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Abstract—The theoretical aspects of formation of photoelectron beams excited by the ultraviolet synchrotron
radiation incident onto a crystal are considered. It is shown that the change in the energy of the monochroma-
tized synchrotron radiation incident onto a hematite crystal results in the change of the number of reflections
participating in the hologram formation. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The development of nanotechnology resulted in the
creation of various structural methods of visualizing
atomic structures which are based on the use of short-
wavelength radiation (neutrons, electrons, X-ray and
synchrotron radiation, etc.). The term atomic hologra-
phy coined by Gabor in 1948 [1] describes the method
of the three-dimensional reconstruction of atomic
structures due to positive interference of the strong ref-
erence and weak object waves [2]. Later, the terms
atomic holography or the Fourier-transformation with-
out a lens became widely used because of the well-
known optical analogy.

However, the principle of image formation was
known long ago, e.g., as Kikuchi lines (in X-ray and
electron diffraction), X-ray standing waves in multi-
beam diffraction, Kossdl lines, etc. [3, 4].

Lately, most of the published articles on this subject
considered electron holography [5-7]. It was shown
that, for high-energy electrons, the Cowley—Moody cal-
culations [8] yield images whose main features are the
same asthose of the experimental images[4]. However,
strong scattering of secondary electrons considerably
distorts the signal, which, in turn, hinders image pro-
cessing.

At the sametime, some schemesfor studying photo-
and Auger electrons, elastically scattered X-ray radia-
tion, fluorescence, etc. were created [9].

Below, we consider the theoretical aspects of one of
the new methods—positional-sensitive photoelectron
spectroscopy—where excitation is caused by beams of
soft synchrotron radiation. In fact, this method is a
modern modification of photoelectron spectroscopy
with angular resolution [10], which has been widely
used for along time to determine the band structure of
electrons.

SPECIMEN

The specimen was an orthorhombic hematite
a-Fe, 0, crystal with the unit-cell parameter a=5.42 A
and a =55.17° cut out in such away that the hexagonal
c-axiswas normal to the entrance surface (Fig. 1). This
crystal was selected because of the characteristic mag-
netic structure of the outer electron shellsand itssimple
atomic structure.

It is well known that the outer electrons of an iron
atom (3d°4s’) obey the inequality E,; < E;q, which
explains the incompletefilling of the d-shell. Itisinter-
esting to analyze the distributions of both collective
3d-electrons (magnetic structure) and 4s-electrons
(positions of individual atoms) in these crystals. Below,
we consider only the photoeffect of 4s-electrons.

Fig. 1. Geometry of scattering from an oriented hematite
crystal.

1063-7745/02/4702-0165%$22.00 © 2002 MAIK “Nauka/Interperiodica’



166

THEORY

Within the framework of perturbation theory [11],
absorption of a photon with the potential vector A, the
wave vector Q, and the frequency w (in the dipole
approximation exp(iQa) = 1,V =1),

A= J%eap(—i wt) (1

resultsin electron transition (with a certain probability)
fromtheinitial state Y, localized at the atom R; to one
of the delocalized states,

Wi(r =R, 1) = Wu(r =R) + W/,
= jdspexp(ipr)uis(p, t),

where the state of the photoel ectron is described by the
integral over the plane waves exp(ipr), whereas the
pulse p is measured in units#.

It should be emphasized that the calculation of the
matrix element U; of the transition

2

_ . [2mh 3 N 3
U = —I&m_[%s(r R;)(el)exp(-ipr)dr (3)
resultsin the appearance of the phase factor

U; = epD(p)exp(ipR;), 4)

where e is the polarization vector of the incident syn-
chrotron radiation (SR), and p, the wave vector of the
photoel ectron.

The coefficient D(p) is independent of the direction
of the vector p because of the spherical symmetry of the
wave function .. Thus, in the hydrogen-like approxi-
mation we have

exp(ig) (p) 312
4ﬁ

X exp(—Er)%L 3Er+ 2&2r2——2

Was =
&)

where § = Z/4ag, Z isthe charge of theiron nucleus, the
distances are measured in atomic units ag = A%/me* =
0.529 A, and @is an arbitrary phase of the wave func-
tion. Differentiating the well-known expression
3 exp(=Ar+ipr) _ 4m
[dr r = s (6)
P +A

with respect to A, we arrive at the cumbersome but rig-
orous expression for the function D(p),

D(p) Dexp(lcp) (E +...). (7)

Taking into account the hlgh degree of monochro-
matization of the incident synchrotron radiation, we
assume the pulse p and the coefficient D(p) to be con-
Stant.
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The coefficient B(p, t) determinesthe dependence of
the scattered radiation on time

B(p. 1) = expi(hw—Es;—p /2m) 1 @)
’ hw—E,— p/2m

When SR action on the atom is prolonged, the coef-
ficient B(p, t) issimplified to the form

lim|B(p, t)° = 2mts0p° ~kH
2mm ﬁ o ©)
= k (6( pz z) + 6( pz_ kz))

and hasthe nonzero value only if thelaw of energy con-
servation is obeyed. We used the following notation:

k2 = hw+tEy k= A¢2mk2—pt2,

where p, and p, are the components of the pul se vector
lying in the plane of the crystal surface and normal toiit,
respectively.

Since the photoeffect is an inelastic process, no
interference between the waves of the primary photo-
electrons emitted by various atoms is possible, which
can readily be seen if one takes into account the arbi-
trary phase factors before the wave functions of the core
electrons. The holographic effects can be explained if
one takesinto account the interference between the pri-
mary photoelectron radiation and the elastically scat-
tered secondary photoel ectron waves. The electron flux
through the unit area J recorded by a two-dimensional
detector (the surface normal n) is determined as

(10)

h
J= @ (Dw-wDy*). A
Using expression (2) and ignoring photoelectron
scattering, we arrive at the following expression for
intensity, which has no term containing information on
the structure,

J,AS = AS%Z [&pp)|UIB(p. I *T(P), (12)

where T;(p) takes into account inelastic scattering and
absorption of photoelectrons prior to their detection,
and ASisthe area of the detector pixel.

Now, take into account the scattering of the primary
photoel ectron wave propagating from the ith and scat-
tered by the jth atoms with the scattering field ¢(r)
using perturbation theory (the kinematical or the Born
approximation). The secondary wave generated by this
atom is the convolution

Wi(Ro) = ~[dTG(R)O(r; +NW(rj+1, 1), (13)
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where R = R, — r; — r. Expanding the wave function of
the primary photoelectrons, (2), and the Green’s func-
tion into the Fourier series

_ _lexp(ikR) _ (3. exp(igr)
G(R) = 4m R _Id g -k (14)
K = p2/2m,

we arrive at the following expression for the secondary
wave:

d3q
q2_k2
x exp(igRo)exp(i(p —q)r;)4mt (p—q),

obtained based on the definition of the structure fac-
tor [12]

f(p—q) = jd3r¢(r)exp(i(p—q)r).

Assuming that the atom is spherically symmetric,
we obtain the atomic factor in the form

Wi(Ry) = IdSpuiB(p, 0f s)

(16)

27—t (s
f(s) = lee—zp( ) (17)
S
where the term proportional to the number of protons,
Z, corresponds to scattering from the nucleus and the
term f(s), to scattering by the electron shells of the
atoms. With an increase in s, the atomic-scattering fac-
tor rapidly decreases. Its absolute value equals F(0) =
4.74k, F(h)) = 3K..., where k = 2.393 x 10% cm [12].
The limitations of this approximation are considered in
detail elsewhere [12]. The total wave function of the
secondary electrons is the sum over al the i atomsin

the s atomic wavesr; = Ze, — R;, where e, is the unit
vector normal to the crystal surface, Z is the depth of

the location of the sth plane, and R’ is the coordinate
of the ith atom in the sth plane.

The ideal surface structure of a hematite crystal is
characterized by two vectors of the direct lattice, a, and
a, (Fig. 1). Now, let the x-axis lie along the a, vector.

Then, the vectors of the two-dimensional direct and
reciprocal lattices (h, ,) take the form

a, = a(1,0,0), a, = a(cosq, sina, 0),

18
h, = 23"(1, _cota,0), h, = 23”(0, Vsina,0). "

Using the two-dimensional variant of the well-
known summation rule,

. S\ _ 4T|.'2
izexp(l(pt—qt)Ri) = aszké(pt—qt—ij), (19)
Hjx = jhy +kh,,
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we can represent the wave function of photoelectrons
scattered by all the atomsin the form

W (Ro) Jzkexm iH\Ro) o0
* [d"pU;B(p. 1) exp(iPiRo)F (P, R),

where
T(P,—92)

g + (p—H ) -k

x exp(i(a,— p,)RS) f (Hjw p,— ).

The function t(p, — g, describes the effective
decrease of the contributions from deeply located
atomic planes

B2y 4T[2
Fik(p; Ry) = _ZIsz
a

. Z
T(pz_qz) = zexpg_l(pz_qz)zs_tﬁv (21)

where L is the free path, which for electrons with the
energy ranging within 10-1000 eV is aimost constant
and equals several interatomic distances, and L = 10 A.
Thus, only several upper atomic planes actively partic-
ipate in the signal formation.

With due regard for elastic scattering, the flux of
electrons from the ith atom is the sum of the primary
and the scattered waves [see (11) and (12)]

1=aSES [*p(np) U FIB(P. DI M(Ro; P, 22)

where

M(Ry; p) = 1+ ZeXp(_iijRo)ij(p)-
ik

With due regard for the law of energy conservation,
(9), integration of (22) over p, yields

=21ty [dp|U[M(Ro; pu k" 23)

The above expression can be considered as the sum
of three terms. The first term corresponds to the signa
of the primary photoelectrons, (12), the second one, to
the interference of the signals of the primary and scat-
tered photoel ectrons,

le*= 41ty [dpy|Ui(py, ko)
! (24)
0 . .0
X RQDZ exp(—iHxRo)Fj(ps k;; Ro)O,
[l [

jk
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Reflections in order of their appearance

No. H % o\f/\a/‘,l Lg\a/ g, eV
1 |Hy J2(1—cosa) 0.927 6.502
2 |hyh, |1 1 7.566
3 [Hy, Hyp | //6—4cosa 1.649 20.573
4 |Hy 3 | /2(1+ cosa) 1.77 23.704
5 |Hyp 2.J2(1-cosa) | 1854 26.007

and the third one (which is almost aways very small
except for the region of the multibeam diffraction), to
the interference of the secondary electrons.

Below, we consider only term (24), which isrespon-
sible for the formation of the holographic image of the
crystal. It is convenient to represent this term in the
form of aFourier spectrum

s 0 . 0
I ORedy exp(-iHRo)gu(kd.  (25)

The contributions of individual harmonics depend
on the parameters of the two-dimensional crystal lattice
and the photon energy (k) in a complicated way,

(k) = jdpt|ui(pt,kz>|2ij(pt,kz; R). (26)

lpd <k

It should beindicated once morethat the intensity of
the holographic signal is proportional to the atomic
scattering factor (and not to its squared value asin con-
ventional scattering) because of the interference
between the primary and the elastically scattered sec-
ondary waves.

N ~

J2 U,

-2 L 1
0 1 2
¢

Fig. 2. (1) Thereal and (2) the imaginary parts of the func-
tion t1(¢g) and (3) its modulus as functions of @= (p,— gya
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With an increase in the energy of the synchrotron-
radiation quantum, the wavelength of a photoelectron
increases, which results in the excitation of the first
reflections with the minimum Hj, values. The threshold
value of the energy providing the excitation of a given
reflection is determined by the following expression:

(iH )’
2m

where y = H,asina/21t The table indicates the calcu-
lated values of several reciprocal-lattice vectors and the
corresponding energies of the synchrotron radiation.

It should be indicated that electrons from other lev-
els (eg., 3d) are excited at much higher SR energies
and, therefore, this contribution can be ignored.

Thus, for aniron atom, the difference in the energies
of the 3d and 4slevelsin the hydrogen-like approxima-
tionisabout 500 eV (E,s=-574.6 and E;; =—-1021.5¢€V).
At the same time, standard SR monochromators (e.g.,
multilayer or segmented mirrors [13]) possess the
energy resolution

ey = hwy —Eg = =7566y°, (27

E/SE = 10°,

sufficient for the formation of an SR beam with the
energy width 0E = 0.5 eV.

The structure of the photoel ectron beam emitted by
the crystal is determined by the ratio between the coef-
ficients g(k) before individual harmonics, so the main
problem Is reduced to their correct calculation.

Ignoring the lattice relaxation near the surface (a =
const), we arrive at the absorption coefficient in the
form

1(p,—0,) = (1-exp((i(p,—q,) + 1/L)a)) ™. (28)
This coefficient attains its maximum value,

_ 1
c= 1—exp(—a/L)

a ¢ = (p,- gy)a=2rm. The plots of the rea and the
imaginary parts of the function t(¢) and also of itsmod-
ulus are shown in Fig. 2. In the limiting case of alarge
absorption length

(29)

(p,-0) =LY 8(p,-qu-H), GO
|

t_he integration over g, in Eq. (20) presents no difficul-

ties

817 f(Hy 0)

Z(pZ—H.)2+ (pe—H;)* =K
With due regard for the law of energy conservation

(pZ2 + pt2 = k?), the latter equation starts converging

Fi(p, Ry) = 31)

3
a
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with the approach to the Laue point of the given jkth
reflection (I = 0),

(P’ = (pf—H;)’, (32)

because Eq. (2) was obtained within the framework of
perturbation theory (the Born approximation) invalidin
the vicinity of the Laue point.

In this case, it would be expedient to use the two-
beam Green's function obtained from the system of
equationsfor dynamical diffraction asthe basisfor con-
structing the solution. However, this approach would
considerably complicate the calculation of the photo-
electron signal, because the well-known Green’s func-
tions can be used only within a narrow angular region
in the vicinity of the Bragg angle, whereas the integra-
tion should be made within much wider limits. Never-
theless, if one uses approximation (30), the contribution
to the intensity from an arbitrary harmonic equals

9(K)
1 (33)
RTINS, f(H. 0),

Py jk Py

81T3
== [ dpuip, k))|®

lp <k

and theintegrand acquiresapole as soon asaregioninthe
reciprocd spaceisformedinwhich Laue condition (32) is
fulfilled. Such aregion can beformed only if some pho-
toelectrons have pul ses exceeding half of the reciprocal
lattice vector, 2p; > H.

The analytical expressions for the coefficients

g?k (k) can be obtained in the approximation taking into

account the finite free path (28). As is shown in the
Appendix, thefirst term of the asymptotic seriesfor the
coefficient (27) in the far wave zone has the form

2

glo(k)Du(k)(—R—’“gX)—y—zexpwH(zk—H)Ré), (34)
where
3 3/2
28711 k . (35)

k) = -D(K)°*=51(0) f(H, 0
K(k) (k) 2 T(0) f( )2H3,4(2|<_H)ﬂ4

For further calculations, it is convenient to represent
the contribution from an individual harmonic to a holo-
gram asa product of the amplitude (G;(k) = |gj«(K)|) and
the phase terms

120 Z cos(H Ry + /H (k= H; ) R3) G (K). (36)
ik

We should like to emphasize the importance of the
use of monochromatic synchrotron radiation. If it were
not used the hol ographic signal would be suppressed by
the destructive interference of the waves excited by
photons with various energies k.
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Fig. 3. (@ Modulus of Gy and (b) the phase factor
/ij(2k—ij) as functions of € = 2k/h for the coeffi-

cients before the first four harmonics.

Figure 3 shows the amplitude G;, and the phase term

JH;(2k—H;)) as functions of € = 2k/h for the first

four harmonics. The curve number corresponds to the
reflection number in the table. A reflection can take an
active part in the formation of the hologram only if € >
y; = 2H; /h (see table).

Figure 4 shows a number of holographic images for
different energies of an SR beam calculated by formu-
las (34) and (36). Each of the holograms formed upon
the first one corresponds to the SR energy dlightly
exceeding the threshold energy € = 2k/h = y; + 0.053,
i=1-4.

Upon the attainment of the threshold photon energy,
the number of reflections increases in ajumpwise man-
ner (seetable): H,, (Fig. 4a); H,,, h, (Fig. 4b); H,,, h,,
H,,, and H,, (Fig. 4c) and H,,, h;, H,;, H,, and H, _,
(Fig. 4d). It was assumed that the wave vector of
the synchrotron radiation and the surface normal
formed an angle of 45° and that it was projected onto
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(a)

N
\

A

Fig. 4. Calculated holographic images at different energies of the synchrotron radiation.

the surface along the direction of the vector a,, whereas

the crystal—detector distance was equal to R, = 10%a.
The polarization vector of the synchrotron radiation is

e= %2(1, 0, —1). The polarization of the synchrotron

radiation prevents the harmonic corresponding to vec-
tor h, from participating in the hologram formation.

Usualy, the SR used in the experiments is both
monochromatized and linearly polarized. Rotating the
specimen around the beam, it is possible to vary the
contribution of each harmonic H because of the change
of the factor (eH)%/H2.

When considering the experimental schemes, one
has to take into account the finite dimensions of both
specimen and incident beam. As aresult, the diffracted
photoel ectron beams corresponding to different diffrac-
tion vectors diverge in the space, and the interference
pattern is formed only in the region of their intersec-
tion. However, considering only the problem of the pre-
cise determination of the lattice parameter along a cer-
tain crystallographic direction, one can examine only
the“striped” hologram formed from only one reflection
(Fig. 49).

Moreover, the record of complicated holograms is
rather time-consuming, even if powerful SR sources
and position-sensitive detectors are used.

CRYSTALLOGRAPHY REPORTS Vol. 47 No.2 2002



FORMATION OF PHOTOELECTRON HOLOGRAMS

CONCLUSION

In terms of physics, al the holographic methods are
based on the well-known phenomenon of interference
of the primary wave and the waves elastically scattered
by ordered atomsin acrystal. In practice, atomic holog-
raphy can be used for extracting structural information
in the case of relatively weak scattering.

Most probably, photoelectron beams cannot com-
pete with the modern technologies used in optics and
fiber optics to transfer information. However, we
believe that the use of photoelectrons in scientific
experimentsis promising because of the extremely high
sensitivity of low-energy electron beams transmitted
by crystalline objects to their structures. Moreover, in
recent decades, we have seen the rapid devel opment of
efficient methods for electron beam control (enlarge-
ment, focusing, etc.) and the transformation of elec-
tron images into corresponding analogous and digital
optical images, which gives us hope for the further
successful development of combined holographic
methods.

The small escape depth of photoelectrons alows
one to record a signa from the subsurface region,
where the lattice is often rather distorted by relaxation
and surface reconstruction. While the method of X-ray
standing waves allows the determination of distances
with an accuracy of 0.1% of the interplanar spacing
along the surface normal, the photoel ectron hologram
allowsthe determination of thelattice periodicity in the
surface plane.

Photoelectron holography can be used not only in
studies of crystal structures, but also in studies of
objects with dimensions not exceeding several nanom-
eters. If one places any noncrystalline object or an
object possessing lattice parameters different from
those of the crystal, the hologram preserves its peri-
odic structure, but the region coated by this object is
considerably shadowed. This can be efficiently used
for visualizing the structures of complex objects such
as Langmuir—Blodgett films and films of other organic
materials.

Thus, the main advantages of photoel ectron holog-
raphy in the case of photoelectron excitation by SR
beams are;

—the possibility of analyzing the distribution of
electrons of a certain level because of high coherency
and monochromaticity of highly polarized SR beams;

—the dependence of the number of reflections
forming holograms on the energy of an SR beam;

—the possibility of determining the structure of
crystal surfaces.
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APPENDIX

CALCULATION OF CONTRIBUTIONS
FROM INDIVIDUAL HARMONICS

In fact, this Appendix deals with the calculation of
integral (27). As an example, consider the coefficient
before the harmonic with H,,.

The integrand in the expression for Fy(p;, K R;)

Fio(ps ks, Ré) (A1)

4T[2 T(kz_qz)f(H1kz_qz) . z
= dqz exp(l(qz_kz)RO)
) L Sy
includes with the pole points qzl'2 = K, K =

K - (pt —-H )2 formed due to the singularities of the

Green's function and qf"‘ =k, + H associated with the
form of the atomic scattering factor. Formally, the last
two points arise because of scattering from a single
atom accompanying the U-processes and thus have no
physical meaning.

Also, one has necessarily to take into account the
contribution from the function t. One can readily see
that one of the best approximations of this function in
the vicinity of the maximum (g, = k,) is

1(q,~k,) = ;

%~%) = " exp(2mi(q,—k)a-05)
T 0.15i

™ a(q,—k,—i0.08/a)’
where 1, = 0.622 is the minimum value of the initial
function. In this approximation, the function t acquires
apole, qf =k, +1i0.08/a.

Integration upon the closure of the integration con-

tour with respect to g, around the poles qz1 and qz5
yields

(A.2)

Py 8'l'|:3iD . z
Fio(Pu Kz Ro) = ——0exp(—i(k,—K)Ro)
ak(Q

x T(k,—K) exp(—0.08R;/a)

(A.3)

f(H,k—g,) 0.15i
2K a
f(H,i0.08/a) 0
. 2 2 ZD
(k,+10.08/a)" + (p,—H) -k O

X

Obviously, the exponential factor before the second
term in (A.3) levelsits contribution, because the detec-
tor—crystal distance usually exceeds the interatomic
distance by several orders of magnitude.

Below, we consider only the contribution from the
pole point of the Green’s function. Since the valuek is
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fixed, some factors in Eq. (26) can be taken outside the
integral

k p*
9:0(K) = D(K)’[dpy [ dp,exp(-1bRI)T (Py, P,).
o P (A.4)
3
I'(on,loy)‘a (epx+epy+ek)T(b)f(H K—0,),
where p* = /k* = pZ, b=k, — K. It should be indicated

that, formally, the limits of integration with respect
to p y range from minus to plus infinity, but, in fact,
they are limited to acircle of radius k beyond which the
function k, — kK becomes complex.

The expression

b =k,—k

= K =pl—pl— K= (p,—

(A.5)
H)*~p;

can go to zero at the Laue point 2 p; = H) if 2k > H.

The first and second derivatives of b with respect to p*
also go to zero at the same point, which does not allow
the use of the saddle-point method to calculate an inte-

gral with a high value of the phase factor (R; —»> ).

However, ahigh value of the phase factor allows oneto
represent the integrals as expansions in the degrees

of (RH)™,
"

| = Idpyexp(—ibRé)l'(py)

ggmw
'(py)dpy B'(py)

(A.6)

. p* _N
x exp(—ibRg)|_,. +o(Ry").
Here, we limit our consideration to the first nonvan-

ishing term of this series (~R52), although, in order to

increase the accuracy, one has to take into account the
following terms [14]. The calculations with the use of
thefirst term of the expansion yield zero because of

lim e 1 _p

y = p* b(py)

and, therefore, one has to take into account the second
term as well

1 32m
(RS) p* &b
x exp(ib* Ry),

3

T(b*) F(H, b*)(Fy + )
(A7)

NOSIK

where

b* =b(p. P*) = JH(2p«—H),

M= epi/p*,

One can readily see that the integration of the
expression containing I, with respect to dp, yields
zero. At the same time, the integral of I, diverges with
an approach of p, to k. Using the Erdélyi lemma[14],

thisintegral with the diverging integrand can be evalu-
ated by the expression

) (A.8)
r, = e p*.

0 k+[3
IB L (x) exp(irx" )dezak)\ . (A.9)
0 k=0
at A — oo, where
10, ket Bk B
& = o T H e o (A0)

Using an indefinite integral, we substitute the
expression

Bl;exp(ib*Ré) = ifexp(ib* RO)dR]
into expression (A.7).

The major contribution to the integral with respect
to py

9uo(K) = zlGT[l ef
10
(R
) ” (A.11)
IdROIdpx > T(b*) f(H, b*) exp(ib* R))
comes from theregion p,~ k, where=1/2anda =1,
32
£ 0510 1(H, 0) exp(i. /K FIRE) exp(iAp,),
2
(A.12)
- 2JHR
J2k—H'

Thus, thefirst term of expansion (A.9) yieldsthefol-
lowing expression for the coefficient before the
harmonic:

28T[
010(K)
o D”4 (A.13)
x e (R 2k— 1),
16H
O 0
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where One should pay attention to an unusual dependence
, 1 _ , of the signa intensity on the detector—object distance,
L(R, 2k—H) = IdRO—J?;—é exp(ivH(Zk=H)Ry).  (RZ)52, For comparison, for a point source the signal

At2k—H#0, lettheinfiniteintegral determining L can

be represented as an expansion in degrees of (Ry)™*~ 1.
Thefirst term of this expansion yields

L(R5, 2k—H)

1 . 2
J———exp(i/H(2k-H)R}).
JH(2k-H)R;

Finally, we have

(A.14)

2
eX

910(K) Du(k)mexp(i«/H(Zk— H)Ro), (A.15)

z

where

281C K2

(k) = -D(k) ?T(O)f(H,O)

2H¥(2k - H)"™"
(A.16)

Obvioudly, if the Laue condition (2k > H) is not ful-
filled, q,o(K) decreases with an increase in the crystal—

detector distance R;. If the Laue condition is met at

least in a part of the space, the coefficient decreases
proportionally to

-4

(2k—H)
with an increase in the photon energy.

Formally, the divergence of the result obtained at
2k = H is associated with the form of the Green’s func-
tion used.

The contribution from the given reflection is maxi-

mal, if the polarization vector of the incident radiation is
parallel to the reciprocal-lattice vector (g, = (eH)/H = 1).

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 2

2002

intensity is| ~ (R5)™.

w NP

10.

11

12.

13.

14.

REFERENCES
D. Gabor, Nature 161, 777 (1948).

. E. Wolf, Opt. Commun. 1, 153 (1969).

J. M. Cowley, Diffraction Physics (Elsevier, New York,
1975; Mir, Moscow, 1979).

A. L. Danishevskii and F. N. Chukhovskii, Kristal-
lografiya27, 668 (1982) [Sov. Phys. Crystallogr. 27, 401
(1982)].

J. J. Barton, Phys. Rev. Lett. 61, 1356 (1988).

D. K. Saldin, G. R. Harp, B. L. Chen, and B. P. Tonner,
Phys. Rev. B 44, 2480 (1991).

L. J. Terminello, J. J. Barton, and D. A. Lapiano-Smith,
Phys. Rev. Lett. 70, 599 (1993).

J. M. Cowley and A. F. Moodie, Acta Crystallogr. 10,
609 (1957).

B. Adams, D. V. Novikov, T. Hiort, and G. Materlik,
Phys. Rev. B 57, 7526 (1998).

B. Feuerbacher and B. Fitton, in Electron Spectroscopy
for Surface Analysis, Ed. by H. Ibach (Springer-Verlag,
Berlin, 1977), p. 151.

S. Flugge, Practical Quantum Mechanics (Springer-Ver-
lag, Berlin, 1971; Mir, Moscow, 1974).

B. K. Vainshtein, Sructure Analysis by Electron Diffrac-
tion (Akad. Nauk SSSR, Moscow, 1956; Pergamon,
Oxford, 1964).

A. V. Vinogradov, Mirror X-ray Optics (Mashinostroe-
nie, Leningrad, 1989).

M. V. Fedoryuk, Asymptotics. Integrals and Series
(Nauka, Moscow, 1987).

Trandated by L. Man



Crystallography Reports, Vol. 47, No. 2, 2002, pp. 174-178. Translated from Kristallografiya, Vol. 47, No. 2, 2002, pp. 208-213.

Original Russian Text Copyright © 2002 by Tchen.

DIFFRACTION AND SCATTERING

OF X-RAY AND SYNCHROTRON RADIATION
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Abstract—Focusing of aspherical X-ray wave in Bragg backscattering from weakly and strongly bent crystals
is considered theoretically. The analytical formula describing the dimensions of the diffraction backscattering
region is obtained. It is shown that, along with the well-known Johann scheme, the use of the backscattering
scheme allows one to increase the aperture ratio of the crystal optics by two to three orders of magnitude. The
spectral characteristics of bent crystals providing diffraction backscattering (8 = 172) are discussed. It is shown
that the spectral resolution can attain avalue of the order of 10711, © 2002 MAIK “ Nauka/Interperiodica” .

Backscattering of the X-ray radiation occurring at
the diffraction angle © [01/2 has some specific features
that distinguish it from conventional diffraction at 8 <
1/2. The width of the dynamic curve of the Bragg
reflection equals 246 = 2|y | ~ 102-107 [1-4],
which allowsanincreasein the apertureratio of an opti-
cal device by two to three orders of magnitude. The use
of bent crystals focusing an X-ray beam in one or two
dimensions alows an increase in the aperture ratio of
severa orders of magnitude. Moreover, as was shown
in[5], backscattering a so provides the minimization of
the geometrical aberration of the diffracted beam. The
well-known Johann focusing scheme [6] in which both
radiation source and detector are located on the Row-
land circleiswidely used also because of its high aper-
ture ratio. Johann focusing was repestedly studied [7—
11]. The best possibilities for obtaining a high aperture
ratio are provided by the Johann and the backscattering
schemes. Theoretically, the upper limit of the aperture
ratio in both schemes is attained with the aid of biaxi-
ally bent crystals. The results obtained in [5] show that
the aperture ratio of a biaxialy bent X-ray lensis pro-
portional to

Q = 4SinBXyYu/Le,
where

Xeff = LOA6/|Sne_ LO/RX|’

w2 (D
Yar = Lo|288c0sB/(sin6—Lo(1+sin°0)/R)|

AB isthe halfwidth of the Bragg reflection curve, L, is
the distance between the source of a spherical X-ray
wave and the crystal, and R, and R, are the curvature
radii of the crystal in the meridiona and the sagittal
planes, respectively. The formula for x.; was obtained
under the assumption that L, # R.sin®. It is seen from
Eq. (1) that at 6 # 172, the beam divergence in the sag-

ittal plane can exceed the divergence in the meridional
plane by two to three orders of magnitude becausey,; ~
(AB)'2 ~ | |'2. For backscattering, the substitution of
cos® ~ B into Eq. (1) yieldsy.; ~ AB < |X, |/>. An addi-
tional increase in the aperture ratio can be attained by
biaxial bending of the crystal with the curvature radii
R~ R,

Below, we consider one-dimensional focusing of a
spherically divergent X-ray beam in its backscattering
by weakly or strongly bent crystals. The crystals are
assumed to be bent in the meridional plane. The results
obtained can readily be extended to biaxial bending by
using the theory of two-dimensiona focusing devel-
oped in our earlier work [12]. The multibeam effects
accompanying backscattering [13] are ignored.

REGION OF DIFFRACTION REFLECTION
IN BACKSCATTERING

In this section, the Bragg diffraction reflection of a
spherical X-ray wave by abent crystal is considered in
the geometrical-optical approach of radiation propaga-
tion. Earlier [5], we considered in a similar way the
Bragg diffraction of an X-ray beam reflected from a biax-
idly bent crysta [5] at the diffraction angles 6 # 172.

Let aspherical X-ray wave from a point source Sbhe
incident onto a cylindrically bent crystal at the Bragg
angle 6. Upon diffraction from the crystal, the X-ray
radiation isfocused into aline normal to the diffraction
scattering plane intersecting this plane at the point S.
The scheme of focusing of an X-ray beam reflected in
the backward direction by uniaxially bent crysta is
shownin Fig. 1.

For the sake of simplicity, we limit our consider-
ation to the symmetric diffraction. At the Bragg angles
0 # 172, the size x.¢ Of the region on the crystal surface
where the diffracted beam iswithin the boundary of the

1063-7745/02/4702-0174%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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region of total reflection isthe solution of the quadratic
equation

AB = |-Xg4i/ R+ X4 SINO/Lg

— X5 (2sin°0 —1)/2R,L,cosb
2 . 2 2 . 2 (@)
— Xgr SINOCOSO/ L + X5 SINO/2R; cOSO

+ X2, Sin°B(sinB — Ly/R,)/2L2cosb|.

If L, # RsinB, the spherical aberration can be ignored

and the terms proportional to X2 in Eq. (2) can be regjected.
Then Eq. (2) yields an equation linear with respect
to X Which, in turn, yields Eq. (1).

For the Johann scheme, Eq. (2) yields

Xeff,Johann = RX(ZAGtanG)]Jz,
L, = R,sinB, 6=#T102

Here, AB = |X,[/sin280 is the angular halfwidth of the
region of total reflection (the Bragg reflection curve),
X} 1S the real part of the Fourier-component of X-ray
polarizability, and R, isthe curvature radius of the crys-
tal in the meridional plane (the diffraction reflection
plane).

In backscattering, X..; and AB are related as

3)

DBy, = Xer[(L/R)%+(1/L)* + (2/R,Ly)
+ X2 (U2RPLE — 1R Ly — 3/4L0 — 314RH .

If a plane wave is incident onto a crystal (L, > R),
Eq. (4) yields the angular halfwidth of the reflection
curve in the form

A8, = xg(1—3x4/4R) IR, (5)

It follows from (5) that if x..; < R, then the size of the
diffraction-reflection region in the reflection of the
plane wave in the backward direction (8 [it/2) is

Xett = RABy, O Rx|th|m- (6)

If a source of the spherical waveislocated at a distance
L, =R, fromthecrysta, Eq. (4) yields

DB, = 2Xg(1— X5 12RD)IR,. )

Taking into account that x./R, << 1, we obtain from
Ea. (7)

Xett = Rl Xnel V12 ®)

Expressions (3), (6), and (8) show than the Johann and
the backscattering schemes provide the gain in the
aperture ratio exceeding by two to three orders of mag-
nitude the gain provided by all the other focusing
schemes. It should also beindicated that, when deriving
Eq. (4), we took into account only the terms up to the
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Fig. 1. Principal scheme for the focusing of a spherical
back-scattered wave by a cylindrically bent crystal. Sisa
point source and S' isitsimage.

fourth order with respect to x. Moreover, we aso
assumed that x.;;/R, < 1.

FOCUSING OF SPHERICAL AND PLANE WAVES
IN BACKSCATTERING FROM A WEAKLY
BENT CRYSTAL

Consider a crystal weakly bent in the meridional
plane so that the dimensionless bending parameter
[v]|> 1 (see, e.g.,[12]). In the dynamical focusing of a
spherical X-ray wave by a weakly bent crystal, the
intensity in the focusis distributed by the law

(&) = [ExED)I” DPW(mAg E)mag s ), o
L,# R.sing,

where &, is the coordinate of the point of the source
image in the transverse direction, J, is the first-order
Bessel function of the real argument, and A¢, isthe dif-
fraction broadening of the focus.

Equation (9) was obtained under the assumption
that the phase of an incident spherical waveisexpanded
into a series in powers of x/L, (up to the second-order
terms). The use of the parabolic expansion of the wave
phase at L, # R,sin0 signifies that the spherical aberra-
tionisignored. However, in the Johann scheme, one has
also to take into account the terms ~x?, which resultsin
the redistribution of the intensity in the form of the
squared modulus of the Airy function [14].
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/4 /2 0

Fig. 2. Logarithm of the shift d as a function of the diffrac-
tion angle 8. Si (111), A = 1.55 A (8 = 14.31°), Xor =

~1.533 x 1075, Xpy = =7.992 x 1075, T/R,= 107,

According to [12], the diffraction broadening of the
focusin Eq. (9) is

AE, = |1-Ly/Rsin6|Acos8,

10
L, # RSN, (10)

where L, is the crysta-image distance, N\ =
Asin®/(|C| XD is the extinction length in the symmet-
ric case, A is the wavelength of the incident radiation,
and C = 1 (for 8 = 19/2) is the polarization factor.

In the backscattering of a spherical wave, the dif-
fraction broadening of the focus is A, < |1 —
Ly/RIA(IXn | + |[ANMADY?, where AN takes into
account the nonchromaticity of the incident wave.

The source—crystal, Ly, and the crystal—-image, L,
distances for a point source satisfy the modified equa-
tion of an X-ray lens[11],

1L, + 1/L,
= 2[(1+x,,/2sin°0)/(1 + T/2R))]/R,sind,

where T isthe crystal thickness and R, is determined by
the components of the inverse e astic-modulus tensor
[11]. The corrections in the right-hand side of Eqg. (11)
take into account the radiation refracted by the crystal—
vacuum interface and the change in the interplanar
spacing in the crystal depth. These corrections give, in
fact, very small (~10°-10*) contributions and, there-
fore, can be ignored in most of the cases of practical
interest.

If a plane wave is reflected from a crystal, the dif-
fraction broadening of the focus equals A&, = Acos 6/2.
In backscattering, cos® = cos(172) + sinBAB = AB <
(X | + [ANMA]2, i€, the diffraction broadening of the
focus equals

D&, < A(X | + IANAL) /2 Cl X (12)

If an incident waveis highly monochromatic (JAMA| <
IXne D), EQ. (12) yields AZ, < A/2|C][X, |2 In the reflec-
tion of the MoK, radiation from the Si(444) plane, the
focus size equals A&, = 0.037 um.

11)
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ANGULAR SHIFT OF THE BRAGG MAXIMUM
IN BACKSCATTERING FROM A BENT CRY STAL

It iswell known [15] that, because of refraction, the
Bragg anglesin avacuum and in acrystal are different.
The shift of the Bragg angle equals X, /sin26. In the
Bragg reflection from a bent crystal, crystal bending
gives rise to an additional shift of the maximum of the
reflection curve [11]. This shift is essentia in two lim-
itinginstances: at@ — 0 and 8 — 172 (Fig. 2). Inthe
case of the backscattering we are interested in, the
angular shift equals

8 O(T/R,=Xor) /2| Xeu 2. (13)

At the same values of T, X, and ¥, asin [11], we
obtain from formula (13) that 6 < 10>-107!; in other
words, the shift exceeds the width of the reflection
curve. To decrease the shift of the Bragg angle, one has
to use thin crystals with a thickness satisfying the con-
ditions T = R,X,,, whence it follows that, for bent crys-
tals, the shift can be lessthan for a plane crystal.

It is seen from (13) that this shift becomes essential
if T/R,= 10~ and its order of magnitude considerably
differs from that of x, or else for thin crystals where
T/R, < Xor -

FOCUSING SPECTROMETER
IN BACKSCATTERING FROM A WEAKLY
BENT CRYSTAL

Consider the spectral properties of a weakly bent
crystal at 6 = 172. Thelinear dispersion Dy is

D; = d€,/dA O(L,—Ly)dB/dA. (14)
Using (10), we obtain for the spectral resolution
dA/A = A& ,c0s6/(L,—L;)sinB
01— Ly/R,sSiN6|A(A8)%/Cl|Xne| (Lo — Ly) SiNG
0|1 = Ly/RJMICI(Lo—Ly),
LoZ L.

(15)

Diffraction reflection is coherent for the sources with
the angular dimensions ¢ = a/L, < A/X.. Therefore,
Eq. (15) isvalid for the sources of the size a < L/X.4-
If a> Lo\ /X, the quantity A, in Eq. (15) should be
replaced by A&, + LoA /X

AtL,, < R;sin8, the spectral resolution described by
Eg. (15) is dependent on the Bragg angle 6 and
dA(B)/A ~f(B) = (1 + cos20)/2sin 6 and decreases with
an increase in 8 (Fig. 3). Under the assumption that
L, > R,, we arrive at the following theoretical estimate
of the spectral resolution for a plane incident wave:

dA/A OA/2|C L. (16)
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The theoretical limit of the spectral resolution (16) in
backscattering of the CuK,, radiation (A = 1.54 A) from
abent silicon crystal with the curvatureradiusR, =1 m
and L, = 10 m attains the value of dA/A ~10-!!. This
estimate is better by three orders of magnitude than for
a Johann—Hamdés focusing spectrometer [12].

It should be noted that the spectral resolution
described by (16) is independent of ¥, and is the same
for both (o and m) polarizations of the X-ray radiations.

The degree of the monochromaticity of the back-
scattered wave equals

AMA < cotoA8 O(AB) < X, (17)

Estimate (17) for AA/A can aso be obtained under the
assumption that the coherency length is L., = A2/A\ =
A = N|C| X |-

FOCUSING OF X-RAY WAVE BY AN ELASTIC
MOSAIC CRYSTAL

Consider an elastic mosaic crystal in which the
parameter obeys the condition |v| < 1 (a strongly bent
crystal). The bending parameter in backscattering
equals

V| = X, /16A°|B] (18)

and, for the crystals with the deformation gradient B =
10'* m, the condition |v| < 1 is satisfied at X}, ~ 10°°
andA = 1A.

The amplitude reflection coefficient of a plane-wave
harmonic from athick (semi-infinite) crystal is

R(K) = io,(iTV8B)Zexp(t2/2){ 1 — ®(~t,/2")} , (19)

where

O, = CTiX, /ASin20 = (X, )"2/2A (6 O1v2),
t, = (-i/4B)?k, k<2mAGA,

t

(1) = 2(11)_”2Iexp(—x2)dx
0

isthe probability integral.

Putting t,/2'? = 1tin Eq. (19), we can determine the
optimum size of L for astrongly bent crystal along the
X-axis,

JJZ)\-

Ly 020,460 2L(2/B|) (20)

Theintensity distribution in the focus is determined
by the integral over the plane-wave harmonics

1n(&p) = [En(Ep)l
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+o00

= |G I R(K) exp{ —ik°A (0" + o ") /418 21)

2

x exp{ ikE o/ (Ly/R— 1)} dK| ,

where the geometric coefficient G dependson a,, ay, L,
andLy, 0p=1/Ly—1/R, ap=1/L,— 1/R,and L,  # R,.

The geometrical condition of focusing by a thick
strongly bent crystal has the form

A2/ay+ L/a,)/2n+ 1/4|B| = 0. (22)
It is seen from Eq. (22) that the conditions of focus-
ing by strongly and weakly bent crystals are different.
At the deformation gradient B> 10"* m2 and R, < 0.1 m,
the source should be very closeto thecrystal surface. At
Lo=1cmandA = 1.54 A, an X-ray wave dynamically
scattered in the crystal bulk is focused at a distance of
L, =-1.2499984 cm from the crystal.

With due regard for Eq. (22), we obtain the foll ow-
ing equation for the intensity described by Eqg. (21):

1n(&,) = G'T|xw| (32771B))

+00 2

*| [ explikE /(LR ~ 1)} oK .

(23)

At the finite integration limits (from —k.; to +k.; O
21X/AL,, where X is the size of the region illuminated
by an incident beam), the integral in Eq. (23) is not a

/4 /2 0

-11
log dA/A

Fig. 3. Logarithm of the spectral resolution described by
Eg. (15) as a function of the angle 6: a < LM% Ly <

Rsin®, R,=1m, and Ly =2 m. Si (444), X | = 0.94 x 1075,
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o-like integral any more. Thus, finally, we arrive at
In(Es) = G'Texn (8AB))
%[ SIn(Epker! (Ln/ Re—= 1)/ (€l (L R = 1)), Y

L, %R,
The main intensity maximum in the focusis
1,(0) = TC|Xn| X*LeG /27" B].

Theangular halfwidth of the maximum determining the
diffraction size of the focusis

AE, = A|(Ly/R,— 1)| Lo/2X. (25)

Equation (23) atL,=1, L,=103,X=102, R,=0.1 m,
and A = 1.54 A yields A, ~ 10-* m. The focus width is
dependent on the deformation gradient B and is propor-
tional to |aB — 1|, where a is determined by the focus-
ing geometry and the radiation characteristics. The
height of the intensity peak given by Eq. (24) is
inversely proportional to B.

Now, consider a crystal of afinite thickness T < A.
The amplitude reflection coefficient is equal to

R(K) = —i(i)"*(g/4a)(1v2B)"*tan8[ d(~t,/2"%)

— d(to/2"%) Jexp(-t5/2),

where g = iCay,(AsinB)~! is the coefficient of reflec-
tion from an atomic plane, a is the interplanar spacing,
andt, =t, +4TcotB (-iB)"/2. In backscattering, cot® =
0O <% |'2, i.e., isless by two to three orders of mag-
nitudethan at © < T¥2. Assuming that T < T¥4AB, we can
expand the difference between the probahility integrals
into the Taylor series. Limiting the consideration to the
first derivative of the function ®(t), we have

D(~t,/2"%) — D (=t,/2"%)

= —2(m) P exp(=t2/2) (t, —to) /2"
Then the amplitude reflection coefficient has the form
R(K) = iqexp(-t))T/a. 27)
Theintensity 1,(€,) in the vicinity of the focus is deter-
mined from Eq. (21) by substituting there Eq. (27). The
intengity ratio for thin (T </A\) and thick (T > A) crystasis
o7 <nlln 7> n 032|Bl[Xn| T*/10 (28)
and, at Tat X, ~ 107, |B|=4 x 10*m2, and T~ 10 pum,
equals T~ 0.4.
Expression (28) allows the estimation of an admis-
sible crystal thickness at the given x,, and B
T <10(32/Bl[Xn|) " <A.

To increase the intensity at the focus, one has to use a
weakly bent and not a strongly bent crystal. The inten-
sSity ratio is estimated as

I, weak! I, srong 8| Bllnk:ff ,

(26)

(29)
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and, it follows from (29) that, at A = 1.54 A, X = 104,
Loy=0.4,and [B|=4 x 10'* m, we have

I h, weenk/I h, strong 0 10'

Obvioudy, al the results obtained in thisstudy areaso
valid for thermal neutrons with awavelength of A ~ 1 A.

CONCLUSIONS

Thus, we have obtained for thefirst time an analytica
expression for the size of the region of diffraction reflec-
tion on the crystal surface in backscattering. It follows
from this expression that the aperture ratio of the crystal
optics in Bragg backscattering essentially (by two to
three orders of magnitude) increasesin comparison with
the aperture ratio attained in other focusing schemes and
becomes comparable with the aperture in the Johann
scheme. The advantage of the backscattering scheme is
the minimum aberrations of the reflected beam. The
analysis of the spectra characteristics of the diffracted
beam in backscattering showed that, theoretically, it is
possible to attain a resolution as high as dA/A ~ 107!,
Moreover, we also showed that weakly bent crystals pro-
vide higher intensity at the focus than strongly bent ones.
According to (29), the intensity ratio for these crystalsis
proportional to the deformation gradient B.
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Abstract—Theformation of a“quasicrystal” on aclosed surface has been considered for the Thomson problem
on the arrangement with the lowest energy of N Coulomb charges on a sphere. The stable and metastable states
of the system of chargeswith the charge number N = 2—-100 and the symmetry groups of the corresponding con-
figurations have been determined. The structure and possible structural transitions between the system states
are described in terms of the introduced notion of a closed quasi-two-dimensional triangular |attice with topo-
logical defects. The graph of lattice defects is defined. A method for classifying the system in terms of the
charge and the arrangement of topological defectsin thelatticeis suggested and extended to the case of an arbi-
trary lattice. The use of the model is considered on various physical examples, in particular, on aclosed hexag-
onal lattice with disclinationsin fullerenes. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Recently, we have seen an ever increasing interest in
mesoscopic systems and clusters[1, 2]. A large number
of real electron and semiconductor mesoscopic systems
is described by the model of repulsing particlesin two-
and three-dimensional confining potentials [3-8]. One
also uses various repulsive (Coulomb, dipole, logarith-
mic, etc.) potentials. All the known mesoscopic sys-
tems described by such models show the following
common features: (1) formation of a shell structure in
the equilibrium state and (2) the “orientational melting
of shells’ during heating, i.e., the loss of the orienta-
tiona order of neighboring shells reducing to the rota-
tion of the “frozen” shells with respect to one another
and then, with afurther increase of the temperature, the
loss of the radial order and the destruction of the shell
structure. Thus, we arrive at the notion of the “solid”
and “liquid” states of a cluster. Of course, this notion
can be applied to mesoscopic systems only condition-
aly, e.g., because of the existence of essential “het-
erophase fluctuations” [9] associated with the jump of
the system from the global potential-energy minima
into the local ones. Since a cluster consists of alimited
number of particles, it possesses no tranglation invari-
ance, which, in turn, can result in the appearance of
fivefold symmetry axes. In this article, we attempt to
rigorously describe the structure of a mesoscopic clus-
ter in the solid state.

Considering the cluster structures, we can single out
aclassof clustersthat can be represented by quasi-two-
dimensional (quasi-2D) closed lattices. A closed lattice
isalatticethat can be inscribed into asimply connected
closed two-dimensional surface with the unavoidable
formation of some topological defects. The model of a

closed hexagonal lattice with topological defectscan be
used to describe fullerenes and other carbon clusters C,
having more complicated structures. Carbon clusters of
various dimensions have already been obtained experi-
mentally [10-13]. A closed triangular lattice can be
formed during crystallization of a cluster of repulsing
particles on aclosed surface or in a confining potential.
In the latter case, a structure of concentric shells can be
formed [4], with each shell being represented by a
closed triangular lattice. Because of the topological
properties of a closed surface, any quasi-two-dimen-
sional lattice aways has some topological defects (dis-
clinations), with the total topological charge M of all the
defectsin each type of the closed lattice being constant.
In particular, in a closed triangular lattice, M, = +12.
Sincethetotal topological charge of the defectsisfixed,
it is possible to describe the lattice by enumerating all
its defects (the so-called lattice index) [14]. Below, we
fully characterize a closed lattice by a “graph of
defects’ or a d-graph defining the charges of defects
and their mutual arrangement. The “distances’ between
the defects areintroduced in away used in the theory of

graphs.

We consider the problem of the structure of closed
lattices on an example of the Thomson problem
[15-17] of the optimum arrangement of point charges
on a sphere, in which the Coulomb energy of the
charges, E(N) = i'\‘>j(|ri —1;), is minimized. The
model describes a number of real physical systems, in
particular, asystem of ions or bubbles with electronsin
aliquid helium cluster, the rarefied system of electrons
(or holes) inaspherical “point” in asemiconductor, and
a system of ions in a three-dimensional trap (3D-trap)
with the potentia drastically increasing in the vicinity
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of the boundary. Indeed, according to the Earnshaw
theorem, the equilibrium charges in a three-dimen-
sional potential well arelocated on the surface. Because
of the medium polarization, the charges, ions, or bub-
bles with electrons in a spherical helium cluster arein
the effective confining potential U®Y(r). The shape of
this potential is similar to that of a potential well
with rounded-off edges in the center of a cluster
U, ~ &r? and in the vicinity of the surface
ue(r)|, ~&(r—1)"', where & = 0.03. In the zero approx-
imation, the potential U®(r) degenerates into a rectan-
gular potential well. A similar effective potential isalso
formed for athree-dimensional charged semiconductor
or semimetal quantum dot. The classical mode of a
guantum dot is characteristic of the parameter range,
where the characteristic thermal length of the de Bro-

glie wave of electrons, A ~ #/./mKT , is significantly
less than the average distance between electrons.

To construct a unique closed triangular lattice of
charges, we use the edges of a convex polygon con-
structed on the charges—vertices. Usually, such a poly-
gon has only triangular faces, because, as a rule, the
configurations with nontriangular faces are unstable.
Thisis confirmed by the following symmetric configu-
rations of the charges: a cube with N = 8, a dodecahe-
dron with N = 20, and a “buck ball” with N = 60.

There is an alternative method of describing the
equilibrium structures of point charges on asphere. The
configuration of the charges on a sphere can be repre-
sented by a system of coaxial rings of charges
[15, 18, 19]. In this case, the structural changes occur-
ring with anincrease of N correspond to the gradual fill-
ing of the rings. This approach is justified only for a
small number of charges, N ~ 20, whereas at large N
values, the approach suggested in this article seems to
be preferable.

There is a large class of variational problems [20]
topologically close to the Thomson problem (e.g., the
Tammes [21] problem on the determination of the con-
figuration of N particles on a sphere such that the min-
imum angular distance between the particles would be
maximal). It should be indicated that at 12 < N < 100,
the Thomson and the Tammes problems usualy have
different solutions.

CALCULATION FOR THE THOMSON
PROBLEM

The energy minimawere determined by the gradient
descent method [22], which for our system iswrittenin
the following way [16]:

ri—r; = (r;+yF)/|ri+yF|,

where F; is the force acting onto the ith particle. Of all
the configurations determined, we select the local and
the global (possessing the minimum energy) minima.
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The equilibrium configurations obtained for the
Thomson problem are listed in Table 1. At N <90, we
aso indicate the solutions of the Tammes problem (the
datafrom[23] at N< 12 and thedatafrom [24] at 13 <
N < 90).

The configuration energies are obtained with an
accuracy considerably higher than in [17, 19, 25, 26],
which is of great importance for the selection of the
global minimum from a large number of local ones
(which often possess only dightly different energies) at
charge numbers N ~ 100. This, in turn, provides the
determination of some other configuration characteris-
tics with a considerably higher accuracy. Some of the
data obtained agree quite well with the data indicated
by Edmundson [25], who analyzed all possible config-
urations for the Thomson problem at charge numbers
N<60 and N = 72, 92, 100. The configurations we
determined at N = 55, 56, and 92 differ from those
obtained in [25] and correspond to lower minima. The
discrepancies in the Foppl indices for the configura-
tions a N = 19 and 43 are insignificant and are
explained by the higher accuracy of our calculations.
The symmetry data, the Foppl indices, and other char-
acteristics of equilibrium configurations (except for
energy) at charge numbersintherange60 <N < 100 are
obtained in our study for the first time. Earlier [16, 17,
27, 28], energies at charge numbers N < 100 were cal-
culated with different accuracies. It was also indicated
that a convex polyhedron built on the charges—vertices
usually has 12 vertices—pentamers and (N — 12) verti-
ces-hexamers [17, 25, 26]. Altshuller et al. [17]
obtained the list of configurations at 13 < N < 100
which contradicts the above statement. The results
obtained in the present study considerably differ from
the dataindicated by Altshuller (cf. Table 1in[17] and
Table 2 in the present article).

In 1957, Leech showed [29] that the solution of the
variational problem of the search for the minimum of

U(N, n) = ngrﬁg a N = 2-6, 12 is independent of

theexponentn(n=1, 2, ..., ») [29]. It should be indi-
cated that at all the other N values, the solutions of the
Thomson (n = 1) and the Tammes (n = ) problems do
not coincide (see Table 1). In particular, the Thomson
problem has many more symmetric solutions. The only
globa energy minimum for the Thomson problem in
the range of N under consideration having no symmetry
elementsisfound at N = 61.

The configurations at N = 25, 33, 47, and 79 corre-
spond to the symmetry group C,, and, thus, have no
rotational symmetry axis. Therefore, in order to write
the FOppl indicesfor these configurations (Table 1), we
had to use the direction normal to the symmetry plane.
Thus, the Foppl index of the configuration at N = 79 is
written as follows: 132, 2, 11, 2, 132. In this case, the
convex polyhedron constructed on the charges—vertices
has atetragonal face which is normal to the symmetry
plane. It should also be indicated that the number of
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Table 1. Equilibrium configurations of the system of N charges (N = 2-100) on the surface of a sphere

N MR G 0 Energy L Foppl G o
210 Den | 180.00000 0.50000000 - |2 Do 180.00000
3|0 Dg, | 120.00000 1.73205081 - 11,2 Dan 120.00000
410 Ty 109.47122 3.67423461 | 4Tr 1,3 Ty 109.47122
5|0 Dg, | 90.00000 6.47469149 | 2Tr3T |1,3,1 Dy, Cay | 90.00000
6|0 Oy, 90.00000 9.98528137 | 6T 1,4,1 Oy, 90.00000
710 Ds, | 7200000 | 14.45297741 | 5Tr2P |1,5,1 Ca, 77.86954
8|0 Dy | 7169415 | 19.67528786 | 8P2F |42 Dag 74.85849
9|0 Dg, | 69.18975 | 25.75998653 | 3T6P |3 Dan 70.52878
10 | 0 Dy | 6499562 | 32.71694946 | 2T8P |1,4%1 Co 66.14682
11 | 0.001202 | C,, 58.53956 | 40.59645051 | 2T8P |1, 2, 4,22 Cs, 63.43495
12 | 0 \ 63.43495 | 49.16525306 | 12P  |1,5%1 Ih 63.43495
13 | 0.000678 | C,, 52.31692 | 58.85323061 | T10P |1,2?% 4,22 Cay 57.13670
14 | 0 Deg | 52.86609 | 69.30636330 | 12P  |1,6% 1 Dyg 55.67057
15 | 0 Ds 4922487 | 80.67024411 | 12Pp  |3° Cs, C; 53.65785
6 | 0 T 4893621 | 9291165530 | 12P  |1,3° Dag 52.24440
17 | 0 Ds, | 50.10802 | 106.05040483 | 12P  |1,5%1 Co 51.09033
18 | 0 Dy | 47.53440 | 120.08446745 | 2T8P |1,4%1 C, 49.55666
19 | 0.000007 | C,, 44.90970 | 135.08946756 | F10P |1,4,2,4,2° 4 Cin 47.69191
2 | 0 Dg, | 46.09330 | 150.88156833 | 12P  |1,3%6,3% 1 Dan 47.43104
21 | 0.000067 | C, | 44.32038 | 167.64162240 | TI0P |1,22 4,22 4,22 (o) 45.61322
2 |0 Ty 4330201 | 185.28753615 | 12P (1,32, 6,33 C, 44.74016
23| 0 Ds 4148111 | 203.93019066 | 12P  |1,3',1 (o) 43.70996
24 | 0 o} 42.06529 | 223.34707405 | 6F 4° o 43.69077
25 | 0.000041 | Cy, 39.60981 | 243.81276030 | F10P |11, 5, 110 Cs 41.63446
26 | 0.000074 | C, 38.74214 | 26513332632 | 12P |23 Cin 41.03766
27 | 0 Ds, | 39.94028 | 287.30261503 | 12P  |1,5°1 Co 40.67760
28 | 0 T 37.82374 | 31049154236 | 12P  |1,3° (o) 39.35514
29 | 0 Ds 36.39129 | 334.63443992 | 12P  |1,3%1 (o) 38.71365
30 |0 D, 36.94228 | 359.60394590 | 12P  |1,2%41 Ds 38.59712
31 | 0.000103 | Cg, 36.37311 | 38553083806 | 12P  |1,3?%6,3% 6,3 Cs 37.70983
2|0 I 37.37736 | 41226127465 | 12P  |1,551 Ds 37.47521
33 | 0.000132 | Cy, 33.69955 | 440.20405745 | F11PH |1%3,7, 113 Cs 36.25455
34 |0 D, 33.27343 | 468.90485328 | 12P  |1,261 C, 35.80778
35 | 0.000012 | C, 33.10029 | 49856987249 | 12P  |1,4,2% (o) 35.31846
36 |0 D, 33.22727 | 529.12240838 | 12P |28 D, 35.18973
37 |0 Ds, | 32.33243 | 560.61888773 | 12P  |1,5/,1 Cin 34.42241
38 |0 Deg | 33.23648 | 593.03850357 | 12P  |1,651 Deg 34.25066
9|0 Dy, | 3205295 | 626.38900902 | 12P  |3%,6,3,9,3,6,3° (o) 33.48905
40 | 0 Ty 31.91635 | 660.67527883 | 12P  |1,3?%6,326,3,6,3? Cs 33.15836
4 | 0 Dg, | 3152783 | 695.91674434 | 12P  |1,3%,6,3,9,3,6,32,1 | C, 32.72909
42 10 Ds 31.24474 | 73207810754 | 12P  |1,5% 10,531 Ds 32.50639
43 | 0.000009 | C,, 30.86664 | 769.19084646 | 13P  |1,2,4,2,4%,22,4%2,4,2% C, 32.08447
4 | 0 Oy, 31.25761 | 807.17426308 | 6F 438,4,8,4° C, 31.98342
45 | 0 Ds 30.20718 | 846.18840106 | 12P  |3% (o) 31.32308
46 | 0 T 29.79025 | 886.16711364 | 12P  |1,3% C, 30.95916
47 | 0.000053 | Cyp, 28.78730 | 927.05927068 | F10P |1%,7,1%° (o) 30.78182
48 | 0 o} 29.68964 | 968.71345534 | 6F 412 o 30.76279
49 | 0.000031 | Cg 28.38659 | 101155718265 | 12P  |1,3% C, 29.92358
5 | 0 Deg | 28.71140 |1055.18231473 | 12P  |1,6% 1 Dg 29.75296
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Table 1. (Contd.)

N MR G o Energy L Foppl G o
51 | 0 D; | 28.16539 | 1099.81929032 | 12P 3v C, 29.36159
52 | 0.000009 | C; 27.66987 | 1145.41896432 | 12P 1,3Y T 29.19476
53 | 0.000005 | C,, | 27.13694 | 1191.92229042 | 3F6P %,2 421 42,2%2,42, 4, (o) 28.81390
54 | 0.000003 | C, 27.02959 | 1239.36147473 | 12P 27 (o) 28.71692
55 | 0.000007 | C, 26.61507 | 1287.77272078 | 12P 1,2% (o) 28.26279
5 | 0 D, | 26.68290 | 1337.09494528 | 12P 238 D, 28.14805
57 | 0 D; | 26.70241 | 1387.38322925 | 12P 3w Cs 27.82668
58 | 0 D, | 26.15523 | 1438.61825064 | 12P 1,211 4,22, 4,241 C, 27.55485
59 | 0.000003 | C, 26.17024 | 1490.77333528 | 14P2H |1,2% C, 27.39498
60 | O D; | 2595762 | 1543.83040098 | 12P 320 G, 27.19283
61 | 0.000018 | C, 25.39167 | 1597.94183020 | 12P 161 C, 26.87233
62 | 0 Ds | 25.87987 | 1652.90940990 | 12P 1,521 C, 26.68343
63 | 0 D; | 25.25672 | 1708.87968150 | 12P 32 Ds 26.48692
64 | 0 D, | 24.92001 | 1765.80257793 | 12P 2% C, 26.23504
65 | 0.000006 | C, 24.52673 | 1823.66796026 | 12P 1,2% G, 26.06983
66 | 0.000012 | C, 24.76463 | 1882.44152531 | 12P 2% Ds 25.94744
67 | 0 Ds | 24.72726 | 1942.12270041 | 12P 1,551 G, 25.68398
68 | 0 D, | 24.43292 | 2002.87470175 | 12P 2% G, 25.46062
69 | 0 D; | 24.13651 | 2064.53348323 | 12P 3% C, 25.33223
70 | 0 Doy | 24.29073 | 2127.10090155 | 4F4P  |1,2,4,2,4% 2,45, C, 25.17092
2,4%,2,4,2,1

71 | 0.000018 | C, 23.80257 | 2190.64990643 | 14P2H |1,2%8 4,25 (o) 24.98791
72 |0 | 24.49170 | 2255.00119097 | 12P 1,541 Ds 24.92649
73 | 0.000022 | C, 22.81041 | 2320.63388375 | 12P 1,2% C, 24.55376
74 | 0.000009 | C, 22.96584 | 2387.07298184 | 12P 2% C, 24.42088
7510 Dy | 2273643 | 245436968904 | 12P 3% C, 24.30172
76 | 0.000012 | C, 22.88571 | 2522.67487184 | 12P 238 C, 24.11969
77 | 0 Ds 23.28614 | 2591.85015235 | 12P 1,51 C, 23.99585
78 | 0 T, 23.42634 | 2662.04647457 | 12P 3% Ds 23.93102
79 | 0.000009 | C,, | 22.63614 | 2733.24835748 | F11PH |1%%,2,11,2,1% (o) 23.62399
80 | 0 Dy | 2277835 | 280535587598 | 2F8P  |4°8,4°8,4%,8,4%8,4°| D, 23.54352
81 | 0.000002 | C, 21.89175 | 2878.52282966 | 12P 1,2% C, 23.34764
82 |0 D, | 2220594 | 295256967529 | 12P 1,2%1 (o) 23.19261
83 | 0.000004 | C, 21.64623 | 3027.52848892 | 14P2H |1,2% C, 23.08300
84 | 0.000005 | C, 21.51267 | 3103.46512443 | 12P 1,21 Ds 23.05173
85 | 0.000005 | C, 21.49758 | 3180.36144294 | 12P 1,2% C, 22.77869
86 | 0.000016 | C, 21.52160 | 3258.21160571 | 12P 2% C, 22.67437
87 | 0.000009 | C, 21.45649 | 3337.00075001 | 12P 1, 2%, 4, 2% D4 22.54666
88 | 0 D, | 2148559 | 3416.72019676 | 12P 2% T 22.46788
89 | 0.000001 | C, 21.18220 | 3497.43901862 | 12P 1,2% (o) 22.31660
9 | 0 Dy | 21.23028 | 3579.09122272 | 12P 3% Ds 22.15402
91 | 0 C, 21.10466 | 3661.71369932 | 12P 1,2%
2|0 D, | 21.02582 | 374529163624 | 12P 246
93 | 0.000002 | C, 20.75075 | 3829.84433842 | 12P 1,2%
9 | 0 D, | 20.95187 | 391530926962 | 12P 1,2%,1
95 | 0.000001 | C, 20.71121 | 4001.77167557 | 12P 1,24
9% | 0 C, 20.68657 | 4089.15401006 | 12P 212, 4, 2%
97 | 0.000001 | C, 20.44961 | 4177.53359962 | 12P 1,2%
98 | 0.000001 | C, 20.42160 | 4266.72246416 | 12P A
99 | 0.000002 | C, 20.28450 | 4357.13916313 | 12P 1,2% 4,2

100 | O T 20.29660 | 4448.35063433 | 12P 1,3%

Note: MR is the dipole moment of the system, G is the symmetry group (in Schonflies notation), d is the minimum angular distance
between the charges (in degrees), L istheindex of the closed lattice, Foppl indicates the Foppl index, Energy indicatesthetotal Cou-
lomb energy of the system, G' is the symmetry group used in the solution of the Tammes problem, and &' is the minimum angular
distance between the particles in the Tammes problem.
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charges located in the symmetry planein all cases with
symmetry C,,, is described by a simple number—5, 7,
7,0r11.

It was indicated earlier that, usualy, the configura-
tions with tetragonal faces are unstable. In particular, it
is well known that a cube does not correspond to the
minimum energy in the Thomson problem. We deter-
mined three configurations having cubic symmetry
(at N = 24, 44, 48) and possessing tetragonal (in this
case, square) faces. The same configurations are also
indicated in [25] but, surprisingly, are not indicated in
the later study [17]. The configuration at N = 70 is
described by the symmetry group D,4 and has four tet-
ragonal faces. Two of three fourfold rotation reflection
axes pass through the centers of the tetragonal faces,
whereas the third rotation reflection axis transforms
these four faces into one another.

Configurations possessing higher symmetries can
have higher energies than the low-symmetric ones.
Thus, a8 N = 42, the loca minimum (E =
732.15182672) hasthe symmetry |,,, whereasthe global
minimum has a lower symmetry Ds,,. Table 3 lists the
local minima of the system of point charges on a sphere
at N =92, Of nineteen configurations listed in Table 3,
the minimum possessing the highest symmetry |, is
also characterized by the highest energy.

DISCUSSION OF RESULTS

One of the most well-known approaches to the
description of the charge distribution on asphereisthat
from the classica study performed by Thomson [15],
who considered that the structures consisted of a small
number of charges. According to Thomson, the charges
form coaxial rings on a sphere, whereas the structural
changes occurring with an increase in the charge num-
ber N in the system correspond to the gradual addition
of charges to different rings (Fig. 1). A consistent for-
mal description within the framework of the “ring
approach” was devel oped by Foppl [30]. The axisof the
coaxial rings is taken to be that of the highest symme-
try, whereas the particles are considered to be located
ononeringonly if they all arelocated in the same plane
normal to thisaxis. Thisapproach is quite justified with
asmall number of charges because the rings of charges
arewell distinguishable. With an increasein the charge
number N, increasingly less information on the real
charge configuration can be extracted from the Foppl
index. Thus, various local minima are often described
by the same indices (see Table 3). The notion of rings
itself no longer has any sense because the distances
between therings can be several timeslessthanthedis-
tances between the chargesin theindividual rings. Nev-
ertheless, the Foppl indices can successfully be used for
solving a number of problems.

Since the charges in the Thomson problem are
located on a sphere, one can always construct a convex
polyhedron on charges—verticesif N = 4. Thus, another
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Table 2. Exceptions from the rule defining the number of
vertices—pentamers and vertices-hexamersin a.convex poly-
hedron constructed on the charges—verticesat 12 < N < 100

N Ny Ns Ns N7 Q
13 1 10 2

18 2 8 8

19 14 5 1
21 1 10 10

24 24 6
25 14 11 1
33 15 17 1 1
44 24 20 6
47 14 33 1
48 24 24 6
53 18 35 3
59 14 43 2

70 20 50 4
71 14 55 2

79 15 63 1 1
80 16 64 2
83 14 67 2

Note: N isthe number of charges; N4, N5, Ng, and N; are the num-
bers of verticesincident to 4, 5, 6, and 7 edges, respectively;
and Q is the number of tetragonal faces.

natural method used to describe the configurations is
the consideration of the characteristics of this polyhe-
dron. Below, we study such characteristics for a poly-
hedron uniquely determining the structures of all the
configurations.

In fact, a cornvex polyhedron constructed on
charges-vertices is the implementation of the idea of a
closed two-dimensional triangular lattice with topol og-
ical defects. The concept of a closed lattice with topo-
logical defects can be used to describe structures of var-
ious systems, including fullerenes and a large number
of clusters consisting of repulsing particlesin confining
potentials. It iswell known that, for the repul sive poten-
tidsU~r"(n=1,3,4,...),atriangular latticeis stable
in the plane and possesses the minimum energy ascom-
pared with the energies of the lattices of al the other
types [31, 32]—sqguare, hexagonal, etc. Thus, one can
expect that the triangular lattice would also be stable in
the region [1; (i< R on a curved surface, where Risthe
curvature radius of the surface and (r; Lis the average
distance between the particles. However, if thelatticeis
considered on the whole sphere surface, i.e., if the sur-
faceisclosed, it possesses anumber of specific features
based on the topological differences between a sphere
(aclosed simply connected surface) and a plane.

In order to construct the lattice on a sphere, one can
use several methods, in particular, the slightly modified
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Table 3. The Thomson problem: local minima at number of
charges N =92

G Foppl Energy

D, |[2% 3745.29163624
C, |2% 3745.32218333
C, |2% 3745.32555284
C, |2% 3745.33860835
C, |[1% 3745.36351633
Ds; |1,5%1 3745.36772048
C, |[1% 3745.38100894
C, |[1% 3745.38177220
C, |2% 3745.38212625
C, |[1% 3745.38297241
C, |[1% 3745.38930839
C, |[1% 3745.38943469
C, |1,2104,211 4 2% 1 3745.39152813
C, |[1% 3745.39598792
C, |2% 3745.41663888
Cip |1%5,2,17,12,17,2, 1% 3745.48063056
C, |[1% 3745.48989730
C, |[1% 3745.50315699
I, |1,5%10,5% 107 5% 10,5% 1 | 3745.61873913

Note: For notation see Table 1.

Voronoi method for constructing lattices on curved 2D-
surfaces. As will be shown later, the method used for
the construction does not affect the basic properties of
the closed lattice. Here, we construct the lattice using
the edges of a convex polyhedron with the vertices
occupied by charges.

LATTICE DEFECTS

Consider defects of a plane lattice (for details, see,
e.g., [33]) which can have two types of defects—dislo-
cations and disclinations. Disclinations break the sym-
metry of the directions of the vectors connecting the
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closest equivalent particles. If a plane |attice possesses
a symmetry axis of the nth order, then, in moving
around the disclination core having the charge m, the
phase @ is changed by a value of d¢@= 2mmvyn. Thus, a
particle surrounded by five and not six closest neigh-
bors (apentamer) in the planetriangul ar latticeisacore
of adisclination with the charge m= +1, aparticle with
four nearest neighbors, a core of disclination with the
chargem= +2, etc. (Figs. 2a, 2b).

Consider the equilibrium and the quasi-equilibrium
configurations of charges on the sphere surface (at al
N = 4) as quasi-two-dimensional closed triangular |at-
tices with topological defects. A closed lattice is under-
stood as a lattice inscribed into any closed simply con-
nected surface (not necessarily convex). Hereafter, we
use the following notation for defects: a pentamer is a
P-disclination (m = +1), a tetramer is a T-disclination
(m=+2), atrimer isa Tr-disclination (m = +3), and a
heptamer is an H-disclination (m = —1). In terms of
topology, atetragona faceisdso adisclination (m= +2),
which differs from a conventional disclination only by
the absence of a particle in the disclination core (the
face center) (Fig. 3a). Hereafter, we call such a defect
of the closed triangular lattice a“focus’ or an F-discli-
nation. Formally, defects of this type can be excluded
from the lattice. With this aim, one has to add an arhi-
trarily chosen edge to each tetragonal face. As aresult,
the modified lattice acquires two P-disclinations in the
neighboring vertices instead of each of the F-disclina
tions, whereas the total topological charge remains
unchanged (Fig. 3b). Nevertheless, we preserve here
the notation of an F-disclination because it is very con-
venient (see below) for describing the structure of a
closed lattice, in particul ar, the | attice symmetry. Figure
4 shows some charge configurations characterized by
tetragonal faces.

BASIC PROPERTY OF A CLOSED LATTICE

In amacroscopic plane lattice, the formation of dis-
clination islow probably because of the high energy of
arising elastic deformations. A quasi-two-dimensional
closed lattice always contains disclinations with the

Fig. 1. Ring structures at N = 3-14. The distorted ring structure at N = 13: {1, (6), (5), 1}.
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Fig. 2. Disclinations in a plane triangular lattice 6@ =
21my6: (@) the disclination with m = +1 and a wedge d¢=
+2176 cut out from the lattice; (b) the disclination with m=
—1 and awedge d@= —2176 inserted into the lattice.

total topological charge of M defects defined as
M = (N3 —N_;) +2(Ny; = N) +3(Nyg—N_g) + ...

being constant and independent of the number of parti-
cles and of the method of lattice construction (where N,
is the number of disclinations in the lattice with the
topological charge m=1). In particular, in aclosetrian-
gular lattice

M, = 12,

in aclosed hexagonal lattice, M, = 12, and in aclosed
square lattice M, = 8. Consider the proof for a closed
triangular lattice. The numbers of faces, vertices, and
edges of aconvex polyhedron, F, V, and E, respectively,
are related by the Euler relationship V + F — E = 2.
Three edges are incident to each face of a closed trian-
gular lattice with each edge being tangential to two
faces. Performing summation over the faces, we have
3F = 2E. Every vertex of a closed triangular lattice is
incident to six edges. If avertex is a disclination with
the charge m = +1, this vertex isincident to five edges
(i.e., one edge less). If the disclination chargeism=—1,
the vertex is incident to seven edges (one edge more),
etc. Upon summing up all the vertices of the triangular
lattice with disclinations, with due regard for the fact that
each edge was summed up twice, weobtain 6V - M, = 2E.
Now, expressing M, from the above formulas, we
arrive at the sought equation.

LATTICE INDEX

The lattice index is introduced to describe the types
of defects in the lattice and their numbers. The exam-
plesof suchindicesare 12P, 2T8P, and 4F. The number
before the defect symbol indicates the number of
defects of the given type in the lattice. Thus, index
12P signifies that the lattice contains 12 P-disclina-
tions, while index 2T8P indicates that the lattice has
2 T- and 8 P-disclinations, and so on. A PH-dipole is
considered as one defect—a dislocation (m = 0). The
FH-complex formed in the systems with N = 33 and 79
can aso be considered asone complex defect (m=+1). As
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Fig. 3. F-disclination in atriangular lattice: (a) formation of
an F-disclination (m = +2); (b) decomposition of an F dis-
clination into two P-disclinations; and (c) the virtual addi-
tion of a particle to the core of each F disclination in the
construction of the d graph. The distance Lpg between two
disclinations equals three.

isseen from Table 1, most structure defects are of the 12P
type. Then, we can also introduce the characterigtics
reflecting the arrangement of defectsin a closed lattice.

STRUCTURE OF A CLOSED LATTICE. GRAPH
OF LATTICE DEFECTS

The topology of a closed lattice is reflected by its
graph G or a graph of edges of a convex polyhedron
constructed on the charges located on a sphere. The
symmetry of the charge configuration described by the
point symmetry group is either lower or the same asthe
symmetry of the graph of a closed lattice constructed
for the given configuration. Thisrelationship isfulfilled
for a closed lattice of an arbitrary structure including
the lattice containing F-disclinations. If one were to
construct a closed lattice by excluding F-disclinations
and adding arbitrarily an edge to each tetragonal face of
the polyhedron, one would arrive at a situation where
the symmetry of the configuration would be higher than
the symmetry of the corresponding graph, which would
be very inconvenient for the classification.

Now, determine the distance d(u, v) between two
vertices, u and v, of the closed lattice as alength of the
shortest simple chain connecting these vertices. Now,
construct the graph of defects (the d-graph) in the fol-
lowing way. Take the vertices of the closed lattice (dis-
clinations) asthe vertices of the d-graph. Connect these
vertices-disclinations by edges and bring each edge into
correspondence with the distance between the corre-
sponding defects. Congtructing the d-graph for astructure
containing F-disclinations, we can virtudly add a particle
into the core of each F-disclination (Fig. 3c).

Since the distance between any two verticesis deter-
mined uniquely, it is obviousthat, for the given config-
uration of the charges forming the closed lattice, the d-
graph can also be constructed uniquely. The opposite
guestion of whether the graph of defects determinesthe
structure of the closed lattice uniquely or nonuniquely
islesstrivial. We compared the d-graphs of all thelocal
minima determined and established that, in the range of
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44

70

83

Fig. 4. Structures containing F-disclinationsat N = 19, 24, 44, 48, 53, 70, 79, 80, 83. At N = 83, the local minimum E = 3027.558629
(the point group C},) is seen. The remaining figures show the configurations corresponding to the global minima of the systems.

N values4 < N < 100, the d-graph uniquely determines
the structure of the closed lattice.

To a graph of polyhedron edges there corresponds
the symmetric matrix A of dimensions N x N; then,
g; = 1 if the vertices i and j are connected by an edge,
and a; = 0 if they are not connected. The graph of
defects can be written with the aid of the symmetric
d-matrix (k x K), where k isthe number of defectsin the
structure. To the nondiagonal matrix elements there
correspond the pairs of distances between the disclina-
tions. Now, write the symbols of the defects on the
diagonal of the d-matrix. Since all the charges are
equivalent, the operation of defect permutation in the
d-matrix does not change the structure of the d-graph
and the closed lattice. The permutation of the K and
L defectsis defined as

%H;« =dy,
D 1
EFILL = dkk
Eﬂ' =dy =d
[d]' =swap[d,]: 0~ (1)

KoL %uiL =d, =dg (i#L,K)
EH;K = d;<i =di. (i#L,K)
Eﬂu =d; (i,j#LK).

CRYSTALLOGRAPHY REPORTS Vol. 47

The matrix of defects has an infinite number of invari-
ants of the form

I(n,m) = Zvi(n)vj(m),
i

whereVi(n)= ', dif . Thenumbersn and mare arbi-

trary real numbers. One can also introduce a number of
guantitative characteristics which are the functions of
the d-matrix, e.g., the average distance between the
defectsin the lattice

2
M = k(k—l)zd”

i>]

and the dispersion of these distances

_ 2 2 g2
D = k(k—l)zdij M
i>]
where k is the number of defects. In the systems con-
taining different types of defects, one can aso intro-
duce the average distance and dispersion for defects of
each type separately, e.g9., Mpp and M.

Figure 5 shows the matrices of defects for two dif-
ferent local energy minima in the Thomson problem at
N =92. Theloca minima (the second and third rowsin
Table 3, respectively) are described by the same Foppl
indices and the same symmetry groups. At the same
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P53646¢667436¢63
P 6536338573
3 6PP3 368641545
653P3563583T7
4333P76476¢64
6 6656 7TP 343436
6 3866 3P3 5454
7363443P67 46
48457356P336
35586447 3PG6 3
6 743635436PS
3357464663 8P
(b)

P5774564333F€6
5P5358663733
7T5P3 6334766 3
7T33P46 374764
4564P5>H 373367
58365P337365
663333P6548¢6
4647736P7433
3374375 7P5 46
376733445P5 7
336666 8345P3
6 334756367 3P

Fig. 5. The d-matrices of two “similar” minima in the
Thomson problem: (@) the d-matrix of the local minimum at

N = 92 (the symmetry C,, the Foppl index 2%6); (b) the
d-matrix of another local minimum at N = 92 (the symme-
try C,, the Foppl index 29).

time, their d-matrices are different and cannot be
reduced to one another.

Since the interaction potential between the charges
is not used in the construction of the graph of a closed
lattice, the formalism of the d-graph and the d-matrix
can be used not only for writing and comparing differ-
ent local and global minima (the solutions of the Thom-
son and other close problems) but also for comparing
the solutions of various problems.

HEXAGONAL LATTICE

A model of aclosed hexagonal lattice can be used to
describe fullerene structures. A graph of a closed hex-
agonal lattice is dual with respect to the graph of a
closed triangular lattice in which the centers of discli-
nationsin the closed hexagonal lattice are faces and not
vertices. Thus, to aclosed hexagonal lattice of fullerene
Ce, there correspondsthe closed triangul ar lattice of the
local minimum (N = 32, |,,) in the system of Coulomb
charges on a sphere.

CONCLUSION

The notion of a quasi-two-dimensional closed trian-
gular lattice is introduced to describe the structure of
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charges on the surface of a sphere. It is shown that the
triangular lattice on a closed simply connected surface
includes topological defects—disclinations—of differ-
ent charges, with thetotal topological charge of defects,
M = 12, being constant and independent of the charge
and location of individual defects. The equilibrium and
nonequilibrium configurations are considered at charge
numbersin the range N = 2-100. The methods for clas-
sification and compact description of the structures are
suggested. A graph of defects or ad-graph of the lattice
is defined and used to describe the mutual location and
charge of defectsin the lattice. Thus, the description of
the crystal structure of N charges on a closed surfaceis
reduced to determining the d-graph or the d-matrix of
thelattice, k x k, where the number of defectsin thelat-
ticekislimited. In particular, in the Thomson problem,
for most of the configurations we obtain k = 12.

The model of Coulomb charges on the surface of a
sphere describes anumber of physical systems, includ-
ing the 3D-system of ionsin atrap with an abrupt con-
fining potential, a system of electronsin a semiconduc-
tor 3D-quantum dot, a multicharge bubble with an elec-
tron in liquid helium (in the classical limit), and a
system of ions in a helium cluster retained by image
forces.

At present, a large number of various objects are
known and experimentally observed that are character-
ized by one common property: From the topological
standpoint, these systems can be considered as sets of
points distributed over the sphere surface. Such objects
are clustersconsisting of particlesinteracting according
to different (Coulomb, dipole laws) laws, atomic clus-
ters, multiatomic molecules, fullerenes, spherical
viruses, etc. It is suggested that such structures be con-
sidered within the unified approach as quasi-two-
dimensional closed lattices with topological defects of
various charges. The structure of the lattice and the
character of the defectsin it are determined by various
mechanisms, e.g., by valence (in fullerenes and other
atomic and molecular clusters), mutual charge repul-
sion resulting in the formation of a triangular lattice,
etc. For each type of closed lattice, the total charge of
al the disclinations is an invariant. Thus, in the closed
triangular lattice and in the closed hexagonal lattice
(fullerenes), thetotal charge of all the defectsisM = 12.
However, in the former case, disclinations are vertices—
nonhexamers, whereas in fullerenes, disclinations are
nonhexagonal faces. A number of systems, e.g., ionsin
traps and multishell carbon clusters (“onions’), can be
considered to be systems of concentric closed lattices.
The development of nanotechnology alows one to
expect the creation of new substances with molecular
structures in the form closed lattices.
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Abstract—The Penrose mosai ¢ as the minimum representative of quasicrystalsis discussed in terms of gener-
alized planar lattice models. The role of these models is played by Cayley’s tree graphs which, in the genera
case, are characterized by quasi-random branching. A three-level golden alphabet is defined, and a Penrose
mosaic is synthesized with the aid of its highest level. The algebras of the suggested grammar are formulated
inan explicit form. It is shown that the statistics of a Penrose mosaic at the level of golden rhombuses belongs
to the class of Zipf—-Mandelbrot distributions. The algorithm for mapping a Penrose mosaic into Cayley’stree
graphs based on the [2q x 2p] alphabet is also formulated. The problem of the entropy percolation for quasis-
tochastic Cayley’strees of Penrose mosaicsis solved. The entropy percolation of these treesis characterized by
an obvious minimum periodicity and, on average, by the invariance principle of the golden entropy. © 2002

MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Almost fifteen years ago, the Shechtman group stud-
iedtherapidly cooled AlgMn,, aloy and obtained unique
objects which did not belong to metalic glasses [1].
The diffraction patterns of these objects had ten spots
related by afivefold rotation axis forbidden in crystal-
lography. L ater, these objectswere called quasicrystals.
In an attempt to interpret the “ pentasymmetry” of these
diffraction patterns, the Penrose model was used [2, 3].
Somewhat later, a family of mosaics corresponding to
forbidden symmetries of higher orders was a so studied
[4-6].

The symmetries characteristic of quasicrystalswere
also observed in studies of nonlinear dynamic systems
[7], and it was shown that the destruction of the separa-
trix structure of the phase space caused by the
€-perturbation results in the formation of a stochastic
web with asymmetry characteristic of quasicrystals. As
follows from [7], a stochastic web is generated by
recurrent two-dimensional mapping with twisting. By
the end of the 1990s, a specific niche including awide
class of quasicrystal objects had been formed. Thus, it
was shown that the processes of structure relaxation
and decomposition of the amorphous state in metallic
glasses resulted in the precipitation of star-shaped
grains[8, 9.

Consider a Penrose mosaic as the minimum and uni-
versal representative of the class of quasicrystals.
Below, we use the linguistic approach and interpret a
Penrose mosaic as a text written in a certain language.
However, we reduce the linguistic approach to the level
of statistical linguistics, where we use the frequency of
the occurrence of various symbols forming an al phabet
and, thus, also rank statistics. A characteristic feature of

our consideration isthe transition to the “ quartet alpha-
bet” at the level of golden (g) rhombuses with due
regard for the types of possible contacts—the vertex
and the edge neighborhoods of g-rhombuses.

The creation of the grammar is rather difficult [10],
but we can simplify it and avoid the identification of the
grammar type by considering a Penrose mosaic in a
new tree-graph representation based on the quartet
alphabet, which is equivalent to the algorithm for con-
structing a Penrose mosaic itself—a typical grammati-
cal function [10].

Percolation on Cayley’s trees for a Penrose mosaic
can be interpreted as a Markovian shift in the tree hier-
archies, which is reflected in the probabilistic and
entropy measures. Thistype of percolation is related to
the semigroup class. Generally speaking, percolation
can occur along two directions. center —— periphery.
The existence of two opposite semigroup percolation
flows can result in a nonzero defect in percolation on
Cayley'strees. Inthiscase, wearriveat irreversibletree
graphs. It is possible to introduce the criterion of quasi-
crystallinity on Penrose mosaics in terms of entropy
functionals. Thus, we arrive at the theoretical-probabi-
listic and entropy manifestations of the “ golden charac-
teristics’ of the Penrose mosaic.

STATISTICS OF A PENROSE MOSAIC
AT THE LEVEL OF A QUARTET
RHOMBUS-BASED ALPHABET

Various Penrose mosaics are formed by golden
rhombuses (g-rhombuses) of only two types, consist-
ing, in turn, of two golden (g) triangles (Figs. 1a, 1c)
sharing the golden sides. The existence of the level of

1063-7745/02/4702-0189$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 2. Penrose mosaic. One can see elements of alpha-
bet 111, the types of intersections, and several coordina-
tion spheres.

g-triangles and, later, of g-rhombuses (Figs. 1b, 1d),
indicates the hierarchical nature of the alphabet of the
Penrose mosaic. Now, formulate a hypothesis which
states that the synthesis of a mosaic is smplified if an
alphabet of ahigher rank based on blocks (sentences) of
g-rhombusesis used. Possibly, the grammar of the hier-
archical alphabet and Penrosetiling would be less com-
plicated and artificia that at the level of g-rhombuses
[3, 11].

To construct adual g-basisof Penrosetiling of leve 111,
we have to apply the following algebraic rules of lin-
guistics1:

A “block” or a sentence of level 111 is chosen as a
pair of convex ten-vertex polygons composed in the
dual basis of g-rhombuses.

CRYSTALLOGRAPHY REPORTS Vol. 47
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The number of g-rhombuses in the sentences of
level 11 is5 + 5 (“acute” + “obtuse”) rhombuses, with
both components being equally probable.

A pair of ten-vertex polygons is constructed from
g-rhombuses by applying the join operation (without
intersection) along a nonspecific (unit) side.

One of the compound ten-vertex polygons possesses
afivefold rotation axis, whereas the other is character-
ized by dorsal symmetry with a “pentacoordination”
point. The role of a nucleus is played by an obtuse
g-rhomb.

A three-level binary golden aphabet, level 111, and
their fragments areillustrated by Fig. 1. Using level 111,
we synthesized a Penrose mosaic shown in Fig. 2 with
arather ssimple grammar 11. The algebra of the gram-
mar for aphabet 111 is asfollows:

—afragment shown in Fig. 1eis a star-shaped ten-
vertex polygon that has no contacts with other similar
polygons;

—ajoint with asimple intersection of the motifsin
Figs. 1leand 1f isalowed with the intersection being an
acute g-rhombus;

—a pair joint of dorsal ten-vertex polygons occurs
with the intersection in the form of two acute and one
obtuse g-rhombuses;

—the maximum coordination number of the motif
surrounded by dorsal ten-vertex polygons shown in
Fig. leisfive;

—five joint dorsal fragments can form a pentasym-
metry point (but not a fragment shown in Fig. 1€) with
five complex intersections.

Now, complement the mosaic representation with
the probabilistic consideration based on alphabet 11.
Along with the objects (a pair of g-rhombuses), we aso
take into account the contact type (adjacency neighbor-
hood), i.e., the coordination. The Penrose mosaic has
both the vertex and the edge contacts of g-rhombuses.
Below, we write matrix (1) (Fig. 2) of the probability to
encounter the letters “rhombuses-type of the contact”
averaged over the whole Penrose mosaic. In fact, we
deal here with the quartet alphabet “rhombus (q)—
coordination type (p),” [2q x 2p], with the matrix

| Vv c |
0,(0.4285 0.1905|P(a,/v Oc) = Py(a,) = 0.619,
a, 0.261 0.120 P(a,/v Oc) = Py(a,) = 0.381 (1)

where a, is an obtuse g-rhombus, a, is an acute g-rhom-
bus, ¢ is an edge contact, and v is avertex contact. Itis
seen that the sums of the rows of matrix (1) coincide
with the golden ratio and its complement. The estimate
of theVajdaentropy yields Hy[P(a,/v Oc); P(a,/v O
)] = 0.472 = Hyyy. The corresponding structurization
factor equals n, = 5.6%, and therefore the statistics of
g-rhombuses is stochastic for about 94.4%. In this
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sense, the Penrose mosaic is an almost noise stochastic
parquet at the level of alphabet I1.

The asymptotic probabilistic vectors of the M-chain
can be conveniently mapped into a two-level binary
probabilistictree (Fig. 3). Thefirst level of thetreeindi-
cates a division into two g-rhombuses with golden
probabilities, which results in Hy4(2) = 0.472. At the
second level, two more types of contact—the vertex
and the edge ones—are added, which resultsin the for-
mation of the quartet [2q x p] alphabet. Considering
Fig. 3, we can see that the golden ratio of the first-level
probability is preserved at the second level in the form
of the double relationship

v C
a a,/a
21 __1V__1 = 0.618 11.618.
GZ Gzlaz

Then, the tree in Fig. 3 should be recognized as a
golden tree on the whole. The estimate of the Vajda
entropy, H(4) = 0.6688 = H,,4(4), should also be recog-
nized as agolden onein the quartet alphabet. The struc-
tural index in the [2q x 2p] aphabet, n, = 10.66...%,
indicates a higher order level of the Penrose mosaic in
the quartet al phabet. Obviously, the stochastic compo-
nent of the Penrose-mosaic organization in this alpha-
bet is about 90%. Compared to the binary alphabet,
the quartet alphabet [2q x 2p], remaining golden as
earlier, provides a higher organization of the Penrose
mosaicC.

AsisseenfromEq. (1), it ispossibleto order all four
conditional probabilities by the degree of their decrease
on the matrix [2q % 2p]. In fact, thissignifiesthe transi-
tion to the consideration of rank statistics. Consider the
problem of identifying rank statistics using the a priori
hyperbolicity hypothesis, p(r) = C/(rY). Obviously,
Inp(r) = -s[p(r)] =N[p(r)] =InC - yInr = § - ySr);
in other words, either the positive or the negative
entropy of the distribution is proportional to the rank
entropy.

Figure 4 showsthe result of the statistical identifica-
tion of both initial and asymptotic distributions of the
guartet alphabet. The quality of the verification of the
hyperbolicity hypothesis (Fig. 4) is quite satisfactory,
Yo = 0.87, v, = 1.05, and y = 0.96. Thus, a Penrose
mosaic obeys the Zipf-Mandelbrot statistics. More-
over, Py(a,/v Oc¢) = P,(a,/v Oc) and Py(a,/v Oc) =

Po(ay/v 0 ¢) O {Pua Pgaa}, which indicates the
invariance of these “golden frequencies’ also in the
problem of eigenvalues of the M-matrix.

It is well-known that the mechanism of generation
of hyperbolic statistics in linguistics, economics, and
sociology is the consequence of the competition
assumed to be absent in the collectives with the normal
(Gaussian) statistics. Figure 2 illustrates the mecha
nism of hyperbolicity of the quartet g-rhombus alpha
bet of a mosaic. Choosing an arbitrary g-rhombus as a
percolation center, we can construct the coordination
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Fig. 3. Two-level binary tree of asymptotic two- and four-
dimensional probabilistic vectors of a Penrose mosaic.
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Fig. 4. Statistical identification of (1) the initial and (2) the
asymptotic distributions of the quartet alphabet.

fronts, which, in the global sense, are characterized by
the maximum convexity (in the discrete representa-
tion). Now, consider some specific features of the con-
struction of coordination fronts.

The existence of edge contacts cannot provide the
continuity of coordination fronts. The number of edge
contacts does not exceed two.

On average, the number of possible topological ver-
tex contacts between the rhombuses is four, i.e,
exceeds the number of topological edge contacts.

Asisseen from Fig. 2, the continuity and the maxi-
mum convexity of coordination fronts provide vertex
contacts with a considerable statistical advantage over
edge ones,

P(v/a,0a,) = 68%; P(c/a,0a,) = 32%,

which reflects the golden nature of a Penrose mosaic.
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Fig. 5. Cayley's tree of (a) a Penrose mosaic and (b) its
enlarged fragment. An obtuse g-rhombus on a Cayley’stree
of a Penrose mosaic is depicted by a circle, an acute
g-rhombus, by atriangle.

Using the Zipf linguistic interpretation, we see that
an edge contact is more “expensive’ (words of higher
ranks), whereas a vertex contact is “cheaper” and,
therefore, is encountered much more often (in our case,
by afactor of 2.13). These opposite tendenciesresult in
an “asymptotic compromise” reflected in the [2g % 2p]
matrices. Thus, in terms of the Zipf—-Mandelbrot law,
a Penrose parquet has typical linguistic characteris-
tics. To some extent, a Penrose mosaic (Fig. 2) can
be considered as a two-dimensional text of polar
geometry.
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MAPPING OF A PENROSE MOSAIC
INTO QUASISTOCHASTIC CAYLEY'S TREES
AND ENTROPY PERCOLATION

The conventional coordinate representation of a
Penrose mosaic is insufficient because aresearcher can
reveal only the objective coordinate component
(g-rhombuses) of the quasicrystal order. We believethat
the essence of cellular net structures and mosaics
(including Penrose mosaics) is reflected by another
component—a pulse one (see the [2q % 2p]-matrices).
The pulse component is understood as the simplest
adjacency pair ratio or the coordination between any
two contacting pairs of golden rhombusesin amosaic.

Such a representation (adequate for the [2q x 2p]
matrix) can be conveniently considered in graph struc-
tures of a specia form. We mean here the adjacency
tree graphs[12] constructed by acertain algorithm. The
closest analogues of such graphs are Bethe trees [13]
generalized in the form of Cayley’strees. The tree rep-
resentation is the most complete one, because it allows
oneto reveal in explicit form al the coordination rela-
tionships without the loss of the objective component
[14-16]. The algorithm for constructing Cayley’s tree
graphs for cellular structures of the genera type (such
as net structures of mesodefects in quartz glasses) and
the properties of Cayley’strees are described elsewhere
[14-16]. Here, we should like to emphasize that, in the
general case, the degree of branching of the bushes of
Cayley's trees is a random quantity. However, neither
reflection in the tree topology nor some order and organi-
zation of Cayley’streescan beforbidden. Cayley’streesof
such type are called quasistochagtic. Cayley’s trees of a
Penrose mosaic are related to this class.

Now, apply the theory of graph enumeration to these
Cayley's supertrees of a Penrose mosaic (Fig. 5)
[12, 17]. However, the theory of graph enumeration
usually considers decomposition of Cayley’streesinto
elementary bush subgraphs ignoring the types of verti-
ces and bonds. In our case, this simplified approach is
useless. We introduce a new type of an enumerative
polynomial composed not of bushes but of elementary
symbols of the [2g x 2p] alphabet. These enumerative
polynomialsfor Cayley’strees of a Penrose mosaic are
arranged according to the Zipf-Mandelbrot statistics
(see the previous Section). Thus, these enumerative
polynomials have the fixed rank | = 4. It is natural to
normalize this rank enumerative polynomial and, thus,
to obtain the probabilistic enumerative polynomialsin
the form

me) = 5 X, @)
=1

where x O [2q x 2p]; | = 1, 2, 3, 4 are the ranks of
branches in the Zipf-Mandelbrot sense; (1) are the
probabilistic weights of the Ith rank in the [2q % 2p]
alphabet; and i isthe number of the hierarchical level on
Cayley’'s trees of a Penrose mosaic. Figures 6a and 6¢
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Fig. 6. Dynamics of the (a, ¢) rank probabilistic enumerative polynomials and (b, d) rank probabilistic dynamics over the levels of
a Cayley'stree of a Penrose mosaic along the percolation directions center ——— periphery; (a, b) direct and (c, d) inverse flows.

and Figures 6b and 6d show the hierarchical dynamics
of the rank statistics and the partial (rank) dynamics,
Eqg. (2). One can readily see the obvious periodic nature
of these polygons, which indicates the quasicrystal
nature of a Penrose mosaic.

Compare qualitatively the hierarchical dynamics of
the rank polynomials (Figs. 6a, 6¢) along the percola
tion directions center—periphery. The aternation of
decreasing and mode polygons is more clearly seen in
the direct flow (Fig. 64). The variation of the mode
structure of polygons is seen in Fig. 6a more clearly
than in Fig. 6¢c. The reflection from the co-horizon
resultsin a more homogeneous percolation structure of
polygons (Fig. 6¢). Comparing Figs. 6b and 6d, we see
that the partial (rank) percolation over the hierarchical
levels of Cayley’s trees of a Penrose mosaic in the
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reverse flow is somewhat smoothened. The essentially
stochastic nature of the wavelike flow of the probabilis-
tic measuresis seen in all the representationsin Fig. 6,
which indicatesthe preval ence of the stochastic compo-
nent over the determined percolation component of
Cayley's trees of a Penrose mosaic. This qualitative
analysis of the polygon percolation showsthat it is nec-
essary to convolute this detailed information into a cer-
tain functional so that it could reflect both the noiselike
and the structurized componentsin the ordering of Cay-
ley's trees of a Penrose mosaic.

Now, consider the tree percolation of the probabilis-
tic measures of the mosaic at the functional level. In
particular, consider the entropy functional set at the
probabilistic enumerative polynomial (2) of each
hierarchy level. The entropy functional was chosen in
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Fig. 7. (1) Percolation entropy and (2) structural coefficient
over the hierarchical levels of Cayley’s tree of a Penrose
mosaic: (&) direct (Hy, = 0.6749 £ 4.13%, n = 9.99%, &, =
37.14%) and (b) reverse (Hy, = 0.6867 = 2.66%, n = 8.44%,
&, =31.56%) flows.

Vajdaform:
Hy(i) = zui(l)[l—ui(l)], 3)
|
L HImO)
WO = = R L (0] )

Thus, the entropy introduced here possesses the proper-
ties of nonnegativity, nonlinearity, and connectivity and
obeysthe additivity principle. The upper estimate of the
asymptotic Vaida entropy equals unity, whereas the
Shannon measure converges. The Vajda entropy corre-
sponds to the chosen scheme with B-distributions,
which is well-known in the theory of Brownian
motion. Equation (4) can be interpreted as the struc-
tural coefficient of the percolation process in terms of

entropy. If Hy[[ ()] O maxHy[X (DIny() O 0, the
entropy of theith hierarchy is purely stochastic (100%

noise component). If Hv[ﬂ:(‘ MO0 0,thenny() T 1 (is
fully determined). Obvioudly, in rea situations, the sto-

chastic and the determined percolation components are
mixed.

We should like to make an important methodol ogi-
cal remark on the percolation problem. Usually, one
considers percolation of a certain physical “agent” in
the lattice whose vertices or bonds are affected by cer-
tain noise factors. We search for the percolation thresh-
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old in the problem of vertices or bonds to establish
the relation between this threshold and the lattice
symmetry.

The percolation problem considered here is quite
different in at least two aspects. First, the noiselike fac-
tor isincluded into the quasi stochastic topol ogy of Cay-
ley’s trees of a Penrose mosaic (Fig. 6) and, thus, can-
not be considered as an external factor. A random quan-
tity in our problem is not only bush branching of
Cayley’'s trees of a Penrose mosaic, but also the bases
(vertices) of the bushes. It is clear that the internal
nature of the stochasticsin our caseis much more com-
plicated than in the classical percolation problem.

Second, percolation in lattices is understood as a
certain generalized flow also of an external nature. The
carriers of this flow can be charges, masses, densities,
concentrations, etc., but they all belong to the class of
measures. |n our case, these are polygons and statistics
given by Eq. (2) and, later, also entropy functionals
given by Egs. (3) and (4). Therefore, one can consider
the probabilistic entropy-like flowsin Cayley’s trees of
aPenrose mosaic. Again, these measures are essentialy
internal and, therefore, the problem of probabilistic
entropy percolation is a problem of self-identification
of the quasistochastic topology of Cayley’'s trees of a
Penrose mosaic.

Calculationsby Egs. (3) and (4) for Cayley’strees of
a Penrose mosaic are illustrated in Fig. 7, where the
entropy percolation over the hierarchical levels of Cay-
ley’strees of aPPenrose mosaic is of the wave type. Esti-
mation of the entropy percolation by Egs. (3) and (4)
(Fig. 7) yields the minimum period consisting, on
average, of two hierarchical levels. According to
Figs. 7a and 7b, the quasiperiodic entropy oscillations
are preserved in both direct and reverse flows, but are
more pronounced in the former one. Although the aver-
age values calculated by Eq. (4) in both cases differ
by 1%, the individual values of these curves can differ
by 7%. The pronounced differencesin n-values (Fig. 7)
indicate the statistical importance of the quasi periodic-
ity of the percolation entropy flowsin Cayley’s trees of
a Penrose mosaic. In terms of thermodynamics, the
reverse flow is*cooler” than the direct one. One has to
pay attention to the average entropies given by Eq. (3),
which almost coincide in both casesin Figs. 7aand 7b,
whence follows the conclusion that, on average, the
direct and reverse flows in Cayley’s trees of a Penrose
mosaic are equivalent in terms of the entropy func-
tional. The variations in entropy with respect to the
average value are also essential and are from three to
four percent. Comparing the stochastic and the deter-
mined levelsin Figs. 7aand 7b, we see that the direct
flow has a 10%-ordered component, whereas the
reverse one, an 8.4%-ordered component. Thus, the
reverse flow (Fig. 7b) is more stochastic than the direct
one, which is the “payment” for reflection from the
oo-horizon and can be considered as a certain analogue
of the second law of thermodynamics.
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Another no lessimportant result is obtained by com-
paring the entropy characteristics (see the previous sec-
tion) for a quartet alphabet and the percolation entropy
averaged over the hierarchies of Cayley’s trees of a
Penrose mosaic. In fact, both entropies are practically
identical. Thus, the percolation of the entropy measures
on Cayley’streesfor a Penrose mosaic obeysthe ergod-
icity principle extended to Cayley’s tree graphs. More-
over, on average, the probability and the entropy perco-
lations on Cayley’s trees of a Penrose mosaic can be
characterized in terms of a certain entropy invariant,
which corresponds to the golden entropy at the level of
the quartet alphabet.

CONCLUSION

It is suggested that Penrose mosaics be considered
using a quartet alphabet [2q % 2p], whose elements are
g-rhombuses (vertex or edge types of contact). In a
broader sense, a Penrose mosaic obeys the hierarchical
three-level aphabet—a pair of golden triangles and
rhombuses, a pair of ten-vertex polygons composed by
5 + 5 obtuse and acute rhombuses possessing fivefold
axis, and a point of pentacoordination (the dorsal sym-
metry). It isthe grammar of thethree-level alphabet that
allows the simplest construction of a Penrose mosaic.

The hierarchical aphabet, in particular at levels |
and Il, should be complemented with probabilistic
analysis. One can see the important role played by the
golden nature of the alphabet of a Penrose mosaic at
both levels. A Penrose mosaic has an invariant (a dou-
bleratio at level I1) of the probabilities of an asymptotic
guartet vector. We also introduced into consideration
the entropy functionals in alphabets | and Il generated
by the golden relationships, so that a Penrose mosaic
can be considered as a parquet in the alphabet [2q % 2p]
synthesized with the aim of preserving the golden
entropy.

Itisprovenintermsof rank statisticsin the a phabet
[2g % 2p] that, on the whole, Zipf—-Mandel brot distribu-
tion is valid for a Penrose mosaic. The mechanism of
the generation of hyperbolic statistics is considered as
the competition between the expensive edge and the
cheap vertex contacts in the construction of convex
coordination fronts. The results obtained alow the
interpretation of a Penrose mosaic on the basis of alin-
guistic model and, thus, as a linguistic structure or a
text with atwo-dimensional polar geometry. The com-
plete representation of a Penrose mosaic in gquasisto-
chastic Cayley’streesis constructed with the aid of the
[2q x 2p] a phabet which, along with the objective com-
ponent (g-rhombuses), takes into account the coordina-
tion and adjacency of the vertex and edge contacts.
Growing and collapsing Cayley’s trees are discussed,
where the coordination trandation is considered as a
Markovian r-shift. A Cayley’stree of a Penrose mosaic
is, in fact, a smplicial complex with ultrametrics. In
terms of crystallography, a Cayley’s tree of a Penrose
mosaic is a generalized quasistochastic tree lattice.
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The (internal) percolation problem for Cayley’s
trees of a Penrose mosaic is solved in terms of entropy
functionals for enumerating rank polynomials. Cay-
ley’s trees of a Penrose mosaic are characterized by a
wave flow in both center —= directions with a mini-
mum period equal to two hierarchical levelsof Cayley’s
trees of a Penrose mosaic hierarchy. The percolation
entropy is characterized by aperiodic flow with ~90%-
stochasticity and, thus, with ~10% order. This is an
important quasicrystal aspect of a Penrose mosaic. On
average, percolation entropy is equivalent to the golden
entropy of a Penrose mosaic in the [2q % 2p] alphabet,
which indicates the ergodicity of the tree percolation.
On average, the Markovian shift on Cayley’strees of a
Penrose mosaic is characterized by a golden-entropy
invariant.
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Abstract—The crystal structure of seidozerite was refined (a Siemens P4 diffractometer, MoK, radiation,

1180 ind
5.627(1)

endent reflections, anisotropic refinement, R = 0.053). The monaoclinic unit-cell parameters area =
, b =7134(1) A, c =18590(4) A, B = 102.68(1)°, sp. gr. P2/c, Z = 4. The structural formula,

Na, ¢Cayg 275Mng 45Tl 57521 925 Si,071OF, agrees well with the results of the electron probe analysis. Seidoz-
erite is demonstrated to belong to the meroplesiotype polysomatic series including the structures of more than
30 titano- and zirconosilicates. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The zirconosilicate seidozerite was discovered by
E.l. Semenov in 1958 in the Lovozero alkaline massif
[1]. This mineral belongs to a rather large group of
(Zr,Ti)-silicates, whose structures contain three-layer
heteropolyhedral stacks denoted by HOH, where O is
the central layer consisting of octahedra, and H are the
outer layers formed by Si-tetrahedra and octahedra of
highly charged Zr or Ti cations. In 1964, A.M. Portnov
described the second specimen of seidozerite from
North Baikal [2]. The crystal structures of the speci-
mens from both deposits were studied by the photo-
graphic method [3, 4]. However, the high R factors
(0.166 and 0.207 for the hOl and Okl reflections, respec-
tively) obtained in the pioneering study [3] and the
high, athough slightly improved, R factors (0.146 for
the non-zero Okl, 1kl, and 2kl reflections and 0.100 for
the non-zero hOI, hll, and h2l reflections) obtained in
the more recent investigation [4] cast some doubt upon
the characteristics of the cation distribution in the
seidozerite structure.

Recently, seidozerite crystals were also discovered
in another region of the Burpala massif (North Baikal).
They are characterized by an higher ZrO, content
(28.18-30.17 wt %) compared to those in the speci-
mens from the Burpala and Lovozero massifs studied
carlier (19.6-23.15 and 23.14 wt %, respectively). The
high ZrO, content in the new seidozerite specimen, the
availability of single crystals suitable for X-ray diffrac-
tion analysis, and the present-day possibilities of the
instruments have stimulated interest in the refinement
of the seidozerite structure.

EXPERIMENTAL

The seidozerite crystals were found in an akaline
pegmatitic body 1 m in thickness and 10 m in length
located in the southwestern region of the Burpala alka-
line massif, whose area and age were evaluated at
150 km? and 330 Ma, respectively. Seidozerite occurs
aselongated crystals crosscutting earlier catapleiiteiso-
lations and intergrowing with grains of nepheline and
feldspar.

According to the results of the electron probe anal-
ysis performed for three crystals, the average chemical
compositions of the major components of seidozerite
are as follows (wt %): SIO,, 29.39; ZrO,, 29.20; TiO,,
13.03; Al,05, 0.26; MnO, 5.76; Ca0, 3.81; FeO, 1.90;
MgO, 0.32; N&O, 12.26; K,O, 0.05; Nb,Os, 0.68;
La,0;, 0.11; Ce, 04, 0.15; and F, 3.06; the sumis 99.98.
This composition corresponds to the following chemi-
cal formula of seidozerite describing the cation con-
tents (with respect to 36 anions, namely, O> and F):

(Nag 20Cay 15K goLag 01Ceg 1)

* (Zr3 77Ty 5oMn y9Fe( 4, Mgy 13Ny 5)(Si7 78A1¢ g)-

A crysta of dimensions 0.08 x 0.08 x 0.1 mm?® was
selected under a microscope and was used for the qual-
itative electron probe analysis (a Philips PW 515 xI 30
microprobe, the accelerating voltage was 20 kV; the
current intensity was 9 nA; and the diameter of the elec-
tron beam was 5 uym). The results of the analysis con-
firmed the presence of the above-mentioned cations in
the mineral. The X-ray diffraction data were collected
from the same crystal on an automated Siemens P4 dif-
fractometer. The crystallographic characteristics and
the details of the X-ray diffraction study and structure
refinement are givenin Table 1.

1063-7745/02/4702-0196%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Table 1. Crystallographic characteristics and details of X-ray diffraction study
Formula Nay §C80.275MNo 42521 0,925 T10.575[ Si207] OF
Unit-cell parameters, A a=5.627(1), b= 7.134(1), c = 18.590(4)
3 =102.68(1)°

Sp.gr;Z P2/c; 4
Unit-cell volumeV, A3 728.06(3)
Calculated density p, g/cm?® 3.574
Absorption coefficient p, mm 3.34
Molecular weight 391.8
Fooo 746.0
Diffractometer Siemens P4
Wavelength, A 0.71069
Maximum value of the 26 angle, deg 60.01
Total number of reflections 3291
Total number of independent reflections 2122
Number of independent reflections with |F| > 40(F) 1180
Rt % 7.81
Number of parametersin the refinement 138
Re upon isotropic refinement 0.081
Rr upon anisotropic refinement 0.053
WR(F?) 0.145
GOF 0.990
AP, EIR3 1.09
Dpmin, /A3 -1.27
Table 2. Distribution of the cations over the positions in the seidozerite structure

Electron

| wcring | aoting | Thepessisuy | Seon | coneniing | oion G | o
0 study [3] to study [4] real occupancy distance

Zr ZrozsTigos | Zrg7(Mn, Fe)gs | ZrggTiga 36.24 36.40 2.127 2.057
Ti Ti TigzoF€p 11 TigasZroazs 24.86 25.40 1.994 1.928
Mn  |Mn(Mg) Cay 4oMng og Mng 29N&g 125 Tig 005 18.35 18.35 2.265 2.153
Na(1) | Na Nag 78Cag.22 Nay.065C&0 035 11 11.31 2.568 2.540
Na(2) [Na Na Nag 43Ca,07 12.28 12.28 2.498 2.534
Ca |Na Na Cay 170MNg 135N 8y 080 15.28 15.31 2.394 2.300

Note: The cation content in the unit cell is Nag 3Cay 1(Mn, Fe); 7Zr3gTi, g according to the data of the electron probe analysis and
Nag 4Cay 1(Mn, Fe); 7Zr3 7Ti, 3, according to the results of X-ray diffraction study.

The unit-cell parameters were determined by the
|east-squares method based on the angular parameters
of 40 reflectionsin the range 8° < 26 < 27°. The absorp-
tion correction was applied using the Y scanning proce-
dure. The structure was refined within the space
group P2/c starting from the atomic coordinates deter-
mined earlier [4]. Initially, the structure wasrefined iso-
tropically to R = 0.081 for 1180 reflections with |F| >
40(F) using the SHELX97 program package [5]. At

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 2

2002

subsequent stages, the electron contents of six cationic
positions were refined, and the anisotropic thermal
parameters were included, which made it possible to
reduce the R(F) factor to 0.053. The distribution of the
cations over six nonequivalent positions was estab-
lished based on the refinement of their electron con-
tents, the correspondence between the structural for-
mula and the data of electron probe analysis, the elec-
troneutrality of the chemical formula, the valence
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Table 3. Coordinates, thermal parameters, multiplicities (Q), and occupancies () for the basis atoms

Atom* x/a ylb zlc Q q U, A2x100
Zr 0.2004(1) 0.1193 (1) 0.07342(4) 1 1 0.97(2)
Ti 0.0 0.1153(3) 0.25 05 0.475 1.14(3)
Mn 0.5 0.3566(4) 0.25 05 0.440 1.74(6)
Na(1) 0.2051(6) 0.6157(5) 0.0695(1) 1 1 1.13(5)
Na(2) 0.0 0.6149(8) 0.25 05 05 2.18(9)
Ca 0.5 0.8656(7) 0.25 05 0.385 3.32(8)
Si(1) 0.7273(4) 0.3872(4) 0.1046(1) 1 1 1.00(4)
Si(2) 0.7217(4) 0.8422(3) 0.1049(1) 1 1 0.99(4)
0(1) 0.738(1) 0.6135(8) 0.1096(3) 1 1 2.3(1)
0(2) 0.451(1) 0.3264(9) 0.0680(3) 1 1 2.1(1)
0(3) 0.440(1) 0.9015(9) 0.0763(3) 1 1 2.0(1)
O(4) 0.927() 0.3267(9) 0.0586(3) 1 1 1.6(1)
o(5) 0.904(1) 0.9073(8) 0.0518(3) 1 1 1.4(1)
0(6) 0.797(1) 0.3154(8) 0.1900(3) 1 1 1.6(1)
o(7) 0.817() 0.9141(9) 0.1888(3) 1 1 1.7(1)
0(8) 0.240(1) 0.124(2) 0.1849(3) 1 1 1.9(1)
F 0.301(1) 0.600(1) 0.1922(3) 1 1 3.9(2)

* The cation contents of the positions correspond to those presented in Table 2.
** The Ug, values are calculated based on anisotropic thermal displacements of the atoms.

balance, and the fact that the average interatomic dis-
tances should be approximately equal to the sum of the
ionic radii of the cations and anions in the correspond-

Table 4. Interatomic distances (A)

Zr—0(8) 2.035(5) [Na(l)-F 2.229(6)|Ca—F 2.340(8)
—0O(3) 2.051(6) -0(4) 2.370(6)| —-F 2.340(8)
—0(2) 2.061(6) —0(3) 2419(7)| —O(7) 2.345(6)
-0(4)' 2.110(6) —0(2) 2.488(7)] —O(7)' 2.345(6)
—0O(5) 2.223(6) -O(4)' 2570(7)] —0O(8) 2.497(7)
—0(5)' 2.281(5) —O(5)' 2.659(7)| —O(8)' 2.497(7)

Average, 2.127 —0(1) 2.886(7)| Average, 2.394

—0O(1)' 2.925(7)

Mn-F  2.209(8) | Average, 2.568 Ti—O(7) 1.974(6)
—-F  2.209(8) —0O(7)' 1.974(6)
—0(6) 2.225(6) | Na(2)—F 2.200(5)| —O(8) 2.002(5)
—0(6)' 2.225(6) —F 2200(5)| -O(8)' 2.002(5)
—0(8) 2.361(7) —O(7)2529(8)| —O(6) 2.007(6)

—0(8)' 2.361(7)
Average, 2.265

—O(7)' 2.529(8)
—0O(6) 2.560(8)
—0O(6)' 2.560(8)
-0(1) 2.702(6)
—0O(1) 2.702(6)
Average, 2.498

—0O(6)' 2.007(6)
Average, 1.994
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ing polyhedra. The resulting distribution (Table 2) dif-
fers from the distributions found earlier [3, 4] and is
supported by thelowest Rfactor. The structural formula
2(Na,Ca){(Na,Ca)(Ca,Mn,Na,0)(Mn,Na,Ti,0)(Ti,Zr,0)
[(Zr,T1)Si,0,]0F} (the content of the H layer is
enclosed in brackets, and the content of the HOH stack
isenclosed in braces; Z = 4) agreeswell with the results
of electron probe analysis. The distribution of the cat-
ions presented in Table 2 should be considered as the
optimum compromise between the experimental results
of chemical and X-ray analysis. Conceivably, there are
insignificant variations in the cation contents in partic-
ular polyhedra, which are, apparently, responsible for
the higher values of U, for the cationslocated in the Ca
position compared to U, for the Na(1) and Na(2) posi-
tions.

The final coordinates of the basis atoms and their
thermal parameters are given in Table 3. The inter-
atomic distances are listed in Table 4. The valence bal-
ance was calculated according to Brese and O’ Keeffe
[6], and the results are presented in Table 5. The Si(1)—
O and Si(2)-O bond lengths are (1.610(6)—1.632(6)
and 1.612(6)-1.637(6) A, respectively with average
values 1.618 and 1.626 A, respectively) close to the
standard values and are therefore not given in Table 4.
The projection of the structure (the ATOMS program [7])
isshown in the figure.
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CRYSTAL STRUCTURE OF ZIRCONIUM-RICH SEIDOZERITE

RESULTS AND DISCUSSION

The crystal structure of seidozerite is based on the
HOH bafertisite-like stacks parallel to the (001) plane
[8]. The O octahedral layer is composed of (Ti,Zr)Og-,
(Mn,Na,Ti)Og-, and (CaMn,Na)-octahedra and the
eight-vertex Na(2)-polyhedra. All the cationic positions
within the octahedraof the O layer are only partly occu-
pied.

On the contrary, the (Zr,Ti)Og-octahedra, which are
involved in the heteropolyhedral H layers together with
the Si,O; diortho groups, are completely occupied. The
HOH stacks in seidozerite are directly linked to each
other via edges shared by the adjacent (Zr, Ti)O4-octa-
hedra belonging to different stacks. Hence, the seidoz-
erite structure can be described as a mixed framework,
whose cavities located between the adjacent HOH
stacks are occupied by the Na(1) cations occupied in
the eight-vertex polyhedra.

The valence balance cannot be calculated with a
high degree of accuracy because of the above-men-
tioned cationic disordering. However, the results pre-
sented in Table 5 alow the unambiguous identification
of the positions occupied by the F atoms or the OH
groups. The O anions in the O(8) position and the F
anions belong to the O layer, but they are not involved
in the Si-tetrahedra.

The modular structures of more than 20 titanosili-
cates containing the bafertisite-like HOH stacks analo-
gousto those found in seidozerite have been considered
earlier [8-11]. The crystal structures of some of these
minerals are still unknown, and they were assigned to
the bafertisite-like group based on the comparison of
the unit-cell parameters and the data on their composi-
tions. The correctness of the application of the modular
concept to the prediction of unknown structures has
already been confirmed in the studies of minerals such
as delindeite, perraultite, betalomonsovite, and some
varieties of lamprophyllite, whose structures were
established more recently. These structures were sur-
veyed in most detail in[11].

Table 5. Caculated valence balance

199

Seidozerite structure projected onto the (100) plane.

All titanosilicates of this series have close unit-cell
parameters (a ~ 5.5 A, b ~ 7 A) typical of the bafer-
tisite-like HOH stacks. The space between these stacks,
likethat in layered silicates, can involve isolated atoms
or atomic groups aswell as the fragments of other min-
eral types. The latter statement is exemplified by the
structures of quadruphite and polyphite [12], which
contain nacaphite [13] fragments between the layers.
The interlayer content (according to Belov’s evocative

Anion, cation | O(2) %) o(3) o(4) o) o(6) o(7) o(8) F

Zr 0675 | 0694 | 0592 | 0436 0.724
0.373
Ti 0624 | 0682 | 0632
Mn 0.274 0190 | 0220
Na(1) 0053 | 0156 | 0188 | 0214 | 0098 0.225
0.048 0.125

Na(2) 0.094 0138 | 0.51 0.262
Ca 0229 | 0152 | 0.170
Si(1) 1016 | 1.030 1.039 0.979
Si(2) 0.968 1.033 0.965 1.019
b3 2179 | 1861 | 1915 | 1970 | 1872 | 2015 | 2081 | 1698 | 0877
CRYSTALLOGRAPHY REPORTS Vol. 47 No.2 2002
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expression, the “pie filling”) determines the c parame-
ter, which increases as the filling becomes more com-
plex. The thickness of the HOH stacks is ~9-10 A. In
the structures where the interlayer space is occupied
only by isolated atoms, the c-parameter is ~n x 10 A,
where nisthe number of the HOH stacks. The ¢ param-
eter in seidozerite (18.590 A) indicates that its unit cell
contains two symmetrically equivalent HOH stacks
perpendicular to the [001] axis. In the seidozerite struc-
ture, the HOH stacks are linked via the shared edges of
the Zr-octahedra, and d (0 0 1)/n has the minimum
value (9.068 A) of al minerals of this series. In the
polyphite structure characterized by a large interlayer
space, d (00 1)/n, on the contrary, reaches 26.49 A.
Within the framework of the classification of homolo-
gous and polysomatic series proposed recently [14],
seidozerite, like al bafertisite-like minerals, belongs to
the meroplesiotype series. Thisseriesisreferredto asa
merotype series because one fragment, namely, the
HOH stack, is common to al the members of this
series, whereas the second fragment located between
the layers isindividual for each mineral of this series.
At the sametime, the bafertisite-like polysomatic series
should be considered as a plesiotype series because the
HOH stacks differ from each other not only in compo-
sition but also in topology. Earlier, it has been estab-
lished that these structural differences can be seen from
thefact that the " octahedral” cationswithintheH layers
can adopt different coordination numbers (either 6 or 5).
Similar to delindeite studied recently, seidozerite exem-
plifies the plesiotype character of the HOH layers asso-
ciated with the changein the coordination of the cations
not only in the H layers but also in the O layers. Thus,
the Nacationsinvolved in the O layersin the delindeite
and seidozerite structures are located in seven- and
eight-vertex polyhedra, respectively, rather than in
octahedra.
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Abstract—The transparent monolithic crystal rods grown by crystallization of the incongruent Ba, 75R; 25F» 25
melts (R = Gd-Y b) are shown to be heterogeneous: the larger part of the crystal volume has a distorted fluorite-
type cubic lattice, while the smaller part retains an undistorted cubic structure. The distortions were recorded
by the methods of X-ray powder and electron diffraction and crystal optics. Two types of chemical heterogene-
ity of Bay 75Ry 25F5 25 Crystals are considered as possible sources of distortions: (1) a macroheterogeneous (at a
level of 1 mm) distribution of RF; over the crystal-rod diameter (a cellular substructure) and (2) a microheter-
ogeneous (cluster) structure with the nanometer dispersion typical of nanostructured materials. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

The M, _,RF,,, phases (M = Ca, S, Ba, Cd, and
Pb; Ris one of 16 rare earth elements) with the defect
CaF,-type structure are characterized by pronounced
nonstoichiometry (0 < x<0.5). Thechangesinthecrys-
tal composition give rise to changes in the “defect
structure” and crystal properties over awiderange. The
M, _,RF, , « crystals are multicomponent material s that
can substitute single-component crystals (CaF,, BaF,,
etc.), whose commercial application is very limited.

It is commonly believed that al the M, _,RF, .
phases are crystallized from melts as cubic crystals, sp.

gr. Fm3m with the fluorite-type (defect) structure.
However, what arethe reasonsto believeit and how jus-
tified is this opinion?

This opinion is based on two types of data. First,
these are the data obtained from the study of the phase
diagrams of the MF,—RF; systems. To study the phase
equilibria in the subsolidus, a mixture of powdered
components is annealed until the attainment of the
equilibrium state. Then the samples are quenched and
their phase composition is studied by the X-ray diffrac-
tion method. At rather high temperatures, numerous
M, _,RF, .« phases showed no distortions in cubic

structure. The phase diagrams and the composition
studied by the X-ray diffraction method arereviewed in
[1, 2] and described in a number of original publica-
tions.

It is shown that the equilibrium M, _,RF, . , phases
are cubic, but the crystals of the same composition
grown from melt under nonequilibrium conditions are
not necessarily cubic.

The second source of information on the system
(cubic) of the M, _,RF, ., phasesis the study of their
structures performed mainly on nonequilibrium sam-
ples. The standard methods fail to reveal the distortions
of the fluorite unit cell, which are seen from the split-
ting of reflections.

Thus, the structura studies of M, _,RF, .  crystals
grown from melts cannot show that they are cubic
either.

Theonly fact that can be stated isthat crystallization
from a melt provides the formation of the most pro-
nounced disordered phases, i.e., nonstoichiometric flu-
orite cubic M, _,RF, ., , phases.

Thus, the opinion that the M, _,RF, , , phases crys-
tallized from melts are cubic fluorite-type phases fol-
lows more from general considerations and traditional
concepts than from experimental facts.

1063-7745/02/4702-0201$22.00 © 2002 MAIK “Nauka/Interperiodica’
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The history of the studies of M, _,RF,, crystals
includes a case where “obvious’ and generaly
accepted concepts were disproved severa years later.
We mean here the widespread recognition of the theo-
retical model suggested by Goldschmidt to describe the
isomorphism of Ca?* and R* in CaF, [3]. According to

thismodel, the superstoi chiometric F!~-ions occupy the
centers of large cubic voids. The logics and the apparent
uniqueness of this mode (there are no other large voids)
alowed the modd to survive from 1926 to 1969, when,
finaly, experimenta structurd studies of Ca, ¢, Ce, 1oF, 39
[4] and Ca,,Y, ,F,, [5] crystals were undertaken and
proved that the model was erroneous.

The story of theisomorphism model is analogous to
the story discussed in the present paper and both stories
are closely related. Beginning with the structural stud-
ies of 19691970, Ca, _,RF, ., crystals were consid-
ered to be cubic, which was never verified experi-
mentally not only for these crystals but also for other
MF,-based phases. However, as we have aready
showed, this statement is true only for the equilibrium
compositions.

In fact, the growth of M, _,R/F, ., crystalsisanon-
equilibrium process. The M, _,RF, . , phases for most
of x values are melted incongruently. The growth of
crystals of these phases is accompanied by the forma-
tion of two types of macroheterogeneitiesinthe R** dis-
tribution—axial and radial (the so-called cellular sub-
structure). Generally, the composition changes mono-
tonically along the growth direction of the crystaline
rod, being a background against which the radial inho-
mogeneity is developed.

In M, _,RF,,, crystals, the elements of the sub-
structure (the cells and their boundaries) have a milli-
meter scale. The variations in their composition give
rise to lattice-parameter gradients resulting in mechan-
ical stressesand, inturn, inthe optical anisotropy of the
crystals. The optical anisotropy occasionally observed
in M, _,RF, ., crystal rods has not been studied and
was attributed to residua thermal stresses that could
not lead to considerable lattice distortions.

On the scale of crystal structures, fluorite-type
M, _.RF, ., « phases should be considered as microinho-
mogeneous. Superclusters of defects and their associ-
ates with nanometer linear dimensions are enriched
with R*, whereas their composition is essentially dif-
ferent from the MF, matrix of these clusters.

The aim of the present work is to establish whether
theinhomogeneities of the chemical composition of the
products formed in the nonequilibrium crystallization
of incongruent Ba,, ;sR, »sF, ,s melts (whereR=Gd, Tb,
Dy, Er, Tm, Yb, and Lu) affect the structural and crys-
tallooptical characteristics of these crystals.

CRYSTALLOGRAPHY REPORTS Vol. 47
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SAMPLES

In the MF,—RF; systems (M = Ca, S, Ba, Cd, and Pb;
Risarare-earth element), we revealed 80 phases of the
composition M, _,RF,,,. These phases are divided
into five families depending on the number of MF,-cat-
ions. If the effect of the heterogeneity of M, _,RF, .,
crystals is seen in the X-ray powder diffraction pat-
terns, they should be most pronounced for the phases of
the Ba, _,RF, ., family. We studied the phases with
R = Gd—L u possessing the maximum difference in M**
and R* sizes (among al M, _,RF, ., phases) and a
pronounced dependence of the lattice parameter on the
composition, which is a favorable condition for the
observation of the distortions of a cubic lattice.

The Ba, ;5R, »sF, »s compositions were chosen from
the homogeneity region of the Ba, ,RF,,, phases
because such anisoconcentration “cut” of the RE series
provides an opportunity to study a new type of cation
ordering discovered in BaygYb,,F,, [6] aong with
phases containing other rare-earth elements. The com-
plete ordering of Ba>* and rare-earth elements, accom-

panied by a change in the sp. gr. Fm3m to sp. gr.
Pm3m is attained for the composition Bay ,sR; »5F »s.

We selected the samples in two ways. The samples
obtained from the mixture of small pieces taken from
different portions of the crystal rod allowed usto reveal
the maximum fluctuations in the composition, because
all types of inhomogeneities (axial and radial) and,
hence, al types of the distortions of the cubic latticein
the crystal bulk were apparent.

The samples, obtained by grinding monoalithic crys-
tal blocks, alowed us to extract information on the
local changesin the composition and the related distor-
tions of the crystal lattice. Hereafter, these samples are
called monoblocks and denoted as M. The monablock
dimension along the growth axis (typically, 2—4 mm)
did not exceed ~10% of the rod length, and, therefore,
the axial inhomogeneity could be neglected.

EXPERIMENTAL

Thecrystalswere grown by the Bridgman method
in an apparatus with a graphite heater. The BaF, charge
consisted of the pieces of single crystals containing
about 0.012 wt % of oxygen. The RF; reagents had a
purity of 99.90-99.99%; they were purified of oxygen
by the method described in [7] by keeping the melts
overheated by 100-150°C in afluorinating atmosphere
of the products of polytetrafluoroethylene (Teflon)
pyrolysis for 2—4 h up to the attainment of 0.005—
0.060 wt % of oxygen.

A graphite crucible with up to seven cellsfilled with
the charge was placed into the growth chamber first
evacuated to 102 mm Hg and then filled with He. The
fluorinating atmosphere was created by the products of
Teflon pyrolysis. The velocity of the crucible lowering
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Fig. 1. The shape of Ba; _,RF; 4  crystals.

was 4.9 £ 0.8 mm/h. The cooling rate upon crystalliza-
tion was 100-150°C/h. The crystal rods were 35—
40 mm in length and 10-12 mm in diameter. For the
spectroscopic studies, the crystals were doped with
0.01 wt % of Ce3*, Nd**, Pr3*, or Er3+*. In the text, the
concentrations of these rare-earth elements are indi-
cated together with the concentration of the main RE
element up to an RF; concentration of 25 mol %. In the
figures, the true compositions are indicated.

The crystals were annealed either wrapped in Ni
foil or in capillaries placed into a sealed Ni-container.
The fluorinating atmosphere was created by the prod-
ucts of polytetrafluoroethylene pyrolysis. We showed
that this technique provides conditions that practically
exclude pyrohydrolysis. The crystalswere annealed for
14 days at 900°C and for 32 days at 750°C. In the first
case, the container was quenched by cooling at arate of
200-300°C/min from the annealing temperature to
400-500°C; in the second case, at a cooling rate of
200-300°C/s.

Thecellular substructure of the crystals was stud-
ied in the transmitted light of an He-Nelaser and in the
polarized light inaMIN-8 microscope. The samplesfor
these observations (disks with a thickness of ~2 mm)
were cut out from the crysta rods normally to the
growth axis and then were polished (Fig. 1).

The chemical composition of the crystals was esti-
mated by the dependence of the unit-cell parameters of
Ba, _,RF, ., onthe RF; content [8] obtained for cubic
phases brought into equilibrium by annealing. For the
Ba, ,RF,,,crystals(wheretheweak distortions of the
CaF,-type lattice are not removed by annealing), the
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chemical composition was estimated using the parame-
ter of the pseudocubic unit cell a,, calculated using
unsplit fluorite reflections. This seems to be admissible
because the change in the molar volumes of the cubic
M, _.RF, ., « phases and the molar volumes of ordered
phases lie practically on the same straight line [9].

If the distortions of the cubic fluorite-type lattice
were essential, we used the parameter equal to the cube
root of the volume of the distorted unit cell, whichis, of
course, a very rough estimate. (The compositions are
given in mol % or, in formulas, in molar fractions (X)
of RF;.)

The phase composition of the crystalswas studied
on the following X-ray powder diffractometers. Sie-

m