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Abstract—The effect of the magnetic field curvature on magnetic islands in a tokamak is analyzed. It is dem-
onstrated that the original investigation of this effect by Kotschenreuther et al. (1985) is inconsistent: on the one
hand, the authors made the correct assumption that this is an ideal effect and, on the other hand, they described
it in terms of the parameters characteristic of the “resistive ordering” approach, which is incompatible with the
ideal approximation. More recent studies of the magnetic curvature effect have produced further ambiguities;
as a result, a branch of the theory of magnetic islands has arisen that is based on the supposition that the effect
under discussion can be described in terms of the Glasser–Greene–Johnson parameter DR. This branch is shown
to be erroneous, because the parameter DR describes the plasma response to magnetic field perturbations on spa-
tial scales of about the dimension of the linear resistive layer, while the characteristic spatial scale of the mag-
netic islands is much longer. It is concluded that the correct theory developed here for the magnetic curvature
effect makes more optimistic predictions about its stabilizing role. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Magnetic islands are one of the main magnetohy-
drodynamic (MHD) phenomena that limit the maxi-
mum plasma pressure in high-performance tokamaks
[1]. Among the several factors that govern the dynamics
of the islands [2] is the magnetic curvature effect,
which was investigated for the first time by Kotschen-
reuther et al. [3].

In order to interpret the results of their calculations,
the authors of [3] appealed to the paper by Glasser et al.
[4], who studied linear resistive MHD modes and, in
particular, resistive interchange modes. In [4], it was
shown that resistive interchange modes may be either
stable or unstable, depending on the sign of the param-
eter DR, defined as

(1.1)

where E, F, and H are the parameters of the magnetic
configuration that were introduced in [4] (the Glasser–
Greene–Johnson (GGJ) parameters). However, the gen-
eralized Rutherford equation for the island width evo-
lution that was derived in [3] (see Eq. (71) in that paper)
does not include the parameter DR; instead, it contains
only the sum E + F and does not involve the term H2. In
this connection, Kotschenreuther et al. [3] tried to
answer the question of whether the absence of this term
is intrinsic to the theory of magnetic islands or results
from the fact that they used the so-called large-aspect-
ratio approximation. They concluded that the former
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supposition seems more likely: the term H2 does not
arise in the theory because, according to [4], it appears
only in the case of a thin linear tearing layer, for which
resistive diffusion is important, whereas nonlinear the-
ory deals with magnetic islands whose width consider-
ably exceeds the characteristic spatial scale on which
resistive diffusion occurs.

Our objective here is the same as in [3]: to analyze
the effect of the magnetic field curvature on magnetic
islands. In our analysis, we distinguish between the
physical ideas of Kotschenreuther et al. [3] and the cal-
culations carried out by them, on the one hand, and the
form in which the results of these calculations are rep-
resented, on the other. We show that the ideas, as well
as the calculations, are correct, whereas the representa-
tion of the main calculated result in the form of the sum
E + F is not. Such a representation conflicts with the
concept of the ideal nature of the magnetic curvature
effect, because the sum E + F, which was used in [3] in
the same sense as in [4], is peculiar to the theory in
which resistivity plays a central role and which is
incompatible with the ideal MHD approach. The use of
this sum in [3] gave rise to the erroneous alternative
idea that the magnetic curvature effect is resistive in
nature. In this context, the present paper can be viewed
as substantiation of another concept of the magnetic
curvature effect—the one based on ideal magnetohy-
drodynamics.
2004 MAIK “Nauka/Interperiodica”
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The question of which of the concepts—ideal or
resistive—is correct is important from the standpoint of
fundamental plasma physics and also for applications
of the theory of magnetic islands. It is well known that,
in tokamaks, magnetic islands can manifest themselves
as neoclassical tearing modes [1, 2]. These modes may
limit the maximum plasma pressure in the devices
being designed in connection with the development of
the ITER project; it is therefore very important to pre-
dict what the role of the magnetic curvature effect
would be—stabilizing or destabilizing. It should be
noted, however, that the ideal and resistive approaches
yield different predictions, which are even incompati-
ble with one another in some important cases. That is
why it is worth analyzing a large number of various
erroneous views concerning the problem under discus-
sion here. Such an analysis is not a simple matter,
because, on the one hand, the erroneous concepts have
become too deeply rooted and, on the other, the mag-
netic curvature effect occurs against the background of
some simpler effects.

We begin our analysis by a general survey of the
problem. This is the subject of Section 2. One of the
most important results of this section is the introduction
of the notion of the magnetic well of the magnetic
islands (denoted by UMI) and the interpretation of the
magnetic curvature effect as the magnetic well effect.

In Section 3, we formulate the problem and present
the basic equations. With the earlier theoretical
research on magnetic islands in mind, we reduce the
problem to that of determining the contribution of the
magnetic well effect to the Rutherford equation for the
island width evolution (see Eq. (3.4) below). In this for-
mulation, the plasma resistivity enters only the coeffi-
cient Dres, which characterizes the evolution rate of the
island width. Thereby, in the Rutherford equation, the
contribution of the magnetic well effect, denoted by
∆mw, is calculated without considering the resistivity.

As in [3], we determine the so-called magnetic-
well-related current (denoted by Jmw) from the current
continuity equation [see Eq. (3.6)] in which the trans-
verse current is driven by the plasma pressure gradient
[see Eq. (3.23)]. Since the toroidal effects are taken into
account, we work with functions of three variables, two
of which, x and ξ, are used to describe a chain of mag-
netic islands and the third—the poloidal angle θ—is
used to describe the effects associated with the poloidal
oscillations of the equilibrium functions. In Section 3 (as
in [3]), we divide all the functions into two groups (those
that depend on θ and those that do not) and work with the
equations that relate these two groups of functions.

In Section 4, we calculate the magnetic-well-related
current Jmw and determine the magnetic well contribu-
tion ∆mw. The result of these calculations is Eq. (4.37).

Section 5 is devoted to the analysis of the general
features of the magnetic well of the magnetic islands
and its particular manifestations in a number of equilib-
rium plasma states. It is pointed out that the most
important of these features is the stabilizing effect of
the parameter ∆mw at a positive magnetic shear and a
negative plasma pressure gradient. Here lies the key
difference between our results and the predictions of
the resistive DR trend, according to which the stabiliz-
ing magnetic well may either stabilize or destabilize
magnetic islands, depending on the values of the equi-
librium parameters.

We are interested in particular equilibrium states in
a circular tokamak with a low (but finite) plasma pres-
sure and in a slightly noncircular tokamak with moder-
ate plasma pressure. Since such equilibrium states have
already been discussed in the literature, the correspond-
ing parts of Section 5 (Subsections 5.2 and 5.3) consti-
tute a review of the earlier studies. We show that, in
these two cases, the difference between the magnetic
well of the magnetic islands and the resistive magnetic
well is unimportant (see relationships (5.4)). At the
same time, we show that, in the second stability region
of the ideal ballooning modes, the magnetic well of the
magnetic islands differs radically from the resistive
magnetic well. Our analysis indicates that, in contrast
to the resistive magnetic well, the magnetic well of the
magnetic islands produces a stabilizing effect in this
region.

Section 6 begins by discussing the problem of why
the magnetic well of the magnetic islands differs from
the ideal magnetic well of the linear modes (see Sub-
section 6.1). In Subsection 6.2, we consider the limiting
transition to zero resistivity in the GGJ approach [4].
The difficulties arising in deriving the equation for the
linear resistive magnetic well are elucidated in Subsec-
tion 6.3.

Final comments are given in Section 7. In addition, the
results on the equilibrium parameters in the linear stabil-
ity theory are summarized in Appendix A, and the contri-
bution of the plasma compressibility to the equation for
linear resistive modes is considered in Appendix B.

2. GENERAL REVIEW OF THE PROBLEM

2.1. Paradox of the Mutual Cancellation 
of the Resistive Parts of the Glasser–Greene–Johnson 

Parameters

Here, the problem is to find out whether or not the
sum E + F can be considered a basis for an adequate
description of an ideal MHD phenomenon. As was
noted above, the parameter DR arises as a result of the
essentially resistive ordering approach used in [4] and
describes the very resistive magnetic field curvature
effect. In this sense, the parameter DR, as well as the
parameters E, F, and H in the expression for DR, can be
called linear resistive parameters. These parameters can
be used to describe an ideal phenomenon only if they
appear in the description of linear ideal modes, i.e.,
when the sum E + F turns out to be relevant to the prob-
lem of linear ideal modes. Meanwhile, in [4], the only
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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parameter that is definitely ideal is the parameter DI ,
defined by the relationship

(2.1)

In this situation, there are two possibilities. First, all the
parameters on the right-hand side of relationship (2.1)
are intrinsic to ideal theory, so that the representation of
the curvature effect in [3] is justified. Second, some of
the parameters on the right-hand side of relationship
(2.1) are not intrinsic to ideal theory; i.e., they are com-
posed of ideal and resistive parts in such a way that the
resistive parts mutually cancel out. In this case, the rep-
resentation of the curvature effect in the form of the
sum E + F in [3] may turn out to be inadequate and may
lead to a misunderstanding of the result obtained in [3].

The approach used in [4] does not provide informa-
tion enabling one to decide which of the two possibili-
ties will be realized. This is why we now turn to papers
[5–7], the first of which was aimed at studying ideal
modes (in particular, Mercier modes) in general toroi-
dal geometry, the second dealt with the same modes in
the axisymmetric geometry of a tokamak, and the third
considered resistive modes in general toroidal geome-
try and in axisymmetric tokamak geometry. The main
results of [5–7] were summarized in [8].

In [5–8], the linear ideal curvature effect was
described not in terms of the parameter DI , defined by
relationship (2.1), but rather in terms of the parameter
U0, which characterizes the linear ideal magnetic well
and is related to DI by the expression

(2.2)

Consequently, in terms of the parameters E, F, and H,
we have

(2.3)

On the other hand, according to Eq. (7.60) from [8], the
parameter U0 is represented as

(2.4)

where q is the safety factor, the prime denotes the deriv-
ative with respect to the “radial coordinate” that labels
equilibrium magnetic surfaces, and A0 is a geometric
factor given by relationship (A.1) with n = 0. The
parameter W (0) is defined by Eq. (A.4) from [8] and the
parameters A1 and A2 are given by relationship (A.1)
with n = 1 and 2. (For the simplest case of a circular
tokamak or a slightly noncircular tokamak, the explicit
expressions for the parameters A0 and A1 will be pre-
sented in Subsections 4.3 and 5.1, respectively.)

The parameters W (0), A0, A1, and A2 characterize the
linear ideal magnetic curvature effect. In order to deter-
mine how these parameters are related to the parame-
ters E, F, and H, which were used in [4], we utilize
Eqs. (4.18) and (4.19) from [7] to construct an auxiliary

DI E F H 1/4.–+ +=

U0 DI 1/4+( ).–=

U0 E F H+ +( ).–=

U0
q

4

q'
2

------ A0W
0( )

A1
q'

q
2

----- A0A2– A1
2

+ + 
  ,=
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
parameter U that generalizes the parameters U0 to the
case of arbitrary resistivity:

(2.5)

Here, kx is a radial wavenumber characterizing the
reciprocal of the radial scale of the mode and kR is a
characteristic resistive radial wavenumber defined by
the relationship

(2.6)

where γ is the growth rate of the mode and η is the plasma
resistivity. The parameter H is given by the equality

(2.7)

and the parameters C0 and C1 are defined by relation-
ships (A.2). It can be seen that the parameter H defined
by equality (2.7) coincides with the parameter H used
in [4]. It is also evident that, when the resistivity is
ignored (kR/kx  ∞), relationship (2.5) reduces to
relationship (2.3); as a result, we obtain

(2.8)

On the other hand, in the limit of high resistivity
(kR/kx  ∞), relationship (2.7) yields

(2.9)

where UR is the linear resistive magnetic well given by
the relationship

(2.10)

We thus can see that

(2.11)

Relationships (2.4), (2.10), and (2.11) lead to

(2.12)

A comparison of relationship (2.7) with relation-
ship (2.4) shows clearly that the parameter H is not
intrinsic to linear ideal MHD theory. However, it con-
tains a part that is associated with the parameter A1 and
thus is inherent to this theory. Therefore, equality (2.7)
can be rewritten in the form

(2.13)

where

(2.14)

(2.15)
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The parameters HI and HR can be called the “ideal” and
“resistive” parts of the parameter H. Since the parameter
H is not an attribute of ideal theory, relationship (2.12)
implies that the sum E + F, too, is not its attribute. This
indicates that the main results of [3] should be
explained in terms of the second of the two possibilities
under discussion—the mutual cancellation of the resis-
tive parts of different terms on the right-hand side of
relationship (2.1).

It is now necessary to understand precisely what
cancels the resistive part of the parameter H: Is it the
resistive part of one of the parameters (E or F) or is it
the sum of their resistive parts?

In order to answer this question, we express E and F
in terms of the equilibrium parameters used in [7, 8].
According to Eq. (A11.6) from [8] (cf. relationship (2.1)),
we have

(2.16)

where p is the equilibrium plasma pressure, Φ is the
equilibrium toroidal magnetic flux, B is the equilibrium
magnetic field, the superscript (0) stands for the θ-inde-
pendent part of a function, and g is the determinant of
the metric tensor. Analogously, we arrive at

(2.17)

We can see that the parameter F is a purely ideal param-
eter. In contrast to F, the parameter E is the sum of the
ideal and resistive parts, so that we can write the follow-
ing relationship (cf. relationship (2.13)):

(2.18)

where

(2.19)

(2.20)

Expressions (2.15) and (2.20) give

(2.21)

which shows that the resistive part of H is canceled by
the resistive part of E. Then, with allowance for formu-
las (2.13)–(2.16) and (2.18)–(2.21), relationship (2.4)
for U0 can be represented in a purely resistive form:

(2.22)

Accordingly, relationship (2.1) for the parameter DI can
also be written in a purely resistive form:

(2.23)
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The situation just considered can be referred to as
the effect of mutual cancellation of the resistive parts of
the parameters E and H—a possibility that was not
anticipated in [3]. Note that the resistive parts ER and
HR given by Eqs. (13) from [4] coincide in absolute
value but have opposite signs. In our analysis, relation-
ship (2.21) serves merely to provide a physical explana-
tion of this circumstance.

2.2. Fine Details of the Ideal Limit 
of the Glasser–Greene–Johnson Equations

In order to better understand the difference between
the linear ideal and resistive curvature effects, it is
expedient to analyze the limiting transition to zero
resistivity in the equations for linear resistive modes
that were used in [7] and in [4]. For the equations of [7],
the zero resistivity limit is easy to take, because, in [7],
the ordering characteristic of the resistive modes was
not used. In contrast, in [4], this ordering was utilized,
so that the limiting transition to zero resistivity in the
GGJ equations for the resistive modes is more compli-
cated. In order to take the limit correctly, it is necessary
to accurately resolve singularities of the 0/0 type in a
number of formulas. Such a nontrivial procedure was
applied in [9], devoted to the linear theory of ideal
modes in a compressible plasma of arbitrary toroidal
geometry. We will use the procedure from [9] in Sub-
section 6.2, in which we also give the necessary expla-
nations of the physical effects described in the resistive
and the ideal versions of the GGJ equations.

2.3. Plasma Compressibility Paradox

The equation used in [3] to describe the magnetic
curvature effect (see Eq. (71) in that paper) does not
contain the term H2. This indicates that the sum E + F
differs from the parameter DR. The authors of [3] inter-
preted this circumstance as a plausible consequence of
the fact that the characteristic width of the island is
much greater than the resistive scale length. If we, how-
ever, try to arrive at the parameter DR by assuming that
the ratio of the characteristic radial scale of the mode to
the resistive scale length is arbitrary, we then find that,
using the approach of [3] and under the assumption that
the plasma is incompressible, this cannot be done with-
out resolving the plasma compressibility paradox.

The essence of this paradox can hardly be under-
stood exclusively in terms of the approach of [4],
because basic equations (9)–(12) in that paper were
derived not from the first principles but by appealing to
the procedure described in [10]. At the same time, turn-
ing to [10], we can see that, in order to derive Eqs. (9)–
(12) of [4], it is necessary to repeat the corresponding
nontrivial calculations carried out in [10], in particular,
those with Eq. (16), which contains the adiabatic index
(denoted by γ in that paper). On the other hand, the
parameter DR does not involve the adiabatic index. To
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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explain this circumstance, it may be assumed that the
adiabatic index is zero (the incompressible plasma
approximation) or is infinity (the fully compressible
plasma approximation). However, neither of these
assumptions will produce the correct result because of
the plasma compressibility paradox. It may be easier to
resolve this paradox by reference to [7], in which the
linear resistive modes were studied on the basis of the
first principles (the results of [7] were presented in Sec-
tion 11 of [8]). In Subsection 6.3, we will show how it
is possible to derive an expression for the parameter DR
with allowance for plasma compressibility.

2.4. DR Trend in the Theory of Magnetic Islands

The above analysis shows that the magnetic curva-
ture has different effects on the magnetic islands and on
the resistive and linear ideal modes. In principle, this
conclusion follows from [3], where the effect of the
curvature on the magnetic islands was studied for the
first time. However, the fact that the authors of [3] fre-
quently appealed to the results on linear resistive modes
obtained in [4] and that they inadequately used the
notation of [4] in describing the nonlinear curvature
effect led to the erroneous view that the effect of the
magnetic curvature on magnetic islands can be
described in terms of the parameter DR, which charac-
terizes the linear effect of the curvature. As a result, an
ambiguous trend—the DR trend—arose in the theory of
magnetic islands.

An attempt to justify this trend was made in [11], in
which, however, the plasma compressibility was
ignored. In Subsections 2.3 and 6.3 of the present
paper, it is shown, however, that the magnetic curvature
cannot, in principle, be described under the assumption
that the plasma is incompressible.

2.5. Magnetic Well in the Linear 
and Nonlinear Modes

Since there is a precisely formulated rule [4] for cal-
culating the parameter DR for any particular equilib-
rium state, this parameter can be found by a routine
computational procedure. However, since the parame-
ter DR does not characterize the effect of the curvature
on magnetic islands, it is necessary to find out in which
respects the predictions of the DR trend differ from
those of the correct theory. To understand this point, it
is expedient to turn to the notion of the magnetic well.
Above, we introduced the linear ideal magnetic well U0
and linear resistive magnetic well UR. We now intro-
duce the magnetic well of the magnetic islands and
denote it by UMI.

From what has been said above, the linear ideal
magnetic curvature effect can be described in terms of
the linear ideal magnetic well U0, while the linear
resistive curvature effect, in terms of the linear resistive
magnetic well UR. Note that Glasser et al. [4] described
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
these two effects by the parameter DI , introduced by
relationship (2.1), and the parameter DR, introduced by
relationship (1.1), respectively. According to relation-
ship (2.11), the only difference between UR and DR is in
their signs. The answer to the question of why we are
characterizing the linear resistive curvature effect by
the parameter –DR rather than by +DR is that we are
interested here in the suppression of the modes, while
the parameter DR is more suitable for calculating the
growth rates of unstable modes. As an example, the
condition for the existence of unstable resistive inter-
change modes has the form DR > 0 (see, e.g.,
Eq. (11.40) from [8]) while at the same time their
growth rate is determined by the parameter +DR, in
accordance with Eq. (11.38) from [8].

The ideal parameter DI is related to the parameter
U0 by expression (2.2). The physical meaning of the
parameter U0 can be understood in terms of the Mercier
stability criterion, which arises in the problem of linear
ideal modes and has the form (see relationship (2.1))

(2.24)

where the terms 1/4 and U0 describe the effect of stabi-
lization by the magnetic shear and the magnetic curva-
ture effect, respectively. Hence, unlike the parameter
DI , which describes the combined action of these two
effects, the parameter U0 describes the curvature effect
alone.

However, the parameter U0 actually describes sev-
eral curvature effects that are different in nature. In the
simplest case of cylindrical geometry, the only nonzero
component of the magnetic curvature is that normal to
the magnetic surface; i.e., the geodesic curvature is
zero. In this case, the cylindrical magnetic well is
expressed in terms of the normal curvature and is
described by a fairly simple formula. In contrast, in tor-
oidal geometry, the parameter U0 describes, among
other things, a number of effects associated with the
geodesic curvature, or, in other terminology, local bal-
looning effects. Accordingly, the magnetic well in tor-
oidal geometry has the fairly complicated structure
described by relationship (2.3). One of the main parts of
the linear ideal magnetic well U0 is the parameter W (0),
which enters relationship (2.4) and can be called a mod-
ified magnetic well. This parameter characterizes the
plasma pressure response to the strictly flute compo-
nent of the plasma displacement (see Eq. (7.49) from
[8]). The parameters A1 and A2 in relationship (2.4)
account, respectively, for the so-called local linear and
quadratic ballooning effects, i.e., effects due to the bal-
looning component of the perturbed plasma displace-

ment (see the terms with  in Eqs. (7.49) and (7.50)
from [8]). Both of these effects are associated with the
geodesic curvature. Because of its complicated struc-
ture, the parameter U0 can naturally be called the gen-

1
4
--- U0 0,>+

Xk
1( )
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eralized ideal magnetic well. We will, however, omit
the adjective “generalized” for brevity.

Using expression (2.14), we can rewrite relationship
(2.4) as

(2.25)

Here, the term , as well as the term A2, accounts for
the geodesic component of the perturbed poloidal mag-
netic field, whose strength is proportional to the flute
component of the perturbed plasma pressure (see
Eq. (6.8) for details). These two terms differ from one
another: the term A2 arises from the averaging of the

squared geodesic curvature over θ, while the term 
is associated with the square of the θ-averaged geodesic
curvature.

Using condition (2.24) makes it possible to normal-
ize the ideal magnetic well (i.e., to choose the corre-
sponding normalizing factor). At the same time, for lin-
ear resistive modes, for which the effect of stabilization
by the magnetic shear is absent, it is unclear what factor
is to be taken as a basis for normalizing the resistive
magnetic well (i.e., for introducing the parameter UR).
This problem can be resolved by turning to cylindrical
geometry, in which the geodesic effects are absent.
Since the parameters UR and U0 differ only in the rules
by which the geodesic curvature is averaged, they coin-
cide with one another when the geodesic curvature is
zero. In this case, the magnetic curvature effect in cylin-
drical geometry is insensitive to the plasma resistivity,
so we can set

(2.26)

where the superscript “c” stands for “cylindrical.” We
thus normalize the cylindrical resistive magnetic well.
Taking into account formula (2.25) and using the stabil-
ity criterion for the resistive modes in toroidal geome-
try, we then construct an expression for the toroidal
resistive magnetic well. Further, using Eq. (5.2) from
[7], we obtain the following expression for the resistive
magnetic well:

(2.27)

As can be seen, this expression coincides with
expression (2.9). Note also that, for H < 1, relationship
(2.10) gives

(2.28)

while in the opposite case, H > 1, it gives

(2.29)

We now construct an expression for the magnetic
well of the magnetic islands, which was denoted above
as UMI. We begin by normalizing this magnetic well in
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cylindrical geometry, in which the geodesic effects are
absent and, as a result, the nonlinear plasma response to
the magnetic curvature effect is the same as the linear
response. Thus, we arrive at the normalization condi-
tion

(2.30)

This naturally raises the following questions: In what

way can the cylindrical magnetic well  be general-
ized to toroidal geometry? Will the magnetic well UMI
in toroidal geometry be the same as U0 or UR, or will it
be different from U0 and UR? However, these questions
have already been answered in the above discussion of
the results obtained in [3]: in toroidal geometry, the
magnetic well of the magnetic islands UMI is given by
the expression

(2.31)

which can also be rewritten as

(2.32)

where HI is the ideal part of the GGJ parameter H,
whose physical meaning was clarified in [7]. One more
representation of UMI is as follows:

(2.33)

where the ideal part EI of the GGJ parameter E is given
by relationship (2.19) and the GGJ parameter F is given
by relationship (2.16).

Below, we will show that, for standard tokamak dis-
charges with positive magnetic shear and with a radi-
ally decreasing plasma pressure profile, the parameter
HI is positive, HI > 0. Consequently, relationship (2.32)
contains the stabilizing effect of the magnetic well of
the magnetic islands, UMI > 0, provided that the effect
of the linear ideal magnetic well is stabilizing, U0 > 0.

Formulas (1.1), (2.18), (2.21), and (2.33) yield the
following relationship between the linear resistive mag-
netic well UR and the magnetic well of the magnetic
islands UMI:

(2.34)

We can show that

(2.35)

In accordance with what was said above, the magnetic
well of the magnetic islands has a favorable (i.e., stabi-
lizing) effect when UMI > 0. Hence, in working with UR,
it should be kept in mind that the resistive DR trend
leads to less favorable predictions than those obtained
by using the correct theory.

The effect of the magnetic curvature on magnetic
islands was commonly identified with the GGJ effect
[4, 12]. As was explained above, however, a description

UMI
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c
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c
.= =
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q
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of the effect of the curvature on magnetic islands in
terms of the parameter DR can produce erroneous
results. So, to avoid misunderstanding, we propose to
follow [13] and to refer to the effect of the magnetic
curvature on magnetic islands as the effect of the mag-
netic well on magnetic islands. Moreover, the above
analysis shows that the linear resistive magnetic well
effect (i.e., the so-called GGJ effect) and the effect of
the magnetic well on magnetic islands are physically
different.

2.6. When Is the Curvature Effect Important
in the Theory of Magnetic Islands?

Let us consider large-aspect-ratio tokamaks. For
such tokamaks with moderate magnetic shear, with
magnetic surfaces of circular cross section, and with an
electron temperature comparable to or higher than the
bulk ion temperature, the curvature exerts a weaker
effect on the neoclassical tearing modes than does the
bootstrap current [2, 14, 15]. However, for tokamak dis-
charges with optimized magnetic shear [16, 17], the
magnetic curvature effect may exceed the bootstrap
current effect [13]. As was explained in [13], it is this
situation that occurs inside an internal transport barrier,
in which the ions are hotter than the electrons and the
relative ion temperature gradient is larger than the rela-
tive plasma density gradient [17].

Another possible way of enhancing the magnetic
curvature effect is to shape the magnetic surfaces into a
configuration with nonzero ellipticity and triangularity.
In this case, the expression for the magnetic well con-
tains a stabilizing term that is proportional to the prod-
uct of the ellipticity and triangularity, multiplied by a
large coefficient on the order of the aspect ratio (see
Subsection 5.3 for details).

The relative role of the curvature effect becomes
more important when the bootstrap current effect is
weakened by intense transverse transport [18–20]. The
fact that, in the presence of such transport, the role of
the magnetic well increases was pointed out in [21, 22].
On the other hand, the magnetic well effect can be
reduced because of the flattening of the equilibrium
plasma pressure profile in the vicinity of a magnetic
island [23].

The smaller the aspect ratio (which corresponds to a
finite-aspect-ratio tokamak), the greater the relative
role of the magnetic well effect. However, we restrict
the analysis here to large-aspect-ratio tokamaks.
Although our analysis is also useful for the develop-
ment of the existing theory of finite-aspect-ratio toka-
maks, their consideration lies outside the scope of the
present paper.
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2.7. Difficulty in Calculating the Matching Parameter 
in the Theory of Tearing Modes with Allowance

for the Magnetic Curvature Effect

In the linear theory of tearing modes [24], the calcu-
lation of the matching parameter ∆' in the Rutherford
equation for the island width evolution with allowance
for the ideal magnetic well U0 represents a difficulty
because the so-called constant-ψ approximation, in
which the expression for ∆' is derived, fails to hold for
U0 ≠ 0. This difficulty was pointed out, in particular, in
[23]. Above, we showed that U0 ≠ UMI. So, assuming
that UMI ≠ 0, we will treat U0 as being sufficiently small,
U0 ! 1, to overcome the difficulty in question.

3. FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

3.1. Preliminary Remarks

In the terminology used in the current literature, the
magnetic islands are characterized by the magnetic flux
function ψ, defined as

(3.1)

Here, the cyclic variable of the islands, ξ, has the form

(3.2)

where (t) is a positive constant that depends weakly
on time and is related to the island half-width w by the
relationship

(3.3)

x = r – rs is the radial deviation from a singular equilib-
rium magnetic surface r = rs, in the vicinity of which the
chain of magnetic islands is localized; r is the radial
coordinate; B0 is the equilibrium magnetic field; Ls is
the shear length; m and n are the radial and toroidal
mode numbers; ζ is a toroidal angle characterizing the
equilibrium state; and ω is the rotation frequency of an
island. The evolution of the island width is described by
the generalized Rutherford equation [2], which can be
represented as

(3.4)

Here, ∆' is the standard matching parameter in the the-
ory of tearing modes [24]; ∆bs , ∆mw, and ∆pol are,
respectively, the contributions of the bootstrap current,
magnetic well, and polarization current; G1 = 0.412
[25]; and the magnetic resistive diffusion coefficient
Dres is defined by the relationship Dres = c2/(4πσ), where
σ is the plasma electric conductivity and c is the speed
of light.

We assume that the constant  in relationship (3.1)
is independent of x (which corresponds to the so-called
constant-  approximation) and that the ideal magnetic

ψ ψ̃ t( ) ξcos x
2
B0/ 2Ls( ).–=

ξ mθ nζ– ωt,–=

ψ̃

w 2 Lsψ̃/B0( )1/2,=

G1
∂w
∂t
------- Dres

∆'
4
---- ∆bs ∆mw ∆pol+ + + 

  .=

ψ̃
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well U0 is small, U0 ! 1. This latter assumption also
concerns Eq. (3.4). The effect of the ideal magnetic
well U0 was discussed, in particular, in [3, 11] (see, e.g.,
Eqs. (67) and (69) in [3]).

In accordance with [13], the contribution of the
magnetic well to the generalized Rutherford equation,
i.e., the quantity ∆mw in Eq. (3.4), is described by the
expression

(3.5)

where R is the major radius of the torus, s = qR/Ls ≡
(rq'/  is the magnetic shear, Ω = –ψ/ , σx ≡

, and Jmw is the magnetic-well-related current.
This current will be the subject of the next subsection.

3.2. Magnetic-Well-Related Current

According to the current continuity equation

(3.6)

the transverse current j⊥  generates a longitudinal cur-
rent J||. The current Jmw is a component of this longitu-
dinal current (see below for details). The peculiar fea-
ture of Eq. (3.6) is that the longitudinal gradient opera-
tor acts not only on J|| but also on the ratio J||/B as a
whole (see Eq. (7.5) in [8]).

In contrast to the problem treated in cylindrical
geometry and, accordingly, formulated in two vari-
ables, (x, ξ) or (ψ, ξ), the problem at hand is formulated
in three variables, e.g., in (x, ξ, θ), where the variable θ
is introduced to describe toroidal plasma equilibrium.
In terms of the variables (ξ, θ), we represent the per-
turbed functions in Eq. (3.6) as the sum of two parts,
one that depends on the variable θ and another that is
independent of it. Hence, the θ-independent functions
depend on two variables, (x, ξ) or (ψ, ξ), whereas the
θ-dependent functions depend on three variables, (x, ξ, θ)
or (ψ, ξ, θ). Here, the functions that are independent of
the variable θ and depend on it are distinguished by the
superscripts (0) and (1), respectively (cf. Section 7 in
[8]). We denote with B0 the θ-averaged part of the equi-

librium magnetic field ; it is assumed that the right-
hand side of relationship (3.1) contains precisely the

part  in which the superscript (0) is dropped for
simplicity. On the other hand, the functions that are
independent of θ can also be divided into two groups:
those that depend on ξ and those that do not. The
ξ-dependent part of the θ-independent component of
the longitudinal current J|| is denoted by Jmw, so that we

have (ξ) ≡ Jmw.

∆mw
2 2
cs

---------- Rq
wB0
---------- Ω

Jmw ξ ξdcos

Ω ξcos+( )1/2
--------------------------------,∫d

1–

∞

∫
σx

∑–=

q)r rs= ψ̃
xsgn

B —
J ||

B
---- 

  —⊥ j⊥⋅+⋅ 0,=

B0
0( )

B0
0( )

J ||
0( )
Note that, in contrast to the bootstrap current, which
determines the quantity ∆bs in Eq. (3.4), the magnetic-
well-related current is a ξ-dependent function (see Sub-
section 3.3 for details). Note also that the polarization
current, which determines the quantity ∆pol in Eq. (3.4),
too, is a ξ-dependent function. However, unlike Jmw,
this quantity also depends on the island rotation fre-
quency ω, which is contained in expression (3.2), and
vanishes as ω  0. Consequently, in the limit ω 
0, the only component of the longitudinal current that
depends on ξ is the magnetic-well-related current,
which, in addition, is independent of θ.

3.3. Description of the θ-Dependent
and θ-Independent Functions

In accordance with the aforesaid, we obtain the
expression

(3.7)

The operator (∂/∂θ)ξ, x, acting on the functions that
are independent of the variable θ and on those that
depend on it, reduces to the operators m(∂/∂ξ)θ, x and
(∂/∂θ)ξ, x + m(∂/∂ξ)θ, x, respectively. In contrast, the
operator (∂/∂ζ)θ, x simplifies to –n(∂/∂ξ)θ, x in both
cases.

For toroidal geometry, the operator B · — acts on the
functions that are independent of the variable θ and on
those that depend on it in different ways. Assuming
that, in the first case, the aspect ratio is large, we can use
the approximate expression

(3.8)

Here, the θ-independent part of the longitudinal gradi-

ent operator, , is defined in cylindrical geometry by

(3.9)

and the longitudinal wave vector k|| is given by

(3.10)

where ky = m/rs. We are justified in ignoring toroidal
effects in expression (3.9) because we are interested in
magnetic islands whose width is considerably less than
the characteristic equilibrium radial scale length.

In working with B0 and , we must also introduce
the θ-dependent component of the equilibrium mag-

netic field, , through the representation

(3.11)
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Analogously, we must utilize the θ-dependent compo-

nent of the equilibrium longitudinal current, , which
is given by the representation (cf. expression (3.7))

(3.12)

where  is the θ-dependent component of the per-

turbed longitudinal current. The function  also
depends on the radial coordinate r ≡ rs + x, so that we
can write the following approximate relationship:

(3.13)

Here, the subscript s indicates the value of the function
at r = rs and the prime denotes the derivative of the
function at r = rs. It is clear that Eq. (3.6) should be split
into two independent equations: the equilibrium equa-
tion at r = rs,

(3.14)

and the equation in which all the terms are proportional
to x. On the other hand, we can introduce the function

(3.15)

which can be called the θ-dependent component of the
longitudinal island-related current.

According to [26], the perturbed poloidal magnetic

field  (cf. Subsection 2.5), in which the super-
script “2” indicates the contravariant θ-component of
the vector, is an important perturbed function in linear
theory. Linear theory also makes use of the equilibrium

function , which depends on the radial coordi-
nate. Consequently, by analogy with formulas (3.13)
and (3.15), we can use the representation

(3.16)

and introduce the function

(3.17)

which characterizes the contravariant θ-component
(poloidal component) of the magnetic field of the
island. The θ-independent part of this function,

, is determined by the equation

(3.18)

Here, ψ is given by relationship (3.1); zs is a unit vector
that points along the equilibrium magnetic field and, at
r = rs, is equal to

(3.19)
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and q and z are unit vectors in the direction of the gra-
dients of θ and ζ, respectively. As a result, we obtain

(3.20)

Using the above formulas, we arrive at the following
rule by which the operator B · — acts on the θ-depen-
dent functions (cf. rule (3.8)):

(3.21)

where Bp is the θ-independent component of the equi-
librium poloidal magnetic field at r = rs.

In order to apply expression (3.8) to calculate the
first term on the right-hand side of Eq. (3.16), it is nec-
essary to take into account the following relationship,
which is a consequence of formulas (3.12)–(3.15):

(3.22)

From this relationship, it is clear that the expression
for the θ-independent component of the poloidal mag-
netic field of the islands does not contain a perturbed
poloidal magnetic field. As will be shown below (see
Subsection 6.1), this is important in order to understand
why the magnetic well of the magnetic islands differs
from the linear ideal magnetic well.

3.4. Basic Equations

As usual (see, e.g., [3, 11]), in studying the magnetic
well effect, the inertia of the plasma is ignored and its
motion is described by the one-fluid equation

(3.23)

where B is the total magnetic field, j is the net current
density, and p is the plasma pressure. Equation (3.23)
yields

(3.24)

Account is also taken of the following consequence
of Eq. (3.23):

(3.25)

The above equations are supplemented with
Ampère’s law

(3.26)

and Maxwell’s equation

(3.27)

The equation of plasma motion in its simplest ver-
sion (3.23) is sufficient to calculate the magnetic well of
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the magnetic islands. On the other hand, to obtain an
expression for a linear resistive magnetic well, it is nec-
essary to use a more general equation of motion (see
Subsection 6.3 for details).

4. CALCULATION OF THE MAGNETIC 
WELL EFFECT

4.1. Transformation of the Basic Equations

Equations (3.14) and (3.24) yield the following
expression (cf., e.g., the corresponding expression in
Section 3 of [26]):

(4.1)

where the function Q is defined by the relationship

(4.2)

In expression (4.1), the function Q is assumed to be
taken at r = rs.

Using formulas (3.8), (3.20), (3.12)–(3.14), and
(4.2), we obtain from Eq. (3.6) the equations

(4.3)

(4.4)

Here, the superscript “1” indicates the first contravari-

ant component of the vector, the function  is intro-
duced through the relationship (cf. relationship (3.17))

(4.5)

and the symbol 〈…〉θ denotes averaging over the vari-
able θ at a fixed value of the variable ξ.

In order to understand the physical meaning of the
first term on the right-hand side of Eq. (4.3), it is expe-
dient to turn to Eqs. (17) and (19) from [26]. Taking into
account the relationship

(4.6)

we can reduce Eq. (4.4) to

(4.7)
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In the large-aspect-ratio approximation, Ampère’s law
gives

(4.8)

where N ≡ g22/ , with g22 the corresponding element
of the metric tensor. We integrate Eq. (4.7) over x to
obtain the equation (cf. Eq. (18) in [26])

(4.9)

in which the constant of integration is set equal to zero.
Note that the θ-dependence of the determinant of

the metric tensor, , on the right-hand side of
Eq. (4.6) is a consequence of the geodesic curvature.

Accordingly, the current , defined by Eq. (4.7), can
be interpreted as the geodesic component of the island-
related current.

Using Eq. (4.6), we convert the second term on the
right-hand side of Eq. (4.3) into the form (see Eqs. (7.7)
and (7.14) in [8])

(4.10)

The first term on the right-hand side of this equation
describes the vacuum magnetic well and its deepening
due to the plasma diamagnetism (cf. Eq. (7.41) in [8]).
The second term accounts for the effect that competes
with the effect responsible for this deepening in a plane
geometry approximation, i.e., one that is described by
the last term on the right-hand side of Eq. (7.41) in [8].
This competing effect is associated with the poloidal
magnetic field perturbation by virtue of the balance
equation for the perturbed pressures (see Eq. (7.19) in
[8]). Finally, the last term on the right-hand side of
Eq. (4.10) is the contribution of the geodesic curvature.

The second term on the right-hand side of Eq. (4.10)
is transformed in the same manner as in Subsection 7.1
of [8]. Equation (4.3) then reduces to the following
(cf. Eq. (12) in [13]):
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where the function w ' is defined by the relationship

(4.12)

In the large-aspect-ratio approximation, Eqs. (7.65)–
(7.70) in [8] yield the following relationship between
the function w ' and the function W (0) in formula (2.25):

(4.13)

Equation (4.11) is similar in structure to Eq. (65) from
[26].

We now turn to expression (4.8). The θ-independent
component of this expression gives

(4.14)

In the large-aspect-ratio approximation, we obtain from
Maxwell’s equation (3.27) the equation

(4.15)

This equation, together with Eq. (4.14), gives

(4.16)

Using relationship (4.13) and Eq. (4.16), we convert
Eq. (4.11) into the form

(4.17)

We now turn to the θ-independent component of
Eq. (3.25). Using expression (3.8), we reduce this com-
ponent to the equation (cf. Eq. (4.11))

(4.18)

which gives

(4.19)

where (ψ) is an arbitrary function of the magnetic
flux function of the magnetic islands, ψ, defined by
relationship (3.1). It is supposed that this arbitrary func-
tion can be determined with the help of the transport
equation averaged over the magnetic surfaces of an
island (see Subsection 4.3 for details).
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4.2. Magnetic Field of the Islands and Its Contribution 
to the Magnetic-Well-Related Current

4.2.1. Calculation of the magnetic field of the
islands. Applying the approach developed in [26], we
arrive at the following solution to Eq. (4.9):

(4.20)

where the quantity  is given by formula
(3.20) and is thus the θ-independent component of the
magnetic field of the islands. According to solution
(4.20), the θ-dependent component of the magnetic
field of the islands is related to the geodesic curvature.

4.2.2. Magnetic-well-related current in terms of
the q-independent plasma pressure component.
Using solution (4.20) and the first of relationships
(3.20) and averaging the right-hand side of Eq. (4.17)
over θ, we obtain

(4.21)

According to the second of relationships (3.20)
expressed in terms of the variables (x, ξ), the first term
on the right-hand side of relationship (4.21) is indepen-
dent of ξ and, consequently, does not contribute to
Eq. (4.17).

Using formula (4.2), we represent the determinant
of the metric tensor as

(4.22)

The expression in the square brackets of relationship
(4.21) then reduces to

(4.23)

With the help of Eqs. (2.47) in [8], we express the terms
on the right-hand side of relationship (4.23) through the
parameters A0, A1, and A2 introduced in relationship
(A.1) (it is these parameters that were discussed in Sub-
section 2.1; see, e.g., relationship (2.4)):

(4.24)
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(4.25)

(4.26)

As a result, Eq. (4.17) takes the form (cf. relationship
(2.4))

(4.27)

We now turn to formula (2.25). As in [7, 8] (and in
many other papers on linear theory), the factor 1/4π in
this formula is omitted for convenience. Consequently,
in order to compare the right-hand sides of Eq. (4.27)
and of formula (2.25), we must also omit this factor in
the equation. We thus obtain

(4.28)

where the parameter UMI is defined by expression
(2.31). As a result, Eq. (4.27) becomes

(4.29)

We can see that the magnetic-well-related current is
proportional to the parameter UMI, which justifies the
use of the term magnetic well of the magnetic islands
for this parameter.

4.3. Contribution of the Magnetic Well Effect 
to the Generalized Rutherford Equation

According to relationships (3.10) and (3.1), the lon-
gitudinal wavenumber in terms of the (ψ, ξ) variables
has the form

(4.30)

Then, for a circular tokamak or for a slightly noncircu-
lar tokamak such that A0 = R/r (see Eq. (8.1) in [8]),
Eq. (4.29) reduces to

(4.31)

Taking into account the relationship

(4.32)
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which follows from solution (4.20) and relationship
(3.1), we obtain from Eq. (4.31) the equation

(4.33)

We integrate Eq. (4.33) over ξ at constant ψ to obtain
the following equation, which is analogous to Eq. (17)
in [13]:

(4.34)

where the angle brackets stand for averaging over the
magnetic surface of an island (see [27, 28] for details).

Substituting Eq. (4.34) into expression (3.5) gives

(4.35)

For the Rutherford profile function [25], we have

(4.36)

where E(κ) is a complete elliptic integral of the second
kind and κ = [2/(Ω + 1)]1/2. In this case, we integrate
Eq. (4.35) over ξ and Ω and obtain

(4.37)

where cbs = 0.79 is the factor that enters the expression
for the contribution of the bootstrap current to Eq. (3.4)
and is defined by the relationship [27]

(4.38)

Equation (4.37) generalizes Eqs. (22) and (23) in
[13] to include finite beta effects and magnetic-shear-
related effects.

∂Jmw

∂ξ
------------ 

 
Ω

=  
σxcsB0UMI

2
3/2πp0' qRw

-----------------------------∂ p̂ 0( ) Ω( )
∂Ω

--------------------- ξsin

Ω ξcos+( )1/2
--------------------------------.–

Jmw

σxcsB0UMI

2πp0' qRw
----------------------------=

× Ω ξcos+( )1/2 Ω ξcos+( )1/2〈 〉–[ ] ∂ p̂ 0( ) Ω( )
∂Ω

---------------------,

∆mw

2UMI

πp0' w
2

---------------- σx Ω∂ p̂ 0( )

∂Ω
-----------d

1–

∞

∫
σx

∑=

× Ω ξcos+( )1/2〈 〉 ξ ξdcos

Ω ξcos+( )1/2
--------------------------------.∫

∂ p̂ 0( )

∂Ω
-----------

π/8( )σxw d p0/dr( )κ /E κ( ), Ω 1,>
0, –1 Ω 1,< <




=

∆mw

2cbs

w
---------UMI–

1.58
w

----------UMI,–≡=

cbs
1
4
--- Ω κ

E κ( )
------------ Ω ξcos+( )1/2〈 〉d

1

∞

∫–=

× ξ ξdcos

Ω ξcos+( )1/2
--------------------------------.∫
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004



EFFECT OF THE MAGNETIC FIELD CURVATURE 561
5. ANALYSIS OF THE MAGNETIC WELL
OF THE MAGNETIC ISLANDS

5.1. General Properties of the Magnetic Well
of the Magnetic Islands

In the case of a circular tokamak or a slightly non-
circular tokamak, the second of Eqs. (8.1) in [8] implies
that

(5.1)

where ξ0 is the Shafranov shift, the prime denotes the

radial derivative, and BT .  is the mean equilibrium
toroidal magnetic field. It is known (see, e.g., Eq. (2.29)

in [8]) that the quantity  is positive,  > 0. There-
fore, the parameter A1 is negative, A1 < 0, because

 < 0. Thus, for standard situations with a positive
magnetic shear (s > 0), i.e., for q' > 0, relationship (5.1)
implies that

(5.2)

Hence, in the presence of an ideal magnetic well, i.e.,
when U0 > 0, the magnetic well has a stabilizing effect
on the magnetic islands (cf. Subsection 2.5).

At the same time, according to [7], condition (2.28),
which is condition (5.2) with UMI replaced by  UR,
holds only for moderate plasma pressures, whereas, for
sufficiently high pressures, condition (2.29), which is
opposite to condition (2.28), is satisfied.

5.2. Circular Tokamak at a Low (but Finite) 
Plasma Pressure

Using formulas (2.4), (2.27), and (2.31) and taking
into account the results of [7] and of Subsection 8.1 in
[8], we arrive at the following relationships, which are
valid for a circular tokamak and for moderate values of
the parameter βp (the ratio of the plasma pressure to the
pressure of the poloidal magnetic field), βp ! e–2/3:

(5.3)

(5.4)

In this case, the magnetic well of the magnetic islands
coincides with the resistive magnetic well and exceeds
the ideal magnetic well, because it takes into account
the contribution of magnetic shear (cf. the discussion in
Section 2).

The difference between U0, on the one hand, and
UMI and UR, on the other, arises from the presence of
the parameter HI on the right-hand sides of relation-
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ships (2.10) and (2.32) (see also formulas (2.14), (5.1),
(A.5)). That UMI and UR coincide follows from the fact
that, on the right-hand side of relationship (2.34), the
term H2 (which is small for low plasma pressures) and
the term HR (which is small because the problem under
consideration contains an “implicit” small parameter)
are both ignored.

The expression for DR that is contained in relation-
ships (5.4) was first derived by Glasser et al. [12], who
pointed out that an equivalent expression was derived in
[7]. Let us show that relationships (5.4) can be obtained
with the help of Eqs. (5.10) and (5.11) in [7].

5.3. Slightly Noncircular Tokamak at a Moderate 
Plasma Pressure

As in Subsection 5.2, we use the approximation in
which βp ! e–2/3 but, at the same time, βp @ 1. We
assume that the plasma pressure profile is parabolic and
that the ellipticity and triangularity of the magnetic sur-
faces are both small. We characterize the ellipticity and
triangularity by the parameters e and τ that were
defined in Subsection 2.5 of [8]. Then, using Eq. (8.17)
from [8], we obtain

(5.5)

We also arrive at the following relationships, which are
analogous to relationships (5.4):

(5.6)

The last term on the right-hand side of relationships
(5.6) is quadratic in βp. This quadratic dependence
stems from the fact that, on the one hand, the parameter
A1, which is defined by relationship (5.1), is directly
proportional to βp and, on the other hand, the Shafranov
shift at βp @ 1, by virtue of Eq. (A.6), is also directly
proportional to βp (cf. relationships (5.4)).

We can see that, in accordance with general condi-
tion (5.2), the magnetic well certainly has a stabilizing
effect on the magnetic islands when U0 > 0. At the same
time, according to relationship (5.5), the condition
U0 > 0 is satisfied only when the effect of the squared
ellipticity is more important than the combined effect
of the ellipticity and triangularity (see Subsection 8.2 in
[8] for details).

Relationships (5.5) and (5.6) may be of interest for
analyzing tokamak discharges with optimized mag-
netic shear. In [13], such an analysis was carried out in
the approximation UMI = U0, which, in particular,
implies that the squared ellipticity is ignored.
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5.4. Second Stability Region 
of the Ballooning Modes

Although the parameter U0 in the problem of Merc-
ier modes plays an important role in the plasma stability
theory, it characterizes their stability only partially,
because the Mercier stability criterion is given by con-
dition (2.24). At the same time, the general theory of
ideal MHD modes implies that, in order to achieve
good plasma confinement, it is necessary to stabilize
not only Mercier modes but also ideal ballooning
modes. It is well known (see, e.g., Subsection 8.5 in [8])
that there are two stability regions of the ballooning
modes, called the first and second stability regions. The
second stability regime seems to be more attractive for
fusion reactors because it corresponds to high plasma
pressures. That is why it is important to find out
whether the magnetic well has a stabilizing or a desta-
bilizing effect on the magnetic islands in the second sta-
bility region.

It is well known that the stability boundary of ideal
ballooning modes is determined by the equation (see
Eq. (8.50) in [8])

(5.7)

where the parameter  is defined by the relationship
 ≡ 4eβp. (In the literature on ballooning modes, this

parameter is, as a rule, denoted by α.) We can see that,
in terms of the parameter , the quantities UMI and UR
are expressed as (cf. Eq. (11.52) in [8])

(5.8)

(5.9)

while the ideal magnetic well has the form (see Eq. (8.33)
in [8])

(5.10)

In contrast to relationships (5.4) and (5.6), which
indicate that the parameters UMI and UR coincide, rela-
tionships (5.8) and (5.9) imply that these parameters are
different. This difference, which arises because the
right-hand side of relationship (2.34) contains the term
with H2, manifests itself in the terms that are on the

order of , because, according to the aforesaid, we
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proportional to  in relationships (5.8)–(5.10) to be
calculated correctly, it is necessary to use the quantity

 given by an expression in the form of (A.7).

From Eq. (5.7), it is clear that, in the “lower part” of
the second stability region, i.e., for

(5.11)

(5.12)

the terms with  in the square brackets on the right-
hand sides of relationships (5.8) and (5.9) should be
regarded as being of the same order as s. In this case,
we can see that, in the second stability region of the bal-
looning modes, the magnetic well has a stabilizing
effect on magnetic islands, whereas the linear resistive
interchange modes in this region are unstable.

6. DISCUSSION OF THE DISTINCTIVE 
FEATURES OF DIFFERENT MAGNETIC WELLS

6.1. Why Does the Magnetic Well of the Magnetic 
Islands Differ from the Ideal Magnetic Well?

According to linear theory, Mercier modes are
described by the equation (see, e.g., Eq. (7.59) in [8])

(6.1)

where the function Ξ = Ξ(x) is related to the θ-averaged
component of the perturbed plasma displacement

(x, ξ) by the relationship

(6.2)

On the one hand, using expression (2.31), we find that
the right-hand side of Eq. (4.29) contains the difference
U0 – q2A1/q'. This raises the question of why the term
with A1 “disappears” when switching from nonlinear to
linear theory.

To answer this question, we turn to solution (4.20).
We can see that, in a linear problem, the analogue to
this solution has the form

(6.3)

The perturbed plasma pressure  is given by the

familiar relationship  = –  (see, e.g., Eq. (7.6)
in [8]), which, by virtue of relationship (6.2), takes the
form

(6.4)

βp
4

ξ0'

α̂  . e
1/3 βp . e

2/3–( ),

s . e
2/3

,

α̂2

x
∂2

∂x
2

-------- xΞ( ) U0Ξ– 0,=

X̃
0( )

X̃
0( )

x ξ,( ) Ξ x( ) ξ .cos=

gB̃
2

=  
1
N
---- gB̃

2( )
0( )

A0
-----------------------

4πp̃ 0( )

RBp

--------------- g/N( ) 0( )

A0
----------------------- g–+

 
 
 

.

p̃ 0( )

p̃ 0( ) p0' X̃
0( )

p̃ Ξp0' ξ .cos–=
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004



EFFECT OF THE MAGNETIC FIELD CURVATURE 563
In this case, Eq. (4.17) yields the following linear ana-
logue of Eq. (4.29):

(6.5)

From Eq. (3.26) we obtain the equation

(6.6)

Using Eq. (7.16) from [8] and relationship (6.2) for

, we arrive at the relationship

(6.7)

Equation (6.6) then reduces to

(6.8)

Substituting relationship (6.4) and Eq. (6.8) into
Eq. (6.5) gives

(6.9)

Here, we have redesignated Jmw as . For linear

modes, the current  should be calculated with the
help of Eqs. (84) and (88) from [26]:

(6.10)

Inserting relationship (6.10) into relationship (6.9), we
arrive at Eq. (6.1).

Hence, the fact that the magnetic well of the mag-
netic islands passes over to the ideal magnetic well,
UMI  U0, when switching from nonlinear equation
(4.29) to linear equation (6.1) is explained by the fol-
lowing: the incorporation of the derivative (∂ψ/∂x)ξ on
the right-hand side of relationship (4.21) and the pres-
ence of the term proportional to ∂Ξ/∂x in relationship

(6.10) for the θ-averaged longitudinal current .

On the other hand, in investigations on the linear
theory of ideal modes, the question naturally arises:
why does the transition from linear to nonlinear theory
require the replacement U0  UMI? The answer is as
follows: According to relationships (3.20), in linear the-
ory, the θ-averaged part of the perturbed function

 (i.e., of the perturbed poloidal magnetic field) is
zero,

(6.11)

k ||J̃mw
mB0

A0R
---------- p̃ 0( )UMI

p0'
--------- q

4

q'
2

------
A1

B0
------ gB̃

2( )
0( )

– .=

m
∂
∂ξ
------ gB̃

2( )
0( ) ∂

∂x
------ gB̃

1( )
0( )

.–=

X̃
0( )

gB̃
1( )

0( )
mB0

q'

q
2

-----xΞ ξ .sin=

gB̃
2( )

0( ) q'

q
2

-----B0
∂
∂x
------ xΞ( ) ξ .cos=

k ||J̃ ||
0( ) mB0

A0R
---------- UMIΞ

q
2
A1

q'
----------- ∂

∂x
------ xΞ( )+ .–=

J̃ ||
0( )

J̃ ||
0( )

k ||J̃ ||
0( ) mB0x ξcos

A0R
-------------------------- ∂2

∂x
2

-------- xΞ( )
q

2
A1

q'
-----------∂Ξ

∂x
-------+ .–=

J̃ ||
0( )

gB̃
2

gB̃
2( )

0( )
0,=
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
while in nonlinear theory, this is not the case,

 ≠ 0.

6.2. Procedure for Passing to Zero Resistivity
in the Glasser–Greene–Johnson Approach

Formulas (2.13), (2.15), (2.18), and (2.20) imply
that, in order to pass to the ideal limit in the GGJ
approach, it is necessary to calculate two parameters
that depend essentially on resistivity, namely, the
parameters H and E. This is a consequence of the resis-
tive ordering approach adopted in [4]. Hence, the resis-
tive ordering approach necessitates the use of a set of
equations for the perturbed functions that are strongly
dependent on resistivity (see Eqs. (9)–(12) in [4]). In
terms of these equations, the ideal limit cannot be taken
simply by omitting certain terms in them. Instead, it is
necessary to take into account the products of the fac-
tors that formally tend to zero and those that formally
tend to infinity; in Subsection 2.2, this was character-
ized as the procedure for resolving singularities of the
0/0 type. We now describe this procedure in more
detail.

We restrict ourselves to the “infinite-GGGJ” approxi-
mation, GGGJ  ∞, where GGGJ is the GGJ parameter
defined by Eq. (13) from [4] (in that paper, the parame-
ter GGGJ is denoted by G). This approximation is valid
if the adiabatic index in the parameter in question is
equal to zero (which corresponds to the incompressible
plasma approximation) or if the plasma pressure is
assumed to be low in comparison to the magnetic field
pressure. For GGGJ  ∞, Eq. (11) from [4] gives

(6.12)

where ϒ and Ξ are the parameters used in [4].
In this case, Eqs. (9), (10), and (12) from [4] reduce

to

(6.13)

(6.14)

(6.15)

Here, Ψ and Γ are the variables used in [4] and the
quantities QGGJ and X, which characterize the growth

rate γ and the deviation  = V – V0 from the singular
magnetic surface V0, are defined by the relationships

(6.16)

(6.17)

where the expressions for Q0 and X0 are given by
Eqs. (14) in [4]. An important point for our analysis is
that, as the resistivity tends to zero, the parameters Q0
and X0 both tend to zero, so that the quantities QGGJ and
X both tend to infinity. Note that the variable Ψ is also
normalized to a resistivity-depended factor. Conse-
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quently, to within a resistivity-independent factor, we
can write

(6.18)

where  ≡  · —V is the contravariant “radial” com-

ponent of the perturbed magnetic field . We add the
subscript GGJ to the quantity Q in order to distinguish
it from the function Q, which was introduced through
relationship (4.2). Recall that, in [4], the parameter
QGGJ is denoted by Q.

To begin the procedure for passing to zero resistiv-
ity, we simplify Eq. (6.13) to

(6.19)

where α and Λ are the quantities introduced in [4].
Simultaneously, Eqs. (6.14) and (6.15) transform into
the equations

(6.20)

(6.21)

According to relationship (6.18), it is in Eq. (6.19) that
we deal with a singularity of the 0/0 type.

Using relationship (6.18) and Eq. (6.20), we convert
Eq. (6.19) into the form

(6.22)

A comparison of Eq. (6.22) with Eq. (6.1) shows that
they are identical provided that U0 is given by relation-
ship (2.3). It is precisely relationship (2.3) that follows
from the first of Eqs. (16) from [4].

On the other hand, the parameter U0 is determined
by relationship (2.22), whose right-hand side does not
contain the resistive parts of the parameters E and H.
This indicates that, generally, it would be inconvenient
to use the approach developed in [4] to take the zero
resistivity limit. Thus, special care is needed in describ-
ing ideal phenomena in terms of the GGJ parameters E
and H.

6.3. Derivation of the Expression for the Parameter DR

The sought expression for the parameter DR can be
derived based on the analysis carried out in [7]. In
doing so, it is necessary to ignore the polarization cur-
rent effect, i.e., to ignore the terms with the square of
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the growth rate γ, multiplied by the θ-independent com-
ponent of the perturbed radial plasma displacement. As
a result, we arrive at the following reduced version of
Eq. (4.11) from [7]:

(6.23)

Here, the functions U1 and ∆ are defined by the relation-
ships

(6.24)

(6.25)

where the function  is defined by

(6.26)

with g11 = |—x1|2. We see that the function  can be
represented in the form (cf. Eq. (4.7) in [7] and
Eq. (11.4) in [8])

(6.27)

where

(6.28)

(6.29)

Equation (6.23) is written in terms of Fourier represen-
tation in the x coordinate, so that the variable kx is the
same as that in relationship (2.5). The quantity kR is
defined by relationship (2.6). The subscript k on the
perturbed quantities indicates the harmonic in the Fou-
rier representation of the corresponding function in the
x coordinate. It is assumed that each perturbed function
depends on the variable ξ introduced by expression
(3.2) with the replacement ω  iγ, so that the depen-
dence has the form exp(iξ). The function α(0) is the
equilibrium part of the function α introduced by
Eq. (3.4) from [7].

The function  is the Fourier harmonic of the
θ-dependent component of the perturbed plasma pres-
sure. The meaning of this function will be clarified
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below. At this point, we note only that, for the one-fluid
equation of motion (3.23), it is identically zero,

(6.30)

In this case, instead of relationship (2.5) for the func-
tion U, we arrive at the relationship

(6.31)

On the other hand, according to Subsection 2.1, rela-
tionship (2.5) in the limit of high resistivity, kR/kx  0,
leads to expression (2.9). In other words, in this limit, we
have U = –DR, in accordance with relationship (2.11).
However, we can be assured that relationship (6.31)
does not lead to expression (2.9).

In [3], as well as in [11], the one-fluid equation of
motion (3.23) was used. However, as was pointed out in
Subsection 2.3, a correct procedure based on this equa-
tion cannot lead to the conclusion that the magnetic cur-
vature effect is characterized by the parameter DR. This
result of our analysis by no means lessens the value of
[3], because that paper does not yield the above conclu-
sion, which is, however, the main result of [11]; the lat-
ter paper therefore appears to be erroneous.

The quantity DR is calculated in Appendix B. The
calculations yield

(6.32)

where

(6.33)

Using relationships (6.24) and (6.33), we find

(6.34)

where the parameter U is given by relationship (2.5).
According to relationships (2.9) and (2.11), the resis-
tive limit of the function U is nothing more than –DR.
We thus have shown that the resistive curvature effect
can be described in terms of the parameter DR provided
that plasma compressibility is taken into account.

7. CONCLUSIONS

We have analyzed the status of the existing theory of
the effect of the magnetic curvature on magnetic
islands. The primary objective of such a theory is to
construct a criterion for determining whether the mag-
netic curvature has a stabilizing or a destabilizing
effect. The criterion is formulated in terms of the sign

δp̃k
1( ) 0.≡

U U1.=

∆ U2Ξk,=

U2

q
4
A0

q'
2

-----------kx
2 α0

1( )2
Qx* Qx–( )[ ] 0( )





=

–
α0

1( )
Qx*( )

0( )

Qx*
0( )--------------------------- α0

1( )
Qx* Qx–( )[ ]

0( )

+
α0

1( )B0
2

g( )
0( )

B0
2

g( )
0( )--------------------------------- α0

1( )
Qx( )

0( ) Qx
0( )

Qx*
0( )------------ α0

1( )
Qx*( )

0( )
–





.

U U1 U2,+=
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
of the GGJ parameter DR, and the conclusion is drawn
that, at DR < 0, the magnetic curvature has a stabilizing
effect, while, at DR > 0, the effect is destabilizing. Since
the existing theory uses the parameter DR as a reference
point for determining the stabilization conditions, we
have called it the DR trend in the theory of magnetic
islands.

We have demonstrated that the DR trend is erroneous
and have developed a correct theory of the effect of the
magnetic curvature on magnetic islands. We have
pointed out that, although the results obtained in the DR
trend can be valid under certain particular conditions,
there may be equilibrium conditions for which this
trend yields wrong results. An example of such errone-
ous results obtained with the DR trend is given in Sub-
section 5.4, in which the magnetic curvature effect has
been analyzed in the second stability region of the ideal
ballooning modes. In particular, we have shown that,
according to the correct theory developed here, the
magnetic curvature exerts a stabilizing effect on mag-
netic islands, whereas the DR trend predicts a destabi-
lizing effect.
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APPENDIX A

Summary of the Results on the Equilibrium 
Parameters Used in [5–8]

In [5–8], investigations were carried out in terms of
the toroidal and poloidal magnetic flux functions, Φ
and χ, respectively, and the radial coordinate x1 ≡ a in
a coordinate system with straightened magnetic field
lines. The equilibrium longitudinal electric current

density j0|| ≡ B0(j0 · B0)/  was represented as j0 =

α0B0/ . The equilibrium plasma states were described
in terms of the metric tensor gik (i = 1, 2, 3) with the
determinant g in the coordinates (x2 = θ, x3 = ζ), where
θ and ζ are the poloidal and toroidal 2π-periodic angu-
lar variables. Along with the metric tensor gik, the
inverse metric tensor gik was also used.

B0
2

B0
2
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The parameters An (n = 0, 1, 2) and Cn (n = 0, 1) were
determined by the relationships

(Ä.1)

(Ä.2)

Here, the prime denotes the derivative with respect to

x1,  is the θ-dependent part of the function α0 (i.e.,
the part of α0 that oscillates in θ) given by the relation-
ship

(Ä.3)

and the superscript (0) indicates averaging over θ. The
function W (0) used in [5–8] was defined by the relation-
ship

(Ä.4)

where J and I are the toroidal and poloidal current flux
functions, respectively, and V is the volume of a torus
with the minor radius x1.

Equations (A.1) are identical to those in the first
rows of Eqs. (4.20) in [7] and of Eqs. (7.61) in [8].
Equations (A.2) reproduce the equations in the second
row of the set of equations in [7] and Eqs. (11.24) in [8].
Equation (A.4) is Eq. (3.2) from [5], or Eq. (3.7) from
[7], or Eq. (7.41) from [8]. Note that Eq. (7.41) from [8]
contains two misprints: the plus sign in front of the last
term on the right-hand side of the equality should be
replaced by the minus sign and the prime should be
added to µ.

Turning to relationship (2.32) or (2.34), we can see
that the main difference among the parameters UMI , U0,
and UR is their relationship to the parameter HI . For a
circular tokamak or for a slightly noncircular tokamak,
this parameter is determined by the parameter A1 given
in relationship (5.1). The characteristic feature of the
parameter A1 is that it is proportional to the radial deriv-
ative of the Shafranov shift, . For moderate βp values
such that βp ! e–2/3, Eq. (2.9) in [8] gives the following
expression for :
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For a low magnetic shear and for a parabolic plasma
pressure profile, Eq. (A.5) passes over to Eq. (2.52) in
[8], namely,

(Ä.6)

Since some terms in the expression for the magnetic
well mutually cancel out, corrections on the order of

e2  on the right-hand side of Eq. (A.6) may be impor-
tant. Consequently, instead of Eq. (A.6), one must use
an equation of the form

(Ä.7)

where O(1) is a factor on the order of unity. The correc-
tions in question can be calculated with the help of
Eq. (2.104) in [8]. (Note that the right-hand side of this
equation contains a misprint: the quantity α' in front of
the second square brackets should be replaced with ξ'.)

APPENDIX B

Contribution of the Plasma Compressibility 
to the Equation for Linear Resistive Modes

According to the adiabatic equation, we have

(B.1)

where x is the perturbed plasma displacement vector, γ0
is the adiabatic index, and the subscript k indicates (as
in Subsection 6.3) a harmonic in the Fourier represen-
tation of a function in the variable x.

The right-hand side of relationship (B.1) contains
the perturbed longitudinal plasma displacement, which
can be expressed in terms of the function Z given by
Eq. (10.7) in [8]:

(B.2)

In order to describe this function, it is necessary to gen-
eralize the longitudinal component of the one-fluid
equation of motion (3.23) to include the longitudinal
inertia. In this way, instead of Eq. (3.23), we arrive at
Eq. (4.12) from [7]:

(B.3)

Here, ρ0 is the plasma mass density,  ≡ , and  is
the resistivity-depended operator defined by

(B.4)

where x1 is the radial coordinate. The Fourier represen-

tations of the operator  reduces to the function D
defined by relationship (6.28).
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In analogy with Eq. (4.14) in [7], we obtain from
Eq. (B.3) the equation

(B.5)

which differs from Eq. (4.14) in [7] in that its right-
hand side does not contain the term with γ2. This term
is omitted because the polarization current effect is
ignored.

Using Eq. (B.5), we convert Eq. (B.3) into the form

(B.6)

Here, the function  is expressed in terms of the
function Ξ in the standard way described in [7, 8]. As a
result, Eq. (B.6) gives

(B.7)

Substituting this expression into relationship (6.25), we
arrive at formula (6.32).
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Abstract—A study of the process of implosion of a cylindrical tungsten wire array by electrical and optical
methods shows that it involves two phases. In the first phase, the plasma is produced from the dense wire cores
under the action of the heat flux from the current-carrying plasma. This plasma then fills the internal space of
the liner array. The measured inductance of the liner and its visible diameter vary only slightly in this phase.
During the second phase, the total material of the liner is compressed toward the axis and the inductance of the
discharge gap increases. The process of the implosion of wire arrays is studied by analyzing the electric param-
eters (current and voltage) of the load in the Angara-5-1 facility. The time behavior of the load inductance, the
average current radius, and the start time of the liner compression are determined. The compression start time
determined from the visible size of the liner is found to coincide with that determined from electric measure-
ments. The compression ratio of the liner in terms of the average current radius turns out to be lower than that
measured by optical and X-ray diagnostics. The reason is that, by the instant of maximum compression, only a
portion of the current flows at the periphery of the initial wire array. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, the implosion of liners under the
action of the magnetic field produced by the current
flowing through the liner has been extensively studied.
Experiments on the implosion of cascade liners [1, 2]
performed in the early 1990s in the Angara-5-1 facility
showed that he duration of the soft X-ray (SXR) pulse
generated during the collision of liners can be reduced
to 3–5 ns. This line of research has attracted much
attention since significant progress was made in the
Sandia National Laboratory (United States), where the
implosion of wire arrays was accompanied by an SXR
pulse with an intensity of higher than 180 TW and a
total radiation energy of about 2 MJ [3].

Some features of the implosion of hollow cylindri-
cal wire arrays in the Angara-5-1 facility were
described in [4, 5]. It was shown that the determining
factor that should be taken into account in studying the
physics of fast Z-pinches is that the plasma is produced
from the dense wire material throughout the entire cur-
rent pulse [6–8]. A theoretical model of prolonged
plasma production is presented in [9]. The process of
the implosion of a wire array is conventionally divided
into two phases.

The first phase is the prolonged production of a
plasma that fills the internal space of the liner array. In
this phase, the liner inductance increases only slightly.
The second phase is the liner compression. After most
of the initial wire material is converted into a hot
1063-780X/04/3007- $26.00 © 20568
plasma, the rate of plasma production decreases and the
portion of the current that was previously confined
within the initial liner radius begins to flow through a
plasma region whose radius decreases at a progres-
sively increasing rate. A similar picture of the implo-
sion of multiwire arrays was observed later in the
MAGPIE facility [10, 11]. The transition from the first
phase to the second is accompanied by a rapid decrease
in the liner radius, whereas the system inductance
begins to increase, resulting in a decrease in the dis-
charge current and an increase in the voltage across the
load. This transition is easy to observe because of a
rather sharp change in the measured parameters.

As was noted in [12], the process of implosion is
axially nonuniform. In the present paper, we do not
consider axial and azimuthal nonuniformities arising
during the implosion. Instead, based on measurements
of the electric parameters (current and voltage) of the
load, we study the space-integrated characteristics of
implosion, such as the load inductance, the average cur-
rent radius, and the start time of compression. It is
shown that, within the experimental errors, the com-
pression start times determined from optical and elec-
trical measurements are found to coincide with one
another. The time dependence of the average current
radius agrees well with that of the liner radius deter-
mined from the optical streak image of the transverse
cross section of the imploding plasma.
004 MAIK “Nauka/Interperiodica”
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In Section 2, a model of the wire array implosion is
presented that will be used in Section 3 to validate the
method for measuring the load inductance. In the sub-
sequent sections, the experimental setup, the methods
for testing the electric measurements of the load induc-
tance, and the results of experiments on the implosion
of wire arrays are described. The testing methods are
based on experiments with an incompressible metal
cylinder mimicking a cylindrical wire array and on the
analysis of how the currents flowing outside the liner
influence the measured inductance.

2. MODEL OF IMPLOSION

A few nanoseconds after the current starts to flow
through the load, the plasma is produced on the wire
surfaces and the current switches from the wires to the
plasma corona [13]. Hence, the plasma of an imploding
multiwire array consists of two phases: a hot plasma
(with a temperature of 20–30 eV [14]), through which
the main current flows, and relatively cold dense cores
inside the plasma, which are the residues of the
exploded wires. The plasma is then produced from the
wire material by the heat transferred from the hot cur-
rent-carrying plasma to the dense cores. Below, by the
term “plasma production,” we mean the production of a
high-conductivity plasma, rather than merely the ion-
ization process. This plasma conducts most of the gen-
erator current, and its ohmic resistance is lower than (or
comparable to) the effective resistance determined by
the varying inductance of the liner. The dense cores are
plasma sources that remain in their initial position for a
fairly long time, almost until their material is totally
converted into the hot plasma. The outer size of the wire
array does not change until this process is complete.

The current flowing through the plasma results in its
acceleration by the Ampére force toward the array axis.
When a portion of the plasma is shifted far enough
toward the array axis, a fresh plasma produced by the
heating and ionization of the core material comes to
take its place. As a result, a steady-state regime of the
continuous production of a fresh hot plasma and its
motion toward the system axis is established. In this
case, the plasma takes away the magnetic field frozen in
it. Thus, the radial flow of a hot plasma with the frozen-
in magnetic field is formed. Inside this flow, the electric
current flows parallel to the discharge axis. As was
noted in [9], more than half of the current can flow
through the plasma inside the array under similar con-
ditions. Due to the continuous production of a fresh
plasma, the remainder of the current flows along the
boundary layer located near the initial liner radius.
Such a quasi-steady character of plasma production, the
plasma acceleration toward the discharge axis, and the
confinement of one-half of the discharge current near
the initial radius of the array are observed as long as the
plasma-producing material can provide the required
production rate of the fresh hot plasma at the initial
radius of the array.
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The rate of plasma production is a crucial parameter
for the implosion of a heterogeneous liner. This rate is
determined by the combined action of Joule heating
and the heat transfer and plasma diffusion across the
magnetic field in the boundary layer. The internal struc-
ture of the boundary layer was considered in [9]. Its
thickness is governed by the plasma resistance and
thermal conductivity and determines the self-consistent
value of the plasma production rate . In [9], the fol-
lowing formula was derived for the production rate 
of a tungsten plasma from the unit surface of a cylindri-
cal liner with radius R when the current I flows through
the array:

 µg/(cm2 ns). (1)

The exponent µ by the current lies in the range 1.7–2.
The uncertainty in determining this exponent corre-
sponds to a factor on the order of 2–3. This is a conse-
quence of both the simplicity of the adopted formulas
for describing the plasma properties and the ignoring of
the initial azimuthal structure. A comparison of this for-
mula with experimental data is performed in [15].

It follows from formula (1) that the plasma produc-
tion rate increases nearly in proportion to the square of
the current. When the entire wire material is trans-
formed into a hot plasma, plasma production termi-
nates, so that nothing confines the current at the periph-
ery of the initial wire array and the second phase (liner
compression) begins. This scenario of the implosion of
a wire array is, of course, only a rough approximation.
One of the discrepancies between this model and an
actual situation lies in the fact that, as the dense cores
are depleted, they cannot provide the plasma produc-
tion rate required to contain almost half of the current
at the initial radius of the array. Thus, the outer liner
boundary begins to move toward the axis when the pro-
portionality between the plasma production rate and the
current squared breaks. Since this proportionality
breaks down gradually, the transition from the first to
the second phase occurs over a certain (quite long) time
interval, rather than instantaneously [15, 16]. The dura-
tion of this interval depends on many factors. In partic-
ular, the inhomogeneity of the local rate of plasma pro-
duction [14] or the nonuniformity of the mass distribu-
tion along the wires can lead to a situation in which, in
the places where the plasma production has finished,
the outer liner boundary begins to move toward the
axis, while in the places where the plasma production
still continues, the outer liner boundary stays at the ini-
tial liner radius.

After the start of compression, some portion of the
plasma-producing material in the form of drops and
small localized wire residues can remain at the periph-
ery of the initial wire array. We recall again that these
residues most probably consist of a dense, cold, low-
conductivity plasma. These residues of the plasma-pro-

ṁ
ṁ
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ducing material at the periphery of the initial wire array
do not prevent the implosion of the hot plasma and the
penetration of the current into the axial region of the
discharge.

2.1. Current Distribution inside a Liner 
in the Model of Implosion

To determine the profile of the current distribution
inside a liner, we performed 1D MHD simulations of
the implosion of a wire liner using the model concept of
prolonged plasma production.

The model used in these calculations is similar to
that described previously in [9] (see also [12, 14]). It is
based on the assumption that the azimuthal structure of
the plasma source, the plasma diffusion across the mag-
netic field, the Joule heating, and the heat transfer are of
minor importance in the narrow region adjacent to the
cylinder on which the cold products of the initial wire
explosion are situated. Hence, in the main body of the
radial plasma flow, we can average all the parameters
over the azimuthal angle and consider that the magnetic
field is frozen in the plasma and the plasma moves
under the action of the Ampére force only. The azi-
muthal structure of the flow would introduce only small
corrections because the ratio of the interwire distance to
the liner radius is small. The main difference between
the results of our calculations and those presented in [9]
is that we used current waveforms close to the experi-
mental ones and, for the rate of plasma production, we
employed formulas derived from magnetic probe mea-
surements inside an imploding liner [12, 14]1 (see for-

1  This problem will be considered in detail in a separate paper that
is being prepared for publication.
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Fig. 1. Profiles of the total current J(r) inside a cylinder of
radius r, normalized to the maximum current Jm through a
liner at the instants (1) 0.4tJ, (2) 0.9tJ, (3) 1.1tJ, and (4) 1.2tJ,
where tJ is the time at which the current reaches its maxi-
mum. The plasma production was terminated abruptly at the
instant 0.9tJ. Here, ∆J is the current in the boundary layer
and RL is the initial liner radius.
mula (1) and the explanations and refinements pre-
sented below). In such a situation, the complicated, azi-
muthally nonuniform process of plasma production
near the plasma source, which is excluded from consid-
eration in this model, is effectively taken into account
by using the plasma production rate obtained from the
experimental data. Another important feature of this
model is the boundary condition for the velocity of the
plasma leaving the source region in the case where the
velocity of the bulk of the plasma flow is higher than the
Alfvén velocity (see formula (35) in [9]). In the case at
hand, this velocity should be higher than or equal to the
local Alfvén velocity. In this paper, as in [9, 12, 14], the
coefficient in this boundary condition was assumed to
be equal to unity. This version of the boundary condi-
tion, which is usually called the Jouguet condition, was
derived for the case of a 1D flow in the plasma source
region [9]. In a more general case, the coefficient can be
slightly larger than unity. Special calculations per-
formed to check the effect of this assumption showed
that the value of this coefficient has no qualitative effect
on the final results of this section.

Let us consider simulation results for the case µ = 2
in formula (1). Figure 1 shows the radial distribution of
the total current inside a cylinder of radius r (which is
equal to RL at the initial liner radius) at the instants
0.4tJ, 0.9tJ, 1.1tJ, and 1.2tJ, where tJ is the time at which
the current reaches its maximum value. The plasma
production was terminated abruptly at 0.9tJ. The mass
of the wire liner was chosen such that the collapse in the
zero-dimensional model occurred at 1.2tJ. It can be
seen that the time interval during which the plasma is
produced (0.9tJ) is chosen to be comparable to the dura-
tion of the implosion process (1.2tJ). Such a relation
between the plasma production and liner implosion
times agrees with the experimental data. Note that a
significant portion of the current (42%) flows at the ini-
tial liner radius until the end of plasma production. The
reminder of the current (58%) is distributed inside the
initial liner radius.

Let us estimate how the internal liner inductance
varies during the first phase. This inductance is caused
by the magnetic flux concentrated inside the cylinder of
radius RL (the initial liner radius). By the end of plasma
production, the radial distribution of the total current
inside the cylinder of radius r (shown in Fig. 1) can be
roughly approximated as ~(r/RL)α, where α ≅  3.5. For
early times, α is greater. It can be shown that the induc-
tance per unit length caused by the magnetic flux inside
the cylinder is equal to 2/α nH/cm. For α = 3.5, it is
equal to 0.57 nH/cm. Taking into consideration that
only 58% of the current flows inside a cylinder of radius
RL, the contribution of this current to the inductance per
unit length is ~0.33 nH/cm. A comparison of this value
to the increase in the inductance per unit length in the
second phase of implosion in the case of tenfold com-
pression (4.6 nH/cm) shows that, during the first phase,
the liner inductance increases only slightly (by 7%). In
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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what follows, we will assume that the liner inductance
is constant. In our opinion, the fact that the load induc-
tance increases only slightly (by no more than ~10%)
during the first phase is not related to the assumptions
made in the model used.

3. VALIDATION OF THE METHOD
FOR MEASURING THE INDUCTANCE

In physics and engineering, resistance and per-
veance are used as load characteristics when examining
the operation of electron and ion diodes connected to a
generator. Their values can be calculated from the
experimentally measured waveforms of the current and
voltage. In the case of a wire array implosion, such a
characteristic is the liner inductance, which can be used
to describe the implosion dynamics and the efficiency
of energy transfer. The value and time dependence of
the liner inductance can also be calculated from the
experimentally measured waveforms of the current and
voltage under certain assumptions. The results from
studies of the interaction of a single generator module
in the Angara-5-1 facility under a load and the determi-
nation of the load inductance from the measured cur-
rent and voltage were presented in [17].

Let us consider the procedure for measuring the load
inductance L(t) in more detail.

The voltage U(t) in a circuit with a variable induc-
tance L(t) is equal to the sum of the inductive and reac-
tive components of the voltage:

U = d(LJ)/dt + RJ, (2)

where J(t) and R(t) are the time-dependent load current
and load resistance, respectively.

It is evident that, L(t) and R(t) cannot be found
simultaneously from this equation by using the mea-
sured values of the current and voltage without addi-
tional assumptions.

From independent measurements of the electric
field strength on the liner axis, it is known that, in both
hollow gas puffs [18] and wire liners [13, 14], 10–15 ns
after the start of the current, the resistive component of
the voltage measured directly between the anode and
cathode on the axis of a hollow cylinder becomes
smaller (by a factor of less than 0.1) than the inductive
component. Assuming that the contribution of the resis-
tive component is small, we can find the inductance as
a function of time:

, (3)

where C is the constant of integration. Henceforth, in
contrast to the inductance calculated from the load
dimensions, the inductance found from formula (3) will
be referred to as the measured inductance.

L t( )

U τ( ) τd

t0

t

∫ C+

J t( )
-------------------------------=
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Note that the integration constant cannot be set at
zero (even though at the instant t0, at which the current
starts, we have J(t0) = 0 and U(t0) = 0), because, over the
first 10–15 ns after the current begins to flow through
the liner, the resistive component of the voltage cannot
be ignored and equation (3) does not apply for this time
interval.

For times close to t0, when the current and voltage
are still low and the relative measurement errors are
large, the error in measuring the inductance is large.
Taking into consideration the above factors, we believe
that, under our experimental conditions, the inductance
can be reliably determined 15–20 ns after the beginning
of the current pulse.

The ratio U/(dJ/dt) is not equal to the inductance but
is also measured in H. This quantity is suitable for con-
sidering the electric aspects of implosion because, as
will be shown below, the ratio U/(dJ/dt) is more sensi-
tive to variations in the electric parameters in compari-
son to L(t).

When it is known a priori that, within a certain time
interval, L(t) = const (or changes slightly), this fact can
be used to find the integration constant. If dL(t)/dt = 0
at some instant, then the measured inductance at this
instant is equal to U/(dJ/dt). From here we can find the
integration constant. The obtained value of the integra-
tion constant will be true throughout the entire time
interval under study, including the intervals in which
the inductance L(t) varies rapidly (provided that the
resistive component of the voltage can be ignored).

Note that, when a heavy incompressible metal cyl-
inder is used as a load, the measured inductance should
not change while the generator current is flowing
through this cylinder and should be equal to the calcu-
lated inductance.

In the above formulas, the inductance L corresponds
to the magnetic flux LJ contained between the radius at
which the voltage is measured and the liner axis. Let us
divide the measured inductance L into two inductances
Lconst and Lvar that correspond to two fluxes, the first of
which is contained between the radius at which the
voltage is measured and the initial liner radius RL, while
the latter is contained between the initial liner radius
and the liner axis. Before the current-carrying plasma
begins to expand inward, we have Lvar = 0. During the
liner implosion, the inductance Lconst remains
unchanged (if we ignore the motion of the electrode
plasma and the low-probability ejection of the liner
plasma beyond RL), while the inductance Lvar should
increase. Knowing the inductance Lvar, we can find the
average current radius r from the formula

Lvar = 2hln(RL/r) nH,

where h [cm] is the liner height. This formula is, in
essence, the definition of the average current radius r.
The average current radius is a convenient parameter
describing the localization of the current and its pene-
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tration into the volume of the initial wire array. During
the liner implosion, this parameter should decrease. By
analogy with an ordinary contracting cylinder, we can
introduce a compression factor in terms of the average
current radius: Âı[Lvar/(2h)]. A comparison of the time
evolution of the average current radius r (which was
derived from the measured values of the current and
voltage) to the optical streak images of the transverse
cross section of the liner is presented in the following
sections.

4. EXPERIMENT

The experiments were performed in the Angara-5-1
facility, which consists of eight modules connected in
parallel to the load [19]. Figure 2 shows a schematic of
the experiment.

As a load, we used cylindrical tungsten wire arrays
with a height of 1 cm and diameters of 20, 12, and
8 mm. In some cases, we used nested cylindrical arrays,
the diameters of the outer and inner arrays being 12 and
6 mm, respectively. The wire diameter varied from 5 to
10 µm, and the total number of wires in a cylindrical
array varied from 16 to 120, the interwire spacing being
0.1–1 mm. Sometimes, we placed a 1.5-mm-diameter
agar-agar cylinder on the array axis.

In some experiments, when testing the method, a
model load was connected to the generator output
instead of a wire array. This load was a heavy metal cyl-
inder with known dimensions.

The time derivative of the current flowing through
the liner dJ/dt was measured with eight loops (Fig. 2,
item 5) placed on the side of each module at a radius of
55 mm from the array axis. The loop signals were aver-
aged over eight modules. The total current J inside the
radius 55 mm was calculated by numerically integrat-
ing the averaged current derivative. The time resolution
of the method was no worse than 1 ns.

The voltage U between the anode and cathode of the
generator was measured with an inductive divider [20]
at a radius of 60 mm, at the point where the currents of

1

2

3

45

1

Fig. 2. Schematic of the output unit of the Angara-5-1 facil-
ity: (1) anode, (2) cathode, (3) load (an incompressible cyl-
inder or a wire liner), (4) point at which the voltage is mea-
sured, and (5) current detector.
the individual modules merged (Fig. 2, item 4). The
point at which the voltage was measured by the induc-
tive divider coincides with the separatrix surface, which
separates the family of magnetic field lines that envelop
the axis of the cylindrical load from the eight families
of magnetic field lines enveloping each of the eight
cathodes of the modules’ transmission lines. Conse-
quently, in the above formulas, the voltage U is the volt-
age on the separatrix and the magnetic flux LJ is the
magnetic flux contained between the separatrix and the
liner axis. The time resolution of the inductive divider
is 2 ns.

In the experiments, the waveforms of the X-ray
emission generated during the implosion of a multiwire
array were recorded with the help of vacuum X-ray
diodes with different filters. To monitor variations in
the outer liner radius during implosion, we recorded an
optical image of the liner cross section perpendicular to
the liner axis.

The above pulsed electric signals characterizing the
process of liner implosion were recorded with the help
of TLS216, SRG5, and SRG7 oscilloscopes with upper
frequencies of 500 MHz, 1500 MHz, and 7 GHz,
respectively. The length of the cable connecting the
detector and recorder was 10–15 m. RK-75-9-35, RK-
75-9-12, RK-75-17-31, and RK-50-17-51 commercial
cables were used. The testing of the cable lines showed
that the transmission coefficient of a 15-m-long RK-75-
9-35 cable at a frequency of 1400 MHz was no worse
than 0.9. For RK-50-17-51 cables of length 10 m, the
attenuation at a frequency of 3 GHz was 1.8 dB.

5. EXPERIMENTAL RESULTS

5.1. Testing the Method

The voltage detector was sensitive enough to study
the implosion dynamics and to measure an increase in
the voltage during the liner implosion (although the
voltage was measured far from the liner, at a radius of
60 mm). Figure 3 compares the signals of the current
time derivative dJ/dt and voltage U at the separatrix for
two different loads: (a) a heavy incompressible metal
cylinder with an inductance at the separatrix of 4 nH
and (b) a wire array (sixteen 6-µm tungsten wires) with
a diameter of 20 mm and an initial inductance of
4.9 nH. It can be seen that, in the case of an incompress-
ible cylinder, these signals are almost proportional to
one another throughout the voltage pulse, as is expected
for current flowing in a circuit of fixed geometry. For an
imploding wire liner, the signals are also almost pro-
portional to one another in the initial stage; the charac-
ter and rate of their variations then differ radically. The
current through the liner decreases, which is seen from
the change of the sign of the current derivative dJ/dt,
while the voltage U increases substantially. This effect
is related to the fact that the load impedance increases
substantially because the shape and dimensions of the
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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Fig. 3. Comparison of the signals of (1) the current time derivative dJ/dt and (2) the voltage at the separatrix for two different loads:
(a) a heavy incompressible metal cylinder (the inductance at the separatrix is 4 nH) and (b) a multiwire liner (the inductance at the
separatrix is 4.9 nH).
liner are strongly modified at the instant of maximum
compression.

A suitable model load for testing the method is a
heavy incompressible metal cylinder, because its induc-
tance can easily be calculated. From the U and dJ/dt
signals, we calculated the inductance L(t). Figure 4
shows time dependences of the current and inductance
for three experiments with a calculated inductance of
3.8 nH.

A common feature of the experiments with heavy
metal cylinders is that the measured inductance some-
what decreases during the current pulse. This effect
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
could be related to the plasma production on the elec-
trode surface and its subsequent expansion. From the
rate at which the measured inductance decreases, we
can estimate the velocity with which the current layer
moves from the electrodes. This velocity turns out to be
~106 cm/s.

5.2. Implosion of Wire Liners

In the experiments on the implosion of wire arrays,
we measured the voltage U(t) at the separatrix, the cur-
rent time derivative dJ/dt, and the SXR power PSXR, and
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Fig. 4. Waveforms of the current J and measured inductance L for three shots with a calculated inductance of 3.8 nH.
recorded the optical streak images of the transverse
cross section of an imploding liner. From the U(t) and
dJ/dt signals, we calculated the time dependences of the
liner inductance L(t) and the ratio U/(dJ/dt). Figure 5
shows typical waveforms of the voltage U, current J,
the current time derivative dJ/dt, the SXR power PSXR,
the liner load inductance L, and the ratio U/(dJ/dt). The
optical streak image (synchronized with the above
curves) of the transverse cross section of a 12-mm-
diameter imploding wire array consisting of sixty 6-µm
tungsten wires is also shown; the initial liner induc-
tance at the separatrix is 5.9 nH.

In the time dependences of U/(dJ/dt) and L, we can
distinguish two phases: a quasi-steady phase and a fast
increase 25–35 ns before the instant of maximum com-
pression. The transition from the first phase to the sec-
ond is clearly seen in the time behavior of the ratio
U/(dJ/dt) (marked with a circle). In the waveform of the
inductance L, the transition is somewhat smoother, due
to the integral character of the inductance. In Fig. 5,
there are two vertical lines: the left line indicates the
transition from the first to the second phase, while the
right line indicates the instant at which the SXR power
is maximum.

During the first phase, in which U/(dJ/dt) and L(t)
change only slightly, the current-carrying plasma that is
produced from the wire material under the action of the
increasing current fills the internal volume of the wire
array.

The second phase is characterized by the efficient
compression of the plasma under the action of the dis-
charge current. As the liner radius decreases, the load
inductance increases.

A comparison of the time behavior of the ratio
U/(dJ/dt) with the dynamics of the outer liner boundary
seen on the streak image shows that the instant at which
U/(dJ/dt) begins to grow coincides with the instant at
which the visible radius of the liner begins to decrease.
The time after which the plasma glow disappears in the
vicinity of the initial radius of the wire array will here-
after be referred to as the experimentally measured (by
two independent methods) start time of the compres-
sion.

5.2.1. Geometric parameters of the liner. The
measured inductance L(t), which remains almost con-
stant during the first phase, agrees with the calculated
inductance of the initial wire array. Figure 6 compares
the measured and calculated inductances. The calcu-
lated inductance is plotted on the abscissa, and the cor-
responding measured average value of U/(dJ/dt) during
the first phase is plotted on the ordinate. It can be seen
that this average value coincides well with the calcu-
lated inductance. There are some factors that can dis-
turb this coincidence:

(i) the expansion of the current channel at the begin-
ning of the current pulse, when the plasma produced on
the wire surface begins to expand;

(ii) the filling of the liner cavity with a current-car-
rying plasma during the implosion;

(iii) the current leakage near the separatrix;
(iv) the nonuniform distribution of the current in the

liner unit; and
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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Fig. 5. Waveforms of the voltage U, current J, current time derivative dJ/dt, SXR power P, inductance L, and ratio U/(dJ/dt) and the
synchronized optical streak image of the transverse cross section of an imploding wire array (sixty 6-µm tungsten wires) with a
diameter of 12 mm and an initial inductance at the separatrix of 5.9 nH.
(v) the expansion of the plasma layers produced at
the current-carrying electrodes.

Let us consider these factors in more detail:
(i) It should be noted that the inductance of a multi-

wire array depends weakly on the number of wires and
their diameter and is approximately equal to the induc-
tance of a hollow cylinder with an outer radius equal to
the array radius. Under our experimental conditions, as
the current channel expands from 6 µm up to 100 µm,
the inductance decreases by less than 0.2 nH/cm (by
less than 5% of the inductance of the initial wire array).
This fact allows us to ignore the expansion of the cur-
rent channel.

(ii) At first glance, the gradual filling of the liner
cavity with a current-carrying plasma during the first
phase should lead to an increase in U/(dJ/dt) and L(t).
However, as was noted in Section 2, this increase
(~0.33 nH/cm) is rather small (~7% of the initial induc-
tance of the array).

(iii) A more detailed analysis (see Fig. 6) shows that,
as the load inductance increases, the measured induc-
tance becomes smaller than the calculated one. This is
probably due to the fact that, as the load inductance
increases, the voltage at the separatrix increases too,
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
which leads to an increase in the electron-current leak-
age near the load. The minimum value of the magnetic
self-insulation current [21] (526 kA at a voltage of
2 MV and diameters of the coaxial vacuum transport
line of 132 and 120 mm) required to suppress the elec-
tron-current leakage at a radius of 60 mm is much
smaller than the measured current (2–5 MA); therefore
the leakage should be suppressed. However, there are
always regions on the separatrix surface where the
magnetic field is zero and the self-insulation condition
fails to hold. The difference between the calculated and
measured inductances at large values of the latter is
associated with an increase in the current leakage due
to an increase in the voltage at the separatrix at large
load inductances.

(iv) A substantial current loss resulting in the differ-
ence between the measured and calculated inductances
can also be related to the asynchronous operation of the
eight modules of the Angara-5-1 facility. Figure 7
shows the effect of the asynchronous operation of the
modules on the time behavior of the ratio U/(dJ/dt) for
an incompressible cylindrical load with a calculated
inductance of 3.4 nH. The shape, start time, and dura-
tion of the current pulse are the same as in Figs. 3, 4,
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and 5. In the case of the simultaneous operation of the
modules (the scatter in the switching times is smaller
than 10 ns; see Fig. 7a), the current loss is small and the
ratio U/(dJ/dt) is almost constant and coincides with the
calculated inductance. When the scatter in the switch-
ing times is larger than 50 ns, the current loss is large
and the ratio U/(dJ/dt) varies substantially over time
(Fig. 7b). Since the ratio U/(dJ/dt) depends only on the
current distribution inside the separatrix, significant
variations in this ratio may be an indication that the cur-
rent distribution varies substantially inside the separa-
trix. In this case, the shape of the separatrix changes in
an uncontrolled way, though it is localized, as before,
near the point where the currents of the individual mod-
ules merge. The experimental results allow us to con-
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Fig. 6. Comparison of the measured inductance Lmeas dur-
ing the first phase to the calculated inductance of the initial
wire array Lcal.
clude that only the current losses at the separatrix and
inside it have any effect on the ratio U/(dJ/dt).

(v) A decrease in the inductance may be caused by
the drift of the current-carrying plasma layer away from
the electrodes. As is seen from Fig. 4, this decrease can
be as large as 1 nH.

It should be noted that Fig. 6 shows the results of the
shots in which both the scatter in the parameters and the
current loss were small. For these shots, the ratio
U/(dJ/dt) during the first phase of implosion changes
only slightly. In some shots, we observed a small
increase (see Fig. 5) or decrease in this ratio during the
first phase. The increase could be caused by the pene-
tration of the current into the liner cavity during the
implosion (see item (ii)). The decrease could be related
to the displacement of the current-carrying plasma
layer away from the electrodes (as was described in
Section 5.1) and to the expansion of the current channel
at the beginning of the current pulse (see item (i)). The
resulting effect depends on which effect is predomi-
nant.

Thus, the calculated and measured inductances
coincide well in the first phase of the implosion. This
fact, first, testifies to the validity of the proposed
method for measuring the inductance during the liner
implosion. Second, it was confirmed experimentally
that, during the first phase, the load inductance changes
only slightly, which agrees with the concept of the pro-
longed plasma production during the implosion of a
wire array.

5.2.2. Second phase. As was noted above, the sec-
ond phase is characterized by efficient plasma compres-
sion. The measured inductance increases, which indi-
cates that the average current radius decreases. From
the measured value of the inductance, we can calculate
the average current radius r, as was discussed above.
Figure 8 illustrates the time dependence of the average
8

6

4

2

0

U/(dJ/dt), nH

(a) (b)

760 780 800 820 t, ns 760 780 800 820 t, ns

Fig. 7. Effect of the scatter in the operating times of the modules on the ratio of the voltage to the current time derivative U/(dJ/dt)
for (a) five shots with small current losses (the scatter in the operating times is smaller than 10 ns) and (b) four shots with large
current losses (the scatter in the operating time is larger than 50 ns). The load is an incompressible cylinder with a calculated induc-
tance of 3.4 nH.

U/(dJ/dt), nH
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current radius r superimposed on the optical streak
image of the transverse cross section of the liner. The
average radius is calculated from the dependence L(t)
deduced from the simultaneous measurements of the
voltage and the current time derivative. It can be seen
that the average current radius is close to the outer vis-
ible boundary of the liner. However, the compression
ratio in terms of the average current radius is somewhat
lower than that determined from the streak image. The
reasons for this difference will be analyzed below.

5.2.3. Nested array. In this experiment, we used
nested cylindrical arrays. The diameters of the outer
and inner arrays, each of which consisted of 40 tung-
sten wires, were 12 and 6 mm, respectively. The wire
diameter was 5 µm for the outer array, while it was
8 µm for the inner array. A 1.5-mm-diameter agar-agar
cylinder was placed on the array axis.

As in the experiments with ordinary wire arrays, we
calculated the inductance and the ratio U/(dJ/dt) from
the measured waveforms of the current time derivative
dJ/dt and voltage U(t) at the separatrix. In the time
dependences of U/(dJ/dt) and L, as with ordinary
arrays, two phases can be distinguished: the initial
quasi-steady phase and the subsequent rapid increase.
The time behavior of the U/(dJ/dt) and L in the quasi-
steady phase is almost the same as in the case of ordi-
nary wire arrays, which were discussed above. This is
natural because, during the first phase, the plasma is
produced at the outer radius of the array, most of the
current is localized at the outer radius and near it, and
the inductance varies only slightly.

As the plasma production rate in the outer array
decreases, the implosion of its material begins. In this
case, the average current radius decreases too. The
implosion process is clearly seen in the optical streak
image of the transverse cross section of the liner (on the
bottom of Fig. 9). When the bulk of the material of the
outer array reaches the inner array, the implosion rate of
the outer-array plasma sharply decreases.

After this, the process of plasma production in the
inner array rapidly terminates. This is because, from the
very beginning of the process, a small portion of the
current (~5–10% [22]) penetrates into the outer array.
This current and the SXR emission from the outer array
ionize and heat the material of the inner array over a rel-
atively long time (~100 ns). For the given shot, the
simultaneous compression of the plasma of the outer
and inner arrays begins ~20 ns after the beginning of
the compression of the outer array.

From the measured inductance, we calculated the
average current radius and, thus, the rate at which this
radius varies. Figure 9 shows typical time dependences
of the rate of change of the average current radius, the
signal from the SXR detector, and the synchronized
optical streak image of the transverse cross section of
an imploding liner. The left vertical line indicates the
start time of the compression of the outer array. The
middle line indicates the instant at which the visible
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
radii of the outer and inner arrays coincide; this instant
corresponds to a local maximum in the rate of change
of the average current radius. The right line indicates
the instant at which the SXR power is maximum; this
instant coincides with the instant at which the rate of
change of the average current radius reaches its maxi-
mum value.

It is clearly seen that, after the instant at which the
visible radii of the outer and inner arrays coincide, the
rate of change of the average current radius decreases
by nearly a factor of 2 over a time of 10 ns. The energy
released during the interaction of the plasmas of the
outer and inner arrays is radiated in the form of SXR
emission. This follows from an increase in the signal
from the SXR detector at this instant.

As the implosion progresses, the leading front of the
SXR pulse is delayed by nearly 7 ns with respect to the
waveform of the rate of change of the average current
radius. On the other hand, the instant at which the rate
of change of the average current radius reaches its max-
imum coincides with the peak of the SXR pulse. This
indicates that the plasma kinetic energy accumulated
during the implosion is radiated in the form of SXR
emission. After the instant of maximum compression,
the plasma expansion is clearly seen both in the streak
image and in the waveform of the rate of change of the
average current radius.

All this shows that the method for determining the
load inductance, the average current radius, and the rate
of change of this radius can be used to study fine details
of the implosion. The absolute values of the rate of
change of the average current radius and the compres-
sion ratio in terms of this radius are lower than those
derived from streak images, as is the case of ordinary
wire arrays. Reasons for this discrepancy are analyzed
in the following section.
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Fig. 8. Time dependence of the average current radius
(derived from the measured current and voltage) superim-
posed on the optical streak image of the transverse cross
section of the liner. The start time of the current is 730 ns.
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Fig. 9. Implosion of a nested wire array: (1) time dependence of the rate of change of the average current radius V, (2) SXR power
P, and the synchronized optical streak image of the transverse cross section of an imploding liner. Vertical lines 1, 2, and 3 mark the
beginning of the implosion of the outer array, the instant at which the visible radii of the outer and inner arrays coincide, and the
instant corresponding to the maximum SXR power (which coincides with the instant at which the rate of change of the average
current radius reaches its maximum), respectively.
5.2.4. Implosion dynamics and the compression
ratio in terms of the average radius of the current
distribution. An analysis of the time behavior of the
measured inductance reveals two unexpected features.
First, the measured inductance continues to increase
after the instant at which the SXR power reaches its
maximum (see Fig. 5). Second, the increase in the mea-
sured inductance is as small as 3–3.5 nH, which corre-
sponds to a compression ratio in terms of the average
current radius of 5–6 and to the relatively low rate at
which this radius decreases. Note that the typical com-
pression ratio derived from pinhole-camera images in
the Angara-5-1 facility is as high as 10–30 [23].

The reason for these features is that the plasma pro-
duction at the periphery of the initial wire array still
continues by the instant of maximum compression. By
this instant, most of the plasma-producing material has
already transformed into plasma and has been shifted
toward the axis together with the magnetic field frozen
in it. However, some amount of the plasma-producing
material can remain at the periphery of the initial wire
array. A high-conductivity plasma still continues to be
produced from these small localized remainders of the
plasma-producing material. An estimate of the plasma
mass located at the periphery at the instant of maximum
compression is given in [24]. A fraction of the generator
current continues to flow through a fresh plasma pro-
duced at a large radius; this leads to the acceleration of
plasma toward the axis. Note that this process results in
the generation of additional SXR bursts after the instant
of maximum SXR power; this is related to the repeated
implosions of the plasma located at a large radius. The
implosion of this current-carrying plasma leads to a fur-
ther increase in the inductance.

Thus, an increase in the inductance after the instant
of maximum SXR power is explained by the continuing
implosion of the plasma remaining at the periphery of
the initial wire array. This also explains the low value of
the compression ratio in terms the average current
radius. Since some fraction of the current continues to
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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flow at the periphery of the initial wire array, the aver-
age current radius cannot be very small; hence, the
compression ratio in terms of the average current radius
cannot be high.

6. COMPARISON WITH THE RESULTS 
OF NUMERICAL SIMULATIONS

We performed 1D MHD simulations of the liner
implosion with allowance for prolonged plasma pro-
duction. The current waveform used in simulations cor-
responded to that measured in one of the shots. The
plasma production rate was calculated by formula (1)
up to a certain instant, after which this rate decreased
exponentially. The simulations were performed for two
cases: the fast switching-off of plasma production (with
a fall time constant of 4 ns) and the slow switching-off
of plasma production (with a fall time constant of
16 ns).

Figure 10 compares the results of these two simula-
tions and the experiment. The figure shows time depen-
dences of the calculated and measured inductances and
the ratio U/(dJ/dt). The waveforms of the current
through the liner (which are the same for the simula-
tions and the experiment), the calculated plasma pro-
duction rate dm/dt, and the measured signal from the
SXR detector are also shown. Figures 10a and 10b
show the simulation results for the fast and slow switch-
ing-off of plasma production, respectively (see the time
dependence of dm/dt), while Fig. 10c shows the exper-
imental results.

It can be seen from Fig. 10a that a sharp increase in
U/(dJ/dt) appears when the plasma production rate is
no longer proportional to the current squared. In this
case, the remaining plasma-producing material at the
initial radius of the wire array is insufficient to produce
hot plasma in large amounts.

A comparison of the simulation results for the cases
of the fast and slow switching-off of plasma production
shows that the increase in the inductance is smaller for
the latter case. As was noted above, this is explained by
the fact that some fraction of the current continues to
flow at the periphery of the initial wire array over a rel-
atively long time. This means that the average current
radius cannot be very small and, accordingly, the
increase in the inductance cannot be large; therefore,
the compression ratio in terms of the average current
radius cannot be high.

Figure 11 shows the results of the same simulations
in the form of a contour plot of the plasma density on
the (r, t) plane. One can clearly see a sharp break in the
outer liner boundary (marked by the arrow). This break
can also be seen in the streak image of the transverse
cross section of the liner (see Figs. 5, 8). A similar
effect was also observed in experiments on the implo-
sion of wire liners in the MAGPIE facility [25]. The
presence of such breaks in both the measured time
dependences and the results of MHD simulations indi-
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
cates that the motion of the outer plasma boundary
begins immediately after the plasma production rate
starts to decrease at the periphery of the initial wire
array.
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Fig. 11. Result of 1D MHD simulations of the implosion of a tungsten liner with allowance for prolonged plasma production: the
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The point of the sharp break in the outer liner boundary is indicated by the arrow.
Obviously, 1D simulations fail to provide an ade-
quate description of all the processes occurring in an
imploding liner. Thus, the model does not take into
account the effects related to the onset of instabilities
and the difference in the rates of plasma production in
the neighboring wires, as well as the axial nonunifor-
mity of plasma production [8]. Nevertheless, some
important features of the implosion dynamics can be
described in a 1D model. The simulations demonstrate
that the same break in the time dependence of the outer
boundary of the liner is present in the optical streak
images of the transverse cross section of the liner. The
simulations also reproduce exactly the behavior of the
measured time dependences of U/(dJ/dt) and L(t),
namely,

(i) these curves have flat segments corresponding to
the first phase of a discharge, and

(ii) after the plasma production rate begins to
decrease, a sharp increase in U/(dJ/dt) and a smooth
increase in L(t) are observed, which corresponds to the
second phase of a discharge.

7. CONCLUSIONS

The experiments performed have demonstrated that
the proposed method for determining the load induc-
tance during the implosion of a wire array can be imple-
mented in practice. The method, which is based on
measurements of the current and voltage during the
implosion of a wire liner, makes it possible to deter-
mine the time behavior of the liner inductance. The
time dependences of both U/(dJ/dt) and L include two
phases: an initial quasi-steady phase and a fast increase
(over 20–35 s) before the instant of maximum compres-
sion. The same phases can be distinguished in analyz-
ing the optical streak images of the transverse cross sec-
tion of the liner. The transition between these phases
corresponds to the instant at which the rate of plasma
production begins to decrease.

The measured inductance in the quasi-steady phase
corresponds to the inductance of a cylinder having the
same diameter as the liner. This testifies to the validity
of the method. Certain differences observed at large
inductances can be explained by an increase in the elec-
tron-current leakage in this regime.

The compression start time determined from the vis-
ible liner size was found to coincide with that deter-
mined from electric measurements.

The average current radius, the rate of its change,
and the compression ratio in terms of this radius were
determined from the measured load inductance. The
rate of change of the average current radius and the
compression ratio turned out to be lower than those
determined by other methods. This discrepancy is
explained by the fact that a fraction of the current flows
at the periphery of the initial wire array at the instant of
maximum compression. As a result, the average current
radius is larger than the visible radius in the optical or
X-ray spectral region. The radiation yield can probably
be increased by decreasing the current flowing at the
liner periphery at the instant of maximum compression.
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Abstract—Observations of ordered-structure electron beams generated by high-voltage nanosecond dis-
charges in relatively dense (0.04–1 torr) molecular gases at high overvoltages are reported. The beams of accel-
erated ions generated by high-voltage nanosecond discharges are found to exhibit the same ordered structure.
The observed structure of ion beams casts doubt on the mechanisms for the formation of a striped electron-beam
structure that assume a regular ecton distribution. Parameters characterizing the temporal behavior of the accel-
erated electron and ion beams are measured. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-voltage nanosecond discharges in dense gases
at high overvoltages are accompanied by the generation
of intense beams of runaway electrons [1]. High-volt-
age nanosecond discharges in deuterium at pressures of
0.01–5 torr generate nanosecond neutron pulses in a tri-
tium-containing target placed at the cathode [2, 3]. The
maximum neutron yield of 106 neutrons per pulse was
measured at a deuterium pressure of P = 0.3 torr [3].

The generation of neutrons testifies that the D+ and 
deuterium ions are accelerated to energies that ensure a
rather high efficiency of nuclear fusion reactions in the
target. For example, the maximum cross section for the
reaction 1H3 (1d2, 0n1) 2He4 is reached at a neutron
energy of 109 keV. Since the dependence of the neutron
yield on the deuterium pressure has a pronounced max-
imum, one can conclude that the generation of acceler-
ated ion beams is a gas-discharge effect [2]. Nuclear
fusion reaction is a process of the second order of
smallness relative to the generation of a gaseous plasma
and the acceleration of ions. Hence, ion acceleration to
much lower energies at which fusion is inefficient
should take place at much higher pressures [2].

In [4, 5], a complicated spatial structure of electron
beams generated by high-voltage nanosecond dis-
charges at high vacuum was observed. The beam pat-
terns produced by high-energy electrons behind the
anode formed a system of ordered stripes. This indi-
cates that self-organization processes play an important
role in beam formation. The regular structure of beams
was attributed either to the formation of an ordered dis-
tribution of the explosive centers of electron emission
(ectons [6]) at the cathode as a result of the Rayleigh–
Taylor instability of the explosive plasma layer on the
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+
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cathode surface [4] or to the suppression of emission in
the vicinity of an existing ecton [5].

In the present study, the same ordered structure was
observed for electron beams generated by high-voltage
nanosecond discharges in relatively dense gases at high
overvoltages. The accelerated ion beams generated by
high-voltage nanosecond discharges in dense gases
were directly observed for the first time. The patterns of
these beams exhibit the same characteristic ordered
structure. Studies of the transverse structure of ion
beams in a discharge provide information about the dis-
tribution of their density on the tritium target. This
information is needed to efficiently use the target; it
also allows one to identify the mechanism for the for-
mation of ion beams. The parameters characterizing the
time behavior of discharges are measured.

2. MEASUREMENT RESULTS 
AND DISCUSSION

We studied discharges in deuterium and air. The dis-
charges were excited in a diode in which the high-volt-
age electrode was a 7-mm-diameter cylinder made of
50-µm tantalum foil. The cylinder was perpendicular to
a plane grounded electrode. The interelectrode distance
d was varied from 2 to 9 mm. Voltage pulses with an
amplitude of about 800 kV, a rise time of 1 ns, and a full
duration of 30 ns were applied to the diode. The high-
voltage source was the high-voltage unit of the MIN-1
accelerator with a sharpening switch [3]. The stored
energy was 10 J. At pressures P = 0.05–0.5 torr, the
amplitude of the voltage pulses at the diode attained
800–400 kV; this corresponded to high overvoltages,
because in the range of the gas-discharge parameter Pd
under study, the static breakdown voltage was no higher
than 20 kV. In the high-voltage phase of the gas dis-
004 MAIK “Nauka/Interperiodica”
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charge, current pulses with an amplitude of 2–4 kA, a
rise time of ~1.0 ns, and a full duration of 15–20 ns
passed through the diode. As the gas pressure
increased, the current amplitude increased, whereas the
duration of the current and voltage pulses decreased. At
pressures above 0.5 torr, we observed an oscillatory
mode with damping current oscillations. This indicates
the development of breakdown, i.e., the formation of a
high-conductivity plasma channel. In this mode, the
neutron yield of discharges in deuterium with a tritium-
containing cathode sharply decreased.

Gas discharges operating at high overvoltages are
characterized by a high ionization rate. To measure the
delay time of the gas-discharge current pulse relative to
the voltage pulse, the current and voltage signals were
fed to the input of an oscilloscope through cables of dif-
ferent length. The time delay was measured using the
same reference signal for both cables. As a reference
signal, we used the voltage pulse at the diode. When the
deuterium pressure was 0.3 torr, the delay time of the
current maximum with respect to the voltage maximum
in the neutron-generation mode was ~1.0 ns. The cur-
rent rise time was ~1.0 ns. Thus, as early as 2 ns after
the beginning of the voltage pulse, the kiloampere cur-
rent flowed through the diode. According to these data,
the velocity of the ionization wave in the discharge gap
can be estimated from below as 108 cm/s.

The generation of neutrons by a high-voltage nano-
second discharge in deuterium is accompanied by an
intense X-ray burst generated in the anode due to the
deceleration of runaway electrons accelerated in the
discharge gap. To determine the time delay of neutron
generation relative to the onset of the X-ray burst, both
the neutron and X-ray pulses were recorded using the
same detector—a CNFT-3 photomultiplier. The use of
a POPOP scintillator 170 mm in diameter and 60 mm
in height allowed us to enhance the detector sensitivity
and perform measurements with the use of an SRG-6
oscilloscope at path lengths of 112 and 227 cm. Signals
from X-ray (γ) and neutron (n) pulses were separated in
time because of the different velocities of X-ray pho-
tons (vγ = c = 3 × 1010 cm/s) and neutrons (v n = 5.2 ×
109 cm/s) arriving at the detector. Figure 1 shows oscil-
loscope traces of the X-ray and neutron pulses recorded
at two path lengths. The processing of 20 oscilloscope
traces shows that there is a time delay between the
onsets of the X-ray and DT neutron pulses; it turned out
that the time interval between the γ and n signals did not
agree with the transit time calculated under the assump-
tion that neutrons and photons were generated simulta-
neously. The beginning of the neutron pulse was
delayed from the X-ray pulse by 2–3 ns. Such a delay
may be related to the time required for deuterium ions
to pass through the interelectrode gap.

The electron and ion beams were recorded using a
TsVID-0.1-1 dosimetric film with a mass thickness of
10 mg/cm2.
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
To study the structure of electron beams, the film
was placed behind a plane grounded anode made of a
15-µm aluminum foil. A high-voltage pulse was
applied to the cylindrical foil cathode. Figure 2 shows
one-shot patterns of the electron beam generated by a
discharge at a deuterium pressure of P = 0.3 torr and an
interelectrode distance of d = 2.5 mm. A package of
four films was placed behind the anode. As the beam
propagated through the films, it was partially absorbed,
so that each subsequent film recorded beam electrons of
higher energies. The filtering by the films revealed a
fine space–energy beam structure that was sharply non-
uniform. We observed stripes perpendicular to the edge
of the cylindrical cathode and converging to its center,
where the beam density was so high that the film was
locally fused. With weak filtering, the pattern diameter
was nearly twice as large as the cathode diameter. The
beam structure was most clearly seen in the fourth film
after the low-energy electrons had been filtered by the
previous films. The low-energy electrons were subject

nγ

Fig. 1. Oscilloscope traces of X-ray (γ) and neutron (n)
pulses at path lengths of 112 (on the top) and 227 cm. Dis-
charges are excited in deuterium at P = 0.3 torr. The period
of the reference sinusoid is 10 ns.

Fig. 2. Single-shot patterns of an electron beam in a pack-
age of four TsVID-0.1-1 films. The discharge is excited in
deuterium at P = 0.3 torr and d = 2.5 mm. The cathode is a
foil cylinder.
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to scattering in the film material and to the action of the
space-charge field, so that the initial beam structure in
the low-energy range was smeared out. The beam elec-
trons with energies above 150 keV [7] reached the
fourth film. The size of the pattern produced by these
electrons was somewhat larger than the cathode
diameter.

The structure of ion beams was studied in a diode in
which the high-voltage electrode (anode) was a foil cyl-
inder. In the case of a cathode made of a 10-µm alumi-
num foil, no pattern of ion beams appeared on film
placed behind the cathode even after one hundred shots.
The reason was the strong absorption of deuterium ions
in the foil. With a cathode made of a nickel grid with a
thickness of 4 µm and a cell size of 18 µm, patterns
appeared after a few dozens of shots. Figure 3 shows
ion beam patterns produced at a deuterium pressure of
0.3 torr after 20 shots when the interelectrode distance
was d = 2.5 mm and after 35 shots when the interelec-
trode distance was d = 5 mm. The patterns of the ion
beams generated in deuterium discharges also exhibit

d = 2.5 mm d = 5 mm

Fig. 3. Patterns of ion beams on a TsVID-0.1-1 film. The
discharge is excited in deuterium at P = 0.3 torr and two val-
ues of the interelectrode distance: d = 2.5 mm (20 shots) and
d = 5 mm (35 shots). The anode is a foil cylinder.

Fig. 4. Oscilloscope trace of the ion current pulse generated
by a discharge in deuterium at P = 0.3 torr and d = 2.5 mm.
The period of the reference sinusoid is 10 ns.
stripes perpendicular to the sharp edge of the cylindri-
cal anode. In the case of strong filtering, the ion beam
structure is similar to the structure of the electron
beams. This is quite natural because the ions are pro-
duced along the ionization trace of electrons in a gas. At
P = 0.3 torr and d = 2.5 mm, the ion energy was deter-
mined with the help of a wedge composed of microme-
ter-thick Mylar films. This energy turned out to be
about 300 keV.

Using the data of [8] on the neutron yield from a tri-
tium target at different energies of the accelerated deu-
terons and assuming the neutron yield per one dis-
charge to be 106 [3] and the duration of the neutron
pulse to be 2.5 ns (for P = 0.3 torr and d = 2.5 mm), we
can estimate the current of the accelerated deuterium
ions in a discharge to be about 10 A, which is much
lower than the total gas-discharge current (equal to
2.5 kA).

Direct measurements of the current pulse of the
accelerated deuterium ions were performed using the
same configuration: a positive high-voltage pulse was
applied to the cylindrical foil anode, and the plane cath-
ode was made of a nickel grid. The ions that passed
through the cathode arrived at the collector, and the cur-
rent signal was recorded by the oscilloscope. The col-
lector was located at a distance of 1.7 cm from the cath-
ode. When the deuterium pressure in the collector
chamber was equal to that in the diode (0.3 torr), the
recorded positive pulse was superimposed by a high-
frequency electromagnetic disturbance with a fre-
quency of about 2 GHz, which hampered the measure-
ments of the ion current pulse. The disturbance was
eliminated by evacuating the collector chamber and
insulating it from the diode by a 3-µm Mylar film,
which attenuated the ion beam by a factor of about 5.
The beam was fully absorbed in 10-µm film. Figure 4
shows the waveform of the ion current pulse at deute-
rium pressures of 0.3 torr in the diode and 10–3 torr in
the collector chamber. The pulse amplitude was ≈1.5 A,
and the full width at half-maximum was τ0.5 ≈ 3 ns. Tak-
ing into account the ion absorption in the Mylar film
and in the cathode, we can assume that the current of
accelerated ions was no higher than 10 A. The mea-
sured time delay of the deuterium ions arriving at the
collector relative to the voltage pulse was 6–7 ns. This
time was related to both the delay of the discharge onset
relative to the beginning of the voltage pulse and the
propagation of ions through the diode discharge gap
and the gap between the cathode and the collector. The
measured time delay agrees with that between the hard
X-ray and neutron pulses with allowance for the propa-
gation of deuterium ions through the interelectrode gap.
This time delay is also consistent with the estimate of
the deuterium ion energy. Since the velocity of the deu-
terium ions with an energy of 300 keV is ~5 × 108 cm/s,
they cover a distance of 1.7 cm for nearly 3.4 ns.

Thus, along with beams of runaway electrons,
beams of accelerated ions with a current much lower
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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Fig. 5. Patterns of electron beams in the case of a cathode with a developed emitting surface (a 28-mm-diameter hemisphere) at
different working-gas pressures P and different values of the aluminum anode thicknesses ∆: (1) P = 0.04 torr, ∆ = 15 µm; (2) P =
0.04 torr, ∆ = 30 µm; (3) P = 0.3 torr, ∆ = 30 µm; and (4) P = 1 torr, ∆ = 15 µm. Discharges are excited in air at d = 5 mm.
than the electron current are generated by high-voltage
nanosecond discharges at reduced pressures.

Similar experiments were performed with dis-
charges in air. The structures of electron and ion beams
and the time behavior of ion beams generated by dis-
charges in air turned out to be similar to those for dis-
charges in deuterium. The patterns of the electron
beams generated by discharges in air in the pressure
range of P = 0.04–1 torr were obtained in one shot,
except for the case of d = 5 mm and P = 1 torr, when ten
shots were required, because the voltage drop at the
diode (and, hence, the electron energy) decreased with
increasing Pd. The typical transverse size (diameter) of
electron beam patterns significantly exceeded the cath-
ode diameter (equal to 7 mm), increased with increas-
ing interelectrode distance d, and decreased with
increasing air pressure P. Thus, at P = 0.04 torr and
d = 5 mm, the pattern diameter was 25 mm, whereas at
d = 9 mm, it increased to 45 mm. The clearly pro-
nounced striped structure of an electron beam was
observed up to pressures of 0.3 torr. At pressures above
1 torr, the structure was smeared out because of the
electron beam collapse due to the scattering of elec-
trons by the gas molecules. A characteristic feature of
the high-voltage electrodes used in our experiments and
in [1, 2] was the sharp emitting edge. The presence of a
great number of ectons on the sharp edge of the foil
cathode did not allow us to distinguish the effect of a
single ecton. To find out whether the striped structure of
charged particle beams was due to a specific electrode
configuration, we performed experiments with a diode
in which a smooth, massive, 28-mm-diameter steel
hemisphere with a rounded edge (the rounding radius
being 3 mm) was used as the high-voltage electrode
(cathode). Figure 5 shows patterns of the electron
beams generated in discharges in air at different pres-
sures for two values of the aluminum foil anode thick-
ness ∆, which places a lower limit on the energy of the
beam electrons: at ∆ = 15 µm, the electrons with ener-
gies above 50 keV reach the film, whereas at ∆ = 30 µm,
the pattern is produced by electrons with energies
above 80 keV. On the spherical part of the cathode, only
a few ectons were formed; the distance between the
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
ectons was so great that the interaction between them
could be ignored. At a pressure of P = 0.04 torr, the
diameter of the pattern produced behind the anode by
the electron beam emitted by an individual ecton was
5–6 mm, which corresponded to a beam angular diver-
gence of 60°. As the pressure increased, the diameter
decreased because of gas focusing and became equal to
1–2 mm at P = 1 torr. The pattern of the electron beam
emitted by the rounded cathode edge had a pronounced
striped structure. The electron energy in this beam did
not exceed 80 keV, because the beam was absent behind
the 30-µm-thick anode. This pattern probably reflects
the distribution of ectons along the cathode edge. A
similar ecton distribution was observed in vacuum dis-
charges in an external magnetic field [6].

When the magnetic pressure of the explosive emis-
sion current is equal to the gas-dynamic pressure of the
metal vapor plasma, the characteristic plasma size r can

be estimated as r5 ≈ . Here, M1 ≈ 10–11 g is

the mass of the metal evaporated from a single micro-
scopic protrusion during a discharge (~10 ns) [6], tdel ≈
1–10 ns is the explosion delay time, k is the Boltzmann
constant, T ≈ 104 K is the plasma temperature, µ0 is the
magnetic permeability of free space, mn is the nucleon
mass, A = 181 is the atomic weight of tantalum, and
C ≈ 4 × 1017 Ä4 s/m4 [6]. For the observed values of M1,
tdel, and T, the size r is close to the typical size of a sin-
gle microscopic protrusion (~1 µm). This means that
the explosive plasma cannot merge into a single layer
on the cathode edge during a discharge.

3. CONCLUSIONS

High-voltage nanosecond gas discharges at high
overvoltages generate beams of accelerated electrons
and ions with the same complicated ordered space–
energy distribution that was earlier observed in electron
beams generated at high vacuum. The spatial structure
of the electron beams probably reflects the regular dis-
tribution of ectons along the emitting edge of the cath-
ode (see [4, 5]). In fact, the electron beams are formed

6M1tdelkT
πµ0mnAC
------------------------
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and accelerated near the sharp edge of the cathode,
where the electric field is maximal. This is confirmed
by fact that the fine structure of the electron and ion
beams is preserved when the interelectrode distance is
varied. However, according to the above estimates, the
mechanism that implies the confluence of the plumes of
explosive plasma into a unified layer which is then torn
[4] seems to be nonphysical. In general, the detection of
structured ion beams casts doubt on the mechanisms for
the electron beam formation that assume a regular
ecton distribution [4, 5]. Since the ion source is a gas
ionized by electrons, the structure of ion beams is a
consequence of the electron beam structure. However,
the formation of an ordered distribution of ectons on a
grid cathode with a large geometrical transparency
seems to be improbable. The regular structure of
charged particle beams is most probably a result of the
filamentation of electron beams themselves with the
subsequent transformation of the filaments into plane
layers because of electrostatic expansion.
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Abstract—The characteristics of a high-current electron beam-driven microwave amplifier—a dielectric Cher-
enkov maser—are investigated in the framework of linear theory for the case of a plasma layer present at the
surface of the maser slow-wave structure. The dispersion relation for axisymmetric perturbations is obtained
for the conventional configuration (a circular dielectric-lined waveguide and a thin annular beam propagating
within the vacuum region inside the annular plasma) in the model of a fully magnetized plasma and beam. The
results of numerically solving the dispersion relation for different beam and plasma parameters are presented,
and an analysis based on these results is given with regard to the features of the beam interaction with the hybrid
waves of the system (both hybrid waveguide and hybrid plasma modes). For the hybrid waveguide mode, the
dependences of the spatial growth rate on the frequency demonstrate an improvement in the gain at moderate
plasma densities, along with narrowing the amplification band and shifting it toward higher frequencies. For the
hybrid plasma mode, the interaction with a mildly relativistic (200–250 keV) beam, when the wave phase veloc-
ity is close to the speed of light in the dielectric medium, is most interesting and, therefore, has been studied in
detail. It is shown that, depending on the beam and plasma parameters, different regimes of the hybrid plasma
mode coupling to the hybrid waveguide mode or a usual, higher order plasma mode take place; in particular, a
flat gain vs. frequency dependence is possible over a very broad band. The parameters at which the –3-dB band-
width calculated for the 30-dB peak gain exceeds an octave are found. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Wide-bandwidth microwave amplifiers driven by
high-current electron beams represent an unexplored
class of high-power pulsed microwave sources. In con-
trast, numerous studies of oscillators and narrow-band-
width amplifiers have already resulted in successful
developments and practical applications. Meanwhile,
devices capable of frequency tuning over an octave
range at 1–100 MW output power levels could be used
in many interesting areas, so that their development
would represent considerable progress in the field of
high-power microwave electronics.

A feature necessary to achieve a large amplifier
bandwidth is weak dispersion of the operating slow-
wave structure mode, as is the case in the classical
broadband microwave amplifier—the helix traveling
wave tube (TWT). However, increasing operating volt-
ages make a helix-type structure inappropriate to main-
tain the beam–wave synchronism. In classical high-
power TWTs at 10–100 kV voltages, periodic slow-
wave structures are used that provide a bandwidth, as a
rule, of no larger than 20% due to the stronger disper-
sion and the presence of stopbands. In relativistic
TWTs, where corrugated waveguides are employed,
the bandwidth is a few percent.
1063-780X/04/3007- $26.00 © 20587
At relativistic phase velocities of the microwave
drive signal, relatively weak dispersion can take place
in a waveguide lined with dielectric material with a
small dielectric constant ε. It follows from the linear
theory of a dielectric Cherenkov maser (DCM) that,
under certain conditions (namely, the use of a fairly
thick dielectric liner and the proper choice of the opti-
mum beam current for a given electron energy), a DCM
bandwidth of 40–50% can be achieved [1]. The first
experimental investigations of the wide-bandwidth
DCM amplifier prototype demonstrated the effect of
strong enhancement of the output power by switching
on the external microwave source operating at two
well-spaced X-band frequencies, but, at the same time,
showed that the above-mentioned conditions contrib-
uted to more intensive plasma production at the dielec-
tric surface [2]. The density of the near-surface plasma
layer that was formed turned out to be so high that the
pulse-to-pulse instability of its parameters strongly
affected the electrodynamic properties of the DCM
slow-wave structure.

Meanwhile, a dense plasma in a waveguide itself
supports the propagation of slow electromagnetic
waves with relativistic phase velocities—the plasma
modes that can have weak dispersion. Plasma relativis-
tic microwave electronics has long been developing as
an independent branch of physical electronics [3], and
004 MAIK “Nauka/Interperiodica”
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the operation of plasma masers-oscillators with a very
wide band of frequency tuning by means of plasma
density variation was successfully demonstrated in
experiments. The experiments on the plasma maser-
amplifier in [3] also demonstrated the possibility of
amplifying the drive signal at two well-spaced X-band
frequencies at a fixed plasma density. The calculations
of the gain, as was noted in [4], show that a bandwidth
of ~40% is achievable. The conventional configuration
of a plasma maser comprises a circular metallic
waveguide, an annular plasma column, and an annular
electron beam propagating within the plasma column.
If one fills the space between the plasma and the
smooth conducting wall of this configuration with a
uniform isotropic dielectric, then a DCM configuration
with a plasma layer results.

On the other hand, a DCM with a plasma layer can
be considered to be a kind of plasma-filled TWT.
Numerous investigations (see, e.g., [5, 6] and refer-
ences therein) have shown that the presence of a con-
trolled amount of plasma inside a slow-wave structure
can improve the characteristics of Cherenkov micro-
wave oscillators and amplifiers in comparison to their
vacuum operation. In this way, in relativistic backward-
wave oscillators, a multifold [7, 8] or modest [6]
increase in the output power was achieved, but, in any
case, at certain optimal plasma densities. In the devices
known as PASOTRONs [9], neutralizing the beam
space charge by means of the plasma makes possible
the operation of a Cherenkov microwave oscillator
without an external magnetic field; in addition, a spe-
cific mechanism of efficiency enhancement appears
[10]. In a nonrelativistic plasma-filled coupled-cavity
TWT amplifier [11], the power and gain-bandwidth
were more than doubled as compared to the vacuum
case. Here, the combination of the output power and

b

rb rp

a

Fig. 1. Cross section of the interaction space for a DCM
with a plasma layer.
bandwidth levels (>20 kW and ~30% in the continuous
operation mode) remains inaccessible for vacuum
amplifiers. In this case, the physical mechanism for
such an achievement is the formation of hybrid waves
in the system that have properties of both plasma and
waveguide modes.

The hybrid modes existing in slow-wave structures
with partial plasma filling [11, 12] are strongly coupled
to the electron beam, which is typical of plasma
modes.1 At the same time, the microwave energy trans-
mitted by these waves is concentrated mainly outside
the plasma, so that it can be extracted with minimal
losses. The hybrid modes are formed as a result of the
deep transformation of usual waveguide and plasma
modes: the waveguide mode, the microwave field pro-
file of which is changed due to the presence of plasma,
and the plasma mode, which is transformed by sur-
rounding the plasma column with some slowing
medium (artificial or natural), represent two different
types of hybrid modes. The existence of two types of
hybrid modes is especially important in view of the
problem of the development of high-power wide-band-
width amplifiers. The hybrid waveguide mode is char-
acterized by an increased coupling impedance, whereas
the hybrid plasma mode can have a weaker dispersion
compared to the usual plasma mode. In addition, an
important fact is that the hybrid plasma and waveguide
modes having the same phase velocity at different
eigenfrequencies can be coupled through the electron
beam of sufficiently large current; this also leads to the
expansion of the amplification band. Therefore, the
plasma loading of a smooth slow-wave structure seems
promising for obtaining an octave amplification band-
width.

In this work, a linear theory has been developed for
a DCM with a thin annular electron beam and a plasma
layer adjoining the dielectric liner surface (Fig.1). The
electrodynamics of the cold system (no beam case) was
investigated in detail in [2]. The consideration of a sys-
tem with a plasma layer has two aims: on the one hand,
it allows one to determine the degree of plasma influ-
ence on the characteristics of a vacuum DCM and to
analyze, on this basis, particular results of the first
experiments [2]. The analysis of the beam interaction
with the hybrid waveguide mode leads to this goal. On
the other hand, in a system with a plasma layer, the dis-
persion of the hybrid plasma mode can be very weak.
The phase velocity here corresponds to a relatively low
kinetic energy (200–250 keV), the coupling impedance
is sufficiently high, and the portion of the microwave
power contained in the dielectric region approaches

1 In [3], hybrid microwave devices are defined as usual vacuum
microwave tubes with plasma filling in which the mechanism for
wave excitation is the same as in the vacuum case. Cherenkov
devices operating in the hybrid modes, however, do not come
under this definition, unlike the devices of [7–10], because their
operating frequency is lower than the plasma frequency, as it is in
plasma masers, and, therefore, the presence of plasma is of fun-
damental importance for their operation.
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80% [2]. The analysis of the beam interaction with the
hybrid plasma mode allows one to answer whether a
superwide (octave) bandwidth is achievable in this
case.

It should be noted that earlier theoretical investiga-
tions of the Cherenkov interaction with a beam in the
case of annular plasma geometry (beginning from the
work [13] until now) were only carried out for the
plasma maser configuration [3]. For a dielectric-lined
waveguide loaded with plasma, the models of solid
(pencil) plasma were considered for the cases of the
total [14, 15] or partial [16, 17] filling of the beam
transport channel of the waveguide and the analysis
was usually limited to the hybrid waveguide mode.

2. DISPERSION RELATION

The geometric parameters of the system under con-
sideration are depicted in Fig. 1. The dielectric liner has
the inner radius a and the outer radius b (equal to the
radius of the circular metallic waveguide). The plasma
layer of inner radius rp adjoins the dielectric surface.
The electron beam of radius rb is assumed to be infini-
tesimally thin. As in [2], the plasma is assumed to be
fully magnetized, uniform, cold, and collisionless; ion
motion is ignored. The validity of the conditions for this
model was discussed in [2]. Accordingly, the beam is
assumed to be fully magnetized and monoenergetic as
well.

We consider axisymmetric TM waves, i.e., perturba-
tions proportional to exp{i(kz – ωt)}, where ω and k
stand for the circular frequency and axial wavenumber,
respectively. The wave equations for the Ez component
of the microwave field in the vacuum, plasma (in the
linear approximation), and dielectric regions are
reduced to the following equations describing its
dependence on the radial coordinate:

(1)

where q, κ, and p are the corresponding transverse
wavenumbers,

ωp is the electron plasma frequency; and c is the speed
of light in vacuum.

For a relativistic electron beam, integration of the
linearized equation for Ez over an infinitesimally small
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interval results in the condition for the jump in the
derivative at r = rb:

(2)

Here, Ib is the beam current; IA = mc3/e; m and e are the
electron rest mass and charge, respectively; u = βc is the
beam velocity; and γ is the Lorentz factor. The corre-
sponding conditions at the plasma–vacuum and
plasma–dielectric boundaries (the continuity of the Hϕ
component) are

(3)

Matching the solutions of Eqs. (1) with the use of
conditions (2) and (3) and the continuity conditions for
Ez at all the boundaries and accounting for the condition
Ez = 0 at the conducting waveguide wall, one can finally
obtain (after simple but tedious formula manipulations)
the following dispersion relation:

(4)

Here,

and the functions entering Eq. (4) are defined as
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where J0 and Y0 are Bessel functions and I0 and K0 are
modified Bessel functions.

The equation D(ω, k) = 0 represents the dispersion
relation for a cold system (see [2]). In the absence of
plasma, one can show that, upon taking the limits
ω  0 or rp  a, Eq. (4) reduces to the dispersion
relation for a DCM with a thin annular beam (see, e.g.,
[1]).

Equation (4) was solved numerically using an itera-
tive algorithm that employed the analytical solution
(found at the frequency of velocity synchronism with
the beam for a given cold system mode) as an initial
approximation. Such an approach allows one to unam-
biguously identify the regimes of beam interaction with
hybrid waveguide or hybrid plasma modes, as well as
regimes of coupling the modes to one another through
the electron beam. Before analyzing the numerical
results, let us characterize the properties of the hybrid
modes in greater detail.

In Fig. 2, the phase velocity vs. frequency depen-
dences obtained by solving the equation D(ω, k) = 0 at
two values of the plasma frequency are shown for the
fundamental (with the lowest radial index) waveguide
and plasma modes. As usual, the waveguide mode is
characterized by the appearance of a cut-off frequency
and its phase velocity approaches the speed of light (in
the medium) with increasing frequency, whereas the
plasma mode has no cut-off frequency and its phase
velocity varies from a maximum at ω  0 to zero at
ω  ωp. The “hybridity” of the waveguide and
plasma modes occurs at certain portions of their disper-
sion curves. For the hybrid waveguide mode, this is the
portion where the phase velocity is less than c and the
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Fig. 2. Dispersion of the waveguide and plasma modes for
a circular dielectric-lined waveguide with a plasma layer for
ε = 2.25, a/b = 0.5, and rp/b = 0.42 at different values of the
plasma frequency: ωpb/c = (1) 20 and (2) 40. The dashed
curve corresponds to the waveguide mode dispersion in the
absence of plasma. The horizontal dashed line corresponds
to the speed of light in the dielectric.
frequency is lower than ωp. Within the frequency
ranges for which the dispersion curves are presented in
Fig. 2, the waveguide mode is hybrid for both curves 1
and 2. For the hybrid plasma mode, this is the portion
where the phase velocity exceeds the speed of light in
the dielectric. The plasma mode represented by curve 2
in Fig. 2 is hybrid within all the range shown, whereas
for curve 1, the portion to the right of the crossing with
the dashed straight line corresponds to the usual plasma
mode: the hybrid wave here corresponds to the low-fre-
quency portion. The hybrid waveguide mode differs
from the usual one in that its field has the volume pro-
file in the region of the plasma layer, rather than is eva-
nescent from the dielectric surface to the axis. As was
shown in [2], the field profile in the dielectric region
becomes similar to that of the higher order mode of a
coaxial waveguide; this transformation is the main
cause of the increase in the coupling impedance in the
system with a plasma layer, in contrast to the solid
plasma case. The hybrid plasma mode differs from the
usual one in that its field has the volume profile in the
dielectric region, rather than being evanescent from the
plasma surface to the waveguide wall. Here, if the

phase velocity is close to c/ , then the field in the
dielectric becomes nearly transverse, like that of the
TEM mode of a coaxial waveguide.

Finally, we note that synchronism with the beam is
impossible for the plasma mode if the beam velocity
exceeds the maximum phase velocity of the plasma
mode. Nevertheless, if the beam current exceeds a cer-
tain value, amplification occurs in the regime of collec-
tive (Raman) interaction. The algorithm of the solution
of dispersion relation (4) allows one to identify this
regime, which, as will be shown below, plays an impor-
tant role in providing a superwide amplification band.

3. NUMERICAL RESULTS

3.1. Hybrid Waveguide Mode: the Influence
of Plasma Density

The beam interaction with the hybrid waveguide
mode was investigated for the parameters of the elec-
tron beam and dielectric waveguide corresponding to
the experimental conditions in [2]. The thickness of the
plasma layer was taken such that the plasma filled 80%
of the gap between the beam and the liner surface. In
Fig. 3, the influence of the magnitude of the plasma
density in the layer on the DCM gain and bandwidth is
shown. One can see that, at ωpb/c = 3 (curve 1), the
dependence of the instability spatial growth rate on the
frequency is practically identical to that in the absence
of plasma (dashed curve). It should be noted that, in the
absence of plasma, the frequency of the waveguide
mode synchronous with the beam at the given parame-
ters corresponds to ωb/c ≈ 3.45. Hence, at the peak gain
of curve 1, the interaction with the usual waveguide
mode takes place. Although the plasma frequency here
is not much less than ω, one can say that the presence

ε
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of plasma does not affect the amplifier characteristics.
The situation is changed when the plasma density
increases to such values that the interaction occurs with
the hybrid waveguide mode at any frequency over the
entire amplification band. It is seen from Fig. 3 that, in
this case, the gain increases significantly and reaches its
maximum with increasing plasma density (curve 3). In
addition, the amplification band shifts toward higher
frequencies as the plasma frequency increases (as is
seen from Fig. 2, this is caused by shifting the synchro-
nous frequency), so that the relative bandwidth
decreases considerably.

Shifting the amplification band in the case of inter-
action with the hybrid waveguide mode greatly affects
the dependence of the gain on the plasma density at a
given frequency; this can easily be observed in experi-
ments. The dependence of the output power of the
plasma-filled coupled-cavity TWT [11] on the gas pres-
sure in the slow-wave structure is well known: the
power first remains constant with increasing pressure
(which corresponds to the interaction with the usual
structure mode), and a rapid growth is then observed,
followed by a rapid decrease after the optimal plasma
density is exceeded. For a DCM with a plasma layer, an
analysis of the dependence of the hybrid waveguide
mode coupling impedance on the plasma density at a
fixed frequency [2] allows one to draw the conclusion
about the disruption of amplification at high densities.
The growth rate vs. plasma frequency dependence for a
given frequency, which is important from the stand-
point of comparison with the experiment, is presented
in Fig. 4.

3.2. Effect of “Substitution”

The calculations were performed for the normalized
frequency ωb/c = 4.5, corresponding to one of the drive
signal frequencies of the experiment on the wide-band-
width DCM prototype [2]. Figure 4 gives a manifest
explanation of the observed poor reproducibility of out-
put microwave pulses. It is seen how strongly the gain
at the given frequency depends on the density of the
plasma layer. Therefore, the unstable character of
plasma formation, as well as the possible dependence
of the plasma density on the drive signal power, leads to
very large variations of the output power from pulse to
pulse. At the same time, it turns out that, after the
amplification fails in the hybrid waveguide mode, the
gain at the given frequency appears anew as the plasma
frequency increases further. This is now due to the
beam interaction with the hybrid plasma mode. The
values of Imk in the peak portion of the right curve in
Fig. 4 are only 10% smaller than for the interaction with
the usual waveguide mode. The possibility of such
“substitution” was also noticed in [2]. Note that in the
range of plasma frequencies corresponding to the gain
in the hybrid plasma mode, the interaction occurs first
in the Raman regime (see the dispersion curve for
ωpb/c = 40 in Fig. 2), and then, with increasing plasma
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
frequency, the phase velocity of the hybrid plasma
mode reaches the value synchronous with the beam and
finally exceeds the beam velocity so much that the gain
disappears once again.

Comparison of Fig. 4 with the experimental data
shows that, in the wide-bandwidth DCM prototype, the
amplification of the hybrid plasma mode might occur.
The peak corresponding to the plasma mode is broader
compared to the hybrid waveguide mode; therefore, an
amplifier operating in the hybrid plasma mode can be
less sensitive to variations in the plasma layer parame-
ters. Nevertheless, at these parameters, the regime of
interaction with the hybrid waveguide mode is much
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Fig. 3. Spatial growth rate vs. frequency at different values
of the plasma frequency: ωpb/c = (1) 3, (2) 10, (3) 20, and
(4) 30. The dashed curve corresponds to the case of ωp = 0.
The parameters of the electron beam are γ = 1.8, Ib/IA = 0.2,
and rb/b = 0.4. The parameters of the dielectric liner and
plasma layer are the same as in Fig. 2.
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frequency ωb/c = 4.5. The other parameters are the same as
in Fig. 3.
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more attractive. First, in this case, the gain at the opti-
mal plasma density is almost twice as high, whereas the
bandwidth, as follows from the calculations, is not nar-
rower than for the hybrid plasma mode. Second, for the
hybrid plasma mode, the calculations of the Poynting
flux (without a beam) show that more than 70% of the
transmitted microwave power is concentrated in the
region of the plasma layer; hence, the microwave
extraction losses would be large. The interaction with
the hybrid plasma mode is of interest in the case of
lower electron energy, when the beam velocity just
slightly exceeds the Cherenkov threshold and the main
portion of the transmitted power is concentrated in the
dielectric region.

3.3. Hybrid Plasma Mode

In Fig. 5, the results of the solution of dispersion
relation (4) are presented for γ = 1.5 and different beam
currents at a normalized plasma frequency of ωpb/c =
20. The liner parameters and the geometric parameters
of the beam and plasma layer are taken to be the same
as those for calculations presented above in Figs. 2–4.
The value of the Lorentz factor corresponding to the
maximum phase velocity of the hybrid plasma mode
(see Fig. 2) is ≈1.35; i.e., this velocity is lower than the
beam velocity. Thus, amplification here results from the
synchronism between the plasma mode and the slow
beam space charge mode (Raman regime), whose
phase velocity is less than the beam velocity by a value
depending on the current magnitude Ib. Amplification
only occurs at sufficiently high currents; however, it is
the large Ib values corresponding to megawatt levels of
the output microwave power that are of interest to us.

It is seen from Fig. 5, that for Ib ≈ 510 A (curve 1),
the amplification bands corresponding to the hybrid
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Fig. 5. Spatial growth rate vs. frequency at different beam
currents for γ = 1.5, ωpb/c = 20, and different values of the
beam current: Ib/IA = (1) 0.03, (2) 0.065, and (3) 0.12. The
other parameters are the same as in Figs. 2–4.
plasma and hybrid waveguide modes are well separated
on the frequency axis. For the hybrid plasma mode, the
gain vs. frequency dependence is much flatter; it is pre-
determined by its very weak dispersion in this fre-
quency range (see Fig. 2). Nevertheless, the –3-dB
bandwidth calculated for a peak gain of 30 dB is ≈43%,
which is quite far from an octave. This value is on the
same order as for a conventional DCM [1]. In addition,
the gain in the hybrid waveguide mode is much higher,
though its bandwidth is twice as narrow. As the beam
current increases, the phase velocity of the slow space
charge mode decreases and its interaction with the
plasma mode occurs over a significantly wider fre-
quency range. The spatial growth rate increases, and the
hybrid plasma and waveguide modes are coupled
through the electron beam, so that their amplification
bands merge into one. However, in spite of such over-
lapping, the –3-dB bandwidth does not become larger.
It is seen from Fig. 5 that, for Ib ≈ 1.1 kA (curve 2), the
gain vs. frequency dependence has a typical “hat,” so
that, at the –3-dB level from the 30-dB peak gain, the
bandwidth is only ≈16%.

It should be noted that similar curves with a “hat”
were also obtained in [17], where the case of a solid
beam in a plasma-loaded helix-type slow-wave struc-
ture was considered. One can interpret the presence of
such a hat as the increase in the instability growth rate
over a relatively narrow frequency range, where the
coupling between the hybrid plasma and waveguide
modes occurs. A further increase in the current (curve 3)
leads to a sharp increase in the gain due to strong cou-
pling, as in [17]; the bandwidth also increases, but
insignificantly.

A superwide bandwidth in the hybrid plasma mode
can be achieved at higher plasma densities. This possi-
bility is illustrated in Fig. 6 for ωpb/c = 40. In this case,
as one can see by comparing curves 1 and 2, the
increase in the beam current does not lead to a coupling
to the hybrid waveguide mode since, for the latter, the
interaction regime also becomes Raman and the ampli-
fication band shifts significantly. At the same time,
curve 3, corresponding to a current of Ib ≈ 3.1 kA, has
a very extended plateau. For the parameters of curve 3,
the –3-dB bandwidth is ≈74% (at the 30-dB peak gain);
i.e., it exceeds an octave. At the given energy of the
beam electrons (~250 keV), the output power of such a
microwave amplifier could be a few tens of megawatts.

3.4. Superwide Bandwidth as a Result of the Hybrid 
Plasma Mode Coupling to the Usual Higher Order 

Plasma Mode

A comparison of the dispersion curves of the hybrid
plasma mode for the two values of the normalized
plasma frequency under consideration (see Fig. 2)
allows one to suppose that, for ωpb/c = 40, the band-
width can be superwide because of the weaker disper-
sion. Meanwhile, the possibility of obtaining an octave
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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bandwidth is related not only (and not so much) to the
weak dispersion, but also to the coupling of the hybrid
plasma mode to the usual higher order plasma mode.
This becomes evident under more detailed analysis of
the growth rate vs. frequency dependences in the
parameter range yielding such a wide bandwidth.

In Fig. 7, the dependences obtained by further
increasing the beam current from the value Ib ≈ 3.1 kA
are depicted (curve 1 replicates the dependence with an
extended plateau presented above in Fig. 6). It is seen
how the character of the dependence changes: a local
minimum appears, the low-frequency maximum
increases, the high-frequency maximum decreases
(curve 2), and the amplification band is finally split into
two parts (curve 3). Such behavior means that interac-
tion with two different modes takes place in this case.
The modes are coupled at the beam current within a
certain range, and the mode corresponding to the low-
frequency band is the usual higher order plasma mode.

Indeed, it is well known that the spectrum of plasma
modes becomes denser as the plasma density increases.
In Fig. 8, the dispersion curve is shown that was calcu-
lated for the plasma mode next (in the radial index) to
the lowest hybrid plasma mode at the given parameters.
The phase velocity of this mode is everywhere lower
than the speed of light in the liner material; i.e., this is
the usual plasma mode. Nevertheless, the relative dif-
ference in phase velocities with respect to the lowest,
hybrid plasma mode is quite small. The beam velocity
in our case slightly exceeds the Cherenkov threshold
for the given dielectric. At a relatively low beam current
(as is the case, e.g., for curve 1 in Fig. 6), the phase
velocity of the slow space charge mode remains super-
luminal and the interaction at low frequencies occurs
with the hybrid plasma mode alone. As the current
increases, the velocity of the space charge wave pos-
sesses values intermediate between the phase velocities
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Fig. 6. The same as in Fig. 5 except for ωpb/c = 40 and
Ib/IA = (1) 0.01, (2) 0.09, and (3) 0.18.
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of the hybrid and next mode. This makes possible beam
interaction with both modes, and the coupling of the
two modes appears. At a sufficiently high current
(Fig. 7, curve 3), the phase velocity of the space charge
wave becomes such that its synchronism is only possi-
ble with the usual higher order plasma mode at low fre-
quencies and with the hybrid mode at high frequencies.
This results in the splitting of the amplification band.

One can observe the same band splitting at a fixed
beam current if other parameters affecting the phase
velocities of the slow beam space charge mode and the
lowest and next plasma modes are varied. This is illus-
trated in Fig. 9, where the gain vs. frequency depen-
dences are presented for different values of the electron
energy. It should be noted that the relative energy vari-
ation resulting in the band splitting is very small; hence,
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Fig. 7. The same as in Fig. 6 except for Ib/IA = (1) 0.18,
(2) 0.23, and (3) 0.27.
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to the speed of light in the dielectric.
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the regime with a superwide bandwidth can be very
sensitive to the poor stability of the beam and plasma
parameters.

4. CONCLUSIONS

We have derived a dispersion relation using the lin-
ear theory for a DCM with a plasma layer and analyzed
the results of its numerical solution. Different regimes
of the Cherenkov interaction of a high-current electron
beam with hybrid waves in the smooth slow-wave
structure with a near-surface plasma have been investi-
gated. For the interaction with the hybrid waveguide
mode, the character of plasma influence on the ampli-
fier operation has been determined, in particular, for the
conditions of the experiment with the wide-bandwidth
DCM prototype [2]. It has been shown that, as the
plasma density increases, the hybrid waveguide mode
is “substituted” with the hybrid plasma mode in the
interaction with the beam at a fixed frequency. Such a
substitution is, on the whole, undesirable for the case of
a relativistic beam whose velocity significantly exceeds
the Cherenkov threshold for the dielectric liner mate-
rial. Meanwhile, for a mildly relativistic beam whose
velocity just slightly exceeds the speed of light in the
dielectric, it has been shown that superwide bandwidth
operation is possible in the regime of collective
(Raman) interaction with the hybrid plasma mode. The
parameters at which the –3-dB bandwidth calculated
for a peak gain of 30 dB exceeds an octave have been
found. At these parameters, the beam energy and cur-
rent are such that the corresponding microwave ampli-
fier could have an output power at a level of a few tens
of megawatts and the gain estimations give quite rea-
sonable values on the order of 0.8–1.0 dB/cm for

0.4

0 2

Imkb

ωb/c

1

2

3

0.6

4 6 12

0.2

0.5

0.3

0.1

8 10 1614

3

18

Fig. 9. Spatial growth rate vs. frequency at different values
of the electron energy for ωpb/c = 40, Ib/IA = 0.18, and dif-
ferent values of the Lorentz factor: γ = (1) 1.5, (2) 1.485, and
(3) 1.475. The other parameters are the same as in Figs. 2–8.
X-band frequencies. At the same time, the regime of
interaction with the hybrid plasma mode providing a
superwide bandwidth can be rather sensitive to the poor
stability of the beam and plasma parameters. Therefore,
further investigations of this regime are necessary to be
performed in more adequate models compared to the
one considered in this work, in particular, for a beam of
finite thickness and at a finite guiding magnetic field.
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Abstract—Parametric effects of lasing without inversion and electromagnetically induced transparency in clas-
sical systems are considered. The characteristic features of the effect of lasing without inversion in ensembles
of classical electrons are analyzed using an “inversionless” cyclotron maser as an example. A theory of the
effect of electromagnetically induced transparency is developed for electron cyclotron waves in a high-temper-
ature plasma. Possible applications of these two effects in plasma physics and microwave electronics are dis-
cussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, the interaction of electromagnetic
waves with multilevel quantum systems in the so-called
coherent states has been the subject of active investiga-
tion. The best-known examples of such interaction pro-
cesses are lasing without inversion (LWI) [1] and elec-
tromagnetically induced transparency (EIT) [2], as well
as the “slowing down” [3] and “stopping” [4, 5] of
light—phenomena that are closely related to the EIT.
Interest in these effects stems not only from their possi-
ble applications (for more specific information on this
matter, see [1, 2, 6]) but also from their relation to the
fundamental questions of the physics of the interaction
of radiation with matter. These effects can radically
change the active and reactive properties of a resonant
medium in its interaction with radiation whose inten-
sity is relatively low and cannot substantially alter the
population distributions over the levels. Hence, the
occurrence of LWI and EIT effects is associated with
the fact that the interaction of nonmonochromatic radi-
ation with resonance quantum transitions is not always
determined completely by the population distribution.
The well-known analogy between radiative processes
in ensembles of quantum and classical oscillators [7–9]
naturally raises the hope that a system of classical par-
ticles with a decreasing energy spectrum in the reso-
nance region may exist in states in which the stimulated
emission of radiation is possible or electromagnetic
waves can propagate without attenuation. Nevertheless,
in classical systems, the LWI and EIT effects possess a
number of peculiar features. It is this aspect of the elec-
trodynamics of plasmas and electron flows that is the
main subject of our study.

Although the nature of the LWI and EIT effects in
quantum systems might seem to be paradoxical, they
can in principle be thought of as parametric radiative
1063-780X/04/3007- $26.00 © 20595
processes, which have been investigated quite thor-
oughly for many decades. These investigations were
originally based on a theoretical model involving the
so-called three-level Λ scheme (see Fig. 1). In the Λ
scheme, the usual practice is to consider two high-fre-
quency (HF) electromagnetic waves with frequencies
close to the resonant frequencies of the transitions
|3〉−|1〉  and |3〉–|2〉 , which are coupled parametrically to
one another through oscillations (quantum coherence)
at a low-frequency (LF) transition |2〉–|1〉 . The state of
the LF transition can be determined by the action of
external sources and by the HF fields themselves; in the
latter case, a process like resonant scattering is usually
considered (see [1] for details]), in which one of the HF
waves is a control (pump) wave and the other is a test
(signal) wave. Bichromatic radiation in the LWI regime
or an HF test wave in the resonant scattering regime can
be amplified in the absence of inversion at any of the
transitions of the Λ scheme; in this case, the electrons

ω31 ω32

ω21

|3〉

|2〉

|1〉

Fig. 1. Three-level Λ scheme.
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transfer their energy to the electromagnetic field.
Strictly speaking, the EIT effect is simply the “thresh-
old” for the LWI effect. However, for the EIT effect in
the resonant scattering regime, the features of the prop-
agation of a test wave are so peculiar that this case is of
particular interest by itself (see [2–6]).

The parametric interaction of waves in an ensemble
of electrons executing cyclotron oscillations in a mag-
netic field was found to be a direct classical analogue of
the parametric wave interaction in an original quantum
system, so that, from the standpoint of the behavior of
the electromagnetic field, the quantum system and elec-
tron ensemble can be considered to be essentially
equivalent. The parametric cyclotron instability at two
harmonics of the cyclotron frequency that are coupled
to one another by premodulating the electron distribu-
tion function in the phases of cyclotron gyration at the
difference frequency (the difference in frequency
between the two harmonics) was found to be a classical
analogue of the LWI in its simplest form (in a Λ scheme
with the initially created LF coherence) [10]. The fea-
tures of propagation of the waves that correspond to the
features of the EIT effect were discovered theoretically
in [11, 12] for an electron cyclotron wave in a cold
plasma that is coupled parametrically to an electrostatic
mode by an electromagnetic pump wave.

Hence, it does seem certain that the LWI and EIT
effects are of a general physical nature, as is conven-
tional stimulated emission of radiation, which is
equally characteristic of quantum and classical systems
(see, e.g., [9]). In Section 2, we consider the features of
the LWI effect in a classical system using an inversion-
less cyclotron maser as an example. In Section 3, we
construct a theory of the EIT effect for electron cyclo-
tron waves in a high-temperature plasma.

2. INVERSIONLESS GENERATION 
OF CYCLOTRON RADIATION

2.1. Phenomenological Interpretation 
of the LWI Effect

In simplest quantum systems with LWI (i.e., in sys-
tems based on the principles of a Λ scheme with the ini-
tially created LF coherence) and in their classical ana-
logues, the inversionless amplification effect is in
essence the process of parametric interaction that
occurs between two coherent HF modes in an ensemble
of electrons whose distribution is modulated at the dif-
ference frequency and in the course of which, under
certain conditions, both of the modes are amplified,
rather than the energy being transferred from one mode
to another. In this case, the electron ensemble is inver-
sionless in the sense that it is stable against the genera-
tion of each of the HF modes (when, e.g., the propaga-
tion of one of the modes is forbidden by external elec-
trodynamic conditions).

In the simplest case, the interaction of two HF
modes in a medium with modulated electromagnetic
parameters is usually described by the reduced equa-
tions [13]

(1)

Here, E1, 2 are the complex amplitudes of the modes
with frequencies ω1, 2 and wave vectors k1, 2, δε is the
complex amplitude of the perturbation (with the fre-
quency Ω = ω1 – ω2 and wave vector κ = k1 – k2) of an
electrodynamic parameter of the medium, the constants
β1, 2 are determined by the linear mode dispersion, and
the quantities γ1, 2 account for linear dissipation. Equa-
tions (1) describe the known processes of three-wave
interaction involving a fixed-amplitude pump wave and
also the process of stimulated scattering of electromag-
netic waves by elementary perturbations of the
medium. In the first case, the modulation of the param-
eters of the medium, which ensures the parametric
interaction between the HF waves in question, is pro-
duced by a third wave, the evolution of which is
excluded from consideration. In the second case, the
nonlinear response of the medium at the difference fre-
quency is governed consistently by the action of the
fields involved in the scattering process and is not
affected by the third wave. In terms of Eqs. (1), the two
HF modes can be amplified simultaneously only when
the coefficients β1 and β2 have opposite signs. This
well-known case corresponds to waves with energies of
opposite sign. Otherwise, the simultaneous amplifica-
tion of two HF waves is forbidden by the Manley–
Rowe relation, which expresses the conservation law
for the number of quanta of HF radiation and is valid
for a system with an arbitrary reactive nonlinearity. In a
generalized sense, the LWI effect in both quantum and
classical systems is akin to the known three-wave inter-
actions but, at the same time, it differs radically from
the above processes. The main difference is in the vio-
lation of the Manley–Rowe relation. It is meaningful to
consider the LWI effect for two waves, neither of which
possesses the main property of waves with negative
energy [14], namely, their capability for amplification
in a system with linear dissipation in the absence of
parametric coupling. For waves with positive energy,
the possible simultaneous amplification of two para-
metrically coupled HF modes is described by formally
changing the sign of the right-hand side of one of
Eqs. (1) or by multiplying the right-hand sides of
Eqs. (1) by the imaginary unit (that these ways are
equivalent is evidenced by the replacement δε  iδε).
Gaponov-Grekhov and Tokman [10] noted that, in the
quantum Λ scheme, the LWI mechanism is the para-
metric interaction between the modes in a medium with
modulated conductivity (it is just this interaction that is
described by the equations in question). In this case, the
averaged (unmodulated) conductivity component can
be positive, which ensures the absorption of the modes
in the absence of parametric coupling; it is in this sense
that the system is inversionless.

β1Ė1 γ1E1+ δεE2, β2Ė2 γ2E2+ δε*E1.–= =
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To pursue the analogy between the quantum Λ
scheme and an ensemble of classical electrons, it is
convenient to consider the interaction of radiation with
particles under electron cyclotron resonance (ECR)
conditions. In this way, in the system of Landau levels,
which characterize the motion of an electron in a direc-
tion transverse to the magnetic field in the quantum
limit, the three-level “Λ-block” is singled out (Fig. 2)
and thereafter a limiting transition to the continuum is
made (see [10] for details). The frequencies of electro-
magnetic waves propagating transverse to the magnetic
field direction should be close to the electron cyclotron
harmonic frequencies N1ωB/γ and N2ωB/γ, where ωB is
the nonrelativistic electron gyrofrequency; γ is the rela-
tivistic factor; and N1, 2 = 1, 2, 3, …. For a classical sys-
tem, an analogue to the LF quantum coherence is the
modulation of the distribution function of the resonant
particles at the cyclotron-harmonic difference fre-
quency (N1 – N2)ωB/γ, in which case the Doppler reso-
nance condition [8] is satisfied for both HF waves
(ω1, 2 = N1, 2ωB/γ) and the beat wave (ω1 – ω2 = (N1 –
 N2)ωB/γ). The presence in the system of resonant par-
ticles, which produce the active response of the
medium to an HF action, ensures that two HF fields can
be amplified simultaneously, which contradicts the cus-
tomary Manley–Rowe relations. That the averaged
(unmodulated) conductivity component is positive
results from the fact that the energy spectrum averaged
over the period of modulation at the difference fre-
quency is decreasing in the energy range corresponding
to resonant particles.

An important difference from the Λ scheme was
found in the case in which the waves propagate
obliquely to the magnetic field, when the resonant
interaction is governed to a large extent by the Doppler
effect associated with electron motion along the mag-
netic field.

Investigations of the LWI effect in different versions
of an inversionless cyclotron maser [15, 16] showed
that, in classical systems (unlike in the known quantum
systems), inversionless amplification is possible even
when there are no particles that are in resonance with
the partial waves. In this case, the nature of the para-
metric mode coupling that would be adequate for
amplification is ensured by the “antiphase” modulation
of the responses of the electron ensemble to two differ-
ent individual modes (rather than by the modulation of
the conductivity of the medium). Note that, in this case,
an unmodulated electron ensemble constitutes a truly
reactive (i.e., dissipationless) medium; however, in a
medium with spatial or temporal dispersion, the modu-
lation of a certain parameter ultimately leads to a com-
plex response to a monochromatic action [17]. Conse-
quently, the situation in which the energy can be
exchanged between radiation and a reactive medium is
not in fact paradoxical. The principal reason why, in
such a system (in which, it seems, the Manley–Rowe
relations ought to be satisfied), two HF waves can be
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
amplified simultaneously is that the energy exchange
effect occurs within a finite time. In particular, this
effect can manifest itself in the initial stage of the relax-
ation of the induced scattering process to a steady state.

In this section, we consider one of the schemes for
inversionless generation of the cyclotron radiation.
Using this scheme, we illustrate all the main features of
the inversionless amplification regimes in a classical
system. We again emphasize that, although the consid-
eration of relevant processes often involves nonequilib-
rium systems (such as beams of charged particles), the
systems themselves are stable in their interactions with
monochromatic radiation. It is in this sense that they are
referred to as inversionless. Recall that, in comparison
with the traditional process of three-wave interaction,
the processes in the systems in which we are interested
here possess some specific features.

2.2. Basic Equations

We consider two plane waves propagating at an
angle to a constant magnetic field B = Bz0 (see Fig. 3)

ω2ω1

|3〉

|2〉

|1〉

n = n0 + N1

n = n0 + N1 – N2

n = n0

Fig. 2. Λ scheme in the system of Landau levels, in which

/2m = (n + 1/2)"ωB, with p⊥  the absolute value of the

particle momentum component transverse to the magnetic
field. The frequencies of the waves propagating transverse
to the magnetic field are equal to ω1, 2 = N1, 2/γ.

p⊥
2

k⊥

k1 k2

e B0

Fig. 3. Inversionless cyclotron maser operating at the first
harmonic of the gyrofrequency.
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and having the same transverse wavenumber but differ-
ent frequencies and different longitudinal wavenum-
bers:

Let the conditions of Doppler resonance at the first har-
monic of the gyrofrequency be satisfied for both of the
waves and for electrons having the momentum compo-
nents p||R = mcρ||R and p⊥ R = mcρ⊥ R:

where ωB = eB/mc, m is the rest mass of an electron, c

is the speed of light, γR = (1 +  + )1/2 is the rel-
ativistic factor, and β||R is the longitudinal velocity of
the resonant electrons in units of the speed of light. We
consider the interaction of the waves with an ensemble
of electrons whose longitudinal and transverse momen-
tum components, p|| = mcρ|| and p⊥  = mcρ⊥ , are close to
their resonant values. This electron ensemble is
described by the distribution function over “slow” vari-

ables, f (r, χ, θ, z, X, t ), where r = ρ|| – ρ||R, χ = /2 –

/2, θ is the phase of the electron cyclotron gyration,
and X is the transverse coordinate of the center of the
Larmor circle. We describe the distribution function by
the following reduced form of the Liouville equation
[10, 15]:

(2)

Here,

n||j = ck||j/ωj , rH = cρ⊥ R/ωB,  is the derivative of the
Bessel function, and αj = eEj/mc are the normalized
wave amplitudes. The wave amplitudes are also
described by reduced equations:

(3)

in which it is assumed that the wave vectors and wave
frequencies are related by the “vacuum” dispersion
relation. For simplicity, we consider the initial-value
problem (the corresponding boundary-value problem

E y0 Re E j ik ⊥ x ik ||jz iωjt–+( ).exp
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2
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G ρ⊥ R/γR( )J1' k ⊥ rH( ),=

J1'

∂α j/∂t 2πe/mc( )I j,–=
was discussed in [15]). In Eqs. (3), the amplitudes of
the resonant harmonics of the current are expressed in
terms of the distribution function as follows [10, 15,
18]:

(4)

The parametric coupling of the two waves in question
is ensured by premodulating the electron distribution
function in the longitudinal coordinate. The initial
modulation is specified to be

(5)

where κ = k||1 – k||2. At later times, the unperturbed dis-
tribution function differs from function (5) in the phase
of the modulated component, which has the form ϕM +
κz – cκβ||t = ϕM + κz – Ωt + ∆Mt, where Ω = ω1 – ω2 and

(6)

is the deviation from the phase synchronization of an
electron with the beat wave. The deviations from phase
synchronization with the individual HF waves are given
by the expressions

(7)

Let us solve kinetic equation (2) to first order in the
wave amplitudes. We consider an asymptotic solution
that corresponds to Landau’s circumvention rule and is
valid under the condition

, (8)

where the characteristic spread in deviations from
phase synchronization of the beam electrons with the
waves, 〈δ∆j 〉 , is determined by the distribution function.
We restrict ourselves to considering the time scales for
which the “ballistic relaxation” of the modulated com-
ponent of the distribution function can be ignored,

(9)

In order to satisfy conditions (8) and (9) simulta-
neously, it is necessary that, first, the modes be spec-
trally close to one another (ω1 ≈ ω2 ≈ ω) and, second,
the condition r |β||R – n||j | ! 〈δχ〉 /γR hold, which indi-
cates that the spread in deviations from phase synchro-
nization of the beam electrons with the waves is deter-
mined primarily by the spread in relativistic deviations
because of the dependence of these relativistic devia-
tions on the transverse momentum. As a result, taking
into account Eqs. (3) and expressions (4), we arrive at

I j ecG〈 χ r θf χ r θ z X t, , , , ,( )ddd∫=

× iθ– ik ⊥ X– ik ||jz– iωjt+( )〉exp X z t, , .

f in t = 0( ) f 0 χ r,( ) f M χ r,( ) κz ϕM+( ),cos+=

∆M Ω cκβ||– Ωχ/γR
2

cκr 1 β||R
2

–( )/γR–= =

∆ j ωj ωH– ck ||jβ||–=

=  ωj/γR( ) χ/γR r β||R n||j–( )+[ ] ∆ χ j ∆rj.+=

δ∆j〈 〉 t @ 1

∆Mt ! 1.
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the following equations describing the parametric
mode coupling:

(10)

The left-hand sides of these equations contain the stan-
dard coefficients determining the linear response of the
electron ensemble:

where the symbol P denotes the principal value of the
integral.

The right-hand sides of these equations describe the
parametric mode coupling due to the modulation of the
distribution function. The presence of the term f0(0, r)
in the integrand (as well as similar terms in the subse-
quent expression for the parametric coefficients) is
related to the method of finding the principal value of
the integral (by taking the integral by parts). The coef-
ficients with superscripts s are determined by the sym-

metric part of the distribution function, fM(r) = (r) +

(r), i.e., by the part satisfying the condition

(χ, r) = (χ, –r):

The coefficients with superscripts a are determined by the
antisymmetric part of the distribution function, i.e., by the

part satisfying the condition (χ, r) = – (χ, –r):

α̇1 Γ 0
iD

0
+( )α1+

=  – iϕM( ) Γ s
iD

s
+( ) Γ a

iD
a

+( )+[ ]α 2,exp

α̇2 Γ 0
iD

0
+( )α2+

=  – iϕM–( ) Γ s
iD

s
+( ) Γ a

iD
a

+( )–[ ]α 1.exp









Γ 0 2π2
e

2
G

2ω
mγR

------------------------- 1 n||
2

–( ) χ r f 0 χ r,( )
∂δ ∆χ( )

∂∆χ
-----------------,dd∫=

D
0 2πe

2
G

2ω
mγR

----------------------- 1 n||
2

–( ) χ r f 0 χ r,( ) f 0 0 r,( )–( ) P

∆χ
2

------,dd∫=

f M
s

f M
a

f M
s

f M
s

Γ s π2
e

2
G

2ω
mγR

---------------------- 1 n||1n||2–( ) χ r f M
s χ r,( )

∂δ ∆χ( )
∂∆χ

-----------------,dd∫=

D
s

=

πe
2
G

2ω
mγR

------------------- 1 n||1n||2–( ) χ r f M
s χ r,( ) f M

s
0 r,( )–( ) P

∆χ
2

------.dd∫=

f M
a

f M
a

Γ a
=

πe
2
G

2ω
mγR

2
------------------- 1 n||1n||2–( ) χ r f M

a χ r,( ) f M
a

0 r,( )–( )rdd∫=

× cκ 1 β||R
2

–( )t
P

∆χ
2

------– π
∂2δ ∆χ( )

∂∆χ
2

-------------------ω n||1 β||R–( )+
 
 
 

,

PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
2.3. Different Regimes of Inversionless Parametric 
Generation

According to Eqs. (10), the nature of the parametric
coupling and, accordingly, the amplification condition
and amplification mechanism for the HF modes under
consideration depend very strongly on the character of
the modulation of the distribution function. We can dis-
tinguish between the following two typical situations:

(a) The distribution function is modulated in the
transverse momenta, in which case it is assumed that

(r) = 0, whereas the symmetric part of the distribu-
tion function fM(χ) is nonzero. An important point is
that the deviations from synchronization ∆1 and ∆2,
given by formulas (7), oscillate in phase, thereby pro-
ducing similar responses to both of the HF fields. The
result is that, in the system, the bichromatic mode is
amplified and its amplitude grows exponentially
according to the law αj ∝ exp(µt). The amplification
condition has the form

This is just the regime of inversionless amplification via
the modulation of the distribution function of the reso-
nant particles. In this regime, the unmodulated compo-
nent of the distribution function is “uninverted,” so that
we have Γ0 > 0. The amplification of the two modes is
achieved by optimally modulating the conductivity to
stay in phase with the beatings of the HF modes. This
amplification is a direct classical analogue of the LWI
in the Λ scheme. In [10], such a generation regime was
illustrated by considering a somewhat different interac-
tion scheme as an example—one in which, first, HF
modes with frequencies close to the cyclotron harmonic
frequencies propagate across a constant magnetic field
and, second, an electron ensemble with an energy
spread is modulated at the difference frequency.

(b) The distribution function is modulated in the
longitudinal momenta, in which case it is assumed that

(r) = 0. In this situation, the deviations ∆1 and ∆2 in
formulas (7) oscillate in antiphase, because, for the
waveguide modes, the parameters β||R – n||j have oppo-
site signs. The responses of an electron ensemble to
both of the HF fields are also modulated in antiphase.
As a result, the corresponding bichromatic mode can be
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amplified in the system in such a way that its amplitude
grows exponentially according to the law αj ∝ exp(µt).
The amplification condition has the form

This condition can be satisfied, in particular, in a sys-
tem in which there are no particles that are in resonance
with HF waves (when Γ0 = 0). This is in fact the regime
of amplification in a reactive medium. Such amplifica-
tion is possible because deviations from phase synchro-
nization depend in a special manner on the momentum
components of the electrons: they are determined by
both the relativistic shift of the electron gyrofrequency
and the Doppler shift.

Note that a modulated ensemble whose electrons are
capable of interacting with waves in this amplification
regime can be formed according to the following
scheme. Let there be an initially monoenergetic beam
with a large pitch-angle scattering—a beam like those
produced by widely used magnetron injectors (for
waves propagating obliquely to the magnetic field, the
pitch-angle scattering plays the same role as the large
energy spread does for waves propagating perpendicu-
lar to the field). The electron distribution function is
modulated in longitudinal momentum in the short-term
interaction of the beam with the longitudinal pump field
E = Re[z0E0exp(iκz – iΩt)] within the preliminary sec-
tion, in which case the electron beam modulation
required for the onset of instability is already produced
in the linear stage of the interaction of the beam with
the pump field (see [15]).

The mechanism for energy exchange between a
bichromatic HF field and a modulated ensemble of non-
resonant particles was analyzed by two of us in [19]. In
order to ensure the take-up of energy from an electron
ensemble, it is necessary to correlate the motion of the
electrons with the spatial structure of the beat wave; it
is this correlation that is established between the elec-
tron ensemble premodulated in longitudinal velocity
and the bichromatic field in the above unstable regime.
An important point here is that such an amplification
regime can only occur in the presence of a magnetic
field. In the absence of a magnetic field, the only possi-
ble effect is conventional scattering because, in the
frame of reference of the modulation wave, the sum of
the mean energy of the oscillatory motion of a beam
electron and the energy of the slow motion of the guid-
ing center of its Larmor orbit is conserved [20].

Investigations of the mechanisms for the saturation
of LWI in a classical system, including estimates of the
generation efficiency (see [21, 22]), were made only for
the first of the above two instability mechanisms, which
is associated with the modulation of the distribution
function of the resonant particles. The most important
result of these studies is the conclusion that the “elec-
tron ensemble + electromagnetic field” system relaxes
to a steady state in which the energy spectrum does not
have a “standard” plateau shape [14] but instead is

D
a Γ 0

.>
declining. It should be noted that, during the generation
process, the energy of the electron ensemble decreases;
in the energy range corresponding to resonant particles,
the formed electron energy spectrum decreases more
rapidly with increasing energy than does the initial
spectrum. As for the ratio between the energy trans-
ferred from electrons to the HF field during its amplifi-
cation and the energy expended in premodulating the
beam, it is governed by the initial electron distribution
function. In [15], it was shown that, for quasi-monoen-
ergetic beams with a large pitch-angle scattering (like
those typically produced by conventional magnetron
injectors), the LWI effect can take place in the “linear”
LF modulation regime, when the energy of the electron
ensemble increases in proportion to the second power
of the amplitude of the modulating field. An analogous
situation can in principle occur in beams with an elec-
tron energy spectrum of finite width [10]. In such a sit-
uation, the electron energy converted into the field
energy can exceed the energy expended in premodulat-
ing the beam. The situation with beams with a mono-
tonically decreasing electron energy spectrum is radi-
cally different. In this case, the threshold for LWI can
only be achieved with LF modulation in the nonlinear
electron trapping regime, in which the averaged com-
ponent of the electron distribution function is inevitably
subject to considerable distortions (see [10]). The
results of the quasilinear theory developed in [22] lead
to the conclusion that, in such a generation regime, the
energy lost by the LF field in the modulating section is
several times higher than the energy transferred from
electrons to the HF field.

3. ELECTROMAGNETICALLY INDUCED 
TRANSPARENCY FOR ELECTRON CYCLOTRON 

WAVES IN A PLASMA

As was shown in [11, 12], the EIT effect in a classi-
cal system is a kind of so-called “dynamic damping.”
By this is meant the suppression of resonantly growing
oscillations of a harmonic oscillator at the expense of
its coupling to another oscillator (see, e.g., [23]). How-
ever, the dynamic damping is ordinarily ensured by a
linear coupling between two harmonic oscillators,
which leads to the growth of oscillations of the damp-
ing system at the frequency of the generalized driving
force. In the case at hand, the oscillators are coupled
parametrically by a pump wave; this results in the
growth of oscillations of the damping system at the beat
frequency. This is the main feature of the effect under
consideration.

In a distributed system, the role of such a “dynamic
damper” is played by a certain wave mode. It is clear
that the conditions for efficient parametric excitation of
this mode are governed by its dispersion properties.

Under ECR conditions in a plasma, resonant wave–
particle interaction can be suppressed by the parametric
excitation of, e.g., Langmuir waves. Let us consider the
EIT effect under ECR conditions in a magnetized
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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plasma by means of hydrodynamic theory. Despite the
conditional character of the hydrodynamic model, it
provides insight into the main features of the EIT effect
that are associated with the wave nature of the damping
subsystem.

We consider two circularly polarized waves propa-
gating along a constant external magnetic field B = Bz0
in a magnetized plasma. Let the electric field of the
waves rotate in the same direction that the electrons
gyrate around the magnetic field (in which case we are
dealing with extraordinary waves):

(11)

where e+ = 2–1/2(x0 + iy0) is the polarization vector of
the waves and (x0, y0, z0) are unit vectors along the axes
of a Cartesian coordinate system.

The oscillations of the transverse and longitudinal
(with respect to the constant magnetic field) compo-
nents of the electron velocity are described by the Euler
equations with allowance for the Lorentz force exerted
by the wave fields on the electrons:

(12)

Here, γ is the effective collision frequency, Ep is the
electric field in the plasma wave, p is the gas-kinetic
pressure, and Ne is the electron density. Equations (12)
should be supplemented with the continuity equation

(13)

and with the equation describing the excitation of the
electric field in the plasma wave,

(14)

where jz is the longitudinal component of the electron
current. Assuming that the ion density Ni is constant
and that the plasma is quasineutral,

(15)

we can reduce Eqs. (12)–(14) to the following set of
equations, which describes the excitation of longitudi-
nal collective oscillations by the ponderomotive force
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of the HF fields (assuming that the process under con-
sideration is adiabatic):

(16)

Here, n = Ne – N0 is the perturbed electron density, ωp =
(4πe2N0/m)1/2 is the electron plasma frequency, and
VT = (T/m)1/2 and T are the electron thermal velocity and
electron temperature.

We assume that the following synchronization con-
ditions are satisfied:

(17)

where ωL = ω1 – ω2 and kL = k1 – k2 are the frequency
and wave vector of the beat wave generated by a signal
wave and pump wave. The first of inequalities (17) indi-
cates that, for the signal wave, ECR conditions are sat-
isfied, so that its cyclotron absorption is possible in the
absence of a pump wave. The second inequality is the
condition for the excitation of plasma waves at the beat
frequency ωL. Finally, the third inequality is the condi-
tion that the spatial dispersion be weak.

Synchronization conditions (17a) and (17b) allow
us to apply the method of reduced equations, i.e., to
simplify Eqs. (12)–(14) by keeping only the terms with
resonant frequencies. It is important to note that, in
deriving the desired reduced set of equations, it is nec-
essary to account for the nonlinear component of the
transverse electron velocity that rotates in the same
direction that the polarization vector of an ordinary
wave advances (the direction of rotation of the electric
field in an ordinary wave is opposite to that of the Lar-
mor electron gyration). The reason is that, because of
the energy transfer to the collective degrees of freedom,
the resonant components of the electron velocity turn
out to be suppressed, so that taking into account this
nonlinear velocity component leads to significant cor-
rections, which, however, are not of fundamental
importance for our analysis. Having derived the
reduced set of equations, we can find the expression for
the effective refractive index of the plasma for a signal
wave [24]:

(18)
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ter, which is equal to the ratio of the squares of the
oscillatory and phase velocities of the pump field, and

Zp =  –  – 3  + iγωL. The equality Zp = 0 is
the standard dispersion relation for plasma waves in a
hydrodynamic approach. Expression (18) differs from
the corresponding expression obtained in [11, 12, 25]
for a cold plasma in that it contains corrections from
electron thermal motion.

We now discuss the features of the dispersion rela-
tion for a signal wave under EIT conditions in a “warm”
plasma. To do this, we represent expression (18) in the
form

(19)

ωL
2 ωp

2
kL
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VT

2

Z p N
2
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2
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Fig. 4. Dispersion relation of an electron cyclotron wave
under EIT conditions. The solid curves and dashed curves
are for ξEC = 10–3 and 0, respectively, and the triangles are
for Zp = 0 (n). The parameter values are as follows: ωp/ωB =

0.75, ω2/ωB = 0.2, γ/ωB = 2.5 × 10–3, and VT/c = 7.5 × 10–2.
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Fig. 5. Formation of the transparency window, Re(k1) > 0.
The parameters are the same as in Fig. 4.
where  = 1 – /[ω1(ω1 – ωB + iγ)] is the “linear”
refractive index of a cold magnetized plasma for a sig-
nal wave (see, e.g., [7]). The quantity ξEC is the small
parameter of the problem; for reasonable pump field
intensities (about 10–100 kW/cm2), the values of ξEC

are about 10–6–10–5. As a consequence, the dispersion
curves of the signal wave that are given by expression (19)
are close either to the linear dispersion curve of the sig-

nal wave, N2 = , or to the dispersion curve of the
plasma waves, Zp = 0 (which is, of course, displaced
along the corresponding axes by amounts equal to the
frequency ω2 of the pump wave and to its wave vector
k2). It is only in the vicinities of the points of intersec-

tion of the curves N2 =  and Zp = 0 that the dispersion
curves of the signal wave exhibit a different behavior:
they pass from one curve to another. These results are
confirmed by Fig. 4, which illustrates the results of
numerical calculations carried out using expression
(18). From this figure, we can see that the behavior of
the dispersion curves in the EIT region is in fact deter-
mined by the dispersion relation of the plasma waves.
In particular, some portions of the dispersion curves
correspond to a substantial slowing down of a signal
wave propagating with the group velocity (which is
also peculiar to a three-level quantum system) and even
to the vanishing of the group velocity (which is impos-
sible in a three-level quantum system).

The curves shown in Fig. 5 illustrate the absorption
of a signal wave under EIT conditions. It can be seen
that there exists a frequency range in which the reso-
nant absorption of the wave is suppressed; the fre-
quency at which the absorption is weakest corresponds
approximately to the point of the dispersion curve
where the group velocity is zero. Note that the thresh-
old pump wave amplitude  for the EIT effect is gov-
erned by dissipative processes (see also [11, 12]):

 = γ2/(ωpωB).

According to the hydrodynamic theory of a warm
plasma, expression (18) implies that, under EIT condi-
tions, the width of the transparency region, ∆ω, is deter-

mined by the relationship |(ω1 – ωB)ReZp| ≈ ,
which leads to the following expression for ∆ω:

(20)

This expression shows, in particular, that the transpar-
ency region in a warm plasma can be significantly
wider than that in a cold plasma, provided that the
plasma temperature is sufficiently high:

(21)

It is important to note that, under some conditions, the
width of the transparency region can be independent of
ξEC . Thus, for a pump field with an intensity of
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100 kW/cm2, this is the case when the plasma tempera-
ture is higher than 150 eV.

The above estimates of the main parameters of the
EIT “window” enable us to formulate at least the strict-
est (most pessimistic) requirements for achieving this
effect in a plasma. The restrictions on the maximum
allowable nonuniformities of the magnetic field B and
the density N0 follow from expression (20):

(22)

where δB and δN0 are the relative perturbations of B
and N0. For a pump field with an intensity on the order
of 10 kW/cm2, and for plasma temperatures on the
order of 1 and 10 keV, the values of δB and δN0 should
not exceed 1 and 5%, respectively, in which case the
characteristic dimension of the working region should
be about one meter (see [24]). It may be, however, that
a more detailed theory of EIT for an inhomogeneous
plasma slab will lead to less stringent restrictions.

Hence, the characteristic features of the EIT effect
in a plasma are governed by the dispersion properties of
the plasma waves. The behavior of the dispersion
curves in the EIT window is determined mainly by the
dispersion relation for the damping system (plasma
waves) and is essentially independent of the pump wave
intensity (which, however, should be higher than a cer-
tain threshold intensity). In other words, the EIT effect
occurs within a constant range of frequencies and wave
vectors of the signal wave and, at the same time, within
a fairly arbitrary interval of pump wave intensities; in
contrast, in the cold plasma approximation (as well as
in a three-level quantum system), the corresponding
range becomes narrower as the pump wave intensity
decreases. It should be noted that the most important of
the above features of the dispersion curves and of the
curve characterizing the absorption of a signal wave are
also provided by more thorough investigations of the
EIT effect by means of kinetic theory [24], which, in
addition, confirm the above estimates for the width of
the transparency region and for the maximum allowable
plasma inhomogeneity.

4. CONCLUSIONS

In conclusion, we discuss possible applications of
the systems considered above. The LWI effect in
ensembles of classical electrons can in principle be
used to convert LF monochromatic radiation into HF
nonmonochromatic cyclotron or undulator radiation. In
this case, depending on the properties of an electron
flow, the energy that is transferred from the electron
ensemble to the HF radiation can be both higher and
lower than the energy transferred from the LF wave to
the electrons. In any case, however, this method of
energy conversion is expected to be relatively insensi-
tive to the quality of the electron beam because of the
inversionless nature of the stimulated radiation under
consideration.

δB δN0 max ωBξEC/ωp( )1/2
kL

2
VT

2
/ωp

2
},,{∼,
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As regards possible applications of the EIT effect in
plasma physics and in electronics, it may be used, first
of all, for the purposes of spectroscopy. However, in
order to develop particular schemes for its implementa-
tion, it is necessary to construct an appropriate theory
of this effect with allowance for the inhomogeneity of
typical plasma objects.

Shvets and Wurtele [25] proposed utilizing the EIT
regime in compact plasma accelerators, in which case a
substantial slowing down of the propagation of the sig-
nal wave with the group velocity (a feature peculiar to
the EIT effect) may serve to compress electromagnetic
pulses. Instead of an HF pump wave, they proposed
using a magnetic undulator. Such a scheme provides the
possibility of increasing the efficiency of energy trans-
fer from the signal wave to the electrostatic oscillations,
but it is disadvantageous in that it significantly reduces
the range of the allowable values of the plasma param-
eters (because it is necessary to ensure that the plasma
frequency and the cyclotron frequency be close to one
another).

A report on this study was presented at the 30th
Conference on Plasma Physics and Controlled Nuclear
Fusion, Zvenigorod, 2003.
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Abstract—The acceleration of solar-wind protons in a current sheet in the Earth’s magnetotail, in which the
geomagnetic field lines reconnect, is investigated numerically using the dynamic current sheet model proposed
by S.I. Syrovatskiœ. The dynamics of current sheets in the Earth’s magnetotail is analyzed. In addition to the
known solutions, the solution describing a contracting current sheet is derived. The time evolution of the mag-
netic field structure in Syrovatskiœ’s model is calculated numerically. The energy spectrum of the protons that
are accelerated in the sheet by induction electric fields during rapid changes in the sheet topology is calculated
and analyzed. A study is made of proton acceleration up to the time when the current sheet ruptures in the course
of its evolution. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interest in the study of thin current sheets in the
Earth’s magnetotail has grown considerably in connec-
tion with observations made in recent years by the
Interball-1, CLUSTER, and GEOTAIL satellites [1–3].
The sheets occur on fairly long time scales and, pre-
sumably, evolve over time [4]. In the region of thin cur-
rent sheets in the near-Earth magnetotail, solar wind
protons that move around the Earth’s magnetosphere
can be accelerated from about 10 eV up to 1 MeV [5].
The formation of the current sheets is, as a rule, attrib-
uted to the reconnection of magnetic field lines [6]. In
the Petschek model [7, 8], however, the reconnection
process is explained without invoking the current sheet
concept and is considered as occurring in the regime of
anomalous plasma resistance. The formation of an infi-
nitely thin current sheet and its evolution were
described by S.I. Syrovatskiœ [6], who developed the
MHD reconnection model based on the theory of func-
tions of a complex variable. It should be noted that, in
the original Syrovatskiœ model, the current sheet was
treated in two-dimensional geometry. By now, how-
ever, comprehensive models of three-dimensional cur-
rent sheet configurations have been developed by the
theoreticians of Syrovatskiœ’s scientific school [9, 10].
Of course, in order to study the real effects occurring in
a current sheet of finite thickness, it is more expedient
to employ the kinetic theory of a current sheet [11, 12],
which provides a more exact description of such a sheet
than does the MHD model.

Syrovatskiœ and his collaborators [10, 13] have thor-
oughly investigated the phenomena that accompany the
rupture of a current sheet, in particular, the accompany-
ing acceleration of plasma particles by the induction
electric fields. The models constructed in Syrovatskiœ’s
1063-780X/04/3007- $26.00 © 0605
time [14] were based on fairly arbitrary assumptions
about the possible ways of describing the “rupture” or
“decay” of a current sheet (e.g., a ruptured current sheet
was described in terms of its two halves running away
from one another). In all the models, the problem was
actually reduced to that of studying the particle dynam-
ics in the vicinity of X lines (or, more precisely, hyper-
bolic null lines) under different assumptions regarding
the dynamics of the fields by which the lines are
formed. For a similar case, the energy spectrum of
accelerated particles was calculated analytically by
S.V. Bulanov and P.V. Sasorov [13]. In view of the
importance of such physical phenomena as the thin cur-
rent sheet, it is worthwhile to return to Syrovatskiœ’s
model in order to investigate another phenomenon—
the acceleration of particles over the entire course of
sheet evolution. As will be shown below, the evolving
current sheet may play a significant role in the acceler-
ation process, although there is no doubt that protons
are accelerated to the highest possible energies as the
sheet ruptures. The point is that all the relevant effects
are actually captured by the model itself and thus can be
described without making any additional arbitrary
assumptions. It should be noted that, as was shown by
Ya.K. Khodataev and V.M. Fadeev [15], Syrovatskiœ’s
model of a dynamic current sheet can be successfully
applied to analytical and numerical analyses of the par-
ticle acceleration process in the solar atmosphere. In
[15], a study was made of an oscillating current sheet
without allowance for the magnetic drift of the parti-
cles. In contrast, the objective of the present paper is to
consider an expanding current sheet and to describe the
acceleration of particles with allowance for their mag-
netic drift.
2004 MAIK “Nauka/Interperiodica”
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Hence, in the present paper, Syrovatskiœ’s model is
applied to numerically calculate the spectrum of pro-
tons accelerated in an evolving current sheet up to the
time when it ruptures. Calculations were carried out for
about 2 × 105 particles. The following assumptions
were used: The dissipation of the magnetic field energy
was assumed to be negligibly small [16, 17]. The mag-
netic field was assumed to be frozen in the plasma
everywhere except for the singular plane of the current
sheet. The evolution of a thin current sheet was
described in Syrovatskiœ’s MHD model (without the
onset of instability); i.e., corrections for kinetic effects
(including tearing instability) were ignored. (We note,
however, that, in some specific situations, these effects
should be taken into account in analyzing the dynamics
of the current sheets [18].) The criterion for the rupture
of a current sheet was derived analytically from the
MHD equations of Syrovatskiœ’s model. Since the solar
wind protons turn out to be accelerated to energies
(~100 keV) substantially higher than their initial energy
(~10 eV), the acceleration process was considered
under the assumption that the initial kinetic energy of
protons was zero. It was assumed that the magnetic
field of the accelerated protons was much weaker than
the characteristic magnetic field of the current sheet. It
was also assumed that the topology of the magnetic
field of an evolving current sheet was stable against
small perturbations associated with the magnetic field
of the accelerated protons.

In what follows, all dimensional formulas are writ-
ten in cgs units.

2. ANALYTIC INVESTIGATION 
OF THE DISTINCTIVE FEATURES

OF THE CURRENT SHEET DYNAMICS 
IN SYROVATSKIŒ’S MODEL

In Syrovatskiœ’s model [6], a current sheet is treated
as an infinitely thin structure; mathematically, this is a
cut in the complex plane. The magnetic field is assumed
to be strong, which corresponds to the conditions

(1)

where p is the gas-kinetic plasma pressure (in fact,
p ≈ 0), ρ is the plasma density, v  is the absolute value of
the plasma flow velocity, vA is the Alfvén velocity (vA =

|H |/ ), and H is the magnetic field frozen in the
plasma. We consider a two-dimensional planar plasma
flow. Such a flow is described by the vector potential of
the electromagnetic field that has only one nonzero
component, namely, the z component, which is
assumed to depend on time and on the coordinates x
and y: A = {0, 0, A(x, y, t)}. The plasma is assumed to
be perfectly conducting. In the coordinate system
adopted here, the sheet lies in the y = 0 plane and
expands in both directions of the x axis, the current in

p ! ρv A
2
,

v
2

v A
2

-------  ! 1,

4πρ
the sheet being directed along the z coordinate. The
complex coordinate is w = x + iy.

In order to calculate the acceleration of particles by
the sheet, it is necessary to know how the components
of the electric and magnetic fields depend on time and
coordinates. In Syrovatskiœ’s model, these components
are expressed in terms of the complex potential of the
vortex-free potential field [19]:

(2)

(3)

(4)

(5)

Here, Fpot(w, t) is the general complex potential
describing a given magnetic and a given electric field,
F0(w, t) is the complex potential of the initial magnetic
field at a hyperbolic null point from which the current
sheet originates, F(w, t) is the complex potential
describing the field of the current sheet, A(x, y, t) is the
z component of the vector potential, B(x, y, t) is a func-
tion harmonically conjugate to A(x, y, t) [19], A(t) is a
function determining the magnetic field that has annihi-
lated in the current sheet, w is the complex coordinate,
b(t) is the half-width of the sheet in the x direction, α is
the gradient of the initial hyperbolic magnetic field in
the vicinity of the null point, and the quantity Γ(t) deter-
mines the total current through the current sheet plane.
Syrovatskiœ’s model assumes that there may be reverse
currents at the ends of a current sheet, whereas the mag-
netic reconnection process in the Earth’s magneto-
sphere is most likely to occur in current sheets with no
reverse currents [20]. In the latter case, the quantity Γ(t)
has the form [6]

(6)

According to [16], the above assumption that the mag-
netic field does not dissipate its energy within the cur-
rent sheet (see the Introduction) is equivalent to the
condition
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In the general case in which A(t) ≠ 0, the half-width
of the current sheet in Syrovatskiœ’s model is described
by the equation [6]

(8)

where b∗  is a normalizing constant (below, it will be
taken equal to the Earth’s radius RE) and l0 is a constant
determined by the geometry of the closing current cir-
cuit. The function β(t) in Eq. (8) determines the electric
field at the null line of the hyperbolic magnetic field. In
the case in question, this electric field corresponds to
the external electric field E0 that initiates the develop-
ment of a current sheet. In the Earth’s magnetosphere,
this is the so-called “morning–evening” electric field
[21], which is driven by the solar wind flowing around
the magnetosphere. In Syrovatskiœ’s model [6], we have

(9)

where Eext(t) is the external electric field, which
depends generally on time. The constant l0 in Eq. (8)
can be approximately estimated by [16]

(10)

where LC is the characteristic spatial scale of the closing
current circuit. In what follows, it will be more conve-
nient to use the following representation for LC:

(11)

where l is the characteristic spatial scale of the closing
current circuit in units of the Earth’s radius RE.

The parameters α, β(t), and (t), normalized to
their values characteristic of the Earth’s magneto-
sphere, have the form

(12)

(13)

(14)

Here, a certain normalizing initial magnetic field
strength H0, characteristic of the system under consid-
eration, is defined in the complex plane on the basis of
formulas (3) and (11) as H0 = |H0(w, t) , and
f(t, τ) is a function describing the onset and develop-
ment of the external electric field E0. The rise time of
the electric field E0 in the magnetosphere is determined
by the induction effects (LR circuit) and, according to
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the estimates made in [22], does not exceed 15–20 min,
which is far less than the characteristic lifetime of a cur-
rent sheet (about 1–3 h). Hence, the fact that the rise
time τ is much shorter than the lifetime tmax of the cur-
rent sheet allows us to introduce the function describing
the evolution of the external electric field. This func-
tion, which should be smooth in the closed time interval
[0, tmax], and its first time derivative have the form [16]

(15)

Function (15) can be chosen to have another form,
which, however, will lead to essentially the same final
results. With allowance for relationships (9) and (13),
the evolution of the external electric field is described
by the expression

(16)

The resulting field of the current sheet is the sum of
external electric field (16) and the induction electric
field Ei(t), whose evolution, according to Eqs. (2) and
(4), is described by the equation

(17)

In what follows, for convenience in the numerical
calculations, we will denote by b(t) and w = x + iy the
dimensionless half-width of the current sheet and the
complex and Cartesian coordinates expressed in units
of RE, because the Earth’s radius RE is the characteristic
dimension of the problem: b(t)/RE  b(t), w/RE  w,
x/RE  x, and y/RE  y. In accordance with
Eqs. (4), (5), and (17), the dynamics of the electric and
magnetic fields is largely determined by the form of the

functions b(t) and (t). Hence, taking into account
relationships (6), (7), (10), and (11), we transform
expression (8) to obtain the following equation for the
half-width b(t) of the current sheet:

(18)

where e = 2.71828…. Equation (18) is a transcendental
equation from which it is possible to numerically calcu-
late the squared half-width of the current sheet b2(t).
However, some properties of the function b(t) can be
determined analytically. Substituting representations
(12), (13), and (15) for α, β(t), and f(t, τ), respectively,
into Eq. (18), we finally obtain

(19)

f t τ,( ) t
2

t τ+
----------, f˙ t τ,( ) t

2
2tτ+

τ t+( )2
------------------.= =

Eext t( ) E0 f˙ t τ,( ).=

Ei t( ) 1
c
---Re

∂F w t,( )
∂t

-------------------- 
  .–=

ḃ
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Equation (19) shows that the best way to work with the
time t is to nondimensionalize it to a certain time T
defined by the relationship

(20)

Setting t/T  t, τ/T  τ, and tmax/T  tmax, we
then reduce Eq. (19) to the form

(21)

In what follows, by τ0 and t0max we will mean the
dimensional equivalents of the corresponding dimen-
sionless times.

In order to analyze the properties of Eq. (21), we
consider the auxiliary function

(22)

which depends on the coordinate s and also on the
parameter t corresponding to the time in Eq. (21). The
notation in formula (22) is as follows:

(23)

(24)

(25)

The set of points at which function (22) with differ-
ent values of the parameter t intersects the abscissa
gives a one-to-one correspondence between the coordi-
nate s and the parameter t, consistent with the solutions
to Eq. (21).

T
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b
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e

b
2
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----------– 0.=
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Q
s
----ln U t( ),+=

s b
2
; b 0,>=

Q 4l
2
e,=

U t( ) t
2

t τ+
----------.–=

400

400
0

800

800

–400

Q/e Q

S1200

Y(s, 0)

Q/e

Fig. 1. Plot of the auxiliary function Y(s, 0).
Let us consider the function Y(s, 0),

(26)

This function behaves asymptotically as

(27)

(28)

It is easy to see that the function Y(s, 0) intersects the
abscissa not only at the point s = 0 (see formula (27))
but also, in accordance with formula (26), at the point
s = Q. This function then approaches minus infinity.

The extremes of the function Y(s, 0) are found by
equating its derivative with respect to s to zero:

(29)

Thus, from relationships (26) and (29) we readily see
that the function Y(s, 0) has only one extreme, namely,
the maximum Y(Q/e, 0) = Q/e at the point s = Q/e. In
accordance with the aforesaid, Eq. (21) initially has two
solutions, one of which corresponds to the intersection
of the function Y(s, 0) with the abscissa at the point s = 0
and the other corresponds to the intersection at the point
s = Q.

We now consider how the function Y(s, t) (22)
evolves over time t. The nonzero values of the function
U(t) correspond to the shifts of the auxiliary function
along the ordinate axis (Fig. 1). We can distinguish
between the following four cases:

(i) U(t) > 0 (only the second solution exists),

(ii) –  < U(t) ≤ 0 (both solutions exist),

(iii) U(t) = –  (the two solutions coincide, so that

only one solution exists), and

(iv) U(t) < –  (there are no solutions).

Under actual physical conditions, the function U(t)
takes on values from zero to –∞, which corresponds
to cases (ii)–(iv). The case in which Eq. (21) has two
solutions is of particular interest. The first solution is
the standard one and corresponds to an expanding cur-
rent sheet. It is this solution that was considered earlier
in [16, 20]. The second solution describes a contracting
current sheet and, of course, requires physical interpre-
tation. Let there be a thin current sheet produced by
some external action. If, at a certain instant, the sur-
rounding conditions turn out to be consistent with Syr-
ovatskiœ’s model, then, according to the second solu-
tion, the sheet should begin to contract. Such a specific
dynamics of a current sheet is theoretically possible and
requires a more detailed investigation. However, obser-
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PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004



NUMERICAL INTEGRATION OF THE EQUATIONS 609
vations show that, in the Earth’s magnetosphere, pro-
tons are accelerated by expanding current sheets. That
is why, in the present paper, the energy spectrum is con-
structed based on the standard solution. In accordance
with relationships (22) and (25), the dependence of the
function Y(s, t) on time t in Fig. 1 implies that, for the
standard solution, the squared half-width of the current
sheet cannot exceed the critical value Q/e, at which, in
addition, both solutions coincide. This conclusion is
confirmed by the numerical solution of Eq. (21) (see
Fig. 2a).

Now, using formula (24), we switch from the auxil-
iary function to the half-width of the current sheet. So,
the maximum value of b(t) is equal to

(30)

and the initial value of the second solution, which cor-
responds to a contracting current sheet, is

(31)

Using the equality U(tmax) = –Q/e, which holds for b =
2l, we can obtain an approximate estimate of the maxi-
mum lifetime of a current sheet from formulas (24) and
(25). To do this, we take into account the inequality
tmax @ τ and the approximate equality f(tmax, τ) ≈ tmax,
which follows from the first of formulas (15). As a
result, the maximum lifetime tmax turns out to be

(32)

To study the dynamics of the current sheet further,

we must determine its expansion rate (t). We differen-
tiate Eq. (21) to obtain

(33)

An analysis of the asymptotic behavior of the func-

tion (t) (33) at t  tmax,

(34)

shows that, when the sheet expands to its maximum
half-width b(tmax) = 2l, the expansion rate becomes infi-
nite, which corresponds to an explosive process: the
sheet ruptures in an explosive manner. This is con-
firmed by the numerical solution of Eq. (33). The
results of solving this equation numerically are illus-
trated in Fig. 2b, in which the dimensional expansion

velocity (t) of a current sheet is expressed in km/s.
Of course, such a solution results from the assumptions
made in the current sheet model adopted here. Before

the rupture of the sheet, the characteristic value of (t)
is about 10 km/s (Fig. 2b). Hence, an analytic examina-
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tion of the properties of Eqs. (21) and (23) shows that
the maximum half-width of a current sheet cannot be
greater than twice the characteristic spatial scale of the

closing current circuit. The functions b(t) and (t)
largely determine the dynamics of the electric and mag-
netic fields, whose components, according to Eqs. (2),
(4)–(7), and (16), have the form

(35)
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3. NUMERICAL INTEGRATION
OF THE EQUATIONS OF MOTION DESCRIBING 

THE ACCELERATION OF SOLAR WIND 
PROTONS IN A CURRENT SHEET
IN THE EARTH’S MAGNETOTAIL

Recall that the acceleration process is considered
here under the assumption that the initial kinetic energy
of test particles in a collisionless plasma is zero. Con-
sequently, there is no need to introduce the distribution
function of the particles over initial energies and it is
sufficient to consider the acceleration of freely moving
particles in crossed electric and magnetic fields. Since
the rest energy of a proton is approximately equal to
103 MeV, and since the maximum kinetic energy of
protons accelerated in the region of magnetic reconnec-
tion in the Earth’s magnetotail is about 1 MeV, the pro-
ton acceleration can be treated in the nonrelativistic
approximation (here and below, all the formulas are
written in dimensional form):

(39)

the initial velocity being

(40)

where r is the position vector in Cartesian coordinates,
ep and mp are the charge and mass of a proton, V is the
velocity vector of the accelerated protons, and E and H
are the vectors of the electric and magnetic fields of the
current sheet.

Thus, in order to construct the energy spectrum, it is
necessary to analyze how the kinetic energy of test
plasma particles (protons) increases from zero to a cer-
tain maximum value at which the particle leaves the
sheet and gets out of the acceleration process. In accor-
dance with the parameters of the problem, it is natural
to choose the sizes of the system to be on the order of
the characteristic spatial scale l of the closing current
circuit. The computation region is chosen to have the
form of a rectangular parallelepiped whose faces
extend from –l to l in the y and z directions and from
−2l to 2l in the x direction (in agreement with the fact
that the current sheet expands to a maximum half-width
equal to twice the characteristic spatial scale of the
closing current circuit).

Let the test particles within the parallelepiped be ini-
tially at the mesh points of a three-dimensional uniform
grid with the cell size lst = l/20. It is necessary to take
into account the fact that, because of the drift in crossed
electric and magnetic fields [23], the plasma flows with
the velocity Vd = c |E |/ |H | into the parallelepiped
through the faces that are parallel to the xz plane of the
current sheet. Thus, the particles on these faces of the
parallelepiped are assigned the corresponding values of
the initial velocity Vd(x, t) (with account taken of the
dependence of the plasma inflow velocity on time and
on the coordinates on the faces). The plasma inflow is
modeled as if the test particles above the faces of the

V̇ r t,( )
ep

mp

------ E w t,( ) 1
c
--- V r t,( )H w t,( )[ ]+ 

  ,=

V r t = 0,( ) 0,=
       

parallelepiped were initially at the mesh points of a
three-dimensional uniform grid identical to that within
the parallelepiped. The spectrum is constructed by col-
lecting the parameters of all the particles that escape
from the parallelepiped (without allowance for the
angle of escape). The effect of the magnetic field pro-
duced by accelerated protons on the current sheet is
ignored. The total number of accelerated protons is on
the order of 2 × 105.

The equations of motion were integrated numeri-
cally for the conditions of the Earth’s magnetosphere.
Accordingly, the parameters of the problem were cho-
sen to be as follows [21]: l = 10, lst = 0.5 [21], E0 = 2 ×
10–4 V/m [11], and H0 = 30 nT [5]. For these parameter
values, the characteristic time T (20) is about T ≈ 25 s,
so that we have τ ≈ 12 for τ0 = 300 s [5]. With these
input values, parameters (30)–(32) are equal to lmax =
20, l2 ≈ 33, tmax ≈ 400, and t0max ≈ 104 s.

The dynamics of the magnetic field topology in a
current sheet is shown in Fig. 3, which illustrates the
results of a numerical analysis carried out for the con-
ditions of the Earth’s magnetosphere in Syrovatskiœ’s
model. The magnetic field lines are labeled by the
numerical values of the vector potential of the electro-
magnetic field in units of T m. The typical trajectories
of the particles accelerated by this evolving electro-
magnetic field are presented in Figs. 4 and 5.

The main result of the analysis of the energy spec-
trum of protons accelerated by a current sheet is the fol-
lowing: as is seen in Fig. 6, the spectrum consists of two
parts separated by a minimum. The low-energy part of
the spectrum corresponds to particles with energies
lying in the range 10 eV < E < 1 keV and obeys a power
law, E–(κ + 1), where κ ≈ 4.7. The high-energy part of the
spectrum corresponds to particles with energies in the
range 1 keV < E < 100 keV. The characteristic proton
energy corresponding to the maximum concentration of
protons in the high-energy part of the spectrum is about
5 keV (Fig. 6). The question naturally arises of how to
explain the simultaneous presence of two very different
populations of accelerated particles.

First, we can see from Fig. 4, which shows a repre-
sentative trajectory of a low-energy particle an its pro-
jections onto the faces of the simulation box, that the
low-energy particles escape predominantly through the
side faces. That the plot has a striped structure stems
from the specific features of numerical simulations: the
initial positions of the particles are the mesh points of a
three-dimensional uniform grid with the cell size lst =
0.5, in which case the particles are only slightly dis-
placed along the z coordinate. Second, we can see from
Fig. 5, which shows a representative trajectory of a
high-energy particle and its projections onto the faces
of the simulation box, that the high-energy particles
escape predominantly through the front face in the
immediate vicinity of the ecliptic plane or, equivalently,
the plane of the current sheet.
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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Fig. 3. Magnetic field topology at the times t = (a) 0, (b) 1000, (c), 3000, and (d) 9000 s. In this and other related figures, the mag-
netic field lines are labeled by values of the vector potential of the electromagnetic field in units of T m.
Hence, we see that the protons are accelerated by
two different mechanisms. Low-energy protons are
accelerated at the expense of drift in crossed electric
and strong magnetic fields (the drift velocity being Vd =
c|E|/|H|), while high-energy protons are accelerated by
the electric field in the region of a weak magnetic field.

Let us examine the time dependence of the induc-
tion electric field in the plane of the current sheet. We
choose a point x1 on the x axis and consider how the
electric field at this point will change over time. When
the boundary of the current sheet approaches the cho-
sen point, the electric field becomes maximum. Then,
for b(t ≥ t1) ≥ x1, the field becomes equal to E0; i.e., we
have Ei = 0 (Fig. 7a). From Fig. 7a, which illustrates the
dynamics of the magnetic field strength |H(w, t)|, we
can see that, as the boundary of the current sheet
approaches the point x1, the magnetic field decreases to
zero at b(t1) = x1 and then, at b(t > t1) > x1, it increases.
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Hence, high-energy protons are accelerated predomi-
nantly at the ends of an expanding current sheet. More-
over, the closer the half-width of the sheet to its maxi-
mum possible value b = 2l, the higher the energy to
which the protons are accelerated at the sheet ends
(Fig. 7b). In fact, let us consider the asymptotic behav-
ior of the electric and magnetic fields at t  tmax for
the maximum possible value of the dimensionless coor-
dinate on the x axis, x1 = 2l, in the plane of the current
sheet. Relationships (33)–(35) obviously yield

(41)

Ez x1 = 2l t,( )
t tmax→
lim Ez x1 = 2l t,( )

b t( ) 2l→
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=  

2l 4l
2

b
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----------------------------------------ln
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b t( )
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----------------------------------------------
b t( ) 2l→
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Fig. 4. (a) Representative trajectory of a proton slightly accelerated in the current sheet and the projections of this trajectory onto
the (b) yz, (c) xz, and (d) xy planes. The dots show the points where low-energy protons escape from the acceleration region.
in which case the computations show that the following
relationship is valid:

. (42)

In turn, formulas (36) and (37) yield

(43)

Vz Ez w t,( ) td

0 t tmax< <

tmax

∫ ∞≠∼

Hx x1 = 2l t,( )
t tmax→
lim Hy x1 = 2l t,( )

t tmax→
lim=

=  H x1 = 2l t,( )
b t( ) 2l→

lim 0.=
Hence, formulas (41) the (43) show that, at the bound-
ary x1 = 2l of the current sheet, the electric field
approaches infinity as t  tmax, while the magnetic
field approaches zero (see Fig. 7c). This behavior of the
electric field is explained by the fact that, for b(tmax) =
2l, the current sheet ruptures in an explosive manner. Of
course, in an actual sheet, the electric field cannot
become infinite; however, by the time when the sheet
ruptures, the electric field increases to a finite but fairly
high value. Thus, it is because of the assumptions
made in constructing the current sheet model that the
electric field approaches infinity in accordance with
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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Fig. 5. (a) Representative trajectory of a proton accelerated in the current sheet to a high energy and the projections of this trajectory
onto the (b) yz, (c) xz, and (d) xy planes. The dots show the points where high-energy protons escape from the acceleration region.
formula (41). Since integral (42) converges, these
model assumptions are quite justified.

The maximum energy to which the protons can be
accelerated by the current sheet under consideration is
estimated to be about 280 keV. This numerical estimate
was obtained in simulating the acceleration of particles
in the plane of the current sheet in the electric field
Ez(x = 2l, t) = Ei(x = 2l, t) + Eext(t), which is the sum of
the induction field and the morning–evening external
field and in which Ei > Eext (see expression (35)), the
magnetic field being ignored (|H | ≈ 0).
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It should be noted that spectra like that shown in Fig. 6
have not been observed experimentally in the Earth’s
magnetotail. The reason is that satellites measure the
spectra of the entire flux of protons accelerated in the
magnetotail rather than the spectra of protons acceler-
ated by a particular individual current sheet. The entire
proton flux consists of protons accelerated by a host of
current sheets that have reached different stages of
development and have originated at somewhat different
conditions. In contrast, in the present paper, a study is
made of the spectrum of particles accelerated by an infi-
nitely thin individual current sheet that is assumed to
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originate at certain average characteristic initial condi-
tions and whose evolution is traced from a zero initial
time at which it begins to expand, b(t0 = 0) = 0. More-
over, not all of the actual current sheets can be approx-
imately described as being infinitely thin. In addition, it
is necessary to take into account the fact that the result-
ing proton energy spectra measured by satellites are
contributed not only by the expanding current sheets
but also by the current sheets that are already in the
stage of rupture [13], during which protons are acceler-
ated to higher energies than in the expansion stage. In
[24–26], it was shown that an average statistical, exper-
imentally observed energy spectrum consists of two
parts: a Maxwellian part (in an energy range of 100 eV <
E < 10 keV) and a power-law part (in an energy range
of 10 keV < E < 1 MeV)—the so-called kappa distribu-
tion. Hence, the spectrum calculated here (see Fig. 6)
determines the contribution that a sufficiently thin
expanding current sheet described in Syrovatskiœ’s
model makes up to the time when it ruptures to the aver-
age statistical energy spectrum of the accelerated pro-
tons. It can also be expected that spectra like that shown
in Fig. 6 will be observed in experimental investiga-
tions of the acceleration of protons by individual cur-
rent sheets modeled under laboratory conditions.

10–2
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n/∆E, keV–1

E, keV10–1 100 101 102
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100

10–2

101

102

Fig. 6. Energy spectrum of the accelerated protons. Here,
n = ∆N/N, where ∆N in the number of protons with energies
that lie in a given interval ∆E and N is the total number of
accelerated protons. The energy interval ∆E is chosen so
that, on a logarithmic scale, the lengths of the intervals are
the same.
4. CONCLUSIONS

It has been shown that the numerical solution of
transcendental equations (21) and (33) for the half-
width b(t) of the current sheet and for its expansion rate

(t) by using Syrovatskiœ’s model confirms the exist-
ence of two solutions corresponding to an expanding
and a contracting current sheet.
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Fig. 7. Time evolution of the strengths of the (1) electric and
(2) magnetic fields at the points with the following coordi-
nates in the current sheet plane: (a) x1 = 18.5, y1 = 0; (b) x1 =
19.3, y1 = 0; and (c) x1 = 20, y1 = 0.
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The particle acceleration in a current sheet was sim-
ulated numerically for an expanding sheet, because it is
such sheets that are observed experimentally in the
Earth’s magnetotail. The calculated energy spectrum of
the accelerated protons consists of two parts, separated
by a minimum. The first part is a power-law function
and corresponds to low-energy protons, while the sec-
ond corresponds to high-energy protons.

The fact that the spectrum consists of two parts indi-
cates that protons are accelerated in two regimes: low-
energy particles are accelerated at the expense of drift
in the crossed electric and strong magnetic fields, while
high-energy particles are accelerated by the electric
field in the region of a weak magnetic field.

The numerical solution of Eqs. (21) and (33), which
is required, in accordance with formulas (35)–(37), to
analyze the dynamics of the electric and magnetic fields
of a current sheet, shows that, in the plasma regions that
form at both ends of an expanding sheet, the magnetic
field is weak but the induction electric field is the stron-
gest. This indicates that high-energy protons are accel-
erated predominantly at the ends of an expanding cur-
rent sheet.

Although the energy spectrum of the accelerated
protons that was calculated numerically in the present
paper has not been observed directly in the Earth’s
magnetotail, it nevertheless determines the contribution
that the expanding thin current sheet described in Syro-
vatskiœ’s model makes over the entire course of its evo-
lution (up to its rupture) to the average statistical energy
spectrum observed experimentally by satellites. Nota-
bly, it may be expected that the energy spectrum of pro-
tons accelerated in an individual thin current sheet in
laboratory experiments will be similar to the spectrum
calculated in the present paper.
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Abstract—A relativistic runaway electron avalanche in air is simulated numerically by the Monte Carlo
method with allowance for a large number of elementary processes involving electrons, positrons, and photons.
The characteristic time scale of the avalanche amplification is calculated as a function of the overvoltage δ rel-
ative to the minimum value of the drag force between the electrons and the atomic particles of the medium. The
dynamics of the formation of the electron energy distribution is investigated. The steady-state mean electron
energy depends weakly on δ. Over a wide range of δ values, there exists a universal electron energy distribution,
which is essentially independent of δ. The angular distributions of electrons integrated over energies, as well as
the angular distributions for different energy groups, are calculated. Analytic approximations for the energy and
angular distributions are obtained. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In order to explain the nature of penetrating radia-
tion pulses recorded during thunderstorm activity in the
Earth’s atmosphere and the nature of optical phenom-
ena observed above the thunderstorm clouds, Gurevich
et al. [1] proposed a mechanism that governs the devel-
opment of high-altitude atmospheric discharges and is
based on the idea of a relativistic runaway-electron ava-
lanche (RREA). The avalanche development is charac-
terized by the time and spatial scales te and le = tec
(where c is the speed of light) of the e-fold avalanche
enhancement. These scales play a fundamental role in
the physics of gas breakdown by relativistic runaway
electrons (REs), because the quantity 1/le is an ana-
logue of the first Townsend ionization coefficient αT in
the relativistic energy range. At present, two
approaches to calculating the time scale te have been
developed. One of these is based on the numerical solu-
tion of the kinetic equation (KE) [2–8] that was first
derived by Roussel-Dupre et al. [2] and contains an ion-
ization integral that describes the kinetics of the pro-
duction of high-energy secondary electrons. The other
approach is based on direct statistical modeling by the
Monte Carlo (MC) method [4, 6–10]. A comparison of
the most recent results obtained by both of these
approaches was carried out in [6–8]. Agreement
between the results obtained by solving the KE and MC
simulation results was achieved by refining the KE so
that it could better describe the kinetics of two second-
ary electrons after an ionization event. When the accu-
racy of the approximation of the ionization integral in
the azimuthal angle was improved, the results obtained
by different scientific teams using independently gener-
1063-780X/04/3007- $26.00 © 20616
ated numerical codes based on KE and MC methods
were found to be in good agreement with each other.
The only exception was the results obtained by the
ELIZA MC code, developed at the All-Russian
Research of Experimental Physics [11]. The code, into
which the electric field was introduced to provide a cal-
culation of the RREA kinetics [6–8], was found to yield
far larger values of the time scale te. According to [7, 8],
the reason for this disagreement is the following. The
ELIZA code is intended for solving problems of the
combined transport of electrons, positrons, and photons
with allowance for all relevant elementary processes
that are described in terms of the corresponding cross
sections. In contrast, in the other approaches, including
the simplified MC (SMC) method, account is taken
exclusively of ionizing and elastic collisions of elec-
trons with atomic particles and, moreover, the average
effect of weak ionizing collisions is taken into account
by the drag force. Gurevich et al. [12] believed that, for
ε ≥ 5 MeV, the bremsstrahlung drag is dominant and
thus proposed to take into account the radiative compo-
nent of the drag force. Note, however, that the
bremsstrahlung process is incorporated into the ELIZA
code; moreover, radiative losses in air become compara-
ble to ionization losses only at electron energies close to
85 MeV [13], which, according to the MC calculations
of RREA, are never achieved in practice. In this connec-
tion, it is worth noting that, for actual fields during thun-
derstorm activity in the Earth’s atmosphere, the proba-
bility of an electron reaching an energy equal to the sec-
ond root (in fact, the third root in the relativistic range
[14]) of the equation [12]

(1)eE F ε( ),=
004 MAIK “Nauka/Interperiodica”
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is extremely low. In Eq. (1), –eE is the electric force
exerted on an electron and F(ε) is the net drag force
describing the average effect of ionizing and radiative
interactions between electrons and atomic particles.

In the present paper, we point out the reason for the
above disagreement (this is merely a Corrigenda mis-
take made in incorporating the electric field into the
ELIZA code) and present the results of new calcula-
tions of the RREA rates carried out using the ELIZA
code for air at a pressure of P = 1 atm and for the same
three values as in [6–8] of the overvoltage δ = eE/Fmin
relative to the relativistic minimum value of the drag
force, equal to Fmin = 2.18 keV/cm for P = 1 atm [1, 2,
13]. We analyzed the dependence of the RE number on
time and on the overvoltage δ. The RE energy and
angular distributions were calculated. The process of
relaxation of the RE energy distribution was investi-
gated. We also calculated the enhancement time scale te

as a function of the overvoltage δ over a wide range of
the δ values that are of interest for the problem of the
breakdown by relativistic REs.

2. DESCRIPTION OF THE CALCULATION 
METHOD (THE ELIZA CODE)

The calculation method implemented in the ELIZA
code is intended to solve the following time-dependent
linear Boltzmann equations by the MC technique:

(2)

where f l(r, e, t) is the distribution function of the parti-
cles of species l over energies ε and directions w (e =
εw; v l = v lw) at the time t and at the spatial point r, v l

is the particle velocity, σl(r, ε) is the total interaction
cross section, the kernel Kl 'l(r; e'  e) describes tran-
sitions due to interactions in which particles of species
l are produced, and the term gl(r, e, t) describes the
source of particles of species l.

The recently developed second version of the
ELIZA code (its first version is described in [11]) is
based on new libraries of the cross sections for the
interactions of photons, electrons, and positrons with
matter, including new data on the relaxation of atomic
shells. These libraries were compiled using the
EPDL92 library [15], the EEDL92 library for electrons
[16], and the EADL92 library for the relaxation of
atomic shells [17], which are disseminated by the Inter-
national Atomic Energy Agency (IAEA) [18], as well
as using the literature data on the cross sections for
interaction processes involving electrons and positrons.

In the second version of the ELIZA code, the fol-
lowing interaction processes are taken into account: the

∂ f
l r e t, ,( )

∂t
-------------------------- vl ε( )∂ f

l r e t, ,( )
∂r

--------------------------+

+ σl r e,( )v
l ε( ) f

l r e t, ,( ) f
l ' r e' t, ,( )

l '

∑∫=

× σl ' r ε',( )v
l ' ε'( )K

l 'l r; e' e( )de' g
l r e t, ,( ),+
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interactions of photons with matter include incoherent
(Compton) scattering with allowance for the binding of
electrons in the atom, coherent (Rayleigh) scattering,
photoabsorption accompanied by the emission from the
atom of fluorescent photons and Auger electrons, the
production of electron–positron pairs and triplets. The
interactions involving electrons are elastic scattering by
nuclei, the ionization and excitation of atomic shells,
and bremsstrahlung. Finally, for positrons, the pro-
cesses included are elastic scattering by nuclei, scatter-
ing by free electrons, bremsstrahlung, and two-photon
annihilation.

Since new cross-section libraries were used in the
second version of the ELIZA code, the description was
refined of the processes of Compton scattering, Ray-
leigh scattering, the production of electron–positron
pairs and triplets, the elastic scattering of electrons and
positrons by nuclei, and electron and positron
bremsstrahlung and new numerical models of these
physical processes were developed. The photoabsorp-
tion process was modeled separately for the following
nine atomic subshells: K, L1, L2, L3, M1, M2, M3, M4,
and M5. A new model of atomic shell relaxation was
developed with allowance for all transitions to these
subshells, accompanied by the emission of all the fluo-
rescent photons and Auger electrons that are produced
in these transitions. In the first version of the ELIZA
code, the ionization of an atom by an electron was
described as electron scattering by free electrons, the
scattering cross section being calculated from the
Meller formula (see [13]). In contrast, in the second ver-
sion, the ionization of each of the above subshells is
treated separately; moreover, these ionization processes,
as well as the photoabsorption processes, are simulated
with allowance for the relaxation of atomic shells. We
also take into account the excitation of atomic shells by
electrons—a process that was not included in the first
version, in which the excitation of atoms was taken into
account in calculating the mean electron energy losses.

In order to provide the possibility of computing the
RREA development rate, we included in the second
version of the ELIZA code the external electric field in
the following way: For each section of the trajectory of
a charged particle (an electron or a positron), the code
solves the vector equation

(3)

where p is the relativistic momentum of the particle, e
is the electric charge, E = E(r) is the electric field vec-
tor, and r is the position vector of a point in space.

Some transformations in the spherical coordinate
system

dp
dt
------ eE,=

px p θ ϕ,cossin=

py p θ ϕ,sinsin=

pz p θcos=




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reduce vector equation (3) to the set of equations
(4)

dp
dt
------ eExα 1 µ2

– eEy 1 µ2
– 1 α 2

– eEzµ,+ +=

dµ
dt
------

–eExαµ 1 µ2
– eEyµ 1 µ2

– 1 α 2
–– eEz 1 µ2

–( )+
p

----------------------------------------------------------------------------------------------------------------------------------,=

dα
dt
-------

eEx 1 α 2
–( ) eEyα 1 α 2

––

p 1 µ2
–

-------------------------------------------------------------------,=












where µ = cosθ is the cosine of the angle between the
direction of the electric force exerted on an electron and
the direction w of the electron motion, α = cosϕ, and
(Ex , Ey , Ez) are the components of the electric field vec-
tor E.

For a constant electric field directed along the z axis
(E = Ez), Eqs. (4) take their simplest form:

(5)

Replacing differentiation over time t with differenti-
ation along the trajectories, ds = cβdt (where β is the
ratio of the velocity of an electron or a positron to the
speed of light Ò), yields

(6)

The relationship between the increment in the
kinetic energy of a particle and that in its momentum,
dε = βcdp, makes it possible to replace the momentum
equation in set (6) by the energy equation

(7)

Setting p = p0, β = β0, and µ = µ0 at the initial point of
the trajectory section allows us to integrate the second
of Eqs. (6) in quadratures:

(8)

dp
dt
------ eEzµ,=

dµ
dt
------

eEz 1 µ2
–( )

p
----------------------------,=

α const.=







dp
ds
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eEzµ
cβ

------------,=

dµ
ds
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eEz 1 µ2
–( )

pcβ
----------------------------,=

α const.=


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



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dε
ds
----- eEzµ.=

µt = 
A 1 µ0+( ) 1 µ0–( )–
A 1 µ0+( ) 1 µ0–( )+
-------------------------------------------------, A = 

2eEzs
p0cβ0
--------------

 
 
 

.exp
For an external electric field directed along the z
axis, Eqs. (2) for electrons and positrons is reduced to

(9)

where the superscript plus and minus signs indicate
positrons and electrons, respectively.

When including the external electric field in the sec-
ond ELIZA version in order to perform the RREA sim-
ulations whose results were published in [6–8], a corri-
gendum was made, namely, the longitudinal electric
field component in Eqs. (7) and (8) was set to be
Ez = E |µ|. Therefore, the electric force exerted on elec-
trons and positrons turned out to be lower on the aver-
age by 15–20%. After this mistake was eliminated, a
new series of simulations with the second version of the
code was carried out, the results of which will be pre-
sented in the next section.

3. CALCULATED RESULTS
The simulations were performed for air at atmo-

spheric pressure, the formulation of the problem being
the same as that in [6–8]. It was assumed that, at the ini-
tial instant, a monoenergetic beam containing N(0)
electrons with the kinetic energy ε0 is injected along the
electric force. The computations were performed for
two substantially different values of ε0: 2 and 10 MeV.
The number N(0) of electron trajectories to be traced
numerically was chosen in such a way that the statisti-

∂ f
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Table 1.  Characteristic time scale te [ns] for avalanche amplification in air at P = 1 atm

Angular electron scattering Ignored Accounted for

Overvoltage δ = E [kV/cm]/2.18 2 5 8 2 5 8

KE Symbalisty et al. [4, 5] 161 34.4 18.9

MigDesk code [6–8] 98 31 16.3 197 39.9 21.2

MC Lehtinen et al. [10] 174.4 33.2 17.3

SMC [6–8] 77.6 20.8 11.2 200 35.6 18.6

ELIZA code [6–8] 107 28 15.8 440 54 27.5

New results 81 20.1 10.7 189.7 34.3 17.8
cal errors in calculations did not exceed 1–2%. The tra-
jectories of the electrons were followed until their ener-
gies became as low as ε = 1 keV. Although the number
of the generated electrons with energies below the run-
away threshold εth, which is defined to be the second
root of Eq. (1) [12, 14], is very large, they relax to ther-
mal energies so rapidly that their contribution to the
RREA can be ignored. The time dependences of the
number N(t) of REs for different values of the overvolt-
age δ are the results of simulations. The time scale of
the RREA enhancement was calculated from the linear
portion of the dependence ln[N(t)/N(0)] as follows:

(10)

Table 1 compares the results of the new calculations
of te for three different δ values with the results pub-
lished earlier in [6–8, 10]. It may be seen that the above
considerable disagreement between the results
obtained from the ELIZA code and those from other
codes, based on the MC and KE methods, is eliminated.
The substantial discrepancy that remains between the
results calculated by the MC and KE methods without
allowance for angular electron scattering is most likely
attributed to differences in the methods themselves.

Figure 1 and Table 2 show the time scale te(δ) calcu-
lated by using the ELIZA code with and without allow-
ance for angular electron scattering in the range of the
overvoltage values of practical interest, δ ∈  [1.3, 14].
Recall that the value δ ≈ 14 corresponds to conventional
gas breakdown by electrons with energies close to the
ionization energy threshold in air. The fact that te

increases rapidly (up to 8905 ns) as the value δ = 1.3 is
approached presumably indicates that the value δ = 1.3
is close to the critical overvoltage below which the REs
are not generated; as a result, this value of the time scale
te can be grossly erroneous.

Over broad ranges of δ values, the dependence te(δ)
can be approximated with an accuracy of 5% by the fol-
lowing expressions:

(11)

te t/ N t( )/N 0( )[ ] .ln=

te ns[ ] 7.11/δ0.441( ), δexp 2 10,[ ]∈=
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for a dependence calculated with allowance for angular
electron scattering and

(12)

for a dependence calculated without allowance for
angular electron scattering.

Figure 2 shows the dependence ln[N(t)/N(0)] calcu-
lated for ε0 = 2 MeV and for three different values δ ≥ 2
of the overvoltage. We can see that the time during
which an RREA achieves the exponential mode in

accordance with the relation ln[N(t)/N0] ≈ const is

several times shorter than the corresponding character-
istic time scale te(δ).

We also investigated how the RREA dynamics
depends on the initial kinetic energy ε0 of the electrons.
The results of the relevant simulations carried out for

te ns[ ] 6.35/δ0.475( ), δexp 3 10,[ ]∈=

∂
∂t
-----

4

10

20 6 8 10 12 14

100

1000

1

1
2
3
4
5
6
7
8

te, ns

δ

Fig. 1. Time scale of the e-fold avalanche enhancement in
air at P = 1 atm versus overvoltage. Shown are the results
calculated (1) without and (2) with allowance for electron
scattering, the results obtained (3) by Lehtinen et al. [10]
and (4) by Symbalisty et al. [4, 5], (5) the results from the
MigDesk code [7], (6) the results calculated by the SMC
method [7], (7) the results calculated by the SMC method
[7] without allowance for electron scattering, and (8) the
results calculated with the MigDesk code [7] without allow-
ance for electron scattering.
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the initial energies ε0 = 2 and 10 MeV are illustrated in
Figs. 3 and 4. For the considered energies, 2 and
10 MeV, the avalanches were found to exhibit different
behavior at low overvoltage values δ ≤ 2; moreover, the
higher the energy ε0, the shorter the time after which the
avalanche grows exponentially (see Fig. 3). For δ < 2,
this time increases as δ decreases; moreover, the curves
calculated for δ = 1.3 (see Fig. 4) imply that only elec-

Table 2. Characteristic time scale te [ns] for avalanche am-
plification in air at P = 1 atm as a function of the overvoltage
δ according to calculations with the ELIZA code

δ
Electron scattering

ignored accounted for

1.2 – 491

1.3 8905 –

1.4 1236 201

1.5 696.4 –

1.6 447.2 133

1.8 270.1 99.3

2 189.7 81.0

2.5 109.8 –

3 77.6 41.4

4 47.5 27.1

5 34.3 20.1

6 26.4 15.7

7 21.3 12.8

8 17.8 10.7

10 13.3 8.0

12 10.45 6.36

14 8.56 5.48

0.5

1

2

3

4

1.0 1.5 2.0 2.5 3.0 3.5 4.00

ln(N/N0)

t/te(δ)

1
2
3

Fig. 2. Time dependence of the number of electrons for dif-
ferent values of the overvoltage δ: δ = (1) 2, (2) 8, and
(3) 14. The calculations were carried for the initial electron
energy ε0 = 2 MeV and for air at P = 1 atm.
trons with sufficiently high initial kinetic energy can be
involved in the runaway mode.

The time during which an RREA relaxes to a steady-
state energy distribution does not coincide with the time
required for the avalanche to achieve the exponential
mode. Indirect evidence of this is provided by Fig. 5,
which illustrates the results of calculating the time
dependence of the mean energy 〈ε(t)〉  of the electrons
in RREA. The calculations carried out for ε0 = 2 and
10 MeV show that the steady-state values of the mean
energy 〈ε〉  differ insignificantly in the range δ = 2–14 of
the overvoltage values (see Table 3) and that they are
established on time scales of about ~(4–6)te. An analo-
gous result was obtained by Symbalisty et al. [5]. It
should be noted that the dependence of 〈ε〉  on δ is
monotonic: the mean electron energy decreases slightly
with increasing δ; this is because the electrons with
increasingly lower energies become runaways.

The weak dependence of the established mean elec-
tron energy 〈ε〉  on δ over a wide range of values of the
latter can be explained by referring to the following
expression for 〈ε〉 :

(13)

The physical meaning of this expression is quite obvi-
ous: the mean energy 〈ε〉  is estimated by the energy
acquired by an electron of initial energy less than 〈ε〉  till
it produces another RE. We can see from Table 3 that,
for δ = 2–14, formula (13) gives nearly the same values
of the mean electron energy, which differ little from the
values calculated with the ELIZA code for the relax-
ation time scales te obtained without allowance for
angular electron scattering (Table 1). The primary
effect of the electron scattering in elastic collisions is a
nearly threefold increase in the effective runaway gen-
eration threshold εth [8]. Since, for the overvoltage val-
ues under consideration, the runaway threshold εth is far

ε〈 〉 approx c δ 1–( )Fminte δ( ).≈

0.2

40 80 120 160 200 240 2800
t, ns

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
ln(N/N0)

1
2
3
4

Fig. 3. Time dependence of the number of electrons for differ-
ent values of their initial energy: ε0 = (1) 10 MeV, (2) 2 MeV,
(3) 10 MeV (linear approximation), and (4) 2 MeV (linear
approximation). The calculations were carried for the over-
voltage δ = 2 and for air at P = 1 atm.
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lower than 〈ε〉 , formula (13) with the corresponding te

values can be used to obtain estimates with allowance
for elastic collisions (Table 1). The formula produces
qualitatively correct results: it yields approximately the
same mean electron energies for different δ values
except for δ = 2, but it does not take into account elec-
tron scattering in elastic collisions and thereby overes-
timates the values of 〈ε〉  in comparison to those calcu-
lated with the ELIZA code. The established mean elec-
tron energy is controlled by the competition between
two processes: energization of the electrons by the field
and the production of the secondary electrons, the vast
majority of which have initial energies much lower than
〈ε〉 . The first process, which is accounted for by the fac-
tor (δ – 1) in formula (13), acts to increase the mean
electron energy, while the second process, which is
accounted for by the factor te(δ), decreases 〈ε〉 . The
higher the overvoltage δ, the more efficiently the elec-
trons will gain energy but, at the same time, the more
intense will be the electron multiplication. Apparently,
it is the “dynamic equilibrium” between these two pro-
cesses that explains the weak dependence of 〈ε〉  on δ in
the range δ = 2–8.

The weak dependence of 〈ε〉  on δ indicates that the
steady-state electron energy distributions are close to
one another, which is confirmed by numerical simula-
tions. Figures 6 and 7 show the normalized electron
energy distributions at different times. The time scale
on which the steady-state distribution is established is
approximately the same as that for the mean electron
energy 〈ε〉 . This time scale is defined as the time after
which the electron distribution remains unchanged,
except for a high-energy tail with an insignificant frac-
tion of electrons (less than 10–4–10–5). In particular, this
time scale can be determined by the time during which
the mean electron energy becomes steady-state. The
vertical lines in the figures indicate the maximum ener-
gies that can be attained by the primary electron by the

0.5

0
t, ns

1.0
ln(N/N0)

1

2

3

400 800 1200 1600 2000

0

–0.5

–1.0

–1.5

–2.0

Fig. 4. Time dependence of the number of electrons for low
values of the overvoltage δ: (1) δ = 1.4 and ε0 = 2 MeV,
(2) δ = 1.3 and ε0 = 2 MeV, and (3) δ = 1.3 and ε0 = 10 MeV.
The calculations were performed for air at P = 1 atm.
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time t calculated from the formula εmax ≈ c(δ –
1)Fmint + ε0. It can be seen that the electrons do indeed
reach the maximum energies εmax, which is evidence
that the spectrum of primary electrons contains parti-
cles moving in the direction of the electric force.
Gurevich et al. [12] estimated the maximum possible
energy (the third root of Eq. (1) [14]) to which an elec-
tron can be accelerated in an external electric field. This
energy is a nearly linear function of δ: it is equal to
430 MeV for δ = 5 and to 850 MeV at δ = 10 [12].
Unfortunately, in view of the inordinate amounts of
computer time required for direct MC simulations of
the steady-state distributions, it is impossible to reach
these energies or to check the hypothesis that they can
be reached by at least a few electrons.

In the range of the overvoltage values under investi-
gation (δ = 2–8), the steady-state electron energy distri-
butions in an RREA, normalized to unity, differ only

Table 3.  Steady-state values of the mean electron energy
calculated for different values of the overvoltage δ with and
without allowance for angular electron scattering

δ

〈ε〉 , MeV

with allowance
for scattering

without allowance
for scattering

ELIZA 
code Formula (13) ELIZA 

code Formula (13)

2 6.96 12.41 4.20 5.30

5 6.92 8.97 4.56 5.26

8 6.87 8.15 4.32 4.90

14 6.35 7.28 4.17 4.66

1

3

2 3 4 5 6
t/te(δ)

4

5

6

7

8

9

10

2
0

13

2 5
4

6

〈ε(t)〉 , MeV

Fig. 5. Time dependence of the mean energy of the electrons
for different values of their initial energy ε0 and for different
values of the overvoltage δ: (1) δ = 8 and ε0 = 2 MeV,
(2) δ = 2 and ε0 = 2 MeV, (3) δ = 14 and ε0 = 2 MeV, (4) δ =
2 and ε0 = 10 MeV, (5) δ = 14 and ε0 = 10 MeV, and (6) δ =
8 and ε0 = 10 MeV. The calculations were performed for air
at P = 1 atm.
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slightly from each other. Figure 8 shows the electron
distributions calculated for δ = 2 and 8. In the energy
range 0.01–40 MeV, the distributions differ by no more
than 15%. We thus can speak of a universal distribution,
which can be approximated by the function

(14)

where u = ln(ε [MeV]).
Integrating over all energies yields the angular elec-

tron distributions. These distributions, normalized to
unity, are illustrated in Fig. 9, which shows the results
of calculations carried out for δ = 2 and 8. In contrast to
the energy distributions, the steady-state angular distri-
butions are strongly dependent on δ: as δ increases, the
distribution extends in the forward direction; i.e., the
stronger the electric field, the larger the number of elec-

0.00108u
6

– 0.004235u
5

– 0.009757u
4

+(exp

+ 0.012652u
3

0.056372u
2

– 0.43325u– 2.1185– ),
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Fig. 6. Normalized electron energy distributions at different
times: t/te(δ) = (1) 0.53, (2) 1.58, (3) 2.64, and (4) 3.95. The
calculations were performed for δ = 2 and for air at P =
1 atm.
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Electron spectrum, MeV–1
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Energy, MeV

Fig. 8. Normalized steady-state electron energy distribu-
tions for δ = (1) 2 and (2) 8. Curve 3 is the analytic approx-
imation for the distributions. The calculations were per-
formed for air at P = 1 atm.
trons accelerated by it. These distributions are approxi-
mated by the functions

(15)

where b = 0.91 for δ = 2 and b = 0.97 for δ = 8. The
maximum error of approximation (15) is inherent to µ
values close to unity and is equal to 12% for δ = 2 and
to 34% for δ = 8.

The normalized steady-state electron distribution
over angles and energies (expressed in MeV) can be
represented as

(16)

Here, the normalized steady-state electron energy dis-
tribution f1(ε) is approximated by function (14), and the
normalized steady-state angular distribution f2(µ|ε) of

g µ b,( ) 1 b
2

–

2π 1 bµ–( )2
-----------------------------,=

f ε µ,( ) f 1 ε( ) f 2 µ ε( ).=

0.1
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Fig. 7. Normalized electron energy distributions at different
times: t/te(δ) = (1) 0.56, (2) 1.69, (3) 2.81, and (4) 5.62. The
calculations were performed for δ = 8 and for air at P =
1 atm.
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µ = cosθ
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Fig. 9. Normalized angular distributions of the electrons for
δ = (1) 2 and (2) 8. The histograms were calculated with the
ELIZA code, and the curves were calculated from approxi-
mations (15). The calculations were performed for air at
P = 1 atm.
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electrons with energy ε can be approximated as fol-
lows:

(17)

where

(18)

and

(19)

Figure 10 illustrates the normalized angular distri-
butions calculated with the ELIZA code for different
groups of electrons whose energies lie in the ranges
ε1 − ε2 = 40–60 keV, 250–300 keV, 0.8–1 MeV, 5–
6 MeV, and 20–25 MeV. The fitting curves that were
calculated by setting the corresponding electron ener-
gies equal to ε = (ε1 + ε2)/2 are also shown. It can be seen
that, over a wide energy range, the numerical results are
approximated satisfactorily by formulas (17)–(19).

For each of the electron groups, we calculated the
average value of the cosine introduced above, 〈µ〉 , for
which the following fitting formula was obtained:

(20)

f 2 µ ε( )ln
y1 ε( ) k1 ε( ) 1 µ–( ), µ– 0≥
y2 ε( ) k2 ε( ) µ 1+( ), µ 0,<+




=

y1 ε( ) 0.5756 0.9ε( )ln 0.46,–=

k1 ε( ) 1.24 14ε( )0.5
0.92,–=

y2 ε( ) 2.76 2.3ε( )0.48
– 2.53,–=

k2 ε( ) 0.557 εln 2.91, for δ+ 2= =

y1 ε( ) 0.6178 εln 0.4145,+=

k1 ε( ) 3.224 5ε 0.07–( )0.57
,=

y2 ε( ) 7.6 4ε( )0.31
– 0.6,–=

k2 ε( ) 0.8858 εln 5.142, for δ+ 8.= =

µ ε δ,( )〈 〉 a δ( )ε/ 1 a δ( )ε+[ ] .=
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Fig. 10. Normalized angular distributions for different
groups of electrons with energies lying in the following
ranges [ε1, ε2]: (1) 40–60 keV, (2) 250–300 keV, (3) 0.8–
1 MeV, (4) 5–6 MeV, and (5) 20–25 MeV. The histograms
were calculated with the ELIZA code, and the curves were
calculated from approximations (17)–(19). The calculations
were performed for δ = 8 and for air at P = 1 atm.
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For a(2) = 2.7 MeV–1 and a(8) = 12 MeV–1, the approx-
imation error is ≤0.06. The runaway threshold can be
estimated from the condition eE〈µ(εth, δ)〉 = 〈F〉, where
〈F〉 is the averaged drag force [13]. The values of εth(δ)
calculated for δ = 2 and 8 are equal to 470 and 67 keV,
respectively, and are close to the values 650 and 65 keV,
which were obtained earlier in a different way [9].

4. CONCLUSIONS

We have presented the results of MC simulations of
the RREA kinetics in air at atmospheric pressure
obtained with the ELIZA code. We have eliminated the
earlier disagreement with the results of modeling by
other codes based on the MK method and on solving
the KE in finite differences. It turned out that the differ-
ences in approaches as well as in the sets of cross sec-
tions for elementary interactions had practically no
effect on the final results. The most important result of
our work is the calculated dependence of the character-
istic time scale te of RREA enhancement on the electric
field strength. This time scale determines the relativistic
analogue of the first Townsend ionization coefficient,
1/(cte). The values of te for an arbitrary pressure P are
recalculated from the value of te for atmospheric pres-
sure by the formula

(21)

We have investigated the dynamics of the formation
of the electron energy distribution. In the range δ = 2–8
of the overvoltage values, the electron distributions that
are in equilibrium with the field essentially coincide.
This indicates that there exists a universal electron dis-
tribution that is independent of δ. We have proposed an
analytic approximation for this universal distribution.
For δ = 2 and 8, we have calculated the angular distri-
butions of the electrons over all possible energies, as
well as the angular distributions for electrons in differ-
ent energy groups, and have derived approximating for-
mulas for these distributions. As expected, the higher
the overvoltage δ and the higher the electron energy, the
larger the extent to which a beam of REs is stretched
along the electric force. The results obtained can be
used to model the high-altitude atmospheric discharges
that occur above thunderstorm clouds due to the devel-
opment of relativistic runaway-electron avalanches.
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Abstract—Results are presented from numerical simulations of the breakdown of a dense noble gas by the
electrons of a boundary layer that forms during the irradiation of a metal target by a high-power picosecond
laser pulse. It is shown that, when the electric field of the boundary layer is taken into account, the density of
the seed electrons near the target surface increases substantially, so that the ionization process occurs much
faster. The dependence of the time of the onset of breakdown on the electric field of the incident wave and on
the concentration of gas atoms is calculated. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most important effects of the emission
electrons on the interaction of electromagnetic (EM)
radiation with a condensed medium is seen in the rapid
low-threshold ionization of a high-pressure (p ≈
100 atm) gas. Experiments [1] showed that, in this case,
the intensity of the incident EM radiation is several
orders of magnitude lower than the threshold intensity
required for gas breakdown far from the target.

The threshold intensities for gas breakdown by a
nanosecond laser pulse were determined numerically
by Mazhukin et al. [2, 3] and were found to be about
Iem ≈ 9 × 1012 W/m2 for the pressure P = 102 atm and
laser wavelength λ = 1.06 µm. The minimum laser
energy density needed for such a breakdown is F =
IemτI ≈ 3.9 × 104 J/m2, where τI ≈ 4.5 ns is the time of
the onset of breakdown (breakdown time).

In my earlier paper [4], it was shown that the ioniz-
ing effect of an electron boundary layer (EBL) that is
formed when a target is irradiated by an ultrashort high-
power laser pulse (with a duration of ≤1 ps and an
intensity of Iem ≈ 1016 W/m2) can help to significantly
reduce the amount of laser energy expended in creating
a dense plasma near the target surface without destroy-
ing the target: F = 0.2 × 104 J/m2 for P = 102 atm and
λ = 1.06 µm.

Here, in contrast to [4], plasma production by laser
pulses is investigated with allowance for both the high-
frequency ponderomotive pressure of the laser radia-
tion and the nature of the gas near the target surface.

In the present paper, a physical model is proposed
that describes the formation of an EBL and the produc-
tion of a low-temperature near-surface plasma when a
target made of a condensed conducting material is irra-
diated by laser pulses. It is convenient to begin with a
1063-780X/04/3007- $26.00 © 20625
more detailed description of the mechanism for the for-
mation of an EBL [5].

2. ELECTRON BOUNDARY LAYER

The main cause of the formation of an EBL during
the irradiation of a metal target by ultrashort laser
pulses is that the electron temperature starts to differ
appreciably (by an amount of ≈1 eV) from the lattice
temperature [6]. As a result, the thermoemission cur-
rent rapidly increases and a fairly extended layer of
negative space charge forms near the target surface.

It is well known that an electric double layer exists
near a metal surface under the conditions of thermody-
namic equilibrium between the electrons and the lat-
tice. Under these conditions, the electron gas is degen-
erate and the electron density decreases abruptly away
from the surface, ne ∝ z–2exp(–βz), where the quantity
β–1 is on the order of the mean interelectronic distance
in the metal and z is the distance from the metal surface
[7]. This makes it possible to treat the EBL as negligi-
bly thin and to ignore its influence on the penetration of
laser radiation into the metal. However, as the electron
density decreases abruptly away from the surface, the
degree of degeneration decreases, so that, when the
Fermi energy EF(ne) is on the order of the electron ther-
mal energy kTe, the electron distribution obeys classical
statistics. At distances farther from the surface, the
electron density decreases far more gradually [5]:

(1)

where Ld = (ε0kTe /e2n0)1/2 is the Debye screening
radius. The boundary electron density n0 is determined
from the degeneration condition EF(n0) ≈ kTe, which

ne z( ) n0 1 z

2Ld

-------------+ 
  2–

,=
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gives n0 ∝ . Hence, as the electron temperature
increases, the region in the EBL where the electron
density decreases according to formula (1) becomes
larger. Simultaneously, the boundary electron density
n0 increases; moreover, when the temperature of the
electrons in the EBL increases to about EF, they all obey
classical statistics. In this case, they are distributed in
accordance with formula (1) and their boundary density
n0 is on the order of the electron density within the
metal. Consequently, intense nonequilibrium heating of
the electrons within a metal target near its boundary can
give rise to a fairly extended high-density electron
layer.

An EBL whose electrophysical parameters allow it
to profoundly affect the processes occurring near the
surface can be produced only by an ultrashort laser
pulse whose intensity Iem and duration τp lie within the

limited ranges  ≤ Iem ≤  and  ≤ τp ≤ .

The minimum laser intensity  is determined from
the condition that, during the pulse, the electron tem-
perature Te becomes sufficiently different from the lat-
tice temperature Tl: ∆T = Te – Tl ≈ TF ≈ 104–105 K, where
TF is the degeneracy temperature of the electron sub-

system. This condition yields  ≈ αl∆T [5], where
α ≈ 1016 W/(m3 K) is the coefficient of heat exchange
between the electron and lattice subsystems, l (≈max[δ,

]) is the depth of the metal layer heated during the
pulse, δ is the skin depth, and χ is the electron thermal
diffusivity. For a picosecond laser pulse, we have l ≈
10–7 m, so that  ≈ 1013 W/m2.

According to [6], when the surface of a typical metal
is irradiated by a picosecond laser pulse with an inten-
sity of Iem ≈ 3 × 1013 W/m2, the two competing emission
processes—thermoemission and photoemission of the
electrons from a metal surface—are comparable in
influence. This indicates that, for such laser intensities,
collective thermoemission can be expected to have the
greatest effect on one-particle photoemission. As the
laser intensity increases, thermoemission begins to pre-
dominate over photoemission; i.e., for the above laser
intensities, an EBL is formed by thermoemission on the
time scale τs ≈ Ld/vT ≈ 10–15–10–14 s (where vT is the
electron thermal velocity). It should also be noted that
the thermoemission occurring in the case in question is
very different from the thermoemission from an elec-
trode in a closed circuit, because thermal electrons are
emitted from an insulated metal surface. As a result, the
emitted thermal electrons leave an unneutralized posi-
tive charge at the surface and, near the surface, they
form a region of negative space charge, which, in turn,
affects the thermoemission current. These factors con-
siderably complicate the description of the formation of
an EBL. Note, however, that the time scale τs on which

Te
3/2

Iem
min

Iem
max τ p

min τ p
max

Iem
min

Iem
min

χτ p

Iem
min
the spatial electron distribution in the layer forms is
much shorter than the duration τp of a picosecond laser
pulse. Consequently, the distribution with the corre-
sponding temperature can be considered to be steady-
state during the entire course of the pulse.

The maximum laser intensity  corresponds to
the near-threshold intensities for the melting and abla-
tion of the target material. These processes can occur if
the density of the energy stored in the electron sub-
system during an ultrashort laser pulse exceeds a cer-

tain threshold: τp ≤ Fabl, where the threshold energy
density for laser ablation of the target material is about
Fabl = (0.2–0.5) × 104 J/m2 [8, 9]. Therefore, for a laser

pulse with a duration of τp ≈ 1 ps, we have  ≈
1016 W/m2.

The limitations on the laser pulse duration τp are

given by the conditions  ≥ τs (where τs ≈ 10–13 s is
the time scale for the formation of an EBL with a non-

degenerate electron component) and  ≤ τel (where
τel is the characteristic time scale on which the energy
is transferred from the electrons to the lattice). The lat-
ter condition guarantees that, in the course of the laser
pulse, the lattice is not heated and the process of the
evaporation of the target material, during which the
EBL plays an insignificant role, has no time to develop.

Hence, the above results show that an EBL may
have an appreciable influence on the near-surface pro-
cesses in the following ranges of the laser-pulse inten-
sities and durations: 1014 W/m2 ≤ Iem ≤ 1016 W/m2 and
10–13 s ≤ τp ≤ 10–11 s. Although these ranges are limited,
they are quite important for technological applications.

3. MATHEMATICAL MODEL

This section presents the results from numerical
simulations of the breakdown of a dense gas by the
electrons of a boundary layer formed during the irradi-
ation of a metal target by a picosecond high-power laser
pulse. The threshold values of the near-surface gas den-
sity and of the laser intensity are determined at which
the gas near the surface can be ionized very rapidly (in
a time as short as about τI ≈ 10–12 s) and thereby can
screen the target from the incident radiation. The break-
down time τI is much shorter than the characteristic
electron–lattice relaxation time in a conducting mate-
rial, τl ≈ 10–10 s. In the case of very rapid gas ionization,
this means that, by the time the screening becomes sub-
stantial, the lattice temperature remains of the same
order of magnitude as at the beginning of the ionization
process, so that the target material is not destroyed. The
problem is treated in a one-dimensional formulation
under the following two assumptions:

(i) The gas above the target is a noble gas, so that
molecular compounds cannot be produced in the ion-

Iem
max

Iem
max

Iem
max

τ p
min

τ p
max
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ization and recombination processes. The production of

molecular ions  is ignored because, under the condi-
tions of the problem, the coefficient of dissociative
recombination of these ions is substantially less than
that of the electron-impact radiative recombination in
three-body collisions [10].

(ii) From the numerical results presented below, it
will be seen that, up to the time when the target has
become screened, the degree of gas ionization is no
higher than 10–2. This indicates that only a few gas
atoms are excited, so that, in simulations, account was
taken of ionization from the ground state only.

The gas ionization kinetics is described by solving
the set of equations that includes the heat-conduction
equation for the electron temperature, the electron and
ion continuity equations, and Maxwell’s equations for
the electric field of the EM wave and for the field of
unneutralized space charge. The gas ionization mecha-
nism governed by the multiphoton photoelectric effect
is ignored because, under the conditions adopted here,
the breakdown time is about 10–9–10–10 s, which is
much longer than the characteristic time of gas ioniza-
tion by the electrons of the boundary layer [4].

Within the metal (z < 0), the heat-conduction equa-
tion has the form

(2)

Here, Te and Tl are the electron temperature and the
crystal-lattice temperature in the metal, Cm and χm are
the heat capacity of the electrons and their thermal con-
ductivity, κr and κi are the real and imaginary parts of
the complex index of refraction of the metal, E0 is the
wave field amplitude at z = 0, α is the coefficient of heat
exchange between the electrons and the lattice, k0 =
ω/c, and ε0 is the dielectric constant. For typical metals
with nm ≈ 1028 m–3, the heat-exchange coefficient is
about α ≈ 1016 W m–3 K–1 [11].

The heat-conduction equation for the gas (z > 0) has
the form [12]

(3)

Here, M is the mass of a gas atom, I is the ionization
potential, the electron collision frequency νe in the gas
is equal to the sum of the electron–ion and electron–
atom collision frequencies, and the ionization fre-
quency νI is calculated from the classical Thompson
formula [10]. The electron–atom collision frequency is
calculated using the known temperature dependence of
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the transport cross section for electron scattering by
noble gas atoms [13].

Since, under the conditions of the problem, the dura-
tion of the processes under consideration is much less
than the electron–lattice relaxation time in the metal
(τl ≈ 10–10 s), the lattice temperature and the tempera-
ture of the heavy gas component change very slightly
over the course of a run. Thus, even if the mean electron
temperature increases to Te ~ 10 eV by the time t ≈
10−13 s, the lattice temperature increases by an amount
of about 102 K. This is why, in simulations, the temper-
atures of the lattice and of the gas were assumed to be
unchanged. Also, the heat transport processes were cal-
culated without allowance for radiative heat conduction
because the rapid gas ionization results in the produc-
tion of an optically transparent plasma (the mean free
path of a photon is Iph ≈ (ω/ωp)2(ω/νe)λ ≈ λ, where ωp

is the electron plasma frequency and λ is the wave-
length of the EM radiation).

The boundary conditions for Eqs. (2) and (3) have
the form

(4)

where lm and la determine the boundaries of the compu-
tation region in the metal and in the gas (formally,
lm, la  ∞) and the square brackets denote the jump in
the corresponding quantity at the metal–gas interface.

The electron and ion continuity equations are writ-
ten as

(5)

Here, β1 and β2 are, respectively, the coefficients of the
photorecombination and of the electron-impact radia-
tive recombination and De, i and µe, i are, respectively,
the diffusion and mobility coefficients [12]. In Eq. (5),
the divergence term —(ne, i , u) is omitted because rapid
ionization processes are governed primarily by the dif-
fusive transport mechanism [2]. The electron density is
represented as the sum

in which the density components  and  refer,
respectively, to the ionization-produced electrons and
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electrons escaping from the metal and satisfy the equa-
tions

(6)

Equations (6) take into account the high-frequency
ponderomotive force of the EM wave [14].

The electron density in the EBL near the metal sur-

face, , is much higher than the density of the ioniza-

tion-produced electrons, ; consequently, according
to formula (1), the electron density ne at the boundary
z = 0 is equal to n0. This allows the boundary conditions
for Eqs. (6) to be written as

(7)

(8)

The boundary conditions for the ion density ni are
analogous to those for the electron density component

. The initial conditions for  and ni are as fol-

lows:  = 0 and ni|t = 0. The initial condition for

the electron density component  corresponds to
electron distribution (1) with the initial temperature T0.
Recall that distribution (1) is established on a time scale
of about 10–15–10–14 s; this indicates that the boundary
density n0(T) manages to follow the changes of the tem-
perature, which occur on far longer time scales.

The distribution of the longitudinal electric field Ez

is calculated from the equation

At every time step of the calculation, the boundary con-
dition for this equation has the form
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where it is taken into account that the integral of  – ni

is equal to zero.
When account is taken of the charge of the ions in the

metal, the electric field vanishes in the limit la  ∞.

The spatial distribution of the electric field of an EM
wave is the solution to Maxwell’s equations. However,

since the time scale  on which the parameters of the
problem (densities, temperature, etc.) vary is much
longer than the time scale ω–1, the field distribution can
be determined by solving the following time-indepen-
dent wave equation at each time step:

(9)

where k0 = ω/c. This equation is written under the
assumption that the parametric instabilities in the
plasma produced (which are accompanied by the decay
of EM waves into plasma waves and ion acoustic waves
[15]) are considerably slower than the ionization. To
satisfy this assumption, it is necessary that the decay
rate γd of an EM wave, which is equal in order of mag-
nitude to γd ≈ (eE/mωc)ωp, be much slower than the
ionization frequency νI . For a wave field of strength
E ≤ 5 × 109 V/m, a gas density of na ≥ 1027 m–3, and an
electron temperature of Te ≈ I (the simulations were car-
ried out precisely for these relationships between the
parameters), we have γd ≤ 1012 s–1 and νI ≥ 1013 s–1. Con-
sequently, under the conditions at hand, EM energy is
predominantly dissipated by collisions; this makes it
possible to use the “traditional” dependence of the
dielectric function ε' in Eq. (9).

Equation (9) is supplemented with the boundary
conditions

(10)

where the wave field has the form
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Fig. 1. Profiles of the ratio of the electron thermal energy to the ionization potential of a neutral gas (Ar) and profiles of the ratio of
the electron density to the critical plasma density (on a logarithmic scale) along the dimensionless coordinate z/λ (where z is the
distance from the target and λ is the laser wavelength) at different times (a, c) t = 7.0 × 10–13 s and (b, d) t =  1.0 × 10–12 s. The gas
density is na = 3 × 1027 m–3 and the amplitude of the incident wave is E∞ = 2 × 109 V/m.
The wave amplitude and dielectric function are rep-
resented as E0 = E01 + iE02, R = R1 + iR2, Ea = Ea1 + iEa2,
and ε' = ε1 + iε2. These representations, together with
boundary conditions (10), yield the following relation-
ships at the boundaries of the computation region:
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in which case wave equation (9) splits into two equa-
tions,

(13)

The above set of equations was solved by a finite-
difference method. The finite-difference approxima-
tions to the heat conduction and continuity equations
were constructed with the help of a conservative
scheme of first-order accuracy in τ and h. The diffusion
terms were expressed in implicit form, and the term
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µEn in the continuity equation was evaluated in explicit
form.

4. NUMERICAL RESULTS AND DISCUSSION

The simulations were carried out for the following
values of the parameters of the problem: the laser wave-
length was λ = 1.06 µm, the laser intensity was Iem ≈ 3 ×
1015–3 × 1016 W/m2, the refractive indices of the metal
at the laser wavelength were κr = 1.5 and κi = 10.1 (in
which case the density of conduction electrons in the
metal is nm = 4 × 1028 m–3), the gas density was na =
1027–1028 m–3, the gas pressure was p = 40–400 atm,
and the ionization potential (for argon) was I = 15.8 eV.
The value of the initial temperature T0 was varied from
300 to 3000 K and was found to have no significant
effect on the final results. The dimensions of the com-

putation region were lm = 10  and la = 2λ.

Figure 1 shows profiles of the electron temperature
Te (Figs. 1a, 1b) and electron density ne (Figs. 1c, 1d) at
two different times. The profiles correspond to the gas
density na = 3 × 1027 m–3 and the incident wave field
E∞ = 2 × 109 V/m. We can see that, for the quite high
values of na and E∞ that are under consideration here,
the ambipolar diffusion mechanism does not qualita-
tively affect the spatial temperature and density pro-
files, which are quite close to the profile of |Ea |2 for a
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Fig. 2. Characteristic breakdown time τI = τI(E∞, na) in

argon at high laser frequencies (ω2 @ ) for E∞ = (1) 2 ×

109, (2) 3 × 109, and (3) 4 × 109 V/m.

νe
2

standing EM wave with a period of λ/2 at the initial ion-
ization stage, the profiles of ne and ni being virtually
indistinguishable from one another. In this stage, the
electron temperature rapidly increases until it reaches a
value of several tenths of I, so that the ionization pro-
cesses begin to proceed much faster. Then, the temper-
ature remains essentially unchanged with time, while
the electron density in the regions of maximum temper-
ature Te rapidly increases (this stage of ionization is
well seen in Figs. 1a, 1b). After the maxima in ne

become higher than the critical value ncr, the spatial dis-
tribution of the field Ea becomes nonperiodic and, as ne

increases further, the field amplitude begins to
decrease, which results in a rapid drop in the electron
temperature near the target surface. For the conditions
of Fig. 1, the rate at which the temperature decreases at
the beginning of this stage varies from 104 to 105 K/ps.
The electron density reaches a critical value ncr in the
region of the first (closest to the target surface) maxi-
mum in intensity and, thereafter, the critical value is
successively reached in the regions of other maxima
(this tendency can be readily seen by comparing Fig. 1c
and Fig. 1d). Simultaneously, the plasma layers of over-
critical density increase in thickness and further merge
into one layer, which completely screens the target
under irradiation.

Figure 2 shows several calculated points that reflect
the dependence of the characteristic breakdown time τI

on na and E∞. The breakdown time τI is defined by the
instant when the electron–ion collision frequency νei

becomes higher than the electron–atom collision fre-
quency νea. This definition of the breakdown time,
although fairly conditional, makes it possible to detect
the beginning of the stage of strong ionization of a gas
with an arbitrary density, i.e., to work with the degree
of gas ionization rather than with the absolute electron
density. By carrying out simulations for several values
of E∞ and of na, it is possible to obtain a family of
curves τI = τI(na, E∞). With these curves, it is easy to
estimate any of the three parameters τI , na, and E∞ by
specifying the values of the remaining two.

If the field of the incident EM wave is below a cer-
tain threshold, then the target will not be screened.
Thus, for na = 1027 m–3 and E∞ = 2 × 109 V/m, the max-
ima in the temperature become as high as 0.4I in less
than one picosecond, at which time the electron density
does not exceed (0.2–0.3)ncr; the temperature then con-
tinues to increase but at a far slower rate. Consequently,
if the electron density ever reaches the critical density
ncr, this occurs on a time scale comparable to the elec-
tron–lattice relaxation time τl in the metal.

The results of numerical simulations of breakdown
in an argon gas above the surface of a metal target show
that the ponderomotive pressure acts to smooth the spa-
tial profile of the electrostatic field along the normal to
the surface.
PLASMA PHYSICS REPORTS      Vol. 30      No. 7      2004
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The results obtained also show that the main factor
governing the nature of plasma production is the mag-
nitude of the ionization potential. This is clearly
implied by the above profiles of the temperature and
density of the nascent plasma. Under the same condi-
tions, gases with higher ionization potentials are heated
to greater temperatures than those with lower ionization
potentials because essentially no energy is lost to ion-
ization. This is readily illustrated by Fig. 3, which com-
pares the longitudinal profiles of the electron tempera-
ture in He, having the ionization potential I = 24.59 eV,
and in Ar, having the ionization potential I = 15.76 eV.

5. CONCLUSIONS

Based on the results of the numerical calculations
described above, the following conclusions can be for-
mulated. During the irradiation of a metal target by EM
pulses, nonequilibrium heating of the emission elec-
trons gives rise to an electron boundary layer above the
target surface. Under conditions of high gas pressure
and high radiation intensity, the electrons of the bound-
ary layer form highly ionized plasma regions, which
screen the target from the incident radiation. For gas
densities of na ≈ 1027–1028 m–3 and radiation intensities
of Iem ≈ 3 × 1015–3 × 1016 W/m2 (E∞ = 3 × 109 V/m), this

0 0.94 1.89 2.83 z/λ

5

10

15

Te, 104 K

1

2

Fig. 3. Profiles of the electron temperature along the dimen-
sionless coordinate z/λ 0.280 ps after the target begins to be
irradiated by a laser pulse with an amplitude of E∞ = 2 ×
109 V/m in (1) He and (2) Ar.
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process lasts from several tenths of a picosecond to sev-
eral picoseconds. Numerical calculations made it pos-
sible to obtain a relationship between the threshold val-
ues E∞ and na for which the gas is ionized at a very fast
rate (τI ! τl).
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Abstract—Results are presented from experimental studies of the prebreakdown phase of an electric discharge
between point (anode) and plane (cathode) electrodes immersed in water with different initial conductivity.
When a high-voltage pulse is applied, the induced conductivity is detected in the discharge gap. Its value is one
order of magnitude higher than the initial conductivity. It is shown that the induced conductivity increases
almost linearly with the initial conductivity. The induced conductivity correlates with the UV emission from
the cathode surface. A qualitative analysis of the experimental results is performed. © 2004 MAIK
“Nauka/Interperiodica”.
The physics of electrode breakdown in aqueous
media is still poorly understood in spite of a great body
of experimental and theoretical data [1–3] and various
possible applications [4–7]. A self-consistent physical
model adequately describing the evolution of the chan-
nel of an interelectrode discharge (especially in its early
phase) is still lacking. This paper presents the results of
experimental studies of the prebreakdown phase of a
discharge in water and their qualitative analysis.

A schematic of the experimental setup is shown in
Fig. 1. A cylindrical chamber (1) made of organic glass
and having quartz windows was filled with water with
different specific conductivities: 40 ≤ η0 ≤ 2000 µS/cm
(distilled water with different concentrations of NaCl).
The discharge was excited between two electrodes—
point (needle) electrode (6) and plane electrode (2). The
distance L between the electrodes was varied within the
range L ≈ 0.2–2.0 cm. The discharge was initiated by
applying a high-voltage pulse (U ≥ 20 kV, τ ≤ 10 µs) to
the electrodes.

We measured the voltage U across the discharge gap
and the current I through the electrode circuit (the cur-
rent was measured with Rogowski coil (7)).

The short-wavelength (λ < 350 nm) emission from
different regions of the discharge gap was measured
with an FEU-142 collimated photomultiplier (4), insen-
sitive to visible light. An S2000 Ocean Optics spec-
trograph (8) recorded the total emission spectrum
(200 nm ≤ λ ≤ 850 nm) during the discharge and in the
prebreakdown phase.

Figures 2 and 3 show typical signals from the
divider measuring the voltage across the discharge gap
and from the Rogowski coil measuring the discharge
current (a needle serves as an anode). In Fig. 2, the dis-
charge reaches the stage of the breakdown of the inter-
electrode gap, while in Fig. 3, the discharge is incom-
plete.
1063-780X/04/3007- $26.00 © 20632
Figure 4 shows the waveforms of the discharge cur-
rent and the signal from the collimated photomultiplier
at different distances l from the point anode.

Figure 5 presents a typical time-integrated emission
spectrum of the streamers that arise near the anode but
have no time to cover the discharge gap during the volt-
age pulse.

An analysis of the waveforms presented in Figs. 2–5
allows us to distinguish the following features of the
prebreakdown phase of a discharge in water:

(i) The breakdown process is characterized by sev-
eral phases that differ, in particular, by the value and
behavior of the conductivity σ of the interelectrode gap.

1

2
3

4

5

6

7

8

U

Fig. 1. Schematic of the experimental setup: (1) Plexiglass
chamber, (2) plane cathode, (3) water, (4) photomultiplier,
(5) anode streamers, (6) point anode, (7) Rogowski coil, and
(8) S2000 spectrograph.
004 MAIK “Nauka/Interperiodica”
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In the first (initial) phase, lasting for ∆t1 ≈ 100–200 ns
(0 ≤ t ≤ t1), the conductivity is constant and equal to its
initial value σ = σ0. The second phase, lasting for ∆t2 ≈
200–250 ns (t1 ≤ t ≤ t2), is characterized by a substantial
(by more than by one order of magnitude) increase in
the conductivity of the interelectrode gap. By the end of
this phase, a tendency of the conductivity to achieve a
quasi-steady value is observed. In the third phase, last-
ing for ∆t3 ≈ 100 ns (t2 ≤ t ≤ t3), the conductivity
increases even more sharply than in the second phase;
it reaches its peak value, which is nearly two orders of
magnitude higher than the initial conductivity σ0, and
then rapidly decreases to the minimum value at the
instant t = t3. In the third phase, which corresponds to
the transition from the prebreakdown phase to the
breakdown itself, the interelectrode gap is bridged by
the discharge channel. Finally, the fourth phase (t ≥ t3)
is characterized by a relatively slow increase in σ in the
formed discharge channel. The typical time behavior of
σ derived from the current–voltage waveforms is
shown in Fig. 6.

(ii) The higher the initial conductivity σ0, the higher
the induced conductivity σ of the interelectrode gap in
the second phase (σ/σ0 ≅  10).

(iii) In the second phase of a discharge, simulta-
neously with the increase in the conductivity, we
observed the generation of UV emission from the
region immediately adjacent to the point anode (see
Fig. 4). It follows from photographs of the discharge
gap that, early in this phase, both the surface of the
point anode and the incomplete streamers contribute to
this signal. The radiation from the discharge gap and
from the region adjacent to the plane cathode is emitted
in the form of a burst (a characteristic peak) only during
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Fig. 2. Waveforms of the (1) electric voltage across the dis-
charge gap and (2) current in the electrode circuit (η0 =
400 µS/cm; the discharge is complete).
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the transition from the third phase to the phase in which
the gap is bridged by the discharge channel. Note that,
with the given resolution of time-delay measurements,
no delay between the radiation bursts from the cathode
and anode was observed. This means that, in this phase,
the velocity at which the plasma glow propagates from
the anode to the cathode is no lower than 108 cm/s. We
observed a characteristic 40-ns delay of the UV peak
with respect to the peak of the discharge current.

(iv) At an initial conductivity of η0 ≥ 300 µS/cm, the
energy released in the interelectode gap in the pre-
breakdown phase turns out to be comparable to (or even
higher than) the energy released in the fourth phase, in
which the gap is closed by the discharge channel (see
Fig. 7).

In the literature on electric breakdowns in liquid
dielectrics, there are two fundamentally different points
of view about the mechanisms initiating a discharge. It
is suggested that breakdown is initiated by either a ther-
mal or an ionization mechanism. Until recently, the pre-
vailing concept was that, at pulsed voltages with a pulse
duration of ≤10–6 s, breakdown is initiated by the ion-
ization mechanism [2, 3, 8]. This concept was based on
the apparent similarity of electric discharges in liquids
and gases; in this case, liquid was regarded as a very
dense gas.

However, results obtained in recent years have made
it necessary to revise the breakdown model adopted in
[2, 3, 8] and based on the assumption of the decisive
role of the electron conductivity of liquids. Thus, it was
assumed in [9] that, even in strong electric fields, elec-
trons are in a hydrated state [10, 11] and their mobility
is close to ion mobility. Obviously, in this case, the mol-
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Fig. 3. Waveforms of the (1) electric voltage across the dis-
charge gap and (2) current in the electrode circuit (η0 =
550 µS/cm; the discharge is incomplete).
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Fig. 4. Waveforms of the (1) electric voltage across the dis-
charge gap and (2) photomultiplier signal for η0 =
550 µS/cm and L = 1 cm: (a) radiation from the region adja-
cent to the anode (l ≅  0), (b) radiation from the middle of the
discharge gap (l ≅  0.5 cm), and (c) radiation from the region
adjacent to the cathode (l ≅  L = 1 cm).
ecules of a liquid cannot be ionized by electron
impacts.

In many recent papers devoted to electric break-
downs of liquid dielectrics by high-voltage pulses with
durations longer than 10–6 s, it is assumed that a pulsed
voltage causes the phase inhomogeneity of liquid and
the formation of bubbles, in which breakdown then
occurs in a manner similar to gas breakdown [12–14].

An analysis of the experimental results presented
above shows, first of all, that the conductivity σ of the
interelectrode gap in the prebreakdown phase increases
by nearly one order of magnitude as compared to its ini-
tial value (see Fig. 6). Such behavior of σ under the
action of high-voltage pulses applied to electrodes in
water was previously observed in [15]. However, an
attempt of the authors to explain the observed increase
in σ by an increase in the dissociation constant of water
molecules in strong fields has not met with success.
Simple estimates show that the effect observed in our
study, namely, a substantial increase in the conductivity
in the prebreakdown phase, cannot be explained on the
basis of the assumption that the main carriers of nega-
tive charge are ions or hydrated electrons. On the other
hand, taking into consideration the electron conductiv-
ity in place of the ion conductivity can explain the cur-
rents (50–100 A) observed in our experiment in the sec-
ond and third phases of a discharge. The electron
mobility is higher than the ion mobility by a factor of
(mi/me)1/2; consequently, the current may increase by
the same factor. If the main negative ion in the initial
state is an OH– ion, then we have (mi/me)1/2 ≅  170.

Returning to the models adopted in [2, 3, 8], in
which the electron conductivity (mobility) was
assumed to be a governing factor, we come to the
necessity (in order to explain our experiment) of
searching for mechanisms for generating free (rather
than hydrated) electrons with a nonincreased mass me
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Fig. 5. Typical emission spectra from the discharge gap in
the prebreakdown phase (radiation from the region located
a distance of l ≅ 1 mm from the anode).
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in the interelectrode medium. Taking into account the
complexity of this problem, we only note here a num-
ber of effects that may promote the transformation of
the originally ion conductivity to electron conductivity.
First of all, we point out that, at times t ≥ t1, a UV source
irradiating the interelectrode gap appears in the system
under study (see Fig. 4). This radiation, in principle,
can play a decisive role both in the formation of the
free-electron component and in its maintenance during
the high-voltage pulse applied to the point–plane gap.
The source of radiation of this kind is the point anode,
in which the formation of a hot spot similar to the spots
arising in electrode microexplosions is observed as
early as in the second phase [16].

The phenomenon of explosive emission was first
observed in vacuum discharges [16] and then in high-
pressure gas discharges (see [17, 18]). We note that
microexplosions can also form on electrodes immersed
in a liquid dielectric medium (the results of [19–21] can
also be interpreted as the presence of microexplosions
on the surface of electrodes immersed in water).
Assuming that the size of a hot spot is ≈10–30 µm (as
in vacuum and gas-filled diodes), it is easy to show that
the current density in the spot during the prebreakdown
phase is js ≈ 107–108 A/cm2 and the released energy den-
sity in the spot is εs ≈ 103–105 J/cm3. Such high values
of js and εs are typical of microexplosive electrode pro-
cesses.

The mechanism for the formation of microexplo-
sions on an anode immersed in water is of particular
interest and deserves special consideration. Here, we
note only that the electric field near the micropoints on
the anode is equal to [5]

Ep ≈ 2U/(rmln(4L/rm)), (1)

where rm is the curvature radius of a micropoint and L
is the length of the discharge gap. For U ≅  30 kV, L ≅
1 cm, and r ≅  10 µm, this field is as high as Ep ≅
107 V/cm. Taking into account that this field can be
enhanced even more because the electrode surface is
covered with a layer that contains air, adsorbed gases,
and oxide films and whose dielectric constant is much
less than that of water, we can see that the electric field
near micropoints can be as high as (or even higher) than
that required for microexplosions (see[16]).

It was shown in [22, 23] that explosive-emission
centers are intense sources of UV radiation. This radia-
tion may cause an increase in the conductivity of the
interelectrode gap and a substantial increase in the cur-
rent in the electrode circuit. In this case, there is a pos-
itive feedback between the intensity of UV emission
IUV from a hot spot and the conductivity of water σ,

IUV  σ  I  εs  IUV, (2)

where I is the discharge current.
The presence of positive feedback (2) can cause

instability resulting in a microexplosion on a point elec-
trode. It is probable that instability of this kind, which
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is related to the photoprocesses initiated in gas by the
UV emission from a hot spot, is also typical of dis-
charges excited in high-pressure gases.

Assuming that the induced conductivity is related to
photoionization processes occurring under the action of
UV radiation emitted from the anode (the photodetach-
ment of electrons from negative ions), we can estimate
the energy of this radiation as the fraction α of the total
energy released in a microexplosion:

α ≥ εiL2/(3µeU2∆t), (3)

where εi is the affinity energy of an electron to an atom
(in eV), µe is the mobility of a free electron, and ∆t is the
lifetime of a hot spot. Assuming that µe ≅  1 cm2/(V s),
U ≅  30 kV, ∆t ≅  100 ns, L ≅  0.5 cm, and εi ≅  3.62 eV (the
affinity energy of an electron to a chlorine atom), we
obtain

α ≥ 0.003.

An analysis of the emission spectra of explosive-
emission centers [22] shows that such a high conver-
sion ratio of the energy liberated in microexplosions
into UV radiation is quite possible.

If a liquid medium (water) is considered as a dense
gas with a molecule density of nm ≈ 3 × 1022 cm–3, then
the reduced electric field Eeff = E/nm near a micropoint
(and, probably, near the head of the discharge channel)
can exceed the threshold field for the formation of an
electron avalanche resulting in the development of a
discharge (≈10–15 V cm2) [24]. This can be considered
an argument in favor of the gaseous model of electric
discharge in water [2, 3, 8].

In the above analysis, we ignored the processes of
electron hydration. The validity of ignoring this factor
is not obvious and requires special consideration. The
complexity of the analysis, however, consists in the
absence of data on the elementary processes involving
hydrated electrons (in particular, on the processes of
their photoexcitation and photoionization). Since there

10–2

0

σ, S

t1
100 300 500 600 900700400200 800

t2 t310–3

10–1

t, ns

Fig. 6. Time dependence of the conductivity in the dis-
charge gap for η0 = 400 µS/cm.
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are no theoretical grounds or experimental evidence
that hydration cannot occur in strong electric and UV
fields, it should be recognized (as in [9, 15, 25]) that the
applicability of the free-electron model to liquids
(especially, to polar liquids) is still disputable.

In this context, it is reasonable to search for conduc-
tivity mechanisms that can provide prebreakdown cur-
rents observed in our experiments. Among mechanisms
of these kind, the quasi-hole transfer of positive charges
can be of importance. The reason is that this process
can take place in water [25]. The mobility of a hole (or
a proton, in the terms adopted in [25]) is abnormally
high and substantially exceeds the mobility of a
hydrated electron. In this case, even a relatively low
density of the holes can provide currents observed
before the interelectrode gap is bridged by the dis-
charge channel (in the second phase of a discharge).
Radiation from hot spots on the anode (which can form
due to positive feedback (2)) and the accompanying
processes of photoionization can provide the presence
of holes in the interelectrode gap.

Although the quasi-hole model [25] is quite attrac-
tive, its applicability to our experiment must be thor-
oughly examined; in particular, the question as to
whether this model can explain the fact that the induced
conductivity increases in proportion to the initial con-
ductivity should be answered. However, the concept of
hole conductivity in water in strong electric fields is
certainly of interest in constructing a physical model of
the electric discharge under study.

Figure 5 shows the emission spectrum of incomplete
near-anode streamers. A characteristic feature of this
spectrum is the presence of continuum and line compo-
nents. In the line component, the most intense lines are
Hα(λ ≅  6563 Å) and O(λ ≅  7774 Å). Processing the
continuous spectrum using the procedure adopted in
[26], we can determine the streamer radiation tempera-
ture, Te ≈ 2500–3000 K. The high temperature of the
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Fig. 7. Time dependence of the power released in water in
the discharge gap for η0 = 400 µS/cm.
bulk of the channel and the UV emission from it are
typical of streamers in water, in contrast to those in
high-pressure gases. This difference is probably due to
the induced conductivity in water and, as a result, the
possibility of high currents (up to 100 A) flowing
through an incomplete discharge channel that has not
yet bridged the interelectrode gap.

It should be noted that prebreakdown currents in the
electrode circuit can determine a number of other spe-
cific features of electric discharges in water, e.g., the
difference in the breakdown fields at positive and nega-
tive potentials at the point electrode (specifically, a
decrease in the breakdown field at the point anode), as
was observed both in [1–4] and in the experiment
described in the present paper. At the same time, the
induced conductivity and the related energy release in
the prebreakdown phase (see Fig. 7) may be of signifi-
cance for a number of applied problems, in particular,
for the problem of electric-discharge disinfection of
water (see [6, 7]), because the energy deposited in the
discharge gap in the prebreakdown phase may be com-
parable to that deposited during the subsequent break-
down, and the character of the processes affecting the
medium may be very different in these phases.

The results obtained can be summarized as follows:
When a high-voltage pulse is applied to a point anode–
plane cathode gap filled with water, the high induced
conductivity (higher than the initial conductivity by
almost a factor of 10) is observed in the prebreakdown
phase of a discharge. It has been shown that the induced
conductivity increases almost linearly with the initial
conductivity. UV radiation correlating with the induced
conductivity is detected in the prebreakdown phase.
The source of this radiation is located on the cathode
surface. It is suggested that, in a strong electric field, the
presence of intense UV radiation can stimulate the
appearance of the electron or hole conductivity, which
results in the generation of fairly high (15–100 A) cur-
rents, which were measured experimentally in the
phase preceding the bridging of the interelectrode gap
by the discharge channel.
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