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Abstract—The theoretical–numerical properties of the square and the hexagonal nets are presented as well as
their characteristic triads of integers—the Denis numbers—applicable to the practical X-ray diffraction analysis
of single crystals. © 2001 MAIK “Nauka/Interperiodica”.
In deep grief, I dedicate this article to Russian sailor
Denis Sheremet’ev and his shipmates, who passed
away.

INTRODUCTION

Notation. Pythagorean triangle: a right triangle
with integral sides; Heron triangle: a triangle with inte-
gral area and integral sides; triangle cotangents: the
cotangents of the internal angles of a triangle; an empty
triangle (after Academician Belov): a triangle of the net
(two-dimensional lattice) with all the nodes being
located at the vertices; S and H triangles: empty trian-
gles of the square and hexagonal nets, respectively; a
primate: a primitive lattice vector whose crystallo-
graphic indices are mutually simple numbers; to cure:
to convert a number into an integer.

Up to now, two families of integral or Diophantine
triangles are known—Pythagorean and Heron. The law
of Pythagorean triangles—or the so-called Pyph-
agorean numbers (P1 = u2 – v2, P2 = 2uv, and P3 = u2 +
v2)—was discovered by Pythagoreans. In the theory of
numbers, the law of Heron numbers has not been estab-
lished as yet. Pythagoras’ creative work dates back to
the 6th century B.C.; Heron and Diophant worked in
the 1st and the 3rd centuries A.D., respectively. P. Fer-
mat wrote down his famous theory of numbers and the
formulation of the Diophantine problem on the margins
of Diophant’s Arithmetics in 1665. In physics and crys-
tallography, Pythagorean and Heron triangles and the
Pythagorean numbers have not been used as yet. To
close this gap, we consider below the astonishing laws
of “square” (S) and “hexagonal” (H) triangles and tri-
ads, which follow from these triangles (called here the
Denis numbers), which transform the S and H triangles
into Diophantine ones. Then, we shall demonstrate the
heuristic nature of the new triads for structural studies
on an example of the Laue method well known in X-ray
diffraction analysis.
1063-7745/01/4602- $21.00 © 20161
To obtain the most important results of the present
study, we used the logical method of indirect proof.

LAW OF S-TRIANGLES

A Triangle is Called an S-Triangle if Its Cotangents 
Are Cured 

Hereafter, we use i, j, k = 1, 2, 3 and their cyclic per-
mutation. Now, construct a triangle using {Ai} at

 = 0. For a net in the basis –Ai , Aj (an empty tri-
angle of the area S), the cotangents {gi} of this triangle
are set by the obvious equation gk = –(Ai , Aj)/2S. For a
square (Cartesian) net with S = 1/2 [the basis of the unit
vectors a1, 2, (a1, a2) = 0], this equation directly yields
the integrity of {gi}; thus, the given condition is a nec-
essary condition for the S-triangle. It is also a sufficient
condition, which is seen from the analysis of the trian-
gle rotation by π/2 about the vertex, i.e., the node of the
net generated by this triangle.

CONDITION OF H-TRIANGLES, DENIS 
NUMBERS AND DENIS HYPERSECTOR

A Triangle is Called an H-Triangle if Its Cotangents 
Are Cured by Multiplication by 

The above condition directly follows from the con-
sideration of an empty triangle of the hexagonal net
with S = /4, where (a1, a2) = 1/2 by analogy with the
derivation of the law for S-triangles.

The sum of the internal angles of the triangle {αi}
equals the number π and, therefore, its cotangents obey
the equation

(1)

which is another form of the equation αi + αj) =
π – αk). With due regard for the rules established

for the S- and H-triangles, we can transform the rela-

Ai∑

3

3
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Fig. 1. A triangle and a square net generated by an S-triad.

Fig. 2. A triangle and a hexagonal net generated by a true
H-triad.

111:45:–32

Fig. 3. A triangle and a pseudohexagonal net generated by a
false H-triad.
C

tionships for their cotangents { } and { } into
the corresponding Diophantine equations:

(2)

. (3)

We shall call the numbers { } the Denis number-
triads.1 

The latter equations yield the basic property of the
Denis numbers—their mutual simplicity. In the case of
S-triads, this property is enhanced: any combination of
two numbers { } yields a mutually simple pair.
Since the Denis numbers { } are proportional to
triangle cotangent, it becomes clear that these triads
cannot have more than one negative term. All the “pos-
itive” variants of the triads are exhausted by the combi-
nations of the numbers {1, 1, 0} for the S-triangles and
the H-triad {1, 1, 1} (the combinations of the [3, 1, 0}
numbers are excluded since no empty right triangles
can be inscribed into the hexagonal net). Figures 1–3
illustrate the types of nets generated by the Denis num-
bers (they are indicated in the singled-out regions of the
nets).

The initial “law of cotangents” (1) has a deep geo-
metrical meaning. This equation represented in the con-
ventional Cartesian coordinates (the cubic lattice) gen-
erates a hyperbolic surface with the [1 1 1] axis and the
vertex at the point [1/  1/  1/ ]. The cone–
asymptote of the given surface ( gj = 0) is origi-
nated from the 0-node and has the [1 0 0]- and
[2 2 ]-type axes as the Cartesian generatrices. With
due regard of the position symmetry of this hyperboloid
([1 1 1] is a threefold symmetry axis) and the fact that
only one term of the {gi} triad can be negative, to the
infinite set of triangles there corresponds the sector of
the hyperboloid separated by the planes lying on the
pairs of vectors [1 1 1], [1 0 0] and [1 1 1], [0 1 0],
where in all cases g1, 2 > 0.

Since the plane determined by the vectors [1 1 1]
and [1 1 0] is a mirror-reflection plane, the symmetry of
triangles with cotangents of the form {g1, g2, g3} and
{g2, g1, g3} should also have the mirror-reflection sym-
metry. Establishing the hierarchy g1 ≥ g2 ≥ g3, we define
the triads {gi} of all the imaginary triangles by the
points of the sector of the hyperbolic surface cut out by
the planes formed by the vector pairs [1 1 2], [1 0 0] and
[1 1 1], [2 2 ]. The latter image–object is quite new and
we shall call it the Denis hypersector. Figure 4 shows
the stereographic image of the hyperboloid of cotan-
gents and its hypersector filled with { } triads

1 This term is suggested in memory of my son, a sailor, who tragi-
cally passed away at the age of 25 and who was the first to appre-
ciate this theory; he also suggested some of the terms–images
used in it.
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Fig. 4. Hypersector with the Denis triads in an “ocean of Cartesian primates.”
(Eqs. (2) and (3) can also be interpreted in terms of the
analogous hyperboloid, with the vectors D(S, H) =
  having the same cone–asymptote as the vec-
tors [gi]).

“STARLIKE” GENERATION OF PRIMITIVE 
PATTERNS AND FORMS OF THE DENIS 

NUMBERS

Let us visualize the Denis numbers on a square net
generated by the standard orthogonal basis a1, 2 (S =
1/2). The independent domain of this net lies between
the central primates a1 = [1 0] and a = a1 + a2 = [1 1] ini-
tiated from the 0-node and representing the new basis
of the same net. Obviously, the independent π/4 sector
(∠ a1a) of this net includes the infinite set of S-triangles
with the vertices at the 0-node, whose cotangents are, in
fact, the Denis S-triads. Our goal is to visualize these
triangles.

Let the central vectors A1 = u1a1 + v1a2 = [u1v1] and
A2 = u2a1 + v2a2 = [u2v2] form a certain triangle belong-
ing to the basis π/4-sector of the net. According to the
well-known condition of “an empty loop of the net”
(Belov’s term),

(4)

the “vectors–parents” A1, 2 for the case of an empty tri-
angle should inevitably be primitive. (By analogy with
the well-known Fibonacci problem on rabbit reproduc-

Di
S H,( )

u1v 2 u2v 1– 1,±=
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tion, we shall also use the adequate semantics.) Then,
the baby born as a result of the addition of these two
primates, vectors A = A1 + A2 = [u1 + u2, v1 + v2],
should also be primitive. Applying the emptiness con-
ditions (4), we see that new pairs of primates A1, A and
A, A2 are also the basis ones for the net under consider-
ation (i.e., form its new empty triangles). The above
process of generation of new primates is continued infi-
nitely with the number of the basis pairs increasing in
the geometric progression.

Starting the generation of primates on a square net
with the “parents” a1, a, we arrive at all infinite sets of
S-triangles and the forms of the corresponding Denis
numbers

(5)

where 

Assuming that the act of a “child birth” by newly
formed basis pairs occurs only once, we shall call the
whole set of the “newly born primates” a generation.
Figure 5 shows the primitive pattern (which has only
the primitive nodes) of the square net with the impres-
sive “sea stars”—successively and rectilinearly con-

D3
S( ) A1 A2,( ) u1u2 v 1v 2,+= =

D1
S( ) A2 A3,( ) u2u3 v 2v 3,+= =

D2
S( ) A3 A1,( )– u3u1– v 3v 1,–= =

A3 A2 A1– u3 v 3,[ ] u2 u1 v 2, v 1––[ ] .= = =
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Fig. 5. Starlike primitive pattern of a square net.
toured generation of primates (the spread of the struc-
ture of the π/4-sector over the whole plane by symme-
try reflections).

Obviously, the “starlike algorithm” is of a general
character and provides the sectorial generation of the
central primates by any basis of any net. Figure 6 shows
similarly constructed primitive pattern of the hexagonal
net with the generating stars–generations [here (a1,
a2) = 1/2, the structure of the π/6 sector ∠ a1a is sym-
metrically reflected].

The “star” way provides the formulation of a simple
rule for visualization of the central empty triangles in
any of the four initial angular basis sectors of the prim-
itive pattern of any set: all the sectorial empty triangles
(except for the initial basis one) are open by the pair of
the azimuthally neighboring vertices of any pair of
stars–generations.

The initial basis stars are reflected by central mini-
mum parallelograms on the prim-pattern of an arbitrary
net (in Fig. 5, the basis star is the least square). Only the
hexagonal set can have two more “faces”—the initial
basis star can be a trigon if (a1, a2) = –1/2 or a hexagon
(as in Fig. 6).

The form of the Denis numbers for the hexagonal
net are established on the basis of the condition of H tri-
angles and by analogy with the procedure for obtaining
form (5):

D3
H( ) = 2 A1 A2,( ) = 2 u1u2 v 1v 2+( ) u1v 2 u2v 1+( ),+
C

(6)

On the condition of emptiness (4), the integral num-
bers-products uivj and ujvi in forms (6) are neighbors on
the numerical axis and, therefore, their sum [the second
brackets in Eq. (6)] is always odd.

THE LAW OF H-TRIANGLES, THE TRUE 
AND FALSE H-TRIADS

A Triangle Is an H-Triangle if Its Cotangents 
Are Oddly Cured by Multiplication by 

The necessity of this law follows from form (6) and
condition (4). The cumbersome proof of its sufficiency
obtained by the author from the analysis of the π/3 rota-
tions of an empty triangle with cotangents in the form

{gi = /  = (2Di – 1)/ } (where {Di} are the inte-
gers) is omitted here.

Upon the detailed study of Eq. (3), we arrive at the
important conclusion that the H-triads cannot have
more than one even number. Omitting the detailed anal-
ysis of false H-triads, we only formulate here the final

D1
H( ) = 2 A2 A3,( )

=  2 u2u3 v 2v 3+( ) u2v 3 u3v 2+( ),+

D2
H( ) = 2 A3 A1,( )–  = 2 u3u1 v 3v 1+( )– u3v 1 u1v 3+( ).–

3

Di
H( ) 3 3
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001



DIOPHANTINE LAWS FOR NETS OF THE HIGHEST SYMMETRIES 165
0:17 17:17

17:0

Fig. 6. Starlike primitive pattern of a hexagonal net.
result as the following statement–law:

H-triads with an even term always generate 
a pseudohexagonal net 

(the H-triads of the {3, 1, 0} type “visually ejected”
earlier determine the reduced right triangles with the
angles π/6 and π/3 on this net, see Fig. 3).

Substituting the form {  = 2Di – 1} into Eq. (3),
we arrive at a new highly symmetric Diophantine equa-
tion (Dj – 1) = 0 characterizing the true hexago-
nal net. Unlike the S- and H-triads, the numbers enter-
ing the {Di} triad are not necessarily mutually simple.

Comparing forms (6) and (5), we obtain the rela-
tionships between all the Denis triads.

DENIS NUMBERS 
AND THE LAUE METHOD

We believe that a hypersector with the Denis num-
bers (Fig. 4) and the Diophantine equations of the type

 = N, which are called here the Denis equa-
tions in order to single them out from the class of
Diophantine equations, are worthy of further theoreti-
cal–numerical and crystallographic consideration. We
discuss in brief two more results obtained on this path:

(1) triads { } generate an “important orthogonal
net”—the crystallographic zone of the cubic lattice with
the [1 1 0] axis coinciding with a twofold symmetry axis;

Di
H( )

Di∑

Di
N( )D j

N( )∑

Di
2( )
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(2) of great importance are also the rational and the irra-
tional S and H forms of the number π – π(S) =

4  and π(H) =

, which transcenden-

tally refine the value of π with an increase of n (the
author revealed no analogues).

Now, proceeding to the Laue method, we should
like to indicate that the Laue pattern from a crystal
reveals the angles formed by the vectors of the nets–
crystallographic zones. For highly symmetric crystals,
the direct processing of the zonal curves of an arbitrary
Laue pattern allows one to use the Denis numbers in
order to determine the corresponding square and other
orthogonals as well as hexagonal nets of the crystal lat-
tice. Thus, new vistas are open for designing com-
pletely new mathematical methods for X-ray diffrac-
tion analysis of a wide class of single-crystal materials
using the white (and, first of all, synchrotron) radiation.
The corresponding algorithms have already been devel-
oped at the Laue laboratory of Chelyabinsk State Uni-
versity. We invite all the interested organizations to take
part in this work.2

The main results of this study were obtained by the
author in 1995 and were reported at the 27th Interna-
tional Winter School–Symposium of Physicists–Theo-

2 LAUELA, Chelyabinsk State University, ul. Brat’ev Kashirinykh
129, Chelyabinsk, 454021 Russia.
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reticians (Yekaterinburg–Chelyabinsk, March 2–7,
1998), where they brought about considerable interest
and received a benevolent reaction from the partici-
pants.
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Abstract—It has been shown that a damaged surface layer can enhance the reflectivity of a diamond mono-
chromator–splitter for synchrotron radiation. The X-ray diffraction analysis with the use of asymmetric Bragg
reflections allowed the determination of the layer thickness and its mosaicity dispersion equal to 3 µm and 19′′ ,
respectively. In this case, the observed integrated intensity of a quasisymmetric 422 Laue reflection (

radiation) exceeds its calculated value by a factor of 2.5 at a sufficiently high energy resolution (δE/E = 1.1 ×
10–5). The perspectives of the practical use of a diamond monochromator–splitter with enhanced reflectivity are
also discussed. © 2001 MAIK “Nauka/Interperiodica”.

MoKα
INTRODUCTION

Attempts to obtain a monochromatic X-ray beam
using synchrotron-radiation (SR) sources of the third
generation encounter a serious problem—cooling the
optical element irradiated with the primary SR beam. If
the role of such an optical element is played by a single-
crystal monochromator, then, in order to compensate
the thermal effect, one has to provide the minimum
possible distance between the working surface of the
crystal–monochromator and the cooling liquid. This
condition requires the preparation of a monochromator
of a complicated shape [1, 2]. However, in many
instances, only a partial compensation of the mono-
chromator deformation can be attained, which has a
negative effect on the beam parameters. Usually, mono-
chromators are prepared from silicon with a high
degree of structural perfection and are tolerant to high
thermal loads. However, recently, those using synchro-
tron radiation have paid more attention to monochro-
mators prepared from synthetic diamond. Today, the
surfaces of such monochromators do not exceed 1 cm2

and are characterized by high structural perfection [3, 4].
The main advantage of such monochromators is their
high thermal conductivity (23 W/cm/K) and low coeffi-
cient of linear thermal expansion (1.18 × 10–6 K–1) [5].
The ratio of these two parameters determines the ther-
moelastic tolerance of the material and, for diamond, is
30–50 times higher than that for silicon [3, 4]. Thus, the
use of diamond monochromators can considerably sim-
plify the compensation of thermal loading. For exam-
ple, thermal loading can be well compensated by cool-
ing a monochromator holder fixing the monochromator
along its perimeter [3, 6].
1063-7745/01/4602- $21.00 © 20167
Another characteristic feature of diamond is its
transparency for X-ray radiation. Along with the fact
that the diamond reflectivity is only slightly worse than
the reflectivity of silicon [4], its transparency to X-rays
makes diamond an indispensable material for splitters
of SR beams [6].

However, both silicon and diamond are character-
ized by low electron density and a reflectivity insuffi-
cient for optical materials. It is well known [7, 8] that
the use of mosaic crystals for X-ray optics provides a
multiple increase in the integrated intensity of the scat-
tered radiation. This phenomenon can be accompanied
by a considerable broadening of the intrinsic dynami-
cal-reflection (rocking) curve of an element—up to sev-
eral hundreds of angular seconds. The energy resolu-
tion of an element is usually determined by the half-
width of the intrinsic rocking curve; therefore, it is
obvious that the use of mosaic crystals in precision
measurements is hardly expedient.

It was demonstrated [9] on silicon single crystals
that it is possible to multiply increase the integrated
intensity of a diffracted X-ray beam by mechanical
grinding and polishing of the working surface and cre-
ating a 2-µm-thick disturbed layer. In this case, the half-
width of the intrinsic rocking curve does not exceed
16′′–20′′ . Such broadening of the rocking curve can
result in a decrease of the relative energy resolution to
10–4–10–5, which, however, is quite sufficient for many
precision X-ray diffraction experiments.

The present study was undertaken to characterize of
a diamond monochromator with a damaged surface
layer by the X-ray diffraction method.
001 MAIK “Nauka/Interperiodica”



 

168

        

LIDER 

 

et al

 

.

                                                                                                                                                
SPECIMEN PREPARATION

An initial diamond single crystal with a weight of
3.35 carats was grown on a (111)-oriented seed in the
Na–Fe–C system in a multipunch high-pressure appa-
ratus (the cut-sphere type) of the BARS company under
a pressure of P = 5.5 GPa and a temperature of T =
1450°C [10]. The plate for the study was cut out from
the crystal (a laser cutting technology) and subjected to
mechanical grinding and polishing. The final specimen
had the shape of a 0.88-mm-thick plane-parallel plate
misoriented by 4° with respect to the (111) plane of the
crystal and had a 2- to 3-µm-thick damaged surface
layer. Physically, this diamond was related to the Ib +
IaA type. The main characteristics of the diamond cor-
responded to those indicated earlier for a several-carat
high-quality synthetic diamond single crystal [11].

EXPERIMENTAL METHODS

The half-width of the rocking curve obtained on a
double-crystal diffractometer can be represented as a
sum [12]

(1)

where ωm is the angular divergence of an X-ray beam
formed by the monochromator; ωλ is the divergence
which describes the degree of dispersion in the double-
crystal diffraction geometry, ωλ = (δλ/λ)(  –

), δλ/λ is the relative half-width of the spectral
line used, θsp and θm are the Bragg angles of the speci-
men and monochromator, respectively; and ωi is the
half-width of the intrinsic rocking curve.

A crystal with a damaged layer can be considered as
a bicrystal consisting of the matrix, dynamically scat-

ω2 ωm
2 ωλ

2 ωi
2,+ +=

θsptan

θmtan

Conditions and results of the experimental characterization of
a diamond monochromator with the damaged surface layer

Reflection (220) (202) (311) (113)

θs, deg 37.73 45.85

Monochromator (331) Si(111) (333) Si(111)

θm, deg 38.18 47.46

ωm, arcsec 1.3 2.0

ωλ, arcsec 0.8 3.5

b 9.1 0.11 18.2 0.055 4.46 0.224 2.6 0.384

ω, arcsec 7.6 13.4 9.6 20.4 6.9 7.7 5.4 6.4

ωi, arcsec 7.4 13.3 9.5 20.4 5.6 6.6 3.6 5.0

Λ, µm 5.1 3.7 14.9 18.7

ωs, arcsec 4.1 ± 0.9 1.8 ± 0.1

, arcsec 3.1 1.9

T, µm 3

Ω, arcsec 19

ωs
calcd
C

tering the radiation and a mosaic layer of thickness t
[13]. In this case, the half-width of the intrinsic rocking
curve of the bicrystal should depend on the half-width
of the rocking curves of the layer and the matrix. The
first half-width value is determined by the layer mosa-
icity dispersion Ω , whereas the second, by the follow-
ing formula:

(2)

where ωs is the half-width of the symmetric reflection
rocking curve ωs = 2χhC/sin2θ (χh is the real part of the
Fourier-component of the crystal polarizability, C = 1
for the π-polarization of the X-ray radiation, C = cos2θ
for the σ-polarization) and b = γs/γh, where γs and γh are
the directional cosines of the incident and the diffracted
beams.

Considering the curves obtained in [9], we drew a
conclusion that the experimentally measured half-
width of the rocking curve and the integrated intensity
of the diffracted beam are proportional to the damaged-
layer thickness. Then, the half-width of the intrinsic
rocking curve of the bicrystal can be represented as

(3)

where Λ is the extinction length (Λ = λ(χhC)–1(γoγh)1/2).
For the structural characterization of a bicrystal, one

has to determine its parameters t, Ω , and ωs . In order to
obtain the sufficient number of equations of type (1),
we used four asymmetric Bragg reflections—220, 202,
311, and 113. Since the surface normal does not rigor-
ously coincide with the (111)-axis of the diamond
monochromator, the reflections having the equal sums
of squared Miller indices have different values of the
parameters γo and γh and, thus, also different symmetry
factors b and the extinction length Λ. Moreover, we
measured the rocking curves for each reflection two
times—prior to and upon the specimen rotation by 180°
about the diffraction vector [which corresponds to the
change of b by b–1 in formula (3)].

RESULTS AND DISCUSSION

Eight rocking curves were measured by the method
considered above (the  radiation). Using formulas
(1) and (3) and the least squares procedure, we evalu-
ated the thickness and mosaicity dispersion in the dam-
aged layer and also the half-width of the intrinsic rock-
ing curve for two types of reflections 220 and 311. The
experimental conditions and the results obtained are
indicated in the table.

It should be emphasized that the half-width of the
experimental rocking curve for the symmetric reflec-
tions of the bicrystal matrix (ωs in table) only slightly
differ from the corresponding theoretical values of

, which indicates a high structural perfection of
the diamond monochromator.

ωs ωsb
1/2– ,=

ωi Ωt ωsΛb 1/2–+( ) t Λ+( ) 1– ,=

CuKα

ωs
calcd
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Deviation from the Bragg angle (arcsec)
0 2 4 6–2–4–6

0.4

0.3
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0

Reflectivity

Rocking curves for a single crystal diamond wafer with a damaged surface layer (symmetric 422 Laue reflection,  radiation).

Solid line indicates the theoretically calculated values (Iint = 0.94 × 10–6); dots indicate the experimental values (Iint = 2.48 × 10–6).

MoKα
Special attention in [9] was given to the dependence
of the reflectivity of a single crystal with a damaged
layer on the method used for working-surface process-
ing. It is obvious that, to attain the optimum bicrystal
parameters (the maximum value of the integrated inten-
sity of the diffracted beam at a low value of the half-
width of the intrinsic rocking curve), one has to create
a damaged layer having the optimum thickness and
mosaicity. Moreover, for the Bragg diffraction, the
intensity of the radiation scattered by a bicrystal is
strongly affected by both primary and secondary
extinction [13, 14]. With an increase of the integrated
intensity caused by the layer mosaicity, both factors
become competitive. Thus, we failed to attain the max-
imum integrated intensity of the diffracted beam in our
experiments because of the nonoptimum values of sur-
face-layer parameters.

The effect of extinction should be less obvious in the
transition to the Laue geometry, where the transmitted
and the diffraction beams leave the crystal from the
same surface.

Indeed, the integrated intensity of the quasisymmet-

ric  Laue reflection (  radiation, 642 reflection
of the Si(111) monochromator) was higher than the the-
oretically calculated value by a factor of 2.5 (figure). In
this case, the half-width of the intrinsic rocking curve
of the bicrystal was 1.3′′ , which provided a rather high
energy resolution (δE/E = 1.1 × 10–5).
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We hope to increase the reflectivity of a diamond
monochromator by optimizing the thickness and mosa-
icity dispersion of the damaged layer.

In some precision experiments with the use of a
focused X-ray beam (e.g., in the studies of biological
and medical objects, excitation of X-ray fluorescence,
and the related interference phenomena [15, 16]), the
energy resolution is not a key parameter; therefore, an
increase of the reflectivity is not limited by the width of
the intrinsic rocking curve of a diamond monochroma-
tor. This is especially important in connection with the
attempts to use the Laue diffraction from diamond crys-
tals for polychromatic focusing of the X-ray radiation
[5] and determining the structures of molecular crystals
[17].

CONCLUSIONS

A diamond monochromator–splitter with a dam-
aged surface layer for the synchrotron radiation has
been designed.

It has been shown that the use of such a monochro-
mator for the Laue diffraction provides an increase of
the integrated intensity because of the kinematical
X-ray scattering from a damaged layer.

It has been demonstrated that the nondestructive
X-ray characterization of the damaged layer is possi-
ble. This, in turn, provides the further development of
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the technology of preparing highly reflective elements
of X-ray optics with the necessary properties.
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Abstract—The image of a thin cylindrical air space heated by the beam of a continuous CO2 laser has been
obtained by the method of X-ray phase contrast in the scheme with a slit (cut) crystal–analyzer. It is shown that
the method is extremely sensitive to superlow density values and relative X-ray refractive index of an object.
The air temperature in the laser beam is evaluated for several values of the laser power. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

X-ray phase contrast (PC) provides the visualization
of the internal structure of weakly absorbing objects
with low density gradients of the material and a high
spatial resolution [1–3]. It is based on the use of the
phenomenon of X-ray refraction in an objects distort-
ing the phase front of the transmitted wave. As a result
of such phase distortion, the X-ray beam deviates from
the initial direction of its propagation for certain small
angles dependent on the spatial distribution of the
material density in an object. The radiation transmitted
by the object is recorded with the aid of a perfect crys-
tal–analyzer located in the direct vicinity of the region
of Bragg reflection. As a result, even small variations in
the angle of X-ray incidence onto the crystal–analyzer
give rise to considerable changes in the diffraction–
reflection intensities recorded by a coordinate detector
or by a photographic method onto a film. The typical
refraction angles of the radiation with a wavelength of
λ ~ 0.1 nm are equal to fractions of an angular second
and, thus, are comparable with the angular range of the
pronounced variation of the rocking curve of the crys-
tal–analyzer. Therefore, the method of the phase con-
trast allows one to increase the image contrast by one to
two orders of magnitude [4–6] in comparison with the
contrast attained by the traditional absorption methods
based on the phenomenon of absorption, which is of
great importance, especially, for studying medical and
biological objects [7, 8].

Another important factor is the limiting sensitivity
of the method of phase contrast to the variation in the
refraction index, n = 1 – δ, in various parts of the object.
It follows from [4] that it is possible to record the values
on the order of ∆δ ~ 10–9, which is by three orders of
magnitude less than the value of the refraction decre-
ment δ ~ 10−6 for soft tissues of most of the medical and
biological objects.

Usually, the objects chosen for studies are real poly-
mer-based model samples or various medical and bio-
1063-7745/01/4602- $21.00 © 20171
logical objects [1–9]. In the present study, we managed
to obtain for the first time the phase-contrast images of
a narrow air beam warmed by the radiation of an infra-
red CO2 laser (10.6 µm).

The goal of our study was to demonstrate the unique
sensitivity of the phase-contrast method to extremely
small variations in the object density. We also consider
some problems of design and performance of such
experiments. Analyzing the images with the phase con-
trast, we estimated the refraction angles and the air tem-
perature for beams produce by a laser with a varying
power.

EXPERIMENTAL METHOD

The studies were performed on a triple-crystal
X-ray diffractometer (Fig. 1). The radiation source was
an X-ray tube with a copper anode (λ = 0.154 nm). The
X-rays from source 1 passed through a vertical
0.05-mm-wide slit and then were incident at slit (cut)
silicon monochromator 2 with triple symmetric (111)
reflection. A vertical slit of width 0.1 mm and a hori-
zontal slit of height 4 mm were placed at a distance of
5 cm from the monochromator (not seen in Fig. 1).
Then the radiation was transmitted by object 3 and was
incident onto a crystal–monochromator 4 and was
recorded by detector 5. The monochromator–object
and the object–analyzer distances in the horizontal
plane were 19 and 20 cm, respectively. The analyzer
was a slit (cut) silicon single crystal with a triple sym-
metric (111) reflection.

The object to be studied was a cylindrical air space,
which transmitted a beam of a CO2 laser operating in
the continuous mode. The diameter of a laser beam was
4.6 mm, the laser power varied discretely and was equal
to 22, 28, and 34 W. The laser beam intersected the hor-
izontal plane from directly above. Such a geometry of
the laser beam provided a warm cylindrical air space of
a constant (nondeformed) shape formed due to vertical
heat flows. Since the laser-beam diameter considerably
001 MAIK “Nauka/Interperiodica”
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exceeded the cross section of the X-ray beam, the
object (warm air space) moved across the X-ray beam
and the image formed was recorded by a scintillation
detector calculating X-ray quanta (usually, it is
recorded onto a photographic film [1–9]). The laser
beam moved normally to the X-ray radiation at a step
of 0.3 mm and passed the radiation region within 2 min.
The translation motion of a laser beam was provided by
a mechanical translational motion of the laser with the
aid of a special driving mechanism.

The laser radiation heated the air in the laser-beam
cross section; as a result, the air density decreased,
which, in turn, changed the refraction index. Figure 1
shows the path of three X-ray beams A, B, and C. Beam

1

2

3

4

5

xCA

B

Fig. 1. Schematic of the experiment: (1) X-ray source,
(2) monochromator, (3) object (laser beam), (4) crystal–
analyzer, (5) detector, x direction of the object motion, and
A, B, and C are X-ray paths.
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Fig. 2. Rocking curves from Si(111) of the σ-polarized
CuKα1-radiation: (1) single reflection, (2) triple reflection,
(3) angular distribution of the radiation at the exit of a slit
monochromator with triple reflection for the case of rotation
of the shoulder with single reflection through an angle of
ϕ = 3.2″. The points A, B, and C at the rocking curve (2) cor-
respond to beams A, B, and C in Fig. 1.
C

A passes through the center of the cylindrical object
without refraction. Rays B and C are refracted and are
incident onto the crystal–analyzer plane at different
angles. It is clear that in order to increase the image
contrast, one has to take the analyzer away from the
exact Bragg position ∆ϑ = 0 in the direction toward
negative angles, because the small-angle slope of the
rocking curve R1(∆ϑ) is characterized by a higher gra-
dient of the reflection-intensity variation than the posi-
tive slope (Fig. 2).

To increase the method sensitivity, we used the ana-
lyzer deflected by an angle of ∆ϑ  = –3.6″ from the exact
Bragg position towards smaller angles, which is
approximately equal to the half-width of the rocking
curve at its half-height. However, the preliminary
experiments showed that the use of the crystal–ana-
lyzer with single reflection is insufficient for recording
“supersmall” refraction angles. Therefore, in order to
increase the rocking curve steepness, we used a slit ana-
lyzer with triple reflection. In this case, the rocking

curve of the analyzer has the form R3(∆ϑ) = ,
whereas the maximum of the derivative dR3/d∆ϑ  in the
angular range ∆ϑ  ≈ –3.6″ is almost twice the steepness
of the slope dR1/d∆ϑ  for single reflection (Fig. 2).

An important requirement for the successive use of
phase-contrast method is the small angular divergence
of the incident X-ray radiation (the requirement of a
quasiplane wave). This requirement is usually met by
using high-order reflections [1, 3, 8] or strongly asym-
metric low-order reflections with the asymmetry coef-
ficient of reflection b ! 1 [2, 4–9]. The angular diver-
gence of the beam can also be reduced by rotating one
of the crystals in the monochromator block by a small
angle within the width of the rocking curve [10]. Fol-
lowing [10], we used a slit monochromator with the
slightly rotated side shoulder, where single reflection
by a certain angle ϕ is attained under the effect of the
mechanical load applied to this shoulder. The angular
distribution of the radiation from the monochromator is
determined by the product Rm(∆ϑ) = R1(∆ϑ)R1(∆ϑ  –
ϕ)R1(∆ϑ  – 2ϕ) (curve 3 in Fig. 2). We empirically
found such a rotation angle for which the radiation
divergence was minimal (with the half-width of ~0.6′′ ).
In this case, the integrated intensity of the beam
decreased by about four times.

The intensities of nonrefracted X-rays recorded by
the detector correspond to the point A of the rocking
curve of the analyzer (Fig. 2). Refraction in the object
resulting in a decrease of the angle of incidence onto
the crystal–analyzer is accompanied by a decrease of
the intensity (beam B in Fig. 1 and point B on the rock-
ing curve of the analyzer in Fig. 2). The change of the
angle of incidence in the “opposite direction” gives rise
to an increase of the intensity (point C). The geometric
width of the X-ray beam in Fig. 1 is considerably

R1
3
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increased (Fig. 1). Experimentally, we recorded each of
the narrow refracted beams (0.1 mm in width) sepa-
rately.

EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 3 shows the dependence of the X-ray inten-
sity I(x) measured by a detector during the translational
motion of a laser beam. The center of the laser beam is
taken to be the zero value on the x-axis. With the pene-
tration of the laser radiation into the X-ray beam, a cer-
tain increase of the intensity recorded by the detector
(in comparison with the background intensity I0 outside
the laser beam) is observed. Upon the attainment of the
intensity maximum, it starts decreasing down to its ini-
tial value of I0 at x ≈ 0. At the boundary of the laser-
beam exit from the X-ray beam, the intensity first
decreases and then increases again up to its initial
value.

A decrease of the intensity in the region x < 0 indi-
cates that, because of refraction, the angle of incidence
of the X-ray radiation onto the analyzer became less
than the rotation angle of the crystal–analyzer ∆ϑ . An
increase of the intensity in the region x > 0 indicates the
approach to the Bragg angle. It is seen from Fig. 3 that
the amplitude of the intensity change I(x) increases
with an increase in the laser power. The contrast values
at the maximum, η(x) = (I – I0)/I0, are 0.6, 0.9, and 1.1%
at laser powers P = 22, 28, and 34 W, respectively. The
statistical measurement errors amount to 0.3%.

Now, proceed to the interpretation of the experimen-
tal data obtained. The intensity distribution in the X-ray
beam reflected from the crystal–analyzer is determined
by the following simple equation [6, 11]:

(1)

where Ia(x) = I0exp[–σ(x)] is the intensity of the
absorption image, R(α) is the rocking curve from the
crystal–analyzer, ∆ϑ  is the fixed angle of the crystal–
analyzer rotation, β(x) are the angles of refraction
determined by the transverse gradient of the phase
change î(x) of a plane wave exp(ikn0z) transmitted by
the object with the refractive index n(x, z) = 1 – δ(x, z)
and absorption µ(x, z):

(2)

where

(3)

I x( ) Ia x( )R ∆ϑ β x( )–( ),=

β x( ) 1/k( )dî x( )/dx,=

î x( ) k δ x z,( ) δ0–[ ] z,d

∞–

∞

∫–=

σ x( ) µ x z,( ) µ0–[ ] z.d

∞–

∞

∫=
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Here, k = 2π/λ, δ0 = 1 – n0 , and µ0 is the decrement of
refraction and the coefficient of air absorption outside
the laser beam, respectively. Integration in Eq. (3) is
performed along the direction of the X-ray propaga-
tion.

Equation (1) was obtained in the geometric-optics
approximation and is valid if the following three condi-
tions are met: (1) r @ RF , where r is the characteristic
transverse dimension of the object, RF = (λL)1/2 is the
radius of the first Fresnel zone, and L is the distance
between the object and the crystal–analyzer; (2) ∆r @
Λx, where Λx = Λ , Λ is the extinction depth in the
crystal–analyzer, and ϑB  is the Bragg angle; and (3)
dβ(x)/dx ! ∆ϑB/Λx, where ∆ϑB  is the width of the
rocking curve of the crystal–analyzer. The first condi-
tion signifies that the image is recorded in the geomet-
ric shadow of the object; therefore, the effect of the
Fresnel X-ray diffraction from the object can be
ignored. In our case, RF ≈ 6 µm; i.e., it is by two orders
of magnitude less than the radius r of the laser beam
and the region of beam spreading ∆r at its boundary.
The second condition signifies that the wave effects
taking place at the Bragg reflection from the analyzer
(resulting in the image diffusion along the surface of
the crystal–analyzer by a value of ≈2Λx and equal, in
our case, to ~15 µm) can be ignored. Finally, the third
condition indicates that the change in the refraction
angle (2) at a distance of ∆x, which is of the order of the

ϑ Bcot
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Fig. 3. Intensity of the X-ray radiation recorded by a detec-
tor as a function of the laser-beam displacement. The values
of the laser power: (1) 22, (2) 28, and (3) 34 W. The points
indicate the experiment, the solid and the dashed lines indi-
cate the theoretically calculated data.
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Fig. 4. (a) Decrement of air refraction δ(x, 0) and (b) angles of refraction β(x) as functions of the transverse coordinate in the laser-
beam axial section. The values of the laser power: (1) 22, (2) 28, and (3) 34 W.
extinction depth, should not exceed the width of the
rocking curve of the analyzer.

Thus, in the geometric-optics approximation, image
(1) is determined by the intensity of the local (at the
same point x) reflection of a narrow X-ray beam inci-
dent onto the crystal–analyzer and characterized by the
angular deviation ∆ϑ – β(x). Since in terms of geomet-
ric optics, the record of the phase-contrast image of
large objects in the near zone leads to refraction, then,
in the scheme with a crystal–analyzer, one has to use
for the phase-contrast method such terms as “refraction
contrast” [1], “phase-dispersion introscopy” (radiogra-
phy) [2, 4–7, 9], and “refraction introscopy” [8].

Now, assume that the spatial distribution of temper-
ature in a cylindrical laser beam is described by the
function

(4)

where ρ = (x2 + z2)1/2, r is the beam radius, and ∆r is the
spreading of the beam boundary. Since the values of δ
and µ are proportional to the air density and to its tem-
perature, then the spatial distributions of the refraction
decrement and the absorption coefficient can be repre-
sented as

respectively, where the values of δ1 and µ1 = µ0(δ1/δ0)
depend on the temperature in the beam center.

The results of the theoretical calculations by Eq. (1)
were compared with the experimental data shown in
Fig. 3 by varying the values of δ1, r, and ∆r with the use
of the least squares procedure. The calculations were
performed with due regard for the convolution of func-
tion (1) with the rocking curve of the monochromator,
Rm, and the subsequent summation over two states of

F ρ( ) 1 ρ r–( )/∆r{ }exp+[ ] 1–
,=

δ ρ( ) δ0 δ1F ρ( ), µ ρ( )– µ0 µ1F ρ( ),–= =
C

X-ray polarization. Integrals (3) and the phase deriva-
tive in the calculation of the angles of refraction, β(x)
Eq. (2), were computed numerically.

The air density under normal atmospheric pressure
and room temperature is 1.293 × 10–3 g/cm3. With due
regard for the atomic scattering factors and the mass
attenuation coefficients [12, 13] for nitrogen in air
(78.1%) and oxygen (21%), it was obtained that the
refraction decrement of air is δ0 = 4.11 × 10–9 and the
absorption coefficient is µ0 = 0.011 cm–1. The best
agreement between the calculated and the experimental
data was attained at r = 2.3 ± 0.05 and ∆r = 0.3 ±
0.05 mm with the ratios δ1/δ0 equal to 0.55, 0.69, and
0.73 at P = 22, 28, and 34 W, respectively. The calcu-
lated spatial distribution of X-ray intensity (1) are
shown by the solid and dashed lines in Fig. 3.

The analysis of the decrements in air refraction δ1

for various values of the laser power provided the esti-
mation of the air temperature in the laser-beam cross
section. According to the kinetic theory of gases, the
gas pressure can be described as p = ρgV2/3, where ρg

is the gas density, V = (3kT/m)1/2 is the root-mean-
square velocity of molecules, and T is the absolute tem-
perature. The equality condition of air pressure in the
laser-beam region and outside this region can be used
to estimate the air temperature T1 in the laser beam.
Since the decrement of refraction is proportional to the
air density, then T1 = T0δ0/(δ0 – δ1), where T0 is the tem-
perature of air in the laboratory. The calculated curves
satisfactorily agree with the experimental curves if the
maximum air temperature in the center of the laser
beam is taken to be T1 = 380 ± 30, 660 ± 50, and 800 ±
50°C at the laser power 22, 28, and 34 W, respectively.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Figure 4 shows the dependences of the refraction
decrement and angles on the coordinates at different
values of the laser power. It is seen that the refraction
angles do not exceed 0.002′′ , whereas the refraction
decrement in the center of the beam and the air density
are less than the corresponding values outside the laser-
beam region by 50–70%.

CONCLUSION

Thus, we obtained for the first time the X-ray phase-
contrast images of the laser beam in air. Our experi-
ments show an extremely high sensitivity of the phase-
contrast method in the scheme with a slit crystal–ana-
lyzer to extremely small changes in the density and
refraction angles in the objects. The sensitivity of the
method can be increased several times with the use of
multiple asymmetric reflections (including higher-
order reflections) in the monochromator and analyzer
units.

The optimum choice of the working-point position
on the rocking curve of the analyzer, R(∆ϑ), necessary
for increasing the contrast is determined by the condi-
tion ∆ϑ ≈ ∆ϑ 0 – ∆m, where ∆ϑ0 is the angular position
of the derivative maximum, dR/d∆ϑ  > 0, and ∆m is the
halfwidth of the angular divergence of the primary
beam. Despite a certain decrease of the rocking-curve
steepness and that of an overall image intensity in com-
parison with those for ∆ϑ  = ∆ϑ0, the contrast increases
by a factor of about 1.5 because of a lesser smoothening
of the image caused by divergence of the incident radi-
ation.

The phase-contrast method is especially convenient
for studying internal structure of weakly absorbing
medical, biological, noncrystalline, and polymer
objects. It is well known that the changes in the density
of soft tissues of living organisms (blood vessels, lym-
phatic nodes, malignant neoplasms at the early stages
of their development, etc.) do not exceed 3–5%. The
calculations made for various organic compound-based
(water, polyethylene, fats, etc.) model objects show that
even small changes in the object density (∆ρ =
0.01 g/cm3) at the interface of width ∆r ~ (0.01–0.1)r at
the beam divergence ∆m ~ 0.2∆ϑB result in the forma-
tion of a considerable image contrast [5–25% in the
vicinity of the object boundaries (AgKα-radiation, tri-
ple symmetric (220) silicon reflections)]. At the same
time, without the use of special contrasting substances,
the conventional absorption contrast in the central part
of the images of the object with the dimension r ≤ 5 mm
does not exceed 1%.

We believe that, along with the X-ray diffraction
topography, the phase-contrast method can success-
fully be used for studying large-scale inhomogeneities
and defects in crystals at a resolution of the order of
10 µm. Thus, the second-phase inclusions characteris-
tic of highly doped single crystals attain the dimensions
of 100–150 µm. The effective radius of defects (clus-
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
ters) in the X-ray topography is determined by the far
fields of the deformational and orientational lattice dis-
tortions and, as a rule, exceeds the true defect radii,
whereas the phase-contrast method can also be used in
the analysis of defect dimensions, shapes, and the den-
sity distribution in the bulk. Moreover, it can also be
used in the cases where X-ray topographic methods are
inapplicable (crystals with low degree of the structural
perfection) or the optical methods are invalid (non-
transparent objects).

Since the refraction phenomenon is most clearly
seen at the well-pronounced interfaces, the phase-con-
trast method can also be successfully used in flaw
detection for visualizing cracks, bubbles, caverns, etc.,
in various metals, alloys, and composites.

Since the rocking-curve width for the π-polarized
radiation is less than for the σ-polarized radiation, the
main contribution to the image formation at small
angles of refraction in the vicinity of the working point
on the steep slope of the rocking curve is provided only
by the σ-polarized radiation. We believe that this fact
can also be used for the analysis of weak polarization
phenomena in noncrystalline objects possessing a nat-
ural or an artificially induced anisotropy.
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STRUCTURE OF INORGANIC COMPOUNDS

                                                            
Crystal Structure of K2.47Nb2.85Ti1.15P2.5O17
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Abstract—The structure of a crystal grown by crystallization from flux in the K2O–TiO2–Nb2O5–P2O5 system
was studied by the methods X-ray diffraction analysis at room temperature. The crystals of the composition
K2.47Nb2.85Ti1.15P2.5O17 are monoclinic, a = 13.7864(7) Å, b = 6.4078(3) Å, c = 16.9384(7) Å, β = 83.15(1)°,
sp. gr. P2/n. The structure was solved by the direct method using the SHELXS86 program package and refined
by the JANA96 program. The crystal structure consists of a three-dimensional framework of sharing-vertices
(Nb,Ti)O6-octahedra and the PO4-tetrahedra and two types of channels along the diagonal [101] direction,
which are statistically occupied by potassium cations providing ionic transport in the compound. © 2001 MAIK
“Nauka/Interperiodica”.
The present investigation continues a series of stud-
ies of atomic structures and physical properties of crys-
tals of niobium-doped potassium titanyl phosphate
KTiOPO4 (KTP). Earlier, it was found [1] that single
crystals with the Nb concentration up to 11% belong to
the orthorhombic system (the KTP structural type),
whereas crystals with the Nb concentration 75.5 and
66.6% are monoclinic (the unit cell parameters are a =
13.7864(7) Å, b = 6.4078(3) Å, c = 16.9384(7) Å, β =
83.15(1)° and a = 13.804(7) Å, b = 6.413(1) Å, c =
16.918(9) Å, β = 83.17(1)°, respectively). The chemi-
cal composition of the latter crystals is approximately
described by the formula K2TiNb2P2O13. We found no
data on this compound in the literature and, therefore,
undertook its structural study.

EXPERIMENTAL

A single crystal was prepared by crystallization
from flux in the K2O–TiO2–Nb2O5–P2O5 system
containing 40 mol % of K2O, 16.5 mol % of TiO2,
16.5 mol % of Nb2O5, and 27 mol % of P2O5.

The X-ray diffraction data were collected from a
homogeneous single crystal ground to a sphere
0.245 mm in diameter. The parameters of the mono-
clinic unit cell are a = 13.7864(7) Å, b = 6.4078(3) Å,
c = 16.9384(7) Å, β = 83.15(1)°. A total of 15 026
reflections with I ≥ 3σ(I) were measured on an auto-
mated CAD-4F Enraf-Nonius diffractometer (MoKα-
radiation, sinθ/λ ≤ 1.0). Upon averaging symmetrically
equivalent reflections (Rint = 1.55%), the total set con-
tained 7621 independent reflections. The observed sys-
tematic absences indicated two possible space
groups—P2/n and Pn. An attempt to generate the sec-
1063-7745/01/4602- $21.00 © 20176
ond harmonic failed, which makes the centrosymmetric
space group P2/n more probable. The structure was
established within this space group by direct methods
using the SHELXS86 program package [2] (all 22 basis
atoms were established) and refined by the JANA96
program [3]. The isotropic and anisotropic refinement
by the least squares method yielded the R factor of 7.26
and 4.39%, respectively. In the course of the structure
refinement, all three methods of taking into account
extinction realized in the programs were tested. The
best results were obtained with the use of Becker–Cop-
pens’s model of type I, which takes into consideration
the disorder of mosaic blocks in the crystal. This model
was used in all the subsequent calculations.

Initially, it was assumed that in all four crystallo-
graphically independent positions, some niobium
atoms are replaced by titanium atoms. Their occupan-
cies were refined simultaneously with the structural
parameters of these atoms on the condition that the
positional and thermal parameters of the isomorphous
mixtures of the Nb(1) and Ti(1), Nb(2) and Ti(2), Nb(3)
and Ti(3), and Nb(4) and Ti(4) atoms are identical.
The  total occupancy of each position was taken to be
unity. The refinement gave the following occupancies
of these positions: (Nb0.86Ti0.14)(1), (Nb0.80Ti0.20)(2),
(Nb0.53Ti0.47)(3), and (Nb0.67Ti0.33)(4). In other words,
the Ti atoms in this structure are incorporated into all
four Nb positions but with different occupancies.

The difference electron density syntheses revealed
peaks of residual density in the vicinity of all four posi-
tions (Fig. 1). The electron density maps can be inter-
preted with the use of two physically different models.
First, they can indicate the split of the Ti and Nb posi-
tions or whether these atoms can statistically occupy
close positions. Second, the electron density can be
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Difference electron-density syntheses for the structural model refined with anisotropic thermal parameters for all the atoms:
(a) the section at z = 0.068 passing through the (Nb,Ti) (1) atom; (b) the section at z = 0.147 passing through the (Nb,Ti) (2) atom;
(c) the section at z = 0.232 passing through the (Nb,Ti) (3) atom; and (d) the section at  z = 0.060 passing through the (Nb,Ti) (4) atom.
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interpreted by taking into account possible anharmo-
nicity of thermal vibrations of Ti and Nb atoms occupy-
ing one position. The strong correlation between all
structural parameters of the Nb and Ti atoms, espe-
cially, in the case of position splitting, did not allow the
refinement of the first model. The second model was
tested by taking into account the anharmonicity of ther-
mal vibrations by expanding the probability density
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
function of atomic displacements from the equilibrium
positions into the Gram–Charlier series. The terms up
to the fourth order appeared to be significant for the
(Nb,Ti) (1) and (Nb,Ti) (2) atoms, and the terms up to
the fifth order were significant for the (Nb,Ti) (3) and
(Nb,Ti) (4) atoms. The allowance for the anharmonicity
of thermal vibrations reduced the reliability factor from
4.39 to 3.81%.
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The situation with the localization of the K(3) atom
was quite different. A section of the electron density
synthesis at z = 0.365, showing this potassium atom
(Fig. 2), also clearly indicates the presence of an addi-
tional position of a potassium atom. In other words, the
K(3) position is split into two positions spaced by
1.07 Å. In addition to the different coordinates of the
K(3) and K(4) atoms, the distribution of the positive
and negative residual electron-density extrema indi-
cated the noticeable anharmonicity of thermal vibra-
tions of the monovalent K cations which, being in the

0.3
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–0.1

z = 0.365

0.5 0.6 0.7 x

y

Fig. 2. Difference electron-density synthesis for the struc-
tural model with due regard for the anharmonicity of ther-
mal vibrations of the (Nb,Ti) (1), (Nb,Ti) (2), (Nb,Ti) (3),
and (Nb,Ti) (4) atoms with the anisotropic thermal parame-
ters of the K, P, and O atoms. The section at z = 0.365 pass-
ing through the K(3) atom.
CR
superionic state, provide the ionic transport in the com-
pound. At the subsequent stage, we refined the struc-
tural parameters taking into account splitting of the
K(3) positions. The solution of this problem was hin-
dered by the strong correlation between the atomic
coordinates; the occupancies of the closely located
positions; and atomic thermal vibrations in these posi-
tions, especially, in the presence of pronounced anhar-
monicity. To overcome these difficulties, we refined the
strongly correlated parameters in the step-scan mode
[4]. The occupancy of the position by the K(3) atom

0.3

0.1

–0.1

z = 0.365

0.55 0.65 0.75
x

y

Fig. 3. Difference electron-density synthesis for the struc-
tural model with the statistical distribution of potassium
atoms over two independent K(3) and K(4) positions. The
section at z = 0.365 passing through the K(3) and K(4)
atoms.
Table 1.  Refined coordinates and thermal parameters of the K(3) and K(4) atoms (obtained with the use of a stepwise change
of the occupancies of their positions)

Occupancy
of K(3) position

Occupancy
of K(4) position R, % Rw, % Beq K(3), Å2 Beq K(4), Å2 K(3)–K(4)

distance

0.50 0.470(3) 2.26 2.88 3.94(5) 14.00(23) 1.015(6)

0.51 0.461(3) 2.25 2.87 3.99(5) 13.69(23) 1.029(6)

0.52 0.451(3) 2.25 2.87 4.03(5) 13.38(23) 1.043(6)

0.53 0.442(3) 2.25 2.87 4.08(5) 13.06(23) 1.057(6)

0.54 0.433(3) 2.25 2.87 4.13(5) 12.73(23) 1.071(6)

0.55 0.423(3) 2.25 2.87 4.18(5) 12.40(22) 1.085(6)

0.56 0.414(3) 2.25 2.87 4.24(5) 12.07(22) 1.099(6)

0.57 0.405(3) 2.25 2.87 4.29(5) 11.73(22) 1.112(6)

0.58 0.396(3) 2.26 2.88 4.35(5) 11.39(22) 1.125(6)

0.59 0.387(3) 2.26 2.88 4.41(5) 11.03(22) 1.138(6)
YSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Table 2.  Coordinates, position occupancies q, and thermal parameters Beq (Å2) of the basis atoms in the
K2.47Nb2.85Ti1.15P2.5O17 structure

Atom x/a y/b z/c q Beq

Nb(1) 0.68435(2) 0.71924(4) 0.06828(1) 0.856(2) 0.55(1)

Ti(1) 0.68435(2) 0.71924(4) 0.06828(1) 0.144(2) 0.55(1)

Nb(2) 0.31510(2) 0.27889(4) 0.14694(1) 0.797(2) 0.59(1)

Ti(2) 0.31510(2) 0.27889(4) 0.14694(1) 0.203(2) 0.59(1)

Nb(3) 0.52479(4) 0.49493(9) 0.23182(3) 0.527(2) 0.65(1)

Ti(3) 0.52479(4) 0.49493(9) 0.23182(3) 0.473(2) 0.65(1)

Nb(4) 0.10608(4) 0.48423(9) 0.06014(3) 0.664(2) 1.17(1)

Ti(4) 0.10608(4) 0.48423(9) 0.06014(3) 0.336(2) 1.17(1)

K(1) 0.25 0.7746(1) 0.25 1 2.17(1)

K(2) 0.40459(7) 0.75572(1) 0.02115(5) 1 2.46(2)

K(3) 0.6500(1) 0.165(1) 0.3573(3) 0.54 7.51(17)

K(4) 0.5840(5) 0.009(1) 0.3734(3) 0.433(3) 7.59(25)

P(1) 0.51460(2) 0.99614(5) 0.18033(2) 1 0.51(1)

P(2) 0.16823(2) 0.99736(5) 0.05196(2) 1 0.49(1)

P(3) 0.75 0.65132(8) 0.25 1 0.54(1)

O(1) 0.51509(7) 0.8055(1) 0.23553(6) 1 0.75(2)

O(2) 0 0.5 0 1 0.89(3)

O(3) 0.02716(7) 0.4826(1) 0.16366(5) 1 0.88(2)

O(4) 0.79920(7) 0.5496(1) 0.03157(5) 1 0.78(2)

O(5) 0.36779(7) 0.2822(1) 0.02968(5) 1 0.77(2)

O(6) 0.54722(7) 0.1863(1) 0.22566(6) 1 0.82(2)

O(7) 0.58326(8) 0.9619(1) 0.10367(6) 1 0.95(2)

O(8) 0.22302(7) 0.4700(1) 0.12277(6) 1 0.75(2)

O(9) 0.40883(7) 0.4646(1) 0.18081(6) 1 0.79(2)

O(10) 0.60049(7) 0.5285(1) 0.12026(6) 1 0.81(2)

O(11) 0.11342(7) 0.7903(1) 0.05790(6) 1 0.84(2)

O(12) 0.09128(7) 0.1714(1) 0.06251(6) 1 0.86(2)

O(13) 0.84033(7) 0.5101(1) 0.23335(6) 1 0.89(2)

O(14) 0.23624(7) 1.0106(1) 0.11651(6) 1 0.82(2)

O(15) 0.74114(7) 0.7892(1) 0.17698(5) 1 0.80(2)

O(16) 0.77158(7) –0.0140(1) 0.02991(5) 1 0.77(2)

O(17) 0.25 0.2220(2) 0.25 1 0.96(3)

O(18) 0.41129(7) 0.0270(1) 0.15869(6) 1 0.93(2)
was successively fixed at a step of 0.01, and the coordi-
nates and thermal parameters of all the atoms, includ-
ing the occupancy of the position of the K(4) atom,
were refined (Table 1). Such a procedure gave per-
formed for the K(3) and K(4) atoms yielded qK(3) = 0.54
and qK(4) = 0.43, respectively. The final electron density
synthesis was constructed using these parameters. The
section of this synthesis at z = 0.365 (the coordinate of
K(3) and K(4) atoms) is shown in Fig. 3.

The refinement with allowance for the anharmonic-
ity of thermal vibrations and the expansion terms up to
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
the fourth order was taken into account for the K(1) and
K(2) atoms, whereas the expansion terms up to the
sixth order were taken into account for the K(3) and
K(4) atoms. The final reliability factors were R = 1.67%
and Rw = 2.18%.

The coordinates of the basis atoms of the structure,
the occupancies of the crystallographic positions q, and
the equivalent isotropic thermal parameters Beq are
given in Table 2. With due regard for the determined
occupancies q, the refined chemical formula of the
compound can be written as K2.47Nb2.85Ti1.15P2.5O17.
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a

c

Fig. 4. The K2.47Nb2.85Ti1.15P2.5O17 structure projected onto the xy plane. The (Nb,Ti) atoms are located in octahedra and the
P atoms are located in tetrahedra. The K atoms are represented by circles.
RESULTS AND DISCUSSION

The crystal structure of K2.47Nb2.85Ti1.15P2.5O17 con-
sists of shared-vertices (Nb,Ti)O6-octahedra and PO4-
tetrahedra forming a three-dimensional framework.
The framework has two types of channels along the
diagonal [101] direction (Fig. 4). The channels are
filled with potassium cations K(3) and K(4) statistically
occupying their positions. The potassium atoms in
wider channels (the average K(1)–O and K(2)–O dis-
tances are 2.94 and 3.08 Å, respectively) fill their posi-
tions with the occupancies of 100%. The remaining
potassium atoms are located in narrower channel (the
K(3)–O and K(4)–O distances are 2.89 and 2.87 Å,
respectively) with the occupancies of 54 and 43% for
the K(3) and K(4) atoms, respectively.

It is also possible that some Nb and Ti ions in the
structure are distributed over the pairs of closely
located positions. This follows from different nature of
these atoms. Thus, a niobium atom tends to be dis-
placed from the center of the coordination polyhedron
formed by oxygen atoms and form the distances of the
types 3 + 3 (three short distances in the trans positions
with respect to the long distances), 2 + 2 + 2, or 1 + 4 +
1 [5]. In the TiO6-octahedra, the distances to four equa-
torial oxygen atoms are almost identical, whereas the
Ti–O distances to the axial oxygen atoms are essen-
tially different [6]. In the (Nb,Ti) (1) (qTi = 0.14) and
C

(Nb,Ti) (2) (qTi = 0.20) octahedra, three short (Nb,Ti)–
O distances (1.834, 1.886, and 1.886 Å, and 1.845,
1.895, and 1.901 Å in two octahedra, respectively) and
three long distances (2.126, 2.133, and 2.146 Å, and
2.032, 2.113, and 2.130 Å, respectively) can be distin-
guished. The (Nb,Ti) (4) (qTi = 0.33) and (Nb,Ti) (3)
(qTi = 0.47) octahedra characterized by the higher tita-
nium concentration have one short (Nb,Ti)–O distance
(1.882 and 1.831 Å, respectively) and one long distance
(2.034 and 2.058 Å, respectively). The remaining four
(Nb,Ti)–O distances range from 1.950 to 2.014 Å and
from 1.916 to 2.019 Å, respectively.

Since the ionic radius of Ti4+ (0.68 Å) is somewhat
shorter than that of Nb5+ (0.69 Å), the replacement of
the Nb5+ ions by the Ti4+ ions leads to a decrease in the
average (Nb,Ti)–O distance in the octahedra correlat-
ing with the titanium concentration. The average
(Nb,Ti)–O distances in the (Nb,Ti) (1), (Nb,Ti) (2),
(Nb,Ti) (4), and (Nb,Ti) (3) octahedra are 2.002, 1.986,
1.971, and 1.970 Å, respectively.

We intend to use the data on the crystal structure of
K2.47Nb2.85Ti1.15P2.5O17 and the results of the investiga-
tion of their physical properties (which are close to
completion) to establish relationships between the
structure and the properties of the crystalline materials
of this new structural type.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Abstract—The structure of K6Ta6.5O15 + xF6 + y (I) with partly reduced tantalum has been determined by the
methods of X-ray diffraction analysis (SYNTEX P1 diffractometer, λMoKα radiation, 808 independent reflec-
tions): sp. gr. P 6/m, a = 13.118(4), c = 3.862(1) Å, RF = 0.0292. The resistivity of metal-like crystals I is almost
independent of temperature in the temperature range T = 4–300 K. The physical properties studied allow one
to relate the crystals to the group of tantalum bronzes. The structure of compound I is compared with that of
the well-known crystals of the transparent dielectric K6Ta6.5O14.5F9.5 (Ia) containing only pentavalent tantalum
not belonging to the group of bronzes. The I and Ia structures have the same basic frameworks but different
distributions of additional Ta atoms located along the channel axes and different degrees of delocalization as
well as the numbers and degrees of delocalization of the surrounding anions. The relation between these struc-
tural features and the resistivity characteristics of the two compounds is also discussed. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The structures and properties of the solid oxide and
oxyfluoride phases containing transition metal atoms
from the group of bronzes have been studied and dis-
cussed in numerous monographs and articles (e.g., [1,
2]) in connection with their unusual physical and chem-
ical properties—the dark grey or black color with metal
luster, metal or semiconductor type of conductivity, the
existence of the homogeneity region, and a high chem-
ical resistance to acids (producing no oxidizing effect).
Usually, the bronze structures are built by M(O, F)6-
octahedra sharing the edges and vertices and forming
various frameworks, with alkali metal atoms being
located inside these frameworks. The M atoms with
reduced oxidation degrees [1] in such compounds
include W, V, Ti, Nb, Ta, Mo, Re, and Ru and form the
tungsten, vanadium, etc., bronzes, respectively. How-
ever, not all of the compounds possessing the structures
and the compositions characteristic of bronzes are real
bronzes; i.e., they can demonstrate the physical and the
chemical properties indicated above. Thus, K0.5WO3 is
a bronze, whereas the isostructural compound
K0.5(W0.5Ta0.5)O3 is not [1]. Usually, the transition to
the fully oxidized state of the transition metals without
the change of the initial structure type results in the loss
of the metal properties characteristic of bronzes. In this
connection, the oxide and oxyfluoride compounds with
the properties characteristic of bronzes are usually syn-
1063-7745/01/4602- $21.00 © 20182
thesized under the reduction conditions. The most
widespread efficient method of their synthesis is elec-
trolysis of salt melts [2].

Studying the electrolysis of the melted K2TaOF5–
(KF + NaF + LiF)eut salt system, we observed the forma-
tion on the cathode of dark grey K6Ta6.5O15 + xF6 + y (I)
crystals with metal luster and the hexagonal–prismatic
habit. The characteristic metal-like appearance of the
crystals and the resistivity measured at room tempera-
ture (ρ ≈ 4 × 10–3 Ω cm) showed that the crystals
belong to the group of bronzes. The powder X-ray dif-
fraction pattern indicated that crystals I are isostruc-
tural to the well-known transparent colorless hexagonal
crystals of the composition K6Ta6.5O14.5F9.5 (Ia) with
the structure although close to that of the hexagonal
tungsten bronze, but not really related to bronzes [3].
The conditions for synthesis of compound Ia (solid-
phase sintering of the pentavalent-tantalum-containing
compounds such as K2TaF7, KTaO3, and Ta2O5 [3])
exclude the presence of tantalum with the reduced oxi-
dation degree, whereas the reduction conditions of
electrocrystallization on the cathode provide the pres-
ence of tantalum with a reduced oxidation degree in
compound I.

Thus, our goal was to determine the structure of new
tantalum bronze I with partly reduced tantalum and
compare it with the structure of compound Ia having a
001 MAIK “Nauka/Interperiodica”



        

CRYSTAL STRUCTURE AND RESISTIVITY CHARACTERISTICS 183

                                                           
similar composition but containing only pentavalent
tantalum.

The traditional interest in the structural studies of
bronzes was additionally stimulated by the indication
that Na0.05WO3 may possess high-temperature super-
conductivity (Tc = 91 K) [4]. Thus, we have also to
check the temperature dependence of conductivity of
this new tantalum bronze (which was later proved to be
unique).

SYNTHESIS AND PHASE IDENTIFICATION

Compound I was crystallized on a cathode (a
molybdenum rod 5 mm in diameter) during transmis-
sion of a current with the density 0.15 A/cm2 through a
melted electrolyte containing monoxyfluoride
[TaOF6]3– and dioxyfluoride [TaO2F4]3– tantalum com-
plexes (the total Ta concentration was 0.6 mol/kg of the
electrolyte). The three-hour electrolysis was performed
with the use of a TaO anode at 750°C. The current was
switched off, and the cathode was removed from the
electrolysis vessel and cooled to room temperature in
the argon atmosphere. Then the product formed on the
cathode was washed for three hours with an HCl solu-
tion heated up to 60°C to remove the salts captured dur-
ing electrolysis.

However, even upon such a treatment, the radial
intergrowth of small metal-like crystals of the precipi-
tate on the cathode were still covered with a consider-
able amount of transparent colorless crystalline mass.
Moreover, the washed precipitate contained transparent
crystals of a similar shape and crystals with suddenly or
gradually changing transparency along the elongation
axes along with well-faceted metal-like crystals in the
shape of elongated hexagonal prisms.

The product precipitated on the cathode was identi-
fied by the methods of X-ray phase analysis prior to and
upon its washing in the hydrochloric acid (DRON-3M
diffractometer, λCuKα radiation, Ni-monochromator).
The specimens not washed in the hydrochloric acid
showed the presence of alkali metal (Na, Li, and K) flu-
orides, with the amount of KF being minimal, which
disappeared upon washing in HCl. The washed speci-
mens appeared to be two-phase, but their X-ray pat-
terns were identical with the spectrum calculated by the
data for Ia [3]. The mechanical separation of the metal-
like elongated hexagonal prismatic crystals from the
transparent colorless ones and the subsequent study of
the corresponding X-ray diffraction patterns proved

their isostructurality with Ia (sp. gr. P , a = 13.109 Å,
c = 3.880 Å). Proceeding from these data, we made the
conclusion that the transparent phase was identical to
the phase Ia and that this phase belongs to the same
structure type of metal-like crystals studied in detail by
the single-crystal X-ray diffraction method.

It should be emphasized that the colorless crystal-
line mass of compound Ia is not the product of electro-
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crystallization on the cathode. This compound is
formed due to chemical reactions in the electrolyte. The
mechanisms of these reactions will be considered in
another article.

X-RAY STUDY

The X-ray study of compound I was performed on a
well-faceted dark grey single crystal with metal luster
having the shape of an almost isometric hexagonal
prism. The X-ray diffraction data were collected within
a hemisphere of the reciprocal space on a SYNTEX P1
diffractometer (λMoKα radiation; sinθ/λ < 1.08; 2063
reflections). The parameters of the hexagonal unit cell
of compound I and the unit-cell parameters of com-
pound Ia are given in Table 1. Upon the introduction of
the absorption correction (by numerical integration
with due regard for the real shape of the crystal) and
averaging the equivalent reflections within the diffrac-
tion class 6/m (Req + 0.043), the further computations
were made using 808 independent reflections with
I > 2σ(I).

The structure model of I obtained by the direct
method within the sp. gr. P6/m (AREN program com-
plex [5]) confirmed the isostructurality of the main
frameworks of compounds I and Ia with the composi-
tion [K6Ta6(O, F)21] in both cases. This framework can
be described within three space groups of the diffrac-
tion class considered, namely, P6, P , and P6/m. The
further refinement of the structure was made within all
these tree groups in parallel by the program complex
JANA98 [6]. The parameters of the basis atoms of the
framework were refined in the following sequence:
coordinates of Ta and K cations in the isotropic approx-
imation of thermal vibrations up to R(F) ≈ 0.14; coordi-
nates of anions with the use of the f-curves for O atoms
in the isotropic approximation up to R(F) ≈ 0.135; coor-
dinates of cations in the anisotropic approximation up
to R ≈ 0.11; coordinates of cations and anions in the
anisotropic approximation up to R ≈ 0.10. The values of
the positional and thermal atomic parameters for the
framework obtained within the three space groups at
the close values of R-factors slightly differed at all the
stages of the refinement. In the sp. gr. P6/m, the main
framework of the structure is described by one Ta(1)
position, one K position, and five anionic (O, F) posi-
tions (Table 2). The kinds of the anions of the main
framework were established upon calculation of the
valence-strength balance by the method suggested in
[7] (Table 3), which showed that all the shared vertices
of Ta(1)-octahedra are occupied by oxygen atoms,
whereas the “isolated vertices” looking inside the chan-
nels are occupied by F atoms (Fig. 1). Thus, the main
framework of compound I has the composition
[K6Ta6O15F6].

As is seen from Fig. 1, the framework has wide
channels (with a diameter exceeding 6.5 Å) elongated
in the [001] directions with the axes coinciding with the

6
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Table 1.  Crystallographic characteristics of the K6Ta6.5O15 + xF6 + y bronze (I) and transparent K6Ta6.5O14.5F9.5 crystals (Ia)

Characteristic K6Ta6.5O15 + xF6 + y (I) (Tan+, n < 5) K6Ta6.5O14.5F9.5 (Ia) [3] (Ta5+)

Sp. gr. P6/m P

Unit-cell parameters, Å a = 13.118(4) a = 13.109(7)

c = 3.862(1) c = 3.880(7)

c/a ratio 0.2944 0.2960

Framework:

composition and charge [K6Ta6O15F6](30 – 6n)– [K6Ta6O15F6]0 (*)

Ta–X distances, Å 〈Ta–O〉 1.93; 〈Ta–F〉  2.06 〈Ta–O〉 1.93; 〈Ta–F〉  2.01

K–X distances, Å 〈K–F〉 2.86; 〈K–O〉  2.96 〈K–F〉 2.87; 〈K–O〉  3.04

Channel:

composition and charge [Ta0.5(O, F)m](30 – 6n)+ [Ta0.5F2.5]0 (*)

Tachan “Centered” dumbbell: “Dumbbell”:

0.025Ta(3)–0.45Ta(2)–0.025Ta(3); 0.25Ta–0.25Ta;

zTa(2) = 0.5; zTa(3) = ±0.28 zTa = ± 0.371

Xchan ~1.5(O, F); z ~± 0.17;
(are delocalized)

2.5F (*); z = 0;

Tachan–Tachan distances along the sixfold ax-
is, Å 

– 0.85 – 0.85 – 2.16 – –1.0 – 2.88 –

K–Tachan distance, Å 4.50 × 2 4.41, 4.48

Conductivity,  Ω cm ρ = 4 × 10–3 Dielectric

* Data corrected in the present study. According to [3], the framework and the channel are characterized by [K6Ta6O12.688F8.312]2.312+ and
[Ta0.5O1.812F1.188]2.312-, respectively.

6

Table 2.  Coordinates, thermal factors, and parameters of anharmonic atomic thermal vibrations in K6Ta6.5O15 + xF6 + y(x +
yz ≈ 1.5)

Atoms of the main framework [K6Ta6O15F6]

Atom x/a y/b z/c β11 β22 β33 β12 Biso

Ta(1) 0.36955(7) 0.84397(7) 0.5 0.002090 0.001854 0.020153 0.000771 1.13(2)

K 0.6564(2) 0.9134(1) 0 0.008221 0.003666 0.030588 0.001799 2.92(9)

O(1) 0.4673(4) 0.7786(4) 0.5 0.002138 0.002264 0.055757 0.000877 1.9(5)

O(2) 0.5 0 0.5 0.003742 0.000855 0.054650 –0.000524 2.2(6)

O(3) 0.6441(5) 0.1497(5) 0 0.007851 0.007807 0.019811 0.004238 3.0(7)

F(1) 0.6540(3) 0.7425(3) 0.5 0.002536 0.004161 0.042360 0.001509 2.0(5)

Atoms of the main framework [Ta0.5(O, F)m] (m = 1.5)

Atom q x/a y/b z/c β11 β22 β33 β12 Biso

Ta(2) 0.45(1) 0 0 0.5 0.004208 0.004208 0.00645 0.002104 1.57(6)

Ta(3) 0.025 0 0 0.7197(1) 0.00442 0.00442 0.022633 0.00221 1.97(9)

F(2) 0.13(4) 0.038(2) 0.131(2) 0.171(4) – – – – 2.0

Independent and nonzero components of the tensors of anharmonic vibrations

Ta(2): D1111 = 0.0022(2); D1112 = 0.0011(1); D1113 = –0.044(2); D1233 = –0.0221(8); D3333 = 14.27(3); F111133 = 0.0034(3); 
F112233 = 0.0017(1); F113333 = –0.082(2); F123333 = –0.0041(1); F222 233 = (3); F333333 = 56.9(1).

Note: Only independent values of thermal factors and the values of C × 103, D × 104, E × 105, and F × 106 are given.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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y

x

Fig. 1. The main [K6Ta6O15F6] framework of structures I and Ia projected onto the (001) plane; small black circles at the vertices
of the [TaO5F] octahedra denote F atoms; large circles denote K atoms; dashed lines indicate the K prisms projected onto the (001)
plane.
sixfold axis. The difference electron-density maps cal-
culated for all the three space groups were almost
equivalent. The peak coordinate z = 0.5 along the chan-
nel axis (Fig. 2a) indicated the presence of an additional
atom identified as Ta(2) with the occupancy 0.45 (the
use of the f-curve of K resulted in the negative values of
the isotropic thermal factor). The introduction of this
atom reduced the R-factor down to ~0.07.

The difference electron-density maps calculated at
this stage of the refinement showed an extended region
of the positive electron density along the channel axis
(Fig. 2b), which indicated the considerable delocaliza-
tion of the Ta(2) atoms probably with the anharmonic
thermal vibrations. Since the difference maps con-
structed at various stages of the structure refinement
within the above three space groups showed no consid-
erable deviations from the maps constructed within the
sp. gr. P6/m, further refinement was performed in the
latter space group.

The refinement of the structure parameters in the
anharmonic approximation of thermal vibrations of
both Ta atoms (we used the Gram–Charlier expansion
with the terms up to the sixth order) reduced the reli-
ability factor to 0.05 and indicated the considerable
anharmonicity of thermal vibrations only for Ta(2)
atoms located inside the channels. As was expected,
this effect was the most pronounced along the [001]
direction and the sixfold axis (Table 2). The difference
electron-density map constructed with due regard for
anharmonicity of thermal vibrations of Ta(2) atoms
showed new well-pronounced maxima on the sixfold
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
axis with ρ = 3.5 e/Å3 (Fig. 2c), which later were iden-
tified with Ta(3) atoms with the occupancy 0.025 of the
position of multiplicity two. Thus, we revealed “cen-
tered” dumbbells on the channel axis, Ta(3)–Ta(2)–
Ta(3) (Table 1), whose centers were most probably
occupied by Ta atoms. The reliability factors at this
stage of the refinement were R(F) = 0.0305 and R(w) =
0.0415 (w = 1/σ2). The positional and thermal parame-
ters of atoms corresponding to this model are indicated
in Table 2. The framework Ta(1) atoms are character-
ized by the octahedral environment, whereas a coordi-
nation polyhedron of K atom is a trigonal prism. The
K-prisms that form the channel walls and share their
bases located along the channel axis (Fig. 1). Some
dimensional characteristics of the cationic polyhedra of
the framework of structure I are listed in Table 1. For
comparison, Table 1 also gives similar data for struc-
ture Ia [3]. The framework anions closest to the Ta(2)

Table 3.  Balance of valence strengths in the main
[K6Ta6O15F6] framework of the K6Ta6.5O15 + xF6 + y structure
(x + y ≈ 1.5) according to Brown

Anions Ta(1) K Total charge 
at anions

O(1) 1.16 + 0.82 0.11 × 2 2.2

O(2) 1.05 × 2 0.03 × 4 2.22

O(3) 0.93 × 2 0.08 × 0.06 2.0

F(1) 0.51 0.12 × 2 + 0.08 × 2 0.91
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Fig. 2. Ta atoms located on the sixfold axis in the channel. The sections of difference electron-density maps are obtained at various
stages of the refinement of structure I: (a) anisotropic refinement of the atoms of the main framework (the isolines are spaced by
10 e/Å3); Ta(2) positions are well distinguishable; (b) anisotropic refinement of the atoms of the framework and Ta(2) atoms (the
isolines are spaced by 1 e/Å3); one can see delocalized Ta(2) atoms; (c) refinement in the anharmonic approximation of the Ta(2)
vibrations (the isolines are spaced by 0.5 e/Å3); the Ta(3) position is seen; (d) the refinement in the anharmonic approximation of
Ta(2) vibrations with due regard for the Ta(3) position (the isolines are spaced by 0.3 e/Å3), one can distinguish the regions of the
anionic environment; and (e) the final stage of the refinement upon localization of the anions in the channels (the isolines are spaced
by 0.3 e/Å3; one can still see the regions of the residual electron density).
and Ta(3) atoms in I are spaced by the distances
exceeding 3.5 Å. The absence of any anionic environ-
ment for the atoms lying in the channels required a
more detailed study of their neighborhoods.

The difference map constructed for the model with
three Ta positions had the maximum and the minimum
electron-density values equal to 1.8 and –1.7 e/Å3,
respectively. The positive electron-density regions are
located in six symmetry-related “rods” (0.13, 0.038, z)
along the channel axis with the z-coordinate ranging
from z = –0.33 to z = 0.33. These rods can be consid-
ered as the regions of delocalized anions around the Ta
atoms located in the channel, because the distance from
any point of these rods to the Ta(2) atom ranges within
1.9–2.2 Å. All attempts to localize anions lying in the
channels within the low-symmetric P6, P  (and also P36
C

and P ) space groups yielded no more reliable results.
Therefore, we considered the P6/m group to be the true
one for compound I. In structure Ia, the anions in the
channels were localized within the sp. gr. P  [3].

The local electron-density maximum with the coor-
dinates (0.13 0.038 0.171) from the region singled out
in Fig. 3a was conditionally identified as an anion local-
ized in the channel. The following refinement of the
position occupancy at the fixed value of the isotropic
thermal parameter based on the f-curves for F [see F(2)
in Table 2] reduced the reliability factors to R(F) =
0.0292 and R(w) = 0.0398. The distances from this
position to the nearest cationic ones are F(2)–Ta(2) 1.99
Å, F(2)–Ta(3) 1.59 and 2.32 Å, and F(2)–K 2.92 Å. The
electron-density sections corresponding to the last
cycle of the refinement (Figs. 2e, 3b) showed again the
residual electron density, which confirms delocalized

3
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Fig. 3. Sections of difference electron-density maps by the (001) plane at a height of z = 0.2: (a) prior to and (b) upon the localization
of anions in the channels (the isolines are spaced by 0.3 e/Å3).
arrangement of the anions in the channels. We failed to
determine the exact number and ratios of the O and
F atoms.

The assumption on the incommensurability of the
sublattices of the main framework and the atoms in the
channels has not been confirmed by our study of the
reciprocal space by the oscillation and the local scan-
ning methods on a SYNTEX P1 diffractometer. How-
ever, it cannot be excluded that the X-ray tube used in
our experiments was insufficiently powerful and, there-
fore, did not allow us to record reflections from the
intrachannel sublattice.

According to our estimates, the formula of the new
Ta-bronze (I) can be written as [K6Ta6O15F6] [Ta0.5(O,
F)m] = K6Ta6.5O15 + xF6 + y. The compositions of the main
framework of the channel are given in the first and the
second square brackets, respectively. The value of m =
x + y ≈ 1.5 following from the refinement of the occu-
pancy of the conditional position F(2) should be con-
sidered only as an approximate value.

TEMPERATURE DEPENDENCE 
OF CONDUCTIVITY

Electric conductivity of metal-like single crystals of
compound I was measured on two ~0.3 × 0.3 ×
0.5-mm-large specimens by the four-contact method with
the current j || c in the temperature range 4.2–293.0 K.
The potential contacts were spaced by ~0.2 mm. The
change of the measuring-current density by two orders
of magnitude (from 0.5 to 50 A/cm2) did not change the
linear character of the current–voltage characteristics
of the specimens within the experimental accuracy.
Irrespectively of measuring currents, the conductivities
were almost temperature-independent (Fig. 4). The cal-
culated resistivity was equal to ρ ≈ 4 × 10–3 Ω cm (the
conductivity σ ≈ 250 Ω–1 cm–1). The transparent crys-
tals identified with the phase Ia showed dielectric prop-
erties.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
DISCUSSION OF RESULTS

Now, compare the structural characteristics of I and
Ia (Table 1) in order to establish the relation between
the crystal structure and its properties. The differences
between these two compounds can be attributed to a
lower degree of reduction of tantalum in I in compari-
son with its reduction degree in Ia (where Ta has the
maximum oxidized state, Ta5+).

In both compounds, the symmetry of the main
framework is described by the sp. gr. P6/m; therefore,
the structures of the frameworks in both compounds are
almost identical. The balance of valence strengths at
anions calculated for the framework of I (Table 3)
uniquely indicated that the O and F atoms are separated
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Fig. 4. Temperature dependence of conductivity measured
for crystals I.
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6

and led to the framework formula [K6Ta6O15F6]. Simi-
lar computations based on data [3] yielded the same
formula for the framework of Ia. Taking into account
different oxidation state of tantalum in these two com-
pounds, we can draw a conclusion that the framework
in Ia is electrically neutral (pentavalent tantalum),
whereas the framework of I is negatively charged (the
degree of Ta oxidation is less than +5). An increase of
the Ta–F distances and shortening of the K−O distances
in I in comparison with the analogous distances in Ia
(Table 1) is consistent with this statement.

Different charges of the frameworks in I and Ia
result in different structures and different charges of the
channel space (Fig. 5). In both cases, the content of this
space is described as [0.5TachanmXchan] (Table 1): the
Tachan cations occupy the positions on the axis with dif-
ferent occupancies, whereas the Xchan = (O, F) anions
provide the electric neutrality of each compound. A
lower content of Xchan in I in comparison with that in Ia
at the same amount of Tachan provides the positive
charge of the intrachannel space in I and its neutrality
in Ia. The formula of the channel complex [Ta0.5X3] [3]
in Ia even at X = F provides the negative charge of this
complex, which is inconsistent with the electric neu-
trality of its framework. This inconsistency can be
C

caused by an insufficient accuracy in the determination
of the occupancy of the positions of the intrachannel
anions in [3] (q = 0.5 corresponding to X3, instead of a
more probable value q = 0.417 corresponding to X2.5 =
F2.5), which is quite admissible at the reliability factor
R = 6.1%.

The intrachannel complex in Ia is a column com-
posed by trigonal prisms sharing the bases formed by
anions located at the levels z = 0 and 1 (Fig. 5b, part 2).
Each set of prisms contains a Ta atom statistically occu-
pying two positions related by the plane m. The anionic

environment of T  in the prisms sufficient for neu-
tralization corresponds to the ionic–covalent Ta–X
bonding and provides the mutual screening of Ta
atoms. Crystals Ia are transparent and colorless; they
possess dielectric properties characteristic of most
inorganic compounds with prevalent ionic bonding.

Unlike Ia, structure I is characterized by a low anion
concentration in the positively charged intrachannel
complex and the location of Tachan cations at the maxi-
mum distance from the nearest framework K cation
(Fig. 5a, part 2, Table 1). In this case, the maximum
screening of Tachan from K is attained if the regions of
the prevalent location of the channel anions are dis-

achan
5+
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placed from the plane m (Fig. 5a, part 2). The defi-
ciency of anions in the first coordination sphere of
Tachan results in the Ta–Ta interaction of the metal
nature between these partly reduced cations located
along the channel axis. The existence of such interac-
tions is confirmed by short distances between the posi-
tions with an elevated probability of Tachan (Table 1). As
has already been indicated, Tachan atoms, as well as the
surrounding anions, are considerably delocalized. The
formation of Ta–Ta bonds in I (absent in Ia) manifests
itself in the changed resistivity characteristics and the
dark grey color and metal luster, which allows us to
relate compound I to bronzes.

Thus, the crystal lattices of both compounds can be
considered as two mutually penetrating sublattices—
those of the framework and the channel. The differ-
ences in the physical properties of two compounds are
associated with differences in the structures of the
channel sublattices. Proceeding from this representa-
tion, the evolution of the temperature dependence of
conductivity during tantalum reduction can be associ-
ated with the changes in the distribution of Tachan atoms
along the central axis of the channel. In I, the distances
between the neighboring positions of these atoms are
dTa–Ta ≤ 2.16 Å and provide a rather high probability of
tunneling due to overlap of the wave functions of Ta.
Since the integral of this overlap exponentially
decreases with the distance, the probability of such tun-
neling in Ia drastically decreases because the maxi-
mum distance between the neighboring Ta positions
increases up to 2.88 Å.

According to the data obtained, the channel sublat-
tice in I can be considered as a system of periodically
located regions extended along the channels usually
occupied by Tachan atoms. Each region includes a “cen-
tered” dumbbell of Tachan positions (Fig. 5, Table 1).

The potential of the crystal field in such a system
can be represented by a set of potential wells with the
random distribution of their extreme values along the
[001] direction. The main parameter determining the
conductivity of such system is the V0/B ratio, where V0
determines the region of potential spreading and B
determines the overlap of the wave functions [8]. The
characteristic feature of such systems is the existence of
the critical energy EC in their spectrum separating the
regions of the localized and nonlocalized states of
atoms. In this case, the temperature dependence of con-
ductivity is described by the equation

where EF is the Fermi energy and σmin is the tempera-
ture-independent minimum metal conductivity.

If EF lies within the region corresponding to the
localized states of the atoms (EF < EC), the conductivity

σ σmin EC EF–( )/kT–[ ] ,exp=
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mechanisms can be provided by thermally activated
hoppings of atoms from one localized state to another
or excitation of electrons to the mobility edge. In both
cases, the derivative dρ/dT has a negative value. At EC =
EF, we have σ = σmin; i.e., σ attains the value of the min-
imum conductivity independent of temperature. In this
case, the estimation of the order of σmin made in [8] by
formula 0.026e2/"a (Ω–1 cm–1), where a is the inter-
atomic distance, yields ~200 Ω–1 cm–1.

The values of σ of specimens I are close to the esti-
mate of σmin, which, with due regard for the indepen-
dence of resistivity of the temperature, allows one to
invoke the concepts of the minimum metal conductiv-
ity. It seems that the value of V0/B in the compounds of
type I can vary within certain limits. Indeed, delocal-
ization of Tachan and the nonuniform occupancy of the
positions should stimulate a certain disorder, whereas
the different degrees of the reduction of Ta cations can
lead to a displacement of EF . Thus, there are serious
prerequisites for the application of the concept of min-
imum metal conductivity to the compounds of the
bronze type. It is expedient to discuss this problem in
more detail upon studying the crystals with degrees of
Ta reduction different from that in I.
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Abstract—A new representative of the lovozerite group—Na, Zr, Mn-silicate litvinskite (Na, H2O, h)3(h, Na,
Mn2+)Zr[Si6O12(OH)3(OH, O)3]—was discovered in ultraagpaitic pegmatites from the Lovozero massif. The

crystal structure of the mineral was solved on an automated Syntex P  diffractometer (MoKα radiation, 1398
reflections, 2θ/θ scanning technique, anisotropic refinement to Rhkl = 0.065). The unit-cell parameters are a =
10.589(7) Å, b = 10.217(8) Å, c = 7.355(5) Å, β = 92.91(5)°, V = 794.6(9) Å3, sp. gr. Cm, Z = 2, dcalcd =
2.63 g/cm3. The structure of the mineral consist of a three-dimensional framework of discrete six-membered
rings of Si-tetrahedra linked to isolated Zr-octahedra. The framework cavities are occupied by Na cations. The
litvinskite composition and the structure differ from all known natural and synthetic compounds of the lovoz-
erite group, which supports the assumption about diversity of mineral types in this group. © 2001 MAIK
“Nauka/Interperiodica”.

1

INTRODUCTION

Litvinskite was discovered in the aegirine zone of a
large ultraagpaitic pegmatitic body from the Alluaœv
mountain in the northwestern region of the Lovozero
massif (the Kola Peninsula). The mineral was named
after G.P. Litvinskaya (1920–1994), a leading teacher
at the Department of Crystallography and Crystal
Chemistry of the Faculty of Geology of the Moscow
State University. Litvinskite (IMA no. 99-017) was rec-
ognized as a new mineral type by the Commission on
New Minerals and Mineral Names of the International
Mineralogical Association on August 3, 1999. The min-
eralogical description of the litvinskite can be found
elsewhere [1]. Its chemical composition is described by
the empirical formula Na2.51K0.01 ·
Mn0.14Ca0.01Fe0.01Ze0.96Ti0.01Hf0.01Si6O12.76(OH)5.24 ·
0.47H2O. Litvinskite belongs to a large group of natu-
ral and synthetic compounds derived from lovozerite, a
Na, Zr-silicate of the formula Na2ZrSi6O15 · 3H2O ·
0.5NaOH. (This formula gives rise to serious doubt
because of the absence of divalent cations, which, as
was demonstrated in more recent studies, should be
present in the formula.) The lovozerite structure type is
based on the framework of six-membered silicon–oxy-
gen rings linked through isolated octahedra with the
cavities being occupied by bulky Na cations and H2O
molecules. As was shown in [2, 3], the structures of all
the lovozerite-like compounds may be composed of
identical pseudocubic (with the a parameter approxi-
mately equal to 7.5 Å) blocks of the general formula
A3B3C2M[Si6O18]. This block containing one lovozer-
1063-7745/01/4602- $21.00 © 200190
ite-like ring has four types of (ABCM) positions, which
can be occupied by nine cations. The block vertices are
occupied by octahedrally coordinated M cations (M =
Zr, Ti, Mn, Fe, Ca, Sn, Cd, etc.). The centers of two free
(not occupied by Si cations) octants located on one of
the threefold axes of the protocell are also occupied by
octahedrally coordinated C cations (C = Ca, Mn, Na,
etc.). The positions at the middle of the edges (A) and
in the centers of the faces (B) are filled mainly with Na
cations (sometimes, with Fe, Ti, Mn, Nd, Ca, Cd, or H).
Different structures of lovozerite-like compounds and,
thus, the diversity of the mineral types of this group are
explained by different filling of the above positions in
the block and at the junctions of the adjacent blocks.
The fact that the litvinskite composition and its X-ray
diffraction characteristics differ from those of all
known natural and synthetic compounds of the lovozer-
ite family has stimulated the determination of its struc-
ture.

EXPERIMENT, STRUCTURE DETERMINATION, 
AND ITS REFINEMENT

X-ray diffraction data were collected from a 0.15 ×
0.20 × 0.25-mm-large single crystal. The unit-cell
parameters and the monoclinic symmetry of the crystal
(the Laue class is 2/m) were determined by the photo-
graphic method and refined on an automated single-

crystal Syntex P  diffractometer (a = 10.589(7) Å, b =
10.217(8) Å, c = 7.355(5) Å, β = 92.91(5)°, V =
794.6(9) Å3). The X-ray data were collected on the
same diffractometer. The details of X-ray diffraction

1
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study are presented in Table 1. The systematic absences
of the hkl reflections not satisfying the condition h + k =
2n indicate the face-centered Bravais lattice and three
possible space groups—C2/m, Cm, or C2. The intensi-
ties were converted into |Fhkl | without regard for
absorption (µmax = 0.25). All subsequent calculations
were performed with the use of the AREN program
package [4]. Taking into account the similarity of the
compositions, symmetry, and unit-cell parameters of
lovozerite and litvinskite, the coordinates of the basis
Zr and Si atoms of the lovozerite structure,
Na2ZrSi6O15 · 3H2O · 0.5NaOH (a = 10.48 Å, b =
10.20 Å, c = 7.33 Å, β = 92°33′, the sp. gr. C2) [5] were
used as the starting model in the structure determina-
tion of litvinskite. The positions of the absent light Na
and O atoms were localized by successive approxima-
tions. The resulting structural model was refined by the
least squares method within three possible space
groups. An additional maximum with the coordinates
x ≈ 0.75, y ≈ 0, z ≈ 0.25 was revealed on the difference
electron-density maps constructed within all three pos-
sible groups. This maximum was attributed to the C
position of the lovozerite structure type (the position
statistically occupied by Na, Mn, Ca, and Fe), which is
the only position in the structure having neither an
inversion center nor a twofold axis. This fact uniquely
determines the space group of litvinskite as Cm and
accounts for different structures of litvinskite and
lovozerite. The statistical distribution of Zr, Ti, Hf, Na,
K, Mn, Ca, and Fe over independent crystallographic
positions was established by the refinement of the occu-
pancies for the positions with fixed Biso with the use of
mixed atomic scattering curves and taking into account
the data of the chemical analysis, the effective ionic
radii of cations, the thermal parameters of atoms, and
average cation–oxygen distances. The minimum final
reliability factors after the least squares refinement of
the model with isotropic (Rhkl = 0.101) and anisotropic
(Rhkl = 0.065) thermal parameters corresponded to the
distribution of the cations indicated in Table 2 and the
detailed crystallochemical formula

(Na1.54K0.01(H2O)0.45)Na0.78(Na0.19M Ca0.01F ) 

· (Zr0.96Ti0.01Hf0.01)[Si6O12(OH3){(OH)2.24O0.76}]

(z = 2, dcalcd = 2.63 g/cm3). The idealized structural for-
mula of litvinskite can be written as (Na, H2O, h)3 ·
(h, Na, Mn2+)Zr[Si6O12(OH)3(OH, O)3]; the general
formula, as A3CM[Si6O18]. The final coordinates of the
basis atoms and the equivalent thermal parameters are
given in Table 2. The high thermal parameters can be
explained by predominance of light atoms in the min-
eral structure. Proceeding from the calculations of the
local balance of valence strengths with due regard for
the cation–anion distances [6], the anionic portion of

n0.14
2+ e0.01

2+
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the structure was “separated” into O2– ions and (OH)–

groups. 

DESCRIPTION OF THE STRUCTURE

The litvinskite structure (Fig. 1a) consists of the
framework of six-membered lovozerite-type rings of
tetrahedra [Si6O12(OH)3 · (OH, O)3], with the average
Si−O distances in the Si-tetrahedra ranging from 1.58
to 1.62 Å, sharing oxygen vertices with isolated
M-octahedra (the M–O distances range within 2.02–
2.10 Å). The M-octahedra are located at the vertices
and in the centers of the basal faces of the unit cell
(Fig. 1a) and are occupied predominantly by Zr4+ cat-
ions. Free vertices of the Si-tetrahedra are occupied by

Table 1.  Some details of X-ray diffraction study of litvinskite

Characteristic Parameter

Crystal dimensions, mm 0.15 × 0.20 × 0.25

Diffractometer P Syntex

Radiation MoKα

Monochromator Graphite

Sp. gr. Cm

Unit-cell parameters, Å, deg a = 10.589(7)

b = 10.217(8)

c = 7.355(5)

β = 92.91(5)

V = 794.6(9)

Number of formula units Z 2

Scanning technique 2θ : θ

Maximum sinθ/λ 1.063

Scan rate 4–24 deg/min

Number of measured reflections
with I > 1.96σ(I) within the 
Ewald hemisphere

2554

Number of independent reflection 1398

Program package AREN

Reliability factors R(hkl):

isotropic refinement 0.101

anisotropic refinement 0.065

Weighting scheme used in the
 least-squares procedure

w = 1/(A + F + BF2)

A = 2Fmin

B = 2Fmax

1
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Table 2.  Coordinates of basis atoms and individual thermal parameters in the litvinskite structure 

Atom
Multipli-
city of the
position

Occupancy of the position x/a y/b z/c Beq, Å2

A(1) 2 0.78Na 0.003(2) 0 0.497(3) 4.4(2)

A(2) 4 0.77Na + 0.225H2O + 0.005K 0.754(1) 0.252(1) –0.004(2) 4.1(1)

M 2 0.96Zr + 0.01Ti + 0.01Hf 0 0 0 2.70(8)

C 2 0.19Na + 0.14Mn + 0.01Ca + 0.01Fe 0.747(1) 0 0.254(2) 4.2(3)

Si(1) 4 Si 0.4905(3) 0.2203(3) 0.2866(3) 3.15(8)

Si(2) 2 Si 0.2900(3) 0 0.2614(7) 3.3(1)

Si(3) 4 Si 0.5117(2) 0.2271(2) 0.7124(3) 2.8(1)

Si(4) 2 Si 0.7160(3) 0 0.7298(5) 2.7(1)

O(1) 2 O 0.179(1) 0 0.109(2) 5.1(3)

O(2) 4 O 0.372(1) 0.1311(9) 0.238(2) 5.8(2)

O(3) 4 O –0.005(2) 0.245(1) 0.504(2) 5.5(2)

O(4) 4 O 0.044(1) 0.142(1) 0.809(2) 6.2(2)

O(5) 4 (OH) 0.381(1) 0.151(2) 0.765(2) 8.5(3)

O(6) 2 (OH) 0.235(2) 0 0.471(3) 7.0(3)

O(7) 2 O 0.810(1) 0 0.904(2) 5.2(4)

O(8) 4 O 0.623(1) 0.121(1) 0.750(2) 6.0(3)

O(9) 4 O 0.961(1) 0.1435(9) 0.178(1) 5.1(3)

O(10) 4 (OH, O) 0.618(1) 0.157(1) 0.220(2) 5.7(2)

O(11) 2 (OH, O) 0.780(2) 0 0.543(2) 5.3(3)
the (OH)− groups, whereas C-octahedra (the C–O dis-
tances are in the range of 2.11–2.77 Å) statistically
filled (by 35%) with Na+, Mn2+, Ca2+, and Fe2+ cations
share the oxygen faces with M-octahedra and are also
involved in the framework. The remaining three verti-
ces of each C-octahedron are occupied by the O2– ions
and (OH)− groups. The number of the O2– ions replaced
by the (OH)− groups correlates with the degree of filling
of the C position. The Na cations occupy the cavities of
the framework and two crystallographically nonequiv-
alent positions, namely, the position A(1) at the mid-
points of the c axis of the unit cell between the M-octa-
hedra related by a translation and the position A(2) in
the channels of hexagonal section along the [001]
direction (the cation–anion distances in the eight-vertex
polyhedra A(1) and A(2) range within 2.39–2.78 and
2.43–2.79 Å, respectively). The water molecules and a
small fraction of K and Na cations can be located in the
channel cavities (because of their somewhat larger vol-
ume). The litvinskite structure differs from the lovozer-
ite structure (Fig. 1b): the former has an additional cat-
ionic position (C); thus, the sp. gr. C2 (of lovozerite) is
“transformed” into the sp. gr. Cm (of litvinskite). The-
oretically, this position can also be filled in the structure
C

of another lovozerite variety [7] with a high content of
divalent Ca2+ and Mn2+ cations:

(Na2.47K0.01Ca0.45Mn0.20TR0.02)Σ3.16 

· (Zr0.75F Ti0.08)Σ1.02(Si5.81Al0.19)Σ6.0 

· O13.86(Cl0.06(OH)4.76)Σ4.82:

(a = 10.18 Å, c = 13.10 Å or arh = 7.32 Å, αrh = 88°04′,
the possible sp. gr. R m) [7]. It was assumed [7] that
the latter mineral is structurally similar to monoclinic
lovozerite, and the matrix of the transformation from
the rhombohedral to monoclinic unit cell was given in
the form |−1/3 –2/3 –2/3|1 0 0|–1/3 –2/3 –1/3|. Pro-
ceeding from the similarity of the chemical composi-
tions of trigonal lovozerite and litvinskite, we exam-
ined the possibility of a higher (trigonal) symmetry for
litvinskite. However, the transformation of the litvin-
skite structure to the rhombohedral one (with the trans-
formation matrix |1/2 –1/2 1|0 1 0|–1 0 1|) and the
refinement of the structure obtained showed that the
arrangement of most of the light atoms is inconsistent
with the trigonal symmetry. The wide range of the Si−O
distances in the Si-tetrahedra also indicates that the
symmetry should be lowered. The low symmetry of

e0.19
3+

3
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M A(1)

A(2)Si

OH
C

Si

b

a sinβ

a sinβ

b
Zr

Na(1)

Na(2)
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(b)

Fig. 1. Crystal structures of (a) litvinskite and (b) lovozerite
projected onto the xy plane: A(1) = Na; A(2) = Na, H2O, or
K; M = Zr, Ti, or Hf; and C = Na, Mn, Ca, or Fe.
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litvinskite was also confirmed by the crystal optics
data [1].

The C position in the litvinskite structure filled with
Na, Mn2+, Ca, and Fe2+ cations is also typical other rep-
resentatives of this family, for example, kazakovite
Na6MnTi[Si6O18] [8] and zirsinalite Na6CaZr[Si6O18]
[9]. However, a high Na content in these minerals
results in symmetry and structure considerably differ-
ent from those of litvinskite. The structure determina-
tion of litvinskite confirms the conclusion drawn in
[2, 3] that the lovozerite group includes a wide variety
of mineral types.
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Abstract—The structure of TR-fersmite (Ca0.89Ce0.11)(Nb1.3Ti0.7)O5(O, OH) was refined to R = 0.032.

The parameters of the orthorhombic unit cell are a = 5.762(2) Å, b = 14.988(8) Å, c = 5.246(1) Å, sp. gr. Pcan,
Z = 4. The mixed A position is occupied by Ca and Ce atoms, and the mixed B position is occupied by Nb and
Ti atoms. © 2001 MAIK “Nauka/Interperiodica”.
Fersmite CaNb2O6 belongs to the family of the min-
erals described by the general formula AB2O6, where
A = Ca, U, Th, or TR and B = Nb, Ti, or Ta. The struc-
ture of La-containing TR-fersmite has been established
by V.B. Aleksandrov [1] based on X-ray powder dif-
fraction data up to R = 15%. Recently, an analogous
mineral was found in rocks of the Ust’-Biran rare-
metal–rare-earth deposit [2] (where it is distributed in
rich complex mineral association) in the form of indi-
vidual grains with up to 65% of the Ca atoms being
replaced by Ce atoms. Below, we describe the new
structural study of this mineral.

An isometric black single crystal of TR-fersmite
was studied. The parameters of the orthorhombic unit
cell were determined and refined on a Syntex P1 dif-
fractometer based on 15 high-angle reflections in the
range 2θ = 22°–28°. The main characteristics of the

b

a

Fig. 1. Structure of TR-fersmite (TR = Ce) projected onto
the (001) plane. Two-layer octahedral sheets are linked via
A cations (represented by circles).
1063-7745/01/4602- $21.00 © 20194
crystal and the details of X-ray study are indicated in
Table 1. The atomic coordinates and the interatomic
distances are listed in Tables 2 and 3, respectively.

Since we failed to refine the structure of TR-fersmite
using the atomic coordinates from [1], we decided to
solve the structure by direct methods, although the
exact chemical formula of the compound was
unknown. First, the cationic fragment consisting of Nb
and Ca atoms was determined and refined isotropically
to R = 14%. This fragment was used to localize oxygen
atoms from the F synthesis. The refinement of the
structure model to R = 8% demonstrated that the ther-
mal parameters of cations are inconsistent with the set
kinds of atoms. We managed to obtain a rather low R
factor (0.032) and reasonable atomic thermal parame-
ters by varying the Nb : Ti and Ca : Ce ratios in the

a

c

Fig. 2. Layer of (Ca,Ce)-eight-vertex polyhedra projected
onto the (010) plane.
001 MAIK “Nauka/Interperiodica”
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Table 1.  Structural data and details of X-ray diffraction study

Characteristic Data and conditions

Unit-cell parameters, Å a = 5.762(2), b = 14.988(8),
c = 5.246(1)

Unit-cell volume, Å3 V = 453.05

Sp. gr., Z Pcan, 4

Radiation λ, Å MoKα, 0.71073

Crystal dimensions, mm 0.2 × 0.2 × 0.3

Diffractometer Syntex P1

Scanning mode ω/2θ
(sinθ/λ)max, Å–1 1.078

Ranges of the indices of
measured reflections

0 < h < 11, 0 < k < 30,
–11 < l < 11

Rint for equivalent reflections 0.014

Total number of reflections 1792 I > 2σ(I)

Number of independent
reflections

1017 F > 4σ(F)

Density ρcalcd, g/cm3 4.65

Program AREN [3]

Absorption correction DIFABS [4]

Extinction parameter E 0.0000020

R factor upon anisotropic
refinement

0.032

Table 2.  Atomic coordinates and equivalent thermal parameters

Atom x/a y/b z/c Beq, Å2

A 0.2260(1) 0.5 0.25 0.96(1)

B 0.1827(1) 0.1662(1) 0.2999(1) 0.82(1)

O(1) 0.3995(5) 0.0886(2) 0.4040(6) 1.46(4)

O(2) 0.4298(5) 0.4013(2) 0.5110(6) 1.49(4)

O(3) 0.3650(5) 0.2576(2) 0.1285(6) 1.30(4)

Table 3.  Interatomic distances (Å)

B-octahedron A-polyhedron

B–O(1) 1.792(3) A–O(2) 2.333(3) × 2

O(2) 1.933(3) O(1) 2.362(3) × 2

O(3) 1.946(3) O(1) 2.440(3) × 2

O(3) 2.086(3) O(2) 2.774(3) × 2

O(2) 2.091(3) 〈 2.452 〉
O(3) 2.337(3)

〈 2.034 〉
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
anisotropic refinement and taking into account extinc-
tion.

The analysis of the local valence balance demon-
strated that one of the O positions is partly occupied by
a hydroxyl group. The final formula of the mineral
determined upon the X-ray diffraction analysis can be
written as (Ca0.89Ce0.11)(Nb1.3Ti0.7)O5(O,OH).

The structure of TR-fersmite under consideration is
identical to the structures of the mineral studied earlier
in [1] and of its La-containing synthetic analogue [5].
The B-polyhedra are distorted octahedra sharing edges
to form chains along the c-axis. These chains are very
rigid structural elements. The chains of octahedra are
located in a staggered fashion and linked by shared ver-
tices, thus forming two-layer octahedral sheets (Fig. 1).
The sheets are linked along the b-axis by edge-sharing
eight-vertex Ca polyhedra, which form planar layers
(Fig. 2). As a result, the structure of TR-fersmite con-
tains six cationic layers normal to the b axis. These cat-
ions occupy the voids of the hexagonal packing of the
oxygen atoms.

To summarize, we established, with a high degree of
accuracy that Ce occupies the A position together with
a Ca atom and that Ti occupies the B position together
with Nb. These facts confirm the existence of a contin-
uous isomorphous series CaNb2O6–(Y,TR)(Nb,Ti)2O6
of columbite-type structures, whose intermediate mem-
ber is TR-fersmite.
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Abstract—Structural features of 3d metal complexes with anions of 1-hydroxyethylidenediphosphonic acid
(HEDP, H4L), in which the M : HEDP ratios are equal to 1 : 2, 1 : 1, 3 : 2, and 5 : 2, are discussed. The Cu(II) :
HEDP = 1 : 2 complexes are characterized by five types of structures: monomeric structures
trans-[Cu(H4 − nL)2(H2O)2]

2 – 2n, cis-[Cu(H4 – nL)2(H2O)2]
2 – 2n, and [Cu(L)2]

6–; the dimeric structure
{[Cu(H2L)(H2O)]2(µ2-H2L)2}

4−; and the polymeric chain structure {[Cu(µ2-H2L)2]2–}∞. Six coordination modes
exhibited by HEDP in the Cu(II) compounds are described. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Structures of 3d metal complexes with 1-hydroxy-
ethylidenediphosphonic acid (HEDP, H4L) have been
the object of much attention. The crystal structures of
about twenty compounds of this class have been deter-
mined up to now. A broad spectrum of structures which
differ in the degree of aggregation of complexes
(monomers, dimers, polymeric chains, ribbons, or
three-dimensional frameworks), the type of geometric
isomer (trans or cis), the degree of distortion of the six-
vertex metal polyhedron, the coordination mode of the
H4 – nLn– ligand, etc., can be realized depending on the
individuality of the central M atom, the M : HEDP ratio,
the nature of the counterion, the composition of the
hydrate sphere, and the presence (or absence) of the
accompanying ligands.

Complexes of bivalent copper with the ratio M :
HEDP = 1 : 2 have been studied most completely. The
1 : 2 compounds of other 3d metals [Zn(II), Co(II),
Ni(II), and Mn(II)] and Cu(II) complexes with the Cu :
HEDP ratio equal to 1 : 1 and 3 : 2 were characterized
to a lesser degree. Structures of the mixed-valent
Cu(I, II) complex (Cu : HEDP = 5 : 2) and the Ni(II)
complex compound in which HEDP plays an unusual
part of the “free” anion uninvolved in metal coordina-
tion are also known.

In this paper, we consider specific structural features
of 3d metal compounds with HEDP.

2. COMPLEXES OF COPPER(II) 
WITH THE RATIO Cu : HEDP = 1 : 2

Structural features of copper(II) compounds with
the ratio Cu : HEDP = 1 : 2 are determined primarily by
the ligand composition of the complexes. In all the
compounds, the coordination sphere of the six-vertex
polyhedron of the Cu atom includes two H4 – nLn–
1063-7745/01/4602- $21.00 © 200196
ligands, whereas the number of coordination water
molecules (m') varies between zero and two. As a rule,
m' determines the function and the coordination capac-
ity of the H4 – nLn– ligands in the complexes.

Complexes with two water molecules in the coordi-
nation sphere of the metal have an island structure. In
compounds [Cu(H3L)2(H2O)2] · 3H2O (I) [1, 2] and
(Et2NH2)2[Cu(H2L)2(H2O)2] (II) [3], the copper(II)
coordination polyhedra are centrosymmetric elongated
tetragonal bipyramids (4 + 2) with a trans structure and
the O(H2O) atoms at the axial positions (Fig. 1a),
whereas in the triethanolammonium complex salt
[(HOCH2CH2)3NH][Cu(H2.5L)2(H2O)2] · 5H2O (III)
[4] (Fig. 1b), the cis isomer is formed [with the O(L)
and O(H2O) atoms at the axial vertices]. In both trans
and cis isomers of the [Cu(H4 − nL)2(H2O)2]2 – 2n com-
plexes, H4 – nLn– are bidentate chelate ligands.

In the structures of two complex alkali-metal salts
Cat2Cu(H2L)2 · 3H2O [5], where Cat = K (IV) or
Cs (V), and the (CH3NH3)2Cu(H2L)2 · 2H2O (VI) meth-
ylammonium salt [6], only one H2O molecule is
involved in the coordination sphere of the Cu atom. The

centrosymmetric [Cu(µ2-H2L)(H2L)(H2O)  anionic
complex (Fig. 2) has a dimeric structure. Two indepen-
dent H2L2– ligands are cis to each other and perform dif-
ferent functions, namely, the bidentate chelate function
and the tridentate chelate µ2-bridging function. Thus, in
the anionic complexes of structures IV–VI, the metal
atoms are linked by two H2L2– ligands into pairs and
each Cu atom is coordinated by three H2L2– ligands
(two of them act in the bidentate mode; the third, in the
monodentate mode).

The fourth structural type occurs in two dihydrates
of the general formula Cat2Cu(H2L)2 · 2H2O, where

]2
4–
01 MAIK “Nauka/Interperiodica”
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Fig. 1. Structures of (a) trans-[Cu(H2L)2(H2O)2]2– and (b) cis-[Cu(H2.5L)2(H2O)2]– complexes.

(a)

(b)
Cat2 = (NH4)2 (VII) [7] or Rb(H5O2) (VIII) [8]. In these
compounds, water molecules are not included in the
coordination sphere of the metal, and the {[Cu(µ2-
H2L)2]2–}∞ anionic complex (Fig. 3) has a polymeric
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
chain structure. Both H2L2– ligands are in the trans
positions to each other (the Cu atoms occupy the inver-
sion centers) and perform the tridentate chelate
µ2-bridging function.
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Similar to structures VII and VIII, in the polyhy-
drate mixed potassium–sodium K4Na2Cu(L)2 · 12H2O
(IX) complex salt [9], water molecules are not included
in the coordination sphere of the Cu atom. However,
unlike VII and VIII, which have polymeric chain struc-
tures, the centrosymmetric [Cu(L)2]6– anionic complex
in structure IX is monomeric (Fig. 4) and the com-
pletely deprotonated L4– ligands perform the uncom-
mon tridentate chelate function. Except for IX, there is
only one example of the tridentate chelate coordination
mode of the HEDP ligand in a transition metal com-
plex, namely, in the structure of [C(NH2)3]5[WO3(L*)] ·
4.5H2O [10].1 However, in this complex, two deproto-
nated O(P) atoms of two phosphonate groups and, addi-

1 Unlike the usual tetrabasic L4– form, the (L*)5– ligand is the com-
pletely deprotonated (not only at the four phosphonate oxygen
atoms, but also at the α-hydroxy group) HEDP ion.
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Fig. 2. Structure of the {[Cu(µ2-H2L)(H2L)(H2O)]2}4–

binuclear complex.

O(8)
C

tionally, the deprotonated O(C) atom of the α-hydroxy
group take part in metal coordination, whereas in IX,
the protonated α-(C)OH atom is involved in metal
coordination. The latter coordination mode is rather
unusual. There is only one more example of coordina-
tion of a transition metal by a protonated α-hydroxy
group, namely, the polymeric ribbon structure of the
Cu : HEDP = 3 : 2 complex [Cu3(HL)2(H2O)4] · 2H2O
[11].

In all the compounds with the general formula
Cat2n – 2Cu(H4 – nL)2 · mH2O (I–IX), the six-vertex
Cu(II) coordination polyhedron has the shape of an
elongated tetragonal bipyramid (4 + 2). The Cu–O
bond lengths are given in Table 1. The mean lengths of
the Cu–O(L)eq equatorial bonds lie within the narrow
range 1.959–1.990 Å. The Cu–O(H2O)eq distance in
structure III (1.985 Å) falls in the same range. The Cu–
Oax axial bonds are significantly longer than the equa-
torial bonds due to the Jahn–Teller effect in six-coordi-
nate Cu(II) complexes. The ranges of the mean Cu–
O(H2O)ax and Cu–O(L)ax bond lengths in structures
III–VIII overlap (2.311–2.469 and 2.353–2.445 Å,
respectively). The mean difference between the axial
and equatorial bond lengths ∆ in structures I–VIII lies
between 0.326 and 0.504 Å. Structure IX stands out,
since the axial Cu–OH(L) bond with the protonated
oxygen atom of the α-hydroxy group (2.667 Å) is sig-
nificantly (by 0.198–0.356 Å) longer than the axial Cu–
O(H2O) and Cu–O(L) bonds (with the phosphonate
oxygen atoms). Therefore, the ∆ parameter in IX
(0.710 Å) is 0.206–0.384 Å greater than that in I–VIII.
O(1)
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O(2)

O(6)

O(3)
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O(4)
O(7)

C(1)

C(2)

O(2A)P(1)
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Fig. 3. A fragment of the polymeric chain structure of the {[Cu(µ2-H2L)2]2–}∞ complex.
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3. COMPLEXES OF Zn(II), Co(II), AND Ni(II) 
WITH THE RATIO M : HEDP = 1 : 2

In addition to the copper(II) compounds, four com-
plexes of other 3d metals (Zn, Co, and Ni) with the M :
HEDP = 1 : 2 ratio have been characterized structurally.

The (Et2NH2)2[M(H2L)2(H2O)2] complexes, where
M = Co (X [3]) and Zn (XI [12]), are isostructural to the
Cu analogue II [3]. According to crystallographic data
[12], this isostructural series, except for the complexes
of M2+ = Cu, Co, and Zn, includes the compounds of
nickel(II), manganese(II), and even magnesium(II).
The six-vertex coordination polyhedron of the metal in
X and XI, as in II, has the trans structure.

The complex triethanolammonium salts
{(HOCH2CH2)3NH}[M(H2.5L)2(H2O)2] · 5H2O form
the second isostructural series. The structures of the
copper (III [4]) and zinc (XII [13]) complexes were
determined by the single-crystal X-ray diffraction tech-
nique. The isostructurality of the Ni, Co, Mn, and Mg
compounds to III and XII is supported by the coinci-
dence of the lattice parameters [4, 13]. In this series of
structures, the complexes are mononuclear and the six-
vertex polyhedra of the metal atoms are the cis isomers.

The anionic complex in the (NH4)2[Ni(H2L)2(H2O)2] ·
7H2O ammonium salt (XIII [14]) also has the cis struc-
ture.

The mean M–O bond lengths in four monomeric 3d
metal (Zn, Co, and Ni) complexes
Cat2[M(H4 − nL)2(H2O)2] · mH2O are listed in Table 2.

A comparison of the geometric parameters of the
Zn(II), Co(II), and Ni(II) complexes with those of the
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
Cu(II) complexes reveals essential differences. In the
former compounds, the equatorial M–O(L) and M–
O(H2O) bonds are significantly longer than those in the
latter complexes; the mean values are as follows: 2.076 Å
for XI and XII (M = Zn), 2.073 Å for X (M = Co),
2.057 Å for XIII (M = Ni), and 1.957–1.988 Å for I–IX
(M = Cu). At the same time, the axial M–O bonds in
I−IX (Cu–Oax, 2.311–2.667 Å) are significantly elon-
gated relative to the M–Oax bonds in X–XIII (2.177,
2.179, and 2.077 Å for M = Zn, Co, and Ni, respec-
tively) due to the Jahn–Teller effect. The six-vertex
coordination polyhedron of the metal atom in X–XIII
can be described as a distorted octahedron in which the
conventionally denoted axial bonds M–Oax are slightly

. ........
............

... ....
....
... ... ....... ............

O(11)

O(12)
O(13)

O(1)

O(21)

O(23)

O(22)
O(12A)

O(11A)

O(13A)

O(21A)

O(23A)

O(22A)

O(1A)

C(1)

C(2)

Cu(1)

P(1)

P(1A)

P(2A)

P(2)

C(1A)

C(2A)

Fig. 4. Structure of the [Cu(L)2]6– complex.
Table 1.  Mean Cu–O bond lengths and the ∆(∆)* parameters in the Cat2n – 2Cu(H4 – nL)2 · mH2O structures

No. Formula
Cu–O bond lengths, Å

∆(∆), Å Reference
equatorial axial

Ia [Cu(H3L)2(H2O)2] · 3H2O 1.959 O(L) 2.456 O(H2O) (0.497) [1]

Ib [Cu(H3L)2(H2O)2] · 3H2O** 1.965 O(L) 2.469 O(H2O) (0.504) [2]

II (Et2NH2)2[Cu(H2L)2(H2O)2] 1.978 O(L) 2.443 O(H2O) (0.465) [3]

III {(HOCH2CH2)3NH}[Cu(H2.5L)2(H2O)2] · 5H2O 1.990 O(L) 2.428 O(L) 0.438 [4]

1.985 O(H2O) 2.311 O(H2O) 0.326

IV K2[Cu(µ2-H2L)(H2L)(H2O)] · 2H2O 1.990 O(L) 2.359 O(L) 0.369 [5]

2.326 O(H2O) (0.353)

V Cs2[Cu(µ2-H2L)(H2L)(H2O)] · 2H2O 1.982 O(L) 2.415 O(L) 0.433 [5]

2.425 O(H2O) (0.438)

VI (MeNH3)2[Cu(µ2-H2L)(H2L)(H2O)] · H2O 1.979 O(L) 2.353 O(L) 0.374 [6]

2.331 O(H2O) (0.363)

VII (NH4)2[Cu(µ2-H2L)2] · 2H2O 1.968 O(L) 2.445 O(L) 0.477 [7]

VIII Rb(H5O2)[Cu(µ2-H2L)2] · 2H2O 1.978 O(L) 2.365 O(L) 0.387 [8]

IX K4Na2[Cu(L)2] · 12H2O 1.957 O(L) 2.667 OH(L) (0.710) [9]

∗ ∆ (∆) is the mean difference between lengths of the axial and equatorial Cu–O bonds (∆ for identical bonds and (∆) for all bonds). 
** In [2], the formula of this compound is represented by mistake as [Cu(H3L)2(H2O)2] · 2H2O.
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Fig. 5. Structural fragments of (a) {[Cu(µ2-H2L)(µ2-Cl)]–}∞ and (b) [Cu(µ2-H2L)(H2O)]∞ complexes.
longer in comparison with the equatorial bonds (on
average, by 0.020–0.134 Å).

4. POSSIBLE REASONS FOR THE DIVERSITY 
OF STRUCTURES IN THE M : HEDP = 1 : 2 

COMPLEXES

As already noted, we distinguish five types of struc-
tures among the copper(II) complexes with HEDP
(Cu : HEDP = 1 : 2). These types differ in the mutual
arrangement of the ligands (trans and cis isomers), the
degree of aggregation of complexes (mononuclear,
binuclear, and polymeric chain structures), and the
function of the H4 – nLn– ligands (bidentate chelate, tri-
dentate chelate, and tridentate chelate µ2-bridging
ligands).2 The Cu : HEDP = 1 : 2 complexes are close
in composition, and the reasons for the diversity of their
structures are not entirely clear.

It is obvious that the charge of the H4 – nLn– ligand
(the degree of its deprotonation) and, hence, the charge
of the complex have no effect on the type of structure.
The individuality of the complexing agent determines
only the degree of distortion of the six-vertex coordina-
tion polyhedron under the Jahn–Teller effect [for
Cu(II)] but not a particular type of structure.

Most likely, the roles played by the outer-sphere cat-
ion and crystallization water molecules are more
important. In particular, they affect the “decision”
between the geometric isomers (cis or trans) in the
monomeric [M2+(H4 – nL)2(H2O)2]2 – 2n complexes (M =
Cu, Zn, Co, Ni, or Mn). Possible reasons for the diver-
sity of the types of structures in the M : HEDP = 1 : 2
complexes are discussed in more detail in [16].

2 It is notable that replacement of the metal substituent R in HEDP
RC(OH)(PO3H)2 by aminopropyl [H4L', R = (CH2)3N ) or

aminopentyl [H4L'', R = (CH2)5N ] results in the formation of
the dimeric {[Cu(H2L')(H2O)]2(µ2-H2L')2} structure in
Cu(H2L')2 · 2H2O [15] and the monomeric trans-
[Cu(H2L'')2(H2O)2] structure in Cu(H2L'')2 · 4H2O [15] (struc-

tures of the T 001 and B01 types, see Section 9).

H3
+

H3
+

C

5. COPPER(II) COMPLEXES 
WITH THE RATIO M : HEDP = 1 : 1

Three Cu(II) compounds with the ratio Cu :
HEDP = 1 : 1 have been characterized structurally,
namely, Na[Cu(H2L)Cl] · 3H2O (XIV [17]),
[Cu(H2L)(H2O)] · 3.5H2O (XV [18]), and
[Cu(H2L)(Bipy)(H2O)] · 2H2O (XVI [19]).

In XIV (Fig. 5a) and XV (Fig. 5b), copper atoms are
linked through the tetradentate bischelate µ2-bridging
H2L2– ligands into polymeric chains (anionic and neu-
tral, respectively). The coordination polyhedra and
coordination numbers of the metal atoms in structures
XIV and XV depend on the nature of the accompany-
ing ligand X (Cl or H2O). In XIV, in addition to the
H2L2– ligands, the complexes are joined through the
bridging chlorine atoms, which occupy the axial sites in
the six-vertex polyhedron [elongated tetragonal bipyra-
mid (4 + 2)] of the copper atom. In XV, the oxygen
atom of the terminal water molecule occupies the axial
site in the five-vertex polyhedron [tetragonal pyramid
(4 + 1)]. Equatorial planes in the coordination polyhe-
dra of the Cu atoms in structures XIV and XV are occu-
pied by four O atoms of four phosphonate groups of
two H2L2– ligands. The above two compounds differ not
only in the coordination number of the metal atom but
also in the general structural motif: in XIV, the chains
are approximately linear, whereas the structure of XV
consists of zigzag chains.

In the mononuclear neutral [Cu(H2L)(Bipy)(H2O)]
complex in structure XVI (Fig. 6), the presence of three
different ligands, two of which fulfill the bidentate che-
late function, determines the tetragonal–pyramidal
coordination of the metal atom (4 + 1). The equatorial
plane of the tetragonal pyramid is formed by two O(L)
atoms of two phosphonate groups of the H2L2– ligand
and two N atoms of bipyridyl, and the axial site is occu-
pied by the O(w) atom of the water molecule. The Cu
atom deviates from the basal plane of the pyramid
toward the axial O(w) atom by 0.214 Å.

Table 3 presents the mean geometric parameters of
complexes XIV–XVI with the ratio Cu : HEDP = 1 : 1
and two complexes with the ratios Cu : HEDP = 3 : 2
and 5 : 2 (see below). As usual, the axial Cu–O (Cu–Cl)
bonds in the Cu(II) coordination polyhedra are substan-
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Table 2.  Mean M–O bond lengths in monomeric octahedral trans (t) and cis (c) Cat2n – 2[M(H4 – nL)2(H2O)2] · mH2O comp-
lexes of 3d metals (Zn, Co, and Ni)

No. Formula
M–O bond lengths, Å

∆(∆)*, Å Reference
equatorial axial

X (Et2NH2)2[Co(H2L)2(H2O)2](t) 2.073 O(L) 2.179 O(H2O) (0.106) [3]

XI (Et2NH2)2[Zn(H2L)2(H2O)2](t) 2.066 O(L) 2.200 O(H2O) (0.134) [12]

XII {(HOCH2CH2)3NH}-[Zn(H2.5L)2(H2O)2] · 5H2O(c) 2.067 O(L) 2.175 O(L) 0.108 [13]

2.105 O(H2O) 2.133 O(H2O) 0.028

XIII (NH4)2[Ni(H2L)2(H2O)2] · 7H2O(c) 2.056 O(L) 2.085 O(L) 0.029 [14]

2.058 O(H2O) 2.069 O(H2O) 0.011

* ∆(∆) is the mean difference between lengths of the axial and equatorial M–O bonds (∆ for identical bonds and (∆) for all bonds).

Table 3.  Mean Cu–Lig bond lengths and the ∆(∆) parameters* in the Cu : HEDP = 1 : 1, 3 : 2, and 5 : 2 complexes

No. Formula
Cu–O bond lengths, Å

∆(∆), Å* Reference
Cu-Lig (eq) Cu-Lig (ax)

XIV Na[Cu(H2L)Cl] · 3H2O 1.984 O(L) 2.794 Cl [17]

XV [Cu(H2L)(H2O)] · 3.5H2O 1.90 O(L) 2.39 O(H2O) (0.42) [18]

XVI [Cu(H2L)(Bipy)(H2O)] · 2H2O 1.940 O(L) 2.258 O(H2O) (0.318) [19]

2.003 N(Bipy)

XVII [Cu3(HL)2(H2O)4] · 2H2O** 1.969 O(L) 2.458 OH(L) (0.489) [11]

1.942 O(L) and

1.966 O(H2O) 2.347 O(H2O) 0.381

XVIII Na2[ (L)6(OH)2] · H2O*** 1.980 O(L) 2.630 O(L) 0.650 [20]

1.927 OH

∗ ∆ (∆) is the mean difference between lengths of the axial and equatorial Cu–O bonds [∆ for identical bonds and (∆) for all bonds].
** For structure XVII, the bond lengths are given for Cu coordination polyhedra of two types: tetragonal bipyramid (4 + 2) (upper line)

       and tetragonal pyramid (4 + 1).
*** For structure XVIII, the bond lengths are given for the six-vertex Cu(II) polyhedra (4 + 2).

Cu6
1+

Cu9
2+
tially elongated. In compounds XV and XVI, the
lengths of the axial and equatorial Cu–O bonds differ
by ∆ = 0.32–0.49 Å.

6. COMPLEX WITH THE RATIO 
Cu : HEDP = 3 : 2, Cu3(HL)2 · 6H2O

In Cu3(HL)2 · 6H2O (XVII) [11], which is the only
structurally characterized compound with the ratio Cu :
HEDP = 3 : 2, the neutral [Cu(µ3-HL)2(H2O)4]∞ com-
plex has a polymeric structure (ribbons consisting of
double chains, see Fig. 7). The HL3– ligand fulfills the
hexadentate trischelate µ3-bridging function. It coordi-
nates one of the two independent copper atoms [Cu(1)]
in the tridentate chelate mode, the Cu(2) atom in the
bidentate chelate mode, and the Cu(2)' atom [symmet-
rically related to Cu(2)] in the monodentate mode. The
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
(H)O(C) oxygen atom of the protonated α-hydroxy
group, together with two O(P) atoms of the phospho-
nate groups, participates in the coordination of Cu(1).
Two independent copper atoms have different coordi-
nation environments. The coordination polyhedron of
the Cu(1) atom is a centrosymmetric elongated tetra-
gonal bipyramid (4 + 2), and the polyhedron of the
Cu(2) atom is a tetragonal pyramid (4 + 1). In the latter
pyramid, one of two oxygen atoms of the coordinated
water molecules occupies an equatorial site, and the
other water oxygen occupies the axial site.

The Cu(2) atom is displaced from the equatorial
plane defined by four O atoms toward the O(2w) atom
by 0.196 Å. The sixth vertex in the Cu(2) coordination
polyhedron is blocked by the methyl group of the HL3–

ligand of the adjacent molecule, which is related to the
reference molecule by the inversion center (the
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Cu(2)...C distance is 3.283 Å, and the O(2w)Cu(2)C
angle is 175.4°).

In the coordination polyhedra of both metal atoms,
the axial bonds are significantly longer than the equato-
rial bonds [by 0.49 and 0.38 Å for Cu(1) and Cu(2),
respectively].

The coordination of a metal atom by the oxygen
atom of the protonated α-hydroxy group, which is
observed in XVII, is uncommon to the HEDP com-
plexes of transition metals. This coordination mode was
revealed in one more compound, namely, the [Cu(L)2]6–

complex of the earlier described structure IX.

7. MIXED-VALENT Cu(I, II) COMPLEX 
WITH THE RATIO Cu : HEDP = 5 : 2, 

Na2Cu15(L)6(OH)2 · H2O

The crystal structure of Na2[C C (L)6(OH)2] ·
H2O (XVIII) [20], the first mixed-valent copper(I, II)
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Fig. 6. Structure of the [Cu(H2L)(Bipy)(H2O)] complex.
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complex.
C

complex with the ratio Cu : HEDP = 5 : 2 [Cu(I) :
Cu(II) : HEDP = 2 : 3 : 2], was determined recently
[20]. The framework structure is built of “honeycomb”

layers of two types: (i) the [C (OH))O3 structural
units share edges to form the A layer and (ii) the NaO6

octahedra and the planar Cu2+O4 fragments share edges
to form the B layer. The A and B layers are linked
through 18-membered rings Cu3P6O6C3, which are
sandwiched between the layers. The ring includes three
L4– ligands and three Cu1+O2 structural units (Fig. 8).
The channels formed in the three-dimensional structure
accommodate crystallization water molecules. In struc-
ture XVIII, there are two crystallographically non-
equivalent copper(II) atoms [Cu(1) and Cu(2) (at the
inversion center)] and copper(I) atom [Cu(3)]. The
environments of the Cu(1) and Cu(2) atoms are
described as four-vertex polyhedra. The polyhedron of
the Cu(2) atom is a nearly regular square (the Cu–O
distances are 1.952 and 1.967 Å, and the OCuO angles
are 86.8° and 93.2°), and the polyhedron of the Cu(1)
atom shows pronounced distortions [the Cu–O dis-
tances are 1.927–2.040 Å, the OCuO angles are 75.5°–
101.5°, and the Cu(1) atom deviates from the plane of
four O atoms by 0.128 Å). The monovalent Cu(3) atom
is two-coordinate (Cu–O, 1.822 and 1.825 Å and
OCuO, 177.8°). The coordination sphere of the Cu(1)
atom includes three O(L) oxygen atoms of two HEDP
ligands and the µ3-hydroxo OH ligand, which connects
three Cu(1) atoms. The coordination octahedron of the
Na atom (av. Na–O, 2.442 Å) shares an edge with the
Cu(2) polyhedron.

The L4– ligand fulfills the hexadentate bischelate µ5-
bridging function (with respect to the copper atoms): it
coordinates a Cu(2) atom, two Cu(1) atoms, and two
Cu(3) atoms with all the six phosphonate O(L) atoms
and forms two joint six-membered metallocycles

 and .

As noted above, the coordination polyhedra of the
Cu(1) and Cu(2) atoms are characterized in [20] based
on the coordination number equal to four. In reality, the
coordination polyhedra of the Cu(1) and Cu(2) atoms
in structure XVIII, as in the structures of other cop-
per(II) complexes, are completed to six-vertex polyhe-
dra, namely, elongated tetragonal bipyramids (4 + 2).
The bipyramid of Cu(1) is asymmetric [Cu(1)–O(5),
2.506 Å and Cu(1)–O(1), 2.779 Å], and the bipyramid of
Cu(2) is symmetric [Cu(2)–O(6), 2.617 Å × 2] (Table 3).

8. UNUSUAL FUNCTIONS OF THE ANION
OF 1-HYDROXYETHYLIDENEDIPHOSPHONIC 

ACID IN THE STRUCTURE 
OF Ni(Phen)3(H3L)2 · 2H2O

Formally, the Ni(Phen)3(H3L)2 · 2H2O (XIX) com-
pound belongs to the M : HEDP = 1 : 2 complexes con-
sidered above. However, it is doubtful that the HEDP

u3
2+

Cu(1)–O–P–C–P–O Cu(2)–O–P–C–P–O
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Fig. 8. Structural fragments of the mixed-valent {[C C (L)6(OH)2]2–}∞ anionic complex: (a) coordination of the L4– ligand

and atomic numbering, (b) structure of the (C (OH))O3 layer (A), (c) structure of the NaO6 + Cu2+O4 layer (B), and (d) 18-mem-

bered Cu3P6O6C3 ring involving three L4– ligands and three Cu1+O2 fragments.

u6
1+

u9
2+

u3
2+
ligand is involved in the coordination sphere of the
metal in the presence of the accompanying ligands
(1,10-phenanthroline molecules). Actually, addition of
Phen · H2O to an aqueous solution of Ni(H3L)2 results
in the formation of the thermodynamically stable
[Ni(Phen)3]2+ cationic complex (logKst = 23.9 vs. 4.03
for [Ni(H2L)2]2– [21]), and the H3L– anion is forced out
of the coordination sphere. It follows from the X-ray
diffraction data that the structural formula of XIX is
[Ni(Phen)3](H7L2)0.5(H5L2)0.5 · 2H2O [22].

In the octahedral [Ni(Phen)3]2+ cationic complex,
the Ni–N distances fall in the range from 2.074 to
2.107 Å. The most remarkable (and unusual) feature of
XIX is the structure of the outer-sphere HEDP anions.
There are two independent anions with different
charges in the structure: H3.5L0.5– and H2.5L1.5–. Each
anion is linked by a strong linear hydrogen bond with a
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
neighboring anion of the same kind to form a cen-
trosymmetric dimer (Fig. 9). The interionic O···H···O
contacts in both H7  and H5  dimers are the stron-

gest in the structure (the O···O distances are 2.436 and
2.466 Å, and the H···O distances are 1.22 and 1.23 Å,
respectively). Note that the exactly symmetric hydro-
gen bonds in the H7  and H5  anions,3 most proba-

bly, result from the superposition of two equiprobable
orientations of statistically disordered H4L and H3L–

fragments for (H7 ) and the H3  and H2L2– frag-

ments for (H5 ). In this case, the structural formula

3 A similar dimeric H5  anion, in which two H2.5L1.5– “halves”

are related by the crystallographic twofold axis, was also found in
the structure of (NH4)3(H5L2) · 2H2O [23] (O···O, 2.508 Å; H···O,
1.28 Å; and OHO, 160°).

L2
– L2

3–

L2
– L2

3–

L2
3–

L2
– L–

L2
3–
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Fig. 9. Structures of (a) H7  and (b) H5  dimers in the Ni(Phen)3(H3L)2 · 2H2O complex.L2
–

L2
3–

Q02

T11 T001
B01

H111 H32

Fig. 10. Six modes of coordination of metal atoms by HEDP ligands in the M : HEDP = 1 : 2 complexes.
of compound XIX is represented as
[Ni(Phen)3](H3L)(H2L)0.5 · 0.5H4L · 2H2O.

In addition to the contacts in the dimers, structure
XIX is characterized by a number of short O(L)–
H···O(L) contacts between the neighboring ionic pairs
(the O···O distances are 2.482–2.578 Å and the H···O
distances are 1.84–1.90 Å), O(L)–H···O hydrogen
bonds involving water molecules (O···O, 2.468–2.912;
and H···O, 1.69–2.22 Å), and weaker C–H···O interac-
C

tions between the cationic and anionic complexes
(C···O, 3.019–3.469 and H···O, 2.36–2.74 Å).

9. COORDINATION MODES OF THE HEDP 
LIGAND IN 3d METAL COMPLEXES

Figure 10 schematically represents six coordination
modes of the HEDP ligands that occur in the 3d metal
complexes—bidentate chelate, tridentate chelate µ2-
bridging, tridentate chelate, tetradentate bischelate µ2-
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Table 4.  Characterization of the coordination modes of the HEDP anions in Cu(II) complexes [24]

Coordination 
mode of HEDP Ligand (HEDP = H4L) Z = m +

b + t*
Nb = m +
2b + 3t**

Cn = b +
2t***

Type of the rings Number of 
compoundsC5 C6

B01 H3L–, H2.5L1.5–, H2L2– 1 2 1 0 1 8

T001 L4– 1 3 2 2 0 1

T11 H2L2– 2 3 1 0 1 5

Q02 H2L2– 2 4 2 0 2 2

H111 HL3– 3 6 3 2 1 1

H32 L4– 5 7 2 0 2 1

* Z is the total number of the M atoms bonded to a ligand.
** Nb is the total number of coordination bonds of a ligand with the M atoms.

*** Cn = C5 + C6 is the total number of five- and six-membered metallocycles formed by a HEDP ligand.
bridging, hexadentate trischelate µ3-bridging, and
hexadentate bischelate µ5-bridging4 (according to the
notations proposed in [24],5 B01, T11, T001, Q02, H111 , and
H32 , respectively). These six modes of metal coordina-
tion by HEDP are characterized in Table 4. It is seen
that the B01 coordination mode occurs most frequently
(in eight of the eighteen compounds). The compounds
with this coordination mode contain monomeric com-
plexes in which the H4 – nLn– ligands use one O(P) oxy-
gen atom of each of the two phosphonate (phosphonic)
groups. The T11 coordination mode (the H2L2– ligand
coordinates two M atoms by three O(P) atoms of two
PO3H– groups) occurs more rarely (in five compounds).
The Q02 coordination mode, according to which the
H2L2– ligand coordinates two metal atoms by four O(P)
oxygen atoms (by two oxygens of two phosphonate
groups), occurs in two structures. The remaining three
coordination modes of HEDP were found in one com-
pound each. In the monomeric [Cu(L)2]6– complex,
there is the T001 coordination mode: the L5– ligand coor-
dinates the metal by two O(P) atoms of two phospho-
nate groups and the oxygen atom of the protonated
α-hydroxy group. In the neutral [Cu3(HL)2(H2O)4]
complex, the H111 coordination mode occurs: the HL3–

ligands are bound to the Cu(1), Cu(2), and Cu(2)' atoms
in the tridentate cyclic, bidentate cyclic, and monoden-
tate modes, respectively. The O(C) atom of the proto-
nated α-hydroxy group is involved in coordination [of
the Cu(1) atom] along with five O(P) atoms. Finally, in

4 The description of the last coordination mode is conventional,
because it is based on the coordination number equal to four for
the bivalent copper atoms, as it is accepted in [20], without regard
for the longer axial contacts in the elongated tetragonal bipyramid
(4 + 2).

5 The coordination capacity of the ligand is specified by the capital
letter of the Dmbt symbol (B, bidentate; T, tridentate; Q, tetraden-
tate (quadridentate); and H, hexadentate), and the m, b, and t posi-
tions indicate the number of metal atoms coordinated by the
HEDP ligand in the monodentate, bidentate cyclic, and tridentate
cyclic modes, respectively.
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the structure of the {[ (L)6(OH)2]2–}∞ anionic

framework, the H32 coordination mode occurs: the L4–

ligand coordinates two Cu(I) atoms and one Cu(II)
atom in the monodentate mode and two Cu(II) atoms in
the bidentate cyclic mode. All six phosphonate O(P)
atoms are involved in coordination.

Note that the HEDP ligand, independent of its pro-
tonation degree, can coordinate the same metal atom
with no more than three of the seven potential donor
oxygen atoms. This specific feature of all metal (not
only 3d element) complexes with HEDP is determined
by at least two reasons. The first reason has to do with
the steric strain that would arise under the deformation
of the three-dimensional structure of the HEDP ions
(i.e., the rigid W-shaped conformation of the O–P–C–
P–O fragment, which results from the sp3-hybrid state
of the C and P atoms.6 The second (possibly more
important) reason for the limitation of the number of
donor atoms of the HEDP ligand coordinating a metal
atom is that the coordination of the M atom by the
fourth (fifth, etc.) oxygen atom of the same HEDP
ligand would necessarily result in the formation of the

four-membered  metallocycles that include
two O atoms of the same phosphonic (phosphonate)
group. It is known that, for energy reasons, the four-
membered rings are less favorable than the five- and
six-membered chelate rings.

10. CONCLUSION

Based on the data for a large number of structurally
characterized 3d metal complexes with HEDP, we can
outline some factors responsible for the specific struc-
tural features in this class of compounds.

6 The deviation of five atoms of the above fragment from their
plane, averaged over 34 crystallographically independent ligands
in the structures of the HEDP compounds with different metals, is
0.07(3) Å [24].

Cu6
1 Cu9

2+

M–O–P–O
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The M : HEDP ratio, to a large extent, determines
the type of the structure and the coordination capacity
of the H4 – nLn– ligand: an increase in this ratio (from
1 : 2 to 5 : 2) results, as a rule, in an increase in the
degree of aggregation of the complexes (from the
monomeric structure to the framework structure) and
the coordination capacity of the diphosphonic ligand
(from the bidentate function to the hexadentate func-
tion).

The nature of the M2+ complexing agent determines
the degree of distortion of the six-vertex coordination
polyhedron [octahedron for M = Zn, Ni, and Co and
elongated tetragonal bipyramid (4 + 2) for Cu].

The presence of the accompanying X ligands (H2O,
Bipy, or Cl) and their amount determine to a large
extent the type of the structure and the coordination
number of the metal atom in the Cu : HEDP = 1 : 2 and
1 : 1 complexes.

The M : HEDP : X ratio and the competing donor
atoms involved [N (Phen) and O (H3L)] determine the
unusual function of HEDP as outer-sphere dimeric
anions in the [Ni(Phen)3](H7L2)0.5(H5L2)0.5 · 2H2O
structure.
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Abstract—The synthesis and X-ray structure analysis of Sn2(HL)Cl · H2O, where HL3– is the anion of
1-hydroxyethane-1,1-diphosphonic acid, are reported. The coordination polyhedra of two independent tin(II)
atoms are the Sn(1)O2Cl and Sn(2)O3 trigonal pyramids, in which one of the vertices is occupied by a lone elec-
tron pair (Sn–O, 2.144–2.218 Å and Sn–Cl, 2.573 Å). The pyramids are complemented by weaker Sn···O and
Sn···Cl contacts to form severely distorted (3 + 3) octahedra. The SnO2Cl and SnO3 pyramids are linked by the
HL3– bridging ligands into the [Sn2(HL)Cl]6 cyclic molecules, which, in turn, are joined by additional Sn···O,
Sn···Cl, O(H2O)···O(L), and O(H2O)···Cl contacts with each other and with crystallization water molecules into
a three-dimensional framework. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Only two tin(II) complexes with methanediphos-
phonic acids R1R2C(PO3H2)2 are known, namely, Sn2L
and Sn(H2L') · H2O, where H4L is 1-hydroxyethane-
1,1-diphosphonic acid (R1 = CH3, R2 = OH) and H4L' is
methanediphosphonic acid (R1 = R2 = H). Their struc-
tures were determined by X-ray diffraction analysis [1].
Ditin(II) 1-hydroxyethane-1,1-diphosphonate was pre-
pared in the form of colorless rhomboid plates by
hydrothermal synthesis from an aqueous solution of
SnCl2 + 3.87H4L (a buffer solution with pH 3.5, t ~
150°C). Needle-shaped crystals of tin(II) methane-
diphosphonate were isolated from an aqueous solution
of SnCl2 + 2.9H4L' (t ≈ 4°C).

In this paper, we report the preparation and crystal
structure of a new compound, namely, chloro[1-hydro-
xyethane-1,1-diphosphonato(3–)]ditin(II) Sn2(HL)Cl ·
H2O (I).

EXPERIMENTAL

Synthesis. A solution of SnCl2 · 2H2O (2.25 g,
0.01 mol) in water (3 ml) was added to a solution of
H4L · H2O (2.24 g, 0.01 mol) in water (12 ml). The mix-
ture was allowed to stand for a day. Then, the solution
was drawn off and the crystals were rapidly washed
with water and dried on a paper filter in air at room tem-
perature.

IR spectrum (a suspension in Vaseline oil; ν, cm–1):
1657 and 1641 ( ); 1140, 1069, 1037, 1000, 955,

and 919 (the stretching vibrations of the P  and
PO3H– groups); and 819, 659, 555, 480, and 445.

δH2O

O3
2–
1063-7745/01/4602- $21.00 © 20207
X-ray structure analysis. Crystals I
(C2H7ClO8P2Sn2) are cubic, a = 24.800(6) Å, V =
15253(6) Å3, ρcalcd = 2.581 g/cm3, µMo = 44.07 cm–1,
F(000) = 11040, M = 493.85 amu, Z = 48, and space
group Pn3n.

A set of experimental data was collected on a Syntex
P21 four-circle automated diffractometer (λMoKα,
graphite monochromator, θ/2θ scan mode, 2θmax =
70°). An empirical correction based on ψ scans was
made for anisotropic absorption. A total of 3110 reflec-
tions were measured, of which 2749 unique reflections
with I > 2σ(I) were used in the structure determination
(Rint = 0.0465; 0 ≤ h ≤ 19, 0 ≤ k ≤ 36, 0 ≤ l ≤ 40).

The structure was solved by the direct method and
refined on F2 by the least-squares procedure in the
anisotropic approximation (SHELXL93 [2]). The
hydrogen atoms were not located. The positions of the
H(Me) atoms of the HL3– ligand were calculated geo-
metrically (C–H = 0.96 Å). These H atoms at the fixed
positions (UH = 0.08 Å2) were taken into account in the
refinement. The O(2w) oxygen atom of a water mole-
cule is disordered; its occupancy factor is 0.75.

The final refinement parameters are R = 0.054, wR =
0.140, and GOOF = 1.264. The extinction coefficient is
0.00024(4), and the residual electron density lies
between ∆ρmin = –2.086 and ∆ρmax = 1.938 e/Å3.

The atomic coordinates and thermal parameters are
listed in the table.

RESULTS AND DISCUSSION

Compound I is obtained in the form of colorless
transparent crystals, which become white after a long
001 MAIK “Nauka/Interperiodica”
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period of time. The substance is poorly soluble in
water, aqueous solutions of Na2CO3 and KCl, nitric and
acetic acids, ethanol, ethyl acetate, acetone, carbon tet-
rachloride, and benzene. It is soluble in hydrochloric
acid, alkali, EDTA, and (slowly) ammonium solutions.
It is also soluble in hot concentrated sulfuric acid but
poorly soluble in diluted sulfuric acid.

In structure I, the coordination polyhedra of two
independent tin atoms are the distorted trigonal pyra-

O(2)

Sn(2)

Cl(1)

Sn(1)

O(1)

P(1)

O(2)
C(1)

O(7)
C(2)O(6)

P(2)

O(4)O(5)

O(3)

Molecular structure of [Sn2(HL)Cl]6.

Atomic coordinates and thermal parameters Ueq

Atom x y z Ueq, Å2

Sn(1) 0.08782(4) 0.81075(3) 0.55803(3) 0.0295(2)

Sn(2) 0.18531(3) 0.64458(3) 0.59231(3) 0.0271(2)

P(1) 0.0950(1) 0.6861(1) 0.4946(1) 0.0193(5)

P(2) 0.0550(1) 0.6860(1) 0.6092(1) 0.0274(6)

Cl(1) 0.1797(2) 0.7827(2) 0.5976(2) 0.070(1)

O(1) 0.1001(3) 0.7475(3) 0.4959(3) 0.025(1)

O(2) 0.0817(3) 0.6641(3) 0.4384(3) 0.024(2)

O(3) 0.1449(3) 0.6577(3) 0.5169(3) 0.027(2)

O(4) 0.0611(5) 0.7467(4) 0.6099(4) 0.049(3)

O(5) 0.1048(3) 0.6554(4) 0.6259(3) 0.032(2)

O(6) 0.0072(4) 0.6682(6) 0.6446(4) 0.056(3)

O(7) –0.0090(3) 0.6952(4) 0.5231(3) 0.035(2)

C(1) 0.0391(4) 0.6665(5) 0.5394(5) 0.026(2)

C(2) 0.0292(6) 0.6057(5) 0.5370(6) 0.039(3)

O(1w) 0.25 0.75 0.50 0.088(9)

O(2w)* –0.1004(8) 0.668(1) 0.574(1) 0.15(1)

* The occupancy factor of the O(2w) atom is 0.75.
C

mids Sn(1)O2Cl and Sn(2)O3 (figure). The Sn(1) atom
is bonded to the O(1) and O(4) oxygen atoms of two
phosphonate groups of the same HL3– ligand and also to
the Cl(1) atom. The Sn(2) atom forms bonds with the
O(2), O(3), and O(5) oxygen atoms of three phospho-
nate groups belonging to two HL3– ligands. Hence,
HL3– acts as a pentadentate bischelate µ3-bridging
ligand.

The Sn–O distances in structure I (2.144–2.218 Å,
av. 2.168 Å) are comparable with similar distances in
structures Sn2L [1] and Sn(H2L') · H2O [1] (Sn–O,
2.10–2.16 and 2.12–2.17 Å, respectively). The Sn(1)–
Cl(1) bond length in I (2.573 Å) is close to the Sn–Cl
distances in the compounds of tin(II) with the coordina-
tion number equal to three (Sn–Cl, 2.42–2.63 Å) [3].

The Sn(2)O3 pyramids are linked by the HL3– bridg-
ing ligands into the [Sn(HL)]6 hexanuclear macrocycles
about the crystallographic threefold axes. The
Sn(1)O2Cl pyramids are attached to the outside of the
macrocycle, thus forming the [Sn2(HL)Cl]6 molecule.

Forming bonds with the Sn(1) and Sn(2) atoms, the
HL3– ligand closes two six-membered chelate rings.

The  chelate ring
has a sofa conformation: the C(1) atom deviates from
the plane of the remaining five atoms (A), which are
coplanar within ∆ = ±0.02 Å, by 0.90 Å. The

 ring adopts a chair
conformation in which the Sn(2) and C(1) atoms devi-
ate from the plane of the remaining four atoms
(B, ∆ = ±0.02 Å) by –0.51 and 0.88 Å, respectively.
The A/B dihedral angle is equal to 66.5°.

As noted above, HL3– is a pentadentate ligand. Only
the O(7) atom of the alcohol group and one of the oxy-
gen atoms of the phosphonate group do not form bonds
with tin atoms. We can say with confidence that the
O(6) terminal atom is the protonated atom. This con-
clusion is supported by the analysis of the P–O dis-
tances. The P(2)–O(6) terminal bond is the longest
bond in the structure (1.545 Å). Two other bonds [P(2)–
O(4) and P(2)–O(5)] in the P(2)O3H– monoprotonated
phosphonate group are, on the average, 0.020 Å shorter
than three bonds P(1)–O(1), P(1)–O(2), and P(1)–O(3)

in the P(1)  group (1.509 and 1.529 Å, respec-
tively). This difference is apparently due to the
increased negative charge at the oxygen atoms in the

P  group as compared to the PO3H– group.

In addition to three short bonds, each tin atom has
three contacts at much longer distances. All these con-
tacts lie on the side opposite to the base of the pyramid.
The Sn(1) atom approaches three oxygen atoms (the
Sn···O contacts are 2.768, 2.911, and 3.008 Å),1 and the
Sn(2) atom approaches an oxygen atom (Sn···O,

1 In addition, the Sn(1) atom has three even weaker Sn···O contacts
(3.273, 3.560, and 3.580 Å). 

Sn 1( )–O 1( )–P 1( )–C 1( )–P 2( )–O 4( )

Sn 2( )–O 3( )–P 1( )–C 1( )–P 2( )–O 5( )

O3
2–

O3
2–
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2.967 Å) and two chlorine atoms (Sn···Cl, 3.315 and
3.431 Å). This “one-sided” (3 + 3) coordination is typ-
ical of bivalent tin [3, 4]. It is determined by the stere-
ochemically active lone electron pair, which occupies
the vacant (axial) position of the SnO3 (SnO2Cl) pyra-
mid as viewed from the distant Sn···O (Sn···Cl) con-
tacts. The coordination polyhedra of the Sn(1) and
Sn(2) atoms in structure I can be described as either
distorted tetrahedra with a lone electron pair in one of
the vertices or (with allowance made for the additional
contacts) severely distorted octahedra (3 + 3) in which
the O(Cl)–Sn···O(Cl) angles between the atoms in the
trans positions fall in the range 147.4°–162.7°.

The stronger additional Sn···O (Sn···Cl) contacts
link the [Sn2(HL)Cl]6 molecules into a three-dimen-
sional framework. The structure is stabilized by short
intermolecular contacts involving crystallization water
molecules (1w and 2w). The O(1w) atom, which occu-
pies a special position on the fourfold axis, approaches
four chlorine atoms [O(1w)···Cl, 3.093 Å]. The O(2w)
atom approaches the phosphonate O(6) and alcohol
O(7) atoms of the HL3– ligand and two O(2w) atoms
related to the reference atom by a threefold axis
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
[O(2w)···O(6), 2.69; O(2w)···O(7), 2.70; and
O(2w)···O(2w), 2.86 Å]. We believe that each of the
O(1w) and O(2w) atoms is involved in two donor and
two acceptor bonds. The crystallographic equivalence
of all the four O(1w)···Cl bonds and two O(2w)···O(2w)
bonds [and the disorder of the O(2w) atom (see above)]
suggests a high probability of disordering of the hydro-
gen atoms of both water molecules.
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Abstract—The crystal structure of the pyrrole derivative 2,5-cyclohexadien-4-one-spiro-3'-(2'-methylthio-
5',5'-dimethyl-1'-pyrroline) is determined by X-ray diffraction. Two independent molecules have similar struc-
tures and close geometric parameters but differ in configuration of the pyrrole ring and orientation of the thi-
omethyl group with respect to the pyrrole ring. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier [1], the reaction of aromatic compounds
activated by two methoxy groups with oxiranes and
nitriles, which led to the formation of substituted 6,7-
(or 5,8-) dimethoxy-3,4-dihydroisoquinolines, was
reported. A similar reaction between oxiranes and ani-
sole unexpectedly resulted in the spirocyclohexadi-
enone derivative of pyrroline 2,5-cyclohexadien-4-one-
spiro-3'-(2'-methylthio-5',5'-dimethyl-1'-pyrroline) (I,
see scheme) [2]

instead of the substituted 3,4-dihydroisoquinoline.
In this paper, we report the results of the X-ray dif-

fraction study of compound I.

EXPERIMENTAL

Light brown prismatic crystals I (C12H15NOS) are
monoclinic, a = 13.404(3) Å, b = 11.303(2) Å, c =
17.086(3) Å, β = 105.47(3)°, V = 2494.8(8) Å3, ρcalcd =
1.326 g cm–3, µ(MoKα) = 2.64 cm–1, M = 221.31,
F(000) = 1062, Z = 8, and space group P21/a.

A set of experimental intensities was collected from
a faceted crystal 0.45 × 0.60 × 0.20 mm in size on an
Enraf–Nonius CAD4 automated four-circle diffracto-
meter (MoKα radiation, graphite monochromator, (θ/2θ
scan mode, 2θmax = 56°). A total of 7508 reflections
were measured, of which 3933 had I > 2σ(I).

N

S

O

Me

Me

Me
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The structure was solved by the direct method
(SHELXS86 [3]) and refined by the least-squares pro-
cedure in the full-matrix anisotropic approximation
with the SHELXL93 program package [4]. The hydro-
gen atoms were calculated geometrically (the C–H dis-
tances were 0.96 Å). Their coordinates were included
in the refinement, and the isotropic thermal parameters
were fixed (Uj  = 0.08 Å2). The refinement led to the fol-
lowing final parameters: R1 = 0.0516, wR2 = 0.1369,
and GOOF = 1.071 for 3933 observed reflections; R1 =
0.0615 and wR2 = 0.1531 for all 7508 reflections; the
extinction coefficient was 0.0009(9); and the maximum
and minimum residual electron densities were equal to
0.306 and –0.318 e Å–3, respectively.

The atomic coordinates and equivalent isotropic
thermal parameters Ueq are listed in Table 1.

RESULTS AND DISCUSSION

There are two independent molecules A and A' in the
unit cell of crystal I (Fig. 1). Since the main geometric
parameters of these molecules are very close, hereafter,
we will give the mean values for the analogous bond
lengths and angles.

The geometric parameters of the pyrroline ring in
structure I are close to the corresponding values in the
structure of 3,3,4,4-tetracyano-3,4-dihydro-5-isopro-
pyl-2-(nitrophenyl)-1-pyrrole (II) [5]. In structure I,
two endocyclic N–C bonds in the pyrrole ring signifi-
cantly differ in length: N(1)–C(1) [1.264(3) Å] is con-
siderably shorter (by ∆ = 0.229 Å) than N(1)–C(9)
[1.493(3) Å]. In structure II, one of the N–C bonds
(1.265 Å) almost coincides in length with the N(1)–
C(1) bond in I, whereas the other N–C bond (1.447 Å)
001 MAIK “Nauka/Interperiodica”
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Table 1.  Coordinates (×104) and equivalent thermal parameters Ueq (×103) of the non-hydrogen atoms in structure I

Atom x y z Ueq, Å2 Atom x y z Ueq, Å2

S(1) 4855(1) 1170(1) 3253(1) 59(1) S(1') 7808(1) 1441(1) 1303(1) 75(1)

O(1) 3560(2) –3228(2) 2916(1) 96(1) O(1') 9394(3) 3067(3) –1010(2) 132(1)

N(1) 6757(1) 1028(2) 4273(1) 48(1) N(1') 6891(2) 3371(2) 1717(1) 57(1)

C(1) 5973(2) 479(2) 3850(1) 42(1) C(1') 7417(2) 2928(2) 1279(1) 55(1)

C(2) 5994(2) –899(2) 3873(1) 45(1) C(2') 7734(2) 3768(2) 667(2) 61(1)

C(3) 5756(2) –1421(2) 3036(2) 57(1) C(3') 7248(2) 3390(2) –184(2) 64(1)

C(4) 4988(2) –2167(2) 2734(2) 61(1) C(4') 7775(3) 3193(2) –725(2) 71(1)

C(5) 4285(2) –2552(2) 3201(2) 59(1) C(5') 8901(3) 3283(3) –514(2) 78(1)

C(6) 4488(2) –2090(2) 4024(1) 53(1) C(6') 9410(3) 3622(3) 309(2) 81(1)

C(7) 5256(2) –1343(2) 4332(1) 47(1) C(7') 8878(3) 3848(3) 846(2) 79(1)

C(8) 7141(2) –1078(2) 4341(2) 61(1) C(8') 7261(4) 4939(3) 886(2) 109(1)

C(9) 7549(2) 150(2) 4699(1) 51(1) C(9') 6682(2) 4646(2) 1512(1) 57(1)

C(10) 8563(2) 446(3) 4516(2) 82(1) C(10') 7068(3) 5384(3) 2268(2) 92(1)

C(11) 7652(3) 240(3) 5597(2) 84(1) C(11') 5537(3) 4801(4) 1190(3) 114(1)

C(12) 5253(2) 2703(3) 3328(2) 79(1) C(12') 7265(3) 859(3) 2067(2) 83(1)
is noticeably shorter than the N(1)–C(9) bond in I. As a
consequence, the ∆ value for structure II (0.182 Å) is
substantially smaller than that for I. Nonetheless, the π
electron density in the pyrrole rings of both I and II is
localized at the N(1)–C(1) bond. Note that, in struc-
tures I and II, this bond is considerably shorter than the
bonds observed earlier in other N heterocycles, specif-
ically in 3,3-dimethyldihydroisoquinoline derivatives.
Among the latter compounds, 3,3-dimethyl-6,7-
dimethoxy-1-(4,4-dimethylcyclohexa-2,6-dion-1-yl)-
3,4-dihydroisoquinoline [6] has the shortest N–C bond
(1.277 Å). The N(1)–C(1) bonds in I and II are also
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
shorter than the standard double N(sp2)=C(sp2) bond
(1.273 Å [7]). The N(1)–C(9) distance in structure I
agrees with the standard length of the single N(sp2)–
C(sp3) bond (1.465–1.493 Å [7]). The lengths of all the
three C–C bonds in the pyrrole ring in structure I are
almost equal (1.518–1.559 Å). Their mean value
(1.547 Å) slightly exceeds the standard length of the
single C(sp3)–C(sp3) bond (1.535 Å [7]). In structure
II, one of the C–C bonds lengthens to 1.622 Å and the
mean length of the remaining two bonds is 1.575 Å.
The endocyclic angles in the pyrrole ring of structure I
C(12)

C(11) N(1)
C(11')

C(10')

C(9')

C(8')C(10)

C(9)

C(8)

C(1)

C(2)
C(7)

S(1)

C(6)

C(5)

O(1)

C(4)

C(3)

N(1')

C(1')
C(2')

C(7')

C(6')

C(5')
C(4')

C(3')

S(1')

C(12')

O(1')

Fig. 1. Structures of two independent molecules in compound I.



 

212 SOKOL et al.
are also inequivalent. The angle at the C(1) atom, which
is bonded to the sulfur atom, is markedly increased (up
to 117.4°), and the angle at the C(2) spiro atom, on the
contrary, is significantly decreased (to 99°) compared
to the ideal angle in the five-membered ring (108.3°).
The three remaining angles at the N(1), C(8), and C(9)
atoms fall in the range 105.8°–110.2°; their mean value
(107.5°) is close to the ideal angle. In the pyrrole ring
of structure II, the angles at the C(1) and N(1) atoms
(114° both) are significantly larger than the remaining
three angles (the mean value is 102°).

The pyrrole rings in two independent molecules of
structure I slightly differ in conformation and, hence, in
endocyclic torsion angles (Fig. 2).

The pyrrole ring of molecule A has an envelope con-
formation: the C(8) atom deviates from the
C(1)C(2)N(1)C(9) plane of four atoms, which are
coplanar within 0.003 Å, by –0.231 Å. The pyrrole ring
of molecule A' is virtually planar: the mean deviation of
the five atoms from their plane is 0.020 Å. The largest
deviation is observed for the C(8') atom (+0.031 Å). In
structure II, the maximum deviations from the mean
plane of the pyrrole ring are exhibited by the C(3)
(−0.12 Å) and C(4) (+0.12 Å) atoms.

The thiomethyl group in molecule I is in the cis
position with respect to the N(1)–C(1) bond, and the
N(1)C(1)SC(12) torsion angle is close to 0° (Table 2).
However, in molecule A, the S(1) and C(12) atoms

Table 2.  Selected torsion angles (deg) in structure I

Angle Molecule A Molecule A'

N(1)C(1)SC(12) 7.4 0.0

C(2)C(1)SC(12) –179.5 –173.9

C(3)C(2)C(1)S 63.5 53.9

C(7)C(2)C(1)S –61.4 –70.1
C

deviate from the mean plane of the pyrrole ring by
0.132 and 0.431 Å, respectively. In molecule A', the
SMe group lies in the plane of the pyrrole ring. Two
S−C bonds differ in length. The S–C(1) bond with the
pyrrole ring is 0.038 Å shorter than the S–C(12) bond
with the methyl group [1.757(2) and 1.795(3) Å,
respectively]. The angles at the sulfur atoms of the thi-
omethyl groups of two molecules are almost equal and
are significantly smaller than 120° (the mean value is
101.2°).

The benzophenone ring has a quinoid structure: the
C–C bonds in this ring are distinctly divided into three
groups. The lengths of two short bonds are almost equal
[C(3)–C(4), 1.324(3) Å and C(6)–C(7), 1.328(3) Å].
The two longest C–C bonds adjoin the C(2) spiro atom
[C(2)–C(3), 1.495(4) Å and C(2)–C(7), 1.494(3) Å].
The C(4)–C(5) and C(5)–C(6) bonds at the carbonyl
group are slightly shorter than the C(2)–C(3) and C(2)–
C(7) bonds; their mean value is 1.453(4) Å. The
endocyclic angles at the C(2) spiro atom (111.7°) and
the C(5) atom of the carbonyl group (116.5°) are signif-
icantly smaller than the remaining four CCC angles
(121.6°–124.6°, the mean value is 123.0°).

The oxygen atom of the carbonyl group lies in the
plane of the quinone ring. The O(1)–C(5) distance
[1.230(2) Å] agrees with the standard length of the
O=C(sp2) bond in benzoquinone (1.222–1.230 Å [7]).

The pyrrole and benzoquinone rings in both mole-
cules are mutually almost perpendicular: the dihedral
angle between their planes is 85°. The angle between
the planes of the pyrrole rings in the neighboring mol-
ecules is 81°.

All the intermolecular distances in the structure
agree with the normal van der Waals contacts. The
shortest contact (2.60 Å) occurs between the O(1) (x, y,
z) and H(8') (–0.5 – x, –0.5 – y, +z) atoms.
C(8) C(9)

N(1)

C(1)

C(2)

13.2°

–13.9°

8.3°

0.8°–9.4°

Molecule Ä

N(1)

ë(9)ë(8)

ë(2)

ë(1)

–4.3°

5.2°

–4.0°

1.1°2.1°

Molecule Ä'

Fig. 2. Endocyclic torsion angles in the pyrrole rings of structure I.
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Abstract—The molecular and crystal structures of chiral 1R,4R-cis-2-(4-phenylbenzylidene)-n-menthan-3-
one (I) have been determined by X-ray diffraction analysis. Crystals I are monoclinic, a = 6.755(3) Å, b =
9.860(3) Å, c = 14.103(6) Å, β = 98.95(1)°, space group P21, Z = 2, and R = 0.035 for 1031 reflections. A chair
conformation of the cyclohexanone ring in the molecule is substantially distorted toward a “half-chair” confor-
mation. The enone and benzylidene groupings are virtually planar (the torsion angles are equal to 13.0°
and 4.9°, respectively). The benzene rings of the biphenyl fragment are rotated with respect to each other
through an angle of 40°–43°. Among the compounds under consideration, the distortion of bond angles at the
sp2 carbon atoms of the benzylidene grouping as a criterion for the steric stress of molecules is maximum in
structure I. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

As a continuation of systematic investigations into
the structure of chiral α,β-unsaturated ketones—deriv-
atives of diastereomeric n-menthan-3-ones [1–6], in the
present work, we applied X-ray structure analysis to
determine the molecular and crystal structures of
1R,4R-cis-2-(4-phenylbenzylidene)-n-menthan-3-one (I) 

1R,4R-cis diastereomers: X = C6H5 (I), 
N(CH3)2 (II) [5], NO2 (III) [5]; 

1R,4S-trans diastereomer: X = C6H5 (IV) [3], 

which is an efficient chiral dopant for liquid-crystal
materials with an induced helical supramolecular struc-
ture [7, 8]. 

The main purposes of our investigation were as fol-
lows: 

(i) to perform a comparative analysis of specific fea-
tures in the conformation of the cyclohexanone ring
and the geometry of the enone and arylidene fragments
in compound I and the earlier studied structures II
(with a strong electron-donor substituent X in the
arylidene grouping) and III (with a strong electron-
acceptor substituent X) of the same 1R,4R-cis diastere-
omeric series [5]; 

O X

1
23

4
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(ii) to elucidate how different stereochemical con-
figurations of molecules I (1R,4R-cis diastereomer) and
IV (1R,4S-trans diastereomer) [3] affect their molecu-
lar structures. 

In the general case, the X-ray diffraction data on
certain structural features of molecules containing π-
conjugated fragments reflect the effect of intramolecu-
lar (electronic and steric) factors and intermolecular
interactions in crystals. In this respect, we carried out a
comparative analysis of the X-ray diffraction data
obtained and the results of molecular mechanics (MM)
calculations [9]. The cyclohexanone ring in its different
conformations in the studied compounds was charac-
terized by the Zefirov–Palyulin method of puckering
parameters [10, 11]. 

RESULTS AND DISCUSSION 

The figure displays the molecular structure of com-
pound I (with atomic numbering), which was deter-
mined from the X-ray diffraction data. 

Similar to the earlier studied structures II and III,
compound I is characterized by the cis orientation of
the alkyl groups at the C(1) and C(4) chiral centers with
respect to the cyclohexanone ring: the deviations of the
C(7) and C(8) atoms from the calculated root-mean-
square (rms) planes passing through pairs of the C(1)–
C(2) and C(4)–C(5) (P1) [C(1)–C(6) and C(3)–C(4)
(P2)] opposite bonds in the cyclohexanone ring are
equal to 1.323 and 0.707 Å (1.487 and 0.804 Å),
001 MAIK “Nauka/Interperiodica”
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Molecular structure of compound I and the atomic numbering. 
respectively. These deviations indicate that the methyl
group has an axial orientation and the isopropyl group
exhibits an equatorial orientation (see also the ϕ1–ϕ4
torsion angles in Table 1). Note that compounds I–III
were prepared according to the same procedure from
enantiomerically pure chiral synthon [(–)-menthone]
[5, 12] with the known R configuration of the C(1)
chiral center distant from the carbonyl group (see, for
example, [13]), which underwent no changes in the
course of the chemical reactions involved.1 Therefore,
compound I, like compounds II, III, and some related
α,β-unsaturated ketones [1], should be assigned to the
1R,4R-cis diastereomers. 

A chair conformation of the cyclohexanone ring
(see the ϕ5–ϕ10 torsion angles in Table 1) in crystal I is
considerably distorted compared to that in structure III.
In the cyclohexanone ring of I, pairs of the opposite
bonds C(1)–C(2) and C(4)–C(5), C(1)–C(6) and C(3)–
C(4), and C(2)–C(3) and C(5)–C(6) deviate from a pla-
nar geometry by 0.04, 0.08, and 0.13 Å, respectively
(cf. 0.004, 0.04, and 0.05 Å in III [5]). A substantial
decrease in the ϕ5, ϕ6, and ϕ10 torsion angles in compar-
ison with those in structure III and a tendency toward
flattening of the C(1)C(2)C(3)C(4) fragment (these
atoms are coplanar to within 0.07 Å) allow one to judge
qualitatively the distortion of a chair conformation of
the cyclohexanone ring in molecule I toward a “half-
chair” conformation. This is also supported by the
puckering parameters calculated from the endocyclic
torsion angles ϕ5–ϕ10 (the X-ray diffraction data). Spe-
cifically, the polar angle θ is close to the phase angle ψ,
and the puckering amplitude S is decreased (Table 1).
The distortion of a chair conformation of the cyclohex-
anone ring in compound I is similar to that observed in
structures of 2-benzylidenecyclohexanone and its
derivatives with a strong electron-donor dimethy-
lamino substituent in the arylidene grouping [14]. 

An unexpected feature of the molecular structure in
crystal I is the substantial flattening of the enone (ϕ11 =
13.0°) and arylidene (ϕ12 = 4.9°) fragments as com-
pared to III and some compounds of the 1R,4R-cis

1 This fact served as a basis for the choice of the absolute molecular
configuration in analysis of the experimental data.
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series [1, 2, 4]. A considerable flattening of the cin-
namoyl fragment in structures of α,β-unsaturated
ketones is usually observed upon the introduction of
strong electron-donor substituents (for example, the
N(CH3)2 group) into the benzene ring [5, 14]. However,
a substantial enhancement of the conjugation in the cin-
namoyl fragment of molecule I in comparison with II
is excluded, especially as two benzene rings in the
biphenylyl grouping of structure I are acoplanar (see
the torsion angles ϕ13 and ϕ14). It is of interest that,
although the biphenylyl fragment in crystals of the
diastereomeric compound IV is considerably flattened,
the torsion angles in the enone and arylidene groupings
are equal to 30.6° and –32.6°, respectively (Table 1).
Therefore, the substantial flattening observed in the
cinnamoyl fragment of structure I, which is even more
considerable than that in compound II with a strong
electron-donor dimethylamino group (see Table 1),
cannot be associated with intramolecular electronic
factors. It is also important that the molecular mechan-
ics calculations for compound I demonstrate neither
such a strong distortion of the conformation of the
cyclohexanone ring, as occurs in the crystal according
to the X-ray diffraction data, nor a considerable flatten-
ing of the enone and arylidene groupings (Table 1). The
fact that the results of these calculations quite reliably
reflect the geometry of isolated molecules of the com-
pounds under consideration follows, for example, from
the conformation investigation of 2-benzyl substituted
isomeric n-menthen-3-ones by the molecular mechan-
ics method in a combination with the 1H NMR study in
solutions [15]. It is evident that the aforementioned
structural features revealed from the X-ray diffraction
data for molecule I reflect the effect of intermolecular
interactions in the crystal. Apparently, the same is also
true for different degrees of planarity of the biphenylyl
fragment in the diastereomeric structures I and IV. 

It is worth noting that the difference in the configu-
rations of the C(4) chiral center in the diastereomeric
structures I and IV is responsible not only for different
orientations of the alkyl substitutions with respect to
the cyclohexanone ring but also for the substantial dif-
ference in its conformations in the crystal (Table 1). 
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Table 1.  Selected torsion angles (ϕi, deg) and puckering parameters in compounds I–IV according to the data of X-ray
structure analysis and molecular mechanics calculations

Parameter

Compound

I II III IV

X-ray
structural data MM calculations X-ray structural 

data [5]
X-ray structural 

data [5]
X-ray structural 

data [3]

Torsion angles, ϕi

ϕ1, C(7)C(1)C(2)C(3) 92.5(3) 71.6 87.9(5) 75.6(4) 118.4(2)

ϕ2, C(7)C(1)C(6)C(5) –70.0(3) –68.0 –68.2(5) –67.1(4) –167.2(2)

ϕ3, C(8)C(4)C(3)C(2) –159.4(3) –176.9 –156.8(4) –173.7(3) 119.8(2)

ϕ4, C(8)C(4)C(5)C(6) 177.1(2) 177.7 174.0(4) 179.8(2) –166.5(2)

ϕ5, C(1)C(2)C(3)C(4) 20.8(4) 52.3 21.6(6) 43.2(4) 33.2(3)

ϕ6, C(3)C(3)C(4)C(5) –27.2(4) –48.7 –23.1(6) –42.2(4) –9.2(3)

ϕ7, C(3)C(4)C(5)C(6) 46.2(3) 49.5 42.1(6) 49.0(3) –39.8(2)

ϕ8, C(4)C(5)C(6)C(1) –61.1(3) –56.2 –60.5(6) –58.2(4) 69.6(2)

ϕ9, C(5)C(6)C(1)C(2) 53.4(3) 54.3 56.7(5) 55.6(4) –44.9(2)

ϕ10, C(6)C(1)C(2)C(3) –32.7(4) –51.5 –37.5(5) –47.2(3) –4.7(3)

ϕ11, C(1)C(3)C(2)C(11) 13.0(4) 55.8 20.2(7) 42.0(5) 30.6(3)

ϕ12, C(2)C(11)C(12)C(13) 4.9(5) 51.2 23.2(8) 42.4(5) –32.6(4)

ϕ13, C(14)C(15)C(18)C(19) –40.2(4) –40.2 – – 2.9(4)

ϕ14, C(16)C(15)C(18)C(23) –43.0(4) –39.7 – – 4.8(4)

Puckering parameters

θ, deg 19.00 2.1 19.59 6.32 63.92

ψ, deg 19.66 19.4 6.53 5.95 26.87

S 0.88 1.08 0.89 1.03 0.82
A common feature of all the earlier studied struc-
tures of 2-arylidene derivatives of cyclohexanone [14]
and chiral n-menthan-3-one with different configura-
tions of the C(4) atom [1–5] is the considerable distor-
 
Table 2.  Shortened intramolecular contacts (d, Å)* in struc-
tures I–IV

Contact
Structure

I II III IV

H(1) ⋅ ⋅ ⋅H(13) 1.93 2.13 2.28 2.16

H(1) ⋅ ⋅ ⋅C(13) 2.65 2.64 2.68 2.84

H(13) ⋅ ⋅ ⋅C(1) 2.66 2.68 2.83 2.84

C(1) ⋅ ⋅ ⋅C(13) 3.28 3.35 3.32 3.32

H(1) ⋅ ⋅ ⋅C(11) 2.68 2.62 2.66 2.76

H(13) ⋅ ⋅ ⋅C(7) 2.90 2.78 2.97 –

C(11) ⋅ ⋅ ⋅C(7) 3.26 3.41 3.51 3.14

H(11) ⋅ ⋅ ⋅O(1) 2.33 2.38 2.52 –

H(11) ⋅ ⋅ ⋅H(17) 2.10 2.23 2.54 –

H(17) ⋅ ⋅ ⋅C(11) 2.46 2.55 2.66 2.83

* The sums of the van der Waals radii are as follows [16]: H⋅⋅⋅H 2.32,
H⋅⋅⋅C 2.87, H⋅⋅⋅O 2.45, and C⋅⋅⋅C 3.42 Å. 
C

tion of the bond angles at the sp2 carbon atoms in the
C(1)HRC(2)=C(11)HC6H4X fragment: the bond angles
C(1)C(2)C(11) [ωα = 126.1(2)°], C(2)C(11)C(12)
[ωβ = 134.1(3)°], and C(11)C(12)C(ortho) [ωγ =
127.3(2)°] are appreciably more than 120°. In the ear-
lier studied compounds, the strongest distortion of
these angles was observed in structure IV: the ωα, ωβ,
and ωγ angles are equal to 126.2(2)°, 132.3(2)°, and
125.1(2)°, respectively [3]. It is seen that this effect in
structure I is even more pronounced. This is consistent
with the tendency noted in [5] that a decrease in the tor-
sion angle in the arylidene grouping, i.e., its flattening,
is accompanied by an increase in the bond angles ωβ
and ωγ in the structures of α,β-unsaturated ketones—
the derivatives of cyclohexanone and n-menthan-3-one.
Among the compounds under consideration, the mini-
mum torsion angle ϕ12 and the maximum bond angle ωβ
were found in structure I. These values confirm the
conclusion made in [5, 14] that the distortion observed
for the above bond angles is caused by the steric effects
between the ortho hydrogen and carbon atoms of the
aryl group and the atoms of the >C(1)HR (R = H or
CH3) cyclic fragment (see the shortened intramolecular
contacts in Table 2). Undoubtedly, these effects in the
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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studied structures are enhanced with a flattening of the
cinnamoyl fragment, specifically of the arylidene
grouping. 

The strongly shortened contact H(1)···H(13)
(1.93 Å) is close to a similar contact (1.90 Å) in 2-ben-
zylidene-6-benzylcyclohexanone [14], whose ben-
zylidene grouping in the crystal is also substantially
flattened (the torsion angle is 10.4°). 

A comparison of the data presented in Table 2 shows
that the steric stress of molecule I is considerably more
than those of the diastereomeric molecule IV and mol-
ecules of ketones II and III in the same 1R,4R-cis
series. It is evident that, in structures II–IV, the unfa-
vorable nonbonded interactions in the aforementioned
molecular fragment are at least partly eliminated at the
expense of an increase in the ϕ11 and ϕ12 torsion angles. 

It should be noted that a substantial flattening of the
arylidene grouping in molecule I (as in II) is responsi-
ble for considerably shortened contacts between the
ortho hydrogen atom H(17) and atoms [C(11) and
H(11)] of the =CH– group (Table 2). A substantially
flattened conformation of the O=C–CH= enone group-
ing in molecules I and II is likely stabilized, to a certain
degree, by attractive interactions between the O(1) oxy-
gen and H(11) hydrogen atoms of the ethylene group
[see the shortened contacts H(11)···O(1)]. Similar
shortened contacts are absent in the diastereomeric
structure IV and nitro-substituted compound III with
the aplanar enone fragment. 

As in II [5] and certain derivatives of 2-ben-
zylidenecyclohexanone [14] with the flattened
arylidene grouping, the C(12)···C(17) benzene ring in
structure I is arranged in such a way that the ortho
hydrogen atom H(13) is located between the H(1) atom
and atoms of the axial methyl group. The deviations of
the H(1), C(7), H(7A), H(7B), and H(7C) atoms from
the rms plane of the benzene ring are equal to –0.49,
1.42, 2.04, 1.91, and 1.49 Å, respectively. 

The conformation of the isopropyl fragment in crys-
tal I is virtually identical to that in structures II and III
[5]: the H(4)–C(4) and H(8)–C(8) bonds exhibit a
gauche orientation [the torsion angle is equal to
66.3(4)°], one methyl group is in the trans position to
the C(4)–H(4) bond [the torsion angle is 178.7(3)°],
and the other methyl group is in the gauche position to
this bond [the torsion angle is –54.9(4)°]. 

A substantial flattening of the conjugated cinnamoyl
grouping O=C–C=C–C6H4– is inconsistent with the
concept of intramolecular electronic effects and can be
explained by the intermolecular interaction between
these highly polarizable π electron fragments in the
crystal. The molecular packing contains stacks formed
by the cinnamoyl groupings. 

EXPERIMENTAL 

Compound I was synthesized according to the pro-
cedure described in [17]. Single crystals suitable for
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
X-ray diffraction analysis were grown from acetoni-
trile. Crystals I were obtained in the form of colorless
plates. A single crystal 0.01 × 0.4 × 0.4 mm in size was
chosen for X-ray structure analysis. The crystals are
monoclinic, a = 6.755(3) Å, b = 9.860(3) Å, c =
14.103(6) Å, β = 98.95(1)°, V = 927(6) Å3, M = 318.4
(C23H26O), space group P21, Z = 2, dcalcd = 1.140 g/cm3,
and µ(MoKα) = 0.068 mm–1. 

X-ray diffraction analysis was carried out on a Sie-
mens P3/PC automated diffractometer (MoKα radia-
tion, graphite monochromator, θ/2θ scan mode, 2θmax =
45°). The intensities of 1031 independent reflections
with I > 3σ were measured. The structure was solved
by the direct method. The hydrogen atoms were located
from successive electron-density difference syntheses
and refined in a rider model with the fixed thermal
parameters uiso = 0.08 Å2. The structure was refined by
the full-matrix least-squares procedure in the anisotro-
pic approximation up to R = 0.035, Rw = 0.034, and S =
1.57. The calculations were performed using the
SHELXTL PLUS/PC software package [18]. The coor-
dinates of non-hydrogen atoms are listed in Table 3. 

Table 3.  Coordinates of non-hydrogen atoms (×104) and equiv-
alent isotropic thermal parameters Beq (Å

2) for structure I

Atom x y z Beq

O(1) 13494(3) 4863(2) 13511(2) 8.4(1)

C(1) 13603(3) 1743 12088(2) 6.1(1)

C(2) 12959(3) 3156(3) 12324(2) 5.2(1)

C(3) 14190(3) 3884(3) 13155(2) 5.9(1)

C(4) 16333(3) 3444(3) 13502(2) 6.1(1)

C(5) 16722(3) 1956(3) 13309(2) 7.5(1)

C(6) 15852(4) 1564(3) 12299(3) 7.6(1)

C(7) 12510(4) 722(3) 12613(3) 8.7(1)

C(8) 17086(4) 3915(3) 14539(2) 7.4(1)

C(9) 16041(4) 3156(3) 15261(3) 10.2(1)

C(10) 19336(4) 3835(4) 14791(3) 11.2(1)

C(11) 11318(3) 3799(3) 11904(2) 5.7(1)

C(12) 9715(3) 3468(3) 11106(2) 5.1(1)

C(13) 9449(3) 2253(3) 10595(2) 5.6(1)

C(14) 7850(3) 2057(3) 9875(2) 5.1(1)

C(15) 6407(3) 3045(3) 9636(2) 4.8(1)

C(16) 6650(3) 4250(3) 10150(2) 5.9(1)

C(17) 8252(3) 4462(3) 10852(2) 5.8(1)

C(18) 4653(3) 2840(3) 8876(2) 5.0(1)

C(19) 2756(3) 3292(3) 9000(2) 6.0(1)

C(20) 1141(4) 3118(3) 8293(3) 7.3(1)

C(21) 1369(4) 2548(3) 7435(3) 7.8(1)

C(22) 3231(4) 2085(3) 7292(2) 7.6(1)

C(23) 4850(3) 2238(3) 8010(2) 6.0(1)
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Abstract—A new radical cation salt based on bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) with the tet-
rahedral anion GaC , namely, (BEDT-TTF)4(GaCl4)2 · C6H5CH3, has been synthesized. The crystal structure
of this salt is determined by X-ray diffraction analysis [a = 31.757(2) Å, b = 6.8063(3) Å, c = 34.879(2) Å, β =
90.453(4)°, V = 7538.8(7) Å3, space group I2/c, and Z = 4]. In the structure, the radical cation layers alternate

with the anion layers along the c-axis. The anion layers consist of the GaC  tetrahedra and solvent molecules.
The packing of BEDT-TTF molecules in the radical cation layer differs from that in the structure of the known
salt (BEDT-TTF)2GaCl4, even though both compounds exhibit semiconductor properties. © 2001 MAIK
“Nauka/Interperiodica”.
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INTRODUCTION

Radical cation salts based on bis(ethylene-
dithio)tetrathiafulvalene (BEDT-TTF) and its ana-
logues have been extensively studied in recent years.
These compounds are of considerable interest owing to
their electrical and magnetic properties. The majority
of these salts exhibit the properties of quasi-two-
dimensional organic metals down to the lowest temper-
atures, and certain of these compounds transform into a
superconducting state at temperatures ranging from
1.15 to 12.8 K [1, 2].

The anionic components in the BEDT-TTF salts can
vary over a wide composition range. This provides a
way of preparing crystals with different packings of the
radical cation layer whose nature determines the crystal
properties. Furthermore, it is possible to change the
structure of a conducting layer in compounds with the
same anion by varying the conditions of crystal prepa-
ration, which can result in the formation of different
polymorphic modifications and (or) incorporation of
any third neutral component, for example, solvent mol-
ecules.

In the present work, we investigated the crystal
structure of the BEDT-TTF radical cation salt with the

GaC  tetrahedral anion by X-ray diffraction. In 1991,
Kurmoo et al. [3] obtained the first radical cation salt

based on BEDT-TTF and the GaC  anion with the
semiconductor properties. However, more recently,
Montgomery et al. [4] and Kobayashi et al. [5] synthe-

l4
–

l4
–
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sized the radical cation salt based on bis(ethylene-
dithio)tetraselenafulvalene (BEDT-TSF) with the same
anion, which has a different structure and can exist in
two crystalline modifications: κ-(BETS)2GaCl4
(organic metal stable at temperatures below 2 K) and
λ-(BETS)2GaCl4 (superconductor with Tc = 8 K) [4, 5].
In this respect, we once again synthesized the BEDT-
TTF radical cation salt with the same anion in order to
obtain its other crystalline modification with different
properties. The preliminary X-ray structure investiga-
tion demonstrated that crystals of the newly synthe-
sized salt differ in parameters from the crystals pre-
pared earlier in [3]. Moreover, a detailed X-ray diffrac-
tion analysis revealed that the crystals contain
molecules of the C6H5CH3 toluene solvent.

EXPERIMENTAL

Crystals of (BEDT-TTF)4(GaCl4)2 · C6H5CH3 were
obtained by the electrochemical oxidation on a Pt
electrode. A solution of BEDT-TTF (Aldrich, 1.5 ×
10− 3 mol/l) and an (Et)4NGaCl4 electrolyte (9 × 10−3 mol/l)
in a benzonitrile–toluene (1 : 1) mixture was placed in
a U-shaped electrochemical cell and was left to stand
for two weeks under a direct current (i ~ 1 µA/cm2). The
(Et)4NGaCl4 electrolyte was synthesized in the follow-
ing way. Metallic Ga was dissolved in a concentrated
HCl acid upon heating. After the complete dissolution
of Ga, the solution was evaporated with water bath with
the aim of removing an excess acid. The calculated
001 MAIK “Nauka/Interperiodica”



 

220

        

ZORINA 

 

et al

 

.

                                           
Table 1.  Atomic coordinates and isotropic equivalent thermal parameters Ueq (Å2)

Atom x/a y/b z/c Ueq Atom x/a y/b z/c Ueq

S(1) 0.17545(4) 0.7663(2) 0.77932(3) 0.0647(3) S(12) 0.42106(4) 0.6582(2) 0.27636(3) 0.0754(3)

S(2) 0.18946(4) 1.1805(2) 0.76116(3) 0.0668(3) S(13) 0.48345(6) –0.0373(2) 0.14313(4) 0.1082(6)

S(3) 0.21051(4) 0.6448(2) 0.69589(3) 0.0661(3) S(14) 0.49887(5) 0.4573(2) 0.11959(4) 0.0918(4)

S(4) 0.22959(4) 1.0570(2) 0.68012(3) 0.0632(3) S(15) 0.37421(4) 0.3147(2) 0.37178(3) 0.0728(3)

S(5) 0.13722(4) 0.8377(2) 0.85465(3) 0.0729(3) S(16) 0.38075(5) 0.8081(2) 0.34539(4) 0.0963(5)

S(6) 0.15175(5) 1.3333(2) 0.83143(4) 0.0954(5) C(11) 0.4463(1) 0.3613(7) 0.2291(1) 0.065(1)

S(7) 0.23819(5) 0.4963(2) 0.62143(4) 0.0808(4) C(12) 0.4282(1) 0.4147(7) 0.2629(1) 0.064(1)

S(8) 0.25968(4) 0.9887(2) 0.60142(3) 0.0760(3) C(13) 0.4732(1) 0.1699(7) 0.1708(1) 0.071(1)

C(1) 0.1935(1) 0.9376(6) 0.7465(1) 0.056(1) C(14) 0.4789(1) 0.3581(7) 0.1618(1) 0.069(1)

C(2) 0.2097(1) 0.8860(2) 0.7118(1) 0.054(1) C(15) 0.3929(1) 0.4116(9) 0.3292(1) 0.061(1)

C(3) 0.1587(1) 0.9378(2) 0.8132(1) 0.058(1) C(16) 0.3966(1) 0.6032(7) 0.3196(1) 0.064(1)

C(4) 0.1647(1) 1.1282(7) 0.8044(1) 0.062(1) C(17) 0.5184(2) 0.0643(10) 0.1090(2) 0.089(2)

C(5) 0.2331(1) 0.6978(2) 0.6515(1) 0.059(1) C(18) 0.5016(2) 0.2429(10) 0.0896(2) 0.092(2)

C(6) 0.2412(1) 0.8857(7) 0.6440(1) 0.059(1) C(19) 0.3811(2) 0.5267(9) 0.4024(2) 0.090(2)

C(7a)* 0.1191(4) 1.053(4) 0.8810(6) 0.074(4) C(20) 0.3599(2) 0.7050(9) 0.3882(2) 0.097(2)

C(8a)* 0.1491(4) 1.226(2) 0.8782(3) 0.070(3) Ga 0.35175(2) 0.97312(8) 0.50537(1) 0.0687(1)

C(7b)* 0.1409(6) 1.044(4) 0.8853(6) 0.088(6) Cl(1) 0.39303(5) 1.0724(2) 0.46005(4) 0.1008(5)

C(8b)* 0.1238(5) 1.236(3) 0.8691(4) 0.094(4) Cl(2) 0.31108(5) 1.2107(2) 0.52247(4) 0.1069(5)

C(9a)* 0.2565(3) 0.607(2) 0.5768(3) 0.076(3) Cl(3) 0.38796(5) 0.8792(3) 0.55493(4) 0.1070(5)

C(10a)* 0.2399(3) 0.812(2) 0.5680(3) 0.075(3) Cl(4) 0.31466(5) 0.7314(2) 0.48343(5) 0.1119(5)

C(9b)* 0.2321(7) 0.606(4) 0.5766(7) 0.071(7) C(21) 0.4736(4) 0.361(2) –0.0113(3) 0.222(8)

C(10b)* 0.2640(9) 0.769(5) 0.5722(8) 0.094(8) C(22) 0.4547(4) 0.505(2) 0.0055(3) 0.231(7)

S(9) 0.45190(5) 0.1182(2) 0.21568(3) 0.0846(4) C(23) 0.4841(6) 0.651(2) 0.0187(2) 0.201(6)

S(10) 0.46592(4) 0.5316(2) 0.19682(3) 0.0740(3) C(24)* 0.4662(7) 0.762(3) 0.0327(5) 0.207(12)

S(11) 0.41229(4) 0.2417(2) 0.29632(3) 0.0707(3)

* Site occupancies are equal to 0.52 for the C(7a) and C(8a) atoms, 0.48 for the C(7b) and C(8b) atoms, 0.72 for the C(9a) and C(10a)
atoms, 0.28 for the C(9b) and C(10b) atoms, and 0.50 for the C(24) atom.
amount of (Et)4NCl was added to the cooled solution.
The (Et)4NGaCl4 white crystalline powder precipitated
was filtered off, washed with small portions of cooled
water and alcohol, and then was recrystallized from
absolute alcohol.

The main crystal data are as follows: a = 31.757(2) Å,
b = 6.8063(3) Å, c = 34.879(2) Å, β = 90.453(4)°, V =
7538.8(7) Å3, space group I2/c, Z = 4, formula
C47H40Cl8Ga2S32, F(000) = 4128, M = 2053.8, dcalcd =
1.81 g/cm3, and µ(MoKα) = 19.21 cm–1. The intensities
of 5255 reflections from a single crystal 0.18 × 0.07 ×
0.36 mm3 in size were measured on an Enraf–Nonius
CAD4 automated diffractometer [MoKα radiation,
graphite monochromator, ω scan mode, (sinθ/λ)max =
0.595 Å−1]. After the averaging of equivalent reflec-
tions, the final data set included 3656 independent
reflections with I > 2σ(I) (Rav = 0.010). The structure
was solved by the direct method according to the
AREN software package [6] and then was refined by
C

the least-squares procedure in the anisotropic (for the
non-hydrogen atoms) approximation using the
SHELXL93 software package [7] up to R = 0.031. The
set of reflections corrected for absorption according to
the DIFABS program of the AREN software package
was used in the refinement. The hydrogen atoms in the
BEDT-TTF II molecule were located from the differ-
ence Fourier synthesis and refined in the isotropic
approximation. The coordinates of the hydrogen atoms
in the BEDT-TTF I and toluene molecules were deter-
mined geometrically and used in further calculations
without refinement. The final coordinates of the non-
hydrogen atoms and their thermal parameters are pre-
sented Table 1.

RESULTS AND DISCUSSION

Figure 1 shows the projection of the (BEDT-
TTF)4(GaCl4)2 · C6H5CH3 structure onto the ac plane.
The structure consists of the BEDT-TTF radical cation
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Fig. 1. Projection of the (BEDT-TTF)4(GaCl4)2 · C6H5CH3 structure onto the ac plane. Symmetry operations for the radical cations
BEDT-TTF I and II are as follows: 1/2 – x, y – 1/2, 1 – z (I1); x, 1 – y, z – 1/2 (I2); 1/2 – x, 3/2 – y, 3/2 – z (I3); and 1 – x, y, 1/2 – z (II1).
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layers, which alternate along the c-axis with the anion
layers containing solvent (toluene) molecules.

In the structure, there are two crystallographically
independent BEDT-TTF radical cations I and II
(Fig. 2), which occupy the general positions. The ter-
minal ethylene groups in the BEDT-TTF I cation are
disordered. The ethylene groups in the BEDT-TTF II
cation adopt an eclipsed conformation without orienta-
tional disordering. The lengths of the central C=C bond
in both radical cations are identical (to within the accu-
racy of determination) and equal to 1.369(5) Å in
BEDT-TTF I and 1.363(6) Å in BEDT-TTF II. These
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      200
lengths and the S–C bond lengths in the tetrathiaful-
valene skeleton are close to the lengths of the corre-
sponding bonds in the BEDT-TTF1/2+ radical cation [8].
The projection of the radical cation layer along the c-
axis is depicted in Fig. 3. The radical cation layer is
formed by the BEDT-TTF stacks, which are aligned
parallel to the a-axis. There exist three types of the
BEDT-TTF cations that overlap in the stack: I1–I2, I1–
II, and II–II1 (Fig. 4). The I1–I2 radical cations are par-
allel, and the interplanar distance is equal to 3.63 Å.
The midplanes of the I1–II and II–II1 radical cations
are not parallel and form dihedral angles of 5.34(6)°
1
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Fig. 2. Molecules BEDT-TTF I (top) and II (bottom) with atomic numbering.
and 1.18(6)°, respectively. Furthermore, the radical cat-
ion II is rotated with respect to the neighboring cations
I1 and II1 about the normal to the BEDT-TTF plane in
such a way that the angle between the C=C central
bonds is equal to approximately 30°. Intercation short-
ened S···S contacts ≤3.70 Å are absent within the stack.
At the same time, a number of shortened S···S contacts

Table 2.  Shortened S⋅ ⋅ ⋅S contacts (r ≤ 3.70 Å) between the
BEDT-TTF radical cations

Contact r, Å BEDT-TTF*

S(1) ⋅ ⋅ ⋅S(6), S(6) ⋅ ⋅ ⋅S(1) 3.547(2) I–Ib, I–

S(4) ⋅ ⋅ ⋅S(7), S(7) ⋅ ⋅ ⋅S(4) 3.635(2) I– , I–Ib

S(5) ⋅ ⋅ ⋅S(6), S(6) ⋅ ⋅ ⋅S(5) 3.559(2) I–Ib, I–

S(7) ⋅ ⋅ ⋅S(8), S(8) ⋅ ⋅ ⋅S(7) 3.591(2) I–Ib, I–

S(10) ⋅ ⋅ ⋅S(13), S(13) ⋅ ⋅ ⋅S(10) 3.528(2) I– , I–IIb

S(11) ⋅ ⋅ ⋅S(16), S(16) ⋅ ⋅ ⋅S(11) 3.559(2) I–IIb, I–

S(13) ⋅ ⋅ ⋅S(14), S(14) ⋅ ⋅ ⋅S(13) 3.571(2) I–IIb, I–

S(15) ⋅ ⋅ ⋅S(16), S(16) ⋅ ⋅ ⋅S(15) 3.575(2) I–IIb, I–

* Symmetry operations for the radical cations are as follows: x, y + 1,
z (IIb) and x, y – 1, z (  and ). Symmetry operations for the

radical cations BEDT-TTF I and IIb are given in the captions to
Figs. 1 and 2.
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IIb

IIb

IIb
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C

are observed between the stacks along the b-axis. These
contacts are listed in Table 2.

The projection of the anion layer in the (BEDT-
TTF)4(GaCl4)2 · C6H5CH3 crystals along the c-axis is
displayed in Fig. 5. The interatomic distances in the

GaC  tetrahedral anion are equal to 2.156(2),
2.160(2), 2.165(2), and 2.169(1) Å. The noncentrosym-
metric molecules of toluene occupy two equiprobable
positions at the centers of symmetry. They are freely

arranged between the GaC  tetrahedra and form short-
ened contacts neither with anions nor with BEDT-TTF
radical cations.

In the structure, there are three shortened Cl···S con-
tacts between the anion and radical cation layers:
Cl(1)···S(15), 3.539(1) Å (IIb); Cl(2) ···S(8), 3.550(2) Å
(I); and Cl(3)···S(5), 3.578(1) Å (I3). Here, IIb has the
coordinates (x, y + 1, z).

It is of interest to compare the structure of the radi-
cal cation salt under consideration and the structure of
the (BEDT-TTF)2GaCl4 compound [3]. The latter crys-

tallizes in the triclinic crystal system P  (a = 31.911 Å,
b = 16.580 Å, c = 6.645 Å, α = 98.15°, β = 85.60°, γ =
90.55°, V = 3470 Å3, and Z = 4) and has quite a differ-
ent packing of BEDT-TTF in the radical cation layers.
These layers are formed by the BEDT-TTF stacks,
which are aligned parallel to the b-axis and contain four
crystallographically independent radical cations. This
indicates that the incorporation of solvent molecules
into the radical cation salt leads to a considerable

l4
–

l4
–

1
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change in the crystal structure, which, in turn, can bring
about a change in the physical properties. In this case,
both salts possess the semiconductor properties. How-
ever, there are numerous examples when the properties
change radically. In particular, the (BEDT-
TTF)2Ag(CN)2 radical cation salt has two crystalline
modifications α'' and θ with semiconducting and metal-
lic properties, respectively [9, 10]. The κ-(BEDT-
TTF)2Ag(CN)2 · H2O radical cation salt, which
involves water molecule as a guest component, repre-

1
4
---

1
4
---

1
4
---

1
4
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1
4
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4
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II1
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4
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4
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0 b

a

Fig. 3. Projection of the radical cation layer along the c-axis.
Symmetry operations for the radical cations BEDT-TTF I1,
I2, II, and II1 are given in the caption to Fig. 1. Symmetry
operation for the radical cations I1b and IIb: x, y + 1, z.

I1b

IIb
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sents the organic superconductor with Tc = 5 K [10, 11].
In the last case, the incorporation of the third guest
component into the crystal composition changes the
structure of the conducting layer; modifies the Fermi
surface topology; and, as a consequence, leads to a rad-
ical change in the transport properties [12].

It should be noted that the structure of the radical
cation layer in the (BEDT-TTF)4(GaCl4)2 · C6H5CH3
crystals closely resembles that of the (BEDT-
TTF)4(Hg2Br6) · C2H3Cl3 crystals [13]. The internal
structure of radical cation stacks, which form the donor
layers, is approximately the same in these crystals.
Apparently, the crystals also possess the semiconductor
properties. The characteristic rotation of radical cations
in the stacks with respect to the normal to the plane
(Fig. 4) was observed earlier in many salts, for example,
in (BEDT-TTF)4Cl2 · 4H2O [14], (BEDT-TTF)4Cl2 ·
6H2O [15], (BEDT-TTF)2Br · C2H4(OH)2 [16], β-
and   γ-(BEDT-TTF)2PF6 [17, 18], (BEDT-
TTF)2TlHg(Se1 − xSxCN)4 [19], (BEDT-TTF)2Br(H2O)3
[20], etc. Among these crystals, there are semiconduc-
tors [18, 19], metals with the metal–dielectric transition
[15–17], and metals stable down to liquid helium tem-
perature [14, 20]. It seems likely that the complex
structure of the radical cation layer in (BEDT-
TTF)4(GaCl4)2 · C6H5CH3 with a weak intrastack and
interstack intermolecular interactions does not provide
necessary conditions for manifestation of metallic

I1

I2

I1

II1

II

II

(a)

(b)

(c)

Fig. 4. (a–c) Overlapping of the BEDT-TTF radical cations
in a stack.
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properties, and the crystals of this salt are semiconduc-
tors.
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Abstract—The crystal structure of 2-(2'-tosylamino-5'-nitrophenyl)-4H-3,1-benzoxazin-4-one (I) is studied by
X-ray diffraction at 100 K (C21H15N3O6S, a = 20.899(2) Å, b = 10.948(1) Å, c = 8.260(1) Å, V = 1889.3(1) Å3,
Z = 4, and space group Pbn21). The compound exhibits an anomalous Stokes shift. Upon cooling, the
oxazineaminophenyl fragment of compound I acquires a quinoid structure and the linear parameters of the
intramolecular N–H···N hydrogen bond increase (the distance between the heterocyclic nitrogen atom and the
hydrogen atom of the tosylamino group becomes 1.92 Å). The complete optimization of the geometry of mol-
ecules in compound I and unsubstituted 2-(2'-tosylaminophenyl)-4H-3,1-benzoxazin-4-one in the ground sin-
glet electronic state is performed by the semiempirical method with the MOPAC program. It is shown that the
oxygen atoms in the sulfo group of molecule I are nonequivalent, because one of them is involved in the inter-
molecular C–H···O hydrogen bond. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier [1–4], we reported the crystal structures of
some representatives of the new class of organic lumi-
nophores, which are active in the crystal state and show
anomalous Stokes shifts (ASS). These compounds are
2-(2'-tosylaminophenyl)-4H-3,1-benzoxazin-4-one (II)
and its derivatives: 2-(2'-tosylamino-5'-nitrophenyl)-
4H-3,1-benzoxazin-4-one at 300 K (Ia) [2], 2-(2'-tosy-
lamino-4'-nitrophenyl)-4H-3,1-benzoxazin-4-one (III)
[3], 2-(2'-tosylaminophenyl)-6-bromo-4H-3,1-benzox-
azin-4-one (IV) [4], and 2-(2'-tosylamino-4'-methox-
yphenyl)-4H-3,1-benzoxazin-4-one (V) at 100 and
300 K [4]. To exhibit the luminophore properties, an
organic molecule should contain a sufficiently
extended and rigid planar conjugated π system. This
requirement is fulfilled in all molecules Ia–V due to the
formation of the intramolecular N(1)–H···N(2) hydro-
gen bond, which links planar benzoxazine (A and B)
and aminophenyl (C and E) fragments into a common
conjugated system. In these molecules, the dihedral
angles between the phenyl ring (D) of the tosyl group
and the conjugated system vary from 96.7° in II to
64.2° in IV. The molecular structure of 2-(2'-tosylami-
nophenyl)-4H-3,1-benzoxazin-4-one is represented by
1063-7745/01/4602- $21.00 © 20225
the following scheme:

For the first time, the immediate relation between
the anomalous Stokes shift and the strength and topol-
ogy of the intramolecular hydrogen bond between the
heterocyclic nitrogen atom and the hydrogen atom of
the tosylamino group was shown in [5] based on the
data of fluorescence and IR spectroscopic studies of
compounds Ia–V. The strength of the hydrogen bond
depends on the electron nature and the position of the
substituent in the molecule. The anomalous Stokes shift
changes symbately with the strength of the intramolec-
ular hydrogen bond: the strong electron-seeking NO2

group at the p-position to the tosylamino group
strengthens the intramolecular N–H···N hydrogen bond
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and shifts the frequency of the NH stretching vibrations
toward smaller wave numbers from 3021 (II) to
2965 cm–1 (Ia) (Table 1). The anomalous Stokes shifts,
which are characteristic of compound II and its deriva-
tives, are due to proton-transfer energy losses upon
transition to the excited state. The anomalous compo-
nent of the Stokes shift depends on the strength of the
intramolecular hydrogen bond. This strength is affected
by the substituents, which enhance the proton-releasing
or proton-seeking properties of the groups involved in
the intramolecular hydrogen bond. For example, the
weakening of the intramolecular hydrogen bond under

Table 1.  Fluorescence maxima and anomalous Stokes shifts
(ASS) for compounds I–V

Compound Fluorescence 
λmax, nm ASS, nm νNH, cm-1 N(1)···H, Å

I 520 185 2965 1.85
II 535 198 3021 1.93
III 564 200 3105 1.80
IV 542 197 3061 2.08
V 150 2985 1.84
C

the action of 4'-NO2 (III) and 6-Br (IV) substituents
correlates with an increase in the anomalous stokes
shift (Table 1). The opposite changes are observed for
compounds I and V: the strengthening of the intramo-
lecular hydrogen bond is accompanied by a decrease in
the anomalous Stokes shift (Table 1).

The N(2)–H bond observed in the crystal structure
of Ia at 300 K is the longest among the corresponding
bonds in the compounds studied. This agrees with the
fact that the NO2 group conjugated only with the N(2)
nitrogen atom (see the above scheme) reduces the
basicity of the amino nitrogen; promotes the mobility
of the hydrogen atom; and, thus, strengthens the
intramolecular hydrogen bond. The NO2 group intro-
duced into the 4'-position (III) produces only the
inductive effect on the mobility of the hydrogen atom
of the tosylamino group. At the same time, the NO2
group is conjugated with the N(1) atom, reduces its
basicity, and weakens the intramolecular hydrogen
bond. In this case, the N(2)–H bond is shorter.

The X-ray diffraction studies of the above com-
pounds at room temperature revealed the inequality of
the S–O bond lengths. In all the structures, the sulfo
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Fig. 1. A general view of molecule I.
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Fig. 2. Projection of structure I onto the a0b plane. The O(5)···H(7)–C(7) hydrogen bond is shown by the dot-dashed line.
group is asymmetric relative to the S–C(Ph) bond
because of the sterical hindrances produced by the ami-
nophenyl ring. In structures I and III, the S–O bonds
are additionally affected by the intramolecular C–H···O
interactions between the oxygen atom of the sulfo
group and the hydrogen atom in the ortho-position of
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
the phenyl ring (the O···H distances are 2.1–2.5 Å). The
mobility of its proton increases under the effect of the
nitro group. It is of interest to study the crystal structure
of I at low temperature in order to gain more details of the
molecular structure, intramolecular hydrogen bond, and
the specific intermolecular S–O···H–C(Ph) interactions.
Table 2.  Crystal data for compound I

T, K a, Å b, Å c, Å V, Å3 Z d, g/cm3 |Fhkl | R

300 21.099(9) 10.960(5) 8.358(5) 1932.7 4 1.51 1055 0.05
100 20.898(2) 10.948(1) 8.260(2) 1889.8 4 1.54 1141 0.04



228 UTENYSHEV et al.
Table 3.  Coordinates of non-hydrogen (×104) and hydrogen
(×103) atoms and equivalent isotropic thermal parameters
Beq in structure I at 100 K

Atom x y z Beq, Å2

S 4644(2) 3562(2) 7903(2) 0.58
O(1) 940(2) 3906(2) 7214(1) 1.08
O(2) 1946(2) 4470(2) 7690(2) 1.22
O(3) 4758(2) 2825(2) 6545(1) 1.39
O(4) 5111(2) 4465(2) 8399(2) 1.08
O(5) 2998(2) 8649(2) 11776(2) 1.76
O(6) 2086(1) 7976(2) 10894(2) 1.35
N(1) 2829(1) 3510(2) 6494(2) 0.80
N(2) 3963(1) 4255(2) 7498(2) 1.09
N(3) 2666(1) 7924(2) 10964(2) 1.19
C(1') 2972(2) 5201(1) 8366(2) 1.15
C(2') 3644(2) 5141(1) 8432(2) 0.99
C(3') 3986(2) 5988(2) 9347(2) 1.08
C(4') 3666(1) 6885(2) 10250(2) 0.80
C(5') 3014(2) 6958(1) 10147(2) 1.05
C(6') 2661(2) 6116(1) 9228(2) 0.88
C(5) 1345(2) 1927(2) 5134(2) 1.19
C(6) 1622(2) 1020(1) 4153(2) 1.27
C(7) 2275(2) 0972(2) 4000(2) 1.35
C(8) 2683(2) 1796(2) 4725(2) 1.14
C(9) 2413(2) 2692(2) 5716(2) 0.89
C(10) 1759(1) 2766(2) 5869(2) 0.93
C(11) 1482(1) 3707(2) 6942(2) 0.78
C(12) 2579(1) 4328(2) 7445(2) 0.80
C(15) 4493(1) 2630(1) 9632(1) 0.74
C(16) 4296(1) 1408(1) 9319(2) 1.22
C(17) 4193(1) 0687(1) 10704(2) 1.07
C(18) 4276(2) 1120(2) 12239(2) 0.99
C(19) 4448(2) 2330(1) 12521(2) 1.29
C(20) 4563(2) 3091(2) 11147(2) 0.66
C(21) 4200(2) 0276(2) 13670(2) 1.52
H(1) 369(2) 393(3) 699(2)
H(3') 445(2) 601(3) 935(2)
H(4') 393(2) 738(3) 1100(2)
H(6') 222(2) 618(3) 927(2)
H(5) 86(2) 202(2) 500(2)
H(6) 133(2) 32(2) 362(3)
H(7) 246(2) 33(2) 335(2)
H(8) 318(2) 175(1) 462(2)
H(16) 424(2) 110(3) 824(2)
H(17) 417(2) 2(2) 1040(2)
H(19) 449(2) 264(2) 136(2)
H(20) 469(3) 393(3) 1129(2)
H(21A) 415(3) 83(3) 1487(3)
H(21B) 372(3) 8(3) 1362(2)
H(21C) 442(3) –71(3) 1331(2)
C

EXPERIMENTAL

The main crystal data for colorless crystals I
(C21H15N3O5S, space group Pbn21) at two temperatures
are summarized in Table 2. A set of intensities was
obtained on a DAR-UM three-circle diffractometer
(equi-inclined scheme of data collection, ω–ω/2ω scan
mode, CuKα radiation, graphite monochromator, no
correction for absorption). The crystal was cooled to
the temperature required with a nitrogen stream in a
low-temperature open-type attachment to the DAR-UM
diffractometer. The temperature variations were within
±2°. The unit cell parameters were refined using high-
angle reflections. The atomic coordinates of structure
Ia at room temperature [2] were used as a starting set
for the least-squares refinement of structure I in the
anisotropic approximation with the ROENTGEN-75
program [6]. The difference synthesis ρ(x, y, z) calcu-
lated after the anisotropic least-squares refinement to
R = 0.06 revealed the positions of all the hydrogen
atoms. The simultaneous refinement of the non-hydro-
gen atoms in the anisotropic approximation and the
coordinates of the hydrogen atoms led to R = 0.040. The
final atomic coordinates are listed in Table 3. The quan-
tum-chemical calculation of the geometry of molecule I in
the ground state was performed by the PM3 parametriza-
tion method using the MOPAC-7 program [7]. The ener-
gies of the crystal lattice and intermolecular interactions in
the crystal were calculated within the atom–atomic poten-
tial approach with the 6-exp parameters [8].

RESULTS AND DISCUSSION

Upon cooling, crystal I retained the orthorhombic
symmetry. The b parameter remained almost
unchanged, the a and c parameters decreased markedly,
and the volume decreased by 42.9 Å3 (Table 2).

A general view of molecule I is shown in Fig. 1. The
conformation of the molecule at 100 K remained almost
unchanged compared to that at 300 K. Molecule I is char-
acterized by the planar conjugated system formed by the
benzoxazineaminophenyl fragment (Fig. 1; rings A, B, C,
and E). Table 4 shows that, at both temperatures, molecule
I inherits the main conformational features of the unsub-
stituted molecule II. Introduction of the nitro group into
the p-position of the tosylamino group resulted in a
decreased angle of rotation of the p-methylphenyl frag-
ment relative to the central fragment of the molecule.

Similar to other organic structures [9–11], the bonds
that were effectively shortened at 300 K because of an
improper consideration for thermal vibrations length-
ened at low temperatures. This lengthening is most pro-
nounced in the benzoxazine rings A and B: C(10)–
C(11), 1.471 Å (vs. 1.460 Å)*1 and O(2)–C(11), 1.429
(1.383 Å). Apparently, the same effect is responsible
for the lengthening of the other peripheral bonds upon
cooling and, as a consequence, for the changes in the
bond angles by approximately 1°.

1  The bond lengths in parentheses refer to room temperature.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Table 4.  Dihedral angles (deg) between the planar fragments in molecules I (at 100 and 300 K) and II

Molecule A/B B/C B/D B/E –NO2/C O(3)SO(4)/CSN(1)

I 2.0 6.6 78.3 4.6 1.9 93.2

Ia 2.0 6.2 79.0 4.5 2.7 92.4

II 1.2 7.1 95.4 6.2 – 92.5

Table 5.  Geometric parameters (Å, deg) for intramolecular hydrogen bonds and sulfo groups in molecules I (at 100 and
300 K) and II

Molecule N(1)···N(2) N(1)–H H···N(2) N(1)HN(2) S–O(3) S–O(4) S–N(1) S–C(15) O(3)SO(4)

I 2.653(3) 0.79(2) 1.92(3) 132.8(2) 1.399(2) 1.453(2) 1.652(2) 1.779(2) 120.8(2)

Ia 2.632(5) 1.09(11) 1.85(3) 125.0(2) 1.405(4) 1.439(3) 1.645(3) 1.769(3) 119.6(2)

II 2.673(3) 0.89(4) 1.93(3) 140.0(0) 1.426(3) 1.433(3) 1.640(3) 1.759(3) 120.1(2)
Upon cooling, the bond lengths in the p-nitrophenyl
fragment change so that N(2)–C(2') becomes the short-
est bond, 1.401(2) Å [1.427(3) in Ia and 1.416(3) Å in
II] and the C(1')–C(12) bond length becomes
1.408(2) Å [1.464(4) and 1.483(3) Å in Ia and II,
respectively]. The N(3)–C(5') bond shortens to
1.444(2) Å vs. 1.468(4) Å at 300 K.

The effect of cooling is most pronounced in the param-
eters of the intramolecular hydrogen bond (Table 5). The
intramolecular hydrogen bond links the planar rings A, B,
and C into a common conjugated system. Upon cooling
from 300 to 100 K, the N(1)–N(2) distance increases by
0.02 Å and remains shorter than that in II by the same
value. As expected, the intramolecular hydrogen bond in
the nitro-substituted luminophore is stronger than that in
the unsubstituted compound.

The low-temperature investigation of compound I
confirmed the nonequivalence of the oxygen atoms in
the sulfo and nitro groups (Table 5). The S–O(3) and
N(3)–O(5) bonds [1.453(2) and 1.256(2) Å, respec-
tively] are significantly longer than the S–O(4) and
N(3)–O(6) bonds [1.399(2) and 1.216(2) Å, respec-
tively]. This indicates that, in the crystal packing, the
O(3) and O(5) atoms are possibly involved in non-
bonded interactions. Actually, the crystal structure of
compound I is characterized by an anisotropic energy
distribution of intermolecular interactions. The total
energy of the crystal structure is −41.2 kcal/mol. The
planar nitrophenyl and benzoxazine fragments of mol-
ecules I that are related by the glide plane b (–x + 05,
y + 0.5, z) overlap. The energy of this intermolecular
interaction is the largest among the pairs of molecules,
15.2 kcal/mol (Fig. 2). There is also a short intermolec-
ular contact between the molecules related by the trans-
lation along the b-axis: the O(5)···H(7) distance
between the nitro group and the hydrogen atom of the
phenyl ring is 2.50 Å, and the O(5)···C(7) distance is
3.468 Å (Fig. 2). On the other hand, the p-methylphe-
nyl fragments D are nearly perpendicular to the conju-
gated ABCE system of the molecule. This orientation
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
favors the intermolecular O(3)···H(19)–C(19) interac-
tion between the molecules related by the twofold
screw axis (1/2 1/2 z): O(3)···H(19), 1.84 Å and
O(3)···C(19), 2.70 Å. The quantum-chemical calcula-
tion revealed that, in the absence of the crystal environ-
ment, the lengths of the S–O bonds in the sulfo group
and the N–O bonds in the nitro group of molecule I are
identical and equal to 1.407 and 1.203 Å, respectively.
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Abstract—The crystal and molecular structures of the alkaloid Royline {(1α,6β,14α,16β)-20-ethyl-4-
hydroxymethyl)-1,6,14,16-tetramethoxyaconitane-7,8-diol} with a water molecule has been determined by
X-ray diffraction analysis. The compound crystallizes in the space group P21 with the unit cell parameters a =
10.985(1) Å, b = 7.898(1) Å, c = 14.956(1) Å, β = 102.96(1)°, V = 1264.52 Å3, Z = 2, λMoKα = 0.71073 Å,
and R = 0.033 for 2067 observed reflections. Rings A, B, and C adopt a chair conformation, ring D is a half-
boat, ring E is a half-chair, and ring F is in an envelope conformation with C(14) at the flap. Molecules are
linked together in the crystal by hydrogen bonds. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The title compound is a diterpenoid alkaloid iso-
lated from Inula royleana, a shrub growing on the west-
ern temperate Himalayas at an altitude of 7000–
12000 ft above the sea level. The plant is considered to
be poisonous and is used as a disinfectant and as an
insectiside. It is known to be commonly used against
the head louse [1]. The chemical structure as assigned
to this compound on the basis of its IR, UV, NMR, and
mass spectral data is shown in Fig. 1 [2].

EXPERIMENTAL

Transparent single crystals of Royline in the form of
plates were grown from methanol by the slow evapora-
tion technique at room temperature. Three-dimensional
intensity data were collected on an Enraf–Nonius
CAD4 diffractometer (MoKα radiation). The unit cell
parameters were refined by the least-squares procedure.
Data were corrected for Lorentz and polarization fac-
tors, but no absorption or extinction corrections were
made.

The structure was solved by direct methods using
the SHELXS86 software package [3] and refined by
using the SHELXL93 software package [4]. A total of
43 hydrogen atoms were used in the structure determi-
nation, of which 25 hydrogen atoms were located from
the difference Fourier map, and their positions and iso-
tropic temperature factors were refined. The remaining
18 hydrogen atoms were placed in geometrically calcu-
lated positions, and their coordinates were refined in
the structure factor calculations. The final refinement
cycle converged to R = 0.033, wR(F2) = 0.087, and S =

  * This article was submitted by the authors in English.
** Author for correspondence.
1063-7745/01/4602- $21.00 © 200230
1.176. Atomic scattering factors were taken from the
International Tables for X-ray Crystallography (1992,
Vol. C, Tables 4.2.6.8 and 6.1.1.4). The crystallo-
graphic data are summarized in Table 1.

RESULTS AND DISCUSSION

The fractional coordinates and equivalent isotropic
temperature factors for non-hydrogen atoms are pre-
sented in Table 2. Endocyclic torsion angles for differ-
ent rings of the molecule are listed in Table 3. A general
view of the molecule with atomic labeling is shown in
Fig. 2 [5].

The geometric parameters of the molecule, that is,
bond lengths and bond angles, are quite close to those
of some analogous structures [6–8]. The central ring
system of Royline is formed by the fusion of four six-
membered and two five-membered rings. The mean
value of three C(sp3)–N bonds [1.465(11) Å] is compa-
rable with the corresponding values obtained in the
case of Delvestine [6] and Delsoline [7].

CH3O

OH

H3C

OCH3

OCH3

OH
OH

H3CO

N

Fig. 1. Chemical structure of Royline.
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Table 1.  Crystal data and other experimental details

Crystal habit White transparent plate

Chemical formula C25H41NO7 · H2O

Molecular weight 485.65

Unit cell parameters a = 10.985(1) Å, b = 7.898(1) Å
c = 14.956(1) Å, β = 102.96(1)°

Unit cell volume 1264.52 Å3

Crystal system Monoclinic

Space group P21

Density dcalcd 1.275 g/cm3

No. of molecules per unit cell (Z) 2

Radiation MoKα

Wavelength (λ) 0.71073 Å

Absorption coefficient (µ) 0.09 mm–1

F(000) 528

Crystal size 0.30 × 0.22 × 0.12 mm

Refinement of unit cell 25 reflections, (8.1° < θ < 13.9°)

θ range for the entire data collection 2° < θ < 25°

No. of measured reflections 2399

No. of unique reflections 2264

No. of observed reflections 2067

No. of parameters refined 462

Final R-factor 0.033

wR 0.087

Weighting scheme 1/[σ2( ) + (0.0472P)2 + 0.16P], where P = [  + 2 ]/3

Final residual electron density –0.12 < ∆ρ < 0.20 eÅ–3

(∆/σ)max in the final cycle 0.809, where z H(241)

Flack parameter X 0.65

F0
2

F0
2

F0
2

Ring A [C(1)C(2)C(3)C(4)C(5)C(11)] exists in a
distorted chair conformation with the C(2) and C(5)
atoms lying above and below the plane of the remaining
four atoms [the deviation is 0.583(3) Å for C(2) and
−0.675(3) Å for C(5)]. Ring B [C(4)C(5)C(11) C(17)
NC(19)] adopts a distorted chair conformation with
C(5) [−0.815(3) Å] and N [0.540(2) Å] atoms lying below
and above the plane. Ring C [C(7)C(8) C(9)C(10)
C(11)C(17)] also takes the shape of a distorted chair
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
with the C(11) atom lying below [–0.718(2) Å] and the
C(8) atom lying above [0.652(2) Å] the plane. Ring D
[C(8)C(9)C(14)C(13)C(16)C(15)] adopts a half-boat
conformation with the C(14) and C(15) atoms deviat-
ing below the plane by –0.853(3) and –0.213(3) Å,
respectively. The five-membered ring E [C(5)C(6)C(7)
C(17)C(11)] acquires a half-chair conformation with
the asymmetry parameter ∆C2[C(11)–C(17)] = 3.9 and
the pseudorotation parameters ∆ = 5.5° and φ = 53.4° [9].
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Table 2.  Atomic coordinates and equivalent isotropic thermal parameters (Å2)

Atom x y z

Ow 1.1562(3) 0.2405(4) 1.1106(2) 0.0762(10)

O(1) 1.0877(2) 0.5436(3) 0.5842(1) 0.0607(7)

O(6) 1.3822(2) 0.3215(3) 0.9440(1) 0.0473(6)

O(7) 1.3359(2) 0.0201(2) 0.7870(1) 0.0429(6)

O(8) 1.2220(2) 0.0689(3) 0.9293(1) 0.0438(6)

O(14) 0.9719(2) 0.2065(3) 0.9405(1) 0.0465(6)

O(16) 0.8525(2) –0.0040(3) 0.7576(2) 0.0618(8)

O(18) 1.5962(2) 0.6612(3) 0.8463(2) 0.0732(9)

N 1.3283(2) 0.2598(3) 0.6407(1) 0.0395(7)

C(1) 1.1966(3) 0.5876(3) 0.6525(2) 0.0392(9)

C(2) 1.3012(3) 0.6285(4) 0.6049(2) 0.0459(9)

C(3) 1.4242(3) 0.6500(4) 0.6731(2) 0.0491(11)

C(4) 1.4544(2) 0.4943(4) 0.7348(2) 0.0430(9)

C(5) 1.3554(2) 0.4749(3) 0.7937(2) 0.0363(7)

C(6) 1.3812(2) 0.3085(4) 0.8482(2) 0.0376(8)

C(7) 1.2823(2) 0.1815(3) 0.7961(2) 0.0336(7)

C(8) 1.1724(2) 0.1596(3) 0.8448(2) 0.0344(8)

C(9) 1.1239(2) 0.3349(3) 0.8641(2) 0.0369(8)

C(10) 1.1158(2) 0.4580(3) 0.7824(2) 0.0369(8)

C(11) 1.2229(2) 0.4503(3) 0.7293(2) 0.0327(7)

C(12) 0.9799(3) 0.4271(4) 0.7237(2) 0.0481(9)

C(13) 0.9205(2) 0.2941(4) 0.7744(2) 0.0445(9)

C(14) 0.9880(2) 0.3276(4) 0.8732(2) 0.0414(8)

C(15) 1.0704(2) 0.0397(3) 0.7931(2) 0.0428(9)

C(16) 0.9449(3) 0.1142(4) 0.7432(2) 0.0441(9)

C(17) 1.2400(2) 0.2671(3) 0.7008(2) 0.0335(7)

C(18) 1.5873(3) 0.5149(5) 0.7925(2) 0.0544(11)

C(19) 1.4531(3) 0.3298(4) 0.6782(2) 0.0455(10)

C(20) 1.3350(3) 0.0969(4) 0.5958(2) 0.0507(11)

C(21) 1.3649(7) 0.1152(6) 0.5026(3) 0.0902(22)

C(22) 1.4944(4) 0.3925(6) 0.9969(3) 0.0704(13)

C(23) 0.8501(3) 0.2127(5) 0.9584(3) 0.0578(12)

C(24) 0.7406(4) –0.0033(9) 0.6886(4) 0.0989(23)

C(25) 1.0218(5) 0.6870(8) 0.5427(4) 0.1000(20)

* Ueq = (1/3)ΣiΣjUij ai · aj.

Ueq
*

ai
*a j

*
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Table 3.  Endocyclic torsion angles (deg)

C(17)–N–C(19)–C(4) –39.7(3) C(7)–C(8)–C(9)–C(10) 41.9(3)

C(19)–N–C(17)–C(11) 57.4(3) C(9)–C(8)–C(15)–C(16) 17.0(3)

C(2)–C(1)–C(11)–C(5) 43.6(3) C(15)–C(8)–C(9)–C(14) 28.8(3)

C(11)–C(1)–C(2)–C(3) –45.7(3) C(8)–C(9)–C(14)–C(13) –71.0(3)

C(1)–C(2)–C(3)–C(4) 54.8(3) C(8)–C(9)–C(10)–C(11) –39.0(3)

C(2)–C(3)–C(4)–C(5) –64.2(3) C(10)–C(9)–C(14)–C(13) 49.2(2)

C(5)–C(4)–C(19)–N 40.2(3) C(14)–C(9)–C(10)–C(12) –29.9(2)

C(3)–C(4)–C(5)–C(11) 61.0(3) C(9)–C(10)–C(12)–C(13) 0.6(3)

C(19)–C(4)–C(5)–C(11) –60.9(3) C(9)–C(10)–C(11)–C(17) 52.0(3)

C(4)–C(5)–C(11)–C(1) –49.6(3) C(5)–C(11)–C(17)–C(7) 53.4(2)

C(4)–C(5)–C(11)–C(17) 74.2(2) C(5)–C(11)–C(17)–N –70.1(2)

C(6)–C(5)–C(11)–C(17) –41.9(2) C(10)–C(11)–C(17)–C(7) –63.9(2)

C(11)–C(5)–C(6)–C(7) 14.6(3) C(10)–C(12)–C(13)–C(14) 29.1(3)

C(5)–C(6)–C(7)–C(17) 18.4(2) C(12)–C(13)–C(14)–C(9) –48.1(3)

C(6)–C(7)–C(17)–C(11) –45.5(2) C(16)–C(13)–C(14)–C(9) 70.4(3)

C(8)–(7)–C(17)–C(11) 73.9(2) C(14)–C(13)–C(16)–C(15) –27.8(3)

C(17)–C(7)–C(8)–C(9) –63.7(3) C(8)–C(15)–C(16)–C(13) –17.7(3)
Ring F [C(9)C(10)C(12)C(13)C(14)] exists in a
C(14)-envelope conformation with the asymmetry
parameter ∆Cs = 1.05, the phase angle of pseudorota-
tion ∆ = 34.1°, and the maximum torsion angle φ =
51.6°. The C(14) atom in this ring is disposed below the
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
plane defined by the other four atoms [the deviation is
–0.738(3) Å].

The general view of the molecule shows that the
molecule is folded within itself (Fig. 2). Molecular
folding of this kind is generally observed in multiple
Ow O(8)

C(22)

C(6)

O(6)

O(7) C(4)

C(18)

O(18)

C(19)

C(20)

C(21)

C(2)C(1)

O(1)

C(25)

C(11)

C(10)

C(15)

C(16)

C(12)

C(24)

O(16)

C(14)

C(13)

C(23) O(14)
C(9)

C(8)
C(7)

C(17)

C(5)

C(3)

Fig. 2. A general view of the molecule with atomic labeling.
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Table 4.  Geometry of intra- and intermolecular hydrogen bonds

D H A D–H(Å) H…A(Å) D…A(Å) D–H…A(°) Symmetry code

O(7) H(7O) O(8) 0.81 2.23 2.73 120 x, y, z

O(8) H(8) O(6) 0.86 1.86 2.64 148 x, y, z

Ow H(1w) O(14) 0.83 2.07 2.89 169 x, y, z

Ow H(2w) O(16) 0.82 2.06 2.84 159 2 – x, y + 1/2, 2 – z

O(18) H(18O) Ow 0.95 1.80 2.73 164 3 – x, y – 1/2, 2 – z
ring structures and is attributed mainly to the distor-
tions developed in individual ring systems. The crystal
structure of Royline monohydrate is stabilized by the
O–H···O type intermolecular contacts involving the
molecule of crystal water. The geometries of hydrogen
bonds are listed in Table 4.
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Abstract—A scheme of zone development is shown to be universal for systems and prognostic. The quantita-
tive compositions of silicon–oxygen radicals and atomic positional formulas are analyzed. It is demonstrated
that the systems obey the generalized law of small numbers, which is at variance with the Goldschmidt assump-
tion that only the first four complication series are realized in the scheme. © 2001 MAIK “Nauka/Interperiod-
ica”.
Crystallography is the science dealing with a system
of chemical compounds in a completely or partially
crystalline state. Tectology is the science concerned
with the organization of systems, specifically with uni-
versal phenomena and rules which make it possible to
simulate and, thus, to predict objects and events. Crys-
tallography, as all other sciences, overlaps with tectol-
ogy. The region of their overlap is referred to as system
crystallogy.

In order to answer questions as to why a particular
phenomenon or object exists and what can exist, it is
necessary to construct prognostic schemes. The con-
struction of universal schemes should account for the
universal principles of system organization. The sci-
ence of system organization was developed in the late
19th and early 20th centuries by A.A. Bogdanov
(1873–1928) [1]. He showed that the system organiza-
tion is unified and the development of a particular sys-
tem occurs through the differentiation–integration. The
method of zone development from the initial crystallo-
graphic symbols {hkl} is one of the differentiation–
integration methods. This method was proposed by
H. Weiss (1780–1856) and was then applied by
V. Goldschmidt (1853–1933) in the form of sequences
of series to systems. A scheme for the development of
symbols (formulas) of the {hk0} zone is shown in
Fig. 1. The basis of the allowed values for h, k, l can be
extended beyond h, k, l = 0, 1, 2, 3 by a simple step-by-
step summation of h, k, l, which is used in the develop-
ment of a particular zone. The summation is started
with the “zeroth” step for h, k, l, i.e., with the 010 and
110 formulas (depicted at the right and left corners of
the scheme in Fig. 1). A term-by-term summation of
these formulas gives the formula of a new step, viz.,
120 (at the center of the scheme). The summation of
120 and 010 results in 130 at the right of the diagram,
the summation of 110 and 120 gives 230 at the left of
the diagram (where 130 and 230 are the formulas of the
second step), etc.
1063-7745/01/4602- $21.00 © 20235
Goldschmidt [2] divided the zone symbols into
series (steps) of different ranks: N0, N1, N2, N3, N4, …,
Nn. The simpler the series and the closer it to the origin
of the sequence, the higher the rank. In other words, the
smaller the number n, the higher the rank. Series of
ratios belong to the aforementioned numerical series.
These series can consist of terms which are written as
formulas composed of the numbers (for example, 1/1 is
represented in the form of 11; 1/10, in the form of 1.10;
etc.): N0 (10, 01), N1 (10, 11, 01), N2 (10, 21, 11, 12,
01), N3 (10, 31, 21, 32, 11, 23, 12, 13, 01), and N4 (10,
41, 31, 52, 21, 53, 32, 43, 11, 34, 23, 35, 12, 25, 13, 14,
10). The number of terms in the series is determined by
the relationship Cn = 2n + 1. According to Goldschmidt,
these series are referred to as the complication series.
He noted that a particular complication series differs
from other infinite series in that its new terms are
inserted between the available terms rather than being
added to them at the end of the series. Similar series
were also obtained by mathematician Brokochi (see [2]
and references therein).

A system of series was used in our earlier work [3]
for the investigation into the distribution of formulas
describing faces, reflections, and binary compositions.
Unlike the complete series, we analyzed only half
series. Hence, the initial series N0 was written as
(11, 01) or (110, 010) for face symbols. In each new
series, we considered only new formulas without the
division sign (12 rather than 1/2). The complex formu-
las containing a common divisor were represented in
the form of simple formulas with an exponent equal to
a divisor (for example, 22 was written as 112). Expo-
nents were given only for the realized formulas. There-
fore, our table is a modified variant of the Weiss–Gold-
schmidt table. The number of formulas in the nth step
is equal to 2n – 1. This relationship differs from the
Goldschmidt expression, because the initial symbols in
our case were 110 and 010 (for half-series) rather than
100 and 010. The step numbers are specified on the left
001 MAIK “Nauka/Interperiodica”
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Fig. 1. A scheme for development of the formulas of the hk0 zone and their realization (designations are given in the text).

1201–6
vertical scale in Fig. 1, solid lines correspond to
selected Fibonacci sequences, dashed lines represent
arithmetic series, and exponents indicate atomic posi-
tional formulas.

According to Goldschmidt, the frequency of occur-
rence of the zeroth series (n = 0) is the largest. The
fourth series is so feeble that it occurs extremely rarely
[1]. The frequency of occurrence and the importance of
the fifth and higher series are so negligible that the fifth
series virtually does not exist. The intensity (impor-
tance) of terms in a series decreases with an increase in
the series number. Goldschmidt believed that results
obtained would be also valid for other systems (which
is in agreement with Bogdanov’s inference that the
organization of all systems is unified). The Gold-
schmidt proposition correlates with the parsimony law:
the number of essentially different constituents of a
system is small (four series).

However, as was shown earlier in [3], not all the cri-
teria follow this law. Let us confirm our result by new
examples.

The atomic positional formulas can be derived from
the Shubnikov formulas. Each of these formulas con-
sists of several modules pk, where the symbol p is the
number of atomic positions with the same multiplicity
and the index k is the multiplicity. A set of the k multi-
plicities that correspond to a given atom was earlier
termed the alphabetic Shubnikov formula, and a set of
the p symbols was referred to as the positional formula
[4]. For example, in the Mg2Zn11 structure, the Mg
atoms occupy 6(f) orbits and the Zn atoms fill the 1(b),
6(g), 6(e), 8(i), and 12(k) orbits. Correspondingly, the
Shubnikov formula for the Mg atom can be written in
the form of 16, and the formula for the Zn atom, in the
form of 112618112; in this case, the positional formulas
(composed of the p symbols) take the form of 1 and
C

1112 (132), respectively. Only 158 positional formulas
comprised of numbers 1–6 (i.e., their arity is equal to
1–6) are deduced for thousands of atoms in crystal
structures presented in [5]. Figure 1 shows 34 single-
and 64 double-arity (binary) positional formulas which
consist of two numbers (zero in the first and last places
is disregarded). The first and second numbers corre-
spond to the smaller and larger p values, respectively.
Five formulas that are absent among the binary formu-
las but have additional symbols in the 3- and 4-arity for-
mulas are marked with the plus sign. It is found that all
the formulas of the first four steps are realized without
exceptions, even though the fourth step (the fifth
series), according to Goldschmidt, is not realized.
Moreover, the formula 0.88.0 corresponds to the 88th
step (the 89th series).

In addition to the complication series, the formulas
form sequences that consist of the simplest terms and
series of formulas obtained from the first terms by con-
secutive addition of the same simplest formula, i.e., the
difference. For example, 110(010), 120, 130, 140,
150, …, or 010(010), 0102, 0103, … . This is the longest
series. When going along this series, all the positional
formulas up to the formula 0.24.0 can be realized (the
fused part) and the range up to the formula 0.88.0
involves both realized and nonrealized formulas (the
“beaded” part according to Bogdanov).

Let us consider the coefficients in binary formulas
of silicon–oxygen radicals (the ratio between the num-
bers of Si and O atoms) [6] in terms of the system of
formulas (Fig. 1). The realized formulas are marked
with circles. It is easy to see that formulas for the coef-
ficients of silicate radicals in the composition range
120–140 completely fill four steps and form the three
most representative series 140(130), 130(120), and
250(130) and also several short series. The oddest
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Fig. 2. A scheme of ternary formulas and their realization (designations are given in the text).
ratios regularly fall into sequences in the scheme.
Undoubtedly, new ratios will also fit well in this
scheme. The formulas that correspond to framework
(f), layered (l), chain (c), and island (i) silicates are
indicated.

The zone with the one third constant index equal to
zero was considered above. Now, we turn our attention
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
to the system of zones in which the third index is equal
to 1–9. The prognostic scheme that involves indices 1–
9 for independent region of the symmetry group m3m
(a total of 219 formulas) is depicted in Fig. 2. This sys-
tem was not analyzed by Goldschmidt. The lines indi-
cate the typical zones which contain typical series.
Selected binary and 35 ternary (3-arity) positional for-
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mulas (out of 158 formulas we revealed) which consists
of three numbers are underlined. Among these formu-
las, four formulas involve symbols .10, .11, and .12.
Twenty quaternary (4-arity) formulas are also shown in
Fig. 2. Some of them are formed from the ternary for-
mulas by adding a fourth symbol (given after the
comma). Certain quaternary formulas are not follows
from the ternary formulas. In this case, the comma is
absent. Four 5- and one 6-arity formulas are derived.
The third, fourth, fifth, and sixth symbols are equal to
unity in the majority of cases and two in rare cases and
do not exceed four in the other cases.

Thus, the number of realized formulas in all the sys-
tems (marked with a particular symbol) sharply
decreases with an increase in the indices h, k, l. How-
ever, it should be noted that the formulas realized in
nature with large constituent numbers are much more
frequently occur when going along the series formed
according to the following rule. Let the first term of the
series be the formula consisting of the simplest num-
bers, for example, 010. To this formula, we term by
term add the difference—the constant gradient d = (m,
n, s) which characterizes the given series. By this
means, we obtain the second formula m, 1 + n, s. The
addition of the same difference d to the latter formula
gives the third term of the series and so on. The arith-
metic series is written as hkl(mns).

The results obtained in this work confirm the valid-
ity of the inference made in [3]: according to the law of
small numbers (parsimony), the formulas realized in
CR
nature with symbols larger than several unities (1–4)
are nonuniformly distributed and form arithmetic series
in which the initial formulas and the differences are
composed of small numbers.

The proposed scheme is prognostic. All new formu-
las will regularly fall into this scheme. The scheme can
also be used to investigate the relations in other sys-
tems.
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Abstract—Unit-cell parameter a of the cubic phases with a varying composition Na0.5 − xR0.5 + xF2 + 2x (R = Gd–
Lu and Y) and with a fluorite-type structure, is described within an accuracy of ±0.003 Å, by the formula a =
4.454 + 0.874r3 + x(6.7238r3 – 7.259) where r3 is the Shannon “crystal ionic radius” R3+ at c.n. = 8. © 2001
MAIK “Nauka/Interperiodica”.
†INTRODUCTION

The compounds with a varying composition
Na0.5 − xR0.5 + xF2 + 2x and a fluorite-type structure formed
in the NaF–RF3 systems, where R = Pr–Lu and Y, are
high-temperature nonstoichiometric phases thermody-
namically unstable at room temperature. In some of
these systems, the processes of phase decomposition
and ordering are somewhat decelerated and, therefore,
these phases can be grown in the form of single crys-
tals, which are rather promising matrices for solid-state
lasers [1, 2], fluoride-ion-based electrolytes [3], and
luminescent materials [4, 5]. These phases are also very
good model objects for studying various manifestations
of nonstoichiometry in fluoride systems.

The NaF–RF3 systems have been studied in a num-
ber classical works by Thoma and his coworkers [6–
11], who managed to construct a number of complete
phase diagrams. Unfortunately, these studies also have
some shortcomings. First, the authors failed to avoid
partial pyrohydrolysis of the samples enriched with
rareearth trifluorides. This is seen, in particular, from
erroneous morphotropy scheme in the RF3 series with
polymorphic transitions for TbF3, DyF3, and HoF3
[12, 13]. Moreover, an insufficient number of the stud-
ied samples and attempts to fit the data obtained to the
chosen model (the authors postulated the existence of
the compounds with the composition 5NaF · 9RF3 pos-
sessing a high-temperature cubic and low-temperature
ordered fluorite-like modifications) resulted in a rather
schematic phase diagrams and even in a violation of the
rule of phases in some occasions (the systems with Pr–

† Deceased.
1063-7745/01/4602- $21.00 © 20239
Tb trifluorides). We studied the phase equilibria in a
number of NaF–RF3 systems [14–19] and revealed con-
siderable deviations from the Thoma scheme (different
compositions and symmetries of the ordered
fluorite-like phases, essentially different coordinates of
the maxima on the melting curves of the
Na0.5 − xR0.5 + xF2 + 2x phases with the fluorite structure,
etc.). The same can also be said about the lattice param-
eters of the fluorite phases, the knowledge of which is
very important, e.g., for fast determination of the com-
positions of the synthesized single crystals.

Our present study was aimed at obtaining a consis-
tent system of the a parameters of the cubic lattices for
the fluorite-type nonstoichiometric phases formed in
the NaF–RF3 systems and establishing the general ana-
lytical expression which can describe the dependence
of the lattice parameter on the parameters of the chem-
ical composition.

Table 1.  Impurity concentration in yttrium fluoride, wt %

Nd <0.0005 Cu <0.00005

Sm 0.0002 O 0.027

Gd 0.0005 Si <0.001

Tb 0.0001 Mn <0.00005

Dy 0.0002 Co <0.00005

Ho <0.001 Ni 0.00005

Tm 0.0005 Ti <0.00005

Fe 0.0005 Cr 0.00005
001 MAIK “Nauka/Interperiodica”
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Table 2.  Compositions, lattice parameters, and conditions for obtaining fluorite-type Na0.5 – xR0.5 + xF2 + 2x solid solutions
(single-phase samples)

R RF3, mol % x a, Å Annealing
temperature Annealing time

Gd 64 0.14 5.601 800 100

Tb 62 0.12 5.564 800 100

60 0.10 5.5525 800 100

Dy 54 0.04 5.499 800 100

56 0.06 5.508 800 100

58 0.08 5.521 800 100

60 0.10 5.532 800 100

62 0.12 5.5465 800 100

64 0.14 5.557 800 100

Ho 58 0.08 5.507 800 100

60 0.10 5.517 800 100

62 0.12 5.528 800 100

Er 52 0.02 5.464 800 100

54 0.04 5.473 800 100

56 0.06 5.481 800 100

58 0.08 5.491 800 100

60 0.10 5.498 800 100

62 0.12 5.507 800 100

63 0.13 5.514 800 100

Tm 52 0.02 5.455 800 100

54 0.04 5.460 800 100

56 0.06 5.468 800 100

58 0.08 5.475 800 100

60 0.10 5.481 800 100

62 0.12 5.489 800 100

63 0.13 5.495 800 100

Yb 50* 0 5.437 – –

52 0.02 5.441 720 360

56 0.06 5.456 720 360

58 0.08 5.458 720 360

60 0.10 5.464 720 360

60 0.10 5.466 550 720

62 0.12 5.471 720 360

62 0.12 5.476 550 720

Lu 48 –0.02 5.425 570 500

56 0.06 5.443 700 100

Y 54 0.04 5.475 850 75

56 0.06 5.486 850 75

62 0.12 5.515 850 75

62 0.12 5.515 660 215

62 0.12 5.517 900 77

64 0.14 5.524 850 75

* Sample was obtained by precipitation from an aqueous solution at room temperature.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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EXPERIMENTAL

The initial chemicals were extra-pure-grade NaF
and rare-earth trifluorides produced by the GIRED-
MET experimental plant in Pyshminsk with the main-
component concentration ~99.9%. The typical concen-
trations of various impurities are indicated in Table 1.
In order to purify the crystals of oxygen and adsorbed
moisture, the starting materials were remelted in the
fluorinating atmosphere of the products of Teflon
pyrolysis in a vacuum setup. The samples of
Na0.5 − xR0.5 + xF2 + 2x solid solutions were synthesized by
the method described in [15–17]. The thoroughly
ground mixtures were packed into copper or nickel cap-
illary vessels and were placed into a sealed metal con-
tainer (arch welding). To create the fluorinating atmo-
sphere in the container, we also added BaF2 · HF and
Teflon shavings. Then the containers were annealed
and quenched in water. The annealing modes are indi-
cated in Table 2.

The parameters a of the cubic lattice were determined
on AFV-202E (Toshiba) and HZG-4 (Karl Ziess, Jena)
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Fig. 1. Lattice parameters a of the fluorite-type
Na0.5 − xR0.5 + xF2 + 2x solid solutions (R = Y, Yb):
(1) Thoma data [7, 9]; (2) Schmutz data [20], annealing at
700°C; (3) Schmutz data [20], annealing at 900°C; (4) Pon-
tonnier data [21]; (5) Hund data [22]; (6) our data, annealing
at 900°C; (7) our data, annealing at 850°C; (8) our data,
annealing at 720°C; (9) our data, annealing at 550°C; and
(10) our data, remelting in the fluorinating atmosphere upon
precipitation from the aqueous solution.
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diffractometers using the (440), (531), and (660) reflec-
tions and a Si inner standard. The typical error in the a
parameter calculated from the Student distribution with
the confident probability of 95% was ±0.002 Å.

EVALUATION OF EXPERIMENTAL DATA

The lattice parameters of one-phase samples of var-
ious compositions are listed in Table 2. The known data
and the data obtained for NaF-systems with YF3, TmF3,
YbF3, and LuF3 are given in Figs. 1 and 2. Within the
homogeneity ranges of the Na0.5 − xR0.5 + xF2 + 2x phases,
the parameters of the cubic lattice vary linearly with the
change in the composition (in mol %). The constancy
of the unit-cell parameters in the regions with high RF3
concentration corresponds to two-phase regions con-
taining saturated Na0.5 − xR0.5 + xF2 + 2x solid solutions. At
high NaF concentrations, the deviations from the linear
dependence are caused by melting during annealing at
the corresponding temperature (the Schmutz data for
annealing at 900°C, < 50% LyF3 [20]), and also by the
partial fluorite–gagarinite transformation during
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Fig. 2. Lattice parameters a of the fluorite-type
Na0.5 − xR0.5 + xF2 + 2x (R = Tm, Lu) solid solutions:
(1) Thoma data [9]; (2) Schmutz data [20], annealing at
700°C; (3) Schmutz data [20]; annealing at 900°C;
(4) Schmutz data, annealing at 550°C; (5) our data, anneal-
ing at 700°C; (6) our data, annealing at 800°C; and (7) our
data, annealing at 550°C.
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Table 3.  Parameters which describe the concentration dependences of the lattice parameters for the fluorite Na0.5 – xR0.5 + xF2 + 2x
phases

R3+ r3, Å , Å a0, Å k, Å/mol
a0,

calculated 
by Eq. (3)

ε, Å/mol
ε,

calculated 
by Eq. (6)

k1,
calculated 
by Eq. (7)

k2,
calculated 
by Eq. (8)

Pr 1.266 1.293 5.5609 0.697 1.259 1.2533

Nd 1.249 1.2845 5.5461 0.6615 1.1455 1.1390

Sm 1.219 1.2695 5.5198 0.598 0.9435 0.9373

Eu 1.206 1.263 5.5085 0.5705 0.8560 0.8499

Gd 1.193 1.257 (0.742) 5.4971 (0.530) 0.545 0.7725 0.7625

Tb 1.180 1.250 (0.693) 5.4858 (0.521) 0.515 0.680 0.6751

Dy 1.167 1.2435 5.4739 0.5927 5.4744 0.488 0.487 0.5915 0.5876

Ho 1.155 1.2375 5.4640 0.5375 5.4639 0.475 0.461 0.5095 0.5070

Er 1.144 1.232 5.4550 0.4419 5.4543 0.441 0.4365 0.433 0.4330

Tm 1.134 1.227 5.4460 0.3662 5.4455 0.416 0.415 0.365 0.3658

Yb 1.125 1.223 5.4369 0.2984 5.4377 0.393 0.397 0.3065 0.3052

Lu 1.117 1.219 5.4308 0.2318 5.4307 0.370 0.379 0.2505 0.2515

Y 1.159 1.2395 5.4530 0.5357 5.4674 0.469 0.469 0.5355 0.5339

* rav = 0.5(r3 + rNa) = 0.5(r3 + 1.32).

rav*
quenching from the high-temperature state (our data,
50–52 mol % YF3, annealing at 850°C).

The Thoma data on the NaF–YF3 system [7] were
confirmed by Pontonnier [21] and by our studies. For
the NaYF4 composition, Hund [22] obtained a correct
value, a = 5.448 Å. However, for other systems, the
boundary values of the lattice parameter a indicated by
Thoma [9] are given mainly for two-phase regions;
therefore, the linear interpolation of the boundary val-
ues given in [9] cannot characterize the parameters of
the cubic lattice of the Na0.5 – xR0.5 + xF2 + 2x solid solu-
tions. According to our data, the composition 5NaF ·
9RF3 (64.3 mol % RF3) is located in the two-phase
region (including the composition with the ordered flu-
orite-like phases) for all the systems studied beginning
with NaF–DyF3. Thus, in the course of the further anal-
ysis, the Thoma data were invoked only for the NaF–
YF3 system, whereas in all the other cases, these data
were excluded from consideration. The mathematical
processing was performed on the data for one-phase
fluorite samples in the systems studied, on the Schmutz
data obtained for the NaF–YbF3 and NaF–LuF3 sys-
tems [20], and on the Pontonnier data for the NaF–YF3

system [21].

SEARCH FOR THE APPROXIMATING 
EXPRESSION

Using the experimental data and the least squares
procedure, we obtained the concentration dependences
of the lattice parameters for the Na0.5 – xR0.5 + xF2 + 2x
C

phases (R = Dy–Lu and Y) in the form

(1)

The calculated a0 and k values are listed in Table 3. For
R = Gd and Tb, we obtained the a values only for a nar-
row concentration range (Table 2) (under the quenching
conditions and lower RF3 concentrations, the material
decomposed with the separation of the low-temperature
gagarinite phase). These data were insufficient for
establishing of the dependence similar to Eq. (1).

Further analysis was made in the way described in
[23]. Using the system of “crystal” ionic radii [24]
based on the ionic radius F– = 1.19 Å for c.n. = 8, we
obtained that the compositions with x = 0 (Na0.5R0.5F2)
correspond to the stoichiometry of fluorite MF2 and, in
accordance with the Hund model [22], it was possible
to expect that the Na+ and R3+ cations would statisti-
cally occupy the a positions in the sp. gr. Fm m (occu-
pied by M2+ cations in the fluorite structure). It was also
expected that, similar to the case of the MF2 com-
pounds, the lattice parameter a0 of the structures with
such compositions would also be dependent on the
(average) ionic radius of the cation.

For the MF2 fluorite structure, the following correla-
tion dependence was suggested in [23]:

(2)

where r2 are the ionic radii of M2+ [24]. However, the
use of this formula for the compositions Na0.5R0.5F2,
where r2 is substituted by the average value 0.5(r1 + r3) ,
r1 = rNa = 1.32 Å, and r3 are the ionic radii of R3+ yields

a a0 kx.+=

3

a 2.30 2.50r2,+=
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5.4

1.2 1.3 1.4 1.5 rav, Å

5.6

5.8

6.0

6.2

a, Å

1

3
2

MF2

KRF4

NaRF4

Fig. 3. Lattice parameter a of the fluorite-type phases of the
compositions (1) MF2, (2) Na0.5R0.5F2, and (3) K0.5R0.5F2
versus the average cationic radius, rav. Solid line indicates
the data calculated by Eq. (2); dashed line, by Eq. (3);
chain–dotted line, by Eq. (4).
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quite unrealistic results (Fig. 3). Using the a0-values
obtained from Eq. (1) processed by the least squares
method, we arrive at the following dependence with the
correlation coefficient 0.999:

(3)

In what follows, we shall use just this dependence. The
parameter a0 for other rare-earth elements (Table 3) can
be evaluated from Eq. (3). For R = Gd, Tb, we managed
to estimate the k-values (Table 3) from a0, calcd and our
experimental data (Table 2).

One should also pay attention to the formula

(4)

which satisfactorily (within an accuracy of ±0.005 Å)
describes the lattice parameter not only of the fluorite
N0.5R0.5F2 phases but also of KRF4 (R = La, Ce) with the
use of data [25] (Fig. 3).

Analyze the dependence of k on ionic radii of cat-
ions. This dependence is shown in the graphical form in
Fig. 4 together with the coefficients of the concentra-
tion dependences of the lattice parameter for the fluo-
rite-type solid solutions M1 − xR1 + xF2 + x [23] and
Ca1 − xX1 + xF2 + 2x(X = Th, U, Zr, Hf) [26–28].

The change in the lattice parameters of the
Na0.5 − xR0.5 + xF2 + 2x solid solutions with the variation of
the composition is explained, first of all, by the differ-
ent dimensions of isomorphous cations (in our case,
Na+ and R3+) and the loosening effect of the interstitial
fluoride ions, which have to “accompany” the RE cat-

a0 4.4543 0.8741r3.+=

a0 2.99 2.00rav,+=
0.5

1.1 1.3

–0.5 

k, Å/mol

Ca1 – x X1 + x F2 + 2x

Na 0.5 – x R0.5 + x F2 + 2x

M1 – x R1 + x F2 + x

rR3+, Å

rX4+, Å

M = Ba

M = Pb

M = Sr

M = Ca
M = Cd

Sc
In

Lu

Gd

Nd

La
ThU

ZrHf

1
2
3

4
5

Fig. 4. Coefficient k in the concentration dependences a = a0 + kx of the lattice parameters of the fluorite-type phases as functions

of ionic radius of the R3+ cations in the systems: (4) Na0.5 – xR0.5 + xF2 + 2x and (1–3) M1 – xR1 + xF2 + x (M = Ca, Sr, Ba, Pb; data of
different authors [23]) and (5) Ca1 − xX1 + xF2 + 2x (X = Th [26], U [27], Zr [27, 28], and Hf [28]).
1



244 FEDOROV et al.

                      
ions in order to preserve the electrical neutrality of
crystals (to each R3+ ion there correspond two addi-
tional fluoride ions). The fine distortions of the anionic
sublattice [29] can be neglected [29]. The efficiency of
such a crude approach was demonstrated on the
M1 − xR1 + xF2 + x solid solutions [23]. Unlike heterovalent
isomorphism in M1 – xR1 + xF2 + x, the heterovalent iso-
morphism in the Na0.5 – xR0.5 + xF2 + 2x solid solutions is
accompanied by the appearance of two interstitial
anions per each cation according to the scheme
Na+   R3+ + 2F–. A similar situation is also observed
in the M1 – xX1 + xF2 + 2xsolid solutions (the substitution
mechanism M2+  X4+ + 2F–), which justifies the use
of these solid solutions in our analysis.

Thus, one can write the following equation for
Na0.5 – xR0.5 + xF2 + 2x:

(5)

For M1 – xR1 + xF2 + x, we obtained the following value
[23]: λ = 2.502 Å/mol; parameter ε for an interstitial
fluoride ion is described by the equation ε =

     

     

k λ r3 r1–( ) 2ε.+=
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Fig. 5. Lattice parameters a of the fluorite-type phases of the
Na0.5 – xR0.5 + xF2 + 2x solid solutions: (1) experimental
data, (2) values for the concentration boundaries for the
existence range of Na0.5 – xR0.5 + xF2 + 2x, (3) the common
point of the functions a(x). The solid lines were calculated
by Eq. (7), the dashed lines were extrapolated outside the
existence range of the phase, the chain–dotted line repre-
sents the boundaries extrapolated outside the existence
ranges of the phase.
C

0.794  Å/mol. As is seen from Fig. 4, parameter λ
(proportional to the difference between the ionic radii
of isomorphous cations) does not change its value upon
the substitution of bivalent cations to tetravalent ones
(i.e., at the difference in the valences equal to two).
Thus, one can assume that λ = 2.50 also for the
Na0.5 − xR0.5 + xF2 + 2x solid solutions. The ε values
approximated by the equation

(6)

with the correlation coefficient 0.988 are given in
Table 3. The values calculated by Eq. (6), εcalc, are also
given in Table 3.

Thus, the final equation for the Na0.5 − xR0.5 + xF2 + 2x

solid solutions has the form

(7)

or

(7a)

The k1 values calculated by Eq. (7) are also indicated in
Table 3.

It should be noted that, although the ε values thus
calculated are rather close to the values obtained in [23]
for the M1 – xRxF2 + x solid solutions, Eq. (5) for these
solid solutions has an anomalous form, because the
contribution of the interstitial ions increases with an
increase of the lattice parameter. This seems to be asso-
ciated with the change in the atomic structure of the
solid solution depending on the rareearth element used.
Therefore, we had to search for a simpler expression for
the lattice parameter as an alternative to Eq. (7).

THE SECOND APPROXIMATING 
EXPRESSION

The graphic analysis of the functions a(

 

x

 

) 

 

(Fig. 5)
shows that they all almost converge at one point with
the coordinates 

 

x

 

 = –0.13, 

 

a

 

 = 5.398 Å; i.e., they form a
“beam.” Using Eq. (3), we arrive at the equation

 

(8)

 

or

 (8a) 

The values of the angular coefficients 

 

k

 

2

 

 calculated
by Eq. (8a) are also given in Table 3.

The accuracy of Eqs. (7) and (8) is not lower than
0.003 Å, which is seen from Fig. 3, where the lines cal-
culated by both equations almost coincide. Thus, both
approximating equations can be used in practice (i.e., in
chemical analysis, calculation of densities and refrac-
tions, etc.). Although the physical sense of Eq. (8) is not

r2
2.094–

ε 0.688– 12.411 rav( )log+=

a 4.4543 0.874r3+=

+ x 2.5 r3 rNa–( ) 2 0.688– 12.411 ravlog+( )+[ ]

a 4.4543 0.874r3+=

+ x 2.5r3 24.822 0.5r3 0.62+( )log 4.476–+[ ] .

a 5.398 6.7238r3 7.259–( ) x 0.13+( )+=

 a  4.454 0.874  r  3  x  6.7238  r  3  7.259–  ( ) .+ +=                       
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quite clear, it has some advantages because of its simple
form. The question about the accuracy of the above
equations in the application to the fluorite phases in the
NaF–RF3 systems with other rare-earth elements (R =
Pr–Sm), where all our attempts to quench the one-
phase samples were unsuccessful, is still open.

REFERENCES

1. Kh. S. Bagdasarov, A. A. Kaminskiœ, and B. P. Sobolev,
Kristallografiya 13 (5), 900 (1968) [Sov. Phys. Crystal-
logr. 13, 779 (1968)].

2. M. Yu. Sharonov, A. L. Bratus, B. K. Sevastyanov, et al.,
Opt. Commun. 111, 245 (1994).

3. N. I. Sorokin, A. K. Ivanov-Shitz, L. L. Vistin’, and
B. P. Sobolev, Kristallografiya 37 (2), 421 (1992) [Sov.
Phys. Crystallogr. 37, 217 (1992)].

4. D. M. Roy and R. Roy, J. Electrochem. Soc. 111 (4), 421
(1964).

5. T. Kano, H. Yamamoto, and Y. Omoto, J. Electrochem.
Soc. 119 (11), 1561 (1972).

6. R. E. Thoma, G. M. Hebert, H. Insley, and C. F. Weaver,
in Proceedings of the 3rd Conference on Rareearth
Research, April 21–24, 1963 (Gordon and Breach, New
York, 1963), p. 290.

7. R. E. Thoma, G. M. Hebert, H. Insley, and C. F. Weaver,
Inorg. Chem. 2, 1005 (1963).

8. R. E. Thoma, in Proceedings of the 4th Rareearth
Research Conference, Phoenix, Arizona, 1965, p. 561.

9. R. E. Thoma, H. Insley, and G. M. Hebert, Inorg. Chem.
5 (7), 1222 (1966).

10. R. E. Thoma, in Progress in the Science and Technology
of the Rareearths, Ed. by L. Eyring (Pergamon, Oxford,
1966), Vol. 2, p. 90.

11. R. E. Thoma, Rev. Chim. Miner. 10, 363 (1973).
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
12. R. E. Thoma and G. D. Brunton, Inorg. Chem. 5 (11),
1937 (1966).

13. P. P. Fedorov and B. P. Sobolev, Kristallografiya 40 (2),
315 (1995) [Crystallogr. Rep. 40, 284 (1995)].

14. P. P. Fedorov, B. P. Sobolev, and S. F. Belov, Izv. Akad.
Nauk SSSR, Neorg. Mater. 15 (5), 816 (1979).

15. P. P. Fedorov, A. V. Rappo, F. M. Spiridonov, and
B. P. Sobolev, Zh. Neorg. Khim. 28 (3), 744 (1983).

16. L. N. Pavlova, P. P. Fedorov, L. A. Ol’khovaya, et al., Zh.
Neorg. Khim. 34 (8), 2168 (1989).

17. P. P. Fedorov, L. R. Pavlova, L. A. Ol’khovaya, et al., Zh.
Neorg. Khim. 35 (11), 2948 (1990).

18. P. P. Fedorov, I. I. Buchinskaya, A. A. Bystrova, et al.,
Zh. Neorg. Khim. 41 (10), 1715 (1996).

19. P. P. Fedorov, Zh. Neorg. Khim. 44 (11), 1791 (1999).
20. H. Schmutz, Thesis (Institut fur Radiochemie,

Karlsruhe, 1966).
21. L. Pontonnier, Thesis (L’Universite Scientifique et

l’Institute National Polytechnique, Grenoble, 1985);
L. Pontonnier, G. Patrat, S. Aleonard, et al., Solid State
Ionics 9/10, 549 (1983).

22. F. Hund, Z. Anorg. Allg. Chem. 261, 106 (1950).
23. P. P. Fedorov and B. P. Sobolev, Kristallografiya 37 (5),

1210 (1992) [Sov. Phys. Crystallogr. 37, 651 (1992)].
24. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys.,

Diffr., Theor. Gen. Crystallogr. A32 (5), 751 (1976).
25. W. H. Zachariasen, Acta Crystallogr. 2, 388 (1949).
26. J. P. Laval, A. Micou, B. Frit, and J. Pannetier, J. Solid

State Chem. 61, 359 (1986).
27. J. P. Laval, A. Micou, B. Frit, et al., Rev. Chim. Miner.

24, 165 (1987).
28. I. D. Ratnikova, Candidate’s Dissertation in Chemistry

(Mosk. Gos. Univ., Moscow, 1977).

Translated by L. Man



  

Crystallography Reports, Vol. 46, No. 2, 2001, pp. 246–252. Translated from Kristallografiya, Vol. 46, No. 2, 2001, pp. 287–293.
Original Russian Text Copyright © 2001 by Beznosikov, Aleksandrov.

                                                                                          

CRYSTAL CHEMISTRY
Layer Perovskite-Like Crystals with CsCl-Type Blocks 
B. V. Beznosikov and K. S. Aleksandrov 

Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, Russia

e-mail: aaleks@iph.krasn.ru

Received November 4, 1999; in final form, February 29, 2000

Abstract—The crystal chemistry of layer perovskite-like structures with CsCl-type blocks have been analyzed.
Some characteristic features of their formation are described and new praphases are derived. Possible oxyha-
lides and oxides are indicated. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

All the numerous praphases of layer perovskite-like
structures1 can be represented as combinations of
stacks (formed by layers of octahedra, pyramids, or
squares inherited from perovskite-like structures) alter-
nating with several dozens of different types of inter-
mediate blocks [1–3]. According to [4], a praphase is a
hypothetical phase with a symmetric structure from
which the structure of a real crystal can be obtained
with the aid of small atomic displacements. The
arrangement of the atoms in intermediate blocks is sim-
ilar to those in the elements of the well-known NaCl,
CsCl, CaF2, BiF3, etc., structures. Below, we consider
the parenthal phases (praphases) which include CsCl-
type blocks.

The principle of the geometric construction of
praphases of perovskite-like layer structure, which are
in fact intergrowth structures, is rather simple. This
principle provides the determination of general and
coordination formulas, symmetry, undistorted space
groups, approximate unit-cell parameters, and some-
times even relative atomic coordinates along the princi-
pal axis.

Most of praphases of layer perovskite-like struc-
tures belong to the tetragonal system (sp. gr. I4/mmm or
P4/mmm). However, real the symmetry of crystals may
be lower depending on their chemical composition or
thermodynamic conditions of their growth. The struc-
tural phase transitions in all families of layer perovs-
kite-like crystals are most often associated with the soft
lattice modes corresponding to small rotations of bound
octahedral groups. By analyzing layer perovskite-like
crystals with the sp. gr. I4/mmm and P4/mmm [5], one
can construct models of distorted phases, in which one
can determine the directions not only of all the anionic
displacements but, in many cases, also the displace-

1 The term praphase, which can be translated as forephase or
parenthal phase, is widely used in Russian literature and, in par-
ticular, in this paper. Therefore, we decided to retain it here
(Translator’s note).
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ments of bulky cations. These data with due regard for
the unit-cell parameters and the systematic absences of
rejections can be used in structure determinations.

The method for combining stacks and blocks
enables one to derive not only all the known structures
of this type but, more importantly, also hundreds of new
praphases [6–9]. The close correspondence of the
praphases thus obtained to real structures confirms the
reliability of this method for prediction of new struc-
tures.

POSSIBLE PRAPHASES

Structures of the CsCl type (Pm3m, Z = 1) are
formed by monovalent metals with large halide anions
(Cl–, Br–, or I–). Two types of blocks with the structure
similar to that of CsCl are the well-known layer perovs-
kite-type structures. 

Block Cs1. A Cl or Br anion is located in the block
center and has the cationic environment close to cubic
one.

It was shown [2] that all the known stacks can be
divided into four types (A, B, C, and D). Type A consists
of n layers of octahedra. If n  ∞, this type becomes
similar to cubic perovskite. Type B has anionic vacan-
cies in the stack. The C and D types have vacancies in
the positions of apical anions of the octahedra. When
constructuting praphases, the Cs1 block is matched to
the C and D stacks (Fig. 1) with anionic vacancies in
the shared planes. Layer perovskite-like structures
involving the C1 stack are formed with the participa-
tion of two types of blocks. The unit cell of this stack
has one anionic vacancy. The Cs1 block can grow from
the side of this vacancy. The opposite face of the C1
stack containing an anion in the center can grow into
the blocks, whose outer planes are formed by anions.
A series of blocks used to construct praphases are
shown in Fig. 2. The notation of these blocks corre-
sponds to the conventional notation, namely, R (from
rock salt), F (from fluorite), etc. Since the only known
01 MAIK “Nauka/Interperiodica”
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Cs1 block

Stacks

C

D

1 2 3

4 5 5'

A(coordination number 12)

A(coordination number is less than 12)

B(coordination number is less than or equal to 6)

X

X'
Vacancy

Fig. 1. Block of the Cs1 type and the corresponding stacks.
P-type blocks include lead, we retained the symbol of
this element in the labelling atoms in Fig. 2 and in the
coordination formulas of the praphases obtained (see
below). In praphases with P2, P4, and P6 blocks, the
latter can have two orientations without any change of
the crystal symmetry. Therefore, we added symbols (1)
and (2) to the notation of these blocks in Fig. 2. The
praphases obtained by combining the Cs1 block with
the C and D stacks are indicated in Table 1.

Block Cs'1. The block center is occupied by a cat-
ion in an pseudocubic (eight vertices) anionic environ-
ment. This block is an “antipode” of the Cs1 block and
can be formed only in the presence of cationic vacan-
cies in the boundary layer of the stack. Consequently,
the stack structure at the site of its junction with the
block should be similar to the ReO3 structure. The junc-
tion of these stacks obtained from the A and B types
(denoted A* and B*) with the Cs'1 block is shown in
Fig. 3. In fact, A*-type stacks are combined from two
structures—perovskite (inner layers) and ReO3 (layers
adjacent to the block). The B* stacks, similar to the B
stacks, have anionic vacancies.

Nine possible praphases with Cs'1 blocks are indi-
cated in Table 2; the corresponding figures can be found
elsewhere [8, 9].
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PREREQUISITES FOR CRYSTALLOCHEMICAL 
CONSTRUCTION OF PRAPHASES

(1) A necessary condition for the formation of layer
perovskite-like structures with Cs1 blocks is the pres-
ence of one large monovalent anion (Cl, Br, or I) per
formula unit. 

(2) Only monovalent A cations can be included into
structures with a Cs'1 block, because at higher cation
valences, the repulsion between the cations in the adja-
cent unit cells considerably increases.

(3) The B cation in these structures should have a
valence equal to or higher than three, because a monov-
alent A cation requires a good “assistant.” The anionic
environment of the A cation is close to cubic, but it is
also surrounded by eight additional anions from the
second coordination sphere which provide the connec-
tion of octahedra into layers. This anionic construction
(8 + 8) can be held only by the joint effect of the A and
B cations.

The experience gained in the studies of other layer
structures [7, 9] allows for the formulation of the fol-
lowing rules:

(4) If the coordination number is equal to 4 or 5
(a square or a square pyramid), the B cation in the stack
can only have valence 2+ or 3+.
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(5) If the coordination number is equal to 6 (an octa-
hedron), the B cation in a multilayer stack can be mul-
ticharged.

KNOWN CRYSTAL STRUCTURES

Altogether, about twenty crystals with the perov-
skite-like layered structure have been studied. The
Pb4Fe3O8Cl [10] and Sr2Pb2Cu2TaO8Cl [11] structures
belong to the sp. gr. P4/mmm, Z = 1 and consist of
three-layer stacks and Cs1-type blocks slightly “com-
pressed” along the principal axis. A number of other
oxyhalides were considered in [11, 12].

Several compounds with layer structures containing
Cs1 and P1 blocks and C1 stacks were also reported in
[13]: Sr3Pb3Cu3O8Cl, Ba3Pb3Cu3O8Cl, and
Ba2SrPb3Cu3O8Cl. These structures are distorted
(sp. gr. Cmmm, Z = 2) in comparison with their
praphase (P4/mmm, Z = 4).

Until recently, only one-layer structures (mainly flu-
orides) with Cs'1 blocks have been known. The “fatter”
of this family is a TlAlF4 crystal (Fig. 4).

Fig. 2. Blocks matching the C1 stack.

R1
F1

F2

Cu1 Cu2

A

A'

B

Pb

X
P1 P3 P5

P2(1) P4(1) P6(1)

P2(2) P4(2) P6(2)
C

The structures of the TlAlF4 type with the general
formula ABX4 consist of square octahedral networks
perpendicular to the z-axis. These networks are linked
by alkali metal or complex organic cations forming a
Cs'1-type block. The structures of the TlAlF4 type are
high-temperature phases stable only at high tempera-
tures. About one hundred of the known crystalline
phases belong to this family, with most of them being
considered as the structures formed upon distortion of
the praphase caused by rotation of the BX6 octahedra.

Recently, two compounds have been synthesized—
RbLaTa2O7 with a Cs'1 block and a double layer of
octahedra in the stack [14] and RbCa2Ta3O10 with the
same block and a triple layer of octahedra [15] (Fig. 4).
We believe that other multilayer crystals of this family
of oxides may also be synthesized.

Thus, the existence of the above structures with Cs1
and Cs'1 blocks gives grounds to expect the synthesis of
other praphases indicated in Tables 1 and 2.

PREDICTION OF NEW COMPOUNDS

Compound with Cs1 blocks. Consider probable
compounds with blocks involving Pb2+ cations. The B
cations in the stacks were chosen proceeding from the
known chemical compounds. In the general formulas, A
and B are cations and X and X' are anions.

Possible Cs1\C2 compounds with the general for-
mula A3B2X6. To our knowledge, the following combi-
nations of the B cations can exist in C2 stacks: Fe2, Co2,
CuFe, CuCo, and Mn2+Mn3+. The total valence of two
B cations in the stack should range from five to six.

The following compounds are probable:

Possible Cs1\C3 compounds with the general for-
mula A4B3X9. The following combinations of B cations
are known for C3 stacks: Fe3, Cu2Nb, Cu2Ta, Cu2Pb,
and Cu2Fe. The total valence of three B cations is 9+.
One of A cations should provide the formation of the
block, whereas the remaining three A cations should
form the stack. Two A cations have the coordination
number 12 and two other A cations have the coordina-
tion number 8. Thus, the following compounds are pos-
sible:

The compositions of the known compounds, show
that the following substances may be synthesized:
Sr4Fe3O8Cl, Sr4Fe3O8Br, Sr4Cu2TaO8Cl,

BaPb2B2X'O5 ± δ B2 = Co2, Fe2, Mn2, CuFe, CuCo
SrPb2B2X'O5 ± δ X' = Cl, Br.
P63B2X'O5 ± δ

Pb4B3X'O8 ± δ B3 are the combinations of the
cations indicated aboveBa2Pb2B3X'O8 ± δ

Sr2Pb2B3X'O8 ± δ X' = Cl or Br.
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Table 1.  Possible praphases of layer perovskite-like structures with a Cs1 block

Block\stack Sp. gr. Z General formula Coordination formula

Cs1\C2 P4/mmm 1 A3B2X6 A
XII

X5X'

Cs1\C3* P4/mmm 1 A4B3X9 BVIBVX8X'

Cs1\C4 P4/mmm 1 A5B4X12 X11X'

Cs1\C5 P4/mmm 1 A6B5X15 X14X'

Cs1\C5' P4/mmm 1 A6B5X13 BIVX12X'

Cs1\D1 P4/mmm 1 A2BX3 BIVX2X'

Cs1\D2 P4/mmm 1 A3B2X5 AVIII X4X'

Cs1\D3 P4/mmm 1 A4B3X7 X6X'

R1\C1\Cs1 I4/mmm 2 A4B2X7 X6X'

Cu1\C1\Cs1 P4/mmm 1 A4B3X7 BIIX6X'

Cu2\C1\Cs1 Pmmm 1 A4B3X8 BIVX7X'

F1\\C1\Cs1 P4/mmm 1 A5B2X8 AVI X7X'

F2\C1\Cs1 I4/mmm 2 A6B2X9 X8X'

P1\C1\Cs1* P4/mmm 1 A6B3X9 BIIX8X'

P3\C1\Cs1 Pmmm 1 A6B3X10 B
IV

X9X'

P5\C1\Cs1 P4/mmm 1 A6B3X11 B
VI

X10X'

P2\C1\Cs1 I4/mmm 2 A5B3X8 AIX AVIIIPbV BIIX7X'

P4\C1\Cs1 P2/mmm 2 A5B3X9 AIX AVIII + IIPbVII BIIX8X'

P6\C1\Cs1 P4/mmm 2 A5B3X10 A
XII

A
IX

Pb
IX

B
VI

 X9X'

Note: In general formulas, A and B are cations and X and X ' are anions; Z is the number of formula units per unit cell. The superscripts
signify the coordination numbers of the cations. 

       * Praphases corresponding to the already synthesized compounds, are primed; however, real crystals may be more distorted than the
          praphases.
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VIII
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V
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VIII

A3
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VIII
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V
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VIII
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A2
VIII

A2
VIII
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V

A2
VIII

A2
VIII

B2
IV

A2
VIII

A2
VIII
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IV

A2
IX

A2
VIII

B2
V

A2
VIII

A2
VIII

B2
V

A2
VIII

A2
VIII + II

B2
V

A2
IX

A2
VIII

B2
V

A2
IX

A2
VIII

A2
VI

B2
V

A2
IX

A2
VIII

Pb2
V

B2
V

A2
IX

A2
VIII

Pb2
VII

B2
V

A2
IX

A2
VIII

Pb2
IX

B2
V

A2
VIII

B2
V

A2
VIII

B2
V

A2
VIII

B2
V

Sr4Cu2NbO8Cl, Sr4Cu2TaO8Br, Sr4Cu2NbO8Br,
Ba3Pb3Cu3O8Br, and Ba2SrPb3Cu3O8Br.

Possible Cs1\C4 compounds with the general for-
mula A5B4X12:

Possible Cs1\C5 compounds with the general for-

Pb5B4X'O11 – δ B4 = Fe4, Cu2Ti2, Cu2Sn2

Ba3Pb2B4X'O11 – δ X' = Cl, Br.

Sr3Pb2B4X'O11 – δ
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mula A6B5X15:

Possible Cs1\D1 compounds with the general for-
mula A3B2X5:

Pb6B5X'O14 – δ B5 = Cu2Ti3
Ba4Pb2B5X'O14 – δ X' = Cl, Br.

Sr4Pb2B5X'O14 – δ

Pb3B2X'O4 + δ B2 = Cu2, Ni2
X' = Cl, Br.
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Block Cs'1

Stacks

1 42 3 4' 4''

A*

B*

A(coordination number 

B(coordination number 

X

Vacancy

Fig. 3. Cs'1-type block and corresponding stacks.

TlAlF4

RbLaTa2O7

RbCa2Ta3O10

Tl

Al

F

Rb

La

Ta

O

Rb

Ca

Ta

O

Fig. 4. Well-known structures containing the Cs'1 block.

is less than or equal to 6)

is less than 12)

A(coordination number 12)
Possible Cs1\D3 compounds with the general for-
mula A4B3X7: 

For the Cs1\C1\P3 praphases, the following

Ba2Pb2B3X'O6 + δ B3 = Cu3, Ni3
Sr2Pb2B3X'O6 + δ X' = Cl, Br.
C

compounds are possible:

Ba4Pb2Cu3X'O9 – δ and Sr4Pb2Cu3X'O9 – δ (X' = Cl, Br).

The synthesis of Cs1\C1\P5 praphases is more diffi-
cult. To provide their electroneutrality, one has to intro-
duce into the crystal trivalent cations, but unfortunately
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Table 2.  Possible praphases of layer perovskite-like structures with Cs'1 blocks

Block\stack Sp. gr. Z General formula Coordination formula

Cs'1\A*1** P4/mmm 1 ABX4 AVIIIBVIX4

Cs'1\A*2** P4/mmm 1 A2B2X7 A
XII

A
VIII

X7

Cs'1\A*3** P4/mmm 1 A3B3X10 A
VIII

X10

Cs'1\A*4 P4/mmm 1 A4B4X13 A
VIII

X13

Cs'1\B*2 P4/mmm 1 A2B2X6 A
VIII

A
VIII

X6

Cs'1\B*3 P4/mmm 1 A3B3X8 A
VIII

B
IV

X8

Cs'1\B*4 P4/mmm 1 A4B4X10 A
VIII

X10

Cs'1\B*4' P4/mmm 1 A4B4X12 A
VIII

A
VIII

X12

Cs'1\B*4'' P4/mmm 1 A4B4X11 A
XII

A
VIII

X11

Note: For hole and notation see Table 1.

B2
VI

A2
XII

B3
VI

A3
XII

B4
VI

B2
V

A2
VIII

B2
V

A3
VIII

B2
V

B2
IV

A2
XII

B2
VI

B2
V

A2
VIII

B4
V

they are too small. Here, the following compounds are
probable: La4Pb2Cu3X'O10 + δ (X' = Cl or Br).

Altogether, we obtained 105 possible chemical
compounds with Cs1-type blocks that have layer per-
ovskite-like structures.

The blocks in both well known and predicted crys-
tals include divalent lead. The number of such com-
pounds can be increased by using blocks with Sr2+,
Eu2+, Sm2+, Nd2+, or Sn2+ cations with the size close to
that of lead. Thus, the number of the probable com-
pounds amounts 600.

Compounds with Cs'1 blocks. In 1986, new fluo-
ride-containing compounds were predicted [16]. In
subsequent years, about 14 new crystalline fluoride
compounds were synthesized, in full accord with the
prediction made.

In oxide systems, the structures of the TlAlF4 type
have not been revealed, and, apparently, they are diffi-
cult to synthesize. This brings up the question as to the
types of new oxide compounds with possible multi-
layer structures. Proceeding from the sizes of the A and
B cations in the known compounds with n = 2 or 3, the
probable compounds should lie in the existence range
of structures with n = 1. It may be that the ranges of
existence of these structures would be the same, as is
the case of Ruddlesden–Popper-type layer phases [6].
In order to be able to predict new multilayer phases
with Cs'1 blocks, one has to use the geometric condi-
tions of existence of the structures which belong to the
TlAlF4 family. The problem of possible formation of
structures with n > 3 is still open. Therefore, in the
present study we restricted ourselves only to com-
pounds with n = 2 and 3.
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Proceeding from the known compositions
RbLaTa2O7 and RbCa2Ta3O10, one can obtain some
modified compounds by replacing the Ta5+ ions by the
Nb5+ cations. Indeed, such compounds have been
reported (for example, RbLaNb2O7 [17]). A Rb+ cation
can be replaced by a Cs+ or Tl+ cation, a Ca2+ cation can
be replaced by a Sr2+, and a La3+ cation can be replaced
by another (more appropriate) trivalent cation. These
modified compounds have A*-type stacks.

The question arises about the types of layered per-
ovskite-like structures, formed with the participation of
Cs'1 blocks and B*-type stacks. The structures with
B*4' blocks are most probable because octahedra in
these blocks can have highly charged cations, whereas
the second A cation (in the cuboctahedron) would sta-
bilize the stack.

We considered only some possible new compounds
with Cs1 and Cs'1 blocks. The synthesis of other
praphases depends on the requirements of physicists,
skill of chemists, and the available technical facilities.

CONCLUSIONS

The number of new compounds with CsCl-type
blocks can be multiply increased.

In layered perovskite-like crystals, the stacks and
blocks produce an effect similar to that of high pres-
sure. Hence, some cations in the layers may exist in an
unusual crystallochemical state. This phenomenon may
be of great importance when studying physical proper-
ties of such crystals.

If some oxygen atoms in a layer perovskite-like
structure are replaced by halogen atoms, the latter
atoms are usually incorporated by the blocks. There-
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fore, halides (or other anions) can be used to obtain new
blocks, to change the block composition, and thus
increase the anisotropy of various physical properties.

The results obtained give grounds to expect the dis-
covery of new unique properties (other than the high-Tc
superconductivity) in layer crystals.
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Abstract—The known structural classifications of borates are based on the analysis of boron–oxygen radicals
consisting of B-triangles and B-tetrahedra sharing O atoms to form more complicated structures. Such classi-
fications ignore the possible presence and the role of hydrogen bonds, which may be the only bonds or addi-
tional bonds linking the [BO3]- and [BO4]-groups. A new detailed classification of hydrated boron compounds
taking into account hydrogen bonds between the B-polyhedra is proposed. © 2001 MAIK “Nauka/Interperiod-
ica”.
The structural classification of compounds is one of
the most important problems of crystal chemistry. The
classification of crystalline borates is based on the type
of a boron–oxygen radical, i.e., the consideration of the
degree of association of elementary structural units
such as B-triangles and B-tetrahedra, through common
(shared) oxygen atoms. Similar to silicates [1], borates
are classified depending on the types of their radicals as
island, chain, layered, and framework borates. This
classification is applied to all the borates, including
hydrated compounds, i.e., water-containing borates, in
which hydrogen bonds often play a significant role.
Boron triangles and tetrahedra in these compounds can
be linked to each other not only via common oxygen
vertices but also via hydrogen bonds. The latter can
only be bonds or can be additional bonds to those of
boron polyhedra. The detailed classification of
hydrated borates also distinguishes the compounds in
which the B-polyhedra are linked only through com-
mon oxygen atoms, borates in which the [BO3]- and
[BO4]-groups are linked only by hydrogen bonds, and
borates with mixed bonds.

Consider first the structure of frolovite Ca[B(OH)4]2
(a = 7.774 Å, b = 5.680 Å, c = 8.136 Å, α = 113.15°,

β = 101.67°, γ = 107.87°, the triclinic space group P )
[2]. The independent region of the unit cell contains
one Ca atom, two B atoms, eight H atoms, and eight O
atoms. The structure consists of two crystallographi-
cally independent individual (according to the classical
concepts) [B(OH)4]-tetrahedra and the Ca-polyhedra,
which link the tetrahedra through the oxygen vertices.
The analysis of the complex system of hydrogen bonds
shows that all the B-tetrahedra are linked by hydrogen
bonds into a complex framework. The B-tetrahedra and
the system of hydrogen bonds projected along the b-
axis of the unit cell of frolovite are shown in Fig. 1. For
a clearer representation, the Ca atoms and their polyhe-
dra are omitted. The overall view of the structure and
the numbering scheme of the basis atoms can be found
in [2]. According to this numbering scheme, the B(1)

1

1063-7745/01/4602- $21.00 © 20253
atom is coordinated by the O(1), O(2), O(3), and O(4)
atoms, and the B(2) atom is coordinated by the O(5),
O(6), O(7), and O(8) atoms. The oxygen atoms forming
the tetrahedron about B(1) participate in the following
hydrogen bonds: O(1)–H(1)···O(5), O(1)···H(5)–O(5'),
O(2)–H(2)···O(6), O(3)–H(3)···O(7), O(4)–H(4)···O(5''),
and O(4)···H(8)–O(8), through which the B(1)- and
B(2)-tetrahedra are linked to each other. In addition, the
B(2)-tetrahedra are linked to each other through the
O(6)–H(6)···O(8') and O(7)–H(7)···O(7') hydrogen
bonds.

The structure of vimsite Ca[B2O2(OH)4] (a =
10.26 Å, b = 4.440 Å, c = 9.558 Å, γ = 91.31°, the mon-
oclinic space group B2/b) [3] is another example show-
ing the role of hydrogen bonds. The crystallographi-
cally independent atoms in the structure are one Ca
atom, one B atom, three O atoms, and two H atoms.
According to the conventional classification, this com-
pound belongs to chain borates and has the chains of
B-tetrahedra linked to each other through common
oxygen vertices. These chains along the b-axis are

a

c

Fig. 1. B-tetrahedra and the system of hydrogen bonds in the
frolovite Ca[B(OH)4]2 structure projected onto the ac plane.
001 MAIK “Nauka/Interperiodica”
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linked to each other by the Ca-polyhedra to form a
three-dimensional framework. The chains of the B-tet-
rahedra, the H atoms, and the hydrogen bonds pro-
jected onto the bc plane are shown in Fig. 2. For clearer
representation, the Ca-polyhedra are omitted. The
O(2)–H(1)···O(2') hydrogen bonds determine and fix
the geometry of the chains of B-tetrahedra, with all the
successive units of each chain being additionally linked
through these hydrogen bonds. The adjacent chains are
linked to each other through the O(3)–H(2)···O(1)
hydrogen bonds and form networks parallel to the bc
plane of the crystal.

The structure of uralborite Ca2[B4O4(OH)8] is also
of interest. The empirical chemical formula of this
compound is identical to that of vismite [4], but the
atomic structures of these borates are totally different.
According to the conventional classification, uralborite
(a = 6.927 Å, b = 9.836 Å, c = 12.331 Å, γ = 97.81°, the
monoclinic space group P21/n) belongs to island
borates containing the [B4O4(OH)8]4–-groups consist-
ing of four B-tetrahedra each. Three tetrahedra are

c

b

Fig. 2. Chains of the B-tetrahedra, the H atoms, and the sys-
tem of hydrogen bonds in the structure of vimsite
Ca[B2O2(OH)4] projected onto the bc plane.
C

closed to form a ring to which the fourth B-tetrahedron
is linked via the common oxygen vertex. In addition to
the above-described island, the basic region of the unit
cell also has two Ca atoms. Of total 12 basis O atoms,
eight atoms belong to hydroxyl (OH)-groups. Of the
remaining four oxygen atoms, two atoms are involved
in hydrogen bonding and act as acceptors. All the
hydrogen atoms of the hydroxyl groups form hydrogen
bonds, among which there are both strong (the donor–
acceptor distance is 2.60 Å) and weak (the correspond-
ing distance is 3.17 Å) bonds. There are eight crystallo-
graphically independent hydrogen bonds linking the
[B4O4(OH)8]4– islands, which form a loose three-
dimensional framework with the cavities occupied by
Ca atoms.

The above examples demonstrate the role of differ-
ent-type hydrogen bonds in hydroborates and essen-
tially refine the crystal chemistry of these compounds.
Taking into account hydrogen bonds, oxygen com-
pounds of boron can be divided into three families. The
first family of boron–oxygen compounds consists of
borates, in which elementary boron polyhedra in radi-
cals are not linked via hydrogen bonds. The second
family includes compounds in which individual B-tet-
rahedra and B-triangles are linked to each other only
via hydrogen bonds (hereafter, we refer to these borates
as borates with H radicals). The frolovite structure is an
example of this type of compounds. Borates in which
the B-tetrahedra and B-triangles are linked to each
other by both common oxygen vertices and hydrogen
bonds (vismite, uralborite, and analogous compounds)
form the third family and hereafter will be given the
name “borates with mixed bonds”.

The classification of hydrogen-containing oxygen
compounds of sulfur, boron, phosphorus, and silicon
with allowance for hydrogen bonds has been consid-
ered elsewhere [5]. In the particular case of hydrated
oxygen compounds of boron, the classification scheme
is shown in Fig. 3. The characteristic feature of the
above-considered scheme is the division of the three
structural families into five groups containing radicals
of the island, chain, layered, framework, and mixed
Oxygen-containing boron
 

Borates
with Ç–é–Ç

bonds
 in radicals

Borates
with ç-bonds

in radicals

Borates
with Ç–é–Ç and

ç-bonds
in radicals

Island
radicals

Chain
radicals

Layered
radicals

Framework
radicals

Radicals
of different types

Fig. 3. Classification scheme for hydrated oxygen-containing borates with allowance for hydrogen bonds linking the B-polyhedra.

compounds
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Some examples of classification of radicals in hydrated borates with and without allowance for hydrogen bonds

Name and
chemical formula Structural formula

Radical without
allowance for

hydrogen bonds

Radical with
allowance for

hydrogen bonds

Refe-
rences

Sussexite 
Mn2[B2O4(OH)2]

Island: two vertex-sha-
ring triangles

Chain: 
[B2O4(OH)2]∞H [6]

Inderborite 
CaMg[B3O3(OH)5]2 ·
6H2O

Island: a ring consisting 
of two tetrahedra and 
one triangle

Layered: 

[B3O3(OH)5
[7, 8]

Barium hydroborate 
Ba[B(OH)4]2

Layered: tetrahedra
Framework: 
[B(OH)4]∞3H [9]

Calcium hydroborate 
Ca[B3O4(OH)3]

Chain: ribbons of
tetrahedra and triangles

Layered: 
[B3O4(OH)3]∞2H [10]

Sodium hydroborate 
Na2[B4O6(OH)2]

Chain: ribbons of
tetrahedra and triangles

Framework: 
[B4O6(OH)2]∞3H [11]

Tuzlaite
NaCa[B5O8(OH)2] · 3H2O

Chain: ribbons of
tetrahedra and triangles

Framework: 
[B5O8(OH)2]∞3H [12]

Mn2
6[ ] B2

3[ ]O4 OH( )2[ ]
∞H

Ca 8[ ]Mg 6[ ] B3
4 4 3, ,[ ]O3 OH( )5[ ]2

∞2H
6H2O⋅ ]2

∞2H

Ba 9[ ] B 4[ ] OH( )4[ ]2
∞3H

Ca 8[ ] B3
4 4 3, ,[ ]O4 OH( )3[ ]

∞2H

Na2
7 6,[ ] B4

4 4 3 3, , ,[ ]O6 OH( )2[ ]
∞3H

Na 7[ ]Ca 8[ ] B5
4 4 4 3 3, , , ,[ ]O8 OH( )2[ ]

∞3H
types. In the three structural families, these groups of
structures are formally identical. The essential differ-
ence between these structures is in the type of bonds
providing the linkage of B-polyhedra and formation of
complex radicals. In the first case, only the B–O–B-
type bonds exist. The structures of the second type
include hydrogen bonds. The structures of the third
type are characterized by the presence of both types of
bonds. Each of the five groups of the structures can be
divided into smaller subgroups of structures. Island
borates are divided into structures with diortho-, tri-
ortho-, ring-, and more complex radicals. Chain struc-
tures include compounds with chains and ribbons of
different compositions and configurations.

Along with the proposed detailed classification of
hydroborates, it is also expedient to use the developed
structural formulas of radicals existing in these com-
pounds suggested [5]. In this case, the radicals in brack-
ets have the superscripts ∞H, ∞2H, or ∞3H for chain,
layered, and framework radicals, respectively, formed
via hydrogen bonds. Several examples of the classifica-
tion of hydrated borates in accordance with the types of
radicals with and without allowance for hydrogen
bonds are given in table. The developed form of the
structural formulas and radicals proposed in [5] is used.
It can be seen that the allowance for hydrogen bonds
“transforms” the island radicals into chain, layered, or
framework ones and the chain radicals into layered or
framework ones.
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Abstract—A thermodynamic theory of phase transitions in crystals characterized by the rotational and polar-
ization components has been developed. A list of phase transitions accompanied by the change of the group to
a subgroup is compiled for crystals whose thermodynamic potential can be represented by a fourth-order poly-
nomial with respect to the order-parameter components. Spontaneous polarization arising by the mechanism of
improper phase transitions provided by the nonlinear relation between the polarization and rotational compo-
nents is considered. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In a large number of instances, phase states in crys-
tals are characterized by multicomponent order param-
eters whose components can have different physical
sense and dimensions. As examples, we indicate here
the crystals containing atomic groups which change
their orientations in the unit cell with the variation of
the specimen temperature, and ions interacting with
these groups whose displacements result in the appear-
ance of macroscopic polarization. Possible phase tran-
sitions associated with rotations of atomic groups in
crystals were classified in [1]; a more detailed classifi-
cation eliminating discrepancies contained in [1] was
developed in [2]. In monographs [3, 4], the concept of
rotating octahedral atomic complexes was successfully
used to classify crystal structures, interpret the cas-
cades of phase transitions, etc.

The present study was undertaken to develop a the-
ory of phase transitions in crystals characterized by
order parameters with the rotational and polarization
order-parameter components irrespectively of the sym-
metry classes under the condition that the number of
atoms in the unit cell of a crystal does not change in the
phase transition. We shall compile a list of phase tran-
sitions accompanied by the change of the group to a
subgroup for crystals whose nonequilibrium thermody-
namic potential can be represented as a fourth-order
polynomial of the order-parameter components. A spe-
cial attention is paid to the nonlinear effects, which can
give rise to spontaneous polarization in different sym-
metry classes occurring by the mechanism of improper
phase transitions [5].
1063-7745/01/4602- $21.00 © 20256
2. GENERAL SCHEME OF PHASE TRANSITIONS 
IN CRYSTALS CHARACTERIZED 

BY POLARIZATION VECTOR AND ROTATION 
PSEUDOVECTOR

The general form of a nonequilibrium thermody-
namic potential Φ is represented by the following poly-
nomial:

(1)

where α ij and βij are the symmetric second-rank tensors
([V 2]), γij is the nonsymmetric second-rank tensor
([V2]), ωijl is a third-rank tensor symmetric with respect
to all the three subscripts ([V3]), fijl is a third-rank
pseudotensor symmetric with respect to all the three
subscripts (ε[V3]), gijl is a third-rank pseudotensor sym-
metric with respect to the first two subscripts (ε[V2]V ),
hijl is the third-rank tensor symmetric with respect to
the two last subscripts (V[V2]), aijlm, bijlm is the fourth-
rank tensor symmetric with respect to all the subscripts
([V4]), dijlm is the fourth-rank tensor symmetric with
respect to the first and the second pair of the subscripts
([V2]2), and fijlm and gijlm are the fourth-order pseudoten-
sors symmetric with respect to the first three and last
three indices, respectively (ε[V3]V and εV[V3]).

Φ
α ij

2
------PiP j

1
3
---ωijlPiP jPl aijlmPiP jPlPm+ +=

+
βij

2
-----φiφj

1
3
---ωijlφiφjφl bijlmφiφjφlφm+ +

+ γijPiφj gijlPiP jφl
1
2
---dijlmPiP jφlφm+ +

+ hijlPiφjφl f ijlmPiP jPlφm f ijlmPiφjφlφm,+ +
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All the components except for fijlm and gijlm are indi-
cated in [6]. However, here, we use the methods of the
group theory more appropriate for computer construc-
tion of invariants.

To analyze the possible phase transitions in crystals
characterized by various symmetry elements, there is
no necessity to know the thermodynamic potential Φ in
the explicit form. Later, we shall show that the possible
scenario of phase transitions and their characteristics
can be determined by using the sets of the second-,
third-, and fourth-order order parameters. Therefore,
we compile the list of invariants for each symmetry
class used to represent the thermodynamic potential in
the form of a linear combination with the coefficients
smoothly dependent on temperature. In what follows,
we assume that only the components of the second-
rank tensor are temperature dependent.

The lists of invariants of the first-, second-, and
third-order parameters are given for each symmetry
class, with each list playing a certain role in the classi-
fication of possible phase transitions in the crystals of
the given symmetry group.

The list of the first-order invariants contains those
components of the order parameter that enter the ther-
modynamic potential in the second, third, and fourth
powers. Therefore, the crystals can undergo first-order
phase transitions with the jumpwise change of the
order-parameter components from this list. These
phase transitions occur without a change of the symme-
try class; i.e., they are isomorphous transitions. Thus,
the possible occurrence of isomorphous phase transi-
tions is determined by the list of the first-order invari-
ants of the order-parameter components. These transi-
tions are not considered here.

The list of second-order invariants of the order-
parameter components allows one to indicate a set of
possible phase transitions occurring with the change of
the order-parameter components not indicated in the
list of the first-order invariants. The list of the order-
parameter components taking the nonzero values upon
the group–subgroup transition are determined by the
set of cross products of various order-parameter com-
ponents. Thus, the whole set of the order-parameter
components can be divided into the groups of the com-
ponents indicated in the list of the first-order invariants
and the groups of nonintersecting components. The lat-
ter can be used as the basis for compiling a list of the
group–subgroup phase transitions in crystals. The char-
acteristic features of these transitions can be studied by
using a reduced thermodynamic potential, i.e., a poten-
tial obtained from Eq. (1) by retaining in it only the
terms dependent on the components entering the sepa-
rated group.

The list of third-order invariants allows the estab-
lishment of the phase-transition type. The existence of
nonzero third-order invariants dependent only on the
components of the thermodynamic potential of the
phase transition under consideration shows that this
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
transition is the first-order phase transition. If there are
no such invariants, the transition is of the second order.
Moreover the third-order invariants allow one to indi-
cate possible nonlinear effects resulting in the forma-
tion of the order-parameter components not indicated
in the list of second-order invariants and providing the
occurrence of the phase transition under consideration.
These invariants determine the characteristic features
of improper ferroelectric phase transitions given a spe-
cial attention in the present article.

The fourth-order invariants of the order-parameter
components determine the temperature dependence of
the order parameter in the low-symmetric phases and,
in some cases, also the directions of the spontaneous-
polarization vectors and rotation angles. Since the num-
ber of fourth-order invariants is rather large, they are
not written here in the explicit form, and the possible
directions of spontaneous vectors of the order parame-
ters are determined from the symmetry consideration,
which is sufficient for our goals. We assume that the
quartic part of the thermodynamic potential is posi-
tively indefinite, which provides the stability of the
material with respect to an infinite increase of the order
parameter.

Now consider phase transitions taking place in var-
ious symmetry classes (point symmetry groups) of the
crystals.

3. TRICLINIC SYSTEM (C1, Ci)

3.1. Since in the general case of triclinic crystals of
the C1 class the components obey the condition γij ≠ 0,
then in the phase transition from the paraelectric (Pi = 0
and φi = 0) to the ferroelectric phase, all the compo-
nents of Pi and φi acquire nonzero values; the third-
order monomial in Eq. (1) takes the zero value, and the
phase transition is the first order and phase transition
occurring with the jumpwise change of the order
parameter at the phase-transition point, whereas the
symmetry class remains unchanged.

3.2. For the symmetry class Ci with the only symme-
try elements of the point group—a center of inver-
sion—the list of invariants is

(2)

φ1 φ2 φ3, ,[ ]

P1
2 P1P2 P1P3 P2

2 P2P3 P3
2,, , , , ,[

φ1
2 φ1φ2 φ1φ3 φ2

2 φ2φ3 φ3
2 ], , , , ,

P1
2φ1 P1

2φ2 P1
2φ3 P1P2φ1 P1P2φ2 P1P2φ3 P1P3φ1,, , , , ,,[

P1P3φ2 P1P3φ3 P2
2φ1 P2

2φ2 P2
2φ3 P2P3φ1 P2P3φ2,, , , , , ,

P2P3φ3 P3
2φ1 P3

2φ2 P3
2φ3 φ1

3 φ1
2φ2 φ1

2φ3 φ1φ2
2,, , , , , , ,

φ1φ2φ3 φ1φ3
2 φ2

3 φ2
2φ3 φ2φ3

2 φ3
3 ], , , , ,

3 12 28, ,
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The first-order invariants of the order parameter are
given in the first square brackets, the second-order
invariants are given in the second square brackets, etc.
The total numbers of the first-, second-, and third-order
invariants are indicated in the last line of the list (3, 12,
and 28, respectively).

The first-order invariants of the order parameter can
be rejected from the thermodynamic potential by trans-
lating the origin in the space of the order parameters to
the position corresponding to the equilibrium value of
the order parameter in the paraelectric phase.

Second-order invariants are divided into two
groups: the group with the polarization-vector compo-
nents and the group with the pseudovectors of rotation
angles. Therefore, in the crystals of this class, only one
ferroelectric phase transition is possible. To identify the
phase transition to the ferroelectric phase, we should
remember that the third-order invariants contain no
invariants which depend only the components of the
polarization vector Pi . Therefore, this transition is a
second-order phase transition occurring by the bifurca-
tion mechanism. To determine the conditions for the
phase transition by this mechanism, one has to deter-
mine the matrix of the second derivatives Φij of the
thermodynamic potential from the zeroth values of the
components Pi

(3)

Matrix (3) for the paraelectric phase is positively
defined; i.e., it has three positive eigenvalues.

The condition for the occurrence of the phase tran-
sition requires at least one zeroth eigenvalue for matrix
(3), which is associated with the temperature depen-
dence of its elements. This is equivalent to the zeroth
value of the matrix determinant (3). The direction of the
spontaneous-polarization vector ei of the ferroelectric
phase is determined as the direction of the eigenvector
of matrix (3). The magnitude of the latter vector is
readily determined if one takes into account the fourth-
order monomials in the thermodynamic potential.
Since in the narrow temperature range in the vicinity of
the phase-transition temperature (T0), the polarization
vector coincides, within high accuracy, with the eigen-
vector directions corresponding to the zeroth eigen-
value, one can pass from the initial thermodynamic
potential to the reduced one ( ) by making the change
Pi = Pei. As a result, we obtain

(4)

where 

(5)

Φij

α1 α12 α13

α12 α2 α23

α13 α23 α3 
 
 
 
 

.=

Φ

Φ α
2
---P2 a

4
---P4,+=

α aijeie j, a aijlmeie jelem.= =
C

Now, determine the temperature dependence α(T) in
the vicinity of T0 under the assumption that the compo-
nents of αij(T) depend on temperature linearly, i.e.,

(6)

whence

(7)

Taking into account that the first term in Eq. (7) equals
zero, we obtain that in the vicinity of the transition tem-
perature, the function α(T) = α'(T – T0) linearly
depends on temperature.

Differentiating Eq. (4) with respect to P, we obtain
the magnitude of the vector P in the form

(8)

Thus, in the crystals of the symmetry class Ci, a sec-
ond-order phase transition into the ferroelectric phase
is possible. As a result, the crystal loses the center of
inversion and its symmetry class is changed to C1.

Consider the effect of the ferroelectric phase transi-
tion on the temperature variation of the rotation angles
on an example of crystals of the above class. With this

aim, take into account the invariants φiφj and

gijPiPjφl in the thermodynamic potential by assuming
that φi are small, (this assumption allows us to ignore
higher degrees of φi).

The reduced thermodynamic potential has the form

(9)

where gl = gijleiej . Differentiating Eq. (9) with respect to
φi, we obtain

(10)

Equation (10) should be solved together with the equi-
librium equation for the polarization vector under the
assumption that φi is a small perturbation. Then φi can
be determined by using the solution (8). As a result, we
have

(11)

Thus, the nonlinear relation between the components of
the six-dimensional order parameter of the type P2φ in
the phase transition with respect to the parameter P
gives rise to the kink on the temperature dependence of
the heat capacity Φi. A similar kink on the temperature
dependences of the order-parameter components,
which are the invariants of the symmetry group, takes
place for all the symmetry classes with the nonzero

α ij T( ) α ij T0( ) α ij' T0 T–( ), α ij'–
d

dT
------α ij T( ),= =

α T( ) α ij T0( )eie j α' T0( ) T T0–( ),+=

α' T0( ) α ij' T T0–( )eie j.=

P
α–
a

-------± T0 T– .∼=

βij

2
-----

Φ α
2
---P2 a

4
---P4 βij

2
-----φiφj glφlP

2,+ + +=

βijφi P2gi.–=

φi +βij
1– gi

α
a
--- T0 T .–∼=
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first-order invariants. Equation (10) shows that the
addition φi is an even function of the polarization-vec-
tor components which does not change its sign upon the
change P  –P. It will be shown below that for the
symmetry classes with four- and sixfold axes, similar
changes in the first-invariant components can be writ-
ten as a quadratic form whose values can vary with the
change in the orientation of the spontaneous vector
characterizing the low-symmetric phase.

Substituting Eqs. (8) and (11) into Eq. (9), we obtain

(12)

where ∆C is expressed in terms of all the coefficients α,
a, βij , and g1. Thus, the allowance for the nonlinear
effect results in the change of the jump in the thermal
capacity, ∆C, during the phase transition.

4. MONOCLINIC SYSTEM (Cs, C2, C2h)

4.1. The list of invariants for the symmetry class Cs

has the form

(13)

The high-temperature paraelectric phase is a pyro-
electric with the spontaneous-polarization vector lying
in the symmetry plane. The second-order invariants can
be divided into two groups (P1, P2, φ3) and (P3, φ1, φ2),
which signifies that, in addition to the isostructural
phase transition, one more phase transition is possible
for which the order parameter is “mixed,” i.e., consists
of the components having different physical meanings.

In this additional phase transition, the nonzero
order-parameter components appear, P3, φ1, and φ2. As
a result, the class Cs is changed for the class C1. Since
the list of the third-order invariant contains no invari-
ants dependent only on the components P3, φ1, and φ2,
the transition is of the second-order and leads to two
phases in which the corresponding order-parameter
components have opposite signs. The existence of the

P1 , P1 , and other invariants of the same type con-

taining the first-order components P1, P2, and φ3 and the
second-order components P3, φ1, and φ2 provides their

Φ ∆C
2

-------- T T0–( )2,=

P1 P2 φ3, ,[ ]

P1
2 P1P2 P1φ3 P2

2 P2φ3 P3
2,, , , , ,[

P3φ1 P3φ2 φ1
2 φ1φ2 φ2

2 φ3
2 ], , , , ,

P1
3 P1

2P2 P1
2φ3 P1P2

2 P1P2φ3 P1P3
2 P1P3φ1,, , , , ,,[

P1P3φ2 P1φ1
2 P1φ1φ2 P1φ2

2 P1φ3
2 P2

3 P2
2φ3 P2P3

2,, , , ,, , ,

P2P3φ1 P2P3φ2 P2φ1
2 P2φ1φ2 P2φ2

2 P2φ3
2 P3

2φ3,, , , , , ,

P3φ1φ3, P3φ2φ3, φ1
2φ3, φ1φ2φ3 φ2

2φ3 φ3
3 ], ,

 3 12 28., ,

φ1
2 P3

2
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interaction during the phase transition and, as a result,
the appearance of the components P1, P2, and φ3. The
sign reversal for the order parameter (P3, φ1, and φ2)
does not lead to the sign reversal for the additional P1,
P2, and φ3 arising as a result of the nonlinear relation
between the two groups of the order parameter.

4.2. In the symmetry class C2, the list of invariants is

(14)

The existence of the invariant P3 indicates that the
crystals of this class are pyroelectrics with the sponta-
neous-polarization vector directed along the third axis.
The set of the second-order invariants allows one to
expect a second-order phase transition with the forma-
tion of two phases characterized by the mixed order
parameters P1, P2, φ1, and φ2. The change of the sym-
metry class occurs by the scheme C2  C1. In this
transition, a nonlinear effect takes place; as a result, a
singular point on the temperature dependence P3 ~ (T0 –
T) is formed, φ3 ~ (T0 – T).

4.3. Crystals of the class C2h have the following list
of invariants

(15)

The set of invariants is divided into four groups—φ3,
(P1, P2), P3, and (φ1, φ2)—indicating four possible
phase transitions in this class. The first transition (asso-
ciated with the change of the angle φ3) is a first-order
phase transition taking place without the change of the
symmetry class. The second transition is a rotational
phase transition with the formation of the rotation angle
in the plane (1, 2). The absence of the third-order
invariants dependent on φ1 and φ2 indicates that this
transition is a second-order phase transition occurring
with the change of the symmetry class by the scheme
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C2h  Ci. The two remaining transitions are second-
order ferroelectric phase transitions. In one of the tran-
sitions, the polarization vector is directed along the
twofold axis, and the transition is accompanied by the
change of the symmetry class according to the scheme
C2h  C2. In the other transition, a spontaneous-
polarization vector arises in the plane (1, 2) and the
symmetry class changes by the scheme C2h  Ch.

Summing the results for the monoclinic system, we
see that in each of the crystallographic classes of this
system, only one phase transition takes place without
the change of the symmetry class. The total number of
the ferroelectric phase transitions is four, of which one
second-order phase transition is purely rotational. All
the second-order phase transitions are accompanied by
a nonlinear effect with the formation of a singular point
on the temperature dependence of the order-parameter
component not entering the list of the components par-
ticipating in the phase transition. The nonlinear depen-
dence observed is such that the sign reversal for the
order parameter arising in the phase transition does not
lead to the sign reversal of the nonlinearly dependent
component.

5. ORTHORHOMBIC SYSTEM (C2, D2, D2h)
5.1. The invariants for the class C2v are

(16)

It is seen that the crystals from the class C2v are
pyroelectrics with the component of the spontaneous-
polarization vector being directed along the symmetry
axis. The second-order invariants of the order-parame-
ter component are divided into four groups: (P3), (φ3),
(P1, φ2), and (P2, φ1). Thus, four phase transitions are
possible. Two last groups are similar in the sense that
the one group can be obtained from the other group by
rotating the system of coordinate by an angle of π/2
about the symmetry axis.

The first phase transition takes within the symmetry
group C2v and is a first-order phase transition with the
jumpwise change of P3 at the transition temperature.
The second transition is a second-order rotational tran-
sition, as a result of which the symmetry plane is lost
and the component φ3 arises. In this case, the symmetry
class changes by the scheme C2v  C2.

Two other transitions are second-order phase transi-
tion with the formation of the spontaneous-polarization
vectors directed along one of the horizontal axes of the
crystallographic coordinate system. Because of the

P3[ ]
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P1φ2 P2
2

P2φ1 P3
2 φ1

2 φ2
2 φ3

2, , , , , , ,[ ]
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2
P3 P1P2φ3 P1P3φ2 P1φ1φ3 P2

2
P3 P2P3φ1,, , , , ,[

P2φ2φ3 P3
3

P3φ1
2

P3φ2
2

P3φ3
2 φ1φ2φ3 ], , , , ,

1 8 12., ,
C

nonlinear effect, the component P3 of the polarization
vector arises. In this transition, C2v  C1.

5.2. Symmetry class D2 has the following list of
invariants:

(17)

The second-order invariants are divided into three
groups—(P1, φ1), (P2, φ2), and (P3, φ3)—each of which,
under the fulfillment of the corresponding conditions,
can result in a second-order phase transition. The non-
linear effects considered above for the symmetry class
D2 are absent here. The change of the symmetry class
occurs by the scheme D2  C2.

5.3. In the crystals of the class D2h the list of invari-
ants has the form

(18)

Here, three pure ferroelectric and three pure rotational
phase transitions are possible without nonlinear effects.
In the case of the ferroelectric transitions, we have
D2h  C2v; in the case of the rotational transitions, we
have D2h  C2h.

6. TETRAGONAL SYSTEM 
(C4, S4, C4h, C4v, D4, D2d, D4h)

6.1. The list of invariants for C4 is

(19)

Crystals of this class are pyroelectrics with the
polarization vector being directed along the symmetry
axis. The second invariants allow one to divide the
order-parameter components into two groups: (P3, φ3)
and (P1, P2, φ1, φ2), respectively. In these crystals, two
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phase transitions are possible. The first one is the first-
order isostructural phase transition with the jumpwise
change of the components P3 and φ3. The second one is
a second-order phase transition occurring with the for-
mation of nonzero components P1, P2, φ1, and φ2. We
consider this transition in more detail.

The quadratic part of the thermodynamic potential
for the crystals of the class C4 with the use of the sec-
ond-order invariant can be represented in the form

(20)

The condition that should be met in the phase transition
can be written in the conventional form by equating the
matrix of the second derivatives to zero. However, the
P and φ are the functions of temperatures and angles ψ
and θ. Therefore, at a certain temperature (correspond-
ing to the equilibrium ferroelectric phase), one arrives
at four pairs (Pi , φi) obtained by the rotation of one of
these pairs by an angle of π/2 about the fourfold axis.

Now consider the temperature dependence of the
additions P3 and φ3 arising due to the nonlinear relation
between (P1, P2, φ1, φ2) and (P3, φ3) determined by the
third-order invariants. The thermodynamic potential
including the third-order polynomials has the form

(21)

Differentiating (21) with respect to P3 and φ3, we obtain

(22)

The characteristic feature of the invariant forms (22) is
their independence of the angle ψ, which signifies that
all the four solutions (P1, P2, φ1, φ2) characterized
by different directions give the same contributions P3
and φ3.

Thus, the above second-order phase transition trans-
forms the crystal class from C4 into C1 and gives rise to
the kink on the temperature dependence P3.

6.2. Consider the symmetry class S4. The invariants
are

(23)
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The second-order invariants allow one to distribute
the order-parameter components over the following
groups: (P3), (φ3), and (P1, P2, φ1, φ2). In the class S4,
three phase transitions are possible. The first-order
phase transition with the jumpwise change in the angle
φ3 occurs without the change of the symmetry class.
The second-order ferroelectric phase transition results
in the formation of the component P3 of the polariza-
tion vector and is accompanied by the change of the
class by the scheme S4  C2. The transition with the
mixed-order parameter (P1, P2, φ1, φ2) proceeds in the
same way as in the symmetry class C4, but the singular
point on the temperature dependence P3 (caused by the
nonlinear dependence of P3 on the component of the
transitions parameter) is somewhat different and
requires special consideration.

The thermodynamic potential for the class S4, which
takes into account the third-order invariants, is written
in the form

(24)

whence

(25)

The above formulas show that the addition to the rota-
tion angle φ3 does not depend on the direction of the
order parameter arising in the phase transition. The
expression for P3 consists of two parts. The two last
terms in the formula for P3 Eq. (25) do not include the
dependence on the orientation of the phase-transition
parameter; the first two terms change the sign in the
rotation of the polarization vector by an angle of π/2
about the symmetry axis. Therefore, P3 can have two
different values. As a result, the four polarization vec-
tors arising in the phase transition are split into two
pairs of vectors differently tilted to the symmetry axis.
The change of the symmetry class in this phase transi-
tion occurs by the scheme S4  C1.

6.3. Symmetry class C4h has the following invariants:
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(26)

The second-order invariants indicate four possible
phase transitions. One of them is a first-order rotational
transition with the formation of an addition to φ3 occur-
ring without the change of the symmetry class. The sec-
ond one is a second-order rotational phase transition
with the formation of components (φ1, φ2). The two
remaining transitions are second-order ferroelectric
phase transitions. The nonlinear effects result in the
kink on the temperature dependence φ3(T) observed for
all second-order phase transitions.

6.4. For the symmetry class C4v, the following
invariants are possible:

(27)

The order-parameter components are divided into three
groups, (P3), (φ3), and (P1, P2, φ1, φ2); in each, a phase
transition is possible. The transition, which associated
with the component P3, is an isostructural first-order
phase transition. The transition with the appearance of
the spontaneous rotation angle φ3 is a second-order
phase transition, in which the presence of the invariant

P3  gives rise to the kink on the temperature
dependence P3(T). As a result of this phase transition,
the symmetry planes passing through the symmetry
axis are lost, and the symmetry class of the high-tem-
perature phase is changed according to the scheme
C4v  C4.

The second-order phase transition resulting in the
formation of the parameter (P1, P2, φ1, φ2) is character-
ized by the vector (P1, P2) normal to the pseudovector
(φ1, φ2) [see Eq. (16)]. The component P3 arising in this
transition has the same value for all the four orienta-
tions of the order parameter because of the nonlinear
coupling provided by the third invariants. The symme-
try classes change according to the scheme C4v  Cs.

6.5. Symmetry class D4 has the following invariants:

(28)
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Second-order invariants allow one to divide the whole
set of the order parameters into two groups: (P3, φ3) and
(P1, P2, φ1, φ2). In the crystals of this class, a ferroelec-
tric phase transition is possible with the formation of
the mixed order parameter (P3, φ3). This transition is a
second-order phase transition and cannot give rise to
nonlinear effects mentioned above. The symmetry class
is changed by the scheme D4  C4.

The second transition is also of the second order.
Since there is no invariant P1φ2 – P2φ1, the polarization
vector is parallel to the pseudovector of the rotation
angle. Under this condition, the third-order invariant
goes to zero, which excludes any nonlinear effect. The
change of the symmetry class occurs according to the
scheme D4  C2.

6.6. Symmetry class D2d has the following invari-
ants:

(29)

Here, three second-order phase transitions are possible.
The rotational transition results in the formation of the
spontaneous rotation angle φ3 (in this case D2d  S4),
but a nonlinear effect is impossible. The ferroelectric
transition is accompanied by the appearance of sponta-
neous polarization P3 and a change of the symmetry
class, D2d  C2v . The nonlinear effects associated
with the formation of other order-parameter compo-
nents were not observed.

The third second-order phase transition results in
the appearance of the spontaneous mixed parameter
(P1, P2, φ1, φ2). Upon the analysis analogous to that
made for the class C4, the existence of the invariant
P1φ1 – P2φ2 results in the following relations between
the characteristics of the directions of the vector (P1,
P2) and the pseudovector (φ1, φ2):

(30)

The analysis of the fourth-order invariant results in
the following two types of the solutions—(P1, 0, φ1, 0)
and (P1, P1, +φ1, –φ1). The complete sets of the solu-
tions are obtained by decomposing the above solutions
using the rotation by angles multiple to π/2 about the
fourfold axis. The selection of one of the two types of
the solutions is determined by the minimum value of
the thermodynamic potential, which depends on the
coefficients in the fourth-order invariants. In the first
type of the solutions, the symmetry class is changed
according to the scheme D2d  C2; in the second type
of the solutions, by the scheme D2d  Cs.

The latter phase transition is accompanied by the
nonlinear effect, resulting in the appearance of the non-
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zero order-parameter components P3 and φ3. If upon the
transition, a phase is formed, which belongs to the class
C2, the third-order invariants have the zero values and
nonlinear effects are absent. If the phase transition
results in the formation of the mutually perpendicular
vector (P1, P2) and the pseudovector (φ1, φ2) lying on
the bisectors of the angles formed by the axes x1 and x2
of the crystallographic coordinate system, the compo-
nent of the vector P3 can are determined by the equation

(31)

The first term in Eq. (31) is independent of the direc-
tion of the vector (P1, P2), whereas the other two terms
change their signs upon the rotation of the solution by
π/2 about the fourfold axis.

6.7. For crystals of the class D4h, the list of invariants
coincides with (31); therefore, the possible phase tran-
sitions in the approximation taken for the thermody-
namic potential for crystals of this class are the same as
for the class D2d.

7. TRIGONAL SYSTEM (C3, S6, C3v, D3, D3d)

7.1. The list of invariants for crystals of the class C3
is

(32)

The list of second-order invariants coincides with
the analogous list for the class C4. Therefore, all the
conclusions made earlier about the mutual orientations
of the polarization and rotational components are valid
in this case as well. The existence of nonzero third-
order invariants dependent on the parameters of the
phase transition indicate that these transitions are first-
order phase transitions. If the parameter of the phase
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transitions is (P3, φ3), then this transition should occur
without the change of the symmetry class. If the phase-
transition parameter is (P1, P2, φ1, φ2), the class is
changed by the scheme C3  C1. A new fact not dis-
cussed above is a jumpwise change of P3 and φ3 in the
phase transition (P1, P2, φ1, φ2) provided by the mixed
third-order invariants. The equation for determining P3

has the form

(33)

and shows that the phase transition with respect to the
parameter (P1, P2, φ1, φ2) gives rise to the jumpwise for-
mation of the addition P3 having the same value for all
the three directions (P1, P2, φ1, φ2).

7.2. The invariants of the class S6 are

(34)

Second-order invariants show that in the crystals of the
symmetry class S6, two second-order ferroelectric and
two first-order rotational phase transitions are possible.
The phase transition resulting in the appearance of the
parameter φ3 occurs without the change of the symme-
try class. In the transition resulting in the appearance of
nonzero (φ1, φ2), the class changes by the scheme
S6  C1. In the second-order transitions resulting in
the appearance of a spontaneous-polarization vector P3,
the class changes, S6  C3. In the phase transition
with the appearance of the spontaneous-polarization
vector in the (001) plane, the class changes by the
scheme S6  C1, whereas the nonlinear interaction
between the order-parameter components results in the
formation of nonzero φ1, φ2, φ3 by the mechanism of
improper rotational phase transitions.

7.3. The list of the invariants for the crystals of the
class C3v is
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The second-order invariants coincide with the analo-
gous invariants of the symmetry class C4v. Unlike the
phase transitions in the class C4v, the phase transition in
the class C3v occurring with the formation of the non-
zero order parameter (P1, P2, φ1, φ2) is a first-order
phase transition. If the polarization vector is directed
along [100], then the class changes, C3v  C1. Since
the order-parameter components are related nonlin-
early, which is determined by the third-order invariants,
then the phase transition is accompanied by the jump-
like formation of the addition to the vector P3.

7.4. For the symmetry class D3, the following invari-
ants are possible:

(36)

The first- and second-order invariants in the classes D3
and D4 are the same, whereas the third-order invariants
are different, which results in the fact that the transition
determined by the order parameter (P1, P2, φ1, φ2) is a
first-order phase transition. Similar to the class D4, non-
linear effect of the type under study are absent in the
class D3. The change of symmetry classes occurs
according to the schemes D3  C2 and D3  C1,
depending on the direction of the vector (P1, P2).

7.5. The list of invariants for the crystals of the class
D3d has the form

(37)

In these crystals, two ferroelectric and two rotational
phase transitions are possible. Both ferroelectric transi-
tions are second-order phase transitions. The phase
transition with the formation of the spontaneous polar-
ization vector P3 results in the change of the classes,
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D3d  C3v. If the spontaneous-crystallization vector is
represented in the form (P1, P2, 0), then either D3d 
C2 or D3d  Cs. The rotational transition resulting in
the formation of the spontaneous rotation angle (0, 0,
φ3) results in the change of the symmetry class, D3d 
C3. If the spontaneous-rotation angle has the projec-
tions (φ1, φ2, 0), then the change occurs by the scheme
D3d  C2h or D3d  C1, depending on the direction
(φ1, φ2, 0).

8. HEXAGONAL SYSTEM 
(C6, C3h, C6h, C6v, D3h, D6, D6h)

8.1. The list of invariants for crystals of class C6 is

(38)

The lists of the first- and second-order invariants of the
symmetry classes C6 and C4 are the same; therefore, in
both classes, the same phase transitions and the same
nonlinear effects take place. However, the class C4 has
six (not four) orientations of the vector (P1, P2, 0) and
the pseudovector (φ1, φ2, 0). The symmetry classes are
changed by the schemes C6  C6 and C6  C1.

8.2. The list of invariants for the symmetry class C3h

has the form

(39)

The lists of first- and second-order invariants and the
lists of the phase transitions in the classes C3h and C4h

are the same. The ferroelectric transition, which results
in the spontaneous polarization (P1, P2, 0), is a first-
order phase transition in this symmetry class which is
associated with the existence of third-order invariants
dependent on P1 and P2.
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Consider the nonlinear effect of appearance of elec-
tric polarization in the rotational phase transition occur-
ring, with the formation of the spontaneous rotation
angle (φ1, φ2, 0). The reduced thermodynamic potential
with preservation of the terms necessary for the deter-
mination of P1 and P2 can be written as

(40)

Differentiating Φ with respect to P1 and P2, we obtain

(41)

Assuming that
(42)

and substituting Eqs. (42) into Eqs. (41), we obtain

(43)

It follows from Eq. (43) that the clockwise rotation
of the pseudovector (φ1, φ2) by π/3 about the symmetry
axis (which corresponds to the transitions from one
phase to the neighboring one), results in the clockwise
rotation of the vector (P1, P2) by the angle 2π/3. As a
result, the phase transition yields three possible orien-
tations of the polarization vector. Different states of the
low-temperature phase with due regard for nonlinear
effect can be represented in the plane (φ1, φ2) (Fig. 1).

Figure 1 shows six radius-vectors from a set of
pseudovectors of the rotation angles arising in the
phase transitions. Small vectors “bound” to the ends of
the pseudovectors are the spontaneous polarization
vectors arising due to nonlinear relationships (41).

The above example can be considered as an
improper ferroelectric phase transition [7] caused by
the rotational phase transition and the nonlinear rela-
tion between the rotational and polarization compo-
nents of the order parameter.

8.3. The invariants for the crystals of the symmetry
class D6 coincide, up to the third order, with the analo-
gous invariants for the class D4. Therefore, the phase
transitions in both classes are analogous with the only
difference—the number of the phase orientations (P1,
P2, φ1, φ2) in the class D6 equals six (not four) as is the
class D4.

8.4–8.6. Similar situation also takes place for the
classes C6h and C4h, C6v and C4v, and D6h and D4h.

8.7. Consider the remaining symmetry class D3h of
the hexagonal system. The list of invariants for this
class is
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In the crystals of the class D3h, the following four phase
transitions are possible: first-order ferroelectric phase
transitions with the formation of the polarization vector
(P1, P2, 0), second-order ferroelectric phase transition
with the polarization vector (0, 0, P3), and two rota-
tional phase transitions with the pseudovectors of the
rotation angles (0, 0, φ3) and (φ1, φ2, 0). The latter phase
transition accompanied by the nonlinear effect of the
formation of the polarization-vector with the compo-
nents (P1, P2, 0) is absolutely analogous to that consid-
ered for the symmetry class D3d.

9. CUBIC SYSTEM (T, Th, Td, O, Oh)

9.1. The list of invariants for crystals of the class T is

(45)

In these crystals, only one first-order phase transition is
possible, which is characterized by the spontaneous-
polarization vector and the pseudovector of the rotation
angle directed along [111]. The symmetry class is
changed by the scheme T  C3. The linear depen-
dence between P and φ, which determines parallelity or
antiparallelity of the polarization and rotational compo-
nents is determined by minimizing the thermodynamic
potential.
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Fig. 1. Directions of the order parameters of possible low-
temperature phases in the crystal of the class C3h.
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9.2. The list of invariants for the crystals of class Th

is

(46)

Two phase transitions are possible in crystals of this
class. One of them is a second-order ferroelectric phase
transition. Its thermodynamics can readily be obtained
by passing to the reduced potential represented in the
form:

(47)

It is well known that if a2 > 0, the polarization vector is
directed along [111], whereas if a2 < 0, it is directed
along [100].

The rotational phase transition resulting in the for-
mation of the pseudovector of rotation along [111] can
be described in the same way. In the case of the ferro-
electric transition with the formation of the polarization
vector along [111], the nonlinear effect of the formation
of the rotational component along the [111] direction
takes place.

9.3. The list of invariants for the crystals of the class
Td has the form

(48)

In the crystals of this class, a first-order ferroelectric
phase transition with the polarization vector along
[111] and a rotational second-order phase transition
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Fig. 2. Directions of the order parameters of possible low-
temperature phases in the crystals of the class Td.
C

take place. The direction of the pseudovector of the
rotation angle is determined by the sign of the coeffi-
cient analogous to a2 in Eq. (47). If the pseudovector
(φ1, φ2, φ3) is directed along [111], a nonlinear effect of
the formation of the spontaneous-polarization vector
takes place, because the list of invariants includes the
expression P1φ2φ3 + P2φ1φ3 + P3φ1φ2.

The analytical expression for the polarization vector
has the form

(49)

The vectors at various values of the equilibrium
rotational parameter are shown in Fig. 2. It is seen that
the polarization vectors exit from four of the cube ver-
tices forming a tetrahedron inscribed into this cube,
whereas the vectors at the vertices of an additional tet-
rahedron are directed inside the cube.

Thus, the rotational transition in the crystals of the
class Td results in the appearance of the polarization
vector with a rather weak temperature dependence of P.

9.4. The list of invariants for crystals of the class O
is

(50)

It is seen that in the crystals of this class, a second-
order phase transition with the mixed order parameter
is possible. The polarization vector and the pseudovec-
tor of the rotation angle have the same direction coin-
ciding either with [111] or [100], depending on the
ratio of the coefficients of the quartic part of the ther-
modynamic potential of the crystal.

9.5. The list of invariants for crystals of the class Oh

has the form

(51)

Thus, in the crystals of this class, two independent
second-order phase transitions are possible—ferroelec-
tric and rotational. The phase transitions in the crystals
whose state is characterized by the multicomponent
order parameter can be divided into two classes. The
first one consists of the transitions in which the most
pronounced temperature dependence is observed for
the set of the order-parameter components having the
same physical sense (a polarization vector or a
pseudovector of the rotation angles). The second group
includes transitions for which the parameter compo-
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nents have a different physical sense. The symmetry
properties of crystals and adherence to a certain sym-
metry class allow one to predict possible structural
phase transitions and the sets of order-parameter com-
ponents, which determine the nature of the correspond-
ing phase transitions. The specific temperature behav-
ior is observed in phase transitions not only for the
leading components of the order parameter (deter-
mined for the given transition by the second-order
invariants) but also for a wider spectrum of the order-
parameter components because of the nonlinear rela-
tion between these components [7].

In the crystals of the classes C3h, D3h, and Td,
improper ferroelectric phase transitions are possible,
whose main parameters are the components of the rota-
tion-angle pseudovectors. The rotational component of
the order parameter in these crystals provides the
appearance of the polarization component.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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PHASE TRANSITIONS
Structural Aspects of Solid-State Amorphization 
in GaSb Single Crystals1 
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Abstract—As is well known, the GaSb I phase that is stable at room temperature is transformed under high
pressures and temperatures into the GaSb II phase, which, being frozen in liquid nitrogen, becomes a metastable
phase. The X-ray studies of GaSb II under heating showed the formation of two “thermally reversible” phases
providing halolike X-ray diffraction patterns. It was also shown that the low-angle scattering spectrum also
reversibly changes with the temperature and that macrocrystalline grains appearing during heating at elevated
temperatures dissipate in the process of the subsequent specimen cooling. The structural states observed are
interpreted as paracrystalline. © 2001 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

A large number of compounds in binary and ternary
systems exhibit solid-state amorphization. In our case,
this term signifies the occurrence of broad halos in
X-ray reflection spectra in the heating process of ini-
tially crystalline metastable high-pressure phases.
Among these systems, there are Zn–Sb, Cd–Sb, Al–Ge,
Ga–Sb, Gd2(MoO4)3, ice, etc. [1]. McDonald et al.
were the first to observe halos on diffraction patterns
from GaSb crystals upon annealing of the frozen high-
pressure phases [2]. A thin GaSb disc was compressed
between Bridgman anvils up to the pressures that
caused the transition of the initial semiconductor phase,
GaSb I, into a metal phase, GaSb II; then the sample
was cooled in a chamber under a load to the liquid-
nitrogen temperature, and chamber was decompressed.
The subsequent heating process did not return the sam-
ple directly into the initial state; the sample was first
transformed into an “amorphous” phase giving rise to
formation of halos on the corresponding diffraction
pattern. It was assumed that this amorphous phase was
a highly disordered GaSb I. Later, the formation of dif-
fraction halos was also obtained during heating of the
quenched GaSb II phase [3, 4].

The dilatometric and calorimetric characteristics of
GaSb [5] and other compounds [6–8] were measured to
show that the solid-state amorphization gives rise to an
increase of the sample volume and that this process is
exothermic. Since the rate of temperature variations in
these experiments ranged from several degrees to sev-
eral dozens of degrees per minute [5–8], the recorded
structural states were nonequilibrium. This fact and the
possible formation of halos on diffraction patterns not
only due to amorphization but also by the nanocrystal-

1 This article was submitted by the authors in English.
1063-7745/01/4602- $21.00 © 20268
line nature of scattering elements, second-order crystal-
lattice defects [9–11], paracrystal [9, 12–15], and some
other factors [16, 17] stimulated this study aimed at
establishing the structural aspects of the solid-state
amorphization.

2. EXPERIMENT

The samples for the study were selected by the fol-
lowing reasons. Usually, the X-ray scattering spectra of
pure amorphous and nanocrystalline states can hardly
be distinguished. However, in diffraction experiments,
these states should have different kinetics of the transi-
tion from the crystalline state. In particular, the normal-
ized angular distribution of the diffracted intensities for
the amorphous state should be independent of the vol-
ume fraction of the crystalline–amorphous state trans-
formation, whereas in the process of nanocrystalliza-
tion such a dependence should exist.2 In accordance
with the Curie law, the formation of a texture in the sub-
grain orientation (reflecting the macrosymmetry of the
cuts of the initial single crystal) during nanocrystalliza-
tion is possible at all the stages of the transformation
GaSb I  GaSb II  solid-state amorphization 
GaSb I. In the case of amorphization of the initially
homogeneous sample, no texture formation is
expected. Finally, although individual crystallites in a
nanocrystalline state are quite small, a certain degree of
the long-range order is retained. In X-ray diffraction
experiments, this fact should result in the temperature
dependence of halo intensities (the Debye–Waller fac-
tor [18–20]). For an amorphous sample, the static
atomic displacements caused by the topologic disorder
usually exceed the amplitudes of atomic thermal vibra-
tions; thus, no temperature dependence of the diffracted

2 The first nanocrystallization stages should be accompanied by
broadening of the main reflections of the crystal.
001 MAIK “Nauka/Interperiodica”
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intensities is observed.3 In view of the above consider-
ation, we decided to study a single crystal. A 1 × 2 ×
5 mm-large rectangular sample with the developed face
parallel to (100) was cut out from a Czochralski-grown
single crystal.

The sample was subjected to the thermobaric treat-
ment in a quasihydrostatic high-pressure cell (P =
70 kbar, the Teflon medium, the loading time 24 h, T =
520 K). Then, the setup under the same pressure was
cooled down to 100 K, and the cell was depressurized.
The sample was dismounted in liquid nitrogen; the
sample holder for X-ray diffraction studies was also
kept in liquid nitrogen.

The X-ray studies were performed in an automated
DRON-4-07 diffractometer. The sample holder was
made in such a way that the electrodes could be brought
into contact with a crystal to measure the resistivity
simultaneously with the X-ray diffraction experiment.
The sample fixation in the holder limited the area of the
sample to 2 × 2-mm-large area.

We used the Bragg–Brentano geometry (CuKα and
AgKα radiations), the depth of the absorbing layer did
not exceed the values of 3 and 63 µm, which corre-
sponds to a strong absorption (ten-times absorption of
the layer).

All the experiments on structural rearrangements
upon heating of the quenched GaSb II phase were per-
formed by keeping the sample for a long time at each
temperature. Such an experimental scenario provided
the discovery of a number of new structural states dur-
ing very slow heating of a frozen amorphous state in an
MBBA liquid crystal that were not recorded at rapid
heating [21].

3. RESULTS
Figures 1a and 1b show the graphical representation

of the diffraction patterns hereafter called, for brevity,
diffractograms of the quenched high-pressure GaSb II
phase for (Fig. 1b) initially single crystal and (Fig. 1a)
initially polycrystalline samples (CuKα radiation).
Comparing reflection indices, we came to a conclusion
on the formation of a developed texture in the single
crystal sample. In fact, the diffractogram of the poly-
crystalline sample (Fig. 1a) (similar to the Debye–
Scherrer X-ray diffraction patterns obtained in [2])
showed no (00l)-type reflections, whereas the intensity
of the (001) on the pattern from a single crystal sample
is pronounced. At the same time, the (h00) reflections
from the polycrystal pattern are intensive, whereas on
the diffraction pattern from the single crystal sample
they are absent. Thus, the single crystal GaSb II sample
can be regarded as an oriented polycrystal with the
texture axis in the [001] direction. The formation of
the well-pronounced texture unambiguously indicates

3  In principle, a weak change in the scattering intensities for amor-
phous samples should be observed because of the temperature
dependence of the sample density.
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the existence of the structural memory during the
GaSb I  GaSb II transformation, which should be
accompanied by the transition to another symmetry
subgroup.

The second run of the experiments consisted in
annealing of the GaSb II phase: the sample whose resis-
tance was measured was heated above 77 K and was
kept at this temperature until its resistance acquired
steady-state value (which indicated the quasiequilib-
rium state in accordance with resistance measure-
ments). We also recorded the control diffraction pat-
terns. Then the temperature was increased again, and
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Fig. 1. Diffractograms of the quenched state of the high-
pressure GaSb II phase obtained from the initially (a) poly-
crystalline, (b) single crystal samples; and (c) GaSb I phase
of polycrystalline sample.
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annealing continued up to the attainment of a new
quasiequilibrium state.

The resistance measurements were made simulta-
neously with the structural studies. Figure 2 shows
resistance versus time of annealing at 180 K for the
sample which underwent partial transformation during
the preliminary heating. This curve confirms the non-
equilibrium nature of the structural states during the cal-
orimetric and the dilatometric measurements [1, 3–8].
The rates of the temperature variation were several
order of magnitude higher, which indicated the neces-
sity of long keeping of the samples at each temperature.

The diffractograms obtained at the annealing stages,
at which the samples underwent the transformation
from a metal (resistance measurements) to a semicon-
ductor (an increase of resistance by a factor of 108)
were similar to those shown in Fig. 1b. In other words,
the volume fraction of a dielectric phase forming at this
stage is insignificant and that it was nucleated as a pla-
nar layer.

Upon the attainment of a steady-state resistance of
the sample (the final annealing temperature was 192 K),
the sample was cooled to 77 K in liquid nitrogen and
was kept at this temperature for quite a long time. Upon
keeping the sample at liquid-nitrogen temperature for
1.5 months (resistance measurements), the diffraction
pattern of the sample dramatically changed. All the dif-
fraction lines due to GaSb II disappeared and broad
halolike reflections formed. Hereafter, we call such pat-
terns “pseudoamorphous” and the corresponding struc-

100
t, min

200 300

3

2

1

0

ρ, kΩ

*

*

*

*
*

*
*

*
*

*
*

*
*

*
****

****
*

*
*

*
* ****

Fig. 2. Resistance of GaSb II vs duration of the intermediate
heating stages for an initially single crystal sample.
C

tural states, pseudoamorphous phases. An increase of
the layer depth by using the AgKα radiation changed
the diffraction pattern (Fig. 3). In this case, both the
reflections due to the GaSb II phase and the halos of the
“pseudoamorphous” phase are recorded. Figures 3a–3c
illustrate the changes in the diffraction patterns upon
the annealing of the sample at high temperatures.4

A decrease of the reflection intensities from the crystal-
line phase are not accompanied by the respective
changes in the half-width during annealing. The latter
fact and a decrease in the temperature of the transfor-
mation of the GaSb II-“pseudoamorphous” phase and
disappearance of the reflections from the crystalline
phase at the use of X-rays with a small penetration
depth lead to an assumption about the beginning of a
certain stage of transformation of the pseudoamor-
phous phase on the sample surface in the form of a thin
layer. During the subsequent annealing, this phase
“spreads” into the crystal depth.

The temperature-induced changes in the diffraction
spectra upon a complete disappearance of the “crystal
reflections” is shown in Fig. 3. Each diffraction spec-
trum was recorded from a stable structure, which was
confirmed by invariable spectra from a crystal kept at
the chosen temperature point for dozens of hours. The
sequence of spectra 1–6 corresponds to a gradual
increase of the sample temperature. A smooth transfor-
mation of the spectrum, recorded at low temperatures
(curve 1) to a new “halolike spectrum” recorded at
room temperature (curves 5, 6) is clearly seen in Fig. 4.
During such transformation, the center of gravity of the
first halo smoothly shifts to the small-angle range,
whereas its intensity and half-width anomalously
increase with the temperature. Sample heating from 89
to 300 K, this increase attains up to 30%.

At the variation of the sample temperature within
77–200 K, the diffraction spectra did not change and
were similar to spectrum 1 in Fig. 4. Since the latter
spectrum differed from the known spectra of GaSb, we
concluded that the spectrum obtained belong to a new
low-temperature “pseudoamorphous” phase. Diffrac-
tion spectra 5–6 were identified as those of another
phase—a high-temperature “pseudoamorphous” phase
(or state) because they differed from spectrum 1 and
insignificantly changed at room temperatures. The ther-
mal reversibility of these two phase states observed in
our experiments was somewhat surprising and mani-
fested itself in changes of the diffraction spectra shown
in Fig. 4 in the reverse succession during sample cool-
ing. The thermal reversibility of the structural states
signifies that despite the metastable state of the sample,
the two pseudoamorphous phases are in equilibrium in
the temperature range studied.

Figure 5 shows the diffraction spectrum of the sam-
ple heated to 323 K. The narrow crystal peaks appear in
the region of the first halo maximum. Some signs of

4 All the diffraction patterns were obtained at 89 K.
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Fig. 3. (1–3) Diffractograms of successive structural states of GaSb II during sample annealing at 185–220 K (AgKα radiation). (For
a clearer presentation, spectra 2 and 3 are shifted along the ordinate axis by 500 units with respect to the previous spectrum.)

Fig. 4. Diffraction spectra of GaSb in the steady structural states (in the upward direction): (1) 89, (2) 120, (3) 206, (4) 231, (5) 259,
and (6) 311 K; diffraction spectra of the low-temperature (1) and high-temperature (2) “amorphized” phases in the steady state. (For
clearer representation spectra 2–6 are shifted along the ordinate axis by 500 units with respect to the previous spectrum.)
formation of these peaks were observed even at 311 K
(curve 6 in Fig. 4). Their positions were close to that of
the (200) reflection of the GaSb I phase. A reversible
transformation of the crystal peaks into an ordinary
halolike spectrum with lowering of the temperature is
rather unusual. As earlier, the sample restores its low-
temperature states (Fig. 3).
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
Figure 6 shows the diffraction spectra of the partly
transformed sample for two temperatures in the low-
temperature range of the phase stability.5 The intensity
of the small-angle spectrum range considerably
decreases, whereas the shape and the intensity of the

5 The curves obtained at the intermediate temperatures are located
between these two spectra.
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Fig. 5. Diffraction spectrum of the sample in the steady state at 323 K (narrow lines from the crystal are shown by the arrows).
crystal reflection do not change with the temperature
rise. The identical behavior of the small-angle spectral
range is seen in Fig. 3 for the pure “pseudoamorphous”
state. The spectral ranges shown cannot be caused by
small-angle scattering proper, however they contain
some information about its “fine-disperse tail.” High
intensities of these tails signify that even during forma-
tion of the low-temperature phase it has the precipitates
of another phase of different density. The slope of
small-angle scattering curve decreases with the temper-
ature rise, thus showing that the fraction of fine-dis-
perse precipitates diminishes at higher temperatures.
Possibly, this is explained by coagulation of these pre-
cipitates and, finally, their transformation into a high-
temperature pseudoamorphous phase. This assumption
is confirmed by the thermally reversible behavior of
small-angle scattering, which is similar to the revers-
ible behavior of the structural states of the sample upon
its “amorphization.”

4. DISCUSSION

Figures 7a and 7b shows the atomic positions in
GaSb I (diamond-type structure) and GaSb II (β-Sn-
type structure) unit cells. At first sight, these phases are
quite different. However, the new unit-cell axes chosen

along the [110], [1 0] and [001] directions for the
GaSb II unit cell (thin lines in Fig. 7c) show that coor-
dination of atoms in both unit cells is the same; i.e., the
symmetry subgroups of the both phases belong to the
same group. Such a choice of the unit cell allows one to
see that the GaSb I  GaSb II transition reduces to

1

C

compression of the original cubic unit-cell by about
50% along the [001] direction and the elongation by
about 20% along the [100]- and [010]-directions. The
unit-cell volume changes by about 28%. These charac-
teristics of the phase transformation provide the forma-
tion of the texture observed for single crystal samples.
This texture reflects the quasihydrostatic mode of the
load transfer, at which the (100) GaSb I face is usually
transformed into the (001) face of GaSb II. This is con-
firmed by the absence of (h00)-type reflections on the
diffraction patterns from single crystal GaSb II sam-
ples.

Figure 4 shows the typical diffraction patterns from
both pseudoamorphous phases. One can clearly see that
the maximum intensity of the first reflection of the low-
temperature phase (spectrum 1) is considerably lower
than the intensity of the second reflection. Such an
intensity ratio is quite unusual for an amorphous
phase—usually the intensity ratio is inverse [9–11,
14].6 For the high-temperature phase (spectrum 6), the
intensity of the first reflection is higher than of the sec-
ond one, which is characteristic of an amorphous state.
However, the half-width of this reflection considerably
exceeds the half-width of the second “halo,” which is
inconsistent with the definition of an amorphous state
according to which the half-width of the first peak char-
acterizes the shortest interatomic distance (the first
coordination sphere) ranging within smaller limits than
for the next coordination spheres. Thus, the features of

6 In principle, such an intensity ratio is possible also for an amor-
phous state if the structure consists of atoms having different radii
and considerably different scattering powers [22].
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Fig. 6. Small-angle range of the diffraction spectrum of the low-temperature “amorphized” phase at: (1) 89 and (2) 230 K.
the halolike diffraction spectra and the thermally
reversible character of the structural states observed
indicate that these states cannot be amorphous phases.
This conclusion also agrees with the above analysis of
the GaSb I and GaSb II atomic structures, which shows
that the coordination of atoms is not changed upon the
GaSb I–GaSb II transformation and, hence, there are no
structural reasons for the formation of the amorphous
state in the reverse transition.

It seems that the nanocrystalline character of the
real structure should be responsible for the halolike dif-
fraction spectra upon the GaSb II  GaSb I transfor-
mation. In this connection, we analyzed mean sizes of
nanoscopic grains that determine the half-widths of
reflections. A mean crystallite size calculated from
half-width of the first reflection is 25 Å for the low-tem-
perature and 7 Å for the high-temperature phases. The
grain size equal to one interatomic distance for the
high-temperature phase contradicts the definition of a
nanocrystal. Moreover, a reduction of the crystallite
size with an increase of the heating temperature can
hardly be interpreted because the system usually should
attain its equilibrium state. We could not interpret the
smooth and continuous transformation of the low-tem-
perature nanostructure (stable within 77–200 K) into the
high-temperature nanostructure at room temperature,
which is accompanied by an anomalous but smooth
increase of the interatomic distance.

The reversibility of narrow crystal reflections
formed at 323 K also indicates that the sample cannot
be considered as a nanocrystal. Assuming that phase
transition into the structure that provide halolike spec-
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
tra should be accompanied by fractioning of the initial
polycrystalline GaSb II grains to nanoscopic sizes, we
can conclude that growth of these grains with the tem-
perature rise can occur only due to diffusion processes
providing change in the coordination of a neighboring
grain. In principle, this is possible at rather high tem-
peratures and in the presence of the thermodynamic
driving force of the phase transformation. However,
since the crystalline state of GaSb I is energetically
more favorable, there is no reason for the reverse grain
transformation into nanoscopic ones with an increase
of the temperature.

In our opinion, it is more natural to assume that the
halolike diffraction spectra reflect pronounced changes
of the crystal lattice [9–11, 17] pointed out by
McDonald [2]. Here, one has to distinguish between
two possible situations—the changes of the type of a
disordered solid solution and formation of second-
order defects. As was mentioned above, the coordina-
tion of atoms in the GaSb I and GaSb II is preserved.
This fact allows us to ignore the changes of the type of
a disordered solid solution. Thus, we have to analyze
only second-order defects for which the displacements
u of lattice atoms located at the distance r from the
defect can be written as u ~ r–n (n < 2). It is in this case
that the situations can take place which are determined
by the size and the concentration of defects such that a
set of the crystal lines singled out on diffractograms is
substituted by halolike spectrum [9–11]. The possible
formation of second-order defects and their high con-
centration in the sample are confirmed by the character-
istics of the small-angle range of the diffraction spectra.
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One may assume that second-order defects in the
low-temperature phase are the nuclei with characteris-
tics close to those of the high-temperature phase. This
assumption follows from a decrease of the fine-disperse
precipitate concentration with the temperature rise,
from an anomalously high increase of the intensity of
the first halo, and the shift of the center of gravity of this
halo toward the small-angle range characteristic of the
positions of the strong (111) and (200) reflections of the
GaSb I phase. The texture formation with the [001]-
axis explains the anomalously pronounced change in
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the intensity and the shift of the first halo to the small-
angle range in the transition from the low- to high-tem-
perature range. The increase of intensity reflects the
transformation of the low-intensity (001) reflection of
β-Sn to the rather intense (111) and (200) reflections of
GaSb I (Fig. 1c). During this transformation, the [001]
texture axis of GaSb II becomes the [100]-texture axis
of GaSb I, in full accord with the orientation of the
faces in initial single crystal sample.

Now, consider the relation between the halolike
spectra, the smooth transformation of the low-tempera-
ture to high-temperature phase, and the thermal revers-
ibility of gradual disappearance of coarse-grain precip-
itates formed at room temperatures. Such a relation can
be established under the assumption that the nucleating
phase (regarded at the first stages as second-order
defects) is conjugated with the low-temperature matrix
via the transitional zones with a smooth variation of the
interatomic distances and bond angles. In such a model,
the pseudoamorphous states are characterized by a con-
tinuous transition of the lattice from one orientation to
another without any changes of the coordination of
atoms. Such a state can be classified as a paracrystalline
state [9, 12–15].

Paracrystalline systems can yield halolike scattering
spectra [12]. They are also characterized by a relatively
easy reorientations and phase rearrangements because
they are determined mainly by small changes in inter-
atomic distances and bond orientations in the neighbor-
ing unit cells, with the coordination of atoms at large
distances being retained. This model explains the
reversible appearance and disappearance of coarse
grains: they appear because some orientations are
observed on a “macroscopic scale” and, thus, deter-
mine the narrow diffraction lines and the smooth phase
rearrangement. As the temperature decreases, the mac-
roscopic regions continuously return to the initial ori-
entational states of the low-temperature phase. The
smooth phase reconstruction reflects a continuous
change of the interplanar spacing along the initial
[001]-axis with the change in the temperature.

5. CONCLUSIONS

Thus, the experimental results obtained and their
analysis lead to the conclusion that the structural states
providing the formation of halolike diffraction spectra
in solid-state amorphization of GaSb are neither amor-
phous nor nanocrystalline, but seem to be paracrystal-
line. This state is closer to a perfect crystal because at
macrodistances, the coordination of atoms characteris-
tic of the initial structure is preserved. We should like to
emphasize once again that the reported results were
obtained on initially perfect GaSb single crystals.
Moreover, the thermal and temporal “paths” of sample
heating in our experiments were essentially different
from those for polycrystalline samples described in
[1, 3–8]. It is expedient to compare the structural states
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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observed in our study with those in GaSb II polycrys-
tals upon their keeping at each temperature point.
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Abstract—An original technique based on the geometric characteristics of dislocations in planar pileups is
suggested which allows the estimation of the local thermoelastic stresses and analysis of the influence of a num-
ber of growth parameters on the formation of dislocations in AIIIBV semiconductor crystals. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Earlier, we proposed an original X-ray topographic
method for determining active slip systems in cubic
crystals [1–3]. The method is based on the well-known
concepts of the dislocation theory [4, 5], crystallogra-
phy [6], and the X-ray topography [7] and also uses
some new results obtained by the latter technique on
AIIIBV semiconductors with a low dislocation density
[8−10]. 

It is well known that the Burgers vector of a disloca-
tion and the dislocation line always lie in one plane of
a certain slip system [4–6]. Either the individual dislo-
cations or their curved segments or, especially, the pla-
nar pileups dislocation in single crystals can be
regarded as indicators of the related local elastic-stress
fields existed in the crystals at the moment of stabiliza-
tion of their dislocation structure [1–5, 8–13]. The ade-
quate theory of elastic stresses due to individual dislo-
cations and to the one- and the two-sided dislocation
pileups was suggested in [4, 5]. An X-ray topograph is
a projection of the image dislocation lines distributed in
the volume of the single crystal plate studied [1, 2, 8].
The actual sizes of dislocation pileups or the curvilin-
ear segments of dislocations on the topographs are cal-
culated by the formulas of the projective geometry
[1, 2, 8]. The topographic studies show that in GaAs,
GaSb, and InP semiconductor single crystals with low
dislocation densities (<103 cm–2), dislocations most
often form one-sided pileups and, only sometimes,
two-sided pileups [1, 2, 8, 9, 11–13].

The method suggested here allowed us to reveal
[1, 2, 8, 9, 11–14] 54° dislocations, predicted theoreti-
cally in [5], in the AIIIBV single crystals. In some
instances, we also managed to prove the prevalent gen-
eration of the dislocations in nonoctahedral slip sys-
1063-7745/01/4602- $21.00 © 200276
tems 〈 〉 {101} and 〈110〉{h11} with an insignificant
contribution of the octahedral 〈110〉{111} system.

EXPERIMENTAL TECHNIQUE
InP, GaAs, and GaSb single crystals with low dislo-

cation densities (<103 cm–2) were grown by the Czo-
chralski method with the use of liquid hermetization;
Si-doped GaAs single crystals were also grown by the
method of unidirectional horizontal crystallization. To
reduce the dislocation concentration in the ingots, one
of the dopants increasing the critical stress of disloca-
tions formation in crystals (Zn for InP, Te or Si for
GaAs and GaSb) was added to the melt [15–20].

Topographic studies were made on single-crystal
plates cut from the InP, GaAs, and GaSb ingots grown
along the [111], [001], and [112] axes. The plate sur-
faces were coincided with (111), (001), or (112) sur-
faces normal to the growth axes or were parallel or
tilted ({111}, {110}, {112}, or {001}) to the growth
axes. Upon chemical and mechanical polishing and
chemical dynamical dissolution of the disturbed sur-
face layer, the final plate thickness was 250 µm.

DISLOCATION DISTRIBUTION IN InP, GaAs, 
AND GaSb SINGLE CRYSTALS WITH LOW 

DISLOCATION DENSITY
The X-ray topographic study showed that the main

characteristic of Zn-doped (p = 2 × 1018 atom/cm3) InP
crystals with low dislocation density (<103 cm–2) is the
presence of the practically dislocation free (0.5–
1.5-cm2) regions [1, 2, 9]. In Te- or Si-doped GaAs [1,
8, 10–13] and GaSb [1, 11, 12] crystals, the dislocation-
free regions are 1–12 cm2 large. 

Another important feature of the dislocation distri-
bution in doped InP, GaAs, and GaSb crystals with low

101
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dislocation density is the formation of dislocation pile-
ups on X-ray topographs (Fig. 1a), such planar disloca-
tions pileups have the form of the compact rows of seg-
ments of rectilinear dislocations (1–6). Such pileups
are characterized by increasing interdislocation spac-
ings from the first (“head”) to the last (“tail”) disloca-
tion. This signifies that such a pileup is pressed to an
obstacle located from the side of the first dislocation,
while the dislocation source is located to the side of the
last dislocation.

X-RAY TOPOGRAPHIC MEASUREMENTS 
AND CALCULATION OF PARAMETERS 
OF ONE-SIDED DISLOCATION PILEUPS

Examination of all the planar dislocation pileups on
topographs showed that they consist of different num-
bers of dislocations Nn, have different lengths Ln, and
different angles ψn (where n = 1, 2, 3, …) between the
lines of outcrop of the dislocation segments of the
pileup at the InP (001) surface and the directions of the
lines of the rectilinear dislocations of the pileup on the
topograph. The angles ϕn formed by the same lines of
the outcrop of the dislocation segments in different
pileups and the directions of the diffraction vectors of
the g〈400〉  or g〈220〉  are also different (see Fig. 1a and
schematic in Fig. 2). Moreover, the pileups also have
different lengths hn of the dislocation segments on
topographs.

The geometric X-ray topographic analysis consid-
ers a topograph taken in symmetric Laue reflection as a
planar image of the spatial dislocation distribution in
the plate bulk [1, 2, 8, 9, 11–14] onto the surface of the
exit of the wave field from the crystal. The plane of the
projection parallel to the topograph can be chosen as,
e.g., the (001) surface of InP single crystal plates (the
radiation exit surface). Such a consideration allows one
to use the well-known formulas of the projective geom-
etry [1, 2, 8, 9, 11–13] for calculating the X-ray topo-
graphs. As was found from the topographs, for the vast
majority of the planar dislocation pileups, the direc-
tions of rows of the dislocation outcrop at the (001) sur-
face of the single-crystal InP plate make an angle of
ϕn = 45° with the g〈220〉-type diffraction vectors. These
directions coincide with one of the crystallographic
directions of the g〈100〉  type in the (001) plane and are
parallel to one diffraction vector of the g〈400〉  type.
Such a coincidence of the direction of the rows of the
outcrop of the segments of dislocation lines in planar
dislocation pileups with the 〈100〉  directions in the
(001) plane indicates that the dislocations observed in
these planar dislocation pileups were generated in the
{101} slip planes rather than in the {111} planes of the
octahedral slip. In the latter case, the directions of the
outcrop lines of the dislocation rows in the planar dis-
location pileups on the (001) plane would coincide with
one of the 〈110〉  directions. A good contrast of the (220)
reflection in Fig. 1a and the extinction of the dislocation
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
lines in the planar dislocation pileups with the outcrop
lines at the (001) surface coincident with the 〈100〉
directions in one of the {400} reflections signifies that
the Burgers vectors of dislocations in these planar dis-
location pileups to be b = a/2〈101〉 . In other words, the
dislocations in these planar dislocation pileups were

generated in the 〈 〉{101} slip systems (see sche-
matic in Fig. 1b). In fact, a minimum in the contrast of
the image of the dislocations in planar dislocation pile-
ups with the Burgers vectors, perpendicular to the dif-
fraction vector of the type g〈400〉 , is observed instead
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of the complete extinction. The angles between the
directions in the image of the dislocation-line segments
and the lines of their outcrop at the (001) crystal surface
were found from the topographs to be ψn ~ 27° for the
most of the planar dislocation pileups. Then, knowing
the tilt of the {101} slip planes with respect to the (001)
surface, γ = 45°, the formula [1, 2]

(1)

yields the angle formed by the lines of rectilinear dislo-
cations and the direction of their Burgers vectors, αn =
54°, the axis of the dislocation lines in the {101} slip
planes being coincident with the crystallographic direc-
tion of the type l = (1/ )〈121〉. Following the Hornstra
classification [5] with due regard for the above experi-
mental evidence, one can conclude that the typical 54°
dislocations with the axis coincident with the directions
of the type l = (1/ )〈12 〉  are generated in the course
of the growth in the 〈 〉{101} slip system in the vast
majority of the planar dislocation pileups in the
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Fig. 2. The schematic of the image of the dislocation rows
in the planar dislocation pileup on the topographs.

010

(131)

100

[310]

00
1

180 – (δ + α)

H
B

D'

D M

A

Le

N

C

ε

A'

K

γ0
γ α δ

ψ
ϕ

δ

ε' L

b = a/2[101]

Fig. 3. The schematic of the projection of dislocations in the
planar dislocation pileup onto the topograph.
C

Zn-doped InP crystals. The 54° dislocations were rec-
ognized to be unstable in the crystals of elementary
semiconductors (silicon and germanium) [1, 2], where
such dislocations were observed very rarely. On the
contrary, our data show that the 54° dislocations in the
Zn-doped InP crystals play a decisive role in the dislo-
cation generation during crystal growth.

The second frequently encountered type of the pla-
nar dislocation pileups, observed on the topographs
from the plates of the Zn-doped InP crystals (Fig. 1a),
is characterized by that the lines of the dislocation out-
crop at the (001) surface are coincident with the 〈h10〉
directions (where h = 2, 3, 4, 5, 6, 7, 8 …) in the (001)
plane (see schematic in Fig. 2) but with no one of the
g〈220〉  or g〈400〉  diffraction vectors. The images of the
segments of dislocations in the planar dislocation pile-
ups of this type have the highest contrast in the topo-
graphs in Fig. 1a obtained in the (220) reflection. An

almost complete extinction is observed in the ( )
reflection, while in the {400} reflections, the images
have a varying contrast. These results signify that the
Burgers vector of the segments of the rectilinear dislo-
cations in the planar dislocation pileups of the second
type coincides with the diffraction vector g[220], b =
a/2[110]. Therefore, the dislocations obtained in planar
dislocation pileups of the second type were generated
during the growth of the Zn-doped InP crystals in
somewhat unusual systems of the nonoctahedral slip
(namely, 〈110〉{h11}). The generation of dislocations
in such systems has already been recorded by the X-ray
topographic method in the Si-doped GaAs crystals [13]
and the Te-doped GaSb crystals [11, 12]. Hornstra [5]
analyzed theoretically one of the slip systems,
〈110〉{311}, where the formation of the 73° disloca-
tions with the 〈211〉  axes is possible. Moreover, the X-
ray topographic study and the data from [1, 2, 13]
proved that not only the 〈110〉{311} slip system, dis-
cussed in [5], but the entire zone of the {h11} planes
with the zone axis coincident with the Burgers vector
b = a/2[101] is active during crystal growth.

The further analysis of the planar dislocation pile-
ups in the 〈110〉{h11} slip systems was performed by
X-ray topography [1, 2, 9, 11–13]. It follows from the
geometry (see Fig. 3) that if the segments of the recti-
linear dislocations generated in the 〈110〉{h11} slip
system had been projected onto the topograph at a
small angle γ0 (γ0 is an angle between the normals to the
{h11} slip plane and the (001) surface), then the rows
of their segments in the planar dislocation pileups
would have an outcrop at the (001) surface along the
lines that coincide along direction with the lines of the
Burgers vector b = a/2〈110〉 . In such a case, there
would have been no planar dislocation pileups on topo-
graphs with the dislocation rows outcropped at the
(001) surface along the 〈h10〉  directions. However, if
the dislocations generated in the same, 〈110〉{h11}, slip
system are projected within a wider angle (γ = 90 – γn)
to the (001) crystal surface, then all the 〈h10〉  disloca-

220
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001



AN X-RAY TOPOGRAPHIC METHOD 279
tion rows in the planar dislocation pileups observed on
the topographs, are realized. The formula for the angles
αn, formed by the Burgers vectors with the dislocation
axes in individual planar dislocation pileups, is readily
obtained from the geometry of the topograph in Fig. 3:

(2)

Here, the angles ϕn and ψn measured for the planar dis-
location pileups from the topographs have the values
indicated above, while αn is an angle formed by the
Burgers vector of the dislocations in a pileup and the
direction of the 〈h10〉  planar dislocation pileup rows in
the topograph. Knowing the Burgers vector b =
a/2〈101〉  and the (h10) direction indices of the planar
dislocation pileup rows, one can readily determine the
angle δn between these directions using the well-known
formula for the cosine of the angle between the crystal-
lographic directions.

The calculation by Eq. (2) involving the resulting
values of the angles ψn and ϕn show that for all the pla-
nar dislocation pileups generated in the 〈110〉{h11} slip
systems, the values of the angles made by the Burgers
vectors with the dislocation lines range within αn = 7°–
32°; thus, as αn = 0° nothing but a few planar disloca-
tion pileups occur.

Thus, the present paper gives, for the first time, evi-
dence that the dislocations are generated during the InP
crystal growth in the 〈110〉{h11} slip systems, where
the planar dislocation pileups are formed from the dis-
locations with the well-defined screw component of the
Burgers vector (see also [1, 2, 9]). In general, the result
obtained contradicts the data by Hornstra [5], who
showed that the 73° dislocations with the axes along the
〈211〉 crystallographic directions can take place in a slip
system, e.g., 〈110〉{311}. The 73° dislocations have the
large edge components of the Burgers vector, which
prevail over the screw component. Such a disagreement
between the experimental and theoretical data are of
fundamental value and is associated with the fact that in
the course of the growth of the InP crystals doped with
the hardening Zn impurity the screw dislocations with
the Burgers vector b = a/2〈101〉  are generated. Under
increasing thermoelastic strains, these dislocations,
lacking strong coupling with the primary slip systems,
can, upon evolution, pass to other slip systems acquir-
ing a weak edge component of the Burgers vector.

The number of the planar dislocation pileups with
the dislocations generated in the basic systems of the
octahedral slip 〈110〉{111} proved to be rather small.
From the topographs, the angles (the segments of the
rectilinear dislocations in these planar dislocation pile-
ups formed with the directions of the rows themselves)
were found to be ψ1 ~ 45° or ψ2 ~ 30°, while the direc-
tions of the lines of the rows of the dislocation outcrop
at the (001) surface coincided with the 〈110〉  directions.

αnsin
δn ψn ϕn–( )sinsin

ϕn ψnsin
2

+sin
2

--------------------------------------------.=
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For the 〈110〉  {111} system of the octahedral slip, the
angle αn must be calculated by the formula [1, 2]:

(3)

where γ ~ 54.7° is the tilt of the {111} slip planes at the
(001) crystal surface. Measurements and calculations
showed that the dislocations in the planar dislocation
pileups with ψ1 ~ 45° correspond to the 60° disloca-
tions (α1 ~ 60°); those with ψ2 ~ 30°, to the dislocations
with α2 ~ 45°. Moreover, a small number of the planar
dislocation pileups from the pure edge dislocations

with b = a/2〈110〉  and l = (1/ )[112], for which αn =
ψn = 90° were registered in the same octahedral slip
system close to the single crystal surface (≤0.4 mm).
Thus, the simple geometric measurements in the topo-
graphs and the computation by Eqs. (1)–(3) allow one
to identify the dislocation types and determine the slip
systems for each of the three types of the images on the
topographs of the planar dislocation pileup images.

In order to calculate the local elastic strains associ-
ated with the planar dislocation pileups, one needs the
lengths Ln of the planar dislocation pileups in the active
slip systems themselves. These can be computed from
the experimentally measured lengths Le by the follow-
ing formulas for the corresponding slip systems:

(4)

(5)

(6)

where Le is measured from the topograph as the dis-
tance between the first (head) and the last (tail) disloca-
tions in each planar dislocation pileup along the line of
the dislocation segments outcrop at the (001) surface of
the single-crystal plate (see schematic in Fig. 2).

THE CALCULATION OF THE LOCAL 
ELASTIC STRAINS

The progress in the theory of planar dislocation
pileup [4] allows one to calculate the local elastic
strains, responsible for planar dislocation pileups gen-
eration in the single crystal during growth under real
conditions and the formation of the equilibrium dislo-
cation distribution in the planar dislocation pileups
using the parameters (Nn, Ln, ψn, ϕn, αn) measured on
topographs [4, 9, 11–13]. Considering topographs in
Figs. 1a and 1b and the schematic in Fig. 2, we see that
the interdislocation spacing increases from the head to
the tail dislocation for each registered pileup. There-
fore, in order to calculate the local strains, one should
use the theoretical model of the one-sided planar dislo-
cation pileups [4], which are “pressed to” an obstacle
by the thermoelastic strains in the growing crystal. The

αnsin
1 γtan

2
+

1 γ ψnsin
2

tan
2

+
------------------------------------------- ψn,sin=

6

Ln Le αn, for   101〈 〉 111{ } ,sin=

Ln Le αncos , for   101〈 〉 101{ } ,=

Ln Le αn δn+( ), for   101〈 〉 h11{ } ,sin=
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model of the continuous distribution of the dislocations
in the planar dislocation pileups is also attractive
because the main parameter necessary for the calcula-
tion of the local elastic strains is the planar dislocation
pileup length Ln, while the positions of individual dis-
locations in a pileup are unimportant and, moreover, the
inverse elastic strains are assumed to be constant
throughout the planar dislocation pileup length. Then,
since the vast majority of the planar dislocation pileups
studied, independently of the type of the slip systems
contain the mixed dislocations with 0° ≤ αn ≤ 90°, the
Eq. (21.32) from [4] should be modified by introducing
an orientation factor [1, 2]:

(7)

where b = 4.14 × 10–10 m is the Burgers vector for InP.
According to [21], the elastic characteristics for the iso-
tropic case are assumed to be as follows: the shear mod-
ulus is µ = C44 = 4.60 × 1010 N/m2 and the Poisson ratio
is ν = C12/(C11 + C12) ~ 0.36, where C11 = 10.22 × 1010

and C12 = 5.76 × 1010 N/m2 are the elastic constants of
the InP crystals.

The present study shows for the InP crystal that the
measurements and the X-ray topographic studies of
200 planar dislocation pileups are generated and local-
ized in the slip systems of the three above types. The
table presents the results of the topographic measure-
ments and calculations for some planar dislocation
pileups, the data include all the τn range from the mini-
mum to the maximum value for each of the slip sys-
tems.

The local elastic strains associated with the planar
dislocation pileups observed in the grown InP crystals
calculated by Eq. (7) fall in the ranges τn = (5–19) × 104 Pa
for the 〈110〉{111} slip systems, (9.5–22) × 104 Pa for
the 〈101〉{h11} systems, and (15–39) × 104 Pa for the

〈 〉{101} systems. If only the planar dislocation
pileups with an equal number of dislocations, e.g. Nn = 4,
are considered, the values of the associated local elastic
strains vary within the same ranges as for the planar
dislocation pileups with the different dislocation num-
bers.

It is important that in the model of the one-sided pla-
nar dislocation pileup pressed to an obstacle [4], the
associated elastic (or inverse) stresses are constant over
the length of the planar dislocation pileup Ln and are
balanced by the local thermoelastic stresses present at
an instant of planar dislocation pileup stabilization in
the given section of a growing crystal, i.e., τn = τte.
Hence, it is the local thermoelastic stresses acting in a
real growing crystal in the section of the observed pla-
nar dislocation pileups and balanced by inverse or ther-
moplastic stresses that are found from the measured
parameters of the individual planar dislocation pileups.
The values of τc were taken from the experiments on the
high-temperature uniaxial static compression [20] per-

τn µ/ 1 ν–( )[ ] αn αncos+sin{ } bNn/πLn,=

101
C

formed on the identical low-dislocation Zn-doped InP
crystals (p = 2 × 1018 cm–3) and grown under the same
conditions as the crystals studied in the present paper
[22]. In [20], the dislocations generated during the
static loading were revealed by selective chemical etch-
ing without an identification of the active slip systems,
the Burgers vectors, and their directions with respect to
the lines of the generated dislocations. This implies that
the curves representing the temperature dependence of
τc [20] should be considered as averaged over all the
active slip systems. Therefore, the data on τc for InP,
taken from [20], must be compared with the relaxed
thermoelastic strains τn for the similar InP crystal found
from our topographic experiments and averaged over a
wide range of their values with no account for the type
of the slip system; that is, τc must be compared with
τn = (5–39) × 104 Pa.

THE CALCULATION OF THE PHYSICAL 
QUANTITIES CHARACTERIZING THE 

GENERATION OF THE PLANAR DISLOCATION 
PILEUPS IN A GROWING CRYSTAL

Similar to the yield point [23] and local elastic
stresses [1, 2, 9], determined by planar dislocation pile-
ups, the temperature dependence of τc for InP [20], is
approximated by the exponential function 

(8)

where k is the Boltzmann constant, A = const, and U is
the activation energy of the dislocation source. As is
seen from Fig. 4 (line a), all the data on critical stresses
τc necessary for generation of dislocations under defor-
mation of the high-temperature compression taken
from [20] fit the logarithmic line well, including the τc
value extrapolated by the author to the point of the InP
crystallization. Since the formation of planar disloca-
tion pileups is associated with the excitation and the
operation of the dislocation sources, emitting some
number of dislocations under local thermoelastic
strains, one can assume that the relaxed local ther-
moelastic strains τn, determined from the topographic
data and related to the planar dislocation pileups obey
the same exponential temperature dependence as τc in
Eq. (8). Then, one can arrange all the topographic data
τn ~ (5–39) × 104 Pa (Fig. 4, line b) in an ascending way
parallel to the plot of τc (Fig. 4, line a). The above
assumption is identical to that taken in the equality, in
the average, of the activation energy in Eq. (8) both in
the experiments on the static high-temperature com-
pression [20] and formation of planar dislocation pile-
ups in the InP crystal during growth. Thus, applying (8)
to two points on the lines a and b in Fig. 4, we obtain
dose values of the activation energy, U = 1.32 eV and
U = 1.28 eV, for the τc from [20] and from topographic
data with no distinction made between the slip systems,
respectively.

τc A U/kT( ),exp=
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The data of X-ray topographic measurements and the calculations of the parameters of the planar dislocation pileups generated
during growth in various slip system of an InP crystal and the calculated local elastic strains τl related to planar dislocation pileup
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1 7 5.24 15.0 4 28 8 46 30 3.23 9.7 4 24 37 8.13 5.3 5 10.0 4.7

2 5 3.08 18.3 4 25 8 46 28 3.84 10.3 4 36 52 5.73 6.1 8 15.8 4.8

3 6 3.47 19.5 9 24 8 46 27 6.38 13.9 4 30 45 5.66 7.9 3 3.0 9.5

4 5 2.70 20.8 6 33 14 43 22 3.63 15.3 4 30 45 5.18 8.6 6 4.8 11.8

5 4 1.92 23.5 6 40 25 39 12 3.08 15.6 5 30 45 4.72 11.8 4 3.2 11.8

6 8 3.47 26.0 6 34 5 45 37 3.97 16.2 4 37 53 3.45 13.1 4 3.0 12.6

7 7 2.70 29.2 9 25 8 46 28 5.12 17.4 4 40 56 3.85 13.5 6 4.2 13.5

8 5 1.92 29.3 4 25 12 46 20 1.83 19.8 4 27 42 3.09 14.2 6 3.5 16.2

9 9 2.70 37.5 3 40 23 39 15 1.16 21.6 6 30 45 6.33 14.9 7 4.0 16.6

10 4 1.15 39.2 3 25 12 46 20 1.22 22.3 3 24 38 2.03 15.8 4 2.0 18.9

Note: ψ is the angle formed by the outcrop of the dislocation segments of planar dislocation pileups onto the (001) surface of the crystalline plate
and the directions of the lines of the rectilinear dislocation segments in the planar dislocation pileups on the topograph;  ϕ is the angle between
the line of the outcrop of the dislocation segments in the planar dislocation pileups at the crystal surface and the direction of the g〈400〉
or g 〈220〉 diffraction vectors on the topograph; and α is the angle formed by the direction of the Burgers vector and the dislocation line.
From Fig. 4 (line b) approximated by the exponen-
tial law (8), it becomes evident that the generation and
the formation of an equilibrium dislocation distribution
in planar dislocation pileups occurs in the growing InP
crystal within the temperature range of ∆T ~ 200 K at
cooling from 1343 down to 1130 K. In more detail, the
generation of the dislocations and the planar disloca-
tion pileup formation start, first of all, in the
〈110〉{111} octahedral slip system and proceeded in the
temperature range from the crystallization temperature
of 1343 to 1210 K (see circles in Fig. 4, line b). Further

on, in the 〈110〉{h11} and the 〈 〉{101} systems, the
dislocation generation and planar dislocation pileups
formation takes place from 1275 to 1190 K (crosses in
Fig. 4, line b) and from 1235 to 1130 K (triangles in
Fig. 4, line b), respectively. Although the dislocation

101
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generation and the planar dislocation pileups formation

in the 〈 〉{101} slip systems began later and at a
lower temperature than in the octahedral and the

〈110〉{h11} systems, it is the 〈 〉{101} systems that
provide the most planar dislocation pileups during the
InP crystal growth. This indicates that the conditions of
the growth of the particular InP crystal are the most
favorable for excitation, generation, and formation of
the equilibrium planar dislocation pileups by the dislo-

cation sources localized in the 〈 〉{101} slip sys-
tems [1, 2, 9] rather than in the octahedral slip systems,
as was generally believed for the crystals with the face-
centered cubic lattice [1, 5, 6].

The data in Fig. 4 (line b) were also used to deter-
mine the activation energies by Eq. (8) for τn at the

101

101

101
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extreme points in the temperature intervals for the pla-
nar dislocation pileups formed in the slip systems of
different types. These were determined as U1 = 1.40 eV
for the planar dislocation pileups in the 〈110〉{111} sys-
tems of the octahedral slip, U2 = 1.28 eV for the
〈110〉{h11} systems, and U3 = 1.10 eV for the

〈 〉{101} systems [1, 2]. Thus, most of the planar
dislocation pileups were formed in the slip systems of
the growing InP crystal with a lower (under the given
growth conditions) value of the activation energy of the
dislocation motion. The latter results qualitatively
agree with the data [15] on GaAs and do not contradict
the data on reduced the activation energy at higher elas-
tic stresses [15].

Using the intervals of the τn value for the planar dis-
location pileup groups in each of the 〈110〉{111},
〈 〉{h11}, and 〈 〉{101} slip systems, one can esti-
mate the values of the effective temperature drops and
the resulting local thermoelastic and thermoplastic
deformations by means of the following approximate
formulas [22]:

(9)

(10)

101

101 101

δT τn/βµ,∼

ε τn/µ,∼

1300 1000 700 ä

6

4

2

1
2
3

ln τ

a

b

Fig. 4. The temperature dependences of the logarithm of a
the critical strains of the dislocation generation τc in the InP
crystal under the high-temperature compressive deforma-
tion [20] and b the local thermoplastic strains τn associated
with the planar dislocation pileups in the identical InP crys-
tal representing the XRTG data for the planar dislocation
pileups in the (1) 〈110〉{111}octahedral slip system and in

the nonoctahedral: (2) 〈110〉{h11} and (3) 〈 〉{101} slip
systems.

101
C

respectively, where β = 4.56 × 10–6 deg–1 is the InP ther-
mal linear expansion coefficient. From Eqs. (9) and
(10), one gets δT ~ (0.25–0.90), (0.5–1.1), and (0.7–
1.9) ä and ε ~ (1.1–4.6) × 10–6, (2.1–4.8) × 10–6, and
(3.3–8.5) × 10–6 for the above slip systems, respec-
tively. Such effective temperature differences and the
related relaxed thermoelastic deformations, associated
with the recorded planar dislocation pileups, existed in
the real InP crystal during its growth and provided the
low dislocation density. Therefore, even less effective
temperature differences and the related levels of the
thermoelastic deformation and stresses are necessary
for growth of Zn-doped dislocation-free InP crystals
[1, 2].
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Abstract—The conditions for observing crystal defects by a new differential method based on the use of com-
bined radiation with two equally intense orthogonally polarized components have been considered. The condi-
tions for recording three groups of defects possessing different optical properties (absorption, scattering, polar-
izability, and refraction) are indicated. The new method is implemented on the basis of a scanning image con-
verter widely used in optical flaw detection of crystals. © 2001 MAIK “Nauka/Interperiodica”.
Various kinds of optical radiation are used to detect
flaws in crystals. Optical radiations are distinguished
by the spectral composition, the degree of monochro-
matization, and the type of polarization. Below, we
describe the method of a combined polarized-light radi-
ation consisting of two components—a linearly and an
orthogonally polarized beam. In the process of focus-
ing at the object, these beams are separated by a thin
boundary. In the differential visualization of defects
with the use of the incident with such a structure, radi-
ation, these is made of narrow regions of a combined
radiation adjacent to the interface between the compo-
nents. The transmitted radiation is optically modulated
by a rotating polarizing analyzer [1]. If the orthogonal
components involved in this process have the same
intensity, the total radiation is recorded by a photoelec-
tric system of the apparatus used as a natural nonmod-
ulated light. As soon as the balance between the orthog-
onal components is violated because of an encountered
defect, the modulated component becomes excessive
and is selectively recorded by the rotating analyzer at
the double frequency. Thus, linear scanning of an
object provides the gradual recording of all the defects.
The final pattern can be presented either in the form of
intensity distributions or scanning micrographs.

The above configuration of the combined radiation
is formed by the natural light with the aid of a com-
pound polarizer, whose image is projected by a lens
onto the crystal. The ability of a flaw detector to pro-
vide the rigorous orthogonal polarization of the compo-
nents determines the sensibility of a flaw detector.
A precise compound polarizer ensures almost complete
“depolarization” of the combined-radiation component
used. The residual modulated polarized component
does not exceed 0.1%, and the corresponding level of a
spurious modulated signal is comparable with the noise
level of the electronics of the apparatus used.
1063-7745/01/4602- $21.00 © 20284
Below, we suggest three modifications of a com-
pound polarizer (CP-1, CP-2, and CP-3) (Fig. 1). The
simplest one is CP-1, consisting of two polaroid films
[2] brought in contact in such a way that their directions
of maximum transmission are orthogonal. The CP-2
polarizer is more complicated. It consists of a single
polarizing element (not necessarily made of a thin
film). For example, it is possible to use crystalline
prisms. The orthogonally polarized beams in the CP-2
are formed by two half-wave phase plates brought into
contact and located between the polarizer and the
object. Each plate cuts off a half of the light field of a
polarizer. The optical axes of the half-wave plates must
be rigorously directed so that their optical axes would
form an angle of 45°. If necessary, a block consisting of
two half-wave plates can be located at a considerable
distance from the polarizer. The boundary between the
orthogonal components is more distinct the thinner the
half-wave plates. It is especially important for com-
pound half-wave plates and plates with inclined optical
axes.

The CP-3 polarizer also consists of one polarizing
element but, unlike CP-2, has only one half-wave plate,
which cuts a half of the light field and is tilted at 45° to
the direction of maximum transmission. To equate the

CP-1 CP-2 CP-3

O
O O

O OO

HWPP CPHWPPHWPP

Fig. 1. Three types of compound polarizers for obtaining a
combined radiation: HWPP is a half-wave phase plate, OA
is the optical axes of the phase plate, CP is a compensating
plate. The arrows indicate the directions of the maximum
transmission of the polarization element.
001 MAIK “Nauka/Interperiodica”
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orthogonal beams, another half of the light field is cut
off by a compensating plate made of the transparent
isotropic material with the refractive index close to that
for a half-wave plate. In particular, to compensate the
light losses in quartz, mica, and sapphire (most often
used for preparing phase plates) one can use plates
made of the glass of the trade mark K-15, TK-3, and
TF-5, respectively [3]. The compensating plates of the
same thickness as the half-wave plates and are brought
in the contact with the latter.

Each of the three compound polarizers has its
advantages and disadvantages. As a rule, the CP-1 is
achromatic over a broad spectral band, which provides
the study of the crystals at various wavelengths without
changing of polarizers; it also allows the use a broad-
band radiation, which, in turn, increases the sensitivity
of the optical device. However, the preparation of this
polarizer presents some difficulties. The CP-2 and CP-3
polarizers are used only at certain wavelengths, which
limits their practical use. Their advantage is the use of
a compound polarizing element of an arbitrary design.
A CP-3 polarizer is somewhat preferable in terms of
preparation and adjustment.

The optical scheme used in the method described
above is shown in Fig. 2. The most important feature of
the scheme is that block of illumination consisting of a
light source 1 with a light filter and condenser 2 also
includes a compound polarizer 3 with intermediate
lens 4 projecting the boundary between the orthogonal
components onto the plane of an object 5. Main lens 6
transmits the superimposed images of an object and the
boundary between the beams through rotating analy-
zer 7 onto the photosensitive area of photodetector 8.
To increase the device resolution, one has to use a pho-
todetector whose sensitive area would be possibly
small. For example, the sensitive area of thin-film PbS-
based photodetectors can be 0.1 × 0.1 mm and even
less.

Now, consider the process of defect visualization in
the process of object scanning. Similar to other differ-
ential methods of defect observation [4], our method
records only the local changes in the properties of the
object, i.e., its optical transmission. During scanning,
defects cross the optical axis of the device and are pro-
jected onto a photodetector. At such moments, the bal-
ance between the orthogonal components attained dur-
ing adjustment of the device is violated. A rotating ana-
lyzer and a photodetector transform the disbalance into
a modulated signal, which, being amplified, is recorded
by the device. In most instances, the phase of modu-
lated signals corresponds to the azimuth of the orthog-
onal component which exerted the minimum distortion
from a defect. If the device is equipped with a synchro-
nous phase detector, the change in the phase can be
used to record the curves in polar coordinates; photo-
graphing can be made in two-color coding, which
allows the record of the sign of the derivative.
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All the defects that affect the combined radiation
can be divided into three groups. The first group is
made by defects absorbing and scattering the radiation
isotropically. The second group consists of defects
polarizing the transmitting radiation. The third group is
formed by defects with varying optical density.

It is found that each group defects provides a char-
acteristic signals formed in three stages. At the initial
stage, the defect image moves toward the sensitive area
of a photodetector. At the second stage, the defect
image completely or symmetrically shadows the photo-
detector. At the third stage, the image leaves the photo-
sensitive area of a detector. The curves obtained from
defect of these three groups are shown in Fig. 3. Each
group is represented by the two types of signals corre-
sponding to small and large defects. Small defects are
such defects for which the condition D/S < 1 is fulfilled;
for large defects the condition D/S > 1 holds (where D
is the linear dimension of a defect image along the
scanning direction and S is the linear dimension across
the sensitive area of a photodetector along the same
direction). The curves for isotropic defects are shown in
Fig. 3a. If D/S < 1, the curve is close to a sinusoid. The
zero point between the peaks corresponds to such posi-
tion of a defect where its image symmetrically shadows
the sensitive area of a photodetector. In the case of large
defects, the second stage results in the formation not of
a point but of a line located between the positive and
negative peaks. If a large defect is homogenous, this
line coincides with the abscissa.

The radiation-polarizing defects produce an effect
on the combined radiation because of the dependence
of absorption on the mutual orientation of the polariza-
tion plane of the orthogonal component and the direc-
tion of maximum defect transmission. For example, if
we assume that the azimuths of the components polar-
ization are equal to 0° and 90° and that the direction of
the maximum defect transmission is ϕ, then the inten-
sities of the components transmitted by a defect will
change differently,

(1)

(2)

where τα is the defect transmission in the polarized
light in the situation where the direction of maximum
transmission of light coincides with the polarization
plane of the component and P is the defect polarizabil-
ity. The modulated signal U in the process of light prop-

J 0°( ) τα 1 P ϕsin
2

–( ),∼

J 90°( ) τα 1 P ϕcos
2

–( ),∼

1 2 3 4 5 6 7 8

U

Fig. 2. A version of the basic optical diagram used in exper-
iments.
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agation through a polarizing defect is proportional to
the difference between Eqs. (1) and (2) and equals 

(3)

It follows from Eq. (3) that at ϕ = 45°, the orthogo-
nally polarized components are equally absorbed and,
thus, recorded in the same manner as isotropic defects.
At other ϕ values the initial and final peaks always have
different heights, and the line connecting these peaks
does not coincide with the zero line in Fig. 3b.

The third group of defects (Fig. 3c) essentially differ
from the first two groups—they affect the combined
radiation quite differently. In the presence of these
defects, the disbalance is caused not by inhomogeneous
shadowing of the photodetector but by the shift of the
image of a boundary between the orthogonal compo-
nents to the photosensitive area of a detector. A similar
shift also takes place under the effect of a wedgelike
object or the inclination of a plane-parallel plate. The
degree of disbalance caused by the boundary displace-
ment across the photodetector area depends on the
steepness of the refraction-index gradient in the place

U τdP 2ϕ .cos∼

(a) (b) (c)

D /S < 1

D /S > 1

Fig. 3. Fragments of the curves typical of particular groups
of defects. 

5 mm

τ = 0

τ = 45% 1

2

τ = 46.5%

0 1 2 3 4

Fig. 4. (1) Integrated and (2) differential curves of optical
transmission obtained by scanning a silicon plate along the
growth direction. 
C

analyzed and its position with respect to the optical axis
of the optical device and also on the position of the
boundary between the orthogonal components. In par-
ticular, the changes in the optical density cannot be
recorded if the gradient is parallel to the boundary or to
the optical axis of the device.

Various defects can be responsible for the changes
in the optical density. The local variations in the refrac-
tive indices are observed at the block boundaries [5] are
caused by the variations in the composition of solid
solutions and also by internal stresses. The most pro-
nounced changes in the optical density in solid solu-
tions and alloys occur in the case where the refractive
indices of the mixing components vary within the range
10–3–10–1. The internal stresses are most often the
sources of such variations. However, they only slightly
affect the measurements made by our method, with
the only exception—the crystals with high values of
the photoelasticity coefficient—being of the order of
10−6 cm2/kg. Thus, the most promising method for
studying a stressed state in crystals is the conventional
photoelastic method using a linearly or circularly polar-
ized radiation.

The changes in the optical density can be either
local or macroscopic. Most frequently, local variations
affects the transmitted radiation similar to a conven-
tional lens, while the macroscopic variations in the
optical density manifest themselves in a different
way—either as an optical wedge or as an combination
of positive and negative cylindrical lenses. As was
established, the experimental identification of defects
becomes essentially more difficult in the case of a joint
action of defects of different nature, in particular, in the
case of the varying ratio of the areas occupied by these
defects in different parts of the surface. Therefore, to
illustrate the method efficiency, we used a simple object
with the known defect structure—a Czochralski-grown
quartz single crystal. We studied the electrical inhomo-
geneity caused by the distribution of phosphorus along
the growth direction. There are two mechanisms for the
formation of the defect distribution along the pulling
direction. The first one is the formation of periodical
linear aggregates of impurities forming the strata
whose shape is similar to that of the crystallization
front. The distance between the strata is determined by
the rotation and pulling velocities. The second mecha-
nism determines a gradual increase of integrated impu-
rity concentration during crystal growth.

It is well known that the absorption of light by free
charge carriers increases as a squared wavelength,
which provides achieve a higher contrast in the
recorded electrical inhomogeneity in semiconductors
and to exclude some of the factors that can affect the
optical transmission.

A 1-mm-thick silicon wafer was studied on an
FPD-1 photoelectric flaw detector-polariscope at the
wavelength 2.1 µm manufactured at the Institute of
Crystallography of the Russian Academy of Sciences.
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To perform the necessary experiments, the instrument
was equipped with a CP-2 compound polarizer. The
long wavelength excluded the use of all the spectral
characteristics of infrared polarizers. The results of the
study of the optical inhomogeneity of a crystal along
the growth direction are presented in Fig. 4. Curve 1
shows that the integrated transmission of a plate at a
distance of l = 26 mm has changed by 1.5%. According
to our calculations, this change in τ corresponds to an
increase in absorption by 27%. In particular, the
absorption coefficient along the growth direction
increased from k = 1.07 to k = 1.36 cm–1. The mean
value of the absorption coefficient K = kd is found to be
0.1215. Most probably, the average impurity concen-
tration exponentially increases during crystal growth.
At small K, one can approximate the exponent by an
inclined straight line. This makes it possible to assume
that the impurity concentration in this crystal increased
linearly during growth and therefore dτ/dl ~ l. Exclud-
ing the effect of impurity strata, we see that differential
curve 2 agrees well with the above assumptions. This
was also confirmed analytically with the use of the
well-known expression τ = F(k) [6], which, in our case,
can be reduced to the form

(4)τ 1 R–( )2e kd–

1 R2e 2kd––
-----------------------------.=
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Thus, it may be concluded that our studies per-
formed on various crystals confirmed the efficiency of
the suggested optical method of flaw detection. The
possibility of using the proposed method on available
scanning photoelectric instruments has been proved.
The new method essentially increases the possibilities
of existing well-known instruments. In particular, it
becomes possible to visualize the changes in the refrac-
tive indices without applying complex interferometric
devices.
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Abstract—This work is a part of the systematic study of the structure and the physical properties of alkaline
hydroselenite crystals with the general formula MeHSeO3, where Me is an alkali ion. The characteristic feature
of this family is a net of hydrogen bonds between SeO3 groups forming closed [HSe ]2 dimers. © 2001 MAIK
“Nauka/Interperiodica”.

O3
–

Dimers found in the structures of sodium, potas-
sium, and rubidium hydroselenites [1–3] stabilize the
structure so that no phase transitions have been
revealed in this family even in the presence of disor-
dered hydrogen bonds (NaHSeO3, [1]). Heating of
hydroselenites results in their dehydration and transfor-
mation into pyroselenates accompanied by water
release [4] according to the reaction

Cesium hydroselenite has been studied insuffi-
ciently. There are still no data on the structure, solubil-
ity, and thermal and other properties. As was reported
in [5], the IR and Raman spectra for alkali hydroselen-
ites indicate a phase transition in cesium hydroselenite.

In this paper, we present the NMR data on proto-
nated and deuterated cesium hydroselenite single crys-
tals obtained at H1, D2, and Cs133 nuclei.

The protonated salt was synthesized from cesium
carbonate and selenious acid; the deuterated salt was
synthesized from the reagents containing no protons:
selenium dioxide and cesium carbonate. Single crystals
were grown by slow evaporation of the saturated salt
solutions in H2O and D2O at a temperature of 40°C.
Cesium hydroselenite crystallizes in the form of thin
prismatic extremely highly hygroscopic plates. Crys-
tals of protonated and deuterated salts have the same
habit (Fig. 1).

To obtain information on the symmetry of single
crystals, structural parameters, hydrogen bonds, and
local environment of cesium ion, we performed NMR
studies at D2 and Cs133 nuclei. To study the orientational
dependence of splitting of NMR spectra we used the
crystallographic coordinate system x, y, z, which,
because of the lack of the structural data, were related
to the crystal faces as is shown in Fig. 1. Using the ori-
entational dependences and the Volkov method, we cal-
culated the principal components of the electric-field
gradient (EFG) tensors at D2 and Cs133 nuclei, their

2MeHSeO3 Me2Se2O5 H2O.+=
1063-7745/01/4602- $21.00 © 200288
directional cosines, the quadrupole coupling constants
(QCC), and the asymmetry parameter η of EFG.

Cs133 NMR. The NMR spectra were recorded in a
13-kOe field. In accordance with the nuclear spin of
cesium, I = 7/2, the NMR spectrum would consist of a
central line and six symmetric satellites for each of the
nonequivalent nuclei within the unit cell. The angular
dependences of spectrum splitting between the first
side components corresponding to the 3/2  1/2 and
–1/2  –3/2 transitions are shown in Fig. 2a. They
reflect the orthorhombic symmetry of the crystal and
the existence of only one independent position for
cesium ion in the unit cell. The parameters of the EFG
tensors are given in table. The QCC for Cs133 nuclei
equals 241 kHz and is close to the corresponding value
for cesium trihydroselenite (308 kHz, [6]) and
CsLiH2(SeO3)2 (280 kHz [7]).

Deuteron Magnetic Resonance (DMR). The
DMR spectra were recorded in a 13.5-kOe field. The
spectrum of an arbitrarily oriented crystal consists of
four components. The orientational dependences of the
splitting for these components are given in Fig. 2b, the
characteristics of the EFG tensor are listed in table. The
existence of one QCC indicates the existence of only
one independent hydrogen bond in the unit cell. The
same situation also takes place in potassium, rubidium,
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y

 

z

 

Fig. 1. 

 

Habit of a cesium hydroselenite single crystal and the
crystallographic coordinate system.
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Fig. 2. Orientational dependence of quadrupole splitting of NMR spectra for (a) Cs133 and (b) D2 nuclei in cesium hydroselenite
crystals at room temperature. H0 ⊥  y, θ = ∠ H0, z. 
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and lithium hydroselenites [2, 3, 8]. The bond length
estimated from the QCC equals 2.571 Å and is consis-
tent with the length of hydrogen bonds in trihydroselen-
ites.

To confirm the occurrence of the phase transition
found in [5], we measured the dielectric constant along
the x, y, z axes for three single-crystal specimens in the
temperature range from room temperature to −196°C.
The measurements revealed no phase transitions. The
Cs133 NMR spectra also showed no signs of phase tran-
sitions: the quadrupole splitting of the spectra was prac-
tically constant within the temperature range from
room temperature to –140°C both in protonated and
deuterated crystals. Such a behavior is typical not only
for the cesium salt but for other hydroselenites as well.
Contrary to trihydroselenites, the hydroselenites stud-
ied so far have rather stable crystal lattices and show no
phase transitions. The stabilizing effect seems to be
produced by the system of hydrogen bonds (closed
dimers). Therefore, it is expedient to study the structure
of cesium hydroselenate by diffraction methods. The
results obtained in our study show that the behavior of
cesium hydroselenite both at low and high tempera-
tures is similar to the behavior of lithium, sodium,
potassium, and rubidium hydroselenites.

Thermal decomposition. The effect of heating on
hydroselenites have been studied in lithium, sodium,
and potassium salts by the thermogravimetric methods
[4]. The salts were calcined at various temperatures,
and the resulting products were first analyzed chemi-
cally and were then subjected to the X-ray diffraction
analyses. The experiments show that hydroselenites are
transformed into pyroselenites. This transformation
takes place in a wide temperature range of about 50°C.
Thermogravimetric method does not allow the study of
the dynamics of such transformations, but such infor-
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
                           

mation can be obtained by the proton NMR. Protons
are incorporated into the crystal lattice of hydroseleni-
tes in the form of O–H groups. The resulting products
of the transformation of hydroselenites into pyroselen-
ites contain no protons. We studied the thermal decom-
position of cesium hydroselenites by the proton NMR
in polycrystals. At room temperature, the spectrum
consists of two lines—a broad and a narrow one. The
narrow line is attributed to water molecules not incor-
porated into the crystal lattice. They are adsorbed at the
surfaces of polycrystalline grains. A high hygroscopic-
ity of the salt does not allow one to get rid of this com-
ponent by drying. A broad spectral line is attributed to
O–H groups of the crystal lattice. Heating of a sample
above room temperature, does not change the spectrum
up to 42

 

°

 

C (Fig. 3). Above this temperature, the inten-
sity of a narrow line drastically increases, while the
width of a broad spectral component gradually
decreases. These changes in the spectrum cover the
temperature range from room to 66

 

°

 

C. At the latter

                              

Principal components of the EFG tensors at D

 

2

 

 and Cs

 

133

nuclei in cesium hydroselenite crystals

Crystal Nu-
cleus

,

kHz

Directional cosines
with respect to the axes

x y z

CsHSeO3 Cs133 –29 ±0.189 ±0.442 0.877

–212 ±0.294 ±0.827 0.480

241 ±0.937 0.349 ±0.027

CsDSeO3 D2 –68.7 ±0.488 0.869 ±0.082

–90.4 ±0.145 ±0.173 0.974

159.1 ±0.861 ±0.463 0.21

e2Qqii

h
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Fig. 3. Proton magnetic resonance spectra of a CsHSeO3 polycrystal.
temperature and above it, the spectrum has only one
narrow intense line.

The observed changes in proton NMR spectra show
that, in the temperature range 42–66°C, the protons of
O–H groups abandon the cesium hydroselenite lattice.
C

By analogy with lithium, sodium, and potassium
hydroselenites [4], cesium hydroselenite has to be
transformed into cesium pyroselenite Cs2Se2O5 con-
taining no protons. Protons leave the lattice in the com-
position of water molecules. Water drops are con-
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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densed on the walls of a test tube containing the sam-
ple. Condensation proceeds most intensely at
temperatures higher than 80–90°C. Water molecules
are also condensed at the grain boundaries inside the
sample, which is confirmed by the occurrence of an
intense narrow line in the spectrum center. If immedi-
ately after heating, the sample is cooled to room tem-
perature, its proton spectrum is partly restored and, in
addition to the narrow intense line due to water mole-
cules, a broad low-intensity component is observed (the
lower spectrum in Fig. 3) after a certain time; the inten-
sity of this line slightly increases. However, the initial
spectrum is not fully restored, since some protons
included into water molecules “evaporate” in the pro-
cess of dehydration.

Thus, the structure of the cesium hydroselenite crys-
tals grown is orthorhombic and has the only position
occupied by a cesium ion and the only hydrogen bond
in the unit cell. This structure is stable in the low-tem-
perature region. Being heated above 66°C, hydroselen-
ite is transformed into pyroselenite.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Abstract—The transport characteristics of the α-Ag1 – xCuxI solid solutions have been calculated by the molec-
ular dynamics technique. It was established that the diffusion constant of cations decreases with an increase of
the copper concentration, which is consistent with the experimentally observed decrease in conductivity. The
concentration curves of the activation energy of diffusion show the maximum at x ≈ 0.15. The cation-transport
numbers obtained in this study are in good agreement with the known experimental data. © 2001 MAIK
“Nauka/Interperiodica”.
As is well known, the high-temperature phases of
silver and copper iodides possess high ionic conductiv-
ities [1] and, having simple crystal structures, can be
used as model systems for studying transport properties
in solids by various methods, including computer sim-
ulation. It was shown [2] that the α-AgI-based solid
solutions in the quasibinary AgI–CuI system exist over
a wide temperature range. The ionic transport in
Ag1 − xCuxI was studied in [3–5], where a decrease in
electric conductivity with an increase of the copper
concentration in specimens was observed.

Below, we report the results obtained in the study of
the transport characteristics of the Ag1 – xCuxI system
by molecular dynamics (MD) technique.

The MD simulation was performed for a system of
256 ions (128 I–-ions and 128 Ag+- and Cu+-ions); in
other words, the box was composed by 64 unit cells, in
which the anions formed a bcc lattice, whereas cations
randomly occupied the centers of the faces of the cubic
unit cell. The time step of 5 × 10–15 s provided the sta-
bility of the total energy of the system within an accu-
racy of 0.2%. At the initial moment of time, the particle
velocities were assumed to be zeroes. Then, using the
thermalization mechanism [6], the system temperature
was increased up to the set level. The characteristics of
the simulated crystal were averaged over the data col-
lected for 50 ps (104 steps).

The interaction potential was chosen in the form

The concrete interaction parameters were taken
from [7–9] and are listed in Table 1.
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Since the interaction parameters (αij) for the Ag+–
Cu+ pair were unknown, we considered the following
two variants: (a) αAg–Cu = αAg–Ag and (b) αAg–Cu = αCu–Cu.
The preliminary results showed that the behavior of the
system only weakly depended on the choice of the
interaction coefficients; therefore, simulation was per-
formed for variant (a).

The effective charge of cations was taken to be
z(Ag+) = +0.6e and z(Cu+) = +0.8e, whereas the charge
of anions was chosen in accordance with the condition
for the total electrical neutrality of the crystal [7, 8].
The box dimensions were determined from the experi-
mental data known for AgI and varied from 5.062 Å (at
400 K) to 5.112 Å (at 800 K) [10, 11].

Now, proceed to the transport characteristics. The
ion self-diffusion constants are determined from the
mean square displacements (MSD) of ions according to
the relationship

where Dα is the diffusion constant of an α-type particle
and Bα is the Debye–Waller factor.

Lim rα
2

t( ){ } 6Dα t Bα , t ∞,+=

Table 1.  Parameters of ion interactions

Type of
the i–j pair

nij

I––I– 370.06 2.0706 5.8659 7

I––Ag+ 90.971 1.0353 0.0 9

I––Cu+ 12.982 1.0353 0.0 9

Ag+–Ag+ 0.011282 0.0 0.0 11

Cu+–Cu+ 0.01196 0.0 0.0 11

* In the e2/Å units (= 14.39 eV).

Hij
*

Pij
*

Wij
*

001 MAIK “Nauka/Interperiodica”



        

MOLECULAR DYNAMICS SIMULATION OF THE TRANSPORT CHARACTERISTICS 293

                                       
Figure 1 shows the MSD curves (t) for the
Ag0.9Cu0.1I solid solution at the temperature of 650 K.
It is seen that Ag+- and Cu+-ions participate in the trans-
lational motion, whereas the I–-ions oscillate about
their equilibrium positions.

The temperature dependences of  for AgI

shown in Fig. 2 prove a good agreement between the
calculated and observed [12] data (it should be indi-
cated that the diffusion constant of copper ions in
α-CuI [13] is close to the  values in α-AgI). This

proves that the interaction potential was chosen in an
appropriate way, which is also confirmed by the good
agreement between the Debye–Waller factors for
I−-ions in α-AgI (the neutron diffraction data [10, 11]
for poly- and single crystals) and Ag0.953Cu0.047I (MD-
data) (see Fig. 3).

The decrease in conductivity in the α-Ag1 – xCuxI
solid solutions was first observed in [3, 4] and was then
studied in detailed in [5]. Figure 4 shows the “total” dif-
fusion constant DAg + Cu (determined for all the cations)
versus Cu concentration at different temperatures. For
comparison, we also indicate the experimental diffu-
sion constants of cations at 700 K calculated by the
conductivity data according to the Nernst–Einstein
relationship

where n is the number of charge carriers (ze). The
Haven ratio HR = D/Dσ is about 0.65 for all the compo-
sitions at 700 K, which is consistent with the Haven
ratio determined experimentally for α-AgI [12, 14] and
calculated by the Monte Carlo method [15] (Table 2).
Since HR < 1 in the entire temperature range studied,
the motion is of the cooperative nature. Considering the
“caterpillar mechanism” of the motion, Okazaki [16]
obtained the correlation coefficient ranging within
0.50–0.66, which is close to the experimental value,
HR = 0.6.

The activation energy of diffusion has the maximum
at x ≈ 0.15 (Fig. 5). The EσT(x) curve has the similar
shape [5], but with the maximum lying at x ≈ 0.25. The
MD results provided the determination of the transport
numbers and their comparison with the corresponding
measured values. As is seen from Fig. 6, the data of the
computer and physical experiments are consistent.

As follows from the above-stated, the diffusion con-
stant of cations in the α-Ag1 − xCuxI solid solutions
decreases with an increase of the Cu+ concentration,
although the general consideration allowed one to
assume that the smaller lighter Cu+-ions should move
much easier than the large heavy Ag+-ones. However, it
is well known that in crystalline solid electrolytes, the
sizes of mobile particles and the dimensions of the
“conduction window” obey some optimum relation-
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Fig. 1. Mean-square-displacement curves of cations and
anions in Ag0.9Cu0.1I at 650 K.
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ships [17]. Since with an increase of Cu+-ion concen-
tration the lattice parameter of the solid solution lin-
early decreases [5] in accordance with Vegard’s law, the
free volume available for cation diffusion also
decreases. It seems to be a good explanation of the
observed decrease in conductivity. However, our addi-
tional studies show that the reduction of the lattice
parameter produces a negligible effect on the transport

8

500 600 700400 T, K

10

12
B, Å2

Fig. 3. Temperature curves of the Debye–Waller coefficients
for I ions in α-AgI: (s) experiment [10], (m) experiments
[10, 11], ( ) MD-data for Ag0.953Cu0.047I.
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Fig. 5. Concentration curves of the calculated activation
energy of diffusion for cations in Ag1 – xCuxI.
C

characteristics. Moreover, the monotonic variation of
the lattice parameter cannot explain the nonmonotonic
variation of the activation energy of diffusion. The
analysis of the structural characteristics of α-AgI
obtained from the EXAFS data [18, 19] provided the
establishment of the fact that the preferable path of
Ag+-ions is formed first by jumps of these ions from tet-
rahedral positions into trigonal ones and then by their

2
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1
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Fig. 4. Concentration curves of the calculated diffusion con-
stants of cations in Ag1 – xCuxI at the temperatures T of
(j) 550, (s) 600, and (n) 700 K. For comparison, the values
of Dσ (m) at 700 K calculated from the conductivity data are
also indicated.
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Fig. 6. Concentration curves of the transport numbers for
silver cations in Ag1 – xCuxI. (d) Experiment [5], (s) MD-
data.
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jumps from the trigonal positions to other tetrahedral
positions (the potential barrier equals 0.04–0.07 eV).
The barriers for other paths are much higher; thus, the
transport via the octahedral positions requires over-
coming an ≈0.18-eV-high barrier. As is seen from Fig. 5,
the activation energy of diffusion in α-Ag0.99Cu0.01I is
0.07 eV; in α-Ag0.85Cu0.15I, it equals 0.17 eV. However,
it is almost impossible for copper cations to move via
octahedral positions. The theoretical consideration
within the stochastic model [20] showed the pro-
nounced dependence of the ion mobility on the shape of
the potential relief along which the particles move. In
other words, irrespectively of the barrier value, the
mobilities (and, therefore, also diffusion) of Cu+ and
Ag+ ions should be different, because different thermal
vibrations of silver and copper atoms result in the par-
ticles motion along different paths. Thus, it can be
assumed that the cation motion in Ag1 – xCuxI solid solu-
tions is strongly correlated.
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Abstract—It is shown that the so-called ordinary electromagnetic waves (the waves whose group velocity is
parallel to the wave normal) cannot propagate outside the planes parallel to the principal planes of the permit-
tivity tensor in transparent optically biaxial crystals. For each of the three such planes, the waves of one of the
two independent branches are ordinary irrespectively of the direction of their propagation, whereas the waves
of the other branch are ordinary only if they propagate along two mutually orthogonal directions of the corre-
sponding eigenvectors of the permittivity tensor. © 2001 MAIK “Nauka/Interperiodica”.
The present study was undertaken with the aim to
establish all the cases where the electromagnetic waves
with the group velocity parallel to the wave normal or
the so-called ordinary waves [1] can propagate in trans-
parent optically biaxial crystals.

The existence of the branch of ordinary electromag-
netic waves in optically uniaxial crystals is a well-
known fact [1–6]. At the same time, it should be
emphasized that the group velocity of the extraordinary
waves can be parallel to the wave normal in two
cases—during the propagation of the latter along the
optical axis and normally to it. These facts can be
understood if one takes into account that the direction
of the group velocity is parallel to the geometric normal
to the refractive-index surface [2], with the latter being
a sphere for the ordinary waves and an ellipsoid of rota-
tion for the extraordinary ones.

In low-symmetric (orthorhombic, monoclinic, and
triclinic) crystals, which are optically biaxial, the two-
sheet refractive-index surface has a much more compli-
cated shape than for uniaxial crystals. In particular, it
always has four points of conic self-intersection corre-
sponding to two optical axes. The existence of the
waves with the group velocity parallel to the wave nor-
mal in such low-symmetric media requires a special
consideration. Below, we consider this problem.

The optical properties of crystals are fully deter-
mined by the dielectric-constant or permittivity tensor

 whose structure is dependent on the medium symme-
try. In our case, it is more convenient to use the recipro-

cal tensor , which directly determines the refractive-
index surfaces of interest:

(1)

ε̂

ε̂ 1–

ε̂ 1–
1/ε1 0 0

0 1/ε2 0

0 0 1/ε3

,=
1063-7745/01/4602- $21.00 © 20296
where εi are the eigenvalues of the tensor . Without
losing the general nature of the consideration, we can
assume that ε1 < ε2 < ε3 (in the general case of a low-
symmetric crystal, all these eigenvalues should be dif-
ferent). As usual, the coordinate system is related to the
principal axes of the tensor  (the principal axes of the

tensors  and  coincide).

Using the Fedorov formalism [2, 4, 5], we can rep-

resent the tensor  defined by Eq. (1) in the axial
form

(2)

where

and ⊗  denotes the diadic multiplication of the unit vec-
tors c1 and c2 parallel to the optical axes of the crystal,

(3)

where 2α is the angle formed by the optical axes equal
to

(4)

For an arbitrary direction of propagation m (m2 = 1),
the refractive indices of the waves of two independent
branches n± can be written in the form [2, 4, 5]

(5)

where

The super- and subscripts in Eq. (5) correspond to the
external and internal sheets of the two-sheet refractive-

ε̂

ε̂

ε̂ ε̂ 1–

ε̂ 1–

ε̂ 1–
a b c1 c2 c2 c1⊗+⊗( ),+=

a 1/ε2, b ε1 ε3–( )/2ε1ε3= =

c1 2, α 0 αcos, ,sin±( ),=

αtan
ε3 ε2 ε1–( )
ε1 ε3 ε2–( )
-------------------------.=

1/n±
2

a b mc1[ ] mc2[ ] R±( ),+=

R mc1[ ] 2 mc2[ ] 2
.=
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index surface, respectively [n+ ≥ n– because, in Eq. (5),
b < 0].

In addition to the Cartesian coordinate system used
above, we also introduce a standard system of spherical
coordinates (ϑ , ϕ) in order to represent the wave nor-
mal m as a function of the angles ϑ  and ϕ, namely,

(6)

In this case, Eq. (5) takes the following form for the
directions of wave propagation parallel to the coordi-
nate planes:

(7)

for the xy plane,

(8)

for the yz plane, and

(9)

(10)

for the xz plane.

It follows from Eqs. (7)–(10) that in all the sections,
we have the coexisting circumference and ellipse (see
figure).

Since the geometric normal to the surface, n±(m),
yields the direction of the group velocity, it becomes
clear that the extreme points of the surface n±(m) corre-
spond to the case, where the wave normal and the group
velocity are parallel. Now, the problem reduces to the
determination of these extreme points.

The extreme points of the surface n±(m) [Eq. (5)]
are defined by the following system of equations:

(11)

Using Eqs. (3), (5), and (6) and performing rather cum-
bersome calculations, we arrive at the following
expressions convenient for our further consideration:

m ϑ ϕcossin ϑ ϕsinsin ϑcos, ,( ).=

n+ ε3, n–
ε2ε1

ε2 ϕ ε1 ϕcos
2

+sin
2

--------------------------------------------= =

n+
ε2ε3

ε2 ϑ ε3 ϑcos
2

+sin
2

--------------------------------------------, n– ε1= =

n+ ε2, n–
ε1ε3

ε1 ϑ ε3 ϑcos
2

+sin
2

--------------------------------------------= =

ϑ α , ϑ π α–≥≤

n+
ε1ε3

ε1 ϑ ε3 ϑcos
2

+sin
2

--------------------------------------------, n– ε2= =

α ϑ π≤ α–≤

∂n±/∂ϕ 0=

∂n±/∂ϑ 0.=



F± ϑ 2ϕsinsin 0=

F±g 2 αcos
2

+( ) 2ϑsin 0.=

 12( )

13( )
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In the above expressions, we used the following nota-
tion:

(14)

The function F+ can be written in the form

(15)

Taking into account that in a biaxial crystal, cosα ≠ 0,
we obtain

(16)

As is seen from Eq. (12), the solutions of the system
of equations with due regard for Eq. (15) lie within the
coordinate xy (ϑ  = π/2), yz (ϕ = ±π/2), and xz (ϕ = 0, π)
planes.

Thus, irrespectively of a large variety of two-sheet
refractive-index surfaces n±(m) for biaxial crystals, in
such crystals, the ordinary waves can exist only within
the planes indicated above.

Despite the fact that all the other results can be
obtained by solving Eq. (13), it is much more conve-
nient to use the rather simple Eqs. (7)–(10) valid for the
solutions existing within the coordinate planes. Obvi-
ously, all the points on the circumferences described by
these equations correspond to the ordinary waves. The
extreme directions on the ellipses also correspond to
the ordinary waves: in each coordinate plane, two such
directions coincide with the corresponding coordinate
axes. However, such pairs of directions are not isolated
since they belong to the continuous branches of the

F
±

R α α ϕ g ϑ ,cos
2

–sin
2

sin
2

–cos
2

–±=

g α α ϕ ,cos
2

sin
2

+cos
2

=

R α g ϑsin
2

–sin
2( )

2
2α ϑ ϕsinsinsin( )2+ .=

F
+ 4 αcos

2

F
–

-----------------= ϑ .cos
2

F
–

0.≠

z

y

x

ε1

ε2

ε1 ε3

ε2

ε3

α

Sections of the refractive-index surface by the principal
planes of the permittivity tensor for a transparent optically
biaxial crystal. Arrows indicate the circular sections corre-
sponding to the branches of the ordinary waves. The dashed
line indicates the direction of the optical axis. The outer
sheets are represented by bold lines.
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solutions for the ordinary waves in the sections orthog-
onal to the initial ones (see figure).

Finally, we should like to emphasize the analogy
between the above circular and the elliptical sections
and the corresponding characteristics of the ordinary
and extraordinary waves in uniaxial crystals, with the
analogy existing not only for the refractive indices but
also for the wave polarizations.

Thus, it has been shown that ordinary waves in biax-
ial crystal can exist only in the sections of the refrac-
tive-index surfaces by the coordinate planes that have
the circular shape. It it also shown that the situation
shown in figure is unique. The fact that the waves cor-
responding to the sections considered here are ordinary
is not surprising, because, in this case, the coordinate
planes coincide with the symmetry planes of the tensor

, which, in turn, results in the fact that the normals to
the surface n±(m) that belong to the circular sections
should be aligned along the radial directions. At the
same time, the absence of ordinary waves beyond the
planes indicated above for the arbitrary biaxial crystals
characterized by a complicated surface n±(m) with the
points of conic self-intersections, which was proven
above, seems to be far from obvious.

ε̂

C
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Abstract—The effect of dislocations on the change of mechanical stresses in undoped semi-insulating gallium
arsenide single crystals has been studied during their annealing in vacuum and in the arsenic atmosphere. The
phenomena observed are explained by the effect of dislocations playing the role of channels for arsenic diffu-
sion on the concentration of intrinsic point defects in the crystal regions surrounding dislocations. The mecha-
nism of arsenic diffusion over dislocations allows one to consider dislocations as sources and sinks of arsenic
without the translational and twinning processes and, thus, makes the well-known data on the reactions of dis-
location interaction with point defects and the experimental structural data for single crystals more consistent.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is believed that the mechanical stresses in gallium
arsenide single crystals are determined by the stress
field of the dislocations (thermoelastic stresses) and the
concentration inhomogeneity of ingots [1, 2]. In the
course of annealing and postcrystallization cooling of
single crystals, the excessive intrinsic point defects (in
comparison with their equilibrium concentration) sink
from the bulk to dislocations [3–5], which occurs
according the following reactions accompanied by the
changes in the concentration of intrinsic point defects:
(1) recombination of the vacancies with the corre-
sponding interstitial atoms, (2) absorption of pairs of
vacancies (interstitial atoms) belonging to different
sublattices, and (3) absorption of the vacancies in one
sublattice with the formation of interstitial atoms in the
another sublattice.

The latter two reactions should initiate either split-
ting or climbing of dislocations. However, the experi-
mental data show such splitting in the gallium arsenide
single crystals is rather small [6]. No pronounced
asymmetry in the arrangement of the regions with mod-
ified properties in comparison with the properties of the
matrix were observed along the lines of edge disloca-
tions [1]; no pronounced twist of screw dislocations [7]
was observed either. All these facts indicate the low
efficiency of the above reactions in GaAs crystals.

The recombination of vacancies with the corre-
sponding interstitial atoms can be efficient only if one
of the sublattices is disordered and has close concentra-
tions of vacancies and interstitial atoms [3]. Usually,
this condition is not fulfilled in growth of the GaAs
[1, 3, 8]. Thus, the nature of the interaction between
dislocations and intrinsic point defects is still unclear.
1063-7745/01/4602- $21.00 © 20299
Since defect interaction accompanied by the varia-
tion of their concentration and their distribution over
the ingot bulk strongly affect the mechanical stresses,
the measurement of such stresses during annealing of
the single crystals is one of the possible methods of
studying mechanisms defect interactions.

Below, we consider the effect of annealing of crys-
tals on the mechanical stresses in Czochralski-grown
undoped semi-insulating gallium arsenide single crys-
tals with dislocation density ranging within Nd = 1 ×
104–2 × 106 cm–2 and resistivity ranging within ρ = 6 ×
107–3 × 108 Ω cm.

EXPERIMENTAL METHODS AND RESULTS
We studied plates 40–60 mm in diameter and

3−4 mm in thickness cut out from the ingots normally
to the [100] growth axis and also the specimens cleaved
from these plates with the sizes not exceeding 15 × 4 ×
4 mm3 both subjected and not subjected to preliminary
annealing. The mechanical stresses were measured by
the photoelasticity method [9] in the plate plane (σ) or
in the three orthogonal planes (σ⊥  in the plane normal
to the growth axis and the σ||1 and σ||2 in the planes par-
allel to this axis). Polarized light with a wavelength of
1.15 µm was generated by an LG-112 laser.

The 20- to 120-min long annealing of the plates and
specimens at 950°C was performed either in vacuum or
the arsenic atmosphere created with the aid of weighed
portions of arsenic placed together with specimens into
a sealed graphite cell. The specimens were annealed in
atmosphere of hydrogen purified with the aid of a pal-
ladium filter. Annealing of the specimens in vacuum
and in the As vapors was conducted in the sealed-quartz
ampules pumped out to a pressure of ≤10–5 mmHg with
001 MAIK “Nauka/Interperiodica”
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the addition of weighed portions of metallic arsenic.
Upon annealing, we removed a low-resistivity 10 to
300 µm-thick surface layer by the polishing mixture of
the composition H2SO4 : H2O2 : H2O (3 : 1 : 1).

The dislocation density was determined from the
etching pits in an MIM-7 microscope. The resistivity
was determined by the two-probe technique.

10 20 30 40 d, mm

1'

1

σ, MPa

0

–10
–20

–30
–40

30

20

10

0
–10

–20

–30

–40

(b)

(a)

10 40 50
d, mm

2

2'

Fig. 1. Mechanical-stress distribution along the diameter of
undoped semi-insulating GaAs plates with the average
dislocation density (a) Nd = 4.5 × 104 cm–2 and (b) Nd = 7.2 ×
105 cm–2 obtained before (1 and 1') and after (2 and 2')
120-min-annealing in the As atmosphere at T = 950°C.
C

The residual mechanical stresses in the initial (unan-
nealed) plates with the typical W-shaped dislocation-
density distribution along the diameter were negative
(compressive [7]) stresses [1, 3]. The maximum σ val-
ues were observed at the plate periphery (curves 1, 2 in
Figs. 1a, 1b) and ranged from 10 to 50 MPa in different
plates. The σ⊥ , σ||1, and σ||2 stresses had close values
(see table) and were independent of the specimen
dimensions.

Annealing under different conditions did not change
the dislocation density and the character of their distri-
bution across the plate cross section. At the average dis-
location density in the plates Nd < 5 × 105 cm–2, anneal-
ing in the arsenic atmosphere decreased σ values
(curves 1, 1' in Fig. 1a); in the case where Nd > 5 ×
105 cm–2, the positive (tensile) stresses were observed
(curves 2, 2' in Fig. 1b).

Upon annealing in the As atmosphere, the σ⊥  values
for all the samples exceeded the σ||1 and σ||2 values by
three to five times (see table). In this case, all the
stresses upon annealing in As vapors were positive. An
increase of σ⊥  values (|∆σ⊥ |) depended on the disloca-
tion density in the sample (Fig. 2), whereas their rela-
tive variation σ⊥  TT/σ⊥  init. (where σ⊥  TT and σ⊥  init. are the
stresses in the specimens before and after annealing,
respectively) was governed by the annealing duration t
(Fig. 3). A smooth maximum in the ratio σ⊥  TT/σ⊥  init.(t)
at t = 45–60 min was observed for all the specimens.

DISCUSSION

The change in vacancy and interstitial concentra-
tions results in the change of the lattice period of gal-
lium arsenide single crystals [5] and, as a result, the for-
mation of stresses in the planes with the concentration
gradients of the intrinsic point defects (the stresses are
positive if interstitial atoms dominate over vacancies
and negative in the opposite case [8, 10]). An increase
Stresses in specimens before and after annealing (í = 950°ë)

Nd, cm–2 Atmosphere 
of annealing

 Annealing 
time

σinit, MPa σann, MPa

σ||1 σ||2 σ⊥ σ||1 σ||2 σ⊥

4.5 × 104

Vacuum 45 min

–4 –3 –5 –4 –4 –14

2.0 × 104 0* 0 0 –2 –2 –7

5.2 × 105 –5 –5 –9 –5 –6 –22

1.08 × 106 –5 –6 –10 –7 –7 –28

4.9 × 104 –2 –2 –3 –3 –3 –10

5.03 × 105 –3 –2 –5 –5 –4 –12

5.5 × 105 –3 –3 –7 –4 –4 –21

3.2 × 105

As 90 min
–3 –3 –6 +2 0 +7

6.8 × 105 –4 –4 –7 +3 +3 +13

* The stress value is less than the sensitivity threshold (1 MPa) of the set up used.
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in the absolute σ⊥  values during annealing at constant
|σ||1| and |σ||2 | bears witness to the change in the crystal
composition in the planes normal to the dislocational
lines (in accordance with the experimental geometry),
i.e., the change in the concentration of intrinsic point
defects around the dislocations.

In GaAs, the composition changes during annealing
are determined mainly by the volatile component—
arsenic [1, 3], whereas dislocations seem to be either
sources or sinks of As atoms, depending on the atmo-
sphere in which the specimens are annealed. No essen-
tial changes in the Nd values and the dislocation distri-
bution in the specimens prior to and upon the annealing
were observed; in other words, no dislocation splitting
or climbing was recorded, which indicated that none of
the mechanisms of interaction of dislocations and
intrinsic point defects was active considered in the
Introduction. Therefore, it is possible to assume that
arsenic atoms move along the dislocational lines. An
indirect confirmation of this mechanism of arsenic dif-
fusion over the dislocations is the fact that the self-dif-
fusion coefficient of arsenic in GaAs is practically tem-
perature independent at the temperatures lower than
1200°C [10], i.e., below the temperature of formation
of the dislocation structure.

During annealing in the As atmosphere, arsenic dif-
fusion along dislocations gives rise to an increase of the
concentration of interstitial As in the adjacent regions
and appearance of tensile stresses. During annealing in
vacuum, dislocations “take away” arsenic from the
specimens, thus increasing the concentration gradient
of arsenic vacancies (VAs) and compressive stresses. In
terms of the proposed mechanism, the nonmonotonic
character of the (σ⊥  ann/σ⊥  init) (t) dependence can be
explained as follows. A relative increase in the σ⊥  val-
ues in specimens is observed because of the removal of
arsenic from the regions immediately adjacent to dislo-
cations, where the arsenic concentration in semi-insu-
lating undoped GaAs is rather high [3, 5]. An increase
in stresses in such a process is more efficient the higher
the dislocation density (curves 1, 2 in Fig. 3). Most
likely, a decrease in the σ⊥  values with a further
increase of the annealing duration is caused by the
motion of interstitial arsenic atoms to dislocations, in
order to compensate a decrease in the arsenic concen-
tration in the adjacent regions.

The above assumption is based on the following
estimate. For time interval t, arsenic atoms can move
for a distance l = (DAst)1/2 at the temperature of T ~
1000°C, where DAs is the self-diffusion coefficient of
arsenic in gallium arsenide at this temperature. The DAs
value determined from DAs = 0.7Âı(–3.2/kT) [1] is
0.16 × 10–12 cm2/s. The l value obtained for the time t =
60 min specifying the onset of the stress compensation,
caused by the removal of arsenic from the regions adja-
cent to dislocations is ≅ 0.24 µm. The radius of the
activity sphere of an individual dislocation is of radius
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
r = 0.5  for the specimen with Nd = 106 cm–2 equals
5 µm. Thus, within the time interval considered, arsenic
atoms from almost half-area of the interdislocational
space have enough time to “approach” the dislocations.
Despite an increase in the total concentration of inter-
stitial arsenic atoms, the its concentration gradient
drops and the stress values decrease.

There should exist the average (over the cross sec-
tion) critical dislocation density Nd cr , below which the
penetration of arsenic atoms into the crystal along dis-
locations provides merely a decrease of the residual
compressive stresses in the plates (curves 1, 1' in
Fig. 1a). The value of this average critical dislocation
density for the crystals annealed in the As atmosphere
is Nd cr = 5 × 105 cm–2. If Nd > Nd cr, tensile stresses typ-

Nd
1/2–

10

105 106

20

Nd, cm–2
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0
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20 40 60 80 100 120
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σ⊥  ann/σ⊥  init.

1

2

Fig. 2. Change of the stress ∆σ in the plane normal to the
growth axis as a function of the average dislocation density
Nd during 45-min-annealing in (1) vacuum (2) the As atmo-
sphere at T = 950°C.

Fig. 3. Relative change of stresses in the specimens with the
average dislocation density (1) Nd = 1.08 × 106 cm–2 or

(2) Nd = 2 × 104 cm–2 annealed in vacuum at T = 950°C.
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ical of undoped crystals (including semi-insulating
GaAs(Cr) [11]) are formed (curves 2, 2' in Fig. 1b).

The interactions between dislocations and intrinsic
point defects during annealing of undoped semi-insu-
lating GaAs crystals are similar to the processes taking
place in growth of single crystals where dislocations
can be channels of arsenic redistribution between the
crystallization front and the bulk of the crystallized
ingot [3]. Arsenic diffusion from the regions with
higher temperature results in recombination of VAs
under the conditions of deficit in interstitial arsenic
atoms. In a similar way, diffusion of excessive arsenic
atoms along dislocations can result in their removal
from the crystal bulk. As a consequence, dislocations
can play the role either as sources or sinks of arsenic
atoms without the processes of displacement twinning.
This statement is consistent with the experimental
data [3, 5–8].

Thus, we have shown that the change in mechanical
stresses during annealing of undoped semi-insulating
GaAs specimens is provided by dislocations playing
the role channels for arsenic diffusion, which changes
the concentrations of vacancies and interstitial arsenic
atoms in the regions adjacent to dislocations. The
mechanism of arsenic diffusion over dislocations
removes the inconsistencies between the well-known
reactions of interactions between dislocations and point
defects and the experimental data on structural charac-
teristics of single crystals [3, 5–8].
C
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Abstract—Corrosion resistance of a sapphire surface has been studied as a function of various technological
factors (growth method, presence of impurities, growth medium), the density of structural defects (pores,
vacancies, dislocations), and the crystallographic characteristics. It is shown that the main contribution to the
corrosion resistance depends on the type of the mechanical treatment and the crystallographic characteristics of
the surfaces and that the resistance of different crystallographic planes to aggressive media can differ up to
seven times. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The widespread use of sapphire in chemical tech-
nology requires the determination of conditions for
attaining the maximum corrosion resistance of the sur-
faces of various sapphire products. The corrosion resis-
tance of sapphire to various aggressive media was stud-
ied in numerous works [1, 2], however, all the data
obtained relate only to bulk resistance. Although the
difference in the dissolution rates of various faces of
sapphire crystals was noticed still by G. Lavizzari as far
back as 1865, the corrosion resistance of different sap-
phire surfaces has not been studied as yet.

The resistance of sapphire surface to various aggres-
sive media can depend on the defect state of the subsur-
face layer and on various structural defects, whose type
and density depend, in turn, on the growth method
used. Sapphire is anisotropic and, therefore, one has to
take into account also the nature of atomic bonding in
different crystallographic planes, the electronic struc-
ture, and the energy characteristics of various planes.

The present study was undertaken to establish the
contributions made by each of the above factors to cor-
rosion resistance of sapphire surfaces.

EXPERIMENTAL

Sapphire crystals were grown by several methods—
the Verneuil and Kyropoulos methods, the method of
horizontal directional crystallization, and the Stepanov
(EFG) technique. We also used waste crystals formed
during Verneuil growth. We used different growth
media–oxidative (the Verneuil techniques), vacuum
(Kyropoulos and horizontal directional crystallization),
and argon (the Stepanov technique). The samples were
10 mm in diameter and 2 mm in thickness and had var-
ious crystallographic orientations and degrees of sur-
1063-7745/01/4602- $21.00 © 20303
face roughness. For comparison, we also used smooth
surfaces of the crystal basis and prisms tapered during
growth. The crystals with the maximum anionic nons-
toichiometry were obtained upon annealing in the
(CO + CO2) atmosphere under the residual pressure
60 Pa and the temperature 1980°C. The crystals with
the maximum cationic nonstoichiometry were obtained
upon annealing in the oxidative medium containing
12–15 vol % of O2 in the annealing space at 1750°C.
The effect of point defects was studied by thermally
varying the densities of cationic and anionic vacancies
[3]. The anionic nonstoichiometry was evaluated from
absorption (which was maximal at 6.1 eV) and the flu-
orescence bands of F-centers (3.8 eV) excited by the
X-ray radiation. We failed to evaluate reliably the cat-
ionic nonstoichiometry, because the grown crystals had
the wide UV-absorption band.

The corrosion resistance of crystal surfaces was
studied on a disklike crystal surface 10 mm in diameter
by the method of layer etching in the concentrated
phosphoric acid [4] applied to the surface (0.3 ml).
Upon 30 min-annealing of the specimen at 300°C, the
film formed on the surface was dissolved in bidistilled
water. The aluminum concentration in the solution was
measured to evaluate the degree of surface destruction.
The etching process was repeated six times. The thick-
ness h of the dissolved layer was determined from the
formula

where 1.89 = Al2O3/2Al is the ratio of the molecular
masses, m is the average value of the aluminum mass
transferred to the solution during one etching cycle, d is

h
m

d
----1.89

πr
2

----------,=
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the density of Al2O3 (3.98 g/cm3), and r is the radius of
the Al2O3 disk.

The relative standard deviation of thickness mea-
surement (h) is 0.15.

Table 1.  Corrosion resistance of a (0001) surface of a Kyro-
poulos-grown sapphire crystal treated by different methods 

Type of treatment Depth of the
damaged layer, µm

Thickness h, µm of 
the layer removed 

for one etching cycle

Natural face 0 0.72

Polishing 1–5 0.77

Fine polishing 20–30 0.96

Crude polishing >40 1.8

Table 2.  Corrosion resistance of the supphire surface for dif-
ferent values of the dislocation density

Growth 
method ρ, cm–2 Plane Surface 

treatment h, µm

Verneuil (1–5) × 105 (0001) Polishing 0.75

Natural face 0.82

Kyropoulos 103 (0001) Polishing 0.77

Natural face 0.72

Horizontal
directional 
crystallization

5 × 103 (0001) Polishing 0.83

Stepanov 105 (0001) Polishing 0.73

Natural face 0.72

(10 0) Polishing 0.29

Natural face 0.23

(11 0) Polishing 0.15

Natural face 0.12

1

2

Table 3.  Corrosion resistivity of a doped Verneuil-grown
sapphire crystals

Crystal Dopant concen-
tration, wt % Plane h, µm

Al2O3 – (10 0) 0.25

– (0001) 0.80

Al2O3 : Cr 1 × 10–1 (10 0) 0.25

Al2O3 : Cr 6 × 10–1 (10 0) 0.20

Al2O3 : Cr 1.3 (10 0) 0.12

1.3 (0001) 0.80

Al2O3 : Ti 6 × 10–2 (10 0) 0.24

6 × 10–2 (0001) 0.80

1

1

1

1

1

C

RESULTS AND DISCUSSION

The rate of the chemical reaction is a function of the
surface energy and the bond strength. It also depends
on the degree of damage of the subsurface layer. The
appropriate mechanical treatment can reduce the sur-
face resistance to corrosion more than two times
(Table 1) depending on the degree of the damage in the
subsurface layer.

It is well known that dislocations emerging to the
surface promote surface dissolution. However, in the
range of the dislocation densities ρ = 103–105 cm–2

(characteristic of crystals grown by industrial meth-
ods), the difference in the dissolution of the same crys-
tallographic plane with and without dislocations can
hardly be distinguished (Table 2). Not only dislocations
but also pores with diameters not exceeding 0.1 mm,
which emerge on the surface, cannot produce notice-
able effect on this corrosion resistance of the surface.

It seems that the impurity contribution cannot be the
key factor either. A considerable increase of the chro-
mium content only slightly increases the corrosion
resistance of the (10 0) plane and but does not change
at all the resistance of the (0001) plane (Table 3). Point
defects in the form of anionic and cationic vacancies
produce no noticeable effect on the corrosion resistance
of the crystal surface either.

It is seen from the data listed in Tables 2 and 3 that
the major contribution to the corrosion resistance of the
surface comes from the crystallographic characteristics
of this surface. Irrespective of the methods of growth
and subsequent thermal treatment, the corrosion resis-
tance of the (0001) plane ranged within 0.72–0.83, of

the (11 0) plane, within 0.12–0.15, and of the (10 0)
plane, within 0.12–0.29 µm.

The process of corrosion is caused by a number of
surface phenomena. First, the atomic structure in the
vicinity of a free surface depends on the surface relax-
ation (a decrease of the interatomic distances in the
subsurface atomic nets) and reconstruction (the sym-
metry changes in the subsurface layers) characteristic
of crystals with covalent bonding. These phenomena
increase the surface energy proportionally to the retic-
ular density of the crystallographic planes.

The approximate measure of the surface energy is a
number of free bonds per unit surface. According to the
estimates made in [5], the maximum number of such
bonds is in the (0001) plane (6.6), the number of such
bonds in the (10 0) plane is 5.2.

Thus, the minimum corrosion resistance shows the
(0001) plane. The work function is minimal along the
direction of the most densely packed row of atoms in
the lattice, therefore, the most intense damage is
observed in this plane [6].

The second cause of anomalously low corrosion
resistance of the basal plane becomes clear from the
consideration of the planar nets formed by the alumi-

1

2 1

1
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num and oxygen atoms. In the (0001) plane, these nets
are formed by the O–Al–Al–O–Al–Al–O atoms,
whereas in the (1010) plane, by the Al–O–Al–O atoms.
The {1010} nets are electrostatically neutral. In the
(1120) plane, the alternating Al- and O-nets form slabs.
The boundaries of these slabs are located between the
planar nets of oxygen atoms.

Thus, the Al–Al nets are located only in the basal
planes. The Al–Al bonds are weaker, both chemically
and mechanically, than the Al–O bonds. Considering
not only the surface bonds in the last layer but also the
bonds in several previous layers of a semiinfinite lat-
tice, Guo, Ellis, and Lam [7] established that the cleav-
age energy of the (0001) plane is minimal for the Al
layer. The energy of the Al2O3 lattice is rather high
(152 eV). The contribution of Al3+ ions to the total
potential energy of the ions exceeds the contribution of
O2– ions, but the contribution of the van der Waals
energy of O2– (~1.3 eV) considerably exceeds the con-
tribution from Al3+

 ions (~0.1 eV) [8], which should
enhance interaction of aluminum from the Al–Al nets
with the enchant.

Thus, it has been established that the technological
and crystallographic factors produce a certain effect on
the corrosion resistance of the sapphire surface. The
most pronounced of the technological factors is the
type of the mechanical treatment of the crystals. Rough
polishing reduces the corrosion resistance of the crystal
surface by more than 50%.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
The major effect on corrosion resistance is produced
by crystallographic factors. The corrosion resistance of
various crystallographic planes to aggressive media can
differ by more than seven times. Such a considerable
difference is explained by the specific features of the
structure of the planar nets of atoms along different
crystallographic directions and by the processes of sur-
face reconstruction and relaxation.
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for Solubility Diagrams of the R2SO4–MeSO4–H2O 

Systems (R = K, NH4; Me = Ni, Co) 
L. V. Soboleva and L. F. Kirpichnikova

Shubnikov Institute of Crystallography, Russian Academy of Sciences, 
Leninskiœ pr. 59, Moscow, 117333 Russia

Received October 27, 1999

Abstract—The optimum conditions for growing R2Me(SO4)2 · 6H2O crystals are found from the analysis of

the SO4–Me2+SO4–H2O systems (R = K, NH4; Me = Ni, Co) in the temperature range from 55 to 25°C.
A new economical technology for growth of single crystals of double sulfate hexahydrates is developed, which
allows the use of starting presynthesized solutions of hydrated or anhydrous K, Ni, Co, and (NH4) sulfates.
Transparent K2Ni(SO4)2 · 6H2O, K2Co(SO4)2 · 6H2O, and (NH4)2Ni(SO4)2 · 6H2O crystals (35–55) × (25–40) ×
10 mm in size are grown on seeds by the method of slow cooling. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

As shown in [1], it is possible to search for new
crystals with valuable physical properties among com-
plex compounds of elements of groups I–III of the Peri-
odic Table with organic, inorganic, and mixed ligands
that can be crystallized in ternary aqueous systems. 

A method of determining optimum conditions for
growth of such crystals from the solubility diagrams of
the “parent systems” has been developed.

As a result, a number of well-known and new prac-
tically important materials with valuable physical prop-
erties (ferroelectrics, ferroelastics, materials for nonlin-
ear optics, acousto- and X-ray optics, etc.) were
obtained in the form of large stoichiometric crystals of
optical quality [1–4].

This study was undertaken in order to determine the
optimum conditions for precipitation of the
R2Me(SO4)2 · 6H2O phases (the so-called Tutton salts)
from the analysis of the solubility diagrams for the
R2SO4–MeSO4–H2O (R = K, NH4; Me = Ni, Co) systems
and to develop a procedure for growing large optically
uniform single crystals. We also plan in the future to study
the structure and the properties of the crystals grown.

Prior to the study, we found no information on
growth of large crystals of these compounds.

ANALYSIS OF THE SOLUBILITY DIAGRAMS 
FOR THE R2SO4–MeSO4–H2O

(R = K, NH4; Me = Ni, Co) SYSTEMS

The solubility diagrams for the R2SO4–MeSO4–H2O
systems have been studied in the temperature range
from 0 to 100°C [5–9].
1063-7745/01/4602- $21.00 © 20306
Figure 1 shows the phase equilibria A–B in the
K2SO4–NiSO4–H2O system at 55°C [6], in the K2SO4–
Co(SO4)–H2O system at 50°C [8], and in the
(NH4)2SO4NiSO4–H2O system at 46°C [6]. All the sys-
tems possess extended fields of crystallization of dou-
ble sulfate hexahydrates RMe(SO4)2 · 6H2O. The A–B
lines correspond to the equilibria between the solutions
and stable (congruently dissolving) solid phases of the
compositions K2Ni(SO4)2 · 6H2O, K2Co(SO4)2 · 6H2O,
and (NH4)2Ni(SO4)2 · 6H2O. The indicated crystalliza-
tion fields are crossed by singular H2O–R2Me(SO4)2 ·
6H2O secants.

Table 1 indicates the concentration ranges of the
precipitation of the K2Me(SO4)2 · 6H2O phases at the
indicated temperatures [5–9]. The coordinates of the
invariant points A and B show that the potassium-con-
taining compounds possess the crystallization fields of
similar configurations, whereas the crystallization field
of the ammonium-containing compound has different
configuration and therefore should be grown from a
solution characterized by a different ratio of the compo-
nents.

Using data [1] and analyzing the solubility diagrams
in Fig. 1, we find that the optimum composition of the
solution for growth of a Tutton salt should correspond
to point M. This point lies at the maximum distance
from the invariant (eutonic) points A and B, where the
double compounds coprecipitate with the constituent
salts. Thus, the composition of the growth solution
should correspond to the point lying in the central part
of the solubility curve (point M in Fig. 1) of the com-
plex compound at the maximum distance from points A
and B (Figs. 1a and 1b). This is explained by the spe-
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Solubility diagrams of the (a) K2SO4–NiSO4–H2O system at 55°C, (b) K2SO4–CoSO4–H2O system at 50°C, and
(c) (NH4)2SO4–NiSO4–H2O system at 46°C. Concentrations are given in weight percent.

NiSO4 · H2O
cific characteristics of nonvariant points (eutonics): the
solutions with the compositions corresponding to these
points provide the simultaneous crystallization of two
solid phases—a complex chemical compound and the
component of the system on the side either of point A
or point B. The composition of the mother solution at
the point M is determined from the compositions of
noninvariant points A and B (limiting the solubility
curve, within whose concentration limits the given
solid phase is crystallized); this composition is the
mean arithmetic of the component compositions at
these points.

The concentration of the starting solution and the
temperatures selected for growth of K2Ni(SO4)2 ·
6H2O, K2Co(SO4)2 · 6H2O, and (NH4)2Ni(SO4)2 · 6H2O
crystals are indicated in Table 2. Since the compounds
under study are characterized by extended crystalliza-
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
tion fields and thus also extended solubility isotherms,
the optimum concentrations of the starting solutions
used for crystal growth only approximately correspond
to points M and range within ~2 wt % on both sides of
these points.

EXPERIMENT AND DISCUSSION 
OF RESULTS

Single crystals of K2Ni(SO4)2 · 6H2O, K2Co(SO4)2 ·
6H2O, and (NH4)2Ni(SO4)2 · 6H2O were grown from
the solutions prepared from recrystallized K2SO4,
NiSO4, CoSO4, and (NH4)2SO4 hydrates and distilled
water in the ratios given in Table 2.

The method for growing single crystals was the
same for all the Tutton salts studied. We describe it
using K2Ni(SO4)2 · 6H2O as an example. Small portions
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Table 1.  Coordinates of the invariant points at the boundaries of the crystallization fields of the Me2+(SO4)2 · 6H2O phases

in the SO4–Me2+SO4–H2O (R = K, NH4; Me = Ni, Co) systems

System Solid phase T, °C
Solution composition at the invariant point, wt %

References
A B

K2SO4–NiSO4–H2O K2Ni(SO4)2 · 6H2O K2SO4 NiSO4 K2SO4 NiSO4

25 8.26 0.33 11.60 27.90 [5]

40 13.15 0.51 2.08 33.35 [6]

55 14.76 1.20 2.30 35.00 [6]

K2SO4–CoSO4–H2O K2Co(SO4)2 · 6H2O K2SO4 CoSO4 K2SO4 CoSO4

25 11.60 3.15 2.57 27.60 [7]

38 13.31 4.70 3.80 31.00 [8]

50 14.36 6.80 3.50 33.30 [8]

(NH4)2SO4–NiSO4–H2O (NH4)2Ni(SO4)2 · 6H2O (NH4)2SO4 NiSO4 (NH4)2SO4 NiSO4

25 43.70 0.10 1.20 29.50 [9]

46 45.32 0.29 1.94 32.95 [6]

R2
+

R2
+

Table 2.  Optimum concentrations M of the starting solu-

tions used for growth of Me2+(SO4)2 · 6H2O (R = K, NH4;
Me = Ni, Co) crystals by slow cooling from the initial tempe-
ratures T

Crystal

In
iti

al
 c

ry
st

al
liz

at
io

n
co

nd
iti

on
s 

T
, °

C

Composition of the mother 
solution, M, wt %

K2Ni(SO4)2 · 6H2O K2SO4 NiSO4 H2O

25 9.93 15.60 79.59

40 7.66 16.93 75.41

55 8.53 18.10 73.37

K2Co(SO4)2 · 6H2O K2SO4 NiSO4 H2O

25 7.08 13.75 81.15

38 8.55 15.75 77.54

50 8.93 20.05 70.57

(NH4)2Ni(SO4)2 · 6H2O (NH4)2SO4 NiSO4 H2O

25 22.45 14.80 62.75

46 23.63 16.62 59.75

R2
+

C

of the K2SO4 and NiSO4 aqueous solutions were mixed
under permanent stirring at the temperature of ~60°C to
yield the compositions given in Table 2. The reaction
between the components proceeded according to the
equation

K2SO4 + NiSO4 + nH2O 

 K2Ni(SO4)2 · 6H2O + (n – 6)H2O.

The resulting dark green solution was filtered and
poured into a crystallizer with a Teflon platform with a
seed crystal grown from solution of the same composi-
tion. The crystallizer was placed into a thermostated
water bath of the temperature of ~57°C. Crystal growth
was performed by slow cooling of the solution from 55
to 25°C within an accuracy of ±0.015°ë. After the seed
regeneration, a reversive stirring was switched on and
the temperature was lowered first at the rate of
0.01°C/day and later, when the seed became faceted, at
the rate of 0.02°C/day. A characteristic feature of
K2Ni(SO4)2 · 6H2O growth consists in the change of the
initial dark green color of the solution. Similar effects
were observed earlier for some other solution-grown
crystals. It is well known that structural units of aqua
complexes of complicated chemical compounds in the
solution have colors different from the color of crystals
grown from this solution [4, 10].

Light blue K2Ni(SO4)2 · 6H2O single crystals 55 ×
40 × 10 mm in size, K2Co(SO4)2 · 6H2O dark red single
crystals 45 × 40 × 10 mm in size, and light blue
(NH4)2Ni(SO4)2 · 6H2O single crystals 35 × 25 × 10 mm

60°C
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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in size grown by the method described above are shown
in Fig. 2. All the crystals were transparent.

The analysis of the solubility diagrams for deter-
mining the optimum conditions for growth of
K2Me(SO4)2 · 6H2O crystals allowed us to avoid their

(a)

(b)

(c)

1 cm

1 cm

1 cm

Fig. 2. (a) K2Ni(SO4)2 · 6H2O, (b) K2Co(SO4)2 · 6H2O,
and (c) (NH4)2NiSO4 · 6H2O single crystals.
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synthesis and the experimental search for the concen-
tration and temperature conditions of their crystalliza-
tion and the use of the appropriate method of crystal
growth. This approach allows one to grow crystals of
complicated compounds by a simple and economic
procedure with the use of their constituents as the sol-
ute components.

The solubility diagrams of the ternary K2SO4–
NiSO4–H2O, K2SO4–CoSO4–H2O, and (NH4)2SO4–
NiSO4–H2O systems in the temperature range between
0 and 100°C were used for determination of the opti-
mum solute concentrations and growth temperatures
for K2Ni(SO4)2 · 6H2O, K2Co(SO4)2 · 6H2O, and
(NH4)2Ni(SO4)2 · 6H2O.

A new economic method is suggested for growing
sulfate hexahydrate crystals from the mixtures of aque-
ous solutions prepared from anhydrous K, Ni, Co, and
NH4 sulfates or their hydrates.

Large transparent single crystals of the indicated
compounds were grown on seeds under the dynamic
conditions.
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CRYSTAL GROWTH
Application of the Model of Locally Nonequilibrium 
Solidification to the Process of Structure Formation 

in Alloys Rapidly Quenched by Spinning1
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Abstract—Solidification of a binary alloy rapidly quenched by spinning [1] has been studied by mathematical
simulation. © 2001 MAIK “Nauka/Interperiodica”.
1 Earlier this problem was studied using the locally
nonequilibrium approach [2]. Below, we consider
nucleation and growth of cellular and dendritic crystals
and establish the dependence of the ribbon structure on
the initial supercooling and the spinning rate. The equa-
tions defining the model describe the following quanti-
ties [3]: mass transport in the bulk of the liquid phase
and in the two-phase region; intensity of nucleation and
growth rate of the solid phase; temperature distribution
over the ribbon thickness; nonequilibrium impurity
capture by the growth front advancing with a high
velocity; and the slope of the kinetic liquidus line on the
phase diagram of the binary alloy. The equation of mass
transport is complemented with the term responsible
for the diffusion-flow relaxation as was suggested in
[2]. This term takes into account the deviations from
the local equilibrium both at the solid–liquid interface
and in the bulk of the solidifying alloy [4, 5]. The equa-
tions were solved by the finite-difference method on a
square two-dimensional net.

Solidification of the Ni-based binary alloy with
0.186 wt % B was studied at the ribbon thickness rang-
ing within 90–15 µm and the spinning rate ranging
within 60–220 m/c. Two series of calculations were
made: (1) calculation of crystallization depending on
the initial melt supercooling and (2) determination of
the structure parameters depending on the spinning rate
of the ribbon and the stationary temperature gradient. It
was established that the crystal structure consists of
cells, dendrites, and a uniform structure having no cells
with the morphologically smooth solidification front of
growing structures. These structures are transformed
into one another with the variation of the controlled

1 Available from VINITI, 2000, Izhevsk, no. 827-V00.
1063-7745/01/4602- $21.00 © 20310
quenching parameters—the spinning rate, the tempera-
ture gradient, and the initial supercooling of the melt.
The results obtained lead to the following conclusions.

With an increase of the initial supercooling of the
melt, ∆T0, the columnlike continuously growing
crystals give way to growth of equiaxial crystals. At
∆T0 < 156 K, the surface structure on the ribbon-disk
side contacting the substrate is columnlike cellular–
dendritic one. In the range 156 < ∆T0 < 165 K, growth
initiated on the surface and nucleation in the ribbon
bulk are competing processes and, therefore, the unidi-
rectional growth is changed to the isotropic growth. In
the range of 165 < ∆T0 < 174 K, the unidirectional
growth is gradually suppressed, and growth of equiax-
ial crystals prevails. A further increase of supercooling,
∆T0 ≥ 174 K, initiates explosive crystallization of the
melt, avalanche-like nucleation, and superfast advance
of the observed solidification front. The interphase
boundary advances due to an intense nucleation at a
rate that can attain the maximum possible values com-
parable with the sound velocity in the melt.

With an increase in the spinning rate, i.e., with an
increase of the positive temperature gradient, the iso-
tropic growth of equiaxial crystals is changed to unidi-
rectional growth of columnlike crystals. This tendency
in formation of zones with different structures in the
spinned ribbons was also observed in full-scale experi-
ments [1].

Modeling of the structure formed at the ribbon–disk
and ribbon–air interfaces shows that the crystal struc-
tures on the ribbon surfaces are different. This is
explained by the fact that the melt layer adjacent to the
substrate solidifies under the positive temperature gra-
dient, whereas the surface adjacent to the ribbon, under
001 MAIK “Nauka/Interperiodica”
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the negative temperature gradient. Different structures
exist until the heat removal from the ribbon surface and
the corresponding temperature drop across the ribbon
thickness.
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with Sillenite Structure
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Abstract—The experimental data on the optical and chiro-optical properties of crystals with the sillenite struc-
ture Bi12MxO20 ± δ (M = elements of II–VIII groups) have been reviewed. The relations between the changes in
the chemical composition, the crystal structure of Bi12MxO20 ± δ compounds, absorption, circular dichroism, and
optical rotation spectra of sillenites have been established. A model taking into account the contribution of the
electronic transitions of optically active tetrahedral [MO4]n– complexes to the total optical rotation in sillenites
is suggested. The data on the state (oxidation degree) and the recharging processes of 3d-elements in sillenites
are systematized. The models of optical centers responsible for the photochromic effect in sillenites are criti-
cally analyzed. © 2001 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Crystals of bismuth oxides with the sillenite struc-
ture described by the general formula Bi12MxO20 ± δ
(where M stands for the elements of II–VIII groups of
the Periodic Table or their combinations) are widely
1063-7745/01/4602- $21.00 © 200312
used in various optoelectronic devices. The combina-
tion of the linear electrooptical effect with high photo-
sensitivity allows one to use sillenites as active media
in spatial light modulators. A discovery of high photo-
refractive sensitivity of Bi12MxO20 ± δ crystals gave an
impetus to the intense study of the nonlinear interaction
of light waves in these materials (two-wave mixing at
photorefractive gratings, conjugate wave-front genera-
tion, etc.) [1–4]. Sillenites are also promising materials
for dynamical real-time interferometry, various devices
for optical processing and storage of information,
piezoelectric technology, acoustoelectronics and
acoustooptics, and for solving other problems [1–6].
The optical and spectroscopic properties of sillenite
crystals were intensely studied and the experimental
results were summarized in a number of review articles
and monographs [7–10]. However, some fundamental
problems of electronic structure determining the opti-
cal properties of these crystals have been studied insuf-
ficiently. The nature of the centers responsible for the
additional absorption observed in the vicinity of the
fundamental absorption edge, the mechanism of the
photochromic effect, and the dependence of these prop-
erties on the sillenite-type compounds of the composi-
tion Bi12MxO20 ± δ and the type of the dopant still found
no unambiguous interpretation. The positions of the p-
and d-elements in the crystal lattice of sillenites have
not been determined as yet. At the same time, in recent
years, some new experimental data on the crystal struc-
ture and chiro-optical properties of Bi12MxO20 ± δ crys-
tals has been obtained which, in some instances,
require the revision of the commonly used models sug-
gested for the description of some physical processes in
sillenites.
01 MAIK “Nauka/Interperiodica”
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The intense study of the physical properties of crys-
tals with the sillenite structure was triggered still in the
mid-1960s by the pioneering works performed on the
Bi2O3–GeO2, Bi2O3–TiO2, Bi2O3–Fe2O3, and Bi2O3–
SiO2 systems [11–14]. The first large Bi12GeO20 crys-
tals were grown in 1967 [15]. At the same time,
Bi12TiO20 single crystals were grown at the Kurnakov
Institute of General and Inorganic Chemistry of the
USSR Academy of Sciences [16]. In the following
years, numerous experiments on the growth of sillenite
single crystals by the Czochralski (from flux) and the
Stepanov methods (hydrothermal synthesis) and single
crystal films by the liquid-phase epitaxy, gas-phase
deposition (thermal, laser, and HF-sputtering), and
chemical transport methods were reported (the list of
the related publications can be found in [17]).

Most often, sillenite single crystals are grown either
by the Czochralski method or are synthesized under
hydrothermal conditions. It is these methods that were
used to grow single crystals of the following sillenites:
Bi12GeO20 (BGO), Bi12SiO20 (BSO), Bi12TiO20 (BTO),
Bi12MnO20 (BMnO), Bi24MePO40 (Me = Al, Ga, Fe),
Bi12PO20 ± δ (BPO), Bi12VO20 ± δ (BVO), Bi25FeO39
(BFeO), Bi25GaO39 (BGaO), Bi25TlO39 (BTlO),
Bi24B2O39 (BBO), Bi25AlO39 (BAlO), Bi38ZnO58
(BZnO), Bi38CoO58 (BCoO), Bi12CrxO20 ± δ (BCrO),
and also BSO-, BGO-, and BTO-based solid solutions.

In this review, we made an attempt to generalize the
information on the spectroscopic properties of silleni-
tes obtained for the last ten–fifteen years and to con-
sider these data together with the structural characteris-
tics of various sillenites.

2. CRYSTAL AND ATOMIC STRUCTURE 
OF Bi12MxO20 ± δ COMPOUNDS (M ARE THE 

ELEMENTS OF GROUPS II–VIII)

Sillenites are named after Swedish crystal chemist
L.G. Sillen, who studied polymorphism of bismuth
(III) oxide and was the first to establish the existence of
the metastable cubic body-centered γ-Bi2O3 modifica-
tion [18]. Thus, a rare mineral of this composition and
the phases synthesized in the Bi2O3–MxOy systems
(where M stands for the elements of groups I–VIII of
the Periodic Table) isostructural to γ-Bi2O3 were given
the name sillenites.

The experimental data on the interaction of the com-
ponents and the phase equilibria in the Bi2O3–MxOy

systems (where M are the elements of groups I–VIII of
the Periodic System) indicate the possible formation of
various phases with the sillenite-type structures of the
composition Bi12MxO20 ± δ due to interaction with the
Rb, Mg, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Ti, Pb, P, V,
As, Nb, Cr, Mo, W, Mn, Fe, Co, Ni, Ru, and Ir oxides.
Depending on the chemical nature of an M atom, these
phases can be either stable or metastable compounds or
else γ-Bi2O3-based solid solutions [17]. No phases with
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
the sillenite structure have ever been observed in sys-
tems not containing bismuth oxide.

The first sillenite-type structure was determined by
Abrahams et al. for bismuth germanate [19]. Later, the
X-ray diffraction refinement of the absolute atomic
configurations in bismuth germanate and bismuth sili-
cate [20, 21] and, somewhat later, also bismuth titanate
[22] showed isostructurality of these compounds. The
crystals described by the general formula Bi12MO20
(M = elements of groups II–VIII) are cubic and have
the pentagontritetrahedral symmetry described by the
sp. gr. I23. The coordinates of the equivalent atomic
positions and their point symmetry in the sp. gr. I23 are
indicated in [23].

The unit cell of Bi12MO20 contains two formula
units and is a cube, whose center and vertices are occu-
pied by Ge atoms tetrahedrally coordinated with oxy-
gen (Fig. 1a). The coordination of a Bi atom in the
24-fold position (24f) includes seven oxygen atoms
[19]. Oxygen atoms O(2) and O(3) are located in the
eightfold 8c positions on the threefold axes, whereas
the O(1) atoms are statistically distributed over the
24-fold position The M cations are located in the two-
fold crystallographic position 2a with the point symme-
try 23. The occupancy of the 2a position by Ge and Si
atoms is described as q(Ge) = 0.87(2) and q(Si) =
0.87(8) [19−21].

The structural models for Fe-, Zn-, Cd-, Mg-, Ni-,
and Co-containing sillenites were suggested under the
assumption that the oxygen sublattice of Bi12MxO20 has
no defects and that the electrical neutrality of the unit
cell is maintained due to oxidation of bismuth atoms in
the 2a position to the state Bi5+ [24–26]. However, the
presence of Bi5+ in the sillenite compounds contradicts
the experimental data on the phase equilibria in the
Bi2O3–MxOy systems and the chemical-analysis data on
the Bi12MxO20 ± δ crystals [17]. The fact of formation of
the sillenite phases with the component ratios 25 : 1
(Bi25MO40) and 12 : 1 (Bi24M2O41) in the Bi2O3–M2O5

systems (M = P, V) indicates possible rotation of Bi3+

ions in the tetrahedral positions or location of addi-
tional oxygen atoms in the unit cell, respectively. It
should also be indicated that the structural formula of
the metastable γ-Bi2O3 (Bi24Bi3+Bi5+O40) phase sug-
gested in [24] also allows location of Bi3+ ions in the
tetrahedral positions in the sillenite-type unit cell.

The neutron diffraction analysis of Bi12MxO20 ± δ sin-
gle crystals with different types of M cations in
Bi12Ti0.9O19.8, Bi12GeO20, Bi25GaO39, Bi12(V, Bi)O20 + x,
Bi12(Fe, P)O20, Bi25FeO39, and Bi38ZnO58 partly sum-
marized in [27] were then generalized in [28] and later
complemented with the neutron diffraction data for
Bi25TlO39 crystals [29] and X-ray diffraction data for
Bi12MnO20 [30] and Bi38CoO58 [31] single crystals.

Atomic structure of Bi12MO20 (M = Si, Ge, Ti, and
Mn) compounds. The M4+ cations (Ge, Si) in the unit
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Fig. 1. (a) Unit cell of Bi12MxO20 ± δ; (b) edge-sharing [BiO5]-polyhedra forming [Bi2O8]-dimers, which connect by translation the

identical [MO4]-tetrahedra; (c) the fragment of the Bi12Ti0.9O19.8 structure; and (d) the common fragment of the Bi25M3+O39 and

Bi38M2+O58 structures with an oxygen vacancy VO(3).
cell of ideal compounds with the sillenite structure are
located in two tetrahedral voids of the framework con-
sisting of edge-sharing [BiO5E]-polyhedra (where E
denotes the lone pair of bismuth electrons) and thus
form dimers [27, 28, 30] (Fig. 1). Unlike the data in
[19–21], the occupancy of positions 2a with Ge atoms
according to [27, 28] is q(Ge) = 1.00(3) and q(O(3)) =
1.00(3). For bismuth titanate, the occupancies are
q(Ti) = 0.90(8) and q(O(3)) = 0.95(1). Since the radius
of Ti4+ exceeds by 0.015 nm the optimum radius of
CR
Ge4+ in an ideal sillenite structure, the local stresses are
relaxed because the formation of Ti vacancies (about
10% of the total number of M positions). The formation
of each titanium vacancy is accompanied by the forma-
tion of two oxygen vacancies in the position O(3).
Therefore, the [BiO5E] polyhedra lose the common
vertex O(3) and are rearranged into trigonal [BiO4E]
bipyramids with a lone electron pair of a bismuth atom
in the equatorial plane (Fig. 1).
YSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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Atomic structure of Bi12( )O20 compounds
(A3+ = B, Al, Ga, In, Tl, Fe, Co, Mn and B5+ = P, V,
As). The unit cells of compounds with different cations
located in the tetrahedral positions, e.g., Bi24FePO40,
are characterized by varying Bi–O(3) distances in the
[BiO5] polyhedra corresponding to the varying M–O(3)
distance in the [MO4]n–-tetrahedron. The ratio of the A3+

and B5+ cations does not correspond to the equiproba-
ble filling of the tetrahedral positions, and the compen-
sation of the local stresses (caused by a considerable
difference in the Fe3+ and P5+ sizes) proceeds at the
expense of the vacancies in the M positions. In other
words, the composition of the compound can be written
as Bi24(Fe0.35P0.59h0.06)O40 (where h denotes a
vacancy).

Atomic structure of the Bi38M2+O58, Bi25M3+O39

(M2+ = Zn, Co and M3+ = Al, Ga, Fe, Tl), Bi24B2O39,
and γ-Bi2O3 compounds. In the unit cells of these
compounds containing cations in oxidation degree +3
or +2 (Bi25M3+O39, where M3+ = Al, Ga, Fe, Tl;
Bi38M2+O58, where M2+ = Zn, Co), one-half or two-
thirds of regular [MO4]-tetrahedra are substituted by
umbrella-like [BiO3E]-groups (Fig. 1) with the simul-
taneous formation of O(3) vacancy. The stoichiometric

formulas of the compounds are Bi12( )O19.50

and Bi12( )O20. The characteristic feature of
Bi24B2O39 is that the Bi : B = 12 : 1 ratio corresponds to
complete filling of the position 2a with boron atoms.
The presence of absorption bands corresponding to the
asymmetric valence ν3 and deformation ν2 vibrations of
triangular [BO3]-groups in the IR spectra of Bi24B2O39,
Bi24BPO40, and Bi24BVO40 indicates the trigonal coor-
dination of boron with oxygen [32].

The structure model of the metastable γ-Bi2O3 was
suggested on the basis of the neutron diffraction data
[28]. The occupancy of the tetrahedral positions with
[BiO3E]-groups in this model equals 80%, whereas the
remaining 20% of the 2a position are vacant.

Atomic structure of Bi12(Bi, V)O20 + d. The exces-
sive charge of the tetrahedral M5+ cation in the unit cell
of Bi12MxO20 ± δ with the cations in the oxidation
degrees +5 (P, V) is compensated with an additional
O(4) anion located in large voids of the framework in
the position 6b. The average Bi–O(3) distance in the
bismuth–oxygen polyhedron (2.742 Å) considerably
exceeds the Bi–O(4) distance (2.5833(5) Å), which
results in the redistribution of the valence strengths of
four bismuth atoms bonded to O(4). Since the Bi–O(3)
distance considerably exceeds the average value, it is
assumed that the Bi atoms is not bonded to O(3) and
that the O(4) oxygen provides the formation of triangu-
lar O(1b)–O(1c)–O(4) faces shared by pairs of 9% of
[BiO5E] polyhedra.

A1/2
3+ B1/2

5+

Bi0.50
3+ M0.50

3+

Bi0.67
3+ M0.33

2+
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Thus, the existence of a wide range of isomorphous
compounds with the sillenite structure is provided by
the possible variations in the bismuth–oxygen sublat-
tice. The changes in the size and the oxidation degree
of Mn+-cations in the tetrahedral 2a positions result in
the formation of O(3)-vacancies in the position 8c or
the location of an additional O(4) oxygen in the posi-
tion 6b, which gives rise to the mutual displacements of
Bi and O atoms and the change in the location of the
bismuth lone-pair with the formation of new coordina-
tion [BiOx] polyhedra in the distorted anion sublattice.
The existence range of the stable phases with the sille-
nite structure corresponds to the variation in the oxida-
tion degree of Mn+ cation within +2 ≤ n ≤ +5 (at n = +1
or n ≤ +6, these compounds cannot exist at all) and is
provided by the destruction of the framework of
[Bi2O8]-dimers with the change of the oxygen nonsto-
ichiometry in Bi12 O20 ± δ because of the change

in n [17].
It is seen from the description of the Bi12MxO20 ± δ

structure that with the change of the compound compo-
sition (i.e., the type and the oxidation degree of the Mn+-
cation upon the heterovalent substitution), the number
of atoms in the unit cell also changes. These changes
should manifest themselves in the fundamental optical
and chiro-optical characteristics of the crystals such as
the reflection spectra, refractive-index dispersion, and
optical rotation. At the same time, sillenites are also
characterized by the existence of only one type of
defects in the crystal lattice, e.g., the vacancies of
M-atoms in the centers of [MO4]n–-tetrahedra, vacan-
cies of O(3)-atoms, or the incorporated O(4)-atoms. It
is commonly believed that these defects provide the
additional absorption in the vicinity of the fundamental
absorption edge and the photochromic effect. In light of
new information on the sillenite structure, the model
description of these phenomena [7] seems to be insuffi-
ciently substantiated. In this study, we make an attempt
to consider the influence of the specific features of the
atomic structure of Bi12MxO20 ± δ compound on the opti-
cal and spectroscopic characteristics and to describe in
detail the influence of various defects on the additional
absorption in the vicinity of the absorption edge, the
circular dichroism (CD) spectra, and the photochromic
effect.

3. ELECTRONIC STRUCTURE OF COMPOUNDS 
WITH SILLENITE STRUCTURE

3.1. Reflection Spectra

In fact, reflection spectra are the only source of
information about the electronic structure of sillenite
crystals. The diffuse [33] and specular-reflection
[34−39] spectra of BGO, BSO, BTO, and BFeO crys-
tals have been studied in sufficient detail. The use of the
Kramers–Kronig relationships allowed the calculation
of the real and the imaginary parts of the dielectric con-

Mx
n+
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R

R

stant of crystals as well as some other characteristic
parameters of the electronic structure of sillenites.

The BSO and BGO spectra [34, 35] obtained over a
wide spectral range (2–35 eV) clearly show two bands
(Fig. 2). The center of gravity of the first band is located
in the vicinity of 5 eV, whereas that of the second one,
in the vicinity of 15 eV. These bands have fine structure
well seen at a low temperature (T = 130 K) [40].

In the energy range 2–10 eV (i.e., in the vicinity of
the first band), the reflection spectra of all the sillenites
are almost the same. The long-wavelength side of the
band contour has a rather sharp maximum (A) at E ≈
3.65 eV (λ ≈ 0.340 µm), which is characteristic of the
C

reflection spectra of all the sillenites. At the same time,
the reflection spectra also show some distinctive fea-
tures. Thus, the maximum of the fine structure of the
first band in the BFeO spectrum is displaced by 0.1–
0.3 eV to the long-wavelength range [38], and the rela-
tive intensity of the maximum A is much lower. At the
short-wavelength of this band, the structure is more
pronounced in comparison with the structures of the
other sillenite spectra [38]. The reflection spectrum of
BFeO different from the spectra of other sillenites indi-
cates the participation of a tetrahedral [FeO4]-complex
in the formation of the spectrum of electronic transi-
tions with a charge transfer, which, according to differ-
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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ent estimates, occurs in the vicinity of λ < 0.37 µm (ν >
27000 cm–1, E > 3.35 eV) [41]. 

This fact shows that the orbitals of the tetrahedral
[FeO4]-complex affect, although slightly, the electronic
band structure of BFeO. Unfortunately, there are no
published data on the reflection spectra of BFeO in vac-
uum ultraviolet, where these differences are expected
to be more pronounced.

An attempt to interpret the reflection spectra of sil-
lenites was made in [40]. Using the obvious correla-
tions between the BGO and the rhombohedral Bi2S3

[42] (an  semiconductor) structures, Futro [40]
managed to interpret the fine structure of the BGO
spectrum. Kityk et al. [43] used the method of local
pseudopotential to calculate the structure of the valence
and conduction bands in BGO and BSO crystals. In
turn, these calculations provided the determination of
the reflection spectrum, which coincides with the
experimentally measured spectrum of Bi4Ge3O12
orthogermanate [57] but does not coincide with the
BGO and BSO spectra [34–39, 44].

Thus, the recent results do not provide a reliable
interpretation of the reflection spectra and, thus, of the
electronic structure (the conduction and valence bands)
in the sillenite crystals. In this connection, we should
like to consider here the conclusions drawn from the
comparison of the reflection spectra of various silleni-
tes (especially, of BGO and BSO) with the well-known
reflection spectrum of the crystalline quartz [45, 46]
(Fig. 2) and the absorption spectra of Te [47–49], Se
[50, 51], and CdAs2 [52]. The long-wavelength edge of
the reflection spectrum of quartz and the fundamental
absorption of Te, Se, and CdAs2 have sharp maxima,
whose formation is associated with the excitation of a
Wannier–Mott exciton. We cannot exclude the proba-
bility that the first fine-structure maximum (A) of the
reflection spectra is also associated with an exciton for-
mation. The second band of the BSO reflection spec-
trum is formed in a shorter wavelength range (11.2–
17.2 eV), i.e., in the range of the maximum reflection of
quartz [45]. The positions of this band on the energy
scale in the BSO and BGO reflection spectra coincide
[34, 35]. This coincidence becomes dear from the com-
parison of almost identical reflection spectra of quartz
and GeO2 [53, 54].

Similar forms of the first band (3–10 eV) in the stud-
ied reflection spectra of sillenites and the diffusion-
reflection spectrum of bismuth oxide [33] show that
this band is caused by the electronic transitions to the
excited states, which are usually the p-orbitals of Bi3+-
ions and, partly, the orbitals of oxygen atoms [55, 56].
Thus, the reflection spectra of sillenites are associated
with electronic excitation of two weakly interacting
chromophores—the bismuth–oxygen [BiOx]n–-polyhe-
dra and [MO4]n–-tetrahedra. The model of weakly inter-
acting chromophores is often used for calculating elec-
tronic structure of multiatomic complexes and complex

A2
VB3

VI
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oxides. In particular, the model of non-interacting
structural motifs was used for calculating the electronic
structure of bismuth orthogermanate, Bi4Ge3O12
[55−57].

3.2. Optical Activity of Sillenites

The symmetry of the unit cells of sillenite crystals
shows that they are gyrotropic. As is well known, gyrot-
ropy manifests itself via optical rotation (OR) and cir-
cular dichroism (CD) [58]. Prior to the consideration
and analysis of experimentally measured chiro-optical
characteristics of sillenite crystals, consider the role of
chromophores in the optical activity by analyzing the
crystal structures. Here, we use an approach stated in
[59] in application to the cubic crystals [60].

The analysis of the the most perfect bismuth ger-
manate structure shows that it has two chromophores
which, in principle, can determine the chiro-optical
properties of sillenite-type crystals. One of these chro-
mophores is an asymmetric [BiO5]-polyhedron of the
symmetry C1, whereas the second one, the [GeO4]-
group of symmetry T. As earlier, we assume that these
chromophores only weakly interact with one another.

The electronic states of the first chromophore are
nondegenerate, and, therefore, the symmetry allows
any electronic transition in an electric, magnetic-
dipole, and electric-quadrupole approximations, as
well as in higher order multipole approximations.
Therefore, any transition is active in both absorption
and CD spectra (or makes a contribution to the optical
rotation). In this case, the tensor of the rotation force of
any electronic transition can be described as

(1)

where the tensor RM takes into account the contribution
of the (〈p〉〈 m〉)-mode, whereas the tensor RQ, the contri-
bution of the (〈p〉〈 q〉)-mode; 〈p〉 , 〈m〉 , and 〈q〉  are the
matrix elements of the electric, magnetic, and electric
quadrupole moments of the i–j transition. To obtain the
formula for the rotation-force tensor for a crystal of
symmetry T built by molecular aggregates of symmetry
C1, one has to average R with due regard for the sym-
metry operations of the group T. This averaging can be
performed by the method of projective operator [61].
As a result, we obtain that the contribution of the 〈p〉〈 q〉
mode is zero, and that the circular dichroism in any
electronic transition is determined by a pseudoscalar
quantity. In other words, the force of the unit-cell rota-
tion per one molecule equals

(2)

For the second chromophore (considered as an iso-
lated molecule of symmetry T), the situation is some-
what different. The wave functions of the states of such
a molecule are transformed either by one-dimensional
irreducible representations of A (ε and ε*) or the three-
dimensional irreducible representation of T. In this

R RM RQ,+=

R 1/3 p〈 〉 m〈 〉( ).=
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case, only the A–T transitions are allowed in the elec-
tric- and magnetic-dipole approximations and the elec-
tric-quadrupole approximation. Thus, the tensor 

has a nonzero value and at the same time the tensor 

also has the nonzero value. Averaging R' =  + 
over the operation of the group T, we arrive at the result
similar to that obtained in the first case, i.e.,  = 0,

whereas R' =  = 1/3(〈p'〉〈 m'〉).
Since we assumed that the two types of chro-

mophores in the unit cell interact weakly with one
another, the signs of R and R' are determined by the
concrete electron transitions of the chromophores and
can be arbitrary. The corresponding contributions to the
total optical rotation can either be summed up or be
subtracted from one another.

The presence of the characteristic defects in the
crystal lattices of sillenites (e.g., the oxygen vacancy
O(3) at the vertex of the [MO4]-tetrahedron lowers the
local symmetry of the M position. Therefore, the
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Fig. 3. Optical rotatory dispersion (ORD) spectra of
Bi12MxO20 ± δ single crystals with the sillenite structure:
(1) Bi12SiO20, (2) Bi12GeO20, (3) Bi25GaO39, (4) Bi38ZnO58,
(5) Bi25TlO39, (6) Bi12TiO20, (7) Bi24FePO40, and
(8) Bi12VO20 + δ [17].
C

[MO3h]-groups (where h is an oxygen vacancy) can be
considered as a new set of chromophores. Undoubt-
edly, these conclusions are also valid for bismuth–oxy-
gen polyhedra, three different types of which are char-
acteristic of the sillenite structures, e.g., of BGaO and
BFeO. Of course, all considerations of the rotation-
force tensor of a crystal with defects are analogous to
the those above.

In connection with the above stated, the conclusions
based on the assumption about the Td symmetry of
[MO4]-tetrahedra made in the studies of crystal gyrot-
ropy are erroneous, because they contradict the infor-
mation about the point symmetry of the position 2a
occupied by M-atoms in the sillenite structure or the
well-known statement (see, e.g., [62]) that the symme-
try of the unit-cell positions cannot be higher than that
of the point group of this unit cell.

3.3. Optical Rotatory Dispersion

The optical rotation and optical rotatory dispersion
(ORD) were first measured in [63]. However, the data
measured in the range of 0.4–0.55 µm turned out to be
erroneous. The correct ORD data for the BSO, BGO,
BTO, BGaO, and BZnO crystals were obtained in
[16, 33, 58, 64–66]; for BFeO, in [67]. These data
uniquely indicate that the electronic transitions local-
ized at [BiOx] structural fragments provide the contri-
bution to optical rotation. Later [68], it was assumed
that electronic transition of [MO4]n–-tetrahedral com-
plexes also make a contribution to the optical rotatory
dispersion. This fact was confirmed by the studies of
circular dichroism and optical rotary dispersion of
doped BSO, BGO, and BTO crystals. Optical rotation
and rotary dispersion in BTlO, BFePO, and BVO crys-
tals (Fig. 3) and the corresponding characteristics of the
well-known sillenite crystals are cited in this article as
reference material.

In some studies, the attempts were made to interpret
the experimental ORD data in terms of coupled oscilla-
tors [69], which are widely used in the interpretation of
the optical activity of crystals [70]. However, all the
attempts to apply this model to smooth ORD curves (by
approximating the experimental curves by the corre-
sponding “theoretical” formulas) yielded no informa-
tion on the chromophore type, rotation force, and the
position of the electron transitions providing certain
contributions to the rotation on the scale of electron
transitions [58]. Moreover, it was shown [58, 71] that
the approximation of smooth ORD curves by one-term,
two-term, etc., polynomials based on various theories
and models can be considered only as a convenient
empirical dependence. Even the approximation by two-
term formulas, which is in fact a multiparameteric
problem, has an ambiguous solution within the accu-
racy of the measurement of the rotation-angle of the
polarization plane. As a result, all the conclusions on
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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the gyrotropy nature, irrespective of the approximation
used, have no sense [58].

The experimental data show that the rotation values
for the BGO, BSO, BGaO, and BZnO crystals are
approximately the same, whereas the rotation values
for BFeO and BTO are considerably less within the
whole transparency range (Fig. 3). Since the concentra-
tions of [BiOx]-polyhedra are almost the same in all
crystals, the lower value of optical rotation indicates
that it depends on two chromophores—chains of bis-
muth polyhedra and tetrahedra. The study of the optical
rotation of vanadium- and phosphorus-doped BTO
crystals [72–74] provided the direct proof of an essen-
tial role of tetrahedral fragments of the structure in the
optical rotation in sillenites. Figure 4 schematically
illustrates the effect of electronic transitions in [MO4]n–

on optical rotation in sillenites [72]. In particular, in the
case of [VO4]3–, the 1t1–2e transition with the charge
transfer occurs in the vicinity of the frequency ν ≈
36200 cm–1 (E = 4.5 eV [75]), which results in consid-
erable reduction of optical rotation in vanadium-doped
BTO crystals. Our studies of optical rotation in hydro-
thermally grown Bi12VO20 + δ single crystals showed the
absence of optical rotation in the range 0.50–0.90 µm
[73]. In terms of the above schematic, the absence of
optical rotation in the whole transparency range seems
to be associated with the fact that the energy of the
1t1−2e transition in the [VO4]3–-complex equals the
energy of the s2 – sp transition Bi3+ in the [BiO5]-poly-
hedron and that the rotation forces Rij of these transi-
tions are also almost equal. Moreover, it should be
taken into account that the oxygen atoms O(4) in
Bi12VO20 + δ form triangular faces shared by pairs of
[BiO5E]-polyhedra.

Thus, it is possible to conclude that the optical
rotary and refractive-index dispersions are determined
by the electron excitation of [BiOx] polyhedral and the
[MO4]n– tetrahedral fragments of the structure.
Undoubtedly, weak electron transitions associated with
the excitation of the vacancy and dopant states, also
give certain contributions to the optical rotation, but
these contributions are insignificant. The estimates by
the well-known relationships show that at a sufficiently
high ∆εC ≈ 1 value, the anomaly in optical rotation is
as low as ∆ϕ ≈ 0.4°. Indeed, these anomalies are clearly
seen on the ORD curve of a BFeO crystal [76], but they
are insignificant in comparison with the total contribu-
tion of electronic transitions in [BiOx]-polyhedra and
[MO4]n–-tetrahedra to the optical rotation. It is not sur-
prising either that, in most occasions, the ORD curves
of doped and nominally undoped crystals are practi-
cally the same. The ORD data for cobalt- [77] and
nickel-doped [78] BTO and BSO crystals showed that
the optical rotation in these crystals is almost the same
as the optical rotation in undoped crystals, although,
knowing the position of the transition occurring with
the charge transfer in CoS4 and the [NiO4]6– -com-
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plexes (ν ~ 28000 cm–1 [41]), one could expect a con-
siderable effect of the optical rotation in the visible
spectrum range. However, the low cobalt and nickel
concentrations (<0.0025 wt %) in BTO and BSO crys-
tals did not allow one to reveal this effect within the
experimental accuracy.

Concluding this section, we should like to underline
some differences in the behavior of the ORD curves of
BGaO and BZnO crystals in comparison with the ORD
curves of BGO and BSO crystals [79]. In the range
0.40–0.50 µm, the derivative dρ/dλ for the BGaO and
BZnO is higher than that for BGO and BSO crystals
(Fig. 3), which can be associated with the excitation of
OA of chromophores ([BiMO3]) and an increase of the
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(4) 0.50 wt % V. (b) Illustrating the role played by transi-
tions of tetrahedral [MO4]n–-complexes accompanied by
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[17]: (1) partial contribution of the 6s2– 6sp transitions of
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sitions of tetrahedral [SiO4]4–-, [GeO4]4–-, and [PO4]3–-

complexes (ν ≈ 70 000 cm–1); (3) partial contribution of
[TiO4]4–-complex (ν = 50 000 cm–1); (4) partial contribu-

tion of [VO4]3–-complex (ν = 29 411 cm–1); (5) total optical
rotation in Bi12GeO20, Bi12SiO20, Bi24P2O41; (6)
Bi12TiO20; and (7) Bi24V2O41.
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Fig. 5. Absorption spectra of single crystals either grown from melts or synthesized hydrothermally: (a) (1) Bi12GeO20,
(2) Bi12SiO20, (3) Bi12TiO20, (4) Bi24P2O41 (hydrothermally synthesized), and (5) Bi24V2O41 (hydrothermally synthesized) and
(b) (6) Bi24B2O39, (7) Bi25GaO39, (8) Bi38ZnO58, (9) Bi25GaO39 (hydrothermally synthesized), and (10) Bi25TlO39 (hydrother-
mally synthesized).
Bi : M ratio from 12 : 1 (for BGO) to 25 : 1 (for the
BGaO and BZnO).

4. OPTICAL PROPERTIES OF CRYSTALS 
WITH SILLENITE STRUCTURE

4.1. Absorption Spectra and Circular Dichroism 
of Undoped Crystals

In the vicinity of the fundamental absorption edge
of the BSO, BGO, and BTO sillenites, their absorption
spectra have been repeatedly studied [7, 36, 39, 80, 81].
The results obtained can be summarized in a few
words. With a decrease in wavelength, the absorption
coefficient increases almost exponentially so that no
fine structure is observed in the vicinity of the funda-
mental absorption edge even at low temperatures.

Absorption in BGaO and BZnO has been studied
much less [79, 82, 83] and, similar to the recently
studied BBO spectrum (Fig. 5), shows no specific fea-
tures [84].

The absorption spectra of sillenites show that at α >
102–103 cm–1, the absorption curves are similar for all
the sillenites and are located at about ~0.4 µm [67, 80,
81]. The absorption curves of these crystals and the
absorption curve of bismuth oxide [85] are similar to
C

the absorption curves of the crystals heavily doped with
Al, Ga, etc. [79, 86, 87]. With a decrease in temperature
from 300 to 80 K, the fundamental absorption edge of
BSO, BGO, and BTO crystals is shifted to the short-
wavelength range. The estimates made by the approxi-
mate formulas show [80, 81] that the band gap is Eg =
3.25–3.28 eV at T = 300 K and Eg = 3.4 eV at T = 80 K.
With a further decrease in temperature, the position of
the absorption edge remains practically unchanged.

The absorption spectra of most sillenites in the
vicinity of the fundamental absorption edge are charac-
terized by the presence of the well pronounced band the
shape of a “shoulder” in the range 0.41–0.50 µm
(Fig. 5). The intensity of this band depends on the
growth conditions and the thermal treatment of the
crystals grown. Of all the Czochralski-grown crystals,
the most pronounced shoulder in the absorption spec-
trum is observed for BTO crystals. The shoulder of the
BGaO and BZnO spectra is rather feeble and observed
only in a more long-wavelength range at room temper-
ature; the BBO spectrum practically has no shoulder at
all. The absorption intensity of the spectra of nominally
undoped hydrothermally grown BTlO and BGaO sille-
nites in the range 0.40–0.60 µm is much higher [83]
than that for the corresponding Czochralski-grown
crystals. At the same time, the transparency of hydro-
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thermally-grown BSO and BGO crystals in the vicinity
of the shoulder was higher than for Czochralski-grown
one [88]. It seems that higher absorption intensity in
hydrothermally grown BTlO and BGaO crystals [83] is
associated with the formation of defects of a new
types—individual (OH)–-groups. The concentration of
hydroxyl groups in the hydrothermally grown crystals
attains the values from 1018 to 1020 cm–3 in BVO and
BPO crystals, which is much higher than the concentra-
tion of OH-groups in Czochralski-grown crystals
(1016 cm–3) [89]. The low intensity or the complete
absence of a shoulder is also characteristic of the
absorption spectra of heavily doped BSO, BGO, and
BTO crystals with “noncoloring” dopants Al, Ga, Zn, P,
etc. [78, 86, 87, 90, 91].

It was shown [68, 92] that the electronic transitions
determining the formation of the shoulder in the vicin-
ity of the absorption edge are best seen in the CD spec-
tra of BSO, BGO, and BTO crystals, as positive bands
with the maximum at λ = 0.429 µm (T = 300 K, E =
2.9 eV) for the right-handed crystals (Fig. 6). With a
decrease in temperature, the band is shifted to the short-
wavelength range of the spectrum and, at T = 80 K, its
maximum is located at λ = 0.410 µm (E = 3.0 eV) for
BSO. At T = 80 K, the CD spectrum of a thin (~30 µm)
BSO specimen shows the pronounced bending,
whereas the BGO spectrum, two negative bands at λ =
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0.3735 µm (3.32 eV) and λ = 0.3777 µm (3.28 eV) and
two bendings in the vicinity of 400 µm (Fig. 6b) [79].
The CD spectra of BTO and other sillenites show no
such bendings. The bending in the CD spectrum of
BSO crystals and the band maxima in the BGO spec-
trum are located in the range where the photoconduc-
tivity spectrum has the broad band and the excitation
band of the photochromic effect (Emax = 3.4–3.5 eV)
[87, 93, 94].

We believe that the atomic structure of BGaO [28]
result in the shift of the CD band of the right-handed
crystal to the long-wavelength range (Fig. 6a). At the
same time, similar to the case of BTO crystals, the CD
in the vicinity of the edge is positive [79]. The maxi-
mum of the corresponding CD band of right-handed
BZnO crystals is located approximately in the same
range as for BGaO crystals but has a negative sign at the
positive dichroism in the edge range [79].

The band intensity with the maximum at λ = 0.429–
0.450 µm in the CD spectra of Czochralski-grown sille-
nite crystals is maximal for BTO crystals with both Ti
and O(3) vacancies.

Of course, an increase of the shoulder intensity and
the corresponding CD band cannot be explained only
by a higher concentration of Ti or O(3) vacancies. The
intensity of these bands can also be dependent on the
concentration of vacancy complexes. In this connec-
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tion, it is worth mentioning the study of CD spectra of
BBO crystals [84]. The CD spectrum of right-handed
BBO crystal with the tetrahedra substituted by BO3-tri-
angles and the simultaneous presence of O(3)-vacan-
cies shows no such bands, whereas the CD in the vicin-
ity of the edge has a negative sign as in the case of BSO
and BGO crystals (Fig. 6a).

In the CD spectra of the hydrothermally grown
BTlO and BGaO sillenites, the corresponding band is
shifted to the long-wavelength range of the spectrum
with the maximum at λ = 0.480 µm. As is seen from
Fig. 6a, the intensity of the CD band in the spectra of
these crystals is rather high (∆εC ≈ 45 × 10–2 cm–1) and
exceeds the intensity of the corresponding band in the
CD spectra of BTO crystals (∆εC ≈ 14 × 10–2 cm–1)
[83]. The above results show that in this case, the CD
spectra provide a more detailed information on the
states determining the shoulder at the absorption edge
and the band on the CD spectrum. The structural char-
acteristics of the crystals dependent on the type of M
cations (which almost do not influence the behavior of
the absorption edge) give rise to considerable changes
in the CD spectra (up to the reversal of the dichroism
sign).

Concluding this section, we should like to empha-
size that all the absorption studies in the vicinity of the
fundamental edge can be divided into two groups. In
the first group, the interpretation of absorption in the
fundamental-edge range is based on the theory of inter-
band transitions developed for classical semiconduc-
tors with strong covalent bonding. This approach is
implicitly based on the assumption that sillenites can be
treated as classical semiconductors. However, the com-
parison of the dark conductivity of sillenites (ρT = 1011–
1013 Ω cm) [80, 82, 87] and intrinsic semiconductors
(ρT = 10–2–109 Ω cm) [95] shows that such a classifica-
tion is rather formal.

It was also shown [80] that the absorption curve at
α > 5 × 102 cm–1 is satisfactorily described by the
expression

(3)

For BSO crystals, σ0 = 0.71 at T = 300 K, which is typ-
ical of the situation where the edge of the exciton band
is broadened because of strong exciton–phonon inter-
actions [96]. Toyoda et al. [97] considered the mecha-
nism of the edge broadening and confirmed the strong
exciton–phonon interactions giving rise to exciton-
band broadening. Indeed, this conclusion is well justi-
fied because the peak A in the vicinity of the first max-
imum of the reflection spectrum of sillenites is seen less
distinctly than that in the spectra of quartz and semi-
conductor crystals mentioned above. It should also be
emphasized that the conclusions about strong exciton–
phonon interactions [96–98] are based on the absorp-

α α0 σ0 hν0 hν–( )/kT–[ ] .exp=
C

tion-edge measurements made at different tempera-
tures and approximated by formulas of type (3).

We believe that such an approach to the interpreta-
tion of the above facts is logically erroneous. If a spec-
trum with an isolated exciton transition occurring with
the broadening of the long-wavelength edge of the cor-
responding band (caused by strong exciton–phonon
interactions) satisfies the conditions

, (4)

(5)

then the absorption in the vicinity of the edge is
described by Eq. (3), but the reverse statement is
invalid. If absorption behavior is described by Eq. (3)
under the conditions (4) and (5), this does not necessar-
ily signify that edge broadening is caused by exciton–
phonon interactions, especially in the case under con-
sideration. Since the long-wavelength edge of the
reflection spectra of sillenites has several maxima, then
it is highly probable that the second, third, and fourth
maxima would give some contributions to absorption in
the range 3.2–3.4 eV; in other words, absorption would
be determined by several closely located electron tran-
sitions.

However, the data on the reflection spectra show
that exciton transitions play the key role in the forma-
tion of the absorption edge. It is also possible that the
negative bands in the CD spectrum in the range E ~
3.3 eV are associated not with the transition to the
vacancy states but rather with a number of Wannier–
Mott exciton transitions. However, at present, it is
impossible to characterize the nature of these bands
more definitely.

We believe that more definite conclusions can be
made only upon the detailed study of absorption and
circular dichroism in 0.1- to 10.0-µm-thick crystalline
films at 4.2 K.

4.2. Circular-Dichroism Spectra of Sillenites Doped 
with p-Elements 

The absorption spectra of a number of heavily-
doped sillenites are characterized by much lower
absorption intensity in the vicinity of the shoulder and
even by it complete disappearance and, sometimes, the
characteristic yellow color [79, 87, 91]. The change in
adsorption is accompanied by the change in the inten-
sity of the corresponding band in the CD spectrum. At
the same time, some experimental facts indicate than
doping does not necessarily decrease the absorption
intensity in this range [68, 79]. The change of the opti-
cal absorption because of a dopant incorporation into
the crystal is associated with the crystal chemistry of
sillenites and their solid solutions. However, the nature
of this phenomenon has not been studied as yet. The
first detailed study of the change in the optical charac-
teristics caused by doping of BGO, BSO, and BTO
crystals with Al2O3, Ga2O3, ZnO, and CdO oxides was

d αln( )/d ω( ) 1/kT∼

σ 1,<
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7
8

made on an example of absorption and CD spectra [79].
It was shown that the CD spectra are extremely sensi-
tive to doping. The CD spectra of sillenites doped with
Al2O3 and Ga2O3 oxides showed considerably changed
intensity of the CD band with the maximum at λ ≈
0.43–0.45 µm (Fig. 7a). The CD spectra of BGO and
BSO crystals doped with CdO at a concentration of
~2 mol % showed no band at λ ≈ 430 nm at all. At the
same time, the intensity of this band in the correspond-
ing Cd-doped BTO crystals increased by a factor of two
at the CdO concentration equal to ≈2 wt %.

The behavior of the CD band at λ = 0.429 µm (the
so-called “defect band”) for zinc oxide–doped silleni-
tes is also somewhat unusual. The intensity of the band
studied in the spectra of the BGO〈Zn〉  and BSO〈Zn〉
crystals doped with 1.5 mol % ZnO showed no consid-
erable changes, whereas the corresponding band in the
CD spectrum of BTO〈Zn〉 completely disappeared at
the ZnO concentration 0.1 wt % (Fig. 7b).

Thus, in most cases, the intensities of the CD band
and the shoulder at the fundamental absorption edge in
the CD spectra of sillenites doped with p-elements con-
siderably decrease. The existence of the shoulder in the
absorption spectra is associated with the vacancies of
metal atoms in the tetrahedrally coordinated positions,
whereas, according to the above consideration, the dis-
appearance of the shoulder and the band in the CD
spectrum is explained by the incorporation of p-ele-
ments into the tetrahedrally coordinated positions. In
BTO, titanium vacancies are always present in undoped
crystals, in other words, there are always some vacant
sites ready to incorporate Ga, Zn, and Al atoms.

At the same time, doping can only slightly change
the optical rotation [79]. Doping of crystals with p-ele-
ments results in filling the vacancies in the centers of
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
[MO4]-tetrahedra, and, thus, the formation of new chro-
mophores providing the contributions to the optical
rotation. However, the transitions accompanied by
charge transfer by these clusters belong to the far ultra-
violet range. Taking into account very low concentra-
tions of impurities, this contribution is also very small.
The role of the umbrella-like bismuth atoms in the opti-
cal rotation of doped crystals and formation of CD
spectra has already been discussed.

4.3. Absorption and Circular-Dichroism Spectra 
of Sillenites Doped with 3d-Elements

Manganese-containing sillenites. The element
most interesting for band identification in the spectra is
manganese. According to various authors, manganese
can occupy different positions: simultaneously tetrahe-
dral and interstitial positions with the orthorhombic
symmetry [99], the bismuth position [100, 101], and
the tetrahedral positions [102–105] with different oxi-
dation degrees of manganese (Mn+1 [99], Mn+2 [100–
106]. Mn+3 [102, 103], Mn+4 [30, 102, 103], and Mn+5

[105]).

According to the X-ray diffraction data [30], in the
crystal lattice of the sillenite Bi12MnO20, manganese is
tetrahedrally coordinated with oxygen and has the oxi-
dation degree +4 (the d3-configuration). The study of
the Raman and IR spectra of BMnO and BTO〈Mn〉
crystals [30, 102, 104] also indicates the existence of
[MnO4]4–-complexes. The vibration frequencies indi-
cated for the spectra of manganese-containing sillenites
located at 740 cm–1 (Raman spectrum) and 725 cm–1

(IR spectrum) are lower than those typical of [MnO4]3–,
but coincide with the empirically determined frequen-
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cies ν1 and ν3 of [MnO4]4– vibrations. The vibrations of
a [MnO4]5–-tetrahedron is not reflected in the sillenite
spectra because they belong to the vibration range of
the Bi–O sublattice. According to [30], the positions of
the bands in the MnK XANES spectra of BMnO and
MnO2 coincide. This indicates the presence of manga-
nese in the oxidation degree +4 in BMnO, whereas dif-
ferent intensities of these bands confirm different coor-
dination of manganese in these compounds. The state
of Mn4+ in BMnO is also confirmed by the gravimetric
measurements in the process of solid-phase synthesis
of the compounds from the mixture of Bi2O3 and
Mn2O3 (MnO) [17].

The possible presence of Mn5+ in sillenites is con-
firmed by the value of the unit-cell parameter of
BMnO, a = 10.216 Å, which fits the linear dependence
of the lattice parameter on the M–O distance in the
[MO4]-tetrahedron for sillenites with pentavalent cat-
ions, BVO, BCrO, and BPO [17]. The positions of the
bands in the IR spectra [30, 102, 104] can also be attrib-
uted to the [MnO4]3– vibrations. Although the frequen-
cies of these vibrations (725 cm–1) are lower than the
frequencies characteristic of this group, they correlate
with the frequencies of the corresponding [VO4]3–

(760 cm–1) and [CrO4]3– (745 cm–1) vibrations in BVO
and BCrO [107, 108]. The vibration frequencies of
these groups in sillenites are also lower than the corre-
sponding frequencies in the compounds with different
structures [109].

Earlier [110], we considered two possible interpre-
tations of the spectra of the manganese-containing sil-
lenites—the simultaneous presence in the crystal of
Mn3+- and Mn4+-ions and the presence of only Mn5+-
ions. The considerable overlap of the bands caused by
transitions of various manganese ions in the crystal
field of d-electrons did not allow us to make any deci-
sive conclusions. The positions and the relative intensi-
ties of the bands in the BMnO absorption spectrum in
the range 0.35–2.0 µm [103] (Fig. 8, curve 1) com-
pletely coincide with these parameters in the spectra of
manganese-doped BGO, BSO, and BTO crystals [99,
101–104, 106]. This indicates that the coordination and
the oxidation degree of manganese atoms in these crys-
tals are the same. The study of BSO crystals doped with
manganese and phosphorus simultaneously showed
that their spectra differ from the spectra of sillenites
doped with manganese alone (Fig. 8, curve 2). This
made it possible to separate the overlapping bands
formed due to various manganese ions. With due regard
for these data, the most probable manganese states in
sillenites are +4 and +5. In BSO〈Mn, P〉 , the Mn4+-ions
prevail, whereas in all the other sillenites, the concen-
trations of Mn4+- and Mn5+-ions are comparable.

Thus, within the symmetry Td, the band in the range
1.100–1.350 µm, which begins at 1.361 µm (7348 cm–1)
can be assigned to the transition 4T1(4F)  4T2(4F) of
CR
Mn4+. A similar band was also observed in the spectrum
of 12-tungstomanganic acid [111]. The band formed in
the BMnO spectrum with a shoulder at 0.90–1.10 µm
(8500–10500 cm–1) (Fig. 8) can be attributed to the
3A2  3T2(3F) of Mn5+ transition allowed in the mag-
netic dipole approximation and, therefore, is quite
intense in the CD spectra (Fig. 9). A narrow band at
1.251 µm (8000 cm–1) should be considered as non-
phonon zero–zero band formed due to the spin-forbid-
den 3A2  1E of Mn5+ transition, whereas the bands
with the maxima at 1.211 and 1.296 µm are vibron 0.0–
1.νn and 0.νn–1.0 bands with the excitation of the defor-
mation vibrations (νn ≈ 270 cm–1), where νn – νA or
νn − νE are the vibration frequencies of the tetrahedral
[MnO4]3–-complex or the Bi–O sublattice. The next
band in the spectrum of manganese-containing silleni-
tes at 0.68–0.90 µm (13000–11300 cm–1) is attributed
to the superposition of the 3A2  3T1(3F) and 3A2 
3T1(3P) transitions allowed in the electric dipole
approximation. The vibron structure at the contour of
this band correlates with the frequency ν3 ~ 730 cm–1 of
the symmetric vibration of [MnO4]3–. A similar absorp-
tion spectrum of the [MnO4]3–-complex was also
observed for Sr5(PO4)3Cl〈Mn〉  [112]. The remaining
bands should be attributed to the transitions in the
Mn4+-induced crystal field. The low-intensity bands at
0.57 and 0.62 µm (17700 and 16130 cm–1) correspond
to the transition 4T1(4F)  4T1(4P) which manifests
itself as a negative band in the CD spectrum (Fig. 9).
The electric-dipole 4T1(4F)  4A2(4F) transition
should be associated with an intense band in the CD
spectrum with the maxima at 0.46 and 0.42 µm (21600
and 23700 cm–1). Two bands in the absorption spec-
trum correspond to the latter maxima (Fig. 8).

The crystal exposed to the blue light (λ ≤ 500 nm
has a higher absorption in the spectrum ranges corre-
sponding to the bands due to the d–d transitions of
Mn4+ and a lower absorption in the range of the d–d
transitions of Mn5+ [102]. It also provides the formation
of a band in the range 0.952–1.251 µm (8000–
10500 cm–1) [105] due to reversible recharge of man-
ganese, Mn5+  Mn4+, in the magnetic circular
dichroism (MCD) spectrum [102].

Upon vacuum annealing, the BTO〈Mn〉  crystals
loose the color so that their absorption spectrum
becomes almost identical to that of BTO [102, 103] (if
the low-intensity band in the range 0.60–0.73 µm with
the maximum at 0.65 µm is ignored). Despite the fact
that there is no unique opinion about the nature of this
absorption band [99, 103, 105], no detailed study of
this spectrum has been undertaken as yet. In this range,
the CD spectrum of an annealed crystal shows a weak
positive band. There is a pronounced bending at
0.50 µm coinciding with the position of the first band in
the excitation spectrum of “green” luminescence [char-
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obtained at 300 K.
              
acteristic of tetrahedral Mn2+ (d5)] (Fig. 10). The struc-
ture of the luminescence spectrum of BTO〈Mn〉  is sim-
ilar to the absorption spectrum of tetrahedral Fe3+ (d5)
complexes in the range of transitions occurring with the
charge transfer (1t1 – 2e, 1t1 – 4t2, …). It is well known
that the selection rules forbid all the transitions for d5,
which, therefore, cannot be observed in the absorption
spectrum of BTO〈Mn〉 at low manganese concentra-
tions. Upon annealing in the oxidative atmosphere, the
specimen spectra acquire the initial form [102]. The
transformation of the absorption spectra similar to the
transformation upon vacuum annealing also takes place
upon the exposure of BGO〈Mn〉 and BSO〈Mn〉 crystals
to the blue light at low temperature (1.8 K) [99]. Thus,
one can draw the conclusion that vacuum annealing and
exposure to the blue light of manganese-containing sil-
lenite crystals reduce the oxidation degree of manga-
nese to +2.

Chromium-containing sillenites. Spectra of all the
chromium-containing sillenites are similar. They con-
sist of overlapping bands [101, 104, 107, 113–115]
(Fig. 11) and remind the analogous spectra of manga-
nese-doped crystals. A diffuse-reflection spectrum of
BCrO [107] is similar to the BMnO spectrum [103].
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
                                                           

Today, it is commonly believed that chromium
atoms in sillenites have the tetrahedral environment
[104, 107, 116–118], but the charge state of chromium
has not been determined as yet.

The change of the band-intensity ratio in the absorp-
tion and CD spectra of sillenites exposed to the blue
light and annealed in vacuum (Figs. 11, 12) leads to a
conclusion about the simultaneous existence of chro-
mium with two degrees of oxidation [101, 109, 113,
117, 118]. Thus, the bands observed can be divided into
two systems [107, 117]: (I) bands in the ranges 1.000–
1.176  µ  m (8500–10 000 cm  –1  ), 0.714–0.834  µ  m
(12 000–14 000 cm

 

–1

 

), and 0.500–0.541 

 
µ

 

m (18500–
20000 cm

 

–1) and bendings in the range 0.671–0.685 µm
(14600–14900 cm–1), whose intensities increase upon
the crystal exposure to the blue light or annealing
and (II) bands in the ranges 0.870–1.053 µm (9500–
1500 cm–1) and 0.455–0.555 µm (18000–22000 cm–1),
which disappear upon such a treatment.

The position of the bands and the ratio of their inten-
sities in system (I) are well consistent with the spectra
of tetrahedrally coordinated Cr4+ (d2). For the d2-con-
figuration in a field of the Td symmetry, the spin-
allowed transitions are those from 3A2 to 3T2, 3T1(3F),
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and 3T1(3P). According to [107, 117], the bands at λ1 =
1.000–1.176 µm (8500–10 000 cm–1), λ2 = 0.823
(12157 cm–1), and λ3 = 0.537 µm (18600 cm–1) corre-
spond to these transitions. However, by virtue of the
restrictions imposed by the selection rules, the intensi-
ties of the 3A2  3T2 and 3A2  3T1(3P) transitions
in the absorption spectra are low in comparison with
the intensities for the transition 3A2  3T1(3F)
(Fig. 11). The 3A2  3T2 transition is allowed in the
magnetic-dipole approximation, whereas the transi-
tions 3A2  3T1(3F, 3P), in the electric-dipole approx-
imation. This explains the considerable circular dichro-
ism in the vicinity of λ = 1.00 µm (10000 cm–1). The
low-intensity band with the nonphonon line at λ =
1.274 µm (7850 cm–1) observed at the long-wavelength
edge can be attributed to the 3A2  1E transition of a
tetrahedral Cr4+ ion. It should also be emphasized that
all the observed bands have the vibron structure corre-
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C

lating well with the frequency of the symmetric vibra-
tions ν3 of the [CrO4]4– complex in the excited state
[107].

Band system II corresponds to the electron transi-
tions of a tetrahedrally coordinated Cr5+ (d1) ion [107,
117], The [CrO4]3– spectrum is characterized by only

one transition in a crystal field 2E  2T2( e2). The
long-wavelength band initiated from a narrow non-
phonon line at λ = 1.042 µm (ν = 9598 cm–1) in the
BTO〈Cr〉  crystals [117] and at λ = 1.036 µm (ν =
9651 cm–1) in the BGO〈Cr〉  and BSO〈Cr〉  crystals
[119]) attributed just to this transition. The shape of this
band, the presence of a series of narrow lines at its con-
tour, and its position on the frequency scale correspond
to the well-known [CrO4]3– spectra in the Ca2(PO4,
CrO4)Cl and Ca2(VO4, CrO4)Cl crystals [120, 121].
The study of the fine structure at 10 K showed [117]
that narrow lines observed in the range of this band
form regular “progressions” with the origin at λ = 1.042
(9598 cm–1) and λ = 0.970 µm (10314 cm–1) reflecting
interaction of the fine structure with the lattice and non-
symmetric vibrations ν4 of the [CrO4]3–-complex. The
existence of the second origin of the vibrational pro-
gression can be a consequence of the vibron interac-
tions with the excited local vibrations of a nonsymmet-
ric type ν3 of the above complex. This result contradicts
the conclusions drawn in [119], where an analogous
series of narrow lines in the spectra of Cr-doped BGO
and BSO crystals was attributed to the interaction of
electronic states of chromium in the interstitial position
with the orthorhombic symmetry with lattice vibra-
tions. However, using the tables of line positions given
in [119], one can reveal the similar regular progressions
with the origins at λ = 1.039 (9621 cm–1) and λ =
1.036 µm (9651 cm–1) in the BGO and BSO absorption
spectra and the period of ~300 cm–1 corresponding to
the nonsymmetric vibrations ν4 of the [CrO4]3– com-
plex in the excited state.

Another band with the maximum at λ = 0.4808 µm
(20800 cm–1) also belonging to band system of II
should be compared with the charge-transfer band cor-

responding to the transitions 2E  2T1( ). The con-
siderable intensity (f ≈ 10–1) of this band in the absorp-
tion and CD spectra (Figs. 11, 12) [107, 118] is charac-
teristic of the transitions occurring with the charge
transfer.

The above data and the IR spectra of the chromium-
containing sillenite [104, 107] show that in these crys-
tals, chromium is in two oxidation degrees, Cr4+ (d2)
and Cr5+ (d1), and is tetrahedrally coordinated with
oxygen. Vacuum annealing and exposure of crystals to
the blue light results in Cr5+  Cr4+ recharge. The
reduction of chromium to lower oxidation degrees
takes place. A similar degree of chromium oxidation
was also observed in MCD spectra of BGO〈Cr〉 crystals

t1
5

t1
6t2

1
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[116]. However, a relatively narrow spectral range stud-
ied in [116] ∆λ = 0.357–0.833 µm (12000–28000 cm–1),
considerable width of the bands, and no obvious corre-
lation with the absorption and CD spectra did not allow
a reliable interpretation of the results.

There is no unique opinion about the position of
chromium in the lattice of doped sillenites. Considering
the experimental data on axial compression, Wardzyn-
sky and Szymczak [119] came to a conclusion that
chromium occupies the interstitial position with the
orthorhombic symmetry. However, there are no typical
[CrO4]2– vibrations in the IR spectra of chromium-con-
taining sillenite [104, 107]. The same reasons make the
conclusion drawn in [101] about the octahedral sur-
rounding of chromium in the oxidation degree +3 quite
dubious. The EPR studies indicate possible existence of
chromium in oxidation degrees +5 and +4 [113, 122, 123].

Iron-containing sillenites. Almost all the phases
with the sillenite structure can be doped with iron over
a wide concentration range. The spectroscopic charac-
teristics of iron-containing compounds Bi25FeO39 and
Bi24FePO40 were studied in [67, 76, 124].

The absorption spectra of all the iron-containing sil-
lenites are similar [76, 124–127]. The BFeO and Fe-
doped BSO spectra [67] in the range 0.4348–1.000 µm
(10000–23000 cm–1) have a number of bands charac-
teristic of Fe3+ (d5) in the tetrahedral field of ligands at
low temperature. In the IR range 1.0–2.0 µm (5000–
10000 cm–1) has a band attributed to 5E  5T2 transi-
tion of the complex [FeO4]6– (d6) of divalent iron [67]
also present in the BFeO crystal. A similar band was
also observed in the absorption spectrum of BTO〈Fe〉
crystals (Fig. 13). The spectrum of vacuum-annealed
BTO〈Fe〉  crystal did not show such a band [128]. Upon
crystal exposure to the light with the wavelength λ ≤
500 nm, the band intensity increases [129]. The low
intensity of the 5E  5T2 (Fe2+) transition with the
oscillator strength coinciding (by the order of magni-
tude) with the oscillator strength of the transition
6A1  4T1 for Fe3+ indicates a very low Fe2+ concen-
tration. Thus, the optical properties of iron-containing
sillenites are determined by the [FeO4]5–-groups, i.e.,
Fe3+ ions.

The CD spectroscopy turned out to be the most
informative method of studying the spectra of the iron-
containing sillenite. As is seen from Fig. 14, the CD
spectra obtained even at room temperature clearly show
the transitions that can hardly be revealed in the absorp-
tion spectra. The CD spectra clearly show negative
bands with the maxima at λ1 = 0.725, λ2 = 0.615, λ3 =
0.525, and λ4 = 0.485 µm. Similar to other iron-contain-
ing sillenites [76, 124, 128], one can distinguish three
maxima on the broad-band contour at λ1. In the range
0.85–1.5 µm, i.e., the first absorption band, no CD sig-
nal was observed.
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The CD spectra of unannealed crystals differ from
the corresponding spectra of annealed crystals—they
indicate a strong additional negative contribution
[76, 128] whose intensity linearly increases with the
approach to the fundamental absorption edge (Fig. 14).
Similar features were also observed for the absorption
spectra of annealed (Fig. 13) [76, 128] or light-exposed
(λ ≤ 0.50 µm) [129] crystals in comparison with the
spectra of unannealed and light-unexposed crystals.
However, an additional contribution observed in the
CD and absorption spectra cannot be explained only by
the presence of iron in the specimens, because this con-
tribution was never observed in the spectra from the
crystals doped with iron and phosphorus simulta-
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neously. The positions of the band in the MCD spectra
of BFeO crystals [76] correlate with the positions of
these bands in the CD spectra. Electron transitions pro-
viding the additional linear contribution to the CD
spectra are seen in MCD spectra as a broad positive
band in the range 0.68–0.78 µm.

The constant intensities of the d–d bands in the CD
spectra of BFeO crystals prior to and upon vacuum
annealing (with due regard for the additional linear
contribution) [76, 128] and the constancy of the mag-
netic susceptibility of BTO〈Fe〉 crystals [130] indicate
the preservation of the oxidation degree and the coordi-
nation of iron atoms. This is also confirmed by the coin-
cidence of the ORD curves of BFeO crystals prior to
and upon vacuum annealing (Fig. 14) [76]. The optical
rotation of right-handed sillenites depends on the nega-
tive contribution from the transition of the tetrahedral
[FeO4]5– complex with the charge transfer which,
according to the estimates [128], is located in the range
ν ≈ 28000 cm–1. Thus, vacuum annealing of iron-

0.5 0.7 0.9 1.1 1.3 1.5
λ, µm

30

20

10

εC, cm–1

1

2

Fig. 13. Absorption spectra of Fe-doped Bi12TiO20 crystals
(1) prior to and (2) upon vacuum annealing obtained at T =
300 K [128].
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containing sillenites is not accompanied by recharging
of Fe3+.

However, the EPR studies showed [131–133] that,
similar to the case of manganese- and chromium-con-
taining sillenites, Fe3+ can also be recharged. Upon
exposure of the BSO〈Fe〉  and BGO〈Fe〉  crystals to the
light with λ = 0.350 µm at 77 K, the signal due to Fe3+

disappears. It is believed that this is associated with the
Fe3+  Fe2+ or Fe3+  Fe4+ transitions; however,
this opinion was not confirmed experimentally. A con-
siderable photochromic effect was also recorded at the
same temperature [134, 135]. The coincidence of the
bands due to photochromic-effect excitation [129] in
BTO〈Fe〉 crystals with the corresponding band in the
spectra of sillenites containing other transition ele-
ments leads to a conclusion that recharge is accompa-
nied by iron reduction, i.e., the formation of Fe2+. This
process is characterized by filling of the shallow traps
in the band gap of crystals with the thermal-activation
energy equal to 0.3–0.4 eV [129]. In turn, this does not
allow the observation of recharge at room temperature.
Thus, its effect on the optical spectra is negligible.

In this case, the additional contribution to the CD
and absorption spectra at room temperature is provided
by optical centers formed due to interaction of [FeO4]5–-
tetrahedra and the closest [BiOx]-polyhedra. The
changes in the bismuth–oxygen sublattice or the phase
composition (the presence of a [PO4]-group) upon vac-
uum annealing result in the transformation of the state
of the [FeO4]-complex caused by the change in the
valence strengths of Bi–O bonds along the Fe–O–Bi
directions.

Vacuum annealing of iron-containing sillenites
results in disappearance of both active centers (giving
the contributions to CD and MCD spectra, but not
affecting the optical rotation and optical rotatory dis-
persion) and the centers in the near IR range, which are
inactive in the CD spectra.

Thus, the knowledge of the nature of both active and
inactive centers would provide new information about
crystal chemistry of sillenites and the physical mecha-
nism of ion recharge in photoconductive materials.

Cobalt-, nickel-, and copper-doped sillenites. The
absorption spectra of cobalt-doped sillenites in the
wavelength range 0.4–2.0 µm (5000–25000 cm–1)
[77, 136] have two broad bands at 1.25–2.00 µm
(5000–8000 cm–1) and 0.5882–0.7143 µm (14000–
17000 cm–1) consisting of several overlapped compo-
nents (Fig. 15). These bands correspond to the 4A2 
4T1(4F) and 4A2  4T1(4P) transitions in the crystal
field due to a tetrahedrally coordinated Co2+ (d7). This
is also confirmed by the information obtained from the
CD and MCD spectra [77, 137].

Along with the above bands, the CD spectrum in the
0.500–0.540 µm range also has a negative band which,
similar to the “defect” band with the maximum at
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
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430 nm, is not associated with the d–d transitions of
cobalt and, thus, should be considered as the manifes-
tation of the effect of a certain “defect center” [77].
This band correlates with the band in the photoinduced-
absorption spectrum. Taking into account the concen-
tration character of the intensity variation of the band at
0.500–0.540 µm, we assumed [77] that this band is
formed due to [BiO3E] polyhedra in a doped crystal
characteristic of sillenites with cations in the oxidation
degrees less than <+4. Another possible explanation of
this band is the incorporation of a noncontrollable
impurity facilitated by cobalt. The possible explanation
of the formation of such a defect center suggested in
[77] should be complemented with possible formation
of a polaron due to excitation of the photochromic
effect. The models with participation of polarons are
widely used in the description of thermo- and electro-
chromic effects in disordered media [138].

The presence of nickel in tetrahedral lattice posi-
tions of doped sillenites is reliably established in the
range of transitions in a crystal field in both absorption
and CD spectra [78, 137] (Figs. 16, 17). The absorption
spectra show the bands whose energies correspond to
the transitions 3T1(F)  3T2(F), 3T1(F)  3A2(F),
3T1(F)  1E(D), and 3T1(F)  3T1(P) of the tetrahe-
drally-coordinated Ni2+. The shape of CD band in the
region of the 3T1(F)  3T1(P) transition repeats the
shape of the contour of the absorption band consisting
of at least three components. The structure of this band
is associated with the spin–orbital interactions [139,
140] both in the ground and the excited states, which is
confirmed by the MCD data [78].

The CD spectra in the vicinity of the fundamental
absorption edge of BTO〈Ni〉  crystals showed a consid-
erable increase of band intensity in the range of the
“defect” band in comparison with the intensity of this
band for undoped crystals. At the same time, the sign
reversal of circular dichroism is observed in the range
of λ ≤ 0.420 µm as in the the case of BTO〈V〉  crystals.
Such a behavior of circular dichroism indicates the for-
mation of additional centers in the Ni-doped structure.

Similar to other sillenites, the Co- and Ni-doped
BTO and BSO crystals show the photochromic effect
[77, 78]. However, an increase in the photoinduced
absorption in the region λ ≤ 0.550 µm does not influ-
ence the intensity of the d−d bands. This fact indicates
that photoexcitation is not accompanied by recharge of
Co2+ and Ni2+.

The absorption spectra of Co- and Ni-doped silleni-
tes were also studied in [98, 141, 142]. However, the
dopant concentrations were too low, and therefore the
spectra obtained did not reveal nickel in the specimens
[136, 142]. Although the experimental data [141] gave
no rise to any doubt, the obtained spectra were not
interpreted. The attempts to explain the results by the
substitution of the bismuth in the pseudooctahedral
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
positions in the sillenite lattice by cobalt and nickel are
not justified and contradict the known structural data.

It is well known [143] that no compounds with the
sillenite structure are formed in the Bi2O3–CuO system.
However, the study of the absorption spectra of copper-
doped sillenites showed [129, 144, 145] that copper is
incorporated into the tetrahedral positions in the lattice
and has the oxidation degree +2. The fact of Cu2+ incor-
poration into the tetrahedral positions in sillenites is
also confirmed by the EPR studies of isostructural BTO
powders and copper-doped (up to 2 wt % Cu)
Bi12GeO20 single crystals [146].

In the range 1.0–2.0 µm (5000–10 000 cm–1), the
BTO〈Cu〉  and BSO〈Cu〉  absorption spectra show a
broad band corresponding to the 2T2  E2 transition
in the crystal field of the [CuO4]6–-complex. In the
range of nonphonon line of this transition, the MCD
spectrum has the form of the B-term [137], which indi-
cates splitting of the 2T2 state, which is induced by the
Jahn–Teller effect and the spin–orbital interaction.

The absorption spectra in the vicinity of the funda-
mental absorption edge of undoped and copper-doped
sillenite crystals differ insignificantly, which indicates
that the transitions with charge transfer occur in the
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range λ < 0.4 µm (ν ≥ 25000 cm–1). Nevertheless, these
transitions provide the contribution to ORD and influ-
ence the CD spectrum in the vicinity of the defect band
with the maximum at λ = 0.430 µm [145].

The BGO〈Cu〉, BSO〈Cu〉, and BTO〈Cu〉 crystals
show considerable photochromic effect at room tem-
perature [129, 144, 145]. The positions of the bands in
the spectrum of additional absorption photoexcited in
copper-doped crystals and the positions of the excita-
tion bands of photochromic effect correlate with the
positions of the corresponding bands for undoped sille-
nites [145]. Thus, the photochromic effect in undoped
and copper-doped crystals is caused by the same cen-
ters. The complete analogy between the photoinduced
absorption spectra and additional absorption spectra
caused by vacuum annealing of copper-doped crystals
[129] indicate that the photochromic effect has an elec-
tronic mechanism. In photoexcitation, the formation of
the additional absorption band in the visible range of
the spectra is accompanied by a decrease of the inten-
sity of the band caused by the 2T2  E2 transition,
which indicates recharging Cu2+  Cu+ [129].

This result makes invalid the model of the photo-
chromic effect suggested by Borowiec [144] and based
on the interpretation of the photochromic effect by
charge transfer between the center Cu2+ in the intersti-
tial position 6b and the tetrahedrally coordinated Cu2+.
The equivalence of the excitation of the photochromic
effect in undoped and copper-doped BTO crystals
would have indicated the presence of interstitial Cu2+

centers also in undoped crystals. The existence of Cu2+

in the interstitial 6b position also contradicts the EPR
data [146].
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Fig. 16. Absorption spectra of Ni-doped BTO crystal
(0.23 wt % of Ni2O3 in the charge) [78].
C

4.4. Absorption Spectra of Sillenites Doped 
with 4d- and 5d-Elements

In recent years, a number of publications on spectro-
scopic properties of sillenites doped with atoms of 4d-
and 5d-elements have appeared [147–151]. However,
since most of the authors were interested in the photo-
chromic effect [147, 149, 150], no serious analysis of
the oxidation degrees of the dopants and the spectra
obtained have been made.

As was shown in [147–151], the absorption and
photoinduced absorption spectra of Nb-, Mo-, Cd-, Rh-,
and Re-doped sillenite crystals showed no changes
from the spectra of the respective undoped sillenites.
The lower absorption in BTO〈Nb〉 crystals in the spec-
tral range λ < 500 nm and the concentration quenching
of the photochromic effect similar to that observed in
sillenite doped with pentavalent vanadium and phos-
phorus are explained by incorporation of an M5+ cation
into the tetrahedral positions of the structure [148]. The
spectra of the photoinduced absorption of Ru- and Os-
doped BSO crystals in the visible and near IR range
have the bands attributed to the transitions occurring in
a crystal field [149]. These bands indicate the recharge
of Ru and Os, also observed in the MCD spectra of
BSO〈Ru〉 crystals [149]. A narrow band at 9380 cm–1

and the bands at 16500, 18000, 20000, and 24000 cm–1

are attributed to the substitution of Bi3+ in the pseu-
dooctahedral position by Ru3+ [149]; however, this
assumption is not sufficiently justified.

It should also be indicated that the absence of the
data on the dopant concentration in the grown crystal
(and not in the starting charge) considerably reduces
the value of some of the published data. Since the coef-
ficients of the 4d- and 5d-dopants incorporation are
much less than unity, some of the observed (or unob-
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Fig. 17. (a) CD and (b) MCD spectra of (1) undoped and
(2) Ni-doped BTO crystals [78]. 
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served) effects can be caused merely by a low doping
level.

5. MODELS OF OPTICAL CENTERS 
IN SILLENITES

The results considered and analyzed in this review
concern mainly the optical, chiro-optical, and photo-
chromic properties of sillenite crystals containing
d-elements. Undoubtedly, the photoinduced processes
occurring in these crystals also influence the photoelec-
tric characteristics not considered in this review. The
most important practical problem is the nature of local
centers giving rise to the specific behavior of photo-
chromic effect and photoconductivity in sillenites. We
believe that the relation between the composition,
structural characteristics, and spectroscopic and chiro-
optical properties (ORD and CD) of the compounds
with the sillenite structure established in this study
would also be useful for better understanding the nature
of the photochromic effect in these materials.

At present, the photoinduced phenomena in sillenite
crystals are intensely studied by traditional spectro-
scopic and relatively new methods such as spectros-
copy in polarized light and, in particular, the method of
optically detectable paramagnetic resonance [152].

There are numerous experimental data on the photo-
induced properties of sillenites and, in particular, their
photochromic properties. However, most of the experi-
ments were made on the BSO and BGO and, in some
instances, on BTO single crystals undoped or doped
with s-, p-, and d-elements, whereas the numerous
other representatives of this large class of inorganic bis-
muth oxide-based compounds are still unstudied [17].

Various models were suggested to interpret the
nature of the centers responsible for the formation of
the shoulder in the absorption spectra, the defect band
in CD spectra, and photoinduced absorption in silleni-
tes. In particular, the photochromic properties of BSO,
BGO, and BTO crystals were explained in [94, 153] by
the presence of oxygen vacancies (the so-called F+ and
F++ centers) and a complex “defect center” formed by a
vacancy of an M-atom (VSi, Ge), an oxygen vacancy
[VO], and a Bi5+-ion. It is believed [94] that the forma-
tion of this defect center [VGeVOBi5+] provides the
charge compensation in the lattice. However, the model
of this complex center is inconsistent with the modern
crystallochemical data. Moreover, this “complex bis-
muth ion” should have had a nonzero effective charge.
It is often stated that this defect center is responsible for
the formation of the 2.3- to 2.8-eV energy levels. The
excitation of charge carriers from these levels to the
conduction band and their subsequent capture by the
0.1–1.5-eV levels determine the spectrum of the photo-
induced absorption in sillenites. There is still no unique
opinion about the nature of the centers responsible for
the 0.1- to 1.5-eV levels in the band gap.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
Moreover, the models suggested in [94] and [87]
(the latter considers a Bi5+-ion located in the tetrahedral

position of the structure, [ ], as a photosensitive
optical center) are based on the Craig and Stephenson
hypothesis on the presence of Bi5+ ions in the BZnO,
BFeO, and γ-Bi2O3 compounds [24]. This hypothesis
proved to be fruitful for the synthesis of new phases of
complicated compositions with the sillenite structure
[17] but was not confirmed neither by the methods of
the physical and chemical analysis nor by the neutron
diffraction data on the atomic structure of sillenites of
various compositions [28].

A model of a center consisting of a -ion and a
hole delocalized at the surrounding oxygen ions (the
so-called Bi4+ center or electrically neutral [BiO4]0-
center) was suggested in [137, 154] on the basis of the
data indicating the presence of a certain photosensitive
paramagnetic center in BSO single crystals. It was
assumed that the “antistructural” BiM centers are the

main intrinsic defects in sillenites. To ionize  by
the photomethod, an energy of 2.4 eV is required. Pho-
toionization of Bi3+ or “dressing of Bi4+ by a hole delo-
calized toward the surrounding oxygens,” is provided
by the capture of one of 6s-electrons of bismuth by oxy-
gen vacancies. We believe that such a center including
a Bi4+ ion is quite formal, because it does not take into
account the specific electronic structure of bismuth.
Moreover, Briat et al. [137] themselves recognized that
ionized oxygen vacancies (F+, F++ centers) or ions of a
noncontrollable 3d-impurity always present in sillenite
crystals can play the role of paramagnetic centers in
Bi12MxO20 ± δ. The NMR studies revealed magnetic
fields of about 200 G at 209Bi nuclei in some bismuth
oxides (α-Bi2O3, Bi2Al4O3, Bi2Ga4O3, Bi4GaO12, and
Bi2Ge3O9), whose nature is still unclear [155].

It should be noted that an attractive model of a cen-
ter responsible for photoinduced absorption based on a
BiM ion in the tetrahedral position has not been con-
firmed as yet experimentally. This model cannot
explain all the experimental data on the optical proper-
ties of Bi12MxO20 ± δ and the effect of dopants on these
properties. Thus, we showed [79] that doping of BSO
and BTO crystals by the same dopants produce differ-
ent (actually opposite) effect on the absorption coeffi-
cient and the sign of circular dichroism in the vicinity
of the fundamental absorption edge. We believe that the
insufficient justification of the assumption that a [BiM]
center can be the main structural defect in Bi12MxO20 ± δ
single crystals is also seen well from the failure of all
the attempts to explain in terms of this model the results
of the reversible change in the optical and chiro-optical
properties during photoexcitation and subsequent
annealing of single crystals (both in vacuum and in the
oxygen atmosphere) [102].

BiM
5+

BiM
3+

BiM
3+
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The hypothesis on the relation of the photochromic
effect and the photoionization of M-cations was tested
on an example of Fe-dopant in sillenite single crystals
[131, 132]. It was assumed that photoexcitation is
accompanied by the transition Fe3+  Fe4+ + e. How-
ever, the analysis of the excitation spectra of the photo-
chromic effect in nominally undoped and doped single
crystals of various sillenites (the constant excitation
energy within ≈2.4–2.5 eV) indicates that the role of the
main centers is played by ionized oxygen vacancies
(F++  VO + 2e). In this case, the oxidation degree of
doping cations of 3d-metals usually decreases (and
not   increase) because of the trap of electrons
(Mn5+(Mn4+)  Mn2+, Cr5+  Cr4+, etc. [102, 117]).

In order to explain the pronounced photoinduced
adsorption in BGO〈Cu〉 single crystals, a model of a
polaron with a small radius was suggested [144]. A
polaron is formed due to capture of a hole by one of the
bonds of the tetrahedral [CuO4] complex and its subse-
quent trigonal distortion. Absorption of light with the
energy (Eexp ≈ 22000 cm–1) equal to the binding energy
of “self-captured” hole (the so-called Jahn–Teller pseu-
doeffect) results in a recapture of the hole from one
bond by another bond of a distorted [CuO4] complex.
Taking into account high polarization of both main
components (Bi3+, O2–) and the compound as a whole,
the photoinduced absorption provided by excitation of
polarons should also be observed in other sillenites.
This phenomenon requires a more detailed study and a
thorough analysis.

The optical properties of sillenites in the range of
the fundamental absorption edge can also be associated
with the presence of excitons in Bi12MxO20 ± δ. Their
existence is confirmed by the absorption bands revealed
in our study of CD spectra of undoped BSO and BGO
crystals in the vicinity of ~3.2 eV.

Thus, the interpretation of the optical and chiro-
optical properties of sillenite crystals is often ambigu-
ous and requires the allowance for numerous important
factors such as the composition, structural characteris-
tics (the type of the prevalent defects), and the nature of
absorbing centers. The nature of the optical centers
responsible for absorption, including the photoinduced
absorption, in the crystals of different compositions can
be different (point vacancies VO, VM, and VBi and their
associates, impurity states, d–d transitions, etc.). Usu-
ally, the models of optical centers are based on the
structural data for Bi12MxO20 ± δ single crystals. The
recording and interpretation of different types of
defects in the sillenite lattice is hindered by the fact that
the formation of a vacancy [e.g., oxygen vacancy in the
position of O(3) atoms] is accompanied by the change
of the local symmetry of the closest [BiOx]- and [MO4]-
polyhedra and, thus, also by their electronic structure.

                                                                                               
C

6. CONCLUSION

It has been established that the optical and chiro-
optical properties of Bi12MxO20 ± δ crystals with the sil-
lenite structure are determined by the electron transi-
tions of the “building units”—[BiOx]-polyhedra and
[MO4]n–-tetrahedra. It has also been established that the
contribution of electron transitions accompanied by
charge transfer, t1 – 2e, of optically active [MO4]n–-com-
plexes (with the point symmetry 23) to the total optical
rotation is opposite to the contribution of the 1S0 – 3P1

and 1S0 – 1P1 (6s2 – sp) transitions of Bi3+ in [BiO5]-
polyhedra (with the point symmetry C1). A model is
suggested, which relates the change in the optical rota-
tion caused by the compositional variations in the
Bi12MxO20 ± δ crystal to the position of [MO4]n–-com-
plexes on the energy scale, which is accompanied by
the charge transfer and is dependent on the electroneg-
ativity of an atom. It is shown that 3d-elements differ-
ent in the oxidation degrees Ti4+, V5+, Cr5+
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JUBILEES

 

Kirill Sergeevich Aleksandrov
(On the Occasion of His 70th Birthday)
Kirill Sergeevich Aleksandrov was born on Janu-
ary 9, 1931, in Leningrad (St. Petersburg). In 1948, he
entered the Leningrad Electrotechnical Institute, from
which he graduated with distinction. He began his sci-
entific activity as a postgraduate student under the guid-
ance of Academician A.V. Shubnikov at the Institute of
Crystallography of the USSR Academy of Sciences.
After his postgraduate course, he was invited to the
newly opened Institute of Physics of the Siberian Divi-
sion of the USSR Academy of Sciences in Krasno-
yarsk.

The first fundamental results obtained by Aleksan-
drov are related to the laws of propagation of elastic
waves and the elastic properties of anisotropic media.
In particular, he was the first to perform the systematic
studies of elastic properties of the main rock-forming
minerals. He discovered and studied the phenomenon
of internal conical refraction and the rotation of polar-
ization planes of elastic waves as well as the laws of
reflection and refraction processes of elastic waves in
1063-7745/01/4602- $21.00 © 200336
various media. He also developed the methods for mea-
suring elasticity tensors for media of arbitrary symme-
tries and designed and constructed new ultrasonic
devices for studying elastic properties of crystals, tex-
tures, and rocks. The results of these studies gave rise
to a new field of crystal physics—the so-called acoustic
crystallography—and, in particular, were used for
designing new acoustoelectronic devices. Some years
ago, Aleksandrov returned to the investigation of
anisotropy in elastic properties of rocks and minerals
and wrote (in cooperation with G.T. Prodaœvoda, Kiev
University, Ukraine) a monograph about this effect,
which is now in press.

The pioneering research of the structural phase tran-
sitions performed by Aleksandrov has received world
recognition. The complex experiments, combined with
the theoretical study and creation of the respective the-
ory, allowed Aleksandrov to establish the nature and the
mechanisms of structural transformations in numerous
ferroelectrics and the related crystals, to discover a
number of new ferroelectric structures, and to interpret
the sequence of the ordering-type (the model of two
and more sublattices, a model with the multiminimum
potential) and displacive (condensation of several soft
modes of different nature) phase transitions.

All of these studies have made a considerable con-
tribution to understanding the nature of structural insta-
bility; possible structural distortions; and the related
changes in the dielectric, optical, and other properties
of numerous crystals used in modern technology as
well as radio-, acousto-, and optoelectronics. They have
also provided the development of various methods for
synthesis and directional modification of the properties
of solid materials for acousto- and magnetooptical
applications and designing new devices on the basis of
these materials. In 1989, Aleksandrov and his coau-
thors were awarded the State Prize for the studies of
new materials and the design of new devices based on
these materials. The purposeful complex study of the
structure, crystal chemistry, physical properties, and
phase transitions in solids performed under Aleksan-
drov’s supervision and with his direct participation pro-
vided the elaboration of the unique approach to the
description of large families of crystals, including the
materials for modern laser technology and optoelec-
tronics, and high-temperature superconductors. These
studies were highly estimated by the scientific commu-
nity, and in 1999, Aleksandrov was awarded the
Fedorov Prize of the Russian Academy of Sciences. In
01 MAIK “Nauka/Interperiodica”
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recent years, such studies were actively developed both
in Russia in cooperation with the research centers of
Moscow and Novosibirsk and with institutions in
Spain, France, and some other countries.

Aleksandrov managed to create an efficient,
intensely developing scientific school. Four of his stu-
dents became Doctors of Sciences and several dozen,
Candidates of Sciences. For a number of years, Alek-
sandrov has headed the department of Solid State Phys-
ics at the Krasnoyarsk State University; he is also chair-
man of the Krasnoyarsk Research and Educational
Center of High Technologies organized at the Institute
of Physics of the Krasnoyarsk State University, the
Krasnoyarsk Technical University, and the Aerospace
Academy of Siberia within the State Program of Inte-
gration of Fundamental Science and Higher Education.

Aleksandrov is an author of more than 350 scientific
publications, including eight monographs. He orga-
nized and was an active participant of numerous Rus-
sian and International scientific conferences, including
the National Conferences on Physics of Ferroelectrics
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 2      2001
and Ferroelastics and Russian–Japanese and Russian–
American Symposia on Ferroelectricity.

Aleksandrov is the head of the Scientific Council on
Physics of Ferroelectrics and Dielectrics of the Russian
Academy of Sciences and a member of some other sci-
entific councils of the Russian Academy of Sciences, a
member of the Joint Scientific Council on Physicotech-
nical Sciences of the Siberian Division of the Russian
Academy of Sciences, and a member of a number of
editorial boards of several prestigious national and
international scientific journals.

Aleksandrov has been awarded the Order of Friend-
ship between Peoples and twice has received the Order
of the Red Banner of Labor.

Editorial Board of “Kristallografiya” congratulates
Kirill Sergeevich Aleksandrov with his jubilee and
wishes him good health and success in his research for
many years to come.

Translated by L. Man
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JUBILEES

 

Leonid Nikolaevich Rashkovich
(On the Occasion of His 70th Birthday)
On February 28, 2001, Doctor in Physics and Mathe-
matics Leonid Nikolaevich Rashkovich, one of the most
prominent figures in the theory of crystal growth and
growth from solutions, an intelligent, gifted, modest, and
charming person, celebrated his seventieth birthday. 

Irrespective of the place of a new publication on
crystal growth from solution, its authors inevitably
refer to the fundamental studies performed in this field
by Rashkovich.

It is the Rashkovich method that is nowadays used
to grow 1-m-long crystals (the largest in the world) nec-
essary for laser pumping in controlled thermonuclear
synthesis.
1063-7745/01/4602- $21.00 © 20338
Rashkovich is a hard worker who is not afraid to
meet any difficulties; he works systematically and per-
sistently and, most importantly, knows the way to reach
his goals. He also manages to inculcate the taste for
such work in his numerous colleagues and students. As
a teacher, Rashkovich is very sorry to see his students
scattered in growth laboratories throughout the whole
world, but, being a very understanding person, he
always does his best to organize trips.

Rashkovich is completely absorbed by his scientific
search. His innate intuition and many years of experi-
ence allow him to penetrate into the crux of the matter.
Therefore, it is not surprising that, while observing an
interference pattern or an atomic-force micrograph of a
crystal face already thoroughly examined by his col-
leagues, Rashkovich comes to quite surprising and
original conclusions. He can endlessly discuss the
kinks on the steps, stoppers on the faces, one-dimen-
sional nucleation, asymmetry of dislocation hillocks,
and the methods for measuring fluctuations on steps.
He is devoid of vanity, never dissipates his talents for
trifles, and always concentrates his efforts on the main
problems. He is always ready to meet his colleagues in
Nizhni Novgorod, Kharkov, Obninsk, or in the United
States, because he believes scientific communication to
be a necessary element for progress in science.

The last three years were especially fruitful for
Rashkovich: he wrote a number of original articles,
where he finally confirmed (on an example of the pro-
tein lysozyme) the experimental model of one-dimen-
sional nucleation suggested by Voronkov as far back as
1970. He also designed new scientific instruments. He
supervised the design and the construction of a com-
bined atomic-force and interference microscope neces-
sary for the detailed studies of crystal growth from
solutions.

The editorial board of Kristallografiya congratu-
lates Rashkovich on his 70th birthday and wishes him
good health and every success in his scientific work for
many years to come.

Translated by L. Man
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INFORMATION

   
The Results of the 2000 Struchkov Prize Competition 
for Young Scientists and the Announcement 

of the 2001 Competition
The Struchkov Prize is awarded annually (since
1997) for the best scientific study in crystal chemistry
and the application of X-ray structure analysis to the
solution of chemical problems. Researchers who are
residents of the Commonwealth of Independent States
or the Baltic states and who are under 36 years of age
at the time of the presentation of their documents are
invited to participate in the competition. Each scientific
study is presented on behalf of a single author, and each
author is allowed to present only one work a year. The
results presented to the competition should be stated in
at least one published article or be submitted for publi-
cation in a journal that participates in the judging pro-
cess. The winner of the competition is determined by
the decision of the special competition jury, which is
formed by the leaders of the Center of X-ray Structure
Studies and consists of leading Russian scientists in
crystal chemistry and X-ray structure analysis. The
decision of the jury is announced no later than Novem-
ber 1 of the current year.

The 2000 Struchkov Prize was awarded to
É.B. Rusanov, a researcher from the Institute of
Organic Chemistry, National Academy of Sciences of
Ukraine, Kiev, for his study entitled “σ3λ5-Iminophos-
phoranes: Specific Features of the Spatial Electronic
Structure and Chemical Properties.” The winner of the
competition received a diploma and a monetary award.
In addition, four incentive prizes were awarded. The
winners are I.S. Neretin (Moscow), A.V. Olenev (Mos-
cow), A.V. Churakov (Moscow), and G.K. Fukin
(Nizhni Novgorod).

Since 2000, the competition has been sponsored by
the Struchkov Prize Society, which is an International
crystallographic association of former students and col-
leagues of Yu.T. Struchkov. The 2000 prize amounted
20000 rubles and the incentive prizes amounted
2500 rubles each. A winner of the incentive prize is
allowed to participate in future competitions.
1063-7745/01/4602- $21.00 © 200339
To take part in the 2001 competition, a competitor
should present the following documents to the Center
of X-ray Structure Studies no later than June 15, 2001:

1. A completed competitor form including:
(a) his/her full name;
(b) title of the scientific study presented to the com-

petition;
(c) date of birth;
(d) scientific degree and post;
(e) affiliation;
(f) postal address of the institution;
(g) office telephone;
(h) fax;
(i) e-mail.
2. An abstract of the study (not exceeding three stan-

dard pages) containing the indication of the competi-
tor’s contribution to the study.

3. A list of published (or submitted for publication)
papers related to the subject of the study presented to
the competition.

4. Reprints or Xerox copies of all or some of these
papers (at the author’s descretion).

The documents should be sent to the Center of
X-ray Structure Studies, Nesmeyanov Institute of
Organoelement Compounds, Russian Academy of Sci-
ences (ul. Vavilova 28, Moscow, 117813 Russia).

The data indicated in paragraphs 1–3 should be pre-
sented to the jury as MS DOS ASCII files. The files can
be sent by post on a diskette or by e-mail to the follow-
ing address: premiya@xrlab.ineos.ac.ru.

For further information, contact the center by
tel. (095) 135-9271 or by e-mail at the following
address: star@xrpent.ineos.ac.ru.

Translated by I. Polyakova
01 MAIK “Nauka/Interperiodica”
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