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Abstract—A statistical analysis of the spectral and temporal parameters for 546 triggering events on the
APEX gamma-ray detector onboard the Phobos-2 spacecraft has revealed a group of 28 events that are
probably short cosmic gamma-ray bursts (GRBs). The distribution of the full group of 74 events of the
APEX experiment in duration parameter is bimodal in shape, which is in good agreement with the bimodal
shape of the BATSEGRB distribution. A search for the detected group of short events using data from the
LILAS X-ray and soft gamma-ray detector onboard the same spacecraft has yielded no positive result. A
comparison of the APEX and LILAS data has led us to conclude that the short GRBs have a significantly
reduced soft gamma-ray flux at energies <100 keV relative to the power law dN/dE = CE−α with the
average index α = 2.62. c© 2004 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The Soviet–French APEX (Astrophisico-Plane-
tological Experiment) and LILAS experiments of the
Phobos-2 mission (Sagdeev and Zakharov 1989)
operated for eight months (from July 1988 until
March 1989). One of the main scientific objectives
of these experiments was to study the emission from
cosmic gamma-ray bursts (GRBs) in the energy
ranges 50 keV–10 MeV (APEX) and 6–150 keV
(LILAS).
The APEX experiment used a large CsI(Tl)

scintillation detector with a size of about 10 × 10 ×
10 cm and a spectral resolution of ∼10% for energies
∼1 MeV (Mitrofanov et al. 1991). The LILAS exper-
iment used two scintillation detectors made of cleaved
NaI(Tl) crystals that recorded X rays and gamma rays
with energies above 6 keV (Hurley et al. 1994).
The sensitivity of the LILAS detectors decreased
significantly for photons with energies >100 keV.
Both instruments operated almost continuously

in background and burst modes that automatically
switched from one to another. The background mode
switched to the burst mode during burst triggers be-
fore which the current gamma-ray flux was continu-
ously compared with the measured background level
in background mode. APEX was triggered when the
signal exceeded the background level bymore than 7σ
at least for one of the three comparison time scales:

*E-mail: kozyrev@mx.iki.rssi.ru
1063-7737/04/3007-0435$26.00 c©
0.0625, 0.25, or 1 s. LILAS was triggered in a similar
way at a 7σ level on time scales of 0.25 and 1 s.
After a triggering event, APEX switched to burst

mode in which the following characteristics of the
gamma-ray flux were measured:
(1) The time profile of the photon flux with

8-ms resolution during the first 8.6 s and with
0.125-s resolution during the succeeding 55 s. The
profile of the photon flux was recorded in the energy
range 150 keV to 1.5 MeV.
(2) The time-to-spill profile of the photon flux

of 24 counts in the energy range 150 keV to 1.5 MeV.
The recording mode of the time-to-spill profile al-
lowed a time resolution up to fractions of amillisecond
to be achieved.
(3) 116 sequential photon energy spectra recorded

in 108 energy channels in the energy range 64–
9200 keV.
In burst mode, LILAS produced similar data for

each of the two independent detectors.

AN OVERVIEW OF THE DATA ON
PREVIOUSLY KNOWN APEX, LILAS, AND

BATSE GAMMA-RAY BURSTS

Over the eight months of Phobos-2 operation,
the APEX detector recorded 546 triggering events.
LILAS triggered 590 times over this period.
Initially, during the period 1988–1992, only 58 APEX

triggering events were interpreted as cosmic GRBs
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Distribution in duration parameter τ50 for
1779 GRBs from the BATSE catalog (Paciesas et al.
1999). The hatched region with 0.5 < τ50 < 3 s was used
for a comparison with APEX data.

(Mitrofanov et al. 1992). It should be noted that
62 events were presented in the above paper. Sub-
sequently, however, four of them were excluded from
the APEX GRB list, because these were identified
with solar flares or recurrent burst triggers occurred
during the same GRB.
At present, BATSE and PHEBUS data have re-

vealed that the GRB distributions in duration param-
eters T50 and T90 (Koshut et al. 1996) and in emis-
sion time τ50 (Mitrofanov et al. 1999) are bimodal
(Dezalay et al. 1991; Kouveliotou et al. 1993). It
has been found that there are two distinct classes of
GRBs: long events with characteristic emission times
τ50 > 0.5 s and short events with τ50 < 0.5 s. The
emission time was calculated for 1779 GRBs from the
fourth BATSE catalog (Paciesas et al. 1999). Their
distribution clearly shows a bimodal pattern (Fig. 1).
The energy spectrum of short GRBs is known to be
harder than that of long GRBs (Dezalay et al. 1991;
Kouveliotou et al. 1993).
We constructed the distribution for the 58 previ-

ously known APEX GRBs using the emission time
τ50 (Fig. 2). The left peak that must correspond to
short GRBs is virtually absent in this distribution.
It follows from the BATSE data that the fraction
of short GRBs with τ50 < 0.5 s is ∼26% of their
total number (see Fig. 1). Since the measurement
time of the GRB profiles in the APEX experiment
was limited by a duration of 63.6 s, the emission
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Fig. 2. Distribution in duration parameter τ50 for the
58 previously known GRBs (1) and the combined distri-
bution of the 58 previously known and 16 new short GRB
candidates (2) constructed fromAPEX data. The hatched
region with 0.5 < τ50 < 3 s was used for a comparison
with BATSE GRBs.

time for long bursts was underestimated, and the
right part of the τ50 distribution turned out to be
displaced leftward, toward the shorter emission times
(see Fig. 2). Therefore, for a comparison of the two
distributions, we chose the interval 0.5 < τ50 < 3 s
for which the measurements for BATSE and APEX
events are comparable. For the BATSE experiment,
460 short GRBs with τ50 < 0.5 s correspond to 353
events in the interval 0.5 < τ50 < 3 s (see Fig. 1). This
implies that for the APEX experiment, about 29 short
GRBs must correspond to 22 events in the interval
0.5 < τ50 < 3 s (see Fig. 2). The APEX database
(Mitrofanov et al. 1999) contains only 12 events with
emission times τ50 < 0.5 s. This number is a factor
of 2.4 smaller than the number of short GRBs that
might be expected from the relation derived in the
BATSE experiment.
LILAS detected 64 GRBs; all of these events be-

longed to long bursts with a characteristic variability
time of ∼30 s. The APEX and LILAS lists of long
GRBs were found to match satisfactorily in all of the
cases where the two instruments were in background
mode and were able to trigger. At the same time, no
short events from the APEX database were present
in the LILAS list of triggering events. Therefore, they
were not identified with GRBs.
To elucidate the causes of the discrepancy between
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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the APEX and BATSEdata on short events, we rean-
alyzed all of the APEX triggering events in an effort to
find the most likely candidates for identification with
short GRBs. Subsequently, we compared the list of
found candidates with the LILAS list of triggering
events to establish the cause of the absence of short
GRBs in the LILAS list.

CLASSIFICATION OF THE COMPLETE SET
OF APEX TRIGGERING EVENTS

All of the 546 APEX triggering events can be
broken down into the following groups:
(1) the well-known group of long GRBs: 60 trig-

gering events of this group correspond to the 58 previ-
ously known APEX GRBs (Mitrofanov et al. 1992);
(2) the group of 5 events that were reliably iden-

tified with solar flares using data from other experi-
ments;
(3) the group of 196 triggering events that oc-

curred because APEX switched to burst mode by an
external command or due to internal false triggers of
the electronics;
(4) the group of 3 events with telemetry informa-

tion failures;
(5) the group of 282 hitherto unidentified events

that may include short GRBs.
The events of group V account for ∼51% of the

total number of APEX triggering events, and most of
them have one or, more rarely, two or more intervals
with a statistically significant excess of the signal
above the background level. The overwhelming ma-
jority of the triggering events of group V are assumed
to have occurred due to the passage of charged parti-
cles through the CsI(Tl) crystal. However, it follows
from a comparison of the APEX and BATSE data
that some of the events of this group are short GRBs.
Thus, the problem of searching for short APEX

GRBs consists in separating the events of group V
into short GRBs and APEX triggering events from
charged particles. This separation will be performed
by comparing the statistical distributions in emission
time and spectral hardness parameters for the trigger-
ing events from charged particles and short GRBs.

STATISTICAL PROPERTIES OF GROUP V
OF UNIDENTIFIED APEX EVENTS

To analyze the rapid variability of group V of hith-
erto unidentified events, it is most convenient to use
time-to-spill data. For these data, the time intervals
in the profile of an event have different durations that
are determined by the time to spill of 24 counts. At
a high count rate, the duration of the intervals of this
profile can be several fractions of a millisecond. The
duration of the intervals increases with decreasing
ASTRONOMY LETTERS Vol. 30 No. 7 2004
signal-to-noise ratio; this may lead to an overestima-
tion of the event duration when, after the burst com-
pletion, the instrument waits for absent background
counts to complete the current interval of the time-
to-spill profile. Therefore, to estimate the durations of
the events from group V being analyzed, we used not
the measured time-to-spill profile, but its analytic fit.
Since all of the time-to-spill profiles for the

282 events of group V are unimodal, these profiles
can be described by the analytic function

F (t) =




Fmax

1 +
(
t− to
τin

)2 , t ≤ to

Fmax

1 +
(
t− to
τout

)2 , t ≥ to,

(1)

where Fmax is the maximum flux reached by the func-
tion F (t) at time t0, which lies within the interval of
the peak in the time-to-spill profile; τin and τout are
the characteristic durations of the rising and falling
edges, respectively. We compared the model time-
to-spill profile (1) with the measured profiles for the
events of group V and estimated its parameters τin,
τout, t0, and Fmax using Pearson’s goodness-of-fit
test.
The burst duration parameters T50 and T90 are

known to be affected by systematic effects that
depend on the signal-to-noise ratio (Koshut et al.
1996). Therefore, to statistically describe the du-
rations of the 282 events of group V, we used the
emission time τ50 (Mitrofanov et al. 1999); the latter
is defined as the time inwhich 50% of the total number
of S counts is accumulated at maximum count rate.
For the single-pulse events considered in this case,
the emission time characterizes the duration of the
phase of the most powerful energy release in the
detector. Events of a different physical nature (scin-
tillation flashes from the passage of heavy charged
particles or flashes from GRBs) are expected to have
different distributions in total emission time τ50.
The emission time of the events being analyzed

was estimated from their analytic profile (1) as

τ50 = (τin + τout)tan
(

0.5S
Fmax(τin + τout)

)
, (2)

where S is the total number of accumulated counts of
the event above the background level.
The distribution of the 282 events of group V in

emission time τ50 (Fig. 3) exhibits short and long
components to the left and to the right of the dashed
line, respectively. The long component in the right
part of the distribution contains 59 events with emis-
sion times τ50 > 2 mas. There are probably short



438 KOZYREV et al.

 

20

0.001
0

0.01 0.10.0001

 

τ

 

50

 

, s

N
um

be
r 

of
 e

ve
nt

s

40

 

1
2

Fig. 3. Distribution in emission time parameter τ50 for
282 short events of group V (1). We subjected 59 events
with τ50 > 2ms (to the left of the dashed line) to Bayesian
probabilistic classification. The lognormal fit to the left
part of the distribution (2) was used as a reference dis-
tribution function for the class (B) of charged particles.

GRBs among the events of this component. The
short component in the left part of the distribution
contains 223 events and corresponds to a narrow
peak on the logarithmic scale. This peak has a mean
emission time of about 0.6 ms, and its full width at
half maximum corresponds to a spread in values by
a factor of about 3 or 4. The short component of
the distribution (see Fig. 3) probably corresponds to
triggering events from charged particles. However,
we do not know whether charged particles contribute
appreciably to the long component of the distribution
with an emission time of more than 2 ms.
We may assume that triggering events from

charged particles dominate among the 110 events
of the left slope of the short component with an
emission time τ50 < 0.6 ms. For these events, we
estimated the spectral hardness ratio (HR) from
APEX measurements as the ratio of the count rate
(with the subtracted background) in the energy range
300–1000 keV to the count rate in the energy range
100–300 keV. The observed spectral HR distribution
for these 110 events is represented by the dashed
curve in Fig. 4. Its analytical fit is a Gaussian with
a nearly zero mean and a variance that corresponds
to the statistical fluctuations of the count rate in
the spectral channels used. Thus, the events of the
left slope of the short component (see Fig. 3) are
soft and have no statistically significant signal in
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Fig. 4. Distributions of the probability density in spectral
hardness ratio and their analytical fits used for the prob-
abilistic classification of GRBs (1) and charged particles
(2).

the energy range 300–1000 keV. This conclusion
is consistent with the assumption that triggering
events from charged particles make an overwhelming
contribution to this group, and that short GRBs
with their relatively harder emission do not contribute
appreciably to this group.

There is a group of 113 events on the right slope
of the short component in the distribution of the
emission time (see Fig. 3) in the time interval from
0.6 to 2 ms. Undoubtedly, triggering events from
charged particles also dominate among them, but
short GRB may be present. The only criterion for
the identification of bursts in this group can be a
relatively large spectral hardness ratio. However, this
criterion cannot yield a reliable result for the group
of events on the right slope of the short component,
because, due to the large number of triggering events
from charged particles, their distribution in hardness
ratio (see Fig. 4) predicts an appreciable number of
events with a large hardness ratio. We cannot reliably
identify a small group of GRB-related events against
this background. Therefore, it is appropriate to search
for and identify short GRBs using APEX data only
in an interval with emission times >2 ms, where the
contribution from charged particles is probably not
dominant (see Fig. 3).
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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THE METHOD FOR PROBABILISTIC
IDENTIFICATION OF SHORT GAMMA-RAY

BURSTS IN THE APEX DATABASE

The long component of the distribution of trigger-
ing events with emission times >2 ms (see Fig. 3) is
a group of 59 events among which short GRBs may
be present. The search and identification for them can
be performed using Bayesian probabilistic classifica-
tion. This method is optimal for identifying events of
various classes based on a comparison of their sta-
tistical properties and distributions (Sivia 1996). We
excluded from our analysis two events for which we
were unable to estimate the hardness ratio. In search-
ing for short GRBs among the remaining group of
57 APEX triggering events, we calculated the par-
tial probabilities of their belonging to two alternative
classes of events: the class of triggering events from
charged particles and the class of short GRBs.
We assumed that each analyzed event ξ described

by the emission time (τ50) and the hardness ratio
(HR) belonged to one of the two alternative classes
Ht of events, where t corresponds to the hypothesis
of short GRBs (tested class (A)) or the hypothesis of
charged particles (tested class (B)). For each event ξ,
the partial probability of its belonging to the class Ht

was estimated using the Bayes theorem:

P (Ht|Dξ) = P (Ht)
P (Dξ |Ht)
P (Dξ)

, (3)

where P (Ht) is the a priori probability, P (Dξ|Ht) is
the likelihood probability, and P (Dξ) is the normal-
ization coefficient.
The a priori probability P (Ht) specifies the ex-

pected proportion of events in classes (A) and (B) in
such a way that P (HA) + P (HB) = 1. The a priori
probability was determined using BATSE data (see
Fig. 1). We compared the distributions of the emis-
sion time for BATSE and APEX in the τ50 interval 0.5
to 3.0 s. The events with τ50 > 3 s were excluded from
the a priori probability estimate, because the emission
time estimates for the longest bursts in the APEX
data could be distorted due to a constraint on the
maximum length of the measured time profile, 63.6 s.
A comparison of the BATSE and APEX statistics

predicts the existence of 29 short GRBs among the
APEX triggering events with emission times τ50 <
0.5 s. In the previously known APEX GRB database,
12 events satisfy this condition, implying that the
deficit of short GRBs is about 17 events (Figs. 1
and 2). Thus, for the 57 classified APEX triggering
events, the a priori probabilities for the tested hy-
potheses (A) and (B) are assumed to be P (HA) = 0.3
and P (HB) = 0.7.
The likelihood probability P (Dξ|Ht) is the prob-

ability that an event ξ with a set of parameters Dξ
ASTRONOMY LETTERS Vol. 30 No. 7 2004
satisfies the hypothesisHt. This probability is defined
as the product of the probabilities of an event be-
longing to the class Ht for the reference statistical
distribution of the emission time and the hardness
ratio,Dξ = {dτ50ξ and dHRξ }:

P (Dξ|Ht) = P (dτ50ξ |Ht) × P (dHRξ |Ht). (4)

The probabilities P (dτ50ξ |Ht) and P (dHRξ |Ht) for the
class (В) of charged particles were determined from
the lognormal fit to the short component of the emis-
sion time (Fig. 3) and from the reference HR distribu-
tion of the 110 events (Fig. 4) on the left slope of this
short component (Fig. 3).
Since the distribution in emission time τ50 for the

BATSE GRBs on short time scales is limited by
64 ms, there is no point in using it as the reference
distribution for the tested class (A) of GRBs. There-
fore, to estimate the likelihood probability from the
emission time τ50 for the events of class (А), we chose
a flat, uniform distribution of τ50 values from 2 ms
to 0.5 s.
We used the statistical HR distribution for all of

the previously knownAPEXGRBs (Mitrofanov et al.
1992) (Fig. 4) as reference HR statistics for the tested
class (A) of short GRBs. This choice is fairly con-
servative, because it is well known that the hardness
ratio of short GRBs can be larger than that of long
GRBs (Dezalay et al. 1991; Kouveliotou et al. 1993).
The reference HR statistics for the tested classes of
short GRBs (A) and charged particles (B) are shown
in Fig. 4. These distributions significantly overlap
each other. However, this overlapping does not rule
out the possibility of reliably estimating the Bayesian
probability of identification with each of the particle
classes, because none of the classes dominates the
other in the overlapping region.
The normalization coefficient P (Dξ) was calcu-

lated from the alternativeness condition for the hy-
potheses being tested: P (HA|Dξ) + P (HB|Dξ) = 1.

THE GROUP OF CANDIDATES FOR SHORT
GRBs FROM APEX DATA

The calculated Bayesian probabilities of 57 events
belonging to the tested class (A) of GRBs proved to
be distributed mainly near unity (a group of 28 events
with a high probability of being GRBs) and near zero
(a group of 25 events with a high probability of being
associated with charged particles). In addition, for
four analyzed events, the identification probabilities
are distributed over the range 0.1 to 0.9. It follows
from this fact that we have managed to reliably sepa-
rate the group of 57 triggering events into two classes,
which confirms the initial assumption that there are
two alternative classes of short APEX events.



440 KOZYREV et al.
Table 1. Candidates for short GRBs with an identification
probability>0.5

Triggering
number

Probability
PGRB

Spectral
hardness ratio

HR

Emission
time τ50, s

73 0.98 0.054 0.008

139 0.92 0.340 0.004

140 1 0.321 0.053

143 1 1.500 0.002

145 1 1.486 0.018

160 1 0.110 0.013

177 0.96 0.048 0.008

181 1 0.042 0.040

212 1 0.051 0.031

217 1 0.111 0.010

231 0.60 0.434 0.002

235 1 0.150 0.011

280 1 0.406 0.031

310 1 0.134 0.059

317 1 0.731 0.002

320 1 0.070 0.019

325 1 0.285 0.039

333 0.63 0.132 0.004

347 1 0.242 0.010

350 1 0.148 0.008

352 1 0.145 0.022

362 1 0.158 0.034

369 1 0.032 0.013

376 1 0.517 0.012

382 1 0.567 0.046

389 1 0.388 0.019

401 1 1.038 0.049

402 1 0.084 0.011

404 1 0.411 0.009

408 1 0.993 0.002
Thirty events with the probabilities of their belong-
ing to GRBs > 0.5 are listed in Table 1. This table
also includes the emission times τ50 and the hardness
ratios (HR). To choose candidates for short GRBs,
we set a probability level P (HA|Dξ) > 0.95. Twenty
seven events satisfy this condition.

The complete list of 85 candidates that consists of
the 58 previously known GRBs and 27 new candi-
dates for short GRBs is presented in Table 2. Note
the group of 11 events that forms a continuous se-
quence in the complete list from January 18 through
February 4, 1989 (see Table 2). It is hard to believe
that all these events are associated with short GRBs.
There is no information about an enhanced detection
rate of solar or Galactic charged particles during this
period. However, we should take into account that
near-Earth observations cannot always reveal the so-
lar proton events recorded in the vicinity of Mars. It
is well known that the Phobos-2 spacecraft reached
Mars on January 29, 1989, went into an elliptical orbit
around this planet, and some of these events could be
associated with particle streams near the planet.

It is appropriate to mark the above group of
11 events by a symbol for the maximum reliability
of the results for short GRBs. The remaining 16
events correspond to the most conservative selection
of new short APEX GRBs. At the same time, the
presence of the events marked by ? in the complete
list (Table 2) is appropriate, because it allows us to
make a comparison with data from other experiments
and, possibly, to elucidate the origin of the events from
this group.

Thus, our search has revealed 16 new candidates
for short GRBs. Given the 12 previously known short
events, the total number of GRBs with short emission
times τ50 < 0.5 s is now 28 events (Table 2).

This number is in excellent agreement with the
estimate obtained by comparing the distributions in
emission time for the APEX and BATSE events.

In Fig. 2, the thin line represents the distribution
in emission time for the 58 previously known APEX
GRBs, and the heavy line indicates the new com-
bined distribution for the 58 previously known and
16 found candidates for APEX cosmic GRBs. The
new combined distribution has a bimodal shape that
is similar to the shape of the distribution constructed
from BATSE data.

Of particular interest is the independent detec-
tion of the newly discovered short APEX GRBs by
LILAS, which had two independent detectors and,
hence, was reliably shielded from charged particles.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Table 2. List of 85 APEX GRBs, including the 58 previously known long (Mitrofanov et al. 1992) and 27 found
candidates (marked by ∗)

Triggering
number

Date GMT Triggering
number

Date GMT

15 880 801 12:14:30 219 881 203 03:30:03
25 880 806 19:03:30 221 881 203 19:59:19
27 880 810 14:10:29 233 881 210 19:50:08
28 880 810 15:40:39 235∗ 881 212 09:46:49
39 880 822 10:07:18 254 881 218 07:31:36
40 880 822 22:21:19 272 881 225 09:27:26
42 880 825 00:10:22 280∗ 881 229 10:51:53
46 880 828 05:01:33 288 881 231 02:17:25
47 880 828 13:33:41 290 890 101 02:06:00
51 880 830 00:20:35 295 890 105 08:54:01
52 880 830 00:36:44 296 890 105 18:58:16
53 880 830 03:03:54 299 890 106 14:53:52
54 880 830 12:47:36 302 890 107 12:27:16
73∗ 880 906 19:17:00 309 890 108 21:54:13
81 880 911 22:03:49 310∗ 890 108 22:14:35

101 880 925 06:24:23 317∗ 890 110 16:09:51
102 880 925 18:13:19 318 890 110 20:01:55
106 880 927 03:36:06 320∗ 890 111 00:44:04
114 881 002 02:58:01 325∗ 890 112 04:55:17
117 881 002 22:37:51 346 890 118 05:39:39
128 881 009 02:56:14 347∗ 890 118 13:21:22
140∗ 881 011 19:47:44 348 890 118 15:01:59
143∗ 881 012 02:46:53 350*(?) 890 118 22:01:12
145∗ 881 012 21:44:41 352*(?) 890 119 04:47:27
157 881 016 05:26:48 362∗(?) 890 124 20:35:35
160∗ 881 016 12:30:50 369*(?) 890 125 22:29:39
162 881 017 09:52:53 376∗(?) 890 127 08:47:52
165 881 018 02:37:15 382∗(?) 890 131 13:36:40
168 881 020 09:18:04 389∗(?) 890 201 11:58:30
170 881 021 01:39:01 401∗(?) 890 202 16:40:26
175 881 023 02:41:17 402∗(?) 890 202 23:37:59
176 881 023 11:18:51 404∗(?) 890 203 15:19:46
177∗ 881 024 02:35:43 408*(?) 890 204 05:15:59
178 881 024 22:06:55 440 890 209 02:56:00
181∗ 881 025 19:13:41 476 890 222 12:56:56
189 881 102 07:57:40 479 890 223 08:37:16
193 881 103 12:19:10 481 890 224 15:12:35
194 881 104 10:42:21 483 890 224 19:44:39
202 881 121 18:59:54 486 890 228 02:05:22
212∗ 881 126 05:14:37 487 890 228 21:32:16
214 881 126 09:39:02 488 890 301 00:37:53
216 881 128 03:33:51 492 890 306 16:45:53
217∗ 881 203 00:08:14
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Fig. 5.Distribution of the excess factorF for the emission
at low energies <100 keV for 25 of the 28 short GRBs
that occurred when LILAS triggered (for this reason,
three events were excluded). The dashed straight line in-
dicates the LILAS detection threshold below which there
are five events.

COMPARISON OF THE APEX CANDIDATES
FOR SHORT GRBs WITH THE LILAS

DATABASE

Each of the 28 short APEX GRBs (including the
16 new ones) was tested for its detection by LILAS.
For this purpose, we used the excess factor F calcu-
lated as the ratio of the expected number of counts
in LILAS to the triggering threshold level required
for the instrument to switch to burst mode on a time
scale of 0.25 s. For short events, this time scale must
ensure the most efficient LILAS triggering. Since the
background conditions during the Phobos-2 mission
were essentially constant, the count threshold level
for LILAS triggering was virtually unchanged; it was
∼63 counts for the 0.25-s time scale.
We estimated the expected signal from a candidate

for short APEX GRBs for the LILAS spectral range
by using APEX measurements and the hypothesis
about a power-law count spectrum of short GRBs:

dN

dE
= CE−α. (5)

The power-law spectral slope α for each event
was calculated from the known spectral hardness
ratios of the APEX events. The factor C was de-
termined from the condition that the integral of
law (5) in the energy range 100–1500 keV is equal
to the measured number of counts from APEX
and by taking into account the reduction in the
LILAS detection efficiency of events by the factor
k = 2. The factor k was determined from the ratio
of the detector count rates for three long GRBs
(GRB 880 925, GRB 890 224, GRB 890 306) and
three short GRBs (GRB 880 830а, GRB 881 104,
GRB 890 222) recorded by the two instruments.
A comparison of the 28 short APEX GRBs with

the complete list of all LILAS triggering events shows
that LILAS has a burst triggering inhibition only in
three cases. For the remaining 25 events, the LILAS
logic permitted a triggering, but it occurred only for
three short events: GRB 880 830a, GRB 881 104,
and GRB 890 222. The distribution of the excess
factor F for 25 short GRBs is shown in Fig. 5. For five
events, our estimates indicate that the LILAS trig-
gering threshold for these events was not exceeded
(F < 1), and their absence in the LILAS list of events
may be considered natural (see Fig. 5). In 17 cases,
the LILAS logic allowed a triggering signal to be
generated, and the expected number of counts ex-
ceeded the threshold required for a triggering (F > 1).
The absence of triggering events for 17 short APEX
GRBs in the complete list of LILAS triggering events
can be explained by a cutoff at low energies <100 keV
relative to the power-law energy spectrum (5).
Thus, about 60% of the short APEX GRBs with

emission times τ50 < 0.5 s (17 of the 28 events) could
be recorded by LILAS if the count spectrum of these
events obeyed the power law (5). The absence of these
events in the complete list of LILAS triggering events
may imply that their energy spectra have a cutoff at
energies ∼100 keV, which significantly reduces the
count rate in the LILAS spectral range.
As regards the three bursts simultaneously re-

corded by the two instruments, these events turned
out to have a relatively large hardness ratio (∼0.3) and
to be the longest in emission time. Therefore, their
properties are most favorable for them to be recorded
by LILAS.

CONCLUSIONS

Our reanalysis of the complete list of 546 APEX
triggering events has revealed a group of 28 events
that are short GRBs with τ50 < 0.5 s with a high
probability. Twelve of these events have been known
previously. The Bayesian probability was estimated
for the 16 new candidates for shortGRBs to be>0.95.
The new complete group of 74 APEX events pre-

sented in Table 2 includes 58 previously known and
16 new short GRBs. The distribution in emission time
for the complete group of 74 events is bimodal in
shape (Fig. 2), in good agreement with the bimodal
shape of the BATSE GRB distribution.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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APEX data have revealed that the emission time
τ50 of the shortest GRBs may be ∼2 ms. Given the
possible additional cosmological time dilation when
passing from the comoving frame of reference to the
observer’s frame of reference (if the short GRBs are
cosmological in nature), such a short emission time
imposes significant constraints on the GRB genera-
tion mechanism and the sizes of the radiation region
of the variable flux.
The detection of only 3 of the 28 APEX candidates

for short GRBs by LILAS implies that the LILAS
sensitivity was too low for them to be detected. A
simple power-law extrapolation of the count rate of
short APEX bursts to the range of maximum LILAS
sensitivity shows that, for the absence of LILAS trig-
gering events to be explained, we must assume that
the short GRBs have a spectral cutoff in the X-ray
range.
Many long GRBs are known to have an X-ray

emission component. X-ray rich GRBs and bursts
whose X-ray emission is accounted for by the bulk
of the energy flux (X-ray flares) (Kippen 2002) are
currently considered. Our analysis of the APEX and
LILAS data has shown that, in contrast to long
events, short GRBs probably have no detectable X-
ray component. The spectral energy flux density of
these events peaks at>100 keV.
Whether long and short GRBs are of different

natures is still an open question. However, the results
obtained above additionally strengthen the assump-
tion that these classes of GRBs can have different
emission sources.
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Abstract—We suggest a new method for estimating the fractal dimension of the spatial distribution of
galaxies: the method of selected cylinders. We show the capabilities of this method by constructing a two-
point conditional column density for galaxies with known redshifts from the LEDA database. The fractal
dimension of a sample of LEDA and EDR SDSS galaxies has been estimated to be 2.1 ± 0.1 for cylinder
lengths of 200 Mpc. A major advantage of the suggested method is that it allows scales comparable to the
catalog depth to be analyzed for galaxy surveys in the form of conical sectors and small fields in the sky.
c© 2004 MAIK “Nauka/Interperiodica”.

Key words: galaxies, groups and clusters of galaxies, intergalactic gas, spatial galaxy distribution,
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INTRODUCTION
Various methods are used to statistically analyze

the spatial distribution of galaxies. An overview of
these methods is given in the monographs by Mar-
tinez and Saar (2002) and Gabrielli et al. (2004),
who, in particular, considered stochastic point fractal
processes.

The method of a conditional number density sug-
gested by Pietronero (1987) and applied to available
galaxy redshift surveys by Sylos-Labini et al. (1998)
is a standard method for analyzing the fractal struc-
tures of galaxies. When applied to various samples,
this method yields fractal dimensions D of the spatial
galaxy distribution ranging from 1.6 to 2.2. To im-
plement this method requires sequentially selecting
the spherical volumes in the initial sample of galaxies
and counting the objects in these spherical volumes.
Since actual galaxy surveys often have the form of
narrow conical sectors, the method of a conditional
number density is limited by the radius of the largest
sphere that completely fits into the volume of a given
survey.

In this paper, we suggest a new method for es-
timating the fractal dimension—the method of se-
lected cylinders. Its advantage over the method of a
conditional number density is that it does not require
invoking the spherical volume of a sample, but can
be applied to narrow spatial layers, because it uses
information about the distribution of objects along
the segments connecting the pairs of points in the
structure.

*E-mail: bukh@astro.spbu.ru
1063-7737/04/3007-0444$26.00 c©
STOCHASTIC FRACTAL STRUCTURES

The Density of Stochastic Fractal Structures

The concept of fluid (gas) density, which is com-
monly used in hydrodynamics, contains the assump-
tion that there is a density that does not depend on
the volume element dV . We can then determine the
density �(x) at point x and treat it as an ordinary
continuous function of the position in space. In the
problem of analyzing the fluctuations, �(x) can be
a realization of a stochastic process for which the
ordinary moments are specified: the mean, the vari-
ance, etc. In particular, this can be a discrete process
containing a finite number of points, for example, a
Poisson process with a particle number density n(x).

For fractal structures, the concept of particle num-
ber density at a point does not exist, because each
volume element of the structure contains a hierarchy
of clusters and the number density depends signifi-
cantly on the volume element dV (Mandelbrot 1982).
To describe the continuous hierarchy of clustering,
which is a new characteristic of the process, we must
introduce a new independent variable—the radius r
of the region in which the particles are counted. In
this case, the number of particles in a self-similar
structure increases as a power law

N(r) = BrD. (1)

Here, D is the fractal dimension, and B = N0/r
D
0

is determined by the number N0 of objects with-
in the zero-level scale r0. Two functions are used
to characterize the density of fractal structures,
2004 MAIK “Nauka/Interperiodica”
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n
V
(r) = N(r)/V (r) and n

S
(r) = (dN/dr)/S(r),

where V (r) = (4π/3)r3, S(r) = 4πr2.

Let us consider a discrete stochastic process
whose realizations represent sets of points at random
positions {xi}, i = 1, . . . , N , so the realized particle
number density n(x) is given by

n(x) =
N∑
i=1

δ(x − xi). (2)

If the stochastic process is fractal, then an additional
fractal variable r that characterizes the degree of sin-
gularity of the fractal structure must be considered
to describe it. Let NV (xa, r) denote the number of
particles in the sphere of radius r centered at point xa
in the structure:

NV (xa, r) =

r∫
0

n(x)d3x, (3)

and NS(xi, r) is the number of particles in the shell
(r, r + �r) centered at point xa in the structure:

NS(xa, r) =

r+�r∫
r

n(x)d3x. (4)

When we go from one realization to another, these
quantities undergo fluctuations; a dependence on the
scale r remains after averaging over the set of real-
izations. For ergodic processes, the averaging over
realizations may be replaced with the averaging over
the points of one realization. According to Pietronero
(1987), the conditional number density of a stochastic
fractal process can be defined as

η(r) =
〈
NS(xa, r)
4πr2�r

〉
xa

=
1
N

N∑
i=1

1
4πr2�r (5)

×
r+�r∫
r

n(x)d3x =
DB

4π
r−(3−D),

while the volume conditional number density is

ηV (r) =
〈
NV (xa, r)
(4π/3)r3

〉
xa

(6)

=
1
N

N∑
i=1

3
4πr3

∫ r

0
n(x)d3x =

3B
4π

r−(3−D).

Here, 〈·〉xa denotes the averaging performed on the
condition that the centers of the spheres are located at
the points occupied by the particles of the realization
ASTRONOMY LETTERS Vol. 30 No. 7 2004
(hence the name “conditional”), and the last equal-
ities in (5) and (6) apply to the ideal fractal struc-
tures (1) for which ηV (r) = (3/D)η(r). The exponent
in the conditional number density

γ = 3 −D (7)

is called the fractal codimension of the structure.
A fundamentally important property of the condi-

tional number density is that for processes with finite
fractal scales beyond which the particle distribution
becomes uniform, statistics (5) and (6) reach con-
stant values, which corresponds to the equality D =
3 for homogeneous structures. Thus, the method of
a conditional number density is a powerful tool in
searching for the boundary of the transition from frac-
tal clustering to homogeneity.

The Two-Point Conditional Column Density

The conditional number densities of the stochastic
fractal processes considered above are one-point den-
sities, because the center of the sphere in which the
particles are counted is placed at one point {a} with
coordinates {xa}. In some cosmological problems, for
example, those related to gravitational lensing (see,
e.g., Baryshev and Ezova 1997), it is necessary to
use two-point conditional number densities where
the two particles {a, b} with coordinates {xa,xb} are
fixed. The transition from the one-point to two-point
conditional number densities in the analysis of fractal
structures is similar to the transition from two-point
to three-point correlation functions in the analysis of
ordinary stochastic processes.

To characterize the particle distribution along the
cylinder whose axis connects two points of the struc-
ture {a, b} ⊂ {xi, i = 1, . . . , N}, let us introduce the
concept of two-point conditional column density
ηab(r) of a stochastic fractal process. According to
Mandelbrot’s cosmological principle, particles a and
b are statistically equivalent; therefore, the one-point
conditional particle number density for each of the
points is given by formula (5), which is proportional
to the probability of particle occurrence at distance r
from the fixed point of the structure. In the case of
two independent fixed points of the structure spaced
rab = |xa − xb| apart, event C that consists in the
occurrence of a particle at distance ra from point
a and the independent occurrence of a particle at
distance rb from point b of the fractal structure is given
by the union C = A

⋃
B of the events pertaining to

each of the fixed points a and b. The assumption that
eventsA andB are independent is the first simple step
and can be generalized to dependent events. However,
applications of the cylinder method to actual fractal
structures have shown that the assumption of inde-
pendence is a satisfactory approximation.
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Fig. 1. Method of selected cylinders: the centers of
two galaxies are fixed at the points with coordinates
(x1, y1, z1) and (x2, y2, z2). All of the remaining galaxies
with central coordinates (x3, y3, z3) are checked to deter-
mine whether they belong to a given cylinder.

Let us consider the case where a fractal structure
is superimposed on the background of an additional
homogeneous Poisson process. The two-point condi-
tional column density can then be represented as the
sum of the one-point conditional number densities on
a Poisson background:

ηab(r) = ηa(r) + ηb(rab − r) + c (8)

=
DB

′

4π
rD−3
ab

[(
r

rab

)D−3

+
(

1 − r

rab

)D−3

+ c0

]
.

Here, the distance r is measured along the rectilinear
segment connecting particles a and b and simulta-
neously determines the radius r of the sphere cen-
tered at the first point and the radius rab − r of the
sphere centered at the second point, and the constant
B

′
can be determined from the normalization condi-

tion that includes the contribution from the homoge-
neous background specified by the constants c and c0.
The volume elements in this formula are distributed
along the segment ab, and, in this sense, r is a one-
dimensional Cartesian coordinate.

The following statistics can be used as an estimate
of ηab(r):

ηab(r) =
〈
Nc(xa,xb, r, h, �r)

πh2�r

〉
{a,b}

(9)

=
1
Nab

Nab∑
{a,b}

1
πh2�r

r+�r∫
r

h∫
0

n(x)2πh dh dr,

where Nc is the number of particles in the volume
element of a cylinder with the base radius h and height
�r and with the axis connecting particles a and b
that belong to the fractal structure at distance r from
particle a, which also corresponds to the distance
rab − r from particle b. The averaging is over all pairs
of points with the cylinders of length l = rab ±m,
where the distance m is determined by the choice of
discreteness in ray length in the sample of objects
under consideration.

An Algorithm for Estimating the Two-Point
Conditional Column Density

Let us now consider a practical algorithm of the
method of selected cylinders to estimate the column
density of objects (galaxies) between specific pairs of
points in the structure (fixed galaxies). These points
(galactic centers) are placed at the centers of the
cylinder bases. The cylinder radii are chosen to be
much smaller than the mean separation between the
elements of the structure estimated for the sample
volume under consideration.

We choose objects with known equatorial coordi-
nates α and δ and redshifts zG from the catalog of
galaxies being studied.
Step 1. Since a substantial amount of dust is

concentrated in the plane of the Galaxy, the number
of galaxies observed through the Galactic equator is
significantly reduced. To prevent the distortions in-
troduced by this observational selection, let us divide
our sample into two parts. To this end, we calculate
the Galactic coordinate b of each galaxy in the sample
and attribute the galaxies of the northern (b > 10◦)
and southern (b < −10◦) Galactic hemispheres to the
first and second parts.
Step 2. We transform the equatorial coordinates

of the galaxies into their Cartesian coordinates:
α, δ, zG → x, y, z.

Step 3. We choose any two galaxies and de-
note the coordinates of their centers by (x1, y1, z1)
and (x2, y2, z2), respectively. We place the points
with these coordinates at the centers of the cylin-
der bases. We choose the cylinder radius h = 1 ×
10−4RH , where RH = c/H = 5 × 106 kpc (below,
H = 60 km s−1 Mpc−1 is used).
Step 4. We examine all of the remaining galaxies

in the sample in turn. Each time, we denote the co-
ordinates of the galactic center as (x3, y3, z3). Fol-
lowing Fig. 1, we determine the distance from the
point with coordinates (x3, y3, z3) to the cylinder axis

h3 = sinAa3RH , where cosA = a23+a21−a22
2a3a1

,

a1 =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

a2 =
√

(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2
a3 =

√
(x3 − x2)2 + (y3 − y2)2 + (z3 − z2)2.

The selection criterion: If the galaxy (x3, y3, z3)
falls into the cylinder h3 < h, we then calculate the
ratio r13/r12 = a (since the base of the selected cylin-
der is much smaller than its height, we assume that
r13 is the projection onto the axis).
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Output data of the method: the total number N
of events when galaxies fall into cylinders, the number
N(a) of events when galaxies fall into certain parts of
the cylinder, andN(a)/N is the column density of the
objects between points (x1, y1, z1) and (x2, y2, z2).

Let us now write formula (8) as

N(a)
N

= 0.5
(
(Ra)−α + (R(1 − a))−α + b

)
, (10)

where R is the factor defined as the ratio of the
maximum length of the segments in the sample to
the minimum fractal scale in the sample, b is the
constant corresponding to the background Poisson
distribution, and α is the exponent that determines
the fractal dimension D = 3 − α. The sample should
be analyzed to determine the parameters R,α, b.

If the real distribution of galaxies is fractal, then
galaxies statistically “prefer” to be clustered toward
the ends of the cylinders located in any two fixed
galaxies. Thus, the principal idea of fractality is
demonstrated: all galaxies are equivalent elements
of the structure, and the variations in the number
density of the objects with distance from the galaxies
follows the same pattern.

APPLICATION OF THE METHOD

AMock Uniform Distribution
According to formula (8), for a uniform distri-

bution of objects in space (D = 3), the conditional
two-point density is constant. To check whether the
algorithm in this simple case is efficient, we simulated
a mock catalog of galaxies with a Poisson distribution
of 2500 points in space. Figure 2 shows the distribu-
tion of galaxies between any two fixed points in this
case. It can be immediately seen from this figure that
for a uniform distribution of objects in space, there is
no clustering toward the ends of the segments.

The LEDA Sample of Galaxies

The LEDA database (Paturel 1997) gives the fol-
lowing astrophysical parameters of galaxies: designa-
tions, morphological descriptions, diameters, magni-
tudes in various color bands, radial velocities, central
velocity dispersion, etc. The LEDA sample of galaxies
contains observational data from various catalogs.
Spatial coordinates are presented for 77 483 galaxies
with redshifts z ranging from 10−4 to 0.25. According
to Silos-Labini et al. (1998), the completeness of the
LEDA database is 90% for galaxies with mB ≤ 14.5
and known redshifts, 50% for galaxies with mB ≤ 16
and known redshifts, and 10% for galaxies withmB =
17 and known redshifts.

Let us now apply the method of selected cylin-
ders to the LEDA sample of galaxies. We limit the
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Fig. 2. Distribution of objects in fixed cylinders for a
mock uniform distribution of objects in space. The dots,
crosses, and pluses indicate the results of our three nu-
merical simulations, and the curve represented the least-
squares fit.

sample by redshift and absolute magnitude. Con-
sider the volume-complete samples of galaxies with
M < −17 separately for the northern and southern
Galactic hemispheres. Thus, the number of galaxies
with z < 0.02 (∼100 Mpc) is 7265 and 6467 in the
northern and southern parts of the sky, respectively.
The galaxies are fixed in pairs. The points with the
coordinates of the centers of these galaxies are located
at the cylinder bases. All of the remaining northern
and southern sky galaxies are checked to see whether
they belong to these cylinders. We sort the cylinders
by height (by segment lengths). How are the galaxies
distributed in the fixed cylinders between two fixed
galaxies?

A distinctive feature of a fractal is its self-similarity
on any scale. To make sure that this assumption is
valid for the LEDA sample of galaxies, let us single
out several subsamples from the total sample con-
taining the set of segments of various lengths. The
first subsample contains all of the segments with
lengths up to 50Mpc, the second subsample contains
the segments with lengths from 50 to 60 Mpc, the
third subsample contains the segments with lengths
from 90 to 100 Mpc, and the fourth subsample con-
tains all of the segments with lengths up to 100 Mpc.
Based on formula (8), we can establish the analytical
dependence N(a)/N and estimate the fractal dimen-
sion of the distribution on various spatial scales. Table
gives the results of our computations.

Figures 3 and 4 show a plot of (N(a)/N) for
the entire set of segments of various lengths (up to
100 Mpc) for the southern Galactic sky on linear
(Fig. 3) and logarithmic (Fig. 4) scales. According to
formula (8), this plot allows us to estimate the fractal
dimension of the galaxy distribution in space (i.e., to
determine D = 3 − α). The exponent α specifies the
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Table

Catalog Number of galaxies
withM < −17

Cylinder length, Mpc D = 3 − α R σfit

LEDA_S 6467 0−100 2.02 243.16 0.015

LEDA_S ′′ 90−100 2.01 245.03 0.041

LEDA_S ′′ 50−60 1.98 216.49 0.025

LEDA_S ′′ 0−50 2.18 439.64 0.028

LEDA_N 7265 0−100 2.12 331.44 0.013

LEDA_N ′′ 90−100 2.08 300.10 0.041

LEDA_N ′′ 50−60 2.07 280.45 0.019

LEDA_N ′′ 0−50 2.22 515.69 0.027

LEDA_sector 1 1155 50−200 2.08 288.80 0.015

LEDA_sector 2 385 50−200 2.02 229.22 0.070

SDSS 1505 0−250 2.00 399.89 0.009
slope of this function. By varying α, we choose an
optimum value in such a way that the slope of the
derived function corresponds to the LEDA data with
the minimum rms dispersion of the fit σfit, which is
defined as the square root of the sum of the squares of
the differences between the theoretical (solid line) and
observed values ofN(a)/N.

An important result is that b is equal to zero in
all of the cases considered. This implies that the
observed distribution is purely fractal for all cylinder
lengths, and no homogeneous Poisson background
is observed. As expected for fractal structures, the
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Fig. 3.Observational data corresponding to the distribu-
tion of galaxies from the LEDA database for all cylinders
with sizes of up to 100 Mpc. We used a volume-limited
sample of 6476 galaxies in the southern Galactic sky with
M < −17.
objects are clustered toward the ends of the segments,
and the theoretical dependence (8) well describes
the observations without the additional assumption
about the presence of a homogeneous background.

For cylinders of various heights, we obtained de-
pendences similar to those shown in Figs. 3 and 4.
This implies that on different spatial scales, the galaxy
distribution between the pairs of fixed galaxies obeys
the same law (8) with a fractal dimension close to 2.
The fitting parameters R andD in formula (8) and σfit
for various lengths are listed in the table.

To demonstrate the efficiency of the method for
narrow conical sectors, we considered the two cor-

 

2.0

0.50

–1.6

–1.2

–0.8

1.0 1.5 2.0
–log

 

a

 

lo
g

(

 

N

 

(

 

a

 

)/

 

N

 

)

Fig. 4. Same as Fig. 3 on a logarithmic scale. The solid
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to 100 Mpc, the fractal dimension D is 2.02, and the
constant b is 0.
ASTRONOMY LETTERS Vol. 30 No. 7 2004



THE METHOD OF A TWO-POINT CONDITIONAL COLUMN DENSITY 449

 

0.06

0.1
0

0.4 0.7 1.0

0.12

 

a

N
 

(
 

a
 

)/
 

N

Fig. 5.Distribution of galaxies for a narrow LEDA sector
along the cylinders with sizes from 50 to 200 Mpc. The
number of galaxies in the volume-limited sample with
M < −17 is N = 1155.
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Fig. 6. Same as Fig. 5 on a logarithmic scale. The solid
line corresponds to fit (8). For cylinders with scales up
to 200 Mpc, the fractal dimension is D = 2.08, and the
constant is b = 0.

responding subsamples of LEDA galaxies presented
in the table. The first sector contains 1155 galax-
ies with M < −17, 0.01 < z < 0.04 and coordinates
α = 143◦–207◦, δ = 23◦–28◦. Figure 5 shows the
distribution of galaxies in the first sector between the
pairs of fixed galaxies on a linear scale. The dots in
Fig. 6 indicate the observational data, and the solid
line indicates the fit (8). The parameters areD = 2.08,
σ = 0.015.

Sector 2 contains 385 galaxies from the LEDA
database with M < −17, 0.01 < z < 0.04 and coor-
dinates α = 0◦–57◦, δ = −5◦–0◦. The dependences
for sector 2 are identical to those of sector 1, and the
parameters D,σ,R are listed in the table.
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Fig. 7.Histogram for the distribution of galaxies from the
EDR SDSS sample along the cylinders of all sizes up
to 250 Mpc. The volume-limited sample of galaxies with
M < −17 contains 1505 objects.
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Fig. 8. Same as Fig. 7 on a logarithmic scale.

The Sample of EDR SDSS Galaxies

To illustrate the application of our method to a
sample of galaxies from a survey in the form of a
narrow conical sector, we considered one band from
EDR SDSS (the data were taken from the SDSS
Web page). The table gives the results of our com-
putations of the galaxy distribution in cylinders with
lengths up to 250 Mpc in the sector with coordinates
α = 145◦–235◦, δ = −1◦.3–1◦.3.

Figures 7 and 8 show plots of the distribution of
1505 galaxies along the cylinders of all sizes up to
250 Mpc. The fractal dimension D was estimated
from formula (8) to be 2.00. In the latter case, there is
apparently evidence for a homogeneous background.
The constant of the homogeneous background is b =
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0.0026. However, this issue requires more detailed
analysis.

CONCLUSIONS

In this paper, we have suggested a new method
for analyzing stochastic fractal structures and shown
that it can be implemented in principle. Our analy-
sis of a sample of LEDA galaxies indicated that the
method of segments with two fixed points (themethod
of selected cylinders) can be successfully used to es-
timate the fractal dimension of the spatial structures
of galaxies in surveys in the form of narrow conical
sections. We used a sample of LEDA galaxies as an
example to show that the estimated fractal dimension
of the spatial distribution of galaxies agrees with the
value obtained by the method of a one-point condi-
tional number density (Silos-Labini et al. 1998).

The fractal dimension D for the samples of LEDA
and EDR SDSS galaxies estimated by our method
is 2.1 ± 0.1. The maximum fractal scale is limited
by the length of the segments used in our analysis
(200 Mpc). An analysis of magnitude-limited sam-
ples indicated an insignificant influence of selection
effects on the suggested method. The capabilities of
the new method will be analyzed in detail in a sep-
arate paper. Note only that the main advantage of
the method of a conditional column density is that
it allows scales comparable to the catalog depth to
be analyzed for galaxy surveys in the form of conical
sectors and small fields in the sky.
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Abstract—We investigate the stability of a dense neutral shell that is accelerated outward by the hot-gas
pressure and that loses its mass through photoionization by radiation from the central star. We assume
the H I shell to be thin and use the Lagrangian coordinates to describe its motion. We show that a
flow accompanied by cumulative effects emerges during the nonlinear development of the instability. We
estimate the influence of the radiative cooling rate on the motion and determine parameters of the gas in the
cumulative region. The results obtained are compared with the observations of the nebulae NGC 7293 and
NGC 2392. c© 2004 MAIK “Nauka/Interperiodica”.
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Since the question about the origin and parame-
ters of the dense neutral condensations observed in
the vicinity of hot stars is of considerable interest in
connection with star-formation problems, it figures
prominently in studies of the dynamics and evolution
of H II regions (Spitzer 1978; Pottash 1984; Oster-
brock 1989).

The condensations are currently believed to origi-
nate either from the development of a certain type of
instability (mainly ionization–shock front instability)
or from an enhancement of inhomogeneities behind
converging shocks (Vandervoort 1962; Axford 1964;
Krasnobaev 1971; Capriotti 1973; Burdyuzha and
Ruzmaı̆kina 1974; Elmegreen and Lada 1977; Giu-
liani 1979; Garcia-Segura and Franco 1996; Willams
1999). In particular, Capriotti (1973) showed that
globules could be formed in expanding nebulae (such
as, e.g., NGC 7293), because the neutral shell is
unstable. In the latter case, classical ideas about
the evolution of perturbations whose wavelength l is
small compared to the shell thickness h were used
to analyze the fragmentation of a neutral gas moving
with a constant acceleration. If, however, we take into
account the fact that h is limited, then, as we show
below, cumulative effects that significantly change the
structure of the condensations can manifest them-
selves in the limiting case h � l at the expansion
phase of the shell when its mass is about a third of
the nebular mass Mn.

To reveal the peculiarities of this structure, let us
consider the stability of a thin (h � l) shell that un-
dergoes acceleration g and that loses its mass under
radiation from the central star. In general, the external

*E-mail: vkkaor22@mtu-net.ru
1063-7737/04/3007-0451$26.00 c©
ionizing flux Φ and the acceleration g are assumed to
depend on time t.

The equations that describe the motion of the shell
can be obtained by generalizing the equations derived
by Ott (1972) to the case where a D-type ionization
front is the inner boundary of the flat layer. As a result,
the system of equations for the coordinates x and y of
the layer and the particle mass M(ξ, t) referred to its
initial value in Lagrangian coordinates ξ and t takes
the form

M
∂2x

∂t2
=


−g +

∂M

∂t

Ur√(
∂x
∂ξ

)2
+
(
∂y
∂ξ

)2


 ∂y

∂ξ
,

(1)

M
∂2y

∂t2
=


g − ∂M

∂t

Ur√(
∂x
∂ξ

)2
+
(
∂y
∂ξ

)2


 ∂x

∂ξ
,

∂M

∂t
= −γ

∂x

∂ξ
.

Here, g = �p/σ, γ = mHΦ/σ = ρUr/σ, where �p
is the difference between the pressures on the inner
and outer sides of the shell, σ = const is the surface
density at the initial time, mH is the hydrogen atomic
mass, and ρ and Ur are the density and relative ve-
locity of the plasma flowing away from the ionization
front, respectively. In Eqs. (1), we assume that the
photons propagate along the y axis (i.e., the diffuse
radiation is disregarded) and that the velocity of the
ionization front relative to the neutral particles is low
compared to the gas velocity in the layer.
2004 MAIK “Nauka/Interperiodica”
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Consider the motion of a flat homogeneous layer as
the main motion, with the y axis being perpendicular
to the layer. The solution of Eqs. (1) may then be
written as

x = ξ, y = y0(t), M = M0(t), (2)

M0
∂2y0

∂t2
= g + γUr, M0 = 1 −

t∫
0

γ(t)dt.

Assuming then that x = ξ + x′, y = y0(t) + y′,
M = M0(t) + M ′ and that x′, y′, M ′ are small, we
find after linearizing (1) that

M0
∂2x′

∂t2
= −(g + γUr)

∂y′

∂ξ
, (3)

M0
∂2y′

∂t2
= (g + γUr)

(
∂x′

∂ξ
− M ′

M0

)
,

∂M ′

∂t
= −γ

∂x′

∂ξ
.

When deriving Eqs. (3), we disregarded the pres-
sure and density perturbations in the ionized gas. The
condition under which this approximation is justified
can be inferred by considering the wave motions in an
H II region whose outer boundary is a neutral shell.
Indeed, using the formula from our previous paper
(Krasnobaev 2000) to estimate the wave damping
time τd, we obtain

τd =
3
4

1
τT

(
l

πa2

)2

, l � a2τT , (4)

where a2 is the isothermal speed of sound in the H II
region, and τT is the thermal relaxation time.

Consequently, if τi is the characteristic perturba-
tion growth time, then the validity range of Eqs. (3) is
limited by the inequality

τd � τi. (5)

Equations (3) do not include the possible vari-
ations in flux Φ that arise from the change in the
optical depth of the plasma downstream of the ion-
ization front when the shell is displaced relative to the
unperturbed location. These variations are small if

l � lr =
mHUr
βρ

, (6)

where β is the total coefficient of photorecombination
to excited hydrogen atomic levels, and the order of
magnitude of lr follows, for example, from an anal-
ysis of the stability of ionization fronts that propa-
gate through an accelerating gas (Baranov and Kras-
nobaev 1977).

In general, the solution of Eqs. (3) can be sought
in the form (x′, y′,M ′) ∝ exp(ikξ), k = 2π/l, and the
proportionality coefficients are functions of t.
The problem of the stability of motion (2) then
reduces to solving a system of ordinary differential
equations with time-dependent coefficients. For arbi-
trary g(t) and γ(t), this problem can be solved only
numerically. Nevertheless, some of the peculiarities
of the motion attributable to mass loss and variable
acceleration can be revealed by considering particular
analytical solutions of Eqs. (3).

Thus, for example, the influence of γ(t) on τi can
be taken into account if it is considered that for a flat
layer, apart from the decrease in M0, Φ generally also
decreases because of the increase in the optical depth
of the plasma downstream of the ionization front. In
this case, it would be natural to assume roughly that

λ =
g + γUr

M0
= g0 = const, (7)

γ

M0
= g1 = const.

Clearly, a uniformly accelerated unperturbed mo-
tion of the layer corresponds to equalities (7). It
should also be noted that, in view of (2) and (7), γ(t)
is not an arbitrary function, but satisfies the equation
dγ/dt = −g1γ and, hence, γ = g1 exp(−g1t).

Assuming then that (x′, y′,M ′) ∝ exp(αt + ikξ),
we derive a dispersion relation from (3) in the form

α

α0
−
(α0

α

)3
=

g1

α0
, (8)

where α0 =
√
kg0 is the growth rate of the classi-

cal Rayleigh–Taylor instability, and the parameter
g1/α0 is proportional to the mass lost per unit area
of the layer in time α−1

0 . The following expression of
g1/α0 as a function of the characteristic density of
the neutral atoms ρ0, the layer thickness h, and the
wavelength l (assuming that Ur ∼ a2) is useful for
estimates:

g1 =
ρa2

σM0
, g0 =

2ρa2
2

σM0
, (9)

g1

α0
=

√
1

4πM0

ρl

ρ0h
.

The plot of α against g1/α0 that corresponds to (8)
is shown in Fig. 1. We see that the outflow of matter
from the ionization front destabilizes the layer by in-
creasing α compared to α0.

Let us now consider the stability of a layer whose
acceleration varies with time. Since such variations
are determined by the large-scale dynamics of the
H II region (in particular, by the increase or decrease
in Φ), an analysis of the solutions of Eqs. (3) with both
λ̇ = dλ/dt > 0 and λ̇ < 0 is of considerable interest.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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The corresponding particular solutions can be
found if the characteristic values of ρ, ρ0, l, and h
in (9) are such that ρl � ρ0h (there is no contradic-
tion here, because, although h � l for a thin layer,
ρ � ρ0 due to the large temperature difference be-
tween the neutral and ionized gases). The mass loss
is then negligible and M ≈ 1. Consequently, x′(ξ, t)
and y′(ξ, t) satisfy linear equations with variable
coefficient λ(t); these equations can also describe
the nonlinear evolutionary stage of the perturbations.
Indeed, if the photon flux crossing the ionization front
depends weakly on the shape of the layer (e.g., when
Ur is small enough compared to a2), then making
appropriate changes to the expression for ∂M/∂t in
Eqs. (1) yields a system of equations of form (3) with
M ≈ 1. In general, exact solutions of the nonlinear
equations (1) are difficult to find, although, as can be
easily verified, there are self-similar solutions with the
initial data x′ = y′ = 0 and ∂y′/∂t ∝

√
ξ that depend

on the variable t
√

λ/ξ. However, such solutions have
a limited validity range and are not considered below.
We only note that, as our numerical calculations
show, Ur affects only slightly the characteristics of
the self-similar motion.

Now, let λ(t) vary as

λ =
λ0

(t− t0)2
, λ0 = const, (10)

t0 = const,

where |t0| is the characteristic time of change in λ,
and dλ/dt > 0 for t0 > 0 and dλ/dt < 0 for t0 < 0.

Given (10), the perturbations in the shape of the
layer are proportional to (t− t0)α exp(ikξ), and α is
related to k and λ0 by

α2(α− 1)2 = k2λ2
0. (11)

The values of α = 1/2 ±
√

1/4 + kλ0 correspond
to aperiodic perturbations growing with time; α+ =
1/2 −

√
1/4 + kλ0 and α− = 1/2 +

√
1/4 + kλ0

should be chosen for unstable motion with λ̇ > 0 and
λ̇ < 0, respectively. Decreasing (with increasing t)
perturbations in the shape of the layer or the particle
velocities in it correspond to the other two roots of
Eq. (11).

To analyze the solutions of Eq. (11) characterized
by α+ and α−, it is appropriate to introduce the pa-
rameter r =

√
kλ(0)|t0| =

√
kλ0. Clearly, the varia-

tions in λ are insignificant when r � 1. In this case,
the unperturbed layer moves with uniform accelera-
tion, and, as Zonenko and Chernyı̆ (2003) showed,
the growth of perturbations is accompanied by the
appearance of a cuspidal point in the curve y(x) fol-
lowed by the collapse of the adjacent parts of the
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Fig. 1. Instability growth rate versus mass-loss rate.

deformed layer. As a result, inhomogeneities (fingers)
oriented along the y axis in which matter of the layer
is accumulated as t increases are formed.

If, however, r is finite, then both the collapse time
tc and the y component of the velocity Vc(tc) relative
to the unperturbed layer can differ significantly from
their values at λ = λ(0).

Let t+c , t0c , and t−c be the collapse times for λ̇ > 0,
λ = λ(0), and λ̇ < 0, respectively. We then obtain

t+c
t0

= 1 −
(

1 − 2ξ
2ε sin 2πξ

)1/α+

, (12)

t0c
|t0|

=
1
r

ln
(

1 − 2ξ
2ε sin 2πξ

)
,

t−c
t0

= 1 −
(

1 − 2ξ
2ε sin 2πξ

)1/α−

.

Here, ξ is the Lagrangian coordinate of the particle,
ε is the amplitude of the initial perturbation in the
shape of the layer (ξ and ε are referred to l), and the
collapse time tc is determined from the condition that
the particle is located at the point with x = l/2.

Using (12), we can easily find the dependence
Vc(tc). As an example, Fig. 2 shows the curves Vc(tc)
at various r for ε = 1/(2πe) (in Fig. 2, tc and Vc are
referred to |t0| and Vc(0) = (∂y′/∂t)0,0, respectively).
The coordinate ξ = 0.2 corresponds to the largest
values of tc for all curves; i.e., at the collapse time
that corresponds to this value of ξ, the mass of the
matter in the cumulative region is equal to 3/5 of
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Fig. 2. Gas velocity Vc at the onset of collapse versus time tc. The solid curves 1–4 correspond to r =
√

2π, 3, 4, and 5. The
dashed curves indicate the dependences Vc(tc) at λ = λ(0) and for the same r.
the mass of the unperturbed layer contained in the
interval 0 ≤ ξ ≤ 1. The shape of the layer with the
filament formed by the time in question is shown in
Fig. 3, where the coordinates x and y are expressed in
units of l, λ = λ(0).

Comparing curves 1–4 in Fig. 2 with Vc(tc) at λ =
λ(0) and the same r (dashed lines), we can see that an
increase in λ causes Vc to increase faster than in the
case of uniformly accelerated motion. If, alternatively,
λ̇ < 0, then the increase in Vc naturally slows down.
Characteristically, there is a significant difference be-
tween the particle velocities in the condensation, and
the end of the condensation that moves with an in-
creasing velocity is ahead of the unperturbed layer
starting from a certain time.

DISCUSSION AND CONCLUSIONS

Let us now consider the possible appearance of
the cumulative effects investigated above using the
nebulae NGC 7293 and NGC 2392 as examples.
The information about these nebulae used below
is contained in the monographs by Pottash (1984)
and Khromov (1983), and a high-resolution image of
NGC 2392 is accessible at http://antwrp.gsfc.nasa.
gov./apod/archivepix.html.

As regards NGC 7293, we use a rough nebular
expansion model suggested by Capriotti (1973). De-
note the radius and mass of the ionized part of the
nebula by Ri and Mi, respectively, and the radius
of the nebula upon reaching which its entire mass
Mn will be ionized by Rn = 3 × 1017 cm. According
to the model, the mass of the neutral shell Me, its
thickness h, acceleration g, and the mass-loss rate
γ are related to Ri, Mi, Rn, Mn, and the isothermal
speed of sound a1 in the H I region by

Mi = (Ri/Rn)3/2Mn, (13)

Me = [1 − (Ri/Rn)3/2]Mn,
λ =
6a2

2

Rn

(Ri/Rn)1/2

1 − (Ri/Rn)3/2
, h =

a2
1

λ
.

Since, in general, a1 ≈ 10−1a2, it follows from (13)
that the flat-layer approximation is justified if Ri is not
too small compared to Rn.

Next, let us estimate the scales l that agree with
inequalities (5) and (6). Taking τi ∼ (l/2πλ)1/2 for
our estimates and using (4) for τd, we represent (5) as

l � ld = (4τT /3)2/3(πa2)4/3(2πλ)−1/3.

Assuming then that the gas temperature in the
H II region is 104K, β ≈ 2 × 10−13 cm3s−1, Mn ≈
0.2M�, and τT ≈ (6.3× 1011mH/ρ) s (Spitzer 1978),
we find the range of acceptable l:

h < l < min(ld, lr)

or

1 − (Ri/Rn)3/2

2(Ri/Rn)1/2
< 10−15l < min

{
5.9
(

Ri

Rn

)5/6

(14)

×
[
1 −

(
Ri

Rn

)3/2
]1/3

, 3.1
(

Ri

Rn

)3/2
}
.

It follows from (14) that, for example, at Ri ∼
0.8Rn, about a third of the nebular mass can be
concentrated in growing perturbations with scale
sizes of ∼1015 cm. Estimates based on the rough
model for the expansion of NGC 7293 suggested
by Capriotti (1973) show that for perturbations with
l ∼ 1015 cm, inequalities (14) hold when the mass of
the shell is smaller than or ∼0.3Mn. Here, however,
the following should be noted:

In the model by Capriotti (1973), the shell frag-
ments even at Ri ∼ 0.4Rn, with the fragment sizes
being l ∼ h/2 < ld (i.e., l ∼ 3 × 1014 cm). However,
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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the l range defined by (14) then formally narrows
appreciably, because h increases and lr decreases.
At the same time, fragmentation leads to a decrease
in Me and an increase in λ, causing the effective
thickness of the neutral layer to decrease. Thus,
(apart from globule-like structures) neutral con-
densations with significantly differing longitudinal
and transverse sizes and with high radial-velocity
dispersion can also appear under fragmentation
conditions. Interestingly, structures of this type are
observed, in particular, in the image of the planetary
nebula NGC 2392. The emergence of such structures
makes it possible to explain the observation of radially
oriented sequences of globules, which often show up
against the background of extended condensations.
In other words, the radial filaments are generally
not (as is occasionally interpreted) shadow regions
shielded against direct ionizing radiation from the
central star, but serve as the source of globule matter.
The mass of the gas contained in the radial filaments,
of course, depends on the spectrum and amplitude of
the initial perturbations. However, we can estimate
an upper limit for the number of condensations N
and their characteristic masses Mf . In particular,
assuming that l ∼ 1015 cm for NGC 7293, we obtain
N ∼ 105 and Mf � 1027 g at Ri ∼ 0.4Rn. These
values of N and Mf are close to those found by
Capriotti, although the condensations now have a
distinctly different structure.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
We emphasize that the conclusions formulated
above are based on a rough model of the shell. There-
fore, a more accurate allowance for the ionized gas
motions, the radiative transfer in the H II region, the
fragmentation of the neutral layer, and its interaction
with the interstellar medium surrounding the nebula
would be appropriate.

In conclusion, note that manifestations of the cu-
mulative effects considered above may also be ex-
pected in other objects that contain fairly thin and
dense layers of gas (e.g., in supernova remnants).
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Abstract—Using the Main Stellar Spectrograph of the 6-m Special Astrophysical Observatory telescope
equipped with a polametric analyzer, we measured the longitudinal magnetic field component B|| for the
T Tauri stars T Tau and AS 507 on January 16 and 18 and February 15, 2003. For both stars, we determined
only the upper limits on B|| from photospheric lines: +15 ± 30 G for T Tau and −70 ± 90 G for AS 507.
The magnetic field of AS 507 was not measured previously, while B|| for T Tau is lower than its values
that we obtained in 1996 and 2002 (B|| � 150 ± 50 G), suggesting that the longitudinal magnetic field
component in the photosphere of T Tau is variable. We also measured the longitudinal magnetic field
component for T Tau in the formation region of the He I 5876 Å emission line. We found B|| in this
region to be �+650, �+350, and �+1100 G on January 16, 18, and February 15, 2003, respectively. Our
observations on January 18 and February 15 correspond to virtually the same phase of the star’s rotation
period, but the profiles of the He I 5876 Å line differ markedly on these two nights. Therefore, we believe that
the threefold difference between the B|| values on these nights does not result from observational errors.
We discuss the possible causes of the B|| variability in the photosphere and the magnetosphere of T Tau.
c© 2004 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

T Tauri stars (TTSs) are young (t < 107 years)
low-mass (M ≤ 2M�) stars at the stage of grav-
itational contraction toward the main sequence.
T Tau belongs to the so-called classical T Tauri stars
(CTTSs) whose activity is attributable to mass accre-
tion from a (protoplanetary) disk, while AS 507 most
likely belongs to weak-line T Tauri stars (WTTSs)
whose line and continuum variability is attributable
to solar-type activity (Herbig and Bell 1988; Bertout
1998).

The magnetic fields in both CTTSs and WTTSs
not only determine the patterns of their activity, but
also play a fundamental role in the evolution of the
stellar angular momentum. Therefore, one of themain
questions in the physics of young stars is the mag-
netic field strength and topology. At present, themag-
netic field strength is known for fewer than ten TTSs,
because the fields are difficult to measure for these
objects.

Using the fact that the magnetic field changes
the line equivalent widths, depending on the Lande
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factor, Guenther et al. (1999) and Johns-Krull et al.
(2001) found, in particular, that the surface-averaged
magnetic field strength of T Tau is B > 2 kG. On the
other hand, Smirnov et al. (2003) found the longitu-
dinal magnetic field component B|| on the surface of
T Tau in 1996 and 2002 to be� +150 ± 50 G, i.e., an
order of magnitude smaller thanBs. Both a significant
deviation of the stellar field from a dipole and a large
inclination of the magnetic dipole axis to the rotation
axis of the star could be responsible for such a large
discrepancy. To find out which of the explanations is
correct, we remeasured B|| for T Tau in the winter
of 2003. Our results are reported in this paper. In
addition, we measured the mean B|| for AS 507.

The method of magnetic field measurements used
here, as in our previous paper (Smirnov et al. 2003),
is based on the fact that for the Zeeman splitting of
the so-called σ component, the lines are circularly po-
larized; the components with opposite polarizations
are located on both sides of the central wavelength
λ0. If the magnetic field in the line formation region
has a longitudinal (directed along the line of sight)
component B||, then the lines observed in right-hand
and left-hand polarized light will be shifted from one
2004 MAIK “Nauka/Interperiodica”



POSSIBLE VARIABILITY 457
another by (Babcock 1958):

∆λrl � 9.3 × 10−10gλ2
0B|| mÅ, (1)

where g is the Lande factor of the line under con-
sideration. The wavelength in (1) is in Å, and B||
is in G. This relation allows the mean longitudinal
magnetic field component in the line formation region
to be determined by measuring ∆λrl from two spectra
taken in right-hand and left-hand polarized light.

OBSERVATIONS AND REDUCTION
TECHNIQUES

The spectra of T Tau and AS 507 were ob-
tained on January 16 and 18 and February 15,
2003, on the 6-m Special Astrophysical Observa-
tory telescope using the Main Stellar Spectrograph
(Panchuk 2001) equipped with a circular polarization
analyzer (Chuntonov 1997). Spectra in the range
5700–6000 Å were taken with a 2K×2K CCD
detector. The spectrograph slit width, 0′′

.5, provided
a spectral resolution R � 15 000. The reciprocal dis-
persion was 0.17 Å per pixel. The weather conditions
on the observing nights were stable, with the seeing
being within 1′′

.5 most of the time.
We reduced the spectra using the MIDAS soft-

ware package. To measure the difference between
the line positions in the spectra with opposite polar-
izations, we used a cross-correlation method. This
method makes it possible to measure the shift of the
line as a whole and has a low sensitivity to errors in
continuum placement.

In addition to T Tau and AS 507, we also ob-
served the magnetic star HD 30466 and the giant
ε Tau; the latter was used as a zero-field standard
(see below). Table 1 contains basic information about
our observations: the apparent magnitude V of the
object, the number of observed pairs of spectra n, the
total observing time for the star te in minutes, and the
signal-to-noise ratio S/N per pixel for each spectrum.

To identify lines in the spectra of T Tau and
AS 507, we used information about their relative in-
tensities from theVALDdatabase (Kupka et al. 1999)
by assuming that Teff = 5250 K, log g = 3.73 (White
and Ghez 2001) for T Tau and Teff = 5000 K and
log g = 4.0 (Herbig 1977; Padgett 1996) for AS 507.

To take into account the systematic instrumental
errors, we organized the observations as follows. Be-
tween exposures, the phase compensator was rotated
in such a way that the right-hand and left-hand po-
larized spectra were interchanged on the CCD array.

Let ∆λ(1)
rl be the difference between the positions of

a line in the spectra with opposite polarizations mea-
sured at the initial position of the phase compensator,
ASTRONOMY LETTERS Vol. 30 No. 7 2004
Table 1.Observations

Object V n te, min S/N

ε Tau 4.9 4 8 400

T Tau 10.0 12 580 150

AS 507 10.3 2 80 150

HD 30466 7.3 1 24 200

and ∆λ(2)
rl be the same difference measured after the

rotation of the compensator. Then the value

∆λrl =
∆λ(2)

rl − ∆λ(1)
rl

2
will be free from systematic errors, with the main error
being attributable to the tilt of the spectrograph slit.
The same quantity was calculated for all measurable
lines. Thus, two exposures of the star are required to
measure the line shift needed to calculate B|| using
Eq. (1).

When an absorption feature was a blend of lines
comparable in intensity, we used the effective Lande
factor

geff =
Σdigi
Σdi

,

i.e., the weighted mean component of the blend aver-
aged over the central depths di taken from the VALD
database.

RESULTS

To test our procedure for magnetic field measure-
ments, we observed the magnetic star HD 30466.
For this star, Babcock (1958) found B|| = +2320 ±
340 and B|| = +1890 ± 130 G from two independent
observations, while Smirnov et al. (2003) derived
B|| � 2.0 kG by estimating the field from only one

line, CrI 6661 Å. Based on our observations of 2003,
we obtained B|| � 2.1 kG for HD 30466 using the

CrI 5710 Å line to estimate the field.
The results of our magnetic field measurements

from absorption lines of T Tau and AS 507 are pre-
sented for each of the three nights in the third column
of Table 2. Since the absorption lines are formed in the
photospheres of these stars, the measured B|| values
pertain to the surfaces of T Tau and AS 507.

The mean values of B|| for T Tau and AS 507
do not differ from zero, within the error limits. To
independently check the validity of our allowance for
the systematic errors, we observed the star ε Tau
(G9.5 III). Since this star is a giant, it would be
natural to expect that the magnetic field strength
in its photosphere is close to zero. Indeed, in 2002,
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Table 2. Results of the observations

Date, 2003 Object B||, G

photosphere He I

Jan. 16 T Tau +10 ± 45 +640, +720

AS 507 −70 ± 85
Jan. 18 T Tau −40 ± 50 +390, +320

ε Tau +7 ± 11
Feb. 15 T Tau +75 ± 50 +1090, +1200

ε Tau −3 ± 12

we found B|| = −0.5 ± 8 G for this star (Smirnov et
al. 2003). This time, having reduced the spectra of
ε Tau using to the same techniques as that for the
spectra of T Tau and AS 507, we obtainedB|| = +2±
10 G for this star. This suggests that our method
for eliminating the systematic errors is fairly efficient,
and that the observed scatter of B|| values for T Tau
and AS 507 is attributable to random measurement
errors.

The histograms in Fig. 1 show the number of
absorption lines used to obtain a particular value of
B|| in the range ±100 G for T Tau and AS 507.
These histograms were constructed from all of the
measurements, because the mean B|| values for each
night are equal, within the error limits. We see that
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Fig. 1. Histogram showing the number of lines, N , used
to obtain a particular value of B|| in the range±100 G for
T Tau (a) and AS 507 (b). The histogram was fitted by a
Gaussian for each star.
the histogram for T Tau is well fitted by a Gaussian
whose peak corresponds to B|| � +15 G. A Gaus-
sian pattern of the B|| distribution is not so obvious
for AS 507, but we attribute this fact to insufficient
statistics.

The helium emission lines of CTTSs are cur-
rently believed to be formed in accreted matter in
the magnetosphere of a young star, i.e., outside its
photosphere. Therefore, we separately measured B||
for T Tau from the profile of the He I 5876 Å line (this
line is not observed in the spectrum of AS 507). The
results of these measurements (two measurements
on each of the three nights) are given in the fourth
column of Table 2. They differ markedly from B||
in the photosphere. The largest value (∼1 kG) was
obtained on February 15, 2003 (Fig. 2). Note that
for BP Tau, B|| ∼ 2.5 kG in the formation region of

the He I 5876 Å line (Johns-Krull et al. 1999a) and
Bs = 2.1 ± 0.3 kG at the photospheric level (Johns-
Krull et al. 1999b).

CONCLUDING REMARKS

Both program stars exhibit periodic brightness
variations which are probably attributable to the axial
rotation of the stars. The axial rotation periods of
T Tau and AS 507 are � 3.43d (Herbst et al. 1986)
and � 2.80d (Chugaı̆nov et al. 1995), respectively.
As has been noted above, the mean values of B|| in
the photospheres of T Tau and AS 507 for individual
nights are equal, within the error limits. Therefore,
we were unable to check how B|| varies as the star
rotates.

Since the magnetic field of AS 507 had not been
measured previously, we have nothing with which to
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Fig. 2. Profiles of the He I 5876 Å line in right-hand (1)
and left-hand (2) polarized light for the spectrum of T Tau
observed on February 15, 2003.
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Fig. 3. B|| in the magnetosphere of T Tau versus axial
rotation phase.

compare our results. We can only state that B|| <
250 G (at the 3σ level) in the stellar photosphere at
the time of our observations.

The value of B|| in the photosphere of T Tau av-
eraged over the three nights was +15 ± 30 G. In
other words, in the winter of 2003, the longitudinal
magnetic field component in the photosphere of T Tau
did not exceed 90 G at the 3σ level, while in 1996
and 2002, it was equal to 160 ± 40 and 140 ± 50 G,
respectively (Smirnov et al. 2003). According to Stu-
dent’s test, this means that the value of B|| in the
winter of 2003 differed from the results of previous
measurements with a probability of more than 90%.
For this reason, we believe that we have detected vari-
ability of the longitudinal magnetic field component in
the photosphere of T Tau.

We see from Table 2 that the longitudinal field
in the magnetosphere of T Tau varied appreciably
from night to night. In Fig. 3, we plotted B|| in the
magnetosphere against rotation phase; for simplicity,
this phase was counted off from the time of our first
observation on January 16. By coincidence, our ob-
servations of January 18 and February 15 took place
at virtually the same phase, but the values of B|| on
these two nights differ by almost a factor of 3.

The cause of this difference is unclear. The cor-
rectness of our field measurement from a single line
may be called into question. However, the similarity
of the B|| values that we obtained on each night,
along with the variation of the mean values from night
to night, seems to be evidence that the variations of
the measured field strength in the magnetosphere are
real. In addition, we see from Fig. 4 that the helium
line profiles on January 18 and February 15 were
different, although they corresponded to the same
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Fig. 4. Variations in the profiles of the He I 5876 Å line
in the spectrum of T Tau from night to night. The date of
observation is indicated for each profile on the left, while
the mean B|| value on the corresponding night is given on
the right.

rotation phase; however, this is also typical of other
CTTSs (see, e.g., Alencar and Batalha 2002). We can
even see from Fig. 4 that there is a certain pattern
in the variation of the line profile shape with B||: the
larger the value of B||, the lower the intensity of its
central peak.

Further observations are required to firmly estab-
lish whether the variations of B|| in the magneto-
sphere are real and to what extent they are asso-
ciated with the changes in the profile shape of the
He I 5876 Å line. In addition to the hypothesis that the
magnetospheric field strength/structure is variable,
the possibility that the rotation period of themagneto-
spheric region where the He I 5876 Å line is formed is
not equal to the stellar rotation period and, hence, the
longitudinal field component is different at the same
axial rotation phases of T Tau, is worthy of note.
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Spatial Closeness of the White Hypergiants HD 168607 and HD 168625
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Abstract—Our spectroscopic monitoring of the hypergiants HD 168607 (B9.5 Ia-0) and HD 168625
(B5.5 Ia-0) with resolutions from 15 000 to 70 000 confirms that both stars belong to the Ser OB1
association, proves their spatial closeness, and increases the probability that they constitute a physical
pair. c© 2004 MAIK “Nauka/Interperiodica”.

Key words: stars, stellar wind, radial velocities, HD 168607, HD 168625.
INTRODUCTION

The paper by Pasquali et al. (2002) has inspired
us to write this note. It gives the fourth version of the
distance to HD 168625 in the last ten years, which
“disengages” the pair of hypergiants HD 168607 and
HD 168625.

White hypergiants, the most luminous late B–
early A stars, and, in particular, the LBV variables
among them, are very rare. Fewer than ten such
objects in the Galaxy have been studied by means
of high-resolution spectroscopy. They are scattered
along the Milky Way from Carina to Cassiopeia more
or less uniformly, but there is one striking exception,
HD 168607 and HD 168625. These stars are located
at the southern edge of the nebula M 17 and are
spaced only 1 arcmin apart. Their basic parameters
are given in Table 1.

But can this pair be considered physical? Or,
to put it more mildly: Can we be sure that these
stars belong to the same association (according to
Humphreys (1978), to the Ser OB1 association)?
The relevance of these questions is obvious: if the
distances and motions of the two stars are identical,
then, on the one hand, their luminosities and evo-
lutionary statuses can be determined more reliably,
and, on the other hand, it is easier to understand
the kinematics of their atmospheres and winds. In
particular, the radial velocities of the relatively quiet
star HD 168625 could help in determining the center-
of-mass velocity (Vsys) of the very unstable star
HD 168607.

The minimum possible linear separation between
HD 168607 and HD 168625, if their distance as
Ser OB1 members is 2.2 kpc (Humphreys 1978), is

*E-mail: echen@sao.ru
1063-7737/04/3007-0461$26.00 c©
0.6 pc. Such wide visual binaries are not yet known
(Halbwachs 1983). At the same time, one cannot
help but take into account the low probability of such
outstanding objects being neighbors by chance. It
suggests a positive answer at least to the second of
the above questions. However, even this question is
answered negatively in most of the available publica-
tions.

To date, of the two stars, more attention has been
given to HD 168625; not to the star itself, but to
the surrounding gas–dust nebula. Published distance
estimates for the nebula lie within the range 0.4 to
2.8 kpc. These are collected in Table 2. The evidence
against a common origin and spatial closeness of
HD 168607 and HD 168625 is contradictory and
unconvincing. But is it now possible to provide con-
vincing evidence for the physical nature of the pair
without awaiting an improvement in the accuracy of
astrometric measurements by an order of magnitude?
We will try to find such evidence based on the radial
velocities of HD 168607 and HD 168625 obtained
during our spectroscopic monitoring of the two stars.

In the next section, we describe our spectroscopic
data and their reduction. Subsequently, we present
the data obtained and the conclusions drawn from
them.

SPECTROSCOPIC DATA AND ITS
REDUCTION

Since the objects are spectroscopically variable to
such an extent that they were classified as SDor vari-
ables (van Genderen 2001), their monitoring should
have been long enough, especially for the more active
star HD 168607. Since, further, important informa-
tion can be extracted from the profiles of not only stel-
lar lines but also interstellar lines and narrow diffuse
2004 MAIK “Nauka/Interperiodica”
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Table 1. Basic parameters of the stars

Star α2000 δ2000 V Sp (B–V )0 (B–V ) E(B–V )

HD 168607 18h21m12s −16◦22′01′′ 8.16 B9.5 Ia-0 0.01 1.44 1.43

HD 168625 18 21 16 −16 21 52 8.39 B5.5 Ia-0 −0.08 1.33 1.41

Note: V and (B–V ) are the mean values from van Genderen et al. (1992), (B–V )0 is from FitzGerald (1970), Sp is from our
estimates.

Table 2.Distance estimates for HD 168625

d, kpc Estimation method Reference

0.4 Trigonometric parallax Garcia-Lario et al. (2001)

1.2 Photometric parallax Robberto and Herbst (1998)

>2.2 Kinematic, from Vsys of nebula Hutsemekers et al. (1994)

2.8 Kinematic, from Vsys of star Pasquali et al. (2002)
interstellar bands (DIBs), it was necessary to perform
at least some of the observations with a sufficiently
high spectral resolution.

We used 13 spectra of HD 168607 obtained from
1992 until 2002 and 6 spectra of HD 168625 obtained
from 1997 until 2002 with several echelle spectrome-
ters equipped with CCD arrays. Although the reduc-
tion results for the spectra that we obtained previously
on photographic plates (Chentsov and Luud 1989)
are consistent with the new results, they are less ac-
curate and are not used here. The first three columns
of Table 3 contain the date when the spectrum was
obtained, the spectrometer used, and the working
spectral range. The notes to the table give brief in-
formation about the spectrometers: the telescope, the
focus, the spectral resolution, and the reference to a
paper with a detailed description.

After the extraction of one-dimensional fragments
corresponding to individual orders from the two-
dimensional images of the spectra, we performed
the subsequent reduction (continuum placement,
construction of the dispersion curves, positional and
photometric measurements) using the DECH 20
code (Galazutdinov 1992). In particular, the posi-
tions of the needed features in lines were measured
by matching the direct and mirror images of their
profiles. The correction for instrumental shifts, which
are especially relevant in comparing the radial ve-
locities obtained with different instruments during a
long period, were made using telluric O2 and H2O
lines. The residual systematic errors did not exceed
2 km s−1 for the PFES spectrometer and 1 km s−1

for the remaining spectrometers.

RADIAL VELOCITIES FROM STELLAR AND
INTERSTELLAR LINES

The radial velocities discussed below are heliocen-
tric. They were measured from the absorption cores
and the emission peaks. The residual intensities of
the weakest single lines whose velocities could still
be determined with acceptable errors (2–3 km s−1)
are r = 0.98 and 1.02, respectively.

Since the radial velocities of the stars’ centers of
mass, Vsys, are required to resolve the question of
interest, we could not restrict ourselves to measuring
individual lines, as was done in some of the cited
papers, but had to compare the velocities derived from
a large set of absorptions and emissions. Vsys cannot
be directed measured for our objects. Apart from be-
ing spectroscopically variable, the various lines in the
spectra of both stars always exhibit differential shifts,
because their formation regions extend from the pul-
sating photospheres to the nonstationary winds. The
specific features of the spectra are presented in more
detail in the atlas by Chentsov et al. (2003); here, we
note only their main features.

The first Balmer lines in the spectra of both
stars originate in the stellar wind. The absorption
components of their P Cyg profiles are generally
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Table 3.Data on the spectra and heliocentric radial velocities

Date
Spectro-
meter

∆λ, nm
Vr, km s−1

P Cyg Vr(r → 1) Vem Fe II Na I DIB

HD 168607

Aug. 14, 1992 L 458–595 −95 16 12: 1 7:

May 28, 1994 L 515–710 −130 7 10: 2 6:

June 18, 1995 C1 480–670 −120 10 10 – 8

Aug. 10, 1995 L 480–675 −130 9 10 1 8

July 4, 1996 P 515–790 −120 9 8 1 8

July 21, 1997 L 540–670 −105 12 9: 3 8:

June 19, 1998 P 410–770 −140 16 10 1 8

July 8, 1998 P 445–770 −145 9 9 1 8

Aug. 14, 1998 C2 430–980 −110 10 8 −7.5 8

June 24, 2000 L 470–633 −100 11 10: 1 8

June 4, 2001 P 455–790 −105 10 7: 0 8

July 29, 2002 N 458–595 −120 17 11: −7.6 7:

Sep. 27, 2002 MD 545–670 −130 9 9 −7.5 8

Mean 11.5 ± 0.8 9.2 ± 0.4 – 7.8 ± 0.2

HD 168625

July 23, 1997 L 540–670 −90: 12 – 1 8:

June 19, 9198 P 410–770 −165 12 10: 1 8

June 4, 1999 L 516–670 −150 16 – −7.6 9

June 24, 2000 L 470–633 −50 11 – 1 8

July 29, 2002 N 458–595 −16 9 – −7.6 8

Sep. 27, 2002 MD 545–670 −45 8 8: −8.7 7

Mean 11.± 1.0 9: – 8.0 ±−0.2

Note: P—PFES spectrometer at the prime focus of the 6-m Special Astrophysical Observatory (SAO) telescope, spectral resolution
15 000 (Panchuk et al. 1998); L—LINX spectrometer at the Nasmyth focus of the 6-m SAO telescope, spectral resolution
25 000 (Panchuk et al. 1999); C1—spectrometer at the Coude focus of the 1-m SAO telescope, spectral resolution 40 000
(Musaev 1996); C2—Coude spectrometer of the 2-m Terskol Observatory telescope, spectral resolution 40 000 (Musaev et al. 1999);
MD—spectrometer at the Cassegrain focus of the 2.1-m McDonald Observatory telescope, spectral resolution 64 000 (McCarthy
et al. 1993); N—NES spectrometer at theNasmyth focus of the 6-mSAO telescope, spectral resolution 70 000 (Panchuk et al. 2002).
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Fig. 1. Profiles of the Hα, Fe II(42) 5169 Å, and Si II(2) 6347 Å lines in the spectrum of HD 168607 taken on June 18, 1995,
and of the Hα and He I(11) 5876 Å lines in the spectrum of HD 168625 taken on June 4, 1999. The vertical dashed lines mark
the center-of-mass velocities of the stars.
split into several components. The Hα profiles shown
in Fig. 1 together with the profiles of some other
lines have three components each. In the spectrum
of HD 168607, the shapes and parameters of the
absorption components of the Balmer lines are copied
(more conspicuously) by Fe II lines. The figure shows
the Fe II(42) 5169 Å line as an example. Its low-
velocity component, which gives Vr = −14 km s−1,
is deeper than the two remaining components, while
in the Hα profile, it is lost on the steep blue slope of
the emission. Such profiles exhibiting comparatively
low expansion velocities are characteristic of the slow
dense winds from hypergigants. The radial velocities
pertaining to the most blueshifted absorption compo-
nents, Vr (P Cyg), are given in the fourth column of
Table 3.
Let us now consider the photospheric absorp-
tions of He I, C II, N II, and some heavier ions. One
might expect the velocities derived from the weakest
lines formed deeper than other lines to be closest
to the velocity of the star as a whole. They show
no clear asymmetry in the profiles. An asymmetry
appears in stronger absorptions: absorption at the
base of the wind deepens and stretches their blue
wings. This can be seen from Fig. 1 in the profiles
of the Si II(2) 6347 Å and He I(11) 5876 Å lines,
the deepest absorptions in the spectra of HD 168607
and HD 168625, respectively. In Fig. 2, Vr measured
from individual lines or their components are plotted
against their residual intensities r. We see a shift in
the stronger lines with respect to the weakest ones,
which increases with line depth. To approach Vsys
as closely as possible, we extrapolated Vr(r) to the
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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continuum level (r → 1). The values of Vr (r → 1)
obtained in this way are given in the fifth column of
Table 3. For HD 168625, a velocity close to the tabu-
lated values (10 ± 2 km s−1) can be derived from that
given by Pasquali et al. (2002, Fig. 9) by referencing
the C II(2) doublet to neighboring telluric lines. The
time variations of Vr (r → 1) are real, but, according
to our data, their amplitudes do not exceed 10 km s−1,
and themean values for both stars are the samewithin
the error limits: 11.5 km s−1.

The stationary symmetric Fe II emissions in the
red and near infrared spectral ranges (6318, 7513 Å
etc.) are more valuable for estimating Vsys. They are
probably emitted by the extended envelopes of the
stars (i.e., the envelopes that are several orders of
magnitude smaller than the circumstellar nebula of
HD 168625 and that are invisible in direct images).
These emissions are barely noticeable in the spec-
trum of HD 168625; only 2 or 3 of them are mea-
surable, they are much stronger in the spectrum of
HD 168607, and, in the best cases, the velocities
were obtained for 8–10 lines. The part of the spec-
trum for HD 168607 containing the Fe II 6318, 6384,
and 6385 Å lines is compared with the same part
of the spectrum for HD 168625 where they are in-
visible in Fig. 3. The velocities derived from pure
Fe II emissions are indicated by the dashed straight
line at r = 1.0 in Fig. 2a. These velocities averaged
for each spectrum (Vem) are given in the sixth col-
umn of Table 3. In contrast to Vr (r → 1), the small
variations of Vem from date to date are caused only
by the measurement errors. The value averaged over
the entire data for HD 168607 (9.2 ± 0.4 km s−1) is
equal to that for HD 168625 (9:). However, it should
be emphasized that it was established much more
reliably for the former star than for the latter one.
The reason lies not only in the different numbers of
measurements; for HD 168607, the numerous Fe II
lines with P Cyg profiles mentioned above provide
additional information. The velocities measured from
the peaks of their emission components (the open cir-
cles in Fig. 2a) are uniquely related to the intensities
of the absorption components: the weaker they are,
the lower the velocities. As we see from Fig. 2a, the
lowest Vr values approach Vem and improve them.

Thus, it follows from the set of velocity data ob-
tained from absorption and emission lines that the
same center-of-mass velocity may be taken for both
stars. Based on the emissions alone, we should take
Vsys = 9 km s−1. It is important to note that this
value is equal to the mean radial velocity of the neb-
ula M 17 estimated by Clayton et al. (1985). How-
ever, since the velocities measured from emissions for
HD 168625 are still uncertain, we are inclined to a
more cautious estimate: Vsys = 10 ± 1 km s−1. This
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Fig. 2. Heliocentric radial velocities versus residual in-
tensities of the absorptions or absorption components in
P Cyg profiles. Each symbol corresponds to an individual
line. (a) HD 168607 on June 18, 1995. (1) Emission
components of P Cyg profiles; (2) (curve I) red absorption
components of P Cyg profiles (no dependences for the
blue componentswith velocities of−75 and−120 km s−1

are shown); (2) (curve II) He I, C II, and other absorp-
tions; the symbol at r = 0.5 is the Si II 6347 line whose
profile is shown in Fig. 1. The dashed straight line at
r = 1.0 corresponds to the stationary Fe II emissions.
(b) HD 168625 on June 4, 1999. 2: He I, C II, and other
absorptions; the symbol at r = 0.54 is the He I 5876 line
whose profile is shown in Fig. 1. 3: Fe II(42) and Si II(2)
absorptions; the dashed straight linemarks the center-of-
mass velocities of the stars.

value is marked by the dashed straight lines in Figs. 1
and 2.

The interstellar lines and bands are very strong in
the spectra of the stars under consideration; what is
especially important, they are almost equally strong in
both stars. This is demonstrated by Figs. 4 and 5. At a
high resolution and after the removal of the contribu-
tion from the telluric H2O spectrum, the Na I (1) lines
split into several components. The only difference be-
tween the profiles for the two stars that is noticeable in
Fig. 4 is a weak dip at Vr ≈ 35 km s−1 for HD168625.



466 CHENTSOV AND GORDA

 

6280

0.2

0.5

0.8

1.1

6320 6360 6400

 

FeII NeI

SiII

SiII

NeI

FeII

HD 168607

FeII

HD 168625

NeI

 

λ

 

I

 

/

 

I

 

0
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Since the radial velocity toward our objects (l = 15◦)
increases with distance (Brand and Blitz 1993), this
could suggest that the star is at a large distance if
its own velocity were not considerably lower. For the
remaining components, both the positions and the
depths are identical. The two deepest components,
which indicate the presence of two main gas clumps
on the line of sight, are spaced 14 km s−1 apart. The
redshifted component (Vr ≈ 6 km s−1) formed farther
on the line of sight than the blueshifted component
(Vr ≈ −7 km s−1) is deeper. This is more clearly seen
not in the saturated Na I lines, but in the weaker K I
line (unfortunately, we have its well-traced profile only
for HD 168607, Fig. 3) and in narrow DIBs.

The narrow DIBs have recently been shown
to have their own fine structure (Galazutdinov et
al. 2002). Besides, in our case, they are split by
Galactic rotation, just as the Na I and K I lines.
The combined action of both effects can be seen in
Fig. 5 for the DIB 6614 Å consisting of three main
components and several weaker ones. The profiles
in the spectra of the two stars copy themselves in
every detail, which would be unlikely to be the case
if their distances and the column densities differed
significantly. The latter is also true for the interstellar
dust. As we see from Table 1, the difference between
the color indices of the stars is offset by the difference
between their intrinsic colors.

The seventh column of Table 3 contains the Vr
values for NaI (1). When the resolution permitted,
the velocities were measured for the two main com-
ponents; in the remaining cases, they were measured
for the lines as a whole. The last column gives the
Vr values measured from the cores of the narrowest
DIBs: 5797, 6196 Å and others. Their effective wave-
lengths were taken from the atlas by Galazutdinov
et al. (2000). The positions of interstellar lines and
bands can be determined more accurately than those
of weak stellar lines, but our measurements using
these lines revealed no differences between the mean
velocities for the two stars either.

The small systematic discrepancy between the Vr
values for DIBs and the redshifted components of the
Na I lines could be due to uncertainties in the labo-
ratory wavelengths for the former and to the blending
of the latter with neighboring blueshifted components
(the DIBs and the K I lines have equal velocities). It
is natural that Vr for interstellar lines and DIBs is
slightly lower than Vem and, hence, lower than Vsys:
the effective distance even to the far interstellar clouds
is smaller than the distance to our pair of stars.
ASTRONOMY LETTERS Vol. 30 No. 7 2004



SPATIAL CLOSENESS 467

 

V

 

r

 

, km s

 

–1

 

0.5

1.0

 

1

 

KI

D2

–50 0 50

 
r

 

0.5

 

2

1
2

 

D1

7699

Fig. 4. Interstellar line profiles. From top to bottom:
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CONCLUSIONS

The attempts to “disengage” the pair of
HD 168607 and HD 168625 have found no spec-
troscopic support. At least four observational facts
prevent the assumption that they are neighbors in the
sky by chance:

(1) clear spectroscopic signatures of extremely
high luminosity for both stars,

(2) identical interstellar reddening,
(3) equal center-of-mass radial velocities of the

stars,
(4) coincident profiles of interstellar lines andDIBs

and equal radial velocities derived from them.
The first two arguments are generally the weakest.

They can be circumvented by assuming that the red-
dening of the nearer star is partly of a circumstellar
origin and that it belongs to low-mass stars with
spectra similar to those of hypergiants. HD 168625
is a better candidate for this role: it has an IR excess
and is surrounded by a nebula, while both features are
absent for HD 168607. However, this assumption is
in conflict with the third and fourth facts. The sig-
nificant distance difference would inevitably manifest
itself in a difference between the radial velocities of the
stars and between the profiles of interstellar lines and
bands. Of course, a physical pair can be “destroyed”
even by the small distance difference admitted by the
natural luminosity range of hypergiants, but this does
not cancel out the main fact: both stars belong to the
same group, i.e., they have a common origin, similar
ages, etc.

Thus, our new spectroscopic data strongly sug-
gest that HD 168607 and HD 168625 are spatially
close to each other and belong to the Ser OB1 associ-
ation. They also provide evidence for the highly likely
connection of these hypergigants with theM 17 com-
plex. While these data do not ultimately prove that
HD 168607 and HD 168625 constitute a physical
pair, they in any case significantly increase the prob-
ability of their physical association. The prospects
for a further improvement in observing facilities are
primarily related to obtaining high-resolution spectra
for neighboring stars (in particular, for stars of the
M 17 complex) and milliarcsecond-resolution images
of the objects.
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Abstract—The PUL2 catalog has been photographically compiled in Pulkovo according to Deutch’s plan.
The catalog contains the mean coordinates of stars in the ICRS system at epoch J2000.0 and their original
absolute proper motions. The photographic observations were performed with a normal astrograph. The
first and second epochs of the photographic plates are 1937–1965 and 1969–1986, respectively. The PUL2
fields uniformly cover the northern sky. The mean difference between the epochs is 24 years. At least three
pairs of plates are available for each field. There are one-hour and five-minute exposures on all plates. One
pair of plates was taken with a diffraction grating. Only bright reference stars were measured on the pairs
of plates with a grating. Based on a reduction model with six constants and using faint (15m. 2) reference
stars, we determined the relative proper motions of the stars. We used ∼700 galaxies for absolutization.
The mean errors in the relative proper motions of the PUL2 stars are 5.5 mas yr−1 (milliarcseconds
per year) in µα cos δ and 5.9 mas yr−1 in µδ. When using galaxies, the mean absolutization error is
7.9 mas yr−1 in both coordinates. By comparing the PUL2 and HIPPARCOS catalogs, we determined
the components of the residual rotation vector ω for HIPPARCOS relative to the extragalactic (equatorial)
coordinate system: ωx,y,z = (−0.98,−0.03,−1.66)± (0.47, 0.38, 0.42) mas yr−1. The mean error of one
absolute proper motion of a bright PUL2 star in external convergence is 9 mas yr−1 in both coordinates.
c© 2004 MAIK “Nauka/Interperiodica”.

Key words: star clusters and associations, stellar dynamics, astrometry, catalogs, ICRS system,
absolute proper motions.
INTRODUCTION

At the first Astrometric Conference, Gerasimovich
and Dneprovskiı̆ (1933) put forward the idea of com-
piling a fundamental catalog of faint stars (CFS)
using extragalactic nebulae to determine the abso-
lute proper motions of stars. This approach yields
an independent approximation to the inertial coor-
dinate frame. Since the absolute proper motions of
stars obtained in this way are free from the pre-
cession effect of the Earth’s axis, they can serve as
a basis for checking the determination of the pre-
cession constant and for studying the kinematics
of various groups of stars in the Galaxy. At that
time, the absolute proper motions of a large num-
ber of stars could be determined only by means of
photographic astrometry. To perform the formulated
task, Neuı̆min (1940) compiled the first list of galax-
ies. It contains a description of 271 galaxies located
in 143 fields. Systematic observations of areas with
galaxies were begun in 1939 at three observatories:

*E-mail: vbobylev@gao.spb.ru
1063-7737/04/3007-0469$26.00 c©
in Pulkovo, Moscow, and Tashkent. At the 8th Gen-
eral Assembly of the IAU, Deutch (1954) proposed
using telescopes like a normal astrograph in both
hemispheres to take photographs of selected fields
with galaxies to determine the absolute proper mo-
tions of stars (“Deutch’s plan”). Thanks to the efforts
of Deutch, many observatories worldwide took part
in the program of determining the absolute proper
motions of stars using galaxies as reference objects.
The Pulkovo zone covers the declination range−5◦ to
+90◦ and includes 157 fields. For these fields, Deutch
et al. (1955) compiled a catalog of 1508 galaxies.
Each galaxy was described in terms of its appearance,
shape, brightness, size, and suitability for measure-
ments.

The first Pulkovo catalog of absolute proper mo-
tions for 14 600 stars to the 15th photographic mag-
nitude in 85 fields of the Pulkovo zone was pub-
lished by Fatchikhin (1974); we denote this catalog
by PUL1. Plates taken during the period 1937–1941
served as the first epochs in PUL1. Photographs
of the second epochs were taken during the period
1959–1967 using glass. The combined GPM (Ry-
2004 MAIK “Nauka/Interperiodica”
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bka and Yatsenko 1997b) and GPM1 (Rybka and
Yatsenko 1997a) catalogs were compiled by com-
bining 20 catalogs of the CFS program, which also
included PUL1. The PUL2 catalog was compiled
from original observational material. About 20 plates
of the first epochs are common to PUL2 and PUL1.
A technique different from that of the PUL1 catalog
was used to measure all PUL2 plates. The PUL2
photographic observational material for the second
epochs does not overlap with the PUL1 material.

The PUL2 catalog shares about 1200 common
stars with the HIPPARCOS catalog (ESA 1997),
which is of current interest in checking the refer-
encing of HIPPARCOS to the extragalactic coordi-
nate system. The inertiality estimate for the proper
motions of HIPPARCOS stars that was first ob-
tained by Kovalevsky et al. (1997) is only tentative.
The problem is that the photographically determined
absolute proper motions of stars, for example, the
proper motions of stars in the Kyiv CFS (Rybka
and Yatsenko 1997b), NPM1 (Clemola at al. 1994),
and SPM (Platais et al. 1995) catalogs have a fairly
strong magnitude dependence with a coefficient of
∼1 mas yr−1 per magnitude. The magnitude equation
of such an order for the NPM and SPM programs, in
which 16m stars serve as reference ones, leads to a
shift in the proper motions of bright (8–10m) stars by
≈8–6 mas yr−1. Significant differences in determin-
ing the components of the vector ω as a function of
the magnitude were found for the Kyiv CFS program
(Kislyuk et al. 1997). The NPM1 catalog revealed a
magnitude equation that has a major effect on the ωz
determination (Kovalevsky et al. 1997). Because of
the magnitude equation, Kovalevsky et al. (1997) did
not use any of the solutions of the NPM program,
which shares the largest number of common stars
with the HIPPARCOS catalog, to derive the final
solution when determining the ωz component. Platais
et al. (1995) found a noticeable magnitude equation
in the positions and proper motions of SPM stars, but
it was eliminated by comparing the positions of SPM
and HIPPARCOS stars. This method for eliminating
the magnitude equation fundamentally reduces the
originality of the results of the comparison of the SPM
and HIPPARCOS programs. In fact, the ωz estimate
by Kovalevsky et al. (1997) is based solely on the
results of the comparison of SPM and HIPPARCOS
stars.

Here, based on the most complete list of com-
mon stars shared by PUL2 and HIPPARCOS and
by PUL2 and TRC (Kuzmin et al. 1999; Hog et
al. 1998), we redetermined the components ofω—the
vector of residual rotation of the ICRS system with
respect to the extragalactic coordinate system.
OBSERVATIONS

The catalog of absolute proper motions of stars
was compiled in Pulkovo photographically using
galaxies as reference objects. The observations were
performed with a normal astrograph (F = 3.5m,D =
0.33 m, 2◦ × 2◦ field). Plates of the first and second
epochs were taken during the periods 1937–1965
and 1969–1986, respectively. The mean difference
between the epochs is 24 years. There are at least
three pairs of plates for each area, of which one was
taken with a diffraction grating. On the plates taken
with a grating, the first-order diffraction satellites
were attenuated by 4m. 2 with respect to the central
stellar image. All pairs of plates have one-hour and
five-minute exposures.

Observational material was obtained for 157 areas
in accordance with the list by Deutch et al. (1955).
The fields with numbers 4, 13, 45, 59, 81, 135, and
143 were excluded after examining all plates of the
first epochs, because no measurable images of galax-
ies were obtained in these fields.

Plates of the second epochs were taken in such a
way that the difference between the epochs was no
less than 20 years and that the hour angles on the
plates of the two epochs were equal.

The observing conditions in Pulkovo deteriorated
significantly in the early 1980s: the illumination of
the sky increased first, through the expansion and
city lights of Leningrad, and, second, because of
the greenhouses illuminated at night that were con-
structed 2 to 3 km south of Pulkovo. The plates with a
one-hour exposure had a large veil. The plates of the
second epochs for fields with negative declinations
were particularly difficult to take. For example, 14 and
12 plates were taken for fields nos. 31 (δ = −4◦56′)
and 29 (δ = −5◦00′), respectively. For 88 and 32
areas, three measurable plates of the second epochs
were chosen from 4–6 and 7–10 available plates,
respectively.

Agfa-Astro emulsions were mainly used when
taking photographs of the first epochs; photographs
of the second epochs were taken on ORWO Zu-1,
ORWO Zu-2, and Kodak 103aO plates.

Much of the available observational material was
obtained by N.V. Fatchikhin: 37% at the first epoch
and 16% at the second epoch. At the first epoch,
V.V. Lavdovskiı̆ and F.F. Bulatova-Kalikhevich ob-
tained 30% and 15% of the material, respectively. For
the second epochs, N.M. Bronnikova, O.N. Orlova,
and L.S. Koroleva took 30, 21, and 12% of the plates.
The remaining observers took less than 20% of the
plates at both the first and second epochs.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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MEASUREMENTS

Plate measurements were begun in Pulkovo in
1971. The following persons took part in the mea-
surements: A.N. Deutch (1971–1979), V.V. Lav-
dovskiı̆ (1971–1978), O.N. Orlova (1971–1984),
N.V. Fatchikhin (1971–1984), I.I. Kumkova (1976–
1977), S.S. Smirnov (1977–1978), N.A. Shakht
(1975–1987), N.M. Bronnikova (1980–1988),
V.V. Bobylev (1982–1988), and S.A. Lepeshenkova
(1985–1988). The largest number of plates were
measured by O.N. Orlova (23%), N.A. Shakht (21%),
N.M. Bronnikova (14%), and N.V. Fatchikhin (13%).

The measuring technique included the following
steps:

(1) Before the measurements, each pair of plates
was examined with a blink comparator to find stars
with large proper motions, |µ| > 0.05′′ yr−1, in the
entire plate field.

(2) All of the stars within a circle of radius 20′
at Galactic latitudes |b| < 40◦ and within a circle of
radius 30′ at Galactic latitudes |b| > 40◦ were mea-
sured on each pair of plates. Reference stars were
measured within a circle 10′ larger in radius, i.e., 30′
and 40′, respectively. For this purpose, two circles of
the corresponding radius were drawn on one of the
plates of the best quality on the glass side and then
60 uniformly distributed points were plotted inside
the circle of reference stars. Since reference stars in
the measurements were chosen near these points, the
distribution of reference stars was uniform in the plate
field.

(3) The plates were oriented for epoch 1950.0 in
the measuring device using a preselected pair of stars.
The orientation accuracy was ±0.1 mm. This proce-
dure was necessary because the proper motions of the
stars were determined from the differences between
the measured stellar coordinates.

(4) Two systems of reference stars were chosen
in the measurements: bright and faint reference
stars with photographic magnitudes 13m. 5–13m. 8 and
15m. 0–15m. 7.

(5) Four sharp markers chosen in the plate corners
were measured to check the stability of the plate in
the measuring device. Appropriate corrections for the
displacement of these markers, which generally did
not exceed 3–4 µm, were applied to the measure-
ments. The markers were measured every day at the
beginning and at the end of the measurements.

(6) Bright check stars common to the AGK3 cat-
alog (Diekvoss et al. 1975) and, subsequently, to the
PPM catalog (Rëser and Bastian 1991) were cho-
sen beforehand. The following order of measurements
was always used: (a) measurements of the check
markers at four positions of the reversal prism; (b)
ASTRONOMY LETTERS Vol. 30 No. 7 2004
measurements of galaxies at four positions of the
reversal prism; (c) measurements of check stars: one-
hour and five-minute images; (d) measurements of all
the stars within the 20′–30′ circle; (e) measurements
of reference stars outside the 20′–30′ circle; (f) both
the one-hour and five-minute images were measured
for bright reference stars; (g) after measuring half of
the plate field, the second measurement of galaxies
was made; (h) finally the check stars were remea-
sured, and stars with large proper motions and galax-
ies were measured.

All plates were measured using an Asсorecord
device. The measurements were finished in 1988. The
random measurement errors for galaxies are a factor
of 1.5–2 larger than the measurements errors for
PUL2 reference stars (Bronnikova and Shakht 1987).

MAGNITUDES

The photographic magnitudes of the PUL2 stars
were determined by measuring the plates of the
normal astrograph that were taken with a diffraction
grating. The diffraction grating placed in front of the
objective of the telescope yielded well-measurable
first-order diffraction satellites attenuated by 4m. 2
with respect to the central stellar image. The pho-
tographic magnitudes of AGK3 stars determined
with an accuracy of ±0m. 2 were used as standards.
When there were check stars within the plate field
with magnitudes from 8m to 12m. 5, the diffraction
satellites had magnitudes from 12m. 2 to 16m. 7. These
were bright enough to construct the characteristic
curve for stars with magnitudes from 8m to 16m. 7 and
to determine the magnitudes for all of the measured
stars. The plates intended to determine the magni-
tudes were measured during the period 1986–1998
with the Asсoris semiautomatic iris photometer. The
measurers were the following: N.M. Bronnikova (105
fields), N.A. Shakht (32 fields), V.V. Bobylev (10
fields), and Z.N. Ipatova (Kazan’ University, 3 fields).

The accuracy of the magnitude measurements
in the PUL2 catalog was analyzed by Bronnikova
et al. (1996). The internal error in the PUL2 pho-
tographic magnitudes is ±0m. 02–0m. 08. The external
error in the PUL2 photographic magnitudes for the
bulk of the measured faint stars is±0m. 3.

Stars brighter than 8m were measured with the
largest errors, because the light from bright and near-
by diffraction satellites in this case fall within the
aperture when their central images are measured.

The limitingmagnitudes in each area differ greatly,
depending on the observing conditions and the posi-
tion in the sky. There are areas with a limiting mag-
nitude of 13m. 1 (area no. 28) or 13m. 9 (area no. 29);
on the other hand, there are areas with a limiting
magnitude of 18m. 0 (area no. 110).
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Fig. 1. Distribution of PUL2 stars in photographic mag-
nitude.

THE REDUCTION MODEL

The Relative Proper Motions of Stars

We use an indirect absolutization method as the
basis for deriving the absolute proper motions of
PUL2 stars. It implies that, at the first stage, the
proper motions of the stars being measured are
determined relative to a group of reference stars. We
use a reduction model with six constants:

∆x = axx+ bxy + cx, (1)

∆y = ayx+ byy + cy,

where ∆x = x2 − x1 and ∆y = y2 − y1 are the dif-
ferences between the measured coordinates, the
subscripts denote the epoch of observation, and
ax,y, bx,y, cx,y are the plate constants. To determine
the plate constants for each pair of plates from
reference stars, conditional equations of type (1) are
set up and solved by the least-squares method in
each coordinate separately; the process is iterative

and continues until |µ| =
√
µ2
x + µ2

y < 0.05′′ yr−1 for

any reference star. The relative proper motions of the
stars being measured can be determined using the
formulas

µx = (∆x− (axx+ bxy + cx))M/∆τ , (2)

µy = (∆y − (ayx+ byy + cy))M/∆τ ,

where µx and µy are the stellar proper motions; M
is the scale of the telescope: M = 59.56′′ mm−1 for
the Pulkovo normal astrograph; ∆τ = τ2 − τ1 is the
difference between the epochs in years; x and y are
the measured coordinates of the star in mm; and ∆x
and ∆y are the differences between the measured
coordinates of the star.

For each PUL2 area, there are at least three pairs
of plates, one of which was taken with a diffraction
grating. All pairs of plates have one-hour and five-
minute exposures. On the plates taken with a grating,
only bright reference stars with a one-hour exposure
were measured. The centers of each of the three pairs
of plates almost always differ by no more than 10′
(10 mm). For bright stars (the total of which number
in the catalog is 18 250: check, bright reference stars,
and some of the stars being measured) for which
one-hour and five-minute images and images of the
diffraction satellites are available, the weighted mean
proper motions were determined, and their random
errors in internal convergence were estimated. The
proper motion of each bright star was derived, on
average, from five independent exposures: three one-
hour and two five-minute exposures. For this pur-
pose, the following procedure developed and analyzed
by Bobylev (1995) was applied:

(1) All proper motions of the stars were reduced to
the system of one-hour exposures. This procedure is
necessary, because our preliminary analysis of various
exposures has shown that the relative proper motions
of stars are determined with the smallest random
errors precisely from one-hour exposures. The system
of five-minute exposures has the largest errors in the
stellar proper motions.

(2) A system of faint (15m. 2) reference stars was
used to derive both the relative and absolute proper
motions of stars. The mean number of such stars on
each plate is 50.

(3) The weights were determined by analyzing
the mutual differences between the stellar proper
motions. The necessity of applying weights stems
from the fact that we have heterogeneous observa-
tional material, because different exposures, different
photographic emulsions, and a diffraction grating on
one of the pairs of plates were used. To determine
the weights, we used bright reference stars, because
these are available for all five exposures. On average,
there are 55 bright reference stars on each pair of
plates. The relative proper motion of each star was
calculated as a weighted mean of n ≤ 8 independent
exposures using the formula

µ =
∑n

i=1 piµi∑n
i=1 pi

, (3)

where pi is the weight of exposure i, i = 1, . . . , 8. The
weights were calculated using the formula

pi =
(

0.014
σi

)2

, (4)

where σi is the dispersion of exposure i in arcsec yr−1;
the coefficient 0.014′′ yr−1 is the largest mean disper-
sion whose numerical value was determined from a
preliminary analysis. The random error in the proper
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Fig. 2. Distribution of the random errors in the relative proper motions for PUL2 stars: (a) in µx with a mean ±5.5 mas yr−1

and (b) in µy with a mean ±5.9 mas yr−1.
motion of a star was calculated as the error of the
weighted mean using the formula

εµ =

√√√√√√√
n∑
i=1

pi(µi − µ)2

(n− 1)
n∑
i=1

pi

. (5)

(4) Each pair of plates was checked for the pres-
ence of a magnitude equation. Since no significant
magnitude equation was found (Bobylev 1996), we
applied no corrections for the magnitude equation to
the proper motions of the PUL2 stars.

Figure 1 shows the distribution of PUL2 stars
in photographic magnitude. As can be seen from
this figure, faint (∼15m) stars constitute the bulk of
PUL2.

Figure 2 shows the distribution of the random
errors in the relative proper motions of all PUL2
stars that were calculated using formula (5). The
mean random errors in µα cos δ and µδ are ±5.5 and
±5.9 mas yr−1, respectively.

As can be seen from Fig. 3, the random errors in
the relative proper motions of PUL2 stars have no
statistically significant dependence on photographic
magnitude.

In Fig. 4, the random errors in the relative proper
motions of PUL2 stars are plotted against the star
position on the plate d =

√
x2 + y2, i.e., the distance

of the star from the plate center. As can be seen
from Fig. 4, the errors in both coordinates increase
significantly only outside the d = 50 mm (50′) circle.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
Absolutization

Absolutization is the reduction of the derived rela-
tive proper motions of stars to the inertial coordinate
frame that is specified in our case by extragalactic
objects.

An indirect absolutization method using faint
(15m. 2) reference stars as an intermediate reference
system (Kiselev and Bobylev 1997) serves as the basis
for absolutizing the PUL2 relative proper motions.

In this case, the absolutization correction (reduc-
tion) for each area,Rx,y, is calculated as amean of the
proper motions of galaxies in this area taken with the
opposite sign:

Rx = −(µgal)x, (6)

Ry = −(µgal)y.

With regard to referencing to the extragalactic co-
ordinate system, PUL2 is not a homogeneous cat-
alog, because each area contains a different num-
ber of galaxies. On average, there are three or four
well-measurable images of galaxies in each field. We
used a total of about 700 galaxies to absolutize the
PUL2 catalog. Since, with rare exceptions, no faint
reference stars were measured on plates taken with
a grating, the absolutization corrections were calcu-
lated mainly as the means of two pairs of plates taken
with one-hour exposures. In cases where no faint
reference stars were measured on plates taken with
a grating, the stellar proper motions were reduced to
the system of faint reference stars with a one-hour
exposure of the corresponding other pair of plates
through common bright reference stars. An analy-
sis of the PUL2 catalog (Bobylev 2000) has shown
that the absolutization correction in area no. 72 is
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Fig. 3. Random errors in the relative proper motions of PUL2 stars versus photographic magnitude.
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Fig. 4. Random errors in the relative proper motions of PUL2 stars versus star position on the plate.
unreliable. Therefore, only the relative stellar proper
motions are of interest in this area.

The PUL2 relative proper motions were derived
from two systems of reference stars, bright and faint.
For the ten selected areas, there are also the abso-
lute stellar proper motions determined directly, i.e.,
using galaxies as reference objects (Bobylev 1995).
An analysis of three reference systems (Bobylev 1995)
showed that when bright stars are used as reference
ones, the random errors in the absolute stellar proper
motions are comparable to those obtained by using
faint reference stars. In this approach, however, the
systematic error of the local translation, which was
first theoretically analyzed by Kiselev (19989), plays
a significant role; its role is quite insignificant when
using faint reference stars. Therefore, the system of
faint reference stars formed the basis for deriving the
PUL2 stellar proper motions.

On average, according to the Oort–Lindblad
model (Bobylev 2000), the absolutization error in the
PUL2 catalog is±7.9 mas yr−1.
Equatorial Coordinates of Stars
TRC stars were used as reference ones to calculate

the equatorial coordinates of the PUL2 stars. The
choice of the reference catalog was dictated by the
fact that the stellar proper motion in the TRC cata-
log does not exceed 0.22′′ yr−1. The referencing was
performed with a mean random error of ±0.2–0.3′′
in each coordinate at the epoch of observation of
the second epochs of the PUL2 catalog. The mean
coordinates of the PUL2 stars were calculated using
at least two pairs of plates of the second epochs. The
mean epoch of observation for the plates of the second
epochs of the PUL2 catalog is 1975.1. The coordi-
nates of the stars on each of the plates of the second
epoch were reduced to epoch J2000.0 using the mean
PUL2 absolute proper motions. The mean random
errors in the stellar coordinates at epoch J2000.0
calculated in internal convergence are 0.10′′–0.14′′
in each coordinate. The absolute values of the dif-
ferences between the coordinates of PUL2 and TRC
stars at epoch J2000.0 over the entire plate field do not
exceed 5′′, the mean of the PUL2−TRC coordinate
differences is +0.1′′ in each coordinate, and the mean
dispersion of the differences is 0.7′′ in each coordinate
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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over the entire plate field and 0.3′′ at the field center.
The derived stellar coordinates completely solve the
problem of identifying PUL2 stars with stars from
other catalogs. The problem of determining highly ac-
curate coordinates of stars in the ICRS system using
the Pulkovo database was solved when compiling the
PUL3 catalog (Khrutskaya et al. 2002).

DESCRIPTION OF THE PUL2 CATALOG

The electronic version of the PUL2 catalog con-
tains 59 766 rows with 92 columns each. Each row
contains the following:

(1) columns 1–9, right ascension of the star in the
ICRS system at epoch J2000.0, in degrees;

(2) columns 10–18, declination of the star in the
ICRS system at epoch J2000, in degrees;

(3) columns 19–25, relative proper motion of the
star µα cos δ, in arcsec yr−1;

(4) columns 26–31, random error in the relative
proper motion of the star in µα cos δ, in arcsec yr−1;

(5) columns 32–38, relative proper motion of the
star µδ, in arcsec yr−1;

(6) columns 39–44, random error in the relative
proper motion of the star in µδ, in arcsec yr−1;

(7) columns 46–49, photographic magnitude;
(8) column 51, number of independent exposures

used to determine the mean stellar proper motion and
to calculate the random error in the stellar proper
motion;

(9) columns 53–58, absolutization correction Rx,
in arcsec yr−1, which must be applied to the relative
stellar proper motion to obtain the absolute stellar
proper motion;

(10) columns 59–64, absolutization correction
Ry , in arcsec yr−1, which must be applied to the
relative stellar proper motion to obtain the absolute
stellar proper motion;

(11) columns 66–68, field number in the list of the
CFS plan (Deutch et al. 1955);

(12) columns 70–75, star number in the HIP-
PARCOS catalog;

(13) columns 77–80, identification star number
TYCID1 copied from the TRC catalog;

(14) columns 82–85, identification star number
TYCID2 copied from the TRC catalog;

15) column 87, identification star number TYCID3
copied from the TRC catalog;

16) columns 89–92, star number in the field from
the PUL2 catalog.

As a sample, Table 1 gives the first 28 rows of
the PUL2 catalog. All information is contained in
the electronic appendix to this journal. The volume
occupied by the electronic catalog is 6.8 Mb.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
DETERMINING THE VECTOR ω

The PUL2 catalog contains 1192 stars common
to HIPPARCOS and 4385 stars common to TRC.

Table 2 gives the components of the vector of
residual rotation of the ICRS system with respect
to extragalactic objects ω (ωx, ωy, ωz) obtained from
PUL2−TRC differences as a function of various
magnitude constraints. To determine ωx, ωy, ωz , we
used equations in the form in which they were sug-
gested and used by Lindegren and Kovalevsky (1995):

∆µα cos δ = ωx cosα sin δ (7)

+ ωy sinα sin δ − ωz cos δ,

∆µδ = −ωx sinα+ ωy cosα, (8)

where the PUL2−TRC differences between the stel-
lar proper motions appear on the left-hand sides. As
can be seen from Table 2, a weak magnitude depen-
dence is observed for the component ωx. For ωy and,
most importantly, ωz , there is virtually no magnitude
dependence. As can be seen from the table, bright
stars have smaller errors of a unit weight σ◦; i.e.,
their proper motions are more accurate than those
of faint stars. This was achieved because at least
five independent exposures were used to calculate the
proper motions of bright PUL2 stars (in this case, at
least three pairs of plates for each area was used). We
may conclude that the technique used to compile the
PUL2 catalog allowed us to minimize the influence
of the random error of the magnitude equation in the
stellar proper motions.

The Pulkovo normal astrograph, just like any lens
objective, has a coma-type error that depends on
the star position relative to the optical center (a de-
tailed analysis of 19 objectives similar to the normal
astrograph of the Sky Map Program can be found
in the paper by Kuimov (1998)). Table 3 gives the
components ωx, ωy, ωz obtained by comparing the
proper motions of PUL2 and TRC stars as a function
of various constraints on the distance of the star
from the field center (plate center). An analysis of
this table leads us to conclude that small systematic
changes in ωx, ωy, ωz take place as the center is ap-
proached, without being catastrophic. As the center
is approached, the magnitude of ωz increases. The
working constraint on d is d < 60 mm, and we used
it to obtain the results in Tables 2, 4, and 5. The large
d reaching 85 mm should be explained. In several
areas, the mismatch between the centers of the pairs
of plates reaches 20–30 mm. In these cases, on each
specific pair of plates on which the proper motions of
stars with large motions were determined, the value
of d does not exceed∼60mm. In contrast, in the com-
bined list for such areas, d reaches large values, but
this parameter is formal and does not reflect the actual
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Table 1. PUL2 catalog, the first 28 rows

α δ µα cos δ eµα µδ eµδ
mpg Nexp Rx Ry OBL HIP

TYCID
PUL

1 2 3

1.50204 28.27700 −0.0179 0.0101 0.0045 0.0163 7.5 5 −0.0058 −0.0037 1 502 1735 1573 1 4

1.62157 27.89601 −0.0213 0.0030 −0.0214 0.0088 10.4 5 −0.0058 −0.0037 1 1735 1568 1 6

1.62185 27.09005 0.0027 0.0063 −0.0219 0.0050 11.7 5 −0.0058 −0.0037 1 536 1732 807 1 8

1.64808 28.55334 −0.0015 0.0042 −0.0223 0.0147 7.5 5 −0.0058 −0.0037 1 540 1735 2372 1 10

2.02042 27.66363 0.0240 0.0034 0.0090 0.0084 11.3 5 −0.0058 −0.0037 1 1735 2067 1 12

2.25048 28.24753 −0.0015 0.0015 −0.0103 0.0082 6.6 5 −0.0058 −0.0037 1 728 1735 1440 1 14

2.41334 27.30053 −0.0130 0.0030 −0.0102 0.0079 11.1 3 −0.0058 −0.0037 1 1732 367 1 16

2.54298 27.76490 −0.0065 0.0091 −0.0030 0.0113 10.8 3 −0.0058 −0.0037 1 1735 1806 1 18

2.84280 27.24023 −0.0186 0.0038 −0.0107 0.0080 9.9 5 −0.0058 −0.0037 1 1733 423 1 20

2.91574 28.22511 0.0423 0.0073 0.0159 0.0081 9.6 5 −0.0058 −0.0037 1 946 1736 1261 1 22

2.94083 27.51030 0.0170 0.0080 −0.0327 0.0097 8.7 5 −0.0058 −0.0037 1 952 1736 561 1 24

2.95611 27.18509 0.0896 0.0053 −0.0152 0.0063 9.3 5 −0.0058 −0.0037 1 1733 566 1 26

2.95947 28.42319 −0.0959 0.0090 0.0471 0.0129 7.8 5 −0.0058 −0.0037 1 956 1736 1574 1 28

3.01489 27.09929 0.2858 0.0063 −0.0873 0.0056 9.6 5 −0.0058 −0.0037 1 974 30

2.42234 27.49885 0.0029 −0.0282 15.2 2 −0.0058 −0.0037 1 32

2.41390 27.45649 −0.0025 −0.0035 14.9 2 −0.0058 −0.0037 1 33

2.41231 27.47737 0.0291 −0.0177 15.0 2 −0.0058 −0.0037 1 34

2.40775 27.48041 0.0006 −0.0250 15.7 2 −0.0058 −0.0037 1 35

2.36005 27.49712 −0.0036 0.0088 −0.0483 0.0117 11.6 4 −0.0058 −0.0037 1 1732 93 1 36

2.34138 27.48204 −0.0242 −0.0088 14.8 2 −0.0058 −0.0037 1 38

2.34144 27.46355 0.0109 −0.0213 15.3 2 −0.0058 −0.0037 1 39

2.31909 27.43306 0.0362 −0.0085 14.9 2 −0.0058 −0.0037 1 40

2.31613 27.50531 −0.0138 −0.0098 15.7 2 −0.0058 −0.0037 1 41

2.30057 27.48285 −0.0254 −0.0755 14.8 2 −0.0058 −0.0037 1 42

2.29592 27.47816 0.0069 0.0103 15.3 2 −0.0058 −0.0037 1 43

2.29062 27.48818 −0.0180 −0.0181 15.7 2 −0.0058 −0.0037 1 44

2.28923 27.49338 −0.0048 −0.0033 15.6 2 −0.0058 −0.0037 1 45

2.25859 27.50863 0.0089 0.0075 −0.0213 0.0038 14.1 4 −0.0058 −0.0037 1 46

...
influence of the coma of the telescope objective on the
accuracy of determining the stellar proper motions.

Table 4 gives the components ωx, ωy, ωz obtained
from the PUL2−TRC differences as a function of the
color index. An analysis of this table leads us to con-
clude that the color equation has the strongest effect
on the determination of ωx and does not affect the
determination of ωz. In Fig. 5, residual PUL2−TRC
differences between the stellar proper motions are
plotted against magnitude. As can be seen from this
figure, the PUL2 proper motions have no statistically
significant magnitude dependence.

Table 5 gives the components ωx, ωy, ωz obtained
from the PUL2−HIP differences as a function of
magnitude constraints. Wemay conclude thatωx was
determined from the PUL2−HIP difference with the
ASTRONOMY LETTERS Vol. 30 No. 7 2004



PROPER MOTIONS 477
Table 2. Components of the vector ω, ωx, ωy, ωz (in mas yr−1), obtained from PUL2−TRC differences for various
magnitude ranges of stars

V σo N∗ ωx ωy ωz

6.0−13m ±10.7 3872 −0.11 ± 0.23 +0.57 ± 0.20 −1.55± 0.22

6.0−10.1m ±10.7 2002 −0.45 ± 0.32 +0.44 ± 0.28 −1.38± 0.29

10.1−13m ±11.0 1870 +0.24 ± 0.34 +0.70 ± 0.29 −1.75± 0.32

Note: σo is the error of a unit weight (in mas yr−1), and N∗ is the number of common stars.

Table 3.Components of the vectorω, ωx, ωy, ωz (in mas yr−1), obtained fromPUL2−TRC differences for various values
of d

d, mm σo N∗ ωx ωy ωz

0−85 ±11.0 4104 −0.16 ± 0.23 +0.42 ± 0.20 −1.50 ± 0.21

0−40 ±10.6 2417 +0.14 ± 0.26 +0.32 ± 0.25 −1.99 ± 0.26

40−85 ±11.7 1687 −0.62 ± 0.39 +0.56 ± 0.32 −0.79 ± 0.35

Table 4. Components of the vector ω, ωx, ωy, ωz (in mas yr−1), obtained from PUL2−TRC differences

B–V σo N∗ ωx ωy ωz

0.47m ±11.0 1901 +0.16 ± 0.34 +0.57 ± 0.29 −1.60± 0.31

1.24m ±10.9 1971 −0.38 ± 0.33 +0.58 ± 0.28 −1.50± 0.30

Table 5. Components of the vector ω, ωx, ωy, ωz (in mas yr−1), obtained from PUL2−HIP differences

V σo N∗ ωx ωy ωz

2−12.5m ±10.7 1004 −0.98 ± 0.47 −0.03 ± 0.38 −1.66 ± 0.42

6−12.5m ±10.6 972 −1.12 ± 0.47 +0.14 ± 0.39 −1.70 ± 0.42

2−8.55m ±11.0 502 −0.75 ± 0.65 +0.18 ± 0.56 −1.89 ± 0.61

8.55−12.5m ±10.4 502 −1.28 ± 0.67 −0.25 ± 0.52 −1.38 ± 0.57
lowest accuracy, and that themagnitude equation and
the coma have no significant effect on the determina-
tion of ωz .

DISCUSSION

The values of ωz obtained here (Table 5) are in
good agreement with ωz = −1.4 ± 0.5 mas yr−1.
The latter was derived from the PUL2−HIP differ-
ences for 644 bright stars using special constraints
(Bobylev 1998).
ASTRONOMY LETTERS Vol. 30 No. 7 2004
The NPM1 catalog reveals a magnitude equation
that has a major effect on the determination of ωz
(Kovalevsky et al. 1997). For example, the values of
(ωx, ωy, ωz) calculated without any magnitude con-
straints are (−0.70,−0.27,−2.14) mas yr−1, while
the values of (ωx, ωy, ωz) calculated in the range
10.6–12.2m are (−0.85,+0.16,+0.60) mas yr−1.
Because of the magnitude equation, Kovalevsky et
al. (1997) did not use any of the solutions of the
NPM program, which shares the largest number
of common stars with the HIPPARCOS catalog,
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Fig. 5. Residual PUL2−TRC differences between the
stellar proper motions versus magnitude.

to derive the final solution when determining the
component ωz.

In the component ωz of such programs as Kyiv
CFS (ωz = −1.07 ± 0.80 mas yr−1), NPM (ωz =
= −2.14 mas yr−1), SPM (ωz = −0.30±
±0.07 mas yr−1), and VLBI (ωz = −0.33 ±
0.30 mas yr−1), there is agreement (these values were
taken from the paper by Kovalevsky et al. (1997)). In
this case, ωz differs markedly from zero. Our value of
ωz = −1.66 ± 0.42 mas yr−1 agrees with the above
values and shows that the problem of controlling the
inertiality of the ICRS system has not yet been ulti-
mately solved. A kinematic analysis of the proper mo-
tions of HIPPARCOS stars (Bobylev 2004) indicates
that the ICRS system has a noticeable rotation with
an angular velocity −0.36 ± 0.09 mas yr−1 around
the Galactic y axis. In the equatorial coordinate
system, the angular velocity of the rotation around
the Galactic y axis depends precisely on ωz.

CONCLUSIONS
The PUL2 catalog is the end result of the long-

term work of the large staff of the Pulkovo Observa-
tory aimed at implementing Deutch’s plan. An ad-
vantage of the PUL2 catalog is that, in contrast to
similar catalogs (NPM, Kyiv CFS, and SPM), it has
no statistically significant magnitude dependence of
the absolute stellar proper motions.

The values of ωx, ωy, ωz obtained by comparing
the proper motions of PUL2 and HIPPARCOS stars
may be used to derive the most probable components
of the vector ω, in particular, the most problematic
component ωz.
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Abstract—We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the
ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic
modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their
main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational
data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the
event of May 8, 1998, we determined the particle density n ≈ 3.7 × 1010 cm−3, the temperature T ≈
4 × 107 K, and the magnetic field strength B ≈ 220 G in the region of flare energy release. A wavelet
analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations
with periods P1 ≈ 7, 14 s and P2 ≈ 2.4 s, which we attribute to the ballooning and radial oscillations
of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission
shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact
(T ≈ 5.3× 107 K, n ≈ 4.8× 1010 cm−3,B ≈ 280G) and extended (T ≈ 2.1× 107 K, n ≈ 1.2× 1010 cm−3,
B ≈ 160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.
c© 2004 MAIK “Nauka/Interperiodica”.

Key words: Sun, flare loops, MHD oscillations, ballooning mode, gyrosynchrotron emission, plasma
diagnostics.
INTRODUCTION

More than 30 years ago, Rosenberg (1970) pro-
posed associating the short-period pulsations of
type IV radio bursts with the magnetohydrodynamic
(MHD) oscillations of coronal loops. Subsequently,
this idea was developed by many authors (see the
reviews by Aschwanden (1987, 2003)), but no con-
vincing evidence for the validity of this approach has
been found until recently.

In the late 1990s, ultraviolet observations with
a high spatial resolution from the TRACE satellite
revealed oscillations of coronal loops in active regions
(Aschwanden et al. 1999), which provided a strong
impetus for the rapid development of a promising new
direction of research called coronal seismology. Such
great interest is largely explained by the possibility of
a further improvement in the methods for diagnosing

*E-mail: stepanov@gao.spb.ru
1063-7737/04/3007-0480$26.00 c©
the coronal magnetic fields in the region of flare en-
ergy release (see, e.g., Zaı̆tsev and Stepanov 1982;
Nakariakov and Ofman 2001; Kopylova et al. 2002).

It is well known that the radial fast magnetoa-
coustic (FMA) oscillations of coronal loops can
lead to second (0.5−5 s) oscillations of emission
from solar flares (Rosenberg 1970; Zaı̆tsev and
Stepanov 1982; Kopylova et al. 2002). Emission
oscillations with a period P = 10−30 s are commonly
observed; these oscillations are generally attributed
to Alfvén or kink modes (Zaı̆tsev and Stepanov 1989;
Qin et al. 1996). At the same time, if the plasma
parameter β = 8πκnT/B2 is not too small, then
the ten-second oscillations can be attributed to the
development of a ballooning mode (Kopylova and
Stepanov 2002). In this case, the corresponding
disturbances will cause no appreciable change in the
magnetic energy of the system (Mikhaı̆lovskiı̆ 1971),
and they must be generated more efficiently than
2004 MAIK “Nauka/Interperiodica”
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kink modes, because the gas pressure inside the flare
loop increases. In particular, this is suggested both
by microwave observations with the Nobeyama Ra-
dioheliograph (Shibasaki 1998) and by the physical
model (Shibasaki 2001).

The radial and ballooning oscillations are similar
in properties to FMA modes, because they cause a
periodic variation of the loop cross section. Therefore,
they must be strongly damped: their Q cannot be
too high (Q ≤ 10−30), which is in satisfactory agree-
ment with the observational data obtained in various
wavelength ranges (see, e.g., Asai et al. 2001). In
this case, as Zaı̆tsev and Stepanov (1982) showed,
the Q-factor of the FMA oscillations in flare loops is
determined by electron thermal conduction. In several
cases, however, ion viscosity plays a more signifi-
cant role in the dissipation of these modes (Kopylova
et al. 2002). Consequently, the damping mechanisms
for the modes under consideration should be studied
additionally.

The generation of FMA oscillations in coronal
loops causes changes in the magnetic field strength,
the characteristic sizes of the emitting region, and
the plasma temperature and density. As a result,
emission oscillations with periods P = 1−30 s can
manifest themselves simultaneously in many wave-
length ranges. At the same time, since the gyrosyn-
chrotron emission is highly sensitive to magnetic
field variations, searching for a correlation between
the FMA oscillations of loops and the modulation
of microwave emission from solar flares is of par-
ticular interest. In this paper, based on the main
principles of the technique proposed by Zaı̆tsev and
Stepanov (1982), we estimate the plasma parameters
from the pulsation characteristics of nonthermal gy-
rosynchrotron emission; this technique is widely used
to diagnose the plasma of both solar (see, e.g., Qin
et al. 1996) and stellar (Mathioudacis et al. 2003)
flares. A detailed analysis of the dissipative and
modulation processes associated with the generation
of MHD oscillations in flare loops underlies this
technique.

In the next section, we analyze the physical prop-
erties of the ballooning and radial modes and dis-
cuss the peculiarities of their dispersion relations. In
Section 2, we consider the damping mechanisms for
the FMA oscillations of coronal magnetic loops. In
Section 3, attention is concentrated on the mod-
ulation of nonthermal gyrosynchrotron emission by
FMA oscillations and on the methods for diagnosing
the flare plasma using microwave pulsation parame-
ters. Section 4 is devoted to applications of the pro-
posed technique. In the Conclusion, we formulate our
main results.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
1. BALLOONING AND RADIAL
OSCILLATIONS

Two (drift and MHD) approximations can be used
to describe the ballooningmode of flute perturbations.
The difference between these two approaches is
that, in the drift approximation, the magnetization
currents are disregarded, while in the MHD ap-
proximation, the displacement current is ignored by
formally assuming it to be equal to zero (Tsap and
Kopylova 2003). In ideal MHD, which also remains
valid for a magnetized plasma with isotopic gas
pressure (Volkov 1964), flute perturbations develop
through the imbalance between the forces exerted
on a given plasma volume. As follows from the
linearized MHD equations, the expression for the
second variation of the potential energy of a system
with a sharp boundary can be represented as (Meyer
et al. 1977)

δW = δWi + δWe +
∮
S

〈p〉
R

ξ2
ndS,

where the subscripts correspond to the change in
energy inside (i) and outside (e) the magnetic con-
figuration, while the last term describes the effects at-
tributable to the action of the centrifugal force 〈p〉/R,
〈p〉 = pe − pi is the gas pressure difference, and ξn
is the transverse displacement. It is easy to show
that, in the solar corona, where the radius of cur-
vature of magnetic field lines R � r (r is the small
loop radius), the curvature effects in the first two
terms on the right-hand side of this equation may
be disregarded; i.e., it describes the well-studied os-
cillations of the magnetic flux tube. If, however, the
radius of curvature R is small enough and if the
gas pressure difference inside and outside the loop
is large, then the surface integral can play a signif-
icant role. In particular, this integral is responsible
for the generation of ballooning oscillations and flute
instability. We particularly emphasize that the above
equation is valid only for conservative systems; i.e.,
it describes only the nonemitting modes. Thus, by
the ballooning oscillations of coronal loops, we mean
the FMA modes slightly modified by the centrifu-
gal force (the perturbations are elongated along the
magnetic field) that do not generate MHD waves
in the surrounding medium. Their period, as that
for the corresponding modes of the magnetic flux
tube (Nakariakov et al. 2003), is determined by the
longitudinal loop scale. The estimates obtained in
ideal MHD using the method of normal modes also
provide evidence for the analogy between the flute
and FMA modes. As applied to the Earth’s magne-
tosphere, Burdo et al. (2000) used the system of lin-
ear differential equations of ideal MHD in curvilinear
coordinates to show that the dispersion relations for
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magnetoacoustic and ballooning oscillations at small
values of β and the gas pressure gradient are almost
identical. This suggests that the modes under con-
sideration are similar in physical properties; in partic-
ular, the same dissipative processes must govern their
damping.

The dispersion relation for the ballooning mode
can be represented as (Mikhaı̆lovskiı̆ 1974; Pustil’nik
1973)

ω2 − k2
||v

2
A = − p

Rρd
; (1)

d =

{
a, a � λ⊥
λ⊥, a 	 λ⊥.

Here, a = n(∂n/∂x)−1 and λ⊥ are, respectively, the
scale size of the plasma density nonuniformity and the
transverse (to the magnetic field) size of the plasma
tongue, and vA = B/

√
4πρ is the Alfvén speed. Since

the loop footpoints are frozen in the photosphere, the
relation k|| = Nπ/L holds for the longitudinal com-
ponent of the wave vector, where N is the number of
oscillating regions that fit into the loop length L. Set-
ting the period P1 = 2π/ω, we then obtain from (1)

P1 =
2L
vA

(
N2 − Lβ

2πd

)−1/2

. (2)

Taking L = 109−1010 cm, d = 108−109 cm, and
β ∼ 0.1 for flare loops, we conclude from (2) that
Lβ/(2πd) 	 1; i.e., the period of the ballooning
oscillations is

P1 ≈ 2L
vAN

. (3)

Relation (3) is formally identical to the equation
derived previously by Pustil’nik (1973). However, this
author assumed the square of the frequency to be
negative (ω2 < 0), i.e., considered the absolute insta-
bility, which is not related to the free oscillations of the
magnetic loop.

For the period P2 of the radial oscillations of a
coronal loop (sausage modes), we use the expression
(Zaı̆tsev and Stepanov 1982)

P2 = r̃/
√

cs2 + vA2, r̃ = 2πr/ηj . (4)

Here, ηj = 2.4, 5.52, and 8.65 correspond to zeros of
the Bessel function J0(η), where η = ωr/

√
cs2 + vA2,

cs is the speed of sound, and r is the radius of
the transverse loop cross section. Equation (4) was
derived for the emitting modes, i.e., for the loop
oscillations that lead to the generation and propa-
gation of traveling MHD waves in the surrounding
medium. When the condition J0(η) = 0 is satisfied,
from which (4) follows, the perturbation amplitude of
the total pressure (the sum of the gas and magnetic
pressures) at the outer loop boundary is small, which
sharply reduces the outflow of oscillation energy into
the outer region (Kopylova et al. 2002). Thus, Eq. (4)
reflects the relationship between the eigenfrequencies
of the loop oscillations and the acoustic damping
mechanism (Zaı̆tsev and Stepanov 1975; Kopylova
et al. 2002).

At small plasma parameters β, when ω < k||vA, no
traveling waves are generated in the outer loop region
(Roberts 1986). Hence, using Eq. (4) to estimate the
radial oscillation period can lead to incorrect conclu-
sions. However, since in this case

l < vAP2/2, (5)

taking the characteristic values of the Alfvén speed
in the corona vAe ≈ 108 cm s−1 and the period P2 =
1−10 s, we obtain l < 0.5 × (108−109) cm from (5).
Consequently, the possibility of the generation of
short-period nonemitting radial modes in the solar
corona appears problematic.

2. THE DAMPING OF FMA OSCILLATIONS

As follows from observations, the density of the
matter ρi inside flare loops is two to three orders
of magnitude higher than its density ρe outside
(Doschek 1994). As a result, the acoustic damp-
ing of the radial FMA oscillations of coronal loops
caused by the emission of MHD waves into the
surrounding medium becomes insignificant (Zaı̆-
tsev and Stepanov 1975; Kopylova et al. 2002). In
addition, at k2

||/k
2
⊥ ≈ (r/L)2 ≥ ρe/ρi (the so-called

thick loop), the condition for total internal reflection
of FMAwaves is satisfied, and the flux tube is an ideal
cavity (Meerson et al. 1978). Therefore, we restrict
our analysis below only to dissipative processes.
The oscillation damping decrements attributable to
Joule (γj) and radiative (γr) losses as well as to
thermal conduction (γc) and ion viscosity (γv) can
be represented as (Braginskiı̆ 1963; Tsap 2000)

γj =
1√
2
m

M

ω2

ω2
Bi

νei, (6)

γr =
2π
3

n2R(T )
B2

sin2 θ, (7)

γc =
1
3
M

m

ω2

νei
β2 cos2 θ sin2 θ, (8)

γv =
1
12

√
M

2m
ω2

νei
β sin2 θ. (9)

Here, m and M are the electron and ion masses,
respectively; θ = arctan(k⊥/k||) is the angle between
the direction of the magnetic field B and the wave
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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vector k; ωBi ≈ 9.6 × 103, B is the ion gyrofre-
quency; R(T ) = 5 × 10−20/

√
T is the radiative loss

function for the temperature range T = 106−107 K
(Priest 1982); and the effective electron–ion collision
frequency is

νei =
5.5n
T 3/2

ln

(
104T

2/3

n1/3

)
≈ 60

n

T 3/2
. (10)

Kopylova et al. (2002) showed that ion viscosity is
mainly responsible for the energy losses of the quasi-
transverse oscillations in coronal loops. Meanwhile,
the flare loops are inhomogeneous. Thus, for example,
the loop top region often has enhanced plasma density
and temperature (see, e.g., Petrosian et al. 2002).
This suggests that the FMA oscillations of loops
are generated through flare energy release not in the
entire loop, but in some local regions with the highest
gas pressure. As a result, the approximation of quasi-
transverse oscillations (k|| 	 k⊥) becomes inapplica-
ble. To find out which of the dissipation mechanisms
dominates at various angles θ, let us compare the
damping decrements. It follows from formulas (6)–
(10) that at typical plasma parameters of coronal
flare loops T ≈ 107 K, n ≈ 1010−1011 cm−3, and θ =
30◦−90◦, β = 0.03−0.3 (Doschek 1994), the damp-
ing of FMA oscillations is determined by thermal
conduction and ion viscosity, with

γv
γc

≈ 4 × 10−3

β cos2 θ
. (11)

Assuming the plasma parameter in (11) to be β =
0.1, we conclude that the energy losses due to ion
viscosity are smaller than those due to thermal con-
duction for θ ≤ 78◦. Since θ ≈ arctan(l/r) for coronal
loops, where l is the scale size of the longitudinal per-
turbation, electron thermal conduction plays a crucial
role in the dissipation of oscillations for l/r < 5−6
(Zaı̆tsev and Stepanov 1982).

3. THE MODULATION OF EMISSION AND
FLARE PLASMA DIAGNOSTICS

Let us consider the influence of the radial and
ballooning oscillations of coronal loops on the non-
thermal microwave emission from solar flares for
which the gyrosynchrotron mechanism is generally
responsible (Bastian 1998). Since the microwave
emission at frequencies >10 GHz is optically thin
(Bastian 1998), its spectral flux can be represented as

Ff = ηfDΩ, (12)

where Ω is the solid angle of the source, and D is its
geometrical thickness. In this case, for the nonther-
mal gyrosynchrotron emission coefficient ηf (Dulk
ASTRONOMY LETTERS Vol. 30 No. 7 2004
and Marsh 1982),
ηf
Bna

= 3.3 × 10−24−0.52δ (13)

× (sin Θ)−0.43+0.65δ

(
f

fB

)1.22−0.90δ

,

where na is the density of the accelerated electrons,
Θ > 20◦ is the angle between the magnetic field
direction and the line of sight, δ = 2−7 is the spec-
tral index of the accelerated electrons, and fB =
eB/(2πmc) is the electron gyrofrequency (f/fB =
10−100).

Relation (13) was derived for an isotropic pop-
ulation of accelerated particles. Since the emission
coefficient ηf depends strongly on the electron pitch-
angle distribution (Fleishman and Melnikov 2003),
this assumption imposes severe constraints on the
applicability of (13) to specific flare events. However,
there is currently ample evidence that a coronal loop
can be represented as a magnetic trap (a magnetic
bottle) in which the trapped electrons are respon-
sible for the observed microwave emission. For in-
tense flares, moderate and strong diffusion character-
ized by an almost isotropic particle distribution must
dominate in coronal magnetic bottles (Stepanov and
Tsap 2002).

Previously, Kopylova et al. (2002) studied the in-
fluence of the FMA oscillations of loops on the density
modulation of the trapped particles responsible for the
microwave emission in terms of the coronal magnetic
bottle model. According to the results obtained, their
density does not vary in the regime of moderate diffu-
sion (na = const). Taking into account (13), we then
obtain

ηf ∝ B0.9δ−0.22. (14)

Using (12) and (14) and the conservation condition
for the longitudinal magnetic flux (D ∝ B−1/2, Ω ∝
B−1/2), we find that

Ff ∝ B0.9δ−1.22. (15)

We define the modulation depth as ∆ = (Fmax −
Fmin)/Fmax, where Fmax and Fmin are the maximum
and minimum fluxes. If the oscillation amplitude of
themagnetic field is δB 	 B, then, according to (15),
we obtain

∆ = 2ξ
δB

B
, ξ = 0.9δ − 1.22. (16)

As we see from relations (16), for the gyrosynchrotron
mechanism, the FMA oscillations of a magnetic flux
tube can lead to a significant modulation of the emis-
sion. Thus, for example, if δB = 0.05B and δ = 4.5,
then the modulation depth is ∆ ≈ 0.3.
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Table 1. Formulas for calculating the plasma parameters from the characteristics of the emission pulsations caused by
the ballooning and radial oscillations of a coronal loop

Ballooning oscillations Radial oscillations

T = 2.42 × 10−8 L2ε1

N2P 2
1

T = 1.2 × 10−8 r̃
2ε2

P 2
2 χ

n = 5.76 × 10−11Q1L
3ε

7/2
1 sin2 2θ

N3P 4
1

n = 2 × 10−11Q2r̃
3ε

7/2
2 sin2 2θ

P 4
2 χ

3/2

B = 6.79 × 10−17Q
1/2
1 L5/2ε

7/4
1 sin 2θ

N5/2P 3
1

B = 2.9 × 10−17Q
1/2
2 r̃5/2ε

7/4
2 sin 2θ

P 3
2 χ

5/4

Note: χ = 10ε/3 + 2, the temperature T is in K, the density n is in cm−3, and the magnetic field B is in G.
Assuming that the ballooning and radial oscilla-
tions are generated in flare loops through a sharp
rise in the gas pressure, we obtain for the plasma
parameter (Zaı̆tsev and Stepanov 1982)

β ≈ 2δB/B = ∆/ξ ≡ ε. (17)

As we showed in the previous section, if the angle
between the direction of the magnetic field B and the
wave vector θ < 78◦, then electron thermal conduc-
tion makes the largest contribution to the damping
of the FMA oscillations of coronal loops. Therefore,
given (8), theQ-factor can be represented as

Q =
ω

γc
≈ 6.5 × 10−2 PnT−3/2

β2 sin2 2θ
. (18)

Combining relations (3), (4), (16)–(18) yields for-
mulas for determining the flare plasma parameters
from the characteristics of the microwave pulsations
caused by the ballooning and radial oscillations of
coronal loops (see Table 1).

4. APPLYING THE DIAGNOSTICS METHOD

As an illustration of the suggested plasma diag-
nostics method, let us consider two flare events whose
microwave emission exhibited quasi-periodic pulsa-
tions that corresponded in time scale to the radial and
ballooning oscillations of coronal magnetic loops.

The Flare of May 8, 1998

ThisM 3.1X-ray class event occurred in the active
region NOAA 8210 with coordinates S15 W82 in
the time interval 01:49–02:17 UT. Figure 1a shows
the time profile for the emission of the impulsive
phase of the flare obtained with the Nobeyama Ra-
dioheliograph at a frequency of 17 GHz (Nakajima
et al. 2002). It follows from a Fourier analysis
that the characteristic microwave pulsation period is
P1 ≈ 16 s. The hard X-ray source observed from the
Yohkoh satellite (Sato et al. 1998) in channels L (14–
23 keV) and M1 (23–33 keV) is shown in Fig. 2b.
The nonuniformity of its structure strongly suggests
that a ballooning mode can be generated. Therefore,
we may assume that the observed radio pulsations
whose phase and period instability is attributed to
small differences in the sizes of the oscillating regions
(Fig. 1b) are caused by the oscillations of plasma
tongues.

An analysis of the images for hard X-ray sources
(see Fig. 1b) shows that four plasma tongues (N =
4) with enhanced brightness fit along the flare loop
L ≈ 8 × 109 cm in length. Like in a standing wave,
they must oscillate in phase (otherwise, the emission
pulsations will be smoothed out). Since the ratio of
the characteristic perturbation scales is l/r ≈ 2.25,
the angle θ = arctan(l/r) ≈ 66◦ < 78◦, suggesting
that electron thermal conduction plays a dominant
role in the damping of ballooning oscillations (see
Section 2). The mean relative modulation depth ∆1

and the oscillation Q1 can be easily determined from
Fig. 1a: ∆1 ≈ 0.3 and Q1 ≈ πs ≈ 25, where s is the
number of oscillations. We obtain the plasma pa-
rameter β ≈ 0.11 from (16) and (17). Based on a a
thick target model (see, e.g., Lee et al. 2002), we
estimated the spectral index δ = 4.5 using hard X-
ray observations (Fig. 1b). Using the formulas in the
left part of Table 1, we found the temperature T ≈
4 × 107 K, the particle density n ≈ 3.7 × 1010 cm−3,
and the magnetic field strength B ≈ 220 G in the
region of flare energy release.

The Flare of August 28, 1999

The impulsive phase of this M 2.8 X-ray class
solar flare was observed in the time interval 00:55–
00:58 UT in the active region NOAA 8674 with co-
ordinates S25 W11 (Yokoyama et al. 2002). Mi-
crowave observations with the Nobeyama Radioheli-
ograph (17 and 34 GHz) showed that the flare region
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Fig. 1. (a) Time profile for the microwave emission from the solar flare of May 8, 1998, obtained with the Nobeyama
Radioheliograph (17 GHz). The relative difference between the flare and background spectral fluxes is along the vertical axis.
(b) The time profiles for the hard X-ray fluxes in channels L (14–23 keV), M1 (23–33 keV), M2 (33–53 keV), and H (53–
93 keV) obtained onboard the Yohkoh satellite (left panel) and an image of hard X-ray sources in channels L, M1, and M2.
consisted of two emission sources. The first, compact
(≤10′′) source was located near a sunspot, while the
second source was above the first one and slowly
propagated along an extended (>70′′) X-ray coronal
loop with a velocity of ≈1.4 × 104 km s−1 (Yokoyama
et al. 2002). The flare was accompanied by a quasi-
periodic modulation of the microwave emission with
various time scales (see Fig. 2b).

The microwave observations (Fig. 2b) were pro-
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cessed bymeans of a wavelet analysis (Vityazev 2001).
We used the Morlet wavelet ψ(t) = exp(−t2/2) ×
exp(i2πt) as the basis for constructing the integral
wavelet transform of our time series f(tk), k =
1, . . . ,m

Wψ(a, b) =
1√
a

+∞∫
−∞

f(tk)ψ∗
(
t− b

a

)
dt, (19)
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Fig. 2. (a) Dynamic oscillation spectrum constructed by means of a wavelet analysis for the solar flare of August 28, 1999.
(b) Time variations of the oscillation period and the time profile for the emission obtained with the Nobeyama Radioheliograph
(17 GHz) for the event of August 28, 1999.
where ∗ denotes complex conjugation, and the scale
factors a and b determine the extension and shift
of the basis wavelet, respectively. In applying the
wavelet transform, we found a correlation between
the series f(tk) being analyzed and the chosen
wavelet ψ(t), which was extended and shifted in
realization length (Vityazev 2001). As a result, a
two-dimensional array of coefficients Wψ(a, b) was
formed, from which we calculated the amplitude of
the dynamic spectrum

A =
√

(8/mπ)[(ReWψ)2 + (ImWψ)2].

The significance level was taken to be 0.9 and was
found as follows:

S(P ) = 1 − (1 − C2(P ))(2m−1)/2−1 ,

where C(P ) is is the coefficient of multiple linear
correlation between the time series being studied and
the wavelet.

The results of our wavelet analysis for the emission
intensity at 17 GHz are shown in Figs. 2a and 2b.
As follows from the dynamic oscillation spectra
constructed by using the procedure described above,
the maximum pulsation amplitudes corresponded to
three characteristic periods,P ≈ 14, 7, 2.4 s (Fig. 2a),
whose values changed slightly as the flare developed
(Fig. 2b).

The process of flare energy release may be as-
sumed to have been accompanied by the interaction
between two neighboring loops through the develop-
ment of ballooning instability in the compact loop.
Indeed, as we see from Fig. 2b, the first type of
oscillations with P1 ≈ 14 s, which we identify with
the ballooning mode, has a time gap (00:55:45–
00:56:30 UT) that coincides with the onset of prop-
agation of the energetic electron front along the
extended loop (Yokoyama et al. 2002). It would
be natural to attribute this feature to a rise in the
gas pressure during flare energy release and to the
violation of oscillation conditions in the compact loop,
leading to the development of ballooning instability
and the injection of hot plasma into the neighboring
extended loop. As soon as the compact loop was
liberated from the excess pressure, the oscillations
of plasma tongues resumed (see the first peak in
Fig. 2b). We consider the 7-s oscillations as the
second harmonic of the ballooning oscillations, be-
cause their behavior was similar to that of the 14-s
oscillations and their amplitudes were smaller.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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Table 2. Flare plasma parameters for the event of Au-
gust 28, 1999

Parameters Extended loop Compact loop
T , K 2.5 × 107 5.2 × 107

n, cm−3 (0.5–2.1) × 1010 (1.2–4.8) × 1010

B, G 105–210 140–280
β 0.04 0.11

Since the oscillations with P2 ≈ 2.4 s emerged
only after the first plasma injection into the large loop
(see Fig. 2b), radial modes are most likely responsi-
ble for this oscillation branch. The generation of the
latter was also determined by an increase in the gas
pressure in the extended loop through the injection of
hot plasma and energetic particles from the compact
loop.

Let us make some estimates in terms of the sce-
nario described above. Since, according to observa-
tions, the radius of the cross section of the extended
loop is r = 3× 108 cm, r̃ = 2.62r ≈ 7.86× 108 cm for
the fundamental harmonic of the radial modes (j =
1). The pulsation Q-factors are Q1 ≈ 10 and Q2 ≈
15, the relative modulation depths are ∆1 ≈ 0.4 and
∆2 ≈ 0.1, and the spectral indices are δ1 = 5.5 and
δ2 = 4 (Yokoyama et al. 2002). Specifying the an-
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Fig. 3. Time profiles for the emission measure EM and
temperature T of the flare coronal plasma obtained using
the technique by Thomas et al. (1985) from GOES soft
X-ray observations: (а) the flare of May 8, 1998; (b) the
flare of August 28, 1999.
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gle θ = 45◦−75◦ for the extended and compact loops
(L = 2 × 109 cm) in which the radial and ballooning
oscillations were generated, respectively, we then cal-
culate the loop parameters presented in Table 2 using
the formulas from Table 1. Note that the compact
loop, which was directly associated with the primary
source of energy release, had higher temperature,
density, and magnetic field strength.

The plasma density and temperature for the flares
under consideration can be estimated independently
from GOES soft X-ray observations. Based on the
technique described by Thomas et al. (1982), we
plotted the effective temperature T and the emission
measure for thermal electrons EM = n2V against
time (see Fig. 3). It follows from this figure that
the characteristic emission measure and plasma tem-
perature are EM ∼ 1049 cm−3 and T ∼ 107 K, re-
spectively. Taking the volume of the flare loop to be
V ≈ πr2L, we can determine the plasma density. For
the events of May 8, 1998, and August 28, 1999,
we obtain, respectively, V ≈ 5 × 1027 cm3, n ≈ 4 ×
1010 cm−3; V1 + V2 ≈ 3.5 × 1027 cm3 (V1 and V2 are
the volumes of the extended and compact loops), n ≈
5 × 1010 cm−3.

Thus, the plasma temperature T and density n for
the flares of May 8, 1998, and August 28, 1999, esti-
mated by using our technique, are consistent with the
independent diagnostics based on soft X-ray emis-
sion.

CONCLUSIONS

We have considered the dispersion relations and
the damping mechanisms for the ballooning and ra-
dial oscillations of coronal loops. Based on our results
and on an analysis of the modulation of nonthermal
gyrosynchrotron emission by FMA modes, we sug-
gest a method for diagnosing the flare plasma using
such observed microwave pulsation characteristics as
the modulation depth, the Q-factor, and the period of
the oscillations. This makes it possible to estimate the
density, the temperature, and the magnetic field in the
region of flare energy release.

We have shown that ion viscosity and electron
thermal conduction mainly contribute to the damping
of FMA oscillations, and that the ratio of the damping
decrements for these processes is γv/γc ∼ cos−2 θ.
Therefore, the Q-factor of the ballooning and local
radial oscillations of flare loops is mainly determined
by electron thermal conduction.

As follows from the dispersion relations, the
second oscillations of coronal loops are most likely
caused by radial modes (see also the review by As-
chwanden 2003). In turn, we attributed the observed
ten-second oscillations to the ballooning oscillations
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of coronal loops that can be generated in local regions
with an enhanced gas pressure (Shibasaki 2001).

To determine the plasma parameters, we chose
two solar flares whose microwave emission was ac-
companied by pulsations with various time scales.
The apparent shapes of the emission sources in var-
ious wavelength ranges, the characteristic periods,
and the relationship between the dynamics of energy
release and features of the emission oscillations sug-
gest that the fine structure of the emission for the
events of May 8, 1998 and August 28, 1999, was
determined by the generation of ballooning and radial
oscillations in coronal loops. Using our technique,
we have estimated the flare plasma parameters whose
values are consistent with the independent diagnos-
tics based on GOES X-ray observations.
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Abstract—Based on observational data obtained with the RT-22 Crimean Astrophysical Observatory ra-
dio telescope at frequencies of 8.6 and 15.4 GHz, we investigate the quasi-periodic variations of microwave
emission from solar active regions with periods Tp < 10 min. As follows from our wavelet analysis, the
oscillations with periods of 3–5 min and 10–40 s have the largest amplitudes in the dynamic power spectra,
while there are virtually no oscillations with Tp < 10 s. Our analysis shows that acoustic modes with
Tp � 1 min strongly dissipate in the lower solar corona due to thermal conduction losses. The oscillations
with Tp = 10–40 s are associated with Alfvén disturbances. We analyze the influence of acoustic and Alfvén
oscillations on the thermal mechanisms of microwave emission in terms of the homogeneous model. We
discuss the probable coronal heating sources. c© 2004 MAIK “Nauka/Interperiodica”.

Key words: Sun, active regions, microwave emission, MHDwaves, corona.
INTRODUCTION

With the launch of the SOHO (1995) and TRACE
(1998) satellites, a new direction of astrophysical
research called coronal seismology (Roberts 2000;
Poedts 2002) has developed rapidly. Such a great
interest is primarily associated with the solution of
the problem of solar coronal heating by magnetohy-
drodynamic (MHD) waves and with the possibility of
a further improvement in the methods for diagnosing
the magnetic fields in the upper solar atmosphere
(see, e.g., Nakariakov and Ofman 2001).

At present, two mechanisms are generally invoked
to account for the high temperature of the solar
corona (Priest et al. 2002). According to the first
of these, the MHD waves generated by convective
motions in the photosphere are responsible for its
heating. According to the second mechanism, the
corona heats up through the reconnection of mag-
netic field lines accompanied by microflares. In our
opinion, the wave approach appears more attractive,
because the formation of small-scale current sheets in
the solar corona through the twisting of magnetic field
lines caused by photospheric motions (Parker 1988)
seems problematic. In addition, as estimates indicate
(Hudson 1991), the energy of microflares is evidently

*E-mail: yur@crao.crimea.ua
1063-7737/04/3007-0489$26.00 c©
insufficient to provide the high temperature of the
coronal plasma.

Optical, ultraviolet, and X-ray observations of
waves and oscillations in the upper solar atmosphere
have a number of significant shortcomings. In par-
ticular, the typical signal accumulation and readout
time on the SOHO and TRACE instruments is
several tens of seconds, which severely limits the
possibilities for investigating MHD waves with short
periods (�1 min). The latter most likely determine
the high temperature of the solar corona (see, e.g.,
Priest 1982). Such observations can provide only
scanty information about the magnetic field strengths
in the upper solar atmosphere. Meanwhile, the gy-
roresonance microwave emission from active regions
is highly sensitive to magnetic field variations, and the
time resolution of currently available radio telescopes
reaches several milliseconds. Therefore, a study of
the various manifestations of MHD disturbances in
the upper solar atmosphere at radio frequencies is of
particular value.

The most detailed observations of microwave
pulsations from active regions, although with a low
time resolution of about 10 s, were performed with the
VLA and Nobeyama radio interferometers (Gelfreikh
et al. 1999; Shibasaki 2001; Nindos et al. 2002).
A Fourier analysis revealed that the most promi-
nent oscillations above sunspots were those with
2004 MAIK “Nauka/Interperiodica”
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a period Tp ≈ 3 min. This result is in satisfactory
agreement with optical and ultraviolet observations
(Staude 1999; Brynildsen et al. 1999). At the same
time, the microwave oscillations had a large spread
(1–20%) in modulation depth (Shibasaki 2001; Nin-
dos et al. 2002).

Gelfreikh et al. (1999) (see also Nindos et al. 2002;
Hildebrandt and Staude 2002) assumed the radio
pulsations with Tp ≈ 3 min to be associated with
oscillations of the height of the base of the transition
region; i.e., the modulation depth of the gyrores-
onance emission is determined by the increase in
temperature and the change in magnetic field with
height. In this case, the effects due to the modulation
of the plasma density and temperature by acoustic
waves were disregarded. According to numerical
calculations, the displacement amplitude of the tran-
sition region above sunspots is 25–50 km. However,
the typical gyroresonance layer thicknesses do not
exceed several hundred kilometers even in the corona
(Alissandrakis et al. 1980). Therefore, this approach
may be considered justified if emitting layers with
an optical depth τ � 1 are located at the level of the
transition region. Otherwise, variations in the height
of the base of the transition region will not lead to
an appreciable modulation of the gyrosynchrotron
emission, and it will be determined by density and
temperature fluctuations (see also Shibasaki 2001).

Here, we investigate the quasi-periodic variations
of microwave emission from solar active regions. In
the next two sections, we outline the observing tech-
nique and describe the procedure for analyzing the
observational data from the RT-22 Crimean Astro-
physical Observatory (CrAO) radio telescope by us-
ing wavelet methods. Subsequently, we consider the
dissipative processes associated with acoustic and
Alfvén modes. Particular attention is paid to the prob-
lem of solar coronal heating. We then analyze the
influence of MHD disturbances on the modulation of
thermal microwave emission from active regions. In
conclusion, we present and discuss our main results.

THE OBSERVING TECHNIQUE

In September 2001, observations of the sun were
performed using an RT-22-based diagnostic complex
at two wavelengths, 2.0 cm (15.4 GHz) and 3.5 cm
(8.6 GHz), with a spatial resolution of 3′

.6 and 6′
.0,

respectively. The polarimeter was able to record the
Stokes parameters I and V = IR − IL, where IR and
IL are the intensities of the microwave emission com-
ponents with right-hand (R) and left-hand (L) circu-
lar polarizations. The sensitivity of the radio telescope
was 0.1 s.f.u (1 s.f.u. = 10−22 W m−2 Hz−1). The
RT-22 control, data acquisition and processing sys-
tem (Baranov et al. 1998) recorded signals by their
sequential transformation for each of the four low-
frequency channels fed to an ADC through an analog
switching unit with a switching frequency of 100 GHz
and a signal accumulation time of 1 s. The averaged
data were written to magnetic media.

The process of observations consisted in scan-
ning the solar disk in right ascension with a 2′
declination step, pointing the antenna based on
the radio emission peak of the local source at the
shortest wavelength, and tracking the selected active
region. The object to be observed was chosen by
estimating prognostic parameters for each of the
sources detected on the solar disk by using both
scanning data and data accessible via the Internet
(e.g., http://www.bbso.njit.edu). The same active re-
gion, NOAA 9628, was observed from September 17
through 24, which allowed us to obtain continuous
(up to 8 h) series of intensity and polarization obser-
vations with a time resolution of 1 s over a fairly long
period. The conversion to solar flux units (s.f.u.) and
the transformation of temporal data to a uniform grid
were made using a program developed by A.V. Mel-
nikov (Pulkovo Astronomical Observatory, Russian
Academy of Sciences), which included normalization
and allowance for spurious signals.

OBSERVATIONAL DATA ANALYSIS

Since the time series being studied might be ex-
pected to contain quasi-periodic pulsations of dis-
tinctly different scales and to have appreciable de-
viations from strict periodicity (the pulsation ampli-
tude and period vary with time, the oscillations are
in the form of trains), a Fourier analysis can lead to
incorrect conclusions (Vityazev 2001). Therefore, we
analyzed the RT-22 observational data by using the
wavelet transform whose basis was formed from well-
localized (in frequency and time) wavelet functions.
This transform allowed us not only to construct a
signal spectrum similar to that yielded by a Fourier
analysis, but also to trace the variations in its main
characteristics.

To analyze the time series, we chose the Morlet
wavelet which is a harmonic oscillation modulated by
a Gaussian:
ψ(t) = exp(−t2/α2

0)[exp(iω0t) − exp(−ω0
2α2

0/4)].

The form of this function (the system of maxima
and minima that approach zero outside a short
time interval) determines one of its advantages—
it is well adaptable to a time–frequency analysis,
which is important for an accurate determination of
short periods. When choosing the coefficients α2

0 =
2 and ω0 = 2π, the basis wavelet function ψ(t) =
exp(−t2/2) exp(i2πt) makes it possible to interpret
the wavelet spectra in terms of the traditional Fourier
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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decomposition and to measure the oscillation ampli-
tude and period directly on the plot of the spectrum.

Based on ψ(t), we constructed an integral wavelet
transform of the sequence being studied:

Wψ(a, b) =
1√
a

+∞∫
−∞

f(t)ψ∗
(
t− b

a

)
dt,

where the superscript ∗ denotes complex conjugation,
and the scale factor a = 2q (q = 1, 2, . . . , Nq) acts as
the oscillation period in the Fourier spectrum and
determines the extension of the basis wavelet. The
parameter Nq was chosen in such a way that 2Nq

did not exceed the number of elements in the original
sequence. Using the shift parameter b = 1, 2, . . . , Nb,
we specified the time localization of ψ(t).

When applying the wavelet transform, we found
a correlation between the series f(t) being analyzed
and the chosen wavelet ψ(t), which was extended
and shifted in realization length. As a result, a
two-dimensional array of coefficients Wψ(a, b) was
formed; from this array, we calculated the amplitude
of the dynamic spectrum

A =
√

8/(πNb)[(ReWψ)2 + (ImWψ)2].

The significance level was taken to be 0.9 and was
found as follows:

P (Tp) = 1 − (1 − C2(Tp))Nb/2−1,

where C(Tp) is the coefficient of multiple linear corre-
lation between the time series f(t) being studied and
the wavelet ψ(t).

Figure 1 shows a typical example of the local
microwave pulsation spectrum for the active region
obtained in the time interval 05:25–06:05 UT for
quasiperiodic oscillations with Tp < 10 min whose
modulation depth generally did not exceed 3%. We
see from this figure that the oscillations with the well-
known periods of ∼180 and 300 s have the largest
amplitudes. We also distinguish harmonics of 3-min
oscillations with Tp = 60–100 s and short-period os-
cillations with Tp = 10–40 s, whereas no pulsations
with Tp < 10 s manifested themselves in any realiza-
tion.

We also used wavelet methods to investigate
the variations of oscillation periods with time. As
follows from Fig. 2, which is based on polarization
measurements, quasiperiodic MHD disturbances are
generated in the solar atmosphere in the form of short
trains that reflect the peculiarities of the wave gener-
ation and propagation. A detailed analysis of all our
observational series for the active region NOAA 9628
shows that, on average, the oscillation Q-factor is
ASTRONOMY LETTERS Vol. 30 No. 7 2004
Q = πte/Tp � 7–8, where te is the characteristic
time during which the oscillation amplitude decreases
by a factor of e.

We performed a correlation analysis of the time
series for the polarized and nonpolarized emissions.
In general, the correlation coefficients were found to
be no larger than 0.5. This can be easily explained by
the low spatial resolution of the telescope and by the
inhomogeneity of the active region (the oscillations of
individual structures in the active region with different
degrees of polarization and periods are added and
averaged). At the same time, the peaks in the dynamic
spectra of the polarized emission proved to be more
prominent.

DISSIPATION OF ACOUSTIC AND ALFVÉN
WAVES

Let us consider the dissipation mechanisms of the
acoustic waves that are similar in properties to the
slow MHD modes generated in magnetic flux tubes.

The thermal energies released due to ion viscosity,
Ev, and electron thermal conduction, Ec, as well as
the radiative losses Er after averaging over the oscil-
lation period can be represented as follows (Gordon
and Hollweg 1983; Priest 1982):

Ev =
η0

6
(∇δv)2, η0 = 0.96nkBTτi; (1)

Ec =
κ||
2

(
k

ω

)2

kBT (γ − 1)2(∇δv)2,

κ|| = 3.16
nkBTτe

m
;

Er =
(3 − γ)(5 − γ)

16
n2R(T )
ω2

(∇δv)2,

R(T ) =
5 × 10−20

√
T

.

Here, the standard notation is used, and the charac-
teristic ion and electron collision times τi and τe are
related by (Braginskiı̆ 1963)

τi =

√
2M
m

τe ≈ 17
T 3/2

nΛ
s, (2)

where M and m are the proton and electron masses,
respectively; and Λ = 25.3 − 1.15 log n+ 2.3 log T is
the Coulomb logarithm in which the temperature is
given in eV. Note that the dependence of the radia-
tive loss function R(T ) on temperature T adopted
in (1) corresponds to the temperature range T =
106–107.6 K for an optically thin source (Priest 1982).

We write the damping decrement ν < ω as

ν =
E

2W
. (3)
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Fig. 1. Example of the local microwave pulsation spec-
trum for the polarized (8.6 GHz) emission from the active
region NOAA 9628 obtained in the time interval 05:25–
06:05 UT. The amplitude A is given in arbitrary units.

Here, W is the period-averaged energy density of the
waves. For acoustic waves at low values of the plasma
parameter β ≈ c2s/v

2
A 	 1, where cs =

√
γkBT/M

and vA = B/
√

4πnM are the speed of sound and
the Alfvén speed, respectively, the latter can be
represented as (Braginskiı̆ 1963)

W = c2s
δρ2

2ρ
, (4)

where ρ is the plasma density. Using the linearized
continuity equation

−iωδρ+ ρ∇δv = 0

and substituting (1), (2), and (4) in (3), we find for
the damping decrements attributable to ion viscosity,
electron thermal conduction, and radiative losses that

νv ≈ 0.1ω2T
3/2

n
, νc ≈ 10ω2T

3/2

n
, (5)

νr ≈ 5 × 10−5 n

T 3/2
.

The latter equations suggest that the dissipation
of acoustic oscillations in the lower corona is gov-
erned by electron thermal conduction; i.e., the damp-
ing decrement is νΣ = νv + νc + νr ≈ νc. Since the
period is Tp = 2π/ω, we then derive from (5)

νΣ

ω
≈ 63

T 3/2

nTp
. (6)

Assuming the temperature and density in (6) to be
T = 106 K and n = 109–1010 cm−3, respectively, we
obtain νΣ/ω ≈ 63 × (0.1–1)/Tp. Therefore, acoustic
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Fig. 2. Example of the variations of oscillation periods
with Tp < 350 s for the polarized (8.6 GHz) emission from
the active region NOAA 9628.

oscillations with Tp � 1 min are subject to strong dis-
sipation. In this case, their amplitude decreases by a
factor of e in time te = 1/νΣ ≈ 2.5× (10−3–10−2)T 2

p ,
which is 0.15–1.5 min for Tp = 60 s. This conclu-
sion is in good agreement with both SOHO and
TRACE observations (Ireland et al. 1999; De Moor-
tel et al. 2000) and with numerical simulations (De
Moortel et al. 2000; Nakariakov et al. 2000; Tsiklauri
and Nakariakov 2001).

Since Alfvén disturbances, in contrast to acoustic
waves, do not compress the plasma, they are subject
to dissipative processes to the smallest degree among
the MHD modes in the solar atmosphere. If, however,
their periods are less than several tens of seconds,
then these waves will be strongly damped in the chro-
mosphere as they propagate from the photosphere
into the corona due to the large energy losses caused
by collisions between ions and neutrals (De Pontieu
et al. 2001). In this case, the generation of Alfvén
waves with Tp > 10 s in the upper solar chromo-
sphere seems problematic. Indeed, one might expect
the generation of these modes by a source with scale
sizes H to be effective only if the length of the emitted
wave is λ = vATp � H . For vA = 3× 107 cm s−1 and
Tp = 20 s, we then obtain H � 6 × 108 cm, which is
much larger than the thickness of the upper chromo-
sphere. Thus, Alfvén disturbances may be assumed
to be responsible for the detected microwave oscilla-
tions with short periods (Tp = 10–40 s); it is these
disturbances that determine the high temperature of
the coronal plasma. Therefore, let us make some es-
timates.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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The energy flux of Alfvén waves can be represented
as

F =
ρδv2

2
vA. (7)

Assuming that ρ = 10−15–10−14 g cm−3, vA =
108 cm s−1, and δv = 107 cm s−1 in the lower corona,
we obtain F = 0.5 × (107–108) erg cm−2 s−1 from
(7) (according to De Moortel et al. (2000), F ≈
4× 102 erg cm−2 s−1 for acoustic waves). Thus, since
the fluxes of 3×105 and 107 erg cm−2 s−1 (Porter
et al. 1994) are required for quiet and active regions,
respectively, in contrast to acoustic modes, Alfvén
waves may well heat the coronal plasma.

In the case of phase mixing, the dissipation scale
length for Alfvén waves (Heyvaerts and Priest 1983;
Roberts 2000) is

d = vA

(
3l2T 2

p

2π2η

)1/3

, (8)

where l is the characteristic scale of change in Alfvén
speed vA, and η is the kinematic viscosity. Taking
vA = 108 cm s−1, l = 3 × 108 cm, Tp = 20 s, and
η = 4 × 1013 сm2 s−1, we obtain d ≈ 5.2 × 109 cm
from (8). This value is comparable to the loop length
and suggests that the wave energy can be effectively
transferred to the coronal plasma. If resonance oscil-
lations are generated in the loop, their Q-factor is

Q =
(

3πl2

2ηTp

)1/3

≈ 8. (9)

This estimate is in satisfactory agreement with mi-
crowave observations. Note also that, since Tp =
2L/vA for the fundamental mode, Eq. (9) suggests a
weak dependence of the oscillationQ on the magnetic
field B and the loop length L.

MODULATION OF MICROWAVE EMISSION

Let us consider the influence of acoustic and
Alfvén disturbances on the modulation of thermal
microwave emission from active regions in terms of
the homogeneous model.

We define the modulation depth as

M =
δI(x)
I(x)

, (10)

where δI(x) = I(x+ δx) − I(x) is the change in in-
tensity caused by a disturbance with an amplitude
δx 	 x.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
Acoustic Modes
For optically thick sources,

I1 ∝ T, (11)

whereas for optically thin sources, which can also
contribute significantly to the microwave emission
from active regions (Hildebrandt and Staude 2002;
Alissandrakis et al. 1980; White and Kundu 1997)
when the bremsstrahlung or magnetobremsstrahlung
radiation mechanisms are at work (Zheleznyakov
1977),

I2 ∝




n2/
√
T ( bremsstrahlung)

nT s ( magnetobremsstrahlung),
(12)

where s ≥ 2 is the cyclotron harmonic number.
We assume that the variations in density, δn, and

temperature, δT , caused by small acoustic distur-
bances are adiabatic: n3/2/T = const. We then ob-
tain from (10)–(12)

M1 = δT/T,

M2 =




(5/6)δT/T ( bremsstrahlung)

(s+ 2/3)δT/T ( magnetobremsstrahlung).
(13)

According to (13), the modulation depth M for the
bremsstrahlung mechanism does not vary signifi-
cantly with optical depth τ . At the same time, for
magnetobremsstrahlung, its value depends markedly
on τ and increases with harmonic number s for an
optically thin source. If it is also considered that the
gyroresonance layers with s ≤ 4 make a dominant
contribution to the microwave emission from solar
active regions (see, e.g., Alissandrakis et al. 1980),
then, other things being equal, M can increase only
severalfold when passing from an optically thick
source to an optically thin one.

Alfvén Modes
Disturbances of this type do not compress the

plasma, but only change the direction of the magnetic
field. Therefore, they will not modulate the emission
from an optically thick source in the approxima-
tion under consideration. In addition, since τ for
the bremsstrahlung mechanism depends relatively
weakly on the angle α between the magnetic-field
direction and the wave vector, we restrict our analysis
below to the influence of Alfvén disturbances on the
modulation of optically thin gyroresonance emission.

The optical depth for harmonics with s ≥ 2 in the
quasilongitudinal approximation is (Zheleznyakov
1964)

τ ∝ sin2s−2 α(1 ± cosα)2,
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Fig. 3. Modulation depth M2 of an optically thin source
versus angle α between the magnetic-field direction and
the wave vector of the ordinary (o) and extraordinary (e)
waves (δα = 2◦).

where the upper and lower signs correspond to the
extraordinary (e) and ordinary (o) waves, respectively.
Since I ∝ τ , according to (10), the modulation
depth is

M2e = {(2s − 2) cotα− 2 tan(α/2)}δα, (14)

M2o = {(2s − 2) cotα+ 2cot(α/2)}δα. (15)

We emphasize that M2e is an alternating quantity.
Thus, taking s = 3 in (14), it is easy to show that M2e
is negative starting from α = arccos(1/3) ≈ 70◦.

The functions M2e(α) for s = 3, 4 and M2o(α) for
s = 2, 3 are plotted in Fig. 3. This figure shows that
the modulation depths can reach large values; they
increase with increasing harmonic number s and de-
crease with increasing angle α. Notice that the mod-
ulation of the ordinary wave is more effective than that
of the extraordinary wave. As applied to observations,
this suggests that, if the variations in Stokes param-
eters I and V are caused by Alfvén disturbances, they
can be both in phase and in antiphase. Indeed, for
a source located in a region with positive polarity,
the perturbation amplitude of the Stokes parameter
δV = δIR − δIL may prove to be negative, although
waves with right-hand circular polarization (IR > IL)
dominate in the emission.

DISCUSSION AND CONCLUSIONS
Based on the observational data obtained with the

RT-22 CrAO radio telescope in September 2001, we
analyzed the microwave pulsations from active solar
regions. Using a wavelet analysis to search for peri-
odicities with Tp < 10 min, we revealed the following.

(1) The oscillations with periods Tp = 3–5 min
and Tp = 10–40 s have the largest amplitude in the
dynamic power spectra.
(2) The oscillations (waves) have the shape of low-
Q trains (on average, Q � 7–8).

(3) No second (Tp < 10 s) oscillations were found
in any realization.

We emphasize that microwave oscillations from
active regions with Tp < 1 min were previously de-
tected by Zandanov et al. (1984) using the Siberian
Solar Radio Telescope (SSRT).

It follows from TRACE observations that the in-
tensity oscillation periods at the footpoints of coronal
loops depend on the location of the latter in the active
region (De Moortel et al. 2002). Thus, for example,
3-min oscillations dominate above magnetic spots,
while 5-min oscillations dominate in other regions.
As follows from microwave observations, the oscilla-
tions with Tp ≈ 5 min have large amplitudes, thereby
indicating that radio sources outside sunspots con-
tribute significantly to the modulation of emission
from active regions. We consider the oscillations with
periods of 1–2 min as harmonics of the oscillations
with Tp = 3–5 min. Note, therefore, that owing to
TRACE observations, King et al. (2003) have re-
cently managed to reveal harmonics of the 5-min
oscillations in coronal loops.

Here, we have shown that acoustic modes with pe-
riods Tp < 1 min strongly dissipate in the lower solar
corona due to thermal conduction losses. In our view,
this is one of the reasons why these modes have not
yet been detected on the TRACE and SOHO satel-
lites. This circumstance and the absence of oscilla-
tions with Tp < 10 s in the power spectrum suggest
that the short-period (Tp = 10–40 s) oscillations are
produced by Alfvén waves. This conclusion is con-
sistent with the results by De Pontieu et al. (2001)
according to which Alfvén modes with periods shorter
than several tens of seconds strongly dissipate in
the solar chromosphere as they propagate from the
photosphere into the corona. The possibility that the
Alfvén waves with Tp = 10–40 s are generated di-
rectly in the upper solar chromosphere through the
reconnection of magnetic field lines or the nonlinear
interaction with acoustic waves whose spectrum is at
a maximum in the range 3–5 min also seems unlikely.

In our opinion, Alfvén waves with Tp � 10 s may
be responsible for the heating of the solar corona.
Being generated by small-scale convective motions,
they are capable of effectively transferring the coro-
nal plasma energy by the phase mixing mechanism.
Whether second oscillations exist in active regions
is still an open question (Rudawy et al. 2002). The
MHD pulsations with Tp 	 10 s can be generated
only through flare-driven energy release (Aschwan-
den 2001).

As follows from the homogeneous model, the
modulation efficiency of thermal magnetobrems-
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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strahlung by acoustic modes depends significantly
on the optical depth, the variations of which can
make an appreciable contribution to the observed
spread in microwave modulation depths detected
with Nobeyama and VLA. Nevertheless, the observed
values, which can reach 20%, cannot be explained
in terms of the homogeneous model. Therefore,
when the modulation mechanisms associated with
MHD oscillations are considered, the temperature
and magnetic-field nonuniformities in the upper solar
atmosphere should be taken into account.

Our results suggest that Alfvén disturbances for
an optically thin source can lead to large fluctuations
of gyroresonance emission. Since the modulation ef-
ficiency for ordinary waves is appreciably higher than
that for extraordinary waves, the variations in Stokes
parameters I and V can be both in phase and in
antiphase.
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Abstract—We construct a theory of the equilibrium figure and gravitational field of the Galilean satellite
Io to within terms of the second order in the small parameter α. We show that to describe all effects of the
second approximation, the equation for the figure of the satellite must contain not only the components
of the second spherical function, but also the components of the third and fourth spherical functions.
The contribution of the third spherical function is determined by the Love number of the third order h3,
whose model value is 1.6582. Measurements of the third-order gravitational moments could reveal the
extent to which the hydrostatic equilibrium conditions are satisfied for Io. These conditions are J3 =
C32 = 0 and C31/C33 = −6. We have calculated the corrections of the second order of smallness to the
gravitational moments J2 and C22. We conclude that when modeling the internal structure of Io, it is
better to use the observed value of k2 than the moment of inertia derived from k2. The corrections to
the lengths of the semiaxes of the equilibrium figure of Io are all positive and equal to ∼64.5, ∼ 26, and
∼14 m for the a, b, and c axes, respectively. Our theory allows the parameters of the figure and the
fourth-order gravitational moments that differ from zero to be calculated. For the homogeneous model,

their values are: s4 =
885
224

α2, s42 = − 75
224

α2, s44 =
15
896

α2, J4 = −885
224

α2,C42 = − 75
224

α2,C44 =
15
896

α2.

c© 2004 MAIK “Nauka/Interperiodica”.

Key words: Solar system, Galilean satellites, internal structure models, equilibrium figures.
INTRODUCTION

All the Galilean satellites are in synchronous rota-
tion; their orbits are nearly circular and lie in the equa-
torial plane of Jupiter. Io is the large satellite closest
to Jupiter. Therefore, the influence of Jupiter’s tidal
potential on the equilibrium figure and gravitational
field of Io is appreciably stronger than it is on the
remaining large satellites. For the theory of Io’s figure
to be consistent with currently available observational
data, it must include effects of the second order of
smallness.

If the Galilean satellites of Jupiter are in a state
close to hydrostatic equilibrium, then data on their
figures and gravitational fields allow us to impose a
constraint on the density distribution in the interiors
of these bodies and, thereby, to make progress in
modeling their internal structure.

This problem was discussed by Hubbard and An-
derson (1978) and Dermott (1979). In the former
paper, the satellite model was represented as a heavy

*E-mail: Zharkov@uipe-ras.scgis.ru
1063-7737/04/3007-0496$26.00 c©
point mass (core) located at the center of a homo-
geneous envelope, while in the latter paper, a two-
layer satellite model was studied. Formulas for the
homogeneous model can be found in the well-known
monograph by Jeffreys (1962). Zharkov et al. (1985)
suggested a method that allowed the necessary re-
lations to be derived for satellite models with an ar-
bitrary density distribution. These relations are given
below.
A remarkable achievement of the successful Gali-

leo mission was the determination of the first coef-
ficients in the expansion of the gravitational field in
terms of spherical functions for the Galilean satel-
lites and the proof that their figures are actually in
hydrostatic equilibrium. The data for Io were so ac-
curate that Anderson et al. (2001a) used the for-
mulas obtained in the second approximation of the
perturbation theory by Dermott and Thomas (1988)
to describe the observational data; the latter authors
used several assumptions in deriving the formulas
of the second approximation. Here, we consider this
question in a more consistent way. To understand
the material presented below, we have to begin with
a brief description of the general theory in the first
approximation (Zharkov et al. 1985).
2004 MAIK “Nauka/Interperiodica”
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THE FIRST APPROXIMATION: A LINEAR
THEORY

Let us introduce a spherical system of coordinates
(r, θ, ϕ): r is the radius, θ is the colatitude (polar
distance), and ϕ is the longitude. The tidal potential
from Jupiter at the point of a satellite with coordinates
(r, θ) has the standard form

Wt =
GM

R

∞∑
n=2

( r
R

)n
Pn(cosZ) =

∞∑
n=2

Wn, (1)

Wn =
GMrn

Rn+1
Pn(cosZ),

where G is the gravitational constant,M is the mass
of Jupiter, Z is the angle between the radius vector
of the interior point of the satellite under consider-
ation and the direction of Jupiter’s center of mass,
Pn(cosZ) are the Legendre polynomials of degree n,
and R is the radius of the satellite orbit, which is
assumed to be circular. The equilibrium figure of the
satellite is an equipotential surface of the sum of three
potentials: the tidal potential Wt (1), the centrifugal
potential

Q =
ω2r2

3
[1 − P2(cos θ)] , (2)

and the potential from the mass distribution inside
the satellite V (r, θ, ϕ), U = Wt +Q+ V = const. In
relation (2) ω is the angular velocity of the satellite
around its axis, which is equal to the angular velocity
of a synchronous satellite around the planet.
According to Kepler’s third law, ω2 = GM/R3 for

synchronous satellites, and formula (2) takes the form

Q =
GM

3R

( r
R

)2
[1 − P2(cos θ)] . (3)

In deriving the equations of the figure theory
(Zharkov and Trubitsyn 1975, 1980), we pass from
the actual radius r to the effective radius s defined
as the radius of a sphere of equivalent volume; i.e.,
we perform the transformation (r, θ, ϕ) → (s, θ, ϕ)
which is discussed below in detail. The figure theory
is constructed by expanding the expressions for the
potentials in terms of the small parameter

α =
3π

Gρ0τ2
=

ω2s3
1

Gm0
(4)

=
(
M

m0

)(s1

R

)3
= 171.37 × 10−5,

where ρ0, τ ,m0, and s1 are the mean density, rotation
period, mass, and mean radius of Io, respectively. The
numerical value in (4) was obtained using data from
table. In the first approximation, we may ignore the
difference between r and s, which is of the order of α,
and substitute s for r in Wt (1) and Q (2), (3). The
ASTRONOMY LETTERS Vol. 30 No. 7 2004
Observational data and model parameters for Io

Parameters Io

Orbital radius R, 103 km 421.6

Period τ , days 1.769

s1, km 1821.6± 0.5

m0, 1023 g 893.2

ρ0, g cm−3 3.5278± 0.0029

g0, cm s−2 179

α =
3π

Gρ0τ2
, 10−5 171.37

C

m0s21
0.37685± 0.00035

J2, 10−6 1845.9± 4.2

C22, 10−6 553.7 ± 1.2

Jupiter’s massM , 1030 g 1.897

first term in (1),W2 and Q (3) are determined by the
same small parameter α. Therefore, in the first (linear)
approximation, the combined effect from W2 (1) and
Q (3) is obtained by addition.
If the model of the satellite is known, i.e., if its

density distribution is given and the satellite is close
to hydrostatic equilibrium, then when its gravitational
field and figure are calculated, it may be treated as an
effectively liquid one and all of the sought parameters
can be expressed in terms of the corresponding Love
numbers. In this case, the quadrupole moment J2

and the tesseral moment C22 as well as the semiaxes
of the figure (a and b are the equatorial semiaxes
directed toward the planet and along the orbital mo-
tion, respectively, and с is the polar semiaxis) can be
calculated by adding up the individual responses of
the satellite to the action of the first term of the tidal
potentialW2 (1) and the centrifugal potential Q (3).
The Love numbers can be calculated by the

method described by Gavrilov et al. (1975), Gavrilov
and Zharkov (1977), and Zharkov et al. (1985). Let
us introduce an auxiliary function T (s) that is equal
to the total perturbation of the satellite potential due
to the action ofW2 (1) orQ (3):

Vi +Wk =
1

s1g0
T
(s1

s

)n
Wk, (5)

k = t or r, Wr ≡ Q,

where n is the degree of the spherical function to
which bothW2 (1) and Q (3) are directly proportional
(in our case,n = 2), Vi is the perturbation of the satel-
lite potential due to the action of W2 (1) (k = t) or
Q (3) (k = r), and g0 is the gravitational acceleration
on the surface of the satellite modeled by a sphere



498 ZHARKOV
of equivalent volume with radius s1. The function
T (s) satisfies the ordinary differential equation of the
second order

T ′′ +
2
s
T ′ +

(
4πG

ρ′

V ′ −
n(n+ 1)

s2

)
T = 0, (6)

where the prime denotes differentiation with respect
to s. The function T (s) must be finite at zero and
satisfy the following boundary condition on the s = s1

surface: (
T ′)

s1−0
(7)

= −n+ 1
s1

(T )s1−0 + 4πGρs1Hs1 + (2n + 1)g0.

The density distribution ρ(s) in the satellite is as-
sumed to be spherically symmetric, and, accordingly,
the gravitational potential V (s) depends only on the
radius s.
The other function H(s) that we encounter in the

problem specifies the deformation and characterizes
the radial displacement of the point under considera-
tion

uk =
H(s)
s1g0

(s1

s

)n
Wk, (8)

k = t or r, Wr ≡ Q.

This function can be expressed in terms of T and V ′

using the formula

T +HV ′ = 0. (9)

The Love numbers of the nth order are determined by
the values of T (s) andH(s) on the s = s1 surface

hn =
H(s1)
s1

, kn =
T (s1)
s1g0

− 1 (10)

(the subscript n of the functions H(s) and T (s) in
Eqs. (5)–(8) was omitted). There is a simple relation
between hn and kn:

hn = 1 + kn. (11)

Using the Legendre polynomial addition theorem and
passing from the angle Z in W2 (1) to Jupiter’s an-
gular coordinates (θ′, ϕ′) and to an arbitrary point of
the satellite (θ, ϕ), we can easily obtain the sought-
for relations (for details, see Zharkov et al. 1985):

J2 =
5
6
αk2 =

C − (A+B)/2
m0s2

1

, (12)

C22 =
1
4
αk2 =

B −A

4m0s2
1

, (13)

where s1 was chosen as the normalizing radius in the
expansion of the equilibrium gravitational potential of
Io in terms of spherical functions, and A, B, and C
are the equilibrium moments of inertia of Io relative
to the а, b, and с axes, respectively. Adding up the
effects fromW2 and Q in (8) yields an expression for
the radial displacement of the satellite points:

u(s, θ, ϕ) = u0(s) + u2(s, θ, ϕ) (14)

=
H0(s)

3s

(
s

s1

)2

αs

+
H2(s)
s

αs

(
−5

6
P2(t) +

1
4
P 2

2 (t) cos 2ϕ
)
.

The geometrical figure of the satellite in the first ap-
proximation is given by formula (14), in which we
should set s = s1 and, according to (10), introduce
the Love numbers h0 and h2:

u(s1, θ, ϕ) =
1
3
αh0s1 (15)

+ αh2s1

(
−5

6
P2(t) +

1
4
P 2

2 (t) cos 2ϕ
)
.

In deriving (14) and (15), we assumed the following:
the orbit of Io is circular, the angular coordinates
of Jupiter are θ′ = π/2 and ϕ′ = 0, the longitude ϕ
is measured from the а axis directed along the line
connecting the centers of the satellite and the planet,
and P 1

2 (0) = 0, P 2
2 (0) = 3, P2(0) = −1/2. The small

expansion of the satellite given by the first term in (15)
will not be included yet in the formulas for the incre-
ments of the semiaxes which are derived from (15)
(P2(1) = 1, P 2

2 (1) = 0):

a = s1 + ∆a, ∆a =
7
6
αh2s1,

b = s1 + ∆b, ∆b = −1
3
αh2s1, (16)

c = s1 + ∆c, ∆c = −5
6
αh2s1.

In the first approximation, the theory yields simple
formulas for the differences between the semiaxes:

a− c = 2αh2s1, b− c =
1
4
(a− c). (17)

The same can also be said about the ratio of the
moments J2 (12) and C22: (13)

J2 =
10
3
C22. (18)

In the theory of an equilibrium figure, there is
dualism between the parameters of the figure (in our
case, this is h2 in (16) and k2 in (12), (13)). If we have
determined the semiaxes of the figure (16) and, hence,
h2, then we obtain k2 using (11) and can calculate the
moments J2 and C22 using (12) and (13). The reverse
is also true.
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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For the homogeneous model, ρ(s) = ρ0 = const,
we derive the standard relations from Eqs. (6) and (7)

hn =
2n+ 1

2(n − 1)
, kn =

3
2(n − 1)

, (19)

h2 = 2.5, k2 = 1.5.

Substituting h2 = 2.5 into (16) yields formulas for
the increments of the semiaxes of a homogeneous
satellite (Jeffreys 1962):

(∆a)0 =
35
12
αs1, (∆b)0 = −5

6
αs1, (20)

(∆c)0 = −25
12
αs1.

The parameters of the gravitational field for the
Galilean satellites determined in the Galileo space
mission (Anderson et al. 1996, 1998, 2001a, 2001b)
have shown that relation (18) holds with a high ac-
curacy. Consequently, these bodies have equilibrium
figures. For Io, J2 and C22 are given to the fourth
decimal place. The main relation (18) that is used
to judge whether Io has an equilibrium figure was
derived in the first approximation. Therefore, the fol-
lowing question arises: With what accuracy is the
theoretical formula (18) valid? To answer this ques-
tion, we must construct a theory in the next (second)
approximation by including the terms of the order of
α2. This is the main goal of our analysis. In addition,
this analysis provides a deeper insight into the whole
problem.

THE EFFECT FROM THE THIRD
SPHERICAL FUNCTION IN THE TIDAL

POTENTIAL

The third spherical function W3 in the tidal po-
tential on the satellite surface at s = s1 is propor-
tional to α1 ≡ α(s1/R). For Io (see the table), the
ratio s1/R ≈ 432 × 10−5. Consequently, α1 is of the
order of α2. Accordingly, the fourth spherical func-
tion W4 is proportional to α2 ≡ α(s1/R)2, and the
ratio α2/α

2 ≈ 10.85 × 10−3. Thus, the effects from
W4 are two orders of magnitude smaller than those
studied here, and they may be disregarded. The Love
numbers kn determine the tidally perturbed external
gravitational potential of the satellite

Ut(r, θ, ϕ) =
∞∑
n=2

kn

(s1

r

)n+1
Wn =

∞∑
n=2

Utn. (21)

Applying the Legendre polynomial addition the-
orem and comparing the result obtained with the
general expansion of the response to a tide in the
ASTRONOMY LETTERS Vol. 30 No. 7 2004
gravitational field of the satellite, we can easily derive
general formulas for the gravitational moments:

Jn = −kn (M/m0) (s1/R)n+1 Pn(t′), (22)

Cnm

Snm


 = 2

(n −m)!
(n +m)!

(23)

× kn (M/m0)
(s1

R

)n+1
Pm
n (t′)




cosmϕ′

sinmϕ′,

where θ′ and ϕ′ are the angular coordinates of Jupiter,
θ′ = π/2, ϕ′ = 0, t′ = сosθ′ = 0, Pm

n (t′) ate the as-
sociated Legendre polynomials of the nth degree and
themth order. For the third spherical functionW3, all
S3m = 0. Since P3(0) = 0, P 1

3 (0) = −3/2, P 2
3 (0) =

0, P 3
3 (0) = 15, only

C31 = −1
4
α1k3 and C33 =

1
24
α1k3, (24)

J3 = 0 and C32 = 0 (25)

are nonzero.
In the first nonvanishing approximation of the fig-

ure theory, we derive relation (18) that was used to
judge whether the Galiliean satellites of Jupiter have
equilibrium figures. The same relation for the third
spherical function is

C31/C33 = −6. (26)

If it turns out that relations (25) and (26) hold for Io,
then this will imply that Io is in a more “detailed”
hydrostatic equilibrium than can be judged from the
fulfillment of relation (18) alone. If relations (25) and
(26) do not hold, then we can determine the extent to
which Io deviates from hydrostatic equilibrium.When
conditions (25) and (26) are satisfied, then, apart from
k2 (or h2), which is used as a constraint when mod-
eling the internal structure of the Galilean satellites,
another constraint, more specifically, a constraint on
k3 (or h3), arises.
Using (8), we can easily derive an expression for

the third spherical function of the equilibrium figure:

ut3(s, θ, ϕ) =
H3(s)
s

α
(s1

R

)
(27)

× s

(
−1

4
P 1

3 (t) cosϕ+
1
24
P 3

3 (t) cos 3ϕ
)
.

Setting s = s1, h3 = H3(s1)/s1, and α1 = α(s1/R),
we represent (27) as

ut3(s1, θ, ϕ) (28)

= α1h3s1

(
−1

4
P 1

3 (t) cosϕ+
1
24
P 3

3 (t) cos 3ϕ
)
.
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For the increments of the semiaxes, we obtain

∆at3 = α1h3s1, ∆bt3 = ∆ct3 = 0. (29)

For the homogeneous model, h3 = 1.75 and ∆at3 =
23.7 m, k3 = 0.75 and

C31 = − 3
16
α1, C33 =

1
32
α1. (30)

THE SECOND APPROXIMATION:
A GENERAL THEORY

The simplicity of the preceding analysis stems
from the fact that we have studied problems for which
the linear approximation was sufficient. In the linear
statement, the actual radius r may be substituted
with s. The general method of the figure theory pre-
sented in the paper by Zharkov and Trubitsyn (1975)
and in the book by Zharkov and Trubitsyn (1980)
should be used to calculate all effects of the sec-
ond approximation. In the linear approximation, the
shape of the equipotential surfaces is described by
(14), (15) and (27), (28); these formulas define the
deviations from the radius s of a sphere of equivalent
volume of the order of α (4) and α2, respectively.
These deviations are proportional to the following
spherical functions: P2(t), P 2

2 (t) cos 2ϕ, P 1
3 (t) cosϕ,

and P 3
3 (t) cos 3ϕ. The terms proportional to the com-

ponents of the third spherical function are of the
order of α2 and do not need refinement. The terms
proportional to the second spherical function are on
the order of α. They are even functions of the angles
θ and ϕ. Therefore, to construct a theory to within
terms on the order of α2, as is the case in the general
figure theory (Zharkov and Trubitsyn 1975, 1980),
the formula that gives the change from (r, θ, ϕ) to
(s, θ, ϕ) must contain terms proportional to the even
components of the fourth-degree (n = 4) spherical
function: P4(t), P 2

4 (t) cos 2ϕ, and P 4
4 (t) cos 4ϕ. Thus,

the relation between r and s is

r = s(1 + s0 + s2P2(t)) + s22P
2
2 (t) cos 2ϕ (31)

+ s31P
1
3 (t) cosϕ+ s33P

3
3 (t) cos 3ϕ+ s4P4(t)

+ s42P
2
4 (t) cos 2ϕ+ +s44P

4
4 (t) cos 4ϕ).

The functions s31(s) and s33(s) are on the order
of α2 and were determined in the previous section
(see (27)):

s31(s) = −1
4
H3(s)
s

α
( s
R

)
, (32)

s33(s) =
1
24

H3(s)
s

α
( s
R

)
, α1 = α

(s1

R

)
.

They are known and do not enter into the subsequent
transformations. Formula (31) contains the function
s0(s) which is not related to the dependence of the
equilibrium figure on the angles. This function is not
independent and can be found from the condition for
determining the radius s of a sphere of equivalent vol-
ume (Zharkov and Trubitsyn 1975, 1980). To within
terms of the second order, we obtain

−s0(s) =
1
5
s2
2(s) +

12
5
s2
22(s). (33)

In the first approximation, the functions of the figure
s2(s) and s22(s) were calculated above in the linear
approximation (see (14)):

s2(s) = −5
6
H2(s)
s

α, s22(s) =
1
4
H2(s)
s

α. (34)

Substituting s2 and s22 into (33) yields s0(s):

s0(s) =
13
45
h2

2(s)α
2, h2(s) =

H2(s)
s

. (35)

It remains to determine the functions of the figure
s2(s) and s22(s) in the second approximation and the
functions s4(s), s42(s), and s44(s), which are on the
order of α2, in the first nonvanishing approximation.
To this end, according to the theory (Zharkov and
Trubitsyn 1975, 1980), we must write an analytical
equation for the equipotential surface of the total po-
tential U(r, θ, ϕ) = V +W2 +Q and change (r, θ, ϕ)
to (s, θ, ϕ) in V (r, θ, ϕ),W2(r, θ, ϕ), and Q(r, θ), i.e.,
substitute r using formula (31), in which the func-
tions of the second order of smallness s31(s) and
s33(s) have already been calculated (32) and they
may be omitted. Since the potential is constant on
an equipotential surface, setting the expressions in
front of P2(t), P 2

2 (t) cos 2ϕ, P4(t), P 2
4 (t) cos 2ϕ, and

P 4
4 (t) cos 4ϕ equal to zero, we obtain five integrodif-
ferential equations for the sought functions. The sixth
equation that gives the potential on equipotential sur-
faces contains only the sought functions of the figure.
Substituting r (31) into W2 (1) and Q (3) and

retaining the terms no higher than the second order
of smallness, we obtain after simple transformations

W2(s, θ, ϕ) =
Gm0

s1
α

(
s

s1

)2{
−1

5
(s2 − 6s22)

(36)

−
(

1
2

+
2
7
s2 +

12
7
s22

)
P2

+
(

1
4
− 1

7
s2 +

2
7
s22

)
P 2

2 cos 2ϕ − 18
35

(s2 − s22)P4

+
3
70

(s2 − 2s22)P 2
4 cos 2ϕ+

3
140

s22P
4
4 cos 4ϕ

}
,

Q(s, θ, ϕ) =
Gm0

3s1
α

(
s

s1

)2{(
1 − 2

5
s2

)
(37)
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−
(

1 − 10
7
s2

)
P2 +

18
7
s22P

2
2 cos 2ϕ

− 36
35
s2P4 −

6
35
s22P

2
4 cos 2ϕ

}
,

where the arguments t = cos θ in the Legendre poly-
nomials and s in the functions of the figure were
omitted.
The potential produced by the mass distribution in

the satellite at an arbitrary point with coordinates (r,
θ, ϕ) is

V (r, θ, ϕ) = G

∫
τ

ρ(r′)
|r− r′|dτ

′, (38)

where ρ(r′) is the matter density inside the satellite,
r′ is the radius vector of the current point, G is the
gravitational constant, which is equal to 0.6672 ×
10−7 in the CGS system, and the integration is over
the entire volume τ of the satellite. The transfor-
mation of the potential V (38) is more cumbersome
than that of the potentials W2 (1) and Q (3), but, in
principle, it is performed in the same way as in the
theory of an equilibrium figure (Zharkov and Trubi-
tsyn 1975, 1980). Expanding the function 1/|r − r′|
in (38) in terms of Legendre polynomials (Zharkov
and Trubitsyn 1980), we represent the gravitational
potential of the satellite V (r, t, ϕ), t = cos θ for an
arbitrary point (r, t, ϕ) inside the satellite as the sum
of multipole moments and retain the terms no higher
than the second order of smallness in the expansion:

V (r, t, ϕ) =
G

r
{(D0 + rD′

0) (39)

+
(
r−2D2 + r3D′

2

)
P2(t)

+
(
r−2D22 + r3D′

22

)
P 2

2 (t) cos 2ϕ

+
(
r−4D4 + r5D′

4

)
P4(t)

+
(
r−4D42 + r5D′

42

)
P 2

4 (t) cos 2ϕ

+
(
r−4D44 + r5D′

44

)
P 4

4 (t) cos 4ϕ},

where

D0 =
∫

r′<r

ρ(r′)dτ ′, D′
0 =

∫
r′>r

ρ(r′)
r′

dτ ′, (40)

D2 =
∫

r′<r

ρ(r′)r′2P2(t′)dτ ′,

D′
2 =

∫
r′>r

ρ(r′)r′−3P2(t′)dτ ′,

D22 =
2
4!

∫
r′<r

ρ(r′)r′2P 2
2 (t′) cos 2ϕ′dτ ′,
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D′
22 =

2
4!

∫
r′>r

ρ(r′)r′−3P 2
2 (t′) cos 2ϕ′dτ ′,

D4 =
∫

r′<r

ρ(r′)r′4P (
4t

′)dτ ′,

D′
4 =

∫
r′>r

ρ(r′)r′−5P 2
4 (t′)dτ ′,

D42 =
4
6!

∫
r′>r

ρ(r′)r′4P 2
4 (t′) cos 2ϕ′dτ ′,

D′
42 =

4
6!

∫
r′>r

ρ(r′)r′−5P 2
4 (t′) cos 2ϕ′dτ ′,

D44 =
2
8!

∫
r′<r

ρ(r′)r′4P 4
4 (t′) cos 4ϕ′dτ ′,

D′
44 =

2
8!

∫
r′>r

ρ(r′)r′−5P 4
4 (t′) cos 4ϕ′dτ ′.

In the transformation r → s, the radius s may be
said to number the equipotential surfaces; since the
density on an equipotential surface is constant, we
may substitute ρ(s′) for ρ(r′) in integrals (40). In their
book, Zharkov and Trubitsyn (1980) provided argu-
ments according to which the r′ = r(s, t, ϕ) equipo-
tential surface passing through the point (r, t, ϕ) at
which the potential is sought may be substituted for
the r′ = r sphere within the integration limits in (40).
As a result, the moments in (40) become functions of
not the actual radius r, but s, and the variables s, t, ϕ
in integrals (40) are separated. Substituting r (31)
into (40) and performing simple integrations yields

D0 =
4π
3

s∫
0

ρ(s′)d[s′3], (41)

D′
0 =

4π
2

s1∫
s

ρ(s′)d
[
s′2
(

1 − 1
5
s2
2 −

12
5
s2
22

)]
,

D2 =
4π
5

s∫
0

ρ(s′)d
[
s′5
(
s2 +

4
7
s2
2 −

48
7
s2
22

)]
,

D′
2 =

4π
5

s1∫
s

ρ(s′)d
[
s2 −

1
7
s2
2 +

12
7
s2
22

]
,

D22 =
4π
5

s∫
0

ρ(s′)d
[
s′5
(
s22 −

8
7
s2s22

)]
,
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D′
22 =

4π
5

s1∫
s

ρ(s′)d
[
s22 +

2
7
s2s22

]
,

D4 =
4π
9

s∫
0

ρ(s′)d
[
s′7
(
s4 +

54
35
s2
2 +

108
35

s2
22

)]
,

D′
4 =

4π
9

s1∫
s

ρ(s′)d
[
s′−2

(
s4 −

27
35
s2
2 −

54
352

s2
22

)]
,

D42 =
4π
9

s∫
0

ρ(s′)d
[
s′7
(
s42 +

18
35
s2s22

)]
,

D′
42 =

4π
9

s1∫
s

ρ(s′)d
[
s′−2

(
s42 −

9
35
s2s22

)]
,

D44 =
4π
9

s∫
0

ρ(s′)d
[
s′7
(
s44 +

3
35
s2
22

)]
,

D′
44 =

4π
9

s1∫
s

ρ(s′)d
[
s′−2

(
s44 −

3
70
s2
22

)]
.

It is now easy to understand how the sought relations
are derived. Substituting the transformed multipole
moments (41) into (39) and eliminating the powers
of the radius r using (31), we obtain an expression for
the potential V (s, t, ϕ) as a function of (s, t, ϕ). It is
convenient to pass to the dimensionless variables x =
s/s1 and δ(s) = ρ(s)/ρ0 in (41), where ρ0 is the mean
density, and substitute the moments themselves with
their dimensionless equivalent expressions:

Sn(x) = x−n−3

x∫
0

δ(z)d
[
zn+3fn

]
, (42)

S′
n(x) = xn−2

1∫
x

δ(z)d
[
z2−nf ′

n

]
,

Snm(x) = x−n−3

x∫
0

δ(z)d
[
zn+3fnm

]
,

S′
nm(x) = xn−2

1∫
x

δ(z)d
[
z2−nf ′

nm

]
,

where

f0 = 1, f ′
0 =

3
2

(
1 − 1

5
s2
2 −

12
5
s2
22

)
, (43)

f2 =
3
5

(
s2 +

4
7
s2
2 −

48
7
s2
22

)
,

f ′
2 =

3
5

(
s2 −

1
7
s2
2 +

12
7
s2
22

)
,

f22 =
3
5

(
s22 −

8
7
s2s22

)
,

f ′
22 =

3
5

(
s22 +

2
7
s2s22

)
,

f4 =
1
3

(
s4 +

54
35
s2
2 +

108
35

s2
22

)
,

f ′
4 =

1
3

(
s4 −

27
35
s2
2 −

54
35
s2
22

)
,

f42 =
1
3

(
s42 +

18
35
s2s22

)
,

f ′
42 =

1
3

(
s42 −

9
35
s2s22

)
,

f44 =
1
3

(
s44 +

3
35
s2
22

)
, f ′

44 =
1
3

(
s44 −

3
70
s2
22

)
.

Setting x = 1 in (42), we obtain integral formulas
for the first even gravitational moments that deter-
mine the external gravitational field of Io in hydro-
static equilibrium:

J2 = −S2(1), J4 = −S4(1), S0(1) = 1, (44)

С22 = S22(1), C42 = S42(1), C44 = S44(1).

Adding up V (s, t, ϕ), W2(s, t, ϕ) (36), and
Q(s, t, ϕ) (37), we obtain the sought potential on
equipotential surfaces of Io in equilibrium,

U(s) = V (s, t, ϕ) +W2(s, t, ϕ) +Q(s, t, ϕ), (45)

U(s)
s3
1

Gm0s2
= U0(s) +A2(s)P2(t)

+A22(s)P 2
2 (t) cos 2ϕ+A4(s)P4(t)

+A42(s)P 2
4 (t) cos 2ϕ+A44(s)P 4

4 (t) cos 4ϕ,

where

U0(s)
Gm0s

2

s3
1

=
[
1 +

2
5
(
s2
2 + 12s2

22

)]
S0(x) (46)

+ S′
0(x) − 3

5
s2S2(x) − 36

5
s22S22(x) +

2
5
s2S

′
2(x)

+
24
5
s22S

′
22(x) +

α

3

[
1 − s2 +

18
5
s22

]
,

A2(x) = −
(
s2 −

2
7
s2
2 +

24
7
s2
22

)
S0(x) (47)

+
(

1 − 6
7
s2

)
S2(x) +

(
1 +

4
7
s2

)
S′

2(x)

+
72
7
s22S22(x) − 48

7
s22S

′
22(x)
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+
α

3

[
−5

2
+

4
7
s2 −

36
7
s22

]
= 0,

A4(x) = −
(
s4 −

18
35
s2
2 −

36
35
s2
22

)
S0(x) (48)

− 54
35
s2S2(x) +

36
35
s2S

′
2(x) − 108

35
s22S22(x)

+
72
35
s22S

′
22(x) + S4(x) + S′

4(x)

− α

3

[
18
7
s2 −

54
35
s22

]
= 0,

A22(x) = −
(
s22 +

4
7
s2s22

)
S0(x) +

6
7
s22S2(x)

(49)

− 4
7
s22S

′
2(x) +

(
1 +

6
7
s2

)
S22(x)

+
(

1 − 4
7
s2

)
S′

22(x) +
α

3

[
3
4
− 3

7
s2 +

24
7
s22

]
= 0,

A42(x) = −
(
s42 −

6
35
s2s22

)
S0(x) − 9

35
s22S2(x)

(50)

+
6
35
s22S

′
2(x) − 9

35
s2S22(x) +

6
35
s2S

′
22(x)

+ S42(x) + S′
42(x) +

α

3

[
9
70
s2 −

3
7
s22

]
= 0,

A44(x) = −
(
s44 −

3
70
s2
22

)
S0(x) − 9

70
s22S22(x)

(51)

+
3
35
s22S

′
22(x) + S44(x) + S′

44(x) +
3

140
αs22 = 0,

where the argument x = s/s1 in the function of the
figure was omitted. The five integrodifferential equa-
tions (47)–(51) allow all functions of the figure theory
to be determined to within terms of the second order
of smallness. In Eqs. (47)–(51), the small parameter
α (4) and the radial density distribution in the satellite
ρ(s) (or δ(x)) are assumed to be given. If we know
the equation of state for the satellite p(ρ) rather than
the density distribution δ(x), then the function δ(x)
can first be found from the hydrostatic equilibrium
equation

1
ρ

dP (ρ)
ds

=
Gm0

s3
1

d(s2U0)
ds

. (52)

According to (46), the tidal and rotational corrections
to the standard hydrostatic equilibrium equation are
of the second order of smallness.
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It is useful to transform the system of equations for
the figure theory (47)–(51) by integrating the dimen-
sionless moments Sn, S′

n, Snm, and S
′
nm by parts by

transferring the differential to the density δ(x′), which
is assumed to be given (Zharkov et al. 1973). The
resulting integrals may be considered as the Stieltjes
integrals. In general, δ(x) is a piecewise continuous
function. Let us number the continuous segments
of the function δ(x) from the center of the satellite
to its surface (1, 2, . . . , n) and denote the points at
which the function has discontinuities by xi and the
number of the segment adjacent to xi from the left
(from the smaller radius) by i. We refer the point xi
to the ith segment. There are a total of n− 1 points of
discontinuity with coordinates x1, x2, . . ., xn−1. The
point xn denotes the extreme point of the integration
domain (xn = 1). We write the discontinuity of the
dimensionless density δ(x) at xi as

∆δi = δ(xi) − δ(xi + 0) (53)

for 1 ≤ i ≤ n− 1, ∆δn = δ(xn).

As a result, the dimensionless moments (42) take the
form

Sn(x) = fn(x)δ(x) + x−n−3 (54)

×


j−1∑
i=1

xn+3
i fn(xi)∆δi −

x∫
0

zn+3fn(z)dδ(z)


 ,

S′
n(x) = f ′

n(x)δ(x)

+ xn−2


 n∑
i=j

x2−n
i f ′

n(xi)∆δi −
1∫
x

z2−nf ′
n(z)dδ(z)


 ,

Snm(x) = fnm(x)δ(x) + x−n−3

×


j−1∑
i=1

xn+3
i fnm(xi)∆δi −

x∫
0

zn+3fmn(z)dδ(z)


 ,

S′
nm(x) = f ′

nm(x)δ(x) + xn−2

×


 n∑
i=j

x2−n
i f ′

nm(xi)∆δi −
1∫
x

z2−nf ′
nm(z)dδ(z)


 ,

where xj−1 < x < xj and the functions fn(x), f ′
n(x),

fnm(x), and f ′
nm(x) are given in (43).

The convenience of transformation (54) follows
from the fact that piecewise constant density dis-
tributions are currently used in constructing models
for Io. In this case, the integrals in Eqs. (47)–(51)
of the figure theory vanish. Since the methods for
solving the equations of figure theory were described
in detail by Zharkov et al. (1973) and Zharkov and
Trubytsyn (1980), we will not consider them here.
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ALGEBRAIC RELATIONS
The values of the functions of the figure at x = 1

are called the figure parameters. The figure parame-
ters in (31) specify the shape of the figure of an equi-
librium satellite. Setting x = 1 in Eqs. (47)–(51), we
obtain algebraic formulas that relate the gravitational
moments (44) to the figure parameters:

J2 = −s2 −
5
6
α− 4

7
s2
2 +

48
7
s2
22 −

11
21
as2 −

30
7
αs22,

(55)

C22 = s22 −
1
4
α− 8

7
s22s2 +

5
14
αs2 −

13
7
αs22,

J4 = −s4 −
36
35
s2
2 −

72
35
s2
22 −

15
7
αs2 +

9
7
as22,

C42 = s42 +
12
35
s2s22 −

3
28
αs2 +

5
14
αs22,

C44 = s44 +
3
35
s2
22 −

3
56
αs22.

Relations (55) can be reversed:

s2 = −
(
J2 +

5
2
α

)
− 4

7
J2

2 (56)

− 38
63
α2 − 3

7
αJ2 +

48
7
C2

22 −
6
7
αC22,

s22 = C22 +
1
4
α− 8

7
J2C22

+
1
14
αJ2 +

11
21
a2 +

19
21
αC22,

s4 = −J4 −
36
35
J2

2 − 72
35
C2

22

+
177
140

α2 +
3
7
αJ2 −

99
140

αC22,

s42 = C42 +
12
35
J2C22 +

1
14
α2 − 3

140
aJ2 +

9
14
αC22,

s44 = C44 −
3
35
C2

22 +
9

1120
α2 +

3
280

aC22.

If the satellite is in hydrostatic equilibrium, then the
coefficients in the expansion of its external gravi-
tational field in terms of spherical functions can be
determined by measuring its figure parameters. The
reverse is also true. Relations (55) and (56) express
the dualism in figure theory. The problem under con-
sideration is peculiar in that both J2 andC22, to within
terms of the second order, are determined via the
small parameter α (4) and the Love number of the
second order k2 (or h2 = 1 + k2). Indeed, substituting
s2(1) and s22(1) (34) into (55) yields

J2 =
5
6
k2α− 40

63

(
1 − 1

20
h2

)
h2α

2, (57)

C22 =
1
4
k2α− 16

21

(
1 − 5

16
h2

)
h2a

2, (58)
J2

C22
=

10
3

{
1 +

16
21

h2

k2
(3 − h2) a

}
. (59)

Formulas (57)–(59) may be used to correct the
Galileo data (Anderson et al. 2001a).
The Love number k2 in the paper by Anderson et

al. (2001a) was found by using formula of the first
approximation (13) and the observed value of C22 =
(553.7 ± 1.2) × 10−6:

k2 = 4(C22/α) = 1.2924 ± 0.0027. (60)

The quadrupole moment J2 is determined with a
lower accuracy and is chosen to satisfy the theo-
retical formula (18), which is derived in the linear
approximation. Since the correction of the second
approximation to C22 is, according to (58), negative,
to correct k2, it should be added to the observed value
of C22 and formula (13) should be applied to the
derived C∗

22:

k∗2 = 4(C∗
22/α) = 1.2958 ± 0.0027. (61)

Thus, allowing for the second approximation affects
the fourth digit in k2 (60).
To determine the dimensionless moment of iner-

tia, Anderson et al. (2001a) used a formula valid in
the Rado approximation for a satellite in hydrostatic
equilibrium from the book by Jeffreys (1962):

C

m0s
2
1

=
2
3

(
1 − 2

5

√
4 − k2

1 + k2

)
(62)

= 0.37685 ± 0.00035.

(For more details on the meaning of (62), see the next
section.) Substituting k∗2 (61) for k2 in (62) yields
0.37725, i.e., corrects the third decimal place.
The general formula for the radius of an equi-

librium spheroid in the second approximation (31)
allows the corresponding formulas for the semi-
axes of the equilibrium figure of Io to be written.
Since P2(0) = −1/2, P 2

2 (0) = 3, P 1
3 (0) = −3/2,

P 3
3 (0) = 15, P 0

4 (0) = 3/8, P 2
4 (0) = −15/2, P 4

4 (0) =
105, P2(1) = P4(1) = 1, P 2

2 (1) = P 1
3 (1) = P 3

3 (1) =
P 2

4 (1) = P 4
4 (1) = 0, we obtain

a = s1

{
1 + s0(1) −

1
2
s2(1) + 3s22(1) (63)

− 3
2
s31(1) + 15s33(1) +

3
8
s4(1)

− 15
2
s42(1) + 105s44(1)

}
,

b = s1

{
1 + s0(1) −

1
2
s2(1) − 3s22(1) (64)

+
3
8
s4(1) +

15
2
s42(1) + 105s44(1)

}
,

ASTRONOMY LETTERS Vol. 30 No. 7 2004



A THEORY OF THE EQUILIBRIUM FIGURE AND GRAVITATIONAL FIELD 505
c = s1 {1 + s0(1) + s2(1) + s4(1)} . (65)

The figure parameters s2(1) and s22(1), to within
terms of the second order, can be easily determined
from the algebraic relations (55) and (56):

s2 = −5
6
h2α− 40

63

(
1 − 1

20
h2

)
h2α

2, (66)

s22 =
1
4
h2α+

16
21

(
1 − 5

16
h2

)
h2α

2. (67)

Formulas (66) and (67) are valid for equilibriummod-
els of Io with an arbitrary density distribution. The
deviations of the semiaxes of the equilibrium Io a (63),
b (64), and c (65) from the mean radius s1 depend
not only on s2 (66) and s22 (67), s31 and s33 (28),
which can be determined relatively easily, but also on
the second-order figure parameters s4, s42, and s44,
whose determination requires solving Eqs. (48), (50),
and (51). These equations admit a simple solution for
the homogeneous model (h2 = 2.5),

s4 =
885
224

α2, s42 = − 75
224

α2, s44 =
15
896

α2

(68)

and the corresponding values of the gravitational mo-
ments

J4 = −885
224

α2, C42 = − 75
224

α2, C44 =
15
896

α2,

(69)

where α (4) is the small parameter of the figure theory.

A TRIAL MODEL OF IO

Anderson et al. (2001) constructed a large num-
ber of two-layer (silicate mantle+ Fe–FeS core) and
three-layer (crust + silicate mantle + Fe–FeS core)
models that satisfied the known mean density and
moment of inertia of Io. We also considered this issue
in detail previously (Zharkov 2003).
The orbital angular velocities of Io and Europa are

in resonance n1 + 2n2 ≈ 0. As a result, their circu-
lar orbits acquire small “forced” eccentricities. Since
both satellites are fairly close to Jupiter, the latter
generates powerful tidal waves on both bodies whose
dissipation into heat affected significantly their struc-
tures. According to the most recent data (Matson
et al. 2001), the heat flux from Io lies within the range
∼(2–13.5)× 103 erg cm−2 s−1. Themean global heat
fluxes from the Earth and the Moon are ∼87 ± 2 and
∼15–20 erg cm−2 s−1, respectively. The tempera-
tures of the lavas from the interiors of Io are very
high (∼1900 K). It is beyond doubt that the interiors
of Io are strongly heated. The core of the satellite,
composed of Fe–FeS eutectic, is molten, and the
silicate mantle may be in a partially molten state.
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In the two-layer model, themodel of the outer layer
of the satellite, the crust, which is of great interest
for Io, drops out of the consideration. This issue was
considered by Leone and Wilson (2001) (see also
Zharkov 2003).
In our case, it seems natural to choose a simple

trial model of Io that would differ from the homoge-
neous model (Zharkov 2003) to illustrate the theory.
Anderson et al. (2001a) took ρ1 = 5.15 g cm−3 for

the density of Io’s core, which is assumed to consist of
Fe–FeS eutectic and to be in a molten state. We then
obtain the mean density for the silicate mantle, ρ2 =
3.25 g cm−3, from the conservation condition for the
satellite mass and the Love number k2 (k2 = h2 − 1)
(60). For the calculation of the Love numbers for the
two-layer model, the solution of system (5)–(9) leads
to the expression

hn =
Zn
Zd

, (70)

where

Zn = (2n+ 1)
[(

ρ1

ρ2
− 1
)
x3
c + 1

]

×
{[

(2n+ 1) − 3
(

1 − ρ2

ρ1

)]

+ 3
(

1 − ρ2

ρ1

)
x

(2n+1)
c

}
,

Zd =
[
(2n+ 1) − 3

(
1 − ρ2

ρ1

)]

×
{

(2n+ 1)
[(

ρ1

ρ2
− 1
)
x3
c + 1

]
− 3
}

− 9
(

1 − ρ2

ρ1

)
x

(2n+1)
c ,

x = s/s1 is the relative radius, ρ1 and ρ2 are the core
and mantle densities, respectively, xc = sc/s1 is the
core radius, and s1 is the mean radius of Io.
For the model under consideration (ρ1 =

5.15 g cm−3, ρ2 = 3.25 g cm−3, xc = 0.5268, s1 =
1821.6 km),

h2 = 2.2944, (71)

i.e., it is virtually equal to the observed value of k2 =
(h2 − 1) (60), (61).
The corresponding Love number of the third or-

der is
h3 = 1.6582. (72)

The mean (relative) moment of inertia for the model
under consideration is

I∗ =
I

m0s2
1

=
2
5
ρ2

ρ0

[(
ρ1

ρ2
− 1
)
x5
c + 1

]
= 0.37724.

(73)
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Formula (62) with the model value of k2 = (h2 −
1) (71) yields an almost equal value of 0.37708.
Let us now explain the meaning of formula (62),

which was used by Anderson et al. (2001) to con-
strain the moment of inertia of Io. Recall how this
formula was derived. For the equilibrium figure of a
rotating planet or satellite in the Rado approximation,
the Rado–Darwin formula is valid (see, e.g., Zharkov
and Trubitsyn 1980; formula (32.20))

C

Ma2
1

=
2
3

[
1 − 2

5

√
5α

3J2 + α
− 1
]
, (74)

where C is the polar moment of inertia, M is the
mass, a1 is the equatorial radius, J2 is the quadrupole
moment, and α (4) is the small parameter of the
rotating equilibrium planet. Zharkov et al. (1985)
showed that for a synchronously rotating equilibrium
satellite in the field of the tidal potential in the first
approximation, the equilibrium quadrupole moment
J2 of the body under consideration is the sum of the
part attributable to the tidal potential J2t = 0.5αk2

and the part attributable to the centrifugal potential
J2r = 1/3αk2:

J2 = J2t + J2r =
5
6
αk2. (75)

Formula (62) is obtained if we substitute not J2 (75),
but only the part of J2, more specifically, J2r into (74).
Thus, it refers to an equilibrium rotating planet or
satellite, i.e., to a similar, but not the same problem
studied here. Therefore, it would be natural to use the
Love number k2 or h2 as a constraint when modeling
any Galilean satellite.
In the first approximation, the formulas for the

principal moments of inertia are

A =
8π
15

s1∫
0

ρ(s)d
[
s5

(
1 +

1
2
s2(s) − 2s22(s)

)]

(76)

(relative to the x axis directed from Io’s center of mass
to Jupiter),

B =
8π
15

s1∫
0

ρ(s)d
[
s5

(
1 +

1
2
s2(s) + 2s22(s)

)]

(77)

(relative to the y axis directed along the orbital motion
of Io),

C =
8π
15

s1∫
0

ρ(x)d
[
s5 (1 − s2(s))

]
(78)

(relative to the z axis directed along the rotation axis
of Io).
Formulas (76)–(78) include the functions of the
figure s2(s) (66) and s22 (67), which, in turn, are
determined by the function of the Love number h2(s).
It follows from (76)–(78) that the difference between
all moments (A, B, C) is of the order of α (4), i.e., in
the third decimal place.
The Love numbers h2 (71) and h3 (72) for the

two-layer model under consideration and the figure
parameters s4, s42, and s44 (68) for the homogeneous
model allow us to estimate the contribution from the
effects of the second approximation to the lengths of
the semiaxes a (63), b (64), and c (65) for the equi-
librium figure of Io. Including these effects lengthens
the a, b, and c semiaxes by ∼64.5, ∼26, and ∼14 m,
respectively.

CONCLUSIONS

The determination of the first gravitational mo-
ments by the Galileo spacecraft showed that J2

and C22 satisfy relation (18), which is valid for
bodies in hydrostatic equilibrium. It was concluded
that all Galilean satellites are close to hydrostatic
equilibrium. The Love number k2 (60) was estimated
with a high accuracy, which is virtually equivalent to
the determination of the mean moment of inertia. As
a result, significant progress in modeling the internal
structure of the Galilean satellites has been made,
while the models themselves contain information
about the conditions under which Jupiter was formed.
The data for Io were so accurate that Anderson
et al. (2001a) used the formulas obtained in the
second approximation of the perturbation theory
by Dermott and Thomas (1988) to describe the
observational data; the latter authors used several
assumptions to derive the formulas of the second ap-
proximation. Therefore, we considered this question
in a more rigorous and consistent way. We showed
that to describe all effects of the second approxi-
mation, formula (31) for the figure of the satellite
must contain not only the components of the second
spherical function, but also the components of the
third and fourth spherical functions. Measurements
of the third-order gravitational moments (see formu-
las (24) and (25)) could reveal the extent to which
the hydrostatic equilibrium conditions are satisfied
for Io. In this sense, relation (26) plays the same role
as formula (18) did in finding out whether theGalilean
satellites are in hydrostatic equilibrium.
We calculated the corrections of the second order

of smallness both to the gravitational moments J2

and C22 (formulas (57) and (58)) and to the main
relation (18) (formula (59)). We considered the deter-
mination of the moment of inertia for Io via the Love
number k2. We concluded that when modeling the
internal structure of Io, it is better to use the observed
ASTRONOMY LETTERS Vol. 30 No. 7 2004
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value of k2 than the moment of inertia derived from k2.
This eliminates additional assumptions. We derived
formulas (63)–(65), which allow the second-order
corrections to the lengths of the semiaxes of the figure
of Io to be calculated. All corrections are positive
and increase the lengths of the equilibrium axes: by
∼64.5 m for the a axis, by∼26 m for the b axis, and by
∼14m for the c axis. The theory presented here allows
the figure parameters and the fourth-order gravita-
tional moments that differ from zero to be calculated.
For the homogeneous model, these parameters are
given by formulas (68) and (69).
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