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Nonradiative decay of the low-lying nuclear isomer
229mTh„3.5eV… in a metal

E. V. Tkalya* )

Scientific-Research Institute of Nuclear Physics, M. V. Lomonosov Moscow State
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A new nonradiative decay channel for the anomalously low-lying iso-
meric level 3/21(3.561.0 eV) of the229Th nucleus in a metal via the
conduction electrons is examined. The lifetime of the isomer in a metal
is calculated. An explanation is given for the experimental results of
S. B. Utteret al., Phys. Rev. Lett.82, 505 ~1999!, where the optical
radiation spectrum of the indicated isomer was investigated. ©1999
American Institute of Physics.@S0021-3640~99!00118-8#

PACS numbers: 23.20.Nx, 23.90.1w

The energy of the first excited level in the229Th nucleus is 3.561.0 eV, which is
anomalously low for nuclei.1,2 The unusual properties of the state229mTh(3/21, 3.5
61.0 eV) have been discussed repeatedly in the literature. These include decay
electron bridge,3 the possibility of laser excitation with the production of a populati
inversion in a system of229Th nuclei,4,5 a change induced in thea decay rate of229Th by
low-intensity laser radiation,6 and others. It has also been noted that the decay probab
of the isomer via an electron bridge and the spectrum of emitted photons are sensi
the chemical environment. For this reason229Th can serve as a probe for investigating t
properties of substances.3–5

In this letter we predict another unique property of the isomer229mTh, specifically:
nonradiative decay of the 3/21(3.561.0 eV) level in a metal via the conduction ele
trons.

229mTh(3/21, 3.561.0 eV) nuclei are produced with approximately 2% probabi
in the a decay of233U. Let a thin233U oxide layer, several tens of angstroms thick,
deposited on a metal substrate. The energy of the229Th recoil nucleus in thea decay of
233U is ;100 keV. Let us follow the229mTh(3.5 eV) nuclei whose momentum is directe
toward the substrate. According to the data of Ref. 7, their range in metals is severa
of atomic layers. A metal of such thickness is virtually transparent to visible-range op
radiation and is not an obstacle for detecting the photons arising as a result of de
the low-lying isomer229mTh.

In an isolated Th atom the isomer 3/21(3.561.0 eV) should decay predominantl
via the electron-bridge channel.3 This is an extremely rare case, indeed the only c
known, in which a process of third order in the electromagnetic interaction conste
predominates over internal electron conversion, which is a second-order process,
3710021-3640/99/70(6)/4/$15.00 © 1999 American Institute of Physics
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decay of a nuclear isomer. Here internal conversion is simply forbidden, since the
ization potential of the Th atom, equal to 6.08 eV, is greater than the energy o
nuclear transition.

The situation changes radically if229mTh is inserted into a metal. Then the secon
order process in which the isomer decays via the conduction electrons, as shown
1, becomes allowed. This process is similar to inelastic electron scattering by nucle
metal it does not have an energy threshold, since the nucleus gives up energy in thi
~The threshold of the reaction in semiconductors will be the energy gap. Therefor
energy of the nuclear transition can be determined by varying the substrate mater!

The decay of the isomer in a metal can also be interpreted as conversion on
duction electrons. But here, in contrast to conventional internal conversion, the i
state of the electron is not an atomic bound state.

To estimate qualitatively the decay probability of229mTh(3/21, 3.561.0 eV) in a
so-called ‘‘standard’’ metal,8 we shall employ the very simple free-electron appro
mation9 ~in this model the conduction electrons are treated as a gas of free particles!. We
shall calculate the probability according to the formula

W;Ne ve s ,

whereNe and ve are the density and velocity of the conduction electrons ands is the
cross section of the process~the system of units\5c51 is used!. Let the energy of the
initial state of the electron beEi'EF , whereEF is the Fermi energy. Correspondingl
the electron velocity is equal to the Fermi velocity,ve;vF5A2EF /m. For inelastic
scattering by the isomeric nuclei229mTh the conduction electrons acquire the addition
energyvN53.561.0 eV. If the electron work function of the metal is less thanvN , then
electrons remain in the metal after being scattered.

To estimate the inelastic scattering cross sections, we employed a software
package10,11 in which the self-consistent atomic field and the wave functions of bo
electrons are found by solving a system of Dirac–Fock equations with allowance fo
finite sizes of the nuclei, and the initial and final states of the scattered electro
solutions of the Dirac equation in the indicated field.

FIG. 1. Diagram of nonradiative decay of229mTh(3/21, 3.561.0 eV) via the conduction electrons in a meta
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The reduced probability of a nuclear isomericM1 transition from the ground into
the first excited state of229Th has been calculated in Ref. 12. With the Coriolis interact
between the rotational bands taken into account~the indicated levels are the bandhead!,
the value found in Ref. 12 isB(M1; 3/213/2@631#→5/215/2@633#)W.u..4.831022. On
this basis, in order of magnitude we obtain for the cross sections;10227cm2.

We shall now calculate the decay probability of the isomer229mTh(3/21, 3.561.0
eV! in a standard metal. Using the valuesNe'631022cm23 andEF'5.5 eV from Ref.
8, we find for the probabilityW;104 s21. Therefore the lifetime of a thorium isomer i
a metal is;1024 s. The value obtained is much less than the ‘‘reasonable’’ lower l
1022 s found in Ref. 12 for the half-life of the low-lying level of the229Th nucleus.
Therefore the process under consideration can indeed be the dominant decay chan
the state 3/21(3.561.0 eV) in a metal.

Now the experimental result of Ref. 13 can be interpreted in a completely diffe
way. This experiment differed from the others14,15 by the fact that the measurements
the optical radiation of229mTh nuclei were performed in vacuum, and a platinum slab w
used as the substrate. The authors of Ref. 13 did not observe the 2.3–2.5 eV photo
had been discovered previously~in 1997–1998! in Refs. 14 and 15, where they had be
interpreted as indicating the presence of an electron bridge.

In the vacuum experiment of Ref. 13 the target consisted of a 35 Å thick laye
233U oxide deposited on a platinum substrate.~We note that metallic substrates were n
used in the experiments of Refs. 14 and 15.! The 229mTh recoil nuclei, which entered the
chamber at a velocity of 1023, reached the walls in times not greater than;1026 s and
decayed outside the field of view of the optical system. The recoil nuclei229mTh emerg-
ing in the direction of the substrate penetrated into the platinum~their range in Pt is
;150 Å)7 and underwent nonradiative decay via the conduction electrons. The ele
work function of platinum is 5.3 eV. Therefore decay likewise could not be recorde
detecting electrons. All this explains the absence of any signal in Ref. 13. Therefo
experimental results of Ref. 13 are consistent with the conjecture made in Refs. 14 a
concerning the electron bridge and the ‘‘nuclear’’ origin of the 2.3–2.5 eV optical ra
tion.

If everything occurs as described above, then the experiment of Ref. 13 giv
lower limit for the half-life of 229mTh(3/21, 3.561.0 eV): T1/2>1/W;1024 s. An upper
limit on T1/2 can be easily found using the well-known quantityB(M1). When all decay
channels, except direct nuclearg radiation with energy 3.5 eV, are closed, one hasT1/2

.3 h.

The process studied in this letter, the nonradiative decay of a nuclear isome
metal via the conduction electrons, is peculiar to229mTh(3/21, 3.561.0 eV). Nothing
like this can be observed for other nuclei. The key element is the smallness of the e
of the isomeric transition and the absence of a conversion decay channel of the iso
the Th atom. For comparison, consider the235U nucleus, which possesses the next low
energy of an isomeric level 1/21(76.8 eV), with a lifetime of about 25 min. A calculatio
of the decay probability of this state in a metal gives;1026 s21. This is approximately
three orders of magnitude less than the probability of internal electronic conver
which is the main decay channel for the isomer 1/21(76.8 eV) in235U.
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Coherent Raman scattering in molecular hydrogen in a
dc electric field
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The polarization properties of light in coherent Raman scattering in
molecular hydrogen in a dc electric field are investigated. A nonlinear
polarization-optical method of determining the absolute magnitude and
orientation of the dc electric field is proposed and realized. ©1999
American Institute of Physics.@S0021-3640~99!00218-2#

PACS numbers: 42.65.Dr, 33.80.Wz

Coherent four-photon spectroscopy is an effective method of diagnostics of ex
gases and plasma. Specifically, coherent anti-Stokes Raman scattering~CARS!1,2 is now
widely used to measure temperature and concentration in excited gaseous med3 As
experimental investigations show, coherent four-wave interaction spectroscopy wit
man and hyper-Raman resonances yields important information about the relaxat
the populations of the excited states of atoms and ions and makes it possible to in
gate the spatial distributions of resonant particles in laser-produced and gas-dis
plasmas.4 However, because adequate methods for remote contactless measurem
local electric fields in plasmas are not available, it is difficult to obtain information o
number of important plasma properties. It appears that the rich arsenal of coheren
photon spectroscopy methods that have been developed to date will make it poss
solve certain problems associated with the measurement of plasma fields. The pos
of using four-photon spectroscopy to measure the intensity of an electric field was
posed in Ref. 5 and experimentally demonstrated in Ref. 6 for a uniform dc electric
with known orientation in a corona-discharge plasma. In Ref. 7 a method for measuring
a uniform dc electric field in an isotropic uniform plasma by coherent four-photon s
tering was proposed and substantiated theoretically, and the effect of plasma micr
on the intensity and polarization of the four-photon scattering signal was investig
Coherent four-photon spectroscopy is thus a promising technique for performing
measurements of electric fields in excited gases and plasma.

In the present work the polarization technique of coherent Raman scattering~CRS!
is used to perform local contactless measurement of the absolute magnitude and o
tion of a dc electric field in molecular gases and to obtain information about the for
3750021-3640/99/70(6)/5/$15.00 © 1999 American Institute of Physics
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the nonlinear optical susceptibility tensor and the invariants of the Raman scat
tensor of Raman-active transitions of molecules and atoms.

The experimental setup built for investigating CRS processes in a molecular g
a dc electric field consisted of~see Fig. 1! a master oscillator, crystals for frequenc
conversion, a dye laser~DL!, gas cells, and a detection system. A 1.06mm Nd:YAG with
a 20 Hz pulse repetition frequency and 10 ns pulse duration was used as the
oscillator. A DKDP crystal with 30% efficiency was used to convert radiation into
second harmonic (v1 wave!. The second-harmonic radiation~532 nm wavelength! was
used to pump the dye laser~mixture of pyridine-1 and DCM dyes, dissolved in dimeth
sulfoxide!. The dye laser generated radiation with a wavelength of 683 nm~frequency
v2) and pulse energy 3 mJ. The lasing linewidth of the dye laser was 0.2 cm21 and the
beam diameter was 2.5 mm~0.5 mrad divergence!.

The radiation at the fundamental frequency unconverted by the nonlinear crysta
selected by a dichroic mirror DM1, with approximately 80% transmittance at 532 nm a
reflectance exceeding 99% at 1.06mm, and converted into the second harmonic in
DKDP crystal. The second harmonic obtained in this manner was used as one
biharmonic pump waves in the CRS scheme~the wave with frequencyv1). The spectral
linewidth of the second-harmonic radiation was 0.2 cm21, the beam diameter was 7 mm
the beam divergence was 0.6 mrad, and the energy per pulse reached 40 mJ.

After passing through the telescope T, the radiation with frequencyv2 was com-
bined with thev1 beam using a dichroic mirror DM3. The magnification of the telescop
was chosen so as to obtain the optimal ratio between the diameters of thev1 and v2

beams, and the telescope was set so as to compensate the divergence of the d
radiation.

FIG. 1. Experimental setup for investigating CRS in a molecular gas in a dc electric field: Nd:YAG — Nd:
laser master oscillator; 2v — frequency-doubling crystals; DL — dye laser; SS — synchronization syst
DS — detection system; PM — photomultiplier; PD — IR detector; T — telescope; M1 , M2 — rotating
mirrors; DM1– DM4 — dichroic mirrors; GP — Glan prism; F — light filters; FR — Fresnel rhombs;
— screen; HV — high-voltage source, L1– L3 — lenses.
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A lens L1 focused the combined second-harmonic and dye-laser beams into
filled with hydrogen under a pressure of about 1.2 atm. Metal electrodes, to wh
voltage of 1–1.5 kV was applied, were placed in the cell to produce an electric fie

A system of filters was used to separate from the pump radiation the cohere
radiation of the CRS signal generated in the region of interaction of the beams an
CARS calibration signal~the calibration procedure is described in Ref. 6!. The CRS
signal generated as a result of four-photon scattering in the presence of a dc electr
was detected with a liquid-nitrogen-cooled IR detector. The data from the IR det
were accumulated and processed using a BOXCAR integrator and a personal com
A photomultiplier was used to detect the CARS signal.

In our experiments, a four-photon CRS process, occurring in the presence o
electric fieldEdc according to the schemevCRS5v01v12v2 , wherev050, v1 , and
v2 are the frequencies of the pump waves tuned to a Raman-type resonance w
frequencyV5v12v2 of the molecular transition employed (lCRS52.4mm, the transi-
tion n50, J51→n51, J51 H2(X1Sg

1)), was used to measure the electric field and
investigate the parameters of molecular transitions. In an isotropic medium the pol
tion vector is determined in terms of the components of the nonlinear optical c
susceptibility tensorx i jkl

(3) 5x i jkl
(3) (vCRS;0,v1 ,2v2) and the electric vectors of the pum

waves by the following expression1 ~the frequency arguments are dropped in the co
ponents of the nonlinear susceptibility tensor!:

P(3)53$x1122
(3) E~e1•e2* !1x1212

(3) e1~E–e2* !1x1122
(3) e2* ~E–e1!%EdcE1E2 , ~1!

whereE1 andE2 are the amplitudes of the pump waves with frequenciesv1 andv2 ; e1

ande2 are unit polarization vectors of the corresponding waves; and,Edc andE are the
intensity and the unit vector specifying the direction of the dc electric field.

Figure 2 shows the CRS signal intensity as a function of the angleb between the
polarization vectore1 of the pump wave with frequencyv1 and the direction of the dc
field E, collinear with the polarization vectore2 of the pump wave with frequencyv2 .
Sincex1212

(3) 5x1221
(3) for the completely symmetric vibrations, measurements at the m

mum and minimum of the dependences presented make it possible to determine th
of the components of the nonlinear susceptibility tensor:x1122

(3) /x1212
(3) 517.362.1. This

FIG. 2. CRS signal intensity versus the angleb between the polarization vectore1 of the pump wave and the
direction of the dc fieldE, collinear with the vectore2 . Dots — experimental data. Solid curve — calculatio
using Eq.~1!.
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result agrees well with the values of the invariants of the Raman scattering tensor
average polarizabilitya51.04310225 and anisotropyg50.79310225, measured ac-
cording to radiation absorption at the same transition in H2 in the presence of an externa
electric field.8

Taking into account the polarization properties of the CRS signal, one can dete
the orientation of the dc electric field can be in the general case by a procedure ba
measurement of the anglec between the collinear polarization vectors of the biharmo
pump ~the light waves with frequenciesv1 andv2) and the polarization vectoreCRS of
the CRS signal~inset in Fig. 3!. As a result of the rotation of the pair of collinear vecto
e1 ande2 in a certain plane, the anglec vanishes when the dc electric field vectors fall
this plane. The exact direction of the dc field can be reconstructed by searching f
maximum of the CRS signal. For the investigated transition in the hydrogen mole
the general procedure described above for determining the direction of the dc e
field can be simplified by taking into account the relation obtained between the co
nents of the nonlinear optical susceptibility tensor~the relation determining the polariza
tion properties of the CRS signal for this transition!. In this case, for collinear vectorse1

ande2 the direction of the polarization vector of the CRS signal, according to Eq.~1!, is
essentially the same, for any anglew, as the direction of the component of the dc fie
perpendicular to the wave vectors of the pump waves. The dependence of the mod
the anglea between the polarization vector of the CRS signal and the direction of th
electric field on the anglew between the direction of the dc field and the colline
biharmonic pump vectorse1 and e2 is shown in Fig. 3. The dots are the experimen
data. The solid curve was calculated using Eq.~1!.

Thus the investigation of the polarization properties of the CRS signal in molec
hydrogen in a dc electric field has made it possible to determine the ratio of the co
nents of the cubic nonlinear optical susceptibility tensor and the invariants of the R
scattering tensor of theQ(1) transition of molecular hydrogen (n50, J51→n51,
J51) in the electronic ground stateX1Sg

1 . The CRS polarization technique makes
possible to realize a convenient scheme for local contactless measurement of dc e
fields in molecular gases, which is promising for solving problems of diagnostics

FIG. 3. Modulus of the anglea between the polarization vectoreCRS of the CRS signal and the direction of th
dc electric fieldE versus the anglew between the direction of the dc field and the collinear biharmonic pu
vectorse1 ande2 . Dots — experimental data. Solid curve — calculation using Eq.~1!.
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gas-discharge plasma, including measurement of plasma fields and the paramete
ciated with them.
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Microscopic description of the kinetics of a martensitic
transition in real crystals: bcc–hcp transition in Zr

Yu. N. Gornostyrev, M. I. Katsnel’son, and A. R. Kuznetsov
Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences,
620219 Ekaterinburg, Russia

A. V. Trefilov
Kurchatov Institute Russian Science Center, 123182 Moscow, Russia

~Submitted 12 July 1999!
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The kinetics of the bcc–hcp transition in Zr in the presence of disloca-
tions is investigated by numerical simulation methods. It is shown that
the transition occurs in a nondiffusional~at a velocity of the order of
the speed of sound! in two stages: relatively long development of in-
stability of long-wavelength acoustic phonons and a fast stage of insta-
bility of short-wavelength phonons. The elastic stresses near a disloca-
tion make it possible for these instabilities to develop at much lower
temperatures than in an ideal crystal. ©1999 American Institute of
Physics.@S0021-3640~99!00318-7#

PACS numbers: 81.30.Kf, 64.70.Kb, 61.72.Lk

The description of the kinetics of first-order phase transitions is classic, bu
statistical physics problem is still topical.1–3 The kinetics of transitions such as th
liquid–gas transition4 and ordering in alloys,3 which occur in a diffusional way, have
now been investigated in detail using phenomenological approaches. At the same
the so-called martensitic phase transitions, which occur in a nondiffusional way, a
locities close to the speed of sound, are well-known.5 Even though these are first-orde
phase transitions, they are usually accompanied by a quite wide region of pretrans
anomalies, for example, softening of the phonon spectra.6,7 These features make marte
sitic transitions close to second-order transitions. Numerous attempts to describ
kinetics of martensitic transitions on the basis of a phenomenological approach8–10 have
left a number of fundamental questions unanswered. Judging from everything, th
rently known scenarios of homogeneous nucleation of a new phase do not agree w
experimental data, and crystal lattice defects should play a decisive role in
kinetics.10,11 In the last few years, attempts have been made to study the kinetic
martensitic transitions on the basis of a microscopic approach~the molecular dynamics
method!.11,12 However, in this methods the defects are either completely neglected12 or
else quite artificial models of the sources of internal stresses,11 which do not refelect the
real situation, are introduced to take these stresses into account. In the present le
propose a microscopic description of the kinetics of a martensitic transition in zirco
in the presence of typical defects, such as dislocations.
3800021-3640/99/70(6)/5/$15.00 © 1999 American Institute of Physics



iagram
he
s with

,

tran-
e. A
g the
l
ere

o-
s also.

e tem-

Zr it
rue
of the
con-
e.
o

icro-
not
quali-
oled

m the
he
ntail-

f this

u-
ite
ed,
new

onal
-
nish,

lcula-
imilar

381JETP Lett., Vol. 70, No. 6, 25 Sept. 1999 Gornostyrev et al.
The interatomic interaction was described by multiparticle potentials,13 which satis-
factorily reproduce the elastic properties, the phonon spectrum, and the phase d
~temperature–pressure! of Zr. Numerical simulation of the bcc–hcp transformation by t
molecular dynamics method was performed in the presence of edge dislocation
Burgers vectorŝ100& and 1/2̂111& ~such dislocations are typical for a bcc lattice!. We
note that dislocations with Burgers vectors^100& are inherited in a bcc–hcp transition
remaining whole~unsplit!,14 while dislocations with Burgers vectors 1/2^111& split into
partial dislocations, forming a stacking fault band, complicating the picture of the
sition. Here we shall present in detail the results for dislocations of the first typ
rectangular crystallite in the form of a slab with a thickness of 12 atomic planes alon
Z axis ~theZ axis is directed along the dislocation line and theX axis is directed paralle
to the Burgers vector! contained about 10,000 atoms; periodic boundary conditions w
used in all three directions. To ensure periodicity in theX and Y directions, a pair of
dislocations of opposite sign~a dipole! was introduced into the crystallite. These disl
cations were repeated as dislocations of the images outside the crystallite boundarie
The average kinetic energy of the atoms was used to check the constancy of th
perature.

A bcc structure was prescribed as the initial configuration in the crystallite. In
is metastable at temperaturesT,1136 K, and an hcp lattice corresponds to the t
minimum of the free energy. This feature can be correctly described on the basis
model which we employed for the interatomic interactions. Despite this, the initial
figuration remained stable atT5300 K throughout the entire, quite long, simulation tim
Specifically, the crystallite remains in a bcc phase after 105 steps~one step corresponds t
10215 s!, while in the presence of dislocations the transition is completed after 104 steps.
This is explained by the quite high barrier separating the bcc and hcp phases~see, for
example, the form of the potential relief for a bcc–hcp transition according to the m
scopic calculations for barium;15 unfortunately, the corresponding calculations have
been performed for zirconium, but the form of the relief in these cases should be
tatively similar!. Therefore dislocations initiate a rapid transformation of the superco
metastable bcc phase.

Figure 1 shows the stages of the nucleation of the bands of the hcp phase fro
bcc phase near dislocations atT5300 K. According to generally accepted ideas, t
crystal geometry of a bcc–hcp transition is determined by a Burgers deformation e
ing a long-wavelength shear strain and a short-wavelength deformation~the mode
N48).

15,16 The computational results make it possible to describe the development o
transition in time. A stage in which an instability of long-wavelength~acoustic! trans-
verse phonons with vectork i ^110& develops is observed first. Then the initially sin
soidal oscillations~Fig. 1a! transform into a sequence of kinklike excitations with qu
sharp boundaries~Figs. 1b and 1c!. Next, after a series of domain boundaries has form
a short-wavelength instability, which determines the specifically hcp character of the
phase~Fig. 1c!, develops in a very short time. This is clearly seen from the computati
results for the radial distribution function of the atoms~Fig. 2!, where the peaks corre
sponding to the position of the first, second, and third neighbors in the bcc lattice va
and similar peaks for the hcp structure appear.

The transition picture described above is not dictated by dislocations. Our ca
tions show that in the absence of dislocations the transition occurs according to a s
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scenario and over comparable times if the temperature is increased to 1000 K. It sh
be underscored that nucleation of a new phase starts not with the appearance of indiv
nuclei8 but rather with the development of a phonon instability, as proposed in Ref.
The prerequisites for the appearance of this instability seem to be the presence of a
branch of transverse phonons in the^110& direction and strong anharmonicities of the
potential for this branch in bcc Zr.17 As a result, contrary to the existing general ideas
about the kinetics of first-order phase transitions,1,2 the new phase can arise immediately
in the form of an ordered system of twins, and the stage of growth of a solitary nucle
does not occur at all. From the standpoint of the soliton approach in the theory
martensitic transitions,9 the formation of such a system of twins can be naturally de
scribed as the appearance of a soliton lattice as a result of the instability of sm
amplitude phonons with respect to self-modulation~see Ref. 6!. In other words, this can
be related to minimization of the elastic energy of the system by formation of twins.5 The
relation between the soliton approach and these considerations has been discuss

FIG. 1. Projection on the~001! plane of the crystallite under study at different stages of the bcc–hcp transitio
at 300 K after 18000~a!, 28000~b!, and 43000~c! steps. The symbol' marks dislocations with Burgers vectors
6^100&. During relaxation, dislocations move away from the initial dipole configuration, stopping on tw
boundaries~Fig. 1c!. The dashed lines show the evolution of the initially sinusoidal waves, corresponding to t
soft mode, into a soliton lattice~system of twins!.
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detail in Ref. 18. It should be underscored that although in our calculations the e
crystallite transformed into the hcp phase~which is due to its relatively small size!, the
choice of periodic boundary conditions simulates to some degree the ‘‘compressed’
of the precipitates of the new phase in the bcc matrix during a real martensitic tran
mation. A procedure that simulates constant-pressure conditions could give a dif
picture of the transition.19 Such a procedure corresponds to an idealized picture
crystal with no internal stresses. As to the generality of our results, it can be sup
that at least the initial stages of development of the instability of the acoustic phonon
universal for a transition from a bcc to any close-packed structure, since these tran
are all due to the ‘‘softness’’ of the bcc lattice with respect to the shear strain assoc
with a ^110& phonon with polarization vector̂1̄10&.7 At the same time, the final stage o
the development of instability, associated with anN48 phonon, is specific to a transition t
an hcp structure. It would be interesting to check these considerations by mode
transition for other metals.

In conclusion, we shall correlate our results with various phenomenological i
about the role of dislocations and other defects in the kinetics of marten
transitions.10,20 In Ref. 10 the important role of ‘‘soft’’ regions near defects, where
local shear modulus is much smaller than in an ideal crystal or even negative, is u
scored. In Ref. 20, the change in the energy difference between two phases, i.
decrease in the height of the barrier near a dislocation, as a result of elastic stress
considered to be the main factor. The first point of view undoubtedly agrees better
the ‘‘wave’’ nature, demonstrated here, of a martensitic transition~phonon instability!.
Our computational results show that the instability of acoustic phonons, which ultim
results in the formation of a system of twin boundaries, develops first near a disloc
in a region making an angle of 45° with the Burgers vector. This region correspon
the maximum shear strain and a small dilatation.21

We thank our colleagues J. Morris and D. Turner at the Ames Laboratory of th
Department of Energy for providing the molecular dynamics programs and the i

FIG. 2. Evolution of the radial distribution function in the process of a bcc–hcp transition. The curves a,
c correspond to the transformation stages shown in Figs. 1a, 1b, 1c, respectively. The positions of th
second-, and third-nearest neighbors in the bcc structure are denoted by 1, 2, and 3 and the positions in
structure are denoted by 18, 28, and 38, respectively.
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atomic interaction potentials for zirconium. This work was supported by the Rus
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Long-range influence of weak optical irradiation
of silicon

D. I. Tetel’baum,* ) V. A. Panteleev, and M. V. Gutkin
Scientific-Research Physicotechnical Institute, N. I. Lobachevski Nizhni� Novgorod
State University, 603600 Nizhni� Novogorod, Russia

~Submitted 16 July 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 6, 381–385~25 September 1999!

We report a new effect, observed experimentally in silicon under irra-
diation with visible-range light with a power density of 0.2–1.5 W/cm2

for 8 s. The effect consists in an increase of microhardness on the side
opposite to the irradiated side and is not purely thermal in character.
After irradiation, the changes decrease exponentially with time with an
activation energy of 0.7560.05 eV, a value which is characteristic for
the migration and reorientation of one of the types of intrinsic intersti-
tial atoms. A qualitative explanation is given for the effect on the basis
of a model previously proposed for the case of long-range influence of
ion irradiation. © 1999 American Institute of Physics.
@S0021-3640~99!00418-1#

PACS numbers: 61.82.Fk, 61.80.Ba, 61.80.Jh, 81.40.Wx

In the present work we have observed a new effect, which lies at the inte
between two groups of previously studied phenomena: long-range influence~LRI! of the
irradiation of solids by charged particles1–3 and defect formation in semiconductors und
photon irradiation.4,5 LRI was first observed for ion irradiation of semiconductors a
metals. The crux of this effect consists in a change in the structure and propert
anomalously large depths, hundreds and thousands of times greater than the ion
Later it was found that a similar effect also occurs for other types of influences actin
the surface layer of solids, such as electron irradiation, polishing, plasma and che
etching, rubbing, and so on. In some cases the effect can be explained on the b
conventional ideas based on the existence of strong nonstationary heating of a sub
layer and accompanying phenomena, e.g., nonuniform deformation and the excita
shock waves. In other cases, however, the heating is clearly insufficient for these
nomena to appear. This latter category includes the effects investigated in our pre
studies: a low-dose long-range influence~LD-LRI ! in metals,3 and LRI in silicon.6–9 We
have proposed1–3,6–8a model of LRI based on the idea of the generation of elastic wa
in the zone of energy release and their interaction with extended defects. The role
latter follows from the fact that the LD-LRI and LRI in silicon have been observed o
in materials containing a high density of extended defects — grain boundaries, subg
dislocation loops, stacking faults, and so on.

An important characteristic feature of LD-LRI is the absence of any correlation
the mechanism of direct transfer of energy from the particle beam to the solid —
mechanism manifested almost identically under irradiation with heavy or light ion
3850021-3640/99/70(6)/5/$15.00 © 1999 American Institute of Physics
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with electrons, while nuclear~elastic! stopping dominates in the first case, electron
stopping dominates in the second case, and in the third case all of the energy
incident particles is initially transferred to the electronic subsystem. On the basis o
fact it was natural to consider a different group of phenomena — subthreshold d
formation in semiconductors. There is extensive literature on this question~see Refs. 4
and 5!, concerning irradiation by electrons, hard~vacuum! ultraviolet radiation, x rays,
and light ~photochemical reactions10!. Numerous experimental data on the stimulat
diffusion of impurities and the change in the electric and optical properties are discu
various models of subthreshold defects are presented. These works border on the
tigation of the so-called photomechanical effect — the change induced in the micro
ness of semiconductors and dielectrics by illumination directly during indentation b
indenter.11 It has also been reported that changes in the mechanical properties a
served when metal films and foils are illuminated by vacuum ultraviolet light.12 Since the
penetration depth of vacuum ultraviolet light in metals is very short, such changes c
explained only by LRI.

In Ref. 13 we reported a photomechanical memory effect in metals. It was e
lished that the microhardness of Permalloy foils changes on the side opposite
irradiated side under irradiation with a 0.95mm laser. The effect was not due to heatin
and was explained on the basis of a model which we used previously for the ca
LD-LRI under ion irradiation.

On this basis it could be conjectured that a long-range influence of relatively w
light fluxes on the properties of semiconductors is in principle possible and is not lim
by purely electronic processes, but rather it can be caused by structural changes
ever, no indications of this for elementary covalent semiconductors~such as silicon or
III–V compounds! could be found in the literature, with the exception of data on
light-stimulated diffusion of certain impurities~Au and others!.4,5

In the present work we used 0.5 mm thick silicon wafers subjected to the
oxidation in a ‘‘dry–wet–dry’’ cycle.~It was established previously7 that in oxidized
silicon, where the surface layers are enriched with oxidizing stacking faults, the L
strongest under ion irradiation.! Prior to oxidation the wafers were polished on one s
mechanically and on the other side by a chemical-mechanical method followed b
namic etching. The oxide layers were removed prior to irradiation. The mechani
polished side was irradiated fort 58 s by light from a 300 W halogen lamp with ligh
flux intensityI 50.221.5 W/cm2. After irradiation from the opposite side, measureme
of the microhardnessH under a 200 g load were performed. The microhardness me
was chosen because it was a test method for investigating LRI in solids. ChangeH
signal the presence of not only electronic but also structural changes, which shou
investigated later by more precise methods. It was found beforehand that for all pra
purposes the changes inH do not increase fort .8 s. A 20 g load was close to optima
from the standpoint of compromising between the sensitivity ofH to irradiation and
minimization of the experimental error. The error in the measurements ofH with allow-
ance for the statistics did not exceed 3% at a 0.95 probability level. The time bet
illumination and measurements ofH was ~except in the relaxation experiments! of the
order of 10–100 min. Most experiments were performed using a ZhS-16 light fi
which absorbs radiation withl<0.5 mm. This was done in order to cut off any possib
effects which are characteristic for high photon energies~these are described in Refs.
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and 5!. To decrease the heating of the samples with a light beam, the samples
mounted on a massive metal flange; the temperature did not exceed 50°C. To im
heat removal, some samples were mounted on the flange through a layer of va
grease, in which case there was virtually no heating.

The experiments showed that irradiation increasesH, the increase reaching 20%
Before discussing this phenomenon from the standpoint of the mechanisms whic
proposed previously for ion irradiation, the possibility of alternative explanations mu
considered.

1. Effect of purely thermal action of a light beam.As a check, we performed
annealing in a furnace at 130°C, i.e., at a temperature known to be much higher th
temperature reached under the beam. The value ofH did not change within the limits of
error. The fact that the effect did not occur for samples in which a;20 mm layer
enriched with stacking faults was removed from the irradiated side beforehand confi
the athermal character of the effect. The influence of this layer is discussed belo
addition, the effect did not vanish when the samples were mounted with vacuum g

2. Influence of light penetration to the back side.In our case this factor can also b
ruled out. Only photons with energyEph<Eg , whereEg is the band gap, penetrate
through the thickness of the sample. However, when a silicon filter was used, no ch
were observed inH on the sample side turned toward the filter~or on the opposite side!.
At the same time, the effect did not vanish when filters transmitting light with pho
energyEph>2 eV, for whichk21,3 mm ~k is the absorption coefficient!, were used.

3. Influence of excess minority carriers on the back side.This factor is also unim-
portant, since the diffusion length of the minority carriers was;20mm, i.e., more than an
order of magnitude smaller than the thickness of the samples. Moreover, thinnin
samples by a factor of 2 did not intensify the effect but rather weakened it~because the
layers enriched with stacking faults were etched off!.

Thus, the effect is clearly due to the fact that photons exciting electron–hole
are absorbed in the sample. Moreover, extended defects — oxidizing stacking fau
play an important role. Comparing these facts with previously obtained results on
under ion irradiation,1–3,6–8, we can infer with a high degree of assurance that this ef
is based on the same mechanism, specifically, the generation of elastic waves an
interaction with a system of defects in the presence of positive feedback betwee
elastic waves and the system of defects. For ion irradiation the source of elastic wa
reactions between radiation defects and~or! thermal peaks.1 For irradiation with light,
elastic waves arise when the excited carriers recombine via recombination centers~point
defects!. In accordance with the Lang model,4,5 the energy released in the process
transferred to a defect, increasing the oscillation amplitude of the defect. Subsequ
chain processes with the participation of extended defects come into play. Thes
cesses ultimately result in energy transfer to defects near the back side of the plate
concomitant change inH. This mechanism has been described in greater detail in Re
and 8 for ion irradiation, and the details of the mechanism for photon irradiation wi
presented separately~see also Ref. 13!.

Figure 1 shows the dependence of the magnitude of the effect~the relative increase
in H! on the power density, regulated by the source–sample distance. The charac
nonlinearity of the dependence and the presence of a threshold power have been ob
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previously for ion irradiation of silicon,6 and these dependences are quantitatively v
close, once again confirming that both effects are of the same nature.

In contrast to the case of ion irradiation, here the change inH is unstable in time and
relaxes exponentially over several days, i.e., relaxation occurs as a result of a mo
lecular reaction~Fig. 2!. The activation energy of the process was found by acceler
relaxation at temperature 60–100°C to be 0.7560.05 eV. This is close to the migratio
and reorientation energy of one of the types of intrinsic interstitial silicon atoms.14 It can
be inferred that the reactions involving the participation of intrinsic interstitial atoms l
the structural relaxation process after irradiation near the surface — at the boundar
the native oxide.

Let us discuss the effect observed here from the standpoint of comparison wi
data obtained by other authors. Subthreshold defects in semiconductors have been
tigated predominantly for irradiation by electrons and x rays. For InSb and Ge
effects have been explained on the basis of an impurity–ionization mechanism, w
however, is ineffective for Si.5 For the latter, the subthreshold mechanism of def
formation is attributed to ionization of theK shell, which is ruled out for irradiation with
light. Dissociative~photochemical! mechanisms, discussed for complex semiconducto5

are also inapplicable to Si. The defect formation mechanism proposed by She�nkman10 is
also applicable in its general form for elementary semiconductors, but it does not ex
the long-range influence. The situations studied in works on the effect of light on im
rity diffusion in silicon are substantially different from our case. Therefore we are ind
dealing with a new effect.

FIG. 1. Relative change in the microhardness versus the power density under irradiation with light thro
ZhS-16 light filter.

FIG. 2. Change in the microhardness at room temperature after irradiation with light with power dens
W/cm2.
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If long-range changes in the structure and properties exist in semiconductors i
ated with relatively weak light fluxes, then this is important for studying a variety
electric and photoelectric phenomena in semiconductor materials and devices. Suc
nomena could be one reason for the interaction of functioning structures in matric
transistors, avalanche diodes, and so on. They could influence the degradation an
properties of devices~injection of charge carriers can be realized not only by light
also by an electric field! and also on the properties of low-dimensional structures.
criterion of a high density of extended defects is not too strong a constraint — it hol
a wide class of semiconductor devices, including many low-dimensional struc
~quantum wells and quantum dots!.

Let us conclude by offering some reasons why the effect has not been obs
earlier.

1. It can be observed only when the following conditions are satisfied sim
neously: adequate power density; presence of specific extended defects, for ex
stacking faults; limited time interval between the action and the measurement~on account
of relaxation!; definite duration of the action.

2. Ordinarily, the phenomena occurring on the nonworking side of a wafer we
interest from the standpoint of impurity gettering, while the possibility of the interac
of structural elements on the working side have been considered only in their p
electronic or photoelectronic aspects or from the standpoint of static fields of e
stresses. Our investigation of the effect was stimulated by the study of LRI unde
irradiation.

* !e-mail: ett@phys.unn.runnet.ru
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Antipolarization effect in quantum wells in a strong
external alternating field

V. A. Burdov* )

N. I. Lobachevski Nizhnii� Novgorod State University, 603600 Nizhni� Novgorod, Russia

~Submitted 8 October 1998; resubmitted 24 May 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 6, 386–391~25 September 1999!

It is shown that when a strong ac electric field acts on an electron in a
double quantum well, the dipole moment is an almost periodic function
of the dc voltage applied to the structure. An antipolarization effect —
the structure is polarized in a direction opposite to the external field —
appears during one half of the period. ©1999 American Institute of
Physics.@S0021-3640~99!00518-6#

PACS numbers: 73.20.Dx

Processes associated with the interaction of powerful laser radiation with the
tronic subsystem of various quantum heterostructures, specifically, heterostructure
a double quantum well, have been increasingly studied in recent years. Phenomen
as the dynamic localization of the electronic wave function in one of the wells by a st
ac field,1–3 low-frequency generation of electromagnetic radiation,4,5 and absolute nega
tive resistance,6,7 have been observed. In the present letter a completely new effe
reported — an antipolarization effect. The crux of this effect is that in the presence
strong ac perturbation a quantum system becomes polarized in a direction opposite
external dc electric field.

We shall describe the symmetric double quantum well by a two-level model (E0,1

56\D/2) with the wave functionsx0(x) andx1(x), which are symmetric and antisym
metric, respectively, and for which the quantityx0

2(x)2x1
2(x) is negligibly small along

the entirex axis. We suppose that the external field consists of two parts — a dccom-
ponentV̄(x) ~its average value! and an ac componentṼ(x,t) with frequencyv, and we
assume that the matrix elementsV̄01 and Ṽ01(t) calculated in the dipole approximatio
are much greater than the transition energy\D.

The objective of the present work is to calculate the electronic dipole moment
strong periodic external fieldṼ(x,t) and to analyze the dependence of the dipole mom
on the dc voltage2V̄(x)/e ~2e is the electron charge! applied to the system.

In a strong periodic external field the stationary states with definite energy
effectively replaced by states with definite quasienergy.8 The wave functions of the
quasienergy states then have the Bloch form

U~x,t!5F~x,t!e2 int, ~1!
3900021-3640/99/70(6)/6/$15.00 © 1999 American Institute of Physics
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wheret5vt, the numbern is a dimensionless quasienergy calculated in units of\v, and
the quasienergy functionF(x,t) is periodic int with period 2p.

We shall seek the functionF(x,t) in the form of an expansion in an orthonorm
basis of functionsC6(x)5(x0(x)6x1(x))/A2 localized in the right-hand (C1) and
left-hand (C2) wells:

F~x,t!5A~t!expH i S gt/21E v~t!dt D J C2~x!1B~t!

3expH 2 i S gt/21E v~t!dt D J C1~x!, ~2!

where g52V̄01/\v, v(t)5Ṽ01/\v, and A(t) and B(t) are functions of time to be
determined. Substituting the wave function~1! with F(x,t) in the form ~2! into the
Schrödinger equation, we obtain the following equations forA(t) andB(t):

i
dA

dt
1nA52

B

2 (
n52`

`

mne2 icne2 i (g2n)t,

i
dB

dt
1nB52

A

2 (
n52`

`

mneicnei (g2n)t , ~3!

where

mn exp$ icn%5
D

2pvE0

2p

dt expH i S nt12E v~t!dt D J ~4!

is D/v times the amplitude of thenth Fourier harmonic of the function exp$2i*v(t)dt%
~i.e., mnv/D is the modulus of the harmonic!.

The coefficients~4! of the Fourier expansion, by definition, do not depend on
external dc field but are functions of the amplitude and frequency of the variable
ponent of the external field. In addition, since the amplitude of the variable perturb
is assumed to be large, the integrand in Eq.~4! is rapidly oscillating, and therefore th
value of the integral is small. For example, for a purely harmonic perturbationṼ01(t)
5W cosvt, the coefficientsmn are equal toJn(2W/\v)D/v, whereJn(x) are Bessel
functions of argumentx. If W/\v@1, the coefficientsmn will be small for anyn. For a
nonharmonic but, as before, periodic perturbation, the integral in Eq.~4! can be calcu-
lated by the method of stationary phase, as was done in Ref. 9. The conclusion thamn is
small remains valid, making it possible to solve the system~3! analytically.

Of greatest interest is the solution in the so-called resonance case, when the
tion frequency between energy levels is a multiple of the frequency of the external
When the dc component of the external field is large, as we assumed initially, the
sition frequency is 2V̄01/\, and therefore the resonance condition can be expressed

g5n, n51,2,3, . . . ~5!

Generally speaking, the solution obtained in the resonance approximation holds on
narrow rangeug2nu!1 and cannot be extended to the entireg axis. However, it will be
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shown below that when the coefficientsmn are small,mn!ug2nu!1, the solutions
obtained will be entirely adequate at least for a qualitative understanding of the e
described here.

Let us obtain the solution of Eqs.~3! near an arbitrarylth resonance. For this, a
usual, we drop in Eq.~3! all ‘‘fast’’ harmonics, retaining in the sums only the ‘‘slow’
term with n5 l . Then the system~3! can be easily solved, giving two quasienergy fun
tions:

F6~x,t!5C6~x!A1

2
1

d

2h
exp$7 iw l~t!%7C7~x!A1

2
2

d

2h
exp$6 i ~w l~t!2c l !%,

~6!

corresponding to two values of the quasienergy

n656
h

2
56

1

2
Am l

21d2. ~7!

Here we have introduced the detuning from resonanced5g2 l and the functionw l(t)
5*(v(t)1 l /2)dt.

Now it is easy to find an expression for the electronic dipole moment in quasien
states near thelth resonance. Using for this purpose the wave functions~6!, we obtain

D6~d!57ex01

d

Ad21m l
2

, ~8!

where x01 is the matrix element of the coordinate operator~for definiteness we shal
assume it to be positive!.

In accordance with Eq.~8!, the dipole moment, for example, of the ‘‘1’’ state in the
region of negative values ofd far from resonance, is close to its maximum possi
positive valueex01. A transition through the resonance point is accompanied by
abrupt change in sign of the dipole moment, with the minimum possible value2ex01

being rapidly approached asd increases. To all appearances, a further increase of
distance from resonance~in the regionudu;1! should not greatly influence the dynamic
of the system. For this reason, the dipole moment will remain at its maximum or m
mum value until the system reaches the region of the next (l 21)th or (l 11)th reso-
nance, where once again the dipole moment vector flips abruptly.

Evidently, such flipping will always occur when the parameterg assumes its nex
integer value. Then the distance between the energy levels, initially coupled with
another by a resonancel-quantum process, will change by the energy of a single quan
of the external ac field.

Therefore the dependence of the dipole moment on the parameterg ~i.e., on the
external dc field! in quasienergy states is almost periodic with a ‘‘period’’ of 2. Sm
deviations from periodicity will be observed in a small neighborhood of the reson
point g5n, where the dipole moment changes sign. The width of the differential of
function D6(g) near resonance is determined primarily by the values of the coeffic
mn , and since in general all coefficientsmn are different, strict periodicity is impossible
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Therefore in one ‘‘half period’’ the direction of the dipole moment is the same as
direction of the external dc field, and in the next ‘‘half period’’ the system is polari
opposite to the field, with the dipole moment reaching its largest values in both c
Therefore an antipolarization effect, due to the additional effect of the strong ac fie
an electron, arises in one of the ‘‘half periods’’ in the system.

It is easy to understand this behavior ofD6(g) if the structure of the quasienerg
states~6! is taken into account. For example, near thelth resonance for negative values
the parameterd ~such thatm l!udu!1) the functionF1(x,t) is identical~to within an
unimportant exponential phase factor! to the functionC2(x) and is therefore completely
localized in the left-hand well. Then the polarization of the system has its maxim
value, and the system is almost insensitive to further decreases ofd.

As exact resonance is approached~d50!, the degree of localization of an electron
the left-hand well decreases and a portion of the wave function is transferred int
right-hand well. If the resonance condition holds exactly, the quasienergy fun
F1(x,t) fills both wells equally. An increase ofd results in further filling of the right-
hand well and emptying of the left-hand well. Finally, ford@m l the entire wave function
is completely localized in the right-hand well, which once again gives a maximum d
moment, but this time the moment is directed in the opposite direction.

As expression~7! shows, at resonance~d50! the quasienergy branches approach
close as possible to one another to a value determined by the coefficientm l . In the zeroth
approximation, corresponding tom l50, the quasienergy branches intersect one anot
i.e., degeneracy of the quasienergy spectrum, also called a quasienergy resonance
The degeneracy is lifted when the finiteness of the coefficientsm l is taken into account —
the quasienergy levels are ‘‘split’’ and a gap of widthm l forms between the quasienerg
branches. In this case the wave functions of the quasienergy states are symmet
antisymmetric linear combinations of the two initial, zeroth-order wave functions, ju
happens for degenerate stationary states. In our case the zeroth approximation
sponds to departure from resonance — when there are two quasienergy functions
are virtually completely localized in the left-hand and right-hand wells. For this rea
for d50 their superposition with coefficients of equal absolute magnitude will necess
give a wave function that occupies equally the left- and right-hand wells, as ca
directly verified using expression~6! with d50. It is obvious that the dipole moment o
the system should vanish at the resonance points, and that is just what express~8!
gives.

A strong ac field couples the two zero-order quasienergy states localized in diff
wells. For this reason a transition in the parameterd from negative to positive value
through the resonance point results in a continuous transfer of the quantum system
one quasienergy state in the zeroth approximation into the other, and this transit
accompanied by a relocation of the electronic wave packet from one well to the ot

As we have said, no substantial changes in the functionF1(x,t) will occur in the
entire range of values ofd between two resonances untilg approaches the next resonan
value l 11 ~i.e., d51!. Here a reverse transition of the electronic wave packet will oc
— from the right-hand to the left-hand well, with the successive change in the dire
of the polarization vector. Evidently, each successive transition through the next
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nance point will be accompanied by a transfer of the wave packet from one well t
other.

The behavior of the functionF2(x,t) is completely opposite to that ofF1(x,t):
When one function is localized in the left-hand well, the other is localized in the ri
well, and vice versa. For this reason, the dipole moments in the1 and2 states differ in
sign.

In the most general case the wave function of the system is a superposition o
quasienergy states and can be represented by an expansion in an orthonormalized
functionsU6(x,t):

C~x,t!5C1U1~x,t!1C2U2~x,t!. ~9!

As was shown in Ref. 8, the expansion~9! in the basis of quasienergy functions,
contrast to the expansion in other bases, possesses an important property: The ex
coefficientsC6 do not depend on time and are always constant. For this reason, if a
identical to one of the quasienergy states is prepared initially~i.e., one of the coefficients
in the expansion~9! is 0 and the other is 1!, the system remains in the given quasiener
state with probability 1. This can be easily achieved in practice by imposing on
symmetric double quantum well first a strong dc field (V̄01@\D), which results in lo-
calization of particles in the lower level~in the lower subband! in one of the wells, and
then an ac field. The intensity of the dc field and the frequency of the ac field mu
chosen such that the system is far from resonance, i.e., the condition~5! is far from being
satisfied. Since in the nonresonant range of values ofg the functionsU6(x,t) are local-
ized in different wells, it is obvious that the particles will ‘‘occupy’’ the quasienergy s
whose wave function is localized in the well containing the particle at a given mom
Subsequently, the dc field can be varied adiabatically without causing transitions o
quantum system from one quasienergy state into another, but transferring charge
one well into another with each passage through the next resonance~5!.

Taking, for estimates, the width of each well and the thickness of the barrier s
rating the wells to be 10 nm, the barrier height to be the same in order of magnitu
the values ofE0,1, i.e.,20.1 eV, and the carrier mass to be of the order of a tenth of
free-electron mass, we obtain the transition energy\D to be of the order of 1023 eV. To
‘‘separate’’ the energy levels substantially, increasing the transition energy severalf
even by an order of magnitude, will require dc fields;103 V/cm, which are easily
attainable. At temperaturesT;10 K, which is ordinarily the case in experiments of th
kind ~see, for example, Refs. 5 and 7!, the thermal energy is approximately an order
magnitude smaller than the distance between the levels.

If the surface electron densityns;1011cm22, the Fermi level will lie above the
ground state by an amount of the order of 1023 eV, comparable to the thermal energ
Under these conditions most particles will be in the lower energy subband in one o
wells and will remain there until the ac field is switched on. The latter field can
produced using submillimeter-range lasers, which gives frequenciesv of the order of the
transition frequencyD.

In summary, estimates show that dynamical polarization effects in a double qua
well can be observed experimentally.
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Single-particle excitations and the order parameter
for a trapped superfluid Fermi gas

M. A. Baranov
Kurchatov Institute Russian Research Center, 123182 Moscow, Russia

~Submitted 24 August 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 6, 392–397~25 September 1999!

It is found that the character of single-particle excitations of a trapped
neutral-atom Fermi gas is strongly influenced by a superfluid phase
transition. Below the transition temperature the presence of a spatially
inhomogeneous order parameter~gap! shifts the excitation eigenener-
gies upward and leads to the appearance of in-gap excitations localized
in the outer part of the gas sample. The eigenenergies become sensitive
to the gas temperature and are no longer multiples of the trap frequen-
cies. These features should manifest themselves in a strong change of
the density oscillations induced by modulations of the trap frequencies
and can be used for identifying the superfluid phase transition.
© 1999 American Institute of Physics.@S0021-3640~99!00618-0#

PACS numbers: 05.30.Fk, 64.70.2p, 67.20.1k

The physics of ultracold trapped atomic gases has attracted a lot of attention af
discovery of Bose–Einstein condensation.1–3 Trapped neutral-atom Fermi gases, wh
cooled to a sufficiently low temperature, should also exhibit prominent macrosc
quantum phenomena which are mostly related to a superfluid pairing phase tran
Possible versions of this phase transition in atomic samples have recently been dis
in Refs. 4–7. However, as only a small fraction of the particles is influenced by
pairing, it is not entirely clear how the transition will manifest itself in the dynamic a
kinetic properties of the gas.

In this letter we indicate a clear way of identifying the pairing transition in a trap
Fermi gas. We study single-particle excitations and show that they are strongly
enced by the pairing. Above the transition temperatureTc the excitation eigenfrequencie
are multiples of the trap frequencies. It turns out that belowTc the presence of the orde
parameter shifts the eigenenergies upward and creates conditions for the existe
in-gap excitations localized in the outer part of the gas sample in the well formed b
gap and the trapping potential. The eigenenergies become sensitive to the gas temp
and are no longer multiples of the trap frequencies. This should strongly chang
response of the gas to modulations of the trap frequencies~see below!.

The influence of pairing on single-particle excitations is essentially the same fo
types of pairing discussed in Refs. 4–7, and for simplicity we confine ourselves t
case of thes-wave pairing. We consider a two-component neutral gas of fermionic at
trapped in a spherically symmetrical harmonic potential. The two~hyperfine! components
3960021-3640/99/70(6)/7/$15.00 © 1999 American Institute of Physics
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labeled asa and b are assumed to have equal concentrations. The Hamiltonian o
system has the form~\51!

H5 (
i 5a,b

E drc i
1H0c i1VE drca

1cacb
1cb , ~1!

wherec i(r ) with i 5a,b are the field operators of thea and b atoms,H052¹2/2m
1mV2r 2/22m, V is the trap frequency, andm is the chemical potential which greatl
exceedsV in the Thomas–Fermi limit~see e.g., Ref. 8! discussed below. The secon
term in Eq.~1! assumes an attractive elastic interaction between atoms in the statesa and
b ~s-wave scattering lengtha,0); hereV54pa/m is the coupling constant andm is the
mass of an atom.

The presence of a negatives-wave scattering length for the intercomponent inter
tion leads to a superfluid phase transition via Cooper pairing in thes-wave channel,6 with
the critical temperatureTc!m. Being interested in the effect of this transition, we co
sider temperaturesT!m, where the chemical potential coincides with the Fermi ene
at the center of the trap:m'«F5pF

2/2m, and the Thomas–Fermi radius of the gas sam
RTF5vF /V serves as a unit of length (vF5pF /m). In this temperature range a sma
parameter of the theory isl52uaupF /p!1. The density profile of the gas isn(R)
5n0(12R2)3/2, wheren05pF

3/3p2 is the maximum gas density, andR the distance from
the origin in units ofRTF . This density profile corresponds to the local Fermi moment
pF(R)5pF(12R2)1/2, and the density of states on the local Fermi surfaceN(R)
5mpF(R)/(2p2). To be precise, the above formulas should be modified in the pres
of the interaction. The leading mean-field corrections are smooth and small~}l!. They
also result in a uniform shift of the particle eigenenergies in the vicinity of the chem
potential level. This shift can be absorbed by redefiningm.

We assume that the critical temperatureTc of the pairing transition is much large
than V and, hence,Tc is very close7 to the critical temperatureTc

(0)50.28«F

3exp(21/l) in a spatially homogeneous gas with densityn0 ~Ref. 9!. Below Tc the gas
is characterized by the presence of the order parameterD(R)5uVu^ca(R)cb(R)&. Fol-
lowing a standard mean-field procedure~see, e.g., Ref. 10!, we can write the term de
scribing the interparticle interaction in Eq.~1! in the form D(R)ca(R)cb(R)
1D* (R)cb

†(R)ca
†(R). Then the Hamiltonian~1! becomes bilinear and can be reduced

a diagonal form by using the Bogolyubov transformation generalized for the spa
inhomogeneous case~Ref. 10!:

S ca~R!

cb~R!
D 5(

n
FUn~R!S an

bn
D 1Vn* ~R!S bn

†

2an
†D G ,

wherean and bn are the operators of single-particle excitations. Their wave funct
Un(R), Vn(R) satisfy the Bogolyubov–de Gennes equations

H0S Un

Vn
D 1S D~R!Vn

2D* ~R!Un
D 5«nS Un

2Vn
D , ~2!

where«n>0 are the excitation energies.

In the vicinity of Tc the order parameter can be found from the Ginzburg–Lan
equation:7
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D~R!55.15•TcA~Tc2T!/Tc exp~2R2/2l D
2 !, ~3!

where l D
2 5kA2l/(112l)!1, andk50.13(V/Tc). At lower temperatures, where th

Ginzburg–Landau approach is not valid,D(R) can be obtained from the Eilenberg
equations,11 which in the presence of a harmonic trapping potential read

igv8 1~D• f v2D* • f̃ v!/V50,

i f v8 2~2iv f v12D* •gv!/V50, ~4!

ĩ f v8 1~2iv f̃ v12D•gv!/V50,

where the prime symbol stands for the operator (pF(R)/pF)(n–¹R). Equations~4! follow
from the well-known Gor’kov equations12 under the assumption«F(R)@T. The func-
tions f v , f̃ v , andgv depend on the positionR and the unit vectorn, f v5 f v(R,n), etc.,
and obey the constraintf v(R,n) f̃ v(R,n)2gv

2 (R,n)51/4 ~see Ref. 11 for more details!.

Equations~4! must be completed by the self-consistency condition

D~R!5uVu•2pN~R!T(
v

E dn

4p
f v~R,n!, ~5!

where the summation is performed over the Matsubara frequenciesv5pT(2n11).

For realD the functionf̃ v(R,n)5 f v(R,2n), and the solution of Eqs.~4! for f v , if
the terms of order (V/AT21D2)3 are omitted, can be written as

f v5
D

2Av21D2
1

v

4

VD8

~v21D2!3/2
1V2Fv2

16

2~v21D2!D925D~D8!2

~v21D2!7/2 G , ~6!

where the prime has the same meaning as before. Equations~6! and~5! provide us with
an equation for the order parameterD(R). Actually, the first term of Eq.~6! gives a
formally divergent quantity(vpT/Av21D2. To eliminate this divergency we renorma
ize the coupling constantV in the same way as has been done in the Bogolyubov me
~see, e.g., Ref. 13!. Then we obtain

D

lN~R!
5D•S̃1/21S5/2

12R2

12 Fd2D

dR2
1

1

R

dD

dR

223R2

12R2 G2S7/2

5~12R2!

24V2 S dD

dRD 2

D, ~7!

whereSa[pT(vv2/(v21D2)a for a55/2, 7/2 , and

S̃1/25
1

l
2g2 ln

D

pTc
(0)~12R2!

2E
0

` 2dx

expS D

T
cosh~x! D11

,

with g50.577 being the Euler constant.

At T close toTc equation~7! reduces to the Ginzburg–Landau equation from Ref
For lower temperatures we solved Eq.~7! numerically, with the boundary condition
D8~0!50 andD~1!50. In Fig. 1 we presentD(R) at various temperatures forl50.3 and
Tc

(0)55V (Tc50.86Tc
(0)). A comparison with the results of the local-density approxim

tion shows that the latter is adequate only at very low temperatures: with decreasT,
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the spatial region in whichD is substantially nonzero increases and, hence, the sp
derivatives ofD, neglected in the local-density approximation, become less importa

In a spherically symmetrical trapping potential the elementary excitations are
acterized by a radial quantum numbern, orbital angular momentuml, and its projection
m. The excitation wave functions can be written as (Un ,Vn)5R21Ylm(R̂)
3@unl(R),vnl(R)#, where the functions (u,v) are normalized by the condition
*0

`(unlun8 l
* 1vnlvn8 l

* )dR5dnn8. At temperaturesT!«F'm, elementary excitations
formed by particles with energies in a narrow vicinity of the Fermi surface are m
important. In the classically accessible region of space the excitation wave func
exhibit strong spatial oscillations, with a period of orderpF

21(R)!RTF and a slowly
varying amplitudeũnl(R), ṽnl(R):

S unl

vnl
D 5

expS i m̃E
R1

R

pFldRD
ApFl~R!

S ũnl

ṽnl
D 1h.c. . ~8!

The partial Fermi momentum is defined aspFl(R)5(12R22( l 11/2)2/m̃2R2)1/2, where
m̃52m/V@1, and the classically accessible region is specified by the conditionR1,R
,R2, with the turning pointsR1,2 determined from the equationpFl(R1,2)50. Omitting
the terms of orderm̃21 in Eq. ~2!, we obtain a pair of decoupled equations for t
amplitudesf 65ũ6 i ṽ ( «̂nl5«nl /V>0, D̂5D/V):

F2S pFl

d

dRD 2

1D̂26pFl

dD̂

dR
2 «̂nl

2 G f nl650. ~9!

In the classically inaccessible regions 0,R,R1 ~due to the centrifugal barrier! and
R.R2 ~due to the trapping potential!, Eqs. ~9! must be modified by replacingpFl(R)
with 7 i upFl(R)u, respectively, to obtain decaying solutions. AboveTc the order param-
eter is zero, and using a standard semiclassical procedure one can obtain the well-
resultEnl

(0)5(2n1 l 13/2)V for the eigenenergies reckoned from the bottom of the
tential well. In a spherical harmonic trap the chemical potentialm5( j 13/2)V, wherej is

FIG. 1. Order parameterD(R) at various temperaturest5T/Tc ~solid lines!. The dashed lines correspond t
D(R) in the local density approximation att50 ~upper curve! andt50.99 ~lower curve!.
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a positive integer. Accordingly, we obtain«nl
(0)5u2n1 l 2 j uV for the eigenenergies o

particlelike (2n1 l> j , ṽnl50) and hole-like (2n1 l< j , ũnl50) single-particle excita-
tions.

Below the transition point the appearance of the order parameterD(R) modifies the
excitation spectrum. Just belowTc the order parameter is small and exists only in a sm
spatial region of radiusl D!1 @see Eq.~3!#. Therefore, the presence ofD(R) only influ-
ences the excitations with smalll and shifts their eigenenergies upward slightly: T
shifts will be of orderd5D(R1) l D , i.e., much smaller than the maximum valueD~0! of
the spatially inhomogeneous gapD(R). Hence, the lowest excitations, namely the on
with «nl

(0)50 at T.Tc , become in-gap, i.e., have energies below the top of the
«nl;d!D(0). With decreasing temperature,D(R) grows rapidly, leading to an increas
in the number of in-gap excited states.

At temperatures well belowTc the characteristic radius ofD(R) becomes of the
order the size of the gas sampleRTF , and all relevant excitations (l &m̃/2) are influenced
by the presence ofD(R). The wave functions of above-gap excitations@«nl.D(R1)#
extend over the entire classically accessible regionR1,R,R2. In contrast, the in-gap
excitations with energies«nl well below D(R1) are essentially ‘‘expelled’’ from the
center of the trap: their wave functions are mostly localized in the well formed in
outer part of the sample byD(R) and the trapping potential~see Fig. 2!.

For T well belowTc we haveD̂(0);Tc /V@1, and Eqs.~9! for the amplitudesũnl ,

ṽnl can be solved in the semiclassical approach, omitting the terms with spatial d

tives of D̂(R), as they are small compared toD̂2. Then, in the spatial region where«
.D(R) we obtain

S ũnl

ṽnl
D 5

D̂~R!

Av~R!
(
6

C6S 6~ «̂7v~R!!21/2

7~ «̂6v~R!!21/2D expH 6 i E v~R!

pFl~R!
dRJ . ~10!

Herev(R)5A«̂22D̂2(R), andC6 are numerical coefficients. In the case of above-g
excitations@«nl.D(R1)# these coefficients can be found by making an analytical c

FIG. 2. Wave functionsun0 ~solid lines! andvn0 ~dashed lines! for above-gap and in-gap excitations, obtain
by numerical solution of Eqs.~8! for l 50 atT50. For illustrative purpose only~to reduce the number of rapid
oscillations! we takem̃563 instead of the actual valuem̃'970. The arrows indicate the eigenenergies of t
excitations.
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tinuation of the solution~10! to the classically inaccessible regionsR,R1 and R.R2.
Since for«nl.D(R1) there are only two~classical! turning pointsR1 andR2, the semi-
classical quantization condition reads

2

pER1

R2A«nl
2 2D2~R!

pFl~R!
dR5«nl

(0) . ~11!

This condition provides us with the energy spectrum of the above-gap excitations~see
Fig. 2!. The amplitudesũnl , ṽnl of their wave functions oscillate in the entire regio
R1,R,R2 and decay in the classically inaccessible regionsR,R1 andR.R2. Like the
excitations aboveTc , these excited states are twofold degenerate, but their energie
shifted upward by the presence ofD(R).

For the in-gap excitations the situation is more subtle due to the appearance
peculiar turning pointRc determined by the condition«nl5D(Rc). At this point a particle
undergoes Andreev reflection14 from the spatially inhomogeneous gapD(R) and trans-
forms into a hole~and vice versa!. As a result, these excitations acquire a superpositio
particle–hole character and become nondegenerate, with a splitting that increase
D~0!.

In the spatial regionRc,R,R2 the amplitudesũnl , ṽnl are determined by Eq.~10!,
with the coefficientsC6 following from an analytical continuation of Eq.~10! to the
regionR1,R,Rc . In the latter region the amplitudes are given by the same Eq.~10! but
in which v(R) is replaced by2 i uv(R)u and the coefficientsC6 are obtained by making
an analytical continuation to the classically inaccessible regionR,R1. As a result, the
quantization condition for the in-gap excitations reads

~21! j 2 l cos~2f!52Z2/~Z411!, ~12!

Z5A2 expH E
R1

RcAD2~R!2«nl
2 /pFl~R!dRJ , f5E

Rc

R2A«nl
2 2D2~R!/pFl~R!dR.

The wave functions of these excitations are mainly localized in the regionRc,R,R2,
where the amplitudesũnl and ṽnl oscillate. ForR1,R,Rc they decay exponentially. In
fact, these amplitudes behave like wave functions of bound states in the potentia
formed by the trapping potential on one side and by the order parameterD(R) on the
other side~see Fig. 2!. To a certain extent these excitations are analogous to loca
states in the vortex core in ordinary superconductors.15

For the lowest in-gap excitations the semiclassical approach for finding the eig
ergies«nl and amplitudesũnl , ṽnl is not adequate, and one has to solve Eq.~9! numeri-
cally. The energies of these excitations are very sensitive toD(R), and, hence, to the ga
temperature. ForD(R) in Fig. 1 atT50 we find «050.85V for the lowest excitation
with l 50 ~Eq. ~12! gives «051.06V). With increasingT the value of«0 decreases
(«050.23V for T50.99Tc) and tends to zero forT→Tc .

In conclusion, below the transition temperature, the excitation eigenfrequencie
come temperature dependent and are no longer multiples of the trap frequencies.
features should lead to a strong change of the density oscillations induced by modu
of the trap frequency, which can be used for identifying the pairing transition. For
ample, spherically symmetrical modulations@dV;cos(nt)# cause single-particle trans
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tions between states with the same orbital angular momentuml, and aboveTc the am-
plitude of the density oscillations will exhibit resonances at frequenciesn which are
multiples of 2V. Below Tc the presence ofD(R) changes the eigenfrequencies of som
of the excitations, and those will not contribute to the density oscillations at the reson
frequencies. Hence, the resonance peaks broaden and become smaller. ForD(R) in Fig.
1 the eigenfrequencies of all excitations withl &m̃/2 are altered by the pairing already
T50.5Tc . Thus the characteristic resonances present in then dependence of the densit
oscillations for the gas aboveTc will now be smeared out. At low enough temperatur
one should also expect the appearance of resonances related to collective modes
order parameter. This issue will be addressed in a future publication.
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and streamlines in electron transport through billiards

K.-F. Berggren
Department of Physics and Measurement Technology, Linko¨ping University,
S-581 83 Linko¨ping, Sweden

K. N. Pichugin
Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia; Institute of Physics,
Academy of Sciences, 16000 Prague, Czech Republic

A. F. Sadreev
Department of Physics and Measurement Technology, Linko¨ping University,
S-581 83 Linko¨ping, Sweden; Kirensky Institute of Physics, 660036 Krasnoyarsk, Russ

A. Starikov
Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia

~Submitted 30 August 1999!
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Streamlines and the distributions of nodal points are used as signatures
of chaos in coherent electron transport through three types of billiards:
Sinai, Bunimovich, and rectangular. Numerical averaged distribution
functions of the nearest distances between nodal points are presented.
We find the same form for the Sinai and Bunimovich billiards and
suggest that there is a universal form that can be used as a signature of
quantum chaos for electron transport in open billiards. The universal
distribution function is found to be insensitive to the way the averaging
is performed~over the positions of the leads, over an energy interval
with a few conductance fluctuations, or both!. The integrable rectangu-
lar billiard, on the other hand, displays a nonuniversal distribution with
a central peak related to partial order of nodal points for the case of
symmetric attachment of the leads. However, cases with asymmetric
leads tend to the universal form. Also, it is shown how nodal points in
the rectangular billiard can lead to ‘‘channeling of quantum flows,’’
while disorder in the nodal points in the Sinai billiard gives rise to
unstable irregular behavior of the flow. ©1999 American Institute of
Physics.@S0021-3640~99!00718-5#

PACS numbers: 05.45.Mt, 72.10.2d

Billiards play a prominant role in the study of classical and quantum chaos.1 Indeed,
the nature of quantum chaos in a specific system is traditionally inferred from it
classical counterpart. Hence one may ask if quantum chaos is to be understood so
a phenomenon that emerges in the classical limit, or are there some intrinsically q
4030021-3640/99/70(6)/7/$15.00 © 1999 American Institute of Physics
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phenomena that can contribute to irregular behavior in the quantum domain? Thi
question we raise in connection with quantum transport through ideal regular and ir
lar electron billiards.

The seminal studies by McDonald and Kauffmann2 of the morphology of eigenstate
in a closed Bunimovich stadium have revealed characteristic patterns of disordered
directional, and noncrossing nodal lines. Here we will first discuss what will happe
patterns like these when input and output leads are attached to a billiard, regu
irregular, and an electric current is induced through the the billiard by an applied vo
between the two leads. For such an open system the wave functionc is now a scattering
state with both real and imaginary parts, each of which gives rise to separate sets o
lines at which either Re@c# or Im@c# vanish. How will the patterns of nodal lines evolv
as, e.g., the energy of injected electrons is increased, i.e., more scattering chann
come open? Could they tell us something about how the perturbing leads reduc
symmetry and how an initially regular billiard may eventually turn into a chaotic on
the number of open modes increases? Below we will argue that nodal points, i.e
points at which the two sets of nodal lines intersect because Re@c#5Im@c#50, carry
important information in this respect. Thus we will study their spatial distributions
try to characterize chaos in terms of such distributions. The question we wish to a
simply if one can find a distinct difference between the distributions for nominally re
lar and irregular cavities.

In addition, what other signatures of quantum chaos may one find in the coh
transport in open billiards? The spatial distribution of nodal points plays a decisive ro
how the flow pattern is shaped. Therefore we will also study the general behavi
streamlines derived from the probability current associated with a stationary scat
state

c5Ar exp~ iS/\!.

The time-independent Schro¨dinger equation can be decomposed as3,4

E5
1

2
mv21V1VQM , ¹rv50, mẊ5¹S.

The separate quantum streamlines are sometimes referred to as Bohm trajectories.4 In this
alternative interpretation of quantum mechanics it is thought that an electron is a ‘‘r
particle that follows a continuous and causally defined trajectory~streamline! with a
well-defined positionX, with the velocity of the particle given by the expressions abo

These equations imply that the electron moves under the influence of a force w
is not obtained entirely from the classical potentialV but also contains a ‘‘quantum
mechanical’’ potential

VQM52
\2

2m

¹2r

r
.

This quantum potential is large and negative, where the wave function is small
becomes infinite at the nodal points of the wave function wherer(x,y)50. Therefore,
the close vicinity of a nodal point constitutes a forbidden area for quantum stream
contributing to the net transport from source to drain. Whenr does not vanish,S is
single-valued and continuous. However at the nodal point wherec50, neitherS nor ¹S
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is well defined. The behavior ofS around these nodal points is discussed in Refs. 3
and 6. For our study the main important property of the nodal points ofc is that prob-
ability current flows described by ‘‘open’’ streamlines cannot encircle a nodal point
the contrary, they are effectively repelled from the close vicinity of the nodal points,
way as if these were impurities.

The scattering wave functionsc are found by solving the Schro¨dinger equation in
the tight-binding approximation with Neumann boundary conditions outside the billia
at a distance over which the evanescent modes have effectively decayed to zer
energy of the incident electron ise520, wheree52EFd2m* /\, with EF the Fermi
energy,d the width of the channel, andm* the effective mass.

An inspection of the two sets of nodal lines associated with the real and imag
parts of the scattering wave function reveals the typical pattern of nondirectional,
avoiding nodal lines found previously by McDonald and Kaufman2 for an isolated, ir-
regular billiard. However, in our case of a complex scattering function the nodal line
not uniquely defined, because multiplication of the wave function by an arbitrary con
phase factor exp(ia) would yield a different pattern. The nodal points, on the other ha
appear to helpful in this respect. They represent a new aspect of the open system a
obviously remain fixed upon a change in the phase of the wave function. Her
conjecture that the nodal points may serve as unique markers which should prove
for a quantitative characterization of scattering wave functions for open systems.

To be more specific, we have considered a large number of realizations~‘‘samples’’!
of nodal points associated with different kinds of billiards and present averaged no
ized distributions of nearest distances between the nodal points. Figure 1 show
distributions for open Sinai~a!, Bunimovich ~b!, and rectangular billiards~c, d!. The
distributions are obtained as an average over 101 different values of energy belong
a specific energy window in which the conductance undergoes a few oscillatio
shown by the insets in Fig. 1. Cases~a!, ~b!, and ~c! correspond to two-channel trans
mission through the billiards, while case~d! pertains to five-channel transmission. Th
rectangular billiard is nominally maximal in area with a numerical size 2103100 and
with the width of the leads equal to 10.

It is noteworthy that the distribution of nearest neighbors is distinctly different fr
the corresponding distribution for random points in the two-dimensional plane,7,8

g~r !52prr exp~2prr 2!, ~1!

where the densityr of random points is related to the mean separation^r & as
r51/4̂ r &2 . This distribution is shown in Fig. 1a by the thin line, indicating an und
lying correlation between the nodal points of the transport wave function through
Sinai billiard. In this sense quantum chaos is not randomness.

With slight deviations the Bunimovich billiard gives rise to the same distribution
the Sinai, as shown by Fig. 1a and 1b. Analysis of the distributions for lower energi~e
'20, one-channel transmission! gives quite similar universal forms, as shown in Fig.
and 1b, but with more pronounced fluctuations because the number of nodal po
smaller at lower energies. Moreover, averaging over wider energy domains with a
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grid or for higher energies gives no visible deviations from the distributions in Fig
and 1b.

We considered also the Berry wave function of a chaotic billiard, which is acce
as a standard measure of quantum chaos:9

c~x,y!5(
j

uaj uexp@ ik~cosu j x1sinu j y!1f j #, ~2!

whereu j ,uaj u andf j are independent random variables. We found that the distributio
nearest distances between the nodal points of~2! has completely the same form as for th
Sinai billiard ~Fig. 1a!. On the other hand, an analysis of the nodal points of the w
function

c~x,y!5 (
kx ,ky

exp~ ikxx1kyy! ~3!

with kx ,ky distributed randomly leads to the distribution~1! of random points.

FIG. 1. Normalized distributions for nearest separations between nodal points~in units of the mean separation!
averaged over an energy window for the chaotic Sinai~a! and Bunimovich billiards~b! and for two rectangular
billiards ~c, d!. The Shannon entropyS is given for each separate case. Cases~a!, ~b!, and ~c! correspond to
two-channel transmission and case~d! to five open channels. The corresponding conductance~in units of
2e2/h) versus energy is shown in the insets, which also define the energy window for each case. The d
tion ~1! for the nearest distances among completely random points is shown by thin line in~a!.
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To supplement the averaging over energy we have also considered the positi
the leads. Figure 2a shows the normalized distribution of the nearest distances be
nodal points for the Sinai billiard, obtained as an average over 101 positions of the
lead. It is seen that this distribution has the same form as the energy-averaged
billiard in Fig. 1a. In the same way Fig. 2b shows the corresponding case of the
movich billiard with an asymmetric input lead; this is to be compared with Fig. 1b.
asymmetric arrangement of leads allows a larger number of eigenstates of the Bun
ich billiard to participate in the electron transport because symmetry restriction
relaxed.10

On the basis of Figs. 1 and 2 and comparison with the Berry wave function~2! we
therefore argue that there is a universal distribution that characterizes open chao
liards. At this stage we conclude that the form of the distributions is insensitive to
averaging procedure, to the number of channels of electron transmission, and to th
of attachment of the leads. The mathematical form of the universal distribution co
tutes an interesting problem that remains to be solved. So does a derivation of the r
distribution associated with wave function in Eq.~3!.

Let us now turn to the case of the nominally regular rectangular billiard. In Fig
the distribution functions are given for the case of two-channel transmission with

FIG. 2. Normalized distributions averaged over position of input lead for the Sinai billiard~a!, over an energy
window frome549 to 50 for the Bunimovich billiard with asymmetric input lead~b!, over lead positions for the
rectangular billiard~c!, and over an energy window for the rectangular billiard with asymmetric input lead~d!.
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same energy-averaging procedure as for the chaotic billiards. The nearest-neighb
tribution clearly displays a peak corresponding to a regular set of nodal points, in co
to the other billiards discussed above. This feature is found even for very high ene
around 250~five-channel transmission!. Therefore the rectangular dot with the two sym
metrically attached leads displays considerable stability with respect to regular
points, in contrast to the chaotic Sinai and Bunimovich billiards.

As indicated, symmetric leads impose restrictions on how states inside the b
are selected and mixed on injection of a particle. In Fig. 2c the result of averaging
the positions of the input lead is therefore shown for the rectangular billiard at a
energy chosen from the energy domain in Fig. 1c. As one might expect, the prono
peak in the distribution function of nearest nodal points has now disappeared. More
the distribution is close to the case of the Bunimovich billiard in Figs. 1b and
Evidently the asymmetrical positioning of the leads disturbs the nominally regular
liard in a much more profound way, effectively lending it chaotic characteristics.
reconfirm this conclusion we have also performed calculations of the distribution of n
points within the same energy domain and with the same number of energy steps
Fig. 1c but for non symmetrical positions of the input lead. In fact, the distribu
function of nearest distances in Fig. 2d demonstrates a close similarity with the po
average of the nodal points. Therefore the nonuniversal behavior of the distrib
function of nodal points for the rectangular billiard shown in Fig. 1c and 1d is the re
of the fact that only a few symmetrical eigenstates take part in the transmission be
of symmetry restrictions.

In order to give a quantitative measure of the disorder of nodal point pattern
consider the Shannon entropyS ~Ref. 11! normalized for each specific billiard by th
entropy of completely random points. Numerical values forSare specified in Figs. 1 and
2. As one might expect, for the same energy window there is a clear tendency to
maximal entropy for chaotic billiards. A similar tendency is clearly seen for the pos
average~Fig. 2!. The case of a rectangular billiard with entropy 0.95~Fig. 1d! is beyond
the scope of this rule, because for five-channel transmission the number of nodal
substantially exceeds that for the other cases considered, irrespective of the ty
billiard. Thus the Shannon entropy of nodal points is an important additional quantit
measure of quantum chaos for quantum transport through billiards.

As we have said, the streamlines are strongly affected by the positions of the
points. Superficially they play the role of impurities. It is therefore of interest to de
mine whether the streamlines behave differently for regular and irregular situations
for this reason we will consider a few typical examples, starting with two well-defi
systems: the nominally regular rectangle and the irregular Sinai billiard. Figure 3a s
the flow lines in the case of the rectangular billiard. The features of the flow l
connecting the input and output leads are remarkable. It is clearly seen how the
~trajectories! effectively ‘‘channel’’ through a ‘‘nodal crystal,’’ avoiding the individua
nodal points. This picture is evidently very different from semi-classical physics
periodic orbit theory.12 In Fig. 3 only contributions to the net current are displayed.
addition there are also vortical motions centered around each nodal point.

The other extreme, the completely chaotic Sinai billiard, is shown in Fig. 3b.
cause the nodal distribution is now irregular also, the streamlines form an irre
pattern when finding their way through the rough potential landscape. Since a strea
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cannot cross itself, Fig. 3 brings to mind the classical example of meandering rivers
flat delta landscape. As is well known, slight changes in the topography, for example
moving only a few obstacles to new positions, may induce completely new flow patte
in a sometimes dramatic ways. In the same way slight variations of the energy,
example, may affect the quantum streamlines in the Sinai billiard in an endless w
occasionally forming more collected bunches connecting the two leads in a more focu
way than in Fig. 3b. The same type of behavior has also been obtained for a t
dimensional ring in which a tiny variation of the external magnetic flux induce dras
changes of the flow lines and, as a consequence, the Aharonov–Bohm oscillations
come irregular.13

This work has been partially supported by the INTAS-RFBR Grant 95-IN-RU-65
RFFI Grant 97-02-16305, and the Swedish Natural Science Research Council. The
putations were in part performed at the National Supercomputer Center at Linko¨ping
University.
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FIG. 3. Streamlines and positions of vortices~nodal points! at maximum conductance (2e2/h) for ~a! the
rectangle withe520.44 and~b! for the Sinai billiard withe520.79.
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Landau quantization and equatorial states on the surface
of a nanosphere
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The Landau quantization for the electron gas on the surface of a sphere
is considered. It is shown that in the regime of strong fields the lowest
energy states are those with magnetic quantum numbersm of order of
F/F0, the number of magnetic flux quanta piercing the sphere. For an
electron gas of low density~semiconducting situation! it leads to the
formation of an electronic stripe on the equator of the sphere in high
fields. © 1999 American Institute of Physics.
@S0021-3640~99!00818-X#

PACS numbers: 73.20.Dx, 71.10.Ca

The electronic properties of cylindrical and spherical nanosize objects have attr
much theoretical interest in recent years. This interest is mostly related to the phys
carbon macromolecules and, in particular, to the transport properties of ca
nanotubes.1 One encounters spherical nanosize objects in studies of the nonlinear o
response in composite materials,2 of simple metal clusters,3 and of photonic crystals
based on synthetic opals.4 In the most of these studies, the coating of the nanosphe
characterized by an effective dielectric function.5 It has been noted, however,6 that this
approach must be revised if the coating of a sphere has a width of a few monolay
limit which is attainable by modern technologies.

In recent papers we have considered the electron gas on a sphere. We show
various correlation functions in such a gas exhibit maxima when the electrons are
antipodal points~north and south poles!.7 The exact solution was found for a problem
a uniform magnetic field, and the limits of weak and high fields were investigated.8 In the
high-field regime the formation of Landau levels was demonstrated. The complex
the special functions describing the exact solution, however, complicates the analy
the physical picture in the high-field regime. In this paper we explore qualitative a
ments, supported by numerical calculations, to clarify the issue. We find that the
mum energy of the Hamiltonian is provided by the electronic states located nea
equator of the sphere. For low densities of the gas one thus expects that a high fie
push the electrons toward the equator and form an electronic ring there.

We consider the electron gas moving within a thin layer on the surface of a sp
of radiusr 0. We assume a Hamiltonian of the formH52¹2/2me1U(r ), whereme is
the electron mass. The chemical potentialm determines the total number of electronsN
~with one projection of spin! and their areal densityn5N/4pr 0

2. The confining quantum-
4100021-3640/99/70(6)/5/$15.00 © 1999 American Institute of Physics
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well potentialU(r ) restricts the radial motion within a thin layerdr !r 0. We are inter-
ested in the casedr ,n21/2, when the first excited state of the radial motion lies above
chemical potential. Then one can ignore the radial component of the wave functio
put r 5r 0 in the remaining angular part of the Hamiltonian. In the absence of mag
field we haveH V

(0)52(2mer 0
2)21DV , with DV being the angular part of the Laplacia

The solutions to this Hamiltonian are the spherical harmonicsYlm , and the spectrum is
that of a free rotator model :

C (0)~u,f!5r 0
21Ylm~u,f!, El

(0)5~2mer 0
2!21l ~ l 11!.

In the presence of a uniform magnetic fieldB directed toward the north pole of th
sphere~u50! we choose the gauge of the vector potential asA5 1

2(B3r ). Then the
angular partHV of the Hamiltonian

H5
1

2me
~2 i¹1eA!21U~r !

acquires the form

HV5~2mer 0
2!21F2DV12ip

]

]f
1p2sin2uG . ~1!

The governing parameter here isp5pBr0
2/F0, with the magnetic flux quantumF052

310215 T•m2. For a sphere of radiusr 05100 nm one hasp51 at a fieldB.600 Oe. The
solutions of~1! are given by the oblate~angular! spheroidal functions and were analyze
in Ref. 8 to some detail.

In the weak-field regime,p;1, jumps in the static magnetic susceptibilityx at
half-integerp were demonstrated. The amplitude of these jumps is parametrically la
than the Pauli spin contribution and decreases with the increase ofp. It was shown that
the weak-field regime ends atp2;pc

252AN. For r 0;100 nm~the case of opals! and in
the metallic situation, e.g., at the densitiesn;1014cm22, we haveN;105 andpc.30.

On the other hand, at the lower~semiconducting! densities,n;1010cm22, we have
N;10. Formally in this casepc.3, i.e., the field is no longer small atp of the order of
unity. The jumps in the susceptibility were predicted in Ref. 8 on the assumption
AN@1, which is violated in the latter case of lowern. At the same time, the experimen
tally accessible fields of the order of 6 T result inp;100 for spheres withr 0;100 nm,
i.e., we come into the strong field regime.

For strong fields,p→`, one observes the eventual formation of Landau levels~LL !.
The spherical geometry brings into the problem some peculiarities which were p
discussed in Ref. 8. First is the incomplete restructuring of the spectrum into th
scheme. This restructuring takes place only for levels with initial momentuml lower than
p, and the field remains weak for the levels withl .p2. Secondly, the field-induced
double-well potentialp2sin2u in ~1! localizes the electron states with moderate magn
quantum numbersm (umu!p) near the polesu50 andu5p. As a result, only correla-
tions within one hemisphere survive. Specifically, if an electron was initially in
northern hemisphere, then the probability of finding it in the southern hemisphe
exponentially small.
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At the same time, the spherical geometry produces yet another effect which we
now discuss. The effective potential in the strong-field regime can be written as

Ueff~u!5
pvc

4 S m/p

sinu
1sinu D 2

, ~2!

with the cyclotron frequencyvc5eB/me . At small negativem we have two minima of
Ueff(u) nearu05arcsin(Aumu/p) andu05p2arcsin(Aumu/p), where we expand

Ueff~u01u!.~vcp cos2u0! u2. ~3!

Performing the rescalingu→x/A2pucosu0u here, we arrive at a quantum oscillator pro
lem of the form

H.
vcucosu0u

2
~2d2/dx21x2!,

i.e., the well-known Landau quantization. As long asucosu0u;1, the wave-functions are
extended at the scaleuu2u0u;p21/2. The possibility of quantum tunneling betweenu0

andp2u0 produces the exponentially small splitting between the states centered at
points.8

Thus we see that the energy levels are labeled by two quantum numbers, a ma
numberm and LL numbern, with approximate twofold degeneracy for givenm,n.

This simple picture becomes inadequate whenumu.p andu0.p/2. In this case the
harmonic potential in~3! weakens, which makes necessary the consideration of
fourth-order terms in the expansion. We have in this case

UeffS u1
p

2 D.
vcp

4
u4, umu5p. ~4!

Now rescalingu→xp21/3, we arrive at the following Schro¨dinger equation:

vc

4p1/3
~2d2/dx21x4!c5Ec.

The solution of the last equation apparently is not known.9 For our purposes it
suffices to note that the energy scales asvc /p1/3!vc , and the wave functions on th
equator extend over a scale ofuu2p/2u;p21/3. In addition, we no longer have a double
well potential, and the energy levels are separated by the same scalevc /p1/3. The cross-
over between Eqs.~3! and ~4! takes place at 12umu/p;p22/3.

With further increase ofumu, at umu.p, the minimum value ofUeff is found at
u5p/2 and increases rapidly withumu. In this case the energy levels areElm;vc(m
1p)2/p and thus lie well above those withumu,p.

Let us illustrate these qualitative results using the results of numerical calcula
We found the spectrum of Eq.~1! by diagonalizingHV in the basis of Legendre poly
nomials Pm1n

m (cosu) with 0<n<200 ~Ref. 10!. The results are shown in Fig. 1. On
verifies that the ‘‘equatorial’’ states withumu.p@1 provide the minimum eigenvalues o
the Hamiltonian. This dependence of the energy level scheme onm is probably of minor
importance if we consider the situation of a metal,8 where the chemical potential lies we
above the bottom of the conduction band (m@vc). In this case the number of electron
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N on the sphere is expected to exceed the number of flux quantap. Then several Landau
levels are occupied~several lines in Fig. 1! and the electrons are distributed over t
whole sphere.

At the same time, the semiconducting coating of the sphere can lead to a dif
result. Indeed, if the cyclotron frequencyvc is high enough, then the ‘‘polar’’ states wit
small negativem are poorly occupied. Meanwhile, the ‘‘equatorial’’ states with energ
;vcp

21/3 are occupied to a larger extent. This produces an effective ring on the eq
of the sphere. The criterion for this phenomenon isN&p or, equivalently,B*F0n. Note
that the latter inequalities correspond to the partially filled lowest Landau level in
usual planar geometry.

We see that in the spherical geometry of the electron gas the states with highumu
possess the lower energy. Our situation is thus opposite to the one discussed
quantum Hall edge states.11 Nevertheless both problems have a common ingredient,
linear-in-m spectrum for a givenn ~in our case in two domains,umu&p and umu*p).
Having effectively a case of one spatial dimension, we can consider the intera
effects as well. The problem has a certain subtlety, however, which is described b

In certain cases one may hope to ignore the interaction between states belong
different ‘‘Landau levels’’~different curves in Fig. 1!. Considering now the lowest LL
one observes familiar branches of right- and left-going fermions,umu&p and umu*p,
with the negative and positive ‘‘Fermi velocities’’vF5dElm /dm, respectively. The ab-
solute values ofvF for left and right movers are different. This point alone makes
difficult to pass to a bosonization description with one scalar field for both movers
the notion of the chiral Luttinger liquid arises. A thorough consideration of the la
problem is beyond the scope of this study.

In conclusion, we have considered the Landau quantization for the electron g

FIG. 1. The dependence of the four lowest energy levelsElm on the magnetic numberm,0 in the high-field
regime,p5F/F05100. The calculated points are shown by circles; the lines are a guide to the eye.



func-
num-
tes
, the

of the

for
State

S

r

414 JETP Lett., Vol. 70, No. 6, 25 Sept. 1999 D. N. Aristov
the surface of a sphere. The exact solution of this problem involves complicated
tions, which are not very instructive for the analysis of states with large magnetic
bersm for the electron motion. We have elucidated the role of the ‘‘equatorial’’ sta
with largem both analytically and numerically. Since these states are lower in energy
electronic stripe on the equator can be realized for the semiconducting coating
sphere in high magnetic fields.
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