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Abstract—The ion distribution function over transverse velocities and the ion heating efficiency (which is
defined as the fraction η of ions heated above a certain energy Wmin) are calculated in the context of a plasma
method for isotope separation on the basis of ion cyclotron resonance heating. The ion distribution function over
longitudinal velocities is assumed to be linear in the range of low velocities. It is shown that, when the ions are
heated to high energies, the averaged ion distribution function over transverse velocities becomes highly non-
equilibrium and has two peaks. Results are presented from calculations of the ion heating efficiency η for
Wmin = 40 eV and for different values of the parameter p that characterizes the ratio of the wavelength λ of the
antenna electric field to the length L of the heating region. The relative roles of the time-of-flight and the Dop-
pler broadening are analyzed, and the separation parameters of a collector of heated ions are estimated. © 2004
MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

The ion cyclotron resonance (ICR) method for iso-
tope separation is based on the selective cyclotron res-
onance heating of the ions of a target isotope in mutu-
ally perpendicular alternating electric and constant
magnetic fields [1–7]. Stable isotopes are now sepa-
rated in two ways: by the electromagnetic method [8] or
with the help of cascade gas centrifuges [9]. The centri-
fuges, however, are capable of separating isotopes of
only those elements that form gaseous compounds with
sufficiently high vapor pressures at room temperature.
The electromagnetic method is well developed but is
used to separate out only relatively small amounts of
the target isotope. The plasma method is based on
selective cyclotron resonance heating of the ions of the
target isotope. In the separation of isotopes of metal
elements in medium-scale industry, the plasma method
seems to have some advantages over the electromag-
netic method because it is essentially free of restrictions
on the intensities of the ion fluxes. At present, the tech-
nological aspects of the ICR method are being devel-
oped.

2. CALCULATION OF THE ION DISTRIBUTION 
FUNCTION OVER TRANSVERSE VELOCITIES

Important elements of an ICR separator are a plasma
source that produces ion fluxes with a certain spread
over transverse and longitudinal velocities and an RF
antenna that generates electromagnetic fields in the
ICR heating region. When the plasma passes through
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the ICR heating region, the ion distribution over trans-
verse velocities changes appreciably. In some ICR
devices (see, e.g., [4]), use is made of inductive anten-
nas in the form of multiphase cylindrical helices—the
so-called helical (or spiral) antennas. For a four-phase
antenna in which the ac current in each subsequent
phase is shifted by π/2, the alternating electric field
within the cylindrical heating region can be represented
as a circularly polarized wave that runs in the positive
direction along the z axis and whose polarization vector
rotates with an angular velocity ω,

(1)

(2)

where K =  is the wavenumber, E is the electric field

amplitude, and ϕ is the initial phase. In this approxima-
tion (which can be regarded as linear), the alternating
components of the wave magnetic field are ignored.
Nonlinear effects were taken into account by Laz’ko
[10] by deriving the integrals of motion and by Panov
and Timofeev [11] by applying the theory of adiabatic
invariants. Note that, if the inverse effect of the motion
of plasma particles on the vacuum antenna field is
ignored (which corresponds to the case of relatively
low plasma densities), then Eqs. (1) and (2) satisfacto-
rily describe the heating electric field in the plasma at
radii of r ≤ R/2, where R is the antenna radius [12].

In Cartesian coordinates, the equations of motion of
singly charged ions of mass m and charge e in a wave
electric field that is described by Eqs. (1) and (2) and

Ex E ωt Kz– ϕ–( ),cos=

Ey E ωt Kz– ϕ–( ),sin–=

2π
λ
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rotates in the direction of ion gyration in a longitudinal
magnetic field Bz can be written as

(3)

(4)

where Vx and Vy are the transverse components of the
velocity of the ions and Vz is their longitudinal velocity.
We introduce the absolute value of the transverse ion

velocity V⊥  = . Our objective here is to con-
sider the ICR heating of an ion flux with certain initial
distributions over longitudinal and transverse velocities
and to determine the ion distribution function over
transverse velocities at the exit from the heating region
of finite length L. We assume that, at the entrance to the
ICR heating region, the ion distribution function over
transverse velocities is Maxwellian,

(5)

where T0⊥  is the initial transverse ion temperature.
As a first step, we use the expression that was

obtained by Ustinov [12] for the transverse ion distribu-
tion function at the exit from the heating region for the
case of a beam of ions with the same longitudinal
velocity Vz:

(6)

where k is Boltzmann’s constant and I0 is the zero-order
modified Bessel function. For a heating regime in
which the transverse energy of the ions is much higher
than their initial thermal energy, the quantity V0 is given
by the formula

where ω0 is the ion gyrofrequency. Distribution func-
tion (6) is normalized to unity and depends on both the
longitudinal velocity Vz of the ion beam and the heating
field frequency ω. At the entrance to the heating region,
an actual beam is a superposition of individual beams,
each having its own longitudinal velocity Vz . We denote
the distribution function over longitudinal velocities by
fz(Vz) in order to represent the total ion distribution
function as a product of two functions,

(7)

Let us investigate the heating of the ions described by a
model non-Maxwellian longitudinal distribution func-
tion fz(Vz). We assume that this model distribution func-

m
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tion depends linearly on the ion velocity in the low-
velocity range and decreases exponentially at high ion
velocities,

 Vz > 0, (8)

where Tz is the effective longitudinal ion temperature.
We also assume that this function does not change over
the entire length of the heating region. We introduce the

parameter p = , which is equal to the ratio of the

wavelength λ to the length L of the heating region. For
a fixed length L of the heating region, the variation of
the parameter p corresponds to the variation of the
wavelength λ and, accordingly, of the wavenumber K,
whereas, for a fixed wavelength λ, the variation of the
parameter p corresponds to the variation of the length
of the heating region. We define the distribution func-
tion averaged over longitudinal velocities to be

(9)

where we have introduced the notation

All the simulations were carried out for a model binary
mixture of isotopes with mass numbers of 6 and 7. We
introduce the dimensionless parameter n, which char-
acterizes the detuning of the antenna field frequency

from the ion gyrofrequency: n = , where δω =

ω – ω0 and Vz0 =  is the mean longitudinal ion

velocity.
The value n = 2 of the frequency detuning parameter

n so defined corresponds to the precise tuning of the
mean longitudinal ion velocity to a value at which the
heating efficiency is maximum. The condition under
which the tuning of the longitudinal velocity Vz of an
ion to the resonant value is sufficiently precise can be

f z Vz( )
mVz

kTz

----------
mVz

2

2kTz

-----------– 
  ,exp=

λ
L
---

F y( ) f y( )/
m

2kT0⊥
--------------- 

  1/2

=

=  4 y
2

y0
2

x
2

+ +( )I0 2yy0( )xy x,d–(exp

0

∞

∫

y
V ⊥

2kT ⊥ 0/m( )1/2
-------------------------------, x

Vz

2kTz/m( )1/2
----------------------------,= =

nL

2kTz

m
----------- 

 
1/2 2

Lω0
----------, nE

2E

Bz

2kT ⊥ 0

m
--------------- 

 
1/2

-------------------------------,= =

y0

nE Ω πnLx/ p– 1–( ) 1
nLx
-------- 

 sin

Ω πnLx/ p– 1–( )
-----------------------------------------------------------------------, Ω ω

ω0
------.= =

2δω
KVz0
------------

πkTz

2m
------------ 

 
1/2



1008 KARCHEVSKIŒ, POTANIN
written as |ω – ω0 – KVz| ! , which, in the notation

adopted here, reduces to the inequality |n – 2| ! 2p. For
n = 0 and n = 4, this inequality fails to hold, which cor-
responds to a substantial frequency detuning from res-
onance. For n = 2, this inequality is satisfied with finite
values of the parameter p.

The distribution functions F(y) of the ions of an iso-
tope with a mass number of 6 are shown in Figs. 1–3,
which illustrate the results of calculations carried out
for an alternating electric field with an amplitude of E =
50 V/m, a longitudinal ion temperature of Tz = 10 eV,
and a heating region of length L = 0.8 m and for differ-
ent values of the parameters p and n. The values n = 0
and n = 4 correspond to a substantial frequency detun-
ing from resonance. In this case, an increase in the
parameter p indicates a decrease in the wavenumber K.
Figure 4 shows the ion distribution functions F(y) cal-
culated for different amplitudes E of the heating field in
the case of precise tuning of the mean longitudinal ion
velocity to resonance (ω – ω0 = KVz0, n = 2) at Tz =
10 eV, T⊥ 0 = 5 eV, and p = 1 (which corresponds to a
one-wavelength antenna). Curve 1 was obtained for a
zero heating field (E = 0) and corresponds to a Max-
wellian distribution function. Curves 2, 3, and 4 were
computed for heating fields with the amplitudes E = 50,
100, and 200 V/m, respectively. We note that the spec-
trum of the transverse ion energies is fairly broad and
that the distribution of the ions heated to high energies
has two peaks. The results calculated for a strong heat-
ing electric field are somewhat incorrect because they

2πVz

L
------------

F(y)
1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10
y

n = 0

Tz = 10 eV

E = 50 V/m

p = 0.5

n = 1

n = 2

n = 4

Fig. 1. Distribution function of the heated ions over trans-
verse velocities for p = 0.5 and for different values of the
parameter n.
were obtained in the linear approximation. From for-
mulas (7), (8), and (9), we can derive the following
expression for the ion heating efficiency η, which is
defined as the relative fraction of ions heated above a
certain given energy Wmin:

(10)

where .

Figure 5 illustrates the results of calculating the ion
heating efficiency η for Wmin = 40 eV and for different
values of the parameter p, which characterizes the ratio
of the wavelength λ of the antenna electric field to the
length L of the heating region and, thereby, the relative
roles of the time-of-flight broadening and Doppler
broadening. Since the calculations were carried out for
a fixed length of the heating region, L = 0.8 m, varia-
tions in the parameter p corresponded to variations in
the wavenumber K.

For large values of the parameter p (i.e., for large λ
values and small K values), the time-of-flight broaden-
ing predominates over the Doppler broadening and vice
versa for small p values. For p = 5, the width of the heat-
ing efficiency profile is determined by the time-of-flight
broadening. The dashed curve in Fig. 5 was calculated
for p = 5 with allowance for the dependence of the elec-
tric field amplitude on the wavenumber by means of the

η 4 x xy y
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Fig. 2. Distribution function of the heated ions over trans-
verse velocities for p = 1.0 and for different values of the
parameter n.
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approximations used in [12]. Figure 6 illustrates the
dependence of the heating efficiency η on the dimen-
sionless detuning of the heating field frequency from

F(y)
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0.4

0.3

0.2

0.1

0 2 4 6 8 10
y

n = 0

Tz = 10 eV

E = 50 V/m

p = 2

n = 1
n = 2

n = 4

Fig. 3. Distribution function of the heated ions over trans-
verse velocities for p = 2.0 and for different values of the
parameter n.
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–0.1

Fig. 5. Dependence of the ion heating efficiency η on the
frequency detuning ω/ω0 – 1 for E = 50 V/m, n = 2, and dif-
ferent values of the parameter p.
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the ion gyrofrequency, δω/KVz0, for a one-wavelength
antenna (p = 1), for E = 50 V/m and Wmin = 20 eV, and
for different longitudinal ion temperatures. The dashed
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p = 1
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3
4
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ω – ω0 = kVz0

A = 6

Fig. 4. Ion distribution function over transverse velocities
for different amplitudes of the heating electric field: E =
(1) 0, (2) 50, (3) 100, and (4) 200 V/m.
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Fig. 6. Dependence of the ion heating efficiency η on the
dimensionless detuning δω/KVz0 for p = 1, n = 2, and differ-
ent longitudinal temperatures.
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curve shows the relevant result obtained in [12] for an
electric field amplitude of E ≈ 50 V/m and for a longitu-
dinal ion temperature of Tz = 10 eV.

Front
screen

Deposition region
L ~ VziTci

d ~ 2RLi

U

Vz

2a

Fig. 7. Element of the scheme of a collector of heated ions.
The optimum distance d between the plates is about two
gyroradii of the heated ions. The notation is as follows: L is
the length of the deposition region, Tci is the period of ion
gyration, and Vzi is the longitudinal ion velocity.

0.5

0.4

0.3

0.2

0.1

0 10 20 30 40 50
z, mm

ë

Tz = 15 eV

a = 3 mm (T'eff = 70 eV)

E = 50 V/m
p = 1
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Fig. 8. Dependence of the concentration C of the lighter iso-
tope of mass number 6 on the longitudinal coordinate Z for
different half-heights a of the front screen. The dashed
curve illustrates the results of model calculations for δω =
KVz0.
3. SEPARATION PARAMETERS
OF A COLLECTOR OF HEATED IONS

The heated ions of the target isotope are usually sep-
arated out by a collector in the form of equidistant ion-
collecting plates oriented parallel to the plasma flow. As
a result, the heated target ions, which gyrate over large
Larmor orbits, are primarily deposited on the collector
plates. The plates are protected from the plasma flow by
the front screens. An element of a collector that
includes two neighboring plates is demonstrated in
Fig. 7 (the screen protecting the lower plate is not
shown).

In order to estimate the separation properties of the
collector, it is necessary to calculate the fluxes of ions
of different species on the collector plate. The density
of the transverse ion flux onto an element of the collec-
tor plate surface is expressed in terms of distribution
function (7) as follows:

(11)

In this case, the flux density can be defined as

(12)

where y0 is the transverse coordinate of the guiding cen-
ter of an ion Larmor orbit in a plane in front of the col-
lecting plate. Integration in formula (12) is carried out
in accordance with the restrictions imposed on the
velocities and coordinates of the ion guiding centers in
front of the collector.

For a binary mixture of isotopes, the concentration
C of the first ion species can be determined from the
relationship

(13)

where C0 is the initial concentration of the first ion spe-
cies and n10 and n20 are, respectively, the number densi-
ties of the first and second ion species.

In our earlier papers [13, 14], formulas (11)–(13)
were used to obtain similar estimates on the basis of
model Maxwellian distribution functions over trans-
verse velocities with different effective transverse tem-
peratures. In the present study, the separation properties
of the collector are calculated with allowance for a dis-
tribution function that is obtained based on solving the
Boltzmann equation and takes into account the time-of-
flight and Doppler broadening of the heating efficiency
profile [15]. The calculations were carried out for an
antenna field frequency detuned from the gyrofre-
quency of the ions of an isotope with a mass number
of 6 by an amount equal to the Doppler broadening,

δω = ω – ω0 = KVz0, where Vz0 =  is the mean

longitudinal ion velocity.
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Figure 8 illustrates the results of calculating the pro-
file of the concentration C of the lighter isotope ions
over the length of a collector plate in an operating mode
with no applied repulsive potential. The calculations
were carried out for p = 1 and for different heights of
the front screen (a = 0, 1, 2, and 3 mm). The remaining
parameter values were as follows: the initial transverse
ion temperature was T⊥ 0 = 5 eV, the longitudinal ion
temperature was Tz = 15 eV, the heating field amplitude
was E = 50 V/m, and the magnetic induction was B =
0.25 T. The dashed curve in the figure shows the profile
C(z) for a model Maxwellian distribution function with
the effective temperature determined from the follow-
ing relationship for the mean transverse ion energy:

It can be seen that the concentration calculated from a
model Maxwellian distribution differs markedly from
those obtained using actual nonequilibrium ion distri-
butions over transverse velocities. The unrealistically
high separating ability of the separator in the first case
is associated with the fact that the fraction of strongly
heated ions implied by a model Maxwellian distribu-
tion function over transverse velocities considerably
exceeds that calculated for actual conditions.
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Structure of the Surface Streamers 
of an AC Barrier Corona in Argon
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Abstract—Results are presented from experimental studies of the structure of an ac surface discharge excited
by a metal needle over a plane dielectric surface. A barrier corona discharge was ignited in atmospheric-pres-
sure argon at frequencies of the applied sinusoidal voltage from 50 Hz to 30 kHz. In experiments, the area of a
dielectric covered with the discharge plasma increased with applied voltage. The discharge structure in diffuse
and streamer modes was recorded using a digital camera and a high-speed image tube operating in a frame
mode. It is found that, in the positive and negative half-periods of the applied voltage, the structure of the sur-
face discharge is substantially different. The statistical characteristics of the branching surface streamers in the
positive and negative half-periods are determined as functions of the voltage frequency. The most intense lines
in the emission spectrum of the barrier corona are determined for both half-periods. The correlation between
the dynamics of the emission intensity and the dynamics of the discharge current and voltage is investigated.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The so-called “slipping” discharge, i.e., a high-cur-
rent surface discharge propagating perpendicular to an
elongated electrode over a plane dielectric surface, has
long been known [1]. A schematic of a device for ignit-
ing slipping discharges is shown in Fig. 1. In fact, this
is a plane variable capacitor in which the surface area
of the grounded plate is much larger than surface area
of the plate (strip) to which a high-voltage pulse is
applied. After the voltage is applied, gas breakdown
occurs near the metal strip; this gives rise to an ioniza-
tion wave propagating over the dielectric surface and
covering it with a thin layer of highly conducting
plasma (a plasma sheet). If the amplitude of the high-
voltage pulse is kept constant, the discharge current
through the dielectric is provided by the displacement
current caused by an increase in the capacitance of the
distributed capacitor, one of whose plates is the plasma
sheet. In such a situation, the slipping surface discharge
lasts until the plasma occupies the entire area of the
grounded plate. If the voltage increases over time, then
the discharge current can continue to flow after the
plasma has occupied this area.

As a rule, the energy deposited at the plasma–dielec-
tric interface in a pulsed high-current slipping dis-
charge is fairly high; this makes it impossible to use this
type of surface discharge when operating with ther-
mally unstable dielectric materials. In this study, we are
dealing with a low-current ac surface discharge excited
by a point electrode (needle) located above a dielectric
surface. Such a discharge is characterized by a low cur-
rent density (lower than 10 mA/cm2) and low specific
1063-780X/04/3012- $26.00 © 1012
power deposited in the dielectric (lower than
10 W/cm2).

Low-current atmospheric-pressure surface dis-
charges, as well as low-current volume discharges (i.e.,
steady-state and pulsed corona discharges [2–5]), can
operate in a diffuse and/or streamer mode in different
gases at various electrode configurations over a wide
range of discharge currents and voltages. These are
classical barrier discharges [6]; short-time surface par-
tial discharges [7], which operate over a dielectric sur-
face after a unipolar voltage pulse of any polarity is
applied; and an ac barrier corona [8]. It is of great sci-
entific and practical interest to study the conditions
under which the low-current surface discharge operates
in a diffuse or a streamer mode, as well as to determine
the discharge structure in both of these modes.

It should be taken into account that conditions for
the propagation of the surface streamers depend sub-
stantially on whether a unipolar voltage pulse or an ac

1

2

3

Plasma
Dielectric

Fig. 1. Scheme illustrating the ignition of a high-current
pulsed slipping discharge: (1) high-voltage electrode,
(2) grounded electrode, and (3) high-voltage pulse.
2004 MAIK “Nauka/Interperiodica”



        

STRUCTURE OF THE SURFACE STREAMERS 1013

                                                           
U(t)
I(t) ~Uacosωt

5

4

3

2

1

6

8 7

60°

Fig. 2. (a) Electric circuit of the experimental device for studying a barrier corona in atmospheric-pressure argon: (1) needle,
(2) plane electrode, (3) dielectric barrier (polymer film), (4) low-inductance current shunt, (5) voltage divider, (6) ballast resistance,
(7) surface streamers, and (8) dielectric screen; (b) top view of the electrode system for igniting a limited surface discharge.
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voltage is applied to the discharge gap and whether
high voltage is applied to a point or to an elongated
electrode. In the case of a unipolar voltage pulse, the
streamers propagate along an uncharged dielectric sur-
face, whereas in the case of ac voltage, the streamers
propagate along a dielectric surface charged during the
previous half-period of the applied voltage.

When operating with a long rod (or strip) electrode,
a large number of closely spaced streamers can propa-
gate from it in parallel to one another (see [9]). In this
case, streamer branching can be suppressed. When
using a needle (point) electrode placed above a dielec-
tric surface, the branching of the surface streamers can
be more pronounced (see, e.g., [8]).

In this study, which is a continuation of [7], we
investigate the emission dynamics and spatiotemporal
structure of an ac barrier corona in argon in a diffuse
and a streamer modes in the needle-to-plane geometry.
In contrast to conventional corona discharges, the metal
plate in a barrier corona is covered with dielectric,
which is an obstacle for a dc current.

2. EXPERIMENTAL SETUP

A schematic of the experimental setup is shown in
Fig. 2. The experiments were performed with a cylin-
drical organic-glass discharge cell with an inner diam-
eter of 200 mm and a height of 100 mm. A point-to-
plane electrode system mounted inside the cell con-
sisted of a 120-mm-diameter copper disc with rounded
edges and a stainless-steel point electrode (needle) with
a parabolically shaped end and a tip radius of 50 µm.
The plane electrode was entirely covered with polyeth-
ylene, Teflon, or Mylar films or with dielectric plates.
The film thickness was varied from 15 to 80 µm, the
thickness of the dielectric plates was up to 1 mm. Gen-
erally, the distance between the point tip and the dielec-
tric film (plate) was 0.5–1 mm.
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
In some experiments, a thick dielectric disk from
which a 60° sector was cut out was glued to the dielec-
tric film. The needle was shifted outward from the ver-
tex of the sector by 5 mm along its bisectrix. The disk
thickness slightly exceeded the distance between the
needle tip and the film; the area available for the surface
discharge was therefore limited by this sector. Such a
reduction in the discharge area allowed us to improve
spatial resolution when recording surface streamers
with the help of an image tube. A 100-mm-diameter
viewing window was mounted in the upper flange of the
cell (above the discharge) to perform optical measure-
ments.

A sinusoidal voltage was supplied to the needle
trough the ballast resistance R = 300 kΩ. The voltage
frequency was varied from 50 Hz to 30 kHz, and the
voltage amplitude was up to 4.5 kV. The waveform and
amplitude of the discharge voltage were recorded using
a balanced RC voltage divider and a Tektronics TDS-
520 and an S8-17 storage oscilloscopes. The signals
from a low-inductive current shunt with a resistance of
Rsh = 50 Ω were also supplied to these oscilloscopes.
When measuring the current averaged over a half-
period, the shunt was replaced with an arrow microam-
meter connected in series to the discharge gap through
a diode that passed the current in either positive or neg-
ative half-periods. To prevent the microammeter from
mechanical damages, it was set in parallel to a capacitor
that passed the high-frequency component of the cur-
rent.

In our experiments, we used high-purity argon (with
a certified purity of 99.99%). All of the experiments
were performed at a pressure slightly exceeding atmo-
spheric pressure (P = 770 torr). Before each experi-
ment, the discharge cell was pumped out to a pressure
of P = 10−3 torr and then filled with a working gas at a
required pressure. To maintain the certified purity of
argon, the experiments were carried out in a continuous
gas-flow regime at a low gas flow rate.
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The structure of the surface streamers of a barrier
corona was studied using an image tube operating in a
frame mode. The frame exposure time was varied from
1 to 20 µs. The special electronic scheme enabled trig-
gering the image tube during any discharge phase of
interest. The image of the surface discharge was pro-
jected onto the image-tube photocathode with a 1 : 5
demagnification. The photographs of the discharge
with a larger exposure time were taken using an Olym-
pus E-100RS digital camera and a Zenit photographic
camera.

The emission spectra of the surface streamers in
argon were recorded using an MUM-2 monochromator
with a 1200 groove/mm diffraction grating and an
FEU-100 photomultiplier (with an operating wave-
length range of 170–830 nm and a maximum sensitivity
at λ ~ 420 nm) installed at the output of the monochro-
mator. The surface discharge segments (20 × 0.5 mm2

in size) from the three different discharge regions—the
region around the needle, the middle part of the dis-
charge at the distance of 25 mm from the needle, and
the discharge periphery at the distance of 45 mm from
the needle—were projected onto the entrance slit of the
monochromator with a 1 : 2 demagnification. The pho-
tomultiplier signal was recorded in parallel with the
discharge current.

3. EXPERIMENTAL RESULTS

3.1. Discharge Dynamics

The dependence of the discharge current I on the
applied voltage U is called the current–voltage (I–V)
characteristic of a discharge. In an ac barrier discharge,
the current averaged over the oscillation period is close
to zero; therefore, it is reasonable to introduce an I–V
characteristic that relates the current averaged over a

half-period 〈I 〉  =  to the amplitude of the

applied voltage U.
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Fig. 3. The average current of a sector-limited barrier
corona vs. voltage amplitude in (1) positive and (2) negative
half-periods of the applied voltage (f = 1 kHz).
In the case of an ac surface discharge excited by a
point electrode placed above a dielectric surface, the
average current is determined by the capacitance of a
distributed plasma capacitor formed by the discharge
during one half-period of the applied voltage. It was
shown in [7] that the area occupied by the plasma on the
dielectric surface increases with the voltage amplitude.
Hence, the current averaged over a half-period should
be an increasing function of this amplitude. This is
illustrated in Fig. 3, which shows the time-averaged I–V
characteristics of a barrier corona in positive and nega-
tive half-periods of the applied voltage.

It is interesting that the above defined I–V character-
istic of an ac barrier corona can be approximated by the
same algebraic expression as the I–V characteristic of a
conventional dc corona discharge [9], namely, 〈I 〉  ≅
kU(U – U0), where 〈I 〉  is the corona current averaged
over a half-period, U is the amplitude of the applied
voltage, and U0 is the corona ignition (or extinction)
voltage. In our case, the dimensional coefficient k is
equal to k = 0.11f (µA s)/kV2, where f is the frequency
of the applied voltage. Discovering the physical reasons
for such a similarity between the ac barrier corona and
the dc corona is beyond the scope of the present study.

In an ac barrier corona, the discharge structure on
the dielectric surface varies continuously over time.
Moreover, the details of this structure are functions of
the voltage frequency and amplitude, as well as of the
thickness and permittivity of the dielectric coating.
However, it has been shown experimentally that,
together with a chaotic behavior, the surface structure
also exhibits regular features that are retained as the
discharge parameters vary.

It was found that three ranges of the voltage ampli-
tude U (all other factors being the same) corresponding
to three characteristic discharge regimes can be distin-
guished. The first (low-voltage) range, U0 < U < U1,
corresponds to the formation of a diffuse round spot on
the dielectric surface. In the second range, U1 < U < U2,
the discharge on the dielectric surface takes the shape
of a rosette. In the third range, U2 < U < U3, all the dis-
charge region is occupied by surface streamers. Here,
U1 and U2 are certain boundary values of the voltage
amplitude and U3 is the voltage corresponding to the
transition of the barrier corona into a spark mode, i.e.,
to the appearance of bright sparks on the dielectric sur-
face. Within each of these ranges, the surface discharge
in argon has a pronounced characteristic structure that
correlates with the waveform of the discharge current.

Figure 4 shows a series of photographs and wave-
forms illustrating the aforesaid using, as an example, a
surface discharge excited by a point electrode above a
1-mm-thick organic-glass plate. The figure demon-
strates how (a) the discharge structure averaged over
many discharge periods (i.e., the structure on the
dielectric surface that is seen with the naked eye),
(b) the current and voltage waveforms, and (c, d) the
instantaneous discharge structures taken by an image
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
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Fig. 4. Photographs (top view) and waveforms of the discharge current and voltage illustrating the evolution of a barrier corona
discharge with increasing voltage amplitude. The dielectric barrier is an organic-glass plate of thickness d = 1 mm. The frequency
of the applied voltage is f = 3 kHz. The center of each photograph corresponds to the discharge axis (the position of the needle).
(a) The time-averaged structure of a surface barrier corona discharge recorded with a digital camera (positive images). The black
strip at the centers of the photographs is the shadow of the point electrode holder. (b) The current (curves 1) and voltage (curves 2)
waveforms corresponding to the three regimes of a barrier corona discharge. (c) Electron-optical photographs of a barrier corona
discharge in a positive half-period (negative images). The exposure times are τ = 20 (I, II) and 10 (III) µs. The white strip at the
centers of the photographs is the shadow of the point electrode holder. (d) Electron-optical photographs of a barrier corona discharge
in a negative half-period (negative images). The arrow in Fig. 4d(III) indicates the plasma strip that has developed from the rosette’s
spoke. The exposure time is τ = 20 µs.
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tube with a short exposure time in the positive and neg-
ative half-periods of the applied voltage vary with
increasing U.

3.1.1. Range I: U0 < U < U1. In this voltage range,
the surface discharge on the dielectric surface is seen
with the naked eye as a round diffuse spot with a diam-
eter of no more that 1 cm (Fig. 4a(I)). However, photo-
graphs taken with the image tube show that the time
evolution of the discharge is more complicated. Infor-
mation about this evolution can be derived from com-
paring current waveforms with electron-optical images
of the discharge at different instants within the positive
and negative half-periods of the barrier corona.

It was found that, during a positive half-period, the
round diffuse plasma spot exists over a very short time
(no longer than 5 µs) after the appearance of a spike in
the current waveform in the stage when the voltage
increases (see Figs. 4b(I), 4c(I)). Neither before nor
after this short time interval was any emission of the
surface discharge observed. Thus, during the current
spike, the negative charge accumulated on the dielectric
surface in the preceding negative half-period is neutral-
ized and a positive charge of the same magnitude is
accumulated on the dielectric surface.

During the current spike, a generation zone arises
near the positively charged point electrode. This zone
persists throughout the entire current spike and allows
the electron current to flow through the entire discharge
surface.

Quite another behavior is observed in the negative
half-periods. The generation zone near the point elec-
trode (the cathode sheath of a negative corona) also
arises during the current spike. However, during the
negative half-period, the generation zone persists
almost over the entire stage in which the voltage
increases (i.e., over about 150 µs). In such a situation,
the positive charge accumulated on the dielectric sur-
face in the preceding positive half-period is neutralized
and a negative charge of the same magnitude is accu-
mulated on the surface at a much slower rate. Accord-
ingly, the conduction current is much lower than in the
positive half-periods. In the negative half-periods, the
maximum value of the slowly varying conduction cur-
rent increases with the voltage amplitude and fre-
quency. Since the density of the current flowing
through the surface plasma is lower than that in the pos-
itive half-periods, the emission intensity is also lower.
Indeed, electron-optical images taken in the negative
half-periods demonstrate the presence of a bright cath-
ode glow near the point electrode during the entire
stage in which the voltage increases (over ≈150 µs).
Simultaneously, a faint diffuse glowing spot appears on
the dielectric surface (Fig. 4d(I)]) and then expands up
to the size of the plasma spot observed in the positive
half-periods.

3.1.2. Range II: U1 < U < U2. As the amplitude of
the applied voltage reaches the first boundary value U1,
the discharge passes into the second regime. In this
regime, the discharge area becomes much larger than in
the first regime and the discharge structure that is seen
with the naked eye takes the shape of a stable and spa-
tially symmetric rosette with quite a sharp boundary
(Fig. 4a(II)).

Both the diffuse (the rosette petals) and contracted
(spoke) forms of a discharge can be seen on the dielec-
tric surface. The spoke length increases with the ampli-
tude of the applied voltage, whereas the number of
spokes is a function of the voltage frequency and the
thickness and permittivity of the dielectric coating. The
lower the frequency, the narrower the [U1, U2] interval
(up to its complete disappearance). For example, at a
frequency of f = 400 Hz, regime II does not occur and
the discharge passes directly into regime III.

A comparison of the current waveforms with elec-
tron-optical images reveal a more complicated picture
of the discharge dynamics than is seen with the naked
eye. The number of current spikes in the positive half-
periods increases (up to two or three spikes). Each of
these spikes corresponds to corona ignition and the for-
mation of a short-lived (with a lifetime of no more than
5 µs) generation zone near the positively charged point
electrode. In this stage, many streamers begin to prop-
agate simultaneously from the point electrode
(Fig. 4c(II)) not going beyond the rosette petals. After
reaching the periphery of the rosette, the streamers sud-
denly change their propagation direction and begin to
move along the rosette’s boundary. This is why the
rosette’s boundary in time-integrated photographs is so
sharp. That streamers are not able to penetrate beyond
the rosette’s boundary is most likely related to the con-
servation (in both half-periods) of the discharge area on
which the surface charge accumulated in the preceding
half-period is neutralized and a new charge of opposite
sign appears.

The number of primary streamers (i.e., those that
started from the point electrode and have not yet under-
gone branching) is seemingly no larger than the number
of the rosette’s petals. It can be seen in electron-optical
photographs that the space between the positive stream-
ers is filled with a diffuse plasma. An analysis of the
current waveforms and electron-optical images show
that, during the positive half-period, the surface dis-
charge is glowing for only about 5 µs after each current
spike. Over the rest of the time, the conduction current
is very low and, accordingly, the discharge glow is
almost absent.

In the negative half-periods, there is only one cur-
rent spike corresponding to the origin of the cathode
sheath near the point electrode. In this case, as in
regime I, the cathode sheath persists during the entire
stage in which the voltage increases. One of the elec-
tron-optical photographs of a surface discharge taken in
regime II is shown in Fig. 4d(II). One can see that the
discharge structure is more symmetrical but is also
more blurred, compared to that in the positive half-peri-
ods. The spokes and diffuse rosette petals are more pro-
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
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Fig. 5. Electron-optical photographs of a surface discharge at the instant corresponding to the transition from the rosette to the
streamer phase. The exposure time is τ = 20 µs. The frequency of the applied voltage is f = 3 kHz. Each photograph is a superposition
of the discharge images taken over 17 µs before and 3 µs after the current spike (including the spike itself). The rosette spokes cor-
responding to the first 17 µs and the plasma strips corresponding to the last 3 µs are seen. The center of each photograph corresponds
to the discharge axis (the position of the needle). The white strip at the centers of the photographs is the shadow of the point electrode
holder. (a) The formation of one plasma strip from spoke no. 5 and (b) the formation of two plasma strips from spoke nos. 1 and 2.
nounced. By the end of the negative half-period, the
rosette grows to its maximum size.

3.1.3. Range III: U2 < U < U3. When the barrier
corona switches to regime III, the regular structure on
the dielectric surface disappears. The time-averaged
picture of a discharge that is seen with the naked eye is
shown in Fig. 4a(III). It can be seen that the surface dis-
charge consists of a large number of streamers of differ-
ent size and a diffuse plasma that occupies the space
between the streamers.

In regime III, the number of current spikes within a
positive half-period increases greatly and, most impor-
tant, current spikes also appear during negative half-
periods (Fig. 4b(III)). At a fixed amplitude and fre-
quency of the applied voltage, the number of current
spikes in positive and negative half-periods is not con-
stant and varies from half-period to half-period, espe-
cially for negative half-periods. The average number of
spikes in both positive and negative half-periods
increases with the amplitude of the applied voltage.
Generally, the number of spikes in a positive half-
period is larger than in a negative one.

It can be seen from electron-optical photographs
that any current spike in a positive half-period corre-
sponds to the emergence from the point electrode of a
bunch of streamers surrounded by a diffuse plasma. The
streamer bunch is asymmetric and consists of a few
large primary streamers that branch out into a lot of side
streamers. The shape of the streamer bunch is not
repeated from spike to spike; however, on the whole,
the streamers and the diffuse plasma cover all of the
area on which the charge was accumulated during the
preceding negative half-period. Between the current
spikes, the conduction current and the surface discharge
glow are almost absent.
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
The electron-optical photographs and current wave-
forms indicate that, in negative half-periods, both the
surface discharge glow and the conduction current per-
sist during the entire stage in which the voltage
increases. A specific feature of regime III is the appear-
ance of sharp current spikes during these half-periods.
Each current spike is accompanied by the emergence
from the point electrode of one (sometimes two) wide
(with a visible width of about 3 mm) bright 2- to 3-cm-
long plasma strip near the end of which one can see a
bunch of more narrow streamers (Fig. 4d(III)). The
bright plasma strip and the streamers are surrounded by
a faintly glowing diffuse plasma. The propagation
direction of the plasma strip along the surface and the
streamer configuration are not the same from spike to
spike; however, on the whole, the streamer and the dif-
fuse plasma cover all the area on which the positive
charge was accumulated during the preceding positive
half-period.

In regime III, current spikes in negative half-periods
arise not immediately after the initial pulse correspond-
ing to the ignition of a negative corona (i.e., the forma-
tion of a cathode sheath at the point electrode). It can be
seen from the current waveforms in Fig. 4b(III) that the
large current spike (with an amplitude of about 100–
200 mA) is preceded by two to three small spikes.

One can see from electron-optical images of the dis-
charge that the current spike is preceded by the afore-
mentioned rosette structure. One (sometimes two) of
the rosette’s spokes transform into a bright plasma strip.
Such behavior can be seen in Fig. 5, which presents two
images of the surface discharge taken with an exposure
time of 20 µs. Each image is a superposition of the dis-
charge images taken during 17 µs before and 3 µs after
the current spike (including the spike itself). The center
of each photograph corresponds to the discharge axis,
i.e., to the position of the point electrode. The rosette
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Fig. 6. Nanosecond-scale waveforms of the current spikes of a barrier corona in a positive and a negative half-periods of the applied
voltage (f = 3 kHz). The dielectric barrier is a 100-µm Mylar film. (a) The first current spike in a positive half-period (regime II),
(b) the fourth current spike in a positive half-period (regime II), (c) the first current spike in a negative half-period (regime II), and
(d) an example of a current spike in a negative half-period (regime III).
spokes and the diffuse plasma surrounding them are
seen in both images. One can see that, in Fig. 5a, a
bright plasma strip is formed from the upper spoke,
whereas Fig. 5b shows two bright strips formed from
two lower spokes.

Nanosecond-scale waveforms of the current spikes
in both half-periods are presented in Fig. 6. The struc-
ture of the first current spike in a positive half-period is
shown in Fig. 6a. The spike amplitude is 300 mA, and
the rise time (at a level of 10 to 90% of the spike ampli-
tude) is 12 ns. At the trailing edge of the spike, the cur-
rent rapidly (over 125 ns) decreases from 300 mA to
10 mA and then slowly (over 5–10 µs) decreases to a
quasi-steady level of 0.1 mA. The shapes of the subse-
quent spikes is qualitatively the same, but their ampli-
tudes and the full widths at half-maximum (FWHM)
are somewhat larger. Thus, Fig. 6b presents the wave-
form of the fourth spike. Its amplitude is 400 mA and
the rise time is 40 ns. The time during which the current
decreases from 400 mA to 10 mA is 300 ns, while the
time during which the current decreases slowly from 10
to 0.1 mA is 5–10 µs.

The waveforms of the current spikes in a negative
half-period are shown in Figs. 6c and 6d. The amplitude
of the first spike is as low as 5 mA (Fig. 6c), which is
much lower than that in the positive half-period; how-
ever, its rise time (600 ns) and the time during which the
current decreases from 5 to 1 mA (2 µs) are much
longer than those in the positive half-period. The time
during which the current slowly decreases to a level of
0.1 mA (about 5 µs) is approximately the same as in the
positive half-period.

The amplitudes of the negative current spikes in
regime III (Fig. 6d) are much higher (160 mA) than that
of the initial current pulse corresponding to the ignition
of a negative corona, whereas their rise and fall times
(140 and 300 µs, respectively) are shorter as compared
to those of the initial current pulse. The characteristic
time during which the current decreases slowly from
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
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Fig. 7. Electron-optical photographs of a sector-limited barrier corona in argon in a positive half-period of the applied voltage. The
voltage frequency and amplitude are f = 1 kHz and Ua = 3.5 kV, respectively. The exposure time is τ = 20 µs. The discharge images
are formed by the (a) first, (b) fifth, and (c) tenth current spikes.
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Fig. 8. Electron-optical photographs of a sector-limited barrier corona in argon in a positive half-period of the applied voltage. The
voltage frequency and amplitude are f = 3 kHz and Ua = 3 kV, respectively. The exposure time is τ = (a, b) 10 and (c) 20 µs. The
number N of the streamers formed in the discharge during these exposure times is N = (a) 1, (b) 2, and (c) 3. The numerals indicate
the sequence numbers of the streamers.
10 to 0.1 mA is approximately the same for all the
spikes and amounts to 5–10 µs.

The limitation of the area accessible for a surface
discharge by a sector lead to certain qualitative changes
in the discharge structure. Let us illustrate this using the
structure of a limited surface discharge operating in the
streamer mode as an example. In these experiments, we
used a thinner dielectric barrier (a 100-µm-thick Mylar
film).

An analysis of the current waveforms of a limited
surface discharge shows that the main parameters of the
current spikes in both half-periods are nearly the same
as those in an unlimited discharge. The amplitude of the
current spikes varies in the range 0.2–0.6 A, and their
FWHM is about 100–300 ns, whereas their rise time is
approximately five to ten times shorter than in an
unlimited discharge. At the trailing edge, the current
drops to 8–15 mA over 100–300 ns and then slowly
(over 5–10 µs) decreases to a quasi-steady level.

Figure 7 presents electron-optical photographs of a
limited barrier corona in a positive half-period. The
exposure time of each photograph is 20 µs. The time
intervals during which each electron-optical photo-
graphs were taken contained only one current spike;
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
i.e., each photograph shows a discharge image formed
by a single current spike, namely, by the first (Fig. 7a),
fifth (Fig. 7b), or tenth (Fig. 7c) spike.

One can see that, like in an unlimited discharge, the
surface streamer is surrounded on all sides by a diffuse
glow that occurs both near and far from the streamer.
The glow intensity and the streamer length, as well as
the area occupied by the diffuse glow around the
streamers, increase with the voltage. The absence of
traces produced by the streamers and by the diffuse
plasma in preceding current spikes indicates that the
glow time of the surface streamers and the diffuse
plasma is rather short, no longer than 10 µs, which is in
good agreement with the fall time of the current spikes.

Figure 8 presents another series of electron-optical
photographs taken in a positive half-period (approxi-
mately in the middle of the spike train) of a sector-lim-
ited discharge. Each photograph shows a discharge
image formed by the different number of current
spikes: (a) a single (sixth) spike, (b) two consecutive
(sixth and seventh) spikes, and (c) three consecutive
(sixth, seventh, and eighth) spikes.

It can be seen from Figs. 7 and 8 that, in a limited
discharge (in contrast to an unlimited one), each current
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spike corresponds to a single primary streamer, which
then propagates along a twisted trajectory along the
surface and undergoes branching. Each subsequent
streamer propagates along its own trajectory rather than
along the trajectory of the preceding streamer. It was
also found that positive streamers did not follow the tra-
jectories of negative streamers.

Figure 9 shows an electron-optical photograph of a
limited barrier corona in a negative half-period at a fre-
quency of f = 3 kHz. The glow intensity of the negative
streamers is appreciably higher than that of the positive
ones. For this reason, the photographs of the negative
streamers were taken with a smaller aperture of the
image-tube objective. The exposure time was 20 µs.
The photograph shows the image of the surface dis-
charge formed by the fifth current spike. One can see a
wide bright streamer (which resembles a plasma strip in
an unlimited discharge) with a large-area diffuse glow
around the streamer head and a lot of thin streamers
emerging from the head in different directions. Note
that such behavior in some respects resembles the prop-
agation of a leader, in front of which a fan of streamers
also arises. The diffuse glow is less pronounced far
from the negative streamer, although special experi-
ments reveal its existence. The absence of the traces of
the negative streamers formed during the preceding
current spike also indicates that their glow time is rather
short (shorter than the time interval between two con-
secutive spikes), which agrees with the fact that the cur-
rent decay time is no longer than 10 µs.

The length of the negative streamers increases with
the voltage; however, they are generally shorter than the
positive streamers. In argon, the length of the surface
streamers can exceed 10 cm, whereas their trajectory
can be quite intricate, which leads to amazing effects.
Electron-optical photographs of the streamers propa-
gating from a point electrode show that, as the streamer
propagates and branches, it can not only to move away

1 cm

Fig. 9. Electron-optical photograph of a sector-limited bar-
rier corona in argon in a negative half-period of the applied
voltage (streamer mode). The voltage frequency and ampli-
tude are f = 3 kHz and Ua = 3 kV, respectively. The exposure
time is τ = 20 µs. The discharge image is formed by the fifth
current spike.
from the point electrode (which seems to be quite rea-
sonable) but also to approach it when moving along a
curved trajectory. Such behavior has never been
observed for volume and surface streamers propagating
perpendicularly to a long rod electrode.

An analysis of the electron-optical photographs
shows that the diffuse plasma that exists together with
the streamers is nonuniformly distributed over the
dielectric surface: it is concentrated within individual
domains, in which the distribution of the glow intensity
is also nonuniform. Beaded structures in which the
streamers alternated with diffuse plasma regions were
often observed (see, e.g., Fig. 8b). In such structures,
either several diffuse plasma regions were connected by
streamers or, vice versa, a streamer was broken with
diffuse plasma regions. Such a structure can also be
interpreted as an irregular surface contraction of the
diffuse plasma.

3.2. Statistical Characteristics
of the Surface Streamers

Statistical characteristics of surface streamers (such
as the mean free path of a streamer from one branch
point to the next, the dependence of this mean free path
on the sequence number of the branch point and the fre-
quency of the applied voltage, the average number of
branch points in a single streamer that started from the
point electrode, and the average number of branchings
per branch point) are of great interest. To determine
these characteristics, we processed many electron-opti-
cal images of limited discharges similar to those shown
in Figs. 7–9.

Figure 10 shows the normalized distributions of the
positive and negative surface streamers, F(i) = Ni/NΣ,
over the number i of their branch points at different fre-
quencies of the applied voltage (here, NΣ is the total
number of the recorded streamers that started from the
point electrode and Ni is the number of the streamers
that underwent i branchings).

One can see that the branching parameters are
approximately the same (to within the statistical error)
for negative and positive streamers and depend only
slightly on the voltage frequency. The average number
of branch points in an initial streamer is small: from 0.8
to 1.35 (i.e., approximately one branch point per
streamer). The fraction of streamers that undergo more
than three (from four to six) branchings is very low
(≤1%).

Figure 11 shows the dependences of the streamer
mean free path between two consecutive branch points
on the frequency of the applied voltage in (a) positive
and (b) negative half-periods. Here, l01, l12, and l23 stand
for the streamer mean free paths between the point elec-
trode and the first branch point, between the first and
the second branch points, and between the second and
the third branch points, respectively. In other words, the
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
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figure shows the distribution of the mean free paths of
the streamers of different generations.

We can see that, in both half-periods, the streamers
of the first generation have the longest mean free path
(about 2 cm) and, at frequencies lower than 3 kHz, are
approximately twice as long as the streamers of the sec-
ond and third generations (l01 ≅  2l12 and l01 ≅  2l23). In
negative half-periods, such a ratio between the streamer
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
lengths was observed at all the frequencies under study
(up to 10 kHz).

To within statistical scatter, the lengths of the sec-
ond- and third-generation streamers are the same (l12 ≅
l23 ≈1 cm) in both half-periods and are almost indepen-
dent of the frequency. In positive half-periods, at fre-
quencies higher than 3 kHz, the length of the first-gen-
eration streamers becomes equal (to within the same
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Fig. 12. Diagram of the energy levels, the emission spectra, and the oscillator strengths of different transitions for an argon atom
[10].
accuracy) to the lengths of the second- and third-gener-
ation streamers.

In most of the branch points, a streamer splits into
two daughter streamers. The fraction of the branch
points in which three daughter streamers are formed
does not exceed 5%. The angle α between the daughter
streamers varies in a wide range from 10° to 110°.

Thus, we can conclude that the visual difference
between positive and negative half-periods is mainly
related to the different number of streamers in these
half-periods rather than to the different properties of
branching: in positive half-periods, each current spike
corresponds to a new streamer, whereas in negative
half-periods, there is typically only one streamer which
then undergoes branching.

3.3. Emission Spectrum
of a Barrier Corona in Argon

Spectroscopic studies can provide important data on
the parameters of the diffuse and streamer plasmas. An
analysis of the emission spectrum from a sector-limited
barrier corona in the visible and UV spectral regions
shows that the plasma of a surface discharge in argon is
an efficient source of emission in various argon atomic
lines. In atmospheric-pressure argon, intense VUV
emission of argon dimers at λ ≈ 110 and 126 nm is also
feasible; however, in our experiments, such emission
was not recorded.

The most intense emission is concentrated in the red
wing of the spectrum in the Ar atomic lines with λ =
810.4 and 811.5 nm, corresponding to the 4P  4S
transitions [10] (see Fig. 12). There are also many
atomic lines with an appreciable emission intensity in
the blue–green spectral region (λ = 350–500 nm). Here,
the most intense lines are those with wavelengths of λ =
416.4 and 426.6 nm (the 4P  4S transitions). Their
emission intensities in negative half-periods are
approximately twice as high as those in positive half-
periods.

In a barrier corona, there is also fairly intense emis-
sion from Ar+ atomic ions. Here, the most intense lines
are those with wavelengths of λ = 480.6, 484.8, and
488.0 nm (the 4P  4S transitions). Their emission
intensities are approximately equal to one another. As
in the case of argon atomic emission, the intensities of
the ion lines in negative half-periods are nearly twice as
high as those in positive periods and are almost inde-
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
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pendent of the frequency of the applied voltage. The
emission intensities of all the lines under study (both
atomic and ionic) normalized to the intensity of the
416.4-nm line (the 5P  4S transition) are

I416.4 : I426.6 : I565.1 : I310.0 : I810.4 : I811.5 : I480.6 : I484.8 : I488.0 

= 1: 0.7 : 0.1 : 4 : 1.5 : 4 : 0.18 : 0.15 : 0.21.

We compared our results with the table data on the
emission intensities of different lines [11]. It turned out
that the intensity of the 565-nm line (the 5D  4P
transition) in a barrier corona is very low, approxi-
mately five times lower than the intensity of the
426.6-nm line, although the table [11] shows that their
intensities are nearly the same. In contrast, the rather
weak (according to [11]) 310-nm line (the 8F  4S
transition) turned out to be quite intense under condi-
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Fig. 13. Time-averaged intensity of the (1) 426.6-nm and
(2) 488.0-nm line emission from a sector-limited barrier
corona in argon vs. distance from the discharge axis. The
voltage frequency and amplitude are f = 400 Hz and Ua =
3.5 kV, respectively.
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tions of a barrier corona. (Note that, in [11], the data on
the emission intensities of the atomic and ionic lines
from discharges excited in a Geissler tube are pre-
sented.)

Our experiments showed that the time-averaged
emission intensities Iλ of all the spectral lines under
study monotonically decreased with distance from the
point electrode. As an illustration, Fig. 13 shows the
dependences of the emission intensities Iλ at λ =
(1) 426.6 and (2) 488.0 nm on the distance r from the
point electrode in negative half-periods. It can be seen
that, in spite of the axial geometry of a surface dis-
charge, the averaged intensity Iλ is not proportional
to 1/r.

The time evolution of the emission intensity in dif-
ferent lines from different regions of a discharge is also
of great interest. Figure 14 presents waveforms of the
barrier corona current during a negative half-period
together with the time behavior of the intensity of the
416.4-nm line emitted from a region located a distance
of 25 mm from the point electrode. Since the trajecto-
ries of negative streamers in different current spikes
were close to one another, the observational zone
(20 mm in size) covered all possible trajectories of the
negative streamers within the discharge region under
study. Thus, all streamers definitely passed through the
observational zone.

One can see (Fig. 14a) that the first emission pulse
in the observational zone occurred at the instant corre-
sponding to the fourth current spike. The number of the
current spikes after which the first emission pulse
occurs is a function of the voltage frequency and ampli-
tude. Such a delayed emission agrees with electron-
optical photographs, which show that the length of a
negative streamer increases in a stepwise manner from
spike to spike. From this time delay (of about 50 µs),
we can estimate the average velocity of the stepwise
propagation of a negative streamer as Vst ≅  2 × 104 cm/s,
Uph

I

Uph

I

(a) (b)

Fig. 14. Waveforms of the current I and the emission signal Uph (λ = 416.4 nm) in a negative half-period of a sector-limited barrier
corona in argon. The emission was recorded from a region located a distance of 25 mm from the point electrode. The voltage fre-
quency and amplitude are f = 400 Hz and Ua = 3.5 kV, respectively. The current scale is 20 mA/division, the voltage scale is
5 mV/division, and the time scale is (a) 50 and (b) 2 µs/division.
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Fig. 15. Waveforms of the current I and the emission signal Uph (λ = 416.4 nm) in a positive half-period of a sector-limited barrier
corona in argon. The emission was recorded from a region located a distance of 25 mm from the point electrode. The voltage fre-
quency and amplitude are f = 400 Hz and Ua = 3.5 kV, respectively. The current scale is (a) 100 and (b) 20 mA/division, the voltage
scale is 5 mV/division, and the time scale is (a) 50 and (b) 2 µs/division.
although the actual propagation velocity of a negative
streamer is much higher (V– ≅  108 cm/s), because, in
each current spike, the streamer starts from the point
electrode.

The number of emission pulses recorded at a great
distance from the point electrode turns out to be lower
than the number of the current spikes. However, in the
immediate vicinity of the point electrode, the numbers
of the emission pulses and current spikes are equal to
one another. Hence, some streamers corresponding to
low-amplitude current spikes do not reach the observa-
tional zone.

In the case of positive streamers (Fig. 15a), the time
delay between the first current spike and the arrival of
the first streamer to the observational zone is almost
absent; i.e., each current spike corresponds to its own
fast streamer propagating with a velocity of V+ ≅  2 ×
108 cm/s (which is about twice as high as that of a neg-
ative streamer) over a large distance from the point
electrode. In positive half-periods, the number of the
emission pulses recorded at a large distance from the
point electrode is also less than the number of the cur-
rent spikes, but for another reason.

As was noted above, positive streamers do not fol-
low the same trajectory: they are more or less uniformly
distributed over the dielectric surface. On the other
hand, the observational zone covered only a fraction
(about one-half) of all the possible trajectories of the
positive streamers. Most likely, this is the reason why
the number of the current spikes was not equal to the
number of the emission pulses.

Another amazing feature of the surface streamers
was found in experiments on studying their emission
dynamics. It was found (see Figs. 14b and 15b) that the
maximum intensity of the streamer emission (both in
positive and negative half-periods) was reached much
later than the maximum of the current spike corre-
sponding to this streamer; i.e., the emission intensity of
the streamer kept increasing after the streamer current
had already passed its maximum and rapidly decreased.
The corresponding time delay was about 2 µs, whereas
the FWHM of the current spike was about 0.1–0.2 µs.
Note that we also observed the long-term (lasting over
10–20 µs) afterglow of the positive and negative
streamers.

4. DISCUSSION
The evolution of the slowly varying current of a dif-

fuse barrier corona in negative half-periods (regime I)
can be described using the experimental fact that the
radius r of the area occupied by the diffuse plasma of a
surface discharge increases linearly with the applied
voltage U(t) = Uasinωt: r = a(U – U0), where a is a
dimensional proportionality coefficient (e.g., for f =
1 kHz, we have a = 2.2 cm/kV) and U0 is the corona
ignition voltage. The capacitance of the barrier covered
with the diffuse plasma is C = c1πa2(U – U0)2, where c1
is the specific (per unit area) barrier capacitance, and
the charge accumulated on the barrier is q = CU. Hence,
the discharge current, which is equal to the time deriv-
ative of the charge, is

(1)

Current waveform (1) is close to the one experimen-
tally observed; moreover, this expression provides a
qualitatively correct description of the parametric
dependences of the quasi-steady current of a diffuse
surface discharge on the amplitude and frequency of the
applied voltage.

In a streamer regime, the area occupied by the
streamers on the dielectric surface and the streamer
lifetime are too small for the streamers to carry the total

I t( )

=  πa
2
c1Ua

3ω ωt ωtsin
U0

Ua

------– 
  3 ωtsin

U0

Ua

------– 
  .cos
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current of the barrier corona. Hence, the current in the
streamer regime can be closed as follows: first, the
streamer rapidly propagates along the surface and the
high potential of the point electrode spreads over the
entire streamer length; a nearly planar ionization wave
then propagates slowly from the streamer side surface
and covers a large area on the dielectric surface, thus
allowing the main corona current to flow through the
corona.

The propagation of the ionization wave, which
leaves a diffuse plasma behind its front, can be regarded
as the propagation of a charging wave along the dielec-
tric surface. This leads to the charging of a progres-
sively increasing barrier capacitance through the dis-
tributed plasma resistance. This process is analogous to
the charging of an infinite sequence of discrete RC cells
in which the capacitance of any subsequent cell begins
to be charged only when the capacitance of the previous
cell has already been charged to a certain threshold
voltage U*. The presence of such a threshold voltage
makes the propagation of the ionization wave substan-
tially different from the propagation of an ordinary
charging wave along a chain of distributed or discrete
RC cells. This is related to the existence of a critical
electric field (or a reduced electric field E/N) that must
be present at the front of the ionization wave for it could
propagate.

The propagation time of such a wave is limited, on
the one hand, by the plasma decay time and, on the
other, by the plasma lifetime in the streamer from
which the plane ionization wave propagates. The char-
acteristic time between current spikes is 10–30 µs. It is
known [12] that, in atmospheric-pressure argon, the

most abundant ions are the molecular  ions. The
coefficient of dissociative recombination of these ions
is about 10–7 cm3/s. One can readily estimate that,
within the above time interval, the plasma density holds
at a fairly high level of no lower than 3 × 1011 cm–3.

Let us consider a simple model that does not claim
to quantitatively describe the experimental results but
provides a reasonable qualitative picture of the phe-
nomenon observed. We assume that a uniform plasma
sheet with a thickness δ and time-independent conduc-
tivity σ is formed behind the front of a plane ionization
wave. In this case, the specific resistance of the plasma
sheet per unit width, R0, increases linearly with the
sheet length x:

. (2)

The capacitance (per unit width) C0 of a barrier
region of length ∆x in front of the ionization wave is
C0 = c1∆x, where c1 = ε0ε/d is the specific (per unit area)
capacitance of a barrier with a permittivity ε and thick-
ness d. After the ionization wave travels the distance
∆x, this barrier region is charged to the threshold volt-

Ar2
+

R0 x( ) x
δσ
------=
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age U* over a time that is determined by the RC
product:

(3)

where τ(x) =  and U ≡ U(t) is the discharge volt-

age. It follows from this that the velocity V of the ion-
ization wave is

(4)

According to expression (4), the plane ionization
wave decelerates as it propagates away from the side
surface of the streamer. The deceleration rate is deter-
mined by the parameters of the plasma sheet and dielec-
tric barrier: the higher the plasma conductivity, the
larger the plasma sheet thickness, and the lower the spe-
cific barrier capacitance, the higher the wave propaga-
tion velocity. The wave velocity also depends on the
overvoltage U/U*. For high overvoltages (U/U* @ 1),
the wave velocity is proportional to the overvoltage
value.

The current related to the propagation of the plane
ionization wave along the barrier surface is

, (5)

where Ub(x, t) is the voltage at the barrier under the
plasma sheet at a distance x from streamer at the instant
t, x0 is the streamer radius, and xf is the coordinate of the
wave front at the time t. The relation between xf , x0, and
t can be obtained from expression (4)

(6)

Let us assume that the electric field E in the plasma
sheet is uniform and depends only on time. The formu-
las for the field E(t) and voltage Ub(x, t) can then be
derived from the voltage balance at the points xf(t)
and x0:

E(t)xf(t) = U – U*, (7)

Ub(x, t) = U – E(t)x. (8)

After substituting the expression Ub(x, t) = U –

 into formula (5), we obtain

(9)

∆t τ x( ) U
U U*–
------------------,ln=

c1

δσ
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V x( ) ∆x
∆t
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U
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x
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where a = .

The applied voltage changes only slightly during
the propagation of the plane ionization wave between
two consecutive current spikes; hence, the voltage U in
can be considered constant when differentiating
expression (9) over time. We thus obtain

(10)

At the time corresponding to a sharp decrease in the
current after the fast propagation of the surface

streamer is complete, the current is I0 =  =

 ≅  ≅  10 mA. As the ionization wave

propagates far away from the streamer, the current

decreases over time as :

(11)

Thus, the above simple model accounts for the slow
(over 5–10 µs) decay of the discharge current after the
fast streamer propagation. The expressions obtained
can be used to estimate the energy deposited in a sur-
face streamer. This allows one to discover the reasons
for an increase in the streamer glow intensity in the
stage when the current decreases. Note that a similar
phenomenon (namely, an increase in the streamer glow
intensity after the current has already passed its maxi-
mum corresponding to the bridging of the interelec-
trode gap) was also observed in the case of volume
streamers [13].

The above model can also be used to estimate the
specific energy deposition required for the surface con-
traction of the diffuse plasma. Note that the presence of
a diffuse plasma around streamers does not allow one to
directly use the fractal approach [14] when describing
the structure (in particular, the branching characteris-
tics) of surface streamers.

The reasons why diffuse regime I of a barrier corona
transforms into streamer regime II are related to the
ionization instability of the cathode and anode sheaths
near the point electrode during the corresponding volt-
age half-periods. Indeed, as we showed earlier in [15],
there are critical currents for transforming the cathode
and anode sheaths into prearc spots that induce the
streamer formation. The current needed for the forma-
tion of an anode spot is appreciably lower than that
required for the formation of a cathode spot. This seems
to be one reason why an increase in the amplitude of the
ac voltage applied to a barrier corona leads first to the
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formation of streamers in positive half-periods and then
in negative ones.

5. CONCLUSIONS

(i) In a barrier corona, the conduction current is car-
ried along the dielectric surface both by streamers and
by a diffuse plasma.

(ii) The time evolution of the quasi-steady current
correlates with the behavior of the diffuse plasma. The
current amplitude in negative half-periods is higher
than in positive ones and increases with increasing
amplitude and frequency of the applied voltage.

(iii) In the streamer mode of a sector-limited dis-
charge, each current spike corresponds to an individual
surface streamer propagating along its own trajectory.
In an unlimited discharge, one current spike can be
related to several surface streamers.

(iv) Generally, the emission intensity and visible
diameter of the negative streamers are higher than those
of the positive streamers.

(v) The duration of the emission pulses from both
positive and negative surface streamers significantly
exceeds the duration of the corresponding current
spikes, the maximum of the emission intensity being
delayed with respect to the discharge current maxi-
mum.

(vi) The degree of branching of the surface stream-
ers is relatively low: up to 50% of the streamers propa-
gate without branching.

ACKNOWLEDGMENTS

We are grateful to M.E. Grushin for his help in per-
forming the experiments. This study was supported in
part by the Russian Foundation for Basic Research
(project no. 03-02-17239) and the RF Presidential Pro-
gram for Support of Leading Scientific Schools (project
no. NSh-794.2003.2).

REFERENCES
1. High-Speed Physics, Ed. by K. Vollrath and G. Thomer

(Springer-Verlag, New York, 1967; Mir, Moscow, 1971),
Vol. 1.

2. L. B. Loeb, Electrical Coronas (Univ. of California
Press, Berkeley, 1965), p. 760.

3. Yu. Akishev, V. Karalnik, and N. Trushkin, Proc. SPIE
4460, 26 (2002).

4. É. M. Bazelyan, V. A. Goncharov, and A. Yu. Goryunov,
Izv. AN SSSR, Ser. Énerg. Transp., No. 2, 154 (1985).

5. E. M. van Veldhuizen and W. R. Rutgers, J. Phys. D 35,
2169 (2002).

6. B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D 20,
1421 (1987).

7. C. Heuser and G. Pietsch, in Proceedings of VI Interna-
tional Conference on Gas Discharges and Their Appli-
cations, Edinburg, 1980, p. 98.
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004



STRUCTURE OF THE SURFACE STREAMERS 1027
8. Yu. S. Akishev, A. V. Dem’yanov, V. B. Karal’nik, et al.,
Fiz. Plazmy 29, 90 (2003) [Plasma Phys. Rep. 29, 82
(2003)].

9. A. B. Saveliev and G. J. Pietsch, in Proceedings of the
International Symposium on High-Pressure Low-Tem-
perature Plasma Chemistry, Tartu, 2002, Vol. 2, p. 229.

10. A. A. Radtsig and B. M. Smirnov, Reference Data on
Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980;
Springer-Verlag, Berlin, 1985).

11. A. R Striganov and N. S. Sventitskii, Tables of Spectral
Lines of Neutral and Ionized Atoms (Atomizdat, Mos-
cow, 1966; Plenum Press, New York, 1968).
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
12. B. M. Smirnov, Negative Ions (Atomizdat, Moscow,
1978; McGraw-Hill, New York, 1982).

13. Yu. S. Akishev, G. I. Aponin, V. B. Karal’nik, et al., Fiz.
Plazmy 30, 1044 (2004) [Plasma Phys. Rep. 30, 779
(2004)].

14. L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys.
Rev. Lett. 52, 1033 (1984).

15. Yu. S. Akishev, A. P. Napartovich, V. V. Ponomarenko,
and N. I. Trushkin, Zh. Tekh. Fiz. 55, 655 (1985) [Sov.
Phys. Tech. Phys. 30, 388 (1985)].

Translated by N.N. Ustinovskiœ



  

Plasma Physics Reports, Vol. 30, No. 12, 2004, pp. 1028–1042. Translated from Fizika Plazmy, Vol. 30, No. 12, 2004, pp. 1105–1120.
Original Russian Text Copyright © 2004 by Anikin, Starikovskaia, Starikovskii.

  

LOW-TEMPERATURE
PLASMA

                                                                                                                 
Study of the Oxidation of Alkanes in Their Mixtures
with Oxygen and Air under the Action 

of a Pulsed Volume Nanosecond Discharge
N. B. Anikin, S. M. Starikovskaia, and A. Yu. Starikovskii

Moscow Institute for Physics and Technology, Institutskiœ proezd 9, Dolgoprudnyœ, Moscow oblast, 141700 Russia
Received February 25, 2004; in final form, April 24, 2004

Abstract—The slow oxidation of alkanes (from methane to hexane) in their stoichiometric mixtures with oxy-
gen or air under the action of nanosecond pulsed discharges was investigated. The discharges were excited in a
tube of diameter 5 cm and length of 20 cm by 25-ns voltage pulses with an amplitude of 10 kV and a repetition
rate of 40 Hz. The initial pressure in the mixture was varied in the range 0.76–10.1 torr. The current, the electric
field strength, and the power deposited in a discharge were measured with a nanosecond time resolution. In
time-resolved and time-integrated measurements, the intensities of the following bands were determined:

(B2Σ  X2Π, δv  = 0), CH(A2∆, v ' = 0  X2Π, v '' = 0), OH(A2Σ, v ' = 0  X2Π, v '' = 0),
CO(B1Σ, v ' = 0  A1Π, v '' = 2), NO(A2Σ  X2Π, δv  = 3), N2(C3Π, v ' = 1  B3Π, v '' = 7), N2(B3Π,

v ' = 6  A3Σ, v '' = 3), and (B2Σ, v ' = 0  X2Σ, v '' = 2). The methane concentration was measured
from the absorption of He–Ne laser radiation. Based on the results of optical measurements, the times of the
complete oxidation of hydrocarbons were determined. © 2004 MAIK “Nauka/Interperiodica”.

CO2
+

N2
+

1. INTRODUCTION

Plasmochemical studies cover a wide range of prob-
lems—from creating chemical lasers and ozonizer to
processing liquid and solid wastes. Two large areas of
application can be distinguished: those in which plasma
is used to heat reacting mixtures [1, 2] and those in
which excited and charged particles play an important
role [1, 3, 4]. It is clear that the basic parameter deter-
mining the efficiency of plasma sources in the second
area of application is how far the plasma state is from
equilibrium. This parameter can be defined as the ratio
of the energy deposited in all the internal degrees of
freedom of a gas to the energy deposited in translational
and rotational degrees of freedom. The reactivity of a
gas mixture with a high value of this ratio is many
orders of magnitude higher than that of a plasma in an
equilibrium state, provided that the total energies are
the same. From the standpoint of the chemical activity
of a gas mixture, the most advantageous types of dis-
charge are those in which energy is more efficiently
deposited in the higher energy degrees of freedom. For
many plasmochemical applications (e.g., for the
plasma processing of surfaces and ignition of combus-
tible mixtures in engines), an important requirement is
that the plasma be highly homogenous.

Therefore, it is of considerable interest to develop
generators of a strongly nonequilibrium plasma that
would be capable of operating at gas pressures close to
atmospheric and would be characterized by the high
efficiency and high plasma homogeneity. In recent
decades, results demonstrating the high efficiency of a
1063-780X/04/3012- $26.00 © 1028
nanosecond pulsed power supply have been obtained.
Its high efficiency is due to the high reduced electric
field in a discharge and due to the high spatial homoge-
neity and low gas temperature of the plasma produced.
A discharge in the form of a fast ionization wave (FIW)
[5–7] can be an efficient source of a strongly nonequi-
librium plasma.

FIW discharges are usually excited in long tubes or
at high overvoltages (the return stroke in lightning is a
natural example of an FIW). The characteristic growth
time of the ionization wave ranges from several nano-
seconds to several tens of nanoseconds. The propaga-
tion velocity of an FIW can be as high as two-thirds of
the speed of light [8]. FIW discharges are characterized
by their high plasma homogeneity, their high reproduc-
ibility (in the regime of a repetitive discharge), the high
degree to which the plasma is far from equilibrium, and
the relatively low gas temperature. This type of dis-
charge has been produced in large volumes (up to 40 l)
under laboratory conditions [9]. An FIW discharge is
highly efficient and can be excited at pressures close to
atmospheric. In the experiments in [10], where the
amplitude of the voltage pulse at the high-voltage elec-
trode reached 100–160 kV, almost uniform FIWs were
produced in combustible mixtures at high translational
temperatures and gas densities corresponding to pres-
sures of several hundred torr. In [8], FIWs were excited
in a 4-mm-diameter 47-cm-long tube filled with air at a
pressure of 500 torr or with helium at atmospheric pres-
sure, the voltage-pulse amplitude being 250 kV. A char-
acteristic feature of an FIW is its low sensitivity to the
2004 MAIK “Nauka/Interperiodica”
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electronegative property of a gas. Thus, FIWs have
been excited in SF6 at a pressure of 400 torr and a volt-
age of 125 kV [11]. A maximum efficiency of 95% was
achieved in experiments with repetitive discharges at a
voltage amplitude of 16 kV [12, 13]. The energy depos-
ited in a discharge is typically about 70% of the initial
energy in the electric pulse. In experiments in nitrogen,
hydrogen, and air, the field strength measured at the
FIW front at a voltage amplitude of 15 kV exceeded the
threshold for generating runaway electrons [14]; in this
case, 50% of the deposited energy was spent on ioniza-
tion and the excitation of oscillations [7]. Hence, an
FIW is a highly efficient source of nonequilibrium low-
temperature spatially uniform plasma.

The interest in igniting combustible mixtures by a
uniform nonequilibrium plasma is motivated to a large
extent by the possibility of using this type of ignition in
the jet engines of hypersonic aircraft. In this case, a
necessary condition for applying FIW-induced ignition
is high plasma homogeneity and high mixture density
corresponding to pressures of several tens of torr to sev-
eral hundred torr. The efficiency of such ignition was
demonstrated in [10, 15]. It was shown that the ignition
threshold for methane–air mixtures was reduced by
600 K at a rather low energy deposition (corresponding
to a temperature below 100 K) in the discharge. The
experiments were carried out in a single-pulse mode
behind the reflected shock wave; this circumstance sub-
stantially limited the possibility of studying the dis-
charge kinetics in those experiments.

The kinetics of chemical reactions in hydrocarbon–
air fuel mixtures is fairly intricate. A typical kinetic
scheme adequately describing the self-ignition of a
heptane–air mixture contains about 550 components
and involves 5000 reactions [16]. The oxidation kinet-
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
ics in a gas discharge is also significantly complicated
by the influence of ions, electronically excited mole-
cules, and radicals. In the present paper, we describe the
results from experimental studies of the oxidation
kinetics of alkanes under the action of a high-voltage
repetitive nanosecond discharge.

2. EXPERIMENTAL SETUP
Figure 1 shows a block diagram of the experimental

setup. The discharge was excited in a quartz tube by
negative voltage pulses with an amplitude of 11 kV, a
full width at half-maximum (FWHM) of 25 ns, a rise
time of 5 ns, and a repetition rate of 40 Hz. The voltage
pulses, generated by a high-voltage source, were fed to
the discharge device through an RK-50-11-11 rf cable
of length 20 m. The discharge cell was a quartz tube
with an inner diameter of 47 mm and outer diameter of
50 mm. The braided screen of the cable was connected
to the low-voltage electrode (anode) of the discharge
cell by eight 12-mm-diameter brass rods that were par-
allel to the cell and were arranged equidistantly along a
circle 140 mm in diameter. The high-voltage electrode
(cathode) was a duralumin cone with a cone angle of
60°. The distance between the anode and the cathode
was 200 mm. The pressure in the mixture in the course
of oxidation was monitored by an MD × 4S mechan-
otron.

The system for the electric diagnostics of the dis-
charge consisted of a capacitive gauge that could be dis-
placed along the discharge cell and a return-current
shunt mounted in the break of the screen of the high-
voltage cable. The distance from the current shunt to
the discharge cell was chosen such that the current
pulses applied to the discharge cell and those reflected
from it were separated in time.
1
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Fig. 1. Schematic of the experimental setup: (1) discharge cell, (2, 3) electrodes, (4) CaF2 optical window, (5) high-voltage gener-
ator, (6) current shunt, (7) capacitive gauge, (8) monochromator, (9) FEU-100 photomultiplier, (10) S9-8 and TDS-380 oscillo-
scopes, (11) PC, (12) power supply units, (13) He–Ne laser (λ = 3.3922 µm, and (14) Pb–Se photoresistor.
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Table 1.  Mixtures under study

Hydrocarbon CH4 C2H6 C3H8 C4H10 C5H12 C6H14 

Mixture with O2 33.3% 22.2% 16.6% 13.3% 11.1% 9.5% 

Mixture with air 11.11% – – – 3.03% 2.56% 
In all of the mixtures under study, we performed
both time-integrated and time-resolved measurements
of the emission intensity of various molecular bands
(the passband of the signal line was 150 MHz). The dis-
charge emission was output through a 30-mm-diameter
CaF2 window in the low-voltage ring electrode. The
emission intensity was measured with an MDR-23
monochromator (with a 1200-groove/mm grating and a
linear dispersion of 1.2 nm/mm) and an FEU-100 pho-
tomultiplier (with a signal rise time of no more than
3 ns and a spectral sensitivity range of 200–800 nm).
The power supply circuit and the signal cables of the
photomultiplier were additionally screened so that the
noise amplitude did not exceed 15 mV. The entrance slit
of the monochromator was located 13 cm from the opti-
cal window; this allowed us to collect emission from
almost the entire volume of the discharge cell.

The measurements were performed over 128 pulses;
at a repetition rate of 40 Hz, this corresponded to a time
interval of 3.2 s. Except for the potential distribution
along the discharge gap, the time-resolved measure-
ments were performed near the instant at which the dis-
charge was switched on and after the complete oxida-
tion of hydrocarbons. The spatiotemporal evolution of
the potential along the discharge cell was measured
only after oxidation.

In addition, the absorption of He–Ne laser radiation
at a wavelength of 3.3922 µm was measured in meth-
ane-containing mixtures.

Time-resolved signals were recorded by a Tektronix
TDS-380 oscilloscope with a passband of 400 MHz,
and time-integrated measurements were performed
with the help of an S9-8 oscilloscope with a time base
of 100, 200, or 400 s.

We studied the oxidation of hydrocarbons under the
action of nanosecond pulsed discharges in stoichiomet-
ric mixtures of alkanes (from methane to hexane) with
oxygen and stoichiometric mixtures of methane, pen-
tane, and hexane with air in the pressure range of 0.76–
10.06 torr with a step of 0.76 torr. The percentage of
hydrocarbons in the mixtures under study is listed in
Table 1.

Mixtures of heavy hydrocarbons were prepared at a
partial pressure below the saturation vapor pressure at
room temperature. Hydrocarbons were injected into an
evacuated 20-l glass vessel. The mass of the injected
hydrocarbon was 20% lower than the mass of saturated
vapor in the vessel volume at room temperature. By
monitoring the pressure in the vessel (as the hydrocar-
bon evaporates and is heated to room temperature, the
pressure increases and reaches its steady-state value),
we could determine the hydrocarbon concentration in
the vessel. The vessel was then filled with oxygen up to
the pressure corresponding to a stoichiometric mixture.
The gases inside the vessel were mixed for two days. In
the experiments with hydrocarbon–air mixtures, nitro-
gen was added to a hydrocarbon–oxygen mixture.

3. MEASUREMENT TECHNIQUES

3.1. Measurements of the Current, Electric Field 
Strength, and Deposited Energy

The electric potential Vi(t) along the discharge cell
was measured by the capacitive gauge, which was posi-
tioned successively at distances of xi = 0.0, 3.6, 7.2,
10.8, 14.4, and 18.0 cm from the edge of the conical
electrode.

The current J0(t) through the high-voltage electrode
was measured by the return-current shunt using the
conventional measurement procedure [17]. Figure 2a
shows a typical waveform of the shunt current. The first
(“incident”) current pulse is that supplied from the gen-
erator. This pulse is partially reflected from the dis-
charge cell and 100 ns later returns into the cable cross
section at which the current shunt is located; this is the
second (“reflected”) pulse recorded by the current
shunt. The pulse then returns to the generator and,
reflecting from it, returns to the shunt and again to the
discharge cell; i.e., the process of propagation of the
current pulses is repeated over time. Therefore, the cur-
rent shunt records pairs of pulses; each pair consists of
the incident and reflected pulse, the time interval
between them being 200 ns. The energy deposited in
the discharge gap in one pulse is equal to the difference
between the energies of the incident and reflected
pulses. From the charge continuity equation at the high-
voltage electrode (with allowance for the fact that the
reflected pulse is of opposite sign), we find the current
through the discharge cell:

(1)

where J = J(t) is the current in the incident pulse, J =
J(t + 2∆t) is the current in the reflected pulse (Fig. 2),
and ∆t is the time it takes for an electric pulse to travel
the distance from the shunt to the high-voltage elec-
trode. It should be noted that the shunt measurements
allow us to determine not only the current through the
high-voltage electrode, but also its potential U0
(Fig. 2b). The potential of the high-voltage electrode is

J0 t( ) J t( ) J t 2∆t+( ),+=
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Fig. 2. Discharge characteristics measured by the current shunt: (a) waveform of the current in the cable, (b) current through the
electrode, and (c) potential of the high-voltage electrode. The initial pressure of the CH4–air mixture is 1.51 torr.
proportional to the difference between the currents the
incident and reflected pulses:

(2)

where R = 50 Ω is wave impedance of the supply cable.
To determine the electric field strength and the cur-

rent in different cross sections along the discharge cell,
we used telegraph equations in which both the capaci-
tance and inductance of the discharge cell were taken
into account. The capacitance (per unit length) of the
discharge cell (C = 5.2 nF/cm) was calculated assuming
that an excessive charge was accumulated near the cell
wall. Assuming that the current density is constant over
the cross section, the linear inductance of the discharge
cell was found to be L = 2.8 nH/cm. The resistance was
assumed to be variable over space and time.

The telegraph equations have the form

(3)

where J(x, t ) is the current, V(x, t ) is the potential, and
R(x, t ) is the resistance per unit length in the cross sec-
tion x at a time t.

Assuming that the longitudinal component of the
electric field is equal to El(x, t) = J(x, t)R(x, t) (herein-
after, this component is denoted as E), we obtain

(4)

U0 t( ) R J t( ) J t 2∆t+( )–[ ] ,=

∂V
∂x
------- RJ+ L

∂J
∂t
------,–=

∂J
∂x
------ C

∂V
∂t
-------,–=

∂V
∂x
------- E+ L

∂J
∂t
------,–=

∂J
∂x
------ C

∂V
∂t
-------.–=
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Since the measurements were performed with a dis-
crete set of points, we approximate Vi(t) and Ji(t) in the
intervals (xi , xi + 1) by linear functions of x:

(5)

In finite differences with respect to x, the second
equation of set (3) can be represented as

(6)

The right-hand side of this equation depends on x,
whereas the left-had side does not. To solve this equa-
tion, we average the right-hand side of Eq. (6) over the
interval (xi , xi + 1):

(7)

As a result, we find that the current in the cross section
with the coordinate xi + 1 is equal to

(8)

To find the electric field strength, we average Eq. (1)
over the interval (xi , xi + 1):

(9)

V Vi t( )
x xi–

xi 1+ xi–
-------------------- Vi 1+ t( ) Vi t( )–( ),+=

J Ji t( )
x xi–

xi 1+ xi–
-------------------- Ji 1+ t( ) Ji t( )–( ).+=

Ji 1+ t( ) Ji t( )–
xi 1+ xi–

---------------------------------- C
∂V
∂t
-------.–=

Ji 1+ Ji

C xi 1+ xi–( )
2

----------------------------- ∂
∂t
----- Vi Vi 1++( ).–=

Ji 1+ J0

C xk 1+ xk–( )
2

------------------------------ ∂
∂t
----- Vk Vk 1++( ).
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i
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Thus, we have recalculated the measured electric
current through the high-voltage electrode and the mea-
sured potentials in different cross sections of the dis-
charge cell to the electric field strengths and currents in
these cross sections with allowance for the capacitance
and inductance of the discharge cell.

The obtained values of E(x, t) and J(x, t) were used
to calculate the spatiotemporal evolution of the specific
power W(x, t) = E(x, t)J(x, t)/S deposited in the gas.

It should be noted that the approximations used in
the above calculations do not allow one to adequately
describe the evolution of the field at the front of the ion-
ization wave [18], because the radial fields and currents
were ignored and the spatial sensitivity function of the
capacitive gauge was approximated by a delta function.
However, behind the front and further, after the ioniza-
tion wave has bridged the gap, the above assumptions
are well justified [18]. The approximation of the spatial
sensitivity function by a delta function also does not
allow one to calculate the electric field near the cathode.
Note that, under our experimental conditions at pres-
sures p > 3 torr (corresponding to the maximum depos-
ited energy), most of the energy is deposited in the gas
in later stages of the discharge in which the value of the
cathode voltage drop is of minor importance. Hence, the
technique used in our study allows us to find the distri-
bution of the electric field within the time interval that is
most important from the standpoint of gas excitation.

3.2. Emission Spectroscopy: Experimental Study 
of the Optical Characteristics of a Discharge

Under our experimental conditions, a few thousand
pulses are required to completely oxidize alkanes (this
takes from several tens of seconds to several hundred
seconds); hence, the time-integrated signal from the
photomultiplier provides information about the dynam-
ics of hydrocarbon oxidation. A capacitor connected in
parallel with the oscilloscope input was used as an inte-
grating element. The integration time constant τ = CR0
= 2.5 s was determined by the capacitor’s capacitance
C and the oscilloscope internal resistance R0. Since the
photomultiplier is a current source, Ohm’s law for the
measuring circuit has the form

(10)

Therefore, we have

(11)

where U is the voltage at the oscilloscope, q is the
capacitor charge, and J is the photomultiplier current.

The characteristic duration of the discharge emis-
sion is much shorter than the integration time; hence,
we may assume that, during a discharge, the capacitor
only accumulates an electric charge and, between
pulses, it discharges through the oscilloscope. The life-

U
R0
----- dq

dt
------+ J .=

U τdU
dt
-------+ R0J ,=
time of the states under study (<10 µs) is much shorter
than the time interval between pulses, 1/f ≈ 25 ms.
Therefore, the residual current of the preceding pulses
can be ignored and the pulse current can be written as

(12)

where I is the emission intensity at a given wavelength
λ, A = A(λ) is the sensitivity of the monochromator–
photomultiplier optical system,  is the density of
unexcited molecules from which the emitting state is
produced, k is the time-integrated excitation constant of
the emitting state, τl is the radiative time of the transi-

tion,  is the effective lifetime of the emitting state,
and δt is the time counted from the last pulse. The effec-
tive lifetime of the emitting state accounts for the radi-
ative and collisional deexcitation:

(13)

where M is the number of stable components in the

mixture, αi is the fraction of the ith component,  is
the constant for the deexcitation by the ith component,
and N0 is the total density of the molecules of the stable
components.

For a slowly reacting mixture (i.e., for a mixture
whose composition changes over a time that is much
longer than the integration time), the excitation rate k

and the effective lifetime  of the emitting state vary
only slightly from pulse to pulse.

The initial voltage at the capacitor is equal to the
final voltage produced by the previous pulse; therefore,
Eq. (11) should be solved over the (n + 1)th time inter-
val with the initial condition Un + 1(0) = Un(n/f ):

, (14)

where τ0 is the characteristic time over which the pho-
tomultiplier signal reaches its steady-state value. If the
characteristic time during which the mixture composi-
tion changes is longer than τ0, then the solution to
Eq. (14) is a slowly varying function 〈U〉(t), which is
superimposed by oscillations with a frequency f and
amplitude δU(t):

(15)

(16)
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Table 2.  Spectral transitions monitored in all of the mixtures

λ, nm δλ, nm Measured band Background band system

518.6 2.8 Angstrom band of CO, –

CO (B1Σ, v ' = 0  A1Π, v '' = 2)

430 3 CH (A2∆, v ' = 0  X2Π, v '' = 0)  (A2Π  X2Π),

the first negative and second positive systems 
of nitrogen

307.8 3.4 OH (A2Σ, v ' = 0  X2Π, v '' = 0)  (A2Π  X2Π),

the second positive system of nitrogen

290 2.8  (B2Σ  X2Π, δv  = 0)1 OH(A2Σ  X2Π)

Note: 1. The group of transitions accompanied by a change in the vibrational quantum number by the same value of n is denoted as δv  = n.

CO2
+

CO2
+

CO2
+

Table 3.   Spectral transitions monitored in mixtures with air

λ, nm δλ, nm Measured band system Background band system

258.2 3.7 γ-system of NO, – 

NO (A2Σ  X2Π, δv  = 3)

490 3.7 N2 (C3Π, v ' = 1  B3Π, v '' = 7)  (A2Π  X2Π)

669.6 3.7 N2 (B3Π, v ' = 6  A3Σ, v '' = 3)  (A2Π  X2Π)

469.2 3.3  (B2Σ, v ' = 0  X2Σ, v '' = 2)  (A2Π  X2Π)

CO2
+

CO2
+

N2
+

CO2
+

Each discharge is accompanied by a burst in the emis-
sion signal, which relaxes over a characteristic time τ0.
The signals from successive pulses are accumulated to
form the integral signal.

Hence, the measured integral optical characteristics
provide information about the composition of the react-
ing mixture. In our case, fτ0 ≈ 100 and the amplitude of
oscillations was nearly 3% of the signal amplitude. In
processing the signal from the oscilloscope, it was aver-
aged over the discharge repetition period; this allowed
us to eliminate these oscillations.

The emission intensity was monitored for a number
of transitions; in this case, some bands may be partially
overlapped. Table 2 lists the transitions that were mon-
itored in all of the mixtures under study. Table 3 lists the
transitions that were additionally monitored in mixtures
of hydrocarbons with air. We note that the emission
intensity for the transitions given in Table 3 is so high
that the emission from the background bands can be
ignored.

To identify the emission from substantially over-
lapped bands, we performed time-resolved measure-
ments of the emission intensities at given wavelengths
near the instant at which the discharge was switched on
and after the complete oxidation of hydrocarbons
(when the photomultiplier signal had already reached
its steady-state value). The time-resolved measure-
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
ments also allowed us to calculate the deexcitation con-
stants in the initial and reacted mixtures. Taking deex-
citation into account made it possible to find the popu-
lations of the states in a discharge.

3.3. Absorption Spectroscopy: Measurements
of the Methane Concentration

The methane concentration was measured by the
laser absorption technique. Radiation of an LGN-118
He–Ne laser (λ = 3.3922 µm), whose wavelength coin-
cides with that of the vibrational–vibrational transition
of an asymmetric vibrational mode of the CH3 group,
was passed through the discharge cell perpendicularly
to its axis and fell onto a Pb–Se photoresistor with the
spectral sensitivity range of 2–4 µm. During the filling
of the cell with a mixture, the signal from the pressure
gauge and the photomultiplier signal were fed to the
oscilloscope. From the known composition of the mix-
ture and from the measured dependence of the signal
amplitude on the pressure I(p), we found the depen-
dence I([CH4]), which was then used as a calibration
curve in processing the experimental data. The concen-
trations of hydrocarbons in other mixtures were not
measured because of their small absorption coefficient
at a wavelength of 3.3922 µm.
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Fig. 3. Electrodynamic characteristics of the discharge during the first high-voltage pulse at pressures of 1.51, 6.05, and 18 torr. The
distributions of the electric potential in the cross sections x = 0.0, 3.6, 7.2, 10.8, 14.4, and 18 cm are presented. The distribution of
the reduced electric field E(t)/p, the current J(t), and the specific power deposition W(t) are averaged over the spatial intervals 0.0–
3.6, 3.6–7.2, 7.2–10.8, 10.8–14.4, and 14.4–18.0 cm. The arrows show the numbering order of the curves when passing from the
first to the sixth cross section for the voltage and from the first to the fifth interval for the other quantities. The mixture is the oxi-
dation products of CH4 in a methane–air stoichiometric mixture.
4. RESULTS AND DISCUSSION

4.1. Electrodynamic Characteristics of a Discharge

Figure 3 shows the waveforms of the potential, elec-
tric field strength, current, and specific power deposi-
tion in different cross sections of a discharge cell filled
with a methane–air mixture. The measurements were
performed with the capacitive gauge and the current
shunt. In order to give an idea of the electrodynamic
characteristics of a discharge at higher pressures, the
results of measurements at a pressure of 18 torr are also
presented in the figure.

Let us consider the effect of the capacitance and induc-
tance of the discharge cell. It follows from Eq. (1) that

Taking the inductance into account is necessary at low
electric fields and fast variations in the current. It can be
seen from Fig. 3 that low electric fields at fast current

E
∂V
∂x
-------– L

∂J
∂t
------.–=
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variations occur at the trailing edge of the high-voltage
pulse. In Fig. 3 at a pressure of 6.05 torr, this corre-
sponds to t > 25 ns. Thus, at t = 25 ns, the current
growth rate is 20 A/ns, and the inductive addition to the
electric field is 60 V/cm (or 10 V/(cm torr)), which is
comparable to the field strength itself. At the same time,
the power deposited in the gap at t > 25 ns is rather low.
In this figure, we also clearly see the influence of the
capacitance of the discharge cell at t < 10 ns. The prop-
agation of the ionization wave is caused by the charging
of the capacitance of the discharge cell; as a result, the
current decreases as the wave propagates from the high-
voltage to the low-voltage electrode. In later stages, the
influence of the capacitance is insignificant.

On the whole, the electrodynamical picture of a dis-
charge in a relatively short discharge cell is fairly intri-
cate and differs substantially from that in long tubes
whose length exceeds the diameter by one order of
magnitude or more [18]. In our experiments, the typical
propagation velocity of the ionization wave was 2–
3 cm/ns and the typical propagation time along the dis-
charge cell was 7–15 ns, which was shorter than the
pulse duration. As a result, a short-circuit regime took
place under our conditions (note that such a regime was
not observed in [18]). In this regime, the electric field
strength and the current were constant along the dis-
charge chamber and varied relatively slowly with time.
For example, at a pressure of p = 6.05 torr, this phase
began at t = 10 ns.

At a pressure of 0.76 torr, one can easily distinguish
a low-current precursor—an ionization wave develop-
ing against the background of a large cathode voltage
drop (see Fig. 4, t < 8 ns). The development of the pre-
cursor and the main ionization wave was studied in
detail in [18, 19], where it was shown that the precursor
appeared in the initial phase of the discharge. The
development of the precursor is primarily caused by the
polarization current near the cathode at a relatively low
emission current. The increase in the electric field
strength near the cathode leads to a sharp increase in the
emission current. This, in turn, gives rise to the main
ionization wave that propagates through the preionized
gas at a velocity several times higher than the precursor
velocity. After the main ionization wave runs down the
precursor and merges with it, the wave velocity
decreases to a value that is higher than the precursor
velocity but is lower than the initial velocity of the main
ionization wave. The start of the main ionization wave
results in a neutralization of the positive charge near the
cathode; as a result, the cathode voltage drop sharply
decreases (in [18], the cathode voltage drop after the
start of the main wave was below the level determined
by the experimental errors).

In our experiments, two distinctive features were
observed at a pressure of 0.76 torr: (i) the precursor had
time to arrive at the anode before the start of the main
wave, and (ii) the cathode voltage drop remained sub-
stantial throughout the entire discharge phase. The first
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
feature is explained by the fact that the length of the dis-
charge tube in our study was three times shorter than
that in [18] ((20 and 60 cm, respectively). For this rea-
son, at nearly the same delay time of the main wave and
nearly the same propagation velocity of the precursor,
the latter had time to reach the anode. In this case, the
main wave propagated through a preionized gas with a
velocity on the order 1010 cm/s and, as a result, crossed
the discharge gap over nearly 2 ns. The second feature
is also explained by the difference in the dimensions of
the discharge tubes: in our experiments, the tube length
was shorter and, moreover, the tube diameter was a fac-
tor of 2.5 larger than in [18]. At nearly the same elec-
tron density, the resistance of the discharge gap (with
the exception of the cathode sheath) in our case was
twenty times lower than in [18]. As a result, the voltage
drop across the cathode sheath was much higher.

At low pressures (p < 4 torr), the ionization wave
develops and bridges the gap against the background of
the large cathode voltage drop. It should be noted that,
in this case, the cathode voltage drop is much larger and
the electric field strength in the cathode sheath is much
higher (by several orders of magnitude) than those
shown in the figures, because the FWHM of the sensi-
tivity function of the capacitive gauge is on the order of
the screen diameter [18].

The cathode sheath thickness can be estimated using
the theory of a glow discharge. Under our experimental
conditions, the parameters of the cathode sheath corre-
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Fig. 4. Distribution of the electric potential during the first
high-voltage pulse at a pressure of 0.76 torr in the cross sec-
tions x = (1) 0.0, (2) 3.6, (3) 7.2, (4) 10.8, (5) 14.4, and
(6) 18 cm. The mixture is the oxidation products of CH4 in
a methane–air stoichiometric mixture.
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spond to the case of an abnormal glow discharge
because the typical current density is from several units
to several tens of A/cm2, which is higher than the nor-
mal current density by three to four orders of magni-
tude. It follows from this (see [20]) that the reduced
cathode sheath thickness is pd ≈ (pd)n/e, where d is the
cathode sheath thickness, (pd)n is the normal reduced
cathode sheath thickness, and e is the base of natural
logarithms. For an aluminum cathode in air, we have
(pd)n ≈ 0.25 torr cm [20]; hence, we obtain pd ≈
0.09 torr cm. At a pressure of p = 0.76 torr, we have d ≈
1.2 mm, whereas at a pressure of p = 9.83 torr, we have
d ≈ 100 µm.

Let us consider the results obtained at a pressure of
p = 1.51 torr in more detail. In this case, the cathode
sheath thickness is d = 0.6 mm. It can be seen from
Fig. 3 that, at intermediate pressures (p = 6.05 torr),
starting from t = 10 ns, a quasi-steady distribution of the
electric field is established in the discharge gap. It fol-
lows from shunt measurements that, at this time, the
voltage across the entire discharge gap is about 20 kV
(see Fig. 2). The voltage drop across the discharge gap
with the exception of the cathode sheath is about 10 kV
(it can be seen from Fig. 3 that, at a distance of 3.6 cm
from the cathode, the electric potential is –8 kV, and the
electric field strength in the discharge gap is
~600 V/cm). Hence, the electric field strength in the
cathode sheath is about (20000 – 10000)/0.06 V/cm =
1.7 × 105 V/cm. Such an electric field is sufficient for
the vacuum breakdown of an aluminum cathode trained
with pulsed discharges [21]. Over the subsequent 3 ns,
the potential drop across the bulk of the discharge gap
decreases to ~2 kV because of ionization. Over this
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Fig. 5. Energy deposited in a discharge during the first two
high-voltage pulses in a processed methane–air mixture as
a function of the initial pressure in the mixture.
time interval, the potential of the high-voltage electrode
varies only slightly (decreases to 19 kV). As a result,
the electric field in the cathode sheath increases to 2.8 ×
105 V/cm and the field-emission current increases
manyfold. This leads to the field-emission breakdown
of the cathode sheath and the formation of a rebreak-
down wave propagating with a velocity on the order of
the speed of light. The rebreakdown wave redistributes
the potential between the cathode sheath and the
remaining part of the discharge gap. It can be seen from
Fig. 4 that, at a pressure of 0.76 torr, two rebreakdown
waves are generated at t = 20 and 27 ns. In the pressure
range p = 1.51–3.02 torr, only one breakdown of the
cathode sheath occurs during the high-voltage pulse. At
higher voltages, no breakdowns of the cathode sheath
are observed (Fig. 3).

The above considerations allow us to conclude that,
at pressures below 3–4 torr, a substantial fraction of
energy is deposited in the thin cathode sheath. More-
over, at low pressures, a substantial fraction of energy
is deposited during the propagation of the ionization
wave. However, even at a pressure of 3.02 torr, most of
the energy is deposited in the discharge after bridging
the gap. In this case, the energy deposited in the cathode
sheath and that deposited in the gas during the propaga-
tion of the ionization wave comprise a small fraction of
the total discharge energy. At pressures of 10 torr, the
energy deposited after bridging the gap decreases with
increasing pressure; however, even at a pressure of
18 torr, this energy is larger than that deposited during
the propagation of the ionization wave.

As was shown above, a fraction of the high-voltage
pulse is reflected from the discharge cell, returns to the
generator, is reflected from it, and then comes again to
the discharge cell. Under the action of such repeated
pulses, the breakdown of the discharge gap occurs
without the formation of an ionization wave. The cath-
ode voltage drop in the second pulse is substantially
lower (at pressures of higher than 0.76 torr, the cathode
voltage drop was below the measurement error); there-
fore, the energy is deposited over the discharge cell
more uniformly.

Figure 5 shows the ratios of the energies deposited
during the first and second incident pulses to the energy
of the first incident pulse as a function of the gas pres-
sure. It can be seen that, at a pressure of 0.76 torr, the
energy deposited during the second pulse is larger than
that deposited during the first pulse. As the pressure
increases, the energy deposited during the first pulse
increases and reaches its maximum at a pressure of
about 3.5 torr. The energy deposited during the second
pulse decreases monotonically up to a pressure of
3.5 torr and then remains nearly constant. The energy
fraction deposited during the third and subsequent
pulses does not exceed 2%. Note that, at low pressures,
the nonuniformity of energy deposition is partially
compensated for by the relatively large energy depos-
ited during the second pulse.
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
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Fig. 6. Total energy deposited in a discharge during the first two high-voltage pulses as a function of the initial pressure (a) in the
initial mixture: (1) CH4 : O2, (2) C2H6 : O2, (3) C3H8 : O2, (4) C4H10 : O2, (5) C5H12 : O2, (6) C6H14 : O2, (7) C5H12 : air, and
(8) C6H14 : air and (b) in the mixture after the complete oxidation of hydrocarbons: (1) CH4 : O2, (2) C2H6 : O2, (3) C3H8 : O2,
(4) C4H10 : O2, (5) C5H12 : O2, (6) C6H14 : O2, (7) CH4 : air, (8) C5H12 : air, and (9) C6H14 : air.
Hence, over the pressure range under study (0.76–
10.06 torr), most of the energy is deposited in the gas in
the stage of bridging during either the first or the second
high-voltage pulse. The nonuniformity of energy depo-
sition caused by the presence of the cathode sheath can
be ignored. In view of this, we could measure the elec-
tric field, the current, and the specific power deposition
by using the current shunt only; this is very important
in studying chemically reacting mixtures because, in
such mixtures, changes in the chemical composition
cause variations in the electrodynamic characteristics
of a discharge. Measurements performed in processed
mixtures of hydrocarbons (from ethane to hexane) with
oxygen and air gave results similar to those described
above.

Figure 6 shows the efficiency of energy deposition
as a function of the gas pressure for all of the mixtures
under study at the beginning of the oxidation process
and after its completion. The total energy of the high-
voltage pulse was 60 mJ. It can be seen from the figure
that, at the beginning of the oxidation process, the
energy deposited in mixtures with oxygen at pressures
of p > 3 torr is larger than the energy deposited in mix-
tures with air. This difference increases with pressure
and reaches 12% at p = 10.06 torr. In processed mix-
tures, the efficiency of energy deposition is almost the
same for all of the mixtures under study; the presence
or absence of nitrogen has little effect on the deposited
energy. We note only that, in a methane–oxygen mix-
ture, the deposited energy is somewhat larger than in
other hydrocarbon–oxygen mixtures.
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
4.2. Kinetics of the Oxidation of Hydrocarbons
in a Discharge

Figure 7 shows the emission spectrum of a dis-
charge in pure methane and the afterglow spectrum of a
processed methane–oxygen mixture. The emission
spectrum of a discharge in pure methane consists
mainly of the hydrogen continuum corresponding to
the H2(a3Π – b3Σ) transition. The CH(A2∆  X2Π)
band corresponding to the v ' = 0  v '' = 0 transition
is also clearly seen.

Most bands in the processed methane–oxygen mix-

ture belong to the (A2Π) molecules. The emission
bands of the OH(A2Σ  X2Π) hydroxyl radical and
the weak CO bands of the Angstrom system,
CO(B1Σ  A1Π)), can also be clearly identified. It can
be seen that the CH(A2∆  X2Π) band in methane
(Fig. 7a) is substantially overlapped by the

(A2Π  X2Π) band in the mixture (Fig. 7b).
Therefore, to identify the spectral bands, it is necessary
to take special measures in order to separate these
bands in the early stage of processing the methane–
oxygen mixture. The OH(A2Σ  X2Π) emission band
is also overlapped by the emission spectrum of . In
hydrocarbon–air mixtures, numerous bands of the first
negative and the first and second positive systems of
nitrogen appear in the spectrum. These bands partially
overlap the emission bands of CH, , and OH. In
the Angstrom system of CO, at least one band at
518.6 nm is not overlapped by other bands. In all of the
spectra, we observed weak lines of the hydrogen
Balmer series. We did not measure the intensities of

CO2
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+

CO2
+

CO2
+
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these lines systematically because they were too weak
and were present in both the initial and processed mix-
tures.

As was noted above, when the bands overlapped in
a narrow spectral interval, they could be identified from
measurements with a nanosecond time resolution. As
an example, Fig. 8 shows the waveforms of the emis-
sion intensity at a wavelength of 430 nm in the initial
and final stages of the mixture processing. Two excita-
tion peaks corresponding to two high-voltage pulses are
clearly seen. The decrease in the emission intensity in
each pulse can be approximated with good accuracy by
the sum of two exponential functions with different
characteristic decay times. It is well known that the life-
time of the (A2Π) state (τ = 124 ns, [22]) is several
times shorter than that of the CH(A2∆) state (τ = 600 ns,
[23]). In this case, the exponential function with a
longer decay time corresponds to the emission from the
CH(A2∆) state, whereas the one with a shorter decay
time corresponds to the emission from the (B2Σ)
state. It can also be seen that the intensity of the emis-
sion corresponding to the CH(A2∆  X2Π) transition
decreases severalfold in the course of oxidation. In con-
trast, the intensity of the emission corresponding to the

(A2Π  X2Π) transition increases severalfold.
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+
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The lifetime and the deexcitation constant for the “fast”
emission are the same as for the emission of  at a
wavelength of 290 nm. For this reason, the time depen-
dence of the emission intensity of CH(A2∆  X2Π)
can be obtained by subtracting the normalized wave-
form of the emission intensity at a wavelength of
290 nm from the waveform of the total emission inten-
sity at a wavelength of 430 nm. The normalizing factor
was chosen such that the time-resolved signal of the
290-nm emission coincided with the “fast” signal at a
wavelength of 430 nm.

With time-resolved measurements, the wavelength
interval for measuring the emission of the OH(A2Σ)
radical could be chosen such that the background due to
the second positive system of nitrogen and due to the
band of the CO2 ions could be ignored. The
OH(A2Σ  X2Π) emission corresponding to transi-
tions from the v ' = 1–3 vibrationally excited states was
negligibly small against the background of the emission
of the CO2 ions at a wavelength of 290 nm.

The above bands were observed in all of the mix-
tures under study and served as indicators of the oxida-
tion process under the action of a discharge.

Using the results from time-resolved measurements
of the lifetimes and deexcitation constants of the
excited states (this technique was described in detail in
[24]), we determined the time-integrated (over the
pulse duration) excitation rates of the emitting states. It
should be noted that the deexcitation constants for the
CO(B1Σ), CH(A2∆), and OH(A2Σ) states in the reagents
are lower by 30–50% than those in the products (which
is explained by the appearance of water). This means
that, in order to determine variations in the density of
the excited molecules in the course of oxidation, the
measured waveforms of the emission intensity must be
corrected with allowance for the deexcitation constants.
Note that the constants for the deexcitation of the CO

(B2Σ), (A2Π), and (B2Σ) states by the
reagents and by the products are almost the same.

In hydrocarbon–air mixtures, we determined the
time-integrated (over the pulse duration) population
rates of the upper states by using the data from time-
resolved measurements of the emission from the
N2(C3Π, v ' = 1  B3Π, v '' = 7), N2(B3Π, v ' = 6 

A3Σ, v '' = 3), and (B2Σ, v ' = 0  X2Σ, v '' = 2)
transitions near the instant at which the discharge was
switched on and after the complete oxidation of hydro-
carbons. It was found that, in both cases, the excitation
rates for the states of molecular nitrogen differed by no
more than 10%. The excitation rate for the (B2Σ,
v ' = 0) state decreased by nearly 25% in the course of
oxidation. In [24], it was found that, in a similar nano-
second discharge, the main mechanism for the popula-
tion of the N2(C3Π) and (B2Σ) states was the elec-
tron-impact excitation of molecular nitrogen. Since the
nitrogen concentration in a discharge varies only
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+
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slightly, the time-integrated (over the pulse duration)
rate constants for the population of the N2(C3Π, v ' = 1)

and (B2Σ, v ' = 0) states vary by 10% and 25%,
respectively. Note also that the N2(C3Π, v ' = 1) and

(B2Σ, v ' = 0) states are populated during the dis-
charge, whereas the N2(B3Π, v ' = 6) state is mainly
populated in the discharge afterglow and its population
rate correlates well with the emission from the
N2(C 3Π, v ' = 1  B3Π, v '' = 7) transition. It fol-
lows from this that the N2(B3Π, v ' = 6) state is mainly
populated via the deexcitation of the N2(C3Π) state.

The threshold energies for the electron-impact exci-
tation of the N2(C3Π, v ' = 1) and (B2Σ, v ' = 0)
states are ~11 and 19 eV, respectively. Since the thresh-
old excitation energies for all of the states under consid-
eration do not exceed 19 eV, we can assume that, when
we pass from the products to the reagents, the excita-
tion rate constants averaged over the high-voltage pulse
vary by no more than 25% for all of the states under
study. In addition, the lower the threshold excitation
energy for a given state, the smaller the difference
between the excitation constants.

Thus, the change in the mixture composition in the
course of oxidation and the accompanying variations
in the deexcitation and excitation rate constants lead to
variations of no more than 50% in the time-integrated
(over the pulse duration) emission intensity from any
of the transitions under consideration. Therefore, from
measurements of the time-integrated emission, we can
only obtain a qualitative time dependence of the
concentrations of the components from which the
excited states are produced. At the same time, this has
little effect on the characteristic oxidation time deter-
mined from the time-integrated emission from the
CO(B1Σ  A1Π), (B2Σ  X2Π), OH(A2Σ 
X2Π), and CH(A2∆  X2Π) transitions.

The time dependences of the integral emission
intensity in methane-containing mixtures are well
approximated by the function exp(–t/τ(p)) or our func-
tion 1 – exp(–t/τ(p)) (see Fig. 9). Note that, in our exper-
iment, we observed the complete oxidation of methane,
as is seen from the curve [CH4](t) obtained from the
absorption measurements of the IR radiation of the He–
Ne laser. Figure 9 also shows the time behavior of the
time-integrated emission of the CH(A2∆  X2Π) rad-
icals. It can be seen that, from the very beginning of the
discharge, the time behavior of the emission intensity
from the CH(A2∆  X2Π) transition coincides (to
within the measurement accuracy) with that of the
methane concentration. For this reason, the emission
from the CH(A2∆  X2Π) transition can be consid-
ered a reliable indicator of the hydrocarbon concentra-
tion in a discharge.

In mixtures of hydrocarbons that are heavier than
methane, the time dependences of the emission inten-

N2
+

N2
+

N2
+

CO2
+
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sity are more complicated. This can be explained by the
fact that a large amount of the intermediate components
(probably of unsaturated hydrocarbons and CO) is
accumulated in the initial phase of oxidation and during
the subsequent oxidation of these components. Figure 10
shows an example of the time behavior of the time-inte-
grated emission from a discharge in ethane at a pressure
of 7.54 torr. It can be seen that the curves obtained for
different emitting states differ substantially from one
another.
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1600 pulses
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CH(A2–X2)

OH(A2–X2)

CH4(absorption)

Fig. 9. Time evolution of the time-integrated (over the pulse
duration) emission intensities from the CH(A2∆  X2Π),
CO(B1Σ  A1Π), and OH(A2Σ  X2Π) transitions
and the methane concentration measured from the absorp-
tion of the 3.3922-µm laser radiation. The initial pressure of
a CH4 + O2 mixture is 7.56 torr.
Figure 11 shows the times of complete oxidation
that were determined from different emission bands for
mixtures of hydrocarbons (beginning from ethane) with
oxygen. The time of complete oxidation was defined as
the time over which the emission signals at wave-
lengths of 290 and 307.8 nm (which correspond to the

(B2Σ  X2Π) and OH(A2Σ  X2Π) transi-
tions) reached a level of 0.95I∞ and the emission signals
at wavelengths of 430 and 518.6 nm (which correspond
to the CH(A2∆  X2Π) and CO(B1Σ  A1Π) transi-

CO2
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Time, s
20 30 40 50 60 70 80

0.4
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0.8

1.0

1.2

ëé2
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OH(A2–X2)

CH(A2–X2)

CO(B1–A1)800 pulses

Fig. 10. Time evolution of the time-integrated (over the
pulse duration) emission intensities from the CH(A2∆ 

X2Π), CO(B1Σ  A1Π), and (B2Σ  X2Π) tran-

sitions. The initial pressure of a C2H6 + O2 mixture is
7.56 torr.

CO2
+

Table 4.  Times of complete oxidation of hydrocarbons τox, determined from the CO (B1Σ  A1Π) emission band, as func-
tions of the initial pressure in the mixture

Pressure, torr 0.76 1.51 2.27 3.02 3.78 4.54 5.29 6.05 6.80 7.56 8.32 9.07 9.83 10.06 

τox, s (CH4 + O2) 17 43 63 69 74 84 97 125 149 131 172 175 320 294 

τox, s (C2H6 + O2) 28 27 24 26 30 36 44 51 61 67 80 87 110 131 

τox, s (C3H8 + O2) 25 25 24 26 30 39 44 50 58 69 81 93 114 135 

τox, s (C4H10 + O2) 26 25 24 26 29 38 42 46 54 69 87 100 121 144 

τox, s (C5H12 + O2) 18 24 26 25 31 38 47 53 63 71 90 104 118 143 

τox, s (C6H14 + O2) 23 27 24 25 34 38 51 53 73 69 81 88 109 130 

τox, s (CH4 + air) 26 18 19 24 22 29 33 34 44 46 47 56 73 – 

τox, s (C5H12 + air) 34 16 14 14 16 18 19 20 20 25 33 34 37 45 

τox, s (C6H14 + air) 45 13 17 17 17 14 20 22 22 22 28 27 33 35 
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Fig. 11. Times of complete oxidation in hydrocarbon–oxygen mixtures, determined from the CH(A2∆  X2Π), CO(B1Σ 

A1Π), (B2Σ  X2Π), and OH(A2Σ  X2Π) emission bands, as functions of the initial pressure in the mixture: (1) C2H6 : O2,
(2) C3H8 : O2, (3) C4H10 : O2, (4) C5H12 : O2, and (5) C6H14 : O2.

CO2
+

tions) reached a level of 1.05I∞. We note that the char-
acteristic times that were determined for the same mix-
ture from different emission bands differed markedly
because the deexcitation and excitation of the products
and reagents influence the emission from different
components in different ways. However, the times
determined from the same emission bands in different
mixtures of hydrocarbons (beginning from ethane) with
oxygen coincide well with one another. The scatter in
the oxidation time was minimal when it was deter-
mined from the CO(B1Σ  A1Π) emission band.
Therefore, the time determined from this emission band
was assumed to be the time of complete oxidation.

Figure 12 and Table 4 show the times of complete
oxidation of hydrocarbons in all of the mixtures under
study. It can be seen that the oxidation time of methane
is always nearly twice as long as the oxidation times of
other hydrocarbons both in mixtures with oxygen and
in mixtures with air. For other hydrocarbons, the times
coincide to within the experimental error. In hydrocar-
bon–air mixtures, the characteristic oxidation time of
hydrocarbons, including methane, is a factor of 2 to 3
shorter than that in mixtures with oxygen. Taking into
account that the total amount of hydrocarbons in their
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
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Fig. 12. Times of complete oxidation of hydrocarbons,
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of hydrocarbons (from ethane to hexane) with oxygen,
(3) CH4 : air, and (4) stoichiometric mixtures of pentane
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mixtures with air is smaller at the same initial pres-
sures, we can conclude that the oxidation rate in mix-
tures with air is almost half that in mixtures with oxy-
gen.

Thus, mixtures of alkanes with oxygen or air at room
temperature are completely oxidized under the action of
pulsed discharges. The oxidation rate of all of the hydro-
carbons under study (beginning from ethane) in their sto-
ichiometric mixtures with oxygen or air is almost the
same for all the hydrocarbons. Methane oxidizes at half
the speed of any other hydrocarbon under consideration.

5. CONCLUSIONS

The kinetics of the slow oxidation of alkanes (from
CH4 to C6H14) in their stoichiometric mixtures with
oxygen or air under the action of a repetitive FIW dis-
charge was studied experimentally.

The development of a repetitive nanosecond dis-
charge in a screened gap of moderate length has been
described qualitatively. The uniformity of energy depo-
sition in the discharge gap was studied experimentally.
It was shown that, at a total pressure in the mixture
below 3 torr, the discharge develops at the background
of a large cathode voltage drop, which results in a non-
uniform energy deposition. At pressures of p > 3 torr,
most of the energy is deposited during the short-circuit
stage of the discharge, when the cathode voltage drop is
insignificant and the field strength is constant over the
entire discharge gap; as a result, the energy deposition
turns out to be fairly uniform.

It was shown that hydrocarbons are completely oxi-
dized under the action of a nanosecond discharge at
room temperature. For hydrocarbons heavier than
methane, the times of complete oxidation are found to
be the same at the same deposited energy and the same
initial pressure in a stoichiometric mixture. Methane
oxidizes at nearly half the speed of other hydrocarbons.
The oxidation efficiency of hydrocarbons in their sto-
ichiometric mixtures with oxygen is nearly twice as
high as that in their mixtures with air.
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Abstract—The plasma density distribution in a two-dimensional nonuniform positive column of a low-pres-
sure gas discharge is studied in the hydrodynamic approximation with allowance for ion inertia. Exact solutions
are derived for discharges in a rectangular and a cylindrical chamber. Asymptotic solutions near the coordinate
origin and near the critical surface are considered. It is shown that, for potential plasma flows, the flow velocity
component normal to the plasma boundary is equal to the ion acoustic velocity. The results obtained can be used
to analyze the processes occurring in low-pressure plasmochemical reactors. © 2004 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

Plasma sources operating at low pressures of
plasma-producing gases have recently come into gen-
eral use in aerospace engineering and microelectronics
technologies. In such applications, the ion mean free
path can be either longer or shorter than the character-
istic dimensions of the system. In existing kinetic [1–5]
and hydrodynamic [2, 6, 7] models of the positive col-
umn of a gas discharge, the plasma is assumed to be
inhomogeneous in only one direction. However, in
actual technological plasma sources in which the
plasma flow to the wall should be uniform in order to
ensure a constant rate of chemical processing, the trans-
verse and longitudinal plasma dimensions are of the
same order of magnitude. However, to the best of our
knowledge, no attempts have been made to solve the
relevant problem for a system in which the ion mean
free path exceeds the plasma dimensions.

Moreover, in hydrodynamics, the problem of formu-
lating the boundary conditions for a gas-discharge
plasma remains unresolved. In the quasineutral approx-
imation (i.e, when the Debye length is much less than
the characteristic dimensions of the system), Bohm’s
criterion [8], which implies that the plasma flow veloc-
ity to the wall is equal to the ion acoustic velocity, is fre-
quently used as a boundary condition for a one-dimen-
sional plasma flow. A comprehensive review of the lit-
erature devoted to the analysis of the applicability
conditions and formulation of Bohm’s criterion in the
hydrodynamic and kinetic approximations was given
by Riemann [9]. In a two-dimensional plasma flow, the
ion velocity can be directed at any angle to the bound-
ary. It can be expected that, in most problems, the con-
ditions for the sheath formation should be analogous to
those for the generation of an oblique shock wave at
low Mach numbers in hydrodynamics; i.e., the ion
velocity component normal to the boundary should be
1063-780X/04/3012- $26.00 © 21043
equal to the local speed of sound [10–12]. In actuality,
however, the problem is more complicated because, in
a divergent nozzle, the shock wave either can be formed
at flow velocities above the speed of sound or cannot be
formed at all (a Laval nozzle). Therefore, this question
also requires additional investigations.

2. FORMULATION OF THE PROBLEM

In this study, we will obtain a number of possible
spatial distributions of the plasma density in the hydro-
dynamic approximation. Although the ions in the long-
mean-free-path regime (which will be considered as a
limiting one) should be described by a kinetic equation,
it can be expected that the hydrodynamic approach will
provide a qualitatively correct solution to the problem
and a physically meaningful boundary condition. It can
also be anticipated that the algorithm for constructing a
hydrodynamic solution will serve as the basis to con-
struct two-dimensional solutions to the ion kinetic
equation. We denote the boundary surface of the plasma
by S and start with the one-fluid hydrodynamic equa-
tions

(1)

(2)

Here, n is the plasma density (the positive column is
assumed to be quasineutral), V = (u, v ) is the hydrody-
namic velocity of the plasma flow (where u and v  are
the x and y components of the velocity, respectively),

VS =  is the ion acoustic speed, the electron tem-
perature Te is expressed in energy units and is assumed
to be constant, M is the mass of an ion, νin is the ion–
neutral collision frequency, and νi is the ionization fre-

∂n
∂t
------ ∇ nV( )⋅+ nν i,=

∂V
∂t
------- V ∇⋅( )V+ VS

2 ∇ n
n

-------– ν inV.–=

Te/M
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quency. The ions are assumed to recombine at the crit-
ical surface S at which the one-to-one correspondence
between coordinates and velocities breaks down.

We will solve the problem about the plasma flow in
the same manner as in the standard hydrodynamics [10,
11], restricting the study to the class of steady-state
two-dimensional potential flows.1 It should be noted
that Thomson’s theorem fails to hold for our problem.
Carrying out the same manipulations as in [12], we
obtain the equations

,

We thus see that, because of plasma friction with neu-
tral particles (the neutral gas is assumed to be immo-
bile), the vorticity decreases with time. An important
point for our analysis is that, if the flow is potential at
any time, then it will continue to remain potential.

The flow is assumed to be either planar (µ = 0) or
axisymmetric (µ = 1; in this case, the coordinate y is the
distance from the axis) and also symmetric about the
coordinate origin. The electron density at the origin is
maximum, and the ion velocity at the origin is assumed
to be zero. Under these assumptions, Eqs. (1) and (2)
reduce to2 

(3)

(4)

We introduce the velocity potential V = ∇ϕ  to write
Eq. (4) as

In terms of the velocity potential, the plasma density
can easily be calculated from the equation

Taking into account the fact that the velocity potential
at the coordinate origin is zero and integrating this
equation along the current lines yields

, (5)

1 We do not address here the problem of the flow stability.
2 Here and below, the partial derivative of the function a with

respect to the variable b is denoted by ab, as is usually done in
hydrodynamics.

d
dt
----- V∫° dl⋅ ν in ∇(∫∫– V ) dS⋅×=

∂
∂t
----- ∇ V×( ) ∇– V ∇ V×( )×( )× νin ∇ V×( ).–=

v x uy– 0,=

u
2

VS
2

–( )ux uv v x uy+( ) v
2

VS
2

–( )v y+ +

=  
µ
y
---VS

2
v ν iVS

2
– ν in u

2
v

2
+( ).–

u
2

VS
2

–( )ϕ xx 2uv ϕ xy v
2

VS
2

–( )ϕ yy+ +

=  
µ
y
---VS

2ϕ y ν iVS
2

– ν in ϕ x
2 ϕ y

2
+( ).–

∇ ∇ϕ( )2

2
--------------- VS

2∇ nln– ν in∇ϕ .–=

n n0
∇ϕ( )2

2VS
2

---------------–
ν in

VS
2

------ϕ–
 
 
 

exp=
where n0 is the electron density at the spatial point at
which the flow velocity is zero.

Applying the hodograph transformation [8, 9] to
Eqs. (3) and (4), we obtain

(6)

(7)

In contrast to the case of classical hydrodynamics
(without allowance for chemical processes), Eq. (7) is
nonlinear not only for axisymmetric but also for planar
flows. The boundary surface of a two-dimensional flow
is a surface at which the one-to-one correspondence
between coordinates and velocities breaks down, i.e.,
where the Jacobian vanishes,

(8)

Equations (6) and (7) can be further simplified by intro-
ducing the Legendre potentials in such a way as to
make the final equation dimensionless:

(9)

As a result, Eq. (7) takes the form

(10)

where we have introduced the notation ζ = νin/νi , which
will be used below.

Since the potential of the velocity field is related to
the Legendre potentials by the relationship

(11)

the plasma density can be calculated from the formula

(12)

The position of the boundary is determined by the equa-
tion

(13)

xv yu– 0,=

u
2

VS
2

–( )yv uv yu xv+( )– v
2

VS
2

–( )xu+

=  
µ
y
---VS

2
v ν in u

2
v

2
+( )– ν iVS

2
–

 
 
 

xuyv xv yu–{ } .

∂ x y,( )
∂ u v,( )
------------------ xuyv xv yu– 0.= =

U  = u/VS, V  = v /VS, x = 
VS

ν i

------X  = 
VS

ν i

------ΦU U V,( ),

y
VS

ν i

------Y
VS

ν i

------ΦV U V,( ).= =

U
2

1–( )ΦVV 2UVΦUV– V
2

1–( )ΦUU+

=  
µ

ΦV

-------V 1– ζ U
2

V
2

+( )–
 
 
 

ΦUUΦVV ΦUV
2

–{ } ,

ϕ Φ– XU YV+ + Φ– UΦU VΦV ,+ += =

n n0
U

2
V

2
+
2

-------------------– ζ UΦU VΦV Φ–+( )– 
  .exp=

ΦUUΦVV ΦUV
2

– 0.=
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It is sometimes more convenient to use the absolute
value of the velocity, W, and the angle θ [12]:

(14)

In these variables, Eq. (10) reads

(15)

The cylindrical coordinates R =  and Θ are
given by the formulas

(16)

The flow is exactly radial at the points at which Φθ = 0,
the angle between the flow velocity and the position
vector being Θ – θ = . The boundary
condition has the form

(17)

and the plasma density is given by a formula analogous
to formula (12):

(18)

3. GENERAL PROPERTIES OF THE SOLUTIONS: 
SOLUTION NEAR THE COORDINATE ORIGIN

Here, we consider a solution that is slightly inhomo-
geneous in the azimuthal direction:

(19)

where the axisymmetric solution Φ0(W) to Eq. (15) can
be calculated numerically or can be found in the form

of a series, Φ0(W) = , and the nonaxi-
symmetric component of the solution is

(20)

U  = W θ, Vcos  = W θ, Xsin  = ΦW θcos
θsin

W
-----------Φθ,–

Y ΦV θsin
θcos

V
------------Φθ.+=

1 W
2

–( ) Φθθ WΦW+( ) W
2ΦWW+

=  1 ζW
2

+{ } Φ WW WΦW Φθθ+( ) ΦWθ
Φθ

W
------– 

 
2

–
 
 
 

.

X
2

Y
2

+

R ΦW
2 Φθ

2
/W

2
+ ,=

Θ
ΦW θsin

θcos
W

------------Φθ+

ΦW θcos
θsin

W
-----------Φθ–

---------------------------------------------

 
 
 
 
 

.arctan=

Φθ/WΦW( )arctan

∂ x y,( )
∂ W θ,( )
------------------- = ΦWW WΦW Φθθ+( ) ΦWθ

Φθ

W
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 
2

–  = 0,

n n0
W

2

2
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  .exp=

Φ Φ0 W( ) δΦ W θ,( ),+=

A0nW
2n

n 1=
∞∑

δΦ W( )

=  Bm
1

W( ) mθ( )sin Bm
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m 1=

∞

∑
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In the vicinity of the coordinate origin, we can set
δΦ(W) ! Φ(W). In this case, the equation for δΦ(W)
takes the form

(21)

We seek the asymptotic expressions for each of the
terms in representation (20) in the form

(22)

Substituting expressions (22) into Eq. (21) and taking
into account the fact that the solution Φ0 to Eq. (15) is
independent of the azimuthal angle, we obtain the for-
mula for the term with the minimum power α:

(23)

This formula yields the following asymptotic expres-
sion for nonaxisymmetric component (20) at r  0:

(24)

Since the divergence of the velocity field of the flow
described by expression (24) is zero, the flow does not
affect (in the linear approximation) the ionization bal-
ance and the distribution of the plasma density near the

coordinate origin. The constants  and  can be
chosen arbitrarily (in what follows, we will assume that
they are prescribed). In fact, these constants should be
defined so that the boundary of the flow described by
Eqs. (6) and (7) coincides with the boundary of the cho-
sen discharge region (e.g., of a rectangle); in this case,
they are Fourier coefficients in the expansion of the cor-
responding functions in the azimuthal angle.

By virtue of representation (20) and expression (24),
the solution to Eq. (15) can be sought in the form

(25)

The coefficients in representation (25) can be calcu-
lated by inserting it into Eq. (15) and collecting terms
with the same azimuthal modes and the same powers of
velocity. Since the resulting expressions are very
involved, we do not write them out here. Taking into
account the nonlinear coupling between the harmonics
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will change the expressions for the coefficients A0n of
the main distribution.3 

4. BEHAVIOR OF THE SOLUTION 
NEAR THE CRITICAL SURFACE

Here, we examine the general properties of the solution
near the critical surface. We seek the solution in the form

(26)

where (US0, VS0) is a point at the critical surface. Since
the coefficients a01 and a10 determine the position of the
point (XS0(US0, VS0), YS0(US0, VS0)) in the xy plane, they
can be set at zero; this indicates that the coordinate ori-
gin is translated to this point. Equation (13) for the criti-

cal surface implies that the relationship 4a20a02 –  = 0
is satisfied. We choose the coordinate system in such a
way that the critical surface is crossed by moving only
in the x direction; in this case, we have a20 = a11 = 0.

We restrict our analysis to polynomials of order less
than four, which provides a fairly accurate description of
the flow near the critical surface. In this case, we have

(27)

(28)

The parametric formula for the coordinates of the
critical surface near the point (US0, VS0) can be
obtained by expressing δV as a function of δU with the
help of Eq. (13),

(29)

3 Analogous results can be obtained using Eq. (10) and a power
series expansion of the form

.Φ U V,( ) am k– k, U
m k–

V
k

k 0=

m

∑
m 1=

∞

∑=

Φ U V,( ) Φ US0 δU VS0 δV+,+( )=

=  Φ US0 VS0,( ) am k– k, δU
m k– δV

k
,

k 0=

m

∑
m 2=

∞

∑+

a11
2

X 3a30δU
2

2a21δUδV a12δV
2

+ +( )=

+ 4a40δU
3

3a31δU
2δV 2a22δUδV

2
+ +(

+ a13δV
3 ) …,+

Y 2a02δV a21δU
2

2a12δUδV 3a03δV
2

+ +( )+=
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2δV 3a13δUδV

2
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3 ) ….+

ΦUUΦVV ΦUV
2

– 4 3a02a30δU a02a21δV+{=
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2

A11δUδV+ + +
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2 …+ 0=
and by substituting it into relationships (27) and (28).
To second order in δU, we obtain δV = –3a30δU/a21 and,
accordingly,

Hence, at the point in question, the normal to the criti-
cal surface is directed along the x axis.4 The fact that the
point (US0, VS0) is a point of the critical surface imposes
limitations on the plasma flow velocity at this surface.
Substituting expansion (26) into Eq. (10) and equating
the coefficients of the same powers of δUiδVi, we arrive
at the following relationship for i = j = 0:

(30)

Thus, at a regular point (a02 ≠ 0), the flow velocity com-
ponent that is normal to the wall and is equal to the ion
acoustic velocity; in this case, the flow velocity compo-
nent parallel to the boundary can be arbitrary. The coef-
ficient a02 determines the characteristic dimension of
the flow in the y direction. Hence, we have generalized
the result obtained by Persson [7] for one-dimensional
plasma flows to the case of an arbitrarily shaped smooth
boundary of a two-dimensional region. With allowance
for relationship (30), the coefficients in expansion (26)
satisfy the equations

(31)

(32)

The number of equations for the coefficients of the
same powers m = i + j of the terms of the series aijUiVj

is equal to m – 2; i.e., two coefficients (in our case, these

4 Since the point (US0, VS0) is a regular point of the critical surface,
at least one of the coefficients a21 and a30 is nonzero. If a21 = 0,
then we obtain δU = –a21δV/3a30 and, accordingly, 

which yields an analogous result.
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are a0m and a1(m – 1)) can be chosen arbitrarily. One of the
coefficients describes the shape of the critical surface,
and the other determines the characteristic spatial scale
on which the flow parameters vary in the direction away
from the boundary. The value of the second coefficient
is in fact determined by the position and shape of the
critical surface near the second boundary point in the
given cross section of the plasma column. In particular,
for the above expansion in polynomials of order less
than four, we can specify the coefficients VS0, a02, a12,
a03, a13, and a04 independently. We now proceed to the
construction of distributions that are important for prac-
tical applications.

5. DISCHARGE IN A LONG PLANAR CHAMBER

In the one-dimensional case (∂/∂x ≡ 0, u ≡ 0), Eq. (4)
reduces to a much simpler form, 

, (33)

and describes the well-known density distribution [7],
which, for µ = 0, is integrable in terms of elementary
functions:

(34)

, (35)

where the integration constant is set equal to zero
because it is responsible only for a shift along the coor-
dinate axis.5 

At the point V = 1, we have YV = 0, which indicates
that the solution does not have a unique continuation to
the range of supersonic speeds. The physically mean-
ingful portion of the distribution is the central portion
lying near the point Y = 0 between the two extremes at
which YV ≥ 0; i.e., the position of the boundary (L) at
which recombination occurs is determined by the con-
dition YV = 0 (or VY = ∞). Solution (35) gives the rela-
tionships v (L) = VS and L =

 – . The former is

Bohm’s criterion, while the latter determines the ion-
ization frequency in the discharge at a given position of
the boundary.

5 Integral (35) is easy to calculate; the results is 

.

1 ζV
2 µ

Y
---V–+ 

  YV 1 V
2

–( )=

Y V ζ,( ) = YP V ζ,( ) = 
1

ζ
------- 1 1

ζ
---+

 
 
 

ζV( )arctan
V
ζ
---,–

ΦP V ζ,( ) = V
1

ζ
------- 1 1

ζ
---+

 
 
 

ζV( )arctan V
ζ
---–

 
 
 

d

0

V

∫

ΦP V ζ,( ) 1 1
ζ
---+

 
 
  V

ζ
------- ζV( )arctan

1
2ζ
------ 1 ζV

2
+( )ln–

 
 
  V

2

2ζ
------–=

VS

ν i

------ 1

ζ
------- 1 1

ζ
---+

 
 
 

ζ( )arctan


 1

ζ
---





PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
6. CYLINDRICALLY SYMMETRIC DISCHARGE

A cylindrically symmetric solution can be derived
from Eq. (10) with µ = 1 or from Eq. (13) with ∂/∂θ ≡ 0;
in this case, it reduces to the equation

(36)

This equation cannot be integrated in terms of elemen-
tary functions. We denote the cylindrically symmetric
solution by Φ0(ζ, V). The coordinate Y and the plasma
density calculated from Eqs. (36) and (12) as functions
of the velocity V in planar and cylindrical geometries
are shown in Figs. 1 and 2, respectively.

The dependence of the boundary position (in dimen-
sionless variables) on the parameter ζ is presented in
Fig. 3. For comparison, this figure displays the results
obtained for a positive discharge column not only in
planar (µ = 0) and cylindrical (µ = 1) geometries but
also in spherical (µ = 2) geometry. As expected, when
ion collisions play an equally important role, the
boundary surface in a spherical discharge is farther
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Fig. 1. (a) Coordinate Y and (b) the plasma density as func-
tions of the velocity V for a positive discharge column in
planar geometry. Numerals above the curves denote the val-
ues of the parameter ζ.
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from the coordinate origin than in a cylindrical dis-
charge (and even more so in a planar discharge)
because, in a spherical discharge, diffusive losses at the
same distance are greater.

7. SIMPLE TWO-DIMENSIONAL FLOWS

We seek a solution to Eq. (10) in the form

(37)

Inserting representation (37) into Eq. (10), we obtain

(38)
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Fig. 2. (a) Coordinate Y and (b) the plasma density as func-
tions of the velocity V for a positive discharge column in
cylindrical geometry. Numerals above the curves denote the
values of the parameter ζ.
We require that the following relationship be satisfied:

(39)

Substituting relationship (39) into Eq. (38) gives

(40)

In this case, the solution to Eq. (39) can be expressed in
terms of solution (35):

Replacement of the variable Y = GV reduces Eq. (40)
(with the corresponding change of notation for the
coefficients) to Eq. (36), which has been analyzed
above. The solution to this equation is very simply
expressed in terms of the familiar solution to Eq. (36)
(see Fig. 2b):

Hence, we have constructed plasma density distribu-
tions for both a rectangular and a cylindrical discharge
chamber in two-dimensional geometries. This result is
important for state-of-the-art technological devices. As
expected, Bohm’s criterion at a planar boundary is satis-
fied for the flow velocity component perpendicular to it.
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Fig. 3. Position of the boundary as a function of the param-
eter ζ in (1) planar, (2) cylindrical, and (3) spherical geom-
etries.
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We now consider a discharge in a cylindrical cham-
ber with diameter r0 and a height of 2L0 cm. The distri-
bution of the plasma density in such a chamber can be
determined as follows. For the solution obtained in this
section, the position of the boundary is given by the
equations

(41)

where the ion–neutral collision frequency is deter-
mined by the neutral gas pressure. Equations (41)
makes it possible to find the values of the coefficient α
and ionization rate νi in the discharge in the same way
as in the standard Schottky theory. Using the second of
these equations, one can calculate the electron temper-
ature, electric field strength, and other discharge param-
eters from known dependences [2]. The electron den-
sity distributions calculated for a planar discharge
chamber are presented in Fig. 4a, and those calculated
for a cylindrical chamber are given in Figs. 4b–4f.6

Since, in all of our calculations, the ionization fre-
quency was assumed to be spatially uniform, the calcu-
lated results are valid under the following condition for
electron temperature equalization within the plasma
volume: λe/(2m/M)1/2 @ L, where λe is the electron
mean free path; L is the characteristic spatial scale on
which the parameters of the system vary; and m and M
are the electron and ion masses, respectively. At low
pressures, the ionization frequency can become spa-
tially nonuniform because of the collisionless mecha-
nisms for field absorption. To estimate the quantitative
role of these mechanisms requires further investigation.

6 It is also possible to obtain a solution for a three-dimensional
rectangular discharge chamber of sizes LX , LY, and LZ . In this
case, a three-dimensional analogue of Eq. (10) with µ = 0 can be
written as 

where W = Vz/VS. The solution to this equation can be sought in
the form 
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8. DISTINCTIVE FEATURES OF THE BEHAVIOR 
OF THE SOLUTION IN THE LONG-ION-MEAN-

FREE-PATH REGIME

It is of interest to investigate the applicability of the
equations derived above to the limit of small ζ values
(which corresponds to a positive gas-discharge column
in which the ions move freely toward the wall [1]). In
this limit, the ions can in fact be described in terms of
collisionless hydrodynamics; in this case, however, the
ionizing electron collisions should be taken into
account because only the fastest electrons are absorbed
at the plasma boundary, while the remaining electrons
are reflected from the potential barrier. Elastic electron
collisions are unimportant because electrons are much
lighter than ions and neutrals. The coordinate of the
boundary of a positive discharge column is equal to
YG = 2/3 in planar geometry, YG = 1.427 in cylindrical
geometry, and YG = 2.26 in spherical geometry. A com-
parison of the one-dimensional hydrodynamic solution
with the one-dimensional solution to the kinetic equa-
tion shows that the former overestimates the losses to
the wall. Thus, in the kinetic approximation, we have
YG = 0.58, 1.1, and 1.6 for a planar, a cylindrical, and a
spherical plasma column, respectively (see, e.g., [1, 4]).
This discrepancy is due to the fact that, in the collision-
less approximation, Eq. (5) reduces to the Bernoulli
integral

(42)

which relates the ion flow velocity to the electric poten-
tial difference between the point at which the measure-
ments are performed and the point from which the cur-
rent line originates (in our case, the coordinate origin).
On the other hand, not all of the ions that reach a given
point have been produced at the coordinate origin; con-
sequently, the actual hydrodynamic flow velocity
obtained from the kinetic equation is lower than that
calculated from Bernoulli integral (42). In the hydrody-
namic approximation, this effect could be taken into
account by introducing the ion temperature, which,
however, would depend on the properties of the flow
along the entire streamline. Nevertheless, the fact that
the flow velocity is lower than that calculated from for-
mula (42) can be accounted for phenomenologically by
introducing the effective ionization-related ion colli-
sion frequency. In particular, the one-dimensional solu-
tions with ζ = 0.602, 1.0, and 1.1 are close to the corre-
sponding numerical solutions to the one-dimensional
ion kinetic equation [4] for a planar, a cylindrical, and
a spherical positive discharge column, respectively. An
increase in ζ with increasing dimensionality of the
problem is attributed to the fact that, in cylindrical and
spherical geometries, the number of slow ions is larger
than in planar geometry.
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Fig. 4. Electron density distributions in discharges in (a) a planar and (b–f) a cylindrical chamber for ζ = (a) 0.6, (b–d) 1.1, (e) 10,
and (f) 100 and α2 = (a, c, e, f) 2.0 and (b, d) 1.1. The curves forming the surfaces are contours of constant velocity modulus W and
constant velocity direction (or, equivalently, constant angle θ).
9. CONCLUSIONS

We have constructed spatial distributions of the
plasma density and the velocity of the plasma flow to
the wall in a positive column of a gas discharge in the
diffusive regime with allowance for ion inertia for sev-
eral different configurations of the plasma boundary.
We have calculated the ionization frequency in the dis-
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charge plasma as a function of the geometric parame-
ters of the discharge. We have shown that, for potential
flows, Bohm’s criterion is satisfied for the flow veloc-
ity component normal to the plasma boundary. The
total plasma velocity at the plasma boundary can
exceed the ion acoustic velocity and can be equal to it
only when the flow velocity vector is perpendicular to
the boundary.

REFERENCES
1. I. Langmuir and L. Tonks, Phys. Rev. 34, 876 (1929).
2. V. L. Granovskiœ, Electric Current in a Gas: Steady-

State Current (Nauka, Moscow, 1971).
3. B. M. Smirnov, Physics of Weakly Ionized Gases

(Nauka, Moscow, 1978).
4. S. A. Dvinin, V. A. Dovzhenko, and A. A. Kuzovnikov,

Fiz. Plazmy 25, 957 (1999) [Plasma Phys. Rep. 25, 882
(1999)].
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
5. S. A. Dvinin, V. A. Dovzhenko, and A. A. Kuzovnikov,
Fiz. Plazmy 26, 179 (2000) [Plasma Phys. Rep. 26, 164
(2000)].

6. W. Schottky, Z. Phys. 25, 635 (1924).

7. K. B. Persson, Phys. Fluids 5, 1625 (1962).

8. D. Bohm, in The Characteristics of Electrical Dis-
charges in Magnetic Fields, Ed. by A. Guthry and
R. K. Wakerling (MacGraw-Hill, New York, 1949),
Ch. 3, p. 77.

9. K.-U. Riemann, J. Phys. D 24, 493 (1991).

10. L. V. Ovsyannikov, Course of Basic Gas Gynamics
(Nauka, Moscow, 1981).

11. G. G. Chernyœ, Gas Dynamics (Nauka, Moscow, 1988).

12. L. D. Landau and E. M. Lifshitz, Fluid Mechanics
(Nauka, Moscow, 1986; Pergamon Press, Oxford, 1987).

Translated by O.E. Khadin



  

Plasma Physics Reports, Vol. 30, No. 12, 2004, pp. 1052–1060. Translated from Fizika Plazmy, Vol. 30, No. 12, 2004, pp. 1130–1138.
Original Russian Text Copyright © 2004 by Dem’yanov, Lo.

                  

LOW-TEMPERATURE
PLASMA

               
Experimental and Theoretical Studies 
of the Optical and Electrical Characteristics 

of a High-Pressure Pulsed Discharge in Argon
A. V. Dem’yanov* and D. Lo**

*Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow oblast, 142190 Russia
**China University, Hong Kong, China

Received March 17, 2004; in final form, April 6, 2004

Abstract—The optical and electrical characteristics of pulsed discharges in pure Ar at pressures of up to
7 atm, at which the discharge becomes unstable, are studied in a simple experimental device with automatic
preionization. The gas temperature in the discharge is estimated from the width of the recorded emission spec-
trum. An analytical model of the vibrational relaxation of (v ) is used to better determine the constants of

the vibrational–translational relaxation of (v ) molecules in their collisions with Ar atoms. The zero-
dimensional numerical model of a pulsed discharge in Ar is modified. The experimental and calculated results
are compared in detail. Good agreement is achieved between the measured and calculated time dependences
of the electrode voltage and the intensity of spontaneous emission in the pressure range of 1–6 atm, as well as
between the measured and calculated values of the gas temperature at pressures of 3–6 atm. Preliminary
results from numerical studies of the possibility of achieving generation are discussed. © 2004 MAIK
“Nauka/Interperiodica”.
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Ar2*
1. INTRODUCTION

Progress in microelectronics is largely related to the
development of fine-scale technologies, which require
creating new efficient high-power sources of short-
wavelength radiation. Such radiation is also needed in
other applications, e.g., in medicine and chemistry. At
present, the generation of coherent high-power radia-
tion with the shortest wavelength has been achieved

with  excimer molecules (for  excimer mole-
cules, fluorescence has only been observed). In view of
the fact that, for noble gas dimers, the cross section for
stimulated emission is rather small (~10–17 cm2) and,
consequently, the gain is low, lasing is possible only at
gas pressures of higher than 20 atm. So far, generation
has been achieved only with pumping by a high-power
electron beam [1, 2]. In this connection, pulsed electric
discharges are more attractive because they can be
excited in simpler and more compact devices. However,
attempts to achieve generation in pulsed discharges
have been unsuccessful, mainly because of discharge
instabilities (whose growth rate increases with gas pres-
sure). There are few studies on the possibility of achiev-

ing the lasing effect with  molecules in electric dis-
charges [3, 4]. In [3], a system consisting of four suc-
cessively arranged pairs of knife electrodes connected
to the Blumlein line was used. The interelectrode dis-
tance in each pair was different and was chosen such
that the intensity of the output spontaneous radiation

Ar2
* Ne2

*

Ar2
*
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was maximal. By comparing the intensity of spontane-
ous emission from one pair of the electrodes with that
from four pairs, the authors of [3] estimated the small-
signal gain (0.006 cm–1) at a wavelength of 126 nm in
pure Ar at pressures of 3.5 atm.

Based on recent experimental data [2, 3, 5–7], we
modified the previous zero-dimensional model [8] for

describing the kinetics of  excimer molecules
excited by a fast electron beam or an electric discharge
[9]. The model [9] adequately describes experimental
data on the excitation by a high-power electron beam
[2, 5, 6] and works satisfactorily in the case of excita-
tion by a pulsed discharge [3]. Thus, the small-signal
gain (minus absorption) predicted by the model is
0.002 cm–1, which is about three times lower than the
estimate obtained in [3]. A comparison with the results
of [3] is difficult because of the rather complicated dis-
charge geometry and complicated electric circuit of the
power supply.

In [10], the numerical model of a pulsed discharge
in Ar [9] was used to study the emission efficiency of

 excimer molecules and the resulting gain in an
active medium. It was shown that, under actual experi-
mental conditions [3], the small-signal gain in a uni-
form discharge reaches 0.04 cm–1 at a pressure of
15 atm and room temperature, whereas it reaches
0.065 cm–1 at a pressure of 10 atm and an initial tem-
perature of 170 K. The possibility of achieving such a

Ar2
*

Ar2
*
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high gain has recently been confirmed experimentally
[4]. In that study, carried out in a device with plasma
electrodes, the electron density and the small-signal
gain (0.086 cm–1) were measured in a discharge in pure
Ar at a pressure of 15 atm.

In [10], the model was also tested at low electron-
beam currents (low excitation powers), at which the
efficiency of spontaneous emission was maximum.

This study continues investigations on the kinetics

of  excimer molecules in a pulsed discharge. In
contrast to [3, 4], we use an ordinary electrode system
and a simple electric circuit with two LC elements; this
substantially facilitates comparison between theory
and experiment. The aim of our study was to verify and
refine the model [9, 10] over a wide pressure range.
The results obtained can be used to estimate the possi-

bility of achieving generation with  excimer mol-
ecules.

2. EXPERIMENTAL SETUP AND ANALYSIS 
OF THE EXPERIMENTAL RESULTS

The experiments were carried out in pure Ar at room
temperature. The experimental device is described in
detail in [11]. Figure 1 shows the equivalent electric cir-
cuit and geometry of the discharge. 45-cm-long brass
electrodes with an Ernst profile were arranged in a
cylindrical chamber. The actual discharge length was
l = 42 cm. To provide uniform energy deposition,
90 capacitors Cp were uniformly arranged along the
electrodes on both sides of them. The charge accumu-
lated in capacitors Cc was transferred to each of capac-
itors Cp through a spark gap. The UV radiation of spark
discharges generated before the main discharge pro-
vided the uniform preionization of the discharge gap by
the instant of breakdown. This is why such a discharge
chamber design is usually referred to as an electric-dis-
charge system with automatic preionization. In these
experiments, the total capacitances of our TDK UHV-
10A-50 capacitors were Cc = 52.1 nF and Cp = 45.5 nF.
The interelectrode distance was d = 5 mm. The device
operated reliably at gas pressures of up to 10 atm.

Time-integrated (over an observational time of

1 ms) emission spectra of  were measured with a
VUV diode array detector, whereas the time evolution
of the spontaneous emission was recorded with a pho-
tomultiplier and a digital oscilloscope.

The cavity consisted of two plane MgF2 mirrors
with reflection coefficients of 80% at a wavelength of
126 nm. Attempts to achieve generation were unsuc-
cessful, apparently because of the low Q factor of the
optical cavity. Unfortunately, higher quality mirrors
were not available in these experiments. In our experi-
ments, we measured the voltage at the laser head, the
emission spectra, and the spontaneous emission inten-
sity at pressures from 1 to 7 atm and charging voltages

Ar2
*

Ar2
*

Ar2
*
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Uc from 10 to 34 kV. Up to pressures of 6 atm, the dis-
charge was uniform, and instabilities were observed
only at a pressure of 7 atm. To compare experimental
and calculated results, we chose typical experimental
data for pressures of P = 1, 3, and 6 atm. The width of
the discharge was estimated from its glow and turned
out to be w = 0.3 cm within the entire pressure range
under study.

2.1. Emission Spectra

Figure 2 shows the emission spectra at a gas pres-
sure of 3 atm and different charging voltages. The spec-
tra at pressures of 1 and 6 atm are qualitatively the
same. An analysis of the spectra measured at different
pressures shows that, unlike in Xe [11], the intensity of
the first continuum in Ar (λ = 107–115 nm) is low in
comparison to the intensity of the second continuum
(λ = 120–135 nm) over the pressure range under study
(P = 1–6 atm). This indicates that the relaxation rate of

the high vibrational levels of (v ) at these pressures
is higher and the constants of the vibrational–transla-

Ar2
*
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Fig. 1. Equivalent electric circuit and geometry of the dis-
charge.
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Fig. 2. Measured time-integrated emission spectra for P =
3 atm.
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tional relaxation in Ar are much higher than those
in Xe.

It is well known that the spectral width of the second

continuum of the  excimer increases with temper-
ature [12, 13]. Therefore, this dependence can be used
to estimate the gas temperature. The experimental data
on the full width at half maximum (FWHM) of the sec-

ond continuum of , ∆λ, are available only for tem-
peratures from 30 K (∆λ = 7.2 nm) to 300 K (∆λ =
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Fig. 3. Comparison of the experimental (lines with sym-
bols) and calculated waveforms of the electrode voltage for
P = (a) 1, (b) 3, and (c) 6 atm. For P = 1 atm, the charging
voltage is Uc = 12 kV. For P = 3 atm, the charging voltages
are Uc = 20 kV (the dashed line with squares for experiment
and the solid line for calculations) and Uc = 28 kV (the dot-
ted line with circles for experiment and the dashed-and-dot-
ted line for calculations). For P = 6 atm, the charging volt-
ages are Uc = 30 kV (the dashed line with squares for exper-
iment and the solid line for calculations) and Uc = 34 kV
(the dotted line with circles for experiment and the dashed-
and-dotted line for calculations).
8.7 nm) [12, 13]. In our experiments, the temperature
was higher and, accordingly, the spectrum was wider:
∆λ = 15.0–15.7 nm at P = 1 atm, 13.6–14.6 nm at P =
3 atm, and 12.3–13.5 nm at P = 6 atm. To estimate the
gas temperature, we used the analytical dependence of

the width of the  emission spectrum on the temper-
ature [13]. The values of the gas temperature were
found to be T = 980–1070 K for P = 1 atm at charging
voltages of Uc = 10–12 kV; T = 800 and 930 K for P =
3 atm at Uc = 20 and 28 kV, respectively; and T = 790
and 650 K for P = 6 atm at Uc = 30 and 34 kV, respec-
tively. These data will be used below (see Section 4.1)
to determine the discharge area more correctly.

2.2. Discharge Characteristics

Figure 3 shows waveforms of the electrode voltage
at gas pressures of P = 1, 3, and 6 atm and different
charging voltages (for comparison, the results of calcu-
lations that will be discussed in detail in Section 4 are
also presented). A comparison of the measured wave-
forms of the electrode voltage at P = 3 and 6 atm and
different charging voltages shows that, at P = 3 atm, the
electrode voltage increases at a progressively higher
rate as the charging voltage increases. Such behavior
can be considered “normal,” because the charging cur-
rent of capacitor Cp increases with increasing charging
voltage. Similar behavior was also observed at lower
pressures. At P = 6 atm, the situation is the opposite
(see Fig. 3c). As the charging voltage increases from 30
to 34 kV, capacitor Cp is charged more slowly. Such a
dependence may occur if the capacitor’s capacitance
decreases with increasing charging voltage. This effect
was taken into account in [14] when simulating an elec-
tric-discharge ArF excimer laser: the capacitance of the
forming line in the equivalent electric circuit was
reduced in order to achieve better agreement between
the measured and calculated waveforms of the elec-
trode voltage. In the present paper, we also take into
account the dependence of the capacitance on the
charging voltage (see Section 3 for details).

Note that, at P = 6 atm, the charging voltage of Uc =
26 kV is insufficient for the efficient breakdown of the
interelectrode gap. At the same time, the intensity of
spontaneous emission at Uc = 26 kV and P = 6 atm is
only slightly lower than at higher charging voltages and
much higher discharge powers. This confirms the con-
clusion of [10] that the efficiency of spontaneous emis-
sion is maximum at low discharge powers, when the
electron density is relatively low and, accordingly, the

quenching rate of the  excimer by electrons is low.

The measured waveforms of spontaneous emission
will be considered in Section 4.
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3. THEORETICAL MODEL

The zero-dimensional model was discussed in detail
in [9, 10]. Here, we only present a brief description of
it. In this model, the reduced electric field E/N (where
E is the electric field strength and N is the neutral parti-
cle density) or the intensity of the source of secondary
electrons (when the discharge is excited by an electron
beam) is used as an input parameter when solving the
quasi-steady Boltzmann equation in the two-term
approximation. The model takes into account electron–
ion recombination and elastic and inelastic energy
losses of electrons in their collisions with atoms and
molecules in the ground and excited states. Account is
also taken of electron–electron and superelastic colli-
sions. The rate constants of direct processes are deter-
mined from the calculated electron energy distribution
function and the cross sections for the corresponding
processes, and the rate constants of inverse processes
are found from the principle of detailed balance. The
rate constants of the processes with the participation of
electrons are used to determine the densities of the
plasma components and photons from the balance
equations that are solved simultaneously with the equa-
tions for the gas temperature and the electric circuit.
The electron density and mobility, which are found by
solving the Boltzmann equation, are used to calculate
the plasma conductivity, which is then used to find the
currents and voltages in the electric circuit and, accord-
ingly, E/N.

As compared to the model proposed previously in
[8], the model of [9, 10] also incorporates gas heating
and the vibrational relaxation of the low levels of the

 (1Σ) and  (3Σ) states. This is necessary to cor-
rectly determine the gain factor of the active medium as
the gas temperature varies.

In this paper, the model is modified as follows:
(i) The equivalent electric circuit is modified

(Fig. 1). The electric circuit equations are supple-
mented with terms describing the dependence of the
capacitor’s capacitance on the voltage.

(ii) The model incorporates equations describing
generation of radiation and the corresponding parame-
ters of the optical cavity.

(iii) The processes of vibrational–translational (VT)

relaxation of the high vibrational levels of , the
spontaneous emission from these levels, and their deex-
citation by electrons are included in order to describe
more correctly the time dependences of the output radi-
ation at high excitation powers and to study the inten-
sity ratio between the second and the first continua of

.

(iv) The model allows for time variations in the dis-
charge area in order to model the contraction effect.

As in [9, 10], the parameters of the equivalent elec-
tric circuit (the resistances and inductances) were cho-
sen so as to achieve the best agreement with the exper-
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imental results for P = 1–6 atm. These parameters were
chosen to be Lc = 140 nH, Lp = 2.6 nH, Rc = 0.4 Ω , and
Rp = 0.

Let us consider the basic modifications in more
detail.

3.1. Dependence of the Capacitance 
on the Applied Voltage

As was noted above (see also Fig. 3c), at P = 6 atm,
the growth rate of the voltage at capacitor Cp decreases
as the applied voltage increases. Such “atypical” behav-
ior is possible if the capacitor’s capacitance decreases
with increasing applied voltage. According to the TDK
certificate data, the capacitance of the UHV-10A-50
capacitors decreases by ~10% as the dc voltage
increases to 50 kV. We suppose that the decrease in the
capacitance may be even greater for a pulsed voltage. In
our calculations, we used the dependence C(V/U0)/C0 =
1/(1 + 2m/(m – 1)*(V/U0)m) with m = 5 [14]. To study the
influence of this effect in more detail, we also per-
formed calculations with m = 10 and 15. The increase
in m leads to a more rapid decrease in the capacitance
with increasing applied voltage (see Fig. 4a). Figure 4b
shows the dependence of the relative charge of the
capacitor on the applied voltage. It can be seen that, as
the voltage increases, the charge first increases, reaches
its maximum at V = U0/2, and then decreases. The best
agreement between the waveforms of the calculated
and measured voltages (see Fig. 3) was achieved for
U0 = 60 kV. In this case, the time dependences of the
discharge voltage were affected only slightly by the
parameter m, which determines the rate at which the
capacitance decreases with increasing applied voltage
(calculations were performed for m = 5, 10, and 15).
Thus, at voltages above U0/2 (in our case, 30 kV), the
capacitor charge decreases because of a decrease in the
capacitance. However, the same capacitor charge can
also be at a lower voltage. The descending segment of
the voltage dependence of the capacitor charge corre-
sponds to an unstable state. When the switch is closed,
the voltage at capacitor Cc decreases sharply to a value
corresponding to the ascending segment of the depen-
dence. Thus, for an initial voltage of 34 kV, the voltage
at capacitor Cc after closing the switch will be 24.6,
22.8, and 21.6 kV for m = 5, 10, and 15, respectively.
The results of calculations for Uc = 34 and 24.5 with
m = 5 are very close to one another. Clearly, it makes no
sense to increase the initial voltage above the value at
which the capacitor charge begins to decrease. There-
fore, in designing an actual device, it is necessary to
take into account that the capacitor’s capacitance may
depend on the pulse voltage. In our experiments, this
effect was observed only at P = 6 atm and was negligi-
bly small at P = 1 and 3 atm.
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3.2. Vibrational Relaxation of (v )

In experiments carried out at pressures in the range
1–6 atm, the intensity of the first continuum (the emis-

sion from the higher lying (v ) vibrational states
with wavelengths of 107–115 nm) was very low, com-
pared to the intensity of the second continuum (the

emission from the low (v ) vibrational states with
wavelengths of 120–135 nm). At the same time, one
can estimate the VT relaxation constants of the vibra-
tional states of excimer molecules from the pressure
dependence of the intensity ratio between the second
and the first continua. For example, in [11], the constant
of VT relaxation of the (v ) vibrational states in
collisions with He atoms was determined. In [12], the
pressure dependence of the intensity ratio between the

second and the first continua of  was measured dur-
ing the supersonic expansion of a gas at pressures
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Fig. 4. (a) Relative capacitance C(V/U0)/C0 and (b) relative
charge Q/(C0U0) as functions of the relative charging volt-
age V/U0. The dashed, dotted, and solid lines show the cal-
culated results for m = 5, 10, and 15, respectively.

34 kV
below 40 torr. The authors of [12] also proposed a the-
oretical model for calculating the populations of the

(v ) vibrational states and the intensity ratio
between the second and the first continua. To estimate

the constants of VT relaxation of the (v ) vibra-
tional states in collisions with Ar atoms, the authors of
[12] used theoretical estimates. Unfortunately, the
model proposed in that paper failed to explain the satu-
ration of the intensity ratio of spontaneous emission at
higher pressures.

Here, we propose a simple model of vibrational
relaxation and emission that can explain the depen-
dence observed in [12]. Figure 5 illustrates the kinetic
model used in our calculations. In contrast to [12], we
assume that not only the emission from the 3Σ term but
also the emission from the high vibrational levels of the
1Σ term contribute to the first continuum. At the same
time, the emission from the low vibrational levels of the
3Σ term is predominant in the second continuum,
because, at pressures of P < 40 torr [12], vibrational
relaxation is slow in comparison to the radiative deex-
citation of the high vibrational levels of the 1Σ term.
The ratio between the excitation rates of the high vibra-
tional levels of the 1Σ and 3Σ terms is equal to the ratio
of the constants of the three-body processes

(1)

(2)

and is equal to ~0.12.
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Ar* + Ar + Ar Ar2(1Σ) + Ar,

K = 1.5 × 10–33 cm6/s  [15],

Ar* + Ar + Ar Ar2(3Σ) + Ar,

K = 1.3 × 10–32 cm6/s  [15],
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Fig. 5. Diagram illustrating the processes of the excitation,
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We assume that the reaction of single-quantum
relaxation

(v ) + Ar  (v  – 1) + Ar,  KVT (3)

is predominant. For the VT relaxation constants KVT,
we use the anharmonic oscillator approximation KVT =
K10v exp(δVT(v  – 1)) [16]. The parameters K10 and δVT
are chosen so that to provide the best agreement with
the experimental data. We also assume that, in pro-
cesses (1) and (2), excimer molecules are formed at the
25th vibrational level. Taking into account the observa-
tional spectral ranges for the second and first continua
in [12] (124–130 and 108–110 nm, respectively), we
assume that the emission from the 19th to 25th levels
contributes to the first continuum, whereas the emission
from the zeroth to fourth levels contributes to the sec-
ond continuum. The best agreement was achieved for
δVT = 0.15 and K10 = 7.8 × 10–13 cm3/s. Figure 6 com-
pares the calculated and measured [12] pressure depen-
dences of the intensity ratio between the second and the
first continua. The calculated dependence from [12] is
also shown in Fig. 6. Note that it follows from the data

on the 3Σ term of , the data on the –Ar interac-
tion [12], and the estimates in [16] that δVT = 0.2–0.28.

In our numerical model, which takes into account

the refined data on the VT relaxation of (v ) in col-
lisions with Ar atoms, the vibrational kinetics of the
Ar2(3Σ) and Ar2(1Σ) terms is described by the following
processes:

Ar2(3Σ, h) + e, Ar  Ar2(1Σ, h) + e, Ar, (4)

Ar2(3Σ, l) + e, Ar  Ar2(1Σ, l) + e, Ar, (5)

(6)

(7)

(8)

(9)

Ar2(3Σ, h)  2Ar + hνI, 4.8 × 106 s–1, (10)

Ar2(3Σ, l)  2Ar + hνII, 3.4 × 105 s–1, (11)

Ar2(1Σ, h)  2Ar + hνI, 3.7 × 109 s–1, (12)

Ar2(1Σ, l)  2Ar + hνII, 2.6 × 108 s–1. (13)
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Ar2(3Σ, h) + Ar  Ar2(3Σ, l) + Ar,

2.7 × 10–10 cm3/s,

Ar2(1Σ, h) + Ar  Ar2(1Σ, l) + Ar,

2.7 × 10–10 cm3/s,

Ar2(3Σ, l) + Ar  Ar2(3Σ, v  = 0) + Ar,

7.8 × 10–13 cm3/s,

Ar2(1Σ, l) + Ar  Ar2(1Σ, v  = 0) + Ar,

7.8 × 10–13 cm3/s,
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heating.

Note that the refined data on VT relaxation do not
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imental results of our previous studies, because, at high
pressures [9, 10], a Boltzmann distribution that depends
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ulations of the low vibrational levels. However, even at
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4. COMPARISON TO THE EXPERIMENTAL DATA

The choice of the equivalent electric circuit and its
parameters, as well as the inclusion of the dependence
of the capacitor’s capacitance on the applied voltage in
our model, made it possible to achieve good agreement
between the measured and calculated waveforms of the
electrode voltage (Fig. 2) over the range of pressures
and voltages under study. The calculations show that
the waveforms of the voltage depend only slightly on
the discharge area, whereas the waveforms of the inten-
sity of spontaneous emission vary significantly. Under
our experimental conditions, the dominant process is

the dissociation of in the high vibrational states in
collisions with electrons [9, 10]. At the same time, the
electron density is determined by the discharge current
and discharge area. The discharge current is specified
by the electric circuit and the charging voltage. There-
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Fig. 7. Comparison of the experimental (dashed lines) and
calculated (solid lines) waveforms of the spontaneous emis-
sion intensity for (a) P = 1 atm and Uc = 12 kV, (b) P = 3 atm
and Uc = 20 kV, and (c) P = 6 atm and Uc = 30 kV. In plot
(c), the dashed and solid lines correspond to calculations
without and with allowance for the instrument function of
the photomultiplier, respectively.
      

fore, the electron density depends mainly on the dis-
charge area. It is well known [14, 17] that the width of
the current channel decreases during a discharge due to
contraction. The contraction rate is determined, first of
all, by the electrode profile and also by the preioniza-
tion inhomogeneity and the dependence of the ioniza-
tion rate on E/N. To study the influence of contraction,
we introduced the time dependence of the discharge
width into our model. The calculations show that con-
traction significantly influences the intensity of sponta-
neous emission, but the time behavior of spontaneous
emission remains almost the same. To study the influ-
ence of contraction in detail, we plan to use a one-
dimensional model of a discharge in Ar that is similar
to the model used in [14].

4.1. Gas Heating and the Width
of the Current Channel

It is clear that, in the zero-dimensional model, the
discharge area is an external parameter. This parameter
was determined from observations of the discharge
glow. However, it is well known [14, 17] that the cur-
rent channel is somewhat narrower than the glow
region. Therefore, it was important to verify the chosen
value of the discharge area. To do this, we used the data
on the gas temperature (see Section 2). Indeed, the
increase in the gas temperature depends of the dis-
charge power and, consequently, on the discharge cur-
rent density, which, in turn, depends on the discharge
area (the length of the discharge is fixed). Note that the
discharge voltage is determined by the plasma pro-
cesses, depends slightly on the discharge current, and
increases almost linearly with gas pressure. In calcula-
tions with a given discharge width of w = 0.3 cm, the
gas was heated to the following temperatures: T =
850 K for P = 1 atm at Uc = 12 kV; T = 820 and 950 K
for P = 3 atm at Uc = 20 and 28 kV, respectively; and
T = 830 and 740 K for P = 6 atm at Uc = 30 and 34 kV,
respectively. A comparison of the calculated results with
the experimental data on gas heating (see Section 2)
shows that, at P = 3 and 6 atm, the calculated and mea-
sured gas temperatures are close to one another. Note
that, at P = 6 atm, the higher the charging voltage, the
lower the gas temperature. This confirms our conclu-
sion that the capacitor’s capacitance depends on the
charging voltage. In fact, the higher the voltage, the
lower the energy stored in the capacitor. At a pressure
of P = 1 atm, the calculated gas temperature was some-
what lower than the measured one. As was noted above,
the temperature was estimated by using the theoretical
dependence of the spectrum width on the temperature,

assuming that the populations of the (v ) vibra-
tional levels obey a Boltzmann distribution. This
assumption is valid at high pressures; however, at
1 atm, the distribution may deviate from a Boltzmann
one. Using the theoretical model described in Section 3,
we calculated the distributions for P = 1, 3, and 6 atm.
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The model included the mixing of the triplet and sin-

glet states of  in collisions with electrons. Indeed,
it turned out that, at pressures of P = 3 and 6 atm, the
distribution over low vibrational levels was close to a
Boltzmann one with the corresponding gas tempera-
ture, whereas at P = 1 atm, the populations of the lower
lying levels (v  = 1–5) were substantially higher than
the equilibrium populations; this resulted in the broad-

ening of the  emission spectrum at this pressure.
The effective vibrational temperature of the first level

 (v  = 1) was equal to 1000 K for an electron density
of ~2 × 1014 cm–3. We recall that, in our experiments,
we measured the time-integrated spectrum. The main
contribution to the discharge glow comes from times
larger than ~1100 ns, when the electron density
decreases to ~3 × 1014 cm–3 and lower.

4.2. Spontaneous Radiation

Figure 7 compares the measured and calculated
waveforms of the spontaneous emission intensity for
different pressures. It can be seen that the calculated
waveforms agree well with the measured ones. Note
that, in the calculations, short period-oscillations at P =
1 and 3 atm are damped more rapidly than in the exper-
iment. With the equivalent electric circuit used in our
model, we could not avoid this discrepancy. It seems
that a more complicated equivalent circuit should be
used to describe the actual circuit. We also note that the
amplitude of the calculated oscillations in the spontane-
ous emission intensity at P = 3 and 6 atm are larger than
in the experiment because of an increase in the rates of
the processes with the participation of Ar in comparison
to those at lower pressures. This discrepancy was
avoided by taking into account the instrument function
of the photomultiplier (∆t = 20 ns) used to measure
spontaneous emission. For P = 1 and 3 atm, this factor
is less important. For this reason, Figs. 7a and 7b show
the calculated results without smoothing by the instru-
ment function, whereas Fig. 7c (P = 6 atm) shows the
calculated results with and without smoothing.

5. CONCLUSIONS
The optical and electrical characteristics of a pulsed

electric discharge in pure Ar have been studied at pres-
sures of up to 7 atm, at which the discharge becomes
unstable. Attempts to achieve generation have been
unsuccessful because of the small Q factor of the opti-
cal cavity, as is evident from a comparison with the
results of calculations. The gas temperature in the dis-
charge has been estimated from measurements of the
spectrum width. The pressure dependence of the inten-
sity ratio between the second and the first continua has
been used to estimate the constants of the vibrational–

translational relaxation of (v ) molecules in their
collisions with Ar atoms. The modified zero-dimen-

Ar2
*

Ar2
*

Ar2
*

Ar2
*
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sional numerical model of a pulsed discharge in Ar is
found to satisfactorily describe the experimental results
over the entire range of pressures and charging voltages
under study and can be used to analyze the possibility
of achieving generation.

Preliminary results [18] show that, for the discharge
geometry and cavity parameters used in our study, las-
ing in a uniform discharge is achievable at pressures of
≥10 atm. In this case, the lower the pressure, the nar-
rower the range of the deposited energies at which gen-
eration is possible. As the pressure increases, the
admissible range of the deposited energies extends and
the output energy increases.

The key problem is that of providing the stability of
a high-pressure pulsed discharge. Encouraging results
were obtained in [4], where a uniform discharge was
obtained at pressures of 10–20 atm, but in a device
with plasma electrodes. We plan to study the influence
of the discharge contraction in detail by using a one-
dimensional model of a discharge in Ar, which is sim-
ilar to [14].

Another important problem is the choice of an effi-
cient system for discharge power supply. The large dif-
ference between the voltages that are required to ini-
tiate and sustain discharges in noble gases gives no way
of achieving an aperiodic regime of pumping the active
medium. The energy is deposited during several peri-
ods of current oscillations in the electric circuit. How-
ever, the discharge usually becomes unstable after the
first oscillation; hence, the energy of subsequent oscil-
lations is lost.
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Abstract—A self-consistent kinetic model is used to describe the effect of stratification of the positive column
of a plane and a spherical gas discharge in argon at low pressure. The model is based on solving the Boltzmann
kinetic equation for the electron energy distribution function, the time-dependent ion continuity equation, and
Poisson’s equation for the self-consistent electric field. The spatial distributions of the electron and ion densities
and of the electric field in the positive column of a stratified discharge are determined. The kinetic mechanism
for discharge stratification in noble gases at low pressures is explained in terms of the proposed model. The
model makes it possible to describe the moving strata and to confirm the validity of the experimentally obtained
dependence of the radii of the strata on their numbers in a spherical discharge. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

It is well known that, in most cases, the plasma in
the positive column (PC) of a gas discharge is unstable
[1–4]. Various instabilities lead to stratification of the
PC into alternating dark and bright regions (strata).
Although discharge stratification has received much
experimental and theoretical study, it is not well under-
stood at present and requires further investigation.

Experiments with spherical stratified glow dis-
charges between a small-size central anode and a sur-
rounding large-area spherical cathode were carried out
in [5, 6]. Spherical discharges differ from conventional
glow discharges in tubes in three important respects:
the formation of a spherical electron flow converging
toward the central anode, the absence of transverse dif-
fusive fluxes of charged particles, and no loss of
charged particles at the walls. Optical measurements
showed that a volume discharge initiated by means of a
pointlike anode exhibits high spherical symmetry and
appears to be a unique object in which all the parame-
ters depend only on the distance from the anode cen-
ter—a property that renders its modeling in one-dimen-
sional geometry possible.

For many years, the best-developed models of the
stratification effect came from the hydrodynamic and
kinetic theories of discharge striations (see, e.g., review
paper [3]). Not long ago, however, Sigeneger and Win-
kler [7] advanced a new method for solving the nonlo-
cal Boltzmann kinetic equation for the electron energy
distribution function (EEDF). This new method pro-
vides fairly reliable calculations of the influence of the
electric field nonuniformity on the formation of the
electron energy distribution and on its relaxation in the
region where the electric field is uniform. Based on
1063-780X/04/3012- $26.00 © 21061
Sigeneger and Winkler’s method, Golubovskii et al. [8,
9] solved the Boltzmann equation for the EEDF for
both a prescribed sinusoidal electric field and an exper-
imentally measured electric field. By correctly choos-
ing the spatial period of the prescribed field, they deter-
mined the spatial scale on which the electron energy
relaxes and described a kinetic mechanism for the for-
mation of periodic distributions of the macroscopic
parameters of the plasma electrons. In a recent paper,
Golubovskii et al. [10] proposed a self-consistent
kinetic model in which the distribution function of all
the electrons is described with the help of the Boltz-
mann equation in the two-term approximation and the
ions and metastable particles are treated in terms of
hydrodynamic balance equations. In [10], a study was
made of discharges at moderated pressures under the
assumption that the PC is electrically neutral, the elec-
tric field being calculated without using Poisson’s
equation.

In recent years, there has been increased interest in
the so-called hybrid models [11, 12], in which high-
energy electrons are analyzed by means of the Monte
Carlo method while slow electrons, ions, and other
heavy particles (metastables) are described by the con-
ventional hydrodynamic equations. This approach
makes it possible to increase the reliability of numerical
simulations without substantially increasing the
amount of computer time. In this way, the electric field
in the plasma is determined by the distribution of
charges and is self-consistently calculated from Pois-
son’s equation. Hybrid models have been widely used
to describe the effects occurring near the cathode and
discharges of complex geometric shapes, but never to
describe the stratification effect.
004 MAIK “Nauka/Interperiodica”
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In this paper, the plasma in the PC of a plane and a
spherical glow discharge is studied by simultaneously
solving the Boltzmann kinetic equation for the EEDF,
the time-dependent ion continuity equation, and Pois-
son’s equation for the self-consistent electric field. We
believe that, with this self-consistent kinetic approach,
it is possible to give a reliable description of the strati-
fication of low-pressure discharges in noble gases.

2. MODEL

We consider the PC of a plane and a spherical dis-
charge in argon at low pressure (0.1 < p < 2 torr). For a
plane discharge in a tube, we ignore the influence of the
boundary effects and assume that the electric field dis-
tribution is axisymmetric. As has already been men-
tioned, the parameters of a spherical discharge depend
only on the radial coordinate r. Hence, the problems for
a spherical and a plane discharge are both treated in a
one-dimensional formulation. In what follows, all
expressions in spherical and plane geometry will be
written in the same form, the spatial variable being the
coordinate r.

The electron flow entering the region of a spatially
periodic self-consistent electric field in the PC, as well
as the relaxation of the flow as it converges in this field
toward the anode, is described by the Boltzmann
kinetic equation for the electron velocity distribution
function f(r, v ):

, (1)

where Sel is the elastic collision integral,  is the
inelastic collision integral, and –e and m are the charge
and mass of an electron. Since the characteristic time
scale on which the plasma relaxes to a certain state is
governed by the velocity of the slow ions, and since this
time scale is long enough for the distribution of the
electrons (which are faster than the ions) to follow the
ion distribution, the Boltzmann equation is taken to be
time-independent.

The direction of the electric field is chosen to be
such that the electrons are accelerated in the positive
direction along the coordinate r. In the expansion of the
EEDF in Legendre polynomials, we take into account
only the first two terms:

(2)

where U = mv 2/2 is the electron kinetic energy and
f0(U, r) and fr(U, r) are the isotropic and anisotropic
parts of the EEDF, respectively.

We substitute expansion (2) into Eq. (1), multiply
the resulting equation by unity and by µ = v r/v, and
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integrate over 2πdµ to arrive at the following set of two
equations (for more details, see [7]):

(3)

(4)

where n = 0 and 2 for plane and spherical geometry,
respectively, and Ng is the density of neutral particles of
mass M. The third term in Eq. (3) incorporates the
energy loss in elastic collisions, which are character-
ized by the scattering cross sections Qd(U). The fourth
term accounts for the energy loss in inelastic collisions;

here, (U) is the cross section for the kth inelastic
process. The coefficient in the third term in Eq. (4) is

equal to H(U) = NgQd(U) + . The last
(fifth) term in Eq. (3) describes the production of an
electron with the kinetic energy U in the kth inelastic
collision in which an electron with the initial energy
U + Uk loses an amount of energy equal to Uk.

If we switch from the kinetic energy U to the total
electron energy ε = U – eW(r), where W(r) is the radial
profile of the electric potential in the PC, then Eqs. (3)
and (4) become much simpler. Eliminating the aniso-
tropic part of the EEDF in the set of equations yields the
following equation for the isotropic part of the distribu-
tion function:

(5)

The anisotropic and isotropic parts of the EEDF are
related by the expression

(6)
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Figure 1 shows the computation region, i.e., the
region over which Eq. (5) was solved in the (ε, r) coor-
dinate plane for an arbitrary periodic electric field. The
chosen radial profile of the potential energy, –eW(r),
determines the lower boundary of the computation
region (curve C). The left boundary of the computation
region corresponds to the cathode-side boundary of the
PC and is denoted by A. At the entrance to the PC, the
anisotropic part of the EEDF was given by a Gaussian
function,

which models an electron beam. In simulations, we var-
ied the mean electron energy Um and the energy spread
∆U of the beam and found that the variations affected
the solution only slightly and only in a narrow region
near boundary A. The maximum total electron energy
ε∞ was chosen in such a way that the distribution func-
tion of the electrons with energy ε∞ vanishes every-
where. Thus, the condition at the upper boundary B of
the computation region is f0(ε ≥ ε∞, r) = 0. At the lower
boundary C, the electron kinetic energy is zero; hence,
the anisotropic part fr of the distribution function is also
zero. The condition for the isotropic part at this bound-
ary can be obtained from Eq. (6):

For a plane discharge, the parameters of the computa-
tion region were as follows: rc = 0 is the position of the
cathode-side boundary of the PC and ra = 20 cm is the
position of the anode-side boundary of the PC. For a
spherical discharge, the radius of the cathode-side
boundary of the PC is rc = 11 cm, the anode radius
being ra = 1 cm. The boundary condition at the anode
corresponds to full absorption of the electrons by the
anode surface (boundary D):

Equation (5) was discretized by a scheme of second-
order accuracy similar to the Crank–Nicholson scheme
and was solved by a procedure analogous to that
described in [7]. In our simulations, in contrast to [7],
the points of the numerical mesh were spaced uni-
formly along the energy axis while the mesh spacing in
the radial direction was nonuniform and depended on
the potential distribution. Such a mesh made it possible
to reduce the error in calculating the balance of parti-
cles and energies to several hundredths of a percent,
even for highly nonuniform electric fields. It also facil-
itates the integration of all the macroscopic parameters
over energy because there is no need for the computa-
tion region in the (ε, r) coordinate plane to be addition-
ally readjusted to that in the (U, r) coordinate plane.
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Parabolic equation (5) in finite differences was
solved numerically by the sweep method over the coor-
dinate r for each value of the total energy ε, from its
highest value to a zero value. In this way, for a given
value of the energy ε, the last term in Eq. (5) was calcu-
lated from the distribution functions already computed
for higher energy values.

The cross sections for electron scattering in argon
were taken from the database in [13]. The gas atoms
were assumed to be immobile, and collisions of elec-
trons with ions and metastable particles were ignored.
All the processes by which the electrons lose energy
were divided into four groups, three of which are char-
acterized by different excitation thresholds, 11.3, 11.7,
and 12.9 eV, and one includes ionizing collisions, the
ionization threshold being 15.7 eV. All ionizing colli-
sions were regarded merely as energy-loss processes,
which do not change the number of electrons.

Having found the spatial distribution of the EEDF
from Boltzmann equation (5), we can determine some
macroscopic parameters of the plasma electrons by
integrating the distribution function over energies. We
thus obtain the following spatial profiles of the electron
density and the electron flux density in the PC:

(7)

(8)
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Fig. 1. Computation region and boundary conditions for the
Boltzmann equation in the (ε, r) coordinate plane.
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The distributions of the electric field and potential
that were used to calculate the total electron energy in
Eq. (5) were determined as follows: We consider the
nonstationary ion transport equation in the drift approx-
imation:

(9)

where µi is the ion mobility in argon. The electron den-
sity distribution was assumed to be known and was
determined from formula (7). The right-hand side of
Eq. (9) was assumed to be zero. Preliminary computa-
tions showed that, in the parameter range under consid-
eration (for a reduced electric field of about E/p ~
1 V/cm/torr), the number of electrons changes only
slightly in the course of impact ionization, which plays
an important role only at E/p > 10 V/(cm torr).

The electric field Ö satisfies Poisson’s equation

(10)

For a plane discharge (n = 0), the solutions for the ion
density and electric field are sought in the form of run-

ning waves, ni = ni(ξ =  + r) and E = E(ξ =  + r),

where we have introduced the new variable ξ =  + r.

The constant  = αµiE0 is on the order of the ion drift
velocity; here, E0 is the mean electric field in the PC
and the absolute value of the parameter |α | is about
unity. Inserting these expressions into Eq. (9), we
obtain

(11)

Integration of Eq. (11) over ξ yields

(12)

The constant on the right-hand side of Eq. (12) was
chosen to be the value of ni(ξ)(α + E(ξ)/E0) at the cath-
ode-side boundary of the PC at t = 0: const = ni(rc)(α +
1). The ion density at this boundary was assumed to be
equal to the electron density. Poisson’s equation and
Eq. (12) yield the equation

(13)

Equation (13) was solved by the iterative method.
Since the coefficient of the field gradient on the right-
hand side of Eq. (13) is small, only a few (about three)
iterations were needed.
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Similar manipulations can be carried out for a spher-
ical discharge (n = 2). We introduce the dimensionless
ion density (t, r) and dimensionless electric field

(t, r) through the relationships

(14)

(15)

where  and E0 are the characteristic values of the ion
density and electric field at the cathode-side boundary
r = rc of the PC. The functions (t, r) and (t, r)
describe spherical waves and depend on a single vari-
able ξ:

(16)

where the function ϕ(r) is chosen so as to reduce the
equation of ion motion (9) to an equation in only one
variable ξ. Hence, the functions ni(t, r) and E(t, r)
describe waves whose amplitudes vary over time and

whose propagation velocity v st ~ (rc/r)2 – β depends
on r.

Substituting expressions (14) and (15) for the ion
density and electric field distributions into Eq. (9), we
obtain

(17)

Equation (17) for the dimensionless ion density and
dimensionless electric field coincides with Eq. (11),
which refers to a plane discharge. Integrating Eq. (17)
yields the following relationship between the ion den-
sity and the electric field:

(18)

Equation (18) and Poisson’s equation were solved
together by iteration, just as was done for a plane dis-
charge. The calculated electric field profile E(r, t = 0)
was substituted into Eq. (5) to compute the electron dis-
tribution function and the new values of the electron
density distribution in the iterative procedure.

The first approximation to the distribution function

(r, U) was obtained by solving parabolic equation (5)
with the corresponding boundary conditions for an
arbitrary electric field E0(r). The initial electric field
distribution was taken to be uniform. At each iteration
step, a new electric field distribution E(r, t) was com-
puted from the already calculated electron density dis-
tribution (7) by means of the procedure described
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Fig. 2. Distributions of the isotropic part of the EEDF in the (r, U) plane for (a) a plane discharge (the cathode-side boundary of the
PC is at rc = 0 cm, and the anode-side boundary is at ra = 20 cm) and (b) a spherical discharge for β = 1 (ra = 1 cm, rc = 11 cm).
above. The procedure was repeated until the solutions
converged to final distributions satisfying the Boltz-
mann equation, the equation of ion motion, and Pois-
son’s equation. In general, the number of iterations
required to achieve the convergence was about ten. The
final distribution of the axial electric field was found to
be independent of the choice of the initial electric field
distribution E0(r).

3. RESULTS

The iterative solution described above yielded the
spatial evolutions of the EEDF in a plane (Fig. 2a) and
a spherical (Fig. 2b) discharge. Figures 2a and 2b show
how the logarithm of the isotropic part of the EEDF
(plotted on the vertical axis) depends on the U and r
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
coordinates. We can see that, as the distance from the
anode decreases, the hump in the EEDF is periodically
displaced toward higher kinetic energies. When the
hump reaches the threshold for the excitation of the first
energy levels, it appears in the low-energy range of the
EEDF. Then, this process repeats over and over again.

The model constructed here gives different solutions
for different ranges of the parameter α. For α > 0, the
electric field becomes negative in some regions. The
proposed model cannot be applied to this case because
of the appearance of regions with potential wells that
trap the electrons. Initially, when we did not switch to a
moving frame of reference, we found that, in the course
of numerical solution, the electric field distribution
always lagged behind the electron density distribution
in phase. Passing over to a moving reference frame
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allowed us to appropriately adjust the electric field dis-
tribution to the electron density distribution: in the
range –1 < α < –0.25, the iterative process converged
and the amplitudes of the final distributions of all the
plasma parameters became larger. The strata were
observed to move from the cathode toward the anode.
In the range –0.25 < α < 0 (the value α = 0 corresponds
to standing strata), the iterative process diverged. For
α < –1, a region appeared in which the electric field dis-
tribution was nonphysical (with wells in place of
humps). The solutions that will be presented below
were obtained for a definite time and for the value α =
–0.5, at which the amplitude of all the distributions
remained large and the iterative process converged
fairly rapidly.

Figure 3 illustrates the distributions of the self-con-
sistent electric field, electron density, and space charge
in a plane discharge. We can see that the electric field
possesses a nonsinusoidal structure with very pro-
nounced periodic peaks. The electron density is similar
in structure to the electric field, but the electron density
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Fig. 3. Distributions of the electric field and electron density
and distribution of the difference between the ion and elec-
tron densities in a plane stratified discharge in argon at a
pressure of p = 0.5 torr for α = –0.5.
variations are in antiphase with the electric field varia-
tions. In our model, the distribution of the electrons dif-
fers from that of the ions. The deviation from the charge
neutrality in the PC of a plane discharge is on the order
of |∆n |/ni ~ 10–2–10–3. The distribution of the space
charge resembles periodic damped double layers.

In a spherical discharge, the spatial separation
between the strata and their velocity depend on the
parameter β. Our simulations were carried out for two
different β values. For β = 2, the mean electric field E(r)
and the velocity of the strata v st remain constant. The
strata are equidistant; their amplitude decreases toward
the anode only at the expense of elastic losses. In the
radial direction, the electron density ne(r) changes, on
the average, in inverse proportion to the square of the
distance from the anode. Analogous radial profiles of
the electron density in spherical glow discharges were
obtained in the drift-diffusion approximation [14]. For
β = 1, the mean electric field and the ion and electron
densities, ni and ne, change in inverse proportion to r
(see Fig. 4). In this case, the velocity of the strata
decreases with distance from the anode and the spatial
separation between the peaks in the electric field
decreases toward the anode.

Calculation of the radii of the corresponding strata
from the position of the peaks in the distribution of
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Fig. 4. Distributions of the electric field and electron density
in a spherical stratified discharge in argon at a pressure of
p = 0.5 torr for β = 1.
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energy loss for the excitation of the first energy state
shows that, for β = 1, they follow a geometric progres-
sion rn ≈ r0Kn. Figure 5 shows the ratio of the radius of
the nth stratum, rn, to the radius of the first stratum, r0,
for different argon pressures. The coefficient K is seen
to lie within the range K ~ 1.31–1.36. The same result,
namely, K ~ 1.3–1.5, was obtained in a number of
experiments aimed at studying the stratification of
spherical discharges in nitrogen with a small acetone
admixture [6].

That the height of the peaks in the calculated pro-
files of the discharge parameters decreases toward the
anode is related to the elastic losses and the presence of
inelastic energy losses that have thresholds of similar
magnitude. When there are no elastic losses and when
there is only one energy loss process with the threshold
U1 and with a large cross section (the black wall
approximation), the distributions of the macroscopic
parameters are undamped and the spatial separation
between the strata corresponds to the length L = U1/eE0,
over which the electrons acquire the energy U1 in the
electric field [15]. This loss mechanism operates to pro-
duce a periodic resonant electric field in which the
hump of the electron distribution function transforms
into narrow peaks moving along the resonant trajecto-
ries (the so-called bunching effect [16]). As early as
1952, Klyarfel’d [17] pointed out that stratification in
the PC can result from an analogous mechanism by
which the electrons periodically gain energy in the
electric field and lose it in inelastic collisions. In fact,
the first thorough analysis of the kinetic mechanism for
stratification was made by Tsendin [15].

An important aspect of the analysis of solutions to
the Boltzmann equation for the EEDF is to consider the
moments of the distribution function. Multiplying
Eq. (5) by unity and by U and integrating over the entire
energy range under consideration, we arrive, respec-
tively, at the particle and energy balance equations. The
electron balance equation has the form

(19)

where the integral jr(r) is given by formula (8). The sat-
isfaction of Eq. (19) served as an additional criterion for
the correctness of the simulations based on Eq. (5).

In the plane discharge model, the EEDF is normal-
ized so that the electron density at the entrance to the
PC is about ne ≈ 109 cm–3. In the spherical discharge
model, the distribution function is normalized to the
magnitude of the discharge current at the cathode,

1

r
n

---- d
dr
----- r

n
jr r( )( ) 0,=

J 4πrc
2
e jr rc( ).=
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The discharge current was chosen to be 10 mA, which
corresponds to experimental regimes of the stratifica-
tion of spherical discharges.

The electron energy balance equation has the form

(20)

where the electron energy flux density ju(r) is given by
the formula

(21)

The gradient of the electron energy flux density is
determined by the difference between the energy
acquired by the electrons in the electric field,

, (22)

and the energy lost by them in elastic collisions,

(23)
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Fig. 5. Ratio of the radius of the nth stratum, rn, to the radius
of the central (n = 0) stratum vs. number of the stratum for
discharges in argon at pressures of p = (1) 0.5, (2) 1.0,
(3) 1.25, and (4) 1.5 torr and β = 1.
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argon at a pressure of p = 0.5 torr. The dashed curve shows
the energy flux gradient.
and in different inelastic collisional processes,

(24)

The discharge plasma can exist either in a state dom-
inated by elastic energy losses (see formula (23)) or in
a state dominated by inelastic energy losses (see for-
mula (24)). Figure 6 shows how the relative contribu-
tions of elastic and inelastic energy losses to the energy
balance depend on argon pressure for a plane discharge
in an electric field with the mean strength 〈E〉  = 4 V/cm.
It can be seen that, at high pressures (p > 1.5 torr), the
energy losses in elastic collisions predominate over
those in inelastic collisions; in this case, the gradient of
the electron energy flux density is indeed small in com-
parison to the remaining terms in the energy balance
equation. The plasma state is homogeneous; hence,
nonlocal effects can be ignored. We found that, at high
argon pressures (p > 1.5 torr), the strata do not arise
because much energy is lost in elastic collisions. This
case can be described in the so-called local field
approximation.

At lower argon pressures, p < 1.5 torr, elastic losses
cause the amplitudes of all the distributions to decrease
slightly toward the anode; in this case, the lower the
argon pressure, the more pronounced the nonlocal
effects. Figure 7 shows the radial profile of the absolute
value of energy gain (22) and the radial profiles of
energy losses (24) (normalized to Pf) in each of the
inelastic collisional processes. The simulations were
carried out for an argon pressure of p = 0.5 torr and for
a mean electric field of 〈E〉  = 6 V/cm. Under these con-
ditions, the elastic energy loss given by expression (23)
is relatively small and the energy density gradient is
comparable in magnitude to the terms describing
energy losses in inelastic collisions. The energy gained
by the electrons in the electric field is displayed by the
solid curve. The curves showing the energy losses in
inelastic collisions are slightly shifted in phase with
respect to the solid curve and are also shifted somewhat
toward the anode. The loss term having the maximum
amplitude corresponds to energy losses in the process
with the lowest energy threshold (11.3 eV). The phase
shift between the energy gain profile and the profile of
the energy losses in ionization processes with an energy
threshold of 15.7 eV is the largest, ∆(Pf, Pioniz) ≈ ±π. It
is the phase shift between variations in the energy loss
by ionization and in the electron density that gives rise
to an ionization wave—the strata.

Figure 8 shows how the spatial separation between
the strata in a plane discharge depends on the electric
field. The points calculated for different argon pres-
sures and different magnitudes of the mean electric
field are seen to lie essentially on the same curve. From
this figure, we can conclude that, for a given value of
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the reduced electric field E/p, the spatial separation
between the strata is inversely proportional to the gas
pressure, L ~ 1/p.

4. CONCLUSIONS

We have developed a one-dimensional self-consis-
tent model of moving strata in a plane and a spherical
glow discharge in argon. The model is based on solving
the nonlocal Boltzmann equation, the nonstationary ion
balance equation, and Poisson’s equation by the itera-
tive method. Using this model, we have described the
electron and ion plasma components and have deter-
mined the distribution of the self-consistent electric
field in the PC of a discharge. In the self-consistent
model, the spatial period of variation of the macro-
scopic parameters under consideration is determined
automatically, without invoking a prescribed spatial
period of the electric field.

The main results obtained with the help of the pro-
posed model are as follows:

(i) In the stratified PC of a plane discharge, the elec-
tric field distribution is periodic but possesses a nonsi-
nusoidal structure. The distribution of the electric field
is peaked at the positions of the strata, and the electron
density distribution lags behind the field distribution in
phase by half a period. The degree to which the PC of a
plane discharge is nonquasineutral is on the order of
|∆n |/ni ~ 10–2–10–3; in this case, the distribution of the
positive space charge resembles double layers.
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4

Fig. 8. Length of the strata as a function of the reduced elec-
tric field in a plane discharge.
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(ii) The model predicts the existence of moving
strata in discharges in argon at low pressures. It is only
when the strata move from the cathode toward the
anode that the phase shift between the electric field and
electron density distributions is adjusted self-consis-
tently and peaks in the distributions of all the parame-
ters grow resonantly.

(iii) At low argon pressures (p < 1 torr), when energy
loss in elastic collisions is small, the distributions of all
macroscopic plasma parameters are spatially periodic.
At higher pressures (p > 1 torr), the amplitudes of all
the distributions decrease strongly toward the anode
because of the large energy loss in elastic collisions.

(iv) For a given magnitude of the reduced electric
field E/p, the spatial separation between the strata is
inversely proportional to the gas pressure, L ~ 1/p.

(v) For β = 1, the proposed model of a spherical dis-
charge makes it possible to confirm the validity of the
experimentally obtained dependence of the radii of the
strata on their numbers.

It should be noted that the model presented here can
be used to describe stratification in discharges in noble
gases at low pressures (p < 1 torr). The subject of our
ongoing studies will be to perform calculations for
high-molecular gases and to adequately take into
account the phenomena occurring in them. For dis-
charges in gases at higher pressures, it is also necessary
to account for metastable particles and stepwise ioniza-
tion processes. In addition, the right-hand side of the
ion balance equation should be supplemented with the
terms describing ionization and recombination pro-
cesses; in simple models (including the model devel-
oped here), the contributions from ionization and
recombination are assumed to cancel one another out.
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Abstract—An exact solution is derived to the equations of vortex electron anisotropic hydrodynamics for a
plasma that is unstable against the Weibel instability driven by the electron temperature anisotropy. This solu-
tion describes saturation of the Weibel instability in the single-mode regime with an arbitrary wavelength and
corresponds to a standing helical wave of magnetic perturbations in which the amplitude of the generated mag-
netic field varies periodically over time. The longitudinal and transverse (with respect to the rotating anisotropy
axis) plasma temperatures are subject to the same periodic variations. In this case, the maximum magnetic field
energy can be on the order of the plasma thermal energy. © 2004 MAIK “Nauka/Interperiodica”.
A plasma with anisotropic electron temperature is
unstable against electromagnetic perturbations in
which the magnetic field is generated on a characteris-
tic time scale that is much longer than the period of the
electron plasma wave [1]. The nonlinear stage of the
Weibel instability is, as a rule, studied by means of
numerical simulations [2–9]. On the other hand, the so-
called vortex electron anisotropic hydrodynamics
(VEAH) model, which was proposed at the end of
1980s, provides a fairly efficient tool for developing an
analytic theory of the Weibel instability. With this
model, for instance, two classes of analytic solutions to
the VEAH equations were obtained: self-similar explo-
sive solutions [10–13] and single-mode periodic solu-
tions [14–16]. The present study, whose aim is to
extend the second class of solutions, is a continuation
of paper [16], in which a long-wavelength single-mode
solution was derived that described a standing magnetic
structure produced in a plasma without changing its
anisotropic pressure. Below, a solution will be obtained
that describes the same type of magnetic structure but
with an arbitrary wavelength. The single-mode solution
that was found in [14] corresponds to the case in which
the pressure is constant along the generated magnetic
field. The solution obtained in our study corresponds to
self-consistent pressure variations along the magnetic
field. In addition, this solution provides a physically
clear interpretation of the relevant nonlinear plasma
state in terms of spatiotemporal variations in the direc-
tion of the anisotropy axis and periodic variations in
pressure both along and across this direction.

The nonlinear evolution of a plasma with anisotro-
pic electron pressure is described by the following
1063-780X/04/3012- $26.00 © 21071
VEAH equations for the magnetic field B and pressure

tensor  [17]:

(1)

Here, W = eB/mc is the electron cyclotron frequency;
ωp = (4πe2n/m)1/2 is the electron plasma frequency; e
and m are the charge and mass of an electron; n is the
electron density; and the braces {…} indicate symmetri-
zation of the tensor, i.e., {Aij} = Aij + Aji. Equations (1)
describe the vortex motions of the electron plasma
component with negligible variations in the electron

density n. For a plasma with anisotropic pressure  =

P||nn + P⊥ (  – nn) (where P⊥  > P||, n is a unit vector,

and  denotes the unit tensor), the linearized set of
Eqs. (1) describes a Weibel instability whose growth
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rate is maximum across the direction in which the pres-
sure is higher (i.e., along the unit vector n).

In [17], a description of the plasma in terms of the
evolution of the anisotropy vector n was developed for
the case of a uniaxial anisotropy and long-wavelength
vortex structures occurring on spatial scales much
longer than c/ωp. The corresponding (ck ! ωp) one-
dimensional solution for a helical magnetic structure of
the form B = {B(t )sinkz, B(t )coskz, 0} in a plasma
with anisotropic pressure (P⊥  = const, P|| = const) was
obtained in [16]. Here, that solution is extended to the
case of an arbitrary wavenumber, k _ ωp /c, by intro-
ducing the time dependence in the following way:
P⊥ (t ) with P⊥ (0) = P⊥ 0, P||(t ) with P||(0) = P||0, and n(t,
z) = {sinΦcoskz, sinΦsinkz, cosΦ} with n(0, z) =
{0, 0, 1}. As a result, Eqs. (1) reduces to the following
set of ordinary differential equations:
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Fig. 1. Evolution of the magnetic field (heavy solid curves),
the transverse pressure (dashed-and-dotted curves), the lon-
gitudinal pressure (dashed curves), and the z component of
the anisotropy vector (light solid curves) for an initial mag-
netic field strength of B0 = 0.01; a pressure anisotropy of
P⊥ 0/P||0 = 10; and k = (a) 0.5, (b) 1, and (c) 2.

(a)

(b)

(c)
(2)

In the limit t  0, when eB/mc = Ω = Ω0 and Φ = 0,
Eqs. (2) describe an exponential increase in the mag-
netic field at a rate equal to the growth rate of the Wei-

bel instability, (k/ ) ,

provided that P⊥ 0 > P||(0)(1 + c2k2/ ). In what fol-
lows, it is assumed that the last inequality holds. In the
long-wavelength limit, ck ! ωp, Eqs. (2) degenerate
into a set of two equations for Ω and Φ with constant
pressure components P|| and P⊥ , yielding the same
result as that obtained in [16].

The set of ordinary differential equations (2) has the
integrals

(3)

and thus is rather easy to solve numerically. Here, the
solutions to Eqs. (2) are illustrated in terms of dimen-
sionless variables, specifically, the time, the coordinate
(the inverse wavenumber), the pressure components,
and the magnetic field are expressed in units of

(c/ωp) , c/ωp, P⊥ 0, and , respectively.
Figure 1 shows the solutions for the magnetic field B;
the transverse and longitudinal pressure components,
P⊥  and P||; and the z coordinate of the anisotropy vector,
nz = cosΦ. The initial exponential increase in the mag-
netic field is accompanied by a decrease in the higher
(transverse) pressure component and an increase in the
lower (longitudinal) pressure component. After the
magnetic field saturates, it decreases to its initial value
and the plasma pressure components also relax to their
initial values. The process then repeats itself periodi-
cally. For small wavenumbers, k & 1, the anisotropy
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Fig. 2. Field of the anisotropy vector n in the region 0 ≤ z ≤ π/k for an initial magnetic field strength of B0 = 0.01, a pressure anisot-
ropy of P⊥ 0/P||0 = 10, and k =1 at t = (a) 0, (b) 10, and (c) 12.
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vector reverses its direction during plasma relaxation
(see Figs. 1a, 1b). The reverse occurs at about the same
time the magnetic field reaches its maximum value
Bmax. A regime with a flip-over of the anisotropy vector
does not arise in the case of large wavenumbers k > 1
(see Fig. 1c).

The period T of the nonlinear oscillations depends
on the wavenumber and the initial magnetic field B0. As
in the long-wavelength limit [16], this period increases
logarithmically with decreasing B0; i.e., T ∝ lnB0. When
the degree of pressure anisotropy is high (P⊥ /P|| @ 1),
the oscillation period is minimal at k ~ 1 and can be esti-
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
mated in order of magnitude by its limiting (at k  1)
value in the long-wavelength theory: T ~

(4/ )ln4/B0. For both long (k ! 1) and short (k @ 1)
wavelengths, the maximum magnetic energy is low in
comparison to the plasma thermal energy; however, for

k ~ 1, these energies are comparable: /4πP⊥  . 1/4.
The magnetic energy averaged over the period of non-
linear oscillations is always much lower than the
plasma thermal energy.

Physically, the Weibel instability is stabilized by the
following two effects: a self-consistent decrease in the

P⊥ 0

Bmax
2
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degree of plasma anisotropy during the generation of
the magnetic field (see Eqs. (1)) and spatial variations
in the direction of the anisotropy vector. In the long-
wavelength limit (k ! 1), the second effect is insignifi-
cant [17] (which is clearly demonstrated in Fig. 1a). In
this case, the instability saturation is associated with the
rotation of the anisotropy axis [16]. Spatiotemporal
variations in the direction of the anisotropy vector are
illustrated in Fig. 2.

To conclude, note that the above analytical solution
to the VEAH equations describes the relaxation of the
Weibel instability in a single-mode regime in which a
helical magnetic structure consistent with the formation
of helical pressure anisotropy is generated. The solu-
tion for periodic time variations in the magnetic field
and plasma pressure components is qualitatively simi-
lar to that obtained earlier in [14, 15]. The difference
lies primarily in the structure of the anisotropic pres-
sure tensor, but there are also slight differences in the
shapes and amplitudes of the magnetic pulses. The
solution obtained has a physically clear interpretation:
the instability saturates because of a decrease in the
degree of anisotropy and the rotation of the anisotropy
axis. It should be noted that three-dimensional numeri-
cal simulations carried out in [9] revealed the formation
of a one-dimensional helical magnetic structure. This
result allows one to suppose that the solution derived
here plays the role of an attractor for a three-dimen-
sional relaxation of the Weibel instability. It is worth-
while to carefully check this supposition (both theoret-
ically and numerically) in view of the opportunity to
verify it in the unique experiments that are planned for
the near future as part of a project on an ultra-high-
brightness free-electron laser [18]. In the interaction of
a short high-power X-ray pulse with a gas, the Weibel
instability is very likely to occur as a result of photoion-
ization, which leads to anisotropy in the electron veloc-
ity distribution.

ACKNOWLEDGMENTS

This work was supported in part by the Russian
Foundation for Basic Research, project no. 03-02-
16428.
REFERENCES
1. E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
2. R. L. Morse and C. W. Nielson, Phys. Fluids 14, 830

(1971).
3. J. M. Wallace and E. M. Epperlein, Phys. Fluids B 3,

1579 (1991).
4. R. C. Davidson, D. A. Hammer, I. Haber, and C. E. Wag-

ner, Phys. Fluids 15, 317 (1972).
5. V. Yu. Bychenkov, V. N. Novikov, V. P. Silin, and

V. T. Tikhonchuk, Fiz. Plazmy 17, 463 (1991) [Sov. J.
Plasma Phys. 17, 272 (1991)].

6. V. Yu. Bychenkov, V. N. Novikov, and V. P. Silin, Fiz.
Plazmy 17, 830 (1991) [Sov. J. Plasma Phys. 17, 485
(1991)].

7. V. Yu. Bychenkov and V. N. Novikov, Fiz. Plazmy 23,
726 (1997) [Plasma Phys. Rep. 23, 670 (1997)].

8. V. Yu. Bychenkov, A. I. Golubev, N. A. Izmaœlova, et al.,
Fiz. Plazmy 26, 57 (2000) [Plasma Phys. Rep. 26, 54
(2000)].

9. D. V. Romanov, V. Yu. Bychenkov, W. Rozmus, et al.,
Bull. Am. Phys. Soc. 47, 87 (2000).

10. V. Yu. Bychenkov, V. P. Silin, and V. T. Tikhonchuk, Fiz.
Plazmy 15, 706 (1989) [Sov. J. Plasma Phys. 15, 407
(1989)].

11. V. Yu. Bychenkov, V. P. Silin, and V. T. Tikhonchuk,
Phys. Lett. A 138, 127 (1989).

12. V. Yu. Bychenkov, V. F. Kovalev, and V. V. Pustovalov,
Fiz. Plazmy 22, 1101 (1996) [Plasma Phys. Rep. 22, 999
(1996)].

13. V. A. Terekhin, E. V. Uvarov, V. Yu. Bychenkov, and
V. F. Kovalev, Fiz. Plazmy 25, 453 (1999) [Plasma Phys.
Rep. 25, 409 (1999)].

14. V. A. Terekhin, V. T. Tikhonchuk, and E. V. Uvarov,
Phys. Lett. A 254, 210 (1999).

15. V. A. Terekhin, V. T. Tikhonchuk, and E. V. Uvarov, Fiz.
Plazmy 26, 334 (2000) [Plasma Phys. Rep. 26, 308
(2000)].

16. V. Yu. Byshenkov, W. Rozmus, and S. E. Capjack,
Pis’ma Zh. Éksp. Teor. Fiz. 78, 150 (2003) [JETP Lett.
78, 119 (2003)].

17. V. Yu. Bychenkov, V. P. Silin, and V. T. Tikhonchuk,
Zh. Éksp. Teor. Fiz. 98, 1269 (1990) [Sov. Phys. JETP
71, 709 (1990)].

18. T. Tschentscher, Proc. SPIE 4500, 1 (2001).

Translated by O.E. Khadin
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004



  

Plasma Physics Reports, Vol. 30, No. 12, 2004, pp. 983–987. Translated from Fizika Plazmy, Vol. 30, No. 12, 2004, pp. 1059–1063.
Original Russian Text Copyright © 2004 by Lashkul, Popov.

                                                        

TOKAMAKS

       
Effect of Anomalous Ion Inertia and Oblique Ion Viscosity 
on the Radial Electric Field in FT-2 Tokamak Experiments

S. I. Lashkul and A. Yu. Popov
Ioffe Institute for Physics and Technology, Russian Academy of Sciences, 

Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
Received April 3, 2003; in final form, November 17, 2003

Abstract—Results are presented from numerical simulations that show that, in a plasma with well-developed
turbulence, the radial electric field can be positive in the region where the gradients of the plasma parameters
are steep. In a plasma in which the turbulence is suppressed (as is the case with auxiliary lower hybrid heating),
the radial electric field is found to exhibit a nearly neoclassical behavior during the formation of a transport bar-
rier and transition to the H-mode. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In experiments on the FT-2 tokamak, it was
observed that, during the RF heating of the plasma ions
by lower hybrid (LH) waves, the plasma evolved into
an improved energy and particle confinement regime
[1]. During auxiliary plasma heating, steep gradients
were found to arise on the electron density and ion tem-
perature profiles in the region r = 4.5–6 cm, thus indi-
cating the formation of an internal transport barrier
(ITB) there. Additional on-axis heating of the plasma
electrons that was observed during RF heating was
attributed to a sharp decrease in electron heat transport.
Furthermore, after the LH heating pulse had come to an
end, an L–H transition was detected. The transition was
accompanied by the formation of an external transport
barrier (ETB) in the vicinity of the last closed flux sur-
face (LCFS), whose position in the tokamak was con-
trolled by a poloidal limiter of radius rL = 7.8 cm. The
fact that the particle and energy confinement times both
increase, while the recycling of neutral hydrogen at the
plasma edge becomes far slower, is in good agreement
with the data from spectral, bolometric, diamagnetic,
and other measurements [1]. In a number of papers
(see, e.g., [2]), it was suggested that the main mecha-
nism responsible for suppressing anomalous transport
in a tokamak plasma is an increase in the shear of the
poloidal plasma rotation. In our experiments, the
increase in the shear of the poloidal E × B plasma rota-
tion was governed by the steepening of the ion temper-
ature and electron density gradients, —Ti and —ne, in the
region r = 4.5–6 cm. The hypothesis that was proposed
to explain these experimental data implied that the
shear of the poloidal rotation frequency ωE × B increases
because of the efficient ion heating, which results in a
steepening of the ion temperature gradient in the region
r = 4.5–6 cm. This hypothesis was confirmed by numer-
ical simulations carried out with the BATRAC transport
code [3]. The fact that a considerable increase in the
1063-780X/04/3012- $26.00 © 20983
radial electric field amplitude |Er | is governed by the
steepening of the ion temperature and electron density
gradients, —Ti and —ne, was also supported by compu-
tations with the ASCOT code [4], in which the distribu-
tion function of the plasma ions was simulated by the
Monte Carlo method. The experimental verification of
the above hypothesis was based on direct spectral and
probe measurements of the radial electric field Er [5].
The measurement results are as follows:

(i) The negative radial electric field Er does indeed
increase in absolute value within the gradient region. In
[5], it was shown that, in the region where the ITB
forms, the radial electric field Er increased from –10 to
–23 kV/m. These values are somewhat higher than the
neoclassical ones [6, 7] and agree better with those
computed by the ASCOT code, in which the radial
ambipolar electric fields are modeled with allowance
for nonambipolar ion fluxes.

(ii) In different stages of the discharge, the radial
electric field near the LCFS (at the plasma edge) can
become positive, which contradicts the generally
accepted neoclassical theory [6] and requires a special
explanation. It should be noted that similar experimen-
tal results (i.e., showing that the field Er becomes posi-
tive at the discharge periphery) were reported in several
other papers (see, e.g., [8]). Such behavior of Er in the
edge plasma indicates that the longitudinal force bal-
ance in this region is more complicated than that con-
sidered in the generally accepted neoclassical theory
[6] and should thus be further refined in order to pro-
vide a correct description of the observed phenomena.
The objective of the present paper is to resolve the
existing contradiction between the experimental data
and the views based on the standard neoclassical
theory.

It is well known that, during an L–H transition, the
parameters of the wall plasma can change substantially
004 MAIK “Nauka/Interperiodica”
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on spatial scales comparable to the poloidal ion gyrora-
dius. Under these conditions, the profile of the radial
electric field can be affected not only by the longitudi-
nal ion viscosity [9, 10] but also by the anomalous ion
inertia and oblique ion viscosity. The effect of the latter
two factors is important only when the gradients of the
plasma parameters are sufficiently steep. Analytic
expressions for the anomalous ion inertia and oblique
ion viscosity were first derived by Rozhansky and Ten-
dler [9]. Here, we suppose that the observed profile of
the radial electric field Er in FT-2 tokamak experiments
can be explained by taking into account anomalous
inertia and oblique viscosity, which play a significant
role at the discharge periphery.

Our paper is organized as follows: In Section 2, we
describe a theoretical model constructed with allow-
ance for the anomalous effects associated with the
plasma microturbulence. In Section 3, we analyze the
results of numerical simulations carried out on the basis
of the model proposed. In the Conclusion, we present
the main results of our study and compare them to the
experimental data.

2. PHYSICAL MODEL

We consider a hydrodynamically equilibrium toroi-
dal plasma column in the ideal MHD approximation.
Taking into account the geometric parameters of the
FT-2 tokamak (R = 0.55 m, rL = 0.079 m, Ipl = 22 kA,
and Bt = 2.2 T), we consider a magnetic field model cor-
responding to the case of small toroidal nonuniformi-
ties and circular flux surfaces:

(1)

where ε(r) = r/R0 ! 1 is the inverse aspect ratio, θ(r) =
ε(r)/q(r), q(r) is the safety factor, and R0 is the tokamak
major radius. Representation (1) is written in a curvilin-
ear coordinate system in which the element of length is
defined by

(2)

where g11 = 1, g22 = r2, and g33 = (1 + εcosϑ)2 are the
metric tensor components and er, eϑ, and ez are unit vec-
tors corresponding to the radial, poloidal, and toroidal
directions in a quasi-toroidal coordinate system,
respectively.

In order to obtain an expression for the radial com-
ponent of the electric field, we consider the longitudinal
force balance equation

. (3)

Here,  is the ion viscosity; F is the inertial force; and
the angle brackets denote averaging over the flux sur-
face,

B B0

θ r( )eϑ ez+
1 ε r( ) ϑcos+
--------------------------------,=

dl
2

g11dr
2

g22dϑ 2
g33dz

2
,+ +=

B — πi⋅( )⋅〈 〉 F B⋅〈 〉–=
↔

πi
↔

Following [9, 11], we represent the ion viscosity as
the sum of neoclassical and anomalous viscosities:

 =  + . We also assume that F ≡ F(AN). In
terms of the averaged longitudinal ion velocity u||, i =
〈ui · B〉/ |B |, the anomalous viscosity and inertial force
can be written as

(4)

where ne is the electron density, mi is the mass of an ion,
η is the anomalous viscosity coefficient, u||, i is the lon-
gitudinal ion velocity, and ur is the radial plasma drift
velocity in the ambipolar electric field. In our simula-
tions, ur is given by the expression

, (5)

where D is the anomalous diffusion coefficient. The
anomalous viscosity coefficient η can be estimated by

. (6)

The longitudinal plasma velocity can be represen-
ted as

, (7)

where  = 〈uz/(1 + εcosϑ)〉 . We have no direct exper-

imental data on the toroidal rotation velocity  in the
plasma of the FT-2 tokamak. However, if there are no
external factors (such as, for example, auxiliary NBI
heating), we can assume that  . 0. Substituting
expressions (4) and (5) into Eq. (3) and using represen-
tation (7), we obtain the following second-order differ-
ential equation for the poloidal rotation velocity:

(8)

The neoclassical ion viscosity 〈B · (— · )〉 (NEO) is

described by the expression 〈B · (— · )〉 (NEO) =

nemi µ(Vϑ – ), where the coefficient µ depends
on the collisionality regime. When the ion inertia can be
ignored, the right-hand side of Eq. (8) vanishes and the
plasma rotation velocity is given by the neoclassical
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formula Vϑ ≡  = (1 – kT)c/(eB0)∂Ti/∂r, where the
coefficient kT is equal to 2.69 in the Pfirsch–Schlüter
regime, to 1.5 in the plateau regime, and to –0.17 in the
banana regime [7]. Depending on the experimental
conditions, the plasma in the FT-2 tokamak is in one of
the two collisionality regimes: the plasma at half the
minor radius is in the plateau regime, while the edge
plasma is in the Pfirsch–Schlüter regime. In order to
describe all collisionality regimes, we represent µ in the
form

, (9)

where µpl and µps are the values of µ in the plateau and
Pfirsch–Schlüter regimes, respectively. Using explicit
expressions for the neoclassical ion viscosity [6, 7], we
rewrite representation (9) as

, (9a)

where νi is the ion collision frequency and  =  is

the threshold frequency between the plateau and Pfir-
sch–Schlüter regimes. Representation (9) provides an
asymptotically correct description of the coefficient µ
for both of these regimes. For ε3/2  ! νi ! , we

have µ . µpl ≡ , and, for  ! νi, we have

µ . µps ≡ 0.96 . Taking into account the

parameters of the FT-2 tokamak discharges (q ~ 5–7 at
the plasma boundary) and assuming that estimate (6) is
an exact equality, we reduce Eq. (8) to a form that is
more convenient for examination and numerical com-
putation:

, (8a)

where q2(r) =  and ξ(r) =

 +  + 1. Equation (8a) can be analyzed as

follows. Let the plasma rotation velocity Vϑ vary on the

scale lV . Under the conditions q @ 1/lV , 
(where a is the tokamak minor radius), the poloidal
rotation velocity and the radial electric field are close to

their neoclassical values [7], Vϑ .  and Er .

 ≡ (Ti/e)(dlnne/dr + kTd lnTi/dr). Accordingly,
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for q ~ 1/lV , , the terms with spatial deriva-
tives in Eq. (8a) are important. In this case, the radial
electric field differs from its neoclassical value. For
arbitrary radial profiles D(r), ne(r), and Ti(r), Eq. (8a)
can be solved only numerically. In the next section, we
will exemplify this solution.

3. NUMERICAL SIMULATIONS

To calculate the radial electric field profile by means
of Eq. (8a), we took the experimental data on the ion
temperature Ti(r) and electron density ne(r) from [1].
Using the data published in [1, 3], we approximated the
profile of the anomalous diffusion coefficient by D(r) =
D0[1.2 + 3.5(r/a)2], where D0 = 4 × 103 cm2/s. In calcu-
lating the radial electric field, the numerical coefficient
kT, which depends on the collisionality regime, was
described by the approximate expression proposed in
[6]. Having specified the diffusion coefficient D(r) and
having chosen typical experimental data on the ion tem-
perature Ti(r) and electron density ne(r) [1], we can cal-
culate the coefficients of differential equation (8a). We
note that, at the center of the plasma column, anoma-
lous effects play a negligible role in the formation of the
profile of the poloidal rotation velocity. In the axial
region, the radial electric field is, with good accuracy,
close to its neoclassical value, and it is only in the
region of steep gradients at the discharge periphery that
the radial electric field is far from being neoclassical.
This enables us to impose the boundary conditions

 =  and  = . Hence, by

solving Eq. (8a) with the prescribed boundary condi-
tions by the Runge–Kutta method, we can obtain the

1/ alV( )

Vϑ r 0= Vϑ
NEO( ) dVϑ

dr
----------

r 0=

dVϑ
NEO( )

dr
------------------

0 2 4 6 8

–10

–5

0

1

3

2

r, cm

Er, V/m

Fig. 1. Profiles of the neoclassical radial electric field calcu-
lated without allowance for anomalous viscosity and inertia
for three different times during a typical FT-2 discharge
with auxiliary LH heating: (1) in the ohmic heating phase,
(2) in the LH heating phase, and (3) in the post-heating
phase.
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profile of the neoclassical radial electric field. Figure 1
shows the neoclassical radial field profiles calculated
without allowance for the effects of anomalous viscos-
ity and inertia and by using the above experimental data
on the ion temperature and electron density profiles [1]
for three different times during a typical discharge. Fig-
ure 2 presents the results from solving Eq. (8a) numer-
ically. A comparison of Figs. 1 and 2 shows that the
main difference between the radial electric field calcu-
lated from Eq. (8a) and the neoclassical radial electric
field lies in the fact that the former can become positive
at the plasma edge. This agrees with the experimental
data from spectral and probe measurements at r =

0 2 4 6 8
r, cm

–20

–10

0

10

1
3

2

Er, kV/m

Fig. 2. Radial electric field calculated by using Eq. (8a) for
the same times as in Fig. 1.
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–25
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2

cm

Er, kV/m

Fig. 3. Measured profiles of the radial electric field [5]: pro-
file 1 refers to the beginning of the RF pulse (30 ms), pro-
files 2 and 3 refer to the LH heating phase (31 and 34 ms,
respectively), and profiles 4 and 5 refer to the H-mode in the
post-heating phase of the discharge (38 and 40 ms, respec-
tively).
5−7 cm [5]. The results of these simulations allow us to
draw the following conclusions:

(i) At the center of the plasma column, the radial
electric field is close to its neoclassical value.

(ii) Near the wall, the neoclassical field is seen to
differ appreciably from that calculated with allowance
for inertia and anomalous viscosity. For the chosen val-
ues of the anomalous electron diffusion coefficient, the
calculated results are seen to correlate with the experi-
mental data before and during the LH heating phase
(Figs. 1, 2; curves 1, 2). In the post-heating phase, the
measured radial electric field is negative, Er < 0 (Fig. 3;
curves 3, 4), while the calculated values of Er at the
plasma periphery are positive (Fig. 2, curve 3). This is
likely related to the suppression of turbulence in the
post-heating phase [12].

Hence, one of the possible mechanisms by which
the radial electric field Er can become positive near the
separatrix is associated with the effect of inertia and
anomalous viscosity, which in turn have their origin in
well-developed plasma turbulence.

4. CONCLUSIONS

Our simulations have shown that, in a plasma with
well-developed turbulence, the radial ambipolar elec-
tric field can be positive in the region of steep gradients
of the plasma parameters. One of the possible mecha-
nisms that cause the radial electric field to deviate
strongly from its neoclassical values is associated with
the inertia and anomalous viscosity of the plasma. In
our simulations, these two plasma parameters were
introduced empirically. In a plasma in which the turbu-
lence is suppressed (as is the case with auxiliary LH
heating), the radial electric field exhibits a nearly neo-
classical behavior during the formation of a transport
barrier and transition to the H-mode. According to our
numerical analysis, this neoclassical behavior results
from a reduction in transport coefficients at the dis-
charge periphery and from a decrease in the level of
anomalous viscosity. Such behavior of the radial elec-
tric field Er is confirmed by the experimentally obtained
profiles 4 and 5 in Fig. 3 (which reproduces Fig. 6 from
[5]): these profiles show the radial electric field in the
H-mode and differ from profiles 1 and 2 (which corre-
spond to the ohmic heating phase and the initial phase
of LH heating) in that the radial electric field is every-
where negative.
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Abstract—The classical (for the Grad–Shafranov equation) formulation of the equilibrium problem for a cylin-
drical current-carrying plasma column is shown to admit multiple solutions. The multiple solutions are bifur-
cational in character and appear due to the nonlinearity of the equilibrium equation. This was demonstrated ana-
lytically using a stepped current profile as an example. Bifurcational solutions found for the cylindrical case
survive in toroidal geometry too. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The theory of plasma equilibrium is one the most
extensively developed branches of plasma physics. In
the case of axial symmetry, which is typical for both
astrophysical objects (stars) and fusion devices (like
tokamaks or pinches), static plasma equilibrium equa-
tions can be reduced to a two-dimensional elliptical
(generally, nonlinear) partial differential equation [1]
supplemented with standard boundary conditions. The
nonlinearity results from the nonlinear dependence of
the current density on the magnetic flux. As a rule, in
the equilibrium problem, this dependence is prescribed
a priori. The solution to such a boundary problem turns
out to be rather sensitive to the values of the input
parameters that determine the geometry of the plasma
boundary, the magnitudes and profiles of the plasma
current and pressure, etc. Solutions corresponding to a
set of nested magnetic surfaces are usually of practical
interest.

For simple profiles, few exact or approximate solu-
tions are known that correspond well to real experi-
ments, the problem formulation often being mathemat-
ically correct. Note that there is no general claim of
how to correctly formulate the equilibrium problem—
only a few particular cases of the correct problem for-
mulation are known (see, e.g., [2]). Nevertheless, the
viewpoint exists that, within a wide range of parameters
corresponding to appropriate experimental conditions,
the solution describing a set of nested magnetic sur-
faces is unique and is a continuous function of the
parameters of the problem. This opinion is mainly
based on the well developed methods of finding such
solutions numerically.

At the same time, spontaneous transitions from one
steady state to another (such as the so-called L–H tran-
sition [3] and the internal transport barrier formation
[4]) are often observed in tokamaks. These transitions
demonstrate typical bifurcational features, such as fast
changes in the equilibrium parameters (in particular,
1063-780X/04/3012- $26.00 © 0988
the average plasma pressure), hysteresis, etc. There
have been attempts to explain this phenomenon by the
bifurcation of the transport coefficients (as a rule,
anomalous ones [5]), although, as was shown in [6]
long before the discovery of transport barriers, the neo-
classical transport coefficients also may, in principle,
demonstrate bifurcational behavior. However, changes
in the macroscopic plasma state that result from
changes in transport processes would occur on time
scales comparable to the plasma lifetime and/or the dis-
sipation time (or to the source/sink time), whereas in
real experiments, they occur much faster.

A fast change in the macroscopic state means that
the plasma leaves its initial equilibrium state, giving
rise to hydrodynamic plasma motion that can, in partic-
ular, have the form of developed plasma turbulence.
The plasma can then relax into some new equilibrium
state or be maintained by means of instabilities in a
state that can be called equilibrium only on average.
This and other similar considerations were discussed in
detail in [7], where the appearance of a transport barrier
was interpreted as a bifurcation of equilibrium. It is
well known that bifurcational transitions occur when
the number of the degrees of freedom of a system is
restricted. The analysis of these restrictions is impor-
tant for determining both the possibility of transition
itself and the admissible changes in the parameters of
the system. In [8], which followed [7] and detailed it,
the conservation of the cross helicity was considered to
be such an additional restriction.

The bifurcational mechanism itself was discussed
neither in [7] nor in [8]. Changes in the equilibrium
state were assumed to be localized in a rather narrow
barrier zone. For example, the assumption regarding a
spontaneous change of the magnetic surface structure
(a transition from an equilibrium with magnetic islands
to nested magnetic surfaces and vice versa) seems to be
physically reasonable. Zakharov, Smolyakov, and Sub-
botin were the first to consider this opportunity [9]. The
2004 MAIK “Nauka/Interperiodica”
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idea that the bifurcation of an equilibrium state can
occur without breaking the nested structure of the mag-
netic surfaces has been recently proposed by Solano
[10]. However, there are no accurate calculations
(including numerical) that could explicitly demonstrate
bifurcational transitions in the framework of the above
two hypotheses. It should also be noted that the theory
of bifurcations for boundary problems is still poorly
developed. Catastrophe theory usually deals with the
asymptotic behavior of dynamic systems; this behavior
is determined by the peculiarities of the vector field on
the phase portraits of the systems [11].

In the present paper, we demonstrate the possibility
of the existence of multiple solutions to the classical
problem of the equilibrium of a current-carrying
plasma column. A simple current profile that admits
analytical solutions is considered. The chosen parame-
trization of the problem allows us to reveal bifurca-
tional transitions between these solutions without
breaking the structure of the toroidally nested magnetic
surfaces. It should be noted that multiple solutions are
related to the nonlinearity of the equilibrium equation,
rather than to toroidal effects (the main result is
obtained for a cylindrical plasma column).

The paper is organized as follows: In Section 2, we
present the mathematical formulation of the problem. In
Section 3, the solutions obtained are described and their
bifurcational character is demonstrated. In Section 4,
the results obtained are generalized to the case of toroi-
dal geometry.

2. FORMULATION OF THE PROBLEM

The equilibrium of an axisymmetric plasma is
described in cylindrical coordinates r, ϕ, and z by the
well-known Grad–Shafranov equation [1],

(1)

This equation is the projection of the force balance
equation

(2)

onto the direction of the gradient of the poloidal flux ψ
of the magnetic field B, which can be written in a gen-
eral form as B = —ψ × —ϕ + F—ϕ. The two remaining
components of Eq. (2) determine the functional depen-
dences of the plasma pressure p and the poloidal current
F, which, in an axisymmetric case (∂/∂ϕ  0), are
surface functions:

(3)

Since 1957, Eq. (1) has been a subject of serious
attention of physicists and mathematicians. Tradition-
ally, dependences (3) are a priori prescribed in a certain
region r, z ∈ Ω  in which Eq. (1) is to be solved. The
boundary conditions result from the physical formula-
tion of the problem. An example of bifurcation with a

r
∂
∂r
----- 1

r
--- ∂

∂r
----- 

  ∂2

∂z
2

-------+ ψ r
2
p'– FF '.–=

—p — B×( ) B×=

p p ψ( ), F F ψ( ).= =
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free boundary is described in [12], where a possible
transition from a toroidal equilibrium to a helical one is
discussed. In the present paper, we consider a fixed-
boundary problem: ψ|r, z ∈  ∂Ω = ψb, which corresponds,
e.g., to an experimental situation in which the plasma
boundary is determined by a well-conducting wall. The
quantity ψ is equal to the poloidal magnetic flux to
within an arbitrary constant; therefore, the value of ψ at
the boundary can be set at zero, ψb = 0.

There are several known examples [13–17] of ana-
lytical solutions to Eq. (1) in which the functions p'(ψ)
and FF'(ψ) are chosen to be linear. Another well-known
analytical method of solving the equilibrium problem is
the method of moments [18]. In this method, the struc-
ture of the magnetic surfaces is a priori assumed to have
the form

(4)

where the quantities ∆, e, etc., determine the displace-
ment, ellipticity, and other moments of a magnetic sur-
face with a characteristic radius a (a = const on the
magnetic surface ψ = const), respectively. The follow-
ing ordering is assumed for the nesting of the surfaces:
∆(a) ~ a/R, e(a) ~ a(a/R)2, etc. Here, R is the major
radius of the torus (it is assumed that a/R ! 1, so we can
use expansion in the inverse aspect ratio a/R). Substitut-
ing expressions (4) into Eq. (1) and setting the coeffi-
cients by different harmonics of θ to be zero, we obtain
equations for ψ(a), ∆(a), e(a), etc. In particular, the
equation for ψ in the leading order in a/R can be written
in the form

(5)

which is equivalent to a cylindrical approximation to
within normalizing coefficients. The prime denotes the
derivative over the argument. On the right-hand side of
Eq. (5), the expression in brackets,

(6)

is the toroidal current density, which is independent of
r in a cylindrical approximation.

We normalize the argument a to the plasma column
radius ab, the current density j(ψ) to the characteristic

value j0, and the flux ψ to  and use the same nota-
tion for the dimensionless quantities:

      (7)

In dimensionless variables, Eq. (5) takes the form

(8)

ψ ψ a( )=

r R ∆ a( ) a e a( ) 2θcos– …–( ) θcos–+≈
z a e a( ) 2θcos– …–( ) θ,sin≈


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

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FFψ'
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As was mentioned above, when solving a problem with
a fixed plasma boundary, we can choose ψ(1) = 0. The
second boundary condition, ψ'(0) = 0, ensures the regu-
lar behavior of the current density at the column axis.
Thus, we have a boundary problem for the second-
order differential equation. In general, this equation is
nonlinear since the density profile depends on the
unknown function ψ and this dependence is not neces-
sarily linear.

We consider a stepped current density profile
(Fig. 1)

(9)

where j2 > 0, j1 ≥ 0, and Θ is the Heavyside function,

(10)

This choice is justified by the fact that over each seg-
ment with a constant value of j, Eq. (8) can easily be
integrated. On the other hand, for a finite value of j1, the
dependence j(ψ) is substantially nonlinear. Therefore,
using this profile as an example, we can reveal the prop-
erties of Eq. (8) that are of interest to us. Moreover, by
increasing the number of steps on the j(ψ) profile, it is
possible to model almost every current profile (in this
case, the procedure of solving the problem is only tech-
nically more complicated).

Finally, for j(ψ) given by expression (9), the bound-
ary problem in a cylindrical approximation takes the
form

(11)

In this problem, j1, j2, and ψc are parameters. In fact,
the set j1 and j2 contains only one independent parame-
ter because the initial current density is normalized to a
certain characteristic value j0 and any of the two values
j1 and j2 can be chosen as j0 (provided that it is nonzero);
hence, j is equal to unity on the corresponding segment.

j j2 j1Θ ψ ψc–( ),+=

Θ x( )
1, x 0≥
0, x 0.<




=

d
da
------ aψ' a( )( ) a j2 j1Θ ψ ψc–( )+( ),–=

ψ 1( ) 0, ψ' 0( ) 0.= =

ψc

j(ψ)

ψ

j2 + j1

j2

Fig. 1. Stepped current profile.
3. BIFURCATIONAL PROPERTIES 
OF THE GRAD–SHAFRANOV EQUATION 

IN A CYLINDRICAL APPROXIMATION

In the absence of a current jump (j1 = 0), the solution
to boundary problem (11) is well known and has the
form of a parabola:

(12)

If the current jump is positive (j1 > 0) and if ψc > j2/4,
then additional solutions appear:

(13)

where ac is the argument value corresponding to ψc =
ψ(ac):

(14)

Note that solution (13) is smooth at ac.
The value of ψ at the plasma column axis (ψ0 =

ψ(0) ≥ ψc) is determined by the algebraic equation

(15)

If ψc ≤ j2 /4, then the parabolic solution vanishes, the
remaining solutions being those described by formu-
las (13) and (15). The number of solutions to problem (11)
is determined by the number of roots, ψ0, of algebraic
equation (15). This number depends on the values of
the parameters entering into this equation.

To investigate how the number of solutions to
boundary problem (11) depends on the parameters j1,
j2, and ψc, we consider the Cauchy problem for the
same equation,

(16)

where the value ψ0 of the function ψ(a) at the column
axis (a = 0) is as yet arbitrary. Let us investigate how the
boundary value ψ(1) depends on ψ0. We trace the solu-
tion to Eq. (16), which is equal to ψ0 at the column axis,
and find the corresponding value of ψ at the boundary.
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Introducing the notation ψ(1) ≡ ψf , we obtain the
dependence ψf(ψ0). The value of ψ0 at which ψf(ψ0) = 0
corresponds to the solution to Cauchy problem (16) that
coincides with the solution to initial boundary problem
(11). Therefore, the number of the roots to the equation
ψf(ψ0) = 0 is equal to the number of solutions to the
boundary problem in a cylindrical approximation. In
order to find the dependence ψf(ψ0), we solve problem
(16) and substitute the boundary value of the argument
a = 1 into the solution obtained. As a result, we arrive at

(17)

where Θ is the Heavyside function and e is the natural
logarithmic base. It can be seen that ψ0 enters into
Eq. (17) only through the quantity

(18)

The dependence ψf(x) is schematically shown in
Figs. 2 and 3. The function ψf(x) is linear at x ≤ 0 and
reaches its maximum at x = 0. At x > 0, ψf(x) has a min-
imum at x = x* = exp(–1 – j2/j1). The values of ψf(x) at
the extremum points are

(19)

(20)

Depending on its extremal values  and , the
function ψf(x) (and, therefore, ψf(ψ0)) can have differ-
ent number of zeros. Let us consider three situations:

1. If  > 0 (i.e., ψc > j2/4), then the function ψf(x)

always has at least one zero at x < 0: x = x∗  = – .

In addition, at x > 0, the function ψf(x) has two zeros,

one zero, or no zeros, depending on the sign of 
(Fig. 2):

(a) if  > 0, there are no zeros at x > 0;

(b) if  = 0, then, at x > 0, the function ψf(x) has
one zero, x = x*; and

(c) if  < 0, the function ψf(x) has two zeros at

x > 0: x =  and x = .

As was mentioned above, each zero of ψf(x) corre-
sponds to a solution to problem (11). Figure 4 shows
such solutions calculated for case 1c at ψc = 0.28, j2 = 1,
and j1 = 1.

2. If  = 0 (ψc = j2/4), the dependence ψf(x) has
exactly two zeros (Fig. 3, curve a); this corresponds to
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Fig. 2. Schematic profiles of ψf(x) at  > 0: (a)  > 0,

(b)  = 0, and (c)  < 0.
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the existence of two solutions to boundary problem
(11).

3. If  < 0 (ψc < j2/4), there is only one zero
(Fig. 3, curve b) and boundary problem (11) has a
unique solution.

It follows from the above considerations that solu-
tions to the equilibrium problem for a cylindrical cur-
rent-carrying plasma column are bifurcational in char-
acter. By bifurcation, we mean a situation in which
gradual variations in the parameters of the problem (in
our case, j1, j2, and ψc) result in a stepwise change in
the number of solutions. As was shown above, the num-
ber of solutions is equal to the number of zeros of the
function ψf(x). The dependence of the number of solu-

ψ f
0

0.1

ψ0

ψc0.2 0.3

0.25

0.35

0

Fig. 5. Dependence ψ0(ψc) at j1 =1.2. The domain corre-
sponding to multiple solutions is marked by dots.

0.08

0.2

∆(1, 3)

0.10

0.4 0.6 0.8 a

Fig. 6. Profiles ∆(1, 3) (a). The dashed and solid lines corre-
spond to ∆(1)(r, z) and ∆(3)(r, z), respectively.
tions on these parameters can also be graphically inter-
preted as follows: As was pointed out in the beginning
of this section, the solutions to boundary problem (11)
depend on the parameter ψ0, which can be found from
transcendental algebraic equation (15). The number of
roots of this equation and the possibility of the exist-
ence of parabolic solution (12) determine the number of
solutions to initial boundary problem (11). Let us
assume that j2 ≠ 0 (the peripheral current density is
nonzero) and choose the normalizing value j0 to provide
j2 = 1. For any nonnegative j1, Eq. (15) at ψ0 > ψc

implicitly determines the curve ψ0(ψc), which at ψ0 ≤
ψc transforms into the straight line ψ0 = 1/4. Such a
curve is depicted in Fig. 5 for j1 = 1.5. In the hatched
area, each ψc value corresponds to three roots of ψ0;
outside this area, it corresponds to one root; and, at the
boundary, it corresponds to two roots.

4. ACCOUNTING FOR TOROIDICITY

Multiple solutions to the equilibrium problem in a
cylindrical approximation obviously have their ana-
logues in toroidal geometry. This can easily be proved
using moment representation (4) for the magnetic sur-
faces. For nearly circular magnetic surfaces with a large
(but finite) aspect ratio λ = R/ab @ 1, the main toroidal
effect is the Shafranov shift ∆(a). The equation for the
shift can be integrated in the leading order of the expan-
sion in 1/λ. It is important that the multiple solutions
found above do not break the adopted estimate ∆/ab ~
1/λ ! 1; conserve the nested structure of the magnetic
surfaces; and, therefore, correspond to different equi-
librium states in toroidal geometry too. We present an
example of calculation of ∆(a) for a linear dependence

p(ψ): p'(ψ) = 0.1 (the pressure is normalized to ).
We choose the current profile in form (9) taking j2 = 1,
j1 = 1.5, and ψc = 0.255. Boundary problem (11) with
these parameters has three solutions ψ(a) with the fol-

lowing values of ψ0:  = 0.25,  . 0.26, and

 . 0.57. It is known [18] that the ∆ value is deter-
mined by the relation

(21)

where the internal inductance li and the parameter βJ for
our solutions can be calculated analytically:

(22)

(23)
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PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004



BIFURCATION OF THE EQUILIBRIUM 993
(24)

(25)

Shift profiles (21) for these values of li(a) and βJ(a)
are shown in Fig. 7. To give an idea of how our solu-
tions behave in coordinate space, Fig. 7 shows cross
sections of two families of the magnetic surfaces ψ(1) =
const and ψ(3) = const (the dashed and solid lines,
respectively) in the (r, z) plane for R = 1 and λ = 3. It
can be seen that there are contours of both families that
correspond to the same values ψ. Figure 8 shows the
profiles ψ(1, 3)(r) at z = 0; these curves (with allowance
for the relationship p ~ ψ) illustrate the pressure pro-
files along the major radius.
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Fig. 7. Cross sections of the magnetic surfaces ψ(1, 3) =
const in the (r, z) plane for ψ = (1) 0, (2) 0.15, (3) 0.2,
(4) 0.248, (5) 0.35, and (6) 0.563. The dashed-and-dotted
and solid lines correspond to ψ(1)(r, z) and ψ(3)(r, z), respec-
tively.
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5. CONCLUSIONS
It is well known from the course of differential

equations that the solution to a nonlinear boundary
problem is not necessarily unique: the problem can also
have multiple solutions or no solutions at all. In this
paper, we have shown that the Grad–Shafranov equa-
tion in its classical formulation, i.e., for given depen-
dences p(ψ) and F(ψ), can have several different solu-
tions satisfying the same boundary conditions. This
result was obtained analytically in a cylindrical approx-
imation using a stepped current profile as an example.
Solutions to the equilibrium equation are shown to be
bifurcational in character: gradual variations in the
parameters determining the current density profile (in
our case, these parameters are the magnitude and loca-
tion of the jump in the current density) result in a step-
wise change in the number of solutions. On the plane of
these parameters, the bifurcational curve has the fold
shape that is typical of catastrophe theory [11]. The
simplicity of the model and the standard formulation of
the boundary problem allow us to suppose that such
behavior of the solutions is most likely general rather
than exceptional. In contrast, the prevailing degenerate
problem with a current density depending linearly on
the magnetic flux should be considered an exception
(although this formulation of the problem is widely
popular because it allows one to obtain relatively sim-
ple analytical solutions).

It should be noted that the bifurcational properties of
the Grad–Shafranov equation have already been
pointed out in the literature. For example, similar mul-
tiple solutions have recently been obtained numerically
for an exponentially decreasing pressure profile [19].
An advantage of our approach is not only that our mul-
tiple solutions were obtained analytically for a current
density profile with which one can model any profile of

0.1

0.7

ψ(1, 3)

0.5

0.9 1.1 1.3 r

0.3

Fig. 8. Profiles ψ(1, 3)(r) at z = 0. The dashed and solid lines
correspond to ψ(1)(r, z) and ψ(3)(r, z), respectively.
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the current density but also that these solutions satisfy
precisely the same boundary conditions, whereas the
boundary value of ψ in [19] is a bifurcational parameter
itself. Moreover, the solutions ψ(a) (and, accordingly,
p(a)) obtained in [19] can occur nonmonotonic,
whereas our solutions are free of this drawback.

It seems rather surprising that there are no indica-
tions of such bifurcations in numerical simulations. It is
well known that numerical calculations of the plasma
equilibrium from solving the Grad–Shafranov equation
accompany any modern tokamak experiment; however,
no multiple solutions have been found. In our opinion,
this is due to the currently accepted computational pro-
cedure in which the range of variations in the dimen-
sionless poloidal magnetic flux ψ is fixed (e.g., by the
segment ψ ∈  [0, 1]). At each iteration, the departure of
ψ out of this range is compensated for by adjusting the
extra scale factor inserted into Eq. (1) in front of the
current density. Such a method regularizes the proce-
dure and ensures the convergence of the iteration pro-
cess (see, e.g., [20]). Note that the solution obtained by
means of this procedure does not correspond precisely
to the a priori given dependence j(ψ). In contrast, the
multiple solutions obtained in our study correspond to
the same dependence j(ψ) but to different ranges of ψ.
The fixing of the total current (the dimensional physical
quantity), which is important for a comparison between
the computational and experimental results, does not
imply significant restrictions on the selection of solu-
tions, since, in both cases, a comparison is performed
by choosing the scale factor j0 [20]. It cannot be
excluded that instabilities of difference schemes
revealed in the early stage of numerical simulations of
plasma equilibrium in tokamaks (1960s), when the
above regularization procedure was not applied, were
due to the presence of multiple solutions, rather than to
numerical errors.
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Abstract—A kinetic theory is developed for strong Langmuir turbulence in the region of the reflection of a high-
power ordinary radiowave in ionospheric plasma. The structure and quantity of the cavitons that form in the stage
of well-developed turbulence are determined. The acceleration of electrons is investigated, and it is found that
the electron distribution function acquires a significant tail with an effective temperature Teff of 50 to 100 times
the plasma temperature. The region occupied by fast electrons is hundreds of times thicker than the layer of Lang-
muir turbulence. The theoretical results are shown to correlate well with the observational data on the electron
acceleration and plasma emission in ionospheric experiments. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Langmuir turbulence (LT) in the ionosphere can be
generated by a vertically directed beam of high-power
radiowaves as a result of resonant interaction of an ordi-
nary high-power radiowave with the eigenwaves of the
ionospheric plasma in the region where the radiowave
is reflected. The extraordinary radiowaves do not reach
the region of resonant interaction [1].

In ionospheric experiments, LT is investigated by
means of incoherent scatter radars emitting radiowaves
at the ion-acoustic and plasma frequencies. LT is
responsible for the electron acceleration and for the
intense optical emission from the perturbed region of
the ionosphere [2–5].

The mechanism for the onset of LT is associated
with the parametric instability of the plasma in an alter-
nating electric field [6]. It is this instability that gives
rise to plasma waves and ion-acoustic waves. In the
nonlinear stage of instability, an important role is
played by the cavitons—the wells in the plasma density
within which the oscillations of the plasma electrons
are trapped. The cavitons govern the acceleration of
electrons [7, 8].

A distinctive feature of LT is that it occurs in a nar-
row ionospheric layer with a thickness of about 100 to
200 m in altitude z, the characteristic vertical scale
lengths of the plasma density and plasma temperature
being tens of kilometers. The electron mean free path
usually exceeds the length of the LT layer. Conse-
quently, LT develops in an essentially collisionless
plasma. The nonlinear stage of LT is dominated by the
modulational instability [9, 10] and is described by the
Zakharov hydrodynamic equations [11, 12]. Numerous
analytical studies and numerical simulations based on
these equations have made it possible to determine the
intensity and spectrum of the established ion-acoustic
and plasma oscillations and the number and structure of
the generated cavitons, as well as to investigate the non-
linear stage of the collapse of these cavitons [11–16].
1063-780X/04/3012- $26.00 © 20995
However, the electron acceleration cannot be described
by the hydrodynamic theory, in which neither the
amount of the accelerated electrons nor their inverse
effect on the spectrum of the established plasma oscil-
lations can be determined.

The electron acceleration can be described only in
terms of kinetic theory. The moving electrons are accel-
erated when they cross the cavitons; hence, the acceler-
ation process is of a local nature. Moreover, the only
electrons that are subject to acceleration are fast elec-
trons in the tail of the electron distributionfunction
(EDF). As for the slow (thermal) electrons, they adia-
batically oscillate inside the cavitons and do not absorb
the field energy. The boundary between the fast and
slow electrons is determined by the effective width of
the caviton [8].

Under the ionospheric plasma conditions, however,
this acceleration process is not finished when an elec-
tron leaves the accelerating LT layer. As was mentioned
above, the length of the LT layer is much less than the
electron mean free path. Consequently, after being
accelerated inside the layer, the electron outside the
layer can be scattered by collisions in such a way that it
returns to the layer and crosses it again, thereby acquir-
ing additional energy. This process may repeat itself
many times. Fast electrons are accelerated until the
energy that they acquire in the LT layer becomes equal
to the energy that they lose in collisions. Because of the
repeated crossings of the LT layer, fast electrons are
accelerated far more efficiently; as a result, the region
occupied by them increases many times, becoming as
large as tens of kilometers in size [17]. These theoreti-
cal predictions were fully confirmed by experimental
observations of the electron acceleration and optical
emission in the ionosphere [18–26].

At the same time, a theory of repeated acceleration
has been developed based on a rigorous kinetic descrip-
tion of the electrons only outside the accelerating layer
[17]. The layer parameters (in particular, the sizes and
004 MAIK “Nauka/Interperiodica”
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number of the cavitons, which govern the acceleration
process) are described phenomenologically. The goal of
the present study is to overcome this drawback of the
theory and to construct a systematic kinetic solution to
the problem not only outside but also inside the accel-
erating layer.

Our paper is organized as follows: In Section 2, we
formulate the kinetic problem in general terms. We
focus on the accelerating layer, in which the electric
field of the radiowave is strong and the resonance con-
ditions that give rise to intense plasma oscillations are
satisfied. Above the layer, the radiowave is absent;
below the layer, its effect is unimportant. We derive the
general kinetic equation and impose conditions on the
electric field at the boundaries of the accelerating layer.
In Section 3, we construct a general solution to the
kinetic equation outside the layer. In doing so, elastic
and inelastic collisions of electrons with both the
charged and neutral particles of the ionospheric plasma
are fully taken into account. Based on the solution to
the kinetic equation outside the layer, closed boundary
conditions for the EDF inside the layer are formulated.
In Section 4, we use these boundary conditions to
obtain a complete solution to the kinetic problem for an
accelerating layer with strong LT. Such a problem can
only be solved by applying efficient numerical meth-
ods. In our simulations, we used the standard particle-
in-cell (PIC) technique that was developed to model
collisionless plasmas [27]. However, since the electric
oscillations excited in the layer are very strong, the col-
lisional absorption plays an important role even in the
case of rare collisions. In calculations, these collisions
were taken into account by a specially devised numeri-
cal method, one which is described in the Appendix. In
Section 5, we investigate the electron acceleration.

Our simulations allowed us to examine the cavitons
that form in an accelerating layer with strong LT and to
determine how the shape and number of the cavitons
depend on the strength of the radiowave electric field
and on the frequency detuning. We show that the EDF
acquires a significant tail of fast electrons and that the
tail extends over a spatial region hundreds of times
thicker than the accelerating layer because of the cou-
pling of the layer to the surrounding space. We deter-
mine how the shape of the tail depends on the parame-
ters of the problem. We demonstrate that fast electrons
play an important (and even dominant) role in stabiliz-
ing the cavitons. Note that the electron acceleration and
the resulting caviton stabilization cannot be described
in terms of the previously accepted hydrodynamic
model even if some additional parameters are intro-
duced. We also show that an appreciable amount of the
field energy is absorbed in rare electron collisions. We
determine how the theory developed here is related to
the phenomenological theory of electron acceleration
[17] and find the main phenomenological parameters.
Finally, in Section 6, we summarize the main results of
our study and briefly discuss applications of the theory
constructed here to ionospheric experiments. It is
shown that the theory provides a good description of
the optical emission and electron acceleration observed
in a vast ionospheric plasma region (extending over
tens of kilometers).

2. GENERAL FORMULATION 
OF THE KINETIC PROBLEM

Let us consider a weakly inhomogeneous (in the z
direction) plasma and an electromagnetic wave propa-
gating in it. The kinetic equations describing the motion
of the plasma electrons and ions have the form

(1)

.

Here, fe(v, r, t) and fi(v, r, t) are the electron and ion dis-
tribution functions, respectively; Se( fe) and Si( fi) are
the collision integrals; Ne(r) and Ni(r) are the electron
and ion densities; e and m are the charge and mass of an
electron; M is the mass of an ion; E1 is the plasma elec-
tric field; B is the magnetic field; and E0(z) is the ampli-
tude of the incident ordinary electromagnetic wave of
frequency ω. At point zl, where the radiowave is
reflected, its frequency ω coincides with the eigenfre-
quency ωl of plasma oscillations; in other words, the
following resonance condition is satisfied:

.

In the vicinity of this point, strong LT develops, a
large number of cavitons are generated, and the elec-
trons are accelerated. We assume that the wave electric
field satisfies the condition E0 � Eth, where Eth is the
threshold for the onset of parametric instability [6].1 

The scale length of the LT layer is small in compar-
ison to the electron mean free path, and the wave elec-
tric field in the resonance region points in the z direc-
tion. Consequently, to a first approximation, the colli-
sions in the layer can be ignored and the kinetic
equations describing the dynamics of electrons and
ions can be written in a simple form as:

1 In ionospheric experiments, this condition is usually satisfied
well. In the region where the ordinary wave is reflected, its elec-
tric field is polarized parallel to the Earth’s magnetic field, which
is assumed, for simplicity, to be directed nearly along the vertical
z axis.
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(2)

.

Of course, these equations are valid only inside the
accelerating layer. In order to solve them, we must for-
mulate the conditions on the electric field and on the
EDF at the layer boundaries.

The boundary conditions on the electric field and on
the wavelength of the incident wave can naturally be
chosen as follows:

where L is the length of the LT layer. The question
about the boundary conditions on the EDF is more
complicated. In order for the conditions on the EDF at
the boundaries of the collisionless LT layer to be cor-
rect, it is necessary to consider the kinetic equation for
the electrons outside the layer.

3. KINETIC EQUATION OUTSIDE THE LT LAYER

Above the LT layer, there is no radiowave; below the
layer, its effect is unimportant. Since the length of the
region outside the layer is substantially greater than the
electron mean free path, elastic and inelastic collisions
play an important role there. The kinetic equation for
the electrons outside the layer has the form

, (3)

where µ is the cosine of the angle between the z axis
and the electron velocity. It is important that, in colli-
sions, the direction of the electron velocity changes at a
much faster rate than does the electron energy:

(4)

where ν1 and ν0 are the elastic and inelastic electron
collision frequencies, respectively. It is well known [1]
that, under condition (4), the EDF is symmetrized;
therefore, it is natural to expand it in Legendre polyno-
mials:

In this case, kinetic equation (3) splits into a
sequence of coupled equations for the functions fn [1].
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Taking into account the smallness of parameter (4), we
write out the main equations of the sequence:

(5)

In writing Eqs. (5), we chose the following form of
the collision integral for the fast electrons [16]:

, 

,

where σ0 is the cross section for inelastic processes, σt

is the transport cross section, and Nm is the total density
of the neutral particles. Finally, Eqs. (5) are reduced to

. (6)

Let us consider the problem in a quasi-steady-state
formulation (∂f0/∂t = 0). The solution to kinetic equa-
tions (6) outside the LT layer has the form

(7)

where l1 = v/ν1 is the electron mean free path. We can
see that the distribution function of fast electrons in the
collisional region varies on a characteristic spatial scale

on the order of l1/ , which is much greater than the
mean free path l1. On the other hand, taking into
account that the length of the accelerating layer is much
less than the electron mean free path, we can assume it
to be zero (as compared to the scales on which the
parameters of the problem vary in the z direction). At
the upper boundary of the accelerating layer, the elec-
trons in the angular interval 0 < µ < 1 flow out of the
layer, while the electrons in the interval –1 < µ < 0 flow
into it (and vice versa at the lower boundary). Hence, by
integrating the distribution function fs(v, µ) of the elec-
trons inside the accelerating layer over µ from 0 to 1,
we find the total flux of the electrons that flow upward
out of the layer:

.
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Obviously, this flux is equal to the total electron flux
at the boundary z = 0 outside the layer (see solution (7)):

(8)

Consequently, the distribution function  of the elec-
trons that return to the layer has the form

(9)

In this expression, we eliminated the distribution func-
tion F(0, v) outside the layer by means of formula (8).
Formula (9) is the sought condition on the EDF at the
boundary of the layer: it relates the distribution func-
tion of the fast electrons flowing out of the layer to the
distribution function of the electrons flowing into the
layer. As will be seen below, this condition is sufficient
to describe electron acceleration in the LT layer with
allowance for its coupling to the surrounding space.

It follows from formulas (8) and (9) that the total
electron influx is not the same as the total outflux: a

small fraction (about ) of the fast electrons that
escape from the layer do not return to it. These losses
are compensated for by the diffusion and thermal diffu-
sion of the thermal electrons. In our simulations, these
diffusion processes were ignored. It can be shown, that,
in a purely kinetic approach, they can be taken into
account (with the desired accuracy) by artificially turn-
ing this fraction of electrons back into the LT layer. It is
this compensation procedure that was implemented in
our numerical simulations.

4. KINETIC THEORY OF TURBULENCE 
IN THE RESONANCE LAYER

Recall that we are interested here in the conditions
under which the field of the electromagnetic pump
wave is far above the threshold for the onset of paramet-
ric instability, E0 � Eth. Such conditions are favorable
for the efficient generation of strong LT in the resonant
layer.

Near the point of a radiowave’s reflection, the elec-
tric field in the vicinity of its maximum can be repre-
sented in the form of a standing wave:

,

where  =  is the electron plasma frequency

and δω is the frequency shift with respect to the reso-
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nant frequency. The field distribution E0(z) is described
by the Airy function and the electron and ion distribu-
tions are described by the kinetic equations.

In kinetic theory, strong LT can be described only
numerically. In an actual ionospheric plasma, the elec-
tron mean free path is substantially greater than the
length of the resonance layer. Consequently, to a first
approximation, the plasma can be treated as collision-
less. Accordingly, our simulations are based on the PIC
method developed to model the processes occurring in
collisionless plasmas [27].

Both ions and electrons are modeled as charged par-
ticles moving in a superposition of their own electric
fields and the electric field produced by an external
source. The ratio of the mass M of a model ion to the
mass m of a model electron was varied over a broad
range. Most of the results that will be presented here
were obtained for M/m = 100. In simulations, the max-
imum number of model electrons, as well as of model
ions, was 4 × 106.

The accelerating layer can be assumed to be one-
dimensional. The length of the layer was varied within
wide limits; optimally, it was taken to be equal to 2000
Debye lengths. At the boundaries of the layer, the elec-
tric field was set equal to zero and the conditions for the
particles were imposed in accordance with formula (9).
At the initial instant (t = 0), the plasma was assumed to
be distributed uniformly over the entire computation
region and the ions and electrons were assumed to obey
Maxwellian distributions with the same temperatures.
The external electric field at t = 0 was set at zero, and,
at later times, it was assumed to increase gradually
according to a certain law. The formulation of the prob-
lem must imply a gradual increase in the external elec-
tric field from zero. If the initial external electric field
were nonzero over the entire layer, then the layer would
immediately become subject to strong Langmuir oscil-
lations, which contradicts the actual situation.

An important aspect of the problem in question is
associated with the “natural” noise of the system of
model particles. In testing the code, we thoroughly
investigated this noise and also examined its sensitivity
to the computation parameters. We chose the optimal
values of the computation parameters in such a way that
an increase or a decrease in the computation parameters
from these optimal values by a factor of 2 to 3 did not
affect the noise level. The only computation parameter
to which the noise level was certainly sensitive was the
number NM of the model particles: the noise level

turned out to be proportional to .

In the stage of well-developed LT, the mean ampli-
tude of the oscillations that are efficiently generated in
the plasma is so large that the absorption of the field
energy in rare electron collisions can become substan-
tial. In simulations, this absorption was taken into
account by a specially devised numerical method (see
the Appendix), which supplements the standard PIC

NM
1–
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Fig. 1. Time evolution of (1) the electron energy density εe and (2) the electric field εf.

1

2

method when rare electron collisions begin to play an
important role.

For convenience in numerical calculations, we
reduced the problem to a dimensionless form. As the
units of time, length, and velocity, we adopted the

inverse plasma electron frequency , the electron

Debye length λDe = , and the electron

thermal velocity , respectively, and as the
units of potential, electric field strength, density, and

energy, we adopted the quantities Te0/e, ,
ne0, and Te0/2, respectively. Here, ne0 and Te0 are the ini-
tial electron density and the initial electron tempera-
ture.

Our simulations show that electron oscillations in
the system grow very rapidly. In the example illustrated
in Fig. 1, we can see that an exponential increase in the
energy of the electric-field oscillations is accompanied
by a substantial increase in the electron oscillatory
energy. At a time of t ≈ 200–300, the electron oscilla-
tory energy becomes as great as 50% (or even more) of
the electron thermal energy. In this case, the energy
density of the electric field, εf, and the electron kinetic
energy, εe, oscillate in antiphase at the doubled electron
plasma frequency.

Starting from tm ≈ 250–300, the energy density stops
increasing monotonically because of the strongly non-
linear processes accompanying the development of LT.
For M/m = 100, the time tm is just the characteristic time
of ion oscillations and thus corresponds to the growth
rate of the modulational instability in a strong field
[11]. It can be seen that this instability suppresses the

ωpe

1–

Te0/ 4πe
2
ne0( )

Te0/me

4πne0Te0
YSICS REPORTS      Vol. 30      No. 12      2004
rapid growth of the field and electron energies. The
simultaneous oscillations of the electrons and ions give
rise to wells in the plasma density (cavitons). The cav-
itons are shown in Fig. 2, which refers to the time t =
350. One can see well developed depressions in the
plasma density with a depth of up to (0.2–0.4)ne0. The
electron and ion densities are perturbed in essentially
the same manner, i.e., the cavitons are quasineutral. The
width of the cavitons is a ≈ 15–20λDe, the characteristic
distance between them being d ≈ 50λDe. The positions
of the most strongly excited cavitons coincide naturally
with the maxima in the amplitude E0(z) of the pump
wave. The caviton depth correlates closely with the
mean energy of the plasma oscillations trapped within

–500 –450 –400 –350

0

2

4

0.7

1.0

1.3
n

E2

x

Fig. 2. Profiles of (a) the ion density ni (solid curve) and the
electron density ne (dashed curve) and (b) the squared elec-
tric field at the time t = 350.

(a)

(b)
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Fig. 3. Spatiotemporal evolution of the squared electric field over the spatial interval –300 ≤ z ≤ –200 and the time interval 350 ≤
t ≤ 366.
the caviton (Fig. 2). One can see from Fig. 3 that the
trapped wave is a standing one. The phases of the oscil-
lations are seen to be different even in two neighboring
cavitons. During the initial period (up to t = 400–500),
the cavitons increase abruptly in depth. The caviton
depth then increases at a progressively slower rate, and,
on time scales of t > (1–2) × 103, an ion-acoustic wave
of amplitude 0.2–0.3 is established. The electron oscil-
lations trapped by this wave have a relatively low inten-
sity (see Fig. 4). Hence, in the problem in question, the
cavitons are stabilized (rather than collapse) because
the energy of the plasma oscillations excited by the
pump wave in the density wells is absorbed by the
accelerated electrons. A detailed description of the
acceleration of electrons in the course of their interac-
tion with cavitons is given in the next section.

Note that some simulations were carried out with
allowance for collisions of thermal electrons in the LT
layer. The results of these simulations show that these
collisions lead to electron heating and weaken plasma
oscillations (or, equivalently, lower the caviton ampli-
tude). The fraction of the pump wave energy that is
spent on electron heating is fairly large: under iono-
spheric conditions, it can be as large as 30%.

5. ELECTRON ACCELERATION

We now consider electron acceleration in the LT
layer. The kinetic equation for fast electrons has the
form

. (10)∂f
∂t
----- v z

∂f
∂z
----- e

m
----E

∂f
∂v z

---------+ + 0=
Here, E0(r, t) is the electric field of the plasma oscilla-
tions; as was shown above, this field is sharply ampli-
fied in each caviton (see Figs. 2, 3). Across a caviton,
the EDF changes only slightly. This is why Eq. (10)
should be averaged over an ensemble of realizations of
the electric field values over the entire layer:

(11)

Hence, basic kinetic equation (10) reduces to the diffu-
sion equation in velocity space:

, (12)

where the electric field correlator

is calculated along the trajectory of an electron.

In order to solve Eq. (12), it is necessary to take into
account conditions (8) and (9) at the boundaries of the
LT layer. Integrating Eq. (12) over the layer length L,
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Fig. 4. (a) Spatiotemporal evolution of the squared electric field and (b) the contour plot of the electron density over the spatial inter-
val –300 ≤ z ≤ –200 and the time interval 1500 ≤ t ≤ 1520.

(a)

(b)
we obtain the following expression for the change ∆f =
f(vz , L, t) – f(vz , 0, t) in the EDF inside the layer:

. (13)v z∆f L
∂f
∂t
-----–

e
2

m
2

------ ∂
∂v z

--------- D v z z t, ,( ) z
∂f

∂v z

---------d

0

L

∫ 
 
 

+=
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Using boundary conditions (8) and (9), we can
determine how much the EDF changes outside the
layer:

.∆f 2 3δ f=
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We thus arrive at the following final form of the kinetic
equation:

. (14)

The results of solving Eq. (14) numerically for δ =
0.1 are illustrated in Fig. 5. We can see that the initial
Maxwellian distribution is rapidly distorted and the
EDF acquires a tail of fast electrons. This tail can be
characterized by the effective temperature Teff , which is
50–100 times higher than the initial electron tempera-
ture: Teff = 5–10 eV at Te0 = 0.1 eV. However, only a
small fraction (less than 1%) of all the electrons are
accelerated to such high temperatures.

Under steady-state conditions, kinetic equation (14)
has the form

(15)

Here, according to Eq. (14), the effective temperature
Teff is equal to

. (16)

The correlation function C(z, z1) = 〈E(z)E(z1)〉 of the
electric field is shown in Fig. 6. The function is seen to
be strongly localized in the vicinities of the cavitons.
Therefore, the total integral over z in expression (16)
can be approximately replaced by the sum of integrals
over the vicinities of the maxima in the correlation
function:
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Fig. 5. EDF at the times t = 0 (diamonds), 300 (circles),
1000 (crosses), and 3000 (triangles).
where N is the total number of cavitons in the LT layer.
We introduce an average statistical caviton character-

ized by the root-mean-square electric field  and by
the mean scale length a to obtain

, (17)

where ∆εc = ea  is the mean increment in the
energy of an electron in a caviton. Expression (17) for
the effective temperature of the electrons that are sub-
ject to repeated acceleration in a thin LT layer agrees
with the corresponding expression derived earlier in
[17]. Relationships (16) and (17) provide a kinetic def-

inition of the phenomenological parameters  and
a used in the theory [17].

The temperature Teff given by expression (17) corre-
lates well with that obtained from the exact solution of
Eq. (14) (see Fig. 5). Note that numerical kinetic calcu-
lations of strong parametric instability in a resonance
LT layer were carried out earlier in [28]. In that paper,
however, no account was taken of the external colli-
sional plasma, the presence of which is implied by cor-
rect boundary conditions (9). As a result, the conserva-
tion laws were not satisfied: the EDF decreased with
energy according to a power law; as a result, the energy
flux carried away by the accelerated electrons was sev-
eral times more intense than the net energy flux of the
pump wave. Some possible simplifications in the for-
mulation of the problem in question were also dis-
cussed in [28, 29].

6. CONCLUSIONS

In this paper, we have constructed a theory of strong
LT that develops in a resonance layer of a weakly inho-
mogeneous plasma. The three main results of our work
are as follows.

(i) We have determined exactly the correlation func-
tion of the plasma oscillations trapped within the cavi-
tons and have created a model of a high-energy tail that
arises in the electron distribution due not only to elec-
tron acceleration in a resonance layer but also to elec-
tron collisions in a weakly inhomogeneous unperturbed
plasma.

(ii) We have established that fast electrons can have
a stabilizing effect on the cavitons. In this case, the cav-
itons do not collapse but instead evolve gradually into a
quasi-steady finite-amplitude ion-acoustic wave in
which the enhancement of the plasma oscillations
under the action of a high-power radiowave is balanced
by their absorption by fast electrons.

(iii) The spatial dimension of the region occupied by
the fast electrons is governed by the plasma inhomoge-
neity. Under ionospheric conditions, this dimension
exceeds the spatial scale of the LT layer by two orders
of magnitude or more.

Ec
2〈 〉

Teff δ 1/4– ∆εc〈 〉 N=

Ec
2〈 〉

Ec
2〈 〉
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Fig. 6. (a) Correlation function C(z, z1) and (b) its contours plot.

(a)

(b)
The theory developed here is fully confirmed by
experiments aimed at investigating the influence of
high-power radiowaves on the ionospheric plasma.
Near the point of its reflection in the resonance layer, an
ordinary radiowave gives rise to strong LT. Fast elec-
trons generated in this process are observed to have
energies of up to ε ≈ 20 eV, which are 100–200 times
higher than the temperature of the unperturbed iono-
PLASMA PHYSICS REPORTS      Vol. 30      No. 12      2004
spheric plasma, Te0 ≈ 0.1 eV. The shape of the EDF pre-
sented in Fig. 5 agrees well with that determined exper-
imentally (see [22]).

The region of artificially produced plasma luminos-
ity is tens of kilometers in size, the length of the reso-
nance LT layer being only 100–300 m [24, 25]. Optical
emission from the plasma is observed at the wave-
lengths of λ1 = 6300 Å (the red line), λ2 = 5577 Å (the
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green line), and λ3 = 8446 Å (the IR line), which corre-
spond to the excitation potentials of I1 = 1.98 eV, I2 =
4.17 eV, and I3 = 10.74 eV, respectively. Since the deex-
citation time of the red line is quite long (∆t ≈ 150 s),
the red line emission is especially sensitive to electron
collisions with neutral molecules. Consequently, at alti-
tudes of z ≈ 200–400 km, where the atmospheric den-
sity is very low, the red line emission is most intense
[17–21], while, at lower altitudes (z ≈ 110–130 km), the
green line emission dominates [30]. The results of the
theory constructed here are in good agreement with the
observational data.
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APPENDIX

Effect of Rare Electron Collisions

In spite of the fact that, under actual ionospheric
conditions, the electron mean free path is much longer
than the spatial scale of the accelerating layer, elastic
collisions of thermal electrons can play an important
role within the layer during the excitation of strong
plasma oscillations. With this circumstance in mind, we
devised a special modification of a PIC method that
makes it possible to take into account the electron scat-
tering process.

The scattering is assumed to be elastic because, at
thermal electron energies, the cross section for elastic
collisions is much larger than the cross sections for the
remaining processes (see [1]). In elastic collisions, the
velocity of the model electrons changes its direction but
its absolute value remains unchanged. This is why it is

102

0 30
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t

101

60 90 120 150

Fig. 7. Time evolution of the momentum of the system for
different numbers of the model collisions: (1) 105, (2) 8 ×
104, (3) 5 × 104, (4) 2 × 104, and (5) 104.

1 2 3
4

5

necessary to follow all three velocity components of the
model electrons. In other words, electron collisions
should generally be treated in three-dimensional veloc-
ity space. Note that our problem assumes axial symme-
try around the z axis, thereby reducing the amount of
computation.

The method for modeling collisions consists in the
following: In a unit time interval ∆t, the direction of the
velocity component vz is randomly changed for a cer-
tain number SM of electrons chosen at random from
their total number NM. The transverse velocity compo-
nents are changed so that the absolute value of the elec-
tron velocity |v | (or the electron energy) remains the
same. This scheme of collisions between particles mod-
els binary collisions by allowing instantaneous changes
in the particle velocity components. An analysis shows
that such a scheme is equally applicable to Coulomb
interactions, in which the main role is played by long-
range collisions accompanied by small changes in the
direction of particle motion. Based on the theory of
binary collisions, it is an easy matter to find the rela-
tionship between the number of “model collisions” SM

at each time step and their effective frequency νM in the
plasma. To do this, it is natural to introduce the dimen-
sionless collision frequency through the formula

(A1)

where ∆t is the time step in units of  and the colli-
sion frequency νM is in units of ωpe.

We carried out a series of numerical experiments
aimed at checking relationship (A1) and determining
the collision frequency in a model plasma. The calcula-
tions were performed for a system in which all model
electrons were assigned a moderate initial velocity V0
in the same direction, so the entire system possessed a
nonzero net initial momentum P0. We considered how
the system comes to equilibrium at the expense of the
collisions introduced above. An example of this is illus-
trated in Fig. 7. We can see that the momentum P of the
system decreases according to the law

(A2)

It turns out that the quantity νp is proportional to the
value of νM determined for a given number SM of model
collisions from formula (A1). This permits relationship
(A1) to be used to model processes with a prescribed
collision frequency νp.

In our investigations, it was also established that,
during the damping in elastic collisions, the excess
energy of the system, which is determined by the initial
velocity V0, is uniformly distributed over the x, y, and z
velocity components. Hence, elastic collisions reduce
the excess momentum of the system to zero; moreover,
this process is correct from the energy standpoint: the
energy ε is exactly conserved, and there is no preferen-
tial direction of motion.

SM NM∆tνM,=

ωpe
1–

P P0 νpt–( ).exp=
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Inelastic collisions accompanied by an energy loss
δε are considered by introducing the parameter δ(ε),
which characterizes the effective (averaged) electron
energy losses:

.

Here, the angle brackets denote averaging over both
inelastic and elastic collisions.
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