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Abstract—We have studied the fine structure of the active H2O supermaser emission region in Orion KL
with an angular resolution of 0.1 mas. We found central features suggestive of a bipolar outflow, bullets,
and an envelope which correspond to the earliest stage of low-mass star formation. The ejector is a bright
compact source≤0.05 AU in size with a brightness temperature Tb

∼= 1017 K. The highly collimated bipolar
outflow∼30 has a velocity vej

∼= 10 km s−1, a rotation period of∼0.5 yr, a precession period of ∼10 yr, and a
precession angle of∼33◦. Precession gives rise to a jet in the shape of a conical helix. The envelope amplifies
the radio emission from the components by about three orders of magnitude at a velocity v = 7.65 km s−1.
c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Gravitational instabilities in gas–dust complexes
give rise to local active zones that contain protostars
in the phase of gravitational contraction. Physical
conditions and chemical reactions lead to the forma-
tion of both simple and complex molecules accom-
panied by intense water-vapor maser emission. We
investigated the fine structure of the H2O supermaser
zone in Orion KL at various epochs by using global
VLBI network observations in 1985 and NRAO VL-
BA observations at subsequent epochs.

THE EPOCH OF ACTIVITY 1979–1987

Outbursts of H2O supermaser emission were
observed in Orion KL from 1979 to 1987. In Octo-
ber 1985, the maser emission was concentrated in a
narrow line profile with a width of ∼42 kHz; the peak
flux densities reached Fpeak ∼ 2 MJy (Matveenko
1981). A 10.8-AU-long chain of five groups of
compact sources was observed; the sizes of the
individual sources were ∼ 0.1 AU (Fig. 1). The group
velocities increased along the chain from 6.45 (west)
to 8.75 km s−1 (east). The brightest components had
v = 7.7 km s−1, Tb = 5× 1016 K and v = 7.9 km s−1,
Tb = 9 × 1016 K. The maser emission was linearly
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polarized,P ≈ 70%. We interpreted the chain of com-
pact components as a thin disk separated into rings
during Keplerian motion seen edge-on (Matveenko
et al. 1988). This model assumes the presence of
a central protostar with a mass of (0.1–0.5)M�, an
inner ring radius Rin

∼= 6 AU, a rotation velocity
vrot = 5 km s−1, and an expansion velocity vexp

∼=
3.8 km s−1. The outer ring radius is R ∼= 16.5 AU
and vrot = 3 km s−1. The expansion velocity corre-
sponds to “maser rings” containing sublimed water-
vapor molecules accelerated by radiation pressure
and stellar wind. The active region is surrounded
by an envelope that amplifies the emission of the
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Fig. 1. The distribution of maser spots in October 1985.
Relative right ascension and declination (in mas) are
along the vertical and horizontal axes, respectively. The
circle diameters are proportional to the logarithm of the
intensity of the components. The maximum brightness is
Tb ≈ 1017 K.
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Fig. 2. The structure of the H2O supermaser emission in the active region of Orion KL (scales in mas). The synthesized beam
is shown in the lower left corner of each map; the epoch of observations is given above the maps.
components with v = 7.65 km s−1 by more than two
orders of magnitude.

THE EPOCH OF QUIESCENCE

On May 25, 1995, we investigated the region
with an ultrahigh angular resolution of 0.1 mas, or
0.04 AU (Matveenko et al. 1998, 2000, 2002). A
9 × 0.05 AU jet and two compact “bullet” compo-
nents were detected. A bright, compact source, the
presumed ejector, and an elongated 0.5 × 0.04 AU
feature at a position angle of −44◦ with brightness
temperature Tej

∼= 1013 K and Tjet
∼= 1012 K are lo-

cated at the jet center (Fig. 2). The interaction of
bullets with the ambient medium, radiation pressure,
and stellar wind form a comet-like head–tail struc-
ture. The tail can be in front of or behind the head.
The maser emission is linearly polarized, P ∼= 55%
(Matveenko et al. 1998).
THE ACTIVITY PERIOD 1998-1999

The intensity of the H2O maser emission ex-
ponentially increased, reaching 4.3 MJy in Au-
gust 1998, and began to exponentially decrease in
November. At the first stage of the outburst (March-
October 1998), the structure remained virtually the
same as that in the quiescence period (Matveenko
et al. 1998), but the brightness of the components
increased by more than three orders of magnitude,
reaching Tjet

∼= 1015 K and Tej
∼= 1017 K (Matveenko

et al. 2002). At the final phase of activity in January–
April 1999, the structure became more complex;
additional features appeared in the central region,
which can be part of a 1.2 × 0.8 AU torus ∼0.15 AU
in thickness (Fig. 2). The radial outflow velocity
is v|| ∼= 0.15 km s−1. The velocity in the plane of
the sky, v⊥ ∼= 10 km s−1, is observed immediately
before the outburst peak; at the peak, this velocity
decreased to 6 km s−1 and reached ∼3 km s−1 at the
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Fig. 3. A model of the star-forming region.

end of the activity period. The bipolar outflow has a
helical structure whose pitch and diameter increase
with distance from the ejector: T = 1.3R0.7 mas,
∅ = 0.24R0.8 mas. The observed structural changes
are probably attributable to precession of the rotation
axis with a period of 110 months and a precession
angle X ≈ 30◦. The intensity of the ejector emission
line seen at a velocity of 7.65 km s−1 in the ∆v =
0.42 km s−1 band is I = 3 × 105 Jy/beam. The line
profile has broad wings, which are determined by the
outflow rotation. The outflow radius is R = 0.02 AU,
and the rotation period is T ∼ 5 months. This profile
is determined by amplification in the envelope by a
factor of approximately 450.

CONCLUSIONS

Our studies of the active region in Orion KL with
an ultrahigh angular resolution reaching 0.1 mas or
0.05 AU during 1979–1999 have shown the follow-
ing:

—The structure at an early formation stage of a
low-mass star includes an accretion disk, a bipolar
outflow, and accompanying maser emission (Fig. 3),
which corresponds to the model by Bachiller (1998).

—The accretion disk is at the stage of separation
into protoplanetary rings. The disk is ∼32 AU in di-
ameter and ∼0.05 AU in thickness; a torus ∼1.2 AU
ASTRONOMY LETTERS Vol. 29 No. 10 2003
in diameter and 0.15 AU in thickness is located in
the central part. The mass of the central body is
(0.1–0.5)M�.

—The accretion and ejection of matter are differ-
ent aspects of the same process. The ejector size is
≤0.05 AU, and the brightness temperature is Tb

∼=
1017 K. The ejected matter contains H2O molecules.
The outflow velocity is ∼10 km s−1. The outflow
collimation reaches ∼30.

—The ejector rotation velocity is vrot ∼
1.1 km s−1, and the rotation period is T ∼ 0.5 yr.
The precession period reaches about 10 yr, and
the precession angle is ∼30◦. The precession angle
decreases by a factor of 2 at a distance of ∼1 AU, and
the delay of rotation is 3.3 yr. Precession forms the
helical structure of the outflow.

—The bullets have comet-like head–tail struc-
tures. The emission of the structures is amplified in
the surrounding envelope at velocity v = 7.65 km s−1

within a 0.5-km s−1-wide maser window.

—The maser emission of the bipolar outflow is
pumped by collisions with the ambient medium while
the maser emission of the rings is associated with
infrared radiation from the central body (IRc4).

—The outburst polarization results from pumping
anisotropy. The degree of polarization depends on the
radiation flux density: P = (30 + 6.4× F ) [%], where
F is in MJy.

REFERENCES

1. R. Bachiller, Ann. Rev. Astron. Astrophys. 34, 111
(1998).

2. L. I. Matveenko, Pis’ma Astron. Zh. 7, 100 (1981)
[Sov. Astron. Lett. 7, 54 (1981)].

3. L. I. Matveenko, P. D. Diamond, and D. A. Graham,
Pis’ma Astron. Zh. 24, 723 (1998) [Astron. Lett. 24,
623 (1998)].

4. L. I. Matveenko, P. D. Diamond, and D. A. Graham,
Astron. Rev. 80, 592 (2000).

5. L. I. Matveenko, P. D. Diamond, and D. A. Graham,
IAU Symp. 206: Cosmic Masers: from Protostars to
Blackholes, Ed. by V. Migenes and M. J. Reid (2002),
p. 96.

6. L. I. Matveenko, D. A. Graham, and P. D. Diamond,
Pis’ma Astron. Zh. 14, 1101 (1988) [Sov. Astron. Lett.
14, 468 (1988)].

Translated by L. Matveyenko



Astronomy Letters, Vol. 29, No. 10, 2003, pp. 644–648. Translated from Pis’ma v Astronomicheskĭı Zhurnal, Vol. 29, No. 10, 2003, pp. 727–731.
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Abstract—We analyzed the RXTE observations of two strongly absorbed sources, IGR J16318–4848 and
IGR J16358–4726. We were able to obtain the 3–25 keV spectra of the sources by taking into account
the contribution of the Galactic diffuse background to the X-ray flux recorded with the RXTE/PCA
spectrometer. The spectra of the sources are well described by a power-law decrease of the photon
flux with energy with a photon index of ∼1 and strong photoabsorption. The photoabsorption column
density nHL for IGR J16318–4848 derived from the RXTE observation on March 14.1, 2003, is shown
to be much higher than its value obtained by the XMM observatory on February 10.7, 2003. This result
may suggest that the source has variable absorption that may depend on the orbital phase of the system.
We point out that all of the three X-ray sources discovered by the INTEGRAL observatory in the region
(l, b) ∼ (336, 0) (IGR J16318–4848, IGR J16320–4751, and IGR J16358–4726) have strong intrinsic
photoabsorption and may be high-mass binaries. Their proximity to the region where the tangent to the
Galactic spiral arm passes, i.e., to the region of enhanced concentration of young high-mass stars, can
serve as an indirect confirmation of this assumption. If our assumption about the positions of the sources
in the Norma spiral arm is valid, then we can roughly estimate their heliocentric distances: ∼6–8 kpc.
c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Several sources with strong photoabsorption in
the X-ray spectrum were discovered in the first few
months of the Galactic-plane survey with the INTE-
GRAL observatory: IGR J16318–4848 (Courvoisier
et al. 2003; Murakami et al. 2003), IGR J16320–
4751/AX J1631.9–4752 (Tomsick et al. 2003), and
IGR J16358–4726 (Revnivtsev et al. 2003a, 2003b).

Shortly after its discovery, IGR J16318–4848
was observed by the XMM observatory (Schartel
et al. 2003; de Plaa et al. 2003), which allowed it
to be accurately localized and identified with its in-
frared and optical components (Foschini et al. 2003;
Revnivtsev et al. 2003c). Analysis of the infrared and
optical measurements of the companion star showed
that the X-ray binary IGR J16318–4848 most likely
contains a supergiant that is responsible for observa-
tional manifestations (strong photoabsorption inside
the system and extremely intense fluorescent lines
of neutral iron) similar to those in the system of
the long-period pulsar GX301-2 (Revnivtsev et al.
2003c).

*E-mail: mikej@hea.iki.rssi.ru
1063-7737/03/2910-0644$24.00 c©
The XMM and CHANDRA observations of
IGR J16320–4751 and IGR J16358–4726 (Rodiri-
guez et al. 2003; Kouveliotou et al. 2003) have
not yet allowed the optical companions of the X-
ray sources to be accurately determined. However,
in both cases, the most likely companions are bright,
possibly high-mass stars.

In this paper, we analyze the RXTE observations
of the sources IGR J16318–4848 and IGR J16358–
4726.

ANALYSIS OF OBSERVATIONS
AND RESULTS

The sources IGR J16318–4848 and
IGR J16358–4726 were observed by the RXTE
observatory on March 14.1 and 25.9, 2003, respec-
tively. The effective exposure was 6.5 and 3.1 ks,
respectively. Since the sources are located in a fairly
crowded region of the sky, and since the field of view of
the main RXTE instrument (PCA) is 1◦, the RXTE
orientation during the observations was chosen so
as to best eliminate the possible contribution from
known bright sources. Figure 1 shows a map of the
region around the sources with the RXTE/PCA fields
of view superimposed.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The positions of known bright sources in the region of IGR J16318–4848 and IGR J16358–4726. The large circles
indicate the edges of the RXTE/PCA field of view during the observations analyzed here.
To process the RXTE/PCA data, we used the
standard FTOOLS/LHEASOFT 5.2 software pack-
age. Since the sources are relatively faint and since
they were not located at the center of the field of view
in both observations (which additionally decreased
the number of photons recorded from these sources)
we paid special attention to the correct allowance for
the instrumental PCA detector background. For this
purpose, we excluded from our analysis the data of
the PCU0 detector, because the propane veto layer
had been absent from it since May 2000, causing
a significant deterioration of the instrumental noise
subtraction. In addition, we used data only for the up-
per anode layer (LR1), because the systematic errors
in the instrumental noise are smallest for this layer. To
model the RXTE/PCA instrumental background, we
used the L7_240 model.

The large contribution from the Galactic dif-
fuse background (Galactic ridge emission) to the
RXTE/PCA X-ray flux poses a serious problem for
the observational data processing. Thus, for example,
the flux from IGR J16318–4848 in the energy range
2–10 keV is∼0.1–0.2 mCrab (see, e.g., de Plaa et al.
2003; Revnivtsev et al. 2003b), while the total flux
from the Galactic diffuse background within the PCA
field of view is 3–5 mCrab in this region (Valinia and
Marshall 1998; Revnivtsev et al. 2003b).

To allow for the contribution of the Galactic diffuse
background, we used the results of the analysis pre-
sented by Valinia and Marshall (1998) and Revniv-
tsev et al. (2003), and the RXTE observations of a
region close to IGR J16318–4848 and IGR J16358–
4726; more specifically, the off-state observations of
SGR 1627-41 (November 19–20, 2001). Since the
spectrum of the Galactic diffuse background is con-
stant, except for the slightly varying photoabsorp-
tion column density (Yamasaki et al. 1997; Valinia
ASTRONOMY LETTERS Vol. 29 No. 10 2003
and Marshall 1998; Tanaka 2002; Revnivtsev et al.
2003), we can use the RXTE/PCA spectrum in an
empty field as a correction component to the observed
RXTE/PCA spectra.

IGR J16318–4848. Figure 2 presents the spec-
trum of IGR J16318–4848 obtained after aver-
aging the data of all observations. The complete
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Fig. 2. The spectrum of IGR J16318–4848. The crosses
indicate the observed spectrum; the open circles indicate
the spectrum of IGR J16318–4848 reconstructed after
an allowance made for Galactic ridge emission. The solid
curve represents the model of the observed RXTE/PCA
spectrum consisting of the diffuse background (dotted
curve) and the model of the source proper (dashed curve).
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Fig. 3. The light curves of IGR J16318–4848 and
IGR J16358–4726.

RXTE/PCA spectrum, which consists of the spec-
trum of the source itself and the spectrum of the
Galactic diffuse background, is also shown in this
figure. Note that in this case, the normalization of the
source spectrum is a factor of 2.22 smaller than the
real one, because the center of the PCA field of view
was ∼ 0◦.55 away from IGR J16318–4848.

To fit the spectrum of the source, we used a simple
power-law energy dependence of the photon flux
density (dN(E) ∝ E−αdE) with neutral photoab-
sorption (model wabs of the XSPEC package). This
model was successfully used to describe the spectrum
of IGR J16318–4848 as observed by the XMM and
ASCA observatories (de Plaa et al. 2003; Schartel
et al. 2003; Revnivtsev et al. 2003a). It is worth
noting that despite the presence of very strong iron
emission lines near 6–7 keV in the spectrum of the
source (de Plaa et al. 2003; Revnivstev et al. 2003c),
the influence of the Galactic diffuse background
does not allow these lines to be studied by using
RXTE/PCA data. The diffuse background flux is
more than a factor of 10 higher than the flux from
IGR J16318–4848 at energies 6–7 keV (see Fig. 2),
and it also contains lines near 6–7 keV. The spectral
best-fit parameters are given in the table. The pho-
toabsorption column density obtained exceeds that
inferred from the XMM observations of February 10,
2003 (de Plaa et al. 2003; Matt and Guainazzi 2003).

Figure 3 shows the light curve of the source con-
structed from all observations with the Galactic dif-
fuse background subtracted.

Analysis of the power spectrum for the derived
light curve revealed no pulsations (Swank and Mark-
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Fig. 4. The spectrum of IGR J16358–4726. The crosses
indicate the observed spectrum, and the open circles indi-
cate the spectrum reconstructed after an allowance made
for the contribution of the Galactic diffuse background.
The solid curve represents the model of the observed
RXTE/PCA spectrum composed of the diffuse back-
ground model (dotted line) and the model of the source
proper (dashed line).

wardt 2003); the 2σ upper limit on the possible pulse
fraction of pulsations with frequencies 0.01 Hz–
1 kHz in the energy range 10–20 keV is about
10–15%. The upper limit on the pulse fraction of
pulsations with longer periods, as, for example, in
the pulsar GX301-2 (670 s) or IGR J16358–4726
(5860 s, Kouveliotou et al. 2003) is even larger,
∼20–50%. At energies below ∼10 keV, the light
curve cannot be analyzed, because the source is weak
compared to the Galactic diffuse background (see
Fig. 2).

IGR J16358–4726. Figure 4 shows the spectrum
of the source obtained by averaging the data of all
observations. Just as in the case of IGR J16318–
4848, the figure shows the complete RXTE/PCA
spectrum, which also consists of the spectrum of the
source under study and the spectrum of the Galactic
diffuse background.

We used the same model as for IGR J16318–
4848 to fit the spectrum of the source—a power-
law decrease of the photon flux density with neutral
photoabsorption. The spectral best-fit parameters are
given in the table. These parameters agree well with
the CHANDRA results (Kouveliotou et al. 2003).

As expected, the flux from the Galactic diffuse
background in these observations was higher than
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Spectral best-fit parameters for the sources

Parameter IGR J16318–4848 IGR J16358–4726

Photoabsorption column densityNHL, 1022 cm−2 310 ± 70 40 ± 10

Photon index α 1.0 ± 0.5 1.1 ± 0.2

Fluxа (3–25 keV), 10−10erg s−1 cm−2 1.1 5.4
aThe observed fluxes from the sources were corrected for collimator transmittance.
that from IGR J16318–4848 (see Figs. 2 and 4),
because the center of the PCA field of view was ∼0◦.5
closer to the Galactic plane (Fig. 1). The normaliza-
tion of the diffuse background spectrum determined
when fitting the observed spectrum by the adopted
model agrees well with the results of Valinia and
Marshall (1998) and Revnivtsev et al. (2003).

The light curve of IGR J16358–4726 does not
allow the pulsations with a period of 5.86 ks found
by Kouveliotou et al. (2003) to be analyzed, because
the duration of the observation being analyzed is only
3.1 ks. No pulsations or quasi-periodic flux oscilla-
tions are observed at higher frequencies. The upper
limit on the possible pulse fraction of coherent pulsa-
tions at frequencies 0.01 Hz–1 kHz is ∼10–15%.

DISCUSSION
In previous sections, we analyzed the RXTE ob-

servations of two strongly absorbed sources,
IGR J16318–4848 and IGR J16358–4726. Despite
the faintness of the systems under study, the strong
influence of the Galactic diffuse background, and the
proximity of other bright sources, we managed to
obtain the 3–25-keV spectra of the sources owing
to the properly chosen observing strategy.

The spectra of the sources are well described by a
power-law decrease of the photon flux density with
energy (dN(E) ∝ E−αdE) with neutral photoab-
sorption (model wabs ∗ power of the XSPEC pack-
age). Because of the strong influence of the Galactic
diffuse background, which contains a number of lines
near 6–7 keV, the lines in the spectrum of the sources
proper cannot be analyzed. The spectral parameters
obtained agree well with the observations of other
observatories, except IGR J16318–4848, for which
the observed photoabsorption column density nHL
exceeded that obtained by the XMM observatory (de
Plaa et al. 2003; Matt and Guinazzi 2003).

Although obtaining the spectra of the sources in
our case involved significant difficulties (because the
contribution of the Galactic diffuse background must
be taken into account), we believe that we have cor-
rectly determined the spectral parameters. The valid-
ity of our method is confirmed by the agreement be-
tween the spectral parameters of IGR J16358–4726
ASTRONOMY LETTERS Vol. 29 No. 10 2003
obtained here from the RXTE observations of March
25.9, 2003, and from the CHANDRA observation of
March 24.2, 2003 (Kouveliotou et al. 2003).

Thus, we believe that the excess of the observed
photoabsorption column density for IGR J16318–
4848 above the XMM value may suggest that the
source has variable absorption that may depend on
the orbital phase of the system. A similar dependence
is observed for a number of X-ray sources in high-
mass binaries (see, e.g., GX301-2, Endo et al. 2002).

Interestingly, the three X-ray sources discovered
by the INTEGRAL observatory in the sky region
(l, b) ∼ (336, 0) (IGR J16318–4848, IGR J16320–
4751, and IGR J16358–4726) have much in com-
mon. In particular, all of the three sources have
strongly absorbed X-ray spectra (the absorption
column densities nHL greatly exceed their interstellar
values toward the sources; see, e.g., Dickey and
Lockman 1990). All of the three sources have rather
hard X-ray spectra (photon index α ∼ 1–1.3) typical
of pulsars or high-mass X-ray binaries. We showed
that the optical/infrared companion for IGR J16318–
4848 is a bright and, possibly, high-mass star (Fos-
chini et al. 2003; Revnivtsev et al. 2003b). No un-
equivocal identification of the optical/infrared com-
panions was made for the other two systems. How-
ever, they are most likely also bright stars, as in the
case of IGR J16318–4848 (Rodriguez et al. 2003;
Kouveliotou et al. 2003). Thus, we can assume
that all of the three X-ray sources may be high-
mass binaries. This assumption is also confirmed by
the fact that the sources are located in the region
(l, b) ∼ (336, 0), i.e., roughly in the region where the
tangent to the Galactic spiral arm in Norma (the
Norma arm) passes , i.e., in the region of enhanced
concentration of high-mass young stars (see, e.g.,
Grimm et al. 2002). If our assumption that these
systems are located in the spiral arm is correct, then
we can roughly estimate the heliocentric distances to
the sources as 6–8 kpc.
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Abstract—We model the interaction of the supernova SN 1995G with a dense circumstellar (CS) gas
in a thin-shell approximation. A model fit to the observed bolometric light curve combined with data
on the supernova expansion velocity gives estimates for the density, mass (≈1 M�), and age (≈8 yr)
of the CS envelope. The determined CS-envelope density is shown to be virtually independent of the
assumed mass of the supernova envelope because of the high CS-gas density at which the forward
shock wave is essentially radiative. The derived CS-envelope density is consistent with the Hα luminosity
and with the presence of distinct Thomson scattering in the red wing of this line. The mass of the CS
envelope together with its expansion velocity and age indicate that the CS envelope was ejected by the
presupernova eight years before the supernova explosion through violent energy release (∼6 × 1048 erg).
c© 2003 MAIK “Nauka/Interperiodica”.

Key words: supernovae, stellar evolution, circumstellar gas.
1. INTRODUCTION

Type-IIn supernovae (SN IIn) with a narrow Hα
emission line, which were placed in a separate class
by Schlegel (1990), explode in a very dense circum-
stellar (CS) environment. This is evidenced by the
very presence of a strong CS Hα line, the high bolo-
metric luminosity, and the intense broad Hα emission
line powered by the shock interaction of the super-
nova with CS gas (Chugai 1990, 1992). An analysis
of the optical effects of the CS interaction is an im-
portant diagnostic tool for the CS gas density around
SN IIn. The use of this tool led to the detection of an
unusually dense CS environment around SN 1987F
(Chugai 1992), SN 1997ab (Salamanca et al. 1998),
SN 1997cy (Turatto et al. 2000), and several other
SN IIn.When the CS gas velocity is known, themass
loss rate can be estimated. For SN 1997ab with a
measured CS gas velocity of u ∼ 90 km s−1, themass
loss rate is enormous, ∼10−2 M� yr−1 (Salamanca
et al. 1998). The mechanism for such intense mass
loss is unclear, because it exceeds the mass loss rate
in the most extreme cases of a red supergiant super-
wind by at least an order of magnitude.

The problem of the mechanism of intense mass
loss by SN IIn presupernovae has become even more
pressing in connection with the recent results of the

*E-mail: nchugai@inasan.rssi.ru
1063-7737/03/2910-0649$24.00 c©
study of SN 1994W. They show that the CS enve-
lope in this case was produced by mass loss with
an average rate of ∼0.2 M� yr−1 and an enormous
kinetic luminosity that is two orders of magnitude
higher than the radiative luminosity of a massive pre-
supernova (Chugai et al. 2003). It was suggested
there that such intense mass loss for SN 1994W was
attributable to an explosive event about 1.5 yr before
the supernova explosion. A characteristic feature of
this supernova is the relatively high CS gas veloc-
ity (u ≈ 103 km s−1), which leads to serious energy
problems for the superwind mechanism.

The idea of explosive mass ejection several years
before the supernova explosion was first put forward
by Weaver and Woosley (1979) in connection with a
possible powerful Ne flash in a degenerate O/Ne/Mg
core. Grasberg and Nadyozhin (1986) suggested an
explosive ejection of the presupernova envelope ap-
proximately 50 days before the supernova explosion to
account for the narrow lines in SN 1983K. However,
at present, the explosive mass ejection by presuper-
novae is just a working hypothesis, especially since
Woosley et al. (2002) recently questioned the reality
of their explosive mass ejection mechanism. Thus,
the study of signatures of the explosive mass ejection
by presupernovae (high mass and energy of the CS
envelope and young age) is of particular interest as
evidence for as yet incomprehensible physical phe-
2003 MAIK “Nauka/Interperiodica”
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nomena in presupernovae on the eve of a SN IIn
explosion.
It was already noted above that explosive mass

ejection by presupernovae could take place in those
SN IIn that show a high CS expansion velocity (∼
1000 km s−1) and evidence of a high CS gas den-
sity in the form of CS subordinate hydrogen and
metal absorption lines (Chugai et al. 2003). Apart
from SN 1994W, several more SN IIn, including
SN 1995G (Pastorello et al. 2002), belong to this
type of supernovae. The latter supernova also has a
peculiar light curve suggesting a significant role for
the CS shock interaction in the supernova emission
(Pastorello et al. 2002).
In this paper, we model the bolometric light curve

of SN 1995G to extract information about the CS gas
density. As will be clear below, our results allow us to
determine the mass, energy, and age of the CS en-
velope and to give considerations about its origin. In
Section 2, we briefly describe the model. In Section 3,
we study the sensitivity of the model to parameters
and demonstrate the uncertainty in choosing the pa-
rameters for SN 1997cy. In Section 4, we model the
light curve of SN 1995G and determine the mass of
the CS envelope and other parameters. The results
and their relationship to the Hα intensity and profile
are discussed in Section 5.
This paper is essentially based on the photometry

and spectra presented by Pastorello et al. (2002).
Here, we took the Hubble constant to be H0 =
70 km s−1 Mpc−1.

2. THE MODEL

The model of the light curve used below was
described previously (Chugai 2001). Here, we only
briefly recall its essential properties. We are consid-
ering the expansion of a supernova in a CS envelope
with given density and velocity distributions in the
thin-shell approximation (Chevalier 1982a). We ig-
nore the detailed structure of the interaction region,
which consists of two shock waves, forward and re-
verse, with a density peak at the contact discontinuity.
This structure can be described by a self-similar
solution for a power-law density distribution of the
supernova and CS gas in the adiabatic approximation
with the CS gas velocity disregarded (Nadyozhin
1981, 1985; Chevalier 1982b). We are interested in
the more general types of density distributions in the
supernova and CS gas with a nonzero CS expansion
velocity. In this case, the self-similar solution is
inapplicable, and the dynamics of the thin shell should
be calculated numerically.
The interaction of a supernova with its CS en-

vironment on a time scale longer than several days
depends weakly on the initial expansion stage. We
assume the following: the interaction begins at the
presupernova radiusR0, the supernova expands freely
(v = r/t), and its density distribution is a plateauwith
a power-law decrease in density outward (ρ ∝ v−9).

By numerically solving the equation of motion for
the thin shell, we determine its radius R(t) as well
as the relative velocities of the supernova and CS
gas flows. In combination with the gas densities,
this allows us to calculate the kinetic luminosities of
the forward and reverse shocks. These luminosities
can be transformed into the X-ray luminosities of
both shocks and eventually into the optical bolometric
luminosities (Chugai 1992). The contribution of the
luminosity supplied by the internal energy stored in
the supernova during its explosion is calculated in an
analytical approximation (Arnett 1980, 1982). In our
model, the full light curve is a linear superposition of
this luminosity and the interaction luminosity. This
approach allows us to take into account the radiation
of the initial internal energy at the early stage in a
straightforward way.

To describe the CS gas density distribution, we
specify the density ρ0 at a radius of 1015 cm, or the
density parameter w = 4πr2ρ at this radius, and the
index (s) in the power law (ρ ∝ r−s). The extent of the
CS envelope is characterized by the outer radius Rb.
With the mass (M ) and energy (E) of the supernova
envelope, we have five parameters; these are con-
strained by the light curve, the photospheric radius,
the supernova expansion velocity, and the phase of the
characteristic break in the light curve.

3. THE SENSITIVITY TO PARAMETERS
AND SN 1997cy

The sensitivity of the model to parameter varia-
tions is demonstrated by models A1, A2, B, C, and D
(Fig. 1) with their parameters presented in the table.
Starting from the second column, the table gives
the supernova mass (M ), energy (E), the power-law
index of the CS density distribution (s), the density
parameter (w0) and the density (ρ0) at a radius of
1015 cm, the outer radius of the CS envelope (Rb),
and the mass of the CS envelope (Mcs). The latter is
the derivative of the density distribution. We take a
CS velocity of 1000 km s−1, a presupernova radius
R0 = 1000 R�, and a 56Ni mass of 0.003 M� by
analogy with the estimate for SN 1994W (Sollerman
et al. 1998). Model A1 is taken as standard against
which all the other models are compared. For all
cases, Fig. 1 shows the bolometric light curves and
the thin-shell velocities.
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Fig. 1. Bolometric light curves and velocities of the thin shell for models A–D (table). Model A1 (thin line) is a template for
models A2, B, C, D, which are shown in panels (a, b, c, and d), respectively.
We begin with a brief discussion of the general
properties of the models. First, they all show a shoul-
der that reflects the overtaking of the CS shell bound-
ary by the forward shock. Second, the luminosity is
still high after that time. The source of this radiation
is the inner shock, which is driven by the supersonic
velocity jump between the outer supernova material
and the thin shell. As the thin shell accelerates, the
inner shock luminosity decreases. Note that the lumi-
nosity of the inner shock is lower in the case of a lower
mass of the supernova envelope (model B). Finally, for
most of the models, the contribution of the internal
energy of the supernova to the luminosity is relatively
small, except for model A2, which has a noticeable
early bump during the first 50–100 days.
Let us consider the effects of parameter variations.

The decrease in the supernova kinetic energy by an
order of magnitude (model A2) reduces the early lu-
minosity by more than an order of magnitude with a
less pronounced luminosity decrease at the late epoch
(Fig. 1a). The fivefold reduction in mass (model B)
results in a substantially higher early luminosity due
to the higher velocity of the outer shock (Fig. 1b).
Still, model B shows a faster decay of the early lumi-
nosity because of the fast crossing of the CS envelope.
Model C, with a steeper density distribution (s = 2)
ASTRONOMY LETTERS Vol. 29 No. 10 2003
for a similar mass of the CS shell gives, as expected,
a higher early luminosity and faster decay (Fig. 1c).
Model D, with twice as higher mass of the CS enve-
lope, yields a higher luminosity and a lower velocity of
the thin shell (Fig. 1d).

The above analysis implies that a combination of
low mass and low energy can produce a fairly bright
SN IIn phenomenon as a result of the efficient decel-
eration of the bulk of the supernova envelope. As an
illustration of this assertion, let us consider the light
curve of SN 1997cy (type IIn) studied by Turatto et
al. (2000). In the paper cited, the proposed interac-
tion model suggests an enormous supernova energy
(3 × 1052 erg) and a large mass (∼20M�). Although
this model is plausible, we cannot rule out an alter-
native model with moderate energy and mass. This is
demonstrated by models cy1 and cy2 (Fig. 2 and the
table). The adopted velocity of the CS envelope is 10
km s−1. Model cy1 withM = 5M� andE = 2× 1051

erg provides satisfactory agreement with the data,
while model cy2 withM = 1.5M� and E = 1051 erg
shows an even slightly better fit, because it better
reproduces the luminosity drop at t > 600 days. The
velocity of the thin shell is different in these models
(Fig. 2), and this difference may be crucial in choosing
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Fig. 2. Two models of the bolometric light curve for SN 1997cy (table). The observations (diamonds and the heavy line
segment) were taken from Turatto et al. (2000). Modeling shows that the light curve can be reproduced for a moderate
supernova energy.
between models based on the velocity information
provided by the line profiles. Unfortunately, there is no
straightforward procedure for determining the thin-
shell velocity in SN 1997cy. Therefore, the uncer-
tainty in choosing the mass and energy remains.

4. THE SN 1995G LIGHT CURVE
AND THE MASS OF THE CS ENVELOPE

Let us briefly consider additional observational
constraints imposed on the model apart from the
bolometric light curve of SN 1995G. The energy
distribution in the early spectra of SN 1995G pro-
vides estimates of the temperature and radius of the
photosphere on days 2 and 36 (Pastorello et al. 2002).
We believe that the photospheric radius at the early
epoch is approximately equal to the radius of the thin
shell. These arguments are based on the fact that the
thin dense shell is optically opaque in the case of a
very dense CS environment (w ∼ 1017 g cm−1) for
about one or two months (Chugai 2001). Thus, the
first additional observational constraint on the model
suggests that the early photospheric radius should be
approximately equal to the radius of the thin shell if
the CS density is fairly high, i.e., w ∼ 1017 g cm−1.

The next important constraint on the model is
provided by the expansion velocity of the thin shell.
Observational information about this velocity is con-
tained in the line profiles, particularly in the maximum
velocity of the broad component. Since Thomson
scattering can contribute to the broad component at
the early epoch (Chugai et al. 2003), to estimate the
thin-shell velocity, we rely on the late nebular spectra
of SN 1995G on days 265 and 561. In Fig. 3, the Fe II
5018 Å line is shown for both epochs (Pastorello et
al. 2002). This line is free fromblending, whichmakes
it a reliable indicator of the broad-component velocity.
The broad component is identified with the dense
thin shell, which may be partially fragmented, at the
boundary between the supernova and the CS gas as
in SN 1994W (Chugai et al. 2003). The maximum
velocity in the blue wing of the broad component
is estimated by using the linear fitting of the line
and continuum flux (Fig. 3). The derived maximum
velocities are 3000 and 2700 km s−1 on days 265 and
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Model parameters

Model M ,M� E, 1051 erg s w0, 1017 g cm−1 ρ0, 10−15 g cm−3 Rb, 1016 cm Mcs,M�

A1 5 1 1 0.4 3.2 1 1

A2 5 0.1 1 0.4 3.2 1 1

B 1 1 1 0.4 3.2 1 1

C 5 1 2 2 16 1 1

D 5 1 1 0.8 6.4 1 2

cy1 5 2 1.8 1 8 2.3 1.8

cy2 1.5 1 1.3 1.1 9 1.7 4.1

G1 2 0.24 2 1.2 9.5 2.2 1.2

G2 10 0.6 2 1.1 8.7 2 1.1

G3 21 1 2 1.2 9.5 2 1.1
561, respectively, with a possible uncertainty of 10%.
We attribute these velocities to the thin shell. Similar
values (≈3000 km s−1) are shown by the maximum
velocity in the Hα blue wing. However, in this case,
Fe II emission lines may contribute to the blue-wing
flux, whichmakes it difficult to estimate themaximum
velocity.
The expansion velocity of the CS envelope esti-

mated fromnarrow absorption lines is u = 750 km s−1

(Pastorello et al. 2002). However, a slightly higher
value of u ≈ 850 km s−1 is obtained from the infrared
Ca II triplet emission lines (Pastorello et al. 2002,
Fig. 10). Here, we adopt u = 800 km s−1.
Finally, yet another constraint on the model is that

after day 700, the light curve shows a more rapid
decay, which can be interpreted as the result of the
overtaking of the outer boundary of the CS envelope
by the forward shock (Pastorello et al. 2002). This
fact will be used to estimate the outer radius of the
CS envelope.
Preliminary computations of a large set of models

for SN 1995G reveal the following important feature:
it turns out that within the empirical constraints, the
model is insensitive to one of the two guiding super-
nova parameters, either mass or energy. Selecting the
mass as the guiding parameter, we found that a fit is
achievable for a wide range of masses. Two models
with masses of 2M� (model G1) and 10M� (model
G2), with other parameters given in the table, show
an acceptable fit of the bolometric light curve, the
photospheric radius, and thin-shell velocity (Fig. 4).
Note that to achieve agreement with the photospheric
radius at the first epoch, we added 20 days to the age
of the supernova given by Pastorello et al. (2002).
This means that the explosion of SN 1995G is as-
sumed to have occurred 20 days earlier than the zero
ASTRONOMY LETTERS Vol. 29 No. 10 2003
point accepted in the cited paper. However, when
some observational phase is mentioned in the text,
we formally retain its day according to Pastorello
et al. (2002). Models G1 and G2 confirm that the
density andmass of the CS envelope do not depend on
the adopted supernova mass (the table). The density
at a radius of 1015 cm is ≈9 × 10−15 g cm−3, or,
in terms of the hydrogen concentration for a normal
abundance, n ≈ 4 × 109 cm−3.
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Fig. 3. The Fe II 5018 Å line in the SN 1995G spectra on
days 265 and 561 (Pastorello et al. 2002). Both profiles
reveal a narrow P Cyg component and a broad emission
component. The latter is related to the dense shell at
the supernova boundary. The dotted line indicates a fit to
the blue part of the profile and to the continuum used to
estimate the maximum velocity.
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Fig. 4. Bolometric light curve of SN 1995G (upper panel), radius of the thin shell (middle), and velocity of the thin shell (lower
panel) for two models G1 and G2, with different supernova masses (see table).
The fact that the CS gas density is independent
of the adopted supernova mass has a simple ex-
planation. For the high CS density required in the
case of SN 1995G, both shock waves (forward and
reverse) are essentially radiative for a long period
(≈700 d), implying that for a given total radiated en-
ergy, the total dissipated kinetic energy in the shocks
is constant. Since the forward shock dominates in the
luminosity, the characteristic radiated energy must
be ∼0.5Mcs(v − u)2. Given the observational con-
straints on the shell velocity (v) and the CS velocity
(u), the total mass of the CS envelope must then be
also constant in different models.

In bothmodels, the kinetic energy is lower than the
typical energy of core collapse supernovae (1051 erg).
Although the question about the typical energy for
SN IIn is still open, it would be instructive to consider
the case of a “standard” energy. Model G3 with en-
ergy E = 1051 erg shows a satisfactory fit and again
requires a similar CS shell density and mass given in
Fig. 5 (table), thus confirming that these values are
independent of the adopted supernova mass at least
in the range 2–20 M�. Note that the latter assertion
can be reformulated in terms of the supernova energy
as a guiding parameter. In that case, the derived
CS density around SN 1995G is independent of the
supernova energy, at least in the range (0.24–1) ×
1051 erg.
The fact that the CS gas density depends weakly

on the adopted supernova mass in the interaction
model is of great importance in diagnosing the CS
density around SN IIn. In essence, the model of the
bolometric light curve in combination with the ve-
locity of the thin shell allows us to estimate of the
CS density in the limit of a radiative forward shock
wave. This technique was already used previously
for SN 1987F under the assumption of the standard
supernova energy (or mass) (Chugai 1992). It now
becomes clear that in the limit of high CS density
(w ≥ 1017 g cm−1), the derived CS density is virtually
independent of the adopted supernova mass, at least
in the range 2 ≤ M ≤ 20 M�.

5. DISCUSSION
The CS gas density distribution found above has

important implications for the interpretation of the
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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spectrum of SN 1995G. The similarity between the
early spectra of SN 1995G and SN 1994W, in par-
ticular, the strong effect of Thomson scattering in
the Hα profile (Chugai et al. 2003), suggests that a
substantial fraction of Hα emission is radiated by the
CS envelope. Is this picture consistent with the above
CS density estimate?
On the second day (or day 22 with the explosion

epoch adopted here), the Hα luminosity of the CS
envelope in the range r1 < r < r2 in our model (ρ ∝
r−2) is

L(Hα) =
1

4πr1
α32hν23(xXwNA)2

(
1 − r1

r2

)
, (1)

where α32 is the effective recombination coefficient of
the Hα emission, hν23 is the Hα photon energy, x
is the degree of ionization, X is the hydrogen mass
fraction, and NA is the Avogadro number. Substi-
tuting in Eq. (1) the values for day 2, more specif-
ically, the inner radius r1 equal to the radius of the
photosphere 1.1 × 1015 cm (Pastorello et al. 2002),
the outer radius r2 = Rb = 2× 1016 cm, α32 = 1.2 ×
10−13 cm3 s−1 (for an electron temperature of 104 K),
w = 1.2 × 1017 g cm−1, we obtain L(Hα) = 6.2 ×
1040x2 erg s−1 by assuming that X = 0.7. On the
other hand, the observed Hα luminosity on day 2 is
L(Hα) = 6.3 × 1040 erg s−1 (Pastorello et al. 2002).
By analogy with SN 1994W, we assume that the
contribution of the CS component in Hα is at least
half the total line luminosity (Chugai et al. 2003).
Comparing the model and observed luminosity of the
CS component, we thus conclude that both values
agree if the average degree of ionization of the model
CS envelope is 0.7 < x ≤ 1.
The optical depth of the CS envelope to Thomson

scattering for the same epoch is τT = kTwx/4πr1 ≈
2.6x, which gives 1.8 < τT < 2.6 for the above range
of the ionization degree. The presence of a strong
red wing in Hα on day 2 (Pastorello et al. 2002,
Fig. 10) suggests significant Thomson scattering, so
one expects τT > 1. Moreover, the close similarity
between this profile and the Hα profile in SN 1994W
on day 30 (Chugai et al. 2003) implies that the optical
depth of the CS envelope in SN 1995G may be as
large as τT ∼ 2, which is consistent with the above
range of the Thomson optical depth.
To summarize, the density of the CS envelope de-

rived from the interaction model agrees with both the
Hα line luminosity and with the presence of strong
effects of Thomson scattering in this line.
In principle, analysis of CS absorption lines could

provide additional information about the CS density.
However, this approach would require a rather com-
plex model of the ionization and excitation in the CS
envelope. Simple considerations based, for instance,
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Fig. 5. The same as Fig. 4 but for model G3.

on Fe II absorption give a rough lower limit (Soller-
man et al. 1998). The requirement that an absorption
line with an optical depth τ be present in the spectrum
is τ > 1. For an envelope of size r with a velocity
dispersion on the line of sight of the order of the ex-
pansion velocity v (greater than the thermal velocity),
the latter condition is

τ ≈ σ(ν)n1r ≈ σ0n1rλ12/v > 1 , (2)

where σ0 = (πe2/mec)f12 = 0.0265 cm2 s−1 is the
frequency-integrated absorption cross section σ(ν),
f12 is the oscillator strength, n1 is the concentration
at the lower transition level, and λ12 is the wave-
length. For the Fe II 5018 Å absorption (f12 = 0.01),
assuming that the excitation temperature of the lower
level on day 2 is equal to the photospheric temperature
of 8800 K (Pastorello et al. 2002) and taking r to be
equal to the photospheric radius (1.1 × 1015 cm), we
obtain a lower limit for the hydrogen concentration
(assuming a solar Fe abundance n > 3 × 107 cm−3),
in qualitative agreement with the density found from
the light-curve analysis.
The outer boundary of the CS envelope (2 ×

1016 cm) combined with the CS expansion velocity
800 km s−1 implies an age for the CS envelope of
tcs ≈ 8 yr, which is close to the estimate of the time at
which intense mass loss begins (≈12 yr before the su-
pernova explosion) found by Pastorello et al. (2002).
The mass of the CS envelope (1M�) combined with
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the age thus suggests an average mass loss rate
Ṁ ∼ 0.1M� yr−1, an enormous value. The estimated
total kinetic energy of the CS envelope is Ecs ≈
6 × 1048 erg, and the average kinetic luminosity of
the mass loss is then Ecs/tcs ≈ 2.4 × 1040 erg s−1.
This value is almost two orders of magnitude higher
than the typical radiative luminosity of a massive pre-
supernova (≈105 L�). Thus, the mass loss certainly
cannot be attributed to the superwind.

Therefore, we suggest that themass ejection in the
SN 1995G presupernova was triggered by some pow-
erful energy release on the hydrodynamic time scale
approximately eight years before the main supernova
explosion. Indeed, we reproduce here the arguments
used in the case of SN 1994W to conclude that the
CS envelope around SN 1994W was lost as a result
of an explosive event ∼1.5 yr before the supernova
explosion (Chugai et al. 2003). It was assumed there
that the explosive mass ejection was triggered by a
flash of Ne nuclear burning in a degenerate O/Ne/Mg
core. This assumption follows the original hypoth-
esis of Weaver and Woosley (1979) concerning the
behavior of presupernovae with initial masses of ≈
11 M�. A similar possibility may also occur in the
case of SN 1995G. Note that the age of the CS
envelope around SN 1995G (∼8 yr) lies within the
range of the phase for the Ne burning in massive stel-
lar cores 1–10 years before the supernova explosion
(Heger 1998).
If the initial mass of the SN 1995G presupernova

was actually close to 11 M�, then, given a neutron-
star mass of 1.4 M�, the mass of the supernova ejecta
cannot exceed 10 M�. In that case, our interaction
model predicts a supernova kinetic energy of ≤ 6 ×
1050 erg (the table). This value is lower than the value
of 1.5 × 1051 erg adopted for SN 1994W (Chugai
et al. 2003). It may well be that the differences be-
tween the supernova energies and the ages of the
CS shells around SN 1995G and SN 1994W (8 and
4 yr, respectively) are presumably related to slight
differences between their initial masses or evolution
histories.
If the mass ejection of the SN 1995G presuper-

nova was explosive in nature, then the CS envelope
expansion regime must be close to a free expansion
(u ∝ r) law, at least in the outer layers. In this respect,
the increase in the velocity derived from CS Fe II
absorption lines between days 330 and 560 (Pastorel-
lo et al. 2002) is in qualitative agreement with the
possible free expansion CS kinematics.

The envelope ejection with a mass of∼1 M� and a
kinetic energy of∼6× 1048 erg must be accompanied
by an optical flash eight years before the explosion of
SN 1995G. In a simple analytical model of the light
curve (Chugai 1991), assuming that the presuper-
nova radius is 100 < R0 < 1000 R�, we estimated
the absolute magnitude of this event at maximum
as −12.5 > MV > −13.5 mag with a duration of the
light curve of 80–120 days. For a distance of 63 Mpc,
the apparent magnitude of the maximum for this flash
is 21.8 > V > 20.8 mag. The only available image of
the host galaxy NGC1643 close to the assumed time
of the presupernova flash is a UK Schmidt plate taken
December 12, 1982, 13 years before the SN 1995G
explosion. Therefore, this image does not constrain
the presupernova flash history. Inspection of this plate
reveals no objects brighter than 20.5 mag in the
J band.

6. CONCLUSIONS

Wemodeled the bolometric light curve and expan-
sion dynamics of SN 1995G in a dense CS environ-
ment. As a result, we obtained the density andmass of
the CS envelope, which do not depend on the adopted
mass of the supernova envelope. The derived mass of
the CS envelope combined with the CS gas veloc-
ity leads us to conclude that the CS envelope was
ejected through an energetic hydrodynamic process
eight years before the explosion of SN 1995G. This
mass ejection may have been triggered by a power-
ful thermonuclear flash in the degenerate O/Ne/Mg
core of the presupernova, by analogy with the earlier
hypothesis proposed for SN 1994W.
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Diffusive Propagation of Fast Particles in the Presence of a Moving
Shock Wave
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Abstract—Based on an analytical model, we determined the temporal dynamics of the spectral shape
and spatial distribution of the particles that were impulsively (in time) injected with a specified spectrum
in the vicinity of a moving plane shock front. We obtained a condition to determine the influence of the
shock front on the particle propagation, where the spatial diffusion coefficient of the particles plays a major
role. Diffusive shock acceleration is shown to strongly affect low-energy particles (the intensity maximum
coincides spatially with the shock front; hard and soft spectral regions are formed in the spectrum) and
weakly affect high-energy particles (the time at which the intensity reaches its maximum is well ahead of
the shock arrival time; the spectral shape does not change). In events accompanied by a significant increase
in the turbulence level, the influence of the shock front on high-energy particles can change from weak to
strong. This change shows up in the spatial distribution and spectral shape of the particles. The dynamics
of the particle intensity, calculated with the diffusion coefficients that were determined in accordance with
the quasi-linear theory for measured turbulence levels, qualitatively corresponds to the observed solar
energetic-particle intensity. c© 2003 MAIK “Nauka/Interperiodica”.

Keywords: cosmic rays, nonthermal radiation, solar energetic particles, shockwaves, diffusive shock
acceleration.
INTRODUCTION

Solar energetic particles (SEPs) in gradual events
are generated by shock waves (see, e.g., Reames
(1999) and references therein). The SEP generation
region is mainly bounded by the solar corona, as
suggested by the fluxes of protons with energies from
470 MeV to 21 GeV whose maximum occurs at
the instant the shock wave in the solar atmosphere
reaches heights of 5–10R� (Kahler 1994). This find-
ing is also confirmed by the following phenomenon
commonly observed in interplanetary space: the time
at which the intensity of SEPs with kinetic energies
above 10 MeV reaches its maximum is well ahead
of the shock arrival time. Changes in the SEP ac-
celeration efficiency reflect the spatial dependence of
the shock intensity and the background Alfvén tur-
bulence level—the main factors of the diffusive shock
acceleration mechanism, which are at a maximum
near the Sun and decrease with increasing heliocen-
tric distance (Denskat and Neubaeuer 1982). Model
calculations of the diffusive shock acceleration of par-
ticles under typical conditions of the solar corona
indicate that the time of shock passage through the

*E-mail: petukhov@ikfia.ysn.ru
1063-7737/03/2910-0658$24.00 c©
solar atmosphere is long enough for the particle spec-
trum that corresponds to the observed SEP parame-
ters to be formed (Berezhko et al. 2001a, 2001b).

The interaction of charged particles (which can
be superthermal solar-wind plasma ions, SEPs left
in interplanetary space from preceding perturbations,
or SEPs accelerated by the same shock in the solar
corona) with an interplanetary shock front can give
rise to new populations of particles. Particle beams
with a soft spectrum can emerge in the segment of
the shock front with a quasi-perpendicular magnetic
field due to drift acceleration (see, e.g., Decker 1981).
A spectrum of the accelerated particles (ESP events)
can be formed in the quasi-parallel segment of the
shock front through diffusive shock acceleration (see,
e.g., Lee 1983). The relative contribution from each of
the above sources to the new populations of particles
in specific events is determined by the amplitude of
the injected-particle flux, its energy and time de-
pendences, and the Alfvén turbulence level. For ex-
ample, the calculations based on the self-consistent
stationary (Lee 1983) and nonstationary (Berezhko et
al. 1998) theories of the diffusive shock acceleration
of solar-wind protons and the generation of Alfvén
turbulence are in satisfactory agreement with the
2003 MAIK “Nauka/Interperiodica”
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measurements (Kennel et al. 1986; Berezhko et al.
1998).

Recently, a black-box model has been used to
describe the SEP propagation in interplanetary space
in the presence of a shock wave. In this model, the
complex processes of particle interaction with the
shock front and their injection from the perturbation
region are replaced with a fictitious source that lies at
the front and supplies particles to the preshock region
(Kallenroude and Wibberenz 1997; Lario et al. 1998;
Ng et al. 1999). The approach developed is useful in
statistically analyzing events and allows the typical
time profiles of the SEP intensity and anisotropy to
be determined for the period preceding the arrival of a
perturbation. This information is valuable for predic-
tion purposes, because it allows the SEP impact lim-
its to be determined under various conditions (Lario
et al. 1999). A drawback of the method, as well as
all of the black-box models, is the difficulty of using
the parameters of the source to study the contribution
of various processes to the formation of the observed
SEP intensity and anisotropy.

Lee and Ryan (1986) used a different approach to
analyzing the generation of SEPs in gradual events.
A study of the analytical solution to the diffusive
transport equation for the chosen law of shock mo-
tion and diffusion coefficients indicates that: (1) in
the time of shock passage through the solar corona
(∼100 min), the maximum energy in the accelerated-
particle spectrum reaches 0.1–1 GeV; (2) in inter-
planetary space, the maximum energy changes only
slightly; and (3) the computed time profiles of the
SEP intensity for the Earth’s orbit are similar to its
observed time profiles. Thus, the results obtained by
Lee and Ryan (1986) confirm the close relationship
between the diffusive shock acceleration of particles
and SEP events.

Toptygin (1983) also calculated an analytical
model that described the temporal dynamics of the
spectrum for the particles that were accelerated by a
plane shock wave. Note that the solutions obtained
are qualitatively similar. The quantitative difference
between the solutions is attributable to the different
geometries of space and to the adopted law of shock
motion and particle diffusion coefficients.

A drawback of the two models is that the particle
diffusion coefficients do not depend on energy.

As a continuation of previous studies, we analyze
here the temporal dynamics of the particle spectrum
in the presence of a plane shock wave for energy-
dependent and time-varying diffusion coefficients.
The results are important for studying the effects of
an interplanetary shock front on the properties of the
SEPs that are generally recorded at the Earth’s orbit
and, thus, for determining the properties of the SEPs
being formed in the solar atmosphere.
ASTRONOMY LETTERS Vol. 29 No. 10 2003
THE MODEL

ASEP event from the formation of a shockwave to
its arrival at the Earth’s orbit can be arbitrarily divided
into two stages: the first stage (∼1 h in duration) is
the SEP generation in the solar corona; the second
stage (∼1 day in duration) is the SEP propagation in
interplanetary space in the presence of a shock wave.
When considering the second stage of the event, to
which we restrict our analysis here, we assume that it
begins with the injection of particles whose spectrum
formed during the first stage.

Let us determine the phase-space distribution of
fast charged particles for a given particle flux injected
continuously (in time), starting from a time t0 to a
plane shock front that moves in unbounded space.
To solve the problem, we choose a coordinate system
whose origin coincides with the traveling shock front
and whose x axis is directed opposite to the shock
velocity. The solution of the transport equation in the
diffusion approximation

∂fi

∂t
= ki

∂2fi

∂x2
− ui

∂fi

∂x
(1)

with zero initial and boundary conditions for x→ ±∞
and conditions for joining the solutions at the shock
front defines the particle distribution in the presence
of a shock wave (for more detail, see, e.g., Berezhko
et al. 1988). Here, fi is the isotropic part of the
particle distribution function; p is the particle mo-
mentum; u1 = Vs − w and u2 = u1/σ are the flow
velocities in the chosen coordinate system; ki is the
particle diffusion coefficient; Vs and w are the shock
and flow velocities, respectively, which are assumed
to be constant; and σ is the gas compression ratio
at the shock front. The subscripts 1 and 2 denote the
functions and parameters pertaining to the preshock
(x < 0) and postshock (x > 0) regions, respectively.

The general solution of the problem in space with
a plane geometry and a dependence of the particle dif-
fusion coefficients only on the momentum can be rep-
resented as two analytical relations: (1) the particle
distribution function at the shock front that depends
on the injected particle flux and (2) the particle distri-
bution function in space that depends on the particle
distribution function at the front. Using the method
of generations (see Section 16.3 in the monograph
by Berezhko et al. 1988), we can write the particle
distribution function at the front f0(p, t) as

f0(p, t) =
3σ

u1(σ − 1)

p∫
pmin

1
4πp′3

(
p

p′

)−q

(2)

× t
3/2
k√
2πd2

k

dp′
t∫

t0

(t− t′)−3/2 exp
[
t2k
d2

k

− tk(t− t′)
2d2

k
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− t3k
2d2

k(t− t′)

]
Jinj(p′, t′)dt′,

where q = 3σ/(σ− 1); Jinj is the injected-particle flux
density and the following notation is used:

tk =
3σ

u2
1(σ − 1)

p∫
p′

(κ1(p′′) + σk2(p′′))
dp′′

p′′

is the mean time and

d2
k =

6σ
u4

1(σ − 1)

p∫
p′

(κ2
1(p

′′) + σ3k2
2(p

′′))
dp′′

p′′

is the variance. In writing expression (2), we took into
account the fact that the injected-particle spectrum is
bounded from low momenta by pmin.

The particle distribution function fi(x, p, t) in the
preshock and postshock regions is defined by the
solution of Eq. (1) under zero initial and bound-
ary conditions for x→ ±∞ and the boundary condi-
tion f(x = 0, p, t) = f0(p, t). For the model adopted,
this function can be represented as a convolution with
the standard Green function of Eq. (1):

fi(x, p, t) =
(−1)ix√

4πκi
exp

[
uix

2κi

] t∫
t0

(t− t′)−3/2 (3)

× exp
[
−u

2
i (t− t′)

4κi
− x2

4κi(t− t′)

]
f0(p, t′)dt′,

where x is the distance from the front.
For impulsive (in time) particle injection,

Jinj(p′, t′) = Ninj(p′)δ(t′ − t0),
expression (2) takes the form

f0(p, t) =
3σ

u1(σ − 1)

p∫
pmin

Ninj(p′)
4πp′3

(
p

p′

)−q

(4)

× t
3/2
k√

2πd2
kt

3
exp

[
t2k
d2

k

− tkt

2d2
k

− t3k
2d2

kt

]
dp′,

where Ninj(p′) is the differential spectrum of the in-
jected particles per unit front area, and δ(t′ − t0) is
the delta function.

For the injection of a monoenergetic particle
beam and constant diffusion coefficients related by
k1/k2 = σ2, solution (4) is identical to the solution
obtained by Toptygin (1983).

Relations (3) and (4) define the dynamics of
the particle distribution function in space and at
the shock front, respectively, in events with time-
independent diffusion coefficients.
It is well known from direct measurements (Wan-
ner and Wibberenz 1993; Starodubtsev 2000) and
theoretical analyses (Ng and Reames 1994) that suf-
ficiently intense SEP fluxes can themselves change
the turbulence level of MHD waves during an event.
Based on numerical models, Ng et al. (1999) studied
the self-consistent dynamics of the SEP ion flux and
turbulence.

We can evaluate the possible manifestations of
changes in the diffusion coefficients during an event
in the dynamics of the particle flux in terms of a
simplified analytical model. Let us assume that the
particles propagate in two stages: at the first stage,
the particles impulsively injected at a time t0 prop-
agate in a time interval (t0, t∗) with the same diffu-
sion coefficients; at the second stage, the diffusion
coefficients abruptly change at a time t∗ in the entire
space, and the particle propagation continues in a
time interval (t∗, t) with new diffusion coefficients.
Such a simplification in analyzing SEP events can
be used because, as follows from measurements, the
condition Γt	 1, where Γ is the wave growth rate
and t is the duration of the SEP event, is satisfied for
typical conditions in interplanetary space.

In this approach, the first stage is described by
relations (3) and (4) as above. When considering the
second stage, it is convenient to separate the parti-
cles into two populations according to the following
criterion: whether or not they reached the shock front
after t∗. The spatial distribution of the population-
1 particles (i.e., those which have not yet reached
the shock front) in each of the half-spaces is defined
by the solution of the transport equation (1) for zero
boundary conditions and a given initial (for the second
stage) distribution fi(x, p, t∗)

fi(x, p, t) =
1√

4πki(t− t∗)
exp

[
−u

2
i (t− t∗)

4ki

]
(5)

×
b∫

a

f(x′, p, t∗) exp
[
ui(x− x′)

2ki

]

×
(

exp
[
− (x′ − x)2

4ki(t− t∗)

]
− exp

[
− (x′ + x)2

4ki(t− t∗)

])
dx′,

where fi(x, p, t∗) is the spatial particle distribution in
the corresponding half-space at the end of the first
stage

a =

{
−∞, i = 1
0, i = 2,

b =

{
0, i = 1
∞, i = 2.

The population-1 particle flux incident on the
shock front is specified by distribution (5) and is

Jinj,i = 4πp2ki

∣∣∣∣∂fi

∂x

∣∣∣∣
x=0

=
4πp2√

4πki(t− t∗)3
(6)
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× exp
[
−u

2
i (t− t∗)

4ki

] b∫
a

(−1)ix′fi(x′, p, t∗)

× exp
[
−uix

′

2ki

]
exp

[
− x′2

4ki(t− t∗)

]
dx′.

Thus, at the second stage, particles of both
populations are present in each of the half-spaces,
with the spatial distribution of the population-1
and population-2 particles being described by re-
lations (5) and (2), (3), respectively. In this case,
in the internal integration of expression (2), the
injected particle flux is the sum of the fluxes defined
by expressions (6) for the integration range (t∗, t).

RESULTS AND DISCUSSION

In our illustrative calculations shown in Figs. 1
and 2, we used w = 400 km s−1, Vs = 700 km s−1,
and σ = 3.5. We also assumed that the impulsive
injection of protons with the following differen-
tial power-law momentum spectrum took place at
time t0, which was taken as zero:

Ninj = N0(p/mc)−5H(p− pmin),
where N0 is the normalization constant, H is the
Heaviside function, and pmin = 0.014mc (εmin =
92 keV). The preshock diffusion coefficient was taken
in the form k1 = k10ε/1 MeV (cm2 s−1). Figure 1
shows the results of our calculations for three values
of the diffusion coefficient: (a, b) k10 = 4.2 × 1019,
(c, d) k10 = 2.1 × 1020, (e, f) k10 = 1.1 × 1021. The
postshock diffusion coefficient was taken in the form
k2 = k1/10 in all of our calculations.

In Figs. 1a, 1c, and 1e, the proton intensity J =
p2f at the Earth’s orbit is plotted against time for six
energies: 1—0.6, 2—1.6, 3—3.8, 4—9.3, 5—22.7,
and 6—55.2 MeV. In Figs. 1b, 1d, and 1f, the proton
distribution function at the shock front f0(p, t) cal-
culated using relation (4) is plotted against kinetic
energy (in MeV). The proton distribution function
at the shock front in Figs. 1b, 1d, and 1f is shown
for three times: 1—t = 0.05te, 2—t = 0.5te, and 3—
t = te, where te = re/Vs is the time of shock arrival
at the Earth’s orbit, and for the values of te = 59.5 h,
re = 1 AU.

As we see from the results presented in Fig. 1,
two variants of intensity dynamics are possible for
particles of different energies: in the first variant, the
intensity peaks at the shock arrival time (curves 1–4
in Fig 1a; curves 1 and 2 in Fig. 1c); in the second
variant, the intensity after its rapid increase is either
nearly constant or decreases until the arrival of the
shock front (the remaining curves in Figs. 1a, 1c,
and 1e).
ASTRONOMY LETTERS Vol. 29 No. 10 2003
The results presented in Figs. 1b, 1d, and 1f show
that the particle interaction with the shock front
causes the spectral shape to change in the energy
range only in the first variant of intensity dynamics.
Note the different patterns of change in the spectral
shape: the spectrum is harder than the injected-
particle spectrum at low energies (the region between
marks A and B in Fig. 1b) and softer at high energies
(the region between marks B and C).

The boundary of the energy range in the spectrum
of the injected particles that underwent a significant
change through their interaction with the shock front
is defined by the relation

t = tk −
√

2d2
k, (7)

which is a corollary of the limit theorem in the prob-
ability theory for our problem (for more detail, see
Berezhko et al. 1988). Here, t is the duration of the
process; tk and d2

k are the mean time it takes for a par-
ticle to execute k cycles and the variance, respectively.
Using the above expressions for the mean time and
the variance (after formula (2)), as well as the values
of the quantities from (7) adopted in the calculation
shown in Fig. 1b, we obtain for t = te

ε∗/1 MeV =
reu

2
1/Vsk10

3σ(1 + 0.1σ)
2(σ − 1)

−
√

3σ(1 + 0.01σ3)
σ − 1

(8)

≈ 2.6
reu

2
1

Vsk10
≈ 12.

In Fig. 1b, the above energy range highlighted
by a horizontal line with an arrow is in satisfactory
agreement with the calculations. It is easy to verify
that relation (7) and the consequent relations similar
to (8) are also in reasonable agreement with all of the
calculations shown in Figs. 1b, 1d, and 1f.

The efficiency of the particle interaction with a
plane shock front (the diffusive shock acceleration
efficiency) is known to be determined by the accelera-
tion time tacc ≈ k1/u

2
1 (Berezhko et al. 1988). After

a lapse of time t, the shock wave will significantly
affect those particles for which the condition tacc < t
or, at t = te, u

2
1re/k1Vs ≥ 1 is satisfied, where the

boundary value of the dimensionless combination of
parameters, to within a numerical factor, matches
expression (8).

Our calculations presented in Fig. 2 illustrate the
influence of changes in the diffusion coefficients on
the intensity dynamics and the particle distribution
function at the shock front. The corresponding curves
in Figs. 1 and 2 coincide until the time t∗ = 0.5te =
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Fig. 1. Particle intensity versus time for six energies (1–6 in а, c, e) at a fixed point of the preshock region and the particle
distribution function at the shock front versus energy for three times (1–3 in b, d, f). The chosen times are: 1—injection time;
2—30 h after injection; 3—60 h after injection—for the adopted parameters, coincides with the arrival time of the shock front
to the fixed point. The particle diffusion coefficient is specified as k1 = k10(ε/1MeV cm2 s−1, where: k10 = 4.2 × 1019 (a, b);
k10 = 2.1 × 1020 (c, d); k10 = 1.1 × 1021 (e, f)).
30 h; the subsequent difference in dynamics is at-
tributable to a tenfold decrease in the diffusion coeffi-
cients. Comparison indicates that changes in the dif-
fusion coefficients have different effects on the inten-
sity dynamics. This difference results from the forma-
tion of hard and soft spectral regions in the injected-
particle spectrum (curve 2 in Fig. 2b). Changes in
the diffusion coefficients weakly affect the dynamics
of particles with energies in the hard spectral region
(curves 1 and 2 in Fig. 2a in comparison with similar
curves in Fig. 1a). At the same time, the intensity dy-
namics significantly changes for particles with ener-
gies in the soft spectral region (curves 3–6 in Fig. 2a,
curves 2–4 in Fig. 2c, and curve 2 in Fig. 2e in
comparison with similar curves in Fig. 1). The weak
influence of changes in the diffusion coefficients on
the behavior of curves 1 in Figs. 2c and 2e stems from
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Fig. 2. The same as Fig. 1, but the preshock diffusion coefficient 30-h after particle injection decreases by a factor of 10.
the fact that the amplitude of the injected-particle
spectrum at energies close to εmin can only decrease.

Thus, in events with variable diffusion coefficients,
a third variant of intensity dynamics is possible. This
variant is actually a combination of the two previously
considered variants: in the first part of the event, the
intensity rapidly reaches its maximum and subse-
quently changes only slightly (the second variant of
dynamics), while in the second part, the decrease in
the diffusion coefficients is followed by a significant
increase in the intensity up to the shock front (the first
variant of dynamics).

Figures 3a, 3c, 3e and 3b, 3d, 3f show the re-
sults of our calculations and measurements for the
ASTRONOMY LETTERS Vol. 29 No. 10 2003
SEP events of May 2 and August 24, 1998, respec-
tively. The curves 1–9 in Figs. 3a and 3b indicate
the SEP intensity as a function of time recorded
at the Earth’s orbit in nine energy channels: 1—
0.047–0.065; 2—0.112–0.187; 3—0.31–0.58; 4—
1.95–4.75; 5—27–41; 6—41–58; 7—58–88; 8—
88–180; and 9—180–300 MeV. The curves shown in
the same figures and composed of symbols represent
our calculations for the energies that correspond to
the middle of the energy channel. The vertical solid
line in Figs. 3a and 3b corresponds to the shock
arrival time. The curves in Figs. 3c and 3d indicate
the SEP distribution function at the shock front:
the dashed and solid lines represent our calculations
for the injection time and the time of shock arrival
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lines in the calculations correspond to the injection time and the time of shock arrival at the Earth’s orbit, respectively; dots
represent the measurements at the time of shock arrival at the Earth’s orbit. (e) IMF power spectral density (1, 2) measured
at the Earth’s orbit during the two time intervals marked in (a) by the corresponding horizontal lines. (b, d, f) The same for the
SEP event of August 24, 1998.
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at the Earth’s orbit, respectively; the dots represent
the measurements at the Earth’s orbit. The curves 1
and 2 in Figs. 3e and 3f indicate the power spectral
density of the interplanetary magnetic field (IMF)
determined for the two time intervals marked by the
horizontal lines in Figs. 3a and 3b.

Themeasurements were obtained from two space-
craft: АСЕ: (i) 1-h SEP flux measurements (cur-
ves 1–4 in Figs. 3a and 3b) from theEPAM/LEMS30
experiment; (ii) 1-h solar-wind measurements from
the SWEPAM experiment; (iii) 1-h and 16-s IMF
measurements from the MAG experiment; and Inter-
ball-2: 1-h proton flux measurements with the 10К-
80 spectrometer (curves 5–9 in Figs. 3a and 3b).

In our calculations, we used the following mea-
sured parameters. For the May 2 event, the preshock
solar-wind velocity was w = 500 km s−1; the shock
velocity according to the propagation time of the
perturbation Vs = 1070 km s−1 (as the perturbation,
we took the shock wave recorded at the beginning
of May 4 rather than the indistinct perturbation that
arrived at the Earth’s orbit at the end of May 3);
the gas compression ratio at the shock front σ = 4;
and the preshock IMF strength B = 6 nT. For the
August 24 event w = 400 km s−1, Vs = 1300 km s−1,
σ = 3, and B = 6 nT.

The diffusion coefficient used in our calculations
was determined in accordance with the quasi-linear
theory (Lee 1983). Given the numerical values, the
expression for this coefficient in the preshock region
can be represented as

k1 =
3.6 × 1011

P (ν0)

(
B

5 nT

) ( ε

1 MeV

) 3−α
2 (

cm2 s−1
)
,

(9)

where P (ν) = P (ν0)(ν/ν0)−α is the IMF power
spectral density, and ν0 = 2.2 × 10−3(B/5nT) ×
(w/400 km s−1) (Hz) is the frequency of the Alfvén
waves that resonantly interact with protons whose
energy is 1 MeV. In the May 2 event, as follows
from Fig. 3e: ν0 = 3.3 × 10−3 Hz, α = 1.9, P (ν0) =
1 nT2 Hz−1, which gives k1 = 4.3 × 1021 ×
(ε/1 MeV)0.55(cm2 s−1). According to the measured
IMF power spectrum (curve 2 in Fig. 3e), the dif-
fusion coefficient in the second half of the event
decreased by a factor of 3. In accordance with the
data for the August 24 event shown in Fig. 3f, ν0 =
2.6 × 10−3 Hz, α = 1.5, P (ν0) = 6 nT2 Hz−1, which
gives k1 = 0.72 × 1021(ε/1MeV)0.75(cm2 s−1); the
latter decreased by a factor of 10 in the second
half of the event. As regards the postshock particle
diffusion coefficient, we assumed that k2 = k1/10 in
both events.
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As follows from the results presented in Figs. 3a,
3c, and 3e, the SEP event of May 2 occurred against
the background of a low turbulence level, even when
the latter tripled in the second half of the event. As a
result, there are no manifestations of diffusive shock
acceleration in the temporal dynamics of the SEP in-
tensity. The local low-energy SEP intensity varia-
tions (curves 1–3 in Fig. 3a) are probably attributable
to the large-scale magnetic clouds from preceding
perturbations that crossed the Earth’s orbit at that
time. In general, the calculations and the measure-
ments for this event are in qualitative agreement. The
plane geometry of space adopted in our calculations is
responsible for the difference between the calculated
and measured temporal behaviors of the particle in-
tensity.

The diffusive shock acceleration mechanism de-
termines the low-energy SEP dynamics for the Au-
gust 24 event (curves 1–4 in Fig. 3b) because of the
higher turbulence level (curves 1 and 2 in Fig. 3f). Our
calculations and the measurements in this energy
range are in satisfactory agreement. The cause of the
significant increase in SEP intensity at the shock
front in the channel of minimum recordable energy
47–65 keV remains unclear. In the case of diffusive
shock acceleration, the amplitude of the spectrum at
these energies is determined by the spectral shape at
lower energies, about which we know nothing. Our
calculations for the spectrum of the particles injected
at the beginning of the event specified in the en-
ergy range 30–47 keV by extrapolation yield a much
lower intensity amplitude than the measured ampli-
tude. Besides, adding another injection source of the
particles left in interplanetary space from preceding
perturbations (curves 1–4 for August 24 in Fig. 3b
and their extrapolation down to an energy of 30 keV)
increases the intensity amplitude only slightly. The
significant increase in amplitude at the shock front
may result from a manifestation of the drift acceler-
ation mechanism (see, e.g., Decker 1981).

The intensity of high-energy SEPs exhibits an in-
teresting behavior (curves 5–9 in Fig. 3b). According
to relation (7), which defines the energy boundary of
the particles that were strongly affected by diffusive
shock acceleration, we obtain ε∗ ≈ 3 MeV for the
parameters adopted in the August 24 event. Never-
theless, in a range of energies above ε∗, whose width
depends on the diffusion coefficient and the shape of
the particle spectrum in this energy range, weakman-
ifestations of diffusive shock acceleration are possible;
more specifically, there is a small increase in intensity
as the shock front is approached and a softening of
the spectrum. These manifestations are present in
the intensity dynamics of the August 24 SEP event
up to an energy of 300 MeV. This may also be the
reason why the intensity of the SEPs with energies
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up to 500–700 MeV increased at the shock front in
the event of November 6, 2001. Thus, a significant
decrease in the preshock spatial diffusion coefficient of
the particles during the event intensifies the diffusive
shock acceleration process. Real-timemeasurements
of the IMF power spectrum can be used to predict
increases in the intensity of high-energy SEPs until
the shock arrival, which is of considerable interest in
space-weather problems.

In general, we may conclude that our calculations
and the measurements are in qualitative agreement.
The agreement is better for particles whose behavior
is determined by acceleration and poorer for particles
whose dynamics are dominated by propagation.

CONCLUSIONS

Our studies of the interaction of fast particles with
a moving shock front and comparison of our calcula-
tions with SEP intensity measurements in interplan-
etary space have led us to the following conclusions:

The SEP generation region is bounded by the
solar corona. The pattern of the subsequent SEP in-
teraction with an interplanetary shock front is mainly
determined by the preshock spatial diffusion coeffi-
cient of the particles. The strong influence of diffusive
shock acceleration causes the shape of the energy
spectrum for low-energy SEPs to change—hard and
soft spectral regions are formed. The peak of the low-
energy SEP intensity coincides with the shock front.

High-energy SEPs weakly interact with the shock
front: their spectral shape does not change, and the
time at which the intensity reaches its maximum in
interplanetary space is well ahead of the shock arrival
time.

The energy boundary of the division of protons into
low- and high-energy SEPs according to the pattern
of their interaction with the shock front for typical in-
terplanetary conditions corresponds to approximately
1 MeV.

In events accompanied by a significant rise of the
IMF power spectrum, both variants of temporal dy-
namics can manifest themselves in the high-energy
SEP intensity: the first and second intensity peaks
occur at the beginning of the event and at the shock
arrival, respectively.

The particle intensity dynamics calculated in
terms of the diffusion approximation with the diffu-
sion coefficients calculated by using the quasi-linear
theory for the measured IMF power spectrum quali-
tatively agrees with the observed SEP intensity. Real-
timemeasurements of the IMFpower spectral density
during an event can be used to predict increases in the
intensity of high-energy SEPs until the shock arrival.
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Highly Accurate Determination of the Coordinates and the Earth’s
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Abstract—We present the results of our processing of the first observations of extragalactic radio sources
obtained with the eight-element International VLBI Network, which includes the Svetloe Russian Ra-
dio Astronomy Observatory equipped with a Mark 3A recording terminal. Our observations and their
processing yielded highly accurate coordinates (in meters) of the Svetloe Observatory in the ITRF 2000
system: X = 2730173.854± 0.002, Y = 1562442.668± 0.004, Z = 5529969.069± 0.007. We also show
that including the Svetloe Observatory in the International Network led to an appreciable improvement
in the accuracy of determining the Earth’s rotation parameters (microarcseconds for the coordinates of
the pole and nutation angles, microseconds for Universal Time): Xp = −154683± 77, Yp = 361809± 59,
UT1–UTC = −325162.9± 2.5, ∆ψ = −53147± 114, ∆ε = −2286± 47. c© 2003 MAIK “Nau-
ka/Interperiodica”.

Key words: radio interferometry, International Terrestrial Reference Frame, Earth’s rotation param-
eters.
INTRODUCTION

The Svetloe Radio Astronomy Observatory, the
first observatory of the Russian continuously operat-
ing Quasar radio-interferometric network, is located
in the Priozersk District of the Leningrad Region.
It was created primarily for regular VLBI obser-
vations in programs of astrometry, geodynamics,
and space geodesy (Finkelstein 2001; Gubanov and
Finkelstein 2001). Svetloe is a specialized radio-
interferometric station equipped with all of the nec-
essary tools for VLBI observations of extragalactic
radio sources.

By the end of 2002, the observatory was equipped
with the only recording terminal—a Canadian S2 ter-
minal with video converters, designed at the Institute
of AppliedAstronomy, Russian Academy of Sciences.
Using this terminal, we have carried out observa-
tions under several programs together with VLBI
stations of China, Canada, and Australia equipped
with similar terminals, as well as with the other
Quasar network observatory located in the Cossack
village Zelenchukskaya, Karachaevo-Cherkessian
Republic. At the end of 2002, in accordance with
agreement between the Russian Academy of Sci-
ences and NASA, a Mark 3A recording terminal was
installed at the observatory, and from the beginning of

*E-mail: amf@quasar.ipa.nw.ru
1063-7737/03/2910-0667$24.00 c©
2003, it was incorporated into the International VLBI
Service (IVS) for Geodesy and Astrometry. A number
of large and long-term international astrometric and
geodynamic VLBI programs, developed together
with the Institute of Applied Astronomy, Russian
Academy of Sciences, are being implemented within
the IVS framework.

In this paper, we report the first results of one
such programs that allowed us to radically improve
the three-dimensional coordinates of the Svetloe Ob-
servatory, to significantly refine its position in the IVS
network, and to estimate its influence on the accuracy
of determining the Earth’s rotation parameters.

INSTRUMENTATION
OF THE OBSERVATORY

The main element of the instrumentation at the
Svetloe Observatory is a new-generation, fully steer-
able radio telescope (Fig. 1) with a homologous mir-
ror (Finkelstein et al. 2002). The quasi-parabolic
mirror of the radio telescope has a diameter of 32 m
and a focal length of 11.4 m. The secondary mirror,
fixed to the supports of the primary mirror near the
prime focus, is a modified hyperboloid of revolution
with a diameter of 4 m.

The radio telescope has two modes of motion: fast
(1◦.5 s−1 in azimuth and 0◦.8 s−1 in elevation) and slow
(1′
.5 s−1 in azimuth and 0′

.8 s−1 in elevation), which
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. The radio telescope of the Svetloe Observatory.
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Fig. 2. SEFD values for the radio telescopes of the IVS network.
makes it possible not only to track radio sources but
also to quickly repoint the antenna from one source to
another. This is necessary for the carrying out of any
astrometric or geodynamic program. A cable system
rotates the antenna by ±270◦ in azimuth from the

central position northward and in the elevation range

(from −5◦ to+90◦), which allows us to optimize var-
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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ious programs of observations of many radio sources
located at widely differing hour angles.

The radio telescope is equipped with five low-noise
cooled HEMT (High Electron Mobility Transistor)
receivers for wavelengths of 1.35, 3.5, 6.0, 13, and
18/21 cm, which allow observations in two orthog-
onal circular polarizations to be carried out (Ipatov
et al. 1994; Ivanov et al. 1997). To achieve a noise
temperature of the radio telescope–radiometer sys-
tem of ∼50 K, some of the input circuits of all bands
are cooled down to 20 K. Closed-cycle microcryo-
genic systems are used to cool the low-noise devices
of all bands down to 20 K. Figure 2 compares the
system equivalent flux densities (SEFD) in the above
bands of the Svetloe Observatory with those of other
VLBI stations (including the second station of the
Quasar Network, the Zelenchukskaya Observatory).
This comparison shows that by this parameter, Svet-
loe ranks among the world’s best VLBI stations.

The illumination system consists of horn feeds
arranged in a circle with a diameter of 3.6 m. The
working band is rapidly changed by rotating the re-
motely controlled secondary mirror, an asymmetric
subdish, through an appropriate angle around the
radio telescope axis.

S/X-band receivers (3.5/13 cm) with a common
feed (Fig. 3) are used to implement astrometric,
geodynamic, and geodesic programs with efficient
suppression of ionospheric effects. The working in-
termediate frequency ranges of these cryoelectronic
radiometers are 130–480 MHz and 130–890 MHz
for the 13- and 3.5-cm bands, respectively. The
noise temperature at the cryostat flange is 15 K, and
the total noise temperature of the radio telescope–
radiometer system does not exceed 50 K in the S-
band and 70 K in the X-band for elevations larger
than 20◦ (Fig. 4).

The signal from the radiometer outputs is fed
through the phase-stable coaxial lines connecting the
focal cabin of the radio telescope with the technical
building to the input of a 14-channel Mark 3A record-
ing terminal. The coaxial lines include amplifiers to
adjust the nonuniformity of the transmission coeffi-
cient. The frequencies are converted to the video band
by synchronized local oscillators with frequencies of
2020 and 8080 MHz for 13 and 3.5 cm, respectively.

The Mark 3A recording terminal performs the fol-
lowing functions: amplification and separation of the
intermediate-frequency signal, conversion of the sig-
nal to the video frequency, clipping the output sig-
nals at a zero level and feeding the clipped signals
to the recording system, measurement of the power
of the received intermediate-frequency signal, and
phase control. Information is recorded on magnetic
tape by a Honeywell 24-track tape recorder; one tape
ASTRONOMY LETTERS Vol. 29 No. 10 2003
Fig. 3. S/X-band (3.5/13 cm) receivers of the Svetloe
Observatory.

records an 18–24-hour observational session, de-
pending on the time required for repointing the tele-
scope from one source to another.

The Svetloe VLBI station has a high-quality
time–frequency synchronization system (Vytnov
et al. 1997). It includes four hydrogen maser fre-
quency standards with long-term stability not worse
than (3–5) × 10−15; one of the standards is always
operational, while any other standard can be activated
within one hour and can reach nominal technical
parameters within another 24 hours. Comparison
and time referencing relative to Moscow time and
Coordinated Universal Time is made with an rms
error of (30–50) ns by using the receivers of the GPS
and GLONASS satellite navigation systems.
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The phase calibration of the system, which uses
a picosecond pulse generator, consists of two main
units: a pulse generator of harmonics based on a
semiconductor diode and a square signal shaper with
a frequency of 1 MHz from a harmonic signal with a
frequency of 5 MHz fed from the hydrogen oscillator
of the station. The delay in the propagation of the 5-
MHz reference signal in the cable system is measured
by means of a phase comparator, using the direct and
delayed signals from the phase calibration oscillator
fed into its comparison inputs.

The control system of meteorological parameters
(atmospheric pressure, wind direction and strength,
temperature, and humidity) is a high-precision soft-
hardware automated measurement system. The sam-
pling rate of the measurements by this system for
automatic writing to a log file of the observational
session is regulated over a wide range by a control
program in the Windows 98 environment.

All of the systems of the radio telescope were com-
bined into a single complex using a central computer
with special-purpose software that allows observa-
tions to be carried out in a completely automated
mode. The central computer not only controls the
process of observations proper but also writes the
results of the commands performed by the equipment
of the radio telescope and the operational information
(meteorological and metrological information, oper-
ator’s comments, etc.) to a log file together with
the results of the observations, which considerably
facilitates antenna control and the data correlation
process.

The Mark IV Field System, Version 9.5.17 (FS),
which is the international standard for VLBI (Him-
wich 1996, 2000) and is installed on radio telescopes
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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with various control systems, forms the basis for this
software. Although FS provides a ready-to-use in-
terface to the various recording systems (Mark 3–
5, VLBA, S2, K4), it does not contain modules for
controlling the antenna and specific equipment of the
radio telescope. Therefore, it was supplemented with
a station-oriented interface for controlling the an-
tenna, a receiving complex, and a radiometric record-
ing system. The software for this interface was devel-
oped in the Linux environment using specific com-
mands in the SNAP language (used in standard FS)
and completely integrated into the FS environment
for observations in both VLBI and single-dish mode
(Mikhailov 2000).

OBSERVATIONS AND RESULTS

At the beginning of December 2002, the Mark 3A
VLBI terminal was installed at the Svetloe Observa-
tory. On December 12, we performed, in cooperation
with NASA experts, test VLBI observations of the ra-
dio sources 0552+398, 0923+392 and 1606+106 in
the S/X bands together with the 20-m radio telescope
in Wettzel (Germany) and the 20-m radio telescope
in Ny-Alesund (Norway). The successful correlation
processing carried out at the Max Planck Institut für
Radioastronomie in Bonn (Germany) allowed us to
reconcile and refine several technical parameters of
the instruments important for subsequent joint obser-
vations.

The first regular VLBI observations at the Svetloe
Observatory were carried out from 18h29m50s UT
March 6, 2003, through 15h52m53s UT March 7,
2003, under a program for determining the Earth’s
rotation parameters (experiment R4061) within the
intercontinental VLBI network. The latter consists of
ASTRONOMY LETTERS Vol. 29 No. 10 2003
eight globally distributed stations (Fig. 5) that formed
28 interferometric baselines with lengths of from
990 km (Wettzell–Matera) to 11064 km (Kokee–
Fortaleza). The size of the network was 82◦ in latitude
and 170◦ in longitude. Table 1 lists the stations, their
locations, and the distribution of scans.

The total number of program radio sources was
36; 29 of them were observed at the Svetloe Ob-
servatory. The total number of planned scans at the
Svetloe Observatory was 132; for technical reasons,
we completed only 116 of them. Each of the radio
sources was observed on the network, on average,
nine times with durations from 1.5 to 12.5 min; thus
the total number of scans was 1398. The tapes were
processed on the correlator at the US Naval Obser-
vatory, Washington, D.C.; 2373 radiointerferometric
delays were processed, 2060 of which were used in the
analysis.

The mean error of a single observation (radio-
interferometric delay obtained on a single baseline)
was 18.4 ps (5.5 mm), and while mean error of the
ionospheric correction from the S/X-band observa-
tions was 8.7 ps (2.6 mm). In the correlation pro-
cessing, we simultaneously determined the fringe rate
with a mean error of 20.8 fs s−1.

The secondary processing of the observations was
performed in order to improve the coordinates of the
Svetloe radio telescope and to calculate the Earth’s
rotation parameters for the epoch of the observations.

When improving the coordinates, we used the
conventional and GPS measurements on the local
geodesic network of the observatory (Kazarinov and
Malkin, 1997) as a priori data. The geocentric coor-
dinates of the radio telescope (the point of intersection
of the axes) obtained using the OCCAM/GROSS
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Table 1. Stations involved in the experiment

Station Location Distance from Svetloe, km Number of scans

Algonquin Park Canada 6256 192

Fortaleza Brazil 8428 104

Gilmore Creek USA, Alaska 5854 219

Kokee Park USA, Hawaii 9561 168

Matera Italy 2374 183

Ny-Alesund Norway, Spitsbergen 2133 199

Svetloe Russia – 132

Wettzell Germany 1655 201

Table 2. Coordinates of the Svetloe station determined in the experiment

Processing center X , m Y , m Z, m

Institute of Applied Astronomy 2 730 173.854± 0.002 1 562 442.668± 0.004 5 529 969.069± 0.007

GSFC 2 730 173.851± 0.003 1 562 442.664± 0.002 5 529 969.063± 0.006

Table 3. Baseline lengths determined in the experiment

Baseline Svetloe Number of observations Length, m Error, m

Algonquin Park 57 6 255 567.630 0.005

Fortaleza 31 8 428 008.668 0.010

Gilmore Creek 62 5 853 689.130 0.005

Kokee Park 35 9 561 115.418 0.008

Matera 75 2 373 640.095 0.003

Ny-Alesund 67 2 133 122.998 0.003

Wettzell 73 1 654 774.855 0.002

Table 4. The Earth’s rotation parameters as determined from experimental data

Number of stations Xp, µas Yp, µas UT1–UTC, ms ∆ψ, µas ∆ε, µas σ0, ps Cmax

8 (all stations) −154 683± 77 361 809± 59 −325 162.9± 2.5 −53 147± 114 −2286± 47 17 0.63

7 (without Svetloe) −154 724± 84 361 833± 64 −325 159.3± 2.9 −53 097± 122 −2292± 50 20 0.66

Note:Xp, Yp are the coordinates of the pole; UN1–UTC is the Universal Time;∆ψ, ∆ε are the nutation angles; σ0 is the error of the
unit weight; and Cmax is the maximum correlation between the Earth’s rotation parameters.
package developed at the Institute of Applied As-
tronomy, Russian Academy of Sciences (Titov and
Zarraoa 1997; Malkin et al. 2000) are presented in
Table 2. For comparison, this table also gives the
coordinates obtained at the leading western VLBI
processing center—the NASAGoddard Space Flight
Center (Petrov 2003). Table 3 lists the baselines
between the Svetloe radio telescope and other radio
telescopes of the VLBI network, determined from the
experimental results.

The coordinates were obtained in the International
Terrestrial Reference Frame ITRF 2000 for the epoch
2003.18 (March 7, 2003) relative to the reference
stations included in this system. The coordinates of
the Gilmore Creek station were corrected for the dis-
placement of the station during a strong earthquake
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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in Alaska in November 2002, when the station was
displaced by 6 cm.

The coordinates and velocities of the reference sta-
tions in the ITRF 2000 catalog contain errors for this
network at a level of 2 mm (for the epoch 1997.0) and
0.3 mm yr−1, respectively. Therefore, the processing
was performed with different sets of reference sta-
tions. The errors of the coordinates and the baselines
listed in Tables 2 and 3 correspond to the discrepancy
between the results obtained in different processing
variants.

In general, the results of the determination of the
coordinates for the Svetloe Observatory and the net-
work baselines show a high degree of accuracy in the
observations and processing.

The main goal of the IVS program under discus-
sion was to determine the Earth’s rotation parame-
ters. For this reason, we estimated the coordinates of
the pole Xp, Yp, the Universal Time UT1–UTC, and
the nutation angles ∆ψ and ∆ε from the VLBI ob-
servations with and without the Svetloe Observatory
(Table 4).

We see from our results that even the first inclu-
sion of the Svetloe Observatory in the IVS network
significantly improved the accuracy of the results.

Twenty sessions of the R4 program have been
scheduled for 2003, which will allow us to further
improve the accuracy of determining the Earth’s ro-
tation parameters. Five sessions of the T2 program
planned for the same period, aimed at improving the
coordinates of the network stations, will allow us to
begin the determination of the tectonic motions of the
Svetloe Observatory.
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Abstract—We constructed new models of Saturn with an allowance made for a helium mass fraction of
∼0.18–0.25 in its atmosphere. Our modeling shows that the composition of Saturn differs markedly from
the solar composition; more specifically, during its formation, the planet was ∼11–15 planetary masses
short of the hydrogen–helium component. Saturn, as well as the other giant planets, must have been
formed according to Schmidt’s scenario, through the formation of embryonic nuclei, rather than according
to Laplace’s scenario. The masses of the embryonic nuclei themselves lie within the range (3.5–8) M⊕.
We calculated a theoretical free-oscillation spectrum for our models of Saturn, each of which fits all of
the available observational data. The results of our calculations are presented graphically and in tables.
Of particular interest are the diagnostic potentialities of the discontinuity gravitational modes related to
density jumps in the molecular envelope of Saturn and at the interface between its molecular and metallic
envelopes. When observational data appear, our results can be used both to identify the observed modes
and to improve the models themselves. We discuss some of the cosmogonical aspects associated with the
formation of the giant planets. c© 2003 MAIK “Nauka/Interperiodica”.

Key words: Solar system—planets, interior-structure models, free oscillations.
INTRODUCTION

The Galileo space probe that plunged into the
atmosphere of Jupiter reliably determined the he-
lium mass fraction Y1 = 0.234 ± 0.005 in the plane-
tary atmosphere on the assumption that the heavy-
element mass fraction was Z = 0.019 (Von Zahn and
Hunten 1996; Von Zahn et al. 1998). This value is
appreciably higher than the corresponding Voyager
estimate Y1 = 0.19 (Gautier et al. 1981). Therefore,
the authors of the experiment to determine the he-
lium abundance in the atmosphere of Saturn from
Voyager data (Conrath et al. 1984) reconsidered their
results (Conrath and Gautier 2000), especially since
the previous estimate of the helium abundance in the
atmosphere of Saturn was actually too low (Y1 =
0.06–0.11).

An important boundary condition in constructing
an interior-structure model for Saturn is the helium
abundance in its atmosphere. A new estimate of the
helium abundance in the atmosphere of Saturn (Y1 =
0.18–0.25) (Conrath and Gautier 2000) makes the
construction of new interior-structure models for the
planet a pressing problem. In 2004, the Cassini–
Huygens spacecraft will place an artificial satellite
in orbit around Saturn and will drop a probe into
the atmosphere of Titan. As a result, the science

*E-mail: gudkova@uipe-ras.scgis.ru
1063-7737/03/2910-0674$24.00 c©
of Saturn and its satellite Titan is expected to be
developed further. In contrast to Jupiter (Gudkova
and Zharkov 1999b), the free-oscillation spectrum of
Saturn has not yet been studied in detail. Based on
our new models of the planet, we carry out such a
study in the second part of our paper.

Saturn is a convective, adiabatic, gaseous–liquid
planet (Hubbard et al. 1974).

The first modern models of Saturn were con-
structed in 1974 (Zharkov et al. 1974a, 1974b). The
methods for constructing models of the giant planets
are described in detail in these papers and in a book
by Zharkov and Trubitsyn (1980).

The materials of the protoplanetary gas–dust
cloud from which a planetary model is constructed
can be subdivided by their volatility into three groups:
(1) gases (H2, He, Ne, . . . ), the G component;
(2) ices (H2O, CH4, NH3), the I component; and
(3) rocks (oxides, iron, and iron compounds), the
R component. The materials in each group are taken
in solar proportion. The outer envelopes of Saturn
consist of the G component with an admixture of
the IR component, while its core consists of an
IR mixture. The currently available data do not allow
us to raise and solve the question of whether the
IR core of the planet is separated into an inner R core
and an outer I core. Therefore, in our models, the
core consists of an IR mixture. In the modern models
of Saturn, a helium-rich layer produced by helium
2003 MAIK “Nauka/Interperiodica”
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sedimentation over the evolutionary history of the
planet overlies an IR core.

The 1974 models of Saturn are characterized by
two jumps in the radial density profile. The first den-
sity jump is related to the molecular–metallic phase
transition of hydrogen at a pressure P = 3 Mbar.
The second, deeper jump corresponds to the inter-
face between the metallic hydrogen envelope and the
IR core and is attributable to the change in chemical
composition.

The interior-structure models improve with im-
proving equations of state and observational data.
The 1974 models of Saturn had the same composition
for the outer molecular and inner metallic envelopes.
The appreciable change in the observed gravitational
moment J4 from (−10.1± 0.7)× 10−4 (Dollfus 1970)
to (−9.17 ± 0.38) × 10−4 (Null et al. 1981) sug-
gested an increase in the weight of the inner part of
the molecular envelope compared to its outer part.
Gudkova et al. (1988) and Zharkov and Gudko-
va (1991) introduced a two-layer molecular envelope
whose inner part was made heavier by the IR com-
ponent and whose outer part was enriched with the
I component. The composition of the latter was de-
termined from data on the atmospheric composition.
The assumption that conditions arise in the inner
molecular envelope for the dissolution of the IR com-
ponent in it with increasing pressure and temperature
served as a physical underpinning for this subdivision.
As the observational data improve and the observa-
tional base expands, the molecular envelope may in
the future have to be subdivided into a larger number
of layers.

Modern models of Saturn consist of five layers:
a two-layer molecular envelope, a metallic hydro-
gen envelope, and a two-layer core (Gudkova and
Zharkov 1988, 1996, 1997; Zharkov and Gudko-
va 1991). At present, there are several uncertainties
in the interior-structure models of Saturn:

(1) In principle, the mass of the IR core can range
widely (from 0 to 20M⊕) (Gudkova and Zharkov
1997; Guillot 1999).

(2) The hydrogen metallization pressure ranges
from 1.5 to 3 Mbar.

Hydrogen and helium comprise most of the planet.
One of the principal uncertainties is the equation of
state for the hydrogen–helium mixture. An impor-
tant model parameter is the pressure at which the
transition to monoatomic metallic hydrogen occurs in
Saturn. It depends on many factors and cannot yet be
reliably determined. Since the first studies (Zharkov
et al. 1974a, 1974b), this pressure has been assumed
to be 3 Mbar. Currently, there is evidence that this
transition in Jupiter and Saturn can occur at a lower
pressure (Sumon et al. 1995). These authors predict
ASTRONOMY LETTERS Vol. 29 No. 10 2003
a new type of phase transition in hydrogen—a plasma
phase transition. According to their estimates, this
transition must occur in hydrogen at high tempera-
tures and pressures of ≈1.7 Mbar.

Having analyzed the experimental data,Weir et al.
(1996) and Nellis et al. (1998) showed that the prop-
erties of liquid hydrogen at high pressures and tem-
peratures significantly differ from the properties of
crystalline hydrogen at high pressures. They found
that, depending on the (P , T ) path of hydrogen com-
pression, there comes a time when the dissociation of
molecular hydrogen, accompanied by a rapid increase
in electrical conductivity, begins. Even at 10% disso-
ciation, the electrical conductivity of liquid hydrogen
acquires values characteristic of liquid metals. Met-
allization terminates in the pressure range ∼1.5 −
2 Mbar. According to these results, the pressure of
the phase transition to a univalent metallic state in
the models of Jupiter and Saturn was lowered from 3
to 1.5–2 Mbar.

In Jupiter and Saturn, the molecular envelopes
that border the metallic envelopes contain an appre-
ciable amount of the metallized admixtures present in
the IR component. Metallized admixtures can cause
the hydrogen metallization pressure to decrease.

(3) A radiative zone could exist. Recently, based
on careful opacity calculations for the compositions
characteristic of the outer envelopes of the giant plan-
ets, Guillot et al. (1994a) have suggested that these
adiabatic molecular envelopes near the surface con-
tain thin radiative zones where heat is transferred
by radiation. Models of the giant planets with thin
radiative zones near the surface were constructed by
Guillot et al. (1994b). Including a thin radiative layer
in an adiabatic model does not change the density dis-
tribution in the planet (due to the change in chemical
composition) but does lower the temperature distri-
bution in the deep interiors.

Galileo probe measurements show that the tem-
perature profile in Jupiter is nearly adiabatic down to
a level of 20 bar (Seiff et al. 1996).

Gudkova et al. (1995) compared the differences
between the models with different equations of state
for hydrogen (a discontinuous or continuous phase
transition) and between the convective and radiative–
convective models by using seismological criteria.

Previously, a set of models that fitted all of the ob-
servational data were constructed for Saturn (Gud-
kova and Zharkov 1996, 1997; Guillot 1999). How-
ever, without imposing additional constraints, pref-
erence can hardly be given to a particular model. At
present, expanding the observational data base for
Saturn is still a pressing problem. It would be most
promising to record and identify the eigenmodes of
Saturn. These data would provide new information
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on the planetary interiors, much as helioseismology
contributed enormously to our understanding of the
solar interior structure. This would raise the problem
to the level of helioseismology.

In the case of recording the eigenmodes to identify
the oscillations and obtaining information about the
planetary interiors from the observed acoustic modes,
the theoretical acoustic oscillation spectrum of the
planet must be studied first.

Marley and Porko (1993) considered the problem
of using the rings of Saturn to record some of its
modes. An overview of the seismological studies for
Jupiter and Saturn carried out before 1993 was given
by Lognonne and Mosser (1993).

Vorontsov et al. (1989) showed that, in contrast to
helioseismology, in Jovian seismology, the asymptotic
theories cannot be used to study the high-frequency
acoustic spectrum. The spectrum turned out to be
very sensitive to the properties of Jupiter’s core and
to density jumps in the planetary interiors. Advances
in helioseismology (Vorontsov and Zharkov 1988),
which made it possible to study the internal structure
of the Sun in the statement of the inverse problem, af-
fect the progress of Jovian and Saturnian seismology.

The free-oscillation spectrum of Jupiter and Sat-
urn can be divided into the low- and high-frequency
regions. The high-frequency acoustic oscillations
were discussed by Bercovici and Schubert (1987),
Mosser et al. (1988), Vorontsov et al. (1989),
Lee (1993), and Provost et al. (1993). The high
oscillation frequencies are presented in the form of
an echelle diagram (in helioseismology, an echelle
diagram is commonly used to compare the theoretical
and observed solar oscillation frequencies). The shape
of these curves for Jupiter turns out to be very
sensitive to the core size and structure. The recording
of high-frequency oscillations and their comparison
with predictions of variousmodels would undoubtedly
give unique information about the central structure of
Jupiter.

In studying the high-frequency free-oscillation
spectrum of Saturn, we must supplement the model
of its interior structure, which is constructed from
the center to a P = 1 bar level, with an atmospheric
model for pressures below 1 bar. The influence of
the troposphere on the free-oscillation periods was
investigated in detail by Mosser et al. (1994).

Vorontsov et al. (1976), Vorontsov and Zharkov
(1981a, 1981b), and Vorontsov (1981) calculated the
free-oscillation spectrum for the 1974 model of Sat-
urn and studied all of the rigid-body and differential
rotation effects by using the perturbation theory.

Here, we constructed new models of Saturn and
calculated the free-oscillation spectra for them. All
of the rotation effects were considered in detail by
Vorontsov and Zharkov (1981b). They developed a
second-order perturbation theory to determine the
influence of all of the rotation effects—the Coriolis
forces, the centrifugal forces, and the ellipticity—on
the free oscillations of a gaseous–liquid planet. The
perturbation theory was constructed by taking into
account the interaction of various oscillation modes
due to multiplet splitting because of the planetary ro-
tation and their overlapping. Below, we do not calcu-
late the second-order corrections. These calculations
are laborious, and it makes sense to accurately calcu-
late them only when observational data are available.

THE INTERIOR STRUCTURE OF SATURN

Observational Data

The following observational data are used to
construct models of the giant planets: the mass
of the planet; the mean density; the gravitational
moments J2, J4, and J6; and the rotation period.
Data on the atmospheric chemical composition of the
planet and its surface temperature (T1 at P = 1 bar)
are used as the boundary conditions.

Helium is currently believed to have been slightly
differentiated from outer solar layers into deeper zones
during the lifetime of the Sun. The protosolar helium
abundance Y0 = 0.270 ± 0.005 (Bahcall and Pinson-
neault 1995) is taken as a boundary condition in con-
structing interior-structure models for Jupiter and
Saturn. It is slightly higher than the current helium
abundance in the solar atmosphere, Y = 0.24, that
was estimated by helioseismological methods.

In comparison with the solar abundance, the at-
mosphere of Saturn is enriched with carbon by a
factor of 2–7 andwith nitrogen by a factor of 2 ormore
(Gautier and Owen 1989). In our models, we assume
an enrichment with CH4 and NH3 by a factor of 4.
There are no data on the oxygen abundance in the
atmosphere of Saturn. Gudkova and Zharkov (1996)
constructed models of Saturn enriched with ices by
a factor of 4, with CH4 and NH3 by a factor of 4,
and with H2O by a factor of 10 compared to the
solar abundances. Gudkova and Zharkov (1997) con-
structed water-depleted models of Saturn by analogy
with Jupiter’s models, whose water content was 0.2
of the solar value. In these papers, the helium abun-
dance in the outer envelope was taken to be equal
to the value obtained after the Voyager data process-
ing, Y1 = 0.06. By analogy with the increased helium
abundance in the Jovian atmosphere, as derived from
Galileo data, in comparison to Voyager data we took
a trial value of Y1 = 0.10, which was within the error
limits.
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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In the Introduction, we noted that Conrath and
Gautier (2000) reanalyzed the Voyager data and ob-
tained a helium abundance in the atmosphere of Sat-
urn (Y1 ≈ 0.18–0.25) that was much higher than that
used previously (Y1 ≈ 0.06–0.11).

Saturn exhibits noticeable differential rotation.
The model gravitational moments are calculated by
assuming rigid-body rotation. Therefore, the model
gravitational moments are compared with those ob-
tained by subtracting the corrections for differential
rotation ∆J2 and ∆J4 from the observed moments
of J2 and J4. For Saturn,∆J2 = 8× 10−5 and∆J4 =
−2 × 10−5 (Hubbard and Stevenson 1984).

The model moments Jri
2n were calculated by us-

ing integral formulas of the fifth-approximation fig-
ure theory (Zharkov and Trubitsyn 1975). In general
form, these formulas are

Jri
2n =

1∫
0

χ2n(β)dβ,

where β = r/R is the dimensionless radius, and R is
the radius of the planet. Dividing both sides by Jri

2n
(Zharkov and Trybitsyn 1974; Efimov et al. 1977), we
introduce the functions g2n

1∫
0

g2n(β)dβ = 1,

where g2n(β) = χ2n(β)/Jri
2n.

Figure 1 shows the functions g2n(β) for Saturn
(Sa8). The model itself is discussed below. The func-
tions g2n(β) have a simple physical meaning: they are
the relative densities of the gravitational moment Jri

2n,
and the quantity g2n(β)dβ gives the relative contri-
bution to Jri

2n from the region of the planet located
in the interval [β, β + ∆β]. The plots of g2n(β) show
the contributions of various planetary interior zones
to Jri

2n.

Models

Let us denote the mass fractions of hydrogen, he-
lium, and the IR component byX, Y , and Z, respec-
tively, so thatX + Y +Z = 1 for each envelope of the
planetary model. The subscripts on X, Y , and Z will
indicate to which envelope the corresponding mass
fraction pertains (the layers are numbered from the
surface: (1) the outer hydrogen–helium molecular
envelope, (2) the inner hydrogen–helium molecular
envelope, (3) themetallic hydrogen–helium envelope,
(4) the layer of settled helium (if present), and (5) the
IR core). In constructing our models, we used the
composition of the condensate IR2= (NH3,H2O+R),
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Fig. 1. Functions of the relative density of the grav-
itational moments g2n(β) = χ2n(β)/J2n and the den-
sity distribution ρ(β) for model Sa8 of Saturn. Num-
bers indicate the values of β at the maxima of the func-
tions g2n(β).

I/R = 2.2, by assuming that carbon was in the gas
phase, most likely in the form of CO. Since the he-
lium abundance in the planetary atmosphere is un-
certain, we calculated the models of Saturn with he-
lium abundances Y1 = 0.06, 0.12, 0.18, and 0.25. The
pressure of themolecular–metallic phase transition of
hydrogen with a density jump was varied between 1.5
and 3 Mbar.

We used four parameters to control the mod-
els: the mass of the planet, the gravitational mo-
ments J2 and J4, and the total helium abundance
in the planet Y0. The total helium abundance in the
planet Y0 was taken to be solar. The value of Y0

lies within the range 0.25–0.29. The condition for
the conservation of total solar helium abundance in
the planet imposes constraints on the structure and
composition of the outer core, which consists of the
IR component settled to the core over the helium
evolution time, and on the helium mass fraction in
the inner molecular and metallic hydrogen–helium
envelopes.

Tables 1–3 give the following model parame-
ters for Saturn: the helium abundances in the en-
velopes Y1, Y2, and Y3; the total helium abundance in
the planet Y0; the IR mass fractions in the envelopes
(Z2,Z3,Z4); the pressure at the interface between the
molecular hydrogen–helium layer and the metallic
envelope Pm; the pressure at the interface between the
inner and outer molecular layers P1–2; the mass of the
planetary core, which consists of an IR embryo and
settled heliumMc; the mass of the settled heliumMHе
(in Earth masses); the gravitational moments J4 and
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Table 1. Parameters of the models for Saturn (Y1 = Y2 = Y3; MIR = 0.95 M⊕ (Sа1–Sа9); MIR = 4.76 M⊕ (Sа10–
Sа15))

Model Y0 Y1 Z2−4 P1−2 Pm MHe in core Mc (IR+He) -J4 × 104 J6 × 105 ∆M/M

Sа1 0.275 0.06 0.27 0.18 3.0 16.23 23.03 9.16 8.91 14.4

Sа2 0.276 0.06 0.23 0.12 2.0 16.95 22.82 9.20 9.02 12.5

Sа3 0.278 0.06 0.20 0.10 1.5 17.59 22.94 9.18 9.01 11.2

Sа4 0.276 0.12 0.29 0.42 3.0 12.54 18.61 9.05 8.84 14.3

Sа5 0.278 0.12 0.25 0.38 2.0 13.19 18.53 9.02 8.82 12.5

Sа6 0.277 0.12 0.23 0.40 1.5 13.38 18.32 8.98 8.77 11.4

Sа7 0.277 0.18 0.34 0.94 3.0 8.28 13.49 9.10 9.05 14.1

Sа8 0.276 0.18 0.31 1.01 2.0 8.44 13.18 9.08 9.03 12.6

Sа9 0.274 0.18 0.30 1.15 1.5 8.44 13.00 9.07 9.02 11.7

Sа10 0.271 0.12 0.25 0.29 3.0 12.02 20.78 9.20 9.02 14.8

Sа11 0.278 0.12 0.20 0.19 2.0 13.20 21.25 9.24 9.10 12.7

Sа12 0.276 0.12 0.18 0.19 1.5 13.28 20.95 9.16 9.01 11.6

Sа13 0.273 0.18 0.29 0.73 3.0 7.92 15.92 9.17 9.11 14.5

Sa14 0.273 0.18 0.25 0.73 2.0 8.25 15.76 9.15 9.09 12.8

Sa15 0.275 0.18 0.23 0.82 1.5 8.55 15.86 9.12 9.06 11.7

Table 2. Parameters of the models for Saturn (Y1 = Y2; Y3 = 0.25;MIR = 0.95 M⊕)

Model Y0 Y1 Z2–4 P1–2 Pm MHe in core Mc (IR+He) -J4 × 104 J6 × 105 ∆M/M

Sв1 0.274 0.06 0.27 0.20 3.0 13.08 18.87 9.09 8.82 14.5

Sв2 0.280 0.06 0.23 0.17 2.0 12.13 16.70 9.02 8.76 12.5

Sв3 0.276 0.06 0.22 0.24 1.5 10.51 14.42 8.84 8.53 11.6

Sв4 0.272 0.12 0.30 0.48 3.0 9.58 14.63 8.98 8.77 14.5

Sв5 0.274 0.12 0.27 0.53 2.0 8.61 12.75 8.88 8.67 12.8

Sв6 0.279 0.12 0.25 0.62 1.5 8.41 12.16 8.82 8.61 11.5

Sв7 0.275 0.18 0.35 1.02 3.0 6.47 10.90 9.07 9.03 14.2

Sв8 0.274 0.18 0.33 1.19 2.0 5.88 9.73 9.04 9.00 12.8

Sв9 0.270 0.18 0.34 1.49 1.5 5.17 8.79 9.00 8.97 12.2
J6, at J2 = J2obs; and the mass of the hydrogen–
helium component that was lost during the formation
of the planet ∆M/M (and that did not enter into its
composition). The relationship between the model
values of J4 and the total helium abundance in the
planet Y0 is shown in Fig. 2, with the model values
of J2 satisfying the observational data.
Parameters of the homogeneous (in helium) mod-
els for Saturn (Y1 = Y2 = Y3) are given in Table 1. In
our models, we took the IR abundance in the inner
molecular envelope to be equal to the IR abundance
in the metallic zone, Z2 = Z3. The IR2 abundance
in the inner molecular and metallic envelopes, Z2 =
Z3, was varied between 0.18 and 0.34 to satisfy the
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Table 3. Parameters of the models for Saturn (Y2 = Y3 = 0.25;MIR = 0.95M⊕)

Model Y0 Y1 Z2−4 P1−2 Pm MHe in core Mc (IR+He) –J4 × 104 J6 × 105 ∆M/M

Sс1 0.279 0.06 0.30 0.53 3.0 7.12 11.12 8.70 8.34 14.3

Sс2 0.275 0.06 0.27 0.55 2.0 6.92 10.42 8.65 8.29 12.8

Sс3 0.276 0.06 0.25 0.57 1.5 7.20 10.55 8.63 8.26 11.7

Sс4 0.278 0.12 0.32 0.75 3.0 6.51 10.53 8.85 8.63 14.2

Sс5 0.282 0.12 0.28 0.76 2.0 7.00 10.67 8.81 8.60 12.4

Sс6 0.272 0.12 0.28 0.88 1.5 6.47 9.93 8.76 8.56 11.9

Sс7 0.279 0.18 0.36 1.17 3.0 5.55 9.63 9.04 9.00 14.1

Sс8 0.279 0.18 0.33 1.26 2.0 5.77 9.56 9.03 8.99 12.5

Sс9 0.274 0.18 0.33 1.44 1.5 5.53 9.20 9.02 8.99 12.0
gravitational potential J4. The selection of models of
this type is illustrated by Fig. 2a. The figure shows the
models that satisfy the gravitational moment J2. The
models enclosed in the square highlighted by solid
lines also satisfy the gravitational moment J4 and the
total helium abundance in the planet Y0.

For Y1 = 0.06, 0.12, and 0.18, we considered two
more types of models. Since the helium abundance
in the atmosphere of Saturn was assumed to be lower
than its solar value, the helium abundance in the inner
envelopes must be slightly higher (Y1 = Y2, Y3 > Y1,2

(Table 2) and Y2 = Y3 > Y1 (Table 3)). The values
of Y2 and Y3 were taken to be equal to 0.25, which is
slightly higher than the abundance of helium that can
dissolve in metallic hydrogen (Y ≈ 0.21; Hubbard
et al. 2002). However, these models may be con-
sidered to be extreme. The parameters of the model
with Y2 and Y3 < 0.25 lie between their values for the
models in Table 1 and Tables 2 and 3. At present, it is
not possible to give preference to a particular model.

In the models with similar values of J4 and Y0, de-
creasing the hydrogen metallization pressure Pm (3,
2, 1.5 Mbar) slightly reduces the IR abundance from
the second to the fourth layers (Z2 = Z3 = Z4) and
decreases the mass of the hydrogen–helium compo-
nent lost during the formation of the planet.

If all of the hydrogen–helium component entered
into the composition of the planet, then its mass
would be

MqR =
ZH2−He

ZR
,

where MqR is the mass of the R component in the
planet; ZR and ZH2−He are the cosmic abundances of
the R and Н2 + Не components, respectively; andM
ASTRONOMY LETTERS Vol. 29 No. 10 2003
is the mass of the planet. The mass of the hydrogen–
helium component that entered into the composition
of the planet is qH2−HeM . Thus,

∆M = qRM
ZH2−He

ZR
− qH2−HeM ,

or
∆M

M
= qR

ZH2−He

ZR
− qH2−He.

We see from Tables 1–3 that Saturn was ∼11–15
planetary masses short compared to the solar com-
position. Thus, this planet must have been formed
according to Schmidt’s scenario, through the for-
mation of embryonic nuclei, rather than according
to Laplace’s scenario. The masses of the embryonic
IR nuclei for Saturn lie within the range (3.5–8) M⊕
(M⊕ = 5.974 × 1027 g is the Earth’s mass).

Some uncertainty in the choice of models remains.
Most of the models under consideration fit all of the
available observational data. The trial models with a
reduced pressure, Pm = 2, 1.5 Mbar, are schemati-
cally shown in Fig. 3.

The Cassini–Huygens space mission in 2004 may
give answers to some of the questions concerning the
interior-structure models.

FREE OSCILLATIONS OF SATURN
The Models

We chose models Sa5, Sa7, Sa8, Sa9, Sa14, and
Sa8a from the large set of models constructed in the
first part of our paper. They differ in core structure,
in pressure of the hydrogen transition to the metallic
state, and in helium abundance in the hydrogen–
helium envelope (Sa8a is similar to Sa8 but the tran-
sition to the metallic state is continuous for it). Pa-
rameters of these models (the pressure at the interface
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Fig. 2. Relations between the model values of J4 and
the total helium abundance in the planet Y0 for various
models of Saturn (with J2 = J2obs): (a) Y1 = Y2 = Y3;
(b) Y1 = Y2; Y3 = 0.25; (c) Y2 = Y3 = 0.25; Mc(IR) =
0.1 (I), 0.05 (II), 0.01 (III); Pm = 3 (1), 2 (2), and
1.5Mbar (3); Y1 = 0.06 (dotted lines), Y1 = 0.12 (dashed
lines), Y1 = 0.18 (solid lines), and Y1 = 0.25 (dash-
dotted lines). The horizontal lines indicate the scatter in
the observed values of J4 with (solid lines) and without
(dashed lines) an allowance made for differential rotation;
the vertical lines indicate the range of the presumed solar
helium abundance.
between the molecular hydrogen–helium layer and
the metallic envelope Pm, the discontinuity bound-
aries βi, the densities ρ for them, and the characteris-
tic frequency ν0) are given in Table 4.

The distributions of density ρ, gravity g, temper-
ature T , and speed of sound c along the dimension-
less radius for models Sa5 and Sa8 are shown in
Fig. 4. The distribution of relative mass q = M(r)/M
is shown in Fig. 5.

When the high-frequency free-oscillation spec-
trum is studied, the interior-structure model of Sat-
urn must be supplemented with an atmospheric
model for pressures below 1 bar.

We used the pressure–temperature profile from
Appleby and Hogan (1984) to construct a seismic
model of the atmosphere. The altitude and density
were calculated for plane-parallel atmospheric layers
with a homogeneous composition by using the van
der Waals equation of state. At a 1-bar level, we im-
posed the requirement that the pressure, the density,
and the speed of sound be continuous.

Methods of Calculation
Long-period oscillations. We calculated the

free oscillations in the zeroth approximation. In this
approximation, a nonrotating planet is spherical in
shape. For free oscillations, the components of the
displacement vector u = (u, v,w), the dilatation ∆ =
divu, and the perturbation of the gravitational poten-
tial ψ can be written in spherical coordinates (r, θ, ϕ)
as (Alterman et al. 1959)

u = U(r)Sm
n (θ, ϕ), ∆ = X(r)Sm

n (θ, ϕ),

ν = V (r)
∂

∂θ
Sm

n (θ, ϕ), ψ = P (r)Sm
n (θ, ϕ),

w =
V (r)
sin θ

∂

∂ϕ
Sm

n (θ, ϕ),

where the factor eiσt is omitted.
In this case, the problem reduces to a boundary-

value eigenvalue problem for a homogeneous system
of four linear ordinary differential equations (Alterman
et al. 1959):

ẏ1 = −2
r
y1 +

1
K
y2 +

n(n + 1)
r

y0, (1)

ẏ2 = −
(
σ2ρ +

4ρg
r

)
y1 +

n(n + 1)ρg
r

y0 − ρy4,

ẏ3 = 4πGρy1 + y4,

ẏ4 = −4πGρn(n + 1)
r

y0 +
n(n + 1)

r2
y3 −

2
r
y4,

where

y0 =
1
rσ2

(
gy1 −

1
ρ
y2 − y3

)
.
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Fig. 3. A scheme of models Sa8 (2 Mbar) and Sa9 (1.5 Mbar) for Saturn. The values in parentheses correspond to model Sa9.
The pressure P , temperature T , and density ρ (g cm−3) are given at the interface (relative radius β) and at the center. The
I(IR)/G ratios and the helium abundances in the envelopes are also given. The numerical values of the G, I, and R components
are in Earth masses.
All of the quantities must be finite at the coordinate
origin; the boundary conditions at the surface are

y4 +
n + 1
R

y3 = 0, y2 = 0 (r = R),

where R is the radius of the planet, K = 1
ρ

∂P
∂ρ is the

adiabatic modulus of compressibility, y1 = U , y2 =
KX, y3 = P , y4 = Ṗ − 4πGρU , and y0 = V .

The problem reduces to dimensionless variables
and can be solved by numerical integration using
the fourth-order Runge–Kutta iteration method.
The interior-structure models are represented by
150 points with a dense grid near the surface. At
any other point, the density ρ, the gravity g, and
the adiabatic modulus of compressibility K can be
determined by linear interpolation. To remove the
singular point r = 0, we expanded the two linearly in-
dependent regular solutions in its vicinity into a power
ASTRONOMY LETTERS Vol. 29 No. 10 2003
series of β = r/R (Vorontsov and Zharkov 1978). We
calculated two linearly independent solutions from the
center of the planet and two from its surface. They
were then joined at an arbitrary surface.

The oscillations are classified by three indices (l,
m, n). In the zeroth approximation, the structure
of the theoretical free-oscillation spectrum is deter-
mined by the adiabatic structure of the planet and
by the presence of radial density discontinuities. The
free-oscillation spectrum consists of fundamental os-
cillation modes as well as acoustic and gravitational
modes.

For an oscillation with a degree l, 0Sl denotes
the fundamental tone, and nSl denotes the acoustic
overtone with a radial order n. For nonradial oscilla-
tions (l �= 0), at each l there are also four gravitational
modes (by the number of density discontinuities in
the model) with maximum amplitudes at the density
discontinuities. Since themodel structure is adiabatic



682 GUDKOVA, ZHARKOV
Table 4. Parameters of the models for Saturn

Parameters Sa5 Sa7 Sa8 Sa9 Sa14

Pm, Mbar 2.0 3.0 2.0 1.5 2.0

β:

IR/Не+IR 0.09 0.09 0.09 0.09 0.16

Не+IR/Н+Не+IR 0.29 0.26 0.26 0.26 0.27

Н+Не+IR/Н2+Не+IR 0.56 0.49 0.56 0.60 0.56

Н2+Не+IR/Н2+Не+I 0.78 0.67 0.66 0.64 0.70

ρ, g cm3:

at center 9.09 9.00 8.88 8.83 9.51

IR/Не+IR 8.70/6.63 8.61/6.78 8.49/6.58 8.44/6.51 8.05/6.02

Не+IR/Н+Не+IR 4.23/2.01 4.77/2.46 4.68/2.38 4.64/2.35 4.44/2.19

Н+Не+IR/Н2+Не+IR 1.22/0.98 1.61/1.29 1.34/1.09 1.19/0.97 1.26/1.02

Н2+Не+IR/Н2+Не+I 0.53/0.43 0.83/0.63 0.85/0.65 0.88/0.68 0.70/0.57

νa, µHz 112 113 113 113 113

a The values were corrected for the troposphere (Mosser et al. 1994).
throughout the volume, the possible gravitational os-
cillations are exhausted by these four modes.

For a spherical nonrotating planet, the spectrum
is degenerate in m, and all of the (2l + 1) frequen-
cies nσm

l for fixed l and n and different m are equal.
In the case of slow rotation, each eigenfrequency is
a multiplet of 2l + 1 lines. In the first approximation,
for rigid-body rotation, we take into account only
the Coriolis forces; the free-oscillation eigenfrequen-
cies (l, n) (and, accordingly, periods T ) are defined
by the relation (Pekeris et al. 1961; Backus and
Gilbert 1961)

σm(l, n) = σ0(l, n) + mτ(l, n)Ω, −l ≤ m ≤ l,
(2)

where

τ(l, n) =

R∫
0

ρr2(2UV + V 2)dr

R∫
0

ρr2[U2 + l(l + 1)V 2]dr
(3)

and Ω is the angular velocity of the planet.
To study the oscillation pattern in more detail, we

determined the kinetic energy 0Ekl
from the calcu-

lated eigenfunctions. The corresponding functional is
(Zharkov et al. 1968)

0Ekl
=

R∫
0

ρr2[U2 + l(l + 1)V 2]dr. (4)
High-frequency acoustic oscillations. The
high-frequency acoustic oscillation modes may be
considered as a superposition of internal acoustic
waves trapped in the planetary interiors. As the
frequency increases, the reflection of these waves
from outer layers of the planet is accompanied by
their penetration into higher atmospheric layers. At
even higher frequencies, the acoustic waves penetrate
through the tropopause and escape into the upper at-
mosphere. Therefore, as the frequency increases, the
atmospheric structure not only begins to significantly
affect the free-oscillation frequencies but also places
an upper limit on the frequencies of the oscillations
that can be actually observed. The expected upper
limit for the acoustic oscillation frequencies of Saturn
is≈2 mHz (Mosser et al. 1994).

Low-degree oscillations are of paramount interest
in studying the theoretical oscillation spectrum. The
detection of such oscillations is most likely, because
they can be recorded when Saturn is observed as a
star (without spatial resolution).

An echelle diagram is used to present the numeri-
cally calculated oscillation frequencies.

According to the asymptotic theory, the acoustic-
mode frequencies νn,l, to a first approximation, are
proportional to the characteristic frequency ν0:

νn,l ≈ (n +
1
2
)ν0. (5)
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Fig. 4. Distributions of density (g cm−3), gravity g (cm s−2), temperature T , and speed of sound c (km s−1) along the
dimensionless radius β = r/R for two extreme cases, models Sa8 (a) and Sa5 (b).
The asymptotic approximation holds for low degrees l
and large radial orders n (n 	 l). To a first approxi-
mation, the frequencies of the oscillations with equal
values of n + l/2 coincide; at a fixed l, the frequen-
cies are equidistant in n with an interval of ν0; and
the frequencies with odd l are midway between the
frequencies with even l.

The characteristic frequency (equidistance) is de-
fined by the formula

ν0 =


2

R∫
0

dr/c(r)



−1

, (6)

where c(r) is the speed of sound. The quantity ν0

is the reciprocal of twice the sound travel time from
the center to the surface of the planet: ν0 = 1/(2τa0),
τa0 = τa at r = 0, where τa =

∫ R
r dr/c(r) is the

acoustic depth. The acoustic depth is plotted against
the relative radius of the planet in Fig. 5. It follows
from Fig. 5 that the wave path in a 0.1R-thick outer
layer contributes 40% to τa0 . Since Saturn is an
ASTRONOMY LETTERS Vol. 29 No. 10 2003
adiabatic planet, the speed of sound squared is given
by the formula

c2 =
dP

dρ
, (7)

where P and ρ are the model pressure and density,
respectively.

The characteristic frequency ν0 is an important
integrated model parameter. It is useful for a tenta-
tive, rough comparison of predictions of a particular
model with acoustic-oscillation data by comparing
the theoretical and observed values of ν0. The ob-
served oscillation patterns make it possible to directly
determine ν0, which corresponds to the equidistance
of themodes with the same degrees but different radial
orders: ν0 ≈ νn+1,l − νn,l. The determination of ν0

from observations would impose severe constraints
on the interior-structure models. For the interior-
structure models of Saturn used here, the character-
istic frequency is 112–113 µHz.

For the giant planets, relation (5), which is a corol-
lary of the asymptotic approximation, can hold only
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qualitatively, because these planets have cores. The
core plays an important role in the seismology of
Saturn, because it causes a sharp discontinuity in
the distributions of density and speed of sound. A
seismological study of the giant planets could reveal
the core size and structure.

The Free-Oscillation Spectra for Saturn

Figure 6 shows the radial displacement compo-
nent of the fundamental mode 0Ul(β) for various l
from 2 to 10 and the kinetic-energy function 0Ekl

.
The amplitudes of the radial displacement component
are normalized to unity, and

∫ R
0 Ekl

(β)dβ = 1 for the
kinetic energy at all l. As l increases, the oscillations
are displaced toward the surface, and the oscillation
period is mainly determined by the structure of the
outer regions. We see that, essentially, even the fun-
damental mode for l = 2 does not penetrate the core.

The acoustic-oscillation periods for model Sa8 of
Saturn at l ≤ 8 for the fundamental tone and over-
tones with radial orders from 1 to 7 are given in
Table 5.

The acoustic-oscillation frequencies calculated for
model Sa8 of Saturn are plotted against the de-
gree l ≤ 15 for the fundamental mode and overtones
with radial orders from 1 to 20 in Fig. 7. Since, as
was noted above, the upper limit for the acoustic-
oscillation frequencies is ≈2 mHz, modes with fre-
quencies above 2 mHz cannot exist.

A characteristic feature of the models under study
is the presence of density discontinuities. These den-
sity discontinuities are responsible for the presence
of gravitational modes with maximum amplitudes at
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the discontinuity boundaries for nonradial oscilla-
tions. Since the model is adiabatic, all of the possi-
ble gravitational modes are exhausted by these so-
called discontinuity modes. The modern models of
Saturn being studied here have four jumps in the
radial distribution of thematerial parameters. The first
density jump is related to changes in chemical com-
position at the interface between the outer and inner
molecular layers, while the second jump is related to
the molecular–metallic phase transition of hydrogen,
which may be accompanied by changes in chemical
composition; the deeper third and fourth jumps are
also related to changes in chemical composition—
at the interface between the IR core and the metal-
lic envelope as well as at the interface between the
outer and inner cores. Therefore, the free-oscillation
spectrum calculated for the modern models contains
four gravitational modes for each l. The oscillation
periods of the gravitational modes are given in Table 6.
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Table 5. The acoustic-oscillation periods of Saturn (min) for model Sa8

n
l

0 1 2 3 4 5 6 7 8

0 173.2 131.9 113.0 100.9 92.18 85.44 80.01

1 85.22 69.49 59.01 52.35 47.73 44.38 41.85 39.86 38.24

2 51.17 43.53 38.52 35.67 33.52 31.74 30.24 28.97 27.91

3 36.63 33.49 30.10 27.82 26.34 25.19 24.20 23.33 22.55

4 28.88 26.78 24.99 23.33 22.06 21.09 20.30 19.62 19.00

5 24.54 22.57 21.19 20.03 19.06 18.25 17.55 16.96 16.45

6 21.11 19.65 18.48 17.47 16.67 16.05 15.50 14.99 14.52

7 18.45 17.35 16.36 15.58 14.82 14.23 13.79 13.41 13.04
The periods of the gravitational modes for l ≤ 8 for
model Sa8 are plotted against l in Fig. 8.

As we see from Table 6 and Fig. 8, the oscillation
periods related to the third density jump (the outer-
core boundary) are systematically shorter than the
periods pertaining to the fourth density jump (the
inner-core boundary). The reason is that the period
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of the gravitational mode depends on the radius of
the discontinuity boundary and on the density at this
boundary. If two layers separated by a discontinuity
are extended enough, then the frequency of the grav-
itational mode can be roughly estimated as (Landau
and Lifshitz 1959)

σd ≈
√
l
gd
rd

(ρ− − ρ+)
(ρ− + ρ+)
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Fig. 8. The periods of the gravitational modes re-
lated to density discontinuities versus degree l: (1)
β = 0.64–0.78; (2) β = 0.56–0.614; (3) β = 0.26–0.29;
(4) β = 0.09–0.16.



686 GUDKOVA, ZHARKOV
Table 6. The oscillation periods of gravitational modes (min)

Degree Sa5 Sa7 Sa8 Sa8a Sa9 Sa14

l = 1 643.3 845.1 845.1 1321 862.7

425.6 445.9 − 437.2 483.7

205.7 206.7 206.7 207.0 197.2

240.8 235.9 235.9 234.7 220.6

l = 2 541.7 381.5 497.1 497.1 768.8 508.5

314.4 264.8 274.1 − 265.8 299.8

114.6 114.2 114.9 114.9 115.1 106.2

140.1 148.5 145.2 145.2 144.4 136.0

l = 3 394.0 279.6 360.0 360.0 549.2 369.8

243.6 206.9 210.9 − 201.5 232.9

88.94 89.32 89.77 89.77 89.91 84.30

108.5 115.3 112.8 112.8 112.2 105.5

l = 4 316.0 225.9 286.6 286.6 430.3 296.2

207.2 178.2 179.4 − 168.8 199.1

75.49 76.04 76.37 76.37 76.47 72.45

91.88 97.73 95.72 95.72 95.19 89.47

l = 5 268.4 193.0 240.8 240.8 355.7 251.1

184.6 160.7 160.7 − 149.3 178.5

66.79 67.38 67.63 67.63 67.71 79.38

81.31 86.58 84.83 84.83 84.38 64.48

l = 6 236.6 171.0 209.7 209.7 304.4 220.8

168.6 148.3 148.3 − 136.2 164.2

60.56 61.15 61.36 61.36 61.43 58.63

73.84 78.69 77.12 77.12 76.71 72.23

l = 7 213.9 155.1 187.1 187.1 267.0 199.3

156.4 138.8 139.2 − 126.7 153.3

55.82 56.39 56.58 56.58 56.64 54.11

68.19 72.71 71.26 71.26 70.88 66.79

l = 8 196.9 143.2 169.9 169.9 238.5 183.2

146.5 130.9 132.1 − 119.5 144.5

52.05 52.60 52.76 52.76 52.82 50.50

63.70 67.96 66.59 66.59 66.24 62.45

l = 9 183.7 133.9 156.5 156.5 216.1 170.7

138.4 124.2 126.2 − 113.6 137.1

48.95 49.49 49.64 49.64 49.68 47.52

60.01 64.05 62.75 62.75 62.42 58.86

l = 10 173.0 126.4 145.6 145.6 198.0 160.7

131.4 118.4 121.3 − 108.8 130.6

46.35 46.87 47.01 47.01 47.05 45.02

56.91 60.75 59.52 59.52 59.21 55.84
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Fig. 9. The eigenfunctions of Saturn’s oscillations for models Sa8 (solid lines) and Sa5 (dashed lines) (the gravitational modes
l = 2, 3, 5, 8). The dimensionless radius β is along the horizontal axes. The normalized radial displacement amplitudes 0Ul(β)
are along the vertical axes. Each gravitational mode reaches its maximum amplitude at the radial density jump. The
discontinuitymodes are determined by the density jumps at β = 0.09, 0.26, 0.56, and 0.66. The oscillation periods are given in
Table 6.
where ρ± is the density at the discontinuity, ρ− > ρ+,
gd is the local gravity at the discontinuity, and rd is
the distance from the discontinuity to the center of the
planet (Table 4).

Figure 9 shows the eigenfunctions of the radial
displacements of Saturn’s oscillations (gravitational
modes) with l = 2, 3, 5, and 8. We see that the ra-
dial distribution of the displacements for higher de-
grees l have the same structure as the quadrupole
oscillations; as l increases, the displacements in os-
cillations concentrate toward the physical boundaries
ASTRONOMY LETTERS Vol. 29 No. 10 2003
(density jumps). An important feature of the gravi-
tational modes related to the interfaces at β = 0.66
and 0.56 is that they have appreciable radial displace-
ment amplitudes at the surface (Fig. 9) and appre-
ciably longer periods (Table 6) than those for the fun-
damental acoustic mode (Table 5). If the molecular–
metallic phase transition of hydrogen is continuous
rather than discontinuous, as in model Sa8a, then
the corresponding gravitational mode in the free-
oscillation spectrum of Saturn will be absent (Ta-
ble 6). If, however, there is a jump in the chemical



688 GUDKOVA, ZHARKOV

 

1200

800

400

0

600

400

200

0

(‡) (b)

 

Sa9

Sa5

Sa14

Sa8

Sa7

Sa7

Sa9
Sa8

Sa14

Sa5

Sa5 Sa7, Sa8, Sa9, Sa14

 

(c) (d)

100

200

0

 

Sa14

Sa5

Sa7
Sa8

Sa9

 

100

200

0
4 8

 

l

T

 

, m
in

4 8

Fig. 10. The periods of the gravitational modes for Saturn’s models (Sa5, Sa7, Sa8, Sa9, Sa14) versus l: β = (a) 0.64–0.78;
(b) 0.56–0.61; (c) 0.26–0.29, (d) 0.09–0.16.
composition when hydrogen is metallized in the in-
teriors of Saturn, as in models Sa5, Sa7, Sa8, Sa9,
and Sa14, then the corresponding gravitational mode
is retained. The periods of the gravitational modes for
models Sa5, Sa7, Sa8, Sa9, and Sa14 are plotted
against l in Fig. 10.

Echelle diagrams are commonly used to compare
the theoretical and observed frequencies. For low-
degree (l = 0, 1, 2, 3, 4, 6) acoustic modes, we cal-
culated these diagrams for three models of Saturn
(Fig. 11).

The echelle diagrams for Saturn’s models form no
vertical lines, because the frequency spectrum of low
degrees l is strongly affected by the planetary core
structure (the low-degree modes have eigenfunctions
that extend deep into the core and are severely dis-
torted by the core and the density discontinuities). As
a result, as was noted above, the asymptotic approxi-
mation becomes virtually inapplicable.

Resonance phenomena in the core of Saturn
are responsible for the irregular (at first glance)
behavior of the curves in Fig. 11. As a result, the
shape of these curves proves to be sensitive to the
core size and structure (Fig. 11a—Mc(IR + Не) =
15.76M⊕ , Mc(IR) = 7.51M⊕, Fig. 11b—Mc(IR +
Не) = 13.18M⊕, Mc(IR) = 4.74M⊕, Fig. 11c—
Mc(IR + Не) = 9.56M⊕, Mc(IR) = 3.79M⊕). For
Sa8 (Fig. 11b), the curves tend to approach one
another; for Sa14 (Fig. 11a), there is a tendency for
the number of intersections to increase.

We see that for low degrees and high radial orders,
there are intersections between acoustic modes with
different l, which makes it difficult to correctly identify
the observed frequencies.
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Estimating the Free-Oscillation Energy

We calculated the kinetic energies of various
modes (see Eq. (4)) by taking the oscillation ampli-
tude to be equal to 1-m at the planetary surface. The
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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period-averaged kinetic energies for the fundamental
mode and 10 overtones are plotted against degree
l ≤ 15 in Fig. 12.

The energy of the fundamental mode 0S2 is large,
9.3 × 1025 erg, being only five orders of magnitude
lower than the total annual heat flux from the plan-
etary interiors (Hanel et al. 1983)

qt,S ≈ 9 × 1023erg s−1 ≈ 2.8 × 1031erg yr−1.

As we see from Fig. 12, the energy of the fun-
damental mode 0S15 is approximately an order of
magnitude lower than the energy of the 0S2 mode.
For the nSl overtones, the energy decreases faster
with increasing l. The energy needed to excite free
oscillations is much lower than the annual heat flux.

Let us estimate the lifetime of the eigenmodes if
they are excited. The value of the dissipative factor for
Saturn is very high for tidal periods, QS ≥ 1.4 × 104

(Gavrilov and Zharkov 1977). In the range of free-
oscillation periods, this value can be lower. To esti-
mate the lifetime, we assume thatQS ranges from 103

to 105 for free-oscillation periods. The oscillation am-
plitudes decrease asA = A0e

−σt/2QS . Assuming that
QS ≈ 103–105, we obtain the lifetime t = 2QS/σ ≈
1.8× (106–108) s for the fundamental mode 0S2. This
lifetime is slightly shorter than that for the other
modes. We see that the lifetime of such oscillations
is estimated to be in the range from several months to
a year. Note that the Earth’s radial oscillations with a
very highQ are observed for a month.
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Rotation Effects

As we noted above, all of the rotation effects
were considered in detail by Vorontsov and Zharkov
(1981a, 1981b) and Vorontsov (1981). The correc-
tions for the Coriolis forces (in the second approx-
imation) and ellipticity (in the first approximation)
were calculated for the three-layer models of Saturn
that were constructed by Zharkov et al. (1974a,
1974b). These corrections can also be used for mod-
ern models. Vorontsov and Zharkov (1981a, 1981b)
concluded that the effect of mode coupling on the
spectrum is negligible. The frequency differences do
not exceed 0.5%, which is much smaller than the
corrections for the second-order rotation effects. The
corrections for mode coupling to the eigenfunctions
are no larger than a few percent. This fact shows that,
despite the rapid rotation of the planet, the classifica-
tion of the free-oscillation spectrum by indices (l, n,
m) is valid.

The free-oscillation spectrum of Saturn (the fun-
damental tone and the first overtones), which is split
by the rotation of the planet (because of the Coriolis
forces) and calculated by using the first-order pertur-
bation theory, is shown in Fig. 13a. The overtones are
virtually unsplit. The values of τ(l, n) calculated from
formula (3) are given in Table 7.

Figure 13b shows the free-oscillation spectrum
of Saturn corrected for the second-order rigid-body
rotation effects (Vorontsov and Zharkov 1981a). The
multiplets of the fundamental tones are subjected
to the largest splitting by rotation. At low l, the
rotation effect is mainly determined by the Coriolis
forces. These forces decelerate the waves that travel
in the direction of rotation (m < 0), causing the pe-
riod to increase, and accelerate the oppositely trav-
eling waves (m > 0). The asymmetry in multiplets
increases with l. For high l, the ellipticity of the planet
mainly contributes to the splitting.

Figure 13c shows the effect of differential rotation
on the free-oscillation spectrum (Vorontsov 1981).
This spectrum was calculated using a simple model
distribution of differential rotation with cylindrical
symmetry,

Ω(r, θ) = Ω0

[
1 + 0.1

( r

R
sin θ

)2
]
. (8)

This model distribution differs from the model of dif-
ferential rotation Hubbard (1982), but, in general,
Eq. (8) describes the observed increase in the angular
velocity toward the equator.

Figure 13c provides a qualitative insight into the
influence of differential rotation on the free-oscillation
spectrum of Saturn (the results are given in a co-
ordinate system that rotates with an angular veloc-
ity Ω. Having the strongest effect on the fundamental
tones, differential rotation generally compresses the
multiplets compared to the splitting for rigid-body
rotation. Relative to the rotating frame of reference
used, the outer equatorial regions of the differentially
rotating planet have a small excess rotation. As a
result, the waves that travel in the direction of rota-
tion (m < 0) accelerate, while the oppositely traveling
waves (m > 0) decelerate. As l increases, differential
rotation affects the spectrum more strongly, because
the oscillations are pushed toward the surface, where
the rotation nonuniformity is at a maximum.

In principle, the free-oscillation method allows the
differential rotation in the interiors of Saturn to be
determined.

DISCUSSION AND CONCLUSIONS

We have calculated a theoretical free-oscillation
spectrum for the latest models of Saturn, each of
which fits all of the available observational data. The
results of our calculations are presented in sufficient
detail graphically and in tables.

Of particular interest are the diagnostic poten-
tialities of the discontinuity modes related to den-
sity jumps in the molecular envelope of Saturn and
at the interface between its molecular and metallic
envelopes. These two modes have nonzero displace-
ments at the planetary surface. In Figs. 8 and 10,
the periods of the discontinuity modes are plotted
against degree l for model Sa8 and for all of the mod-
els studied, respectively. It follows from Fig. 8 that
the Tl = f(l) branches pertaining to the two outer
density jumps are widely separated, and, if recorded,
these discontinuity modes can be easily identified.

The results of our numerical experiments empha-
size the relevancy not only of determining the periods
from observations but also studying the excitation
mechanisms in order to deal with the expected am-
plitudes of the eigenmodes.

Our modeling showed that the composition of
Saturn differs markedly from the composition of
the sun. More specifically, during its formation,
Saturn was ∼11–15 planetary masses short of the
hydrogen–helium component. Saturn, as well as
the other giant planets, (Zharkov 1993, 2003) must
have been formed according to Schmidt’s scenario,
through the formation of embryonic nuclei, rather
than according to Laplace’s scenario. The masses of
the embryonic nuclei themselves lie within the range
(3.5–8)M⊕. The corresponding values for Jupiter are
3–3.5M⊕ (Gudkova and Zharkov 1999a).

Space missions to the planets, particularly to the
giant planets, have given a new impetus to the devel-
opment of scenarios for the origin of the Solar system,
the Earth, the planets, and their satellites. Themodels
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Table 7. The splitting τ(l,n) for model Sa8

n
l

2 3 4 5 6 7 8

Acoustic oscillations

0 0.481 0.323 0.245 0.197 0.165 0.142 0.124

1 0.049 0.053 0.049 0.044 0.038 0.034 0.031

2 0.017 0.017 0.018 0.020 0.020 0.019 0.018

3 0.017 0.015 0.010 0.008 0.008 0.009 0.010

Gravitational oscillations

β = 0.09 0.203 0.112 0.074 0.055 0.044 0.037 0.033

β = 0.26 0.280 0.162 0.113 0.086 0.069 0.057 0.049

β = 0.56 0.183 0.090 0.053 0.036 0.027 0.022 0.018

β = 0.66 0.167 0.085 0.053 0.037 0.028 0.023 0.019
constructed of the giant planets are important new
boundary conditions for these problems.

The formation of the giant planets is considered
in terms of two main hypotheses (Pollack 1985; Bo-
denheimer 1985). According to the first hypothesis,
which dates back to the time of Laplace, the giant
planets were formed through instability in the gas of
the protosolar nebula when the nebular gas broke up
into rings whose material condensed into a planet.
In this case, a planet should have the same compo-
sition as the Sun. This hypothesis is in conflict with
modern models of the giant planets. According to the
second hypothesis, the formation of the giant planets
roughly breaks down into two stages. Initially, dust
grains composed of ices, silicates, iron, and its com-
pounds combined into protobodies (planetesimals),
which gradually accumulated into planetary proto-
cores with masses of several Earth masses. These
planetary embryos could have been immersed in a
noticeable primordial hydrogen–helium atmosphere.
As the mass of these gravitational centers reached
a critical value, gravitational instability arose in the
primordial gas–dust cloud and gas accretion onto the
planetary protocores took place. The formation time
scale of the planets is determined by the formation
time of the embryos, their protocores. The second
planet-formation scenario is within the framework
of O.Yu. Schmidt’s cosmogonical ideas. It is often
discussed in terms of the model by Mizuno (1980),
according to which the critical masses of the cores of
all the Jovian planets are approximately equal, being
about 10–15M⊕. However, themost recent models of
the giant planets (Zharkov and Gudkova 1991; Gud-
kova and Zharkov 1999a; and this paper) do not con-
firm Mizuno’s hypothesis about approximately equal
masses ∼10–15M⊕ for the embryos of all the giant
planets onto which gas accretion took place. In re-
ality, the cores of all of the giant planets are several
times smaller.

Zharkov and Kozenko (1990) and Zharkov (1993)
suggested a new scenario for the formation of Saturn,
Uranus, and Neptune. After the formation of Jupiter
in a time approximately equal to ∼(1–2)×107 yr, this
planet began to push a massive embryo with a mass
of ∼5M⊕ out to the periphery of the Solar system in
the direction of Saturn’s feeding zone. This embryo
triggered the formation of Saturn. After the formation
of Jupiter and Saturn, the embryos were pushed to
the periphery in the directions of the feeding zones
of Uranus and Neptune. These embryos captured
the relatively small hydrogen–helium envelopes from
the zones of Jupiter and Saturn to form Uranus and
Neptune in a cosmogonically realistic time interval.

These ideas were further developed by Zharkov
(2003). Jupiter is generally believed to be the first
planet to be formed (Zharkov 1993). Before the for-
mation of Jupiter, the feeding zones out of which
the growing planets scooped protobodies could be
assumed with a good approximation to be closed
systems. This situation changed after the formation of
Jupiter, because the protobodies from different feed-
ing zones got mixed up under the influence of Jupiter.
Zharkov (1993) pointed out that, as the embryos of
Uranus and Neptune were pushed out to the pe-
riphery of the Solar system, they absorbed and scat-
tered protobodies from distant feeding zones, some of
which were absorbed by the molecular envelopes of
Saturn and Jupiter. As a result, the composition of the
condensate from which the embryos of these planets
were formed and the composition of the condensate
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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in the molecular envelopes of both Jupiter and Saturn
must generally be different. This circumstance makes
it much more difficult to determine the composition
of the IR component in the interiors of both planets.
The uncertainty in the composition of the molecu-
lar envelopes must also have an effect on radiative-
opacity calculations and on the identification of radia-
tive zones in the molecular envelopes of Jupiter and
Saturn.
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Abstract—We used data on the recently discovered three outer Neptunian satellites to analyze the long-
period evolution of their orbits. We estimated the ranges of eccentricities and inclinations as well as
approximate circulation periods of the pericenter arguments and the longitudes of the ascending nodes. The
results were mainly obtained by using two different versions of the averaged Hill problem. Plane sections
of the phase space of satellite orbital elements are given. We discuss the peculiarity of the evolution of
several satellite orbits related to the librational variation of the pericenter argument ω. The ω-librators
of Saturn’s system were found to qualitatively differ from the libration orbit in the system of Jupiter.
c© 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The discovery of three new Neptunian satel-
lites was reported in mid-January, 2003 (Marsden
2003a). These satellites were discovered as a re-
sult of observations made by J.-M. Petit, P. Rous-
selot, O. Mousis, J. Kavelaars, and M. Holman
and the follow-up measurements made by B. Glad-
man, M. Holman, J. Kavelaars, T. Grav, W. Fraser,
and D. Milisavljevic. Green 2003 mentioned, be-
sides the above researchers, the names of P. Nicol-
son and V. Carruba. The preliminary orbits of the
satellites were computed by B.G. Marsden and
R. Jacobson. The satellites in question have been
named S/2002 N1, N2, and N3. Table 1 gives
the new orbital elements of the satellites adopted
from the Internet source at http://www.harvard.
edu/mpec/KO3/KO3A75.html. We used standard
Designations for Keplerian elements and the same
initial epoch t0—2002 Nov. 22.0 TT =
JDT 2452600.5—for all three satellites. The angular
elements refer to the ecliptic and equinox of 2000.0.
As pointed out in the circulars mentioned above, the
orbital eccentricities of satellites N2 and N3 are only
preliminary (they are marked by asterisks in Table 1).

Descriptions of the peculiar features of the earlier
discovered Neptunian satellites can be found in many
papers (see, e.g., the review by Vashkov’yak 1991).

*E-mail: vashkov@keldysh.ru
1063-7737/03/2910-0695$24.00 c©
The discovery of new satellites has made our know-
ledge about the Neptunian Satellite more complete.
These satellites make up, or rather belong to, a group
of distant or external satellites. Their semimajor axes,
which are about 20–22 million km, exceed more
than twice the apocentric distance of the Neptunian
satellite Nereid (which has the most elongated orbit
among all known satellites, with an eccentricity of
0.75 and an apocentric distance of about 9.6 million
km). The Sun is the principal perturbation source for
the outer satellites. Parameter

γ = −µa
2
0c20a

′3

µ′a5
, (1)

which characterises the ratio of perturbing acceler-
ations due to the flattening of the planet and solar
attraction, does not exceed 10−5 for S/2002 N1, N2,
and N3.
Below we report the values of the constant param-

eters for the Sun–Neptune System adopted in this
paper:

µ = 6836 548.25 km3 s−2, the gravitational con-
stant of Neptune;

a0 = 25225 km, the mean equatorial radius of
Neptune;

c20 = −0.003708, the coefficient of the second
equatorial harmonic of the potential of its attraction;

α0 = 298◦.02, δ0 = 40◦.66 , the right ascension and
declination of the Neptunian North Pole, respectively;
2003 MAIK “Nauka/Interperiodica”
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Table 1. Orbital elements of new outer Neptunian satel-
lites

Satellite S/2002 N1 S/2002 N2 S/2002 N3

M0, deg 39.23980 191.17050 269.57627

n, deg/day 0.12551296 0.14308668 0.13106531

a, AU 0.1470004 0.1347032 0.1428189

e 0.4317281 0.1728137∗ 0.4726309∗

ω, deg 179.13011 27.07148 144.58207

Ω , deg 228.89412 60.63766 53.65304

i, deg 120.50347 56.90003 42.50063

Table 2. Characteristics of the evolving orbits of the outer
Neptunian satellites (analytical solution)

Satellite S/2002 N1 S/2002 N2 S/2002 N3

c1 0.212 0.298 0.427

c2 0.074 0.007 0.060

emin 0.43 0.13 0.39

emax 0.84 0.72 0.65

ĩmin, deg 121 38 31

ĩmax, deg 147 57 45

Tω̃, year 2480 5060 2760

TΩ̃, year 2670 4400 3270

µ′ = 132 712 442 007 km3 s−2, the gravitational
constant of the Sun;

a′ = 4498 252 911 km, the semimajor axis of the
orbit of Neptune;

i′ = 1◦.8, the inclination of the orbit of Neptune at
time t0;

Ω′ = 131◦.2, the longitude of the ascending node of
the orbit of Neptune at time t0; and

λ′ = 310◦.7, the mean longitude of Neptune at
time t0.

METHODS OF ANALYSIS.
CHARACTERISTICS OF EVOLVING ORBITS

Here we use three different methods to analyze the
evolution of the orbits of satellites.

The first analytical solution is based on the in-
tegrable twice averaged Hill problem (Lidov 1961;
Kozai 1962) and its general solution (Vashkov’yak
1999). The first integrals of the evolutionary system

a = c0, (1 − e2) cos2 ĩ = c1, (2)
e2(2/5 − sin2 ĩ sin2 ω̃) = c2

at γ = 0 were obtained by Lidov (1961). In formu-
las (2) the angular variables ĩ and ω̃ (unlike i, ω) refer
to the orbital plane of the perturbing body (the Sun)
whose position relative to the ecliptic is determined
by i′ and Ω′. The solution of this problem makes
it possible to estimate the variation intervals of the
eccentricities and inclinations and also the circula-
tion periods of the arguments of the pericenter and
longitudes of the ascending nodes of satellite orbits.
Table 2 gives the corresponding emin, emax, ĩmin , ĩmax,
Tω̃, and TΩ̃, as well as constants c1 and c2.

Note that the constant c1 does not exceed 3/5 for
any of the three satellites. This means that in the (ω̃,
e) plane there are domains where the argument of the
pericenter, ω̃, exhibits libration-type variations ±π/2
for c2 < 0 (Lidov 1961). However, for the orbits of the
satellites considered, the parameters ĩ, ω̃ have such
values that c2 > 0, and therefore ω̃ (and also ω) varies
monotonically. However, c2 remains rather small, and
this results in strong variation of the eccentricities.
Rather appreciable emax values for all three orbits
make them related in a sense to the highly elliptical
orbit of Nereid.

The second combined (or numerically-analytical)
method takes into account the additional terms of the
perturbation function omitted in the twice averaged
problem. These are, first and foremost, the periodic
terms with the period equal to half the orbital period
of Neptune. In addition, we also took into account the
secular and long-periodic terms ∼(a/a′)2 sin i′ and
∼(a/a′)3e′ (here e′ is the eccentricity of the orbit of
Neptune). We allow for the secular perturbations due
to Triton—the most massive Neptunian satellite—by
formally reducing the coefficient c20 by

δ =
µТ
2µ

(
aТ
a0

)2

, (3)

where µТ is the gravitational constant of Triton and
aТ, the semimajor axis of its orbit (we assume that
aТ � a). We have, for the adopted designations,
µT/µ = 0.00134 and aТ/a0 = 14.33, and the “ef-
fective” coefficient of the second zonal harmonic is
computed according to the formula

c
(eff)
20 = c20 − δ (4)

and is equal to 0.1413.

Below we give the set of evolutionary equations,
which includes only the most important periodic
terms. This equation set has the form

da

dτ
= 0, (5)
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Fig. 1. Characteristics of the orbital evolution of the satellite S/2002 N1: (a) in the (ω, e) plane; (b) in the (ω, i) plane; (1)
analytical solution; (2) numerically-analytical solution.
de

dτ
= 10e

√
1 − e2

[
sin2 i sin 2ω

+ C
(
2 − sin2 i

)
sin 2ω − 2S cos i cos 2ω

]
,

di

dτ
= − 2 sin i√

1 − e2

{
5 (1 − C) e2 cos i sin 2ω

+ S
[
2 + e2 (3 + 5 cos 2ω)

]}
,

dω

dτ
=

2√
1 − e2

{[
4 + e2 − 5 sin2 i+ 5

(
sin2 i− e2

)

× cos 2ω] + C
[
5
(
2 − e2 − sin2 i

)
cos 2ω

+ 5 sin2 i− 2 − 3e2
]
+ 5S(2 − e2) cos i sin 2ω

}
,

dΩ
dτ

= − 2√
1 − e2

{(1 − С)

×
[
2 + e2 (3 − 5 cos 2ω)

]
cos i+ 5Se2 sin 2ω

}
,

C = cos 2(λ′ − Ω), S = sin 2(λ′ − Ω),

τ =
3µ′a3

16µa′3
n (t− t0) , λ′ = λ′0 + n′(t− t0),

where n and n′ are the mean motions of the satel-
lite and Neptune, respectively. The set of evolution-
ary equations (5) has only two first integrals (Moi-
seev 1945):

a = c̄0,
3µ′a2

16a′3
W (e, i, ω,Ω, t) (6)
ASTRONOMY LETTERS Vol. 29 No. 10 2003
+ n′
√
µa(1 − e2) cos i = c̄1,

where

W = 2(e2 − sin2 i) + e2 sin2 i(5 cos 2ω − 3) (7)

+ 10Se2 cos i sin 2ω + [2 sin2 i+ 10e2 cos 2ω

+ e2 sin2 i(3 − 5 cos 2ω)]C,

and appears to be unintegrable. We therefore solve it
numerically.

The third and the most accurate method consists
of the numerical integration of rigorous (unaveraged)
equations of the satellite’s motion in Cartesian coor-
dinates with the allowance for the perturbing effect
of the flattening of Neptune, and the attraction of the
Sun and giant planets. The effect due to Triton can be
allowed for approximately in the same way as in the
second method.
To compare the results obtained using the meth-

ods described above, we show here the cross sec-
tions of the phase space of the orbital elements by
planes (ω, e) and (ω, i). In Figs. 1–3 for satel-
lites N1, N2, N3, the large dots indicate the orbital-
element values obtained using the first (analytical)
method on time intervals ∼Tω̃. In this case, the mo-
tion along the phase-space trajectories of the inte-
grable problem is in the direction of increasing ω.
The thin lines show the results obtained using the
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Fig. 3. Same as Fig. 1, but for S/2002 N3.
second (numerically-analytical) method over an ap-
proximately 10-thousand year long time interval. The
larger filled circles in all figures indicate the corre-
sponding initial positions.
The relations given here make it possible to es-
timate the real variation intervals for eccentricities
and inclinations and how much they differ from the
extreme values given by the analytical solution of the
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Fig. 4. The phase plane (ω, е) of the S/2000 S5 satellite: (1) the numerically analytical solution; (2) the analytical solution,
and (3) the separatrix.
evolutionary problem. The extreme values of incli-
nations i differ from ĩ, given in Table 2, by about
5◦ (Figs. 1b, 2b, 3b), and the eccentricities by 0.05
(Figs. 1a, 2a, and 3a). Somewhat greater discrepan-
cies were found for isochronic differences of the time
dependences of the orbital elements obtained using
the first two methods for a∼1000-year time intervals.
Note that the difference between the extreme eccen-
tricity values is maximum for the satellite N2 and
amounts to about 0.6. The corresponding c2 = 0.007
is the lowest among the three values given in Table 2
and the phase trajectory of the integrable problem
in the (ω, e) plane is the closest to the separatrix
that separates the domains of libration and circula-
tion of ω. In Fig. 2a, this limiting value is shown by
dashed lines only for N2. Note that the initial orbital
eccentricities of the satellites N2 and N3 are only
preliminary. We also point out the difference between
the initial and final points of the analytical solution in
the (ω, i) plane. No such difference can be seen in the
(ω̃, ĩ) plane.
The third (numerical) method allowed us to es-
ASTRONOMY LETTERS Vol. 29 No. 10 2003
tablish that the variation interval of short-periodic
oscillations of the major axes of the orbits of the three
satellites are about 220, 150, and 240 thousand km
for the satellites N1, N2, and N3, respectively.
Thus, the main qualitative characteristics of the

orbital evolution of the satellites S/2002 N1, N2, and
N3 can be satisfactorily described by the solution
of the twice averaged Hill problem. More accurate
qualitative characteristics can be obtained by numeri-
cally solving the evolutionary equations averaged over
the motion of the satellite and with approximate al-
lowance for periodic solar perturbations (with periods
equal to half the orbital period of Neptune). Short-
periodic perturbations are apparently required only for
constructing full analytical theories of the motion of
the above-mentioned satellites.

LIBRATION ORBITS OF SATELLITES

One of the interesting results of the qualitative
analysis of the twice averaged Hill problem is that
we found satellite orbits with libration-type variation
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of the pericenter argument to exist at c1 < 3/5. As
mentioned above, the possibility of the existence of
such orbits was first discovered by Lidov (1961). In
the phase plane (ω̃, e), the trajectories with libration-
type variation of ω̃ embrace a stationary singular point
with coordinates

ω̃ = ±π/2, e =

√
1 −

√
5c1
3
.

Kozai (1962) analyzed a more general problem with
the additional terms ∼(a/a′)k≤8 by including W in
the twice averaged perturbation function. In the case
a/a′ → 0, he integrated the evolutionary problem in
elliptical functions and repeated in the Delone ele-
ments the qualitative analysis of the evolution earlier
performed by Lidov. Note that the work of Kozai is
more illustrative: Kozai constructed families of inte-
gral curves W (2ω̃,

√
1 − e2) = const with different

fixed a, c1, which particularly correspond to the orbit
of asteroid (1373) Cincinnati. This orbit became the
first real ω-librator to be discovered by Kozai.
For a stationary singular point surrounded by li-
bration trajectories in the (ω̃, e) plane, the following
conditions

е̇ = 0, ˙̃ω = 0 (8)

are satisfied. The second of these conditions means
that the angular rate of the variation of the longitude
of the ascending node Ω is equal to that of the longi-
tude of the pericenter, g = Ω̃ + ω̃sgn(cos i), i.e.,

˙̃Ω = ġ. (9)

This circumstance gives us grounds for calling the
singular point a resonance point, and the libration-
type variation of ω̃ in its vicinity the Kozai resonance.
Since all qualitative features revealed by Lidov are
preserved in the case studied by Kozai, it would be
proper, as suggested by Neistadt (Arnold et al. 2002,
p. 219), to call it the Lidov–Kozai resonance. For
the same reasons, the effect of the abrupt increase of
eccentricity c1 → 0, ω̃ → π/2, and, consequently, the
inevitable collision between the satellite and a finite-
sized central attractive body could justifiably be called
the Lidov–Kozai mechanism.
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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The overwhelming majority of the orbits of the
natural satellites of the planets, including those of
the recently discovered satellites of giant planets, ex-
hibit circulation-type variations of the argument of
the pericenter. However, the orbits of three satellites
show libration-type variations of ω; these are the Sat-
urnian S/2000, S5, and S6, and the Jovian satellite
S/2001 J10.
In the Saturnian system, ω-librators have been

found both analytically (Vashkov’yak 2001) and by
numerically integrating the rigorous equations of mo-
tion (Carruba et al. 2002). Figures 4 and 5 show the
results of our computations in the (ω, e) plane made
using the first two methods described in the previous
section. We integrated equations of motion over a
10-thousand year long time interval and adopted the
initial elements from the reports of Marsden (2001a,
2001b). Solid lines show the analytical solution of
the twice averaged Hill problem in variables (ω̃, e),
while dashed elements show the separatrices. Filled
circles indicate the initial positions in the phase plane.
Note that all crosses fall within the domains bounded
by separatrices and therefore the librational nature
RONOMY LETTERS Vol. 29 No. 10 2003
of the pericenter argument’s changes in the doubly-
averaged problem (the Lidov–Kozai resonance) is
preserved, and in a more complete model of evolution.
In this case, the phase points in the (ω, е) plane fill
a ring-like domain near the trajectories of the inte-
grable problem, and the periodic perturbations have
comparatively little effect.
As is evident from Fig. 5, in the case of the satellite

S/2000 S6, the analytical solution yields an eccen-
tricity emin that differs appreciably from its real value.
Moreover, note that analyzing this problem only in
terms of the twice averaged problem at c2 close to
zero may even yield qualitatively incorrect results. It
was on the basis of such an analysis that we classified
the orbits of two Saturnian satellites—S/2000 S2 и
S3—as ω-librators (or, as belonging to the IL group).
However, the circulation nature of these orbits already
becomes apparent when allowing for periodic solar
perturbations with the period equal to half the orbital
period of Saturn and even more so in the case of
the numerical integration of rigorous equations of
the motion of satellites. By way of illustration, Fig-
ure 6 shows the results of our computations of the
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Fig. 7. The phase plane (ω, е) for the satellite S/2001 J10: (1) the numerically–analytical solution; (2) the numerical solution.
orbital evolution of the satellite S/2000 S2. As is
evident from the figure, in the case of satellite S2
(in contrast to those of S5 and S6) first of all, the
crosses are located on both sides of the separatrix,
and, second, the initial phase-space point is located
much closer to the latter. Therefore, even periodic
perturbations due to the Sun—to say nothing about
the short-periodic perturbations—transfer the orbit of
the satellite S/2000 S2 into the group of circulation-
type orbits (or IC) (the same is true for the orbit of
the satellite S/2000 S3). The orbits of these satellites
are thus good examples of the qualitative difference
between the results obtained in terms of the twice
averaged and rigorous problem in the cases where
the phase-space trajectory is located very close to the
separatrix. In other words, in this case, the closeness
to the limiting solution also serves as a limit of appli-
cability of the twice averaged model of the evolution.

In the Jovian system, the orbits of almost all
satellites, including those discovered in 2003, show
circulation-type variations of the arguments of their
pericenters. The only exception is the orbit of the
satellite S/2001 J10. The libration-type nature of
ω was discovered by Cuk et al. (2002), apparently
using a numerical method, and the authors of this
paper associate the libration of ω with the Kozai
resonance and the Yarkovskii effect. At the same time,
it can be established, based on the orbital elements of
S/2001 J10 reported by Marsden (2003b), that for
this satellite, the constant c2 is positive and constant
c1 exceeds 3/5, so that the real difference c1 − 3/5
is equal to several hundredths. This means that in
terms of the twice averaged Hill problem, the phase
plane (ω̃, e) has neither singularities nor libration
points ω̃, and the argument of the pericenter increases
monotonically just as the longitude of the ascending
node does. It also turns out that the circulation
periods ω̃ and Ω̃ are almost equal to each other (both
are close to the (1 : 1) resonance). The numerical
values of these periods are approximately 147.9 and
147.1 yr, respectively, so that ġ ≈ 0.

Unlike the Saturnian satellites S/2000 S5 and S6
considered above, the real variation of the parameter ω
of the orbit of S/2001 J10 is due primarily to the effect
ASTRONOMY LETTERS Vol. 29 No. 10 2003



ORBITAL EVOLUTION OF NEW DISTANT NEPTUNIAN SATELLITES 703
of periodic solar perturbations (and perturbations of
∼e′, sin i′). The crosses in Fig. 7 show the results of
computations made using the numerically-analytical
method over a 10-thousand year long time interval,
while the circles show the results of the numerical
integration of rigorous equations of motion. Although
the extreme eccentricity values obtained with the two
methods differ markedly from one another, even an
approximate allowance for long-periodic solar pertur-
bations yields a qualitatively correct result and the
variation intervals of ω differ only slightly. For the
orbit of a given satellite, the periodic terms in the
right-hand sides of evolutionary equations (5) exceed
appreciably the corresponding terms in the twice-
averaged Hill problem. Therefore, the complete evo-
lutionary system proves to be quite far from being
integrable and the points on the (ω, е) fill the libra-
tion domain rather densely. This is the fundamental
difference between the libration of the ω parameter of
the orbit of the satellite S/2001 J10 and the Lidov–
Kozai resonance. A total of 20 new Jovian satellites
were discovered at the beginning of March 2003.
All three methods described in this paper reveal the
libration of the argument of the pericenter of the orbit
of the satellite S/2003 J20 relative to 90 degrees as
a consequence of the Lidov–Kozai resonance (с1 =
0.3, с2 = −0.02).
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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Abstract—We consider the three-dimensional problem of the motion of a star inside an inhomogeneous
rotating elliptical galaxy with a homothetic density distribution. We construct and analyze the periodic solu-
tions near a central libration point by using Lyapunov’s method. c© 2003MAIK “Nauka/Interperiodica”.

Key words: celestial mechanics.
INTRODUCTION

Abalakin (1959) studied the problem of the three-
dimensional motion of a material point inside an inho-
mogeneous ellipsoidal body with a homothetic den-
sity distribution in a fixed coordinate system. Abal-
akin found periodic solutions and performed a qual-
itative analysis. In an earlier paper (Gasanov 2001),
we analyzed the flat problem of the motion of a ma-
terial point inside an inhomogeneous rotating ellip-
soidal body with a homothetic density distribution.
We derived an expansion of the force function of the
problem up to the fourth-order terms of the second
eccentricities of the ellispoid, which are considered
to be small parameters. We derived a formula for the
perturbing function and solved the equations of the
perturbed motion in canonical elements.

Within the framework of the spatial problem,
Gasanov and Luk’yanov (2002) found stationary
solutions or libration points Lk (k = 1, 2, ..., 7), one
of which (L1) is located at the coordinate origin and
is adopted as the central point. We showed that the
libration point located at the galactic center is stable
in Lyapunov’s sense. We constructed zero-velocity
surfaces and the domains of possible motion inside
and outside the galaxy, and showed that the motions
inside the galaxy are stable in Hill’s sense, i.e., each
star moves inside a closed region. We showed that a
Roche model can be constructed for galaxies shaped
as three-axial ellipsoids or as oblate ellipsoids of
revolution.

In this paper, we construct periodic solutions near
the central libration point L1 = L1(0, 0, 0) using the
Lyapunov method within the framework of the prob-
lem of the motion of a star inside an inhomogeneous

*E-mail: gasnizh@sai.msu.ru
1063-7737/03/2910-0704$24.00 c©
rotating elliptical galaxy with a homothetic density
distribution.

Let T be an elliptical galaxy that is bounded by the
elliptical surface

x2

A2
+

y2

B2
+

z2

C2
= 1, A ≥ B ≥ C, (1)

and has a homotetic (ellipsoidal) density distribu-
tion. Density ρ in this galaxy is a function of a cer-
tain parameter p = p(x, y, z) and varies continuously
from the center to the outer surface. On this basis,
we set the density distribution T in the body in the
form of a converging power series in parameter p
(Gasanov 2001):

ρ = ρ(p) = ρ0 +
∞∑

n=1

ρnε
npn, (2)

0 < ε < 1, 0 ≤ p ≤ 1,

where ε is a small parameter that characterizes the
density distribution. The following additional condi-
tions

ρ(0) = ρ0 > 0, ρ(1) = ρf , (3)

ρn < 0, n = 1, 2, . . .

are satisfied. Here ρ0 and ρf are the density values
at the center and the surface of the ellipsoidal body,
respectively. In expansion (2) for the density ρ, we
leave only the terms up to ε order inclusive, i.e., only
the terms with the coefficients ρ0 and ρ1.

FORMULATION OF THE PROBLEM

Let us consider now the problem of the motion of a
P inside an elliptical galaxy rotating at a constant and
relatively small angular speed Ω about the OZ axis
exclusively under the action of the attraction force of
2003 MAIK “Nauka/Interperiodica”
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the latter. The coordinates x, y, z refer to a Cartesian
coordinate system with the origin O at the center of
the galaxy and axes OX,OY, andOZ directed along
the corresponding principal axes of the ellipsoid (1).
In view of the definition of the second eccentricities λ
and µ of ellipsoid (1), we have

A2 = C2(1 + λ2), B2 = C2(1 + µ2), (4)

µ2 ≤ λ2 < 1.

We derived the following formula for the total po-
tential V retaining the terms up to the order ε inclu-
sive:

V = V0 + R, V0 = −1
2

(
V01x

2 + V02y
2 + V03z

2
)
,

(5)

R =
ε

4
(
R1x

4 + R2y
4 + R3z

4

+ 2R4x
2y2 + 2R5x

2z2 + 2R6y
2z2

)
,

where V0 is the potential of attraction for nonper-
turbed motion and R the perturbing function. More-
over, the coefficients V0i > 0 and Rk > 0 (i = 1, 2, 3;
k = 1, 2, ..., 6) given in the Appendix are polynomial
functions of the second eccentricities λ and µ, and
are commensurable with Ω2 and Ω2/C2, respectively.
Here C is the polar axis of ellipsoid (1).

In the coordinate system xyz rotating at a con-
stant and relatively small angular velocity Ω about the
z axis, the equations of the motion of a star inside an
inhomogeneous gravitating elliptical galaxy have the
following form:

d2x

dt2
− 2Ω

dy

dt
=

∂U

∂x
, (6)

d2y

dt2
+ 2Ω

dx

dt
=

∂U

∂y
,

d2z

dt2
=

∂U

∂z
.

Hereafter, we use the system of equations (6), where
we set

U = V0 + R +
Ω2

2
(x2 + y2) (7)

to construct periodic solutions near the libration point
L1 using the Lyapunov method.

We found the constraint imposed by the Poincare
inequality (a theorem about the existence of a rotat-
ing body as an equilibrium figure (Poincare 1911;
Ogorodnikov 1958)) on the angular velocity Ω of
rotation of the coordinate system in the case of
nonperturbed motion (ε = 0) in the following form
(Gasanov 2001; Gasanov and Luk’yanov 2002)

Ω2 < g2, g2 < V01 ≤ V02, (8)
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and the last double inequality is true in view of rela-
tion (4). In the case of nonperturbed motion inequal-
ity (8) has the form:

Ω2 < g2 − εḡ2. (9)

The quantities g2 and ḡ2 commensurable with Ω2 can
be found in our previous papers (Gasanov ( 2001)
and Gasanov and Luk’yanov (2002)). It follows from
this that angular velocity Ω satisfies inequalities (8)
and (9).

We showed (Gasanov 2001; Gasanov and Lu-
k’yanov 2002) that in the case of nonperturbed motion
at R = 0 or with ε = 0, the characteristic equation of
system (6)

(Λ4 + pΛ2 + q)(Λ2 + g2
3) = 0 (10)

(p = 4Ω2 + g2
1 + g2

2 , q = g2
1g

2
2),

has three pairs of purely imaginary roots Λk = ±iθk,
k = 1, 2, 3. Quantities g2

1 , g2
2 , and g2

3 in equation (10)
are determined by the following equalities

g2
1 = V01 − Ω2, g2

2 = V02 − Ω2, g2
3 = V03 (11)

in view of condition (8). The same condition implies
that

g2
1 ≤ g2

2 . (12)

In this case there are no resonances between θ1 and θ2

θ1 =
√

p

2
−D, θ2 =

√
p

2
+ D, D =

√
p2

4
− q,

(13)

which are commensurable with Ω. The two remaining
roots can be found from the following equation

Λ2 + g2
3 = 0, (θ3 = g3). (14)

It is obvious that p ≥ 0, q ≥ 0 and it can be eas-
ily proved that p2 − 4q ≥ 0 (Gasanov and Luk’yanov
2002).

Let Λ = ±iθ be a pair of such roots of character-
istic equation (10). Following the Lyapunov method,
we set

T =
2π
θ

(
1 + h2c

2 + h3c
3 + h4c

4 + h5c
5 + · · ·

)
(15)

and introduce instead of t the new independent vari-
able τ via the following substitution

τ =
2π
T

(
t− t0

)
. (16)

The system of equations (6) with the terms up to the
order of ε inclusive in the expansion of the perturbing
function R can then be written in the following form:

d2x

dτ2
− 2Ω

( T

2π

)dy
dτ

=
( T

2π

)2
(17)
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×
[
−g2

1 + ε(R1x
2 + R4y

2 + R5z
2)

]
x,

d2y

dτ2
+ 2Ω

( T

2π

)dx
dτ

=
( T

2π

)2

×
[
−g2

2 + ε(R4x
2 +R2y

2 + R6z
2)

]
y,

d2z

dτ2
=

( T

2π

)2[
−g2

3 + ε(R5x
2 + R6y

2 + R3z
2)

]
z.

We now try to satisfy equations (17) by segments
of power series in arbitrary constant c up to the fifth
order inclusive (Lyapunov 1956; Duboshin 1964):

x = x1c + x2c
2 + x3c

3 + x4c
4 + x5c

5, (18)

y = y1c+ y2c
2 + y3c

3 + y4c
4 + y5c

5,

z = z1c + z2c
2 + z3c

3 + z4c
4 + z5c

5.

To determine the coefficients xk, yk ,zk in equa-
tion (18), which must be periodic functions of variable
τ (sines and cosines of multiples of τ ), we substitute
them into Eqs. (17 ). Here we take into account
the fact that for each θ, there is a unique periodic
solution, which at the same time uniquely determines
all constants hk (Lyapunov 1956; Duboshin 1964).

PERIODIC SOLUTION FOR COEFFICIENTS
xn, yn, AND zn

We obtain, after substituting equalities (18) into
the system of equations (17) for the coefficients xn,
yn, and zn (n = 1, 2), which correspond to ε = 0, the
following system of homogeneous linear equations:

d2xn

dτ2
− 2Ω

θ

dyn

dτ
= −g2

1

θ2
xn, (19)

d2yn

dτ2
+

2Ω
θ

dxn

dτ
= −g2

2

θ2
yn,

d2zn

dτ2
= −g2

3

θ2
zn.

The solutions to the system of equations (19) at θ =
θk, (k = 1, 2) can be written in the following form
(Matveev 1967):

x1 = x2 = c11 cos τ + d11 sin τ, (20)

y1 = y2 =
1
σ0

(
d11 cos τ − c11 sin τ

)
,

z1 = z2 = 0,

where c11 and d11 are arbitrary constants that have
the dimensions of length and σ0 is a dimensionless
quantity determined by the following equation:

σ0 =
±2Ωθk

θ2
k − g2

1

=
θ2
k − g2

2

±2Ωθk
. (21)
We find the solutions to the system of equations (19)
at θ = θ3 in the following form:

x1 = x2 = 0, y1 = y2 = 0, (22)

z1 = z2 = g11 cos τ + h11 sin τ,

where g11 and h11 are arbitrary constants that have
the dimensions of length.

Thus, the periodic solutions to the system of equa-
tions (19) at θ = θk and k = 1, 2 without mutual
resonances can be written in the form given by for-
mula (20) and at θ = θ3, in the form of formula (22).

By analogy with Eq. (19), the coefficients xk, yk,
and zk, k = 3, 4, 5 can be found from the equation sets
given in the Appendix. We write the solutions to these
equation sets in the following form:

xk =
k∑

s=0

[
cks cos sτ + dks sin sτ

]
, (23)

yk =
k∑

s=0

[
eks cos sτ + fks sin sτ

]
,

zk =
k∑

s=0

[
gks cos sτ + hks sin sτ

]
, k = 3, 4, 5.

Similarly, we substitute solutions (20) and (23)
into the system of equations for x3, y3, and z3 at
θ = θk and k = 1, 2 to obtain

x3 = c31 cos τ + d31 sin τ + εc33
(
cos 3τ + σ1 sin 3τ

)
,

(24)

y3 =
1
σ0

(
d31 cos τ − c31 sin τ

)
+ εf33

(
sin 3τ − σ1 cos 3τ

)
, z3 = 0,

where c31 and d31 are arbitrary constants that have
the dimensions of length. Coefficients c33 and f33,
which also have the dimensions of length, and di-
mensionless quantity σ1 are given in the Appendix.
Dimensionless quantity h2 is equal to

h2 =
d2
11 + c211
8σ2

0θk

ε

ξ2
0 + η2

0

(25)

×
[
3σ3

0ξ0R1 + 3η0R2 + σ0(ξ0 + σ0η0)R4

]
,

where the quantities ξ0 and η0 that are commensu-
rable with Ω are given in the Appendix.

We now construct the periodic solution to the sys-
tem of equations for x3, y3, and z3 that corresponds to
θ = θ3. This solution has the following form:

x3 = 0, y3 = 0, (26)

z3 = g31 cos τ + h31 sin τ + εh33

(
sin 3τ + σ2 cos 3τ

)
,

ASTRONOMY LETTERS Vol. 29 No. 10 2003
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where coefficients g31 and h31 are arbitrary constants
having the dimensions of length. Coefficient h33,
which also has the dimensions of length, and dimen-
sionless quantity σ2 are given in the Appendix. In this
case the dimensionless quantity is equal to

h2 =
3εR3

8θ2
3

(
g2
11 + h2

11

)
. (27)

We now pass on to solving the system of equations
for x4, y4, and z4 at θ = θk and k = 1, 2. We obtain for
this system of equations

x4 = c41 cos τ + d41 sin τ + 3εc33
(
cos 3τ (28)

+ σ1 sin 3τ
)
,

y4 =
1
σ0

(
d41 cos τ − c41 sin τ

)
+ 3εf33

(
sin 3τ − σ1 cos 3τ

)
,

z4 = 0,

and

h3 = 2h2, (29)

where c41 and d41 are arbitrary constants having the
dimensions of length.

We now find the solution to the equations for x4,
y4, and z4 that corresponds to the root θ = θ3. We
similarly obtain

x4 = 0, y4 = 0, (30)

z4 = g41 cos τ + h41 sin τ

+ 3εh33

(
sin 3τ + σ2 cos 3τ

)
,

where g41 and h41 are arbitrary constants having the
dimensions of length. Here we also find that h3 can be
expressed by formula (29) and h2 is then determined
from equation (27).

We first consider the system of equations for x5, y5,
and z5 at θ = θ3. Taking into account solutions (22),
(23), and (26) in this system of equations, we obtain,
by analogy with the previous cases:

x5 = 0, y5 = 0, z5 = g51 cos τ + h51 sin τ (31)

+ εh53

(
sin 3τ + σ2 cos 3τ

)
+ ε2h55(σ4 cos 5τ + sin 5τ),

where g51 and h51 are arbitrary constants having the
dimensions of length. Coefficients h53 and h55, which
also have the dimensions of length, and dimensionless
quantity σ4 are given in the Appendix. The dimen-
sionless quantity h4 is equal to:

h4 =
(
1 + 2

h31

h11

)
h2 + O(ε2), (32)
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provided that h2 is determined by equation (27) and

h31g11 = g31h11. (33)

We now pass on to the case θ = θk and k = 1, 2.
Taking into account in the system of equations x5, y5,
and z5 solutions (20), (23), and (24), we obtain:

x5 = c51 cos τ + d51 sin τ (34)

+ εc53
(
cos 3τ + σ1 sin 3τ

)
+ ε2c55

(
cos 5τ + σ3 sin 5τ

)
,

y5 =
1
σ0

(
d51 cos τ − c51 sin τ

)
+ εf53

(
sin 3τ − σ1 cos 3τ

)
+ ε2f55

(
sin 5τ − σ3 cos 5τ

)
, z5 = 0,

where c51 and d51 are arbitrary constants having
the dimensions of length. The coefficients c5k, f5k,
k = 3, 5, which also have the dimensions of length,
and the dimensionless quantity σ3 are given in the
Appendix.

We find the following formula for the dimension-
less quantity h4:

h4 =
(
1 + 2

c31
c11

)
h2 + O(ε2), n = 1, 2, 4, (35)

provided that h2 is determined by equation (25) and

c31d11 = d31c11. (36)

FAMILIES OF PERIODIC SOLUTIONS

The families of periodic solution (18) for θ =
θk, k = 1, 2 and θ = θ3 can be rewritten in the fol-
lowing form:

x = a1 cos τ + a2 sin τ + εa3(cos 3τ + σ1 sin 3τ)
(37)

+ ε2a4(cos 5τ + σ3 sin 5τ),

y = b1 sin τ + b2 cos τ + εb3(sin 3τ − σ1 cos 3τ)

+ ε2b4(sin 5τ − σ3 cos 5τ),

z = 0,

and
x = 0, y = 0, z = c1 cos τ + c2 sin τ (38)

+ εc3(sin 3τ + σ2 cos 3τ) + ε2c4(sin 5τ + σ4 cos 5τ),

respectively, where coefficients ak, bk, and ck, k =
1, 2, 3, 4 having the dimensions of length are given
in the Appendix. The constants h2,h3, and h4 for the
family of periodic solutions (37) and (38) are deter-
mined by Eqs. (25), (29), and (35) and Eqs. (27), (29),
and (32), respectively. Note that the families of peri-
odic solutions (37) and (38) contain terms with the
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coefficient ε2, which can be ignored. Moreover, given
the roots θk, k = 1, 2, 3 of the characteristic equation
of system (19), one can unambiguously determine the
total orbital period T of the star from equation (15). In
this case, equation (16) also allows us to unambigu-
ously determine the variable τ , on which the families
of periodic solutions (37) and (38) depend.

Consider now the families of periodic solutions (37)
and (38) for ε = 0, i.e., in the case of nonperturbed
motion R = 0. After elementary manipulations, these
families acquire the following form:

z = 0,
x2

a2
+

y2

b2
= 1 (39)

(
a2 = a2

1 + a2
2, b2 =

a2

σ2
0

)

and
x = 0, y = 0, z = c1 cos τ + c2 sin τ. (40)

Therefore, for ε = 0 (in the case of nonperturbed mo-
tion R = 0), the family of periodic solutions (37) that
corresponds to the roots θk, k = 1, 2 is a family of
ellipses in the plane z = 0 with the semiaxes a and
b defined above. Family (40) that corresponds to the
root θ3 in the case R = 0 has the form of the motion
along a rectilinear interval of the z axis.

Because C ≤ B ≤ A, and in view of (4), (8),
and (21), we have σ2

0 < 1, it follows that that if the
inequality

a2
1 + a2

2 < σ2
0B

2 = σ2
0C

2(1 + µ2) (41)

is satisfied, the ellipses of family (39) should be lo-
cated inside the given elliptical galaxy bounded by
ellipsoidal surface (1). If condition

|c1 + c2| < C (42)

is satisfied, the straight-line intervals of family (40)
are also located inside the given galaxy.

In view of formulas (XI) given in the Appendix
for the quantities ak, bk, and ck, (k = 1, 2) in condi-
tions (41) and (42), we obtain

|f(c)| < 1, |f(c)| < 1
1 + λ

, (43)

respectively. These two conditions for f(c) can be
substituted for by the following single condition:

|f(c)| =
∣∣∣c(1 − 3

2
c2

)(
1 + c− 3

2
c2

)∣∣∣ < 1
2
, (44)

because 0 < λ < 1. Condition (44) can be rewritten
in the form of a double inequality

−2 < 9c5 − 6c4 − 12c3 + 4c2 + 4c < 2, (45)

which yields the domain of the variation of arbitrary
constant c in the form

−0.9613 < c < 1.3042. (46)
Here c∗1 = −0.9613 and c∗2 = 1.3042 are the only real
roots of polynomials f(c) + 1/2 and f(c) − 1/2, re-
spectively. We computed these roots using the MAT-
LAB package. Since the power series of arbitrary
constant c converge absolutely only if |c| < 1, condi-
tion (46) can be rewritten in the following form

−0.9613 < c < 1. (47)

Note that arbitrary constant c can also be constrained
to a more narrow domain:

|c| < 0.9613. (48)

Thus, if conditions (44) or (47) are satisfied, the
ellipses of family (39) and straight-line segments
of family (40) are located inside the given elliptical
galaxy.

In conclusion, we analyze the ratio of the total
orbital periods T of the star (formula (15)) and of the
elliptical galaxy – T1 = 2π/Ω for θ = θk, k = 1, 2

T

T1
=

Ω
θk

(
1 + h2c

2 + 2h2c
3 − 5h2c

4
)
, (49)

and where θ = θ3:

T

T1
=

Ω
θ3

(
1 + h2c

2 + 2h2c
3 − 5h2c

4
)
. (50)

In Eqs. (49) and (50) we took into account formu-
las (XIV) and (XV), respectively, from the Appendix.
Because Ω2 < V03 = θ2

3, it immediately follows from
formula (50), to a first approximation, that T < T1 for
θ = θ3. It is evident that this inequality is also true, to
a first approximation, for θ = θk, k = 1, 2.

CONCLUSIONS

In this paper, we used the Lyapunov method to
construct and analyze the periodic solutions in the
vicinity of the central libration point in terms of the
three-dimensional problem of the motion of a star in-
side an inhomogeneous rotating elliptical galaxy with
a homothetic density distribution. The coefficients of
these periodic solutions contain an arbitrary constant
up to the fifth order inclusive.

In the future, we plan to apply our previous results
to real elliptical galaxies.
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APPENDIX

The quantities given in (B) have the following form

V01 = χ0

[
1 − 3

10
(3λ2 + µ2)

+
9
56

(5λ4 + 2λ2µ2 + µ4)
]
,

V02 = χ0

[
1 − 3

10
(λ2 + 3µ2)

+
9
56

(λ4 + 2λ2µ2 + 5µ4)
]
,

V03 = χ0

[
1 − 3

10
(λ2 + µ2)

+
3
56

(3λ4 + 2λ2µ2 + 3µ4)
]
,

R1 = χ1

[
1 − 5

14
(5λ2 + µ2)

+
5
72

(35λ4 + 10λ2µ2 + 3µ4)
]
,

R2 = χ1

[
1 − 5

14
(λ2 + 5µ2)

+
5
72

(3λ4 + 10λ2µ2 + 35µ4)
]
,

R3 = χ1

[
1 − 5

14
(λ2 + µ2)

+
5
72

(3λ4 + 2λ2µ2 + 3µ4)
]
,

R4 = χ1

[
1 − 15

14
(λ2 + µ2)

+
5
24

(5λ4 + 6λ2µ2 + 5µ4)
]
,

R5 = χ1

[
1 − 5

14
(3λ2 + µ2)

+
5
24

(5λ4 + 2λ2µ2 + µ4)
]
,

R6 = χ1

[
1 − 5

14
(λ2 + 3µ2)

+
5
24

(λ4 + 2λ2µ2 + 5µ4)
]
,

where

χ0 =
Qρ0

3
, χ1 = −Qρ1

5C2
,

Q = 4πG
√

(1 + λ2)(1 + µ2),

and G is the gravitational constant.

The system of equations for x3, y3, z3:

d2x3

dτ2
− 2Ω

θ

dy3

dτ
= −g2

1

θ2
x3 +

2Ωh2

θ

dy1

dτ

+
1
θ2

[
−2h2g

2
1 + ε(R1x

2
1 + R4y

2
1 +R5z

2
1)

]
x1, (I)
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d2y3

dτ2
+

2Ω
θ

dx3

dτ
= −g2

2

θ2
y3 −

2Ωh2

θ

dx1

dτ

+
1
θ2

[
−2h2g

2
2 + ε(R4x

2
1 + R2y

2
1 + R6z

2
1)

]
y1,

d2z3

dτ2
= −g2

3

θ2
z3

+
1
θ2

[
−2h2g

2
3 + ε(R5x

2
1 + R6y

2
1 + R3z

2
1)

]
z1.

The system of equations for x4, y4, z4:

d2x4

dτ2
− 2Ω

θ

dy4

dτ
= −g2

1

θ2
x4 +

2Ω
θ

d

dτ

(
h3y1 + h2y2

)

− 2
θ2
g2
1(h3x1 + h2x2)

+ ε
[
2(R1x1x2 + R4y1y2 + R5z1z2

)
x1

+(R1x
2
1 + R4y

2
1 + R5z

2
1)x2

]
, (II)

d2y4

dτ2
+

2Ω
θ

dx4

dτ
= −g2

2

θ2
y4

−2Ω
θ

d

dτ

(
h3x1 + h2x2

)
− 2

θ2
g2
2(h3y1 + h2y2)

+ ε
[
2(R4x1x2 + R2y1y2 + R6z1z2)y1

+(R4x
2
1 + R2y

2
1 + R6z

2
1)y2

]
,

d2z4

dτ2
= −g2

3

θ2
z4 −

2
θ2
g2
3(h3z1 + h2z2)

+ ε
[
2(R5x1x2 + R6y1y2 +R3z1z2)z1

+(R5x
2
1 + R6y

2
1 + R3z

2
1)z2

]
.

The system of equations for x5, y5, z5:

d2x5

dτ2
− 2Ω

θ

dy5

dτ
= −g2

1

θ2
x5

+
2Ω
θ

d

dτ

(
h4y1 + h3y2 + h2y3

)

− g2
1

θ2

[
(2h4 + h2

2)x1 + 2h3x2 + 2h2x3

]

+
ε

θ2

[
R1(3x2

2 + 2h2x
2
1 + 3x1x3)x1

+ R4(2h2y
2
1 + y2

2 + 2y1y3)x1

+R5(2h2z
2
1 + z2

2 + 2z1z3)x1

+ R4(x3y1 + 2x2y2)y1 + R5(x3z1 + 2x2z2)z1

]
,

(III)

d2y5

dτ2
+

2Ω
θ

dx5

dτ
= −g2

2

θ2
y5

− 2Ω
θ

d

dτ

(
h4x1 + h3x2 + h2x3

)
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− g2
2

θ2

[
(2h4 + h2

2)y1 + 2h3y2 + 2h2y3

]

+
ε

θ2

[
R2(3y2

2 + 2h2y
2
1 + 3y1y3)y1

+ R4(2h2x
2
1 + x2

2 + 2x1x3)y1

+R6(2h2z
2
1 + z2

2 + 2z1z3)y1

+ R4(y3x1 + 2x2y2)x1 + R6(y3z1 + 2y2z2)z1

]
,

d2z5

dτ2
= −g2

3

θ2
z5

−g2
3

θ2

[
(2h4 + h2

2)z1 + 2h3z2 + 2h2z3

]

+
ε

θ2

[
R3(3z2

2 + 2h2z
2
1 + 3z1z3)z1

+R5(2h2x
2
1 + x2

2 + 2x1x3)z1

+ R6(2h2y
2
1 + y2

2 + 2y1y3)z1

+R5(z3x1 + 2x2z2)x1 + R6(z3y1 + 2y2z2)y1

]
.

The coefficients have the following form

c33 = A0c11

[
σ3

0(Ωσ0 + 4θk)R1 − 3ΩR2

+2σ0(Ωσ0 − 2θk)R4

]
, (IV)

f33 =
A0c11
σ0

[
−3Ωσ4

0R1 + (Ω + 4σ0θk)R2

+2σ2
0(Ω − 2σ0θk)R4

]
,

c53 = A0

{
−σ3

0(Ωσ0 + 4θk)(3c11 − c31)ΩR1

−9Ω(c11 + c31)R2

+ 4σ0

[
3(Ωσ0 + θk)c11 + (2Ωσ0 − θk)c31

]
R4

}
,

f53 =
3A0

σ0

{
(3c11 − c31)σ4

0ΩR1

+(Ω + 4σ0θk)(c11 + c31)R2

− 4σ2
0

[
(Ω + σ0θk)c11 + σ0θkc31

]
R4

}
,

c55 = B0

{
(Ωσ0 + 12θk)σ2

0c33R1 + 5Ωf33R2

+
[
(3Ωσ0 − 4θk)c33 − σ0(Ωσ0 − 8θk)f33

]
R4

}
,

f55 = −B0

σ0

{
5Ωσ3

0c33R1 + (Ω + 12σ0θk)f33R2

+ σ0

[
(3Ωσ0 − 4θk)f33 − (Ω − 4θk)c33

]
R4

}
,

h33 = − R3

32θ2
3

h11

(
3g2

11 − h2
11

)
,

h53 =
3
h11

(
h11 + h31

)
h33,
h55 =
3R2

3

1024θ4
3

(
5g4

11 + h4
11 − 10g2

11h
2
11

)
h11.

In addition,

A0 =
3d2

11 − c211
32σ2

0θk

1
p0
, (V)

B0 =
5d4

11 + c411 − 10d2
11c

2
11

32σ0θk(3d2
11 − c211)

1
p0 + 8Ω2σ0

,

where

p0 = (1 + σ2
0)Ωθk + 2σ0(2θ2

k − Ω2). (VI)

Because quantities ck1, dk1, gk1, and hk1, k = 1, 3,
4, 5 are arbitrary constants, we obtain, by setting
c31 = −3c11 in condition (37) and Eqs. (IV):

d31 = −3d11, c53 = −6c33, (VII)

f53 = −6f33.

Therefore

a1 = c
[
(1 + c− 3c2)c11 + c41c

3 + c51c
4
]
, (VIII)

a3 = c3(1 + 3c− 6c2)c33,

a2 = c
[
(1 + c− 3c2)d11 + d41c

3 + d51c
4
]
,

a4 = c55c
5, b1 = −a1

σ0
, b2 =

a2

σ0
,

b3 = c3(1 + 3c− 6c2)f33, b4 = f55c
5,

c1 = c
[
g11(1 + c) + g31c

2 + g41c
3 + g51c

4
]
,

g31 =
g11

h11
h31,

c2 = c
[
h11(1 + c) + h31c

2 + h41c
3 + h51c

4
]
,

c3 = c3
[
(1 + 3c + 3c2)h11 + 3h31c

2
]
h33,

c4 = h55c
5,

where

σ1 =
d2
11 − 3c211

3d2
11 − c211

d11

c11
, (IX)

σ2 =
g2
11 − 3h2

11

3g2
11 − h2

11

g11

h11
,

σ3 =
d4
11 + 5c411 − 10d2

11c
2
11

5d4
11 + c411 − 10d2

11c
2
11

d11

c11
,

σ4 =
g4
11 + 5h4

11 − 10g2
11h

2
11

5g4
11 + h4

11 − 10g2
11h

2
11

g11

h11
,

and the coefficients cnn, fnn, and hnn, n = 3, 5, are
given above.

Note that depending on the conditions of the prob-
lem under study, we can appropriately choose the ar-
bitrary constants ck1, dk1, gk1, and hk1, k = 1, 3, 4, 5.
ASTRONOMY LETTERS Vol. 29 No. 10 2003
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For example, in view of choice (VII) we can set

c11 = Cσ0, d11 = Cµσ0, (X)

g11 = Cλ, h11 = C,

c31 = −3Cσ0, c41 = −3
2
Cσ0,

c51 =
9
4
Cσ0, d31 = −3Cσ0µ,

d41 = −3
2
Cµσ0, d51 =

9
4
Cµσ0,

g31 = −3Cλ, g41 = −3
2
Cλ,

g51 =
9
4
Cλ, h31 = −3C,

h41 = −3
2
C, h51 =

9
4
C.

In this case we obtain for ak, bk, and ck, k = 1, 2, 3, 4,
the following equalities:

a1 = Cσ0f(c), a2 = Cµσ0f(c), (XI)

a3 = c33h(c), a4 = c55c
5,

b1 = −Cf(c), b2 = Cµf(c),

b3 = f33h(c), b4 = f55c
5,

c1 = Cλf(c), c2 = Cf(c),

c3 = h33h(c), c4 = h55c
5,

where

f(c) = c
(
1 − 3

2
c2

)(
1 + c− 3

2
c2

)
, (XII)

h(c) = c3
(
1 + 3c− 6c2

)
,

λ and µ are the second eccentricities of the given el-
liptical galaxy, and σ0 is determined by equation (21).
In addition, quantities σk, k = 1, 2, 3, 4, have the fol-
lowing form

σ1 =
µ2 − 3
3µ2 − 1

µ, σ2 =
λ2 − 3
3λ2 − 1

λ, (XIII)
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σ3 =
µ4 − 10µ2 + 5
5µ4 − 10µ2 + 1

µ,

σ4 =
λ4 − 10λ2 + 5
5λ4 − 10λ2 + 1

λ.

We the obtain for hn, n = 2, 3, 4 for θ = θk, k = 1, 2

h2 =
1 + µ2

8θk

C2ε

ξ2
0 + η2

0

×
[
3σ3

0ξ0R1 + 3η0R2 + σ0(ξ0 + σ0η0)R4

]
, (XIV)

h3 = 2h2, h4 = −5h2,

ξ0 = σ0θk − Ω, η0 = θk − Ωσ0.

The same quantities for θ = θ3 are equal to

h2 =
3C2εR3

8Ω2

(
1 + λ2

)
, (XV)

h3 = 2h2, h4 = −5h2.
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