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Abstract—An enantiomorphous 240-vertex “diamond structure” is considered in the space of a three-dimen-
sional sphere S, whose highly symmetric clusters determined by the subconfigurations of finite projective
planes PG(2, g), q = 2, 3, 4 are the specific clusters of diamond-like structures. The classification of the gener-
ating clustersforming diamond-like structuresisintroduced. It is shown that the symmetry of the configuration,
in which the configuration setting the generating clusters is embedded, determines the symmetry of diamond-
like structures. The sequence of diamond-like structures (from adiamond to aBC8 structure) is also considered.
On an example of the construction of PG(2, 3), it is shown with the aid of the summation and multiplication
tables of the Galois field GF(3) that the generalized crystallography of diamond-like structures provides more
possibilities than classical crystallography because of the transition from groups to algebraic constructionsin
which at least two operations are defined. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Earlier [1], it was shown that the adequate mapping
of the symmetry of diamond-like structures requires a
change of the Euclidean basis of the structural crystal-
lography to a more general basis of algebraic (projec-
tive) geometry. In particular, the incidence graphs of
specific subconfigurations of finite projective planes
PG, q = 2, 3, 4 turned out to be isomorphous to the
graphs of the specific clusters of a diamond-like struc-
ture. These graphs are mapped onto themselves by the
groups of projective geometry and contain the orthogo-
nal groups of the classical crystallography as their sub-
groups.

The present article is the second of a series dedi-
cated to the construction of the generalized crystallog-
raphy of diamond-like structures as a particular struc-
tural application of algebraic geometry, which includes
as the limiting case the respective sections of the clas-
sical crystallography [2, 3]. For diamond-like struc-
tures, the penta-, hexa-, and heptacycles are the most
realistic [4—6]. Therefore, the present study is dedicated
mainly to the determination of the symmetrically pos-
sibletypes of generating clusters of diamond-like struc-
tures containing only these cycles. In the general case,
the specific clusters of a diamond-like structure are the
combinations of various generating clusters, whereas

the diamond-like structures themselves are constructed
from acertain set of generating clustersinaway similar
to the construction of athree-dimensional Penrose divi-
sion from four types of tetrahedra[7].

The most highly symmetric diamond-like structure
is such acombination of two three-dimensional lattices
that can be implemented in the Euclidean space E? asa
diamond and in the space of athree-dimensional sphere
S as an “enantiomorphous diamond” or an irregular
{240} polytope[4, 5, 8]. This shows the importance of
those specific clusters of the {240} polytopein the gen-
eralized crystallography of diamond-like structuresthat
are defined by the corresponding subconfigurations
PG(2, q) considered in detail in the present study.

The frequent detailed citation of [1] alows the
author to use the definitions introduced in [1] and the
results obtained there. For clarity, the author often sac-
rifices mathematical rigor and uses numerous illustra-
tions to be able to compare directly the mathematical
constructions with the clusters they determine. The
results obtained make the basisfor constructing the sys-
tem of generating clusters, which allows the author to
derive diamond-like structures and determine al the
symmetrically possible structural phase transitions
between these structures.
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Fig. 1. Mapping of substructures of polytopesin E? [5, 10, 12]: (a) {3, 5} icosahedron whose three twofold axes coincide with the
Xi-, X9, and X3 axes of the Cartesian coordinate system (four hatched triangles and the center of the icosahedron belong to four

tetrahedrawhose centers form atetrahedron); (b) {4, 3} cube and its projection onto the plane represented in the form of a Schlegel
diagram (six-edge Petrie's polygon of the cube and its Schlegel diagrams are shown by solid lines); (c) the projection of the {4, 3,
3} polytopein E>; solid lines show its eight-edge Petrie's polygon; (d) the icosahedron and the stereographic projection of the 53m
group, whose fundamental domain is separated by the reflection planes R;, R,, and Ry shown by solid lines (the fivefold axis of the
icosahedron coincides with the X;-axis of the Cartesian coordinate system; the sections of the icosahedron by the plane normal to

X3-axisarethe (0, 0, xéo) ) point, the hatched pentagon, etc.; a 10-edge Petrie's polygon of the {3, 5} icosahedron is shown by solid
lines); (e) the rod of icosahedra sharing the fivefold axis (the part of the helix determined by the 10, screw axis of the {3, 3, 5}

polytopeisshown by asolid line); (f) Bernal’schain of tetrahedra; the 30/11 irrational screw helix corresponding to Petrie’s polygon
of the {3, 3, 5} polytope is shown by solid arrows; (g) the starlike polygon formed as a result of the orthogonal projection of

30 vertices of the {3, 3, 5} polytope along the 30/11 axis.

A 240-VERTEX “DIAMOND” STRUCTURE
IN THE SPACE OF A THREE-DIMENSIONAL
SPHERE S—AN IRREGULAR {240} POLYTOPE

Three-dimensional Platonic solids can be general-
ized to projective Platonic solids—finite projective
planes PG(2, g). Taking into account the metric rela-
tionships, this generalization requires the transition
from the space E? to the space E", n > 3. At n = 4, the
Platonic solids in the Schi&fli notation {p, g} (Figs. 1a,
1b, 1d) are extended to the four-dimensional Platonic
solids—{p, g, r} polytopes built by the {p, g} cellsin
such away that each face { p} isshared by two cellsand
each edge, by r cells. Thelocation of the cellsat the ver-
tex{p, g, r} correspondsto the location of the faces of the
{q, r}-vertex polyhedron of the polytope (Fig. 1c) [9-12].

The most important characteristic of the n-dimen-
siona polyhedron isits Petrie polygon; for the {p, g} -
polyhedron, it is a “zig-zag” consisting of h edges

CRYSTALLOGRAPHY REPORTS Vol. 47

(cos*(17h) = cos’(TYp) + cos*(TYq)) in which any three
successive sides do not belong to one face. Thus, for a
{4, 3} cube, h=6 (Fig. 1b). For a{3, 5} icosahedron,
Petrie's polygon consists of h = 10 “side” edges of a
pentagonal antiprism (Fig. 1d). For a{p, g, r} polytope,
Petrie’s polygon is a set of edges in which any succes-
sive three (and not four) edges belong to the Petrie’s
polygon of the {p, q} cell [10]. For example, the Pet-
rie's polygon of a four-dimensional cube (the {4, 3, 3}
polytope) is an octacycle, any three successive edges of
which belong to one cubic {4, 3} cell of this polytope
(Fig. 1c).

The division of E? into regular tetrahedrais impos-
sible because the dihedral angle of the regular tetrahe-
dron equals 70.53° < 72° = 360°/5. The “angular defi-
cit” of the connected tetrahedra can be avoided if one
“sacrifices’ their regularity by connecting 20 tetrahedra
into an icosahedron (Fig. 1a), which can be made only
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by using two types of edges with the length ratio
~0.951 in the tetrahedra. In this case, 12 vertices of an
{3, 5} icosahedron provide the regular triangulation of
the sphere S?, which is mapped onto itself by the

orthogonal group 53m of order 120 set by the follow-

ing defining relationships for the generating elements
(code):

R’ = (RRy)’ = (RRs)° = (RiRy)°
= (RleRs)lO =

whereR,, i = 1, 2, 3 arethe generating reflection planes
that single out the fundamental domain of the group

53m; RR,, RR;, R|R; are the rotations by the angles
of 2173, 2175, and 11, and R;R,R; = 5 isthe Coxeter ele-
ment whose degree h = 10 coincides with the number of
edges in the Petrie's polygon of an icosahedron
(Fig. 1d) [13, 14].

In the space of a three-dimensiona sphere S*
embedded in E*, the angular deficit of regular tetrahe-
drais avoided because of aconstant positive curvature;
in this case, the sphereisdivided into 600 regular tetra-
hedraforming the {3, 3, 5} polytope (four-dimensional
icosahedron). One hundred and twenty vertices of the
polytope {3, 3, 5} are determined by the unit vectors
(with the origin at the center of $) in E* to which there
correspondsthe set Y' consisting of 120 specific quater-
nions-icosians

Y' = {(£1,0,0,0)*, /2(£1, £1, +1,+1),
1/2(0, 1, +0, +1)"},

where A indicates that al the even permutations of

coordinates are alowed, o = 1/2(1 — ./5), and T =

1/2(1 + ./5). With respect to the multiplication opera-
tion of icosians, the set Y' isabinary icosahedral group
isomorphous to the subgroup of the special unitary
group SU(2). The set J of all the finitesumsq, + ... +
g+ ... + g, (where each g, is an occasion from (2)) isa
ring (a, B, v, 0) of icosians, where a, 3, y, and d belong

to the ring of the golden section Q(t) = {a + b./5}, a,
b O Z, where Zisaset of integers[14, 15].

All the motions in E* that bring the vertices of the
{3, 3, 5} polytope into coincidence form the subgroup
[3, 3, 5] of the orthogonal four-dimensional group O(4).
The group [3, 3, 5] of order 14400 isthe direct product
Y' x Y' that can be embedded in JQ2) x J(2). The
group [3, 3, 5] is defined by the code

R’ = (RRy)® = (R,Rs)° = (RyR,)°
— (R1R4)2 — QG — PlO — S30 — l,

where R, i = 1, 2, 3, 4 are the generating reflection
p|aneS, R1R2R3 = Q, Rl R3R4 = P, and R] R2R3R4 = SISthe
Coxeter element whose degree h = 30 coincides with

)]

(@)

3)
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the number of edges of the Petrie's polygon of the
{3, 3, 5} polytope [13, 14]. Code (3) determines the
presence in the polytope {3, 3, 5} of the axeswhichin
E? coincide with the axes of rotation by 217/n, n =2, 3,
5 (Fig. 1d), the conventional (rational) screw axes n,,
n=6, 10 (Fig. 1e), and the irrational screw axis 30/11,
which provides the rotation by about 21t11/30 around
11/30 with the subsequent translation along this axis
(Fig. 1g). The 30/11 axis reflects the symmetry of a
30-edge Berna helix composed by tetrahedra (Fig. 1f)
and corresponding to the Petrie’s polygon of the {3, 3, 5}
polytope [9, 10, 15].

Inthe{3, 3, 5} polytope, one can select 120 tetrahe-
dra whose centers form the congruent ¢{3, 3, 5} poly-
tope, where ¢ isthe enantiomorphousrotation in E* and
O@) Op O [3, 3, 5]; in this case, in each icosahedron
fromthe{3, 3, 5} polytope, four tetrahedraare centered
so that their centers form a tetrahedron (Fig. 1a). The
connection of “white vertices’ of the initia {3, 3, 5}
polytope with the closest “black vertices’ of the d {3, 3,
5} polytope resultsin the formation in S* of an enanti-
omorphous structure consisting of 240 tetrahedrally
coordinated vertices connected by 480 edges forming
nonflat hexacycles (twist-boats). Thisstructureiscalled
an irregular {240} polytope [4, 5, 8]. The group of
motion in E* mapping the { 240} polytope onto itself is
the subgroup of rotations (O' x Y")/Z, of the group O(4),
where O'isthebinary octahedral group of order 48. The
order of (O' x Y")/Z, is 2880; the group of the {240}
polytope of the opposite chirality is the group (Y' x
0)/Z, [9].

The isomorphism of the group SU(2) to the sphere
S [5, 15] indicates that the definition SU(2) x J(2) is
eight-dimensional and, in thefinal analysis, determines
the imbedding of {3, 3, 5} in E;—the close packing of
spheres S7 in E® [14]. In this case, the isomorphism
between the set of 240 icosians Y' [Ot Y', TY' = {1q;|
g0 Y'}, and 240 vectors of the first coordination
sphere in E; provides the isomorphism (in the Euclid-
ean norm) E, and the ring of icosians J. The crystallo-

graphic root lattice in Eg (the system of vectors E®)
determines the maximum specific simple Lie algebrae;
and alows one to obtain the MOG construction [1]
whose boundednessfor the generalized crystallography
of diamond-like structures [14] can be considered as
mapping of the maximality of ;. The isomorphism of
the groups Y', ¢Y', and tY" indicates that the {240}
polytope also reflects the limiting symmetry of E;.
Thus, the finite projective plane PG(2, 4) embedded in
MOG and the { 240} polytope reflect the limiting sym-
metry of Eg, which signifies that the maximum super-
Euclidean symmetry of the specific clusters of a dia-
mond-like structure is determined by the maximum [1]
subconfigurations PG(2, g), g < 4, which also determine
the clusters of the {240} polytope.
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Sections of the {3, 3, 5} polytope by the hyperplane beginning with the vertex and with the cell (Table 5 from [10])

{3, 3, 5} sections X4 (X1, X9, X3) Number of vertices Polyhedron
o 2 (0, 0, 0) 1 Point
1, T (1,019 12 I cosahedron
2 1 1,11 20 Dodecahedron
(r,7%0)
{3, 3, 5} sections Xq A2 (Xq, Xo, X3) /2 Number of vertices Polyhedron
1, 12 (Lt th 4 Tetrahedron
23 J5 (-1,1,1) 4 Tetrahedron
33 2 (2,0,0) 6 Octahedron
4, 1 (1,7, 19 12 Cuboditetrahedron

SPECIFIC CLUSTERS OF THE {240} POLYTOPE
DETERMINED BY THE SELF-DUAL
SUBCONFIGURATIONS OF FINITE PROJECTIVE
PLANES

The incidence graph PG(2, 2) determines the regu-
lar division of atorusinto hexacyclesandisa {6, 3}, ;
map. The removal of set 4 consisting of three edges
(three empty circles in the incidence table of PG(2, 2))

resultsin the formation of the subgraph {6, 3} §,‘1‘) , which

provides the irregular division of the sphere into
hexacycles and which is the graph of the parallelohe-
dron of the diamond structure [1]. The interpretation of
the {240} polytope as an “enantiomorphous diamond”
in S allows us to repeat the reasoning in [1] and obtain

the enantiomorphous graph {6, 3}2,(3), which differs

from {6, 3} S,‘f) (by removing set 2 consisting of three
empty circles from the incidence table of PG(2, 2)),
which in E? has the form of a 14-vertex combination of
six twist-boats (Figs. 2a, 2b) under the condition of the
equality of the edges (without their intersection) and
the angles formed by these edges [16].

The Petrie’s polygon of the {240} polytope can be
defined as the combination of two (white and black)
Bernal helices whose vertices form the 30/11 channel
(Fig. 2c). The generating cluster of this channel (gener-

ating 30/11 clusters) is a 14-vertex {6, 3}2(? cluster

uniquely determined by the reject of set 3 of three
empty circles in the incidence table of PG(2, 2). To
these empty circlesthere correspond the bonds forming
atrigonal handle and supplementing the sphereto make

it atorus. Asfor the {6, 3}2(1') and {6, 3}2,(? clusters,

the rejection of this handle allows one to obtain a gen-

CRYSTALLOGRAPHY REPORTS Vol. 47

erating cluster whose graph provides the irregular divi-
sion of the sphere into hexacycles.

The {6, 3};(? cluster was determined in [2, 3] as

the projection in E? of the“cell” of the {240} polytope,

which, in the Schi&fli notation {p, g, r}, is represented
as

{240} ={3,3,5} O (3,3,5}=1{{6,3}52,3}, (4)

where 6 is the symbol of the face of the hexacycle { p}

shared by two célls, {p, g} = {6, 3}3(5) ; 3isthe number

r of the cells at the shared edge; and the corresponding
{3, 3} tetrahedron providesthetetrahedral coordination

of each vertex of the {240} polytope and the formation

of the vertex { 240} figure consisting of four {6, 3} Z(f)

cells. Theinner bracesin (4) indicate the irregul arity of
the {240} polytope, and rejecting these braces, we
arrive at the symbol {6, 3, 3} of specific hyperbolic
honeycomb cells [4].

The section of apolygon by the E(x;) plane normal
to the X;-axis and cutting the segment x; on it isa poly-
gon whose center lies at the height x; above the X, X, =
E2(0) plane (Fig. 1d). In asimilar way, the section of the
polytope by the hyperplane E3(x,) is a polygon whose
center lies at a “height” x, above the space X;X,X; =
E*(0). The upper section of the polytope {3, 3, 5}
(increased by afactor of two in comparison with (2)) is
apoint of the“north pole” (0,0, 0, 2), and, therefore, the
sections {3, 3, 5} n B} (x,) are the sections of the {3, 3,
5} polytope originating from its top. The orthogonal
transformation ¢ rotates the {3, 3, 5} polytope in such
away that its upper section is a tetrahedron, the {3, 3,
5} cell, and, therefore, the ¢{3, 3, 5} n E3}(x,) sections
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Fig. 2. The vertex figure of the { 240} polytope and its parts determined by the incidence tables of the corresponding subconfigura-
tions: (a) the cell of the “left” {240} polytope determined by the incidence table 75 without set 2 of three empty circles; (b) the cell
of the“right” {240} polytope determined by the incidence table of the cell of the “left” polytope in which the rows are replaced by
columns (the numbers of the corresponding vertices of the vertex figure shown in (d) are shown on the right and bel ow the incidence
table); (c) the generating clusters of the Petrie’s polygon of the right {240} polytope consisting of white and black Bernal’s helices
(the twofold axis relating these helices is perpendicular to the middle of the 3-3' edge); the cluster is determined by the incidence
table 75 without set 3 consisting of three empty circles; the replacement of the rows by the columns corresponds to the enantiomor-
phous modification; (d) the vertex figure of the right {240} polytope as a combination of four cells shown in (b); vertices 1, 2-13
and 1'-4'; 5',10', 13", 14, and 6, 7', 8', 9", 11, 12" (the primed numbers enumerate black vertices) correspond to the sections 0y—1

and 1535 of the{3, 3, 5} polytope by the E3(x4) hyperplane indicated in the table (the sections n and ny begin with the vertex and
the cell of the {3, 3, 5} polytope, respectively); (e) the layer part of the cluster shown in (d) determined by the incidence table of

the extended Desargues configuration 10;' without empty circles; the numbers of corresponding rows and columns of the incidence

table of PG(2, 3) (Fig. 6) containing it are indicated on the right and below of the incidence table.

coincide with the sections of the {3, 3, 5} polytope
beginning with the cell [10]. In virtue of (4), we have

{240 n E¥(x,) -
= ({3,3,5 n EXxM) 0(¢{3,3,5 ) n EX(x{")),

where the first and second parentheses indicate the sec-
tionsof the{ 3, 3, 5} polytope beginning with the vertex
(azero-dimensional object) and the cell (athree-dimen-

sional object). At xflo) =2, T, thesectionsareapoint and

& =12, J5I2, and /2, the

an icosahedron; at x4

sections are tetrahedron, a tetrahedron, and an octahe-
dron, respectively. The projection of these sections onto

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5
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E3(x, = 2), which here is assumed to be the physical
space E?, resultsin the formation of a 27-vertex cluster
that is the combination of the point and the following
polyhedra: a tetrahedron, an icosahedron, a tetrahe-
dron, and an octahedron (seetable). Thiscluster ischar-
acterized by the symmetry 23 and is the combination of
18 twist-boats[8, 5, 16, 17] and isalso the projectionin

E2 of the figure of the { 240} polytope centered by the
vertex—the combination of four {6, 3} 3}? cels.

Without vertex 14' (the primed numbers indicate
black vertices), this cluster corresponds to the “edge
figure” of the {240} polytope—the combination of

three {6, 3} 2,‘? cells sharing the 1-1' edge (Fig. 2d; cf.
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Fig. 3. Configurations 93, their incidence tables [12, 18], and the clusters of diamond-like structures determined by their subtables:
(a) Pappus configuration (93),, whose incidence table without three empty circles determines an 18-vertex cluster of the lonsdaleite
structure; (b) configuration (93), of three triangles inscribed one into another: {7, 2, 3}, {1, 8, 9}, and {4, 5, 6} (subtable7 x 7 is
indicated by solid lines; its incidence table determined the generating clusters of the lonsdaleite structure); (c) irregular configura-
tion (93)3 (subtable 7 x 7 is indicated by solid lines, its incidence table determines the generating clusters of the core of a screw
didocation in the diamond structure). The primed numbers enumerate the straight lines corresponding to the black vertices of the

clusters of adiamond-like structure.

Fig. 5a from [1]). It was shown [1] that this 26-vertex
polyhedron is uniquely determined by the incidence
table of the maximum specific configuration {13,}!
which arises from the incidence table of PG(2, 3) upon
the rejection of 15 incidence signs.

The projective plane PG(2, 3) aso contains the

extended Desargues configuration 10;4,, whose 10 x 10

incidence table contains 34 incidence signs, i.e., our
signs more than the incidence table of the Desargues

configuration 10, [18]. The intersection {13,}!°> n 10§

uniquely determines a 20-vertex cluster—the layer part
of the vertex figure of the {240} polytope (Fig. 2e),
which is the building block of the assembly of dia-
mond-like structuresthat are not the traditional crystal-
lographic objects [16, 17].

A 27-atom cluster (Fig. 2d) “straightened” from the
{240} polytope in E* shows the deviations from the
ideal tetrahedral coordination (the anglesformed by the
bonds are not equal to 109.47°), but it is still more ener-
getically advantageous than a 27-atom cluster in the
diamond structure[5]. Obviously, further growth of this
cluster by the strengthening of clusters of ever increas-
ing dimensions in E* from the {240} prototype should
result in ever less energetically advantageous clusters

CRYSTALLOGRAPHY REPORTS Vol. 47

with an icosahedral order and, finally, in the attainment
of a certain limit a which the crystal cluster with
amost ideal tetrahedral coordination restored due to
icosahedron deformation becomes more energetically
advantageous.

The x{” =tand x{” = /2 sectionsinthe{3, 3, 5}

(0)

polytope are followed by the section x, * = 1 (dodeca-

hedron) and section xf) = 1/./2 (cuboditetrahedron)
(Fig. 2d). Therefore, if one limits the choice of the ver-
tices by eight rotational dodecahedron vertices most
remote from the center forming a cube, the projections
of these sections in E3 would yield a 47-atom cluster
(Fig. 6¢c from [1]). Deformation of an octahedron
formed by white atoms transforms this cluster straight-
ened from the {240} polytope into the combination of
a 21-atom unit cell and a 26-atom Pauling polyhedron
of the cubic Frank—Kasper phases A15 and C15,
respectively [1, 19]. The unit cell of a hypothetical tet-
rahedrally coordinated crystal described by the sp. gr.

P43n [19] is also embedded in this cluster. One can
assume that this cluster is energetically advantageous,
which is provided by the outer cube of white atoms,

No. 5 2002
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Fig. 4. A BC8 crystal generated by a 14-vertex generating cluster determined by the intersection of the configurations (93); and (64,
83): () the location of the 3rd right incidence table (93); behind the 9th column results in an isomorphous incidence table whose
subtable 6 x 8 (solid lines) determines the generating clusters of the BC8 structure; (b) the incidence table of the nongeometric
(64, 83) configuration without empty circles determining the generating clusters of the BC8 structure; (c) the BC8 structure formed
by the generating clusters of BC8 are indicated by solid lines. Generating clusters of BC8 are uniquely determined by the subtable
8 x 6—theintersection of the incidence table (95); and the incidence table (64, 83) shownin (a) and (b). The graph of the generating
cluster of BC8 with the edges of the incidence graph of the configuration (64, 83) (empty circles in the incidence table (64, 83))
(shown by dashed line) coincides with the graph of arhombododecahedron.

(a) (b) ()

1234 1234567 1 234567

00 i[e]®] | [® :'. O.;
20 [@ 2o [@ °

il ° 1[0 ° ° OO.. :i

4 Jol® 4 [ole ° o 1ol TeT s

HEORD s| Jo] [o] |e slele .

6 oo 6 000 Nl
——— ———

olels

o |

Fig. 5. Finite non-Arguesian planes[ 18] and the generating clusters with penta-, hexa-, and heptacycles determined by the subtables
of their incidence tables: (a) the incidence table of the configuration (45, 6,) of the tetragon and the generating clusters of the ada-
mantane structure determined by this configuration; (b, ¢) the incidence tables of the finite non-Arguesian planes extended with the
aid of arrows and clusters with penta-, hexa, and heptacycles determined by their 6 x 7 and 8 x 7 subtables. The sequence of the
incidence tables (without arrows) shown in (a—) is the sequence of the steps T, T,, and T3 formed during the alternating addition
of columns and rows to the previous step. The subtable of the previous step is indicated by the solid line on the subseguent step.
Penta- and heptacycles are indicated by solid lines. The bonds between the vertices of the same color are indicated by arrows.
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Fig. 6. Construction of the incidence table of finite projec-
tive plane PG(2, 3) based on the summation and multiplica-
tion tables of the Galoisfield GF(3). The square C2! shown
by double lines corresponds to the intersection of row 2 and
column 1 of the multiplication table of the Galois field
GF(3) determining element 2 whose distribution in the
summation table of GF(3) is the distribution of the inci-
dence signs in the square c? The squares C™ with the
zero values either of mor x are the same and are, in fact, the
distribution of zeroes in the summation table of GF(3). The
square consisting of 32 C™ squareswith m, x=0, 1, 2 isthe
Q-contents of the table. The first four rows and columns
formaT hook [18].

which, unlike an icosahedron, can ensure the division
of E3.

If rows1, 2, 3,6, 7,8, 10, 11, 14, and 16 and col-
umns 1, 2,3, 4,6, 7,8, 10, 11, and 12 in the incidence
table of PG(2, 4) (Figs. 6a, 6¢c in [1]) are rearranged as
6,1,2,3,7,10,11,8,14,16and 1, 2, 3, 6, 7, 10, 3, 7,
11, 4, 8, 12, then the intersections of the changed rows
and columns form the incidence table of the extended

Desargues configuration 103 [18]. Thisincidencetable

can be embedded only in PG(2, 4) and determines a
specific 20-vertex cluster of a diamond-like structure,
which belongs to the unit cell [19] but does not belong
to the 27-vertex cluster shown in Fig. 2d.

CLASSIFICATION OF THE GENERATING
CLUSTERS OF DIAMOND-LIKE STRUCTURES
BY CONFIGURATION TYPE

The finite projective plane PG(2, q) is a self-dual
configuration ny= (ng, Ng), wheren=qg?>+q+ 1 andd =
g+ 1[9, 18]. If (m, ny) is the minimum configuration
containing the given subconfigurations, then the latter
can be embedded in (m, ny). All the specific clusters of
the diamond-like structures considered up to now con-
tained hexacycles as the cycles of the minimum length
and were determined by the subconfigurations which
could be embedded into the self-dual configurations,
which, in turn, could be embedded to the finite Argue-
sian planes [18]. Therefore, these configurations are
called Arguesian. The next section is dedicated to the
solution of the general problem of enumerating al
types of configurations in which the subconfigurations
determining the generating clusters with penta-, hexa,
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and heptacycles can be embedded. Unlike the unique
implementation of self-dual configurations 7, and 85,
three self-dual 9, configurations are possible, namely,
Pappus configurations (95), (Fig. 3a), three triangles
inscribed into one another (95), (Fig. 3b), and an irreg-
ular configuration (9;); (Fig. 3c) [9, 12, 18]. Therefore,
the solution of the problem is demonstrated on the gen-
eral example of 9;.

If the bichromatic graph of generating clusters pro-
videstheirregular division of a sphereinto hexacycles,
then, applying the Euler theorem for polyhedra, we
arrive at the following relationships:

F=1/2(m +n)-1, E=3F, (6)

wherem, and n, are the numbers of the white and black
vertices of the graph, F is the number of hexacycles,
and E is the number of edges. The self-dual configura-
tion ny = (n;, N;) can be represented in the form (M, +
my)s, (N, + Ny)3), which allows oneto single out the sub-
table m; x n, in the incidence table n,. If this subtable
contains not less than 3(1/2(m, + n,) — 1) incidence
signs and each row and each column has not less than
two incidence signs, then, in virtue of (6), this subtable
of the incidence table determines the generating clus-
terseither directly or when the incidence signs denoted
by empty circles are rejected from it.

The simplest case m, = n, = 0 illustrates a Pappus
configuration (95),, whose incidence table without three
empty circles (i.e., the incidence table of subconfigura-
tion {(9,),}°) determines a 18-vertex cluster of lonsda-
leite with eight hexacycles (Fig. 3a).

The variant m, = n, = 2 isimplemented for the con-
figuration (9;), = (7 + 2)5, (7 + 2)5),, Whose 7 x 7 sub-
table of the incidence table uniquely determines a
14-vertex generating cluster of lonsdaleite with six
hexacycles—two chairs and four boats (Fig. 3b). Sub-
configuration (9;), with such an incidence table is
denoted as ((7 [J 2);),. In asimilar way, the subconfig-
uration ((7 O 2);); of the configuration (95); uniquely
determines a 14-vertex generating cluster of a screw-
dislocation core in the diamond structure with six
hexacycles, two twist-boats, and four twist-chairs
(Fig. 3c) [16, 17, 20].

Atm,=3andn, =1, onecansingleout in aself-dual
configuration (9;); a non-self-dual subconfiguration
(6 0 3);, (8 O 1)5); with the 8 x 6 incidence table,
which is the intersection of (9,); and the non-self-dual
configuration (6,4, 8;) (Fig. 4). The configuration (6,4, 85)
can be considered as aset of eight verticesand six faces
of acube, with each vertex being shared by three faces
and each face containing four vertices. Substituting
each face by a white dot, we arrive at a bichromatic
graph of arhombododecahedron; since the faces of this
dodecahedron are tetragons, then (6,, 8) is a nongeo-
metric configuration. The intersection (9;); n (64, 85) IS
the maximum geometric subconfiguration of the con-
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figuration (64, 8;) (Fig. 4b). The incidence table of
(64, 8;) contains a smaller number of incidence signs
than the incidence table of (95); and, therefore, the sub-
configuration (95); n (6,4, 8;) determining a 14-vertex
generating cluster with six hexacycles is embedded in
the non-self-dual configuration (6,, 8;). The graph of
this generating cluster is obtained from the graph of a
rhombododecahedron upon rejection of the edges
shown by dashed lines (empty circles in the incidence
table (6,4, 85) (Figs. 4b, 4c). Thisgraphisagraph of gen-
erating clusters of BC8 structure, the high-pressure
body-centered Si-phase [6, 19, 21]. This structure is a
diamond-like structure with distorted (up to 100°) “tet-
rahedral angles’ (Fig. 4c). In [6, 19], the BC8 structure
was considered as the approximant of an icosahedral
quasicrystal.

All the generating clusters considered above are
determined by the Arguesian subconfigurations of the
planes of PG(2, g). However, these planes can also have
non-Arguesian subconfigurations. Thus, the Hall steps
T, and T; (Figs. 5b, 5¢) arefinite non-Arguesian projec-
tive planes [18] that can be embedded in PG(2, 2) and
PG(2, 3), respectively. Since T, (T;) are non-Arguesian
projective planes, which is seen from the fact that some
columns (rows) do not intersect in the incidence table
of T,(T;), the bichromatic incidence graph T,(T,)
acquires the cycles absent in the PG(2, q) graph. The
latter cycles can be divided into smaller onesif they are
connected by the edges originating from the vertices of
the same color. This signifies that one can single out in
the “incidence-extended” space between the points or
between the straight lines of the Arguesian plane T,(T5)
the subconfiguration determining the divison of a
sphere into penta-, hexa-, and heptacycles.

PG(2’ 2) = 73’ (93)2’
| | |
750 105, {73°7, (70 2)3),,

Indeed, PG(2, 2), being a finite projective plane, is
“more symmetric” than a conventional configuration
[18]; in this case, the unique configuration 7, N 105
determining the generating clusters of the diamond
structure is more symmetric than the subconfigurations

{7,130 = {6, 3} 2('1) , i =2, 3 determining the generating
clusters of the cell of the {240} polytope and the 30/11
channel. The regular configuration (95), is more sym-
metric than the irregular one, (95); [12], which, in turn
is more symmetric than the non-self-dual configuration
(64, 83).

If a diamond-like structure is built by generating
clusters of one type, one can state that its symmetry
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In addition to T,, the PG(2, 2) plane also contains
the subconfiguration 7, n 105 considered in detail ear-
lier, which determines the parallelohedron of the dia
mond structure (Fig. 3c from [1]). To theintersection of
(75 n 105) with T, there corresponds the rejection of
two more signs from the incidence table. Rejecting one
more sign from this incidence table and then establish-
ing the “incidence” between the points 2—4 and 6-7
with the aid of the arrows, we obtain the incidence table
which determines the subconfiguration {7; n 10; n
T,} 2. The superscript 1 in this subconfiguration signi-
fies one rejected bichromatic edge, and the 2 indicates
the introduction of two additional edges not belonging
to the incidence graph of the subconfiguration 7; n
105 n T, and connecting the vertices of the same color.
The projective plane PG(2, 3) containsthe Hall step T,
and the configuration 8;, and, therefore, the incidence
graph of the subconfiguration {8; n (95), N T;}~ deter-
mines the graph of a 15-vertex generating cluster with
two heptacycles and four hexacycles (Fig. 5¢).

Itispossibleto show that bothin[1] and the present
article, al the types of generating clusters containing
only penta-, hexa-, and heptacycles have been consid-
ered, and, therefore, it is possibleto classify these types
over the following configuration types: Arguesian
(Figs. 24), non-Arguesian (Fig. 5), self-dual (Figs. 2,
3), non-self-dual (Fig. 4), conventional, and extended
(Fig. 2d).

Now arrange the subconfigurations determining
14-vertex generating clusters with six hexacyclesin the
order of lowering of their symmetry and the symmetry
of the configurations in which they can be embedded,

933 (64, 83),
0 ()

((702)3)3 (93)3n (64, 85).

(understood at the level of the algebraic groups[14, 23,
24]) is determined by the symmetry of the subconfigu-
ration determining the generating clusters and the con-
figuration in which this subconfiguration is embedded.
Thus, it follows from relationships (7) that the symme-
try is lowered in the following sequence of diamond-
like structures: diamond, structures determined by the
{240} polytope, lonsdaleite, the core of a screw dislo-
cation in the diamond structure, and BC8. In the spirit
of Bernal’sarticleon therole of geometric factorsinthe
structure of matter [22], relationship (7) can be
regarded as the specification of the “projective—geo-
metrical factor” in diamond-like structures.
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CONCLUSIONS

It is shown on numerous examples both in [1] and
the present articlethat the graphs of the generating clus-
tersof diamond-like structures are uniquely determined
by the subtables of the incidence table of finite projec-
tive planes PG(2, 0), q = 2, 3, 4. Within the framework
of classical crystallography, whose algebraic basis is
the group theory, no adequate reflection of the symme-
try of these graphs is possible. This signifies that the
incidence table of PG(2, q) reflects the symmetry of
such algebraic objects asrings, fields, algebras, etc., in
which, unlike the symmetry groups, at least two opera-
tions are defined [23, 24].

Indeed, the incidence tables of PG(2, q) are
uniquely constructed with the aid of the summation and
multiplication tables of the subtraction fields modulo
o—the Galois fields GF(q). Consider an example of
such a construction of the incidence table of PG(2, q)
with g =3 (Fig. 6). Itiswell known that the distribution
of numbers in the summation table of GF(q) is diago-
nal, i.e., each column and each row of theq x g table has
only one number (from 0 to g — 1). One can see that to
each product of numbers m and x from the multiplica
tion table, g x @, there corresponds the table C™ con-
taining only the diagonal distribution of the number
t = mx from the summation table. In turn, all the tables
C™ m,x=0,and1...q-1formthetableqx g, which
(upon the replacement of all the numberst by the black
circles) becomes the Q-contents of the incidence table
of PG(2, g). Upon the addition of the stepwise distribu-
tion of theincidence signsin the additional I'-like hook
(consisting of g + 1 rows and a column), the incidence
table of PG(2, g) intheform of aT'-tableisformed [18].

Thus, the transition from the classical to the gener-
alized crystalography of diamond-like structuresis, in
fact, the transition from the Euclidean to the projective
geometry, whereas at the algebraic level, it is the tran-
sition from a group to rings, fields, algebras, etc. Both
in [1] and in the present article, we replaced the alge-
braic constructions by their crystallographic equiva-
lents just as crystallographers determine the space
group using the corresponding plot from the Interna-
tional Tables [26] instead of their group-theoretical
determination [25]. In this sense, the subalgebras of dif-
ferent types[23] correspond to the subconfigurations of
different symmetriesin (7).

The conclusions following from the present study
can be formulated as follows:

—highly symmetric clusters of the diamond struc-
ture in S, the {240} polytope, are determined by the
subconfigurations of PG(2, ), q = 2, 3, 4 and, upon
their straightening in E?, become specific clusters of
diamond-like structures;

—the generating clusters, whose minimum cycles
are only hexacycles, are determined by the subconfigu-
rations which can be embedded in self-dual, non-self-
dual, conventional, or extended configurations of the
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Arguesian finite projective planes. The generating clus-
ters containing penta-, hexar-, and heptacycles are deter-
mined by the subconfigurations that can be embedded
in the finite projective planes;

—the symmetry of diamond-like structures assem-
bled from generating clusters of one typeis determined
by the symmetry of the configuration in which the set-
ting subconfiguration of the generating clusters is
embedded. This determinesthe lowering of the symme-
try in the sequence of diamond-like structures corre-
sponding to thelowering of the symmetry of the respec-
tive configurations. As an example, we considered the
following sequence of diamond-like structures. dia-
mond, structures determined by the {240} polytope,
lonsdaleite, the core of a screw dislocation in the dia-
mond structure, and BC8.
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Abstract—A seriesof fullerenesfrom C,, to Cg, (atotal of 5770) isobtained and their characterizationin terms
of symmetry point groupsis performed for the first time. The most symmetric forms with the sixth and higher
orders of automorphism groups (atotal of 80) are represented in the Schlegel projection onto one of the faces.
It is noted that, among the 5770 fullerenes obtained, only 12 fullerenes exhibit noncrystallographic symmetry.

© 2002 MAIK “ Nauka/lInterperiodica” .

Considerable advances made in the crystallography
and mineralogy of carbon over the last fifteen years are
associated with the laboratory synthesis [1, 2] and the
subsequent discovery [3-5] of Cg, stable clusters in
nature. Fullerenes containing less than 60 atoms are
unstable; furthermore, carbon clusters involving from
20to 36 atomsfall within the so-called “forbidden gap”
[6, 7]. However, it isthistype of crystallization cavities
that has been revealed in different clathrate compounds
over the last fifty years [8]. In the present work, we
derived all combinatorial types of fullerenes containing
from 20 to 60 atoms and proposed their classificationin
terms of symmetry point groups. It should be noted that
the problem of enumeration of fullerenesis dual of the
problem of triangulation of a spherical surface. Thelat-
ter problem has been intensively studied in the context
of the prablem concerning the closest packing of iden-
tical particles on the spherical surface.

Let usnow consider afullerenein theform of asim-
ple polyhedron (each vertex is shared by three faces) in
which only pentagonal and hexagonal faces are
allowed. It is assumed that f5 and fg are the numbers of
pentagona and hexagonal faces, respectively, and f, e,
and v arethe numbers of all faces, edges, and vertices
in the polyhedron, respectively. Hence, from the rela
tionships

fs+fo =1, 5fs+6f,=2e
we obtain
fs = 6f — 2e.
Next, from the relationships
f-e+v=2, 2e=3v
we have
6f —2e=12.

Asaresult, we obtain

fo=12, f=12+f,
atany fs = 0.
Similarly,
v=2f-4220, f,=f-12=v/2-10.

Thus, any fullerene can be characterized by the ver-
tex (C,-) and face (5,,6,,,.10) formulas.

The genera idea of representing a fullerene in the
form of a Schlegel projection according to the face for-
mulais asfollows. Face 1 is surrounded by other faces
that are numbered clockwise. The same operation is
repeated with faces 2, 3, etc. In the favorable case, the
basal face of the Schlegel projection will be generated
at the penultimate step. In particular, for the simplest
formula 5,,, the operation begins with the pentagonal
face and leads to a dodecahedron (see figure, no. 1).

For fullerenes described by the formula 5,,6,, the
above operation can begin with the hexagonal face. In
order to exhaust all the possible variants, it is necessary
to preliminarily enumerate the sequences (6, ...) with
all kinds of arrangement of (n— 1) sextuplesin (n + 11)
unoccupied positions. Then, pentagonal and hexagonal
faces are generated in accordance with these sequences.
For example, the sequence (6, 5, ..., 5) with twelve
quintuples does not lead to a polyhedron, because the
5,0, fullerene is nonexistent in nature. However, the
5,,6, fullerene (figure, no. 2) exists and can be specified
by the sequence (6, 5, ..., 5, 6).

The aforementioned operation is terminated in the
following cases: (i) the fullerene is constructed accord-
ing to the face formulg; (ii) the fullerene is constructed
prior to exhaustion of the formula; (iii) the fullereneis
not constructed, but the formula is exhausted; and

1063-7745/02/4705-0720$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fullerenes C,—Cgq With the sixth and higher orders of automorphism groups in the Schlegel projection onto one of the faces.

(iv) a a certain step, the required face becomes neither
pentagonal nor hexagonal. All the fullerenes constructed
with the use of the given formula are sorted according to
combinatorial type, and repetitions are rejected.

The forms thus obtained are characterized by sym-
metry point groups. The algorithm of their determina-
tion isreduced to the enumeration of all kinds of redes-
ignation of vertices retaining contiguity. By certain cri-
teria, each redesignation is identified as a fullerene
symmetry element.

After executing this agorithm, we obtained 5770
combinatorially different fullerenes in which the num-
ber of vertices ranges from 20 to 60. The distribution of
the fullerenes over automorphism group orders and
symmetry point groups is given in the table. The vast
majority of the formsinvolved have the symmetry 1, 2,
or m. For afixed v, the diversity of forms drastically
decreases with an increase in the order of the automor-
phism group. Thisisaccompanied by an increasein the
physical stability of the fullerene [1, 2, 6, 7, 9]. The
most symmetric forms with the sixth and higher orders
of automorphism groups are depicted in the figure. The
symmetry point groups of these forms are as follows:

Cop: 1(53m); Cpy: 2 (12M2); Cyg: 3 (6M2); Cog: 4
(43m); Cyp: 5 (10M2); Cay: 6 (32), 7 (3m), 8 (6mM2);
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Cs: 9 (3m); Csg: 10, 11 (42m), 12 (6m2), 13 (6/mmm);
Cy 14 (32), 15 (3m), 16 (6m2); Cy: 17 (3m), 18
(mmm), 19, 20 (5m), 21 (43m); C,,: 22 (32); Cyy: 23,
24 (32), 25 (23), 26-28 (3m), 29, 30 (6m2); Cyq: 31
(32), 32, 33 (mmm), 34, 35 (12m2); Cs,: 36, 37 (32),
38 (3m), 39 (6mM2), 40, 41 (10mM2); Csy: 42, 43 (3m),
44, 45 (mmm), 46-50 (42m), 51 (23); Cs,: 52 (32), 53
(6mM2); Cs: 54-59 (32), 60 (mmm), 61 (42m), 62, 63
(3m), 64 (43m); Csg: 65, 66 (3m); Cyy: 6769 (32), 70
(3m), 71 (mmm), 72-75 (42m), 76 (52), 77 (5m), 78,
79 (6/mmm), 80 (53m).

Apart from the well-known form Cg, (80), the most
probable fullerenesin the physical experiments are 34,
35, 40, 41, 64, and 77-79. Judging from the number of
atoms, these fullerenes fal far beyond the forbidden

ap and possess high symmetry. Except for forms 1, 2,
5, 19, 20, 34, 35, 40, 41, 76, 77, and 80, the fullerenes
C,—Cqo exhibit crystal symmetry and, without symme-
try violation, can be considered as possible structural

units of the crystalline compounds. Thelisted 12 forms
are also encountered in crystalline compounds (for
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Statistics of symmetry point groups of fullerenes C,;—Cg,

44

AGO| TI'C [20(24|26(28|30(32|34|36 |38 |40 |42
1|1 21 7| 8|23
2 |1

2 213 4| 51141 11
m 21 2 71 6
313 1
4 |4
222 1 1 2 3
2/m
mm?2 2 1 2| 2| 4
6 |32 1 1 1
3m 11 1
8 mm 1 1
Z]-ém 2
10 |52
12 |23
ém 1
6m2 1 1 1] 1
20 | 5m 2
10m2 1
24 | 6/mmm 1
43m 1 1
1_2m2 1
120 |53m |1
1|{1(1(2|3|6|6]| 15| 17| 40| 45

42

22

89

46 | 48 | 50 | 52 | 54 | 56 | 58 60 z
69 | 117 | 195 | 307 | 470 | 700 | 4037 | 1508 | 4485
1 1
22| 52| 37| 78| 62135 98| 189 | 734
19| 16| 25| 26| 38| 49| 58 67 | 322
2 2 3 3 4 15
2 3
5 9 10 19 56
1 2 4 8
4 3 6 3 8| 13 6 9 66
1 2 1 6 3 18
1 2 2 1 9
2 2 1 1 7
5 1 4 12
1 1
1 2
2 6
1 1 8
1 3
2

2
1 3
2 3
1 2
116 | 199 | 271 | 437 | 580 | 924 | 1205 | 1812 | 5770

Notation: AGO = automorphism group orders and SPG = symmetry point groups.

example, C,, dodecahedra in clathrates [8]). In this
case, they are distorted and lower their own symmetry.

The schematic drawings of all 5770 fullerenesin the
Schlegdl projections are available from the authors in
electronic form on request. In theimmediate future, we
will publish a systematic catalog of fullerenes with
their complete characterization.
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Abstract—Nine regular tetragonal packings of spheres are considered. These packings satisfy the following
conditions: al the spheres have the same dimensions and environment, i.e., belong to one regular system of
points with the coordination number of the packing being not less than six. The examples of the real crystal
structures corresponding to seven of these packings are considered. © 2002 MAIK “ Nauka/Interperiodica” .

Sphere packings with symmetry corresponding to
the tetragonal system are often considered as distorted
cubic or hexagonal packings. Clarke [1] described
some tetragonal sphere packings as independent types
and characterized 17 sphere packings, among which
there were three tetragonal packings. From the crystal-
lochemical standpoint, Clarke's study is not free of
drawbacks. In particul ar, there are no data on the spatial
symmetry of these packings, which, may account for
the wrong statement that the cubic “diamond” packing
iS noncentrosymmetric. Later, the tetragonal packing
(simple tetragonal packing, STP) with a density only
dlightly lower than the densities of the cubic and hexag-
onal close packings was described as an independent
type of sphere packing [2-5].

Clarke's packings and STP are far from being a
complete set of tetragonal regular sphere packings.
Table 1 givesthe characteristics of nine different tetrag-
onal packings arbitrarily denoted by the symbols from
T-1 to T-9 and satisfying the following conditions: all
the spheres are of the same dimensions and have the
same environment, i.e., belong to one regular point sys-
tem (RPS); the coordination number (c.n.) of packings
isnot lessthan six, i.e., each sphereisin contact with at
least six other spheres. For comparison, this table also
lists the characteristics of four well-known cubic pack-
ings of spheres (from C-1 to C-4) and the hexagonal
close packing (H-1). The sphere coordination in the tet-
ragonal packings under consideration is illustrated by
the figure. The characteristics of the coordination poly-
hedra are indicated in Table 2.

The density of the T-1 packing (STP) is only 3%
lower than the densities of the cubic and hexagonal
close packings. The T-1 packing iswell known, because
it defines the arrangement of the B atoms in the com-
pounds described by the general formula AB,, which
possess rutile-type structure where the A atoms occupy
the octahedral cavities formed by B atoms. The shapes
and arrangement of different cavitiesin the T-1 packing
and chemical compounds whose structures are deter-

mined by this packing were considered in detail else-
where [3].
For an ideal T-1 packing, the c/aratioisequal to 2 —

J2 = 0.586, and the parameter x is half as large as this
value. In the crystals of the AB, compounds belonging
to the rutile structure type, the c/a and xg parameters
noticeably differ from their ideal values (generally, c/a
variesfrom 0.634 to 0.705, and xg ranges from 0.300 to
0.307). This can be considered as a certain “compro-
mise” between the parameters of theideal T-1 packing,
which provide the regular coordination of the A atoms,
and the parameters that ensure the regular triangular

coordination of B atoms (c/a = ./6/3 = 0.8165, X =
1/3=0.333) [5].

The T-2 packing (body-centered tetragonal packing
described as packing no. 17 in [1]) was also considered
in more recent studies [4, 5]. This packing can be
readily obtained from body-centered cubic packing by
contracting it along one of the fourfold axes until the

c/aratio of thetetragonal cell reachesthevalue ./6/3 =
0.8165. Of al the known structures, the structure of
metal protactinium is very close to the T-2 packing,
although the c/a value for the unit cell of Pa (0.825)
dightly differs from the value corresponding to the
ideal T-2 packing. The high-barium modification of tin
formed at pressures exceeding 11.5 GPa has an analo-
gous structure. As far as we know, the T-2 packing has
not been encountered in the structures of minerals.
Conceivably, the absence of real structureswith the T-2
packing is explained by the absence of regular cavities
between the spheresin this packing, i.e., because al the
octahedral cavitiesin this packing are substantialy dis-
torted [4].

The T-3 packing was aso described in [1] (packing
no. 14). The density of this packingis(2— ./2)13. The
T-3 packing, asfar aswe know, has not been mentioned
in crystal chemistry in general and in crystal chemistry
of minerals, in particular. However, this packing seems
to form the basis of the structures of the group of min-
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Table 1. Characteristics of sphere packings

DOLIVO-DOBROVOL’SKII

Packings Space group RPS q CN DP cla
Cubic:
C-1 (close packing) Fm3m €)) 4 12 0.7405 1.000
C-2 (body-centered packing) Im3m (@ 2 8 0.6802 1.000
C-3 (primitive) Pm3m (@ 1 6 0.5236 1.000
C-4 (diamond) Fd3m (a) 8 4 0.3401 1.000
Hexagonal:
H-1 (close packing) P6s/mmc (© 2 12 0.7405 1.633
Tetragonal:
T-1(STP) P4,/mnm () [1] 4 11 0.7187 0.586
T-2 (body-centered packing) [14/mmm €] 2 10 0.6981 0.816
T-3 [4/mmm (e [2] 4 9 0.6134 3.414
T-4 14,/amd €] 4 8 0.6046 3.464
T-5 14,/amd @ 4 6 0.5585 0.516
T-6 14,/amd (© 8 6 0.5585 0.365
T-7 14,/amd () [3] 16 6 0.5406 0.254
T-8 14,/amd (h) [4] 16 10 0.6931 0.977
T-9 [4/mcm (h) [5] 8 7 0.6030 0.963

Note: [1] x =0.2929, [2] z=0.1464, [3] x = 0.1270, [4] y = 0.2838, z = 0.9065, [5] x = 0.1830; RPS is the regular point system; q is the
position multiplicity; CN is the coordination number; DP is the packing density.

erals including thalcusite CusFeTl,S,, murunskite
Cu;FeK.,S,, and bukovite CusFeTl,Se,. The c/a ratio
for these minerals (3.41, 3.38, and 3.44, respectively) is
very close to its ideal value for the T-3 packing (2 +

J2). According to the X-ray diffraction data, these
minerals are described by the space group [4/mmm or

the space groups 142m, 14m2, 1422, and [4mm of the
same diffraction class. Taking into account that the
number of formula units per unit cell in these minerals
equals unity, the sulfur (or selenium in bukovite) atoms
may occupy RPS with a multiplicity of four. The c/a
ratio indicates that these atoms occupy the (€) position
necessary for the T-3 packing. Note also that the other
above-mentioned space groups of this diffraction class
contain positions analogous to the (€) positions in the
space group 14/mmm and possessing the same symme-
try. Thus, the structures of these minerals can be based
on the T-3 packing whether the whole structure has the
[4/mmm symmetry or not.

The T-4 packing was described in [1] as packing
no. 13. The density of this packing is (./3/9)Tt As far
we know, the T-4 packing was not described in crystal
chemistry either. However, this packing formsthe basis
for the structure type of thorium silicide a-ThSi,,
where thorium atoms occupy the (a) positions in the
space group 14,/amd and the c/a value (3.476) is very
close to the idea value for the T-4 packing. Silicon

CRYSTALLOGRAPHY REPORTS Vol. 47

atoms occupy the cavities formed by thorium atoms
(spheresin the T-4 packing). The shapes of these cavi-
ties correspond to a trigonal prism (the coordination
number of Si with respect to This 6). Each Th atom is
surrounded by eight Th atoms of the packing and
twelve Si atoms are located in the surrounding cavities.

A series of rare-earth silicides and uranium, nep-
tunium, and plutonium silicides belong to the a-ThSi,
structure type. In these structures, the c/a ratio ranges
from 3.18 to 3.48.

TheNbAs structure typeisalso described by the T-4
packing. The structure of niobium arsenideis described
by the space group 14,md, but both Nb and As atoms
occupy the positions analogousto the (a) positioninthe
space group 14,/amd. For NbAs, the c/aratio is 3.384.
For the NbP and TaP structures (also of this structure
type), c/la= 3.42.

The T-4 packing is the only packing of al the regu-
lar tetragonal sphere packings with the symmetry
14,/amd. It should be noted that in terms of structural
mineralogy and crystal chemistry, space group 14,/amd
occupies a special position among the space groups of
the tetragonal system. It can be stated that the role of
space group 14,/amd in theworld of tetragonal minerals
is analogous to the role of space group Pbnm (whichis
the “mineralogical” aspect of space group Pnma) inthe
world of orthorhombic minerals. Without going into
details, we should like to indicate that the space groups

No. 5 2002



TETRAGONAL PACKINGS OF SPHERES

725

: Qs O
1 1 3 s
o Comay) QoD S
7}G>1 :ﬁ :_iCDl 0 \\I\ 2 //g,/’o ! 9"\5 I 0/3; 0.15 1
3 2 d’)wll\é 2 2 mi Qu_s 1 ﬁ?\i.é - _Qns O}— <>§= ’f () §_Q%
g 2 0 < ” " > N\, o 2 4 2 2
2 2 0< ; ;()1 Cjo' 5 i <>0A15 Q}
1
Q)Azs O%
b T2 T3 T-4
1
/\Z
O
: ogyel R
§<> 1& >3 4 N2, 4 l\r/l
4 _5/1\5 4 —:-ZL @ g P
e S O~ RO
: 36 Ol 4 2 /1\2 2
4 i % >
T_S T_6 T_7
0.598 530‘66 QO
0.16 \\\\\ J 0.09 ) / ,OO
( ' nl = \
0.84 3 \(\),41 00.41 \\ ) .
o6~ 7~ N A 0.09 e
8/ EB /’////’/0 1~
0.59 0.66 OO %@ / OO
5/’
/
T-8 T-9
G,

Coordination of the spheresin the T-1-T-9 tetragonal packings of spheres (projections onto the XY plane). The solid circleindicates
the position of the center of one of the spheres; the positions of the nearest spheres are shown by empty circles. The unit cells are

shown by sguares.

14,/amd and P4/mmm are the only two “panautosym-
metry groups’ (the groupswhere al the possible lattice
complexes have the symmetry of this group) [6] in the
holohedral class of the tetragonal system. The only dif-
ferenceisthat space group P4/mmmis symmorphic and
containsalarge number of mirror planesmand fourfold
rotation axes, which considerably restricts the possible
arrangements of finite-size particles, whereas the non-
symmorphic group 14,/amd provides much wider pos-
sibilities for filling the space with such particles.

Like the T-4 packing, the T-5 packing is character-
ized by the distribution of the spheres over the (a) posi-
tions of the space group 14,/amd. However, the c/aratio

has a different value (2/./15 = 0.5164). The density of
the T-5 packing is 81y45. White tin (3-Sn) is structur-
ally similar to the T-5 packing. However, thec/aratioin
the latter structureis0.5455, i.e., substantially different

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5

from the ideal value for the T-5 packing. As a result,
each atomin thetin structure has four nearest neighbors
at a distance of 3.02 A and two neighbors at dlightly
larger distances (3.18 A).

In the T-6 and T-7 packings, the sphere centers
occupy the (c) and (f) positions of the same space group
14,/amd, respectively. As in the T-5 packing, the coor-
dination polyhedrain these packings can be considered
as pronouncedly distorted octahedron.

The T-8 packing is somewhat more complicated.
The sphere centers occupy the (h) positions of the space
group 14,/amd. The coordinates of these positions are
characterized by they and z parameters. If these param-
eters are assumed to be 0.2838 and 0.9065, respec-
tively, and the c/a ratio is assumed to be 0.977, each
sphere in the packing has eight nearest neighbors. In
addition, two spheres are located at a distance that is
only 2% larger than the eight shortest distances. Hence,

2002
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Table 2. Coordination polyhedra of the tetragonal sphere packings

; Number of | Number of ) . _—

Packing vertices faces Symmetry Simple forms and their combinations

T-1 11 13 mm2 Rhombic pyramid + four dihedra + monohedron

T-2 10 12 4/mmm Tetragonal prism + tetragonal bipyramid

T-3 9 13 4mm Tetragonal prism + two tetragonal pyramids + monohedron

T-4 8 12 42m Tetragonal bipyramid + tetragonal tetrahedron

T-5 6 42m Tetragonal scalenohedron

T-6 6 8 2/m Rhombic prism + two pinacoids

T-7 6 8 2 Four dihedra

T-8 10 12 m Three dihedra + six monohedra

T-9 7 10 mm2 Two rhombic pyramids + dihedron

it can be assumed that the coordination number of the
packing is 10. The coordination polyhedron of the T-2
packing can be described as a dlightly flattened cube
with tetragonal pyramids above two opposite faces,
whereas the coordination polyhedron of the T-8 pack-
ing can be characterized as adistorted cube with tetrag-
onal pyramids over two adjoining faces.

The arrangement of the chlorine atoms in the tho-
rium chloride structure, ThCl,, follows the packing law
of T-8. The unit-cell parameters of this structure differ
from theideal valuesfor the T-8 packing (y = 0.281, z=
0.907, c/a = 0.881). A series of metal halides of the
actinidegroup (ThBr,, PaCl,, UCl,, and NpCl ) belong
to the ThCl, structure type.

In the T-9 packing, the sphere centers occupy the (h)
positions of sp. gr. [4/mcm. These positions are charac-
terized by the only parameter x. If this parameter is

assumed to be (/3 — 1)/4 = 0.183 and the c/a ratio is

chosen as /16x—2 = 0.963, each sphere of the pack-
ing has seven nearest neighbors located at equal dis-
tances. The coordination polyhedron of the packing
may be approximated by an irregular pentagonal bipyr-
amid.

The arrangement of aluminum atoms in the CuAl,
structure (mineral khatyrkite) corresponds to the T-9
packing (dlightly distorted). The structures of a wide
variety of compounds, primarily, of intermetallic com-
pounds, belong to the CuAl, structure type. However,
the x parameter and the c/a ratio for all these com-
pounds substantially differ from the above-mentioned
ideal values for the T-9 packing. Generally, the x
parameter and the c/a ratio range from 0.158 to 0.167
and from 0.74 to 0.88, respectively. As a result, the
coordination polyhedrain the packing are distorted. For
example, the distances from the CuAl, atom to seven

CRYSTALLOGRAPHY REPORTS Vol. 47

nearest Al atoms are 2.745 (one distance), 2.885 (two
distances), and 3.115 A (four distances). In addition,
four Al atoms are located at distances of 3.22 A [7].

An analogous arangement of lead atoms is
observed in the PtPb, structure. Although the structure
of this phase is described by the sp. gr. P4/nbm, the
positions of Pb atoms are very closeto the (h) positions
in the sp. gr. 14/mcm. The PtPb, structure is character-
ized by Xp, = 0.175 and c/a = 0.897.

Apparently, other types of tetragonal packings of
spheres satisfying the above-mentioned conditions can
also occur in addition to the nine packings considered
above. Nevertheless, it is evident that these tetragonal
packings can be characterized by awide variety of sym-
metry groups, coordination numbers, and coordination
polyhedra. Many of the tetragonal packings are really
encountered in real structures of inorganic compounds.
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Abstract—Within the framework of the discrete modeling of molecular packings, a metric approach to the
investigation of the mechanisms of crystal formation is proposed. This method is based on the construction of
a combination of polyhedrain a space in which the space division into polyhedra (or the periodic packing of
polyhedra) is specified by the multistage addition to theinitial “seeding” polyhedron set of this division (pack-
ing) of the adjacent polyhedra. Crystal growth is modeled using the constructions of bounding boxesin the divi-
sion of the plane into polyominoes and the three-dimensional space, into polycubes. The formation of phenom-
enologica polygons (polyhedra) in the growth of periodic structuresis revealed and theoretically grounded. ©

2002 MAIK “ Nauka/Interperiodica” .

The study of the mechanisms of crystal formation
has become an important problem in crystallography
virtually from the very beginning of its development.
Onthe one hand, a crystal is acombination of regularly
arranged atoms or molecules giving rise to a periodic
symmetrical structure and, on the other hand, it is a
polyhedron with a rather strictly specified set of faces.
The crystal is spontaneously formed from a disordered
chaotic medium surrounding the initial seed. Then,
guestions arise about the physical factors governing the
inevitable growth of crystal structures upon the
achievement of particular growth conditions in the
medium. It is of interest to elucidate the (necessary and
sufficient) mechanism that ensures the retention of the
angles in the course of growth and also to establish the
physical factors responsible for the synchronous
growth of different faces. These and some others ques-
tions are still open [1].

The analysis of the geometric characteristics of the
coordination spheres in the single-crystal structures of
organic and heterocomplex compounds, as well as the
model periodic and nonperiodic space divisions into
polyhedra, formsthe basis for a purely metric approach
to the study of the mechanisms of crystal formation.
This approach involves the construction of a combina
tion of polyhedrain aspace in which the periodic pack-
ing of polyhedra (or the periodic division into polyhe-
dra) is specified by the multistage addition to the initial
“seeding” combination of polyhedra of this packing
(division) of the adjacent polyhedra. The adjacency of
the polyhedra is determined by the adjacency graph
proceeding from geometric or some other consider-
ations. Below, we report an agorithm for modeling
crystal formation based on the use of the so-called
bounding boxes as combinations of polyhedra to be
added.

To describe the structural organization of real crys-
tals, consider asthe smallest structural unit of the pack-
ing in the three-dimensional space (in the particular
case of division) a polyhedron, substituting the space
region occupied by an individual molecule or a com-
plex ion. Such polyhedra can be Voronoi—Dirichlet
domains[2] or polycubes (three-dimensional polyomi-
noes) used in the discrete modeling of packings in
molecular crystals[3, 4]. Polyhedrasharing at |east one
face are called adjacent polyhedra. In this approach, the
modeling of crystal growth consists in successive
enlargement of the surrounding of achosen initial seed
(apolyhedron, a, or acombination of polyhedra, A) by
adding new structura units. A set of polyhedra forming
thissurrounding at the nth step is called the nth bounding
box of the seed and is denoted by eg(a, n) or eq(A, n).

To determine the effects of the seed size and shape,
the parameters and the symmetry of the translation lat-
tice, and other characteristics of the division on the
geometry of bounding boxes, we preliminarily ana-
lyzed growth models, based on the plane division into
polyominoes and space division into polycubes. The
algorithm of such adivision for two-dimensional mod-
els has been reported earlier [5].

In al cases, with an increase in the number of
bounding boxes, a particular phenomenological poly-
hedron (a polygon, in the two-dimensional case) is
gradually formed. A further growth of the polyhedron
proceeds with the preservation of its shape. Figure 1
shows the dynamics of this process in the two-dimen-
siona case, where one of 14 trandationally indepen-
dent polyominoes of the division is used as a seed (the
code of the division is 3132033223332203232122
1111322311332230123220111221322313 in the pack-
ing space P 14 4.). The stages of formation of a phe-
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Fig. 1. Formation of agrowth polygon in the division of a planeinto polyominoes. Thefirst (a) 5, (b) 15, and (c) 25 bounding boxes
of theinitial polyomino are blackened; (d) an octagon is a growth polygon.

nomenol ogical octagon with apronounced self-similar-
ity property are also shown in Fig. 1. Similar model
growth is shown for three-dimensional casesin Fig. 2,
where the phenomenological 14-vertex polyhedron

(Fig. 2d) is formed in the packing space 832125 (the
code of the division is 753667345767).

Attempts to explain the appearance of phenomeno-
logical polyhedraresulted in the formulation of the fol-
lowing theorems.

I. Theorem of existence. For any periodic division
of a plane into polygons, there exists a centrally sym-

CRYSTALLOGRAPHY REPORTS Vol. 47

metric convex growth polygon Pol such that all the
polygons of the nth bounding box eq(a, n) of the seed-
ing polygon a belong to the c-neighborhood of the
polygon n - Pol derived from Pol by the homothety with
the coefficient n:

eq(a, n)—ald (n- Pol),.

I1. Theorem of growth stability. The neighborhood
(n - Pal). has afinite effectively calculable width c that
is dependent on the division Til alone.

[11. Theorem of sdlf-similarity. Any finite subset A
of polygons Til of division can be taken as a seed

No. 5 2002
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Fig. 2. Formation of a growth polyhedron in the division of the space into polycubes; the (a) 5st, (b) 10th, and (c) 15th bounding
boxes of theinitial polycube; (d) a 14-vertex polyhedron is a growth polyhedron.

instead of the polygon a. In this case, the growth poly-
gon Pol preserves its shape. For the nth bounding box,
the approximate equation eq(A, n) —a [ (n - Pol), is
valid, where a is afixed polygon from A, and the width
of the c-neighborhood depends only on the division Til
and the seed A.

The proofs of these theorems are based on the com-
parison of the adjacency graph G and the division Til
and the detection of the sectors of local growth in this
graph. These sectors grow as a lexicographically

CRYSTALLOGRAPHY REPORTS  Vol. 47
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ordered graph of a square lattice of integer points Z2.
The affine construction used for proving these theorems
is extended to higher-order periodic divisions with n >
3. The theorems were proven by Zhuravlev [6].

Taking into account all the aforesaid, it can be con-
cluded that (i) the growth of the periodic structure pro-
ceedswithin the framework of the model under consid-
eration with the formation of a convex growth polyhe-
dron, and (ii) the polyhedron grows preserving its shape
(self-similarity). It should be noted that the shape and
symmetry of the growth polyhedron depend not only on
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Abstract—An algorithm for the generation of possible crystal structures with two inversion-related molecules
of known shapein aprimitive unit cell is proposed within the method of discrete packing modeling in molecular
crystals. The algorithm is based on the replacement of molecules by polycubes (geometric figures composed of
identical cubes) and looking through a finite number of all the possible periodic packings of these polycubes
with a given coefficient of packing. A program package for personal computersis developed on the basis of the
proposed algorithm and is approved by the example of several crystal structures that were determined earlier
by X-ray diffraction. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The problem of prediction (generation) of the struc-
tures of organic molecular crystals becomes more and
more important. First of all, this is explained by the
increasing interest in phenomena whose occurrence
directly depends on the possible existence of different
crystal structures of chemical compounds, namely,
crystal polymorphism, phase transitions, and solid-
phase reactions. Moreover, the powder methods of
crystal structure investigation, which have been devel-
oping vigorously in the last few years, require specific
methods of structure solution, because the experimen-
tal data sets are limited and, as a consequence, tradi-
tional methods of structure determination, namely, the
direct and Patterson methods, are not efficient enough.
The methods of systematic search for possible struc-
tures occupy aspecia place among therapidly devel op-
ing new methods of structure determination.

Earlier [1], we reported the algorithm and the pro-
gram package for generation of Bravaismolecular crys-
tal structures, that is, structures in which al the mole-
cules are trangdlationally equivalent and, hence, identi-
caly oriented. However, according to [2], only 2% of
organic homomolecular crystals have Bravais struc-
tures. The structures that contain molecules related by
the center of inversion and, therefore, exhibit two
molecular orientations occur more often. These are
molecular crystals belonging to the following structural

classes: P1, Z=2(1); P2/m, Z=2(m); P2/m, Z = 2(2);
P2,/m, Z=2(m); C2/c, Z=4(2); C2/c, Z=4(m); Pmnm,
Z = 2(mm); etc. In this paper, we discuss the algorithms
for generation of molecular crystal structures of this
type and the computer programs based on these algo-
rithms,

An agorithm for the generation of structures that
contain one molecule in a primitive unit cell (Bravais
molecular structures) was proposed in [1]. This algo-
rithm is based on the replacement of a molecule by a
discrete model, a polycube, and the search for al the
possible variants of packing (with agiven coefficient of
packing) according to the packing criterion that was
worked out within the method of discrete modeling of
molecular packings [3, 4]. We can propose two funda
mentally different approaches to the extension of this
algorithm to the crystal structures with two inversion-
related molecules in a primitive unit cell.

The first approach involves an initial search for pos-
sible stable associates of two molecules related by the
center of inversion, centrosymmetric dimers. Then, for
each dimer obtained, a discrete model (polycube) is
built and a search for all the possible packings of the
polycube with a given coefficient of packing is per-
formed.

The second approach consists in searching for all
the possibl e packings of two polycubesthat are discrete
models of the molecules related by the center of sym-
metry. For this search, the packing criterion for two
trandationally independent polycubes with a given
packing coefficient is worked out within the discrete
modeling method. This criterion is similar to the pack-
ing criterion of the trandationally identical polycubes
proposed earlier in [3, 4].

The first approach is easier for applying the appro-
priate algorithms and takes shorter time to calculate,
especially if the number of variants of stable dimersis
small. However, the absence of stable centrosymmetric
dimersin acrystal structure may become a fundamen-
tally insurmountable barrier in the first approach. The
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second approach is more rigorous and, in our opinion,
more promising. Now, we discuss some stages of the
second approach in more detail.

CRITERION FOR THE EXISTENCE
OF THE PACKING OF TWO TRANSLATIONALLY
INDEPENDENT POLYCUBES RELATED
BY THE CENTER OF INVERSION

A polycube is a connected geometric figure that
consists of a limited number of identical cubes. The
algorithm for the replacement of a molecule by a poly-
cube is described in detail in [1]. A polycube that con-
sists of p cubes can be specified by integer coordinates
of the centersof thesecubes {1,,i=1,2, ..., p} inabasis
whose vectors are egqual in length and parallel to three
perpendicular edges of the cube. If the polycube of a
molecule is specified by theset {I,,i =1, 2, ..., p}, the
polycube of the centrosymmetrically related molecule
can be specified by the set {-1;,,i=1, 2, ..., p}.

The packing space [3, 4] is considered a lattice in
which each nodeis assigned aweight in such away that
all the sets of lattice nodes with identical weights form
identical (except for displacement) sublattices of the
initial lattice. The columns of the vector coordinates (in
the basis of the initial |attice) of one of the bases of this
sublattice form the integer matrix

Exl Xz X3B
Y=00 O,
0 )’2)/3D
00 0 z0O

where0 <X, <X;, 0 x3<X;,0<y;<Yy,,andz >0.The
Y matrix is the packing-space matrix. The order of the
packing space coincides with the sublattice index and
can be determined as the product of the diagonal ele-
ments of the Y matrix: N = x,y,z.

By analogy with the criterion of packing of one
trangdlationally independent polycube [4], we define the
criterion of packing of two translationally independent
inversion-related polycubes with a given packing coef-
ficient asfollows.

In order for a trandational packing of two poly-
cubes, {l;,i=1,2,...,p} and{-1,,i=1,2,..., p}, with
packing coefficient k= 2p/N to exigt, it is necessary and
sufficient that, in one of the packing spaces of the Nth
order, pairs of pointsin the totalities of the sets {1;, i =
1,2, ....,pt0{r-1,i=1,2, ..., p} have different
weights. Ther vector isone of the vectors of the funda-
mental region of the trandation sublattice, which is
specified by the packing space, for example, the vector

uO

%/E where u, v, and w are the integers satisfying the
OO

conditionsO <u<x;,0sv<y,,and0sw<z.
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Here, the necessity means that the translation vector
cannot connect two different points within a polycube
or two points of the polycubes with different orienta-
tions. The sufficiency is proved by the reconstruction of
avariant of packing: if theset {I;,i=1,2, ...,p} O
{r-1,i=1,2,..., p} satisfies the packing space crite-
rion specified by the Y matrix, the set

(Yy+1,i=1,2 ... O{Yy+r—1,,i=1,2,....0,

where y varies over al the possible integer vector-col-
umns, is the required trandational packing of the poly-
cubes.

ALGORITHM FOR LOOKING
THROUGH THE POSSIBLE VARIANTS
OF PACKING OF INVERSION-RELATED

POLY CUBES
We assume that theinitial polycube {1;,i=1, 2, ...,
p}, itscentrosymmetricimage {-l,,i=1,2, ..., p}, and

the packing coefficient k are specified.

First, the order of the packing space N is calculated
asthe prime natural number closest to the fraction 2p/k.
The advantages of the choice of the prime order of the
packing space were noted in [1]. They are associated
with the substantial decrease in the computation time
for theweight of a packing-space point according to the
formula

g(u, v,w) = {(U=vx,—wxz)/N} N (1

(where {r} isthefractional part of number r), whichis
simpler than that for the general case, and with the
smaller number of packing spaces, which, for prime N,
isequal toN?> + N + 1.

For each packing space of the Nth order, the packing
criterion is checked by the following procedure. First,
we check theinitial polycube{l;,i =1, 2, ..., p}. If the
weightsin all the pairs of points are different, the crite-
rion is checked for the second polycube. According to
the theorem considered, the second polycube should be
shifted by N vectors of the fundamental region of the
trandation lattice, which is specified by the packing
space. However, the procedure of l1ooking through the
variants can be shortened considerably.

Prior to the checking stage, the first point of the ini-
tia polycube can be brought by a parallel shift to the
(0, 0, 0) coordinates; then, the first point of the cen-
trosymmetric polycube {I;, i = 1, 2, ..., p} will aso
have the (O, 0, 0) coordinates. In this case, the displace-
ment vectors (u, v, w), for which the weights of the cor-
responding points g(u, v, w) coincide with the weight
of at least one point of the initial polycube, should be
excluded from consideration, because, upon shifting by
the vector (u, v, w), the first point of the second poly-
cube has the weight g(u, v, w). Thus, (N —p) vectors of
displacement are considered instead of N vectors.

Sincethe order of the packing space isaprime num-
ber, thefundamental region of thetrandation lattice can
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GENERATION OF THE STRUCTURES OF MOLECULAR CRYSTALS 733
Table 1. Some data on the crystal structures used for the approbation of the algorithm for discrete modeling
Compound Empirical formula Structural class  |Reference
3-exo-Bromo-7-endo-(tribromomethyl)bicyclo[ 3.1.1] heptane CgH10BrI4 P1,Z=2(1) [5]
4,4'-Dichlorobenzophenone* C,3HgCl,0 C2/c, Z2=4(2) [6]
7-endo-M ethyl-3-borabicyclo[3.3.1]non-3-yl 8-quinolinate C,sH,BNO P2,/m, Z=2(m) [7]
3-Methylbicyclo[1.1.1] pentane-1-carboxylic acid C/H100, C2/m, Z = 4(m) [8]
1,3,3,5-Tetrabromopentane CsHgBry4 Pmnm, Z = 2(mm) [9]
Methyl 2,2-dichloro-3-methylbicyclo[1.1.1] pentane-1-carboxyl ate CgH10C120, P1,Z=2(1) [10]
3,7-Diacetyl-1,5-dimethyl-3,7-diazabicycl o[ 3.3.1]nonan-9-one Ci3H5oN504 C2/c, Z2=4(2) [11]
3,7-Diacetyl-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane Ci3H2,N50, C2lc, Z2=4(2) [11]
2-[Cyano(ethoxycarbonyl)methylene]-4,5-dimethyl-1,3-dithiole (B-form) |  C;gH11N10,S, P1,Z=2(1) [12]

* A temperature-induced phase transition was found in the structure. Both theinitial and final phases were modeled.

Table 2. Unit cell parameters of the real crystal structure studied by X-ray diffraction and the modeled crystal structure

a(A) b(A) c(A) 0 (deg) B(deg) y(deg)
Real structure 6.312 7.968 12.082 82.09 75.07 72.03
Model 6.36 8.11 12.20 834 745 714

be represented asan N x 1 x 1 parallelepiped. The par-
allel displacement of a point of the packing space of the
prime order by the vector (u, 0, 0) brings a point with
the g weight to the point with the (g + u) weight for g +
u<Northe(g+u—N)weightforg+u=N. Thisallows
us to calculate the weights of the points of the second
polycube after the displacement from asimpler formula
than formula (1).

CALCULATION
OF A CRYSTAL STRUCTURE

After the packing criterion is checked for all pack-
ing spaces of the Nth order, each possible variant of
packing of the polycubes {1;,i =1, 2, ..., p} and {-1,,
i=1,2, ..., p} ischaracterized by numbers N, x,, and
X3, which specify the packing space, and number u,
which specifies the vector of displacement of the poly-
cube {-1;,i=1,2, ..., p} with respect to the origin. In
addition, the atomic coordinates of the initial molecule
{rj,j =1,2, ..., m} with respect to the orthonormal
basis, which is rigidly related to the polycube, are
assumed to be known. The vectors

N X, X3
a=slgl, b=sl1], ¢c=s|g]|,
0 0 1
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where s is the approximation step, specify one of the
bases of the trandation lattice. From this basis, we
should change over to the standard crystallographic
basis a,, b,, ¢, (using, for example, the Delone reduc-
tion agorithm), which is more convenient for further
calculations. Here, the traditional atomic coordinates
are represented in fractions of unit cell parameters:

r = Y;l (r; — 0.50), where Y,, is the matrix of the vec-
tor-columns a,,, b,,, ¢, with respect to the basis a, b, c,

u
andd=s|q| isthevector of displacement of the second

0

polycube. The atomic coordinates r; correspond to the
center of inversion at the origin of the coordinates.

OPTIMIZATION OF THE VARIANTS OBTAINED
FOR CRYSTAL STRUCTURES

The models obtained for crystal structures at the
previous stage are rather crude, because there is no
point in using small approximation steps. In our pro-
gram package, the approximation step is chosen in the
range between 0.3 and 1.0 A depending on the size of
the molecule. The errors in determination of the unit
cell parameters and positions of the molecules are of
the same order. One of the procedures of crystal struc-
ture refinement is the minimization of the energy of
intermolecular interactions.
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Br(2)

Br(4)

Br(3)

Fig. 1. A perspective view of the molecule of 6-exo-bromo-
7-endo-(tribromomethyl)bicycl o[ 3.1.1] heptane.

Let us consider the case of rigid molecules. In crys-
tal structures with two trandationally independent
inversion-related molecules, the energy is afunction of
twelve parameters. six parameters (for example, the
unit cell parameters a, b, ¢, a, B, and y) specify the
trangdlation lattice, three parameters (6, ¢, and w) spec-
ify the orientation of molecules with respect to the lat-
tice, and the remaining three parameters (., Y., and z)
specify the position of molecules with respect to the
center of inversion. The minimization of the function
Ua, b, c,a,B,y,6, ¢, w X, Y. Z) is performed, for
example, by the least-squares procedure and results, on
the one hand, in someimprovement in the crystal struc-
ture model and, on the other hand, in asignificant sim-
plification of the procedure of comparison of the vari-
ants obtained.

Note that the correct calculation and minimization
of the energy of intermolecular interactions in crystals
is a separate complex problem of crystal chemistry,
which is beyond the scope of this paper.

PROGRAM PACKAGE
AND ITS APPROBATION

The agorithm considered above formed the basis of
the program package for IBM-compatible personal
computers. The program package was evaluated using
a number of crystal structures that have already been
studied by X-ray diffraction. The names, empirical for-
mulas, and structural classesfor some of them are sum-
marized in Table 1. For each structure, the discrete
molecular models (polycubes) were calculated at
approximation steps varying in therange 0.5-1.0 A and
the crystal structures were generated for packing coef-
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Number of variants
18
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Energy of intermolecular interactions (kcal/mol)

Fig. 2. Histogram of the distribution of 75 variants of mod-
eled crystal structures over the energy of intermolecular
interactions.

ficients 0.6—-0.8. Upon the optimization of the unit cell
parameters and molecular orientations, the “true” vari-
ant (corresponding to that obtained in the X-ray diffrac-
tion study) was chosen among the variants with the
lowest energy of intermolecular interactions.

As an example, we consider in more detail the
results of structure modeling for 6-exo-bromo-7-endo-
(tribromomethyl)bicyclo[3.1.1]heptane (1) (Fig. 1).
The crystal structure of this compound was studied ear-
lier by X-ray diffraction [5]. It belongsto the structural

class P1, Z=2(1). In order to exclude possible distor-
tions of the molecular geometry in the crystal field, the
atomic coordinates for molecule | were not taken from
[5] but were cal culated within the quantum-mechani cal
approach using the MM X program [13]. Discrete mod-
els (polycubes) were built for nine random molecular
orientations at approximation steps s = 0.70, 0.71, ...,
0.90 A. Based on the & criterion described in [1], the
five best polycubes were chosen. The possible variants
of the packing of these polycubes and their centrosym-
metric images were calculated for different packing
coefficients k. No packings with packing coefficients
larger than 0.73 were found, and for k < 0.69, the num-
ber of variants was very large. For packing coefficients
between 0.69 and 0.73, 75 variants of packing were
obtained. For all of them, the crystal structures were
calculated and refined using the method of atom—atom
potentials. Therelationship for cal culating the potential
has the form

_ -6
uj = —ayry; +bexp(—c;ry),

where r;; is the distance between the ith and jth atoms
and a;, by, and ¢; are the parameters taken from [14].
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Table 3. Coordinates of the non-hydrogen atoms in the real
and modeled crystal structures

Atom X y z
Br(1) 0.5904 —-0.2916 0.51420
0.541 -0.289 0.518
Br(2) 0.4741 0.2023 0.79517
0.465 0.198 0.808
Br(3) 0.9905 0.1083 0.65713
0.976 0.093 0.657
Br(4) 0.8590 —0.0550 0.90640
0.858 -0.072 0.902
Cc(» 0.546 —0.2343 0.7553
0.526 -0.238 0.757
C(2) 0.572 -0.331 0.8693
0.566 —-0.338 0.868
C@3 0.816 —0.455 0.8636
0.809 —-0.467 0.851
C4) 0.999 -0.418 0.7595
0.983 —-0.425 0.745
C(5) 0.894 —-0.3036 0.6642
0.864 —0.308 0.658
C(6) 0.687 —0.3587 0.6596
0.652 -0.364 0.656
C( 0.720 -0.1261 0.7042
0.694 —-0.130 0.704
C(8) 0.760 0.0125 0.7638
0.746 0.003 0.765

The potentials were summed over all pairs of atoms
whose interatomic distances were no larger than 14 A.

Analysis of the distribution of the variants of struc-
tures over the energy of intermolecular interactions
(Fig. 2) showed that 19 variants are characterized by the
lowest energy, which is approximately 1.2 kcal/mol
less than the energy of the next group of variants. A
comparative crystal chemical analysis revealed that all
of these 19 variants are similar in mutual arrangement
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and orientation of molecules; that is, all of them corre-
spond to the same model of crystal structure. Compari-
son of this model with the crystal structure studied ear-
lier in [5] showed that they actually coincide. The unit
cell parameters averaged over the 19 models and the
parameters determined in the X-ray diffraction study
are givenin Table 2. The coordinates of the non-hydro-
gen atoms are presented (Table 3) as fractions of the
corresponding unit cell parameters of these structures.

REFERENCES

1. A.V.Maleey, Kristallografiya46 (1), 19 (2001) [Crystal-
logr. Rep. 46, 13 (2001)].

2. P.M. Zorkii and O. N. Zorkaya, Zh. Strukt. Khim. 39 (1),
126 (1998).

3. A. V. Mdeev, V. G. Rau, K. A. Potekhin, et al., Dokl.
Akad. Nauk SSSR 315 (6), 1382 (1990) [Sov. Phys.
Dokl. 35, 997 (1990)].

4. A.V. Maeev, Kristallografiya 40 (3), 394 (1995) [Crys-
tallogr. Rep. 40, 354 (1995)].

5. A. V. Mdeey, K. A. Potekhin, A. |. Yanovskii, et al.,
Dokl. Akad. Nauk SSSR 327 (3), 345 (1992).

6. V. V. Mitkevich, V. G. Lirtsman, M. A. Strzhemchny,
etal., Acta Crystallogr., Sect. B: Struct. Sci. 55, 799
(1999).

7. B.M. Mikhailov, M. E. Gurskii, S.V. Baranin, et al., | zv.
Akad. Nauk SSSR, Ser. Khim., 1645 (1986).

8. K. A. Potekhin, A. V. Maeev, E. N. Kurkutova, et al.,
Dokl. Akad. Nauk SSSR 297 (6), 1390 (1987).

9. V. I. Dostovalova, T. T. Vasil'eva, F. K. Velichko, et al.,
Izv. Akad. Nauk SSSR, Ser. Khim., 2228 (1989).

10. K. A. Potekhin, A. V. Maleev, Yu. T. Struchkov, et al.,
Dokl. Akad. Nauk SSSR 298 (1), 123 (1988).

11. V. A. Palyulin, S. V. Emets, K. A. Potekhin, et al., Dokl.
Akad. Nauk 375 (6), 782 (2000).

12. K. Nakatsu, N. Yoshie, H. Yoshioka, et al., Mol. Cryst.
Lig. Cryst., Sect. A 182, 59 (1990).

13. U. Burkert and N. Allinger, Molecular Mechanics
(American Chemical Society, Washington, 1982; Mir,
Moscow, 1986).

14. D. E. Williams and D. J. Houpt, Acta Crystallogr., Sect.
B: Struct. Sci. 42, 286 (1986).

Trandated by I. Polyakova



Crystallography Reports, Vol. 47, No. 5, 2002, pp. 736—743. Trandlated from Kristallografiya, Vol. 47, No. 5, 2002, pp. 802-809.
Original Russian Text Copyright © 2002 by Pet’ kov, Kurazhkovskaya, Orlova, Spiridonova.

CRYSTAL

CHEMISTRY

Synthesisand Crystal Chemical Characteristics
of the Structure of M,:Zr,(PO,); Phosphates

V. |. Pet’kov*, V. S. Kurazhkovskaya**, A. |. Orlova*, and M. L. Spiridonova*
* Nizhni¥ Novgorod State University, pr. Gagarina 23, Nizhnii Novgorod, 603950 Russia
e-mail: petkov@uic.nnov.ru
** Moscow State University, Vorob' evy gory, Moscow, 119899 Russia
Received October 1, 2001

Abstract—Double phosphates of zirconium and metals with an oxidation degree of +2 of the composition
Mg sZr,(PO,4); (M = Mg, Ca, Mn, Co, Ni, Cu, Zn, Sr, Cd, and Ba) are synthesized and characterized by X-ray
diffraction methods and IR spectroscopy. The crystal structures of all the compounds are based on three-dimen-
siona frameworks of corner-sharing PO,-tetrahedra and ZrOg4-octahedra. Phosphates with large Cd**, Ca?*,
Sr?*, and Ba?* cations octahedrally coordinated with oxygen atoms form rhombohedral structures (space group
R3), whereas phosphates with small tetrahedrally coordinated Mg?*, Ni%*, Cu**, Co?*, Zn?*, and Mn?*-cations
are monoclinic (space group P2,/n). The effect of various structure-forming factors on the M, sZr,(PO,); com-
pounds with a common structural motif but different symmetries are discussed. © 2002 MAIK “ Nauka/lnter-

periodica’ .

INTRODUCTION

Systematic studies of the crystal chemistry of
groups of compounds that have a common sign (or
common signs) are necessary for establishing the regu-
larities of their formation and understanding the rela
tion between their structures and properties and the
analysis of the possible synthesis of compounds with
new structure types.

Phosphates with acommon structural motif but with
different symmetries, in which PO,-tetrahedra and
LOg¢-octahedra form mixed {[L,(PO4);]? }s., frame-
works, are formed at the stoichiometric ratiosL : P =
2 : 3. Depending on the charge of L and the condition
providing phosphate electroneutrality, the cavities of
their frameworks can be filled with cations of consider-
ably different sizes and oxidation degrees ranging from
+1 to +4 without considerable changes in the frame-
work geometry.

These phosphates are characterized by the existence
of stable individual groupings (“lanterns’) consisting
of two L-octahedra connected by three bridging P-tetra-
hedra along the ring and a small cavity in the shape of
atrigona prism between the octahedra that cannot be
filled with cations (Fig. 1). The chemical bonds inside
these groupings (Fig. 1a) are much stronger than the
bonds formed by these groupings with one another and
with cations filling the cavities of the framework and
participating in the compound formation. Therefore,
the above stable structural fragments can change their
mutual spatial orientation under the effect of iso- and
heteroval ent substitutions of cationslocated in the posi-
tions inside the framework and in the cavities between
the L- and P-polyhedra and also under the effect of var-

ious external factors such as temperature and pressure.
The specific features of each structure type are deter-
mined by the packings of these groupings.

In widespread rhombohedral frameworks, these
structure-forming fragments build columns along the

3-axes (Fig. 1b). In many instances, the symmetry of
the compounds with [L,(PO,)]s., frameworks can be
lowered to orthorhombic or even monoclinic (Fig. 1c).
Theoretically, amonoclinic unit cell (sp. gr. P2,/n) can
be obtained from arhombohedral one (in the hexagonal
setting) by its dight deformation [1], and, therefore, the
monoclinic structural motif can have columns similar
to those singled out in rhombohedral frameworks. The
symmetry relations between the large variety of phos-
phate structures with {[L,(PO,);]° };, frameworks
were established in our earlier study [2].

At present, the best studied phosphates are phos-
phates with mixed frameworks of the compositions
E'L,(PO,); (where E" isan akali metal, L = Ge, Ti, Zr,

Sn, and Hf) and E} L,(PO,); (where E! = Li, Na, and
L = Sc, Cr, Fe, and In) [3-8]. Quite a large number of

studies are dedicated to the compounds E(','_5 L,(PO,);

(where E" is either an alkali earth or 3d-transition
metal, and L = Ti or Zr) [9-13]. However, the structural
studies of the latter compounds were usually reduced to
obtaining diffraction patterns. Neither their space
groups nor the character of the distribution of cations
with an oxidation degree of +2 have been definitevely
established. The information on the vibration spectra of

Eé,'.s Zr,(PO,), phosphates is also quite scarce. At the
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same time, depending on the symmetry, the compounds
characterized by similar structural motifs can give dif-
ferent vibration spectra. The use of factor-group analy-
sis allows one to determine the number of active vibra-
tions of anion groupings on the Raman-scattering and
IR spectra and explain the differences in the vibration
spectra associated with different chemical composi-
tions and crystal symmetries.

Below, we generalize the X-ray diffraction and IR
spectroscopy data for a series of phosphates with the
composition M, sZr,(PO,);, where M = Mg, Ca, Mn,
Co, Ni, Cu, Zn, Sr, Cd, and Ba. We also perform factor-
group analysis on vibrations of PO,-tetrahedra in the
structures of the compounds with [L,(PO,);15., frame-
works described by different space groups. Based on
the experimental data obtained and consideration of the
known data, we discuss the influence of various struc-
ture-forming factors on the specific characteristics of
My sZr,(PO,); phosphates.

EXPERIMENTAL

The synthesis of M, sZr,(PO,); phosphates per-
formed by the sol—gel method was described in detail in
our earlier publications [12, 13]. The starting materials
were reagent-grade M(NO), - xH,0O or MCl, - yH,0,
ZrOCl, - 8H,0, and H;PO,. Electron probe analysis (a
Camebax microprobe) showed that the samples were
homogeneous, their compositionswere close to the the-
oretical ones calculated by the formula M, sZr,(PO,);,
and they contained no noticeable amounts of any iso-
morphous impurities.

The X-ray diffraction analysis of the samples was
made on a DRON-3M diffractometer (filtered CuK,
and CoK,, radiations, scanning rate 1 deg/min) at room
temperature. The lattice parameters of the compounds
synthesized were determined from their indexed dif-
fraction patterns in the range of 26 angles 8°-50° and
then were refined by the least squares method. In those
cases where the analysis of the systematic absences of
reflections did not alow the unique establishment of
space groups, the spectroscopic data were also ana-
lyzed.

The absorption spectra of the samples (finely dis-
persed films on KBr substrates) were recorded on a
Specord 75 IR spectrophotometer in the frequency
range 1800—400 cm ™.

ANALY SIS OF VIBRATIONS OF A PHOSPHORUS
TETRAHEDRON IN THE STRUCTURES
OF COMPOUNDS WITH [L,(PO,)3]5,-TY PE
FRAMEWORKS

Compounds of various compositions based on the
[L,(PO,);]5., frameworks are crystalized in severdl

space groups—R3c, R3, R32, Pbca, Pben, Bb(Cc),
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Fig. 1. Mixed [L,(POy4)s3]3. framework. (a) Schematic
depiction of alantern and lantern packing in (b) the rhom-
bohedral framework and (c) its monoclinic modification.

C2/c, P2,/n, P1, and P2,3 [2]. Double phosphates of
zirconium and elements with an oxidation degree of +2

are crystallized either in the rhombohedral (sp. gr. R3)
or monaclinic (sp. gr. P2,/n) systems. Since the PO,-
tetrahedrain the structures of these phosphates are dis-
torted to different degrees, one can expect the forma-
tion of different types of absorption bands active in the
IR range of vibration spectra.

In the vibration spectrum of anisolated PO,-ion (the
T4 symmetry), four bands are possible—a fully sym-
metric A, band (v,, v, symmetric stretching vibration
of a P-O bond), the degenerate E band (v,, O is the
symmetric deformation vibration of a P-O bond), and
two threefold degenerate F, vibrations (v;, v, IS the
asymmietric stretching vibration and v, 0, isthe asym-
metric deformation vibration of a P-O bond). Of al
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Table 1. Typeand number of vibration bands for a PO,-tetrahedron in rhombohedral and monoclinic phosphates of zirconium
and elements with oxidation degree +2

C, positional (R3 Factor group C,,, (P2,/n
Vibration | TaS/MITET of an | symmetry of Factor group C; (R3) group Cyp, (P2y/n)
YP€!isolated tetrahedron| a tetrahedron
(RSand IR data) RS IR RS IR
V1 A(RS) A Ag+ Eg A +E, 3A, 3A,
v, E(RS) 2A oA+ 2E, 2A, + 2E, 6A, 6A,
Vs Vg F,(RS, IR) 3A 3A, + 3E, 3A, + 3E, oA, 9A,

Note: RS and IR indicate the bands in the Raman scattering and | R spectra, respectively, allowed by the selection rules.

Table 2. Indexing of the diffraction patterns of M, sZr,(PO,); compounds with M = Cd, Ca, Sr, and Ba (d, A; 1/1, %)

Cd Ca Sr Ba
hkl

obs Qeaca | o obs Aeaca | o obs Aeaca | o Qobs deaca | o

003 7431 | 7.430 9 7.557 | 7.552 4 7.783 | 7.789 3 7.986 | 7.986 4
011 7219 | 7.227 18 7.213 | 7.209 5 7172 | 7171 7 7.144 | 7.138 6
102 6.298 | 6.302 5 6.307 | 6.313 18 6.325 | 6.332 9 6.347 | 6.343 8
014 4503 | 4.502 40 4537 | 4.542 55 | 4619 | 4.617 29 4.672 | 4.674 17
110 4414 | 4411 | 100 4386 | 4.390 78 | 4350 | 4.350 66 4318 | 4.318 68
105 3.850 | 3.850 19 3897 | 3.892 5 3971 | 3772 4 4033 | 4.033 7
113 3.790 | 3.793 84 3790 | 3.795 83 3.798 | 3.798 63 3795 | 3.798 60
201 3.767 | 3.765 12 3751 | 3.749 10 3732 | 3.720 9 3695 | 3.696 5
022 3.616 | 3.614 5 3.603 | 3.604 5 3584 | 3.586 4 3566 | 3.570 3
204 3151 | 3.151 39 3154 | 3.156 58 3165 | 3.166 35 3172 | 3172 24
025 2901 | 2901 13 2913 | 2912 6 2933 | 2933 11 2950 | 2948 8
116 2.840 | 2.842 82 2864 | 2.863 | 100 2901 | 2902 | 100 2931 | 2931 | 100
211 2.864 | 2.864 23 2853 | 2.851 17 2.825 | 2.827 13 2.807 | 2.808 14
108 2616 | 2.618 11 2653 | 2.6%4 6 2724 | 2724 6 2778 | 2779 10
124 2.563 | 2.564 49 2561 | 2.563 29 2562 | 2.560 13 2557 | 2557 5
300 2547 | 2547 51 2534 | 2534 46 2511 | 2512 35 2493 | 2.493 31

125 2422 | 2424 11 2426 | 2427 4 2431 | 2432 6 2435 | 2435 6
303 2409 | 2.409 9 2402 | 2.403 4 2390 | 2.391 6 2.380 | 2.380 4
028 2251 | 2251 11 2271 | 2271 8 2.308 | 2.308 8 2338 | 2.338 6
119 2159 | 2.160 11 2185 | 2.184 11 2230 | 2.230 7 2.266 | 2.266 6
127 2140 | 2.139 6 2149 | 2.149 4 2167 | 2.167 8 2179 | 2.180 8

223 2114 | 2114 12 2109 | 2.108 16 2.096 | 2.095 13 2.085 | 2.085 18
306 2.099 | 2100 14 2104 | 2104 9 2111 | 2112 10 2114 | 2115 6
128 2.004 | 2.005 34 2017 | 2.017 25 2041 | 2.039 17 2055 | 2.056 11
1011 | 1959 | 1.959 3 1988 | 1.988 6 2044 | 2.045 16 2091 | 2.091 6
314 1982 | 1.981 15 1976 | 1.976 14 1967 | 1.968 9 1.960 | 1.960 4
2010 | 1926 | 1.925 9 1945 | 1.946 8 1986 | 1.986 7 2017 | 2017 6
135 1914 | 1914 16 1913 | 1912 4 1908 | 1.908 12 1905 | 1.904 6
226 1.896 | 1.896 30 1.898 | 1.898 33 1.899 | 1.899 36 1.899 | 1.899 32
402 1.882 | 1.883 3 1875 | 1.875 5 1.859 | 1.860 4 1.849 | 1.848 3
1210 | 1.766 | 1.765 9 1779 | 1779 26 1.807 | 1.807 21 1828 | 1.827 12
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these vibrations, only thev, and v, vibrations are active
inthe IR range. Using the method of dividing the vibra-
tions of a complex ion in a crystal into internal and
external vibrations, we performed the group-factor
analysis of vibrations of an orthophosphorus tetrahe-

dron in the compounds described by the sp. gr. R3 and
P2,/n. The positional symmetry of a complex PO,-ion
is lowered down to C, in both rhombohedral and mon-
oclinic structures (phosphorous atoms arelocated in the
general position). Then, the vibration v, (A) becomes
active and the v, (2A), v;, and v, (3A) vibrations
become nondegenerate. The transition from the repre-
sentation of the positional symmetry group of atetrahe-
dron, C,, to the factor-group representations of the

space groups C;; (R3) and C,;, (P2,/n) isillustrated by
Table 1.

In centrosymmetric crystals, the alternative selec-
tion rule for internal vibrations of acomplex ionispre-
served—vibrations symmetric with respect to theinver-
sion center (the g vibrations) are active in the Raman
spectrum but are inactive in the IR spectrum. Thus, the
IR spectra of rhombohedral phosphates can have two
bands of symmetric stretching vibrations v, (A,, E,),
four bands of symmetric deformation vibrations
v, (2A,, 2E,), and six bands of asymmetric stretching
and six bands of asymmetric deformation vibrations v,
andv, (3A,, 3E,). Theunit cell of phosphates described

by the sp. gr. R3 has only one independent phosphorus
position, 18f (at Z = 6, the unit cell contains 18 P atoms,
the multiplicity of the position with the symmetry C, is
18). The monoclinic unit cell described by the sp.
gr. P2,/nwith Z =4 contains 12 P atoms. The multiplic-
ity of the general position is 4; the unit cell has three
independent phosphorus positions. Thus, the selection
rules for the monoclinic compounds alow the forma-
tion of much more bands in the IR spectra—three v,
(3A,) bands, six v, (6A,) bands, and ninev; and ninev,
(9A,) bands.

RESULTS AND DISCUSSION

The X-ray phase analysis [12—14] showed the com-
plex interactions between the components of the reac-
tive mixtures, with the phase composition being essen-
tially dependent on the temperature and the nature of
divalent cations. The individual M, sZr,(PO,); com-
pounds were formed in the temperature range from 730
to 1150°C.

The interplanar spacings in double phosphates of
zirconium and alkali earth elements of the composition
M, sZr,(PO,); and aso in Cd, sZr,(PO,); are listed in
Table 2, their crystallographic characteristics are indi-
cated in Table 3.

Indexing of diffraction patterns from M, sZr,(PO,);
polycrystals (M = Cd, Ca, Sr, and Ba) showstheir struc-
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tural analogy. The absences of the reflections of the
type h—k+ | =3n unambiguously indicate the R-lattice.

In the structures with arhombohedral mixed frame-
work (Fig. 1b), thelanternsare“beaded” onto the three-
fold inversion axes and occupy all the verticesof an ele-
mentary rhombohedron and also the position in its cen-
ter; i.e., the rhombohedral unit cell includes two such
lanterns—the initial one and the second one (in the
rhombohedron center) inverted with respect to the ini-
tial one. It a'so connects six lanterns at the unit-cell ver-
tices, thus forming a continuous anionic framework.

The framework has two types of cavitiesin the pro-
portion 1 : 3. In the columns extended along the c-axis,
octahedral cavities of the M1 type are formed between
the two neighboring lanterns. Neighboring columns are
connected by single PO,-tetrahedra and, thus, create
M2-type cavities of an irregular shape with c.n. 8.

The precision anaysis of Cd, sZr,(PO,); [15] and
Ca, 5Zr,(PO,); [11] structures based on the correspond-

ing powder diffraction data showed that Cd?* and Ca**
cations are orderly distributed over the octahedra
beaded onto threefold axes and occupy half of al the
M1 cavities, while the M2 cavities are empty. The aver-
age lengths of the Cd—-O and Ca—O bonds coincide
within the error and are equal to 2.47 A. The average
distances in independent Zr-octahedra are 2.03 and
2.05 A for Cd,sZr,(PO,); and 2.06 and 2.08 A for
Ca, sZr,(PO,);. The P-O bond lengths in orthophos-
phorus tetrahedra range within 1.52-1.57 A for cad-
mium-containing compound and within 1.52-1.54 A
for calcium-containing one.

It can be seen from Table 3 that in the series of
M, sZr,(PO,); compoundswith M = Cd, Ca, Sr, and Ba,
the a-parameter decreases and the c-parameter
increases with an increase in the radius of the M cation,
whereas the unit-cell volume increases with it. These
tendencies in the behavior of the unit-cell parameters
can be interpreted as follows. Since M cations occupy
the positions inside the columns between two faces of
the neighboring ZrOg-octahedra located aong the
c-axis (Fig. 1b), the introduction of a larger M-cation
increases the c-parameter. This is accompanied by the
correlated rotation of zirconium octahedra and phos-
phorus tetrahedra connecting the parallel columns,
which, in turn, decreases the intercolumnar distances
and, thus, also the a-parameter. Slight deformation of
the structure (without any pronounced change of the
initial motif) is possible because of the existence of
large voids at alevel of each Zr, P-lantern in the frame-

work and along the 3 axes.

Figure 2 shows the IR-spectra of zirconium phos-
phates with large divalent Cd, Ca, Sr, and Ba cations.
The bands in the range 1250-1000 cm are attributed
to asymmetric stretching vibrationsv; of aPO, ion. The
intense high-frequency bands at 1250-1170 cm™ are

explained by the fact that, at large P-O—Zr bond angles,
the electron density of small polarized considerably
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Table 3. Crystallographic characteristic of the compounds

Chemical formula | Space group a A b, A c, A B, deg v, A3 z
CdosZr(PO,)3 R3 8.822(1) - 22.291(3) - 1502 6
CaysZr5(PO,); R3 8.780(1) - 22.653(3) - 1512 6
Sr05Zro(PO,)3 R3 8.701(1) - 23.370(4) - 1532 6
Bag52r,(POy)3 R3 8.638(1) - 23.950(3) - 1548 6
NiosZro(PO,)3 P2,/n 12.385(3) | 8.924(4) 8.840(3) | 90.53(1) 977.0 4
MGo5Zro(POs)s P2,/n 12.384(3) | 8.922(3) 8.844(3) | 90.56(2) 977.1 4
Clp 52r5(PO,)3 P2,/n 12.389(3) | 8.925(4) 8.841(3) | 90.53(2) 977.4 4
C0p2Zr(POL)s P2,/n 12.389(3) | 8.928(3) 8.840(2) | 90.54(2) 977.7 4
ZnosZr5(PO,)3 P2,/n 13.389(2) | 8.929(3) 8.842(2) | 90.54(2) 978.1 4
MngsZrs(PO,)s P2,/n 12.3903) | 8.931(4) 8.843(3) | 90.55(1) 9785 4

charged Zr*-ions is partly localized on a P-O bond,
which results in high values of the force constants of
this bond [16].This range has five (Cd, Sr, and Ba) or
six (Ca) bands alowed by the selection rules. The
bands in the range 1000-950 cm™ are attributed to the
symmetric v, vibrations, which are represented by a
broadened band with a shoulder. With an increase in
cation size, the asymmetric stretching bands are shifted
toward lower frequencies, and the symmetric stretching
vibrations, in the opposite direction. As a result, the
bandsat 1025 cm in the spectraof Sr- and Ba-contain-
ing phases are incompl etely resolved and show a shoul-

Transmission, %

1200 1000 800 600 401

Fig. 2. IR spectra of M 5Zr,(PO,4); orthophosphates crys-
tallized in the trigona system (sp. gr. R3): (1)
Cdy 5Zry(POy)3, (2) CagsZry(POy)3, (3) SrgsZra(POy4)3,
and (4) Ba0‘5Zr2(PO4)3.

CRYSTALLOGRAPHY REPORTS Vol. 47

der against the background of the band at 1045 cm™.
The bandsin the range 640-545 cm are considered as
deformation vibrations, v,,, and the band in the vicinity

of 425 cm™, as the deformation v, vibrations of aPO,-
tetrahedron.

All the bands of symmetric vibrations of a PO,-tet-
rahedron in the M, sZr,(PO,); phosphateswith M = Cd,
Ca, Sr, and Ba are intense and well resolved (Fig. 2).
The spectrum in this range differs from the spectra of
zirconium and alkali metal phosphates of the composi-
tions EZr,(PO,), with E = Na, K, Rb, and Cs, which are

crystallized in the sp. gr. R3c [17], where the stretch-
ing vibrations are represented by only one broad band
with some dlightly distinguished maxima [18]. The
well resolved bands confirm a high degree of atomic
order in the structure. Indeed, Cd atoms are located in

the 3b positions in the layers (sp. gr. R3), whereas the
3a positions remain empty [15]. Based on the analogy
of the spectra, one can state that in akali-earth zirco-
nium phosphates, the Ca, Sr, and Ba atoms occupy the
layers of M1 cavitiesin the structure.

The interplanar spacings in Mg, sZr,(PO,); are
listed in Table 4, while those for M, sZr,(PO,); phos-
phateswith M = Mn, Co, Ni, Cu, and Zn were indicated
in our earlier publication [13]. These compounds con-
taining small cationswith an oxidation degree of +2 are
crystallized inthe sp. gr. P2,/n (Table 3). The similarity
of their chemical formulas, the closeness of the lattice
parameters and unit-cell volumes, and the same sym-
metry indicate the common basis for the formation of
their crystal structures and lead to the assumption that
they areisostructural. Knowledge of the Nij, sZr,(PO,);
phosphate structure [19] allows us to state that the
structures of the M, sZr,(PO,); compounds (M = Mg,
Mn, Co, Ni, Cu, and Zn) are established quite reliably.

The P unit cells of these structures are monoclini-
cally distorted with respect to their Rcells (Fig. 1). The
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Table 4. Indexing of the diffraction patterns of Mg, sZr,(POy); (d, A; I/1y, %)

hkl Gops Oearoa 1y hkl Oops eatoa 1y
10-1 7.227 7.231 4 411 2.768 2.769 11
200 6.185 6.193 8 13-1 2747 2.750 17
11-1 5.610 5.618 10 131 2747

020 4458 4460 21 23-1 2568 2569 10
002 4420 4423 100 21-3 2561 2559 24
211 4387 4304 52 420 2542 2543 Iy}
012 3.054 3.962 2 402 2526 2524 8
11-2 3.782 3.784 30 123 2403 2.409 3
30-1 3.757 3.754 39 51-1 2313 2310 3
301 3723 3.726 16 004 2211 2211 6
31-1 3.456 3.461 6 422 2.196 2.197 3
22-1 3358 3357 12 042 1.992 1.991 8
221 3.342 3343 I 23-3 1.987 1.988 8
022 3.145 3.141 43 233 1.980 1.979 17
400 3.099 3.096 32 142 1.965 1.965 14
12-2 3.051 3.049 9 611 1.957 1.957 29
122 3.043 3.039 6 522 1.939 1.938 3
10-3 2.875 2.874 9 620 1.870 1.873 5
321 2872 53-1 1.863 1.863 4
222 2.797 2.793 7 602

411 2.786 2.784 9 51-3

main building elements of the framework (lanterns) are

located along the [102] and [102] directions playing
therole of quasi-threefold axes. Asaresult, the Zr-octa-
hedra of two neighboring groupings form strongly dis-
torted tetrahedral voids occupied by small cations. The
M-ions occupy their positions with a probability of 0.5.

The cation—oxygen distances in the Ni**-tetrahedra
in monoclinic Ni,sZr,(PO,); phosphate range from
1.89t0 2.26 A, with the average distance being 2.11 A
[19]. The average Ni—O distance in polyhedra of the
Ni, sZr,(PO,); phosphate is considerably longer than
that predicted from the sum of the ionic radii r,,(Ni) +
rv(0) =0.55+1.36 = 1.91 (A) [20]. Thisindicates that
the non-structure-forming Ni site can be occupied by
cations with a somewhat larger size and an oxidation
degree of +2, such as Mg, Cu, Co, Zn, and Mn. The
average distancesin each of theindependent Zn octahe-
draof the Ni, sZr,(PO,), phosphate are equal to 2.08 A.
The average P-O lengthsin the tetrahedra of this phos-
phate are 1.50, 1.51, and 1.53 A.

In the range of v; vibrations, the IR-spectra of these
compounds (Fig. 3) have either al the nine bands
allowed by the selection rules (the Ni, Zn phases) or
have from six to seven bands (the Mg-, Co-, Cu-, and
Mn-containing phases). Intherange of v, vibrations, all
three allowed bands are formed in all the phases except
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for the Mn-containing ones, where only one band is
formed. The spectra of v, vibrations have only six or
seven of the nine possible bands. The v, vibrations
recorded by a spectrophotometer are represented by
two bands. The somewhat different form of the IR spec-
trum of Mn,, sZr,(PO,); phosphate seems to be caused
by alarger Mn-ion which “pushes apart” the tetrahedral
positions of their location, which, in turn, affects the
vibrations of phosphorus tetrahedra.

The above analysis of the vibrations in the related
structures of double orthophosphates of Zr and the ele-
ments with an oxidation degree of +2 described by dif-
ferent space groups shows that the IR spectra of the
phaseswith large and small cations differ in the charac-
ter, number, and types of their bands both in the stretch-
ing and deformation regions.

Thus, the synthesized compounds with
{[Zr,(PO,);]"}5., frameworks containing Cd, akali
earth elements, Mg, and 3d elements have similar struc-
tures but different arrangements of cations with an oxi-
dation degree of +2 located in the framework voids. The
structures of these phosphates can be divided into two
groups (Table 5)—zirconium phosphates with small
cations (Ni, Cu, Mg, Co, Zn, and Mn) described by the
sp. gr. P2,/n with d-elements and Mg occupying the tet-
rahedral voids and phosphates with orthorhombic
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Transmission, %

1200 1000 800 600 400
v, cm™!

Fig. 3. IR spectra of M, 5Zr,(PO,); orthophosphates crys-
tallized in the monoclinic system (sp. gr. P2,/n)):
(1) Mgy 5Zr5(POy)s, (2) Nig 5Zr5(POy)3, (3) Cog 5Zry(POy)3,
(4  CugsZry(POy);,  (5)  ZngsZry(POy);,  and
(6) Mng 5Zr5(POy)3.

structures (sp. gr. R3) and large Cd-, Ca-, Sr-, and Ba-
cations characterized by an octahedral environment.

However, the size of the M-cationisnot the only fac-
tor determining the formation of a certain structure
type. Thus, the Cu,sZr,(PO,); phosphate has a stable
rhombohedral structure at temperatures higher than
520°C [21]. According to the DTA data, with an
increase in the temperature, Mg, sZr,(PO,); and
Zn,, sZ1,(PO,), phosphates undergo a phase transition at
670°C [22]. The established phase transitions accom-
panied by the change of the symmetry are associated
with the transformation of the crystal structure due to

Table 5. Morphotropic series of phosphates of zirconium
and divalent elements M, sZr,(PO,);

Compound |Radiusof M, A| C.n. M2* |Space group
Nig5Zro(POy)3 0.55 4 P2,/n
Cup5Zr5(PO,)4 0.57 4
MggsZr(POy)5 0.57 4
Copy5Zro(POy)3 0.58 4
Zng 5Zr5(POy)5 0.60 4
Mng5Zro(PO,4)3 0.66 4
Cdo5Zr,(PO,)3 0.95 6 R3
CaysZr2(PO,)5 1.00 6
Sro5Zr2(PO4)3 118 6
Bag52r,(POy)3 1.35 6
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changes in the temperature. These reconstructive tran-
sitions are accompanied by the change in the coordina-
tion number of an M cation from 4 to 6, with the pres-
ervation of the main islandlike structural groupings—
lanterns. In terms of structure, the polymorphism of
My .sZr,(PO,); phosphates with M = Mg, Cu, and Zn
seems to be associated with the easy deformability of
the oxygen environment and unstable coordination of
cations with an oxidation degree of +2, arather flexible
construction built by Zr- and P- coordination polyhedra
(connected only via their vertices), and also with a
more uniform distribution of the stressesarising at large
amplitudes of atomic vibrations among various bonds.
Thr different temperatures of these phasetransitionsare
determined by the electronic structure and the stereo-
chemical characteristics of the M-cation.

The phenomenon of the high flexibility and stability
of the [L,(PO,);]5. framework readily accommodating
various combinations of cations and variations in the
temperature and pressure seems to result from the com-
bination of two competing structure-forming factors.
The first one is associated with the existence of rela
tively rigid octahedral-tetrahedral fragments (lan-
terns); the second, with the tendency to amore uniform
spatia distribution of tetrahedral phosphorus anions
and cations that have different charges in the cationic
and anionic parts of the structure, which is dictated by
the requirement of the local valence balance. Thesetwo
factors manifest themselves especialy clearly at the
ends of the series of compounds with [L,(PO,);]5.
frameworks, which include the cations in the order of
the changein their ionic radii when the composition of
the anionic part (framework) of their structure is con-
Stant.

In the morphotropic series of zirconium phosphates
of divalent elements, M, sZr,(PO,), (Table 5), the part
of the series with small M**-cations (in comparison
with Zr*-ions participating in the formation of the
anionic {[Zr,(PO,);]"}5. framework), the main struc-
ture-forming factor is the mixed octahedral—tetrahedral
framework accommaodating asmaller cation. In the part
of the serieswith large Cd**-, Ca?*-, Sr**-, and Ba’*-cat-
ions, the atomic arrangement is determined mainly by
the geometric factor—if the radius of a highly charged
cation (Zr*) is much less than the radius of a less
charged ion (M?*), the general arrangement of these
cations and tetrahedral oxo anions resultsin the “ push-
ing-apart effect” of large MO, octahedra, which
changes the structure geometry. The phase transitions
in these compounds are accompanied by the rotation of
PO, tetrahedra and some changes in the oxygen envi-
ronment of M atoms, while the general features of the
structure architecture are preserved.
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Abstract—The self-consistent valence electron densities of NaNO,, AgNO,, and their constituent sublattices
are calculated on the basis of the theory of the local-density functional. The quantity characterizing the relation
between different sublatticesisintroduced as the difference density resulting from the subtraction of the densi-
ties of the individual sublattices from the total electron density. The role of metal in the formation of electron
density isestablished, and, in particular, it is shown that, in AQNO,, anionic bonds have the covalent component
formed at the expense of the electron density of the cation. It is also shown that, qualitatively, the difference
density in NaNO, corresponds to the experimental deformation density. © 2002 MAIK “ Nauka/Interperiod-

ica” .

INTRODUCTION

Metal nitrites have numerous phasesthat exist under
different pressures and temperatures. The order—disor-
der phase transitions in these nitrites have been exten-
sively studied by various methods [1, 2]. One of the
methods of studying crystal structures and phase tran-
sitions is the experimenta determination or theoretical
calculation of the deformation electron density. The
deformation electron density characterizes the total
effect of electron redistribution between various atoms
and displacements of electrons from the atomic posi-
tions into interstitials. Traditionally, the effect of elec-
tron redistribution is interpreted in terms of the local
approach, i.e., in terms of the hybridization of orbitals
of the neighboring atoms, as is usually done in molec-
ular quantum chemistry. But the role of the long-range
order in chemical bonding in crystalline solids still
remains unclear. To study this problem, we elaborated
anew approach to the description of the changesin the
electron density of free atoms caused by their incorpo-
ration into the crystal lattice, which is based on the
notions of sublattices and difference density [3]. The
application of this approach to crystals with mainly
ionic chemical bonding allowed us to establish a num-
ber of electron-density characteristics associated with
long-range interactions between equivalent atoms in
the sublattices. Below, in order to establish the role of
the sublattices in the formation of the valence electron
density, we extend the method of sublattices [3] to
NaNO, and AgNO, crystalswhere, along with theionic
component, there also exists a covalent component of
chemical bonds inside the molecular NO, complex.

METHODS AND OBJECTS
OF STUDY

The electron density was calculated by the method
of nonempirical pseudopotential [4] in the basis of the
numerical spd> atomic pseudoorbitals. The atomic
orbitals were calculated using the solution of the
Schrodinger equation with the same pseudopotentials
by fitting the occupation numbers to the well-known
diagrams of the energy states of an electronin an atom.
It was necessary to use of the virtual p- and d-states of
metal and d-states of nitrogen and oxygen in the
decomposition of crystal orbitals, because the former
play an important rolein the distribution of the valence
electron charge. Taking account of the d-orbitals of
nitrogen was necessary for the reliable reconstruction
of the electron structure of an anion, whereas the dif-
fuse d-orbitals of oxygen were taken into account
because they are responsible for anion—anion interac-
tions. Thedetails of the numerical variant of the method
can be found elsewhere [5].

In the method of sublattices, acrystal isdivided into
a set of symmetrically related atoms of one kind with
the preservation of their real geometry and electroneu-
trality. Then, the self-consistent calculation of the elec-
tron density is performed for a crystal as a whole and
for each of its constituent sublattices. The sublattice
density automatically takes into account the hybridiza-
tion effects of the equivalent atoms. Subtracting the
sublattice densities from the crystal density, we obtain
the difference density that can be either positive or neg-
ative and clearly illustrates the electron transport
between the atoms of different kinds. The difference
el ectron density thus determined differsfrom the defor-
mation density, which is obtained by subtracting the
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spherically symmetric atomic density from the experi-
mental density. The differenceiscaused by thefact that,
in our approach, one distinguishes the hybridization
effects between the equivalent atoms that make up the
sublattices and the hybridization effects between the
sublattices themsel ves.

One of the selected objectsisNaNO,, aferroelectric
with the simplest crystal structure. Up to atemperature
of 437 K, sodium nitrite has an orthorhombic lattice

with the symmetry C§3 then it undergoes the transi-
tion from the ferroelectric to the paraglectric phase

described by the group DSﬁ . The experimental study of

the deformation density in the vicinity of the phase-
transition point in NaNO,, the deformation density in
its ferroelectric phase, and small deviations from it
caused by the partial reorientation of the nitrite group
were studied in [1]. The second object, AgNO,, has an
atomic structure similar to that of sodium nitrite but has
been less studied both theoretically and experimentally.
In order to establish the role played by cationsin chem-
ical bonding in metal nitrites, we calculated the crystal
and sublattice valence densities in NaNO, and AgNO,.
The calculations were performed for the ordered ferro-

electric phase with the symmetry C§3 and the lattice

parameters determined earlier for NaNO, [6] and
AgNO, [7].

CALCULATED RESULTS
AND DISCUSSION

For convenience, we used the setting in which the z-
axiswas directed along the crystallographic b-axis, and
they-axis, along the c-axis[6]. The densitiesin both the
text and the figure captions are given in e A= units.

The distribution of the crystal valence density and
the sublattice densities in the bc plane in NaNO, are
shown in Fig. 1. Consider first the crystal density. It is
characterized by the obvious localization of the elec-
tron density at the anion and, in particular, oxygen
atoms. The density at the nitrogen atom is about ~1,
whereas at the oxygen maxima, which have the shape
of p-orbitals oriented normally to the N-O bond, the
density is about 2.5. The common density contours

“embrace” oxygen atoms in NO, with the density

value ~1.5 and the closest anions with the density ~0.5.
The common contours embracing the anions are also
formed in the ab plane, whereas in the ac planes only
the common contours connecting oxygen atoms in the

NO, complexes are formed. Such a density distribu-

tion is formed because of the overlapping wave func-
tions of the nitrogen and oxygen of the neighboring
anions. As is seen from Fig. 1, the nitrogen sublattice
provides the maximum density at the atomsin theform
of p, orbitals, and the oxygen sublattice, in the form of
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Fig. 1. Distributions of crystal electron density and sublat-
tice densities due to Na, N, and O atoms in NaNOs.
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Fig. 2. Distribution of crystal el ectron density and sublattice
density dueto Ag atomsin AgNO,.

Py, orbitals. It isthe hybridization of these orbitals that
provides bonding in the anion. In this case, both sublat-
tices sharethe density contoursrelating the atoms of the
neighboring anions, which manifests itself in the crys-
tal density. The density of the sodium sublatticeis dis-
tributed rather uniformly, and its maxima are located in
the region between the oxygen atoms of the nearest
anions. Thus, an electron of the metal atom is trans-
ferred not to the anion but to the interanionic space.
Therefore, one has to consider not the M*—A- ionic
bond, but rather the ionic bond in terms of the whole
crystal, as being formed not with the participation of
individual atoms but with the participation of individ-
ual sublattices.

Figure 2 shows the distribution of the crysta
valence density and the density of the silver sublattice
in AgNO, in the same bc plane asin NaNO,. It is seen
fromFigs. 1 and 2 that the crystal densities at the anions
are close in both crystals; the density of the nitrogen
and oxygen sublattices are also very close (they are not



746

e/ L
Cou

Fig. 4. Difference density in the plane normal to the N-O
bond (on the | eft) and the experimental deformation density
in NaNO, [6].

shownin Fig. 2in order to save space). However, acon-
siderably larger number of valence electrons at silver
atoms (11, in our calculation) resultsin adrastic change
in the density of the metal sublatticein AQNO, in com-
parison with the corresponding density in NaNO,,
which also manifestsitself in the crystal density. First,
the shared contours relating silver atoms are formed in
AgNO,. Silver transfers aconsiderably larger charge to
the plane of anions than sodium, so that the noticeable
charge density is formed in the interanionic region,
which isalso clearly seen from the crystal density. The
existence of common electron-density contours for
neighboring anions and also the small electron-charge
maximum between these contours lead to the assump-
tion that covalent bonding exists between the anions.

The charge redistribution between the sublattices is
described by the difference density Ap(r) shown for
NaNO, and AgNO, in Fig. 3. It is seen that the differ-
ence densities in the vicinity of oxygen atoms and
inside the anionic group are close for both compounds.
The most pronounced differences are seen in the vicin-
ity of the cations, which is quite natural because of the
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considerable difference in the numbers of valence elec-
trons in sodium and silver.

The negative Ap(r) values are in the direct vicinity
of nitrogen and oxygen nuclei and inthevicinity of cat-
ions. The maxima of the difference density correspond
to two points located symmetrically with respect to the
N-O bond and also to the middle points of these bonds.
The values of the two ending maximaare different. The
larger value has the maximum located closer to the cat-
ion along the O—Na bond length. At the same time, the
far maximum isdeformed in asuch way that it provides
the maximum charge along the N-O bond. This distri-
bution of the difference density is qualitatively similar
to the experimental deformation density determined in
[6, 8]. Thus, the sublattice interactions are most pro-
nounced between the oxygen and nitrogen sublattices
and result in the complicated redistribution of the elec-
tron charge between these sublattices, which can be
considered as covalent bonding. The negative Ap(r)
values in the vicinity of the metal are explained by the
chargetransfer from the metal sublatticeto the nitrogen
and oxygen sublattices, which provides the formation
of theionic component of the chemical bond.

Now, compare in more detail the calculated differ-
ence density in NaNO, with the known experimental
data.

The deformation density in NaNO, was studied by
the X-ray diffraction method elsewhere [6, 8]. As was
already indicated, in the vicinity of the nitrite group, the
deformation-density maps obtained in these studies are
qualitatively similar to the difference-density maps in
the bc plane (Figs. 3 and 4). Figure 4 shows the calcu-
lated map of Ap(r) for NaNO, in the plane perpendicu-
lar to the N-O bond (the left-hand side of Fig. 4) and
the experimental deformation density obtained in the
same plane in [6] (the right-hand side of Fig. 4). The
negative values of the deformation density areindicated
by dashed lines. This figure clearly shows the qualita:
tive similarity of the difference and the deformation
densities. The difference density is negative at the sites
of nitrogen and oxygen nuclei and also in the regions
that have the shape of p-orbitals oriented normally to
the N—O bond. The maxima of difference density are
located in the middle of this bond (the value 0.2) and
lower than the nitrogen and oxygen nuclel (the value
0.1). Thus, the interaction between nitrogen and oxy-
gen atoms in the crystal results in the electron-charge
transfer from the peripheral regions of the atomsto the
regions along the bond between them. This electron-
charge redistribution is typical of covalent chemica
bonding.

The similarity of the difference and deformation
densities is explained by the fact that the most pro-
nounced hybridization effects in nitrites take place
between the nitrogen and oxygen sublattices, whereas
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the hybridization between the other sublattices and
inside the sublattices is much weaker.
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Abstract—The crystal structure of cation-deficient calciohilairite from the Lovozero massif (the Kola Penin-
sula) was established (Siemens P4 diffractometer, MoK, radiation, 409 independent reflections with |F| >
40(F), anisotropic refinement, R(F) = 0.037). Like other representatives of the hilairite structure type, calcio-
hilairite is described by the space group R32 (a = 10.498(2) A, ¢ = 7.975(2) A, Z = 3), whereas its unit-cell
parameter c is reduced by afactor of two. Two positionsin the cavities of the mixed zirconium-silicon—-oxygen
framework are occupied by Caand Nacationsin theratio of 1 : 1 (partly occupied A(1) position) and oxonium
cations (H;0)" and H,O moleculesin theratio of 1 : 2 (A(2) position). Different types of isomorphous replace-
ment accompanying the formation of cation-deficient mixed-framework structures (lovozerite, vinogradovite—
lintisite, labuntsovite—nenadkevichite, eudialyte, etc.) are considered. Based on the X-ray diffraction data, the
following scheme of isomorphism in the structure of cation-deficient calciohilairite is suggested: 2Na* +
H,0 == 0.5Ca’* + 1.50 + (H;0)*, where (I is a vacancy. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Calciohilairite CaZrSi;O, - 3H,0 is a rare mineral
attributed to the hilairite group according to its compo-
sition, X-ray diffraction data, and crystal morphology.
This mineral was discovered in hydrothermalites of
alkaline granites from the Golden Horn batholith
(Washington, USA) [1] and was aso found in the deriva-
tives of the M ont-Saint-Hilaire and Saint-Amable agpaitic
massifs (Quebec, Canada) [2]. Intermediate members of
the calciohilairite-hilairite (Na,ZrSi;Oy - 3H,0) series
were discovered in the Strange Lake akaline complex
[3]. Recently, calciohilairite was found in the endocon-
tact zone of the Lovozero alkaline massif (the Kola
Peninsula), where it is the major zirconium-containing
mineral of hydrothermalites developed in cavernous
albitized murmanite—eudialyte lujavritesfrom the Flora
Mountain. Isometric white and coffee-brown, usually
split, crystals (up to 0.4 mm in size) of calciohilairite
formed by the {012} faces of a rhombohedron and
{110} faces of the hexagonal prism occur in vugs in
association with aegirine, natrolite, lorenzenite,
labuntsovite-Mn, kuzmenkoite-Mn, carbonate-fluorap-
atite, and vuoriyarvite-K [4].

The structures of severa minerals of the hilairite
group were studied, among which are hilairite [5],
komkovite [6], sazykinaite-(Y) [7], pyatenkoite-(Y)
[8], and calciohilairite[1]. The structure of hilairitewas

reported for the first timein [5] and was described as a
mixed framework consisting of helical chains of
[Si;Oq] linked via Zr-octahedra. The cavities of the
framework are occupied by the Na cations and H,O
molecules. In addition to hilairite, the structures of its
rare-earth analogue sazykinaite-(Y) [7], pyatenkoite-
(Y) [8], and komkovite [6] were also established. In the
crystal structure of sazykinaite-(Y), one of two Zr posi-
tionsisoccupied by Y and rare-earth cations. In pyaten-
koite-(Y), the Zr ions in two positions are completely
replaced by Y + REE and Ti + Nb. The structure of
komkovite differs from hilairite in that Na atoms are
replaced by Ba atoms in the ratio 2 : 1. The crysta
structure of calciohilairite has not been established. In
the first study of this mineral, which was devoted to its
mineralogical description [1], it was only noted that the
unit-cell parameter a of thismineral istwice aslarge as
that of hilairite (a = 20.870(4) A, ¢ = 16.002(4) A,
space group R32). However, the poor quality of single
crystals used in this investigation cast some doubt on
the reliability of the crystallographic and geometric
characteristics of calciohilairite. A new occurrence of
calciohilairite at the Lovozero alkaline massif, where
single crystals suitable for X-ray diffraction anaysis
were found, and the presently available X-ray facilities
gave new impetusto the investigation of the structure of
this mineral.
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EXPERIMENTAL

Electron microprobe analysis of seven calciohilair-
ite crystals (Table 1) revealed the following character-
istic features:

—the presence of Nb and Ti impurities, which,
apparently, replace Zr; in all the analyses, the Si/Z(Zr +
Nb + Ti + Hf) ratio was approximately 3: 1,

—very wide variations in the Ca: Naratio, includ-
ing variations within one crystal, which ranges from
sodium-free zones (i.e., from virtually pure calcio-
hilairite) to a calcium-containing variety of hilairite
(Na, _,,Ca,)ZrSi;O, - 3H,0, where x < 1; the latter is
usually found in crystal cores;

—asubstantial content of K and Sr impurities (often
K > Na);

—an overall deficiency of large low-valence cations
(Na+K + Ca+ Sr+ Mn + Zn); the sum of their formula
coefficients ranges from 0.6 to 1.0 with respect to three
Si atoms.

Thus, the mineral from the Lovozero massif is very
compositionally inhomogeneous and, on the whole,
can be assigned to a cation-deficient variety of calcio-
hilairite.

A single crystal of calciohilairite of dimensions
0.30 x 0.20 x 0.22 mm was selected using a Weissen-
berg camera. The X-ray diffraction data were collected
from this crystal on an automated Siemens P4 diffrac-
tometer. The crystallographic characteristics and the
details of X-ray data collection and structure refine-
ment are listed in Table 2.

The parameters of the trigonal unit cell a =
10.498(2) A, ¢ = 7.975(2) A were determined by the
least-squares refinement with the use of the angular
parameters of 30 reflectionsintherange 19° <20 <25°.
Both reduced parameters are approximately haf as
large asthose reported earlier [1]. The Y-scan empirical
absorption correction was introduced. The structure
was refined within the space group R32 using the
SHEL X97 program package [9] based on the modified
atomic coordinates determined earlier [5]. The subse-
guent stages, including the refinement of the electron
contents in three cation positions (A(1), A(2), and Zr)
and the refinement based on the anisotropic thermal
parameters, reduced the R(F) factor to 0.037. The cat-
ion distribution thus obtained confirmed that the Zr
position is completely occupied, whereas the
intraframework position A(1) is occupied by the Caand
Na cationsin theratio 1 : 1 (calculated from the elec-
tron content) by only 33%. In spite of the shortened dis-
tances (~1.84(3) A) between the symmetrically related
(Ca,Na) atoms located in the A(1) position, the partial
occupancy of the latter excludes any direct contact
between these atoms. For this reason, the maximum
occupancy of the A(1) position cannot be higher than
50% (one Caatom per formulaunit). Anincreasein the
cation content in the A(1) position of the hilairite struc-
ture should be accompanied by a twofold increase in
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Table 1. Variationsin the chemical composition of the mine-
rals of the calciohilairite-hilairite series from the FloraMoun-
tain (Lovozero massif) according to the results of 17 electron
microprobe analyses for seven crystals (Camebax SX 50)

Average | Average cation

Component | Ranges, wt %| compositions,| content (with
wt % respect to Si = 3)

Na,O 0.00-2.4 0.28 0.04
K,0 0.4-3.2 2.09 0.18
Ca0 4.1-115 6.96 0.50
SO 0.00-1.3 0.67 0.03
MnO 0.00-0.9 0.89 0.01
ZnO 0.00-0.6 0.18 0.01
SO, 416474 44.90 3
TiO, 0.5-1.4 0.81 0.04
ZrO, 26.8-31.1 29.23 0.95
HfO, 0.0-0.8 0.31 0.01
Nb,Os 0.3-3.3 1.76 0.05
Sum 87.44

Note: In all the analyses, the Ba, Mg, Fe, Al, REE, F, and Cl
contents were lower than the detection limits.

the unit-cell parameter c. The fact that the (Ca,Na) cat-
ionsoccupy the A(1) positionisindirectly confirmed by
the octahedral coordination of these cations. This coor-
dinationisformed by the water moleculeslocated inthe
A(2) position and the O(1) anions. The A(1) position
was also found in the structures of other minerals of the
hilairite group, whereas the A(2) position in the new
specimen, unambiguously revealed from a difference
electron density synthesis, was observed for the first
time. Taking into account the requirement of the elec-
troneutrality of the structural formula and the presence
of water in the minera structure, we assumed that the
A(2) position is occupied by oxonium cations H;O" and
water molecules in the ratio 1 : 2. The presence of the
mobile cations (H;O") in the A(2) position accounts for
the high thermal parameter of the atoms in the A(2)
position (Table 3). Recently, similar thermal parame-
ters of the oxonium cations were found in the structure
of tsepinite-(Na), a representative of the labuntsovite
group [10]. Theresults of the X-ray diffraction analysis
confirmed the formula (Ca,Na), ¢,ZrSi;Og[H,0O,H50]5.
The fact that this formulais dlightly different from the
average composition of themineral (theright columnin
Table 1), in particular, the absence of K, is attributed to
the individual features of the grain under investigation.
On the whole, the weight contents of the components
corresponding to the idealized structural formula (CaO,
4.79; Na,O, 2.65; ZrO,, 31.90; SiO,, 46.66; H.,0,
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Table 2. Crystallographic characteristics and details of
the X-ray diffraction study

Formula (Ca,Na) 672rSizOq
[H20,H30]5
Unit-cell parameters, A a=10.498(2),
c=7.975(2)
Space group; Z R32; 3
Unit cell volume V, A3 761.1(2)
Calculated density p, g/cm?® 2.543
Absorption coefficient g, mm 1.679
Molecular weight 1165.54
Fooo 565.0
Diffractometer Siemens P4
Wavelength, A 0.71073
26, deg 6.80
26,12 deg 59.72
Total number of reflections 1427
Total number of independent reflections 425
Number of independent reflections 409
with |F| > 40(F)
Rint 0.044
Number of parameters used in 33
the refinement
Re 0.037
wR(F?) 0.089
GOOF 1.235
AP /A3 0.80
AP, /A3 —-0.48

14.00; ~ = 100 wt %) are closeto the ranges of the com-
position variations of calciohilairite determined by the
electron microprobe analysis (Table 1). The fina coor-
dinates of the basis atoms and thermal parameters are
listed in Table 3. The results of the calculations of the
valence balance[11, 12] aregivenin Table 4. Theinter-
atomic distances in the coordination polyhedra have
standard val ues (the average Zr-O, Si-O, and (Ca,Na)—
O distances are 2.077, 1.625, and 2.410 A, respec-
tively). The projection of the structure obtained using
the ATOMS program [13] is shown in the figure.

RESULTS AND DISCUSSION

The crystal structure of cation-deficient calciohilair-
ite is characterized by atwofold decrease in the size of
the unit cell compared to the unit cells of other repre-
sentatives of this mineralogical group (hilairite, komk-
ovite, and pyatenkoite-(Y)), with the space group R32
being retained. In addition, the structure of the new
mineral also has a position that is not found in other
representatives of this group. This position is occupied
by the H;O" cations and water molecules. The configu-
ration of the zirconium-silicon—oxygen mixed frame-
work remains virtually unchanged. The presence of the
Ca or Na cations in the A(1) position excludes the
simultaneous presence of the oxonium cation in the
A(2) position and, on the contrary, allows water mole-
culesto occupy the latter position. The octahedral coor-
dination of the (Ca,Na) cationsisformed by three water
molecules and three O(1) atoms at distances of 2.30(2)
and 2.52(1) A, respectively. Unlike the completely
occupied A(2) position, the existence of vacancies in
the A(1) positionisfavorablefor the simultaneous pres-
ence of the large oxonium cations H;O* in the A(2)
position. The oxonium cationinthe A(2) positionis sur-
rounded by the O~ anions located at rather large dis-
tances (2.987(6) A), which is consistent with the
H,0*-O distance typical of this cation (~2.57 A). In
this case, the oxonium cations can form weak hydrogen

Table 3. Coordinates, multiplicities (Q), occupancies (q), and thermal parameters for the basis atoms

Position* xla y/b zlc Q q Uz x 102 A2
Zr 0.0 0.0 0.0 0.1667 0.1667 1.61(3)
A(D 0.0 0.0 0.615(2) 0.3333 0.1117 9.6(5)
A(2) 0.0 0.201(2) 0.5 0.5 0.5 14.8(5)

Si 0.4141(2) 0.4141(2) 0.5 0.5 0.5 1.90(5)
o) 0.0951(6) 0.1860(3) 0.8488(4) 1 1 2.55(7)
0(2) 0.6475(6) 0.0 0.0 05 05 3.8(2)
* A(1) = Ca, Na; A(2) = H,0, H30.
** The parameters Ug, were cal culated from the anisotropic atomic displacements.
CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002
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bonds with O(1) atoms, which were taken into account
in calculations of the valence balance [12].

Thetotal water content in the A(2) position (H;O* +
2H,0 per structural formulad) isin complete agreement
with the accepted formula of hilairite.

The constitution and the possible mechanism of the
formation of cation-deficient calciohilairite are not only
of interest by themselves but also might help oneto elu-
cidate the nature of partialy decationized varieties of
many zeolite-like minerals that are widespread in
hydrothermally atered alkaline rocks and their deriva-
tives.

The isomorphic relationship between hilairite and
“full-cation” calciohilairite is rather ssimple (2Nat ==
Ca?* + 0). Thisscheme often occursin minerals, partic-
ularly in zeolites (anal cime-wairakite, chabazite, gme-
linite, etc.). In some specimens, the additional water
molecules are located in the vacant cavities (2Na* —=
Ca** + H,0) and, thus, lower the symmetry. As an
example, we refer to zeolites of the natrolite
Naz(Alzsi:z,Olo) " 2H20—$OI eCIte Ca(AIZSi3010) " 3H20
series[14].

However, the above schemes of isomorphism alone
cannot explain the constitution of cation-deficient cal-
ciohilairite. Proceeding from the conditions of thelocal
valence balance, it seems to be highly improbable that
adeficiency of positive chargein thismineral (resulting
from the overall deficiency of large extraframework
cations) can be compensated with the partial replace-
ment of O atoms in the framework by OH groups. The
data on the occupancies of the extraframework positions
and the cation—anion distances lead to the conclusion that
the residua positive charge is accounted for by the oxo-
nium cations. As a result, the general scheme of isomor-
phism, which leads from hilairite Na,ZrSi;O, - 3H,0 to
cation-deficient calciohilairite, can be represented as
follows: 2Na* + H,O — 0.5Ca** + 1.50 + (H;0)*.

Taking into account the zonal structures of some
crystalsfound at the FloraMountain, it can be assumed
that initially they consisted of hilairite. The subsequent
decrease in alkalinity of hydrothermal solutions led to
ion exchange resulting either in partia or complete
leaching of Na and uptake of larger cations (Ca*,
H,O", K*, Sr?), particularly in outer zones of individu-
als. The incorporation of the oxonium cations into the
channels of the mineral structure seems to be highly
probable, because it is well known that the acid—base
equilibrium in solutionsiis displaced to the (H;O)* ions
under almost neutral conditions.

The fact that the leaching of Na from many zeolite-
like rare-element minerals is a process readily occur-
ring at the late-hydrothermal evolution stages of alka-
line massifsis supported by abundant evidence, includ-
ing numerous experimental data (for example, the
information on steenstrupine [15]). In this case, a defi-
ciency of positive charge can be compensated in anum-
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Structure of cation-deficient calciohilairite projected onto
the (001) plane; A(1) = Ca, Na; A(2) = H,0, H30.

ber of ways. For example, isomorphism according to
the schemesNa*+ O> — 0O+ OH and Na* + O —~
H,0 + OH~ was substantiated for Zr and Ti silicates of
the lovozerite group and for Ti silicates of the vinogra-
doviteintisite polysomatic series [16-18].

The former scheme “accompanies’ the transforma-
tion of vinogradovite Na,Ti,(Si,O¢),
[(Si,A1),0,,]0,(H,0,Na,K); into the so-called “vino-
gradovite I1” Na,0,Ti,(Si,04)(Si,0,0)0,(OH), - 2H,0
[16].

These mechanisms seem to be the most probable
aso for the orthorhombic representatives of the
labuntsovite group, whose structures contain narrow
channels[19]. In contrast, the Na" cations in the struc-
tures of monoclinic labuntsovite-like phases and miner-
as of the eudialyte group with large cavities in the
framework can be replaced by oxonium cations (H;0)*
[10, 20]. The leaching of Naaccompanied by hydration
is also typical of pyrochlore, catapleiite, gaidonnayite,
elpidite, and a number of other minerals. However, the
mechanism of this process should be elucidated for
many of these minerals.

To summarize, the results of the study of cation-
deficient calciohilairite from the Lovozero massif
allowed us to propose the most crystallochemically
probable structure model for an oxonium-stabilized
partly decationized zeolite-like mineral with a mixed

Table 4. Calculated valence balance

Atom o) O(2) H,0
Ca, Na 0.057 0.108
Zr 0.687
S 1.044 0.9521%2
H,0" 0.044
b2 1.832 1.904 0.108
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(Zr,Nb,Ti)-Si-framework and describe one of the mech-
anisms of the “gentle” leaching of sodium from these
compounds. This phenomenon iswidespread in nature.
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Abstract—This paper reports on the results of crystal chemical analysis and computer simulation of the defect
structure of potassium dihydrogen phosphate (KDP) containing impurities of bivalent and trivalent metals. It is

shown that these impurities can form defect centers of different types: isolated centers formed by M3+ and Ni%*
ionsand, in part, by Co?* ions at interstitial sites, chains composed of M2* impurity ions with radii from =0.65

to=1.1A

, and centers created through the substitution of large-sized bivalent cations for potassium ions either

with the formation of additional potassium vacancies or through the heteroval ent isomorphism mechanism. The
calculations are performed using different-type interatomic interaction potentials, and a comparative analysis
of the results obtained is carried out. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

In order to elucidate how local stresses produced by
impurities affect the crystalization (i.e., the structural
mechanism of impurity effect), it is necessary to know
the structure of defect regions and the strains induced
by these regions in the crystal matrix. In this work, we
performed a crystal chemical analysis of the structure
of potassium dihydrogen phosphate (KDP) and a com-
puter simulation of defect centers with the aim of
revealing the mechanism of incorporation of bivalent
and trivalent impurity metals (with ionic radii varying
over awide range) into the structure. We analyzed the
variants of calculations within the purely ionic and
ionic—covalent approximations (for bivalent and triva-
lent cations) and calculations with inclusion of the har-
monic potential (for bivalent cations).

COMPUTATIONAL TECHNIQUE

The structure of KDP containing impurities of biva-
lent (Ni%*, Co?*, Fe**, Mn?*, Ca?*, Sr?*, and B&*) and
trivalent (AI%*, Fe**, Mn¥, Y3, and La®*) metals was
simulated by minimizing the interatomic interaction
energy according to the GULP software package [1].
The results obtained in our earlier work [2] concerned
with the simulation of a perfect KDP structure were
used in calculations. As in [2-4], the effective charges
of impurity ions were taken equal to +2.7 efor M3* cat-
ions and +1.9 e for M?* cations. Theionic radii used in
analysis were taken from [5]. In most cases, the radius

of the region adjacent to a defect and characterized by
considerable distortions was assumed to be 4.5 A and
the radius of the region beyond which the structure can
be considered undistorted was 11.5 A. The exceptions
were the calculations of three-particle impurity clusters
in which the above radii were increased to 6.5 and
16.5 A, respectively.

Earlier [6], we performed a crystal chemical analy-
sisof the KDP structure and demonstrated that impurity
cations most probably occupy the interstitial holes M1
and M2 with the coordinates (0.25, 0.35, 0.125) and
(0.75, 0.22, 0.125). Large-sized cations can substitute
for K* cations. These variants of incorporating ionsinto
the KDP structure were considered for al the cations
studied (the calculations in the framework of the purely
ionic model were described in detail in [3, 4]). Unlike
[3, 4], in the present work, similar calculations were
carried out with allowance made for a Morse potential
(for bivalent and trivalent cations) and different models
of calculating defect centersin the structure were ana-
lyzed comparatively.

In [3, 4], the M**-O bond was treated as purely
ionic, even though this bond in the KDP structure is
partly covaent in character. The calculations proved
that the introduction of a covalent component (Morse
potential) into the expression for the M3*—Q interatomic
interaction potential does not lead to radical changesin
the genera pattern (Table 1). Therefore, the ionic
approximation in the case of defect formation by triva-
lent metals in the M1 and M2 holes is quite adequate

1063-7745/02/4705-0753%22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Table 1. Energies (€V) of the defect formation by trivalent
metals at the M1 and M2 sites according to partly covalent
model 1 and ionic model 2

; M1 M2
A R
Al 0.53 -1584 | —6.90 | -14.67 | -5.15
Fe 0.55 -14.89 | -5.71 | -13.32 | —-4.67
Mn 0.58 -14.38 | -5.05 | -13.12 | -3.13
Y 0.90 -12.11 | -1.22 | -10.49 0.88
La 1.03 -11.26 1.23 -9.49 2.89

Table 2. Parameters of the M3 -0 interatomic interaction
potential in the framework of the partly covalent model *

M3* | By, eV |p;, eV/IA®| Dy, eV | 0j, AT | Ry A
Al 580.93 | 0.3118 | 0.412 | 1.604 | 1.91
Mn3* | 65548 | 0.3214 | 0.441 | 1556 | 203
Fe** | 636.35 | 0.3239 | 0425 | 1516 | 211
Y 700.92 | 0.3588 | 0.604 | 1432 | 240
La 701.96 | 0.3651 | 0.676 | 1.369 | 253

*Vi(R;, ) = fAZZ/R; + By exp(-Ri/pp)] — 1 — 3
Djj{ exp[20(R;] — Ry - 2exploj(R) —Ry)l}-

Table 3. Parameters of the M**-O interatomic interaction
potential in the framework of the partly covalent model

Cation | By, eV |p;, eV/A®| Dy, eV | gy, A | Ry A
Ni 1582.5 | 0.2882 0.43 1.7349 211
Co 1491.7 | 0.2951 0.48 1.6943 214
Fe 1207.6 | 0.3084 0.53 1.6213 2.16
Mn 1007.4 | 0.3262 0.55 1.5328 221
Ca 1090.4 | 0.3437 0.60 1.4546 2.40
Sr 959.1 | 0.3721 0.59 1.3437 2.58
Ba 905.7 | 0.3976 0.69 1.2575 2.76

and quantitatively describes the character of distor-
tions. The parameters of the M3*—Q interatomic interac-
tion potential taking into account the Morse potential
arelisted in Table 2.

All the foregoing is valid only for the incorporation
of trivalent impuritiesinto the M1 and M2 sites, i.e., for
the incorporation of ions into commensurate holes. In
the case when M3* cations occupy the K site with the
M?3*-O distances obviously greater than the optimum
for trivalent cations, the ionic model cannot correctly
describe the incorporation pattern. Indeed, according to
calculations within this model, a decrease in the ionic
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radius in a series of trivalent metals leads to a decrease
in the energy of defect formation at the K site, which
has no physical meaning. We did not consider the occu-
pation of the K site by trivalent metals, because this sit-
uation virtually cannot occur in view of the small ionic
radius of these metals.

The calculation of the energy of defects created by
bivalent cations is a more complicated problem. The
occurrence of cations with radii close to the radius of
the potassium cation in the series of these metas
requires considering not only the M1 and M2 sites but
asotheK sitesasreally possible. Therefore, inthe case
of bivalent cations, the M?*—~O bond should be treated
only within the partly covalent approximation. The
introduction of the Morse potential asthe covalent term
resultsin acertain rigidity of the metal—oxygen config-
uration, because this potential is not a function that
monotonically decreases with an increase in the dis-
tance but rather exhibits aminimum at adistancethat is
optimum for a particular ion pair. The Morse potential
is described by two coefficients, namely, the weighting
factor D;; and the softness coefficient o; . Furthermore,
the Morse potential ischaracterized by an optimum dis-
tance between ions involved in the bond, i.e., the opti-
mum M?*-O distance. This distance is approximately
estimated as the sum of the corresponding radii. The
parameter D;; is evaluated as the dissociation energy of
asingle covalent bond with correction for the coordina-
tion number [7]. The softness parameter o;; and the cor-
responding stiffness parameter p;; in the expression for
the Born—-Mayer potential arerelated by the known for-
mula gy = 1/(2p;;) [8]. The bond ionicity f entering into
the expression for the Morse potential can be easily
estimated using the charges of ions involved in the
bond. For example, theionicity of abivalent metal with
acharge of +1.9 eisequal to 95% and theionicity of an
oxygen atom (—1.14 €) is 57%. As aresult, the ionicity
of the M?*—O bond is equal to 76%. The M?*-O inter-
atomic interaction parameters thus obtained are given
in Table 3. The energies of defect formation (calcul ated
within this model) are presented in Fig. 1 and Table 4.
However, it turns out that the results obtained have no
physical meaning. Indeed, according to these data, the
incorporation into the K site with the formation of a
potassium vacancy is most favorablefor al the bivalent
cations. Therefore, even the inclusion of the Morse
potential does not lead to an adequate description of the
interactions at distances appreciably longer than the
optimum distances.

The reason resides in the form of the Morse poten-
tia itself. This situation can beillustrated using the fol-
lowing example (Fig. 2). Let us assume that a cation A
isin atetrahedral oxygen environment and all the bond
lengths are equal to the optimum distance. This idedl
case corresponds to the minimum in the curve of the
Morse pair potential. When a polyhedron is distorted
(two bonds are shortened and two bonds are lengthened
by the same distance AR), the energy increases by
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Fig. 1. Energies of the defect formation by bivalent metal
ions at the K, M1, and M2 sites in the framework of the
partly covalent model. The solid lines represent the energies
of single defects, and the dashed line indicates the energies
of clusters.

2AE1 + 2AE2. Note that this distortion |eads to practi-
cally no change in the volume of the coordination poly-
hedron which remains suitable for the A cation. How-
ever, if al four distances are lengthened and the volume
of the polyhedron becomes inappropriate for the given
cation, the energy increases by a considerably smaller
value, i.e., 4AE2 (due to a strong asymmetry of the
Morse potential).

In order to solve the above problem, the second-
order harmonic component in the form of a symmetric
guadratic parabolawas additionally introduced into the
relationship for the potential. According to Burkert and
Allinger [9], the harmonic potential can be used to
change the length of covalent bonds. The total interac-
tion potential has the form

Vij(Ry, f) = fz[zizj/Rij + Bj;exp(—R;;/pi)]

—(1- %) Dy{ exp[20; (R} - Ry)]
~2exp[0yj(R] — R } + K(R] ~Ry)"

Here, the optimum distance between the interacting
ions and the stiffness parameter k are the parameters of
the harmonic potential. The stiffness parameter was
chosen to be equal to 2.39 in the course of calculations.
The choice was governed by the stability of the simu-
|ated defects. In the case, when the interaction between
ionsis described by the harmonic potential, it is neces-
sary to determine the parameter that reduces the range
of this potential only to atoms of the first coordination
sphere. Reasoning from the crystal chemical analysis of
the s’gucture, the last parameter was taken to be equal
to3A.

The defect energies calculated in terms of the model
accounting for the contribution of the harmonic poten-

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5

2002

755

E

ro—Qr o 7o +Ar

N

AE, 1 . '

Fig. 2. Schematic representation of the Morse potential.

tial are presented in Fig. 3 and Table 5. Only within this
approximation did we succeed in obtaining reasonable
ratios between the energies of defect formation at dif-
ferent sites. It should be noted that, since independent
criteria for the reliability of the M?*-O interaction
potentialsincluding the Morse and harmonic potentials
are absent, these potential s can be used only to compare
the defect energies in series of hivalent and trivalent
metals.

RESULTS AND DISCUSSION

As follows from the data obtained in our recent
work [4] and those presented in Tables 4 and 5, the cal-
culations within all three models offer similar results:
an increase in the ionic radius in the series of bivalent
metals leads to a change in the most favorable variant
of incorporating the impurity into the crystal structure,
namely, single defects give way to chains. Of the two
sites M1 and M2, the former site is most favorable for
all the cations. The M1 site corresponds to the mini-
mum energies of defect formation by all trivalent and
small-sized bivalent cations. The electroneutrality is
provided by removing two potassium cations and one
proton upon incorporation of M3* and only two potas-
sium cations upon incorporation of M?* [3, 4]. In the
latter case, the nearest hydrogen atom is displaced from
the site with the coordinates (0.125, 0.161, 0.125) to the
site with the coordinates (0.125, 0.099, 0.125). This
leads to a distortion of the hydrogen bond (the O---H
bond length increases from 1.27 to 1.29 A, and the
O---H---O angle decreases to 149°). According to calcu-
lations, other variants of compensating for the valence
result in the instability of the simulated structure.
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Table 4. Energies (eV) of the defect formation by bivalent metals at the K, M1, and M2 sites in the framework of the partly

covalent model

Cation lonicradius, A| K(K + H)* K(K + K)** M1 M2 Chain
Ni 0.69 -1.801 —2.86 —2.427 -1.287 -2.321
Co 0.75 -1.93 -3.21 -2.533 -1.416 -2.703
Fe 0.78 -2.147 -3.46 -2.73 -1.634 -3.012
Mn 0.83 -2.033 -3.75 -2.61 -1.511 -3.074
Ca 112 -2.331 -3.97 -2.36 -2.327 —3.173***
Sr 1.26 -2.683 —-4.39 —2.479 —2.447 —2.915%**
Ba 142 -3.288 -5.99 -3.21 -3.156 —4.821%**

* |ncorporation into the K site with the removal of one potassium cation and hydrogen.
** |ncorporation into the K site with the removal of two potassium cations.

*** Cluster consisting of threeions at the K sites.

Table 5. Energies (eV) of the defect formation by bivalent metals at the K, M1, and M2 sites in the framework of the partly

covalent model with inclusion of the harmonic potential

Cation lonicradius, A|  K(K + H)* K(K + K)** MQ**** M2 *** Chain
Ni 0.69 0.63 -1.39 -2.40 -0.71 -1.94
Co 0.75 0.14 -1.58 -2.50 -0.92 -2.39
Fe 0.78 -0.31 -2.04 -2.69 -1.16 -2.82
Mn 0.83 -0.63 -2.37 -2.57 -1.08 -2.82
Ca 112 -1.75 -3.61 -2.32 —0.96 —2.81***
Sr 1.26 -2.01 -3.83 -2.01 -0.62 —2.38***
Ba 142 -3.17 —4.98 -3.92

* |ncorporation into the K site with the removal of one potassium cation and hydrogen.
** |ncorporation into the K site with the removal of two potassium cations.

*** Cluster consisting of threeions at the K sites.

**%** The last empty squares correspond to the displacement to the K site.

The energies of defect formation by trivalent cations
in the framework of both the purely ionic and partly
covalent models regularly increase with an increase in
theionic radius (Table 1). This suggests that the larger
the size of cations, the harder their incorporation into
the structure. Sincethe M1 sitesinthe KDP structurelie
in the (100) planes[2], the occupation of apart of them
by M3* cations brings about the formation of sparse net-
works parallel to the (100) and (010) planes. These net-
works will be referred to as impurity networks of the
first type. The intersection of these networks gives rise
to channels that are extended along the Z-axis of the
crystal and are filled with impurity ions (at the A—G
sitesin Fig. 4).

A more complex situation occurs with defects cre-
ated by bivalent cations. A comparative anaysis of
these defects was performed in the framework of the
partly covalent model with due regard for the harmonic
potential. The calculations demonstrate that an increase
in the ionic radius leads to a change in the defect type
(Fig. 3, Table 5). Actually, for the smallest-sized Ni%*
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cations, as for M3* cations, the lowest energy of defect
formation is observed in the case of the isolated M1
sites. At the same time, Fe* and Mn?* cations with the
highest probability form chain clusters of the ABDE...
and ABDF-... types. These chains can make an angle of
60°—75° with the Z-axis. The chain formation and its
geometric prerequisiteswere considered in detail in[4].
Systems of these chains form impurity networks of the
second type in the crystal. Most likely, Co?* cations are
statistically distributed over isolated sites and chains.

A closer examination revealed a number of charac-
teristic features. In the case when Ni?* or Co?* cations
form a three-particle cluster, they remain at the M1
sites. On the other hand, if chains are formed by Fe?* or
Mn?* cations, the third participant of a cluster is dis-
placed from the D site to the hole of adistant potassium
cation (hereafter, the potassium hole) in the course of
energy minimization. For Ca?*, Sr?*, and Ba?* cations,
all participants of athree-particle cluster are displaced
to the potassium holes. Note that, in the framework of
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the partly covalent model without regard for the har-
monic potential, al participants of athree-particle clus-
ter irrespective of their radius are displaced to the
potassium holes. This displacement is explained by the
fact that the K site (with the formation of a potassium
vacancy) appears to be most favorable within the sim-
ple partly covalent model.

In the framework of the partly covalent model with
inclusion of the harmonic potential, the displacement of
small-sized cations (Fe** and Mn?*) to the potassium
holes can be explained in the following way. The elim-
ination of alarge number of atoms during the chain for-
mation in the structure results in the formation of a
local region of structural sparsenessin which the larger
part of the free space is occupied by potassium polyhe-
drafreed from atoms. Therefore, the stabilization of the
loose region with Fe* ions by placing one out of three
ions in the potassium hole appears to be more favor-
able, even though the occupation of the M1 holes by
these ions is more preferable from the standpoint of
crystal chemistry. However, inreal crystals, the transfer
of the D ion from the M1 site to the potassium hole is
limited by kinetic factors. Indeed, the formation of
impurity chains is most likely a step-by-step process:
the incorporation of the A impurity ion (Fig. 4) creates
favorable conditions in the adjacent hole B. In turn,
after the occupation of this hole, favorable conditions
ariseinthe D (or E) hole. Consequently, the D cationis
initially incorporated into the M1 site and then migrates
to the K site through the channels formed by vacancies
arising at potassium and hydrogen sites. This migration
in the crystal can be hindered. As a consequence, the
vast majority of impurity cations forming clusters
occupy the crystal chemically preferable M1 sites. In
this case, the D cations are in a nonequilibrium state
and external factors, for example, the heating of the
crystal, can facilitate their transfer to the potassium
holes. It is quite possible that this is a reason for the
improvement in the optical properties of KDP crystals
and the relieving of internal stresses in them in the
course of annealing at temperatures of 140-180°C [10,
11]. In [10, 11], the authors explained improvement in
the crystal quality by the structural changes in internal
defects without going into details of their structure.

For large-sized bivalent cations with a radius larger
than 1.1 A, the incorporation into the M1 sitesis ener-
getically unfavorable (Fig. 3, Table 5). These ions sub-
dtitute for potassium ions in the structure and form
defects of the third type. The compensation for the
valence is provided by the formation of either potas-
sium vacancies or hydrogen vacancies; in this case, the
former variant is more preferable (Table 5). Moreover,
it should be noted that the substitution of barium ions
for potassium ions according to the heterovalent iso-
morphism mechanism K* + P3* = Ba?* + Si** widely
occursin natural minerals. A similar substitution under
conditions of laboratory experiments is confirmed by
the continued presence of noticeable amounts of silicon
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Fig. 3. Energies of the defect formation by bivalent metal
ions at the K, M1, and M2 sites in the framework of the
partly covalent model with inclusion of the harmonic poten-
tial. The solid lines represent the energies of single defects,
the dashed line corresponds to the energies of clusters, and
the closed circles indicate the energy of the defect formed
through the heterovalent isomorphism mechanism.

Fig. 4. Orientation of impurity chains in the (100) plane.
Partly overlapping PO, tetrahedra are shown. O is an M1
interstitial site.

in KDP mother solutions. This variant of the substitu-
tion was calculated only for Ba?* cations. It is found
that the energy of formation of the double defect center
is equal to -5.12 eV, which corresponds to the mini-
mum energy for the barium cation.® The defect energy
computed within the same model in the case of asimple
substitution is equal to —4.98 eV; i.e, it is dightly
higher than that for the substitution through the het-
erovalent isomorphism mechanism. It follows from
Table 5 that, for large-sized bivalent cations, the mini-
mum energies of defect formation are observed in the
case when the defects are created upon incorporation of
the impurity into the K site with removal of an addi-

1The calculations were carried out within the partly covalent
model with allowance made for the harmonic potential.
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tional potassium atom. Therefore, the K site appearsto
be preferable for large-sized cations. These cations are
incorporated into the K sites and either substitute for
the K* ions with the formation of additional potassium
vacancies or form complex defect centers through the
heterovalent isomorphism mechanism. It seems likely
that, inreal crystals, theincorporation proceeds accord-
ing to both substitution mechanisms.

Thus, the impurity ions of bivalent and trivalent
metals form defect centers of the following three types:
(i) theisolated defect centers occupying channelsalong
the Z-axis of the crystal (for M**, Ni?*, and Co?* cat-
ions), (ii) the impurity chain clusters oriented at an
angle of 60°-75° with respect to the Z-axis of the crys-
tal (for Fe&**, Mn?*, and, partly, Co?* cations), and (iii)
the defect centers created at the K sites both with the
formation of potassium vacancies and through the het-
erovalent isomorphism mechanism.

The formation of different-type defect centers is
responsible for different degrees of strain of the KDP
crystal structure. A comparison of the energies of defect
formation shows that, compared to M?* ions, M3* ions
induce weaker local stressesin the structure.? Although
Ni2* and, partly, Co?* ions form defect centers similar
to those created by M3* ions, bivalent ions produce
stronger local stresses in the structure. Even stronger
stresses arise when impurity chains are formed by M2+
cations. In contrast, the incorporation of Ba** cations
into the K sites either with the formation of additional
vacancies or through the heterovalent isomorphism
mechanism (K* + P** = M?* + Si**) generates weaker
stresses in the series of bivalent metals. In the last case,
asomewhat smaller radius of Ba?* ions as compared to
that of K* ionsis compensated for by the larger size of
SiO, polyhedra. Moreover, unlike the preceding cases,
this variant of the substitution does not require the for-
mation of additional vacancies.

CONCLUSIONS

The results of our investigation have demonstrated
that the incorporation of trivalent impurities into the
KDP structure is adequately described within theionic
approximation. At the same time, the mechanism of
incorporation of bivalent cations has defied correct
interpretation even in terms of the partly covalent
model. In this respect, the potential involving the har-
monic component was proposed for describing bivalent
cations. The defects formed by trivalent cations were

2A comparison was performed within the partly covalent model,
because the purely ionic model, as applied to bivalent cations, has
no physical meaning and the harmonic potential was not used in
analyzing trivalent ions.
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also considered in the framework of the partly covalent
approximation. This made it possible to carry out a
qualitative comparative analysis of the incorporation of
bivalent and trivalent impurities.

Theimpurities of bivalent and trivalent metals form
defect centers of different types in the KDP structure.
These centers generate local stresses in the crysta
matrix and, thus, produce different strains of the crystal
structure. The calculated energies of defect formation
and the performed analysis of distortions of the crystal
structure in the nearest environment of impurity ions
allowed us to draw the inference that the minimum
stresses arise upon incorporation of trivalent cations.
The bivalent metals, which either form impurity chains
inthe structure or substitute for the K* ions at the potas-
sium sites (in the case of large-sized M?* cations), give
rise to stronger stresses.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 99-03-32557.

REFERENCES

1. J. D. Gale, GULP: User Manual (Royal Institution and
Imperial College, London, 1992-1994).

2. T. A. Eremina, V. A. Kuznetsov, T. M. Okhrimenko,
et al., Kristallografiya 43 (5), 906 (1998) [Crystallogr.
Rep. 43, 852 (1998)].

3. T. A. Eremina, N. N. Eremin, N. G. Furmanova, et al.,
Kristallografiya 46 (1), 82 (2001) [Crystallogr. Rep. 46,
75 (2001)].

4. T.A.Ereming V.A. Kuznetsov, N. N. Eremin, et al., Kri-
stallografiya 46 (6), 1072 (2001) [Crystallogr. Rep. 46,
989 (2001)].

5. R.D. Shannonand C. T. Prewitt, Acta Crystallogr., Sect.
B: Struct. Crystallogr. Cryst. Chem. 25, 925 (1969).

6. T. A. Eremina, V. A. Kuznetsov, T. M. Okhrimenko,
etal., Kristalografiya 41 (4), 717 (1996) [Crystallogr.
Rep. 41, 680 (1996)].

7. Propertiesof Inorganic Compounds, Ed. by A. |. Efimov
(Khimiya, Leningrad, 1983).

8. V. S. Urusov and N. N. Eremin, Phys. Chem. Miner. 22
(3), 151 (1995).

9. U. Burkert and N. Allinger, Molecular Mechanics
(American Chemical Society, Washington, 1982; Mir,
Moscow, 1986).

10. K. Fujioka, S. Matsuo, T. B. Kanabe, €t al., J. Cryst.
Growth 181, 226 (1997).

11. Y.-J. Fu, Z.-S. Gao, S-L. Wang, et al., Cryst. Res. Tech-
nol. 35 (2), 177 (2000).

Translated by O. Borovik-Romanova

No. 5 2002



Crystallography Reports, Vol. 47, No. 5, 2002, pp. 759-767. Trandslated from Kristallografiya, Vol. 47, No. 5, 2002, pp. 825-833.

Original Russian Text Copyright © 2002 by Eremin, Urusov, Rusakov, Yakubovich.

STRUCTURES

OF INORGANIC COMPOUNDS

Precision X-ray Diffraction and M 6ssbauer Studies
and Computer Simulation of the Structure and Properties
of Malayaite CaSnOSIO,

N. N. Eremin, V. S. Urusov, V. S. Rusakov, and O. V. Yakubovich
Moscow State University, Vorob'’ evy gory, Moscow, 119899 Russia
e-mail: neremin@mail.ru
Received January 11, 2002

Abstract—The structure and some physical properties of malayaite CaSnOSi O, have been studied by the pre-
cision X-ray diffraction, Mdssbauer spectroscopy, and computer simulation of the structure. The unit-cell
parametersa = 7.152(2) A, b=8.888(2) A, c = 6.667(2) A, B = 113.37(2)°, V = 389.0(3) A3, and ur = 0.68 are
refined on a synthetic impurity-free sample. The distribution of the deformation electron density isanalyzed in
the basic fragments of the crystal structure forming an anionic framework. The constructed potentials of pair
and three-particle interaction reproduced quite well the elastic, dielectric, and energy characteristics and
allowed usto predict their numerical values, which arein good agreement with the limited availabl e experimen-

tal data. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Malayaite CaSnOSiO, belongs to silicates contain-
ing isolated SIO,-groups with additional anions (titan-
ite group). This rare mineral was discovered in 1965 in
Malaysia [1]. Later [2], it was found that this mineral
forms a solid solution with isostructural high-tempera-
ture titanite (sphene) at elevated temperatures. Unlike
the low-temperature titanite modification, the tin atoms
in the malayaite structure at room temperature are
located in the center of SnOg-octahedra, which facili-
tatestheir crystallization in the space group A2/a[3]. A
fragment of the malayaite structureis shown in Fig. 1.

Recently, natural malayaite sampleswere studied by
Raman spectroscopy, transmission electron micros-
copy, and various X-ray methods (powder diffractome-
try, the use of synchrotron radiation for studying single
crystals) [4]. These data allowed us to obtain some
additional information on their structure and crysta
chemistry. Below, we describe our studies of synthetic
malayaite by precision X-ray diffraction and M&ss-
bauer spectroscopy and also theoretical studies by com-
puter simulation of the structure.

PRECISION X-RAY STUDY

The X-ray refinement of the structure was made on
a synthetic impurity-free sample synthesized hydro-
thermally and shaped to a sphere of radius 0.12 mm.
The parameters of the monoclinic unit-cell of malayaite
were refined using 15 reflections measured on an auto-
mated four-circle Syntex P1 diffractometer. a
7.152(2) A, b = 8.888(2) A, c = 6.667(2) A, B
113.37(2)°, V = 389.0(3) A3, and pr = 0.68.

The intensities of 3614 reflections were measured
within the +h, £k, | hemisphere of the reciprocal
space (four equivalent reflections for each genera -type
reflection, MoKa radiation, graphite monochromator).

We used 26-6 scanning at arate of 2—24 deg/min up
tosin/A = 1.2 A-!. The scan angleincreased from 2° to
3° with an increase in the scattering angle. To improve
the accuracy and statistics, we al so measured the reflec-
tionsin the far range of the reciprocal space for another
hemisphere, so that the number of the equivalent reflec-
tions for far general-type reflections increased to 8.
After averaging the equivalent reflections and the
removal of the control, spurious, and rejected reflec-
tions, the experimental data set consisted of 1517 inde-
pendent reflections with | > 1.96(cl).

Fig. 1. A fragment of the malayaite structure. Tin atoms are
located in octahedra and silicon atoms are located in tetra-
hedra. The positions of calcium atoms are not shown.

1063-7745/02/4705-0759%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Table 1. Coordinates of basic atoms and anisotropic temperature factors (A?) in malayaite

Atom x/a y/b zlc B B, Bas By, B3 By
Ca 0.25 0.66295(5) | 0.5 2.63(4) | 0.32(1) | 0.50(1) | 0.00(0) |-0.14(1) | 0.00(0)
Sn 0.5 0.5 0 0.26(1) | 0.30(1) | 0.30(1) |-0.01(0) | 0.11(0) | 0.00(0)
S 0.75 0.68203(8) | 0.5 0.35(2) | 0.24(1) | 0.26(2) | 0.00(0) | 0.11(1) | 0.00(0)
0o(1) 0.75 0.58690(18) | O 0.33(3) | 0.46(3) | 0.97(4) | 0.00(0) | 0.32(3) | 0.00(0)
0(2) 0.91293(20) | 0.56796(12) | 0.67555(19) | 0.73(2) | 0.62(2) | 0.41(2) | 0.23(2) | 0.14(2) | 0.13(2)
0(3) 0.37180(19) | 0.71195(12) | 0.89014(19) | 0.66(2) | 0.46(2) | 0.56(2) | 0.20(2) | 0.33(2) | 0.06(1)

All the computations were performed by the MIN-
EXTL program package [6]. After the introduction of
the correction for absorption, the malayaite structure
was refined within the framework of the superposition-
type atomic model by the least squares method in the
full-matrix approximation with due regard for the
anisotropic harmonic atomic vibrations, the secondary
extinction by Zachariasen (U, = 3130 A), and the
anomalous scattering of tin atoms.

The refinement using the set of the experimental
data from the high-angle range of the reciprocal space
with sin8/A > 0.95 A-! (407 reflections) was performed
to R=0.0098, Rw=0.0125, and S= 0.8727. For thefull
set of 1517 reflections, R = 0.0130, Rw = 0.0230, and
S=1.680. Thefinal coordinates of the basic atoms and
their anisotropic thermal parameters are listed in
Table 1.

Fig. 2. Deformation electron-density map in the equatorial
plane of the SnOg-octahedron of malayaite. Hereafter, iso-
lines are spaced by 0.1 e/A3; positive isolines are shown by
solid lines; zero contour, by a dot-and-dash line; negative
isolines, by a dashed line.
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The errorsin the deformation electron-density maps
with respect to the superposition of neutral atoms esti-
mated according to [7] showed that the error in the
vicinity of the chemical bond is 0.02 e/A3, at the posi-
tions of Si atoms, 0.06; at the positions of O atoms,
0.04-0.08; and at Sn atoms about 0.30 e/A3. Such a
pronounced error at the tin nucleus should affect the
character of the electron distribution in the SnOg octa-
hedron, therefore, the careful analysis of the deforma:
tion electron-density mapsin this polyhedron was nec-
essary. For other structural fragments, the deformation
electron-density maps were expected to be more reli-
able.

The distribution of the deformation electron density
Ap in malayaite was analyzed in all the basic structural
fragments forming the anionic framework. The defor-
mation electron-density map passing through one Sn
atom and four O atomsisshowninFig. 2. The zero syn-
thesis of the electron density confirmed our assumption
that the pronounced peaks located at the distance of
0.5 A from the tin atom are explained by the series ter-
mination. The deformation electron-density map is the
most reliable at a distance of 0.8-0.9 A from the tin
nucleus. The most pronounced Ap peak 0.3 e/A3 is
located on the Sn—O(3) line at a distance of 1.6 A from
the tin atom and characterizes the o-type bonds. On the
Sn-0O(2) line, the o-type 0.2 e/A3-high peaks are also
located at close distances from the tin nucleus. The
bonding type in the Sn—O(1)—-Sn chains aong the octa
hedral column is somewhat different because the coor-
dination number of the O(1) atom relative to Sn equals
two. In this situation, the O(1) atom seemsto be in the
sp-hybridization, and, therefore, two additional elec-
tron-density peaks (0.2 e/A% around this atom are
found, whose displacement from the bond line can be
explained by the effect of the lone electron pair. Thus,
the malayaite structure has two types of Sn—O bonds,
which is also confirmed by the interatomic distances
(Sn—0O(1) and Sn—0(2), SH0O(3)).

Since the difference between the interatomic dis-
tances is explained by the different bond strengths s;
[8], we simulated the s; distribution in the malayaite
structure using the BONDVAL program. The results
are indicated in Table 2. There is a pronounced differ-
ence between the bond strengths of two groups of the
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Sn—O distances (0.78 for Sn—0O(1) and, on average, 0.61
for Sn—0O(2) and Sn—0O(3)).

The construction of deformation electron-density
maps passing through the SnOg-octahedron can be con-
Sidered as an attempt at visualizing the regions of
excessive electron density, which were assumed to be
responsible for a high electric-field gradient (EFG) at
tin nuclei. Subtraction of the corresponding zero syn-
thesis from the deformation electron-density map,
where the effect of series termination is clearly seen,
showed that the maxima of the excessive density Ap
really exist at the indicated points of the internuclear
space. However, this method is not reliable, and the
error of the determination of the deformation electron
density in the vicinity of atin nucleus makes the above
explanation of the existence of a high EFG at the tin
nucleus in malayaite only one of the possible explana
tions.

The Ap map reflecting the redistribution of the elec-
tron density in the silicon—oxygen tetrahedron is shown
in Fig. 3. Approximately in the center of the Si—O dis-
tance (0.8-0.9 A from the Si atom), the 0.3 e/A3-high
maximum is formed on al four bonds, which indicates
that the silicon atom is sp3-hybridized and that the bond

Fig. 3. Deformation electron-density map in the Si—-O(3)—
O(2) plane crossing the silicon—oxygen tetrahedron of
malayaite.
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Table 2. Interatomic distances (A) in the coordination
polyhedrain the maayaite structure cal culated by the method
of bond-strength (s;)

Bond Sj Realcd
S—02) 1.039 1610
S-0(3) 0.961 1,639
Sn-0(1) 0.779 1.997
S-0(2) 0.649 2,065
S-0(3) 0.571 2112
Ca-0(1) 0.442 2.270
Ca0(2) 0.312 2398
Ca0(3) 0.234 2,505

2002

is essentialy covalent. This map is similar to the map
with the analogous distribution of the maximain titan-
ite [9]. In both cases, despite the fact that al the Si-O
distances in the tetrahedron are amost equal, there are
two bond pairs that are dlightly different from each
other. In contrast to titanite, in malayaite the bond max-
ima are equal, but the maxima of excessive electron
density on the Si—O(2) pair are dightly displaced from
the bond line, which is not observed for the Si—O(3)

N, %
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100 R
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85

1 1 1 1 1

-4 -2 0 2 4
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Fig. 4. Mossbauer spectra of (a) the SnO,-doped malayaite
sample synthesized from the solid phase and (b) the
undoped malayaite sample obtained by hydrothermal syn-
thesis.
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Table 3. Hyperfine parameters of the M dssbauer spectra of malayaite synthesized by two different methods

Method of synthesis |  Spectrometer Model used in data processing 0, mm/s A, mm/s X2
Solid-phase NZ-640/2 Two quadrupole doubl ets —0.049(2) 1.42(12) 0.97
Solid-phase MS 1101E Two quadrupole doublets -0.047(2) 1.42(1) 0.99
Hydrothermal MS 1101E One quadrupole doubl et —0.058(6) 1.45(1) 0.93

Table 4. Calculated asymmetry parameter ) of EFG tensor and quadrupole splitting A for 11°Sn nuclei in CaSnOSiO,

Sublattice
Model . A, mm/s n
Sn S Ca o] Q

Formal charges +4.00 +4.00 +2.00 —2.00 - 0.37 —-0.50
Effective charges +3.20 +2.40 +2.00 -1.52 - 0.28 -0.35
x =1.00 Xg +3.20 +2.40 +2.00 -1.42 -0.25 0.70 —-0.06
x=0.85Xg +3.20 +2.40 +2.00 -1.32 —-0.50 0.82 —-0.08
x=0.81%, +3.20 +2.40 +2.00 -1.42 —-0.40 1.20 +0.01
x=0.81X%g +3.50 +2.40 +2.00 -1.38 —-0.50 1.38 -0.01
Experiment ? ? ? ? ? 1.42(2) ?

bonds. Possibly, this is associated with the T-compo-
nent of the S—0O(2) bond, whose multiplicity (valence)
dightly exceeds unity (1.04), whereas the multiplicity
of the Si—O(3) bonds is lower than unity (0.96). The
structural differences of the tetrahedron edges, O(3)—
O(3) and O(2)-0O(2), are similar to those in titanite; i.e.,
the O(3)—0O(3) edge connects the octahedra of the same
column, whereas the O(2)-0O(2) edge connects the
octahedra of two different columns.

The deformation electron-density distribution in the
calcium polyhedron of malayaiteis similar to its distri-
bution in titanite [9]—a pronounced displacement of
the 0.10-0.15 e/A3 maxima of oxygen atoms. Thisindi-
cates the essentially ionic character of the chemica
interaction.

Fig. 5. Scheme explaining the shifts of Q-regionstoward the
central tin atom in malayaite. The dashed circles show the
positions of these regions and aneighboring Sn atomin cas-
siterite.
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The data obtained from the deformation electron-
density maps can be complemented with the total elec-
tron-density map, whose use allowed usto evaluate the
radius of the optimum separation for the Sn atom
(0.89 A). This value is noticeably lower than in cas-
siterite (0.95-0.97 A [10]). Different radii of tin atoms
in these minerals lead to the assumption that the effec-
tive tin chargein malayaite is higher than in cassiterite,
i.e., in the first case, the ionicity of the Sn—O bond is
more pronounced.

MOSSBAUER SPECTROSCOPY STUDY

The samples of synthetic malayaite synthesized
hydrothermally [5] and from the solid phase were stud-
ied by Mdssbauer spectroscopy. The solid-phase syn-
thesis was performed as follows. A stoichiometric
ground mixture of CaO, SiO,, and SnO, was pressed,
placed into a corundum crucible, and annealed in a
muffle furnace for two weeks at a temperature ranging
from 1250 to 850°C. The microanalysis showed that the
sample contained 12.12 at. % Ca, 13.76 at. % Si, and
11.76 at. % Sn, which corresponded to the formula
CaSn0SiO,. To check the results of the synthesis, we
analyzed the materia by the X-ray phase anaysis
which showed a good agreement of the obtained X-ray
diffraction pattern with the data in [11]. However, the
model-based interpretation of the one quadrupole dou-
blet of the M dssbauer spectrum of this sample using the
SPECTR program [12] showed too high a value of the
functional X2, which is characteristic of the presence of
a small amount of the second phase. After the model-
based fitting of the spectrum to two quadrupole dou-
blets, the hyperfine parameters of the partial malayaite
spectrum were determined and the presence of an SnO,
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impurity corresponding to 10.5 at. % Sn was estab-
lished.

The Méssbauer spectrum of the malayaite sample
obtained by the method of solid-state sintering is shown
inFig. 4a. The experiment was performed for 118 h (on
a NZ-640/2 spectrometer) at the Laboratory of Solid-
State Geochemistry at the Vernadsky Ingtitute of
Geochemistry and Analytical Chemistry of the Russian
Academy of Sciences. The M@ssbauer spectrum of the
mal ayaite sample obtained hydrothermally is shown in
Fig. 4b. The experiment was performed during 97 h (on
a MS1101E spectrometer) at the Department of Gen-
eral Physics of Moscow State University. Since the
microprobe analysis [5] showed the absence of a
noticeable impurity concentration in the second case,
the M ésshauer spectrum was fitted by one quadrupole
doublet using the SPECTR program [12]. The sample
synthesized from the solid phase was remeasured using
the same device. Thus, three independent M dsshauer
experiments were made on two maayaite samples
using different spectrometers, which allowed us to
check the reproducibility of the results and improve
their reliability. In all the cases, the ''™Sn sourcein the
BaSnO; matrix with an activity of several mCi was
used. To reduce the possible influence of texture, the
measurements were made on a conic samplewith apar-
affin filler, with the normal to the sample surface form-
ing an angle of ~54.7° with the direction of the y-quanta
flight. The processing of the experimental spectra
yielded the results listed in Table 3.

A negative value of theisomer shift d relativeto cas-
siterite SnO, confirms the assumption that the ionicity
of the Sn—O bond in malayaiteis more pronounced than
in standard cassiterite. However, the quadrupole split-
ting A is too high for tetravalent tin compounds (A =
0.49 mm/s in SnO,). As was shown in [13], the main
contribution to the quadrupole splitting of the SnO,
MOssbauer line comes from the localized excessive
electron density in the interatomic space at a distance
shorter than the average distance to the anions of the
first coordination sphere. In malayaite, the A value is
three times higher thanin SnO,, thusindicating that the
regions of excessive electron density in this compound
are closer to the Sn nucleus. This assumption seems to
be quite reasonable, because it takes into account the
structural characteristics of malayaite: octahedra in a
column share their vertices, and, hence, the region of
the excessive electron density Q has only one nearest
tin atom at the edge of the oxygen octahedron instead
of the two characteristic of cassiterite (Fig. 5), where
the octahedra share their edges. Taking into account the
electrostatic data, one can assume that the absence of
the positively charged second cation should promote a
displacement of the Q region toward the tin nucleus,
i.e., to the observation point of the EFG.

In order to calculate the EFG by the method of mod-
ified point charges using the LATTICE program [14],
the following model was used. A point charge of the Q
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Table 5. Parameters of the pair potentials of interatomic
interactions used in malayaite simulation

2002

Model
Parameters

ionic shell optimum
q(Sn) 4.00 2.42 3.20
q(Ca) 2.00 2.00 2.00
q(Si) 4.00 4.00 2.40
q(Sn-shell) 1.58
q(O-shell) —2.47
A(O-0), eV 15123.6 15123.6 15123.6
A(SI-0), eV 3134.35 3134.35 1092.56
A(Ca-0), eV 1090.49 1090.49 1090.49
p(0-0), A 0.2230 0.2230 0.2230
p(Sn-0), A 0.2765 0.2765 0.2765
p(Si-0), A 0.2730 0.2730 0.2730
p(Ca-0), A 0.3437 0.3437 0.3437
C(0-0), eV/A® 28.430 28.430 28.430
K(Sn), eV/AZ2 2037.8
K(O), eV/AZ? 23.09
D(Sn-0), eV 0.3492
D(Si-0), eV 2.4448
B(Sn-0), At 2.8080
B(Sn-0), AL 1.8315
ro(Sn-0), A 2.050
ro(Sn-0), A 1.620

region varied from 0.25 to 0.50 e, and this region was
localized on aline connecting the center of the shortest
edge of the oxygen octahedron with the observation
point (Fig. 5). The EFG valuein thevicinity of the ''°Sn
nucleus was calculated as the resulting value of the
charges of all atomic sublattices and the sublattice of
the Q regions. In each particular case, the values of the
effective atomic charges were calculated proceeding
from the neutrality principle with due regard for
optimization performed by computer simulation
(see Table 4). The position of the Q region was fixed by
the x-coordinate (Fig. 5). In all the cal culations, the val-
ues of the nuclear quadrupole momentum Q(!'°Sn) =
—0.109 bar [15] and antishielding factor y,, = —10 [16]
were used.

It can be seen from Table 4 that the enormousdly high
EFG value observed in malayaiteiswell simulated with
the aid of the point charges of 0.4-0.5 e located at the
distance of 0.9 A from the Sn atom. This model
becomes invalid for shorter distances because of the
ambiguity in the antishielding factor vy,,. Note that the
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Table 6. Calculated and experimental atomic coordinates for malayaite

Atom Coordinates Shell model lonic model Optimum model Experiment*
Ca X 0.2500 0.2500 0.2500 0.25
y 0.9188 0.9251 0.9098 0.91295
z 0.7499 0.7500 0.7500 0.75
Sn X 0.5000 0.5000 0.5000 0.5
y 0.7500 0.7500 0.7500 0.75
z 0.2500 0.2500 0.2500 0.25
S X 0.7500 0.7500 0.7500 0.75
y 0.9283 0.9245 0.9415 0.93203
z 0.7506 0.7500 0.7497 0.75
o1 X 0.7507 0.7500 0.7500 0.75
y 0.8385 0.8286 0.8028 0.83690
z 0.2513 0.2500 0.2497 0.25
0(2) X 0.9164 0.8883 0.8794 0.91293
y 0.8093 0.8158 0.8349 0.81796
z 0.9246 0.9242 0.9257 0.92555
0®3) X 0.3801 0.3744 0.3836 0.37180
y 0.9647 0.9668 0.9608 0.96195
z 0.1412 0.1709 0.1804 0.14014

* Inthesimulation, we used another crystallographic setting that was dictated by the characteristics of the METAPOCS program; therefore,
the experimental coordinates are brought into correspondence with the setting of the model.

simulated EFG tensor is almost symmetrical within the
framework of this model. Thus, the considerable varia-
tion in the EFG values at tin nuclei in CaSnSiO; and
SnO, can be explained on the basis of the essentia
structural and crystallochemica differences, and, in
both cases, the main contribution to EFG comes from
the electron redistribution in the SnOg-octahedron.

— S
AN

Sn charge
4.0

Si charge

Fig. 6. The atomization energy distribution in malayaite
depending on the charges of Si and Sn atoms.
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THEORETICAL SIMULATION OF MALAYAITE
STRUCTURE AND ITS PROPERTIES

The simulation was performed in a partly covalent
approximation by the original method of the minimiza-
tion of the atomization energy developed in [17] using
the METAPOCS program [18]. This simulation was
interesting initself since the elastic and diel ectric prop-
erties of this mineral have not yet been studied experi-
mentally.

To describe malayaite, a set of pair Born-Mayer—
Huggins potentials was used. The potentials of pair
Ca-0O and O-0 interaction were taken from [19]. The
potentials of the Sn—O and Si—O bonds with a varied
ionicity degree were developed earlier and tested in
[20] for the simulation of quartz and cassiterite.

To estimate the charges of the Sn and Si atoms, we
performed several calculations using a complex poten-
tial intheform

w

Vii(Rj, ) = qZZiZj/Rij +Ajj exp(-R;;p;;)
+di{ exp[20; (R} - Rj)] - 2exp[o;; (R} =R} (D)
~Cy/R}

ijs

No. 5 2002



PRECISION X-RAY DIFFRACTION

Table 7. Calculated and experimental interatomic distances Table 8. Predicted properties of malayaite
(A) in the structure of malayaite. The number of equivalent
bondsisindicated in braces

Distance
Atoms
experiment shell model

SiO,-tetrahedron
S-0(2) {2} 1.640(2) 1.680(7)
Si-O(3) {2} 1.635(1) 1.671(2)
0O(2-0(2) {1} 2.566(2) 2.592(2)
0(2-0(3) {2} 2.666(2) 2.693(1)
0O(2)-0(3) {2} 2.815(3) 2.823(4)
0(3)-0(3) {1} 2.684(3) 2.758(2)

SnOg-octahedron
Sn-0(1) {2} 1.948(1) 1.954(1)
Sn-0(2) {2} 2.089(1) 2.079(1)
Sn-0(3) {2} 2.096(1) 2.101(2)
O(1)-0(2) {2} 2.840(1) 2.838(5)
O(1)-0(2) {2} 2.872(1) 2.868(3)
O(1)-0O(3) {2} 2.742(1) 2.682(13)
O(1)-0(3) {2} 2.976(2) 3.032(8)
0O(2-0(3) {2} 2.942(1) 2.908(5)
0O(2)-0(3) {2} 2.976(2) 3.003(5)

CaO,-polyhedron
Ca-0(1) {1} 2.241(8) 2.156(6)
Ca-0(2) {2} 2.401(6) 2.418(6)
Ca—-0(3) {2} 2.746(5) 2.662(8)
Ca-0(3) {2} 2.422(5) 2.438(6)

765
Properties | lonic model | Shell model mda‘q{'&ﬁg‘ﬂé
Elastic constants and modules (Mbar)
Cy 1.348 2.361 2.288
Cop, 1.430 1.322 0.929
Cia 0.276 0.866 0.825
Cis 0.366 0.685 0.584
Cx, 5.274 5.041 4,071
Cos 1.493 1.478 1.160
Cys 0.077 0.011 0.024
Cas 3.426 3.715 2.848
Cas -0.927 -0.487 -0.438
Cu 0.839 0.632 0.651
Cus 0.436 0.452 0.244
Css 1.203 1.371 1.142
Ces 0.836 0.749 0.709
K 1.827 2.049 1.671
1 1.032 1.047 0.920
Dielectric constants
€11 6.494 6.901 5.731
€00 4.569 4.491 3.202
€33 6.768 6.882 6.633
S — 2.720 -
g2 - 2.652 -
g3 - 2587 -
Energy characteristics (eV)

U —284.45 —285.68 —170.10
E -32.01 -33.24 —42.88

where g isthe degree of ionicity of thebond (0<q< 1),

Z and Z are formal ionic charges, Ri(j) is the sum of
covalent radii, and the empirical parametersA and d are
attributed by weights at each value of the ionicity
degree. Two repulsion parameters (“softness’ p and
“dtiffness’ o) arerelated by the well-known equation

_ 1
p=350" )

To reduce the number of computations, we restricted
the values of atomic charges from below—the tin
charge was varied from +2.6 to +4.0 e and the silicon
charge, from +1.4 to +4.0 e (the limit for tin corre-
sponds to an underestimated cation charge in SnO, and
for silicon, to that value in a-quartz). Within these lim-
its, 64 model computations were performed for differ-
ent combinations of the effective charges of Si and Sn.
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Taking into account that the Ca—O bond has a pro-
nounced ionic nature, the calcium charge was taken to
be +2.0 in al the cases. The oxygen charge was calcu-
lated proceeding from the unit-cell neutrality. For each
set of atomic charges, the structure simulation was per-
formed with a search for the minimum of the configu-
ration and atomization energies E with due regard for a
correction for the energy AE of charge transfer from
cations to anions determined for each set of atomic
charges from the data on the ionization energy of the
atomic valence states as described in [17, 20].

The charges corresponding to the minimum of the
atomization energy were taken to be optimal. To esti-
mate the optimum charge set more precisely, 36 more
cycles of simulation were performed, in which the tin
charge varied from +3.0 to +3.4 e and the silicon
charge, from +2.2t0 +2.6 e.



766

To obtain data on high-frequency dielectric con-
stants, we used a shell model of formal charges with
due regard for the polarization of tin and oxygen atoms
and three-particle O-Si—O interaction. The parameters
of the harmonic potentials for Sn and O were taken
from [19], and the parameters of three-particle poten-
tial, from [21].

The parameters of the different pair potentials for
the ionic, shell, and “optimum” models are listed in
Table 5. The predicted CaSnOSiO, atomic coordinates
and new experimental data are listed in Table 6. Since
the atomic coordinates obtained for different theoreti-
cal models differ only insignificantly, the experimental
interatomic distances are compared only with the dis-
tances calculated based on the shell model (Table 7).
The calculated components of the tensors of elastic and
dielectric constants, as well as the structural, U =

Vi;, and atomization, E, energies, of maayaite are

listed in Table 8. The bulk compression modulus K (by
Voigt) and the shear modulus . are calculated using the
well-known relationships.

Asis seen from Tables 6 and 7, the structural char-
acteristics of malayaite are reproduced rather well
using any of thethree models. The Si, Sn, Ca, and O(1)
atoms practically occupy the positions that were deter-
mined experimentally. The deviations from the experi-
mental positions observed for the O(2) and O(3) atoms
occupying the general positions are also small and do
not exceed 0.2-0.3 A. Using the harmonic potential in
the shell model for Sn and O atoms, we could estimate
the high-frequency dielectric constants g;; of malayaite.
However, allowance for the polarization only for Sn
and O atoms resulted in somewhat underestimated val-
ues of these constants, which is seen from the compar-
ison of the experimental and calculated refractive indi-
ces n. For natural malayaite, the refractive indices are
n, = 1.764, ny = 1.798, and n,, = 1.783 [22]. Hence, the
&; values in malayaite should be ~3.1-3.2 (compare
with the data in Table 8). However, it is necessary to
note that the n values are essentially dependent on the
sample composition, and the refractive indices of pure
malayaite can differ somewhat from the values indi-
cated in handbooks of mineralogy.

Using 100 values of the atomization energy E
obtained based on different models of charge distribu-
tion, we constructed the surface E(Zg,,, Zg;), which has
a pronounced minimum at the charges Si = +2.40(4) e
and Sn = +3.20(4) e (Fig. 6). These atomic charges
were used in the “optimum” model. The E value at the
minimum is equal to —42.88 eV or —4133 kJ/mol. The
experimental E value obtained using the experimental
value of enthalpy of the malayaite formation from sim-
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ple components (AH,ys = —2246 kJ/mol [5]) equals
-4424 kJmal, i.e., differs from the theoretical estimate
by 6.5%.

CONCLUSIONS

The following conclusions can be made from the
precision X-ray diffraction and Mdssbauer studies and
computer simulation.

The effective tin charge in malayaite CaSnOSIO, is
somewhat higher than in cassiterite SnO,.

In malayaite, two types of Sn—O bonds exist—the
bonds along the octahedral chain and the bonds
directed toward the adjacent chains; in the silicon—oxy-
gen octahedron, two pairs of bonds of different multi-
plicities based on sp’-hybridization of the Si-orbitals
are observed; the Ca—O bond is essentialy ionic.

The anomalously high quadrupole splitting of the
M 6ssbauer spectrum of *1°Sn nuclei in malayaite can be
explained by the formation of regions characterized by
the excessive electron density giving rise to charge
redistribution on the Sn—O bonds.

The semiempirical sets of the parameters of the pair
and three-particle interactions allow one to reproduce
the structural features of malayaite and predict the val-
ues of its elastic, dielectric, and energy characteristics,
which are in good agreement with the limited available
experimental data on its properties.
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Abstract—Single crystals of acid salt hydrates M'{ M[H(XO,),](H,0), }, where M!, M", and X are K, Zn, and
S(); K,Mn,and S(I1); Cs, Mn,and S(l11); or K, Mn, and Se (1 V), respectively, were synthesized and studied
by X-ray diffraction analysis. Compounds |-V (space group P1) are isostructural to each other and to hydrate
KMg[H(SO,),](H,0), (V) studied earlier. Structures |-V, especially, the M-0, M0, and X-O distances and
the O--H--O (2.44-2.48 A) and O,~H--O (2.70-2.81 A) hydrogen bonds, are discussed. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

Considerable attention given to a class of acid salts
of inorganic oxygen-containing acids stems from the
interest in the characteristic features of hydrogen bond-
ing in their crystal structures. In recent years, acid sul-
fates and selenates of mono- and divalent metals,
including numerous adducts with acid H,XO,, were
systematically studied [1, 2]. Some hydrogen akali
metal acid sdts of the compositions M'HXO, and

M é,H(XO4)2 (M'=Rb or Csand X = S or Se) undergo
phase transitions to form phases possessing high pro-
tonic conductivity [3]. The studies of phases containing
mixed M! cations showed that the phase-transition tem-
perature and other characteristics of phase transitions
are essentially dependent on the degree of replacement,

for example, in the Cs, _XM'XHSO4 phases [4]. In some
instances, these phases possess their own structure
types. As an example, we refer to K, sRb, sHSO, [5] or
Rb,LiH;(X0,), [6].

Hydrogen salts with metal cations in different
valence states were much less studied. Only one com-
pound containing mono- and divalent metals,
KMg[H(S0O,),](H,0), dihydrate, was structurally stud-
ied [7]. We performed a systematic study of the synthe-
sis and crystal structures of such salts and managed to
prepare hydrogen sulfate (selenate) hydrates possess-
ing other combinations of mono- and divalent metal s of
the  compositions ~ M'M'"[H(XO,),](H,0), and

M4MITH(SO,),],(H,0), . Below, we report the results of
our studies of four compounds of the first group.

EXPERIMENTAL

Synthesis. The M'M"H(XO,),(H,0), compounds
were prepared by crystallization from agueous solu-

tions of chalcogenates M, X0, and MXO, and acid
H,XO,. The molar ratio of the reagents was varied to
optimize the conditions of the synthesis. It was found
that the phases of the composition
MM"H(SO,),(H,0),, where M'and M" =K and Zn (1),
KandMn(l1), or Csand Mn (111), were crystallized, if
sulfates were taken in the molar ratio 1 : 2 in the pres-
ence of afivefold or sixfold excess (with respect to its
stoichiometric amount) of sulfuric acid. Bimetallic
hydrogen selenate KMnH(SeO,),(H,0), (V) was pre-
pared with the use of an eightfold excess of selenic
acid. In some syntheses, the corresponding acid sul-
fates were used instead of akali sulfate, or alkali metal
was introduced by dissolving its carbonate in an acid.

The M} X0, and MXO, salts or their mixtures were
crystallized from less acidic solutions. Hydrogen chal-
cogenate M'HXO, was present among the products of
primary crystallization from solutionswith an excess of
akali cations. The phase purity of the resulting samples
were confirmed by X-ray powder diffraction analysis.
In order to grow larger (up to 5 mm) single crystals, the
solutions were concentrated, and crystallization
occurred at 50°C. The crystals thus obtained were non-
hygroscopic but they effloresced during storage for sev-
eral weeksin air.

Analogous experiments on crystallization in the
M} XO,~MUX0,~H,XO, systems for the K—-Cd—S, K—

1063-7745/02/4705-0768%22.00 © 2002 MAIK “Nauka/Interperiodica’
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Table 1. Crystallographic characteristics and the details of X-ray data collection and the refinement of structuresI-1V

Compound

Molecular weight
Crystal system

Space group

a, A

b, A

c, A

a, deg

B, deg

y, deg

Vv, A%z

Peaicas g/Om®

u(MoK,), mm=

T, K

Bmex, deg

Number of measured and
independent reflections

Number of reflections with [1 > 25(1)]

Number of reflectionsand parametersin
the least-squares refinement

R, [I > 25(1)] R, (all reflections)
Apmax/Apmim é/A3

I, KZn[H(SO,),] -
2H,0
333.63
Triclinic
P1
4.563(3)
5.751(4)
8.149(5)
103.43(3)
99.63(8)
95.37(3)
203.1(2); 1
2.728
4,088
180(2)
32.0
1836/1413

1345
1342/80

0.0224/0.0717
0.990/-0.929

I, KMN[H(SO,),] -
2H,0
323.20
Triclinic
P1
4.693(2)
5.816(3)
8.247(2)
103.49(3)
99.81(3)
96.08(3)
213.2(2); 1
2.518
2.562
180(2)
30.0
2525/1237

1121
1126/80

0.0187/0.0577
0.490/-0.443

[T, CSMN[H(SO,),] -
2H,0

2

417.01
Triclinic
P1
4.788(2)
5.843(3)
8.577(4)
104.31(3)
95.99(3)
93.80(3)
230.2(2); 1
3.008
5.818
180(2)
32.0
2828/1525

1431
1438/80

0.0255/0.0772
1.763/-1.683

IV, KMg[H(SeO,),] -
2H,0

2

386.37
Triclinic
P1
4.671(3)
5.882(3)
8.479(5)
103.15(3)
99.02(4)
96.95(4)
221.1(2); 1
2.902
8.940
170(2)
30.0
1883/1290

903
960/79

0.0398/0.1188
1.816/-1.712

Table 2. Coordinates of the basis atoms and the equivalent (isotropic for H atoms) thermal parametersin structures I-1V

Atom X y z Uep A2 || Atom X y z Ugg A2
| 1
K |o 0 05 0.0204(1) [lcs |0 0 05 0.0166(1)
zn |0 0 0 0.0073(1) [Mn |0 0 0 0.0106(1)
S |0.60871(7) |0.31795(6) | 0.24169(4) | 0.0063(1) ||S 0.56694(11) | 0.31480(9) | 0.23521(6) | 0.0100(1)
O(1) |0.7871(3) |0.1201(2) |0.2045(2) | 0.0111(2) ||O(1) |0.7250(4) |0.1087(3) |0.1825(2) | 0.0158(3)
0(2) [03470(3) |0.2850(2) |0.1026(2) | 0.0113(2) ||0(2) |0.3019(4) |0.2887(3) |0.1278(3) | 0.0207(4)
0(3) |0.7799(3) |05541(2) |0.2690(2) | 0.0137(2) ||O(3) |0.7238(4) |0.5391(3) |0.2448(3) | 0.0204(4)
O(4) |05069(3) |0.3013(2) |0.4061(1) | 0.0118(2) ||O(4) |0.4989(5) |0.3082(3) |0.4022(3) | 0.0207(4)
O(5) |0.2026(3) |0.7896(2) |0.1492(2) | 0.0116(2) ||O(5) |0.1785(5) |0.7717(4) |0.1439(3) | 0.0199(4)
H(1) |0509(15) |0.445(11) |0.469(8) | 0.02(1) ||H(1) |0.497(15) |0.445(10) |0.479(9) | 0.02(1)
H(2) |0.0900(10) |0.673(8) |0.157(5) | 0.04(1) |[H(2) |0.0300(22) |0.659(18) |0.175(12) | 0.07(2)
H(3) [0362(13) |0.732(11) |0.131(7) | 0.06(1) ||H(3) |0.359(12) |0.736(10) |0.164(7) | 0.03(1)
I v
K o 0 05 0.0306(1) [|K 0 0 05 0.0268(4)
Mn [0 0 0 0.0095(1) Mg |0 0 0 0.0104(4)
S |061755(6) |0.32218(5) | 0.24745(3) | 0.0087(1) [|Se  |0.62029(8) | 0.31979(7) | 0.24200(5) | 0.0093(2)
O(1) |0.7943(2) |0.1305(2) |0.2119(1) | 0.0154(2) ||O(1) |0.8117(7) |0.1076(6) |0.2047(4) | 0.0138(7)
0(2) |0.3635(2) |0.2851(2) |0.1083(1) | 0.0154(2) ||0(2) [0.3391(7) |0.2828(6) |0.0942(4) | 0.0141(7)
0@B) |07833(2) |05586(2) |0.2758(1) | 0.0189(2) ||O(3) |0.8079(8) |0.5808(6) |0.2724(5) | 0.0179(7)
O4) |05159(2) |0.3034(2) |0.4089(1) | 0.0153(2) ||O(4) |0.5094(8) |0.2994(6) |0.4172(4) | 0.0149(7)
0(5) [02010(2) |0.7766(2) |0.1505(1) | 0.0162(2) ||O(5) |0.2086(8) |0.7919(7) |0.1301(5) | 0.0148(7)
H(1) |0510(11) |0448@8) |0466(6) | 0.02(1) ||H(L) |0569(29) |0.464(27) |0.471(16) | 0.02(2)
H2) [0101(7) |0.6686) |0.174(4) | 0.0447) ||H() |0.125(17) |0.696(14) |0.160(9) | 0.02(2)
H(3) |0348(8) |0.715(6) |0.137(4) | 0.048@8) ||H(3) |0.369(24) |0.732(18) |0.100(12) | 0.04(2)
CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002
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Table 3. Interatomic distancesd (A) in the crystal structures of M'M"[H(XO,),](H,0),

TROYANOV et al.

@1 @1 @1 (@ 1V @V [71**
MI(r, A)* K (1.55) K (1.55) Cs(1.81) K (1.51) K (1.55)
MII(r, A)* Zn (0.745) Mn(0.820) | Mn (0.820) Mg (0.720) Mg (0.720)
X S S S Se S
M''—O(2) 2.081(1) 2.161(1) 2.153(2) 2.073(4) 2.069(2)
M''—0(2) 2.080(1) 2.156(1) 2.138(2) 2.067(4) 2.051(2)
M''-O(5) 2.077(2) 2.175(1) 2.186(2) 2.057(4) 2.068(2)
M''-O (average distance) 2.079 2.164 2.159 2.066 2.066
M'-O (range) 2.71-3.16 2.72-3.21 3.13-3.26 2.71-3.14 2.76-3.22
M'-O (average distance) 2.958 2.990 3.192 2.917 2.991
X-0(1) 1.464(2) 1.464(1) 1.466(2) 1.624(3) 1.465(2)
X-0(2) 1.467(2) 1.466(1) 1.465(2) 1.623(3) 1.458(2)
X-0(3) 1.452(2) 1.453(1) 1.446(2) 1.617(4) 1.452(2)
X-0(4) 1.510(2) 1.512(1) 1.511(2) 1.673(4) 1.508(2)
O(4)—H (1) (D4 ** 2.451(3) 2.461(2) 2.444(4) 2.476(7) 2.478(3)
O(5)-H(2) IID(3")* ** 2.695(2) 2.701(2) 2.813(3) 2.707(6) 2.738(3)

* Radii of the cationsfor M' (c.n. 10), M' (c.n. 6), and K* (c.n. 8) in 1V were taken from [10].
** The scheme of atomic numbering for the O and H atomsis brought into correspondence with that used in this study.
*** The OO distancesin hydrogen bonds. The symmetry codesfor the O(4') and O(3") atoms: 1—x, 1 -y, 1—zand x—1, Y, z, respectively.

Zn-Se, and K-Mg-Se triads did not result in the
growth of bimetallic hydrogen chal cogenates. Instead,
basic or acid salts of M and M metals or their mixtures
were detected by X-ray powder diffraction analysisin
the crystallization products.

X-ray diffraction study. X-ray diffraction data for
single crystals of 11V were collected at alow temper-
ature on an automated four-circle STADI-4 (Stoe) dif-
fractometer (MoK, radiation, graphite monochromator,
A = 0.71073 A, w26 scan technique). The crystallo-
graphic characteristics and details of the structure
refinement are given in Table 1. Either the numerical
absorption correctionstaking into account thereal crys-
tal shape (I11) or the empirical absorption corrections
with the use of -scan data for four to six reflections
(1,11, and 1'V) were applied.

The coordinates of the non-hydrogen atoms were
determined by the direct method [8] and then were
refined by the full-matrix | east-squares method with the
anisotropic thermal parameters [9]. The positions of
hydrogen atomsin the structures of 11V wererevealed
from difference electron-density syntheses and refined
by the least-squares method with the isotropic thermal
parameters. One of three independent hydrogen atoms,
H(1), appeared to be disordered over two positions
around the center of inversion. The atomic coordinates
in the structures of 1-1V and their equivalent (isotropic
for H atoms) thermal parameters are given in Table 2.
Since al the compounds are isostructural, we used the
unified atom numbering scheme. The interatomic dis-

tances for the coordination environments around the
M!, M, and X atoms and the hydrogen bond lengths are
listed in Table 3.

RESULTS AND DISCUSSION

X-ray diffraction analysis demonstrated that hydro-
gen salt hydrates |-1V are isostructural to each other
and to the salt KMg[H(SO,),](H,0), (V) studied earlier
[7]. The linear unit cell parameters vary according to
the relative sizes of the cations (M! and M" [10]) and
XO, anions (Table 1). The large M! cations (K and Cs),
smaller M cations (Zn, Mn, and Mg), compact XO,
anions (X = Sand Se), and water molecules can be con-
sidered as structural blocks (figure). The centrosym-
metric coordination environment around the M! cations
is formed by the O atoms of the XO, groups located at
shorter distances and the O(H) and O,, atoms located at
longer distances (Table 3). If the size of the coordina
tion polyhedron is limited by the maximum K-O dis-
tance (3.25 A), the coordination number of the potas-
sium atominthestructuresof I, |1, andV isequal to 10,
whereas the coordination number of this atom in the
structure of IV is equal to 8 (the K-O,, distance is
3.43 A). In the structure of 111 containing the Cs atom
with the coordination number 10, the corresponding
distances are substantially larger in accordance with its
larger, ionic radius.

The centrosymmetrical octahedral coordination
about the M" cations is formed by four O atoms of the

CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002



SYNTHESIS AND CRYSTAL STRUCTURES

XO, groups [O(2) and O(3)] and two O(5) atoms of the
water molecules. The M"-O bond lengths have close
values. The average M"-O distances depend on the
ionic radius of the metal atom. In the XO,-tetrahedra,
the X—O bond lengths are determined by the nature of
the chalcogen atom and the additional structural func-
tions of the oxygen atoms. On the whole, the S-O
bonds are shorter by 0.16-0.17 A than the analogous
Se-O bonds, which is consistent with the analogous
values observed in other structures containing XO,
anions[1]. The structures under consideration are char-
acterized by the presence of three X-O bonds of
approximately equal lengths, whereas the fourth X—
O(4) bond is noticeably longer (Table 3). The O(1) and
0O(2) atomsareinvolved not only inthe formation of the
X-O bonds but aso in the coordination of the M
atoms, which results in the virtually equal X—O(1) and
X-0O(2) bond lengths. The O(3) atom acts as an accep-
tor (A) of the hydrogen atom in the O(5)-H(2)---O(3")
hydrogen bond, whereas the X—O(3) bonds are dightly
shortened. The fact that the X—O bond length depends
more substantially on the coordination of the metal
atom (M) than on the acceptor function (A) is attributed
to the relatively small radii of the M?* dications. The
structures of hydrogen chalcogenates containing sin-
gly-charged cations (K, Rb, or Cs) are characterized by
the inverse ratio of the effects exerted by the M and A
functions on the X—O bond lengths [1, 11]. Finadlly, the
largest X—O(4) bond length is associated with the par-
ticipation of the O(4) atom in the disordered O(4)—
H(1)--O(4") hydrogen bond, whereit playstherole of a
half-donor (D) and half-acceptor of the H atom (1/2D +
1/2A).

The system of hydrogen bonds includes the short
O(4)-H(1)---O(4) bonds (2.44-2.48 A) that link two
XO,-tetrahedra into a dimer with the formation of iso-
lated hydrated anions {[H(XO,),](H,0),}*-, and longer
O(5)-H(2)--O(3") bonds (2.70-2.81 A) between
dimersand water molecules. The H(1) atominvolvedin
the strong hydrogen bond is disordered around the
inversion center. In the structures of 111, established
with a higher accuracy, the O(4)—H(1) and H(1)---O(4")
distances are 0.86-0.91 and 1.56-1.60 A, respectively,
and the O(4)-H(1)---O(4") angles are 172°-175°. Ini-
tidly, proceeding from difference Fourier syntheses,
we placed the H(1) atom in the structure of | into the
inversion center. However, the subsequent refinement
of the structure gave somewhat better results (the Uy,
parameter) for amodel containing the disordered H(1)
atom. Such disorder was aso observed in structures| | —
IV studied at low temperatures and in structure V at
room temperature [ 7]. One hydrogen atom of the water
molecule is involved in the O(5)-H(2)---O(3") hydro-
gen bond, whereas another hydrogen atom, H(3), virtu-
ally does not participate in the hydrogen bonding,
apparently, because of the fact that the O(1)-O(4)
atoms perform some additional functions. A double
acceptor function (2A), which is quite common in the
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Crystal structure of KMn[H(SO,),](H,0), (I1) projected
aong the a-axis (at the top) and the b-axis (at the bottom).
The coordination environments of Mn and S atoms are
shown as octahedra and tetrahedra, respectively. The disor-
dered H(1) atoms are indicated by empty circles.

structures of many acid salts, isnot realized for the O(3)
atom, presumably, because the O(5)-H(3) bond is
directed toward the space between the oxygen atoms.

The M[H(XO,),] sdlts with M = Na—Cs [12] are
rather similar to the structure type under consideration.
The structures of these salts are also characterized by
the formation of the [H(XO,),] dimers viaa symmetric
hydrogen bond. Some of these compounds (M = Rb or
Cs) undergo high-temperature phase transitions giving
rise to phases with high protonic conductivity [13, 14].
The absence of water molecules in their structures is
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responsible for the higher thermal stability of these
compounds. In addition, the disordered arrangement of
the XO,-tetrahedra (necessary for the manifestation of
high proton conductivity) is not suppressed by the for-
mation of additional hydrogen bonds.

In the structures of hydrates that have close compo-
sitions, M(HXO,), - H,O (M" =Mg, Mn, or Cd [2, 15,
16]), no hydrogen bonds between the anions are
formed, and the water molecules are both donors and
acceptors of the H atoms (from the HXO, groups) in
hydrogen bonds. In the structures of M(HXO,), con-
taining no water molecules, the hydrogen bonds

between the HXO, anionslead to the formation of infi-
nite zigzag chains[17].
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Abstract—Double potassium indium and rubidium indium phosphates K3In(PO,), (I) and RbgIn(PO,), (1)
are synthesized by solid-phase sintering at T = 900°C. The compounds prepared are characterized by X-ray
powder diffraction (I and 11), X-ray single-crystal diffraction (1), and laser-radiation second harmonic gener-
ation. Structure | is solved using the Patterson function and refined by the Rietveld method. Both compounds
crystalize in the monoclinic crystal system. For crystals I, the unit cell parameters are as follows. a =

15.6411(1) A, b = 11.1909(1) A, ¢ = 9.6981(1) A, B = 90.119(1)°, space group C2/c,

R, = 4.02%, and Ry, =

5.25%. For crystals |1, the unit cell parametersare asfollows: a=9.965(2) A, b=11.612(2) A, c=15.902(3) A,
[3=90.30(3)°, space group P2,/n, R; = 4.43%, and WR, = 10.76%. Structures| and I | exhibit asimilar topology
of the networks which are built up of {In[PO,],} (I) and {In,[PO,],} (I1) structural units.

INTRODUCTION
The crystal chemical features of double phosphates

of composition Mj M™(PO,), (where M! = K and Rb)
have been investigated in sufficient detail in the case of
scandium, yttrium, and rare-earth elements. These
compounds have been studied by different methods. It
has been demonstrated that phosphates containing rare-
earth elements hold considerable promise for use as
laser and luminescent materials [1-3]. All the known
double phosphates of composition K;M™(PO,), are
structural analogues of arcanite 3-K,SO, (for M =Y,
La-Yb) or glaserite K;Na(SO,), (for M = Lu and Sc)
[2-5]. Double phosphates Rb;M™(PO,), (where M =
Y, Dy-Lu) belong to the K;Na(SO,), structural type
[4,6]. Among the double indium phosphates

M;In(PO4)2, only the B and a modifications of the
compound Na;In(PO,), are known [7, 8]. The low-tem-
perature 3 modification of Naln(PO,), belong to
arcanite-like phosphates. The same is aso true for the
B-Na;M"(PO,), compounds (where M = La-Lu),
whose structure is characterized by a combination of 3-
K,SO, and Na,CrO, structural motifs [9]. The role
played by the structural motif of sodium chromate in
the structure of the Nagln(PO,), compound increases
upon the  — a polymorphic transition (T = 700°C).

Until very recently, double phosphates M'3 In(PO,),

(where M! = K and Rb) were unknown. However, reli-
ableinformation on the structure of these compoundsis

required to elucidate how the size and structure of the
electron shell of the trivalent cation and the size of an

alkali cation affect the crystal structure of M3 MI(PO,)
phosphates in the series M = La— -+ —Lu—n—-Sc—Fe.

In this respect, the purpose of the present work was
to synthesize the compounds Kjln(PO,), (I) and
Rb;In(PO,), (I1) and to perform the X-ray structure
investigation.

EXPERIMENTAL

Synthesis. The compounds K;In(PO,), () and
Rb;In(PO,), (1) were prepared by the solid-phase reac-
tion from stoi chiometric amounts of In,05 (chemicaly
pure), M,HPO, (analytical grade), and M,CO; (analyt-
ical grade) at a temperature of 900°C for 120 h. The
synthesis was carried out in alundum crucibles in air.
Every 24 hours, sampleswere ground in order to ensure
homogenization of the mixture. The completeness of
the reaction was controlled using X -ray diffraction. The
samples were annealed at higher temperatures (up to
T = 1250°C) with the aim of preparing single crystals
and elucidating the character of melting of the relevant
compounds. A rapid cooling of the melt of compound |
to temperatures below 1200°C and a slow cooling of
the melt of compound 11 from 950 to 900°C (at arate
of 5 K/h) led to the formation of transparent, light yel-
low crystals in the form of prismatic needles with a
maximum length of 3 mm. The crystals prepared were

1063-7745/02/4705-0773%22.00 © 2002 MAIK “Nauka/ Interperiodica’
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washed from the melt with alarge amount of warm dis-
tilled water and dried in air at 50°C.

Attempts to synthesize these compounds under
hydrothermal conditions (T = 200°C and p =20 atm) in
therange 7 < pH < 10 were unsuccessful. The hydroxo
phosphates M'In(OH)PO,, (where M'= K and Rb) were
formed over the entire range of pH [10, 11]. It should
be noted that, in the case of compound I I, we observed
the cocrystallization with a phase of unknown compo-
sition whose fraction decreased with an increase in pH.

X-ray powder diffraction analysis was performed
on an STOE diffractometer [CuK, radiation; A =

1.5406 A; SiO, monochromator; 20 step-scan mode;
step width, 0.02° in 26; 26 = 5°-80°].

X-ray structure analysis. The crystal structures of
double phosphates were investigated using crystals of
K3ln(PO,), (0.35 x 0.12 x 0.10 mm in size) and
Rb;In(PO,), (0.30 x 0.15 x 0.13 mm in size) that were
chosen with the use of a polarizing microscope and
mounted on the goniometer head of an Enraf—Nonius
CAD4 four-circle diffractometer (MoK, radiation,
graphite monochromator). The unit cell parameters
were determined with a sufficient number of well-
resolved reflections measured in the course of initial
data collection. In the case of single crystal |, among
the twenty five reflections observed, five reflections
were characterized by fractional indices hkl. This
allowed us to assume that the high-temperature phase
of compound | hasamodulated crystal structure, which
was subseguently confirmed by the X-ray single-crystal
investigation [12]. However, the incommensurate mod-
ulated structure of single crystals | was not thoroughly
investigated because of the limited technical potentiali-
ties of the diffractometer used in our experiments. The
structure of single crystal 11 was solved and refined
using acomplete X-ray diffraction analysis (room tem-
perature, w-20 scan mode). The initial processing of
the intensities of diffraction reflections was carried out
according to the XCAD [13] and PSICALC [14] soft-
ware packages (the Lorentz and polarization effects
were taken into account, and absorption correction was
introduced using the azimuthal scanning of reflections
with x angles close to 90°). The space group P2,/n
(no. 14) was uniquely determined from the conditions
for absences of reflections (hOl: h+ 1 =2n; 0kO : k= 2n;
h0O : h=2n; and 00l : | = 2n). The structure was solved
by the direct method and refined on F? with the full-
matrix |east-squares procedure in the isotropic approx-
imation and then in the anisotropic approximation for
all the atoms (according to the SHELXS97 [15] and
SHEL XL 97 [16] software packages). Thefinal reliabil-
ity factors are as follows. R, = 4.43% and wR, =

10.76% for F and F2?, respectively.

Intensities of experimental reflections used for
determining the structure of compounds | and 11 syn-
thesized at 900°C in the form of polycrystalline sam-
ples were collected on an STADI-P (STOE) powder
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diffractometer (transmission geometry, CuK, radia-

tion, A = 1.5406 A, germanium monochromator, posi-
tion-sensitive detector) for | and a SIEMENS D500

powder diffractometer (reflection geometry, CuK,,

radiation, SiO, monochromator) for I1. The scanning
was performed in the 26 range 9(10)°-100° with a step
of 0.01(0.02)° and an exposure time of ~30 min per
point. The X-ray diffraction pattern of compound | was
initially indexed in the orthorhombic crystal system [a
=15.638(1) A, b=11.192(1) A, c = 9.694(1) A, My, =
38.7, and F,, = 67.8 (0.0085, 52)] with the use of the
TREOR90 program [17]. A closer examination of large-
angle reflections (26 > 50°) revealed a monoclinic dis-
tortion of the unit cell with the angle 3 = 90.13°. The
conditions determined for the absences (hki: h+ k=2n)
indicated two possible space groups, namely, the Cc
acentric (no. 9) and C2/c centrosymmetric (no. 15)
groups. The monoclinic unit cell parameters deter-
mined for compound |1 from the first 35 peaks [a =
9.967(1) A, b = 11.616(1) A, c = 15.902(1) A, B =
90.32(1)°, My, =28.6, and F, = 65.3 (0.0067, 69)] were
close to the corresponding parameters obtained for the
single crystal. The results of indexing of the X-ray dif-
fraction patterns of compounds | and Il have been
deposited with the JCPDS-ICDD Powder Diffraction
File.

The peak profiles were described by the modified
(split-type) pseudo-Voigt function [18]. The back-
ground profile was approximated by the Chebyshev
polynomial. The X-ray diffraction patterns were
decomposed into individual peaks according to thefull-
pattern-decomposition (FPD) procedure with the
MRIA software package[19]. Inthiscase, the FPD reli-
ability factors were x* = 3.17% and R, = 3.15% for
compound | and x? = 6.27% and R, = 2.91% for com-
pound I1. When solving crystal structure |, the heaviest
atoms (K, In, and P) were located by the Patterson
method with the use of 613 |F?| values (according to the
DIRDIF96 program [20]). The positions of the oxygen
atomswere determined using a procedure with step-by-
step displacement (with a step of 0.7 A for translations
along the a-, b-, and c-axes) and rotation (with a step of
20° for the Y, ¢, and K angles) of the known fragment

(POZr group) in the asymmetric part of the unit cell.
The starting model for the refinement of structure 11
was based on the single-crystal data. The subsequent
refinement of both structures by the Rietveld method
with a gradual weakening of constraints on the bond
lengthsin thetetrahedraresulted in satisfactory reliabil-
ity factors: x* = 4.88%, R, = 4.02%, and R,,= 5.25%
for compound | and x* = 7.82%, R, = 3.83%, and R, =
5.16% for compound |I. After the refinement of al
100 parameters for compound | and all 150 parameters
for compound Il (these parameters included the struc-
tural, background, profile, and unit cell parameters and
also the scale factor and zero-point shift) within the
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Fig. 1. Fragments of (1) calculated, (2) experimental, and (3) difference X-ray diffraction patterns and (4) positions of Bragg reflec-
tions for (a) K3ln(PO,4), and (b) Rbsln(PO,4), compounds.
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Table 1. Data collection and refinement parameters for K;In(PO,), and Rb;In(PO,), structures

Compound K3In(PO,), (powder) Rb;In(PO,), (crystal)
Diffractometer STADI-P (STOE) CAD-4 (Nonius)
Crystal system Monoclinic
Space group; Z C2/c, 8 P2,/n, 8
20 (6) range, deg 8-100 (26) 2-26(08)
Unit cell parameters, A:

a 15.6411(1) 9.965(2)

b 11.1909(2) 11.612(2)

o 9.6981(1) 15.902(2)

B, deg 90.119(1) 90.30(3)

v, A3 1697.53(3) 1840.1(7)
Number of reflections 890 3625 [R: = 0.023]
Number of unique reflections with |1 > 20(1) 2204
Number of refined parameters:

structural 60

other 40 253
Reliability factors, %:

X% Ry Rip 4.88;4.02; 5.25
Ry; WR," 4.43;10.76

* Ry = (ZWi, exp — Vi, calod) (XY, exp)i Rap = {EWIIYE, exp = Vi, calodl D/ (EWLY:, expl D 2.
** D — oo 2 2 2 2 2012 A1_ 2,2 2 5 (2 2
Ry = Z(IFexpl = IFcacal) /Z Fexpl WRp = [EW( Fyp = Foyiea )7ZW (Foyp) 1V2, W= 0% (Fgyp) + (0.041P)% P = (Foy + 2F00) /3.

chosen model, the experimental and theoretical X-ray dif-
fraction patterns were in good agreement (Figs. 1a, 1b).

The crystal data and refinement parameters for
structures| and |1 are summarized in Table 1. The coor-
dinates of the basis atoms, thermal parameters, and
selected interatomic distances are listed in Tables 2
and 3.

Laser-radiation second harmonic generation in
powders of the compounds prepared was measured in a
reflection geometry with the use of an Nd : YAG laser
as a radiation source (A = 1064 nm, frequency v =
6.25 kHz, pulse duration T = 12 ns, mean power W =
9.5 MW). Finely crystalline quartz was used as arefer-
ence sample.

RESULTS AND DISCUSSION

Double phosphate | crystallizes in the monoclinic
crystal system in the centrosymmetric space group
C2/c. The choice of this space group is in agreement
with the laser-radiation second harmonic generation

data[l,,/15¢s0, =0.02]. For compound 1, zero |aser-
radiation second harmonic generation signal uniquely
confirms the choice of the centrosymmetric unit cell
(space group P2,/n). All the atoms in structure Il
occupy general positions, whereas two atoms in struc-
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ture | are located in specia positions (on the twofold
axis). The mean In-O distances in InOg octahedra
(2141 and 2.155 A in 11 and 2.136 A in |) are typical
and comparable to those observed in other indium
phosphates [7, 8]. All the InOg4 octahedra have a sub-
stantialy distorted structure. It is seen from Table 3
that, in structure |1, four In3*—O interatomic distances
in the In(1)Og octahedron fall in the range 2.072—
2.150 A and the distances to two oxygen atoms are
equal to 2.219 and 2.218 A. In the In(2) O, octahedron,
two distant oxygen atoms are located at distances of
2.251and 2.231 A. Instructure|, the spread in the In3*—
O distances is larger and the two longest distances are
equal to 2.238 and 2.331 A. This distortion of the
indium polyhedra is associated with the necessity of
attaining a balance of the bond valences at the oxygen
anions in the presence of common edges between the
InOg octahedra and the PO, tetrahedra (Fig. 2). The cal-
culated sums of bond valences [21] at the In(1) (3.18)
and In(2) (3.07) atomsin structure || and at the In atom
(3.33) in structure | agree well with the formal oxida-
tion number of indium.

The presence of two common oxygen atoms
between the P(1) and In atoms in structure | [P(1) and
In(1), P(4) and In(2) in structure 1] is likely responsi-
ble for the insignificant distortion of the phosphate tet-
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Table 2. Atomic coordinates and thermal parameters (A?) for K5In(PO,), and Rb;In(PO,), compounds

Atom | X | y | z | Bigo/Ueq X 10%***
K3lN(POy),

In 0.1251(1) 0.1377(1) 0.0747(1) 3.0(1)
K (1a)* 0.0918(2) 0.6085(3) 0.0966(4) 37(3)

K (1b)** 0.1828(3) 0.5985(4) 0.1009(6) 37(3)
K(2) 0.7532(1) 0.8824(2) 0.2915(2) 3.1(1)
K(3) 0 0.3755(4) 0.25 5.1(1)
K(4) 0 0.8854(3) 0.25 5.7(2)
P(1) 0.6525(1) 0.1498(3) 0.4274(3) 2.1(2)
P(2) 0.4001(1) 0.3684(2) 0.5835(3) 2.6(1)
O(11)*** 0.5925(3) 0.0579(4) 0.3625(5) 2.8(1)
0(12) 0.6357(3) 0.2730(3) 0.3690(5) 3.1(2)
0(13) 0.6338(3) 0.1545(4) 0.5831(4) 3.2(2)
0(14) 0.7448(2) 0.1135(4) 0.4025(6) 2.8(2)
0(21) 0.4914(2) 0.3299(4) 0.5557(6) 3.2(2)
0(22) 0.3914(3) 0.4192(4) 0.7298(5) 3.002)
0(23) 0.3416(3) 0.2588(5) 0.5724(6) 7.02)
0(24) 0.3718(4) 0.4623(4) 0.4798(5) 5.7(2)

Rb3In(PO,),

In(2) 0.42228(7) 0.63098(7) 0.13117(5) 0.96(2)
In(2) 0.07342(7) 0.65243(7) ~0.11421(5) 0.98(2)
Rb(1) 0.2938(1) 0.8802(1) ~0.0079(2) 2.08(3)
Rb(2) 0.7397(1) 0.6071(1) 0.0009(1) 1.91(3)
Rb(3) ~0.1002(1) 0.8785(1) 0.0837(1) 2.59(3)
Rb(4) 0.7889(1) 0.5991(1) 0.2464(1) 2.09(3)
Rb(5) 0.1137(1) 0.5841(1) 0.3281(1) 2.71(3)
Rb(6) 0.3126(1) 0.3640(1) 0.2427(1) 2.27(3)
P(1) 0.4351(3) 0.6378(3) 0.3548(2) 1.13(6)
P(2) 0.0808(3) 0.6214(3) 0.1017(2) 0.93(6)
PQ3) 0.4145(3) 0.6333(3) ~0.0943(2) 0.92(6)
P(4) 0.5550(3) 0.8408(2) 0.1624(2) 1.01(6)
0(11) 0.1209(8) 1.0422(7) 0.0884(5) 2.03(19)
0(12) 0.3986(9) 0.6066(7) 0.2643(5) 2.05(19)
0(13) 0.0891(7) 0.8440(6) ~0.1333(5) 1.35(17)
0(14) ~0.1250(8) 0.7408(7) ~0.1229(5) 1.81(18)
0(21) 0.0326(8) 0.6994(7) 0.1708(5) 1.78(18)
0(22) 0.0120(8) 0.4846(7) —0.0943(5) 1.72(18)
0(23) 0.0791(8) 0.6893(7) 0.0183(5) 1.93(18)
0(24) 0.2242(8) 0.5742(7) 0.1215(5) 2.30(20)
0(31) 0.4428(9) 0.7449(6) —~0.1397(5) 2.38(21)
0(32) 0.4373(9) 0.6494(8) 0.0001(5) 2.81(22)
0(33) 0.2704(8) 0.5914(8) ~0.1105(5) 2.60(21)
0(34) 0.4903(8) 0.4626(7) 0.1249(5) 2.54(21)
0(41) 0.0755(9) 0.6221(7) ~0.2471(5) 2.52(21)
0(42) 0.3911(9) 1.0655(7) ~0.1051(5) 2.17(20)
0(43) 0.6176(7) 0.7210(6) 0.1448(4) 1.11(16)
O(44) 0.4023(7) 0.8198(7) 0.1480(5) 1.74(18)

* Occupancy of the K(1a) siteis equal to 0.58(3).
** QOccupancy of the K(1b) siteis equal to 0.42(3).
*** Designations of oxygen atoms: the first numeral isthe number of the tetrahedron, and the second numeral isthe number of the oxygen
atom in the tetrahedron.
**** The thermal parameters Big, are given for K3In(PO,),, and the equivalent thermal parameters Ug, calculated as a one-third of the
orthogonal tensor Uj; are presented for RbsIn(PO,),.
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Table 3. Selected interatomic distances and angles in K;In(PO,), and RbgIn(PO,), structures

ZHIZHIN et al.

Distance d, A Distance d A
Ksln(PO,),

In-O(12) 2.238(2) K(2)-O(11) 3.264(2)
0(13) 2.331(4) 0(12) 2.637(2)
0(14) 2.064(1) 0(13) 2.780(3)
0(21) 2.130(1) 0(14) 2.804(3)
0(22) 2.017(3) 0(22) 3.157(3)
0(24) 2.033(4) 0(23) 2.539(2)

[In-OC1 2.14 0(23) 3.351(3)

K (1a)-O(11) 2.965(4) 0(24) 2.750(3)
O(11) 2.640(4) K (2)-O0 201
o(11") 2.936(5) K(3)-O(11) x 2 2.728(3)
0(12) 3.291(4) O(13) x 2 2.670(3)
0(13) 3.019(6) 0(21) x 2 2.975(4)
0(21) 3.163(6) 0(23) x 2 3.368(3)
0(23) 2.571(4) [K (3)-O0 2.94

K (1a)-O0 2.94 K(4)-0(12) x 2 2.722(2)

K (1b)-O(11) 3.223(4) 0(21) x 2 3.032(5)
O(11) 2.942(4) 0(22) x 2 2.776(3)
0(13) 2.938(4) 0(24) x 2 3.122(3)
0(14) 3.084(6) (K (4)-O0 201
o(14) 3.206(3) P(2)-O(21) 1.615(5)
0(23) 2.487(6) 0(22) 1.535(4)
0(23) 2.966(4) 0(23) 1.534(2)

[K (1b)-O0 2.98 0(24) 1.520(3)

P(1)-O(11) 1.527(2) [P(2)-00] 1.53
0(12) 1.513(3)

0(13) 1.540(4)
0(14) 1.520(5)
[P(1)-O0 153
Angle w, deg Angle w, deg

0(O(11)—P(1)-0(12)) 110.7(3) 0(0(21)-P(2)-0(22)) 110.8(3)

0(O(11)-P(1)-O(13)) 108.0(0) 0(0(21)-P(2)-0(23)) 108.8(2)

0(O(11)-P(1)-O(14)) 109.7(2) 0(0(21)-P(2)-0(24)) 110.6(3)

0(O(12)-P(1)-0(13)) 107.6(3) 0(0(22)-P(2)-0(23)) 107.9(3)

0(0(12)-P(1)-0(14)) 110.4(3) [(0(22)-P(2)-0(24)) 109.2(3)

0(0(13)-P(1)-0(14)) 110.3(3) [(0(23)-P(2)-0(24)) 109.5(3)

M (O—P(1)-0)[] 109.5 M (O-P(2)-0)] 1095

Rb;IN(PO,),

In(1)-0(12) 2.150(8) In(2)-O(13) 2.251(7)
0(24) 2.086(8) 0(14) 2.231(8)
0(32) 2.101(8) 0(22) 2.067(8)
0(34) 2.072(8) 0(23) 2.150(8)
0(43) 2.219(7) 0(44) 2.088(8)
0(44) 2.218(8) 0(41) 2.143(8)

[n(1)-O0 2141 [In(2)-O0] 2.115

CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002
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Distance d, A | Distance d A
Rb;In(PO,),

Rb(1)-O(11) 2.995(8) Rb(2)-0O(14) 2.851(8)
0(13) 2.876(7) 0(22) 3.070(8)
0(23) 3.110(8) 0(22) 3.423(8)
0(31) 3.017(8) O(24) 2.890(9)
0(32) 3.041(9) 0(32) 3.054(9)
0(42) 2.824(8) 0(32) 3.461(9)
0O(44) 2.790(8) 0(33) 2.893(9)

[(Rb(1)-0O0 3.093 0(34) 3.140(9)

Rb(3)-O(11) 2.886(8) 0(43) 2.915(7)
O(11) 2.956(9) Rb(2)-00 3.077
0(13) 3.319(8) Rb(4)-0O(13) 2.845(7)
0(21) 2.824(8) 0(21) 2.955(8)
0O(23) 3.020(8) 0(22) 3.284(8)
0(42) 2.992(9) O(31) 2.981(8)
0(43) 3.496(7) 0(33) 3.146(8)

[Rb(3)-00 3.07 0(41) 2.903(8)

Rb(5)-0O(11) 2.990(8) 0(42) 3.200(8)
0(12) 3.032(9) 0(43) 2.739(7)
0(21) 2.947(8) [(Rb(4)-00 3.007
0(31) 2.667(8) Rb(6)-O(11) 3.467(8)
0(42) 3.015(8) 0(12) 2.964(8)
0O(44) 3.097(8) 0(14) 2.927(8)

[Rb(5)-00 2.958 0(21) 2.812(8)

P(1)-0O(11) 1.521(8) O(24) 3.229(8)
0(12) 1.527(8) 0O(31) 3.204(8)
0(13) 1.560(8) 0(34) 2.827(9)
0(14) 1.573(8) O(44) 2.813(8)

[P(1)-00 1.545 [(Rb(6)-O0 3.03

P(3)-0O(31) 1.510(8) P(2)-0(21) 1.504(8)
0(32) 1.529(8) 0(22) 1.543(8)
0(33) 1.537(8) 0(23) 1.544(8)
0(34) 1.543(8) 0(24) 1.561(8)
[P(3)-0O0 1.530 (P(2)-00 1.538

P(4)-0(41) 1.515(8)
0(42) 1.520(8)
0(43) 1.550(7)
0(44) 1.556(7)
[P(4)-00 1535
Angle w, deg Angle w, deg

0(0(11)—-P(1)-0(12)) 107.7(5) 0(0(21)—P(2-0(22)) 110.1(5)

0(0(11)—-P(1)-0O(13)) 112.9(5) 0(0(21)—P(2)-0(23)) 108.5(4)

0(0(11)—-P(1)-0O(14)) 111.5(5) 0(0(21)—P(2)-0(24)) 111.1(5)

0(0(12)-P(1)-0(13)) 112.0(5) 0(0(22)—P(2)-0(23)) 109.8(5)

0(0(12)—P(1)-0O(14)) 109.7(5) 0(0(22)—P(2)-0(24)) 106.5(5)

0(0(13)-P(1)-0O(14)) 103.1(4) 0(0(23)—P(2)-0(24)) 111.0(5)

M (0—-P(1)-0)d 109.5 M (O-P(2-0)J 109.5

0(O(31)—-P(3)-0(32)) 109.7(5) 0(0(41)—P(4)-0(42)) 108.6(5)

O(O(3D)-P(3)-0(33)) 111.6(5) 0(0(41)—P(4)-0(43)) 112.0(5)

O(O(31)—P(3)-0(34)) 110.6(5) 0(0(41)—P(4)-0(44)) 108.1(5)

0(0(32)—P(3)-0(33)) 109.7(5) 0(0(42)—P(4)-0(43)) 113.0(4)

0(0(32)-P(3)-0(34)) 108.0(5) 0(0(42)—P(4)-0(44)) 111.9(5)

0(0(33)-P(3)-0(34)) 107.1(5) 0(0(43)—P(4)-0(44)) 103.1(4)

M (O0-P(3)-0)d 109.5 M (0-P(4)-0)0 109.5

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5
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Fig. 2. A fragment of the crystal structure of the RbsIn(PO,4), compound. Bonds and atoms in the form of thermal ellipsoids at a

50% probability level are shown schematically.

rahedra (Table 3). The mean P-O distances correlate
well with the sum of the relevant ionic radii (according
to Shannon [22]).

The skeleton of structure | is a three-dimensional
network consisting of InOg octahedra (isolated from
each other) and PO, tetrahedra shared by vertices and
edges. The network is built up of the characteristic
structural units {In[PO,],} formed by three symmetri-
cally independent polyhedra: one InOg octahedron and
two PO, tetrahedra. In the xy plane, these units are
linked together into parallel columns with the forma:
tion of pseudolayers. The columns of one pseudolayer
are rotated with respect to the columns of the other
pseudolayer, aternate along the z-axis, and form the
{In[PO,],}., framework (Fig. 3a). In structure |1, the
topologically identical framework of the same compo-
sition is comprised of six symmetricaly independent
polyhedra: two InOg octahedra and four PO, tetrahedra
(Fig. 3b). The P(2)O, tetrahedra in | [the P(2)O, and
P(3)O, tetrahedrain 11] are involved in the bonding of
the columns of adjacent pseudolayers. At the same
time, the P(1)O, tetrahedra that have common edges
with the indium polyhedrain | [the P(1)O, and P(4)O,
tetrahedra in |1] are responsible for the formation of
columns. Along the main crystallographic directions,

CRYSTALLOGRAPHY REPORTS Vol. 47

the channels are formed in the structures. The size and
shape of these channels are governed by akali cations.

In structure |, five crystallographically independent
potassium atoms, as arule, have an eightfold coordina
tion. The sole exception is provided by the K(1a)O, and
K(1b)O, polyhedra (Table 3). Their oxygen environ-
ment is characterized by two coordination spheres. The
first coordination sphereis composed of four to six oxy-
gen atoms located at distances of 2.487-3.084 A. The
second coordination sphere consists of two or three
more distant oxygen atoms (3.122-3.368 A). The
K(1la) and K(1b) atoms statistically occupy two sites
separated by a distance of 1.47 A with occupancies of
0.58(3) and 0.42(3), respectively. Allowance made for
this splitting of the K(1) position into two positionsin
the refinement of structure | leads not only to a consid-
erable decrease in the factor R, from 5.39 to 4.02% and
a decrease in the thermal parameter B, for the K(1)

atom from 12.5to 3.7 A2 for each split position but also
results in a certain increase in the anomalously short
distance K(1)-O(23) from 2.394 A to 2.571 A for
K(1a)-O(23) and to 2.487 A for K(1b)-O(23). Most
likely, thisis responsible for the modulation of atomic
positionsin the structure of the high-temperature phase
of compound I, which was obtained in the form of sin-
gle crystals upon rapid cooling of the stoichiometric
melt K;In(PO,), to temperatures below 1200°C.

No. 5 2002



SYNTHESIS AND CRYSTAL STRUCTURE

\\\}}‘,‘,‘,Q‘LLQ .
BT

781

N

Fig. 3. Projections of the crystal structures of (8) K3In(PO,4), and (b) RbsIn(PO,4), compounds along the z- and x-axes.

In structure |1, six crystallographically independent
rubidium atoms form polyhedra with different coordi-
nation numbers (from 6 to 9). The Rb(5) atom islocated
inadistorted octahedron. Thisfact itself isvery unusual
because a coordination humber of 6 isnot characteristic
of the environment of large-sized alkali cations (Rb*
and Cs"). In this case, the sixfold coordination can be
associated with the position of the Rb(5) atom in the
framework in which this atom, like the Rb(3) atom,
occupies a niche between the columns of the pseudola-
yer. Similar positions of M! cations in structure | are
occupied by the K(1a) and K(1b) atoms, whereas the
other atoms are located in the channels of the struc-
tures. In the Rb(5)Og polyhedron, the distances from
the Rb(5) atom to five oxygen atomsvary from 2.947 to
3.097 A and one oxygen atom is located at an anoma-
lously short distance of 2.667 A. Note that the contribu-
tion from this short Rb—O contact to the sum of the
bond valences at the Rb(5) atom is equal to 0.34. The
coordination numbers of the Rb(1) and Rb(3) atomsare
equal to 7 (7 and 6 + 1, respectively). In the Rb(1)0O,
polyhedron, the distances from the Rb(1) atom to al
seven oxygen atoms lie in the range 2.824-3.11 A. At
the sametime, in the Rb(3)O; polyhedron, the distances
from the Rb(3) atom to six oxygen atoms range from
2.824 to 3.319 A and the seventh oxygen atom is
located at a distance of 3.496 A. According to Donnay
and Allmann [23], this distance exceeds the limiting
Rb—O bond length (3.42 A). The contribution from this
oxygen atom only slightly affects the sum of the bond
valences at the Rb(3) atom and is equal to 0.04. The
Rb(4) and Rb(6) atoms form eight-vertex polyhedrain
which two coordination spheres can be distinguished.
The nearest environment of these atoms is formed by
five oxygen atoms located at distances of 2.739-2.981
and 2.8224-2.964 A. The second coordination spheres

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5
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each involve three oxygen atoms at distances of 3.146—
3.284 and 3.204-3.467 A. The nine-vertex polyhedron
RDb(2)O4 has a more complex geometry of the oxygen
environment. Inthiscase, it ispossibleto separate three
rubidium coordination spheres (4 + 3 + 2), among
which two oxygen atoms of the third sphere are located
at distances of 3.423 and 3.461 A. All the rubidium
polyhedra are shared either by oxygen edges or by ver-
tices. This permits usto draw the inference that the net-
work composed of rubidium atoms is formed in the
structure. The sums of the bond valences at the Rb(1)—
Rb(6) atoms fall in the range 0.94-1.18, which is in
agreement with the formal oxidation number of rubid-
ium.

Therefore, the replacement of the K* cation by the
larger sized Rb* cation is accompanied by an increase
inthe number of crystallographically independent posi-
tions of M! atoms and a change in the coordination
numbers and geometry of the M'O, coordination poly-
hedra. Moreover, unlike structure |, structure 1 is char-

acterized by the complete occupation of sites by akali
cations. A comparison between the structures of double

phosphates M}, In(PO,), (where M! = K and Rb) dem-

onstrates that, despite the lowering of the symmetry of
the unit cell, the framework structures remain topol og-
icaly similar.

It is of interest to compare the structural data

obtained in our work for phosphates M'3 In(PO,),
(where M' =K and Rb) with the data availablein thelit-
erature for the compounds NagIn(PO,),, K;M™(PO,),
(where M =Y, La-Lu, Sc), and Rb;M"(PO,), (where
M =Y, Dy—Lu) [2-8]. The structural transformations

in the previously known compoundswith layered struc-
tures correlate with the ionic radii of cations. It seems
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likely that no clear similarity in the structures of the [3-
NagIln(PO,),, K3In(PO,),, and Rb;In(PO,), compounds
is observed because of the substantial difference
between the ionic radii of sodium and potassium
(rubidium). For like compounds, such as K;M"(PO,),
and Rb;M"(PO,),, the structural topology almost com-
pletely depends on the radius of the M™ cation. In this
regard, the series K;M"(PO,), is most significant. The
crossover from an arcanite-like structure (typical of the
majority of rare-earth elements) to a glaserite-like
structure occurs upon changing over from ytterbium to
lutecium in the lanthanide series and is attended by a
rise in the symmetry of the unit cell from monaoclinic
(M =Y, Na-Yb) totrigonal (M = Luand Sc). Thelat-
ter symmetry is also observed in the case of the com-
pounds Rb;M™(PO,), (where M =Y, Dy—Lu). The

compounds M4 In(PO,), (where M! = K and Rb) have
specific structures of the framework type. On the other
hand, judging only from the size factor [i.e., from the
difference Ar between the ionic radii of M* and In®*
(rvi= 0.79 A), Lu** (ry; = 0.85 A), and Sc3* (ry,
0.745 A)], theindium compounds should belong to lay-
ered (glaserite-like) phosphates that are stable in the
range 0.38 A < Ar < 0.89 A [24]. The difference

between the crystal structures of M'e,In(PO4)2 com-

pounds and the glaserite-like structuresof M '3 Lu(PO,),

(where M = K and Rb) and K3Sc(PO,), is most likely
associated with the specific features of the electronic
structure of scandium, indium, and lutecium atoms.
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(Nitrilotriacetato)(pyridine-2-car boxylato)cobaltate(l 1 1)
Hexahydrate, Ca[Co(Nta)(Pic)], - 6H,O
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Abstract—Crystals of Ca[Co(Nta)(Pic)], - 6H,O (1) (where Nta>~and Pic™ are the nitril otriacetate and picoli-
nate ions, respectively) are prepared and characterized by the X-ray diffraction technique. Crystals| are mon-
oclinic, a = 18.599(4) A, b = 12.556(3) A, ¢ = 14.042(3) A, B = 102.90(3)°, V = 3196(1) A3, Z = 4, space
group P2,/c, R1 = 0.0278, wR2 = 0.0716, and Goof = 1.054 for 4982 reflections with | > 20(l). Structure | is
built of the {Ca(H,0),[Co(Nta)(Pic)],} . polymer ribbons and molecules of crystallization water. One of the
two symmetrically independent anionic complexes (B) is included in the chain and alternates with cationic
units, whereas the other anionic complex (A) forms a branch of this chain. The cationic and anionic units are
interlinked viatheinteractions of the Ca?* cationswith the carbonyl atoms of the main (Nta*-) and additional (Pic
) ligands. The octahedral environment of the Co(l11) atoms consists of donor atoms of the Nta*~ (N + 30) and
Pic™ (N + O) ligands. The coordination polyhedron of the Ca atom (pentagonal bipyramid) includes two carbo-
nyl O atoms of two Nta*~ ligands, one Op;, atom, and four O,, atoms of water molecules. © 2002 MAIK

“Nauka/Interperiodica” .

INTRODUCTION

Structural studies of transition metal (M) mixed-
ligand complexes with monoaminocarboxylate (L) and
additional (L") ligands have revealed that, at the ratio
ny : n_=1: 1, donor atoms of the L ligand occupy only
some of the sitesin the coordination sphere of the metal
atom and the remaining sites are occupied by atoms of
the L' ligands [1]. In the presence of alkaline-earth cat-
ions (M"), the monoaminocarboxylate ligands, whose
coordination capacity is potentialy low, often form
polymeric structures due to interactions between M'
cations and O, oxygen atoms of the ligands.

The structures of Co(lll) mixed-ligand aminocar-
boxylates, namely, Ca[Co(Nta)(En)(CN)], - 6H,O (I1)
[2], Ba[Co(Nta)(CN),] 3H,0 (I11) [3], and
Ba[Co(Nta)(Gly)]C1O, - 4H,O (1V) [4], where L' is eth-
ylenediamine (En), cyanideion (CN-), or glycinateion
(Gly"), werereported earlier. In our recent work [5], we
investigated the structure of Ca[Co(Nta)(H,O)], - 4H,0
(V) and revealed that, in the absence of additional
ligands, the coordination sphere of the Co(ll) atom
includes, apart from the donor atoms of the Nta*
ligand, awater molecule and the terminal O atom of an

adjacent ligand. The latter bond links the anions into
chains.

In order to determine the structural functions of the
main and additional ligands and therole of the Ca?* cat-
ionsin the crystal structure formation, we performed an
X-ray structure analysis of Ca[Co"(Nta)(Pic)], - 6H,0
(1), where Nta** and Pic- are the nitrilotriacetate
(N(CH,COO0) 2” ) and picolinate (pyridine-2-carboxy-
late, NCsH,COO") ions, respectively.

EXPERIMENTAL

Synthesis. Crystals | were prepared as follows. A
solution of CoCl, - 6H,0 containing an excess of
hydrogen peroxide was cooled to 0°C and added drop-
wise to a mixture with an equimolar amount of H;Nta
and a fourfold amount of KHCO,. After vigorous gas
evolution, the [Co(Nta)(CO5)]*>~ ions, which imparted a
blue color to the solution, were formed. When the gas
evolution terminated, picolinic acid (1 equivalent) was
added to the solution. Heating of the mixture to 60°C
resulted in a change in its color to dark rose, which is
typical of [Co™Nta(Pic)]~ ions with nitrogen atoms of
the main and additional ligands in the trans positions.

1063-7745/02/4705-0783%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. A link of the { Ca(H,0)4[Co(Nta)(Pic)],} . ribbon in structure |

The solution was passed through a Sephadex G-10 col-
umn to remove low-molecular admixtures (KCl and
others) and a column packed with a Sephadex DEAF-
25 anion-exchange resin in the Cl~ form to separate the
target ions from other complexes ([Co(Pic);] and
[Co(Nta),]*"). A rose band of trans-N-[Co(Nta)(Pic)]
anions was eluated with a CaCl, solution (0.05 mal/l).
Theviolet cis-N-[Co(Nta)(Pic)]- ions, which should be
eluated before the trans-N isomer, were not observed in
the column. Concentration of the eluate led to the pre-
cipitation of Ca[Co™(Nta)(Pic)], - 6H,O (I) crystals.

X-ray diffraction study. Crystals |
(CpH3,N,0,,C0,Ca;) aremonoclinic; a= 18.599(4) A,
b=12556(3) A, c=14.042(3) A, B = 102.90(3)°, V =
3196(1) A3, peacy = 1.842 g/lem3, py, = 1.30 mm,
Z =4, and space group P2,/c.

The diffraction data were obtained on an Enraf—
Nonius CADA4 diffractometer (MoK, radiation, graph-
ite monochromator, w scan mode, 6,,, = 27°). The
structure was solved by the direct method. The calcula-
tions were performed with the SHELX86 [6] and
SHEL X97 [7] program packages. The non-hydrogen
atoms were refined by the least-squares procedure in
the anisotropic approximation. The hydrogen atoms
were located from the difference Fourier synthesis and
refined in the isotropic approximation. The hydrogen
atoms of the w5 and w6 water molecules were refined
in arider model with U;g, values 1.2 times larger than
the U, values of the O,(5) and O,(6) atoms. Therefine-
ment led to the following discrepancy factors: R1 =
0.0479, wR2 = 0.0775, and Goof = 1.054 for dl the
6326 unique reflections; R1 = 0.0278, wR2 = 0.0716,
and Goof = 1.054 for 4982 reflections with | > 20(1).
The residua electron density lies between —0.370 and
0.392 e/A3.
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The atomic coordinates and thermal parameters (U,
or U,y,) arelisted in Table 1, and selected bond lengths
aregivenin Table 2.

RESULTS AND DISCUSSION

The structure of mixed-ligand complex | is built of
the {Ca(H,0),[Co(Nta)(Pic)],},., zigzag chains and
crystallization water molecules. The structural formula

The Co(l1l) atoms occupy two symmetrically inde-
pendent positions and form anionic complexes (A and
B, Fig. 1) of the same composition, [Co(Nta)(Pic)].
The B anionic complex is included in the
{Ca(H,0),[Co(2) - (Nta)(Pic)]} 1. Zigzag chain run-
ning along the twofold screw axis 2,, and the A anionic
complex, [Co(1)(Nta)(Pic)]-, forms a branch of this
chain. The anionic and cationic units that alternate in
the chain are linked via the interactions between the
Ca?* cation and the carbonyl O(6'a) and O(8') atoms of
the neighboring B complexes. The A anionic fragments
are linked to the chains by the Ca—O(6) bonds to form
broad ribbons (Fig. 2). All the Ca—O interactions are
due to a bidentate bridging function of three carboxy-
late groups. A similar manner of formation of branched
chains is observed in the structure of Ca[Fe(Edds)], -
8H,0 (VI) (where Edds* is the ethylenediaminedisuc-
cinate anion) [8]; however, in this case, the chains are
more compact.

In structure I, two Co(l11) polyhedra have identical
octahedral structures. The environment of the Co(1)
and Co(2) atoms consists of donor atoms of the Nta*
(N +30) and Pic (N + O) ligands. In the A and B com-
plexes, the N atoms of the main and additional ligands
are located in the trans positions, asisthe case in struc-
tureslil and V.
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Table 1. Atomic coordinates and thermal parametersin structure |

Atom xla y/b zlc Ueq/Uisor A2
Co(1) 0.56494(2) 0.04385(2) 0.71643(2) 0.0180(1)
Co(2) 0.05025(2) 0.32887(2) 0.68872(2) 0.0166(1)
Ca(1) 0.23626(2) 0.00169(4) 0.72005(3) 0.0209(1)
o(1) 0.5469(1) 0.1577(1) 0.6251(1) 0.0255(4)
o) 0.5553(1) 0.3341(2) 0.6331(1) 0.0363(4)
o) 0.5835(1) ~0.0581(1) 0.8177() 0.0258(4)
o(4) 0.6022(1) ~0.0658(2) 0.9796(1) 0.0376(5)
o) 0.4702(1) ~0.0122(1) 0.6641(1) 0.0227(4)
0(6) 0.3538(1) ~0.0041(2) 0.6764(1) 0.0303(4)
o(7) 0.6596(1) 0.1046(1) 0.7655(1) 0.0252(4)
o) 0.7706(1) 0.1152(2) 0.7317(2) 0.0352(4)
o(1) 0.0961(1) 0.3703(1) 0.8175(1) 0.0236(4)
o(2) 0.1276(1) 0.2966(2) 0.9648(1) 0.0364(5)
o(@3) ~0.0029(1) 0.2785(1) 0.5667(1) 0.0250(4)
o) ~0.0702(2) 0.1428(2) 0.5007(2) 0.0590(7)
o(5) ~0.0226(1) 0.4341(1) 0.6837(1) 0.0227(4)
o(6) ~0.1302(2) 0.4639(1) 0.7213(1) 0.0334(4)
o(7) 0.1245(1) 0.2232(1) 0.6961(1) 0.0233(4)
o(8) 0.2379(2) 0.1978(1) 0.6748(1) 0.0273(4)
N(1) 0.5216(1) 0.1313(2) 0.8009(1) 0.0212(4)
N(2) 0.6136(1) ~0.0396(2) 0.6358(1) 0.0216(4)
N(L) —0.0081(1) 0.2340(2) 0.7474(2) 0.0197(4)
N(2) 0.1136(1) 0.4134(2) 0.6283(1) 0.0187(4)
c(1) 0.5367(1) 0.2430(2) 0.7740(2) 0.0286(6)
c2) 0.5467(1) 0.2484(2) 0.6695(2) 0.0233(5)
c@) 0.5597(2) 0.0988(2) 0.9022(2) 0.0291(6)
c) 0.5828(1) ~0.0174(2) 0.9020(2) 0.0258(5)
cE) 0.4411(1) 0.1064(3) 0.7810(2) 0.0335(6)
c(6) 0.4190(1) 0.0244(2) 0.7020(2) 0.0216(5)
c(7) 0.7095(1) 0.0749(2) 0.7203(2) 0.0248(5)
c(8) 0.6856(1) ~0.0150(2) 0.6493(2) 0.0224(5)
C(9) 0.7314(2) —0.0666(2) 0.5995(2) 0.0311(6)
C(10) 0.7018(2) ~0.1449(2) 0.5327(2) 0.0345(6)
C(11) 0.6277(2) ~0.1689(2) 0.5184(2) 0.0317(6)
C(12) 0.5846(1) ~0.1147(2) 0.5711(2) 0.0253(5)
c(1) 0.0412(1) 0.2035(2) 0.8430(2) 0.0239(5)
c) 0.0924(1) 0.2963(1) 0.8798(1) 0.0234(5)
c(3) ~0.0277(2) 0.1454(1) 0.6755(1) 0.0269(5)
c(4) ~0.0358(2) 0.1907(1) 0.5725(1) 0.0290(6)
C(5) ~0.0740(2) 0.2945(1) 0.7617(1) 0.0266(5)
c(6) —0.0772(2) 0.4054(1) 0.7188(1) 0.0223(5)
c(7) 0.1826(1) 0.2540(1) 0.6692(1) 0.0200(5)
c(8) 0.1778(1) 0.3644(1) 0.6277(1) 0.0188(5)
C(9) 0.2306(1) 0.4108(2) 0.5868(2) 0.0264(5)
C(10) 0.2155(2) 0.5094(2) 0.5427(2) 0.0314(6)
C(11) 0.1493(2) 0.5580(2) 0.5413(2) 0.0294(6)
c(12) 0.0991(1) 0.5082(2) 0.5854(2) 0.0246(5)

CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002
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Atom x/a ylb zlc Ueg/Uisor A2
o(1w) 0.2257(2) ~0.1798(2) 0.6538(2) 0.0422(5)
02w) 0.1634(1) 0.0158(2) 0.5629(2) 0.0439(6)
0Gw) 0.2824(1) 0.1107(2) 0.8615(2) 0.0455(6)
O(4w) 0.2962(1) ~0.1130(2) 0.8537(2) 0.0444(5)
0G5w) 0.6346(2) 0.3369(2) 0.9819(2) 0.0567(6)
0(6w) 0.7725(2) 0.2705(2) 1.0504(2) 0.0719(8)
H(14) 0.494(2) 0.287(3) 0.776(2) 0.043(9)
H(1B) 0.584(2) 0.266(3) 0.816(2) 0.048(9)
H(3A) 0.527(2) 0.110(2) 0.948(2) 0.033(8)
H(3B) 0.601(2) 0.143(2) 0.923(2) 0.031(8)
H(54) 0.430(2) 0.084(3) 0.842(3) 0.07(2)
H(5B) 0.410(2) 0.171(3) 0.760(2) 0.06(1)
H(9) 0.778(2) ~0.050(2) 0.612(2) 0.038(8)
H(10) 0.731(2) ~0.181(2) 0.497(2) 0.038(8)
H(11) 0.604(2) ~0.222(2) 0.476(2) 0.038(8)
H(12) 0.538(2) ~0.132(2) 0.567(2) 0.027(7)
H(1A" 0.068(2) 0.143(2) 0.833(2) 0.031(8)
H(1B) 0.012(1) 0.186(2) 0.893(2) 0.024(7)
H(3A') ~0.072(2) 0.110(2) 0.683(2) 0.035(8)
HGB) 0.014(2) 0.100(3) 0.690(2) 0.042(9)
H(5A") ~0.074(2) 0.295(2) 0.828(2) 0.034(8)
H(5B") ~0.120(2) 0.251(3) 0.732(2) 0.041(8)
H(9) 0.275(2) 0.372(2) 0.591(2) 0.037(8)
H(10) 0.251(2) 0.544(2) 0.517(2) 0.034(8)
H(11) 0.136(1) 0.622(2) 0.512(2) 0.027(7)
H(12) 0.052(1) 0.534(2) 0.582(2) 0.016(6)
H(wl) 0.234(2) ~0.238(4) 0.685(3) 0.07(1)
HERwl) 0.216(3) ~0.189(4) 0.607(3) 0.08(2)
H(1w2) 0.133(2) ~0.033(3) 0.536(3) 0.08(2)
H(w2) 0.154(2) 0.066(3) 0.538(2) 0.04(1)
H(1w3) 0.314(2) 0.088(4) 0.913(3) 0.08(2)
HCQw3) 0.273(4) 0.185(5) 0.858(5) 0.08(2)
H(1w4) 0.344(2) ~0.130(3) 0.867(3) 0.06(1)
H2w4) 0.275(2) ~0.160(3) 0.872(3) 0.06(1)
H(1w5) 0.630 0.405 0.947 0.068
HQ2wS) 0.602 0.338 1.026 0.068
H(1wo6) 0.725 0.284 1.025 0.086
HQ2wo6) 0.790 0.321 1.099 0.086

Inthe A and B complexes, coordinated Nta>~ ligands
form the G(2), G(2), G(3) and G(4), G(5), G(6) glyci-
nate rings, respectively. The distortions observed in the
bond angles in the Co(1) and Co(2) polyhedra due to
the formation of three glycinate rings closed by the
Nta*- ligand are insignificant: the NCoO endocyclic
angles lie between 86.43(8)° and 88.87(8)°. The

O(1)Co(1)O(3) and O(1)Co(2)O(3) exocyclic angles
[173.87(8)° and 173.49(7)°] deviate from the ideal
value most of al. Thisis apparently associated with the
fact that the atom pairs O(1), O(3) and O(1"), O(3)
belong to the conjugated rings G(1), G(2) and G(4),
G(5), respectively. In turn, these rings lie approxi-
mately in the equatoria planes of the A and B com-
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Table 2. Bond lengths in the polyhedra of the Co and Ca atomsin structure |

Bond Complex A Complex B Bond d, A
on

d A d A Ca-0(6) 2.399(2)
Co(1)-O(1) 1.899(2) 1.893(2) Ca-O(6) 2.349(2)
Co(1)-0(3) 1.886(2) 1.886(2) Ca-0(8) 2.545(2)
Co(1)-0(5) 1.887(2) 1.882(2) Ca-0,(1) 2.453(2)
Co(1)-O(7) 1.901(2) 1.901(2) Ca-0,(2) 2.324(2)
Co(1)-N(1) 1.920(2) 1.917(2) Ca-0,(3) 2.406(2)
Co(1)-N(2) 1.911(2) 1.918(2) Ca-0,(4) 2.430(2)

Note: The symmetry transformation for the O(6'a) atom is asfollows: —X, y — 0.5, —z + 1.5.

plexes, which were defined so by analogy withthosein  529.4°, 530.6° and 527.9°, 529.3°, respectively. In the

diaminocarboxylates [1].

G(3) and G(6) rings, like the five-membered rings

The conjugated rings G(1), G(2) and G(4), G(5) in  closed by the picolinate ions, the sums of endocyclic
the A and B complexes are most strained as evidenced ~ angles (540.0°, 539.8°, 539.4°, and 539.6°, respec-
by the sums of endocyclic angles, which are equal to tively) are close to the ideal value (538.4°). In the pla-

CRYSTALLOGRAPHY REPORTS Vol. 47

Fig. 2. Projection of the ribbon onto the (001) plane.
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Table 3. Geometric characteristics of hydrogen bondsin structure | *

A-H---B bond Distance, A AHB, Position of the B atom
AH H-B A-B angle, deg

0,(1)-H(1),,~O(8) 0.84(4) 2.20(5) 3.027(4) 167(5) x+1y— % 72+ g
0,(1)-H(2),1-O(6) 0.64(5) 2.33(5) 2.941(5) 159(6) x+1y— % —z+ g
0,(2)-H(1),2~-O(4) 0.86(4) 1.81(4) 2.660(4) 171(4) Xy, z+1
0,(2-H(2),2-0(2) 0.72(4) 2.02(4) 2.734(3) 178(4) X, =y + % z— %
0,(3)-H(1)yz-O(4) 0.87(4) 1.93(4) 2.788(4) 166(6) X+ 1y, —z+2
0,(3)-H(2),5-O(8) 0.95(7) 2.52(7) 2.791(3) 141(5) X,Y, Z
0,(4)-H(1)ys0() 0.89(4) 1.93(4) 2.807(4) 169(4) x+1y— % 2+ g
O(4)—H(2)ys0,6) 0.78(4) 2.08(6) 2.850(5) 167(5) X+1,-y,—z+2
0,(5)-H(L),5--O(6) 0.99 2.16 3.031(4) 148 X+ 1y % 7+ g
0,/(5)-H(L),5--O(5) 0.99 2.38 3.132(4) 133 X+ 1y % 7+ g
0,/(5)-H(2),e-O(L) 0.96 1.90 2.859(4) 174 X,y + % z+ %
0,(6)-H(L)y60u5) 0.90 1.78 2.664(5) 168 X, Y, 2
0,(6)-H(2),5--0(8) 0.93 213 2.930(4) 143 X, =y + % Jz+ %

* The hydrogen atoms in the w5 and w6 water molecules were refined in arider model.

nar six-membered picolinate rings, the sums of angles
are equal to the ideal value [720.0(2)°], within the
experimental error. In structures | 11—V, in which al the
three arms of the Nta*- ligand are coordinated, the sums
of endocyclic angles can also be divided into two
groups.

In the A complex, the Co—N(1),:, bond (Table 2) is
dlightly longer than the Co—N(2)g;. bond, whereas in
the B complex, the corresponding bond lengths are vir-
tually equal to each other. The Co—Oy, bondsin the A
and B complexes have mean lengths of 1.891(2) and
1.887(2) A, respectively, and are shorter than the Co—
Opic bond. On the whole, the lengths of the Co—N and
Co-O bondsformed by the Nta*~ and Pic™ligandsin the
A and B complexes of structurel are closeto each other
and comparable to those in structures | 1 V.

Inthe Nta*- ligands, the C(sp*)—C(sp?®) bonds are the
shortest [1.502(4) and 1.514(4) A in the least distorted
axial G(3) and G(6) rings, respectively] and are approx-
imately equal [mean, 1.524(4) A] in the G(1), G(2),
G(4), and G(5) equatorial rings. The mean C(sp?)—
C(sp?) bond lengthsin the pyridineringsin the A and B
complexes are 1.382(4) and 1.377(4) A, respectively.

CRYSTALLOGRAPHY REPORTS Vol. 47

The N—C(sp?) bond lengths in the Nta*- ligand have
normal values. Their mean values are 1.496 and
1.494(4) A inthe A and B complexes, respectively. The
N(2)-C(8) and N(2)—-C(12) bond lengths in the pyri-
dine rings are dightly different [1.346 and 1.337(3) A
in the A complex and 1.345 and 1.333(3) A in the B
complex].

The difference between the C-O, and C-O, bond
lengths (O, and O, are the oxygen atoms involved and
not involved in the Co coordination, respectively) var-
iesfrom 0.037 t0 0.082 A. The minimum values of A¢ ¢
are observed for the G(3) and G(6) rings [0.037 and
0.039(3) A], inwhich the O,(6) and O,(6'a) atoms coor-
dinate the Ca atom at the trans positions in its polyhe-
dron. The decrease in the A-_ values (equalizing the
C-0O bond lengths) suggests aredistribution of the elec-
tron density due to the Ca—O, interaction. For compar-
ison, we note that, in the framework structure V, in
which all the O terminal atoms of the Nta*- ligand coor-
dinate metal atoms (one of them formsthe Co—O,, bond,
and two other form the Ca—O,, bonds), the largest value
of A isonly 0.020(2) A.
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A comparison of the symmetrically independent
anionic fragments A and B with the use of the SUSY
program [9] showed that these fragments are closely
allied geometrically. The differences between the A and
B anions are quantitatively characterized by the crite-
rions(0.11 A) and the discrepancies R, that is, the dis-
tances between the corresponding atoms of the anions
under comparison at their closest coincidence. The
maximum discrepancy (0.25 A) is observed for the
O(4) and O(4") termina carbonyl atoms of the Nta3
ligand. These atoms are not involved in the Ca coordi-
nation, but the O(4') atom forms the shortest hydrogen
bond with the w2 water molecule [O---O, 2.660(4) A] in
structure |, which leads to a decrease in the A-_ value
to 0.046(3) A [in the A complex, the corresponding
value is 0.064(3) A].

The environment of the Ca?* cation (C.N. = 7, dis-
torted pentagonal bipyramid) includes two carbonyl
oxygen atoms of the Nta*- ligands of the A and B com-
plexes [Oy(6) and O,(6'a)], the O,(8') atom of the Pic
ion of the B complex, and four water molecules (wl—
w4). The O(1w)-O(4w) atomsand the O,(8") atomliein
the base of the pentagonal bipyramid, whereas the
0O\ (6) and O (6'a) atoms occupy its axial sites. The
0,(6)Ca0 (6'a) angle is equa to 165.35(7)°, and the
angles formed by the Ca—O bonds in the base of the
pentagonal bipyramid range between 68.54(9)° and
74.36(9)°. The Ca-Oy, distances [2.349 and 2.399(2) A]
are significantly shorter than the Ca—Op,, distance
[2.545(2) A] but comparable to the Ca-O,, distances
[2.324(2)-2.453(2) A]. In structure 1l (C.N.c, = 8,
polyhedron of an irregular shape), the Ca—Oy, dis-
tances [2.36-2.60(1) A], with two exceptions, are
longer than the Ca—O,, distances [2.36 and 2.37(1) A].
The shortest Ca-Oy, distance [2.271(1) A] is observed
in the centrosymmetric octahedral Ca polyhedron in
structure V; the other Ca—O,, distance is 2.420(2) A,
and the Ca-O,, distance is 2.351(2) A. The Ca polyhe-
dron (C.N. = 7, pentagonal bipyramid), which most
closely resembles the polyhedron in structure I, is
observed in structure V1. Asin |, it isformed by three
termina O, atoms and four O, atoms. However, in
structure V1, al the three O, atoms are located in the
base of the pentagonal bipyramid and the Ca—Ogyys dis-
tances [2.41-2.48(1) A] are significantly longer than
the Ca—Oy, distancesin .

In structure | (Fig. 2), the polymer ribbons
{Ca(H,0),[Co(Nta)(Pic)], },., run aong the twofold
screw axes 2, and form layers that are parallel to the
(001) coordinate plane and pass at z= 1/4 and 3/4. The
B anionic complexes, which are included in the poly-
mer chains, are located along the twofold screw axes 2,
at x = 0, and the A fragments (branches of the chains)
are located at x = 1/2. The cationic units lie between
them (x = 1/4) in conventional layersaligned parallel to
the (100) plane.
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The system of hydrogen bonds (Table 3) links rib-
bonsinto layers and the layers into a three-dimensional
framework. In the Ca polyhedron, the wl and w4 mol-
ecules each form one hydrogen bond with an oxygen
atom of the A complex [O,(8) and O(2), respectively]
inside the layer and the other hydrogen bond with the
w6 crystallization water molecule. The wé molecule, in
turn, forms the hydrogen bond with the O,(8) atom of
the adjacent layer. As a result, the continuous hydro-
gen-bond chain +0y(8)--H-0O,(1)-H:--O,(6)—
H---0,®)- is formed. The w6 molecule forms one
more bond with the w5 crystallization water molecule,
which linksthe A anionic fragmentsinside the layer via
the hydrogen bond with the O,(1) atom and via the
bifurcate bond with the O,(5) and O, (6) atoms of the
same carboxylate group. Two water moleculesfrom the
Caenvironment form hydrogen bonds between the lay-
ers. the w2 molecule is bound to the O,(2) and O,(4")
atoms of the B complexes, and the w3 molecule is
bound to the O, (4) atom. The w5 and w6 molecules are
linked by the short hydrogen bond [2.664(5) A] and
play an important role in the structure formation: these
molecules are located in holes between layers of poly-
mer ribbons and, thus, stabilizethelayersand link them
via hydrogen bonds [O---O, 2.664(4)-3.132(4) A] into
athree-dimensional structure.

CONCLUSIONS

For the A and B complexes of structure I, the total
coordination capacity of the Nta* ligand (Dy), by
which we mean the total number of bonds formed by
the ligand with the transition and alkaline-earth metal
atoms, is equal to five: each Nta® ligand is tetradentate
relative to the Co atoms (D, = 4) and monodentate rel-
ative to Ca?* (D¢, = 1). The Pic ligand is bidentate in
the Acomplex (D, = 2) and tridentate in the B complex
(Dey =2and D, = 1).

Incomplexesl|, 111, and |V, which also have apoly-
mer-type structure, the total coordination capacity of
the Dy, ligand is larger than that in complex | (biden-
tate bridging), because the carboxylate groups of the
Nta*- ligands have more complex functions (tridentate
bridging—cyclic). For example, in chainlike structure IV,
Dyia = 7 (D¢, =4 and Dg, = 3). In chainlike structurel |,
which contains rods built only of the bonds between the
Ca atom and the oxygen atoms of the uncoordinated
acetate arm of the Nta®> ligand, Dy, = 6 (D¢, = 3 and
D¢, = 3). In framework structure l11, Dy, = 8 (D, = 4
and Dg, = 4). In structure V, one of the carboxylate
groups links two Co atoms in the anionic chain (D¢, =
4 + 1). This structural function is rather uncommon for
aminocarboxylates. In addition, the ligand forms two
bonds with the Ca?* cations (D, = 2), thus linking the
anionic chains into a framework and increasing the
coordination capacity of the Nta®> ligand to seven.
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Abstract—The crystal structures of two organosilicon compounds are studied by X-ray diffraction. Crystals of
trans-2,8-dihydroxy-2,4,4',6,6',8,10,10',12,12'-decamethyl-5,11-dicarbacycl ohexasiloxane, C;,H3505Si6, (1)
are studied at 293 K [a = b = 16.310(4) A, ¢ = 9.849(3) A, V = 2620(1) A3, d.yoq = 1.128 g/lcm®, space gro-
up P4(2)/n, Z = 4, 3370 reflections, wR2 = 0.1167, R1 = 0.0472 for 2291 reflections with F > 40(F)]. Crystals
of trans-1,4-dihydroxy-1,4-dimethyl-1,4-disilacyclohexane, CgH160-Si,, (I1) are studied at 110 K [a =
6.8253(5) A, b = 9.5495(8) A, ¢ = 12.0064(10) A, a = 101.774(2)°, B = 102.203(2)°, y = 95.068(2)°, V =
741.8(1)A3, doyeq = 1.184 g/cm?®, space group P1, Z = 3, 6267 reflections, WR2 = 0.1052, R1 = 0.0421 for 3299
reflections with F > 40(F)]. It is found that the conformation of the ring in compound I, which contains two
methylene groups in the cyclohexasiloxane ring, differs from those in its analogues containing only oxygen
atoms or one methylene group in the ring. The noticeable difference between the SICSi angle [123.0(2)°] and
the tetrahedral angleis characteristic of cyclohexasiloxanes. Structure |l contains three independent molecules

with very close conformations. The cyclohexane rings adopt a chair conformation. The methylene groupsin 11,
in digtinction to those in |, are characterized by a standard tetrahedral coordination. © 2002 MAIK

“Nauka/Interperiodica” .

INTRODUCTION

The ability of cyclolinear polyorganosiloxanes to
self-organize into the mesomorphic state and to form
monomolecular Langmuir-Blodgett films at the air—
water interface was reported for the first timein [1, 2].
This sdlf-organization was observed in cyclolinear
polyorganosiloxanes with cyclosiloxane rings of vari-
ous sizes in homopolymers and copolymers. It was
found that the ability to self-organize is retained upon
the replacement of some oxygen atoms by the methyl-
ene groups in both the ring and the linking fragment
(bridge) between therings[3, 4]. This openstheway to
control the properties of cyclolinear polyorganosilox-
anes by varying the S—O/Si—-CH, ratio. Apparently, the
aforementioned properties depend on the size and con-
formation of the monomers and the nature of the sub-
stituents at the Si atoms. The conformational ability of
the monomers and, hence, the polymers depends on the
SiOSi and SICSi angles.

In particular, the X-ray diffraction study of two
bicyclic monomers, namely, 2,2'4,4'6,8,8',10,10',12-
decamethylbicyclo[5.5.1]hexasiloxane and 2,2',4,4',6,8,
8',10,10',12-decamethylbicyclo[5.5.1]-9-car-bahexasil-

oxane, showed that the replacement of one oxygen
atom by the methylene group is accompanied by the
conformational changes in the bicycle, which are not
very significant but are still noticeable, and the devia-
tion of the SICSi angle [121.0(1)°] from the tetrahedral
value [5]. Similar conformational changes in the
cyclosiloxane ring and a close value of the SICSi angle
[122.1(1)°] were found in the structure of 2,8-dihy-
droxy-2,4,4',6,6',10,10',12,12'-decamethyl-5-carbahexa-
cyclosiloxane[6]. Moreover, the structural datafor 2,8-
dihydroxy-2,8-diphenyl-4,4',6,6',10,10, 12,12'-octa-met-
hyl-cyclohexasiloxane [6] indicate that the conforma:
tion of the cyclohexasiloxane ring changes upon the
replacement of substituents at the Si atom by substitu-
ents that differ in nature, in particular, the replacement
of methyl groups by phenyl groups. With the purpose of
elucidating the specific conformational features of the
cyclohexasiloxane ring containing two CH, groups, we
preformed X-ray diffraction analysis of the crysta
structures of trans-2,8-dihydroxy-2,4,4',6,6'8,
10,10',12,12'-decamethyl-5,11-dicarbacyclohexasiloxane
(1) and trans-1,4-dihydroxy-1,4-dimethyl-1,4-disilacy-
clohexane (11).

1063-7745/02/4705-0791$22.00 © 2002 MAIK “Nauka/Interperiodica’
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EXPERIMENTAL
Compound | was prepared by the reaction of step-
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by-step condensation followed by the hydrolysis of a
mixture of compounds la and Ib according to the fol-
lowing scheme:

Cl,MeSiOSiMe,CH,SiMe,0SiMeCl,

+
HOMezsICstlMeon
Me Me Me Me Me Me
\/ \/ \/
Me O—-S—CH,—S—O Si—-0 Me Me Me
2Acceptor \ / . / \ . | | | .
— Cl—5 Si—Cl + CH, Si—0O-S—CH,—S—0-SiCl,
2Acceptor + HCI . - / \ \ . /l | |
O—S—CH,—S—-0 Me S—0O Me Me Me
/\ /\ /' \
Me Me Me Me Me Me
Ia Ib
Me Me Me Me
Me O \Si/ CH \Si/ O
e ol 27 S
H,0 + 2Acoeptor \/ N
Ia+1Ib HO-Si Si—OH

—_—
2Acceptor + HCI

A solution containing a mixture of isomers la and
Ib (0.95 g, 1.97 mmoal) in diethyl ether (6 ml) was
added to a mixture of aniline (0.42 g, 4.53 mmol) and
water (0.073 g, 4.3 mmol) in ether (6 ml). The reaction
masswas stirred for 1 h at atemperature between 0 and
+5°C and filtered to remove C¢HsNH,HCI. After the
ether was distilled off, the reaction product (0.8 g) was
separated and dissolved in pentane (2.5 ml). Crystals
(0.25 g, 28%) with T, = 82-83°C precipitated at
-10°C. Single crystals of compound | were obtained by
recrystallization from pentane. NMR spectra (D-ace-
tone), 'H &: 0.011 (s, 4H, CH,); 0.042 (s, 6H, CH,);
0.142, 0.16 (2s cigtrans, 24H, CH,); 2.88, 2.91 (2s
cisltrans, 2H, OH). #Si &: 5.76 (s, 4Si, SICH,Si);
-55.60; 55.73 (2s, 2Si, SIOH).

Single crystals of compound |1, which was synthe-
sized according to the procedure in [7], were obtained
by slow evaporation of a hexane solution. The main
crystal data and experimental parameters at 293 and
110 K for | and 11, respectively, are listed in Table 1.
The processing of the experimental data and subse-
guent calculations were carried out with the SAINT [8]
and SHEL XTL97 [9] program packages.

Both structures were solved by the direct method,
and the non-hydrogen atoms were refined in the full-
matrix anisotropic approximation. All the hydrogen
atoms were located from the difference Fourier synthe-

Me Me
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: A
O—S|—CH2—/S|\—O Me

/\
Me Me

I

ses and refined in the isotropic approximation. The
coordinates and equivalent isotropic thermal parame-
ters of the non-hydrogen atoms are listed in Tables 2
and 3.

RESULTS AND DISCUSSION

In structures | and I 1, the molecules occupy special
positions at the centers of symmetry. The characteristic
feature of compound | isthe presence the oxygen atoms
and two methylene groupsin the siloxanering (Fig. 1).
Certainly, this determines the difference between the
conformation of this ring and the conformations of the
ringsin the purely oxygen anal ogue and the compound
with  one methylene group (2,8-dihydroxy-
2,4,4',6,6',10,10',12,12'-decamethyl-5-carbahexacycl o-
siloxane). The SIOS angles [143.8(1)° and 144.2(2)°]
are characteristic of cyclosiloxanes and actually coin-
cide with the corresponding angles in an oxygen ana-
logue of compound I, namely, the trans isomer of 2,8-
dihydroxy-2,4,4',6,6',8,10,10',12,12'-decametylcyclohe-
xasiloxane (144.9°, 145.6°, and 146.8°) [10]. Notethat,
in the cis isomer of this compound, four SIOSi angles
(145.7°-150.2°) are characteristic of most cyclosilox-
anes and two anglesincreaseto 173.6° and 174.1° [10].
In the structure of 2,8-dihydroxy-2,4,4',6,6',10,10',12,12"-
decamethyl-5-carbahe-xacyclo-siloxane studied earlier,
which contains one methylene group in the ring [6],

No. 5 2002
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Table 1. Crystallographic parameters and experimental data  Table 2. Coordinates (x 10%) and isotropic thermal parame-

for structures| and | |

ters (A% x 10%) of the non-hydrogen atomsin structure |

Parameter I I
Empirical formula | C15H3606Sig CeH160,Si5
M, 444.94 176.37
Crystal system Tetragonal Triclinic
Space group P4(2)/n P1
z 4 3
a, A 16.310(4) 6.8253(5)
b, A 16.310(4) 9.5495(8)
c, A 9.849(3) 12.0064(10)
a, deg 90 101.774(2)
B, deg Q0 102.203(2)
y, deg Q0 95.068(2)
Vv, A3 2620(1) 741.8(1)
Oeaicar @/CM3 1.128 1.184
i, mm 0.338 0.309
F(000) 960 288
Diffractometer Siemens P3/PC | Smart 1000 CCD
A A 0.71073 0.71073
T, K 293(2) 110(2)
Bmax: deg 28.06 30.05
Total number of 3370 6267
reflections
Number of reflections| 2291 3299
with F > 40(F)
Refinement on F, F,
R1 0.0472 0.0421
wR2 0.1167 0.1052
S 1.094 0.979

Atom X y z Ugg

Si(D 8875(1) 4280(1) 8367(1) 55(1)
Si(2) 9129(1) 6110(1) 7659(1) 50(1)
Si(3) 9497(1) 6682(1) 10589(1) 56(1)
o) 8708(1) 5227(1) 7884(2) 70(2)
0(2) 9614(1) 6397(1) 9004(2) 66(1)
o) 8373(1) 6726(1) 7336(3) 73(2)
C» 8344(4) 3595(3) 7159(6) | 104(1)
C(2) 8432(2) 4149(3) 10085(4) 82(1)
C3 9855(3) 6106(3) 6242(4) 85(1)
C4) 8381(2) 6709(3) 10978(6) 97(2)
C(5) 9964(4) 7705(2) 10807(5) 94(1)
C(6) 9995(2) 4094(2) 8335(4) 65(1)

Table 3. Coordinates (x10*) and isotropic thermal parame-
ters (A2 x 10%) of the non-hydrogen atomsin structure ||

Atom X y z Ugg
Si(1A) -3219(1) 1461(2) 749(1) 17(1)
O(1A) —3483(2) 1618(1) 2114(1) 20(1)
C(1A) -1207(3) 2898(2) 720(2) 25(1)
C(2A) —2591(2) -383(2) 194(1) 19(1)
C(3A) -5742(2) 1623(2) | —146(1) 20(1)
Si(1B) 976(1) -15(1) | 3792(2) 16(1)
0o(1B) 313(2) 1473(1) | 3396(1) 19(1)
C(1B) 2335(3) —994(2) 2754(2) 24(1)
C(2B) 2569(2) 451(2) 5325(1) 20(1)
C(3B) =1428(2) | —1128(2) | 3758(1) 20(2)
Si(1C) 4625(1) | —5296(1) | 3513(1) 18(1)
0(10) 3707(2) | —7042(1) | 3098(1) 21(1)
C(10) 4740(3) | —4561(2) 2202(2) 25(1)
C(2C) 2868(2) | —4411(2) | 4344(2) 21(1)
C(30C) 7186(2) | -5067(2) | 4523(1) 21(1)

two SIOSi angles [145.3(2)° and 145.8(2)°] also nearly
coincide with the corresponding angles in I, but the
third angle increasesto 161.7(5)°.

Aswas expected, the Si(1)-C(6)-Si(3) (x+2,—y +
1,-z+2) bond angle in | [123.0(2)°] differs noticeably
from the tetrahedral value; however, it is close to the
values determined earlier in the structures of 2,8-dihy-
droxy-2,4,4',6,6',10,10',12,12'-decamethyl-5-carbahexa
cyclosiloxane [122.1(1)°] [6] and 2,2'4,4',6,8,8',10,
10',12-decamethylbicycl0[5.5.1]-9-carbahexasil oxane
[121.0(2)°] [5]). The Si(1) and Si(3) atoms have a stan-
dard tetrahedral coordination and normal Si—-C and
Si—O bond lengths (1.830-1.860 and 1.610-1.638 A,
respectively). Note that, in 2,2'4,4'6,8,8,10,10',12-
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decamethylbicyclo[5.5.1] hexasiloxane, the SIOSi bond
angle at the oxygen atom that occupies the position of
the methylene group in its analogue (2,2'4,4',6,8,
8,10,10',12-decamethylbicyclo[5.5.1]-9-carbahexasil-
oxane) is 146.4(1)° [5].

The deviation of the SICS angle from the normal
valueis observed in the linear monomer of bis(hydrox-
ydimethylsilyl)methane [11], in which the Si atoms are
characterized by a standard tetrahedral coordination
and the SICS angleis 118.1(3)°.

The shape of the cyclohexasiloxanering in| can be
described as a crown: the Si atoms aternately deviate
from the mean plane of the ring in opposite directions
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Fig. 1. Structure of moleculel.

Fig. 2. Structure of moleculell (A).

(Fig. 1); however, in most compounds, these rings have
complex puckered conformations, which can hardly be
described by some standard shape. The exception is
provided by the cis isomer of 2,8-dihydroxy-
2,4,4'6,6',8,10,10',12,12'-decametyl cyclohexasiloxane
whose ring adopts a boat conformation [10] due to
increased SIOSi angles (173.6° and 174.1°).

In structure 11, the molecules are located at different
centers of symmetry (—x—1, -y, -z, -, -y, —z+ 1; and
—X+1,-y—1,-z+ 1), so that there are three crystallo-
graphically independent molecules (A, B, and C). The
torsion angles indicate that all three molecules have
closely similar conformations. The six-membered rings
adopt chair conformations (Fig. 2): the silicon atomsin
molecules A, B, and C deviate from the mean plane of
the carbon atoms by 0.809, 0.787, and 0.804 A, respec-
tively.

CRYSTALLOGRAPHY REPORTS Vol. 47

In structure 11, the bond angles at the carbon and sil-
icon atomsin the six-membered rings have standard tet-
rahedral values. At the same time, in the structure of a
cyclic monomer, namely, 1,3-dihydroxy-1,3-dimethyl-
1,3-disilacyclobutane, which contains two independent
molecules with planar four-membered rings and close
geometric characteristics [12], the SICSi angle is
88.2(2)°. Inthelatter structure, the Si atoms have adis-
torted tetrahedral coordination in which the endocyclic
CSiC angle decreasesto 91.2(2)°. Thisangleiscloseto
the CSIC angle (92.8°) in 1,3-diphenyl-1,3-dimethyl-
1,3-disilacyclobutane, inwhich the SICSi angleis86.6°
[13]. Note that the above angles (close to 90°) are char-
acteristic of strained 1,3-disilacyclobutane systems
[14-20]. Apparently, the six-membered rings in struc-
ture 11, in which the angles are characterized by tetra-
hedral values, are less strained than the cyclobutane
systems.

No. 5 2002



X-RAY DIFFRACTION INVESTIGATION 795

Fig. 3. Projection of the molecular packing in crystal | onto the ab plane. Dashed linesindicate intermolecular hydrogen bonds that
link the molecules into tetramers.

Fig. 4. System of hydrogen bondsin structure 1.

CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002
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Fig. 5. Projection of the molecular packing in crystal |1 onto the bc plane. Dashed linesindicate intermol ecular hydrogen bonds that

link the molecular columns along the x-axis.

The molecular packingincrystal | (Fig. 3) issimilar
to that in the crystal of 2,8-dihydroxy-
2,4,4',6,6',10,10',12,12"-decamethyl-5-carbahexacy-
closiloxane [6]. The molecules are associated into tet-
ramers through the intermolecular hydrogen bonds
0(3)--0(3) (-y + 1.5, x, —z + 1.5) [2.709(3) A] around
the fourfold inversion axes. This molecular arrange-
ment was also observed in thetransisomer of 2,8-dihy-
droxy-2,4,4',6,6',8,10,10',12,12'-decametyl cyclohexas-
iloxane [10]. The same space groups, the closeness of
the unit cell parameters, and similarity of the packings
in 1, the trans isomer of 2,8-dihydroxy-2,4,4'-
6,6',8,10,10',12,12'-decametyl cyclohexasiloxane, and 2,8-
dihydroxy-2,4,4',6,6',10,10',12,12'-decamethyl-5-carba-
hexacyclosiloxane indicate that this type of molecular
packing is efficient for these compounds. Note that,
although the crystals of | and 2,8-dihydroxy-
2,4,4',6,6',10,10',12,12"-decamethyl-5-carbahexacyclo-
siloxane have close structures, they are not isostruc-
tural.

In crystal 11, an infinite system of intermolecular
hydrogen bonds [O(1A)--O(1B), 2.750(4) A;
O(1B)--O(1C) (x, y + 1, 2), 2.735(4) A: and

CRYSTALLOGRAPHY REPORTS Vol. 47

O(1°C)--O(1A) (x + 1,y — 1, 2), 2.737(4) A] (Fig. 4)
interlinks molecular columns running along the x-axis
(Fig. 5).

CONCLUSIONS

In structure I, the presence of two methylene groups
in the cyclohexasiloxane ring results in a change in the
conformation of the ring as compared to the cis and
transisomers of the oxygen ana ogue and the 2,8-dihy-
droxy-2,4,4',6,6',10,10',12,12'-decamethyl-5-carba-
hexacyclosiloxane molecule, which contains one meth-
ylene group. This conformational difference is due to
the different electron nature of the oxygen atoms and
the methylene groups and, apparently, showsitself geo-
metrically in different values of the SIOS and SiCSi
angles. The latter angles differ significantly from the
standard tetrahedral value. As was noted above, the
conformational flexibility makes the variation of phys-
icochemical properties of cyclolinear polyorganosilox-
anes possible.

In structure |1, which contains three conformation-
ally close independent molecules, the cyclohexane

No. 5 2002
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rings adopt a chair conformation and the methylene
groups, in contrast to |, have a standard tetrahedral
coordination.

The data on the SICSi angles indicate that they vary
over awide range. In the cyclosiloxane systems, these
angles vary from ~90° in 1,3-disilacyclobutanes to
~123° in 2,8-dihydroxydecaorganocyclohexasil oxanes.
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Abstract—The crystal structures of two organosilicon compounds are studied by X-ray diffraction. Crystals of
trans-2,8-dihydroxy-2,8-diphenyl-4,4',6,6',10,10',12,12'-octamethyl cyclohexasiloxane, C,gH305Sig, (1) are
triclinic; at 110 K, a = 11.476(1) A, b = 12.106(1) A, ¢ = 13.636(1) A, a = 94.337(1)°, B = 112.669(1)°, y =

112.216(1)°, space group P1, Z =2, and R=0.057 for 5069 reflections with F > 40(F). Crystals of trans-2,8-
dihydroxy-2,4,4',6,6',8,10,10',12,12'-decamethyl-5-carbahexacyclosiloxane, C;,H3,0;Sig, (I1) are tetragond;
a 293K, a=b=15.487(3) A, c = 11.364(3) A, space group P4,/n, Z = 4, and R = 0.055 for 955 reflections
with F > 40(F). It is found that the structure of compound I, in which the substituents at the Si(1) atom differ
in volume and inductive effect, contains two crystall ographically independent molecules with different confor-
mations of the hexasiloxanering. In structure 11, the oxygen atom and the methylene group are statistically dis-
ordered as a result of the location of the molecule at the center of symmetry. Although the SICSi angle
[122.1(1)°] differs noticeably from the tetrahedral angle, itsvalue is characteristic of cyclohexasiloxanesandis

not related to the disorder. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Among the numerous organosilicon compounds,
cyclolinear polyorganosiloxanes, that is, compounds
whose macromol ecules consist of ringsdifferingin size
and connected through oxygen atoms or other flexible
links, are of particular interest. The properties of cyclo-
linear polyorganosiloxanes can change considerably
depending on the number of flexible elements in both
the ring and the linear chain, aswell ason thering size.
In particular, theliquid-crystal propertiesof cyclolinear
polyorganosiloxanes and their application to LB tech-
nologies areto alarge degree determined by the confor-
mational flexibility of monomers and polymers as a
whole [1].

In the previous paper [2], we discussed the confor-
mational characteristics of two bicyclic monomers,
namely, 2,2,4,4'6,8,8,10,10',12-decamethylbicyclo-
[5.5.1]hexasiloxane and 2,2',4,4',6,8,8',10,10',12-deca-
methylbicyclo[5.5.1]-9-carbahexasiloxane, which dif-
fer in the number of SIOS and SiICH,Si groups. With
the goal of determining the effect of the substituents at
the Si atom on the conformation of cyclohexasiloxanes
and revealing the conformational changes upon
replacement of the oxygen atom by the methylene
group, we performed X-ray diffraction studies of two

compounds, namely, trans-2,8-dihydroxy-2,8-diphe-
nyl-4,4',6,6',10,10',12,12- octamethylcyclohexasiloxane
(1) and trans-2,8-dihydroxy-2,4,4',6,6',8,10,10',12,12'-
decamethy!-5-carbahexacyclosiloxane (11).

EXPERIMENTAL

Single crystals of compounds | and |1, which were
synthesized according to the procedure described in
[3, 4], weregrown by slow evaporation of heptane solu-
tions. The main crystal data and experimental parame-
tersforl at 110K and 11 at 293 K arelisted in Table 1.
The processing of the experimental data and the subse-
guent calculations were carried out with the SAINT [5]
and SHELXTL97 [6] program packages. Both struc-
tures were solved by the direct method, and the non-
hydrogen atoms were refined in the full-matrix aniso-
tropic approximation.

At the beginning of the refinement, the methylene
group was replaced by the oxygen atom, because mol-
ecule 11 occupies the center of symmetry. Upon the
refinement of the structure, one more peak of the elec-
tron density was revealed near this oxygen atom and
assigned to the carbon atom of the methylene group.
For these atoms, the site occupancy G is equal to 0.5.

1063-7745/02/4705-0798%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Table 1. Crystallographic parameters and experimental datafor structures| and 1

799

Parameter

Empirical formula
M,
Crystal system

Space group
Z

a A

b, A

c, A

a, deg

B, deg

Y, deg

Vv, A3

Oeaicar @/CM3
i, mm=t
F(000)
Diffractometer
A A

T, K

Bmax, deg

Total number of
reflections

Number of reflectionswith F > 40(F)
Refinement on

R1

wWR2

S

CooH3608Sis
573.03
Triclinic

P1

2

11.476(1)
12.106(1)
13.636(1)
94.337(1)
112.669(1)
112.216(1)
1563.2(2)
1.217

0.304

608

Smart 1000 CCD
0.71073
110(2)
30.08

8882

5069
F2
0.057
0.148
0.872

C11H34,07Sig
446.92
Tetragonal
P4,/n

4

15.487(3)
15.487(3)
11.364(3)
90

90

90

2726(1)
1.089

0.328

960
Siemens P3/PC
0.71073
293(2)
25.05

2301

955
F2
0.055
0.129
0.879

Table 2. Coordinates (x 10*) and isotropic thermal parameters (A% x 103) of the non-hydrogen atomsin structure |

Molecule A Molecule B
Atom Atom
X y Z Ueq X y z Ueq
Si(D) 6486(1) 7170(1) 2033(1) 44(1) Si(D) 527(1) 1463(1) 3862(1) 52(1)
Si(2) 5334(1) 4387(1) 1940(1) 48(1) Si(2) 2754(1) 506(1) 4448(1) 55(1)
Si(3) 7505(1) 7148(1) 167(2) 48(1) Si(3) -1213(1) 1910(1) 4971(1) 56(1)
o) 7801(2) 8236(2) 3101(2) 66(1) o) -566(3) 344(2) 2780(2) 88(1)
0(2) 5962(2) 5882(1) 2351(1) 54(1) 0(2) 1910(2) 1281(2) 4594(2) 62(1)
o) 7066(2) 7084(2) 1158(2) 66(1) O3 -119(2) 1566(2) 4697(2) 71(2)
0O4) 3796(2) 3907(2) 911(2) 71(1) O(4) 2078(3) -812(2) 4664(2) 98(1)
C» 5057(2) 7642(2) 1508(2) 45(1) C(D 1054(3) 2889(2) 3409(2) 56(1)
C(2 5317(3) 8799(3) 1321(3) 68(1) C(2 155(5) 3040(4) 2467(3) 93(2)
C3 4254(4) 9172(3) 929(1) 88(1) C(3) 581(9) 4173(6) 2182(5) 119(2)
C4) 2909(3) 8377(3) 715(3) 80(1) C(4) 1872(7) 5112(4) 2823(5) 115(2)
C(5) 2619(3) 7229(3) 880(3) 71(1) C(5) 2765(6) 4970(4) 3755(6) 110(1)
C(6) 3674(2) 6853(3) 1270(2) 55(1) C(6) 2348(4) 3882(3) 4037(4) 82(1)
C() 5147(5) 3745(4) 3072(4) 80(1) C(7) 4593(4) 1398(6) 5490(5) 103(2)
C(8) 6490(3) 3984(3) 1521(3) 64(1) C(8) 2595(6) 268(5) 3058(3) 92(2)
C(9 7894(5) 8687(3) -90(1) 89(1) C(9) -139(9) 3323(7) 6075(8) 167(4)
C(10) 8997(4) 6769(4) 528(4) 84(1) C(10) —2422(7) 2138(9) 3756(6) 136(2)
CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002
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Table 3. Coordinates (x 10*) and isotropic thermal parameters (A% x 10°) of the non-hydrogen atoms in structure 11

Atom X y z Ugq
Si(1) 5997(1) 4041(1) 1815(1) 82(1)
Si(2) 5793(1) 6021(1) 2107(1) 71(1)
S(3) 5704(1) 6643(1) -512(1) 86(1)
0(1) 6198(2) 5059(2) 2060(3) 95(1)
0(2) 5440(2) 6300(2) 812(3) 104(1)
0](c)) 5054(3) 3806(8) 1280(10) 123(3)
0O(4) 6589(2) 6643(2) 2520(4) 99(2)
C(1) 6331(7) 3417(5) 3111(7) 204(4)
C(2 6640(5) 3703(5) 498(7) 160(3)
C(3) 4880(4) 6125(4) 3174(6) 142(3)
C4) 6855(5) 6400(5) —797(7) 175(3)
C(5) 5498(4) 7815(3) —564(6) 129(2)
C(6) 4822(1) 4000(10) 1650(10) 75(4)

Table 4. Torsion angles (deg) in structures| and 11
[(A) 1(B) [
Angle Angle
T 1 T
0O(4)-Si(2-0(2)-Si(2) —64.4(2) -87.6(2) 0O(3)-Si(1)-0O(1)-Si(2) 8.7(7)
0O(3)-Si(1)-0(2)-Si(2) -27.2(2) 142.0(2) C(6)-Si(1)-0O(1)-Si(2) —7.47)
0(2)-Si(1)-0(3)-Si(3) 139.8(7) 167.3(3) 0(2)-Si(2-0(1)-Si(1) —62.7(5)
0O(4)*-Si(3-0(3)-Si(1) —82.0(8) 130.5(3) O(1)-Si(2-0(2)-Si(3) =77.3(5)
0(2)-Si(4)-0O(4)-Si(3)* 161.0(3) —15.2(8) O(1)-Si(1)—-C(6)-Si(3)* 138(1)
Si(2-0(3)-Si(3)*—O(3)* —77.4(5) 14.0(6) O(1)-Si(1)-O(3)-Si(3)* 140(4)
O(3)*-Si(3)-0(2)-Si(2) 148.7(5)
C(6)*-Si(3)-0(2)-Si(2) 131.4(5)
Si(1)-0O(3)-Si(3)*-0O(2)* -67(1)
Si()-C(6)-Si(3)*-O(2)* —63(1)

Note: In molecules A and B of structure |, the asterisked atoms are related to the reference atoms by the symmetry operations (—x + 1, -y +
1, —2) and (-Xx, -y, —z + 1), respectively. In structure 11, the asterisked atoms are related to the reference atoms by the symmetry

operation (-x+ 1, -y + 1, -2).

Note that the refinement of structure I1, in which the
oxygen atom and the methylene group were disordered
over two positions, led to worse geometric parameters
of the molecule.

The presence of the methylene group in Il is
confirmed by the NMR spectrum, which contains sig-
nals characteristic of the—CH?~groupin thecyclic frag-
ment [4].

CRYSTALLOGRAPHY REPORTS Vol. 47

The positions of the hydrogen atoms in the methyl-
enegroup (G =0.5) in Il were calculated from geomet-
ric considerations. All the remaining hydrogen atomsin
structures | and |1 were located from the difference
Fourier syntheses. All the hydrogen atoms were refined
isotropically. The coordinates and equivalent isotropic
thermal parameters of the non-hydrogen atomsin | and
Il are presented in Tables 2 and 3, respectively. Thetor-
sion angles are listed in Table 4.

No. 5 2002
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C(4A)

C(104)

801

Fig. 1. Structure of molecule | (A).

¢ C()

C(5)

Fig. 2. Structure of molecule11.

RESULTS AND DISCUSSION

In structures | and I 1, the molecules occupy special
positions at the centers of symmetry. In structure |
(Fig. 1), the molecules are located at different centers
of symmetry (—x+ 1, -y + 1, =z, =X, =y, —z + 1); there-
fore, there are two crystallographically independent
molecules. The difference in the endocyclic torsion

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5
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angles (Table 4) indicates that the two molecules have
different conformations. This agreeswith the wide scat-
ter of SIOSi bond angles [145.7°-169.1° in |(A) and
139.1°-162.7° in | (B)].

The specific feature of structure |1 isthe location of
the O(3) oxygen atom and the C(6) carbon atom of the
methylene group at the same link of the ring (Fig. 2)
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b

Fig. 3. Projection of the molecular packing in crystal | onto the bc plane. Dashed lines indicate intermol ecular hydrogen bonds.

because of the centrosymmetric position of the mole-
cule. Most probably, thisis explained by the statistical
arrangement of the enanthiomers which form the cen-
trosymmetric packing in crystal |1.

Although the centrosymmetric siloxaneringin |l is
disordered, the Si(1)O(3)Si(3)* bond angle [161.7(5)°]
lies in the range of values reported [7] and the
Si(1D)C(6)Si(3)* bond angle [122.1(1)°] is close to the
angle [121.0(1)°] observed in the structure of
2,2',4,4'6,8,8,10,10',12-decamethylbicyclo[5.5.1]-9-
carbahexasiloxane [2]. The other two angles[145.3(2)°
and 145.8(2)°] at the oxygen atomsin the ring actually
coincide with the corresponding angles [144.9°,
145.6°, and 146.8°] in an oxygen analogue of com-
pound 11, namely, the trans isomer of 2,8-dihydroxy-
2,4,4',6,6',8,1Q 10'12,12'- decamethylcyclohexasiloxane
[8]. Note that, in the cis isomer of 2,8-dihydroxy-
2,4,4',6,6',8,10,10,',12,12"-decamethyl cyclohexasil oxa-
ne, four SIOSi angles (145.7°-150.2°) are characteris-
tic of the majority of cyclosiloxanes and the two angles
increaseto 173.6° and 174.1° [8].

CRYSTALLOGRAPHY REPORTS Vol. 47

In the structures studied, the rings have puckered
conformations that can hardly be described by some
standard shape. This is characteristic of most com-
pounds of this type. The exception is provided by the
cis isomer of 2,8-dihydroxy-2,4,4',6,6',8,10,10'12,12'-
decamethylcyclohexasiloxane, in which increased
SIOS angles (173.6° and 174.1°) enable the ring to
adopt a boat conformation [8].

The hydroxyl groups in the structures studied are
involvedin hydrogen bonding. In structurel, the hydroxyl
groups form intermolecular hydrogen bonds with each
other and with two oxygen aoms of the ring
[O(1B)--O(1A) (x—1,y—1, 2), 2.721(4) A; O(1A)--O(2B)
(x+1,-y+1,—z+1),and 3.016(3) A; O(1A)--O(3B)
(x+1,-y+1,-z+1),3.066(3) A]. The molecules are
linked through the hydrogen-bond system into infinite
chains (Fig. 3).

Incrysta 11, similar to the structure of thetransiso-
mer of 2,8-dihydroxy-2,4,4',6,6',8,10,10'12,12'-decam-
ethylcyclohexasiloxane, the intermolecular hydrogen
bonds O(4)—H---0O(4) (y, -+ 1.5, —z+ 0.5) form squares
with sides of 2.740(4) A, so that the molecul es are asso-

No. 5 2002
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803

Fig. 4. Projection of the molecular packing in crystal |1 onto the ab plane. Dashed lines indicate intermolecular hydrogen bonds.

ciated into tetramers around the fourfold inversion axes
(Fig. 4).

Thus, it was found that the structure of compound I,
in which the substituents at the Si(1) atom differ in vol-
ume and inductive effect, consists of two crystallo-
graphically independent molecules with different
conformations of the hexasiloxane ring. Asin the bicy-
clic systems 2,2',4,4',6,8,8',10,10',12-decamethylbicy-
clo [5.5.1]]hexasiloxane and 2,2',4,4',6,8,8',10,10',12-
decamethylbicyclo[5.5.1]-9-carbahexasiloxane [2], in
structure I 1, the replacement of one O atom by the CH,
group is accompanied by slight conformational
changes (Table 4). We assume that the accumulation of
monomers with a dlightly changed conformation in
cyclolinear polyorganosiloxanes should result in
changes in the physicochemical properties. This makes
it possibleto control the physicochemical properties by
selecting the conformational characteristics of the
monomers, in particular, with consideration for the dif-
ferent hydrophilic—hydrophobic nature of the O atoms
and the CH,, groups.

Moreover, the structural studies of molecules | and
Il confirmed again the wide variability of SIOSi bond
angles and reveal ed a noticeabl e difference between the
SICSi angle [122.1(1)°] and the tetrahedral angle. Tak-
ing into account that the SICSi angles in 1,3-disilacy-

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5
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clobutane systems are close to 90° [9-16], we can state
with confidence that the SICSi anglesin cyclosiloxane
systems exhibit arather wide variability.
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Abstract—The molecular and crystal structures of chiral 1R,4R-cis-2-(4-hydroxybenzylidene)-p-menthan-3-
one (1) are determined by X-ray diffraction analgsjs Single crystals of | are orthorhombic, a=8.997(2) A, b =
11.314(2) A, ¢ =14.847(3) A,V = 1511.3(5) A3, Z = 4, and space group P2,2,2,. The cyclohexanone ring in
molecules of compound | has a chair-type conformation with the axial methyl and equatorial isopropyl groups.
The enone and benzylidene groupings are nonplanar. The considerable distortion of bond angles at the sp> car-
bon atoms of the benzylidene grouping and the puckering parameters of the cyclohexanonering in the structure
of | are close to those observed for the previously studied compound with the p-methoxy substituent. In the
crystal, molecules | are linked by very short intermolecular hydrogen bonds >C=0---HO-. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

The molecular and crystal structures of a number of
derivatives of chiral cyclic ketones, namely, 1R 4R-cis-
and 1R 4Strans-p-menthan-3-ones, were investigated
by X-ray diffraction in our earlier works. In particular,
we determined the structures of diastereomeric
2-arylidene substituted compounds with substituents of
different electronic naturein the arylidene fragment [ 1—
7] and stereoisomeric [3-hydroxy ketones with different
configurations of the C(2) and exocyclic chiral centers
and the same 1R,4S configuration [8-10]. It has been
found that the molecular structures of diastereomeric
2-arylidene substituted compounds have a number of
common features. (i) nonplanarity of the enone and
arylidene groupings, which substantially depends on
the el ectronic nature of the para substituent; (ii) consid-
erable distortion of bond angles at the sp? carbon atoms
of the arylidene fragment; and (iii) shortened intramo-
lecular contacts between the atoms of the benzene ring
(in the ortho position with respect to the vinyl bond)
and the atoms of the C(1)HCH; group. In crystals of
1R4R-cis diastereomers, the cyclohexanone ring
adopts achair-type conformation (with the axial methyl
and eguatorial isopropy! groups), which is significantly
distorted in the case of derivatives with electron-donor
substituents[OCHj, N(CH,),, and CzHg]. In crystals of
the compounds with the 1R,4S-trans configuration, the
cyclohexanone ring exhibits either a chair-type confor-

mation with axial alkyl groups (p-carbomethoxy substi-
tuted compound [7]) or atwist conformation (p-phenyl
derivative [3]). According to the results of molecular
mechanics calculations and *H NMR spectroscopic
data [3, 11], these compounds in solutions exist in the
form of an equilibrium mixture of both conformers.
The structural features of different 2-arylidene deriva-
tives of p-menthan-3-onesand cyclohexanone areinter-
preted by assuming the combined influence of two fac-
tors, namely, conjugation and steric effects [5, 6]. The
first factor (conjugation) favors a flattening of the cin-
namoy! fragment, which, in turn, causes a distortion of
the cyclohexanone ring toward a half-chair conforma-
tion and givesrise to a steric strain of the molecules, as
judged from the shortened intramolecular contacts. At
the same time, by virtue of the second factor (steric
effects), the cyclohexanone ring shows a tendency to
retain a chair-type conformation.

In B-hydroxy ketones with the chiral 1R,4S-p-men-
than-3-one fragment, the hydrogen bonds differ in
character depending on the configurations of the C(2)
and exocyclic chiral centers. It is revealed that their
structures can involve the strong intramolecular hydro-
gen bonds -OH--OC< (IR2R4S1'S [9] and
IR2R4S1'R [10] derivatives) and the cooperative
bonds—OH:--OH:--OH [8].

In the present work, we carried out X-ray diffraction
investigation of the molecular and crystal structures

1063-7745/02/4705-0805%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Molecular structure of compound .

of 1R 4R-cis-2-(4-hydroxybenzylidene)-p-menthan-3-
one (1):

X =OH (I,
X = OCH, (II) [1]; X = N(CH3), (IID) [5],
X = C¢Hs (IV) [6].

It was of interest to compare the molecular structure
of | and the molecular structures of the derivatives with
the same 1R4R-cis configuration and different elec-
tron-donor substituents (such as OCH3, N(CH,),, and
CeHs groups) with the aim of elucidating how the
p-hydroxy substituent involved in hydrogen bonding
affects the molecular geometry (especially, the geome-
try of the cyclohexanone fragment). Moreover, it was
important to determine the type of intermolecular

hydrogen bonds (-OH:-OC< or —-OH---OH--OH)
formed in crystals of compound | with a considerable
steric screening of the carbonyl group.

EXPERIMENTAL

Compound | was synthesized through condensation
of (-)-menthone with 4-tetrahydropyranylhydroxyben-
zaldehyde according to a procedure similar to that
described in the patent [12] followed by the removal of
the tetrahydropyrany! group [13] and was then purified
by crystallization from acetonitrile (T, = 154-155°C).
Colorless transparent single crystals suitable for X-ray
diffraction analysis were grown from hexane with a
small addition of isopropanol. A single crystal 0.5 x
0.4 x 0.3 mm in size was chosen for X-ray structure
analysis. Crystals of compound | are orthorhombic,
CiH»0,, M= 25835, a=8997(2) A, b= 11.314(2) A,
c = 14847(3) A, V = 1511.3(5) A3, Z = 4, dyyey =

CRYSTALLOGRAPHY REPORTS Vol. 47

1.135 g/cm?, u(MoK,) = 0.073 mm, and space group
P2,2,2,.

X-ray diffraction analysis was performed on an
Enraf—Nonius CAD4 automated diffractometer (MoK,
radiation, graphite monochromator, 8-5/30 scan mode,
0.« = 25°). The intensities of 3113 reflections were
measured in theindex ranges0<h < 10,0< k< 13, and
—17 < | < 17. After averaging of the equivalent reflec-
tions, the final data set included 2660 independent
reflections (R, = 0.0298), which were used in further
calculations. The structure was solved by the direct
method and refined by the full-matrix least-squares

procedure on Fﬁk, in the anisotropic approximation for

the non-hydrogen atoms. The hydrogen atoms were
located from the difference Fourier synthesis and
refined in the isotropic approximation. The final dis-
crepancy factors were as follows: R1 = 0.0387 (calcu-
lated from F,, for 2008 reflections with | > 2a(l)),

WR2 = 0.1259 (calculated from Fﬁm ) for all 2660 ref-

lections used in the refinement), and Goof = 0.937. The
absolute configuration was determined from the known
R configuration of the C(1) chiral center. All the calcu-
lations were performed using the SHELXTL PLUS5.2
software package. The atomic coordinates are listed in
Table 1.

RESULTS AND DISCUSSION

Figure 1 shows the molecular structure of com-
pound I, which was determined from the X-ray diffrac-
tion data. The bond lengths are presented in Table 2.
The bond angles are listed in Table 3. The selected tor-
sion angles are given in Table 4. For comparison, the
selected torsion angles in molecules of compounds I 1—
IV are also presented in Table 4.

As in the previously studied structures 111V, the
cyclohexanone ring in structure | has a chair-type con-
formation [the signs of the endocyclic torsion angles
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Atom xla yib zlc Ugg A2
o) —3845(2) 5870(2) 5813(1) 72(2)
02 1984(2) 9027(2) 9529(1) 76(1)
c(1) —4319(3) 6475(2) 8180(2) 55(1)
cE) _3576(2) 6668(2) 7274(1) 51(1)
c@) _4450(3) 6331(2) 6467(2) 54(1)
C(4) —6091(3) 6636(2) 6461(2) 56(1)
c(5) _6797(3) 6372(3) 7368(2) 70(2)
C(6) _5929(3) 6911(3) 8141(2) 69(1)
c(7) _4227(4) 5170(2) 8442(2) 70(1)
c(8) —6909(3) 6146(2) 5634(2) 68(1)
C(9) —7006(5) 4808(3) 5642(3) 93(2)
C(10) —8463(4) 6677(4) 5544(3) 101(1)
C(11) —2240(2) 7149(2) 7119(2) 54(1)
C(12) ~1140(2) 7615(2) 7762(1) 53(1)
C(13) —875(3) 7129(2) 8610(2) 60(1)
C(14) 165(3) 7604(2) 9175(2) 63(1)
C(15) 977(3) 8592(2) 8927(2) 59(1)
C(16) 752(3) 9072(2) 8088(2) 61(1)
c(17) —281(3) 8589(2) 7514(2) 60(1)
H(1) —3750(30) 6970(20) 8621(17) 55(6)
H(4) —6070(30) 7450(30) 6460(17) 65(7)
H(5A) —7820(40) 6680(30) 7240(20) 106(10)
H(5B) —6820(30) 5550(20) 7482(17) 60(7)
H(6A) —5920(30) 7890(30) 8102(18) 77(8)
H(6B) _6380(40) 6730(30) 8720(20) 82(9)
H(7A) _3180(40) 4920(30) 8570(20) 79(8)
H(7B) —4770(30) 4700(20) 7950(20) 71(8)
H(7C) _4720(40) 5060(30) 8990(20) 83(9)
H(8) —_6310(30) 6440(20) 5020(20) 76(8)
H(9A) —5920(40) 4530(40) 5660(20) 89(9)
H(9B) —7490(50) 4590(30) 5100(30) 129(15)
H(9C) —7820(50) 4500(30) 6040(30) 122(14)
H(10A) ~9020(70) 6180(50) 6120(40) 180(20)
H(108B) —8290(40) 7630(20) 5470(20) 111(12)
H(10C) _8980(40) 6520(20) 4870(20) 96(9)
H(11) —1990(30) 7260(20) 6506(18) 56(6)
H(13) —1360(30) 6400(20) 8814(15) 54(6)
H(14) 370(30) 7220(20) 9805(17) 69(7)
H(16) 1250(40) 9630(30) 7850(20) 94(10)
H(17) _480(40) 9090(30) 7010(20) 91(9)
H(O2) 2570(40) 9760(30) 9250(20) 84(9)

Note: The equivalent isotropic thermal parameters Ug, for non-hydrogen atoms are cal culated from the anisotropic thermal parameters U;;
(for hydrogen atoms, Ugq = Ujgp).-
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Table 2. Bond lengthsin structure |

Bond d A Bond d A
C(1)-C(2) 1.518(3) || C(8)-C(9) 1.516(4)
C(1)-C(6) 1.531(4) || C(8)-C(10) 1.528(4)
C(1)—C(7) 1.530(4) || C(11)-C(12) | 1.473(3)
C(2-C(3 1.483(3) || C(12-C(13) | 1.394(3)
C(2=C(11) | 1.340(3) || C(12-C(17) | 1.395(3)
C(3)-0(1) 1.230(3) || C(13)-C(14) | 1.367(4)
C(3)-C(4) 1.516(3) || C(14)-C(15) | 1.386(4)
C(4)—C(5) 1.518(4) || C(15)-C(16) | 1.374(4)
C(4)-C(8) 1.535(3) || C(15)-0(2) 1.364(3)
C(5)-C(6) 1.517(4) || C(16)-C(17) | 1.375(4)

¢~ alternate (Fig. 1, Table 4)]. The alkyl substituents
are characterized by the cis orientation with respect to
the cyclohexanonering. The methyl group occupiesthe
axial position, and the propyl group isin the equatoria
position (see the torsion angles ¢—0¢,,). It should be
noted that, as in the earlier-studied compounds [1, 5,
14], the R configuration of the C(1) center in the initial
(-)-menthone remains unchanged during synthesis of
the compound under investigation. Therefore, the cis
orientation observed for 1,4-alkyl substituents unam-
biguoudly indicates that the C(4) chiral center also has
an R configuration. Consequently, compound | belongs
to the 1R 4R diastereomers.

The conformation of the cyclohexanone ring in
structure | can be described, with a high accuracy, asa
chair-3,6, because the atoms of the opposite bonds in
this ring [C(1)—C(2) and C(4)-C(5)] are coplanar to

Table 3. Bond angles (w, deg) in structure I

KULISHOV et al.

within 0.02 A and the C(3) and C(6) atoms deviate from
the root-mean-square plane by 0.48 and 0.66 A, respec-
tively. Judging from the calculated puckering parame-
ters[15, 16], the distortion of the chair-type conforma-
tion due to the presence of two sp? carbon atoms in the
cyclohexanone ring in the structure under investigation
isinsignificant and similar to that observed in the meth-
oxy substituted compound |1 (Table 4), which contains
a relatively weak electron-donor substituent in the
arylidene grouping. The relatively small difference
between the torsion angles ¢, and ¢ (or ¢4 and ¢,,) in
compound | aso indicates a dight distortion of the
chair-type conformation of the cyclohexanone ring as
compared to those in structures 11 and 1V in which the
difference between these anglesis approximately equal
to 20° (Table 4).

The enone grouping in the studied compound is sub-
stantialy nonplanar: the ¢, torsion angle is equal to
40.4°. This angle dlightly exceeds the corresponding
angle in the methoxy substituted compound Il and is
considerably larger than the ¢, torsion angle in com-
pounds |11 and IV (Table 4). Similar regularities are
observed for the ¢,, torsion angle in the twisted
arylidene grouping.

The structure of compound | is characterized by a
considerable distortion of the bond angles at the sp? car-
bon atoms, specificaly of the bond angles
C(1HC(AC(1]) (wy) and C(C(11)C(12) (wp)
(Table 3), asisthe casein structures | -1V and a hum-
ber of other derivatives of 2-arylidenecyclohexanones
studied earlier in [1-7, 17]. In [5], it was noted that
changes in the wy bond angles in the series of substi-
tuted 2-arylidene-p-menthan-3-ones and 2-arylidene-
cyclohexanones are associated with changes in the

Bond angle () Bond angle W
C(2-C(1)—C(6) 109.7(2) C(4—-C(8)—C(9) 122.4(3)
C(-C()-<C(7) 109.9(2) C(4)—C(8)—C(10) 111.5(2)
C(6)-C()—-C(7) 111.8(2) C(9-C(8)—C(10) 109.9(3)
C(D)-C(2—C(’3) 116.4(2) C(2-C(11-C(12)** 129.5(2)
C(D)-C(2-C(11n)* 127.3(2) C(11)-C(12—C(13)*** 124.0(2)
C(3)-C(2-C(1y) 116.2(2) C(11)-C(12—C(17) 118.9(2)
C(2-C(3—C1) 117.6(2) C(13)-C(12—C(17) 117.1(2)
C(2-C(3)-0(1) 120.8(2) C(12-C(13)—C(14) 121.1(2)
C(4)—-C(3-0(1) 121.6(2) C(13)-C(14)—C(15) 121.0(2)
C(3)-C(4)—-C(5) 111.0(2) C(14)—-C(15)—C(16) 118.8(2)
C(3)-C(4)—C(8) 112.9(2) C(15)-C(16)—C(17) 120.3(2)
C(5)-C(4—C(8) 116.0(2) C(12)-C(17)—C(16) 121.7(2)
C(4)-C(5)—C(6) 112.1(2) 0O(2-C(15)-C(14) 117.9(2)
C(1D)-C(6)—C(5) 112.8(2) 0O(2)—C(15)—C(16) 123.3(2)

Note: In structuresll, 111, and 1V, the asterisked bond angle is equal to (*) 130.4°, 125.9°, and 126.1°; (**) 130.0°, 131.5°, and 134.1°;

and (***) 124.4°, 127.0°, and 127.3°, respectively [1, 5, 6].

CRYSTALLOGRAPHY REPORTS Vol. 47
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Table 4. Selected torsion angles (¢;, deg) according to the X-ray diffraction data and calculated puckering parameters for

compounds I-1V

b;
Angle I [ Il v
¢4, C(1)C(2)C(3)C(4) 41.2(3) 39.2 21.6(6) 20.8(4)
$,, C(2)C(3)C(4)C(5) —42.6(3) —-46.1 —23.1(6) -27.2(4)
¢, C(3)C(4)C(5)C(6) 50.5(3) 60.4 42.1(6) 46.2(3)
¢4, C(4)C(5)C(6)C(2) —58.6(3) —-66.3 —60.5(6) -61.1(3)
ds5, C(5)C(6)C(1)C(2) 53.5(3) 57.7 56.7(5) 53.4(3)
dg, C(6)C(1)C(2)C(3) —44.7(3) —44.4 -37.5(5) -32.7(4)
$7, C(7)C(1)C(2)C(I) 78.7(3) 82.3 87.9(5) 92.5(3)
dg, C(7)C(1)C(6)C(5) —68.7(3) - —68.2(5) —-70.0(3)
$o, C(8)C(4)C(3)C(2) -174.8(2) -170.6 -156.8(4) —159.4(3)
$10. C(8)C(4)C(5)C(6) -178.9(2) - 174.0(4) 177.1(2)
$41, O(1)C(3)C(2)C(11) 40.4(3) 34.9 20.2(7) 13.0(4)
$12, C(2)C(11)C(12)C(13) 35.9(4) 317 23.2(8) 4.9(5)
Puckering parameters
0, deg 6.79 9.76 19.59 19.00
Y, deg 20.24 24.70 6.53 19.66
S 1.00 1.09 0.89 0.88

degree of nonplanarity of the arylidene grouping with
variations in the electronic properties of the para sub-
stituent. The results obtained for structure | are com-
pletely consistent with the observed tendency of the wy
bond angle to increase when the ¢, torsion angle
decreases. According to these two characteristics,
structure | and the methoxy substituted structure || are
similar to each other. Moreover, a comparison of the
angles wy and ¢, in compounds | and 11 showsthat the
electron-donor effect of the hydroxyl group involved in
the formation of an intermolecular hydrogen bond in
the crystal isless pronounced than that of the methoxy
substituent.

Unlike the sterically strained structures 111 and 1V,
which contain either the strong electron-donor p-dime-
thylamino substituent (compound I11) or the biphenyl
grouping (compound | V), structure | can be considered
substantially less strained. This follows from the afore-
mentioned distortion of the bond angles, the weak dis-
tortion of the chair-type conformation of the cyclohex-
anone ring, and the analysis of the intramolecular con-
tacts between the atoms of the benzene ring and the
>C(1)HCH, fragment (Table 5). The H(1)--H(13)
intramolecular contacts are shortened in structures I 11
(213 A [5]) and IV (1.93 A [6]) and are close to the
sum of the van der Waals radii of hydrogen atoms
(2.32 A [18]) in structures | [2.26(4) AJand |1 (2.38 A
[1]). A similar situation is observed for the C(13)--H(1)
and C(1)---H(13) intramolecular contacts, which are
close to the sum of the van der Waals radii of carbon
and hydrogen atoms (2.87 A [18]) in structure |

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5

[2.77(3) and 2.83(3) A, respectively] and are shortened
in structures |11 (2.64 and 2.68 A [5]) and 1V (2.65 and
2.66 A [6]). In the aforementioned molecular fragment
of structure |, asin structures 11V, only the intramo-
lecular contact C(1)---C(13) [3.25(4) A] is noticesbly

Table 5. Shortened intramolecular contacts (d, A) in struc-
turesI-1V

d
Contact
I I 11 v
H(1) omH(13) 2.26(4) 2.38 2.13 193
H(1) 0mc(13) 2.77(3) 2.75 2.64 2.65
H(13) mmC(1) 2.83(3) 2.69 2.68 2.66
C(1) mC(13) 3.25(4) 3.19 3.35 3.28
H(1) 0mc(12) 2.77(3)
H(5A) 0mC(10) 2.58(3)
H(5A) (mH(10A) 2.06(7)
H(5B) 0mC(7) 2.77(3)
H(5B) (mH(7B) 2.19(4)
H(7B) mmC(5) 2.77(3)
H(9A) 0mC(3) 2.71(3)
H(9A) mD(1) 2.42(4)
H(9C) mH (10A) 2.19(7)
H(10A) mC(5) 2.73(6)

Note: The sums of the van der Waals radii are as follows [18]:
HD]]]H:gI\, 2.32 A; HIIT, 2.87 A; HID, 2.45 A; and CIIT,
342A.
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Fig. 2. Projection of a fragment of the molecular packing in crystal structure | along the c-axis. Hydrogen bonds are shown by

dashed lines.

shortened (the sum of the van der Waalsradii of carbon
atoms is equal to 3.42 A [18]). A comparison of the
available datafor structures|—V and anumber of other
1R, 4R-2-arylidene-p-menthan-3-ones [5, 17] demon-
strates that the presence of shortened intramolecular
contacts between the atoms of the
CH3;HC(1)C(2)=CHC¢H,X fragment—an indication of

CRYSTALLOGRAPHY REPORTS Vol. 47

its steric strain—correlates with the degree of nonpla-
narity of the benzylidene grouping, which is character-
ized by the ¢,, torsion angle (Table 4). Actually, the
shortest contacts, especially the H(1)---H(13) contacts,
are observed in structures 111 and 1V with the smallest
torsion angles ¢,,. However, the H(1)---H(13) contact
(2.28 A) is not shortened in the related compound con-

No. 5 2002
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taining the substituent X = NO, [5] and the substantially
nonplanar arylidene group (¢, = 42.4°). Therefore, the
relation between the steric strain of the molecular frag-
ment under consideration and the electronic nature of the
para substituent in the aryl group is beyond question.

The conformation of the isopropyl fragment in the
structure of compound | isvirtualy identical to that in
the structures of other 1R, 4R-2-arylidene-p-menthan-3-
onesstudied earlier in[5, 6]. Incrystal |, the H(4)—C(4)
and H(8)—C(8) bonds exhibit a gauche orientation [the
torsion angleis equal to 61.1(2)°]. One methyl group is
in the trans position with respect to the H(4)—C(4) bond
[the torsion angle is 177.8(2)°], and the other methyl
group isin the gauche position to this bond [the torsion
angle is —-53.9(2)°]. In this conformation, both methyl
groups of the isopropyl fragment are significantly dis-
tant from the carbonyl group (Fig. 1), even though the
shortened intramolecular contacts are observed
between the atoms of the methyl group in the trans
position with respect to the C(4)—H(4) bond and the
atoms of the 5-methylene fragment:. H(5A)---C(10),
258(3) A; H(10A)--C(5), 2.73(6) . and
H(5A)--H(10A), 2.06(7) A (Table 5). On the other
hand, the intramolecular contact between the H(9A)
atom of the gauche-methyl group and the carbonyl car-
bon atom is considerably shortened [H(9A)---C(3),
2.71(3) A], whereas the H(9A)--O(1) contact
[2.42.(4) A] is close to the sum of the van der Waals
radii of hydrogen and oxygen atoms (2.45 A [18]).

In the crystal structure of compound I, the mole-
cules are linked by the hydrogen bonds —OH---O=C <

(Fig. 2). The parameters of the hydrogen bonds are
given below.

D-H--A d(D-H) D(H:-A) d(D--H) <(DHA)
O(2-H(20)--O(1) 107A 170A 272A 158°.
—X,05+y,15-z2

The length of the hydrogen bond OH---O, on the
whole, istypical of the hydrogen bonds formed by the
hydroxyl group of the benzene fragment with the car-
bonyl grouping of a,B-unsaturated ketones in both the
s—cis and s-trans conformations [19]. Such a short
(and, correspondingly, strong) hydrogen bond is unde-
niably associated with the “phenol” origin of the
hydroxyl group in the compound under investigation.
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Abstract—The unipolar state of a chromium- and L, a-alanine-doped ferroelectric triglycine sulfate (TGS)
crystal has been studied. The experimental data on the distribution of internal bias fields with respect to a seed
are considered. The possible mechanisms of the formation of an internal bias field during the growth of TGS
crystals with alow impurity concentration are considered. © 2002 MAIK “ Nauka/Interperiodica” .

The unipolar state of a ferroelectric crystal is char-
acterized by only one of several equiprobable polariza-
tion states. The static unipolarity is determined by the
ratio of the areas of the domains of opposite signs. The
most popular method of estimating the degree of the
dynamic unipolarity in ferroelectrics is the determina-
tion of the value of the so-called internal biasfield, for
example, from the displacement of the dielectric-hys-
teresisloop aong the E axis.

At present, it is assumed that the defects produced
by different external factors (e.g., the surface treatment
or material irradiation with the quanta of different ener-
gies) are responsible for the unipolar state of ferroelec-
trics, together with the dopants that are specially intro-
duced into a crystal during its growth [1-4]. In most
cases, the causes of the formation of the unipolar state
in ferroelectric crystals by these defects are not quite
clear.

The study of the formation of the unipolar state in
TGS, TGS + Cr**, and TGS + L,a-alanine [4] showed
that this state can be formed due to the nonsymmetrical
incorporation of the dopant into a crystal. To refine the
above assumptions, we studied the laws of the forma-
tion of an internal bias field E, during the growth of a
TGS crystal double doped with chromium ions and
L,a-alanine molecules.

A double-doped TGS crystal and crystals doped
either with chromium ions or L,a-alanine molecules,
which were compared, were grown in the ferroelectric
phase by the method of decreasing the saturated-solu-
tion temperature. To prepare the samplesfrom the crys-
talsgrown, a~40-mm-long bar in the shape of arectan-
gular parallelepiped was sawn from the crystal whose
long axis coincided with the polar Y-axis and the 5 x
5 mm? cross section was in the XZ plane. Then the bar
was cleaved along the cleavage planes into ~1-mm-thick
samples. The samplesof aTGS crystal located at differ-
ent distances from the seed were studied. We used the
silver electrodes deposited in vacuum. The intensity

and sign of the internal bias field were determined from
the displacement of the loops of dielectric hysteresis.

In Cr-doped crystals, the concentration of chro-
mium ions (Cr®*) was 0.03 mol %, whereas the concen-
tration of L,a-alanine moleculesin solution was 1 mol %.
We chose such concentrations to ensure aimost equal
internal biasfields (~50V/cm) in crystalswith different
dopants (Fig. 1). To compare the influence of oneimpu-
rity with the influence of two impurities, the concentra-
tions of chromium and double-doped L,a-alanine were
chosen to be the same as in the material doped with
only one dopant (chromium or L,a-alanineg).

Asisseenfrom Fig. 1, thesigns of thefield E, for a
nominaly pure TGS crystal and a chromium-doped
TGS crystal on different sides of the seed were oppo-
site, but were the same for a L,a-alanine-doped TGS
crystal, in accordance with [4]. In both cases, the field
E, increases with the distance from any side of the seed.
In a double-doped crystal (Fig. 2, curve 1), the depen-
dence of E, on the distance from the seed is qualita-
tively the same as the dependence of the sum of the
fieldsformed in aCr-doped TGS crystal or L,a-alanine-
doped TGS crystal (Fig. 1, curve 3). However, the
intensity of thisfield in adouble-doped crystal isessen-
tially higher (up to ~260V/cm) than total field E,, (up to
~60 V/cm) in a chromium- or L,a-alanine-doped TGS
crystal (Fig. 2, curve 2). This discrepancy is observed
for all the samples located at different distances from
the seed and ranges approximately from 100 and
200V/cm.

Theinternal bias fields evaluated from the displace-
ment of the dielectric-hysteresis loop agree with the
degree of unipolarity evaluated from the ratio of the
areas of the opposite-sign domains. The sample unipo-
larity does not exceed 70% on the one side of the seed,
but reaches 90% on its other side.

The occurrence of the internal bias field can be
explained as follows. Because of different trapping
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coefficients and mobilities of different impurities asso-
ciated with their different dimensions and characteris-
ticsof their electronic structure, the crystallization front
is a surface which efficiently separates the impurities
whose charges have opposite signs. This results in the
formation of the el ectric field E; along the direction nor-
mal to the crystallization front and the separation of a
certain direction in agrowing ferroelectric crystal, thus
promoting the formation of an internal biasfield in the
crystal.

Inacrystal with charged point defects (for example,
in a chromium-doped TGS crystal and in a nominally
pure TGS crystal that still contains a certain number of
such defects), the composite dipole configurations are
formed from the present impurities of opposite signs
(or an impurity and its vacancy) during crystal growth,
because their formation reducesthe el ectrostatic energy
of the crystal.

The average orientation of the axes of such dipoles
in the field E; is determined either by the growth direc-
tion or thedirection closest to it determined by the crys-
tal structure; in other words, this orientation will be
completely determined. The energies of the polarized
defects in the domains of opposite signs are different,
which promotes the formation of the preferred polar-
ization direction, i.e., the formation of the unipolar
state.

Now, evaluate the internal bias field thus formed.
According to[2], theinternal field in a crystal with ori-
ented polar defectsis

E, = 41kdNn,, (D

wherek isthe correlation constant, d is the defect size,
N is the concentration of the dipole impurity in a crys-
tal, and n, is the order parameter fixed at the defect
nucleus. To evaluate E,, it is necessary to set the con-
centration of the dipole impurity in the crystal depen-
dent on the electric field intensity at the crystallization
front. The field E; was calculated in [6] using the
boundary layer method [5]. Using these data, we obtain
the expression for the internal biasfield as

E, = 4mtykdp’N¥/eLp. /K. )

Here, L isthe Debye screening length, yis the numer-
ical factor [2] entering the expression for the order
parameter n, = YPN, in which p isthe average value
of electrical moment of the dipole complex that is
formed during crystal growth and whose orientation is
influenced by the field E;.

If this complex has only two possible orientational
states (along the direction of growth of the face and in

the opposite direction), then p acquiresthe form
pOPE(T, (3)
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Fig. 1. Distribution of internal bias fields Ey, with respect to

the seed in a TGS crystal doped either with (1) L,a-alanine

molecules or (2) chromium ions. Curve 3 is obtained by
interpolation of the sum of curves 1 and 2 at discrete points.
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Fig. 2. Distribution of internal bias fields Ey, with respect to
the seed in a TGS crystal double doped with L,a-alanine
molecules and chromium ions. (1) experimental data and
(2) calculation data.

where p is the dipole moment of the composite dipole
complex and T is the temperature.

The evauation of E, using formula (2) at
K~10"5cm?, Ly ~ 10°cm, y~1,d ~ 107 cm, N ~
10 cm3, and p ~ 1077 yields ~50 V/cm [4], which
coincides with the experimentally observed value for a
nominally pure TGS crystal and a TGS crystal with a
low concentration of chromium ions (Fig. 1).

Note that, according to the model under consider-
ation, the internal field induced on the opposite faces
should be opposite in sign. This corresponds to the
experimental situation with a nominally pure crystal
and acrystal with achromium impurity (Fig. 1).



814

The above mechanism also worksin acrystal doped
with L,a-alanine. However, in this case, the orientation
of dipole complexes “frozen” into a crystal lattice is
essentially dependent on an increase in the system
energy due to the formation of the orientations of “head
to head” and “tail to tail” type in the complexes, which
leads to the same orientations of the dipole complexes
over the whole growing crystal.

In a TGS crystal simultaneously doped with chro-
mium and L,a-aanine, both the above mechanisms
should work simultaneously. However, in such crystals,
the intensities of internal bias fields determined experi-
mentally are somewhat higher than their calculated
intensities (Fig. 1, curve 2). The absence of such asim-
ple“superposition” of the mechanism can be caused by
the mechanical stresses arising in the crystals because
of the large dimensions of L,a-alanine molecules (in
comparison with the replaced glycine molecul es) incor-
porated into the crystal during its growth. These
stresses increase the unit-cell volume in such crystals
[7, 8], which, in turn, increases the correlation constant
and, hence, the intensity of the field E,.
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Abstract—The matrix A suggested by Berreman for optically active crystals of various symmetry classes has
been calculated with the use of the Mathematica-4.1 package. It is shown that the eigenval ues of this matrix are
the refractive indices, wheress its eigenvectors determine the polarization states of eigenwaves propagating in
the crystal. The relation between the components of the gyration tensors obtained on the basis of various con-
gtitutive equationsis established. The essential differencesin the optical activity described on the basis of these
equations are also discussed. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Earlier [1], we described in detail the Berreman
method [2, 3] and the possibilities provided by the use
of this method in combination with computer mathe-
matics—the Mathematica-4.1 package. Below, we
describe a detailed study of the matrix A for optically
active nonmagnetic crystals of various symmetry
classes.

The matrix A is obtained from the optical matrix M
6 x 6 of amedium characterized by an arbitrary set of
optical properties determined by the dielectric constant,
electrical conductivity, magnetic susceptibility, and
gyration tensors written in the general form. The form
of the matrix M and, therefore, also that of the matrix
A, depend on the form of the constitutive equation used
in the consideration of the Maxwell equations. The
application of different forms of the constitutive equa-
tionsin different studies is explained by the allowance
for the optical activity of crystals and the form of the
gyration tensor. Some authors believe that the gyration
tensor can have symmetric or antisymmetric compo-
nents, whereas other state that the nondiagonal ele-
ments can only be symmetric. We cannot discuss here
al the relevant publications and, therefore, mention
only the articles most often cited and used in the solu-
tion of various problems.

Generally speaking, the form of the gyration tensor
is independent of the constitutive equations, because it
is determined by the crystal symmetry. Voigt was one
thefirst to obtain the components of the gyration tensor
for crystalsof 18 symmetry classes, in which thistensor
had any form [4]. The same gyration tensor was aso

used by F.I. Fedorov and his students and followers
[5-7].

Historically, the optical activity of crystals was
described in the same way asin the Born study [8], i.e.,
on the basis of the symmetric gyration tensor [9-12].
As a result, the antisymmetric tensors were ignored,
and only the crystals of 15 symmetry classes were con-
sidered to be opticaly active. The optical activity in
almost al the experimental studieswas described based
on the symmetric gyration tensor and was represented
intheform of gyration surfaces[13], althoughitisquite
clear that gyration surfaces cannot describe the specific
rotation of the polarization plane, because they corre-
spond only to the symmetric components of the gyra-
tion tensor.

In addition to different forms of the gyration tensor
used in different studies, the constitutive equations
themselves are also written in different forms. Proba
bly, this fact is not worth mentioning here, but the
authors of the theoretical and experimental studies
describe the optical activity in different ways, which
can result in incredible confusion. Different descrip-
tions of the optical activity in varioustheoriesis of fun-
damental importance, which has been ignored because,
in many instances, the theoretical and experimental
studies are performed almost independently. At first
glance, it may seem that one can use any form of con-
stitutive equations. However, it is absolutely obvious
that, first, one has to establish the relation between the
tensors used in different studies and, second, to deter-
mine the applicability range of each of these theories.
This problem can be solved by different methods.
Below, we use the Berreman method and the Mathe-

1063-7745/02/4705-0815%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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matica-4.1 package to consider the matrix A for crystals
of various symmetry classes in the analytical form,
establish the boundaries of various theories in the
description of optical activity, and determine the appro-
priate approximation that can be used in each specific
instance.

VARIOUS FORMS OF CONSTITUTIVE
EQUATIONS USED TO DESCRIBE THE OPTICAL
ACTIVITY OF CRYSTALS

The elements of the matrix A and the result of the
solution of the boundary problems are essentially
dependent on the form of the constitutive equations and
the method of the formation of the block optical matrix
M. Now, consider in detail different forms of the con-
stitutive equations with allowance for the optical activ-
ity. In the general form, each of the tensors in the con-
stitutive equations has nine components.

In [5], which constitutive equations provide the cor-
rect description of the optical activity was determined.
The same constitutive equations were obtained in [14].
These equations were also used in [15-26]. Hereafter,
we refer to these equations as the Condon-Fedorov
equations,

Dj = jkEk+ idijk, Bj = uijk_i&jkEk' (1)
In[8, 9], the constitutive equations have the form
D; = (g + 16y ImMmEx,  Bj= HyHxk ()
and are considered as approximate equations, hereafter
referred to as the Born—Landau equations, where g is
the Levi—Civita tensor and n, are the directional
cosines of the wave normal.
In [27], the so-called Drude constitutive equations
are suggested, whicharealsousedin[2, 3, 28] and have
the form

DJ = EjkEk+ iyijk’ BJ = Uijk- (3)

In the above constitutive equations, the second-rank
pseudotensors a;y, gy, and y, are used, which describe
the optical activity in different ways and which are
therefore named differently by different authors. As
was indicated earlier [1], al these pseudotensors are
referred to as simply gyration tensors.

For optically active crystals, constitutive equations
(1)—3) arewritten as [2, 3]

D=¢E+pH, B=pH+p’E. @)

It can be seen from Egs. (4) how one can write the

relation between the field vectors E, H and the induc-

tion vectors D, B for their use in the Berreman method

and which blocks should be possessed by the optical
matrix M inthis case [2], namely,

H—MH M_Esfpg 5)
B HY Op' 0
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Aswas indicated above, we consider here nonmagnetic
crystals, and therefore the tensor [ is assumed to be the
unit tensor in al the congtitutive equations.

It was shown in [5] that the use of Egs. (2) and (3) in
solving the boundary problem on light propagation
through an optically active plate resultsin the violation
of the law of energy conservation—the sum of the
intensities of the transmitted and reflected waves differs
from the intensity of the incident one. Therefore, the
theory of the optical activity based on constitutive
equations (2) and (3) is only an approximate one,
whereas the theory based on constitutive equations (1)
is rigorous, although up to now many authors have
described the optical activity based on constitutive
equations (2) and (3). Below, we indicate the expres-
sions which would alow one to justify the use of the
approximate theory in the computations or interpreta-
tion of the results obtained for concrete crystals.

At present, we face a situation in which the compo-
nents of the gyration tensor g are calculated in the
experimental studies of optically active crystals based
on Egs. (2) and the relationships derived from these
equations, whereas the use of Egs. (1) would result in
different descriptions of the same results, with this dif-
ference being of essential importance. Therefore, it is
necessary to consider the relation between the compo-
nents of the gyration tensors aj, g, and y;, entering
constitutive equations (1)—(3).

We shall show the results to which the differences
between the equations indicated above lead in the cal-
culation of the refractive indices and polarization
parameters of eigenwaves in crystals of various sym-
metry classes.

PHYSICAL MEANING OF EIGENVALUES
AND EIGENVECTORS OF THE MATRIX A

In principle, the differencesin the description of the
optical activity with the aid of constitutive equations
(1)—3) can be seen quite clearly by examining either
the equations of the normals that are necessary for the
calculation of refractive indices or the polarization of
the waves propagating in a crystal (eigenwaves). The
corresponding procedure is rather time- and labor-
intensive. However, as has already been indicated, one
can analyze the matrix A using different constitutive
equations. First, clarify the physical meaning of the
eigenvalues and eigenvectors of this matrix, which are
not simply a secondary result of the calculations but
also a source of useful information on the optical prop-
erties of the medium. Moreover, upon the cal cul ation of
the matrix A, one can aso determine the characteristic
equation of this matrix and its eigenvalues and eigen-
Vectors.

We derived the characteristic equation of the matrix
A for optically active uniaxial crystals using the consti-
tutive equations from [5]. Comparing this equation
with the rigorous equation of the normals also given in

No. 5 2002
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[5], we established that the coefficients of both fourth-
order equations coincide. Thus, at normal light inci-
dence, the characteristic equation of the matrix A deter-
minestherefractive indices of the waves propagating in
the crystal, whereas, at oblique incidence, it determines
the projections of the refractive indices of these waves
on the direction of the normal, z, to the plate.

Consider this statement in more detail. Earlier [5], it
was shown that at oblique light incidence, the projec-
tions of the refraction vectors of al the waves (incident,
refracted, and reflected) on the x-axis are equal and are
determined by the refractive index n; of the ambient
(incidence) medium and the incidence angle @. Now,
writetherefraction vectorsm, (i=1,...,4) of thewaves
propagating in the crystal as was suggested in [5]

m; = &e, + Nje,=Nn;, ©6)

where & = n;sin@, e, and e, are the unit vectors along
the x and z directions, respectively; n; are the projec-
tions of the vectors m; on the z-axis; and n; and n; are
the refractive indices and the unit vectors of the wave
normal of the respective waves. The relationship

m; = nj = &+n} )

uniquely relates the refractive indices of the waves
propagating in a crystal and the quantities n; corre-
sponding to the eigenvalues of the matrix A at the
oblique incidence. The positive n;-val ues correspond to
all the waves propagating along the “forward” direc-
tion, i.e., the waves propagating from the upper to the
lower face, whereas the negative ones, to the waves
propagating in the “backward” direction. Obvioudly, at
normal light incidence onto the crystal (¢ = 0), the
eigenvalues of A completely determine the refractive
indices of the waves propagating in the crystal.

We should like to emphasize once again that the n
values cal cul ated from the rigorous equation of normals
[5] obtained based on constitutive equations (1) fully
coincide with the eigenvalues of the matrix A.

The eigenvectors y; = [E,, Hy;, E;j, —H,] of the
matrix A are the generalized vectors of the fields of
eigenwaves (refracted and reflected) propagating inside
the crystal. The eigenwave polarization is determined
by the mutual spatial orientation of the crystal and the
refraction vector of the incident wave. The vectors
determine the x and y components of the electric and
magnetic fields of the corresponding waves. The vec-
tors corresponding to the positive eigenvalues of the
matrix A describe the “forward” waves, whereas the
negative ones describe the “backward” waves. At nor-
mal light incidence and the coincidence of the axes of
the chosen coordinate system with the principal axes of
the tensor g, and the gyration tensor (O, Qi Or Vi), the
relationships

ke=E;/E; and ky=H;/Hy (8)
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determine the polarization state of the fields E; and H;
of the jth eigenwave in the crystal corresponding to the
refractiveindex n; [see Eq. (7)], i.e., determinetheellip-
ticity of the eigenwaves in the crystal. At oblique inci-
dence, the above relationships determine the ellipticity
of the projections of the polarization ellipses of eigen-
waves on the surface of the crystalline plate.

Thus, it is obvious that the matrix A contains all the
information on the optical properties of the medium,
including the information on the polarization of eigen-
waves and their refractive indices.

COMPARISON OF THE REFRACTIVE INDICES
AND POLARIZATION OF EIGENWAVES
DETERMINED FROM DIFFERENT
CONSTITUTIVE EQUATIONS

As was indicated above, upon writing the constitu-
tive egquations, one can obtain the expressions for deter-
mining the refractive indices of the waves propagating
in a crystal from the equation of the normals or the
characteristic equation of the matrix A. Now, consider
the differences between these expressionsin the case of
constitutive equations (1)—(3).

Crystals of Classes 32, 422, and 622

First, consider in detail the optically active crystals
whose dielectric constant tensors g, and gyration ten-
SOrs Oy, Gk, and yj, that describe the optical activity in
various consgtitutive equations (1)—3) have the same
diagonal form. These are the crystals of the axial sym-
metry classes 32, 422, and 622 (€,; = €y, # €43, 0} =
O # O3, Oy = O # Os3, and Yy = Y, # Y33) and the
crystals of the cubic classes 23 and 432 whose diagonal
tensor components €, a, g, and y are equal .

In the majority of experimental studies, the refrac-
tive indices n, and n, were calculated from the equa-
tions of the normals obtained based on the constitutive
equations (2)

2

(n*—ng)(n"—ng) = G, )
whose solution has the form
2 1.
n:, = {(noy +ne) % [(noy—nip)* +4G7 "} 12, (10)
where
2 _ 2 _ .2 2
Not = €11, Ngp = €13€3/(€43SIN°6 +€33c08 0), (11)

Ny, and ny, are the refractive indices of the eigenwaves
propagating in the crystal with no allowance for the
optical activity, and G isthe scalar gyration parameter

G = gyning. (12)

In unaxial crystals, g,, = g;; and G takes the form

G = gllsinze + g3300329, (13)
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where 0 is the angle between the wave normal and the
optic axis; consequently, at a normal incidence, is the
angle betwrrn the optic axis and the normal to the sur-
face of the plate.

Now, write the expressions for nf, , Obtained from
the characteristic equation of the matrix A based on
constitutive equations (1). If the optic axis of the crystal
isparald to the direction {sin8, 0, cos8}, this expres-
sion hasthe form

2 2
Nio = {(€11 + &g+ 2001,033)r, SN0
+2(g + afl)r3cosze F[(€s _Sll)zrfSin‘le

"'4((011"'0‘33)((111"’333"'0(33511)"55”14e (14)

2 2 4
+407;€1313C0S 0 + 20, (€44 (0qy + A z3)

+ (A + UgEnr) aTSiNBC0S 0)] “}(22),

where z = (g,sin’0 + &33c0s%0) — (a;;sin’0 +
2 2
033€08%0)%, 1| =€ — O3y, 3= €33 — Q5.

Aswas shown in [29], constitutive equations (2), (3)
describe the phenomenon of optical activity within an
accuracy of the product of the anisotropy parameters by
the gyrotropy parameters. We shall show that it is with
precisely this accuracy that expression (14) of the rig-
orous theory is transformed into expression (10) of the
approximate theory. With this aim, we write

€133 = EFAg, (15)

where € = (g, + €;3)/2 and Ae = (43 — €,;)/2. Ignoring
the terms of the order (Ac a) in (14) and the terms
(aji a) inthe expressions of the form (g, + a;; a;;) and
taking into account Eq. (11), we can transform expres-
sion (14) into the form

2 2 2 2 2.2
Ny, = {(Ng +Ngz)F [(Nog —Ngy)

+ 4] JE(0yy + 035)SIN°O (16)

. v
+2d,, 811C0529]2§2/(€113In29 + sggcosze)z] 2}/2.
Itis clearly seen that the notation

Ju = «/é(an"'asa)f Os3 = 20011/€ (17)

transforms Eq. (16) into Eq. (10) with an accuracy up
to the factor €/(g,;sin’0 + &;;c0s’0). We emphasize
once again that the angle 0 in the expressions of the
approximate theory is formed by the wave normal and
the optic axis of the crystal, whereas, in the expressions
of the rigorous theory, this angle is formed by the optic
axis and the normal to the plate surface. In both theo-
ries, this angle has the same meaning only for uniaxial
crystals at normal light incidence.

Now, compare the expressions for the refractive
indices obtained using constitutive equations (1), (2),
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and (3) for the two most important cases—the light
incidence along the optic axis and normal to it.
Consider, first, the light propagation along the optic
axis and tabul ate the results obtained. It should be indi-
cated that the expressions for the eigenvector compo-
nents given below are written within the accuracy of a
constant. One also has to bear in mind that, in constitu-
tive equations (2), the tensor g, iswritten in a different
form from that in constitutive equations (1), namely,

Esn —igs O E
€ = Oj € o 0.
i O €p1 i
oo 0 &40

(18)

In other words, the components g, are complex
guantities, whereas the existence of the optical activity
is determined by their imaginary parts.

Even this simplest case shows that the refractive
indices are calculated in different ways depending on
the congtitutive eguations used, and the relation
between these refractive indices has the form

N, = «/S_M.$G11: «/S_lligssl(za/e—n)

= Jeu Fyul2.

One should pay attention to the fact that n, , values
calculated by constitutive equations (1) are accurate,
whereas their values calculated from constitutive equa-
tions (2), (3) are only approximate (resulting from the
approximate evaluation of the square root). Expression
(19) yields the following relation between the compo-
nents of the gyration tensors used in various constitu-
tive equations:

(19)

O = 033/(2/€11) = Y1/2. (20)

It should be emphasized that the use of any of con-
stitutive equations (1)—(3) providesthe dllipticity of the
eigenwaves, kg = E; /E,; = i; in other words, the eigen-
waves are circularly polarized with opposite bypass
directions despitethefact that all the equationsare writ-
ten differently.

Now, write the expressions of the refractive indices
resulting from the use of constitutive equations (1) and
(2) for aplate cut out parallel to the optic axis (8 = 90°),
i.e., for light propagating normally to the optic axis

2
Nio = (€11 + €5+ 2005
(21)

2
1«/(533 —€11)" +4(0qy + 0g3) (0111 €53 + U33€41) ) /2,

ni 2 = (Ep+ et «/(833 - z‘311)2 + 4951)/2- (22)

Comparing the refractive indices obtained, we see
that

gi; = (O, + O33N, (23)
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where 0 = ,/(€;; + €53)/2 under the condition that
quantity (2a,,043) is negligible in comparison with
(€, + &;3) and that the quantities of the order of the
product of the gyration-tensor components by crystal
anisotropy are also ignored. It has already been indi-
cated that the approximate theory of the optical activity
isvalid just under these approximations[29]. We do not
indicate here the expressions for the refractive indices
which follows from other constitutive equations.

As in the previous case of light propagation along
the optic axis, the most important factor in the case of
light propagation normally to the optic axisisthe essen-
tial difference in the description of the optical activity
based on different constitutive equations. The rotation
of the polarization plane through the angle x in the case
of light propagation along the optic axis is determined
by different gyration-tensor components and the use of
different constitutive equations, namely:

(24)
= Tdggzs/ (A JE4y) = Tdyy4/A.

Using constitutive equations (2) in the case of light
propagation along the optic axis, the difference in the
refractive indices and, therefore, also the rotation of the
polarization plane are determined by the component
033, Which differs from two other equal components. In
the description of the optical activity by constitutive
equations (1), the rotation of the polarization plane is
determined by two equal components of the gyration
tensor, a,,. In the description of the optical activity
along the direction normal to the optic axis, all the opti-
cal parametersin the case of constitutive equations (2),
including the refractive indices and the dlipticity of
eigenwaves, are determined by two equal components
of the gyration tensor, g,, = g,,. In the case of constitu-
tive eguations (1), these optical parameters are deter-
mined by the sum of the tensor components (a,, + 055).
The approximate relation between these componentsis
established by relationship (23). This is the essentia
difference in the description of the optical activity by
various congtitutive equations. This should be kept in
mind in the consideration of the phenomenon of optical
activity when using various constitutive eguations.

We believe that the relation between the gyration-
tensor components in different descriptions of the opti-
cal activity was first noticed in [29], where the equa-
tions of the normals obtained with the aid of constitu-
tive equations (1) and (2) were compared and the rela-
tionships between the gyration tensors used in different
equations were established. However, at that time, no
importance was given to this result.

It should be underlined once again that at present, it
is commonly believed that the congtitutive equations
suggested in [5, 14] are quite rigorous and used mainly
in theoretical studies, whereas the congtitutive equa
tions suggested in [8, 9] are approximate and used in
experimental studies. When selecting the constitutive
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Different constitutive equations, refractive indices n; ,, ge-
neralized field vectors ; , of the eigenwaves, and the form
of the A matrices for optically activeisotropic crystals of the
classes 23, 432 and uniaxial crystals of the classes 32, 422,
and 622 along the direction of the optic axis (8 = 0°) in the
case of normal light incidence

Authors, references,

constitutive equations, Ny , Yy » A matrix
Fedorov, Condon [5, 14] .
D = gjEy + iajHy 0 1 —ioy; O
Bl :HJka—IleEk 811 0 O —iGll

ia, 0 0 1

Ny 2= /€ F0p

Wy o= [£il feyq, +i, U feqq, 1] 0 ioy, &4 O

Born, Landau [8, 9]

D; = (& * 1§ Gimm) B Bj = WjHk 0 100
My, 2= /€11 F 033 €y 010050
o= (51, e T, 51 0001
V./en 93, 1] 0 0 1y O
Berreman, Drude [2, 27]
Dj = gjkEx + IjkHie By = HycHk 010 0
Ny 2= €1 + Varld F vy /2 e, 0 0 —iyy
Wy 2=[i(x €1 + Vauld +yyp) €, 0 _ c 0 1
0 iy; €83 O

i, :U(m FY1) 1

2002

equations, one has to bear in mind the applicability
range of the approximate equations and also the rela-
tionships between the gyration-tensor components used
in various constitutive equations.

Thus, we described in detail the calculation of the
refractive indices for the crystals described by the axial
classes 32, 422, and 622. These calculations for the
crystals described by other symmetry classes are not
considered in such detail. For the latter crystals, only
some essential features of the use of various constitu-
tive equations are considered.

Crystals of Classes 3, 4, 6 and 3m, 4mm, and 6mm

Unlike crystals of the classes 32, 422, and 622, the
gyration tensor of the crystals of the classes 3, 4, and 6
has, in addition to diagonal components, also antisym-
metric ones, a,, = -0, [5]. When using constitutive
equations (2), we assumed that the gyration tensor is
completely symmetric. Therefore, crystals of the
classes 32, 422, 622 and 3, 4, 6 were described by the
same diagonal gyration tensor, whereas the compo-
nents a,, = —0,, were assumed to be zeroes [8]. The
matrix A for the crystals of these classes in the case of
the oblique light incidence 8 = 0° (the optic axisis nor-
mal to the plate plane), Y = 0°, and an arbitrary angle ¢
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has the form

0J 2 2
O_ig €3~ Oz —&
D 12 c az
0 33— Oz3

A = E €n 10,
Oia 0
g 'du | 2 i
E 0 i(0y5(E33—033) +QxE")

2

0 €33— 033

Hereafter, the angles ¢, 6, and Y determine the position
of the orthogonal system of the principal axes of the
tensor in the laboratory coordinate system xyz. In the
Mathematica-4.1 package, the transition from one
coordinate system to another is performed via three
successive rotations: by angle ¢ around the z-axis, then

. 2 2 [l
1(001 (€33 = 0l33) + 0g5& ") o O
2
€33 —Ug3 E
_ 1l
0 'i‘ll u (25a)
—1a
212 2 c
€11(E53 — Oz3) — €338 . O
> g, O
€33 — U3 O

by angle 8 around the x-axis, and, finaly, by angle Y
around the z-axis.

In the case 6 = 90° (the optic axis lies in the plate
plane), with the other conditions being the same, A is
written as

The above matrices are applicable to the crystals of
the classes 32, 422, and 622 under the condition a,, =
0,, = 0; the crystals of the classes 3m, 4mm, 6mm under
the condition a; = a,, = 03; = 0; and the crystals of the
classes 23 and 432 under the conditions o, = a5, = 033
and o, =0a, =0.

In the crystals of the symmetry classes 3, 4, and 6,
the component a,, enters the expressions of the refrac-
tiveindices (here, they are given for the cases6 = 0° and
0 =90°, respectively):

2 .
Ny o = A€ —0Op Ay, (26a)
€ GZ GZ
2 _ €p—0Up—0dp
Ny, = —————(&; + €33+ 20405
€11—0Up (26b)

* «/(833 —811)2 +4(0yy + 033)(011€33 + Ol33€) ) /2.
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O 2 2 . 2 2 . O
O 03058 €n—0p—8& i[033(€11 — A1) + 01 & 10558 O
0 2 2 2 2 0
O €14 —0yq €11 —0Uyg €1 =0y €11 —0Uyy O
U 2 2 . . 2 2 U
O€n(En —an —0i,) O3 05p8 13058 1011 (€1 — 033 —03p) [
a 2 2 2 2 0
A = % € —0Uy € — 0y €11~ 0y € —0Uy %(25b)
| 2 2 . 2 2
00 (€1 —0yy —0pp) g 0350158 En—0On—0p [
O 2 2 2 2 0
O €n—0ay €p—0py €n—0py En—0ay 0
U . 2 2 2 2 g
U 1€410015€ i[ag(€—0p) + 0 E]  €33(81—011) —€45¢ ;05 0
O 2 2 2 2 O
O €n—0ay €n—0ay €n—0Oy En—0ay O

Obvioudly, if a,, = 0, expressions (26) are transformed
into the corresponding expressions for the classes 32,
422, and 622.

The crystals of the classes 3m, 4mm, and 6mm have
been believed to be optically inactive for quite a long
time, because their optical activity is described by fully
antisymmetric gyration tensor, o,, = -0, and a,, =
05, = 033 = 0. However, it was shown [30] that the opti-
cal activity of these crystals manifestsitself only in the
case of oblique light incidence (the elipticity of the
eigenwaves has the nonzero value), despite the fact that
it is seen from expressions (26) that, even at hormal
light incidence, the refractive indices depend on the
component d .

Crystals of Classes (4, 42m)
In crystals of the class 4, the components of the
gyration tensors are 0,, = -0, 033 = 0, and a,; = 0.

No. 5 2002



MODERN APPLICATION PACKAGES

In crystals of the class 42m, the gyration tensor o, =
a,, =0 differsfrom the gyration tensor of the remaining
uniaxial crystals. Thisdifference reducesto the fact that
only one axis of the tensor a coincides with the axis of
the tensor a, and both axes coincide with the direction
of the optic axis of the crystal. If the direction of the
optic axis coincides with the direction of the z-axis of
the chosen laboratory coordinate system, then two
other principal axes of the tensor a are directed along
the x- and y-axes, respectively, whereas two other
orthogonal principal axes of the tensor a are rotated by
acertain angle around the x- and y-axes, respectively. If
the expressions of the refractive indices are to contain
the nondiagonal components of the tensor a, the system
of the principal axes of tensors a and € should be
rotated by an angle ¢ around the z-axis. We should like
to draw attention to the fact that, in uniaxial crystals of
other classes, this rotation by the angle ¢ does not
change theform of thetensorsa ande at 6 =0°and 6 =
90° irrespective of normal or oblique light incidence,

whereasin crystals of the classes 4 and 42m, therota-
tion by an angle ¢ plays a decisive role in the calcula-
tion of the refractiveindex at © = 90°, with the tensor €
remaining constant. The matrix A for these crystal at
normal light incidence at 8 = Y = 0° and an arbitrary
value of theangle ¢ is

H-ia, 1 io, 0 J
O i —i O
A=[ €, 10, O 'O(HD. (272)
Oia 0 ia 1 0O
|:| 11 . 12 . D
O 0 —ay &y 0,0

Under the same conditions but at 8 = 90°, the matrix A
has the form

0 o110 o0 U
e v O
11 v
0— 90 —0
A=E_ E, (27b)
luv "4
0790 70
U U
00 Oggg 0 O

. 2 2
WhereU=C(11C052¢+01251n2¢, V=€11—C(11 — (112,
andz=¢,, - .

These matrices provide the determination of the
refractive indicesin the form

2 _ 2 2
Ny = &€ — 0y —Uypp

(28a)
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a6=0°and
€ —0(2 —GZ
niz = o - RCIRESS
2(&y —[0,0082¢ + a,sin2¢] %) (28b)

* «/(833 —811)2 +4[ay;c082¢ + a,Sin2¢] 2833)

at 8 =90°.

Using constitutive equations (2), one arrives at the
expression for n; , at 8 = 90° in the form

2 -—
N1, = (€ +Ex

(E55— £11)7 + 4[ 0, COS20 + gy, 5in26] °)/2.

Comparing expressions (28b) and (29), we clearly
see which approximations and which relations for the
components were used in the rigorous and approximate
theories:

(29)

O = 03N, Qg = AN, (30)

Crystals of Orthorhombic Class 222

Inthegeneral case, all the components of the tensors
€ and a have nonzero values. In this case, the tensor €
is symmetric, while the tensor o can be of an arbitrary
form. Using the Mathematica-4.1 package, the matrix A
can be obtained in a general but rather cumbersome
form and, therefore, is not indicated here. Moreover,
this general matrix is characteristic of only one class of
crystals—triclinic crystalsof class 1. For crystals of the
classes 2, m, and mm2, the gyration tensor has nondiag-
onal components. Only one of its principal axis coin-
cides with one of the principa axes of the tensor &,
whereas the orthogonal pairs of two other principal
axes of each tensor arelocated in the xOy plane and are
rotated by different angles around the x- and y-axes,
respectively. In order to obtain the correct dependence
of the refractive indices of eigenwaves on angle ¢, one
has to perform transformations similar to those made

for crystals of class 4. The corresponding expressions
are too cumbersome and, therefore, are not given here.

Consider the crystals of the orthorhombic class 222.
Here, the directionsu,, u,, and u; (ju; | = 1) of the prin-
cipal axesof the tensors € and a coincide with the sym-
metry axes 2 of the crystal. In the laboratory coordinate
system, these tensors are diagonal (€, # €5, # €53 % 0,
Ex=0,01 20 #03370,0,=0,j ZK) if u; [[eg, uy ||
e,, u; || e, (the Eulerian anglesare ¢ = 6 = P = 0°). In
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this case, the matrix A at oblique incidence hastheform

KONSTANTINOVA et al.

At the normal light incidence, the refractive indices
are

2
Nio = (€11 +€xn+ 204,05
(32)

F «/(522 - S11)2 +4(0y + 0p) (0130 + UpEy) )/2.
If$=0°and 6= =90° thenu, ||e, andif § =6=90°
and Y = 0°, then u, || e,. Therefore, the subscripts of the
&; and a;; of the matrices A and, naturally, in the refrac-
tive indices corresponding to each of the above cases
are changed by cyclic permutation. With due regard for
this approximation, the relation between the gyration-
tensor components g;; and a;; can be written as

€t Ex3
O = (0 +ag) — 5
€11 T Ex3

5 (33)

02 = (0 + Qg3)
€1t Ep
2
In the above expression, the relation between the com-
ponents is analogous to the relation established for the

crystals of the classes 32, 422, and 622 in expression
(23) and is dso valid in the same approximation.

033 = (O + Q)

CONCLUSIONS

The analytical form of the matrix A and the specific
features of its characteristics for optically active crys-
tals of different symmetry classes was obtained and
analyzed by the Berreman method using the Mathemat-
ica-4.1 package. It is shown that the matrix A isinitself
of interest for studying crystals, since its eigenvalues
aretherefractiveindices and its eigenvectors determine
the polarization state of the waves propagating in crys-
tals.

The relation between the components of the gyra-
tion tensors used in the description of the optical activ-
ity in some commonly used theoriesis established. Itis
shown that the rigorous Condon—Fedorov constitutive
equations, most often used in theoretical studies,
describe the phenomenon of the optical activity in a

CRYSTALLOGRAPHY REPORTS Vol. 47

O 2 2 . 2 2 U
0 o €33~ Oz —§ 1(0pp(E33—055) + 0338 ") o O
0 2 2 [l
0 €33~ Uz3 €33 —Ug3 0
A=dEu 0 0 -0 g 31)
Oidy, 0 0 1 0
U . 2 2 2 2 u
E 0 1(Op(Ea3—Ogg) + 0558") (€33 —033) — €33 0 E
O 833—0(53 833—0‘53 u

way that is essentially different from the approximate
Born-Landau constitutive equations used in the exper-
imental studies. The expressions obtained for refractive
indices based on different congtitutive equations pro-
vide the determination of the applicability ranges of the
approximate theory.
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Abstract—Theinverse Faraday effect in anisotropic media has been studied theoretically. All the 32 symmetry
classes of crystals are considered at various relative orientations of the optic axes and directions of light prop-
agation. The specific features of the inverse Faraday effect in uni- and biaxia crystals are considered. © 2002

MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Nonlinear optical phenomena still attracts great
attention among experts in laser optics and its various
applications. Among these phenomena, a special group
is formed by the dc effects (the effects of optical recti-
fication). One of these effects, the so-called inverse
Faraday effect [1], consistsin the induction of dc mag-
netization in a dielectric by circularly polarized light,
i.e., magnetic optical rectification (detection), which
wasfirst predicted by Pitaevskii [2]. An interesting fea-
ture of this effect is its manifestation in nonabsorbing
media, which is of primary importance for quantum
opticsin the case of nondestructive measurements[3].

GENERAL THEORY OF INVERSE FARADAY
EFFECT IN CRYSTALS

The inverse Faraday effect in nonabsorbing media
can be conveniently described by the Pershan energy
method based on the free-energy function [4]. This
approach showed that it follows from the law of energy
conservation that the rotation of the polarization plane
in a magnetic field, the Faraday effect, and the inverse
Faraday effect are described by the same tensor.

Let alight wave propagate through a nonabsorbing
medium in a constant magnetic field. Then the free
energy of the medium F has the form

F = _%(Xijk(w’ @, 0)Ef* (w) E;(w)Hy(0)
ey

+Xijk(0, @ 0)E;(w)Ef (w)Hy(0)),

where E(w) isthe electric field of the wave, H(0) isthe
applied constant magnetic field, and X is a third-rank
pseudotensor that describes the interaction of the field
with the material.

For crystals that are invariant with respect to the
time reversd, i.e., that have no magnetic order, the fol-

lowing condition isvalid [4]:

Xijk = —Xﬁk =i |Xijk|i (2)
in other words, the pseudotensor X is purely imaginary.
It follows from the symmetry of Eq. (1) with respect to
the permutation of the electric-field components of the
incident wave that

Xijk = Xj*ik- 3)

Combining conditions described by Egs. (2) and (3),
we have

Xiik = 1€ AK “4)

where g; is the totaly antisymmetric Levi-Civita

pseudotensor and A isthe real second-rank tensor dual
to the tensor x.

According to the definition of the free energy, the
polarization P(w) induced by the incident wave and
responsible for the Faraday effect has the form:

_ _OF _
Pi(w) = e

iej AkEj(w)H(0). (5)

Differentiating free energy described by Eq. (1)
with respect to H,(0), we obtain the induced magnetiza-
tion M(0) in the field of the light wave E,

oF
dH; (0)

Comparing Egs. (5) and (6), we see that the induced
polarization and magnetization are described by the
same tensor.

As far as we know (see, eg., [9]), all the previous
studies considered only the isotropic media, for which
the A, tensor becomes ascalar. Then, Eq. (5) describes
the rotation of the polarization plane of a wave in a
transverse constant magnetic field, while Eg. (6), the
magnetization of the medium along the direction of

M(0) = -

= ie.lelkEiEj*- (6)
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propagation of a circularly polarized wave. Below we
consider a more genera case of the inverse Faraday
effect in anisotropic crystals for various geometries of
the mutual orientation of the wave vector and the crys-
tal axes.

To study the inverse Faraday effect, we use the ten-
sor notation that is not based on coordinates [6]. For
isotropic media of symmetry occom and gyrotropic
media of symmetry coco and also for cubic crystals of

the symmetry classes 23, m3, 432, m3m, and 43m,
the tensor A, has the form

A = Aee, @)

where e; are the unit vectors along the coordinate axes
of the crystallophysical basis and A is the constant that
describes the Faraday effect.

For trigonal crystals of the classes 32, 3m, and 3m;

tetragonal crystals of the classes 422, 4mm, 212m, and
4/mmm; hexagona crystals of the classes 622, 6mm,

6m?2 , and 6/mmm; the textures of the classes o2, com,
and co/mm, we have

A = Aee + Aese;. 8)

For trigonal crystals of the classes 3 and 3; tetrago-
nal crystals of the classes 4, 4, and 4/m; hexagonal

crystals of the classes 6, 6, and 6/m; and textures of the
classes o and co/m, we have

A = Aee + Aese; + Ag(e e, —s€)). )

For al the orthorhombic crystals of the classes 222,
mm, and mmm, we have

(10)

For monoclinic crystals of the classes2, m, and 2/m
(2 || %5, mO X3), we have

A = Aee + Aee, + Ajeze;.

A = Aee + Al + Ajeze; (an

+A (68, + 6,6 + As(e,6,—€,€).

For monoclinic crystals of the classes2, m, and 2/m
(2 || %5, mOX,), we have

A = Aee + Al + Ajeze;

(12)
+ A (e85 + €36)) + A(€,6;—€63€y).

For triclinic crystals of the classes 1 and 1, we have
A = Aee + A, + Ajeze;
+A(e8; + €,6)) + As(e,€,—e,€) (13)
+Ag(e18; + €58)) + Ar(e85—e5€)

+ Ag(€,6;3 + €36;) + Ag(€,6;—€36,).
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According to (6) and (7), for isotropic media cocom,
gyrotropic media coco, and cubic crystals of the classes
23, m3, 432, m3m, and 43m, the induced magnetiza-
tion has the form

M(0) = iA((E; Es—EE3)e
(14)
+(E;E; —EsET)e + (ETE;—EjEY)ey),

where E; isthe ith component of the electric field of the
electromagnetic wave in the crystal physical basis.

In the general case, the phase anisotropy associated
with the birefringence of the crystal should also be
taken into account. In order to determine the electric-
field components, it is necessary to solve a standard
problem of the propagation of light in an anisotropic
medium [7].

Since the phase shift of the field components in
Eq. (14) is constant during light propagation, the mag-
netization M(0) can be written as

M (0) = iA[E x E*]. (15)

One can readily see that the induced magnetization
isaligned along the wave vector, with the effect having
the nonzero value only at anonlinear polarization of the
incident wave. In other words, we obtained aresult sim-
ilar to the result for isotropic media.

INVERSE FARADAY EFFECT IN UNIAXIAL
CRYSTALS

Consider normal light incidence for uniaxia crys-
tals.

For trigonal crystals of the classes 32, 3m, and 3m;
tetragonal crystals of the classes 422, 4mm, 42m, and
4/mmm; hexagonal crystals of the classes 622, 6mm,

6m2; and 6/mmm, and textures of the classes ©2, com,
and co/mm, the magnetization is written as

M(0) = iA[E xE*] +iA,(E,E5 —ETEy)e;. (16)

Assume the wave vector is directed along the optic
axis. Then (16) takes the form

M(0) = iB[E x E*]e,,

Asin the previous case, the induced magnetization
is parallel to the wave vector and necessarily has a cir-
cular component of the incident-wave polarization.

Assume now that the light propagates normally to
the optic axis. Then, the induced magnetization has the
form

M(O) = AlEoEeSin((ko_ke)r +¢)S’ (18)
where k, and k. are the wave vectors of the ordinary

and extraordinary waves, respectively, s isthe unit vec-
tor paralel to the wave vector of the incident wave,

(17)
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E,and E, are the components of the ordinary and
extraordinary waves in the incident field, and ¢ is the
phase shift between these components at the interface.

It is seen from Eq. (18) that the magnetization M(0)
isparallel to the wave vector. We should like to empha-
sizethat, unlike isotropic media, in this case theinverse
Faraday effect takes place also for the linear polariza-
tion of theincident wave because of two normal orthog-
onally polarized waves propagating with different
velocities. Hence, the polarization of the wave propa-
gating in a crystal periodically changes in space from
circular to linear with the period A/An, where A is the
wavelength in a free space and An is the difference in
the refractive indices of the ordinary and extraordinary
waves. The periodic variation in the wave polarization
results in the spatial oscillations of magnetization,
which isreflected in Eg. (18).

Now, consider amore general case wherelight prop-
agates at an arbitrary angle to the optic axis. Here, the
induced magnetization is not parallel to the wave vec-
tor, becausethe electric field vector of the extraordinary
wave forms a certain angle with the wave vector.

For uniaxial crystals, the refractive indices and the
unit vectors of the electric field of the ordinary and
extraordinary waves can be represented as[7]

n0 = A/E_li ne = 8183 2.1/2? (19)
(g1 + (e3—£4)(sC)")
[sxc]
€ = ———2—3-2,
(11—(sc) ) 0
e = [3(sc) -4,
(1—((sc)/e))" " &

where sand ¢ are the unit vectors along the wave vector
of the incident wave and the optic axis, respectively,
and €, and g, are the eigenvalues of the permittivity
tensor.

Substituting Eq. (20) into the general expression for
magnetization, (16), we arrive at

M(O) = Al[eoxee]Sin((ko_ke)r +¢)E0Ee

+ Ay((81)(E81) + (€:81)(E58,))
x sin((ko—ke)r +¢)E E.€;.

The first term is similar to Eq. (18) for light propa-
gation normal to the optic axis, but, because of the lon-
gitudinal component of the electric field of the extraor-
dinary wave, the induced magnetization is not parallel
to the wave vector. The second term accounts for mag-
netization along the optic axis of the crystal which
oscillates in space.

Now, consider the next group of crystals. We can
write the following expression for the magnetization of

trigonal crystals of the classes 3and 3, tetragonal crys-

21)
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tals of the classes 4, 4 , and 4/m, hexagonal crystals of

the classes 6, 6, and 6/m, and textures of the classes «
and co/m:
M(0) = iA[E xE*] +iA(E,E; —EJE,)e;
(22)
+ Ay((EsE; —E;E3)e, — (E1E5 —E3ET)ey).
Consider two particular cases where light propa-
gates along the optic axis and normally to it.

Inthefirst case, the result obtained issimilar to (16),
and induced magnetization is parale to the wave
vector.

The second case, where light propagates normally to
the optic axis, is more interesting. Representing the
electric field of the incident wave in the form

E = Eo(1/42)[sxc] + E(1//2)exp(id)es,  (23)
we arrive at
M (O) = AlEoEeSin((ko - ke)r + ¢)S
+ AsE El[sx clsin((k,—ke)r +9).

It can be seen (24) that induced magnetization is not
paralel to the wave vector. The first term contributesto
the longitudinal component of magnetization, whilethe
second term, to the transverse component. Comparing
Egs. (24) and (9), we see that longitudinal magnetiza-
tionisdescribed by the symmetric part of thetensor A,

whereas transverse magnetization, by the antisymmet-
ric one.

At an arbitrary angle between the wave vector and
the optic axis, we use Eq. (21) to obtain

M(0) = Ajfe, x e sin((k,—ke)r +¢)E,Ee
+ Ay((€081) (€e8,) + (€ce1)(€08,))
x sin((ko—Ke)r +¢)E Ecey
+ Ag((€,85)(€8,) + (€c83)(€08,))
x sin((ko—ke)r +¢)E Ece;
+ Ag((€85)(€e8;) + (€c83)(€081))

x s.n((ko_ke)r + ¢)E0Eeel'

(24)

(25)

INVERSE FARADAY EFFECT IN BIAXIAL
CRYSTALS

For al the orthorhombic crystals of the classes 222,
m, and mmm, we have

M(0) = A (E3E; —E;E3)e;
(26)
+ A)(E B3 —E3ET)e, + Ag(E,ET —E E)es.

Generally, the magnetization direction is not paral-
lel to the direction of a wave propagation. In this case,
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spatial oscillations of magnetization with the period
dependent on the direction of light propagation are
observed. The only exception is the case of the config-
urations in which the wave vector is parallel to one of
the optic axes.

As is well known, the optic axes in orthorhombic
crystals lie in the xz-plane symmetrically with respect
to the z-axis and form an angle 3 with it. Thisangleis
defined by the equation

1/e,—1le, 27

/e, —1le,’

whereg, < g, < €, are the principal values of the permit-
tivity tensor. If the wave vector is parallel to one of the
optic axes, the electric-field components are related by
the following expressions:

tan = £

E,sinB + E,cosp = 0, E;(1+ tan’B) + E; = E*. (28)
Substituting Eq. (28) into Eq. (26), we obtain

Mc(0) = E/E*—Ej/cos’B((A, + Ag)sinB), (29)

My(0) =E,./E” — EZ/cos’ B(A tan’ B — A;) cosB, (30)

where M, is the magnetization induced along the optic
axis, and M is the magnetization induced normally to
this axis.

An interesting feature of the inverse Faraday effect
isobserved if the electric field has al the three compo-
nents. Then, the induced magnetization is not parallel
to the wave vector because of the crystal anisotropy,
despite the absent spatial oscillations. In this case, the
incident wave should be circularly polarized.

For the monoclinic crystals of classes2, m, and 2/m
2 || X5, m O X;), we have

M(0) = A(E;E; —E;Es)e;

+ Ay(EsET —E3Ej)e, + Ay(E E; —ETE;)es
(31)
+ A,((EsE; —E;E3)e, + (E E3 —E;ET)e))

+ As((EsEZ —E;E3)e, — (EE5 —E3EY)ey).

If light propagates along the X;-axis, the induced
magnetization is aso parale to this axis. In all the
other cases, the wave vector and magnetization are not
paralel. Asin the case of orthorhombic crystals, a cir-
cularly polarized wave propagating along one of the
optic axes induces magnetization that is constant in
space, but not parallel to the wave vector.

For triclinic crystals of the classes 1 and 1, we have
M(0) = A(E,E; —~E;Ej)e,
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+ A)(EsET —E3Ej)e, + Ay(E E; —ETEy)e;
+ Ay((EsE; —E,E3)e, + (E;E3 —E3Ef)e))

+ As((EsE; —E,E3)e, — (EJE5 —E3ET)ey) (32)
+ As((EsE; —E;E3)e; + (ELET —E ES )ey)

+ A/((EsE; —E,E3)e; — (E.ET —EjEY)ey)
+ Ag((E E3 —EsET)e; + (E,ET —EjEY)ey)

+ Ao((E,E; —EzET)e; — (EEf —E EY)e,).

The anisotropy is most pronounced intriclinic crys-
tals, because these crystals have no axes or planes of the
crystallographic symmetry. In these crystals, the
induced magnetization and the wave vector, as follows
from Eqg. (32), are not parallel, regardless of the config-
uration. Asin the two previous cases, the magnetization
is constant in spaceif light propagates along one of the
optic axes. In al the other cases, spatial oscillations of
the induced magnetization with a period dependent on
the direction of light propagation are observed.

CONCLUSIONS

Thus, we considered the specific features of the
inverse Faraday effect in anisotropic crystalline media.
Because of bhirefringence, the inverse Faraday effect
also takes place if the incident light is linearly polar-
ized, but then the magnetization oscillates in space. In
this case, aone-dimensional magnetic latticeisformed.
It is also worth noting that the inverse Faraday effect in
biaxial crystals has a specific feature. If light propa-
gates along one of the optic axes, the induced spatially
constant magnetization is not parallel to the wave vec-
tor of theincident wave. Using additional optical beams
propagating along other directions, one can create two-
and three-dimensional periodic magnetic structures.
These structures can be used for the creation of photon
crystals, which presently attract much attention.

Finally, let us consider the numerical value of the
above effects. Magnetization in isotropic media has the
form [8]

M = VAIE/2ien, (33)

where V is the Verdet constant, A is the light wave-
length, | isthe intensity of the incident wave, ¢ is the
degree of the wave dlipticity, ¢ is the light velocity in
vacuum, and n is the refractive index of the medium.
The Verdet constant for a ZnSe crystal at the wave-
length 600 nm is about 300 rad T-! m~! [9]. Modern
femtosecond lasers can emit nondestructive pulseswith
apower of up to several TW. According to Eg. (33), the
induced magnetization is of the order of 0.5 x 10* A/m,
which corresponds to the magnetic field with the induc-
tion of 0.05 T. The period of the spatia oscillations of
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the magnetization is A/An, i.e., 10—~100A. A resolution
of several microns in the measurements of these fields
has long been available [10]. Thus, one can hope that
the inverse Faraday effect in crystals will soon be 7
experimentally detected and used in practice.
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Abstract—The polarizabilities of ions in the MgF,, ZnF,, TiO,, and SnO, compounds have been calculated
based on the point-dipole model. It is shown that cation polarizabilities produce a stronger effect on the bire-
fringence of AX,(X = F, O) compounds than anion polarizabilities. © 2002 MAIK “ Nauka/Interperiodica” .

The point-dipole model [1-7] allows one to calcu-
late theoretically the parameters of the optical indica
trix of a crystal knowing its structure data and polariz-
abilities of structural units. The latter can be optimized
S0 as to reduce to a minimum the differences between
the calculated and experimentally measured optical
properties. This study is devoted to modeling optical
properties in the point-dipole approximation and refin-
ing the polarizabilities of ions in AX,(X = F, O) com-
pounds with arutile-type structure.

In terms of the point-dipole model, atomsin acrys-
tal are considered as dipoles, whose dimensions are
negligibly small in comparison with the interatomic
distances. In this approximation, the local electric field
induced by alight wavein the position k of the unit cell
has the form [1]

Flo=E+ 3 L(KK)P(K)/eov, 1)
4

where E is the macroscopic field, P(k') is the dipole
moment in the position K, v isthe unit cell volume, and
L(KK) is the Lorenta-factor tensor, which depends on
the geometry of the structure.

The dipole moment in the k' positionisrelated to the
local electric field F(k) in the same position by the
equation

P(K) = g,a(K)F(k), 2

where a(k) is the polarizability. Substituting Eq. (2)
into Eqg. (1), we abtain the system of linear equations
with respect to the components of the F vector. Solving
this system and summing up the components of the vec-
tor F multiplied by the corresponding polarizabilities
over all the k positions, one obtains the tensor relating
the total dipole moment of the unit cell to the vector of
the macroscopic field. Dividing the components of this
tensor into the unit-cell volume, one obtains the dielec-

tric susceptibility tensor and can pass to the dielectric
constant tensor.

To perform such a calculation, | wrote a program
entitled AnRef. Theinput data are the parameters of an
elementary parallelepiped, the fractional coordinates of
al the atoms in the unit cell, and their polarizabilities.
The Lorenta-factor tensor is calculated by the method
stated in [1]. If the cal culated dielectric-constant tensor
is not diagonal, the program reduces it to the principal
axes; then, the principal refractive indices equal to
square roots of the diagonal components are calcul ated.

For the crystals of intermediate systems, to which
the AX, compounds are related, two of the diagonal
components of the dielectric-constant tensor are equal
to the sguared refractive index No of an ordinary ray
and one diagonal component is equal to the squared
refractive index Ne of an extraordinary ray.

Using the AnRef program, we determined the polar-
izabilities of R-ionsinthe MgF,, ZnF,, TiO,, and SnO,
compounds (see table), with due regard for their struc-
tural data [8] and also the principal refractive indices
for the D line (A\p = 589 nm) [9]. All the AX, com-
poundswith arutile structure areisostructural and crys-
tallizein the tetragonal sp. gr. P4,/mnm[8].

Numerous calculations were made using different
polarizabilities of cations and anions until the attain-
ment of the good agreement between the cal culated and
experimentally measured No and Ne values. The
uniqueness of such a choice was provided by the fact
that the number of calculated polarizabilities coincided
with the number of independent components in the
dielectric-constant tensor. It is important that each ion
or cation, for which the polarizability was determined,
occupies only one position in the crystallographically
independent region of the unit cell.

The polarizabilities of ions depend on many factors,

e.g., on the bond polarity. As a consequence, they are
essentially different in different compounds but remain

1063-7745/02/4705-0829%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Optimized ion polarizabilities
Compound No, Ne lon Ry, cm?® R*, cm® VoV, A% | (RRI(Vy~V)
MgF, 1.378 Mg?* 0.5 1.22 2.858 —-0.252
1.390 F 20 1.64 -1.430 -0.252
ZnF, 1.510 Zn? 17 1.69 3.011 0
1.526 F 20 2.22 —1.506 0.1
TiO, 26211 Ti% 17 7.443 2.800 =21
2.9085 o> 3.8 1432 —-1.400 -1.7
Sno, 2.0006 S 3.6 5.823 3.072 -0.7
2.0972 o> 3.8 1.887 -1.536 -1.2

* R=N,a/3gq where N, isthe Avogadro number and a is the polarizability in Eq. (2).

close to the ionic refraction R, of the corresponding
chemical elements[10].

The optimized cation polarizabilities for al the
compounds except for ZnkF, (where the selected polar-
izabilities are close to the refraction values) are much
higher, and the anion polarizabilities are less than the
corresponding refraction values. It should be indicated
that the volume V of the Voronoi-Dirichlet polyhedron
of the cation [11] is smaller, whereas that of the anion
is larger than the average volume per atom in the crys-
tal. Nevertheless, the cation and the anion in each com-
pound have comparable (R, — R)/(V, — V) ratios.

The anions in the crystals of the compounds with a
rutile-type structure form a dightly distorted close
packing. The close packed layers of anionsin AX, are
corrugated in such a way that the fourfold symmetry
axes are parallel to the layers and the optic axis is par-
allel to these symmetry axes. Sincethe optic axisis par-
alel to the layers of the anion packing, which has
pseudohexagona symmetry, the variation in the princi-
pal birefringence in various AX, compounds should be
caused mainly by the different polarizabilities of cat-

Ne_No
0.06
0.04

0.02

3.0

1 2 3 4 5
R, cm?

Birefringence of AX, crystals as a function of cation polar-
izabilities at various anion polarizabilities (indicated at the
corresponding curves).
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ions and not of anions. The problem of the most pro-
nounced influence of cation polarizability on birefrin-
genceis of special importance because the polarizabil-
ity of a cation can be evaluated based on the value of
birefringence ignoring the principal refractive indices.
The method is very advantageous for estimating polar-
izability because it is relatively simple in comparison
with measurements of the principled refraction indices.

The principal refractive indices for various ion
polarizabilities for CoF,, NiF,, ZnF,, MnF,, MgF,,
FeF,, SnO,, TiO,, GeO,, and MnO, compounds were
calculated with the aid of the AnRef program and struc-
tural data[8]. For each compound, the plots of birefrin-
gence as afunction of a cation polarizability were con-
structed at different anion polarizabilities. Since these
compounds are isostructural, the plots thus constructed
reflect the influence of cation polarizability on birefrin-
gence.

The N, — N, dependences as functions of cation
polarizability calculated for the MnF, structure are
showninthefigure. Each curve correspondsto acertain
value of anion polarizability (1.5-3.0). Within therange
of cation polarizability from 1.0 to 3.0, the curves lie
close to one another.

The plots obtained for other AX, structures are sim-
ilar to the one considered above. To determine the slope
of the curves, we calcul ated the changein birefringence
per unit polarizability of the cation A(N, — N,)/AR for
the curve corresponding to anion polarizability equal to
1.5. Intherange of cation polarizability from 1.0to 1.5,
A(Ng — Np)/AR varies from 0.010 to 0.015 for fluorides
AX, and from 0.017 to 0.030 for oxides. The close
curve positions at the cation polarizability 1.5 is char-
acterized by the difference in birefringence A(N; — N,),
which correspond to anion polarizabilities 2.5 and 1.5
for fluorides and 3.5 and 1.5 for oxides. The value of
A(Ng — N,) is considerably lower than the value of
A(N: — No)/AR and is equal to 0.0009-0.0024 for AX,
fluorides, and 0.0045-0.0118 for oxides. The point of
intersection of the curve for anion polarizability equal
to 1.5 with the vertical coordinate axisis characterized
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by birefringence AN, when the cation polarizability is
equal to zero. The value of AN, varies from —0.0042 to
—0.0032 for AX, fluorides and from —0.0056 to —0.0035
for oxides.

Two compounds, FeF, and MnO,, are of special
interest. They have a much lower value of A(N, —
N,)/AR and a much higher value of A(N,— N,)/AR than
all the other compounds. The value of A(N,— N,)/ARis
equal to 0.002 for FeF, and to 0.012 for MnO,; the
value of A(N, — N,) is equal to 0.009 for FeF, and to
0.035 for MnO,.
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Abstract—Absorption and circular-dichroism spectra of iron-doped AIPO, crystals have been studied. For the
first time, the experimental data on the electronic states of the [FeO,]>~ complex are obtained in the range from
190 to 350 nm with due regard for the interactions that cannot be described within the one-electron approxima-
tion. The bands observed in the absorption and circul ar-dichroism spectra are attributed to corresponding elec-
tronic transitions. The advantages of the use of crystal-field-induced circular dichroism in comparison with
other spectroscopic methods in the analysis of the electronic states of impurity ions in gyrotropic crystalline
matrices are considered on the [FeO,]®> complex. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Berlinite (AIPO,) crystals are a promising material
for acoustic devices [1-3], which has stimulated the
study of its crystallization conditions, the growth of
large perfect berlinite crystals [4-9], and their charac-
terization [10-15]. It is well known that impurities
essentially change the physical properties of crystals,
whichisalsotruefor berlinite crystals. In thisstudy, we
detected impurity iron ionsin a crystal by the method
of circular dichroism along with the conventional
method of adsorption spectroscopy. For optically active
crystals, this method provides additional information
on the forbidden electronic transitions of the d- and f-
elements [16].

Berlinite crystals are structurally similar to quartz

(sp. gr. P3,21 (D3) or P3,21 (D3), a = 493, ¢ =
10.94 A, Z = 3) [17]. The Al and P atoms aternately
occupy equivalent positions with symmetry 2 in the
centers of dightly distorted oxygen tetrahedra around
the 3, or 3, axesforming the chainsin the crystal struc-
ture. If theiron atomsisomorphously replace aluminum
atoms, then the electronic transitions of aFe** ionin a
chiral crystalline field can be active in the formation of
circular-dichroism spectra.

Below, we describe the study of the absorption and
circular-dichroism spectra of undoped and iron-doped
AIPO, crystals. The choice of an iron activator is
explained by the specific features of hydrothermal syn-
thesis, which makeiron the most probabl e impurity that

can be isomorphously incorporated into the berlinite
crystal lattice.

Undoped berlinite crystals were grown from a solu-
tion of orthophosphoric or sulfuric acids under different
conditions. The growth conditions are described in
detail elsewhere [7, 8]. Iron-doped berlinite crystals
were grown from asulfuric-acid solution. Theiron con-
centration in crystals determined by flame photometry
varied from 0.1 to 0.001 wt %. The measurements were
made on plane-parallel plates cut out from single crys-
tals with different iron content normal to the optic axis.

The absorption spectrawere measured on a Specord
M-40 spectrophotometer; the circular-dichroism spec-
trawere measured on aMark-3 (Jobin-Y von) dichrom-
eter in the spectral range from 190 to 800 nm.

ABSORPTION AND CIRCULAR-DICHROISM
SPECTRA

The absorption and circular-dichroism spectra of
iron-doped AIPO, crystals recorded at room tempera-
ture showed the bands caused by a presence of Fe** iron
ions (Figs. 1, 2). The experimental data obtained are
listed in the table. Data [18] on the polarized (T(E || €)
and o(E U ¢)) orthoaxial spectra of iron-doped AIPO,,
GaPO,, AlAsO,, and SiO, crystalsare also indicated in
thistable. In general, our absorption spectraare consis-
tent with the datain [18]. However, the number of the
registered bandsin our axial spectraexceedstheir num-
ber in [18]. The last column of the table indicates the

1063-7745/02/4705-0832%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. (a) Absorption and (b) circular-dichroism spectra of iron-doped AIPO, crystals in the range of d—d transitions.

possible identification of the bands observed with the
corresponding electronic transitions.

With due regard for the close ionic radii of Al** and
Fe** ions [19] and the isostructuraity of AIPO, and
FePO, crystals [20], one could expect that iron atoms
replace aluminum atomsin the oxygen octahedrain the
berlinite lattice. Taking into account all the above data,
we shall interpret the obtained spectrabased on the data
on electronic states of thetetrahedral [FeO,]>- complex.
The energies of the Fe** electronic states (3d3-configu-
ration) in atetrahedral crystallinefield are calculated in

CRYSTALLOGRAPHY REPORTS  Vol. 47
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[21]. It iswell known that the ground state of the Fe*
ion in atetrahedra crystalline field is the °A,-state. All
the excited states are either quartets or doublets. Thus,
the transitions in the crystaline field are parity- and
spin-forbidden. The simultaneous influence of different
mechanisms of acquiring the intensity, such as spin-
orbital interaction, the distortion of tetrahedra, etc.,
resultsin alow resolution of the transitions to the quar-
tet states. It is seen from the spectra shown in Fig. 1la
that, as in [18], the absorption-band intensities in the
range from 300 to 800 nm are weak. First, as was
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Absorption and circular-dichroism bands due to electronic transitions of Fe3* ions in tetrahedral crystalline field and bands
due to transitions with charge transfer in iron-doped AIPO, crystals

Positions of the band maxima
absorption spectra circular-dichroism spectra absorption spectra[17] Terms and transitions
A, nm v, cmt A, nm v, cmt A, nm v, cmt
543 18400 (*T,)
505 19420 “T,(G)
495 20202
2THG
485 20685 ] 2G)
473 21141 470 21276 ] 474 21100 (*T,) T.0)
445 22472 445 22472 2
430 23256 430 23256 432 23100 (“A.,*E) “T,, *E(G)
405 24690 406 24630 406 24500 (T,) “T, (D)
377 26525 376 26580 376 26580 (“F) 4E (D)
360 27777 362 27425 4T, (P)
337 29673 335 29851 27, 2T,(F)
275 36363 6A; —> 4T,
246 40650 252 39683 6, — 6T, (t— 2¢)
218 45870 225 44444 218 45900 (t —~ 2¢) | %A, — °T,

aready noted, all the electronic transitions of Fe** ions
in the tetrahedral crystalline field (d—d transitions) are
forbidden, and, second, the iron concentration in our
crystalsis very low (Cg, < 0.1 wt %). In the circular-
dichroism spectra obtained (Fig. 1b), these forbidden
transitions are seen to be much better. All circular-
dichroism bands of dextrotating light in the range of
300-800 nm have a negative sign, except for the low-
intensity band at 470 nm (v = 21276 cm™!).

Asis shown in a number of studies (e.g., [22]), the
transitions of the [FeO,]> complex occurring with
charge transfer are in the range A < 300 nm (or v >
33000 cm™). Indeed, in the UV-range (Fig. 2a), the
intensity of the absorption band istwo orders of magni-
tude higher than the intensity of the bands considered
above, and, therefore, it can be attributed to transitions
proceeding with charge transfer (probably, t; —= 2e
[22]). Unlike the data in [18], a weak inflection is
observed at the long-wave wing of the absorption band,
which indicates that this band consists of several over-
lapping bands. The decomposition of the contour of this
band into Gaussian components allowed us to select at
least three bands, two of which have maximaat 218 and
246 nm. The third band has amaximum at A < 190 nm.
The circular-dichroism spectra clearly show (Fig. 2b)
that, in the absorption range, three bands are formed, at
225, 252, and 275 nm, one of which has the maximum
at A = 252 nm and a sign opposite to the sign of the
other bands.

The formation of two bands in the range of transi-
tion with charge transfer at 218 and 246 nm can be

CRYSTALLOGRAPHY REPORTS Vol. 47

explained as follows. Consider atransition with charge
transfer t — 2e. The state with the lowest °E energy of
the excited (e)’(t,)* configuration provides the forma-
tion of two sextet and two quartet states °T,, °T,, *T,,
and “T, because of the interaction with a hole at the
ligand orbital. The transition °A; — °T, isalowed in
the electrical dipole approximation and determines the
band intensity in the absorption spectrum. Theintensity
of the transition °A; — °T, (alowed in the magnetic
dipole approximation) should be essentialy lower in
the absorption spectra. However, the intensities of the
transitionsto °T, and T, in the circul ar-dichroism spec-
trum can be comparable if the symmetry is reduced
from T, to T. Since Fe* ions are located at the points
with the C, symmetry, al the degenerate states of these
ions are split and also mixed, so that the symmetry of
the statesformed iseither A or B. Within the framework
of the C, symmetry, the transition from the ground state
to any excited state would be alowed in terms of the
symmetry in the electrical-dipole and magnetic-dipole
approximation and, hence, it would be active in the cir-
cular-dichroism spectrum. Thus, the presence of two
bandsin the absorption spectrum and three bandsin the
circular-dichroism one is caused by splitting the tetra-
hedral states and mixing the split components within
the C, symmetry. The presence of the d—d transition
%A, — 4T, in the circular-dichroism spectrum is,
apparently, explained by the spin-orbital mechanism of
theintensity transfer from the °A, — T, transition. It
should be noted that experimental dataon the electronic
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Fig. 2. (a) Absorption and (b) circular-dichroism spectra of
iron-doped AIPO, crystals in the range of transitions with
charge transfer. Dashed lines show the decomposition of the
band contour into Gaussian components.

states of iron in the range from 190 to 350 nm are
obtained for the first time.

Asis shown experimentally, the absorption and cir-
cular-dichroism spectra of undoped berlinite crystals
(Fig. 3) in the range 190-300 nm have bands similar to
those observed in the spectraof iron-doped crystals, but
they have amuch lower intensity. It can be seen that the
wavelengths of the maxima of these bands slightly dif-
fer from the wavelengths of corresponding maxima of
anal ogous bands in the spectra of doped crystals. Since
berlinite crystals are grown by hydrothermal synthesis
from acid solutions in metal autoclaves under “severe’
conditions, we cannot exclude the presence of other
metals in crystals along with iron. Thus, the above
changes in the positions of the band maxima can be
explained by the presence in “pure’ AIPO, crystals of
small amounts of other metal ions and defects along
with iron, which provide the formation of typical bands
in the absorption and circular-dichroism spectrain this
spectral range[23]. The presence of defects and anum-
ber of metals in undoped berlinite crystals was aso
observed in [24].
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Fig. 3. (a) Absorption and (b) circular-dichroism spectrafor
undoped AIPO, crystals.

It should be emphasized that when studying differ-
ent iron-doped crystals, we established that, despite the
isostructurality of AIPO, and FePO, and close ionic
radii of AI®* and Fe*, iron-doped berlinite crystals are
characterized by anonuniform distribution of Fe** ions
over the sample volume (which is apparently caused by
the varying conditions of growth of single crystals).
Moreover, according to local X-ray spectroscopy anal-
ysis (MS-46 Cameca), the crystals had some (mainly,
iron) inclusions (€1 ymin size).

CONCLUSION

It isshown that berlinite crystals can be aconvenient
gyrotropic matrix for studying induced circular dichro-
ism in the range of the allowed el ectronic transitions of
the 3d-elements. For the first time, data on the interac-
tions that cannot be described within the one-electron
approximation are abtained by the method of induced
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circular dichroism for transitions with charge transfer
in a[FeO,]> complex.
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Abstract—A technique for the characterization of crystal homogeneity is proposed. It isbased on the analysis
of three-dimensional patterns corresponding to the intensity distributions of the Rayleigh component of scat-
tered light 3DIg(r). The potentialities of this technique are analyzed in comparison with those of the transmis-
sion tomography. Its efficiency is demonstrated by the study of a set of natural calcite samples. These samples
were certified according to the conventional scheme used in geology. In this technique, the dynamic range of
the inhomogeneity-parameter variation exceeds 10*. The method for finding the simple growth shape based on
the processing of 3DIg(r) patterns is described. The proposed technique for the characterization of crystal
homogeneity involves the quantitative description of the zonal structure of crystals including the contrast and
the main period. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The spectroscopy of scattered light is an efficient
method of studying crystal homogeneity. Indeed, any
distortion of the crystal structure resultsin achangein
polarizability of a volume element of the crystal,
which, in turn, contributes to the intensity of the unbi-
ased component I, of scattered light. The inelastic part,
of the intensity, in particular, | (the Mandelshtam—
Brillouin component), is provided by the scattering of
light by thermal excitationsin the crystal. Their param-
eters Q and k are determined from the conservation
laws of the momentum and energy. The intensity |z iS
given by therelationship Iz (~nfp?w*/pv?) [1], wheren
isthe refractive index, p are the photoelastic constants,
pisthe density, and v isthe sound velocity. It isimpor-
tant that |5 only dlightly depends on the defect concen-
tration in the crystal over arather widerange of itsvari-
ation, which allows one to use | as an internal stan-
dard of the intensity I, which is taken to be a measure
of crystal inhomogeneity, as was suggested in [2, 3].
Another, not less important, feature of the experiments
on light scattering is the possibility of obtaining three-
dimensional patterns of Ig(r) distribution by limiting
the dimensions of the scattering volume, whichis espe-
cialy important in studies of crystals possessing large-
scal einhomogeneities comparable with the crystal size,
such as its zones and sectors [4]. It is well known that
the distributions An and Ak, the static variations in the
real and imaginary parts of the dielectric constant &,
respectively, are determined by tomographic methods
[5]. However, the tomographic techniques are insuffi-
ciently efficient for rather perfect crystals because of
their low contrast. Figure 1 and Table 1 show the com-
parative characteristics of the transmission tomography
and the method proposed in the present paper.

The main drawback of transmission tomography is
its low contrast, because the receiver records al the
radiation transmitted by the sample. Thetechnique sug-
gested here practically excludes this drawback because
of the special geometry of the experiment and the spec-
tral analysis of the transmitted light. In other words, we
measure experimentally the quantity I, whose level is
amost determined by the static perturbations An. The
high contrast of this method, in turn, requires the use of
a high-sensitive recording system, which seems to be
the main drawback of this method.

RESULTS AND DISCUSSION

The three-dimensional (3D) patterns of the I distri-
butions were recorded on a high-resolution spectrome-

(a) (b)

[V 3
of |0

1

*® ]

Fig. 1. Schematic diagram for tomography (@) in the trans-
mitted and (b) scattered light: 1, light source; 2, sample;
3, radiation receiver. (a) Scanning of the sample: rotation of
the sample through fixed angles ¢;; (b) sample displace-
ments along the Cartesian axes. Thelinear dimension of the
scattering volume v isabout 0.2 mm.

1063-7745/02/4705-0837$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Table 1. Comparison of tomography characteristics in the (a) transmitted and (b) scattered light

Experiment a b

Set of dataon the projectionsof | Recording of the intensity of the Rayleigh component
the sample at the fixed rotation | scattered from alimited volume v of the sampleduring
angles ¢ scanning along the Cartesian coordinates

Processing of experimental data | Reconstruction of F(A€) by solv- | Obtaining the image of F(An) in the direct experiment
ing the Radon problem

Contrast Low High

The level of the analyzed radiation| ~1, ~104-10" 1,

ter based on ascanning Fabri—Perot interferometer. The
cooled photomultiplier was used as a receiver of scat-
tered light. The recording system was based on the
method of counting photons. The source of light exci-
tation was a He-Ne laser. The spectrometer had such a
sensitivity that the signal -to-noise ratio was of the order
of ~10? for the longitudinal component in quartz in the
X(zz)y scattering geometry (at a laser power of about
20 mW and atime constant of the system of about 4s).
The samplewas mounted on athree-axistable. The spa-
tial images of the Ig(r) distribution, were recorded
using the following type of scanning: it was continuous
along the x-axis (the direction of the propagation of the
exciting light waves) and stepwise along the two other
axes, with astep of about 0.1 mm. The 3D patterns cor-
responding to the I x(r) distributions over the xz sections
were recorded automatically (here, the z-axis coincides
with the direction normal to the scattering plane xy).
The trandation of the sample along the x- and z-axes
was provided by step motors.

An example of the 3D pattern of the I(r) distribu-
tion in twinned natural calcite is shown as a stereo-
scopic pair in Fig. 2. Thelow level of I(r) corresponds
to the twin boundary. Note that the patterns similar to
the pattern shown here were also observed in some

other crystals. This fact clearly demonstrates the obvi-
ously insufficient characterization of the crystal homo-
geneity by only one parameter n proposed in [2, 3].
Here, we suggest the use of the following set of numer-
ical parameters characterizing the observed | (r) distri-

bution: N, the 1z/l value averaged over the crystal;
M = Nmax /N the ratio of average maximum and min-

imum n values; and T, the average value of the main
oscillations period in I(r). This set of parameters pro-
vides only the general characteristics (without details)
of the homogeneity of the crystal. Itsmain “goa” isto
yieldinitial information for the comparison of the char-
acteristics of different samples. The exhaustive analysis
of the internal morphology of the sample is performed
by processing the pattern of the spatial 1x(r) distribu-
tion.

To examine the efficiency of the proposed technique
of characterization of the crystal homogeneity, we stud-
ied a set of natural Iceland spar samples (calcite
CaCO,) certified according to the conventional scheme
currently adopted in geology and based on the classifi-
cation of the samples over certain classes according to
the given level of light transmission in the ultraviolet,
visible, and infrared ranges. The homogeneity was

Fig. 2. Stereoscopic pair of the spatial distribution of the Rayleigh component Ig(r) in natural twinned calcite (CaCOs). The scan-
ning step along the Ox and 0z axesis 0.5 mm. The low Ix(r) level corresponds to the twin boundary.
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Table 2. Comparative characteristics of a number of natural calcite crystals (Iceland spar) obtained according to the scheme
adopted in geology (grade) and by the method proposed in this paper (2n,,)

Sample Type, grade Nav M.y Ty Sample | Type, grade Nav M.y Ty
1 ISU,"“unique” 16 - - 8 ISU, 1 1.5(50) 13 -
2 ISO,"“ unique” 1(4) 25 1 9 1Sl, 1 25x10° 14 0.3
3 ISI,“ unique” 1.4(8.6) | 3(10) 1(0.5) 10 ISU, I 1.9x10* | 12 05
4 ISU," extra’ 460 15 1 11 SuU, I 5x10% 4.3 05
5 IS0, “extra’ 15 40 05 12 1S, 1 54(600) - -
6 IS, “extra’ 49(220) 1(2) (0.5) 13 I1SU, 111 40 - -
7 ISU, 1 920 2 0.4 14 1S, 11 2.4 x10% 4.0 0.7

Note: ISislceland spar, ISU isIceland spar studied in the ultraviolet range, 1SO is|celand spar studied in the optical range, 1Sl islceland

spar studied the infrared range.

evaluated visually according to the intensity level of
scattered light and the samples were divided into five
grades (in the order of increase of lyqy): “unique’
“extra,” and classes I, 11, and Ill. Table 2 summarizes
the results for a set of natural Iceland spar samples cer-
tified according to this scheme. The samples were stud-
ied by the method proposed in the present paper. The
examples of the I x(x) distributionsfor some samplesare
shown in Fig. 3. The comparison was performed based

on ] dataand the sample classin each grade. The num-
bers in brackets correspond to the different parts of the
same sample (different simple growth forms). The data
presented in Table 2 demonstrate that the homogeneity
characterization according to both techniques yields
rather close results. Some discrepancies seem to be
explained by the subjective evacuation of the scattered-
light intensity based on visual examination. As an
example, consider here afew of the most typical cases.
Sample 5 should be classified as unique. Samples 9 and
12 should be interchanged in the grade classification.
Sample 13 should be classified as extra. Sample 8 con-
sists of crystals of two grades—unique and extra. It is
necessary to note that the visual inspection involves not
only a subjective source of errors but also an objective
one—the radiation provided by the inelastic processes
(such as the Mandelshtam-Brillouin and Raman scat-
tering) and, in some cases, also the luminescence. The
effect of the two latter phenomena can be eliminated by
the use of a narrow-band filter in the channel between
the trace of the laser beam in the crystal and the eye of
the observer, whereas the effect of |,z can hardly be
eliminated because of small values of the |, shift with
respect to I, (of the order of 0.1 cm™). This fact is of
special importance for highly homogeneous crystals
(n of the order of unity and less). Despite poor metro-
logical potentialities, the visual method of control is
very popular as a technique for the rapid analysis of
crystal quality.

Up to now, we evaluated crystal homogeneity with
the aid of only one parameter, 1. Being a measure of
the average level of the defect content in a crystal, it
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plays the most important role among all the parameters
included in the set of numerical parameters if only
because of the fact that its value should be determined
for al kinds of I(r) distributions.

Now, let us discuss the characteristics of 3D Ix(r)
patterns and the information obtained from their pro-
cessing. Inturn, thisallows one to understand better the
physical sense of the parameters 1 and M. Earlier [6],
we proposed the method of passage from continuous
distributions to discrete data, which allowed us to find
the type of simple growth form of the samples. The pro-
cedure of the graphical construction of the discrete set
can beillustrated based on the actual 2D Ix(y, 2) pattern
shown in Fig. 4a and characteristic of the sample cut
out from one sector of the simple growth form and of
the scanning type used in our study—continuous scan-
ning along the y-axis and at discrete steps along the z-
axis. Thisdistribution correspondsto the system of dots
which arethe projections of the Ix(y, Z) maximaonto the
abscissain each scan (Fig. 4b). Thus, the system of dots
constructed has two main periods, d and 1. They are of
different nature—the first parameter is purely techno-
logical and depends on researcher choice, whereas the
second oneisdetermined by theinternal structure of the
crystal. In fact, with a decrease in 9, the dot density
increases in the X;x; direction but remains unchanged
inthey direction (it is shown by smaller dots). In the &
— 0 limit, the set of dots belonging to the x;X; is
transformed into a straight line—atrace of the intersec-
tion of the face of the simple growth form and the scan-
ning plane zy. Thus, we obtain the first characteristic
angle p,, = 54.4°. Upon a similar construction for the
cross-section perpendicular to zy, for example xy, we
find the second characteristic angle, ¢,, = 0°15". The
angles ¢ and p unambiguously determine the type of
the simple growth form for the given sample orienta-
tion.

In the above example, the angle values correspond
to a rerhombohedron (the tabulated angles are ¢ = 0°
and p = 54°4"). Thus, the observed spatia intensity
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Fig. 3. Examples of individual scans of Ig(x) for a number
of CaCO3 samples: (a) 1, (b) 4 (c) 10, and (d) 9 are the sam-
plesindicated in Table 2.

oscillations of the Rayleigh component or the defect-
density waves are the manifestations of the zona struc-
ture of the crystal. Therefore, hereafter the lattice con-
structed in such away is called azona lattice. Itsregu-
lar nature for the real crystal is determined by the sta-
bility of growth conditions. In practice, the At value can
be used as an additional parameter characterizing the
degree of homogeneity and also a measure for the sta-
bility of growth conditions. It is possible to propose at

CRYSTALLOGRAPHY REPORTS Vol. 47

Fig. 4. An example of the determination of asimple growth
form. (a) Two-dimensional 1x(y2) distribution for a natural

calcite sample cut out from one sector of the T-rhombohe-
dron; zz are the zero-level lines for Ix(y). The scanning
step along the 0z axisis 0.5 mm; (b) afamily of dots corre-
sponding to the projections of the Ig(yz) maxima onto the
7z lines, X;x; arethe characteristic straight lines passing

through the maxima of dot density; these straight lines are
the intersections of aface of the T=rhombohedron by the yz
plane; p isthe polar angle; 1, isthe main period of the zonal
structure. The scheme shows the change of the pattern with
afivefold increase in the scanning step and the area limited

by X4X4 and XgX5 lines.

least two methods for determining the characteristic
directions. The first (static, at & — 0) method yields
the characteristic direction corresponding to the maxi-
mum dot density. The second method (dynamic, which
can be efficient for computer-based data processing)
yields the characteristic direction corresponding to the
maximum derivative of the dot density with respect
to d.

Now, consider the contrast of the zonal structure, or,
in terms of the suggested system, the modulation depth
M of the Ig(r) distribution. In early studies of the zonal
structure [4], some known impurities were introduced
into the crystal to increase the contrast. In practice, in
studies of crystal homogeneity one has to solve the
inverse problem—to identify the types of defects that
giveriseto crystal inhomogeneity. This problem cannot
be solved by the Rayleigh scattering method alone.

No. 5 2002
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Fig. 5. Spatial distributions of the intensity of (a) the Ray-
leigh component 1g(X), (b) luminescence from bitumens
I (), and (c) of Mn®* ions | .. (x) from the same sam-
ple of natural calcite. 1Mn

Indeed, as was mentioned above, any defect contributes
only to the intensity of the Rayleigh component.

One of the methods of solving this problem is to
obtain the 3D distribution of the concentration of a cer-
tain kind of defects and then to compare this distribu-
tion with the Ix(r) patterns to reveal the contribution
made by these defects to the observed inhomogeneity.

This approach is illustrated by the study of single
crystalsof natural calcite. It iswell known that themain
defects in these crystals are ions of transition elements
of the iron group and organic impurities (bitumens).
The study of the luminescence spectra and the compar-
ison of the results obtained with the data from [7]
allowed usto identify the defects. These are Mn** ions
and bitumens with characteristic spectral bands. The
Mn** ions yield one band centered at 580 nm with the
halfwidth of 40 nm. Bitumens, yield two bands cen-
tered at 400 and 525 nm with halfwidths of 120 and
100 nm, respectively. It isimportant that these bands do
not overlap. The spatial distributions of the lumines-

cence intensities I .. (¥) and |, ;;+(x) and the Ix(x) pat-
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tern obtained by the scanning of the same volume of the
CaCO; crysta are shown in Fig. 5. The Ix(X) pattern
demonstrates the distribution of inhomogeneities over
the crystal or, in fact, its zona structure, whereas
||y X @nd 1 5(x) show the distributions of these

defects over the same crystal volume.

The curves in Figs. 5a and 5b have analogous fea-
tures: the same spatia phase relations and close values
of the parameter M of their low-frequency harmonics
(the fine structure of zonal pattern requires a specia
consideration). The above facts indicate the key role
played by bitumens in the formation of the inhomoge-
neity distribution in the samples. On the other hand, the
comparison of the curves in Figs. 5a and 5¢ show that
Mn** ions play a minor role in the formation of inho-
mogeneity because of the close values of the binding
energiesfor Ca™ and Mn**ionsin calcite crystals. This
example demonstrates the dominant role of non-iso-
morphic defects in the formation of the contrast in the
zonal structure (or the M value).

Thus, the technique for evaluation of crystal homo-
geneity suggested above and involving the consider-
ation of three-dimensional images of the crystals in
scattered light and the set of numerical parametersn.,,,
T, , and M, provides information on the internal struc-
ture of the crystals and the determination of the type of
simple growth form. The suggested set of the numerical
parameters has a clear physical meaning: n,, is the
average degree of inhomogeneity in the unitsof 1,z and
T, and M are the quantitative characteristics of the zonal
structure of the crystal, i.e., the main period and the
contrast, respectively.
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Abstract—The processes of plastic macro- and microchangesin the shape of 2H-BN and 6H-SiC crystals dur-
ing their deformation under high pressures (7.7 GPa) and temperatures (1200-1600°C) have been studied by
transmission electron microscopy. It is established that deformation in crystals with a high density of basal
stacking faultsisinduced by the rotationsin theindividual regions of the crystals. The shape changes are asso-
ciated with rotation, tilt, bending, and displacement of the crystal regions of various dimensions. The localized
crystall ographic shears along the pyramidal { 1012} planesand the rotations about the [0001] axis arereveal ed.
It isshown that all the above processesresult in crystal fragmentation. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Earlier [1, 2], it was shown that the main mechanism
of the trandation deformation of the crystals of the
wurtzite 2H-BN and 6H-Si C phases under high temper-
atures and quasihydrostatic-compression pressures
consists in plastic shears caused by glide of split a/3

[1100]-type dislocations in the basal planes of the
crystals. This deformation al so causes the devel opment
of the intracrystallite layer-by-layer transition of the
initial wurtzite phase into the sphalerite one (3C). Our
subsequent studies showed that this transition is pre-
ceded by two stages of structural transformations in
crystals—disordering aong the [0001] direction
caused by the accumulation of randomly distributed
basal stacking faults and the formation of multilayer
polytypes. Thefirst stage proceeds over the whole crys-
tal volume, whereas the second one is accompanied by
the transformation into the 3C phase occurring during
the formation of the misorientation boundariesin crys-
tals with stacking faults. Below, we present the results
obtained in the study of the nature of plastic deforma-
tion in crystals associated with the formation of such
boundaries.

INITIAL MATERIALS AND EXPERIMENTAL
METHODS

We studied polycrystalline samples 5 mm in diame-
ter and 8 mm in height obtained by sintering powder
particles in a “toroid’-type high-pressure chamber
under conditions of quasihydrostatic compression pro-
viding the uniaxial compression along the sample
height. Sintering was carried out under a pressure of
7.7 GPa in the temperature ranges 1200-1600°C for
2H-BN and 1200-1800°C for 6H-SIC. The dimension
of the initial single-crysta 6H-SIC particles ranged

within 1020 pm, and the samples usually had the
shape of polyhedra and, in some rare instances, plate-
lets. The 2H-BN particles had the shape of platelets
paralel to the (0001) plane with dimensions ranging
within 1-3 pm and thickness, within 300-700 A. Most
of the 2H-BN particles were single crystals or dightly
fragmented crystals with the azimuthal misorientation
of the fragmentsin the (0001) plane not exceeding 5°—
7°. The 2H-BN samples were either randomly oriented
particles or oriented packings. In the latter case, the
specimens were textured, because the particles were
oriented with their basal planes parallel to one another.

The samplesin theform of thin foils obtained by ion
sputtering were studied by transmission electron

microscopy. We studied the prismatic { 1120} sections
of the crystals. This allowed us to observe the changes
in the shape of plateletlike crystals and the formation of
a microrelief on the faceting planes. These sections
showed the fringe contrast of basal stacking faults (the
traces of the basal layers). The corresponding microdif-
fraction patterns had rows of nodal 00l and hOl reflec-
tions, whose analysis provided the diagnostics of the
structural state of the crystals. The diffuse streaks
observed between the rows of the nodal reflectionsindi-
cated disorder along the [0001] axis, whereas the sys-
tems of additional spot reflections indicated the forma-
tion of multilayer polytypes. The change in the stack-
ing-fault fringes and contrast (its decrease or complete
disappearance) and the microdiffraction patterns
allowed us to determine the nature of the formation of
the misoriented regions (fragments) in the crystals. The
following typical cases were observed.

In the case of the group (i.e., relating to individual
regions of the crystals) smooth tilts or sharp bends of
the basal layers, the microdiffraction patterns had the
intersecting rows of 00l and hOl reflections indicating
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the misorientation of the individual microregionsinthe
crystal (Figs. 1a, 1b). The angles formed by the inter-
secting rows of one type and the corresponding angles
of the intersection of the regular stacking-fault fringes
on the images corresponded to the misorientation
angles of the c-axis of the matrix crystal and the crystal
region determined from thetilt or bend of the basal lay-
ers(Fig. 1c). Obvioudly, in this case, the misorientation
is caused by the rotation of the basal layers around the
axeslying in the (0001) plane. If the hOl rows areinter-
sected at the nodal hOO reflections, the a-axes of the
matrix crystal and the misoriented regions are parallel
(Fig. 1a); in al the other cases, these axes are misori-
ented (Fig. 1b). The misorientation of the a-axes
because of the rotation around the c-axis is also seen
from the weakening or complete disappearance of the
fringe contrast of stacking faultsin some regionsin the
crystal section. The wesakening of the contrast is
observed at therotation angle up to 19°, i.e., prior to the

formation of the { 1450} orientation indicated by the
characteristic presence of the hOl rows at distances that
are not multiples of the interplanar spacing d,, on the
microdiffraction patterns (Fig. 1d). The rotation by
angles exceeding 19° resultsin the disappearance of the
stacking-fault fringes and the formation of new orienta-

tions, including those of prismatic {1100} type
(Fig. 1e) corresponding to the rotation of the crystal
region by an angle of 30°.

RESULTS AND DISCUSSION

Studying crystaline platelets of 2H-BN crystals
with a high stacking-fault density, we established that
their deformation occurs with a pronounced change in
the shape of the well-developed (basal) surface without
the loss of continuity. The most typical deformation of

2H-BN crystals is shown in Fig. 2. The {1120} sec-
tions of amost al the 2H-BN and 6H-SIC samples
showed group bends, kinks, displacements (Figs. 2f, 3,
4), and also rotations of the basal layers (Fig. 5).

The above specific features of the substructure are
evidence of the fact that the plastic change in the shape
of the crystals with high stacking-fault densities occur
due to the displacements of individual microregionsin
the crystal bulk. This signifies that the rotational or
cooperative plastic deformation typical of metals [3-5]
takes place, which isacertain relaxation process occur-
ring under the effect of the applied load under condi-
tions of constrained deformation and the suppression of
the translational plasticity. Two mechanisms of rota-
tional plasticity proceeded viakink formation (irregular
rotation), and the formation of the misorientation fringe
formation was conditionally suggested in [4].

The development of the rotational deformation
(kink formation) is studied in detail for nonmetal crys-
tals with ionic bonding [6]. In some studies, it was
established that such deformation at high temperatures

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5

2002

843

can aso occur in crystals with ionic—covaent (Al,O;
[7], SIC[8]) and covaent (diamond, 3C-BN [9]) bond-
ing. For ionic crystals, such deformation is also possi-
ble at room temperature.

We distinguish between several individua pro-
cesses of rotational deformation in the 2H-BN and 6H-
SIC crystals.

I. Kink formation is observed either as a global
process resulting in macroscopic changes in particle
shape (Fig. 2) or asalocal processoccurring intheindi-
vidual volumes of the crystals (Figs. 1c-1e, 3, 4). Asis
seen from the changesin the shape of the stacking-fault
contrast, both cases are characterized by the group tilt
of the basal layers with respect to the axes lying in the
(0001) plane, i.e., inthe main acting glide plane. In the
local processes, the basal layers can acquire sharp
kinks, including those accompanied by the formation of
wedgelike misoriented regions with rectilinear inter-
faces (Figs. 1a, 1¢) and the bends of various complexity
up to theformation of vortex-like elements (Fig. 3). The
rotation angles of the individual regions, even in an
individual crystal, can vary from several degreesto tens
of degrees (Figs. 1c, 3, 5). The kink formation can
either proceed over the whole section of the crystal or
can be decelerated in this section. In the latter case,
complicated changesin the shape of the basal layersare
observed. In the misoriented volume formed as a result
of the kink formation, new bends or kinks of the basal
layers can be formed, including those accompanied by
rotations (Figs. 1c, 3).

Il. Formation of misorientation fringes. Three
characteristic cases of the formation of such fringes
without changes in the shape of flat surfaces of particle
faceting are distinguished: sharp rotations of individual
regions about the [0001] axis or the axestilted to it [the
rotation angle of these regions can vary quite pro-
nouncedly along the crystal section (Fig. 6)]; local rota-
tions about arbitrary axes (Fig. 1d); and a combination
of rotation around the [0001] axis with the tilt with
respect to the axes lying in the basal plane (Fig. 4).

1. Localized crystallographic shears were
revealed only in 2H-BN crystals from the presence of

rectilinear boundariesin the (1120 ) section against the
background of stacking-fault fringes. Usualy, these
boundaries limit the regions in the shape of isosceles
triangles whose base is pardlel to the trace of the
(0001) plane. On the corresponding electron-micros-
copy images, the angle at the vertex of this triangle is
about 90°, whereas the angle of intersection of the side
surfaces with the basal plane is about 45° (Fig. 7).
These angles are close to the calculated angles formed

by the (1012) and (1012) planes with the basal plane
in the 2H-BN lattice (Fig. 8). The angles were calcu-
lated at the lattice parameters a = 0.255 nm and ¢ =
0.423 nm [10]. These data lead to the conclusion that
the formation of the boundaries is provided by shears
occurring simultaneously along two pyramidal planes.
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Fig. 1. Typical substructures of deformed crystals with basal stacking faultsin (1120). (a) The portion of a 6H-SiC crystal with
weak kinks and rotations of basal layers. The corresponding microdiffraction pattern shows split hOl reflections and their intersec-
tions along the a-axis. The arrows indicate streaks between the nodal reflections; (b) microdiffraction pattern with the intersected
hOl rows aong the direction inclined to the a-axis; (¢) micrographs of a sharp kink of basal layers, which provides the formation of
wedgelike fragments; the arrows indicate the high-angle boundaries between the fragments; (d) the region with (1450 )-type orien-
tation in the section of the 2H-BN crystal (indicated by arrows). The corresponding diffraction pattern shows arow of nodal reflec-
tions parallel to the hOl rows of the matrix; (€) the region of the section of a 2H-BN crystal with the region of the (1100 )-type
orientation separated by the rectilinear boundary and extinction bend contours (indicated by arrows).
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IV. Localized crystallographic rotations. The
most typical caseis sharp rotations of 30° of the crystal
microregions about the [0001] axisover thewhole crys-
tal thickness resulting in the formation of fragments

with (1100) misorientation in the (1120) section of
the crystal. The conjugation boundaries between the
fragments and the matrix are rectilinear and perpendic-
ular to the basal plane (Figs. 1e, 9).

V. Processes of particle shaping allows the forma-
tion of amicrorelief on the (0001) surface. These pro-
cesses occur because of the displacement of microvol-
umesin the particleswithout abreak in their continuity.
Two cases are the most typical.

(2) The displacement of microvolumesin the crystal
without achangein their orientations and the formation
of misoriented interlayers. Most often, this takes place
either along the[0001] axis or the axestilted toit. Then,
amicrorelief consisting of steps of different heightsis
formed (Figs. 4f, 9) on the initial (0001) surface. We
also observed the displacement of the structural ele-
ments with the triangular sections in the observation
plane proceeding along the side planes and accompa:
nied by the formation of ledges on the flat surfaces of
particle faces (Fig. 4b).

(2) The displacement of microvolumes aong the
[0001] axisand the axestilted to it in combination with
their rotation about the [0001] axis (Fig. 9).

Structural transformations |-V in polycrystaline
sampleswith high stacking-fault densities occur practi-
cally ssmultaneously. One can state that at t = 1200°C,
the change in the shape of a crystal as awhole and the
change in the shapes of the local volumes are provided
mainly by kink formation, the formation of bends, and
kinks in the (0001) plane with respect to the axes
located in the basal plane, including the formation of
the wedgelike structural elements. With an increase in
temperature, the transformations in the crystals occur
with the participation of localized shears and rotations.

Macro- and microchanges of crystal shape were
observed both in the cases of random packing and the
oriented packing characteristic of the 2H-BN-based
samples. In the latter case, the most frequent processes
were shear with the formation of fragments with trian-
gular sections, rotations with the formation of linear
boundaries, and the displacements of microvolumes
paralel to the [0001] axis.

The above characteristics of the changes in crystal
shape can be interpreted with the use of well-known
data on the plastic deformation of anisotropic crystals.

It is well known that in crystals with a wurtzite
structure, the action of different glide systems at high
temperature is determined (as was proven by the exam-
ple of ZnO [11]) by the angle 8 of the deviation of the
acting uniaxial stressfrom the [0001] axis. In the angu-
lar range 0° < B < 67°, mainly glide in the basal plane
takes place, whereasin the angular range 67° < 8 < 90°,
prismatic glide is most important. If the above direc-
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Fig. 2. Most typical cases of the changes in the shape of a
2H-BN crystdl. (a, b) Bends; (c, d) kinks; (€) combinations
of bendsand kinks, (f) the dark-field image of abent crystal.

Fig. 3. Image of a bent 6H-SiC crystal, (1120) section.
(8) Complicated bend of the basal layers and (b) the region
of the decelerated kink.
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Fig. 4. Dark-field image of the (1120) section of 2H-BN
crystalsobtained inthe 100 reflection with different changesin
the shape of the faces caused by the displacement of fragments
(the arrows show the traces of the basal planes) of (a) an
arbitrary shape and (b) the triangular section.

tions coincide, only pyramida glide is possible,
whereas at the intersection of these directions at an
angle of 90°, acombined pyramidal and prismatic glide
takes place. As was indicated above, the trandlational
deformation in the 6H-SiC and 2H-BN crystals during
their thermobaric treatment is provided only by the
glide of the basal split dislocations. Thus, one can con-
clude that such glide in the crystals studied (as well as
in hexagona close packed structures) is the easiest
glide, which is provided by the low energy of basal
stacking faults. Asaresult, the action of other glide sys-
tems and dislocation climb are hindered. Upon the
completion of the action of the basal glide system, i.e.,
at high stacking-fault density, the rotational plastic
deformation of crystals takes place.

Kink formation as an elementary event of plastic
deformation in crystal s can be caused by thelocal bend-
ing stresses orthogonal to the (0001) plane, i.e., can
occur in cases where no basal glide is possible. It is
under these conditions that kink formation on the sur-
faces of hcp metal crystals takes place [12].

The localized shears accompanied by the formation
of structural elementswith sectionsin the shape of isos-
celes triangles (Fig. 7) seem to take place under the
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Fig. 5. Typical image of the (1120) section of a 6H-SiC
crystal (a) with group tilts and (b) rotations of the basal lay-
ers with respect to the [0001] axis.

Fig. 6. High-angle misorientation boundary (indicated by
arrows) in the (1120) section of a 6H-SIC crystal formed
because of the rotation with respect to the tilted axis.

most favorable conditions for pyramidal glide. Since
deformation occurs in crystals with high stacking-fault
densities, this glide can occur only under pronounced
stresses, which give rise to the shear of microvolumes
along the pyramidal planes. This is confirmed by the
data on textured 2H-BN samples in which the (0001)
surfaces of the platelet crystals were located during
deformation normally to the compression axis. Thedis-
placement of microvolumes along the direction closeto
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the [0001] axis (Fig. 9) can be caused by the crysta ori-
entation favorable for prismatic glide. Similar to the case
of shear along the pyramidal planes, thisglidein acrysta
with a high stacking-fault density occurs as a microshear.
The high levels of stresses along the [0001] axis are
also indicated by the extinction bend contours observed

in the (1120) section (Fig. 1€).

Rotations about the [0001] axis in the macro- and
microvolumes of the crystals with the preservation of
their continuity (Fig. 1€) seem to proceed under condi-
tions of blocking al the glide systems and the action of
the uniaxial compression stress. The formation of the
linear boundaries of the fragments parallel to the traces
of the prismatic planes during these rotations seems to
be caused by either preceding or accompanying shears
along these planes. These shears can really occur via
the formation of prismatic stacking faults. Indeed, we
observed such stacking faultsin 2H-BN [1].

The above structural transformations lead to crystal
fragmentation because of their “saturation” with the
misorientation boundaries.

One distinguishes the following types of bound-
aries.

High-angle boundaries. Plane boundaries appear
already at t = 1200°C because of sharp shears, localized
shears, and rotations (Figs. 1c, 6, 9). The boundaries of
arbitrary shapes are formed as aresult of the restructur-
ing of the didocation boundaries at t = 1600°C in the
course of deformation (Fig. 10).

Boundariesin the shape of plane and volumedis-
location pileups. Boundaries in the substructures with
smoothly varying misorientations. These substructures
were studied in detail in [5]. Their typical features are
the spreading of nodal reflections on the microdiffrac-
tion patterns into arcs, the formation of fringes (relief
edges) on dark-field images of the fragments (Fig. 4d),
the change in the positions of the fragments when the
samples are tilted in an electron microscope, and the
presence of dislocation pileupsin theform of extinction
bend contours (Fig. 10). These substructures are
formed in the 2H-BN and 6H-SIC crystals during the
development of geometrically arbitrary or decelerated
kinks and also during the formation of the reorientation
fringes.

In some crystals, it is possible to reveal the bound-
arieswith different misorientation angles and structural
states. The most typical manifestation is the formation
of boundaries because of sharp and smooth kinks of dif-
ferent strengths (Figs. 3, 5); the manifestation of thelat-
ter case is the formation of the boundaries at the stage
of the dynamic rearrangement of their substructure
(Fig. 10).

The most interesting fact is the appearance of plane
high-angle boundaries at low temperatures (1200°C),
where the diffusion processes are suppressed because
of mainly covalent bonding in the crystals, whereas
high pressures reduce the diffusion mobility. The for-
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Fig. 7. Image of the fragmentsin a2H-BN crystal. (a) Gen-
era view, (b) dark-field image in the 100 reflection of the
unit fragment with atriangular section.

(0001)

(1012)

(0110)

Fig. 8. Scheme of the intersection of the planes in the 2H-
BN lattice.
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Fig. 9. Electron micrograph of the section of a platelet 6H-
SiC crysta upon the displacement and rotations of the frag-
ments with respect to the [0001] axis or the axestilted to it
(the arrows indicate the traces of the basal planes).

Fig. 10. Image of a 6H-SIC crystal with (&) high-angle
boundaries, (b) the boundaries in the form of dislocation
pileups, and (c) the boundaries with the region of the sub-
structure with continuously varying misorientation. The
arrows indicate of extinction bend contours.

mation of these boundaries can be explained based on
the well-known concepts of the physical nature of the
rotational plasticity and the crystal fragmentation
induced by it. According to [3, 4], rotations are caused
by the collective motion of the groups of interacting
dislocations considered as a new element of the dislo-
cation substructure—a disclination. It is the develop-
ment of disclination-induced kinksthat can provide the
formation of the plane high-angle boundaries [3] (the
so-called deformation knife boundaries) observed in
molybdenum.

CRYSTALLOGRAPHY REPORTS Vol. 47
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CONCLUSIONS

Asisclear from the above, fragmentation of the 2H-
BN and 6H-SIC crystals during thermobaric treatment
is caused by their deformation as a result of the devel-
opment of rotational plasticity at the stage of transla-
tion-shear suppression. This type of plasticity results
from kink formation, the appearance of reorientation
fringes, the rotations and displacements of microvol-
umes on different scales, localized crystallographic
shears along the pyramidal planes, and rotations along
the prismatic planes. The above transformations lead to
the appearance of misorientation boundaries of various
types in the crystals—from the boundaries characteris-
tic of the substructures with continuously varying mis-
orientation to high-angle boundaries. Our studies
showed [13] that the subsequent transformations taking
place in such fragmented crystals under thermaobaric
treatment occur viatranslational deformation caused by
the glide of split dislocations in the (0001) planes pro-
ceeding independently in each fragment and promoting
the phase transition from the wurtzite to the sphalerite
structure type. Transformations can also take place asa
result of structural rearrangements on the conjugating
surfaces of the fragments with the appearance of high-
angle boundaries. Thelatter stage determinesthe devel-
opment of primary recrystallization.
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Abstract—Lamellar polymorphism in multicomponent lyotropic systems based on akyltrimethylammonium
bromide detergents has been studied by polarization microscopy and *H-, 2H-, and 13C-NMR spectroscopy. The
La1> Loi-n @8d Ly, lamellar phases are revealed, identified, and characterized. The alignment of the L, lamel-
lar phasein high magnetic fieldsis established. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Asiswell known, molecules of detergentsin aque-
ous solutions are prone to association. The formation of
different structures and aggregates results in lyotropic
polymorphism. Thisrich polymorphism is often associ-
ated with changes in temperature, component concen-
tration, and the application of external electric and
magnetic fields[1, 2]. There exist nematic disklike (Np)
[3-7], cylindrical (N¢) [4-8], hexagonal (H) [9], and
severa types of lamellar (L) phases [10-12]. A struc-
tural unit in lamellar phases is a bilayer associate of
detergent molecules surrounded by water. The struc-
tural basis of cell membranes is a lipid bilayer, and,
therefore, the lamellar phases are simple universal
models of cell membranes [13-15]. On heating, the
cubic C and lamellar L, phases are destabilized and, as
aresult, the reversed hexagonal phase Hy; is formed in
themodel lipids systems[15]. Theinterest in studies of
the lamellar phase is associated with the intermediate
Lo/Hy phase transformation. This type of transforma
tion may play an important role in the functioning of
biomembranes[16].

In the two-component didodecyldimethylammo-
nium bromide-water system, the lamellar phase
observed consists of two phases: L,; and L,,. The L,
phase (Helfrich phase) is characterized by a pseudoiso-
tropic texture and the accompanying Maltese crosses.
The L,, lamellar phase with a mosaic texture is more
structurized than the L, phase [11, 17].

The Ly, Lgi.ny @nd Ly, lamellar phases are estab-
lished in the mixtures of C;, and C,, alkylpolyglyco-
sides[18, 19]. Inthiscase, only the L, phaseis charac-
terized by a pseudoisotropic texture with the homeotro-

L Thisarticle was presented by the authors in English.

pically oriented micelles [19]. The L, phase is
characterized by a woven texture-like thermotropic S
phases [20] or a schlieren texture characteristic of the
nematic N lyomesophases with cylindrical micelles
[19].

The changesin the bilayer structureresult inthe for-
mation of the vesicular, planar smectic L, or sponge L,
phases [21]. Moreover, in the lamellar phases, the
bilayers can be rearranged and form various supramo-
lecular structures [10, 22-25].

At present, the focal conic domains of the first type
(FCD-1) with a negative Gaussian curvature (texture
with oily streaks) are considered as the main structural
elementsin the classical L, (L) lamellar phases. The
focal conic domains of the second type (FCD-I1) with a
positive Gaussian curvature are characteristic of theL,
(L,) phases [23, 25]. The textures of lamellar the L,
(onion) phase show the characteristic Maltese crosses
[22, 26]. For the first time, spherical domains were
observed in the Gomati lamellar phases [24]. Some-
times, the lamellar phases are subdivided into classical

L, and swollen L\ phases[12, 26-28].

The study of lamellar phases in multicomponent
lyotropic molecular systems broadens our knowledge
of the variety of the phases and their transformationsin
lyotropic liquid crystals (LC). The mixture of Cy,, Cyy,
C,g-akyltrimethylammonium bromides, NaBr, n-decyl
alcohol, and D,0O is known to form lamellar, nematic
and other phases forming different textures, including
schlieren [6, 7] and marble textures. The identification
and study of the textures in this system is hindered
because of the possible phase transformation of the
classical L,, lamellar phase under the effect of the
steady shear flow with the formation of the multilamel-
lar vesicular L, phase [29]. The lamellar phases with

1063-7745/02/4705-0849%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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bilayer structural elements can display different flow-
induced orientational effects [30]. The orientation of
the bilayer can give rise to the formation of the multil-
amellar onion phase. Thus, the identification of the
lamellar phases in synthetic lyotropic systems is an
important step in the studies of LC systems. We ana-
lyzed these phases using NMR spectroscopy and opti-
cal polarizing microscopy.

EXPERIMENTAL

Multicomponent cetyltrimethylammonium bromide
(CTAB)—n-decanol-NaBr-D,O mixtures were pre-
pared within the concentration ranges corresponding to
nematic phases [4]. 1*C NMR analysis showed that
CTAB from Serva was redly a mixture of dodecyl-
(25 moal %), tetradecyl- (65 mol %), and hexadecyltri-
methylammonium (10 mol %) bromides. This mixture
is aso of interest from the theoretical standpoint,
because it was established that different lengths of the
alkyl chain in the detergent molecul esinfluence thefor-
mation, structure, and properties of the phases formed
[31]. Thereference detergent was cetyltrimethylammo-
nium bromide (CTAB) (100 mol %) from Merck,
because NaBr and n-decanol (chemically pure, Rea-
khim, USSR) could be used without any additional
purification. Water contained more than 99.8% of D,O
(Izotop, USSR). The ingredients were mixed in several
cycles of centrifugation in sealed glass ampoules 9 mm
in diameter with a narrow 2-3 mm neck until the for-
mation of a homogeneous mixture. The samples with a
low n-decanol concentration were heated up to 60—
70°C. The use of the mixed akyltrimethylammonium
bromide-based detergent (Serva) resulted in the faster
formation of homogeneous mixtures. Samples with the
ampouleswere placed into standard 10-mm-long NMR
sample tubes. The H, ?H, and *C NMR spectra were
measured on a Bruker AM X-500 instrument at frequen-
ciesof 500.1, 76.8, and 125.8 MHz in apolarizing mag-
netic field of 11.7 T without sample rotation. The tem-
perature was controlled by a B-VT-1000 unit (Bruker).

KIREND et al.

The H, 2H, and *C NMR measurements were made
using a lock resonance circuit and without change of
the measuring head, which provided fast switching of
the NMR spectrometer to all three nuclei under obser-
vation. The quadrupole splitting of the water signal in
the 2H NMR spectrum indicated the formation of lyo-
mesophasein the mixture. The temperature dependence
of this spectrum gave information about the phase
transformationsin the samples. The simultaneous pres-
ence of two phases in the sample was indicated by the
formation of doublets with different Avy valuesin the

2H NMR spectra. The 13C NMR spectrawere useful for
establishing long-range interactions and atom mobility
in the detergent molecules of the lyomesophases. The
prepared mesophases were characterized with the aid
of polarization microscopy on POLAM L-311 and
MIN-8 instruments.

RESULTS

Studying aggregation in lyotropic amphiphilic sys-
tems, we took into account the possible formation of
isotropic solutions, micelles, and various LC and solid
phases. These aggregational effects are reflected in the
NMR spectra. Figure 1 shows the NMR spectra of dif-
ferent phases of a multicomponent CTAB-n-decanol—
NaBr-D,0 system obtained at temperatures close to
room temperature. The NMR spectrum of the deutero-
chloroform solution of CTAB-n-decanol mixture (a) is
compared with the NMR spectra of the micellar solu-
tion (b), Nc phase with the marble texture (c), and the
solid phase (d). The NMR spectra of the latter three
states were obtained from sample 1 of the composition
giveninthetable. Thereal solution provided theforma-
tion of sharp signals. The existence of two types of
organic molecules in the *H spectrum can be deter-
mined only from the analysis of the integrated intensi-
ties of different absorption bands (Fig. 1, 1a). At the
sametime, the 1*C NMR spectrum provided the resolu-
tion of the signals from almost all the atoms of CTAB

Identification of the lyomesophases and types of their textures using the data of optical-polarizing microscopy and the com-
positions of the mixtures and the characteristic split of the NMR signal from 2H nuclei of water in the samples studied

Mixture composition, wt %
Texture

Sample Phase type T, K Av, Hz | detergent | detergent
(Fig. 2) CTAB CTAB NaBr | n-decanol D,O

(Serva) (Merck)
1 Micellar 297 32.36 3.06 3.88 60.70
1 N¢ c 286 14 32.36 3.06 3.88 60.70
2 Lon (FCD-I) a 297 43 32.84 4.95 6.38 55.83
3 L1 (FCD-I1) b 297 68 32.90 9.25 5.54 52.31
4 Lat-h d,e 297 42 26.85 7.04 5.08 61.03
5 H, b 297 26 34.99 65.01
6 Micellar 297 35.00 65.00
CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002
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-, -, and y-positions of the functional group (—OH, NMe3)

and y are the signals of the 13C NMR spectrum of the atomsin the o
and w, w— 1, and w—2 arethe signalsin the a- , B-, and y-positions of the end atoms of the alkyl chains of the molecules.

Fig. 1. (I) The *H and ?H and (11) 13C NMR spectraof different aggregate states of the CTAB-n-decanol-NaBr—D,0 system (sam-
ple 1). (a) Isotropic solution in CDCls; (b) micellar phase; (c) LC N¢ phase with the marble texture; (d) solid-state phase. Here, a,

B,

2002
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Fig. 2. Lyomesophase textures in the CTAB-—n-decanol—
NaBr-D,O system: (&) homeotropic texture with oily
streaks of the Ly}, phase (sample 2), x45; (b) texture of the
Ly phase (sample 3); (c) marble texture (sample 1), x45;
(d) smectic-like texture with focal conics of the lamellar
Lyh.1 Phase (sample 4), x60; (e) oriented confocals of the
Lgh.1 Phasein acapillary (sample 4), x60.

and n-decanal (Fig. 1, lla; signals from n-decanol are
marked with asterisks). The lines due to all the central
atoms from the alkyl chains were difficult to identify
because of their overlap. However, different chemical
shifts of the end atoms of the alkyl chain (A%, =
0.01 ppm, Ad,,_; = 0.01 ppm, and Ad,,_, = 0.02 ppm)
show the sensitivity of the 3C NMR shielding to the
long-range effects (Fig. 1, 11a).

CRYSTALLOGRAPHY REPORTS Vol. 47
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TheH NMR spectrum of the micellar phase (Fig. 1,
Ib) results in the strong broadening of the signals and,
therefore, only three broad bands are seen—those of a
protons from the hydrophilic end groups, end protons
of methyl group, and other protons of the alkyl groups
of molecules (Fig. 1, Ib). A relatively narrow signal at
4.8 ppm is attributed to water. The 2H NMR spectrum
of micellar solution showed no quadrupolar splitting.
The *C NMR spectrum of the micellar phase has also
broadened signals, but the presence of two types of
organic moleculesis till clearly seen (Fig. 1, Ib*). The
most pronounced broadening is observed for a carbons
of heteroatoms. The formation of micelles induces
important selective effectsin chemical shifts of carbon
atoms 13C. We observed the shifts of N-methyl and
alkyl chains and the middle carbon atoms of the akyl
chains toward lower fields, which is characteristic of
micelle formation (this was established by the NMR
studies of various micellar solutions) (our unpublished
data). This seems to be explained by the presence of
trans alkyl conformersin the middle carbon atoms of
alkyl chains.

Theformation of aL C phaseisclearly seen fromthe
NMR spectraof both hydrogen isotopes: in the 'H spec-
trum, in addition to a relatively narrow water signal,
there is also an unstructured broad absorption band. In
the 2H spectrum, quadrupole splitting with strong tem-
perature dependence is observed (Fig. 1, Ic, Ic*). The
changes observed in the **C NMR spectrum are less
dramatic and are associated with a further broadening
of the signals and further shifts of the middle carbon
atoms of alkyl chainstoward low fields and the shift of
the signals of carbon atoms of N-methyl toward high
fields. At lower temperatures, the solid phaseisformed,
the quadrupole splitting of the D,O °H NMR signal is
no longer observed, and the *H spectrum resemblesthat
of the micellar phase (Fig. 1, Ic*). The 3C NMR spec-
trum still has broadened signalsthat are especially well
pronounced for the a-carbon atoms. Signals from the
central atoms of the alkyl chains and the carbons of
N-methyl groups are shifted in the opposite directions,
which is characterigtic of the micellar phase (Fig. 1, I1c).

The compositions of the mixtures (see table) were
selected in such away that they would include the nem-
atic region of the known phase diagram [4, 7]. The
nematic lyomesophases in this system were studied in
[4, 6, 7]. The composition of the lyotropic systems
forming the lamellar phases (27-33 wt % of detergent,
4-6 wt % of n-decanol, 49 wt % of NaBr, and 55—
65 wt % of D,0) iscloseto those of the nematic phases.
At the sametime, thelamellar phasesalso exist at lower
temperatures than the nematic ones and are character-
ized by higher viscosity. The characteristic feature of
these phases are high values of quadrupole splitting of
Avp inthe?H NMR spectra[6, 7).

No. 5 2002
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Fig. 3. The BB NMR spectrafrom the (8) Ly, (b, €) Ly;, and (d) Lyn.; phases. The spectrum of the L ; phase indicates the forma-
tion of two phases on cooling from the temperature of the isotropic state (360 K) to initial room temperature (295 K).

The identification of the LC phases was made by
polarization microscopy. The textures of different
lamellar phases prepared from the multicomponent lyo-
tropic mixtures are shown in Fig. 2. The texture of the
classical lamellar phase L, (table, sample 2) is shown
in Fig. 2aand is atypical pseudoisotropic texture with
oily streaks and focal conic domains of the first type

CRYSTALLOGRAPHY REPORTS Vol. 47 No. 5
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and negative Gaussian curvature (FCD-I). In the 3C
NMR spectra of the lamellar L, phase (Fig. 3a), the
lines are broadened much more than those observed in
the LC N phase from sample 1 (Fig. 1, lIc). The sig-
nalsfrom a carbon atoms of the L, phase are so broad-
ened that they cannot be identified against the back-
ground noise of the zero line. The quadrupolar splitting
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Fig. 4. Temperature dependence of the 2H NMR spectrum of the lamellar L; phase (sample 3) inthe 11.7 T magnetic field in the

heating and cooling cycles.

of theline of the L, phasein the °H spectrum (~43 Hz)
is more pronounced than that for nematic lyome-
sophases (~18-20 Hz) [4, 7, 32].

At lower c/s (cosurfactant/surfactant) ratios in the
lyotropic systems, one observes the formation of the
lamellar Ly, phase with an FCD-II-type texture and
positive Gaussian curvature [23, 25]. The woven tex-
ture of the lamellar phase from sample 3 is shown in
Fig. 2b. The temperature dependence of the °H NMR
spectrum of this phase was studied on heated and
cooled samples in a spectrometer (Fig. 4). The sample

at room temperature was heated up to the temperature
of the transition to theisotropic phase, T., and then was
cooled back to room temperature (*H NMR spectrain
Fig. 3). Inthis case, the memory effect by the LC phase
was observed. The quadrupole splitting Avp at the
given temperature depended (Fig. 4) on the history of
the sample; cooling the sample in a magnetic field of
the NMR spectrometer resulted in the formation of
some additional phases. This behavior is also reflected
in the 3C NMR spectra: cooling the sample in a mag-
netic field provides the formation of two absorption
bands from the main peak of alkyl chains and their
CRYSTALLOGRAPHY REPORTS  Vol. 47
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(w —1) atoms (cf. Figs. 3b, 3c). Thus, the L, phaseis
transformed from the isotropic state in a strong mag-
netic field back into the mixture of two LC phases. The
memory effect observed is of acomplicated nature. The
ratio of the two phases formed depends on the cooling
conditions of the sample. The details of this process
need additional studies.

In Ly, phase (sample 4), the transformation of the
smectic phase with the focal conics into the texture
(Fig. 2d) with highly oriented confocals (Fig. 2e) was
observed. This may be associated with the orientation
of the lamellar phases at temperatures lower than <T.
Recently, the orientation of the lamellar phases in
strong magnetic fields was observed [33, 34]. The 13C
NMR spectrum of the L, phase show a dlight broad-
ening of thelinesin comparison with thelines of the L,
phase (Figs. 3a, 3d).

The viscosity of the samples prepared from the
detergent produced by Merck was higher than that of
the samples based on the detergent produced by Serva,
while the compositions of all the other components
were the same. The samples prepared from CTAB gave
the lamellar L, phase (sample 3) and the hexagonal H;
phase (sample 5). Both phases have similar woven tex-
tures (Fig. 2b). The most viscous hexagonal H; phaseis
very stiff; however, the 1*C NMR spectra indicate that
the mobility of alkyl chains in the hexagona phase is
higher than in the lamellar phases. Thus, the micromo-
bility determined from the NMR spectraisinconsistent
with the macromobility determined from the viscosity
measurements. The *C NMR spectrum from sample 6
practically coincides with that of the N phases (Fig. 1,
Ic). This signifies that the mobilities of alkyl chainsin
the micellar and nematic N phases have close values.

CONCLUSION

The data reported here show the complex nature of
the aggregational processes occurring in the lyotropic
amphiphilic systems based on alkyltrimethylammo-
nium bromide detergents. Different aggregational
states and their mutual transformations can be studied
with the aid of multinuclear NMR spectroscopy and
optical polarization microscopy. In the present study,
severa lamellar phases, Ly, Ly.n @nd Lyp, have been
identified and characterized. The alignment of the
lamellar phases in strong magnetic fields has also been
established.
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Abstract—The existence of the biaxial smectic phase SmA,, has been proved in the model of the Landau poten-
tial with two (nematic and smectic) interacting order parameters. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The symmetry of liquid-crystal phases is character-
ized by the orientational and positional order in the
molecule arrangement [1, 2]. According to the Friedel
classification, the phasesin liquid crystals with achiral
calamitic molecules are divided into two types—nem-
atics and smectics[2]. Theisotropic liquid hasthe com-
plete orientational (O(3)) and trandational (T(3)) sym-
metry of the group G = O(3) x T(3). At thetransition to
the nematic (N) phase, the tranglational symmetry is
retained, while the rotational symmetry is violated,
which provides the formation of two types of nematic
phases—the uniaxia phase N, (G =D, X T(3)) and the
biaxial phase N, (G = D,;, X T(3)). In nematics, the mol-
ecules are aligned along the director n. Smectic (Sm)
liquid-crystal phases exhibit a layered structure in
which the molecules are characterized not only by the
orientational but also by some positional order. The
simplest example of a smectic phase isthe SmA,, phase
with the symmetry G = D, x T(2) and the director per-
pendicular to the smectic layers. Within the layers, the
centers of gravity of the molecules are disordered asin
a conventional liquid. The violation of D, symmetry
leads to various smectic phases. For example, thedirec-
tor tilt with respect to the smectic layersgivesriseto the
formation of the SmC phase (G = C,;, X T). Another
example is the SmA,, phase (G = D, X T(2)), inwhich
the director of biaxial moleculesis perpendicular to the
layers. The possibility of the existence of thisphasewas
first pointed out by McMillan [3, 4]. Within the context
of the phenomenological Landau theory, the possibility
of the direct transition from the isotropic to smectic
(SMA and SmC) phaseswas studied in[5]. However, the
transition to the SmA,, phase has not yet been studied
theoretically. Below, we consider the simplest theoreti-
cal model of the Landau—de Gennes phase transitions,
which describes the transitions from theisotropic (1) to
the N,, SmA,,, and SmA, phases. Although the transition
from | to N phase was widely studied both theoretically
and experimentally [1], the direct transition from iso-

tropic (1) to the SMA and SmA, phases (I-A transition)
was not observed experimentally until recently (see [6]
and references). A simple model of Landau thermody-
namic potential that allows oneto describethe |-Atran-
sition was proposed in [6]. However, anumber of errors
did not allow the authors[ 6] to study thismodel in more
detail. Below, we perform the detailed analysis of this
model.

THE MODEL OF LANDAU THERMODYNAMIC
POTENTIAL

The order parameter that describes the transition to
the N phaseis atraceless tensor [1]

Qi = :Uzﬂl(?’ninj—éik)"'«/é/zﬂz(mimj—lilj)a (1)

wheren, m, and 1 = n x m are the orthogonal eigenvec-
tors Q;; corresponding to the eigenvalues

Ny, —1/2(Ny + 4/31,), —1/2(n; — 4/30y), 2
respectively. The quantitiesn, and ), define the uniax-
ial (n, #0 and n, = 0) and biaxial (n, # 0 and n, # 0)
order. The smectic order can be described by the imag-
inary order parameter

W(r) = |w(r)le" ™, 3)

where g = 217d, and d is the layer thickness [1]. In the
simplest case of the SmA phase, the wave vector is par-
alel to the z-axis

W(z) = [We'*. @)

Generally, the thermodynamic potential has the
form

® = ch(Qik) + q)2(|LIJ|! W ) + q)3((?ik! |LIJ|! W )’ (5)

where @,(Q,) is the thermodynamic potential of the
N phase, ®, isthe thermodynamic potential of the SmA
phase, and ®; is the potential corresponding to the

1063-7745/02/4705-0856%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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interaction between the order parameters. Retaining the
simplest invariantsin ®;, we abtain

P3(Qi W], W)
= V1Qu(LiW) (O W) + VzQiink|qJ|2-
Then, the ssimplest fourth-order potential with respect

to the order parameters has the form (in notation sug-
gested in [6])

® = 1/2AQiink_:U3BQiijkai + 1/4C(Qiink)2
+12a|W|* + VABIW + V43| W°Qu Qe ()

(6)

+ 12b( W) + Uab,(AW) + 1/26,Q, (O W) (OW).

The invariant Q;(1,W)(0, W) isthe trace of the product
of two symmetric second-rank tensorsthat can simulta-
neously be reduced to the diagona form (D, symme-
try). Here, the eigenval ues of the matrix (L;W)(L;W) are

&1, —1/2(8, + A/3&,), and —1/2(&, — A/3&,), where

£ [E@‘DD P [@CDD}
! A/E,DazD CoxO ~ CoyO

ikl

Then, theinvariant Q(O;W)(OW) is

Y1(n1&1 +nzEy). )
From Egs. (4) and (8), weobtain &, = ¢?|]Wfand &, = 0.
Accordingto [7],

QikQik = 3/2(r]f + r1§)

QijQjkQui = 3/4(r]f —3n1N 5)1
and, hence, the thermodynamic potential is

® = a,(n:+n3)+by(n;—3n;n5)
+a,(N7+n2)° + oy W+ oW+ Ay W

AW  +yin. 071w+ yo(ng + )| WG

If themodel of potential (11) isto meet the condition of
the global minimality (the values of the order parame-
ters should be finite irrespective of the changes in the
parameters) [8], the parameters of the model before the
higher powers of the expansion in the order parameters
should satisfy certain relations. In [6], the sequence of
the relations was determined erroneously. Using the
method stated in [6], we obtain

a,>0, a,>0, A,>0,

Yo >-2,/a,0, + Vi/4)\2-
Within model (11), the variable parameters are a,, b,
a,, and A,, which depend on the external conditions,

e.g., the temperature and pressure. For the sake of sim-
plicity, we put b, = const < 0.

(10)

(11)

(12)
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ANALY SIS OF THE SYSTEM
OF THE EQUATIONS OF STATE
FOR THE MODEL OF THE THERMODYNAMIC
POTENTIAL

The system of the equations of state for thermody-
namic potential (11) has the form

i)
ﬁ‘ = 231n1+3b1(r]1 n§)+4az(r]f+r]§)r]1
1
+v,|WIQ* +y,| W0, = 0,
0P _ 2, 2 2 _
(W =2n,[a; —3byn; + 2a,(N; +n2) +y,[W]T =0
2 o (13)
I = 2|¥|[a, + 20, ILPI —2)\2q
+v,(n; +n3)] = 0,
L)
Ea = 2|qJ| Q(M+27\zq +yin,) = 0.

The solutions of this system correspond to four
phases:

I'n, =n,=0, [¥ =0, q=0,
Ny:n:#0, n, =0, [/ =0, g=0 (14)
SmA,;:n,;#0, n, =0, [¥#0, g#0,
SmA,:n,#0, n,#0, W #0, q#0.

It is important that only the first three phases were
considered in [6]. The fourth-order potentia with
respect to Q. includes no hiaxial phase N,; in order to
describe this phase, one has to take into account the
sixth-order term. However, because of the interaction
with the smectic parameter (y,n,|Wfg?), system of
equations (13) admits of the following solution with
n,#0at |W|#£0andq#0:

2 2 2 2

N2 —3N1N2 = v4|¥|"q7/3b;. (15)
Ify,=0 (or |¥|=0and g=0), the solutions r]§ —3r]f =
0 correspond to the domains of the N, phase. The anal-
ysis of the phase stability in the space of the variable
parameters R* = (a;, a,, A,), (b, = const < 0) involves the
determination of the degeneracy conditions for the
matrix of the second derivatives

IHil =

Wheregl D {nb nZa |L|J|’q andl,] = 19 XE] 4

The derivativesin Eq. (16) are found by substituting
the solutions of Eq. (13) for each phase. For phasel, the
stability conditions are

a,=0,

H (16)

a,=0. (17)



858

The determinant |[H;, || in the phase N, has the form

det||H;J| = (-9b;n)n.(3b; + Ban)(a, + Vzr]f)- (18)
Asfollows from Eg. (18), in model (13) we have
—-9b;n, =20, (19)
andif b, <0, thenn, > 0.

Two other degeneracy conditionsfor |[H;, || are given
by the equationsin R?

3 a; a,
a(l), = —=b }——+2a—, 20
( )l 2 1 y2 2y2 ( )
_ 9y
a(ll, 32a, (21)

Condition (21) specifies the coexistence region of the |
and N, phases, in which the I-N,, first-order transition
occurs at

a,(1-N) = b’/4a,. (22)
Curves (20) and (21) in the space R? = (a,, a,) are tan-
gential to one another at the point (o, =-v, 9 bf /64 a§ ,

a, = 9bf /32a,). For the SmA,, phase, the degeneracy
condition for ||H;,|| has the form

2 2
32|L|J|4q25—9b1r11 + yll: a E[4A2Amf
1

+ 20 5(301,b; = 2y1Y,07)N 1 — Y1 (A" + 0, W|%) (23)

2)\1)\2W2q2} .
N1 ’

where A, = 40,8, — y§ . The condition

‘|'2q2D
—9h.n. + >0
% N1tYs N, U

differs from Eq. (19) for the N, phase and specifies a
curve in the plane R? = {a,, a,}. This condition deter-
mines the stability of the SmA,, phase in relation to the
formation of the SmA, phase. Condition (23) also spec-
ifiesthe region of thereal solutionsfor the SmA,, phase.
In this case, thereisaregion wherethel, SmA,, and N,
phases coexist. In this region, the first-order 1-SmA,,
I-N, and SmA N, phase transitions take place, which
converge to atriple point.

The degeneracy conditionsfor H;, in the SmA, phase
with the lowest symmetry have the form

4 2 2

64w/ g’ N[ 4N 4001 + (A W|* — 4N yiq’
+ 3b1(\/1\/2q2 +30a,b;) )N,
+20,(3bn; -y, W q7)A,] = 0.

(24)

(25)
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The analysis of conditions (23) and (25) showed that
both second-order transitions along curve n, = 0
[EQ. (24)] and first-order transitions between the SmA,
and SmA, phases are possible. In addition, the direct
first-order transition from the | to the A, phase is aso
possible.

CONCLUSIONS

Thus, we have analyzed the simplest model of ther-
modynamic potential (11). The study of the solutions of
system of equations (14) and their stability showed that
the model describesfour phases, I, N, SMA,,, and SMA,..
The SmA, phase is optically biaxial; one of the axes
coincides with the normal to the smectic layers z, while
the other two axes & and n, lying in (X, y) plane, are not
equivalent:

QZZ¢ 01 QEE 7 Qrm # 01
QEn = an = Qiz = 0.

The effective potential described by (13) was studied in
[6] & n, = 0; it was assumed that conditions (19) are
satisfied. In this case, the phase diagram has aregion of
parameter values such that no solutions of the equations
of state can exist, which shows that this approach is
€rroneous.

(26)
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Abstract—The generation of adislocation spiral and fluctuationsin the step vel ocity on the (101) face of mon-
oclinic lysozyme crystals have been studied by in situ atomic force microscopy (AFM). It is shown that the
(101) face grows by the dislocation mechanism and that the steps move via the formation of one-dimensional
nuclei. Thevelocity of apart of the step fluctuates, with the fluctuations increasing proportionally to the fourth-
order root of time. In the process of spiral generation, a segment of the step attains a certain critical length and
then moves with a constant velocity. Even under constant supersaturation, the fluctuations can give rise to
changes in the segment length. The interstep distance in the step echelon aso varies. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

Studying the processes of crystallization of the
orthorhombic lysozyme modification, we have estab-
lished that the kink density on the steps of thiscrystal is
rather low and that the steps move via the formation of
one-dimensional nuclei [1, 2]. We a so studied the fluc-
tuationsin the step velocity [3] and established that the
velocity is independent of the step length. This phe-
nomenon is of special interest becauseit isinconsistent
with the thermodynamic Gibbs-Thomson equation.
Obviously, this phenomenon can be associated with the
kinetics of the process [4]. It was expedient to verify
whether the step velocity is really independent of the
step length also on some other crystals.

Lysozyme, like other proteins, has a propensity to
polymorphism and forms several modifications crystal-
lizing under different chemical conditionswithin a nar-
row temperature range. Growth of the tetragonal and
orthorhombic modifications has been studied in suffi-
cient detail, whereas the mechanism and kinetics of
crystallization of the monoclinic phase have not been
studied as yet and, therefore, we selected this modifica-
tion as the object of our study.

EXPERIMENTAL METHOD

The crystals were obtained from sixfold recrystal-
lized lysozyme (Seikagaku, Japan) by the method
described in detail in [5].

The approximately 1-mm-long crystals were well

faceted (Fig. 1). According to [5], the unit-cell parame-
ters of the crystalsarea=2.80 nm, b = 6.25 nm, ¢ =

6.09 nm, 3 =90.8°, z=4, space group P2,. Thetwofold
axis coincides with the b-axis of the crystals.

The experiments were performed in aliquid cell of
a Nanoscope-3 atomic-force microscope (Digita
Instruments) in the contact mode using Si;O, tipsin the
shape of tetrahedral pyramids with the angle at the ver-
tex equal to 70°. The cantilever in the shape of an
100-um-high isosceles triangle had a rigidity of
0.12 N/m. In order to obtain adequate images, we had
to maintain a constant force applied to thetip (at alevel
of about 10-1° N). The temperature of the experiment
was about 25°C. Because of a dight variation in the
solution composition (in comparison with the composi-
tion recommended in [5]), the solubility curve sug-
gested in [5] cannot be used, and, thus, we could not
determine the supersaturation, but it remained constant
during the whole experiment, which was confirmed by
the constant average step velocity.

EXPERIMENTAL RESULTS
Morphology of a Growing Surface

It was rather easy to reveal the growth sourcesin the
form of single and double spirals and aso the Frank—
Read sources on the (010) face (Fig. 2). In most of the
cases, the step rise had an elementary height of 2.5 nm
corresponding to the interplanar spacing d,,;. The spi-
rals had an almost rectangular shape, but the average
distances between the spiral turns were different along
four directions. Along one of the directions, the steps
perpendicular to the b-axis were essentially rough. In

1063-7745/02/4705-0859%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 2. AFM images of (a) a single spira and (b) a Frank—Read source. The step shape in the second image is slightly distorted
because of the smaller difference between the velocities of astep and atip.

accordance with [5], this direction was taken to be the
negative direction of the b-axis.

The image of astep parallel to the b-axis at alarger
magnification isshown in Fig. 3. One can distinctly see
the kinkswhose depth (6.7 nm) correspondsto the unit-
cell dimension along the [101] direction. Unlike the
case of an orthorhombic crystal, there were aimost no
kinks of multipleor half depth. The number of the kinks
is rather small and they are distributed nonuniformly.
This pattern istypical of the step motion viathe forma-
tion of one-dimensional nuclei [1, 6].

At a larger magnification, one can also see the
molecular structure of the face (Fig. 4). The character-
istic dimensions between the rows of the unit cells are
consistent with the corresponding X-ray data. No sur-
face reconstruction was revealed, although it cannot be

CRYSTALLOGRAPHY REPORTS Vol. 47

excluded that the neighboring rows of the cells are
somewhat shifted along the b axis.

Fluctuationsin Sep Vel ocity

Figure 5 shows the atomic-force microscopy image
of two steps obtained in the mode of one-line scanning.
In this mode, the slow motion of the AFM scanner is
switched off, so that one can observe the changesin the
position of asmall (inour case, ~0.3-nm-long) step seg-
ment. Thus, it is possible to measure the time upon
which the step starts moving forward or backward
along the normal to itself (for one lattice parameter).
Using a successive series of similar images, we
recorded 150 attachment (86) and detachment (64)
events. As a result of each event, the step moved for-
ward or backward for one lattice parameter (6.7 nm).
The step displacement x asafunction of timet isshown

No. 5 2002
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Fig. 3. The portion of astep of elementary height. The step
moves slowly from left to right via the attachment of build-
ing blocksto the kinks and the formation and growth of one-
dimensiona nuclei. The arrows show anew row of the ele-
mentary cells of the step.

in Fig. 6 with the indication of the experimental values
of step positions at different moments of time. The
average slope of x(t) is the average step velocity, vy =
0.23 nm/s. In addition to the total increase of x with
time, one can also see three plateaux in x(t) with the
centers at t = 150, 300, and 500 s (Fig. 6), which may
correspond to the fluctuations of a kink in the vicinity
of the scanning site. Then the averagelocal slopesinthe
transition from one plateau to the following one would
correspond to the kink velocity.

The average time interval between the kink arrival
was 4.42 s. It should be noted that the average time of
the appearance of a new unit cell upon its detachment
was five times shorter than the average time of the
remaining events (1.3 and 6.5 s, respectively). The for-
ward motion of astep signifiesthe arrival of anew kink
to the scanning site (line). Then, the fluctuation
“retreat” of the kink immediately upon this “attack”
would be immediately recorded. Each next attack is
associated with the arrival of anew kink, which takes a
longer time (of the order of the time necessary for a
kink to pass the distance equal to the interkink distance
on astep). This pattern seems to be formed only under
noticeable supersaturations, because, in this case, the
kink attack is more probable than its retreat.

Thedistribution function of the time of the new kink
arrival (1) follows from the lengths of the horizontal
steps of the staircase (Fig. 6). It should characterize the
distribution of the distances between the neighboring
kinks (x) because T = x/v, where v is the kink velocity
assumed to be constant. At a random kink distribution
on a step, the praobability P(x) that a kink would be

CRYSTALLOGRAPHY REPORTS Vol. 47 No.5 2002

Fig. 4. The structure of the face at a high resolution. Below,
aportion of the upper image filtered from noise by the Fou-
rier method is shown; 512 scans, 30.5 Hz.

X, nm
550 440 330 220 110 0
25 B T T T T T

20

15

10

0 L
t,s
Fig. 5. The image of two steps parallel to the b-axis

obtained in the one-row scanning mode. Kink depth 6.7 nm,
512 scans, 20.3 Hz.
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Fig. 6. The change in the position of the portion of a step
with time. The origin of the coordinates system corresponds
to thefirst attachment of a building block.
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Fig. 7. The distribution function of the time of the kink
arrival to the chosen step portion. The curveis exponential .
In the inset: the range of small dP/d(t/@0 = n/NA values.
Here n is the number of points in the corresponding range
of t/m0values (A =1); N=150, @0=4.42s.

encountered in the vicinity of its neighbor at a distance
ranging from x to x + dx has the density

dP/d(x/X0 = exp(—X/XD,

where XLis the average interkink distance. The calcu-
lated probability density dP/d(t/@0 as a function of
t/mdisshown in Fig. 7. It considerably differsfrom the
exponential dependence, especially at high t/[Tval ues.
This can be associated with both nonrandom kink dis-
tribution on the step and the dependence of the kink
velocity on the distance from one kink to the neighbor-
ing one. Both factors could have been caused by impu-
rities; however, we revealed no signs of impurity pres-
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ence, which is also confirmed by the constant depth of
all the kinks.

To analyzethe fluctuationsin the position of the step
segment, we assumed, in the first approximation, that
the step vel ocity was constant, v4 =0.23 nm/s. Thefluc-
tuation-induced deviation of the step position from its
average value ox depending on timet was calculated as
the difference between the real step position at the
moment t and the coordinate of the corresponding point
on the line approximating the whole staircase (Fig. 6).
Then, it became possible to construct the autocorrela-
tion function of the dependence of [(dx)?[bntimeinthe
form

q8x)°0 = Oox(t) —dx(t + At)] 0 (1)

Averaging was made over all thet values at the constant
At. The datain Fig. 6 were approximated by the linear
dependence insufficiently well, and, therefore, we lim-
ited the consideration to the maximum At value, At =8s.
Expression (1) characterizes the change in the squared
fluctuation amplitude of the step position for the time
At. This dependence is shown on the double logarith-
mic scalein Fig. 8 and is described sufficiently well by
astraight line whose slope cal culated by the LS method
equals0.47 £ 0.01,i.e., iscloseto 0.5. Therefore, it was
assumed that [(6x)>0increases proportionally to the
square root of time

ex) 0= (xt)*. )

The proportionality coefficient was determined as
X =35.7 nm#/s=3.57 x 1072’ cm?/s. The proportionality
of ox to the fourth-order root of time was predicted by
Voronkov long ago [7] and was experimentaly
observed in KDP, the orthorhombic modification of
lysozyme [3], and potassium hydrogen phthalate
(KAP) [8]. Voronkov's theory alows one to determine
anumber of the fundamental parameters of crystalliza-
tion from the x value. We do not make these calcula-
tions here because it is still unclear what a building is
block and what sizesit has, which is necessary for per-
forming these calculations.

Formation of a Dislocation Spiral

To consider the formation of a perfect turn of the
spiral in detail, it is necessary to obtain the largest pos-
sible number of images within the time necessary for
theformation of oneturn. Thisproblemisfar from sim-
ple, because the typical time necessary for taking one
AFM image ranges from 30 to 50 s, whereas the time
necessary for the formation of one spiral turn, even at
low supersaturations, is of the order of 100 s [which
corresponds to the rate of face growth of about 1 pm
/day (24 h)]. At shorter times of image recording, the
image quality and, thus, the measurement accuracy, are
much lower. We obtained about 70 images reflecting
the development of two turns of aspiral. The recording
conditionswere asfollows. The frame dimensionswere

No. 5 2002



FLUCTUATIONS IN THE STEP VELOCITY

1 At s

Fig. 8. Autocorrélation function (1) of the dependence of
the mean squared fluctuations on time on adouble logarith-
mic scale.

3.67 x 3.67 ym, the scanning frequency was 20.34 Hz,
and the number of scans was 128 (we recorded only
half of the frame). As aresult, the total time necessary
for recording one image was 3.147 s, and the accuracy
of measuring the distances (a recording step) was
28.7 nm. Although the velocity of a measuring tip was
100 times higher than the step velocity, we observed a
dlight change (<5°) in their orientations in the upward
or downward scanning, and, therefore, only half of al
theimages scanned al ong one direction were measured.
Figure 9 shows nine frames characterizing the forma-
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tion of oneturn of aspiral. The step and all its segments
shown in this figure are of the same height. One of the
frames in Fig. 9 shows the numbering of the step seg-
ments.

Considering Fig. 9, one has to pay attention to the
following facts. The distances between the turns are not
the same, which is clearly seen from the positions of the
first segments of different turns. The segments of the
first and third orientations are not rigorously rectilinear,
and large kinks on these segments in different frames
are located in different sites. The segments of the sec-
ond orientation are extremely curved. One can see the
extended protrusions and hollows on these segments.
As arule, the angles formed by the adjacent segments
are rounded off. In the vicinity of the dislocation out-
crop, where the segment lengths are rather small, this
results in the fact that the length of the rectilinear por-
tion of the segment is considerably less than the length
of the segment itself.

More details on the formation of a new spira turn
can be obtained from Fig. 10. To construct this figure,
we measured the lengths of all the segments during the
time necessary for the formation of two spiral turns.
This is only a scheme, because it does not reflect the
deviations of the segments from the rectilinear shape
clearly seenin Fig. 9. Each newly formed step segment
first increases in length due to the motion of the neigh-
boring segment, but it is not displaced as awhole along
the normal to itself. Only upon the attainment of a cer-
tain critical length does the new segment start moving
itself. Thisisthe moment of the beginning of the forma-

Fig. 9. The successive AFM imagesillustrating the formation of anew turn of a spiral. The time between the framesis 12.6 s. Light
and dark squares at the step ends reflect the discreteness of image recording. Thefirst segment appearsin the timeinterval between
frames 2 and 3; the second, between frames 6 and 7; the third, between frames 7 and 8; and the forth, between frames 1 and 9.
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Fig. 10. The step motion during the formation of (a) thefirst
and (b) the second turns of the spiral. The time interval
between the neighboring step positionsis 6.29 s. The figure
is drawn by using the segment length measured with an
accuracy of £20 nm from 39 successive images of the spi-
ral. Position 17 relates to the second turn, positions 37-39,
to the third. The numbers of nine frames in Fig. 9 corre-
spond to odd numbers from 3 to 19.

tion of another segment. When the latter attainsits crit-
ical value and starts moving, the velocity of the length-
ening of the first segment also increases, because now
it is determined by the displacements of two neighbor-
ing segments. This process can be described in the fol-
lowing way. Denote the length of the segments and
their average velocity as |; and v;, respectively, where
i=1,2,3,4,infull accordance with the segment enu-
merationin Fig. 9, | ; isthe critical length, and t isthe
time. Then, wehavel;_, <l ;_,, li=dl;/dt=0;atl; | <
leivr dli/dt=vi_yatli, >l di/dt=vi_, +
Viepatl o =0L=lg;

Thesubscripti—1 ati =1 correspondsto segment 4

of the previous turn, and the subscripti + L ati = 4, to
segment 1 of the following turn.

Using this characteristic fact, we measured the val-
ues of I, ; and v; for two successive turns of the spiral
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from the images shown in Figs. 10aand 10b.

Segment, i 4 1 2 3
First turn
le,i, nM 60 300 70 75
v, nm/s 7.8 24 34 6.4
Second turn
le,i, nM 75 505 75 75
v, nm/s 7.6 24 5.4 7.6

Aswe can see, the critical length of thefirst segment
became considerably larger at the second turn, with the
critical lengths of the remaining segments being con-
stant within the accuracy of our measurements. The
velocity is changed only dlightly and in an irregular
way: it increases for segments 2 and 3 and remains
practically constant for segments 1 and 4. It should be
indicated that the first turn wasformed for 94.5+ 1.5,
the second one, for 135 £ 1.5 s. Such a pronounced
increase in the growth time of one spiral turn is associ-
ated mainly with an increasein the critical length of the
first segment and, thus, requires more time for its for-
mation. The turn started growing with the appearance
of segment 4. Measuring the time from the appearance
of another segment, we obtain different values: from
the appearance of the first one, 104 s; from the appear-
ance of the third, 142 s. Thisresult is explained by the
occurrence of fluctuationsin I, ; and v;, and, therefore,
the time necessary for the formation of the same seg-
ment of the critical length isdifferent for different spiral
turns.

Considering Fig. 10, one can notice that the first
range of the distances between the successive positions
of mutually parallel segmentsisnot lessthan the others.
This signifies that even at a dlight increase in the seg-
ment length above its critical value, its velocity is not
less than at the pronounced segment length. In other
words, the segment velocity is independent of its
length. This conclusion is confirmed by asimple calcu-
lation. If the segment acquires a constant velocity
immediately upon the attainment of the critical length,
the spiral turn isformed for the time

T = IC4/V3 + ICI/V4 + IC2/V1 + IC3/V2.

Substituting the values obtained for the first turn
into the above expression, we obtain T=97.2s,i.e, the
time which practically coincides with the real time of
the formation of this turn. This time would have been
considerably longer if, with an increase in 1/, the
velocity had gradually increased from zero to a certain
constant value in accordance with the thermodynamic
Gibbs-Thomson equation.

DISCUSSION
The ideas about the formation of a polygonal dislo-
cation spiral at low kink density that were developed in
[9] were based on the fact that a segment whose length
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equals the length of the side of atwo-dimensional crit-
ica nucleus has only a small rectilinear portion,
because the angles of the critical nucleus should be
rounded off. If the length of this portion is comparable
with the average interkink distance, it may have no
kinksat all for quitealong time. With anincreasein the
length of such a segment, it is the rectilinear portion
that starts determining its velocity. It was shown [9]
that, in this case, even aslight increasein | abovel, can
drastically increase both the length and velocity of the
rectilinear portion.

However, the analysis performed in [7, 9] is essen-
tially based on the assumption that there is dynamic
equilibrium between the rectilinear portion of the step
and itsenvironment. M eanwhile, the attainment of such
an equilibrium requires sufficient time for the diffusion
exchange of the kinks between the opposite ends of the
rectilinear portion. This is the only mechanism which
can let one end of afinite segment know about the exist-
ence of another, in other words, the mechanism relating
the segment velocity with its length.

The exchange of the kinks between the segment
ends requires that the kink that was detached from one
segment end diffuse along the segment either to reach
the other end or to encounter somewhere a kink of the
opposite sign detached from the opposite end. The
annihilation of these kinks provides the gain in the lin-
ear energy during dissolution of ashort step in the solu-
tion with concentration equilibrium with respect to the
kink (infinitely large crystal), because the time for kink
diffusion along therectilinear segment in equilibriumis
unlimited. In a supersaturated solution, the situation is
different. The segment ends “communicate” via kink
annihilation only if the segment length is less than the
length of a one-dimensional nucleus (the fluctuation
length of thekink [6]) | < 2b/s. Here, b =6.25 nmisthe
distance between the building blocks and sisthe super-
saturation. Thus, this situation is possible only under
low supersaturations s < 2b/l (=10% for | of the order
of 100 nm). The supersaturation in the experiments
described above was unknown, but, using the anal ogy
with orthorhombic lysozyme, where at a step velocity
of about 2 nm/ss=170% [4], the supersaturation would
be considerably higher than 10%. In this situation, the
Gibbs-Thomson equation is hardly applicable. There-
fore, we believe that the critical segment length with a
low kink density is determined not by the thermody-
namics but rather by the kinetics of the attainment of
the steady-state kink density.

It can be seen from Fig. 9 that, unlike other seg-
ments, the first one acquires a rather extended rectilin-
ear portion upon the attainment of the critical length.
The critical length of the first ssgment seems to be so
large because it has no kinks at all. The pronounced
fluctuations in the kink number on the first segment
considered above should inevitably follow from the
random changes in its critical length during the forma-
tion of the successive turns of the spiral. Therefore,
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even under aconstant supersaturation (and constant v;),
the time necessary for the formation of a spiral turn
would vary and change the distance between the turns
equal to Tv;, which was confirmed experimentally.

The fast attainment of a constant velocity under a
small excess of the critical length of the segments is
explained by the fast attainment of the steady-state
(athough fluctuating) kink density. Unfortunately, the
calculations of the duration of the period of nonstation-
arity as a function of the length of one end of the seg-
ment fixed at the point of the dislocation outcrop, the
rate of the kink formation, and the velocity of their
motion have not yet been completed. The dependence
of the segment velocity on itslength should exist in any
case, but its detailed study requires new experiments at
different known supersaturations. Moreover, one can-
not completely exclude the possibility that the end of a
growing step can have a structure that differs from the
structure of a step growing in the steady-state mode.

The experimentally observed fluctuations in the
velocity of