increases, the
antenna current decreases, which indicates an increase
in the amount of power deposited in the plasma. As a
result, the power absorption in the discharge plasma
becomes more efficient (Fig. 16c). Thus, for an input
RF power of 500 W and a magnetic field of about 4 mT,
the fraction of the input power deposited in the plasma
amounts to 90%.

The numerical calculations described above were
carried out for an antenna resistance of 1 Ω. Figure 17
illustrates how the behavior of the system changes with
changing antenna resistance. We can see that, by
decreasing the resistance of the external circuit, it is
possible to achieve efficient power deposition in the
plasma over a wide range of magnetic fields.

Simulations showed that, when the electron density
and working gas pressure are not too high, the radial
electric field of the Trivelpiece–Gould wave is the
strongest among the wave fields in the plasma (see
Fig. 18). The longitudinal electric field of the Trivel-
piece–Gould wave is stronger than that of the helicon,
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Fig. 19. Radial profiles of the amplitude of the radial com-
ponent of the RF electric field for different values of the
external magnetic field: (1) 25, (2) 60, (3) 100, and
(4) 460 G.
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and the azimuthal electric field of the Trivelpiece–
Gould wave is weaker than that of the helicon. On the
whole, the relationships between the electric field com-
ponents of the Trivelpiece–Gould wave and of the heli-
con are determined by the particular values of the elec-
tron plasma density and by the radius and length of the
plasma source, in accordance with the results of Sec-
tion 2.3. Figure 19 shows the radial profiles of the RF
electric fields calculated for different values of the
external magnetic field. We see that, at magnetic fields
close to the field Bmax (which corresponds to the maxi-
mum electron density), the electric field of the waves
penetrate into the plasma, whereas, at magnetic fields
far stronger and far weaker than Bmax, the waves in
question are surface waves.

4. CONCLUSIONS
In conclusion, we briefly summarize the results of

our work.
(i) We have developed a general theory of the

absorption of an RF field in a plasma cylinder excited
by a purely inductive field source.

(ii) We have shown that, at low plasma densities
such that the inductive field excited by the source is
screened by the plasma and is concentrated near the
surface of the plasma cylinder, the RF power is mainly
deposited via the absorption of electrostatic waves
(oblique Langmuir waves, or the Trivelpiece–Gould
modes), which are, in turn, excited by inductive surface
fields. It is the resonant absorption of spatial electro-
static waves that governs the active plasma resistance,
which under these conditions considerably exceeds the
active antenna resistance.

(iii) We have constructed a simple self-consistent
model of a plasma source that takes into account the
inflow of gas into the entire volume of the plasma cyl-
inder, gas ionization by an RF field, and losses of
charged particles from the plasma volume.

(iv) Using this simple model, we have qualitatively
explained a number of phenomena observed in experi-
ments with inductive plasma sources: first, the weak
dependence of the RF power deposited in the plasma on
the neutral gas density at high gas flow rates; second,
the existence of several values of the magnetic field for
each of which there are several values of the equilib-
rium electron plasma density (this phenomenon mani-
fests itself in a hysteresis effect and the onset of insta-
bility); and third, the decrease in the active plasma
resistance at strong magnetic fields, in which case the
efficient operation of the source is impossible.

(v) The results of calculations by our simple self-
consistent model agree qualitatively with the experi-
mental observations [2, 4, 8, 9, 12, 15].
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Abstract—The propagation of Alfvén waves in a plasma immersed in a curvilinear magnetic field is investi-
gated by using a 2D model. The waves are described by a 1D equation that formally coincides with the equation
for the case of a quasi-uniform straight magnetic field with a modified Alfvén velocity that takes into account
the longitudinal dependence of the Lame coefficients. It is shown that toroidal and poloidal Alfvén modes
depend differently on the magnetic-field geometry. In the case of a 2D plane-parallel configuration of the mag-
netic field, poloidal modes are efficiently reflected from regions where the magnetic field lines sharply converge
or diverge. This effect can result in the formation of open-field-line Alfvén quasi-resonators. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

One of the basic mechanisms for the energy trans-
port of nonsteady perturbations in near-Earth, solar,
and laboratory plasmas involves Alfvén waves. Long-
wavelength Alfvén waves, which are only slightly
affected by kinetic and dispersion effects, can propa-
gate without attenuation over large distances along
magnetic field lines. It follows from the wave equation
for Alfvén waves that these waves have no reflection
points. It would seem, therefore, that no longitudinal
(along the field lines) resonators in which the wave
energy could be accumulated can form for these waves.
However, if there are regions with sharp longitudinal
variations in Alfvén velocity in the plasma, then Alfvén
waves can be partially reflected from these regions [1].
For perturbations with a wavelength comparable to the
inhomogeneity scale, the geometric-optics approxima-
tion is violated, so that a substantial fraction of the
wave energy can be reflected. Such a reflection can
limit the influx of the wave energy into the solar corona
[2] or the Jovian magnetosphere [3]. In addition, it can
lead to the formation of quasi-resonators, such as an
ionospheric Alfvén resonator in the upper ionosphere
[4–7] and resonators in the regions of the magneto-
spheric cusp [8] and coronal solar loops [2]. Alfvén
oscillations can be excited either directly by fast parti-
cles with nonequilibrium distributions [9, 10] or due to
the resonant transformation of magnetosonic perturba-
tions when the external source frequency is close to the
eigenfrequency of an Alfvén resonator [11, 12]. The
accumulation of wave energy in Alfvén resonators can
significantly affect long-scale plasma dynamics.

However, in all of the above papers, the propagation
of Alfvén waves was described using models in which
the magnetic field lines were assumed to be straight. In
1063-780X/04/3005- $26.00 © 20413
the present paper, we will show that, under certain con-
ditions, a sharp local change in the geometry of mag-
netic field lines, such that the field lines sharply con-
verge or diverge, also results in the reflection of Alfvén
waves, which can lead to the formation of open-field-
line quasi-resonators even in the absence of conducting
ends or sharp plasma density gradients.

2. EQUATIONS FOR ALFVÉN WAVES
IN A CURVILINEAR MAGNETIC FIELD

The propagation of magnetohydrodynamic (MHD)
waves in a curvilinear magnetic field will be examined
in a linearized ideal MHD model. In this approach, the
transverse component of the polarization current is

equal to j⊥  = (µ0 )–1∂tE⊥ . Assuming the plasma to be
perfectly conducting along the main magnetic field
B0(r), σ|| = ∞ (in this case, the longitudinal component
of the electric field is zero, E|| = 0), we write Maxwell’s
equations in the form

(1)

where E⊥  is the transverse (with respect to B0) compo-

nent of the electric field and VA = B0/  is the
Alfvén velocity.

To study MHD perturbations in a plasma immersed
in a curvilinear magnetic field, we will use a curvilinear
coordinate system (CS) related to the geometry of the
magnetic field B0(r). We assume that, in the region
under study, the magnetic field can be expressed
through a scalar potential Ψ: B0 = –—Ψ. We introduce
the following CS: x1 = Φ1(x, y, z), x2 = Φ2(x, y, z) and
x3 = Ψ(x, y, z) such that the line of intersection of the

V A
2

∂tB — E⊥×+ 0, ∂tE⊥ V A
2 — B×[ ] ⊥– 0,= =

µ0ρ
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surfaces Φ1(x, y, z) = const and Φ2(x, y, z) = const with
the equipotential surface S3(x3 = Ψ(x, y, z) = const) are
the lines of curvature on the surface S3, i.e., the lines
tangents to which in each point of S3 belong to one of
two orthogonal planes of the principal normal sections.
The local basis of this CS is formed by the vectors e1 =
—Φ1, e2 = ∇Φ 2, and e3 = —Ψ = –B0, and the Lame coef-
ficients hn = |en |–1 are related to the diagonal elements

of the metric tensor as  = gnn.

In view of the fact that the magnetic field B0 is non-
divergent, an element of the magnetic flux dχ = B0 · dS3

in a flux tube dx1dx2 is conserved along the tube. Tak-
ing into account that B0 = –e3 and the element of the
cross-sectional area of the flux tube is dS3 =
h1dx1h2dx2h3e3, we obtain the following expression for
a magnetic flux element:

It follows from the conservation of the magnetic flux
that the ratio h1h2/h3 is constant along the flux tube. Let
h1h2/h3 = 1 on a certain equipotential surface; the
equality

(2)

then takes place in the entire volume under study. Tak-
ing into account equality (2), the components of Eq. (1)
for an individual temporal harmonic ∝ exp(–iωt) in the
chosen CS can be written as

(3)

where ∂n = ∂/∂xn.

The analysis of the MHD oscillation spectrum in a
confined nonuniform plasma system showed [13, 14]
that the spectral properties of Alfvén oscillations are
described by two ordinary differential (with respect to
the longitudinal coordinate x3) equations that play a
role of nonlocal dispersion relations and correspond to
different transverse structures of oscillations. For defi-
niteness, we assume that the Alfvén velocity varies
more rapidly along the coordinate x1 (as compared to
variations along the coordinate x2). One class of pertur-
bations corresponds to a case in which the oscillation
field varies along the coordinate x1 (∂1 . ik1) much
more rapidly than along the coordinate x2 (∂2 . ik2)
(i.e., |k1 | @ |k2 |). In the other case, to the contrary, per-

hn
2–

dχ
h1h2

h3
----------dx

1
dx

2
.–=

h3 h1h2=

iωh2
2
B1 ∂3E2+ 0,=

iωh1
2
B2 ∂3E1– 0,=

iωB3 ∂1E2– ∂2E1+ 0,=

iωh2
2
V A

2–
E1 ∂3B2– ∂2B3+ 0,=

iωh1
2
V A

2–
E2 ∂3B1 ∂1B3–+ 0,=
turbations vary more rapidly along the coordinate x2

(i.e., |k2 | @ |k1 |).
Let us show that, in these important limiting cases,

a set of equations describing Alfvén oscillations with
B3  0 can be separated out from the complete set (3).
Magnetosonic oscillations, in which the component of
the longitudinal magnetic field B3 is finite, will not be
considered.

Assuming that k1  ∞, we find from Eqs. (3) that
E2  0 and B3  0 (while k1E2 and k1B3 should not
necessarily tend to zero). Thus, by virtue of the first
equation of set (3), we also have B1  0. As a result,
the second and fourth equations of set (3) yield the
closed set of equations for the components B2 and E1:

which, after eliminating B2, reduces to one second-
order equation

(4)

Alfvén oscillations described by Eq. (4) will henceforth
be referred to as mode 1. They are polarized so that the
electric field is directed along the coordinate x 1, while
the magnetic field perturbations and plasma displace-
ments are directed along the coordinate x2. These oscil-
lations are primarily excited by long-scale (with small
k2) sources.

In the case of perturbations rapidly varying along
the coordinate x2 (k2  ∞), we have E1  0 in
Eqs. (3) (while k2E1 and k2B3 should not necessarily
tend to zero). In this case, by virtue of the first equation
of set (3), we also have B2  0. As a result, the first
and fifth equations yield the closed set of equations:

which reduces to the second-order equation

(5)

The polarization of Alfvén oscillations described by
Eq. (5) differs from that of mode 1: the electric field is
directed along the coordinate x2, while the magnetic
field perturbations and plasma displacements are
directed along the coordinate x1. We will refer to these
oscillations as mode 2. These oscillations are mainly
excited by localized (with large k2) sources, e.g., by
kinetic instabilities of the hot plasma component [9,
10, 15].

In was shown in [13, 14] that differential equations
(4) and (5), supplemented by necessary boundary con-
ditions, can be used to determine the spectrum of
Alfvén oscillations even in a 3D case.

iωh1
2
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2
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2

-----∂3
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Equations (4) and (5) can be rewritten in an invariant
form [16] in which the influence of the geometrical fac-
tor—the magnetic field curvature—on the propagation
of Alfvén waves is expressed explicitly. Let us intro-
duce, along with x3, the longitudinal coordinate s, equal
to the distance along the field line. In view of relation (2),
the change of variable ds = h3dx3 in Eqs. (4) and (5)
reduces them to the form

(6)

The quantities Ki = –∂s(lnhi) in Eqs. (6) are the princi-
pal curvatures of an equipotential surface x3 = const and
characterize the rate at which the field lines converge
(or diverge).

The eigenfrequencies of Alfvén oscillations of the
geomagnetic shell are somewhat different for modes
with different polarizations described by Eqs. (4) and
(5). As was shown in [16], this polarization splitting of
the spectrum is related to the different influence of the
geomagnetic field curvature on the spectrum of oscilla-
tions in which the plasma is displaced along and across
the shell (more precisely, to the difference between the
principal curvatures of equipotential surfaces or, in
other words, to the difference in the rates at which the
field lines converge or diverge in two orthogonal sur-
faces containing the given field line). If the principal
curvatures coincide in the intersection points of the
equipotential surfaces with the given field line, K1 = K2
(i.e., the field lines converge or diverge at the same
rate), the polarization splitting of the spectrum is
absent.

It is convenient to rewrite Eqs. (4) and (5) in a form
similar to the equation for Alfvén waves propagating in
a uniform external magnetic field. Substituting dξ =

 in Eq. (4) reduces it to

(7)

and Eq. (5), after substituting dη = , becomes

(8)

The modified Alfvén velocities in Eqs. (7) and (8) are
determined by the formulas

(9)

Thus, the propagation of Alfvén waves in a curvilinear
magnetic field can be described by Eqs. (7) and (8),
which are similar to the equation that corresponds to the
case of a straight field and in which VA is replaced with

the modified Alfvén velocities  and .

∂ss K1 K2–( )∂s ω2
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h1

h2
-----V A = 
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Equations (6) allow us to suppose that the most effi-
cient reflection of Alfvén waves from a region with a
curvilinear magnetic field will happen when the princi-
pal curvatures K1 and K2 differ greatly from one
another. For curvatures of the same sign, this takes
place at K2 ! K1. Therefore, in the next section, we will
consider the limiting case of a plane-parallel field
B0(r), when K2 = 0. In this case, in accordance with
geophysical terminology, modes 1 and 2 will be
referred to as a toroidal and a poloidal mode, respec-
tively.

3. PROPAGATION OF ALFVÉN WAVES
IN 2D PLANE-PARALLEL GEOMETRY

Let us consider some general relationships describ-
ing the geometry of a 2D plane-parallel magnetic field
and the propagation of Alfvén waves in it. Let x, y, and
z are Cartesian coordinates. We assume that the field
B0(r) does not depend on the coordinate y (B0 = B0(x, z)
and its force lines do not leave parallel planes y = const.

We denote the magnetic scalar potential by Ψ and
introduce the corresponding complex potential W(w) =
Φ(w) + iΨ(w), where w = x + iz. The function of a com-
plex variable W(w) determines the conformal mapping
of a plane w into a plane W. This mapping allows us to
introduce a curvilinear CS in space (x, y, z) with the
help of relationships

(10)

The coordinate x1 labels magnetic shells (e.g., the mag-
netic flux inside a shell), while the coordinate x3 is a
longitudinal coordinate along a field line. The Lame
coefficients h1 and h3 are defined by the expressions

and, according to (2), coincide with one another. In the
given CS, related to the conformal mapping w  W,
they are expressed through the derivative of the com-
plex function W(w):

(11)

We recall that the metric coefficient h is directly related

to the absolute value of the magnetic field, h = .

Let us consider a situation in which Alfvén waves
propagate from infinity along the field lines with a
small curvature and then fall into a region where the
field line geometry changes sharply (the field lines
undergo a break and rapidly converge).

In 2D plane-parallel geometry (h2 =1), Eq. (7),
which describes toroidal Alfvén modes, takes the form

The equation for toroidal modes contains the effective
Alfvén velocity, which is determined by the plasma
density only, because the effects of the longitudinal

x
1 Φ x z,( ), x

2
y, x

3 Ψ x z,( ).= = =

h1 —Φ x z,( ) 1–
, h3 —Ψ x z,( ) 1–

,= =

h1 h3 h W ' w( ) 1–
.= = =

B0
1–

∂ξξ µ0ρω2
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nonuniformity of the magnetic field and the magnetic
field curvature completely cancel one another. In the
absence of a density gradient, these modes do not “feel”
the magnetic field curvature and are not reflected.

In contrast, Eq. (8) for poloidal modes reduces to

(12)

Here, the variable η, in fact, coincides with the coordi-

nate x3, because dη =  and h2 = 1. In a curvilinear
magnetic field, the effective Alfvén velocity in Eq. (8)
is highly nonuniform along the longitudinal coordinate
x3 even in the case of a constant plasma density,
because the Lame coefficient depends on the fourth
power of this coordinate. The quantity h(x3) quantita-
tively characterizes the “distance” between close field
lines, i.e., the degree to which the field lines converge.

4. EXAMPLE: SUPERPOSITION OF A UNIFORM 
MAGNETIC FIELD AND THE FIELD 

OF A LINEAR CURRENT

As an example illustrating the influence of the field
line curvature on the propagation of Alfvén waves, we
consider a magnetic field that is a superposition of a
uniform magnetic field B0 = B0  (B0 > 0) and the field
produced by a linear current with the density j0 =
−I0δ(x)δ(z) . For definiteness, we assume that the cur-
rent j0 is antiparallel to the y axis (I0 > 0). The plasma
density ρ is assumed to be uniform over the entire
space.

The complex magnetic potential W of such a field
superposition is equal to

We normalize W to the quantity µ0I0(2π)–1, the mag-
netic field to B0, and the spatial coordinates to the char-
acteristic scale length r0 = µ0I0(2πB0)–1. Physically, the
scale length r0 corresponds to the distance at which the
field of the linear current becomes comparable to the
uniform field. Then, retaining the previous notation for
normalized quantities, we obtain

where r = (x2 + z2)1/2 and ϕ = . According
to Eq. (11), the Lame coefficients can be found by dif-
ferentiating the complex potential:

∂3
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In normalized variables, wave equation (12) takes the
form

(13)

The normalized frequency Ω = ωr0/  is determined
by the nonuniformity scale length r0 and the Alfvén

velocity at infinity  = B0(µ0ρ)–1/2.

In the equations for magnetic field lines, Φ(x, z) =

 and y =  (where  and  are given constants),
the coordinate z can be explicitly expressed through x:

The family of surfaces Ψ(x, z) = , which are orthog-
onal to the magnetic field lines, also allows one to
explicitly express x through z:

The coordinate grid in the upper half-plane y = const is
shown in Fig. 1. The intersection points of the field

lines Φ(x, z) =  = const with the x axis can be found

from the equation Φ(x, 0) = ; i.e.,

(14)

This equation has one real root at  < 1 and three real

roots at  > 1, two of which merge at  = 1 at the

point  = –1. The field line Φ(x, z) = 1, which corre-
sponds to the merging of two roots of Eq. (14), is the
separatrix that separates finite and infinite magnetic
field lines. It can be seen in Fig. 1 that, at |x |, |z | ≤ r0,
infinite field lines undergo a break and rapidly converge
to the right of the linear current (x ≥ 0) and diverge to
the left of the current (x/r0 ≤ –1). Below, we will con-
sider how these regions affect the propagation of
Alfvén waves.

5. NUMERICAL CALCULATION
OF THE REFLECTION COEFFICIENT

The specific features of wave propagation can be
quantitatively characterized by the coefficient of reflec-
tion from a barrier arising due to the convergence and
divergence of field lines. Let an Alfvén wave with a unit
amplitude arrive from infinity (e.g., from the side of
large positive values of the coordinate x3) at the region
with a curvilinear magnetic field. The wave is partially
reflected from this region and partially penetrates
through it. In other words, the asymptotes of the corre-
sponding solution to Eq. (13) have the form

(15)
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Fig. 1. Coordinate lines of the 2D model: the magnetic field lines (solid lines) and the surfaces orthogonal to them (dashed lines) in
a plane orthogonal to the linear current passing through the point (0, 0). The heavy line shows the separatrix that separates the finite
and infinite magnetic field lines.
Here, k∞ = ω/  is the wavenumber of the Alfvén
wave far from the region with a nonuniform magnetic
field. The quantities R and D are the reflection and
transmission coefficients, respectively, so that |R |2 +
|D |2 = 1.

We note that asymptotes (15) take place only when

the velocity  sufficiently rapidly tends to a constant
value as x3  ±∞. In the case at hand, we have h(x3) –
1 = O(|x3|–2), which is quite sufficient for the solution to
arrive at the above asymptotes.

The dependence h(x3) on a given field line can be
found by numerically inverting formulas (10), which
define the curvilinear CS. Equations (10) along a field
line have been solved by successive approximations by
the Newton method.

Figure 2 shows typical field lines passing through
the regions where the field lines converge (x ≥ 0) and
diverge (x ≤ –r0). The profiles of the normalized Alfvén

wavenumber squared (x3)/  = h4 along the same
field lines as in Fig. 2 are shown in Fig. 3. It can be seen
from these figures that the modified Alfvén velocity
changes sharply in the regions where the magnetic field
lines rapidly diverge (h @ 1 at x3  0 for x/r0 < –1 in
Fig. 3a) or converge (h ! 1 at x3  0 for x > 0 in
Fig. 3b).

V A
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V A
2( )
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2

k∞
2
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The calculated dependences of the absolute value of
the reflection coefficient |R | on the normalized fre-

quency Ω = ωr0 /  for the same field lines (Fig. 4)
show that, in both cases, the reflection coefficient of the
Alfvén wave is fairly large. The reflection of an Alfvén

V A
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x/r0

z/r0

1.0

0
–2 –1 0 1 2–4

0.5

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 2. Typical field lines in the upper half-plane of the 2D
model.
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Fig. 3. Profiles of the normalized Alfvén wavenumber squared  = h4(x3) along the corresponding field lines shown in Fig. 2 at

(a) x/r0 < –1 and (b) x > 0.

kA
2

wave whose wavelength is comparable to the nonuni-
formity scale length r0 can be as high as 80–90%.

We note that the dependence R(Ω) is nonmonotonic.
For high-frequency waves (Ω @ 1), the reflection coef-
ficient is small, which is quite natural for waves that can
be described in the Wentzel–Kramers–Brillouin
(WKB) approximation. In the range of very low fre-
quencies, which, in fact, corresponds to the case of dc
perturbations, the reflection coefficient R also tends to
zero.

The effect of the geometrical factor arising due to
the convergence or divergence of the field lines can for-
mally be separated from the effect related to the depen-
dence of VA on the magnetic field strength. The ignoring
of the geometrical factor corresponds to the transition

from  to VA, i.e., the replacement of h4 with h2 in
Eq. (13). Figure 5 compares the values of |R | on the
field line crossing the x axis at the point x0 = 1 for the
cases corresponding to the solutions to Eq. (13) and the
same equation in which h4 is replaced with h2. It can be

V A
2( )
seen from this figure that the large reflection coefficient
is mainly achieved due to the change in the magnetic
field geometry, rather than to the nonuniformity of the
Alfvén velocity.

6. QUALITATIVE CRITERIA 
OF REFLECTION

Let us formulate qualitative criteria of the reflection
and transmission of Alfvén waves that could be used for
an arbitrary geometry of the magnetic field. For a given
field line, there is a frequency range in which the coef-
ficient of reflection from the region where the field lines
converge (or diverge) is maximum. The bounds of this
range are determined by scale lengths characteristic of
the given field line. As will be shown below, there are
two such scale lengths: one of them determines the
upper bound of the frequency range corresponding to
efficient reflection, while the other determines the
lower bound.
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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Fig. 4. Reflection coefficients of the poloidal Alfvén modes propagating along the field lines shown in Fig. 2. The curves |R(Ω)| and
the corresponding field lines in Fig. 2 are shown by the same type of line: heavy, light, dashed, and dashed-and-dotted.
In the high-frequency limit (Ω  ∞) the solution
to Eq. (13) can be found in the WKB approximation,
whose applicability range is local in character. In the
vicinity of any point on a field line, there is, on the one
hand, the local scale length related to the wavelength of

the Alfvén wave,  = λ/2π = Ω–1h–2, and, on the other
hand, the scale length related to variations in the coeffi-

cient in Eq. (13), L = h4 |∂3h4 |–1 =  =

. Note that we are speaking here about scale

lengths in terms of the normalized variables in which
Eq. (13) is written.

The WKB approximation is locally applicable if the

condition  ! L is satisfied; i.e.,
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Fig. 5. Comparison of the reflection coefficients of Alfvén
waves calculated (1) without and (2) with allowance for the
geometrical factor.
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The right-hand side of this inequality reaches its maxi-
mum in the region where the field lines converge (or
diverge) at the highest rate. Thus, if

then the WKB approximation is valid and the reflection
coefficient |R | is small over the entire field line. It can
be shown that, in this case, the reflection coefficient
decreases exponentially with increasing Ω. The quan-
tity Ω+ is the upper bound of the frequency range corre-
sponding to efficient reflection.

In the range of low frequencies (Ω  0), the
asymptotes of the solution to Eq. (13) are determined
by the integral scale length of the nonuniformity of the
function Ω2h4. In particular, the reflection coefficient is
described by the approximate formula

It follows from this formula that the lower bound of the
frequency range corresponding to efficient reflection
(|R | ~ 1) is determined by the expression

It is necessary to take into account that, as the nonuni-
formity becomes smoother, so that the function h(x3)
differs only slightly from its limiting value h(±∞) = 1,
the upper bound Ω+ goes down, while the lower bound
Ω– goes up, until the frequency range corresponding to
efficient reflection disappears. In the above example,
this occurs as the distance between the field line and the
linear current that perturbs the uniform magnetic field
increases.

7. DISCUSSION: PROBABLE 
CONSEQUENCES

Situations similar to that considered above fre-
quently occur in space and laboratory plasmas. In real
situations, sharp variations in the magnetic field geom-
etry are usually accompanied by variations in the
plasma density and magnetic field strength. All this
results in a sharp change of the modified Alfvén veloc-
ity, thus leading to the efficient reflection of Alfvén
waves. In such Alfvén quasi-resonators, the energy of
trapped oscillations can increase to fairly high values.
This fact stems from the specific transverse structure of
Alfvén oscillations. The effect manifests itself for
poloidal modes, in which the wave magnetic field is
perpendicular to the magnetic shell. For toroidal
modes, in which the wave magnetic field is directed
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along the shell, the wave propagation is only deter-
mined by the plasma density.

Strictly speaking, the latter result (i.e., that the field
line curvature affects only poloidal modes) applies only
to the above 2D plane-parallel magnetic field geometry,
in which the coordinate lines x1, x3 = const are straight.
For other magnetic field configurations, i.e., in the gen-
eral 2D (e.g., dipole) and 3D cases, the difference
between modes 1 and 2 will not be so striking from the
point of view of the influence of the field line curvature,
although it will, nevertheless, manifest itself to a certain
extent. In particular, in [17], the propagation of Alfvén
waves in a curvilinear magnetic field was considered by
using a model equation (which can be reduced to the
well-known Klein–Gordon equation) for a thin oscillat-
ing flux tube. For dipole geometry, it was shown that
Alfvén waves can be partially reflected before they
reach the conducting end of the flux tube (the iono-
sphere).

In the solar atmosphere, coronal loops form resona-
tors for Alfvén waves with frequencies that are multi-
ples of VA/2L, where L is the length of a loop [2]. These
resonances, which decisively affect the penetration of
Alfvén waves to into the corona, exist only if the waves
undergo reflection on the loop ends. In this case, the
equation describing the propagation of waves in a
straight magnetic field [1] without allowance for geo-
metrical factors applies only to toroidal modes. For
poloidal modes, such a model can yield an underesti-
mated reflection coefficient.

In magnetic mirror devices, uniform axisymmetric
compression of the magnetic field does not enhance the
reflecting properties of magnetic mirrors. On the other
hand, nonuniform “squeezing” of the magnetic field in
toroidal devices can result in the trapping of Alfvén
oscillations.

In the Earth’s magnetosphere too, the propagation of
Alfvén waves can be significantly affected by local
variations in the geometry of the geomagnetic field.
Thus, the field lines emerging from the night-time high-
latitude ionosphere undergo a sharp break and rapidly
converge in the current sheet of the geomagnetic tail of
the magnetosphere. After the field lines of the polar cap
have been reconnected with the interplanetary mag-
netic field, their geometry changes sharply as the field
lines pass through the magnetopause. Quasi-dipole
field lines can be strongly perturbed in the equatorial
magnetosphere by an intense ring current. In all these
regions, harmonic oscillations can be excited whose
period is determined by the dimensions of Alfvén
quasi-resonators.

As an Alfvén wave propagates in a medium that is
nonuniform in a transverse direction, the wave vector
component parallel to the direction of nonuniformity,

 = k1/h1, increases due to the effect of scale-length
degradation. As a result, Alfvén waves in a curvilinear
magnetic field acquire a specific transverse dispersion

k̂1
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and group velocity [18]. It was shown in [18, 19] that,
in the course of such transverse propagation, the wave
polarization changes from poloidal to toroidal over a

distance of S ~ , where  = k2/h2 and a is the
characteristic scale length (along the coordinate x1)
over which the Alfvén velocity changes substantially
[19]. Hence, the change in the wave polarization can be
ignored when S @ R, where R is the size of the region
where the magnetic field geometry varies rapidly, i.e.,
when the condition

(16)

is satisfied. In all of the situations considered above,
this inequality is satisfied by a large margin.

8. CONCLUSIONS

Although Alfvén waves have no reflection points,
they can be efficiently reflected from regions where the
magnetic field geometry changes sharply (the field
lines rapidly converge or diverge). This effect can result
in the formation of open-field-line Alfvén resonators in
the complex plasma configurations encountered in
near-Earth, solar, and laboratory plasmas.

ACKNOWLEDGMENTS

We thank the anonymous referee for his useful
remarks. This work was supported by the Russian
Foundation for Basic Research, project no. 03-05-
64670.

REFERENCES

1. B. Leroy, Astron. Astrophys. 91, 136 (1980).
2. E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dor-

drecht, 1982; Mir, Moscow, 1985).

ak̂2/k || k̂2

S/R ak̂2/ k ||R( ) @ 1∼
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
3. A. N. Wright and S. J. Schwartz, J. Geophys. Res. 94,
3749 (1989).

4. S. V. Polyakov and V. O. Rappoport, Geomagn. Aeron.
21, 816 (1981).

5. R. L. Lysak, J. Geophys. Res. 93, 5942 (1988).
6. P. P. Belyaev, S. V. Polyakov, V. O. Rappoport, and

V. Yu. Trakhtenhertz, J. Atmos. Terr. Phys. 52, 781
(1990).

7. O. A. Pokhotelov, D. Pokhotelov, A. Streltsov, et al., J.
Geophys. Res. 105, 7737 (2000).

8. E. N. Fedorov, N. G. Mazur, V. A. Pilipenko, and S. Lep-
idi, Geomagn. Aeron. 38 (2), 60 (1998).

9. A. B. Mikhaœlovskiœ and O. A. Pokhotelov, Fiz. Plazmy
1, 786 (1975) [Sov. J. Plasma Phys. 1, 430 (1975)].

10. O. A. Pokhotelov, Yu. M. Nezlina, and V. A. Pilipenko,
Dokl. Akad. Nauk SSSR 289, 332 (1986).

11. A. V. Timofeev, in Reviews of Plasma Physics, Ed. by
M. A. Leontovich (Gosatomizdat, Moscow, 1979; Con-
sultants Bureau, New York, 1982), Vol. 9, p. 205.

12. E. N. Fedorov, N. G. Mazur, and V. A. Pilipenko, Fiz.
Plazmy 21, 333 (1995) [Plasma Phys. Rep. 21, 311
(1995)].

13. A. L. Krylov, A. E. Lifshits, and E. N. Fedorov, Dokl.
Akad. Nauk SSSR 247, 1095 (1979).

14. A. L. Krylov, A. E. Lifshits, and E. N. Fedorov, Geo-
magn. Aeron. 20, 689 (1980).

15. A. S. Leonovich and V. A. Mazur, Fiz. Plazmy 13, 800
(1987) [Sov. J. Plasma Phys. 13, 461 (1987)].

16. A. L. Krylov, A. E. Lifshits, and E. N. Fedorov, Izv.
Akad. Nauk SSSR, Fiz. Zemli, No. 6, 49 (1981).

17. V. S. Semenov, N. V. Erkaev, and D. Langmayr, in Pro-
ceedings of the 4th International Conference “Problems
of Geocosmos,” St. Petersburg, 2002, p. 95.

18. A. S. Leonovich and V. A. Mazur, Planet. Space Sci. 41,
697 (1993).

19. D. Yu. Klimushkin, J. Geophys. Res. 105, 23303 (2000). 

Translated by A.S. Sakharov



  

Plasma Physics Reports, Vol. 30, No. 5, 2004, pp. 422–431. Translated from Fizika Plazmy, Vol. 30, No. 5, 2004, pp. 459–468.
Original Russian Text Copyright © 2004 by Azizov, Babarykin, Voronin, Gusev, Malyshev, Markov, A. Petrov, V. Petrov, Yu. Petrov, Rozhdestvenski

 

œ

 

, Sakharov.

                                                

PLASMA 
DIAGNOSTICS

                                                                       
First Results Obtained with a Sweeping Pulsed Radar 
Reflectometer in the Globus-M Tokamak

E. A. Azizov*, A. V. Babarykin*, A. V. Voronin**, V. K. Gusev**, A. Yu. Malyshev*, 
V. K. Markov*, A. A. Petrov*, V. G. Petrov*, Yu. V. Petrov**, 

V. V. Rozhdestvenskiœ**, and N. V. Sakharov**
* Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow oblast, 142190 Russia

** Ioffe Physicotechnical Institute, Russian Academy of Sciences, 
Politekhnicheskaya ul. 26, St. Petersburg, 142190 Russia

Received July 29, 2003; in final form, October 1, 2003

Abstract—A sweeping pulsed radar reflectometer designed for measuring the spatial electron density distribu-
tion in the Globus-M spherical tokamak with a minor plasma radius of a = 24 cm, a major radius of R = 36 cm,
a toroidal field of BT = 0.5 T, a plasma current of Ip = 200 kA, and an average density of n = (3–10) × 1013 cm–3

is described. The reflectometer operation is based on the reflection of microwaves with a carrier frequency f
from a plasma layer with the critical density n = (0.0111f )2, where n is the electron density in units of 1014 cm–3

and f is the microwave frequency in GHz. By simultaneously probing the plasma at different frequencies, it is
possible to recover the electron density profile. Microwave pulses with different frequencies are obtained by
frequency sweeping. To increase the range of measured densities, channels with fixed frequencies are also used;
as a result, the instrument has eleven frequency channels: a 19.5-GHz channel, eight channels in the 26- to
40-GHz frequency range, a 51.5-GHz channel, and a 60-GHz channel, which corresponds to eleven points in
the density profile: 0.47 × 1013 cm–3, eight points in the (0.8–1.95) × 1013-cm–3 range, 3.27 × 1013 cm–3, and
4.5 × 1013 cm–3. The reflectometer allows detailed measurements of the density profile with a time resolution of
several tens of microseconds, which can be useful, in particular, in studying the processes related to the forma-
tion of an internal transport barrier in plasma. The first results obtained using this reflectometer in the Globus-M
tokamak under various operating conditions are discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Microwave reflectometers, along with multichannel
interferometers and Thomson scattering diagnostics,
are widely used to measure the electron density profiles
in magnetic confinement devices [1]. Reflectometer
operation is based on the reflection of microwaves with
a carrier frequency f from a plasma layer with the den-
sity n that is critical for this frequency. The plasma is
usually probed by an ordinary wave (the wave electric
field is directed along the toroidal magnetic field of a
tokamak). It is well known [2] that, in this case, the fol-
lowing simple relation holds:

n = (0.0111f )2, (1)

where n is the electron density in units of 1014 cm–3 and
f is the microwave frequency in GHz. By probing the
plasma at several frequencies, one can obtain informa-
tion about the positions of several reflection layers.
The electron density in each of these layers is unam-
biguously related to the given probing frequency. The
distance to these layers can be determined by measur-
ing the time during which the microwaves propagate to
the reflection point and back. The propagation time τ
1063-780X/04/3005- $26.00 © 20422
can be measured directly or calculated using the
expression [3]

(2)

where Φ is the phase shift of the wave with a circular
frequency ω in the plasma. When probing the plasma
by an ordinary wave, the refractive index η(ω, x) does
not depend on the external magnetic field and the group
delay time τgr is equal to

(3)

where xc is the coordinate of the reflection point.

From the measured (or calculated using formula (2))
delay times τk for each of the frequencies, the density
profile can be recovered by assuming that it is mono-
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tonic and using the recurrence formula for a linear-
spline approximation [4]

(4)

where xk is the coordinate of the reflection point for the
kth frequency, τk is the measured delay time for this fre-
quency, nk is the corresponding critical density, and ‡ is
the plasma radius. The delay time is measured with
respect to the delay time in the absence of a plasma. The
coordinate x0 corresponds to the plasma boundary
(n0 = 0), which, at the first step, can be assumed to coin-
cide with the chamber wall. At the next step, this coor-
dinate can be taken from magnetic measurements or
determined from the data obtained using the two lowest
frequency radar channels. All coordinates in formula (4)
are measured from the center of the discharge chamber.
The problem of choosing the plasma boundary (i.e., the
initialization problem) is of great importance in reflec-
tometer measurements. Note that the results of recover-
ing the density profile depend not only on the choice of
the plasma boundary, but also on the type of density
profile.

The version with direct measurements of τ is imple-
mented in a multichannel pulsed radar reflectometer, in
which the electron density profile is recovered from the
delay times of microwave pulses with different fre-
quencies, which are reflected from the plasma layers
with the corresponding critical densities. In this case,
each frequency channel consists of a microwave
source, a receiver, and a measuring circuit [4]. The
number of frequency channels in this version deter-
mines the number of experimental points in the density
profile.

The second version is implemented in a frequency-
sweeping phase reflectometer, in which the delay time
is determined from phase measurements at different
frequencies after their hardware or software differenti-
ation according to formula (2). This version allows one,
in principle, to substantially reduce the number of mea-
suring channels and, accordingly, the cost of the instru-
ment. In this case, however, better access to the object
under study should be provided in order to exclude the
possible ambiguity of measurements caused by multi-
ple antenna–plasma reflections [5–7].

A radar reflectometer in which the propagation time
of a microwave pulse to the reflection layer and back is
measured directly has obvious advantages over phase
reflectometers. First, during a single measurement
(each of which lasts for several nanoseconds), the
plasma column can be considered immobile. Second,
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time-of-flight measurements allow one to avoid the
ambiguity of measurements (characteristic of phase
reflectometry).

When choosing the operating frequency range of a
reflectometer intended for measuring the density profile
in small and moderate tokamaks (such as T-11, T-10,
and Globus-M), in which the electron density in the
central region of an ohmically heated plasma is no
higher than 1014 cm–3, the upper frequency of the reflec-
tometer, according to Eq. (1), can be limited to 60–
80 GHz, because the error of reflectometer measure-
ments increases substantially as the cutoff point
approaches the center of the plasma column, where the
density gradient tends to zero. The lower frequency is
usually chosen so that it ensures about a tenfold
dynamic range of the density measurements. Note that
the choice of the lowest frequency substantially affects
the accuracy of the density profile measurements. The
point is that uncertainty in the unknown (not measured)
part of the profile most strongly influences the low-den-
sity measurements; the higher the frequency, the
weaker this influence. From this standpoint, the lower
probing frequency should be as low as possible; how-
ever, as the frequency is decreased, problems related to
the coupling between the antenna system and the
plasma arise and the accuracy of determining the coor-
dinate of the reflecting layer decreases.

2. DESIGN OF THE SWEEPING PULSED RADAR 
REFLECTOMETER

The reflectometer is based on the pulsed probing of
plasma; i.e., the instrument measures the propagation
time of specially formed short-duration (~5 ns) micro-
wave pulses with a rise time of no longer than 2 ns. This
method allows one to avoid multiple parasitic reflec-
tions in the transmission line and in the tokamak vessel
by using time-window filtering [4], as well as to
improve the reliability of measurements, since the
reflectometer directly measures the pulse delay time in
plasma [8] rather than the phase shift, as in conven-
tional phase reflectometers. In this case, however, one
faces the problem of precisely measuring rather short
(~1 ns) delay times of a microwave pulse reflected from
a plasma. This problem was successfully solved in
designing our reflectometer.

Microwave pulses with different carrier frequencies
are obtained by fast (~15 µs) frequency sweeping. This
allows us to substantially reduce the number of the
measuring channels, thus lowering the cost of the
instrument, and, at the same time, to retain the capabil-
ity of recovering the density profile in the measurement
range with a sufficient accuracy. However, the dynamic
frequency range of state-of-the-art commercial fre-
quency-sweeping microwave voltage-controlled oscil-
lators (VCOs) is no higher than 1.5, which corresponds
to a dynamic density range of no higher than 2.25.
Microwave backward-wave tube oscillators (BWTs)
ensure the required frequency sweeping range, but can-
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Operating frequencies of the sweeping pulsed radar reflectometer and the corresponding critical plasma densities

Frequency,
GHz/channel no. 

19.5/8 25.99/7 27.17/6 29.26/5 31.64/4 33.75/3 35.95/2 37.97/1 39.83/0 51.5/11 60.5/10

Critical density,
1014 cm–3

0.047 0.083 0.091 0.1055 0.123 0.14 0.159 0.1776 0.195 0.327 0.451
not provide the required sweeping speed. Therefore, to
achieve the dynamic density range of ~10 required for
actual plasma experiments, it is necessary to either use
several VCOs with different frequency ranges or to sup-
plement the frequency-sweeping channel with addi-
tional channels operating at fixed frequencies. In our
reflectometer, we implemented the latter version, which
is much cheaper.

Thus, the final version of the reflectometer contains
one 26- to 40-GHz frequency-sweeping channel (eight
frequencies can be chosen in this range) and three chan-
nels with fixed frequencies: 19.5, 51.5, and 60.5 GHz.
The table presents the frequencies of the channels and
the corresponding critical plasma densities in the given
version of the reflectometer, in which the frequencies in
the sweeping channel are distributed almost uniformly
over the 26- to 40-GHz frequency range. This scheme
allows one to obtain information about eight points in
the plasma density profile during one sweep (~10 µs).
The number of the measured points at the density pro-
file, as well as the probing frequencies, can be varied
depending on the task of an experiment, which is a sig-
nificant advantage of a sweeping pulsed reflectometer
over a multichannel reflectometer using fixed probing
frequencies.

The lowest frequency channel (19.5 GHz) can be
used to determine the position of the plasma boundary.
Along with the measurements of the plasma density
profile, the reflectometer can also be used to study low-
frequency (below 30 kHz) plasma density fluctuations.

Figure 1 shows the topology of cutoffs and electron
cyclotron resonances in the Globus-M tokamak. The
frequencies are calculated for a parabolic density pro-
file. In calculations, the central plasma density was
assumed to be 0.75 × 1014 cm–3, the plasma current was
200 kA, and the toroidal magnetic field at the axis of the
plasma column was 0.5 T. Since the current varies dur-
ing a discharge, the shear at the plasma boundary also
varies and, consequently, purely ordinary-wave plasma
probing is hardly possible. It can be seen from the fig-
ure that, in view of the presence of an extraordinary
component in the probing wave, the possible error in
determining the position of the reflecting layer does not
exceed 2 cm for an upper frequency equal to 60.5 GHz;
for other frequencies, the error is smaller. In this paper,
we analyze plasma density profiles in the quasi-steady
phase of discharges in the Globus-M tokamak, where
the shear varies only slightly and the related error is
small.
2.1. Functional Diagram of the Reflectometer

As was mentioned above, the microwave part of the
reflectometer includes one channel with frequency
sweeping and three channels with fixed frequencies
(see Fig. 2). The receiving part of the 50- and 60-GHz
channels uses a common detector with the separation of
the corresponding pulses in time. Impact-ionization
avalanche transit-time (IMPATT) diode microwave
oscillators operating at fixed frequencies and a fre-
quency-sweeping VCO produce a train of microwave
pulses with a repetition rate of 750 GHz, stabilized by
a quartz resonator. Master pulses are fed to the oscilla-
tors from the control unit. A fraction of the microwave
power (about –20 dB) is directed by waveguide direc-
tional couplers (DCs) to monitoring detectors. The
detected pulse is amplified by low-noise pulse amplifi-
ers and is fed to a threshold-tracking former (TTF)—a
unit allowing exact timing with respect to the leading
edge of the pulse [8]. The pulse is then fed through a
digital switch to the Start input of a time-to-amplitude
converter (TAC). This method for generating the Start
signal (unlike that used previously in [9]) provides
exact timing with respect to the beginning of micro-
wave generation, thus allowing one to achieve an accu-
racy of delay-time measurements corresponding to the
total jitter of the recording system (~5 ps) [10].

The bulk of the microwave radiation launched into
the tokamak plasma is emitted by three horn antennas
(antenna 1 for frequencies of 51.5 and 60.5 GHz,
antenna 3 for frequencies 26–40 GHz, and antenna 5
for a frequency of 19.5 GHz). A microwave pulse
reflected from the plasma or from the inner wall of the
tokamak chamber is received by antennas 6, 4, and 2
and is fed to measuring detectors and then, through a
system of pulse amplifiers, the TTF, and a digital
switch, to the Stop input of the TAC.

High-sensitivity Shottky barrier diodes provide a
signal-to-noise ratio of about 20 dB in the reflected sig-
nal and have a sufficiently high operating speed for
receiving pulses with the given parameters (the noise
equivalent power is NEP < 10–11 W/Hz0.5).

The low-noise pulse amplifiers are built of Hewlett
Packard, Siemens, and Mini-Circuit IC chips whose
intrinsic rise/fall times are no longer than 1.1 ns. The
voltage gain is 10–100, the frequency band is 0.01–
1 GHz, and the noise factor is below 5 dB.

The electronic part of the instrument includes the
control unit, the TTF unit, the TAC card for delay-time
measurements, the ADC with the ISA interface, and an
IBM-compatible PC.
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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Fig. 1. Topology of cutoffs and electron cyclotron resonances in the Globus-M tokamak: (1) cutoff for the ordinary wave, (2) upper
and (3) lower cutoffs for the extraordinary wave, and (4)–(8) harmonics of the electron cyclotron frequency.
2.2. Parameters of the TAC Card

The parameters of the TAC card are as follows:
the register capacity is 12 bit,
the measurable time interval is 0–10 ns,
the signal level at the Start and Stop inputs corre-

sponds to the transistor–transistor logic (TTL) level,
the Start-up (synchronization) signal level is 10 V,
the frequency-code signal level corresponds to the

TTL level, and
the measurement accuracy of time intervals is

~2.5 ps.
All of the input signals are electric-decoupled at

voltages of up to 500 V. The card is made to the ISA
standard and is installed in a free ISA slot of the PC.

The delay time is measured as follows: The signals
from the monitoring and measuring detectors are
amplified and fed successively to six TTFs and then to
a digital switch controlled by the frequency code (num-
ber) of the driving oscillator. The Start and Stop pulses
formed at the switch output arrive at the TAC, which is
common for the entire system. Two of eight TTFs are
used to form pulses of the test channel. The measure-
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
ment cycle includes twelve delay-time measurements
for eleven microwave probing frequencies and one test
channel that measures the delay time of an electric
pulse in the delay line (cable). The test channel is used
to test and adjust the device.

The design of the reflectometer is described in more
detail in [11].

2.3. Software Package

The program package developed for the reflectome-
ter serves the following functions:

(i) Data recording to the RAM and hard disk of the
data acquisition system PC after receiving the Start-up
(synchronization) signal and the transmission of the
data through the local network to a remote PC.

(ii) Data processing, the computation of the evolu-
tion of the electron density, and the graphical represen-
tation of the data and results using a special program
operating in the Windows environment.

The data-processing program allows one to load and
browse signals from the plasma for all or some of the
frequency channels after a tokamak discharge. Raw
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data (in the ACD codes) or signals after digital filtering
can be browsed. The following filters are available: a
median filter; an ordinary averaging; low-, high-, and
intermediate-frequency filters, and a stop-filter. The
program can display signals processed with account
taken of the sensitivity of channels and recover a pre-
scribed number of the density profiles in the low-field
side of the plasma column during a discharge in any
time interval. The plasma density profile is recovered
assuming the profile to be monotonic and using recur-
rence formula (4).

3. EXPERIMENTAL RESULTS

The first measurements with the use of the sweeping
pulsed radar reflectometer were carried out in the Glo-
bus-M tokamak. Figure 3 shows the general view of the
instrument assembled in a nonmagnetic frame in the
experimental room of the Globus-M tokamak. Before
the reflectometer was installed at the tokamak, it was
calibrated on a test bench. In this case, a metal cylinder
~15 cm in diameter was used as a reflecting target. As
an illustration, Fig. 4 shows the calibration curve for the
channel with a carrier frequency of 26 GHz (the figure
shows the segment of the calibration curve that was
later used in data processing in tokamak experiments).
The time resolution of the reflectometer in test mea-
surements was about 5 ps, and the minimal target dis-
placement detected by the instrument was nearly 1 mm.

After the reflectometer was installed at the tokamak,
the antenna systems of all the channels were adjusted so
that their axes were directed along the minor radius
toward the center of the plasma column. The instrument
was mounted on a nonmagnetic frame and was prelim-
inarily adjusted with the help of a screen mimicking the
center of the plasma column. The final adjustment was
performed after installation at the tokamak.

Figure 5a shows raw reflectometer signals measured
in the regime with a rather low density, when nine chan-
nels with lower frequencies were operating in the
reflection regime (shot no. 05241743). The scatter in
the measurements of the delay time in the absence of a
plasma was about 25 ps. With the plasma, this scatter
increased to 200–300 ps because of the adverse effect
of plasma fluctuations and parasitic reflections from the
tokamak chamber. In order to provide acceptable accu-
racy of the measurements of the critical layer position
(~1 cm), the signal was filtered. Since, in this case, the
19.5-GHz channel was not calibrated, we used data
from the frequency-sweeping channel alone. Figure 5b
shows the density profile recovered using these data at
the 78th millisecond of the discharge. It can be seen
that, in this phase of the discharge, the profile can be fit-
ted well by a parabola.

Figure 6 shows (a) average-density signals from a
microwave interferometer, (b) radar signals, (c) the
evolution of the density profile, and (d) the comparison
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
of the average densities 〈nl 〉  deduced from the radar and
interferometer data for shot no. 02201747/5125.

Since all the three interferometer channels probed
the plasma along vertical chords, whereas the reflecto-
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Fig. 3. General view of the reflectometer with antennas in
the experimental room of the Globus-M tokamak: (1, 3,
5) 51.5/60.5-, 26- to 40-, and 19.5-GHz transmitting chan-
nels, respectively; (2, 4, 6) 19.5-, 26- to 40-, and 50/60-GHz
receiving channels, respectively; (7) supply unit of micro-
wave oscillators; (8) control unit; (9, 10) supply units of
electronic components; and (11) TTF unit.

4

1000

1500

2000

2500

3000

5 6 7 8 93
Delay time, ns

ADC

500

Fig. 4. Calibration curve of the seventh (26-GHz) reflecto-
meter channel (the ADC signal vs. delay time).



428 AZIZOV et al.
50

–2000

–1000

0

1000

2000

100 1500

0

50

–2000

–1000

0

1000

2000

100 1500

1

50

–2000

–1000

0

1000

2000

100 1500

2

50

–2000

–1000

0

1000

2000

100 1500

3

50

–2000

–1000

0

1000

2000

100 1500

4

50

–2000

–1000

0

1000

2000

100 1500

5

50

–2000

–1000

0

1000

2000

100 1500

6

50

–2000

–1000

0

1000

2000

100 1500

7

50

–2000

–1000

0

1000

2000

100 1500

8

 Delay time, ms

A
D

C
A

D
C

A
D

C

5

0.05

0.10

0.15

0.20

0 10 15 20

Parabola
Profile

Minor radius, cm

Density, 1014 cm–3

(‡)

(b)

Fig. 5. Shot no. 05241743: (a) raw signals from nine reflectometer signals with lower frequencies of 40–26 and 19.5 GHz and
(b) the density profile obtained from processed reflectometer data for the 78th millisecond of the discharge. The accuracy of deter-
mining the critical layer position is about ±1.0 cm.
meter was placed in the equatorial plane of the tokamak
and measured the profile in the horizontal direction, we
reduced the data to the same (horizontal) direction by
using the known value of plasma elongation, which was
equal to 1.5. It can easily be shown that, for a large class
of profiles of the form n(r) = n(0)(1 – r2/a2)α, where α
is the parabola exponent (0.8 < α < 3), the line-aver-
aged density 〈nl 〉  along the 36-cm vertical chord differs
from that along the 42-cm chord by a factor of no more
than 1.04–1.10. Assuming this factor to be equal to 1.07
and taking into account plasma elongation, we arrive at
the result shown in Fig. 6d: the average density esti-
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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Fig. 6. (a) Average-density signals from a 1-mm microwave interferometer, (b) raw radar signals, (c) evolution of the density profile,
and (d) comparison of the average densities 〈nl〉  obtained from the radar and interferometer data for shot no. 02201747/5125.
mated from the radar data agrees fairly well with the
data obtained from the +42-cm interferometer channel.
It can be seen from Fig. 6b that the tenth (60.5-GHz)
frequency channel operated in the transmission regime;
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
i.e., the central plasma density was below 0.445 ×
1014 cm–3. On the other hand, the 51.5-GHz frequency
channel, corresponding to a critical density of 0.33 ×
1014 cm–3, operated in the reflection regime with a large
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margin. For this reason, when estimating the integral
from the radar data, the central plasma density was set
equal to 0.4 × 1014 cm–3 (which is nearly the half-sum
of 0.33 and 0.445). It can be seen that, in this case, the
error introduced in the line-averaged density does not
exceed 10–15%.

4. CONCLUSIONS

A sweeping pulsed radar reflectometer for measur-
ing the electron density profile in magnetic confine-
ment devices has been designed. The instrument com-
bines the advantages of sweeping phase reflectometers
and multichannel time-of-flight pulsed reflectometers.
The reflectometer allows detailed measurements of the
electron density profile in the density range from 4.7 ×
1012 to 4.5 × 1013 cm–3 with a time resolution of ~16 µs.
This can be useful, in particular, in studying the pro-
cesses related to the formation of an internal transport
barrier in plasma.

The first measurements of an electron density pro-
file have been carried out using this reflectometer in the
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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Globus-M spherical tokamak. The data obtained agree
well with those from microwave interferometry.

In future, we plan to use the data from an interfer-
ometer and a time-of-flight refractometer [10] to deter-
mine the evolution of the entire density profile (over the
entire plasma cross section) from the data obtained
using the sweeping time-of-flight reflectometer. In
addition, the data from the two lowest frequency chan-
nels can be used to determine the density gradient in the
edge plasma and the position of the plasma boundary.
The next step is to use the reflectometer data to study
the behavior of the density fluctuations δn/n during a
discharge in the Globus-M tokamak.
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Abstract—Laser spectroscopy measurements of the effective temperature of Ar1+ ions in the PNX-U multipole
trap, in which argon plasma is ionized and heated by microwaves under electron-cyclotron-resonance condi-
tions, are performed using a narrow-band tunable dye laser. The absorption profile of the 611.5-nm line is exam-
ined. In a microwave power range of 5–50 kW, the observed behavior of the effective temperature of argon ions
Ti, eff indicates an anomalous mechanism for ion heating. It is shown that certain information about the electron
temperature can be deduced from measurements by the laser-induced fluorescence (LIF) technique. The mea-
surements performed also serve to test the laser technique and apparatus that is presently being developed for
diagnosing additives to the ITER divertor plasma by the LIF method. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The PNX-U plasma neutralizer was built at the Rus-
sian Research Center Kurchatov Institute within the
framework of the research program for studying sys-
tems for the NBI heating of plasma in the ITER toka-
mak reactor. The use of plasma instead of gas for neu-
tralizing megaelectronvolt beams of negative hydrogen
ions makes possible a radical improvement of the
energy characteristics of the injection system. This,
however, requires that the power necessary to sustain
plasma in the neutralizer be sufficiently low. To enable
continuous production of a low-temperature highly ion-
ized dense plasma in large volumes at low energy
expenditure, we used a microwave electron-cyclotron-
resonance (ECR) discharge in a multicusp magnetic
confinement system with a peripheral magnetic field (a
“magnetic wall”). The design and technical characteris-
tics of the device, the magnetic field configuration, and
the method for igniting discharges are described in
detail in [1–3].

The plasma parameters in the PNX-U neutralizer
are as follows: the working gas is argon at a pressure
lower than 10–2 Pa; the plasma density is ~1018 m–3; the
electron temperature varies from 5–10 eV in the middle
of the device to 20–30 eV at the periphery (in the ECR
region); the energy spread of the ions escaping from the
system along the field lines is ~5 eV; and the plasma
potential is positive and increases toward the periphery,
reaching a maximum value of 50 V in the ECR region.
Thus, the conditions are present for the electrostatic
confinement of ions in the central region of the PNX-U
neutralizer. High radiative losses [1–3] somewhat
decrease the electron temperature and, consequently,
the potential in the central region. The above parame-
1063-780X/04/3005- $26.00 © 20432
ters were deduced mainly from probe measurements
that were performed at a relatively low microwave
power and a frequency of 7 GHz. To measure the
parameters of argon plasma at a high microwave power
(~50 kW), we employed the laser spectroscopy tech-
nique.

Laser spectroscopy is also considered to be a prom-
ising diagnostics for ITER. The laser-induced fluores-
cence (LIF) technique is primarily intended to measure
the density and temperature of helium and injected
impurities (Ne, Ar, and Kr) in the divertor plasma [4].
The injection of inert gases is required to reduce thermal
loads on the most heavily stressed elements of the vac-
uum vessel by spatially equalizing the distribution of the
loss power by transforming it into the line emission of
the impurities (e.g., argon) [5]. The program for creating
ITER diagnostics requires proof-of-principle tests of the
developed apparatus in existing devices with allowance
for the particular requirements of ITER diagnostics. The
experiments performed in the PNX-U device allowed us
to resolve some of the above problems.

2. LIF DIAGNOSTICS IN PNX-U

The mounting of the LIF diagnostics in the PNX-U
facility required a significant modification in the vac-
uum chamber. In particular, three branch pipes with
quartz windows for the radiation input/output and a
light trap at the output of laser radiation were installed.

2.1. Scheme of the Experiment

The arrangement of the LIF diagnostics is shown in
Fig. 1. Figures 1 and 2 show the positions of the mag-
netic coils with an inner diameter of 0.6 m and the
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Arrangement of the diagnostic apparatus in the PNX-U facility: (1, 7) microwave power inputs, (2) vacuum chamber, (3) 4-mm
interferometer, (4) lens, (5) optical fiber, (6) monitoring spectrometer, (8) dye laser, (9) excimer laser, and (10) LIF spectrometer.
directions along which the laser beam was input in the
system and the fluorescence radiation was output from
it. The main measurements were performed in the cen-
tral region of the plasma (at R < R0/2, where R0 =
30 cm), where the magnetic field was relatively low. It
is this plasma region that is used for ion beam neutral-
ization.

The probing dye-laser beam passed through the
plasma axis in a horizontal direction. The dye laser was
optically pumped by a XeCl excimer laser with a pulse
repetition rate of 100 Hz. The induced fluorescence
radiation was collected by lens 2 (see Fig. 2), which
was a part of an optomechanical unit. The unit allowed
one to scan the absorption line and to focus the LIF
radiation onto the input end of an optical fiber, the out-
put of which was connected to the entrance slit of an
MDR-23 monochromator. The spatial resolution along
and across the laser beam was 4 and 0.3 cm, respec-
tively.

The spectral width of the probing dye-laser beam
was δλL ≈ 3.6 pm. The profile of the absorption line was
measured point-by-point by tuning the laser wave-
length and gathering statistics at each λL value. The
spectral region containing the fluorescence line was
separated by a monochromator. An FEU-84-5 or a
Hamamatsu R562 photomultiplier served as photode-
tector 5. The signals from the photomultiplier were
recorded using a system consisting of an S8-14 oscillo-
scope, a video camera, and a PC. LIF measurements
require the careful monitoring of the discharge param-
eters. In these experiments, we monitored the electron
density Ne(t) using a 4-mm interferometer and the opti-
cal line intensities using the emission spectroscopy
diagnostics with an auxiliary spectrometer.
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
2.2. Specific Features of the LIF Measurements
in the PNX-U Facility

The measurements were performed by a three-level
spectroscopic scheme with a common upper level (see
Fig. 3). Optical pumping from the 3d ' 2G9/2 metastable

1
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4 5 6

7

8

R
0

Fig. 2. Arrangement of the LIF diagnostics in the transverse
cross section of the PNX-U facility: (1) laser beam, (2) lens,
(3) optical fiber, (4) MDR-23 monochromator, (5) photo-
multiplier, (6) to the system for recording photomultiplier
signals, (7) vacuum chamber, and (8) magnetic coil.
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Fig. 3. Diagram of the Ar+ ion levels involved in the LIF
measurements: the 611.5-nm is used for optical pumping,
while the 461.0-nm line is used for LIF measurements.
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Fig. 5. Measured profile of the Ar+ 611.5-nm absorption
line for R = 0 cm and Pmw = 12.7 kW.
level was produced at a wavelength of λL = 611.5 nm.
The fluorescence signals were monitored at a wave-
length of λFLU ≈ 461 nm. An advantage of this scheme
was that the λFLU line was detuned from the lasing line
λL. This allowed us to avoid the parasitic effect of radi-
ation scattered by the facility components and the ele-
ments of the optical tract.

To correctly estimate the effective ion temperature,
which characterizes the ion distribution over velocities,
it is necessary to take into account the line-broadening
mechanisms other than the Doppler mechanism. Let us
consider these mechanisms under the PNX-U condi-
tions.

We note that the measured Ti, eff values lie mainly
within the 6- to 10-eV range, which corresponds to a
Doppler broadening ∆λD of 18.3 to 23.6 pm. The natural
line bandwidth (~0.1 pm) and the Stark broadening of
isolated Ar1+ lines at an electron density of Ne < 1018 m–3

are negligibly small [6]. The PNX-U magnetic field
decreases sharply toward the plasma axis and does not
exceed 0.025 T in the region under study. Simulations
of the corresponding Zeeman splitting show that the
group width of the π components is also negligibly
small (~0.1 pm). Since 40Ar is overwhelmingly domi-
nant among the three argon isotopes36Ar, 38Ar, and 40Ar
(the fraction of the latter is 99.6% [7]), the isotopic shift
can also be ignored. Moreover, these isotopes have
even–even nuclei; hence, the line under study has no
hyperfine structure.

A correction should certainly be made for the instru-
mental broadening caused by the finite spectral width
of the dye-laser line. In our experiments, a Lorentzian
profile with a half-width of δλD ~ 3.6 pm was taken as
an instrumental function. In this case, the measured
profile is a convolution of a Gaussian and a Lorentzian
profile (a so-called Voigt profile [8]). Table 6.5 in [8]
allows one to estimate the half-width of the Doppler
profile ∆λD using the known half-widths of the Lorentz
and Voigt profiles. The obtained ∆λD value was used to
calculate Ti, eff(R, t, Pmw). However, when using a laser
as a high-resolution spectral device, one should also
take into account so-called “saturation broadening” [9].
At high laser powers, the absorption of photons from
the laser-line wings located relatively far from the line
center contributes significantly to the formation of the
absorption line profile. To avoid this effect, the power
of the probing laser was reduced by attenuating the
power of the pumping excimer laser with a set of neu-
tral filters.

Thus, the analysis performed shows that, under the
PNX-U conditions, a number of the well-known broad-
ening mechanisms can be ignored and the effective
argon-ion temperature can be calculated by the formula
Ti, eff = 1.68 × 108 (∆λD/λ0)2A, where A is the ion mass
in atomic units and Ti, eff is in electronvolts.
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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3. MEASUREMENT RESULTS

Figure 4 shows typical waveforms of the fluores-
cence signals. The absorption line profiles IEXP(∆λ),
where ∆λ = λ – λ0, were measured by the above scheme
at different instants t, different spatial points, and dif-
ferent values of the input microwave power. An exam-
ple of the line profile measured at the axis of the plasma
column is shown in Fig. 5. After introducing correc-
tions for the instrumental function, the line is described
by a Doppler profile, which points to a Maxwellian dis-
tribution of ions in the plasma core.

At the plasma periphery, the situation is quite differ-
ent. Figure 6 shows the radial profiles of the effective
ion temperature measured at different microwave pow-
ers. It can be seen that, in the central region of the
plasma, the ion temperature depends slightly on the
microwave power and radius. However, as the plasma
periphery is approached, the average ion energy
increases appreciably and the absorption line profile is
deformed. When the effective ion temperature is signif-
icantly lower than the radial variations in the plasma
potential, such behavior can be attributed to the ion
acceleration in this potential.

Additional confirmation of such acceleration is the
weak dependence of Ti, eff on time (see Fig. 7). The
point close to the instant t = 0 deserves special atten-
tion. A detailed study of this stage of a discharge
showed that a power one order of magnitude higher
than that transferred to Ar+ ions via electron–ion colli-
sions is required to heat the ions to the observed tem-
perature. Actually, the ions acquire energy in a potential
field that is very rapidly established in the plasma.

We note that the results of the LIF measurements
can be used to derive information about the radial pro-
file of the electron temperature in the PNX-U facility. It
can be seen from Fig. 4 that the amplitude of the fluo-
rescence signal increases with R. A collisional-radiative
model developed for calculating the populations of the
excited levels of Ar+ ion predicts that, for electron den-
sities of Ne < 1018 m–3, typical of the PNX-U facility, the
population ratio between the metastable level and the
ground level, Nmeta/Nground, does not depend on Ne and is
a function of the electron temperature only (see Fig. 8).
The data obtained using emission spectroscopy and
probe measurements show that, in the region R < R0/2,
in which LIF measurements were performed, the radial
profile of the Ar+ ion density is flat. Therefore, if the
electron temperature is measured (or estimated) inde-
pendently at some point of the region under study, then
the temperature at any other point can be estimated
using the ratios between signal amplitudes, such as
those shown in Fig. 4 (taking into account the correc-
tion for the width of the absorption line profile if neces-
sary).

It can be seen from Fig. 5 that, in the center of the
PNX-U facility, the ions obey a Maxwellian distribu-
tion. Hence, under our experimental conditions, when
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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Requirements to LIF measurements in ITER and the results obtained in the PNX-U facility

Measured parameter Parameter range Spatial resolution Accuracy

ITER Ti,a 0.3–200 eV 10 cm along the divertor “leg”
and 3 mm across the “leg”

20%

PNX-U Ti, eff (Ar+) 4–25 eV (experiment) ∆l|| = 4–5 cm,
∆l⊥  < 3 mm

≈10–20% in different discharges
the ion confinement time is longer than the time
required for equalizing the electron and ion tempera-
tures, the central electron temperature can be estimated
using the ion temperature determined from the LIF
measurements. Under these conditions, the radial pro-
file of the electron temperature obtained from the ratio
of the fluorescence signals turns out to be close to that
obtained from probe measurements.

4. CONCLUSIONS
Laser spectroscopy measurements of the effective

temperature of Ar+ ions (in combination with micro-
wave interferometry and emission spectroscopy) have
shown that the experimental data obtained in the PNX-
U device can be explained in terms of specific acceler-
ation mechanisms for heating argon ions in self-consis-
tent electric fields.

Under certain conditions, the LIF technique makes
it possible to determine the spatial distribution of the
electron temperature.

The table compares the main requirements for the
LIF diagnostics of the divertor plasma parameters in
ITER and the experimental results obtained in the
PNX-U neutralizer with a prototype laser radiation
source that is part of the LIF system developed for
ITER.

The PNX-U measurements were performed using
the 611.5-nm absorption line of argon ions (an atomic
mass of A = 40). When recalculated for helium (for the
same value of ∆λD and the 587.6-nm absorption line),
these data give an equivalent helium ion temperature of
Ti, He ~ 0.5–2.7 eV, which approximately corresponds to
the lower helium ion temperature required for diagnos-
ing the divertor plasma in ITER. Thus, the experiments
performed in the PNX-U device have demonstrated the
applicability of this diagnostics to the ITER plasma.
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Abstract—Results are presented from the study of the electrical and optical characteristics of a transverse RF
discharge in Xe/Cl2 mixtures at pressures of p ≤ 400 Pa. The working mixture was excited by a modulated RF
discharge (f = 1.76 MHz) with a transverse electrode configuration (L ≤ 17 cm). The emission spectrum in the
spectral range of 210–600 nm and the waveforms of the discharge current, discharge voltage, and plasma emis-
sion intensity were investigated. The UV emission power from the discharge was studied as a function of the
pressure and composition of a Xe/Cl2 mixture. It is shown that a discharge in a xenon–chlorine mixture acts as
a planar excimer–halogen lamp operating in the spectral range of 220–450 nm, which contains a system of over-
lapping XeCl(D, B–X; B, C–A) and Cl2(D'–A') bands. Transverse RF discharges in Xe/Cl2 mixtures can be used
to create a wideband lamp with two 50-cm2 planar apertures and the low circulation rate of the working mixture.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, high-power sources of spontaneous UV
emission from noble gas monohalogenides and molec-
ular halogens are widely used in microelectronics, pho-
tochemistry, and medicine [1, 2]. In these sources, the
active medium is usually produced by a dc glow dis-
charge [3–5] or a high-voltage repetitive dielectric bar-
rier discharge [6, 7]. The discharges are ignited in cylin-
drical quartz tubes of different lengths and diameters;
hence, the emitting apertures of such lamps are cylin-
drical in shape. To uniformly illuminate a large-area flat
surface, it is reasonable to employ the emission from a
low-pressure transverse discharge. To increase the sta-
bility and uniformity of the plasma of a moderate-pres-
sure transverse discharge in electronegative gaseous
media, it seems more expedient to use RF excitation
rather than the excitation by a dc glow discharge [8]. In
[9], the results of optimizing the output characteristics
of a low-pressure XeCl lamp with a Xe/Cl2 working
mixture excited by a low-current inductive RF dis-
charge were presented. To increase the UV emission
power and produce the active medium in a planar mod-
erate-pressure excimer–halogen lamp, the high-current
stage of a transverse RF discharge (TRFD) in the mix-
tures of heavy noble gases with halogen-containing
components can be used. At moderate values of the
parameter pd (where p is the gas mixture pressure and
d is the interelectrode distance), the TRFD plasma con-
sists mainly of electrode sheaths with an emission
intensity higher than the emission intensity from the
positive column plasma [10, 11]. In this case, both
metallic electrodes act as cathodes, whereas the posi-
tive column plasma acts as an anode. In [12–14] a fairly
high efficiency of He/Cl2 (λ = 200/257 nm) and Kr/Cl2
(λ = 200/222/257 nm) excimer–halogen lamps operat-
1063-780X/04/3005- $26.00 © 20437
ing with the plasma of a negative cathode glow of a
cage dc discharge was demonstrated. Hence, in such
lamps, it seems promising to use the extended plasma
of the electrode sheaths of a TRFD in the mixtures of
noble and halogen-containing gases. Data on the condi-
tions for the production of excimer molecules in this
type of discharge are still lacking.

This paper is devoted to studying the characteristics
of a transverse RF discharge in xenon–chlorine mix-
tures.

2. EXPERIMENTAL SETUP

A schematic of the experimental setup for studying
an excimer–halogen lamp with planar aperture is simi-
lar to that described in [5]. The optical characteristics of
the TRFD plasma were studied in the 210- to 600-nm
spectral range using an MDR-2 monochromator and a
FEU-106 photomultiplier. We monitored the wave-
forms of the discharge voltage, the discharge current,
and the total UV emission power (∆λ = 310–230 nm)
from the side apertures of a transverse discharge. The
vertical cross section of the electrode system and
plasma is shown in Fig. 1. Depending on the pressure
and composition of a Xe/Cl2 mixture, the electrode
sheaths of a TRFD occupied from 50 to 70% of the total
plasma volume. The RF discharge was ignited in a 17 ×
3 × 2.2-cm3 volume (here, d = 2.2 cm is the interelec-
trode distance). The electrode system consisted of a flat
nickel electrode and a massive 17-cm-long nickel-
coated electrode with a radius of curvature of the work-
ing surface of 3 cm and a base area of 6 × 17 cm2. The
electrodes were mounted on a dielectric flange placed
in a metal 10-l-volume discharge chamber. When
recording emission spectra, the plasma emission from
004 MAIK “Nauka/Interperiodica”



 

438

        

SHUAIBOV 

 

et al

 

.

                                                                                                               
the electrode sheaths at one of the ends of the plasma
volume was collected with a quartz lens. A pulsed
Foton photomultiplier connected to a C1-99 oscillo-
scope was set at the other end to monitor the total emis-
sion intensity in the spectral range of 210–600 nm. Pre-
liminary studies performed with the use of filters, as
well as spectral measurements, showed that the main
contribution to the total plasma emission comes from
the XeCl(D,B,ë–X) bands.

The transverse discharge was fed by an amplitude-
modulated RF source with an average power of 250 W.
The source generated RF voltage pulses with a carrier
frequency of f = 1.76 MHz, an amplitude of up to 6 kV,
and a duration of up to 12 ms. To prevent dc current
from flowing through the discharge circuit, the RF volt-
age was supplied to the discharge gap via a 200-pF
blocking capacitance. The discharge voltage and cur-
rent were measured with a capacitive divider and a low-
inductance shunt (rsh = 1–5 Ω), respectively. The total
UV emission power from the two working apertures
(S = 2 × 50 cm2) of the lamp was estimated by the
method described in [15].

3. ELECTRICAL AND OPTICAL 
CHARACTERISTICS

The main part of the UV emission spectrum from a
TRFD in a Xe/Cl2 mixture is shown in Fig. 2. Because
of the incomplete processes of vibrational relaxation at
low total pressures [15, 16], the XeCl(B–X, D–X) and
Cl2(D'–A') bands overlapped and formed a single broad
band in the spectral range of 220–310 nm. The main
maxima of the XeCl(B–X) band were found to be
shifted to the short-wavelength part of the spectrum and
were observed at λ = 306 and 289 nm. They overlapped
with less intense Cl2(D'–A') 257-nm and XeCl(D–X)
235-nm bands. As the xenon partial pressure increased
from 40 to 400 Pa, the width of the XeCl(B–X) band
decreased, while its intensity increased greatly. In the
long-wavelength part of the UV emission spectrum,

12

32

RF

C0

Fig. 1. Schematic of the electrode system and the TRFD
plasma: (1) transverse discharge electrodes, (2) electrode
sheath plasma, and (3) positive column plasma; RF is the
RF power supply and ë0 is the blocking capacitance.
there were two broad bands with maxima at λ = 390 and
430 nm. The width of the XeCl(C–A) 390-nm band was
approximately 2.3–3 times the width of the XeCl(B–A)
430-nm band. The overlapping of all the bands of XeCl
and Cl2 molecules enabled UV emission in the spectral
range of 220–450 nm. On the long-wavelength side, the
line emission spectrum was dominated by Xe atomic
lines. The most intense of these was the XeI (6s–7p)
467.1-nm line.

Figure 3 shows the waveforms of the RF voltage U
across the discharge gap, the discharge current I, and
the plasma emission intensity JF for the case of a Xe/Cl2
mixture. The envelopes of U, I, and JF, which are deter-
mined by the TRFD power supply, are shown in Fig. 4.
As the gas pressure increased from 100 to 400 Pa, the
amplitude of RF oscillations increased to 5 kV. As the
chlorine partial pressure decreased from 160 to 80 Pa,
the maximum TRFD current decreased from 1.6 to
0.8 A. The phase shift between the discharge voltage
and current increased with the pressure of the Xe/Cl2
mixture. The maximum half-period of the RF current
and voltage was 300–350 ns. The emission intensity
from the TRFD plasma consisted mainly of a slowly
varying component, which was modulated in amplitude
with a frequency twice as high as the pumping RF fre-
quency. At low partial chlorine pressures of p(Cl2) ≤
80 Pa, the percentage of the slowly varying component
in the plasma emission intensity increased from 40–
50% at p(ïÂ) ≤ 80 Pa to 70–80% at p(ïÂ) = 400 Pa.
The maxima of the plasma emission intensity corre-

260 280 300 320
λ, nm

306 nm ïÂCl (B–X)

Fig. 2. UV emission spectrum of the discharge plasma in a
Xe/Cl2 mixture with p(Xe)/p(Cl2) = 40/80 Pa.
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sponded to the ascending and descending segments of
the RF component of the discharge current (Fig. 3). The
presence of the slowly varying component of the
plasma emission intensity, as well as its increase with
p(ïÂ), points to the presence of an efficient channel for
the continuous production of XeCl molecules in a
TRFD. For a dc glow discharge in low-pressure mix-
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Fig. 3. Waveforms of the (1) RF voltage, (2) RF current, and
(3) plasma emission intensity in a Xe/Cl2 mixture with
p(Xe)/p(Cl2) = 400/80 Pa.
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tures of heavy noble gases with chlorine or hydrogen
chloride, harpoon reactions such as

Xe(6s, 6s') + Cl2(HCl)  XeCl(A,B,C,D) + Cl(H)

prevail in the production of the corresponding excimer
molecules [3, 17]. To enable the continuous operation
of the harpoon channel for the production of XeCl*
molecules, it is necessary to ensure the steady-state
density of metastable xenon atoms. This is possible
when the density of metastable xenon atoms is main-
tained at a certain nonzero level, rather than decreasing
to zero during the RF pulse.

Let us consider the envelopes of the RF voltage, RF
current, and plasma emission intensity in more detail. It
can be seen from Fig. 4 that the time evolution of the
emission intensity is quite different at the leading and
trailing edges of the RF pulse. The dependence of the
voltage U at which the plasma emission arises (decays)
on the pressure and composition of the Xe/Cl2 mixture
shows hysteresis. The threshold value U at which the
plasma emission arises (at the leading edge of the RF
pulse, where the gap breakdown occurs) increases from
1 to 2 kV as the xenon partial pressure increases from
80 to 400 Pa (at p(Cl2) = 80 Pa). For a TRFD in a
p(Xe)/p(Cl2) = 200/160-Pa mixture, the breakdown
voltage was 1.5 kV. The maximum duration of the RF
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Fig. 4. Envelopes of the (1) voltage, (2) current, and (3) emission intensity from a TRFD in Xe/Cl2 mixtures with p(Xe)/p(Cl2) =
(a) 80/80, (b) 200/180, and (c) 400/80 Pa. The dashed line shows the slowly varying component of plasma emission.
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current pulse was 7–9 ms (Fig. 4c). It decreased from 9
to 7 ms as the xenon partial pressure increased. At
p(Xe,Cl2) ≥ 80 Pa, the emission intensity at the leading
and trailing edges of the RF pulse had a spiked struc-
ture. For a low-pressure discharge (e.g., in a
p(Xe)/p(Cl2) ≤ 80/80-Pa mixture), this structure was
slightly pronounced at the leading edge of the RF pulse,
whereas at the trailing edge, there was only one maxi-
mum. As p(ïÂ) increased to 200 Pa, four clearly pro-
nounced narrow maxima arose at the leading edge of
the voltage envelope and two broader maxima arose at
the trailing edge. As p(Xe) increased to 400 Pa, the
sequence of the spikes at the leading edge was no
longer equidistant in time (the spikes gathered in two
groups, 1 + 3). At pressures of p(Xe, Cl2) ≥ 80 Pa, the
UV emission intensity slightly decreased with time. At
lower pressures, the emission intensity had a broad
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Fig. 5. Average power of the UV emission from a TRFD in
Xe/Cl2 mixtures vs. (1) xenon partial pressure at p(Cl2) =
60 Pa and (2) chlorine partial pressure at p(Xe) = 200 Pa.
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Fig. 6. Average UV emission power from a TRFD in a
Xe/Cl2 mixture with p(Xe)/p(Cl2) = 200/80 Pa as a function
of the continuous operation time on a single gas fill.
maximum that corresponded to the maximum of the
current envelope. Such behavior of the UV emission
power is related to the heating of the moderate-pressure
working mixture by the RF component of the discharge
current.

It was found in [18] that, in a multicomponent
plasma of electronegative gases in a moderate-pressure
RF discharge [19], jumps in the densities of electrons
and positive and negative ions arise. The jumps occur at
the plasma–sheath interface. The jump in the electron
density is accompanied by a jump in the density of
metastable xenon atoms. This jump, in turn, leads to
jumps in the density of excimer molecules and the
intensity of its UV emission due to the harpoon reaction
between metastable xenon atoms and chlorine mole-
cules. The recombination of positive ïÂ+ ions with neg-
ative Cl– ions within the jump region can also lead to the
formation of one or two jumps in the density of excimer
molecules and corresponding jumps in the plasma
emission intensity. This is confirmed by the formation
of four short spikes at the leading edge of the emission
envelope. After the working mixture is heated by the
RF pulse for 5 ms, only the spikes related to XeCl mol-
ecules produced in harpoon reactions are present at the
trailing edge of the emission intensity envelope,
because the rate of ion–ion recombination decreases
sharply with increasing temperature [20]. Another
explanation for the formation of exactly four spikes at
the leading edge of the emission intensity envelope is
the participation of all four low-lying 6s and 6s' excited
states of the Xe atoms in the formation of XeCl* mole-
cules. However, this is less probable than the formation
of the main maxima of UV emission due to ion–ion
recombination before the subsequent RF pulse because
the sheath plasma of an RF discharge in an electroneg-
ative gas consists mainly of positive and negative ions
[18]. More detailed information on the nature of the
threshold jumps in the plasma emission intensity and
the mechanisms for the production of excimer mole-
cules in a TRFD can be obtained from numerical simu-
lations of TRFDs in Xe/Cl2 mixtures.

Figure 5 shows the dependences of the average UV
emission power from a TRFD on the xenon (at fixed
p(Cl2)) and chlorine (at fixed p(Xe)) partial pressures.
The UV emission power increases with p(Xe) (up to
p(ïÂ) ≤ 100 Pa). At higher pressures, this dependence
saturates and the transverse discharge terminates. As
the chlorine partial pressure increases from 40 to
150 Pa, the UV emission power decreases. In our
experiments, the optimum pressure (p(Cl2) = 30 Pa) was
determined by the capability of the gas-mixing system
to enable the required accuracy in composing the work-
ing gas mixture.

The lifetime of the UV lamp in a static-gas regime
did not exceed 10–15 min (Fig. 6); this is related to the
significant heating of the gas mixture. To increase the
lifetime of the lamp on a single gas fill, it is necessary
to use a solid generator of high-purity chlorine, a sys-
PLASMA PHYSICS REPORTS      Vol. 30      No. 5      2004
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tem for regenerating the working mixture, and the
forced cooling of the electrode system.

The total UV power emitted from the two side aper-
tures attained 30–40 W. Because of the presence of a
significant slowly varying component in the TRFD
emission, the specific output characteristics of the lamp
under study can be compared to the corresponding
characteristics of a XeCl lamp pumped by a dc glow
discharge. The UV emission power per unit area of the
TRFD working aperture is nearly 1.5–2 times higher
than that for a lamp pumped by a glow discharge [21].
For a TRFD, the emission power is up to 300 mW/cm2,
whereas for excimer–halogen lamps pumped by a
capacitive discharge, it is no higher than 20 mW/cm2

[21].

4. CONCLUSIONS

The study of the characteristics of a transverse RF
discharge in xenon–chlorine mixtures at moderate pres-
sures has shown that the plasma is a source of broad-
band emission in the spectral range of 220–450 nm.
The main maximum in the emission spectrum corre-
sponds to the XeCl(B–X) 306-nm band. The plasma
emission contains both slowly varying and RF compo-
nents. As the total pressure of the Xe/Cl2 mixture
increases, the contribution of the RF component to the
total plasma emission decreases from 50 to 10%. At
voltages close to the threshold voltage, short spikes of
plasma emission are observed that are presumably
related to the formation of jumps in the densities of pos-
itive and negative ions at the plasma–sheath interface
and to the recombination mechanism for the production
of excimer molecules. The optimum mixtures for
achieving the maximum UV emission power are Xe/Cl2
mixtures with p(Xe)/p(Cl2) = (200–400)/(30–40) Pa.
The discharge under study can be used to create a wide-
band excimer–halogen lamp with a planar aperture of
≤100-cm2 area and a reasonable circulation rate of the
working mixture. A sealed-off operating mode is feasi-
ble given the forced cooling of the electrodes and the
regeneration of chlorine in the working volume of the
lamp.
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