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A new nonradiative decay channel for the anomalously low-lying iso-
meric level 3/2 (3.5+1.0eV) of the??°Th nucleus in a metal via the
conduction electrons is examined. The lifetime of the isomer in a metal
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The energy of the first excited level in tR€Th nucleus is 3.51.0eV, which is
anomalously low for nucl€i? The unusual properties of the stat&@™Th(3/2", 3.5
+1.0eV) have been discussed repeatedly in the literature. These include decay via an
electron bridgé€, the possibility of laser excitation with the production of a population
inversion in a system d?°Th nuclei*® a change induced in the decay rate of?°Th by
low-intensity laser radiatiofiand others. It has also been noted that the decay probability
of the isomer via an electron bridge and the spectrum of emitted photons are sensitive to
the chemical environment. For this reagdfTh can serve as a probe for investigating the
properties of substancés®

In this letter we predict another unique property of the isofM&iTh, specifically:
nonradiative decay of the 3/23.5+1.0eV) level in a metal via the conduction elec-
trons.

229TR(3/2%, 3.5+ 1.0 eV) nuclei are produced with approximately 2% probability
in the a decay of?>U. Let a thin?®®U oxide layer, several tens of angstroms thick, be
deposited on a metal substrate. The energy oftfEnh recoil nucleus in ther decay of
23 is ~100keV. Let us follow thé?®"Th(3.5 eV) nuclei whose momentum is directed
toward the substrate. According to the data of Ref. 7, their range in metals is several tens
of atomic layers. A metal of such thickness is virtually transparent to visible-range optical
radiation and is not an obstacle for detecting the photons arising as a result of decay of
the low-lying isomer??"Th,

In an isolated Th atom the isomer 3/8.5+1.0eV) should decay predominantly
via the electron-bridge chanrielThis is an extremely rare case, indeed the only case
known, in which a process of third order in the electromagnetic interaction corestant
predominates over internal electron conversion, which is a second-order process, in the
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FIG. 1. Diagram of nonradiative decay %" Th(3/2", 3.5+ 1.0 eV) via the conduction electrons in a metal.

decay of a nuclear isomer. Here internal conversion is simply forbidden, since the ion-
ization potential of the Th atom, equal to 6.08 eV, is greater than the energy of the
nuclear transition.

The situation changes radically°"Th is inserted into a metal. Then the second-
order process in which the isomer decays via the conduction electrons, as shown in Fig.
1, becomes allowed. This process is similar to inelastic electron scattering by nuclei. In a
metal it does not have an energy threshold, since the nucleus gives up energy in this case.
(The threshold of the reaction in semiconductors will be the energy gap. Therefore the
energy of the nuclear transition can be determined by varying the substrate material.

The decay of the isomer in a metal can also be interpreted as conversion on con-
duction electrons. But here, in contrast to conventional internal conversion, the initial
state of the electron is not an atomic bound state.

To estimate qualitatively the decay probability BF"Th(3/2", 3.5-1.0eV) in a
so-called “standard” metdl,we shall employ the very simple free-electron approxi-
matior? (in this model the conduction electrons are treated as a gas of free partitkes
shall calculate the probability according to the formula

W~NgVeo,

whereN, andv, are the density and velocity of the conduction electrons arid the
cross section of the proceébe system of unitd =c=1 is used. Let the energy of the
initial state of the electron bE;~&r, whereé&g is the Fermi energy. Correspondingly,
the electron velocity is equal to the Fermi velocity,~veg=y2&-/m. For inelastic
scattering by the isomeric nucl&®"Th the conduction electrons acquire the additional
energyoyn=3.5+1.0eV. If the electron work function of the metal is less thay, then
electrons remain in the metal after being scattered.

To estimate the inelastic scattering cross sectignwe employed a software
packagé®!!in which the self-consistent atomic field and the wave functions of bound
electrons are found by solving a system of Dirac—Fock equations with allowance for the
finite sizes of the nuclei, and the initial and final states of the scattered electron are
solutions of the Dirac equation in the indicated field.
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The reduced probability of a nuclear isomekil transition from the ground into
the first excited state 3£°Th has been calculated in Ref. 12. With the Coriolis interaction
between the rotational bands taken into accdthr indicated levels are the bandheads
the value found in Ref. 12 iB(M1; 3/2"3/2 631]—5/2"5/2 633]) ., =4.8X10 2. On
this basis, in order of magnitude we obtain for the cross seetieri0™ 2’ cn?.

We shall now calculate the decay probability of the isoff@FfTh(3/2", 3.5+ 1.0
eV) in a standard metal. Using the valuds~6x 10?2cm 3 and£-~5.5 eV from Ref.
8, we find for the probabilityW'~10* s~ 1. Therefore the lifetime of a thorium isomer in
a metal is~10 “s. The value obtained is much less than the “reasonable” lower limit
102 s found in Ref. 12 for the half-life of the low-lying level of th&°Th nucleus.
Therefore the process under consideration can indeed be the dominant decay channel for
the state 3/2(3.5+1.0eV) in a metal.

Now the experimental result of Ref. 13 can be interpreted in a completely different
way. This experiment differed from the oth&&° by the fact that the measurements of
the optical radiation of?*"Th nuclei were performed in vacuum, and a platinum slab was
used as the substrate. The authors of Ref. 13 did not observe the 2.3-2.5 eV photons that
had been discovered previougly 1997-1998in Refs. 14 and 15, where they had been
interpreted as indicating the presence of an electron bridge.

In the vacuum experiment of Ref. 13 the target consisted of a 35 A thick layer of
233 oxide deposited on a platinum substrai#/e note that metallic substrates were not
used in the experiments of Refs. 14 and) THe ??*"Th recoil nuclei, which entered the
chamber at a velocity of I, reached the walls in times not greater than0 ®s and
decayed outside the field of view of the optical system. The recoil né€l&Th emerg-
ing in the direction of the substrate penetrated into the platiftmeir range in Pt is
~150A)" and underwent nonradiative decay via the conduction electrons. The electron
work function of platinum is 5.3 eV. Therefore decay likewise could not be recorded by
detecting electrons. All this explains the absence of any signal in Ref. 13. Therefore the
experimental results of Ref. 13 are consistent with the conjecture made in Refs. 14 and 15
concerning the electron bridge and the “nuclear” origin of the 2.3—2.5 eV optical radia-
tion.

If everything occurs as described above, then the experiment of Ref. 13 gives a
lower limit for the half-life of22°"Th(3/2", 3.5+1.0eV): T;,=1MW~10"“s. An upper
limit on T4/, can be easily found using the well-known quan$M 1). When all decay
channels, except direct nuclegrradiation with energy 3.5 eV, are closed, one fias
=3h.

The process studied in this letter, the nonradiative decay of a nuclear isomer in a
metal via the conduction electrons, is peculiar’t8"Th(3/2", 3.5+1.0eV). Nothing
like this can be observed for other nuclei. The key element is the smallness of the energy
of the isomeric transition and the absence of a conversion decay channel of the isomer in
the Th atom. For comparison, consider ti&J nucleus, which possesses the next lowest
energy of an isomeric level 1/276.8 eV), with a lifetime of about 25 min. A calculation
of the decay probability of this state in a metal gived0 s 1. This is approximately
three orders of magnitude less than the probability of internal electronic conversion,
which is the main decay channel for the isomer™1/26.8 eV) in>**U.
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The polarization properties of light in coherent Raman scattering in
molecular hydrogen in a dc electric field are investigated. A nonlinear
polarization-optical method of determining the absolute magnitude and
orientation of the dc electric field is proposed and realized. 1999
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Coherent four-photon spectroscopy is an effective method of diagnostics of excited
gases and plasma. Specifically, coherent anti-Stokes Raman sca@hR§)? is now
widely used to measure temperature and concentration in excited gaseous’ media.
experimental investigations show, coherent four-wave interaction spectroscopy with Ra-
man and hyper-Raman resonances yields important information about the relaxation of
the populations of the excited states of atoms and ions and makes it possible to investi-
gate the spatial distributions of resonant particles in laser-produced and gas-discharge
plasmag. However, because adequate methods for remote contactless measurement of
local electric fields in plasmas are not available, it is difficult to obtain information on a
number of important plasma properties. It appears that the rich arsenal of coherent four-
photon spectroscopy methods that have been developed to date will make it possible to
solve certain problems associated with the measurement of plasma fields. The possibility
of using four-photon spectroscopy to measure the intensity of an electric field was pro-
posed in Ref. 5 and experimentally demonstrated in Ref. 6 for a uniform dc electric field
with known orientation in a corona-discharge plasma. In. Red method for measuring
a uniform dc electric field in an isotropic uniform plasma by coherent four-photon scat-
tering was proposed and substantiated theoretically, and the effect of plasma microfields
on the intensity and polarization of the four-photon scattering signal was investigated.
Coherent four-photon spectroscopy is thus a promising technique for performing local
measurements of electric fields in excited gases and plasma.

In the present work the polarization technique of coherent Raman scatt€Rt
is used to perform local contactless measurement of the absolute magnitude and orienta-
tion of a dc electric field in molecular gases and to obtain information about the form of
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FIG. 1. Experimental setup for investigating CRS in a molecular gas in a dc electric field: Nd:YAG — Nd:YAG
laser master oscillator; @ — frequency-doubling crystals; DL — dye laser; SS — synchronization system;
DS — detection system; PM — photomultiplier; PD — IR detector; T — telescopg; M, — rotating
mirrors; DM;—DM, — dichroic mirrors; GP — Glan prism; F — light filters; FR — Fresnel rhombs; S
— screen; HV — high-voltage source;+L; — lenses.

the nonlinear optical susceptibility tensor and the invariants of the Raman scattering
tensor of Raman-active transitions of molecules and atoms.

The experimental setup built for investigating CRS processes in a molecular gas in
a dc electric field consisted dsee Fig. 1 a master oscillator, crystals for frequency
conversion, a dye las¢bL ), gas cells, and a detection system. A 1,66 Nd:YAG with
a 20 Hz pulse repetition frequency and 10 ns pulse duration was used as the master
oscillator. A DKDP crystal with 30% efficiency was used to convert radiation into the
second harmonicd; wave. The second-harmonic radiatidf32 nm wavelengthwas
used to pump the dye lasénixture of pyridine-1 and DCM dyes, dissolved in dimethyl
sulfoxide. The dye laser generated radiation with a wavelength of 683frequency
w,) and pulse energy 3 mJ. The lasing linewidth of the dye laser was 0.2 amd the
beam diameter was 2.5 m(@.5 mrad divergenge

The radiation at the fundamental frequency unconverted by the nonlinear crystal was
selected by a dichroic mirror DM with approximately 80% transmittance at 532 nm and
reflectance exceeding 99% at 1.@8n, and converted into the second harmonic in a
DKDP crystal. The second harmonic obtained in this manner was used as one of the
biharmonic pump waves in the CRS scheftie wave with frequencyw). The spectral
linewidth of the second-harmonic radiation was 0.2 ¢mthe beam diameter was 7 mm,
the beam divergence was 0.6 mrad, and the energy per pulse reached 40 mJ.

After passing through the telescope T, the radiation with frequesncyas com-
bined with thew; beam using a dichroic mirror DM The magnification of the telescope
was chosen so as to obtain the optimal ratio between the diameters of; thed w,
beams, and the telescope was set so as to compensate the divergence of the dye-laser
radiation.
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FIG. 2. CRS signal intensity versus the angldetween the polarization vectey of the pump wave and the
direction of the dc fielcg, collinear with the vectoe,. Dots — experimental data. Solid curve — calculation
using Eq.(1).

A lens L, focused the combined second-harmonic and dye-laser beams into a cell
filled with hydrogen under a pressure of about 1.2 atm. Metal electrodes, to which a
voltage of 1-1.5 kV was applied, were placed in the cell to produce an electric field.

A system of filters was used to separate from the pump radiation the coherent IR
radiation of the CRS signal generated in the region of interaction of the beams and the
CARS calibration signalthe calibration procedure is described in Ref. Bhe CRS
signal generated as a result of four-photon scattering in the presence of a dc electric field
was detected with a liquid-nitrogen-cooled IR detector. The data from the IR detector
were accumulated and processed using a BOXCAR integrator and a personal computer.
A photomultiplier was used to detect the CARS signal.

In our experiments, a four-photon CRS process, occurring in the presence of a dc
electric fieldEy, according to the schemecrs= wg+ w1 — w,, Wherewy=0, w,, and
w, are the frequencies of the pump waves tuned to a Raman-type resonance with the
frequency(Q) = w,— w5 of the molecular transition employed {grs=2.4um, the transi-
tion v=0,J=1—v=1,J=1 H2(X125)), was used to measure the electric field and to
investigate the parameters of molecular transitions. In an isotropic medium the polariza-
tion vector is determined in terms of the components of the nonlinear optical cubic
susceptibility tensox ) = x{} (wcrs; 0,01, — ;) and the electric vectors of the pump
waves by the following expressibiithe frequency arguments are dropped in the com-
ponents of the nonlinear susceptibility tensor

PE=3{x 3, E(e - &)+ x e (E-65) + 5o (E-e))}EgEE, (1)

whereE; andE, are the amplitudes of the pump waves with frequengieandw,;
ande, are unit polarization vectors of the corresponding waves; BgdandE are the
intensity and the unit vector specifying the direction of the dc electric field.

Figure 2 shows the CRS signal intensity as a function of the gédbetween the
polarization vector, of the pump wave with frequency, and the direction of the dc
field E, collinear with the polarization vecta, of the pump wave with frequency..
Since x{31,= x5, for the completely symmetric vibrations, measurements at the maxi-
mum and minimum of the dependences presented make it possible to determine the ratio
of the components of the nonlinear susceptibility tengdph/x{3),=17.3+2.1. This
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FIG. 3. Modulus of the angle between the polarization vecteggsof the CRS signal and the direction of the
dc electric fieldE versus the angle between the direction of the dc field and the collinear biharmonic pump
vectorse; ande,. Dots — experimental data. Solid curve — calculation using (E&y.

result agrees well with the values of the invariants of the Raman scattering tensor — the
average polarizabilitya=1.04x 10”2 and anisotropyg=0.79x 10 2°, measured ac-
cording to radiation absorption at the same transition jrirtthe presence of an external
electric field®

Taking into account the polarization properties of the CRS signal, one can determine
the orientation of the dc electric field can be in the general case by a procedure based on
measurement of the anglebetween the collinear polarization vectors of the biharmonic
pump (the light waves with frequencies, and w,) and the polarization vect@:gs of
the CRS signalinset in Fig. 3. As a result of the rotation of the pair of collinear vectors
e, ande, in a certain plane, the anglevanishes when the dc electric field vectors fall on
this plane. The exact direction of the dc field can be reconstructed by searching for the
maximum of the CRS signal. For the investigated transition in the hydrogen molecule,
the general procedure described above for determining the direction of the dc electric
field can be simplified by taking into account the relation obtained between the compo-
nents of the nonlinear optical susceptibility tengie relation determining the polariza-
tion properties of the CRS signal for this transitioln this case, for collinear vectoes
ande, the direction of the polarization vector of the CRS signal, according tq Bgis
essentially the same, for any angte as the direction of the component of the dc field
perpendicular to the wave vectors of the pump waves. The dependence of the modulus of
the anglea between the polarization vector of the CRS signal and the direction of the dc
electric field on the angler between the direction of the dc field and the collinear
biharmonic pump vectors, ande, is shown in Fig. 3. The dots are the experimental
data. The solid curve was calculated using Hg.

Thus the investigation of the polarization properties of the CRS signal in molecular
hydrogen in a dc electric field has made it possible to determine the ratio of the compo-
nents of the cubic nonlinear optical susceptibility tensor and the invariants of the Raman
scattering tensor of th€(1) transition of molecular hydrogenv€0, J=1—v=1,

J=1) in the electronic ground staDé12g. The CRS polarization technique makes it
possible to realize a convenient scheme for local contactless measurement of dc electric
fields in molecular gases, which is promising for solving problems of diagnostics of a
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gas-discharge plasma, including measurement of plasma fields and the parameters asso-
ciated with them.
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The kinetics of the bcc—hcp transition in Zr in the presence of disloca-
tions is investigated by numerical simulation methods. It is shown that
the transition occurs in a nondiffusion@t a velocity of the order of

the speed of soundn two stages: relatively long development of in-
stability of long-wavelength acoustic phonons and a fast stage of insta-
bility of short-wavelength phonons. The elastic stresses near a disloca-
tion make it possible for these instabilities to develop at much lower
temperatures than in an ideal crystal. 199 American Institute of
Physics[S0021-364(109)00318-7

PACS numbers: 81.30.Kf, 64.70.Kb, 61.72.Lk

The description of the kinetics of first-order phase transitions is classic, but the
statistical physics problem is still topickl® The kinetics of transitions such as the
liquid—gas transitiohand ordering in alloy$,which occur in a diffusional way, have
now been investigated in detail using phenomenological approaches. At the same time,
the so-called martensitic phase transitions, which occur in a nondiffusional way, at ve-
locities close to the speed of sound, are well-kndviftven though these are first-order
phase transitions, they are usually accompanied by a quite wide region of pretransitional
anomalies, for example, softening of the phonon spéctihese features make marten-
sitic transitions close to second-order transitions. Numerous attempts to describe the
kinetics of martensitic transitions on the basis of a phenomenological apfrbaave
left a number of fundamental questions unanswered. Judging from everything, the cur-
rently known scenarios of homogeneous nucleation of a new phase do not agree with the
experimental data, and crystal lattice defects should play a decisive role in the
kinetics!®!! In the last few years, attempts have been made to study the kinetics of
martensitic transitions on the basis of a microscopic apprééehmolecular dynamics
method.!*2 However, in this methods the defects are either completely negléaied
else quite artificial models of the sources of internal streSsefijch do not refelect the
real situation, are introduced to take these stresses into account. In the present letter we
propose a microscopic description of the kinetics of a martensitic transition in zirconium
in the presence of typical defects, such as dislocations.

0021-3640/99/70(6)/5/$15.00 380 © 1999 American Institute of Physics
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The interatomic interaction was described by multiparticle potentiaigich satis-
factorily reproduce the elastic properties, the phonon spectrum, and the phase diagram
(temperature—pressyref Zr. Numerical simulation of the bcc—hcp transformation by the
molecular dynamics method was performed in the presence of edge dislocations with
Burgers vectorg100 and 1/2111) (such dislocations are typical for a bcc latlicéve
note that dislocations with Burgers vectdif0 are inherited in a bcc—hcp transition,
remaining whole(unsplit,'* while dislocations with Burgers vectors {14.1) split into
partial dislocations, forming a stacking fault band, complicating the picture of the tran-
sition. Here we shall present in detail the results for dislocations of the first type. A
rectangular crystallite in the form of a slab with a thickness of 12 atomic planes along the
Z axis (the Z axis is directed along the dislocation line and ¥exis is directed parallel
to the Burgers vectorcontained about 10,000 atoms; periodic boundary conditions were
used in all three directions. To ensure periodicity in ¥and Y directions, a pair of
dislocations of opposite sigf@ dipole was introduced into the crystallite. These dislo-
cations were repeated as dislocations of the images outside the crystallite boundaries also.
The average kinetic energy of the atoms was used to check the constancy of the tem-
perature.

A bcc structure was prescribed as the initial configuration in the crystallite. In Zr it
is metastable at temperaturés<1136 K, and an hcp lattice corresponds to the true
minimum of the free energy. This feature can be correctly described on the basis of the
model which we employed for the interatomic interactions. Despite this, the initial con-
figuration remained stable &t= 300 K throughout the entire, quite long, simulation time.
Specifically, the crystallite remains in a bce phase aftérst@ps(one step corresponds to
10" 155), while in the presence of dislocations the transition is completed affest&ps.

This is explained by the quite high barrier separating the bcc and hcp ptsasesfor
example, the form of the potential relief for a bcc—hcp transition according to the micro-
scopic calculations for bariuf?; unfortunately, the corresponding calculations have not
been performed for zirconium, but the form of the relief in these cases should be quali-
tatively similan. Therefore dislocations initiate a rapid transformation of the supercooled
metastable bcc phase.

Figure 1 shows the stages of the nucleation of the bands of the hcp phase from the
bcc phase near dislocations Bt 300 K. According to generally accepted ideas, the
crystal geometry of a bcc—hcp transition is determined by a Burgers deformation entail-
ing a long-wavelength shear strain and a short-wavelength deformétien mode
N;).*>®The computational results make it possible to describe the development of this
transition in time. A stage in which an instability of long-wavelengtcousti¢ trans-
verse phonons with vectde|| (110) develops is observed first. Then the initially sinu-
soidal oscillationgFig. 19 transform into a sequence of kinklike excitations with quite
sharp boundaried=igs. 1b and 1t Next, after a series of domain boundaries has formed,

a short-wavelength instability, which determines the specifically hcp character of the new
phaseFig. 19, develops in a very short time. This is clearly seen from the computational
results for the radial distribution function of the atoiifsg. 2), where the peaks corre-
sponding to the position of the first, second, and third neighbors in the bcc lattice vanish,
and similar peaks for the hcp structure appear.

The transition picture described above is not dictated by dislocations. Our calcula-
tions show that in the absence of dislocations the transition occurs according to a similar
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FIG. 1. Projection on th€001) plane of the crystallite under study at different stages of the bcc—hcp transition
at 300 K after 18000a), 28000(b), and 43000dc) steps. The symbal marks dislocations with Burgers vectors
+(100. During relaxation, dislocations move away from the initial dipole configuration, stopping on twin
boundariegFig. 10. The dashed lines show the evolution of the initially sinusoidal waves, corresponding to the
soft mode, into a soliton latticesystem of twing

scenario and over comparable times if the temperature is increased to 1000 K. It should
be underscored that nucleation of a new phase starts not with the appearance of individual
nucleP but rather with the development of a phonon instability, as proposed in Ref. 6.
The prerequisites for the appearance of this instability seem to be the presence of a soft
branch of transverse phonons in t{l0) direction and strong anharmonicities of the
potential for this branch in bcc 2. As a result, contrary to the existing general ideas
about the kinetics of first-order phase transitibAshe new phase can arise immediately

in the form of an ordered system of twins, and the stage of growth of a solitary nucleus
does not occur at all. From the standpoint of the soliton approach in the theory of
martensitic transitiond,the formation of such a system of twins can be naturally de-
scribed as the appearance of a soliton lattice as a result of the instability of small-
amplitude phonons with respect to self-modulatisae Ref. & In other words, this can

be related to minimization of the elastic energy of the system by formation of dihe.
relation between the soliton approach and these considerations has been discussed in
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FIG. 2. Evolution of the radial distribution function in the process of a bcc—hcp transition. The curves a, b, and

¢ correspond to the transformation stages shown in Figs. 1a, 1b, 1c, respectively. The positions of the first-,
second-, and third-nearest neighbors in the bcc structure are denoted by 1, 2, and 3 and the positions in the hcp
structure are denoted by,12', and 3, respectively.

detail in Ref. 18. It should be underscored that although in our calculations the entire
crystallite transformed into the hcp phasehich is due to its relatively small sizethe
choice of periodic boundary conditions simulates to some degree the “compressed” state
of the precipitates of the new phase in the bcc matrix during a real martensitic transfor-
mation. A procedure that simulates constant-pressure conditions could give a different
picture of the transition® Such a procedure corresponds to an idealized picture of a
crystal with no internal stresses. As to the generality of our results, it can be supposed
that at least the initial stages of development of the instability of the acoustic phonons are
universal for a transition from a bcc to any close-packed structure, since these transitions
are all due to the “softness” of the bcc lattice with respect to the shear strain associated

with a(110 phonon with polarization vectdrl10).” At the same time, the final stage of

the development of instability, associated withNjpphonon, is specific to a transition to

an hcp structure. It would be interesting to check these considerations by modeling a
transition for other metals.

In conclusion, we shall correlate our results with various phenomenological ideas

about the role of dislocations and other defects in the kinetics of martensitic
transitions'%?° In Ref. 10 the important role of “soft” regions near defects, where the
local shear modulus is much smaller than in an ideal crystal or even negative, is under-
scored. In Ref. 20, the change in the energy difference between two phases, i.e., the
decrease in the height of the barrier near a dislocation, as a result of elastic stresses was
considered to be the main factor. The first point of view undoubtedly agrees better with
the “wave” nature, demonstrated here, of a martensitic transi@onon instability.
Our computational results show that the instability of acoustic phonons, which ultimately
results in the formation of a system of twin boundaries, develops first near a dislocation
in a region making an angle of 45° with the Burgers vector. This region corresponds to
the maximum shear strain and a small dilatatibn.
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We report a new effect, observed experimentally in silicon under irra-
diation with visible-range light with a power density of 0.2—1.5 Wcm
for 8 s. The effect consists in an increase of microhardness on the side
opposite to the irradiated side and is not purely thermal in character.
After irradiation, the changes decrease exponentially with time with an
activation energy of 0.750.05 eV, a value which is characteristic for
the migration and reorientation of one of the types of intrinsic intersti-
tial atoms. A qualitative explanation is given for the effect on the basis
of a model previously proposed for the case of long-range influence of
ion irradiation. © 1999 American Institute of Physics.
[S0021-364(09)00418-1

PACS numbers: 61.82.Fk, 61.80.Ba, 61.80.Jh, 81.40.Wx

In the present work we have observed a new effect, which lies at the interface
between two groups of previously studied phenomena: long-range inflgeREeof the
irradiation of solids by charged particted and defect formation in semiconductors under
photon irradiatiorf:® LRI was first observed for ion irradiation of semiconductors and
metals. The crux of this effect consists in a change in the structure and properties at
anomalously large depths, hundreds and thousands of times greater than the ion ranges.
Later it was found that a similar effect also occurs for other types of influences acting on
the surface layer of solids, such as electron irradiation, polishing, plasma and chemical
etching, rubbing, and so on. In some cases the effect can be explained on the basis of
conventional ideas based on the existence of strong nonstationary heating of a subsurface
layer and accompanying phenomena, e.g., nonuniform deformation and the excitation of
shock waves. In other cases, however, the heating is clearly insufficient for these phe-
nomena to appear. This latter category includes the effects investigated in our previous
studies: a low-dose long-range influen&®-LRI) in metals® and LRI in silicon®° we
have proposed®®-8a model of LRI based on the idea of the generation of elastic waves
in the zone of energy release and their interaction with extended defects. The role of the
latter follows from the fact that the LD-LRI and LRI in silicon have been observed only
in materials containing a high density of extended defects — grain boundaries, subgrains,
dislocation loops, stacking faults, and so on.

An important characteristic feature of LD-LRI is the absence of any correlation with
the mechanism of direct transfer of energy from the particle beam to the solid — this
mechanism manifested almost identically under irradiation with heavy or light ions or

0021-3640/99/70(6)/5/$15.00 385 © 1999 American Institute of Physics
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with electrons, while nucleafelastio stopping dominates in the first case, electronic
stopping dominates in the second case, and in the third case all of the energy of the
incident particles is initially transferred to the electronic subsystem. On the basis of this
fact it was natural to consider a different group of phenomena — subthreshold defect
formation in semiconductors. There is extensive literature on this quesEEnRefs. 4

and 5, concerning irradiation by electrons, hafcacuum ultraviolet radiation, x rays,

and light (photochemical reactiohd. Numerous experimental data on the stimulated
diffusion of impurities and the change in the electric and optical properties are discussed;
various models of subthreshold defects are presented. These works border on the inves-
tigation of the so-called photomechanical effect — the change induced in the microhard-
ness of semiconductors and dielectrics by illumination directly during indentation by an
indenter'! It has also been reported that changes in the mechanical properties are ob-
served when metal films and foils are illuminated by vacuum ultraviolet figBince the
penetration depth of vacuum ultraviolet light in metals is very short, such changes can be
explained only by LRI.

In Ref. 13 we reported a photomechanical memory effect in metals. It was estab-
lished that the microhardness of Permalloy foils changes on the side opposite to the
irradiated side under irradiation with a 0.98n laser. The effect was not due to heating
and was explained on the basis of a model which we used previously for the case of
LD-LRI under ion irradiation.

On this basis it could be conjectured that a long-range influence of relatively weak
light fluxes on the properties of semiconductors is in principle possible and is not limited
by purely electronic processes, but rather it can be caused by structural changes. How-
ever, no indications of this for elementary covalent semicondud¢sush as silicon or
1=V compounds$ could be found in the literature, with the exception of data on the
light-stimulated diffusion of certain impuritie#u and others*®

In the present work we used 0.5 mm thick silicon wafers subjected to thermal
oxidation in a “dry—wet—dry” cycle.(It was established previouglghat in oxidized
silicon, where the surface layers are enriched with oxidizing stacking faults, the LRI is
strongest under ion irradiationPrior to oxidation the wafers were polished on one side
mechanically and on the other side by a chemical-mechanical method followed by dy-
namic etching. The oxide layers were removed prior to irradiation. The mechanically
polished side was irradiated fer=8 s by light from a 300 W halogen lamp with light
flux intensityl =0.2— 1.5 W/cnt. After irradiation from the opposite side, measurements
of the microhardneskl under a 200 g load were performed. The microhardness method
was chosen because it was a test method for investigating LRI in solids. Chaniges in
signal the presence of not only electronic but also structural changes, which should be
investigated later by more precise methods. It was found beforehand that for all practical
purposes the changes khdo not increase for >8 s. A 20 g load was close to optimal
from the standpoint of compromising between the sensitivityHofo irradiation and
minimization of the experimental error. The error in the measuremerttsvaith allow-
ance for the statistics did not exceed 3% at a 0.95 probability level. The time between
illumination and measurements bf was (except in the relaxation experimentsf the
order of 10—-100 min. Most experiments were performed using a ZhS-16 light filter,
which absorbs radiation witk<0.5 um. This was done in order to cut off any possible
effects which are characteristic for high photon energdiksse are described in Refs. 4
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and 5. To decrease the heating of the samples with a light beam, the samples were
mounted on a massive metal flange; the temperature did not exceed 50°C. To improve
heat removal, some samples were mounted on the flange through a layer of vacuum
grease, in which case there was virtually no heating.

The experiments showed that irradiation increadeshe increase reaching 20%.
Before discussing this phenomenon from the standpoint of the mechanisms which we
proposed previously for ion irradiation, the possibility of alternative explanations must be
considered.

1. Effect of purely thermal action of a light beamAs a check, we performed
annealing in a furnace at 130°C, i.e., at a temperature known to be much higher than the
temperature reached under the beam. The vall¢ dfl not change within the limits of
error. The fact that the effect did not occur for samples in whickZ0 um layer
enriched with stacking faults was removed from the irradiated side beforehand confirmed
the athermal character of the effect. The influence of this layer is discussed below. In
addition, the effect did not vanish when the samples were mounted with vacuum grease.

2. Influence of light penetration to the back sidie.our case this factor can also be
ruled out. Only photons with enerdy,,<Egy, whereEgy is the band gap, penetrated
through the thickness of the sample. However, when a silicon filter was used, no changes
were observed it on the sample side turned toward the filter on the opposite side
At the same time, the effect did not vanish when filters transmitting light with photon

energyE,,=2 eV, for which k<3 um (k is the absorption coefficientwere used.

3. Influence of excess minority carriers on the back sii@s factor is also unim-
portant, since the diffusion length of the minority carriers w&0 um, i.e., more than an
order of magnitude smaller than the thickness of the samples. Moreover, thinning the
samples by a factor of 2 did not intensify the effect but rather weakendedause the
layers enriched with stacking faults were etched.off

Thus, the effect is clearly due to the fact that photons exciting electron—hole pairs
are absorbed in the sample. Moreover, extended defects — oxidizing stacking faults —
play an important role. Comparing these facts with previously obtained results on LRI
under ion irradiatiort; ¢~ we can infer with a high degree of assurance that this effect
is based on the same mechanism, specifically, the generation of elastic waves and their
interaction with a system of defects in the presence of positive feedback between the
elastic waves and the system of defects. For ion irradiation the source of elastic waves is
reactions between radiation defects gnd thermal peaks.For irradiation with light,
elastic waves arise when the excited carriers recombine via recombination deotats
defects. In accordance with the Lang model,the energy released in the process is
transferred to a defect, increasing the oscillation amplitude of the defect. Subsequently,
chain processes with the participation of extended defects come into play. These pro-
cesses ultimately result in energy transfer to defects near the back side of the plate and a
concomitant change iH. This mechanism has been described in greater detail in Refs. 1
and 8 for ion irradiation, and the details of the mechanism for photon irradiation will be
presented separate(gee also Ref. 13

Figure 1 shows the dependence of the magnitude of the dffectelative increase
in H) on the power density, regulated by the source—sample distance. The characteristic
nonlinearity of the dependence and the presence of a threshold power have been observed
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FIG. 1. Relative change in the microhardness versus the power density under irradiation with light through a
ZhS-16 light filter.

previously for ion irradiation of silicofi,and these dependences are quantitatively very
close, once again confirming that both effects are of the same nature.

In contrast to the case of ion irradiation, here the chand¢ismunstable in time and
relaxes exponentially over several days, i.e., relaxation occurs as a result of a monomo-
lecular reaction(Fig. 2). The activation energy of the process was found by accelerated
relaxation at temperature 60—100°C to be @835 eV. This is close to the migration
and reorientation energy of one of the types of intrinsic interstitial silicon at8tsan
be inferred that the reactions involving the participation of intrinsic interstitial atoms limit
the structural relaxation process after irradiation near the surface — at the boundary with
the native oxide.

Let us discuss the effect observed here from the standpoint of comparison with the
data obtained by other authors. Subthreshold defects in semiconductors have been inves-
tigated predominantly for irradiation by electrons and x rays. For InSb and Ge these
effects have been explained on the basis of an impurity—ionization mechanism, which,
however, is ineffective for Si.For the latter, the subthreshold mechanism of defect
formation is attributed to ionization of th€ shell, which is ruled out for irradiation with
light. Dissociative(photochemicalmechanisms, discussed for complex semiconductors,
are also inapplicable to Si. The defect formation mechanism proposed IykStzet® is
also applicable in its general form for elementary semiconductors, but it does not explain
the long-range influence. The situations studied in works on the effect of light on impu-
rity diffusion in silicon are substantially different from our case. Therefore we are indeed
dealing with a new effect.

(AH/HY(AHM) (%)
.

0.1
t, 10°(min)

FIG. 2. Change in the microhardness at room temperature after irradiation with light with power density 1.5
Wicn?.
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If long-range changes in the structure and properties exist in semiconductors irradi-
ated with relatively weak light fluxes, then this is important for studying a variety of
electric and photoelectric phenomena in semiconductor materials and devices. Such phe-
nomena could be one reason for the interaction of functioning structures in matrices of
transistors, avalanche diodes, and so on. They could influence the degradation and noise
properties of device§injection of charge carriers can be realized not only by light but
also by an electric fieldand also on the properties of low-dimensional structures. The
criterion of a high density of extended defects is not too strong a constraint — it holds in
a wide class of semiconductor devices, including many low-dimensional structures
(quantum wells and quantum dats

Let us conclude by offering some reasons why the effect has not been observed
earlier.

1. It can be observed only when the following conditions are satisfied simulta-
neously: adequate power density; presence of specific extended defects, for example,
stacking faults; limited time interval between the action and the measuréameatcount
of relaxation); definite duration of the action.

2. Ordinarily, the phenomena occurring on the nonworking side of a wafer were of
interest from the standpoint of impurity gettering, while the possibility of the interaction
of structural elements on the working side have been considered only in their purely
electronic or photoelectronic aspects or from the standpoint of static fields of elastic
stresses. Our investigation of the effect was stimulated by the study of LRI under ion
irradiation.

*Je-mail: ett@phys.unn.runnet.ru
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It is shown that when a strong ac electric field acts on an electron in a
double quantum well, the dipole moment is an almost periodic function
of the dc voltage applied to the structure. An antipolarization effect —
the structure is polarized in a direction opposite to the external field —
appears during one half of the period. 99 American Institute of
Physics[S0021-364(09)00518-9

PACS numbers: 73.20.Dx

Processes associated with the interaction of powerful laser radiation with the elec-
tronic subsystem of various quantum heterostructures, specifically, heterostructures with
a double quantum well, have been increasingly studied in recent years. Phenomena such
as the dynamic localization of the electronic wave function in one of the wells by a strong
ac field? low-frequency generation of electromagnetic radiafidmnd absolute nega-
tive resistanc&,’ have been observed. In the present letter a completely new effect is
reported — an antipolarization effect. The crux of this effect is that in the presence of a
strong ac perturbation a quantum system becomes polarized in a direction opposite to an
external dc electric field.

We shall describe the symmetric double quantum well by a two-level mdgg| (
= *=hA/2) with the wave functiongq(X) and y1(x), which are symmetric and antisym-
metric, respectively, and for which the quantjtﬁ(x)—xi(x) is negligibly small along
the entirex axis. We suppose that the external field consists of twosparta dccom-

ponentV(x) (its average valueand an ac componeM(x,t) with frequencyw, and we
assume that the matrix elemer\7§1 andVg,(t) calculated in the dipole approximation
are much greater than the transition enefigy

The objective of the present work is to calculate the electronic dipole moment in a
strong periodic external fiefd(x,t) and to analyze the dependence of the dipole moment
on the dc voItage—V(x)/e (—e is the electron chargeapplied to the system.

In a strong periodic external field the stationary states with definite energy are

effectively replaced by states with definite quasienérgihe wave functions of the
quasienergy states then have the Bloch form

U(x,7)=d(x,7)e "7, (1)

0021-3640/99/70(6)/6/$15.00 390 © 1999 American Institute of Physics
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wherer= wt, the numbew is a dimensionless quasienergy calculated in units«gfand
the quasienergy functio® (x,7) is periodic int with period 2.

We shall seek the functio (x,r) in the form of an expansion in an orthonormal
basis of functions¥ .. (x)=(xo(X) = x1(X))/v2 localized in the right-hand¥(,) and
left-hand ) wells:

<I)(X,T)=A(T)8Xp{i yr/2+jv(r)dr)}\lf(x)+8(r)

><exp{—i

where 7=2701/ﬁw, v(a-)zT/Ol/hw, and A(7) and B(7) are functions of time to be
determined. Substituting the wave functi¢h with ®(x,7) in the form (2) into the
Schralinger equation, we obtain the following equations Adrr) andB(7):

'y7'/2+f V(T)dT)}\I’+(X), 2

s}

dA B ) )

i—+vA=—— 2 Mne"¢ne"(7‘”)7,

dT n=—o

dB A & o

iE”B:__n;_ prn€! Vel 7T )
where

. N .
Mn eXp[Il,bn}—m . dr exp[l n7-+2f v(r)dr)] 4)
is Alw times the amplitude of thath Fourier harmonic of the function e{@fv(7n)d}
(i.e., o/ A is the modulus of the harmonic

The coefficientg4) of the Fourier expansion, by definition, do not depend on the
external dc field but are functions of the amplitude and frequency of the variable com-
ponent of the external field. In addition, since the amplitude of the variable perturbation
is assumed to be large, the integrand in E).is rapidly oscillating, and therefore the
value of the integral is small. For example, for a purely harmonic perturb&tjgft)
=W coswt, the coefficientsu,, are equal tal,(2W/A w)A/w, whereJ, (x) are Bessel
functions of argument. If W/Zw>1, the coefficientg,, will be small for anyn. For a
nonharmonic but, as before, periodic perturbation, the integral in(4/can be calcu-
lated by the method of stationary phase, as was done in Ref. 9. The conclusipn, that
small remains valid, making it possible to solve the syst8analytically.

Of greatest interest is the solution in the so-called resonance case, when the transi-
tion frequency between energy levels is a multiple of the frequency of the external field.
When the dc component of the external field is large, as we assumed initially, the tran-

sition frequency is 501/71, and therefore the resonance condition can be expressed as
y=n, n=123... (5)

Generally speaking, the solution obtained in the resonance approximation holds only in a
narrow rangey—n|<1 and cannot be extended to the entiraxis. However, it will be
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shown below that when the coefficients, are small,u,<|y—n|<1, the solutions
obtained will be entirely adequate at least for a qualitative understanding of the effect
described here.

Let us obtain the solution of Eq$3) near an arbitraryth resonance. For this, as
usual, we drop in Eq(3) all “fast” harmonics, retaining in the sums only the “slow”
term withn=1. Then the systeni3) can be easily solved, giving two quasienergy func-
tions:

1 6 1 6
. (X, 7)=W+(X) §+ﬁexp[1i¢|(7)}1‘l’:(x) E—ﬁexp{ii(%(f)—%)}v
(6)

corresponding to two values of the quasienergy

7 1
ve=to =t uf+ & (7)

Here we have introduced the detuning from resonafweey—| and the functionp(7)
=[(v(7)+1/2)dr.

Now it is easy to find an expression for the electronic dipole moment in quasienergy
states near thkh resonance. Using for this purpose the wave functi@swe obtain

o
Di(é):IEXO1WI 8
|

where xq; is the matrix element of the coordinate operaffur definiteness we shall
assume it to be positiye

In accordance with Ed8), the dipole moment, for example, of the+" state in the
region of negative values af far from resonance, is close to its maximum possible
positive valueexy;. A transition through the resonance point is accompanied by an
abrupt change in sign of the dipole moment, with the minimum possible vakeg,,
being rapidly approached asincreases. To all appearances, a further increase of the
distance from resonand@ the region|s|~1) should not greatly influence the dynamics
of the system. For this reason, the dipole moment will remain at its maximum or mini-
mum value until the system reaches the region of the nlextljth or (+1)th reso-
nance, where once again the dipole moment vector flips abruptly.

Evidently, such flipping will always occur when the paramefesissumes its next
integer value. Then the distance between the energy levels, initially coupled with one
another by a resonant&uantum process, will change by the energy of a single quantum
of the external ac field.

Therefore the dependence of the dipole moment on the paramdiar., on the
external dc fieldl in quasienergy states is almost periodic with a “period” of 2. Small
deviations from periodicity will be observed in a small neighborhood of the resonance
point y=n, where the dipole moment changes sign. The width of the differential of the
functionD..(y) near resonance is determined primarily by the values of the coefficients
Mn, and since in general all coefficients, are different, strict periodicity is impossible.
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Therefore in one “half period” the direction of the dipole moment is the same as the
direction of the external dc field, and in the next “half period” the system is polarized
opposite to the field, with the dipole moment reaching its largest values in both cases.
Therefore an antipolarization effect, due to the additional effect of the strong ac field on
an electron, arises in one of the “half periods” in the system.

It is easy to understand this behavior@f (y) if the structure of the quasienergy
stateg6) is taken into account. For example, near ltieresonance for negative values of
the parameteb (such thatu,;<|8|<1) the functiond ,(x,t) is identical(to within an
unimportant exponential phase fagttw the function® _(x) and is therefore completely
localized in the left-hand well. Then the polarization of the system has its maximum
value, and the system is almost insensitive to further decreas@s of

As exact resonance is approactiéer0), the degree of localization of an electron in
the left-hand well decreases and a portion of the wave function is transferred into the
right-hand well. If the resonance condition holds exactly, the quasienergy function
d, (x,t) fills both wells equally. An increase af results in further filling of the right-
hand well and emptying of the left-hand well. Finally, & «, the entire wave function
is completely localized in the right-hand well, which once again gives a maximum dipole
moment, but this time the moment is directed in the opposite direction.

As expressior{7) shows, at resonan¢@=0) the quasienergy branches approach as
close as possible to one another to a value determined by the coeffi¢ieint the zeroth
approximation, corresponding @,= 0, the quasienergy branches intersect one another,
i.e., degeneracy of the quasienergy spectrum, also called a quasienergy resonance, occurs.
The degeneracy is lifted when the finiteness of the coefficients taken into account —
the quasienergy levels are “split” and a gap of wigth forms between the quasienergy
branches. In this case the wave functions of the quasienergy states are symmetric and
antisymmetric linear combinations of the two initial, zeroth-order wave functions, just as
happens for degenerate stationary states. In our case the zeroth approximation corre-
sponds to departure from resonance — when there are two quasienergy functions which
are virtually completely localized in the left-hand and right-hand wells. For this reason,
for 6=0 their superposition with coefficients of equal absolute magnitude will necessarily
give a wave function that occupies equally the left- and right-hand wells, as can be
directly verified using expressiai®) with §=0. It is obvious that the dipole moment of
the system should vanish at the resonance points, and that is just what exp(8gsion
gives.

A strong ac field couples the two zero-order quasienergy states localized in different
wells. For this reason a transition in the parameidrom negative to positive values
through the resonance point results in a continuous transfer of the quantum system from
one quasienergy state in the zeroth approximation into the other, and this transition is
accompanied by a relocation of the electronic wave packet from one well to the other.

As we have said, no substantial changes in the funetiarix,t) will occur in the
entire range of values af between two resonances ungibpproaches the next resonance
valuel +1 (i.e., 5=1). Here a reverse transition of the electronic wave packet will occur
— from the right-hand to the left-hand well, with the successive change in the direction
of the polarization vector. Evidently, each successive transition through the next reso-
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nance point will be accompanied by a transfer of the wave packet from one well to the
other.

The behavior of the functio® _(x,t) is completely opposite to that @b, (X,t):
When one function is localized in the left-hand well, the other is localized in the right-
well, and vice versa. For this reason, the dipole moments inttla@d — states differ in
sign.

In the most general case the wave function of the system is a superposition of both
quasienergy states and can be represented by an expansion in an orthonormalized basis of
functionsU .. (X, 7):

V(x,71)=C_ U,(xX,n)+C_U_(X,7). (9

As was shown in Ref. 8, the expansi¢® in the basis of quasienergy functions, in
contrast to the expansion in other bases, possesses an important property: The expansion
coefficientsC.. do not depend on time and are always constant. For this reason, if a state
identical to one of the quasienergy states is prepared inifiedly;, one of the coefficients

in the expansiori9) is 0 and the other is)1the system remains in the given quasienergy
state with probability 1. This can be easily achieved in practice by imposing on the
symmetric double quantum well first a strong dc fieMy{=%A), which results in lo-
calization of particles in the lower levéin the lower subbandin one of the wells, and

then an ac field. The intensity of the dc field and the frequency of the ac field must be
chosen such that the system is far from resonance, i.e., the con@imfar from being
satisfied. Since in the nonresonant range of valuegtbe functionsU.. (x,7) are local-

ized in different wells, it is obvious that the particles will “occupy” the quasienergy state
whose wave function is localized in the well containing the particle at a given moment.
Subsequently, the dc field can be varied adiabatically without causing transitions of the
quantum system from one quasienergy state into another, but transferring charge from
one well into another with each passage through the next reso@nce

Taking, for estimates, the width of each well and the thickness of the barrier sepa-
rating the wells to be 10 nm, the barrier height to be the same in order of magnitude as
the values ok, 4, i.e., —0.1 eV, and the carrier mass to be of the order of a tenth of the
free-electron mass, we obtain the transition endrfyyto be of the order of 10° eV. To
“separate” the energy levels substantially, increasing the transition energy severalfold or
even by an order of magnitude, will require dc fieldsl0® V/cm, which are easily
attainable. At temperaturés~ 10 K, which is ordinarily the case in experiments of this
kind (see, for example, Refs. 5 and, The thermal energy is approximately an order of
magnitude smaller than the distance between the levels.

If the surface electron density;~10'tcm 2, the Fermi level will lie above the
ground state by an amount of the order of $&V, comparable to the thermal energy.
Under these conditions most particles will be in the lower energy subband in one of the
wells and will remain there until the ac field is switched on. The latter field can be
produced using submillimeter-range lasers, which gives frequencidéshe order of the
transition frequency.

In summary, estimates show that dynamical polarization effects in a double quantum
well can be observed experimentally.
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It is found that the character of single-particle excitations of a trapped
neutral-atom Fermi gas is strongly influenced by a superfluid phase
transition. Below the transition temperature the presence of a spatially
inhomogeneous order parametgap shifts the excitation eigenener-
gies upward and leads to the appearance of in-gap excitations localized
in the outer part of the gas sample. The eigenenergies become sensitive
to the gas temperature and are no longer multiples of the trap frequen-
cies. These features should manifest themselves in a strong change of
the density oscillations induced by modulations of the trap frequencies
and can be used for identifying the superfluid phase transition.
© 1999 American Institute of Physids$S0021-364(09)00618-(

PACS numbers: 05.30.Fk, 64.7, 67.20+k

The physics of ultracold trapped atomic gases has attracted a lot of attention after the
discovery of Bose—Einstein condensatloi. Trapped neutral-atom Fermi gases, when
cooled to a sufficiently low temperature, should also exhibit prominent macroscopic
quantum phenomena which are mostly related to a superfluid pairing phase transition.
Possible versions of this phase transition in atomic samples have recently been discussed
in Refs. 4—7. However, as only a small fraction of the particles is influenced by the
pairing, it is not entirely clear how the transition will manifest itself in the dynamic and
kinetic properties of the gas.

In this letter we indicate a clear way of identifying the pairing transition in a trapped
Fermi gas. We study single-particle excitations and show that they are strongly influ-
enced by the pairing. Above the transition temperailythe excitation eigenfrequencies
are multiples of the trap frequencies. It turns out that belquthe presence of the order
parameter shifts the eigenenergies upward and creates conditions for the existence of
in-gap excitations localized in the outer part of the gas sample in the well formed by the
gap and the trapping potential. The eigenenergies become sensitive to the gas temperature
and are no longer multiples of the trap frequencies. This should strongly change the
response of the gas to modulations of the trap frequeris&s below

The influence of pairing on single-particle excitations is essentially the same for all
types of pairing discussed in Refs. 4—7, and for simplicity we confine ourselves to the
case of thesswave pairing. We consider a two-component neutral gas of fermionic atoms
trapped in a spherically symmetrical harmonic potential. The(twperfing components

0021-3640/99/70(6)/7/$15.00 396 © 1999 American Institute of Physics
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labeled asa and B8 are assumed to have equal concentrations. The Hamiltonian of the
system has the forrth=1)

H=i2w drerowiWJ drip, Yatbs ¥is. (6
where ;(r) with i=a,B are the field operators of the and 8 atoms,H,=—V?/2m
+mQ2?r2/2— u, QO is the trap frequency, and is the chemical potential which greatly
exceeds() in the Thomas—Fermi limifsee e.g., Ref.)8discussed below. The second
term in Eq.(1) assumes an attractive elastic interaction between atoms in the gt@nels
B (s'wave scattering length<<0); hereV=4ma/m is the coupling constant and is the
mass of an atom.

The presence of a negatigevave scattering length for the intercomponent interac-
tion leads to a superfluid phase transition via Cooper pairing is-thave channel,with
the critical temperatur@ . <. Being interested in the effect of this transition, we con-
sider temperature§< u, where the chemical potential coincides with the Fermi energy
at the center of the trapi~ep= pé/Zm, and the Thomas—Fermi radius of the gas sample
Rre=ve/Q serves as a unit of lengthvg=pg/m). In this temperature range a small
parameter of the theory ik =2|a|pg/m<1. The density profile of the gas i%(R)
=no(1—R?)%?2 wheren,=pZ/37? is the maximum gas density, aftthe distance from
the origin in units ofRy. This density profile corresponds to the local Fermi momentum
Pe(R)=pe(1—R?¥2 and the density of states on the local Fermi surfaieR)
=mpe(R)/(27?). To be precise, the above formulas should be modified in the presence
of the interaction. The leading mean-field corrections are smooth and &mall They
also result in a uniform shift of the particle eigenenergies in the vicinity of the chemical
potential level. This shift can be absorbed by redefining

We assume that the critical temperatdrgof the pairing transition is much larger
than Q and, hence, T, is very closé to the critical temperatureTgo)zo.z&‘,:
X exp(—=1/\) in a spatially homogeneous gas with densigy(Ref. 9. Below T, the gas
is characterized by the presence of the order parame®) =|V|(,(R) #5(R)). Fol-
lowing a standard mean-field procedusee, e.g., Ref. 20we can write the term de-
scribing the interparticle interaction in Eqd) in the form A(R)#,(R)#s(R)
+A*(R) %(R) sz(R). Then the Hamiltonia(1) becomes bilinear and can be reduced to
a diagonal form by using the Bogolyubov transformation generalized for the spatially
inhomogeneous casg®ef. 10:

l/fa(R)) B
(lﬁﬂ(R) _EV

where «,, and B, are the operators of single-particle excitations. Their wave functions
U,(R), V,(R) satisfy the Bogolyubov—de Gennes equations

i %)
ol [T arru, ) T - ) ?

wheree ,=0 are the excitation energies.

al/ 14

)
+V,’j(R)< T)

_aV

UV(R)(

Ll
14

In the vicinity of T, the order parameter can be found from the Ginzburg—Landau
equation’
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A(R)=5.15 T \(T,—T)/T, exp( —R?/21%), 3)

wherel3 = k\2\/(1+2N)<1, andk=0.13(Q/T,). At lower temperatures, where the
Ginzburg—Landau approach is not valii(R) can be obtained from the Eilenberger
equations! which in the presence of a harmonic trapping potential read

ig/,+(A-f,—A* T )/Q=0,
if —(2iof,+2A%-g,)/Q=0, (4)

T+ (2iwf,+2A-9,)/Q=0,

where the prime symbol stands for the operam(R)/pg) (n-Vg). Equationg4) follow
from the well-known Gor’kov equatiohd under the assumptioag(R)>T. The func-

tionsf,, f,, andg, depend on the positioR and the unit vecton, f =f,(R,n), etc.,
and obey the constraiﬁg(R,n)?w(R,n)—gfu(R,n)=1/4 (see Ref. 11 for more detalls

Equations(4) must be completed by the self-consistency condition

d
A(R)=|V|~27TN(R)T§w: fﬁfw(R,n), (5)

where the summation is performed over the Matsubara frequeaciesT(2n+1).

For realA the functionf ,(R,n)=f_(R,—n), and the solution of Eqs4) for f,,, if
the terms of order@/\T?+A?)? are omitted, can be written as

B A N o QA L0
2 (,!)2+A2 4 (w2+A2)3/2
where the prime has the same meaning as before. Equ&6pasd (5) provide us with
an equation for the order paramet&(R). Actually, the first term of Eq(6) gives a
formally divergent quantity , 7T/ \Jw?+ AZ. To eliminate this divergency we renormal-

ize the coupling constant in the same way as has been done in the Bogolyubov method
(see, e.g., Ref. 23Then we obtain

02 2(w?+A?)A"~5A(A')?
16 (2+A2)72

2

fo , (6)

d?A . 1 dA 2—3R?
drR2 RdR 1_R2

=A-S, .+ 1R
AN(R) ~ S 35/2T

)

12

5(1—R2)(dA ZA
2402 |dR/ ™
whereS,=7TS 0/ (w?+A?)* for a=5/2, 7/2 , and

2dx

F{A
ex T cosh(x)

.1 -
80— —y—In -
T a0 -R) o 1

with y=0.577 being the Euler constant.

At T close toT equation(7) reduces to the Ginzburg—Landau equation from Ref. 7.
For lower temperatures we solved E@) numerically, with the boundary conditions
A’(0)=0 andA(1)=0. In Fig. 1 we presenA(R) at various temperatures far=0.3 and
TO=50 (T.=0.86T")). A comparison with the results of the local-density approxima-
tion shows that the latter is adequate only at very low temperatures: with decrdasing
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FIG. 1. Order parametek(R) at various temperatures=T/T, (solid lines. The dashed lines correspond to
A(R) in the local density approximation at=0 (upper curvg and 7=0.99 (lower curve.

the spatial region in which is substantially nonzero increases and, hence, the spatial
derivatives ofA, neglected in the local-density approximation, become less important.

In a spherically symmetrical trapping potential the elementary excitations are char-
acterized by a radial quantum numbgrorbital angular momenturh and its projection
m. The excitation wave functions can be written a$J,(V,)=R 1Y,,(R)
X[Uun(R),vy(R)], where the functions ,v) are normalized by the condition
fg(un,u;,ﬁvmvz,l)dR: Snn. At temperaturesT<ep~u, elementary excitations
formed by particles with energies in a narrow vicinity of the Fermi surface are most
important. In the classically accessible region of space the excitation wave functions
exhibit strong spatial oscillations, with a period of orcm?l(R)<RTF and a slowly

varying amplitudet,(R), Vo (R):

. R

() eXp('“ledeR)(ﬂm)m

= .C. .
Vi VPrI(R)

The partial Fermi momentum is defined gs(R) = (1—R?— (I + 1/2)?/ 2?R?) Y2, where
w=2u/Q>1, and the classically accessible region is specified by the condRierR
<R,, with the turning pointRR, , determined from the equatige:(R; 5) =0. Omitting
the terms of ordefz™! in Eq. (2), we obtain a pair of decoupled equations for the

amplitudesf . =U=iVv (e, =£,/Q=0, A=A/Q):

8

| Vni

2

+A2+ %_ 21§ .=0 9
EPrigr ~&nt|Tni==0. 9

d
- ( PrgR

In the classically inaccessible regionst®@<R; (due to the centrifugal barripand
R>R, (due to the trapping potentjalEgs.(9) must be modified by replacingg (R)
with Fi|pg(R)|, respectively, to obtain decaying solutions. Abdyethe order param-
eter is zero, and using a standard semiclassical procedure one can obtain the well-known
resuItEn‘f)z(anL | +3/2)Q) for the eigenenergies reckoned from the bottom of the po-
tential well. In a spherical harmonic trap the chemical potential(j + 3/2)Q2, wherej is
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FIG. 2. Wave functionsl, (solid lineg andv,,, (dashed linesfor above-gap and in-gap excitations, obtained
by numerical solution of Eq¢8) for =0 atT=0. For illustrative purpose onlto reduce the number of rapid
oscillations we takeu =63 instead of the actual valye~970. The arrows indicate the eigenenergies of the
excitations.

a positive integer. Accordingly, we obtaiff]?)=|2n+l—j|ﬂ for the eigenenergies of
particlelike (2h+1=j, v, =0) and hole-like (2+1<j, u,=0) single-particle excita-
tions.

Below the transition point the appearance of the order paramégf)y modifies the
excitation spectrum. Just beloly, the order parameter is small and exists only in a small
spatial region of radiuk, <1 [see Eq(3)]. Therefore, the presence A{R) only influ-
ences the excitations with smadlland shifts their eigenenergies upward slightly: The
shifts will be of order6=A(R;)I,, i.e., much smaller than the maximum valiv€0) of
the spatially inhomogeneous g&{R). Hence, the lowest excitations, namely the ones
with £)=0 at T>T,, become in-gap, i.e., have energies below the top of the gap:
e~ 0<<A(0). With decreasing temperatur&(R) grows rapidly, leading to an increase
in the number of in-gap excited states.

At temperatures well below ; the characteristic radius af(R) becomes of the
order the size of the gas samfiter, and all relevant excitation$ £ /2) are influenced
by the presence oA(R). The wave functions of above-gap excitatidns,>A(R;)]
extend over the entire classically accessible regriR<R,. In contrast, the in-gap
excitations with energies, well below A(R;) are essentially “expelled” from the
center of the trap: their wave functions are mostly localized in the well formed in the
outer part of the sample ¥ (R) and the trapping potentidbee Fig. 2.

For T well belowT. we haveA(O)~TC/Q>1, and Eqs(9) for the amplitudesi,,, ,

v, can be solved in the semiclassical approach, omitting the terms with spatial deriva-
tives of A(R), as they are small compared AF. Then, in the spatial region wheee

>A(R) we obtain
uni|_ AR) i(éiwm))—”) p[ [ w(R) ]
(\N/m)_ vo(R) zﬁ: = T(e+xw(R)) "2 ex _IJ' pFI(R)dR - (10

Here w(R) = \/éZ—AZ(R), andC.. are numerical coefficients. In the case of above-gap
excitations[ £,,,>A(R;)] these coefficients can be found by making an analytical con-
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tinuation of the solutio(10) to the classically inaccessible regioRs<R; and R>R,.
Since fore,>A(R;) there are only twdclassical turning pointsR; andR,, the semi-
classical quantization condition reads

2 (Roveh—A%(R)

dR=¢(. 11
mJr,  Pr(R) Enl A

This condition provides us with the energy spectrum of the above-gap excitétieas

Fig. 2). The amplitudedl,,, v, of their wave functions oscillate in the entire region
R;<R<R, and decay in the classically inaccessible regigrsR; andR>R,. Like the
excitations abovd ., these excited states are twofold degenerate, but their energies are
shifted upward by the presence &{R).

For the in-gap excitations the situation is more subtle due to the appearance of a
peculiar turning poinR, determined by the conditios, = A(R.). At this point a particle
undergoes Andreev reflectibhfrom the spatially inhomogeneous gagR) and trans-
forms into a holgand vice versp As a result, these excitations acquire a superpositional
particle—hole character and become nondegenerate, with a splitting that increases with
A(0).

In the spatial regiofiR.<R<R, the amplitudes,,, v, are determined by E¢10),
with the coefficientsC.. following from an analytical continuation of Eq10) to the
regionR;<R<R.. In the latter region the amplitudes are given by the samé )y but
in which w(R) is replaced by-i|w(R)| and the coefficient€ .. are obtained by making
an analytical continuation to the classically inaccessible regierR;. As a result, the
quantization condition for the in-gap excitations reads

(—1)7" cog2¢)=27%/(Z2*+1), (12

Re R
2=ﬁexp‘ fR JAZ(R)—a%MpH(R)dRJ, b= fRWsﬁrAZ(R)/pH(R)dR.

The wave functions of these excitations are mainly localized in the reRishR<R,,
where the amplitudes,,; andv,, oscillate. ForR; <R<R, they decay exponentially. In
fact, these amplitudes behave like wave functions of bound states in the potential well
formed by the trapping potential on one side and by the order paradyéRr on the

other side(see Fig. 2 To a certain extent these excitations are analogous to localized
states in the vortex core in ordinary superconductors.

For the lowest in-gap excitations the semiclassical approach for finding the eigenen-

ergiess,; and amplitudesi,, v, is not adequate, and one has to solve @y numeri-
cally. The energies of these excitations are very sensitivg(R), and, hence, to the gas
temperature. FOA(R) in Fig. 1 atT=0 we find e;=0.8X) for the lowest excitation
with 1=0 (Eqg. (12) gives g,=1.01). With increasingT the value ofe, decreases
(e9=0.23%) for T=0.99T,.) and tends to zero fofF—T,.

In conclusion, below the transition temperature, the excitation eigenfrequencies be-
come temperature dependent and are no longer multiples of the trap frequencies. These
features should lead to a strong change of the density oscillations induced by modulations
of the trap frequency, which can be used for identifying the pairing transition. For ex-
ample, spherically symmetrical modulations() ~cos@t)] cause single-particle transi-
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tions between states with the same orbital angular momehtamd aboveT,. the am-

plitude of the density oscillations will exhibit resonances at frequenziggich are
multiples of 2). Below T, the presence ok (R) changes the eigenfrequencies of some

of the excitations, and those will not contribute to the density oscillations at the resonance
frequencies. Hence, the resonance peaks broaden and become smallgiRFor Fig.

1 the eigenfrequencies of all excitations with /2 are altered by the pairing already at
T=0.5T.. Thus the characteristic resonances present in tthependence of the density
oscillations for the gas abovk, will now be smeared out. At low enough temperatures

one should also expect the appearance of resonances related to collective modes of the
order parameter. This issue will be addressed in a future publication.
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Streamlines and the distributions of nodal points are used as signatures
of chaos in coherent electron transport through three types of billiards:
Sinai, Bunimovich, and rectangular. Numerical averaged distribution
functions of the nearest distances between nodal points are presented.
We find the same form for the Sinai and Bunimovich billiards and
suggest that there is a universal form that can be used as a signature of
quantum chaos for electron transport in open billiards. The universal
distribution function is found to be insensitive to the way the averaging

is performed(over the positions of the leads, over an energy interval
with a few conductance fluctuations, or bptfihe integrable rectangu-

lar billiard, on the other hand, displays a nonuniversal distribution with

a central peak related to partial order of nodal points for the case of
symmetric attachment of the leads. However, cases with asymmetric
leads tend to the universal form. Also, it is shown how nodal points in
the rectangular billiard can lead to “channeling of quantum flows,”
while disorder in the nodal points in the Sinai billiard gives rise to
unstable irregular behavior of the flow. @999 American Institute of
Physics[S0021-364(09)00718-5

PACS numbers: 05.45.Mt, 72.16d

Billiards play a prominant role in the study of classical and quantum chameed,
the nature of quantum chaos in a specific system is traditionally inferred from its its
classical counterpart. Hence one may ask if quantum chaos is to be understood solely as
a phenomenon that emerges in the classical limit, or are there some intrinsically quantal
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phenomena that can contribute to irregular behavior in the quantum domain? This is a
question we raise in connection with quantum transport through ideal regular and irregu-
lar electron billiards.

The seminal studies by McDonald and Kauffmanhthe morphology of eigenstates
in a closed Bunimovich stadium have revealed characteristic patterns of disordered, non-
directional, and noncrossing nodal lines. Here we will first discuss what will happen to
patterns like these when input and output leads are attached to a billiard, regular or
irregular, and an electric current is induced through the the billiard by an applied voltage
between the two leads. For such an open system the wave fugettonow a scattering
state with both real and imaginary parts, each of which gives rise to separate sets of nodal
lines at which either Re/] or Im[ ] vanish. How will the patterns of nodal lines evolve
as, e.g., the energy of injected electrons is increased, i.e., more scattering channels be-
come open? Could they tell us something about how the perturbing leads reduce the
symmetry and how an initially regular billiard may eventually turn into a chaotic one as
the number of open modes increases? Below we will argue that nodal points, i.e., the
points at which the two sets of nodal lines intersect becauge&/|Rém[]=0, carry
important information in this respect. Thus we will study their spatial distributions and
try to characterize chaos in terms of such distributions. The question we wish to ask is
simply if one can find a distinct difference between the distributions for nominally regu-
lar and irregular cavities.

In addition, what other signatures of quantum chaos may one find in the coherent
transport in open billiards? The spatial distribution of nodal points plays a decisive role in
how the flow pattern is shaped. Therefore we will also study the general behavior of
streamlines derived from the probability current associated with a stationary scattering
state

=\lp exp(iSIh).

The time-independent Schtimger equation can be decomposeti‘as
1 .
Ezzmv2+v+vQM, Vpv=0, mX=VS,

The separate quantum streamlines are sometimes referred to as Bohm trajéataties.
alternative interpretation of quantum mechanics it is thought that an electron is a “real”
particle that follows a continuous and causally defined trajectemyeamling with a
well-defined positiorX, with the velocity of the particle given by the expressions above.

These equations imply that the electron moves under the influence of a force which
is not obtained entirely from the classical potenfialbut also contains a ‘“quantum
mechanical” potential

h? V?p

Vo=~ 5m

This quantum potential is large and negative, where the wave function is small, and
becomes infinite at the nodal points of the wave function whsey)=0. Therefore,
the close vicinity of a nodal point constitutes a forbidden area for quantum streamlines
contributing to the net transport from source to drain. Wipedoes not vanishS is
single-valued and continuous. However at the nodal point wifer@, neitherSnor VS
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is well defined. The behavior & around these nodal points is discussed in Refs. 3, 5,
and 6. For our study the main important property of the nodal poinig isfthat prob-
ability current flows described by “open” streamlines cannot encircle a nodal point. On
the contrary, they are effectively repelled from the close vicinity of the nodal points, in a
way as if these were impurities.

The scattering wave functiong are found by solving the Schdinger equation in
the tight-binding approximation with Neumann boundary conditions outside the billiards,
at a distance over which the evanescent modes have effectively decayed to zero. The
energy of the incident electron is=20, wheree=2E-d?m* /%, with Eg the Fermi
energy,d the width of the channel, anai* the effective mass.

An inspection of the two sets of nodal lines associated with the real and imaginary
parts of the scattering wave function reveals the typical pattern of nondirectional, self-
avoiding nodal lines found previously by McDonald and Kauffnfor an isolated, ir-
regular billiard. However, in our case of a complex scattering function the nodal lines are
not uniquely defined, because multiplication of the wave function by an arbitrary constant
phase factor expg) would yield a different pattern. The nodal points, on the other hand,
appear to helpful in this respect. They represent a new aspect of the open system and will
obviously remain fixed upon a change in the phase of the wave function. Here we
conjecture that the nodal points may serve as unique markers which should prove useful
for a quantitative characterization of scattering wave functions for open systems.

To be more specific, we have considered a large number of realiz&tEamaples”)
of nodal points associated with different kinds of billiards and present averaged normal-
ized distributions of nearest distances between the nodal points. Figure 1 shows the
distributions for open Sinafa), Bunimovich (b), and rectangular billiard¢éc, d). The
distributions are obtained as an average over 101 different values of energy belonging to
a specific energy window in which the conductance undergoes a few oscillations as
shown by the insets in Fig. 1. Cas&s, (b), and(c) correspond to two-channel trans-
mission through the billiards, while casd) pertains to five-channel transmission. The
rectangular billiard is nominally maximal in area with a numerical size>2l@ and
with the width of the leads equal to 10.

It is noteworthy that the distribution of nearest neighbors is distinctly different from
the corresponding distribution for random points in the two-dimensional pléane,

g(r)=2mpr exp(— wpr?), (1)

where the densityp of random points is related to the mean separatioh as
p=1/4r)?. This distribution is shown in Fig. 1a by the thin line, indicating an under-
lying correlation between the nodal points of the transport wave function through the
Sinai billiard. In this sense quantum chaos is not randomness.

With slight deviations the Bunimovich billiard gives rise to the same distributions as
the Sinai, as shown by Fig. 1a and 1b. Analysis of the distributions for lower enéegies
~20, one-channel transmissjogives quite similar universal forms, as shown in Fig. 1a
and 1b, but with more pronounced fluctuations because the number of nodal points is
smaller at lower energies. Moreover, averaging over wider energy domains with a finer
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FIG. 1. Normalized distributions for nearest separations between nodal fiointsits of the mean separatipn
averaged over an energy window for the chaotic Sigaand Bunimovich billiardgb) and for two rectangular
billiards (c, d). The Shannon entrop8 is given for each separate case. Cass(b), and(c) correspond to
two-channel transmission and ca&h to five open channels. The corresponding conductdirceinits of

2€?/h) versus energy is shown in the insets, which also define the energy window for each case. The distribu-
tion (1) for the nearest distances among completely random points is shown by thin lige in

grid or for higher energies gives no visible deviations from the distributions in Fig. 1la

and 1b.

We considered also the Berry wave function of a chaotic billiard, which is accepted

as a standard measure of quantum chaos:

z//(x,y):; |aj|explik(cos g;x+sind;y) + ¢;], @)

whered; ,|a;| and¢; are independent random variables. We found that the distribution of
nearest distances between the nodal point®)dfias completely the same form as for the
Sinai billiard (Fig. 18. On the other hand, an analysis of the nodal points of the wave

function

PY(X,y)= kzk explik,x+Kyy)

Xy

3

with ki, k, distributed randomly leads to the distributi¢h) of random points.
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FIG. 2. Normalized distributions averaged over position of input lead for the Sinai bilk&rdver an energy
window from e=49 to 50 for the Bunimovich billiard with asymmetric input ledd, over lead positions for the
rectangular billiardc), and over an energy window for the rectangular billiard with asymmetric input(tbad

To supplement the averaging over energy we have also considered the positions of
the leads. Figure 2a shows the normalized distribution of the nearest distances between
nodal points for the Sinai billiard, obtained as an average over 101 positions of the input
lead. It is seen that this distribution has the same form as the energy-averaged Sinai
billiard in Fig. 1a. In the same way Fig. 2b shows the corresponding case of the Buni-
movich billiard with an asymmetric input lead; this is to be compared with Fig. 1b. The
asymmetric arrangement of leads allows a larger number of eigenstates of the Bunimov-
ich billi?ord to participate in the electron transport because symmetry restrictions are
relaxed.

On the basis of Figs. 1 and 2 and comparison with the Berry wave fun@jome
therefore argue that there is a universal distribution that characterizes open chaotic bil-
liards. At this stage we conclude that the form of the distributions is insensitive to the
averaging procedure, to the number of channels of electron transmission, and to the type
of attachment of the leads. The mathematical form of the universal distribution consti-
tutes an interesting problem that remains to be solved. So does a derivation of the random
distribution associated with wave function in E).

Let us now turn to the case of the nominally regular rectangular billiard. In Fig. 1c
the distribution functions are given for the case of two-channel transmission with the
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same energy-averaging procedure as for the chaotic billiards. The nearest-neighbor dis-
tribution clearly displays a peak corresponding to a regular set of nodal points, in contrast
to the other billiards discussed above. This feature is found even for very high energies
around 25Qfive-channel transmissionTherefore the rectangular dot with the two sym-
metrically attached leads displays considerable stability with respect to regular nodal
points, in contrast to the chaotic Sinai and Bunimovich billiards.

As indicated, symmetric leads impose restrictions on how states inside the billiard
are selected and mixed on injection of a particle. In Fig. 2c the result of averaging over
the positions of the input lead is therefore shown for the rectangular billiard at a fixed
energy chosen from the energy domain in Fig. 1c. As one might expect, the pronounced
peak in the distribution function of nearest nodal points has now disappeared. Moreover,
the distribution is close to the case of the Bunimovich billiard in Figs. 1b and 2b.
Evidently the asymmetrical positioning of the leads disturbs the nominally regular bil-
liard in a much more profound way, effectively lending it chaotic characteristics. To
reconfirm this conclusion we have also performed calculations of the distribution of nodal
points within the same energy domain and with the same number of energy steps as in
Fig. 1c but for non symmetrical positions of the input lead. In fact, the distribution
function of nearest distances in Fig. 2d demonstrates a close similarity with the position
average of the nodal points. Therefore the nonuniversal behavior of the distribution
function of nodal points for the rectangular billiard shown in Fig. 1¢ and 1d is the result
of the fact that only a few symmetrical eigenstates take part in the transmission because
of symmetry restrictions.

In order to give a quantitative measure of the disorder of nodal point patterns we
consider the Shannon entro8/(Ref. 11 normalized for each specific billiard by the
entropy of completely random points. Numerical valuesSare specified in Figs. 1 and
2. As one might expect, for the same energy window there is a clear tendency towards
maximal entropy for chaotic billiards. A similar tendency is clearly seen for the position
averagdFig. 2). The case of a rectangular billiard with entropy 0(8%g. 1d is beyond
the scope of this rule, because for five-channel transmission the number of nodal points
substantially exceeds that for the other cases considered, irrespective of the type of
billiard. Thus the Shannon entropy of nodal points is an important additional quantitative
measure of quantum chaos for quantum transport through billiards.

As we have said, the streamlines are strongly affected by the positions of the nodal
points. Superficially they play the role of impurities. It is therefore of interest to deter-
mine whether the streamlines behave differently for regular and irregular situations, and
for this reason we will consider a few typical examples, starting with two well-defined
systems: the nominally regular rectangle and the irregular Sinai billiard. Figure 3a shows
the flow lines in the case of the rectangular billiard. The features of the flow lines
connecting the input and output leads are remarkable. It is clearly seen how the flow
(trajectorieg effectively “channel” through a “nodal crystal,” avoiding the individual
nodal points. This picture is evidently very different from semi-classical physics and
periodic orbit theory’? In Fig. 3 only contributions to the net current are displayed. In
addition there are also vortical motions centered around each nodal point.

The other extreme, the completely chaotic Sinai billiard, is shown in Fig. 3b. Be-
cause the nodal distribution is now irregular also, the streamlines form an irregular
pattern when finding their way through the rough potential landscape. Since a streamline
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FIG. 3. Streamlines and positions of vorticemdal pointy at maximum conductance é2/h) for (a) the
rectangle withe=20.44 and(b) for the Sinai billiard withe=20.79.

cannot cross itself, Fig. 3 brings to mind the classical example of meandering rivers in a
flat delta landscape. As is well known, slight changes in the topography, for example, by
moving only a few obstacles to new positions, may induce completely new flow patterns
in a sometimes dramatic ways. In the same way slight variations of the energy, for
example, may affect the quantum streamlines in the Sinai billiard in an endless way,
occasionally forming more collected bunches connecting the two leads in a more focused
way than in Fig. 3b. The same type of behavior has also been obtained for a two-
dimensional ring in which a tiny variation of the external magnetic flux induce drastic
changes of the flow lines and, as a consequence, the Aharonov—Bohm oscillations be-
come irregular3
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The Landau quantization for the electron gas on the surface of a sphere
is considered. It is shown that in the regime of strong fields the lowest
energy states are those with magnetic quantum numhberfsorder of
®/d, the number of magnetic flux quanta piercing the sphere. For an
electron gas of low densitysemiconducting situatignt leads to the
formation of an electronic stripe on the equator of the sphere in high
fields. © 1999 American Institute of Physics.

[S0021-364(09)00818-X

PACS numbers: 73.20.Dx, 71.10.Ca

The electronic properties of cylindrical and spherical nanosize objects have attracted
much theoretical interest in recent years. This interest is mostly related to the physics of
carbon macromolecules and, in particular, to the transport properties of carbon
nanotubeg.One encounters spherical nanosize objects in studies of the nonlinear optical
response in composite materidlgf simple metal cluster$,and of photonic crystals
based on synthetic opdldn the most of these studies, the coating of the nanosphere is
characterized by an effective dielectric functibt.has been noted, howevRthat this
approach must be revised if the coating of a sphere has a width of a few monolayers, a
limit which is attainable by modern technologies.

In recent papers we have considered the electron gas on a sphere. We showed that
various correlation functions in such a gas exhibit maxima when the electrons are at the
antipodal pointgnorth and south polég The exact solution was found for a problem in
a uniform magnetic field, and the limits of weak and high fields were investi§dtethe
high-field regime the formation of Landau levels was demonstrated. The complexity of
the special functions describing the exact solution, however, complicates the analysis of
the physical picture in the high-field regime. In this paper we explore qualitative argu-
ments, supported by numerical calculations, to clarify the issue. We find that the mini-
mum energy of the Hamiltonian is provided by the electronic states located near the
equator of the sphere. For low densities of the gas one thus expects that a high field will
push the electrons toward the equator and form an electronic ring there.

We consider the electron gas moving within a thin layer on the surface of a sphere
of radiusr,. We assume a Hamiltonian of the forh= — V2/2m,+U(r), wherem, is
the electron mass. The chemical potentiatietermines the total number of electrdds
(with one projection of spinand their areal density= N/47rrg. The confining quantum-

0021-3640/99/70(6)/5/$15.00 410 © 1999 American Institute of Physics
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well potentialU(r) restricts the radial motion within a thin layér <r,. We are inter-
ested in the casér < v~ 2, when the first excited state of the radial motion lies above the
chemical potential. Then one can ignore the radial component of the wave function and
put r=rg, in the remaining angular part of the Hamiltonian. In the absence of magnetic
field we haveH (9= — (2mer3) ~*A,, with A, being the angular part of the Laplacian.
The solutions to this Hamiltonian are the spherical harmoMigs and the spectrum is

that of a free rotator model :

VO(G,4)=rg Y in(6,¢), EO=(2mgrd) t(1+1).

In the presence of a uniform magnetic fi@ddirected toward the north pole of the
sphere(6=0) we choose the gauge of the vector potentialfas3(Bxr). Then the
angular partH,, of the Hamiltonian

1
_ i 2
H 2me( iV+eA) +U(r)

acquires the form

14
Ho=(2merg) | —Aq +2ip 57+ psi?o). 1)

The governing parameter hereps wBrS/d)o, with the magnetic flux quantunb,=2

X 10" T.m2. For a sphere of radiug=100 nm one hap=1 at a fieldB=600 Oe. The
solutions of(1) are given by the oblateangulaj spheroidal functions and were analyzed
in Ref. 8 to some detail.

In the weak-field regimep~1, jumps in the static magnetic susceptibilipyat
half-integerp were demonstrated. The amplitude of these jumps is parametrically larger
than the Pauli spin contribution and decreases with the increagelioivas shown that
the weak-field regime ends pf~p2=2/N. Forr,~100 nm(the case of opalsand in
the metallic situation, e.g., at the densities 10*cm™2, we haveN~ 10° and p.=30.

On the other hand, at the lowé&emiconductingdensities,y~ 10'°cm™ 2, we have
N~10. Formally in this case.=3, i.e., the field is no longer small atof the order of
unity. The jumps in the susceptibility were predicted in Ref. 8 on the assumption that
VN1, which is violated in the latter case of lowerAt the same time, the experimen-
tally accessible fields of the ordef & T result inp~100 for spheres withy~ 100 nm,

i.e., we come into the strong field regime.

For strong fieldsp— o, one observes the eventual formation of Landau leftdls.
The spherical geometry brings into the problem some peculiarities which were partly
discussed in Ref. 8. First is the incomplete restructuring of the spectrum into the LL
scheme. This restructuring takes place only for levels with initial momehtomer than
p, and the field remains weak for the levels with p2. Secondly, the field-induced
double-well potentiap?sir?d in (1) localizes the electron states with moderate magnetic
quantum numbers (Jm|<p) near the pole®=0 and §=m. As a result, only correla-
tions within one hemisphere survive. Specifically, if an electron was initially in the
northern hemisphere, then the probability of finding it in the southern hemisphere is
exponentially small.
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At the same time, the spherical geometry produces yet another effect which we shall
now discuss. The effective potential in the strong-field regime can be written as
_pog(m/p )2
Ueﬁ(B)—T(m—ksmG) , (2
with the cyclotron frequencw.=eB/m,. At small negativen we have two minima of
Uex(6) neardy,=arcsing/|m|/p) and 8,=m— arcsing/|m|/p), where we expand

U o+ 8)=(wcp coSb,) 62. (3

Performing the rescaling— x/2p|cosd,| here, we arrive at a quantum oscillator prob-
lem of the form

w|coshy|

> (—d?/dx?+x?),

i.e., the well-known Landau quantization. As long|assfy|~1, the wave-functions are
extended at the scalé@— 6,|~p~ 2 The possibility of quantum tunneling betweép
and— 6, produces the exponentially small splitting between the states centered at these
points®

Thus we see that the energy levels are labeled by two quantum numbers, a magnetic
numberm and LL numbem, with approximate twofold degeneracy for givemn.

This simple picture becomes inadequate whap=p and ,==/2. In this case the
harmonic potential in(3) weakens, which makes necessary the consideration of the
fourth-order terms in the expansion. We have in this case

T w:P
0+ 7

Uef‘f 2

6%, |m[=p. 4

Now rescalingd—xp~ Y3, we arrive at the following Schdinger equation:

We

A2 2 4 —
4p1/3( do/dx“+x*) y=Ey.

The solution of the last equation apparently is not kndwior our purposes it
suffices to note that the energy scalesua$p*<w., and the wave functions on the
equator extend over a scale|#f— 7/2|~p~ 2. In addition, we no longer have a double-
well potential, and the energy levels are separated by the sameugdgi&®. The cross-
over between Eqg3) and (4) takes place at 4 |m|/p~p~ 2",

With further increase ofm|, at |m|>p, the minimum value ofUg; is found at
6=m/2 and increases rapidly withm|. In this case the energy levels ag,~ w(m
+p)?/p and thus lie well above those witm|<p.

Let us illustrate these qualitative results using the results of numerical calculations.
We found the spectrum of Eql) by diagonalizingH,, in the basis of Legendre poly-
nomials P, ,(cosd) with 0=<n=<200 (Ref. 10. The results are shown in Fig. 1. One
verifies that the “equatorial” states wiffm|=p> 1 provide the minimum eigenvalues of
the Hamiltonian. This dependence of the energy level schenma isrprobably of minor
importance if we consider the situation of a métalhere the chemical potential lies well
above the bottom of the conduction bangst w.). In this case the number of electrons
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FIG. 1. The dependence of the four lowest energy lefzglson the magnetic numben<0 in the high-field
regime,p=®/d,=100. The calculated points are shown by circles; the lines are a guide to the eye.

N on the sphere is expected to exceed the number of flux qpaiitaen several Landau
levels are occupiedseveral lines in Fig. land the electrons are distributed over the
whole sphere.

At the same time, the semiconducting coating of the sphere can lead to a different
result. Indeed, if the cyclotron frequenay. is high enough, then the “polar” states with
small negativan are poorly occupied. Meanwhile, the “equatorial” states with energies
~wep~ Y2 are occupied to a larger extent. This produces an effective ring on the equator
of the sphere. The criterion for this phenomenoNisp or, equivalentlyB=®,». Note
that the latter inequalities correspond to the partially filled lowest Landau level in the
usual planar geometry.

We see that in the spherical geometry of the electron gas the states with [migher
possess the lower energy. Our situation is thus opposite to the one discussed for the
quantum Hall edge statéSNevertheless both problems have a common ingredient, the
linear-inm spectrum for a givem (in our case in two domaingm|<p and|m|=p).

Having effectively a case of one spatial dimension, we can consider the interaction
effects as well. The problem has a certain subtlety, however, which is described below.

In certain cases one may hope to ignore the interaction between states belonging to
different “Landau levels” (different curves in Fig. 1 Considering now the lowest LL,
one observes familiar branches of right- and left-going fermidmg=p and |m|=p,
with the negative and positive “Fermi velocities/'==dE,,,/dm, respectively. The ab-
solute values ofv for left and right movers are different. This point alone makes it
difficult to pass to a bosonization description with one scalar field for both movers, and
the notion of the chiral Luttinger liquid arises. A thorough consideration of the latter
problem is beyond the scope of this study.

In conclusion, we have considered the Landau quantization for the electron gas on
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the surface of a sphere. The exact solution of this problem involves complicated func-
tions, which are not very instructive for the analysis of states with large magnetic num-
bersm for the electron motion. We have elucidated the role of the “equatorial” states
with largem both analytically and numerically. Since these states are lower in energy, the
electronic stripe on the equator can be realized for the semiconducting coating of the
sphere in high magnetic fields.
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