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Abstract—The theoretical aspects of formation of photoelectron beams excited by the ultraviolet synchrotron
radiation incident onto a crystal are considered. It is shown that the change in the energy of the monochroma-
tized synchrotron radiation incident onto a hematite crystal results in the change of the number of reflections
participating in the hologram formation. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The development of nanotechnology resulted in the
creation of various structural methods of visualizing
atomic structures which are based on the use of short-
wavelength radiation (neutrons, electrons, X-ray and
synchrotron radiation, etc.). The term atomic hologra-
phy coined by Gabor in 1948 [1] describes the method
of the three-dimensional reconstruction of atomic
structures due to positive interference of the strong ref-
erence and weak object waves [2]. Later, the terms
atomic holography or the Fourier-transformation with-
out a lens became widely used because of the well-
known optical analogy.

However, the principle of image formation was
known long ago, e.g., as Kikuchi lines (in X-ray and
electron diffraction), X-ray standing waves in multi-
beam diffraction, Kossel lines, etc. [3, 4].

Lately, most of the published articles on this subject
considered electron holography [5–7]. It was shown
that, for high-energy electrons, the Cowley–Moody cal-
culations [8] yield images whose main features are the
same as those of the experimental images [4]. However,
strong scattering of secondary electrons considerably
distorts the signal, which, in turn, hinders image pro-
cessing.

At the same time, some schemes for studying photo-
and Auger electrons, elastically scattered X-ray radia-
tion, fluorescence, etc. were created [9].

Below, we consider the theoretical aspects of one of
the new methods—positional-sensitive photoelectron
spectroscopy—where excitation is caused by beams of
soft synchrotron radiation. In fact, this method is a
modern modification of photoelectron spectroscopy
with angular resolution [10], which has been widely
used for a long time to determine the band structure of
electrons.
1063-7745/02/4702- $22.00 © 20165
SPECIMEN

The specimen was an orthorhombic hematite
α-Fe2O3 crystal with the unit-cell parameter a = 5.42 Å
and α = 55.17° cut out in such a way that the hexagonal
c-axis was normal to the entrance surface (Fig. 1). This
crystal was selected because of the characteristic mag-
netic structure of the outer electron shells and its simple
atomic structure.

It is well known that the outer electrons of an iron
atom (3d64s2) obey the inequality E4s < E3d, which
explains the incomplete filling of the d-shell. It is inter-
esting to analyze the distributions of both collective
3d-electrons (magnetic structure) and 4s-electrons
(positions of individual atoms) in these crystals. Below,
we consider only the photoeffect of 4s-electrons.
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Fig. 1. Geometry of scattering from an oriented hematite
crystal.
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THEORY
Within the framework of perturbation theory [11],

absorption of a photon with the potential vector A, the
wave vector Q, and the frequency ω (in the dipole
approximation exp(iQa) ≈ 1, V = 1),

(1)

results in electron transition (with a certain probability)
from the initial state ψ4s localized at the atom Ri to one
of the delocalized states,

(2)

where the state of the photoelectron is described by the
integral over the plane waves exp(ipr), whereas the
pulse p is measured in units ".

It should be emphasized that the calculation of the
matrix element Ui of the transition

(3)

results in the appearance of the phase factor

(4)

where e is the polarization vector of the incident syn-
chrotron radiation (SR), and p, the wave vector of the
photoelectron.

The coefficient D(p) is independent of the direction
of the vector p because of the spherical symmetry of the
wave function ψ4s. Thus, in the hydrogen-like approxi-
mation we have

(5)

where ξ = Z/4aB , Z is the charge of the iron nucleus, the
distances are measured in atomic units aB = "2/me2 =
0.529 Å, and φ is an arbitrary phase of the wave func-
tion. Differentiating the well-known expression

(6)

with respect to λ, we arrive at the cumbersome but rig-
orous expression for the function D(p),

(7)

Taking into account the high degree of monochro-
matization of the incident synchrotron radiation, we
assume the pulse p and the coefficient D(p) to be con-
stant.
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The coefficient B(p, t) determines the dependence of
the scattered radiation on time

(8)

When SR action on the atom is prolonged, the coef-
ficient B(p, t) is simplified to the form

(9)

and has the nonzero value only if the law of energy con-
servation is obeyed. We used the following notation:

(10)

where pt and pz are the components of the pulse vector
lying in the plane of the crystal surface and normal to it,
respectively.

Since the photoeffect is an inelastic process, no
interference between the waves of the primary photo-
electrons emitted by various atoms is possible, which
can readily be seen if one takes into account the arbi-
trary phase factors before the wave functions of the core
electrons. The holographic effects can be explained if
one takes into account the interference between the pri-
mary photoelectron radiation and the elastically scat-
tered secondary photoelectron waves. The electron flux
through the unit area J recorded by a two-dimensional
detector (the surface normal n) is determined as

(11)

Using expression (2) and ignoring photoelectron
scattering, we arrive at the following expression for
intensity, which has no term containing information on
the structure,

(12)

where τi(p) takes into account inelastic scattering and
absorption of photoelectrons prior to their detection,
and ∆S is the area of the detector pixel.

Now, take into account the scattering of the primary
photoelectron wave propagating from the ith and scat-
tered by the jth atoms with the scattering field ϕ(r)
using perturbation theory (the kinematical or the Born
approximation). The secondary wave generated by this
atom is the convolution

(13)
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where R = R0 – rj – r. Expanding the wave function of
the primary photoelectrons, (2), and the Green’s func-
tion into the Fourier series

(14)

we arrive at the following expression for the secondary
wave:

(15)

obtained based on the definition of the structure fac-
tor [12]

(16)

Assuming that the atom is spherically symmetric,
we obtain the atomic factor in the form

(17)

where the term proportional to the number of protons,
Z, corresponds to scattering from the nucleus and the
term fp(s), to scattering by the electron shells of the
atoms. With an increase in s, the atomic-scattering fac-
tor rapidly decreases. Its absolute value equals F(0) =
4.74κ, F(h1) ≈ 3κ…, where κ = 2.393 × 10–8 cm [12].
The limitations of this approximation are considered in
detail elsewhere [12]. The total wave function of the
secondary electrons is the sum over all the i atoms in

the s atomic waves rj = Zsez – , where ez is the unit
vector normal to the crystal surface, Zs is the depth of

the location of the sth plane, and  is the coordinate
of the ith atom in the sth plane.

The ideal surface structure of a hematite crystal is
characterized by two vectors of the direct lattice, a1 and
a2 (Fig. 1). Now, let the x-axis lie along the a1 vector.
Then, the vectors of the two-dimensional direct and
reciprocal lattices (h1, 2) take the form

(18)

Using the two-dimensional variant of the well-
known summation rule,
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we can represent the wave function of photoelectrons
scattered by all the atoms in the form

(20)

where

The function τ(pz – qz) describes the effective
decrease of the contributions from deeply located
atomic planes

(21)

where L is the free path, which for electrons with the
energy ranging within 10–1000 eV is almost constant
and equals several interatomic distances, and L ≈ 10 Å.
Thus, only several upper atomic planes actively partic-
ipate in the signal formation.

With due regard for elastic scattering, the flux of
electrons from the ith atom is the sum of the primary
and the scattered waves [see (11) and (12)]

(22)

where

With due regard for the law of energy conservation,
(9), integration of (22) over pz yields

(23)

The above expression can be considered as the sum
of three terms. The first term corresponds to the signal
of the primary photoelectrons, (12), the second one, to
the interference of the signals of the primary and scat-
tered photoelectrons,

(24)
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and the third one (which is almost always very small
except for the region of the multibeam diffraction), to
the interference of the secondary electrons.

Below, we consider only term (24), which is respon-
sible for the formation of the holographic image of the
crystal. It is convenient to represent this term in the
form of a Fourier spectrum

(25)

The contributions of individual harmonics depend
on the parameters of the two-dimensional crystal lattice
and the photon energy (k) in a complicated way,

(26)

It should be indicated once more that the intensity of
the holographic signal is proportional to the atomic
scattering factor (and not to its squared value as in con-
ventional scattering) because of the interference
between the primary and the elastically scattered sec-
ondary waves.
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Fig. 2. (1) The real and (2) the imaginary parts of the func-
tion τ(φ) and (3) its modulus as functions of φ = (pz – qz)a.

Reflections in order of their appearance

No. H γ Value
of γ, eV δεjk, eV

1 H11 0.927 6.502

2 h1, h2 1 1 7.566

3 H21, H12 1.649 20.573

4 H1, –1 1.77 23.704

5 H22 1.854 26.007

2 1 αcos–( )

5 4 αcos–

2 1 αcos+( )

2 2 1 αcos–( )
C

With an increase in the energy of the synchrotron-
radiation quantum, the wavelength of a photoelectron
increases, which results in the excitation of the first
reflections with the minimum Hjk values. The threshold
value of the energy providing the excitation of a given
reflection is determined by the following expression:

(27)

where γ = Hikasinα/2π. The table indicates the calcu-
lated values of several reciprocal-lattice vectors and the
corresponding energies of the synchrotron radiation.

It should be indicated that electrons from other lev-
els (e.g., 3d) are excited at much higher SR energies
and, therefore, this contribution can be ignored.

Thus, for an iron atom, the difference in the energies
of the 3d and 4s levels in the hydrogen-like approxima-
tion is about 500 eV (E4s = –574.6 and E3d = –1021.5 eV).
At the same time, standard SR monochromators (e.g.,
multilayer or segmented mirrors [13]) possess the
energy resolution 

sufficient for the formation of an SR beam with the
energy width δE ≈ 0.5 eV.

The structure of the photoelectron beam emitted by
the crystal is determined by the ratio between the coef-
ficients gjk(k) before individual harmonics, so the main
problem is reduced to their correct calculation.

Ignoring the lattice relaxation near the surface (a =
const), we arrive at the absorption coefficient in the
form

(28)

This coefficient attains its maximum value,

(29)

at φ = (pz – qz)a = 2πm. The plots of the real and the
imaginary parts of the function τ(φ) and also of its mod-
ulus are shown in Fig. 2. In the limiting case of a large
absorption length

(30)

the integration over qz in Eq. (20) presents no difficul-
ties

(31)

With due regard for the law of energy conservation
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with the approach to the Laue point of the given jkth
reflection (l = 0),

, (32)

because Eq. (2) was obtained within the framework of
perturbation theory (the Born approximation) invalid in
the vicinity of the Laue point.

In this case, it would be expedient to use the two-
beam Green’s function obtained from the system of
equations for dynamical diffraction as the basis for con-
structing the solution. However, this approach would
considerably complicate the calculation of the photo-
electron signal, because the well-known Green’s func-
tions can be used only within a narrow angular region
in the vicinity of the Bragg angle, whereas the integra-
tion should be made within much wider limits. Never-
theless, if one uses approximation (30), the contribution
to the intensity from an arbitrary harmonic equals

(33)

and the integrand acquires a pole as soon as a region in the
reciprocal space is formed in which Laue condition (32) is
fulfilled. Such a region can be formed only if some pho-
toelectrons have pulses exceeding half of the reciprocal
lattice vector, 2pt > H.

The analytical expressions for the coefficients

(k) can be obtained in the approximation taking into
account the finite free path (28). As is shown in the
Appendix, the first term of the asymptotic series for the
coefficient (27) in the far wave zone has the form

(34)

where

(35)

For further calculations, it is convenient to represent
the contribution from an individual harmonic to a holo-
gram as a product of the amplitude (Gjk(k) = |gjk(k)|) and
the phase terms

(36)

We should like to emphasize the importance of the
use of monochromatic synchrotron radiation. If it were
not used the holographic signal would be suppressed by
the destructive interference of the waves excited by
photons with various energies k.
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Figure 3 shows the amplitude Gjk and the phase term

 as functions of e = 2k/h for the first
four harmonics. The curve number corresponds to the
reflection number in the table. A reflection can take an
active part in the formation of the hologram only if e >
γi = 2Hi /h (see table).

Figure 4 shows a number of holographic images for
different energies of an SR beam calculated by formu-
las (34) and (36). Each of the holograms formed upon
the first one corresponds to the SR energy slightly
exceeding the threshold energy ei = 2k/h = γi + 0.05,
i = 1–4.

Upon the attainment of the threshold photon energy,
the number of reflections increases in a jumpwise man-
ner (see table): H11 (Fig. 4a); H11, h1 (Fig. 4b); H11, h1,
H21, and H12 (Fig. 4c) and H11, h1, H21, H12, and H1, –1
(Fig. 4d). It was assumed that the wave vector of
the   synchrotron radiation and the surface normal
formed an angle of 45° and that it was projected onto

H jk 2k H jk–( )
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2
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3

1
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Fig. 3. (a) Modulus of Gjk and (b) the phase factor

 as functions of e = 2k/h for the coeffi-

cients before the first four harmonics.

H jk 2k H jk–( )
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Fig. 4. Calculated holographic images at different energies of the synchrotron radiation.
the surface along the direction of the vector a1, whereas

the crystal–detector distance was equal to  = 105a.
The polarization vector of the synchrotron radiation is

e = (1, 0, –1). The polarization of the synchrotron

radiation prevents the harmonic corresponding to vec-
tor h2 from participating in the hologram formation.

Usually, the SR used in the experiments is both
monochromatized and linearly polarized. Rotating the
specimen around the beam, it is possible to vary the
contribution of each harmonic H because of the change
of the factor (eH)2/H2.

R0
z

1

2
-------
C

When considering the experimental schemes, one
has to take into account the finite dimensions of both
specimen and incident beam. As a result, the diffracted
photoelectron beams corresponding to different diffrac-
tion vectors diverge in the space, and the interference
pattern is formed only in the region of their intersec-
tion. However, considering only the problem of the pre-
cise determination of the lattice parameter along a cer-
tain crystallographic direction, one can examine only
the “striped” hologram formed from only one reflection
(Fig. 4a).

Moreover, the record of complicated holograms is
rather time-consuming, even if powerful SR sources
and position-sensitive detectors are used.
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CONCLUSION

In terms of physics, all the holographic methods are
based on the well-known phenomenon of interference
of the primary wave and the waves elastically scattered
by ordered atoms in a crystal. In practice, atomic holog-
raphy can be used for extracting structural information
in the case of relatively weak scattering.

Most probably, photoelectron beams cannot com-
pete with the modern technologies used in optics and
fiber optics to transfer information. However, we
believe that the use of photoelectrons in scientific
experiments is promising because of the extremely high
sensitivity of low-energy electron beams transmitted
by crystalline objects to their structures. Moreover, in
recent decades, we have seen the rapid development of
efficient methods for electron beam control (enlarge-
ment, focusing, etc.) and the transformation of elec-
tron images into corresponding analogous and digital
optical images, which gives us hope for the further
successful development of combined holographic
methods.

The small escape depth of photoelectrons allows
one to record a signal from the subsurface region,
where the lattice is often rather distorted by relaxation
and surface reconstruction. While the method of X-ray
standing waves allows the determination of distances
with an accuracy of 0.1% of the interplanar spacing
along the surface normal, the photoelectron hologram
allows the determination of the lattice periodicity in the
surface plane.

Photoelectron holography can be used not only in
studies of crystal structures, but also in studies of
objects with dimensions not exceeding several nanom-
eters. If one places any noncrystalline object or an
object possessing lattice parameters different from
those of the crystal, the hologram preserves its peri-
odic structure, but the region coated by this object is
considerably shadowed. This can be efficiently used
for visualizing the structures of complex objects such
as Langmuir–Blodgett films and films of other organic
materials.

Thus, the main advantages of photoelectron holog-
raphy in the case of photoelectron excitation by SR
beams are:

—the possibility of analyzing the distribution of
electrons of a certain level because of high coherency
and monochromaticity of highly polarized SR beams;

—the dependence of the number of reflections
forming holograms on the energy of an SR beam;

—the possibility of determining the structure of
crystal surfaces.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
APPENDIX

CALCULATION OF CONTRIBUTIONS 
FROM INDIVIDUAL HARMONICS

In fact, this Appendix deals with the calculation of
integral (27). As an example, consider the coefficient
before the harmonic with H10.

The integrand in the expression for Fjk(pt , kz; )

(A.1)

includes with the pole points  = ±κ, κ =

 formed due to the singularities of the

Green’s function and  = kz ± H associated with the
form of the atomic scattering factor. Formally, the last
two points arise because of scattering from a single
atom accompanying the U-processes and thus have no
physical meaning.

Also, one has necessarily to take into account the
contribution from the function τ. One can readily see
that one of the best approximations of this function in
the vicinity of the maximum (qz ≈ kz) is

(A.2)

where τm = 0.622 is the minimum value of the initial
function. In this approximation, the function τ acquires

a pole,  = kz + i0.08/a.

Integration upon the closure of the integration con-

tour with respect to qz around the poles  and 
yields

(A.3)

Obviously, the exponential factor before the second
term in (A.3) levels its contribution, because the detec-
tor–crystal distance usually exceeds the interatomic
distance by several orders of magnitude.

Below, we consider only the contribution from the
pole point of the Green’s function. Since the value k is
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fixed, some factors in Eq. (26) can be taken outside the
integral

(A.4)

where p* = , b = kz – κ. It should be indicated
that, formally, the limits of integration with respect
to px, y range from minus to plus infinity, but, in fact,
they are limited to a circle of radius k beyond which the
function kz – κ becomes complex.

The expression

(A.5)

can go to zero at the Laue point (2  = H) if 2k > H.
The first and second derivatives of b with respect to px

also go to zero at the same point, which does not allow
the use of the saddle-point method to calculate an inte-

gral with a high value of the phase factor (   ∞).
However, a high value of the phase factor allows one to
represent the integrals as expansions in the degrees
of ( )–N,

(A.6)

Here, we limit our consideration to the first nonvan-

ishing term of this series (~ ), although, in order to
increase the accuracy, one has to take into account the
following terms [14]. The calculations with the use of
the first term of the expansion yield zero because of

and, therefore, one has to take into account the second
term as well

(A.7)
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where

(A.8)

One can readily see that the integration of the
expression containing Γ2 with respect to dpx yields
zero. At the same time, the integral of Γ1 diverges with
an approach of px to k. Using the Erdélyi lemma [14],
this integral with the diverging integrand can be evalu-
ated by the expression

(A.9)

at λ  ∞, where

(A.10)

Using an indefinite integral, we substitute the
expression

into expression (A.7).

The major contribution to the integral with respect
to px

(A.11)

comes from the region px ~ k, where β = 1/2 and α = 1,

(A.12)

Thus, the first term of expansion (A.9) yields the fol-
lowing expression for the coefficient before the
harmonic:

(A.13)
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where

At 2k – H ≠ 0, let the infinite integral determining L can

be represented as an expansion in degrees of ( )–k – 1/2.
The first term of this expansion yields

(A.14)

Finally, we have

(A.15)

where

(A.16)

Obviously, if the Laue condition (2k > H) is not ful-
filled, q10(k) decreases with an increase in the crystal–

detector distance . If the Laue condition is met at
least in a part of the space, the coefficient decreases
proportionally to 

with an increase in the photon energy.
Formally, the divergence of the result obtained at

2k = H is associated with the form of the Green’s func-
tion used.

The contribution from the given reflection is maxi-
mal, if the polarization vector of the incident radiation is
parallel to the reciprocal-lattice vector (ex = (eH)/H = 1).
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One should pay attention to an unusual dependence
of the signal intensity on the detector–object distance,

( )–5/2. For comparison, for a point source the signal

intensity is I ~ ( )–2.
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Abstract—Focusing of a spherical X-ray wave in Bragg backscattering from weakly and strongly bent crystals
is considered theoretically. The analytical formula describing the dimensions of the diffraction backscattering
region is obtained. It is shown that, along with the well-known Johann scheme, the use of the backscattering
scheme allows one to increase the aperture ratio of the crystal optics by two to three orders of magnitude. The
spectral characteristics of bent crystals providing diffraction backscattering (θ = π/2) are discussed. It is shown
that the spectral resolution can attain a value of the order of 10–11. © 2002 MAIK “Nauka/Interperiodica”.
Backscattering of the X-ray radiation occurring at
the diffraction angle θ ≅ π/2 has some specific features
that distinguish it from conventional diffraction at θ <
π/2. The width of the dynamic curve of the Bragg
reflection equals 2∆θ = 2|χhr |1/2 ~ 10–2–10–3 [1–4],
which allows an increase in the aperture ratio of an opti-
cal device by two to three orders of magnitude. The use
of bent crystals focusing an X-ray beam in one or two
dimensions allows an increase in the aperture ratio of
several orders of magnitude. Moreover, as was shown
in [5], backscattering also provides the minimization of
the geometrical aberration of the diffracted beam. The
well-known Johann focusing scheme [6] in which both
radiation source and detector are located on the Row-
land circle is widely used also because of its high aper-
ture ratio. Johann focusing was repeatedly studied [7–
11]. The best possibilities for obtaining a high aperture
ratio are provided by the Johann and the backscattering
schemes. Theoretically, the upper limit of the aperture
ratio in both schemes is attained with the aid of biaxi-
ally bent crystals. The results obtained in [5] show that
the aperture ratio of a biaxially bent X-ray lens is pro-
portional to

where 

(1)

∆θ is the halfwidth of the Bragg reflection curve, L0 is
the distance between the source of a spherical X-ray
wave and the crystal, and Rx and Ry are the curvature
radii of the crystal in the meridional and the sagittal
planes, respectively. The formula for xeff was obtained
under the assumption that L0 ≠ Rxsinθ. It is seen from
Eq. (1) that at θ ≠ π/2, the beam divergence in the sag-

Ω 4 θxeffyeff/L0
2
,sin=

xeff L0∆θ/ θsin L0/Rx– ,=

yeff L0 2∆θ θ/ θsin L0 1 θsin
2

+( )/Ry–( )cos
1/2

,=
1063-7745/02/4702- $22.00 © 20174
ittal plane can exceed the divergence in the meridional
plane by two to three orders of magnitude because yeff ~
(∆θ)1/2 ~ |χhr |1/2. For backscattering, the substitution of
cosθ ~ θ into Eq. (1) yields yeff ~ ∆θ ≤ |χhr |1/2. An addi-
tional increase in the aperture ratio can be attained by
biaxial bending of the crystal with the curvature radii
Rx ~ Ry.

Below, we consider one-dimensional focusing of a
spherically divergent X-ray beam in its backscattering
by weakly or strongly bent crystals. The crystals are
assumed to be bent in the meridional plane. The results
obtained can readily be extended to biaxial bending by
using the theory of two-dimensional focusing devel-
oped in our earlier work [12]. The multibeam effects
accompanying backscattering [13] are ignored.

REGION OF DIFFRACTION REFLECTION
IN BACKSCATTERING

In this section, the Bragg diffraction reflection of a
spherical X-ray wave by a bent crystal is considered in
the geometrical-optical approach of radiation propaga-
tion. Earlier [5], we considered in a similar way the
Bragg diffraction of an X-ray beam reflected from a biax-
ially bent crystal [5] at the diffraction angles θ ≠ π/2.

Let a spherical X-ray wave from a point source S be
incident onto a cylindrically bent crystal at the Bragg
angle θ. Upon diffraction from the crystal, the X-ray
radiation is focused into a line normal to the diffraction
scattering plane intersecting this plane at the point S '.
The scheme of focusing of an X-ray beam reflected in
the backward direction by uniaxially bent crystal is
shown in Fig. 1.

For the sake of simplicity, we limit our consider-
ation to the symmetric diffraction. At the Bragg angles
θ ≠ π/2, the size xeff of the region on the crystal surface
where the diffracted beam is within the boundary of the
002 MAIK “Nauka/Interperiodica”
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region of total reflection is the solution of the quadratic
equation

(2)

If L0 ≠ Rxsinθ, the spherical aberration can be ignored
and the terms proportional to x2 in Eq. (2) can be rejected.
Then Eq. (2) yields an equation linear with respect
to xeff which, in turn, yields Eq. (1).

For the Johann scheme, Eq. (2) yields

(3)

Here, ∆θ = |χhr |/sin2θ is the angular halfwidth of the
region of total reflection (the Bragg reflection curve),
χhr is the real part of the Fourier-component of X-ray
polarizability, and Rx is the curvature radius of the crys-
tal in the meridional plane (the diffraction reflection
plane).

In backscattering, xeff and ∆θ are related as

(4)

If a plane wave is incident onto a crystal (L0 @ Rx),
Eq. (4) yields the angular halfwidth of the reflection
curve in the form

(5)

It follows from (5) that if xeff ! Rx , then the size of the
diffraction-reflection region in the reflection of the
plane wave in the backward direction (θ ≅ π/2) is

(6)

If a source of the spherical wave is located at a distance
L0 = Rx from the crystal, Eq. (4) yields

(7)

Taking into account that xeff /Rx ! 1, we obtain from
Eq. (7)

(8)

Expressions (3), (6), and (8) show than the Johann and
the backscattering schemes provide the gain in the
aperture ratio exceeding by two to three orders of mag-
nitude the gain provided by all the other focusing
schemes. It should also be indicated that, when deriving
Eq. (4), we took into account only the terms up to the
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fourth order with respect to x. Moreover, we also
assumed that xeff /Rx ! 1.

FOCUSING OF SPHERICAL AND PLANE WAVES 
IN BACKSCATTERING FROM A WEAKLY

BENT CRYSTAL

Consider a crystal weakly bent in the meridional
plane so that the dimensionless bending parameter
|ν| @ 1 (see, e.g., [12]). In the dynamical focusing of a
spherical X-ray wave by a weakly bent crystal, the
intensity in the focus is distributed by the law

(9)

where ξp is the coordinate of the point of the source
image in the transverse direction, J1 is the first-order
Bessel function of the real argument, and ∆ξp is the dif-
fraction broadening of the focus.

Equation (9) was obtained under the assumption
that the phase of an incident spherical wave is expanded
into a series in powers of x/L0 (up to the second-order
terms). The use of the parabolic expansion of the wave
phase at L0 ≠ Rxsinθ signifies that the spherical aberra-
tion is ignored. However, in the Johann scheme, one has
also to take into account the terms ~x3, which results in
the redistribution of the intensity in the form of the
squared modulus of the Airy function [14].

Ih ξ p( ) Eh ξ p( ) 2
J1 π∆ξp

1– ξ p( )/π∆ξp
1– ξ p

2
,∼=

L0 Rx θ,sin≠

S '

S

Z

X

Fig. 1. Principal scheme for the focusing of a spherical
back-scattered wave by a cylindrically bent crystal. S is a
point source and S ' is its image.
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According to [12], the diffraction broadening of the
focus in Eq. (9) is

(10)

where Lh is the crystal–image distance, Λ =
λ sinθ/(|C ||χhr |) is the extinction length in the symmet-
ric case, λ is the wavelength of the incident radiation,
and C = ±1 (for θ = π/2) is the polarization factor.

In the backscattering of a spherical wave, the dif-
fraction broadening of the focus is ∆ξp ≤ |1 –
Lh /Rx |Λ(|χhr | + |∆λ/λ |)1/2, where ∆λ/λ takes into
account the nonchromaticity of the incident wave.

The source–crystal, L0, and the crystal–image, Lh,
distances for a point source satisfy the modified equa-
tion of an X-ray lens [11],

(11)

where T is the crystal thickness and Rz is determined by
the components of the inverse elastic-modulus tensor
[11]. The corrections in the right-hand side of Eq. (11)
take into account the radiation refracted by the crystal–
vacuum interface and the change in the interplanar
spacing in the crystal depth. These corrections give, in
fact, very small (~10–5–10–4) contributions and, there-
fore, can be ignored in most of the cases of practical
interest.

If a plane wave is reflected from a crystal, the dif-
fraction broadening of the focus equals ∆ξp = Λcosθ/2.
In backscattering, cosθ ≈ cos(π/2) + sinθ∆θ ≈ ∆θ ≤
(|χhr | + |∆λ/λ|)1/2, i.e., the diffraction broadening of the
focus equals

(12)

If an incident wave is highly monochromatic (|∆λ/λ| !
|χhr |), Eq. (12) yields ∆ξp ≤ λ/2 |C ||χhr |1/2. In the reflec-
tion of the MoKα radiation from the Si(444) plane, the
focus size equals ∆ξp ≈ 0.037 µm.

∆ξ p 1 Lh/Rx θsin– Λ θ,cos=

Lh Rx θ,sin≠

1/L0 1/Lh+

=  2 1 χor/2 θsin
2

+( )/ 1 T /2Rz+( )[ ] /Rx θ,sin

∆ξ p λ χ hr ∆λ /λ+( )1/2
/2 C χhr .≤

log δ

–1

–4

π/4 π/2 θ

Fig. 2. Logarithm of the shift δ as a function of the diffrac-
tion angle θ. Si (111), λ = 1.55 Å (θ = 14.31°), χor =

−1.533 × 10–5, χhr = –7.992 × 10–6, T/Rz = 10–4.
C

ANGULAR SHIFT OF THE BRAGG MAXIMUM 
IN BACKSCATTERING FROM A BENT CRYSTAL

It is well known [15] that, because of refraction, the
Bragg angles in a vacuum and in a crystal are different.
The shift of the Bragg angle equals χor/sin2θ. In the
Bragg reflection from a bent crystal, crystal bending
gives rise to an additional shift of the maximum of the
reflection curve [11]. This shift is essential in two lim-
iting instances: at θ  0 and θ  π/2 (Fig. 2). In the
case of the backscattering we are interested in, the
angular shift equals

(13)

At the same values of T, χor, and χhr as in [11], we
obtain from formula (13) that δ ≤ 10–2–10–1; in other
words, the shift exceeds the width of the reflection
curve. To decrease the shift of the Bragg angle, one has
to use thin crystals with a thickness satisfying the con-
ditions T ≈ Rzχor, whence it follows that, for bent crys-
tals, the shift can be less than for a plane crystal.

It is seen from (13) that this shift becomes essential
if T/Rz ≥ 10–4 and its order of magnitude considerably
differs from that of χor or else for thin crystals where
T/Rz ! χor .

FOCUSING SPECTROMETER
IN BACKSCATTERING FROM A WEAKLY

BENT CRYSTAL

Consider the spectral properties of a weakly bent
crystal at θ = π/2. The linear dispersion Dξ is

(14)

Using (10), we obtain for the spectral resolution

(15)

Diffraction reflection is coherent for the sources with
the angular dimensions ϕ ≈ a/L0 < λ/xeff. Therefore,
Eq. (15) is valid for the sources of the size a ≤ L0/xeff .
If a > L0λ /xeff, the quantity ∆ξp in Eq. (15) should be
replaced by ∆ξp + L0λ /xeff.

At Lh ! Rxsinθ, the spectral resolution described by
Eq. (15) is dependent on the Bragg angle θ and
dλ(θ)/λ ~ f (θ) = (1 + cos2θ)/2 sinθ and decreases with
an increase in θ (Fig. 3). Under the assumption that
L0 @ Rx, we arrive at the following theoretical estimate
of the spectral resolution for a plane incident wave:

(16)

δ T /Rz χor–( )/2 χhr
1/2

.≅

Dξ dξ p/dλ L0 Lh–( )dθ/dλ .≅=

dλ /λ ∆ξ p θ/ L0 Lh–( ) θsincos=

≅ 1 Lh/Rx θsin– λ ∆θ( )2
/ C χhr L0 Lh–( ) θsin

≅ 1 Lh/Rx– λ / C L0 Lh–( ),

L0 Lh.≠

dλ /λ λ /2 C L0.∼
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The theoretical limit of the spectral resolution (16) in
backscattering of the CuKα radiation (λ = 1.54 Å) from
a bent silicon crystal with the curvature radius Rx = 1 m
and L0 = 10 m attains the value of dλ/λ ~10–11. This
estimate is better by three orders of magnitude than for
a Johann–Hamós focusing spectrometer [12].

It should be noted that the spectral resolution
described by (16) is independent of χhr and is the same
for both (σ and π) polarizations of the X-ray radiations.

The degree of the monochromaticity of the back-
scattered wave equals

(17)

Estimate (17) for ∆λ/λ can also be obtained under the
assumption that the coherency length is Lcoh = λ2/∆λ ≥
Λ = λ/|C ||χhr |.

FOCUSING OF X-RAY WAVE BY AN ELASTIC 
MOSAIC CRYSTAL

Consider an elastic mosaic crystal in which the
parameter obeys the condition |ν| ! 1 (a strongly bent
crystal). The bending parameter in backscattering
equals

(18)

and, for the crystals with the deformation gradient B ≥
1014 m–2, the condition |ν| ! 1 is satisfied at χhr ~ 10–6

and λ ≥ 1 Å.
The amplitude reflection coefficient of a plane-wave

harmonic from a thick (semi-infinite) crystal is

(19)

where

is the probability integral.

Putting t0/21/2 > π in Eq. (19), we can determine the
optimum size of Leff for a strongly bent crystal along the
X-axis,

(20)

The intensity distribution in the focus is determined
by the integral over the plane-wave harmonics

∆λ /λ θ∆θcot ∆θ( )2 χhr.≤≅≤

ν π2χhr/16λ 2
B≈

R k( ) = iσh iπ/8B( )1/2
t0

2
/2( ) 1 Φ t0/2

1/2
–( )–{ } ,exp

σh Cπχhr/λ 2θsin π χhr( )1/2
/2λ θ π/2≅( ),≥=

t0 i/4B–( )1/2
k, k 2π∆θ/λ ,≤=

Φ t( ) 2 π( ) 1/2–
x

2
–( ) x dexp

0

t

∫=

Leff 2L0∆θ 2L0 2 B( )1/2λ .≅ ≅

Ih ξ p( ) Eh ξ p( ) 2
=
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(21)

where the geometric coefficient G depends on α0, αh, L0
and Lh, α0 = 1/L0 – 1/Rx, αh = 1/Lh – 1/Rx, and L0, h ≠ Rx.

The geometrical condition of focusing by a thick
strongly bent crystal has the form

. (22)

It is seen from Eq. (22) that the conditions of focus-
ing by strongly and weakly bent crystals are different.
At the deformation gradient B ≥ 1014 m–2 and Rx ≤ 0.1 m,
the source should be very close to the crystal surface. At
L0 = 1 cm and λ = 1.54 Å, an X-ray wave dynamically
scattered in the crystal bulk is focused at a distance of
Lh = –1.2499984 cm from the crystal.

With due regard for Eq. (22), we obtain the follow-
ing equation for the intensity described by Eq. (21):

(23)

At the finite integration limits (from –keff to +keff ≅
2πX/λL0, where X is the size of the region illuminated
by an incident beam), the integral in Eq. (23) is not a

=  G R k( ) ik
2λ α 0

1– αh
1–

+( )/4π–{ }exp

∞–

+∞

∫

× ikξ p/ Lh/Rx 1–( ){ } dkexp

2

,

λ 1/α0 1/αh+( )/2π 1/4 B+ 0=

Ih ξ p( ) G
2π3 χhr 32λ 2

B( )
1–

=

× ikξ p/ Lh/Rx 1–( ){ } kdexp

∞–

+∞

∫
2

.

π/4 π/2 θ

log d λ/λ

–1

–3

–5

–7

–9

–11

Fig. 3. Logarithm of the spectral resolution described by
Eq. (15) as a function of the angle θ: a < L0λ/xeff, Lh !

Rxsinθ, Rx = 1 m, and L0 = 2 m. Si (444), |χhr | = 0.94 × 10–6.
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δ-like integral any more. Thus, finally, we arrive at

(24)

The main intensity maximum in the focus is

The angular halfwidth of the maximum determining the
diffraction size of the focus is

(25)

Equation (23) at L0 = 1, Lh = 10–3, X = 10–2, Rx = 0.1 m,
and λ = 1.54 Å yields ∆ξp ~ 10–8 m. The focus width is
dependent on the deformation gradient B and is propor-
tional to |αB – 1|, where α is determined by the focus-
ing geometry and the radiation characteristics. The
height of the intensity peak given by Eq. (24) is
inversely proportional to B.

Now, consider a crystal of a finite thickness T < Λ.
The amplitude reflection coefficient is equal to

where q = πCaχh(λ sinθ)–1 is the coefficient of reflec-
tion from an atomic plane, a is the interplanar spacing,
and t1 = t0 + 4T (–iB)1/2. In backscattering,  ≈
∆θ ≤ |χhr |1/2, i.e., is less by two to three orders of mag-
nitude than at θ < π/2. Assuming that T < π/4λB, we can
expand the difference between the probability integrals
into the Taylor series. Limiting the consideration to the
first derivative of the function Φ(t), we have

(26)

Then the amplitude reflection coefficient has the form

(27)

The intensity Ih(ξp) in the vicinity of the focus is deter-
mined from Eq. (21) by substituting there Eq. (27). The
intensity ratio for thin (T < Λ) and thick (T @ Λ) crystals is

(28)

and, at T at χhr ~ 10–6, |B | ≥ 4 × 1014 m–2, and T ~ 10 µm,
equals T ~ 0.4 .

Expression (28) allows the estimation of an admis-
sible crystal thickness at the given χhr and B

To increase the intensity at the focus, one has to use a
weakly bent and not a strongly bent crystal. The inten-
sity ratio is estimated as

, (29)

Ih ξ p( ) G
2π3 χhr 8λ 2

B( )
1–

=

× ξpkeff/ Lh/Rx 1–( )( )/ ξ p/ Lh/Rx 1–( )( )sin
2
,

Lh Rx.≠

Ih 0( ) π5 χhr X
2
L0

2
G

2
/2λ 4

B .=

∆ξ p λ Lh/Rx 1–( ) L0/2X .≈

R k( ) i i( )1/2
q/4a( ) π/2B( )1/2 θ Φ t1/2

1/2
–( )[tan–=

– Φ t0/2
1/2

–( ) ] t0
2
/2–( ),exp

θcot θcot

Φ t1/2
1/2

–( ) Φ t0/2
1/2

–( )–

≈ 2 π( ) 1/2–
t0

2
/2–( ) t1 t0–( )/2

1/2
.exp–

R k( ) iq t0
2

–( )T /a.exp=

Ih T Λ<, /Ih T  @ Λ, 32 B χhr T
2
/π∼

T π/ 32 B χhr( )1/2 Λ.< <

Ih weak, /Ih strong, 8 B /πkeff
2∼
C

and, it follows from (29) that, at λ = 1.54 Å, X = 10–4,
L0 = 0.4, and |B | = 4 × 1014 m–2, we have

Obviously, all the results obtained in this study are also
valid for thermal neutrons with a wavelength of λ ~ 1 Å.

CONCLUSIONS

Thus, we have obtained for the first time an analytical
expression for the size of the region of diffraction reflec-
tion on the crystal surface in backscattering. It follows
from this expression that the aperture ratio of the crystal
optics in Bragg backscattering essentially (by two to
three orders of magnitude) increases in comparison with
the aperture ratio attained in other focusing schemes and
becomes comparable with the aperture in the Johann
scheme. The advantage of the backscattering scheme is
the minimum aberrations of the reflected beam. The
analysis of the spectral characteristics of the diffracted
beam in backscattering showed that, theoretically, it is
possible to attain a resolution as high as dλ/λ ~ 10–11.
Moreover, we also showed that weakly bent crystals pro-
vide higher intensity at the focus than strongly bent ones.
According to (29), the intensity ratio for these crystals is
proportional to the deformation gradient B.

REFERENCES
1. K. Kohra and M. Matsushita, Z. Naturforsch. A 27, 484

(1972).
2. O. Brummer, H. R. Hoche, and J. Nieber, Phys. Status

Solidi A 53, 565 (1979).
3. A. Caticha and S. Caticha-Ellis, Phys. Rev. B 25, 971

(1982).
4. V. I. Kushnir and É. V. Suvorov, Pis’ma Zh. Éksp. Teor.

Fiz. 44, 205 (1986) [JETP Lett. 44, 262 (1986)].
5. T. Tchen, V. A. Bushuev, and R. N. Kuz’min, Zh. Tekh.

Fiz. 60 (10), 60 (1990) [Sov. Phys. Tech. Phys. 35, 1148
(1990)].

6. H. H. Johann, Z. Phys. 69 (3-4), 185 (1931).
7. K. T. Gabrielyan, F. N. Chukhovskiœ, and Z. G. Pinsker,

Zh. Tekh. Fiz. 50 (1), 3 (1980) [Sov. Phys. Tech. Phys.
25, 1 (1980)].

8. F. N. Chukhovskiœ, Metallofizika 3 (5), 3 (1981).
9. D. B. Wittry and S. Sun, J. Appl. Phys. 67, 1633 (1990).

10. W. Z. Chang and D. B. Wittry, J. Appl. Phys. 74, 2999
(1993).

11. F. N. Chukhovskii, W. Z. Chang, and E. Forster, J. Appl.
Phys. 77, 1843 (1995).

12. K. T. Gabrielyan, F. N. Chukhovskiœ, and D. I. Piskunov,
Zh. Éksp. Teor. Fiz. 96 (3), 834 (1989) [Sov. Phys. JETP
69, 474 (1989)].

13. V. G. Kon, I. V. Kon, and É. A. Manykin, Zh. Éksp. Teor.
Fiz. 116 (3), 940 (1999) [JETP 89, 500 (1999)].

14. T. Tchen, Pis’ma Zh. Tekh. Fiz. 27 (21), 1 (2001) [Tech.
Phys. Lett. 27, 889 (2001)].

15. Z. G. Pinsker, X-ray Crystal Optics (Nauka, Moscow, 1982). 

Translated by L. Man

Ih weak, /Ih strong, 10.∼
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002



  

Crystallography Reports, Vol. 47, No. 2, 2002, pp. 179–188. Translated from Kristallografiya, Vol. 47, No. 2, 2002, pp. 214–223.
Original Russian Text Copyright © 2002 by Livshits, Lozovik.

                         

THEORY OF CRYSTAL
STRUCTURES

           
Quasi-Two-Dimensional Crystalline Clusters on a Sphere: 
Method of Topological Description

A. M. Livshits and Yu. E. Lozovik
Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow oblast, 142092 Russia

e-mail: lozovik@isan.troitsk.ru
Received February 2, 2000; in final form, September 4, 2001

Abstract—The formation of a “quasicrystal” on a closed surface has been considered for the Thomson problem
on the arrangement with the lowest energy of N Coulomb charges on a sphere. The stable and metastable states
of the system of charges with the charge number N = 2–100 and the symmetry groups of the corresponding con-
figurations have been determined. The structure and possible structural transitions between the system states
are described in terms of the introduced notion of a closed quasi-two-dimensional triangular lattice with topo-
logical defects. The graph of lattice defects is defined. A method for classifying the system in terms of the
charge and the arrangement of topological defects in the lattice is suggested and extended to the case of an arbi-
trary lattice. The use of the model is considered on various physical examples, in particular, on a closed hexag-
onal lattice with disclinations in fullerenes. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently, we have seen an ever increasing interest in
mesoscopic systems and clusters [1, 2]. A large number
of real electron and semiconductor mesoscopic systems
is described by the model of repulsing particles in two-
and three-dimensional confining potentials [3–8]. One
also uses various repulsive (Coulomb, dipole, logarith-
mic, etc.) potentials. All the known mesoscopic sys-
tems described by such models show the following
common features: (1) formation of a shell structure in
the equilibrium state and (2) the “orientational melting
of shells” during heating, i.e., the loss of the orienta-
tional order of neighboring shells reducing to the rota-
tion of the “frozen” shells with respect to one another
and then, with a further increase of the temperature, the
loss of the radial order and the destruction of the shell
structure. Thus, we arrive at the notion of the “solid”
and “liquid” states of a cluster. Of course, this notion
can be applied to mesoscopic systems only condition-
ally, e.g., because of the existence of essential “het-
erophase fluctuations” [9] associated with the jump of
the system from the global potential-energy minima
into the local ones. Since a cluster consists of a limited
number of particles, it possesses no translation invari-
ance, which, in turn, can result in the appearance of
fivefold symmetry axes. In this article, we attempt to
rigorously describe the structure of a mesoscopic clus-
ter in the solid state.

Considering the cluster structures, we can single out
a class of clusters that can be represented by quasi-two-
dimensional (quasi-2D) closed lattices. A closed lattice
is a lattice that can be inscribed into a simply connected
closed two-dimensional surface with the unavoidable
formation of some topological defects. The model of a
1063-7745/02/4702- $22.00 © 0179
closed hexagonal lattice with topological defects can be
used to describe fullerenes and other carbon clusters Cn

having more complicated structures. Carbon clusters of
various dimensions have already been obtained experi-
mentally [10–13]. A closed triangular lattice can be
formed during crystallization of a cluster of repulsing
particles on a closed surface or in a confining potential.
In the latter case, a structure of concentric shells can be
formed [4], with each shell being represented by a
closed triangular lattice. Because of the topological
properties of a closed surface, any quasi-two-dimen-
sional lattice always has some topological defects (dis-
clinations), with the total topological charge M of all the
defects in each type of the closed lattice being constant.
In particular, in a closed triangular lattice, Mtr = +12.
Since the total topological charge of the defects is fixed,
it is possible to describe the lattice by enumerating all
its defects (the so-called lattice index) [14]. Below, we
fully characterize a closed lattice by a “graph of
defects” or a d-graph defining the charges of defects
and their mutual arrangement. The “distances” between
the defects are introduced in a way used in the theory of
graphs.

We consider the problem of the structure of closed
lattices on an example of the Thomson problem
[15−17] of the optimum arrangement of point charges
on a sphere, in which the Coulomb energy of the
charges, E(N) =  – rj|)–1, is minimized. The
model describes a number of real physical systems, in
particular, a system of ions or bubbles with electrons in
a liquid helium cluster, the rarefied system of electrons
(or holes) in a spherical “point” in a semiconductor, and
a system of ions in a three-dimensional trap (3D-trap)
with the potential drastically increasing in the vicinity

(|rii j>
N∑
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of the boundary. Indeed, according to the Earnshaw
theorem, the equilibrium charges in a three-dimen-
sional potential well are located on the surface. Because
of the medium polarization, the charges, ions, or bub-
bles with electrons in a spherical helium cluster are in
the effective confining potential Uext(r). The shape of
this potential is similar to that of a potential well
with   rounded-off edges in the center of a cluster
Uext(r)|0 ~ ξr2 and in the vicinity of the surface
Uext(r)|1 ~ ξ(r – 1)–1, where ξ ≈ 0.03. In the zero approx-
imation, the potential Uext(r) degenerates into a rectan-
gular potential well. A similar effective potential is also
formed for a three-dimensional charged semiconductor
or semimetal quantum dot. The classical mode of a
quantum dot is characteristic of the parameter range,
where the characteristic thermal length of the de Bro-

glie wave of electrons, λ ~ "/ , is significantly
less than the average distance between electrons.

To construct a unique closed triangular lattice of
charges, we use the edges of a convex polygon con-
structed on the charges–vertices. Usually, such a poly-
gon has only triangular faces, because, as a rule, the
configurations with nontriangular faces are unstable.
This is confirmed by the following symmetric configu-
rations of the charges: a cube with N = 8, a dodecahe-
dron with N = 20, and a “buck ball” with N = 60.

There is an alternative method of describing the
equilibrium structures of point charges on a sphere. The
configuration of the charges on a sphere can be repre-
sented by a system of coaxial rings of charges
[15, 18, 19]. In this case, the structural changes occur-
ring with an increase of N correspond to the gradual fill-
ing of the rings. This approach is justified only for a
small number of charges, N ~ 20, whereas at large N
values, the approach suggested in this article seems to
be preferable.

There is a large class of variational problems [20]
topologically close to the Thomson problem (e.g., the
Tammes [21] problem on the determination of the con-
figuration of N particles on a sphere such that the min-
imum angular distance between the particles would be
maximal). It should be indicated that at 12 ≤ N ≤ 100,
the Thomson and the Tammes problems usually have
different solutions.

CALCULATION FOR THE THOMSON
PROBLEM

The energy minima were determined by the gradient
descent method [22], which for our system is written in
the following way [16]:

where Fi is the force acting onto the ith particle. Of all
the configurations determined, we select the local and
the global (possessing the minimum energy) minima.

mkT

ri ri' ri γFi+( )/ ri γFi+ ,=
C

The equilibrium configurations obtained for the
Thomson problem are listed in Table 1. At N ≤ 90, we
also indicate the solutions of the Tammes problem (the
data from [23] at N ≤ 12 and the data from [24] at 13 ≤
N ≤ 90).

The configuration energies are obtained with an
accuracy considerably higher than in [17, 19, 25, 26],
which is of great importance for the selection of the
global minimum from a large number of local ones
(which often possess only slightly different energies) at
charge numbers N ~ 100. This, in turn, provides the
determination of some other configuration characteris-
tics with a considerably higher accuracy. Some of the
data obtained agree quite well with the data indicated
by Edmundson [25], who analyzed all possible config-
urations for the Thomson problem at charge numbers
N ≤ 60 and N = 72, 92, 100. The configurations we
determined at N = 55, 56, and 92 differ from those
obtained in [25] and correspond to lower minima. The
discrepancies in the Föppl indices for the configura-
tions at N = 19 and 43 are insignificant and are
explained by the higher accuracy of our calculations.
The symmetry data, the Föppl indices, and other char-
acteristics of equilibrium configurations (except for
energy) at charge numbers in the range 60 < N < 100 are
obtained in our study for the first time. Earlier [16, 17,
27, 28], energies at charge numbers N ≤ 100 were cal-
culated with different accuracies. It was also indicated
that a convex polyhedron built on the charges–vertices
usually has 12 vertices–pentamers and (N – 12) verti-
ces–hexamers [17, 25, 26]. Altshuller et al. [17]
obtained the list of configurations at 13 ≤ N ≤ 100
which contradicts the above statement. The results
obtained in the present study considerably differ from
the data indicated by Altshuller (cf. Table 1 in [17] and
Table 2 in the present article).

In 1957, Leech showed [29] that the solution of the
variational problem of the search for the minimum of

U(N, n) =  at N = 2–6, 12 is independent of
the exponent n (n = 1, 2, …, ∞) [29]. It should be indi-
cated that at all the other N values, the solutions of the
Thomson (n = 1) and the Tammes (n = ∞) problems do
not coincide (see Table 1). In particular, the Thomson
problem has many more symmetric solutions. The only
global energy minimum for the Thomson problem in
the range of N under consideration having no symmetry
elements is found at N = 61.

The configurations at N = 25, 33, 47, and 79 corre-
spond to the symmetry group C1h and, thus, have no
rotational symmetry axis. Therefore, in order to write
the Föppl indices for these configurations (Table 1), we
had to use the direction normal to the symmetry plane.
Thus, the Föppl index of the configuration at N = 79 is
written as follows: 132, 2, 11, 2, 132. In this case, the
convex polyhedron constructed on the charges–vertices
has a tetragonal face which is normal to the symmetry
plane. It should also be indicated that the number of

rpq
n–

p q≠
N∑
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Table 1.  Equilibrium configurations of the system of N charges (N = 2–100) on the surface of a sphere

N MR G δ Energy L F ppl G' δ'

2 0 D∞h 180.00000 0.50000000 – 2 D∞h 180.00000
3 0 D3h 120.00000 1.73205081 – 1, 2 D3h 120.00000
4 0 Td 109.47122 3.67423461 4Tr 1, 3 Td 109.47122
5 0 D3h 90.00000 6.47469149 2Tr3T 1, 3, 1 D3h, C4v 90.00000
6 0 Oh 90.00000 9.98528137 6T 1, 4, 1 Oh 90.00000
7 0 D5h 72.00000 14.45297741 5Tr2P 1, 5, 1 C3v 77.86954
8 0 D4d 71.69415 19.67528786 8P2F 42 D4d 74.85849
9 0 D3h 69.18975 25.75998653 3T6P 33 D3h 70.52878

10 0 D4d 64.99562 32.71694946 2T8P 1, 42, 1 C2v 66.14682
11 0.001202 C2v 58.53956 40.59645051 2T8P 1, 2, 4, 22 C5v 63.43495
12 0 Yh 63.43495 49.16525306 12P 1, 52, 1 Ih 63.43495
13 0.000678 C2v 52.31692 58.85323061 T10P 1, 22, 4, 22 C4v 57.13670
14 0 D6d 52.86609 69.30636330 12P 1, 62, 1 D2d 55.67057
15 0 D3 49.22487 80.67024411 12P 35 C3, C1 53.65785
16 0 T 48.93621 92.91165530 12P 1, 35 D4d 52.24440
17 0 D5h 50.10802 106.05040483 12P 1, 53, 1 C2v 51.09033
18 0 D4d 47.53440 120.08446745 2T8P 1, 44, 1 C2 49.55666
19 0.000007 C2v 44.90970 135.08946756 F10P 1, 4, 2, 4, 22, 4 C1h 47.69191
20 0 D3h 46.09330 150.88156833 12P 1, 32, 6, 32, 1 D3h 47.43104
21 0.000067 C2v 44.32038 167.64162240 T10P 1, 22, 4, 22, 4, 22 C1 45.61322
22 0 Td 43.30201 185.28753615 12P 1, 32, 6, 33 C1 44.74016
23 0 D3 41.48111 203.93019066 12P 1, 37, 1 C1 43.70996
24 0 O 42.06529 223.34707405 6F 46 O 43.69077
25 0.000041 C1h 39.60981 243.81276030 F10P 110, 5, 110 C3 41.63446
26 0.000074 C2 38.74214 265.13332632 12P 213 C1h 41.03766
27 0 D5h 39.94028 287.30261503 12P 1, 55, 1 C2v 40.67760
28 0 T 37.82374 310.49154236 12P 1, 39 C1 39.35514
29 0 D3 36.39129 334.63443992 12P 1, 39, 1 C1 38.71365
30 0 D2 36.94228 359.60394590 12P 1, 214, 1 D3 38.59712
31 0.000103 C3v 36.37311 385.53083806 12P 1, 32, 6, 32, 6, 32 C5 37.70983
32 0 Ih 37.37736 412.26127465 12P 1, 56, 1 D3 37.47521
33 0.000132 C1h 33.69955 440.20405745 F11PH 113, 7, 113 C3 36.25455
34 0 D2 33.27343 468.90485328 12P 1, 216, 1 C2 35.80778
35 0.000012 C2 33.10029 498.56987249 12P 1, 4, 215 C1 35.31846
36 0 D2 33.22727 529.12240838 12P 218 D2 35.18973
37 0 D5h 32.33243 560.61888773 12P 1, 57, 1 C1h 34.42241
38 0 D6d 33.23648 593.03850357 12P 1, 66, 1 D6d 34.25066
39 0 D3h 32.05295 626.38900902 12P 32, 6, 3, 9, 3, 6, 32 C1 33.48905
40 0 Td 31.91635 660.67527883 12P 1, 32, 6, 32, 6, 3, 6, 32 C3 33.15836
41 0 D3h 31.52783 695.91674434 12P 1, 32, 6, 3, 9, 3, 6, 32, 1 C1 32.72909
42 0 D5h 31.24474 732.07810754 12P 1, 53, 10, 53, 1 D5 32.50639
43 0.000009 C2v 30.86664 769.19084646 13P 1, 2, 4, 2, 42, 22, 43, 2, 4, 22 C1 32.08447
44 0 Oh 31.25761 807.17426308 6F 43, 8, 4, 8, 43 C2 31.98342
45 0 D3 30.20718 846.18840106 12P 315 C1 31.32308
46 0 T 29.79025 886.16711364 12P 1, 315 C2 30.95916
47 0.000053 C1h 28.78730 927.05927068 F10P 120, 7, 120 C1 30.78182
48 0 O 29.68964 968.71345534 6F 412 O 30.76279
49 0.000031 C3 28.38659 1011.55718265 12P 1, 316 C2 29.92358
50 0 D6d 28.71140 1055.18231473 12P 1, 68, 1 D6 29.75296

o
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Table 1.  (Contd.)

N MR G δ Energy L F ppl G' δ'

51 0 D3 28.16539 1099.81929032 12P 317 C1 29.36159
52 0.000009 C3 27.66987 1145.41896432 12P 1, 317 T 29.19476
53 0.000005 C2v 27.13694 1191.92229042 3F6P 1, 4, 2, 42, 2, 42,

22, 44, 22, 4
C1 28.81390

54 0.000003 C2 27.02959 1239.36147473 12P 227 C1 28.71692
55 0.000007 C2 26.61507 1287.77272078 12P 1, 227 C1 28.26279
56 0 D2 26.68290 1337.09494528 12P 238 D2 28.14805
57 0 D3 26.70241 1387.38322925 12P 319 C3 27.82668
58 0 D2 26.15523 1438.61825064 12P 1, 211, 4, 22, 4, 211, 1 C1 27.55485
59 0.000003 C2 26.17024 1490.77333528 14P2H 1, 229 C1 27.39498
60 0 D3 25.95762 1543.83040098 12P 320 C2 27.19283
61 0.000018 C1 25.39167 1597.94183020 12P 161 C1 26.87233
62 0 D5 25.87987 1652.90940990 12P 1, 512, 1 C1 26.68343
63 0 D3 25.25672 1708.87968150 12P 321 D3 26.48692
64 0 D2 24.92001 1765.80257793 12P 232 C1 26.23504
65 0.000006 C2 24.52673 1823.66796026 12P 1, 232 C2 26.06983
66 0.000012 C2 24.76463 1882.44152531 12P 233 D3 25.94744
67 0 D5 24.72726 1942.12270041 12P 1, 513, 1 C2 25.68398
68 0 D2 24.43292 2002.87470175 12P 234 C2 25.46062
69 0 D3 24.13651 2064.53348323 12P 323 C1 25.33223
70 0 D2d 24.29073 2127.10090155 4F4P 1, 2, 4, 2, 42, 2, 48,

2, 42, 2, 4, 2, 1
C1 25.17092

71 0.000018 C2 23.80257 2190.64990643 14P2H 1, 228, 4, 25 C1 24.98791
72 0 I 24.49170 2255.00119097 12P 1, 514, 1 D3 24.92649
73 0.000022 C2 22.81041 2320.63388375 12P 1, 236 C1 24.55376
74 0.000009 C2 22.96584 2387.07298184 12P 237 C1 24.42088
75 0 D3 22.73643 2454.36968904 12P 325 C1 24.30172
76 0.000012 C2 22.88571 2522.67487184 12P 238 C1 24.11969
77 0 D5 23.28614 2591.85015235 12P 1, 515, 1 C1 23.99585
78 0 Th 23.42634 2662.04647457 12P 326 D3 23.93102
79 0.000009 C1h 22.63614 2733.24835748 F11PH 132, 2, 11, 2, 123 C1 23.62399
80 0 D4d 22.77835 2805.35587598 2F8P 43, 8, 42, 8, 42, 8, 42, 8, 43 D2 23.54352
81 0.000002 C2 21.89175 2878.52282966 12P 1, 240 C1 23.34764
82 0 D2 22.20594 2952.56967529 12P 1, 240, 1 C1 23.19261
83 0.000004 C2 21.64623 3027.52848892 14P2H 1, 241 C1 23.08300
84 0.000005 C2 21.51267 3103.46512443 12P 1, 241, 1 D3 23.05173
85 0.000005 C2 21.49758 3180.36144294 12P 1, 242 C1 22.77869
86 0.000016 C2 21.52160 3258.21160571 12P 243 C1 22.67437
87 0.000009 C2 21.45649 3337.00075001 12P 1, 217, 4, 224 D3 22.54666
88 0 D2 21.48559 3416.72019676 12P 244 T 22.46788
89 0.000001 C2 21.18220 3497.43901862 12P 1, 244 C1 22.31660
90 0 D3 21.23028 3579.09122272 12P 330 D3 22.15402
91 0 C2 21.10466 3661.71369932 12P 1, 245

92 0 D2 21.02582 3745.29163624 12P 246

93 0.000002 C2 20.75075 3829.84433842 12P 1, 246

94 0 D2 20.95187 3915.30926962 12P 1, 246, 1
95 0.000001 C2 20.71121 4001.77167557 12P 1, 247

96 0 C2 20.68657 4089.15401006 12P 212, 4, 234

97 0.000001 C2 20.44961 4177.53359962 12P 1, 248

98 0.000001 C2 20.42160 4266.72246416 12P 249

99 0.000002 C2 20.28450 4357.13916313 12P 1, 233, 4, 214

100 0 T 20.29660 4448.35063433 12P 1, 333

Note: MR is the dipole moment of the system, G is the symmetry group (in Schönflies notation), δ is the minimum angular distance
between the charges (in degrees), L is the index of the closed lattice, Föppl indicates the Föppl index, Energy indicates the total Cou-
lomb energy of the system, G' is the symmetry group used in the solution of the Tammes problem, and δ' is the minimum angular
distance between the particles in the Tammes problem.
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charges located in the symmetry plane in all cases with
symmetry C1h is described by a simple number—5, 7,
7, or 11.

It was indicated earlier that, usually, the configura-
tions with tetragonal faces are unstable. In particular, it
is well known that a cube does not correspond to the
minimum energy in the Thomson problem. We deter-
mined three configurations having cubic symmetry
(at N = 24, 44, 48) and possessing tetragonal (in this
case, square) faces. The same configurations are also
indicated in [25] but, surprisingly, are not indicated in
the later study [17]. The configuration at N = 70 is
described by the symmetry group D2d and has four tet-
ragonal faces. Two of three fourfold rotation reflection
axes pass through the centers of the tetragonal faces,
whereas the third rotation reflection axis transforms
these four faces into one another.

Configurations possessing higher symmetries can
have higher energies than the low-symmetric ones.
Thus, at N = 42, the local minimum (E =
732.15182672) has the symmetry Ih, whereas the global
minimum has a lower symmetry D5h. Table 3 lists the
local minima of the system of point charges on a sphere
at N = 92. Of nineteen configurations listed in Table 3,
the minimum possessing the highest symmetry Ih is
also characterized by the highest energy.

DISCUSSION OF RESULTS

One of the most well-known approaches to the
description of the charge distribution on a sphere is that
from the classical study performed by Thomson [15],
who considered that the structures consisted of a small
number of charges. According to Thomson, the charges
form coaxial rings on a sphere, whereas the structural
changes occurring with an increase in the charge num-
ber N in the system correspond to the gradual addition
of charges to different rings (Fig. 1). A consistent for-
mal description within the framework of the “ring
approach” was developed by Föppl [30]. The axis of the
coaxial rings is taken to be that of the highest symme-
try, whereas the particles are considered to be located
on one ring only if they all are located in the same plane
normal to this axis. This approach is quite justified with
a small number of charges because the rings of charges
are well distinguishable. With an increase in the charge
number N, increasingly less information on the real
charge configuration can be extracted from the Föppl
index. Thus, various local minima are often described
by the same indices (see Table 3). The notion of rings
itself no longer has any sense because the distances
between the rings can be several times less than the dis-
tances between the charges in the individual rings. Nev-
ertheless, the Föppl indices can successfully be used for
solving a number of problems.

Since the charges in the Thomson problem are
located on a sphere, one can always construct a convex
polyhedron on charges–vertices if N ≥ 4. Thus, another
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natural method used to describe the configurations is
the consideration of the characteristics of this polyhe-
dron. Below, we study such characteristics for a poly-
hedron uniquely determining the structures of all the
configurations.

In fact, a convex polyhedron constructed on
charges–vertices is the implementation of the idea of a
closed two-dimensional triangular lattice with topolog-
ical defects. The concept of a closed lattice with topo-
logical defects can be used to describe structures of var-
ious systems, including fullerenes and a large number
of clusters consisting of repulsing particles in confining
potentials. It is well known that, for the repulsive poten-
tials U ~ r–n (n = 1, 3, 4, …), a triangular lattice is stable
in the plane and possesses the minimum energy as com-
pared with the energies of the lattices of all the other
types [31, 32]—square, hexagonal, etc. Thus, one can
expect that the triangular lattice would also be stable in
the region 〈rij 〉  ! R on a curved surface, where R is the
curvature radius of the surface and 〈rij 〉  is the average
distance between the particles. However, if the lattice is
considered on the whole sphere surface, i.e., if the sur-
face is closed, it possesses a number of specific features
based on the topological differences between a sphere
(a closed simply connected surface) and a plane.

In order to construct the lattice on a sphere, one can
use several methods, in particular, the slightly modified

Table 2.  Exceptions from the rule defining the number of
vertices–pentamers and vertices–hexamers in a convex poly-
hedron constructed on the charges–vertices at 12 ≤ N ≤ 100

N N4 N5 N6 N7 Q

13 1 10 2

18 2 8 8

19 14 5 1

21 1 10 10

24 24 6

25 14 11 1

33 15 17 1 1

44 24 20 6

47 14 33 1

48 24 24 6

53 18 35 3

59 14 43 2

70 20 50 4

71 14 55 2

79 15 63 1 1

80 16 64 2

83 14 67 2

Note: N is the number of charges; N4, N5, N6, and N7 are the num-
bers of vertices incident to 4, 5, 6, and 7 edges, respectively;
and Q is the number of tetragonal faces.
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Voronoi method for constructing lattices on curved 2D-
surfaces. As will be shown later, the method used for
the construction does not affect the basic properties of
the closed lattice. Here, we construct the lattice using
the edges of a convex polyhedron with the vertices
occupied by charges.

LATTICE DEFECTS

Consider defects of a plane lattice (for details, see,
e.g., [33]) which can have two types of defects—dislo-
cations and disclinations. Disclinations break the sym-
metry of the directions of the vectors connecting the

Table 3.  The Thomson problem: local minima at number of
charges N = 92

G F ppl Energy

D2 246 3745.29163624

C2 246 3745.32218333

C2 246 3745.32555284

C2 246 3745.33860835

C1 192 3745.36351633

D5 1, 518, 1 3745.36772048

C1 192 3745.38100894

C1 192 3745.38177220

C2 246 3745.38212625

C1 192 3745.38297241

C1 192 3745.38930839

C1 192 3745.38943469

C2 1, 210, 4, 211, 4, 220, 1 3745.39152813

C1 192 3745.39598792

C2 246 3745.41663888

C1h 131, 2, 17, 12, 17, 2, 131 3745.48063056

C1 192 3745.48989730

C1 192 3745.50315699

Ih 1, 53, 10, 52, 102, 52, 10, 53, 1 3745.61873913

Note: For notation see Table 1.

o
..
C

closest equivalent particles. If a plane lattice possesses
a symmetry axis of the nth order, then, in moving
around the disclination core having the charge m, the
phase φ is changed by a value of δφ = 2πm/n. Thus, a
particle surrounded by five and not six closest neigh-
bors (a pentamer) in the plane triangular lattice is a core
of a disclination with the charge m = +1, a particle with
four nearest neighbors, a core of disclination with the
charge m = +2, etc. (Figs. 2a, 2b).

Consider the equilibrium and the quasi-equilibrium
configurations of charges on the sphere surface (at all
N ≥ 4) as quasi-two-dimensional closed triangular lat-
tices with topological defects. A closed lattice is under-
stood as a lattice inscribed into any closed simply con-
nected surface (not necessarily convex). Hereafter, we
use the following notation for defects: a pentamer is a
P-disclination (m = +1), a tetramer is a T-disclination
(m = +2), a trimer is a Tr-disclination (m = +3), and a
heptamer is an H-disclination (m = –1). In terms of
topology, a tetragonal face is also a disclination (m = +2),
which differs from a conventional disclination only by
the absence of a particle in the disclination core (the
face center) (Fig. 3a). Hereafter, we call such a defect
of the closed triangular lattice a “focus” or an F-discli-
nation. Formally, defects of this type can be excluded
from the lattice. With this aim, one has to add an arbi-
trarily chosen edge to each tetragonal face. As a result,
the modified lattice acquires two P-disclinations in the
neighboring vertices instead of each of the F-disclina-
tions, whereas the total topological charge remains
unchanged (Fig. 3b). Nevertheless, we preserve here
the notation of an F-disclination because it is very con-
venient (see below) for describing the structure of a
closed lattice, in particular, the lattice symmetry. Figure
4 shows some charge configurations characterized by
tetragonal faces.

BASIC PROPERTY OF A CLOSED LATTICE

In a macroscopic plane lattice, the formation of dis-
clination is low probably because of the high energy of
arising elastic deformations. A quasi-two-dimensional
closed lattice always contains disclinations with the
3 4 5 6 7 8

14131211109

Fig. 1. Ring structures at N = 3–14. The distorted ring structure at N = 13: {1, (6), (5), 1}.
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total topological charge of M defects defined as

being constant and independent of the number of parti-
cles and of the method of lattice construction (where Ni

is the number of disclinations in the lattice with the
topological charge m = i). In particular, in a close trian-
gular lattice 

in a closed hexagonal lattice, Mhex = 12, and in a closed
square lattice Mq = 8. Consider the proof for a closed
triangular lattice. The numbers of faces, vertices, and
edges of a convex polyhedron, F, V, and E, respectively,
are related by the Euler relationship V + F – E = 2.
Three edges are incident to each face of a closed trian-
gular lattice with each edge being tangential to two
faces. Performing summation over the faces, we have
3F = 2E. Every vertex of a closed triangular lattice is
incident to six edges. If a vertex is a disclination with
the charge m = +1, this vertex is incident to five edges
(i.e., one edge less). If the disclination charge is m = –1,
the vertex is incident to seven edges (one edge more),
etc. Upon summing up all the vertices of the triangular
lattice with disclinations, with due regard for the fact that
each edge was summed up twice, we obtain 6V – Mtr = 2E.
Now, expressing Mtr from the above formulas, we
arrive at the sought equation.

LATTICE INDEX

The lattice index is introduced to describe the types
of defects in the lattice and their numbers. The exam-
ples of such indices are 12P, 2T8P, and 4F. The number
before the defect symbol indicates the number of
defects of the given type in the lattice. Thus, index
12P signifies that the lattice contains 12 P-disclina-
tions, while index 2T8P indicates that the lattice has
2 T- and 8 P-disclinations, and so on. A PH-dipole is
considered as one defect—a dislocation (m = 0). The
FH-complex formed in the systems with N = 33 and 79
can also be considered as one complex defect (m = +1). As

M = N+1 N 1––( ) 2 N+2 N 2––( ) 3 N+3 N 3––( ) …+ + +

Mtr 12,=

K = 6
K = 5

(a) (b)

Fig. 2. Disclinations in a plane triangular lattice δφ =
2πm/6: (a) the disclination with m = +1 and a wedge δφ =
+2π/6 cut out from the lattice; (b) the disclination with m =
–1 and a wedge δφ = –2π/6 inserted into the lattice.
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is seen from Table 1, most structure defects are of the 12P
type. Then, we can also introduce the characteristics
reflecting the arrangement of defects in a closed lattice.

STRUCTURE OF A CLOSED LATTICE. GRAPH
OF LATTICE DEFECTS

The topology of a closed lattice is reflected by its
graph G or a graph of edges of a convex polyhedron
constructed on the charges located on a sphere. The
symmetry of the charge configuration described by the
point symmetry group is either lower or the same as the
symmetry of the graph of a closed lattice constructed
for the given configuration. This relationship is fulfilled
for a closed lattice of an arbitrary structure including
the lattice containing F-disclinations. If one were to
construct a closed lattice by excluding F-disclinations
and adding arbitrarily an edge to each tetragonal face of
the polyhedron, one would arrive at a situation where
the symmetry of the configuration would be higher than
the symmetry of the corresponding graph, which would
be very inconvenient for the classification.

Now, determine the distance d(u, v ) between two
vertices, u and v, of the closed lattice as a length of the
shortest simple chain connecting these vertices. Now,
construct the graph of defects (the d-graph) in the fol-
lowing way. Take the vertices of the closed lattice (dis-
clinations) as the vertices of the d-graph. Connect these
vertices–disclinations by edges and bring each edge into
correspondence with the distance between the corre-
sponding defects. Constructing the d-graph for a structure
containing F-disclinations, we can virtually add a particle
into the core of each F-disclination (Fig. 3c).

Since the distance between any two vertices is deter-
mined uniquely, it is obvious that, for the given config-
uration of the charges forming the closed lattice, the d-
graph can also be constructed uniquely. The opposite
question of whether the graph of defects determines the
structure of the closed lattice uniquely or nonuniquely
is less trivial. We compared the d-graphs of all the local
minima determined and established that, in the range of

F

P

P

F

P

(a) (b) (c)

Fig. 3. F-disclination in a triangular lattice: (a) formation of
an F-disclination (m = +2); (b) decomposition of an F dis-
clination into two P-disclinations; and (c) the virtual addi-
tion of a particle to the core of each F disclination in the
construction of the d graph. The distance LPF between two
disclinations equals three.
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19 24 44

48 53 70

79 80 83

Fig. 4. Structures containing F-disclinations at N = 19, 24, 44, 48, 53, 70, 79, 80, 83. At N = 83, the local minimum E = 3027.558629
(the point group C1h) is seen. The remaining figures show the configurations corresponding to the global minima of the systems.
N values 4 ≤ N ≤ 100, the d-graph uniquely determines
the structure of the closed lattice.

To a graph of polyhedron edges there corresponds
the symmetric matrix A of dimensions N × N; then,
aij = 1 if the vertices i and j are connected by an edge,
and aij = 0 if they are not connected. The graph of
defects can be written with the aid of the symmetric
d-matrix (k × k), where k is the number of defects in the
structure. To the nondiagonal matrix elements there
correspond the pairs of distances between the disclina-
tions. Now, write the symbols of the defects on the
diagonal of the d-matrix. Since all the charges are
equivalent, the operation of defect permutation in the
d-matrix does not change the structure of the d-graph
and the closed lattice. The permutation of the K and
L defects is defined as

(1)dij[ ] ' = dij[ ]
K L,

swap : 

dKK
' dLL=

dLL
' dKK=

dKL
' dLK

' dKL= =

diL
' dLi

' diK i L K,≠( )= =

diK
' dKi

' diL i L K,≠( )= =

dij
' dij i j L K,≠,( ).=














C

The matrix of defects has an infinite number of invari-
ants of the form

where Vi(n) = . The numbers n and m are arbi-
trary real numbers. One can also introduce a number of
quantitative characteristics which are the functions of
the d-matrix, e.g., the average distance between the
defects in the lattice

and the dispersion of these distances

where k is the number of defects. In the systems con-
taining different types of defects, one can also intro-
duce the average distance and dispersion for defects of
each type separately, e.g., MPP and MFF.

Figure 5 shows the matrices of defects for two dif-
ferent local energy minima in the Thomson problem at
N = 92. The local minima (the second and third rows in
Table 3, respectively) are described by the same Föppl
indices and the same symmetry groups. At the same

I n m,( ) Vi n( )V j m( ),
i j,
∑=

dij
n

j i≠∑

M
2

k k 1–( )
------------------- dij

i j>
∑=

D
2

k k 1–( )
------------------- dij

2
M

2
,–

i j>
∑=
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time, their d-matrices are different and cannot be
reduced to one another.

Since the interaction potential between the charges
is not used in the construction of the graph of a closed
lattice, the formalism of the d-graph and the d-matrix
can be used not only for writing and comparing differ-
ent local and global minima (the solutions of the Thom-
son and other close problems) but also for comparing
the solutions of various problems.

HEXAGONAL LATTICE

A model of a closed hexagonal lattice can be used to
describe fullerene structures. A graph of a closed hex-
agonal lattice is dual with respect to the graph of a
closed triangular lattice in which the centers of discli-
nations in the closed hexagonal lattice are faces and not
vertices. Thus, to a closed hexagonal lattice of fullerene
C60 there corresponds the closed triangular lattice of the
local minimum (N = 32, Ih) in the system of Coulomb
charges on a sphere.

CONCLUSION

The notion of a quasi-two-dimensional closed trian-
gular lattice is introduced to describe the structure of

(a)

(b)

Fig. 5. The d-matrices of two “similar” minima in the
Thomson problem: (a) the d-matrix of the local minimum at
N = 92 (the symmetry C2, the Föppl index 246); (b) the
d-matrix of another local minimum at N = 92 (the symme-
try C2, the Föppl index 246).
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charges on the surface of a sphere. It is shown that the
triangular lattice on a closed simply connected surface
includes topological defects—disclinations—of differ-
ent charges, with the total topological charge of defects,
M = 12, being constant and independent of the charge
and location of individual defects. The equilibrium and
nonequilibrium configurations are considered at charge
numbers in the range N = 2–100. The methods for clas-
sification and compact description of the structures are
suggested. A graph of defects or a d-graph of the lattice
is defined and used to describe the mutual location and
charge of defects in the lattice. Thus, the description of
the crystal structure of N charges on a closed surface is
reduced to determining the d-graph or the d-matrix of
the lattice, k × k, where the number of defects in the lat-
tice k is limited. In particular, in the Thomson problem,
for most of the configurations we obtain k = 12.

The model of Coulomb charges on the surface of a
sphere describes a number of physical systems, includ-
ing the 3D-system of ions in a trap with an abrupt con-
fining potential, a system of electrons in a semiconduc-
tor 3D-quantum dot, a multicharge bubble with an elec-
tron in liquid helium (in the classical limit), and a
system of ions in a helium cluster retained by image
forces.

At present, a large number of various objects are
known and experimentally observed that are character-
ized by one common property: From the topological
standpoint, these systems can be considered as sets of
points distributed over the sphere surface. Such objects
are clusters consisting of particles interacting according
to different (Coulomb, dipole laws) laws, atomic clus-
ters, multiatomic molecules, fullerenes, spherical
viruses, etc. It is suggested that such structures be con-
sidered within the unified approach as quasi-two-
dimensional closed lattices with topological defects of
various charges. The structure of the lattice and the
character of the defects in it are determined by various
mechanisms, e.g., by valence (in fullerenes and other
atomic and molecular clusters), mutual charge repul-
sion resulting in the formation of a triangular lattice,
etc. For each type of closed lattice, the total charge of
all the disclinations is an invariant. Thus, in the closed
triangular lattice and in the closed hexagonal lattice
(fullerenes), the total charge of all the defects is M = 12.
However, in the former case, disclinations are vertices–
nonhexamers, whereas in fullerenes, disclinations are
nonhexagonal faces. A number of systems, e.g., ions in
traps and multishell carbon clusters (“onions”), can be
considered to be systems of concentric closed lattices.
The development of nanotechnology allows one to
expect the creation of new substances with molecular
structures in the form closed lattices.
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Abstract—The Penrose mosaic as the minimum representative of quasicrystals is discussed in terms of gener-
alized planar lattice models. The role of these models is played by Cayley’s tree graphs which, in the general
case, are characterized by quasi-random branching. A three-level golden alphabet is defined, and a Penrose
mosaic is synthesized with the aid of its highest level. The algebras of the suggested grammar are formulated
in an explicit form. It is shown that the statistics of a Penrose mosaic at the level of golden rhombuses belongs
to the class of Zipf–Mandelbrot distributions. The algorithm for mapping a Penrose mosaic into Cayley’s tree
graphs based on the [2q × 2p] alphabet is also formulated. The problem of the entropy percolation for quasis-
tochastic Cayley’s trees of Penrose mosaics is solved. The entropy percolation of these trees is characterized by
an obvious minimum periodicity and, on average, by the invariance principle of the golden entropy. © 2002
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Almost fifteen years ago, the Shechtman group stud-
ied the rapidly cooled Al86Mn14 alloy and obtained unique
objects which did not belong to metallic glasses [1].
The diffraction patterns of these objects had ten spots
related by a fivefold rotation axis forbidden in crystal-
lography. Later, these objects were called quasicrystals.
In an attempt to interpret the “pentasymmetry” of these
diffraction patterns, the Penrose model was used [2, 3].
Somewhat later, a family of mosaics corresponding to
forbidden symmetries of higher orders was also studied
[4–6].

The symmetries characteristic of quasicrystals were
also observed in studies of nonlinear dynamic systems
[7], and it was shown that the destruction of the separa-
trix structure of the phase space caused by the
ε-perturbation results in the formation of a stochastic
web with a symmetry characteristic of quasicrystals. As
follows from [7], a stochastic web is generated by
recurrent two-dimensional mapping with twisting. By
the end of the 1990s, a specific niche including a wide
class of quasicrystal objects had been formed. Thus, it
was shown that the processes of structure relaxation
and decomposition of the amorphous state in metallic
glasses resulted in the precipitation of star-shaped
grains [8, 9].

Consider a Penrose mosaic as the minimum and uni-
versal representative of the class of quasicrystals.
Below, we use the linguistic approach and interpret a
Penrose mosaic as a text written in a certain language.
However, we reduce the linguistic approach to the level
of statistical linguistics, where we use the frequency of
the occurrence of various symbols forming an alphabet
and, thus, also rank statistics. A characteristic feature of
1063-7745/02/4702- $22.00 © 20189
our consideration is the transition to the “quartet alpha-
bet” at the level of golden (g) rhombuses with due
regard for the types of possible contacts—the vertex
and the edge neighborhoods of g-rhombuses.

The creation of the grammar is rather difficult [10],
but we can simplify it and avoid the identification of the
grammar type by considering a Penrose mosaic in a
new tree-graph representation based on the quartet
alphabet, which is equivalent to the algorithm for con-
structing a Penrose mosaic itself—a typical grammati-
cal function [10].

Percolation on Cayley’s trees for a Penrose mosaic
can be interpreted as a Markovian shift in the tree hier-
archies, which is reflected in the probabilistic and
entropy measures. This type of percolation is related to
the semigroup class. Generally speaking, percolation
can occur along two directions: center  periphery.
The existence of two opposite semigroup percolation
flows can result in a nonzero defect in percolation on
Cayley’s trees. In this case, we arrive at irreversible tree
graphs. It is possible to introduce the criterion of quasi-
crystallinity on Penrose mosaics in terms of entropy
functionals. Thus, we arrive at the theoretical-probabi-
listic and entropy manifestations of the “golden charac-
teristics” of the Penrose mosaic.

STATISTICS OF A PENROSE MOSAIC
AT THE LEVEL OF A QUARTET 
RHOMBUS-BASED ALPHABET

Various Penrose mosaics are formed by golden
rhombuses (g-rhombuses) of only two types, consist-
ing, in turn, of two golden (g) triangles (Figs. 1a, 1c)
sharing the golden sides. The existence of the level of
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g-triangles and, later, of g-rhombuses (Figs. 1b, 1d),
indicates the hierarchical nature of the alphabet of the
Penrose mosaic. Now, formulate a hypothesis which
states that the synthesis of a mosaic is simplified if an
alphabet of a higher rank based on blocks (sentences) of
g-rhombuses is used. Possibly, the grammar of the hier-
archical alphabet and Penrose tiling would be less com-
plicated and artificial that at the level of g-rhombuses
[3, 11].

To construct a dual g-basis of Penrose tiling of level III,
we have to apply the following algebraic rules of lin-
guistics II:

A “block” or a sentence of level III is chosen as a
pair of convex ten-vertex polygons composed in the
dual basis of g-rhombuses.

(a) (b)

(c) (d)

(e)

(f)

Fig. 1. Three-level alphabet of a Penrose mosaic.

Fig. 2. Penrose mosaic. One can see elements of alpha-
bet III, the types of intersections, and several coordina-
tion spheres.
C

         

The number of g-rhombuses in the sentences of
level III is 5 + 5 (“acute” + “obtuse”) rhombuses, with
both components being equally probable. 

A pair of ten-vertex polygons is constructed from
g-rhombuses by applying the join operation (without
intersection) along a nonspecific (unit) side.

One of the compound ten-vertex polygons possesses
a fivefold rotation axis, whereas the other is character-
ized by dorsal symmetry with a “pentacoordination”
point.  The role of a nucleus is played by an obtuse
g-rhomb.

A three-level binary golden alphabet, level III, and
their fragments are illustrated by Fig. 1. Using level III,
we synthesized a Penrose mosaic shown in Fig. 2 with
a rather simple grammar III. The algebra of the gram-
mar for alphabet III is as follows:

—a fragment shown in Fig. 1e is a star-shaped ten-
vertex polygon that has no contacts with other similar
polygons;

—a joint with a simple intersection of the motifs in
Figs. 1e and 1f is allowed with the intersection being an
acute g-rhombus;

—a pair joint of dorsal ten-vertex polygons occurs
with the intersection in the form of two acute and one
obtuse g-rhombuses;

—the maximum coordination number of the motif
surrounded by dorsal ten-vertex polygons shown in
Fig. 1e is five;

—five joint dorsal fragments can form a pentasym-
metry point (but not a fragment shown in Fig. 1e) with
five complex intersections.

Now, complement the mosaic representation with
the probabilistic consideration based on alphabet II.
Along with the objects (a pair of g-rhombuses), we also
take into account the contact type (adjacency neighbor-
hood), i.e., the coordination. The Penrose mosaic has
both the vertex and the edge contacts of g-rhombuses.
Below, we write matrix (1) (Fig. 2) of the probability to
encounter the letters “rhombuses-type of the contact”
averaged over the whole Penrose mosaic. In fact, we
deal here with the quartet alphabet “rhombus (q)—
coordination type (p),” [2q × 2p], with the matrix

(1)

where α1 is an obtuse g-rhombus, α2 is an acute g-rhom-
bus, c is an edge contact, and v  is a vertex contact. It is
seen that the sums of the rows of matrix (1) coincide
with the golden ratio and its complement. The estimate
of the Vajda entropy yields HV [P(α1/v  ∨  c); P(α2/v  ∨
c)] = 0.472 = Hgold. The corresponding structurization
factor equals η2 = 5.6%, and therefore the statistics of
g-rhombuses is stochastic for about 94.4%. In this

 v c  

α1 0.4285 0.1905 P α1/v c∨( ) = P0 α1( ) = 0.619

α2 0.261 0.120 P α2/v c∨( ) = P0 α2( ) = 0.381

,
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sense, the Penrose mosaic is an almost noise stochastic
parquet at the level of alphabet II.

The asymptotic probabilistic vectors of the M-chain
can be conveniently mapped into a two-level binary
probabilistic tree (Fig. 3). The first level of the tree indi-
cates a division into two g-rhombuses with golden
probabilities, which results in Hgold(2) = 0.472. At the
second level, two more types of contact—the vertex
and the edge ones—are added, which results in the for-
mation of the quartet [2q × p] alphabet. Considering
Fig. 3, we can see that the golden ratio of the first-level
probability is preserved at the second level in the form
of the double relationship

Then, the tree in Fig. 3 should be recognized as a
golden tree on the whole. The estimate of the Vajda
entropy, H(4) = 0.6688 = Hgold(4), should also be recog-
nized as a golden one in the quartet alphabet. The struc-
tural index in the [2q × 2p] alphabet, η4 = 10.66…%,
indicates a higher order level of the Penrose mosaic in
the quartet alphabet. Obviously, the stochastic compo-
nent of the Penrose-mosaic organization in this alpha-
bet is about 90%. Compared to the binary alphabet,
the quartet alphabet [2q × 2p], remaining golden as
earlier, provides a higher organization of the Penrose
mosaic.

As is seen from Eq. (1), it is possible to order all four
conditional probabilities by the degree of their decrease
on the matrix [2q × 2p]. In fact, this signifies the transi-
tion to the consideration of rank statistics. Consider the
problem of identifying rank statistics using the a priori
hyperbolicity hypothesis, p(r) . C/(rγ). Obviously,
lnp(r) ≡ –s[p(r)] ≡ N[p(r)] = lnC – γlnr = Sc – γS(r);
in other words, either the positive or the negative
entropy of the distribution is proportional to the rank
entropy.

Figure 4 shows the result of the statistical identifica-
tion of both initial and asymptotic distributions of the
quartet alphabet. The quality of the verification of the
hyperbolicity hypothesis (Fig. 4) is quite satisfactory,
γ0 = 0.87, γ∞ = 1.05, and  = 0.96. Thus, a Penrose
mosaic obeys the Zipf–Mandelbrot statistics. More-
over, P0(α1/v  ∨  c) = P∞(α1/v  ∨  c) and P0(α2 /v  ∨  c) =

P∞(α2 /v  ∨  c) ⇒  {Pgold; }, which indicates the
invariance of these “golden frequencies” also in the
problem of eigenvalues of the M-matrix.

It is well-known that the mechanism of generation
of hyperbolic statistics in linguistics, economics, and
sociology is the consequence of the competition
assumed to be absent in the collectives with the normal
(Gaussian) statistics. Figure 2 illustrates the mecha-
nism of hyperbolicity of the quartet g-rhombus alpha-
bet of a mosaic. Choosing an arbitrary g-rhombus as a
percolation center, we can construct the coordination

α1

α2
-----

α1
v
/α1

c

α2
v
/α2

c
--------------- 0.618 1.618.∨= =

γ

Pgold
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fronts, which, in the global sense, are characterized by
the maximum convexity (in the discrete representa-
tion). Now, consider some specific features of the con-
struction of coordination fronts.

The existence of edge contacts cannot provide the
continuity of coordination fronts. The number of edge
contacts does not exceed two.

On average, the number of possible topological ver-
tex contacts between the rhombuses is four, i.e.,
exceeds the number of topological edge contacts.

As is seen from Fig. 2, the continuity and the maxi-
mum convexity of coordination fronts provide vertex
contacts with a considerable statistical advantage over
edge ones,

which reflects the golden nature of a Penrose mosaic.

P v /α1 α2∨( ) 68%; P c/α1 α2∨( ) 32%,= =

1.62

0.29 0.46

0.63

α 1=0.62 α 2=0.38

αv
1 =0.48 αc

1 =014 αv
2 =0.26 α c

2 =0.12

Fig. 3. Two-level binary tree of asymptotic two- and four-
dimensional probabilistic vectors of a Penrose mosaic.

0 0.4 0.8 1.2 1.6

ln r

–0.8

–1.2

–2.4

–2.8

ln P

–1.6

–2.0

12

Fig. 4. Statistical identification of (1) the initial and (2) the
asymptotic distributions of the quartet alphabet.
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Using the Zipf linguistic interpretation, we see that
an edge contact is more “expensive” (words of higher
ranks), whereas a vertex contact is “cheaper” and,
therefore, is encountered much more often (in our case,
by a factor of 2.13). These opposite tendencies result in
an “asymptotic compromise” reflected in the [2q × 2p]
matrices. Thus, in terms of the Zipf–Mandelbrot law,
a Penrose parquet has typical linguistic characteris-
tics. To some extent, a Penrose mosaic (Fig. 2) can
be   considered as a two-dimensional text of polar
geometry.

(a)

(b)

Fig. 5. Cayley’s tree of (a) a Penrose mosaic and (b) its
enlarged fragment. An obtuse g-rhombus on a Cayley’s tree
of a Penrose mosaic is depicted by a circle, an acute
g-rhombus, by a triangle.
C

MAPPING OF A PENROSE MOSAIC
INTO QUASISTOCHASTIC CAYLEY’S TREES 

AND ENTROPY PERCOLATION

The conventional coordinate representation of a
Penrose mosaic is insufficient because a researcher can
reveal only the objective coordinate component
(g-rhombuses) of the quasicrystal order. We believe that
the essence of cellular net structures and mosaics
(including Penrose mosaics) is reflected by another
component—a pulse one (see the [2q × 2p]-matrices).
The pulse component is understood as the simplest
adjacency pair ratio or the coordination between any
two contacting pairs of golden rhombuses in a mosaic.

Such a representation (adequate for the [2q × 2p]
matrix) can be conveniently considered in graph struc-
tures of a special form. We mean here the adjacency
tree graphs [12] constructed by a certain algorithm. The
closest analogues of such graphs are Bethe trees [13]
generalized in the form of Cayley’s trees. The tree rep-
resentation is the most complete one, because it allows
one to reveal in explicit form all the coordination rela-
tionships without the loss of the objective component
[14–16]. The algorithm for constructing Cayley’s tree
graphs for cellular structures of the general type (such
as net structures of mesodefects in quartz glasses) and
the properties of Cayley’s trees are described elsewhere
[14–16]. Here, we should like to emphasize that, in the
general case, the degree of branching of the bushes of
Cayley’s trees is a random quantity. However, neither
reflection in the tree topology nor some order and organi-
zation of Cayley’s trees can be forbidden. Cayley’s trees of
such type are called quasistochastic. Cayley’s trees of a
Penrose mosaic are related to this class.

Now, apply the theory of graph enumeration to these
Cayley’s supertrees of a Penrose mosaic (Fig. 5)
[12, 17]. However, the theory of graph enumeration
usually considers decomposition of Cayley’s trees into
elementary bush subgraphs ignoring the types of verti-
ces and bonds. In our case, this simplified approach is
useless. We introduce a new type of an enumerative
polynomial composed not of bushes but of elementary
symbols of the [2q × 2p] alphabet. These enumerative
polynomials for Cayley’s trees of a Penrose mosaic are
arranged according to the Zipf–Mandelbrot statistics
(see the previous Section). Thus, these enumerative
polynomials have the fixed rank l = 4. It is natural to
normalize this rank enumerative polynomial and, thus,
to obtain the probabilistic enumerative polynomials in
the form

(2)

where x ∈  [2q × 2p]; l = 1, 2, 3, 4 are the ranks of
branches in the Zipf–Mandelbrot sense; µi(l) are the
probabilistic weights of the lth rank in the [2q × 2p]
alphabet; and i is the number of the hierarchical level on
Cayley’s trees of a Penrose mosaic. Figures 6a and 6c

Π i x( ) µi l( )x
l
,

l 1=

4

∑=
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Fig. 6. Dynamics of the (a, c) rank probabilistic enumerative polynomials and (b, d) rank probabilistic dynamics over the levels of
a Cayley’s tree of a Penrose mosaic along the percolation directions center  periphery; (a, b) direct and (c, d) inverse flows.     
and Figures 6b and 6d show the hierarchical dynamics
of the rank statistics and the partial (rank) dynamics,
Eq. (2). One can readily see the obvious periodic nature
of these polygons, which indicates the quasicrystal
nature of a Penrose mosaic.

Compare qualitatively the hierarchical dynamics of
the rank polynomials (Figs. 6a, 6c) along the percola-
tion directions center–periphery. The alternation of
decreasing and mode polygons is more clearly seen in
the direct flow (Fig. 6a). The variation of the mode
structure of polygons is seen in Fig. 6a more clearly
than in Fig. 6c. The reflection from the ∞-horizon
results in a more homogeneous percolation structure of
polygons (Fig. 6c). Comparing Figs. 6b and 6d, we see
that the partial (rank) percolation over the hierarchical
levels of Cayley’s trees of a Penrose mosaic in the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      200
reverse flow is somewhat smoothened. The essentially
stochastic nature of the wavelike flow of the probabilis-
tic measures is seen in all the representations in Fig. 6,
which indicates the prevalence of the stochastic compo-
nent over the determined percolation component of
Cayley’s trees of a Penrose mosaic. This qualitative
analysis of the polygon percolation shows that it is nec-
essary to convolute this detailed information into a cer-
tain functional so that it could reflect both the noiselike
and the structurized components in the ordering of Cay-
ley’s trees of a Penrose mosaic.

Now, consider the tree percolation of the probabilis-
tic measures of the mosaic at the functional level. In
particular, consider the entropy functional set at the
probabilistic enumerative polynomial (2) of each
hierarchy level. The entropy functional was chosen in
2
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Vajda form:

(3)

(4)

Thus, the entropy introduced here possesses the proper-
ties of nonnegativity, nonlinearity, and connectivity and
obeys the additivity principle. The upper estimate of the
asymptotic Vajda entropy equals unity, whereas the
Shannon measure converges. The Vajda entropy corre-
sponds to the chosen scheme with β-distributions,
which is well-known in the theory of Brownian
motion.  Equation (4) can be interpreted as the struc-
tural coefficient of the percolation process in terms of

entropy. If HV[ (l)] ⇒  maxHV[ (l)]ηV(i) ⇒  0, the
entropy of the ith hierarchy is purely stochastic (100%

noise component). If HV[ (l)] ⇒  0, then ηV(i) ⇒  1 (is
fully determined). Obviously, in real situations, the sto-
chastic and the determined percolation components are
mixed.

We should like to make an important methodologi-
cal remark on the percolation problem. Usually, one
considers percolation of a certain physical “agent” in
the lattice whose vertices or bonds are affected by cer-
tain noise factors. We search for the percolation thresh-

HV i( ) µi l( ) 1 µi l( )–[ ] ,
l

∑=

ηV i( ) 1
HV µi l( )[ ]

sup HV µi l( )[ ]
---------------------------------.–=
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Fig. 7. (1) Percolation entropy and (2) structural coefficient
over the hierarchical levels of Cayley’s tree of a Penrose
mosaic: (a) direct (HV = 0.6749 ± 4.13%, η = 9.99%, δη =
37.14%) and (b) reverse (HV = 0.6867 ± 2.66%, η = 8.44%,
δη = 31.56%) flows. 
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old in the problem of vertices or bonds to establish
the   relation between this threshold and the lattice
symmetry.

The percolation problem considered here is quite
different in at least two aspects. First, the noiselike fac-
tor is included into the quasistochastic topology of Cay-
ley’s trees of a Penrose mosaic (Fig. 6) and, thus, can-
not be considered as an external factor. A random quan-
tity in our problem is not only bush branching of
Cayley’s trees of a Penrose mosaic, but also the bases
(vertices) of the bushes. It is clear that the internal
nature of the stochastics in our case is much more com-
plicated than in the classical percolation problem.

Second, percolation in lattices is understood as a
certain generalized flow also of an external nature. The
carriers of this flow can be charges, masses, densities,
concentrations, etc., but they all belong to the class of
measures. In our case, these are polygons and statistics
given by Eq. (2) and, later, also entropy functionals
given by Eqs. (3) and (4). Therefore, one can consider
the probabilistic entropy-like flows in Cayley’s trees of
a Penrose mosaic. Again, these measures are essentially
internal and, therefore, the problem of probabilistic
entropy percolation is a problem of self-identification
of the quasistochastic topology of Cayley’s trees of a
Penrose mosaic.

Calculations by Eqs. (3) and (4) for Cayley’s trees of
a Penrose mosaic are illustrated in Fig. 7, where the
entropy percolation over the hierarchical levels of Cay-
ley’s trees of a Penrose mosaic is of the wave type. Esti-
mation of the entropy percolation by Eqs. (3) and (4)
(Fig. 7) yields the minimum period consisting, on
average, of two hierarchical levels. According to
Figs. 7a and 7b, the quasiperiodic entropy oscillations
are preserved in both direct and reverse flows, but are
more pronounced in the former one. Although the aver-
age values calculated by Eq. (4) in both cases differ
by 1%, the individual values of these curves can differ
by 7%. The pronounced differences in η-values (Fig. 7)
indicate the statistical importance of the quasiperiodic-
ity of the percolation entropy flows in Cayley’s trees of
a Penrose mosaic. In terms of thermodynamics, the
reverse flow is “cooler” than the direct one. One has to
pay attention to the average entropies given by Eq. (3),
which almost coincide in both cases in Figs. 7a and 7b,
whence follows the conclusion that, on average, the
direct and reverse flows in Cayley’s trees of a Penrose
mosaic are equivalent in terms of the entropy func-
tional. The variations in entropy with respect to the
average value are also essential and are from three to
four percent. Comparing the stochastic and the deter-
mined levels in Figs. 7a and 7b, we see that the direct
flow has a 10%-ordered component, whereas the
reverse one, an 8.4%-ordered component. Thus, the
reverse flow (Fig. 7b) is more stochastic than the direct
one, which is the “payment” for reflection from the
∞-horizon and can be considered as a certain analogue
of the second law of thermodynamics.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002



PENROSE MOSAIC AS A QUASISTOCHASTIC TREE-GRAPH LATTICE 195
Another no less important result is obtained by com-
paring the entropy characteristics (see the previous sec-
tion) for a quartet alphabet and the percolation entropy
averaged over the hierarchies of Cayley’s trees of a
Penrose mosaic. In fact, both entropies are practically
identical. Thus, the percolation of the entropy measures
on Cayley’s trees for a Penrose mosaic obeys the ergod-
icity principle extended to Cayley’s tree graphs. More-
over, on average, the probability and the entropy perco-
lations on Cayley’s trees of a Penrose mosaic can be
characterized in terms of a certain entropy invariant,
which corresponds to the golden entropy at the level of
the quartet alphabet. 

CONCLUSION

It is suggested that Penrose mosaics be considered
using a quartet alphabet [2q × 2p], whose elements are
g-rhombuses (vertex or edge types of contact). In a
broader sense, a Penrose mosaic obeys the hierarchical
three-level alphabet—a pair of golden triangles and
rhombuses, a pair of ten-vertex polygons composed by
5 + 5 obtuse and acute rhombuses possessing fivefold
axis, and a point of pentacoordination (the dorsal sym-
metry). It is the grammar of the three-level alphabet that
allows the simplest construction of a Penrose mosaic.

The hierarchical alphabet, in particular at levels I
and II, should be complemented with probabilistic
analysis. One can see the important role played by the
golden nature of the alphabet of a Penrose mosaic at
both levels. A Penrose mosaic has an invariant (a dou-
ble ratio at level II) of the probabilities of an asymptotic
quartet vector. We also introduced into consideration
the entropy functionals in alphabets I and II generated
by the golden relationships, so that a Penrose mosaic
can be considered as a parquet in the alphabet [2q × 2p]
synthesized with the aim of preserving the golden
entropy.

It is proven in terms of rank statistics in the alphabet
[2q × 2p] that, on the whole, Zipf–Mandelbrot distribu-
tion is valid for a Penrose mosaic. The mechanism of
the generation of hyperbolic statistics is considered as
the competition between the expensive edge and the
cheap vertex contacts in the construction of convex
coordination fronts. The results obtained allow the
interpretation of a Penrose mosaic on the basis of a lin-
guistic model and, thus, as a linguistic structure or a
text with a two-dimensional polar geometry. The com-
plete representation of a Penrose mosaic in quasisto-
chastic Cayley’s trees is constructed with the aid of the
[2q × 2p] alphabet which, along with the objective com-
ponent (g-rhombuses), takes into account the coordina-
tion and adjacency of the vertex and edge contacts.
Growing and collapsing Cayley’s trees are discussed,
where the coordination translation is considered as a
Markovian r-shift. A Cayley’s tree of a Penrose mosaic
is, in fact, a simplicial complex with ultrametrics. In
terms of crystallography, a Cayley’s tree of a Penrose
mosaic is a generalized quasistochastic tree lattice.
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The (internal) percolation problem for Cayley’s
trees of a Penrose mosaic is solved in terms of entropy
functionals for enumerating rank polynomials. Cay-
ley’s trees of a Penrose mosaic are characterized by a
wave flow in both center  directions with a mini-
mum period equal to two hierarchical levels of Cayley’s
trees of a Penrose mosaic hierarchy. The percolation
entropy is characterized by a periodic flow with ~90%-
stochasticity and, thus, with ~10% order. This is an
important quasicrystal aspect of a Penrose mosaic. On
average, percolation entropy is equivalent to the golden
entropy of a Penrose mosaic in the [2q × 2p] alphabet,
which indicates the ergodicity of the tree percolation.
On average, the Markovian shift on Cayley’s trees of a
Penrose mosaic is characterized by a golden-entropy
invariant.
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Abstract—The crystal structure of seidozerite was refined (a Siemens P4 diffractometer, MoKα radiation,
1180 independent reflections, anisotropic refinement, R = 0.053). The monoclinic unit-cell parameters are a =
5.627(1) Å, b = 7.134(1) Å, c = 18.590(4) Å, β = 102.68(1)°, sp. gr. P2/c, Z = 4. The structural formula,
Na1.6Ca0.275Mn0.425Ti0.575Zr0.925[Si2O7]OF, agrees well with the results of the electron probe analysis. Seidoz-
erite is demonstrated to belong to the meroplesiotype polysomatic series including the structures of more than
30 titano- and zirconosilicates. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The zirconosilicate seidozerite was discovered by
E.I. Semenov in 1958 in the Lovozero alkaline massif
[1]. This mineral belongs to a rather large group of
(Zr,Ti)-silicates, whose structures contain three-layer
heteropolyhedral stacks denoted by HOH, where O is
the central layer consisting of octahedra, and H are the
outer layers formed by Si-tetrahedra and octahedra of
highly charged Zr or Ti cations. In 1964, A.M. Portnov
described the second specimen of seidozerite from
North Baikal [2]. The crystal structures of the speci-
mens from both deposits were studied by the photo-
graphic method [3, 4]. However, the high R factors
(0.166 and 0.207 for the h0l and 0kl reflections, respec-
tively) obtained in the pioneering study [3] and the
high, although slightly improved, R factors (0.146 for
the non-zero 0kl, 1kl, and 2kl reflections and 0.100 for
the non-zero h0l, h1l, and h2l reflections) obtained in
the more recent investigation [4] cast some doubt upon
the characteristics of the cation distribution in the
seidozerite structure.

Recently, seidozerite crystals were also discovered
in another region of the Burpala massif (North Baikal).
They are characterized by an higher ZrO2 content
(28.18–30.17 wt %) compared to those in the speci-
mens from the Burpala and Lovozero massifs studied
carlier (19.6–23.15 and 23.14 wt %, respectively). The
high ZrO2 content in the new seidozerite specimen, the
availability of single crystals suitable for X-ray diffrac-
tion analysis, and the present-day possibilities of the
instruments have stimulated interest in the refinement
of the seidozerite structure.
1063-7745/02/4702- $22.00 © 20196
EXPERIMENTAL

The seidozerite crystals were found in an alkaline
pegmatitic body 1 m in thickness and 10 m in length
located in the southwestern region of the Burpala alka-
line massif, whose area and age were evaluated at
150 km2 and 330 Ma, respectively. Seidozerite occurs
as elongated crystals crosscutting earlier catapleiite iso-
lations and intergrowing with grains of nepheline and
feldspar.

According to the results of the electron probe anal-
ysis performed for three crystals, the average chemical
compositions of the major components of seidozerite
are as follows (wt %): SiO2, 29.39; ZrO2, 29.20; TiO2,
13.03; Al2O3, 0.26; MnO, 5.76; CaO, 3.81; FeO, 1.90;
MgO, 0.32; Na2O, 12.26; K2O, 0.05; Nb2O5, 0.68;
La2O3, 0.11; Ce2O3, 0.15; and F, 3.06; the sum is 99.98.
This composition corresponds to the following chemi-
cal formula of seidozerite describing the cation con-
tents (with respect to 36 anions, namely, é2– and F–):

(Na6.29Ca1.08K0.02La0.01Ce0.01)

· (Zr3.77Ti2.59Mn1.29Fe0.42Mg0.13Nb0.08)(Si7.78Al0.08).

A crystal of dimensions 0.08 × 0.08 × 0.1 mm3 was
selected under a microscope and was used for the qual-
itative electron probe analysis (a Philips PW 515 xl 30
microprobe, the accelerating voltage was 20 kV; the
current intensity was 9 nA; and the diameter of the elec-
tron beam was 5 µm). The results of the analysis con-
firmed the presence of the above-mentioned cations in
the mineral. The X-ray diffraction data were collected
from the same crystal on an automated Siemens P4 dif-
fractometer. The crystallographic characteristics and
the details of the X-ray diffraction study and structure
refinement are given in Table 1.
002 MAIK “Nauka/Interperiodica”
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Table 1.  Crystallographic characteristics and details of X-ray diffraction study

Formula Na1.6Ca0.275Mn0.425Zr0.925Ti0.575[Si2O7]OF 

Unit-cell parameters, Å a = 5.627(1), b = 7.134(1), c = 18.590(4)

β = 102.68(1)°
Sp. gr.; Z P2/c; 4

Unit-cell volume V, Å3 728.06(3)

Calculated density ρ, g/cm3 3.574

Absorption coefficient µ, mm–1 3.34

Molecular weight 391.8

F000 746.0 

Diffractometer Siemens P4

Wavelength, Å 0.71069

Maximum value of the 2θ angle, deg 60.01

Total number of reflections 3291

Total number of independent reflections 2122 

Number of independent reflections with |F | > 4σ(F) 1180

Rint, % 7.81

Number of parameters in the refinement 138

RF upon isotropic refinement 0.081

RF upon anisotropic refinement 0.053

wR(F2) 0.145

GOF 0.990

∆ρmax, e/Å3 1.09

∆ρmin, e/Å3 –1.27

Table 2.  Distribution of the cations over the positions in the seidozerite structure

Posi-
tion

Content
according

to study [3]

Content
according

to study [4]
The present study Electron

content

Electron
content taking

into account the
real occupancy

Average
cation–anion 

distance

Sum of
ionic radii

Zr Zr0.75Ti0.25 Zr0.7(Mn, Fe)0.3 Zr0.8Ti0.2 36.24 36.40 2.127 2.057

Ti Ti Ti0.39Fe0.11 Ti0.35Zr0.125 24.86 25.40 1.994 1.928

Mn Mn(Mg) Ca0.42Mn0.08 Mn0.29Na0.125Ti0.025 18.35 18.35 2.265 2.153

Na(1) Na Na0.78Ca0.22 Na0.965Ca0.035 11 11.31 2.568 2.540

Na(2) Na Na Na0.43Ca0.07 12.28 12.28 2.498 2.534

Ca Na Na Ca0.170Mn0.135Na0.080 15.28 15.31 2.394 2.300

Note: The cation content in the unit cell is Na6.3Ca1.1(Mn, Fe)1.7Zr3.8Ti2.6 according to the data of the electron probe analysis and
Na6.4Ca1.1(Mn, Fe)1.7Zr3.7Ti2.3 , according to the results of X-ray diffraction study.
The unit-cell parameters were determined by the
least-squares method based on the angular parameters
of 40 reflections in the range 8° ≤ 2θ ≤ 27°. The absorp-
tion correction was applied using the ψ scanning proce-
dure. The structure was refined within the space
group P2/c starting from the atomic coordinates deter-
mined earlier [4]. Initially, the structure was refined iso-
tropically to R = 0.081 for 1180 reflections with |F | >
4σ(F) using the SHELX97 program package [5]. At
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      200
subsequent stages, the electron contents of six cationic
positions were refined, and the anisotropic thermal
parameters were included, which made it possible to
reduce the R(F) factor to 0.053. The distribution of the
cations over six nonequivalent positions was estab-
lished based on the refinement of their electron con-
tents, the correspondence between the structural for-
mula and the data of electron probe analysis, the elec-
troneutrality of the chemical formula, the valence
2
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Table 3.  Coordinates, thermal parameters, multiplicities (Q), and occupancies (q) for the basis atoms

Atom* x/a y/b z/c Q q , Å2 × 100

Zr 0.2004(1) 0.1193 (1) 0.07342(4) 1 1 0.97(2)

Ti 0.0 0.1153(3) 0.25 0.5 0.475 1.14(3)

Mn 0.5 0.3566(4) 0.25 0.5 0.440 1.74(6)

Na(1) 0.2051(6) 0.6157(5) 0.0695(1) 1 1 1.13(5)

Na(2) 0.0 0.6149(8) 0.25 0.5 0.5 2.18(9)

Ca 0.5 0.8656(7) 0.25 0.5 0.385 3.32(8)

Si(1) 0.7273(4) 0.3872(4) 0.1046(1) 1 1 1.00(4)

Si(2) 0.7217(4) 0.8422(3) 0.1049(1) 1 1 0.99(4)

O(1) 0.738(1) 0.6135(8) 0.1096(3) 1 1 2.3(1)

O(2) 0.451(1) 0.3264(9) 0.0680(3) 1 1 2.1(1)

O(3) 0.440(1) 0.9015(9) 0.0763(3) 1 1 2.0(1)

O(4) 0.927(1) 0.3267(9) 0.0586(3) 1 1 1.6(1)

O(5) 0.904(1) 0.9073(8) 0.0518(3) 1 1 1.4(1)

O(6) 0.797(1) 0.3154(8) 0.1900(3) 1 1 1.6(1)

O(7) 0.817(1) 0.9141(9) 0.1888(3) 1 1 1.7(1)

O(8) 0.240(1) 0.124(1) 0.1849(3) 1 1 1.9(1)

F 0.301(1) 0.600(1) 0.1922(3) 1 1 3.9(2)

* The cation contents of the positions correspond to those presented in Table 2.
** The Ueq values are calculated based on anisotropic thermal displacements of the atoms.

Ueq
**
balance, and the fact that the average interatomic dis-
tances should be approximately equal to the sum of the
ionic radii of the cations and anions in the correspond-

Table 4.  Interatomic distances (Å)

Zr–O(8) 2.035(5) Na(1)–F     2.229(6) Ca–F      2.340(8)

–O(3) 2.051(6) –O(4) 2.370(6) –F'     2.340(8)

–O(2) 2.061(6) –O(3) 2.419(7) –O(7) 2.345(6)

–O(4)' 2.110(6) –O(2) 2.488(7) –O(7)' 2.345(6)

–O(5) 2.223(6) –O(4)' 2.570(7) –O(8) 2.497(7)

–O(5)' 2.281(5) –O(5)' 2.659(7) –O(8)' 2.497(7)

Average, 2.127 –O(1) 2.886(7) Average, 2.394

–O(1)' 2.925(7)

Mn–F      2.209(8) Average, 2.568 Ti–O(7) 1.974(6)

–F'     2.209(8) –O(7)' 1.974(6)

–O(6) 2.225(6) Na(2)–F     2.200(5) –O(8) 2.002(5)

–O(6)'  2.225(6) –F'    2.200(5) –O(8)' 2.002(5)

–O(8) 2.361(7) –O(7) 2.529(8) –O(6)  2.007(6)

–O(8)' 2.361(7) –O(7)' 2.529(8) –O(6)' 2.007(6)

Average, 2.265 –O(6) 2.560(8) Average, 1.994

–O(6)' 2.560(8)

–O(1) 2.702(6)

–O(1)' 2.702(6)

Average, 2.498
C

ing polyhedra. The resulting distribution (Table 2) dif-
fers from the distributions found earlier [3, 4] and is
supported by the lowest R factor. The structural formula
2(Na,Ca){(Na,Ca)(Ca,Mn,Na,h)(Mn,Na,Ti,h)(Ti,Zr,h)
[(Zr,Ti)Si2O7]OF} (the content of the H layer is
enclosed in brackets, and the content of the HOH stack
is enclosed in braces; Z = 4) agrees well with the results
of electron probe analysis. The distribution of the cat-
ions presented in Table 2 should be considered as the
optimum compromise between the experimental results
of chemical and X-ray analysis. Conceivably, there are
insignificant variations in the cation contents in partic-
ular polyhedra, which are, apparently, responsible for
the higher values of Ueq for the cations located in the Ca
position compared to Ueq for the Na(1) and Na(2) posi-
tions.

The final coordinates of the basis atoms and their
thermal parameters are given in Table 3. The inter-
atomic distances are listed in Table 4. The valence bal-
ance was calculated according to Brese and O’Keeffe
[6], and the results are presented in Table 5. The Si(1)–
O and Si(2)–O bond lengths are (1.610(6)–1.632(6)
and 1.612(6)–1.637(6) Å, respectively with average
values 1.618 and 1.626 Å, respectively) close to the
standard values and are therefore not given in Table 4.
The projection of the structure (the ATOMS program [7])
is shown in the figure.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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RESULTS AND DISCUSSION

The crystal structure of seidozerite is based on the
HOH bafertisite-like stacks parallel to the (001) plane
[8]. The O octahedral layer is composed of (Ti,Zr)O6-,
(Mn,Na,Ti)O6-, and (Ca,Mn,Na)-octahedra and the
eight-vertex Na(2)-polyhedra. All the cationic positions
within the octahedra of the O layer are only partly occu-
pied.

On the contrary, the (Zr,Ti)O6-octahedra, which are
involved in the heteropolyhedral H layers together with
the Si2O7 diortho groups, are completely occupied. The
HOH stacks in seidozerite are directly linked to each
other via edges shared by the adjacent (Zr,Ti)O6-octa-
hedra belonging to different stacks. Hence, the seidoz-
erite structure can be described as a mixed framework,
whose cavities located between the adjacent HOH
stacks are occupied by the Na(1) cations occupied in
the eight-vertex polyhedra.

The valence balance cannot be calculated with a
high degree of accuracy because of the above-men-
tioned cationic disordering. However, the results pre-
sented in Table 5 allow the unambiguous identification
of the positions occupied by the F atoms or the OH
groups. The O anions in the O(8) position and the F
anions belong to the O layer, but they are not involved
in the Si-tetrahedra.

The modular structures of more than 20 titanosili-
cates containing the bafertisite-like HOH stacks analo-
gous to those found in seidozerite have been considered
earlier [8–11]. The crystal structures of some of these
minerals are still unknown, and they were assigned to
the bafertisite-like group based on the comparison of
the unit-cell parameters and the data on their composi-
tions. The correctness of the application of the modular
concept to the prediction of unknown structures has
already been confirmed in the studies of minerals such
as delindeite, perraultite, betalomonsovite, and some
varieties of lamprophyllite, whose structures were
established more recently. These structures were sur-
veyed in most detail in [11].
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
All titanosilicates of this series have close unit-cell
parameters (a ~ 5.5 Å, b ~ 7 Å) typical of the bafer-
tisite-like HOH stacks. The space between these stacks,
like that in layered silicates, can involve isolated atoms
or atomic groups as well as the fragments of other min-
eral types. The latter statement is exemplified by the
structures of quadruphite and polyphite [12], which
contain nacaphite [13] fragments between the layers.
The interlayer content (according to Belov’s evocative

Ca

Mn

b

Zr

Na(2)

Ti

Na(1) SiC

Seidozerite structure projected onto the (100) plane.
Table 5.  Calculated valence balance

Anion, cation O(1) O(2) O(3) O(4) O(5) O(6) O(7) O(8) F

Zr 0.675 0.694 0.592 0.436
0.373

0.724

Ti 0.624 0.682 0.632

Mn 0.274 0.190 0.220

Na(1) 0.053
0.048

0.156 0.188 0.214
0.125

0.098 0.225

Na(2) 0.094 0.138 0.151 0.262

Ca 0.229 0.152 0.170

Si(1) 1.016 1.030 1.039 0.979

Si(2) 0.968 1.033 0.965 1.019

Σ 2.179 1.861 1.915 1.970 1.872 2.015 2.081 1.698 0.877
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expression, the “pie filling”) determines the c parame-
ter, which increases as the filling becomes more com-
plex. The thickness of the HOH stacks is ~9–10 Å. In
the structures where the interlayer space is occupied
only by isolated atoms, the c-parameter is ~n × 10 Å,
where n is the number of the HOH stacks. The c param-
eter in seidozerite (18.590 Å) indicates that its unit cell
contains two symmetrically equivalent HOH stacks
perpendicular to the [001] axis. In the seidozerite struc-
ture, the HOH stacks are linked via the shared edges of
the Zr-octahedra, and d (0 0 1)/n has the minimum
value (9.068 Å) of all minerals of this series. In the
polyphite structure characterized by a large interlayer
space, d (0 0 1)/n, on the contrary, reaches 26.49 Å.
Within the framework of the classification of homolo-
gous and polysomatic series proposed recently [14],
seidozerite, like all bafertisite-like minerals, belongs to
the meroplesiotype series. This series is referred to as a
merotype series because one fragment, namely, the
HOH stack, is common to all the members of this
series, whereas the second fragment located between
the layers is individual for each mineral of this series.
At the same time, the bafertisite-like polysomatic series
should be considered as a plesiotype series because the
HOH stacks differ from each other not only in compo-
sition but also in topology. Earlier, it has been estab-
lished that these structural differences can be seen from
the fact that the “octahedral” cations within the H layers
can adopt different coordination numbers (either 6 or 5).
Similar to delindeite studied recently, seidozerite exem-
plifies the plesiotype character of the HOH layers asso-
ciated with the change in the coordination of the cations
not only in the H layers but also in the O layers. Thus,
the Na cations involved in the O layers in the delindeite
and seidozerite structures are located in seven- and
eight-vertex polyhedra, respectively, rather than in
octahedra.
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Abstract—The transparent monolithic crystal rods grown by crystallization of the incongruent Ba0.75R0.25F2.25
melts (R = Gd–Yb) are shown to be heterogeneous: the larger part of the crystal volume has a distorted fluorite-
type cubic lattice, while the smaller part retains an undistorted cubic structure. The distortions were recorded
by the methods of X-ray powder and electron diffraction and crystal optics. Two types of chemical heterogene-
ity of Ba0.75R0.25F2.25 crystals are considered as possible sources of distortions: (1) a macroheterogeneous (at a
level of 1 mm) distribution of RF3 over the crystal-rod diameter (a cellular substructure) and (2) a microheter-
ogeneous (cluster) structure with the nanometer dispersion typical of nanostructured materials. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The M1 – xRxF2 + x phases (M = Ca, Sr, Ba, Cd, and
Pb; R is one of 16 rare earth elements) with the defect
CaF2-type structure are characterized by pronounced
nonstoichiometry (0 < x < 0.5). The changes in the crys-
tal composition give rise to changes in the “defect
structure” and crystal properties over a wide range. The
M1 – xRxF2 + x crystals are multicomponent materials that
can substitute single-component crystals (CaF2, BaF2,
etc.), whose commercial application is very limited.

It is commonly believed that all the M1 – xRxF2 + x
phases are crystallized from melts as cubic crystals, sp.

gr.  with the fluorite-type (defect) structure.
However, what are the reasons to believe it and how jus-
tified is this opinion?

This opinion is based on two types of data. First,
these are the data obtained from the study of the phase
diagrams of the MF2–RF3 systems. To study the phase
equilibria in the subsolidus, a mixture of powdered
components is annealed until the attainment of the
equilibrium state. Then the samples are quenched and
their phase composition is studied by the X-ray diffrac-
tion method. At rather high temperatures, numerous
M1 – xRxF2 + x phases showed no distortions in cubic

Fm3m
1063-7745/02/4702- $22.00 © 20201
structure. The phase diagrams and the composition
studied by the X-ray diffraction method are reviewed in
[1, 2] and described in a number of original publica-
tions.

It is shown that the equilibrium M1 – xRxF2 + x phases
are cubic, but the crystals of the same composition
grown from melt under nonequilibrium conditions are
not necessarily cubic.

The second source of information on the system
(cubic) of the M1 – xRxF2 + x phases is the study of their
structures performed mainly on nonequilibrium sam-
ples. The standard methods fail to reveal the distortions
of the fluorite unit cell, which are seen from the split-
ting of reflections.

Thus, the structural studies of M1 – xRxF2 + x crystals
grown from melts cannot show that they are cubic
either.

The only fact that can be stated is that crystallization
from a melt provides the formation of the most pro-
nounced disordered phases, i.e., nonstoichiometric flu-
orite cubic M1 – xRxF2 + x phases.

Thus, the opinion that the M1 – xRxF2 + x phases crys-
tallized from melts are cubic fluorite-type phases fol-
lows more from general considerations and traditional
concepts than from experimental facts.
002 MAIK “Nauka/Interperiodica”
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The history of the studies of M1 – xRxF2 + x crystals
includes a case where “obvious” and generally
accepted concepts were disproved several years later.
We mean here the widespread recognition of the theo-
retical model suggested by Goldschmidt to describe the
isomorphism of Ca2+ and R3+ in CaF2 [3]. According to
this model, the superstoichiometric F1–-ions occupy the
centers of large cubic voids. The logics and the apparent
uniqueness of this model (there are no other large voids)
allowed the model to survive from 1926 to 1969, when,
finally, experimental structural studies of Ca0.61Ce0.39F2.39

[4] and Ca0.9Y0.1F2.1 [5] crystals were undertaken and
proved that the model was erroneous.

The story of the isomorphism model is analogous to
the story discussed in the present paper and both stories
are closely related. Beginning with the structural stud-
ies of 1969–1970, Ca1 – xRxF2 + x crystals were consid-
ered to be cubic, which was never verified experi-
mentally not only for these crystals but also for other
MF2-based phases. However, as we have already
showed, this statement is true only for the equilibrium
compositions.

In fact, the growth of M1 – xRxF2 + x crystals is a non-
equilibrium process. The M1 − xRxF2 + x phases for most
of x values are melted incongruently. The growth of
crystals of these phases is accompanied by the forma-
tion of two types of macroheterogeneities in the R3+ dis-
tribution—axial and radial (the so-called cellular sub-
structure). Generally, the composition changes mono-
tonically along the growth direction of the crystalline
rod, being a background against which the radial inho-
mogeneity is developed.

In M1 – xRxF2 + x crystals, the elements of the sub-
structure (the cells and their boundaries) have a milli-
meter scale. The variations in their composition give
rise to lattice-parameter gradients resulting in mechan-
ical stresses and, in turn, in the optical anisotropy of the
crystals. The optical anisotropy occasionally observed
in M1 – xRxF2 + x crystal rods has not been studied and
was attributed to residual thermal stresses that could
not lead to considerable lattice distortions.

On the scale of crystal structures, fluorite-type
M1 – xRxF2 + x phases should be considered as microinho-
mogeneous. Superclusters of defects and their associ-
ates with nanometer linear dimensions are enriched
with R3+, whereas their composition is essentially dif-
ferent from the MF2 matrix of these clusters.

The aim of the present work is to establish whether
the inhomogeneities of the chemical composition of the
products formed in the nonequilibrium crystallization
of incongruent Ba0.75R0.25F2.25 melts (where R = Gd, Tb,
Dy, Er, Tm, Yb, and Lu) affect the structural and crys-
tallooptical characteristics of these crystals.
C

SAMPLES

In the MF2–RF3 systems (M = Ca, Sr, Ba, Cd, and Pb;
R is a rare-earth element), we revealed 80 phases of the
composition M1 – xRxF2 + x. These phases are divided
into five families depending on the number of MF2-cat-
ions. If the effect of the heterogeneity of M1 – xRxF2 + x
crystals is seen in the X-ray powder diffraction pat-
terns, they should be most pronounced for the phases of
the Ba1 – xRxF2 + x family. We studied the phases with
R = Gd–Lu possessing the maximum difference in M2+

and R3+ sizes (among all M1 − xRxF2 + x phases) and a
pronounced dependence of the lattice parameter on the
composition, which is a favorable condition for the
observation of the distortions of a cubic lattice.

The Ba0.75R0.25F2.25 compositions were chosen from
the homogeneity region of the Ba1 – xRxF2 + x phases
because such an isoconcentration “cut” of the RE series
provides an opportunity to study a new type of cation
ordering discovered in Ba0.8Yb0.2F2.2 [6] along with
phases containing other rare-earth elements. The com-
plete ordering of Ba2+ and rare-earth elements, accom-

panied by a change in the sp. gr.  to sp. gr.

 is attained for the composition Ba0.75R0.25F2.25.
We selected the samples in two ways. The samples

obtained from the mixture of small pieces taken from
different portions of the crystal rod allowed us to reveal
the maximum fluctuations in the composition, because
all types of inhomogeneities (axial and radial) and,
hence, all types of the distortions of the cubic lattice in
the crystal bulk were apparent.

The samples, obtained by grinding monolithic crys-
tal blocks, allowed us to extract information on the
local changes in the composition and the related distor-
tions of the crystal lattice. Hereafter, these samples are
called monoblocks and denoted as M. The monoblock
dimension along the growth axis (typically, 2–4 mm)
did not exceed ~10% of the rod length, and, therefore,
the axial inhomogeneity could be neglected.

EXPERIMENTAL

The crystals were grown by the Bridgman method
in an apparatus with a graphite heater. The BaF2 charge
consisted of the pieces of single crystals containing
about 0.012 wt % of oxygen. The RF3 reagents had a
purity of 99.90–99.99%; they were purified of oxygen
by the method described in [7] by keeping the melts
overheated by 100–150°C in a fluorinating atmosphere
of the products of polytetrafluoroethylene (Teflon)
pyrolysis for 2–4 h up to the attainment of 0.005–
0.060 wt % of oxygen.

A graphite crucible with up to seven cells filled with
the charge was placed into the growth chamber first
evacuated to 10–2 mm Hg and then filled with He. The
fluorinating atmosphere was created by the products of
Teflon pyrolysis. The velocity of the crucible lowering

Fm3m
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Fig. 1. The shape of Ba1 – xRxF2 + x crystals.
was 4.9 ± 0.8 mm/h. The cooling rate upon crystalliza-
tion was 100–150°C/h. The crystal rods were 35–
40 mm in length and 10–12 mm in diameter. For the
spectroscopic studies, the crystals were doped with
0.01 wt % of Ce3+, Nd3+, Pr3+, or Er3+. In the text, the
concentrations of these rare-earth elements are indi-
cated together with the concentration of the main RE
element up to an RF3 concentration of 25 mol %. In the
figures, the true compositions are indicated.

The crystals were annealed either wrapped in Ni
foil or in capillaries placed into a sealed Ni-container.
The fluorinating atmosphere was created by the prod-
ucts of polytetrafluoroethylene pyrolysis. We showed
that this technique provides conditions that practically
exclude pyrohydrolysis. The crystals were annealed for
14 days at 900°C and for 32 days at 750°C. In the first
case, the container was quenched by cooling at a rate of
200–300°C/min from the annealing temperature to
400–500°C; in the second case, at a cooling rate of
200–300°C/s.

The cellular substructure of the crystals was stud-
ied in the transmitted light of an He–Ne laser and in the
polarized light in a MIN-8 microscope. The samples for
these observations (disks with a thickness of ~2 mm)
were cut out from the crystal rods normally to the
growth axis and then were polished (Fig. 1).

The chemical composition of the crystals was esti-
mated by the dependence of the unit-cell parameters of
Ba1 – xRxF2 + x on the RF3 content [8] obtained for cubic
phases brought into equilibrium by annealing. For the
Ba1 – xRxF2 + x crystals (where the weak distortions of the
CaF2-type lattice are not removed by annealing), the
GRAPHY REPORTS      Vol. 47      No. 2      200
chemical composition was estimated using the parame-
ter of the pseudocubic unit cell apfl  calculated using
unsplit fluorite reflections. This seems to be admissible
because the change in the molar volumes of the cubic
M1 – xRxF2 + x phases and the molar volumes of ordered
phases lie practically on the same straight line [9].

If the distortions of the cubic fluorite-type lattice
were essential, we used the parameter equal to the cube
root of the volume of the distorted unit cell, which is, of
course, a very rough estimate. (The compositions are
given in mol % or, in formulas, in molar fractions (x)
of RF3 .)

The phase composition of the crystals was studied
on the following X-ray powder diffractometers: Sie-
mens D-500 (Cu -radiation), INEL (Cu -radia-

tion), and HZG-4 (Cu -radiation). The experiments
on an INEL diffractometer were performed on small
samples (~0.1 mm in diameter and 3–4 mm in height);
under certain conditions, this can yield essentially dif-
ferent results from those obtained on other diffractome-
ters where 0.1–0.3 g of the material is used. The crys-
tals were grinded under acetone in an agate mortar. The
information on reflection broadening and splitting was
obtained from profile analysis using the PeakFit.v4 pro-
gram and the approximating Pearson VII function.

EXPERIMENTAL RESULTS

The X-ray diffraction study of as grown
Ba1 − xRxF2 + x crystals (R = Gd–Lu) revealed strong com-
position-dependent distortions of the fluorite lattice.
Below, we qualitatively compare diffraction patterns

Kα1 2,
Kα1

Kα1 2,
2
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Fig. 2. A fragment of the X-ray diffraction patterns from (a) an as grown Ba0.75Gd0.25F2.25 crystal and the same crystal annealed
for 14 days at 900°C and (b) an as grown Ba0.75Er0.25F2.25 crystal and the same crystal annealed for 32 days at 750°C.

indices in the 

fluorite-type cell, CuKα1

 in the fluorite-type cell, CuKα1
from distorted and undistorted (cubic) samples. We also
confirmed the sample distortions by their study in
polarized light. The determination of the phase compo-
sition and indexing of the X-ray diffraction patterns are
the subject of a separate study.

The X-ray diffraction patterns of as grown
Ba0.75Gd0.25F2.25 crystals have broadened and split
“fluorite” reflections (Fig. 2a). Diffraction patterns of
as grown and annealed crystals are shown by solid
lines; the diffraction patterns of the same crystals upon
annealing, by dashed lines. The unit-cell parameter of a
C

pseudofluorite unit cell determined from single
unbroadened 220 and 222 reflections is apfl = 6.0632 Å
(This corresponds to 24.05% GdF3.)

It is evident that, upon annealing, the 420 and 422
reflections are not split any more. However, profile
analysis shows that some earlier unbroadened reflections
become broadened upon annealing. Fourteen-day anneal-
ing at 900°C only partly removed crystal distortions.
The  parameter apfl (this corresponds to 25.1% GdF3)
determined with the use of the 331 reflection is apfl =
6.0573 Å.
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Fig. 3. X-ray diffraction patterns from (a) an as grown Ba0.75Tm0.25F2.25 crystal and (b) an as grown Ba0.75Yb0.25F2.25 crystal.

 fluorite-type cell, CuKα1

fluorite-type unit cell, CuKα1
It is well known that the attainment of equilibrium
during the annealing of crystals grown from a melt
occurs more slowly than in crystals obtained by solid
phase synthesis from components. The kinetics of the
transition of as grown crystals into equilibrium cubic
phases at high temperatures should be studied sepa-
rately.

The Ba0.75Tb0.25F2.25 crystals are less distorted than
the Ba0.75Gd0.25F2.25 ones. Only the fluorite reflection,
400, is split; the 311, 331, 422, and some other reflec-
tions are broadened. The 220, 222, 420, 333 + 511, and
442 reflections are unsplit and unbroadened. The unit-
cell parameter apfl (27.3% TbF3) determined from
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      200
unsplit and unbroadened 440 and 422 reflections is
apfl = 6.0304 Å.

The Ba0.75Dy0.25F2.25 crystals showed minor distor-
tions; the 400, 331, 440, 531, and 422 reflections are
broadened. The unit-cell parameter apfl (27.1% DyF3)
determined from the broadened 620 reflection is apfl =
6.0292 Å, while those determined from unbroadened
333 and 422 reflections are apfl = 6.0498 Å (23.9%) and
apfl = 6.0269 Å (27.5%), respectively. The considerable
difference in the apfl values determined from different
reflections (see Discussion) does not allow their averaging.

The Ba0.75Er0.25F2.25 crystals grown from a melt have
a considerably distorted fluorite-type lattice (Fig. 2b).
2
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Fig. 4. Comparison of the X-ray diffraction patterns from (a) an as grown Ba0.75Lu0.25F2.25 crystal and (b) the mixture of the
Ba0.75Lu0.25F2.25 and Ba0.74Lu0.26F2.26 phases (solid-phase synthesis).

indices in the fluorite-type cell, CuKα1
Assuming the existence of two cubic phases with dif-
ferent unit-cell parameters in as grown Ba0.75Er0.25F2.25
crystals is inconsistent with the experimental fact—the
presence in the diffraction pattern of unsplit reflections
such as broadened 400 (Fig. 2b) and unbroadened 620
reflections (24.3% ErF3), which yields apfl = 6.0315 Å.

The Ba0.75Tm0.25F2.25 crystals are characterized by
the most pronounced distortions. Fig. 3a shows the
X-ray diffraction pattern (obtained on an INEL diffrac-
tometer) from the mixture cut out from different parts
of the rod, which shows all the types of inhomogene-
ities and distortions. No superstructure reflections are
observed at small angles (with 2θ up to 2°). Here, the
suggestion that there is a mixture of cubic phases with
different parameters is ruled out by the presence of
unsplit reflections. The weakly broadened 400 and 620
reflections (25.7% TmF3) yield apfl = 6.0174 Å.

The Ba0.75Yb0.25F2.25 crystals show strong lattice
distortions. The X-ray diffraction pattern (an INEL dif-
fractometer) from the powder prepared from a mixture
of small transparent pieces of the crystal rod is shown
in Fig. 3b. At the angles 2θ < 20°, no superstructure
reflections were observed, whereas outside this region
there were superstructure reflections. The suggestion
that there is a mixture of several cubic phases is incon-
sistent with the presence of unsplit reflections.
Using the 333 + 511 reflection, we obtain apfl = 6.0137 Å
(25.5% YbF3).
CR
No monolithic crystal rod with the composition
Ba0.75Lu0.25F2.25, is formed—it decomposes into small
1- to 3-mm-large pieces, which are reminiscent of the
result of a polymorphic transition. Thus, in this
instance, samples were prepared from a mixture of
small pieces of different parts of the rod.

Figure 4 shows X-ray diffraction patterns of as
grown Ba0.75Lu0.25F2.25 crystals and the mixture of the
phases of close compositions obtained by solid phase
synthesis. The diffraction pattern from the sample of an
as grown crystal showed some distorted fluorite reflec-
tions. At small angles, a weak reflection forbidden by

sp. gr.  is formed. The simulation of the X-ray
powder diffraction pattern under the assumption that all
Ba2+ ions are located in the face centers (100% occu-
pancy) shows a possible transition with the change of

the symmetry    with the preserva-
tion of the lattice parameter and appearance of weak
reflections, one of which corresponds to the experimen-
tally observed 110 reflection.

The 14-day-long solid phase synthesis from the
components at 905°C yielded a cubic fluorite-type
phase (Fig. 4). The X-ray powder diffraction pattern
was obtained from the mixture of Ba0.75Lu0.25F2.25 and
Ba0.74Lu0.26F2.26 in approximately equal quantities. At
larger angles, a doubling of reflections was observed.
The use of the 620 reflection yielded the phase compo-

Fm3m

Fm3m Pm3m
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sitions 25.1 and 25.9% LuF3, i.e., the compositions
close to nominal compositions, which demonstrates a
high resolution of the diffractometer with a difference
in the composition of only 1 mol %.

DISCUSSION

The composition fluctuations in the Ba0.75R0.25F2.25
rods containing rare-earth elements from the second
half of the series under consideration lead to the distor-
tions in fluorite-type cubic lattices revealed from the
corresponding X-ray powder diffraction patterns.
Because the BaF2–RF3 systems are characterized by
ordering processes with the formation of phases with
structures derived from the fluorite type, we compare
their X-ray diffraction characteristics with those of
Ba0.75R0.25F2.25.

1. Differences between Ba1 – xRx F2 + x Phases
with the Distorted Fluorite-type Lattice

and Well-Known Ordered Phases

Two types of phases were separated in the BaF2–RF3
(R = Gd–Lu) systems within the range 0–50 mol % RF3
(with the exception of the composition Ba0.625Er0.375F2.375).

1.1. Cubic nonstoichiometric fluorite-type
Ba1 − xRxF2 + x phases are formed in the systems con-
taining all the rare elements listed above (the isother-
mal cuts were studied in the range from 814 to
1067°C). At the peritectic temperatures, the homogene-
ity regions of the Ba1 – xRxF2 + x phases lie within 42–
31 mol % GdF3 and LuF3, respectively, and are crystal-

lized (solid phase synthesis) in the sp. gr.  with
the parameters of the fluorite-type unit cell ranging
from 5.952 to 6.200 Å.

1.2. Ordered phases with a structure derived
from the fluorite type are characterized by an
increased unit-cell volume (in comparison with that of
MF2) and superstructure reflections in their diffraction
patterns. To show that we deal here with a new family
of the Ba0.75R0.25F2.25 phases, we briefly consider the
known ordered phases in the BaF2–RF3 systems.

The (t ') Ba2RF7 (R = Dy–Lu, Y) phases with tetrag-
onal CaF2-type distortion and superstructure reflections
were obtained by seven-day annealing at 400°C of the
cubic Ba0.67R0.33F2.33 phases synthesized at 1000–
1100°C [10, 11].

The tetragonally distorted (t ''') Ba8 + δR6 – δF34 – δ
phases were discovered in [11] and described for R =
Sm, Gd, and Tb in [8]. These phases are formed from
the trigonal (rhα') phases with an increase in tempera-
ture. Depending on the rare-earth element, their homo-
geneity regions range from 42 to 51 mol % RF3. The
symmetry of these phases considerably deviates from

Fm3m
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cubic; their diffraction patterns show superstructure
reflections and increased unit-cell parameters.

The (rhα') Ba8 + δR6 – δF34 – δ phases are described in
[12, 13] as the phases with the composition 7BaF2 ·
5TmF3 (41.7 mol % TmF3). These are found for R =
Sm, Gd–Lu, and Y in [14] and attributed the composi-
tion Ba4R3F17 (42.86 mol % RF3). Similar phases with
R = Ce–Nd and Eu were obtained in [15, 16]. The struc-
ture of Ba4Y3F17 and Ba4Yb3F17 crystals was studied
in [17].

Thus, in the BaF2–RF3 systems (R = Gd–Lu), two
types of fluorite-like phases were observed in the com-
position range 0–50 mol % RF3—cubic phases with the
“fluorite” (small) parameter and ordered phases with
increased parameters and superstructure reflections on
the diffraction patterns. The X-ray diffraction patterns
for the typical representatives of these phases are
shown in Figs. 5a and 5b. The cubic Ba0.75Lu0.25F2.25
phase (Fig. 5a) with the fluorite-type lattice was
obtained from the components by the solid phase reac-
tion. The Sr2TmF7 phase (an analogue of the Ba2RF7
phases, Fig. 5b) is an example of ordered phases pro-
viding the formation of weak superstructure reflections.

1.3. The phase with a distorted fluorite-type lat-
tice without superstructure reflections on the dif-
fraction pattern was observed and studied on the only
representative (t '') Ba5Er3F19 = Ba10Er6F38 =
Ba0.625Er0.375F2.375 (different forms of the representation
of its composition in the literature). It has a tetragonally
distorted fluorite structure [8] studied in [18, 19];
sp. gr. I4/mmm, a = 4.199(1) Å, c = 5.986(1) Å, z = 4
(for the composition Ba0.625Er0.375F2.375). The symmetry
considerably deviates from cubic; the transition from
the tetragonal to the pseudocubic unit cell results in the
unit-cell parameter a = 4.199  = 5.938 Å, which dif-
fers by 0.048 Å from the “fluorite” c-parameter.

A new type of Ba0.75R0.25F2.25 phase with a distorted
fluorite lattice providing no formation of superstructure
reflections is represented by the Ba0.75Lu0.25F2.25 phase
in Fig. 5c. This type differs from the ordered phases dis-
cussed in section 1.2 by the absence of weak super-
structure reflections on the diffraction patterns. These
phases differ from Ba5Er3F19 (forming no superstruc-
ture reflections either) in composition and metastabil-
ity. The Ba5Er3F19 compound, a member of the MnF2n + 6
homologous series (n = 14), has a definite composition,
whereas Ba0.75R0.25F2.25 is considered only as points in
the series of solid solutions.

The above experimental data lead to the following
conclusions: (1) The inhomogeneous chemical compo-
sition of as grown Ba0.75R0.25F2.25 rods and the corre-
sponding distortions of the cubic fluorite lattice are
recorded on the X-ray powder diffraction patterns as
split fluorite reflections. (2) The metastable
Ba0.75R0.25F2.25 (R = Gd–Lu) phases with the distorted
fluorite lattice have no analogues among the known

2
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equilibrium phases formed in BaF2–RF3 systems.
(3) New phases are formed in the process of nonequi-
librium crystallization of incongruent melts. During
annealing, these phases often acquire the equilibrium
state with a cubic fluorite lattice (at rather high temper-
atures). We failed to observe the complete transition
into the equilibrium state. (4) The phase composition
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Fig. 5. X-ray diffraction patterns from three phases with a
fluorite-type structure in the BaF2–RF3 systems: (a) cubic
Ba0.75Lu0.25F2.25 solid solution, (b) ordered tetragonally
distorted Sr2TmF7 phase with a superstructure (an analogue
of Ba2TmF7), and (c) a new type of phase with a distorted
fluorite-type lattice having no superstructure.
C

and type of lattice distortion require a further more
detailed study.

2. Macroinhomogeneity of As Grown 
Ba1 – xRxF2 + x Phases

We believe that distortions of the fluorite lattice
are  associated with the chemical inhomogeneity of
M1 – xRxF2 + x phases resulting from the incongruent melt-
ing of the phases of this composition. The M1 – xRxF2 + x
crystals exhibit two types of macroscopic inhomogene-
ity in the distribution of the RF3 component—axial and
radial (cellular substructure) distributions. The contri-
bution of axial heterogeneity can be compensated by
selecting appropriate samples with a small dimension
along the growth axis.

As was shown above, the identification of the X-ray
diffraction patterns is hampered by their complex form
and the phase composition. The heterogeneity and the
anisotropy inherent in some parts of the Ba0.75R0.25F2.25
rod were confirmed by crystallooptical studies.

The micrographs of the cellular substructure of sam-
ples presented in Fig. 1 are shown in Fig. 6. The cell
shape is better seen on the shadow pattern obtained in
the transmitted light. The refractive-index gradients
range within 10−4–10–2 mm–1.

In crossed polarizers, the same parts of the rods
show the regions with weak birefringence (2.5 × 10–5–
5 × 10−6), whereas some other parts of the rod are iso-
tropic. The observations made at another rotation angle
of the microscope stage showed that the largest part of
the rod is anisotropic (to a different extent) while the
fraction of isotropic parts is small. The average linear
dimensions of inhomogeneities vary from 0.2 to 0.7 mm
in different samples.

These observations are quite consistent with the
X-ray diffraction data for the phases with low-symme-
try distortions of the fluorite lattice in mixtures contain-
ing cubic phases. The morphology of the cells is differ-
ent, which is quite understandable because various
Ba0.75R0.25F2.25 phases have different coefficients of
impurity (R3+) distribution. The honeycomb-like cellu-
lar substructure dominates, but, in some instances, the
elongated columnar substructure with the cell axes nor-
mal to the growth axis is also observed. The morpho-
logical analysis is an individual problem that is
beyond the scope of the present paper. The mechanism
of formation of a cellular substructure in M1 – xRxF2 + x
phases and the methods used to stabilize the planar
growth front were discussed elsewhere [20–22].
Systematic morphological studies were made only for
the Sr1 – xRxF2 + x  family. The morphology of the
Ba1 − xRxF2 + x and Ca1 – xRxF2 + x families has not been
studied as yet.

The cell boundaries on the shadow patterns are due
to light focusing and are not real boundaries between
the volume parts (grains). At the same time, the shape
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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(a)

(b)

(c)

3 mm

Fig. 6. Cellular substructure (radial inhomogeneity of the composition) in the crystal rods in the transmitted (left column) and in
the polarized (between crossed polarizers) light: (a) Ba0.75Tb0.249Er0.001F2.25, (b) Ba0.75Tm0.249Er0.001F2.25, and
(c) Ba0.75Yb0.249Er0.001F2.25.
of these boundaries reflects the regular character of the
change of the refractive index in the rod bulk. Far from
the point of solid-solution saturation, the boundary is
the same solid solution as in the crystal bulk. Between
different parts of the rod, the gradients of the refractive
index and other parameters are observed, but no phase
boundary is formed. Macroscopically, the rod consists
of only one phase but is not equilibrium. It consists of
mutually penetrating crystallites of different chemical
composition (in the general case, coherent at the level
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
of the crystal lattice). On the whole, the rod remains
monolithic (Fig. 1).

There is no direct relation between the shadow pat-
tern and the image of the same area obtained in crossed
polarizers, because these images are formed due to
variations of different quantities (refractive index and
birefringence). However, the similar character of mor-
phology (cellular or striated structure) is identical for
both images, which is especially clear for striated struc-
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tures in Figs. 6a and 6c. The relation between the cellu-
lar substructure and the distortions of the crystal struc-
ture should be studied separately.

The concentration gradients of R3+ in the cellular
Ba1 – xRxF2 + x crystals were not studied. They can be
estimated indirectly from the X-ray diffraction pattern
from the mixture of the pieces of different parts of the
Ba1 – xYbxF2 + x rod. Assuming that the mixture consists
of two cubic “phases” (a rather rough approximation, as
is seen from Fig. 6c and other figures), the lattice
parameters show that there are volumes with a YbF3
concentration of 13.7 and 16.5 mol %. We believe that
this difference approximately corresponds to the maxi-
mum difference in the concentrations of the impurity
component in various parts of the rod.

Since the cellular substructure (a typical morpho-
logical feature of the products of crystallization of the
Ba1 – xRxF2 + x melts) manifests itself in the distortions of
the cubic lattice, it is not improbable that this phenom-
enon is characteristic of the M1 – xRxF2 + x phases crystal-
lized in MF2–RF3 systems (M = Ca, Sr, Ba, Cd, and Pb
and R = Sc, Y, La, and Lu). For Ba1 – xRxF2 + x phases,
this phenomenon is the most pronounced because of the
maximum difference in the Ba2+ and R3+ sizes and pro-
nounced fluctuations of the lattice parameters.

As grown Ba1 – xRxF2 + x rods are of a dual nature.
These are monolithic formations showing no signs of
the second phase or the phase boundaries. However, the
X-ray diffraction patterns and the known crystalloopti-
cal data allow one to consider these rods as a mixture of
phases with different parameters of undistorted or dis-
torted fluorite lattices. However, this interpretation is
inconsistent with an incomplete set of fluorite reflec-
tions for one of the phases, whereas the mixture of two
isostructural and compositionally close phases should
have a complete set of reflections for each of the phases.
It might be associated with a relatively small fraction of
the cubic phase (according to the above crystallooptical
data).

The X-ray diffraction pattern of a Ba0.75Lu0.25F2.25
powder is fairly well indexed on the assumption of
monoclinic distortion of the fcc lattice (except for sev-
eral weak reflections). Only the existence of these addi-
tional reflections does not allow one to index these dif-
fraction data as a single phase. There is more than one
phase in this powder, which is also confirmed by
images obtained in polarized light.

The observations in polarized light (Fig. 6) lead to
the model of a nonequilibrium multiphase mixture of
coherent phases with an undistorted fluorite lattice and
a distorted optically anisotropic interlayer, which
removes the stresses caused by the lattice mismatch in
the cubic regions in the rod.

Thus, at the present level of our understanding of
Ba0.75R0.25F2.25 phases, their phase composition and the
character of distortion of their fluorite-type lattice are
C

determined ambiguously and should be studied in more
detail to construct a model consistent with all the exper-
imental data.

3. Microinhomogeneity of Ba1 – xRxF2 + x Phases

The conclusion on the heterogeneity of
Ba1 − xRxF2 + x and other M1 – xRxF2 + x phases at the
microlevel was made based on the data on their
“defect” structure. In these phases, the clusters of
defects rather than M2+ and R3+ ions are isomorphously
replaced. These clusters include all types of defects:
highly charged R3+ ions, interstitial F1– ions, and
anionic vacancies. The high concentration of R3+ ions in
clusters allows the crystal matrix to preserve the struc-
ture and composition close to those of MF2. At a
microlevel, the M1 – xRxF2 + x crystals have two chemi-
cally different components—an R3+-enriched and
R3+-depleted.

Hereafter, we propose to call the type of isomor-
phism with space filling [3] “block isomorphism.” This
isomorphism concerns large blocks (hundreds and
thousands of Å3-large volumes) with a close geometry
and crystal structure but possessing different chemical
compositions instead of isomorphism of ions. The dis-
cussion of block isomorphism in M1 − xRxF2 + x phases is
beyond the scope of this paper.

Recently, heterogeneity at a level of inclusions with
a size up to ten parameters of the fluorite unit cell was
observed in Ba1 – xLaxF2 + x by the method of diffuse
neutron scattering [23, 24]. These large inclusions of
cluster associates can play the role of nuclei of a new
phase. However, these crystals also exhibit no phase
boundaries and light scattering from the second
phase.

Even in the case of elementary [R6F36] clusters and
{M8[R6F68]} superclusters, the blocks that can be iso-
morphously replaced have linear dimensions of the
order of nanometers, while their aggregates have dimen-
sions of tens of nanometers. Therefore, M1 – xRxF2 + x
phases can be classified as nanostructurized materials.
The coherence of the nanophase and the matrix (in the
general case, the crystal planes of the nanophase are
continuously transformed into the matrix planes) sepa-
rate the M1 – xRxF2 + x crystals into an individual class of
nanophase materials having no analogues among the
known nanostructurized materials [25]. The justifica-
tion of this classification and its consequences require
special discussion.

Since the nanophase and MF2 matrix are coherent,
the chemically microheterogeneous M1 – xRxF2 + x crys-
tals behave as single crystals irrespective of neutron,
electron, or X-ray radiation.

Electron diffraction from as grown Ba0.8Lu0.2F2.2
[26] crystals provides different patterns for different
grains of the rod (Fig. 7). These differences have noth-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Fig. 7. Image of the crystal lattice (top) and the corresponding electron diffraction pattern (bottom) of the crystal rod of the nominal
(with respect to charge) composition Ba0.8Lu0.2F2.2.

Ba0.8Lu0.2F2.2
ing to do with the decomposition of the sample under
an electron beam.

The moiré patterns observed in high-resolution elec-
tron micrographs (Fig. 7) are characteristic not only of
BaF2-based Ba1 – xRxF2 + x phases but also of nonstoichi-
ometric fluorites. The moiré fringes can be formed
because of the presence of two (or more) phases with
different lattice parameters.

At the coherent conjugation of the cubic fluorite-
type phases with different lattice parameters, elastic
stresses contribute to lattice distortion and ordering of
the clusters of defects. For solid solutions of metals, the
theoretical concepts of the decisive role of the deforma-
tional interactions in the formation of a microheteroge-
neous system of periodically alternating regions
(domains) have been quite well developed ([27], etc.).
The deformation-type interactions of the replacing
atoms were shown to be especially important in sub-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
stitutional solid solutions, one variety of which is
M1 – xRxF2 + x phases.

CONCLUSION

The inhomogeneities in the chemical composition
of nonequilibrium products of crystallization of incon-
gruent Ba0.75R0.25F2.25 melts (R = Gd–Lu) at the micro-
and macrolevels are revealed from their structural and
crystallooptical characteristics. The distortions of cubic
fluorite-type lattice in individual Ba0.75R0.25F2.25 meta-
stable phases will be the subject of further detailed
studies.
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Abstract—Czochralski grown (Sr0.50Ba0.50)Nb2O6 single crystals have been studied by the method of precision
X-ray diffraction analysis. The structural characteristics of (SrxBa1 – x)Nb2O6 compounds with x = 0.33, 0.50,
0.61, and 0.75 were analyzed. The distributions of the Sr and Ba atoms over the crystallographic positions are
considered depending on their concentration. The establishment of the mechanisms of isomorphous replace-
ments in these solid solutions allows the variation, within certain limits, of crystal properties by changing the
Ba/Sr ratio. © 2002 MAIK “Nauka/Interperiodica”.
The solid solutions of the composition (SrxBa1 – x)Nb2O6
have attracted the continuing interest of researchers
because of their electro-optical and nonlinear-optical
properties [1–4]. Precision X-ray diffraction studies of
these single crystals provide information on mecha-
nisms of isomorphous replacements on the atomic scale
in these compounds, whereas simultaneous investiga-
tions of their properties enable one to establish a corre-
lation between their structures and properties, which is
important for the transition from the phenomenological
description of their crystal properties to the correspond-
ing microscopic theory. These data are also very impor-
tant for materials science because they provide targeted
syntheses of these crystals and the modification of
already existing crystals instead of the use of the trial-
and-error approach.

The X-ray diffraction study of (Sr0.50Ba0.50)Nb2O6
single crystals completes the systematic investigation
of the structures of (SrxBa1 – x)Nb2O6 compounds with x
ranging from 0.25 to 0.75. The results of our previous
studies of (Sr0.33Ba0.67)Nb2O6 [5], [Sr0.61Ba0.39]Nb2O6
[6], and (Sr0.75Ba0.25)Nb2O6 [7] solid solutions and the
results obtained in the present investigation allow a reli-
able comparative analysis of the characteristic features
of the atomic structures of these compounds and their
physical properties.

The (Sr0.50Ba0.50)Nb2O6 single crystals were grown
by the Czochralski method. The X-ray diffraction data
were collected on a CAD-4F Enraf-Nonius diffracto-
meter (åÓKα radiation, ω scan, within the complete
sphere of the reciprocal space, sinθ/λ ≤ 1.2 Å–1) from a
spherical sample 0.30 mm in diameter. A total of
17 300 reflections with I ≥ 3σ(I) were measured. The
1063-7745/02/4702- $22.00 © 0213
analysis of the collected X-ray data set confirmed the
tetragonal symmetry of the crystal. The unit-cell
parameters are a = 12.461(2) Å, c = 3.9475(3) Å. The
X-ray diffraction symmetry, 4/mmmP–/–b–, corre-

sponds to three space groups—P4/mbm, , and
P4bm. Using the (Sr,Ba)Nb2O6 structures studied ear-
lier as an analogy and taking into account their physical
properties, we examined and confirmed the acentric
space group, P4bm. Averaging symmetrically equiva-
lent reflections, we arrived at 2035 independent struc-
ture factors. The R-factor of averaging was 2.4%.
All   the computations were carried out by the
PROMETHEUS program package [8]. The structure
model was refined by the full-matrix least-squares
method. The difficulties associated with pronounced
correlations between the structural parameters (occu-
pancies of the positions, thermal parameters) were
overcome by step-by-step scanning. The final R-factor
was 3.0% and Rw = 2.6%. The structure parameters are
given in the table.

The atomic structure of the title compound shown in
Fig. 1 consists of sharing oxygen vertices [NbO6]-octa-
hedra forming a three-dimensional framework. This
framework has three types of channels along the four-
fold axis. The narrowest channels are empty. The
medium-sized channels are filled with Sr atoms with a
probability of 72.0%. The broad channels are statisti-
cally occupied by Ba and Sr atoms. In the
(Ba0.27Sr0.75Nb2O5.78) [9] crystal structure, the Ba and
Sr atoms occupy one position with a probability of
85%. In the crystal structures studied in this paper, the
Ba and Sr atomic positions are split, and the distribu-
tion of strontium atoms correlates with the characteris-

P4b2
2002 MAIK “Nauka/Interperiodica”
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Coordinates and thermal parameters of the basis atoms in the (Sr0.50Ba0.50)Nb2O6 structure

Atom Position
multiplicity Occupancy, % Symmetry of 

the position x/a y/b z/c Beq, Å2 

Nb(1) 2 100 mm 0.0 0.5 0.0 0.63

Nb(2) 8 100 1 0.0743(1) 0.2113(1) –0.0141(7) 0.75

Sr(1) 2 72.0(3) 4 0.0 0.0 0.4791(8) 0.69

Sr(2) 8 13.1(3) 1 0.1509(5) 0.6852(9) 0.5044(19) 1.79

Ba 4 62.3(3) m 0.1727(1) 0.6727(1) 0.4745(7) 1.39

O(1) 8 100 1 0.3436(2) 0.0061(2) –0.0441(24) 2.52

O(2) 8 100 1 0.1391(3) 0.0689(2) –0.0497(22) 2.40

O(3) 4 100 m 0.2825(2) 0.7825(2) –0.0452(22) 2.41

O(4) 4 50 m 0.0114(8) 0.5114(8) 0.4566(24) 3.37

O(5a) 8 50 1 0.3058(5) 0.4054(6) 0.4541(22) 1.32

O(5b) 8 50 1 0.2859(6) 0.4438(7) 0.4512(18) 1.73
tics of ferroelectric phase transitions observed in these
crystals. The splitting of the statistically occupied bar-
ium and strontium positions is illustrated by Fig. 1. In
the (Sr0.33Ba0.67)Nb2O6 crystal [5] with the lowest stron-
tium concentration, all Sr atoms are located in the
medium-sized channels, whereas the broad channels
are occupied by barium atoms alone. When writing the
chemical formulas with due regard for the occupancies
of the crystallographic positions, one has to take into
account also the position multiplicities indicated in the
table and the fact that the unit cell contains five formula

Sr Ba

y

x

Fig. 1. The (Sr0.50Ba0.50)Nb2O6 structure projected onto
the ab plane.
C

units of the composition (SrxBa1 – x)Nb2O6. For the
compounds with x = 0.33, 0.50, 0.61, or 0.75 studied in
this work, the occupancies of the medium-sized channels
by strontium atoms vary only slightly (70.5, 72.0, 72.5,
and 71.5%, respectively). The barium atoms in the
broad channels are always located in positions with
multiplicities of four in mirror planes m. If the broad
channels are statistically occupied by both barium and
strontium atoms, the Sr atoms are displaced from the
symmetry planes m toward the general positions with
the multiplicity 8 [6], and the Sr–Ba distances are
0.335, 0.305, and 0.262 Å in the compounds with x =
0.50, 0.61, and 0.75, respectively. Taking into account
the position multiplicities, the occupancies of the broad
channels by barium atoms were determined as 84.0,
62.3, 48.7, and 30.9%, and the occupancies by stron-
tium atoms, as 0.0, 26.2, 40.4, and 57.2% for the com-
pounds with x = 0.33, 0.50, 0.61, and 0.75, respectively,
with the total occupancy being almost unchanged (84.0,
88.5, 89.1, and 88.1%, respectively). At x < 0.25 or x >
0.75, crystallization yields phases with structures dif-
ferent from those considered above. The phase we are
interested in requires the filling of the medium-sized
channels (the position on the fourfold symmetry axis
with the multiplicity 2) with strontium atoms for 71–
72%. This occupancy is provided by the presence of at
least 25 at. % of strontium in the compound. At higher
concentrations of strontium in solid solutions, stron-
tium replaces barium in the broad channels (as was
mentioned above, strontium atoms are displaced from
the plane m), whereas its amount in the medium-sized
channels remains virtually unchanged. The total occu-
pancy of the broad channels remains almost constant
(~88%). The optically perfect crystals of these com-
pounds were obtained from the melt of the congruent
composition with x = 0.61. In terms of the structure, the
latter crystals are characterized by the occupancy of the
broad channels by Ba and Sr atoms in a ratio close
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Fig. 2. The (Sr0.50Ba0.50)Nb2O6 structure projected onto the ac plane. For notation, see Fig. 1.
to 1 : 1. Our results show that the occupancies of broad
channels by Ba and Sr atoms are 48.7 and 40.4%,
respectively.

It is seen from Fig. 2 that Sr and Ba ions are located
at the same height along the c-axis, whereas Nb-octahe-
dra are above and below the planes of their location at
distances of c/2. The characteristic feature of Nb-octa-
hedra is the location of oxygen atoms in the fixed equa-
torial positions in all the structures studied, whereas the
apical oxygen atoms located in the planes of Sr and Ba
atoms are statistically disordered over two positions
with a probability of 0.5. In the compound with x =
0.50, these positions are spaced by the distances of
0.407 and 0.521 Å for Nb(1) and Nb(2), respectively.
The distances between the split positions increase
monotonically with an increase in the strontium con-
tent. Thus, these distances are 0.388 and 0.510 Å in the
compound with x = 0.33, whereas the corresponding
distances in the compound with x = 0.75 are 0.561 and
0.635 Å. In other words, the planes statistically occu-
pied by Sr and Ba atoms also contain statistically
arranged apical oxygen atoms of the Nb-octahedra.

The structure of [NbO6]-octahedra is essential for
the optical properties of these crystals. In all structures
of the series under consideration, a Nb(1)-octahedron
has the crystallographic symmetry mm, whereas a
Nb(2)-octahedron is in the general position. All Nb-
octahedra are aligned along the c-axis and form –O(4)–
Nb(1)–O(4)–Nb(1)– and –O(5)–Nb(2)–O(6)–Nb(2)–
chains. As was mentioned above, the bridging oxygen
atoms of the chains statistically occupy two positions.
As a result, the octahedra “oscillate” about the c-axis of
the crystal. The structure of Nb-octahedra can be
described by scheme 1–4–1 showing the existence of
one short (strong) Nb–O bond, four intermediate Nb–O
bonds, and one elongated Nb–O bond, always being
GRAPHY REPORTS      Vol. 47      No. 2      2002
located in the trans position with respect to the strong
bond. It is these pairs of the shortest and the longest
bonds that are approximately parallel to the c-axis. In
the (Sr0.50Ba0.50)Nb2O6 structure, the Nb(1)–O bond
lengths are 1.814 (short bonds), 1.958 (four intermedi-
ate bonds), and 2.155 Å (long bond). A Nb(2)-octahe-
dron has short (1.878 and 1.852 Å bonds with each one
occurring with a probability of 0.5), four intermediate
(1.932, 1.955, 2.000, and 2.000 Å) bonds, and elon-
gated (2.123 and 2.125 Å) bonds. In the compounds
with x = 0.33, 0.50, 0.61, and 0.75, the average values
of the short Nb–O bonds are 1.845, 1.840, 1.863, and
1.933 Å, respectively; the average values of the inter-
mediate bonds range within 1.961–1.970 Å; and the
elongated Nb–O bond are 2.158, 2.135, 2.108, and
2.048 Å, respectively. Earlier, it was shown [7] that the
refractive index and some other optical characteristics
correlate with the asymmetry of Nb-octahedra
expressed as the difference between the short and the
long Nb–O bonds. The degree of the distortion of
[NbO6]-octahedra from an ideal centrosymmetric octa-
hedron depends on the isomorphous replacements.
With a decrease in the Sr content, the structure is
ordered: the Ba and Sr positions are split, and the
NbO6-octahedra forming the framework become more
distorted (acentric). It can be assumed that this struc-
tural ordering is responsible for both the dependence of
the relaxation properties on the composition and the
less diffuse phase transition. The filling of the tetrago-
nal channels with strontium atoms is virtually indepen-
dent of the composition, which governs only the statis-
tical filling of the channels with barium and strontium
atoms [7]. Thus, the properties of (Sr,Ba)Nb2O6 crys-
tals can be changed by varying the Sr/Ba ratio in these
structures.
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Abstract—Crystals of a new lead carbonate, NaPb2(CO3)2(OH), sp. gr. P31c, were prepared by hydrothermal
synthesis. The crystal structure was established by the heavy-atom method without knowing the exact chemical
formula of the compound. The polar structure of the carbonate and the distortion of the pseudosymmetry

described by the supergroup  are caused by the acentric arrangement of the oxygen atoms providing the
satisfactory coordination of Pb and Na atoms. The bonds between a hydroxyl group and two crystallographi-
cally independent Pb atoms are directed along the c-axis and have different lengths. The study of the carbonate
by the second harmonic generation method in a temperature range of 20–250°C revealed the nonlinear optical
properties comparable with the similar properties of quartz. The comparison of the structure of the new carbon-
ate with a number of carbonates demonstrated that the new compound is structurally similar to ewaldite
BaCa(CO3)2 , diorthosilicate NaBa3[Si2O7](OH), and Ba[AlSiO4]2 containing a double silicon–oxygen layer.
© 2002 MAIK “Nauka/Interperiodica”.

P31c
INTRODUCTION

Carbonates belong to one of the most important
classes of inorganic compounds containing planar
[CO3]2– anions as the major structural unit. Natural and
synthetic Ca, Mg, Fe, Mn, Na, Ba, Zn, and Cu carbon-
ates are the most widespread and well-known com-
pounds of this type [1]. Lead carbonates are rather rare
and are found in nature as minerals such as phosgenite
Pb2(CO3)Cl2, cerussite PbCO3, and hydrocerussite
PbCO3 · PbO(H2O)2 . Due to the high electron polariz-
ability of Pb2+ ions explained by their specific elec-
tronic structure, the constituent oxides of lead carbon-
ates have a dipole structure and possess piezo- and
pyroelectric and nonlinear-optical properties. Hence,
the preparation and the study of polar compounds in the
carbonate systems involving lead are of interest in
terms of both crystal chemistry and materials science.

EXPERIMENTAL

Synthesis of Single Crystals and Their Preliminary 
Diagnostics

Single crystals were synthesized when studying the
phase formation in the Na2CO3–PbO–B2O3–H2O sys-
tem. The experiments were carried out in 5 to 6-cm3-
large standard fluoroplastic-lined autoclaves at ~70 atm
and 270–280°C. The lower temperature limit was dic-
tated by the kinetics of hydrothermal reactions,
whereas the upper one was determined by the apparatus
used. The experiments were carried out for 18–20 days
to bring the reactions to completion. The coefficient of
1063-7745/02/4702- $22.00 © 20217
autoclave filling was chosen so as to maintain a con-
stant pressure. Colorless transparent hexagonal single
crystals of sizes up to ~1 mm had a habit ranging from
tabular to isometric. The crystals had perfect cleavage
along the (001)-plane.

No analogues of the X-ray diffraction powder pat-
tern (a DRON-UM1 diffractometer, Co radiation,
40 kV, 25 mA) were found in the PDF data base, which
indicated that we synthesized a new compound. The
composition of the crystals was determined by qualita-
tive X-ray spectral analysis on a CAMSCAN 4DV
scanning electron microscope equipped with a LINK
attachment for the energy-dispersive analysis at the
Department of Petrography of the Faculty of Geology
of Moscow State University. This investigation con-
firmed the presence of Na and Pb atoms in the sample.
Thus, with due regard for the composition of the initial
system, the new compound could be related either to
carbonates or borates.

IR Spectroscopy

The IR spectrum of a liquid sample obtained as a
neat thin film between KBr supporting plates was mea-
sured on a Specord-75 IR spectrophotometer in the fre-
quency ranges 1800–400 and 3800–3000 cm–1 (Fig. 1).
The IR spectrum has stretching vibration bands of the
carbonate ion. Thus, the intense band at 1432 cm–1 cor-
responds to the asymmetric stretching vibration ν3, the
weak band at 1055 cm–1 belongs to the symmetric
stretching vibration ν1, and the bands at 847 and
002 MAIK “Nauka/Interperiodica”
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Fig. 1. IR spectrum of NaPb2(CO3)2(OH).
695 cm–1 are attributed to the out-of-plane and in-plane
deformation vibrations ν2 and ν4, respectively. By anal-
ogy with the spectrum of cerussite PbCO3 [2], the band
at 475 cm–1 was assigned to lattice vibrations. The
vibration band of the hydroxyl group is observed at
3480 cm–1. The degeneration of the ν3 and ν4 vibrations
is indicative of the positional symmetry with a threefold
axis for a CO3 ion. The presence of the stretching vibra-
tion ν1 shows that the symmetry group of a CO3 ion
contains neither the inversion center nor twofold axes
perpendicular to the threefold axis. Thus, the carbonate
ion has the positional symmetry C3. The superposition
of the resonance vibrations of all the CO3 ions in the
unit cell does not change the number of the bands in the
spectrum. Consequently, the crystal structure may
belong to the symmetry class C3 or C3v.

Table 1.  Crystallographic data for NaPb2(CO3)2(OH) and
details of X-ray diffraction study

Molecular formula HC2O7NaPb2

Sp. gr. P31c

a, Å 5.268(4)

c, Å 13.48(1)

V, Å3 324.0(7)

ρcalc, g/cm3 5.877(9)

µ, cm–1 512.1(1)

Refinement mode F(hkl)

Weighting scheme w = 1/[(σ(F))2 + 0.0010F2]

Number of parameters in the 
refinement

21

2θ (deg) and sinθ/λmax 93.55 and 1.025

Number of reflections with
F > 4σ(F)

851

R(F), Rw 0.0445, 0.0472

S 1.080

Reduction coefficient 0.685(4)
C

Single-Crystal X-ray Diffraction Analysis

The symmetry of the Laue patterns obtained from a
large (0.6 × 0.3 × 0.15 mm) transparent tabular single
crystal oriented normally to the incident beam showed

that the crystal belongs to the diffraction class .
The X-ray data were collected from a small isometric
(0.125 × 0.125 × 0.15 mm) well-faceted crystal provid-
ing the formation of high-quality reflections in the Laue
diffraction patterns. The parameters of the triclinic unit

cell were determined and refined on a Syntex  dif-
fractometer (Table 1). The three-dimensional set of
intensities Ihkl were collected within the independent
region of the reciprocal space in accordance with the
diffraction class. The intensities were processed and

converted into  using the PROFIT program [3]. All
the subsequent calculations were carried out with the
use of the CSD program package. The observed sys-
tematic absences of the hhl reflections with l = 2n indi-

cated the space group P31c– . The interatomic vec-
tors of the Patterson function Puvw showed that
the  heavy Pb atoms occupy special positions on the
threefold axes spaced by the distance of ~1/3c. The
refinement of two basis Pb(1) and Pb(2) atoms con-
verged with the satisfactory R factor. The Na atom, the
O(1) atom of the hydroxyl group (involved in the coor-
dination environment only about the Pb(1) and Pb(2)
atoms), two C atoms, and the O(2) and O(3) atoms
forming the triangular coordination environments
about the C atoms were localized from the difference
electron-density syntheses by the method of successive
approximations. The resulting formula
NaPb2(CO3)2(OH) (I) is electrically neutral. The struc-
ture model was refined with allowance for anomalous
absorption of the Mo radiation by lead atoms using
only isotropic thermal parameters. Attempts at aniso-
tropic refinement failed because of the pronounced
pseudosymmetry of the structure in the space group

, which is seen from the analysis of the atomic

31m

P1

Fhkl
2

C3v
4

P31c
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Fig. 2. Crystal structure of NaPb2(CO3)2(OH): (a) the side diagonal projection onto the (110) plane (CO3-triangles are shown by
solid lines and Na and Pb atoms are represented by circles); (b) the projection onto the (001) plane (CO3 groups are shown by tri-
angles and Na and Pb atoms are represented by prisms and circles, respectively); (c) the projection onto the (001) plane (the Pb(2)-
polyhedra are visible; OH groups are represented by circles).
coordinates. A singular point on the pseudoaxis  (an
inversion pseudocenter) is located at a height z = 0.14
(and 0.64). Two positions of Pb atoms in the sp.
gr. P31c are related by this pseudocenter, which corre-
sponds to one independent Pb atom in the position 4f of

the supergroup . In this supergroup, a Na atom
(with the z coordinate rounded to 1/4) occupies the 2c
position, a Cl atom is located in the 4e position, the
O(1) atom (with the z coordinate also rounded to ~1/4)
occupies the 2d position, and the O(2) and O(3) atoms
merging into one atom are located in the general posi-
tion 12i. The refinement of this model within the sp. gr.

 did not allow us to reduce the R factor below
0.087. The supergroup was rejected because of the vio-
lation of two principal structural criteria—(1) the iso-
tropic thermal parameter (B = 4.42 Å2) for the O atom
with the coordinates corresponding to the position 12i

3

P31c

P31c
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in the supergroup was too high and (2) the Pb–O inter-
atomic distance (1.908 Å; the ionic radius of Pb2+ is
1.20 Å) and the too long Na–O interatomic distance
(3.04 Å; the ionic radius of Na+ is 0.97 Å) were too
short. The splitting of the position 12i of the oxygen
atom into two positions, O(2) and O(3), substantially
improved the Pb–O (2.62–2.74 Å) and Na–O (2.38–
2.59 Å) distances, reduced the difference in the lengths
of the bonds between the Pb(1) and Pb(2) atoms and the
common O(1) atom of the hydroxyl group, and lowered
the symmetry (the loss of the inversion center), which
is in agreement with the IR spectral data. At the final
stage of the refinement, the correction for absorption,
too high despite the small size of the sample, was
applied using the DIFABS program [4]. The atomic
coordinates and interatomic distances are given in
Tables 2 and 3, respectively.
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Study by Method of the Second Harmonic 
Generation

The nonlinear-optical activity of carbonate I was
examined using powdered samples obtained by grind-
ing. A sample with 100 to 150-µm particles was pre-
pared by isolating the coarse-ground fraction with the
use of sieves. A sample of the finely dispersed fraction
with 3 to 5-µm grains was obtained by 20-min precipi-
tation of an alcoholic suspension. The temperature
dependence of the second harmonic generation (SHG)
was obtained on the samples placed into an electric fur-
nace. The test for the second harmonic generation was
performed in the reflection mode using a YAG : Nd
laser according to the procedure described in our earlier
studies [5]. At room temperature, the second-harmonic
intensity with respect to that of the reference sample of
crystalline quartz with a dispersity of 3 µm were 1.2
and  0.7 for the coarse- and finely-dispersed samples,

Table 2.  Coordinates of basis atoms and isotropic thermal
parameters for the NaPb2(CO3)2(OH) structure

Atom x/a y/b z/c Bj

Na 2/3 1/3 0.8927(11) 1.59(6)

Pb(1) 2/3 1/3 0.5570 0.85(4)

Pb(2) 2/3 1/3 0.2258(1) 0.90(4)

C(1) 0 0 0.035(3) 0.44(6)

C(2) 0 0 0.276(3) 0.32(6)

O(1) 2/3 1/3 0.388(4) 1.47(6)

O(2) 0.151(7) 0.288(8) 0.536(2) 1.20(6)

O(3) 0.276(7) 0.141(7) 0.755(2) 0.83(6)

c

Ba

Ca

Fig. 3. Crystal structure of ewaldite projected onto the (110)
plane; Ca and Ba atoms are represented by circles, CO3-tri-
angles are shown by solid lines, and unlocalized CO3
groups are indicated by dashed lines.
C

respectively. The low SHG signal and an insignificant
increase in its intensity for the coarse-ground sample
indicate that carbonate I exhibits rather weak optical
nonlinearity and, probably, possesses no phase syn-
chronism with the neodymium laser radiation and its
second harmonic. According to Kurts [6], crystals I
should be related to the nonlinear-optical class D.

A rise in the temperature to 220–250°C resulted in
no substantial changes in the nonlinear-optical proper-
ties. In the temperature range from 250 to 300°C, the
intensity of the second-harmonic signal rapidly decreased
and finally became zero. Subsequent cooling did not
restore the nonlinear-optical activity of the samples,
which proves the irreversibility of the structural change
occurred. X-ray diffraction analysis and IR spectros-
copy data show that, upon thermal treatment, carbonate I
lost the quadratic optical nonlinearity which can be
associated with the removal of the OH group from the
sample.

RESULTS AND DISCUSSION

In the structure of new carbonate I (Figs. 2a, 2b), the
CO3-triangle has the symmetry 3, which is consistent
with the results of IR spectroscopy. The plane of the
CO3-triangle is parallel to the ab-plane of the unit cell.
The C–O distances are slightly different (Table 3)
but range within the corresponding values known for a
number of minerals. The C–O distances in dawsonite
NaAl(OH)2CO3 [7] are 1.25 and 1.308 Å (two dis-
tances); in fairchildite K2Ca(CO3)2 [8], 1.284 (two dis-
tances) and 1.288 Å; in paralstonite BaCa(CO3)2 [9],
1.279, 1.289, and 1.285 Å; and in barytocalcite
BaCa(CO3)2 [10], they range from 1.15 to 1.43 Å. The
average C–O distance for two triangles in carbonate I is
identical to that in dolomite CaMg(CO3)2 [11] (C–O =
1.285 Å). The Pb atoms in the minerals phosgenite
Pb2(CO3)Cl2 [12], cerussite PbCO3 [13], and hydrocer-
ussite Pb3(CO3)2(OH)2 [14] with known structures
adopt high coordination numbers (9 or 10). If seven O
atoms located at distances up to ~2.7 Å (Table 3) are
included into the coordination sphere of Pb atoms, the
polyhedra remain open, like those in hydrocerussite;
however, the addition of three more O atoms located at
distances larger than 3 Å complements the coordination
of the Pb(1) and Pb(2) atoms to ten-vertex polyhedra
(because of the pseudosymmetry). These polyhedra can
be described by hexahedral “boxes” with flat bottoms
and caps ended with shared hydroxyl groups closest to
the Pb(1) and Pb(2) atoms (Fig. 2c). The distances in
these polyhedra around lead atoms in phosgenite (from
2.36 to 3.34 Å), cerussite (from 2.59 and 2.76 Å), and
hydrocerussite (from 2.75 to 3.10 Å) are quite consistent
with the Pb–O distances in carbonate I refined within the
acentric space group. The coordination polyhedra around
Na atoms are almost regular trigonal prisms.

The metrics of the axes in the structures of carbonate I
and ewaldite BaCa(CO3)2 (a = 5.284 Å, c = 12.78 Å,
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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sp. gr. P63mc [15]) are virtually identical. The replace-
ment of Ba2+ by Na+ leads to a necessary increase in the
number of large cations in the formula of carbonate I.
One of the CO3-triangles in the ewaldite structure has
not been localized as yet [15]. Comparing the side diag-
onal projections of these structures (Figs. 2a, 3), we see
that the positions of Ba and Ca atoms in ewaldite are
identical to the positions of Na and Pb(1) atoms in car-
bonate I. By analogy, it can be assumed that a CO3
group not revealed in the ewaldite structure should be
located between the Ca- and Ba-layers (dashed lines in
Fig. 3) at the height z identical to the height observed
for an additional Pb(2) cation in structure I.

The mineral paralstonite of the aragonite group with
the formula BaCa(CO3)2 identical to that of ewaldite
belongs to the trigonal system (sp. gr. P321) [9]. The c-
parameter of paralstonite (6.148 Å) is half as large as
that of carbonate I, whereas the a(b) parameter
(8.692 Å) is close to the length of the unit-cell diagonal
of carbonate I. The close a(b) parameters were also
found in phosgenite and hydrocerussite. The cationic
motifs in ewaldite and carbonate I are complicated by
an additional layer built into it and increasing in the c-
parameter. The unit cell of the minimum volume (sp. gr.
P312) is observed in lead- and oxygen-deficient borate
Pb0.75[BO2.25] studied recently. The a(b) parameters of
the latter (~5 Å) are close to those of aragonite, fair-
childite, dolomite, and cerussite, whereas its c parame-
ter is equal to that of ewaldite. This borate was found to
be structurally close to carbonates, and, first of all, to
aragonite.

In the search for compounds structurally close to
carbonate I, we revealed, quite surprisingly, diorthosil-
icate NaBa3[Si2O7](OH) [16] (II), whose unit-cell
parameters (a = 5.79 Å, c = 14.74 Å, sp. gr. P63/mmc)
are very close to those of I (despite the differences
between these compounds). The coordination polyhe-
dron around Ba(2) in II is identical to Pb-polyhedra in
I (within the symmetry of the position). This polyhe-
dron was described as the combination of a hexagonal
pyramid and a half of the Archimedean cuboctahedron,
whose triangular base is formed by a triangular face of
the tetrahedron of a linear diortho group. In II, Ba(2)-
polyhedra are linked in pairs via the shared vertices of
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
the pyramid occupied by OH groups with shortened
Ba–OH distances (Fig. 4a) (as in the structure of car-
bonate I). In carbonate I, Na-prisms are observed
instead of diortho [Si2O7] groups in II (which link
Ba(2)-polyhedra into columns), with the Na atoms in
the prisms occupying the central position of the bridg-
ing O atom of a diortho group in II. The columns of the
second type in II along the c-axis consist of Na-octahe-
dra and Ba(1)-trigonal prisms (Fig. 4b). In carbonate I,
these columns are replaced by CO3-triangles (Fig. 2b)

Ba(2)Ba(2)Ba(2)
Ba(2), NaBa(2), NaBa(2), Na

Ba(2)Ba(2)Ba(2)
SiSiSi

Ba(1)Ba(1)Ba(1)

bbbaaa

(b)

(a)

a

b

Fig. 4. Crystal structure of NaBa3[Si2O7](OH) (a) projected
onto the (001) plane (Ba(2)-polyhedra are seen; Ba(1) and
Na atoms are represented by overlapping circles); and
(b) projected onto the (001) plane (Ba(1)-prisms and the Si
diortho groups are seen; Ba(2) atoms are represented by
circles).
Table 3.  Principal interatomic distances (Å) in the NaPb2(CO3)2(OH) structure

Pb(1)-polyhedron Pb(2)-polyhedron Na-polyhedron

Pb(1)–O(1) 2.28(5) Pb(2)–O(1) 2.18(5) Na–O(3) 2.38(4) × 3

Pb(1)–O(2) 2.62(4) × 3 Pb(2)–O(3) 2.72(4) × 2 Na–O(2) 2.59(4) × 3

Pb(1)–O(3) 2.70(4) × 3 Pb(2)–O(3) 2.74(4) × 3

Pb(1)–O(3) 3.44(5) × 3 Pb(2)–O(2) 3.09(5) × 3

C(1)-triangle C(2)-triangle

C(1)–O(2) 1.31(4) × 3 C(2)–O(3) 1.26(4) × 3

O(2)–O(2) 2.28(5) × 3 O(3)–O(3) 2.18(5) × 3
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(the shared bases of the octahedra and prisms in II). In
carbonate I, all the distances between the triangles
along the c-axis are equivalent (Fig. 2a), whereas the
corresponding distances in II have different values due
to the differences in the heights at which the Na-octa-
hedron and the Ba(1)-prism are located. Similar to the
shared bases of the octahedra and prisms in II (Fig. 4b),
the pairs of CO3-triangles in the structure of I (Fig. 4b)
are rotated with respect to one another by 60°. The
NaBa3[Si2O7](OH) silicate is structurally similar to the
NaPb2(CO3)2(OH) carbonate because the ratio of the
ionic radii of the pair Pb2+ and C4+ is similar to the ratio
of the pair Ba2+ and Si4+. The fragments of these struc-
tures shown in Figs. 2b and 4b are rather similar within
the framework of the above-considered topology (Na-
prism–Si-tetrahedron, CO3-triangle–Ba(1)-prism, and
Pb–Ba(1)) and can be approximated by an idealized sil-
icon–oxygen double layer built by the simplest mica
[Si4O10] layers linked by shared apical vertices. Such a
layer was found in the Ba[Al2Si2O8] structure [17]
(Fig.  5).  These  layers  are  translated  and,  thus,  the
c-parameter in the latter structure (7.79 Å) is half as
large as that in the structures under consideration. In
this layer, the diortho groups can be replaced either by
trigonal prisms (of Ba or Na) or other anionic tetrahe-
dral or triangular (CO3) groups, with the latter replacing
the triangular bases of the SiO4-tetrahedra. This fact
opens new possibilities for crystallochemical analysis
and the prediction of new structures. It should be noted
that N.V. Belov was the first to analyze the structural

SiSiSi

BaBaBa aaa'''b'b'b'

aaa bbb

Fig. 5. Crystal structure of Ba[AlSiO4]2 projected onto the
(001) plane; Si-tetrahedra are seen; Ba atoms are shown by
circles. The a' and b' axes are shown to facilitate the com-
parison of the structures.
C

analogy between diorthosilicates and minerals with tri-
angular anions [18].
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Abstract—The crystal structures of two ancylite specimens from Khibiny massif (the Kola Peninsula, Rus-
sia)—ancylite-(Ce) from alkali hydrothermalites

(Sr1.01Ca0.02Ba0.01)Σ1.04(Ce0.52La0.28Nd0.11Pr0.04Sm0.01)Σ0.96(CO3)2(OH0.83F0.13)Σ0.96 · 0.9H2O 

and ancylite-(Ce) from carbonatites—have

(Sr0.80Ca0.05Ba0.01)Σ0.86(Ce0.62La0.40Nd0.09Pr0.03)Σ1.14(CO3)2(OH0.99F0.15)Σ1.14 · 1.0H2O 

been refined by the Rietveld method. A focusing STOE-STADIP diffractometer with a bent Ge(111) primary mono-
chromator was used (λMo  radiation, 2.16° < 2θ < 54.98°; reflection number 237–437). All the computations for

ancylite from alkali hydrothermalites were performed within the sp. gr. Pmc21, a = 5.0634(1) Å, b = 8.5898(1) Å, c =
7.2781(1) Å, V = 316.55(1) Å3, Rwp = 1.90; the computations for ancylite from carbonatites were performed within
the sp. gr. Pmcn, a = 5.0577(1) Å, b = 8.5665(2) Å, c = 7.3151(2) Å, V = 316.94(1) Å3, Rwp = 2.38 in the anisotropic
approximation of thermal vibrations of cations and oxygen atoms. © 2002 MAIK “Nauka/Interperiodica”.

Kα1
INTRODUCTION

Ancylite-(Ce) described by the formula
(Sr,Ca)2 − xREEx(CO3)2(OH,F)x · nH2O (with x ≈ 1.0–1.5,
n ≈ 1) is one of the rare earth carbonates occurring in
many alkaline massifs (the Khibiny, Sebljavr, the Kola
peninsula, Vuorijarvi, Sallanlatva, and Northern Kare-
lia (Russia), Mont Saint-Hilaire (Canada), Narssarssuk
(Greenland), etc.). It is also characteristic of late low-
alkali hydrothermal formations associated with
agpaitic rocks and carbonatites.

The ancylite family consists of five minerals described

by the general formula REEx(CO3)2(OH)x · nH2O,
namely, ancylite-(Ce) and ancylite-(La) with M2+ = Sr
[1], calcioancylite-(Ce) [2] and calcioancylite-(Nd) [3]
with M2+ = Ca, and gysinite-(Nd) [4] with M2+ = Pb.
The crystal structure of ancylite-(Ce) was first deter-
mined within the sp. gr. Pmcn in 1975 [5]. The metal
atoms in the structure are located in ten-vertex polyhe-
dra forming a three-dimensional framework (Fig. 1).

We studied crystal structures of two ancylite-(Ce)
modifications found in specimens from Khibiny massif
(the Kola Peninsula): the ancylite-(Ce) from alkali
hydrothermalites (the Lovchorrite Mine, the Hackman
Valley) described by the formula (Sr1.01Ca0.02Ba0.01)Σ1.04 ·
(Ce0.52La0.28Nd0.11Pr0.04Sm0.01)Σ0.96(CO3)2(OH0.83F0.13)Σ0.96 ·
0.9H2O  (sp.  gr.  Pmc21)  (specimen  52)  and
ancylite-(Ce) from carbonatites (the region of the

M2 x–
2+
1063-7745/02/4702- $22.00 © 20223
Tulilukht Bay) described by the formula
(Sr0.80Ca0.05Ba0.01)Σ0.86(Ce0.62La0.40Nd0.09Pr0.03)Σ1.14 ·
(CO3)2(OH0.99F0.15)Σ1.14 · 1.0H2O (sp. gr. Pmcn) (speci-
men 54). Since the IR spectra obtained from these two

Ò
b

Fig. 1. Projection of an ideal ancylite structure onto the

(100) plane. The  groups are indicated by black trian-
gles. The black circles indicate the O(3) position in the
structure of ancylite from carbonatites (specimen 54) corre-
sponding to the O(31) and O(32) positions in the structure
of ancylite from alkali hydrothermalites (specimen 52).

CO3
2–
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specimens (Fig. 2) were essentially different, we under-
took their structural investigation.

EXPERIMENTAL

Ancylite-(Ce) from alkali hydrothermalites from the
Hackman Valley (specimen 52) forms bright yellow
aggregates of split platelike crystals with a thickness of
up to 0.5 mm forming, in turn, cellular pseudomorph
after the hexagonal prismatic mineral (probably bur-
bankite) in association with feldspar, natrolite, eudia-
lyte, aegirine, astrophyllite, and apatite. Ancylite-(Ce)
from calcite carbonatites from the region of the Tuli-
lukht Bay (specimen 54) is an aggregate of white split
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isometric crystals up to 0.3 mm in length forming
together with strontianite a cavernous pseudomorph
after burbankite.

The chemical compositions of the specimens (cat-
ions, fluorine, Table 1) was studied by electron
microprobe analysis (Camebax SX 50, analyst
N.N. Kononkova, Moscow State University).

The powder specimens were prepared from the spe-
cially selected homogeneous ancylite grains. The X-ray
diffraction spectra were obtained on a focusing STOE-
STADIP diffractometer with bent Ge(111) primary
monochromator λMoKα1 radiation, 2.16° < 2θ <
54.98°, with a total number of reflections of 437 (spec-
imen 52); 5.00° < 2θ < 44.98°, with a total number of
reflections of 237 (specimen 54). All the computations
were made by the WYRIET program, version 3.3 [6]
within the sp. gr. Pmc21 (specimen 52) and the sp. gr.
Pmcn (specimen 54). The initial structure model
refined within the sp. gr. Pmcn was the model suggested
by Dal Negro, Rossi, and Tazzoli [5]. The model
refined within the sp. gr. Pmc21 was also based on the
structure of highly symmetric ancylite but with due
regard for the absence of the plane n.

Specimen 54 showed the presence of strontianite
impurity (4.2%) and, therefore, the refinement was per-
formed for two phases simultaneously—ancylite and
strontianite as the second phase.

We used ionic scattering curves. The profile peak
was approximated according to the Pearson-VII func-
tion at 6FWHM. The asymmetry was refined at 2θ < 40°.
The refinement was performed with gradual inclusion
into the process of new parameters to be refined and
constant automatic modeling of the background until
the attainment of a stable R factor. Upon the refine-
ment in the isotropic approximation, the reliability
factor Rwp was 2.87% (specimen 52) and 2.67% (spec-
imen 54).

Some parameters of the data acquisition and the
results of the structure refinement of ancylites in the
Table 1.  Chemical composition (wt %) and the formulas of studied ancylites

Components Specimen 52 Specimen 54 Components Specimen 52 Specimen 54

CaO 0.34 0.68 Sm2O3 0.31 0.09

SrO 27.65 21.24 F 0.64 0.73

BaO 0.46 0.36 CO2 (23.28) (22.44)

La2O3 12.10 16.64 (H2O)1 (1.98) (2.27)

Ce2O3 22.50 25.53 (H2O)2 (4.32) (4.92)

Pr2O3 1.76 1.37 –O=F2 0.27 0.31

Nd2O3 4.93 4.03 Total (100.00) (100.00)

Note: 1. Specimen 52 is ancylite from alkali hydrothermalites from Lovchorrite Mine and Hackman Valley of the compositions
(Sr1.01Ca0.02Ba0.01)Σ1.04(Ce0.52La0.28Nd0.11Pr0.04Sm0.01)Σ0.96(CO3)2(OH0.83F0.13)Σ0.96 · 0.9H2O. Specimen 54 is ancylite from car-
bonatites from the region of Tulilukht Bay (Sr0.80Ca0.05Ba0.01)Σ0.86(Ce0.62La0.40Nd0.09Pr0.03)Σ1.14(CO3)2(OH0.99F0.15)Σ1.14 · 1.0H2O.
2. The calculated values are given in parentheses; the number of OH-groups (to which the (H2O)1 value corresponds) was calculated
from the stoichiometry; the number of water molecules (H2O)2 was calculated from the difference of the total.
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Table 2.  Unit-cell parameters and the refined data for crystal structures of two ancylite specimens

Characteristic Specimen 52 Specimen 54 Characteristic Specimen 52 Specimen 54

a, Å 5.0634(1) 5.0577(1) Rp 1.45 1.87

b, Å 8.5898(1) 8.5665(2) Rwp 1.90 2.38

c, Å 7.2781(1) 7.3151(2) Rexp 1.83 2.87

V, Å3 316.55 316.94 RB 1.53 1.34

Sp. gr. Pmc21 Pmcn RF 1.43 1.63

2θ-range, deg 2.16–54.98 5.00–44.98 s* 1.04 0.83

Number of reflections 437 237 DWD** 0.81 1.04

Number of refined parameters 90 50 1.660 1.587

* s = Rwp/Rexp, Rexp is the expected value of Rwp.
** Durbin–Watson statistics [8].

*** Factor used for calculating standard deviations [9].

σx
***
Table 3.  Atomic coordinates, isotropic temperature parameters (Å2), and occupancies of the positions in ancylite-(Ce) from
alkali hydrothermalites (specimen 52), sp. gr. Pmc21

Atom Characteristic Value Atom Characteristic Value

å(1) x 0 O(11) x 0

y 0.0977(5) y 0.418(4)

z 0.6437(5) z 0.271(3)

Bj 0.48(5) Bj 2.1(8)

q (Sr)* 0.486(2) O(12) x 0.5

q (RE + Ba)** 0.486(2) y 0.919(4)

q (Ca) 0.016(6) z 0.244(2)

Bj 1.4(8)

M(2) x 0.5 O(21) x 0.277(2)

y 0.5897(5) y 0.122(2)

z 0.8475(5) z 0.352(2)

Bj 0.66(5) Bj 1.3(5)

q (Sr) 0.498(2) O(22) x 0.223(2)

q (RE) ** 0.498(2) y 0.617(2)

C(1) x 0 z 0.151(2)

y 0.554(6) Bj 1.5(5)

z 0.191(2) O(31) x 0

Bj 1.9(9) y 0.204(3)

z 0.992(3)

C(2) x 0.5 Bj 1.4(9)

y 0.056(6) O(32) x 0.5

z 0.308(2) y 0.660(3)

Bj 1.8(9) z 0.516(3)

Bj 1.0(8)

Notes: 1. Refinement was made for the composition (Sr0.49RE0.48Ca0.02Ba0.01)Σ1.00(Sr0.50RE0.50)Σ1.00(CO3)2(OH, F)0.98 · 0.9H2O. The number
of OH-groups was calculated from the stoichiometry; the number of water molecules was calculated from the difference of the total.
2. The refinement for RE was made with the use of the f-curve of cerium.
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Fig. 3. Experimental (solid line) and calculated (dots) X-ray diffraction spectra from ancylites (a) specimen 52 and (b) spec-
imen 54. Arrows indicate the additional reflections in the spectrum from ancylite from alkali hydrothermalites (2θ = 4.739°, d =
8.579 Å, hkl = 010 and 2θ = 8.020°, d = 5.072 Å, hkl = 100) which violate the law of systematic absences for the sp. gr. Pmcn. The
specimen from carbonatites has a strontialite impurity (the lower line diagram).
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002



CRYSTAL STRUCTURES OF TWO ANCYLITE MODIFICATIONS 227
Table 4.  Atomic coordinates and isotropic temperature parameters (Å2) and occupancies of the positions in ancylite-(Ce)
from carbonatites (specimen 54), sp. gr. Pmcn

Atom Characteristic Value Atom Characteristic Value

M x 1/4 O(1) x 3/4

y 0.3409(3) y 0.3286(2)

z 0.6482(3) z 0.7336(2)

Bj 0.96(2) Bj 2.7(5)

q (RE + Ba)* 1.153(3) O(2) x 0.5266(2)

q (Sr) 0.798(4) y 0.1223(1)

q (Ca) 0.056(8) z 0.8525(2)

Bj 1.2(3)

C x 3/4 O(3) x 1/4

y 0.1961(4) y 0.4183(2)

z 0.8154(5) z 0.9736(2)

Bj 3.7(9) Bj 2.7(5)

Notes: 1. Refinement was made for the composition (RE1.13Sr0.80Ca0.06Ba0.02)Σ2.01(CO3)2[(OH, F)1.15(H2O)1.0]Σ2.15. The number of
 OH-groups was calculated from the stoichiometry; the number of water molecules was calculated from the difference of the total.
 2. The refinement for RE was made with the use of the f-curve of cerium.
anisotropic (metal and oxygen atoms) and isotropic
(carbon atoms) approximations are listed in Table 2.
Figure 3 shows the experimental (solid line) and the
calculated (dots) X-ray diffraction spectra of ancylites.
The coordinates and the isotropic temperature correc-
tions for atoms and the position occupancies are indi-
cated in Tables 3 and 4.

The IR spectra of ancylites prepared in the shape of
tablets with KBr were obtained on a Specord 75 IR
spectrophotometer.

DISCUSSION

The crystal structure of ancylite-(Ce) was first
solved within the sp. gr. Pmcn as a derivative of the ara-
gonite structure in 1975 [5]. Our results obtained for
ancylite-(Ce) from carbonatites (specimen 54) agree
well with the data of this first structure determination
[5]. Divalent Sr, Ca, Ba cations and rare earth elements
in ancylite are located in ten-vertex polyhedra formed
by O(1), O(2), and O(3) oxygen atoms. Ten-vertex
polyhedra share triangular O(1)–O(3)–O(2) faces and
form chains along the c-axis. In turn, these chains form
a three-dimensional framework via (CO3)-triangles,
with each triangle being surrounded with three M-poly-
hedra sharing their edges (Fig. 1).

The average distances in the polyhedra are M–O
2.63, C–O 1.31 Å (specimen 54) and M(1)–O 2.69,
M(2)–O 2.62, C(1)–O 1.29, and C(2)–O 1.29 Å (speci-
men 52).

Unlike the X-ray diffraction pattern from ancylite
from carbonatites (Fig. 3b), the X-ray diffraction pattern
from ancylite from alkali hydrothermalites (Fig. 3a) has
some additional reflections (2θ = 4.739°, d = 8.579 Å,
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
hkl = 010 and 2θ = 8.020°, d = 5.072 Å, hkl = 100),
which violate the law of systematic absences for the
sp. gr. Pmcn. Therefore, the structure of this mineral
was refined within the less symmetric group Pmc21 in
which the cations (Sr, Ca, Ba, and RE) are located in
two crystallographically nonequivalent positions M(1)
and M(2). Since the ratio of the number of divalent cat-
ions to the total number of rare earth elements in this
specimen was close to 1 : 1, we first assumed that M2+

and RE occupy two separate positions and that the low-
ering of the symmetry is caused by cationic ordering.
However, the structure refinement showed that both
these positions are occupied statistically (Table 3) and
the lowering of the symmetry in the structure of this
ancylite modification is caused by the displacement of
atoms from the special positions to the general ones.
The disappearance of the plane n is associated with the
split of each position in the above structure into two
nonequivalent positions (Tables 3 and 4), with the dif-
ferences in the coordinates of each pair of atoms being
much more pronounced than the accuracy of the deter-
mination of these coordinates.

The calculation of the local balance by the method
suggested in [7] and the allowance for possible hydro-
gen bonds allowed us to single out O atoms, (OH)–

groups, and H2O molecules in the anionic part of the
structure. In the structure of ancylite from carbonatites
(specimen 54), the O(1) and O(2) positions are occu-
pied by O atoms, whereas the O(3) position is statisti-
cally filled with (OH)–-groups and ç2é-molecules. In
the structure of low-symmetric ancylite from alkali
hydrothermalites (specimen 52), the éç–-groups and
ç2é molecules are orderly distributed over the O(32)
and O(31) positions, respectively.
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The IR spectrum of ancylite from alkali hydrother-
malites (specimen 52) (Fig. 2a) has a band at 3480–
3490 cm–1 corresponding to the stretching vibrations of
OH– groups forming relatively weak hydrogen bonds.
Sometimes, we also observed a shoulder at 3530–
3540 cm–1, which is attributed to free OH-groups
whose number is considerably less than the number of
these groups linked by hydrogen bonds. The water mol-
ecules form rather strong hydrogen bonds, which man-
ifest themselves in the IR spectrum as a broad band
with the maximum at 2900–3000 cm–1. The triply

degenerate band of bending vibrations of  anions
is split into four to six components, which indicates the
presence of CO3-groups of at least two kinds. At the
same time, the presence of an unsplit band due to fully

symmetric stretching vibrations of  groups at
1068 cm–1 indicates a considerable violation of the
local symmetry of carbonate anions only for one kind

of  groups.

The IR spectrum of ancylite from carbonatites
(specimen 54) considerably differs from that of ancylite
from alkali hydrothermalites in that it has a narrow
intense band at 3540–3545 cm–1 and a narrow band
at 739 cm–1 (Fig. 2b) attributed to the stretching and
bending vibrations of OH– anions forming no hydrogen
bonds, whereas no hydroxyl groups linked by a hydro-
gen bond are present at all (the absence of the band at
3480–3490 cm–1).

Thus, we can state that there exist two ancylite mod-
ifications which are crystallized in two different space
groups of the orthorhombic system and have essentially
different X-ray and IR-spectroscopic characteristics.
Taking into account the corresponding crystallochemi-
cal data, these modifications should be described by

CO3
2–

CO3
2–

CO3
2–
C

different formulas (Tables 3 and 4). The representative
sampling of IR spectra of ancylites from numerous
alkaline massifs over the entire world allows us to state
that both ancylite modifications occur widely in nature.
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Abstract—The crystal structure of a new representative of the labuntsovite group from the Khibiny massif (the
Kola Peninsula) has been refined. The unit-cell parameters are a = 14.298(7) Å, b = 13.816(7) Å, c = 7.792(3) Å,
β = 116.85(5)°, V = 1373.3 Å3, sp. gr. C2/m, Raniso = 0.047, 1084 reflections with F > 4σ(F). The mineral differs
from lemmleinite-Ba and other members of the group by the predominance of the vacancies in two key cationic
positions—C position is occupied by Ba cations (37%) and D position is occupied mainly by Mn cations (47%).
© 2002 MAIK “Nauka/Interperiodica”.
The minerals of the labuntsovite group are charac-
terized by wide-range compositional heterovalent iso-
morphism, which should necessarily be taken into
account when predicting the ion-exchange properties of
micro- and mesoporous materials based on the minerals
of this structure type. Ten representatives of this group
have been structurally characterized. In this study, we
established the structure of a new specimen from the
Gakman valley (the Khibiny massif, the Kola Penin-
sula).

The mineral was discovered in pegmatitic bulges of
the natrolite–microcline composition embedded in
gneissous nepheline syenites in the form of orange
short-prismatic crystals up to 5 mm in length. The min-
eral occurs in association with aegirine, catapleiite,
barylite, fluorite, and galenite. The chemical composi-
tion of the new mineral was established using seven
points by electron microprobe analysis (the water con-
tent was not determined) and corresponds to the follow-
ing empirical formula (calculated for 16 Si atoms):

Na4.09K3.88Ba1.51Mn0.61Fe0.18Ti6.29Nb1.77(O6.58OH1.42)
· [Si4O12]4 · 12.75H2O.

The principal characteristics of the crystal and the
details of the X-ray data collection are given in Table 1.

Proceeding from the chemical composition, we
assumed that the new mineral is structurally similar to
lemmleinite-Ba and used the coordinates of the frame-
work atoms of the latter [1] as the starting model. The
difference electron density synthesis calculated upon
the refinement of the structure revealed the split K(1)
and K(2) positions with incomplete occupancies. The
final atomic coordinates are given in Table 2. The crys-
1063-7745/02/4702- $22.00 © 20229
tallochemical formula of the mineral can be written as
Na3.5K4[Ba1.5(Mn,Fe)0.9(H2O)1.8][Ti7.8Nb0.2(O,OH)8] ·
[Si4O12]4 · 5.4H2O.

The structure of the new mineral (figure) has a
mixed framework typical of labuntsovites consisting of

b

a

K Na H2O Ba, H2O

Crystal structure of the mineral projected onto the (001)
plane. The Mn-octahedra are hatched. Circles of different
types represent large cations and water molecules.
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Table 1.  Structural data and details of collection of the X-ray data 

Characteristic Parameter Characteristic Parameter

Parameters of monoclinic unit cell, Å, deg a = 14.298(7) Ranges of the indices of measured reflections –16 < h < 14;

b = 13.816(7) –15 < k < 16;

c = 7.792(3) 0 < l < 9

β = 116.85(5)° sinθ/λ <0.58

Volume of monoclinic unit cell, Å3 1373.3 Total number of reflections 1235

Sp. gr.; Z C2/m; 8 Number of independent reflections 1084 F > 4σ(F)

Radiation; λ, Å CuKα; 1.5411 R-factor upon anisotropic refinement 0.047

Density, g/cm3 2.9 Program used for the refinement AREN [2]

Crystal dimensions, mm 0.15 × 0.1 × 0.25 Program used for introduction of the
absorption correction

DIFABS [3]

Diffractometer SYNTEX P21

Table 2.  Atomic coordinates, equivalent thermal parameters, multiplicities, and occupancies of the positions

Atom x/a y/b z/c Q q Beq, Å2

Si(1) 0.2082 (1) 0.1102 (1) 0.8035 (1) 8  1 1.18 (7)

Si(2) 0.3199 (1) 0.1111 (1) 0.2493 (1) 8  1 1.25 (7)

Ti(1) 0 0.2276 (1) 0.5 4  1 1.55 (6)

Ti(2) 0.25 0.25 0.5 4  1 1.66 (6)

D 0 0 0.5 2  0.47(1) 1.6 (1)

C 0.873 (1) 0 0.3422 (1) 4  0.83(1) 2.16 (3)

K(1) 0.4207 (1) 0 0.7033 (3) 4  0.69(1) 2.7 (1)

K(2) 0.4246 (8) 0.0444 (8) 0.713 (2) 8  0.15(1) 4.5 (3)

Na 0.4130 (4) 0.2643 (3) 0.0077 (9) 8  0.44(1) 3.4 (2)

O(1) 0.2336 (2) 0.1278 (2) 0.272 (4) 8  1 1.8 (2)

O(2) 0.2736 (2) 0.1823 (2) 0.7377 (4) 8  1 1.8 (2)

O(3) 0.2461 (3) 0 0.7847 (7) 4  1 1.8 (3)

O(4) 0.4204 (2) 0.1802 (2) 0.3028 (4) 8  1 1.9 (2)

O(5) 0.2649 (2) 0.1260 (2) 0.3864 (4) 8  1 1.6 (2)

O(6) 0.3640 (3) 0 0.2708 (6) 4  1 1.7 (3)

O(7) 0.832 (2) 0.1169 (2) 0.6741 (4) 8  1 1.7 (2)

O, OH 0.1014 (2) 0.2255 (2) 0.3974 (4) 8  1 1.7 (2)

H2O (1) 0.5 0.1468 (8) 0 4  0.68(2) 8.5 (3)

H2O (2) 0 0.1125 (6) 0 4  0.68(2) 5.2 (2)

Note: D = Mn0.75 + Fe0.25; C = Ba0.45 + (H2O)0.55; Ti(2) = Ti0.95 + Nb0.05.
columns of vertex-sharing [TiO6]-octahedra linked by
four-membered rings of [SiO4]-tetrahedra. The chan-
nels in the structure are occupied by Na, K, and Ba
atoms and water molecules. The chemical composition
and the structure of the new specimen make it similar to
lemmleinite-Ba; however, there are also some differ-
ences. Like other labuntsovites, the H2O(1) and H2O(2)
molecules in the new mineral are in the coordination
spheres of Na atoms, with each water molecule being
bound to one of the large cations. The third H2O mole-
C

cule and a Ba atom occupy the mixed C-position due to
which the coordination polyhedron of a Mn atom is
complemented to an octahedron, as opposed to the
structure of lemmleinite-Ba, in which H2O molecules
and Ba atoms occupy different although close posi-
tions. Whereas in the structure of lemmleinite-Ba, K
atoms are located in one position. In the structure of the
specimen studied, these atoms occupy two positions
spaced by a distances of 0.61(1) Å, with the position
K(2) being occupied by 15%.
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According to the nomenclature of the Commission
on New Minerals and Mineral Names of the Interna-
tional Mineralogical Association, four positions in the
channels of the crystal structure are group-forming
ones in the minerals under consideration. Two of these
positions, namely, the D position occupied by medium-
sized cations and the C position occupied by large cat-
ions (in some earlier studies, these positions were indi-
cated as MII and AIII, respectively) complement each
other statistically. In the structure of the new mineral,
the D position is occupied mainly by Mn atoms (47%),
whereas the C position is occupied by Ba-atoms (37%)
and water molecules (47%). Hence, the cationic vacan-
cies prevail in both positions, which distinguishes the
new mineral from other representatives of this group.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Abstract—The crystal structure of a new highly decationated representative of the eudialyte group has been
established (R = 0.055, 1734 |F |). The mineral is described by the simplified formula
(H3O)9Na2(K,Ba,Sr)2Ca6Zr3[Si26O66(OH)6](OH)3Cl · H2O (Z = 3). The unit-cell parameters are a = 14.078(3) Å,
c = 31.24(1) Å; V = 5362 Å3; sp. gr. R3. Being chemically and structurally related to the hydrated analogues
studied previously (in particular, to potassium oxonium eudialyte), the new mineral differs from its analogues
in that it has a higher degree of Na- and Fe-cation depletion. The replacement of 3/4 of Na cations by loose and
mobile H3O groups results in structure destabilization, which is seen from the high values of the thermal param-
eters of the atoms and the loss of the symmetry plane. © 2002 MAIK “Nauka/Interperiodica”.
The properties of zeolite-like zirconosilicate eudia-
lyte as a potential ion exchanger are clearly seen from
the existence of its decationated analogues character-
ized by high degrees of hydration. Earlier, we estab-
lished the structures of two such specimens containing
up to 7 wt % of water, which were found in the Lovoz-
ero and Khibiny massifs [1, 2]. In this study, we exam-
ined the eudialyte-like mineral found in syenite pegma-
tites from the Inaglinskii massif (South Yakutia). This
mineral is characterized by a higher degree of hydra-
tion (up to 10 wt % of H2O) and by a very low (about
3.5 wt %) total content of Na and Fe oxides. According
to Efimov et al. [3], this fact is responsible for the pale-
pink color of the mineral, which is rather rare for widely
occurring eudialytes, the low density (2.62 g/cm3), and the
low values of the refractive indices (1.567–1.572).

The results of microprobe analysis together with the
data on the water content determined by the Penfield
method corresponds to the empirical formula (Z = 3)

Na2.74K1.20Sr0.49Ba0.46Ca5.79 
· REE0.19Fe0.23Mn0.12Zr2.92Ti0.29Nb0.03Al0.19Si25.57 O66.6Cl1.23 

· nH2O 
(where n is ~16).

X-ray diffraction data were collected from an iso-
metric single crystal. The characteristics of the single
crystal and the details of the X-ray diffraction study are
given in Table 1.

Based on the similarity of the compositions of the
mineral under study and potassium oxonium eudialyte
[1], we assumed that they are structurally similar and
used the coordinates of the positions of the framework
atoms of this analogue as the starting model. The posi-
1063-7745/02/4702- $22.00 © 0232
tions of all framework atoms of the mineral were
revealed from a series of Fourier syntheses. At the final
stage, the positions with low occupancies were local-
ized from difference electron density synthesis. The
inclusion of the impurity atoms with the use of mixed
atomic scattering curves led to a sufficiently low R fac-

Table 1.  Structural data and details of X-ray diffraction
study of the crystal

Unit-cell parameters, Å a = 14.078(3), c = 31.24(1)

Unit-cell volume, Å3 V = 5362

Density, g/cm3: ρcalcd; ρobs 2.7; 2.62

Sp. gr., Z R3; 3 (for the simplified 
formula)

Radiation, λ, Å MoKα; 0.71073

Crystal dimensions, mm 0.15 × 0.25 × 0.2

Diffractometer Enraf-Nonius

sinθ/λ <0.7

Ranges of the indices of
measured reflections

–19 < h < 17, 0 < k < 19,
0 < l < 42

Rav or equivalent reflections 0.029

Total number of reflections 2790 I > 2σ(I)

Number of independent reflections 1734 |F| > 4σ(F)

Program for calculations AREN[4]

Program for absorption correction DIFABS [5]

Number of independent positions 60

R factor upon anisotropic
refinement

0.055
2002 MAIK “Nauka/Interperiodica”
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tor. However, the thermal parameters of all the atoms
were too high. Although the refinement within the
sp. gr. R3 did not lead to a substantial improvement in
the R factor, it gave reliable thermal parameters. The
lowering of the symmetry compared to the sp. gr. R3m,
characteristic of a number of structures of the eudialyte
group, is most often associated with the ordering of the
Ca atoms and of some elements replacing these atoms
in the positions of the six-membered rings. In the min-
eral under study, the Ca and (Ca,Ce) atoms are ordered.
Apparently, the lowering of the symmetry is associated
mainly with the destabilization of the structure caused
by the replacement of Na atoms by oxonium groups,
which results in systematic displacements of the atoms
from the vertical plane m exceeding the experimental
error. The most substantial displacements are observed
for the oxonium groups characterized by the highest
mobility and located in their own subpositions with
occupancies less than 100%.

The final atomic coordinates are given in Tables 2
and 3. Some characteristics of the polyhedra are indi-
cated in Table 4.

The principal characteristics of the composition
and  the structure of hydrated eudialyte are described
by its crystallochemical formula (Z = 1)

Zr9(Ca17.64Ce0.36)[Si72O198.7(OH)17.3][Si3][Si1.5  ·

(Al0.65Nb0.1)[VI]][(H3O (Fe,Mn ][(H3O)20.9 ·
Na6.5K3.6Ba1.6Sr1.31Ce0.2][(OH)9.6Cl3.9(H2O)2.16(SO4)0.6],
where the compositions of the key structural fragments
are indicated in brackets and the coordination numbers
of the cations are given by Roman numerals in brackets.
The sulfate group established by the X-ray diffraction
analysis replaces the Cl atom or the H2O molecule
occupying the corresponding position on a threefold
axis in a number of other minerals of the eudialyte
group.1

The simplified formula of the mineral is
(H3O)9Na2(K,Ba,Sr)2Ca6Zr3[Si26O66(OH)6](OH)3Cl ⋅
H2O (Z = 3).

The mineral is characterized by a high oxonium
content. The X-ray diffraction analysis provided only
indirect evidence of the presence of oxonium groups,
because only O atoms were localized in the Na posi-
tions from electron density maps. We assigned these O
atoms to (H3O)+ ions. Taking into account a substantial
deficiency in positive charges, these groups cannot be
interpreted as neutral H2O molecules. The presence of
oxonium groups was also confirmed by the IR spectra
of hydrated eudialytes [2]. Compared to other oxo-
nium-containing minerals [1, 2], this specimen has the
maximum amount of H3O groups. In addition to three
Na positions, in which oxonium groups were revealed
earlier, we established the Na(2) position and two posi-
tions in the plane of the Ca-rings (figure). In high-alka-

1 Sulfur was not detected in the grains studied by the microprobe
analysis.

Ti0.75
VI[ ]

)4.4
IX[ ]

Na2.2
IV[ ]

)1.0
VI[ ]
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Table 2.  Coordinates and equivalent (Beq) thermal parame-
ters of the framework atoms

Atom x/a y/b z/c Beq, Å2

Zr 0.3352(2) 0.1681(2) 0.1669(1) 2.48(3)

Ca 0.4018(2) 0.3312(2) 0.3330(1) 2.25(5)

Ca' 0.4011(2) 0.0702(2) 0.3332(1) 2.45(5)

Si(1) 0.5236(2) 0.2616(2) 0.2529(1) 1.4(1)

Si(2) –0.0088(3) 0.6029(3) 0.1014(1) 3.1(1)

Si(2)' –0.0097(3) 0.3880(3) 0.1006(1) 2.4(1)

Si(3) 0.2033(3) 0.4077(3) 0.0790(1) 2.9(1)

Si(4) 0.0828(3) 0.5411(3) 0.2595(1) 2.3(1)

Si(5) 0.0511(3) 0.3223(4) 0.2360(1) 2.5(1)

Si(5)' 0.2726(3) 0.3233(4) 0.2354(1) 3.2(1)

Si(6) 0.1411(3) 0.0709(3) 0.0816(1) 2.1(1)

O(1) 0.4596(9) 0.2336(11) 0.2079(4) 3.2(3)

O(2) 0.2491(10) 0.0218(10) 0.2022(4) 3.2(4)

O(2)' 0.2547(10) 0.2267(8) 0.2050(4) 3.2(3)

O(3) 0.4082(10) 0.3108(10) 0.1339(4) 3.5(3)

O(3)' 0.4121(8) 0.0962(9) 0.1362(3) 2.6(3)

O(4) 0.6064(8) 0.3966(8) 0.2512(5) 3.7(3)

O(5) 0.4542(9) 0.2253(10) 0.2961(4) 3.3(3)

O(6) 0.4015(14) 0.0570(16) 0.0520(5) 5.7(4)

O(6)' 0.3974(10) 0.3470(11) 0.0532(4) 4.4(4)

O(7) 0.0990(9) 0.3736(10) 0.1063(4) 3.2(3)

O(7)' 0.2773(6) 0.3722(6) 0.1062(3) 1.6(2)

O(8) 0.0215(9) 0.5123(8) 0.1071(4) 2.9(3)

O(9) 0.2710(10) 0.5480(8) 0.0739(5) 4.0(3)

O(10) 0.1850(10) 0.3584(10) 0.0265(4) 3.7(3)

O(11) 0.0242(10) 0.5171(8) 0.3024(4) 3.2(3)

O(12) 0.1817(10) 0.3616(10) 0.2205(4) 3.3(4)

O(13) 0.0370(16) 0.2918(16) 0.2866(5) 5.7(4)

O(13)' 0.2589(11) 0.2909(12) 0.2835(4) 5.3(4)

O(14) 0.3904(10) 0.4279(11) 0.2302(5) 3.9(4)

O(14)' 0.3946(15) –0.0381(17) 0.2293(6) 6.5(3)

O(15) 0.3978(14) 0.6073(14) 0.2557(5) 5.1(1)

O(16) 0.0625(9) 0.1262(8) 0.0817(4) 2.8(2)

O(17) 0.2006(9) 0.1038(9) 0.1247(3) 2.9(2)

O(18) 0.2158(10) 0.1052(10) 0.0424(3) 3.1(3)

Note: The atoms related by the pseudosymmetry plane m are primed.
2
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Table 3.  Coordinates and equivalent thermal parameters (Beq) of the extraframework atoms, multiplicities (Q), and occupan-
cies (q) of the positions

Atom x/a y/b z/c Q q Beq, Å2

Si(7a) 0.3333 0.6667 0.2773(6) 3 0.55(3) 5.6(4)

Si(7b) 0.3333 0.6667 0.2449(5) 3 0.45(3) 2.45(3)

Si(8) 0.3333 0.6667 0.0600(6) 3 0.50(2) 2.5(3)

Ti 0.3333 0.6667 0.1009(9) 3 0.25(1) 3.7(5)

Al 0.3333 0.6667 0.044(2) 3 0.25(2) 6.3(5)

S 0.6667 0.3333 0.040(3) 3 0.20(4) 6.9(5)

M 0.492(1) 0.510(1) –0.0004(7) 9 0.35(1) 3.0(3)

A(1) 0.1153(7) 0.2265(8) 0.1519(3) 9 1.0 2.2(3)

A(2a) 0.5631(3) 0.4360(3) 0.1792(1) 9 0.71(1) 2.7(1)

A(2b) 0.565(3) 0.436(3) 0.1648(9) 9 0.29(4) 7.5(7)

A(3a) 0.192(1) 0.096(2) 0.2942(6) 9 0.60(1) 6.7(3)

A(3b) 0.158(1) 0.079(1) 0.2805(4) 9 0.40(4) 5.5(3)

A(4a) 0.464(2) 0.232(2) 0.0501(4) 9 0.30(4) 5.7(4)

A(4b) 0.534(2) 0.266(2) 0.045(1) 9 0.70(1) 8.0(5)

A(5a) 0.224(3) 0.464(5) 0.322(1) 9 0.32(4) 4.2(5)

A(5b) 0.416(3) 0.596(2) 0.005(1) 9 0.39(4) 3.8(8)

OH(1) 0.3333 0.6667 0.187(1) 3 0.67(6) 3.5(6)

OH(2) 0.222(4) 0.604(4) 0.162(1) 9 0.27(4) 5.6(6)

OH(3) 0.3333 0.6667 0.331(1) 3 0.55(9) 7.9(5)

OH(4) 0.3333 0.6667 0.005(1) 3 0.50(3) 8.5(6)

Cl(1) 0 0 0.197(1) 3 0.50(3) 6.7(6)

Cl(2a) 0.6667 0.3333 0.1424(4) 3 0.59(5) 4.4(4)

Cl(2b) 0.6667 0.3333 0.098(2) 3 0.20(3) 6.9(5)

H2O 0.631(5) 0.380(5) 0.132(2) 9 0.24(4) 6.1(7)

Note: Hereafter, M denotes the position in the center of the “square”; A(1–5) are the cationic positions corresponding to the Na(1–5) posi-
tions in the structures of high-sodium eudialytes.
line analogues of eudialyte, the latter positions are
occupied either by Na [6] or K [7]. The distance
between the positions of these cations correlates with
the cation sizes and increases from the minimum value
(2.8 Å) in alluaivite [6] to the maximum value (3.8 Å)
in the new mineral. In the structure under consider-
ation, the Na(1) position is fully occupied by the oxo-
nium groups (as in the specimen found in Khibiny); the
remaining Na positions, except for Na(2), are also
occupied predominantly by oxonium groups.

In all three structures, the cavities between the rings
are filled with hydroxyl groups forming a tetrahedral
and octahedral environment around the cations located
on threefold axes. The octahedra located on the axes are
oriented in the direction of the cavities. Such an orien-
tation is characteristic only of hydrated specimens and
is associated with the absence of Na atoms in these cav-
ities. Indeed, in the new mineral, the Ti-octahedron is
oriented in the direction of the cavity, whereas in the
C

other two minerals, the Na-, and Zr-octahedra are ori-
ented toward the cavities [1, 2].

It can be assumed that the presence of oxonium ions
in the Ca layer is responsible for the noticeable elonga-
tion of the structure in the direction of the threefold
axis. Thus, the c-parameter of the unit-cell (31.24 Å)
considerably exceeds the c-parameter in typical eudia-
lytes where it varies from 29.96 to 30.35 Å [8]. The
lower density of the mineral is most likely associated
with the more flexible Ca-containing layers and not
with the rigidly fixed fragments (Zr,Si-containing lay-
ers), in particular, with the absence of the Fe atoms in
the former layers. This assumption was confirmed by
the distortion of the “square.” The edges of the Ca-octa-
hedra forming two opposite sides of the square (3.32
and 3.42 Å) are substantially longer than those found
earlier (2.79–3.24 Å). The elongation of the Ca-octahe-
dra along the z-axis is accompanied by their contraction
in the perpendicular direction, which provides the min-
imum value of the a-parameter of the unit-cell (14.08 Å)
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002



STRUCTURAL CHARACTERISTICS OF Na,Fe-DECATIONATED EUDIALYTE 235
Table 4.  Characteristics of the coordination polyhedra

Position Composition, Z = 1 Coordination
number

Cation–anion distances

limiting average

Zr 9Zr 6 1.98–2.11 2.06
Ca 9Ca 6 2.25–2.40 2.33
Ca' 8.64Ca + 0.36Ce 6 2.24–2.46 2.35
Si(7a) 1.65Si 4 1.64–1.68 1.65
Si(7b) 1.35Si 4 1.55–1.80 1.61
Si(8) 1.5Si 4 1.51–1.72 1.55
Ti 0.75Ti 6 1.67–2.34 2.01
Al 0.65Al + 0.1Nb 6 1.72–2.23 1.97
S 0.6S 4 1.31–1.62 1.54
M 2.2Na + 1.0(Fe, Mn) 4 2.11–2.60 2.39

6 1.85–2.60 2.23
A(1) 9H3O 9 2.49–3.10 2.67
A(2a) 4.7Na + 1.6Ba 9 2.37–2.88 2.66
A(2b) 2.5H3O + 0.2Ce 7 2.14–2.88 2.59
A(3a) 4.9H3O + 0.5Sr 9 2.44–3.28 2.78
A(3b) 3.6K 9 2.58–3.22 2.85
A(4a) 1.8Na + 0.81Sr 8 2.16–3.17 2.80
A(4b) 4.5H3O 9 2.19–3.20 2.85
A(5a) 1.9H3O + 1.0OH 9 2.49–3.31 2.89
A(5b) 2.5H3O + 1.0OH 7 2.58–3.36 2.91

Note: The Si(1–6)-tetrahedra involved in the silicon–oxygen rings of the framework are not indicated.
with a simultaneous increase in the distance between
the rings (the lengths of the two other sides of the
square are 3.58 and 3.13 Å; the corresponding values in
other known eudialytes are in the range 2.80–3.04 and
2.91–3.25 Å, respectively).
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      200
Therefore, the new mineral is related, both chemi-
cally and structurally, to the hydrated analogues studied
earlier (and, in particular, is similar to potassium oxo-
nium eudialyte) and is characterized by the highest
degree of depletion of Na- and Fe-cations. The struc-
x

y

A layer of the decationated eudialyte structure projected onto the (001) plane; Si-tetrahedra are hatched with solid lines; Na atoms
and oxonium cations are indicated by small and large circles, respectively.
2
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ture of the new mineral is less stable because of the
replacement of 3/4 of the Na atoms by looser and
mobile H3O groups. This is seen from the high thermal
parameters of the atoms, the loss of the symmetry
plane, the distortion of the coordination polyhedra, and
the shortening of some interatomic distances. In the
new mineral, the characteristic splitting of positions of
the extraframework atoms into partly occupied subpo-
sitions characterized by isomorphous replacement is
most pronounced.
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Abstract—The crystal structures (cubic system, sp. gr. Im3m) of solid solutions of oxygen in niobium of the
compositions NbOx < 0.01 (I), NbO0.150(6) (II) and NbO0.107(5) (III) were studied for the first time by single-crystal
X-ray diffraction analysis (Syntex P1 diffractometer, λMoKα radiation). Crystals I (a = 3.2969(8) Å) and II
(a = 3.3082(6) Å) were prepared by the electrolysis of salt melts. Crystal III (a = 3.3114(4) Å) was obtained
after partial dissolution of crystal I in a solution of HNO3, HCl, and HF resulting in its saturation with oxygen.
The residual electron density maps for crystal I revealed no O atoms. Localization of the O atoms in the tetra-
hedral cavities of crystal II and in the tetrahedral and octahedral cavities of crystal III indicates that the arrange-
ment of the interstitial positions of oxygen atoms depends on the procedure of preparing solid solutions. In crys-
tals II and III, the amplitudes of thermal vibrations of the Nb atoms are smaller and the anharmonicity of these
vibrations is higher than those in crystal I virtually devoid of oxygen. The reasons for the substantially higher
oxygen content (up to 17 at. %) in cubic crystals of the solid solutions of O in Nb prepared by the electrolytic
method than in the analogous phase obtained upon heating (lower than 7 at. %) are discussed. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION
Interactions of oxygen with niobium metal are being

extensively studied in connection with the problem of
the corrosion resistance of metal at high temperatures
and the influence of oxygen on the mechanical proper-
ties of niobium [1]. Interest in these studies stems from
the fact that niobium saturated with oxygen is used as a
collector in thermionic energy converters [2, 3]. It was
established [1–8] that the first stage of the reaction of
oxygen with niobium gives rise to solid solutions with
an increased cubic unit-cell parameter, followed by the
formation of the suboxide phases Nb6O and Nb4O char-
acterized by the tetragonal distortion of the cubic unit
cell, after which stoichiometric oxides are generated. It
should be noted that the tetragonal suboxide phase,
which has been initially identified as Nb2O [9], was
demonstrated to be stoichiometric oxide Nb4O5 [10]
possessing a unique structure [11]. It was shown [12]
that the formation of solid solutions of oxygen in nio-
bium substantially affects the physical properties of
lower oxides. In particular, two lower oxides with
NaCl-type structures were described [12], among them
the well-known NbO phase with the narrow homogene-
ity region and the NbO1.2 phase possessing high hard-
ness. The characteristic features of the oxygen arrange-
ment in the lattice of niobium metal were discussed in
several studies [12–14]. According to the results of
1063-7745/02/4702- $22.00 © 20237
quantum-mechanical analysis, the tetrahedral and octa-
hedral cavities in the body-centered cubic (bcc) struc-
ture of Nb were considered as positions occupied by
oxygen atoms [13, 14]. The dependence of the mecha-
nisms of incorporation of oxygen atoms into the struc-
ture of niobium metal on the mode of preparation of the
solid solution was considered in the study of Nb sam-
ples, which were saturated with oxygen either in the
course of gas-phase reactions or by thermal diffusion
saturation [12]. However, the preparation of homoge-
neous samples of cubic solid solutions of oxygen in
niobium in the case of a low oxygen content in equilib-
rium phases (0.7 at. % at 700°C and 5.2 at. % at 1500°C
[8]; lower than 1 at. % at 550°C and ~7 at. % at 1700°C
[15]) presented difficulties, because they were formed
as thin interlayers between oxides and the metal upon
heating of niobium in air. As a result, the positions of
the oxygen atoms were impossible to localize by X-
ray diffraction methods. We prepared well-faceted
homogeneous single crystals of cubic solid solutions
with oxygen contents up to NbO0.17 by electrolytic
crystallization from salt melts and then saturated these
single crystals with oxygen upon etching in a
(HNO3  + HCl + HF) solution, which allowed us to
localize O atoms in the Nb structure by single-crystal
X-ray diffraction methods. Below, we present the
results of this study.
002 MAIK “Nauka/Interperiodica”
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PREPARATION OF SAMPLES

Samples of niobium with a controlled oxygen con-
tent were prepared by electrolysis of a salt melt of com-
position KCl + NaCl + K2NbF7 (20 wt %) using a
soluble niobium-monoxide anode and a molybdenum
cathode.

Recrystallized potassium heptafluoroniobate and
alkali-metal chlorides of special purity grade were used
as components of the electrolyte. The niobium-monox-
ide anode was prepared by arc melting pressed pellets
using a permanent electrode. The pellets were made
from a mixture of highly pure electrolytic niobium pre-
pared according to a known procedure [16] and Nb2O5
taken in a molar ratio of 3 : 1.

A cylindrical molybdenum crucible with a cylindri-
cal perforated molybdenum diaphragm inside the cru-
cible was used as the electrolytic cell. The anodic mate-
rial (NbO pieces of size 3–8 mm) was charged into the
circular space between the diaphragm and the walls of
the crucible. A molybdenum rod with diameter 5 mm,
which was fixed coaxially in the center of the cell,
served as the cathode. The cell was placed in a heat-
resistant steel container, in which a highly pure atmo-
sphere of argon was maintained. The electrolytic cell
was heated externally in a shaft furnace with silicon-
carbide heaters.

Electrolysis was carried out in the galvanostatic
mode with the cathode-current density of 0.2 A/cm2 at
750°C. In each cycle, a direct current of 1.5 A h was
passed through the electrolytic cell.

The cathode with a precipitate grown on its surface
during one cycle of electrolysis was cooled to room
temperature in a water-cooled magazine of the con-
tainer cover. The crystalline precipitate of the electrol-
ysis product was separated from the cathode rod,
washed off from the salt electrolyte, which was cap-
tured from the electrolytic cell, with 10% hydrochloric
acid, washed repeatedly with distilled water and then
with rectified ethanol, and dried in air at 30–40°C.

The electrochemical and chemical (due to interactions

with the Nb  ions) dissolution of NbO in a melt gave

rise to complex oxofluoride ions NbO  and NbO
[17], whose concentrations in the electrolyte increased
with the increasing total quantity of the direct current
passed through the electrolytic cell. Since the strict cor-
relation between the O : Nb molar ratio in the molten
electrolyte and the oxygen content in the cathodic prod-
uct was observed in the electrolysis of fluoride–chlo-
ride melts [18], cathodic precipitates obtained in suc-
cessive cycles of electrolysis contained increasing con-
centrations of oxygen.

The concentration of oxygen in each cathodic pre-
cipitate was determined from the increase in the weight
of the starting sample after its complete high-tempera-
ture oxidation in air to Nb2O5. A series of NbOx sam-
ples with 0 < x < 1.32 were prepared in successive

F7
2–

F4
–

F6
3–
C

cycles of electrolysis. Samples with x < 0.17 were
obtained as well-faceted crystals with an approximately
cubic habit. X-ray phase analysis (DRON-3M diffrac-
tometer, λMoKα radiation) showed that the samples
were single-phase and demonstrated that they have the
cubic symmetry (sp. gr. Im3m) typical of the body-cen-
tered cubic structure of Nb.

Single crystals with the minimum and maximum
oxygen contents of compositions NbOx < 0.01 (I) and
NbO0.17(1) (II), respectively, were studied by X-ray dif-
fraction analysis. Several crystals I were soaked in a
dilute aqueous solution (1 : 1 v/v) of HNO3 + HCl + HF
for four hours to reduce their rather large sizes
(~0.3 mm) by partial dissolution. Due to the presence
of the strong oxidizer, the crystals were not only
decreased in size, but also enriched with oxygen, and
the resulting samples (III) were also studied by X-ray
analysis. As a result, we obtained data on the structure
of the solid solution of O in Nb, which was prepared by
the “chemical” method.

X-RAY DIFFRACTION STUDY

Single crystals I, II, and III selected for X-ray dif-
fraction study had the shapes of isometric parallelepi-
peds with virtually perfect mirror-reflecting rectangular
faces. The a parameters of the cubic unit cells were
measured on a Syntex P1 diffractometer (λMoKα radi-
ation) based on 15 high-angle reflections of the 〈224〉
type lying in the 2θ angle range corresponding to
λMoKα1 = 0.70926 Å (Table 1). In none of the three
crystals were significant deviations from the cubic metric
revealed. The a parameter of crystal I (a = 3.2969(8) Å)
agrees well with the tabulated value for Nb (a =
3.2986 Å) [19] and is in the range 3.294–3.300 Å cor-
responding to the cubic unit-cell parameters for Nb
containing no oxygen [1–9, 12–14]. The largest param-
eter a = 3.3114(4) Å was found for crystal III. This fact
indicates that crystal III, which was obtained from the
sample with the lowest oxygen content by partial disso-
lution in a solution of HNO3, HCl, and HF, was sub-
stantially saturated with oxygen. Since we had only a
few such crystals with an edge size of ~0.1 mm at our
disposal, we did not determine the oxygen content in
crystals III by high-temperature oxidation.

The principal details of the X-ray diffraction studies
and the characteristics of the crystals are given in
Table 2. For all three crystals, the experimental inte-
grated intensities of X-ray diffraction reflections (2θ/θ
scanning technique) were measured within a hemi-
sphere of the reciprocal space. All experimental reflec-
tions were characterized by sharp profiles, which is
indicative of the high quality of the single crystals. All
reciprocal-lattice vectors involved in the measured
region were scanned. The intensities of all the reflec-
tions allowed within the space group Im3m were higher
than 3σ(I). All the reflections were consistent with this
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Table 1.  Compositions, unit-cell parameters (a), and positions of the oxygen atoms in NbOx crystals I, II, and III (sp. gr. Im3m)

Crystal I II III

Composition determined by

the oxidation method NbOx < 0.01 NbO0.17(1) Was not determined

from the results of the refinement Nb NbO0.150(6) NbO0.107(5)

2θ angle range (deg) for λMo Kα1 for the 〈 224 〉
reflections used in the refinement of the a parameter

63.58–63.65 63.34–63.37 63.27–63.30

a, Å 3.2969(8) 3.3082(6) 3.3114(4)

Wyckoff position and configurations of the cavities 
occupied by O atoms

O atoms were
not found

12d, tetrahedron 12d, tetrahedron;
6b octahedron

Table 2.  Details of X-ray diffraction studies and results of the refinement of the Nb (I) and NbOx (II and III) structures within
the space group Im3m

Crystal I II III

Composition Nb NbO0.150(6) NbO0.107(5)

Dimensions, mm 0.25 × 0.25 × 0.20 0.20 × 0.20 × 0.22 0.10 × 0.12 × 0.12

Diffractometer; radiation Syntex P1; MoKα

Nobs; Nindep (sinθ/λ < 1.07);
Nindep (0.7 < sinθ/λ < 1.07)

429; 31;
20

Absorption Integration with respect to the real habit of the crystal

Rint for equivalent reflections 0.033 0.025 0.022

Refinement with isotropic thermal parameters of Nb atoms [2a: (000)]

Nb: Biso, Å2 0.89(1) 0.289(1) 0.306(7)

RF; wRF (0 < sinθ/λ < 1.07) 0.0188; 0.0054 0.0122; 0.0093 0.0125; 0.0067

RF: wRF (0.7 < sinθ/λ < 1.07) 0.0296; 0.0286 0.0083; 0.0074 0.0092; 0.0077

∆ρmax; ∆ρmin or deformation electron
density, e/Å3

3.07; –1.76 0.94; –0.52 1.06; –0.48

Refinement of thermal parameters of Nb atoms in the anharmonic approximation

Nb: Beq, Å2 0.54(1) 0.224(3) 0.262(6)

B11 0.01237(1) 0.0051(1) 0.0060(2)

D1111 × 104 –0.002(1) –0.20(2) –0.027(3)

D1122 × 104 –0.0031(7) –0.0069(7) –0.006(1)

F111111 × 106 –0.010(3) –0.027(3) –0.035(5)

F111122 × 106 0.0008(8) –0.0046(6) –0.004(1)

F112233 × 106 0.001(1) –0.0014(4) 0.0000(7)

RF; wRF 0.0092; 0.0049 0.0087; 0.0086 0.0083; 0.0055

∆ρmax; ∆ρmin, e/Å3 0.61; –0.60 0.69; –0.61 0.80; –0.60

Localization of O atoms

O(1) [12d: (0.5 0.25 0)]: Biso, Å2 – 2.2(2) 0.49(8)

q 0.025(1) 0.0089(3)

O(2) [6b: (0.5 0.5 0)]: Biso, Å2 – 2.1(7)

q 0.018(1)

RF; wRF 0.0072; 0.0041 0.0061; 0.0031

∆ρmax; ∆ρmin, e/Å3 0.35; –0.48 0.30; –0.35
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Fig. 1. The (100) sections of the deformation electron den-
sity for crystals (a) I (Nb), (b) II (NbO0.15), and (c) III
(NbO0.107). The isolines are spaced by 0.2 e/Å3.
C

space group that characterized the bcc structure of nio-
bium metal.

All calculations were carried out with the use of the
JANA98 program package. The structure characteris-
tics for all three crystals were determined and refined
according to the same scheme. The absorption correc-
tions were applied by numerical integration with
respect to the real habit of the crystals. Then the inten-
sities of X-ray reflections were converted into structure
factors taking into account the Lorentz and polarization
factors. The parameters of each structure were refined
using the same number of structure factors (31), which
were obtained by averaging the equivalent reflections
of the same hkl set. Cycles of the refinement by the full-
matrix least-squares method based on |F | were alter-
nated with cycles of the refinement based on F 2 . The
scale factor and the isotropic thermal parameter of the
Nb atom were refined using all independent reflections
with 0 < sinθ/λ < 1.07. Then, Biso of the Nb atom was
refined based on high-angle reflections with 0.7 <
sinθ/λ < 1.07. The deformation electron density maps,
which were constructed based on the refined data (Fig. 1),
revealed substantial dynamic (anharmonicity) or static
(splitting of the position) thermal displacements of the
Nb atoms along the coordination axes. This effect was
adequately parametrized using the sixth-order Gram–
Charlier expansion in series for the anharmonicity of
thermal atomic displacements (4.43 reflections per
parameter to be refined). Each probability density func-
tion for the displacements of the Nb atoms (Fig. 2) has
one maximum elongated along the coordination axes.
A comparative analysis of the difference electron den-
sity maps for crystals I, II, and III (Fig. 3) revealed
information about the positions of the oxygen atoms in
crystals II and I and provided evidence that crystals I
contained no oxygen. For each oxygen position, the
isotropic thermal parameter Biso and the occupancy q
were determined by minimizing the R factor as a func-
tion of these two correlating parameters. The R values
were obtained by refining the occupancies q at fixed
values of the Biso parameter, which was varied from 0.2
to 3.0 with a step of 0.1. Thereafter, the residual elec-
tron density maps were constructed for crystals II and
III (Fig. 4). All numerical characteristics of the refine-
ment obtained at each stage for crystals I, II, and III are
given in Table 2. (All results were obtained using all
independent reflections, except for the results of the
refinement based on high-angle reflections, which are
presented in the individual line.) Let us consider the
characteristic features of each crystal in more detail.

Compared to crystals II and III, crystal I (Table 2)
is characterized by the maximum size (Vcryst =
0.0125 mm3) and the highest R factor of averaging of
the symmetrically equivalent reflections (Rint = 0.033),
which is, apparently, responsible both for the highest
final R factors (RF = 0.0092 and wRF = 0.0049) and the
highest maxima of the residual electron density (∆ρ =
0.6 e/Å3). These maxima are located at a distance of
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Fig. 2. The (100) sections of the probability density func-
tions for displacements of Nb atoms in crystals (a) I, (b) II,
and (c) III.
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0.65 Å from the Nb atom in the {100} directions
(Fig. 3a). No other significant maxima that could be
identified as O atoms were revealed in this map. This is
in good agreement with the fact that crystal I was taken
from the sample of the cathodic precipitate with the
minimum oxygen content (NbOx < 0.01), and its unit-cell
parameter (a = 3.2969 Å) is close to the tabulated value
for oxygen-free Nb (Table 1). This crystal, which is vir-
tually devoid of oxygen, is characterized by the maxi-
mum amplitudes of thermal vibrations of the Nb atom
(Table 2) and by the substantially higher probability of
its thermal displacement compared to those observed in
oxygen-containing crystals II and III.

The volume of crystal II (Vcryst = 0.0088 mm3) is
30% smaller than that of crystal I. In addition, crystal II is
characterized by a better R factor for averaging equiva-

(b)

(a)

0
0

y/b
0.4 0.8
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z/
c

0

0.4

0.8

x = 0

Fig. 4. The (100) sections of the residual difference electron
density maps for crystals (a) II and (b) III. The isolines are
spaced by 0.2 e/Å3.
C

lent reflections (Rint = 0.025) and, consequently, by
lower final R factors (RF = 0.0072 and wRF = 0.0041).
The maximum ∆ρ value (0.69 e/Å3) in the difference
electron density map is observed in the position 12d:
(0.5 0.25 0) (Fig. 3b), which corresponds to the tetrahe-
dral cavity in the bcc Nb structure. Based on the fact
that the corresponding map for crystal I has no maxi-
mum in this position (Fig. 3a), whereas other character-
istics of the maps for crystal I are close to those for
crystal II, we localized the O atoms in the tetrahedral
cavities, whose centers are separated from the four
nearest Nb atoms by distances of ~1.85 Å. The lowest
R factor was obtained for the thermal parameter Biso =
2.2(2) Å2 and the occupancy of the oxygen position q =
0.025(1), which corresponds to the composition
NbO0.150(6). This composition agrees satisfactorily with
that of the corresponding cathodic product (NbO0.17(1))
determined by high-temperature oxidation (Table 1).
The residual electron density map for crystal II (Fig. 4a)
contains no additional significant maxima compared to
the corresponding map for crystal I (Fig. 3a). In spite of
the large parameters of anharmonicity of the Nb
atoms in crystal II compared to those in crystal I, the
amplitudes of the thermal displacements of Nb in
crystal II are half as large as those in crystal I (Table 2;
Figs. 1, 2).

The lowest final R factors (RF = 0.0061 and wRF =
0.0031) and the smallest maxima in the residual elec-
tron density map (∆ρ = 0.30 e/Å3) for crystal III corre-
late with the fact that it has the smallest volume (Vcr =
0.0012 mm3) and is characterized by the lowest R factor
for averaging equivalent reflections (Rint = 0.022). In
the difference electron density map for crystal III, the
highest peaks (∆ρ = 0.80 e/Å3) correspond to the octa-
hedral cavity in the Nb structure, i.e., to the position 6b:
(0.5 0.5 0) (Fig. 3c). No high ∆ρ values corresponding
to this position are observed in the maps for crystals I
and II (Figs. 3a and 3b, respectively). The distances
from the center of the octahedral cavity to the two near-
est Nb atoms and the four more remote Nb atoms are
1.66 Å and 2.34 Å, respectively. The second highest
maximum (∆ρ = 0.4 e/Å3) corresponds to the position
12d: (0.5 0.25 0), like that observed in the map for crys-
tal II (Fig. 3). The successive localization of the O atoms
in both these positions led to the minimum R factors for
qoct = 0.018(1) (Biso = 2.1(7) Å2) and qtetr = 0.0089(3)
(Biso = 0.49(8) Å2). Based on the results of the refine-
ment, crystal III has the composition NbO0.107(5). The
residual electron density map for crystal III (Fig. 4b) is
very similar to that for crystal II (Fig. 4a) and contains
no significant maxima. The character of the thermal
displacements of the Nb atoms in III is identical to that
in II (Table 2; Figs. 1b, 1c, 2b, 2c).
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RESULTS AND DISCUSSION

The positions of the O atoms in the structures of
cubic solid solutions of composition NbOx were local-
ized based on comparison of their difference electron
density maps with those for the structure of oxygen-
free Nb. All maps were constructed using identical sets
of structure factors, which were obtained under the
same experimental conditions from crystals character-
ized by virtually identical habit and perfection, which
allowed us to reveal essential differences in the crystal
structures without resorting to analysis of the details of
the difference electron density maps associated with the
conditions of X-ray data collections. The difference
electron density maps for NbOx differ essentially from
the map calculated for Nb in that the former maps have
maximum ∆ρ values corresponding to the centers of the
tetrahedral and octahedral cavities in the bcc Nb struc-
ture, which were identified as oxygen positions. The
fact that the residual electron density for NbOx is simi-
lar to that for Nb confirmed the validity of the determi-
nation and the numerical characteristics of the oxygen
positions. The positions of the O atoms in the Nb struc-
ture were revealed for the first time by direct X-ray dif-
fraction methods. As mentioned above, the theoretical
studies performed earlier provided evidence that oxy-
gen atoms can occupy both octahedral [13] and tetrahe-
dral [14] cavities in the bcc Nb structure.

The results of our study also demonstrated that the
arrangement of the O atoms depends on the mode of
preparation of the cubic solid solution of NbOx. In the
case of electrochemical precipitation on the cathode,
which was used for the preparation of crystals II, both
Nb and O atoms present in the melt were involved in the
formation of the crystal structure, and the oxygen
atoms in the crystal occupied the tetrahedral cavities in
the Nb structure. Upon surface oxidation of Nb crystals
in a solution of acids, O atoms occupy predominantly
the octahedral cavities (the occupancy of the octahedral
cavities is twice as large as that of the tetrahedral cavi-
ties, see Table 2). Taking into account that O atoms in
electrolytically prepared crystals II occupy only the tet-
rahedral cavities of the body-centered cubic structure of
Nb, we believe that O atoms in crystal III also occupied
the tetrahedral cavities in the course of formation of the
crystal on the cathode, whereas the octahedral cavities
were filled with O atoms upon its subsequent surface
oxidation in the solution of acids. The assumption that
the arrangement of oxygen atoms in the Nb structure
depends on the mode of preparation of the solid solu-
tion has been made in [12] based on the comparison of
the characteristic features of the preparation of oxygen-
containing niobium compounds by gas-phase reactions
with those using thermal surface oxidation of crystals
in air according to the mechanism of chemisorption
(the latter has been described in detail [5]). The authors
of the cited study [12] also believed that the crystal
structure of the solid phase is formed in the course of
gas-phase reactions with the simultaneous participation
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
of the O and Nb atoms, whereas O atoms are inserted
into the already existing structure of Nb upon surface
oxidation. Hence, the results of our study provide
experimental evidence for the earlier assumption [12]
that the positions that are occupied by oxygen atoms
depend on the mode of formation of the NbOx crystal.
We demonstrated that NbOx crystals prepared by elec-
trochemical crystallization and surface oxidation con-
tained oxygen atoms in the tetrahedral and octahedral
cavities, respectively, of the bcc Nb structure.

When comparing the amounts of oxygen dissolved
in the bcc Nb structure and the cubic unit-cell parame-
ters for crystals II and III (Table 1), it can be concluded
that the arrangement of O atoms in the octahedral cav-
ities of the structure (crystal III) leads to a sharper
increase in the a unit-cell parameter compared to crys-
tals in which oxygen atoms occupy tetrahedral cavities
(crystal II). The lower oxygen content in crystal III
corresponds to the larger a parameter. This fact is attrib-
utable to the presence of two Nb–O distances (~1.66 Å)
that are too short in the octahedra along the [100] direc-
tion. The tendency of Nb atoms to move apart along this
direction leads to an increase in the unit-cell parameter.

As mentioned above, the amplitudes of thermal dis-
placements of the Nb atoms in crystal I, which is virtu-
ally devoid of oxygen, are twice as large as those in
solid solutions of composition NbOx (crystals II and
III). This fact is indicative of the substantial influence
of oxygen on the dynamics of the crystal lattice of nio-
bium metal. On the whole, an increase in the numerical
parameters of the anharmonicity tensor for NbOx com-
pared to those for oxygen-free Nb (Table 2) is consis-
tent with the statement that the insertion of additional
atoms into the initial structure leads to an increase in
the anharmonicity.

CONCLUSIONS

It is very interesting that the maximum concentra-
tion of oxygen in cubic solid solutions of composition
NbOx, which were prepared by the electrolysis of salt
melts (up to 17 at. %, i.e., up to the composition
NbOx = 0.17), is many times higher than all known con-
centrations for solid solutions obtained by heating Nb
in air (0.5–1.5 at. % at 700–800°C and no higher than
7 at. % at 1700°C) [8, 15, 20, 21]. Apparently, the exter-
nal pressure should increase the solubility of O in Nb,
and it can be concluded that electrolytic crystallization
of NbOx solid solutions on the cathode exerts an effect
analogous to that which appears under high external
pressure. This conclusion is supported by the results of
our investigation. Thus, oxygen atoms in crystals II
prepared by the electrolytic method are located in the
tetrahedral cavities of the bcc Nb structure, whose vol-
ume is four times smaller than the volume of the octa-
hedral cavities occupied by oxygen upon surface oxida-
tion. In addition, the volume of the cubic unit cell of
crystal II of composition NbOx = 0.15, which was pre-
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pared by the electrolytic method, (36.2 Å3) is 4.3%
smaller than the volume of the tetragonally distorted
unit cell of suboxide Nb6O (37.78 Å3) of virtually the
same composition (NbO0.143) [4] and is 0.3% smaller
than the volume of the unit cell of crystal III, which
was prepared by surface oxidation and contained a
smaller amount of oxygen (NbOx = 0.107). Earlier [22],
we drew the conclusion that electrochemical crystalli-
zation on the cathode exerts an effect analogous to the
rise in the external pressure based on an analysis of the
characteristic features of the tetragonal modification of
β-Ta. This modification is generated only by electroly-
sis and is absent in the known T–P phase diagrams for Ta.
The structural defects caused by the replacement of
K atoms by Ta–Ta dumbbells were observed in the
cubic structure of KTa1 + zO3 bronze, which was also
prepared by the electrolysis of a salt melt [23]. These
defects are indicative of the presence of local centers
with a higher density in this perovskite-like structure,
which can be interpreted as the manifestation of the
effect analogous to that of external pressure. The syn-
thesis of diamond and diamond-like nucleation centers
(nanosized) upon electrolysis of alcoholic solutions
[24–27] also confirms the above assumptions.
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Abstract—The crystal structures of [Mn(Heida)(Phen)]2 · 7H2O (I) and [Mn2(Edta)(Phen)] · 4H2O (II) are
studied by X-ray diffraction [R1 = 0.0375 (0.0283) and wR2 = 0.0954 (0.0662) for 5449 (3176) observed reflec-
tions in I (II), respectively]. Structure I contains mononuclear mixed-ligand complexes [Mn(Heida)(Phen)] and
[Mn(Heida)(Phen)(H2O)]. In structure II, the [Mn(Edta)]2– anionic complexes and the [Mn(Phen)(H2O)2]2+

cationic complexes are linked by the bridging carboxyl groups into the tetramers with C2 symmetry. In both
compounds, two independent Mn atoms have different coordination numbers (6 and 7). © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION
Continuing our studies of the transition-metal

mixed-ligand compounds with aminocarboxylic acids
and N-heterocyclic ligands, we determined the crystal
structures of [Mn(Heida)(Phen)2 · 7H2O (I) and
[Mn2(Edta)(Phen)] · 4H2O (II), where H2Heida is
hydroxyethyliminodiacetic acid, H4Edta is ethylenedi-
aminetetraacetic acid, and Phen is 1,10-phenanthroline.

EXPERIMENTAL
Crystals I and II were prepared by slow evaporation

of aqueous solutions containing the monoligand com-
pound [Mn(Heida) · 2H2O or Mn3(HEdta)2 · 10H2O]
and Phen in equimolar amounts.

X-ray diffraction study. The main crystal data and
characteristics of the experiment and refinement for I
and II are summarized in Table 1. The experimental
sets of the I(hkl) intensities for crystals I and II were
obtained on an Enraf–Nonius CAD4 automated diffrac-
tometer (λMoKα, graphite monochromator, ω scan
mode).

Structures I and II were solved by the direct method
(SHELXS86 [1]). All the H atoms were located from
difference Fourier syntheses and refined isotropically.
The non-hydrogen atoms were refined in the anisotro-
pic approximation. For both crystals, the data were cor-
rected for absorption according to the azimuthal-scan
technique. The refinement was performed with the
SHELXL97 program [2].

The atomic coordinates and thermal parameters are
listed in Table 2. In structure II, the positions of the w3
and w5 water molecules, which are located in the vicin-
1063-7745/02/4702- $22.00 © 20245
ity of the twofold rotation axis and the center of sym-
metry, are populated by half. The oxygen atom of the
w4 water molecule is disordered over two equally pop-
ulated positions (A and B) so that the O(4wB) (x, y, z)
position is occupied in combination with O(5w) (x, y, z).

RESULTS AND DISCUSSION

Structure of crystals I. Crystals I are built of
monomeric mixed-ligand complexes of two types,
[Mn(1)(Heida)(Phen)(H2O)] and [Mn(2)(Heida)(Phen)]
(Fig. 1), and molecules of crystallization water. The
coordination of both Mn atoms includes three O atoms
and the N atom of the Heida2– tetradentate ligand and
two N atoms of the Phen molecules. The Mn(1) atom is
additionally coordinated by the O(1w) atom of the
water molecule. Thus, the Mn(1) and Mn(2) atoms have
different coordination numbers (7 and 6, respectively).
The Mn(2) polyhedron is a distorted trigonal prism.
Triangular bases of the prism, namely,
N(2A)N(3A)O(3A) and O(5A)O(1A)N(1A), form an
angle of 7.6°. In the projection onto the
N(2A)N(3A)O(3A) plane, the Mn(2)–O(1A) bond coin-
cides with the Mn(2)–N(3A) bond, whereas two other
pairs of bonds diverge noticeably: the
N(1A)Mn(2)O(3A) and O(5A)Mn(2)N(2A) pseudoan-
gles that characterize this divergence are 15° and 50°,
respectively. The Mn(1) polyhedron is a similar trigo-
nal prism with the N(2)N(3)O(3) and O(5)O(1)N(1)
bases, but the O(1)O(5)N(2)N(3) face is centered by the
O(1w) atom. The angle between the planes of the trian-
gular bases is 5.5°. In the projection onto the
N(2)N(3)O(3) plane, the Mn(1)–N(1) bond coincides
with the Mn(1)–O(3) bond, whereas two other pairs of
002 MAIK “Nauka/Interperiodica”
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Table 1.  Main crystal data and parameters of data collection and refinement for structures I and II

Parameter I II

Empirical formula C18H24MnN3O8.5 C22H28Mn2N4O12

M 473.34 650.36

Space group P C2/c

a, Å 10.276(2) 18.887(4)

b, Å 13.675(3) 14.584(3)

c, Å 14.989(3) 20.085(4)

α, deg 77.61(3) 90

β, deg 82.72(3) 108.45(3)

γ, deg 89.91(3) 90

V, Å3 2040.0(7) 5248(1)

Z 4 8

ρ(calcd), g/cm3 1.541 1.646

Crystal size, mm 0.12 × 0.21 × 0.75 0.09 × 0.21 × 0.33

µMo, mm–1 0.701 1.033

θmax, deg 27 28

Number of reflections:

   measured 8220 5435

   unique (N1) [Rint] 7812 [0.0169] 5281 [0.0256]

   with I > 2σ(I), (N2) 5449 3176

R1, wR2 for N1 0.0693, 0.1082 0.0889, 0.0787

R1, wR2 for N2 0.0375, 0.0954 0.0283, 0.0662

GOOF 0.998 0.981

∆ρmin and ∆ρmax, e Å–3 –0.681 and 0.538 –0.519 and 0.303

1

bonds diverge to an even larger degree than those in
the   Mn(2) polyhedron: the N(2)Mn(1)O(5) and
N(3)Mn(1)O(1) pseudoangles are 38° and 57°, respec-
tively.

The w(1) water molecule “pushes” the O(1), N(2),
and N(3) atoms in the coordination sphere of the Mn(1)
atom. The angles involving these atoms change most of
all in the Mn(1) polyhedron as compared to the corre-
sponding angles in the Mn(2) polyhedron:
O(1)MnO(3), 97.51(7)° and 140.89(8)°; O(1)MnO(5),
122.54(8)° and 88.51(8)°; O(1)MnN(2), 155.87(8)°
and 120.44(8)°; O(3)MnN(2), 80.56(7)° and 96.16(8)°;
N(1)MnN(3), 142.14(8)° and 126.82(8)°; and
N(1)MnN(2), 130.86(8)° and 155.91(8)° for Mn(1) and
Mn(2), respectively. The bonds with the Heida2– and
Phen ligands in the seven-coordinate complex of Mn(1)
are substantially elongated in comparison with the cor-
responding bonds in the Mn(2) complex [Mn–O,
2.201(2)–2.292(2) and 2.124(2)–2.239(2) Å; Mn–N(1),
2.427(2) and 2.314(2) Å; Mn–N(2), 2.303(2) and
2.241(2) Å; and Mn–N(3), 2.365(2) and 2.246(2) Å in
the Mn(1) and Mn(2) complexes, respectively].

The crystals of the initial compound
Mn(Heida) · 2H2O have a chain structure [3]. In addi-
C

tion to the N + 3O atoms of the Heida ligand, the coor-
dination of the Mn atom includes the water molecule
and the carbonyl O atom of the neighboring complex in
the trans positions with respect to the oxygen atom of
the hydroxyethyl group and the nitrogen atom, respec-
tively. In the [Mn(Heida)(Phen)] complex of com-
pound I, the N(2A) and N(3A) atoms of the Phen mol-
ecule are situated trans relative to N(1A) and the car-
boxyl O(1A) atom. This indicates that, when interacting
with Phen in a solution, the initial monoligand complex
undergoes a transformation.

In crystal I, ligands of the same type (both Heida
and Phen) are packed into separate layers, which are
parallel to the xy plane and alternate in the direction of
the z-axis. The water molecules are situated inside the
hydrophilic Heida layer and, together with the OH
groups of the hydroxyethyl branches, form an extensive
system of hydrogen bonds (Table 3). The Phen mole-
cules from different complexes [Mn(1) and Mn(2)] are
approximately parallel to each other (the dihedral angle
between their mean planes is 8.6°) and to the xz plane.
The Phen molecules of the identical complexes form
centrosymmetric pairs with interplanar spacings equal
to 3.40 and 3.35 Å. These pairs are arranged in such a
way that, in the projection onto their own plane, each
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Table 2.  Coordinates and parameters of thermal vibrations Ueq of the non-hydrogen atoms in structures I and II

Atom x y z Ueq, Å2 Atom x y z Ueq, Å2

I
Mn(1) 0.57101(4) 0.11702(3) 0.75551(2) 0.0271(1) O(4A) 0.9226(2) 0.9153(1) 0.7553(2) 0.0446(5)
O(1) 0.4090(2) 0.1099(2) 0.8719(1) 0.0451(5) O(5A) 0.6229(2) 0.5940(2) 0.7609(1) 0.0434(5)
O(2) 0.3539(2) 0.1012(2) 1.0214(1) 0.0396(4) N(1A) 0.8058(2) 0.6634(2) 0.8605(1) 0.0315(5)
O(3) 0.5638(2) 0.2784(1) 0.6956(1) 0.0342(4) N(2A) 0.7883(2) 0.6316(2) 0.5723(1) 0.0300(5)
O(4) 0.5323(2) 0.4322(1) 0.7175(1) 0.0397(4) N(3A) 1.0289(2) 0.6173(2) 0.6292(1) 0.0322(5)
O(5) 0.7837(2) 0.0814(2) 0.7788(2) 0.0422(5) C(1A) 0.8472(4) 0.5766(2) 0.9279(2) 0.0406(7)
N(1) 0.6358(2) 0.2072(2) 0.8665(1) 0.0285(4) C(2A) 0.8759(3) 0.4851(2) 0.8878(2) 0.0335(6)
N(2) 0.6633(2) 0.1183(2) 0.6025(1) 0.0327(5) C(3A) 0.8802(3) 0.7563(2) 0.8561(2) 0.0407(7)
N(3) 0.4035(2) 0.1015(2) 0.6705(1) 0.0330(5) C(4A) 0.8901(3) 0.8263(2) 0.7607(2) 0.0338(6)
C(1) 0.5735(3) 0.1522(2) 0.9566(2) 0.0327(6) C(5A) 0.6636(3) 0.6805(2) 0.8761(2) 0.0449(7)
C(2) 0.4346(3) 0.1188(2) 0.9498(2) 0.0322(6) C(6A) 0.5840(3) 0.5986(3) 0.8547(2) 0.0498(8)
C(3) 0.5835(3) 0.3080(2) 0.8446(2) 0.0367(6) C(7A) 0.6705(3) 0.6383(2) 0.5435(2) 0.0372(6)
C(4) 0.5588(2) 0.3416(2) 0.7446(2) 0.0284(5) C(8A) 0.6509(3) 0.6475(2) 0.4522(2) 0.0429(7)
C(5) 0.7795(3) 0.2109(2) 0.8603(2) 0.0350(6) C(9A) 0.7570(3) 0.6486(2) 0.3878(2) 0.0425(7)
C(6) 0.8368(3) 0.1122(2) 0.8514(2) 0.0382(6) C(10A) 0.8838(3) 0.6395(2) 0.4141(2) 0.0345(6)
C(7) 0.7880(3) 0.1257(2) 0.5682(2) 0.0412(6) C(11A) 0.9983(3) 0.6348(2) 0.3517(2) 0.0438(7)
C(8) 0.8341(4) 0.1392(2) 0.4745(2) 0.0491(8) C(12A) 1.1163(3) 0.6236(2) 0.3804(2) 0.0442(7)
C(9) 0.7448(4) 0.1448(2) 0.4135(2) 0.0489(8) C(13A) 1.1330(3) 0.6183(2) 0.4748(2) 0.0361(6)
C(10) 0.6109(3) 0.1372(2) 0.4464(2) 0.0405(7) C(14A) 1.2545(3) 0.6072(2) 0.5081(2) 0.0441(7)
C(11) 0.5109(4) 0.1413(2) 0.3871(2) 0.0501(8) C(15A) 1.2603(3) 0.6000(2) 0.5995(2) 0.0477(7)
C(12) 0.3836(4) 0.1304(2) 0.4208(2) 0.0493(8) C(16A) 1.1463(3) 0.6060(2) 0.6581(2) 0.0422(7)
C(13) 0.3421(3) 0.1162(2) 0.5177(2) 0.0402(7) C(17A) 1.0223(3) 0.6229(2) 0.5386(2) 0.0289(5)
C(14) 0.2102(3) 0.1049(2) 0.5564(2) 0.0493(8) C(18A) 0.8939(3) 0.6324(2) 0.5083(2) 0.0282(5)
C(15) 0.1777(3) 0.0915(3) 0.6488(3) 0.0542(8) O(1w) 0.5608(2) –0.0512(2) 0.8062(2) 0.0399(5)
C(16) 0.2776(3) 0.0908(2) 0.7043(2) 0.0421(7) O(2w) 0.6975(3) 0.5340(2) 0.1633(2) 0.0691(8)
C(17) 0.4372(3) 0.1138(2) 0.5780(2) 0.0303(5) O(3w) 1.0793(2) –0.0650(2) –0.1095(2) 0.0501(5)
C(18) 0.5733(3) 0.1235(2) 0.5426(2) 0.0322(6) O(4w) 1.1130(2) 0.1106(2) –0.0456(2) 0.0464(5)
Mn(2) 0.83664(4) 0.62937(3) 0.71467(2) 0.0292(1) O(5w) 0.8863(3) 0.6836(2) 0.1376(2) 0.0613(7)
O(1A) 0.8791(2) 0.4925(1) 0.8025(1) 0.0452(5) O(6w) 0.6836(3) 0.1547(2) 0.1698(2) 0.0567(6)
O(2A) 0.8973(2) 0.4061(2) 0.9430(1) 0.0481(5) O(7w) 0.7789(3) 0.3534(2) 0.1226(2) 0.0727(8)
O(3A) 0.8704(2) 0.7885(1) 0.6940(1) 0.0399(4)

II
Mn(1) 0.08620(2) 0.09652(3) 0.22297(2) 0.0215(1) C(8) 0.1783(2) 0.2668(2) 0.2636(2) 0.0349(7)
Mn(2) 0.00082(2) 0.17946(3) 0.02785(2) 0.0243(1) C(9) 0.2311(2) –0.0142(2) 0.3097(2) 0.0284(6)
O(1) 0.0357(1) 0.0950(1) 0.3188(1) 0.0260(4) C(10) 0.2609(2) 0.0763(2) 0.2933(2) 0.0316(7)
O(2) 0.0770(1) 0.1076(1) 0.4354(1) 0.0307(4) C(11) 0.1249(2) 0.2617(3) –0.0355(2) 0.053(1)
O(3) 0.0769(1) –0.0454(1) 0.1799(1) 0.0303(4) C(12) 0.1691(2) 0.3275(3) –0.0516(2) 0.068(1)
O(4) 0.0868(1) –0.1952(1) 0.2013(1) 0.0385(5) C(13) 0.1682(2) 0.4144(3) –0.0282(2) 0.059(1)
O(5) 0.0939(1) 0.1186(1) 0.1098(1) 0.0269(4) C(14) 0.1234(2) 0.4361(2) 0.0136(2) 0.0407(8)
O(6) 0.1548(1) 0.0480(2) 0.0452(1) 0.0422(5) C(15) 0.1168(2) 0.5260(2) 0.0398(2) 0.050(1)
O(7) 0.1193(1) 0.2292(1) 0.2670(1) 0.0405(5) C(16) 0.0759(2) 0.5412(2) 0.0819(2) 0.048(1)
O(8) 0.2023(1) 0.3431(2) 0.2885(1) 0.0529(6) C(17) 0.0358(2) 0.4688(2) 0.1023(2) 0.0383(8)
N(1) 0.1545(1) –0.0036(1) 0.3138(1) 0.0233(5) C(18) –0.0077(2) 0.4822(2) 0.1467(2) 0.0506(9)
N(2) 0.2107(1) 0.1151(1) 0.2267(1) 0.0252(5) C(19) –0.0470(2) 0.4099(3) 0.1604(2) 0.0525(9)
N(3) 0.0820(1) 0.2780(2) 0.0041(1) 0.0353(6) C(20) –0.0429(2) 0.3248(2) 0.1300(2) 0.0424(8)
N(4) –0.0021(1) 0.3095(2) 0.0886(1) 0.0317(5) C(21) 0.0380(2) 0.3806(2) 0.0751(1) 0.0313(7)
C(1) 0.1552(2) 0.0339(2) 0.3817(1) 0.0255(6) C(22) 0.0820(2) 0.3641(2) 0.0299(1) 0.0307(6)
C(2) 0.0830(1) 0.0826(2) 0.3781(1) 0.0225(5) O(1w) 0.0156(1) 0.0836(2) –0.0478(1) 0.0407(6)
C(3) 0.1157(2) –0.0923(2) 0.2991(1) 0.0256(6) O(2w) –0.0912(2) 0.2296(2) –0.0638(1) 0.0403(6)
C(4) 0.0917(2) –0.1139(2) 0.2204(1) 0.0267(6) O(3w)* 0.009(2) 0.6743(5) 0.261(2) 0.134(8)
C(5) 0.2192(2) 0.0676(2) 0.1658(1) 0.0293(6) O(4wA)* 0.7267(4) 0.3667(5) 0.0681(4) 0.049(2)
C(6) 0.1508(2) 0.0788(2) 0.1012(1) 0.0264(6) O(4wB)* 0.7594(4) 0.3913(5) 0.0702(5) 0.051(2)
C(7) 0.2224(2) 0.2149(2) 0.2242(2) 0.0339(7) O(5w)* 0.7220(3) 0.2115(4) 0.0383(3) 0.057(1)

* Site occupancy is 0.5.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002



248 POLYAKOVA et al.
(a)

(b)

C(15)

C(14)

C(13)

C(12)

C(11)

C(10)

C(9)

C(8)

C(7)

C(6)

C(5)

C(4)

C(3)

C(1)

C(2)

N(1)

O(4)O(3)

O(5)

N(2)

C(18)

C(17)

N(3)

C(16)

O(1)

O(2)

O(1W)

Mn(1)

C(9A)

C(8A)

C(11A)

C(10A)

C(12A)

C(14A)

C(15A)

C(16A)

N(3A)

O(3A) C(4A)

O(4A)

C(3A)

N(1A)

C(5A)

C(6A)

O(5A)

O(2A) C(1A)

O(1A)
C(2A)

Mn(2)N(2A)

C(18A)

C(17A)

C(13A)

Fig. 1. Structure of (a) [Mn(Heida)(Phen)(H2O)] and (b) [Mn(Heida)(Phen)] complexes in I. The H atoms are omitted.

C(7A)
Fig. 2. Structure of the {[Mn(Edta)][Mn(Phen)(H2O)2]}2 tetramer in II. The H atoms are omitted.
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Table 3.  Characteristics of hydrogen bonds in structures I and II

X–H ⋅ ⋅ ⋅Y Symmetry transformation 
for the Y atom

Distance, Å X–H ⋅ ⋅ ⋅Y
angle, degX ⋅ ⋅ ⋅Y H ⋅ ⋅ ⋅Y

I
O(1w)–H(1w1) ⋅ ⋅ ⋅O(6w) 1 – x, –y, 1 – z 2.829(4) 2.02(4) 174(4)

O(1w)–H(2w1) ⋅ ⋅ ⋅O(2) 1 – x, –y, 2 – z 2.779(3) 2.02(4) 174(4)

O(2w)–H(1w2) ⋅ ⋅ ⋅O(4) 1 – x, 1 – y, 1 – z 2.875(4) 2.12(4) 158(3)

O(2w)–H(2w2) ⋅ ⋅ ⋅O(5w) x, y, z 2.754(5) 1.94(4) 174(4)

O(3w)–H(1w3) ⋅ ⋅ ⋅O(4A) x, y – 1, z – 1 2.799(3) 1.97(4) 167(4)

O(3w)–H(2w3) ⋅ ⋅ ⋅O(4w) 2 – x, y, z 2.813(4) 1.90(6) 178(6)

O(4w)–H(1w4) ⋅ ⋅ ⋅O(2) 1 + x, y, z – 1 2.780(3) 2.08(4) 175(4)

O(4w)–H(2w4) ⋅ ⋅ ⋅O(3w) x, y, z 2.806(3) 1.70(7) 169(5)

O(5w)–H(1w5) ⋅ ⋅ ⋅O(2A) 2 – x, 1 – y, 1 – z 2.803(4) 2.01(4) 164(6)

O(5w)–H(2w5) ⋅ ⋅ ⋅O(4w) 2 – x, 1 – y, –z 2.857(4) 2.07(5) 173(5)

O(6w)–H(1w6) ⋅ ⋅ ⋅O(7w) x, y, z 2.802(4) 1.94(4) 168(4)

O(6w)–H(2w6) ⋅ ⋅ ⋅O(3w) 2 – x, – y, –z 2.857(4) 2.14(5) 161(5)

O(7w)–H(1w7) ⋅ ⋅ ⋅O(2A) x, y, z – 1 2.755(4) 1.88(5) 175(5)

O(7w)–H(2w7) ⋅ ⋅ ⋅O(2w) x, y, z 2.772(4) 1.88(5) 177(4)

O(5)–H(5O) ⋅ ⋅ ⋅O(4A) x, y – 1, z 2.743(3) 1.99(4) 170(4)

O(5A)–H(5OA) ⋅ ⋅ ⋅O(4) x, y, z 2.639(3) 1.79(3) 170(3)

II
O(1w)–H(1w1) ⋅ ⋅ ⋅O(3) –x, –y, –z 2.732(3) 1.85(4) 172(4)

O(1w)–H(2w1) ⋅ ⋅ ⋅O(2) x, –y, z – 0.5 3.079(3) 2.43(4) 139(4)

O(1w)–H(2w1) ⋅ ⋅ ⋅O(6) x, y, z 2.750(3) 2.14(4) 132(4)

O(2w)–H(1w2) ⋅ ⋅ ⋅O(4) –x, –y, –z 2.834(3) 2.12(4) 174(4)

O(2w)–H(2w2) ⋅ ⋅ ⋅O(5w) 0.5 – x, 0.5 – y, –z 2.812(7) 2.18(5) 154(4)

O(2w)–H(2w2) ⋅ ⋅ ⋅O(4wA) 0.5 – x, 0.5 – y, –z 2.897(8) 2.33(5) 142(5)

O(3w)–H(1w3) ⋅ ⋅ ⋅O(4) x, 1 + y, z 2.89(3) 2.23(8) 149(8)

O(3w)–H(1w3) ⋅ ⋅ ⋅O(4) –x, 1 + y, 0.5 – z 2.89(3) 2.23(8) 149(8)

O(4wA)–H(1w4) ⋅ ⋅ ⋅O(8) 1 – x, y, 0.5 – z 2.787(8) 1.93(4) 163(4)

O(4wA)–H(2w4) ⋅ ⋅ ⋅O(6) 0.5 + x, 0.5 + y, z 2.942(8) 2.01(5) 172(4)

O(4wB)–H(1w4) ⋅ ⋅ ⋅O(8) 1 – x, y, 0.5 – z 2.788(9) 1.93(4) 163(4)

O(4wB)–H(2w4) ⋅ ⋅ ⋅O(6) 1 – x, y, 0.5 – z 2.958(8) 2.01(5) 147(4)

O(5w)–H(1w5) ⋅ ⋅ ⋅O(4wA) 1.5 – x, 0.5 – y, –z 2.85(1) 1.98(7) 159(6)

O(5w)–H(2w5) ⋅ ⋅ ⋅O(4wB) x, y, z 2.739(9) 1.89(9) 154(7)

C(18)–H(18) ⋅ ⋅ ⋅O(3w) –x, y, 0.5 – z 3.37(2) 2.36(4) 170(3)

C(13)–H(13) ⋅ ⋅ ⋅O(4wB) 1 – x, 1 – y, –z 3.368(9) 2.47(4) 164(3)

C(20)–H(20) ⋅ ⋅ ⋅O(7) –x, y, 0.5 – z 3.193(4) 2.42(3) 141(2)

C(15)–H(15) ⋅ ⋅ ⋅O(5w) x – 0.5, 0.5 + y, z 3.363(7) 2.47(3) 157(3)

C(16)–H(16) ⋅ ⋅ ⋅O(2w) –x, 1 – y, –z 3.385(4) 2.65(3) 136(2)
molecule overlaps with two other Phen molecules,
which results in the formation of the layer. The shortest
intermolecular C···C distances in the layer are 3.292–
3.536 Å.

Structure of crystals II. Structure II is built of the
{[Mn(1)(Edta)][Mn(2)(Phen)(H2O)2]}2 associates with
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
the C2 symmetry (Fig. 2) and molecules of crystalliza-
tion water. The Mn(1) atom is coordinated by the N(1),
N(2), O(1), O(3), O(5), and O(7) atoms of the Edta4–

ligand and the O(1)' atom of the neighboring complex
that is related to the reference one by the twofold rota-
tion axis. Thus, two anionic complexes are linked by
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the O(1) and O(1)' bridging atoms into the dimer. The
Mn(1)–O(1)–Mn(1)'–O(1)' four-membered ring is
almost planar: the angle of folding along the O(1)–
O(1)' segment is 1.4°. The Mn(1)–O(1)–Mn(1)' bridge
has an asymmetric structure [2.403(2) and 2.187(2) Å].
The Mn(2) atom is coordinated by the N(3) and N(4)
atoms of the Phen molecule, the O(1w) and O(2w)
atoms of water molecules, and the O(5) and O(2)' atoms
of the Edta ligands from the two moieties of the dimer.
The coordination numbers of the Mn(1) and Mn(2) are
7 and 6, respectively.

Note that, in the crystals of the initial compound
Mn3(HEdta)2 · 10H2O, the Mn atoms also form com-
plexes of two types, namely, the anionic complexes
[Mn(HEdta)(H2O)]– and the cationic complexes
[Mn(H2O)4]2+, which are linked by the bridging car-
boxyl groups into the centrosymmetric trinuclear asso-
ciates [4, 5].

A similar division of the Mn2+ ions into the anionic
and cationic complexes with coordination numbers 7
and 6 is observed in the [Mn(H2O)4][Mn(Edta)(H2O)] ·
4H2O compound (III) [6]. In the anionic moiety, in con-
trast to II, the seventh vertex in the Mn environment is
occupied by the water molecule. In the cationic moiety,
the Mn octahedron consists of four O atoms of water
molecules and two O atoms of the carboxyl groups of
two neighboring anionic complexes. Thus, the cationic
and anionic complexes alternate to form the chains.

In the series of Mn2+ ethylenediaminetetraacetates
with different cations, the structure of the complex
remains the same: the Mn atom is coordinated by the
hexadentate Edta4– ligand and the water molecule.
Some of these compounds (Cat = Li+ [7], Na+, Rb+ [6],
and Nd3+ [8]), like III, have polymeric structures, and

others (Cat =  and Mg2+ [6]) contain isolated
anionic complexes. The tetranuclear structure found in
compound II has not been observed earlier among the
Mn2+ complexes with Edta4–.

The Mn(1) polyhedron in II is a distorted mono-
capped trigonal prism with the N(1)O(1)O(3) and
N(2)O(5)O(7) triangular bases and the O(1)' atom cen-
tering the O(1)O(3)O(5)O(7) face. The bases of the
prism are almost parallel (the dihedral angle is 2.5°) but
are twisted by an angle of ~20°. In structure III, the
seven-vertex polyhedron of the Mn atom is also
described as a monocapped trigonal prism with the N
and O atoms of the Edta4– ligand at the vertices of the
bases and the H2O molecule in the “cap.”

Although the seven-coordinate manganese com-
plexes in II and III are similar in structure, their Mn–
Lig bond lengths differ significantly. In II, the Mn–N
bonds [2.345(2) and 2.374(2) Å] are shorter and the
spread of the Mn–O bond lengths [2.137(2)–2.403(2) Å]

NH4
+

C

is larger than that in III [2.386(9) and 2.430(9);
2.16(2)–2.25(2) Å, respectively]. These differences are
at least in part attributed to the difference in the func-
tions of the carboxyl groups in the two structures.

The O–H···O hydrogen bonds involving the w1, w2,
and w4 water molecules link the tetramers into the
three-dimensional framework (Table 3). The Phen mol-
ecules contribute to the stabilization of the structure
through the formation of the C–H···O hydrogen bonds.
In addition, the stacking interactions link the Phen mol-
ecules into the centrosymmetric pairs with the interpla-
nar spacing equal to 3.32 Å and the shortest intermolec-
ular C···C distances equal to 3.355–3.478 Å.

Thus, the addition of phenanthroline to aqueous
solutions of the monoligand Mn2+ complexes with
Heida2– and HEdta3– results, in the former case, in the
formation of the mixed-ligand [Mn(Heida)(Phen)] and
[Mn(Heida)(Phen)(H2O)] complexes in which each
metal atom is chelated by both ligands and, in the latter
case, in the formation of the separate chelate complexes
[Mn(Edta)]2– and [Mn(Phen)(H2O)2]2+ which are linked
by the bridging carboxyl groups into the tetramers.
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Abstract—The crystal packings of two charge-transfer complexes based on tetrathiafulvalene and substituted
fluorenes—2,4,5,7-tetranitro-9-dicyanomethylenefluorene (in complex I) or 2,7-dicyano-4,5-dinitro-9-dicya-
nomethylenefluorene (in complex II)—are analyzed. Crystals of complex II involve a third component,
namely, C6H5Cl solvate molecules. Crystals of both complexes are characterized by the formation of stacks
composed of alternating donor and acceptor molecules and sheets in which the molecules are linked through
different-type weak interactions. In structure II, chlorobenzene molecules occupy cavities that are formed in
stacks in the vicinity of the tetrathiafulvalene molecules due to the larger difference in size of the donor and
acceptor molecules in complex II as compared to that in complex I. The chlorobenzene molecules provide a
close packing. These molecules are involved in the system of weak interactions to form the Cl···N and C–H···N
secondary bonds with the CN groups of the acceptor molecules in the sheets. © 2002 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

Molecular organic conductors have been studied
extensively over the last two decades [1]. After the dis-
covery of the first stable charge-transfer complex with
a metallic conductivity, namely, the complex of
1063-7745/02/4702- $22.00 © 20251
tetrathiafulvalene (TTF) with 7,7,8,8-tetracyanoquin-
odimethane (TCNQ) [2], a great number of donors—
tetrathiafulvalene derivatives—have been synthesized
[1–4]. The chemical diagrams of the corresponding
compounds are shown in Scheme I.
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Scheme I.
However, the structure of acceptors has not been
adequately investigated. There had been only a few
works dealing with charge-transfer complexes and rad-
ical ion salts that contained acceptors other than TCNQ
002 MAIK “Nauka/Interperiodica”
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molecules [5] until the discovery of the new type of
acceptors, namely, N,N'-dicyano-1,4-quinodiimines
(DCNQI) [6–9]. Radical ion salts 2,5-X,Y-DCNQI with
Li, Na, K, Tl, and Ag possess the properties of metallic
semiconductors, whereas the radical ion salts with Cu
have an extremely high metallic (three-dimensional)
conductivity [10].

The use of substituted fluorenes with different sub-
stituents in the 2- and 7-positions (and in the 4- and 5-
positions) as acceptors in charge-transfer complexes
makes it possible to change substantially the size and
the shape of acceptor molecules, thus affecting the
packing of the donor and acceptor molecules in crys-
tals. The electrical conductivity of these charge-transfer
complexes can vary by six orders of magnitude [7–10].
Undoubtedly, the electrical conductivity should be gov-
erned by the specific features of the supramolecular
structure (crystal packing) of charge-transfer com-
plexes. The elucidation of the regularities in the archi-
tecture of their crystals is important for the modeling of
the structure of charge-transfer complexes with the
highest conductivity. Recent investigations into the
supramolecular architecture revealed the interrelation
between the structure of crystals and their properties
[11–16].

In the present work, we analyzed how the replace-
ment of the substituent in the electron-acceptor compo-
nent of the charge-transfer complex affects its crystal
packing by using the example of two fluorene charge-
transfer complexes with the same tetrathiafulvalene
molecule as a donor component. The properties of these
and related charge-transfer complexes either have
already been understood or are being investigated
intensively. In particular, it was established that the
electronic properties of fluorene acceptors are compa-
rable to those of TCNQ and DCNQI derivatives. The
fluorene acceptors readily form the charge-transfer
complexes with aromatic electron donors [17, 18].
These complexes often possess semiconductor proper-
C

ties and photoconductivity [17, 19–21]. Recently, Hori-
uchi et al. [22] revealed a metallic conductivity in
charge-transfer complexes of bis(ethylene-
dioxy)tetrathiafulvalene (BEDO-TTF) with fluorene
electron acceptors such as 2,4,7-trinitro-9-dicyanome-
thylenefluorene (DTF) and 2,4,5,7-tetranitro-9-dicya-
nomethylenefluorene (DTeF): σ = 65 S cm–1 at 298 K
and σ = 390 S cm–1 at 8 K for BEDO-TTF : DTF = 2 : 1
and σ = 18 S cm–1 at 298 K and σ = 32 S cm–1 at 94 K
for BEDO-TTF : DTeF = 2 : 1 (pressed pellets).

In this work, we investigated the crystal structures of
two charge-transfer complexes based on substituted flu-
orenes and tetrathiafulvalene. Compound I is the
tetrathiafulvalene complex with 2,4,5,7-tetranitro-9-
dicyanomethylenefluorene (TTF : DTeF = 1 : 1). Com-
pound II is the tetrathiafulvalene complex with 2,7-di-
cyano-4,5-dinitro-9-dicyanomethylenefluorene (DDDF)
and chlorobenzene (Sol) C6H5Cl (TTF : DDDF : Sol =
1 : 1 : 1). These charge-transfer complexes differ in
degrees of misfit in the shape and size of the donor (D)
and acceptor (A) molecules. Moreover, different sub-
stituents (NO2 and CN groups) in the 2- and 7-positions
of the acceptor molecules impose different geometric
constraints on the formation of intermolecular second-
ary bonds that are responsible for the specific features
of the molecular packing motif in crystals. At the same
time, the DTeF and DDDF fluorene acceptors are
closely similar in electron-acceptor properties (the
electron affinities are 2.71 and 2.77 eV, respectively)
[23]. Therefore, the differences in crystal packings of
compounds I and II can be determined only by the
aforementioned factors (different sizes and geometric
constraints on the formation of intermolecular second-
ary bonds).

The synthesis, properties, and X-ray molecular
structures of these charge-transfer complexes were
described in our earlier work [23]. The donor and
acceptor components of the studied complexes with the
atomic numbering are shown in Scheme II.
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STACKING MOTIFS IN STRUCTURES I AND II

Two crystallographically independent solvent mole-
cules in structure II are located at the centers of sym-
metry and, hence, are disordered over two positions
with the same occupancy. These molecules occupy the
centers of symmetry of two different systems (i and j)
and exhibit different types of disordering. The type of
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Fig. 1. Stacking structure of charge-transfer complex I.
disordering of the solvent molecules is depicted in
Scheme III.

The molecule at the left is disordered with respect to
the symmetry center of the system i. This center of
symmetry coincides with the center of the benzene
ring. The centers of the benzene rings of two disordered
components of the molecule at the right are displaced
from the symmetry center of the system j in opposite
directions.

Crystals I and II are characterized by the same
stacking motif of alternating donor and acceptor mole-
cules (Figs. 1, 2), which is typical of charge-transfer
complexes. In both crystals, the stacks are aligned
along the shortest unit-cell dimension. The nearest-
neighbor like molecules inside each stack are related by
the translation. The replacement of two NO2 groups in
the 2- and 7-positions of fluorene (in molecule I) by the
CN groups (molecule II) leads to an increase in the lin-
ear size of the acceptor molecule. Therefore, in order to
provide a close crystal packing, an additional structural
block, namely, the solvent molecule, should be intro-
duced into the crystal lattice of compound II. The chlo-
robenzene solvate molecules that belong to the symme-
try center system i fill part of the free intrastack space
and partially occupy cavities between the stacks (Fig. 2).
The solvate molecules belonging to the symmetry cen-
ter system j occupy the interstack space and are

Cl(1) Cl(1) Cl(2) Cl(2)

Scheme III.
LLOGRAPHY REPORTS      Vol. 47      No. 2      2002
arranged at a small angle with respect to the a axis in
the crystal. However, the structural function of these
molecules is not confined only to ensuring a close crys-
tal packing.

In both structures, the mean planes of the donor and
acceptor molecules are not strictly parallel to each
other. The table presents the short intermolecular dis-
tances in the stacking triad with the tetrathiafulvalene
molecule sandwiched between two acceptor molecules
(“above” and “below”). The mutual orientations of
molecules in these triads are shown in Figs. 3 and 4 in
projections onto the mean plane of one of the fluorene
fragments. It can be seen from these figures that the
stacking structures of complexes I and II differ qualita-
tively. The acceptor molecules with the tetrathiaful-
valene molecule in between are displaced relative to
each other in their own planes in structure II to a greater
extent than in structure I. In structures I and II, the cen-
tral tetrathiafulvalene molecules are differently located
with respect to the fluorene fragments. In structure I,
the double bond between heterocycles is actually pro-
jected outside the tricyclic system. In structure II, the
double bond predominantly lies between the fluorene
tricycles of the upper and lower molecules, even though
the chlorobenzene molecule is also located between the
two acceptor molecules. This means that the stacking
interaction between the donor and acceptor molecules
only slightly depends, at least within certain limits, on
their mutual displacements and rotations in parallel
planes. The data presented in the table also indicate dif-
ferences in mutual packings of molecules in the stack:
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Fig. 2. Stacking structure of charge-transfer complex II and location of solvate molecules of both types.
the short intrastack intermolecular contacts in struc-
tures I and II are different.

Compounds I and II have a common feature in their
stacking structure—the intermolecular contacts of the
tetrathiafulvalene molecule with one acceptor molecule
are generally shorter than those with the other acceptor
molecule. This implies that the pair donor–acceptor
π−π interactions contribute substantially to the stacking
motif of crystal packing.

The described (qualitative and quantitative) differ-
ences in the stacking motifs of structures I and II can
be associated with the formation of different systems of
intermolecular secondary bonds in the crystals. These
bonds are accomplished through different electron–
electron interactions (n–σ*, n–π*, and p–π*) with the
participation of functional groups of the acceptor and
donor molecules. These interactions can change the
ratio between the highest occupied and lowest unoccu-
pied molecular orbital levels in the donor and acceptor
molecules and, hence, can influence the ability of these
molecules to transfer electrons; i.e., these interactions
can affect the properties of the charge-transfer com-
plex. In this respect, there is a need to examine the sys-
tems of directional secondary bonds and the structural
units formed in the crystals as a result of these interac-
tions.
C

TWO-DIMENSIONAL MOTIFS
IN STRUCTURES I AND II

The crystal structures of both compounds, apart
from the stacks, involve infinite sheets of molecules
linked through weak interactions. These sheets in struc-
tures I and II differ in appearance and geometry.

Figure 5 shows the puckered sheet of the acceptor
and donor molecules linked through different-type sec-
ondary interactions in crystal I. Each donor molecule
forms five short contacts containing three sulfur atoms
and two C–H fragments involved in the hydrogen
bonds with the CN and NO2 groups of the neighboring
acceptor molecules. Each acceptor molecule is
involved in five weak interactions with the neighboring
donor molecules through the oxygen atoms of the NO2
groups and the CN group. The contacts S(1)···O(3)
(3.10 Å), S(2)···O(8) (3.20 Å), and S(4)···O(5) (3.24 Å)
are somewhat shorter than or comparable to the sum of
the van der Waals radii. The O(3) and O(8) oxygen
atoms are virtually aligned with one of the S–C bonds
of the relevant sulfur atom: the O(3)···S(1)–C(1') angle
is equal to 162.8° and the O(8)···S(2)–C(1') angle is
162.2°. The observed geometry of the short contacts is
typical [24, 25] and corresponds to the n–σ* interaction
with the participation of the sp2 orbital of the lone elec-
tron pair of the oxygen atom in the NO2 group and the
σ* orbital of the S–C bond. This geometry is in agree-
ment with the n–π* interaction involving the p orbital
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Short intrastack contacts (Å) between the tetrathiafulvalene molecule and two substituted fluorene molecules located above
(molecule A) and below (molecule B) in structures I and II

I II

TTF–DTeF(A) TTF–DTeF(B) TTF–DDDF(A) TTF–DDDF(B)

S(1)–C(8) 3.32 S(1)–C(9) 3.63 S(1)–C(4) 3.61 S(1)–C(11) 3.37

S(2)–C(11) 3.22 S(1)–C(13) 3.60 S(2)–C(2) 3.47 S(1)–C(12) 3.42

S(2)–C(12) 3.39 S(2)–C(10) 3.67 S(2)–C(17) 3.55 S(2)–C(10) 3.45

S(2)–O(4) 3.12 S(2)–C(11) 3.66 S(3)–C(10) 3.86 S(2)–C(1) 3.40

S(4)–C(14) 3.20 S(3)–C(1) 3.64 S(3)–C(1) 3.87 S(2)–C(9) 3.73

S(4)–C(16) 3.42 S(3)–O(1) 3.44 S(4)–C(11) 3.72 S(3)–C(14) 3.22

S(4)–C(15) 3.36 S(4)–C(15) 3.64 S(4)–C(12) 3.46 S(3)–C(15) 3.25

C(1')–C(9) 3.29 S(4)–N(1) 3.78 S(4)–C(13) 3.65 S(4)–C(8) 3.25

C(1')–C(13) 3.31 C(1')–C(9) 3.66 C(1')–C(2) 3.75 S(4)–C(13) 3.60

C(1')–C(10) 3.60 C(1')–C(10) 3.63 C(1')–C(3) 3.74 C(1')–C(9) 3.26

C(2')–C(7) 3.52 C(2')–C(13) 3.59 C(1')–C(4) 3.79 C(1')–C(10) 3.38

C(2')–C(6) 3.67 C(2')–C(12) 3.54 C(1')–C(11) 3.84 C(1')–C(13) 3.48

C(3')–C(5) 3.51 C(2')–C(13) 3.59 C(4')–C(10) 3.55 C(2')–C(4) 3.45

C(3')–C(12) 3.45 C(3')–C(11) 3.76 C(4')–C(1) 3.82 C(2')–C(11) 3.63

C(4')–C(9) 3.27 C(3')–C(12) 3.52 C(4')–C(11) 3.72 C(3')–C(1) 3.68

C(4')–C(14) 3.42 C(6')–N(1) 3.50 C(5)–C(14) 3.64 C(3')–C(2) 3.63

C(6')–N(1) 3.38 C(6')–C(9) 3.69 C(4')–C(13) 3.39

C(6')–C(13) 3.62 C(4')–C(9) 3.29

C(4')–C(14) 3.48

C(5')–C(15) 3.39
of the lone electron pair of the sulfur atom and the π*
orbital of the NO2 group. The O(5)···S(4)–C(4') and
O(5)···S(4)–C(6') angles are equal to 123.0° and 137.8°,
respectively. However, it is evident that one lone elec-
tron pair of the O(5) atom is oriented toward the line
aligned with the S(4)–C(6') bond.

One further weak interaction with the participation
of the donor and acceptor molecules is the C–H···NC
hydrogen bond. The N···H distance (2.47 Å) and the
angles H(3')···N(2)–C(16) (150.7°) and N(2)···H(3')–
C(3') (163.5°) have standard values for hydrogen bonds
of this type [26]. It is quite probable that there exists
one more hydrogen bond, namely, the C(2')–
H(2')···O(3) hydrogen bond with the H(2')···O(3) dis-
tance equal to 2.53 Å. However, the short contact
between these atoms can be governed by the geometric
constraints on the system of weak interactions.

The weak interactions described above are responsi-
ble for the formation of zigzag ribbons in the crystal.
The ribbons are linked together into puckered sheets
due to the O···O interactions between the O(1) and O(7)
oxygen atoms of the NO2 groups in the adjacent rib-
bons. The O···O distance (2.87 Å) most likely corre-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
sponds to a very weak interaction with a geometry such
that the O···O line appears to be nearly perpendicular to
the planes of both NO2 groups (with angles of 85.2° and
85.6°). This geometry is most consistent with the π–π*
interactions between these groups.

No other specific interactions, except for the afore-
mentioned π–π* interactions, participate in bonding the
puckered sheets. The stacking of these sheets results in
the formation of the parallel alternating stacks
…ADADAD… .

The system of secondary bonds in structure II dif-
fers essentially from that in structure I. Figure 6 depicts
the sheet in structure II. The tracery ribbons formed by
conjugate centrosymmetric macrocycles involving two
pairs of unlike molecules can be distinguished in the
sheet of the crystal. It can be seen that macrocycles of
two types alternate in the ribbon. A macrocycle of the
first type is formed through secondary bonds and has a
large cavity that contains the j-type solvent molecule.
The minimum size of this cavity (i.e., the distance
between the acceptor hydrogen atoms oriented toward
the interior of the macrocycle) is equal to 6.75 Å. The
cavity is large enough to house the solvent molecule
(see Fig. 6). The macrocycle is formed by secondary
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Fig. 3. Mutual arrangement of molecules in the DTeF–TTF–DTeF triad in a stack of structure I. In atomic numbering, the letter A
indicates the basis molecules and B refers to the acceptor molecule related to the basis molecule by the translation z.
bonds of the O···S and N···S types with the participation
of the S(3) and S(2) atoms of the tetrathiafulvalene
molecules, the O(2) atom of the NO2 group, and the
N(3) atom of the CN group of the acceptor molecules.
The S···O and S···N distances are equal to 3.04 and 3.08
Å, respectively. The O(2)···S(3)–C(4'), N(3)···S(2)–
C(1'), S(3)···O(2)–N(4), and S(2)···N(3)–C(17) angles
are 172.8°, 168.3°, 130.7°, and 173.8°. These parame-
ters are geometrically favorable for the n–σ* and n–π*
interactions.

Each tetrathiafulvalene molecule is involved in one
more weak interaction: the CH group participates in the
formation of the hydrogen bond with the CN group of
the acceptor molecule that belongs to the adjacent four-
component macrocycle of the second type. The
N(6)···H(6') distance is equal to 2.45 Å, and the
N(6)···H(6')–C(6') and H(6')···N(6)–C(18) angles are
162.5° and 161.2°, which is typical of hydrogen bonds
involving nitrile groups. This macrocycle contains no
cavity large enough to house the solvent molecule. Sol-
vent molecules of the i type are located outside the rib-
bons. Each of these molecules participates in the sheet
formation through the C–H···NC hydrogen bonds of
two centrosymmetrically related acceptor molecules
belonging to the adjacent ribbons. These hydrogen
bonds have a conventional geometry: the angles at the
C

H and N atoms are equal to 162.4° and 170.7°, and the
N(1)···H(3') distance is 2.49 Å. Moreover, the Cl atom
of the chlorobenzene molecule is involved in the sec-
ondary interaction with the fluorene molecule. This
interaction is rather strong: the Cl···N distance is
3.14 Å, the angle at the Cl atom is 159.5°, and the angle
at the N(6) atom is 105.7°. Since the Cl atom in this
molecule is disordered over two positions, several alter-
native descriptions of the crystal structure become pos-
sible. For example, one view holds that the Cl atom is
statistically disordered over two positions in each sheet.
According to other variants, the packing is character-
ized by different types of local ordering within either
ribbons, or sheets, or domains. The crystal packing has
defied adequate description only on the basis of X-ray
diffraction experiment. However, this is of no funda-
mental importance, because even the aforementioned
hydrogen bonds will suffice to link the ribbons into
sheets.

Apart from the weak interaction within the sheet,
the Cl atom is involved in the intersheet weak interac-
tion with the N atom of the CN group in the 7-position
(see Fig. 7). The Cl(1A)···N(6C) distance is 3.29 Å, and
the C(1''A)–Cl(1A)···N(6C) and Cl(1A)···N(6C)–
C(18C) angles are equal to 93.9° and 94.4°, respec-
tively. Figure 7 also shows the intersheet short contacts
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Fig. 4. Mutual arrangement of molecules in the DDDF–TTF–DDDF triad in a stack of structure II. In atomic numbering, the letter
A indicates the basis molecules and B refers to the acceptor molecule related to the basis molecule by the translation x.
of the j-type solvate molecule, whose role is not con-
fined only to filling the macrocycle cavity. The
Cl(2A)···N(2A) and Cl(2B)···N(2B) distances are
3.16 Å, and the angles at the Cl and N atoms are equal
to 154.1° and 129.3°, respectively. For these intersheet
secondary bonds, there can also arise different-type
crystal packings due to the disordering of the Cl atoms.
If the Cl atoms of both solvate molecules are statisti-
cally disordered, the sheets are cross-linked at random
into a three-dimensional framework. In the case when
the elements of local ordering of the Cl atoms are
present in the structure, there can arise double sheets or
a rather ordered cross-linking of the sheets. However,
the elucidation of the actual situation calls for further
X-ray structure investigation with crystals grown using
solvents such as p-dichlorobenzene or toluene.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
SCHEMATIC REPRESENTATION
OF THE STRUCTURE TYPES 

OF CHARGE-TRANSFER COMPLEXES

As follows from the above analysis of the crystal
packing in structures I and II, the stack …ADADAD…,
which is composed of the alternating donor and accep-
tor molecules, is a typical structural motif of the
charge-transfer complexes under consideration. The
…ADADAD… stacks built up of the acceptor and donor
molecules of different sizes can form several geneti-
cally related packings. Scheme IV represents four vari-
ants of the supramolecular architecture of alternating
stacks in the structure of charge-transfer complexes
(the large and small rectangles stand for the large-sized
acceptor and small-sized donor molecules, respec-
tively; ovals symbolize the molecules of the third com-
ponent; and dashed lines show the stack orientation).
a b c d
Scheme IV.
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Fig. 5. A sheet of the molecules linked through weak interactions in structure I. Letters in atomic numbering indicate different sym-
metry-related molecules.
In the close packing a, one stack is shifted relative
to the other stack so that the large-sized acceptor mole-
cules partially fill the interstack space in the vicinity of
the small molecule in the adjacent stack. It is this
supramolecular architecture that is observed in the
charge-transfer complex I. As was shown above, the
displacement of the small molecules with respect to the
large molecules in parallel planes does not affect the π
interaction between the acceptor and donor molecules.
However, this displacement can result in packing b,
which is characterized by stacking not only of the type
…ADADAD… but also of the type …AAA…, i.e., the
stacking of large-sized acceptor molecules. It is
expected that, in the limit, at a certain size ratio of
the acceptor and donor molecules, packing b will trans-
form into packing c with separate molecular stacks
…AAAA… and …DDDD… . Packing c is especially
desirable because it corresponds to the highest (i.e.,
C

metallic) conductivity [27]. Thus, the description of the
packings in the structure of charge-transfer complexes
with the use of the graphs considered has revealed their
genetic relationship and directed the way to the con-
trolled modification of the supramolecular architecture
of these complexes. This can be achieved either by
varying the size and shape of the acceptor and donor
molecules or by substituting the particular functional
groups for the other groups with different geometric
constraints on the formation of secondary bonds.

The crystal lattice with packing d involves the third
component. This packing is characteristic of the struc-
ture of complex II when solvent molecules of the j type
are disregarded. Actually, these molecules have no
effect on the stacking motif of the crystal, because they
are arranged at large angles with respect to the sheets
considered above.
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Fig. 6. A sheet of the molecules linked through weak interactions in structure II. Letters in atomic numbering indicate the different
symmetry-related molecules.
Note that the presence of the i-type solvate mole-
cules in the stacks of complex II can hardly affect the
intrastack π–π interaction, because these molecules
possess weak acceptor properties and enter into the
stack only around its periphery. However, the inference
can be made that, in the case when a molecule similar
in size and shape to the chlorobenzene molecule but
with the donor or acceptor properties is introduced into
the lattice, the properties of the charge-transfer com-
plex can be modified significantly with no change in the
general packing motif. This opens up one more way to
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      200
the controlled modification of the supramolecular
architecture of charge-transfer complexes through the
proper choice of the third component.

In principle, other variants of the supramolecular
architecture can also be proposed for charge-transfer
complexes with a stoichiometry differing from 1 : 1.
For example, the structure of complexes with the sto-
ichiometry A : D = 1 : 2 can be characterized by
packing d, in which the second donor molecule plays
the role of the third component. It should be noted that
2
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Fig. 7. Weak interactions of the C6H5Cl molecules involved in the i and j systems.
there can also occur more complicated situations,
which will be discussed in separate works.
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Abstract—The structures of diantipyrylphenylmethane (DAPM) and its complex with neodymium nitrate
[Nd(NO3)3 ⋅ DAPM ⋅ CH3OH] ⋅ 2CH3OH are determined by X-ray diffraction. The free ligand adopts a trans
conformation with the opposite orientation of the oxygen atoms of the carbonyl groups. In the complex, dian-
tipyrylphenylmethane acts as a bidentate ligand and coordinates the Nd atom through the carbonyl oxygen
atoms, thus forming the eight-membered metallocycle. The coordination number of neodymium is nine (six O
atoms of the bidentate nitrate groups, two O atoms of diantipyrylphenylmethane, and one O atom of the meth-
anol molecule). © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that pyrazolone-5 derivatives (spe-
cifically diantipyrylmethane and its substituted deriva-
tives) and their complexes with d and f elements are
widely used in pharmacology, analytical chemistry [1],
and dye chemistry [2]. Earlier [3], we reported the prep-
aration and spectral properties of the diantipyrylphe-
nylmethane (DAPM) complexes with anhydrous lan-
thanide nitrates. It was concluded from the IR spectro-
scopic data that the ligand bidentately coordinates a
lanthanide atom through the oxygen atoms of the car-
bonyl groups. However, analysis of the vibrational
spectra cannot provide answers to questions as to which
conformation is adopted by the ligand in the complex
and which structure (mononuclear or bridging) is
formed.

Moreover, the structural data on diantipyrylmethane
derivatives and their complexes are few in number
[4−6]. In this respect, the aim of the present work was
to investigate the molecular structures of dian-
tipyrylphenylmethane (I) and its complex with neody-
mium nitrate (II) and to analyze the structural changes
in the ligand upon its coordination.

EXPERIMENTAL

Single crystals I suitable for the X-ray diffraction
study were prepared by recrystallization of DAPM from
absolute methanol at room temperature. Complex II
was  synthesized by the reaction between methanol
solutions of Nd(NO3)3 (0.3 M) and of the ligand (4 ×
10–2 M) in a 1 : 1 stoichiometric ratio [3]. The evapora-
tion of the solution at room temperature in a dry box
(P2O5 served as a drying agent) for three days resulted
1063-7745/02/4702- $22.00 © 20262
in the precipitation of the single crystals suitable for
X-ray structure analysis. The crystal sample used for
data collection was sealed in a glass capillary. The crys-
tal data and main refinement parameters for compounds I
and II are summarized in Table 1. Both structures were
solved by the direct method, and the non-hydrogen
atoms were refined first in the isotropic approximation
and then in the anisotropic approximation with the full-
matrix least-squares procedure. In structure I, the
hydrogen atoms were located from the electron-density
difference syntheses and refined isotropically. In struc-
ture II, the positions of the hydrogen atoms were calcu-
lated from geometric considerations and refined within
the riding model. The hydrogen atoms of the coordi-
nated and solvate methanol molecules in structure II
could not be included in the refinement, because they
were not located. The absolute structure of II was deter-
mined by the refinement of the Flack parameter [8],
whose value was equal to –0.04(3). All the calculations
were performed with the SHELXTL PLUS 5 program
package [9] on a personal computer. The atomic coor-
dinates for structures I and II are listed in Tables 2 and
3, respectively.

RESULTS AND DISCUSSION

General views of molecules I and II with atomic
numbering are shown in Figs. 1 and 2, respectively.

The bond lengths and angles in molecule I are close
to the corresponding parameters in the other pyra-
zolone-5 derivatives [10, 11]. In the crystal, the mole-
cule adopts a trans conformation (Fig. 1) with the
opposite orientation of the carbonyl groups with respect
to the plane of the C(2)–C(4)–C(6) fragment. This ori-
entation is characterized by the O(1)C(1)C(5)O(2)
002 MAIK “Nauka/Interperiodica”
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Table 1.  Crystal data and refinement parameters for structures I and II

Compound I II

Formula C29H28N4O2 C32H31N7O14Nd

Molecular weight 464.55 881.88

Space group P21/c P212121

a, Å 18.152(4) 10.899(3)

b, Å 9.665(2) 13.031(3)

c, Å 14.361(3) 27.377(6)

β, deg 101.71(3)

V, Å3 2467.0(9) 3888(2)

Z 4 4

F(000) 984 1776

ρcalcd, g cm–3 1.251 1.506

Diffractometer CAD-4 Enraf-Nonius Siemens P3

Radiation MoKα (λ = 0.71073 Å) MoKα (λ = 0.71073 Å)

µ, cm–1 0.8 99.00

Absorption correction None DIFABS [7]

Tmin/Tmax 0.776/0.845

Temperature, K 293(2) 293(2)

Scan mode θ/5/3θ θ/2θ
2θmax, deg 50 52

Number of unique reflections 3530 4095

R1 [on F for reflections with I > 2σ(I)] 0.0364 (2193 reflections) 0.0425 (3177 reflections)

wR2 (on F2 for all reflections) 0.1253 (3480 reflections) 0.1447 (4045 reflections)

Number of parameters refined 429 487
pseudotorsion angle equal to 158.3°. The angle between
the planes of two pyrazolone rings in molecule I
is 66.1°. The bond lengths in two antipyrine fragments
[C(1)C(2)C(3)N(1)N(2) and C(5)C(6)C(7)N(3)N(4)]
of the DAPM molecule have close values (Table 4).

The nitrogen atoms in molecule I have the pyrami-
dal environment. The phenyl and methyl substituents at
the nitrogen atoms are located on opposite sides of the
plane of the pyrazolone ring; the C(9)N(1)N(2)C(12)
and C(11)N(3)N(4)C(18) torsion angles are equal to
–72.1° and –55.8°, respectively. Note that, for the N(1)
and N(3) nitrogen atoms, the mean deviation (0.37 Å)
from the plane passing through the atoms bound to N(1)
and N(3) is slightly larger than the mean deviation for
the N(2) and N(4) atoms (0.19 Å). The flattening of the
atomic coordination observed for the N(2) and N(4)
atoms is possibly due to their participation in the con-
jugation with the carbonyl groups. The N–N bond
length in both heterocycles is virtually the same and
averages 1.411 Å, which is smaller than the standard
Npyramidal–Npyramidal bond length (1.45 Å [12]). The dihe-
dral angles between the planes of the phenyl and pyra-
zole rings in molecule I are 35° and 50.3°. For compar-
ison, in the antipyrine molecule, the corresponding
angle is equal to –52.1° [10], and in the amidopyrine
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      200
molecule, these angles are 37.7° and 40.1° [11]. The
N(2)–C(12) and N(4)–C(18) bond lengths [1.424(3)
and 1.420(3) Å, respectively] are close to the standard
value for the Car–  bond (1.42 Å [12]). This also

indicates the lack of substantial conjugation between
the phenyl and pyrazolone rings.

Note that the bond lengths in two C=C–C(O)–N(Ph)
fragments of the N-phenyl substituted antipyrine rings
differ slightly from one another. For example, the C(1)–
O(1) bond [1.225(3) Å] is slightly shorter than the
C(5)–O(2) bond [1.236(3) Å], and the N(4)–C(5)
bond [1.388(3) Å] is slightly shorter than the N(2)–C(1)
[1.399(3) Å]. The C(2)–C(3) and C(6)–C(7) bond
lengths in the two rings are equal to each other
[1.350(3) Å]. Therefore, the splitting of the ν(CO)
absorption band in the IR spectrum of I (1664 and
1644 cm–1) [3] can be attributed to the nonequivalence
of the C=O groups in the DAPM molecule.

The C–C–C angles at the C(4) atom are slightly
larger than the tetrahedral angle (112.1°–115.7°), and
the C(2)C(4)C(24)C(25) and C(6)C(4)C(24)C(25) tor-
sion angles are equal to –146.7° and –12.9°, respec-
tively.

N
s p

3

2
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Table 2.  Coordinates (×104) and equivalent isotropic thermal parameters (Ueq, Å
2 × 103) of the non-hydrogen atoms in structure I

Atom x y z Ueq Atom x y z Ueq

O(1) 6070(1) 3495(2) 5745(1) 55(1) C(13) 4405(1) 3061(3) 5159(2) 47(1)

O(2) 8463(1) –119(2) 7796(1) 45(1) C(14) 3765(2) 2968(3) 4459(2) 57(1)

N(1) 5472(1) 900(2) 7086(2) 45(1) C(15) 3388(2) 1730(3) 4279(2) 63(1)

N(2) 5333(1) 1986(2) 6415(2) 42(1) C(16) 3662(2) 568(3) 4785(2) 56(1)

N(3) 8395(1) 880(2) 5456(1) 41(1) C(17) 4308(1) 636(3) 5476(2) 47(1)

N(4) 8695(1) 93(2) 6271(2) 41(1) C(18) 9056(1) –1183(2) 6160(2) 42(1)

C(1) 6014(1) 2608(2) 6337(2) 38(1) C(19) 9685(1) –1556(3) 6816(2) 52(1)

C(2) 6582(1) 1955(2) 7064(2) 35(1) C(20) 10040(2) –2794(3) 6716(3) 65(1)

C(3) 6237(1) 974(2) 7493(2) 40(1) C(21) 9777(2) –3638(3) 5964(3) 70(1)

C(4) 7415(1) 2307(2) 7299(2) 32(1) C(22) 9155(2) –3271(3) 5297(3) 72(1)

C(5) 8355(1) 469(2) 7016(2) 34(1) C(23) 8778(2) –2047(3) 5400(2) 59(1)

C(6) 7875(1) 1624(2) 6660(2) 32(1) C(24) 7552(1) 3865(2) 7472(2) 32(1)

C(7) 7939(1) 1862(2) 5754(2) 36(1) C(25) 8158(1) 4539(3) 7229(2) 48(1)

C(8) 6547(2) –15(3) 8286(3) 56(1) C(26) 8295(2) 5930(3) 7452(2) 56(1)

C(9) 4949(2) 902(5) 7754(3) 68(1) C(27) 7835(2) 6656(3) 7918(2) 50(1)

C(10) 7605(2) 2963(3) 5077(3) 52(1) C(28) 7237(1) 5989(2) 8179(2) 49(1)

C(11) 8925(2) 1236(4) 4854(3) 65(1) C(29) 7097(1) 4614(2) 7951(2) 41(1)

C(12) 4679(1) 1893(2) 5678(2) 39(1)
The positions of the carbonyl groups allow the par-
ticipation of the oxygen atoms in the weak intramolec-
ular C–H···O contacts: the O(2) atom approaches the
H(4) atom attached to C(4) [O(2)···H(4), 2.49(2) Å;
O(2)···C(4), 2.463(3) Å; and the C(4)–H(4)···O(2)
angle, 76(1)°], which results in the formation of the pla-
nar H-bonded five-membered ring; and the O(1) atom
C

approaches the H(10a) atom [O(1)···H(10a), 2.26 Å;
C(10)···O(1), 3.167(3) Å; and the C(10)–H(10a)···O(1)
angle, 141(1)°].

According to the X-ray structure analysis, the com-
position of complex II is represented by the formula
[Nd(NO3)3 ⋅ DAPM ⋅ CH3OH] ⋅ 2CH3OH. The coordi-
nation sphere of the metal atom (the coordination num-
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Fig. 1. A general view and the atomic numbering in molecule I.
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Table 3.  Coordinates (×104) and equivalent isotropic thermal parameters (Ueq, Å
2 × 103) of the non-hydrogen atoms in structure II

Atom x y z Ueq Atom x y z Ueq

Nd 6260(1) 9770(1) 1228(1) 34(1) C(8) 10807(9) 12153(9) 38(4) 55(3)

O(1) 6917(5) 11297(4) 856(2) 38(1) C(9) 10086(11) 13772(8) 785(4) 70(3)

O(2) 7816(6) 8981(5) 777(2) 46(2) C(10) 11045(8) 9511(7) –463(3) 51(2)

O(3) 5509(7) 10790(6) 1921(2) 64(2) C(11) 11431(12) 7553(10) 113(5) 80(4)

O(4) 5612(9) 7912(6) 1119(3) 83(3) C(12) 8060(8) 12984(7) 1401(3) 37(2)

O(5) 4482(9) 8775(7) 1588(4) 102(4) C(13) 8881(11) 12995(8) 1787(3) 61(3)

O(6) 4007(12)     7214(8) 1428(5) 146(5) C(14) 8480(13) 13392(10) 2232(4) 74(4)

O(7) 7301(9) 8930(7) 1950(3) 83(3) C(15) 7302(16) 13791(11) 2275(5) 92(5)

O(8) 8235(7) 10229(8) 1674(3) 75(2) C(16) 6537(12) 13741(11) 1900(5) 85(4)

O(9) 9070(10) 9365(11) 2253(4) 142(5) C(17) 6897(11) 13354(9) 1449(4) 62(3)

O(10) 4283(7) 10637(7) 938(3) 71(2) C(18) 9775(10) 7496(7) 968(3) 48(2)

O(11) 5150(8) 9685(7) 401(3) 77(2) C(19) 10785(10) 7552(9) 1272(4) 66(3)

O(12) 3473(8) 10500(10) 222(4) 113(4) C(20) 10891(17) 6860(11) 1652(5) 93(5)

N(1) 9563(7) 12739(6) 738(3) 42(2) C(21) 9993(16) 6159(12) 1742(5) 92(5)

N(2) 8425(6) 12548(6) 942(2) 38(2) C(22) 8994(15) 6118(10) 1434(5) 89(4)

N(3) 10589(7) 8379(6) 245(3) 44(2) C(23) 8870(13) 6793(8) 1051(4) 67(3)

N(4) 9674(7) 8210(6) 573(3) 44(2) C(24) 8401(7) 10768(7) –558(3) 35(2)

N(5) 4666(10) 7952(8) 1380(4) 72(3) C(25) 8172(9) 9973(6) –877(3) 49(2)

N(6) 8207(10) 9517(10) 1958(4) 78(3) C(26) 8033(11) 10129(9) –1369(3) 60(3)

N(7) 4295(8) 10289(9) 521(4) 70(3) C(27) 8158(11) 11112(10) –1555(3) 65(3)

C(1) 7910(7) 11700(6) 716(3) 32(2) C(28) 8363(9) 11934(7) –1237(4) 55(2)

C(2) 8718(9) 11433(6) 324(3) 34(2) C(29) 8464(8) 11744(7) –739(3) 40(2)

C(3) 9685(8) 12089(7) 349(3) 39(2) C(30) 6116(18) 11096(12) 2365(5) 112(6)

C(4) 8432(6) 10528(6) 3(3) 29(2) C(1S) 1113(16) 10523(14) 1239(4) 113(5)

C(5) 8788(9) 8947(6) 516(3) 34(2) O(1S) 1108(12) 10452(14) 1727(5) 182(7)

C(6) 9162(7) 9587(6) 128(3) 31(2) C(2S) 3197(10) 11131(8) 2133(3) 100(3)

C(7) 10265(8) 9218(7) –39(3) 42(2) O(2S) 2893(21) 11825(16) 2518(7) 141(8)
ber is nine) is formed by three bidentate nitrate groups,
two oxygen atoms of the carbonyl groups of DAPM,
whose coordination results in the closure of the eight-
membered metallocycle, and the methanol molecule
(Fig. 2). Thus, our earlier conclusion concerning the
bidentate coordination of DAPM in lanthanide com-
plexes, which was made based on the analysis of the IR
spectra [3], is confirmed by the X-ray diffraction study.

It should be noted that the lanthanide complexes
with bidentate nitrate groups are characterized by the
largest coordination numbers, which, apparently, can
be explained by the forced shortening of the O···O dis-
tance in the nitrate group to 2.14 Å [13]. If the bidentate
nitrate groups are treated as pseudomonodentate
ligands, the coordination polyhedron of the neody-
mium atom can be described as a severely distorted
octahedron.

The Nd–O distances vary in the range 2.335(6)–
2.569(7) Å: the Nd–ODAPM distances are the shortest
among them [2.335(6) and 2.348(6) Å], whereas the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
Nd–  bonds are longer [2.528(8)–2.569(7) Å]. A
similar situation is observed for many of the nitrate
complexes [14, 15]. The structure parameters of the
nitrate groups, which form virtually planar chelate
rings with the neodymium atom, are similar to those
described in [13–15]. The Nd–OMeOH bond length is
2.357(7) Å.

The coordination of DAPM results in considerable
structural changes in the ligand. First, the DAPM mol-
ecule undergoes a conformational transformation: the
molecule changes over from the trans conformation in
the free ligand to the cis conformation with the
O(1)C(1)C(5)O(2) pseudotorsion angle equal to –13.8°.
The angle between the planes of two pyrazolone rings
in the coordinated DAPM molecule decreases
only  slightly (from 61.6° in the free ligand to 56.0° in
the complex). The bond lengths in the
C(1)C(2)C(3)N(1)N(2) and C(5)C(6)C(7)N(3)N(4)
antipyrine fragments of complex II differ insignifi-
cantly, as is the case in the uncoordinated ligand.

ONO3
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Fig. 2. A general view and the atomic numbering in molecule II.
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Table 4.  Selected bond lengths d (Å) and angles ω (deg) in
structure I

Atoms d Atoms d

O(1)–C(1) 1.225(3) N(3)–C(11) 1.459(4)

O(2)–C(5) 1.236(3) N(4)–C(5) 1.388(3)

N(1)–C(3) 1.396(3) N(4)–C(18) 1.420(3)

N(1)–N(2) 1.413(3) C(1)–C(2) 1.455(3)

N(1)–C(9) 1.479(4) C(2)–C(3) 1.350(3)

N(2)–C(1) 1.399(3) C(2)–C(4) 1.521(3)

N(2)–C(12) 1.424(3) C(4)–C(6) 1.512(3)

N(3)–C(7) 1.383(3) C(5)–C(6) 1.445(3)

N(3)–N(4) 1.409(3) C(6)–C(7) 1.350(3)

Atoms ω Atoms ω

C(3)–N(1)–N(2) 105.8(2) C(7)–N(3)–N(4) 105.6(2)

C(3)–N(1)–C(9) 116.3(2) C(7)–N(3)–C(11) 122.0(2)

N(2)–N(1)–C(9) 113.1(2) N(4)–N(3)–C(11) 115.4(2)

C(1)–N(2)–N(1) 109.6(2) C(5)–N(4)–N(3) 109.9(2)

C(1)–N(2)–C(12) 125.7(2) C(5)–N(4)–C(18) 126.9(2)

N(1)–N(2)–C(12) 117.9(2) N(3)–N(4)–C(18) 119.0(2)
C

The coordination of the Nd atom in DAPM leads to
a lengthening of the C–O carbonyl bonds [C(1)–O(1),
1.26(1) Å and C(5)–O(2), 1.28(1) Å] and a significant
shortening of the N–N bonds [N(1)–N(2), 1.38(1) Å
and N(3)–N(4), 1.36(1) Å]. Note that, despite the dif-
ference in the C(1)–O(1) and C(5)–O(2) bond lengths
in the coordinated ligand, the IR spectrum of this com-
plex exhibits a single ν(CO) band with a maximum at
1611 cm–1. It is possible that the splitting of the band is
not observed because of the considerable width of this
band.

The coordination of the DAPM molecule results
also in a significant flattening of the configuration of the
bonds involving the nitrogen atoms. The deviations of
the N(1) and N(2) atoms from the planes passing
through the adjacent atoms are 0.12 and 0.22 Å, respec-
tively. The corresponding deviations of the N(3) and
N(4) atoms are 0.17 and 0.06 Å, respectively. Note that,
similar to the uncoordinated ligand, the phenyl and
methyl substituents in both substituted antipyrine
fragments are located on opposite sides of the
pyrazolone ring. The C(9)N(1)N(2)C(12) and
C(11)N(3)N(4)C(18) torsion angles are –38.2° and
31.4°, respectively. A comparison of the bond length
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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distributions in the pyrazolone heterocycles of the free
and coordinated DAPM molecules suggests that the
coordination of the DAPM molecule enhances the con-
jugation of the nitrogen atoms with the C=C–C=O frag-
ment. This leads to a flattening of the environment of
the nitrogen atoms, a shortening of the N–C bonds
(1.37–1.39 Å), and an additional lengthening of the
C=C [1.36(1) and 1.37(1) Å] and C=O bonds.

The lengths of the N–C bonds between the pyra-
zolone and phenyl rings and the C–C bonds at the C(4)
atom change insignificantly. This indicates that, in the
DAPM molecule involved in the complex, there occurs
virtually no conjugation between the pyrazolone rings
nor between the phenyl and pyrazolone rings. The
angles between the planes of the phenyl and pyrazolone
rings in the complex (52.8° and 57.0°) are smaller than
those in the free ligand.
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Abstract—A systematic investigation into the general structural features of centric and acentric polymorphic
pairs of organic molecular crystals is performed using the data available in the Cambridge Structural Database.
The main regularities of the formation of these modifications are revealed. The inference is made that the inter-
molecular association plays an important role in the formation of crystal packing. © 2002 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Investigation into the general structural features of
crystalline materials is one of the most important direc-
tions of the engineering of organic molecular crystals
[1]. This field of research involves the design of organic
crystalline materials with a specified molecular
arrangement responsible for many physical solid-state
characteristics, such as electromagnetic and nonlinear
optical properties, electronic and ionic conductivities,
etc. Manifestation of certain properties (for example,
nonlinear optical properties) requires a noncentrosym-
metric arrangement of molecules in the condensed
phase [2]. Among the nonlinear optical materials
known to date, organic crystals, as before, remain the
most interesting objects of investigation.

As a rule, the search for new organic optical nonlin-
ear materials involves a combination of two key stages.
The first stage includes the design and synthesis of sta-
ble chromophore molecules with high molecular hyper-
polarizability (molecular nonlinear optical engineer-
ing). The second stage consists in preparing noncen-
trosymmetric crystals of chromophores with an
optimum molecular orientation required to achieve the
maximum macroscopic nonlinear optical effect (non-
linear optical engineering of crystals). Currently avail-
able techniques of molecular nonlinear optical engi-
neering have been worked out in sufficient detail [2–7].
However, actual approaches to control over the molec-
ular packing in crystals of potentially important com-
pounds are still being developed. The basic problems
concerning the prediction and formation of optimum
crystal packing are associated with the great diversity
of possible molecular orientations that are character-
ized by minimum differences in free energies in the
crystal. It is this circumstance that, in the framework of
1063-7745/02/4702- $22.00 © 0268
the thermodynamic approach, provides an explanation
of the existence of different polymorphic systems. In
the case when the above differences in free energies
increase, the possibility of forming polymorphic modi-
fications decreases. At the same time, the real crystal
structure does not necessarily possess a minimum
energy, and, in some cases, another polymorphic mod-
ification can be obtained only through the change in
crystallization conditions. In 1965, McCrone [8] stated
that the number of polymorphic modifications of a par-
ticular compound is in direct proportion to the time and
money spent on their search. Ignoring this circum-
stance can lead to an underestimate of many promising
but centrosymmetric materials, merely because nobody
has made an attempt to obtain another (possibly, non-
centrosymmetric) modification of the compound under
investigation.

It should be noted that the existence of polymorphic
modifications is governed not only by the minimum
free energy of the crystalline phases but also by the
kinetic processes of crystal nucleation and growth.
Hence, there is a need to use an approach that makes it
possible to evaluate how the crystallization conditions
affect the formation of the crystal structure. One way of
obtaining this estimate is to treat the crystallization pro-
cess as a supramolecular synthesis in which the change
in the physicochemical conditions brings about the for-
mation of different packings. Within this approach,
analysis of possible polymorphism is of crucial impor-
tance in designing new promising materials with a
specified crystalline architecture. Among the most
interesting works in the field of nonlinear optics, spe-
cial mention should be made of research into the poly-
morphism of N-(2-acetamido-4-nitrophenyl)pyrroli-
dine, 2-furaldehyde-5-nitro-N-benzoylhydrazone, and
2-(4-methoxyphenyl)-5-(4-nitrophenyl)pyrazolidin-5-ene
2002 MAIK “Nauka/Interperiodica”
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[9]; 8-(4'-acetylphenyl)-1,4-dioxa-8-azaspiro[4,5]decane
[10]; 5-nitro-2-thiophenecarboxaldehyde-4-methyl-
phenylhydrazone [11]; and 2-adamantylamino-5-nitro-
pyridine [12]. However, similar works are still few in
number. In this respect, it is of interest to reveal and
analyze the general structural features of polymorphic
modifications for all currently known compounds that
are capable of forming both centric and acentric crys-
talline modifications. In the future, this information can
be useful in designing crystalline materials with a spec-
ified molecular arrangement.

First attempts to analyze the data accumulated in the
Cambridge Structural Database on compounds with
centric and acentric modifications were made by Brock
et al. [13] in 1991 and led the researchers to a number
of important conclusions. First, the universally
accepted concept that centrosymmetric (racemic) crys-
tals, as a rule, should possess higher densities and,
hence, should be more energetically favorable was dis-
proved. Second, the statistical analysis of the thermo-
dynamic characteristics for polymorphic modifications
existing at room temperature [14] revealed that the for-
mation of centrosymmetric crystals are not thermody-
namically preferable. On the one hand, the aforemen-
tioned conclusions should lend impetus to researchers’
efforts to obtain acentric crystalline modifications. On
the other hand, these inferences have failed to explain
the predominance of centrosymmetric crystals among
the structures collected in the Cambridge Structural
Database.

In the present work, we undertook a systematic
investigation into the structure of polymorphic (centric
and acentric) modifications with the aim of revealing
the general structural features that are essential to the
understanding of the mechanisms of formation of the
crystal structure. Moreover, the available data on the
conditions and procedures of preparing polymorphs
were used to elucidate how these factors affect the for-
mation of crystals. In our opinion, the results of our
investigation provide a better insight into the mecha-
nisms of crystallization processes and can be useful in
solving many problems of crystal engineering, includ-
ing important problems concerning the design of acen-
tric crystalline modifications with nonlinear optical
properties.

THE CHOICE OF OBJECTS

Theoretically, centric and acentric crystalline modi-
fications of the same compound can be formed upon
crystallization either from a racemic mixture of enanti-
omers containing an asymmetric atom or from a solu-
tion containing achiral molecules or molecules with a
low barrier to racemization. The former enantiomers
are referred to as resolved enantiomers and can have
different refcodes in the Cambridge Structural Data-
base. The latter enantiomers are termed unresolved (or
rapidly inverted) enantiomers and, as a rule, are
described by identical literal refcodes but with a differ-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      200
ent numbering in the Cambridge Structural Database.
According to McCrone [8], polymorphic modifications
are the crystals capable of forming the same compound
upon melting or dissolving. In the strict sense, poly-
morphic modifications are the crystals that belong only
to the latter group of molecules. Since the potential
nonlinear optically active molecules of interest fall in
this group, we have restricted ourselves to the search
for polymorphic modifications with identical literal ref-
codes. Furthermore, we considered only the most com-
monly encountered space groups [15], namely, the cen-

trosymmetric space groups , P21/c, and Pbca; the
chiral space groups P212121,

1 P21, and P1; and the race-
mic but noncentrosymmetric space groups Pc, Pna21,
and Pca21. For each of these space groups, we created
a file containing the refcodes of all the compounds
specified by the attribute “form” in the qualifier. All the
possible settings (including nonstandard settings) for
these groups were taken into consideration. Then, for
the purpose of revealing different structures with the
same literal refcode, the files of centrosymmetric space
groups were compared with the files of noncentrosym-
metric space groups by using the specially developed
program REFCOMP. A total of 128 pairs of centric and
acentric modifications were found in the Cambridge
Structural Database (Version 2000). It should be noted that
the pairs in which a crystal with the space group P21/c
serves as a centrosymmetric counterpart are consider-
ably more frequent (101 pairs) in the Cambridge Struc-
tural Database as compared to those with the space

groups  (19 pairs) or Pbca (8 pairs). Possibly, this
stems from the fact that the P21/c group is most often
encountered in organic compounds. For the refcodes
obtained in such a manner, all the data available in the
Cambridge Structural Database were extracted through
the database query QUEST3D. A number of polymor-
phic modifications were rejected, because the available
data were either incomplete or invalid: errors in the
determination of the space group and atomic coordi-
nates, the absence of atomic coordinates, etc.

A preliminary analysis of the composition and
structure of the compounds found in the Cambridge
Structural Database demonstrated that, as would be
expected, the majority of these compounds belong to
planar conjugate or aromatic systems in which the
chirality arises as the result of insignificant rotations of
the functional groups with respect to each other. The
nonlinear optical activity is characteristic of eleven
compounds, namely, MABZNA, MNPHOL,
DEFDAN, BANGOM, FOVYOE, HAMNEO,
CLBZNT, BAAANL, TALJIZ, NMBYAN, and
SESHUT. The pairs of polymorphic modifications
whose molecules belong to the group of resolved enan-
tiomers are also encountered but considerably more

1 This is the sole noncentrosymmetric space group in which the
antiparallel orientation of molecular dipoles excludes manifesta-
tions of the nonlinear optical effect.

P1

P1
2
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Table 1.  Total number of pairs of centric and acentric modifications available in the Cambridge Structural Database

P21/c–P212121 41 P –P212121 9 Pbca–P212121 2

P21/c–P21 17 P –P21 4 Pbca–P21 2

P21/c–Pna21 16 P –Pna21 2 Pbca–Pna21 2

P21/c–Pca21 3 P –Pca21 2 Pbca–Pca21 2

P21/c–Pc 11 P –Pc 2 Pbca–Pc –

P21/c–P1 4 P –P1 3 Pbca–P1 –

1

1

1

1

1

1

rarely. For the most part, these modifications are found
to occur in the P21/c–P212121 pair. In the present work,
we analyzed the general structural features of the
P21/c–P212121 pairs of polymorphic modifications. The
other pairs listed in Table 1 will be considered in a sep-
arate work.

THE P21/c–P212121 POLYMORPHIC PAIRS

As was noted above, the most frequently encoun-
tered pair of polymorphic modifications embraces
41 compounds with different chemical compositions.
After rejecting the refcodes with incomplete data, we
obtained 27 compounds (Table 2). Eighteen com-
pounds that fall in the group of unresolved enantiomers
are presented in the first part of Table 2, and nine com-
pounds that belong to the group of resolved enanti-
omers, organometallic compounds, and complexes are
given in the second part of Table 2. Our main concern
in the present work is with the former group of com-
pounds, because this group includes the majority of
potential organic nonlinear optical materials. However,
before proceeding further, we will dwell briefly on the
most pronounced structural features of polymorphic
modifications belonging to the latter group of com-
pounds.

Polymorphic Pairs 
of Resolved Enantiomers

The centric and acentric modifications, which
belong to the group of resolved enantiomers (nine com-
pounds), were synthesized under the same conditions
(one pot polymorphism) in more than half of these
cases (JAMLUE, FESKAP, CUMTAF, BARWUM,
BUNKOK, and VISSOF). Hereafter, these polymor-
phic modifications will be referred to as concomitant
modifications. Under these conditions, the formation of
racemic crystals is accompanied by the spontaneous
separation of the enantiomers. Such a high percentage
of spontaneously separated enantiomers among the
compounds under investigation can be a consequence
of the procedure of their choice. Indeed, identical ref-
C

codes are assigned to the polymorphs formed simulta-
neously. Otherwise, as was already mentioned, these
polymorphs could be specified by different refcodes in
the Cambridge Structural Database and they would not
be included in the groups of compounds which we
chose in this work. Polymorphic modifications of
CHAPEP, BIGTIU, and SECZAB precipitated from
different solvents (see Table 2). For the most part, the
molecules belonging to unresolved enantiomers are
rather bulky and do not form intermolecular hydrogen
bonds. Therefore, the distinctive structural feature of
polymorphic modifications of this group is that the
racemic pair of molecules and the pure enantiomer, as
a rule, form topologically quite different structures in
which identical structural motifs are absent. The unit
cell parameters of these polymorphic modifications dif-
fer noticeably; however, the unit cell volumes and den-
sities of the polymorphs are found to be rather close in
magnitude in the majority of the cases under consider-
ation.

Polymorphic modifications of JAMLUE (Fig. 1)
whose molecules contain a hydroxyl group merit more
detailed consideration. For this compound, a quite dif-
ferent situation takes place. A system of van der Waals
contacts and hydrogen bonds that arise between mole-
cules of the same chirality through interactions of
bridging iodide anions brings about the formation of
distinct chiral layers. These layers form crystals of two
types, namely, the noncentrosymmetric crystals with
the P212121 space group (congruent stacking of molec-
ular layers of the same chirality) and the centrosymmet-
ric crystals with the P21/c space group (stacking of
molecular layers of different chiralities). In this case,
the unit cell parameters prove to be close in magnitude2

and the packing densities are also very close in magni-
tude and differ by only 0.01 g/cm3.

2 The unit cell parameters are considered to be close in magnitude
in the case when they differ by no more than 5–10%. The same is
also true for the angle of monoclinicity, which, as a rule, is close
to 90°. The unit cell parameters are multiples when the asymmet-
ric part of the unit cell in one of the modifications under consider-
ation involves several molecules (Z ' > 1).
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Concomitant polymorphic modifications of unresolved enantiomers and chiral mo

CLBZAM P21/n 1 1340.8 1.640 Close Close Close Both fro

(–0.016) P212121 1 1291.6 1.702

DMFUSC P21/c 1 1596.5 1.191 Close Close Close Both fro
cyclohex

(–0.07) P212121 1 1587.5 1.198

DPGUAN P21/c 2 2329.3 1.205 Close Dif-
ferent

Close Both fro

(–0.002) P212121 2 2324.5 1.207

DTBPTP P21/c 1 1854.5 1.162 Close Close Close Both thro
of n-prop

(+0.048) P212121 1 1933.6 1.114

MABZNA P21/c 1 1347.5 1.327 Mul-
tiple

Close Dif-
ferent

Both fro
mixture

(–0.007) P212121 4 5362.9 1.334

MNPHOL P21/c 1 625.3 1.478 Close Close Close Both fro

(–0.064) P212121 1 599.1 1.542

Nimodipine* VAWWEV P21/c 1 2194.8 1.266 Close Close Dif-
ferent

Both fro
solution

(–0.029) P212121 1 2144.8 1.295

FIKFIO P21/c 1 1231.1 1.279 Dif-
ferent

Dif-
ferent

Dif-
ferent

Both fro
acetate–
ether mi

(+0.071) P212121 2 2607.6 1.208
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Polymorphic modifications of unresolved enantiomers prepared from the same solvent under d
FABFUJ P21/c 3 2450.2 1.457 Mul-

tiple
Close Close Aqueo

differe
(–0.008) P212121 2 1624.0 1.465
(+0.012) P212121 1 823.6 1.445

DEFDUN P21/c 1 625.3 1.478 Diffe-
rent

Diffe-
rent

Diffe-
rent

Hot eth

(–0.064) P212121 1 599.1 1.542 Ethano
temper

COYMOS P21/n 1 990.2 1.376 Diffe-
rent

Diffe-
rent

Close Diluted

(+0.007) P212121 1 995.3 1.369 Conce

Polymorphic modifications of unresolved enantiomers prepared from different so
BOPSAA P21/c 1 876.1 1.289 Mul-

tiple
Close Close Sublim

(–0.008) P212121 2 1743.1 1.297 Aceton
HETPAL P21/c 1/2 1192.6 1.415 Close Close Close Benzen

(–0.015) P212121 1 1180.7 1.430 Ethyl a

DPIPDS P21/c 1/2 1278.2 1.207 Close Diffe-
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Close Petrole

(+0.001) P212121 1 1279.7 1.206 Ethano
2,3,8-Trinitro-6H-di-
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(–0.062) P212121 1 1291.6 1.702 Acetic
NOSWAR P21/n 2 2353.5 1.345 Diffe-
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rent

(–0.025) P212121 1 1154.8 1.370
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(+0.018) P212121 1 1177.9 1.479
CLPHTE P21/c 1 1371.9 2.315 Diffe-
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Polymorphic pairs of resolved enantiomers, organometallic compounds, and com
JAMLUE P21/c 1 1285.0 1.587 Close Close Close Both 

mixtu(+0.010) P212121 1 1293.6 1.577

CHAPEP P21/c 1 1307.1 1.357 Diffe-
rent

Diffe-
rent

Diffe-
rent

Meth

(–0.003) P212121 1 1304.6 1.360 Water

FESKAP P21/c 1 1888.4 1.969 Diffe-
rent

Diffe-
rent

Diffe-
rent

Both 
mixtu

(–0.041) P212121 1 1850.0 2.010

CUMTAF P21/c 1 2603.5 1.317 Diffe-
rent

Diffe-
rent

Diffe-
rent

Both 
mixtu

(+0.018) P212121 1 2032.6 1.298

Haloxazolam** BUNKOK P21/c 1 1531.0 1.636 Diffe-
rent

Diffe-
rent

Diffe-
rent

From
spont

P212121 1 1590.1 1.575
*** BARWUM P21/c 2 3274.1 1.471 Diffe-

rent
Diffe-
rent

Diffe-
rent

From
spont

(+0.053) P212121 1 1696.5 1.418
**** BIGTIU P21/c 1 1808.9 1.422 Diffe-

rent
Diffe-
rent

Diffe-
rent

CS2

(–0.004) P212121 1 1806.0 1.424 m-Xy
Diethyl-dibenzoberrelene-11,12-
dicarboxylate

VISSOF P21/c 2 3622.9 1.277 Diffe-
rent

Diffe-
rent

Diffe-
rent

From

(+0.010) P212121 1 1826.0 1.267
4,4-Diphenylcyclohexa-2-en-1-one SECZAB P21/c 1 1372.1 1.202 Diffe-

rent
Diffe-
rent

Diffe-
rent

(–0.048) P212121 1 1319.7 1.250
* Nimodipine is isopropyl-2-methoxyethyl-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydro-3,5-pyridinedicarboxylate.

** Haloxazolam is 10-bromo-11b(2-fluorophenyl)-2,3,7,11b-tetrahydrooxazolo[3,2-d][1,4]dibenzodiazepin-6(5H)-one.
*** 1,3,3,5,5-penta(1-aziridinyl)-1-λ6-2,4,6,3,5-thiotriazadiphosphorine-1-oxide.

**** 2,2,4,4,6,6-hexakis(1-aziridinyl)-cyclotri(phosphazene).
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Polymorphic Modifications 
of Unresolved Enantiomers

The centric and acentric modifications, which
belong to the group of unresolved enantiomers, are also
frequently formed simultaneously (CLBZAM,
DMFUSC, DPGUAN, DTBPTP, MABZNA,
MNPHOL, FIKFIO, and VAWWEV). (The thermody-
namic aspect of the concomitant polymorphism was
discussed in detail in the review by Bernstein et al.
[16].) In three other cases (FABFUJ, DEFDUN, and
COYMOS), different modifications were prepared
through crystallization from the same solvent but under
different kinetic conditions by varying the initial con-

0

b

c

0 c

b

(b)

(a)

Fig. 1. Packings of identical chiral layers in the (a) P212121
and (b) P21/c modifications of JAMLUE. The layers are
arranged in the (110) plane.
C

centration, temperature, and crystallization rate. Poly-
morphic modifications of BOPSAA, HETPAL,
DPIPDS, CIVTUM, and CLPHTE were synthesized
from different solvents.

The majority of the molecules involved in this group
are planar, conjugate, and small in size. The chirality of
these molecules stems from insignificant rotations of
the functional groups with respect to each other without
appreciable expenditure of energy. It is worth noting
that different polymorphic modifications of these com-
pounds exhibit an even more pronounced tendency for
the unit cell parameters (and, correspondingly, the den-
sities of crystals) to retain the close values, provided
that packing fragments remain unchanged.

(b)

(a)

b

a

0

0

a

b

Fig. 2. Projections of identical chiral layers in the
(a) P212121 and (b) P21/c modifications of DMFUSC onto
the xy plane.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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b

(b)

(a)

(c)

a

0

0 b

a

Fig. 3. Modifications of FIKFIO: (a) molecular geometries and molecular packings in the (b) P212121 and (c) P21/c modifications.
Concomitant polymorphic modifications. Identi-
cal chiral packing fragments are most frequently
observed in concomitant polymorphic modifications.
For example, the CLBZAM polymorphs are character-
ized by identical chiral layers formed at the expense of
the intermolecular hydrogen bonds NH···O. Although
the DMFUSC polymorphic modifications contain no
hydrogen bonds and the crystals are formed through
pure van der Waals interactions, these structures are
also built up of identical chiral layers (Fig. 2). The
structures of DMFUSC polymorphic modifications dif-
fer in their layer stacking: congruent stacking with a
shift is observed in the acentric modification and anti-
parallel stacking with inversion occurs in the centric
modification. The polymorphic structural phase transi-
tion α(P21/c, Z ' = 1)  383 ä  β(P212121, Z ' = 1)
between the α and β modifications of DMFUSC is
observed at a temperature of 383 K. The phase transfor-
mation is accompanied by the mutual cooperative rota-
tion of the layers with respect to each other by 30° and
the inversion of each second layer. A similar situation
arises with polymorphic modifications of VAWWEV.
In these compounds, chains containing molecules of
the same chirality are formed through hydrogen bonds.
The chains of the same chirality form a noncentrosym-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      200
metric crystal, whereas the chains of different chirali-
ties are linked together to form a centrosymmetric
structure with unit cell parameters that are close in
magnitude. Identical stable chiral fragments are
revealed in other concomitant modifications of this
group. The sole exception is represented by the FIKFIO
polymorphic modifications (Fig. 3). These modifica-
tions involve different molecular associates and, hence,
are characterized by different packing densities and dif-
ferent lattice parameters. In this case, the formation of
different supramolecular fragments can be explained
by the fact that molecules with different conformations
already coexist in a solution of this compound.

A very interesting example of different packings
formed by identical molecular associates is provided by
the DPGUAN modifications. Both crystalline forms are
characterized by Z ' = 2; i.e., they are polysystem crys-
tals. In both modifications, the chains with a similar
structure (Fig. 4) are composed of crystallographically
different molecules. Note that both chains are pseudo-
symmetric. In the noncentrosymmetric crystal, mole-
cules in the chain are related by an approximate glide-
reflection plane along the c-axis. In the centrosymmet-
ric crystal, molecules in the chain are related by the
glide-reflection pseudoplane a, which approximately
2
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(b)(a)

N(4A)
N(4A)

Fig. 4. Structures of chains formed by independent molecules in the (a) P212121 and (b) P21/c modifications of DPGUAN in the
projections parallel and perpendicular to the chain.
coincides with the (1 1 0) plane. A detailed analysis of
the molecular packing in these crystals according to the
scheme proposed in our earlier work [17] revealed that
both pseudosymmetric crystals can be treated as the
same hypothetical crystal with the pseudogroup of
higher symmetry: [(P212121, Z ' = 2) + c(1, 0.25, 1)] 
(Pbca, Z ' = 1)  [(P21/c, Z ' = 2) + a(110)]. However,
no real crystal with this symmetry was found.

0

a

b

Fig. 5. Structure of a chiral layer in the FABFUJ modifica-
tion.
C

Polymorphic modifications prepared from the
same solvent under different conditions. Identical
and stable supramolecular fragments can be formed not
only in concomitant modifications but also in polymor-
phs precipitated from the same solvent under different
conditions by varying the concentration, temperature,
or crystallization rate. An example of the kinetic poly-
morphism is represented by the FABFUJ polymorphic
modifications. The main crystallographic parameters of
these modifications and the conditions of their prepara-
tion are given in Table 3. Modifications II and III
belong to polysystem crystals and exhibit a pseudosym-
metry (the pseudosymmetry was thoroughly consid-
ered in our recent work [17]). All three polymorphic
modifications presented in Table 3 are built up of iden-
tical chiral layers (Fig. 5), which, in turn, are formed
through hydrogen bonds. Note that these modifications
differ only in the type of layer packing. A rapid cooling
of the saturated solution leads to the formation of crys-
tals with antiparallel packing and inversion, whereas
the structure of crystals grown through evaporation
from diluted solutions is characterized by congruent
packing (Fig. 6). It is worth noting that modification II
grown under virtually equilibrium conditions has the
highest density and is completely ordered, whereas
modifications I and III are partially disordered along
the c-axis.

In some cases, especially when molecules are not
involved in strong intermolecular hydrogen bonds, a
change in the crystallization temperature can bring
about a change in the orientation of substituents and,
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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(a)
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0

Fig. 6. Packings of chiral layers in the (a) P212121 (Z ' = 1), (b) P212121 (Z ' = 2), and (c) P21/c (Z ' = 3) modifications of FABFUJ.
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c
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0
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Fig. 7. Molecular packings in the (a) P212121 and (b) P21/c modifications of DEFDUN in the projections parallel and perpendicular
to the chain.
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(a)

(b)

Fig. 8. Structures of chains in the (a) P212121 and (b) P21/c modifications of BOPSAA.
hence, in the type of supramolecular associate. For
example, thermodynamic polymorphism occurs in the
DEFDUN modifications. The orientation of the nitro
groups with respect to the central benzene ring in mol-
ecules of the centric modification, which was prepared
in a hot supersaturated ethanol solution, differs from
that of the acentric modification synthesized at room
temperature. As a consequence, different systems of
short contacts stabilizing the structure (Fig. 7) are
formed in these crystals. However, it can be seen from
Fig. 7 that the mutual arrangements of molecules in the
layer differ only slightly and the layers themselves are
composed of molecules of the same chirality. The cen-
C

tric form is unstable at room temperature and, with
time, undergoes the phase transition P21/c (Z ' = 1) 
P212121 (Z ' = 1). This transition is attended by a change
in the orientation of the nitro groups with inversion and
insignificant rotations (by ~35°) of the molecules about
their centers of gravity. In turn, this leads to a transfor-
mation of the system of short contacts.

Polymorphic modifications synthesized in differ-
ent solvents. Identical supramolecular fragments (and,
correspondingly, close values of unit cell parameters)
are also observed in the polymorphic modifications
produced from different solvents under different condi-
tions. This situation occurs, for the most part, when the
Table 3.  Crystallographic parameters for polymorphic modifications of FABFUJ

Modification I II III

Space group P212121 P212121 P21/c

Z ' 1 2 3

a 13.556 13.572 13.543

b 8.271 8.248 8.290

c 7.340 14.508 22.591

β 90 90 104.97

Dcalcd, g/cm3 1.445 1.466 1.457

Crystallization conditions Evaporation of unsaturated 
aqueous solution

Slow evaporation of diluted 
aqueous solution

Rapid cooling of saturated 
aqueous solution
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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a

(b)

b

0

b

(a)

0 c

Fig. 9. Molecular packings in the (a) P212121 and (b) P21/c modifications of HETPAL.
supramolecular fragment is formed through sufficiently
strong intermolecular hydrogen bonds, which are
retained irrespective of the solvent type. The polymor-
phic modifications of BOPSAA (Fig. 8) and HETPAL
(Fig. 9) can serve as examples. However, we cannot
rule out the possibility that earlier attempts to choose

0.05

0

–0.05

∆D, g/cm3

Fig. 10. Distribution of the ∆D values (∆D is the difference
between the densities of centric and acentric modification).
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an appropriate solvent for crystallization of these mod-
ifications were unsuccessful or that the second modifi-
cation was simply overlooked. For example, the first
data on the polymorphism in MNPHOL were reported
120 years ago. However, the acentric form (in addition
to the well-known centric modification) was found
among the MNPHOL crystals precipitated from ben-
zene only in 1996. Molecules of all the other pairs of
polymorphic modifications listed in Table 2 are incapa-
ble of forming strong intermolecular hydrogen bonds.
In the case of different solvents, these molecules adopt
different geometries; the molecular topology and unit
cell parameters in polymorphic modifications are also
different. The difference between the densities of cen-
tric and acentric modifications has a standard value,
i.e., does not exceed 3–4%.

Although the main objective of the present work
was to analyze the general structural features of poly-
morphic modifications, brief mention should be made
of the relative density of centric and acentric modifica-
tions. Figure 10 displays the differences ∆D between
the densities of centric and acentric modifications. The
values of ∆D are equal, on average, to ~1–2% for the
majority of the modifications under investigation and
do not exceed 3–4% even for the largest differences that
correspond to the polymorphic modifications of
DTBPTP and MNPHOL, for which the densities were
measured at different temperatures (see Table 2). The
only exception is provided by the FIKFIO modifica-
tions whose densities differ by almost 6%. The close
densities of different polymorphic modifications imply
that their free energies are also rather close in magni-
tude. By and large, this confirms the inferences made
earlier by Brock et al. [13]: compared to the acentric
crystals, the centric crystals have a lower density and,
hence, are less energetically favorable. Moreover, it
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should be noted that, in the pair of polymorphic modi-
fications under consideration, the acentric crystals with
a higher density are encountered even more frequently.
This is especially true in regard to concomitant poly-
morphic modifications with close lattice parameters.

CONCLUSIONS

In summary, we can draw the conclusion that, in all
cases when the polymorphs are built up of identical sta-
ble supramolecular fragments, the unit cell parameters
are either close in magnitude or multiples irrespective
of the technique used for preparing the crystals. The
examples considered above confirm the inferences
made in [17] that the intermolecular association plays
an important role in the formation of crystal packing. In
the case when molecules form stable associates through
hydrogen bonds, the crystal structure is composed not
of individual molecules but of larger-sized supramolec-
ular fragments. The displacement of these fragments
with respect to each other can lead both to a lowering of
the symmetry of the real crystal and the appearance of
a pseudosymmetry and to the formation of different
crystalline modifications. When molecules form stable
chiral associates, there arise centric and acentric poly-
morphic modifications. This inference is in complete
agreement with the results obtained by Bernstein et al.
[18], who performed a numerical simulation of the pos-
sible crystal packings of achiral planar molecules of
aromatic hydrocarbons. In [18], it was demonstrated
that a simple displacement of identical planar achiral
layers by half the translation can readily result in the
transformation from the centrosymmetric group P21/c
to the chiral group P212121, and vice versa. In our opin-
ion, these arguments are also true for molecules with a
low racemization barrier. It is not improbable that the
above simplicity of the transformation also plays a role
in the occurrence of this pair of centric and acentric
modifications.
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Abstract—The data on the phase transitions in the series of rare earth sesquioxides are considered in terms of
the thermodynamic theory of morphotropism. It is shown that the scheme of polymorphism and morphotropism
suggested by V.V. Glushkova is the most adequate. The derivatographic dehydration of lanthanum and neody-
mium oxide hydrates is performed. The transition of the cubic C modification into the hexagonal A modification
of neodymium oxide is accompanied by the removal of volatile impurities and, thus, is not a polymorphic tran-
sition proper. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Polymorphism, morphotropism, and crystal struc-
tures of rare earth (RE) sesquioxides of the composition
R2O3 in oxidation degree III have been studied in [1–13].
Three main structure types in which these compounds
are crystallized at room temperature have been known
since the studies of Goldschmidt: hexagonal A-type, the
monoclinic B-type close to A, and the cubic C-type. At
temperatures exceeding 2000°C, there exist two more
modifications denoted as H and X.

At present, two main schemes of polymorphism and
morphotropism in the R2O3 series (Figs. 1a, 1b) are
known. In the scheme suggested by Foex and Traverse
(Fig. 1a), the existence range of the B modifications in
the temperature–cationic radius diagram has a lenslike
shape and is limited from below by the existence range
of the cubic C-phases. Moreover, it is also assumed that
there exist low-temperature C-modifications of cerium
oxides crystallizing in the A-type (R = La–Nd). The
low-temperature phase transitions with the participa-
tion of C-modifications are indicated in accordance
with data [1]. In the Glushkova scheme (Fig. 1b), the
boundaries between the fields of the A- and B- and
between the B- and C-modifications are almost vertical
in the low-temperature region. The reversible B  C
transitions take place only for the Tb, Dy, and Ho
oxides. The low-temperature C-modifications of the
La–Gd oxides are interpreted as nonequilibrium ones.

The canonical scheme suggested in [9, 11, 12] is
widely used; however, it is somewhat erroneous.

The use of the thermodynamic theory of morphotro-
pism [14, 15] allows one to solve the problem, which
has been discussed for the last 75-odd years [2, 4, 12,
and the references there], of the possible existence of
stable low-temperature cubic C-modifications in Ce
sesquioxides reversibly transforming into A- or B-mod-
ifications during heating. It was shown [14] that, if the
1063-7745/02/4702- $22.00 © 20281
thermodynamic function of a compound is a smooth
function of ionic radius r [which is the necessary and
sufficient condition for the description of the corre-
sponding dependences of the phase-transition tempera-
tures T(r) (e.g., melting) by smooth functions], then the
curve separating the regions of the thermodynamic sta-
bility of the phases having different structures in the
T–r coordinates should have a vertical tangent with the
approach to the temperature of absolute zero. If the
Debye model is applicable to both modifications, then,
in the low temperature range, this curve is described by
the limiting equation

T = a|r0 – r |n,

where a and r0 are the parameters and n = 0.25. For tri-
fluorides RF3, the experimental data yield n = 0.284
[15]. The aim of the present study is to consider the
polymorphism of RE oxides in terms of the thermody-
namic theory of morphotropism.

THERMAL DECOMPOSITION OF LANTHANUM 
AND NEODYMIUM HYDROXIDES

There are numerous data on the stabilization of the
cubic C-modifications of RE oxides by various impuri-
ties and, first of all, by water [2, 4, 5]. We studied here
the dehydration of lanthanum and neodymium oxide
hydrates by the derivatographic method (a Q-1500 deri-
vatograph, platinum crucibles, heating rate 10°C/min).
The starting materials were chemically pure La2O3 and
Nd2O3 reagents kept in air for not less than twenty
years.

The X-ray phase analysis of the specimens was per-
formed on an HZG-4 diffractometer (Carl Zeiss, Jena,
Germany), CuKα radiation, Ni-filter, and Si external
standard. The initial specimen was preliminarily
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Phase transition in the R2O3 series: (a) according to
DTA data [6]: ( solidification points, × transformation points;
X-ray phase analysis data [1]: n transformation point dur-
ing temperature increase, , transformation point during
lowering of the temperature according to data [1]; ) trans-
formation points according to data [13];  transformation
points of Pm2O3 as functions of the nucleus charge of an
N-cation; (b) according to data [4] with no allowance for the
metastable states dependent on the ionic radius R3+.

 )
C

ground in a jasper mortar. The angular range was 10°–
60°; the recording rate was 2°/min.

The positions and intensities of the diffraction peaks
were calculated by the Profit and Powder2 programs
with allowance for both Cu  and Cu  lines. Sub-
stance identification was done by comparing the exper-
imental data with the data of the JCPDS Powder Data
Base (1997). The indexing of diffraction patterns and
calculation of the lattice parameters were done by the
LS method within the Powder 2 program.

The X-ray diffraction patterns obtained from the
starting materials were essentially different from those
of La2O3 and Nd2O3. Their comparison with the Data Base
data showed that these lines corresponded to La(OH)3 and
Nd(OH)3, sp. gr.  P63/m (JCPDS no. 36-1481, a = 6.528 Å
and c = 3.858 Å and no. 06-0601, a = 6.421 Å and c =
3.74 Å, respectively).

As is seen from Fig. 2, the decomposition of
hydrated lanthanum oxide proceeds in three stages. The
weight losses correspond to the following reactions: at
the first stage at T = 292°C,

2La(OH)3  La2O3 · H2O + 2H2O 

and at the second and third stages (T = 422°C),

La2O3 · H2O > La2O3 + H2O.

The above temperatures correspond to the beginning of
the decomposition processes on the curve of the weight
loss (G). These equations were confirmed by the dif-
fraction patterns of the samples heated to certain tem-
peratures corresponding to the processes that were
fixed on derivatograms (Fig. 3).

The X-ray diffraction pattern of La2O3 · H2O
(Fig. 3b) is similar to that of LaO(OH): monoclinic sys-
tem, sp. gr. P21/m, a = 4.417 Å, b = 3.929 Å, c = 6.572 Å,
β = 112.5° [15] (JCPDS no. 19-0656). However the lat-
tice parameters of La2O3 · H2O are essentially different
from those of LaO(OH) (according to our data, a =

Kα1
Kα2

G

DTG

DTA

T, °C

751

666

512

422

341

292

Fig. 2. Derivatogram of thermal decomposition of hydrated
lanthanum oxide.
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(d)

2θ, deg403020

(c)
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(a)

La2O3

[La2O3]

La2O3 · H2O

I/I0

La(OH)3

Fig. 3. X-ray diffraction patterns from dehydrated lanthanum oxide at different stages of dehydration; (a) initial sample; heating to
(b) 360, (c) 600, and (d) 1000°C.
4.436 Å, b = 3.930 Å, c = 6.619 Å, β = 112.12°).The
diffraction pattern taken upon the second stage of
decomposition (Fig. 3c) was almost identical to that of
completely dehydrated oxide. The unit-cell parameters
of the trigonal lattice were determined as a = 3.923 Å,
c = 6.124 Å and a = 3.935 Å, c = 6.127 Å upon the sec-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
ond and third stages of decomposition, respectively.
The Data Base indicates for La2O3 (JCPDS no. 05-0602)

the sp. gr. , a = 3.937 Å, c = 6.129 Å. The anal-
ysis of the additional weak reflections on the diffraction
pattern observed upon the second stage of decomposi-

P3m1
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tion and disappearing upon the third stage (Fig. 3c)
indicates the presence of several percent of lanthanum
oxicarbonate La2O2CO3 (JCPDS no. 37-0804). These
reflection disappeared upon the third stage of decompo-
sition (Fig. 3d).

The decomposition of Nd(OH)3 (Fig. 4) proceeds in
three stages. The calculation of the weight losses corre-
sponds to the following reactions at T = 225, 390, 590°C:

2Nd(OH)3  Nd2O3 · H2O + 2H2O,

Nd2O3 · H2O  Nd2O3 · 0.3H2O + 0.7H2O,

Nd2O3 · 0.3H2O  Nd2O3 + 0.3H2O.

The X-ray diffraction pattern of the sample upon the
first stage of water loss corresponded to the formula
NdO(éH) and was similar to the X-ray diffraction pat-

G

DTG

DTA

T, °C

760

590

492

390

312

225

Fig. 4. Derivatogram of thermal decomposition of hydrated
neodymium oxide.
C

tern from LaO(éH). It was indexed in the monoclinic
system a = 4.388 Å, b = 3.870 Å, c = 6.392 Å, β =
112.2° (Table 1), which is consistent with [16], where
it was stated that all the RE oxyhydroxides are isostruc-
tural. The Data Base provides no indexing of these pat-
terns (JCPDS no. 13-0167).

Upon the second phase of decomposition, the C-phase
of neodymium oxide was detected (cubic face centered
lattice, a = 11.078 Å), which, in actual fact, is a hydrate
of the composition Nd2O3 · 0.3H2O. In the temperature
range 590–760°C, the Nd hydrate, Nd2O3 · 0.3H2O,
decomposes to the Nd2O3 of the A type corresponding

to JCPDS no. 06-0408 ( , trigonal system, a =
3.831 Å and c = 5.999 Å).

P3m1
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0.93

T, K

r, Å

1000

1500

2000

0.94 0.95 0.96 0.97

A

B

Sm

Gd Eu

Pm

Fig. 5. Approximation of the data on the temperatures of
A  B phase transitions [6, 13]. Solid line describes the
equation T = 3607(0.977 – r)0.1323, dash line (r = 0.977 Å)
is the boundary of the morphotropic transformation. The
ionic radii were taken at c.n. 6 [19].
Table 1.  Indexing of X-ray diffraction pattern of NdOOH

2θ, deg d (obs), Å 104/d2 (obs) I/I0 h k l 104/d2 (calc) ∆104/d2

14.900 5.9409 283.3 17 0 0 1 285.6 –2.30

21.320 4.1642 576.7 42 –1 0 1 577.0 –0.32

21.709 4.0905 597.6 52 1 0 0 606.1 –8.51

27.679 3.2203 964.3 100 0 1 1 953.3 11.01

29.871 2.9888 1119.5 47 –1 0 2 1119.1 0.35

31.089 2.8744 1210.3 18 1 0 1 1206.6 3.75

31.918 2.8016 1274.1 58 –1 1 1 1259.1 15.00

38.339 2.3459 1817.1 26 0 1 2 1810.2 6.93

41.165 2.1911 2082.9 20 –2 0 1 2080.7 2.24

43.424 2.0822 2306.5 14 –2 0 2 2308.1 –1.50

45.944 1.9737 2567.1 18 0 0 3 2570.7 –3.62

47.372 1.9175 Nd2O3 20 Nd2O3 Nd2O3 Nd2O3

50.742 1.7978 3093.9 22 2 1 0 3092.3 1.67

57.285 1.6070 3872.3 22 1 2 1 3877.2 –4.90
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Table 2.  Parameters of the equation T = ‡|r0 – r|n which describe the upper temperature boundary of stability of various fami-
lies of phases

Compound r0, Å a, K/Å n Correlation
coefficient Reference

Pb4R3F17 1.230* 1430 0.091 0.9989 20

Ca8R5F31 1.165* 1800 0.136 0.9994 20

Ca2RF7 1.171* 2030 0.192 0.9997 20

RF3(β-YF3) 1.226 ± 0.005* 3160 0.284 0.960 15

B-R2O3 0.977 ± 0.014** 3600 ± 950 0.132 ± 0.093 0.9893 Present study

* Ionic radii of fluorides at c.n. 8 [19].
** Ionic radii of oxygen at c.n. 6 [19].
DISCUSSION OF RESULTS

The results obtained in our study confirm and sup-
plement the X-ray diffraction data [4, 5] on the transi-
tion of the cubic C-modification of neodymium oxide
to the trigonal A-modification accompanied by the
removal of volatile impurities. Therefore, this transfor-
mation cannot be considered as a polymorphic transi-
tion proper. The stages and the hydration temperatures
observed in this study agree with the data in [4, 5, 16, 17].
The inconsistencies can be explained by the different
methods used for preparing the initial hydrated forms.

According to our data, the dehydration of neodymium
oxide is completed at a rather high temperature, 760°C.
It seems that the presence of strongly bound (residual)
water explains the error made by Warshaw and Roy,
who described the reversible transitions in the R2O3
oxides of the cerium group in the presence of H2O [1].
They considered water only as a means for accelerating
the phase transition but not affecting the chemical com-
position (i.e., as a catalyst). However, in actual fact, a
small amount of residual water in the substance
changes the pattern of polymorphism and morphotro-
pism.

The structural changes occurring in R2O3 in the tran-
sition from the C- to the A-modification can be
described by the mechanism of crystallographic shear
[5, 10, 11, 18].

Thus, of two alternative schemes of polymorphism
and morphotropism in the series of RE sesquioxides,
the scheme in Fig. 1b seems to be more adequate. Pro-
ceeding from the changes in the melting points in the
series of RE oxides with due regard for the “gadolinium
kink,” the whole series can be divided into two
groups—cerium and yttrium. The model of an ideal
morphotropic series can be applied to both of these
groups [14]. This situation corresponds to RE fluorides
[15]. Figure 5 shows the results of the LS procedure
applied to data [6, 13] on the temperatures of the A  B
polymorphic transformations in accordance with the
limiting thermodynamic equation T = a |r0 – r |n, where
a = 3600 ± 950, r0 = (0.977 ± 0.014) Å, and n = 0.132 ±
0.093. The ionic radii (tabulated to the third decimal
place) were taken from the system suggested in [19]
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
at c.n. 6. The approximation obtained is characterized
by a high value of the correlation coefficient.

Table 2 lists the parameters of this equation, which
describe the stability boundaries of various phases. The
deviation of n from the value 0.25 can be explained by
the fact that the transition temperatures are rather far
from the temperature of absolute zero. The value r0 =
0.977 Å lying between the ionic radii of Pm and Nd sets
the boundary of the morphotropic A  B transforma-
tion in R2O3 oxides. The data on the B  C polymor-
phic transitions for R2O3 have not been processed quan-
titatively because of the insufficient number of points.

In [7], some additions to the scheme of polymor-
phism and morphotropism in R2O3 series were made
which concerned high-temperature polymorphism in
yttrium oxides (the existence of the A- and B-modifica-
tions in the narrow temperature intervals). The conclu-
sions drawn are based on the data for samples contain-
ing 10 mol % of heterovalent impurities (Sr and Ca
oxides but not Mg and Ba oxides). We believe that such
an approach is erroneous because it ignores the possible
stabilization of unstable crystalline modifications by
impurities [4] accompanied by the formation of indi-
vidual berthollide phases separated from the ordinate of
the corresponding component [15, 21].
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Abstract—The changes in the structural–deformational characteristics occurring during the phase transitions
in the crystal lattice of epitaxially grown thin (Ba,Sr)TiO3 films on the (001) cleavage of MgO crystals have
been studied. It is shown that microdeformations along the surface normal of the wall of a c-domain film
increase with the temperature and attain maximum values in the vicinity of the phase transition. No decrease in
the dimensions of the coherent-scattering regions was observed. The comparison of the deformation of the
“average” lattice and microdeformations led to the assumption that the transition from the paraelectric to the
ferroelectric phase is accompanied by the dislocation-induced formation of a dipole-glass-type intermediate
phase at the temperatures exceeding that of the phase transition. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent decades, intensive studies of the physical
properties of thin ferroelectric films and phase transi-
tions occurring in these films have been performed. The
properties of these films often differ from the properties
of bulk specimens of the same compositions: in partic-
ular, phase transitions in the films are often diffuse and
are similar to those observed in ferroelectrics–relaxors
[1, 2].

Studying thin epitaxial (Ba,Sr)TiO3 films grown on
the (001) surface of MgO crystals, we established that
the degree of phase-transition diffusion depends on the
perfection of the crystal structure characterized by the
dimension of the coherent-scattering region, D, and the
value of the average microdeformation  =

 along the [001] direction (where d is the
corresponding interplanar spacing) [3]. The  values
of various films at room temperature are about 10–3–10–4,
whereas the D values exceed 1000 Å; the degree of
phase-transition diffusion is higher for films with
higher  values [3], i.e., depends on the presence of
linear defects (dislocations). It is also shown that the
ferroelectric phase transition occurs at temperatures
higher than in the bulk specimens of the same compo-
sitions because of the compressive thermoelectric
stresses caused by the difference in the thermal expan-
sion coefficients of the film and the substrate [4].

In some instances, the values of the lattice parame-
ters c were higher and the values of the a parameters,
lower than the corresponding values for the bulk speci-
men. Also, at temperatures T exceeding the phase-tran-
sition temperature TC, the unit cell remains tetragonal

ε̃3

∆d/d( )2〈 〉
ε̃3

ε̃3
1063-7745/02/4702- $22.00 © 20287
but becomes nonpolar—the etching figures of domains
observed in an electron microscope disappeared [3, 4].
These anomalies were explained by the effect of ther-
moelastic stresses and the anisotropic distribution
of  point defects in the films associated with the tech-
nology of film formation (high-frequency cathode sput-
tering).

The above results allow one to assume that the
restructuring of the crystal lattice of the films during
phase transitions is characteristic of both ferroelectrics
and ferroelectrics–relaxors and, thus, should reflect the
elastic interaction between the film and the substrate.

The diffusion of phase transitions in ferroelectrics–
relaxors is associated with the formation of an interme-
diate dipole-glass phase prior to the transition from the
paraelectric to the ferroelectric phase. Crystal restruc-
turing is studied in most detail for lead magnesium nio-
bate and its solid solution with lead titanate [5, 6]. The
specific features of diffuse scattering and the changes in
the widths and the intensities of Bragg reflections are
interpreted as the result of the formation of mesoscopic
polar clusters in the nonpolar cubic matrix whose
dimensions increase with lowering of the temperature.
In turn, macroscopic regions with nonuniform sponta-
neous deformation provide the formation of a dipole-
glass phase [5]. By measuring the broadening of the
Bragg reflections, we determined the average microde-
formation of the crystal lattice along the directions cor-
responding to the reflection indices and, thus, evaluated
the degree of structure disorder in both dipole-glass and
other phases.

The first-order phase transition in the (Ba,Sr)TiO3
films [7] is accompanied by the nucleation of a new
phase, with both phases being coexistent within a cer-
tain temperature interval [8]. As a result, the dimen-
002 MAIK “Nauka/Interperiodica”
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sions of the blocks of the crystal lattice decreased [9].
Kenzig [10] observed the broadening of reflections
which could be associated with a decrease in the dimen-
sions of coherent-scattering regions.

The present study is dedicated to structural phase
transitions in heteroepitaxial ferroelectric films. We
studied the temperature dependence of the unit-cell
parameters and the changes in the structural–deforma-
tional characteristics, such as the average microdefor-
mation and the dimension of the coherent-scattering
regions during phase transitions. The temperature
dependence of the “average” unit-cell deformation [11]
was compared with the temperature dependence of the
average microdeformation during phase transitions.

It would be interesting to compare the results of the
traditional studies of the temperature dependence of the
dielectric constant obtained earlier [12–14] (not consid-
ered here) with the structural data. It was shown both
experimentally and theoretically (within the frame-
works of the thermodynamic approach) that the biaxial
compressive stresses usually observed in epitaxial
(Ba,Sr)TiO3/MgO films suppress the formation of the
maximum for the ε11 component of the dielectric-con-
stant tensor in the temperature range corresponding to
the transition from the tetragonal to the cubic phase. In
this case, the main components ε11 = ε22 of the dielec-
tric-constant tensor readily measured in epitaxial films
on flat dielectric substrates provide no additional infor-
mation.
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Fig. 1. Temperature dependence of the parameters of the
average unit cell: (1) c(T), (2) a(T), and (3) the average
microdeformation along the [001] direction, (T).ε̃3
C

EXPERIMENTAL

The (Ba0.7, Sr0.3)TiO3 films were grown by high-fre-
quency sputtering of polycrystal line targets of stoichi-
ometric composition [15] in an oxygen atmosphere
under a pressure of 93 Pa. The films were deposited
onto as-cleaved MgO (001) surfaces. The substrates
were preliminarily heated up to 450°C by a resistive
heater and then bombarded with the plasma particles of
a high-frequency discharge, which heated the substrate
up to 850°C. The power of the high-frequency discharge
was 25 W/cm2, the deposition rate was 130 Å/min. Upon
the attainment of the desired film thickness (0.5–
2.0 µm), the high-frequency discharge was switched
off, and the film was spontaneously cooled to ~250°C.
The high heat capacity of the heater provided sufficient
inertial cooling at an average rate of 5°C/min. In the
temperature range from 250°C to room temperature,
the average cooling rate was maintained at a level of
about 1°C/min, which resulted in the formation of the
equilibrium domain structure in the film.

The X-ray diffraction studies were made on a
DRON-3 diffractometer (filtered CuKα radiation). The
specimens were placed into a special chamber fixed on
a goniometer, which allowed one to record the reflec-
tions within the temperature range 20–550°C. The
phase transitions were recorded during the cooling of
the specimen preliminarily heated up to 500°C. The 
and D values were obtained by the approximation
method [6]. The reflection profiles were approximated
by Gaussians.

RESULTS AND DISCUSSION

According to the X-ray diffraction data, the (001)
planes and the [100] and [010] directions in the films
and in the substrates were parallel. The c-axis of the
film was normal to the surface (the “c-domain
films”). The method used in our study is described
elsewhere [17].

The changes in the structural–deformational charac-
teristics during phase transitions were studied on the
films with a rather high degree of structural perfection.

Figure 1 (curves 1 and 2) shows the temperature
dependence of the lattice parameters for a 0.6-µm-thick
film, whose average microdeformation along the direc-
tion normal to the film surface was ε3 = 7.7 × 10–4 at D >
1000 Å at room temperature. As was indicated earlier,
the kink in the temperature curve of the c- and a-param-
eters, indicating the occurrence of the phase transition,
is observed at a considerably higher temperature than
the phase-transition temperature in the bulk specimen
(35°C [18]). At T > TC, the unit-cell symmetry
remained tetragonal. The c-parameter was determined
using the 004 reflection, whereas the a-parameter was
determined from the angular positions of the 004 and
224 reflections.

ε̃
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No decrease in the dimensions of the coherent-scat-
tering regions along the [001] direction (characteristic
of ferroelectric films undergoing the first-order phase
transition) was observed in the whole temperature
range studied. The broadening ratio β1/β2 for the 00l1
and 00l2 reflections was equal to the tangent ratio of the
corresponding Bragg angles: in other words, reflection
broadening was caused by microdeformations alone.

Figure 1 (curve 3) shows the temperature depen-
dence of  whose squared value is, in fact, the S33

component of the tensor of averaged random microde-
formations Sij = 〈ε iεj 〉  with i, j = 1, 2, …, 6 [19]. The
maximum (S33)1/2 = ε3 ~ 10–3 values were observed in
the vicinity of the phase transition.

The range of the angular block misorientation with
respect to the film normal determined by the 1θ-scanning
at a narrow slit of the static counter remained constant.

Analyzing the data obtained, we compared the tem-
perature dependences of uniform volume (εv) and shear
(εt) deformations of the average unit cell with the tem-
perature dependences of the average volume ( ) and

shear ( ) microdeformations. The εv and εt values
were determined from the following equations:

where

and aT and cT are the average unit-cell parameters at the
temperature T. The 〈ε1〉  and 〈ε3 〉  deformations were cal-
culated with respect to the unit-cell parameters a0 and
c0 measured at the maximum temperature from which
the films were cooled.

The  and  values were determined from the
equations relating reflection broadening and the com-
ponents of the tensor of averaged random microdefor-
mation, Sij [19]. Since the tetragonality of the unit cell
in the temperature range studied was low (c/a < 1.01),
we used the well-known relationships for the cubic
crystal S11 = S22 = S33 and S12 = S13 = S23. Then, reflection
broadening during θ/2θ scanning along the scattering
vector is given by the equations

whence, using the measured β004 and β224 values and
the calculated S11 and S12 values, we obtain

ε̃3

ε̃v

ε̃t

εv 2 ε1〈 〉 ε 3〈 〉 ,+=

εt ε3〈 〉 ε 1〈 〉 ,–=

ε1〈 〉 aT a0–( )/a0,=

ε3〈 〉 aT a0–( )/a0,=

ε̃v ε̃t

β00l
2 16S11 θ00l,tan

2
=

βll2l
2 16/3 S11 S12+( ) θll2l,tan

2
=

ε̃v ε1 ε2 ε3+ +( )2〈 〉 3 S11 2S12+( ),= =

ε̃t ε1 ε3–( )2〈 〉 2 S11 S12–( ).= =
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Figure 2 illustrates these dependences. During cool-
ing, the first kink on the (T) plot (curve 1) is observed
at T1 ≈ 110°C. An increase in εt recorded at this temper-
ature is accompanied by a drastic decrease in the uni-
form shear deformations εt in the averaged unit cell
(curve 2). In a ferroelectric undergoing a phase transi-
tion, the dependence of the c- and a-parameters at fur-
ther cooling provides an increase in εt [8]. An increase
in εt on curve 2 begins only at T < T2 ≈ 91°ë upon the εt

jump at T = T2 (where T2 corresponds to the kink on the
curves c(T) and a(T) (Fig. 1, curves 1, 2)). At tempera-
tures lower than T2, the behavior of the shear microde-
formations is changed and  starts decreasing. Finally,

at T < T3 ≈ 63°ë, both εt and  become temperature-
independent.

The εt and  dependences observed lead to the
assumption that, in the temperature range T2 < T < T1,
an intermediate dislocation-induced dipole-glass phase
should exist [20]. Indeed, an increase in  at T1 indi-
cates the appearance of spontaneous random displace-
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Fig. 2. Temperature dependence of the deformation of the
average unit cell and microdeformation: (1) average shear
microdeformation , (2) shear deformation of the average
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ments giving rise to lattice disordering because  > εt.
At T2, the averaged lattice becomes polar, and the shear
deformations of the average unit cell drastically
increase and start exceeding , which also indicates
the formation of macroscopic regions of rather uniform
polarization. At T3 < T < T2, a mixed phase is observed
in which the average polar lattice coexists with the
regions of the dipole-glass phase in which the direc-
tions of local dipole moments are disordered. At T < T3,
the random shear microdeformations  decrease to the
values approximately equal to those observed in the
paraelectric phase at T > T1, whereas εt considerably
exceeds . Thus, below T3, only the macroscopically
homogeneous ferroelectric phase exists.

It should be emphasized that the dependences of the
volume microdeformations also have anomalies at tem-
peratures T1, T2, and T3 (curve 3 in Fig. 2), which is con-
sistent with the conclusion regarding the formation of
intermediate phases. At the same time, the dependence
of the volume deformation of the average unit cell cor-
responds to the behavior of a conventional ferroelectric
crystal (Fig. 2, curve 4).

It seems that the elastic interaction between the film
and the substrate increases the phase-transition temper-
ature and causes the tetragonal distortion of the cubic
unit cell in the paraelectric phase.

CONCLUSION

In the films studied, the ferroelectric tetragonal
phase is formed in the tetragonal and not in the cubic
matrix. At T > TC, dislocations break the lattice period-
icity and give rise to microdeformations; they are also
sources of fluctuations in the local electric fields. This,
in turn, leads to the diffusion of the phase transition and
the formation of intermediate phases during such trans-
formations. During the restructuring of the crystal lat-
tice, some blocks that have undergone phase transitions
at a higher temperature do not form individual coher-
ent-scattering regions and can promote only higher
microdeformations.
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Abstract—High-pressure-induced structural phase transitions in alkali halide crystals have been studied. The
pressure of the B1–B2 phase transition in crystals of finite dimensions is studied with the use of pair-interaction
potentials within the theory of inhomogeneous electron gas. It is shown that the pressure of polymorphous
transformation depends on the initial crystal dimensions. The anomalous dependence of the transition pressure
on the dimensions of crystalline grains in lithium fluoride is considered and interpreted. Some structural and
surface characteristics of the B1 and B2 modifications of a number of alkali halide crystals are calculated in the
approximation of seven coordination spheres. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

The phase transition between the B1-type (sodium
chloride structure) and the B2 (cesium chloride struc-
ture) phases of alkali halide crystals is being studied
both experimentally and theoretically. The experimen-
tal study is performed by two main methods—speci-
men compression by a shock wave and the creation of
static pressure in a diamond cell. Bridgman [1] used the
method of static compression and observed the phase
transitions in KCl and KBr crystals in the pressure
range 20–30 kbar. Later, Al’tshler [2, 3] studied shock-
wave induced compression in some alkali halide crys-
tals. His experimental results confirmed the Bridgman
data for potassium chloride and bromide, and thus
proved the possibility of a polymorphous transforma-
tion in these compounds in the vicinity of 20 kbar. The
first detailed theoretical study of the B1–B2 phase tran-
sition was made by Jacobs [4] using the short-range
Born–Mayer potential with due regard for the interac-
tions only between the nearest neighbors [5]. Despite
the fact that the pressures of polymorphous transforma-
tions obtained in [5] only approximately corresponded
to the experimental data, Jacobs determined some
important characteristics of this transition: the change
in the crystal volume ∆Vt under the pressure of the
phase transition and the jump in the lattice constant.
Born and Huang [6] and Tosi [7] used the refined Born–
Mayer approximation to determine the phase transition
pressure and the cohesion energy of the B1 and B2
phases. 

Later, Gordon and Kim used the model of an inho-
mogeneous electron gas [8] to calculate the cohesion
energy of the B1 and B2 phases and the pressure of the
polymorphous transformations in the crystals of lith-
ium, potassium, and sodium bromides, fluorides, and
1063-7745/02/4702- $22.00 © 0291
chlorides. The best agreement with the experimental
data was attained for the cohesion energy of the
B1 phase and under the transition pressure. Later
Cohen and Gordon [9] studied these phases in more
detail—the short-range potentials also took into
account the quantum corrections for inhomogeneity of
kinetic energy; they also made an attempt to consider
the effect of the second and the third nearest neighbors.
However, the allowance for the contributions from the
ions of the second and third coordination spheres often
deteriorated the agreement between the theory and the
experiment. 

It should be noted that all the above investigations
were made for infinite crystals. In [10], the effect of the
surface contribution to the thermodynamic potential of
a crystal on the properties of the B1–B2 phase transition
was studied for a number of alkali halide crystals. 

In recent years, the development of the high-pres-
sure methods triggered studies of the properties of
polymorphous transformations in crystalline sub-
stances [11–15]. However, despite the considerable
progress in the experimental and theoretical studies of
polymorphous transformations, many problems still
remain to be solved. Thus, while the structure and prop-
erties of high-pressure phases have been insufficiently
studied, the polymorphous transformations in crystals
of finite dimensions have been hardly studied at all. 

The present investigation is dedicated to the charac-
teristics of polymorphous transformations in ionic crys-
tals of finite dimensions. Special consideration is given
to the calculation of the elastic characteristics of crys-
tals and their dependence on the pressure applied. The
knowledge of these values is necessary for understand-
ing the nature of the binding forces in ionic crystals. All
2002 MAIK “Nauka/Interperiodica”
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the calculations were performed in the approximation
of the zero absolute temperature. 

SIZE EFFECT IN THE B1–B2 TRANSITION 
IN SMALL CRYSTALS 

Proceeding to polymorphous phase transitions in
alkali halide crystals of finite dimensions, we have to
modify the thermodynamic potential of the crystal
under the conditions of hydrostatic pressure [16] by
adding a new term, which describes the surface energy
of the crystal. To simplify the model, we assume that
the surface of a crystal of the B1 phase is (100)-faceted,
whereas a crystal of the B2 phase is (110)-faceted,
because, under zero external pressure and absolute-zero
temperature, these faces possess minimum surface
energies. Thus, the thermodynamic potential of such a
crystal, with due regard for the surface contribution,
can be written in the form 

(1)

where αµ1 = 1.747558 and αµ2 = 1.76268 are the Made-
lung constants of the B1 and B2 structures, R1 and R2
are the distances between the nearest neighbors in these

modifications, V1 = 2  and V2 = (8/3 )  are the
unit volumes of the B1 and B2 phases, UB1(R1) and
UB2(R2) are the pair-interaction potentials, ak = Rk/R0 is
the ratio of the radius of the kth coordination sphere to
the radius of the first one, and Nk is the coordination
number. The subscript i enumerates both B1 and B2
phases. It should be noted that we used numerical val-
ues of the pair potentials obtained by the self-consistent
method [17] within the theory of inhomogeneous
electron gas, with r being the initial radius of the crys-
tal, σ, the surface energy, and k, the numerical coeffi-
cient taking into account the deviation of the crystal
shape from spherical. Since the thermodynamic
potentials of both phases are equal at the transition
point, Eq. (1) determines the implicit dependence of
the polymorphous-transformation pressure on crystal
dimensions [10]. 

The surface energy σ(hkl) was calculated in the
zeroth approximation, i.e., with no allowance for sur-
face distortions of the interionic distances. In accor-
dance with the definition of the surface energy [18], we
have at 0 K 
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where σ(hkl) is the surface energy of the (hkl) face,

 is the energy of a particle in the jth layer provided

by the ith type of the interacting forces,  is the
same in the crystal bulk, and nj(hkl) is the number of
particles in the jth plane per unit area. In the zeroth
approximation used, Eq. (2) acquires the form [19] 

(3)

Now, consider a plane net inside an infinite solid. Obvi-
ously, for a perfect (undistorted) crystal, we have 

(4)

where  is the energy of a particle on the net pro-
vided by the ith type of interaction with all the remain-

ing particles in this plane, and  is the energy of the
same particle determined by its interaction with all the
other particles in the planes above and below the plane
under consideration. Thus, the particle energy in the
surface plane of an undistorted crystal is 

(5)

Eliminating  from Eqs. (4) and (5) and substitut-
ing the result into Eq. (3), we obtain 
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where β(i) =  =  is the ratio of the sums over the

infinite plane net to the sum over the infinite lattice for
the ith type of the interionic forces. In particular, for
Coulomb forces, β is the ratio of the Madelung constant
for the plane net to the Madelung constant for the three-
dimensional lattice. For other forces, β is the ratio of the
rapidly converging series whose summation presents
no difficulties. 

Surface tension can be calculated by using the for-
mula relating the surface-tension tensor and surface
energy [19] in the form
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Table 1.  Surface energy and surface tension for alkali halide crystals 

Crystal

σ × 10–3, J/m2 α × 10–3, N/m

B1 phase B2 phase B1 phase B2 phase

1 [20] 2 [21] 3 4 [22] 5 6 [20] 7 [21] 8 9 [22] 10

LiF 465 289 392 461 537 1491 1978 1250 2131 1997

LiCl – 230 271 332 318 – 1711 1500 1510 1481

LiBr – 207 244 301 309 – 1637 1119 1150 1107

NaF 287 266 279 356 337 521 1214 637 708 691

NaCl 280 211 260 337 318 462 641 553 621 602

NaBr 189 192 174 220 231 267 534 306 376 384

KF 233 226 257 313 320 489 719 669 720 718

KCl 177 175 185 234 228 316 404 381 444 420

KBr 170 159 162 210 211 299 341 376 428 436

RbF 224 213 237 320 308 381 600 665 712 725

RbCl 275 166 191 227 224 316 549 531 600 613

RbBr 178 150 140 215 202 286 282 271 341 350

Note: The results of the present study are listed in columns nos. 3, 5, 8, and 10.
for the surface with a rotational symmetry not lower
than of the third order, Eq. (7) takes the form 

(8)

For the one-component system, the third term in the
right-hand side of Eq. (8) goes to zero if one uses the
Gibbs equimolar interface (Γ = 0). For such a choice of
interface, we have 

If the distance between the particles is R, then dS =
2RdR, and, therefore, 

(9)

Substituting equations of the surface energy of an
undistorted crystal into Eq. (9), we arrive at 

. (10)

Table 1 lists the surface energy and the surface ten-
sion calculated by Eqs. (6) and (10) for a number of
alkali halide crystals. Upon the determination of the
surface contribution to the thermodynamic potential of
the crystal, one can also calculate the pressure of the
polymorphous B1–B2 transformation by the equations
of potentials GB1 and GB2 for both crystalline modifica-
tions [10]. This calculation shows that the transition
pressure is strongly dependent on the crystal dimen-
sions. Table 2 lists the calculated dependences p0(r) for
a number of alkali halide crystals. 
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Table 2 shows that, for all the alkali halide crystals
(except for lithium fluoride), the pressure of polymor-
phous transformation increases with the reduction of
the initial crystal dimensions. For a nonspherical crys-
tal (k = 2), the transition pressure is on average 6–8%
higher than for an ideal spherical crystal (k = 1). For a
lithium fluoride crystal, the situation is opposite—with
a decrease in the crystal size the pressure of the B1–B2
transition also decreases. This is explained by the dif-
ferent cohesion energies of the crystal, which for lith-
ium fluoride is considerably higher than for other
halides. This, in turn, gives rise to a higher pressure of
polymorphous transformation for an infinitely large
LiF crystal. However, the calculation of the surface
energies of ionic crystals under high pressures show
[22] that the surface energy of lithium fluoride under
these conditions is lower in the B2 phase than in the B1
phase and, therefore, the surface contribution to the
thermodynamic potential accelerates the phase transi-
tion by reducing the transition pressure. For the remain-
ing alkali halide crystals, the size effect results in an
increase in the pressure of the B1–B2 phase transition
with a decrease in the crystal dimensions. 

ELASTIC CONSTANTS OF THE B1 
MODIFICATIONS OF ALKALI HALIDE 

CRYSTALS 

The occurrence of the structural phase transitions
makes it necessary to study the elastic properties of
crystals in the high- and low-pressure ranges. The cal-
culations of the elasticity moduli Cαβ and their depen-
dence on pressure provide important information on the
nature of binding forces in the high- and low-pressure
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Table 2.  Pressure of polymorphous transformation (kbar) as a function of the crystal dimensions 

Crystal
R0 × 10–10, m

25 50 75 100 125 150 200 250

LiF 1 151 202 221 230 236 250 258 264

2 166 224 235 246 254 260 268 271

LiCl 1 220 198 182 176 172 171 170 169

2 231 215 202 188 182 178 176 174

LiBr 1 158 142 130 123 119 117 115 113

2 160 147 134 130 124 120 118 116

NaF 1 296 250 219 198 182 170 164 160

2 310 260 225 204 187 175 170 168

NaCl 1 174 161 144 143 142.8 142.6 142.3 142

2 183 170 151 146 145.5 145 144.7 144.5

NaBr 1 61 50 48 46 45 44.6 44.4 44

2 67 58 54 53 52.5 52 51.5 51.4

KF 1 134 120 110 108 106 104 101 100

2 140 127 116 114 113 112.7 112.5 112

KCl 1 43 39 36 34 33.5 33 32.3 32

2 51 46 41 37 36.5 36 35.7 35

KBr 1 46 40 38 37 36 35 34.5 34

2 50 44 40 38 37 36 35 34.8

RbF 1 48 44 41 39 38 37.8 37.3 37

2 51 46 43 41 40 39.5 39.2 39

RbCl 1 25 23 22 21 20.8 20.6 20.4 20.3

2 27 25 24 23.8 23.6 23.4 23.2 23

RbBr 1 20 19 18 17.5 17 16.5 16.2 16

2 22 20 19 18.5 18 17.8 17.6 17.5

Note: 1 indicates that the crystal has a spherical shape (k = 1); 2 indicates that k = 2.
phases (B2 and B1, respectively) of the crystals studied
and also allow one to draw some conclusions about the
reasons for the loss of lattice stability upon compres-
sion. Thus, a decrease in C44 upon crystal compression
indicates that the resistance to the shear deformation
decreases, i.e., the lattice loses its stability under hydro-
static compression precisely because of the loss of its
resistance to shear deformation. 

Important information on the nature of binding
forces in the B1 phase of alkali halides can be obtained
by studying elastic constants C11, C12, and C44. Since
these constants depend on the first and second deriva-
tives of the short-range potential U(R), allowing for
higher coordination spheres can considerably change
the calculated data. The elastic constants were calcu-
lated under zero pressure at T = 0 K. These calculations
are very important, because, experimentally, the elastic
constants are usually determined by the ultrasonic
method [23], which often yields dubious results, and,
thus, only some experiments can be extrapolated to the
region of the absolute zero. 
C

When calculating the elastic constant, one has to
separate the contributions from the Coulomb and short-
range forces, 

(11)

The same is true for the constants C12 and C44. The
Coulomb contribution is determined by summing up
the interactions between all the lattice ions, whereas the
short-range contribution is limited only to seven coor-
dination spheres. Blackman [24] obtained the following
relationships for the elastic constants of cubic ionic
crystals 
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(14)

(15)

(16)

(17)

where V is the unit-cell volume (2R3 for the B1 phase)
and (x/R, y/R, z/R) are the crystallographic coordinates.
Summation is performed over all the lattice ions. The
quantities P and Q in Eqs. (12)–(17) are determined as
follows 

(18)

(19)

where R is the equilibrium interionic distance. To cal-
culate the Coulomb components of elastic constants,
one has to sum up the rapidly converging series
described in detail by Tosi [7]. Below, we present the
data calculated by the Tosi scheme:

(20‡)

(20b)

In the calculations of the non-Coulomb components of
the elastic constants, the pair potentials were approxi-
mated by a smooth continuous function together with
its derivatives up to the second order. Table 3 lists the
elastic constants for alkali halide crystals in the B1
phase. The modulus of hydrostatic compression B was
calculated as 

Our calculations show that, under high pressures,
the properties of the B1–B2 phase transition for most
alkali halides can be considered in the approximation of
pair-additive interactions between ions, with the multi-
particle effects being ignored. The latter can be esti-
mated by calculating the deviation from the equality for
the Cauchy relationship C11 = C44. In cubic crystals,
where in the absence of external pressure the ions are
the centers of inversion, the neglect of the zero vibra-
tions makes the Cauchy relationship valid. Of course,
our model satisfies these requirements, which is
reflected in Table 3—the relationship is satisfied for all
the crystals studied. It is rather difficult to take into
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account the multiparticle interactions in ionic crystals
within the theory of inhomogeneous electron gas. How-
ever, in many instances, the two-particle approximation
yields rather accurate results. 

Two difficulties can arise when comparing the theo-
retically calculated and the experimentally measured

Table 3.  Elastic constants of the B1 modification of alkali
halide crystals (Pa) 

Crystal C11 × 1010 C12 × 1010 C44 × 1010 B × 1010

LiF 1 9.25 5.91 5.91 8.14

2 8.17 6.50 6.50 7.06

3 13.90 6.05 6.84 8.67

LiCl 1 5.51 2.38 2.38 3.28

2 5.45 2.77 2.77 3.66

3 6.07 2.27 2.69 3.54

LiBr 1 6.12 2.20 2.20 2.51

2 5.21 2.27 2.27 3.25

3 – – – –

NaF 1 12.49 2.05 2.05 5.02

2 8.08 2.78 2.78 4.55

3 10.85 2.29 2.90 5.14

NaCl 1 5.31 1.30 1.30 2.11

2 4.86 1.27 1.27 2.46

3 6.00 1.27 1.40 2.85

NaBr 1 5.16 1.00 1.00 2.23

2 4.56 1.03 1.03 2.21

3 4.90 0.98 1.09 2.29

KF 1 7.61 1.50 1.50 3.38

2 7.08 1.61 1.61 2.55

3 7.57 1.35 – 2.58

KCl 1 3.50 0.90 0.90 1.94

2 3.39 0.86 0.86 2.09

3 3.68 0.58 0.93 2.02

KBr 1 4.33 0.62 0.62 1.58

2 4.16 0.70 0.70 1.86

3 4.30 0.55 0.57 1.80

RbF 1 7.11 1.21 1.21 2.80

2 6.70 1.30 1.30 3.10

3 – – – –

RbCl 1 4.26 0.48 0.48 1.80

2 4.18 0.69 0.62 1.85

3 4.50 0.52 0.50 1.85

RbBr 1 3.90 0.47 0.47 1.45

2 3.74 0.56 0.56 1.62

3 3.97 0.40 0.41 1.59

Note: 1 indicates the results of the present study; 2—Cohen and
Gordon results [9]; 3—experiment [23]. 
2
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elastic constants. First, the values of the elastic con-
stants are somewhat ambiguous, especially that of C12.
The constants C11 and C44 can be determined directly
by measuring the longitudinal and transverse particle
displacements with respect to the [100] direction,
whereas C12 can be determined only as a linear combi-
nation of elastic constants determined, as a rule, for the
[110] direction. The second difficulty is more serious.
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Fig. 1. Dependence of (a) C11, (b) C44, and (c) C12 on the
applied pressure for the B1 phase of sodium chloride.
Dashed line indicates the calculations for the model of near-
est neighbors; solid line indicated the results of the present
study.
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480
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In many instances, the elastic constants calculated at 0
K are compared with the experimental data obtained at
much higher temperatures. Therefore, prior to their
comparison, one has to extrapolate the experimental
data to the region of absolute zero, which inevitably
introduces some additional errors. 

Figure 1 shows the elastic constants of a sodium
chloride crystal as functions of the applied pressure. To
construct the curves of elasticity moduli as functions of
pressure Cαβ(p), we used the calculated dependences of
the interionic distance and pair potential as functions of
the external pressure calculated in the process deter-
mining the pressure of the polymorphous transforma-
tion. Minimizing the thermodynamic potential (1), we
determine the interionic distance at the given pressure
r = R(p). The value thus obtained is then used to deter-
mine the pair potential U(r) = U[R(p)], which is
approximated by a smooth continuous function and its
derivatives up to the second order. Using the values of
R and U at a given pressure, we calculate the values of
P in Eq. (18) and Q in Eq. (19), which, in turn, allows
us to determine the elasticity moduli under the pressure p.
Then, this procedure is repeated for the next pressure
value p' = p + ∆p, etc. up to the pressure of the B1–B2
transformation. 

Analyzing the curves in Fig. 1, one can see that, with
an increase in the pressure, the deviation from the
Cauchy relationship increases approximately by the
linear law 

(21)

where p is the applied pressure and γ = 2.85. It should
be noted that Cohen and Gordon [9] obtained the value
γ ≈ 2 in the approximation of three coordination
spheres. 

CONCLUSIONS 

The study of the structural phase transitions in the
crystals of the composition M+X– is based on the
approximation of the pair ion interactions with the pair
potential being determined by the self-consistent
method within the theory of inhomogeneous electron
gas. The rather good agreement between the theoreti-
cally calculated and the experimental data confirms the
validity of the used pair potentials of ion interactions.
To confirm the accuracy of the performed calculations,
it is very important to determine the modulus of the
hydrostatic compression B and elastic constants Cαβ ,
because these values have already been calculated by
many researchers and are quite reliable. Thus, the good
agreement between the elastic characteristics of twelve
alkali halide crystals confirms the validity of the pair-
wise approximation for the description of the B1 phase
of alkali halides. The deviation from the Cauchy rela-
tionship observed for the B2 phase under high pressure
limits the use of two-particle description and shows
that, along with pair components of the binding forces

C12 C44– γp,=
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at high pressures (about one hundred kbar) in the crys-
tals studied, an important role is also played by nonpair
(e.g., covalent) ionic interactions. 
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Abstract—Crystallite size in polycrystalline diamond layers with a grain size exceeding 3 µm are determined
by the X-ray topography method with the use of a divergent beam from a point source. For layers with thick-
nesses in the range 80–700 µm deposited in SHF plasma and 1–40 µm obtained by the method of a hot filament,
the size distribution of crystallites is obtained. Asterism of some spots on X-ray diffraction patterns from the
diamond layers with thicknesses exceeding 100 µm showed plastic deformation of individual crystallites. The
parameters of deep levels in the band gap of undoped high-resistance diamond layers and the acceptor-type defects
with an activation energy higher than 1 eV are determined by the method of charge relaxation spectroscopy.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Usually, the degree of perfection and the dimensions
of polycrystalline diamond layers deposited from the
gas phase are established by transmission and scanning
electron microscopy (TEM and SEM) and atomic-reso-
lution electron microscopy [1–3]. The standard method
of studying the phase composition is Raman spectros-
copy (RS) [1, 4]. The structure of diamond layers is also
characterized by X-ray diffractometry [5] and X-ray
topography, which provide, e.g., the study of crack for-
mation in homoepitaxial diamond layers [6]. The dif-
fractometric studies usually allow qualitative phase
analysis which reveals, along with the phase of pure
diamond, the transition layers of various carbide phases
(SiC, TiC, etc.) formed due to the interaction of carbon
with the substrate material. Both X-ray diffractome-
try and Raman spectroscopy are also used to deter-
mine internal stresses in polycrystalline diamond
layers [5, 7].

This study was undertaken to determine the condi-
tions for using an X-ray method to determine the crys-
tallite sizes in the irradiated volume of the polycrystal-
line diamond layers. The methods for measuring and
calculating the average crystallite size in thin layers of
various polycrystalline materials, and especially of
metals, is based on the determination of the number of
small spots in the discrete intensity distribution over the
1063-7745/02/4702- $22.00 © 20298
area of Debye rings on X-ray diffraction patterns [8].
However, in polycrystalline diamond layers, the aver-
aging of crystallite size is inadmissible because crystal-
lites start growing at deliberately introduced 5 nm-large
nuclei so that, in 0.5–1.0 mm-thick layers, some crys-
tallites attain a size of up to 1 mm.

We believe that it is most convenient to study crys-
tallite size in thick (@1 µm) polycrystalline diamond
layers by the most informative and nondestructive X-ray
topographic method, which, unlike SEM, does not
require time- and labor-consuming sample thinning.
SEM provides information only about the shape and
size of the faces of those crystallites which emerge to
the free surface or are seen on the transverse cleavage
of the grown layer. However, such data are often insuf-
ficient for understanding and explaining the macro-
scopic characteristics of polycrystalline diamond lay-
ers. At the same time, crystallite sizes in polycrystalline
diamond layers grown under nominally the same con-
ditions determine the strength [9], the impurity concen-
tration [10, 11], and the optical absorption [12] of these
layers.

One of the authors (G.F.K) used the X-ray methods
[8] developed for high-resolution Laue diffraction pat-
terns suggested by Guinier, Tennevin, and Fujiwara and
showed [13–16] the possible use of the quantitative X-ray
topographic analysis of the epitaxial layers with the use
002 MAIK “Nauka/Interperiodica”
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of a divergent X-ray beam from a quasi-point source.
This method was aimed at determining the sizes of
blocks of mosaic and the angles of their minimum and
maximum misorientation in single-crystal layers grown
by the method of nonisostructural heteroepitaxy
[13−16]. To study thick (40–1000 µm) polycrystalline
diamond layers, the method of a divergent beam from a
quasi-point source [17–19] was modified for samples in
which the crystallite size exceeded 3 µm. Because of
the very low absorptive power of diamond, the method
of a divergent beam from a quasi-point source allows
one to study polycrystalline diamond layers grown
almost in the whole range of thicknesses—from several
micrometers to several thousand micrometers.

EXPERIMENTAL

Methods of Growth and Study of Polycrystalline 
Diamond Layers

Single-crystal diamond layers with a thickness in
the range 80–670 µm were grown in an ASTeX PDS-19
SHF plasmochemical reactor with a 8 kW-source with
a frequency of 2.45 GHz [20]. The working gas was the
CH4/H2/O2 mixture with ratios CH4/H2 = 2.5% and
O/C = 0–0.7%. The substrates were polished single-
crystal silicon wafers 60 mm in diameter. The films
were deposited under a pressure of 100 torr at substrate
temperature T = 700–900°C. Then, the diamond layers
were separated from the substrates and cut into about
1-cm2-large samples. The typical structure of the sur-
face of a grown ~100-µm-thick diamond layer is shown
in Fig. 1. Thinner layers (≤40 µm) were synthesized on
silicon by the method of a hot filament with the use of
the methane–acetone mixtures at the Institute of Physi-
cal Chemistry of the Russian Academy of Sciences.
Diamond starts growing at numerous nucleation cen-
ters in the form of randomly oriented crystallites finally
forming a polycrystalline diamond layer. As a rule,
crystallites grow as columns with the transverse dimen-
sion increasing with the layer thickness.

To study the physical characteristics and the struc-
ture of polycrystalline diamond layers thus grown, we
used a number of electrophysical (charge deep-layer
spectroscopy) and optical (optical absorption and
Raman spectroscopy) methods and also X-ray topogra-
phy and diffractometry. On the basis of the method of a
divergent beam from a quasi-point source [13–16], an
original X-ray topographic method [17–19] for the
quantitative analysis of crystallite sizes in the bulk of
polycrystalline diamond layers irradiated with an X-ray
beam was developed at the Institute of Radio Engineer-
ing and Electronics. This method was the main method
in the present study as well. The preferable orientation
of crystallites was studied by a more efficient X-ray dif-
fractometry method [16, 19, 21] (Bragg reflection,
Cu  radiation).Kα1
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Size Distribution of Crystallites 
in Polycrystalline Diamond Layers

The method of a convergent beam from a quasi-
point source provides the linear resolution along the
azimuthal direction of about 7 µm in polychromatic
X-ray radiation [17–19]. In the characteristic Mo

radiation (λ  = 0.70929 Å), the resolution along the
Bragg direction is 3 µm [13–16]; the resolution of the
photographic plates used is also about 3 µm. This signi-
fies that X-ray topography allows one to record on a
photographic plate the discrete images of reflections
from individual ≥3-µm-large crystallites. For smaller
crystallites, the reflections merge into Debye rings.
Indeed, for finely grained samples with a thickness
ranging from 1 to 40 µm, the topographs usually had
only solid rings. However, under certain growth condi-
tions (low rates of nucleation and secondary nucle-
ation), some crystallites in the layers with the thickness
d ≤ 40 µm attained dimensions sufficient for the forma-
tion of a discrete intensity distribution not only on the
Debye rings formed in the characteristic radiation but
also on reflections formed in the polychromatic X-ray
radiation.

The crystallite sizes were calculated based on their
sizes determined along the azimuthal direction on topo-
graphs [17–19]. Using a projector or an optical micro-
scope, we measured all the reflections in the 60°-large
sector of a Debye ring formed in the diffraction of the
Mo  and Co  radiations or the polychromatic
radiation. When calculating the size of each crystallite,

Kα1

Kα1

Kα1 2,
Kα1 2,

20 µm

Fig. 1. Electron micrograph of a characteristic growth sur-
face of a 110-µm-thick diamond layer grown in the SHF
plasma.
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we took into consideration the divergence of a beam
from a quasi-point source and the geometry of the
experiment [13–16]. In order to obtain the true crystal-
lite size, it is sufficient to subtract from the crystallite
length along the azimuthal direction the length of the
image of a pointlike crystallite along the same direction
in the polychromatic radiation, i.e., 7 µm. In this case,
we assume that the size of each crystallite is equal to the
maximum size of its azimuthal section by the system of
diffracting crystallographic planes, {111}. Outside the
Debye rings, some crystallites can also give rise to the
formation of diffraction reflections from the {110} and
{331} planes.

The crystallite sizes determined in an 80 µm-thick
diamond layer are shown on a histogram in Fig. 2a. The
maximum number of crystallites is observed in the
range 15–45 µm, whereas their sizes range from 3 to
240 µm. The size distribution for crystallites in this
sample was approximated by the Gaussian and Lorent-
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Fig. 2. (a) Histogram of the size distribution of crystallites
in an 80-µm-thick diamond layer and (b) the approximation
of this distribution by the Gaussian (dash–dotted line) and
Lorentzian (dashed line) functions and a seventh-order
polynomial (solid line).
C

zian functions and the nth-order polynomial (solid,
dash-dotted, and dashed lines in Fig. 2b). The maxi-
mum number of crystallites have a size not exceeding
31 µm for the Gaussian distribution, 30.5 µm for the
Lorentzian distribution, and 24.5 µm for the approxi-
mation by the nth-order polynomial. Thus, it is seen
that all three approximations give close results. It
should also be indicated that the histogram has two
additional weak maxima (150 and 250 µm) for larger
crystallites. These maxima are also seen on the approx-
imation by a polynomial. The existence of crystallites
two or three times larger than the thickness of the
grown layer (80 µm) can be the consequence of the
intergrowth of several neighboring crystallites with
close orientations. Sample 3 with a thickness of 200 µm
yields, in addition to the main maximum corresponding
to 60 µm, also two maxima at 175 and 250 µm (Fig. 3).
Some crystallites in this sample attain a size of 450 µm.
For a 230 µm-thick layer grown under different condi-
tions, the main maximum corresponds to a size of about
20 µm (Fig. 4). Moreover, there are also two additional
maxima at 90 and 160 µm that show that the position of
the main maximum on the size distribution of crystal-
lites depends, to a large extent, on the growth condi-
tions rather than on the layer thickness.

We also analyzed the layers with thicknesses of 670
and 700 µm (samples 6 and 7; sample 7 was synthe-
sized by the method of an arc plasmotron, Norton,
USA). The size distribution of crystallites in a 700-µm-
thick layer is shown in Fig. 5 (approximation by a sev-
enth-order polynomial). The Gaussian and Lorentzian
approximations have the main maximum at about 35
and 38 µm, respectively. Thus, in the samples studied,
the maximum on the size distribution of crystallites
attains values from 5 to 40% of the layer thickness,
although in layers with thicknesses of up to 200 µm,
there is also a small number of crystallites two or three
times larger than the layer thickness. Since the method
used in our studies does not allow the detection of crys-
tallites with sizes less than 3 µm, they are ignored in the
distributions obtained.

Detection of Plastic Deformation
of Crystallites

Some diffraction spots from crystallites on X-ray
topographs from thick polycrystalline diamond layers
(100–700 µm) show asterism [8]. Asterism manifests
itself in a considerable increase in the lengths of dif-
fraction spots from some crystallites along the Bragg
direction in comparison with the lengths of the same
spots along the azimuthal direction. This signifies that
the conventional diffraction spots are transformed into
characteristic diffraction “tails” caused by asterism.
The topograph from an 80 µm-thick polycrystalline dia-
mond layer has reflections whose sizes in the azimuthal
direction are almost equal to, or slightly larger than,
their  sizes along the Bragg direction (Fig. 6a). How-
ever, for polycrystalline diamond layers with a thick-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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ness d ≥ 100 µm, the sizes of numerous reflections in
the Bragg direction considerably exceed their “azi-
muthal sizes” (Fig. 6b). The pronounced asterism of
diffraction spots indicates plastic deformation [8, 17, 18]
in some diamond crystallites. We believe that this is
direct proof of the fact that the intercrystallite pressure
exceeded the high-temperature diamond strength. As a
result, crystallites underwent plastic deformation dur-
ing layer growth. At the same time, rather symmetric
shapes (even circular, in accordance with the shape of
the X-ray tube focus) of reflections indicates the non-
uniform pressure distribution in the layer during its
growth, and the crystallites which underwent only elas-
tic deformation of various degrees provided the forma-
tion of symmetric reflections.

Different elastic stresses acting onto individual
crystallites in the layer are explained by different con-
tacts between neighboring crystallites (either by faces
or by obtuse angles), the structure and the rigidity of the
intercrystallite layers, and the crystallite sizes. The
topographs show that with an increase in the thickness
of a deposited polycrystalline diamond layer from 100
to 670 µm, the number of plastically deformed crystal-
lites also increases. This shows that the polycrystalline
diamond layer became more monolithic and, the inter-
crystallite layers became more rigid and provided better
transfer of elastic stresses from one crystallite to
another. As a result, an ever increasing number of crys-
tallites undergo plastic deformation and show asterism
on the topographs.

Taking into account some limitations, the length of
the diffraction tails along the Bragg direction can be
considered as an approximate measure of plastic defor-
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Fig. 3. Size distribution of crystallites in a 200-µm-thick
layer approximated by a seventh-order polynomial.
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mation in individual crystallites. Our measurements
showed that the length of the spots with tails along the
Bragg direction range from 10 to 170 µm and, in some
instances, attains values of 0.5–1.0 mm, whereas the
dimension of the point image along the Bragg direction
in the monochromatic Mo  radiation is about 3 µm
and, in the polychromatic radiation, 7 µm. In the wave-
length units, a point of the crystal is imaged in the dif-
fraction spot along the Bragg direction in the wave-
length range δλ ≈ 7.1 × 10–4 Å of the polychromatic
X-ray radiation. Then the length of the tail lies within
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Fig. 4. Size distribution of crystallites in a 230-µm-thick
layer approximated by a seventh-order polynomial.
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Fig. 5. Size distribution of crystallites in a 700-µm-thick
polycrystalline diamond layer approximated by a seventh-
order polynomial.
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δλ = (1.0 × 10–3)–(17.0 × 10–3) Å and, in some instances,
attains a value of δλmax = 0.1 Å.

We believe that asterism is caused mainly by the
misorientation of the individual parts of a crystallite
that underwent shear plastic deformations. The calcula-
tion by the Bragg equation yields the minimum aster-
ism of the order of one angular minute for weakly
deformed crystallites. For strongly deformed crystal-
lites, the misorientation attains up to 14.5′′ , and, in
some rare instances, even 1.5°. Using the rough model
of small-angle dislocation subboundaries [22], one can
calculate the residual elastic stresses in individual plas-
tically deformed crystallites [23]. Our calculations
showed that elastic stresses vary from 70 kPa for crys-
tallites providing the minimum asterism to 20 MPa for
crystallites providing pronounced asterism and attain a
value of 0.7 GPa for crystallites providing the maxi-
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Fig. 6. X-ray topographs from crystallites in diamond layers
with the thickness (a) 80 and (b) 200 µm. The crystallites
corresponding to spots 1 and 5 of the thin layer and spot 2 of
the thick layer have practically no asterism. Diffraction
spots 2, 3, 6, 4, and 7 due to the crystallites of the thin layer
and spots 1, 3, and 4 due to crystallites of the thick layer
show an increasing degree of asterism.

200 µm

200 µm
C

mum asterism. The data on asterism can be treated
mathematically in the same way as in the determination
of the crystallite sizes. The distributions of crystallites
depending on the asterism they provide on diffraction
patterns (the size of the spots in micrometers) for four
polycrystalline diamond layers are shown in Fig. 7. The
maximum number of crystallites was determined for
the first highest maxima almost identical for three sam-
ples. The asterism corresponding to these maxima is
about 20 µm, which exceeds by about three times the
length of the point image of a perfect crystal along the
Bragg direction in the polychromatic radiation and cor-
responds to the wavelength interval of about δλmin =
2.1 × 10–3 Å. In addition, three weaker maxima with the
asterism values 60, 85, and 125 µm are also formed.
These maxima are especially pronounced for sample 4,
with the first maximum being shifted toward the value
28 µm and the second asterism maximum being only
slightly lower than the first one. The second maximum
and the broad third and fourth maxima are several times
higher than the corresponding maxima for other sam-
ples. In comparatively thin samples (<100 µm), only
some crystallites were in conditions favorable for
noticeable plastic deformation.

The ultimate strength of a natural single-crystal dia-
mond at room temperature depends on the type of
deformation (compression, extension, shear) and varies
from 9 to 190 GPa [22–27]. For technical diamonds, the
deformation is considerably lower—from 0.23 to
0.48 GPa [27]. The theoretical calculation and the
experimental measurements yield approximately the
same shear strength: 121 [22] and 132 GPa [27],
respectively.

The unit-cell parameters of silicon (a0 = 5.4282 Å)
and diamond (a0 = 3.5676 Å) considerably differ, and
the lattice mismatch for this system is about 42%. It is
well known that the growth of diamond on a single-
crystal silicon substrate is accompanied by the forma-
tion of a silicon carbide interlayer, which slightly
decreases the mismatch.

In trying to reveal the physical reasons for the for-
mation of enormous elastic stresses giving rise to plas-
tic deformation of individual crystallites in a growing
polycrystalline diamond layer, one should not ignore
possible isostructural heteroepitaxy of diamond crys-
tallites on the single-crystal silicon substrate. Consider
one of possible models.

Prior to the growth of polycrystalline diamond lay-
ers, the surface of the single-crystal silicon substrate is
seeded with about 5-nm-large micronuclei most proba-
bly randomly oriented with respect to the substrate lat-
tice. However, at the initial stage of growth, each of the
micronuclei can be affected by the local mechanism of
isostructural heteroepitaxy via the intermediate silicon
carbide layer. Using the notions and formulas (1.5)–(1.9)
from [28] for stresses in isostructural heteroepitaxy
with due regard for the elastic relaxation of the system
caused by bending deformation, the considerably dif-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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ferent values of the Young’s moduli for silicon and
polycrystalline diamond aggregates (E1 = 176.58 GPa
and E2 = 1143 GPa [26, 27]), and Poisson’s ratios (ν1 =
0.215 and ν2 = 0.0691, respectively), we see that in iso-
structural heteroepitaxy at the substrate thickness d1 =
3 mm and the polycrystalline diamond-layer thickness
d2 = 600 µm, the expected tensile stresses in the poly-
crystalline diamond layer, σ(xx)2 ≈ σ(yy)2 = 274.7 GPa,
would exceed the tensile strength σt2 = 190 GPa for a
natural single-crystal diamond at room temperature.
For artificially grown polycrystalline diamond layers,
the strength limit is lower than for a natural single-crys-
tal diamond [26, 27].

There are indications of the direct effect of the sili-
con–diamond contact during deposition of diamond
films and layers. Thus, it is shown [23, 24] that stress
relaxation occurs via the formation mainly of planar
defects (microtwins, stacking faults). However, as a
rule, the formation of the pure diamond phase occurs in
the transition layer containing amorphous carbon and
silicon carbide [1, 24]. The internal stresses arising in
thick polycrystalline diamond layers can hardly be
associated only with the pronounced mismatch of the
diamond and the substrate lattices; nevertheless, the lat-
tice mismatch provides the formation of the stresses
exceeding the threshold of the plastic deformation of
diamond.

The internal stresses determined in polycrystalline
diamond layers [23, 24] are obviously insufficient for
the plastic deformation of individual crystallites. Map-
ping microstresses in diamond layers with the prefera-
ble {110} crystallite orientation by the method of con-
focal Raman spectroscopy [7], we revealed the irregu-
lar arrangement of the regions with a length ranging
from several micrometers to tens of micrometers in
which the elastic stresses attained values of up to
9 GPa. Most often, these regions were observed in the
vicinity of the crystallite boundaries [23, 26], which
was attributed to the formation of stresses due to the
appearance of incoherent crystallite boundaries in the
process of formation of dislocation rows.

In plastic deformation caused by indentation of the
natural faces of a diamond single crystal at room tem-
perature, the generation of dislocations was observed
[26, 27, 29, 30]. The cathodoluminescence topography
provided recording of slip bands consisting of rows of
linear dislocations [26] in two mutually perpendicular
〈110〉  directions. The generation of a single dislocation
or a dislocation half-loop is an elementary event of
plastic deformation. However, no attempts were made
to calculate the local elastic stresses within the theory
of planar dislocation pileups for diamond single crys-
tals, despite the fact that successful attempts of this
kind have already been made in conditions providing
the generation of planar dislocation pileups in single
crystals of the AIIIBV semiconductors [31, 32].

Proceeding to textures, we should like to indicate
that randomly oriented crystals formed on the surface
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
compete with one another during growth. In the final
analysis, only those crystals survive in which the direc-
tion of the maximum growth rate is normal to the sub-
strate surface. The diamond layers acquire an obvious
column-like structure and the crystallite sizes gradually
increase [1]. Therefore, the intensity ratios for the lines
on the X-ray diffraction patterns from polycrystalline
diamond layers often differ from the ratios indicated in
the corresponding ASTM cards for the diamond pow-
der. We obtained the diffraction patterns for Bragg dif-
fraction from both surfaces of the diamond layers sep-
arated from the substrate—the lower finely grained sur-
face adjacent to the substrate and the upper coarse-
grained (growth) surface. The relative intensities of the
diffraction lines obtained by the method of X-ray rock-
ing curves [17–19, 33] are indicated in Table 1 for two
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Fig. 7. Asterism distribution for crystallites in four samples
of polycrystalline diamond layers with different thick-
nesses: (h) 40 µm, (s) 200 µm (sample 4), (n) 200 µm (sam-
ple 3), and (m) 670 µm.

Table 1.  Intensity ratios for the lines on the diffraction patterns
obtained from the finely grained lower surface contacting with
the substrate and freely growing coarse-grained upper surface of
diamond layers with thickness d equal to 80 and 700 µm

hkl

Intensity

80 700

ASTM*lower 
surface

upper 
surface

lower 
surface

upper 
surface

111 100 40 100 25 100

220 40 75 40 100 50

311 30 100 20 15 40

400 10 10 25 0 10

331 5 10 65 50 25

* For comparison, the ASTM data for powder diamond samples are
indicated.
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80- and 700-µm-thick layers (samples 1 and 7). Similar
to the case of powders, the intensity of the 111 lines in
the lower parts of the layers is maximal. Nevertheless,
for a 700-µm-thick layer, a certain texture is observed,
i.e., the preferable growth of crystallites with the (331)
planes parallel to the substrate surface. For an upper
freely growing surface of the layer, the maximum inten-
sity is observed either for the 220 or the 311 lines,
depending on the growth conditions. The (110) texture
is characteristic of films and layers of the optical quality
synthesized in the SHF-discharge [7].

Table 2.  Concentration of the nitrogen impurity in polycrys-
talline diamond layers

Sample Thickness d, µm Nitrogen concentra-
tion, n × 1017 cm–3

1 80 8

2 100 9

3 200 20

4 200 25

5 230 20

6 670 26

7 700 2

8 40 60

18

650

R, %

Wave number, cm–1
700 750 800 850 900 950

19

20

21

22

3

6

Fig. 8. Reflection spectra from the surfaces of the layers on
the substrate side for samples 3 (dashed line) and 6 (solid
line). The band with the maximum in the vicinity of
800 cm–1 is attributed to the transition SiC layer with the
thicknesses 1.2 and 3.2 nm, respectively. 
C

IMPURITIES AND DEFECTS

Nitrogen is the main “technological impurity” in
synthetic diamonds, and even small amounts of nitro-
gen (at a level of 1017 cm–3) considerably change the
electrical, optical, thermal, and mechanical properties
of the grown structures, the rate of their growth, and the
morphology of a growing surface. In natural diamonds
and diamonds synthesized under high pressure, the
nitrogen concentration is usually determined from the
light absorption coefficient at certain wavelengths in
the visible IR or UV ranges [9]. The application of the
well-known calibrations to diamond films obtained by
the deposition from the gas phase is hindered by the
fact that the nitrogen concentration in these diamond
films is lower by one to two orders of magnitude and
their weak characteristic bands overlap with the absorp-
tion bands due to intrinsic defects and inclusions of
non-diamond carbon. We used the method of calculat-
ing the concentration of the substituted paramagnetic
nitrogen suggested in [20, 34] (in the samples studied,
the impurity nitrogen was in the paramagnetic state) by
considering the characteristic band with the maximum
lying in the vicinity of 270 nm and providing the deter-
mination of the nitrogen concentration in unpolished sam-
ples within an accuracy of fractions of ppm (10–4 at. %).
The measured nitrogen concentrations in polycrystal-
line diamond layers grown under different conditions
were in the range (2–26) × 1017 cm–3 (Table 2).

The transmission and reflection spectra of most
polycrystalline diamond layers deposited onto silicon
substrates had a relatively narrow band with the maxi-
mum at 800 cm–1 in the IR range attributed to the SiC
layer formed at the diamond–silicon interface. Figure 8
shows the reflection spectra from SiC films for two
samples of polycrystalline diamond layers. The thick-
nesses of the transition SiC layers determined from
these spectra are 1.2 and 3.2 nm, respectively, whereas
for the remaining samples, the thickness of this layer
ranged from 0.2 to 4.3 nm.

The electrophysical properties of polycrystalline
diamond layers were studied by the method of charge-
based deep-layer transient relaxation spectroscopy
(Q-DLTS) [35, 36]. The method is based on the mea-
surement of the parameters of the transient process of
the charge equilibrium restoration in the sample under
the action of either an electric pulse or a pulse of
absorbed light. The analysis of this process provides
information on the activation energy and cross section
of the process, and the concentrations of various struc-
tural intrinsic or impurity-induced defects with the cor-
responding energy levels in the band gap of the material
studied. The charge-based relaxation deep-level tran-
sient spectroscopy (Q-DTLS) differs from the well-
known capacitance-based deep-level transient spectros-
copy (C-DLTS) developed by Lang [29] and allows one
to study not only semiconductor but also semi-insulat-
ing (high-resistivity) materials, to which undoped poly-
crystalline diamond layers are related. Moreover, when
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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obtaining Q-DLTS spectra, one also uses the time (rate)
window instead of the temperature one, as in [29],
which allows the use of isothermal spectroscopy, which
is characterized by lower measurement errors. We
obtained Q-DLTS spectra with the aid of a computer-
controlled ASEC-3 system [35, 36]. The signal mea-
sured is described as ∆Q = Q(t1) – Q(t2), where t1 and t2
are the times measured from the beginning of discharge
(relaxation). In order to obtain the spectrum (the sepa-
ration of the contribution that comes into the charge ∆Q
from the change in the charge state of various types of
electrically active defects), the ∆Q value is measured as
a function of the time (rate) window τm = (t2 – t1)/ln(t2/t1)
at the constant ratio t1/t2 = α. The functional depen-
dence ∆Q(τm) has maxima all of which are associated
with the change of the charge state of the correspond-
ing electrically active defects—trapping centers. The
maximum of the spectral dependence ∆Q(τm) is
located at

(1)

where ep(n) is the rate of hole (electron) emission from
the trapping centers of the given type, Γp(n) = 2 ×
31/2(2π/h2)3/2k2 , σ is the capture cross section, T is
the temperature, Ea is the activation energy, h and k are
the Planck and the Boltzmann constants, respectively,
and  is the effective mass of a hole (electron). The
measured signal is related to the emission rate as

(2)

where Q0 = (t)dt.

Using Eqs. (1) and (2), we can determine the con-
centration of electrically active defects, Nt =
4∆Qmax/qA, where ∆Qmax is the maximum value of the
DLTS signal, q is the electron charge, and A is the con-
tact area. The activation energy Ea and the cross section
σ are determined from the Arrhenius dependence

ep n( ) τm
1– σΓ p n( )T

2
Ea/kT–( ),exp= =

mp n( )*

mp n( )*

∆Q Q0 ep n( )t1–( )exp ep n( )t2–( )exp–[ ] ,=

Q
0

∞∫
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
ln( ) as a function of T–1 for each maximum or its
slope in the Q-DLTS spectrum.

The sensitivity in the measurements of Q-DLTS
spectra with the use of an ASEC-3 system was ∆Qmin =

τm
1–
T
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Fig. 9. Q-DLTS spectra of polycrystalline diamond layers at
(a) T = 295 K (the region of the A peak) and (b) T = 500 K
(the region of the B peak). The numbers of the samples are
indicated at the curves.
Table 3.  Electrical parameters of polycrystalline diamond layers containing electrically active defects of types A and B

Sample Thickness
d, µm ρ*, Ω cm , cm–3 Ea(A), eV σ(A), cm2 Nt(B), cm–3 , eV , cm2

1 80 1013 >6 × 1012 0.39 2 × 10–22 >5 × 1013 0.49 ~10–23

2 100 1012 8 × 1013 0.17 2 × 10–22 >1014 0.58 ~10–20

3 200 1.4 × 1010 5 × 1012 0.24 2 × 10–22 >1013 0.25 ~10–23

5 230 1014 1011 – – >1012 0.64 ~10–22

6 670 5 × 107 3 × 1013 0.08 3 × 10–23 >6 × 1013 1.1 ~10–17

7 700 5 × 109 2 × 1013 0.28 5 × 10–21 2 × 1014 1 3 × 10–17

* Resistivity.
** Density of recharged defects upon the application of a 1 Vµm-electric field.

*** Activation energy.
**** Capture cross section.

Nt A( )
** Ea B( )

*** σ B( )
****
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10–16 ä, whereas the range of the variation of the time
window was τm = 2 × 10–6–2 × 102 s.

Figure 9 shows the Q-DLTS spectra at 295 and
500 K, and Figure 10, the Arrhenius dependences. The
experimentally determined and the calculated electro-
physical parameters of polycrystalline diamond layers
are listed in Table 3. The characteristic feature of all the
samples is the pointlike electrically active defects hav-
ing continuous energy spectra (the background in the
Q-DLTS spectra). Most probably, these defects are
located at the crystallite boundaries in the disordered
intercrystallite space. The existence of a continuous
spectrum of states is characteristic of amorphous, in
particular, diamond-like carbon materials.

The defect concentrations are indicated in Table 3
for a certain (common for all the samples) intensity of
the applied field, which allows one to estimate the rela-
tive (but not the absolute) variation of the defect con-
centration in the samples. All the samples are character-
ized by the presence of acceptor-type defects condition-
ally denoted here as type-A (the A peak in the Q-DLTS
spectra) and type-B (the B peak or its slope in the
Q-DLTS spectra) defects. The activation energy of
A-defects is relatively low and does not exceed 0.4 eV
of the valence-band ceiling. The capture cross section
of these defects is low and is practically the same for all
the samples. Most probably, these are point defects pro-

Fig. 10. Arrhenius dependences for the A and B defects in
polycrystalline diamond layers and the corresponding A and
B peaks in the Q-DLTS spectra. The activation energies Ea
and the capture cross sections σ of these defects are indi-
cated in Table 3.
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vided by broken carbon bonds and vacancies. The type-
B defects are deeper and become active only during
sample heating. However, their capture cross section
allows one to consider them as point defects. It should
also be emphasized that in the polycrystalline diamond
layers studied, the concentration of acceptors is higher
than that of donors, NA – ND > 0, and, thus, the samples
have the hole conductivity.

The thickest layers, 6 and 7, have considerably dif-
ferent defect characteristics. The defects associated
with peak B in these samples form deeper energy levels
of the acceptor type with an activation energy exceed-
ing 1 eV, their capture cross section is higher by five to
six orders of magnitude than that of thinner samples,
and they also have a higher concentration. Obviously,
these acceptor defects should be related to a type other
than A and B. It is possible that their formation is caused
by the plastic deformation of crystallites revealed from
the analysis of X-ray topographs from thick polycrys-
talline diamond layers.

As was shown by Samsonenko et al. [30], diamonds
with considerable degree of plastic deformation possess
a lower resistivity (103 Ω cm for diamonds of type IIa
with  continuous conducting dislocation networks).
At  temperatures lower than 230 K, the activation
energy of conductivity is 0.3 eV [30]. Our measure-
ments of the temperature dependence of resistivity ρ of
polycrystalline diamond layers yielded an activation
energy of conductivity in the range 0.2–0.4 eV, with the
ρ value for thicker samples (6, 7) lower by several
orders of magnitude than for the remaining samples
(Table 3). It should also be indicated that the tempera-
ture dependences of conductivity provide only inte-
grated information on all the electrically active defects,
whereas the DLTS method allows one to single out the
contribution to the activation energy of conductivity
that comes from various defects with the concentrations
differing by six to seven orders of magnitude and to
determine their capture cross sections.

CONCLUSION

Using the X-ray topography method providing the
determination of the crystallite sizes exceeding 3 µm,
we analyzed quantitatively crystallites in the polycrys-
talline diamond layers grown from the gas phase on sil-
icon substrates and obtained their size distributions.

The X-ray topography method developed in our
study is applicable to both polycrystalline materials
weakly absorbing the X-ray radiation and thin layers of
strongly absorbing metals.

The X-ray topographs obtained revealed asterism of
diffraction spots due to many crystallites. This phenom-
enon was interpreted as the first direct proof of the fact
that the considerable part of the crystallites had under-
gone plastic deformation during the growth of poly-
crystalline diamond layers. The plastic deformation is
assumed to be caused by the intercrystallite pressure
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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exceeding the high-temperature strength of diamond
during the growth of thick layers.

The optical spectra confirmed the existence of a
transition silicon carbide layer with a thickness of sev-
eral nanometers formed during the growth of polycrys-
talline diamond layers on single-crystal silicon sub-
strates. It is found that the concentration of the impurity
nitrogen in the samples ranges from 2 × 1017 to 2.6 ×
1018 cm–3. For the first time, the charge-based relax-
ation spectroscopy of defects in undoped high-resistiv-
ity polycrystalline diamond layers was used. The
parameters of deep energy levels formed by defects in
the band gap of diamond are determined. It is also
shown that the acceptor-type defects with an activation
energy exceeding 1 eV are formed.
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Abstract—Garnet crystals of the composition Gd3Ga5O12:Nd3+ (concentration series CNd = 1–10 at. %) were
grown from flux. In terms of spectroscopy, these crystals, unlike those grown from melts, form a medium with
a single activator center. For the first time, continuous-wave lasing was excited by diode pumping with the use
of Gd3Ga5O12 : Nd3+ crystals at the wavelengths λ3 = 1.3315 and λ4 = 1.3370 µm of the 4F3/2  4I13/2 channel
and also the simultaneous generation at two wavelengths, λ1 = 1.0621 and λ2 = 1.0600 µm, of the 4F3/2 
4I11/2 channel. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The first studies of laser generation and spectros-
copy of garnets were performed on flux-grown
Y3Al5O12:Nd3+ crystals [1–3]. The widespread use of
these materials in active elements of flashlamp-pumped
lasers requires the growth of large crystals 10 cm in
length and 1 cm in diameter. To grow such crystals, spe-
cial methods of crystallization from melts were devel-
oped such as the Czochralski method. However, the
comparison of the properties of aluminum garnets
Y3Al5O12:Ln3+ grown from melts (Tm = 1930°C) and
from flux (at temperatures 1100–1200°C) showed that
the latter have better spectroscopic parameters corre-
sponding most closely to the model of a single activator
center [4, 5]. Furthermore, at the crystallization of
Y3Al5O12:Nd3+ crystals from flux, the distribution coef-
ficient of neodymium considerably exceeds the value
KNd = 0.18 characteristic of the crystallization from
melts. In connection with the development of semicon-
ductor diode-laser pumping in recent years, the interest
in crystals grown from flux with a volume of up to
1 cm3 is renewed (including Y3Al5O12:Nd3+ with an
elevated activator concentration, CNd ≥ 1.5 at. %). Such
crystals are used in compact laser devices providing a
high quality of radiation (a narrow spectral line, single-
mode lasing, low losses, and minimum beam diver-
gence).
1063-7745/02/4702- $22.00 © 20308
Below, we report on the growth of the concentration
series of Nd3+-doped gadolinium–gallium garnet crys-
tals, Gd3Ga5O12:Nd3+ (Nd-doped GGG), the study of
their lasing properties under diode-laser pumping and
also compare their laser and spectroscopic data
obtained with those of crystals grown by the Czochral-
ski method from a melt [6].

The Gd3Ga5O12:Nd3+ single crystals were grown
from boron–barium fluxes of the composition 56 wt %
(BaO + 0.62B2O3) + 44 wt % Gd3 – xNdxGa5O12, where
x = 0.03, 0.1, and 0.3. The saturation temperature of the
fluxes was Tsat = 1200–1230°C; the slope of its concen-
tration dependence was dTsat /dn = 15°C/wt %. The
crystals were synthesized in platinum crucibles by the
group method [7] on six “prismatic” seeds with square
bases of 1 mm2 and heights of 10–15 mm. The lateral
seed faces were formed by the equilibrium (110) and
(211) planes. The seeds were cut out from selected
high-quality Gd3Ga5O12 crystals.

Upon the attainment of the initial overcooling by 3–
4°C (corresponding to the middle of the metastable
zone), the flux temperature was decreased at a rate of
dT/dt = 1–6°C/day (24 h), which corresponded to the
growth rate of the crystals at the main stage of growth,
up to 0.5 mm/day. The crystal holder was reversibly
rotated with a period of 0.5–1 h. The crystallization
temperature ranged from 80 to 100°C; the grown crys-
002 MAIK “Nauka/Interperiodica”
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tals weighed 100–120 g. The unit-cell parameters of the
crystals were measured on a Geigerflex (Rigaku Co.)
X-ray powder diffractometer ( -radiation, 1200,
1220, and 1222 reflections).

Gd3Ga5O12:Nd3+ single crystals with a volume of up
to 2 cm3 were used to prepare the samples in the shape
of polished plane–parallel plates parallel to the most
developed faces of the (110) rhombododecahedron
with a thickness of 2–4 mm and an area of up to
50  mm2. This orientation of the plates reduced the
undesirable effect of growth striae on the lasing charac-
teristics. Similar samples were also prepared from gar-
net crystals grown from melt. The ends of the active
laser elements had no antireflection coating.

The laser experiments were performed in a 20-cm-
long hemispherical cavity at 300 K. The curvature
radius of the spherical (exit) mirror was 100 mm. The
crystal was located close to the plane selective mirror
through which the end pumping was made. This mirror
had a high transmission coefficient (í ≈ 80%) at the
pumping wavelength (λp ≈ 0.81 µm) and a high reflec-
tion coefficient (R > 99.9%) at the lasing wavelengths.

CoKα
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Fig. 1. Luminescence spectra of Nd3+ ions (concentration
~1 at. %, 4F3/2  4I11/2 transitions) at 300 K from gado-
linium–gallium garnet crystals grown (a) from melt and
(b) from flux. Arrows indicate the lasing lines.
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A diode-laser ATS-2440 with a nominal power of 1 W
thermally stabilized to 0.1°C was used as a pumping
source. Absorption and luminescence spectra of Nd3+-
doped gadolinium–gallium garnet crystals were
recorded on an AM510-M1 (Action Research Co.) dif-
fraction spectrometer by an InSbAl detector. The tem-
perature measurements of the spectra were made on a
CSW-202 (Advanced Research Systems) double-loop
close-cycle helium refrigerator in the range 15–300 K.

The examination of the absorption and lumines-
cence spectra of the Nd3+-doped gadolinium–gallium
garnet crystals grown from melt and from flux obtained
at 300 K were practically identical. The luminescence
spectra consist of homogeneously broadened lines
(Fig. 1) whose positions and intensities are adequately
described within the approximation of a single activator
center with the scheme of crystal-field splitting sug-
gested in [6]. At the same time, the low-temperature
luminescence (Figs. 2, 3) and absorption (Fig. 4) spec-
tra were different: the number and intensities of addi-
tional lines in comparison with those of the principal
activator center Nd3+ for crystals grown from melt were
much more pronounced.
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Fig. 2. Luminescence spectra of Nd3+ ions (concentration
~1 at. %, 4F3/2  4I11/2 transitions) at 15 K in the gado-
linium–gallium garnet crystals (a) grown from melt and
(b) grown from flux. Asterisks indicate the lines of the prin-
cipal center of Nd3+ ions in a Gd3Ga5O12 crystal.



310 KAMINSKII et al.
These differences can be interpreted based on the
crystal chemistry of garnets. It is well known that in the
quasi-binary Gd2O3–Ga2O3 system, the gadolinium–
gallium garnet has a range of existence of
Gd3 + xGa5 − xO12 solid solutions enriched in gadolinium
oxide (Gd2O3) in comparison with the stoichiometric
composition Gd3Ga5O12. The formation of these solid
solutions is interpreted as a partial replacement of Gd3+

by Ga3+ ions in the octahedral positions of the structure
[8, 9]; the unit-cell parameter of these solid solutions is
described by the following formula [10]:

(1)

where a0 = 12.375 Å is the unit-cell parameter of the
stoichiometric garnet, Gd3Ga5O12, and r are the octahe-
dral ionic radii of the ions. The existence range of solid
solutions is rather large (up to x ≈ 0.3). The most homo-
geneous crystals are grown from a congruent melt of
the composition Gd3.05Ga4.95O12 [10].
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Fig. 3. Luminescence spectra of Nd3+ ions (concentration
~1 at. %, 4F3/2  4I9/2 transitions) at 15 K in the gado-
linium–gallium garnet crystals (a) grown from melt and
(b) grown from flux. Asterisks indicate the lines of the prin-
cipal center of Nd3+ ions in Gd3Ga5O12 crystal.
C

All the absorption and luminescence spectral lines
should be attributed to the activator centers of Nd3+ ions
replacing the Gd3+ ions in the c-positions of the struc-
ture (the concentration of large Nd3+ ions in the octahe-
dral positions of the garnet is very low even in the
Nd3Ga5O12 crystals [11]). The structure of Nd3+ activa-
tor centers in the gadolinium–gallium garnet is deter-
mined to a large extent by the distribution of the cations
from the second coordination sphere located in four
distorted cubes, four octahedra, and six (2 + 4) tetrahe-
dra sharing edges and vertices with a distorted NdO8

cube (see table).

The principal center (type 1 in table) is formed by
distorted NdO8 cubes built by ten Ga and four Gd atoms
from the second coordination sphere, which corre-
sponds to the stoichiometric garnet of the composition
Gd3Ga5O12 and a low concentration of Nd3+ activator
ions. The additional activator center (type 2) observed
in the spectroscopic experiment is, most likely, formed
in the case where nine Ga atoms and five Gd atoms are
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Fig. 4. Luminescence spectra of Nd3+ ions (concentration
~1 at. %, 4I9/2  2P1/2 and 4I9/2  4F3/2 transitions) at
15 K from the gadolinium–gallium garnet crystals
(a) grown from melt and (b) grown from flux. Asterisks
indicate the lines of the principal center of Nd3+ ions in
Gd3Ga5O12 crystal.
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within the second coordination sphere around a Nd3+

ion. Since the octahedral ionic radius of Gd3+ (0.94 Å)
substantially exceeds that of Ga3+ (0.62 Å), this
replacement strongly distorts the oxygen environment
of a Nd3+ ion (since the NdO8 polyhedron and the near-
est octahedron share an edge). The calculation shows
that in a gadolinium–gallium garnet of the congruent
composition Gd3.05Ga4.95O12 grown from melt, the cen-
ters of type 2 would comprise up to 8% of the total
number of the Nd3+ activator centers even if one
ignores possible correlations characteristic of the gar-
net structure (the structure with large Ln atoms in c-
positions is stabilized by the ions larger than Ga3+

located in the octahedral a-positions, e.g., by Sc, Lu,
and Yb ions [12]).

The gadolinium–gallium garnet crystals grown from
melt studied have the unit-cell parameter aCz = 12.385 ±
0.001 Å; their composition estimated by Eq. (1) is
Gd3.06Ga4.94O12. Our garnet crystals grown from flux
have the unit-cell parameter aflux = 12.377 ± 0.001 Å,
their composition is close to stoichiometric,
Gd3Ga5O12, which is typical of crystals grown from
flux [13]. This explains a considerably lower concentra-
tion of the second activator center (type 2) in our
Gd3Ga5O12:Nd3+ crystals grown from flux in compari-
son with its concentration in the crystals grown from
melt.

The pair centers (type 3)—a pair of Nd3+ ions in the
adjacent distorted cubes—can evidently be formed in
crystals grown from both melt and flux depending on
the activator concentration in the crystal. However, the
spectra obtained show that, at the activator content of
about 1 at. % in Nd3+-doped gadolinium–garnet crys-
tals, the concentration of these centers is lower than the
concentration of type 2 centers.

In laser experiments, a continuous-wave lasing was
excited in Gd3Ga5O12:Nd3+ crystals grown from flux.
With no selective elements in the cavity, lasing
occurred simultaneously at the wavelengths λ1 =
1.0621 and λ2 = 1.0600 µm of the 4F3/2  4I11/2 chan-
nel. The lasing threshold for Gd3Ga5O12:Nd3+ crystals
grown from flux was somewhat (by ~20%) lower than
that of crystals grown from melt. The use of selective
mirrors with high reflection coefficients in the vicinity
of 1.33 µm highly transparent in the range 1.05–
1.06  µm in the cavity provided generation at the
wavelengths λ3 = 1.3315 and λ4 = 1.3370 µm of the
4F3/2  4I13/2 channel. The accuracy of the photoelec-
tric record of the lasing wavelength was ±0.0005 µm.
The output power for the Gd3Ga5O12:Nd3+ lasers emit-
ting in the vicinity of 1.06 and 1.33 µm as a function of
the pumping power is shown in Fig. 5. In a crystal with
the concentration CNd ≈ 10%, lasing in both spectral
ranges was also excited, which shows that one can use
highly concentrated Gd3Ga5O12:Nd3+ crystals to design
minilasers. These high concentrations provide the com-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
plete absorption of the pumping energy at a wavelength
of the active element of about 2–3 mm.

Comparing the measured spectral and laser charac-
teristics of the Nd3+-doped gadolinium–gallium garnet
crystals grown from melt and from flux, we see that the
latter have somewhat narrower (by 10–30%) absorption
and luminescence lines (Figs. 2–4). In our opinion, the
high structural disorder in crystals grown from melt is
explained by the following: (1) The equilibrium con-
centration of point defects (vacancies and atoms in
interstitial and unusual positions) is high at tempera-
tures close to 1800°C and decreases only slightly dur-
ing fast cooling upon completion of growth; (2) the
presence in the melt of the component Ga2O3 that can
be evaporated and dissociated with an increase in the
temperature; and (3) the pulling rate is 1–2 mm/h,
which is higher by several orders of magnitude than the
rate of crystallization from flux. On the other hand,
growth from flux proceeds at a temperature of about
1200°C in air, with the concentration of point defects
being lower and the Ga2O3 component more stable.
Finally, the partial filling of the octahedral positions in
the gadolinium–gallium garnet structure with Gd3+ ions
also gives rise to a certain structural disorder. (Similar
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Fig. 5. The emission power (at two wavelengths) of a con-
tinuous-wave Gd3Ga5O12:Nd3+ laser in the 1.06 µm range
with activator concentrations (1) 3 and (2) 10 at. % and in
the 1.33 µm range with activator concentration (3) 10 at. % as
a function of the pumping power of a semiconductor laser
(λpump = 0.81 µm).

Cation distribution around distorted NdO8 cubes within the
second coordination sphere in Nd3+-doped gadolinium–gal-
lium garnet

Type of 
center

c-positions
(distorted cube)

a-positions
(octahedron)

d-positions
(tetrahedron)

1 4Gd 4Ga 6Ga

2 4Gd 3Ga + 1Gd 6Ga

3 3Gd + 1Nd 4Ga 6Ga
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phenomena were earlier observed when studying the
crystals grown from melt in the mixed
Nd3+:Y3(Ga,Al)5O12 [14] and Nd3+:Y3(Y,Ga)2Ga3O12
[15] systems.) However, the crystallization from melt
does not allow the attainment of a high degree of gado-
linium–gallium garnet matrix disorder because of the
substantial divergence of the solidus and liquidus
curves in the instances where the composition of the
melt differs from the congruent one. Therefore, the
crystallization from flux seems to be more advanta-
geous because the range of existence of the
Gd3 + xGa5 − xO12 solid solutions is also quite large at a
temperature of 1200°C [10]. Thus, varying the
Gd2O3/Ga2O3 ratio in the flux, it is possible to grow a dis-
ordered garnet of the composition up to Gd3.3Ga4.7O12.

Thus, the concentration series of the
Gd3Ga5O12:Nd3+ garnet crystals were grown from flux.
It was shown that unlike crystals grown from melt,
spectroscopically, these crystals can be considered as a
medium with a single activation center. For the first
time, continuous-wave lasing was excited in diode-
pumped Gd3Ga5O12:Nd3+ crystals at wavelengths
λ3 = 1.3315 and λ4 = 1.3370 µm of the 4F3/2  4I13/2
channel and the simultaneous generation at two wave-
lengths λ1 = 1.0621 and λ2 = 1.0600 µm of the channel
4F3/2  4I11/2. The power characteristics of lasing can
be essentially improved by using an antireflection coat-
ing with optimum dimensions and the activator concen-
tration or by optimizing the cavity. In the growth exper-
iments, an interesting problem, along with the reduc-
tion in the optical inhomogeneity (growth striae and
faceting) of the Gd3Ga5O12:Nd3+ crystals, is also the
preparation of the Gd3 + xGa5 – xO12:Nd3+ crystals (x ≥ 0.2)
with considerable structural disorder. The media whose
absorption spectra have broadened lines provide better
matching with the diode pumping whose wavelength
can experience temperature drift.
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Abstract—Absorption and circular-dichroism spectra of uniaxial inactivated sulfate crystals KLiSO4 and
[C2H4(NH2) · H2SO4] have low-intensity bands in the spectral range of 0.20–0.35 µm. These bands are attrib-
uted to forbidden transitions in a sulfate group. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The study of cubic double sulfates-langbeinites

crystals (sp. gr. 213) shows that an -group is one of
the chromophores contributing to a crystal gyrotropy
(see review [1]). In the ultraviolet range of 0.18–0.30 µm,
the forbidden electronic transitions in a sulfate group in
these crystals manifest themselves in the absorption
and circular-dichroism spectra. The main contribution
to the optical rotation in the range of 0.2–0.8 µm comes
from the allowed transitions of a more short-wave
length range.

In this connection, the role of a sulfate group in the
gyrotropy of inactivated uniaxial sulfate crystals is of
great interest. The data on the gyrotropy of uniaxial
KLiSO4, KNaSO4, [C2H4(NH2)2 · H2SO4] (ethylenedi-
amine sulfate) and NiSO4 · 6H2O crystals, and biaxial
(NH2CH2COOH)3 · H2SO4 (triglycine sulfate) and
MgSO4 crystals are reviewed in [2]. Gyrotropy in these
compounds manifests itself only in the crystalline state.

The effect of electronic transitions in sulfate groups
on the gyrotropic properties of these crystals is of spe-
cial interest because, unlike cubic langbeinites, the con-
tribution to the circular dichroism and optical rotation
in uniaxial and biaxial crystals comes not only from the
〈pm〉 but also from the 〈pq〉 modes (where 〈p〉 , 〈m〉 , and
〈q〉  are the matrix elements of the electric, magnetic,
and quadrupole moments of the transitions, respec-
tively [3]).

An active role of electronic transitions in sulfate
groups in the gyrotropy of uniaxial crystalline sulfates
is indirectly shown in [4], where the data on circular-
dichroism spectra of crystalline sulfates doped with tet-

rahedral Cr  and åÓ -ions incorporated into the
positions of sulfate groups in the crystal lattice are pre-
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sented. However, there is no direct experimental evi-
dence of the contribution of these transitions to the
gyrotropic properties of these crystals.

Below, we describe the detailed study of the absorp-
tion and the circular-dichroism spectra of inactivated
uniaxial potassium–lithium sulfate (KLiSO4) 1 and eth-
ylenediamine sulfate [C2H4(NH2)2 · H2SO4] crystals 2
and the experimental data on the involvement of elec-
tronic transitions in sulfate groups in the gyrotropic
properties of these crystals.

The study of the optical-rotation dispersion in these
crystals in the range 0.2–0.6 µm shows that the disper-
sion curves are of a conventional nature [4–6], which
shows that the contribution of forbidden transitions in
sulfate groups to the optical-rotation dispersion is
insignificant. Hence, one can hardly expect the forma-
tion of intense bands in the range of 0.20–0.35 µm in
the circular-dichroism spectra.

STRUCTURE OF KLiSO4 
AND [C2H4(NH2) · H2SO4] CRYSTALS

The structure of a KLiSO4 crystal 1 (sp. gr. P63( ),
unit-cell parameters a = 5.15 Å and c = 8.63 Å, and
Z = 2) is a close packing of tetrahedral sulfate ions with
local symmetry C3 (Fig. 1) [7]. Sulfur atoms are located
in a tetrahedron with one face lying in the plane normal
to the 63-axis (the optical axis of the crystal). Potassium
atoms occupy the octahedral voids between the tetra-
hedra of sulfate groups, whereas lithium atoms are in
tetrahedral voids. Potassium atoms are located on the
63-axis and lithium atoms, on the 3-axis. Two mole-
cules in the unit cell related by the 63-axis form no heli-

cal structure of -tetrahedra.

C6
6

SO4
2–
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The structure of a [C2H4(NH2)2 · H2Sé4] crystal 2

(sp. gr P4122 ( ) or ê4322 ( ), unit-cell parameters
a = 8.47 Å and c = 18.03 Å, and Z = 8) (Fig. 2) consists

of layers of ethylenediamine and -groups normal
to screw axis 41, which is the optical axis of the crystal
[8]. The ethylenediamine (the C2 symmetry) is located
in the structure in such a way that the C–C bond is
almost parallel to screw axis 41 of the crystal. The dis-
torted tetrahedra of sulfate groups (the C2 symmetry)
are also located around the 41-axis so that the twofold
axes of the tetrahedra coincide with the twofold axes of
the crystal lattice. Because the tetrahedra in the crystal

D4
4

D4
8

SO4
2–

a1=5.15

a2=8.63

K Li SO4

Fig. 1. Fragment of the KLiSO4 structure.
C

structure are distorted, the S–O bond lengths in sulfate
groups differ by 0.01 Å from the conventional length
of 1.5 Å.

It follows from the description of the structure that
the chromophors responsible for the optical activity in

a crystal 1 are -groups and also K+- and Li+-ions
in the positions with C3 symmetry. In crystal 2, in addi-
tion to sulfate groups (C2 symmetry), a chromophor
responsible for the optical activity is also ethylenedi-
amine (C2 symmetry). Thus, it is seen that both the
symmetry and the orientation of sulfate groups relative
to the optical axis in crystal 2 differ from those in crys-
tal 1. In other chromophors, electronic transitions lie in
the range of vacuum ultraviolet and, therefore, their
bands cannot be measured.

EXPERIMENTAL

The dispersion of optical rotation was studied on a
spectropolarimeter. The absorption spectra were
obtained on a Specord M-40 spectrophotometer and on
a spectrophotometric setup with an MDR-23 mono-
chromator. The spectra of circular dichroism were stud-
ied on a Mark-3S dichrometer. These devices were
modified with the aid of the program of computeriza-
tion of nonstandard optical techniques written in the
Moscow Institute of Physics and Technology on the
basis of Pentium computers with unique interface cards
for control and data collection. This computer program
not only allows one to control the operations performed
by the device and obtain experimental data and their
graphical mapping in real time, but also provides a
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Fig. 2. Two projections of the fragment of the ethylenediamine sulfate structure.
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complete set of procedures for spectra processing,
including modern methods for reducing the noise com-
ponents of the spectra, transformation of the spectra,
and their approximation by given contours, elimination
of undesirable background components, comparison of
spectra, etc. Using this equipment and the program of
the data processing, we managed to reveal new details
of the spectra, in particular, in the range with pro-
nounced absorption.

Ethylenediamine sulfate crystals were grown from
aqueous solutions by the method of spontaneous crys-
tallization and were of a high optical quality. The mea-
surements were made on plates cut out parallel to the
cleavage plane and oriented normally to the 41-axis
coinciding with the optical axis of the crystal. The
KLiSO4 crystals were grown from aqueous solutions on
a seed by the method of decreasing temperature. The
study of specimens in a polarization microscope
showed the absence of any domain structure. The spec-
tra were obtained from the specimens from 0.5 to
4.0 mm in thickness.

RESULTS AND DISCUSSION

The absorption spectra in the range 0.2–0.3 µm are
similar for both crystals (Figs. 3 and 4, curve 1) and
resemble the corresponding spectra of double sulfate
crystals (langbeinites) [1]. The results obtained show
that absorption in this spectral range is caused by elec-

tronic transitions in  groups. The intensity of the
band with the maximum at 0.28 µm is very low, espe-
cially for crystal 2, which is typical of the transitions
forbidden by the selection rules.

At the same time, the positions and intensities of the
bands on the circular-dichroism spectra are different.
The circular-dichroism spectra of crystal 1 (Fig. 3,
curve 2) show only one low-intensity band with the
maximum at λ = 0.28 µm in the range of 0.25–0.30 µm,
whereas the spectrum of crystal 2 has two bands at λ
equal to 0.30 and 0.25 µm in this range (Fig. 4, curve 2).
Moreover, the circular-dichroism spectrum of crystal 2
has the third band with the maximum at λ = 0.21 µm
with the intensity higher by an order of magnitude than
the intensity of the two first maxima (Fig. 4, curve 2).
Evidently, different gyrotropic properties of these crys-
tals in the range of electronic transitions in sulfate
groups should be explained by different orientations of
these groups with respect to the optical axis along
which the axial circular-dichroism spectra are mea-
sured.

Now, consider qualitatively the effect of the orienta-

tion of -ions depending on the electronic structure
of sulfate groups. The electronic structure of tetrahedral
sulfate groups was intensely studied in the 1960–1970s.
The electronic structure of the sulfate group was first
studied in [9–11]. Later, calculations of the energy of
molecular orbitals were made by various computa-
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SO4
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tional methods of quantum chemistry [12–17]. At
present, the following sequence of the filled orbitals is
universally accepted: (1a1)2 , (1t2)6, (2a1)2, (2t2)6, (1e)4,
(3t2)6, (1t1)6 [17] (Fig. 5). The antibinding orbital with
the minimum energy has not been definitively estab-
lished as yet. In a number of studies, the first empty
orbital was calculated to be (4 ) in the sequence

(4 )(3a*)(2e*)(5 ); in other studies, it was calculated

as (3 ) in the sequence (3 )(4 )(2e*)(5 ). In the
first case, because of the interaction with a hole on the

t2*

t2* t2*

a1* a1* t2* t2*
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Fig. 3. (1) Absorption and (2) circular-dichroism spectra of
a KLiSO4 crystal.
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ligand orbital, the (1t1)5 (4 ) state yields the following
terms: 3T1, 3T2, 1T1, 1T2, 1E, 1A1 . In the second case,
because of the above interactions, the excited configu-
ration (1t1)5 (3 )1 yields two terms, 1T2 and 3T2 .
Within the Td symmetry, the 1A1–1T2 transitions are
allowed in the electrical dipole approximation. Because
of the spin–orbital interactions, the appearance in the
absorption spectrum of the transitions to 3T1, 3T2, 1T1, 1E,
1A1 forbidden in the electrical dipole approximation
cannot be excluded.

It is clear that, within the Td symmetry, -groups
do not possess any optical activity. In crystal 1, the sym-
metry of sulfate groups is C3, and all the T-states are
split into the A- and E-states. Since the threefold axis of

t2*

a1*

SO4
2–

E

3a*
1

4t*2

3p

1t1

3t2
1e

2t2

2a13s

2p

π(e, t1, t2)

δ(a1,  t2)

2s(a,  t2)

1t2

1a1

Fig. 5. Schematic of molecular orbitals of sulfate groups
(open circles denote electrons on molecular orbitals).
C

these groups is parallel to the optical axis of the crystal,
only the A–E transitions are active in the axial circular-
dichroism spectrum.

In crystal 2, the symmetry of  groups is C2 ,
and, therefore, all the T states should be split into the A-
and 2B-states. However, the bond lengths and the bond
angles show that sulfate groups in crystal 2 have a
higher (D2) symmetry. It is expedient to consider this
group, because the directions of the moments of the
〈µ〉 0i and 〈m〉 i0 transition (where 〈µ〉 0i is the matrix ele-
ment of the electrical dipole moment, 〈m〉 i0 is the matrix
element of the magnetic dipole moment, and A, B, and
B' are the excited i-states) within this group are aligned
along three mutually perpendicular twofold axes. Thus,
knowing the orientation of sulfate groups in crystal 2,
we can state that the projections of the moments of all
the transitions onto the plane normal to the optical axis
have nonzero values. Therefore, the transitions from the
ground A-state to all the excited A, B, and B' states may
contribute to the axial circular-dichroism spectrum.
The above consideration explains different circular-
dichroism spectra for crystals 1 and 2.

Thus, the studies of the circular-dichroism spectra
of uniaxial inactivated crystals of double sulfates

showed that -groups are the chromophors respon-
sible for the optical activity. This signifies that both

allowed and forbidden transitions in the  groups
contribute to the optical activity of these crystals. In the
spectral range under study (0.2–0.35 µm), only the for-
bidden transitions are active in the formation of circu-
lar-dichroism spectra dependent on the orientation of
SO4 groups, whereas the allowed transitions are
responsible mainly for the dispersion of the rotation of
the polarization plane at values exceeding 0.2 µm [2].
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Abstract—The absorption and circular-dichroism spectra of chromium-activated KLiSO4 crystals both nonir-
radiated and irradiated with an X-ray beam have been studied. It was established that in nonirradiated crystals
chromium ions are mainly trivalent (Cr3+) and have octahedral coordination. In irradiated crystals, along with
the centers provided by (Cr3+) ions, new centers are formed associated with (Cr4+) and (Cr5+) ions. © 2002
MAIK “Nauka/Interperiodica”.
Doping crystals gives rise to the formation of cen-
ters that have different local environments that manifest
themselves in the absorption and circular-dichroism
spectra.

It is well known that the irradiation of crystals with
an X-ray beam is usually accompanied by a change in
ion valence and, as a consequence, also in the physical
and chemical properties of the crystals. Circular-
dichroism spectra provided by different optically active
centers associated with the incorporation of impurities
into a crystal are extremely sensitive to changes in their
local symmetry caused by various external factors,
including irradiation. In this connection, it was expedi-
ent to study the effect of the X-ray irradiation of crystals
on the circular dichroism of chromium-activated KLiSO4
crystals with well-known optical properties [1, 2].

A potassium–lithium sulfate KLiSO4 crystal
belongs to the hexagonal pyramidal symmetry class 6,
sp. gr. P63 with two molecules in the unit cell. The
KLiSO4 crystals have the tetrahedral framework struc-
ture consisting of chains of distorted oxygen tetrahedra
with sulfur and lithium ions located on the threefold
axes and K+ ions located the sixfold axis in the octahe-
dral voids formed by these tetrahedra [3, 4].

Chromium-doped KLiSO4 crystals (KLiSO4 : Cr)
were grown from an aqueous KLiSO4 solution with
1.5 g/l of Cr2(SO4)3 · 6H2O at the Issyk-Kul State Uni-
versity [1]. Well-faceted green transparent crystals
were used to prepare the specimens (the crystal seg-
ments having no stresses or domains were used) [5].
The analysis of the EPR spectra of the specimens [6, 7]
showed that chromium ions in KLiSO4 crystals are
trivalent and replace K+ ions in strongly distorted octa-
hedral voids. The changed valence is compensated by
an -radical.SO3

3–
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The absorption spectra of undoped and chromium-
activated KLiSO4 crystals were studied on 1.85- and
0.95-mm-thick plates oriented normally to the optical
axis in the spectral range from 200 to 800 nm at room
temperature (Fig. 1).

Undoped KLiSO4 crystals are transparent in the vis-
ible and ultraviolet spectral ranges (Fig. 1, curve 1). In
the absorption spectra of Cr-doped KLiSO4 crystals,
three wide bands with the maxima at λ = 280, 420, and
600 nm are observed (Fig. 1, curve 2), which are char-
acteristic of octahedrally coordinated Cr3+ ions and
associated with the allowed spin-quartet transitions
from the 4A2g ground state to the 4T2g(F), 2T1g(F), and
4T1g(P) levels of the Cr3+ ion. The absorption spectra of
irradiated chromium-doped KLiSO4 crystals are also
shown in Fig. 1 (curve 3). It is seen that upon irradiation
of these crystals, the intensity of the absorption band at
λ ~ 600 nm decreases, which shows that the number of
Cr3+ ions diminish. The decrease in the intensity of this
band in the spectrum of the irradiated crystal is accom-
panied by the formation of a new absorption band at
355 nm attributed to Cr5+ ions. Comparing the EPR and
the optical-absorption spectra, we established that
under the effect of X-ray irradiation, some Cr3+ ions in
alkali metal crystals change their valence by gradually
trapping two holes according to the scheme [7]

Cr3+ + h  Cr4+ + h  Cr5+.

The circular-dichroism spectra of nonirradiated and
irradiated chromium-doped KLiSO4 crystals were stud-
ied in the spectral range 230–800 nm with a sensitivity
of ~4 × 10–6 optical density per millimeter on a
dichrometer (Fig. 2).

The circular-dichroism spectra of nonirradiated
specimens (Fig. 2, curve 2) show two wide bands with
002 MAIK “Nauka/Interperiodica”
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two maxima at 420 and 650 nm corresponding to the
Cr3+ bands observed in the absorption spectrum. In the
spectra of circular dichroism, these bands have oppo-
site signs. The wide band with the maximum at 650 nm
in the long wavelength edge has a narrow band at 685 nm
which, most probably, corresponds to the 4A2  2E
transition [2].

In the circular-dichroism spectra, the additional
bands with the maxima at 500 and 550 nm are also
observed to be not associated with the Cr3+ ions. Pre-
sumably, these bands are caused by tetrahedrally coor-
dinated Cr4+ ions [8]. The absence of these bands in the
absorption spectrum of irradiated crystals seems to be
explained by the low concentration of these ions in the
crystal. In the ultraviolet range of the circular-dichro-
ism spectrum (250–370 nm), a wide band, evidently
combining the bands associated with chromium ions of
different valences (Cr3+, Cr+), SO4 groups, and color
centers [2, 7, 9], is observed.

As is seen from Fig. 2, the circular-dichroism spec-
tra of the irradiated KLiSO4 : Cr crystal (Fig. 2, curve 3)
have considerably changed because of the changes in
the Cr3+ and Cr4+ ion concentrations and the appearance
of Cr5+ ions. The intensities of the circular-dichroism
bands of Cr3+ ions at λ ~ 420 and 650 nm decreased and
a wide band with the maximum at 355 nm due to Cr5+

ions appeared. Moreover, the intensity of the band due
to Cr4+ ions in the green spectral range considerably
increased and the band maximum was shifted to λ <
570 nm. The positional changes observed for the band
maxima at 650 nm in the circular-dichroism spectra can
be caused by the appearance of ions having different
valence and a change of the local environment of the
absorption center because of irradiation.

K, cm–1

2.0

1.6

1.2

0.8

0.4

0
200 300 400 500 600 700 800

λ, nm

1
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Fig. 1. Absorption spectra of undoped and chromium-acti-
vated potassium–lithium sulfate crystals; (1) KLiSO4;
(2) nonirradiated KLiSO4 : Cr; (3) KLiSO4 : Cr crystals
irradiated with an X-ray beam.
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Thus, it is shown that the X-ray irradiation of
KLiSO4 : Cr crystals changes the valence and the local
environment of chromium ions. The examination of the
circular-dichroism spectra of crystals shows that these
spectra are more informative than the absorption spec-
tra. The study of the circular-dichroism spectra of irra-
diated crystals provides more detailed information on
the transition of the impurity from one valent state to
another.
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irradiated with an X-ray beam.
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Abstract—Ferroelastic LuNbO4 single crystals containing 0.3 at. % Cr3+ ions have been grown by the floating
zone technique, and their EPR spectra have been studied at a frequency of 9.8 GHz at room temperature. The
lines on the spectra are due to the transitions caused by three paramagnetic centers formed as a result of the
replacement of one isovalent position of a Lu3+ ion and two nonisovalent positions of Nb5+-ions by Cr3+-ions.
As a result of twinning, the line number is doubled and four principal directions arise along which the same
spectra are obtained. The spectra of these centers were described by a spin Hamiltonian with S = 3/2, the D
and  E parameters ranging from 0.024 to 0.17 cm–1, and the g-factors g|| = 1.75–2.20 and g⊥  = 1.90–2.13.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The use of the method of dynamic orientation of the
nuclei suggested in [1] requires the selection of a suit-
able working substance with a pronounced quadrupole
splitting of the energy levels of the nucleus studied (the
NQR frequency should range within several dozens of
megahertzs). This substance should also possess con-
siderable splitting of levels of paramagnetic impurity
(of the order of several dozens of gigahertzs) in the
absence of a magnetic field.

Unfortunately, we did not find any substances with
known NQR and EPR frequencies of the paramagnetic
dopants. Therefore, we used as a promising working
material the compound LuNbO4, in which the NQR fre-
quency for lutetium nuclei lies in the proper range [2].
Single crystals of this compound doped with ~0.3 at. %
Cr3+ ions were obtained, and the EPR spectra of chro-
mium ions were studied. The calculation of the spectra
allowed us to determine the types of centers formed
by  Cr3+ ions and the level splitting of a paramagnetic
Cr3+ ion.

LuNbO4 crystals belong to ABO4-type compounds,
where A is a rare earth element and B = Nb or Ta,
with  the structure of fergusonite (Y1 – xYbxNbO4), a
mineral which crystallizes in the monoclinic space
group I2/a [3–10]. The structure of this mineral is
derived from the scheelite (CaWO4) structure, whose
projection onto the xy plane is shown in Fig. 1 [4]. This
structure has the crystallographically independent posi-
tions of Lu and Nb and two crystallographically inde-
pendent positions of oxygen (O1 and O2). Lutetium is
coordinated with oxygen atoms forming a distorted
eight-vertex polyhedron. In contrast to the scheelite
1063-7745/02/4702- $22.00 © 20320
structure in which tungsten atoms are surrounded with
four oxygen atoms forming a regular tetrahedron, in the
fergusonite structure, two additional oxygen anions are
located close to a niobium atom. As a result, the coor-
dination number of niobium is (4 + 2). The LuO8-poly-
hedra share the O(1)–O(1) and O(2)–O(2) edges and
form a three-dimensional framework where each LuO8-
polyhedron is surrounded by its four nearest neigh-
bors—similar polyhedra. The voids of the three-dimen-
sional framework are filled with the zigzag chains of
NbO6-polyhedra sharing the O(2)–O(2) edges and,
thus, forming columns. In a layer parallel to the xy
plane, the LuO8- and NbO6-polyhedra share vertices in
such a way that each LuO8-polyhedron shares vertices
with two adjacent NbO6-polyhedra. A LuO8-polyhe-
dron shares two vertices and two edges with NbO6-
polyhedra from the neighboring layers.

The above crystals possess ferroelastic properties
[7–9]; with an increase in temperature they undergo the
ferroelastic phase transition accompanied by an
increase in the symmetry to the tetragonal (4/mF2/m).
The physical properties of the LuNbO4 crystal are stud-
ied insufficiently because of the difficulties encoun-
tered in the growth of single crystals. Our study is ded-
icated to the growth of LuNbO4 : Cr single crystals and
the study of the EPR spectra of Cr3+ ions introduced
into their lattice.

GROWTH OF SINGLE CRYSTALS

The crystals were grown by the floating zone tech-
nique on an URN-2-ZP setup using optical heating
[11]. Polycrystalline rods of the composition
002 MAIK “Nauka/Interperiodica”



        

EPR SPECTRA 321

                                                                                         
(Lu0.997Cr0.003)NbO4 synthesized using the conventional
ceramic technology served as the starting material for
crystallization. The rods 8 mm in diameter and 90 mm
in length were fired and sintered at temperatures of
1200 and 1350°C, respectively. Zone recrystallization
proceeded at a linear rate of 4.5 mm/h, with the upper
ceramic rod and the lower recrystallized ingots being
rotated in opposite directions with an angular velocity
of 40–60 rpm.

The ingots thus obtained were boules of monoclinic
LuNbO4 single crystals ~8 mm in diameter and 20 mm
in length. The crystal layers up to ~1 mm in thickness
were transparent and had a light yellow–green color
and possessed a pronounced cleavage along the (010)
planes. The studies of the platelike crystals with the
(010) basal plane in an MMP-2 polarization micro-
scope showed that they consist of polysynthetic twins
seen as alternating light and dark bands.

The X-ray diffraction studies were performed on a
DRON-4 diffractometer (CuKα-radiation). It is estab-
lished that the powder X-ray diffraction pattern is well
consistent with the known data on LuNbO4 crystals
[3–10] and can be indexed on the basis of the mono-
clinic unit-cell with the parameters a = 5.229(4) Å, b =
10.8211(3) Å, c = 5.030(8) Å, β = 94.5(6)° (the unit-
cell parameters were calculated for the base-centered
sp. gr. C2/c often used for fergusonite crystal, a non-
conventional version of the sp. gr. I2/a [3–10]).

EPR SPECTRA

The EPR spectra were studied at a frequency of
9.80 GHz on a Bruker ER-200tt spectrometer at room
temperature. The specimen was a 1 × 3 × 6-mm single-
crystal LuNbO4 : Cr plate with the {130} basal and
{010} lateral faces. The crystal was glued with differ-
ent faces to a quartz rod of the spectrometer with BF-2
glue. During measurements, the rod could be rotated
around its axis, thus changing the crystal orientation in
the applied magnetic field. At an arbitrary orientation of
the crystal in the magnetic fields with an intensity of up
to 9 kOe, the EPR spectrum consisted of more than
30 lines. The number, position, and intensity of the
lines changed depending on the magnetic-field orienta-
tion. If the magnetic field was oriented along the mon-
oclinic b-axis, the spectrum was considerably simpli-
fied (Fig. 2a). There are four mutually perpendicular
directions normal to the b-axis in the ac plane; the spec-
tra obtained along these directions are considerably
simplified and are identical (Fig. 2b). In this case, the
lines corresponding to the transitions in one center
degenerated, and the lines corresponding to the transi-
tions in other centers doubled, whereas within an inter-
val of ~1.5°, the situation was reversed. These data
allow one to determine the misorientation angle of the
symmetry axes of the local environment for different
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Fig. 1. Projection of the LuNbO4 structure onto the xy
plane. The coordination polyhedra of Lu3+ and Nb5+ ions
are hatched.

1000 2000 3000 4000 5000 6000 7000 8000
H, Oe

0.2

0.6

1.0

0.2

0.6

1.0
Relative intensity

Intensity, arb. units

(a)

(b)

Fig. 2. EPR spectra of Cr3+ ions in LuNbO4 at a frequency
of 9.80 GHz at room temperature. Vertical bars indicate the
positions of the resonance lines and their intensities; filled
circles indicate the positions of the EPR lines due to Cr3+

ions located in the lutetium sites; filled triangles indicate the
positions of the Cr3+-resonance lines in the niobium sites
O1; inverted filled triangles, the positions of the Cr3+-reso-
nance lines in the niobium sites O2. (a) External magnetic
field is parallel to the C2-axis. The calculation was performed
at the parameter values listed in the table. (b) External mag-
netic field is oriented along four directions with the minimum
spectrum multiplicity which are normal to the C2-axis. Only
the positions of the resonance lines are calculated.
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types of centers. The minimal linewidth on the EPR
spectrum was 10 Oe.

The spectra observed are attributed to Cr3+ paramag-
netic centers. As was indicated above, the structure has
two crystallographically independent positions for Lu
and Nb atoms and two crystallographically indepen-
dent positions for oxygen atoms, O1 and O2. Since the
ionic radii of Cr3+ and Nb5+ are close [12], the Cr3+ cat-
ions introduced into the LuNbO4 structure in low con-
centrations can replace not only the Lu3+-positions but
also the Nb5+-positions. The filling of the niobium posi-
tions gives rise to an oxygen deficit either in the O1 or
in the O2 position. The existence of four mutually
orthogonal directions perpendicular to the twofold
axis  C2, along which the spectra are identical, can be
explained by the twinning characteristic of ferroelastic
crystals because of phase transition. As a result, along
these directions, one can simultaneously observe two
spectra formed corresponding to two mutually perpen-
dicular directions of the nearest environment of para-
magnetic center, which can be transformed into one
another by rotation through 90°. Thus, in this com-
pound, one paramagnetic isovalent center can be
formed in the Lu3+ position and two oxygen-deficient
paramagnetic centers can be formed in the Nb5+ posi-
tion.

The spectra were identified and the parameters of
the spin Hamiltonian were determined by comparing
the observed and the calculated line positions. At the
parallel orientation (the magnetic field applied along
the twofold symmetry axis), the spectra were identified
by both the positions and the intensities of the EPR
lines. To describe the spectrum at the monoclinic sym-
metry of the nearest environment of chromium ions
with S = 3/2, the following spin Hamiltonian [13] was
used:

(1)

where β is the Bohr magneton, g|| and g⊥  are the g-fac-
tors, and D and E are the constants that describe anisot-
ropy along the monoclinic C2 axis and in the plane nor-
mal to it, respectively. If the magnetic field is applied
along the z-axis, the energy levels take the values

(2)

and the eigenfunctions are

(3)
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where

(4)

Since the eigenstates at E = 0 are ψ1  |3/2〉 ,
ψ2  |–1/2〉 , ψ3  |1/2〉 , and ψ4  |–3/2〉 , this
notation is also convenient at E ≠ 0, but one has to keep
in mind their conventional sense. In this orientation, the
probabilities of transitions are determined by the
expressions

(5)

It is seen from Eqs. (3)–(5) that the orthorhombic
component of the crystal field leads to a mixing of the
states |3/2〉  and |–1/2〉  as well as |1/2〉  and |–3.2〉, and the
occurrence of the additional transition |–3/2〉   |3/2〉
with W–3/2 → 3/2 ≠ 0, which was forbidden earlier.

Using the above formulae, we calculated the EPR
spectrum in the case where the magnetic field was
applied along the C2-axis. The calculated lines and the
experimental spectrum are shown in Fig. 2. Both posi-
tions and intensities of the lines observed in the parallel
orientation at H = 2623, 3371, and 4360 Oe are well
described by the Hamiltonian at the parameter values
listed in table. We attribute these three lines to isovalent
Cr3+ centers formed by the replacement of Lu3+ by Cr3+

ions. The calculated positions and relative intensities of
the resonance lines are shown by circles in Fig. 2a. The
lines denoted by upward-directed filled triangles (for
one center) and downward-directed filled triangles (for
another center) should be attributed to two non-equiva-
lent Cr3+ centers occupying the Nb5+ positions. The
parameters of the spin Hamiltonians that describe the
spectra of these centers are listed in the table.

The energy-level values and the positions of the res-
onance lines for the perpendicular direction can be
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obtained only numerically by solving the secular equa-
tion corresponding to Hamiltonian (1). In this case,
only the g⊥ -value of the g-factor was used as a fitting
parameter. Therefore, in Fig. 2b the line positions are
indicated for Hx ≠ 0, Hy = 0 and Hx = 0, Hy ≠ 0. The agree-
ment between the calculated and observed spectra is sat-
isfactory; however, in order to describe the spectrum in
more detail and with a higher accuracy, the measure-
ments should also be made at another frequency.

CONCLUSIONS

Thus, large LuNbO4 ferroelastic single crystals con-
taining 0.3 at. % of Cr3+ ions are grown for the first time
by the floating zone technique ~1 cm3 in volume, and
their EPR spectra are studied. The spectrum lines are
caused by the transitions from three paramagnetic cen-
ters formed by the replacement of an isovalent Lu3+ and
two nonisovalent Nb5+ ions by Cr3+ ions. Twinning
revealed in the crystals leads to a doubling of the num-
ber of lines and the formation of four principal direc-
tions normal to the twofold axis C2 of the crystal, with
the spectra along these directions being the same. The
spectra of these centers are described within the frame-
work of the spin Hamiltonian with S = 3/2, the D and E
parameters ranging from 0.024 to 0.170 cm–1, and the
g-factors g|| = 1.75–2.20 and g⊥  = 1.90–2.13.

The EPR frequencies of the Cr3+ ions in the zero
magnetic field (9.7, 13.4, and 17.7 GHz) lie in the ultra-
high frequency range, which allows one to use lutetium

Parameters of EPR spectra of Cr3+ ions in LuNbO4

Type
of center g| | g⊥

D,
cm–1

E,
cm–1

ν0, 
GHz

Lu3+ 1.82 ± 0.01 1.90 ± 0.02 0.024 0.093 9.7

The first 
Nb5+ ion

1.75 ± 0.01 2.05 ± 0.02 0.17 0.14 17.7

The second 
Nb5+ ion

2.2 ± 0.1 2.13 ± 0.05 0.084 0.11 13.4
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niobate single crystals in experiments on the dynamic
orientation of the nuclei.
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Abstract—The possibilities provided by the main polarization optical methods of studying internal stresses in
differently oriented plates prepared from cubic crystals are compared. A promising method for obtaining
exhaustive information on the stressed state of an object, including the trajectories and the values of the princi-
pal stresses, is described. © 2002 MAIK “Nauka/Interperiodica”.
Most of the dielectric and semiconductor cubic
crystals are transparent in the near IR range of the spec-
trum. This allows as to efficiently study their stressed
states in polarized light. Such studies give valuable
information on the quality of the growth apparatus,
shortcomings of the technologies used, and, based on
the defect concentration, also provide a preliminary
certification of the crystal quality affecting the mechan-
ical, optical, and electrophysical properties of future
details and devices.

Internal stresses in transparent solids induce artifi-
cial optical anisotropy and, in particular, they locally

transform isotropic crystals into uniaxial (classes ,
432, and m3m) or biaxial (classes 23 and m3) ones [1].
The patterns of birefringence distribution caused by
induced anisotropy and observed in polarized light are
essentially dependent on the orientation of the principal
stresses with respect to the principal symmetry axes
and the direction of observation. Such a dependence
predetermines essential differences in the observed pat-
terns in the analysis of differently oriented plates
despite the same distribution of the internal stresses.

For arbitrarily oriented plates, the value of the
induced difference in the principal refractive indices ∆n
(birefringence) depends on the refractive index n0 of an
unstressed crystal, the values of the principal stresses σij

and the differences between them, and the piezo-optic
coefficients πij and their combinations in a rather com-
plicated way. In most occasions, one uses in practice
thin (111)- and (100)- and sometimes also (110)-ori-
ented plates prepared from crystals of the classes m3m

and . To describe the stressed state revealed with
the aid of induced optic anisotropy, one uses the piezo-
optic coefficient π44 and the difference (π11 – π12). If the
stressed state of the crystal is provided by micros-
tresses, one can assume that the plane stressed state is
studied for thin plates related to the induced birefrin-

43m

43m
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gence in differently oriented plates in the following
way: for the (111)-oriented plates

(1‡)

(1b)

for the (100)-oriented plates

(2‡)

(2b)

and for the (110)-oriented plates

(3‡)

(3b)

where α0 is the azimuth of the fast axis of the optical
indicatrix at the point of observation measured from the
direction of the maximum transmission of the polarizer,
and β is the azimuth of the principal stress σ1 measured
from the [100] axis.

The transition from the stresses in the plates to the
volume stresses in the initial Czochralski-grown silicon
crystal is described in [2].

As follows from the above relationships, the exhaus-
tive study of a plate depends on its orientation. It is
most convenient to study the (111)-oriented plates
because they provide a direct relation between the mea-
sured ∆n and α0 values and the (σ2 – σ1) and β values.
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This allows us to directly record stress diagrams by cer-
tain methods. In (100)- and (111)-oriented plates, all
the orthogonal directions are equivalent, but the princi-
pal axes of the stress tensor do not coincide with
the  principal axes of the indicatrix, i.e., α0 ≠ β; the
only exception are the points at which the principal
stresses act along the [100]-and [110]-axes. In this
case, α0 = β and

(4)

(5)

In the general case, in order to determine ∆n in the plate
of the (100)-cut, one first has to calculate the β value.

In the plate of the (110)-cut, not all the orthogonal
directions are equivalent, which complicates the form
of Eqs. (3a) and (3b). An analysis of these relationships
shows that it is impossible to study the internal stresses
in the (110)-plates. An exception is the four points
located at the plate edge. At two of these points, the tan-
gents to the plate edge are parallel to [100], whereas at
two other points they are parallel to [110]. At the edge
points of an arbitrarily oriented plate, only the uniaxial
stresses στ tangential to the plate edge exist. If these
stresses in the (110) plate coincide with the [100]-and
[110]-directions, we have

(6)

(7)

To determine the parameters of the stressed state of
an object, one has to know the ∆n and α0 values, which
are determined with the use of various polariscopes.
The values of ∆n and α0 in polariscopes with visual
observation and in those supplied with infrared image
transformers are determined by the Senarmont method
[2] or with the aid of various compensators [3] provid-
ing the determination of the phase difference δ0 or the
path difference Γ. These parameters are related to the
averaged ∆n values as follows: δ0 = 2π∆nd/λ and Γ =
∆nd, where d is the plate thickness and λ is the wave-
length of the radiation used. It should be remembered
that for thick plates the average ∆n value can consider-
ably differ from the maximum and, thus, can distort the
information on the critical values of the internal
stresses. This method is inapplicable to the analysis of
microstresses because it requires the knowledge of the
stress distributions around the defects with due regard
for their shapes and dimensions.

The probing radiation transmitted by a stressed
object in scanning polariscopes with a rotating element
[4] (an analyzer, a polarizer, or a phase plate) undergoes
amplitude-phase modulation and is recorded by a pho-
todetector. The parameters of the modulated part of the
signal contain information on both ∆n and α0 in the
amplitude and the signal phase. The method of the
amplitude-phase modulation of the radiation does not

∆n 100[ ] n0
3 π11 π12–( ) σ2 σ1–( )/2,=

∆n 110[ ] n0
3π44 σ2 σ1–( )/2.=

∆n 100[ ] n0
3 π11 π12–( )στ /2,=

∆n 110[ ] n0
3 π11 π12– π44+( )στ /4.=
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allow the visual observation of the induced birefrin-
gence.

The reliability of the pattern reflecting the stressed
state of the crystal in the polarized light depends on the
wavelength of the probing radiation, the type of polar-
ization, the degree of optical homogeneity of the object,
and on the observation method. This is explained by the
fact that the image is an interference pattern dependent
on the above factors and, therefore, is often inconsistent
with the stress distribution.

The most serious distortion of the information on
the stress distribution is characteristic of a linear
crossed polariscope in which the brightening level I
depends on both ∆n and α0:

(8)

where τ is the optical transmission of the object. At
points where α0 = 0° and 90°, the maximum darkening
is observed, which is limited by the quality of the polar-
ization elements. The set of points with the maximum
darkening forms isoclines moving along the object dur-
ing its rotation. Similar darkening is also observed at
points where Γ = λ. To identify these points, one has to
use radiation with a different wavelength. It follows
from (9) that the inconsistency of the brightness and the
stress level is explained by the term sin2δ0/2.

In a circular polariscope with two crossed quarter-
wave plates, the distortions introduced by the azimuth
of the object with respect to the polarizer are removed
because

(9)

In polariscopes with a rotating polarization element
and a rotating half-wave phase plate, information on the
stress distribution is distorted much less, because the
following expressions are valid:

(10)

(11)

where ω is the circular frequency of the element rota-
tion. For a rotating phase plate, the frequency of the
probing-radiation modulation is twice as high as that
for a rotating polarization element. Also, at δ0 < 30°,
one can assume, within the admissible accuracy, that
the amplitude of the modulated signals is proportional
to δ0. For (111)-plates, this allows us to record the stress
diagrams in the automatic mode without any correc-
tions. If the software used takes into account the signal
phase, the stress diagrams can be recorded also for the
(100)- plates and at δ0 > 30°.

Of special interest are the points at which birefrin-
gence is not observed in the plane stressed state irre-
spective of the stress value. As follows from (1a) and
(2a), birefringence in the (111)-and (100)-plates is not
observed at points where σ1 = σ2. In other plates with
nonequivalent orthogonal directions, birefringence is

I τ δ0/2( ) 2α0,sin
2

sin
2∼

I τ δ0/2( )sin
2

.∼

I ω( ) τ δ0 2 ωt α0–( ),sinsin∼

I ω( ) τ δ0 2 2ωt α0–( ),sinsin∼
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not observed at the points with other stress ratios. Thus,
at points with zero birefringence in the (110)-plates, the
principal stresses act along the two- and fourfold axes
with the stress ratios

or

(12)

As was indicated above, the visual information on
the birefringence distribution, irrespective of the
method of its observation, is distorted by nonuniform
transmission. Birefringence in optically inhomoge-
neous objects can be quantitatively evaluated with the
use of compensators. However, calculations show that
it is more convenient to use a crystallooptical device
with a variable path difference and methods using a
rotating element, although for different purposes than
in a compensator. Such a device is placed immediately
behind a polarizer and transforms the linearly polarized
radiation into elliptically polarized radiation with the
parameters providing its transformation, upon the
transmission through the object into a circularly polar-
ized radiation. Like natural radiation, the circularly
polarized radiation is not modulated by a rotating ele-

σ1/σ2 2 π11 π12–( )/ π11 π12– π44+( )=

σ1/σ2 2 1 π44/ π11 π12–( )+[ ] .=

L0

P''

H

Ly P'

P

Z

2α 0

δy

O Oy

O O0

δ0

2αy

Fig. 1. Illustrating the transformation of the initial linearly
polarized radiation into circularly polarized radiation with
the use of a tunable crystallooptical device and an arbitrarily
oriented object; H is the point on the sphere equator which
denotes the initial linearly polarized radiation, Z is the
sphere pole, P is the point which denotes the elliptically
polarized radiation at the entrance of the object, Ly and L0
are the arcs of the transformation, and HP and PZ are their
projections onto the equatorial plane of the sphere; δy and
δ0 are the phase differences introduced by the device at the
azimuths of the fast axes αy and α0, the points P' and P'' are
the projections of the point P onto the planes containing the
arcs Ly and L0, respectively, and OO0 and OOy are the direc-
tions of the optical axes of the object and the device, respec-
tively.
C

ment, which allows the determination of the moment of
the attainment of this polarization with a high accuracy,
even if the polarization elements are of insufficiently
high quality. The device parameters allow the determi-
nation of the parameters of birefringence at any point of
the object without changing its azimuthal position with
respect to the polarizer (as is necessary in a linear
polariscope) by using special software or a pro-
grammed calculator.

To determine the relationship between the birefrin-
gence parameters of the device and the object at the
moment of the zero modulated signal, we can use the
Poincaré sphere method [5]. Figure 1 shows the hori-
zontal projection of this sphere. The initial linearly
polarized radiation is indicated by the point H on the
sphere equator. In a device with the parameters δy and
αy, the linearly polarized radiation H is transformed
into the elliptically polarized one along the arc Ly. The
projection of the arc Ly onto the equatorial plane is HP.
If necessary, the ellipticity parameters can be deter-
mined proceeding from the coordinates of the point P
[5]; however, it is not necessary for the solution of our
problem. After the elliptically polarized light is trans-
mitted by an object with the parameters δ0 and α0, it is
transformed into circularly polarized light along the arc
L0 (point Z). The point Z is the sphere pole and PZ is the
projection of the arc L0. The solution of the problem
allows one to establish the relation between the parame-
ters of the object and the device. First, δ0 is determined as

(13)

Then, using the data on δ0, the azimuth α0 is calculated
from

(14)

It is assumed in Eqs. (13) and (14) that the calibrated
scales of the device have zero readings of δy and αy.
However, at initial parameters of zero, both the polari-
scope with a rotating element and the linear polariscope
are insensitive to the stressed regions of the object in
which the principal stresses are either parallel or
orthogonal to the direction of the maximum transmis-
sion. Therefore, technologically, it is more convenient
to use a crystalloptical device with the zero setting cor-
responding to the conditions δy = π/2 and αy = π/4.
A device with such parameters is equivalent to a quar-
ter-wave plate located along the diagonal to the direc-
tion of the maximum transmission. In this setting, the
device has maximum sensitivity to internal stresses
irrespective of the object azimuth. The use of the scales
with the changed zero reading is characterized by dif-
ferent relation between the parameters δy and αy and the
parameters of the object δ0, and α0:

(15)

δ0 δy 2α ysinsin( ).arccos=

2α0 π/2 2α y δy 2α y/ δ0sinsincos( ).arcsin–+=

δ0 δy' 2α y'coscos( ),arccos=
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(16)

where  = π/2 – δy and  = π/4 – αy.

The corresponding software provides the use of a
simple device consisting of two identical plates with
natural birefringence transforming the polarization,
e.g., thin mica sheets which can be rotated in the azi-
muthal direction with respect to one another [6]. The
path difference of one plate should exceed λ/4.

The characteristics of a polariscope with a rotating
phase plate studied with the aid of Muller matrices [5]
show that the influence of nonuniform transmission on
information about the distribution of induced birefrin-
gence at the two-channel recording of the modulated
signals can be eliminated. To implement the corre-
sponding system, it is necessary to use a rotating phase

2α0 π 2α y'– δy' 2α y' / δ0sincossin( ),arcsin–=

δy' α y'
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plate which has a phase difference greater than 90° but
less than 180°. Let a rotating phase plate differ from a
180°-plate by the value δ'. Then, the complete spectrum
of the photodetector signal has three components—one
constant and two modulated at different frequencies (at
a double and at a fourfold rotation frequency of the
phase plate, respectively):

(17)

To exclude the dependence of U on τ, only two mod-
ulated components are recorded simultaneously along
two different channels calibrated prior to measure-
ments; τ is excluded during the signal separation. The
true value of δ0 is calculated by the formula

U τ 1 δ0 2α0 δ'/2( )sin
2

sinsin–( )[∼
+ δ0 δ' 2ωtsinsincos

+ δ0 δ'/2( ) 4ωt 2α0–( )sincos
2 ] .sin
(18)
δ0 =  2Uk 4ω( )U0 4ω( ) δ'/2( )tan[ ] /Uk 2ω( )U0 2ω( ){ } ,arctan
where U0(4ω) and U0(2ω) are the signals from the
points of the object and Uk(4ω) and Uk(2ω) are the cal-
ibration levels of the signals. The channels are cali-
brated in an unusual way—in the absence of the object.
In this case, the value of Uk(4ω) is measured for a lin-
early polarized radiation, whereas Uk(2ω), for a circu-
larly polarized one. To transform the radiation, a special
tunable crystallooptical device is placed immediately
after the polarizer. The linear polarization is attained at
δy = 0°, whereas the circular one, at δy = 90° and αy =
45°. The information about the azimuth α0 of the fast
axis is contained in the signal phase at the fourfold
modulation frequency. Thus, modern automation meth-
ods provide the successful implementation of the above
algorithm for studying internal stresses during the scan-
ning process, even for optically inhomogeneous
objects.

The studies showed some other advantages of
polariscopes with a rotating phase plate. Figure 2 shows
the curves recorded during scanning of a plate prepared
from a single crystal of neodymium-doped yttrium-alu-
minum garnet. Curve 1 was recorded for a rotating ana-
lyzer and curve 2, for a rotating phase plate. Earlier,
using the method described in [7], we determined the
local inclusions in this plate with a noticeable polariz-
ability, especially well pronounced at the plate edges. It
is seen from these curves that the presence of polarizing
defects considerably distorted the information on the
induced birefringence in the case of a rotating analyzer.
The absorbing and the polarizing defects differently
distort the information on birefringence distribution.
The absorbing defects always reduce the birefringence
values, whereas the polarizing ones can either consid-
erably increase or decrease these values.

Important information on the stressed state of an
object is provided by the trajectories of the principal
stresses, at any point of which the direction of one of
the principal stresses coincides with the tangential
direction. In addition to the information on the direc-
tions of the principal stresses, the set of these trajecto-
ries demonstrates, similarly to a topographic map, the
sites of stress concentration. Moreover, the trajectories
of the principal stresses provide the separate measure-
ments of the principal stresses.

It is impossible to record all the families of the tra-
jectories of principal stresses without the invocation of
modern means of automation and computerization. It is
especially important for crystals. One of the most
promising methods for recording the trajectories of the
principal stresses is the controlled motion of the stage.
If necessary, the stage motion is synchronized with a two-
coordinate plotter so that it can move in any direction by
the command of the automated system. These commands
are worked out by a computer on the basis of the informa-
tion on the azimuth of the fast axis with the subsequent
determination of the azimuth of the principal stress.
Depending on the operation speed of the system, the table
moves along the trajectories of the principal stresses either
in the stepwise or in continuous modes.

A more complicated stepwise scanning of an object
along the trajectory of the principal stress provides the
measurement of the principal stresses. The solution of
this complicated problem is based on the Lamé-Max-
well theorem [8], according to which the equation of
the equilibrium state at point i of the stressed object in
the integral form is

(19)

where σO1 and σi1 are the known and the sought stresses
at the points O and i located on one trajectory, respec-

σi1 σ01 σ2 σ1–( )/ρ2[ ] S1,d

0

i

∫–=
2
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1

2

Fig. 2. Automatic records of induced birefringence in a plate cut out from a neodymium-doped yttrium-aluminum garnet single
crystal with polarizing defects. Curve 1 is obtained at the rotating analyzer and curve 2, at the rotating phase plate providing the
elimination of the effect of polarization.
S1

S2

σ1

ρ2

i

O'

2∆β

σ2

∆S

Fig. 3. Parameters used in the calculation of the principal
stresses σ1 and σ2. The trajectories of the principal stresses
S1 and S2 are intersected at the point i, O' is the point with
the known parameters, ∆S is the scanning step, ρ2 is the cur-
vature radius of S2 at the point i, and ∆β is the change in the
azimuth of the point i in the orthogonal displacement from
this point by one step.
tively. The difference (σ2 – σ1) and the radius ρ2 of the
orthogonal trajectory are measured at the point i. Figure 3
shows a fragment of the intersection of two trajectories
of the principal stresses with an indication of all the
parameters necessary for calculating σ1. The object is
studied along the trajectory with the index S1.

The value of ρ2 is determined by the method based
on the use of the data on the change ∆β of the azimuth
of the principal stress σ1 in the vicinity of the point i on
the line coinciding with the direction of σ2. At a small
step ∆S in the α measurements on both sides of S1, it is
possible to put, with a high degree of accuracy, that ρ2 =
2∆S/∆β. The above assumptions provide the determina-
tion of the principal stresses in the form

(20)

As was indicated above, the points where the princi-
pal stresses can readily be determined, are located at the
edge of the plate. Therefore, the study of the object
should be started exactly at these points.

The analysis performed shows that the solution of
the particular and the general problems associated with
the study of internal stresses and the use of methods
with a rotating polarization element or a rotating phase
plate are much more efficient than other methods. This
advantage manifests itself in a higher sensitivity and

σi1 σ01 σi2 σi1–( )∆β/2.–=
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operation speed and in the possibility of using modern
means of automation and computerization in the stud-
ies of crystals. Moreover, the method allows the inves-
tigation of various defects in crystals by considering
their polarizabilities [8], the changes in the refractive
indices or the absorption power [10] using photoelec-
tric apparatus conventionally used for the studies of the
stressed state of objects, and the differences in their
spectral characteristics [9].
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Abstract—The temperature dependence of the second-harmonic generation in a vinylidene fluoride–trifluoro-
ethylene ferroelectric copolymer doped with 5 wt % of a noncentrosymmetric 4-anilino-4'-nitroazobenzene
chromophore is analyzed. The second-order susceptibility χ(2) in the ferroelectric phase of these copolymers
appears to be twice as high as in the poly(methyl methacrylate) with the same chromophore content. The effect
is attributed to the presence in ferroelectrics of a local electric field associated with the spontaneous polariza-
tion. The intensity of the second-harmonic generation in both ferroelectric and paraelectric phases correlates
with the variation of the surface potential. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The generation of the second harmonic of laser radi-
ation is provided by nonlinear properties of noncen-
trosymmetric polar media. Nonlinear optical properties
arise in polymer media involving chromophores pos-
sessing donor–acceptor properties giving rise to the for-
mation of the polar structure (the arrows in Figs. 1a and
1b indicate the direction from a donor to an acceptor).
The second harmonic can be generated only in a non-
centrosymmetric medium, where donor and acceptor
molecules are distributed not randomly but have the
preferred orientation in the polymer bulk. The chro-
mophores are oriented in the polymer bulk by applying
a potential difference U inducing a constant orienting
field E0 = U/d, where d is the layer thickness. Figures 1a
and 1b show the random distribution of the dipole
moments of chromophores in the absence of the field E0
and upon their orientation in the field E0, respectively.
The electric-field vector E(ω) of a laser radiation wave
polarizes a chromophore, i.e., induces an additional
intramolecular charge transport in a donor–acceptor
molecule. The charge transfer from a donor to an accep-
tor considerably exceeds the transfer in the opposite
direction. As is shown in Fig. 1c, upon the orientation
of chromophores in the field E0, the volume polariza-
tion P induced by the electric field E(ω) has the nonzero
value. As a result of the effect of the strong field of a
light wave, the total induced polarization includes the
contribution that is nonlinear with respect to the field
and can be represented as a sum of the Fourier compo-
nents of the frequencies of ω, 2ω, etc., i.e., P = P(0) +
1063-7745/02/4702- $22.00 © 20330
P(ω) + P(2ω) (Fig. 1c). In this case, the radiation inten-
sity of the second harmonic [I(–2ω)] is related to the
polarization as [I(2ω)]0.5 ∞ P(2ω) = [χ(2)E(ω)E(ω)],
where χ(2) is the second-order volume susceptibility. Upon
switching-off of the field E0, the time of the orientational
relaxation of dipoles (transition from the oriented state of
dipoles in Fig. 1b to the state shown in Fig. 1a) is deter-
mined by the structural properties of the polymer matrix
and, primarily, by the relation between the chromophore
dimensions and the free volume of the polymer [1].

The present study deals with generation of the sec-
ond harmonic of a laser radiation by ferroelectric poly-
mers doped with a noncentrosymmetric chromophore.
The use of a ferroelectric polymer as a matrix can pro-
mote an increase in the polar order.

Hill et al. [2] observed the generation of the second
harmonic in nonlinear molecules introduced into a fer-
roelectric polyvinylidene fluoride–trifluoroethylene
matrix (a host–guest composite system). The 8-µm-
thick films contained 10 wt % of nonlinear molecules
(4-(4'-cyanophenylazo)-NN-bis-(methoxycarbonylme-
thyl)-aniline. The effect was observed at room temper-
ature (d33 = 2.6 pm/V). A linear dependence of the coef-
ficient d33 on the concentration of nonlinear molecules
was established.

EXPERIMENTAL RESULTS
AND DISCUSSION

The ferroelectric matrix used consisted of a
vinylidene fluoride–trifluoroethylene copolymer
002 MAIK “Nauka/Interperiodica”
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P(x)

P(ω)

P(2ω)

P(0)

E(ω)x(a) (b) x (c)

Fig. 1. Distribution of donor–acceptor molecules (a) without and (b) with the field E0. (c) Upper panel: the time dependence of the
volume polarization P(x) induced by the electric field E(ω) of a light wave along the x-axis. Lower panel: the Fourier components
P(0), P(ω), and P(2ω) of the anharmonic P(x) function.

t

(PVDF–TrFE), –(CH2–CF2)n–(–ëHF–CF2)m–, doped
with 5 wt % of a noncentrosymmetric chromophore, 4-
anilino-4'-nitroazobenzene (DO-3 dispersion orange
dye). The DO-3 content corresponded to a concentra-
tion of 0.17 mol/dm3. The PVDF–TrFE polymer films
are polycrystals consisting of crystalline lamellas
mixed with the amorphous phase. The structural –CH2–
CF2 unit of vinylidene fluoride possesses the dipole
moment of 7 × 10–30 C m (near 2D) similar to conven-
tional ferroelectrics. Ferroelectric switching in
vinylidene fluoride and its copolymers is usually dis-
cussed within the model of nucleation and growth of
antiparallel domains [3, 4]. The process of switching of
spontaneous polarization is usually associated with the
rotation of a polymer link about of the molecular chain
and the propagation of such a defect (kink) along this
chain. The films were obtained using copolymer grains
with a relative content of vinylidene fluoride–trifluoro-
ethylene of 70–30 and 60–40 mol % (Atochem,
France). According to Furukawa [5], the heated 70–30
and 60–40 films undergo the transition from the ferro-
electric to the paraelectric phase at T1 = 110 and 90°C,
respectively. The films of such compositions are char-
acterized by a pronounced temperature hysteresis cor-
responding to a first-order phase transition. On cooling
from the paraelectric phase, the phase transition to the
ferroelectric state in these two films occurs at the tem-
peratures T0 = 75 and 70°C, respectively.

Figure 2 shows the block diagram of a setup for
measuring second-harmonic generation where 1 is an
Nd:YAG laser with the fundamental wavelength λ =
1064 nm, power of 50 mJ per pulse, and a pulse dura-
tion of 10 ns. A laser beam passes through the polymer
layer 2 obtained by solution casting onto a glass sub-
strate 3 with a deposited transparent In2O3/SnO2 elec-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
trode. A fraction of the beam separated by plane 8 is
directed to a test channel containing inorganic crystal 4
with nonlinear optical properties. In both channels, the
second harmonic is separated by interference light fil-
ters 5 and 5' transmitting in the range of 532 ± 10 nm.
The second-harmonic intensities, I(2ω), are measured
by digital voltmeters 7 and 7' simultaneously in both
channels by photomultipliers 6 and 6'. Negatively
charged particles formed as a result of air ionization
due to the corona discharge arising at the application of
a high voltage to needle 9 from voltage source 10 are
deposited on the surface of the polymer layer. The
resulting surface potential U is measured by a ring elec-
trode connected with electrometer 11. The sample tem-
perature was varied with the use of thermal blower 12.

As was mentioned above, the square root of the sec-
ond-harmonic intensity, I0.5(2ω), is proportional to the
second-order volume susceptibility χ(2) dependent on
the density N of chromophore molecules, their orienta-

7' 6' 10

9

5'

4

8

2
3

7

6
5

11

1064 nm

532 nm
1

12

Fig. 2. Block diagram of the setup for measurements (for
notation see the text).
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tion, and the second-order susceptibility (polarizabil-
ity) β of an individual chromophore:

(1)

where N = CNA, C is the concentration measured in
mol/dm3, NA is the Avogadro number, and θ is the angle
formed by the dipole moment µ0 of the ground state of
the chromophore and the constant orienting field E0.
The mean value 〈cos3θ〉 is determined in terms of the
Langevin function,

(2)

where f0E0 = F0 is the local internal electric field, f0 =
ε(n2 + 2)/(2ε + n2), where ε is the dielectric constant and
n is the refractive index [f0 ≈ 1.44 for the poly(methyl
methacrylate)]. For the ferroelectric PVDF–TrFE (70–
30) polymer, the local electric field provided by sponta-
neous polarization is estimated as [6]

, (3)

where Pind and Pspont are the induced and spontaneous
polarizations, respectively. For the 70–30 copolymer,
we have Pind ! Pspont = 0.065 C/m2.

A strong local field in a ferroelectric partly orients
the dipole molecules of the dyes. A resulting polar
order can be specified by the quantities 〈cosθ〉 and
〈cos3θ〉 proportional to Eloc given by Eq. (3). In accor-
dance with Eq. (3), the effect of the local field in the
paraelectric (Pspont = 0) and ferroelectric (Pspont ≠ 0)
phases is different.

Figure 3 shows the appearance and the decrease in
the second harmonic measured in an as-prepared
PVDF–TrFE (60–40) sample containing DO-3 upon
switching on and off of the corona discharge. Prior to
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Fig. 3. The time dependences of I0.5(2ω) (open triangles,
left-hand ordinate axis) and U/U0 (solid line, right-hand
ordinate axis) in an as-prepared PVDF–TrFE (60–40) sam-
ple containing 5 wt % of DO-3 chromophore at room tem-
perature. The up and down arrows indicate the instants of
corona discharge switching on and off, respectively.
C

the switching on of the corona discharge, the generation
of the second harmonic in the sample is weak, I0.5(2ω) ~
8 mV0.5. We examined polydomain samples. The effect
of the second-harmonic generation in an unpolarized
sample is associated with a finite number of domains in
the studied sample region. The switching on of the
corona discharge resulted in an increase in I0.5(2ω) up
to 74 mV0.5 (Fig. 3). The surface potential was found to
be U0 ~ 40 V at room temperature, which corresponds
to the field E0 = U0/d ≈ 9 × 106 V/m for the layer thick-
ness d = 4.5 µm. According to [7], the volume suscepti-
bility is χ(2) (= 2d33) = 11.6 pm/V at the DO-3 density
N = 2.3 × 1020 cm–3 (C = 0.38 mol/dm3) in poly(methyl
methacrylate). In poly(methyl methacrylate) with the
same DO-3 concentration, a signal of I0.5(2ω) =
72 mV0.5 was detected.

The DO-3 chromophore was introduced at a con-
centration of 0.17 mol/dm3 or at N = 1 × 1020 cm–3.
Therefore, according to Eq. (1), one would expect that
I0.5(2ω) = 32.2 mV0.5, which corresponds to the suscep-
tibility χ(2) of about 5.2 pm/V. However, as is seen from
Fig. 3, in a ferroelectric with the DO-3 concentration of
0.17 mol/dm3 I0.5(2ω) = 74 mV0.5, and, hence, χ(2) =
12 pm/V, which is twice as high as the value measured
in a poly(methyl methacrylate) matrix.

The measurements made under the conditions of a
corona discharge indicate weak second-harmonic gen-
eration (I0.5 ≈ 8 mV0.5) in PVDF–TrFE copolymers
without DO-3. A comparable effect was observed ear-
lier in polyvinylidene fluorine ferroelectric polymers
[2, 8].

The excessive χ(2) value in ferroelectric polymers in
comparison with the value measured in a poly(methyl
methacrylate) matrix may be interpreted as follows.
Polarization provides the alignment of the dipoles of a
PVDF–TrFE copolymer in crystalline regions along the
film normal. In this case, the dye molecules are also
reoriented. The investigation of the Stark effect for dye
molecules introduced into a ferroelectric matrix [9]
provided the estimation of both the polar order param-
eter of dye molecules for a polarized polymer and the
electric-field intensity Eloc at the site of location of dye
molecules. The static electric field stabilizing the induced
polar order attains the value of Eloc = 3 × 108 V/m, i.e.,
is  more intense than f0E0 = 1.3 × 107 V/m for
poly(methyl methacrylate) by a factor of 20 [see
Eq. (2)]. This can explain a much higher χ(2) value in
comparison with the value measured for a poly(methyl
methacrylate) matrix. The above Eloc value is less by an
order of magnitude than the local-field intensity calcu-
lated theoretically according to the Lorentz model (3).
This seems to be associated with the fact that the aver-
aging in the experiment made by Blinov et al. [9] was
performed for both dye molecules in ferroelectric
domains differently oriented with respect to the film
normal and in the amorphous phase of the polymer.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Figure 3 shows that, upon switching-off of the corona
discharge, the relaxation curve for the second harmonic
coincides with the decreasing curve of the surface
potential.

The temperature dependence of the surface potential
U0 during corona discharge measured as a function of a
decreasing temperature of a PVDF–TrFE (70–30) sam-
ple, which was in the paraelectric phase at T = 120°C,
is shown in Fig. 4. It is seen that the curve abruptly
changes at 73°C, the temperature close to the tempera-
ture of the phase transition from the paraelectric to the
ferroelectric phase. This change is caused by a decrease
in conductivity σ of the polymer with the lowering of
the temperature in this range. Indeed, the potential U0 is
related to σ as [1, 10]

U0 = Vc(Vc – V0)/[Vc + σ/A], (4)

where the potential Vc applied to needle 9 (Fig. 2) is
constant in all the measurements, V0 is the threshold
potential for the corona discharge in air, and A is a con-
stant. It follows from Eq. (4) that U0 is almost indepen-
dent of σ in polymers with low conductivity; i.e., at
1 @ σ/(AVc). At the same time, if 1 ! σ/(AVc) in poly-
mer matrices, the σ-dependence of U0 can be repre-
sented as U0 = B/σ, where, in accordance with Eq. (4),
B = AVc(Vc – V0). Since conductivity depends on tem-
perature as σ = σ0exp(–∆E/kT), where ∆E is the activa-
tion energy and k is the Boltzmann constant, we have

ln(U0) = const + ∆E/kT. 

The activation energy for the paraelectric phase of the
copolymer estimated from the data in Fig. 4 is ∆E =
4.1 eV. Thus, the kink in the temperature dependence of
the surface potential U0 and its dramatic increase with
the lowering of the temperature in the paraelectric
phase also indicates the corresponding decrease in the
sample conductivity.

Figure 5 shows the time dependence of I0.5(2ω) in an
as-prepared PVDF–TrFE (70–30) sample with 5 wt % of
the DO-3 chromophore obtained under switching on
and off of the corona discharge and the varying sample
temperature. The range a between solid vertical straight
lines corresponds to the paraelectric state of the poly-
mer. It is seen that the weak second harmonic is
observed in the absence of an orienting field at the
beginning of the measurements at room temperature
and also in the PVDF–TrFE (60–40) copolymer (see
Fig. 3); then, its intensity increases up to the maximum
value immediately after the switching on of the corona
discharge, and slowly decreases after its switching off.
With an increase in the temperature, the second har-
monic drops if the corona discharge is switched off at
the temperature of the copolymer transition from the
ferroelectric to the paraelectric phase (about 110°C). It
is seen that switching on the corona discharge at 120°C
(paraelectric phase) increases the intensity of the sec-
ond harmonic, whereas its switching off abruptly
decreases it (compare with the slow drop at 20°C). It is
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
shown that the second-harmonic intensity at 120°C is
lower than at room temperature. When the corona dis-
charge is switched on once again during cooling in the
range of the transition to the ferroelectric state, the sec-
ond-harmonic intensity, first, reaches a value somewhat
lower than the maximum one and, then, continues
increasing gradually and, finally, upon the transition of
the copolymer into the ferroelectric state, returns to the
initial value; i.e., (I/I0)0.5 = 1. The above changes in the
second harmonic correspond to an increase in the sur-
face potential with the lowering of the temperature in
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Fig. 5. The time dependence of I0.5(2ω) (open triangles,
left-hand ordinate axis) and (dashed line, right-hand ordi-
nate axis) temperature of an as-prepared PVDF–TrFE (70–
30) sample containing 5 wt % of the DO-3 chromophore.
The up and down arrows indicate the instants of corona dis-
charge switching on and off, respectively. The solid vertical
straight lines indicate the range a corresponding to the tem-
perature range 110–75°C, within which the polymer is in
the paraelectric phase.
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Fig. 4. The temperature dependence of the surface potential
during corona discharge measured during lowering of the
temperature of the PVDF–TrFE (70–30) copolymer with
5 wt % of the DO-3 chromophore.
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the range of the paraelectric phase in Fig. 4. Thus, sim-
ilar to the case of the ferroelectric phase (Fig. 3), the
change in the second-harmonic intensity in the
paraelectric phase correlates with the varying surface
potential. Figure 5 also shows that, upon the restoration
of the ferroelectric phase after switching off the corona
discharge at t = 600 s, the generation of the second har-
monic is retained; i.e., the copolymer remains to be
polarized whereas chromophores preserve their ori-
ented state.

CONCLUSIONS

Thus, in a ferroelectric PVDF–TrFE copolymer
doped with a noncentrosymmetric chromophore (the
DO-3 dye), the second-order susceptibility χ(2) is twice
as high as in poly(methyl methacrylate) at the same
chromophore concentration. The effect is explained by
a considerably more intense local orienting electric
field associated with spontaneous polarization of the
ferroelectric.
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Abstract—Experiments on the growth of CuO single crystals by crystallization from flux in the CuO–Bi2O3–
PbO–PbF2, CuO–Bi2O3–Li2O, CuO–Bi2O3–B2O3, CuO–BaO–Y2O3, and CuO–MOx systems (M = P, V, or Mo)
have been performed. The best results were obtained in crystallization in the CuO–Bi2O3–PbF2 system: pris-
matic single crystals of platelet- and needlelike or isometric habit with dimensions up to 1 × 10 × 10, 1 × 1 × 20,
or 6 × 6 × 8 mm, respectively, have been grown. The CuO crystals show polysynthetic twinning in the form of
numerous alternating light and dark bands bound by systems of parallel straight lines on the {110} and
{111} faces. A possible model of twinning associated with the Cu2O  CuO transformation is consid-
ered. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently, copper oxide (II) (CuO) crystals correspond-
ing to the natural mineral tenorite [1] have attracted
considerable attention because of their unusual mag-
netic properties and possible high-Tc superconductivity
(HTSC) [2–9]. Copper oxide exhibits the properties of
low-dimensional antiferromagnets (AFM) with two
points of magnetic transitions: the transition from the
paramagnetic phase to AFM with incommensurate
modulations of the magnetic structure at TN1 = 230(2) K
and the transition to the commensurate AFM phase at
TN2 = 213(1) K. The temperature dependence of the
magnetic susceptibility shows small jumps along the b-
and c-axes at TN2. Above TN1, the susceptibility contin-
ues increasing to form a broad maximum at ~550°C
rather than decreases according to the Curie–Weiss law,
which indicates the preservation of the magnetic short-
range order above TN1. The magnetic properties of CuO
are similar to those of the YBa2Cu3O6 HTSC phase
[4, 9]. Moreover, CuO is a component of almost all
known mixed-oxide compounds exhibiting HTSC
associated with the existence of Cu–O planes [9]. Thus,
the comprehensive study of the structure and the prop-
erties of CuO are of interest and importance for clarify-
ing the nature of high-temperature superconductivity.

The known CuO crystals [3, 4, 10–17] do not fully
satisfy the requirements of size and quality, which hin-
ders their further study. In this connection, the studies
aimed at synthesis of large high-quality copper oxide
single crystals are very important. Below, we describe
the synthesis of CuO single crystals and their X-ray dif-
fraction and morphological studies.
1063-7745/02/4702- $22.00 © 20335
CRYSTAL GROWTH

Since the reversible CuO  Cu2O phase transition
occurs at 1026°C [18], it is very difficult to grow CuO
crystals from the native melt under normal pressure.
Therefore, we grew these crystals by crystallization
from fluxes of various compositions.

When choosing the starting compositions for crys-
tallization, we took into account the characteristic fea-
tures of the phase diagrams of the CuO systems with
Bi2O3, SrO, BaO, YBa2Cu3Oy, R2O3 (R = Y, Eu, or Dy),
etc. [14, 15, 18–23] and the other known data on crystal
growth of CuO. These data showed that it is expedient
to use the Bi2O3 flux. However, these data are incom-
plete and do not provide unique information on the
compositions of the melts. Therefore, to choose the
optimum systems, we had to perform the trial experi-
ments on crystallization in the CuO–Bi2O3, CuO–
Bi2O3–MOx (M = PbO, PbF2, Li2O, or B2O3), CuO–
PbO, CuO–PbO–PbF2, CuO–MOx (M = Li, P, V, or
Mo), and CuO–BaO–Y2O3 systems.

The initial components were oxides, carbonates,
and fluorides of the corresponding metals of the analyt-
ical-purity grade. The acetone-homogenated mixtures
of the starting components were heated in alundum cru-
cibles up to temperatures exceeding their melting
points (~1060°C), were kept at the maximum tempera-
tures for 1–3 h, and then cooled, first, to subsolidus
temperatures (~600°C) at a rate of 5 K/h, and then to
room temperature in the switched-off furnace.

The best results were obtained upon crystallization
of the following compositions: CuO 0.8–0.7; Bi2O3
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Habit of (a) needle-like, (b) platelet-like, and (c) isometric CuO crystals (the horizontal and the diagonal hatchings indicate
the polysynthetic twins in systems 1 and 2, respectively; a, b, and c indicate the orientations of the crystallographic axes).
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0.2–0.3; and xPbF2 (x = 0–0.30). The surfaces of the
crystallized melts had platelet-like CuO crystals with a
10 × 20-mm basal plane, and the plate thickness was up
to 1 mm. These crystals contained single crystals of
CuO in a needle-like form (elongated in the c-axis) and
1 × 1 × 10 and 6 × 6 × 8 mm isometric prisms (Fig. 1).
Black crystals exhibited cleavage along the (110) and
(001) planes and had the characteristic {110}, {111},
and {001} growth forms (Fig. 1). The crystals also
showed polysynthetic twinning which manifested itself
in the presence of alternating light and dark bands on
the crystal faces.

Another characteristic defect of CuO crystals are the
various inclusions. The surfaces of natural and polished
faces had Bi2O3, PbO, and Al2O3 inclusions inherited
from the flux and the remaining polishing paste. The
dimension of these inclusions attains a value of 0.5 mm.

The X-ray diffraction pattern of powdered crystals
obtained on a DRON-4 diffractometer (filtered λCuKα
radiation) corresponds to the ASTM data for CuO [24].
Based on these data and the results obtained in [1, 4, 5,
8, 11, 16, 17, 23, 25, and 26] we indexed the X-ray pat-
tern within the monoclinic unit cell with the parameters
a = 4.688(5) Å, b = 3.420(5) Å, c = 5.132(3) Å, β =
99.5(1)°. An examination of platelet-like CuO crystals
revealed no pyroelectric effect in the temperature range
of 80–300 K, which indicated the absence of phase
transitions with the lowering of the symmetry down to
polar in this temperature range.

POLYSYNTHETIC TWINNING

Polysynthetic twins were observed on the {110} and
{111} faces in the form of numerous alternating light
and dark bands limited by the systems of parallel
straight lines (Figs. 1–3). In the most widespread sys-
tem 1 (Fig. 2), these bands are parallel to the (001)
C

plane. In the different parts of the crystal, the distances
between the neighboring bands vary from several
microns to several millimeters. In most cases, the width
of light bands considerably exceeds the width of dark
ones. These bands are also clearly seen in the reflected
light in the optical and metallurgical microscopes.
These bands are also visible to the naked eye when
studying the natural faces at different angles. Investiga-
tion of the crystals during heating demonstrates that the
above-described twin structure remained practically
unchanged up to ~1000°C.

The angles between the crystal faces were measured
on an RGNS-2 goniometer. The angle between the
(110) planes of the adjacent regions of the faces sepa-
rated by the straight lines equals 11.2°. This fact and the
X-ray diffraction patterns measured from different
crystal faces indicate that the twins of system 1 are
adjacent along the (001) planes. The adjacent twins are
characterized by the parallel orientation of their a- and
b-axes, whereas the unit cell changes its orientation in
such a way that the angle between the c-axis and the
(001) plane decreases from 99.5° to 80.5° when cross-
ing the twin boundary [the (001) plane] (Fig. 3). Thus,
the crystal structures of the adjacent twins in system 1
are related by the mirror-reflection (001) plane.

An examination of some crystals revealed, along
with the above-described system of bands on the {110}
faces, analogous systems of straight bands which inter-
sect the first system at a certain angle. The most com-
mon system is system 2 (Fig. 2). The bands of system 2
form an angle of 120° with the bands of system 1 in the
(010) plane. The existence of various band systems
shows the complex character of CuO twinning.

Twinning in natural CuO minerals was first reported
in [1]. Polysynthetic twinning of CuO microcrystals
was observed in [27–29]. Apparently, the twin forma-
tion is not associated with the growth conditions of
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 2      2002
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Fig. 2. Polysynthetic twinning observed on the {010} faces of CuO crystals in a metallurgical microscope; 1 and 2 indicate two
different systems of polysynthetic twins.

(a) 10 µm 100 µm

‡

1

2

(b)

1

2

‡

CuO single crystals. Twinning is inherent in the CuO
phase. Evidently, twinning of CuO crystals produces a
strong effect on their physical properties and, therefore,
should be taken into account when interpreting the
crystal properties.

POSSIBLE TWINNING MODELS

Usually, polysynthetic twinning is associated with
phase transitions of the distorting (non-reconstructive)
type [30, 31]. On cooling a high-temperature high-sym-
metry (prototype) phase, the cooperative atomic dis-
placements occur at the phase-transition point. These
displacements can be differently oriented with respect
to the initial crystal lattice in different regions of the
crystal and can give rise to polysynthetic twinning in
the crystals in the low-temperature phase. The local
regions of the crystal, which undergo different transfor-
mations, become twins with respect to each other.

The measurements of the temperature dependence
of the unit-cell parameters showed that CuO undergoes
no phase transitions in the temperature range of 20–
1000°C [25]. The CuO  Cu2O transformation at
1026°C accompanied by the change in the symmetry
(C2/c  Pn3m) is the only known transformation
taking place during the heating of CuO crystals [1, 8, 18].
This transformation is of a reconstructive nature and is
accompanied by considerable changes in the unit-cell
parameters (a = b = c = 4.26 Å  a = 4.69 Å, b =
3.42 Å, c = 5.13 Å; α = β = γ = 90°  α = γ = 90°,
β = 99.5°) and by chemical reactions of oxygen evolu-
tion–absorption. Apparently, this transformation should
result in crystal destruction, and, hence, at first glance,
Cu2O cannot be the prototype phase for CuO.

Possibly, the CuO crystals are related to the proto-
type phase with a high temperature of transition to the
prototype phase and which decompose prior to the
attainment of this temperature. In these cases, the hypo-
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Fig. 3. Schematic representation of polysynthetic twinning
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thetical symmetry of the prototype phase should be
determined by the symmetry of the low-symmetry
phase and by the orientation of the domain structure of
the latter. In the case of CuO, the untwinning of
polysynthetic twins of system 1 is accompanied by an
increase in the crystal symmetry from monoclinic to at
least orthorhombic (β  90°). The presence of other
systems of polysynthetic twinning in the CuO crystals
indicates a higher symmetry of the prototype phase.
These results, along with the analysis of the CuO
behavior during heating and crystallization (Fig. 4)
[1, 8, 14, 18, 19, 21, 23, 25, 28], give grounds to con-
sider the cubic Cu2O phase as the prototype high-sym-
metry phase of CuO crystals. According to [28], the
thermal treatment of CuO single crystals under the
moderately reductive conditions at 400°C leads to the
evolution of oxygen from CuO and its transformation
into Cu2O accompanied by the disappearance of twin-
ning. The crystal structures of CuO and Cu2O are char-
acterized by different distortions of the crystal lattice
and positions of the oxygen atoms; however, the copper
atoms occupy analogous positions in these crystals [1,
8, 18]. It should also be noted that polysynthetic twin-
ning appearing in the phase transformation, which is
accompanied by a change in the oxygen content in the
unit cell, was observed in the crystals of the Y-123
HTSC phase [29].

Apparently, the ability of the crystal lattice to rear-
range without destruction of the crystal in the
Cu2O  CuO transformation is associated with the
C

                              

complex kinetics of this transformation and the exist-

ence of a number of intermediate 
states. Derivatograms obtained from CuO on a Paulik–
Erdey derivatograph (Fig. 4) show that the 

 

Cu

 

2

 

O 
CuO

 

 transformation occurs within a long temporal and
temperature ranges sufficient for the crystal lattice to be
rearranged without destruction of the crystal.

According to [31], the symmetry change from 
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3

 

m

 

to 

 

C
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c

 

 in the transition from Cu

 

2

 

O to CuO indicates
that CuO belongs to the 

 

m

 

3

 

mF

 

2/

 

m

 

 class of ferroelastics
characterized by 12 possible orientational states of
domains and a large number of various planes that can
play the role of domain boundaries [32].
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Abstract—The formation of grain boundaries of the general type, along with small- and large-angle symmetric
grain boundaries with the 〈110〉  axis in the epitaxial layers grown onto bicrystal substrates by the method of
thermal migration has been studied. The solvent was aluminum. It is shown that if the grain boundaries in the
epitaxial layer are tilted to the crystallization front or if there is a temperature gradient tangential to this front,
their orientation differs from their orientation in the substrate. The large-angle symmetric boundaries are more
stable than the boundaries of the general type. The grain-boundary energy and rotation moment of large-angle
symmetric boundaries are evaluated. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION
The formation and development of small- and large-

angle symmetric grain boundaries in epitaxial silicon
layers grown by the thermally-induced migration
method under conditions where the grain boundaries
are normal to the crystallization front have been studied
elsewhere [1]. It was shown that many large-angle
boundaries with the 〈110〉  axis are split, and that the
splitting reactions can be used to evaluate grain-bound-
ary energies. Below, we describe the study of grain-
boundary formation in epitaxial layers under conditions
where the grain boundaries are tilted to the crystalliza-
tion front and when there is a tangential temperature
gradient. The results obtained enable us to perform not
only relative evaluations, but also provide the evalua-
tion of grain-boundary energies and the rotation
moments that cause the deviation of the grain boundary
from its initial position toward the orientation with the
minimum energy.

CALCULATION OF THE POSITION
OF THE GRAIN-BOUNDARY 
IN THE EPITAXIAL LAYER

Let a grain boundary GB between grain 1 and grain 2
(Fig. 1a) in the substrate be normal to the initial crystal-
lization front CF0. During the process of thermally-
induced migration, a plane liquid layer of flux is mov-
ing from the substrate through the crystal-source along
the direction of the temperature gradient. The epitaxial
layer is left behind the crystallization front (CF). The
grain boundary intersects the crystallization front and
forms a groove, which can be treated as a liquid linear
inclusion on the crystallization-front surface. The melt
in the groove volume is in contact with solid phases I
and II. If these phases are thermodynamically equiva-
lent, no driving force giving rise to tangential displace-
1063-7745/02/4702- $22.00 © 20340
ment of the groove arises, and a grain boundary in the
epitaxial layer is formed normally to the initial crystal-
lization front CF0. 

If the substrate dictates the formation of the grain
boundary at an angle α to the normal (Fig. 1b), the
groove shape becomes asymmetric. The tangential dif-
fusion flows can arise in the groove, which provide a
balance between the surface tension of grain boundary
and the interface. The additional tangential diffusion
flow of atoms of the substance to be crystallized can
also be caused by the applied temperature gradient Gt,
which is tangential to the crystallization front. The
additional diffusion flows give rise to additional dis-
placement of the groove along the crystallization front
in the direction opposite to that of the diffusion flow

GCF

I II

BCF0

1 2

(a)

f

e

sub

Gt

G

x

B

I II

1

G

2

l0αδ

Fig. 1. Schematic cross section of the sample illustrating the
process of thermally-induces migration: (1, 2) adjacent
grains in the substrate; (e) epitaxial layer; (s) crystal-source;
(f) flux; (sub) substrate; (CF) the crystallization front;
(CF0) the initial crystallization front; (B) grain boundary in
epitaxial layer; (G) the groove on the crystallization front;
(G) and (Gt) normal and tangential temperature gradients,
respectively. (a) the grain boundary in the epitaxial layer is
normal to the crystallization front; (b) the grain boundary is
tilted to the crystallization front.

(b)
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(the displacement mechanism is similar to the mecha-
nism of thermally-induced migration). As a result, the
grain boundary in the epitaxial layer starts deviating
from the orientation dictated by the substrate.

In our experiments, the coherent {111}Σ = 3 grain
boundaries with a low specific surface energy σ
(~0.05 J/m2) produced no visible grooves on the crys-
tallization front.1

In all the epitaxial layers irrespective of the α-value
in the presence of Gt, such boundaries showed no devi-
ations from the crystallographic orientation. Grain
boundaries of the general types (with high values of σ
and the absence of the orientation dependence of σ)
were formed normally to the crystallization front [2].
To a number of large-angle grain boundaries with low
σ values (the so-called special grain boundaries) there
corresponds a deep minimum on the orientational
dependence of σ. These grain boundaries deviated from
the initial orientation at the angle δ (see Fig. 1b). The
energy gain owing to a decrease in the grain-boundary
area during its deviation from the normal is compen-
sated with an increase in σ.

Assuming that the grain-boundary length in the
direction normal to the drawing plane in Fig. 1 equals
unity, we can state that the equilibrium value of the
angle (α – δ) is determined by the condition dE = σdl +
ldσ = 0, where E = σl is the grain-boundary energy,

l =  is the grain-boundary length, and dσ =

. Substituting l, dl, and dσ into the initial expres-

sion for dE, we have

(1)

where  is the rotation moment applied to the surface

unit of the grain boundary and ( ) is the normalized

rotation moment. Since neither σ nor  are dependent

on α, the deviation δ should increase with an increase
in α. In the presence of the tangential temperature gra-
dient Gt, the equilibrium position of the boundary is
determined by the condition

(2)

where x = l0  – δ) and Ft is the thermodynamic
force per groove-length unit provided by the tempera-
ture gradient Gt .

1 Σ = , where VCSL and VL are the unit-cell volumes of the

coincidence-site lattice of two neighboring grains and the unit-
cell volume of the initial crystal lattice, respectively.

V
L

V
CSL

------------

l0

α δ–( )cos
--------------------------

dσ
dδ
------dδ

α δ–( )tan
1
σ
---dσ

dδ
------,=

dσ
dδ
------

1
σ
---dσ

dδ
------

dσ
dδ
------

dE Ftdx– 0,=

(αtan
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(3)

where µ and C are the chemical potential and the solu-

bility of silicon in the liquid phase, respectively;  is

the slope of the liquidus line for the binary Si–Al phase
diagram at the process temperature, N is the number of
mole of silicon per groove-length unit, S is the area of
the groove cross section, and Vm is the molar volume of
silicon in the liquid phase. In accordance with Eqs. (2)
and (3), the position of the grain boundary GB in the
presence of Gt is determined by the condition

(4)

EXPERIMENTAL RESULTS
AND DISCUSSION

As in [1], the process of thermally-induced migration
continued for 1.0–1.3 h at T = 1100°ë and G = 10 K/cm
with the use of an aluminum solvent. The preparation
of  bicrystal substrates is described elsewhere [1]; the
scheme of the substrate and the transverse cross section
of the specimen with grain boundaries in the epitaxial
layer are also considered in [1]. The angles between the
grain boundary plane and the normal were measured in
an optical microscope an accuracy of 1.0°–1.5°. The
experiments were repeated from three to five times for
each type of substrate. We studied grain boundaries of
the general type, along with small- and large-scale sym-

metric (special) grain boundaries with the [ ] axis.

Grain Boundaries of the General Type

Four different variants of misorientated grains were
used to prepare the substrates. In the absence of Gt, the
grain boundaries in the epitaxial layer were normal to
the initial crystallization front. If Gt = 5°C/cm, the grain
boundaries in the epitaxial layer systematically devi-
ated toward Gt. The deviation angles δt for four types of
substrates were 17°–29°, 7°–10.5°, 8°–15°, and 10°–
34°, respectively. According to Eq. (4), we obtain at α = 0,

 = 0, and δ = –δt  

. (5)

Substituting C = 0.53,  = 1.06 × 10–3 ä–1 (from the

phase diagram of the Si–Al system at 1100°C), Vm =
11 cm3/mol, and also the average value of the groove

Ft
dµ
dx
------N

RT
C

-------dC
dx
-------N= =

=  
RT
C

-------dC
dT
-------dT

dx
------N

RT
C

-------dC
dT
-------Gt

S
Vm

------,=

dC
dT
-------

Ft σ α δ–( )sin–
dσ
dδ
------ α δ–( )cos+ 0.=

110

dσ
dδ
------

σ
Ft

δtsin
------------=

dC
dT
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cross section S = 150 × 10–12 m2, we obtain Ft  =
0.16 J/m2. Substituting Ft  and the average values δt into
Eq. (5), we obtain the specific surface energies σ =
0.41, 1.06, 0.68, and 0.45 J/m2, for the four grain
boundary types respectively. These data are in good
agreement within an order of magnitude with the data
reported earlier [2, 3]. Because of the pronounced scat-
ter in the δt and S values, the σ-values obtained above
should be considered as rough estimates.

Small-Angle Boundaries

We used two types of bicrystal substrates prepared by
the diffusion welding of two slightly misoriented grains
(~1°): The grain-boundary (111) plane normal to the

substrate ( ) surface and the grain-boundary ( )110 110

[110]

[112]

1

[111]

[112]

[111]

2

αα

[110]

Fig. 2. Orientations of grains intergrown during the prepa-
ration of the substrates and determining the formation of the

( )Σ* = 3 grain boundary in the epitaxial layer at the
angle α to the normal.
112
C

plane normal to the substrate (111) surface. In both
cases, the grain boundaries in the epitaxial layers were
found to be normal to the initial crystallization front
Gt = 0. Under the temperature gradient Gt = 5°C/cm,
the grain boundaries of both types in epitaxial layers devi-
ated from the normal toward Gt by angles δt = 18°–26°
and 19°–32°, respectively. For small-angle grain
boundaries, σ depends on orientation [1], therefore, σ
for small-angle grain boundaries are lower than for
grain boundaries of the general type. It is hardly possi-
ble to evaluate σ for small-angle grain boundaries
because the form of the σ(δ) dependence for these
boundaries is unknown.

Symmetric Grain Boundaries
with the [ ] Axis

The orientations of all the grain boundaries studied are
indicated in the table as well as Σ-values and the orienta-
tions of the planes normal to the grain boundaries (the ini-
tial crystallization front). We studied incoherent grain
boundaries, because we prepared the substrates by inter-
growing the grains only slightly (~1°) deviating from the
misorientations indicated in the table. Grain boundaries 1
and 2 do not split in epitaxial layers, whereas other grain
boundaries are split with the formation of coherent
{111}Σ = 3 boundaries and other incoherent special
boundaries [1]. In the latter case, we studied grain bound-
aries formed during splitting, e.g., {552}Σ* = 27 and
{221}Σ* = 9 formed by following reactions [1]:

110
(6)

(7)

112( )1Σ* 3 111( )1Σ 3 552( )1TΣ*+ 27 111( )2Σ+ 3,= = = =

0° 19.5° 0° –19.5°

552( )1Σ* 27 111( )1Σ 3 221( )1TΣ*+ 9,= = =

0° –19.5° –35.3°
and also grain boundary {441} Σ* = 33 formed by the
reaction

(8)

In reactions (6)–(8), below the symbols of grain bound-
aries, we also indicate the angles they form with the
normal to the initial crystallization front. The signs “+”

332( )1Σ* = 11 111( )1Σ = 3 441( )1TΣ*+  = 33.

0° –10° –35.2°

The orientations of large-angle symmetric grain boundaries
and the planes normal to these boundaries (CF⊥ )

No. 1 2 3 4 5 6

GB 11 11 22 55 44 11

Σ 3 11 9 27 33 9

CF⊥ 112 332 114 115 118 221

1 3 1 2 1 4
and “–” indicate the counter- and the clockwise mea-
surements from the normal. The asterisks indicate inco-
herent grain boundaries, the subscripts “1,” “1T,” and

“2” relate to grain 1, its twin [the twinning plane ( )1],
and grain 2, respectively. The tilt of the grain boundary
in the epitaxial layer was set during the substrate prep-
aration. Thus, in order to obtain grain boundary 4 in the
epitaxial layer forming an angle α with the normal, we
had to intergrow the grains shown in Fig. 2. The splitting
reactions (6) at angles α = 0° and α = 19.5° are shown in
Fig. 3a and in Fig. 3b, respectively. The KD1 and KD2

are coherent {111}Σ = 3 boundaries, while KD is an

incoherent ( )1TΣ* = 27 boundary. The substrate
structure is described in detail in [1]. The positions of
the coherent grain boundaries correspond to the crystal-
lographic position, whereas the incoherent grain
boundary deviates from it toward the normal. The reac-

111

552
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Fig. 3. Splitting reaction (6) on the transverse ( ) CLKMB cross section of the substrate. The epitaxial layers start growing from
the LKM surface (a) the substrate surface has the (111) orientation; splitting starts at the point K; (b) the substrate surface forms an
angle of 19.5° with the (111) plane; splitting started at the points P and Q of the substrate. 

110

D1

C B

L

C Q

P

K M

D2D
D2D1

D

1

L

2

BK

M

tions of all types resulted in the appearance in the epi-
taxial layers of coherent {111}Σ = 3 grain boundaries
and forming no visible grooves, in accordance with the
crystallographic conditions, at arbitrary angles α with
the normal. The incoherent special grain boundaries
deviated toward the normal. The deviation angles δ
increased with α and were different for different types
of grain boundaries. For instance, at α = 20°, the average
values of the angle δ for grain boundaries 2, 3, 4, and 5
were 9.5°, 3.4°, 5.5°, and 6.2°, respectively (see table). In
accordance with Eq. (1) for the δ values given above, the

values of normalized rotation moments  are equal to

0.19, 0.30, 0.25, and 0.26, respectively.

For the grain boundary ( )Σ* = 9 at α = 35.3°,

the deviation is δ = 5.2°, which yields  =

0.58. For the grain boundary ( )Σ* = 33, the normal-

ized rotation moment  = 0.26 has a much

lower value than for the previous grain boundary. It
should be indicated that no splitting (7) occurs if the

grain boundary ( )Σ* = 9 forms an angle α with the
normal such that |α | > 45°. Splitting by Eq. (8) is termi-

nated for the boundary ( )Σ* = 33 at |α | > 25°.

For the grain boundary 1 (see table) at the set tilt
angles in the range α = 10°–35°, the coherent {111}Σ = 3
and small-angle grain boundaries were formed at
angles α in the epitaxial layers instead of the coher-
ent boundaries. Small-angle boundaries were
inclined toward the normal. 

The same situation was also observed for grain
boundary 6. For the (221) substrate plane tilted to the

1
σ
---dσ

dδ
------

221
1
σ
---dσ

dδ
------

α 5°=

441
1
σ
---dσ

dδ
------

δ 6°=

221

441
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initial crystallization front, the splitting of grain bound-
ary 6 in the epitaxial layers corresponded to the following

reaction: ( )1Σ*(9)  ( )1Σ = 3 + ( )2Σ = 3.
One of the boundaries obtained should be incoherent,
since the initial grain boundary is incoherent. However,
in fact, a small-angle grain boundary was split from the
incoherent {111}Σ* = 3 boundary. As a result, two
coherent {111}Σ = 3 boundaries were formed in the
epitaxial layer (which had crystallographic orientation)
and one small-angle grain boundary forming an angle
with the normal.

Effect of the Tangential Temperature Gradient

The temperature gradient Gt = 5°C/cm directed as is
shown in Fig. 1b compensated (partly or completely)
for the deviation of the tilt large-angle boundaries with
respect to normal. For example, the {113}Σ* = 11 grain
boundary at α = 15° did not deviate from its position
toward the normal within the accuracy. The grain
boundary {552}Σ* = 27 at α = 15° was formed at an
angle of α = 17°. Splitting according to reaction (8)
proceeded under the conditions where the formed
{441}Σ* = 33 grain boundary formed angles α = 25°
and α = 35° with the normal. (As was mentioned above,
under these conditions and in the absence of Gt no split-
ting reaction occurred.)

If the grain boundary in the epitaxial layer is normal
to the crystallization front, then α = 0, and the equilib-
rium condition (4) for small angles δ acquires the form:

(9)

The deviations from the normal under the action of
Gt for the {552}Σ* = 27, {113}Σ* = 11, and
{221}Σ* = 9 grain boundaries were within the accu-

114 111 111

Ft σδt– dσ
dδ
------– 0.=
2
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racy. Hence, the rotation moments for these boundaries

are  ≥ Ft = 0.16 J/m2. 

For the {441}Σ* = 33 grain boundary, the average
deviation angle equals δt = 7°. Invoking Eq. (9) and the

above value  = 0.26, we obtain that, given a

deviation of the grain boundary from the exact orienta-
tion {441}Σ = 33 by an angle of 6°, its surface energy
has the value σ = 0.43 J/m2 and its rotation moment

becomes equal to  = 0.11 J/m2. However, these val-

ues are only rough estimates because of the consider-
able scatter in δt values.

CONCLUSIONS
The results obtained show that the appearance of

grain boundaries forming a groove when intersecting the
crystallization front during epitaxial growth is essen-
tially dependent on the growth conditions, namely, on
the angle formed by the boundary with the normal to
the crystallization front and the existence of a tangen-
tial temperature gradient. Diffusion flows in the groove
volume arising due to the above factors lead to its dis-
placement along the crystallization front. This process

dσ
dδ
------

1
σ
---dσ

dδ
------

α 6°=

dσ
dδ
------
C

can be interpreted as a variant of thermally induced
migration. The groove displacement results in the devi-
ation of the grain boundary in the epitaxial layer from
its initial orientation dictated by the substrate.

Incoherent large-angle symmetric boundaries (or
special boundaries) with corresponding sharp minima
on the orientational dependence of the surface energy
are more stable in comparison with small-angle and
general boundaries.

The effect of grain boundary deviation from the ori-
entations set by the substrate allows one to estimate
both the grain-boundary energy and the rotation
moment which “tries” to return the grain boundary to
the orientation with the minimum energy.
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Report on the Results of the 2001 Struchkov Prize Competition
for Young Scientists and Announcement

of the 2002 Competition
The Struchkov Prize has been awarded annually
since 1997 for the best scientific study in crystal chem-
istry and the application of X-ray structure analysis to
the solution of chemical problems. Researchers who
are residents of the Commonwealth of Independent
States or the Baltic states and are under 36 years of age
at the time of the presentation of their documents are
invited to participate in the competition. Each scientific
study is presented on behalf of a single author, and each
author is allowed to present only one work a year. The
results presented to the competition should be pub-
lished or submitted for publication in a refereed jour-
nal. The winner of the competition is decided by a spe-
cial competition jury that is formed by the leaders of the
Center of X-ray Structure Studies and consists of lead-
ing Russian scientists in crystal chemistry and X-ray
structure analysis. The decision of the jury will be
announced not later than November 1 this year.

Sixteen young scientists from Moscow, Cher-
nogolovka, Novosibirsk, Kazan, Tashkent, and Chi-
sinau took part in the 2001 competition.

In 2001, two Struchkov Prizes were awarded. The
winners are

M.A. Zakharov, a postgraduate from the Depart-
ment of General Chemistry, Faculty of Chemistry,
Moscow State University, for his study entitled “Syn-
thesis and Crystal Structure of Acid Selenates”; and

Ya.V. Zubavichus, a researcher from the Labora-
tory of the Structural Studies of Polymers, Nesmey-
anov Institute of Organoelement Compounds, Russian
Academy of Sciences, for his study entitled “Structural
Characterization of Partially Ordered Layered Nano-
composites Based on Molybdenum Disulfide.”

The winners of the competition received diplomas
and monetary awards. In addition, nine incentive prizes
were awarded to the following researchers: S.B. Ar-
temkina (Novosibirsk), A.V. Churakov (Moscow),
K.K. Turgunov (Tashkent), Yu.K. Gubina (Moscow),
E.V. Karpova (Moscow), Yu.V. Torubaev (Moscow),
I.S. Neretin (Moscow), O.N. Kazheva (Cher-
nogolovka), and O.A. Lodochnikova (Kazan).

Since 2000, the competition has been sponsored by
the Struchkov Prize Society, which is the International
Crystallographic Association of former students and
colleagues of Yu.T. Struchkov. The 2001 prizes
amounted to 24000 roubles, and the incentive prizes
1063-7745/02/4702- $22.00 © 20345
amounted to 3000 roubles each. Any winner of the
incentive prize is allowed to participate in future com-
petitions.

To take part in the 2002 competition, a competitor
should present to the Center of X-ray Structure Studies
no later than June 1, 2002 the following documents:

1. A completed competitor form including his/her:

(a) full name;

(b) title of the scientific study presented to the com-
petition;

(c) date of birth;

(d) scientific degree and post;

(e) affiliation;

(f) postal address of the institution;

(g) office telephone;

(h) e-mail;

(i) full name of the supervisor (for those who have
supervisors).

2. An abstract of the study (prepared accurately and
not exceeding three pages printed with a line spacing of
one and a half, 38 lines to a page, and 65 characters to
a line) containing a clear explanation of the competi-
tor’s contribution to the study.

3. A list of papers published or submitted for publi-
cation relating to the subject of the study presented to
the competition.

4. Reprints or photocopies of all or some of these
papers (at the author’s discretion).

The documents should be sent to the Center of
X-ray Structure Studies, Nesmeyanov Institute of
Organoelement Compounds, Russian Academy of Sci-
ences, ul. Vavilova 28, Moscow, 117813 Russia.

The data indicated in paragraphs 1–3 should be pre-
sented to the jury as MS DOS ASCII files. The files can
be sent by post on a diskette or by e-mail:
premiya@xrlab.ineos.ac.ru. For further information,
contact the Center by tel. (095) 135-9271 or e-mail:
star@xrpent.ineos.ac.ru or lukul@xray.ineos.ac.ru.

Translated by I. Polyakova
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