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Abstract—The nuclear quadrupole spin-lattice relaxation related to the formation of orientational defects in
crystals has been analyzed. The defects arise because of thermally activated reorientational motion of molecules
and their fragments between the nonequivalent potential wells. These molecular reorientations are considered
for double- and triple-well potentials, both periodic and bounded by external side walls. It was shown that, for
such potentials, the temperature dependence of the relaxation time provides the data on the activation energy
for transitions of molecules in the crystal lattice from the equilibrium ground-state positions to those corre-
sponding to metastable states. We systematized the known NQR data on the activation energies for orientational
defects arising in the intracrystal rotations of molecules and atomic groups possessing the imperfect two-, three-,
and sixfold axial symmetries. © 2001 MAIK “Nauka/Interperiodica”.
In a molecular crystal with the regular structure, the
thermally-activated rotational motion of molecules or
atomic groups possessing no axial symmetry gives rise
to the formation of orientational defects in the crystal
lattice. The formation of these defects forces the reori-
enting molecules (or their fragments) to occupy the
equilibrium positions with unequal potential energies;
i.e., the motion occurs between the nonequivalent
potential wells. The intracrystal dynamics of axially
symmetric molecules associated with their reorienta-
tional motion between the equivalent potential wells
was studied rather extensively by the nuclear quadru-
pole resonance (NQR) technique (highly sensitive to
the dynamic processes in solids [1]). At the same time,
the molecular reorientation occurring between energet-
ically nonequivalent positions in crystals were rarely
studied by this technique. Moreover, the interpretation
of the NQR data calls for an additional substantiation,
especially in the analysis of the relaxation measure-
ments. This paper is aimed at the analysis and general-
ization of the nuclear quadrupole spin-lattice relaxation
data related to the formation of orientational defects in
the crystal lattice caused by the motion of the molecules
between the nonequivalent potential wells.

It is well known in NQR that the most efficient tech-
nique for the investigation of molecular mobility is the
analysis of the temperature dependence of the nuclear
quadrupole spin-lattice relaxation time T1. The corre-
sponding relaxation rate controlled by the thermally
activated reorientational motion, is described by the
following relationship [1]

(1)

where the parameters b and Ea (activation energy of
motion) can be found by conventional data processing.

T1
1–( )reor b Ea/RT–( ),exp=
1063-7745/01/4606- $21.00 © 21000
In the case of the molecular motion in the orienting
potential with nonequivalent wells, it is essential to find
out which of the parameters determines the activation
energy Ea measured. To solve this problem, we analyze
in this paper the process of nuclear quadrupole spin-lat-
tice relaxation for the intracrystal orientational motion
for potentials with nonequivalent wells. We consider
different forms of this potential: double- and triple-well
potentials both periodic and bounded by external side
walls, which corresponds to the reorientation of mole-
cules or atomic groups possessing imperfect two-,
three-, and sixfold axial symmetry, respectively, i.e., to
rotations about the , , and  axes (see, for
example, [2–4]). In the latter situation, characteristic,
for example, of benzene derivatives (Table 1), the
molecular motion is hindered by intermolecular steric
hindrances. As a result, the motion occurs not between
all the six nonequivalent equilibrium positions in the
crystal, but only in the reduced potential between the
stable ground-state positions and the neighboring meta-
stable positions.

The values of the activation energy for intermolecu-
lar orientations in the potentials with nonequivalent
wells of the aforementioned types determined from the
temperature dependence T1(T) for chlorine-35 nuclei
are presented in Table 1 [2, 5–17]. The analysis per-
formed in this paper yields the correlation between the
values of the activation energies and the specific transi-
tions between the equilibrium positions of the mole-
cules in the crystal, i.e., the correlation between the
activation energy and the dynamics of orientational
defects in solids.

The analysis is based on the aforementioned orien-
tational potentials schematically represented in Fig. 1.
We choose these simple forms of the potential to reveal
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Table 1.  Molecular reorientations between the nonequivalent potential wells in crystalline compounds

No. Compound Object of
reorientation Motion axis Form of

potential Ea, kJ/mole Reference

1 Cl(CN)C–CCl2 Molecule P2 37.3 [2]

2 Cl(CN)C=C(C6H5) · [N(CH2CH2)2O] Molecule P2 31.8 [5]

3 CClF2COOH CClF2 P3 14.0 [6]

4 C  · CClF2COO– CClF2 P3 9.2 [6]

5 4-ClC6H4NH · COCClF2 CClF2 P3 13.0 [7]

6 Cl3P=NCCl(CF3)2 CCl(CF3)2 P3 13.8 [8, 9]

7 Cl3P=NSO2Cl SO2Cl P3 24.7 [10]

8 (CCl3)2ClP=NSO2Cl SO2Cl P3 46.9 [10]

9 2-NO2C6H4SO2Cl SO2Cl P3 38.5 [11]

10 4-NO2C6H4SO2Cl* SO2Cl P3 33.9, 41.8 [12]

11 C6H5Cl Molecule P3(∞) 39.5 [13]

12 C6H5Cl Molecule P3(∞) 19.3 [4, 14]

13 C6H3Cl3-1,2,3 Molecule P2(∞) 39.0 [15, 16]

14 C6F3Cl3-1,3,5 Molecule P2(∞) 19.7 [17]

Note: The table contains the following data: the object of the reorientation (molecule, atomic group), the type of the reorientation axis ( ,

, and  for the rotational motion for imperfect two-, three-, and sixfold axial symmetry, respectively), the form of orientational
potential with nonequivalent potential wells (P2 and P3 are the double- and triple-well periodic potentials, P2(∞) and P3(∞) are the
double- and triple-well potentials bounded by external infinitely high walls), activation energy Ea of the reorientation according to the
NQR data for chlorine-35.

       * Different Ea values are given for two different phases of the compound.
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the fundamental features of the nuclear quadrupole
spin-lattice relaxation determined by the molecular
motion between the nonequivalent potential wells in
different structures. The technique used here was
reported in [18, 19] for the thermally activated intermo-
lecular reorientations, which are slow in comparison
with the NQR frequency, which is usually the case in
experiments [1]. The analysis was performed for nuclei
with spin 3/2 (for example, for chlorine-35, which is
widely used in NQR measurements) in an electric field
with an axially symmetric gradient. The imposed con-
straints do not limit the generality of the consideration.

It should be indicated that molecular reorientational
jumps between the potential wells A, B, and C (indi-
cated by arrows in Fig. 1) occur with the probabilities
Wn per unit time equal to [20, 21]

(2)

where W is the temperature-independent frequency fac-
tor and En is the barrier separating the potential wells.
In the actual situation for nonequivalent wells (the non-
equivalent equilibrium positions of molecules in the
crystal lattice), the difference in their depths ∆ exceeds

Wn W En/RT–( ),exp=
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the average thermal energy RT in the whole tempera-
ture range of crystal existence.

Molecular jumps between the equilibrium positions
A, B, and C cause the changes in the nuclear magneti-
zation associated with the process of spin-lattice relax-
ation after the action of the radio-frequency onto the
spin system of quadrupole nuclei. The behavior of the
latter system is determined by the system of kinetic
equations corresponding to the molecular motion in the
orientational potentials presented in Fig. 1. Despite the
model nature of the chosen potentials (see Fig. 1), they
describe rather well some situations in actual crystals
(see Table 1). The kinetic equations have the form

(3)

where

and 

ṅA 2W1nA– 2W2P2nB,+=

ṅB 2W1P2nA 2W2nB,–=

W1 W AB≡ W E ∆+( )/RT–[ ]exp=

W2 WBA≡ W E/RT–( )exp=
1
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Fig. 1. Double- and triple-well orientational potentials with nonequivalent wells (A, B, and C): (a) and (b) periodic potentials,
(c)  and (d) potentials bounded by external infinitely high walls; ϕ is the rotation angle for a molecule or an atomic group during
their reorientations; Wn are the probabilities of the reorientational transitions between the potential wells; E, E + ∆, and En are the
barriers separating the equilibrium molecular orientations.
for the periodic double-well potential (Fig. 1a);

(4)

where

and

for the periodic triple-well potential (Fig. 1b);

(5)

where

and 

ṅA –2W1nA W2P2nB W3P2nC,+ +=

ṅB W1P2nA 2W2nB– W3P2nC,+=

ṅC W1P2nA W2P2nB 2W3nC,–+=

W1 W AB≡ W AC W E ∆+( )/RT–[ ]exp= =

W2 W3 WBA≡ WBC WCA= = =

=  WCB W E/RT–( )exp=

ṅA –W1nA W2P2nB,+=

ṅB W1P2nA W2nB,–=

W1 W AB≡ W E1/RT–( )exp=

W2 WBA≡ W E2/RT–( )exp=
C

for the double-well potential bounded by external “infi-
nitely high” walls (Fig. 1c);

(6)

where

,

and 

for the triple-well potential bounded by external “infi-
nitely high” walls (Fig. 1d).

In Eqs. (3)–(6), the variables ni, corresponding to
the ith well (A, B, or C), are the differences in the spin-
state population (proportional to the nuclear magnetiza-
tion) for quadrupole nuclei with spin 3/2 in the axially
symmetric electric-field gradient (EFG). These vari-
ables are defined as ni(t) = Ni(t) – , where Ni(t) is the

population at the moment t, and  = Ni(∞) is the equi-

ṅA – W1 W2+( )nA W3P2nB W4P2nC,+ +=

ṅB W1P2nA W3nB,–=

ṅC W2P2nA W4nC,–=

W1 W AB, W2 W AC, W3 WBA, W4 WCA≡≡≡≡

W1–4 W E1–4/RT–( )exp=

Ni

Ni
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Table 2.  Results (7) of the solution of kinetic equations (3)–(6) for nuclear magnetization for the rotational motion of mole-
cules in the orientational potentials

Form of
potential

Initial conditions  = ZWexp(–Ea/RT) Relations between the
probabilities of transitions, Wn

Ni(0) ni(0) Z Ea

P2 (a) NA = 0
NB = nB = 0

2(1 – ) E + ∆ W1 ! W2 (at β = 120° P2 = –1/8)

P3 (b) NA = 0

NB = 

NC = 

nA = –

nB = 0
nC = 0

E + ∆ W1 ! (W2 = W3)
(at the tetrahedral β P2 = –1/3)

P2(∞) (c) NA = 0

NB = 
nB = 0

1 – E1 W1 ! W2 (at β = 60° P2 = –1/8)

P3(∞) (d) NA = 0

NB = 

NC = 

nB = 0
nC = 0

1 – E1 W1 ! W3, W2 ! W4, W1 @ W2
(at β = 60° P2 = –1/8)

* at E2 = E1, W1 = W2

Note: The potentials are shown in Fig. 1; P2 and P3 are the double- and triple-well periodic potentials, P2(∞) and P3(∞) are the double- and
triple-well potentials bounded by external infinitely high walls.

T1
1–( )reor

NB

nA –NA= P2
2

NB

NC

NA 2 2 P2– P2
2–( )

2 P2–
-----------------------------------

NB

nA –NA= P2
2

NB

NC

nA –NA= P2
2

2 1 P2
2

–( )* E1
*

librium population (here, Ni = N(±1/2)i – N(±3/2)i). The
coefficient P2 = (3cos2β – 1)/2 is the second-order Leg-
endre polynomial, where β is the rotation angle for the
principal axis of EFG tensor (at the position of the qua-
drupole nucleus), corresponding to the change in the
axis direction induced by the molecular reorientations
[19]. For chlorine nuclei, for example, the axis direc-
tion corresponding to the maximum EFG value is
known [22] to coincide with the direction of the chem-
ical bond for chlorine. This allows us to determine the
value of P2 based on the geometry of the molecules tak-
ing part in reorientation.

It has already been mentioned that our consideration
relates to the case where the resonating nucleus (chlo-
rine with spin 3/2) is in the axially symmetric EFG.
Note that the allowance for deviations from the axial
symmetry, i.e., the use in the calculations of a nonzero
EFG asymmetry parameter (η), considerably compli-
cates the mathematical treatment of the nuclear quadru-
pole spin-lattice relaxation process. If the spin equals
3/2, there is no need in such a complication [18], since
it is not essential for the problem to be solved. The sim-
ilar scheme which implies that η = 0 was also used in
the theoretical analysis of the relaxation process associ-
ated with molecular reorientations [17, 18]. The expres-
sions for the rate of quadrupole spin-lattice relaxation

of the nuclear magnetization  can be found by solv-
ing sets (3)–(6) of kinetic equations with the initial con-

T1
1–
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ditions determining the starting deviation from the
equilibrium for the system of nuclear spins. It is a char-
acteristic feature of NQR—the excitation of quadru-
pole nuclei at the resonance frequency and the record of
the resonance signal occur only for nuclei of the mole-
cules occupying the equilibrium ground-state position
in the crystal lattice, i.e., for nuclei located in the deep-
est potential well. This is explained by the difference in
the resonance conditions for quadrupole nuclei of mol-
ecules in crystallographically nonequivalent equilib-
rium positions [22]. We should also take into account
that the overwhelming majority of the molecules are
located in the position corresponding to a deeper poten-
tial well (the difference in the potential-well depths
considerably exceeds the value of RT).

This fact determines the choice of the initial condi-
tions for sets of equations (3)–(6). The corresponding
values of Ni(0) and ni(0) depending on the experimental
technique used in the measurements of the relaxation
time T1 are presented in Table 2 (we considered the case
of the spin system excited by a resonant radio-fre-
quency 90° pulse). We can use the relations between the
probabilities of molecule transitions Wn (see Table 2)
with due regard for the fact that the difference in the
depths of nonequivalent potential wells considerably
exceeds RT. Thus, the solution of sets (3)–(6) found in
the usual way leads to the following result [2, 9]:

(7)nA t( ) nA 0( ) t/T1–( ).exp=
1
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Here,  is the rate of nuclear quadrupole relaxation
related to the quadrupole mechanism for the molecular
motion in the potential with nonequivalent wells. This
relaxation rate is determined by the probability of reori-
entational jumps of molecules or atomic groups
between the nonequivalent potential wells [2, 9]. This
temperature-dependent probability obeys the Arrhenius
law [see relationship (2)]. This relaxation parameter for
such a relation to the thermally activated reorientational
motion of molecules has the physical sense of a relax-

ation rate ( )reor from formula (1) and obeys the same
law. Hence, it is quite natural to use for it the same nota-
tion.

It is clear from relationship (7) that the process of
the spin-lattice relaxation has the exponential form for
the molecular motion in the potential with the non-
equivalent wells. This was confirmed by the results of
the experimental tests in crystalline compounds with
different forms of the potentials with nonequivalent
wells (see, for example, [5, 8]).

For the orientational potentials considered here (see
Fig. 1), the temperature dependence of the relaxation
rate following from the analysis of the solutions to
sets  (3)–(6) can be represented by the expression

( )reor = ZW1 . All the versions of this expression are
summarized in Table 2. For illustration, the values of
corresponding coefficients P2 for certain specific cases
of the motion in the potentials with the nonequivalent
wells (shown in Fig. 1) are also indicated in Table 2
[2–4, 15]. The relations between the probabilities Wn of
the transitions given in Table 2 illustrate the difference
between the depths of nonequivalent potential wells
[see Fig. 1 and relationship (2)].

It is clear from Table 2 that for all cases of molecular
motion in the potentials with nonequivalent potential
wells of different forms considered above, the activa-
tion energy Ea of this motion is necessary to overcome
the barrier in the molecular transitions from the equilib-
rium ground-state position to the metastable one. The
Ea values were determined from the temperature depen-
dence of the relaxation rate characterizing the nuclear
quadrupole spin-lattice relaxation. This conclusion,
also formulated in [2, 7, 9], allows one to correct the
earlier results [3, 5, 8] obtained for the motion between
the nonequivalent potential wells.

Thus, in the thermally activated dynamic process in
which the molecules are reoriented between the non-
equivalent positions in the crystal lattice, the corre-
sponding activation energy determined by the NQR
technique characterizes the formation of the orienta-
tional defects in the crystal structure. This information
for the reorienting molecules and atomic groups is pre-
sented in Table 1. It shows the energy range (15–
50 kJ/mol) for activating the formation of the orienta-
tional defects in the crystalline compounds under study.

T1
1–

T1
1–

T1
1–
C
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Abstract—Numerous stacking faults and dislocations (formed by intersection of stacking faults and disloca-
tions limiting nonintersecting stacking faults) in the 3C-SiC films grown by molecular beam epitaxy on a silicon
substrate were studied by electron microscopy with the use of weak beams. A procedure for determining any
of possible Burgers vectors of the (1/6)〈116〉-type glide dislocations and the (1/6)〈110〉- and (1/3)〈001〉-type
sessile partial dislocations (in face-centered cubic lattices) is developed based on the criterion of the contrast
value. The sessile dislocations formed by intersections of stacking faults were shown to have the (1/6)〈110〉-
and (1/3)〈001〉-type Burgers vectors. The width of nonintersecting stacking faults corresponds to the stacking-
fault energy ranging within 0.1–2 mJ/m2. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Silicon carbide is a wide band-gap semiconductor
existing in the hexagonal and the cubic modifications.
There are more than 200 hexagonal nH polytypes with
various periodicities n and only one cubic C polytype
[1] with the sphalerite-type face-centered cubic (fcc)
lattice. It is known that fcc and hexagonal close-packed
(hcp) lattices are characterized by the same symmetry
of atomic arrangement in the (111) and the (0001)
planes but different alternation of their arrangement
along the normal to these planes. In the fcc lattice, all
three possible positions of the A, B, and C planes (the
ABC… sequence) are occupied, while, in the hcp lattice
(2H polytype), only two positions exist with the AB…

sequence displaced by (1/3)〈 〉  relative to one
another. In all the other hexagonal polytypes, the third
(C) position is also occupied, and the lattice has a cer-
tain “hexagonality.” Thus, the 4H-SiC polytype with
ABCB… packing has 75% of hexagonality, while 6H-
SiC with the ABCACB… packing has only 66% of hex-
agonality. The difference in the free energies of differ-
ent polytypes is often quite insignificant [2–4] and,
hence, the packing can readily be changed thus produc-
ing stacking faults. The lines limiting the change in the
packing of the {111} planes in fcc crystals are the glide
Shockley partial dislocations with the (1/6)〈112〉-type
Burgers vectors b. In the hcp lattice, the corresponding
partial dislocations in (0001) planes are characterized

by the (1/3)〈 〉 -type Burgers vectors. Stacking
faults can arise due to the nucleation and motion of
individual partial dislocations or due to splitting of a
perfect dislocations into two partial ones. The width of
a stacking fault is determined by the balance between
the repulsion of the two similarly charged partial dislo-
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cations and their mutual attraction due to an increase in
the free lattice energy due to the presence of a stacking
fault [5]. If the difference between the free energies of
different polytypes is small, a perfect dislocation is split
in such a way that both partial dislocations are resolved
in the micrograph as, e.g., in the micrograph of a ZnS
crystal [6]. In SiC with the pronounced polytypism, the
“widely” split dislocations are observed in both cubic
and hexagonal phases [7–10].

According to the transmission electron microscopy
(TEM) data, the stacking-fault energy in the basal plane
of deformed bulk samples consisting of the 4H and the
6H SiC hexagonal polytypes are equal to (14.7 ±
2.5) mJ/m2 for 4H-SiC [9] and 2.5 mJ/m2 [7] and (2.9 ±
0.5) mJ/m2 [10] for 6H-SiC. The 3C-SiC-polytype sam-
ples deformed at high temperature showed not only
perfect (1/2)〈110〉-type dislocations split into Shockley
partial dislocations [8] but also individual Shockley dislo-
cations. As far as we know, the structure of as-grown dis-
location in the 3C-SiC films has not been studied in
detail as yet.

The dislocation parameters (including the Burgers
vector and the direction of the dislocation line relative
to its Burgers vector) determine the structure of the dis-
location core. Although the electrical activity of the dis-
locations in semiconductors can be explained by differ-
ent reasons [11], the electrical state of dislocations in
semiconductors can depend on the structure of disloca-
tion core [12] and influence the optical and electrical
properties of the semiconductors [13, 14]. Our research
is aimed at detailed investigation of the types of dislo-
cations in the 3C-SiC films on silicon substrates with
pronounced stacking faults which are intersected and
form numerous dislocations.
001 MAIK “Nauka/Interperiodica”
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EXPERIMENTAL

Three-micrometer-thick SiC-3C films were grown
by molecular beam epitaxy (MBE) on Si(111) sub-
strates, with the mismatch being 18%. The cross sec-
tions of the films with the normal being parallel to [110]
direction for TEM studies were prepared by standard
techniques including mechanical polishing, thinning,
and etching with Ar ions. The samples were examined
on a JEM-2000FX electron microscope. Burgers vec-
tors of dislocations were determined from a set of the
dark-field images obtained in weak beams, which cor-
responded to the zone axes whose mutual arrangement
is illustrated by Fig. 1. We used the reflections from the
planes of the [110] zone, two 〈111〉  zones, four 〈112〉
zones, and two 〈100〉  zones, which were observed in the
tilt range of the goniometer (X = ±45° and Y = ±36°).

DETERMINATION 
OF BURGERS VECTOR

In order to determine Burgers vectors b and types of
partial dislocations in cubic 3C-SiC films we developed
a special procedure for unambiguous determination of
Burgers vectors in an fcc lattice with the use of the
well-known intensity criterion of the image based on
the consideration of the scalar product gb [15], where g
is the diffraction vector. First, it is necessary to distin-
guish the Shockley and the sessile partial dislocations.
This presents no difficulties because Shockley disloca-
tion limits individual stacking faults, while sessile dis-
locations are formed due to intersections of stacking
fault. In order to determine the directions of the Burgers
vectors we compared the contrast from dislocations
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Fig. 1. Schematic location of the crystallographic zones and
the diffraction vectors used for determining the Burgers
vector.
obtained in weak beams with the calculated |gb | values,
because the |gb |2 value is proportional to the contrast of
the dislocation image [15–17].

The |gb | values calculated for the twelve possible
Burgers vectors b of Shockley dislocations in the fcc
lattice are listed in Table 1. It is evident that the Burgers
vector b of each Shockley dislocation from the twelve
(1/6)〈112〉  Burgers vectors b can be determined unam-
biguously. However, in practice the choice of Burgers
vectors for dislocations with close gb values for a num-
ber of reflections (e.g., for gb = 0 and |gb | = 1/3) and,
hence, with low difference in the image contrast can be
somewhat ambiguous. If the stacking-fault plane (one
of the four {111} planes) is known, the unambiguous
determination of the Burgers vector of an individual
Shockley dislocation limiting the given stacking fault is
substantially simplified, because the number of the pos-
sible Burgers vectors of the given Shockley dislocation
is reduced from 12 to 3. Then, the true vector can be
easily chosen with the aid of a set of reflections from
Table 1. The determination of the stacking-fault plane
presents no problem. Indeed, two of the four {111}
planes, ( ) and ( ), parallel to the beam passing
along the [110] direction can be determined directly
from the electron diffraction pattern. The remaining
(111) and ( ) planes can be distinguished by measur-
ing the change in the width of the image of the stacking
fault projection along the displacement direction on the
electron diffraction pattern of the [111] or [ ] poles
for a tilt sample.

In fcc lattice, nine stable sessile partial dislocations
are possible (six with the (1/6)〈110〉-type Burgers vec-
tor and three with the (1/3)〈001〉  Burgers vectors),
which are considered as the result of the reactions
between the corresponding Shockley partial disloca-
tions. Table 2 lists all the possible reactions resulting in
the formation of these nine sessile dislocations. It is
seen that for each pair of the intersecting {111} planes,
two reactions between Shockley partial dislocations
lying in these planes lead to the formation of disloca-
tions with the same (1/6)〈110〉  Burgers vectors, while
the two other reactions, lead to the formation of dislo-
cations with the same (1/3)〈001〉  Burgers vectors. The
two types of Burgers vectors can be distinguished by
comparing the experimental contrast with the calcu-
lated |gb | values (Table 3).

RESULTS AND DISCUSSION

The defect structure of the 3C-SiC samples studied
consists of stacking faults with 108–109 cm–2 density,
numerous glide partial dislocations limiting the nonin-
tersecting stacking faults, and sessile dislocations
formed due to the intersections of stacking faults of dif-
ferent widths and shapes (Figs. 2, 3).

111 111

111

111
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Table 1.  Calculated |gb | values for Shockley partial dislocations

Stacking-fault 
plane

                        g

   b
002 200 020 111 1 2

             
02 202 022

(111) b10 = [1 1 0 1

b11 = [11 0 1 1

b12 = 1 1 0

(1 1) b7 = [21 0 1 0

b1 = [121] 0 0 1

b3 = [ 12] 0 1 1

(11 ) b4 = [ 21] 1 0 1

b8 = [2 1] 1 1 0

b2 = [112] 0 1 1

( 11) b5 = [211] 0 0 1

b9 = [1 2] 0 1 1

b6 = [12 ] 0 1 0

11 20 202 2

1
6
--- 21]

1
3
--- 1

3
--- 2

3
--- 1

3
--- 2

3
--- 2

3
--- 1

3
---

1
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--- 2]

2
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--- 1

3
--- 1

3
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--- 1

3
---

1
6
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1
3
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3
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3
--- 1

3
--- 2

3
---

1 1
6
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1
3
--- 2

3
--- 1

3
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3
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3
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3
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1
6
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3
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3
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1
6
--- 1

2
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3
---
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3
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6
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2
3
--- 1

3
--- 1

3
--- 2

3
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3
--- 1

3
--- 1

3
---

1
6
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1
3
--- 1

3
--- 2

3
--- 1

3
--- 1

3
--- 2

3
--- 1

3
---
Shockley dislocations. The upper part of Fig. 2
shows individual stacking faults 1, 2, and 3 bounded by
Shockley partial dislocations. The widths of stacking
faults 1 and 2 are nonuniform. The plane of location of
these stacking faults, (111), was determined by the
technique described above. Now, compare the contrast
of the partial dislocations a–d limiting stacking faults 1
and 2 with the products gb for the three possible
〈112〉/6-type Burgers vectors of Shockley dislocations
in the (111) plane given in Table 1. The high contrast of
the a and c dislocations is seen only in Figs. 2d and 2e.

Using Table 1, one can chose the vector b = 1/6[ ]
for partial dislocations a and c unambiguously, because
these dislocations show high contrast (|gb| = 1) in the

 (Fig. 2d) and the  (Fig. 2e) reflections. At the
same time, the image of the stacking fault disappears,
which indicates that the product gb is an integer. This
choice is consistent with a pronounced contrast of the a

and c dislocations in the 022 and the  reflections

211

220 202

111
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(Figs. 2a–2c), because, in these cases, |gb| = 2/3 (see
Table 1). For two other Burgers vectors possible in the
(111) plane, the |gb| value for these reflections is 1/3,
which corresponds to a low contrast or even its com-
plete absence.

The similar analysis showed the Burgers vector of

the b and d dislocations is b = 1/6[ ]. As follows
from Table 1, only in this case, these dislocations

should be invisible in the  reflection (gb = 0), in full
accordance with the image in Fig. 2e. The correctness
of such a choice of the Burgers vector b is confirmed by
a rather high contrast of the b and d dislocations in the

 reflection (see Fig. 2b) consistent with the value
|gb| = 2/3 calculated for this reflection. For two other
possible Burgers vectors |gb| = 1/3 (i.e., is rather low).
This choice is also supported by the correlation
between the images of the b and d dislocations in the

022, , and  reflections (Figs. 2a, 2c, and 2d)

121

202

111

220 111
1
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Table 2.  Types and directions of the Burgers vectors of the sessile partial dislocations formed due to the reaction between
Shockley partial dislocations at the intersection of the stacking faults lying in the {111} planes of the fcc lattice

Planes of intersection
of stacking faults Reactions between Shockley dislocations Sessile partial dislocation

1 × 2
b1 – b2 = [121] + [     

[01 ]

–b3 + b4 = [1 ] + [ 21]

3 × 1
b5 – b1 = [211] + [ ]

[1 0]

–b6 + b7 = [ 1] + [12 ]

2 × 3
b2 – b5 = [112] + [ ]

[ 01]

–b8 + b9 = [ 1 ] + [1 2]

4 × 3
–b10 + b9 = [ 2 ] + [1 2]

[011]

b6 – b11 = [12 ] + [ 2]

4 × 2
–b12 + b4 = [2 ] + [ 21]

[110]

–b10 + b8 = [ 2 ] + [2 1]

1 × 4
b3 – b12 = [ 12] + [2 ]

[101]

b7 – b11 = [21 ] + [ 2]

1 × 3
b1 – b6 = [121] + [ 1]

[001]

b5 – b7 = [211] + [ 1]

2 × 4
b4 + b10 = [ 21] + [1 1]

b8 + b12 = [2 1] + [ 11]

2 × 1
b2 – b3 = [112] + [1 ]

[100]
b1 – b4 = [121] + [1 ]

3 × 4
b6 + b10 = [12 ] + [1 1]

b9 + b11 = [1 2] + [11 ]

1
6
--- 1

6
--- 112]

1
6
--- 1

1
6
--- 12
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6
--- 1

1
6
--- 1

6
--- 121

1
6
--- 1

1
6
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6
--- 1

1
6
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6
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1
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1
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--- 1 1

1
6
--- 1

1
6
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6
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--- 1 1
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--- 1

1
6
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1
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--- 1 1
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6
--- 1

1
6
--- 1 1
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1
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6
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1
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Table 2.  (Contd.)

Planes of intersection
of stacking faults Reactions between Shockley dislocations Sessile partial dislocation

2 × 3
b2 – b9 = [112] + [ 1 ]

[010]

b5 – b8 = [211] + [ 1 ]

1 × 4
b3 + b11 = [ 12] + [11 ]

b7 + b12 = [21 ] + [ 11]

Plane notation: 1 stands for (1 1), 2, for (11 ), 3, for ( 11), and 4, for (111).

1
6
--- 1

6
--- 1 2

1
3
---

1
6
--- 1

6
--- 2 1

1
6
--- 1

1
6
--- 2

1
6
--- 1

1
6
--- 2

1 1 1
Table 3.  Calculated |gb | values for the sessile partial dislocations

b g

type direction 002 200 020 111 1 1 220 02 02 202 022

 〈 011 〉 [01 ] 0 0 0

[1 0] 0

[ 01] 0 0 0

[011] 0 0 0

[110] 0 0 0 0

[101] 0 0 0

 〈 001 〉 [001] 0 0 0 0

[010] 0 0 0

[100] 0 0 0 0
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---
and the calculated |gb | values (Table 1): the high con-

trast in the 022 and  reflections (|gb | = 1), and weak

(or absent) contrast in  reflection (|gb | = 1/3).

The splitting width of the stacking fault 3 (Fig. 2)
bounded by the Shockley dislocations e and f is more

uniform. This stacking fault is located in the ( )
plane, as was established by change in the width of its
projection at the known tilt. The use of our procedure

220

111

111
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for determining Burgers vector gave the value b =

1/6[112] for the dislocation e and b = 1/6[ ] for the
dislocation f. The width of nonintersecting stacking
faults in 3C-SiC can be as high as 2 µm.

Shockley partial dislocations can arise by two ways:
first, as a result of the splitting of a perfect dislocation
with the Burgers vector 〈110〉/2 (stacking faults 1 and 2 are

formed by the reaction [ ]/2  [ ]/6 + [ ]/6;
stacking fault 3, by reaction [011]/2  1/6[112] +

121

110 211 121
1
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Fig. 2. Weak-beam dark-field images of the Shockley partial dislocations (a and b) stacking fault 1, (c and d) stacking fault 2, (e and
f) stacking fault 3, and (k) stacking fault 5, (h and i) the sessile partial dislocations stacking fault 4 and (j) stacking fault 5 formed
at the intersection of the stacking faults 4 and 5 with the stacking faults 6 and 7. Reflections correspond to the crystallographic zones

(a) [ ], (b) [ ], (c) [ ], and (d, e) [111].121 211 111

g
202
–

1/6[ ]) and, second, via nucleation of a dislocation
at an interface. In the first case, a stacking fault is lim-
ited by two partial dislocations; in the second case, only
one partial dislocation with the stacking fault bounded
by this dislocation can move from the interface. In the
above examples, each stacking fault is bounded by two
partials and, therefore, one can assume that the Shock-
ley dislocations a and b (stacking fault 1), c and d
(stacking fault 2), and e and f (stacking fault 3) are
formed due to the splitting of the perfect dislocations.

We estimated the stacking-fault energy γ from the
split ∆ between two Shockley dislocations formed due
to splitting of a perfect glide dislocation, using the well-
known relation

121

γ
µb1b2 2 ν–( )
8π∆ 1 ν–( )

-------------------------------- 1
2ν

2 ν–
------------ 2α( )cos– ,=
C

where µ is the shear modulus, b1 and b2 are the Burgers
vectors of the partials, α is the angle between the dislo-
cation line and the Burgers vector of the perfect dislo-
cation, and ν is Poisson’s ratio. The energy was found
to range from 0.1 to 2 mJ/m2; i.e., its value is low in
comparison with the γ values for elemental semicon-
ductors and most of the semiconductors with the
sphalerite- and wurtzite-type lattices. The wide range
of the stacking-fault widths can be attributed to the
effect of internal stresses in a growing film. This effect
is important if the interaction between partial disloca-
tions is comparable with that of their interaction with
the external stress, which can be the case for the pro-
nouncedly split dislocations. Our estimate of the stack-
ing-fault energy is consistent with the value γ ≈
0.2 mJ/m2, determined from the images of split dislo-
cations in cubic SiC [8]. The stacking fault energies
obtained in cubic SiC are lower than the energies for
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Fig. 3. Weak-beam dark-field images of stacking faults 1–4, whose intersection results in the formation of partial dislocations m and

n in the (a) , (b) 02 , (c) 2 0, and (d) 202 reflections.111 2 2
6H-SiC and 4H-SiC polytypes [9], which is explained
by the lower stability of the cubic polytype (i.e., lower
than that of the hexagonal ones) [2–4].

Sessile partial dislocations. Stacking faults often
“propagate” up to the intersections with stacking faults
from the other {111} slip planes (see the intersection of
stacking fault 4 with the two parallel stacking faults in
Fig. 2 and the intersection of stacking faults 1 and 2
with stacking faults 3 and 4 in Fig. 3), which results in
the formation of sessile partial dislocations. There are
two types of stable Burgers vectors of the sessile dislo-
cations in an fcc lattice—b = 〈011〉 /6 and b = 〈001〉 /3,
and both are typical of the 3C-SiC films studied (which
will be shown below).

Dislocations with b = ·011Ò/6. The images of the
stacking faults (obtained in various reflections) that,
intersecting, form sessile partial dislocations are shown
in Figs. 3a–3d. Consider the m and n partials formed by
intersection of two parallel stacking faults, 1 and 2,

lying in the ( ) plane with the two mutually parallel

stacking faults 3 and 4 lying in the ( ) plane (Fig. 4a).

111

111
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The possible reactions between four Shockley partials

in the intersecting planes ( ) and ( ) are indicated
in Table 2 (the planes are denoted by 1 and 2). As a
result, the sessile dislocations with the shortest 〈011〉/6-
and 〈001〉/3 Burgers vectors are formed,

b1 – b2 = b4 – b3 = [ ]/6,

b2 – b3 = b1 – b4 = [100]/3.

To choose the correct Burgers vector of the above two,
for m and n dislocations, consider the dislocation
images. It is seen from Fig. 3b that both dislocations are
clearly visible in the  reflection and, therefore
(Table 3), their Burgers vector is b = [ ]/6 (|gb | =
2/3) and not b = [100]/3 (for which gb = 0). This con-
clusion is consistent with their disappearance in the

 and 202 reflections (Figs. 3c, 3d) in full accor-
dance with the calculated value |gb | = 1/3 (Table 3).
The vector b = [100]/3 corresponds to a higher value,
|gb | = 2/3, at which the contrast of m and n dislocations
should be noticeable.

111 111

011

022
011

220
1
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Dislocations with b = ·001Ò/3. Now, determine
Burgers vector of i and h dislocations (Fig. 2) formed
by intersecting stacking fault 4 in the ( ) plane and
mutually parallel stacking faults 6 and 7 in the ( )
plane (Fig. 4b). According to Table 2, the following
reactions between the dislocations with the b2, b4 , and
b8 Burgers vectors in the ( ) plane and b5, b6 , and b9

Burgers vectors in the ( ) plane should be consid-
ered:

b2 – b5 = b9 – b8 = [ ]/6,

b2 – b9 = b5 – b8 = [010]/3.

As both i and h dislocations are invisible in the 
reflection (Fig. 2e), the b = [010]/3 Burgers vector
(gb = 0, Table 3) and not b = [ ]/6 (|gb | = 2/3) should
be chosen, which agrees with the high contrast in the
002 and  reflections in Figs. 2c and 2d (|gb | = 2/3
for b = [010]/3, while for b = [ ]/6 the calculated
value is |gb | = 1/3).

111
111

111
111

101

202

101

220
101

Fig. 4. Schematic location of (a) stacking faults 1–4 shown
in Fig. 3 intersecting to form sessile partial dislocations m
and n with the 〈110〉 /6-type Burgers vector and (b) stack-
ing faults 4, 6, and 7 shown in Fig. 2 intersecting to form
sessile partial dislocations i and h with the 〈100〉 /3 Burgers
vector.
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Stacking fault 5 in the top left corner in Figs. 2a–2e
intersects the stacking fault in the ( ) plane to form
the sessile partial dislocation j with b = [010]/3
bounded by the Shockley dislocation k with b =
1/6[112] on the other side.

In fact, the sessile partial dislocations with the Burg-
ers vectors 〈110〉/6 and 〈100〉/3 are edge dislocations.
As the core structure and the energy level of the dislo-
cation in the forbidden band are determined mainly by
the dislocation type (sessile or glide) and the orienta-
tion of the dislocation line with respect to its Burgers
vector, it is possible to assume that unlike the glide dis-
locations (characterized by the wide range of orienta-
tions with respect to their Burgers vectors), sessile dis-
locations would have fixed levels in the forbidden band.
However, neither the electrical nor the optical activity
of Shockley and sessile partial dislocations in SiC have
been discussed as yet.

CONCLUSIONS

It has been shown by TEM studies that silicon car-
bide films on Si(111) substrates contain stacking faults,
partial glide dislocations limiting nonintersecting
stacking faults, and sessile dislocations formed by
intersections of stacking faults. It is also shown that
stacking faults bounded by the Shockley partial dislo-
cations have the widths ranging from ≈100 nm to
≈2 µm, which corresponds to the stacking-fault ener-
gies 0.1–2.0 mJ/m2. The sessile partial dislocations
formed by intersecting stacking faults in different
{111} planes have the Burgers vectors 〈100〉/3 and
〈110〉/6 normal to the corresponding dislocation lines
along 〈110〉  directions.

The procedure developed provides the determina-
tion of any possible Burgers vector of both Shockley
and sessile partial dislocations formed by intersecting
stacking faults in fcc crystals. This procedure can be
especially useful in studying thin films usually contain-
ing dislocations with all possible Burgers vectors (con-
trary to dislocations induced by deformation of bulk
materials, where only some preferable orientations of
the Burgers vectors and dislocation lines can be
obtained).
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Abstract—The comparative study of the distribution and density of dislocations and cracks in isomorphously
mixed potassium–rubidium biphthalate crystals grown under the conditions of discrete and continuous changes
of the solution composition with time. The method is developed for calculating the heterometry-induced inter-
nal stresses and the character of their variation in a crystal during its growth. It is established that formation of
dislocations, cracks, and interzonal inclusions is associated with the effect of the heterometry-induced stresses,
whereas the number of defects depends on the values of these stresses varying during crystal growth. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that nonuniform capture of isomor-
phous impurities by different parts of the crystal leads
to incommensurability of the three-dimensional lattices
of these parts (heterometry) and provides the formation
and relaxation of internal stresses at defects [1–4].
Defect formation depends not only on the stress values
but also on their signs and configurations [5]. We had the
aim to reveal and study both similar and distinctive fea-
tures of crystal defects at the discrete and the continuous
variation of their composition on an example of isomor-
phously mixed potassium–rubidium biphthalate crystals.

Potassium–rubidium biphthalate crystals were
grown from aqueous solutions by the method of tem-
perature decrease in the dynamic mode [6, 7] under a
constant relative supersaturation (∆C/C0 ≈ 0.06) with
due regard for the dependence of the solubility on the
temperature and the composition of the solution [6] and
the variation of the crystal mass in time. The bizonal
crystals with a discrete change in the compositions
were obtained. They consisted of the internal zone (a
plate with the (110) and (111) faces and the dimensions
of 15 × 20 mm2 in the (010) plane and 2 mm in thick-
ness cleaved along the cleavage plane) and the external
zone (a 2–10 mm-thick layer extended or compressed
in comparison with the internal zone). Since the change
in the rubidium content gives rise to the changes the lat-
tice parameters [6, 7], the heterometry-induced internal
stresses arise at the zone boundaries [2]. We also grew
the gradient crystals with continuously and monotoni-
cally varying composition along the growth direction
on potassium biphthalate seeds [6].

1 Additional materials can be obtained on the address http://
www.chat.ru/~moshkin/defect98.htm.
1063-7745/01/4606- $21.00 © 21014
Defects in the crystals grown were studied by the
methods of optic microscopy, selective etching of
cleavages along the (010) pinacoid, and X-ray diffrac-
tion [7]. Crystal plasticity was characterized by the dis-
location density ρ (the number of pyramidal etching
pits per unit area of the crystal cleavage along (010)
with due regard for the angle formed by the (010) plane
and the face under study). The brittleness was charac-
terized by the cracking coefficient K (the total area of
the surfaces of the crack mirrors located in the crystal
volume studied to the value of this volume).

HETEROMETRY-INDUCED STRESSES

In growth of a bizonal crystal, the heterometry-
induced stresses at the interzonal boundary vary due to
the varying thicknesses of the internal and the grown
zones. In a gradient crystal, they vary due to continuous
variation of the composition along the growth direction.
To calculate the values and the changes in these
stresses, we used the model of an infinite plane crystal-
line plate consisting of the internal and two symmetric
external zones parallel the face studied. In the approxi-
mation of purely elastic deformations, we minimized
the total stress energy in the plate, and determined the
stresses σij in the grown layer as functions of the growth
time t. For a bizonal crystal, we have

where cijkl are the components of the tensor of elastic
stiffness of the crystal, h is the thickness of the internal

zone, V is the linear growth rate of the face,  and

 are the projections of the kth unit-cell parameter
onto the lth principal axis of the strain tensor of the face
under consideration of the internal and external layers

σij t( ) cijklh akl
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akl
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in the unstressed state onto the principal axes of the strain
tensor. For a gradient crystal and the linear variation of the
composition in the growing layer in time, we have

where kkl = fgkl, f is the coefficient of the linear temporal
dependence of the rubidium biphthalate concentration
in the crystal, gkl is the coefficient of the linear depen-
dence of the projection of the kth unit-cell parameter
onto the lth principal axis of the strain tensor on the
rubidium biphthalate concentration in the crystal. The
expression for the stresses in the internal zone have a
similar form. This model allows one to calculate the
stress tensor in the plane parallel to the plane of zone
intergrowth at an arbitrary point of the crystalline plate
at any moment of crystal growth.

Figure 1 illustrates the calculation of the heterome-
try-induced stresses for a bizonal and gradient crystals
in the above model. (The change of the maximum prin-
cipal normal stress σn and the stress intensities σi deter-
mine the level of brittle and plastic deformation,

σij t( ) Cijkl

kklakl
in

tV h+( )

akl
in

V 1 kklt/akl
in

+( ) kklh+( )ln
--------------------------------------------------------------------





=

-----– kklt akl
in

–( )




/ kklt akl
in

+( ),

–1

–2
1

σ, 108 N/m2

L, mm
0 2 3 4

0

1

2

1

2

1'

2'

σi

σn

Fig. 1. Variations in the heterometry-induced stress intensi-
ties σi and the principal normal stress σn in the (010) growth
sector calculated within the model of elastic stresses, at the
growth front of the (1, 1') bizonal and (2, 2') gradient crys-
tals at the maximum difference in the rubidium biphthalate
concentrations (25 mol %) with an increase of the layer
thickness along the direction L normal to the (010) plane.
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respectively [5]; we also took into account the experi-
mental coefficients of rubidium distribution.) In the
growth sectors of the prism (110) and bipyramid (111)
faces the stresses change in the similar way. The calcu-
lation shows that, in a bizonal crystal, the stresses are
the same in the whole volume of the growing zone and
decrease during the growth process. In a gradient crystal,
the stresses at the growth front increase in time, whereas
in the bulk, their magnitude gradually decreases and,
passing zero, change sign.

DISLOCATIONS, CRACKS, 
AND INCLUSIONS

Irrespectively of the different zone compositions
and the stress signs, the heterometry-induced disloca-
tions in the bizonal and gradient crystals are concen-
trated in the external zones of the sectors of growing
faces and are almost absent in the regions of edge
growth. The analysis of the displacements of the verti-
ces of the pyramidal etching pits in the (010) plane
allowed us to evaluate the orientation of the dislocation
lines in the growth sectors of various faces and to show

0.5

ρ, 103 mm–2

L, mm
0 2 4 6

1.5

2.0

1

2

1.0

2.5

Fig. 2. The variation of the dislocation density ρ in the
growth sector of the (010) pinacoid face along the growth
direction L from the boundary with the seeding plate in the
bizonal crystal (1) with the difference in the rubidium biph-
thalate concentrations for the zones equal to 2.5 mol %, and
in a gradient crystal (2) with the maximum difference in the
rubidium biphthalate concentration equal to 25 mol %.
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Fig. 3. Dislocation (1) densities ρ and (2) the cracking coef-
ficient K in the growth sector of (010) pinacoid as functions
of the differences in the rubidium biphthalate content in the
zones (r, mol % rubidium biphthalate) of (a) bizonal crystals
and the maximum difference in the rubidium impurity in the
initial and final growth layers (r, mol % of rubidium biphtha-
late) (b) gradient potassium–rubidium biphthalate crystals.
C

that dislocations are practically normal to the growing
faces. If the concentrations of the rubidium biphthalate
impurity differ by more than 2.5 mol % in the {111}
growth sectors of bizonal crystals, one observes the
plane dislocation pileups oriented along the normal to
the bipyramid edges.

In the crystals studied (Fig. 2), the dislocation den-
sity increases from the interzonal boundary; whereas in
the bizonal crystals it passes through the maximum,
and in the gradient crystals, it continuously increases
toward the surface of the growing face. The maximum
dislocation density in bizonal crystals is observed in the
growth sectors {010} and {111}; its value increases
with an increase of the difference in the impurity con-
centrations in the zones (Fig. 3a) and in the growth sec-
tors of all the faces irrespectively of the sign of stresses.
In gradient crystals, an increase of the composition gra-
dient resulted in an increase of the number of arising
dislocation (Fig. 3b). The different contents of rubid-
ium impurity in the initial and final growth layer of the
gradient crystals is proportional to the gradient of
rubidium concentration in the growth sector {010} of
these crystals, because the thicknesses of the layers
grown along the [010] direction were practically the
same (about 3 mm).

In bizonal and gradient crystals with the compressed
external zone, the growth cracks are oriented along the
(001) face (which corresponds to the secondary cleav-
age of the biphthalate crystal [8, 9]) and concentrated in
the {010} growth sector. In some instances, the gradi-
ent crystal had the crack along the (010) plane in the
vicinity of the seed (which is similar to the crack forma-
tion along the cleavage upon the removal of the uniaxial
load along the [010] direction [8]), which seems to be
caused by the sign reversal of the internal stresses dur-
ing crystal growth. The cracks normal to the edges
between these faces arise in the growth sectors {111}
and {110}, with their nuclei being the planar disloca-
tion pileups of the same orientation.

Under the extension or compression of the external
zone of a bizonal crystals, the cracks along the (001)
plane arise already if the concentrations of the rubidium
biphthalate impurity differ by about 3 mol % (Fig. 3a),
whereas in the gradient crystals, the crack formation
under the compression starts at the difference in the
rubidium biphthalate concentrations between the seed-
ing plate and the growth front of 3.5–4.0 mol %, i.e., at
considerable internal stresses (Fig. 3b). With an
increase of the difference in concentrations of rubidium
biphthalate between the zones and the compositional
gradient, the total number of cracks in the growing zone
increases (Fig. 3). Formation of macroscopic cracks in
the compressed external zone of the crystals is deceler-
ated because some microcracks merge into large cracks
only at considerable stress reduction or at the change of
their signs with an increase of the crystal thickness.

Planar liquid inclusions of non-diffusion nature [7]
are formed in bizonal crystals at the zone boundaries in
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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the {010} growth sector if the difference between the
rubidium biphthalate content exceeds 13 mol %; the
number of inclusions increase with the difference in the
zone compositions, whereas the size in the (010) plane
decreases [7]. Formation of inclusions results in the
reduction of the effective internal stresses at the inter-
zone boundary. In gradient crystals, liquid inclusions
arise with a decrease of the growth rates of the faces
because of high stresses at the growth front at the final
growth stages.

It was established that the number of defects (dislo-
cations, cracks, interzonal inclusions) in the studied
crystals increase with an increase of the difference in
the concentrations in the zones in bizonal crystals and
the composition gradient in gradient ones, which corre-
sponds to an increase of the heterometry-induced inter-
nal stresses. The change in the number of defects dur-
ing growth corresponds to the character of the changes
in the heterometry-induced stresses calculated accord-
ing to the model suggested above. The inverse depen-
dence of the number of dislocations and cracks in
bizonal crystals at considerable differences in the zone
rubidium biphthalate concentrations is associated with
a decrease of the effective internal stresses caused by
interzonal inclusions.
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Abstract—The possible resonance excitation of surface electromagnetic waves by the bulk waves at the inter-
face between a positive transparent uniaxial crystal and an isotropic medium has been predicted. The existence
of the surface waves is provided by anisotropy of one of the boundary media. The tensor relation between the
vector amplitudes of an exciting bulk electromagnetic wave and the excited surface wave is established. The
ratio of the moduli of the tangential components of these amplitudes is analyzed as a function of the angle of
incidence and the polarization of the bulk wave. The numerical calculations are performed for the surface waves
at the interface between paratellurite TeO2 and a KRS-6 (TlBr 30%–TlCl 70%) crystal. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Recently, considerable attention has been focused
on the theoretical and the experimental studies of sur-
face polaritons in metals, semiconductors, and dielec-
trics [1–6]. Surface polaritons are the modes of an elec-
tromagnetic field with the amplitude exponentially
decreasing with the distance from the interface. The
simplest example of a system providing excitation of
surface polaritons is the interface between isotropic
media, with the positive permittivity of one medium
and the negative permittivity of the other medium. No
surface polaritons can propagate along the interface
between isotropic media with the positive permittivi-
ties. Therefore, a medium with the negative permittivity
is called a surface-active medium, while that with the
positive permittivity, a surface-inactive medium [1].
Both natural and artificial media can be active—metals,
plasma, and dielectrics in vicinity of the absorption
lines. The important problem of the existence and exci-
tation of the surface modes of an electromagnetic field
at the interface between the optically anisotropic and
the optically isotropic media is still insufficiently stud-
ied. It has been believed for quite a long time that one
of the media should be surface-active; e.g., the permit-
tivity tensor of an anisotropic medium should have neg-
ative principal values [1, 7]. Later [8, 9], it was shown
that the surface activity is not the necessary condition
for existence of surface electromagnetic wave. The
boundary media can also be inactive; however, at least
one medium should be anisotropic and the material
parameters of the media should satisfy some additional
requirements. The general conditions of the existence
of surface electromagnetic waves at the interface
between the isotropic medium and the anisotropic crys-
tal of an arbitrary symmetry with the positively defined
1063-7745/01/4606- $21.00 © 21018
permittivity tensor (that is, under the condition that the
boundary media are inactive) were formulated in [10].
It was shown that surface modes in this system can arise
only if the orientations of the planes of the crystal cut
and the directions of the wave propagation relative to
the symmetry elements belong to a certain bounded
continuous set.

In our consideration, we used the general (coordi-
nate free) operator–tensor approach to describe surface
waves, the surface-impedance tensors, and the so-
called integral formalism [11]. Although this formalism
is equivalent to a more popular analysis with the invo-
cation of partial inhomogeneous waves, its application
seems to be more expedient because it allows one to
derive consistently the dispersion equations for surface
waves. The existence theorems based on the integral
approach have been formulated earlier in the theory of
surface acoustic wave (SAW) [12–15]. The existence of
surface acoustic waves is directly related to the proper-
ties of exceptional (limiting) elastic waves in crystals
[16, 17]. The formal similarity of the wave equations in
optics and acoustics of anisotropic media facilitated the
extension of a number of methods from the theory of
surface acoustic waves to the description of the surface
electromagnetic waves [10, 11].

The experimental studies of the surface polariton
spectra are based on the use of Raman scattering, the
optical, electron, etc., spectroscopies [1, 7], and also the
well-know technique of the frustrated total internal
reflection [18]. There are grounds to believe that the
frustrated total internal reflection would also be effi-
cient for excitation and observation of the surface elec-
tromagnetic waves at the interface between the surface-
inactive media. Recently, the effect of resonance exci-
tation of the surface acoustic waves has been predicted
001 MAIK “Nauka/Interperiodica”
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in the “layer-on-substrate” systems [19, 20]. The gen-
eral method of resonance excitation of acoustic and
electromagnetic waves in such systems was described
in [21]. In these publications, a large variety of wave
fields in bicrystal systems was consistently described.

Below, we study possible resonance excitation of
surface electromagnetic waves (the so-called
D’yakonov waves [8]) at the interface between a sur-
face-inactive uniaxial crystal and an isotropic layer.
The excitation becomes possible because of the pres-
ence in the layer of inhomogeneous exponentially
increasing waves which arose upon the total internal
reflection of the incident bulk wave. The numerical cal-
culations were made for a paratellyrite (TeO2) crystal
coated with an isotropic KRS-6 (TlBr 30% –TlCl 70%)
layer. The bulk wave propagates in an optically isotro-
pic ZnSe crystal. The fundamental characteristic of the
processes studied is the ratio of the moduli of the tan-
gential components of the amplitudes of the excited
surface wave and the exciting bulk wave. This ratio can
attain a rather high value if the projections of the wave
vectors of the incident and surface waves on the inter-
face are close. The consideration is performed for
monochromatic fields with the fixed frequency; all the
relationships include the Fourier components of the
permittivity tensors at this frequency. A more rigorous
analysis requires the allowance for absorption in mate-
rials, which will be discussed in our following publica-
tions.

BASIC RELATIONSHIPS

Consider a layered nonmagnetic dielectric system
(Fig. 1) consisting of an isotropic layer (II) of the thick-
ness l with permittivity εf, a semi-infinite anisotropic
substrate (III), which is a positive uniaxial crystal char-
acterized by permittivity tensor ε, and an isotropic
medium (I) with permittivity εc. Let the reference point
be at the interface between the isotropic layer and the
substrate and z be parallel to the unit vector q of the
interface normal. The substrate permittivity tensor ε
and the inverse tensor ε–1 have the forms [22–24]:

(1)

where c is the unit vector directed along the optical axis,

c ⊗ c is a dyad, ε⊥  = , and ε|| = . Let the vector c lie
in the interface plane.

We are interested in possible excitation of surface
electromagnetic wave at the II–III interface z = 0 by a
bulk wave incident from the isotropic media I onto the
isotropic layer. Let the angle of incidence be ϕ and the
direction of the projection of the bulk-wave vector on
the interface be specified by the unit vector b forming
an angle α with the vector c (c = bcosα – asinα) (Fig. 1).
At l  ∞, the following conditions should be met to

ε ε⊥ ε|| ε⊥–( )c c, ε|| ε⊥ ,>⊗+=
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excite surface electromagnetic waves localized at the
interface between the uniaxial crystal, III, and the iso-
tropic layer, II,

(2)

where the limiting angles α1 and α2 are specified by the
formulas

(3)

(4)

and η = (ε||/ε⊥ ) – 1 and ξ = (εf – ε⊥ )/(ε|| – ε⊥ ) [8]. We
assume that in our case, the parameters ε||, ε⊥ , εf, and α
are chosen in such a way that the conditions (2) are sat-
isfied. In addition, let the following inequalities be ful-
filled:

(5)

Conditions (5) correspond to the total internal reflec-
tion of a bulk wave at the interface z = l; hence, inho-
mogeneous electromagnetic waves are excited in
layer II.

In what follows, we use the notation af = 1/εf  and
ac = 1/εc and introduce a dimensionless reduced wave
frequency ν = ω/(ck), where k is the projection of the
incident wave vector onto the b direction and c is the
velocity of light in free space. The frequency ν is deter-
mined by the angle of incidence ϕ:

(6)

Let  be the tangential component (amplitude) of the
magnetic field strength of the surface wave at the inter-

face z = 0 and  and  be the tangential components
of the magnetic field intensity of the incident and
reflected waves at the interface z = l which satisfy the

equality (z = l) =  + . The similar notation
[q%%%%s], [q%%%%i], and [q%%%%r], where %%%% = νE, is also used for
the amplitudes of the electric field intensity at the inter-
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Fig. 1. Geometry of a layered dielectric system.
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faces. The field amplitude  at the interface z = 0
between media II and III can be determined under the

assumption that the amplitude  is set. When solving
this problem, it is convenient to use the operator
approach [25] without calculating the characteristics of
the partial waves. The relation between tangential com-
ponents of the fields at the interfaces z = 0 and z = l is
established by the characteristic layer matrix P (a spa-
tial evolution operator or a propagator)

(7)

with the block structure P = . The explicit

form of the operators P11, P12, P21, and P22 will be given
below. The surface impedance tensor of the wave γ is
introduced as a “tensor coefficient of proportionality”
between the tangential components of the electric and
magnetic fields: [q%%%%] = γHτ. Denote the surface-imped-
ance tensors of the incident, reflected, and surface
waves by γi , γr , and γs, respectively. Then Eq. (7) takes
the form

(8)

where I = –q×2 = 1 – q ⊗ q = b ⊗ b + a ⊗ a is the pro-
jection operator in the interface plane and q× is the ten-
sor dual to the vector q [22, 23]. We can eliminate the

field  from Eq. (8) by multiplying both sites of
Eq. (8) on the left by the matrix (γr – I), 

where the relation between the surface impedances of
the incident and reflected waves, γi = –γr, is taken into

account. Then the relation between the  and 
amplitudes is determined by the operator equation

(9)
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the superscript “minus” denotes an operation of
pseudoinversion [25].
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The surface impedance tensors of the incident and
the reflected waves have the form [26]:

(11)

The surface impedance tensor of the inhomoge-
neous surface electromagnetic wave in anisotropic sub-
strate III can be calculated using the general formulas
from [11], where Stroh–Barnett–Lothe formalism [12–
14] for the surface acoustic waves is extended to the
surface electromagnetic excitations. We have 

(12)

where the Q and the S tensors are given in the integral
form

(13)

The integrands in Eq. (13) include the bilinear tensor
forms of two vector arguments defined for two arbitrary
vectors u and v as

(14)

where e1 and e2 are expressed in terms of the vectors b
and q

e1 = bcosφ + qsinφ, e2 = –bsinφ + qcosφ.

In Eq. (14),  is the tensor adjugate to the tensor ε–1

( ε–1 = ε−1  = detε–1) [22, 23] and bu and bv are
the scalar products of the vectors.

For a uniaxial crystal

(15)

Substituting u = v = e2 into Eq. (14) and using Eqs. (1)
and (15) we can determine, first, the tensor (e2e2) and
then the pseudoinverse tensor (e2e2)–, specified by the
equalities (e2e2)(e2e2)– = (e2e2)–(e2e2) = I. Upon simple
but cumbersome transformations, we obtain 
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where d = acos2α + bsin2α. In derivation of Eq. (16),

we used the relations  = [e2c] and  = e2 ⊗ e2 – 1.
Integrating over φ with due regard for Eq. (13), we
arrive at the tensor Q

(17)

It can be shown that the expressions for the tensor (e2e1)
and, hence, also the tensor (e2e2)–(e2e1) contain odd
powers of cosφ and sinφ. Therefore S = 0 and Eq. (12)
acquires the form γs = –iQ–. With Eq. (17) we obtain the
expression for the surface impedance tensor

(18)

The propagator P can be determined as the matrix
exponent (exponential) P = exp(iklM), where the
matrix M enters the system of differential equations

which describes the propagation of inhomogeneous
waves in an isotropic layer. The structure of propaga-

--– d φcos
2

d ν2
–( ) φsin

2
+[ ] a a⊗





,

e2
×c e2

×e2
×

Q b a ν2
–( ) a d ν2

–( )+[ ]
1–

=

× 1

ν2
----- a ν2

–( ) d ν2
–( ) ab ---+–





–
ν2

a b d–+( )
ab

------------------------------- b b⊗

–
1

ab
---------- b a–( ) α α b a a b⊗+⊗( )cossin

+ d

ab
---------- d ν2

–

a ν2
–

--------------+
 
 
 

a a⊗




.

γs i b a ν2
–( ) a d ν2

–( )+[ ]
1–

=

× ν2
d

a ν2
–

d ν2
–

-------------- ab+ b b⊗




+ ν2
b a–( ) a ν2

–

d ν2
–

-------------- α α b a a b⊗+⊗( )cossin

– ab a ν2
–( )

+ a ν2
–

d ν2
–

-------------- ab ν2
a b d–+( )–( ) a a⊗





.

d
dz
----- Hτ

q%%%%[ ] 
  ikM

Hτ
q%%%%[ ] 

  ,=
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
tor P is described by

(19)

Thus, the operator A in Eq. (9), which relates the
tangential components of the magnetic fields of the
incident and the excited surface waves, is determined
by Eqs. (10), (11), (18), and (19). This operator can be
regarded as a function of the frequency ν (or the inci-

dence angle ϕ) with ν ranging from νmin =  to

νmax = min{ , }. The lower limit of this range is
set by Eq. (6). The upper limit corresponds to positive
expressions under the root sign in Eqs. (18) and (19)
(this signifies that the waves in layer II and substrate III
are inhomogeneous). In the general case, A is a com-
plex non-Hermitian operator. Here, we are primarily

interested in the ratio of the moduli of the  and 

field vectors ρ = /  (hereafter referred to as the
coefficient of the surface-wave amplification with
respect to the exciting bulk wave) (the phase relations
between these vectors are of minor importance now). It
is important that this coefficient at the fixed incidence
angle ϕ is essentially dependent on the polarization of
the incident wave and attains the maximum and the
minimum values only at some (generally, elliptical)
polarizations. The greatest possible value ρmax equals
the norm of the operator A [27]. The latter can be deter-
mined from the formula

(20)

where λ1 and λ2 are the eigenvalues of the Hermitian
operator B = A+A and the cross indicates the Hermitian
conjugation. The polarization of the incident wave
which provides the maximum amplification is deter-
mined as the eigenvector of the operator B correspond-
ing to the greatest eigenvalue. The second eigenvector,
orthogonal to the first one, at the fixed ϕ, determines the
minimum value of the amplification coefficient.
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It should be emphasized that the coefficient ρ intro-
duced above, characterizes the ratio of the moduli of the
tangential field components and not of the complete
vectors Hs and Hi, which can be determined from 
and  with the use of the restoration matrices [25].

The reduced frequency ν = νs of the surface wave in
the system with one interface at z = 0 is the solution of
the following dispersion equation [10]:

(21)

where the surface impedance tensor γs of the inhomoge-
neous wave in uniaxial crystal III is given by Eq. (18),
whereas the surface impedance tensor of the wave in
isotropic medium II is given by the formula

(22)

Equation (21) can be reduced to the form

(23)

In the next section, we present the numerical data
characterizing the maximum amplification coefficient
ρmax depending on incidence angle ϕ. 
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Fig. 2. Maximum amplification coefficient ρmax as a func-
tion of the incidence angle ϕ for different values of the
parameter ωl/c: (1) 25, (2) 40, and (3) 70.
C

RESULTS OF NUMERICAL CALCULATIONS 
FOR THE TeO2–KRS-6–ZnSe SYSTEM 

AND THEIR DISCUSSION
Consider the layered system (Fig. 1) consisting of

the positive uniaxial paratellurite crystal TeO2 (III) and
the optically isotropic KRS-6 (II) and ZnSe (I) crystals.
At the wavelength λ = 0.589 µm, the refractive indices
of these crystals are no = 2.2738, ne = 2.4295, nf = 2.3367,
and nc = 2.61 [28], with the conditions no < nf < ne and
nc > nf [see inequalities (2) and (5)] being satisfied.
Although our consideration is limited to the analysis of
only one system, it is obvious that the number of similar
systems can be increased by using untraditional (com-
posite, mesoscopic, etc. [29–31]) materials or the mate-
rials with tunable (modulated) parameters. Neverthe-
less, in all the materials, the refractive indices must
obey the inequalities similar to those considered above. 

Consider first the case of “free” surface waves in the
system with one interface, so that TeO2 and KRS-6 are
the boundary media and the optical axis of the paratel-
lurite crystal lying in the interface plane. We obtain the
following inverse permittivities: a = 0.19342, b = 0.16942,
and af = 0.18314. The range of the allowed angles α
is determined by the limiting values α1 = 40°44.5′ and
α2 = 40°59.9′ calculated using Eqs. (3) and (4). Assum-
ing that α = 40°54′ we obtain from the dispersion equa-
tion (23) the reduced frequency of the surface wave ν =
νs = 0.427929.

Now, consider the surface waves at the interface
between isotropic layer II and anisotropic substrate III
(Fig. 1) which are excited by the bulk electromagnetic
wave, with the angle α being the same. For isotropic
medium I (ZnSe) ac = 0.14680. For the reduced fre-

quency ν in the range from νmin =  = 0.383142 to

νmax =  = 0.427937, we can perform the numerical
calculations using Eqs. (10), (11), and (18)–(20) and
determine the maximum amplification coefficient ρmax
depending on the incidence angle ϕ at different
values  of the parameter ωl/c (Fig. 2). The curves
obtained are of the resonance nature. The reduced fre-

quencies  = /sin  (k is the curve number) for

the critical incidence angles  (at which the maxi-
mum amplification is attained) only slightly differ from
the value νs for the “free” surface wave calculated by
Eq. (23). With an increase of the layer thickness l, the
height of the resonance peak also increases, whereas its
width decreases, and ν0  νs. The resonance depen-
dence ρmax (ϕ) is seen already at ωl/c ≈ 20 (the layer
thickness equals 3–4 wavelengths in vacuum). For

ωl/c = 40 (curve 2) and the incidence angle  =
63°33.04′, the tangential component of the magnetic

field  of the exciting wave corresponding to the
maximum amplification (52.80) is determined as the
eigenvector of the operator B = A+A corresponding to

ac

d

ν0
k( )

ac ϕ0
k( )

ϕ0
k( )

ϕ0
2( )

Hτ
i
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the greatest eigenvalue and equals 0.99129b +
(0.00225–0.13167i)a. For an incident wave with the

orthogonal polarization  = (–0.00225–0.13167i)b +

0.99129a (  = 0, the sign * denotes the complex
conjugation), the coefficient ρ has the minimum value
(0.00106). Changing continuously the polarization of

the incident wave, it is possible to obtain (at  =
63°33.04′) the intermediate values of the amplification
coefficient ρ (from 0.00106 to 52.80). For every inci-
dence angle, there exists the corresponding pair of
mutually orthogonal polarizations for which the coeffi-
cient ρ takes the maximum and the minimum values
and, thus, has the ranges of its variation. The upper lim-
its of these ranges, ρmax, are shown in Fig. 2 as functions
of the angle ϕ. The lower limits of these ranges were
calculated to be monotonically dependent on ϕ.

The dependences of the coefficient ρ on the inci-
dent-wave polarization, characterized by the parame-
ters M and θ are shown in Figs. 3 and 4 for the critical
incidence angles ϕ = ϕ0 . The first parameter is deter-
mined as M = in[HiHi*]/|[HiHi*]|, where Hi is the com-
plete vector of the magnetic-field intensity of the inci-
dent wave and n = (bsinϕ0 – qcosϕ0) is the wave nor-
mal. This parameter characterizes the ellipticity of the
polarization (at M = –1 and M = +1, we have the left and
right-hand circular polarizations and at M = 0, we have
the linear polarization). The second parameter θ is the
angle formed by the semimajor axis of the polarization
ellipse and the plane of incidence. The resonance is
observed for the waves with polarization close to the
linear polarization in the incidence plane (Fig. 3). At
small layer thicknesses, the asymmetry of the plot ρ =
ρ(M, θ) with respect to the coordinate plane M = 0 and
the plane θ = 0 is revealed (Fig. 4). Thus, the amplifica-
tion coefficients ρ are different at the right-and left-

H̃τ
i

H̃τ
i*Hτ

i

ϕ0
2( )

40

–90
–45

ρ

θ, deg

20

0

45

0
0.5

0

–0.5

–1.0

M

1.0
90

Fig. 3. Amplification coefficient ρ as a function of polariza-
tion of the incident wave at ωl/c = 40.
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hand circular wave polarizations. However, the differ-
ent contributions of the polarizations are reversible.
The change α  –α (the vector b lies on the other
side of the vector c, Fig. 1), results in the mirror
reflection of the surface ρ = ρ(M, θ) in the planes M = 0
and θ = 0.

CONCLUSIONS

Thus, the method considered can be efficiently used
to excite D’yakonov surface waves [8, 9], generated
due to the difference in the symmetries of boundary
isotropic and anisotropic media. The above consider-
ation shows an important role of polarization for
description of surface and bulk electromagnetic waves
of various types. To determine the resonance incidence
angles ϕ0 for an isotropic layer whose thickness is equal
to several wavelengths in a vacuum with sufficient
accuracy, one can use dispersion equation (23) for the
“free” surface modes in order to determine the reduced
frequency νs and then recalculate the incidence angles
using Eq. (6). Figure 2 shows that the width of the res-
onance curves is small. However, it can be increased
due to pronounced substrate anisotropy (which can also
be ensured artificially). 

The method of frustrated total internal reflection
provides the record of the resonance excitation of the
surface polaritons in the isotropic substrate from a
decrease of the reflection coefficient of the wave inci-
dent at certain angles [1, 7]. Such a decrease of the
reflection coefficient is caused by absorption of the
energy of electromagnetic waves in the substrate (the
substrate permittivity is a complex quantity and its real
part is negative). In our case, the anisotropic substrate
is nonabsorbing (the permittivities ε|| and ε⊥ are posi-
tive). Therefore, the energies of the incident and the
reflected waves are always balanced. Our calculations
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–90
–45

ρ

θ, deg

0.5

0

45

0
0.5

0

–0.5

–1.0

M

1.0
90

Fig. 4. Amplification coefficient ρ as a function of polariza-
tion of the incident wave at ωl/c = 2.
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show that the reflection operator R, relating the com-
plete field vectors Hi and Hr (and not their tangential
components!), is a unitary operator at any incidence
angles. Therefore the intensities of the incident and the
reflected waves, proportional to the squared moduli of
the Hi and Hr vectors are equal.

Finally, we would like to indicate that if the reso-
nance condition is fulfilled, the field distribution in the
isotropic layer is determined mainly by two inhomoge-
neous partial waves with the amplitudes increasing
exponentially with an approach to the interface z = 0
(that is, at z  +0). Both these waves and partial
waves in the anisotropic substrate on the other side of
the interface satisfy the boundary conditions with insig-
nificant corrections in such a way as if the other inter-
face z = l would not have existed at all. The same is true
in the resonance excitation of the surface acoustic
waves [19, 20].
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Abstract—The specific heat of the PbMg1/3Nb2/3O3 relaxor ferroelectric has been measured by the adiabatic
calorimetry and the relaxation method in the temperature range 2–300 K. The low-temperature heat capacity
data are compared with the experimental data on inelastic neutron scattering and discussed in the context of the
present-day concepts. The analysis of various approaches to the description of the temperature dependence of
the heat capacity showed that the experiment can be adequately described only within the framework of the

fractal concept. The calculated value of the spectral dimension  = 1.6 is consistent with the inelastic neutron-
scattering data. © 2001 MAIK “Nauka/Interperiodica”.

d̃

INTRODUCTION

The perovskite-like relaxor ferroelectrics (or simply
relaxors) described by the general formula

 have long been studied [1]. Their wide
practical applications and a number of unique physical
properties has attracted the close attention of research-
ers. The relaxors differ from the classical ABO5 perovs-
kites by the presence of B' and B'' ions having different
valences in the crystallographically equivalent positions
of the B-sublattice. Disordering of the B-sublattice
results in considerable change of the crystal-lattice
dynamics [1]. Thus, the anomaly in the dielectric
response in the vicinity of the ferroelectric phase tran-
sition is spread and its magnitude can attain giant values
(ε ~ 105), which fact allowed one to call the representa-
tives of this family the compounds with giant electros-
triction. Recent high-resolution electron microscopy
studies revealed the presence of the nanoscale regions
with the 1 : 1 order of the B' and B'' cations regardless
of the stoichiometry [2, 3].

The PbMg1/3Nb2/3O3 crystal (PMN) is the well-
known model relaxor ferroelectric. The broad anomaly
in the frequency-dependent dielectric response with the
maximum near TC ~ 270 K is not accompanied by any
macroscopic changes in the structure. The structural
phase transition is observed only in an electric field
applied to the sample in the vicinity of 200 K [4]. In
PMN, there is a regular set of ordered Mg and Nb clus-
ters in the ratio 1 : 1 ~2 × 10–7cm in diameter. The dis-
tance between the centers of the neighboring ordered
clusters is 2.5 × 10–7 cm [2]. The topology of the nano-
cluster structure thus formed has not yet been studied,

ABx
' B1 x–

'' O3
1063-7745/01/4606- $21.00 © 21025
but it certainly has an effect on the crystal lattice
dynamics. It seems that the topology is responsible for
the low-frequency excitations in the vibrational spec-
trum of PMN with the fracton spectral dimension deter-
mined from the generalized density of states in the
course of experiments on inelastic neutron scattering
[5, 6]. The small-angle scattering of the synchrotron
radiation from PMN [7] indicate a possible formation
of a self-similar structure of nanoclusters implemented
in the form of fractals. Thus, it is reasonable to expect
the presence in the PMN vibrational spectrum of the
excitations characteristic of a fractal medium—frac-
tons. It is highly probable that this role is played by a
low-frequency mode with the frequency on the order of
ν ~ 50 cm–1 observed in the light scattering spectra [5].
Unfortunately, a more detailed analysis of the Raman
scattering in PMN in terms of the spectral dimensions,
corresponding to the fracton and Debye regimes, pre-
sents some difficulties. First, the existence of the selec-
tion rules for Raman scattering in crystalline solids lim-
its the applicability of the fracton ideology developed
for the analysis of the low-frequency light scattering
spectra of noncrystalline condensed media. Second, the
simulation of the inelastic light scattering for a number
of classical fractal objects showed that the frequency
dependence of the coupling coefficient of light and the
atoms (or ions) in a condensed medium substantially
modifies the frequency dependence of the scattered-
light intensity [8]. To construct a model of the fractal
PMN structure one has to investigate in detail its struc-
ture and vibrational spectrum. This stimulated the
search for additional manifestations of the fracton
dynamics in the vibrational PMN spectrum, which
would have reflected the specific features of PMN orga-
001 MAIK “Nauka/Interperiodica”
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nization on the nanometer length scale. The analysis of
the heat-capacity behavior at low temperatures offers a
good opportunity for considering one of the stages of
the above problem. The study of the temperature
dependence of the heat capacity of PMN was reported
in [9, 10]. However, only the differential heat capacity
of PMN was measured in [9], while in [10] the mea-
surements of heat capacity at low temperatures were
made only at 7 K. Therefore, we decided to make pre-
cision measurements of the heat capacity of PMN.

EXPERIMENTAL

A PMN sample was synthesized by crystallization
from melt [11]. The mixture of MgO (Rare Metallic
Co., 99.9%) and Nb2O5 (Mitsui Mining & Smelting
Co.) powders was placed into an agate mortar and
heated for 24 h in a closed oven at the temperature of
1370 K. The product obtained, MgNb2O6, was mixed
with lead oxide, PbO (Rare Metallic Co., 99.99%), in
the 1 : 7.5 weight ratio, and the mixture was placed
into  a platinum crucible. The crucible covered with a
platinum foil was heated for 3 h in a vertical oven at
1510 K and then was slowly (for 200 h) cooled down to
1210 K and then, rapidly to room temperature. The
mixture thus obtained was dissolved in hot nitric acid.
The separated transparent PMN single crystals had a
brown–yellow color and the maximum dimensions

300

C, J/mol/ä

T, K

100

20

60

200100

1

2

Fig. 1. The temperature dependence of the specific heat of
the PMN relaxor ferroelectric in the temperature range 2–
300 K: (1) experimental data and (2) contribution of the
Debye heat capacity corresponding at TD = 376 K [14].
C

~2 × 2 × 2 mm3. The PMN structure was checked by the
X-ray powder diffraction.

Precision measurements of the PMN specific heat in
the range 13–300 K were performed with the aid of an
adiabatic calorimeter [12, 13]. The temperature was
measured by a 5187L (H. Tinsley & Co.) platinum
resistance thermometer calibrated in the National Phys-
ics Laboratory (NPL) in the Great Britain with the use
of the International Temperature Scale ITS-90. The
accuracy of the specific-heat measurements was 0.1%
at T = 100 K and was compared with the data obtained
on the Standard Reference Material SRM720 (synthetic
sapphire) from the National Institute of Standards and
Technology (NIST, USA). The mass of the PMN crys-
tal samples was 11.1106 g (0.034162 mol). The sam-
ples were placed into a calorimeter reservoir together
with a small amount of helium whose pressure was
5 kPa at room temperature. The specific heat of the
sample was determined as the difference between the
total heat capacity of the calorimeter reservoir and the
total heat capacity. At room temperature, the heat
capacity of the sample was ~20% of that of the calo-
rimeter reservoir. Neither supercooling, nor thermal
relaxation were observed in the course of the measure-
ments.

The specific heat in the range 2–50 K was measured
by the relaxation method on a standard PPMS device
(model 6000, Quantum Design Inc. as a basic unit). The
relaxation measurements were performed on a PMN
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Fig. 2. Heat capacity of PMN in the low-temperature
region: (1) experimental data, (2) the Debye contribution to
heat capacity, (3) calculation according to the model of the
two-level systems, and (4) calculation by the Einstein oscil-
lator.
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single crystal [14.29 mg in weight (0.04394 mmol)].
The data obtained are in excellent agreement with the
data obtained by adiabatic calorimetry.

RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of the
specific heat Cp of PMN in the range 2–300 K. It is seen

that, in the region of the diffuse phase transition (  ~
270 K), this dependence has no anomalies. This fact
and the absolute Cp values are consistent with the
results reported in [10]. Consider Cp behavior in the
low-temperature region (T < 30 K, Fig. 2) in more
detail. In this region, one can readily separate the con-
tributions additional to phonon ones to the crystal lat-
tice dynamics.

According to the Debye theory, the low-temperature
heat capacity of a crystal is determined by the acoustic
phonons and can be described by the following equa-
tion:

(1)

where R = 8.314 J/mol/K is the universal gas constant,
θD is the Debye temperature, and ED = kθD is the Debye
energy. We used the Debye temperature θD = 376 K
obtained from the low-temperature acoustic measure-
ments in [10, 14].

Figure 2 shows that the contribution of acoustic
phonons (curve 2), which determines the Debye heat
capacity, at T < 12 K is negligibly small and is about 5%
of the experimentally observed heat capacity at T ~ 30 K.
Therefore, the contribution of acoustic phonons cannot
explain the experimental data obtained.

The excessive low-temperature heat capacity was
observed, e.g., for canonic glasses, for which, similar to
a number of other related disordered systems, the con-
ventional method of description of the behavior of the
low-temperature heat capacity is the formalism of two-
level systems [15]. According to this formalism, one
can expect a linear dependence of heat capacity, C =
CD + AT, at T < 1.5 K. We made an attempt to use this
approach to take into account excessive heat capacity in
PMN. However, our calculations (the least square pro-
cedure) showed that the formalism of the two-level sys-
tems is inapplicable in this case (Fig. 2, curve 3).

The low-temperature heat capacity, excessive with
respect to the Debye contribution, can be explained by
the presence of the low-lying optical mode in the ele-
mentary-excitation spectrum of the crystal. This
approach can be fruitful for PMN if one takes into
account the experimental data on inelastic neutron scat-
tering [16]. The spectra of inelastic neutron scattering
in PMN at T = 650 K were adequately described by the
model of coupled “quasioptical” mode and the trans-

T̃C

CD 9R
T
θD
------ 

 
3

e
x
x

4

e
x

1–( )
2

-------------------- x,d

0

ED/kT

∫=
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verse acoustic phonon [16]. The frequency of the qua-
sioptical mode in the vicinity of the Brillouin-zone cen-
ter was ω0 = 2πν0 = 0.287 THz. Thus, it was expedient
to describe excessive heat capacity in terms of the Ein-
stein oscillator corresponding to this quasioptical
mode. In our calculations, we used the sum of the
Debye contribution and the classical expression for the
Einstein oscillator with the characteristic frequency
ωE = 2πνE; we obtained

(2)

Figure 2 (curve 4) shows the results calculated with
the use of Eq. (2) for νE = 1.6 THz = 56 cm–1. It is evi-
dent that the satisfactory agreement between the theory
and the experiment can be attained only at T > 15 K.
With lowering of the temperature, the calculated heat
capacity decreases much faster than in the experiment.
Thus, the introduction of the quasioptical mode (Ein-
stein oscillator) cannot explain the behavior of heat
capacity in PMN at low temperatures. A similar
approach was also used in [10], where the expression
for CE was corrected by an additional normalizing fac-
tor r, whose physical sense is unclear. Therefore, our
data can hardly be compared with the data in [10].

Thus, the analysis of excessive low-temperature
contribution to the heat capacity of PMN shows that its
description requires the invocation of some other mech-
anisms. Taking into account the data on the density of
the vibrational states G(E) in PMN [5, 6], consider the
contribution of fractons to the heat capacity in PMN at
low temperatures.

Earlier, the fracton contribution to the low-tempera-
ture heat capacity of a number of compounds was con-
sidered in [16, 17] (see also references there). We dis-
cuss the fracton contribution to heat capacity of PMN
in terms of the approach suggested in [16, 17] and mod-
ified for our goals. The expression for the heat capacity
is obtained from the general relation

(3)

where n(ω) is the Bose–Einstein distribution function
and G(ω) is the density of the vibrational states. Fol-
lowing [18], we assume that G(ω) ∝  ω2 at ω < ωco (the
phonon mode with the spectral dimension d) and that

G(ω) ∝   at ωco < ω < ωm (the fracton mode with

the spectral dimension ). Under these assumptions,
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we have

(4)

where Eco = \ωco is the energy of the crossover from the
Debye to fracton regime, Em = \ωm is the maximum
energy at which the fracton regime is implemented
(since the difference between Cv and Cp is negligibly
small at all the temperatures considered here, hereafter
the index is omitted).

The calculations by Eq. (3) should be performed
with due analysis of the density-of-states function G(E)
in PMN [5, 6]. The spectral dimension d = 2.8 for the
range 2–5 meV is quite consistent with the classical
Debye regime, while the range 5–7 meV with the
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Fig. 3. Heat capacity of PMN in the low-temperature
region: experimental data (circles), the Debye contribution
to the heat capacity (dashed line), and the calculations by
Eq. (4), variant a (solid line) and variant b (dotted line).
C

dimension  = 1.7 corresponds to the fracton mode.
Now, we have to consider the boundary between the
phonon and the fracton modes and to establish whether
it is diffused or clearly defined. This question is of pri-
mary importance for choosing the limits of integration
in Eq. (4). At present, there is no universally accepted
viewpoint on the type of the crossover from the phonon
to fracton regime. This necessitated the use of two dif-
ferent procedures for calculating heat capacity, hereaf-
ter referred to as procedures (a) and (b). Procedure (a)
involved fitting of the calculated heat capacity to the
experimental data on the condition that all the parame-

ters A, , Eco, and Em are free. In procedure (b), the
parameter Em is fixed whereas all the other three param-
eters are free. The Em value is chosen upon the analysis
of the vibrational-state density function [5, 6].

Figure 3 illustrates two fitting procedures based on
Eq. (4). It is seen that the curves calculated in proce-
dures (a) and (b) are very close to each other. Obvi-
ously, the calculations by Eq. (4) provide an adequate
description of the experimental data in the whole tem-
perature range analyzed. On the one hand, procedure
(a) (Fig. 3, curve 3) shows better agreement with the
experimental temperature dependence of the heat
capacity. Here the parameters (Eco = 2.9 meV, Em =

13.3 meV, and  = 1.3) differ from the corresponding
values found from the data on inelastic neutron scatter-
ing [6] (the results of the calculation and the analysis of
the data on inelastic neutron scattering are tabulated).
On the other hand, the parameters obtained in proce-
dure (b) are in good agreement with the data on inelas-
tic neutron scattering (see table). The spectral dimen-

sion  = 1.6 calculated by the data on heat capacity
practically coincides with the experimental data on
inelastic neutron scattering. The experimental heat
capacity exceeds by 5% the calculated one [by proce-
dure (b)] in the vicinity of 30 K. This fact can be
explained by the contribution of the low-frequency
transverse optical phonon to the density of the states (and
hence to the heat capacity). The consistent allowance for
this contribution to the heat capacity is hardly possible
because the low-frequency transverse optical phonon has
rather strong dispersion in the Brillouin zone [19] and
thus cannot be described by Einstein oscillator.

Thus, the approach taking into account the presence
of fractons in the vibrational spectrum of PMN allows
the description of the experimental data on heat capac-

d̃

d̃

d̃

d̃

The model parameters obtained by Eq. (4) and from the inelastic neutron-scattering data [6]

Calculation procedure A Eco, meV Em, meV Standard deviation

a 0.060 1.3 2.9 13.3 0.001

b 0.062 1.6 5 7.2 0.13

Neutron-scattering data 1.7 5 7

d̃
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ity. The establishment of the type of the crossover
requires some additional studies.

CONCLUSIONS
The analysis of the experimental temperature

dependences of the specific heat of the PMN relaxor
ferroelectric showed that its behavior in the range 2 <
T < 30 K cannot be attributed to phonon contribution.
The use of the formalism of the two-level systems or
the invocation of the quasioptical mode cannot explain
the experimental data either. It is the fractal formalism
that proved to be fruitful. An account for the fracton
contribution provided the adequate description of the
temperature dependence of the heat capacity at T <
30 K. The calculations performed yielded the spectral

dimension  = 1.6 close to the value  = 1.7 deter-
mined from the data on inelastic neutron scattering.
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Abstract—Crystallization of monticellite CaMgSiO4 from melt by the floating-zone technique was studied at
different compositions of feed rods. The compositions of rapidly cooled melts and different regions of grown
crystals were investigated by the X-ray phase and microprobe analyses. The inclusions of secondary phases
were identified. The range of most promising compositions of the charge for technology of growing large high-
quality crystals is established. The mathematical model of the changes in the melt composition during montic-
ellite crystallization is constructed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

Single crystals of complex oxides doped with Cr4+

ions are of great interest as activated media for 1.1–
1.7-µm tunable solid-state lasers [1]. Presently, only
two crystals—forsterite Mg2SiO4 and yttrium–alumi-
num garnet (YAG) Y3Al5O12—are used as hosts for
Cr4+ ions. However, neither of these matrices is optimal
for these ions, because, in both cases, the quantum yield
of luminescence is very low. This is explained by unde-
sirable nonradiative relaxation of the 3T2 excited state
of Cr4+ ions occurring in the above-mentioned crystals
at room temperature and becoming very intense during
heating of the activate medium of the laser. Therefore,
serious efforts are made to search for new promising
Cr4+-doped crystals with improved spectroscopic char-
acteristics. 

One of these crystals is monticellite CaMgSiO4 iso-
structural to forsterite [2, 3]. In this crystal, the lumi-
nescence lifetime of Cr4+ ions is 5.5 µs [2] and the quan-
tum yield is about 30% [3] (for comparison, the analo-
gous characteristics for YAG are 4 µs and 22%,
respectively [4]). However, incongruent melting of
monticellite [2, 5] complicates its growth and hinders
its practical application. 

For the first time, Cr4+-doped monticellite single
crystals were grown in 1997 [6]. We also managed to
study those spectroscopic properties of these crystals,
which could not be studied on powdered samples:
1063-7745/01/4606- $21.00 © 21030
polarized absorption spectra, the refined luminescence
spectrum, the kinetics of luminescence decay, etc. [7]. 

Nevertheless, the improvement of the growth tech-
nology of monticellite crystals appropriate for lasers is
still an important problem. The solution of this problem
calls for exhaustive investigation of crystallization in
the ternary CaO–MgO–SiO2 system, in particular, in
the vicinity of the point corresponding to the stoichio-
metric monticellite composition (CaO : MgO : SiO2 ≈
1 : 1 : 1), which would allow the determination of the
optimum charge composition for growing high-quality
monticellite crystals. 

The phase ratios in this ternary system were exam-
ined in a number of studies [5, 8]. In particular, the
phase diagram in Figs. 1 [5] and 2 demonstrates that the
stoichiometric point of CaMgSiO4 is located in the field
of primary-crystallization of MgO, whereas the field of
primary-crystallization of monticellite is somewhat
shifted from this point toward SiO2. 

At the same time, some important results in the stud-
ies cited above are inconsistent, in particular, the data
on the behavior of the compound during melting are
rather complicated and, as will be demonstrated below,
strongly dependent even on small changes in the charge
composition. There are almost no data on the behavior
of the system during crystallization and subsequent
cooling, with the only one exception—the data on
mutual solid-phase solubility of monticellite and for-
sterite at different temperatures [5]. Moreover, the stud-
ies [5, 8] were performed for the equilibrium states, so
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Phase diagram of the ternary CaO–MgO–SiO2 system [5]. 
that their results cannot be directly applied to the pro-
cess of crystal growth. The presence of a Cr dopant in
the charge can also introduce some changes. 

The present study was aimed at investigation of the
crystallization of chromium-doped monticellite and
optimization of the composition of the initial charge for
growth of CaMgSiO4 : Cr single crystals. For this pur-
pose, we prepared a series of crystalline samples of dif-
ferent compositions and studied them by X-ray phase
and microprobe analyses. 

EXPERIMENTAL 

The crystals were grown by the crucible-free verti-
cal floating zone technique on an URN-3-ZP setup in
air (the details of the crystal growth process were
described elsewhere [9]). The floating zone melting
technique was used by the following reasons: 

(1) This method is rather “fast” and economic (10 g
of the reagent is sufficient for preparing a feed rod for
performing from two to three parallel growth experi-
ments). 

(2) In growth compounds melting incongruently, the
melt composition is gradually changed, the floating
zone melting technique allows one to follow the rate
and the direction of these changes in the melt using its
rapid cooling (several hundreds of degrees centigrade
per second) with the subsequent determination of the
composition by the microprobe analysis and the analy-
sis of the mutual influence of the changes in the compo-
HY REPORTS      Vol. 46      No. 6      200
sitions of the melt and the growing crystal (in both of
the major and the secondary phases). 

The compositions of feed rods are shown in Fig. 2a.
The experiments were performed within the concentra-
tion range determined in the preliminary study [6]. It
should be noted that this range is partly outside the field of
primary crystallization of monticellite determined in [5]. 

The initial reagents of high-purity grade were either
dried at 120°C (calcium carbonate CaCO3) or calcined
at 600°C (MgO and SiO2) to remove the moisture
traces. Then they were weighted in the corresponding
ratios, and upon the addition of Cr2O3 (0.2 wt %), were
thoroughly mixed. The resulting mixture was pressed
into rods sintered for 24 h at 1250°C to provide the nec-
essary mechanical strength. 

At the first stage of the study, forsterite single crys-
tals of cut along the c-axis (the Pnma setting) were used
as seeds; then we also used the seeds of monticellite
crystals grown from the feed-rod composition (FRC 6)
charge and having the same orientation. The rate of rod
motion relative to the heating zone was 1.5 mm/h. The
rotation rate was 30 rpm; we used counterrotation
mode, which provided better stirring conditions in the
melt zone. 

X-ray powder diffraction analysis was made on con-
ventional DRON-2 and DRON-4 diffractometers with
the Ge internal standard. 

Scanning electron microscopy and the microprobe
analysis were performed on a Jeol JSM-480 setup. In
the electron micrographs, the illumination of the region
was proportional to the secondary electron-emission
1
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Fig. 2. Enlarged fragment of the phase diagram of the CaO–MgO–SiO2 system showing the stoichiometric point and the field of
primary crystallization of monticellite: (a) the compositions of the feed rods are shown by black squares with the sizes correspond-
ing to the actual accuracy of weighting of the charge components; the actual directions of the changes in the melt composition during
crystal growth are indicated by thick arrows (the melt compositions after growth completion determined by microprobe analysis are
marked with crosses), the changes of the melt compositions calculated by Eq. (8) are indicated by thin arrows (the compositions
obtained after each iteration are marked with circles); the thick line ended with two arrows represents the concentration line con-
necting Ca2SiO4 and Mg2SiO4; (b) the zone ratio in growing crystals as a function of the composition of the feed rod:  is the
transparent M zone;  is the semitransparent greenish MP zone;  is the defect MFA zone;  is the transparent A zone;

 is the nontransparent polycrystalline tip. 
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(a) (b)

(d)(c)
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Fig. 3. Electron micrographs of the regions of quenched melts of various compositions: (a) FRC 12: MgO inclusions are seen as
sets of dark spots; (b) FRC 11: inclusion of an agglomerate of small grains of the composition Ca1.33Mg0.67SiO4 is seen as a set of
light spots; (c) FRC 11: microinclusions of CaMgSi3O8 and CaMgSi2O6 appear as dark triangles and elongated rectangles, respec-
tively; (d) FRC 15: inclusions of akermanite Ca2MgSi2O7 are represented by irregularly shaped light regions; one can also see
numerous cavities. 
intensity from this region. Thus, inclusions of second-
ary phases as well as cracks, cavities, and other three-
dimensional defects could be revealed as the regions
having a contrast different from the contrast of the main
phase. 

RESULTS AND DISCUSSION 

In the concentration range under investigation, the
melts have a number of characteristic features sensitive
even to small changes in the feeding-rod composition
(FRC). In particular, melts of compositions closest to
the stoichiometric point of monticellite (FRC 1–4, 6–8,
and 10; Fig. 2a) are nontransparent at the first stages of
crystal growth. They become transparent gradually
within the time from 10 min to 2.5 h after the onset of
the growth process. The melts of the feed-rods of other
compositions are transparent in the whole growth pro-
cess from the stage of feed-rod melting up to the rup-
ture of the molten zone. 
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
Moreover, at least two types of visible inclusions are
observed at the initial stages of melting. The visual
examination made during the melting process showed
the first-type inclusions as light nontransparent regions
up to 2 mm in length and up to 0.8 mm in thickness
(against the rather dark background of the melt). The
shape of these inclusions is very unstable, which indi-
cates their suspension-like nature. This conclusion is
confirmed by electron microscopy study of the rapidly
cooled melt of FRC 12 (this transparent melt was cho-
sen because of the absence of visible second-type inclu-
sions). On the micrograph (Fig. 3a), the first-type inclu-
sions are seen as small grains distributed in the main
phase of the melt. According to the microprobe analysis
data, the grain composition corresponds to MgO. 

Inclusions of this type were observed in the trans-
parent melts, FRC 5, 9, 12, and 13. Moreover, these
inclusions are also unambiguously detected in non-
transparent melts, FRC 6–8, which allows one to
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assume their presence in all the other initially nontrans-
parent melts (FRC 1–4 and 10; the visual observation of
inclusions in these melts is rather difficult because of
their nontransparency). This assumption seems to be
logic if one takes into account that the above-mentioned
compositions are rather close to the field of primary
crystallization of MgO and the stoichiometric point of
CaMgSiO4. At this point, MgO is the most high-melt-
ing phase of all the intermediate phases formed during
melting [5, 8] and is dissolved only when all the sec-
ondary phases have already been dissolved. However,
the conclusion that the MgO phase in the above-men-
tioned melts is formed during melting because of
decomposition of other intermediate phases rather than
is initially present in the feed rods seems to be prema-
ture and calls for additional study. 

First-type inclusions disappear (are dissolved)
within 2–3 min after the beginning of melting before
seeding. This signifies that the MgO phase under the
conditions used is not in equilibrium with the melt and
that its formation during melting cannot be directly
related to the characteristics of monticellite crystalliza-
tion from melt. 

Second-type inclusions are observed as small (up to
0.3 mm) stable particles, whose composition was deter-
mined by studying different regions of the metallo-
graphic section of the quenched transparent melt FRC
11 having no first-type inclusions. Several types of
inclusions of secondary phases were detected. How-
ever, only relatively large agglomerates of small grains
(Fig. 3b) of the composition Ca1.33Mg0.67SiO4 were vis-
ible to the naked eye (this phase is also found in some
crystals; see below). 

Second-type inclusions are detected in some trans-
parent (FRC 9 and 11) and initially nontransparent
(FRC 3, 6, and 8) melts and also in melts with first-type
inclusions. We cannot rule out the presence of these
inclusions in any initially nontransparent melt. 

Unlike first-type inclusions, the above particles can
exist in the melts for rather long time after the onset of
crystal growth (FRC 3, 6, and 8). These inclusions are
also observed in these melts as they become transpar-
ent. These inclusions can also appear in the course of
growth and can precipitate in the crystalline phase.
Thus, this phase is in equilibrium with the melt and is
dissolved only due to the corresponding change in the
melt composition during crystal growth. 

The melts are transparent from the beginning of
growth and have no visually observable inclusions only
the SiO2 concentration considerably exceeds that in the
FRC and the compositions far from both the stoichio-
metric point of CaMgSiO4 and the primary-crystalliza-
tion field of MgO, as is the case in FRC 14–19.

Microscopic inclusions were detected in both ini-
tially nontransparent and transparent melts. Presently,
no clear and reproducible correlations between the type
and the concentration of microscopic inclusions in
melts and the degree of melt enrichment with a partic-
ular component or its distance from the field of primary
crystallization of a given secondary phase have been
found. 

Among the microscopic inclusions found in the
melts, we indicate the diopside inclusions, CaMgSi2O6,
observed as elongated 1-µm-thick rectangles and trian-
gular inclusions with the composition CaMgSi3O8
(Fig. 3c). 

One more inclusion is imperfect akermanite,
Ca2MgSi2O7, in the elongated shape with a length of up
to 100 µm (Fig. 3d). This inclusion is revealed in high
concentrations in almost all rapidly cooled melts,
including those, which were initially transparent. 

Conceivably, the fact that the inclusions of such
dimensions do not cause melt opalescence indicates
that the akermanite inclusions were not present in the
initial melts and were formed only during rapid cooling
of the melt (similar to the crystalline phase of montic-
ellite). 

Crystals specially grown for studies were 10–15 mm
in length and 6–7 mm in diameter. Small concentra-
tions of Cr4+ ions provided the beautiful blue color of
the grown crystals. 

The crystals grown had a number of successive
zones along the growth axis of the crystal, which have
different shapes and compositions. The volume ratio of
the zones depends on FRC and varies from the com-
plete absence of a particular zone at the given FRC up
to its predominance in the sample at the other FRC
(Fig. 2b, table). 

The zone M (monticellite) immediately following
the seed is the zone of single-crystalline monticellite
containing no inclusions of secondary phases (Fig. 4a).
This zone is transparent, blue in color with noticeable ple-
ochroism. The unit-cell parameters of monticellite calcu-
lated from the X-ray powder diffraction analysis data
for this zone are a = 10.987(3) Å, b = 6.324(2) Å, c =
4.816(1) Å, i.e., are somewhat less than the correspond-
ing values determined previously for undoped montic-
ellite [10]. The formulas determined from the micro-
probe analysis data are different for different regions of
the samples and are varied from Ca0.87Mg1.13SiO4 to
Ca0.92Mg1.08SiO4 (in Fig. 2a, this concentration region is
seen as a black rectangle located on the Ca2SiO4–
Mg2SiO4 line). The limiting compositions go only
slightly outside the concentration region of stability of
monticellite determined earlier [11]. 

The M zone is not observed only in the crystals
grown from FRC 2 and 8 (it seems that in these crystals,
the M zone is “absorbed” by the well-developed MP
zone; see below) and in the crystals grown from the sto-
ichiometric charge (FRC 1). In all the crystals grown
from the remaining FRC, the M zone manifests itself to
a greater or a lesser extent (Fig. 2b, table). The charges
used for FRC 6 and 9 are proved to have the composi-
tions closest to the optimum composition. Crystals
grown from these FRC are characterized by the largest
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Characteristics of the crystals grown 
FR

C

Molar ratios of the 
components in FRC 
(CaO : MgO : SiO2)

Characterization of zones in samples

M (one-phase
monticellite)

MP (monticellite +
periclase + 

Ca1.33Mg0.67SiO4)

MFA (monticellite + 
forsterite + akermanite)

A (akermanite + 
impurities)

1 33.3 : 33.3 : 33.3 Absent Absent Single Absent*

2 34 : 31 : 35 Absent Up to 1/3 of the
sample length

Up to 1/2 of the
sample length

Absent

3 33 : 32 : 35 Up to 1/4 of the
sample length

1–2 mm Up to 1/2 of the
sample length

Sometimes present

4 32 : 33 : 35 Up to 1/3 of the
sample length

1–2 mm, at the
periphery

Dominant Absent

5 30 : 35 : 35 Insignificant Absent Dominant Absent

6 32.7 : 31.7 : 35.7 Up to 1/2 of the
sample length

Sometimes is observed 
at the periphery

Up to 1/2 of the
sample length

Present

7 32.3 : 32.3 : 35.3 Up to 1/3 of the
sample length

Sometimes is observed 
at the periphery

Dominant Absent

8 34 : 30 : 36 Absent 2–3 mm Up to 1/2 of the
sample length

Absent

9 33 : 31 : 36 Up to 1/2 of the
sample length

1–2 mm, at the
 periphery

Up to 1/2 of the
sample length

Present

10 32 : 32 : 36 Up to 1/3 of the
sample length

Absent Dominant Absent

11 31 : 33 : 36 1–2 mm Absent Dominant Absent

12 30 : 34 : 36 Insignificant Absent Dominant Absent

13 29 : 35 : 36 Insignificant Absent Dominant Sometimes present

14 33 : 30 : 37 Insignificant Absent Dominant Present

15 32 : 31 : 37 Insignificant Absent Dominant Absent

16 31 : 32 : 37 1–2 mm Absent Dominant Present

17 30 : 33 : 37 Insignificant Absent Dominant Present

18 29 : 34 : 37 1–2 mm Absent Dominant Present

19 30 : 32 : 38 Insignificant Absent Dominant Present

* The word “absent” in the column “A zone” signifies that the tip of the sample is a nontransparent polycrystalline region.
volume fraction of the M zone and the highest optical
quality. Therefore, this range of charge compositions is
rather promising for the technology of growing large
monticellite crystals by the Czochralski method. 

The MP (monticellite + periclase) zone is observed
in a number of crystals (Fig. 2b, table). The volume
fraction of this zone has the tendency to increase with
the approach of the FRC composition to the fields of
primary crystallization of periclase, MgO and, espe-
cially, of merwinite Ca3Mg(SiO4)2. Thus, the MP zone
in the crystals grown from FRC 4, 6, 7, and 9 is
observed only in the subsurface region of the crystals,
thus “surrounding” the M zone, whereas the MP zone
in crystals grown from FRC 3 extends over the whole
cross section of the seeding region of the crystal and
precedes the M zone. Finally, in the crystals grown
from FRC 2 and 8, the MP zone is developed so well
that it virtually completely “absorbs” the M zone. 
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Contrary to the M zone, the MP zone exhibits opal-
escence and has the greenish tint (in comparison with
the other zones), which seems to be caused by the pres-
ence of two types of microscopic inclusions (see
Fig. 4b). The darker phase is magnesium oxide (peri-
clase). The lighter phase is characterized by an
unknown set of X-ray diffraction reflections and has the
molar composition CaO 44.7%, MgO 22.0%, and SiO2
33.3%. It can be assumed that this phase is a solid solu-
tion between monticellite and merwinite (for conve-
nience, the formula of the latter phase can be written as
Ca1.5Mg0.5SiO4), although it was stated [5, 12] that no
such solid-phase solubility can exist). It can also be
assumed that it is a new compound described by the for-
mula Ca1.33Mg0.67SiO4 or Ca4Mg2Si3O12. 

In ought to be remembered that both MgO and
Ca1.33Mg0.67SiO4 inclusions were also found in a num-
ber of melts (see above). This fact may indicate that
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(a) (b)

(d)(c)

20 µm

20 µm

20 µm

20 µm

Fig. 4. Electron micrographs of the characteristic zones in the crystals: (a) M (the region of the forsterite seed is seen as a dark region
on the left; cracks are seen as two narrow almost vertical bands); (b) MP (MgO appears in the form of dark regions;
Ca1.33Mg0.67SiO4 is seen as light regions against the gray background of the main CaMgSiO4 phase); (c) MFA (inclusions of sec-
ondary phases are seen as dark regions; one can also see numerous cavities); (d) A (forsterite inclusions are seen as dark spots
against the background of the main akermanite phase). 
these impurities are caught by the crystal from melts;
however, it seems that this mechanism is hardly proba-
ble, which is confirmed by the following. First, the
MgO phase precipitates together with Ca1.33Mg0.67SiO4
(Fig. 4b), whereas in melts, these phases are revealed
separately. Second, in some melts (FRC 6 and 10),
MgO inclusions are observed in melts, whereas the
crystals have no MP zones containing these inclusions. 

The MFA (monticellite + forsterite + akermanite)
zone is formed either inside the M zone (from the cen-
ter to the periphery as in FRC 3, 4, 7, and 10) or imme-
diately follows it (in all the other cases). Like in two
above-described zones, the main phase in this zone is
monticellite. The MPA zone is nontransparent due to
the presence of inclusions of secondary phases and the
cracks caused by their presence (see Fig. 4c). 

Considering the compositions of inclusions in the
MFA zone, we can divide all the crystals into two
groups. The first group consists of crystals grown from
C

FRC 5, 12, and 13 with MFA containing only small (up
to 10 µm) forsterite inclusions. The second group
includes all the remaining crystals with the MFA zone
containing not only forsterite, but also inclusions of
secondary phases and, first of all, akermanite. 

The A zone (akermanite) is formed at the final stage
of crystal growth with lowering of heating temperature,
the corresponding decrease of the melt thickness, and
the drastic increase of the actual velocity of the crystal-
lization surface. This zone is often formed as a transpar-
ent single-crystalline region consisting of akermanite
as the main phase and some inclusions at low concen-
trations (Fig. 4d). In some other cases, the crystal tip
consists of polycrystalline substance containing several
phases. We observed no obvious and reproducible cor-
relation between FRC and the crystal tendency to form
the transparent single-crystalline A zone (Fig. 2b,
table), although SiO2-enriched FRC show certain ten-
dency to form this zone. 
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To understand the reasons and the mechanisms of
zone formation in crystals depending on FRC, we con-
structed a mathematical model the melt-composition
variations during crystallization and compared the
results for two characteristic FRC (5 and 16) obtained
on the basis of this model with the melt compositions
determined by X-ray microprobe analysis upon the
completion of crystal growth. 

MODEL OF CHANGES 
IN THE MELT COMPOSITION 
DURING CRYSTALLIZATION 

As the first approximation, consider the cylindrical
molten zone and assume that its length and diameter,
the melt density, and the composition and diameter of a
growing crystal remain constant throughout the growth
process. Actually, the growth cones in the samples
was  feebly marked, and, as was mentioned above, the
composition of the main crystal phase varied in an
irregular manner within a very narrow range (Fig. 2a).
Precipitation of secondary phases can be ignored. Then,
dividing the growth process into small equal periods
∆τ, we can write the mass balance in the melt at each
moment (the nth iteration) of the stationary growth
mode in the form

(1)

where m0 is the initial weight of the melt; ∆mm is the
weight of the portion of the feed rod melted for a period
∆τ and ∆mc is the weight of the melt crystallized during
the same period of time. 

Apparently, ∆mm = ∆mc. Each of the above weights
can be represented as follows: 

(2)

(3)

where Dfr and Dc are the diameters of the feed rod and
the growing crystal, respectively, ρfr and ρc are the den-
sities of the feed rod (with due regard for porosity) and
the growing crystal, respectively, ∆xfr is the thickness of
the feed-rod layer melted during time ∆τ, and ∆xc is the
thickness of the layer crystallized during time ∆τ. 

Since the upper and lower rods were shifted syn-
chronously at all the stages of crystal growth except for
the final stage, we can write the iteration step as ∆xfr =
∆xc = ∆x. 

Taking into account this fact, we obtain from
Eqs. (2) and (3): 

(4)

mn mn 1– ∆mm ∆mc–+=

=  m0 n ∆mm ∆mc–( ) const,≈+

∆mm

πD fr
2

4
------------∆x frρ fr,=

∆mc

πDc
2

4
----------∆xcρc,=

πD fr
2

4
------------ρ fr

πDc
2

4
----------ρc K ,= =
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where K is the constant introduced to simplify the fur-
ther consideration. 

The molar balance of the ith component of the melt
(i is CaO, MgO, or SiO2) at any moment in time can be
written as follows:

(5)

where  and  are the amounts of the ith component
in the melt at the nth iteration step and in the initial

melt, respectively,  and  are the molar “addi-
tion” of the ith component and its consumption, respec-
tively, during the period ∆τ. The molar weights of the
feed rod and the growing crystal, Mfr and Mc, respec-
tively, should be distinguished because for monticellite,
the charge composition differs from the composition of
the growing crystal, although, as will be shown below,

these weights are actually very close. Finally,  and

 are the mole fractions of the ith component in the
feed rod and the growing crystal, respectively. 

With due regard for Eqs. (2), (3), and (4), equation (5)
can be rewritten in the simple linear form: 

(6)

where L is the length of the molten zone, and the

expressions ( /Mfr) and ∆x( /Mfr – /Mc) are
denoted as Ai and Bi, respectively. 

Then, the melt compositions during growth can
approximately be evaluated as follows: 

(7)

In our case, the difference between Mfr and Mc is
very small (for example, these values for FRC 9 are
157.4 and 155.7 g/mol, respectively). Consequently,
the second term in the denominator of Eq. (7) is also
very small in comparison with the first term and, thus,
can be ignored. For the same reason, the term Bi in the
numerator of this equation can be transformed by
changing Mfr and Mc for the average value Maν without
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an essential loss in the calculation accuracy. Then 

(8)

Equation (8) demonstrates that the rate of the
changes in the melt composition is inversely propor-
tional to the molten-zone length. This conclusion seems
to be promising for growth of single crystals of monti-
cellite by the Czochralski method, in which the length
of the molten zone can formally be considered as tend-
ing to infinity. 

In the first approximation (without considering the
influence of the precipitation of secondary phases), the
melt composition changes linearly during growth under
stationary conditions, i.e., the direction and rate of
composition variation remain constant. The rate of the
variation of the melt composition is proportional to the
difference between the compositions of the feed rod
and the growing crystal. 

Figure 2a presents the results of the calculations for
two characteristic compositions (FRC 5 and 16) with
the use of Eq. (8) and the actual compositions of the
melts quenched after the growth process. 

In the case of FRC 5, the calculated and measured
SiO2 contents in the melt after growth completion are
very close, and the substantial differences are observed
only on the calcium–magnesium line. This difference
between the measured and the calculated melt compo-
sitions is readily explained on the assumption that only
forsterite precipitates in the growing crystal, which is
confirmed by the microprobe analysis data for the MFA
zone of this crystal. 

The situation is quite different for FRC 16, where
the actual concentrations of all three cations in the melt
after growth completion considerably differ from the
calculated values. These differences cannot be
explained by forsterite-inclusion precipitation. At the
same time, we also observed inclusions of akermanite
in the MFA zones of these crystals (see above). Precip-
itation of these inclusions should lead to a lower rate of
melt-composition variations in the direction toward the
stoichiometric point of akermanite. 

As can be seen from Fig. 2a, the step between the
iteration points (indicated by empty circles) is substan-
tially larger for FRC 16 than for FRC 5, although the
same ∆x (0.5 mm) was used in both cases. Equation (8)
demonstrates that this is explained by different dis-
tances from FRC to the average composition of the
main phase of the growing crystal. 

Thus, a relatively low rate of the melt-composition
variations for FRC 5, 12, and 13, there is not enough
time for the composition to approach the crystallization
field of akermanite. Apparently, this fact explains the

cn
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absence of akermanite inclusions in the corresponding
samples. 

According to Eq. (8), the compositions of the melts
used for growth of crystals with the well-developed MP
zone (FRC 2, 3, and 8) should approach rather rapidly
the field of primary crystallization of merwinite. How-
ever, MgO and Ca1.33Mg0.67SiO4 precipitates hinder this
displacement and prevent the melt composition from
“propagating” outside the field of primary crystalliza-
tion of monticellite for quite a long period of time. 

Thus, we have investigated crystallization of monti-
cellite from melts of different non-stoichiometry, con-
structed the model to describe the change of the melt
composition during crystallization, and found the opti-
mum compositions for the initial charge. 
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Abstract—The parameters characterizing the fluctuations in the concentration have been calculated for a great
number of aqueous solutions of various salts both in the range of the cluster formation and in the critical range.
The existence of an inflection point on the isotherms of concentration susceptibility preceding the transition of
the solution to the supersaturated state has been established. It is found that (1) the inflection point indicates the
complete hydration of the solution and the beginning of the active cluster formation in solution and (2) that, in
fact, the cluster formation in the solution is a diffuse second-order phase transition. It is concluded that the clus-
ters have the liquid-like structure and the diffuse boundaries. At a deviation of the solution concentration
from  its critical value, the critical index equals unity, in full accordance with the Landau theory of the mean
field. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

As far as we know, the concentration fluctuations in
electrolytes in the range of their high concentrations in
aqueous solutions have not been analyzed as yet.
Below, we make an attempt to realize what this analysis
can give for understanding the processes occurring in
proximity to an equilibrium concentration in a solution
at equilibrium and in the supersaturated state. These
problems constantly attract the attention of all those
engaged in crystal formation [1–3]. 

THEORETICAL EQUATIONS 

According to [4], the averaged squared fluctuation
in the concentration of a binary solution is described by
equation: 

(1)

where kB is the Boltzmann constant, T is the absolute
temperature, N is the number of solvent molecules in
that part of the solution volume for which this fluctua-
tion is calculated (a closed system),  is the derivative
of the chemical potential of the dissolved substance
with respect to its concentration c under given pressure p
and temperature T. The concentration c is written as the
number n of particles of the dissolved substance per
N molecules of the solvent [4]. In other words, this con-
centration is the ratio of the number of moles of the dis-
solved substance per mole of the solvent. 

However, the above definition of the solution con-
centration is not used in practice, but one can readily
pass to the equations alternative with respect to Eq. (1),
in which the concentration is expressed either in molar

∆c
2 kBT

Nµc'
----------,=

µc'
1063-7745/01/4606- $21.00 © 1039
fractions x or in molality units m (the number of moles
of the solute per kilogram of the solvent),

(2)

(3)

Here,  is the derivative of the chemical potential of
the dissolved substance with respect to x where xw is the
molar fraction of the solvent and  is the derivative of
µ with respect to m. 

Equations (1) and, hence, also equations (2) and (3)
are valid for small fluctuations and the Gaussian law of
their distribution [4]. It is expected that these conditions
would be fulfilled in the range of diluted solutions.
However, it is difficult to predict the limits of the con-
centrations for which these equations would yield the
correct results. In the range of supersaturated solutions,
and especially at concentrations close to critical, the
equations yield, undoubtedly, wrong results. At high
solution concentrations, one can consider the concen-
tration susceptibility of the solution as a parameter that
characterizes the fluctuation level in these media [5].
The relative concentration susceptibility is defined by
any of the following two equations: 

(4‡)

(4b)

∆x
2 kBT xw

2

Nµx'
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2 kBT

N
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EXPERIMENTAL DATA 
AND THEIR PROCESSING 

The Y and µ'/kBT values were calculated from the
data on water activity aw in solutions. At present, the
number of supersaturated aqueous solutions of the salts
with the known aw values amounts to 30 (practically, all
the data obtained at 25°C). For many substances, the
data were obtained up to extremely high supersatura-
tions up to vitrification points. Thus, it is possible to
reconstruct the general picture of the development of
concentration fluctuations in aqueous solutions in the
whole range of possible compositions. 

The /kBT value is roughly calculated on the basis
of the Gibbs–Duhem equation at constant p and T at the
concentration expressed in the molality units as

(5)

Here, a2w and a1w are water activities at the limits of the
concentration interval ∆m = m2 – m1 . This interval was
chosen in such a way that the variation in aw within this

µm'

µm'

kBT
---------

55.51∆µm

kBT∆m1m
------------------------–≅

55.51 a2w/a1w( )ln
∆m1m

------------------------------------------.–=

Fig. 1. Water activity for (a) CaCl2 solutions according to
data [6] (open circles), [7] (crosses), and [8] (filled circles)
and (b) NaCl solutions according to data [7] (open circles),
[8] (filled circles), and [9] (triangles) as a function of the
solution content at 25°C. Vertical dashed segments denote
either the boundary of under- or supersaturated media or a
boundary between the regions of formation of crystal
hydrates with different water concentration. Numbers at
these segments indicate the number of water molecules in
crystals. Arrows indicate the inflection points. 
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interval would not exceed 0.01 or 0.02. The calculated
/kBT values should lie at the middle of the corre-

sponding ∆m interval. For the concentration expressed
in molar fractions, we obtain

(6)

The Y and µ'/kBT curves for the solutions of all thirty
substances studied have some common features. We
discuss these characteristics for two salts. 

CONCENTRATION SUSCEPTIBILITY 
OF SOLUTIONS 

Consider aqueous solutions of CaCl2 and NaCl.
Their aw values are given in Fig. 1. Note that the aw data
in [6, 7] were obtained by the isopiestic method and were,
in fact, thoroughly smoothed results obtained in previ-
ous studies (the aw value indicated in [6] was smoothed
with due regard of the values determined in [6]). The aw

values in [8, 9] were determined by the method of levi-
tated droplet, but the first method is more precise. The
numerical aw values are given in [6, 7], the coefficients
of the sixth-order empirical polynomial with respect to
m are indicated in [8]. A plot of the aw values for the
NaCl solutions is given in [9]. The computer processing
of the latter yielded the equation

The range of the aw values measured in CaCl2 solu-
tions in [7] was almost the same as in [6]. The aw data
for NaCl [7] range within the concentration of solution
saturation. To simplify the consideration, these data are
shown only partly in Fig. 1. At the same time, these data
practically coincide with the data for CaCl2 [6] and
NaCl [8]. 

We should like to draw attention to the fact that both
curves in Fig. 1 show inflection points (indicated by
arrows). 

The Ym values calculated for the CaCl2 solutions
from data [7] (Fig. 2a) almost coincide with the analo-
gous values calculated by data [6]. Therefore, Ym deter-
mined from the aw values [7] are shown only partly in
Fig. 2a. The curve constructed by data [8] is less
authentic in the given range of m values since it is con-
structed with the use of the aw values measured by the
less precise method. At the same time, it follows from
Fig. 2a, the positions of both curves differ insignifi-
cantly. Large Ym values for the CaCl2 solutions calcu-
lated by the data from [8] are shown on the right side of
Fig. 2a only partly. These values tend to infinity at finite
m values in accordance with the concept of the suscep-
tibility behavior in the critical region. 

µm'

µx'

kBT
---------

xw a2w/a1w( )ln
x1∆x

----------------------------------.–≅

aw 0.957 0.00415m 0.0105m
2

–+=

+ 0.000855m
3

0.0000225m
4
.–
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As is seen from Fig. 2b, the Ym values calculated for
the NaCl solutions [7, 8] are in a good agreement with
each other. The Ym curve constructed by data [9] is less
reliable. 

One can readily realize that if the solution concen-
tration tends to zero, the variable Y should also tend to
zero. 

The Ym curve has an inflection point above which the
level of concentration fluctuations increases more rap-
idly (Fig. 2). As has already been mentioned, the inflec-
tion points on more reliable curves (see above) are indi-
cated by arrows. 

The inflection point is located in the range of under-
saturated media, although for NaCl solutions, it corre-
sponds to composition close to equilibrium. However,
different values at the equilibrium solution concentra-
tion and at the solution concentration at the inflection
point for all the substances whose Ym curves are estab-
lished rather reliably, (i.e., for most of the 30 systems
considered) allows one to assume that for the NaCl
solution these compositions are not identical. Some
authors thoroughly studied the temperature depen-
dences of some physical properties of aqueous solu-
tions of salts such as viscosity, specific heat, electrical
conductivity in the vicinity of the saturation state of
these media. They pointed out that although the inflec-
tion points on these curves were close to the tempera-
ture point of the solution transition to the supersatu-
rated state, nevertheless, these points never coincided. 

The Yx curves also had inflection points similar to
those observed on the Ym curves. 

Now, consider the errors in the calculated Ym param-
eter. First, consider as an example the most precise
data. In [7], the values of water activity were tabulated
at fixed intervals of water activity (0.01 or 0.02). As is
well known, the water activity in salt solutions is deter-
mined by measuring the pressure of water steam above
the solutions. This pressure is measured with an accu-
racy not less than 0.01 mm Hg. Since the pressure of
pure water vapor at 25°C ranges within 23.75–
23.76 mm Hg, the aw value is precisely determined
within four digits at aw > 0.42 (i.e., unless the water
vapor pressure would exceed 10 mm Hg) and within
three digits in the range 0.42 > aw > 0.042, etc. The
maximum experimental error should be equal to a half-
unity of the latter significant digit of the aw value. For
example, for salts, this error is equal to 0.00005 in the
vicinity of inflection points on the Ym curves. It should
be emphasized that this error is an error of individual aw

measurements. The error for smoothed aw values [7]
should be, at least, two times lower. 

The concentrations values corresponding to the aw

values are indicated within an accuracy of ±0.001 of the
numerical value of m in [7]. Thus, the error in the deter-
mination of concentration can be taken to be equal to
0.0005 mol/kg of H2O, whereas the m value in the
region of the inflection range of the curves was about
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
4.5 m for CaCl2 solutions and about 6.0 m for NaCl
solutions. 

The theory of errors allows one to use the above
errors in aw and m variables to find only the maximum

Fig. 2. Concentration susceptibility of aqueous solutions of
(a) CaCl2 according to data [6] (open circles), [7] (crosses),
and [8] (filled circles) and (b) NaCl according to data [7]
(open circles), [8] (filled circles), and [9] (triangles) as a
function of salt concentration in the solution under atmo-
spheric pressure at 25°C. For other notation see Fig. 1. 
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possible error in the calculation of Y values. Our esti-
mation shows for the solutions considered here that this
error is about 30% of the Ym value in the vicinity of the
inflection point. This error relates to the ends of the
error-distribution curve and, thus, is practically impos-
sible and much greater than the root mean square error
for Y, i.e., the error we are interested in and cannot esti-
mate. However, each Ym curve in Fig. 2 is characterized
by a high point density and almost zero dispersion
about these curves, at least, in the range of the inflection
points. This fact allows one to state that the error corri-
dor for the curves considered should be insignificant in
this range. Note that it is this inflection point that we are
interested in while considering the Ym parameter. 

We draw attention to a decrease of the fluctuation
level in the range of the maximum supersaturations in
the NaCl solutions (Fig. 2b). This phenomenon seems
to be associated with a significant reduction in the par-
ticle mobility in solution (i.e., the trend to its “freez-
ing”) at high supersaturations. Such features in the
behavior of the Y parameter at high concentrations of
supersaturated aqueous solutions are rather typical. 

Now, we introduce a notion of the complete hydra-
tion threshold (th). This is such a solution concentra-
tion, mth, at which all the water molecules are involved
into the first hydration sphere of the ions of the dis-
solved substance [10]. It is clear that upon the transition
through this threshold the level of concentration fluctu-
ations should drastically increase, because of the lack
of water molecules for hydration of electrolyte ions

11

3 5

mb, mol/kg

mth, mol/kg
4

10
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4

KClKBr

KF

LiBr

LiCl
NaY

NaBr

NaCl

Fig. 3. Correlation between the solution concentration at the
inflection point of the Ym curve and the concentration at the
threshold of complete hydration for aqueous solutions of a
number of alkali metal halides [10]. 
C

outside this range. The stability of the solution to such
fluctuations should essentially decrease. Thus, it is logi-
cal to consider the above inflection point on the suscep-
tibility curve as a result of the complete salt hydration. 

We determined solution concentrations mb at the
inflection points on the Ym curves for the alkali metal
halides with the known mth values [10]. The mb were
calculated with due regard for tabulated aw values [7].
The assumption that the mb and mth are parallel was
confirmed (Fig. 3). The vertical bars at the points in
Fig. 3 are the “ambiguity ranges” in the determination
of mb. At the left boundary of this interval (on the left of
the mb value), the Ym curve should straighten, whereas
on the right boundary, the Ym parameter increases non-
linearly. The mb value is defined as the m value in the
middle of the ambiguity range. A considerable width of
this interval for the LiBr solutions is explained by the
fact that the Ym curve within this interval is practically
horizontal (the accuracy of the data does not allow one
to determine the slope of the Ym curve within this inter-
val reliably). 

At the same time, it is seen from Fig. 3 that the mb

values are always higher than the mth values and that
they differ by a factor of two for the substances with the
maximum mth values. The higher values of the former
quantities can be explained by a number of reasons. 

The solution composition at the complete hydration
threshold was calculated in [10] under the condition
that this threshold corresponds to the solution concen-
tration at which each water molecule is located within
the first hydration sphere either of a cation or of an
anion. However, it should be taken into account that
during further increase of the salt concentration in the
solution, the solution concentration is changed in such
a way that each water molecule is shared by the first
hydration spheres of both ions. Possibly, this concentra-
tion (and not mth) is responsible for dramatic increase of
the solution concentration. Moreover, the calculations
in [10] were performed under the assumption that the
salts in solutions are completely dissociated. At the
same time, it is well known, that even strong electro-
lytes do not dissociate completely. Therefore, the com-
plete hydration should occur at higher solution concen-
tration in comparison with the concentration indicated
in [10]. Thus, the mb concentration at the inflection
point on the susceptibility curve, which indicates the
beginning of an increase in solution unstability should
always be higher than the mth concentration according
to [10]. Apparently, some other factors promote the dif-
ference between these values. Thus, the mth values
given in [10] should be considered only as approximate
ones. It is clear why mb has higher values for substances
forming crystal hydrates (compare the positions of the
points for KF and NaBr with the positions of the points
for NaY and NaCl in Fig. 3), but it is unclear why the
difference between mb and mth increases with an
increase in mth. 
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At present, the concepts of the cluster structure of
highly concentrated solutions give rise to no doubt [1–3].
However, it remains unclear what concentrations pro-
vide the start of cluster formation in these solutions.
It seems that the existence of the inflection point on the
Ym curves clarifies the situation. For example, the com-
parative study of the structure of the NiCl2 aqueous
solution [11] and some of its physical properties [12]
led to the conclusion [12] that at the concentration of
~1.3 mol/kg of H2O and at the temperature of 20°C, the
structure of this solution is transformed into a cluster
structure. The Ym values for these solutions calculated
on the basis of data [7] yield mb = 1.8 mol/kg of H2O
(at 25°C). The difference between these two values can
be attributed to the error in their determination. Note
also that these numbers are not related to the NiCl2 sol-
ubility (5.06 mol/kg H2O at 25°C). 

CONCENTRATION DERIVATIVE 
OF THE CHEMICAL POTENTIAL 

FOR THE DISSOLVED SUBSTANCE 

The formation of the cluster structure in the solution
was interpreted as a second-order phase transition [13].
Since the cluster rearrangement takes place within a
certain concentration interval, it should be classified as
a diffuse second-order phase transition [14]. The curves
in Fig. 4 are typical of these transitions (see the inset in
Fig. 4a). Note also that the curves in [14] were consid-
ered in application to the situation where the tempera-
ture was an argument. In our case, the argument is the
solution concentration. 

We should like to make some remarks about the reli-
ability of the establishment of the /kBT lines. The
most reliable curves are indicated by arrows (Fig. 4)
and are characterized either by a small (as in the case of
the Ym parameter) or almost the zero scatter of the
points. The different data also agree quite well. Thus,
the error corridor for the curves considered on the scale
of these plots should be insignificant. The zero error for
two other curves is only an illusion caused by the fact
that these curves were constructed with the use of the aw

polynomials. All the /kB lines are wavy, which is of
interest for us. 

The curve in Fig. 4a constructed by data [8] (filled
circles) seems to be reliable at the right wing since it is
consistent with the behavior of the chemical potential
in the critical range of the solution. 

The points corresponding to the inflection points of
the Ym in Fig. 2 constructed with the use of the aw data
are indicated by arrow 1 in Fig. 4. The points on the
lines in Fig. 4 indicated by arrow 2 are the points where
the tangents to these lines are parallel to the left-side
tangents. The gap between the points indicated by
arrows 1 and 2 is considered as a range where a diffuse
second-order phase transition takes place. At the solu-
tion concentrations to the right of point 2, almost the

µm'

µm'
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whole dissolved substance should be involved into
cluster formation. 

The points of both Y and the /kBT curves which
correspond to equilibrium solution concentration show
no anomalies or characteristic properties. 

The length of the vertical segment between the tan-
gents in Fig. 4 corresponds to a relative value of the
phase effect, ∆( /kBT), in the second-order phase
transition. 

There is no unique opinion about the cluster struc-
ture—it is still unknown whether the clusters have crys-
tal structure or not. The low ∆( /kBT) values (tenths
and even hundredths of the energy of thermal motion of
molecules (see table)) indicate their “liquidlike” char-
acter [13] and diffuse boundaries. A negative sign of
this phase effect was predicted in [13]. 
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Fig. 4. Relative derivative of the chemical potential for (a)
CaCl2 according to data [6] (open circles), [7] (crosses), and
[8] (filled circles) and for (b) NaCl according to data [7]
(open circles), [8] (filled circles), and [9] (triangles) as a
function of salt concentration in the solution. The inset in
Fig. 4a shows schematically a diffuse second-order phase
transition. 
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The equation which describes the temperature
dependence of the thermodynamic potential in the
range of the diffuse second-order phase transition is
known [14]. By analogy, we can write this equation, we
write

(7)

Here, /kBT is this function at m = mb, i.e., at the ini-
tial point of the diffuse second-order phase transition
(point 1 in Fig. 4), L is the inclusion function, whose
approximate form can be written as [14]

(8)

where α and β are certain constants. Substituting
Eq. (8) into Eq. (7) and performing necessary transfor-
mations, we obtain Eq. (7) in the form of a power func-
tion

(9)

where 

(10)

µm' /kBT µb' /kBT L/kBT( ) m mb–( ).+=

µb'

L
kBT
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Fig. 5. Concentration susceptibility of CaCl2 aqueous solu-
tions as a function of the relative deviation of the solution
concentration from its critical value at 25°C. 

Parameters characterizing diffuse second-order phase transi-
tions (cluster formation) in two aqueous solutions of salts

Substance ∆( /kBT) α β

CaCl2 4.3 –0.6 0.37 0.018

NaCl 5.9 –0.04 2.8 0

* Concentration m, mol/kg of H2O. 

mb
* µm

'

C

Here,  is this variable at the solution concentra-
tion m. 

Linearization of the dependence of y on z in double
logarithmic coordinates allows the verification of
Eq. (7) and determination of the α and β parameters.
The curves between the arrows in Fig. 4 are constructed
by Eqs. (7) and (8) with the use of the tabulated α and
β values. 

The curve /kBT for CaCl2 solutions constructed
by the data from [8] at the concentration approximately
equal to 14 mol/kg of H2O tends to zero (Fig. 4a). The
solution whose composition coincides with the compo-
sition of CaCl2 tetrahydrate has the concentration
13.88 mol/kg of H2O. Thus, the critical concentration
of the solution of a substance cannot exceed this value.
The close values allow one to assume that, at least, in
right-hand part of the plot, the results obtained in [8] are
reliable and that the concentration equal to 13.9 mol/kg
of H2O should be considered as the critical concentra-
tion for the CaCl2 solutions. 

The experimental data obtained in the study of the
critical phenomena are represented as the concentration
susceptibility Y as a function of the relative temperature
deviation from its critical value [5]. By analogy, we can
write: 

(11)

where

or

where mcr or xcr is the critical concentration of the solu-
tion, γ is the critical index, and k is a constant. 

The results shown in Fig. 2a are readily straightened
in the coordinates of Eq. (11) on the double logarithmic
scale (Fig. 5). In this case the index γ = 1. It is remark-
able that this γ value is substantiated in the classical the-
ory of critical phenomena for susceptibilities of differ-
ent natures (magnetic susceptibility, isothermal com-
pressibility) dependent on relative deviation of the
temperature from its critical value [5, 15, 16]. Unfortu-
nately, it is still unclear whether this γ value would be
the same for other substances, since up to now the
CaCl2 solution is the only solution with the known crit-
ical concentration. 

The formation of amorphized clusters preceding
crystal nucleation in the solution indicates that nucle-
ation is, at least, a two-barrier process in terms of the
thermodynamic potential. The first barrier is relatively
low, its overcoming is necessary for cluster formation;
the second or the main barrier is relatively high and its
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Y kεγ
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ε
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ε
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overcoming is necessary for transformation of the
already formed cluster into a stable crystalline nucleus. 

Thus, the data on the concentration fluctuations clar-
ify the picture of transformations taking place in solu-
tions with an increase of the concentration of the dis-
solved substance. These data also provide better under-
standing of the concepts of the complete hydration
threshold, the process of cluster formation, phase tran-
sitions in solutions, etc. 
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Abstract—Oxygen distribution in a Si crystal (100 mm in diameter) has been studied by the absorption method
in the range of the absorption band of interstitial oxygen, λ = 5.81 µm. Large-scale fluctuations (~1 cm) of the
oxygen concentration (N0) along the growth axis were determined. Depending on the melt height, the regions
of the chaotic and quasiperiodic changes were established, as well as the region of the constant N0 value, and
their relation to turbulent, quasiperiodic, and stationary modes of melt convection in crystallization. The values
of the critical Rayleigh number for the melt transition from stationary to quasiperiodic (3 × 103) and from qua-
siperiodic to turbulent (1.7 × 104) convection modes are determined for growth of silicon crystals by the Czo-
chralski method. The dominating modes of N0 concentration oscillations at two incommensurable frequencies,
f1 = 1.3 × 10–3 and f2 = 6 × 10–4 Hz, are assumed to be related to the oscillatory transfer of oxygen from the
walls of the quartz crucible to the crystallization front and restructurization of the convective flow pattern of the
melt in the course of crystal growth. © 2001 MAIK “Nauka/Interperiodica”.
It is well known [1, 2] that the nonstationary gravi-
tational convection in growth of semiconductor single
crystals is the main factor in the microinhomogeneous
impurity distribution in the ingots grown. The convec-
tive heat and mass transfer in melt [3] results in the
appearance of nonaxisymmetric thermal field and its
perturbations. Therefore, the rotation of the crystal and
the crucible in the nonaxisymmetric thermal field and
the temperature oscillations at the crystallization front
change the microscopic growth rate, and, as a conse-
quence, give rise to fluctuations in the effective distri-
bution coefficient of impurities in a growing crystal [1].
The impurity growth bands (strata) thus formed in the
longitudinal and transverse directions of the ingot are
characterized by the spatial period of the order of 100–
300 µm depending on the growth conditions [4].

Recently, we revealed large-scale (~1 cm) N0 oscil-
lations along the growth axis of Czochralski grown Si
crystals [5]. The correlation analysis showed that the
dynamics of these oscillations in the course of ingot
growth is of the determinate nature and cannot be
caused by any random external factors [5]. The value of
the correlation dimension [5] agree quite well with the
analogous values for the turbulent mode of the nonsta-
tionary gravitational convection of melts [6].

The present study was aimed at the determination of
the nature of large-scale N0 oscillations along the
growth axis of Si-crystals by analyzing the dynamics of
Si incorporation into the crystals under the conditions
of nonstationary melt convection.
1063-7745/01/4606- $21.00 © 21046
The p-type Si crystals (100 mm in diameter) were
grown from the charge (18–20 kg) in a crucible 330 mm
in diameter in an industrial reactor without crucible
rotation. The rotation rate of the ingot was 3–5 rpm;
the pulling rate varied within 0.8–1.2 mm/min. The sin-
gle crystals thus grown had no swirls, their resistivity
ranged within 10–12 Ω cm, the dislocation density was
less than 10 cm–2. Oxygen concentration in Si ingots
was determined by measuring the absorption coeffi-
cient with the aid of a spectrometer at λ = 5.81 µm. The
method used for studying the longitudinal impurity dis-
tribution was considered elsewhere [7, 8]. The spatial
resolution of the spectrometer (2–3 mm) was deter-
mined by the diameter of the light beam.

The coordinate oxygen profiles along the growth
axis of the crystals were transformed into the temporal
dependences with due regard for the pulling rate. The
correlation analysis of the temporal changes in N0 was
made by the method suggested elsewhere [9] and con-
sidered for oxygen dynamics in silicon in [5]. The Fou-
rier analysis of the temporal oscillations of N0 with due
regard for the macroscopic changes was made by the
method suggested in [10].

The characteristic changes in N0 with time for crys-
tal growth and a decrease of the melt level h are shown
in Fig. 1. The monotonic decrease of the average value
of the oxygen concentration along the ingot (from its
initial part to the ingot end) is a well known fact [1] and
is explained by melt depletion of oxygen because of a
decrease in the area of its contact with the crucible with
a decrease in h. Another feature of the dependences
001 MAIK “Nauka/Interperiodica”
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shown in Fig. 1 is the formation of three portions of the
temporal oscillations of N0 which are characterized by
qualitatively different behavior with a decrease of the
melt level. The random oscillations, N0(t), in region I
become quasiperiodic in region II. Moreover, at low
melt levels, N0 can decrease in a jumpwise manner, and
then, with further crystal growth, N0 remains practically
constant (region III).

The correlation analysis of region I yields the corre-
lation dimensions 3.6, which corresponds to a surpris-
ing attractor in the phase space and is the mathematical
image of the turbulent flow of a liquid [6]. The oscilla-
tion dynamics of N0 in region II is characterized by a
simple attractor of dimension 2, which corresponds to
the quasiperiodic convection mode. The most pro-
nounced N0 pulsations in region III are uncorrelated
and explained by the noise inherent in the setup used
for measurements.

The Fourier-analysis of the N0(t) dependences in
regions I and II are shown in Fig. 2. The frequency
spectrum of region I (Fig. 2a) has weak spectral max-
ima against the background of the noise with broad
bands characteristic of the random behavior of the sys-
tem. The diffuse frequency components in region I are
transformed into narrow spectral peaks at the incom-
mensurate frequencies f1 = 1.6 × 10–3 and f2 = 6 × 10–4 Hz
in region II (Fig. 2b). These modes can be attributed to
the rotational strata, because their frequencies are much
lower than the rotational frequencies of the ingot (8 ×
10–2 Hz).

The analysis of the experimental data obtained
shows three modes of gravitational convection of the
melt in the process of silicon growth—turbulent in
region I, nonstationary quasiperiodic in region II, and
stationary in region III. The change in the convection
mode occurs upon the attainment of the critical values
of the Rayleigh number (Ra) determined by the formula

where g = 980 cm/s2 is the free fall acceleration, α =
1.43 × 10–4 K–1, ν = 3 × 10–3 cm2/s, and χ = 0.125 cm2/s
are the thermal expansion coefficients, kinematical
viscosity, and heat conductivity of liquid Si, respec-
tively [1].

The critical Rayleigh numbers (Rac) obtained are
compared with the data [11–17] (Fig. 3) obtained for
the melts of several semiconductors and mercury with
due regard for the corresponding aspect ratios β = D/h,
where D if the crucible diameter. All the experimental
data are consistent with the data calculated theoreti-
cally in [18], where the dramatic increase in Ra at β =
(2–4) is explained by the effect of the side walls hinder-
ing convection.

With due regard for the above facts, one can con-
clude that the pulsation dynamics of N0 observed during

Ra
αgh4

νχ
------------∆T

h
-------,=
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growth of silicon single crystals reflects the character-
istic behavior of liquids with low Prandtl numbers in
the Rayleigh–Benard convection. It is well known [19]
that the thermal gravitational convection is character-
ized by two time scales of the oscillator instability in
diffusion of the pulse h2/χ and the energy h2/χ. Both
scales are well seen in the measurements of tempera-
ture oscillations under the conditions of a convective
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Fig. 1. (a, b) Oxygen concentration N0 in two crystals as
functions of the pulling time and the melt height in the
course of crystallization. I, II, and III are the regions of the
turbulent, quasiperiodic, and stationary modes of melt con-
vection, respectively.
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Fig. 2. The amplitude spectra of fast Fourier-transform of
the temporal pulsations of oxygen concentration in regions
(a) I and (b) II shown in Fig. 1.
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flow of mercury [16, 17]. The frequency of the spatial
fluctuations of oxygen in silicon observed earlier
(~10−2 Hz) [4, 20, 21] also corresponds to the character-
istic type of heat transfer, h2/χ. Under our experimental
conditions, the impurity bands on such a scale cannot
be distinguished because of the insufficient spatial res-
olution of the spectrometer used. The frequencies
obtained, f1 = 1.6 × 10–3 and f2 = 6 × 10–4 Hz, are close,
by the order of magnitude, to the reciprocal diffusion
time of the pulse (h2/ν)–1 = 3 × 10–3 Hz at h = 1 cm and
the frequencies (~10–3 Hz) of the fluctuation modula-
tions of the melt temperature under the conditions of
nonstationary convection [21, 22]. We believe that the
nonlinear convection of the pulse can lead to both oscil-
latory transfer of oxygen from the walls of the quartz
crucible to the crystallization front and the low-fre-
quency temperature oscillations of the melt because of,
e.g., the changes in the convective structure of the oscil-
lation pattern. It seems that both these factors determine
the nature of the large-scale fluctuations of oxygen
along the growth axis of silicon crystals.

105

101

Rac

β100

104

1
2
, 3

Rac
3

Rac
2

Fig. 3. Critical Rayleigh numbers (Rac) in the transition

from stationary to quasiperiodic ( ) and from quasipe-

riodic to turbulent ( ) convection modes as functions

of the aspect ratio β = D/h for the melts of some semicon-
ductors and mercury; 1 and 2 indicate the data obtained in
[11–17], 3 indicates the data obtained in the present study.

Rac
2( )

Rac
3( )
C

REFERENCES
1. G. Müller, Crystal Growth from the Melt (Springer-Ver-

lag, Berlin, 1988; Mir, Moscow, 1991).
2. M. G. Mil’vidskiœ, N. A. Verezub, A. V. Kartavykh, et al.,

Kristallografiya 42 (5), 913 (1997) [Crystallogr. Rep. 42,
843 (1997)].

3. N. V. Kurganetskiœ, Neorg. Mater. 32 (3), 317 (1996).
4. A. M. Éœdenzon, N. I. Puzanov, and S. I. Kalyuzhnaya,

Kristallografiya 35 (2), 433 (1990) [Sov. Phys. Crystal-
logr. 35, 250 (1990)].

5. V. V. Litvinov, A. N. Petukh, Yu. M. Pokotilo, and
V. I. Urenev, Neorg. Mater. 31 (2), 274 (1995).

6. A. Yu. Loskutov and A. S. Mikhaœlov, Introduction to
Synergetics (Nauka, Moscow, 1990).

7. V. V. Litvinov, Yu. M. Pokotilo, and V. I. Urenev, Prib.
Tekh. Éksp., No. 4, 163 (1996).

8. V. V. Litvinov, A. N. Petukh, and Yu. M. Pokotilo, Zh.
Prikl. Spektrosk. 64 (5), 655 (1997).

9. P. Grassberger and J. Procaccia, Physica D (Amsterdam)
9, 3 (1983).

10. A. V. Kartavykh, É. S. Kopeliovich, M. G. Mil’vidskiœ,
et al., Kristallografiya 42 (4), 755 (1997) [Crystallogr.
Rep. 42, 694 (1997)].

11. M. Watanabe, M. Eguchi, and K. Kakimoto, J. Cryst.
Growth 151, 285 (1995).

12. M. Mohelcic, J. Cryst. Growth 97, 42 (1989).
13. K. M. Kim, A. F. Witt, M. Lichtensteiger, and

H. C. Gatos, J. Electrochem. Soc. 125 (3), 475 (1978).
14. G. Muller, C. Naumann, and W. Weber, J. Cryst. Growth

70, 78 (1984).
15. K. J. Kolker, J. Cryst. Growth 50, 852 (1980).
16. S. Fauve and A. Libchaber, in Chaos and Order in

Nature: Proceedings of the International Symposium on
Synergetics, Schloss Elmau, Bavaria, 1981, Ed. by
H. Haken (Springer-Verlag, Berlin, 1981), pp. 25–35;
Synergetics (Mir, Moscow, 1984), p. 234.

17. R. Krishnamurti, J. Fluid Mech. 60 (2), 285 (1973).
18. K. Stork and U. Muller, J. Fluid Mech. 71 (2), 231

(1975).
19. F. H. Busse, J. Fluid Mech. 52, 97 (1972).
20. T. Kanda, K. Kusano, and H. Tomokage, Jpn. J. Appl.

Phys. 35, L1388 (1996).
21. K. Kakimoto, T. Shyo, and M. Egichi, J. Cryst. Growth

151, 187 (1995).
22. K. M. Kim, A. F. Witt, and H. C. Fatos, J. Electrochem.

Soc. 119 (9), 1218 (1972).

Translated by L. Man
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001



  

Crystallography Reports, Vol. 46, No. 6, 2001, pp. 1049–1055. Translated from Kristallografiya, Vol. 46, No. 6, 2001, pp. 1135–1141.
Original Russian Text Copyright © 2001 by Dudka, Loshmanov.

      

CRYSTALLOGRAPHIC 
SOFTWARE

                
Structure Analysis by Reduced Data. 
II. Increase of Reproducibility of the Results 

of Diffraction Studies
A. P. Dudka and A. A. Loshmanov

Shubnikov Institute of Crystallography, Russian Academy of Sciences, 
Leninskiœ pr. 59, Moscow, 117333 Russia

e-mail: dudka@rsa.crystal.msk.su

Received July 4, 2000

Abstract—The second part of the paper shows the advantages of the method of interexperimental minimization
(IEM) over the conventional least squares (LS) method in the crystal-structure refinement. The new IEM
method minimizes the norm of the differences between the data measured in independent experiments. The
parameters of the structure model refined by the LS and the IEM methods are compared for four experimental
data sets from an alexandrite crystal Al2BeO4 : Cr3+. The model parameters calculated by the LS method from
the initial experimental data sets showed insufficient reproducibility (the number of admissible values of the
statistical-test criterion based on the normal-probability plot equals 5.6%). The use of the IEM algorithm
increases the number of admissible values up to 38.9%. However, the use of fitting and statistical methods can-
not provide a 100% reproducibility of all the model parameters automatically, which requires the reconstruction
of the lost information on the characteristics of the experiment. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Independent experiments necessary for checking
the reproducibility of the diffraction analysis of results
can be performed in different ways. In the simplest
case, one has to repeat the experiments on several spec-
imens of the same material. The results obtained in
such studies are analyzed, e.g., in [1–4].

The first project on the independent studies of two
standard CaF2 crystals was organized by the American
Crystallographic Association in 1962, when these crys-
tals were simultaneously studied in seven different lab-
oratories. The results of this experiment were published
in [5] and discussed in detail in [6–8]. Most of the mea-
sured experimental data sets turned out to be consistent
within the accuracy of 5%. However, none of the
authors claimed that the integrated intensities were
measured with an accuracy higher than 2%. The dis-
crepancies between the data measured in different
experiments systematically depended on the scattering
angle and structure-factor amplitudes, which, in turn,
distorted the atomic-displacement and extinction
parameters during the atomic-structure refinement.

In 1970, the results of a new large-scale interna-
tional project on the study of organic crystals of D(+)-
tartaric acid simultaneously in 16 laboratories (includ-
ing three laboratories in the Soviet Union) were
reported in [8–11]. The detailed analysis of the results
of this international project revealed a number of prob-
lems. The main conclusion made from this project is as
1063-7745/01/4606- $21.00 © 21049
follows. The reliability factors obtained in the LS
refinement (1–2%) are considerably lower than the
interexperimental differences (6–9%), because the cal-
culated multiparametric structure factor “absorbs” all
the systematic errors inherent in the experimental
integrated intensities. As a consequence, the posi-
tional parameters, and especially the atomic-displace-
ment parameters (ADPs), showed insufficient repro-
ducibility.

The creation of the Cambridge Data Base of Struc-
tures [12] considerably increased the data available for
studying the structural-data reproducibility. Thus, in
1986, the refined data were analyzed for 100 pairs of
crystals [13]. In comparison with the results of the
Project of 1970, the reproducibility of the positional
parameters of nonhydrogen atoms considerably
improved. However, not all the problems were com-
pletely solved. Thus, atomic-displacement parameters
could not be compared because of their very low repro-
ducibility. The standard deviations in the positional
parameters of non-hydrogen atoms turned out to be
underestimated, on the average, by a factor 1.4–1.45.
Positive correlations were established between the
errors in the positional parameters of atoms in similar
chemical environment. The errors in the heavy-atom
positions were determined less reliably than those in
light-atom positions. The standard deviations in the unit
cell parameters were also considerably underestimated
(by a factor of five for the edges and 2.5, for the angles).
001 MAIK “Nauka/Interperiodica”
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The project of the International Union of Crystal-
lography [14] on the comparison of structural parame-
ters and electron-density maps was performed on four
X-ray and five neutron diffraction data sets [14]. The
main conclusions made from this Project are as follows.
The parameters of atomic coordinates are reproduced
with a rather high accuracy; the coordinate parameters
obtained from neutron-diffraction data are reproduced
much better than those obtained from X-ray diffraction
data. The atomic-displacement parameters have consid-
erably different values. The deformation electron-den-
sity maps reproduce sufficiently well all the chemically
important features of the crystal structures. To provide
the solution of the problem, the Subcommittee on Sta-
tistical Descriptors of the International Union of Crys-
tallography has formulated the requirements to the
quality of structural investigations [15–17]. The
progress achieved in the design of the equipment and
the computational procedures allowed to outline the
main directions of the development of precision struc-
tural studies in order to meet some of these require-
ments. The large number of publications to the effect
showed that the measurement errors are distributed at
random, in other words, revealed no considerable sys-
tematic errors.

The number of publications based on independent
measurements of crystals (e.g., with the use of various
types of radiation and some external factors) consider-
ably increases. In this connection, we should like to
mention here X-ray and neutron diffraction studies [18]
and publications in which the experimental data are
compared with the corresponding ab initio calcula-
tions.

Unfortunately, the problem of reproducibility of the
numerical values of the refined parameters (the list of
which has considerably increased for the recent
20 years) is still urgent. In some precision studies, the
completely reproducible positional parameters and
partly reproducible atomic-displacement parameters
were obtained. It was indicated [19] that the most
detailed and exhaustive analysis of the reproducibility
of refined parameters for an atomic model can be per-
formed with the use of the statistic test of the random
character of parameter error distribution (the so-called
P-test based on the analysis of the normal-probability
plot [20–22]).

We came to the conclusion that even the best
planned precision experiments performed on the most
sophisticated modern instruments cannot provide the
reproducibility of all the atomic-displacement parame-
ters, which is associated with possible correlations
between the parameters and, first of all, correlation of
atomic displacements and the scale factor. Correlations
between the parameters result in a considerable dis-
crepancy between the calculated parameters and their
reliable physical values and make them poorly repro-
ducible.
C

In terms of mathematics, this fact is quite under-
standable, because the determination of the atomic-
model parameters is an ill-posed problem—for nonlin-
ear problems, the solution is neither stable nor unique
[23]. Thus, using only the methods of local minimiza-
tion (including LSM), one cannot solve this problem
without the use of a number of good initial approxima-
tion [24]. In any case, the iteration process can stop at a
certain point prior the attainment of the closest local
(global) minimum by different reasons, including the
effect of possible correlations between the model
parameters. Thus, each new structural study yields, in
fact, a new solution depending on the accuracy of the
experimental data and the weighting scheme used.

The interexperimental minimization (IEM) mini-
mizes the difference between the experimental data
obtained in two experiments (the difference “experi-
ment 1–experiment 2”) and, thus, makes these data
more consistent. In the first part of this study [19], we
demonstrated the improvement of the statistical criteria
of data consistency using the intersecting data sets (the
so-called cross-sets). It was also shown that the use of
new more sophisticated methods considerably reduces
the reliability factors in the LS structure refinement.
This signifies that the algorithm of the interexperimen-
tal minimization allows one to pass from the neighbor-
hood of the initial local minimum of the functional to
the neighborhood of another deeper minimum.

Is this minimum is global and the same for all the
refinement processes used in the repeated studies? Can
this higher reproducibility of the experimental data
automatically lead to better reproducibility of the
atomic-model parameters refined and, if it can, then to
what extent?

The answer to this question would have been obvi-
ous if the atomic-parameter values were not distorted
by mutual correlations. Even if the experimental data
sets coincide in the statistical sense, in the mathemati-
cal sense, they are different, and the interparam corre-
lations would yield somewhat different results, whereas
the refinement by each set of experimental data can stop
prior to the attainment of the minimum [24]. Another
aspect of the problem is associated with the fact that it
is still unclear how thoroughly the experimental data
should be collected and how thoroughly their primary
treatment should be performed in order to exclude pos-
sible systematic errors and attain the necessary level of
atomic-parameter reproducibility.

Below, we describe the further study of the structure
of a lasing alexandrite (Al2BeO4 : Cr3+) crystal with the
use of four experimental data sets (1–4). The cross-sets
are indicated by two figures, e.g., 12. The second-order
cross-sets, i.e., the cross-sets obtained by averaging the
data of the initial cross-sets, are written as hyphenated
pairs of figures, e.g., 12–34. The focus is made on the
mutual correspondence of the atomic parameters
refined by different sets of experimental data.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001



        

STRUCTURE ANALYSIS BY REDUCED DATA. II 1051

                                                                                                                        
CRITERIA OF THE QUALITY 
OF STRUCTURAL STUDIES

The main criteria for estimating the accuracy of the
structural data are the R-factors obtained upon the
structure-model refinement. The second group of the
traditional criteria is comprised by the quantities that
allow one to check the random character of the error
distribution in the experimental data, S, and the appro-
priateness of the weighting scheme, χ2 [16, 22].

The detailed information on the error distribution in
the measured data and the mutual consistency of inde-
pendent experimental data sets or the degree of the
model-parameter reproducibility can be obtained from
the normal-probability plot. The interpolation of the
points lying on the straight line y = Ax + B allows the
introduction of the following criteria: the slope A, the
intersection B, the degree of curve linearity (scatter of
points) D, and some other criteria [25, 26].

The normal-probability plot is linear and has the
unit slope and the zero intersection if the measured or
calculated parameters have only random errors. The
test requirements can be satisfied by two main meth-
ods—either by increasing the corresponding errors in
the data (i.e., reducing the relative accuracy) or by
decreasing the discrepancy between the similar quanti-
ties in different experiments. The visual linearity of the
curves of all the tests indicates that the structure deter-
mination is correct. The invalidity of other criteria indi-
cates certain shortcomings inherent in the model or the
weighting scheme, which can be corrected in most
instances. All the criteria associated with checking the
statistical hypotheses are characterized by the predeter-
mined ideal values S = χ2 = A = 1 and B = D = 0.

When testing the independent sets of experimental
data, one has to calculate their relative scale factors (the
so-called interfactors) K and äw and the values of inter-
experimental R12 and Rw12 factors (the ideal values of
the latter are unity and zero, respectively) [25, 26].

REPRODUCIBILITY OF THE ATOMIC-MODEL 
PARAMETERS

In the first part of this article ([19], Tables 2–4), we
have proved that the relative accuracy of the results
obtained by the IEM method is higher than that
obtained by the LSM. However, the reliability of the
obtained atomic parameters is more important. The
problem whether the atomic models used in the struc-
ture analysis correspond to the physical reality or not
are beyond the scope of this article. Nevertheless, we
believe that, irrespectively of the model, its parameters
should be reproduced in other independent studies of
the same objects.

One of the constituent parts of the objective function
in the interexperimental minimization is written as Φ ~
Σ(I1obs – I2obs)2, where Iobs are the squared experimental
structure factors. The refinement of the atomic model is
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
based on the assumption (although very probable but
still to be confirmed) that a higher consistency of the
experimental data sets, in turn, would improve the
reproducibility of the structural results.

Consider, first, the refinement of the model parame-
ters by the initial experimental data sets. Figure 1 shows
the normal-probability plot for the atomic parameters
obtained in the refinement of the structure model by
experimental data sets 2 and 4 (the P-test). The slope A
of the curve characterizes the agreement between the
parameters of two models and the correctness of the
calculation of the errors in the parameters refined in the
LS procedure. The curve linearity (the average scatter
in points D) and the closeness of the intersection point
B to zero indicate the level of the systematic errors in
the parameters. The root-mean square scatter in the
parameter values 〈(∆P/σ(P))2〉1/2 has the same meaning
as the slope A and is given here for easier comparison
of the results with the results of the X-ray and neutron
diffraction studies [18]. The maximum value of the nor-
malized error |∆P|/σ(P)|max is the most crucial parame-
ter, whose ideal value, as far as we know, has not been
attained as yet in any of the studies (for sampling of the
given size, |∆P|/σ(P)|max = 2.50). The R-factor shows
the level of the relative accuracy of the test; it is always
possible to satisfy the test by increasing the error in
parameter values and reducing the relative accuracy, in
other words, the A and the R criteria are somewhat con-
tradictory.

It is also necessary to check to what extent the
refinement of the structure model by the cross-set
would guarantee the determination of the atomic
parameters with the numerical values that would be
reproducible in the repeated studies better than with the
use of the initial independent data sets.
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Fig. 1. Normal-probability plot and its linear interpolation
for the model parameters obtained from experiments 2 and 4.
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Reproducibility of the model parameters of Al2BeO4 : Cr3+ crystals

Data A B 〈 (∆P/σ)2 〉1/2 |∆P |/σ|max 〈 D 〉 R,%

12 1.81 –0.29 1.65 6.00 0.150 0.44

13 3.00 –0.28 2.81 6.30 0.078 0.30

14 2.95 –0.66 2.50 6.18 0.114 0.46

23 3.30 –0.57 2.89 8.47 0.064 0.34

24 2.55 –0.45 2.27 5.59 0.159 0.87

34 4.98 –0.78 4.45 9.73 0.115 0.73

12–13 2.28/2.64 –0.45/–0.23 1.96/2.49 6.12/6.37 0.067/0.090 0.29/0.27

12–14 2.15/1.86 –0.46/–0.23 1.84/1.69 5.32/4.47 0.330/0.046 0.59/0.31

12–23 1.43/2.50 –0.09/–0.18 1.37/2.38 3.31/5.65 0.046/0.065 0.17/0.32

12–24 1.59/1.71 –0.33/–0.06 1.36/1.68 3.60/1.68 0.108/0.053 0.41/0.31

12–34* 2.48/2.42 –0.30/–0.21 2.27/2.27 7.20/5.66 0.069/0.043 0.41/0.36

13–14 2.01/2.07 –0.27/–0.06 1.83/2.14 4.20/4.72 0.076/0.047 0.36/0.34

13–23 1.09/1.29 –0.11/0.04 1.01/1.27 2.92/3.55 0.069/0.050 0.36/0.09
13–24* 2.89/3.58 –0.34/–0.57 2.65/3.18 6.45/9.47 0.079/0.073 0.22/0.15
13–34 1.04/1.11 –0.18/–0.02 0.92/1.11 2.79/3.14 0.077/0.063 0.19/0.13
14–23* 2.15/2.44 –0.36/–0.40 1.91/2.16 5.59/5.49 0.131/0.087 0.70/0.32

14–24 2.03/2.79 –0.50/–0.70 1.77/2.34 5.70/8.22 0.213/0.157 0.21/0.27

14–34 1.81/1.85 –0.02/–0.14 1.82/1.75 3.71/4.03 0.074/0.036 0.30/0.39

23–24 2.35/3.07 –.037/–0.34 2.09/2.76 5.03/6.83 0.088/0.095 0.55/0.11
23–34 1.37/1.21 –0.14/–0.02 1.28/1.22 3.56/3.69 0.090/0.059 0.43/0.13
24–34 2.95/2.99 –0.44/–0.50 2.62/2.63 7.70/8.33 0.063/0.077 0.29/0.17

Note: Asterisks indicate the independent cross-sets; bold figures indicate the admissible values of the criteria; the first six lines correspond
to the initial data, the remaining lines correspond to the averaged sets and cross-sets.
The rigorous logical proof of better reproducibility
of the results obtained by the IEM method can be
obtained in the following way. If there are four indepen-
dent data sets, one has to form the cross-sets and to cal-
culate the P-test for the corresponding model parame-
ters. Moreover, one has also to use not only the initial
data sets, but the averaged data sets as well. If the test
is successful, this signifies that the better criteria of the
interexperimental fitting would guarantee a better
reproducibility of the final results. Since this method is
very labor-consuming, it is mainly of methodological
value.

The results of the criterion test are indicated in table.
Four independent data sets provide six variants of the
interexperimental comparison. Six averaged (cross)
sets allow the formation of 15 corresponding second-
order sets for crossing or averaging sets (indicated after
slash). Three second-order data sets (12–34, 13–24, and
14–23) are marked with an asterisk are absolutely inde-
pendent. All the cross-sets were formed for three cycles
with the same control keys in all the programs for all
the experiments.

To facilitate the analysis of such a large volume of
the information, the admissible values are indicated by
bold figures. It is seen that the unsatisfactory reproduc-
C

ibility of the parameters obtained from the initial exper-
imental data sets (two admissible values of total 36, i.e.,
5.6% of all the data). The visual distortions of the P-test
plots for other initial experimental data sets are similar
to those shown in Fig. 1. The maximum curvature is
possessed by the curve obtained for comparison of the
models from experimental data sets 1 and 2, but, at the
same time, the curve also has the best slope.

The worst characteristics were obtained for pair 34
which represents the experiments of the highest relative
accuracy. Up to now, there have been no indications
that these experimental data sets can include consider-
able systematic errors. However, it is well known that
the experiments cannot be completely independent,
because the data sets from specimen III were obtained
on different diffractometers and, therefore, the applica-
tion of the IEM method does not necessarily yield the
maximum effect.

The unsatisfactory result of the test for the pair 34 is
caused by the systematic overestimation of the atomic-
displacements parameters in experiment 3, which, in
turn, follows from the error in the selection of the scan-
ning range cutting off the far peaks. Since the error due
to profile termination having the shape close to Gauss-
ian can be described by the exponential dependence, it
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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produces no effect on the R-factors of the refinement—
R/Rw = 1.040/1.003% (Table 2 in [19]), but only distorts
the values of the atomic-displacement parameters
(ADPs). The discrepancies between these parameters
and the results of experiments 3 and 4 are quite consid-
erable, R12 = 1.73%, but the curve curvature turned out
to be insignificant; thus, the error can be identified with
the drastically increased slope of the curve, A = 4.98.

A comparison of experiment 3 with other experi-
ments is more satisfactory than the comparison of
experiments 3 and 4 (the latter is the most precise of all
the four experiments). The comparison of experiments
13 and 23 shows that, on the whole, the criteria take the
same values as those obtained in comparison of the
other experiments (12, 14, 24) (see table). Thus, we
arrive at the second conclusion: only processing of the
data of completely independent experiments can pro-
vide the compensation of the systematic errors in the
measurements.

The consistent use of the averaged data sets and
cross-sets increases the reproducibility of the results in
comparison with the reproducibility of results obtained
from the initial experimental data. We illustrate this
conclusion by pairs of experiments 2 and 4 (Fig. 1), 34
and 12 (Fig. 2), and 13 and 24 (Fig. 3) for which the
possible causes of plot distortions were considered
above and in [19]. Cross-set 24 is based on the experi-
mental data characterized by the systematic differences
([19], Fig. 1) giving rise to the systematic distortions of
the parameters (Fig. 1). The cross-set 34 is character-
ized by the specific nature of systematic errors in the
data and of the parameters (see above); the latter distort
the corresponding curves of the plots to a lesser degree.
The cross-set consists of the experimental data repro-
ducible much better than the initial data ([19], Figs. 2
and 3). This results in the better reproducibility of the
model parameters (Fig. 2, pair 34–12). For pair 24–13,
the result is somewhat worse (Fig. 3), however, the plot
characteristics in Fig. 1 are better.

The pronounced slope of the curve in Fig. 3 indi-
cates the underestimated standard uncertainties of the
atomic parameters, which, at the relative accuracy of
0.1–0.3%, can be explained by incorrect computational
procedure in the program used. The degree of linearity
of the curve constructed with the use of other cross-sets
(with the only exception of pair 14–24) is even higher
(table), with some of them being very close to ideal
ones. To a certain degree, the latter fact can also be
caused by their partial mutual dependence, and, there-
fore, these plots are not considered here.

The analysis of the criteria of the P-test for the
parameters obtained from the averaged sets and the
cross-set shows that, despite certain improvement, the
complete reproducibility has not been attained. For the
average sets, we obtained 23 admissible values from the
total of 90 (i.e., 26.5%); for the cross-sets, 35 of the
total of 90 (i.e., 38.9%). The calculation of the model
parameters by the cross-sets improves the linearity cri-
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
teria for the curves B and D, which indicates the
absence of the systematic errors. We should like to
emphasize once again the high relative accuracy of the
parameter agreement—0.09–0.39% (usually, it cannot
be better than 1%).

Nevertheless, the program is performed in the auto-
matic mode and, without the allowance for impurity
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Fig. 2. Normal-probability plot and its linear interpolation
for the model parameters obtained from independent cross-
sets 34 and 12.

Fig. 3. Normal-probability plot and its linear interpolation
for the model parameters obtained from independent cross-
sets 13 and 24.
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(chromium) atoms in the crystals, it cannot completely
compensate the model distortions caused by 90–95%
correlations between the occupancies by the aluminum
atoms and displacement parameter of these atoms and
transform the plots of the P-test to its ideal form.

Moreover, some uncompensated distortions in the
atomic parameters are due to the asymmetry in the elec-
tron-density distribution in crystals. The experimental
data sets a priori include the errors caused by insuffi-
ciently correct allowance for absorption (experiment 1)
and the error caused by peak cut-off (experiment 3).

The neglect of thermal diffuse scattering (TDS) also
hinders the attainment of the ideal reproducibility of the
results. Two independent experimental data sets can be
characterized by the same uncompensated effect, which
can lead to the same changes in the integrated intensi-
ties of the same reflections. However, this does not sig-
nify that the ADPs calculated from these data sets and
the degree of the parameter reproducibility would also
be the same (the effect of correlations).

Thus, insufficient reproducibility of the results can
be caused by the loss of some information on various
characteristics of the scattering process. Fitting and the
statistic algorithms alone cannot compensate all the
types of errors.

The correction for various types of systematic
errors, which cannot be identified or compensated,
should be interpreted as one of the variants of the nor-
malization of the data to the absolute scale. If the exper-
imental data sets are independent, then the concrete
systematic errors would be inherent only in one of the
experimental data sets and these errors can be compen-
sated in the normalization block.

The allowance for the effect of impurity atoms sug-
gests the separation of the structure model into the com-
mon and the individual parts and, in addition to the nor-
malization to the scale factors and allowance for extinc-
tion, the data are also normalized with respect to the
occupancy of atomic positions. Moreover, the approxi-
mate occupancies can be known either from growth or
spectroscopic data, and therefore the problem can also
be solved with the invocation of the information from
the adjacent fields of physics.

CONCLUSIONS

The main goal of this study was to develop a number
of methods for obtaining the sets of atomic-model
parameters that can be reproduced with the use of
another independently obtained experimental data for
the given crystal. The interexperimental minimization
(IEM) method allows one to obtain the normalized
experimental data with high degree of reproducibility,
which, in turn, increases the reproducibility of the final
results—the atomic-model parameters.

We have compared the parameters of the models of
the alexandrite structure Al2BeO4 : Cr3+ refined over
four experimental data sets. The use of the IEM proce-
C

dure in the automatic mode (three cycles) has shown
the following.

The model parameters calculated by the initial
experimental data are reproduced unsatisfactorily
(Fig. 1, table).

The compensation of the systematic errors in the
measured data is possible only if one uses the indepen-
dent experimental data sets. The collection of experi-
mental data with high relative precision from the same
specimen cannot guarantee a higher reproducibility
level, but provides an increase of the relative precision
of the final results.

The use of the cross-sets increases the degree of
reproducibility of the model parameters, but cannot
provide the complete and statistically ideal reproduc-
ibility of the parameters automatically (even at the
expense of the reduction of their relative precision).

The problem of reproducibility of results is caused
by the loss of some information on scattering pro-
cesses. The use of the mathematical algorithms alone
cannot compensate all the types of such errors.

In the course of the experimental-data reduction to
the absolute scale, one can use the theoretical premises
for reconstruction of some of the lost information and
compensation of the effect of some errors.

The alexandrite crystals studied contained small
amount of chromium impurities, and the model refine-
ment was characterized by 95%-correlations between
the corresponding atomic parameters. The appropriate
parameter refinement under these conditions will be
discussed in the next part of this study.
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Marina Aleksandrovna Chernysheva 
(On the Occasion of Her 90th Birthday) 
The dramatic events of the history of the 20th cen-
tury—the history of science; the revolution in physics,
which has changed our understanding of the physical
picture of the world; the initial hostile attitude to new
concepts and ideas on the structure of the macro- and
microcosm and their final triumph—are all left behind.
All the things and all the events go away—enormous
and small; general and particular; Laue’s experiments,
which proved the atomic structure of crystals; dramatic
postwar discussions around new ideas and concepts, in
particular, those of dislocations; the rise of the public
interest in natural sciences in the middle of the century
and its obvious decrease at the end of the century. And
all these events have passed against the background of
the large-scale social and historical changes. 

Thus, it is the remarkable to meet those people who
witnessed all these events and participated in them and
1063-7745/01/4606- $21.00 © 21056
the people whose memory stores the past, the lively
feelings, and the memories of a witness. Their experi-
ence and understanding of the real values of the life can
hardly be overestimated. Marina Aleksandrovna
Chernysheva, the senior scientist of the Laboratory of
Mechanical Properties of Crystals of the Shubnikov
Institute of Crystallography of the Russian Academy of
Sciences is one of such people. 

Chernysheva was born on December 14, 1911 in
St. Petersburg. Her father, Aleksandr Alekseevich Cherny-
shev, was one of the first graduates from the Polytech-
nic Institute, a future Academician, one of the organiz-
ers of Physicotechnical Institute, the founder and first
director of the Leningrad Electrophysical Institute. He
was an outstanding engineer and physicist of his time.
Suffice it to say that among his inventions is the first
high-voltage electrical transmission line, the first ther-
mal cathode, the first electronic sweep in television.
Her mother, Marina Gavrilovna had become a pediatric
doctor “by promise.” She went into medicine after the
death of her twelve-year-old son of typhus during the
Civil War. 

Chernysheva graduated from the faculty of radio
physics of the Leningrad Polytechnic Institute in 1934
and became a post graduate student at the Institute of
Civil Aviation. She had many dramatic turns in her life.
One of them was her decision to leave post graduate
studies in order to work at the Svetlana plant. Another
turn took place when she left Leningrad for Moscow in
1939, where her father (then not a director any more but
still an active scientist in Leningrad) as well as Nikolaœ
Ivanovich Vavilov received a room in the Academic
Hostel.

An announcement in a newspaper brought Cherny-
sheva to the laboratory of electrical musical instru-
ments at the Moscow Conservatory as a radio engineer
and physicist. However, this new life was soon dis-
rupted by the war. Laboratory was closed, and in the
summer of 1942, Chernysheva, by an advice of her old
acquaintance from her Lenigrad days, Marina Viktor-
ovna Klassen-Neklyudova, entered the Laboratory of
Problems of Construction at the Geological Institute.
Her first research was made in the field of strength of
materials (then completely alien to her) and concerned
the high-strength reinforced fiberglass- and binding
resin-based materials with the hope to be able to use
these materials later in the construction work in the
peaceful future. 
001 MAIK “Nauka/Interperiodica”
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From the very moment of the organization of the
Institute of Crystallography, Chernysheva started work-
ing at the Laboratory of Mechanical Properties. She
studied twins in the Seignette salt. Upon the approval of
Aleksei Vasil’evich Shubnikov, she successfully
defended her dissertation on the phenomenon of twin-
ning in a Seignette salt crystal. In this classical work,
Chernysheva, for the first time, managed to study the
real structure of the Seignette salt using polarized light
and microfilming. She established that twinning com-
ponents are the regions of spontaneous polarization or
domains, that these domains are formed at inhomoge-
neities, and that it is these inhomogeneities in the real
crystal structure that determine the distribution of
domains in the Seignette salt. These results were recog-
nized worldwide. Later Chernysheva together with
Vladimir L’vovich Indenbom studied the individual
characteristics of domains. Her experimental art was
successfully complemented with the bright talent of her
colleague–theoretician. The design and construction of
a universal IPL-452 conoscope were highly evaluated
and, in 1967, Chernysheva was awarded the Vavilov
Prize. The boom triggered by studies of laser crystals in
the 1960s and 1970s did not passed unnoticed for
Chernysheva. She mastered the method of conoscopic
flaw detection and performed the pioneering studies on
stress relaxation in annealed corundum crystals. 

The scientific work of Chernysheva is characterized
by enthusiasm, devotedness, and temperament. Her
experiments invite admiration with their thoroughness
and results, with their adjustment and reliability. No
matter what she is doing, she always does her best.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
Being absolutely devoted to science, she has preserved
all these qualities to this day. Working in cooperation
with the Laboratory of Fluoride Materials of the Insti-
tute of Crystallography, Chernysheva initiated the
conoscopic studies of defects in fluoride materials and
the effect of growth conditions on their optical and
mechanical properties. As a result, the optimum growth
and cooling rates determined considerably improved
the quality of these crystals. 

Being a sound woman in her personal life, possess-
ing fantastic accuracy in work, Chernysheva combines
the realistic views with a certain inner carnival-like joy,
festive mood, and romantic elation. She readily gets
inspired and inspires others. She combines a researcher
and an artist in one person. Her benevolence has
become legendary and her obligatoriness has been
widely recognized. She knows how to interact with
people, to remove stress, and to create joyful and cheer-
ful atmosphere around herself. Until today she has pre-
served brialliant memory. She is intelligent in a way
that nobody can teach or learn. Her values are the main
ones in life—work, friends, patriotism, and also some-
thing which pushes away the limits of the earthly life
and reminds us about our spiritual duties. 

All friends and colleagues cordially congratulate
Marina Viktorovna Chernysheva with her 90th birthday
and wish her good health and long years of creative
work. 

Translated by L. Man
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To the Memory of Valentin Yakovlevich Khaimov-Mal’kov 
(On the Occasion of His 75th Anniversary) 
On June 6, 2001, friends and collegues mark the
75th anniversary of a gifted scientist, a well-known
expert in the field of crystallography, Valentin Yakov-
levich Khaimov-Mal’kov.

Khaimov-Mal’kov lived a bright and full life. He
was born on June 6, 1926 in Moscow in the family of
old “bolsheviks.” His life was far from being simple.
Being a pupil of the tenth grade of the secondary
school, he was drafted into the military service in the
Soviet Army (1944) and participated in the Great Patri-
otic War of 1941–1945. In the period from 1947 to 1952
he studied at the Gorky State University. In 1952, Khai-
mov-Mal’kov started the post graduate study at the
Institute of Crystallography of the USSR Academy of
Sciences, and, after that, all his life was related to it. 

Khaimov-Mal’kov’s scientific life was very suc-
cessful. His candidate dissertation was an important
contribution to one of the most important fields of crys-
tallography—crystallization pressure. This study was
highly evaluated by Alexei Vasil’evich Shubnikov, who
considerably influenced the whole scientific carrier of
Khaimov-Mal’kov. 

Twenty two years have passed since Khaimov-
Mal’kov’s death and, with each new year, it becomes
1063-7745/01/4606- $21.00 © 21058
clearer how great his scientific erudition, how large the
sphere of his scientific interests, how deeply his insight
into new scientific problems were and how great an
ability of prediction he possessed. 

Crystallization pressure and the study of sectorial
impurity distribution in single crystals grown from
solution, optical inhomogeneity of lasing crystals,
mechanical strength and its relation to the characteris-
tics of laser radiation, new methods for synthesis of
refractory single crystals, the distribution of volatile
impurities during crystallization from melts, the effect
of thermal treatment, the influence of irradiation and
impurities on the radiation and optical processes in
ruby and sapphire crystals, solid-phase chemical reac-
tions in crystals during their growth and annealing in
various media—this is only a short list of his interests
and studies. 

Khaimov-Mal’kov received pleasure from the cre-
ative process itself. He was very demanding in his
work. He was always available too everybody who
wanted to serve science. Crowds of people from various
institutes of the whole country came to see him, and
none left him in disappointment. Everybody received
understanding, help, and support. Khaimov-Mal’kov
helped many people to find their place in science, to
prepare the materials for presentation or the defense of
a dissertation, to interpret the new results, to correct the
article, to prepare the program of further experiments or
publications. 

Khaimov-Mal’kov had published more than 85 arti-
cles. He was awarded the USSR State Prize for his stud-
ies on the synthesis of new crystalline materials. 

Khaimov-Mal’kov was a patriot. He enjoyed the
feeling of being useful and the satisfaction of the per-
formed task, the sense of responsibility of a scientist to
his country. 

Khaimov-Mal’kov passed away on September 23,
1979. 

All those who was happy to meet, work, and be
friendly with this open, honest, upright, and wholesome
man will always remember him. He has always been an
example for all those who knew him. 

E. Krivandina

Translated by L. Man
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To the Memory of Fedor Ivanovich Fedorov 
(On the Occasion of His 90th Anniversary) 
On June 19, 2001, Fedor Ivanovich Fedorov, a sci-
entist of the world level, a man of the encyclopedic
knowledge, would have celebrated his 90th birthday.
Fedorov successfully worked in various branches of
physics. For more than 60 years of his scientific, scien-
tific–organizational, and pedagogical activity, he made
an enormous contribution to the development of phys-
ics and mathematics and teaching and preparation of
scientific staff. 

Fedorov was born on June 19, 1911 in the village of
Turets in the Novgorod District (close to the city of
Grodno) in a family of village teachers—Ivan
Mikhailovich Fedorov (later a writer known under the
pseudonym Yanka Mavr) and Varvara Fedorovna Ada-
movich. In 1931, he graduated from the physical–math-
ematical department of the pedagogical faculty of the
Belorussian State University and started teaching phys-
ics and mathematics at the Pedagogical technical
1063-7745/01/4606- $21.00 © 1059
school and a secondary school in city of Krichev in the
Mogilev oblast. 

However, the young teacher had a passion for sci-
ence and, in a year, he entered the post-graduate course
at the Physicotechnical Institute of the Belorussian
Academy of Sciences. In a year, he was sent to the Len-
ingrad University, where he became a post-graduate
student of an outstanding physicist–theoretician Aca-
demician Vladimir Aleksandrovich Fock. His unique
talent, ability to work, and purposefulness allowed
Fedorov to learn the newest concept and methods of
theoretical physics for a short period of three years and
to solve a number of complicated problems in quantum
electrodynamics. Fedorov’s style of research was char-
acterized by the wish to solve general problems by
using general approaches and also by the elegance of
the their mathematical description. 

Upon the successful defense of the Candidate Dis-
sertation, Fedorov went back to Minsk (1936). The first
Candidate of Physics and Mathematics in Belorussia,
he headed the Chair of Theoretical Physics at the
Belorussian State University (1938–1962). 

During the Great Patriotic War of 1941–1945,
Fedorov taught physics and mathematics at the second-
ary school in a city of Kiselevsk of the Novosibirsk
oblast, was a senior lecturer at the Chair of Physics of
the Moscow Institute of Aviation Technology evacuated
to Novosibirsk. In 1943, he became the Dean of the
Physical–Mathematical Faculty of the Belorussian
State University then located at the Skhodnya, Moscow
Oblast. Upon his return to the destroyed Minsk, he
devoted his life to restoration and organization of
the  normal activity of the faculty, whose dean he was
until 1950. 

In 1954, Fedorov successfully defended his Doc-
toral Dissertation dedicated to the invariant methods in
optics of anisotropic media at the State Optical Institute
in Leningrad and, thus, became the first Doctor in Phys-
ics and Mathematics in Belorussia. 

Fedorov delivered lectures not only at the Belorus-
sian State University; in 1958, he was invited to the
Chair of Crystallography and Crystal Physics of the
Physics Department of Moscow State University to
deliver lectures on optics of anisotropic media. In 1962,
he also delivered a course on the theory of elastic waves
in crystals. His lectures always gathered large audito-
rium not only of students but also of experts in solid
state physics and the scientists from the Institute of
2001 MAIK “Nauka/Interperiodica”
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Crystallography of the USSR Academy of Sciences.
His lectures gained great popularity, the audience was
under the influence of his rigorous logic, charisma, and
the novelty of his scientific approaches. In 1958 he
started cooperation with research scientists of various
institutes of Moscow and Leningrad, and, first of all,
with the researchers of the Institute of Crystallography. 

Fedorov was closely related to the development of
many fields of physics and mathematics in Belarus’. He
actively participated in the organization of the Institute
of Physics and Mathematics of the Belorussian Acad-
emy of Sciences, the first research institution of such a
profile in Belorussia. Up to 1987, he headed the labora-
tory of theoretical physics. It is this institute that later
provided the organization of almost all the Institutes of
the Department of Physics, Mathematics, and Informat-
ics of the National Academy of Sciences of Belarus’.
Fedorov was one of the organizers of this Department
(1963) and headed it up to 1987. He formulated and
coordinated the research work in physics and mathe-
matics. Today, the Department of Physics, Mathemat-
ics, and Informatics is one of the largest in the National
Academy of Sciences of Belarus’—it consists of eight
research institutes, which are among the leading orga-
nizations in many fields of physics and mathematics.
His contribution to science and scientific organization
have not passed unnoticed and, in 1956, he was elected
a Corresponding Member, and, in 1966, a Full Member
of the Academy of Science of the Belorussian SSR. 

His many-sided scientific activity had always been
characterized by generality of approaches and elegance
of mathematical solutions. He developed the general
covariant method based on the consistent use of invari-
ance and covariance concepts in physics. The corre-
sponding mathematical apparatus developed by
Fedorov provided the formulation of the physical the-
ory which allowed one to eliminate the use of particular
coordinate systems. 

Fedorov’s was engaged into the development of four
general fields of physics—crystal optics, crystal acous-
tics, theory of elementary particles, and the theory of
relativity. He was also deeply interested in the method-
ology and history of physics and philosophy of natural
science. 

He was the first to construct the general theory of
optical properties of all types of anisotropic media and
the rigorous theory of crystal gyrotropy. In 1976,
Fedorov was awarded the USSR State Prize for these
works. In 1980, the phenomenon of the side deviation
of a light beam under the conditions of total reflection
was recognized to be a scientific discovery. 

The first Fedorov’s book entitled Optics of Anisotro-
pic Media (1958) had become a guide book for several
generations of researchers. This work is also well
known abroad, although under another title. It was pub-
lished by H.C. Chen under the title Theory of Electro-
magnetic Waves. A Coordinate-Free Approach. New
York, McGrow-Hill, 1983. Its publication is an exam-
C

ple of an incredible plagiarism. In fact, the translation
of a large part of Fedorov’s Optics of Anisotropic Media
and Chapter 4 of the Theory of Gyrotropy (1976) with
the preservation of Fedorov’s original notation was
published by Chen in “his” book. At that time, it was
impossible to prove Fedorov’s authorship despite a
number of publications to the effect in various Soviet
and foreign sources. The second Fedorov’s book writ-
ten in co-authorship with V.V. Filippov entitled Reflec-
tion and Refraction of Light by Transparent Crystals
was published in 1976. 

In crystal acoustics, Fedorov created the general
theory of elastic-wave propagation in media of an arbi-
trary symmetry. The results obtained made the basis of
his monograph Theory of Elastic Waves in Crystals
published in Moscow in 1965, then revised and pub-
lished in New York in 1968. The Introduction to the
American edition reads that the translation of the per-
fect treatise by Academician Fedorov into English is
quite timely, that his consistent statement of all the
aspects of this field of science is the most clear and
directed straightforward to the goal. For his cycle of
works on the theory of elastic waves, Fedorov was
awarded the State Prize of the Belorussian SSR in
1972, the first prize in physics in Belorussia. 

Within the general covariant approach developed by
Fedorov, he created the unique mathematical basis for
the description of all the types of elementary particles,
their fundamental interactions, and the property of
physical symmetry inherent in these particles. The
main results obtained in this field are reflected in
Fedorov’s monograph Lorentz Group published in
Moscow in 1979. 

Fedorov published about 400 scientific works,
including six large original monographs. His brilliant
lectures delivered at the Faculty of Physics of the
Belorussian State University up to the last days of his
life always served an example and a standard of lec-
turer’s skill. His scientific ideas, methods, and plans are
being successfully developing by the scientific school
of physicists created by him. He taught young scientists
by personal example, his devotion to science, and his
demands to himself and his work. More than 40 of his
students became candidates and about 20, became doc-
tors. Today, they themselves have students, Fedorov’s
scientific grandsons and great grandsons. 

Fedorov always combined his scientific and
research work with the dissemination of scientific
knowledge. He was very active in the social sphere, was
a member of the Directorship of the Soviet Peace Foun-
dation, Member of the Soviet Commission on Gravita-
tion, the editor-in-chief of the journal Vestsi of the
Belorussian Academy of Sciences, member of the edi-
torial boards of other scientific journals, the first Presi-
dent of the Belorussian Society of Physics, etc. 
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Despite his great activity in organization of science,
Fedorov always remained an active researcher and a
great theoretician who could not imagine a day without
creative work. He continued working up to the last day
of his life. He had the remarkable ability to work, enor-
mous energy, and purposefulness. He died on October 13,
1994.

Fedorov achievements in science, scientific organi-
zation, pedagogical work, and social life were crowned
by the award to him an honorary title of the Hero of
Socialist Labor, Lenin Order (twice), Order of Red
Banner of Labor, Order of Sign of Honor, etc. He was
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
also awarded the title of Honorary Scientist of the
Belorussian SSR. 

Fedorov was universally educated, he knew litera-
ture and art, wrote verses, played piano and chess, and
loved sport. 

Numerous colleagues and students will always
remember Fedorov as a gifted scientist and an outstand-
ing organizer of science, a benevolent man, and a won-
derful teacher. 

Translated by L. Man
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Thirteenth International Conference on Crystal Growth 
and Molecular Beam Epitaxy 
Thirteenth International Conference on Crystal
Growth and Molecular Beam Epitaxy 

In the period from July 30 to August 4, 2001, the
13th International Conference on Crystal Growth and
Molecular Beam Epitaxy was held in Kioto, Japan.
Altogether, about 1200 papers were presented to the
Conference, i.e., by about 300 more than to the previ-
ous 12th Conference in 1998 in Jerusalem, Israel. The
numbers of papers presented to the Conference by the
participants from different countries are given in table. 

All the communications were presented as posters.
In addition, each participant was given 5 minutes for
oral presentation. The Organizing Committee invited
100 official speakers, who were given a longer time for
oral presentation. 

Russia and the Ukraine were represented by large
delegations (the second and the seventh largest delega-
tions, respectively). Unfortunately, the quality of the
papers presented by these countries can be only partly
judged from the number of their invited speakers. 
1063-7745/01/4606- $21.00 © 21062
The representatives from China and India were
extremely active. China is performing an active search
for new materials, first of all, those for quantum elec-
tronics. Indian scientists presented mainly the studies
on crystallization from solutions. 

The Conference worked in twenty one sections. The
greatest number of papers were dedicated to semicon-
ductor crystals (250); growth of oxides and fluorides
(180 papers). crystallization of films (about 190 papers),
and the mechanism of growth and growth kinetics
(about 100 papers). About 40 papers dealt with crystal-
lization of proteins and colloidal particles, crystal
growth under microgravity conditions, and new materi-
als, of which two thirds were dedicated to nanostruc-
tures and organic semiconductors. 

Almost all the theoretical papers considered partic-
ular problems in concrete substances. Great attention
was given to the character of step motion on the sur-
faces which are in direct contact with the native vapors.
Despite the widespread use of tunneling and atomic-
 
Number of papers presented to the 13th/12th conferences on crystal growth

Country Number
of papers*

Of them: invited papers**

Paper duration, min

40 30 15

Japan 569/90 2 35/8 12/38

Russia 138/159 0/1 1/22

USA 59/107 1 18/18 4/71

China 56/18 1/14

India 52/43 0/3

Germany 46/66 2 6/3 1/28

Ukraine 39/44 0/4

Korea 26/6 0/3

France 25/90 5/5 2/19

UK 20/30 2/5 0/12

Romania 18/18 0/2

Taiwan 16/7 0/4
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Table (Contd.)

Country Number
of papers*

Of them: invited papers**

Paper duration, min

40 30 15

Netherlands 14/26 0/1 2/13

Israel 11/71 0/11 0/35

Hungary 11/11 1/4

Poland 11/13 0/2

Brazil 10/7 0/1

Spain 9/4 1/0 0/1

Singapore 9/4 2/0

Czech Republic 7/3 0/1

Australia 5/8 0/5

Armenia 4/5 0/2

Sweden 4/5 0/2

Switzerland 4/0 1/0 1/0

Canada 3/4 1/0 0/2

Belarus, Belgium, Finland, Croatia, Yugoslavia:
two papers from each country 10/34

Austria, Argentina, Denmark, Bangladesh, Bulgaria, 
Italy, Tadzhikistan, Thailand, Turkey: one paper from 
each country

12/6

* On average, each of the 100 participants presented 150 papers.
** At the 12th conference, each invited speaker was given 30 min. The duration of some of the oral presentations was 15 min.
force microscopy providing in some cases the visual-
ization of elementary stages during crystal growth, no
fundamentally new facts in the mechanisms of surface
processes have been reported as yet. 

The Frank prize for the achievements in growth the-
ory was awarded to D.T.J. Hurley (England) and
S.R. Coriell (USA) for the quantitative description of
the influence of convective flows and electric fields on
crystal growth and morphological stability. 
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
The Laudise prize was awarded to G. Mueller (Ger-
many) for computer simulation of growth from melt
and development of new growth technologies. 

L. N. Rashkovich

Translated by L. Man
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Linus Pauling, the Greatest Chemist of the 20th Century 
(On the Occasion of His 100th Anniversary) 

This photograph was taken by L.A. Zasurskaya when L.C. Pauling visited the Chemistry Faculty of Moscow State University
in 1983. 
Linus Carl Pauling was born on February 28, 1901,
at the very beginning of the 20th century, and died on
August 19, 1994, when the main achievements of that
last century were already outlined. Indeed, most of the
important lines of the 20th century were intersected in
the biography of this unique man. 

Pauling was engaged in many different fields of sci-
ence and was always at the forefront in solving the cen-
tral problems, although he was not been right in every
case. Sometimes, his enormous energy and tempera-
ment were somewhat excessive, but his participation in
any discussion stimulated scientific progress—he knew
how to make people think and work. 

Pauling’s major scientific achievement—his con-
cept of a chemical bond—was developed in the late
1920s–early 1930s and was most completely stated in
his famous book The Nature of the Chemical Bond and
the Structure of Molecules and Crystals, first published
in 1939. The second edition appeared in 1940 (addi-
tional copies of the second edition were also printed in
1942 and 1944). Since then, the book has repeatedly
been printed and translated into dozens of languages.
By the end of the 1940s, the book had received world
recognition and for many years had served as the basis
1063-7745/01/4606- $21.00 © 20887
of numerous courses of general, inorganic, and organic
chemistry. It is hardly possible to find another book
in  the history of chemistry that had gained such popu-
larity. 

The first complete translation of the book into Rus-
sian was made by M.E. Dyatkina and was edited
Ya.K. Syrkin under the title The Nature of Chemical
Bond (Gostekhizdat, Moscow, 1947). The omission of
part of the title (the words “and the Structure of Mole-
cules and Crystals”) is unclear. The Pauling concept of
chemical bond is still alive despite the fact that today it
seems to be somewhat obsolete and even the expression
“the nature of the chemical bond” is somewhat dubious,
whereas structural chemistry, to which Pauling had
made such a great contribution, is still being actively
developed. 

In 1954, the Nobel Committee awarded Pauling the
prize in chemistry for “his research into the nature of
the chemical bond and its application to the elucidation
of the structure of complex substances.” In his Nobel
lecture, Pauling said that future chemists would lean on
new structural chemistry, including the exact geometri-
cal relationships between atoms in molecules and the
rigorous application of new structural principles and
001 MAIK “Nauka/Interperiodica”
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that this methodology would ensure considerable new
progress in the solution of biological and medical prob-
lems by chemical methods. 

These words are remarkable for two reasons. In
1954, Pauling considered the widespread use in chem-
istry of rigorous quantitative structural data to be far-
fetched.1 Second, it is not the apparatus of quantum
mechanics but the model structural representations that
dominated in Pauling’s vision of future chemistry. 

Thus, in the late 1920s–early 1930s, the most impor-
tant event in chemistry took place to a large extent due
to Pauling insight and purposefulness. 

Generally, it became clear why and how chemical
bonds are formed. The basic studies in this field were
performed by Heitler and London, who managed to
interpret the formation of a hydrogen molecule, and by
Born and Slater. Pauling extended these ideas to much
more complicated systems and used them together with
the concept of resonance as the basis of his theory. 

Quantum chemistry (with its fantastic arsenal of
new notions) came into being. Pauling’s contribution to
quantum chemistry was the development of the method
of directed valence bonds, ideas of hybridization and
overlap of atomic orbitals, and the concept of electrone-
gativity of atoms and the partial ionic character of
bonds. Simple and clear, many of these concepts are
still successfully used (of course, with the stipulations
of the existence of more rigorous, modern approaches).
However, it should be taken into account that at almost
the same time as Pauling’s studies (or, probably, only
slightly later), some other methods of quantum chemis-
try appeared, such as the method of molecular orbitals
(developed by Lennard–Jones, Mulliken, and Hückel),
which proved to be both more general and more accu-
rate than the method of valence bonds. 

Structural chemistry had come into being. It oper-
ated with model spatial concepts on the structure of
atomic–molecular systems and differed from all the
previous structural theories by the rigorous physical
(or, more accurately, quantum-chemical) justification
and the use of exact structural data obtained by the
experimental physical methods. Being mainly a theore-
tician, Pauling constantly took part in the experimental
studies as well; he started working in X-ray diffraction
analyses at the dawn of his scientific career at the very
beginning of the 1920s. Later, he also participated in
electron diffraction experiments. 

The first X-ray diffraction studies pioneered by
W.H. Bragg and W.L. Bragg in 1913 and considerably
developed in the 1920s were used as the basis for the
development of crystal chemistry, which soon had
become one of the best developed sections of structural
chemistry and crystallography. W.L. Bragg (the son),
Goldschmidt, and Pauling are justly recognized as the

1 It seems that even on the verge of the 21st century we still cannot
say that structural concepts have finally taken their appropriate
place in chemistry (P.M. Zorky, Structural Chemistry at the Turn
of the Century, Russian Chemical Journal (in print)).
C

founders of this science. Pauling created the system of
crystallochemical radii (covalent, ionic, metal, and van
der Waals), developed the principles for describing
crystal structures in terms of the close packings of
spheres or coordination polyhedra sharing the vertices,
formulated the well-known electrostatic rule of valence
for ionic crystals, and introduced the notion of a defect
structure. All this material was complemented with new
structural data and was stated in detail in the second
edition of Pauling’s book published in 1940 (translated
into Russian in 1947). 

The Second World War hindered the dissemination
of Pauling’s ideas but, nevertheless, by the middle of
the century they had become widely known, although
with a certain delay because, by this time, Pauling was
deeply interested in other problems. He intuitively felt
that the most essential achievements in chemistry of the
20th century would be associated with molecular biol-
ogy and molecular medicine (the terms themselves
appeared much later) and that it would be here that
X-ray diffraction crystallography would find its most
efficient application. Therefore, not losing his interest
in quantum chemistry, whose development was under
Pauling’s guidance until the last days of his life, Paul-
ing, with surprising courage and enthusiasm, started
tackling biochemical problems. 

From the mid-1930s up to 1951, the main objects of
Pauling interest were proteins. In 1934, he made the
first attempt (together with A.E. Mirsky) to draw some
conclusions on protein structures based on the study of
their biochemical functions. Later, he studied (together
with C.D. Coryell) the effect of oxygenation on the
magnetic properties of hemoglobin; in 1936, he started
X-ray diffraction studies of amino acids and proteins at
the California Institute of Technology. It was then that
R.B. Corey et al. determined the crystal structures of
some of the simplest amino acids. Yet, this was still far
from the first structural determination of proteins. 

The most successful research was made in immu-
nology. In 1940, Pauling showed than antigens can per-
form the role of matrices providing for the folding of
polypeptide chains, which resulted in the formation of
specific antibodies instead of conventional globular
proteins.2 Thus, the instructive function of an antigen,
which provides an infinite variety of antibodies synthe-
sized by an organism, has been explained. The concept
of mutual structural complementarity of an antigen and
antibody was discussed in the article written by Pauling
and Delbruk, an outstanding virologist and geneticist,
who later was also awarded the Nobel prize. 

In 1949, Pauling began to study sickle-cell anemia.
The name of this hereditary and often lethal decease is
explained by the fact that the erythrocytes of an
infected person acquire a sicklelike shape and thus lose

2 It should be remembered that antigens are molecules and
supramolecular formations, e.g., viruses, which are recognized
by the organism as foreign and give rise to a certain immune
response, in particular, the formation of antibodies.
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the ability to transport oxygen. Pauling’s incredible
intuition led him to the assumption that the disease is
carried in the break of the amino acid sequence in the
polypeptide chain of hemoglobin, a protein providing
oxygen transport in an organism. Three years later,
Pauling, using electrophoresis, managed to single out
normal and defect hemoglobins and proved that the
structure of the defect hemoglobin has a “misprint”:
one of the aminoacid residues (that of the glutamine
acid) is replaced by another (valine residue). Later, it
was established that the molecule of human and higher
animal hemoglobin consists of 574 amino acid residues
in a rigorously defined sequence. As was revealed by
Pauling, the replacement of only one of these residues
results in an often mortal disease. Today, more than
50 varieties of anomalous hemoglobins giving rise to
various pathological states have been discovered. 

In 1951, an important event occurred—Pauling and
Corey published their famous article on the structure of
proteins, which summarized the experience gained over
many years in this field. Using the X-ray diffraction
data on various amino acids (the values of characteristic
interatomic distances and valence angles and the values
of van der Waals radii), Pauling and Corey performed
the conformational analysis of the polypeptide chain,
the basis of the structure of any protein molecule, and
showed the following: 

(1) The chain consists of relatively rigid plane –CO–
NH– peptide units (formed due to coupling of amino
acid residues) and linking –CHR– joints. The joining of
two subsequent units can be characterized by the angles
ψ and ϕ, which are the angles of rotation of the given
chain link around the covalent C–C bond, and the angle
ϕ of rotation of the subsequent C–N bond, 

(2) It is sufficient to know the angles ψ and ϕ for
each amino acid residue in order to describe the three-
dimensional structure (conformation) of the main
polypeptide chain.

(3) There are two advantageous methods for joining
peptide units (with the characteristic values of angles ψ
and ϕ); the periodic repetition of the first type of joining
results in the formation of the α-helix, whereas the peri-
odic repetition of the second type, to the extended β-
structure in which the parallel β-strands are linked by
hydrogen bonds into the β-sheet. The stabilization of
the β-helix is also promoted by hydrogen bonds: the
CO group of the nth amino acid residue is bound to the
NH group of the (n + 3)th residue. 

At the same time, Pauling described four levels of
structural description of the protein molecule: the pri-
mary structure, which describes the sequence of ami-
noacid residues; the secondary structure, which
describes the presence and the ratio of the characteristic
fragments such as the α-helix and the β-structure; the

CHR1 CO NH CHR2 CO NH CHR3

ψ1 ϕ1 ψ2 ϕ2

.
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tertiary structure, which reproduces the three-dimen-
sional arrangement of atoms (or, at least, of aminoacid
residues) given by their spatial coordinates; and the
quaternary structure, which describes the presence of
subunits (or subglobules forming the globulin mole-
cules). These notions, which had been formulated prior
to the first publication of the complete X-ray analysis of
a protein, were soon confirmed by the structure deter-
minations of hemoglobin made by Perutz and mioglo-
bin made by Kendrew in 1960. Today, these notions
form the basis for protein crystallography. 

Not all the Pauling’s scientific initiatives turned out
to be successful. In the early 1950s, he tried to establish
the general principle of the structure of a DNA mole-
cule and published an article (1953) in which he mis-
takenly described it as a triple helix. However, Watson
and Crick soon found the correct solution—the well-
known double helix. They used to say that the fear of
falling behind Pauling stimulated, to a large extent,
their successful work. 

In the late 1960s, Pauling became interested in the
biological effect of vitamin C and soon began actively
promoting this vitamin as a radical remedy against the
common cold proceeding from his own and his wife’s
experience and even wrote the book entitled Vitamin C,
the Common Cold, and the Flu. In the early 1970s, he
formulated the concept of orthomolecular medicine,
according to which vitamins and amino acids can create
a specific optimal medium for the brain activity. These
theories, once very popular, were not confirmed by sub-
sequent studies and, to a large degree, were abandoned
by experts in medicine and psychiatry. In 1979, Pauling
published the book Cancer and Vitamin C, in which he
stated that considerable doses of vitamin C would pro-
vide for a longer life and improve the condition of
patients suffering from certain types of cancer. How-
ever, experts in cancer diseases have found his argu-
ment to be insufficiently grounded. 

It seems that in this period, Pauling used insufficient
facts and somewhat superficial concepts and recom-
mendations, and it is a great pity that this resulted in the
use of his name in commercial purposes and often in
dubious and sometimes even unscrupulous propaganda
of various drugs. However, one should not forget that
the active life, enthusiasm, flame in the heart and eyes
(see the photograph) still preserved to a rather old age
by a man—who since the age of 38 suffered heavy
chronic diseases—made one to believe that he really
knew How to Live Longer and Feel Better (the title of
Pauling’s last book of 1986). 

It is not accidental that we turn to Pauling’s biogra-
phy only at the end of this essay. The details of a scien-
tist’s life are too often considered at the very beginning
of an article dedicated to his memory making one forget
about the crux of the matter—the analysis of his scien-
tific merits and his real scientific role. Still, it is impos-
sible to pass over some unusual and, sometimes, even
paradoxical facts of Pauling’s life. 



 

890

        

ZORKY

          
According to the questionnaire distributed to several
hundred outstanding scientists of our time by the Brit-
ish New Scientist, Pauling is among the twenty greatest
scientists of history along with Galileo, Newton, Dar-
win, and Einstein. At the same time, he is the only
Nobel Prize winner who had not finished high school—
he absolutely refused to attend the lectures on social
disciplines, saying that all the necessary knowledge in
this field he would be able to acquire by himself. 

Another paradox is that Pauling, a great chemist–
theoretician, whose level of knowledge in physics pro-
vided him the absolute trust of the most outstanding
physicists of his time and who began his education at an
agricultural college and graduated with a batchelor’s
degree in chemical technology. Later, at the age of 24,
he graduated from the California Institute of Technol-
ogy with a PhD in chemistry with distinction and a
bachelor’s degree in mathematical physics. The
Guggenheim Fellowship allowed him to spend 1926–
1927 in Europe, where he studied quantum mechanics
under the guidance of Sommerfeld in Munich,
Schrödinger in Zurich, Bohr in Copenhagen, and
W.H. Bragg in London. 

At the beginning of the Second World War, Pauling,
called by his sense of duty, stopped his studies of pro-
teins and started working for military purposes. He cre-
ated several types of powerful explosives and rocket
fuels, developed a special gauge for the oxygen content
and an oxygen generator for submarines and aircraft
(later, this apparatus was used to maintain the necessary
oxygen content in capsules for prematurely born chil-
dren and in surgical operations under anesthesia). Paul-
ing’s laboratory synthesized a substitute of the blood
plasma for the emergency blood transfusion under field
conditions. An outstanding contribution made by Paul-
ing to the struggle against fascism had not passed unno-
ticed and in 1948, he was awarded the Presidential
Medal for Merit. 

In a time of peace, Pauling considered it his duty to
struggle against the threat of a new war and the nuclear
and radioactive threat to the environment; he waged this
“war” with the energy and talent so characteristic
of him. 

Soon after the bombing of Hiroshima and Nagasaki,
Pauling started a campaign against the use of this new
type of weapon. Being a member of the National Secu-
rity Council in 1945–1946, he delivered lectures
against the danger of nuclear war. In 1946, he joined
Einstein’s Emergency Committee to inform the public
about nuclear weapons. In 1957, he presented a petition
to the UN with the requirement to ban nuclear tests,
which was signed by more than 11000 scientists from
49 countries, including more than two thousand Amer-
icans. 

His active position as a peace maker often encoun-
tered various political obstacles, in particular, because
of his allegedly pro-Soviet sympathies. In the early
1950s, he had to surmount considerable difficulties to
C

obtain a foreign passport. He obtained his passport
without any limitations only upon being awarded the
Nobel Prize. 

In June 1961, Pauling and his wife Ava Helen Paul-
ing convened a peace conference in Oslo, Norway, to
prevent nuclear-weapons distribution. Soon afterwards,
Pauling started the radiation survey, and in October
1962, he reported information that nuclear tests per-
formed in 1961 alone doubled the level of radioactivity
in the atmosphere in comparison with the preceding
16 years. He also wrote a draft on the agreement to ban
such tests. In July 1963, the United States, Soviet
Union, and Great Britain signed the agreement to ban
of nuclear tests, which was based on the draft written by
Pauling. 

In 1962, Pauling was awarded the Nobel Peace
Prize. 

The merits of Linus Pauling are truly diverse and
great, but the history of science will remember him first
and foremost as the creator of quantum chemistry and,
even more so, because he demonstrated his great wis-
dom and reserve during the celebration of his 90th
birthday, when he exactly determined the place of
quantum theory in modern chemical sciences. 

“Chemistry has probably been fortunate in that a
great amount of empirical knowledge about the
properties of chemical substances had been
obtained before the development of quantum
mechanics. Chemists strove to understand these
properties and, as a result, the classical structure
theory of chemistry was developed. If the accu-
mulation of large amounts of information about
the properties of substances had not been gath-
ered before quantum mechanics was formulated,
it may well be that chemical structure theory
would not have developed. In fact, at the present
time, in 1991, little use is made by chemists of
quantum mechanics except to the extent that the
principles of chemical bond formation that were
formulated on the basis of quantum mechanical
principles are extensively used. Some use is
made by chemists of accurate quantum mechan-
ical treatments of molecular structure, but much
more use is made of the chemical structure-the-
ory model.”3

P.M. Zorky

Head of Laboratory of Crystal Chemistry
of the Chemistry Faculty

of Moscow State University,
Doctor of Sciences (Chemistry), Professor

Translated by L. Man

3 L. Pauling, Foundations of Physics, 1992, vol. 22, p. 829.
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Dedicated to the 100th anniversary of Linus Pauling

Development of Pauling’s Concepts of Geometric 
Characteristics of Atoms 

S. S. Batsanov
Center of High Dynamic Pressures, Mendeleevo, Moscow oblast, 141570 Russia 
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Abstract—The evolution of the geometric characteristics introduced by Pauling and their dependence on the
specific features of the structure and chemical bonds have been considered. The values of the covalent and van
der Waals radii are given as well as their relationships and mutual transitions. © 2001 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION 

The development of the methods of X-ray diffrac-
tion analysis gave rise to an increase of the radiation
power, the reduction of exposures down to microsec-
onds, the use of high and superlow temperatures, high
and superhigh pressures, and the application of com-
puters for collecting and processing experimental data
and, as a result, to the revolutionary reduction of the
total time necessary for complete structure determina-
tion. 

At the first stage of the development of the X-ray
diffraction analysis, it was difficult to collect experi-
mental data, and the focus was made on the theoretical
principles of the crystal structure formation and its
dependence on the chemical composition of crystals
and the thermodynamic conditions of crystal synthesis,
which provided the optimization of the choice of the
objects for studying and reduction of the bulk of calcu-
lations. This problem usually is solved by the most nat-
ural method of the structural chemistry—the represen-
tation of a molecule or a crystal as a system of interact-
ing atoms. The main crystallochemical principles were
formulated within the “atoms-in-molecules” method;
even today, some of these principles have not lost their
significance, although the progress achieved by quan-
tum chemistry attributed new meaning to many classi-
cal concepts. 

Linus Carl Pauling is one of the founders of struc-
tural chemistry. His hundredth anniversary is widely
celebrated by scientists of many fields. Below, we con-
sider the evolution of the notions and concepts first for-
mulated by Pauling as well as the concrete values of
some geometrical characteristics of atoms used to
describe the structures of various substances and their
chemical bonds. 
1063-7745/01/4606- $21.00 © 20891
Upon the establishment of the additive character of
interatomic distances in crystals by W.G. Bragg, the
next important step was made by Pauling, who consid-
ered the additive approach as a function of the type of
the chemical bond. Thus all the atomic radii were
divided into metal, covalent, ionic, and van der Waals
radii. Below, we consider the covalent characteristics of
atoms and their relation to other types of atomic radii. 

Of course, today, some approaches used by Pauling
look insufficiently justified theoretically; however, as
he wrote in The Nature of Chemical Bond and the
Structure of Molecules and Crystals, it is better to pre-
dict something with uncertainty than not to predict it at
all. And indeed, even today, the synthesis of new sub-
stances and materials is developed based on the “atoms-
in-molecules” approach, whose theoretical aspect was
successfully developed by Bader [1]. 

Some structural correlations established by Pauling
have not been interpreted until recently. In this respect,
Pauling’s scientific heritage should be studied further. 

COVALENT RADII 

Prior to consideration of the experimental material,
we have to refine the terminology. A covalent radius is
one-half of the bond length A–A. Since this value is
essentially less than the peripheral (van der Waals)
atomic dimension and since, for multiple bonds, the
section of the σ-bond is less that the diameter of the
π-cloud, a covalent radius is not a scalar but a vector.
This should be remembered, e.g., when considering the
dependence of the energy of carbon bonds on their
length—with a decrease of the C–C bond length with
the bond multiplicity, the bond strength (strength per
bond) does not increase but decreases. 
001 MAIK “Nauka/Interperiodica”
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Half of the distances in diatomic molecules with a
σ-bond (between atoms with the coordination number
Nc  equal to unity) are called the normal covalent radius
r1; half of the interatomic distance in the diamond struc-
ture is called a tetrahedral radius rtet; whereas half of the
interatomic distance in the structures of the β-Sn type,
an octahedral covalent radius roc. Since r1 corresponds
to a single bond, it is obvious that for the elements of
group 4, r1 = rtet. 

The systems of tetrahedral and octahedral radii were
first calculated by Huggins [2] and Pauling [3]. The val-
ues of the tetrahedral radii of non-metal atoms were
equal to or were even slightly less than the normal cova-
lent radii, whereas those for metal atoms were larger
than those. This difference in the dimensions of metal
and non-metal atoms with an increase of the coordina-
tion number Nc becomes understandable if one takes
into account that the bond length depends on the elec-
tron density. Thus, for typical metal atoms, the number
of outer electrons ≤4, for nonmetal atoms, ≥4. The tran-
sition from Nc = 1 to 4 in the first case is accompanied
by a decrease of the number of valence electrons per
bond, whereas in the second case, the electron density
of a bond remains unchanged. 

At the beginning, the tetrahedral and the octahedral
radii were used to consider different objects; rtet was
used for the compounds of the metals of the b sub-
groups (and Be) possessing tetrahedral structures,
whereas roc, for the derivatives of the a elements
(except of Be) which, under the normal thermodynamic
conditions, form the structures with Nc = 6. However, in
connection with the studies of polymorphous transfor-
mations at high pressures and temperatures and the
studies of films grown on crystalline substrates having
the structures different from those of the films, it
became necessary to determine the rtet radii for the ele-
ments of the a subgroup and the roc radii for the ele-
ments of the b subgroup. This was made by Van
Vechten and Phillips [4] who calculated rtet and roc for
the same elements and established the equivalence of
these radii in the Si  Cl, Cu  Br, and Ag  I
series. They interpreted this equivalence by the com-
pensation of a radius decrease by an increase of the
effective charge of the nucleus, Z*, because of the more
pronounced mutual repulsion of electron pairs in the
valence shell of an atom with an increase of the number
of the group in the period. 

The experimental studies of electron density for O–
O [5] and the theoretical studies of electron density for
(F–F) [6] bonds showed that the covalent F–F, O–O,
and N–N bonds had no maximum on the line “connect-
ing” the atoms, but, at the periphery, the electron den-
sity was excessive. This fact corresponds to the antib-
inding character of valence orbitals in an F2 molecule,
which provides a drastic increase of bond strength at
positive ionization [7]. It was shown [8] that the allow-
ance for this fact leads to the normal covalent radii
C

0.77 Å for F and O and 0.76 Å for N, which practically
coincides with the carbon radius in diamond (in accor-
dance with the conclusions made by Van Vechten and
Phillips). At the same time, the Pauling and Phillips tet-
rahedral radii are different. Thus, for Cl, Br, and I they
are 0.99 and 1.127, 1.11 and 1.225, 1.28 and 1.405 Å,
respectively, whereas for Mg, Zn, and Cd, 1.40 and
1.301, 1.31 and 1.225, and 1.48 and 1.405 Å, respec-
tively. 

These discrepancies are explained by different goals
of calculation of these radii. Initially, the systems of
radii were calculated to “reproduce” the bond length by
the additive methods. Later, the same radii were calcu-
lated for pure covalent compounds with the aim of their
further use in the theoretical estimates. Often, the val-
ues obtained by both methods were either the same or
very close. However, if the bonds in the compound used
for additive calculations are not purely covalent, it is
necessary to introduce the corresponding corrections.
Schomaker and Stevenson [9] were the first to pay
attention to this fact. They suggested to calculate the
heteronuclear-bond length dAB by the equation 

(1)

where a = 0.09, rA and rB are covalent radii of the atoms
A and B, and χ is electronegativity. A similar expression
was also obtained in [10]. 

The above equation allows one to understand why
the atomic radii calculated for elements forming the
most polar bonds (F, O, and N) by additive methods are
shorter than their covalent radii. For organogenic ele-
ments with χ = 2.5 ± 0.5, the “additive” and the exper-
imental radii practically coincide, but in the transition
to metals with low electronegativities which form polar
bonds with these elements, the situation is considerably
different. Therefore different systems of normal cova-
lent atoms show a considerable scatter in the radii for
the same elements [11–19] depending on the data used
and the assumptions made in their calculations. 

The whole experimental material was analyzed in
[13, 17, 19], and the new values of covalent radii of the
elements were determined directly from the interatomic
distances in homonuclear molecules, simple bodies,
and compounds containing the A2 radicals; the additive
method was applied only to the data on alkyl derivatives
and metal hydrides, because only methyl (of all the
monovalent ligands) and hydrogen possess the mini-
mum electronegativity. Taking into account that the
covalent radii of carbon (0.767 Å) and hydrogen (0.371 Å)
are shorter than those for metals and that their com-
pounds with C and H the latter have a negative charge
(which compensates the decrease in their dimensions),
the reduction of the polar bond length in comparison
with the covalent bonds can be attributed to metals.
Then, the covalent radii of metals should be equal to the
difference in the bond lengths d(M–CH3) and r(C) or
d(M–H) and r(H) plus the Schomaker–Stevenson cor-
rection for bond polarity. 

dAB rA rB a∆χAB,–+=
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Table 1.  Normal (upper rows) and crystal (lower rows) covalent radii of elements (in Å) (for hydrogen r = 0.37 and rtet = 0.42 Å)

Li Be B C N O F

1.34 0.98 0.85 0.77 0.73 0.73 0.71

1.56 1.07 0.89 0.83 0.77 0.80 0.80

Na Mg Al Si P S Cl

1.65 1.42 1.29 1.18 1.11 1.03 0.99

1.85 1.56 1.34 1.25 1.15 1.09 1.08

K Ca Sc Ti V Cr Mn Fe Co Ni

2.00 1.73 1.44 1.35 1.31 1.32 1.28 1.31 1.24 1.20

2.22 1.87 1.54 1.40 1.40 1.41 1.37 1.44 1.37 1.35

Cu Zn Ga Ge As Se Br

1.12 1.23 1.25 1.22 1.23 1.19 1.14

1.32 1.33 1.29 1.29 1.27 1.25 1.23

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd

2.12 1.89 1.62 1.53 1.36 1.33 1.34 1.31 1.27 1.30

2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 1.36

Ag Cd In Sn Sb Te I

1.27 1.36 1.45 1.40 1.43 1.40 1.33

1.46 1.46 1.49 1.46 1.46 1.46 1.42

Cs Ba La Hf Ta W Re Os Ir Pt

2.31 1.97 1.69 1.50 1.42 1.36 1.31 1.29 1.29 1.30

2.51 2.12 1.79 1.56 1.51 1.42 1.37 1.34 1.34 1.36

Au Hg Tl Pb Bi Po At

1.24 1.33 1.48 1.47 1.50 1.43 1.43

1.42 1.43 1.52 1.53 1.53 1.49 1.49
The upper rows in Table 1 indicate the averaged
(over the data for A2 molecules and the A–H and A–CH3

bonds) values of the normal covalent radii of elements.
It should be indicated that the additive radii of monov-
alent metals agree quite well with the experimental data
determined from the bond lengths in A2 (with the only
exception being sodium), whose additive radius
exceeds the experimental value by more than 0.1 Å,
which can be explained by the participation of p-elec-
trons in sodium bonding (the covalent radius of Na for
p-electrons is by 0.25 Å larger than for the s-state [18]).
The covalent radii were also determined with the use of
the single radii by the Pauling method [20]. In the latter
case, the tetrahedral and octahedral radii of metals were
calculated from the normal covalent radii by introduc-
ing the correction for an increase in the coordination
number according to the equation [21] 

(2)

where d0 is the length of the bond with the unit valence
(the σ-bond), A is the constant equal to 0.71 for cova-
lent bonds, V is the ratio of the valence v  to Nc or,

d d0 A V ,log–=
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according to the equation [21] 

(3)

where b = 0.37. The latter equation can be obtained
from the Morse function, which describes the depen-
dence of energy on the chemical bond length [23]. 

For the elements of 4b–7b subgroups, the tetrahe-
dral radii are taken to be normal or are calculated by the
additive method with the use of rtet of metals. Taking
into account that the Brown–Altermatt corrections [22]
exceed the Pauling corrections [21] by a factor of 1.2
and that the Pauling and the Fillips radii differ by
~10%, it is clear that one has to develop an objective
method for determining covalent radii for differently
coordinated atoms. 

An increase of an atomic covalent radius with the
number of its ligands is provided by the constancy of
the number of valence electrons given up by this atom
for the formation of chemical bond. This requires the
separation of atoms with an increase of their coordina-
tion number Nc, so that the total region of the overlap of
electron clouds would not be changed. Proceeding from

d d0 b V ,ln–=
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this principle, one can calculate the tetrahedral and the
octahedral radii by the pure geometric method. 

Let diatomic A–A bond be formed as a result of the
overlap of two isolated A atoms spaced by the distance
equal to the sum of the covalent radii (figure). Denoting
the radius of an isolated atom by R and the covalent
radius by r, we arrive at the region of overlap of two
atomic spheres equal to 

(4)

where subscript 1 indicates the number of bonds. If this
number increases, whereas the number of valence elec-
trons per atom remains unchanged, then, under the
assumption of the constant electron density of the atom
at the periphery, we arrive at the redistribution of the
valence-electron cloud as a result of structural transfor-
mations in the form 

(5)

The experimental data show that under such trans-
formations, an elongation of the intramolecular bonds
gives rise to a decrease of the dimension of the periph-
eral part of the atom [24, 25]. Thus, Eq. (5) can be
rewritten as 

(6)

where the numerical subscripts indicate the changed
values of the radii. The above expression is valid for
monovalent atoms. For polyvalent atoms, instead of the
number of bonds n, one has take the ratio N = n/v. If
the  law of the R variation with the change in N is
known, one can also determine rn. In the first approxi-
mation, one can assume that R increases proportionally
to an increase in r, i.e., that RN = γR1, where γ =
rN/(2rN – r1). Then the computational formula takes the
form 

(7)

Thus, knowing r1 and R1, one can calculate the rN

values for all the elements. The rtet and roc values for the
elements of the a-subgroups in the group valence calcu-
lated from the normal covalent radii r1 are listed in

∆V1
2
3
---π R r–( )2

2R r+( ),=

∆V1 2∆V2 3∆V3…= =

R1 r1–( )2
2R1 r1+( ) n Rn rn–( )2

2Rn rn+( ),=

R1 r1–( )2
2R1 r1+( ) N γR1 rN–( )2

2γR1 rN+( ).=

AA

R

r

Geometrical scheme of formation of an A2 molecule. R is
the van der Waals radius and r is the covalent radius (one-
half of the bond length). 
Table 1 and the radii of isolated atoms [26] are listed in
the lower rows of the same table. 

For crystal structures of the elements of the b-sub-
groups with Nc = 4 or 6, the chemical bonds are formed
not only by valence electrons but also by lone pairs of
electrons (the donor–acceptor interaction). To evaluate
their contribution to the bond covalence, the following
relationship was suggested [27]: 

(8)

where IP and EA are the ionization potential and the
affinity of an atom to electron. The value calculated by
Eq. (8) should be added to the normal valence to yield
the corresponding v cr value for the crystal 

(9)

Since all the bonds in a regular tetrahedron or an
octahedron are equal, the electron densities at the
valence and the donor–acceptor interactions between
the atoms are averaged, which is taken into account by
dividing the total valence of an atom by v. Multiplying
v cr by the left-side part of Eq. (7), we obtain the change
in the atomic radius with due regard for the participa-
tion not only of valence electrons but also of lone pairs
of electrons. In a similar way, one can calculate a cova-
lent radius of an atom in lower oxides, where the outer
shell of an atom has electrons taking no part in bonding,
e.g., for FeII, SbIII, PtIV, etc. It is in this way that the tet-
rahedral and the octahedral covalent radii listed in
Table 1 were calculated. All these values are intermedi-
ate between the values obtained by the Pauling and the
Brown–Altermatt methods for metals and by the Paul-
ing and the Fillips method for non-metals. 

The covalent radii of atoms in multiple bonds were
determined from the lengths of π-bonds in homonu-
clear A2 molecules or the analogous fragments in crys-
talline compounds [13, 17, 18, 26, 28, 29]; their aver-
aged values are listed in Table 2 for the same valence
states of atoms as in Table 1. 

VAN DER WAALS RADII 

An important geometric characteristic of an atom
forming covalent bonds is its peripheral size along the
direction of the chemical bond—the so-called intermo-
lecular or van der Waals radius R. Although this notion
was introduced by Magat [30] and Mack [31] only in
1932, the term itself and the first table of van der Waals
radii were suggested by Pauling in his famous book
[20]. The development of this concept is not considered
here, and we send the reader to the review article to the
effect [32]. Here, we only briefly characterize van der
Waals radii and their relation to covalent radii of atoms. 

First of all, it should be indicated that the system of
van der Waals radii of organogenic atoms given by
Pauling still in the first edition of Nature of Chemical
Bond and the Structure of Molecules and Crystals
(1939) has not lost its significance which is confirmed

∆q 1 IP EA–( )/ IP EA+( ),–=

v cr v ∆q Nc v–( )+[ ] /v .=
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by the following data: 

H F Cl Br I O S N C

Pauling (1939) 1.2 1.35 1.80 1.95 2.15 1.40 1.85 1.5 1.70  Å

Bondi (1964) 1.20 1.47 1.75 1.85 1.98 1.52 1.80   1.55 1.70  Å

Zefirov (1974) 1.16 1.40 1.90 1.97 2.14 1.29 1.84   1.50 1.71  Å

Gavezotti (1983–1999) 1.17 1.35 1.80 1.95 2.10 1.40 1.85   1.50 1.70  Å

Table 2.  Covalent radii (in Å) of atoms with multiple bonds

A r= r≡ A r= r≡ A r= r≡ A r=

B 0.76 0.68 N 0.625 0.55 Cr 1.24 1.11 F 0.54

Al 1.28 P 1.00 0.93 Mo 1.13 Cl 0.89

C 0.67 0.60 As 1.11 1.05 W 1.255 1.15 Br 1.04

Si 1.07 1.00 Sb 1.31 1.17 O 0.605 I 1.23

Ge 1.13 1.06 Bi 1.33 S 0.94 0.87 Fe 1.17

Sn 1.32 V 1.19 Se 1.08 Co 1.16

Ti 0.97 Nb 1.36 Te 1.28 Ni 1.14

Ta 1.37 Mn 1.22 Ru 1.17

Tc 1.09 Os 1.08

Re 1.19 1.13 Pt 1.17
However, until recently, the corresponding informa-
tion for metals (for which molecular structures with a
metal atom “open” for contacts are rather rare) has been
insufficient and contradictory. Therefore the radii R for
metals were estimated indirectly, in particular, using
the Pauling formula [20] 

(10)

This equation and the invocation of crystallochemi-
cal and quantum mechanical considerations provided
the calculation of van der Waals radii of all the elements
of the Periodic System [13], although the substantiation
of the Pauling equation (10) had been a problem for
quite a long time. 

It was shown [33] that the representation of
diatomic M–X bond as a superposition of two isolated
(van der Waals) radii of the M and X atoms centered at
the experimental interatomic distance dMX yields the
equation 

(11)

In the first approximation, dMX = rM + rX and rM ≈ rX,
then, for a tetrahedral structure, we have 

(12)

Since the average value of the covalent radii of the
organogenic atoms is 1.2 Å, we obtain R – r = 0.633 ×
1.2 = 0.76 Å. 

Equation (10) can also be derived in another way.
Considering the transformation of a diatomic molecule

R r 0.8 Å.+=

RM RX
2

dMX
2

2dMXrX–+( )
1/2

.=

R d
2

0.8166d( )2
2dr–+[ ]

1/2
1.633r.= =
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into the structure of monatomic metal (in terms of crys-
tallography, an increase of the coordination number
from 1 to 12), Batsanov [34] found that, according to
Eqs. (2) and (3), the covalent radius should increase by
0.324 or 0.460 Å, respectively. Since the phase trans-
formation results is the structure with equal interatomic
distances, an increase of r in comparison with its value
in a molecular structure should be accompanied by a
decrease in R. Assuming that the scales of the changes
of the covalent and the van der Waals radii are the same,
we can conclude that the structural transformation of
the molecule–metal type should result in the maximum
changes in the atomic radii such that R = r + 0.648/0.920
or R − r = 0.78 ± 0.15 Å. 

CONCLUSION 

The above systems of atomic radii were widely used
to describe the structures of various molecules and
crystals and also to characterize electronegativities of
atoms. However, with the progress in the computational
chemistry, some of Pauling’s idea were considered to
be somewhat obsolete, and many scientists came to the
conclusion that the fixed values of covalent and van der
Waals radii fail to characterize the real situation in prin-
ciple, because it was proved experimentally that the
transition from covalent to van der Waals distances for
the same atoms in different structures was practically
continuous [35–37]. To interpret this phenomenon,
numerous new terms were used such as specific inter-
actions [38], secondary bonds [39], new type of atomic
1
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interactions that cannot be described within the classi-
cal theory of chemical bond [40], a new theory of
strong interaction between atoms with closed electron
shells [37], etc. However, there is no need for new terms
and theories, because the experimentally observed
changes in the distances are quite clear in terms of crys-
tal chemistry and can be quantitatively described with
the use of Eqs. (2) and (3). 

When considering the whole spectrum of inter-
atomic distances, one often ignores the fact that each
shortened intermolecular distance always has the corre-
sponding elongated intramolecular bond, whence fol-
lows the conclusion that when molecules are approach-
ing, they can form ever stronger chemical bonds due to
the change in the position of the electron cloud from the
valence orbitals toward the intermolecular space [41].
Therefore, the lengths of shortened van der Waals con-
tacts and elongated covalent bonds are mutually
related. Zachariasen [42] was the first to pay attention
to this fact, then his study was followed by the investi-
gations performed by Bürgi [43, 36], Dubler and
Linowski [44], and O’Keeffe and Brese [14, 15]. It was
shown [45] that in the I···I···I and S···S···S systems,
Eq. (3) and the known bond elongation can be used to
obtain the values of shortened distances within the
average errors of 0.03 and 0.02 Å, respectively. 

It can readily be seen that the assumption about the
transformation of a van der Waals bond into a covalent
one because of the charge transfer is well justified. The
change in the covalent bond in a I2 molecule during the
formation of the symmetric I···I···I system is equivalent
to that following from Eq. (3) if the coordination num-
ber of the central iodine atom increases from 1 to 2
(V = 0.5). The variation in the distances in O–H···O-
type hydrogen bonds was considered in terms of Eq. (3)
in [42, 14, 15]. The formation of the symmetric system
of these and other types of hydrogen bonds corresponds
to the change in the distances with an increase of the
coordination number of hydrogen from 1 to 2. The vari-
ations in the long and short interatomic distances in the
Cl···Sb–Cl system also result in the formation of sym-
metric 2.60 Å-long bonds, which corresponds to V =
0.5 [45]. 

Thus, the formation of a symmetric three-center sys-
tem from the covalent and van der Waals bonds is anal-
ogous to the transformation of the end-bond into the
bridge one in the process of molecule dimerization,
AXn   A2X2n, i.e., to an increase of the covalent bond
length by ~0.13 Å and a decrease of the van der Waals
bond length by ~0.67 Å (with due regard for the fact
that R – r = 0.80 Å). All the variations in the interatomic
distance recorded up to now occur within these inter-
vals (doubled in the transition from a radius to the bond
length). 

Pauling not only established the relation between
the covalent and van der Waals radii, but also showed
that the normal covalent radii can be used to obtain
metal radii by introducing the corrections for the coor-
C

dination and that the van der Waals radii are equivalent
to the anionic ones. He derived the cationic radii from
the experimental interatomic distances in crystals with
the use of the values of the so-called effective charges
of atomic nuclei. Thus, the whole set of geometric char-
acteristics of atoms turned out to be mutually depen-
dent and determined by the same characteristic—the
electronic structure of an atom. Any application of
these radii should take into account this fundamental
fact. 

Batsanov [45] showed that the crystallochemical
approach can be used to evaluate the pressures under
which molecular substances are compressed so that the
covalent and van der Waals distances are leveled, i.e.,
the substance is transformed into the structure of a
monatomic metal. In the cases, where such leveling
results in elongation of a covalent bond beyond the
existence range of bonds of the given type, the baric
disproportioning of the substance takes place. For car-
bon-containing molecules having no bonds of multi-
plicity 0.5, the decomposition of the compressed sub-
stances under high pressures is accompanied by separa-
tion of carbon in the form of diamond. This
transformation under high dynamic pressures occurring
during detonation of explosives has already imple-
mented on an industrial scale for aromatic and aliphatic
hydrocarbons, nitrocompounds, and other organic sub-
stances. The thus produced material called “detonation
diamond” can be considered as one of the practical
application of Pauling’s crystallochemical concepts. 

Estimating Pauling’s contribution to science, one
can state that, in fact, he created the crystallochemical
language. Bond polarity and multiplicity, hybridiza-
tion, systematics of atomic radii, effective charges of
atomic nuclei, optical and magnetic manifestations of
chemical bonding, additivity of bond energy and devi-
ation from it due to bond polarity, thermochemical elec-
tronegativity and the principle of electrical neutrality of
atoms in stable molecules and crystals are widely used
by chemists and crystallographers and are not only the
means of describing various phenomena but also the
means of their visualization. Thus, it is not surprising
that Pauling is the most cited scientist in the world. The
third edition of his main book Nature of Chemical Bond
and the Structure of Molecules and Crystals is cited by
more than 1000–1300 scientists each year, not men-
tioning the enormous number of references in numer-
ous publications not referred to by the Science Citation
Index. 

His many-sided activities, outstanding achieve-
ments in various fields of the natural science, romanti-
cism and humanism (he was awarded the Nobel Prize in
Chemistry, the Nobel Peace Prize, and also the Lenin
Peace Prize) brought him to forefront with the greatest
representatives of the world culture. Although Paul-
ing’s activities belong to the entire world, including our
country, we have to remember here that Pauling’s theo-
retical concepts were severely criticized in our country
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(the “struggle against the resonance theory”). Formally,
the campaign was directed against the approximate
character of the method of valence bonds and the con-
cept of electronegativity. Suggesting nothing them-
selves, his critics considerably hindered the application
and the development of these methods in our country.
But as usual, time has brought everything into the
proper place. Pauling’s methods, including the concept
of electronegativity, are now widely used in structural
and physical chemistry, whereas the critics of these
concepts are hardly remembered at all. They them-
selves try to forget and hide their useless attempts to
cast a shadow on the ideas of a genius of the 20th cen-
tury—Linus Carl Pauling. 
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The composition of chemical compounds can be
described qualitatively and quantitatively. In 1922,
Alekseœ Vasil’evich Shubnikov [1] first proposed a the-
oretical determination of the possible compositions of
chemical compounds. He determined the compositions
of binary chemical compounds from the ratios between
the multiplicities of the space groups of symmetry. It
was found that the number of variants for chemical
compositions of binary compounds in which the A and
B atoms each occupy only one position is equal to 13.

The purpose of the present work was to establish a
correspondence between the compositions of binary
chemical compounds, Shubnikov’s compositions, sym-
bols of twinning faces, etc.

For a binary compound AmBn, the ratio between the
chemical coefficients m : n can be represented in the
condensed form as mn. The values of m and n can be
obtained both from the chemical formulas and from the
structural data. The compositions determined in these
two ways do not necessarily coincide with each other,
because the occupancy of atomic positions can be less
than unity. In the present work, the formulas under con-
sideration were derived only from the structural data. A
total of 1054 structural types taken from [2] were ana-
lyzed and 1054 mn compositions were determined, of
which only 137 compositions were different.

Analysis of these compositions was performed
using a modified scheme based on the Weiss–Gold-
schmidt principle [3]. This scheme involves two initial
simplest ratios, namely, 1 : 0 and 0 : 1. For brevity, these
ratios are written as the simplified formulas 10 and 01,
where 1 and 0 are the indices. A simple term-by-term
summation of the formulas 10 and 01 gives the formula
of a new step, viz., 11. The summation of the ratios 11
and 01 results in the formula 12 at the center of the
1063-7745/01/4606- $21.00 © 20898
scheme (Fig. 1), the summation of 11 and 12 leads to
the formula 23 at the left of the scheme, and the sum-
mation of 12 and 01 yields the formula 13 at the right
of the scheme. By analogy, a term-by-term summation
of the symbols gives a bar graph of all binary ratios
(Fig. 1). In the bar graph, we present only the points
corresponding to the ratios between the coefficients of
the A and B atoms. The ratios encountered in ten and
more structural types are shown by large open circles,
the ratios attributed to three–nine structural types are
depicted by medium open circles, and the ratios found
in one or two structural types are represented by small
open circles. Intermediate nonrealized ratios are desig-
nated by closed circles.

The formulas form arithmetic sequences which are
characterized by the differences between the first terms.
The longest sequence is represented by the following
terms: 11, 12, …, 1.48. This sequence can be written as
11(01), where the difference is equal to 01. In this
sequence, the first terms 1–13 are realized (the fused
part) and the next range of terms involves both realized
and nonrealized formulas (the “beaded” part). The val-
ues of m and n are given only for certain ratios. The
other ratios can be obtained from the first terms by con-
secutive addition of the differences when going along
the sequence. For example, by adding 14 to the for-
mula 15, we obtain 29, 3.13, 4.17, etc. This scheme
involves all 13 Shubnikov’s theoretical binary ratios:
11, 12, 13, 14, 16, 18, 1.12, 1.16, 1.24, 1.48, 23, 34,
and 38. Virtually all these ratios are revealed in chemi-
cal compounds.

In addition to the ratios of the coefficients taken
from [2], Fig. 1 shows the ratios of cation coefficients
for 60 formulas of the minerals discovered recently [4].
For the cation coefficients, there are binary, ternary, and
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Quantitative ratios of the coefficients in formulas of chemical compounds and cation parts of minerals.
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even quaternary ratios. The indices in these formulas
are written in increasing order, and then the first (or first
and second) indices are placed in the third (or third and
fourth) positions. All the formulas derived for minerals
are in boldface type. It follows from this scheme that
the new ratios determined according to the data taken
from [4] correspond, for the most part, to the ratios
obtained earlier for compounds described in [2]. The
first four series of the scheme (according to Gold-
schmidt, these series are referred to as the complication
series) are completely filled, and the structural types
with these coefficients are characterized by the highest
frequency of occurrence, which is in excellent agree-
ment with the Goldschmidt inference. However, unlike
Goldschmidt’s opinion, the fifth series is also filled;
furthermore, there is a rather large number of other
ratios in the subsequent series. It should be noted that
the distribution of the quantitative ratios of chemical
coefficients is not uniform, and they most frequently
occur when going along arithmetic series. Therefore,
the generalized law of small numbers (the Pauling par-
simony law) is also confirmed by the example of the
quantitative ratios of the coefficients for new chemical
compounds, namely, minerals with a more complex
composition.

Let us now consider the symbols of twin intergrowth
faces. We can conveniently compare these symbols
when they are also referred to as formulas. Figure 2 dis-
plays the scheme of ranking the formulas for twinning
faces. As is clearly seen from Fig. 2, these formulas are
described by a substantially simplified scheme, but the
character of their distribution is similar to that observed
for the ratios of chemical coefficients. The formulas
with two nonzero indices and one zero indices are
shown in Fig. 2a, and the formulas with nonzero indices
are depicted in Fig. 2b. A number of ratios in Fig. 2b are
represented in the condensed form. This makes it pos-
sible to put them in correspondence with the simpler
formulas. For this purpose, a part of the formula is writ-
ten in the form (hk)n. For example, 111, 221, 331, 441,
and 771 can be written as (11)11, (11)21, (11)31, (11)41,
C

(11)71 or (11)1–4, 71. As in the case of chemical com-
pounds, ternary formulas are considerably simplified
(i.e., contain a smaller number of numerals).

Moreover, the formulas of intervals (ratios between
the frequencies of two tones) of a musical scale [5] are
also depicted in the ranked scheme in the above man-
ner. Among these formulas, we can distinguish a rather
long Fibonacci sequence: 11, 12, 23, 35, and 58
(Fig. 2c). Unfortunately, our scheme leaves the reasons
for the occurrence of just these intervals unclear. How-
ever, there is no doubt that in time the satisfactory
explanation will be offered.

All the formulas in the above scheme can be the dif-
ferentiation–integration points (in our case, these are
the bifurcation points), even though this possibility is
not necessarily realized.

In conclusion, it should be noted that the results
obtained in this work combine two concepts, namely,
the complication and furcation concepts. The law of
small numbers, i.e., the parsimony law [6, 7], has been
confirmed by new examples.
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1997 and published in Proceedings of NATO Advanced Study Institute on Electron Crystallography, Erice, Sic-
ily, 1997, Series E, vol. 347, p. 1. © 2001 MAIK “Nauka/Interperiodica”.
1Since we meet here in the ancient town of Eryx, full
of the monuments of ancient and modern religions,
we should remember that Archimedes lived in Sicily2

and that his work combined science, mathematical theory,
technology3 and computing.4 Traditional teaching in
schools about the ancient Mediterranean classical tradi-
tions, dominated by myths and literature, has completely
obscured  the  technological  basis  of  that  civiliza-
tion,5 which, in fact, produced such devices as the
anti-Kythera mechanism.6 This was an astronomical
calculator, made in the first century BC, with some
30 gear wheels and of a complexity comparable to that
of a modern mechanical clock. Probably Archimedes
knew about the predecessors of such machines7 and he
himself certainly used mechanical models and diagrams8

1 The author, while asserting his right to be recognized as the
author of this article, renounces his copyright in it, so that the
material is thus now in the public domain.

2 (287–212 BC). An entertaining recreation of life in ancient Syra-
cuse can be found in Mary Renault’s novel The Mask of Apollo.

3 The salt works at Trapani still pumps the brine with Archimedean
triple helices.

4 Archytas (4 century BC), renowned for his mechanical devices,
had also lived nearby. Archimedes was also in correspondence
with Eratosthenes, Librarian of Alexandria, who had performed
the supreme feat of the human intellect in measuring the radius of
the Earth.

5 We suffer from the same problem today with “post-modernism”
and the flight from objective reality.

6 This is the first of the erroneous mind sets with which this paper
will be concerned. See: Gears from the Greeks: The AntiKythera
Mechanism—A Calendar Computer of 80 BC, D.J. de S. Price
(1975) and later papers.

7 Cicero (106–43 BC), Governor of Sicily in 75 BC, who rediscov-
ered and restored the tomb of Archimedes (since again neglected
and lost), may even have been seen the actual mechanism.

8 “certain things first became clear to me by a mechanical method,
although they had to be demonstrated by geometry afterwards,
because their investigation by the said method did not furnish an
actual demonstration. But of course it is easier, when we have
previously acquired, by the method, some knowledge of the ques-
tions, to supply the proof that it is to find it without any previous
knowledge,” The Method (translated by T.L. Heath).

* This article was submitted by the author in English.
1063-7745/01/4606- $21.00 © 0901
to discover mathematical results, which he later proved
theoretically. He was killed during the Roman invasion of
Syracuse while too absorbed with his thinking machine,
his sand-table, the equivalent of the modern PC.

In ancient Sicily it was also known that the amber,
imported from the Baltic, when rubbed with a cat skin,
attracts small pieces of dry vegetable matter. The Greek
word for amber is, of course, electron, but it is still not
entirely clear how frictional electrification works,
although this year is already the centenary of the char-
acterization of the electron by J.J. Thompson. Using an
instrument presaging the cathode ray oscillograph,
Thompson measured electromotive force for the elec-
tron and regarded an electron as a particle. Later, the
electron turned out to have wavelike properties too, and
electrons have proved to be immensely useful in inves-
tigating matter. The experiment of producing a diffrac-
tion pattern by the interference of electrons passing
through two parallel slits still furnishes one of the great
paradoxes of physics showing that the world of quan-
tum mechanics is not like our “common sense” every-
day world. If the intensity of the beam of electrons is
reduced, so that only one electron at a time goes
through the system, a diffraction pattern is still
obtained. Which slit does it go through?

The development of electron crystallography, and
particularly the role of Boris Vainshtein in it, provides
an interesting case history of the complex interactions
of theory, experiment, and individual people in our cen-
tury. All aspects of science are really linked together.

It is not necessary to go over the discovery in 1912
of the diffraction of X-rays by crystals and the subse-
quent development of crystal structure analysis.9 About
1912, Max von Laue, Arnold Sommerfeld (Ewald’s
supervisor), and Paul Ewald had the idea at a café table
in Munich. Friedrich and Knipping did the experiment,

9 By far the best single textbook is that of W.L. Bragg, The Crystal-
line State (1933) which, although now 64 years old, is absolutely
essential reading.
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and von Laue got the prize. Paul Ewald provided us
with the geometrical tools of the reciprocal lattice and
the Ewald sphere which are of the greatest use in visu-
alizing what is happening.10 X-ray diffraction has been
so successful, resulting in the knowledge of the structures
of some 200000 materials, that it has induced a mind set
preventing people from considering properly other tech-
niques.11 W.L. Bragg, the founder of X-ray crystal
structure analysis, being involved in the discussions on
the wave-particle duality of X-rays and electrons, was
well aware of electron diffraction and devoted a chapter
to this in his classic book. Following the theoretical pre-
dictions of Louis de Broglie made about 1923, it was
expected that an electron with a velocity v  and a mass
m would have a wavelength λ = h/(mv ) associated
with it.12 In 1928 Davisson and Germer demonstrated
the diffraction of 65 to 600 eV from the surface of crys-
tal of nickel and, at much the same time, G.P. Thomp-
son (the son of J.J. Thompson) showed the photograph-
ically recorded diffraction patterns produced by the
passage of 60 kV electrons through thin films of gold.
The techniques of electron diffraction were then rap-
idly assimilated to those of X-ray diffraction, and elec-
tron crystallography had begun.

When a new technique appears, the usual first strat-
egy is to rush round and look at everything at hand.13

This happened with electron diffraction, and the char-
acteristics of the technique rapidly appeared together
with information about various substances examined
with it. In the second stage, the new technique is seen
in the light of the existing techniques and theories. In
particular, since waves are now found to be associated

10 Everyone concerned to know “wie es eigentlich gewesen ist”
should read Ewald’s collection: Fifty Years of X-ray Diffraction,
International Union of Crystallography, 1962. As W.L. Bragg
himself said, “you cannot realize how difficult the structure of
pyrite was to solve” (having non-intersecting three-fold axes).

11 The same mind set was also evident in 1984 in the resistance to
the discovery of quasicrystals. The paradigm of “crystal struc-
ture analysis by X-ray diffraction” has now been varied in all
three terms: crystal structure, X-rays, and diffraction. As we will
see later, there were also other mind sets relating to the state of
science in the USSR, which were not disrupted until the shock
of the Sputnik satellite in 1957.

12 It is convenient to remember, without confusing them, two simi-
lar formulae: (1) The wavelength in Angstroms associated with
an electron accelerated by a potential of V volts is given (approx-

imately) by λ = 12.3/ . (2) The wavelength in Angstroms of
the X-rays with an energy of V kilovolts is (approximately) λ =
12.3/V. Thus, 100-kV-electrons have a wavelength of about
0.04 Å; 1.5-Å electrons correspond to 70 V. The characteristic
X-rays from a copper anode have a wavelength of 1.54 Å and cor-
respond to a voltage of 8 kV. Although a 100-kV-electron may be
stopped by a micron thickness of metal, the most penetrating
X-rays which may be associated with these 100-kV-electrons have
a wavelength of 0.12 Å and will require several millimeters of
lead for protection. Relativity must be taken into account for more
exact calculations of wavelength. Electrons in an electron micro-
scope travel at an appreciable fraction of the speed of light.

13 Micrographia by Robert Hooke (London, 1665) is a classic
account of all the discoveries made by one of the first to use the
optical microscope.

V

with particles, older techniques using one kind of
waves can be transferred to newer techniques with
(usually) shorter wavelengths. We see two clear periods
in electron crystallography—the first concerned with
electron diffraction and the second with electron
microscopy. These are perhaps now followed by a
much more general approach to radiation and structure
and the combination of methods.

ELECTRON DIFFRACTION

The attractive properties of electron diffraction were
at once apparent. To summarize:

(1) The wavelength to be expected for an electron
beam is extremely short, less than a tenth of the diame-
ter of an atom, and thus there were possibilities of great
resolving power.

(2) Electrons are very strongly scattered by matter,
perhaps 100 000 times as much as X-rays, so that “a
minute speck of crystal is sufficient to give diffraction
effects” (Bragg). The scattering is so strong that, even
for a very thin specimen, electrons are scattered more
than once. It is, in fact, much better here to consider
electrons as waves and to picture the wave field in the
crystal. For X-ray diffraction it is usually assumed that
multiple diffraction (Renninger effect) does not take
place. If it does, then a smaller crystal is used and the
difficulty is avoided, but just those observations which
contain information about the phases are neglected.

With multiple scattering (or standing wave fields),
very complex diffraction patterns are produced. This
was quickly found by S. Kikuchi (1928), whose name
thus became attached to a particular class of diffraction
patterns.

Electrons are scattered by atoms and molecules in
the gaseous state and this technique has developed
steadily from that day to this14 with increasing refine-
ments, most noticeably by the combination of other
techniques like mass spectroscopy.

(3) J.J. Thompson had shown that a beam of electrons
could be deflected by electrical and magnetic fields.

This meant that, 
(a) in contrast to X-rays, a beam of electrons could

readily be focussed and thus possibilities for making
electron-optical instruments, particularly a microscope,
could be envisaged.

(b) For atoms, electrons are scattered by the elec-
tric potential, whereas X-rays are scattered by the
electron density.15 The inner potential of a crystal is
equivalent to a refractive index. If the X-ray scattering
factor for an atom is f then the electron scattering factor

14 I. Hargittai and M. Hargittai, Stereochemical Applications of
Gas-Phase Electron Diffraction, VCH, Weinheim (1988).

15 Electron density is not the same as charge density. It means the
density of electrons whose charge is neutralized locally by the
corresponding positive nuclear charge. The concept of charge
density is fraught with difficulties.
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is proportional to (Z – f ), where Z is the atomic number
(the number of electrons in the atom). The scattering
curves for X-rays and electrons thus go differently. For
electrons, light atoms scatter more compared with
heavier atoms than for X-rays and, in particular, hydro-
gen atoms have substantial scattering power.

(c) It followed also that electrons could be selected
for their energies (and thus wavelengths) by a combina-
tion of electrical and magnetic fields.

(4) The notation and concepts developed for X-ray
diffraction could be immediately transferred. An elec-
tron beam of 100 kV energy corresponds to a wave-
length of about 0.04 Å. Bragg’s law of diffraction λ =
2dsinθ could be directly applied and indicated that the
diffraction angles corresponding to those used for
X-ray diffraction were in the range of one degree,
where sinθ is close to θ itself. This meant that, when the
Ewald sphere representation of the geometry of diffrac-
tion was used, the pattern could be seen to be an almost
undistorted section through the reciprocal lattice.

We may follow briefly the various schools which
developed electron diffraction from 1928.

CRYSTAL STRUCTURE ANALYSIS 
BY ELECTRON DIFFRACTION

The equipment required for electron diffraction was
not complicated, and many people began experiments.
At Imperial College in London, G.I. Finch, continuing
from G.P. Thompson, used reflection diffraction to
characterize surfaces such as the oxide layer on steel
piston rings. His apparatus was made locally and
required a wine bottle (with the bottom cut off) to use
as the main insulator and gun housing. Finch used to
explain what a lot of research was necessary to find just
the right kind of bottle.

In Japan, S. Kikuchi started a tradition of electron
optics which became very important, especially much
later when people came back from the Navy after 1945
and founded the Japan Electron Optics Company.

In Russia, where there was a very strong mineralog-
ical and crystallographic tradition, the structure of
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
ammonium chloride was determined using electron dif-
fraction in 1933 by Lashkarev and Usyskin who found
the positions of the hydrogen atoms.

Z.G. Pinsker, the head of the electron diffraction
laboratory at the Institute of Crystallography in Mos-
cow, said that he had made some significant discoveries,16

but that his most important discovery was that of Boris
Vainshtein who joined Pinsker’s group after the war
and quickly developed his own research style. The Rus-
sian laboratory built several electron diffraction cam-
eras (Fig. 2) and began to apply them to crystal struc-
ture analysis, building on the prewar work.

16 Z.G. Pinsker’s book Electron Diffraction (USSR Acad. Sci.,
Moscow, 1949) appeared in English translation in 1953.
B.K. Vainshtein’s book, Structure Analysis by Electron Diffrac-
tion appeared in Russian in 1965 and in English in 1964.
B.B. Zvyagin’s book, Electron Diffraction Analysis of Clay Min-
eral Structures, appeared in English in 1967 (Plenum).
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They determined a number of crystal structures
more or less following the procedures for X-ray work.
Their techniques had a number of features favoring suc-
cess in this:

(a) they used very small crystals ordered into tex-
tures, that is crystals with strong preferred orientation.
Considerable trial and error effort was put into obtain-
ing suitable textures where the crystallites were suffi-
ciently small and well-aligned. The specimen carried
could be tilted (to at least 60°) to expose textures where
flakes lay parallel to the substrate. The technique was
very suitable for clay minerals, where appreciable sin-
gle crystals did not exist, and Boris Zvyagin developed
this topic with great success solving structures which
were then impossible by X-ray methods;

(b) the electron beam had a diameter of about 1 mm
where it struck the specimen (which was usually sup-
ported on a collodion film). Thus, many crystallites of
various sizes contributed to the diffraction pattern and,
with variations in orientation, the intensities of individ-
ual crystallites added (rather than the amplitudes). All
these factors contributed to the minimization of the
effects of multiple scattering (dynamic scattering). For
dynamic scattering, the first approximation is that the
intensities are proportional to F (the structure factor)
rather than to F2 squared. Usually the exponent of F
was refined for the best fit;

(c) at first, at least, the number of parameters to be
refined was small compared with the number of reflec-
tions available and crystal-chemical considerations
reduced the number of possible structures.

It happens that I first intellectually encountered
Boris Vainshtein in translating his early paper The
Application of Harmonic Analysis in Electron Diffrac-
tion which appeared in the reports of the Soviet Acad-
emy of Sciences in 194917 in which the determination
of the structure of barium chloride monohydrate by

17 B.K. Vainshtein and Z.G. Pinsker, Dokl. Akad. Nauk SSSR, 64 (1),
49–52 (1949).
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electron diffraction was reported. The paper mentioned
that hydrogen atoms could be detected and pointed to
the difference between the scattering curves of the same
atom for electrons and for X-rays. On the basis of the
hint that the use of electrons and X-rays for the same
material was equivalent to the method of isomorphous
replacement,18 I applied for a research studentship at
Imperial College. I did not get it, and my colleagues, to
whom I circulated the translation, took no notice. In
1956, I met Boris Vainshtein at a crystallographic meet-
ing in Madrid and, later, at the Institute of Crystallogra-
phy where Bernal was giving lectures. In 1962, I joined
Pinsker’s group at the Institute of Crystallography, not
very successfully, for a few months. I was at least able
to get to know everyone, learn what was going on and
see how the equipment worked. The cold war was then
in the temporary stage of a modest “thaw.” In fact Boris
Vainshtein was then, having become Director of the
Institute in 1962, moving onto the structure analysis of
proteins, which he did also with great success against
very considerable odds. To get out a front-line scientific
paper in the Soviet Union required several times the
effort needed in America. In the period from 1945 to
1960, many structures were determined. These
included: NiCl2 × H2O and related compounds; dike-
topiperazine (see figure above); Cu/Mn and Cu/Mg
alloys; CuCL2 × 3Cu(OH)2; poly-γ-methyl-L-
glutamate; PbBi4Te7; thio-urea and urea; they were
notable for showing the possibilities of electron diffrac-
tion, particularly as regards finding the positions of H
atoms and showing other light atoms in the presence of
heavy ones. From 1962, Boris had to do the strategic
scientific planning for all sections of a very large insti-
tute (reaching about 1000 people, half in the workshop
growing crystals and producing instruments for sale,
these included large single crystal sapphire windows
for the US space program) and he contributed impor-
tant papers on almost all aspects of crystallography.
The workshop was necessary because it was easier to
have them grind up a lens to order than to get it from an
outside source. It also earned foreign exchange, some
of which could be used for really essential imports. Life
was always rather difficult. Nevertheless, Boris contin-
ued to supervise work in electron diffraction and in
1993 produced, with Vera Klechkovskaya, a study19 of
Langmuir–Blodgett films (using an electron micro-
scope) for which the technique is well suited.

ELECTRON MICROSCOPY

The electron microscope was developed from the
cathode ray oscillograph with gradual improvements.

18 A.L. Mackay, Suppl. al Nuovo Cimento, 10, 387–414 (1953),
p. 395. For some years I abstracted the whole of Kristallografiya
and other Russian journals.

19 B.K. Vainshtein and V.V. Klechkovskaya, Electron Diffraction
by Langmuir–Blodgett Films, Proc. R. Soc. Lond. A 442, 73–84
(1993).
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Since the resolving power of a microscope is roughly
λ/2 and 100-kV-electrons have a wavelength of 0.04 Å,
the resolving power of the electron microscope is
potentially very great but it was (and is) limited by the
nature of the magnetic and electric lenses. The spheri-
cal aberration of magnetic lenses is always positive and
can be minimized but cannot be cancelled out by lenses
of negative spherical aberration as is done in the optical
case. Useful magnification began to appear about 1939
and immediately after war, the crystallographer
R.W.G. Wyckoff was appointed Science Attaché at the
American Embassy in London. Since he had just shown
the arrangement of protein virus particles in a crystal,
he would only take the job if he could bring his electron
microscope to the Embassy with him and continue
research work. This was really the first direct pictorial
demonstration of how identical particles stack up to
make a crystal. We will not follow these developments
but jump to the date of 1956 when it was realized that the
resolving power of the microscope had reached about
10 Å20 and that this was comparable with the spacings
of the Bragg planes in crystals. The dramatic step was
accomplished by Jim Menter with a Siemens electron
microscope at Tube Investments near Cambridge, and
he showed the pictures of the lattice of platinum phtha-
locyanine (11 Å lattice planes). This was also very
important because the pictures also showed the pres-
ence of dislocations in the lattice thus confirming what
had hitherto been theoretical speculations. The main
textbook of the sixties written by Hirsch et al. [2] was
much more concerned with the development of disloca-
tion studies and the complexity of the interaction of
electrons with crystals, and the structure analysis was
hardly mentioned.

With this lattice imaging, microscopists slowly
began to realize that in the formation of an electron
microscope image the relative phases of the beams
making up the image are not lost, although they may
be distorted, and that microscopy presents possibili-
ties for solving the phase problem, which then
appeared as the dominating difficulty of X-ray crystal
structure analysis.

GENERALIZED MICROSCOPY

At this stage, we should look back to the work of
Ernst Abbe in Jena who established the wave theory for
the resolving power of the optical microscope (1882).
He showed that in order to resolve the lines in a diffrac-
tion grating the microscope objective must accept,
besides the central beam, at least, the first-order dif-
fracted beam, so that the image is produced as a result
of the superposition of these two beams. The equation
d = λ/(2nsinα)21 is engraved on his memorial in Jena.

20 Angstrom unit is 10–8 cm. Since atoms have radii of 1 to 2 Å,
crystallographers prefer to continue with this term rather than to
use nanometers (1 nm = 10 Å) as international obligations require.

21 With the refractive index n and nsinθ is the numerical aperture.
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It was known22 that tilting the illumination so that the
direct beam and one first-order diffracted beam pass
symmetrically through the system (thus suffering the
same aberrations) effectively doubles the resolving
power of the microscope. Understanding of this took
some time to reach electron microscopists. It was the
beginning of the appreciation of the contrast transfer
function and the recognition that, in the electron micro-
scope, the phases of scattered waves are not lost. The
contrast transfer function was developed by H.H. Hop-
kins about 1957 for the design of lenses for television
cameras with about 600 lines, where the requirements,
aperture rather than resolution, differ from those of,
e.g., high-resolution surveying cameras. When you buy
a high-fi audio amplifier, what you pay for is the fre-
quency response curve. All frequencies should be
amplified to the same extent. The same applies to buy-
ing an electron microscope but the curve of how phases
are changed on transmission through the system is nec-
essary as well as the amplitude response. The ear is
rather insensitive to the relative phases of the various
waves which add to make up what we hear,23 whereas
the eye is very sensitive to phases. The simple symmet-
rical diagram deriving from Abbe (Fig. 3) is fundamen-
tal for understanding optical and electron microscopy
and the applications of image processing.

A small point source of monochromatic radiation is
defined by an aperture; waves spread from the source
and are focussed by a lens onto the plane D of the dif-
fraction pattern. If an object, a diffraction grating, is
placed at the first lens, it diffracts the incident beam into
a series of spectra and these beams also are focussed in
the plane D. If we put screen or film at D the diffraction
pattern would be recorded as an intensity distribution.
The relative phases of the various beams making the
pattern would be lost. However, there is no screen to
stop them, the beams continue diverging from each
other until they meet the second lens which converges
them so that they overlap and interfere to give the image
in the plane S'. If a screen is placed in the diffraction
plane, we can control which orders of diffraction go to
make up the final image. In particular, a double periodic
object gives a series of point spectra (the reciprocal lat-
tice), whereas nonperiodic noise gives diffracted inten-
sity distributed over the spectrum, so that the points of
the reciprocal lattice can be selected and the noise can

22 For example the Encyclopaedia Britannica article Microscope,
vol. 18, p. 398 (9th edn., 1910).

23 That is, a single ear is rather insensitive to the relative phases of
the sine waves of different frequencies which are conceived as
adding linearly to give a single tone, although it may register
such phase differences as difference in “attack.” However, the
ear is nonlinear and produces harmonics and sum and difference
tones. The hearing system is, of course, very sensitive to phase
differences due to different path lengths of the same pulse as
perceived by the two ears together, which provides directional-
ity. There is much new information as to how the aural system
works and, in particular, there is evidence of a local oscillator
which may supply a reference phase (like a superheterodyne
receiver on the brink of oscillation).
1
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be reduced. As demonstrated by M.J. Buerger, the rela-
tive phases of the diffracted beams can also be altered.
Thus, image processing can begin. This was developed
first by this optical analogy and later by computer. Thus,
a two-stage optical diffractometer was developed by
Klug  and de Rosier.24 The laser appeared at much the
same time and greatly facilitated the instrumentation.

(a) Diffraction of a parallel monochromatic beam by
a grating of period a. Diffracted beams appear at devi-
ations θ given by λ = nasinθ.

If the grating G has a sinusoidal distribution of scat-
tering power, only the first order appears.

(b) The parallel diffracted beams can be focussed
with a lens L to produce points in the diffraction plane.

(c) The lens may be either side of the grating.
(d) If the diffracted beams continue beyond the dif-

fraction plane, they superimpose in the image plane to
give an image S' of the grating S.

(e) Monochromatic light from a pinhole D' is
focussed in the diffraction plane D, where each dif-
fracted beam gives an image of the pinhole. Note the
symmetry of the system where S' is also the image of S.

(f) A broad parallel beam from a laser may be
focussed onto the pinhole to give an intense monochro-
matic source.

(g) With a screen in the plane of the diffraction pat-
tern D, selected parts of the diffraction pattern can be
allowed to proceed through holes in the screen to com-
bine to give a filtered image of S at S'.

We may note, in yet another example of the mind set
phenomenon, that Fritz Zernicke (1888–1966) had
great difficulty in finding acceptance of his invention of
the phase contrast microscope in 1938. Zeiss (Jena)
resisted it for a decade, it being believed that Abbe had
said the last word on the subject. Further, only recently,
Carl Zeiss (Oberkochen) found that their key develop-

24 A. Klug and D.J. de Rosier, Nature, 217, 130 (1966) and A. Klug,
Chemica Scripta, 14, 245–256 (1978–79); Nobel Symposium
Direct Imaging of Atoms in Crystals and Molecules, August 6–10,
1979.

Fig. 3. The optical diffractometer.
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ment of energy filtering of the electron microscope
image was very slow to be appreciated. This permits
selection, on the basis of their characteristic losses, of
what atoms are to contribute to the picture.

In 1948, Denis Gabor published his key paper
A  New Microscopic Principle25 which described the
principles of holography. At much the same time both
W.L. Bragg26 and Martin Buerger Massachusetts Insti-
tute of Technology (MIT) were coming rather close to
the same discovery. Buerger invented the precession
camera (for X-ray diffraction) so that he could produce
an undistorted picture of a section of the reciprocal lat-
tice on a crystal. This film reversed, black spots becom-
ing white holes, was then to become the source of dif-
fracted light rays in “the two-wavelength microscope.”
The idea was to perform the first step, diffraction, with
X-rays and the second stage, superposition of the dif-
fracted beams, with monochromatic light. A magnifica-
tion factor of the ratio of the wavelengths would result.
Buerger managed to reconstruct an image of iron sul-
fide, but only by inserting the known phases of each
beam with a rather cumbrous optical phase shifting
device. Bragg pointed out that the principle of hologra-
phy was already in use in that the phases of X-ray
beams diffracted by a central heavy atom as Pt in plati-
num phthalocyanine (J.M. Robertson) or iodine in cho-
lesteryl iodide (C.H. Carlisle and D. Crowfoot) effec-
tively determined the phases by swamping the contribu-
tions of the other atoms. As in everything he touched,
W.L. Bragg cut straight through to a simple pictorial
understanding of the physical principles involved.

The first image processing to give an actual picture
of a crystal structure was done in 1929 by W.H. Bragg
for diopside,27 who had pointed out the extremely
important physical principle that a grating with a sinu-
soidal distribution of scattering power gives only the
first order of reflection (all higher orders are zero) and
correspondingly, in a diffraction pattern, each reflection
can be attributed to a sinusoidal density wave of appro-
priate amplitude spatial frequency. Thus, a picture of
diopside was produced by the linear superposition of
sine waves on a photographic plate. It is, of course, nec-
essary that these waves should also be combined in the
correct phase. Later (around 1955), it was realized that
about 80% of the “information” in a crystal structure
resided in the phases and only about 20%, in the
amplitudes of the reflections. Thus, exact measurement
of the amplitudes is not critical28 but preservation of the

25 Nature, 161, 777–778 (May 15, 1948) and Proc. Roy. Soc., A
197, 454 (1950).

26 Microscopy by Reconstructed Wave-Fronts, Nature, 166, 399–
400 (September 2, 1950).

27 Zeit. f. Krist., 70, 488 (1929).
28 A.D. Booth proposed to determine the structures of centro-sym-

metric crystals from the accidentally absent (or very weak)
reflections on the grounds that, for these, the scattering by all the
atoms together cancels out and that this is thus very sensitive to
their exact positioning (personal communication about 1950
when he was at Birkbeck College).
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phase relationships of the scattered beams, even in a
distorted form, is vital. In an actual crystal, the sinuso-
idal electron density waves are not independent of each
other and add nonlinearly. The Karle–Hauptman deter-
minant, which is the basis of the direct methods of
determining phases,29 derives directly as an expression
of this nonlinearity.

IMAGE PROCESSING

Ideas of image processing developed slowly, step by
step, using the concept of the optical diffractometer
with diffraction, filtering, and, then, reconstruction. It
began with the utilization of a priori knowledge of
symmetry to get better information about a single
repeated element. Thus, Roy Markham, dealing with an
object with sixfold rotational symmetry, printed the
plate six times to superpose the symmetrically related
units. This was essentially what Francis Galton30 had
done to produce a face of an average criminal, the aver-
age tubercular face, and even the face of Alexander the
Great (by superposing the images of a dozen coins). It
is important to realize that you get nothing for nothing,
but that any foreknowledge can be used to limit the
remaining uncertainties. Galton assumed in advance
that the average portrait would have two eyes in a par-
ticular orientation, and he lined up his individual pic-
tures correspondingly without subjective guesswork.
F.P. Ottensmeyer, seeking to avoid getting protein mol-
ecules, lined up in parallel in a crystal according to the
very exact requirements of nature, tried the same
method of superimposing many electron-microscope
images of molecules of a particular protein lying in ran-
dom orientations. He was cruelly slaughtered by
J. Dubochet31 at the Nobel Symposium of 1979, who
showed images exactly like those of protein molecules
produced by Ottensmeyer but where there had been no
protein specimen whatever. The recognition of mole-
cules and still less identification of their orientations
had been a subjective delusion. Aaron Klug’s discus-
sion of this was less cruel and more analytic but equally
devastating. Nevertheless the method begins to work
when the number of details to be recognized in the
object is large [compared with the 5 parameters (posi-
tion in the direction of the beam is not needed) neces-
sary for specifying the orientation and position]. This is
to be seen in the remarkable work on the core protein of

29 Jerome and Isabella Karle and Herbert Hauptman, encountering
still another mind set, this time among crystallographers, had
some difficulty in getting their methods accepted, but now these
are universally applied for the solution of small and medium
crystal structures. Crystals with very large molecules (now up to
MW 700 000) rely on the heavy atom method which resembles
holography.

30 Francis Galton; The Life and Work of a Victorian Genius,
D.W. Forrest, London (1974). Composite Portraiture, Appendix
(pp. 221–241) to Inquiries into Human Faculty (1883) Every-
man edn., Dent, London (1907).

31 J. Dubochet, Chemica Scripta, 14, 293 (1978–1979).
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the hepatitis B virus very recently published by two
groups, where resolutions of 7.4 Å and 9.0 Å were
reached from 6400 and 600 particles, respectively.32

Identity of the particles used is based on prior physico-
chemical methods of selection and represents hard-won
information.

Thus, direct methods of X-ray crystal structure anal-
ysis depend on the a priori knowledge that the crystal
is composed of atoms and that the electron density is
nowhere negative. Similarly to the Rayleigh criterion
for resolving two point objects, the first diffraction peak
of one should lie on the first diffraction minimum of the
other, corresponding to a resolution of 0.5λ, could be
greatly improved on, if we knew exactly the expected
diffraction from each object. This applies, of course,
also to radar, and permits the distinction between one
big airplane and two smaller ones if we know the char-
acteristic scattering from each type.

CRYSTALS
It is a test for purity that a material crystallizes and

it is the definition of a crystal that it is composed
entirely of identical units identically situated. This
assumption is the price paid for X-ray crystal structure
analysis. However, not all crystals answer to this
description and they are then characterized as poorly
crystallized, disordered, flaky, etc. in disparagement.
However, real matter knows other modes of ordering
and does not always correspond to the preconceptions
of the crystallographers. Quasicrystals were just one of
many surprizes, and there must be many others to
come.

Thus, this workshop is devoted to the art of obtain-
ing by electron microscopy three-dimensional images
of various objects, about which we have certain other
information. We may know (or believe, perhaps, erro-
neously) something about their constitution and about
their symmetry and this a priori information may be
used to separate out from the incoming images what we
wish to know from what we already know. We will real-
ize here that seeing is not a simple passive act but that,
as in many other fields of life, what we see in a situation
depends on the cultural preconceptions which we bring
with us.

Eighty years ago, W.H. Bragg and W.L. Bragg had
the superb vision that the atomic world, miraculously
foreseen by Democritos and Lucretius, was just like the
real world, only smaller.33 With quantum mechanics
our preconceptions have changed as the wave/particle

32 S. Böttcher, S.A. Wynne, and R.A. Crowther, Determination of
the Fold of the Core Protein of Hepatitis B Virus by Electron
Cryomicroscopy, Nature, 386, 88–91 (March 6, 1997) and
J.F. Conway, N. Cheng, A. Zlotnick, P.T. Wingfield, S.J. Stahl,
and A.C. Steven, Visualization of a 4-Helix Bundle in the Hepa-
titis B Virus Capsid by Cryoelectron Microscopy, Nature, 386,
91–94 (March 6, 1997).

33 W.H. Bragg used Lucretius’ title, On the Nature of Things for
his own series of lectures at the Royal Institution.
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duality has turned out to be much more complex and
counter-intuitive than W.H. Bragg’s explanation that
physicists use the wave theory on Mondays, Wednes-
days and Fridays and the particle theory on Tuesdays,
Thursdays and Saturdays. The electron microscope
now serves as a kind of matching transformer which
connects directly our every-day human senses with the
world of atoms, just as Galileo’s telescope connected
him to the cosmos, revealing phenomena, like the
moons of Jupiter, which were counter-intuitive to the
prevailing world view of that time and place.34
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Abstract—Specific features of the anomalous angular dependence of the specular-reflection intensity under the
condition of noncoplanar grazing X-ray diffraction in a crystal coated with an amorphous surface film were
revealed and studied experimentally. The phenomenon was analyzed theoretically and its high sensitivity to the
presence and the thickness of a several-nanometer-thick amorphous film was shown. The experimental data
were used to determine the thickness and the density of a native oxide layer formed on the surface of a silicon
single crystal. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

X-ray reflection from perfect single crystals under
the conditions of strongly asymmetric diffraction is
widely used for collimation and monochromatization
of the X-ray radiation [1]. In the limiting case, where
reflecting atomic planes and the crystal surface form
the angle close to the Bragg angle, the incident or the
diffracted beam propagates at a small grazing angle to
the crystal surface, which is comparable to the critical
angle of the total external reflection. In this connection,
an important role in the formation of diffraction reflec-
tion is played by specular reflection of X-rays. The
dynamical theory of strongly asymmetric coplanar dif-
fraction in which the incident, diffracted, and specu-
larly reflected waves propagate in the same plane was
developed in [2–6].

X-ray diffraction and the phenomenon of total exter-
nal reflection are efficiently used for studying the struc-
ture of thin subsurface layers in single crystals and
crystals coated with an amorphous or a crystalline film
[7] (see also the review papers [6, 8, 9]). Under the con-
ditions of strongly asymmetric Bragg diffraction, the
extinction length decreases, which provides the study
of thin surface layers and films whose thickness is of
the order of 100 nm.

The next important step in the study of superthin (of
the order of several nanometers) crystalline layers and
even individual monolayers was made in [10], where a
new scheme for diffraction experiment was suggested.
This scheme allowed the study of X-ray diffraction
from atomic planes normal to the crystal surface (at the
inclination angle ψ = 0 as in the conventional Laue
case). However, an incident X-ray beam forms a rather
small grazing angle ϕ0 with the crystal surface and is
1063-7745/01/4606- $21.00 © 0909
specularly reflected from it. The diffracted wave in the
crystal also propagates at a small angle to the surface,
and, therefore, the so-called specularly reflected dif-
fracted wave is formed in vacuum above the crystal.
This wave leaves the crystal at an exit angle ϕh and pro-
vides the information on the structure of the subsurface
layer. Since the incident specularly reflected and dif-
fracted waves propagating in vacuum lie in different
planes, this diffraction scheme in the grazing geometry
is noncoplanar.

The rigorous dynamical theory of noncoplanar dif-
fraction from an ideal crystal and a crystal coated with
an amorphous film was considered elsewhere [11, 12].

In particular, a practically important equation  =

 + α relating the exit angle of the specularly dif-
fracted wave, ϕh, and the parameter α = 2∆ϑ sin2ϑB of the
angular deviation ∆ϑ = ϑ – ϑB from the Bragg angle ϑB
in the diffraction plane was derived, from which it fol-
lows that the change in the diffraction angle ϑ by frac-
tions of an angular second should result in the change
of the exit angle ϕh of several minutes, δϕh =
(sin2ϑB/ϕh)δϑ ~ (102–103)δϑ. Unlike [10], the latter
fact allows one to avoid the beam collimation with
respect to the diffraction angle and, instead of measur-
ing the intensities Ih(∆ϑ) of the diffraction reflection
(rocking) curves, one can study the differential intensi-
ties as a function of the exit angle Ih(ϕh) at a constant
grazing angle ϕ0 . The necessary beam collimation with
respect to angles ϕ0 and ϕh at a level of 1–3 angular
minutes can readily be attained with the aid of several
slits. The refusal from double collimation allows a con-
siderable increase of the recorded signal intensity and
simplification of the experiment. Moreover, for a fur-
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2
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Fig. 1. Experimental scheme for recording specular reflection under the conditions of grazing Bragg diffraction. RT is an X-ray tube,
M is a monochromator, S is the specimen, k0, ks, and kh are the wave vectors of the incident, specularly reflected, and diffracted
waves, respectively; D1 and D2 are the detectors recording specularly reflected and diffracted X-rays, S1–S3 are the collimating slits,
1 are the reflection planes with the inclination angle ψ.
ther increase of the intensity without loss in informa-
tion power, there is no need to collimate the beam with
respect to the exit angle ϕh. Thus, it becomes possible
to measure the integrated intensity Ih(ϕ0). These con-
cepts have successfully been implemented in [13, 14]
for designing a specular X-ray diffractometer with a
specimen located in the vertical plane. The conclusions
about high sensitivity of the integrated curves Ih(ϕ0) to
the presence of amorphous films and their thicknesses
(of several nanometers and thicker) made in [12] were
experimentally confirmed in [15].

The theory of grazing diffraction from an ideal crys-
tal whose reflecting planes form a small angle ψ ≠ 0
with the surface normal was constructed in [16–18].
The necessity of such an analysis was dictated by the
practice of cutting and subsequent treatment of crystals
whose surface should be rigorously parallel to the
atomic planes, because even small inclination angles
(of the order of ψ ~ 0.5′–3′) would result in consider-
able changes in diffraction intensities [16–18]. The
crystals with an inclination angle of ψ ~ 3°–4° are also
used in a number of semiconductor technologies. The
measurements made in the integral [18] and differential
[18, 19] modes showed the high sensitivity of the inten-
sity and the shape of the rocking curves to the inclina-
tion angles ψ ≥ 1′ and the thicknesses of the amorphous
and boundary layers with d ≥ 1 nm.

The results obtained in [10, 11] have triggered a
large number of studies aimed at the further develop-
ment of the kinematical approximation of diffraction
under the conditions of total external reflection [20–23],
the modified dynamical theory [19, 24], which provides
the analytical solution of the diffraction problem in the
whole angular range ϕ0, ϕh except for a narrow interval
in the vicinity of the critical angle of the total external
reflection, and the matrix method to describe the graz-
ing diffraction from multilayer structures with the
smooth variation in deformation and the amorphization
degree over the crystal depth [25, 26].
C

We should like to emphasize that all these theoreti-
cal and experimental studies considered the behavior of
the rocking curves, but totally ignored the angular
dependence of the specular-reflection intensity. At the
same time, it was indicated in [9] that the presence of
an amorphous film on the crystal surface can noticeably
change the angular behavior of the specular-reflection
intensity depending on the deviation ∆ϑ  from the Bragg
condition at the fixed grazing angle.

Below we describe the first experimental study of
specular reflection of X-rays from a silicon single crys-
tal with a surface amorphous oxide layer under the con-
ditions of grazing diffraction. Then results obtained are
compared with the conclusions drawn from the theory
developed in [27].

THEORY OF THE PHENOMENON

Consider an ideal single crystal whose reflecting
atomic planes form an angle ψ with the surface normal
(Fig. 1). Let a plane monochromatic wave E0exp(ik0r)
with the wave vector k0 = 2π/λ, be incident onto the
crystal surface at a grazing angle ϕ0 , where λ is the
wavelength of the X-ray radiation. Now, determine the
amplitudes of the specularly reflected, Es, and the dif-
fracted, Eh, waves at z < 0 above the crystal surface (the
z-axis is directed into the crystal bulk along the surface
normal n).

The rigorous equations which describe these waves
at arbitrary grazing angles ϕ0 are rather cumbersome
[16, 27] since one has to solve the dispersion equation
of degree four

(1)

where γ0 = sinϕ0, γh = γ0 – 2sinψsinϑB, χg are the Fou-

rier components of crystal polarizability (g = 0, h, ),
and C = 1 or C = cos2ϑB for the σ- or π-polarized radi-
ation, respectively, and α = 2∆ϑ sin2ϑB characterizes
the angular deviation ∆ϑ  of the incident radiation from

ε2 2γ0ε χ0–+( ) ε2 2γhε χ0 α––+( ) C2χhχh– 0,=

h
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the Bragg angle in the diffraction plane. The quantity ε
to be determined describes the change in the wave vec-
tor of the wave q0 refracted in the crystal in comparison
with the wave vector k0 in vacuum,

(2)

which follows from the continuity condition for the tan-
gential components k0 and q0. Since the X-ray polariz-
ability is |χg| ~ 10–5, we have ε ! 1. If the angles ϕ0 and
ψ obey the inequalities ϕ0, ψ ! 1, then γ0 ≈ ϕ0 and
sinψ ≈ ψ (in practice, these conditions are satisfied
within an accuracy nor less than one percent at angles
less than 15°).

In the general case of the inclination angle ψ ≠ 0,
dispersion equation (1) can be solved only numerically.
In the reflection from a thick crystal in the Bragg geom-
etry (γh < 0) one has to select only two roots of four εj

ones, such that their imaginary parts would obey the
inequality Im(εj) > 0 [16].

The detailed analysis at arbitrary angles ϕ0 and ϕh

was made elsewhere [27], In this section, for the sake of
simplicity we limit the consideration to the case, where
the grazing angles ϕ0 and ϕh for the incident and the dif-
fracted waves exceed critical angle of the total external
reflection ϕc = (Re |γ0|)1/2 by a factor of 1.5–2.0. Then,
according to [16], the exit angle is

Formally, this results in the fact that the terms ε2 in
(1) can be ignored. As a result, equation (1) reduces to
the quadratic equation whose solution has the form
[1, 7]

(3)

where b = γ0/γh is the coefficient of reflection asymme-
try (b < 0), whereas the sign before the square root is
determined by the conditions Im(ε) > 0. If the angular
deviation ∆ϑ  considerably exceeds the half-width of
the rocking curve, i.e., ∆ϑB = C |χh|/ |b|1/2sin2ϑB (in this
case, there are no strong diffraction reflection), then ε ≈
χ0/2ϕ0.

The amplitude coefficient of the diffraction reflec-
tion Rh = Eh /E0 is determined by the equation well-
known in the two-beam dynamical theory

(4)

At the maximum, the rocking curve from an ideal
crystal, Ph0 = (ϕh/ϕ0)|Rh |2, and the incident radiation
penetrates the crystal for an extinction length

(5)

On the other hand, in terms of physics, the neglect
of the terms ε2 in (1) signifies that in the angular range

q0 k0 k0εn,+=

ϕh ϕ0 2ψ ϑÇsin–( )2 α+[ ] 1/2
= .

ε 1/4γ0( ) αb χ0 1 b+( )+[=

± αb χ0 1 b–( )–[ ] 2 4bC2χhχh+{ } 1/2
,

Rh 2ϕ0ε χ0–( )/Cχh.=

Lex 1/ k0Im ε( )( ) λ ϕ 0ϕh( )1/2/πC χh .= =
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ϕ0, ϕh ≥ (1.5–2)ϕc, the effect of specular reflection on
the diffraction reflection can be ignored (the reverse
statement is not true). Indeed, far from the diffraction
range, the dependence of the fields of the incident,
specularly reflected, and refracted radiation on the
coordinate z takes the form E0(z) = E0exp(ik0ϕ0z),
Es(z) = Esexp(–ik0ϕ0z), and D0(z) = D0exp(ik0Φ0z),

respectively, where Φ0 = (  + χ0)1/2. From the conti-
nuity condition at the crystal surface z = 0 for the fields
and their first derivatives with respect to z it follows that
the amplitude coefficient of the specular reflection, Rs =
Es/E0, is determined by the Eq. Rs = RF, where

(6)

If the grazing angle ϕ0 ≥ 1.5ϕc, then Φ0 ≈ ϕ0 + χ0/2ϕ0.

Thus, it follows from Eq. (6) that RF ≈ –χ0/4 , i.e.,
|RF | ≈ 0.25(ϕc/ϕ0)2 ! 1 and the depth of the field pene-
tration Ls = 1/(k0Im(Φ0)) is determined mainly by pho-
toabsorption

(7)

Since Im(χ0) ! |χh|, it follows from (5) and (7) that
Lex ! Ls. At grazing angles exceeding the critical angle
of the total external reflection by a factor 1.5–2.0, the
amplitude of the specular reflection is negligibly small
in comparison with the amplitudes E0 and Eh, whereas
the depth of the field penetration is determined mainly
by the diffraction reflection. According to Eq. (2), the
refracted wave has the form D0(z) = D0exp[ik0(ϕ0 +
ε)z]. Then the continuity condition for the fields and
their derivatives yields

(8)

With due regard for Eq. (8), the amplitude coeffi-
cient of specular reflection under the conditions of the
Bragg diffraction from an ideal crystal can be described
by the simple equation

(9)

where the quantity ε(∆ϑ) is set by Eq. (3). Since ε !
2ϕ0, the angular dependence of specular reflection is
determined mainly by the behavior of the function
ε(∆ϑ). In other words, diffraction produces a noticeable
effect on the specular reflection and, therefore, the
anomalous angular behavior of specular reflection
described by Eq. (9) is determined by the anomalous
behavior of the effective refractive index of the crystal
in the diffraction range n(∆ϑ) = 1 + εϕ0. One can
readily see that at ∆ϑ  @ ∆ϑB, Equation (9) is reduced
to the well-known Fresnel formula (6).

The characteristic feature of specular reflection
under the diffraction conditions is the pronounced
anomaly in the angular dependence of the intensity
Ps(∆ϑ) = |Rs|2. It has the form of the dispersion-type

ϕ0
2

RF ϕ0 Φ0–( )/ ϕ0 Φ0+( ).=

ϕ0
2

Ls λϕ 0/πIm χ0( ).≈

E0 Es+ D0,=

ϕ0 E0 Es–( ) ϕ0 ε+( )D0.=

Rs ε/ 2ϕ0 ε+( ),–=



912 BUSHUEV et al.
curve with the minimum and the maximum in the vicin-
ity of the diffraction angles ∆ϑ1, 2 = ∆ϑ0  ∆ϑB corre-
sponding to the range of total diffraction reflection,
where ∆ϑ0 = Re(χ0)(1 – b)/2bsin2ϑB (solid curves 1 in
Figs. 2 and 3). For the first time, the anomalous behav-
ior of the specular reflection was considered in [9]. It
should be indicated that the curves describing the sec-
ondary-radiation yield ISP ≈ 1 + |Rh|2 + 2νiRe(Rh) with
the exit depth small in comparison with the extinction
length Lex, where νi = C|Im(χh)|/Im(χ0) also have simi-
lar shapes [7]. The analogy becomes obvious upon rep-
resenting the function ε(∆ϑ) in (9) in terms of the
amplitude coefficient of diffraction reflection (4):

(10)

where ν = Cχh/χ0. Similar to the methods of X-ray
standing waves (XRSW) [7, 9], the second multiplier in
Eq. (10) characterizes the wave-field amplitude at the
crystal surface. However, unlike the quantity νi in the
equations for secondary-radiation intensities, the quan-
tity ν for specular reflection in Eq. (10) is determined
by the ratio of the complete complex polarizabilities χh

and χ0, and not only of their imaginary parts.

The existence of the minimum and the maximum of
the rocking curves Ps(∆ϑ) is caused by the fact that
|Rh|2 ≈ |b| in the whole range of strong diffraction reflec-
tion, whereas the phase of the amplitude reflection
coefficient Rh in Eq. (10) varies almost linearly from π
at ∆ϑ  = ∆ϑ1 to zero at ∆ϑ  = ∆ϑ2. In this case,
Rh(∆ϑ1, 2) = |b|1/2, i.e., |b| can have different signs,
which results in the formation of the minimum and the
maximum of the angular dependence of the specular-
reflection intensity. At small grazing angles (ϕ0 !
2ψsinϑB), the asymmetric reflection coefficient is |b| ! 1,
which results in a rather small difference in the intensi-

ties  – . With an increase of the grazing angle ϕ0,
the quantity |b| increases, and therefore the contrast of
the specular reflection curves also increases (curves 1
in Figs. 3a and 3b). Simultaneously, the rocking-curve
width and the angular range of the anomaly on the
curve of specular reflection also decrease.

Now consider the specular and diffraction reflection
from a crystal whose surface is coated with a plane-par-
allel homogeneous amorphous film of an arbitrary
thickness d and polarizability χ1. The field in the film is
due to the superposition of two eigenwaves, El(z) =

A0exp(ik0Φ1z) + Asexp(–ik0Φ1z), where Φ1 = (  +

χ1)1/2. Using the continuity conditions for the fields and
their derivatives at the vacuum–film and film–substrate

+−

Rs χ0/4ϕ0
2( ) 1 νRh+( ),–≈

+−

Ps
max Ps

min

ϕ0
2

C

interfaces, we arrive at the system of four equations

(11)

where

The solution of system (11) yields the following
equation for the amplitude coefficients of reflection
from the crystal coated with an amorphous film under
the conditions of grazing Bragg diffraction:

(12)

where

One can readily see that at d = 0 (no film) equation (12)
reduces to Eq. (9) for an ideal single crystal, because, in
this case, E = 1 and S = (ϕ0 + ε)/Φ1. In the case of a
rather thick absorptive film, the phase factor tends to
zero, F  0, and the reflection coefficient (12)
reduces to the Fresnel equation r1 = (ϕ0 – Φ1)/(ϕ0 + Φ1),
which describes reflection from the medium–film inter-
face with the film polarizability χ1. As was to be
expected, in this case, diffraction produces no effect on
specular reflection.

Far from the diffraction range, the amplitude coeffi-
cient of specular reflection for a film of an arbitrary
thickness, Rs 0 = Rs(|∆ϑ| @ ∆ϑB), is also determined by
Eq. (12) in which r should be substituted by r0 = (Φ1 –
Φ0)/(Φ1 + Φ0). Thus, we obtain

(13)

If a film is amorphous for X-rays and has the polar-
izability χ1 = χ0 coinciding with the substrate polariz-
ability, the coefficient of reflection from the film–sub-
strate interface in (13) is r0 = 0, and, therefore, Rs 0 = RF

[see Eq. (6)], which does not allow one to make any
conclusion either about presence of an amorphous film
or about its thickness based on the intensity data for
specular reflection Ps 0 = |Rs 0|2. At the same time, under
the diffraction conditions, the function Rs(∆ϑ) (12)
remains sensitive to the film thickness even in the latter
case. This is explained by the nonzero value of the coef-
ficient r of X-ray reflection from the film–substrate
interface because of different refractive indices of the
substrate, 1 + ϕ0ε(∆ϑ), and the film, 1 + χ1/2.

Under the conditions ϕ0h @ ϕc, the rocking-curve
intensity from a crystal coated with a film only slightly
decreases in comparison with the rocking-curve intensity

E0 Es+ A0 As,+=

ϕ0 E0 Es–( ) Φ1 A0 As–( ),=

A0F AsF
1–+ D0 f ,=

Φ1 A0F AsF
1–

–( ) ϕ0 ε+( )D0 f ,=

F exp ik0Φ1d( ), f exp ik0 ϕ0 ε+( )d[ ] .= =

Rs ϕ0 Φ1S–( )/ ϕ0 Φ1S+( ),=

S 1 rF2–( )/ 1 rF2+( ),=

r Φ1 ϕ0 ε––( )/ Φ1 ϕ0 ε+ +( ).=

Rs0 r1 r0F2+( )/ 1 r0r1F2+( ).=
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Fig. 2. Effect of the amorphous-film thickness on the angu-
lar dependence of the specular-reflection intensity at the
fixed grazing angle. The thickness d of an oxide film on the
silicon surface equals (1) 0 (an ideal single crystal), (2) 1,
(3) 3, and (4) 4 nm; CuKα radiation, ϕ0 = 50′, ψ = 3°,

Si(2 0) reflection.2
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for an ideal crystal because of absorption in the film:
Ph = Ph0exp[–(  + )µ1d], where µ1 = k0Im(χ1).

Figure 2 shows the specular-reflection curves
Is(∆ϑ) = Ps/Ps 0 normalized to the specular-reflection
intensity far from the diffraction range. The calcula-
tions were based on the rigorous theory [27] for various
thicknesses of the amorphous film and the fixed value
of the grazing angle ϕ0. It is seen that the change in the
film thickness for fractions of a nanometer results in a
considerable change in the angular behavior of the
specular-reflection curves. It should also be indicated
that in the angular range ϕ0h ≥ 1.5ϕc, the calculations by
approximate Eqs. (9) and (12) almost coincide with the
exact calculations (curves 2 and 3 in Fig. 3). The dis-
crepancy observed in the range of smaller grazing
angles is explained by an increased effect of specular
reflection on the wave-field structure in the film and in
the substrate [27].

Figure 3 illustrates the effect of the grazing angle ϕ0
on the specular-reflection curves from an ideal crystal
and a crystal coated with an amorphous film. It is seen
that with an increase of the grazing angle, the sensitiv-
ity of the specular reflection to the presence of the
amorphous film and its thickness d increases. This is
explained by an increase in the exponent k0Φ1d of the
phase-sensitive coefficient F in Eq. (12) with an

ϕ0
1– ϕh

1–
0 20 40
∆θ, arcsec

0 10 20 30
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3

IS, arb. units

(a) (b)
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–20 –10

Fig. 3. Specular-reflection curves at grazing angles (a) ϕ0 = 20′ and (b) ϕ0 = 40′. (1) An ideal crystal, (2) a crystal with an amorphous

SiO2 film of thickness d = 3 nm, and (3) the curve calculated by the approximate Eq. (12); CuKα radiation, ψ = 3°, Si(2 0) reflection.2
1



914 BUSHUEV et al.
increase of the angle ϕ0. However, the absolute specu-
lar-reflection intensity drastically decreases (by the law

1/ ).

EXPERIMENTAL

All the measurements were made in the double-
crystal scheme and the parallel dispersion-free (n, –n)
geometry of the crystal arrangement. The schematic of
the experiment is shown in Fig. 1. The specimen was a
silicon wafer 40 mm in diameter and 350 µm in thick-
ness treated in polishing etchants. The wafer surface
formed an angle ψ = 3° with the (111) crystallographic

planes along the [1 0] direction. The high quality of the
treated crystal was proved by the preliminary studies
performed by the method of high-resolution triple-crys-
tal X-ray diffractometry which revealed no residual
damaged crystalline layer on the specimen surface.
Thus, we assumed that the specimen surface was coated
only with a very thin (2–4 nm) layer of the native oxide
[7–9].

ϕ0
4

1

∆θ, arcsec

IS, arb. units

2

1

0 10 20–20 –10

(c)

2

1

0 10 20–20 –10

(b)

30

2

1

0 10 20–20 –10

(a)

30 40 50

Fig. 4. Angular dependences of the specular-reflection
intensities of CuKα radiation from a silicon single crystal
coated with an amorphous oxide film under the conditions
of grazing Bragg diffraction at the grazing angles ϕ0 (a) 23′,
(b) 39′, and (c) 49′. Dots indicate the experimental data,
solid lines indicate the theoretical calculation.
C

The source of CuKα 1 radiation was a standard
0.8 kW fine-focus X-ray tube. The radiation was hori-
zontally collimated with the use of the strongly asym-
metric (220) reflection from a perfect silicon crystal.
The asymmetry factor of the crystal–monochromator
was equal to bm = 0.03, which corresponded to the hor-
izontal divergence of the reflected X-ray beam of 0.9″.
The slit S1 was used to separate the Kα 1 line from the
general X-ray spectrum. The vertical beam divergence
determined by the dimensions of the focus and the
slit  S2 at the collimator exit was equal to 2.3 arcmin.
The angular intensity distribution of the incident beam
in the vertical plane was preliminarily measured by
scanning with the use of a narrow slit S3 located before
the detector D1 prior to the location of the specimen.

The noncoplanar grazing diffraction was obtained

from the (2 0) planes forming an angle of 87° with the
specimen surface. Scanning in the vicinity of the Bragg
angle was made at three fixed grazing angles of the
X-ray beam: ϕ0 = 23, 39, and 49 arcmin. In this case,
the detectors D1 and D2 recorded the intensities of the
specularly reflected and diffracted waves, respectively.
The specular-reflection curves were measured at large
deviations ∆ϑ  = ±150″ from the Bragg angle. The time
of the intensity accumulation at each point was selected
in a way to provide the statistical accuracy not worse
than three-five percent.

RESULTS AND DISCUSSION

The experimental results are shown by dots in
Fig. 4. With an increase of the grazing angle, the asym-
metry of the experimental specular-reflection curves
changes, and their amplitude increases. On the whole,
this agrees with the behavior of curves in Fig. 3. It
should also be indicated that the corresponding rocking
(diffraction-reflection) curves (not shown in Fig. 4) are
practically equivalent to the rocking curves calculated
for an ideal crystal. The results of processing of the
experimental specular-reflection data under the condi-
tions of grazing noncoplanar diffraction are shown by
solid lines in Fig. 4. The theoretical calculations were
performed on the basis of the rigorous equations for the
specular-reflection intensities [27] with due regard for
the convolution with the reflection curve of the asym-
metric crystal–monochromator and the convolution
with the function of the angular distribution of the inci-
dent-beam intensity in the vertical plane. The experi-
mental curves were processed using the minimization

of the functional Q(d, χ1) = N–1Σi  char-
acterizing the average relative discrepancy between the
theoretical and experimental values, where N is the
number of points on the experimental curves and i is the
number of points corresponding to the diffraction
angles ∆ϑ i. The minimization reduced to the variation
of the film thickness d and film polarizability χ1.

2

Is i,
exp Is i,

theor– /Is i,
exp
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The analysis of all the data on the minimization of
three specular-reflection curves obtained from one
specimen at three different grazing angles provided the
determination of the average thickness of the oxide film
and the film polarizability with a rather high accuracy—
d = 2.8 ± 0.05 nm and χ1 = (–13.59 + i0.18) × 10–6, respec-
tively. At the obtained χ1-value, the density of the amor-
phous film is ρ = 2.1 ± 0.06 g/cm3. The value of ρ was
calculated with allowance for the dispersion correc-
tions ∆fj to the amplitude of atomic scattering (in the
forward direction) [28] and the mass attenuation coeffi-
cients τj [29] calculated by the general equations for the
real and imaginary parts of polarizability in the multi-
component medium:

where ρ is the material density, r0 = e2/mc2 is the clas-
sical electron radius, NA is the Avogadro number, Zj is
the charge of the nucleus of the jth kind (in our case, sil-
icon and oxygen), B = ΣjcjAj, Aj are the atomic num-
bers, and cj is the number of the jth kind atoms per for-
mula unit (cj = 1 and 2 for silicon and oxygen in SiO2,
respectively). For comparison, the densities of the hex-
agonal modification of crystalline quartz, the cubic and
the tetragonal cristobalite phases, and fused quartz are
2.65, 2.32, and 2.07–2.21 g/cm3, respectively.

It should be remembered that the specular reflection
curves under the conditions of grazing diffraction are
much more sensitive to small film thicknesses than the
curves obtained by the conventional total external
reflection method [7, 8], in which the existence of the
film on the crystal surface is established by measuring
the specular reflection curves as functions of the graz-
ing angle ϕ0 during ϑ /2ϑ  scanning and the subsequent
analysis of the thickness oscillations with the period
∆ϕ0 ≈ λ/2d at angles ϕ0 > ϕc. Indeed, because of a rapid
decrease of the intensities of the specular reflection
curves (from five to six orders of magnitude at ϕ0 ≤
10ϕc), this traditional method is efficient only for rather
thick (d ≥ λ/4ϕc ~ 10 nm) films (the critical angles of
total external reflection for silicon single crystals with
oxide films are 13.49 and 12.79, respectively). Figure 5
shows the calculated specular-reflection curves from
the film–substrate system. It is seen that for thin films,
the specular-reflection curves only slightly differ from
the corresponding curves for the substrates. The curve
has almost no oscillations (especially at d ≤ 5 nm) and
the film manifests itself only in a certain change of the
specular-reflection intensity in comparison with the
reflection from an ideal surface, so that the labor-con-
suming measurements of the absolute intensity are
required. The comparison of the curves in Figs. 2 and 3
with those in Fig. 5 clearly demonstrates the advantages
of the specular-reflection method under the conditions

χ0 r ρNAr0λ
2
/πB( )Σ jc j Z j ∆ f j+( )– ,=

χ0 i ρλ /2πB( )= Σ jc j A jτ j,
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of grazing diffraction in comparison with the traditional
method.

For real objects, the traditional total external reflec-
tion method is also encounters difficulties because the
specular-reflection intensity decreases with an increase
of the grazing angle somewhat faster owing to the inev-
itable presence of small-scale surface roughness. This
is quite understandable because that the Fresnel reflec-
tion coefficients r0, 1 in Eq. (13) are multiplied by the

Debye–Waller factor f0, 1 = exp[–2 ], where σ0

and σ1 are the root-mean-square heights of the relief at
the film–substrate interface and on the film surface,
respectively. Under the conditions of grazing diffrac-
tion, one has to analyze also the angular behavior of the
normalized Is(∆ϑ) curves for which the division of the
intensity PS by specular-reflection intensity PS 0 far from
the diffraction range weakens the effect of the rough-
ness height on the function Is. Indeed, since in the angu-
lar range ϕ0 ≥ 1.5ϕc, the reflection coefficients r, r1, 2 ! 1,
it follows from Eqs. (12) and (13) that the ratio Rs/Rs0 is

where f0, 1 = , whence it follows
that, if, e.g., σ0 = σ1, the curve Is(∆ϑ) becomes indepen-
dent of the roughness height.

As has already been indicated, the specular-reflec-
tion curves under the conditions of X-ray grazing dif-
fraction are similar to the photoelectron- and fluores-

k0
2ϕ0

2σ0 1,
2

Rs/Rs 0

≈ χ1 χ1 2ϕ0ε–( ) f 0 1, F2–[ ] / χ1 χ1 χ0–( ) f 0 1, F2–[ ] ,

exp 2k0
2ϕ0

2 σ0
2 σ1

2–( )–[ ]

ϕ0, arcmin

PS 0, arb. units

1.0
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Fig. 5. Dependence of the specular-reflection intensity of
CuKα radiation on the grazing angle ϕ0 far from the diffrac-
tion range. The thickness d of the SiO2 film is (1) 0 (an ideal
silicon single crystal), (2) 3, and (3) 6 nm.



916 BUSHUEV et al.
cence-yield curves for thin layers in the method of
X-ray standing waves, but the mechanisms of their for-
mations are quite different. Indeed, the anomalies in the
curves of the secondary-radiation-yield are provided by
the coherent shift of the film atoms with respect to the
nodes and antinodes of an X-ray standing wave formed
due to diffraction reflection from the substrate. In our
case, the angular dependence of the specular-refection
curves is caused by the anomalous behavior of the
refractive index of the substrate in the range of diffrac-
tion reflection and the interference of the waves specu-
larly reflected from the film surface and the film–sub-
strate interface.

Despite the fact that at angles ϕ0 > 1.5ϕc, the specu-
lar-reflection coefficient is very low, the intensity of the
specularly reflected wave can be rather high and can
exceed by several orders of magnitude the intensity of
the photoelectron or fluorescence yields in the method
of X-ray standing waves. Indeed, the estimation of the
fluorescence-radiation intensity PF from the film
showed [27] that at the angles ϕ0 ~ (2–4)ϕc, it is
described by the relationship

where c is the relative concentration of the fluorescing
atoms, β is the coefficient of electron conversion, and
∆Ω is the solid angle of recording. For example, if d ≈
1 nm, λ ≈ 0.1 nm, β ~ 10–50, c ≈ 0.5, ∆Ω ≈ 2π, and ϕ0 ≈
2ϕc, then at the characteristic polarizabilities |χ1| ≈ 10–5

and χ1i ≈ 0.02|χ1|, we have that the PF/PS ratio is ~3 ×
(10–3–10–2), i.e., the intensity of the specularly reflected
wave exceeds the intensity of the fluorescence yield by
one to two orders of magnitude. It should also be indi-
cated that recording of the soft fluorescence radiation
from oxygen atoms is possible only in a vacuum and is
associated with considerable technical difficulties. The
perspectives of the application of specular reflection
under the noncoplanar grazing diffraction conditions to
solution of practical problems are also associated with
these problems.

CONCLUSIONS

Thus, we reported here the first experimental detec-
tion and the study of the anomalous angular behavior of
specular reflection of X-rays under the conditions of
noncoplanar X-ray diffraction in a crystal coated with
an amorphous film. The phenomenon is interpreted the-
oretically. The developed theory satisfactorily agrees
with the experiment. It is shown that the specular-
reflection curves are highly sensitive to the thickness of
an amorphous layer several nanometers thick and even
thicker. The optimum grazing angles are determined to
range from 1.5 to 3–4 critical angles of total external
reflection. The specular-reflection intensity in this
angular range is by one to two orders of magnitude
higher than the intensity of the secondary processes in
the method of X-ray standing waves which allows us to

PF/PS 8cβ 1– d/λ( ) ϕ0
3χ1i/χ1

2( )∆Ω,≈
C

state that at smaller grazing angles, the specular-reflec-
tion intensity should increase, whereas the method sen-
sitivity to the film thickness should considerably
decrease. Using the method of mathematical simulation
of the specular-reflection curves, we determined both
the thickness and the density of the native SiO2 oxide
film coating the surface of the silicon single crystal
studied.
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Abstract—A method for calculating atomic radial distribution functions for amorphous materials has been
suggested. The method is based on the principle of the maximum informational entropy. Under the condition
of a limited amount of the experimental diffraction data, the method allows one to obtain the unique solution
and considerably reduces the errors caused by series termination, which are inherent in traditional computa-
tional methods based on the Fourier transform. A criterion of using the method of optimum information is for-
mulated, and the reliability of the data obtained are quantitatively estimated. The advantages of the method are
demonstrated on the computation of the short-range order in hydrogenated amorphous silicon. © 2001 MAIK
“Nauka/Interperiodica”.
The calculation of the radial distribution function
(RDF) ρ(r) related to experimentally measured intensi-
ties I(s) of diffracted rays by the well-known relation-
ship [1] 

(1)

is a practically important problem often encountered in
diffraction studies of materials. 

The traditional method of determination of ρ(r) is
based on the use of the Fourier transform of expression (1)
with an infinite upper integration limit. In practice, the
intensity curve I(s) is determined within a finite (and
not infinite from 0 to ∞) interval of s values. In trans-
mission diffraction experiments, the rays scattered at
small angles overlap with the primary beam, whereas,
in the reflection geometry, they overlap with the speci-
men edges, which hinders the determination of the
intensity in the range of s-values from zero up to a cer-
tain s1 value. On the side of large s values, this limit is
associated with the apparatus function and, in the best
case, with the maximum possible scattering angle. In
practice, its value is still lower. As a result, we arrive at
numerous solutions for π, which make the above rela-
tionship an identity. Thus, the main problem in the anal-
ysis of the intensity curve is the estimation, reduction,
or complete elimination of the effect of the experimen-
tal intensities termination from the side of large s val-
ues. In comparison with the termination at low s values,
the influence of this effect on the position and the shape
of the maxima and the area under these maxima is pre-
vailing [2]. In the computations with the use of the Fou-
rier transform, the termination on the side of large s-
values gives rise to numerous auxiliary maxima. The

I s( ) ρ r( ) sr( )/ sr( ) rdsin

0

∞

∫∼
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negative effects caused by insufficient number of the
experimental data can be reduced by various methods
of which the most widespread are the regularization
methods and the representation of the functions sought
in the form of some analytical expressions [3, 4]. 

At present, one often processes the experimental
data by various modifications of the maximum-entropy
method providing the mathematical formalization of
the principle of information optimum. This approach
was formulated by Janes as the formal method for sub-
stantiation of statistical mechanics [4, 5] and is widely
used in processing of experimental data [6]. Recently,
we have seen ever increasing use of the maximum-
entropy method in crystallography [7–9]. According to
the principle of information optimum, the most appro-
priate model of all the models of physical systems that
are equally consistent with the initial experimental data
is the model containing the minimum amount of infor-
mation or having the maximum information entropy. If
the system can be described by the probability distribu-
tion, this principle reduces to the requirement of the
maximization of the information-entropy of the distri-
bution and is called the principle of the maximum infor-
mation entropy. The general consideration shows that
the models of various physical systems constructed on
the basis of this principle and the conclusions made on
their basis are the most reliable ones in terms of infor-
mation. However, the objective criteria providing the
quantitative estimates of the reliability of the data
obtained by the methods of optimum information have
not been obtained as yet. 

The present study was aimed at the study of the
applicability of the principle of the maximum informa-
tion entropy for the reconstruction of the RDF and for-
001 MAIK “Nauka/Interperiodica”
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mulation of a criterion for estimating the reliability of
the results obtained. 

The radial distribution function providing the opti-
mum information was constructed by optimizing the
Shannon information functional [10] in the form 

(2)

Following [1], we considered the RDF ρ(r) related
to the intensity of the scattered radiation I(s) by the fol-
lowing formulas: 

(3)

(4)

where 

n is the number of scattering atoms, and f is the atomic
scattering factor for the given radiation. 

The discrete variant of the above equations is 

(5)

(6)

where N determines the number of the intensities used
for the reconstruction and M is the number of the RDF
values. 

The analytical solution of the variational problem of
optimizing the information functional is now reduced
to the solution of the system of nonlinear equations of
the type 

(7)

The number of the Lagrange factors λn equals the
number of the intensity values In used in the RDF recon-
struction and amounts up to several hundred values. 

The sought for a physically sound solution requires
the use of the following condition:

(8)

Figures 1 and 2 present the angular dependence of
the intensities of electron scattering and the model
radial distribution functions calculated by the tradi-
tional method and the method based on the approach
described above. It is seen from Fig. 2 that the data cal-
culated by the traditional method deviate from the ini-
tial model much more pronouncedly than the curve
obtained by optimizing the information functional (2). 

H ρ( ) ρ r( ) ρ r( ) r max.dlog∫–=

i s( ) ρ r( ) sr( )sin
sr

----------------- r,d∫=

ρ r( ) 2
π
--- i s( )sr sr( ) s,dsin∫=

i s( ) I s( )
n f

2
--------- 1,–=

ik ρk

skrk( )sin
skrk

---------------------,
k 1=

M
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ρk
2
π
--- ikskrk skrk( ),sin

k 1=

N

∑=

ρ r( ) λn snr( )sin
n m=

M

∑
2

.exp=

ρ r( ) 0.≥
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The criterion of the reliability of the results obtained
by the traditional methods of processing the experimen-
tal data is the accuracy with which the object was
restored. In many instances, such estimates are based
on the linear theory of errors, which allows one to relate
the accuracy of the experimental data determination to
the accuracy of the object restoration. Moreover, it also
takes into account the “experimental” data that should
have been present but, in fact, were absent because of
the real experimental conditions or because some
parameters of the physical systems cannot be measured
in principle. These approaches are rather well devel-
oped and widely used [2]. The formulation of the prob-
lem in the methods of optimum information used in
processing of experimental data is quite different. It is
impossible to estimate a priori the influence of the lack-
ing data, because, in the course of data processing, the
experimental data should be used in the “theoretical
construction.” Thus, the reliability of the approaches
based on optimum-information principle in comparison
with the reliability of the traditional methods is deter-
mined by the degree of reliability with which these
methods “reproduce” the lacking experimental data.
Therefore we suggest here the following approach for
determining the degree of reliability of the results
obtained. The problem is solved by using not the whole
set of the experimental data but only a part of it. At the
first stage of the study, the data, which, in accordance
with the experimental conditions, are close to experi-
mentally unattainable ones (i.e., the intensities at the
smallest and the largest diffraction angles) are ignored.
Upon the creation of the model of the physical system
based on these reduced or imperfect experimental data,
one has to calculate the set of the experimental data that
were ignored at the first stage on the basis of the model
obtained. Only then, the calculated and the measured but
earlier ignored data, are compared. The degree of the
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Fig. 1. Model of the angular dependence of electron scatter-
ing intensities. 
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reliability of the theoretical–informational approach is
evaluated from the agreement of these two data sets. 

Figure 3 shows the discrepancy between the initial
and the predicted data sets obtained from the experi-
mental diffraction intensities as a function of the num-
ber of ignored (not considered) data. The total volume
of the experimental data in this case is N = 50. The dis-
crepancy equal to unity signifies the complete (100%)
disagreement of these data. In this case, the method
suggested above gives no advantages over the tradi-
tional Fourier method. It is seen from Fig. 3 that the dis-
crepancy is a nonmonotonic function and that the
reconstruction is rather successful (in the sense of the
criterion formulated above) even if a small number of
the intensity values were used. The maximum discrep-
ancy arises each time when we ignore (do not consider)
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Fig. 2. RDF curves calculated by the (1) traditional method
and (2) the method of optimizing the information functional
and (3) the model curve. 
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Fig. 3. Dependence of the relative discrepancy between the
initial intensity data and the predicted curve as a function of
the number of the ignored data. 
C

a set of the data located between two minima on the
intensity curve. 

Figure 4 exemplifies the use of the new method of
calculating the atomic RDF based on the experimental
scattering curves obtained in the electron diffraction
experiments on thin films of α-Si : H synthesized by
decomposition of silane in the high-frequency glow-
discharge plasma at the substrate temperature 250°C.
The transition from the scattered intensities to the RDF
was made by both traditional method [1] (curve 1) and
optimization of the information functional (curve 2).
Curve 1 is characteristic for the RDF of amorphous sil-
icon films [12]—the first and the second maxima are
considerably blurred; in the range of small r, the RDF
shows negative values having no physical sense. Using
the method described in [1], we established that the
average radius of the first coordination sphere equals
r1 = 2.34 ± 0.04 Å, the first coordination number equals
n1 = 3.8 ± 0.2, the second coordination number equals
n2 = 15, and the valence angle equals ϕ = 119°. Thus,
the parameters of the first coordination sphere are close
to those of the crystalline material and are admissible
for amorphous films, whereas the parameters of the
second coordination sphere are quite dubious. Slightly
lower (in comparison with the data for the crystalline
material) first coordination number can be explained by
a lower (by about 10–12%) density of the amorphous
film. However the second coordination number consid-
erably exceeds the value of 12 characteristic of crystal-
line silicon and is inconsistent with the reduced density
of the amorphous material. 

The calculation of the short-range order parameters
by the methods suggested in [12] slightly improves the
situation, especially for the second and the following
spheres. In this case, the second maximum on the RDF
curve can be interpreted as the result of the pronounced
overlap of the second and the following coordination
spheres. Assuming that the atomic distribution in each
coordination sphere obeys the normal distribution law
and using the mathematical methods of optimization,
one can obtain a more detailed information about each
of these spheres. The reliability of the results obtained
is determined by the number of unknown parameters.
Using the method suggested in [12], we obtained n2 =
11.3 ± 0.9 and ϕ = 112° ± 6°. These values for the sec-
ond coordination sphere are quite consistent with the
modern ideas on the structure of amorphous silicon
films. However, the accuracy of these data is rather low,
because the pronounced overlap of the coordination
spheres forced us to vary all the parameters of the nor-
mal distribution law in the process of mathematical
optimization. Curve 2 in Figure 4 is calculated by our
method. As was indicated above, it corresponds much
better to the true distribution of atoms in the amorphous
material. It is seen from Fig. 4 that the RDF has nar-
rower maxima and no negative values. The parameters
of the first coordination sphere (except for the curve
width) coincide with those calculated by the traditional
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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method. A decrease in the width of the first maximum
allows us to eliminate the interatomic distances having
no physical sense, which are always present in the RDF
calculated by the conventional method from diffraction
data. Because the maxima are narrower, the shape of
the second RDF maximum allows one to measure the
radii of the second and one of the third coordination
spheres directly and then to estimate the dihedral angle.
Thus, the number of fitting parameters and the ranges
of their variation for curve 2 in the method [12] can be
reduced, which increases the accuracy of their determi-
nation. Upon the corresponding calculations, we
obtained n2 = 10.1 ± 0.5 and ϕ = 109° ± 4°. In this case,
the errors are determined by the accuracy of the appa-
ratus used in the experiment. 

Thus, the use of the method suggested in this study
for calculating RDF, which is based on the optimization
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Fig. 4. RDF for hydrogenated amorphous silicon calculated
from the experimental electron-scattering intensities by
(1) the traditional method and (2) the method of optimizing
the information functional by Eq. (2).
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of the information functional, provides a considerable
increase of the reliability of the data on the short-range
order structure of an amorphous material under the con-
ditions of reduced volume of the experimental diffrac-
tion data. 
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Abstract—The Penrose lattice, an example of quasicrystals, is considered as a fractal set. The generation of
these sets in the graph tree form is considered. The problem of percolation of informodynamic characteristics and
fractal dimensions defined in terms of the information entropy is solved for the constructed graphs. © 2001 MAIK
“Nauka/Interperiodica”.
In 1984, the group headed by Shechtman obtained
the metal alloy of the composition Al86Mn14 [1] later
called a quasicrystal. Since then, the interest in these
unique objects has not diminished. On the one hand,
quasicrystals are characterized by the presence of the
symmetry axis forbidden in the classical crystallogra-
phy. On the other hand, they possess a long-range order,
which is confirmed by their diffraction patterns. The
geometric image that can possess such characteristics is
a fractal. In other words, one can assume that all the
quasicrystals would essentially be fractal objects. The
planar model of a quasicrystal is a Penrose lattice. It
seems to be logic to generate such a tiling by invoking
the methods of the fractal geometry. First, consider a
Penrose lattice as a linquistic structure, construct an
alphabet, and formulate some grammatical rules. The
alphabet corresponding to a Penrose lattice is dual
three-level one. The first (letter) level is formed by two
gold or g-triangles (Fig. 1a). The icosceless triangles
with the unit lateral sides are called gold triangles, since
the values of their bases α1 ≈ 1.618 and α2 ≈ 0.618 are
obtained from the golden section equation, α2 – α – 1 = 0.
The second (syllable) level of the alphabet is a pair of
g-rhombuses (“obtuse” and “acute” ones) obtained by
join of two g-triangles along a particular side (Fig. 1b).
The third (sentence) level consists of two ten-vertex
polygons (Fig. 1c) of which the starlike (or simply star)
one has the point of “pentasymmetry” and the dorsal
one possesses the dorsal symmetry and the point of
“pentacoordination.” Both ten-vertex polygons are built
by five obtuse and five acute rhombuses. Now, formu-
late the corresponding rules—the exclusion rules for
certain combination at the highest level of the alphabet.
They read as follows:

—a star ten-vertex polygon can form a join only
with the intersection in the form of an acute rhombus
and only with the dorsal ten-vertex polygons; 

—dorsal ten-vertex polygons can form (a) a join
with the intersection along the arrow head (a shadowed
1063-7745/01/4606- $21.00 © 0922
element in Fig. 1) and (b) a join without intersection,
which is formed by a pair of thick rhombuses such that
the axes of ten-vertex polygons should form angles of
36°, 72°, and 144°. 

Now proceed to the construction of a tiling using the
methods of the fractal geometry. Consider the genera-
tion of a Penrose lattice in the direction of “deflation.”
Any element allowed by a Penrose lattice can serve as
a global center of a fractal figure. Then rhombuses are
divided as is shown in Fig. 2. As a result, we arrive at a

(a)

(b)

(c)

Fig. 1. Alphabet for Penrose lattices: (a) the first, (b) the sec-
ond, and (c) the third levels. 

Fig. 2. Tiling with g-rhombuses.
2001 MAIK “Nauka/Interperiodica”
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tiling pattern with second-generation rhombuses. To
construct the rhombuses of the following generations,
the iteration procedure is used. The coefficient of the
deflation scale has the form 

(1)

where n is the iteration order and Fn = Fn – 1 + Fn – 2 are
the numbers of the Fibonacci sequence. The coefficient
given by (1) is an irrational number and, therefore, the
generated tiling should have “sources” and “sinks” [2].
Below we present a Penrose lattice generated by the
elements of our alphabet, i.e., rhombuses and ten-ver-
tex polygons. Lattices growing from g-rhombuses are
shown in Fig. 3. One can readily see that the grammat-
ical rules formulated earlier at the level of ten-vertex
polygons are also valid here. The strict similarity of the
tilings considered is revealed at the mth step of the iter-
ation process, m = (6n + 1), which means that an exact
copy of the polygon diminished by a factor of Km can
be found exactly in the rhombus center. One can inter-
pret this tiling in another way. Because of the internal
symmetry (rhombuses of the next generations), one can
attribute a “spin” to a rhombus position in the plane and
single out a point of “pentacoordination” (the so-called
barycenter) lying on the g diagonal of the initial rhom-
bus (for lattice growing from an acute rhombus, this
point arises beginning with the level n = 3). Then the
spin flip occurs at each iteration step, whereas the bary-
center oscillates about the g-diagonal by the law

 and, at n  ∞, it converges to the

sink point, which divides the g-diagonal of the initial
rhombus into segments whose ratio obey the golden
proportion. 

Figure 4a shows the atomic model of the structure of
the quasicrystal alloy [3]. Comparing this structure
with the fractal frameworks in Fig. 4b, one can draw a
conclusion that the Penrose lattice is the projection of
the quasicrystal model possessing the fivefold symme-
try axis. 

Now, we represent this scenario of tiling in the tree
form (Figs. 5a and 5b) and consider the trees obtained
with the tree constructed for a Fibonacci sequence. All
the trees in Fig. 5 are nonperiodic but show a certain
rigorous alternation of the points with different degree
of branching. We use the enumerating polynomials as
the graph characteristics in the form 

(2)

where Tq us the number of the root trees with branching q.

K
n α2 1+( )n α1

n
Fnα1 Fn 1– ,+= = =

1/K–( )n

n 0=
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Now, introduce the n-flow such that 

(3)

where (ξ), (ξ), and (ξ) are the Cayley’s
enumerating polynomials in Figs. 5a, 5b, and 5c, respec-
tively, ξq is the q-tuple branching point, and n is the
hierarchy number. One can see that the even levels of

Tn
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3
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2
Fn 1– ξ1

,+=
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y( )
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(a) (b)

Fig. 3. Penrose lattices growing from (a) an acute and (b) an
obtuse g-rhombuses.

(a) (b)

Fig. 4. (a) Guyot–Audier atomic model of the (Al,Si)–Mn
structure. Large spheres depict Mn, small ones, Al and
(b) fractal frameworks for four generations of a Penrose lat-
tice growing from an obtuse rhombus. 

XXXXXXXX Y Y Y Y Y

YXXYX

X Y(a) (b) (c)

Fig. 5. Cayley’s trees (a) for the scenario of constructing the
Penrose lattices from an obtuse, (b) an acute g-rhombuses,
and (c) the Fibonacci sequence. 
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Fig. 6. Hierarchic percolation of (a) entropy and (b) divergence on trees: (1) for the scenario of Penrose lattice construction from
the obtuse and (2) acute g-rhombuses, and (3) for the Fibonacci sequence. 

Bn
the Fibonacci tree (  ~ ) correspond to the tree
in Fig. 5a, whereas the odd levels of the Fibonacci trees,
to the tree in Fig. 5b. One can readily see from Figs. 5a
and 5b that obtuse rhombuses form only a triple branch-
ing point (x ~ ξ3), whereas acute ones, a double branch-
ing point (y ~ ξ2). The total number of the points at the
nth level is 

. (4)

The probability of formation of q-tuple branching
bushes at the nth iteration step is 

(5)

at 

Now, consider the probabilistic enumerating poly-
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Fig. 7. Hierarchic percolation of the fractal dimension on
trees (1) for the scenario of the Penrose lattices growing
from an obtuse and (2) from an acute g-rhombuses and
(3) for the Fibonacci sequence. 
C

nomials: 

(6)

At large n, the probabilistic enumerating polynominals
of the trees have the form 

(7)

where i is the minimum tree branching. 
Now follow the flow of the informodynamic charac-

teristics along the tree hierarchy. The intrinsic entropy
of the levels is 

(8)

where (ξq) = (pn(ξq))α( (ξq))β is the entropy func-
tional in the Vaida form. In our case, the superscripts
α = β = 1; (ξq) is the complement of the probability
pn(ξq). Dynamics of the entropy flow over hierarchies is
shown in Fig. 6a. All the entropies rapidly converge to

2  ≈ 0.472 which, coincides with the entropy values
for g-triangles. 

Now calculate the symmetrized Bongardt diver-
gence in the Vaida form, which characterizes the dis-
tance between two distributions (in our case between
two levels) 

(9)

This dependence is shown in Fig. 6b. At higher hier-
archies of the divergence and higher-level entropy, this

dependence converges to 2 . Representing the
entropy and the divergence in the vector form [4] and
using the corresponding definitions, we obtain Hn +
Bn = Hn + 1. At high-level hierarchies, the triangle con-
structed on these vectors is a three-point simplex. Tak-
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(a) (b)

Fig. 8. Penrose lattices growing from (a) a dorsal and (b) a star ten-vertex polygon. 

(a) (b)

Fig. 9. Diffraction patterns for the Penrose lattices growing from (a) a dorsal and (b) a star ten-vertex polygon. 
ing into account the strict correspondence between the
degree of tree branching and the type of the rhombus
formed on the lattice, one can state not only that the
construction procedure is regular and correct in terms
of entropy, but also that the lattice itself is regular at the
level of g rhombuses. 

Now, introduce the fractal dimension of a tree via
the informodynamic characteristics 
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entropy of the symbol ). In terms of linguistics, the
fractal dimension (10) is the ratio of the “capacities” of
a sentence and a letter. Dependence (10) is shown in
Fig. 7. The value of fractal dimension for the Fibonacci
tree calculated by this method coincides with the fractal
dimension obtained earlier in [5]. 

Now consider a lattice in which the generating ele-
ments are ten-vertex polygons (Fig. 8). The diffraction
patterns of these lattice (Fig. 9) are characterized by the
fivefold rotational symmetry. Similar to Penrose lattice
growing from rhombuses, one observes spin flip at the
level of the fractal framework, but in the case of a lattice
growing from the star ten-vertex polygon, the situation
is much more complicated (Fig. 10). The barycenter of
the Penrose lattice (the sink point), which started from
the star ten-vertex polygon, remains static at all the iter-
ations and coincides with the geometric center of tiling.
The point of pentacoordination of the fractal frame-
work of a dorsal ten-vertex polygon oscillates along the
dorsal axis according to the law (–1/K)n and converges
to the geometric center of the lattice which remains

ξ
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static. The probabilistic enumerating polynomials of
the construction of tilings from ten-vertex polygons and
rhombuses coincide. Thus, the corresponding entro-
pies, Bongardt divergences, and fractal dimensions
should also coincide. 

(a) (b)

Fig. 10. Fractal frameworks of seven generations of quasic-
rystal structures growing from (a) dorsal and (b) star ten-
vertex polygons. 
CR
The examples considered here show that fractals can
be successfully used to describe quasicrystal structures
and allow us to draw the conclusion about the “gold”
equivalence of the fractal objects with the fivefold axes
in terms of entropy. 
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Abstract—The crystal structure of calcioburbankite (Na,Ca)3(Ca,RE,Sr,Ba)3(CO3)5 found in carbonatites from
Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an
ADP-2 diffractometer (λCuKα radiation; Ni filter; 16.00° < 2θ < 130.00°; the number of (α1 + α2) reflections
was 455). All the calculations were performed within the sp. gr. P63mc; a = 10.4974(1) Å, c = 6.4309(1) Å, V =
613.72(1) Å3; Rwp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the
(Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal repre-
sentatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P63mc) is stable, irre-
spectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occu-
pancies of the positions in the eight-vertex polyhedra. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Calcioburbankite (Na,Ca)3(Ca,RE,Sr,Ba)3(CO3)5
belongs to the burbankite family comprising hexagonal
and pseudohexagonal monoclinic carbonates described
by the general formula Ä3–4Ç2–3(CO3)5 , where A = Na,
Ca, or h and B = Sr, Ba, RE, or Ca (or, sometimes, Na).
In calcioburbankite, the position B is predominantly
occupied by calcium. This mineral was discovered in
1995 in alkaline hydrothermolites from Saint-Élier
(Quebec, Canada) [1]. The structure of the mineral has
not been studied as yet.

Calcioburbankite found in carbonatites from the
Vuoriyarvi alkaline ultrabasic massif (North Kareliya)
was characterized mineralogically in 1999 [2]. In this
study, we determined the crystal structure of the min-
eral by the Rietveld method.

EXPERIMENTAL

The mineral under study originates from calcite car-
bonatites and occurs in associations with dolomite, phl-
ogopite, apatite, sulfides, and some other minerals. Cal-
cioburbankite exists in the form of massive granular
greenish-yellow aggregates. Under hydrothermal con-
ditions, calcioburbankite is unstable and is readily
replaced by calcite, ancylite-(Ce), barite, strontianite,
and other mineral aggregates.

The cationic composition of calcioburbankite
(Table 1) was studied by X-ray spectral analysis by the
analyst Ya.A. Pakhomovskiœ on a Cameca MS 46
1063-7745/01/4606- $21.00 © 20927
instrument at the Institute of Geology of the Kol’skiœ
Research Center of the Russian Academy of Sciences,
Apatity.

The X-ray spectrum of a powdered sample was
obtained on an ADP-2 diffractometer (λCuKα radia-
tion; Ni filter; 16.00° < 2θ < 130.00°; 2θ scanning tech-
nique; 0.02° per scan step; the exposure time 15–20 s;
the number of (α1 + α2) reflections 455). All the com-
putations were performed by the WYRIET program
(version 3.3) [3] within the sp. gr. P63mc. We used as
the starting model the crystal structure of burbankite
found in hydrothermolites from the Kukisvumchorr
mountain (the Khibiny massif, the Kola Peninsula) [4].
The ionic scattering curves were used. The peak pro-
files were approximated by the Pearson VII function
with 6FWHM. The asymmetry was refined for 2θ <
40°. The refinement was carried out by adding gradu-
ally the parameters to be refined with the continuous
automatic modeling of the background until the
moment when the R factors attained the constant val-
ues. The isotropic refinement converged to the Rwp fac-
tor = 2.56%.

Some characteristics of the data collection and the
results of the calcioburbankite structure refinement
with the anisotropic (the A and B cations) and isotropic
(the oxygen and carbon atoms) thermal parameters are
listed in Table 2. The experimental (solid line) and cal-
culated (dots) X-ray spectra of the mineral are shown in
the figure. The atomic coordinates, the isotropic ther-
001 MAIK “Nauka/Interperiodica”



 

928

 

C
R

Y
STA

L
L

O
G

R
A

PH
Y

 R
E

PO
R

T
S

 

      

 

V
ol. 46

 

      

 

N
o. 6

 

      

 

2001

 

B
E

L
O

V
IT

SK
A

Y
A

 

 

et al

 

.

  

eshite Remondite-(Ce) Petersenite-(Ce)

             

mc P

 

2

 

1

 

P

 

2

 

1

   

90(1) 10.412(4) 20.872(4)
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119.80(5) 120.50(1)*

     

(1) 591.9 1213.9(4)

  

2 4

  

17.16 17.38
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3.98 1.70

– 0.32

    

0.24 –

    

11.60 14.49

    

14.99 23.66

    

1.49 2.00

    

3.34 5.82

    

0.50 0.60

       

) (32.394) (46.57)

64.314**** 67.29

   

tskaya
 press)

Ginderow,
1989 [7, 10]

Grice et al.,
1994 [8]

e2O3, 0.48; SiO2, 0.19; *** Gd2O3, 0.41; Tb2O3, 0.05;
Table 1.  Unit-cell parameters and the cationic compositions of structurally studied minerals of the burbankite family

Characteristic Calcioburbankite Burbankite
(low-rare-earth) Burbankite Burbankite Burbankite Khann

Sp. gr. P63mc P63mc P63mc P63mc P63mc P63

a0, Å 10.4974(1) 10.5263(1) 10.5313(1) 10.52(4) 10.512(2) 10.57

b0, Å 10.4974(1) 10.5263(1) 10.5313(1) 10.52(4) 10.512(2) 10.57

c0, Å 6.4309(1) 6.5392(1) 6.4829(1) 6.51(2) 6.492(2) 6.54

β, deg 120 120 120 120 120 120

V0, Å3 613.72(1) 627.49(1) 622.68(1) – 621.3 634.31

Z 2 2 2 2 2 2

Cationic composition, wt %

Na2O 13.27 8.51 10.61 11.44 8.34 11.86

CaO 10.80 10.04 6.96 10.86 11.47 5.37

SrO 8.44 36.28 33.73 12.86 25.08 9.04

BaO 11.36 9.91 7.92 11.62 11.47 22.99

Y2O3 – 0.48 0.57 <0.03 –

La2O3 6.17 1.32 2.94 – 3.37 4.07

Ce2O3 10.86 0.44 5.74 – 5.39 10.46

Pr2O3 0.58 – 0.45 – 0.46 1.01

Nd2O3 2.56 – 1.36 – 1.26 3.60

Sm2O3 – – – – 0.14 –

Σ(RE2O3) (20.17) (1.76) (10.49) 15.12 (11.08) (19.14

Total 64.04 66.98 70.28 64.96** 67.47*** 68.40

References Present study Belovitskaya
et al., 2000 [4]

Belovitskaya
et al., 2000 [4]

Voronkov and 
Shumyatskaya, 

1968 [6, 10]

Effenberger
et al., 1985 [5]

Belovi
et al. (in

Note: * In the original study, b0 and c0 are interchanged. The analysis showed additionally (wt %): ** K2O, 0.99; MgO, 0.35; Al2O3, 1.05; F
**** Eu2O3, 0.09; Gd2O3, 0.24; Dy2O3, 0.07; Ho2O3, 0.01; Er2O3, 0.03; Yb2O3, 0.03; Lu2O3, 0.004.
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Table 2.  Characteristics of the refinement of the crystal structure of calcioburbankite by the Rietveld method

Characteristic Value Characteristic Value

Sp. gr. P63mc Rexp 6.92

2θ scanning range, deg 16.00–130.00 RB 3.35

Number of reflections 455 RF 2.98

Number of parameters in the refinement 54 s* 0.36

Rp 1.88 DWD** 1.33

Rwp 2.49 1.384

* s = Rwp/Rexp, where Rexp is the expected value of Rwp.
** The Durbin–Watson statistics [11].

*** The multiplier for calculations of standard deviations [12].

σx
***
mal parameters, and the occupancies of the positions in
the calcioburbankite structure are listed in Table 3.

RESULTS AND DISCUSSION

Similar to the burbankite structure [5, 6], the crystal
structure of calcioburbankite contains two independent
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
cationic positions in the centers of eight- and ten-vertex
polyhedra (A and B, respectively) formed by oxygen
atoms and three types of triangular carbonate groups
denoted as C(1), C(2), and C(3) having different orien-
tations. The average distances in the polyhedra are as
follows: A–O is 2.51 Å; B–O is 2.67 Å; and C(1)–O,
C(2)–O, and C(3)–O are 1.23, 1.36, and 1.28 Å, respec-
0

20

I, 103 pulse/s

2θ, deg40 60 80 100 120

0.5

1.0

1.5

Experimental (solid line) and calculated (dots) X-ray spectra of calcioburbankite.
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Table 3.  Structural and thermal parameters (Å2) and occupancies of positions in the structure of calcioburbankite

Atom Characteristic Value Atom Characteristic Value

A x 0.5241(6) C(2) z 0.88(1)

y 0.4759(6) Bj 1(1)

z 0.317(2) C(3) x 0.3333

Bj 1.4(2) y 0.6667

q (Na) 2.22(2) z 0.49(2)

q (Ca) 0.48(1) Bj 2(1)

q (RE)* 0.09(1) O(1) x 0.376(1)

B x 0.8406(1) y 0.088(2)

y 0.1594(1) z 0.633(2)

z 0 Bj 1.1(4)

Bj 1.01(9) O(2) x 0.926(1)

q (RE + Ba)* 1.17(1) y 0.074(1)

q (Ca) 0.94(1) z 0.344(4)

q (Sr) 0.54(1) Bj 1.8(6)

q (Na) 0.43(1) O(3) x 0.4037(8)

y 0.5963(8)

C(1) x 0.797(2) z 0.476(7)

y 0.203(2) Bj 0.5(4)

z 0.55(1) O(4) x 0.776(1)

Bj 5(2) y 0.224(1)

C(2) x 0 z 0.359(5)

y 0 Bj 1.8(6)

* All  RE were refined with the use of the f curve of cerium.
tively. In calcioburbankite, the ten-vertex polyhedra are
occupied predominantly by Ca. This is reflected in both
unit-cell parameters of calcioburbankite (whose values
are lower than those of burbankite). The B position is
occupied by Ca, Sr, RE, and Ba and a small amount of
Na. The incorporation of Na atoms into the ten-vertex
polyhedra is typical of remondite, which is a mono-
clinic representative of the burbankite family [7]. How-
ever, unlike the positions in burbankite and khan-
neshite, the A position in the calcioburbankite structure,
is occupied not only by Na and Ca, but also by a small
amount of RE (Table 3). The presence of lanthanides in
the A position in the minerals of this structure type is
observed for the first time. The refinement of the struc-
ture based on the standard model containing only Na
and Ca atoms in the eight-vertex polyhedra resulted in
the unreasonable thermal parameters for these cations.
The calcioburbankite formula established by the X-ray
diffraction analysis is (Na2.23Ca0.49RE0.09)2.81

(ëa0.95RE0.69Sr0.55Ba0.50Na0.44)3.13(CO3)5 and some-
what differs from the formula
(Na2.87Ca0.16)3.03(ëa1.14Sr0.55Ba0.50Ce0.44La0.25Nd0.10 ×
Pr0.02)3.00(CO3)5 determined by the electron probe anal-
ysis. Most likely, this difference can be attributed to the
C

variations in the composition of the specimen under
study. Our and other well-known results demonstrate
that the intraphase inhomogeneity is typical of the min-
erals of the burbankite group.

Minerals of the burbankite family crystallize in
three structure types—burbankite (sp. gr. P63mc),
remondite (sp. gr. ê21; the unit cell is close to that of
burbankite but with the angle γ being slightly different
from 120°), and petersenite (sp. gr. ê21 with the unit-
cell parameter ‡0 twice exceeding that of remondite)
(Table 1). The crystal chemistry of the monoclinic rep-
resentatives of this family has well been studied [7, 8],
whereas the structures of the hexagonal representatives
has been considered only in two articles [5, 6] devoted
to burbankite with the B position occupied simulta-
neously by RE, Ca, and Sr. We noticed that the powder
X-ray diffraction patterns of burbankites of various
compositions essentially differ from one another [4],
which gives the impetus to their systematic study. We
compared burbankite with the typical composition with
low-rare-earth burbankite [4], khanneshite (a barium
analog of burbankite), and calcioburbankite. All these
minerals appear to be isostructural and differ only in the
nature of the divalent cations (Sr, Ba, or Ca) occupying
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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mainly the B position. Therefore, the burbankite struc-
ture type is very stable and is retained as long as the B
position is occupied mainly by divalent cations of
different sizes. This structure type persists over a
wide range of the RE3+/å2+ ratios from the terminal
member (Na2 ,Ca)(Sr,Ca,Ba)3(CO3)5 [4], which is
virtually free of rare-earth elements, to, at least, cal-
cioburbankite of the composition (Na2.2Ca0.5RE0.1)2.8
(Ca1.0RE0.7Sr0.6Ba0.5Na0.4)3.2(CO3)5.1 with the highest
content of rare-earth elements in all the structurally
studied hexagonal representatives of this family. Only
the presence of RE (in a type-forming amount) and,
correspondingly, filling of the position A only with Na
lowers the symmetry down to monoclinic because of
the deviation of the angle γ from 120° [7]. The fact that
the A position in the eight-vertex polyhedron is partial
vacant (which was found by Effenberger et al. [5]),
which was confirmed in our study [4], cannot prevent
the formation of the burbankite structure type either.

Thus, the crystal structures of all the known hexag-
onal representatives of the burbankite family have been
studied. These minerals form a continuous isomor-
phous series. In this respect, the burbankite structure
type can be considered as unique, because all the Ca-,
Sr-, and Ba-dominant phases are not only isostructural
(the examples of this isostructurality are well known,
(aragonite–strontianite–witherite), but also exhibit the
complete isomorphous miscibility. Even in minerals,
whose structures contain large cavities (zeolites and
pyrochlores) and where divalent cations are present in
type-forming amounts, no ratio of the type Ca : Sr : Ba ≈
1 : 1 : 1 was ever observed. Analysis of the known data
demonstrates that the minerals containing simulta-
neously considerable amounts of Ba and Ca are charac-
terized by their ordered distribution over different
structural positions (double Ba,Ca-carbonates, wen-
kite, etc.). A substantial accumulation of Sr in calcium
minerals or of Ba in strontium minerals often leads to
the change of the structure type (the apatite group and
olgite). The only exception is made by the hexagonal
members of the burbankite family.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Abstract—The inhomogeneous (complex) polytype 3M2 of finely dispersed muscovite with the structure
formed by layers with different parity of azimuthal orientations (561) or relative rotations [11 ] was identified
for the first time using the oblique-texture electron diffraction patterns. The specimen had no rigorous order in
layer alternation, which is reflected in the distortion of the reflection positions and intensities. It is shown that
the most probable defects reduce to the replacement of the layer orientations characteristic of the 3M2 polytype
by layer orientation characteristic of the 2M2 polytype. This fact indicates that, under certain conditions, the
prismatic coordination of interlayer cations in micas is preferable. © 2001 MAIK “Nauka/Interperiodica”.

2

INTRODUCTION

Micas are a classical example of polytypism in crys-
tal structures. The three-story tetrahedron–octahedron–
tetrahedron (TOT) layers consisting of two tetrahedral
(T) and one octahedral (O) sheets are bound by inter-
layer cations and, because of the hexagonal geometry
of their lattice, can have six different azimuthal orienta-
tions related by rotations by angles multiple of 60°.
These orientations are determined by the layer axis ai

(i = 1, 2, …, 6) parallel to the common a-axis of the
structure [1, 2]. Depending on the octahedron occupan-
cies, one can distinguish tri- and dioctahedral TOT lay-
ers. The former TOT layers are always centrosymmet-
ric (CS), whereas the latter ones can also be only axially
symmetric (AS) and their tetrahedral sheets are related
not by the center of inversion in the vacant octahedron
of the octahedral sheet, but only by the twofold axis of
the sheet [3]. Dioctahedral CS and AS layers (often
denoted as trans- and cis-vacant layers) form the inde-
pendent sets of polytypes. Below, only the set of mica
polytypes formed by CS layers is considered.

In addition to simple polytypes satisfying the homo-
geneity condition, there also exist complex (inhomoge-
neous) polytypes, which, being periodic, still are char-
acterized by nonequivalent positions for each layer
among all the other layers and nonequivalent transi-
tions between the neighboring layers. The polytypes of
various micas are described by short symbols indicat-
ing the alternation period and the symmetry (1M, 3T,
6H, etc.) and the detailed symbols expressed in terms of
the absolute layer orientations (1, 2, 3, …, 6) [1] or rel-
1063-7745/01/4606- $21.00 © 20932
ative rotations of adjacent layers (0, ±1, ±2, 3) corre-
sponding to the angles 0°, ±60°, ±120°, and 180° [2].

Micas consisting of CS layers can give only six sim-
ple polytypes, namely, 1M (33… or [0]); 2M1 (24… or

[2 ]); 3T (351… or [2]3); 2M2 (45… or [1 ]); 2O (36…
or [33]); and 6H (321654… or [1]6) [4], of which only
the polytype 6H has not been found as yet. The number
of possible complex polytypes rapidly increases with
an increase of the number of layers per repetition period
and equals 5, 26, 83, and 401 at the periods equal to 3,
4, 5, and 6 layers [2]. However, in fact, only 22 inhomo-
geneous polytypes of micas with the periods of 3, 4, 5,
6, 8, 9, 10, 11, 14, and 23 layers have been found. Of
them, 19 polytypes were first identified by X-ray dif-
fraction methods and three, by oblique-texture electron
diffraction patterns [5–10]. These polytypes are related
mainly to trioctahedral and lithium-containing micas
such as biotites, siderophyllites, zinnwaldites, and lep-
idolites. The layer orientations of most inhomogeneous
micas are associated with rotations multiple of 120°,
which preserves the octahedral coordination of inter-
layer cations; the layers have the same parity of azi-
muthal orientations. If the orientations of the adjacent
layers have different parity (rotations multiple of 60°),
these cations have the prismatic coordination [11].
Inhomogeneous micas with only odd relative rotations
of the adjacent layers (regularly alternating different
parities of azimuthal orientations) have not been
encountered as yet. The mixed (irregularly alternating)
parities of these orientations turned out to be inherent
only in three micas, whereas the polytype 3341 ([0132],
4TC5) was formed in the synthetic lithium-containing

2 1
001 MAIK “Nauka/Interperiodica”
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fluorphlogopite [2], whereas the closely associating
and structurally related 561 and 565161 polytypes
([11 ] and [1 2 1 ], 3M2 and 6M1) were found only in
the natural lepidolites in Norway [9, 10]. Therefore the
surprising fact—the existence of a complex polytype
3M2 with the mixed parity of the azimuthal layer orien-
tations identified from the oblique-texture electron dif-
fraction patterns for dioctahedral mica of the muscovite
composition—seems to be very important.

GENERAL INFORMATION 
ON THE SPECIMEN STUDIED

Finely dispersed muscovite (sericite) 3M2 is found
in the ore of the Akchatau (Central Kazakhstan) molyb-
denum–tungsten deposit relating to greizen middle-
depth formations. Muscovite 3M2 is a product of pos-
tore mineralization from low-concentrated aqueous
carbon acid solutions in the process of pseudomor-
phous metasomatose at temperatures 220–60°C, which
indicates the favorable conditions for the development
of closed “forced equilibrium” microsystems [12]. This
mica is represented by yellowish grey and apple-green
dense finely dispersed aggregates; in association with
dickite, gearksutite, and pyrite, this mica occupies the
spaces between the tungstanite, topaz, and fluorite nests
partly replacing and corroding topaz and fluorite.
Sometimes it also occurs in the form of fiberlike vein-
lets of muscovite forming a fine network inside dickite
aggregates. The size of muscovite aggregates ranges
within 0.1–1.0 cm.

ELECTRON DIFFRACTION STUDIES

Oblique-texture electron diffraction patterns from
polycrystalline specimen tilted to the primary electron
beam showed a number of hk ellipses characteristic of
layer silicates with the hkl reflections. Reflections with
both h and k indices multiple of three (06l, 33l on
ellipse V) indicated the 10-Å-interlayer distance
characteristic of micas. The chemical analysis indicated
that this mica can be described by the crystallochemical
formula typical of muscovite (K0.91Na0.01Ca0.01) ·

(Al1.91F Mg0.02Mn0.01) · (Si3.12Al0.88)O10(OH)2. The
positions of the 0kl and hhl reflections on ellipses I, III,
and V indicated the monoclinic unit cell with three-
layer repetition period and normal projection of the c-
axis onto the ab plane, –cn = [–0.2, 0]. Using the con-
ventional electron diffraction formulas for oblique-tex-
ture patterns, we determined the unit cell parameters as
a = 5.20 Å, b = 9.00 Å, c = 30.06 Å, β = 91.95°. 

The value –ccosβ/a = 0.200 shows the deviation of
the monoclinicity angle from its ideal value βid = 93.4°
for which −ccosβ/a = 1/3. Such deviations are usually
caused by the decrease of the ideal value s3 = [–1/3, 0]
of the displacement vector of the successive T, O sheets
inside the TOT layers caused, in turn, by ditrigonal

2 1 1 2

e0.05
3+
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rotation of the bases of octahedra in the dioctahedral
micas and the related rotations of the vectors si (i = 1,
2, … 6) through the angles multiple of 60° [13]. The
sequence of CS TOT layers with the azimuthal orienta-
tions i, j, … is described in terms of the displacement sym-
bols as 0sisi0sjsj0…, or, in a shorter form, as 0ii0jj0… for
a repetition period cn = 2Σsi. Taking this into account, one
can determine the three-layer polytype that can have such
a value of the angle β. Assuming that s3 = [0.3, 0],
we obtain the value cn = [–0.4, 0] for the polytype 1M
(0330…), which, in fact, was established for the mus-
covite 1M [12]. Using the same s3 value for six three-
layer mica polytypes, namely, for 3T (0330550110…
or [222]), 3M1 (0330330660… or [033]), 3M2

(0550660110… or [11 ]), 3TC1 (0440440660… or

[02 ]), 3TC2 (0110110220… or [01 ]), and 3TC3
(0220330550… or [123]), one can calculate cn within
the translation of the base-centered lattice of the layer
silicates. These are [0, 0], [–0.4, 0], [–0.2, 0], [0, –0.4],
[–0.3, 0.1], and [–0.4, 0].

The geometry of the 20l and 13l reflections on
ellipse II, their number, and intensities allowed us to
exclude from consideration the polytypes 3T and 3TC1
because the equal parities of layer orientations make
them similar to the simple polytype 1M. The positions
of these reflections also excluded the polytype 3TC2
with a triclinic unit cell. Two cn values, [–0.2, 0] and
[−0.4, 0], yield the same positions for these reflections
but their indices hk on ellipse II are different, so that the
internal and external reflections of the quartets should
have the inverse intensity ratios. Only the polytype
3M2 is consistent with the intensities of reflections on
ellipse II and, which is especially important, with the
positions and intensities of the 02l and 11l reflections
on ellipse I.

VIOLATION OF RIGOROUS ORDER OF LAYER 
ALTERNATION IN THE STRUCTURE 

OF MUSCOVITE 3M2

The detailed analysis of the geometry and intensities
of reflections on oblique-texture electron diffraction
pattern from muscovite 3M2 showed some deviation
from the expected features. These deviations depend on
reflection indices and cannot match one unit cell and
one order of layer alternation.

It turned out that the values of –ccosβ/a calculated
from reflections lying on ellipses I, II, III, and V slightly
differ and are equal to 0.225, 0.224, 0.207, and 0.182,
respectively, at one projection of the c-axis onto the
layer normal being the same, csinβ. At –ccosβ/a ≈

0.200, the 0l and 3l reflections located on ellipse II
should form quartets with the equally spaced external
13l and .3.l + 1 and internal 20l, .0.l + 1 reflections
(Fig. 1). However, in the actual fact, instead of quartets,
we observed only pairs of reflections (Fig. 1c) also
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characteristic of the ideal case –ccosβ/a = 1/3 (Fig. 1a),
we observed only pairs of reflections (Fig. 1c), which
seem to be formed by merge of neighboring reflections
13l, 20l, .0.l + 1 and .3.l + 1, m displaced from their
ideal positions. The displacements are also observed

for some rather strong 3l reflections, whereas the

neighboring 0l reflections are very weak. In this case,
the intensities of reflections on ellipse II are well con-
sistent with the calculated reflections. For reflections
02l and 11l on ellipse I, the intensities of the 02l reflec-
tions are somewhat weakened in comparison with the
calculated ones and are considerably diffuse. For 04l

and 2l reflections on ellipse III, the discrepancy
between the experimentally observed and calculated
intensities becomes more pronounced. In fact, only the
22l and 2l reflections with l = 3n are present, whereas
the 04l reflections are considerably weakened. The 06l

and 3l reflections of ellipse V are represented by trip-

lets of uniformly distributed 3.3l – 1, 06l, and .3.l + 1
reflections; the internal reflections are much weaker
than the external ones.

To reveal the real structural characteristics of mus-
covite 3M2 responsible for the observed distortion of
the diffraction patterns, we calculated the theoretical
intensities for a finite sequence of 24 layers of 3M2 with
various defects in layer alternation for the 1M, 2M1, 3T,
and 2M2 types. In the models considered here, the strict
sequence of the 3M2 layers was interrupted by the links
of various lengths of the 1M, 2M1, 2M2, and 3T
sequences, so that the 3M2 zones turned out to be in dif-
ferent azimuthal orientations. The diffraction charac-
teristics were calculated by the program in which the

2 1

1
±

2
±

2
±

2

3
±

3

l

(a)

13l + 1

(b)

20l

13l

(c)

20l + 1
13l + 1, 20l

13l, 20l + 1

Fig. 1. Scheme of reflection arrangement on ellipse II of the
oblique-texture electron diffraction pattern from muscovite
3M2 calculated at two –ccosβ/a values (a) 1/3, (b) 0.200,
and (c) observed on real oblique-texture electron diffraction
pattern.
C

structure factors of arbitrary sequence of arbitrary num-
bers of mica layers were expressed in terms of the scat-
tering amplitudes of individual layers and the phase
factors in the orthogonal coordinate system with due
regard for the real distortions of the layers and their rel-
ative positions.

We considered the following possible stacking
faults in the sequence of the layers in the 3M2 structure.

For the 1M-type stacking faults: 2 (0)n…, 2 (0)n….

For the 2M1-type stacking faults: 2 (2 )n…,

2 2( 2)n…, 2 ( 2)n…, 2 2( 2)n…, 11 2( 2)n…,

11 (2 )n…, 2 (2 )n…. For the 3T-type stacking

faults: 2(222)n..., 11(222)n…, and 2 (222)n…. For

the 2M2-type stacking faults: 2 1( 1)n…, 2 (1 )n…,

111( 1)n…, 11( 1)n…, 11 (1 )n…, 1 1( 1)n…,

1 1 (1 )n…. In all the cases, the symbol … indicates
one of the six possible variants of the continuation of
the layer sequence inherent in the 3M2 structure: 11,

11 , 1 1, 2 , 2, and 2 .
The above characteristics of electron diffraction pat-

terns are best explained by the presence of the type-2M2
“defects” in muscovite 3M2. The stacking faults in the
layer sequence manifests themselves most clearly in the
merge and displacement of the maxima on the diffrac-
tion profiles calculated for the 20l and 13l reflections of
ellipse II (Fig. 2). The presence of the type-2M2 defects
results in the formation of pairs instead of quartets of
reflections characteristic of the defect-free 3M2 struc-
ture; the calculated profiles have pairs of reflections on
ellipse II in the positions corresponding to positions of
reflections observed on the electron diffraction pat-
terns. For the defects of the types 1M, 2M1, and 3T, one
should observe either pairs of reflections displaced in
the opposite directions in comparison with the reflec-
tions really observed on electron diffraction patterns, or
the triplets of reflections with the middle reflection
absent on diffraction patterns. The type-2M2 defects
agree much better with the diffraction characteristics
observed on ellipses III and V on the diffraction pat-
terns. Reflections on ellipse I are inappropriate for
estimating the effect produced by defects of various
types.

EXPERIMENTAL RESULTS 
AND DISCUSSION

Oblique texture electron diffraction patterns, the
most efficient experimental material for the polytype
analysis in finely disperse layer silicates, allowed us to
reveal and uniquely identify, for the first time, the inho-
mogeneous muscovite polytype 3M2 in which the alter-
nating layers are characterized by the mixed parity of
azimuthal orientations. This mica has pairs of adjacent
layers rotated by angles 120° and 60° with respect to

11 1 1

11 2

11 2 11 2 11 2 2 2

2 2 1 1 2

11 2 1 1

11 1 11 1

2 1 2 1 2 1 2 1

2 1 1

2

2 2 11 11 1 1
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1.3.18

1.3.18

2.0.17

1.3.172.0.17

1.3.16
2.0.16

1.3.16

1.3.15

1.3.15

2.0.14

2.0.15
1.3.14

2.0.13

2.0.14

1.3.13 (a)

(b)

(c)

1.3.14

Fig. 2. Intensity profiles of 20l and 13l reflections on ellipse II of the oblique-texture electron diffraction pattern calculated for the
sequence of 24 layers of muscovite 3M2 (a) without defects in the layer sequence at –ccosβ/a = 0.200 and (b, c) with defects in the
layer sequence of types (b) 2M2 and (c) 1M, 2M1, and 2T. The vertical segments ended with circles on the profile in Fig. 2b indicate
the positions and the intensities of reflections observed on electron diffraction patterns.
one another, which is characteristic of micas with the
same and alternating parities of the azimuthal orienta-
tions of the successive layers. The interlayer cations are
either in the octahedral or the trigonal–prismatic coor-
dination. In the polytype 3M2 , both these interlayer
spacings coexist and alternate in the proportion 1 : 2. In
the real muscovite 3M2 , this order is also interrupted by
the defects in layer alternation according to the law of
2M2. As a result, the inhomogeneity in this mica has a
triple meaning indicating (i) nonequivalence of the rel-
ative orientations of the adjacent layers for different
pairs, (ii) different parity of these orientations resulting
in the formation of nonequivalent interlayers, and (iii)
the interruption of the rigorous periodicity by the incor-
poration of the 2M2-type defects.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
The occurrence in nature not only of lepidolite but
also muscovite 3M2 is consistent with the remarkable
fact that the homogeneous polytype 2M2 is also known
only for lepidolite and muscovite. Obviously, under the
specific conditions of crystallization of these micas, the
prismatic coordination of interlayer cations is more
advantageous than octahedral, and, therefore, the corre-
sponding defects break the rigorous periodicity of the
muscovite 3M2 structure. It should be indicated that the
high-resolution electron microscopy study of the lepi-
dolite 3M2 [10] and selected-area electron diffraction
study revealed the complex polytype 6M1 (615651 or

[1 1 2 ]), which can be considered as a result of the
periodic inversion of the constituent fragments of the
3M2 structure by the elements of the 2M2 structure.

2 1 1
1
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Abstract—The structure of Na,Ca,Zr-silicate lovozerite, Na2CaZr[Si6O12(OH,O)6] · H2O, from the Khibiny
alkaline massif (the Kola Peninsula) was refined by single-crystal X-ray diffraction analysis (Syntex  diffrac-
tometer, λMoKα radiation, 2θ/θ scanning technique). The refinement (Rhkl = 0.077, 1531 independent reflec-
tions; anisotropic thermal parameters) confirmed the trigonal system proposed for the mineral earlier
(sp. gr. R3; a = 10.18(1) Å, c = 13.13(2) Å, Z = 3) and revealed the presence of two additional positions (C and B)
statistically occupied by Ca and Na atoms (and partly by Mn) and H2O molecules, respectively. © 2001 MAIK
“Nauka/Interperiodica”.

P1
The crystal structure of the alkali zirconium silicate
lovozerite was first solved in 1960 within the mono-
clinic space group C2 (a = 10.48 Å, b = 10.20 Å, c =
7.33 Å, β = 92°30′) [1]. Lovozerite can be considered
as a parent mineral for a large group of natural and syn-
thetic compounds, whose structures are based on a
framework of six-membered silicon–oxygen (lovozer-
ite-type) rings linked through isolated M-octahedra.
The cavities of the framework are occupied by Na
atoms and H2O molecules. Later [2], lovozerite of

composition (Na2.5Ca0.5Mg0.2)3.2(Zr0.7 Ti0.1)1.0

(Si5.8Al0.2)6.0O13.0((OH)5.2Cl0.2)5.4 found in pegmatites
from the Khibiny massif (the Kola Peninsula) was stud-
ied by the X-ray diffraction method. It was shown that
the mineral belongs to the trigonal system (a = 10.18 Å,
c = 13.01 Å) with the possible space groups R32, R3m,

and . The matrix of the transformation of the trig-
onal unit cell into the monoclinic one has also been
reported: (–1/3 –2/3 –2/3; 1 0 0; –1/3 –2/3 1/3). The
parameters of the monoclinic unit cell thus obtained
(a = 10.53 Å, b = 10.18 Å, c = 7.32 Å, β = 92°40′) were
virtually equal to those determined previously [1]. It
should be noted that the lovozerite formula
Na2ZrSi6O15 · 3H2O · 0.5NaOH proposed as the most
probable in [1] is incorrect, because it takes no account
of the presence of divalent cations, which, according to
the data of chemical analysis, should be present in this
mineral. This incorrectness is also evidenced by the
results of all the more recent studies, which revealed
that divalent cations occupy the position C in the lovoz-
erite structural type. The crystallochemical analysis of
lovozerite-like compounds [3, 4] demonstrated that
their structures consist of identical pseudocubical (a =
7.5 Å) block units of the general formula
A3B3C2M[Si6O18] (Fig. 1). The vertices of the blocks

Fe0.2
3+

R3m
1063-7745/01/4606- $21.00 © 0937
are occupied by M cations (M = Zr, Ti, Mn, Fe, Ca, Sn,
Cd, etc.) octahedrally coordinated by oxygen ions. The
Si cations are located in the centers of six octants of
each block. The centers of the remaining two octants
(along one of the threefold axes of the prototype cell)
are also occupied by octahedrally coordinated C cat-
ions (C = Ca, Mn, Na, etc.). The positions at the mid-
points of the edges (A) and in the centers of the faces
(B) of the above-mentioned blocks are filled predomi-
nantly with Na cations (more rarely, with Fe, Ti, Mn,
Ca, Cd, or H). The diversity of the structures of the min-
erals of the lovozerite group is associated with the vari-
ations in the mode of filling of the above positions in
the block and in the mode of junction of the adjacent
blocks.

The ambiguity of the results of lovozerite investiga-
tion [1, 2] as well as the lack of the structural data for
the trigonal modification of the mineral described in [2]
gave impetus to the refinement of its crystal structure.

The lovozerite specimen was selected from a small
veined rischorrite pegmatite stripped by the Apatitovyœ
Tsirk quarry at the Rasvumchorr mountain in the south
of the Khibiny alkaline massif (the Kola Peninsula).
The pegmatite is composed of potash feldspar,
nepheline, black prismatic aegirine-diopside, green
fibrous aegirine, alkaline amphibole, eudialyte, lampro-
phyllite, and lovozerite as the main minerals. Lomons-
ovite, magnesiumastrophyllite, pectolite, calborsite,
rasvumite, hisingerite, etc. are present in minor
amounts. Lovozerite replaces eudialyte crystals and is
developed as a rim and, sometimes, as massive grained
complete pseudomorphs up to 3–4 cm in diameter (iso-
metric grains of sizes up to 1–1.5 mm) and has the
sandy-yellow or the creamy color. Relics of the primary
ultra-agpaitic paragenesis indicate that these pseudo-
morphs after eudialyte were originally composed of
2001 MAIK “Nauka/Interperiodica”
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zirsinalite Na6CaZrSi6O18. As the alkalinity of the
medium decreased, this mineral lost some sodium,
which was accompanied by hydration, and transformed
into lovozerite stable under these conditions. The
chemical composition of the lovozerite was studied by
the electron probe analysis. Quantitatively, sodium and
water contents were determined by the wet method.
The average composition (wt %) is as follows: Na2O,
7.7; K2O, 0.6; CaO, 4.6; MgO, 0.1; MnO, 1.4; Fe2O3,
2.0; SiO2, 58.7; TiO2, 0.5; ZrO2, 15.4; HfO2, 0.3;
Nb2O5, 0.1; H2O+, 10.3; the sum is 101.7. The empirical
formula (with respect to Si6(O, OH)18: (Na1.52K0.08)Σ1.60 ·
(Ca0.50Mn0.12Mg0.02)Σ0.64(Zr0.77Fe 0.15Ti0.04Hf0.01)Σ 0.97 ·
[Si6 O12.61(OH)5.39]Σ180.82H2O.

EXPERIMENTAL

X-ray diffraction data were collected from a single
crystal of dimensions 0.15 × 0.15 × 0.25 mm. The
parameters and the symmetry of the trigonal unit cell
(a = 10.18 Å, c = 13.13 Å) were refined on an auto-

mated single-crystal Syntex  diffractometer. The
X-ray data were collected on the same diffractometer.
The details of the X-ray diffraction study are given in
Table 1. The systematic absences of the hkl reflections
not satisfying the condition –h + k + l = 3n, and the non-
equivalence of the pairs of the hkl and khl reflections
indicate the rhombohedral Bravais lattice and two pos-
sible space groups—R3 and . All the subsequent
calculations were carried out with the use of the AREN
program package [5]. At the first stage, the monoclinic
system proposed in [1] was tested by refining the lovoz-

P1

R3

CCC

BBB

BBB
BBB

BBB
BBB

CCC

BBB

Si
SiSi

Si
Si

Si

M

MM

M A

A

A
A

A

A

A

D

MM
A

A
AAA

M A M

A

Fig. 1. Schematic arrangement of the atomic positions in
the cubic “prototype unit cell” of the lovozerite structural
type [4].
C

erite structure in the monoclinic C-centered unit cell
with the parameters a = 10.54 Å, b = 10.18 Å, c =
7.33 Å, β = 92°79′. The matrix of the transformation
from the R- to the C-centered cell was as follows: –1/3
–2/3 –2/3; 1 0 0; –1/3 –2/3 1/3. The atomic coordinates
reported in [1] were used as the starting model. The
refinement of the model by the least-squares method
within the possible space groups C2/m, C2, and Cm
gave inadequate results due to the considerable scatter
in the interatomic distances in the Si-tetrahedra and the
high reliability factors (0.17, 0.15, and 0.12, respec-
tively). Hence, the subsequent calculations were car-
ried out within the acentric space group R3. The start-
ing model was refined isotropically by the least-squares
method to Rhkl = 0.12. The difference electron density
synthesis revealed two additional maxima with the coor-
dinates x1 ≈ 0.25, y1 ≈ 0, z1 ≈ 0.75 and x2 ≈ 0.01, y2 ≈ 0.5,
z2 ≈ 0.1 (coincided with the C and B positions, respec-
tively) of the pseudocubic block typical of the lovozer-
ite structural type (Fig. 1). It was assumed that the C
position is occupied by Ca, Na, and Mn cations,
whereas the B position is occupied by H2O molecules.
The distribution of the cations over all independent crys-
tallographic positions was determined by refining the
occupancies and then the atomic scattering curves were
chosen with due regard for the data of chemical analysis,
the determination of the effective ionic radii of the cations,
the thermal parameters of the atoms, and the average cat-
ion–oxygen distances. The refinement of the model by the
least-squares method with allowance for mixed filling of
some cationic positions gave the minimum final reliability
factors Rhkl  = 0.104 and 0.077 in the isotropic and aniso-
tropic approximations, respectively. The distribution of
the cations is indicated in Table 2.

The detailed crystallochemical formula of lovozer-
ite is (Na2.2K0.1)(Ca0.4Na0.2Mn0.1)(Zr0.8Fe0.1Ti0.03Hf0.03) ·
[Si6O12(OH)3(OH0.6O0.4)3] · 0.9H2O. The idealized for-
mula is (Na, h)3(Ca, Na, h)Zr[Si6O12(OH)3(OH, O)3] ·
H2O. The anionic portion of the structure was separated
into the O2– ions and (OH)– groups based on the results
of calculations of the local valence balance according
to Pyatenko [6]. The high values of the atomic thermal
parameters and a rather high Raniso factor (0.077) are
explained by an insufficiently high quality of the single
crystal used and, consequently, insufficiently high qual-
ity of the experimental data and the presence of vacan-
cies. The final coordinates of the basis atoms and the
equivalent thermal parameters are given in Table 2.

RESULTS AND DISCUSSION

On the whole, the refinement of the lovozerite struc-
ture confirmed the initial model [1], based on the
framework of six-membered rings of the
[Si6O12(OH)3(OH, O)3] tetrahedra (the average Si–O
distances in the Si(1)- and Si(2)-tetrahedra are 1.55 and
1.60 Å, respectively) sharing the oxygen vertices with
isolated M-octahedra (the M–O distances vary from 2.0
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Table 1.  Principal details of X-ray diffraction study of lovozerite

Characteristic Value

Crystal dimensions, mm 0.15 × 0.15 × 0.20

Automated single-crystal diffractometer Syntex  P  

Radiation MoKα

Monochromator Graphite

Sp. gr. R3

Unit-cell parameters a = 10.18(1) Å

c = 13.13(2) Å

V = 1180(3) Å3

Number of formula units, Z 3

Scanning technique 2θ/θ

Maximum sinθ/λ 1.064

Scan rate 4–24 deg/min

Number of measured reflections with I > 1.96 δ(I) within the recipro-
cal-space hemisphere

1531

Number of independent reflections 753

Program package AREN

Reliability factors Rhkl: 

isotropic refinement 0.104

anisotropic refinement 0.077

Weighting scheme used in the least-squares procedure w = 1/(A + F + BF2)

A = 2Fmin

B = 2/Fmax

1

Table 2.  Coordinates of the basis atoms and individual thermal parameters in the lovozerite structure

Atom
(position)

Position 
multiplicity Position occupancy x/a y/b z/c Beq, Å2

(A) 9 0.73Na + 0.03K 0.341(3) 0.172(2) 0.166(2) 4.3(3)

(B) 9 0.3H2O 0.002(8) 0.462(6) 0.006(4) 4.4(3)

(C) 3 0.35Ca + 0.20Na + 0.08Mn 0 0 0.742 6.2(2)

(M) 3 0.80Zr + 0.14Fe + 0.03Ti + 0.03Hf 0 0 0 2.9(2)

Si(1) 9 Si 0.4829(8) 0.5172(8) 0.2208(6) 3.3(2)

Si(2) 9 Si 0.1835(5) 0.3696(6) 0.0952(5) 2.2(1)

O(1) 9 O 0.447(3) 0.224(3) –0.003(2) 7.3(6)

O(2) 9 (OH, O) 0.555(3) 0.424(3) 0.248(2) 6.5(5)

O(3) 9 (OH) 0.208(2) 0.104(2) 0.325(1) 3.1(3)

O(4) 9 O 0.336(3) 0.433(4) 0.159(2) 8.8(9)

O(5) 9 O 0.101(2) 0.184(2) 0.091(1) 3.1(3)

O(6) 9 O 0.601(2) 0.667(2) 0.161(1) 4.9(4)
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Fig. 2. Crystal structure of lovozerite projected onto the xy plane.
to 2.11 Å; the average is 2.06 Å) (Fig. 2). The M cations
(predominantly Zr) in the model of lovozerite proposed
earlier [1] and in the refined structure are located in the
lattice sites of the pseudotrigonal (monoclinic) and trig-
onal unit cells, respectively. In the monoclinic cell, the
M positions are located in the centers of the basal faces
of the C cell. The matrix of the transformation from the
C unit cell to the double-centered hexagonal R cell is
1/2 –1/2 1; 0 1 0; –1 0 1. The refined lovozerite structure
differs from the earlier model primarily in that in the
former, the cationic C position is statistically (by
~60%) filled with Ca, Na, and Mn atoms (the C–O dis-
tances vary from 2.19 to 2.89 Å; the average is 2.54 Å).
The C-octahedra share the oxygen faces with the
M-octahedra and also contribute to strengthening of the
crystal structure.

It should be noted that the C position was also found
in the structure of a new representative of the lovozerite
group, Na,Zr-silicate litvinskite (Na, H2O, h)3

(h, Na, Mn2+)Zr[Si6O12(OH)3(OH, O)3] (a = 10.589 Å,
b = 10.217 Å, c = 7.355 Å, β = 92.91°, sp. gr. Cm, Z = 2)
[7, 8] discovered in ultra-agpaitic pegmatites from the
Lovozero massif (the Kola Peninsula). However, these
positions in two minerals are filled differently. Thus,
the C position in lovozerite is occupied predominantly
by Ca and Na cations by about 60%, whereas this posi-
tion in litvinskite is occupied by 33% and predomi-
nantly by Na and Mn cations. Similar to litvinskite, this
position in lovozerite is the only one that does not obey
the center of inversion, i.e., violating the centrosym-
metric structure. The Na cations in the lovozerite struc-
ture are located in the framework cavities and statisti-
cally occupy (by ~80%) the A position (in the mono-
clinic space group, this position is split into two
independent positions). The A–O distances in the eight-
vertex A-polyhedra vary from 2.38 to 2.87 Å (the average
is 2.61 Å). In the study of the litvinskite structure [8], the
possibility of the higher (trigonal) symmetry of the
mineral has been examined; however, the results of the
structure refinement within the trigonal unit cell turned
out to be inadequate.

In the refined lovozerite structure, there is an addi-
tional B position statistically (by ~30%) filled with H2O
molecules. This position was not detected either in the
initial lovozerite model [1] or in litvinskite [8].

The comparison of the refined lovozerite structure
with the structure of zirsinalite having the similar com-
position Na6(Ca0.5h0.5)2Zr[Si6O18] (a = 10.29 Å, c =

26.31 Å, sp. gr. , Z = 6 [9]) after the transformation
of the atomic coordinates of the latter [9] from the trig-

R3c
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onal R unit cell to the double-centered hexagonal cell
showed that these structures are virtually identical (the
matrix of the transformation from the hexagonal R cell
of zirsinalite to the analogous unit cell of lovozerite is
0 –1 0; 1 1 0; 0 0 1/2). The only difference reduces to
that the A position in the cubic prototype cell of the
lovozerite structure (Fig. 1) is occupied by Na atoms
and the B position is statistically (by ~30%) occupied
by H2O molecules, whereas both these positions (A and
B) in the zirsinalite structure characterized by the sub-
stantially higher Na content are filled with Na atoms
alone. The Ca atoms in the zirsinalite structure statisti-
cally (by ~50%) occupy both C positions with retention
of the center of symmetry, whereas only one of two C
positions in the lovozerite structure is occupied by Ca
(Na, Mn) atoms (also statistically, by 60%), which
excludes the presence of centers of inversion in the lat-
ter structure. In addition, doubling of the unit-cell
parameter c of zirsinalite (c = 26.31 Å) in comparison
with that of lovozerite (c = 13.01 Å) is explained by the
presence of the coordinate planes c and the center of

inversion in the holohedral sp. gr.  of zirsinalite,
which are absent in the sp. gr. R3 of lovozerite. The
structural similarity of lovozerite and zirsinalite is
determined genetically. According to Khomyakov,
lovozerite cannot be crystallized alone and, thus, can
arise only as homoaxial pseudomorph after zirsinalite
[10]. No facts inconsistent with this hypothesis have
been found. Hence, the process of lovozerite generation
from zirsinalite reduces to the loss of more than one-
half of sodium atoms, with the deficiency of the posi-
tive charge being compensated by the replacement of
the corresponding number of oxygen atoms by the OH
groups. This process is also accompanied by incorpora-
tion of water molecules into one of the empty cavities.
The number of cations located in the framework cavi-
ties drastically decreases upon the transformation of
zirsinalite into lovozerite, which manifests itself in the
density (2.9–3.0 g/cm3 for zirsinalite and 2.4–2.7 g/cm3

for lovozerite) and in the refractive indices (1.605–
1.610 and 1.53–1.57 for zirsinalite and lovozerite,
respectively). However, neither the cationic composi-
tion nor the configuration of the {Zr[Si6(O, OH)18]}
framework are changed in the transition from zirsinalite
to lovozerite, which provides the close structural rela-

R3c
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tionship between the prototype phase (zirsinalite) and
the newly formed mineral (lovozerite).

To summarize, the refinement of the lovozerite
structure confirmed the trigonal symmetry of the min-
eral proposed earlier by Kapustin et al. [2] and revealed
the presence of two additional (C and B) positions sta-
tistically occupied by Ca and Na (and partly by Mn)
cations and H2O molecules, respectively. Thus, the ide-
alized formula of lovozerite should be written as
Na2CaZr[Si6O12(OH, O)6] · H2O.
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Abstract—Polyphosphates of the compositions LiPO3, Li4H(PO3)5, and LiMn(PO3)3 were prepared by the
reactions of Li2CO3 and MnO2 with melts of polyphosphoric acids at 240–350°C, and their crystal structures
were established. The unit-cell parameters are a = 13.074 Å, b = 5.4068 Å, c = 16.452 Å, β = 99.00°, sp. gr.

P2/n; a = 6.6434 Å, b = 7.253 Å, c = 11.399 Å, α = 72.60°, β = 83.36°, γ = 85.32°, sp. gr. ; a = 8.364 Å,
b = 8.561 Å, c = 8.6600 Å, sp. gr. P212121, respectively. The influence of cations on the structures of the com-
pounds is discussed. © 2001 MAIK “Nauka/Interperiodica”.

P1
Continuing our studies of the effect of metal cations
on the composition and structure of condensed phos-
phates formed in melts of polyphosphoric acids [1, 2],
we examined the influence of metal cations on the
1063-7745/01/4606- $21.00 © 0942
structure (including the configuration of polyphosphate
chains) in a series of simple, acid, and double polyphos-
phates: LiPO3, Li4H(PO3)5, and LiMn(PO3)3, respec-
tively.
a

0 c

Li
P

Fig. 1. The LiPO3 crystal structure projected along the [010] direction.
2001 MAIK “Nauka/Interperiodica”
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Table 1.  Main crystallographic parameters, details of X-ray data collection, and characteristics of the refinement of the
LiPO3, Li4H(PO3)5, and LiMn(PO3)3 structures

Compound LiPO3 Li4H(PO3)5 LiMn(PO3)3

System Monoclinic Triclinic Orthorhombic

a, Å 13.074(2) 6.6434(8) 8.364(2)

b, Å 5.4068(8) 7.253(2) 8.561(2)

c, Å 16.452(2) 11.399(3) 8.6600(9)

α, deg 90 72.60(2) 90

β, deg 99.00(2) 83.36(2) 90

γ, deg 90 85.32(2) 90

Sp. gr. P2/n P P212121

Z 20 2 4

V, Å3 1148.6(3) 520.0(2) 620.1(2)

ρcalcd, g/cm3 2.484 2.706 3.201

µ, mm–1 0.888 0.980 2.933

θmax, deg 30 30 30

Diffractometer Enraf Nonius CAD-4

Scanning mode ω/2θ
Number of observed reflections 3121 3248 902

Number of crystallographically independent
reflections

2772 3024 884

Number of crystallographically independent
reflections with I > 2σ(I)

1872 1533 818

Number of parameters in the refinement 227 221 127

R1/wR2 (I > 2σ(I))* 0.0379/0.0652 0.0319/0.0751 0.0350/0.0863

R1/wR2 (all data) 0.0828/0.0856 0.0463/0.0792 0.0386/0.0883

Gof 0.791 1.015 1.056

* R1 = Σ | |Fo | – |Fc | |/Σ |Fo |, wR2 = {Σ [w ]/Σ [w ]}1/2.

1

Fo
2

Fc
2

–( )
2

Fo
2( )

2

EXPERIMENTAL

Simple, acid, and double lithium polyphosphates
were synthesized starting from Li2CO3, MnO2, In2O3,
and 85% phosphoric acid. Mixtures of the components
taken in specified ratios were heated for 4–6 days in the
temperature range of 240–350°C. The crystals formed
were washed off from the melt with water and were
studied by the X-ray phase and the X-ray structure anal-
ysis.

In the course of the synthesis in the Li2O–MnO2–
P2O5(H2O) system, Mn(IV) was reduced to Mn(III) and
then to Mn(II). Heating of the mixture of the initial
components taken in the atomic ratio Li : Mn : P = 5 :
1 : 15 in a platinum crucible for 4 days at 350°C pro-
vided the formation of the precipitate consisting of
three phases: Mn(PO3)3 (its structure has been estab-
lished earlier [3]), LiMn(PO3)3, and Li4H(PO3)5. These
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
phases were ruby-red, pale lilac, and colorless, respec-
tively.

We failed to obtain double lithium–indium phos-
phates in the Li2O–In2O3–P2O5(H2O) system. Heating
of the mixture of the components taken in the atomic
ratio Li : In : P = 5 : 1 : 15 in a glassy-carbon crucible
for 6 days at 240°C resulted in synthesis of LiPO3 crys-
tals and trace amounts of an unidentified phase.

Earlier [4], LiPO3 was studied by X-ray diffraction
analysis, with the refinement being performed within
the sp. gr. Pn. Based on analysis of the interatomic dis-
tances, we assumed that the centrosymmetric space
group P2/n is highly probable. Generally, polyphos-
phates containing the cations of only one kind have two
types of P–O bonds—two short bonds involving the ter-
minal atoms (~1.48 Å) and two long bonds with the
participation of the bridging oxygen atoms (~1.60 Å).
The unusual P–O bond lengths were reported in [4],
1
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Table 2.  Atomic coordinates and thermal parameters for the LiPO3, Li4H(PO3)5, and LiMn(PO3)3 structures 

Atom x/a y/b z/c Ueq, Å2

LiPO3

P(1) 0.45202(4) 0.67317(10) 0.31660(4) 0.00988(14)
P(2) 0.35155(4) 0.33960(10) 0.41668(4) 0.00839(14)
P(3) 0.23891(4) 0.68754(10) 0.50907(3) 0.00686(14)
P(4) 0.12646(4) 0.34525(9) 0.60220(4) 0.00885(14)
P(5) 0.03325(4) 0.68770(9) 0.70608(4) 0.00712(13)
O(1) 0.35939(12) 0.7562(4) 0.26052(11) 0.0239(4)
O(2) 0.54125(12) 0.8437(3) 0.33857(10) 0.0160(4)
O(3) 0.49433(14) 0.4164(3) 0.28561(11) 0.0210(4)
O(4) 0.42169(11) 0.5774(3) 0.40225(9) 0.0124(3)
O(5) 0.42300(12) 0.1449(3) 0.45414(11) 0.0179(4)
O(6) 0.27989(12) 0.2827(3) 0.34116(10) 0.0194(4)
O(7) 0.29515(13) 0.4356(3) 0.48838(11) 0.0229(4)
O(8) 0.31014(12) 0.8193(3) 0.57299(10) 0.0207(4)
O(9) 0.19359(12) 0.8258(3) 0.43501(10) 0.0167(4)
O(10) 0.14279(12) 0.5835(3) 0.54694(11) 0.0165(3)
O(11) 0.07563(12) 0.1497(3) 0.54779(10) 0.0150(4)
O(12) 0.22132(10) 0.2962(3) 0.65918(9) 0.0108(3)
O(13) 0.03568(12) 0.4449(3) 0.65069(9) 0.0160(4)
O(14) 0.13940(11) 0.7790(3) 0.73133(10) 0.0189(4)
O(15) –0.04738(12) 0.8588(3) 0.66343(10) 0.0172(4)
Li(1) 0.1835(3) –0.0095(7) 0.3246(2) 0.0150(8)
Li(2) 0.3233(3) 0.0214(7) 0.6735(3) 0.0197(8)
Li(3) –0.0610(2) 0.9991(7) 0.5579(2) 0.0113(8)
Li(4) 0.5576(3) 0.0200(11) 0.4421(3) 0.0333(12)
Li(5) 1/4 0.5044(11) 1/4 0.0245(13)
Li(6) 1/4 0.5352(10) 3/4 0.0134(11)

Li4H(PO3)5

P(1) 0.28979(6) 0.87563(6) 0.95103(4) 0.00721(10)
P(2) 0.07194(6) 0.65685(6) 0.82848(4) 0.00665(10)
P(3) 0.14250(6) 0.72131(6) 0.56137(4) 0.00679(10)
P(4) 0.39016(6) 0.97605(6) 0.35973(4) 0.00714(10)
P(5) 0.20270(6) 0.76137(6) 0.22529(4) 0.00704(10)
O(1) 0.46199(18) 0.73138(19) 0.95362(12) 0.0126(2)
O(2) 0.16727(18) 0.83777(17) 0.08478(11) 0.0107(2)
O(3) 0.11915(18) 0.83093(17) 0.87748(12) 0.0116(2)
O(4) 0.3211(2) 0.08564(17) 0.90403(12) 0.0135(3)
O(5) 0.07094(18) 0.77204(17) 0.68435(11) 0.0102(2)
O(6) 0.23971(18) 0.50518(17) 0.84361(11) 0.0107(2)
O(7) –0.13782(19) 0.60381(18) 0.88000(12) 0.0128(2)
O(8) 0.22013(18) 0.92178(17) 0.47568(11) 0.0108(2)
O(9) 0.30418(18) 0.56532(17) 0.57153(11) 0.0104(2)
O(10) –0.05311(19) 0.69025(19) 0.51301(12) 0.0118(2)
O(11) 0.56411(19) 0.83264(18) 0.38250(11) 0.0115(2)
O(12) 0.42119(19) 0.18435(17) 0.33283(11) 0.0108(2)
O(13) 0.26927(19) 0.95091(17) 0.25159(11) 0.0110(2)
O(14) 0.36635(18) 0.60719(18) 0.25417(12) 0.0118(2)
O(15) –0.00401(19) 0.71555(19) 0.29045(11) 0.0129(2)
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Table 2.  (Contd.)

Atom x/a y/b z/c Ueq, Å2

Li4H(PO3)5

Li(1) 0.7225(5) 0.7127(5) 0.0122(3) 0.0171(6)

Li(2) 0.3817(5) 0.3621(5) 0.4457(3) 0.0228(7)

Li(3) 0.6846(5) 0.6865(5) 0.2632(3) 0.0181(6)

Li(4) 0.4266(5) 0.3977(5) 0.1757(3) 0.0184(7)

H(1) –0.049(4) 0.704(4) 0.441(3) 0.034(8)*

LiMn(PO3)3

Mn(1) 0.12897(11) 0.85641(11) 0.15864(11) 0.0075(2)

P(1) 0.20179(19) 0.80733(19) 0.55968(18) 0.0086(3)

P(2) 0.31298(18) 0.52094(18) 0.68931(18) 0.0079(3)

P(3) 0.02851(17) 0.32069(19) 0.68323(17) 0.0081(3)

O(1) 0.1589(5) 0.8612(6) 0.4031(5) 0.0144(10)

O(2) 0.3103(5) 0.9063(5) 0.6546(5) 0.0108(9)

O(3) 0.2744(5) 0.6350(5) 0.5476(5) 0.0086(8)

O(4) 0.0411(5) 0.7731(5) 0.6534(5) 0.0123(9)

O(5) 0.3775(5) 0.6155(5) 0.8194(5) 0.0116(9)

O(6) 0.1383(5) 0.4637(5) 0.7358(5) 0.0117(9)

O(7) 0.5905(5) 0.8874(5) 0.8660(5) 0.0128(10)

O(8) –0.1041(5) 0.3744(6) 0.5819(5) 0.0118(9)

O(9) 0.1305(5) 0.1918(6) 0.6221(5) 0.0137(9)

Li(1) 0.3464(13) 0.8649(16) 0.8842(14) 0.019(3)

* For the H(1) atom, the Uiso value is given.
e.g., 1.48, 1.48, 1.56, and 1.66 Å for the bond lengths
involving P(1) and 1.44, 1.48, 1.49, and 1.60 Å for P(2).
Taking into account all the above facts, we performed
the refinement of the LiPO3 crystal structure within the
centrosymmetric space group P2/n.

The crystallographic parameters and the details of
X-ray data collection and structure refinement of the
compounds synthesized are given in Table 1. The crys-
tal structures were solved by direct methods using the
SHELXS97 program package [5]. The atomic coordi-
nates and thermal parameters were refined using the
SHELXL97 program package [6], and their refined val-
ues are listed in Table 2.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
Lithium polyphosphate LiPO3 consists of infinite
polyphosphate chains aligned along the [101] direction
with the periodic repetition of ten PO4-tetrahedra. Each
PO4-tetrahedron contains two bridging oxygen atoms
involved in the P–O–P bonds (1.57–1.62 Å) and two
terminal oxygen atoms (P–O lengths range within
1.47–1.49 Å). The lithium atoms are located between
the chains, so that the adjacent LiO4 tetrahedra (the Li–
O distances vary from 1.91 to 2.04 Å) share their edges
to form infinite chains (Fig. 1) parallel to the polyphos-
phate chains.

In the structure of acid lithium polyphosphate
Li4H(PO3)5, the chains consisting of the PO4-tetrahedra
(the repetition period equals five) are aligned along the
O(10)
P(3) O(5)

O(7)

P(2)

P(1) P(5) P(3A)

P(2A)

P(1A)

P(5A)

P(4A)

O(13A)

O(10A)O(15)

O(2)

O(4)

O(1)

O(3)

O(6)
O(8)

O(12)

O(11)

P(4)

O(13) O(9)

Fig. 2. The polyphosphate chain in the Li4H(PO3)5 structure.

O(14)
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Fig. 3. Double chains of Li-polyhedra in the Li4H(PO3)5 structure.

Fig. 4. The LiMn(PO3)3 crystal structure projected along the [001] direction; Mn-octahedra and PO4-tetrahedra are shown; Li atoms
are represented by circles.
[001] direction. The P–O distances with the participa-
tion of the bridging and terminal oxygen atoms are
range within 1.57–1.61 and 1.48–1.49 Å, respectively.
The O(10) atom in the P(3)O4-tetrahedron is bound to
the hydrogen atom involved in hydrogen bonding
(O(10)···O(15) {x, y, z – 1} is 2.473(2) Å; O(10)–H(1)
is 0.79(3) Å; H(1)···O(15) is 1.69(3) Å, the
O(10)H(1)O(15) angle equals 171(3)°), with the O(15)
atom belonging to the P(5)O4 tetrahedron of the same
C

chain (Fig. 2). Four independent lithium atoms are
located in the coordination polyhedra of three types.
Thus, the coordination environment of the Li(1) atom is
a distorted tetrahedron (Li–O are 1.91–2.01 Å), the
Li(2) and Li(3) atoms are in an octahedral environment
(Li–O are 2.02–2.37 Å), and the Li(4) atom has a tet-
ragonal-pyramidal environment (Li–O are 1.97–
2.34 Å). The Li-polyhedra share edges to form infinite
double ribbons (Fig. 3) extended, like the polyphos-
phate chains, along the [001] direction.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Double lithium–manganese polyphosphate
LiMn(PO3)3 is built by polyphosphate chains with the
repetition period of six PO4 tetrahedra and the Mn-octa-
hedra. The P–O distances involving the bridging and
the terminal oxygen atoms vary from 1.58 to 1.60 Å and
from 1.48 to 1.49 Å, respectively. The Mn–O distances
range within 2.08–2.13 Å. The polyphosphate chains
and the Mn-octahedra form a framework with the cavi-
ties being occupied by lithium atoms. The nearest envi-
ronment of the Li atoms consists of six oxygen atoms
(Fig. 4).

RESULTS AND DISCUSSION

In addition to the crystal structures described in this
study, a number of other double polyphosphates were
reported. These are double polyphosphates LiMII(PO3)3

(MII = Cu [7] or Fe [8]) isostructural to LiMn(PO3)3 and
two series of isostructural double polyphosphates of
lithium and trivalent metals LiMIII(PO3)3 (MIII = Al, Ga,
Fe, or Cr) [9] and LiLn(PO3)4 (Ln = La–Lu) [10] pre-
pared in our previous study. The structures of
LiAl(PO3)3 [11], LiGa(PO3)3 [12], LiNd(PO3)4 [13],
and LiEr(PO3)4 [14] were established. The structures of
double polyphosphates of the composition LiMIII(PO3)4

are based on bent polyphosphate chains, MIIIO6-octahe-
dra, and LiO4-tetrahedra. Sharing edges octahedra and
tetrahedra are linked in pairs and are located between
the chains. In polyphosphates of the composition
LiLn(PO3)4 , the bent polyphosphate chains are linked
by eight-vertex neodymium-polyhedra and lithium-tet-
rahedra into the framework. A comparison of the struc-
tural data for the LiPO3, Li4H(PO3)5, LiMII(PO3)3,
LiMIII(PO3)3 , and LiLn(PO3)4 series demonstrates that
the cationic component produces a considerable effect
on the configuration of the polyphosphate chains in the
compounds under consideration. Thus, in LiPO3 and
Li4H(PO3)5, these chains are linear, whereas in the
structures of double polyphosphates, the chains are
bent and are characterized by the repetition of six PO4-
tetrahedra in LiMII(PO3)3 to four tetrahedra in double
phosphates with trivalent cations.

It is noteworthy that only polyphosphates can be
crystallized from melts of polyphosphoric acids con-
taining lithium cations and various cations of di- and
trivalent metals, whereas double salts containing cyclic
or branched anions cannot be formed. At the same time,
double cyclophosphates, in which the ring size corre-
lates with the size of the alkali metal cation, were
obtained along with polyphosphates of other alkali
metal cations: cyclopenta-Na2MnP5O15, cycloocta-

K2 P8O24, cyclododecaphosphates Cs3 P12O36,M2
III

MIII
3
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and ultraphosphates Na3MIIIP8O23 with isolated cage-
like anions [15].

The absence of lithium-containing cyclophosphates
is explained by the fact that the cationic-environment
geometry plays an important role in the formation of
structures with “rigid” cyclic cations. Apparently, a
small lithium cation can not satisfy these requirements.
On the contrary, polyphosphate chains can change their
configuration because of high flexibility of the constit-
uent fragments. Thus, they can readily meet any geo-
metric and coordination requirements set by metal cat-
ions. This situation is really observed in the series of the
polyphosphates under consideration.
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Abstract—The crystal structure of 1,1'-di-tert-butylnickelocene is studied by the X-ray diffraction technique
in the temperature range 143–243 K. The crystals are monoclinic, space group P21/n, Z = 2. The molecule is
centrosymmetric. The cyclic ligands are parallel and adopt a staggered conformation. At 143 K, the mean bond
lengths are as follows: Ni–C, 2.194(6); C–C (in the ring), 1.421(6); and C–C (Me), 1.538(2) Å. Analysis of the
thermal motion of the molecule is performed within the single-parameter model, which allows for the indepen-
dent motion of the cyclopentadienyl ring with the tert-butyl group as a whole and the motion of the tert-butyl
group. It is shown that the molecule is structurally nonrigid and the tert-butyl group executes librational motion.
The B5 heights of the rotation barriers are estimated from the rms libration amplitudes: 〈ϕ 2〉 are equal to 40(5)
and 34(4) kJ/mol at 143 and 243 K, respectively. © 2001 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Compound 1,1'-di-tert-butylnickelocene (I) belongs
to the series of metallocene (sandwich π-complex)
derivatives Cp*M, where Cp* is a substituted cyclopen-
tadienyl ligand and M is 3d, 4d, or 5d transition metal.
Our earlier systematic studies of the thermal intramo-
lecular motion in crystals of metallocene derivatives
[1–5] revealed a high rotational mobility of the ligands.
It was also noted that the size of the substituents virtu-
ally does not affect the root-mean-square (rms) libra-
tion amplitude of the ligands. In molecule I, unlike the
earlier-studied compounds, the ligand is asymmetri-
cally substituted. It was of interest to elucidate how this
substituent affects the mobility of the Cp* ligand and
the molecule as a whole in the crystal. For this purpose,
we performed the X-ray structure analysis of
(η5-C5H4C4 )2Ni (I) in the temperature range 143–
243 K, determined the crystal and molecular structures,
and obtained the parameters of thermal motion of the
molecule in the crystal. The compound reported here
continues the series of metallocenes characterized in
the same aspect.

EXPERIMENTAL

The crystal structure of I was studied by the X-ray
diffraction technique at 143, 183, and 243 K with the
same prismatic single crystal 0.4 × 0.3 × 0.3 mm in size.
The diffraction data were collected on a Siemens P3/PC
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four-circle automated diffractometer (λMoKα, graphite
monochromator, θ/2θ scan mode, θ ≤ 30°), which was
equipped with an LT-2 low-temperature attachment.
Crystals I are monoclinic; space group P21/nac and Z =
2 are retained in the temperature range studied. The unit
cell parameters at 243 and 143 K, respectively, have the
following values: a = 6.140(2) and 6.093(2) Å, b =
11.158(3) and 11.086(2) Å, c = 11.649(3) and
11.629(2) Å, β = 95.21(2)° and 95.56(2)°, and V =
794.8 and 781.8 Å3. The structure was solved by the
heavy-atom method and refined by the least-squares
procedure in the full-matrix anisotropic (isotropic for H
atoms) approximation. The hydrogen atoms were
located from the difference Fourier synthesis. In order
to improve the accuracy in the determination of the
atomic thermal parameters, the final refinement was
performed using the procedure of quasi-high-angle
refinement [6], which consisted in overestimating the
statistic weights of the high-angle reflections by the
choice of a proper weighting scheme. In this procedure,
the thermal and positional parameters of the H atoms,
which were preliminarily refined, were fixed. The
results of the refinement are presented in Table 1. The
coordinates of the non-hydrogen atoms at 143 and
243 K are listed in Table 2. All the calculations were
performed with the SHELXTL programs [7] on an IBM
personal computer. (The parameters of the anisotropic
atomic displacements are available from the authors.)
2001 MAIK “Nauka/Interperiodica”
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RESULTS AND DISCUSSION

Molecular Geometry

A general view of molecule I with the atomic num-
bering is shown in Fig. 1. The projection of the mole-
cule onto the plane of the substituted cyclopentadienyl
(η5-C5H4C4 ) ring (Cp*), in which the atoms are rep-

resented as probability (p = 50%) ellipsoids of thermal
displacements at 143 and 243 K, is displayed in Fig. 2.
The main geometric characteristics of molecule I at 243
and 143 K are given in Table 3.

Molecule I is centrosymmetric. The Cp* ligands are
strictly parallel and adopt a staggered conformation.
The cyclopentadienyl rings are planar (the deviations of
the C atoms from the rms plane are within 0.002 Å in
the temperature range studied). The C(6) atom of the
tert-butyl group deviates from the plane of the ring by
0.083(2) Å in the direction opposite to the Ni atom. The
C(1)–C(5)–C(6)–C(7), C(1)–C(5)–C(6)–C(9), and
C(1)–C(5)–C(6)–C(8) torsion angles, which character-
ize the orientation of the tert-butyl substituent, are
equal to 85.4°, –154.8°, and –34.0° at 143 K and 84.8°,
–155.5°, and –34.2° at 243 K, respectively. The bond
lengths at 243 K have the following values: Ni–C,
2.180–2.204 Å [mean, 2.191(7) Å]; C–C (in the ring),
1.391–1.426 Å [mean, 1.414(10) Å]; and C–C(Me),
1.523–1.536 Å [mean, 1.529(5) Å]. As was expected,
upon cooling to 143 K, the bond lengths slightly
increase (due to the decrease in the amplitudes of ther-
mal vibrations), whereas the spread in bond lengths and
errors in their determination decrease: Ni–C, 2.187–
2.208 Å [mean, 2.194(6) Å]; C–C, 1.410–1.429 Å
[mean, 1.421(6) Å]; and C–C(Me), 1.536–1.540 Å
[mean, 1.538(2) Å].

Correction for thermal motion [8] resulted in the
lengthening of the Ni–C bonds, on average, by 0.005 Å;
the C–C bonds, by 0.005–0.008 Å; and the C–C(Me)
bonds, by 0.006–0.01 Å (Table 3).

Note that the noticeable spread in the Ni–C bond
lengths (±0.006 Å at 143 K) is due to the displacement
of the Ni atom by 0.05 Å from the fivefold axis in the
five-membered ring and not to the insufficient accuracy
in their estimation (esd is 0.003 Å). The centers of two
Cp* rings are shifted relative to each other by 0.05 Å
toward the tert-butyl groups, and the angle between the
line connecting the centers of the Cp* rings and the nor-
mal to the plane of the ring is 0.8°. A similar shift of the
Cp ligands was observed in the monoclinic modifica-
tion of nickelocene (space group P21/a, Z = 2): at
293 K, the shift is equal to 0.104 Å (the corresponding
angle is 1.64°) [9].

In molecule I, the bond lengths are slightly longer
than those in the unsubstituted nickelocene at 101 K
(Ni–C, 2.185 Å and C–C, 1.423 Å) and are close to the
bond lengths Cp2Ni, which were determined by the
electron diffraction technique in a gaseous phase (Ni–
C, 2.196 Å and C–C, 1.430 Å [10]).
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It should be emphasized that, on the whole, the tert-
butyl group does not substantially affect the geometry
of the (η5-C5H4) fragment of I (as compared to Cp2Ni).
However, in the case when the molecules of pentame-
thylruthenocene and pentamethylferrocene contain five
methyl substituents, the Ru–C and Fe–C bonds shorten
by 0.020 and 0.010 Å, respectively, and the C–C bonds
in the rings lengthen by 0.013 and 0.010 Å, respec-
tively, in comparison with the bond lengths in the com-
pounds with unsubstituted ligands [1–3].

Analysis of Thermal Motion

Thermal motion in crystal I was studied within the
framework of the LTS rigid-body model [11, 12] and its
modification, the single-parametric Dunitz–White

Table 1.  Results of the refinement of structure I

T, K 143 183 243

Number of reflections 
measured

1896 2004 1794

F > 8σ(F) 1123 1092 1011

R, % 2.60 2.78 3.31

Rw, % 2.99 3.17 3.41

GOF 0.90 0.93 1.08

Table 2.  Coordinates of the non-hydrogen atoms (×104) in
crystal I at 243 K (the upper row) and 143 K (the lower row)

Atom x y z

Ni 0 0 0

0 0 0

C(1) 2610(8) –1016(3) –724(3)

2634(4) –1020(2) –720(2)

C(2) 1416(9) –1794(4) –58(4)

1426(5) –1813(2) –45(2)

C(3) –726(9) –1831(4) –560(5)

–765(5) –1849(2) –560(2)

C(4) –895(8) –1076(4) –1542(4)

–926(4) –1089(2) –1544(2)

C(5) 1188(7) –558(4) –1657(3)

1190(4) –575(2) –1654(2)

C(6) 1830(7) 244(3) –2620(3)

1822(4) 237(2) –2624(2)

C(7) 2666(12) –554(6) –3560(5)

2630(6) –566(3) –3573(3)

C(8) –130(11) 971(6) –3136(5)

–156(5) 982(3) –3146(3)

C(9) 3652(9) 1098(4) –2178(5)

3681(5) 1109(3) –2180(3)
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Fig. 1. A general view of molecule I and the atomic numbering.
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C(6)
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Ni
Ni

Fig. 2. Projection of molecule I onto the plane of the Cp* ring. The atoms are represented by probability ellipsoids of thermal dis-
placements (p = 50%) at 143 K (left) and 243 K (right). The ligand related by the center of symmetry is omitted.
model, which allows for intramolecular librations of
separate atomic groups in the molecule [8]. The calcu-
lations were performed with the THMA-11 program
[13] according to the procedure proposed in [14, 15].
The coordinates and anisotropic thermal parameters of
the non-hydrogen atoms, which were obtained in the
refinement of the structure at each of the three temper-
atures, were used as the starting data. The results of the
calculations are presented in Table 4.

The feature that distinguishes molecule I from the
earlier-studied metallocenes [1–5] is the presence of the
tert-butyl groups, which can execute librational vibra-
tions about the C(5)–C(6) and C(5A)–C(6A) bonds in
addition to the rotational vibrations together with the
Cp* rings. The possibility of occurring this type of
intramolecular motion is indicated, in particular, by the
C

form of thermal ellipsoids of the atoms in the tert-butyl
groups (Fig. 2).

This assumption is confirmed by the calculations
within the single-parametric model (the motion of the
molecule as a whole and the intramolecular libration of
the tert-butyl group about the threefold axis). The
agreement between the observed Uij and the values cal-
culated within this model was satisfactory in the entire
temperature range [Ru = 0.07–0.09, 〈∆U2〉1/2 = 0.0011–
0.0017 Å2 , 〈∆U2〉1/2 = 0.0010–0.0016 Å2] and some-
what better than that in the case of the calculations per-
formed with the usual LTS rigid-body model [Ru =
0.10–0.11, 〈∆U2〉1/2 = 0.0017–0.0019 Å2 , 〈∆U2〉1/2 =
0.0015–0.0017 Å2]. Hereinafter, we present only the
results obtained within the single-parametric model.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Table 3.  Bond lengths (Å) [uncorrected (d) and corrected (d*) for thermal motion] in molecule I at 243 K (the upper row)
and 143 K (the lower row)

Bond d d* Bond d d*

Ni–C(1) 2.193(4) 2.198 C(2)–C(3) 1.391(7) 1.410

2.194(3) 2.197 1.410(4) 1.414

Ni–C(2) 2.187(5) 2.194 C(3)–C(4) 1.416(6) 1.423

2.192(3) 2.195 1.417(4) 1.423

Ni–C(3) 2.180(4) 2.185 C(4)–C(5) 1.421(5) 1.427

2.187(3) 2.191 1.426(4) 1.429

Ni–C(4) 2.189(4) 2.193 C(5)–C(6) 1.516(6) 1.523

2.191(3) 2.194 1.522(4) 1.525

Ni–C(5) 2.204(4) 2.208 C(6)–C(7) 1.536(7) 1.543

2.208(3) 2.211 1.537(4) 1.544

C(1)–C(2) 1.415(6) 1.420 C(6)–C(8) 1.529(7) 1.542

1.429(4) 1.432 1.536(4) 1.544

C(1)–C(5) 1.426(6) 1.430 C(6)–C(9) 1.523(7) 1.535

1.420(3) 1.425 1.540(4) 1.545

Mean Ni–C 2.191(7) 2.196(7) Mean C–C(Cp) 1.414(10) 1.422(7)

2.194(6) 2.198(6) 1.421(6) 1.425(6)

Mean C–C(Me) 1.529(5) 1.540(4)

1.538(2) 1.544(1)

Table 4.  Eigenvectors and eigenvalues of the L (deg2) and T (×104 Å2) tensors for molecule I in the Cartesian coordinate system

T, K 143 183 243

L1 10.6 –0.639 0.110 0.762 13.9 0.559 –0.206 –0.803 18.6 0.581 –0.102 –0.807

L2 2.4 0.753 0.294 0.589 3.2 –0.816 0.033 –0.576 5.1 –0.743 0.338 –0.578

L3 1.2 –0.159 0.949 0.271 1.4 0.145 0.978 –0.150 1.5 0.332 0.935 0.121

T1 0.0204 0.963 –0.083 0.258 0.0255 0.94 –0.116 0.317 0.0386 0.948–0.131 0.288

T2 0.0164 0.269 0.182 –0.964 0.0255 0.336 0.263 –0.904 0.0386 0.314 0.284 –0.905

T3 0.0107 0.031 0.979 0.197 0.0134 0.022 0.958 0.286 0.0187 0.036 0.950 0.311
The rms libration amplitudes 〈ϕ 2 〉  of the tert-butyl
group are equal to 18(4), 20(5), and 29(6) deg2 at 143,
183, and 243 K, respectively. The heights B3 of the bar-
rier of rotation about the threefold axis, which were cal-
culated in the harmonic approximation, are equal to 46,
47, and 50 kJ/mol at 143, 183, and 243 K, respectively.

As could be expected from the results of the previ-
ous studies of the metallocene derivatives [1–5], the
librational motion of molecule I as a whole in the crys-
tal is anisotropic. The maximum amplitude is observed
for the libration about the L1-axis (Table 4) close to the
fivefold pseudoaxis. Upon heating from 143 to 243 K,
the amplitude of the L1 libration of the molecule as a
whole increases from 10.6 to 18.6 deg2.

Note that the eigenvalues of the L tensors calculated
for I and Cp2Ni differ significantly. The L1 value for
Cp2Ni is considerably larger than that for I: it is equal
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
to 45.1 and 199.5 deg2 at 101 and 293 K, respectively
[9]. Thus, the tert-butyl substituent in the ligand of mol-
ecule I causes a significant decrease in the libration
amplitude of this ligand. At the same time, the methyl
substituents in the crystals of pentamethylruthenocene
[1] and pentamethylferrocene [2] have only insignifi-
cant effect on the libration amplitudes of the corre-
sponding ligands. Apparently, in the case of molecule I,
the asymmetry of the ligand, rather than the size of its
substituent, determines the L value. A similar result was
obtained also for acetylruthenocene [16].

The translational molecular motion in crystal I is
actually isotropic. Upon heating from 143 to 243 K, the
amplitude of the translational motion increases approx-
imately by a factor of two. The eigenvalues of the trans-
lation tensor for I at 143 and 243 K are close to those
calculated for Cp2Ni at 101 and 293 K, respectively.
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The calculation of the ∆ differences in the rms
amplitudes of the “approaching” shifts for the pairs of
carbon atoms in the direction of the chemical bond
between them (the Hirshfeld rigid-bond test [17])
reveals that the Cp* ring is structurally rigid in the tem-
perature range studied; the mean ∆ value for all the C–
C bonds in the ring is 8 × 10–4 and 11 × 10–4 Å2 . At the
same time, the rms ∆ value for pairs of chemically non-
bonded C atoms belonging to different ligands is 41 ×
10–4 and 63 × 10–4 Å2 at 143 and 243 K, respectively.
This indicates that the ligands execute intramolecular
librational vibrations. The calculated rms libration
amplitudes of the Cp* ligands in crystal I are equal to
9(1), 13(2), and 17(2) deg2 at 143, 183, and 243 K,
respectively.

The B5 heights of the barriers of rotation about the
fivefold axis for the ligands in molecule I in the crystal,
which were calculated in the harmonic approximation
using the 〈ϕ 2 〉  data, are 40(5), 36(5), and 34(4) kJ/mol
at 143, 183, and 243 K, respectively. These values are
significantly larger than the B5 rotation barriers for the
Cp rings in the crystal of Cp2Ni, which are equal to 7(1)
and 5(1) kJ/mol at 101 and 293 K, respectively. This
difference is explained by the steric hindrances in
ligand reorientation, which are introduced by the tert-
butyl group.
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STRUCTURE 
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X-ray Diffraction Study of 2,2',4,4',6,8,8',10,10',12-
Decamethylbicyclo[5.5.1]hexasiloxane 
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Abstract—The crystal structures of two organosilicon compounds are studied by X-ray diffraction at 200 K.
Crystals of 2,2',4,4',6,8,8',10,10',12-decamethylbicyclo[5.5.1]hexasiloxane (C10H30O7Si6) are monoclinic, a =
12.260(1) Å, b = 11.716(1) Å, c = 32.169(2) Å, β = 92.802(2)°, space group C2/c, Z = 8, wR2 = 0.132, and R1 =
0.053 for 3989 reflections with F > 4σ(F). Crystals of 2,2',4,4',6,8,8',10,10',12-decamethylbicyclo[5.5.1]-9-car-
bahexasiloxane (C11H32O6Si6) are triclinic, a = 10.709(1) Å, b = 11.046(1) Å, c = 12.111(1) Å, α = 117.059(1)°,

β = 95.566(1)°, γ = 108.088(1)°, space group , Z = 2, wR2 = 0.115, and R1 = 0.048 for 3948 reflections with
F > 4σ(F). It is found that the substitution of the methylene group for the oxygen atom is accompanied by a
minor conformational change in the bicyclic fragment and the SiCSi angle changes from the tetrahedral angle to
121.0(1)°. The high variability of the SiOSi bond angles is confirmed. © 2001 MAIK “Nauka/Interperiodica”.

P1
INTRODUCTION

In recent years, cyclolinear polyorganosiloxanes
have attracted the particular attention of researchers
owing to their liquid-crystal properties and application
to Langmuir–Blodgett technologies. It was found that
the properties of cyclolinear polyorganosiloxanes are
predominantly determined by the dimensions and con-
formations of the monomers and the nature of the sub-
stituents at the Si atoms [1]. The conformational poten-
tial of the monomers and, hence, the polymers depends
on the limits of variation of the SiOSi angle. According
to [2], the SiOSi angles vary from 142.2° in unsubsti-
tuted disiloxane to 180° in some disiloxanes that have
bulky substituents without hydrogen bonding. In [1], it
was assumed that the conformational flexibility of the
monomers can be additionally affected by incorpora-
tion of the (CH2)n fragments between the silicon atoms.
Moreover, it is possible to control the hydrophilic–
hydrophobic properties of macromolecules in organo-
silicon polymers based on the modified monomers by
variation of the Si–O : Si–CH2 ratio.

In the cyclic monomers that contain the SiCH2Si
groups, the conformation of the ring can differ from
that in the purely oxygen analogues because of the dif-
ference in the electronic structure of the carbon and
oxygen atoms. Possible conformational changes in the
1063-7745/01/4606- $21.00 © 0953
monomers are primarily determined by the geometric
parameters of the methylene group. In this connection,
for the purpose of revealing the conformational
changes, we carried out X-ray diffraction investigation
of the crystal structures of two compounds, namely,
2,2',4,4',6,8,8',10,10',12-decamethylbicyclo[5.5.1]hex-
asiloxane (I) and 2,2',4,4',6,8,8',10,10',12-decamethyl-
bicyclo[5.5.1]-9-carbahexasiloxane (II).

EXPERIMENTAL

According to the procedure described in [3], the
reaction of 1,3-di-hydroxy-1,1,3,3-tetramethyldisi-
loxane with 1,1,7,7-tetra-chloro-1,3,3,5,5,7-hexame-
thyltetrasiloxane or bis(1,1-dichloro-1,3,3-trimethyl-
diloxane)methylene   resulted   in   the   formation   of
2,8-dichlorodecamethylcyclohexasiloxane or 2,8-
dichloro-2,4,4,6,6,8,10,10,12,12-decamethylcyclo-9-
carbahexasiloxane, respectively. These compounds
underwent a partial hydrolysis. In turn, the products of
partial hydrolysis were converted into compounds I and
II due to the transannular interactions between the
SiOH and SiCl groups.

Single crystals suitable for X-ray diffraction analy-
sis were obtained by slow evaporation of benzene solu-
tions. Main crystallographic parameters and experi-
2001 MAIK “Nauka/Interperiodica”
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mental data at 200 K are summarized in Table 1. The
processing of the experimental data and further calcu-
lations were performed with the SAINT [4] and
SHELXTL97 [5] programs on an IBM AT personal
computer. Both structures were solved by the direct
method and refined by the full-matrix procedure in the
anisotropic approximation for the non-hydrogen atoms.
All hydrogen atoms in the structures studied were
located from the difference Fourier syntheses and
included in further refinement in the isotropic approxi-
mation. The coordinates and equivalent isotropic ther-
mal parameters of the non-hydrogen atoms are listed in
Tables 2 and 3. The bond lengths, bond angles, and tor-
sion angles are listed in Tables 4–6, respectively.

RESULTS AND DISCUSSION

A distinctive feature of molecules I and II is the
presence of the endocyclic bridging O(1) oxygen atom
(Figs. 1, 2). This results in the formation of the bicyclic

Table 1.  Crystallographic parameters and experimental data
for structures I and II

Parameter I II

Empirical formula C10H30O7Si6 C11H32O6Si6
Mr 430.88 428.91

Crystal system Monoclinic Triclinic

Space group C2/c P

Z 8 2

a, Å 12.260(1) 10.709(1)

b, Å 11.716(1) 11.046(1)

c, Å 32.169(2) 12.111(1)

α, deg 90 117.059(1)

β, deg 92.802(2) 95.566(1)

γ, deg 90 108.088(1)

V, Å3 4615.2(6) 1163.7(1)

Dcalcd, g/cm3 1.240 1.224

µ, mm–1 0.385 0.378

F(000) 1840 460

Diffractometer Smart 1000 CCD Smart 1000 CCD

λ, Å 0.71073 0.71073

T, K 200(2) 200(2)

θmax, deg 28.98 30.04

Total number
of reflections

5600 6641

Number of reflections 
with F > 4σ(F)

3989 3948

Refinement on F2 F2

R1 0.053 0.048

wR2 0.132 0.115

S 0.961 0.870

1

C

systems in which the molecules are folded along the
Si(1)⋅⋅⋅Si(2) segment. The Si atoms in both rings of the
bicyclic fragments are coplanar (Table 7), and the
angles between their planes are 106.9° and 106.5° in I
and II, respectively. In an analogue of compound I,
namely, cis-1,7-diphenyl-3,3,5,5,9,9,11,11-octameth-
ylbicycloheptasiloxane [6, 7], the bicyclic fragment is
less planar and the planar fragments are not distin-
guished: the atomic deviations from the planes passing
through the Si atoms of the bicyclic fragments are
approximately 0.27 Å and the dihedral angle between
these planes is 125.9° [7]. Unlike cis-1,7-diphenyl-
3,3,5,5,9,9,11,11-octamethylbicycloheptasiloxane, in
which the SiOSi angles have close values and their
mean is 144.2° [6], the SiOSi bond angles in the struc-
tures studied vary over wide ranges: 144.6°–162.6° in I
and 139.2°–163.6° in II (Table 5).

Substitution of the CH2 group in molecule II for the
oxygen atom in I is accompanied by an insignificant

Table 2.  Coordinates (×104) and isotropic thermal parame-
ters (Å2 × 103) of the non-hydrogen atoms in structure I

Atom x y z Ueq

Si(1) 2527(1) 5766(1) 1053(1) 32(1)

Si(2) 435(1) 7149(1) 799(1) 32(1)

Si(3) 1182(1) 3482(1) 983(1) 39(1)

Si(4) –916(1) 4869(1) 739(1) 37(1)

Si(5) 2380(1) 6580(1) 1964(1) 39(1)

Si(6) 313(1) 8079(1) 1697(1) 38(1)

O(1) 1645(1) 6594(1) 814(1) 38(1)

O(2) 2003(2) 4525(1) 1110(1) 52(1)

O(3) –454(1) 6142(1) 827(1) 50(1)

O(4) 2844(1) 6276(2) 1509(1) 46(1)

O(5) 1307(2) 7350(2) 1904(1) 77(1)

O(6) 318(1) 7991(1) 1194(1) 44(1)

O(7) 104(1) 3982(1) 733(1) 44(1)

C(1) 3758(2) 5708(3) 755(1) 50(1)

C(2) 216(3) 7960(3) 317(1) 54(1)

C(3) 1860(3) 2496(3) 637(1) 68(1)

C(4) 797(4) 2785(4) 1465(1) 70(1)

C(5) –1821(3) 4508(3) 1160(1) 66(1)

C(6) –1638(3) 4813(4) 224(1) 67(1)

C(7) 2038(6) 5264(4) 2236(1) 84(1)

C(8) 3450(4) 7372(5) 2256(1) 84(1)

C(9) 490(3) 9591(3) 1841(1) 65(1)

C(10) –988(4) 7531(5) 1877(2) 76(1)
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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conformational change in the bicyclic fragment
(Table 7). This is associated, to some extent with the
value of the SiCSi angle. In structure I, the

Table 3.  Coordinates (×104) and isotropic thermal parame-
ters (Å2 × 103) of the non-hydrogen atoms in structure II

Atom x y z Ueq

Si(1) 4419(1) 5426(1) 2199(1) 32(1)

Si(2) 3472(1) 6380(1) 4639(1) 31(1)

Si(3) 3444(1) 7551(1) 1554(1) 36(1)

Si(4) 2321(1) 8367(1) 4073(1) 36(1)

Si(5) 2057(1) 2254(1) 722(1) 34(1)

Si(6) 1021(1) 3244(1) 3189(1) 35(1)

O(1) 4437(2) 5952(2) 3691(1) 39(1)

O(2) 3730(2) 6281(2) 1752(2) 53(1)

O(3) 3219(2) 7779(2) 4725(1) 38(1)

O(4) 3513(2) 3671(2) 1319(2) 47(1)

O(5) 1124(2) 2594(2) 1713(2) 46(1)

O(6) 2005(2) 4998(2) 4043(2) 43(1)

C(1) 6160(3) 5763(3) 2041(3) 50(1)

C(2) 4334(3) 6849(4) 6245(3) 48(1)

C(3) 4906(4) 8480(4) 1121(4) 62(1)

C(4) 1873(3) 6602(4) 214(3) 56(1)

C(5) 587(3) 6884(4) 3130(3) 57(1)

C(6) 2207(5) 9997(4) 5435(3) 65(1)

C(7) 1144(3) 1928(4) –817(3) 57(1)

C(8) 2390(3) 639(3) 517(3) 50(1)

C(9) 1583(4) 2283(4) 3915(3) 58(1)

C(10) –755(3) 3027(4) 3152(3) 52(1)

C(11) 3251(3) 8940(3) 3061(2) 41(1)

C(7)

Si(5)
O(4)

C(1)
Si(1)

O(1)

C(5)

O(2)

C(4)

Si(3)

C(3)

O(7)

Si(4)

C(6)

C(2)

O(3)

Si(2)

Si(6)

O(6)C(9)

C(10)

O(5)

C(8)

Fig. 1. Structure of molecule I.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
Si(3)O(7)Si(4) bond angle is 146.4(1)°, and in structure
II, the Si(3)C(11)Si(4) angle is 121.0(1)°. The latter
angle essentially differs from the tetrahedral angle but

Table 4.  Bond lengths (Å) in structures I and II

I II

Bonds d Bonds d

Si(1)–O(2) 1.604(2) Si(1)–O(2) 1.598(2)

Si(1)–O(4) 1.614(2) Si(1)–O(4) 1.608(2)

Si(1)–O(1) 1.619(2) Si(1)–O(1) 1.624(2)

Si(1)–C(1) 1.829(3) Si(1)–C(1) 1.831(3)

Si(2)–O(3) 1.612(2) Si(2)–O(3) 1.610(1)

Si(2)–O(1) 1.617(2) Si(2)–O(6) 1.615(2)

Si(2)–O(6) 1.620(2) Si(2)–O(1) 1.626(2)

Si(2)–C(2) 1.828(3) Si(2)–C(2) 1.828(3)

Si(3)–O(7) 1.622(2) Si(3)–O(2) 1.636(2)

Si(3)–O(2) 1.622(2) Si(3)–C(4) 1.842(3)

Si(3)–C(3) 1.831(3) Si(3)–C(3) 1.852(3)

Si(3)–C(4) 1.834(3) Si(3)–C(11) 1.858(2)

Si(4)–O(3) 1.616(2) Si(4)–O(3) 1.636(2)

Si(4)–O(7) 1.627(2) Si(4)–C(5) 1.853(3)

Si(4)–C(6) 1.841(3) Si(4)–C(6) 1.857(3)

Si(4)–C(5) 1.842(3) Si(4)–C(11) 1.856(3)

Si(5)–O(5) 1.599(2) Si(5)–O(5) 1.623(2)

Si(5)–O(4) 1.634(2) Si(5)–O(4) 1.625(2)

Si(5)–C(7) 1.830(4) Si(5)–C(7) 1.838(3)

Si(5)–C(8) 1.830(4) Si(5)–C(8) 1.839(3)

Si(6)–O(5) 1.605(2) Si(6)–O(6) 1.623(2)

Si(6)–O(6) 1.624(2) Si(6)–O(5) 1.627(2)

Si(6)–C(10) 1.839(4) Si(6)–C(10) 1.835(3)

Si(6)–C(9) 1.841(3) Si(6)–C(9) 1.845(3)

C(7)

Si(5)

O(4) C(5) O(2)

C(4)

Si(3)

C(3)

C(11)
Si(4)

C(6)O(3)

C(1)

Si(1)

O(1)

O(6)

Si(2)

C(2)

Si(6)

C(9)

O(5)
C(10)

C(8)

Fig. 2. Structure of molecule II.
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Table 5.  Bond angles (deg) in structures I and II

I I II II

Angles ω Angles ω Angles ω Angles ω

O(2)–Si(1)–O(4) 108.2(1) O(7)–Si(4)–C(5) 110.7(1) O(2)–Si(1)–O(4) 109.2(1) C(5)–Si(4)–C(11) 112.4(1)

O(2)–Si(1)–O(1) 109.6(1) C(6)–Si(4)–C(5) 112.0(2) O(2)–Si(1)–O(1) 108.4(1) C(6)–Si(4)–C(11) 110.0(2)

O(4)–Si(1)–O(1) 109.6(1) O(5)–Si(5)–O(4) 109.5(1) O(4)–Si(1)–O(1) 108.7(1) O(5)–Si(5)–O(4) 109.7(1)

O(2)–Si(1)–C(1) 111.8(1) O(5)–Si(5)–C(7) 109.1(2) O(2)–Si(1)–C(1) 112.6(1) O(5)–Si(5)–C(7) 108.5(1)

O(4)–Si(1)–C(1) 108.9(1) O(4)–Si(5)–C(7) 110.0(2) O(4)–Si(1)–C(1) 107.9(1) O(4)–Si(5)–C(7) 109.4(1)

O(1)–Si(1)–C(1) 108.8(1) O(5)–Si(5)–C(8) 109.9(2) O(1)–Si(1)–C(1) 109.9(1) O(5)–Si(5)–C(8) 108.9(1)

O(3)–Si(2)–O(1) 109.0(1) O(4)–Si(5)–C(8) 107.3(2) O(3)–Si(2)–O(6) 108.0(1) O(4)–Si(5)–C(8) 108.5(1)

O(3)–Si(2)–O(6) 108.4(1) C(7)–Si(5)–C(8) 110.9(3) O(3)–Si(2)–O(1) 109.6(1) C(7)–Si(5)–C(8) 111.8(2)

O(1)–Si(2)–O(6) 109.7(1) O(5)–Si(6)–O(6) 109.8(1) O(6)–Si(2)–O(1) 109.3(1) O(6)–Si(6)–O(5) 109.2(1)

O(3)–Si(2)–C(2) 110.9(1) O(5)–Si(6)–C(10) 109.7(2) O(3)–Si(2)–C(2) 109.7(1) O(6)–Si(6)–C(10) 108.5(1)

O(1)–Si(2)–C(2) 109.3(1) O(6)–Si(6)–C(10) 109.7(2) O(6)–Si(2)–C(2) 111.3(1) O(5)–Si(6)–C(10) 107.8(1)

O(6)–Si(2)–C(2) 109.5(1) O(5)–Si(6)–C(9) 109.3(2) O(1)–Si(2)–C(2) 108.8(1) O(6)–Si(6)–C(9) 108.6(1)

O(7)–Si(3)–O(2) 109.5(1) O(6)–Si(6)–C(9) 107.8(1) O(2)–Si(3)–C(4) 107.4(1) O(5)–Si(6)–C(9) 110.6(1)

O(7)–Si(3)–C(3) 108.0(1) C(10)–Si(6)–C(9) 110.5(2) O(2)–Si(3)–C(3) 108.7(1) C(10)–Si(6)–C(9) 112.1(2)

O(2)–Si(3)–C(3) 109.5(2) Si(2)–O(1)–Si(1) 147.7(1) C(4)–Si(3)–C(3) 109.6(2) Si(1)–O(1)–Si(2) 139.2(1)

O(7)–Si(3)–C(4) 110.0(2) Si(1)–O(2)–Si(3) 154.3(1) O(2)–Si(3)–C(11) 110.5(1) Si(1)–O(2)–Si(3) 163.6(1)

O(2)–Si(3)–C(4) 107.8(2) Si(2)–O(3)–Si(4) 153.9(1) C(4)–Si(3)–C(11) 110.9(1) Si(2)–O(3)–Si(4) 147.1(1)

C(3)–Si(3)–C(4) 112.1(2) Si(1)–O(4)–Si(5) 144.6(1) C(3)–Si(3)–C(11) 109.7(1) Si(1)–O(4)–Si(5) 150.8(1)

O(3)–Si(4)–O(7) 109.2(1) Si(5)–O(5)–Si(6) 162.6(1) O(3)–Si(4)–C(5) 109.4(1) Si(5)–O(5)–Si(6) 148.4(1)

O(3)–Si(4)–C(6) 109.9(2) Si(2)–O(6)–Si(6) 145.6(1) O(3)–Si(4)–C(6) 106.2(1) Si(2)–O(6)–Si(6) 152.7(1)

O(7)–Si(4)–C(6) 107.6(1) Si(3)–O(7)–Si(4) 146.4(1) C(5)–Si(4)–C(6) 110.1(2) Si(4)–O(11)–Si(3) 121.0(1)

O(3)–Si(4)–C(5) 107.5(2) O(3)–Si(4)–C(11) 108.5(1)
the Si(3)–C(11) [1.858(2) Å] and Si(4)–C(11)
[1.856(3) Å] bond lengths are close to the normal val-
ues [7]. A similar difference between the SiCSi angle
and the standard value was found also in the linear
monomer of bis(hydroxydimethylsilyl)methane [8], in
which the Si atoms have the classic tetrahedral coordi-
nation, the SiCSi angle is 118.1(3)°, and the Si–C bond
lengths are 1.853(5) and 1.875(7) Å. Note that, in the
oxygen analogue of bis(hydroxydimethylsilyl)meth-
ane, namely, 1,3-dioxy-1,1,3,3-tetramethyldisiloxane,
the bond angle at the oxygen atom is 140.1(1)° [9].

At the same time, in the cyclic monomer 1,3-dihy-
droxy-1,3-dimethyl-1,3-disilacyclobutane, which con-
tains two independent molecules with very close geo-
metric parameters [10], the SiCSi angle is equal to
88.2(2)° and the Si–C bond length is 1.875(4) Å (the
data cited refer to the independent molecule A). The Si
atoms in the structure of 1,3-dihydroxy-1,3-dimethyl-
C

1,3-disilacyclobutane have a distorted tetrahedral coor-
dination with the endocyclic angle decreased to
91.2(2)°. This angle is close to the corresponding angle
in 1,3-diphenyl-1,3-dimethyl-1,3-disilacyclobutane
(92.8°), in which the SiCSi angle is 86.6° [11]. Note
that the above angles (close to 90°) are characteristic of
strained 1,3-disilacyclobutane systems [12–18].

Thus, the structural studies of the bicyclic molecules
I and II confirmed the high variability of the SiOSi
bond angles, which is characteristic of organosilicon
compounds. We emphasize that, for dioxydisiloxanes,
this variability is one of the main factors that favor the
formation of the mesophase with columnar H-associ-
ates [9, 19–22]. The conformational flexibility associ-
ated with the variation in the SiOSi angles is undoubt-
edly important for the liquid-crystal properties of
cyclolinear polyorganosiloxanes.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Table 6.  Torsion angles (deg) in structures I and II

I II

Angles ω Angles ω

O(3)–Si(2)–O(1)–Si(1) –53.2(2) O(2)–Si(1)–O(1)–Si(2) 37.9(2)

O(6)–Si(2)–O(1)–Si(1) 65.3(2) O(4)–Si(1)–O(1)–Si(2) –80.7(2)

C(2)–Si(2)–O(1)–Si(1) –174.6(2) C(1)–Si(1)–O(1)–Si(2) 161.4(2)

O(2)–Si(1)–O(1)–Si(2) 55.2(2) O(3)–Si(2)–O(1)–Si(1) –60.5(2)

O(4)–Si(1)–O(1)–Si(2) –63.4(2) O(6)–Si(2)–O(1)–Si(1) 57.7(2)

C(1)–Si(1)–O(1)–Si(2) 177.7(2) C(2)–Si(2)–O(1)–Si(1) 179.5(2)

O(4)–Si(1)–O(2)–Si(3) 147.0(3) O(4)–Si(1)–O(2)–Si(3) –167.4(4)

O(1)–Si(1)–O(2)–Si(3) 27.6(4) O(1)–Si(1)–O(2)–Si(3) 74.4(4)

C(1)–Si(1)–O(2)–Si(3) –93.2(3) C(1)–Si(1)–O(2)–Si(3) –47.5(5)

O(7)–Si(3)–O(2)–Si(1) –27.5(4) C(4)–Si(3)–O(2)–Si(1) 168.1(4)

C(3)–Si(3)–O(2)–Si(1) 90.8(3) C(3)–Si(3)–O(2)–Si(1) 49.7(5)

C(4)–Si(3)–O(2)–Si(1) –147.1(3) C(11)–Si(3)–O(2)–Si(1) –70.8(4)

O(1)–Si(2)–O(3)–Si(4) –33.9(3) O(6)–Si(2)–O(3)–Si(4) –35.3(2)

O(6)–Si(2)–O(3)–Si(4) –153.3(3) O(1)–Si(2)–O(3)–Si(4) 83.7(2)

C(2)–Si(2)–O(3)–Si(4) 86.5(3) C(2)–Si(2)–O(3)–Si(4) –156.8(2)

O(7)–Si(4)–O(3)–Si(2) 32.5(3) C(5)–Si(4)–O(3)–Si(2) 27.4(2)

C(6)–Si(4)–O(3)–Si(2) –85.4(3) C(6)–Si(4)–O(3)–Si(2) 146.2(2)

C(5)–Si(4)–O(3)–Si(2) 152.6(3) C(11)–Si(4)–O(3)–Si(2) –95.5(2)

O(2)–Si(1)–O(4)–Si(5) –54.7(2) O(2)–Si(1)–O(5)–Si(5) –54.2(3)

O(1)–Si(1)–O(4)–Si(5) 64.7(2) O(1)–Si(1)–O(5)–Si(5) 63.9(3)

C(1)–Si(1)–O(4)–Si(5) –176.4(2) C(1)–Si(1)–O(5)–Si(5) –176.9(3)

O(5)–Si(5)–O(4)–Si(1) –52.3(2) O(5)–Si(5)–O(4)–Si(1) –29.4(3)

C(7)–Si(5)–O(4)–Si(1) 67.7(3) C(7)–Si(5)–O(4)–Si(1) 89.5(3)

C(8)–Si(5)–O(4)–Si(1) –171.6(3) C(8)–Si(5)–O(4)–Si(1) –148.3(3)

O(4)–Si(5)–O(5)–Si(6) –0.5(7) O(4)–Si(5)–O(5)–Si(6) –44.0(2)

C(7)–Si(5)–O(5)–Si(6) –121.0(7) C(7)–Si(5)–O(5)–Si(6) –163.4(2)

C(8)–Si(5)–O(5)–Si(6) 117.1(7) C(8)–Si(5)–O(5)–Si(6) 74.7(2)

O(6)–Si(6)–O(5)–Si(5) 4.8(7) O(6)–Si(6)–O(5)–Si(5) 62.5(2)

C(10)–Si(6)–O(5)–Si(5) 125.4(7) C(10)–Si(6)–O(5)–Si(5) –179.9(2)

C(9)–Si(6)–O(5)–Si(5) –113.3(7) C(9)–Si(6)–O(5)–Si(5) –57.0(3)

O(3)–Si(2)–O(6)–Si(6) 55.3(2) O(3)–Si(2)–O(6)–Si(6) 146.9(2)

O(1)–Si(2)–O(6)–Si(6) –63.7(2) O(1)–Si(2)–O(6)–Si(6) 27.8(3)

C(2)–Si(2)–O(6)–Si(6) 176.3(2) C(2)–Si(2)–O(6)–Si(6) –92.5(3)

O(5)–Si(6)–O(6)–Si(2) 45.1(3) O(5)–Si(6)–O(6)–Si(2) –58.3(3)

C(10)–Si(6)–O(6)–Si(2) –75.6(3) C(10)–Si(6)–O(6)–Si(2) –175.6(3)

C(9)–Si(6)–O(6)–Si(2) 164.1(2) C(9)–Si(6)–O(6)–Si(2) 62.4(3)

O(2)–Si(3)–O(7)–Si(4) –55.7(2) O(3)–Si(4)–O(11)–Si(3) 68.2(2)

C(3)–Si(3)–O(7)–Si(4) –174.9(2) C(5)–Si(4)–O(11)–Si(3) –52.8(2)

C(4)–Si(3)–O(7)–Si(4) 62.5(3) C(6)–Si(4)–O(11)–Si(3) –175.9(2)

O(3)–Si(4)–O(7)–Si(3) 55.3(2) O(2)–Si(3)–O(11)–Si(4) –39.2(2)

C(6)–Si(4)–O(7)–Si(3) 174.5(3) C(4)–Si(3)–O(11)–Si(4) 79.8(2)

C(5)–Si(4)–O(7)–Si(3) –62.9(3) C(3)–Si(3)–O(11)–Si(4) –159.0(2)
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Table 7.  Planar fragments in molecules I and II

Plane Mean atomic deviation 
from the plane, Å Atoms and their deviations from the plane, Å

Molecule I
Si(1), Si(2), Si(4), Si(3) 0.008 O(1) –0.389; O(2) 0.233;

O(3) 0.262; O(7) –0.410

Si(1), Si(2), Si(6), Si(5) 0.034 O(1) 0.329; O(4) –0.378;

O(5) –0.065; O(6) 0.344

Molecule II
Si(1), Si(2), Si(4), Si(3) 0.040 O(1) 0.384; O(2) –0.232;

O(3) 0.421; C(11) 0.654

Si(1), Si(2), Si(6), Si(5) 0.020 O(1) –0.508; O(4) –0.265; O(5) 0.338; O(6) 0.264
It was found that substitution of the methylene
group for the oxygen atom results in no fundamental
conformational changes in the bicyclic fragment, but
the SiCSi angle changes from the tetrahedral angle
to 121.0(1)°. Taking into account that these angles in
1,3-disilacyclobutanes are close to 90° [10–18], we
suppose that the SiCSi angles in organosilicon com-
pounds can vary over a wide range (~90°–120°).
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Abstract—The crystal structures of 1-acetoxy-1-cyano-2-naphthylethylene (I) and 1,1-dicyano-2-naphthyl-
ethylene (II) are determined by X-ray structure analysis. Crystals I are monoclinic; at 25°C, the unit cell param-
eters are as follows: a = 17.308(6) Å, b = 4.507(1) Å, c = 17.845(5) Å, β = 107.90(2)°, V = 1324.7(7) Å3, dcalcd =
1.260 g/cm3, Z = 4, and space group P21/n. Crystals II are monoclinic; at 25°C, the unit cell parameters are a =
3.827(1) Å, b = 15.784(4) Å, c = 17.226(2) Å, β = 91.22(2)°, V = 1040.3(4) Å3, dcalcd = 1.304 g/cm3, Z = 4, and
space group P21/n. It is revealed that, in crystal structures of I and II, the molecular stacks characteristic of com-
pounds of this series are formed through stacking contacts along the direction of the smallest lattice parameter.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

This study continues a series of investigations into
the factors responsible for the formation of crystal
structures of cyanovinylbenzene derivatives. We per-
formed X-ray structure analysis of 1-acetoxy-1-cyano-
2-naphthylethylene (I) and 1,1-dicyano-2-naphthyleth-
ylene (II). 

EXPERIMENTAL 

Synthesis. Compounds I and II were synthesized
according to the Knoevenagel reaction through the con-
densation of aromatic aldehydes with ethyl cyanoacetic
ester in alcohol in the presence of an organic base (mor-
pholine) in catalytic amounts. The yields of the reaction
products were 80 and 85%, respectively. 

Colorless crystals I and II were obtained by slow
isothermal evaporation of ethanol solutions for three
days. 

X-ray structure analysis. Crystals I are mono-
clinic; at 25°C, the unit cell parameters are as follows:
a = 17.308(6) Å, b = 4.507(1) Å, c = 17.845(5) Å, β =
107.90(2)°, V = 1324.7(7) Å3, dcalcd = 1.260 g/cm3, Z =
4, and space group P21/n. 

Crystals II are monoclinic; at 25°C, the unit cell
parameters are as follows: a = 3.827(1) Å, b =
15.784(4) Å, c = 17.226(2) Å, β = 91.22(2)°, V =
1040.3(4) Å3, dcalcd = 1.304 g/cm3, Z = 4, and space
group P21/n. 

The unit cell parameters and the intensities of 2581
and 2310 reflections (for structures I and II, respec-
tively) were measured on a Siemens P3/PC four-circle
automated diffractometer (λMoKα, graphite monochro-
mator, θ/2θ scan mode, θmax = 27°). The structures were
1063-7745/01/4606- $21.00 © 0959
solved by the direct method for all the non-hydrogen
atoms. The refinement was performed according to the
full-matrix least-squares procedure in the anisotropic
approximation for the non-hydrogen atoms by using
1058 and 1304 unique reflections. The hydrogen atoms
in molecule II were located independently from differ-
ence Fourier syntheses and then were refined in the iso-
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Fig. 1. A general view of molecules (a) I and (b) II and the
atomic numbering. 
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Table 2.  Atomic coordinates (×104) and isotropic equivalent (isotropic for H atoms) thermal parameters (×103) for structure II

Atom x y z
Ueq/Uiso,

Å2 Atom x y z
Ueq/Uiso,

Å2

N(1) –1779(6) 7821(1) 5435(1) 67(1) C(11) 2007(5) 6031(1) 6324(1) 43(1)

N(2) 3291(6) 5715(1) 4345(1) 73(1) C(12) 1442(5) 6407(1) 5627(1) 43(1)

C(1) 1296(5) 6399(1) 7075(1) 39(1) C(13) –311(6) 7205(1) 5531(1) 48(1)

C(2) 1912(6) 7245(1) 7215(1) 46(1) C(14) 2472(6) 6013(1) 4915(1) 52(1)

C(3) 1320(6) 7610(1) 7940(1) 51(1) H(2) 2780(60) 7592(14) 6860(14) 58(7)

C(4) 116(6) 7121(1) 8526(1) 51(1) H(3) 1840(60) 8213(16) 8013(13) 72(7)

C(5) –536(5) 6245(1) 8425(1) 43(1) H(4) –350(50) 7348(13) 9027(14) 51(6)

C(6) –1769(6) 5736(2) 9037(1) 54(1) H(6) –2100(60) 6020(15) 9550(15) 72(7)

C(7) –2372(6) 4901(2) 8934(1) 57(1) H(7) –3160(60) 4524(16) 9352(15) 75(7)

C(8) –1836(6) 4528(2) 8206(1) 55(1) H(8) –2280(60) 3957(16) 8135(13) 61(7)

C(9) –683(5) 4997(1) 7597(1) 46(1) H(9) –410(50) 4750(13) 7074(13) 52(6)

C(10) 62(4) 5868(1) 7688(1) 37(1) H(11) 3060(60) 5449(15) 6307(13) 61(6)

Table 1.  Coordinates (×104) and isotropic equivalent thermal parameters (×103) of non-hydrogen atoms in structure I

Atom x y z Ueq, Å Atom x y z Ueq, Å

O(1) 6639(2) 948(7) 2771(2) 86(1) C(8) 3953(3) 10082(11) 1260(3) 97(2)

O(2) 7632(2) 2603(6) 3817(2) 77(1) C(9) 4490(3) 8524(9) 1850(2) 77(1)

N(1) 6962(2) 7571(10) 4873(2) 96(1) C(10) 4421(2) 8564(8) 2621(2) 60(1)

C(1) 4959(2) 6985(8) 3260(2) 59(1) C(11) 5580(2) 5061(8) 3132(2) 63(1)

C(2) 4854(2) 7166(9) 3990(2) 68(1) C(12) 6344(2) 4580(8) 3601(2) 59(1)

C(3) 4239(3) 8871(10) 4119(2) 79(1) C(13) 6680(2) 6204(10) 4316(3) 68(1)

C(4) 3725(2) 10417(10) 3526(3) 76(1) C(14) 6868(3) 2515(10) 3343(3) 67(1)

C(5) 3798(2) 10300(9) 2757(2) 69(1) C(15) 8200(3) 633(11) 3620(3) 91(1)

C(6) 3269(2) 11912(11) 2136(3) 88(1) C(16) 8959(3) 583(15) 4270(3) 131(2)

C(7) 3336(3) 11723(12) 1400(3) 102(2)

Table 3.  Basic parameters characterizing the conformation of molecules I and II

Parameter
Molecule

I II

Root-mean-square plane (1) of the naphtho group δ*, Å 0.007 0.005

Root-mean-square plane (2) C(11)–C(12)–C(13)–C(14), δ*, Å 0.013 0.005

Dihedral angle 1–2, deg 41.6 41.3

Torsion angle C(2)–C(1)–C(11)–C(12), deg –40.8 –38.3

Torsion angle C(10)–C(1)–C(11)–C(12), deg 143.1 144.1

Torsion angle C(1)–C(11)–C(12)–C(13), deg –4.8 –6.8

Torsion angle C(1)–C(11)–C(12)–C(14), deg –179.8 175.4

* Mean atomic deviation from the plane.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Fig. 2. Molecular packing in crystal I. 
tropic approximation. In molecule I, the positions of
hydrogen atoms were calculated geometrically and
included in the refinement within the riding-atom
model. The final discrepancy factors were as follows:
R1 = 0.090 for 1058 unique reflections with I > 2σ and
wR2  = 0.164 for 2058 reflections for structure I (the
large value of R1 can be explained by the rather poor
PHY REPORTS      Vol. 46      No. 6      200
quality of the crystals) and R1 = 0.055 for 1304 unique
reflections with I > 2σ and wR2 = 0.143 for 2006 reflec-
tions for structure II. All the calculations were per-
formed using the SHELXTL97 software package [1].
The atomic coordinates and isotropic equivalent (iso-
tropic for H atoms) thermal parameters for structures I
and II are presented in Tables 1 and 2, respectively. 
Table 4.  Selected bond lengths (Å) in the studied molecules 

Molecule Rmin– C(1)–C(11) C(11)–C(12) C(12)–C(13) C(12)–C(14)

I 1.390(2) 1.355–1.421(2) 1.452(2) 1.347(2) 1.430(3) 1.469(2)

II 1.396(4) 1.359–1.436(4) 1.449(4) 1.353(4) 1.436(4) 1.438(3)

* Mean bond length in the naphtho group.
** Range of bond lengths in the naphtho group.

Rnh
* Rmax

**
1
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Fig. 3. Molecular packing in crystal II. 
RESULTS AND DISCUSSION 

Figure 1 shows a general view of molecules. Both
molecules are nonplanar. The torsion angles and other
parameters that characterize the molecular conforma-
tion are listed in Table 3. The molecules consist of two
planar fragments, namely, the naphtho and cyanovinyl
groups. The dihedral angles between the planar molec-
ular fragments in compounds I and II are equal to 41.6°
and 41.3°, respectively. However, the bond lengths
(Table 4) indicate the electron conjugation in the R–
C(1)–C(11)–C(12) chain. The difference between the
lengths of the formally single bond C(1)–C(11) and the
formally double bond C(11)–C(12) is equal to 0.105 Å
in I and 0.096 Å in II. In both molecules, the C(1)–
C(10) bond lengths are maximum in the naphtho group.
The remaining bond lengths and bond angles have stan-
dard values [2, 3]. The short intramolecular contacts
H(2)···C(13), which were revealed earlier in 3,4-
dimethoxy, 3,4,5-trimethoxy, and 4-fluoro derivatives
of benzylidenecyanoacetic acid [4], are absent in mole-
cules I and II due to their nonplanar molecular struc-
ture. 

The intermolecular stacking contacts, which are
typical of crystal packings in cyanovinylbenzene deriv-
atives, are also formed in crystals I and II. In both
cases, these contacts are parallel (↑↑ ) stacking contacts
that are responsible for the formation of molecular
stacks in the crystals (Figs. 2, 3). The distances between
the corresponding planar molecular fragments in stacks
are equal to 3.56 Å in I and 3.58 Å in II. These values
correspond the sums of the van der Walls radii for car-
bon atoms [5]. Moreover, in crystals II, molecules of
C

the adjacent stacks are linked by the H(11a)···N(2) con-

tacts (2.579 Å) into dimers of the D  type (Fig. 3). As
a result, the centrosymmetric space group P21/n is real-
ized in these crystals. In molecules of crystal I, the
replacement of the second cyano group by the ester

group prevents the formation of the D  centrosymmet-
ric dimer. The structure of this crystal is built up of anti-
parallel stacks with the P21/n symmetry. 

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project no. 00-03-32840a.

REFERENCES 
1. G. M. Sheldrick, SHELXTL97: An Integrated System for

Solving, Refining, and Displaying Crystal Structures
from Diffraction Data, Versions 5.10 (Bruker AXS,
Madison, 1997). 

2. F. H. Allen, O. Kennard, D. G. Watson, et al., J. Chem.
Soc., Perkin Trans. 2, S1 (1987). 

3. A. G. Orpen, L. Brammer, F. H. Allen, et al., J. Chem.
Soc., Dalton Trans. 1, S1 (1989). 

4. V. N. Nesterov, L. N. Kuleshova, and M. Yu. Antipin,
Kristallografiya 46 (3), 452 (2001) [Crystallogr. Rep. 46
(3), 402 (2001)]. 

5. R. S. Rowland and R. Taylor, J. Phys. Chem. 100, 7384
(1996). 

Translated by O. Borovik-Romanova

1

1

RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001



  

Crystallography Reports, Vol. 46, No. 6, 2001, pp. 963–966. From Kristallografiya, Vol. 46, No. 6, 2001, pp. 1045–1048.
Original English Text Copyright © 2001 by Rajnikant, Gupta, Khan, Shafi, Hashmi, Shafiullah, Varghese, Dinesh.

                                                                                                                  

STRUCTURE 
OF ORGANIC COMPOUNDS

           
Crystal Structure of Cholest-4-Ene-3,6-Dione: A Steroid* 
Rajnikant1, **, V. K. Gupta2, E. H. Khan2, S. Shafi2, S. Hashmi2, Shafiullah2, 

B. Varghese3, and Dinesh1

1 X-ray Crystallography Laboratory, Post-Graduate Department of Physics, 
University of Jammu, Jammu Tawi, 180006 India

2 Steroid Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 India
3 Regional Sophisticated Instrumentation Center, Indian Institute of Technology, Chennai, 600036 India

e-mail: rajni_kant_verma@hotmail.com
Received July 27, 2000; in final form, December 7, 2000

Abstract—The crystal structure of cholest-4-ene-3,6-dione (C27H44O2) has been determined by X-ray diffraction
methods. The compound crystallizes in the monoclinic crystal system (space group P21) with the unit cell parameters
a = 10.503(4) Å, b = 8.059(1) Å, c = 14.649(1) Å, β = 105.4(2)°, and Z = 2. The structure has been refined to an
R value of 0.035 for 2252 observed reflections. Ring A of the steroid nucleus exists in a sofa conformation, while rings
B and C adopt a chair conformation. The five-membered ring D exhibits a half-chair conformation. The molecules in
the unit cell are linked together by the C–H···O hydrogen bonds. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Steroids are known to have multifaceted biological

properties [1–3]. The present work is a part of our sys-
tematic research on the synthesis and structure analysis
of a variety of steroidal molecules [4–13].

EXPERIMENTAL
The title compound was synthesized by the reaction

shown in Fig. 1.
Pyridinium dichromate (44 g) was added to a solu-

tion of cholesterol (10 g) and N,N-dimethylformamide
(220 ml), and the reaction mixture was stirred at room
temperature for 4 h. The reaction was monitored with
the help of thin-layer chromatography. After comple-
tion of the reaction, water was added and the reaction
mixture was treated with ether. The ether layer was
washed with water, dilute HCl, and sodium bicarbonate
(5%) and then was dried over anhydrous sodium sul-
fate. Slow evaporation of the solvent yielded a yellow
solid, which was crystallized from methanol.

  * This article was submitted by the authors in English.
** Author for correspondence.
1063-7745/01/4606- $21.00 © 200963
Rectangular platelike crystals of cholest-4-ene-3,6-
dione (the melting point is 397 K) were grown from
methanol by slow evaporation at room temperature.
Three-dimensional intensity data were collected on an
Enraf–Nonius CAD4 diffractometer (CuKα radiation,
λ = 1.5418 Å, ω/2θ scan mode). The unit cell parame-
ters were refined from accurately determined 25 reflec-
tions in the range 14.5° < θ < 26.5°. A total of
2568 reflections were measured, of which 2433 reflec-
tions were found to be unique (0 ≤ h ≤ 12, 0 ≤ k ≤ 9, –17 ≤
l ≤ 17) and 2252 reflections were treated as observed

[Fo > 4σ(Fo)]. Two standard reflections (  and )
measured every 100 reflections showed no significant
variation in the intensity data. The reflection data were
corrected for Lorentz and polarization effects. No
absorption and extinction corrections were applied. The
crystallographic data are listed in Table 1.

The structure was solved by the direct method using
SHELXS86 program [14]. All the non-hydrogen atoms
of the molecule were located from the E-map. The R-
factor based on E-values converged to RE = 0.209.
Refinement of the structure was carried out by the full-
matrix least-squares method using SHELXL93 pro-

135 034
C8H17

HO

C8H17

O
O

Pyridinium dichromate

N,N-dimethylformamide

Fig. 1.
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Table 1.  Crystal data and experimental details

Crystal habit Rectangular plates

Empirical formula C27H44O2

Molecular weight 398.63

Unit cell volume 1195.4(5) Å3

Unit cell parameters a = 10.503(4) Å, b = 8.059(1) Å,

c = 14.649(1) Å, β = 105.4(2)°
Crystal system, space group Monoclinic, P21

Density (calcd) 1.1076 mg/m3

No. of molecules per unit cell 2

Linear absorption coefficient (µ) 0.513 mm–1

F(000) 440

Crystal size 0.3 × 0.2 × 0.1 mm

θ range for data collection 3.13° ≤ θ ≤ 69.92°
Data/restraints/parameters 2429/1/431

Final R-factors R1 = 0.035, wR2 = 0.136

Absolute structure parameter 0.4(5)

Extinction coefficient 0.005(1)

Final residual electron density –0.11 < ∆ρ < 0.19 e Å–3

Maximum ratio ∆/σ  0.955 for H (221)

Table 2.  Atomic coordinates and equivalent isotropic thermal parameters (Å2) (e.s.d.’s are given in parentheses) for the non-
hydrogen atoms

Atom x y z Atom x y z

O(1) 0.8958(4) 0.2605(6) –0.1805(2) 0.134(2) C(14) 0.5198(2) 0.1625(3) 0.2032(2) 0.048(1)

O(2) 0.7537(3) –0.1592(3) 0.0180(2) 0.092(1) C(15) 0.4769(4) 0.0187(3) 0.2568(2) 0.067(1)

C(1) 0.7983(4) 0.4387(4) 0.0175(3) 0.076(1) C(16) 0.3811(4) 0.1020(4) 0.3065(2) 0.069(1)

C(2) 0.8920(4) 0.4206(5) –0.0465(3) 0.086(1) C(17) 0.3932(2) 0.2927(3) 0.2950(2) 0.052(1)

C(3) 0.8659(3) 0.2702(6) –0.1065(2) 0.081(1) C(18) 0.6430(3) 0.3011(4) 0.3593(2) 0.064(1)

C(4) 0.8070(3) 0.1282(4) –0.0698(2) 0.065(1) C(19) 0.9177(3) 0.2621(5) 0.1572(2) 0.072(1)

C(5) 0.7753(2) 0.1310(3) 0.0130(2) 0.051(1) C(20) 0.3703(3) 0.3889(4) 0.3803(2) 0.059(1)

C(6) 0.7219(3) –0.0257(3) 0.0432(2) 0.057(1) C(21) 0.3912(4) 0.5766(5) 0.3752(3) 0.075(1)

C(7) 0.6232(3) –0.0106(3) 0.1001(2) 0.057(1) C(22) 0.2302(3) 0.3550(5) 0.3901(2) 0.066(1)

C(8) 0.6424(2) 0.1394(3) 0.1670(2) 0.045(1) C(23) 0.2157(3) 0.3816(5) 0.4896(2) 0.065(1)

C(9) 0.6648(2) 0.2960(3) 0.1141(2) 0.044(1) C(24) 0.0763(3) 0.3548(4) 0.4984(2) 0.057(1)

C(10) 0.7900(2) 0.2835(3) 0.0757(2) 0.050(1) C(25) 0.0559(3) 0.3879(3) 0.5965(2) 0.056(1)

C(11) 0.6641(3) 0.4536(3) 0.1727(2) 0.057(1) C(26) 0.1368(4) 0.2719(6) 0.6716(2) 0.078(1)

C(12) 0.5429(3) 0.4671(3) 0.2129(2) 0.052(1) C(27) –0.0893(3) 0.3755(5) 0.5931(3) 0.075(1)

C(13) 0.5277(2) 0.3133(3) 0.2699(1) 0.047(1)

 * Ueq = (1/3) .

Ueq
* Ueq

*

Uijai
* a j

* aia j( )
j

∑
i

∑

gram [15]. The positional and thermal parameters of
non-hydrogen atoms were refined isotropically with the
residual index R = 0.129. Further refinement with
anisotropic thermal parameters resulted in the final reli-
C

ability index R = 0.035 with weighted R (F2) = 0.136.
All the hydrogen atoms were located from the differ-
ence Fourier map. Their positional and isotropic tem-
perature factors were refined.
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Table 3.  Endocyclic torsion angles (deg) (e.s.d.’s are given in parentheses)

C(2)–C(1)–C(10)–C(5) –45.5(4) C(14)–C(8)–C(9)–C(11) 51.1(3)

C(10)–C(1)–C(2)–C(3) 51.3(4) C(8)–C(9)–C(10)–C(5) 56.4(3)

C(1)–C(2)–C(3)–C(4) –27.7(5) C(8)–C(9)–C(11)–C(12) –50.7(3)

C(2)–C(3)–C(4)–C(5) 1.0(5) C(9)–C(11)–C(12)–C(13) –54.3(3)

C(3)–C(4)–C(5)–C(10) 3.3(5) C(11)–C(12)–C(13)–C(14) 56.5(2)

C(4)–C(5)–C(10)–C(1) 19.4(4) C(12)–C(13)–C(14)–C(8) –60.7(2)

C(6)–C(5)–C(10)–C(9) –41.4(3) C(14)–C(13)–C(17)–C(16) 39.6(2)

C(10)–C(5)–C(6)–C(7) 31.6(4) C(17)–C(13)–C(14)–C(15) 47.2(2)

C(5)–C(6)–C(7)–C(8) –33.1(3) C(13)–C(14)–C(15)–C(16) 36.0(3)

C(6)–C(7)–C(8)–C(9) 47.0(3) C(14)–C(15)–C(16)–C(17) –10.3(3)

C(7)–C(8)–C(9)–C(10) –60.3(3) C(15)–C(16)–C(17)–C(13) –18.6(3)

C(9)–C(8)–C(14)–C(13) –58.4(3)
RESULTS AND DISCUSSION

The final positional and equivalent isotropic dis-
placement parameters for all the non-hydrogen atoms
are listed in Table 2. The endocyclic torsion angles are
presented in Table 3. A general view of the molecule
with the atomic numbering scheme (thermal ellipsoids
are drawn at a 50% probability) is shown in Fig. 2 [16].
The geometric calculations were performed using
PARST program [17].

Bond distances and bond angles are in good agree-
ment with some analogous steroids [4–6, 18]. The
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
mean bond lengths [C(sp3)–C(sp3), 1.537(4) Å; C(sp3)–
C(sp2), 1.498(5) Å; and C(sp2)–C(sp2), 1.435(3) Å] are
also quite close to their theoretical values [19, 20]. In
ring A, the C(2)–C(3) bond length [1.479(6) Å] is
slightly shorter than its theoretical value [19]. The
shortening of the C(2)–C(3) bond in the structure under
investigation can be due to the location of the ketone
group at the C(3) atom. The endocyclic bond angles in
the steroid nucleus fall in the range from 106.7(2)° to
123.4(2)° [the average value is 113.9(2)°] for the six-
C(21) C(23)

C(25)

C(26)

C(27)

C(24)

C(22)

C(17)
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C(10)
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ë
C(13)

C(9)

C(12)

C(11)

C(18)
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C(6)

O(2)C(4)
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Fig. 2. A general view of the molecule and the atomic numbering. 
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membered rings and from 99.5(2)° to 107.2 (2)° [the
average value is 103.6(4)°] for the five-membered ring.

Ring A adopts a sofa conformation with an asymme-
try parameter ∆Cs = 6.01 [21]. The average value of tor-
sion angles in this ring is 24.7(4)°. Ring B exists in a
distorted chair conformation [∆C2  = 8.88 and ∆Cs =
4.01]. The average value of torsion angles in this ring is
45.0(3)°. Ring C also exists in a chair conformation
[∆C2  = 2.67 and ∆Cs = 3.38]. The average value of tor-
sion angles in this ring is 55.3(3)°. The five-membered
ring D occurs in a half-chair conformation [∆C2  =
6.38], the phase angle of pseudorotation is ∆ = −3.8°,
and the maximum torsion angle ϕm = –47.2° [22]. The
average value of torsion angles in this ring is 30.4(3)°.
There exists one intramolecular and two intermolecular
C–H···O hydrogen bonds (see Table 4), which contrib-
ute to the stability of the crystal structure.
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Abstract—The crystal structure of N,N'-di(carbethoxymethyl)-4,4'-dipyridilium diperchlorate (I)
C18H22Cl2N2O12 at 293 K is determined by the X-ray diffraction technique. The crystals are monoclinic, a =
5.501(1) Å, b = 26.460(5) Å, c = 8.140(2) Å, β = 100.63(3)°, space group P21/n, Z = 2, 2271 reflections mea-
sured (2052 reflections unique), R1 = 0.062, and wR2 = 0.141 for 1161 reflections with F ≥ 4σ(F). The interac-
tion between the lone-electron pair of the carbonyl oxygen atom of the electron-withdrawing ester group and
the π system of the dication manifests itself as the intramolecular O(1)···N contact (2.780 Å). In the absence of
charge transfer from the counterion to the dication, this interaction contributes to the stabilization of a planar
structure of the dication fragment of the molecule despite the electron-withdrawing nature of the ester groups.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

The quaternary salts of 4,4'-dipyridyl (viologens)
have found wide practical use owing to the large variety
of properties. In our previous papers [1–4], we gave the
detailed description of viologens as promising light-
sensitive materials for data imaging and storage. Poly-
mers are certainly among these materials. The viologen
polymers, like viologens themselves, are characterized
by electrical conductivity [5, 6], photochromism [7, 8],
electrochromism [9], thermochromism [10], and their
ability to undergo photomechanical transformations
[8]. The synthesis of liquid-crystal viologens makes it
possible to expand the field of application of viologens.
Liquid-crystal viologens were first described in [11].
It   was found that the thermotropic mesophase of
N,N'-di(3,6,9-trioxatridecyl)-4,4'-dipyridilium diiodide
exhibits electrochromic properties. The preparation of
liquid-crystal viologen polymers has been reported
recently in [12, 13]. These compounds show promise
for new applications. In particular, they can be used for
the preparation of various coatings, films, and multi-
functional composite materials [14]. 

It is known that the change in color in viologens is
associated with the generation of radical cations under
ultraviolet irradiation or in response to the electric field
applied to the cell at a field strength corresponding to
the electrochemical potential of the material [15]. We
used the colored state of the radical cations for prepara-
tion of a new photorefractive material through addition
of the viologens to lyotropic ionic liquid crystals. The
holographic grating for liquid-crystal media of this type
was first recorded in [16]. 

It is generally believed that the molecular shape and
its related anisotropy of polarizability are of consider-
1063-7745/01/4606- $21.00 © 20967
able importance in the formation of mesophases [17].
The molecular shape of the viologens used as photo-
chromic and electrochromic additives to a liquid-crys-
tal matrix is also an important factor. In this respect,
detailed investigation of the structure of viologens con-
taining substituents of different electronic nature is cur-
rently of interest. 

Earlier [1–3], we studied the effect of the
electron-donating properties of the anions on the
structure of the dipyridilium nucleus of the

 cations. The electronic

effect of the substituents containing lone-electron pairs
on the structure of this nucleus in the absence of charge
transfer in viologens was analyzed in [4]. In particular,
it was found that the planar structure of the dication
fragment in N,N'-di(2-hydroxyethyl)-4,4'-dipyridilium
diperchlorate [HOEtD2+2Cl , R = (CH2)2OH, A =

Cl ] results to a large extent from the conjugation
between the lone-electron pairs of the electron-donat-
ing hydroxyl groups and the π system of the dication. 

The purpose of this work was to elucidate the effect
of the electron-withdrawing ester groups in the tails of
the molecule on the structure of the dipyridilium skele-
ton of the dication. In this connection, we performed
the X-ray diffraction study of N,N'-di(carbethoxyme-
thyl)-4,4'-dipyridilium diperchlorate (I) (R =
CH2COOC2H5, A = Cl ), which is characterized by
the lack of the charge-transfer interaction and contains
the COO electron-withdrawing group. 

NR N R  2A–+ +

O4
–

O4
–

O4
–

001 MAIK “Nauka/Interperiodica”



 

968

        

VISHNYAKOV 

 

et al

 

.

                                                                                                     
Table 1.  Crystallographic and data-collection parameters
for structure I

Parameter I

Empirical formula C18H22Cl2N2O12

Mr 529.28

Crystal system Monoclinic

Space group P21/n

Z 2

a, Å 5.501(1)

b, Å 26.460(5)

c, Å 8.140(2)

α, deg 90

β, deg 100.63(3)

γ, deg 90

V, Å3 1164.5(4)

Dcalcd, g/cm3 1.509

µ, mm–1 0.345

F(000) 548

Diffractometer Enraf-Nonius CAD-4

λ, Å 0.71073

T, K 293

θmax, deg 25

Number of reflections measured 2271

Number of reflections
with F ≥ 4σ(F)

1161

Refinement on F2

R1 0.062

wR2 0.141

S 1.055
C

EXPERIMENTAL 

Compound I was prepared from N,N'-di(carbe-
thoxymethyl)-4,4'-dipyridilium dichloride (R =
CH2COOC2H5, A = Cl) (the synthesis of this com-
pound was reported in [3]) according to the ion-
exchange procedure described in [2]. Single crystals
were grown by slow evaporation of a solution in isopro-
pyl alcohol. Transparent plate-like single crystals were
obtained in the course of crystallization. The X-ray
experiment was carried out at room temperature on an
Enraf–Nonius CAD4 automated four-circle diffracto-
meter (graphite monochromator, ω/2θ scan mode). 

The structure was solved by the direct method and
refined in the full-matrix anisotropic approximation for
the non-hydrogen atoms. In the course of structure
refinement, we revealed that, as in the crystal of
HOEtD2+2Cl  [4], all the four oxygen atoms of the

Cl  anion are disordered over three positions, each
with the occupancy G = 0.33. All the hydrogen atoms
in the studied structure were located from the differ-
ence Fourier synthesis and refined within the riding-
atom model at fixed parameters Uiso = 0.08 Å2. The cal-
culations were performed on an IBM AT personal com-
puter using the SHELXS86 [18] and SHELXL93 [19]
program packages. The main crystal data and data-col-
lection parameters at room temperature are summa-
rized in Table 1. The atomic coordinates and selected
torsion angles are listed in Tables 2 and 3, respectively. 

RESULTS AND DISCUSSION 

In crystal I, the dication occupies a special position
at the center of symmetry and its dipyridilium nucleus
is exactly planar. The rotation of the N-substituent with
respect to the nucleus [the angle between the planes of
the C(1)C(2)C(3)N(4)C(4)C(5) pyridine ring and the

O4
–

O4
–

Table 2.  Coordinates (×104) and equivalent isotropic thermal parameters (Å2 ×103) of the non-hydrogen atoms in structure I

Atom x y z Ueq Atom x y z Ueq

Cl –1239(2) 981(1) 2973(2) 77(1) O(5B)   –3398(32) 709(10) 3098(37) 115(12)

O(1) –3361(6) 6717(1) 7355(4) 70(1) O(6B)       880(35) 673(9) 3467(28) 210(19)

O(2) –900(6) 7261(1) 8971(4) 72(1) N 447(6) 6011(1) 7796(4) 48(1)

O(3) –3729(24) 851(12) 3041(26) 75(7) C(1) 119(7) 5213(1) 5602(4) 42(1)

O(4) –876(41) 1496(3) 3413(19) 75(5) C(2) 1705(7) 5606(2) 5515(5) 54(1)

O(5) –829(35) 884(10) 1348(15) 112(9) C(3) 1859(8) 6000(2) 6619(6) 56(1)

O(6) –357(37) 685(6) 4152(25) 114(9) C(4) –1113(9) 5633(2) 7912(6) 64(1)

O(3A) –810(32) 509(6) 2245(36) 155(10) C(5) –1283(8) 5233(2) 6860(5) 60(1)

O(4A) –3826(17) 1052(10) 2788(34) 165(15) C(6) 555(8) 6450(2) 8907(5) 56(1)

O(5A) –181(34) 965(13) 4683(11) 174(13) C(7) –1510(8) 6817(2) 8292(5) 51(1)

O(6A) –143(45) 1357(10) 2140(41) 290(19) C(8) –2633(12) 7684(2) 8544(8) 91(2)

O(3B) –1007(33) 1413(5) 4022(20) 68(5) C(9) –4291(12) 7699(2) 9704(8) 108(2)

O(4B) –1264(41) 1142(6) 1309(12) 90(6)
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C(7)O(1)O(2) ester group is 76.3 Å; Fig. 1 and Table 3]
predetermines the formation of the intramolecular
O(1)···N contact (2.780 Å). This indicates that the π–π
conjugation between the ester groups and the pyridine
rings of the dication is minimum. At the same time, the
O(1)···N contact, whose length is close to the sum of the
van der Waals radii of the N (1.50 Å [20]) and O
(1.29 Å [21]) atoms, suggests that the lone-electron
pair of the carbonyl O(1) oxygen is able to interact with
the π-system of the pyridine ring, which is far more
electron-deficient than the ester group. It can be
assumed that, in this case, the ester group in I acts as a
donor with respect to the pyridine fragment. 

It is remarkable that similar intermolecular contacts
between the N and O atoms of the electron-donating
hydroxyl group are observed in N,N'-di(2-hydroxy-
ethyl)-4,4'-dipyridilium dichloride [HOEtD2+2Cl–, R =
(CH2)2OH, A = Cl–] [12] and HOEtD2+2Cl  [R =

(CH2)2OH, A = Cl ] [4] (2.966 Å for HOEtD2+2Cl–

and 2.847 Å for HOEtD2+2Cl ), which differ only in
the nature of the counterions and, hence, are character-
ized by the presence or absence of charge transfer.
Moreover, the charge-transfer complexes containing
carboxyl groups, namely N,N'-di(carboxymethyl)-4,4'-
dipyridilium dichloride, dibromide, and diiodide
(COMD2+2Ä–; R = CH2COOH; A = Cl–, Br–, or I–) [3],
are also characterized by similar intramolecular O···N
contacts (2.739, 2.743, and 2.711 Å, respectively). As
was noted in [4], this interaction contributes to the sta-
bilization of the planar structure of the central dipyrid-
ilium skeleton of the molecule in the absence of charge

O4
–

O4
–

O4
–
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transfer and can serve as an additional factor enhancing
this stabilization for charge-transfer viologens. 

In [1, 22, 23], it was emphasized that the packing
effects in the crystals are able to stabilize the conforma-
tionally unfavorable planar form of the dipyridilium
skeleton of molecules through the π–π' interactions
between the molecules in the stacks. Actually, the short
period in structure I (a = 5.501 Å) is most likely prede-
termined by the packing type characterized by the
stacking of the dications that are related by the transla-
tion along this period (Fig. 2). For this type of packing,
the maximum interaction between the molecules in
stacks is observed when the planes of the pyridine rings
are perpendicular to the [100] crystallographic direc-
tion. In the structure studied, however, this angle is
128°; i.e., the efficiency of overlapping the π orbitals of
the dications in the stacks is not maximum. 

The absence of charge transfer from the counterion
to the dication in crystal I indicates that the electronic
effect of the Cl  anions on the flattening of the dipy-
ridilium nucleus of the dication is minor. Note once

O4
–

 
Table 3.  Selected torsion angles (deg) in structure I

Angle ω

C(3)–N–C(6)–C(7) 96.9

C(4)–N–C(6)–C(7) –80.6

N–C(6)–C(7)–O(1) 20.2

N–C(6)–C(7)–O(2) –159.8

C(8)–O(2)–C(7)–C(6) 179.5

C(7)–O(2)–C(8)–C(9) 90.0
O(6)

O(4)
O(3)

O(5)

Cl

C(5) C(4)

C(3)C(2)
C(1) C(6) C(7) O(2)

C(8)O(1) C(9)

Fig. 1. Structure of molecule I and the atomic numbering. 
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Fig. 2. Stacking of molecules I along the a period. 
again that, in addition to the packing effects, the elec-
tronic effects due to the interaction of the lone-electron
pairs of the O(1) atoms of the ester groups with the
electron-deficient π-system of the pyridine rings also
contribute to the stabilization of the planar structure of
the dipyridilium fragment in I. As a consequence, the
electron density shifts from the O(1) atoms to the elec-
tron-deficient dication and then redistributes over the
whole π-system. This redistribution most efficiently
proceeds through the maximum π–π' conjugation
between the pyridine rings, which is accompanied by
the flattening of the molecules. 

Thus, the X-ray structure analysis of compounds I
and HOEtD2+2Cl  [4], in which the charge transfer is
absent, has demonstrated that the planar structure of the
dipyridilium nucleus is attended by short intramolecu-
lar O···N contacts. The occurrence of these contacts
suggests that the interaction between the π-system of
the dication and the lone-electron pairs of the oxygen
atoms of both electron-donating and electron-with-
drawing groups is responsible to a large extent for the
stabilization of the planar structure of the dipyridilium
nucleus of the molecules. 
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Abstract—The crystal and molecular structures of 3-methyl-3-[1,7-dicarba-closo-dodecaborane(12)-1-oyl-
peroxy]-but-1-yne (I) are determined by X-ray diffraction analysis (Nicolet R3m automated diffractometer,
MoKα radiation, θ/2θ scan mode). It is found that the compound crystallizes in the orthorhombic crystal system,
space group  P212121. The unit cell parameters are as follows: a = 7.355(2) Å, b = 9.773(3) Å, c = 21.938(7) Å,
and Z = 4. The structure is solved by the direct method and refined to R = 0.0658. The structural features of the
molecule and the C–H···O contacts in the structure are discussed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

Over the past few decades, carborane-containing
peroxides have attracted the particular attention of
many researchers owing to a number of their specific
chemical properties. It is known [1–5] that certain of
these compounds initiate the polymerization of olefins
and serve as cross-linking agents of polyolefins. As a
consequence, the polymers thus prepared acquire
increased resistance to UV and γ-radiation and ther-
mooxidative destruction. The determination of the
molecular structure of carborane-containing peroxides
is of considerable importance in elucidating their reac-
tivity and choosing the optimum conditions for their
efficient use. 

The purpose of the present work was to reveal the
structural features of 3-methyl-3-[1,7-dicarba-closo-
dodecaborane(12)-1-oyl-peroxy]-but-1-yne (I): 

(I)

EXPERIMENTAL 

Compound I  was  synthesized  by  the  reaction
of 3-methyl-3-hydroperoxy-but-1-yne with 1,7-dicarba-
closo-dodecaborane(12)-1-carboxyl chloride accord-
ing to the procedure described in [6]. Crystals suitable
for X-ray structure investigation were obtained by crys-
tallization from a 70% aqueous solution of ethanol. A
crystal 0.5 × 0.22 × 0.12 mm in size was chosen for the

CH≡C–C–O–O–C–CB10CH11– =

–

CH3

CH3

O

1063-7745/01/4606- $21.00 © 0971
Atomic coordinates (×104) and equivalent isotropic thermal
parameters (Å2 × 103) in structure I

Atom x/a y/b z/c Ueq

C(1) 3130(6) 889(4) 3880(2) 45(1)

B(2) 3132(9) 2586(6) 4050(3) 61(2)

B(3) 2692(8) 1986(6) 3301(2) 62(2)

B(4) 4010(9) 501(6) 3181(3) 65(2)

B(5) 5248(8) 168(7) 3863(3) 69(2)

B(6) 4709(8) 1453(7) 4384(2) 67(2)

C(7) 5357(8) 2928(6) 4056(2) 72(2)

B(8) 4200(9) 3354(6) 3418(3) 69(2)

B(9) 4745(9) 2072(7) 2884(2) 69(2)

B(10) 6334(9) 942(7) 3231(3) 71(2)

B(11) 6723(8) 1531(8) 3973(3) 77(2)

B(12) 6435(9) 2717(6) 3365(3) 68(2)

C(13) 1602(6) 62(5) 4164(2) 51(1)

C(14) –67(7) –3019(5) 3873(2) 56(1)

C(15) 1500(8) –3343(5) 4257(2) 61(1)

C(16) 2733(9) –3636(6) 4570(3) 83(2)

C(17) 309(8) –3301(6) 3209(2) 81(2)

C(18) –1786(8) –3728(6) 4100(3) 80(2)

O(1) 921(4) –770(3) 3727(1) 59(1)

O(2) –572(4) –1583(3) 3970(1) 59(1)

O(3) 1100(5) 141(4) 4678(1) 70(1)
2001 MAIK “Nauka/Interperiodica”
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C(16)
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B(11)

B(6)

Fig. 1. Molecular structure and the atomic numbering. 

C(16a)

C(7b)

O(3)

Fig. 2. A structural fragment with the C–H⋅⋅⋅O intermolecular contacts (indicated by dashed lines). 
X-ray diffraction analysis. A three-dimensional set of
X-ray diffraction data was collected on a Nicolet R3m
automated four-circle diffractometer (MoKα radiation,
graphite monochromator, θ/2θ scan mode, 2θmax = 55°).
A total of 2182 reflections was measured, of which
2113 reflections were unique (Rint = 0.0061). It was
found that compound I crystallizes in the orthorhombic
crystal system, space group P212121. The unit cell
parameters are as follows: a = 7.355(2) Å, b = 9.773(3) Å,
c = 21.938(7) Å, V = 1576.9(8) Å3, Z = 4, dX-ray =
1.139 g/cm3, and µ = 0.68 cm–1. The structure was
solved by the direct method (SIR97 [7]). The hydrogen
atom of the ethynyl group was located from the differ-
ence Fourier synthesis. The positions of the remaining
C

hydrogen atoms were calculated geometrically. The
refinement was performed by the full-matrix least-
squares method with allowance made for the anisotro-
pic thermal vibrations of non-hydrogen atoms
(SHELX97 [8]). The hydrogen atom of the ethynyl
group was refined in the isotropic approximation, and
the remaining hydrogen atoms were refined using a
riding model. The discrepancy factors are as follows:
R1 = 0.0658 and wR2 = 0.1558 for the reflections with
I > 2σ(I), R1 = 0.1064 and wR2 = 0.2036 for all the
reflections, and GOOF = 1.065. The figures were drawn
using the ORTEP III program package [9]. The atomic
coordinates and equivalent isotropic thermal parame-
ters are listed in the table. 
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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RESULTS AND DISCUSSION 

Figure 1 shows the molecular structure of com-
pound I and the atomic numbering. The C–B bond
lengths lie in the range 1.671(9)–1.722(8) Å. Note that
the C(7)–B(2) and C(7)–B(12) bonds are the shortest
and longest bonds, respectively. The B–B bond lengths
fall in the range from 1.73(1) Å [for the B(5)–B(11)
bond] to 1.780(9) Å [for the B(4)–B(5) bond]. These
parameters and the bond angles in the CB10CH11 icosa-
hedral fragment are close to those observed for other
similar compounds [10]. The length of the C(1)–C(13)
bridging bond is equal to 1.518(6) Å. In the other frag-
ments of molecule I, the bond lengths and angles has
normal values [10]. 

The classical hydrogen bonds are absent in structure I.
However, it should be noted that structure I involves the
C–H···O-type intermolecular contacts [11] between the
O(3) oxygen atom of the carbonyl group and two
hydrogen atoms, namely, the H(16) atom of the acety-
lene group and the H(7) atom [bonded to the C(7) atom]
of the carborane fragment. These contacts are depicted
in Fig. 2 and have the following geometric parameters.
In the D–H···A chain, the D–H, H···A, and D···A dis-
tances are equal to 1.00(5), 2.36(4), and 3.320(7) Å for
the C(16)–H(16)···O(3) contact and 0.99(4), 2.48(3),
and 3.406(6) Å for the C(7)–H(7)···O(3) contact,
respectively. The C(16)–H(16)···O(3) and C(7)–
H(7)···O(3) angles are equal to 162(2)° and 154(3)°,
respectively. The interaction between the oxygen atom
of the carbonyl group and the hydrogen atom of the
ethynyl group is confirmed by the IR absorption spectra
of compound I [6]. According to the IR data, the fre-
quencies of the stretching vibrations of these groups in
the crystal are substantially shifted toward the low-fre-
quency range as compared to those in solutions. The
aforementioned contacts, together with the van der
Waals interactions, are responsible for the molecular
packing in the crystal. 
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
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Abstract—Three crystalline [N(CH3)4](HSeO4) modifications are studied by X-ray diffraction method at 298,
363, and 380 K. The high-temperature phases are characterized by disordering of HSeO4-tetrahedra. The sys-
tems of hydrogen bonds and the mechanism of the phase transitions are considered. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The compounds described by the general formula
MHXO4, where M = Rb, Cs, NH4, N(CH3)4 and X = S,
Se, have intensely been studied since the discovery of
phase transitions into the state with high protonic con-
ductivity [1]. High protonic conductivity in the tetram-
ethylammonium hydrogen sulfate (TMSO) above
175°C [2] indicates a possible existence of the superi-
onic phase also in tetramethylammonium hydrogen sel-
enate. Tetramethylammonium hydrogen sulfate has
three crystalline modifications which were studied at
room temperature and at 215 and 175 K [3].

Below we present the results of the X-ray diffraction
study of the three modifications of the tetramethylam-
monium hydrogen selenate (two high-temperature ones
and the modification existing at room temperature).

EXPERIMENTAL

The tetramethylammonium hydrogen selenate
[N(CH3)4]HSeO4 (TMSeO) was synthesized by the
reaction of the 20% aqueous solution of tetramethylam-
monium hydroxide with 25% excess of 70% selenic
acid. Prismatic rhombic crystals were grown by slow
evaporation of water. The differential thermal analysis
(DTA) on a Netzsch STA-429 thermal analyzer in the
temperature range 25–200°C revealed three peaks of
endothermic effects at 81, 98, and 124°C (Fig. 1). The
latter peak corresponds to the unidentified phase transi-
tion. The pronounced endothermic effect at 98 ± 1°C
was shown to be reversible and is characterized by a
small hysteresis of the reverse phase transition at 94 ±
1°C (Fig. 1a). A very weak endothermic effect observed
during heating at 81 ± 1°C showed no corresponding
exothermic effect during cooling. Thus, the sequence of
phase transitions can be represented by the following

scheme: III  II  I  unidentified phase
81° 98°

94°
124°
1063-7745/01/4606- $21.00 © 20974
(phases), where III is the TMSeO phase at room tem-
perature.

The X-ray diffraction experiment on TMSeO crys-
tals (phase III) was performed on an Enraf-Nonius
CAD-4 diffractometer at room temperature and on
crystals of phases II and I on a Stoe IPDS diffractome-
ter at temperatures of 90 ± 3 and 107 ± 3°C, respec-
tively. In the latter case, the specimens were heated by
an Enraf-Nonius FR-559 high-temperature attachment.
The absorption correction for phase III was introduced
using the results of the ψ-scanning of five reflections.
The diffraction data for phases II and I were corrected
by the numerical absorption method based on real crys-
tal shape. 

All the structures were solved by direct methods
using the SHELXL97 program [4]. The positions of
non-hydrogen atoms were refined in the anisotropic
approximation by the SHELXS97 program [5]. All the
hydrogen atoms in phase III and only the hydrogen
atom in the HSeO4 group in phase II were refined in the
isotropic approximation. Hydrogen atoms of the
methyl groups in phases I and II were considered with
due regard for the geometry of the CH3 groups. It was
found that hydrogen atoms in one of the tetramethylam-
monium groups in phase I are disordered over two posi-
tions.

The choice of the space group from two possible—
C2 and C2/m—is rather difficult. In particular, the sta-
tistical criterion based on |E2 – 1| indicated the absence
of the center of inversion. The sp. gr. C2/m was chosen
for phase II for following reasons: the R-factor was
lower despite the fact that the number of the parameters
to be refined was twice as low; the geometry of disor-
dered HSeO4 groups was closer to tetrahedral; the
anisotropy of thermal vibrations of oxygen atoms
seemed to be more reasonable (in the sp. gr. C2, some
oxygen atoms showed pronounced anisotropy of ther-
001 MAIK “Nauka/Interperiodica”
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Fig. 1. DTA and thermogravimetric data for TMSeO: (a) three peaks of endothermic effect under heating at 81 (III  II), 98
(II  I), and 124°C (phase transition) and (b) two points of the endothermic effect under heating up to 115°C and a portion of
the DTA curve obtained during specimen cooling. The temperatures of the beginning of the manifestation of the thermal effect are
considered to be the temperatures of the phase transitions. The maximum temperatures of thermal effects are also indicated.
mal vibrations); and HSeO4-tetrahedra in the calcula-
tions within the sp. gr. C2 statistically occupied two
positions with almost equal occupancies.

The crystallographic characteristics of all the three
modifications and the corresponding parameters of the
X-ray diffraction experiments are listed in table. The
atomic positional and thermal parameters for the struc-
tures of the three TMSeO modifications are deposited
in the Cambridge Structural Database (CCDC 157 404,
CCDC 157 405, and CCDC 157 406 for modifications
I, II, and III, respectively).

RESULTS AND DISCUSSION

Structure of phase III. Crystal structure of phase
III consists of tetrahedral tetramethylammonium cat-
ions and HSeO4-tetrahedra (anions). One Se–O dis-
tance, is longer by ~0.1 Å (Se–O(4) 1.725(3) Å) than all
the other Se–O distances (1.603–1.614 Å), which is
explained by the participation of the O(4) atom as a
donor in hydrogen bonding. Hydrogen bonds O(4)–
H(1)···O(1)' 2.673(5) Å connect HSeO4-tetrahedra into
closed centrosymmetric dimers (Fig. 2) similar to those
in the NaHSeO4 [6] and KHSeO4 [7] structures. The lat-
ter compound, unlike III and NaHSeO4, in addition to
closed dimers, also has chains of the HSeO4 tetrahedra.
The structure of phase III of TMSeO considerably dif-
fers from the orthorhombic TMSO (sp. gr. Pna21) crys-
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
tallized at room temperature [3] because HSO4-tetrahe-
dra are disordered over two positions and are linked by
hydrogen bonds into infinite chains along b-axis. One
more characteristic feature of the room temperature
TMSeO phase is its stability in air, whereas TMSO
phase is highly hygroscopic [3].

Structure of phase II. When studying phase II, we
also considered the sp. gr. C2. Similar to phase III, the
structure of phase II consists of the [N(CH3)4]+- and
HSe -tetrahedra. The N-atom occupies the 4h posi-
tion on the axis 2. The oxygen atoms of the HSeO4-tet-
rahedron are disordered over two positions with the
occupancy 0.5. Two HSeO4 tetrahedra are related by
the mirror plane (Fig. 3). It is interesting that the H
atom at the selenate ion, localized from difference Fou-
rier maps, lies, in fact, in this plane (i.e., is almost
ordered), while the O(4) atom, the hydrogen donor, is
located at a very small distance (about 0.1 Å) outside
this plane. The Se–O distances in the tetrahedron are
different, which is explained by pronounced thermal
vibrations of O and Se atoms. Two too short Se–O(1)
and Se–O(3) distances (1.523 and 1.557 Å) were cor-
rected for libration by the method described in [8]
to yield 1.556 to 1.596 Å, respectively. Of two remain-
ing distances, only the Se–O(4) 1.683 Å distance it
approximately corresponds to the distance for an oxy-
gen atom involved in hydrogen bonding as a donor and,
thus, requires no considerable correction. The correc-

O4
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Crystallographic characteristics and parameters of X-ray diffraction experiment for phases I–III

III II I

Temperature, K 293(2) 363(3) 380(3)

Crystal system   Monoclinic   Monoclinic   Tetragonal

Sp. gr.   P21/c   C2/m   I 2m

a, Å 5.601(3) 10.918(3) 11.460(3)

b, Å 13.663(2) 13.669(3)

c, Å 10.760(2) 5.665(2) 13.635(3)

β, deg 90.83(3) 90.92(3) 90

V, Å3; Z 823.3(5); 4 845.3(4); 4 1790.7(8); 8

ρcalc, g/cm3 1.760 1.746 1.618

µ (MoKα), mm–1 4.525 4.408 4.161

Crystal dimensions, mm 0.2 × 0.2 × 1.0 0.15 × 0.3 × 0.4 0.15 × 0.3 × 0.4

Range of angles θ, deg 2–32 2–26 2–26

The number of the reflections (measured/crys-
tallographically nonequivalent)

2972/2844 3952/848 4211/938

The number of reflections with I > 2σ(I) 1632 676 567

Absorption correction   ψ–scanning   By crystal shape   By crystal shape

The number of reflections/parameters used 
in the least-squares procedure

2034/144 734/72 775/82

Extinction correction 0.008(3) 0.014(3) 0.008(2)

GOF(F2) 1.036 1.093 1.029

R1 0.0415 0.0246 0.0402

wR2 0.0985 0.0588 0.0960

Residual electron density
(max; min), e Å3 

1.144; –1.215 0.232; –0.488 0.401; –0.399

4

tion for libration yields 1.711 Å, i.e., makes this dis-
tance even closer to the values 1.69–1.72 Å character-
istic of the Se–OH distances in the ordered structures
with the weak atomic vibrations [9]. The Se–O(2) dis-
tance equal to 1.754 Å seems to be overestimated. The
amplitudes of the Se vibrations parallel to the Se–O
bonds are approximately equal to 0.2 Å for the bonds
with O(1), O(3), and O(4) atoms, while the amplitude
for the bond with the O(2) atom is by 0.1 Å larger. Most
likely that the Se–O(2) distance must be shorter by the
same value, i.e., to be about 1.65 Å. The tetrahedra
form disordered closed dimers via the hydrogren O(4)–
H···O(3)' 2.711(8) Å and O(4)–H···O(3)" 2.665(7) Å
(Fig. 3).

The structure of phase I. The structure of phase I
is built by [N(CH3)4]+ tetrahedra and highly disordered
tetrahedral selenate anions. Two symmetrically inde-
pendent nitrogen atoms, N(1) and N(2) occupy the 4e

and 4d positions with the symmetries 2mm and ,
respectively. Similar to most oxygen atoms (except
O(11) and O(21) in the general positions), selenium
atoms occupy the 8i positions, i.e., the positions in the
diagonal m planes. The HSeO4-tetrahedra are disordered

4

C

over two positions with the occupancy 0.5. Because of
pronounced thermal vibrations, the Se–O distances
show considerable scatter. Correction for libration
introduced according to [8] “improves” these distances.
Thus, the distances Se–O(11) 1.56(1) Å and Se–O(21)
1.51(2) Å become equal to 1.67 and 1.68 Å, respec-
tively. This elongation is quite clear if one takes into
account the participation of the O(11) and O(21) atoms
in hydrogen bonding. The Se–O distances for O(13)
and O(23) atoms not participating in hydrogen bonding
are much shorter, 1.58 and 1.62 Å, respectively (with
the allowance for libration). A somewhat larger Se–
O(12) distance (1.70 Å) can be explained by anisotropy
of thermal vibrations of the Se atom, as was made ear-
lier for the phase II.

It is worth noting that we revealed some additional
electron-density peaks at the distances of 1.5–1.6 Å
around Se atoms on electron-density maps. All these
peaks corresponded to the occupancies of O atoms not
exceeding several percent and, therefore, were ignored.
We believe that the presence of these peaks reflects a
more complex character of the disorder of HSeO4 tetra-
hedra, than their location over two positions.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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b

c

Fig. 2. Structure of TMSeO at room temperature. The ordered HSeO4-tetrahedra form closed dimers.

b

a

Fig. 3. Projection of the TMSeO-II structure onto the xy0 plane; HSeO4-tetrahedra are disordered over two positions; the closed
dimers are preserved.
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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b

a

Fig. 4. Projection of the TMSeO-I structure onto the xy0 plane; HSeO4-tetrahedra are disordered over two positions and form cyclic

tetramers with the  symmetry.42m
The probable system of hydrogen bonds is built by

cyclic tetramers with the symmetry  (Fig. 4). The
following hydrogen bonds are possible: O(11)···O(11)'
2.51(3) Å, two O(11)···O(21) 2.35(3) Å, and
O(21)···O(21)' 2.67(7) Å. It seems that the hydrogen
atom should be statistically distributed over four posi-
tions.

Phase transition III  II. This phase transforma-
tion does not change the unit cell volume. The primitive
unit cell is transformed into the base-centered one (or side-
centered one, A, in the coordinate system of phase III). In
the transition to phase II, the (HSeO4)2-dimers become
disordered over two positions. These two positions are
also present in structure III but are occupied by differ-
ent dimers and are related by the 21-axis (or the
c plane). Presumably, the III–II transformation requires
the overcoming of the activation barrier for the group
transition from one position to another. The disordering
process gives rise to the appearance of the (010) mirror
plane (or the twofold axis along [010]) with the center-
ing of the A face in phase III. The displacements of Se,
N, and C atoms, necessary for the III–II transition do
not exceed 0.1 Å which is consistent with a weak ther-
mal effect in this phase transformation.

42m
C

Phase transition II  I. This transition is accom-
panied by doubling of the unit cell volume and disap-
pearance of the center of inversion. The transition
matrix was obtained from the matrices of crystal orien-
tation prior to and upon the transformation:

.

The II–I transition is characterized by considerably
more pronounced atomic displacements than the III–II
transition, which is also reflected in the much higher
value of the thermal effect. Thus, the displacement of
selenium atoms along some directions amounts to
about 1 Å. The distance between selenium atoms of the
neighboring dimers in structure II (5.66 Å) increases to
6.59 Å, which corresponds to the distance between the
Se atoms of the neighboring tetramers in phase I. The
maximum displacement of N atoms is even greater—
1.3 Å. Structure I loses the center of inversion since the
Se atoms are displaced from the m plane, where they
are located in structure II. Also, in this case the SeO8 /2

polyhedra (the tetrahedra disordered over two posi-

0 0 2–

1– 0 0

0 1 0 
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tions) are slightly rotated so that the neighboring poly-
hedra are tilted in opposite directions (Fig. 4). 

It is important to indicate that the II–I transition is
somewhat similar to the phase transition of CsHXO4
(X = S [10] or Se [11]) into the superprotonic state.
Both transitions are characterized by atomic displace-
ments and disordering of oxygen atoms having high
values of thermal parameters. This, in turn, leads to dis-
ordering of hydrogen atoms over several positions. In
both cases, the transition is accompanied by the trans-
formation of the monoclinic unit cell into the tetragonal
body-centered cell. All the above facts suggest a high
protonic conductivity of the TMSeO-I phase. The struc-
tures of the high-temperature phases of the compounds
are slightly different. The structure of phase I of
CsHXO4 has a system of hydrogen bonds providing the
formation of infinite layers of tetrahedra perpendicular
to the c-axis, whereas the structure of phase I of
[N(CH3)4](HSeO4) is characterized by the presence of
closed tetramers. The rigorous localization of hydrogen
atoms in the high-temperature phase I of tetramethy-
lammonium hydrogen selenate requires the neutron dif-
fraction study. To verify our assumption about high pro-
tonic conductivity of the latter phase, a number of phys-
ical measurements on single crystal specimens are
planned in the near future.
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Abstract—The molecular and crystal structures of chiral 3R,6S-2-(4-phenylbenzylidene)-3-methyl-6-bromo-
6-isopropylcyclohexanone C23H25BrO (Ia) are determined by X-ray diffraction. Crystals Ia are monoclinic,
a = 11.005(4) Å, b = 12.229(4) Å, c = 14.376(5) Å, β = 91.37(1)°, Z = 4, and space group P21. The geometric
parameters of two crystallographically independent molecules are close to each other in magnitude. The cyclo-
hexanone ring adopts a chair-type conformation with an equatorial isopropyl substituent and an axial orienta-
tion of the methyl group and the C–Br bond. The 3,6-alkyl groups are in the cis position with respect to the
cyclohexanone ring. It is demonstrated that, in the series of 6-bromo substituted compounds, as in their ana-
logues unsubstituted for bromine in the 6-position, the maximum flattening of the cinnamoyl fragment O=C–
C=C–C6H4X is observed in the structure with X = C6H5. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

2-Arylidene derivatives of 3-methyl-6-isopropylcy-
clohexanone (1R,4R-cis-2-arylidene-p-menthan-3-
ones) (I) have attracted the particular attention of
researchers, because they can serve as efficient chiral
dopants to liquid-crystal systems with induced helical
ordering [1–3]. This has lent impetus to the investiga-
tion into their molecular and crystal structures [4–8].

The most important structural unit in molecules of
these compounds is the cinnamoyl fragment containing

the s-cis-enone grouping  and the

arylidene grouping .

According to X-ray structure analysis [7], the geometry
of the cinnamoyl fragment in molecules I (primarily,
the degree of nonplanarity of its particular groupings) is
determined, to a large measure, by the intramolecular
electron interaction of the electron-acceptor carbonyl
group and the substituent X. For the compound with a
strong electron-donor dimethylamino group [X =

C C
CHO

C CH X

Ia X = C6H5, Y = Br
(CH3)2CH CH3

Y

O CH X

1 2
36 Ib X = C6H5, Y = H

Ic X = NO2, Y = Br
Id X = OCH3, Y = Br
1063-7745/01/4606- $21.00 © 20980
N(CH3)2, Y = H], the twisting of the enone and
arylidene fragments is relatively small (the torsion
angles are equal to 20.2° and 23.2°, respectively) [7]. In
structures with the electron-acceptor substituents, the
torsion angles are substantially larger and are equal,
respectively, to 38.5° and 42.7° in the chloro substituted
compound [4] and 42.0° and 42.4° in the compound
with X = NO2 [7]. In this case, the torsion angles are
virtually independent of the electron-acceptor power of
substituent X [4, 7]. Correspondingly, the conformation
of the cyclohexanone ring changes from the half-chair
type for the compound with X = N(CH3)2 to the chair type
for structures with electron-acceptor substituents X.

The unexpected feature was revealed in the structure
of the compound with X = C6H5 [8]. Although the phe-
nyl group is not a strong electron-donor substituent, the
enone and benzylidene groupings in this structure
exhibit a substantial flattening (the torsion angles are
equal to 13.0° and 4.9°, respectively) as compared to
that in the dimethylamino substituted compound. In
[8], it was assumed that the observed effect is associ-
ated with the intermolecular π-electron interaction in
the crystal. In this respect, it was of interest to examine
the structures of other compounds of this class with the
biphenylyl fragment.

The main purpose of the present work was to inves-
tigate the molecular and crystal structures of compound Ia
containing the biphenylyl grouping (X = C6H5) and the
001 MAIK “Nauka/Interperiodica”
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bulky substituent Y = Br in the 6-position of the cyclo-
hexanone fragment and to compare the spatial struc-
tures of compound Ia and its analogues Ib–Id, which
were studied earlier in [5, 8].

EXPERIMENTAL
Compound Ia was synthesized according to the pro-

cedure described in [9]. Single crystals suitable for
X-ray diffraction analysis were grown from acetoni-
trile. Crystals Ia were obtained in the form of yellow
prisms. A single crystal 0.3 × 0.4 × 0.6 mm in size was
chosen for X-ray structure analysis. The crystals are
monoclinic, a = 11.005(4) Å, b = 12.229(4) Å, c =
14.376(5) Å, β = 91.37(1)°, V = 1934.2(11) Å3, M =
397.3 (C23H25BrO), space group P21, Z = 4, dcalcd =
1.365 g/cm3, and µ(MoKα) = 2.133 mm–1.

The X-ray diffraction data were collected on a Sie-
mens P3/PC automated diffractometer (MoKα radiation,
graphite monochromator, θ/2θ scan mode, 2θmax = 50°).
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
The intensities of 1744 reflections were measured in
the hkl index ranges 0 < h < 11, 0 < k < 13, –15 < l < 16.
After averaging of equivalent reflections, the final data
set included 1641 independent reflections (Rint = 0.0241),
which were used in further calculations. No absorption
correction was introduced.

The structure was solved by the direct method. The
hydrogen atoms were located from successive electron-
density difference syntheses. The absolute configura-
tion was determined from the known R configuration of
the C(3) chiral center.

The refinement of the structure was performed by
the full-matrix least-squares method in the anisotropic
approximation for the non-hydrogen atoms (the coordi-
nates of hydrogen atoms were refined using a riding-
atom model with the fixed thermal parameters Uiso =
0.08 Å2). The isotropic extinction coefficient g was
equal to 0.00013(6). The absolute structure parameter
was χ = 0.87(7). The final discrepancy factors were as
follows: R1 = 0.0517, wR2 = 0.0512, and GOOF = 1.95.
Table 1.  Coordinates of non-hydrogen atoms (×104) and equivalent isotropic thermal parameters Beq (Å2) for structure Ia
(independent molecules are designated as M and M')

Atom
M M'

x/a y/b z/c Beq, Å2 x/a y/b z/c Beq, Å2

Br(1) –1399(1) 8343(2) 9418(1) 5.5(1) –11220(2) 11037(2) 5567(1) 7.3(1)

O(1) –1478(9) 8466(9) 10166(6) 6.8(4) –8455(9) 11080(10) 4824(8) 8.2(5)

C(1) –961(13) 7810(12) 9646(9) 4.6(5) –8867(12) 10405(11) 5327(10) 4.5(5)

C(2) –1476(11) 7516(11) 8724(8) 3.5(5) –8287(11) 10112(11) 6266(8) 3.6(5)

C(3) –1139(10) 6411(9) 8317(9) 3.1(4) –8646(11) 9064(11) 6723(8) 3.9(5)

C(4) –157(12) 6108(14) 8598(9) 5.0(5) –9984(12) 8833(11) 6600(8) 4.5(5)

C(5) –449(12) 6165(12) 9625(8) 4.6(5) –10398(12) 8837(11) 5572(8) 4.6(5)

C(6) –263(12) 7295(10) 10027(10) 4.8(5) –10106(11) 9861(10) 5053(7) 3.3(4)

C(7) –2247(10) 8222(12) 8338(8) 3.8(4) –7457(12) 10818(10) 6597(8) 3.8(5)

C(8) –2920(10) 8249(11) 7451(9) 3.5(4) –6716(10) 10817(10) 7449(9) 3.1(5)

C(9) –3091(12) 7355(10) 6842(9) 4.0(5) –6493(13) 9927(12) 7984(12) 5.2(6)

C(10) –3721(12) 7462(10) 6036(9) 3.5(5) –5821(12) 9985(10) 8812(10) 4.0(5)

C(11) –4248(11) 8415(13) 5733(9) 4.5(5) –5446(10) 10999(13) 9155(9) 4.2(5)

C(12) –4135(12) 9287(13) 6315(10) 4.7(6) –5683(14) 11943(14) 8589(10) 6.0(6)

C(13) –3457(13) 9219(10) 7152(8) 4.0(5) –6308(12) 11818(12) 7742(10) 4.9(5)

C(14) –2017(13) 5555(11) 8678(10) 5.3(5) –7884(14) 8119(14) 6382(12) 7.2(7)

C(15) –434(13) 7395(13) 11090(9) 5.3(5) –10290(12) 9831(11) 4024(8) 4.2(5)

C(16) –534(15) 6729(15) 11548(11) 7.9(7) –9404(17) 9108(14) 3576(10) 7.7(7)

C(17) –1654(15) 7035(15) 11388(10) 6.8(7) –11570(17) 9449(15) 3712(12) 8.6(8)

C(18) –4931(11) 8550(15) 4796(9) 5.2(6) –4795(11) 11073(10) 10054(9) 3.4(4)

C(19) –4875(13) 9485(12) 4297(10) 5.0(6) –4985(12) 11921(10) 10667(9) 4.0(5)

C(20) –5462(14) 9503(14) 3432(13) 6.4(7) –4450(15) 11960(13) 11537(11) 6.1(6)

C(21) –6067(13) 8632(12) 3052(10) 5.2(6) –3632(12) 11101(14) 11767(9) 4.6(5)

C(22) –6169(12) 7713(11) 3622(10) 4.5(5) –3435(14) 10274(12) 11221(12) 5.4(6)

C(23) –5557(8) 7660(14) 4488(12) 6.2(7) –3995(13) 10242(11) 10371(10) 4.9(6)
1
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The structural calculations were performed using the
SHELXTL PLUS/PC software package [10]. The coor-
dinates of non-hydrogen atoms are listed in Table 1.

RESULTS AND DISCUSSION

In structure Ia, the unit cell involves two crystallo-
graphically independent molecules M and M' with
about the same geometric parameters.

As in the earlier-studied structures Ib–Id [5, 8], both
crystallographically independent molecules of com-
pound Ia are characterized by the cis orientation of the
alkyl groups with respect to the cyclohexanone ring: the
deviations of the C(14) and C(15) atoms (see figure) in
the same direction from the root-mean-square planes
passing through pairs of the C(2)–C(3) and C(5)–C(6)
(the P1 plane) [C(1)–C(6) and C(3)–C(4) (the
P2  plane)] opposite bonds in the cyclohexanone ring
are equal, respectively, to 1.39 and 0.73 Å (1.53 and
0.80 Å) in molecule M and 1.42 and 0.81 Å (1.57 and
0.88 Å) in molecule M' (the error is ±0.02 Å). These
deviations indicate that the methyl group has an axial
orientation and the isopropyl group position equato-
rial occupies the (see also the ϕ1–ϕ4 torsion angles in
Table 2).
C

The C–Br bond has an axial orientation (see the ϕ5

and ϕ6 torsion angles) and is in the trans position with
respect to the methyl group in the cyclohexanone ring
as judged from the deviations of the C(14) and Br atoms
in opposite directions from the root-mean-square
planes P1 and P2 in both independent molecules in the
unit cell. For the Br atom, the magnitudes of these devi-
ations are equal to 1.96 (1.94) ±0.02 Å and 1.88 (1.93)
±0.02 Å, respectively.

Note that compounds Ia, Ic, and Id were synthe-
sized by bromination of the relevant substituted 3R,6R-
2-(4-X-benzylidene)-3-methyl-6-isopropylcyclohexano-
nes [9], during which the R configuration of the C(3)
chiral center distant from the carbonyl group remains
unchanged. This makes it possible to determine the
absolute configuration of the molecule under investiga-
tion. The above X-ray diffraction data indicate the cis
orientation of the alkyl substituents in the 3- and 6-posi-
tions. However, according to the Kahn–Ingold–Prelog
rules [11], the configuration of the C(6) chiral center
formally changes as a result of the substitution of the
bromine atom for the hydrogen atom at this center.
Consequently, the chiral compound Ia is 3R,6S-2-(4-
phenylbenzylidene)-3-methyl-6-bromo-6-isopropylcy-
clohexanone. Its analogues Ic and Id, which were stud-
ied earlier in [5], also belong to the same series.
C(10)
C(18)

C(23) C(22)

C(21)

C(20)C(19)C(11)

C(12)
C(13)

C(14') C(16')

C(9)

C(14)

C(3)

C(4)
C(5)

C(7)

C(8)C(2)

C(1)

C(6)

C(16)

C(15)C(17)

Br (1)

O(1)

C(11')

C(10') C(9')

C(8') C(7')

C(4')

C(3')

C(2')

C(19')

C(18') C(12') C(13')

C(23')

C(22')

C(21')

C(20') Br (1')

C(6')

C(5')
C(17')

C(15')C(1')

O(1')

Structure of two crystallographically independent molecules of compound Ia.
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Table 2.  Selected bond angles (ω, deg), torsion angles (ϕi, deg), and puckering parameters in structures Ia–Id

Parameter
Structure

Ia* Ib [8] Ic [5] Id [5]

Bond angles, ω
ωα; C(3)C(2)C(7) 125.3(11); 125.6(11) 126.1(2) 127.7(7) 127.2(6)

ωβ; C(2)C(7)C(8) 133.5(13); 131.6(12) 134.1(3) 129.6(7) 129.9(6)

ωγ; C(7)C(8)C(9) 125.6(12); 124.8(12) 127.3(2) 124.8(7) 125.9(5)

Torsion angles, ϕi

ϕ1; C(14)C(3)C(2)C(1) 86.3(2); 86.1(2) 92.5 76.1 81.1

ϕ2; C(14)C(3)C(4)C(5) –67.5(2); –70.0(2) –70.0 –69.0 –68.7

ϕ3; C(15)C(6)C(1)C(2) –160.9(2); –155.7(2) –159.4 –170.8 –167.7

ϕ4; C(15)C(6)C(5)C(4) 174.8(1); 169.5(1) 177.1 174.7 176.8

ϕ5; BrC(6)C(1)C(2) 85.0(2); 91.5(1) – 78.2 81.7

ϕ6; BrC(6)C(5)C(4) –62.3(2); –70.4(1) – –65.7 –63.9

ϕ7; O(1)C(1)C(2)C(7) 22.7(2); 14.9(2) 13.0 42.0 37.8

ϕ8; C(2)C(7)C(8)C(9) 14.5(3); 18.5(3) 4.9 35.4 35.6

ϕ9; C(10)C(11)C(18)C(23) 34.8(2); 33.4(2) –40.2 – –

ϕ10; C(12)C(11)C(18)C(19) 35.5(2); 39.8(2) –43.0 – –

ϕ11; C(1)C(2)C(3)C(4) –34.3(2); –39.2(2) –32.7 –44.6 –42.9

ϕ12; C(2)C(3)C(4)C(5) 52.3(2); 54.9(2) 53.4 51.9 53.1

ϕ13; C(3)C(4)C(5)C(6) –59.7(2); –55.2(2) –61.1 –52.3 –54.9

ϕ14; C(4)C(5)C(6)C(1) 43.8(2); 36.5(2) 46.2 43.2 42.9

ϕ15; C(5)C(6)C(1)C(2) –28.6(2); –20.1(2) –27.2 –37.1 –30.5

ϕ16; C(6)C(1)C(2)C(3) 24.9(2); 21.9(2) 20.8 39.3 32.3

Puckering parameters for the cyclohexanone ring

θ, deg 16.38; 19.52 19.00 6.89 11.64

Ψ, deg 16.53; 3.41 19.66 5.55 0.10

S 0.88; 0.84 0.88 0.94 0.91

* Parameters are given for two independent molecules M and M', respectively.
The nonplanarity of the enone grouping

 in two independent molecules of the stud-

ied compound in the crystal differs significantly (see
the ϕ7 torsion angles in Table 2). The degree of nonpla-
narity in molecule M' is comparatively small and virtu-
ally does not differ from that in structure Ib. In mole-
cule M, the nonplanarity of this fragment is more pro-
nounced. The arylidene fragment in molecules M and
M' of structure Ia is characterized by a substantial
twisting (see the ϕ8 torsion angles in Table 2), whereas
this fragment in structure Ib is nearly planar. At the
same time, the degree of nonplanarity (twisting) of the
enone and arylidene fragments in both crystallographi-
cally independent molecules of structure Ia is apprecia-
bly less than that in structures Ic and Id: these frag-
ments are intermediate in the degree of nonplanarity
between the latter structures (Ic and Id) and structure Ib.
Therefore, as in the earlier-studied compounds with

C C
CHO
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
Y = H [4, 7, 8], the O=C–C=C–C6H4X cinnamoyl
grouping in the series of their 6-bromo substituted ana-
logues Ia, Ic, and Id shows a maximum flattening in the
case of X = C6H5, i.e., in the structure involving the
biphenylyl fragment.

As regards the structure of the biphenylyl grouping
in the studied compound Ia, the degree of nonplanarity
of its two benzene rings differs insignificantly for the
crystallographically independent molecules M and M'
and is only slightly smaller than that in structure Ib (see
the ϕ9 and ϕ10 torsion angles in Table 2).

It follows from the endocyclic torsion angles
ϕ11−ϕ16 that the cyclohexanone ring in structure Ia
adopts a chair conformation, which is substantially dis-
torted, especially in molecule M ', as judged from the
considerably decreased values of the ϕ15 and ϕ16 torsion
angles. As in structure Ib [8], the conformation of the
cyclohexanone ring is best described as a chair-1,4 [the
C(2), C(3), C(5), and C(6) atoms in molecules M ' and
1
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M are coplanar to within 0.01 and 0.03 Å, respectively].
The tendency toward flattening of the C(3)C(2)C(1)C(6)
fragment in the cyclohexanone ring (these atoms are
coplanar to within 0.08 Å in molecules M and M ') sug-
gests that the conformation of the ring as a whole is
intermediate between a chair-1,4 and a half-chair. This
is also confirmed by the calculated puckering parame-
ters [12, 13], which, at the same time, indicate that the
cyclohexanone rings in molecules M and M ' of struc-
ture Ia considerably differ in shape from each other
(Table 2): the conformation of the cyclohexanone ring
in molecule M is closely similar to that observed in
structure Ib, whereas its conformation in molecule M '
is noticeably different.

As in the case of structure Ib [8] and the other ear-
lier-studied structures of 2-arylidene derivatives of
cyclohexanone [14] and its chiral 3-methyl-6-isopro-
pyl substituted compounds [4–7], the characteristic
feature of structure Ia is a substantial distortion
of  the  bond  angles  at  the  sp2  carbon  atoms  in  the
–C(3)HCH3C(2)=C(7)HC6H4– fragment: the bond
angles C(3)C(2)C(7) (ωα), C(2)C(7)C(8) (ωβ), and
C(7)C(8)C(9) (ωγ) considerably exceed 120° (Table 2).
The degree of distortion of the bond angles is virtually
identical in molecules M and M '. It should be noted that
there is a certain tendency to a weaker distortion of
these bond angles in structure Ia as compared to that in
structure Ib. For all the structures studied, the ωβ angle
has a maximum value. The ωβ angle in compounds Ia
and Ib is substantially larger than that in compounds Ic
and Id, as well as in the other 2-arylidene-3-methyl-6-
isopropylcyclohexanones investigated earlier in [4, 6, 7].
The data obtained are in close agreement with the infer-

Table 3.  Selected intramolecular contacts (d, Å) in structu-
res Ia and Ib

Contact

Structure

Ia
 Ib [8]

molecule M molecule M'

H(3) ⋅ ⋅ ⋅H(9) 1.92 1.91 1.93
H(3) ⋅ ⋅ ⋅C(9) 2.60 2.53 2.65
H(9) ⋅ ⋅ ⋅C(3) 2.57 2.52 2.66
C(3) ⋅ ⋅ ⋅C(9) 3.20(2) 3.13(2) 3.28
H(3) ⋅ ⋅ ⋅C(7) 2.66 2.61 2.68
H(3) ⋅ ⋅ ⋅C(8) 2.91 2.83 2.95
H(9) ⋅ ⋅ ⋅H(14) 2.43 2.27 –
H(9) ⋅ ⋅ ⋅C(14) 2.85 2.71 2.90
C(7) ⋅ ⋅ ⋅C(14) 3.31(2) 3.35(2) 3.26
H(7) ⋅ ⋅ ⋅H(13) 2.34 2.28 2.10
H(7) ⋅ ⋅ ⋅O(1) 2.33 2.35 2.33

Note: The sums of the van der Waals radii are as follows [15]:
H ⋅ ⋅ ⋅H, 2.32 Å; H ⋅ ⋅ ⋅C, 2.87 Å; H ⋅ ⋅ ⋅O, 2.46 Å; and C ⋅ ⋅ ⋅C,
3.42 Å.
C

ence made in [7] that the maximum distortion of the ωβ
bond angle is observed in structures with a noticeably
flattened arylidene grouping.

It is worth noting that the distortions of the above
bond angles in structures Ia, Ib and Ic, Id differ in char-
acter (Table 2). In structures Ia and Ib (in which the
arylidene fragment is substantially flattened and the
conformation of the cyclohexanone ring is intermediate
between a chair and a half-chair), the ωβ angle is maxi-
mum, whereas the distortion of the ωα and ωγ bond
angles is appreciably less and virtually identical. In
structures Ic and Id, the distortion of the ωβ angle is less
pronounced compared to that in structures Ia and Ib,
whereas the ωα bond angle tends to increase. This can
be associated with substantially different conforma-
tions of the cyclohexanone ring in these compounds
[7]. Thus, the degree of nonplanarity of the enone and
arylidene groupings, the conformation of the cyclohex-
anone ring, and the distortion of the bond angles at the
sp2 carbon atoms are interrelated in compounds of the
structure type under investigation.

The steric strain of molecules Ia and Ib also mani-
fests itself in the occurrence of intramolecular contacts
between the atoms of the C(3)HCH3 fragment and the
nearest benzene ring (Table 3), which can be consid-
ered shortened contacts [15].

CONCLUSION

It was demonstrated that structures Ia and Ib with
the biphenylyl fragments exhibit common features,
namely, the similarity in both the structure of the cin-
namoyl fragment and the conformation of the cyclo-
hexanone ring in compounds Ia and Ib and other com-
pounds of this class with strong electron-donor substit-
uents (even though the biphenylyl group does not
belong to this type substituents). It was assumed that
these features of the studied compounds are associated
with the intermolecular interactions and the molecular
packing in the crystal, which is characterized by the
stacks formed by crystallographically independent
molecules M and M '.
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X-ray Mapping in Heterocyclic Design: 
V. Diffractometric Study of the Crystal Structure 
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Abstract—The crystal structure of 2-hydroxy-3-trifluoracetylimidazo[1,2-a]pyridine hydrochloride
C9H6F3ClN2O2 is determined by X-ray diffraction at 180 K. The structure is solved by the direct method and
refined by the least-squares procedure to R = 0.0296. The alternation of bond lengths in the six-membered frag-
ment of the molecule is observed. One of the specific features of the crystal structure is the formation of a sys-
tem of the N–H···Cl– (N···Cl, 3.09 Å; N–H, 0.83 Å; H···Cl, 2.33 Å; and N–H···Cl, 153°) and O–H···Cl– (O···Cl,
2.87 Å; O–H, 0.95 Å; H···Cl, 1.92 Å; and O–H···Cl, 178°) hydrogen bonds in which the chlorine atoms are
related to the reference atom by different symmetry transformations. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION
This work continues the series of our investiga-

tions of heterocyclic compounds that are able to enter
into the reactions of cyclization and ring transforma-
tion [1–8]. Earlier [6], we described the structure of 2-
oxo-2,3-dihydroimidazo[1,2-a]pyridine hydrochloride
C7H7ClN2O (I). This salt was used as a starting sub-
stance for preparation of 2-hydroxy-3-trifluoracetylim-
idazo[1,2-a]pyridine hydrochloride C9H6F3ClN2O2
(II). Compound II was prepared by the reaction
between I and trifluoracetic anhydride

Colorless crystals of the prismatic habit precipitated
in the reaction vessel. The crystals removed from the
mother liquor cracked within 30 s. Because of the high
volatility of trifluoracetic anhydride, the X-ray-quality
crystals were chosen under the flow of cooled nitrogen
with a binocular microscope in polarized light.

According to the data of the Cambridge Structural
Database [9], the X-ray structure analysis of II has not
been performed.

EXPERIMENTAL
Crystals of compound II are monoclinic. The unit

cell parameters were determined and refined at

N

H
N

+

O
N

H
N

+

OH

O
CF3

Cl–

Cl–

(CF3CO)2O

I II
1063-7745/01/4606- $21.00 © 20986
Coordinates (×104) and equivalent isotropic thermal parame-
ters Ueq/Uiso (Å2 × 103) for molecule II

Atom x y z Ueq/Uiso

Cl 4755(1) 1286(1) 1458(1) 31(1)

C(1) 3540(1) 4336(3) 2447(1) 20(1)

C(2) 3885(1) 6417(3) 2227(1) 20(1)

O(2) 3887(1) 7359(2) 1538(1) 25(1)

N(3) 4231(1) 7391(2) 2873(1) 21(1)

C(4) 4123(1) 6006(3) 3505(1) 21(1)

C(5) 4354(1) 6330(3) 4286(1) 26(1)

C(6) 4148(1) 4654(3) 4803(1) 30(1)

C(7) 3721(1) 2694(3) 4548(1) 31(1)

C(8) 3501(1) 2434(3) 3778(1) 26(1)

N(9) 3704(1) 4117(2) 3262(1) 20(1)

C(10) 3099(1) 2626(3) 2024(1) 22(1)

O(10) 2867(1) 733(2) 2301(1) 31(1)

C(11) 2904(1) 3220(3) 1149(1) 26(1)

F(1) 2773(1) 5869(2) 1006(1) 34(1)

F(2) 2434(1) 1766(2) 885(1) 45(1)

F(3) 3305(1) 2518(2) 743(1) 35(1)

H(2) 4186(9) 8630(40) 1523(12) 49(5)

H(3) 4488(8) 8570(40) 2893(10) 37(5)

H(5) 4635(7) 7800(40) 4407(10) 31(4)

H(6) 4300(7) 4780(40) 5344(10) 36(4)

H(7) 3585(8) 1560(40) 4901(11) 37(4)

H(8) 3208(7) 1230(30) 3562(9) 29(4)
001 MAIK “Nauka/Interperiodica”
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Structure of heterocyclic cation II.
180(2) K on an IPDS automated diffractometer using
1097 reflections in the θ range 5°–25° (λMoKα, graph-
ite monochromator). The crystal data are a = 23.761(5) Å,
b = 4.856(1) Å, c = 17.713(4) Å, β = 100.41(3)°, V =
2010.1(7) Å3, Z = 8, space group C2/c, dcalcd =
1.762 g/cm3, and µ(λMo) = 0.415 mm–1. A set of
4505 reflections with I ≥ 2σ(I) was collected on the
same diffractometer and at the same temperature by the
ω-scan technique in the θ range 3.16°–26.19°. The diffrac-
tion data measured were processed with the X-RED-107
program package. The non-hydrogen atoms were
located by the direct method and refined in the anisotro-
pic approximation by the least-squares procedure
according to the SHELX97 program package [10]. All
the hydrogen atoms were located from the difference
Fourier syntheses of electron density. The structure was
refined by the least-squares procedure in the anisotro-
pic approximation (isotropic, for H atoms) to R1 =
0.0296 (wR2 = 0.0642). The atomic coordinates and
isotropic thermal parameters that are equivalent to the
corresponding anisotropic parameters are listed in the
table. The residual (maximum and minimum) electron
densities are ∆ρmax = 0.240 and ∆ρmin = –0.184 e/Å3.
The drawing of the cation with the atomic numbering (see
figure) was obtained with the PLUTON96 program [11].

RESULTS AND DISCUSSION

The chloride ion serves as a counterion in com-
pound II. The heterocyclic cation is planar: the largest
OGRAPHY REPORTS      Vol. 46      No. 6      200
atomic deviation from the plane of the bicyclic frag-
ment is 0.015(1) Å. The cations of salts I and II can be
represented by one of the three structures (R = H or
COCF3):

In our earlier work [6], we found that the structure
of salt I is of the A type. The localization of the protons
at the N(3) and O(2) atoms and the absence of a proton
at the C(1) atom suggest that the structure of salt II
(which is prepared by acylation of I) should be unam-
biguously assigned to the B-type structure rather than to
the C type.

It is of interest to reveal the structural changes upon
the I  II acylation. A comparison of the bond
lengths in the cations studied shows that the quasi-
diene character of the C(5)C(6)C(7)C(8) moiety of the
six-membered heterocycle in II is pronounced more
than that in I. Protonation of the exocyclic O atom
results in a redistribution of the bond lengths in the five-
membered ring.

In particular, the C(2)–O(2) bond lengthens and the
C(1)–C(2) bond shortens. This is consistent with the
expected bond-length distribution in the ketonic com-
pound I and the enolic compound II. We conclude that

N
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+

O

H R

N

H
N

+

OH

R

N

N
+ OH

H R
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the attachment of the COCF3 group to the C(1) atom in
the ketonic A form increases the acidity of the remain-
ing proton and stabilizes the enolic B form. Since the
C(1)–C(10) bond (heterocycle–acyl) is rather long
(1.44 Å), the COCF3 group in II is apparently weakly
conjugated with the enolic fragment.

Another specific structural feature of II is the forma-
tion of the hydrogen-bond system. The N(3)–H(3)···Cl–

hydrogen bond, in which the chlorine atom is related to
the reference atom by the (1 – x, 1 + y, 1/2 – z) symme-
try transformation, is characterized by the following
parameters: N(3)···Cl–, 3.09 Å; N(3)–H(3), 0.83 Å;
H(3)···Cl–, 2.33 Å; and N(3)–H(3)···Cl–, 153°. In the
O(2)–H(2)···Cl– hydrogen bond [O(2)···Cl–, 2.87 Å;
O(2)–H(2), 0.95 Å; H(2)···Cl–, 1.92 Å; and O(2)–
H(2)···Cl–, 178°], the chlorine atom is related to the ref-
erence atom by the (x, 1 + y, z) symmetry transforma-
tion.
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Abstract—The structure of KDP crystals doped with trivalent (Al3+, Fe3+, Mn3+, V3+, and La3+) and divalent
(Ni2+, Co2+, Fe2+, Mn2+, Ca2+, Sr2+, and Ba2+) cations was simulated by minimizing the energy of atomic inter-
actions. Three types of defects were revealed: isolated defect centers formed by M3+ and Ni2+ ions, cluster chain
centers formed by M2+ ions with ionic radii exceeding 0.9 Å, and complex centers formed via the replacement
of potassium ions by large Ba2+ dopants with the simultaneous replacement of some of the phosphorus atoms
by silicon ones. The corresponding energies of defect formation are calculated. The surface morphology of the
crystal faces is studied. The changes in morphology in the presence of M3+ dopants are caused by their adsorp-
tion, whereas for M2+ dopants, these changes are caused mainly by their incorporation into the crystal structure.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Two competitive processes—adsorption of impurity
ions on the face surface and their incorporation into the
surface layer of the crystal—are responsible for the
effect of impurities on the grown kinetics and morphol-
ogy of crystals. The effect of interstitial ions is provided
mainly by two factors—the longer lifetime of the impu-
rity within the surface layer (compared to the adsorbed
state) [1] and the local stresses caused by deformation
of the crystal structure by impurity particles [2]. The
stresses increase the chemical potential of the com-
pound in deformed surface regions and, thus, reduce
the actual supersaturation there. Hence, the effect of
impurities incorporated into the surface layer is deter-
mined not only by the impurity particles proper, which
are the stoppers for growth layers (e.g., in the case of
impurities adsorbed on the surface), but also by the
degree of deformation of the adjacent crystal region
whose dimensions cannot be less than the dimensions
of the first coordination sphere of the impurity ion (the
structural mechanism of impurity influence).

In our earlier publications [3–5], we demonstrated
by computer simulation and crystallochemical analysis
that di- and trivalent iron dopants are incorporated into
the potassium dihydrophosphate (KDP) structure by
two different mechanisms. Thus, although Fe3+ and
Fe2+ dopants occupy the same interstitial position in the
structure, M1, the Fe3+ ions form isolated monoatomic
1063-7745/01/4606- $21.00 © 20989
defect centers, whereas, in accordance with the princi-
ple of charge compensation, the Fe2+ ions are forced to
occupy several adjacent M1 positions and to form
impurity chains. The preliminary estimates showed that
an analogous mechanism of dopant incorporation
should also exist for other M2+ and M3+ ions with the
radii close to those of Fe2+ and Fe3+, respectively. The
comparison of the energies of Fe3+ and Fe2+ defect for-
mation and the analysis of the displacements of the
atoms of the matrix in the vicinity of the dopant ions
showed that the KDP structure the incorporation of M2+

ions deforms the structure more pronouncedly than the
incorporation of M3+ ions. Correspondingly, the
stresses in the crystal structure in the former case are
also more pronounced, which accounts for the different
effect of the Co2+ and Ni2+ ions, on the one hand, and
the Fe3+ and Cr3+ ions, on the other hand, on the growth
kinetics of the faces of KDP crystals [6].

The present paper continues our studies in this field
and is dedicated to the comprehensive analysis of the
mechanism of incorporation of di- and trivalent cations
with a wide range of ionic radii r into the KDP structure
(r varies from 0.66 to 1.2 Å for Al3+, Fe3+, Mn3+, V3+,
and La3+ and from 0.83 to 1.50 Å for Ni2+, Co2+, Fe2+,
Mn2+, Ca2+, Sr2+, and Ba2+). We also study the effect of
the above cations on the surface morphology and the
structure of KDP crystals.
001 MAIK “Nauka/Interperiodica”
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COMPARATIVE CHARACTERIZATION 
OF DEFECTS FORMED BY DI- AND TRIVALENT 

METALS

Defect centers were simulated by minimizing the
energy of atomic interactions by the GULP (General
Utility Lattice Program) program package [7]. As in
our previous studies [4, 5], the effective charges of the
ions were taken to be equal to 2.7 and 1.9 e for M3+ and
M2+, respectively. The parameters of the pair potentials
of M–O atomic interactions with due regard for the
change in the effective ion charge were taken from [8]
(Table 1). In the discussion, we used the absolute ionic
radii [9].

Table 1.  Parameters of the potentials of the M–O atomic in-
teractions

M B (M–O) ρ (M–O)

Al 1005.77 0.3118

Mn3+ 1134.83 0.3214

Fe3+ 1102.41 0.3239*

Y 1213.51 0.3588

La 1215.31 0.3651

Ni 1582.5 0.2882

Co 1491.7 0.2951

Fe2+ 1207.6 0.3084

Mn2+ 1007.4 0.3262

Ca 1090.4 0.3437

Sr 959.1 0.3721

Ba 905.7 0.3976

* Data [3].
C

As in our previous studies [4, 5], we examined vari-
ous modes of incorporation of ions into the KDP struc-
ture, namely, into the M1 (0.25, 0.35, 0.125), M2 (0.75,
0.22, 0.125), and potassium positions. In the course of
optimization, the M2+ ions were displaced from the M2
into the M1 position. Therefore, the M2 position is not
considered as an alternative position for divalent cat-
ions. The results obtained for incorporation of impurity
cations into the potassium positions are only qualita-
tive, because it was shown [5] that the calculations
within the framework of the model used provide the
correct evaluation of the energy of defect formation in
the K+ cavity only for large cations whose size is com-
parable with the size of a potassium ion, which ensures
the formation of typical M–O distances. Of all the triva-
lent cations considered, only La3+ cation meets this
requirement. The adequate description of incorporation
of smaller cations into the potassium position, the
potential of the M–O interaction should involve the
Morse potential taking into account the degree of the
bond covalence. The contribution of the Morse poten-
tial is negligible of an ion is incorporated into the void
with the commensurate size, but it increases with a
decrease of the radius of the interstitial ion. Hence, the
energies of defect formation in the K+ position (except
for Ba2+) given below are underestimated. Neverthe-
less, even this qualitative estimate for trivalent cations
proved to be sufficient for determining the most proba-
ble positions for their incorporation into the structure.

The results of our calculations are summarized in
Table 2, which shows that the minimum energies of
defect formation for trivalent cations correspond to the
M1 position. This position is most favorable for incor-
poration of all the M3+ cations. The underestimated
energies of defects for the replacement of K+ cations
Table 2.  Energies of defect formation (eV)

Ion Ionic radius M1 M2 Potassium
position

Chain calculated 
per atom

M2+ Ni 0.83 0.76* – – 0.85

Co 0.88 1.10* – – 1.25

Fe 0.92 1.44 – – 1.41*

Mn 0.97 2.13 – – 2.01*

Ca 1.14 3.62 – – 3.29*

Sr 1.27 5.24 – – 4.93*

Ba 1.50 6.98* – 7.75 7.48

M3+ Al 0.53 –6.90 –5.15 –2.33 –

Fe 0.55 –4.79 –2.86 –1.24 –

Mn 0.58 –5.05 –3.13 –1.31 –

Y 0.90 –1.22 0.88 1.32 –

Ce 1.01 1.63 3.66 3.61 –

La 1.03 1.23 2.89 2.99 –

* The most favorable variant of defect formation for M2+.
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Fig. 1. Schematic view of the KDP structure projected onto the (100) plane (overlapping phosphorus–oxygen tetrahedra and the
M1 positions); the orientations of the impurity chains are shown by dashed lines.
are substantially higher than the corresponding values
for the M1 position. With the introduction of the Morse
potential this difference increases.

Thus the main defects in the KDP structure doped
with trivalent cations in the wide range of ionic radii are
isolated regions with the dopant coordinates (0.25,
0.35, 0.125). The energy of defect formation increases
with an increase of the ionic radius of the dopant, which
indicates that the incorporation of larger cations is more
difficult because it requires more pronounced structure
deformation. Since the M1 positions are in the {100}
plane [3], their partial occupancy by M3+ ions provides
the formation of loose “impurity networks” parallel to
the {100} plane. Intersections of these networks create
channels along the Z-axis of the crystal, which are filled
with impurity ions (the A and G positions; Fig. 1).

The situation for divalent cations is more complex.
Unlike M3+, divalent cations form different defect cen-
ters depending on their ionic radii. Calculations show
(Table 2) that the M1 positions are characterized by the
minimum energies of defect formation; i.e., the M1
positions are still the most probable positions for incor-
poration of the M2+ ions as well (the case of Ba2+ is dis-
cussed below). However, only Ni2+ of all the M2+ ions
form isolated defect centers analogous to M3+ ions.
Similar to M3+ these centers are located in channels
along the [001] direction (Fig. 2). For larger M2+ cations
(r > 0.9 Å), the incorporation into the adjacent M1 posi-
tions is more favorable with the formation of A–B–D–
E… or A–B–D–F… impurity chains in the (100) planes
(Fig. 1). The linear chains (ABDE…) are tilted by an
angle of ~60° to the Z-axis of the crystal, whereas the
average angles characterizing the orientation of differ-
ent types of “broken” chains (ABDF…) can be equal to
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
75° or even somewhat larger. In the crystals, the sys-
tems of such chains form second-type dopant networks
occupied by M2+ ions with the radii exceeding 0.9 Å.
Because of the intermediate position of the Co2+ and
Fe2+ cations (r(Co2+) = 0.88 Å and r(Fe2+) = 0.92 Å) they
are statistically distributed over both types of networks.

For large divalent Ba2+ cations (r = 1.50 Å) whose
the ionic radius is comparable with that of K+ (r =
1.56 Å), the M1 positions are characterized by the very
high energy of defect formation (Table 2). Thus, the
incorporation of barium ions into KDP structure is very
difficult. On the other hand, it is known that Ba2+ ions
in natural minerals readily replace potassium ions by

0.7

E, eV

r, Å
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0
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Sr

Mn
Fe

Co
Ni

Fig. 2. Energies of defect formation (E) depending on the
absolute ionic radii (r) of divalent metal ions occupying the
M1 position. The solid line indicates the energies of forma-
tion of single defects; dashed line indicates the energies of
cluster formation.
1
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the mechanism of heterovalent isomorphism. Accord-
ing to [10, 11] and our estimates (see below), the distri-
bution coefficients of barium ions in KDP crystals con-
siderably exceed unity. These facts indicate that Ba2+

ions can readily be incorporated into the KDP structure.
We analyzed the model of a complex double defect cen-
ter with the simultaneous replacement of potassium by
barium and phosphorus by silicon. The validity of this
model is confirmed by the fact that mother liquors of
KDP necessarily contain noticeable amounts of silicon.
The calculations demonstrated that the energy of for-
mation of this double defect center (4.77 eV) is almost
1.5 times lower than the corresponding value for the M1
position. Therefore, the formation of a complex defect
center of the third type in the KDP structure by the
mechanism of heterovalent isomorphism is more prob-
able for large Ba2+ cations (Fig. 3). The analysis of pos-
sible incorporation of other large cations (Ca2+ and
Sr2+), whose radii are essentially different from the
radius of a K cation in comparison with that of Ba2+,
requires the allowance for the Morse potential in the
consideration of the M–O interactions. The results of
such an analysis will be presented in the next publica-
tion.

The calculations (Table 2) demonstrated that the
energies of defect formation are much higher for the
M2+ than for the M3+ ions. This fact and the analysis of
local distortions of the KDP crystals doped with vari-
ous ions [4, 5] indicate that the M3+ ions cause weaker
deformations of the KDP structure than the M2+ ions,
and, thus, lower local stresses. Although the Ni2+ ions
give rise to the formation of defect centers analogous to

Ba

K

Z

Si

X

Fig. 3. Structure of a complex defect center K+ + P5+ =
Ba2+ + Si4+; the solid line shows the positions of phospho-
rus–oxygen tetrahedra in the ideal and the deformed struc-
tures, respectively.
C

the M3+ centers, they cause higher local stresses. Higher
stresses also arise because the formation of impurity
chains of M2+ ions. Finally, the maximum deformations
are observed in the case of heterovalent isomorphism
K+ + P5+ = Ba2+ + Si4+, however, the condition of charge
compensation does not require the formation of addi-
tional vacancies. As a result, distortions are observed in
a narrower region of the occurrence of replacement.
Thus, this situation is most favorable energetically for
Ba2+ cations.

Thus, the dopants of di- and trivalent metals provide
the formation of three types of defect centers in the
KDP structure:

(1) isolated defect centers forming chains along the
Z-axis of the crystal (M3+ and Ni2+ cations);

(2) dense impurity chains of the “cluster” type ori-
ented at angles from 60° to 75° to the Z-axis of the crys-
tal (M2+ cations with r > ~0.9 Å);

(3) complex double impurity centers generated by
the mechanism of heterovalent isomorphism (Ba2+).

INFLUENCE OF M3+ AND M2+ DOPANTS 
ON SURFACE MORPHOLOGY AND CRYSTAL 

STRUCTURE 

We studied crystals grown in the kinetic and diffu-
sion (isothermal evaporation at room temperature)
modes in the presence of Cr3+, Fe3+, Ni2+, Co2+, or Ba2+

dopants. For both modes, the general characteristics of
dopant-induced changes of the {100} surface relief
were identical, but some effects are more pronounced
in the diffusion mode. Surface morphology was stud-
ied using a Neophot microscope. The dopant concen-
trations in the crystals and in the initial solutions were
determined by chemical analysis and were used to cal-
culate the effective distribution coefficients of
impurity elements. It was found that at low concentra-
tions of the impurities in the initial solutions (1.0–1.4 ×
10–6 mole of an impurity per mole of KDP for Cr3+,
Fe3+, and Ba2+ and 1–7 × 10–8 mol/mol for Ni2+ and
Co2+), the effective coefficients of chromium, iron,
nickel, and cobalt incorporation are 0.2, 1.7, 0.6, and
1.5, respectively, whereas  is equal to 13 and

shows a pronounced tendency to a further increase with
an increase of Ba2+ concentration in solutions in the
range 5 × 10−7–5 × 10–6 mol/mol.

The changes in the surface relief of KDP faces
induced by dopants is associated with the valence of the
latter and the type of defect centers formed. The relief
of the {100} faces of KDP in nominally pure solutions
consists of large vicinal formations [12–15]. The
smooth slopes of these formations show numerous
rounded or elongated dislocation hillocks. Growth
steps generated by those hillocks merge together and
form macrosteps visible under an optical microscope.

k
Ba

2+
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The addition of small amounts of trivalent chro-
mium or iron ions (~10−6 mol/mol) to the initial solu-
tion only weakly affects the surface morphology of the
{100} faces; thin growth layers become somewhat
more “dissected,” and sometimes acquire the saw-
toothed or dendrite-like shape. Along with small (of the
order of 10–2 mm) elongated hillocks with sharp tops
there are also flat-top formations consisting of closed
low-height macrosteps. The orientation of the mac-
rosteps on the {100} surface is arbitrary, but, often,
their long axis is oriented at an angle of not less than
60° to the Z-axis of the crystal. With an increase of Cr3+

and Fe3+ concentrations, the growth steps of the neigh-
boring hillocks merge into a single front moving along
the [001] direction (Fig. 4a). Apparently, this stage cor-
responds to the onset of tapering on the {100} faces, a
phenomenon well-known for KDP crystals [16–17],
although the tapering angle is still very small. With the
further increase of impurity concentration, the tapering
angle increases and the surface of the {100} faces
acquires a stepped relief, with the step rises being
divided into isolated rectilinear fragments (Fig. 4b).

A different pattern of relief evolution of the {100}
faces is observed for Co2+ and Ni2+ dopants. These
dopants only slightly affect tapering on the prism faces.
Thus, the tapering angle does not exceed ~1° for Co2+

and 1.5°–2.5° for Ni2+ even at the maximum concentra-
tions (~10–2 mol/mol). The characteristic elements of
the {100} surface relief now (Figs. 5a, 5b), are larger
elongated growth hillocks become with their density
being the higher, the higher the dopant concentration
(Fig. 5b). Apparently, these elements are generated by
more powerful dislocation sources and are also pro-
moted by more pronounced deformations of the KDP
structure by Ni2+ and Co2+ ions than in the case of M3+

ions. Hillocks are often located (particularly, in the
presence of nickel) one above the other and form col-
umns along the [001] direction. On the {100} surface,
hillocks are always arranged so that their long axes are
tilted to the Z-axis of the crystal (in most cases by
angles ranging from 65° to 75°). The angle tends to
decrease for more smooth hillocks consisting of thinner
steps.

Far from the centers of the growth hillocks, thin
steps merge together and form macrosteps, which then
are grouped to form step echelons with broad terraces.
Initially, the orientation of their fronts repeats the orien-
tation of the hillocks; however with an increase of the
step thickness, the direction of the front movement
approaches the [001] direction. In the case of Ni2+,
these directions coincide at the dopant concentration of
~10–4 mol/mol. This seems to be also promoted by
weak but noticeable tapering of the prism faces. The
formation of step echelons with rounded edges is more
characteristic of Co2+. The tilt of the fronts with respect
to the [001] direction is preserved even at higher Co2+

concentrations. Only close to crystal edges, where the
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      200
most powerful step echelons are formed, the fronts
become parallel to the crystal edges.

At the maximum Ni2+ and Co2+ concentrations in
solutions (>10–2 mol/mol), numerous large rounded
macrohillocks consisting of high macrosteps are
formed on the (100)-type faces because of precipitation
of poorly soluble nickel and cobalt phosphates promot-
ing heterogeneous nucleation. According to [18], this
should lead to acceleration of face growth (we really
observed such acceleration for KDP : Co2+ [6]).

The characteristic feature of the relief of the {100}
faces in the presence of Ni2+ or Co2+ dopants is the for-
mation of the surface columnar “texture” (Fig. 5c). The
step echelons are sliced into narrow bands parallel to
the Z-axis of the crystal. Weak manifestations of the
surface texture are noticeable even at low Ni2+ and Co2+

concentrations (~10–5 mol/mol). At higher dopant con-
centrations, the surface texture becomes more pro-
nounced. The brightest manifestation of this phenome-

0.1 mm(a)

(b) 0.1 mm

[001]

[001]

Fig. 4. Surface of the {100} faces of a KDP crystal grown
in the presence of Cr3+ ions: (a)  = 10–6 mol/mol and

(b)  = 9.3 × 10–6 mol/mol.

c
Cr

3+

c
Cr

3+
1
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(a) (b)

(c) (d)

0.1 mm [001] [001]0.1 mm

0.1 mm [001] [001]0.1 mm

Fig. 5. Surface of the {100} faces of a KDP crystal grown in the presence of Co2+ and Ni2+ ions: (a)  = 10–7 mol/mol;

(b)  = 4 × 10–6 mol/mol; (c)  = 10–2 mol/mol; (d)  = 2 × 10–2 mol/mol.

c
Co

2+

c
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2+ c
Co

2+ c
Ni

2+
non is the formation of a rough surface relief in the
presence of Ni2+ (Fig. 5d) and some other characteristic
formations in the crystal. The crystal can even disinte-
grate into (1.0–1.5)-mm-thick columnar individuals.
The analogous situation was also observed for KDP
crystals grown in the diffusion mode at the Ni2+ concen-
trations in the solutions exceeding >10–2 mol/mol.

Unlike Ni2+ and Co2+, divalent Ba2+ ions exert the
most substantial effect on the morphology of the {101}
C

faces and on the growth pyramids on these faces. Even
at low Ba2+ concentrations (~10–6 mol/mol), the {101}
surface is noticeably roughened and looks hilly in the
reflected light. With an increase of the barium concentra-
tion in the solution, roughness of the {101} faces
becomes more pronounced and high macrosteps appear.
Beginning with concentration cBa of 5 × 10–5 mol/mol,
visible milk-white interlayers occur in the {101}
growth pyramids. These interlayers are parallel to the
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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{101} faces of the bipyramid and consist mainly of
minute inclusions of the mother liquor.

RESULTS AND DISCUSSION

Our study demonstrated that the incorporation of di-
and trivalent cations into the KDP lattice proceeds by
different mechanisms. We revealed the formation of
different types of defect centers and established the
specific effect of these ions on the face morphology and
crystal structure. Although we simulated the positions
of dopants ions in the crystal bulk, the main features of
defect-center formation are also the same for the sur-
face layers of the crystal. The differently oriented col-
umns of dopants and chains formed by M3+ and M2+

ions act as barriers for motion of growth layers, and
their decelerating effect becomes more pronounced
because of local stresses in the structure. Below, we
analyze the results obtained in this context.

According to the commonly accepted views, the
effect of an trivalent cations is explained mainly by
their adsorption. This conclusion is additionally sup-
ported by the observed “catalytic” effect of the Cr3+ and
Fe3+ dopants caused by a decrease in the “edge” energy
of steps because of ion adsorption [6]. Apparently, the
effect of the M3+ ions located in the surface layer is still
rather weak, because the stresses induced by these ions
in the structure are insignificant.

A different situation arises for cobalt and nickel
dopants, which cause more substantial deformations of
the crystal lattice. In these cases, the effects associated
with impurity adsorption (tapering on prism faces, the
catalytic effect) are very weak or absent, but noticeable
deceleration of growth of the {100} faces is retained [6]
(comparable with effect with that of Cr3+ and Fe3+).
One also observes the change in the {100} surface
relief typical only of Ni2+ and Co2+ dopants. All the
above-mentioned facts allow the conclusion that cobalt
and nickel ions incorporated into the surface layer of
the crystal play a dominant role, whereas the contribu-
tion of the same ions adsorbed on the surface to the total
effect is rather small. It is reasonable to attribute the for-
mation of the surface columnar texture to deceleration
of growth layers by the defect centers located in the
channels parallel to the [001] direction. High density of
these centers in the crystal bulk, and the accompanying
high stresses can stimulate the development of block
boundaries along the {100} planes and appearance of
some formations in the crystal. For Co2+ ions, this effect
is less noticeable due to the ability of Co2+ to form
defect centers of the second type (chains), which allows
its low concentration in channels.

The specific orientation of growth hillocks on the
{100} faces can be explained by the decelerating effect
of the ABD chains of dopants. Earlier, an analogous ori-
entation of hillocks was observed in the KDP crystals
grown from solutions without doping [13–15]. The
angle between the long axis of a hillock and the Z-axis
CRYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
of the crystal equals 67° [13], which is consistent with
our results. This hillock orientation cannot be related to
the KDP structure, e.g., with the directions of the chains
of strong bonds [15]. At the same time, taking into
account that dopant can considerably influence crystal-
lization even at the concentrations of ~0.3 bbm [13]
(which is by one to two orders of magnitude lower than
their concentrations in nominally pure KDP solutions),
this effect can be explained by the influence of “back-
ground” impurities. The dynamics of the change in the
shape of growth hillocks with an increasing supersatu-
ration is characteristic. At low supersaturations, growth
hillocks are almost rounded [13, 15], which is
explained by adsorption of background impurities [15].
With an increase of supersaturation, the barrier of the
latter background impurities is overcome, the rate of
step motion increases, and the shape of growth hillocks
is changed from round to ellipsoidal in the jumpwise
manner. Evidently, the growth steps more readily prop-
agate along the impurity chains, whereas their motion
in the perpendicular direction is hindered by these
chains. This mechanism explains the fact that the pre-
dominant orientation of the long axis of ellipsoidal
growth hillocks (tilted by an angle of 65°–77° to the
Z-axis of the crystal) coincides with the orientation of
the ABD chains of dopants (60°–75°). We did not find
any growth hillocks whose axes were inclined to the
Z-axis by an angle smaller than 60°. The dependence of
the orientation of the hillocks on the slope steepness
and height of macrosteps reflects the fact that high mac-
rosteps overcome dopant barrier more readily and the
crystal structure has a more substantial effect on the ori-
entation.

The strong influence of the barium dopant on the
morphology of the {101} faces and the “defect” nature
of the growth pyramids on these faces is adequately
explained by the structure of {101}. In the KDP struc-
ture, the layers of potassium ions alternate with phos-
phorus–oxygen layers along the [101] direction [3],
with the {101} surface always consisting of potassium
layers [19]. This facilitates the replacement of K+

by  Ba2+ ions with the simultaneous replacement of
[PO4]3–-ions located in the next layer by [SiO4]4–-ions.
The resulting strong deformations of the structure are
favorable for incorporation of microinclusions from the
solution and formation of “defect interlayers” parallel
to the {101} faces.

Thus, our study confirmed once again the fact that
the dopants incorporated into surface layers and the
induced stresses play an important role in the mecha-
nism of effect of dopants on the growth kinetics and the
“defect” crystal structure. At the same time, our data
disprove the opinion [20] that divalent cation dopants
produce insignificant effect on KDP crystallization.
The results obtained indicate that the influence of M2+

ions is comparable or even more pronounced than the
influence of M3+ ions.
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Abstract—The Mössbauer spectra of 57Fe nuclei for magnetite nanoparticles have been studied. It is estab-
lished that the oxygen parameter u changes by a value of about 0.002 with the temperature increase in the range
100–300 K. The u values are obtained from the shifts of partial spectra corresponding to the Fe3+ ions in both
tetrahedral and octahedral positions. The “covalence effects” are calculated by the molecular orbitals method.
© 2001 MAIK “Nauka/Interperiodica”.
As is known, the determination of the free parame-
ters of the regular crystal structure is a rather difficult
problem. Prior to the discovery of the Mössbauer effect,
these parameters were determined by the X-ray and
neutron diffraction methods, but they proved to be inef-
ficient in the case of nanoparticles.

The advent and development of methods based on
the nuclear gamma-resonance opened new vistas in
studying the local structure of the solid state. In par-
ticular, it turns out that the Mössbauer spectroscopy
not only complements the conventional methods, but
can also be a more efficient and even unique method
for solving such problems. Thus, the Mössbauer
method can be applied to the iron-containing sys-
tems and yield the quantitative information about the
effect produced by different factors (such as temper-
ature, pressure, magnetic or electric field) on the
nanoparticle structure.

Below, we describe the results of Mössbauer study
of magnetite (Fe3O4) nanoparticles. Our purpose was to
study of the influence of temperature in the system of
ultrafine magnetite particles crystallizing in the spinel
structure (sp. gr. Fd3m) on the value of oxygen param-
eter u. It was assumed that the changes caused by tem-
perature can be measured because anharmonicity of
atomic vibrations of “peripheral” atoms (which com-
prise a considerable fraction of the total number of
atoms in a particle) considerably change the average
interatomic distances.

The method for determining the values of the free
structural parameter u from the data on the initial exper-
imental spectrum of the 57Fe nuclei of iron atoms in the
Fe3O4 particles used in this study is based on the fact

that the difference ∆δAB(a, u) ≡ (Fe3+) – (Fe3+) inδI
B δI

A
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the isomer shifts of partial Mössbauer spectra corre-
sponding to trivalent iron atoms in the tetrahedral (A)
and the octahedral (B) positions of the spinel structure
is uniquely determined by the value of the oxygen
parameter u (if the unit cell parameter a is known) [1].
This difference is caused by so-called “covalence
effects” and can be calculated using the formalism of
the method of molecular orbitals [2, 3].

In our experiments, we used a finely dispersed mag-
netite powder obtained by the conventional chemical
condensation. According to the electron microscopy
data, the average size of the magnetite particles was d =
(7.5 ± 0.5) nm. The Mössbauer spectra were recorded
in the absorption geometry. The specimen density was
about 0.15 mg/cm2 (with respect to 57Fe) and corre-
sponded to the approximation of a thin specimen,
which allowed the application of the superposition
principle to the partial spectra. The 57Co isotope in the
chromium matrix served as a source of gamma-radia-
tion. Since the Verwey temperature of fine magnetite
particles (<9 nm) is higher than room temperature [4],
the model processing of the spectra obtained in the tem-
perature range 100–300 K was made under the assump-
tion on the existence of three sextets (one correspond-
ing to Fe3+ ions in the A-positions, and two other, to
Fe2+ and Fe3+ ions in the B-positions).

Figure 1 shows two initial experimental spectra
obtained at considerably different temperatures. It is
seen that the character of the spectra are unchanged
within the whole temperature range studied, even at the
Verwey temperature TV = 119 K for “bulk” magnetite
particles (which qualitatively agrees with [4]).
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Mössbauer spectra of 57Fe nuclei in Fe3O4 nanoparticles at (a) 100 and (b) 300 K.
The basic results obtained are illustrated in Figs. 2
and 3. According to the data on the temperature depen-
dence of the shifts in partial spectra corresponding to
the Fe3+ ions in the A- and B-positions, the oxygen
parameter u noticeably changes with the temperature.
This is evident from pronounced temperature changes
of the “gap” between δA(T) and δB(T) curves for the
Fe3+ ions. Subtracting one dependence from another
(the difference ∆δBA as a function of temperature), we
can exclude not only the relativistic correction δT for a
total shift δ ≡ δI + δT , but, partly, also the change of the
isomer shift δI associated with thermal expansion [1]
(Fig. 2 and the inset there). It is this difference that was
C

used to obtain the sought u(T) dependence. As is seen
from Fig. 3, for magnetite nanoparticles, the change in
the temperature gives rise to significant changes in the
free structural parameter u. For comparison, the analo-
gous temperature changes in the u parameter observed
earlier for bulk ferrite spinels particles of the composi-
tions Li0.5Fe2.5O4 [6], NiFe2O4 [7], and CuFe2O4 [8]
were considerably lower.

The oxygen parameter u for magnetite nanoparticles
in the whole temperature range studied, including room
temperature had much higher values than for “bulk”
Fe3O4 particles (u = 0.379 at 300 K) [9]. Since the u
parameter for nanoparticles increases with temperature,
RYSTALLOGRAPHY REPORTS      Vol. 46      No. 6      2001
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Fig. 2. Temperature dependence of shifts in partial Möss-
bauer spectra (with respect to the sodium nitroprusside line)
for Fe3+ and Fe2+ ions in Fe3O4 nanoparticles. Dashed lines
show the temperature dependences of shift calculated for
the Fe3+(A) and Fe3+(B) cations at u = const = 0.384.

In the inset: parametric dependences (a, u) calcu-

lated by the molecular orbital method at two constant a val-
ues: (1) 8.30 and (2) 8.50 Å.
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Fig. 3. Temperature dependence of the oxygen parameter u
for Fe3O4 nanoparticles.
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the common physical factor giving rise to the changes
of the u parameter (both associated with the transition
from “bulk” particles to ultrafine ones and with the tem-
perature variations in the case of ultrafine particles) is
the anharmonism of atomic thermal vibrations of “sur-
face” atoms, whose number becomes comparable with
the total number of atoms in a particle.
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