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30th Anniversary of Our Journal
The journal Fizika plazmy (Plasma Physics Reports,
the former Soviet Journal of Plasma Physics) was
founded in 1975, almost a quarter of century after the
beginning of studies (May, 1951) on magnetic confine-
ment of high-temperature plasmas with the aim of pro-
ducing controlled thermonuclear reactions (initially, for
military purposes). The founders of this field of
research, A.D. Sakharov and I.E. Tamm, planned to
produce tritium for hydrogen bombs in the deuterium
plasma of a controlled fusion reactor. Soon after
V.L. Ginzburg proposed using lithium in thermonuclear
weapons (lithium nuclei decay into helium and tritium
nuclei under the action of neutrons), the studies on con-
trolled fusion reactors switched to peaceful purposes.
However, investigations aimed at military purposes
continued in the Soviet Union, the United States, and
Great Britain under the higher classification code. The
studies on controlled nuclear fusion (CNF) began to be
declassified only after I.V. Kurchatov’s report On the
Possibility of Producing Thermonuclear Reactions in a
Gas Discharge (Harwell, 1956). At the subsequent
Symposium on Electromagnetic Phenomena in Cosmi-
cal Physics (Stockholm, 1956) and the Third Interna-
tional Conference on Phenomena in Ionized Gazes
(Venice, 1957), the presented reports allowed the par-
ticipants to guess those who worked on the CNF prob-
lem. The first papers of English and American scientists
on this problem were published in the January issue of
Nature for 1957, in connection with the sensational
results achieved in Harwell in the ZETA toroidal device
(later, the optimistic interpretation of these results
turned out to be erroneous).

The year 1957 was successful for the development
of science in Russia. An epochal event was the launch
of the first satellite. A large synchrophasotron—an
accelerator with a perimeter of 200 m—was put into
operation, thus confirming the self-phasing mechanism
discovered by V.I. Veksler. This opened the way for sub-
stantially increasing the energy of elementary particles
and, thereby, for penetrating into the very fundamentals
of nature. In response to Harwell’s report by Kurchatov,
the Unites States proposed holding the international
conference on CNF in Geneva in 1958. To demonstrate
their advances in this area, the American scientists pre-
sented full-scale operable experimental devices. The
culmination of the conference was L. Spitzer’s stellara-
tor. A remarkable advantage of this toroidal magnetic
confinement system is that, in contrast to the ZETA and
tokamak-type systems, no plasma current is required to
be excited in it (note that the term tokamak was pro-
posed by I.N. Golovin at the end of 1957, but it came
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into use much later). However, the results on plasma
confinement achieved in American stellarators
appeared to be unsuccessful. Over the next ten years,
this was attributed to anomalous diffusion and/or the
inevitable Bohm diffusion.

Nevertheless, in spite of pessimistic expectations of
some scientists, the field of CNF research expanded
considerably after the Geneva conference. It was
decided to hold regular International Conferences on
Plasma Physics and Controlled Nuclear Fusion
Research. The first such conference was held in
Salzburg in 1962; the second, in London in 1965; the
third, in Novosibirsk in 1968; the fourth, in Madison in
1971; and the fifth, in Kyoto in 1974 (subsequent con-
ferences were held every two years). The scope of
investigations on CNF in the Soviet Union in these
years may be glimpsed from the summarizing theoreti-
cal reviews published in the first eight volumes of
Reviews of Plasma Physics edited by M.A. Leontovich.
Over fifteen years, different methods of plasma con-
finement (including high-frequency methods) were
tested in the Soviet Union and the United States.

Since 1965, the studies in the T-3 tokamak began to
show progress in plasma confinement and heating. At
the 1968 Novosibirsk Conference, it was reported that
an electron temperature of about 1 keV in the T-3 toka-
mak had been attained. In 1969, English scientists per-
formed local Thomson-scattering measurements of the
temperature in T-3 and confirmed that high plasma tem-
perature had actually been attained. As a result, studies
on magnetic fusion research concentrated mainly on
tokamaks.

To intensify research on plasma physics in the
Soviet Union, M.S. Rabinovich, the head of the Plasma
Physics Laboratory at the Lebedev Physical Institute of
the USSR Academy of Sciences, proposed creating the
Academic Scientific Council on the Complex Problem
“Plasma Physics” and to found the journal Fizika
Plazmy. At that time, there were the following journals
on CNF and plasma physics:

Physics of Fluids, an American journal founded in
1958 (on the basis of the plasma subjects, a separate
journal Physics of Plasmas was then formed in 1994);

Plasma Physics–Accelerator–Thermonuclear Rese-
arch, a European journal founded in 1958 (since 1984,
it has been published under the title Plasma Physics
and Controlled Fusion);

Nuclear Fusion, an IAEA journal founded in 1960;
and
 © 2005 Pleiades Publishing, Inc.
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Journal of Plasma Physics, an English journal
founded in 1960.

Rabinovich worked under the leadership of Veksler
and took part in performing the calculations for the
motion of charged particles in accelerators. After theo-
retical studies for the Dubna synchrophasotron had
been successfully completed in 1957, he recognized the
importance of the CNF problem and switched to it. He
organized studies on magnetic plasma confinement in a
stellarator with a circular magnetic axis at the Lebedev
Physical Institute (in contrast to the racetrack geometry
of the Princeton C stellarator with a two- and three-pole
windings on the semicircular segments of the system).
At the beginning of 1960s, Kurchatov, the leader of the
Soviet thermonuclear program, initiated stellarator
studies at the Kharkov Institute for Physics and Tech-
nology. Among the institutions involved in CNF
research, there were also the Institute of Nuclear Fusion
(Novosibirsk), the Ioffe Physicotechnical Institute
(Leningrad), the Leningrad Polytechnic Institute, the
Sukhumi Physicotechnical Institute, the Institute of
Applied Physics (Nizhni Novgorod), and the Institute
of Plasma Physics (Kiev). In 1960s, the program on
inertial confinement fusion (including laser fusion) was
initiated. In the course of investigations, a variety of
possible plasma applications (in addition to the CNF
problem) were revealed: the idea arose of using plasma
to directly transform heat into electric energy, plasmo-
chemistry and relativistic plasma electronics started to
develop, the plasma processing of metals came into use,
compact plasma thrusters for space vehicles were cre-
ated, etc. Plasma physics incorporated certain fields of
atomic and molecular physics. All these plasma appli-
cations initiated the development of specific plasma
diagnostics. Interest in the studies and applications of
this fourth state of matter naturally resulted in the foun-
dation of the academic journal Fizika plazmy, and
M.S. Rabinovich became its first editor-in-chief.

The first volume of Fizika plazmy appeared in 1975.
In the fifth issue of this volume, the remarkable paper
by B.B. Kadomtsev Disruption Instability in Tokamaks
was published. This paper stimulated a large number of
studies on active plasma processes in nuclear fusion
devices. Along with papers by Soviet scientists, the
journal also published those by foreign authors. Special
issues were devoted to the jubilees of scientists that had
greatly contributed to plasma physics. Unfortunately,
Rabinovich, the founder of our journal, died after an
extended illness in 1982.

Over thirty years, the scope of our journal progres-
sively expanded. Problems similar to those that arise in
investigating magnetized plasma in fusion devices also
appear in studying highly ionized space plasma. For
example, giant magnetic tubes floating to the surface of
the Sun are generated in its interior. When the ends of
such two tubes (visible as sun spots) with oppositely
directed magnetic fields approach one another, the
magnetic field annihilates and its energy is transformed
into a plasma particle flow that crumples the Earth’s
magnetosphere, thus creating a magnetic storm.

In recent years, technological problems of micro-
electronics have stimulated the development of dusty
plasma physics. It turned out that micron-size dust
grains immersed in plasma acquire an enormous elec-
tric charge. For this reason, the properties of the ambi-
ent plasma can change radically even at a relatively low
dust concentration. Moreover, the interaction between
dust grains appears to be very strong, so the dust is fre-
quently in a liquid or crystalline state. This makes it
possible to study phase transformations on a kinetic
level. In this way, concepts characteristic of the physics
of condensed states were introduced in plasma physics.
Our journal has devoted much attention to the problems
of dusty plasma from the very beginning of the devel-
opment of this branch of plasma physics.

To give an idea of the scope of our journal, we list
its rubrics (in the alphabetic order):

Beams in Plasma, Charged Particle Motion,
Charged Plasma, Dusty Plasma, Elementary Processes
in Plasma, Ion and Plasma Sources, Ionospheric
Plasma, Isotope Separation, Laser Plasma, Low-Tem-
perature Plasma, Magnetic Confinement Systems,
Magnetohydrodynamics, Magnetospheric Plasma,
Nonideal Plasma, Nonlinear Phenomena, Particle
Acceleration in Plasma, Plasma Accelerators, Plasma
Diagnostics, Plasma Dynamics, Plasma Electronics,
Plasma Instability, Plasma Kinetics, Plasma Optics,
Plasma Oscillations and Waves, Plasma Turbulence,
Plasma–Wall Interactions, Radiation in Plasma, Solid-
State Plasma, Space Plasma, Stellarators, Symmetries
and Conservation Laws, Thermonuclear Plasma, Toka-
maks, Transport Processes, and Wall Plasma.

Because of the complexity of high-temperature
plasma physics, it has always been impossible to fore-
see the rate of progress toward a controlled fusion reac-
tor. Nevertheless, the information obtained over long
years of tokamak studies has made it possible to begin
construction of the large international tokamak experi-
mental reactor (ITER) over the following decade. At
the same time, the further development of plasma phys-
ics will definitely require even more profound investi-
gations into this state of matter so prevalent in nature
and its various applications.

Editorial Board
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Abstract—The question of whether two-valued solutions can exist for an ambipolar electric field in stellarators
and rippled tokamaks is considered. Steady solutions to transport equations in the limit of infrequent collisions
are obtained in the purely neoclassical transport theory (that is, without allowance for possible anomalous
losses). It is shown that, given the particle and heat sources, these equations have only one steady continuous
solution, i.e., the steady states are nonbifurcating. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In the classical theory of transport processes, the
electron and ion diffusion coefficients are independent
of the ambipolar electric field E and the magnitude of
this field is unambiguously determined by the ambipo-
larity condition, which implies that the electric current
component normal to the magnetic surface equals zero.
In neoclassical theory, however, the diffusion coeffi-
cients (as well as the thermal conductivity) in the limit
of infrequent collisions depend on the electric field E
(see, e.g., [1, 2]). As a result, the ambipolarity condition
yields a cubic (rather than linear) equation for the field
E. In a certain range of plasma density and electron and
ion plasma temperatures, this equation can have three
different steady solutions, E3 ≤ E2 ≤ E1, two of which,
E1 and E3, are stable and one of which, E2, is unstable.
On the other hand, since the condition for the existence
of three real solutions depends on the values of the
plasma parameters, which, in turn, are functions of the
minor radius r,1 it may be that the solutions E1 and E2
vanish (or, more precisely, become complex) at a cer-
tain radius r = r1; as a result, in the region r > r1, there
exists only one real solution E3. Thus, it might well be
possible that, along with the stable solution E3, there
also exists a solution that coincides with E1 and with E3
in the regions r < r1 and r > r1, respectively, and, at the
boundary between these regions, jumps from one solu-
tion to another (this issue will be addressed in more
detail in Section 3).

The possible existence of two-valued solutions for
the ambipolar electric field was pointed out as early as
1969 in one of the first papers by the author on the neo-
classical transport theory [3], but the relevant phenom-
enon (it seems appropriate to call it the bifurcation of
the steady state) has long been deprived of attention.
Interest in it has been revived by the discovery of

1 In what follows, the cross sections of the magnetic surfaces will
be assumed, for simplicity, to be circles of radius r.
1063-780X/05/3101- $26.00 ©0014
improved confinement regimes and by subsequent
attempts to explain L–H transitions theoretically.
Indeed, in view of the stabilizing role of the shear of
poloidal plasma rotation, it is tempting to connect the
L- and H-regimes with the existence of the above two-
valued solutions for the ambipolar electric field.
Attempts to explain L–H transitions on the basis of
such two-valued solutions for the field E were made in
quite a number of papers (see review [4] and the litera-
ture cited therein).

In the author’s opinion, however, these attempts are
physically unjustified because a more careful analysis
shows that two-valued solutions (and especially discon-
tinuity solutions) for the ambipolar electric field do not
exist. We have now to see why the assertion that there
can exist bifurcated steady states is incorrect. First of
all, the ambipolarity equation was solved under the
assumption that it permits discontinuous solutions for
the electric field E. However, this assumption is in con-
flict with the continuity equations (i.e., the diffusion
and heat conduction equations). The reason is that, at
magnetic surfaces at which the field E undergoes dis-
continuous jumps, the particle and energy fluxes also
turn out to be discontinuous and, accordingly, the parti-
cle and heat sources at these surfaces should have sin-
gularities of the δ-function type, which is, however,
hardly possible from the physical point of view. Such
discontinuous solutions arise because the ambipolarity
equation was solved under the assumption that the
plasma density and temperature are prescribed func-
tions of radius and are independent of the ambipolar
electric field. As a result, depending on the initial con-
ditions, the ambipolarity equation admits an infinite set
of solutions, each having a jump discontinuity at any
arbitrary number of prechosen points. Also noteworthy
is the fact that to each of these solutions correspond
their own particle and heat sources. Consequently, even
if, for prescribed density and temperature profiles, the
ambipolarity equation has two continuous solutions,
 2005 Pleiades Publishing, Inc.
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there is no bifurcation because the two corresponding
plasma states refer to different particle and heat
sources. Finally, it is not a priori obvious that the trans-
port equations admit steady solutions with arbitrarily
chosen density and temperature profiles.

Another method for finding steady solutions with-
out producing discontinuous ones consists in simulta-
neously solving the ambipolarity equation, diffusion
equation, and heat conduction equation for prescribed
particle and heat sources. Such a self-consistent solu-
tion will be obtained below (see Section 4), and it will
be shown that, in a steady state, the ambipolar electric
field is a two-valued function of radius. The stability
analysis of these two solutions (see Section 5) shows,
however, that only one of them is stable. Hence, in
purely neoclassical transport theory, the steady solu-
tions are nonbifurcating, and, in order to explain the
existence of L- and H-regimes, it is necessary to go
beyond the scope of neoclassical theory and to invoke
some other physical processes.

The paper is organized as follows. In Section 2, the
basic equations are presented and the model used to
describe transport coefficients is discussed. In Section 3,
the solutions to the ambipolarity equation are analyzed
for prescribed profiles of the plasma density and plasma
temperatures. It is shown that, in a certain range of den-
sity and temperatures, this equation admits solutions
having a discontinuity at any arbitrary number of pre-
chosen magnetic surfaces. The number of discontinui-
ties and their positions are determined by the initial
magnitude of the electric field; moreover, the particle
and heat sources that correspond to each of these solu-
tions are different. In Section 4, an analysis is made of
a complete set of time-independent transport equations
that consists of the ambipolarity equation, as well as of
the equations for the electric field E, plasma density,
and plasma temperatures. Also, expressions for the
steady-state ambipolar electric field as a function of the
plasma density and plasma temperatures and of the par-
ticle and heat sources are presented. Section 5 is
devoted to analyzing the stability of the solutions
derived in Section 4. It is shown that, of the two steady
solutions, only one is stable, namely, that correspond-
ing to the weaker ambipolar electric field. The final sec-
tion summarizes the results obtained and presents the
main conclusions.

2. BASIC EQUATIONS

We are interested in toroidal confinement systems
such as a conventional stellarator in which the helical
magnetic field is specified by a single harmonic with an
amplitude equal to εxlB0, where x = r/r0 with r0 being
the radius of the plasma column, l is the number of heli-
cal field periods along the poloidal direction, and B0 is
the toroidal magnetic field. However, if we set l = 0 in
the formulas presented below, then we arrive at the
results that are also valid for a rippled tokamak, because
the transport coefficients for a conventional stellarator
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
and for a rippled tokamak exhibit the same functional
dependence on the electric field, plasma density, and
plasma temperatures. We assume that the ions are sin-
gly charged. We also restrict ourselves to considering a
regime in which collisions are sufficiently infrequent
for the main contribution to the transport coefficients to
come from locally trapped particles; it is in this case
that the ambipolarity equation can lead to two-valued
solutions for the ambipolar electric field.

Under these assumptions, the set of equations
describing the spatiotemporal behavior of the particle
density N(x, t ), electron and ion temperatures Tj (x, t )
( j = e, i), and ambipolar electric field E can be written
in the form

, (1)

, (2)

. (3)

Here, ρ = N/N0 is the dimensionless density, tj = Tj/T0
stands for the dimensionless electron ( j = e) and ion
(j = i) temperatures, and τ = ω0t is the time in units of

 (the definition of the frequency ω0 will be given
below, after formula (11)). The values of N0 and T0 are
arbitrary; they can be chosen to equal, say, the density
and temperature of one of the components of the
plasma at its boundary (i.e., at x = 1). The functions

Sext(x, t) and (x, t) account for the external particle
and heat sources and are related to the density of the
particles injected into the plasma per unit time, δN/δt,
and to the energy density absorbed by the electrons and
ions, δW/δt, through the following obvious relation-
ships:

, (4)

. (5)

The dimensionless particle and heat fluxes, Sj and
Πj, have the form2 

, (6)

(7)

2 As usual, we assume that the transverse dielectric constant ε⊥  =

4πmic
2N  is much larger than unity; here, mi is the mass of an

ion and c is the speed of light.
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where the prime denotes the derivative with respect to
the dimensionless radial coordinate x and ej and mj are
the charge and mass of a plasma particle of species j.

The first terms on the right-hand sides of formulas (6)
and (7) account for diffusive particle and energy fluxes.
The second terms, which are proportional to the time
derivatives of the dimensionless ambipolar electric
field, V = eir0E/T0, describe convective particle and
energy fluxes associated with the polarization currents.
In what follows, by virtue of the smallness of the elec-
tron-to-ion mass ratio me/mi, we will ignore the elec-
tron polarization current. The coefficient in the last
terms on the right-hand sides of formulas (6) and (7) is
small, D0 = (ρL/r0)2 ! 1; it is defined as the squared
ratio of the ion gyroradius ρL at the temperature T0 to
the plasma radius r0. The expressions for the diffusion
coefficients Dj and thermal conductivities Kj can be
written as

, (8)

, (9)

, (10)

. (11)

These expressions were obtained by approximating
more exact formulas presented in [5]. The approxima-
tions were constructed for different limits in the colli-
sion frequency ν in such a way that, for ν  0 and
ν  ∞, expressions (8)–(11) pass over to the corre-
sponding expressions obtained in [5]. Here, Vj = V +

εlx l – 1tjej/ei , u = ν0/(εωiD0), ν0 is the ion–ion col-
lision frequency at a density N0 and temperature T0, ωi

is the ion gyrofrequency at a temperature T0, ω0 =

1.34 ν0/(R2ε0.5), R is the major radius of the torus, and

µ = 2.41(mi/me)0.5 ≅  102. The coefficients  in
expressions (6) and (7) for the particle and energy
fluxes are not generally constant; their values depend
on the relationship between the first and second terms
in the denominators in the expressions for Dj and Kj .
Thus, for plasma parameters such that the first terms,

, predominate over the second ones, we have
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In the opposite case, i.e., when the first terms can be
ignored in comparison to the second ones, the coeffi-
cients are

.

As will be clear later, the first terms in the denomi-
nators are dominant for the ion plasma component,
while the second play the dominant role for the electron
plasma component. So, for further analysis, we set

.

However, the numerical values of these coefficients
do not change the final conclusions of this study. Note
also that expressions (6)–(11) for the fluxes coincide
qualitatively with those presented in the review by
Fujisawa [4].

It should also be pointed out that, if we express the
temperature T0, magnetic field B0, and radii R and r0 in
keV, T, and cm, respectively, the density N0 being
expressed in units of 1013 cm–3, then we can introduce

the dimensionless quantities D0 = 0.104 T0  and

u = 1.42 × 10–5 N0B0ε–1 . Note that the collision
frequency

ν0 [s–1] = 3.16 × 102N0 (12)

is a dimensional quantity.
The applicability condition for formulas (8)–(11),

i.e., the condition for the plasma to be in the superba-
nana diffusion regime, is given by the inequality

, (13)

where M is the number of helical field periods along the
toroidal direction.

Having made these remarks, we now turn to the
analysis of Eqs. (1)–(3), which, in the steady-state case,
have a fairly simple form:

. (14)

Moreover, in the absence of external charge sources

(i.e., for  =  = Sext), the first of these equations
(the ambipolarity condition) is a consequence of the
last two equations, which are the time-independent
electron and ion diffusion equations.

As was mentioned in the Introduction, the set of
equations (14) can be solved in two ways. The first way
is simpler because it requires solving a third-order alge-
braic equation rather than a set of differential equations.
In this way, we have to specify the functions ρ(x) and
tj(x), to substitute then into the ambipolarity equation
Se = Si, and to solve the resulting algebraic equation for
V. Inserting the solution obtained, V(x), into the expres-
sions for the fluxes Sj and Πj , we find the functions
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Sext(x) and (x) and then, using relationships (4) and
(5), determine the particle and heat sources for which
the solutions derived are possible if they ever exist for
the chosen profiles of the plasma density and plasma
temperatures. It is clear that, in this way, the functions

Sext and  in different solutions V(x) will be differ-
ent.

The second way is, in the author’s opinion, more
reasonable, but it requires the solving of differential
equations for ρ(x) and tj(x). In this way, we have to
specify the particle and heat sources, i.e., the functions

Sext(x) and (x), and to simultaneously solve the sec-
ond and third of Eqs. (14). We thus arrive at a quadratic
equation for the function V(x), the coefficients of this
equation being dependent on ρ and tj , and at a set of
nonlinear first-order differential equations for ρ and tj.

In the next sections, we will consider both of these
approaches in more detail.

Π j
ext

Π j
ext

Π j
ext
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3. SOLUTIONS TO THE AMBIPOLARITY 
EQUATION FOR PRESCRIBED PROFILES
OF THE DENSITY AND TEMPERATURES

We first consider the solutions to ambipolarity equa-
tion (1) assuming that the plasma density ρ(x) and
plasma temperatures tj(x) are given functions of the
radius x. Taking into account expressions (8) and (9) for
the diffusion coefficients Dj(x, V), we can rewrite
Eq. (1) as

(15)

Here,

(16)

is a strictly positive function and the coefficients B(x),
C(x), and D(x) are given by the relationships
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. (20)

The steady solutions to the ambipolarity equation
coincides with the solutions to the equation

, (21)

which, depending on the values of the coefficients B(x),
C(x), and D(x) may have three real roots, V1(x) ≥ V2(x) ≥
V3(x), or one real root, V3(x). The smallest and the larg-
est roots, which satisfy the condition

for V = V1, 3 (22)

are obviously stable and the intermediate root V2(x), for
which we have ∂F/∂V < 0, corresponds to an unstable
solution. The solution to cubic equation (21) is well
known, so we do not present it here in general form. As
an illustration, we write it out for a particular case of an

L j
∂ ρln
∂x

------------ b j
1( )∂ t jln

∂x
------------; v j+ lεt jx

l 1–
= =

F x V,( ) 0=

∂F
∂V
------- 0>
l = 2 stellarator and of an isothermal plasma in which
the density and temperature profiles are shaped as

(23)

In this case, the character of the solution to Eq. (21)
is determined by a single parameter u, which depends
on the boundary values of the density and temperature,
N0 and T0, and also on the magnetic field B0 and plasma
radius r0 (see formula (12)).

Calculations show that, for u > 35.6, Eq. (21) has
one real solution for all x values, namely, the solution
V3(x), such that V3(x)  ti(x)Li(x) as u  ∞ (see
Fig. 1). For small values u < 0.32, it has two stable solu-
tions, V1(x) and V3(x), which are real for all x values
(see Fig. 2). For u  0, the solution V3(x) approaches
–v i(x) and the solution V1(x) approaches –te(x)Le(x). In
the intermediate range 0.32 < u < 35.6, the equation
also has two stable solutions, V1(x) and V3(x). In this

ρ x( ) = 50 1.02 x
6

–( ),

te x( ) = ti x( ) = 4 1 x
2

–( )[ ] .exp
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case, however, the solution V1(x), as well as V2(x), is
real not over the entire range of x values but over the
range x < x1, where x1 is the point at which the solutions
V1(x) and V2(x) coincide and which exhibits the follow-
ing behavior: x1  1 as u  0.32 and x1  0 as
u  35.6 (see Fig. 3). Hence, in the intermediate
range 0.32 < u < 35.6, the solution at the point x = x1 can
undergo a jump from V1(x) to V3(x) and vice versa. The
property of the solution to take on two different values
at the point x = x1 might be called bifurcation (i.e., the
bifurcation of the corresponding equilibrium plasma
state), but such is not the case, as will be clear later.
However, before proceeding to a discussion of this
issue, we consider the conditions for the existence of
either a continuous solution, V3(x), or a discontinuous
solution that jumps from V1(x) to V3(x) at the point x = x1.
To do this, we turn to Eq. (15), which accounts for the
time dependence of the ambipolar electric field, and
find its steady solutions for different initial conditions.
We can assume that the plasma density and temperature
are time-independent because, by virtue of the small-
ness of the quantity D0 (see formula (12) and Eq. (15)),
the electric field relaxes to its steady-state value in a
time much shorter than the relaxation times of the den-
sity and temperature.

Since the solution V2(x) is unstable, it is obvious
that, if the initial value of the electric field, V0(x), in the
region 0 < x < x1 is less than V2(x), then, as τ  ∞, the
solution to Eq. (15) approaches V3(x) over the entire
range of x values (see Fig. 4).

For V0(x) > V2(x), the solution in the region x < x1
approaches V1(x) and, in the region x > x1, in which
V1(x) is complex, the solution approaches V3(x) (Fig. 5).
If the curve V0(x) intersects the curve V2(x) at a number
of points, then the steady solution has the same number
of discontinuities; moreover, in the regions where

0

0.2
x

–50

–100

–150
0.4 0.6 0.8 1.00

V3

Fig. 1. Solution V3(x) to ambipolarity equation (21) for pro-
files (23) and for u = 40.
V0(x) > V2(x), it coincides with V1(x), and, in the regions
where V0(x) < V2(x), it coincides with V3(x). In other
words, by appropriately choosing the initial conditions
V0(x), we can obtain a steady solution having a discon-
tinuity at any arbitrary number of prechosen points.
This is illustrated in Figs. 4–6, which display the steady
solutions to Eq. (15) for u = 4 and for three different ini-
tial profiles of the electric field: V0(x) = –100x(1 – x),
V0(x) = 200x(1 – x), and V0(x) = 100sin(60x). By VM(x)
we denote the function V(τM, x), where τM is the τ value
at which the solution becomes essentially time-inde-
pendent (i.e., reaches its steady-state value).

Hence, we arrive at the conclusion that ambipolarity
equation (15) can have an infinite number of steady
solutions. This seemingly strange result is explained by
each of these solutions having their own source func-

tions Sext(x) and (x). As for the discontinuous solu-Π j
ext

400

0.2
x

200

100

–100
0.4 0.6 0.8 1.00

V1, V2, V3

0

300

Fig. 2. Three solutions V1(x) (solid curve), V2(x) (dotted
curve), and V3(x) (dashed curve) to ambipolarity equation
(21) for profiles (23) and for u = 0.3.
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Fig. 3. The same as in Fig. 2, but for u = 4.
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tions, they are physically implausible, because the pres-
ence of discontinuities in the function V(x) leads to dis-

continuities in the functions Sext(x) and (x), which
in turn leads to singularities of the δ-function type in
the particle and heat sources. Figures 7–9 show the
steady-state fluxes Se(x) = Si(x) = Sext that correspond to

Π j
ext

400

0.2
x

200

100

–100
0.4 0.6 0.8 1.00

VM, V2, V0

0

300

Fig. 4. Steady solution to Eq. (21) and unsteady solution
to Eq. (15) for the initial electric field profile V0(x) =
−100x(1 – x) and for u = 4. The solid curve is for the estab-
lished solution VM(x) to Eq. (15), the dotted curve is for the
solution V2(x) to Eq. (21), and the dashed curve is for the
initial electric field V0(x).
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0.2
x

0

–100
0.4 0.6 0.8 1.00

VM, V2, V0

–50

50

Fig. 5. The same as in Fig. 4, but for V0(x) = 200x(1 – x).
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the solutions VM(x) obtained for the above three initial
profiles of the ambipolar electric field.

The situation with a nonisothermal plasma such that
te > ti can be more complicated. As an example,
Figs. 10–14 depicts the steady solutions to ambipolar-
ity equation (21) for different values of the parameter u
in the case in which the plasma density and ion temper-
ature profiles are given by relationships (23) and the
electron temperature is higher than the ion temperature
by a factor of Â,

.

Thus, over a certain parameter range (u < 1), the solu-
tions V2 and V3 are real not for every value of x and the
only solution that is continuous over the entire range of
ı values is V1(x) (see Fig. 10). For larger u values, it is
plausible that the time-independent ambipolarity equa-
tion has no solutions that are real at every radius x
(Figs. 11, 12). In this case, the equation has only dis-
continuous solutions, which are physically implausible
because they lead to singularities of the δ-function type
in the particle and heat sources. Consequently, for these
values of u, steady solutions with the chosen profiles of
the density and temperatures do not exist. For even
larger u values, there is only one solution, V3, which is
real for all x values (Fig. 14). Hence, for small u values,
the solution is V1(x) (the electron root) and, for large
u values, the solution is V3(x); these solutions are real
for all x values. However, it will be shown in Section 5
that the solution V1 (x) is unstable against slow varia-
tions in the density and temperature, as in the case of an
isothermal plasma. This result calls into question the

te x( ) 5 4x
2

–( )exp=
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0
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Fig. 6. The same as in Fig. 4, but for V0(x) = 100sin60x (the
initial electric field is not shown).
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possible existence of an equilibrium plasma state with
the electron root V1 ≅ –te Le.

We thus arrive at the following conclusion: for
given profiles of the plasma density and plasma tem-
peratures, the ambipolarity equation admits only one
stable steady solution, which can exist only if the
solution V3(x) is real for all values of the radial vari-
able x.

40

0.2
x

20

0.4 0.6 0.8 1.00

10

30

Se, Si

Fig. 7. Steady-state fluxes Se = Sext as functions of x for u =
4 and for the initial ambipolar electric field profile V0(x) =
200x(1 – x).
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100
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0.4 0.6 0.8 1.0

Se, Si

Fig. 9. The same as in Fig. 7, but for V0(x) = 100sin60x.
4. STEADY SOLUTIONS TO TRANSPORT 
EQUATIONS FOR PRESCRIBED PARTICLE 

AND ENERGY SOURCES

We now analyze the solutions to Eqs. (14) assuming
that the particle and energy source functions Sext(x) and

(x) (rather than the plasma density ρ(x) and plasma
temperatures tj(x)) are prescribed. In what follows, we
Π j

ext
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0 0.2
x

100

150

0.4 0.6 0.8 1.0

Se, Si

Fig. 8. The same as in Fig. 7, but for V0(x) = –100x(1 – x).
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V1/50; V2; V3

Fig. 10. Solutions V1(x) (solid curve), V2(x) (dotted curve),
and V3(x) (dashed curve) to Eq. (21) for u = 0.4 in the case
of a nonisothermal plasma with te(x) = 2.71ti(x).
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will assume that there are no external charge sources

(i.e.,  =  = Sext). Under this assumption, the first
of Eqs. (14), i.e., the ambipolarity equation, is a conse-
quence of the second and third equations, Sj = Sext, and
thereby can be excluded from consideration. The
remaining four equations are sufficient to determine the
four unknown functions ρ(x), tj(x), and V(x). The equa-
tions have the form

Se
ext

Si
ext

0

0 0.2
x

500

1000

0.4 0.6 0.8 1.0
–500

V1; V2; V3

Fig. 11. The same as in Fig. 10, but for u = 40.
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Fig. 13. The same as in Fig. 10, but for u = 250.
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(24)

(25)

Subtracting Eqs. (24) from Eqs. (25), we obtain the
equations for determining the plasma temperatures:
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Fig. 12. The same as in Fig. 10, but for u = 200.
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Fig. 14. The same as in Fig. 10, but for u = 270: there is only
a single real solution V3(x).
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. (26)

Eliminating the quantities  in Eqs. (24) with the
help of Eqs. (26), we arrive at the following set of two
equations for the ambipolar electric field V(x) and
plasma density ρ(x):

(27)

where

. (28)

Taking the difference between the second and first of
Eqs. (27) yields a second-order algebraic equation for
determining the steady-state electric field V:

. (29)

Performing some manipulations, we can reduce this
equation to the form

(30)

where

(31)

(32)

Strictly speaking, Eq. (30) is not a second-order
equation in V because the ratio Dj /Kj is decidedly,
although weakly, dependent on V. It can be shown,

however, that, for electrons, the term  in the denom-
inators in expressions (9) and (11) for De and Ke is
unimportant, while, for the ion plasma component, it
plays a governing role. Therefore, the ratios

, (33)
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and, accordingly, the quantities Aj, can be treated as
being explicitly independent of the field V.

Equation (30) has two roots,

(34)

i.e., there are two different solutions for a steady-state
electric field. We insert these two solutions into the
expressions for the diffusion coefficients to obtain the
final equations for the plasma temperatures:

(35)

Equations (35) should be supplemented with the equa-
tion for the plasma density, for example, with either of
Eqs. (27), say,

. (36)

Solving the resulting set of three differential equa-
tions, we determine the sought-for functions ρ(x) and
tj(x). Substituting these functions into expressions (31)
and (32) for the quantities a and b and using expres-
sions (34), we find the solutions V1 and V2 as functions
of the x coordinate. Hence, specifying the continuous

functions S ext(x) and (x), we arrive at the two solu-
tions V1(x) and V2(x) for the ambipolar electric field.
However, in order to decide which of the two plasma
states corresponding to these two solutions can actually
occur, it is necessary to check whether the solutions are
stable. The stability of the solutions against small devi-
ations from equilibrium will be analyzed in the next
section.

5. STABILITY ANALYSIS 
OF THE STEADY SOLUTIONS

In the previous section, it was shown that the time-
independent transport equations admit two different
solutions V1(x) and V2(x) for the ambipolar electric field
and, moreover, that these solutions correspond to the
same particle and heat sources. In order to establish
which of the two solutions corresponds to an actual
plasma state, it is necessary to investigate their stability.
To do this, we must begin with the complete set of
transport equations (1)–(3) and must vary all four quan-
tities entering them. We analyze the stability of the
solutions in the standard way, by considering small
deviations of the quantities from their equilibrium
values:

(37)
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where ρ0, t0j, and V0 are the equilibrium values and the
deviations are represented by the formulas

. (38)

To prevent misunderstanding, it should be stressed that
Eq. (1) differs from the steady-state ambipolarity con-
dition because the expressions for the fluxes Se and Si
account, in particular, for the convective fluxes that are

ρ̃ t̃ j Ṽ e
γt ikx+( )∝, ,
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associated with the polarization currents and are pro-
portional to the time derivative of the electric field (see
expressions (6) and (7)).

We substitute relationships (37) into Eqs. (1)–(3)
and linearize the resulting equations in the small devia-

tions , , and  to obtain a set of four homogeneous
equations, which are solvable if they have a zero deter-
minant:

ρ̃ t̃ j Ṽ
(39)
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where Γ = γρ and

(40)

Since, for arbitrary wavenumbers k, the expression for
the determinant is very involved, we do not write it out
here and present only expression (39), which refers to
the short-wavelength limit k @ 1. Also, the equation for
Γ was derived with allowance for the inequality D0 =
(ρL/r0)2 ! 1 and for the fact that, in accordance with the
diffusion approximation, the product k2D0 is much less
than unity.

Evaluating determinant (39), we obtain the follow-
ing fourth-order equation for Γ:
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(44)

Since the first term in Eq. (41) contains the small
parameter D0 and since k2D0 ! 1, the largest root of this
equation, Γ1, is equal to

. (45)

This root describes the rapid relaxation of the ambipo-
lar electric field, during which the plasma density and
plasma temperatures remain essentially unchanged. It
is also easily seen that the stability condition Γ1 < 0
coincides with condition (22), which is equivalent to
the inequality

. (46)

The remaining three roots, which describe slow varia-
tions of all the quantities, ρ, tj, and V, on time scales on
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the order of the diffusion times, are determined from
the equation

. (47)

Hence, in order for equilibrium solutions (34) to be
stable against fast variations in the ambipolar electric
field, it is necessary that condition (46) be satisfied, i.e.,
that the difference Qi – Qe be positive. Assuming that
this condition holds at least for one of the two equilib-
rium solutions (34), we consider whether either of them
can be unstable against the slow perturbations associ-
ated with variations in the plasma density and plasma
temperatures. To do this, we rewrite expression (44) for
Z in a form that is more convenient for our analysis.
Taking into account relationships (28) and Eqs. (35)
and carrying out simple manipulations yields

(48)

where

(49)

is a strictly positive quantity and the function a(x, ρ, te,
ti) is given by relationship (31).

Since the roots Γ1, Γ2, Γ3, and Γ4 of Eq. (41) should
satisfy the relationship

(50)

and since the first root is negative, Γ1 < 0, the product
of the remaining three roots Γ2Γ3Γ4 in the case Z < 0
should be positive, i.e., at least one of them is positive,
which indicates that the equilibrium state is unstable.

Substituting expressions (34) for V1, 2 into expres-
sion (48), we find that, under the condition

, (51)

the solution V1 is unstable, and, under the opposite con-
dition

, (52)

the unstable solution is V2.

Hence, necessary stability conditions are given by
inequality (46) and the inequality

Z > 0, (53)

and a sufficient instability condition is given by the
opposite inequality

Z < 0. (54)
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Taking into account expression (31) for a and rela-
tionship (48), the unstable and stable solutions, Vunst
and Vst, can be written as

(55)

where

. (56)

Note that the unstable solution Vunst(x) is discontinuous
and equals ±∞ at the point where q(x) is equal to zero,
whereas the stable solution is a continuous function of
the x coordinate.

Hence, if Eqs. (34)–(36) have a stable steady solu-
tion for prescribed continuous functions Sext(x) and

(x), then this solution is unique and is a continuous
function of radius.

At the end of this section, we return to Section 3.
Having derived instability criterion (54), we can now
show that the steady state characterized by the electron
root V1 is unstable against slow variations in the electric
field, plasma density, and plasma temperatures. In this
way, we are to show that the following product is nega-
tive,

.

Taking into account the inequality µ @ 1 and the fact
that the solution V1, which is real over the entire range
of x values, exists only for u ! 1, we obtain from
Eq. (15) the relationship

(57)

where the quantities Lj are defined in relationships (20).
To determine q, we must know the expressions for the
quantities Aj . These expressions can be found from for-
mulas (27) with allowance for the relationships

. (58)

Inserting expression (57) for the field V1 into the
expressions for Aj so obtained, we then arrive at the fol-
lowing formula for q:

. (59)

Finally, inserting relationships (58) into expression (31)
for a and taking into account relationship (57), we find
that the product in question is less than zero,

(60)

because the sum teLe + tiLi is obviously negative (at
least for a certain region of the plasma column). This
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proves the assertion made at the end of Section 3,
namely, that the equilibrium state with the electron root
V1 is unstable.

With regard to the solution V3, it can be said that,
although attempts to prove the stability of the equilib-
rium state with this root generally do not succeed (for
arbitrary profiles of the density and temperatures),
numerical simulations show that necessary condition
(53) for the stability of the equilibrium state with the
root V3 is satisfied for all the examples considered in
Section 3.

6. CONCLUSIONS
Hence, we have considered two methods for finding

steady solutions. In the first method (see Section 3), the
profiles of the plasma density and plasma temperatures
are specified in advance and then are used to determine
the ambipolar electric field. In this way, however, the
particle and heat source functions, i.e., the fluxes Sext(x)

and (x), are uniquely expressed in terms of the cho-
sen functions ρ(x) and tj(x) and the field V(x). In addi-
tion, the solutions so derived should be tested by their
agreement with criterion (53) for stability against slow
variations in the density and temperatures.

Note also that, in principle, a situation is possible in
which the set of equations (14) has no steady solutions
for given profiles of the density and temperatures.

In the second method (which, in the author’s opin-
ion, provides a more systematic analysis), the particle
and heat sources are specified in advance and the self-
consistent stable solution for the plasma density ρ(x),
plasma temperatures tj(x), and ambipolar electric field
V(x) is then obtained by solving the set of differential
equations (35) and (36) with allowance for expres-
sion (55) for the field V. In both methods, however, the
steady solution (if it exists) is single-valued and is
expressed in terms of continuous functions of the coor-
dinate, i.e., the steady state is nonbifurcating.

Finally, it is pertinent to make one more remark.
Since the above analysis was carried out using purely
neoclassical transport theory, without allowance for
possible anomalous losses, it seems to be somewhat
unsatisfactory. This is not only because neoclassical
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theory fails to adequately describe real experiments, but
also because of the following: expressions (8)–(11) for
the diffusion coefficients and thermal conductivity (as
well as Fig. 8) show that, for actual profiles of the den-

sity and temperatures, the fluxes Sext(x) and (x)
decrease very sharply toward the boundary of the
plasma at its edge, and, as a result, the particle and heat
sources at the plasma periphery turn out to be negative,
which seems rather strange from the physical stand-
point. In addition, numerical analysis shows that the
solutions are fairly sensitive to the shape of the profiles
of the particle and heat sources; this result, too, does not
agree quite well with the experimental data. The draw-
backs outlined above can possibly be overcome by tak-
ing into account anomalous losses, which increase
toward the plasma boundary. The nature of these losses
is not as yet quite clear and they are difficult to account
for analytically. From general considerations, however,
it might be anticipated that, even when anomalous
losses are taken into account in the diffusion approxi-
mation, the steady state will again be nonbifurcating,
i.e., the solution will be a single-valued function of the
coordinates.
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Abstract—Mechanisms for generating current filaments in a dense plasma under the action of focused laser
pulses and in a Z-pinch configuration are discussed. The main properties of current filaments with a zero and
nonzero electron vorticity We = B – (c/e)— × pe that originate at magnetic fields in the range 4πnemec2 ! B2 !
4πnimic

2 are investigated under the conditions of Coulomb explosion at currents below the ion Alfvén current.
A study is made of the equilibrium configurations of nonquasineutral current filaments in a purely longitudinal
(Bz) and a purely azimuthal (Bθ) magnetic field and also in a more general case of a helical magnetic field, hav-
ing two components, under conditions such that the charge separation occurs on a spatial scale on the order of
the magnetic Debye radius rB . |B |/(4πene). It is shown that strong electric fields generated in the current fila-
ments are comparable in magnitude to the atomic field and are capable of accelerating ions to energies of several
tens of megaelectronvolts. The ion dynamics in strong electric fields of the filaments is calculated numerically
and is shown to lead to the formation of collisionless shock waves on time scales on the order of several inverse

ion plasma frequencies . The possible formation of current filaments on different spatiotemporal scales is
considered. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

Generation of high-energy ions by means of focused
laser pulses [1–3] and Z-pinches [4–6] is an important
branch of present-day inertial confinement fusion
research. Laser pulses and Z-pinches seem at first sight
to be completely different entities, yet they are manifes-
tations of the same phenomenon: the conversion of
electromagnetic energy—a high-intensity electromag-
netic wave or an applied electric field—into the particle
energy (Fig. 1). In both cases, the objective is to opti-
mize the acceleration process. A distinctive feature of
acceleration under the action of laser pulses and in
Z-pinch configurations is the small dimensions of the
region where the energy is transferred from the one or
another type of electromagnetic field to charged parti-
cles. It might sometimes seem that, in contrast to laser-
related phenomena in question, which occur on micron
scales within a characteristic time of about 10–12 s, the
physical processes in a Z-pinch develop on spatial
scales of 0.1–1 cm over times on the order of 10–8 s [5,
6]. Accordingly, the processes occurring in these two
acceleration methods might seem to be entirely differ-
ent in nature. However, a more careful analysis of the
processes in the two acceleration methods reveals a
striking similarity between them. This is well illus-
trated by the experimental results that have recently
been obtained in studying X-pinches with the help of
diagnostic techniques with extremely high spatial and
temporal resolution [7–12]; in fact, the X-pinches
1063-780X/05/3101- $26.00 0026
under investigation were Z-pinches organized in a stan-
dard fashion. High-precision measurements carried out
in those experiments showed that the reproducible pro-
cesses in Z-pinches occurred on spatial scales of about
10–4 cm over times as short as 3 × 10–12 s [8–10]. This
indicates that, in actual pinches, electrodynamic pro-
cesses occur on the same spatiotemporal scales as those
in laser acceleration schemes. That the spatiotemporal
scales were essentially the same and that the energy
deposited on these scales, too, was found to be approx-
imately the same [9, 13, 14] suggests there is a certain
unique mechanism responsible for generating fast
charged particles in laser-related processes and in Z-
pinches. It should also be noted that the first results
have recently been obtained on the direct generation of
Z-pinches with currents higher than 100 kA in experi-
ments on the interaction of focused laser radiation with
targets containing fine wires [15]. As the matter of fact,
the last circumstance most clearly illustrates how close
the laser- and Z-pinch-based acceleration schemes are
to one another.

The above provides a new insight into the processes
that occur during the formation of a Z-pinch when an
electric field is applied to the interelectrode gap. At
present, most theoretical investigations of the phenom-
ena in Z-pinches involve laborious numerical simula-
tions in which, along with electrodynamic processes,
account is taken of radiation and of different dissipative
effects in plasmas [11, 12]. At the same time, in order
to provide insights into the processes occurring on very
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Generation of a vortex structure in (a) a laser plasma and (b) a Z-pinch.
small spatial and temporal scales, on which the major-
ity of the dissipative processes are of the same impor-
tance, it is necessary, first of all, to have a clear under-
standing of the electrodynamic processes accompany-
ing the motion of electrons and ions in strong electric
and magnetic fields [14, 16]. In the initial stage of gas
breakdown, a major role is played by the electric field
Ez, which generates and maintains the ohmic current
jz = σEz. However, as the magnetic field Bθ grows at
large values of the dimensionless Hall parameter,
σBθ/(enec) @ 1, the role of the dissipative processes
decreases. Moreover, in this stage, the electrons can
form current-carrying filaments on time scales on the

order of  by the Weibel mechanism for generating
a quasistatic magnetic field due to the anisotropy of the
electron motion [17]. The physical processes governing
the formation and subsequent evolution of current fila-
ments were investigated by state-of-the-art computa-
tional means in a recent paper by Sakai et al. [18]. The
characteristic radius of the electron current filaments
calculated in that paper is on the order of the magnetic
Debye radius rB, which provides direct confirmation for
the possibility of the existence of electron current struc-
tures during the evolution of a pulsed current-carrying
plasma. A distinctive feature of such current structures
is the violation of plasma quasineutrality and the gener-
ation of a strong Hall electric field Er on a spatial scale

ωpe
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of about the magnetic Debye radius rB ~ Bθ/(4πene) (see
[19–21]), on which the electrons within the filament
drift along the z axis in crossed electric (Er) and mag-
netic (Bθ) fields, thereby producing the filament current
in the absence of dissipation. In this case, the radial
drop in the electric potential across such an effective
“capacitor” is substantially higher than the potential
difference between the electrodes. It is of interest to
note that, as early as 1977, Young et al. [22] reported
that they had detected ions that were radially acceler-
ated in Z-pinches to energies of up to 8 MeV. Measure-
ments show that the Z-pinch starts to emit electromag-
netic radiation and neutrons in the stage in which the
electrode voltage decreases considerably; moreover,
the characteristic electron energy in the experimentally
observed electron beams can be higher than the applied
voltage [5]. In such a nonquasineutral electron filament,
the compression of the ion plasma component on a time

scale of about  by the inwardly directed radial elec-
tric field gives rise to a nonlinear unloading wave that
propagates away from the axis and in which the radial
ion velocity decreases to zero due to the accumulation
of hot ions in the core of the Z-pinch. The correspond-
ing calculations were carried out in the hydrodynamic
approximation assuming that the process is adiabatic
with an adiabatic index equal to 2.
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The creation of ultraintense lasers in the last several
years has led to their numerous possible applications
[1, 2]. Here, the term ultraintense laser means that the
laser radiation intensities are Ilaser > 1018 W/cm2, the
laser wavelengths are λ ≤ 1 µm, and the laser pulse
duration is shorter than 10–12 s. In the context of the
applications of such lasers, a standard object of investi-
gation is a filament with an initial radius of r0 ~ c/ωpe,
whose electrons are pushed away from it by the passing
laser pulse. The discussion of the processes that occur
during the evolution of such a filament has lead to the
notion of Coulomb explosion—the expansion of the ion
plasma component at a rather high velocity. In the liter-
ature on laser plasma, several different mechanisms for
the onset of such filaments are now being discussed [1].
In the present paper, it will be assumed that an electron
filament originates during the focusing of a laser pulse
and leads to the ion acceleration (which will be consid-
ered below) and also that, in the initial stage of the pro-
cess, the ions are accelerated by the electrostatic field
arising under the action of the laser-field ponderomo-
tive force [23].

The main conclusion of the nonquasineutral vortex
model [19] is that the plasma quasineutrality may be
violated near the vortex axis as a result of the vorticity
generation in a laser plasma. This occurs when the
radius r0 of the axial region in which vorticity is gener-
ated is comparable to the magnetic Debye radius rB ~
B/(4πene) and, as a result, the electron density ne in this
region is substantially reduced. Such cavities in the
electron density can arise in a laser plasma as a result of
a peculiar kind of electron diamagnetism in a configu-
ration in which the magnetic field is strongest at the
axis. When the longitudinal magnetic field Bz is maxi-
mum at the filament axis, the electrons are expelled
from the axial electron vortex region of radius r0 ~
c/ωpe ≤ rB in quasi-steady-state magnetic fields with a
strength of eB/(meωpec) ≥ 1, which can be produced by
the Weibel instability at relativistic laser intensities a ≡
eElaser /(meω0c) > 1, where ω0 is the laser frequency and
Elaser is the amplitude of the electric field of the laser
radiation. The characteristic strength of such quasi-
steady magnetic fields can be estimated by using the
results obtained in [24, 25] in studying the magnetic
field generation during the passage of an ultrashort
laser pulse through a plasma. Order-of-magnitude esti-
mates made in accordance with [24, 25] show that the
quasi-steady magnetic fields are as strong as B .
4πeneac/ωpe. For the parameter values a . 2 and ne .
1019 cm–3, which were used in [23], the characteristic
magnetic field strength is B . 107 G.

It is natural to expect that, because of the same spa-
tiotemporal scales and essentially the same energy
deposited at the final stage of the evolution of the
object, the filaments produced during the focusing of a
high-power laser pulse in a plasma should be identical
to the filaments in Z-pinches. The main objective of the
present review is to explain the generation of current fil-
aments in Z-pinches and in laser plasmas by the same
universal mechanism.

Among the physical processes in laser plasmas and
in Z-pinches, the most important effect is that associ-
ated with the presence of accelerated ions. In this case,
because of the large mass of the ions, the characteristic
times of electromagnetic processes occurring on the
spatial scales under consideration are significantly
shorter than the characteristic ion acceleration time.
Consequently, in order for the ion acceleration effi-
ciency to be high, it is necessary to achieve a certain
quasi-equilibrium state in which the balance of electro-
magnetic forces allows the accelerating structure to
exist for a sufficiently long time. Such a structure, exist-
ing on a time scale of about several ion times , will
surely be observed in experiments and captured by
numerical simulations. Based on a great deal of exper-
imental and numerical information about laser and
pinch phenomena in the present-day literature, it is nat-
ural to suppose that the role of this quasi-equilibrium
state can be played by the long-known current filaments
observed in laser experiments [2, 24–28] and in exper-
iments on current-carrying plasmas with charged parti-
cle beams [18, 29, 30]. That the characteristic trans-
verse scales of filaments in laser plasmas are on the
order of several units of c/ωpe was already pointed out
in the early studies on this subject [1]. In order for such
filaments to be capable of efficiently accelerating ions
on these scales, it is necessary that there be a strong
radial electric field within them. For a sufficiently cold
plasma, this implies that the filament radius should be
less than or on the order of the magnetic Debye radius,
rB . B/(4πene) @ c/ωpe. This inequality represents the
condition for the existence of a strong charge-separa-
tion electric field, in the presence of which the filament
operates as an efficient direct-action accelerator. With
allowance for the fact that the ions in a magnetic field
usually move with Alfvén velocity vAi = B/
and the characteristic spatial scale is equal to rB, the
characteristic acceleration time scale turns out to be

. (Note that a proportional decrease in the charac-
teristic values of the velocity and spatial scale does not
change the characteristic acceleration time.) It should
be noted that electron current vortices are generated on

a characteristic time scale of  [18, 25, 28–30]. Con-
sequently, the time scales on the order of several char-

acteristic acceleration times  are long enough for
the vortices to develop and to gradually decay. The
electron current filaments can of course be observed
only when they are stable and keep their structure
unchanged in the course of various processes. An
appropriate object of this kind may be a vortex current
filament, which is stable because of the conservation of
the vorticity We = B – (c/e)— × pe, where B is the mag-
netic field and pe = γmeve is the momentum of the elec-
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trons moving in the filament [31, 14, 19, 20]. On the
short time scales on which collisions play a very minor
role, the greater stability of such a filament can be
attributed to the conservation of vorticity. Yatsuyanagi
et al. [26] showed, however, that the stability of the fil-
aments is fairly high even when collisions are taken into
account. Hence, a vortex current filament can in princi-
ple be treated as a structure that is capable of efficiently
accelerating ions, provided that there are strong electric
fields within it. This possible role of the filaments was
pointed out by Burnett and Enright [1], who considered
the Coulomb explosion mechanism at a qualitative
level and gave an essentially correct estimate for the ion
energy, εi ~ mec2. Further investigations carried out in
[19–21, 32, 33] showed that, in any medium with free
electrons, the current filaments in question are consid-
erably nonquasineutral in magnetic fields as high as
B2 @ 4πnemec2, which corresponds to the onset of
strong electric fields. Note that, for electron velocities
of about the speed of light, |ve | ~ c, this inequality indi-
cates that the current in the filament exceeds the limit-
ing Alfvén current [34]

(1)

It might seem that such a high current is impossible
without the generation of a reverse current of the elec-
trons that are deflected by the current’s self-magnetic
field. Further investigation shows, however, that the
electrons in such filaments execute drift motion, during
which the role of their inertia in quasi-steady processes
is insignificant. For instance, this is the case in a fila-
ment with the azimuthal magnetic field. (It should be
emphasized that the mechanisms underlying the elec-
tron drift motion in steady-state crossed electric and
magnetic fields and in the oscillating fields of an elec-
tromagnetic wave are essentially the same [35].) In the
case of a longitudinal magnetic field and azimuthal
electron currents, the electron inertia plays an impor-
tant role, resulting in a substantial reduction of the mag-
netic field in the filament (see Section 4).

Hence, further investigation of the current filaments
will be carried out by considering the quasi-steady
equilibrium state of a nonquasineutral current filament
in a high-density plasma in which the electrons execute
drift motion in crossed electric and magnetic fields. In
this situation, the magnetic field is itself maintained by
the electron drift current and the presence of the strong
electric field is related to violation of the plasma
quasineutrality on spatial scales on the order of the
magnetic Debye radius rB . B/(4πene) [19–21, 32, 33].
This corresponds to a situation in which the magnetized
electrons are localized and the ions are unmagnetized
and are freely accelerated by the electric fields; as a
result, the usually mobile electrons fail to neutralize the
spatial electric charge in the plasma.

At this point, it is expedient to discuss the phenom-
enon of Coulomb explosion, which has long been
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known in laser plasma physics, in the light of the Earn-
shaw theorem [36], according to which a neutral (on the
whole) system of charged particles cannot be in equi-
librium under the action of Coulomb forces alone. It is
known that stable equilibrium of a wholly neutral sys-
tem of charged particles can be provided by the pres-
ence of additional forces, such as those associated with
the quantum-mechanical exchange effects and with the
induced dipole moments, magnetic forces (e.g., those
caused by the diamagnetic effect), etc. It is also known
that it is the electric forces that ensure the rigidity of the
solids. In turn, the Coulomb explosion is related to the
gross violation of electrical neutrality, which cannot be
restored sufficiently rapidly. During the focusing of a
laser pulse in a plasma, a high-power electromagnetic
wave strips light electrons from neutral particles and
blow them off, thus producing a unneutralized ion
space charge. The blown-off electrons expand, and the
cold electrons that are always present in the system then
restore the electric neutrality of the plasma.

During the generation of electron vortex structures
because of the expelling of electrons from the region of
the strong magnetic field due to the diamagnetic effect,
the electrical neutrality is violated on a spatial scale of
rB; as a result, unmagnetized ions are accelerated by the
arising strong electric field. In this case, the electrical
neutrality cannot be restored by the motion of the elec-
trons because their mobility is suppressed in a certain
direction and they fail to make the plasma electrically
neutral. Even when there are some other forces in addi-
tion to Coulomb forces, the quasineutrality, which is
violated so abruptly, cannot be restored on a time scale
shorter than several inverse ion plasma frequencies

. It is only on time scales longer than this character-
istic time that, in accordance with the Earnshaw theo-
rem, the stable equilibrium state can be restored in a
system of charged particles in the presence of addi-
tional forces. Such a violation of electrical neutrality
has catastrophic consequences for the plasma of a cur-
rent filament: strong electric fields accelerate unmagne-
tized ions to substantial energies, thereby destroying
the initial structure of a dense plasma.

The above is valid only for magnetic fields lying in
the range

(2)

In this case, the electrons are magnetized and the ions
are not. The left-hand inequality is just the condition for
violating the plasma quasineutrality and for the onset of
strong electric fields. The right-hand inequality deter-
mines the maximum magnetic field for which the
effects mentioned above are still important. At mag-
netic fields stronger than that given by the right-hand
inequality, the plasma is fully magnetized; moreover,
when such a plasma is nondissipative and the kinetic
pressure in it is sufficiently low, its evolution is gov-
erned completely by the dynamics of the strong charge-
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separation electric field and the associated magnetic
field [37]. It should be noted that, in the limit of relativ-
istic particle motion, the above range of magnetic fields
implies a certain range of currents, 

(3)

where zi is the ion charge number.
Note that inequalities (2) can be rewritten in the fol-

lowing form:

(4)

These inequalities imply that the transverse dimensions
of the filaments that can be considered under the above
assumptions are restricted to c/ωpi . Thus, for a hydro-
gen plasma with a characteristic electron density of
ne ~1020 cm–3, the limiting transverse dimension of a
filament turns out to be 10–3 cm. In this case, by virtue
of inequality rB ! c/ωpi, such filaments are ineffective
in accelerating the ions because of the plasma
quasineutrality on such transverse scales.

The above analysis shows that, for the onset of
quasi-steady filaments, it is first of all necessary that
there be a quasistatic magnetic field on a spatial scale
on the order of rB; moreover, the main mechanism for
generating such a field is Weibel instability, which is
driven by anisotropy of the motion of charged particles
in a plasma [17]. There are many papers devoted to the
generation of magnetic fields in laser plasmas (see, e.g.,
[38] and the literature cited therein). Although the case
We = 0 is in principle possible from the fundamental
point of view, situations with nonzero electron vortic-
ity, We ≠ 0, driven by Weibel instability are far more
important for laser plasma physics. Weibel instability
results in generating a quasistatic magnetic field on a

time scale on the order of  at the expense of the
anisotropy of the distribution of electrons moving in an
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Fig. 2. Two types of current filaments: (a) with the longitu-
dinal magnetic field and (b) with the azimuthal magnetic
field.
electromagnetic wave [24, 39–41]. In this case, the
characteristic transverse dimensions of the filaments
are on the order of several units of c/ωpe. Hence, the ini-
tial basis for subsequent acceleration of the fast ions is
provided by the formation of a quasistatic plasma con-
figuration with a magnetic field that generates a strong
electric field.

In the case of nonrelativistic electrons with a non-
zero temperature, the quasistatic magnetic field can be
produced at the expense of the noncollinear character
of the plasma pressure and plasma density gradients. In
the nonrelativistic limit, the hydrodynamic equation of
electron motion in a nondissipative plasma at a nonzero
pressure can be written as

(5)

Taking the curl of this equation and using the induction
equation, we obtain

(6)

Hence, if pe depends not only on ne but also on some
other parameters, then, according to Eq. (6), the vortic-
ity is generated and vortex structures may arise (this
mechanism differs from the Weibel instability mecha-
nism, in which the quasistatic magnetic field is gener-
ated at the expense of the pressure anisotropy). It
should be noted that the vorticity generation mecha-
nism just described, which is associated with thermal
effects, usually corresponds to moderately strong mag-
netic fields. This limiting case of magnetic field gener-
ation was observed experimentally [42] and was inter-
preted theoretically by Krushelnick et al. [43].

For further analysis, it is important to stress that
there are two essentially different types of vortex struc-
tures: (i) structures with azimuthal electron currents jθ,
in which the magnetic field is aligned with the z axis
(B = Bzez) and (ii) structures with longitudinal electron
currents jz, which produce an azimuthal magnetic field
Bθ (Fig. 2). Our investigations show that the electron
density profiles in these two types of vortex structures
are radically different. In vortex structures with azi-
muthal electron currents, the electron density near the
axis is low, so the axial plasma region of the structure is
charged positively. As a result, the plasma ions fly apart
in the radial direction toward the periphery of the struc-
ture [20]. In contrast, in a vortex structure with a longi-
tudinal electron current and an azimuthal magnetic
field Bθ, the electron density at the axis is maximum and
the axial plasma region is charged negatively, so the
plasma ions collapse toward the axis, giving rise to a
Z-pinch [14].
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2. MECHANISMS FOR THE GENERATION
OF FAST CHARGED PARTICLES
BY ELECTROMAGNETIC FIELDS

Numerous mechanisms for particle acceleration
under the action of high-power focused laser pulses
have been known for a long time [1, 2, 44]. The sim-
plest situation is that in which the electrons can be
accelerated by the field of an electromagnetic wave in
the absence of plasma and of an external magnetic field
[2, 35]. The cyclotron acceleration mechanism in the
presence of a quasistatic magnetic field was investi-
gated in a recent paper by Belyaev et al. [45]. These
schemes allow the electrons to be accelerated to ener-
gies of several hundred MeV; for the ions, however,
they are inefficient for state-of-the-art laser intensities
because the ions have very large masses. This is why
ion acceleration requires the presence of a high-density
plasma in which a quasistatic electric field can be gen-
erated. In this case, the most widely used (and long-
known) scheme for ion acceleration during the focusing
of a high-power laser pulse in a plasma can be
described as follows: As a high-power laser pulse prop-
agates in plasma, the electrons are pushed away from its

path by the ponderomotive force F = –mec2— ,
where a = eE/(meωc), with E and ω being, respectively,
the electric field of the electromagnetic wave and its
frequency. The motion of the ejected electrons gives
rise to a magnetic field. Since there are no electrons
near the axis of the produced channel, the ions remain-
ing there generate a strong radial electric field, which
forces them to expand in the radial direction. It should
be noted that, in considering the propagation of an elec-
tromagnetic wave in a channel, additional resonant
acceleration of the electrons by the wake wave is some-
times taken into account. A distinctive feature of such
filaments with rapidly oscillating fields is that they are
subject to various possible instabilities that destroy
them, so they exist over a relatively short time [46]. It
should be emphasized that, according to [14, 20, 23,
47], the ponderomotive mechanism and the mechanism
for electron acceleration in the electric field of a current
vortex structure result in comparable values of the ion
expansion velocity (which was measured in [23]).
Recent numerical calculations for ion acceleration by
high-power laser pulses clearly indicate that the mag-
netic field does indeed play a role in these acceleration
processes [48]. In recent years, computer simulations
have also demonstrated the existence of another possi-
ble acceleration mechanism, specifically the accelera-
tion of ions at the front of a nonlinear wave propagating
in the direction of the laser pulse. In this case, the high-
est energies of the accelerated ions are reached when a
laser pulse is focused on a thin plasma slab [48].

It is also necessary to mention the large number of
studies in which ion acceleration was calculated under
the assumption that the electron vorticity We is zero and
with allowance for strong nonlinearities in the equa-
tions describing the interaction of the oscillating fields

1 a
2

+
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of a laser pulse with a plasma [38]. A time-averaged
version of these equations for nonlinear laser–plasma
interaction can include a quasistatic magnetic field,
which may be strong when a @ 1. By virtue of the con-
dition We = 0, this approach is valid for a peculiar Lon-
don medium such that

(7)

In this case, the resulting quasi-steady equilibrium can
be explained as follows: Taking into account the fact
that, in accordance with equality (7), the electron vor-
ticity is zero, we reduce Eq. (11) from Section 3 of this
paper to the form

(8)

where γ is the relativistic factor. In a quasi-steady state
such that the electrons move only in the direction of the
azimuthal coordinate θ, the radial component of this
equation becomes

(8')

For a configuration whose parameters depend only on
the radius, we obtain from Eq. (7) the following expres-
sion for the magnetic field along the filament:

(9)

where γ = (1 – /c2)–1/2 and vθ is the azimuthal elec-
tron velocity within the filament. Resolving Eq. (9) in
terms of the variable γ and substituting the resulting
expression into Eq. (8') yields

(10)

When the magnetic field flux is concentrated predomi-
nantly in the region r < r0, expression (10) implies that
Er > 0 at r ≥ r0; therefore, the ions at the periphery of
the filament are accelerated outward from its axis. On
the other hand, near the axis (r ! r0), we have Er < 0; as
a result, the electrons are expelled from the axial
region. In the model based on the time-averaged non-
linear equations, all the electrons are pushed away from
an axial region of a certain radius—a phenomenon
called “electron cavitation” (see [38]).

3. BASIC EQUATIONS

The basic set of equations consists of hydrodynamic
equations for describing the electron and ion plasma
components separately. The electron plasma compo-
nent is described by relativistic hydrodynamic equa-
tions for cold electrons. The reason for this is that the
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time scales on which the electron vortex structures are
generated are too short for the electrons to be heated to
any significant extent.

As initial equations for a nonquasineutral electron
current structure, we use the hydrodynamic equation of
electron motion converted into the form (see [14])

(11)

the electron continuity equation

, (12)

and Maxwell’s equations

(13)

and

(14)

We also write out Poisson’s equation, which plays an
especially important role in further analysis:

(15)

Here, me and pe = γmeve are the mass of an electron and

its momentum, γ = 1/  is the relativistic fac-
tor, ve and ne are the electron velocity and electron den-
sity, and E and B are the electric and magnetic fields.

Taking the curl of Eq. (11) and using induction
equation (14), we can obtain the following vector equa-
tion for the conservation of vorticity We:

(16)

In what follows, all quantities will be assumed to
depend only on the radial coordinate r. Consequently,
the magnetic field can vary only at the expense of vari-
ations of the electric fields Eθ and/or Ez. With the use of
Eq. (16), there is no need to explicitly incorporate these
electric field components in describing the filament
dynamics.

Below, in different particular cases, we introduce
the Lagrangian invariants I1 = Ωeθ/(rne) and I2 = Ωez/ne,
which completely determine the structure of the current
filaments at a fixed ion density.

The ion dynamics is described by the hydrodynamic
equations

(17)
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where ni and vi are, respectively, the density and veloc-
ity of the ions and pi is their pressure.

Of course, the question arises of whether the hydro-
dynamic approach is applicable to such extreme condi-
tions. Estimates show that the ions are decelerated pri-
marily because they lose their energy in collisions with
electrons; consequently, the ion mean free path li ~
τi/e |vi | serves as a characteristic spatial scale in related
physical problems. In our calculations, we ignore colli-
sions; however, Sagdeev [49] has already pointed out
that, under conditions like those in the highly non-
quasineutral plasma under consideration, a collision-
less shock wave can form on the spatial scale rB, which,
in the problem as formulated, turns out to be on the
order of li [14]. In this case, in our numerical simula-
tions, the formation of steep fronts of the ion density
and velocity in a collisionless shock wave is associated
with the violation of plasma quasineutrality at the wave
front.

For convenience of further calculations, we switch
to dimensionless variables; this also allows us to deter-
mine the characteristic scales on which the physical
quantities vary in space and time.

First of all, we introduce the main spatiotemporal

scales—the characteristic time scale t0 =  and spa-
tial scale c/ωpe—and switch to the dimensionless time τ
and radius ρ:

(18)

We also introduce the dimensionless magnetic and
electric fields,

(19)

and the dimensionless ion and electron velocities,

(20)

Note that the radial electron velocity v er is small in
terms of the parameter ε = rB/(ct0) ! 1; it is normalized
in the same way as the radial ion velocity.

For a filament with a helical magnetic field, the two
different components of the dimensionless magnetic
field and of the dimensionless electron velocity in rela-
tionships (19) and (20) are distinguished by subscripts
1 and 2. For filaments with a single (longitudinal or azi-
muthal) component of the magnetic field, the subscripts
are omitted.

We note that, since the ions are insignificantly
deflected the magnetic field on the spatial scale rB, one
can set, in accordance with inequalities (4), r∞ ~ c/ωpi,
which corresponds to the above-introduced densities
ne∞ and ni∞.

It should be stressed that the Lagrangian invariants
I1 = Ωeθ/(rne) and I2 = Ωez/ne, which are used in further
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analysis, have different dimensions and thereby are
normalized in different ways:

(21)

The dimensionless ion pressure p is introduced through
the relationship

(22)

which also determines the characteristic scale on which
the ion energy varies (this scale was already mentioned
in [1]).

Finally, the dimensional ion and electron densities at
infinity are assumed to be related by the natural rela-
tionship ne∞ = zini∞, according to which the densities are
normalized as follows:

(23)

The above normalization enables us to introduce the
following dimensionless ion equations, which will be
used in further calculations:

(24)

(25)

In the approximation adopted here, these equations are
valid for filaments of any type. In this case, the particu-
lar expression of the dimensionless radial electric field
er is governed by the type of the filament in question.

With the equations introduced above, the plasma
dynamics can only be studied for magnetic fields lying
in the range

The left-hand inequality corresponds to the main
assumption that the electron current structure is non-
quasineutral on a spatial scale on the order of the mag-
netic Debye radius rB ~ B/(4πene). According to the
above normalization, the characteristic time scale is the

inverse ion plasma frequency, t0 = . In this case, the
right-hand inequality introduces the small parameter
ε = rB/ct0 ! 1, which indicates the quasistatic approxi-
mation for electrons and makes it possible to ignore the
time-dependent term in Eq. (11) and to remove from
consideration the ion motion on a scale of r ~ rB along
the z axis.

As will be seen below, in the r component of the ion
hydrodynamic equation

we will ignore the term that describes the deflection of
the ions by the magnetic field. The reason is that, in
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accordance with the right-hand inequality in conditions
(4), this term is small for the radial scales of the Z-
pinches under consideration. Using induction equation
(14), we can reduce the z component of the equation of
ion motion to the following equation for the longitudi-
nal ion velocity v iz:

(26)

Here, the symbol ∞ refers to the far periphery of the fil-
ament, r(∞) ~ c/ωpi . The dimensionless equation for the
r component of the equation of ion motion takes the
form

(27)

where er is the dimensionless electric field. Conditions (2)
make it easy to verify that

(28)

so the last term in Eq. (27) can be discarded. This indi-
cates that, even for the maximum possible magnetic-
field strengths, which correspond to the right-hand side
inequality in conditions (2), the deflection of the ions
by the magnetic field can be ignored, provided that their
density n is moderate and that the dimensionless radius
ρ is about several units (in the numerical calculations
described here, the maximum value of ρ was ρ0 = 3).

The above considerations make it possible to formu-
late the problem about the possible mechanism for ion
acceleration in a situation in which the current flowing
through a plasma filament produces a magnetic field
that magnetizes the electrons but has a minor effect on
the ion motion. In a plasma with an initially uniform ion
density, the electrons are magnetized by the magnetic
field. Being diamagnetic, they are localized predomi-
nantly in the region where the field is weak. This pro-
cess gives rise to charge separation on a spatial scale of
rB ~ B/(4πene) and generates a strong electric field that
accelerates ions to high energies. The strength of this
electric field can be estimated from Poisson’s equation
(15),

(29)

which allows us to estimate the ion energy εi by

(30)

As a result, using conditions (2), we arrive at the fol-
lowing range of energies to which the ions can be accel-
erated by the mechanism under consideration:

(31)
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4. VORTEX STRUCTURES 
WITH A LONGITUDINAL MAGNETIC FIELD Bz

In accordance with the above, a current filament
produced as a result of the Weibel instability of a high-
power laser electromagnetic wave propagating in
plasma can serve as an efficient ion accelerator based
on Coulomb explosion. The main difference between
the model of an electron vortex proposed in [19] and
Abrikosov’s model of vortices is that the former model,
along with the basic equation for the electron vorticity,

also deals with Poisson’s equation because of the viola-
tion of plasma quasineutrality on a spatial scale of
about ~rB [14].

Since the quasineutrality at the axis of an electron
vortex is violated, the electron density decreases and
the arising electric field begins to accelerate the ions,
thereby leading to the formation of a collisionless

shock wave on a time scale of about ~ . During this
acceleration process, the structure of the electron vortex
becomes sensitive to the ion density profile, which
results in a redistribution of the magnetic field and the
destruction of the vortex structure. A key element in the
process under analysis is the cavity that forms in the
electron density and in which the vorticity is nonzero.
The way by which the cavity is produced is unimpor-
tant: thus, the role of the driving mechanism can be
played by the ejection of the electron plasma compo-
nent by the laser pulse; in this case, a decrease in the
plasma density facilitates the onset of a plasma state
with a nonzero vorticity and the cavity so created may
initiate Coulomb explosion. At this point, it is neces-
sary to emphasize the difference between, on the one
hand, the plane geometry in the traditional problem
about the propagation of a laser pulse and, on the other,
the cylindrical geometry in the problem that will be for-
mulated below. In our model, the direction of the azi-
muthal coordinate θ in the vortex corresponds to the
propagation direction of the laser pulse along the y axis
and the ion motion along the radial coordinate r corre-
sponds to the transverse plasma expansion along the x
coordinate. Note that, in both cases, the quasistatic
magnetic field is directed along the z axis.

The approach proposed here implies that the Cou-
lomb explosion proceeds in two stages independent of
one another. In the first stage, the structure is rearranged

on a time scale of about ~ . This is accompanied by
the generation of electron vorticity and the violation of
plasma quasineutrality, the plasma ions being immo-
bile. In the second stage, the nonquasineutrality-related
electric field sets the ions into motion, thereby destroy-
ing the vortex “quasi-particle” on a time scale of about

a few .
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We can readily verify that, in an axisymmetric case,
the radial expansion of the ions under the action of the
radial electric field Er is accompanied by their motion
in the direction along the azimuthal coordinate θ.
Although the azimuthal velocity of the ions is low in
comparison to their radial velocity, v iθ ~ (rB/ct0)v ir
(where t0 is the characteristic ion time), the ion motion
along the azimuthal coordinate θ is of fundamental
importance because only this motion is capable of
maintaining the azimuthal electric field Eθ, which, at
∂/∂θ ≡ 0, leads to variations in the longitudinal mag-
netic field Bz.

In what follows, in describing the dynamics of an
electron vortex structure, we will use the notion of the
Lagrangian invariant, whose main property is that it is
conserved along the electron trajectories, provided that
collisions are ignored [50].

The equation for the Lagrangian invariant I ≡ Ωez/ne
can be derived from Eq. (16) with the use of electron
continuity equation (12) in a way analogous to that in
[19]:

(32)

Here, the expression for the radial component v er of the
electron velocity can be obtained from Eq. (13):

(33)

By virtue of the assumption of axisymmetry, expres-
sion (33) does not contain the term that accounts for the
magnetic field. In the initial stage of the filament evolu-
tion, the displacement current can play an important
role because the radial electric field in the filament is
strong. The dimensionless equation (33) implies that
the rate of the radial variations in the Lagrangian invari-
ant I is determined by the characteristic ion velocity.

Because of the smallness of the azimuthal electric
field Eθ, the ions in an electron vortex move predomi-
nantly in the radial direction, which results in a rear-
rangement of the magnetic field and all the remaining
vortex parameters. We stress that, in the non-steady-
state case, the symmetry properties of the problem are
responsible for the appearance of the induction electric
field Eθ, which changes the magnetic field Bz. However,
our equations do not explicitly include the field compo-
nent Eθ and we can show that the induction equation
turns out to be equivalent to Eq. (3) for the electron
Lagrangian invariant I. Hence, Eq. (32) for the
Lagrangian invariant I provides a convenient tool for
describing the electron cavity. The azimuthal ion veloc-
ity v iθ, which also does not enter into the equations, can
be calculated from the conservation law for the ion vor-
ticity Ωiz (see Section 3).

The dynamics of the ion plasma component is
described by the hydrodynamic equations with a zero
pressure. This indicates that, in the limiting case of
strong magnetic fields, which will be analyzed below,
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the ion acoustic effects will not be taken into account
(see [20, 43]).

Hence, in investigating Coulomb explosion, we cal-
culate the ion motion under the action of the electric
field of a nonquasineutral electron vortex. The calcula-
tions are performed using hydrodynamic equations
without allowance for the kinetic pressure. Note that,
unlike in [19], the electron vortex structure is now
essentially governed by the shape of the ion density
profile but is independent of the ion velocity [51].

The above normalization procedure yields the fol-
lowing dimensionless equations for the parameters v ,

γ = 1/ , b, and ν, which characterize the struc-
ture of the electron filament [19, 20]:

(34)

(35)

(36)

where g = b + γf and v  = –ρf.
These equations should be supplemented with the

time-dependent equations describing the ion dynamics
and the evolution of the Lagrangian invariant. Omitting
the terms with the pressure in Eqs. (24) and (25) and
switching to dimensionless variables in Eq. (33), we
arrive at the following time-dependent equations
describing the filament dynamics:

(37)

(38)

where the dimensionless radial electric field is given by
the expression er = –v g.

In Eq. (36) for ν, we take into account the change in
the ion density, n = ni/ni∞, which leads to a rearrange-
ment of the structure of the electron filament. We can
say that Eqs. (34)–(36) define an effective adiabatic
functional b ≡ b[n(ρ)] for the ions, which makes it pos-
sible to close the set of equations describing the ion
dynamics. An approach to describing the current fila-
ment on the basis of Eqs. (34)–(36) is valid for elec-
trons treated in the quasistatic approximation rB/ct0 < 1,
which corresponds to magnetic fields lying in the range
B2 < 4πnimic2.

Numerical integration of Eqs. (34)–(38) shows the
formation of a collisionless shock wave on a character-
istic spatial scale of about δ ~ rB (such waves were first
considered by Sagdeev [49, 52, 53]). Figure 3 presents
initial radial profiles of the dimensionless Lagrangian
invariant i, magnetic field b, and electron velocity v  in
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an electron vortex structure. Figure 4 displays the pro-
files of the same physical quantities at a time when the
shock wave has already been formed. We can see that,
as the shock wave propagates toward the filament
periphery, the energy of the electron filament is con-
verted into the energy of the ions, and the electron
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Fig. 3. Initial radial profiles of (1) the Lagrangian invariant,
(2) magnetic field, and (3) electron velocity in a filament
with a longitudinal magnetic field.
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in a filament with a longitudinal magnetic field. The vertical
line corresponds to the front of the collisionless shock wave.
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velocity decreases very rapidly. In this case, the mag-
netic field b behind the wave front equalizes and
decreases during the propagation of the wave; thus, at
large distances, the velocity of the shock wave
decreases and the ions begin to expand inertially.

Numerical simulations show that the highly non-
quasineutral plasma that was initially near the filament
axis becomes quasineutral after the passage of a nonlin-
ear wave. It follows from these simulations that, behind
the wave front, the electron and ion densities are essen-
tially the same (so, the plasma is quasineutral there) and
that the characteristic length of the front agrees with the
estimate δ ~ rB obtained from the maximum electron
density in the shock wave (see Fig. 5). We can also see
that, as the ions are accelerated by the electric field, the
wave front steepens progressively. In our earlier paper
[20], we found that, for the characteristic values b0 ~ 1,
which correspond to the measurements carried out in
[23], the magnetic field and electron density are about
B . 107 G and ne . 1019 cm–3, respectively, the maxi-
mum dimensionless radial velocity being about umax ~
0.7. This allows us to estimate the maximum radial ion
velocity by v ir ~ 3.5 × 108 cm/s, which correlates well
with the experimentally recorded plasma expansion
velocity after the passage of a laser pulse [23].

The main parameters that determine the structure of
the electron filament are the Lagrangian invariant I and
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Fig. 5. Time evolution of the ion density n and ion velocity
u during the ion expansion in the course of the formation of
a shock wave in a filament with a longitudinal magnetic
field.
the characteristic filament radius r0. Calculations show
that the ion energy depends weakly on the value of the
Lagrangian invariant: when the invariant i was varied
within the range from 5 to 130 at r0 = c/ωpe, the initial
magnetic field b0 at the axis changed by a factor of less
than three and the dimensionless wave velocity w
changed from 0.41 to 0.95 [20]. The comparatively
weak values of the dimensionless magnetic field at the
filament axis (b0 ~ 1) are governed by the above limit-
ing effect of the electron inertia on the azimuthal cur-
rents (see the Introduction). In this case, the ion energy

is estimated to be εi . zimec2 /2; in contrast to [1],
this estimate takes into account the laser pulse intensity
Ilaser. The larger the value of the parameter rB/ct0, the
more important the role of the azimuthal ion motion
driven by the induction effects. For the above condi-
tions of the laser pulse propagation along the y axis,
Krushelnick et al. [54] established experimentally that
the plasma expands with the maximum velocity a right
angle (90°) to the propagation direction of the laser
pulse (the x axis); this agrees well with the radial ion
acceleration in an electron vortex. In this case, the gen-
eration of the fast ions that are accelerated in the direc-
tion opposite to the propagation direction of the laser
pulse (i.e., in the negative direction of the y axis) just
corresponds to the ion acceleration by the induction
electric field along the negative direction of the azi-
muthal coordinate θ (v iθ < 0).

In order to gain insight into the mechanisms for the
formation of a collisional shock wave, we turn to the
known theoretical results [49, 52, 53]. The most impor-
tant aspect of our approach is that we have introduced
the Lagrangian invariant as a physical quantity. In view
of the steepening of the profile of the Lagrangian invari-
ant I at the wave front, we can also introduce a certain
quantity I0 in order to characterize the invariant on a
small scale within the front. This provides an analytic
description in the case of plane geometry at strong mag-
netic fields such that B2 > 4πnemec2, which, for the
parameter values adopted here, is equivalent to the con-
dition a > 1. In particular, one can obtain the following
equation for the magnetic field profile B(x):

(39)

where W is the velocity of a nonlinear wave propagat-
ing in the x direction and the ion velocity v ix can be
expressed in terms of the magnetic field strength B. It
can be seen that the characteristic spatial scale of the
wave is δ ~ rB.

5. CURRENT FILAMENTS
WITH AN AZIMUTHAL MAGNETIC FIELD Bθ

We now consider the structure and dynamics of a fil-
ament with an azimuthal magnetic field. The equations
for an electron filament will be derived with the use of

umax
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the small parameter ε = rB/ct0 ! 1; this way guarantees
that the electron structure will be quasistatic. In order to
arrive at the desired equation we turn to Eq. (11) and
also to the drift equation

(40)

which is valid for ε = rB/ct0 ! 1. Estimating the dis-
placement current in Eq. (13) with the help of Eq. (40)
and using the condition that the electric field is quasis-
tatic, we obtain from Eq. (13) the following equation:

(41)

The definition of the electron vorticity component Ωeθ
yields

(42)

Finally, we extract the expression for Er from Eq. (40),
substitute it into Eq. (15), perform differentiation, and
make use of Eqs. (41) and (42) and of the definition of
the Lagrangian invariant I:

(43)

As a result, we arrive at the following expression for the
electron density ne:

(44)

Switching in the above equation to dimensionless
variables just as was done in Section 3, we obtain the
set of equations describing the quasistatic electron cur-
rent structure (see also [14]):

(45)

We can see that, for a given ion density n, the structure
of the filament is completely determined by the radial
profile of the Lagrangian invariant i. In Eqs. (45),
describing the filament structure, the time plays the role
of a parameter because the electron equilibrium state in
question is quasistatic.

In this formulation of the problem, the dynamics of
an electron current structure is governed by the rela-
tively slow ion motion in an electric field. In the present
paper, in ion hydrodynamic equations (17), we take into
account only the longitudinal motion of the ions
because, in view of inequality (2), their motion in the z
direction can be ignored in accordance with the esti-
mates made in Section 3. In addition, all the parameters
of the problem are assumed to depend only on the radial
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coordinate r, so the kink instabilities and sausage-type
instabilities, which are typical of Z-pinches, cannot be
considered here.

Using Eq. (16) and electron continuity equation (12),
we can obtain the equation for the Lagrangian invariant
I = Ωeθ/(rne) that coincides formally with Eq. (32) for a
filament with the longitudinal magnetic field. Switching
to the corresponding dimensionless variables, we arrive
at the following time-dependent dimensionless equa-
tions, which enable us to close the set of equations (45)
and to determine the time-dependent ion density n and
the Lagrangian invariant i:

(46)

(47)

where the dimensionless radial electric field is given by
the expression er = v b. The ion pressure is described by
the adiabatic equation of state with an adiabatic index
equal to 2,

(48)

We use the initial conditions n(τ = 0) = 1 and u(τ =
0) = 0 and the boundary conditions n(ρ = ∞) = 1 and
u(ρ = 0) = u(ρ = ∞) = 0. With the chosen adiabatic
index, we have carried out numerical simulations for
several values of λ or, equivalently, for several different
ion pressures. Note that the choice of the adiabatic law
in the form (48) is somewhat incorrect because the
pressure at infinity is certainly equal to zero. However,
in the case at hand, this choice does not lead to contra-
dictions, because the formulas contain the derivatives
of the pressure p and because, for the region where n @ 1,
the form of the adiabatic law is quite unimportant.

Equations (45)–(47) can be divided into two sets:
(i) time-independent equations (45) for calculating a
steady-state electron vortex in an azimuthal magnetic
field (these are ordinary differential equations, from
which the functions b, v, and ν are determined for given
values of n and i) and (ii) time-dependent equations
(46) and (47) for calculating the ion dynamics and the
evolution of the Lagrangian invariant i (these are partial
differential equations describing the transport of the
quantities n, u, and i with the corresponding rates).
Equations (45) were integrated by the Gear method [55].
Among the integral curves that originate from the singu-
lar point r = 0, which is a removable singularity, the
curves that satisfy the boundary conditions at r  ∞
were chosen by adjusting the value of ν at r = 0. Equa-
tions (46) and (47) were integrated by a modified ver-
sion of the Boris–Book method (specifically, the
LCPFCT version [56]), which is the nonlinear flux-cor-
rected transport (FCT) algorithm, ensuring that the
solution will always be monotonic and positive. In the
numerical integration of the equations of ion motion by
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the LCPFCT algorithm, artificial viscosity resulted
implicitly from the use of a controlled antidiffusive cor-
rection.

It is obvious that, on time scales much shorter than

the characteristic time  of the evolution of the ion
plasma component, an electron filament can be consid-
ered to be a quasisteady structure. From the electron
equations, the potential of an electron current filament
can be estimated as U ~ J/c (where J is the current flow-
ing on the spatial scale rB within the filament) [21].
Even for currents of about J ~ 100 kA, this yields a
potential in excess of one megavolt.

By using dimensionless equations (45) describing
electron equilibrium, we can obtain the following
expression for the absolute value of the dimensionless
potential ϕ0 at the axis of a current filament:

(49)

Here, the potential at infinity is assumed to be zero, the
ions are assumed to be immobile, and the dimension-
less Lagrangian invariant i at the initial instant has the
form

where ρ0 is the characteristic spatial scale of the current
filament structure. For numerical simulations, we chose
the value ρ0 = 3. In expression (49), the relativistic fac-
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Fig. 6. Maximum dimensionless magnetic field bmax as a
function the electron relativistic factor γ0 at the axis of a fil-
ament with an azimuthal magnetic field.
tor of the electrons at the axis, γ0, determines the height
of the peak in the electron density in the axial region,

ν0 = .

Calculations performed on the basis of expression (49)
for two initially equilibrium filaments with the currents
J1 = 153 kA and J2 = 191 kA yielded the following two
values of the potential at the axis: U1 = –6.0 MV and
U2 = –9.1 MV. That the values of the potential are so
high is confirmed to some degree by the experimental
results of [8], where, at a total current of J ~ 400 kA,
ions with an energy of about 1 MeV were recorded by
measuring the Doppler shift of their spectral lines.
These high values of the potential in the filament also
correlate with the numerical results obtained in [18],
where the ions were found to be accelerated to energies
of several MeV.

It is also instructive to present the maximum mag-
netic field strengths bmax in electron filaments at differ-
ent values of γ0. Figure 6 shows the dependence bmax(γ0)
calculated for a wide range of γ0 values. We can see that
the relativistic factor of the electrons at the axis
increases with the magnetic field in the filament. As a
result, the electron–ion collisions in the system are in
fact “switched off.”

It is important to stress here that the model structure
of the electron current filaments under discussion dif-
fers substantially from the fine structure of filaments
that was calculated numerically by Sakai et al. [18]. In
that paper, the total current in the filaments produced by
an electron beam propagating in a plasma is zero
because, on very short time scales, the current of fast
beam electrons generates a return current, which is able
to flow in the absence of dissipation over a fairly long
time. In the approach developed here, it is assumed that,
although the return current is initially generated by the
current flowing in a filament (at the expense of the
applied electric field Ez), it dissipates on comparatively
short time scales. As a result, only the current flowing
in the direction of the applied field remains within the
filament. Estimates show that, under conditions where
the initial electric conductivity is fairly low, the return
current on micron scales is dissipated sufficiently rap-
idly. It is because of the absence of the return current
that, in our model, the filament does not expand and the
ions are not accelerated toward the filament periphery,
in contrast to the numerical results presented in [18].
However, despite the above differences between the
two approaches, the characteristic radius of the electron
filaments calculated in [18] turns out to be approxi-
mately equal to the magnetic Debye radius, which can

be estimated by rB . c/ωpe , where εi is the
calculated energy of the accelerated ions.

Figure 7 illustrates the initial equilibrium of an elec-
tron current structure with unperturbed ions. We can
see that the electron density in the initial state is peaked
near the axis of the structure. The peak produces a
radial electric field directed toward the axis. The rela-

γ0
2

εi/ mec
2( )
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tivistic electron motion in the z direction generates an
azimuthal magnetic field; in this case, the electrons
themselves drift in crossed electric and magnetic fields.
Such a filament is a universally encountered formation,
the structure of which changes due to the slow motion
of unmagnetized ions in its electric field [14, 16]. The
numerical results obtained in [18] confirm fairly well
the validity of the model used in our simulations. The
characteristic radius of the filaments was calculated to
be on the order of rB, which agrees with the estimates
obtained for the parameters adopted in that paper.

Figure 8 shows time evolutions of the density n and
velocity u of the ions moving in a radial electric field in
the initial stage of development of the current filament.
We can see that accelerated ions moving from the
periphery are decelerated in the axial region by the
pressure gradient of the ions that have been accumu-
lated in the dense hot core near the axis. It follows from
Fig. 8 that, at the beginning of the process (on time
scales τ from about 0.2 to 0.5), the profiles of the ion
density and velocity have already steepened and a dis-
continuity has appeared. As a result, after the time τ =
0.3, the forming unloading wave in which the radial ion
velocity vanishes has a steep front, at which the accel-
erating electric field and decelerating pressure gradient
cancel one another. This front, which has already
become flatter on time scales τ . 0.7–1, propagates
toward the periphery of the current structure of the fila-
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Fig. 7. Radial profile of the Lagrangian invariant i in a fila-
ment with an azimuthal magnetic field and with a current of
J2 = 191 kA and the calculated initial radial profiles of the
magnetic field b, electron density ν, and electron velocity v.
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ment, leaving behind an essentially immobile, dense
hot core. A comparison of the profile of the dimension-
less electric field, er(ρ), with a narrow peak in the pro-
file of the decelerating force, (1/n)∂p/∂ρ, shows that the
front of the unloading wave occurs between the two
surfaces whose radii are determined by the intersec-
tions of the profiles, er(ρ) = (1/n)∂p/∂ρ. Figure 8 shows
that, at a time of about τ ~ 0.5, positive ion charge starts
to be accumulated within the wave front, thereby weak-
ening the electric field therein. It is presumably because
of the weakening of the electric field (and, accordingly,
the decrease in the electron drift velocity) that the front
of the unloading wave propagating toward the periph-
ery divides the electron-drift region into two parts and
forms an advancing “cloud” of drifting electrons
(Fig. 9). In this case, the front of the increasing ion den-
sity profile and the front of the velocity profile of the
decelerated ions in the wave propagating away from the
axis occur just at the minimum (which falls to zero on
longer time scales) of the absolute value of the electron
velocity.
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Fig. 8. Formation of a collisionless unloading shock wave
within a current filament in the initial stage of deceleration
of the inwardly accelerated ions by the pressure gradient in
the dense core of a Z-pinch: u is the ion velocity, n is the ion
density, and ν–n is the charge density at the shock front.
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Recall that, as a nonlinear unloading wave propa-
gates toward the periphery, the profiles of all the quan-
tities in the wave become flatter on time scales of τ > 1.
Consequently, the fact that the profiles of the quantities
do not steepen within the wave allows us to interpret the
wave in this propagation stage merely as a nonlinear
unloading wave. The ion density and ion velocity pro-
files in this nonlinear wave on long time scales are
shown in Fig. 10.

Note that, as the current J increases and the initial
temperature, which is described by the dimensionless
parameter λ (see adiabatic equation of state (48)),
decreases, the ion density near the axis becomes higher.
An increase in the steady-state ion density at the axis
with decreasing λ agrees with the experimental results
of [9]. Calculations also show that, for a low initial ion
temperature, the ion density at the filament axis can
increase by several orders of magnitude as compared to
its initial value.

As time progresses, the nonlinear unloading wave
propagating toward the periphery becomes less intense
and an equilibrium plasma structure with hot ions is
formed. The ions in this structure are kept at equilib-
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Fig. 9. Evolution of a cloud of drifting electrons ahead of
the front of a nonlinear unloading wave propagating away
from the axis of the filament: (a) the radial profiles of the ion
density n indicating the shock front and (b) the profiles of
the electron velocity v .

(a)

(b)
rium by magnetic and electric fields on a spatial scale
on the order of rB.

The Z-pinch configuration obtained above results
from electrodynamic compression of the ion plasma
component. The equilibrium state in which the config-
uration is maintained is described by the integral rela-
tionship

(50)

which implies that not only the magnetic but also the
electric field plays an important role.

Our numerical calculations show that, e.g., for a
Z-pinch of length L = 1 cm, carrying the current J2 =
191 kA, the energy transferred to the ions (primarily
from the magnetic field) does not exceed 2–3 J (see also
[8]). Thus, the characteristic energy deposition and the
spatial and time scales of the processes in a micropinch
with a current of about several hundred kiloamperes are
found to be very close to those in a laser plasma pro-
duced by a focused laser pulse with an intensity on the
order of 1019 W/cm2 [23]. However, it should be kept in
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mind that, in the problem of ion acceleration by the
focused laser radiation, nonquasineutral plasma
dynamics in a quasistatic magnetic field [14, 18] is as
important as the direct action of the ponderomotive
pressure force [23].

On longer time scales, the plasma structure is
expected to evolve to an almost quasineutral equilib-
rium state. The experimentally observed destruction of
the pinch structure on even longer time scales can be
attributed to ion–ion collisions. Analytic estimates
show that taking ion–ion collisions into account results
in a self-similar expansion of the hot core of the
Z-pinch on picosecond time scales [14, 57].

6. CURRENT FILAMENTS 
WITH A HELICAL MAGNETIC FIELD

In this section, we will extend the approaches that
were used earlier to calculate the structure of filaments
with a single magnetic-field component to the case of
filaments with a field having two components, Bz
and Bθ.

From the equation of electron motion and electron
continuity equation, we can readily obtain the following
three equations for the three components of the electron
vorticity in the presence of an arbitrary magnetic field:

(51)
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(53)
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Since Br = 0, it is quite natural to assume that Ωer = 0.
In this case, the equilibrium configurations such that

(54)

are described by two time-dependent equations for the
Lagrangian invariants in which only the derivative with
respect to r is taken into account in the total time deriv-
ative. Note that the question of how a filament evolves
into such a configuration remains open. If a filament
will still evolve in one way or another to a structure
whose parameters depend only on r, then this structure
will be described by the following equations for the two
Lagrangian invariants I1 = Ωeθ/(rne) and I2 = Ωez/ne:

(55)

In terms of the corresponding dimensionless quanti-
ties, the main equations describing a filament with a
helical magnetic field take the form

(56)
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Note that, for a filament with a helical magnetic
field, the dimensionless radial electric field is given by
the expression er = v 1b1 – v 2g2.

A steady-state configuration calculated from these
equations is shown in Fig. 11. A distinctive feature of
this equilibrium state is that the electric field changes its
sign at a certain radius. As a consequence, the ion
dynamics in this case should be more complicated than
that in the above cases of filaments with a single mag-
netic field component.
7. CURRENT FILAMENTS ON DIFFERENT 
SPATIOTEMPORAL SCALES

In this review, we have analyzed the results of exper-
iments with laser plasmas and with Z-pinch plasmas in
terms of the concept of filaments in which the presence
of a quasistatic magnetic field plays a key role in the
evolution of a dense plasma with a characteristic den-
sity of ne ~ 1020 cm–3 to a quasi-steady force equilibrium
state on time scales on the order of several inverse ion

plasma frequencies . If the interpretation developedωpi
1–
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here to describe the vortex structures is valid, then sim-
ilar structures should occur on spatial scales other than
those considered above. Up to this point, we have been
interested in plasmas with a characteristic density of
ne ~ 1020 cm–3, the characteristic transverse dimensions
of the objects under investigation being about 1 µm. It
is obvious, however, that, if the proposed approach cor-
rectly describes the plasma processes in question, then
analogous vortex structures occurring on other spatial
scales should also be revealed. Substantially shorter
spatial scales refer to clusters (with sizes in the range of
l ~ 10–6 cm) [58] and to the objects of quantum theory;
in this case, the approach used here to study the above
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Fig. 11. Initial radial profiles of the dimensionless azi-
muthal magnetic field b1, longitudinal electron velocity v1,
longitudinal magnetic field b2, azimuthal electron velocity
v2, electron density ν, and radial electric field er in a fila-
ment with a helical magnetic field.
effects should be substantially modified. At the same
time, for larger scale filaments, the approach can be
used without any significant modification (even with
allowance for ion–neutral collisions [59]).

In this context, we first illustrate the possible param-
eters of filaments with an arbitrary magnetic field in the
Earth’s ionosphere. Such filaments can occur under the
action of, e.g., the solar wind during periods of high
solar activity.

In order to systematically extend our approach to
larger scale structures, we introduce several dimension-
less coefficients that determine scaling from current fil-
aments in high-density laboratory plasmas (the relevant
physical quantities will be denoted by the subscript 0)
to low-density structures in the Earth’s ionosphere (for
which the subscript 1 will be used). We assume that, in
both cases, all of the processes proceed in precisely the
same way, which allows us to utilize the same dimen-
sionless equations. In order to describe scaling relation-
ships between the dimensional quantities, we introduce
the dimensionless coefficients mentioned above and
assume that the physical parameters of the ionospheric
plasma structures under consideration satisfy inequali-
ties (2), which are the main conditions of our model.

We introduce three dimensionless coefficients and
write out the following three basic relationships
between the physical quantities:

(60)

In this way, we can easily verify that the parameters of
the structures in high-density laboratory plasmas and in
a low-density ionospheric plasma satisfy the following
relationships:

(61)

If we also introduce the dimensionless parameter Λ0,

(62)

then, in order to satisfy the condition Λ1 @ 1 (which
corresponds to the ionospheric plasma), it is necessary
that

(63)

We assume that the electrons in both situations are rel-
ativistic; in this case, we have λ1 . λ3. Assuming also
that condition (63) holds, we obtain the following rela-
tionships between the physical parameters of a
micropinch in the laboratory plasma and a current
structure in the ionospheric plasma:

(64)
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Let us determine the characteristic spatiotemporal
scales of current structures in the ionospheric plasma,
assuming that the magnetic field and plasma density in
the Earth’s ionosphere are about B1 . 1 G and n1 .
105 cm–3, respectively [60]. In this case, from the rela-

tionship B0 .  . 3 × 107 G, we find

(65)

This indicates that the characteristic transverse dimen-
sion of a current structure in the ionosphere is about
r1 . 30 m. In this case, the time scale on which the
structure evolves should be about t1 . 3 × 10–5 s and the
electron and ion energies in an ionospheric structure
should coincide with those of the charged particles in a
micropinch.

Let us present analogous estimates for the interstel-
lar medium [61], in which the mean magnetic field is on
the order of

(66)

and the mean electron density is about

(67)

Performing the relevant calculations, we find

(68)

With these relationships, the characteristic transverse
dimension of a filament in the interstellar medium is
estimated by r1 . 105–106 km, the characteristic evolu-
tion time being about t1 . 1 s.

Interestingly, when a similar approach is applied to
the dart leader of lightning, where the electron density

is on the order of ne . 1014 cm–3, we have λ2 .  . 106

and the characteristic radius of the current channel is
equal to 10–1 cm, which corresponds to a magnetic field
of B1 . 104–3 × 104 G. In this case, the ion dynamics in
the current filament is strongly affected by ion–neutral
collisions because of the very low degree of ionization
in the current channel [59].

8. CONCLUSIONS
The above analysis shows that, in laser experiments

with high-density plasmas created by focused laser
pulses and in high-precision experiments with
X-pinches, the fundamental object is a filament in
which the quasistatic magnetic field is as strong as
about B ~ 107–3 × 107 G and which develops on a time
scale on the order of the inverse electron plasma fre-

quency . Because of the nonquasineutrality of such
a filament, the strong electric field accelerates ions to
megaelectronvolt energies [62, 63].

We have demonstrated the existence of a universal
nonquasineutral electron current structure—a filament
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with a strong quasistatic magnetic field that is main-
tained by the self-consistent electron drift current pro-
duced by the strong charge-separation radial electric
field.

In filaments with a longitudinal magnetic field, a
cavity in the electron density is produced and a strong
radial electric field directed toward the filament periph-
ery is generated. The ions expanding in this field away
from the filament axis form a collisionless shock wave.
Behind the wave front, the magnetic field equalizes and
the energy of the electrons rotating within the filament
is converted into the energy of the accelerated ions. 

A filament with a nonzero ion pressure can evolve
into a steady state in which the electromagnetic field
pressure is balanced by the ion pressure [33]. In con-
trast, in filaments with an azimuthal magnetic field, the
electron density becomes peaked, which leads to the
collapse of the ion plasma component toward the fila-
ment axis and to the formation of the dense hot core of
the Z-pinch. The characteristic time scales on which
such filaments evolve are on the order of the inverse ion

plasma frequency .

The larger the radius r0 of the vortex, the higher the
ion energy in it. For r0 ~ c/ωpi, the quasistatic approxi-
mation for electrons is violated and it is also necessary
to take into account the ion motion along the z axis [32].

The generation of high-energy ions by filaments in
a deuterium-containing plasma gives rise to a neutron
pulse [64, 65]. The possibility of neutron generation in
laser–plasma interaction is confirmed by the corre-
sponding calculations [47, 66]. Further calculations
yielded the laser pulse intensities that are required to
produce pions [67]. The generation of neutrons at the
shock front within a filament with a longitudinal mag-
netic field was calculated in our earlier paper [68].

Sholin and Baronova [69] pointed out that, because
of the Stark effect, the spectrum of the helium-like lines
of multicharged ions in strong radial electric fields
(Er ~ 1010 V/cm) in a Z-pinch should contain a forbid-
den line, which, in the authors' opinion, was experimen-
tally revealed by X-ray diagnostic technique.

It should be noted that the final stage of the X-pinch
evolution, which was investigated experimentally by
Pikuz et al. [9], is presumably dominated by collisions.
Estimates show that collisions should destroy the fila-
ment on picosecond time scales. [14]. The process of
this collisional destruction of the structure of the fila-
ments can be regarded as an explosion of the “hot
spots.” Strictly speaking, the hot spot, by its definition,
is a localized formation and its description should
involve two-dimensional localized filaments in which
the current forms a closed ringlike structure. This gen-
eralization of the above theoretical approach to investi-
gating the equilibrium of the filaments requires the cal-
culation of two-dimensional non-steady-state configu-
rations. We must emphasize that ringlike current

ωpi
1–
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structures were captured in particle-in-cell simulations
in a number of papers [70–72].

Hence, in this review, we have considered a scenario
of the acceleration of charged particles under the con-
ditions of strong charge separation and have found that
the quasistatic magnetic field plays a decisive role in
the acceleration mechanism. Note that the experimental
results obtained by Pikuz et al. [73] provide evidence
that, in an X-pinch, there is a strong quasistatic mag-
netic field. The distortion of the emission spectra of Al
that can be seen in the lower plot of Fig. 6 from that
paper corresponds to a quasistatic magnetic field with a
strength of about 30 MG. In this context, it is of interest
to mention a review paper by Maksimchuk et al. [74],
who presented experimental results on and described
theoretical models of the acceleration of charged parti-
cles under the action of a focused laser pulse. That
paper contains the data of numerous experiments on ion
acceleration to energies above about 1 MeV; moreover,
the data were interpreted under the assumption that the
plasma is quasineutral, but nothing was said about the
magnetic field. At the same time, in [13, 15, 42, 75],
results were presented from measurements of
megagauss (and even stronger) magnetic fields in laser
experiments. In [76], it was shown that, in the limit
We = 0, a filament with a magnetic field of several
megagaus can arise in plasma under the action of a laser
pulse. The fact that there is disagreement among phys-
icists about the interpretation of the experimental
results indicates that there is still no common opinion
on particle acceleration in laser plasma. According to
the above analysis, the ion acceleration is directly
attributed to the generation of quasistatic magnetic
fields. The theoretical and numerical results presented
here can bring about a deeper understanding of the
mechanisms for accelerating charged particles in laser
plasmas and Z-pinches.
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Abstract—An analysis is made of the effect of high-curvature stabilizing nonparaxial elements (cells) on the
MHD plasma stability in open confinement systems and in confinement systems with closed magnetic field
lines. It is shown that the population of particles trapped in such cells has a stabilizing effect not only on con-
vective (flute) modes but also on ballooning modes, which govern the maximum possible β value. In the kinetic
approach, which distinguishes between the effects of trapped and passing particles, the maximum possible β
values consistent with stability can be much higher than those predicted by the MHD model. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

In confinement systems with closed magnetic field
lines, as well as in open systems, the strong nonunifor-
mity of the magnetic field (such that the characteristic
spatial scale on which it varies is comparable to the
plasma radius) can have a stabilizing effect on convec-
tive (flute) MHD perturbations. It is by means of a
strongly nonuniform (i.e., highly nonparaxial) mag-
netic field that plasmas with a moderately decreasing
pressure profile can be stably confined in several types
of systems without a magnetic well, specifically, in
“compact” systems, in which the plasma length L along
the magnetic field is comparable to its dimension a
across the field (such as configurations in the Earth’s
magnetosphere, Z-pinches, and configurations with
levitated current-carrying coils; for a general approach,
see [1], and, for applications to particular systems with
internal conductors, see [2–5]), and in long systems,
L @ a, equipped with such internal nonparaxial ele-
ments as “fat” mirror cells [6], semicusps [7], and
divertors [8, 9]. Stabilization by nonparaxial elements
has already been attained and is to be achieved in some
future experiments [10–15].

In describing the stability of a plasma with isotropic
pressure in ideal magnetohydrodynamics (in what fol-
lows, such description will be referred to as the MHD
model), strong nonuniformity of the magnetic field
shows itself as the plasma compressibility effect. In this
case, for a confinement system with closed magnetic
field lines, the condition for convective (flute) stability
has the form [16]

(1)

Here, p is the plasma pressure, U =  (the integration

is carried out along a magnetic field line), and γ = 5/3 is
the adiabatic index. In equilibrium, the constant pres-

wMHD —p —U γp
—U

2

U
-------------- 0,≥+⋅=

dl
B
-----∫°
1063-780X/05/3101- $26.000003
sure surfaces (or, equivalently, the magnetic surfaces)
coincide with the surfaces U = const. It is assumed that
—p · —U < 0 (i.e., there is no average magnetic well).
According to condition (1), the pressure profile that is
marginally stable against convective modes (wMHD = 0)
is given by the formula

(2)

where p0 and U0 are the values of p and U at the axis. If
the magnetic surfaces U = const are labeled by a mag-
netic flux ψ enclosed in them (at the axis, we have ψ =
0 and |—ψ| = 0), then condition (1) and formula (2) give
the profiles p(ψ).

In a confinement system with a divertor (a toroidal
divertor in the case of a closed configuration with a tor-
oidal magnetic field), there is a separatrix surface ψ = ψs,
which contains a magnetic null line and in the immedi-
ate vicinity of which U  ∞. A system of this kind
exhibits convectively stable pressure profiles p(ψ) such
that the pressure vanishes at the separatrix surface,
p(ψs) = 0; thereby, the separatrix of finite radius serves
as a natural plasma boundary [9]. This, as well as the
possibility of placing the required number of divertors
at the proper positions along the system, is drawing
increased attention to divertor stabilization schemes.1 

1 A nonparaxial mirror cell like that considered in [6], in which the
plasma terminates at a finite distance from the separatrix, also can
be built into the system at the desired position along the system,
but it provides convective (and ballooning) stability only over a
certain portion of the plasma cross section (it is this portion to
which the results obtained below are applicable) and is incapable
of stabilizing the layer near the outer plasma boundary. Stability
over the entire plasma cross section can only be achieved by
means of an array of nonparaxial mirror cells with positive and
negative field-line curvature when the pressures in them are in
proper ratios to each other [17, 18].

p* p0
U
U0
------ 

  γ–

,=
 © 2005 Pleiades Publishing, Inc.
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Condition (1) for stability against convective pertur-
bations does not restrict the value of β = 2p/B2 because
it can also be satisfied for a finite pressure, when the
integral U contained in it is calculated from the actual
equilibrium magnetic field B (in this case, the shape of
the neutrally stable pressure profile p*(ψ) can generally
depend on β). The maximum β values are limited by
non-flute (ballooning) perturbations. For a long system,
the maximum possible β values for which the MHD
model reliably predicts stability in this case can be low
(see Section 2).

For a collisionless plasma, the stability conditions
derived from the MHD model are sufficient ones since
the actual potential energy W of the perturbation is not
less than that in the MHD model. Because of the strong
nonuniformity of the magnetic field, the particles
trapped in nonparaxial cells make a large contribution
to the energy W. Consequently, such cells have a greater
stabilizing effect on oscillations than that predicted by
the MHD model. As regards axisymmetric open con-
finement systems, this circumstance was taken into
account in [6, 17–20] in studying the conditions for sta-
bility against flute perturbations. In the present paper,
which concerns open confinement systems and confine-
ment systems with closed magnetic field lines, we will
consider how the populations of particles trapped in
nonparaxial cells affects not only the flute perturbations
but also the ballooning modes.2 We will show that the
limiting β values set by the ballooning instability can be
substantially higher than those predicted by the MHD
model.

2. LIMITATIONS ON β VALUES
IN THE MHD STABILITY MODEL

In confinement systems with closed magnetic field
lines, the set of equations that describe ideal ballooning
modes localized near a magnetic field line in an arbi-
trary toroidal geometry (see [23], Eqs. (6.137), (6.138))
at the stability boundary ω2 = 0 reduces to a single
equation for the radial component ξ of the plasma dis-

placement x =  +  + (see, e.g.,

[24]):

(3)

2 In [21, 22], it was noted that trapped particles have a stabilizing
effect on MHD oscillations in a tokamak.

ξ —ψ
—ψ 2
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—ψ
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2κ*
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B
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Here, k⊥  = |k⊥ |, k⊥  is the transverse component of the
wave vector (k⊥  · B = 0; k⊥  @ a–1, k||), kb = (B × —ψ) ·
k⊥ /B2,

(4)

k =  is the curvature of the magnetic field

line, and the prime denotes the derivative with respect
to ψ.3 

We integrate Eq. (3) with a weighting factor of B–1

along a closed magnetic field line; assume that I =

 ≠ 0; and account for the relationship

 = –U ', which is a consequence of the

equilibrium equation (for the transformation of the

integral , see Appendix 1). As a result, we

arrive at the equality

(5)

which coincides with marginal stability condition (1).
Under condition (5), Eq. (3) has the solution ξ = const,
which describes a flute mode and for which the quantity

I/ξ = –U ' + p'  is actually nonzero in the situation

of interest, i.e., when there is no magnetic well (p' < 0,
U ' > 0).

The analyses carried out in [26] for configurations
with an axisymmetric poloidal magnetic field and in
[24] for systems such that the magnetic field lines in
them are closed and the axisymmetry is not necessarily
required both showed that, in the MHD model, the
maximum possible β values under condition (1) are set
by the instability of ballooning perturbations whose
wavenumber along the magnetic field is nonzero and
for which

(6)

For such perturbations, the integral term in Eq. (3) van-
ishes. A solution of this kind, which implies that there
is a threshold in β for instability, corresponds to the
zero second eigenvalue Λ = Λ2 of the problem

(7)

(8)

3 In [25], Eq. (3) was used to analyze plasma stability against per-
turbations in which the transverse component of the wave vector,
k⊥ , is much less than the azimuthal component in the low local
shear approximation (this approximation, however, was not
explicitly mentioned there).

κ*
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B k×( ) k⊥⋅
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Laxis
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~

1

2
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ξ

Sketch of a periodic confinement system with closed magnetic field lines and dependence of the plasma displacement ξ in a bal-
looning perturbation on the longitudinal coordinate: (1) a long-wavelength perturbation in which the displacement has two zeros
and which sets the limiting β value in the MHD model, (2) a perturbation in which the displacement has zeros in every nonparaxial
cell and which governs the maximum possible β value in the kinetic approach with allowance for the effect of trapped particles, and

(3) an antisymmetric perturbation mode localized in the divertor. Here, Laxis and  denote the system length and the period
length, respectively, both measured along the system axis.

l̃axis
where ρ(l) is a positive function and L is the length of
the magnetic field line. In this case, the corresponding
eigenfunction has two zeros within the interval [0, L).
Since Eq. (7) does not contain the plasma compressibil-
ity, the ballooning stability boundary is governed by a
competition between the stabilizing effect of the field
line bending in the perturbation (the first term) and the
destabilizing effect of convective charge separation in
an unperturbed curved magnetic field (the term contain-
ing p' and the curvature). In this case, nonparaxial ele-
ments (in particular, divertors) have a destabilizing
effect on the ballooning modes because of the great
unfavorable magnetic field curvature in them.

For illustrative purposes, we will restrict ourselves
to the case in which the magnetic field coils are sym-
metric with respect to a certain plane intersecting the
toroidal plasma column (such a symmetry ensures that
the magnetic field lines are closed). To be specific, we
assume that the system has 2N field periods. If the dis-
tance l along the magnetic field line is measured from
the plane just mentioned, the coefficients of Eq. (4) are
even functions of l. Condition (6) is certainly satisfied
for odd perturbations,

ξ(–l) = ξ(l) (9)

(which are also odd with respect to l = L/2). The lowest
critical β value at which the instability occurs corre-
sponds to the mode with the longest wavelength,
namely, that in which the plasma displacement has two
zeros (see figure, curve 1):

(10)

where a the plasma minor radius,  is the character-
istic value of κ* at the magnetic field line, and the

β1 π2 a

κ* L
2

---------------,∼

κ*
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retained numerical coefficient π2 stems from the fact
that the longitudinal wavenumber of the lowest mode of
the perturbation is equal to 2π/L. The estimate has been
obtained under the assumption that the relative varia-
tion of the magnetic field along l is on the order of unity.
The permissible beta values are much lower than unity,
β ! 1; moreover, the longer the system (and the larger
the parameter N), the lower the permissible beta values.
The destabilizing effect of the nonparaxial cells mani-

fests itself in an increase in the effective value  in
relationship (10).

For a confinement system having 2N @ 1 field peri-
ods, we can obtain, instead of the above approximate
estimate, a rather precise (with a relative accuracy of
about ~1/N) critical β value by taking into account the
fact that the plasma displacement in long-wavelength

perturbations varies insignificantly over one period .
To do this, we represent the plasma displacement in the
form ξ = ξ0(z) + εξ1(l, z) with ε ! 1, where the quantity
ξ0 varies on a “long” spatial scale L and the variations

on small scales (of about ~ ) are accounted for by the
quantity ξ1. Using the method of averaging over the
small scales [27], we obtain from Eq. (7) with Λ = 0 the
following equation for ξ0:

(11)

κ*

l̃

l̃

d
2ξ0

dz
2

---------- A
2ξ0+ 0,=

A
2

p'
2κ* ld
—ψ B
---------------

Bkb
2

ld

k ⊥
2

--------------

l̃

∫
l̃

∫
l̃

2
------------------------------------------.=
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where the symbol  stands for the interval of integra-
tion along the magnetic field line. The first of the two
integrals in the numerator of the expression for A2

reduces to , where κψ is the component of the

curvature vector in its expansion in the basis vectors —
ψ and —θ, defined through the relationship B = —ψ × —
θ (see Appendix 1). The second of the integrals in
Eq. (11) depends on the relationship between the com-
ponents of the wave vector k⊥ : the integral is the largest
(this is the most dangerous for stability because the
increase in the integral produces the same effect as the
increase in |p' |) when the azimuthal component of the
wave vector is much larger than its radial component (a
situation quite different from that considered in the

Mercier stability analysis), so we have  ≈ B/ |—
θ|2. Replacing B/ |—θ|2 with a larger (or equal) quantity
|—ψ|2/B, we find the β value below which condition (8)
cannot be satisfied (A < 2π/L) for the odd solution ξ0 ∝
sin(Az) with two zeros (for which condition (6) holds
under the assumption of mirror-image symmetry), i.e.,
the instability is impossible:

(12)

Here, we have introduced the notation 〈 f 〉  = .

For U ' = – , we have used the relationship U =

 = 2N , which is valid for low β values. In

accordance with estimate (10), formula (12) yields the
scaling 〈β〉 ∝ 1/N2.

The permissible plasma pressure in a confinement
system is determined by the lowest of the limiting β
values set by ballooning instabilities at individual mag-
netic field lines; in this case, the most “dangerous” lines
are considered to be those at which the magnetic field
is weak along the portions of unfavorable curvature.

We also present an estimate obtained from the MHD
model for the limiting β values set by the ballooning
instability in the case of a straight chain of N axisym-
metric open mirror cells. We assume that such a system
is symmetric about the equatorial plane. The natural
boundary conditions for the plasma displacement at the
ends of the system follow from the fact that the longitu-
dinal plasma permittivity within the system is much
higher than that beyond it:

(13)

We take into account the fact that, in a straight system,

the curvature is on the order of r/ , where r is the dis-

l̃

2κψ ld
B

--------------
l̃∫

Bkb
2
/k ⊥

2

β〈 〉 8π2 B
2–〈 〉

U
2

------------- —p– —U⋅
pU

------------------------
1–

.=

fdl
B

-------/ dl
B
-----∫°∫°

2κψdl
∇ψ B
---------------∫°

dl
B
-----∫°

ld
B
----

l̃∫

∂ξ
∂l
------

l L/2±=

0.=

lM
2

tance from the axis and lM is the characteristic scale
length on which the magnetic field varies. As a result,
for the lowest odd (with respect to l) mode (with one
zero at the equatorial plane), we obtain

(14)

For an open system consisting of a single mirror cell
(N = 1) with a mirror ratio of about two, we have lM ~
L, so the stability is achieved at β ~ 1. For a long (N @
1) strongly rippled (the scale length lM is comparable to
the cell length L/N) mirror system, estimate (14) gives
β1 ~ (π/N)2; this indicates that the instability occurs
even at low β values.

In what follows, we will show that, because of the
influence of the population of particles trapped in non-
paraxial elements, the limiting β values set by the bal-
looning instability can be substantially higher than
those predicted by estimates (10) and (14).

3. SUFFICIENT STABILITY CONDITIONS
IN THE CASE OF LARGE RELATIVE 

POPULATION OF PARTICLES TRAPPED 
IN NONPARAXIAL CELLS

In the kinetic approach, the unperturbed plasma
state in a system is described by the distribution func-

tion f(ε, µ, ψ), with ε = mv 2/2 and µ = /2B; this
function refers to the cross section in which the abso-
lute value of the magnetic field as a function of the
coordinate along the magnetic field B has minima and
through which all the particles pass (so that all of them
are taken into account). The description of a system
consisting of several mirror cells separated by magnetic
mirrors is more complicated. To illustrate, let confine-
ment system 1 be equipped with identical mirror cells
2, which are arranged on both sides of the equatorial
plane and in which the magnetic field is weakened (i.e.,
the main part of the system and the mirror cells are sep-
arated by the magnetic mirrors). In such a system, there
are three populations of particles: those confined in the
main volume 1, those trapped in mirror cells 2, and
common (passing) particles. In this case, the distribu-
tion function f1 at the equatorial plane of confinement
system 1 takes into account only the first and third pop-
ulations of the particles and does not account for the
second population, which is described individually by
the distribution function f2 referring to the equatorial
plane of mirror cell 2. For a closed system, it is natural
to require that the distribution be Maxwellian (to within
errors associated with the transverse nonuniformity of
the plasma). In this case, the distribution function f2
should be chosen to complement the distribution cre-
ated by the passing particles in mirror cells 2 to a Max-
wellian one. An important point for further analysis is
that the motion of the particles of population 2 is

β1 π2 lM
2

L
2

-----.∼

mv ⊥
2
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STABILIZATION OF BALLOONING MODES BY NONPARAXIAL CELLS 7
affected by the curvature of the magnetic field only in
mirror cells 2.

In this section, whose subject is to analyze a con-
finement system with closed magnetic field lines, we
assume that the plasma pressure is isotropic (an open
system with an anisotropic pressure will be considered
in Section 5). We also assume that each of the 2N peri-
ods of the system can include a paraxial subsystem
(subsystems) within which the curvature of the mag-
netic field line is much less than the reciprocal of the
plasma minor radius a and also a nonparaxial sub-
system (subsystems). The potential energy W of the
perturbation mode localized in the plasma and charac-
terized by the displacement ξ⊥  is equal to

(15)

Here,

(16)

where Q = — × (x⊥  × B), dV = dΦdl/B, dΦ is the mag-
netic flux in the magnetic tube, and the integration is
carried out over the plasma volume. The so-called
kinetic term W (k) contains integrals along the bounce
orbits of the particles, and the averaging over the pitch
angles is carried out (see, e.g., [28]). The contribution
from the particles of the νth population to the kinetic
term (per magnetic tube dΦ) is equal in order of mag-

nitude to pνlν , where pν is the partial pressure,
lν is the length of the region in which these particles
execute bounce oscillations, and κν is the curvature of
the magnetic field line in this region. The contribution
from the particles trapped in the low-curvature paraxial
region of the system (the quantities referring to this
region will be indicated by the subscript 3) and from
the passing particles, which move predominantly
within this region, is small in comparison to the convec-
tive term (∝ p') in the expression for W (u) and thus can
be ignored. As for the population of particles trapped in
nonparaxial elements (the quantities referring to these
elements will be indicated by the subscript 1), its con-
tribution to the expression for W (k) is comparable to the
convective term (because of the high curvature, which
is on the order of ~a–1) and thus should be retained.

To simplify matters, we assume that the mirror ratio
in the nonparaxial cell is large (just as it is in a divertor
near the separatrix surface). In this case, the distribution
of the particles trapped in such a cell is close to an iso-
tropic Maxwellian distribution and the population of
passing particles is small (although these are the parti-
cles that ensure electric coupling between different
parts of the system). In Appendix 2, the resulting equa-
tion (22) will be generalized to the case of a finite mir-
ror ratio.

W W
u( )

W
k( )

,+=

W
u( )

=  
1
2
--- Q2 Q– x⊥ — B×( )×[ ] x⊥ —p⋅( )— x⊥⋅+⋅{ } V ,d∫

κν
2
B

1– ξ⊥
2
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According to the comparison theorem [29, 30], the

potential energy  for one nonparaxial element of
length l1 is no lower than

(17)

where l1 is the length of the portion of the magnetic

field line within a nonparaxial cell. Replacing 

with , we obtain the sufficient stability condition

(18)

where the summation over n indicates summation over
all 2N components of the system.

In what follows (as in Section 2), we will be inter-
ested in ballooning perturbations localized inside a thin
magnetic tube whose transverse dimension is much less
than the plasma radius. The short nonparaxial elements
under consideration will be assumed to be axisymmet-
ric.

4. LONG CONFINEMENT SYSTEM
WITH CLOSED MAGNETIC FIELD LINES

Let us consider a long toroidal confinement system
with closed magnetic field lines. It will be seen later
that the limiting β values consistent with stability are
low, β ! 1 (but are nevertheless higher than those given
by estimate (10)). For low β values (such that the per-
turbation electric field has the form E⊥  = –—⊥ φ), the
plasma displacement ξ in nonparaxial elements, in
which, in view of their axisymmetry, the magnetic field
line curvature has only a normal component, satisfies
the equation

(19)

(where κ = k · ), so we have

(20)

W1
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A sufficient condition for the stability (i.e., for the func-

tional W/( ) to nonnegative) is given by the con-

dition for the Euler equation

(21)

complemented with condition (8), to have no negative
eigenvalues Λ. Here, H(l) is a function that is equal to
unity in nonparaxial cells and to zero along the remain-
ing portions of the magnetic field line.

Assuming that the displacement ξ varies insignifi-
cantly along the magnetic field lines over the length of
the nonparaxial cell (as will be clear later, this is the
case for long-wavelength modes such that ∂lnξ/∂l ! a–1

except when the displacement ξ has a zero within the
cell), we can factor ξ out of the integral sign in the inte-
gral terms in Eq. (21). The equation then reduces to

(22)

In the MHD model, we would have Eq. (21) with the

last term replaced by  (see

[24]). Two circumstances are important here: first, in

contrast to the MHD model, the integral  in the

terms in Eqs. (21) and (22) that are quadratic in the cur-
vature is taken over the length of the nonparaxial cell
rather than along the entire length L of the magnetic
field line and, second, the integration in the numerators
in these equations is also carried out over the length of
the cell. One of the consequences of this first circum-
stance is that the requirement ξ = const for stability
against flute perturbations admits pressure profiles such
that the relative pressure gradient dlnp/dψ is greater
that that in the MHD model. For flute perturbations, the

ρξ2
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condition W ≥ 0 can be written in the form [cf. condi-
tion (1)]

(23)

where the integral U3 =  is taken over the length of

the paraxial portion of the period of the system and the

integral U1 =  is taken over the length of the non-

paraxial cell. For a neutrally stable pressure profile, the
relative pressure gradient is

(24)

where the prime denotes differentiation with respect to
ψ. For a low-curvature paraxial portion of the period of
the system (κ3l3 ! 1, so that  ! 1), expression
(24) passes over to the expression

(25)

and the marginally stable pressure profile coincides
with that for a single nonparaxial cell (with U = U1 in
formula (2)). In the corresponding case in the MHD
model, we would arrive, instead of expression (25), at
the expression

(26)

so, for a long paraxial portion, the denominator on the
right-hand side of this expression is much larger than
U1.

The fact that the integration in the integral term in
Eq. (21) is carried out along the magnetic field lines
only within the nonparaxial cells implies that, unlike in
the MHD model, the quadratic (in the curvature) terms
(which give rise to the integral term in Eq. (21)) that
account for the contribution from the particles trapped
in nonparaxial cells to the expression for the potential
energy W have a stabilizing effect on both even, ξ(–l) =
ξ(l), and odd, ξ(–l) = –ξ(l), modes, provided that the
total sum of the potential energies over all the cells is
nonzero,

(27)

We assume that condition (23) is satisfied with a suffi-
ciently large margin (see the Introduction): |p'/p | =
α|p'/p |∗ , where α < 1. Under this assumption, if the
plasma displacement ξ in the nth nonparaxial element
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STABILIZATION OF BALLOONING MODES BY NONPARAXIAL CELLS 9
of the chain is not close to zero, then the potential

energy  and the contribution of this element to the
total potential energy W are larger than the destabilizing
contribution from the adjacent nth paraxial portion of
the period of the system. If this is the case for all (or
almost all) of the nonparaxial elements, then the pertur-
bation on the whole is stable. The contribution from a

particular nonparaxial element to the sum  is

small when the displacement ξ has a zero within it. (In

particular, the potential energy  of an odd mode is
equal to zero when the equatorial plane of such an ele-
ment coincides with the plane l = 0.) For a periodic
chain of open mirror cells with a stabilizer at each of the

2N periods, we have  = 0 for a perturbation with

the wavelength L/N that has a zero within each of the
stabilizers (see figure, curve 2). The positive energy of
the field line bending in such a perturbation is N2 times
higher than that in the longest wavelength ballooning
mode with the same amplitude and with k|| ≈ 2π/L, for
which, under condition (6), the MHD model yields esti-
mate (10). Therefore, the plasma is stabile up to beta
values of

(28)

or

(29)

where  is the length of the period and  is the char-
acteristic value of κ* over the paraxial portion of the
period. It can be said that, for α < 1, the nonparaxial
cells function as anchors (such that, for each cell, we

have  +  > 0, although  < 0) that force the
perturbation structure to have a longitudinal wave-
length of ≈L/N. Long-wavelength ballooning modes
are suppressed even when condition (23) is satisfied
with a far smaller margin: the only unstable modes are
those in which the plasma displacement ξ is small in
some stabilizers; in this case, the corresponding wave-
number k|| (>2π/L) determines the critical β value,
which is intermediate between those given by estimates
(10) and (29).

Let us now consider another possible situation with
ballooning instability in a confinement system with
divertors. As the magnetic null line B = 0 is approached,
the unfavorable magnetic field curvature increases; so,
for a magnetic flux above a certain critical value, ψcr <
ψs, there may occur an unstable mode that is odd with
respect to the equatorial plane of the divertor (such that

 = 0) and is localized along a magnetic field line

W1n
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W1n
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2 a

κ* L
2

---------------,∼

β π2 a

κ* l̃
2

--------------,∼

l̃ κ*

W1
u( ) W1

k( ) W1
u( )

W1
k( )
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near this plane in the region where the magnetic field
line curvature |κ| is large (see figure 1, curve 3). In this
case, we are again dealing with the problem given by
Eq. (7) and condition (8). For such a perturbation mode,
the eigenvalue is negative, Λ < 0, under the condition

(30)

where the quantities are taken at the point (in the equa-
torial plane) that is closest to the circumference at
which the magnetic field vanishes and δr is the distance
from this point to the null line B = 0. If we have β ! 1
at the axis, then condition (30) is satisfied only in a cer-
tain radial peripheral layer ψcr < ψ < ψs adjacent to the
separatrix. The instability can be avoided by filling the
vicinity of the magnetic null line with a plasma such
that the pressure gradient within the layer is nonnega-
tive, p' ≥ 0 [14].

5. AXISYMMETRIC POLOIDAL MAGNETIC 
FIELD CONFIGURATION

An axisymmetric poloidal magnetic field configura-
tion (in particular, in a straight system) can readily be
analyzed analytically without assuming that the param-
eter β is low. Using the relevant lower estimate for the
kinetic term W that was obtained in [31, 32] and mini-
mizing W in the azimuthal component η of the dis-
placement x⊥ , we arrive at the following sufficient con-
dition for the stability against perturbations with the
azimuthal mode number m  ∞ (see [33]):

(31)

Here, p⊥ , || = p⊥ , ||(ψ, B) are the transverse and longitudi-
nal pressures (which are related by the longitudinal
equilibrium condition), σ = 1 + (p⊥  – p||)/B2, τ = 1 + B–

1∂p⊥ /∂B,  = |—ψ|–1 ,  ≡

 · —,

(32)

P =  + , Π =  + , pt = (2p⊥ t + p||t )/3,

 = a – , the summation is over all the nonparax-

ial cells, the integrals in  are taken along the mag-
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netic field line in the nth cell, the subscript 1 again
stands for nonparaxial cells of the system, and the sub-
script t denotes the populations of particles trapped in
the cells.4 

Condition (31) is satisfied if the Euler equation

(33)

supplemented with condition (8) (in the case of closed
magnetic field lines, e.g., in a confinement system with
internal current-carrying conductors) or with boundary
conditions (13) (in the case of a straight open confine-
ment system) does not have negative eigenvalues (Λ <
0). In a somewhat different form, Eq. (33) was also used
by Simakov et al. [35] in considering a single mirror
cell.

For perturbations whose wavelengths in the mag-
netic field direction are long and in which the plasma
displacement ξ varies insignificantly along the non-
paraxial element, Eq. (33) can be rewritten in the form
[cf. Eq. (22)]

(34)

For an isotropic perturbed plasma pressure, p⊥  = p||, and
for β ! 1, Eqs. (33) and (34) pass over to Eqs. (21) and
(22), respectively.

4 The plasma stability in a “simple mirror + end cusps” system was
analyzed by Drozdov and Martynov [34] by using relationships
(31) and (32) and by taking into account the ballooning effect.
They assumed that ∂p⊥ , ||/∂ψ ≠ only in a radial peripheral layer of
the mirror. In this case, the layer is stabilized by the favorable
magnetic field curvature in the cusps (according to the average
min-B principle) and the stabilizing (for an appropriate pressure
profile in the inner region of the confined plasma, i.e., the region
that is on the side of the magnetic field null) effect of the non-
paraxial nature of the cusp on the oscillations in the axial region
of the mirror cell does not manifest itself.
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The plasma pressure profile is stable against flute
perturbations (ξ = const) under the condition

(35)

Let a straight confinement system with a rippled
magnetic field be equipped with nonparaxial cells (sta-
bilizers) placed between every S ripples of total length
D, and let the convective stability condition for such a
system be satisfied with a sufficient margin (i.e., for a
chosen plasma pressure profile, inequality (35) is
assumed to be strong). In this case, the maximum pos-
sible β values consistent with stability are set by the
perturbations for which the plasma displacement ξ in
the stabilizing cells is close to zero, so that k|| ≈ π/D. As
a result, we have

(36)

where lM is the scale length on which the magnetic field
varies in the ripple and lb = D/S is the length of the
ripple.

Note that a long main straight confinement system
can be stabilized, up to β3 ~ 1, by nonparaxial cells
with β1 ! 1. If, in this case, nonparaxial cells are diver-
tors, then the instability within them can be suppressed
by the method mentioned in the previous section; i.e.,
by filling the vicinity of the magnetic null line with a
plasma at a certain pressure (see condition (30)).

6. CONCLUSIONS

In the bulk volume of a nonparaxial element, the
magnetic field is far weaker than in the mirrors through
which this element is coupled to the system. Conse-
quently, the overwhelming majority of the particles are
trapped in the nonparaxial element and thereby are sub-
ject to the large field-line curvature. Because of this,
such elements have a far greater stabilizing effect,
which is accounted for by the quadratic (in the curva-
ture) kinetic term in the expression for the potential
energy of the perturbation, on the MHD plasma oscilla-
tions than might be expected from the simple MHD
model. We have demonstrated that, on the one hand, a
decreasing pressure profile at which the convective
instability can be stabilized is steeper than that pre-
dicted by the MHD model and, on the other hand, the
limitations imposed by the ballooning modes on the
maximum possible β values are less stringent.

In the expression for the potential energy W of the
perturbation, we have used lower estimates (17) and
(32) of the kinetic term. In actuality, however, this term
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can be substantially larger and, accordingly, the non-
paraxial elements can have even stronger stabilizing
effect (for a divertor, this is demonstrated by the calcu-
lations of the Kruskal–Oberman criterion that were car-
ried out in [36]).
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APPENDIX 1

Transformation of the Integral 

We switch to the coordinates with straightened field
lines by introducing the azimuthal variable θ and repre-
sent the magnetic field in the form B = (—ψ × —θ). We
expand the vectors k⊥  and k, which are normal to the
magnetic field, in the vectors —ψ and —θ: k⊥  = kψ—ψ +
kθ—θ, and k = κψ—ψ + κθ—θ (note that the component
kθ coincides with the quantity kb used in the body of the
paper). As a result, we obtain

(A1.1)

Using formulas (6.129) and (6.134) from [23],

(A1.2)

and the fact that the component kψ is independent of l
(which is a consequence of relationship (6.130) from
[23]), we verify that the first integral on the right-hand
side of relationship (A1.1) vanishes. Consequently, we
have

(A1.3)

and the equilibrium equation yields (for details, see,
e.g., [37], which made use of the equality κψ = ((B × k)
· —θ)/B2)

(A1.4)
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Relationship (A1.3) is valid not only for the integral
along the entire closed magnetic field line but also for

the integral  over one magnetic field period (if

the system is periodic) and for an analogous integral
over a portion (if it exists) of the magnetic field line at
whose ends we have j|| = 0.

APPENDIX 2

Case of a Finite Mirror Ratio in the Low β 
Approximation

We begin with a general expression for the perturba-
tion f1 of the Maxwellian distribution function fM due to
the plasma displacement x⊥  in a “short” system (see,
e.g., [28]):

(A2.1)

where τ =  is the bounce period. For trapped par-

ticles, the integration is carried out along the portion of
the magnetic field line between two points where the
longitudinal particle velocity vanishes (V|| = 0), and, for
passing particles, the integral is taken along the entire
magnetic field line. For an axisymmetric nonparaxial
cell, we take into account relationship (19) to rewrite
expression (A2.1) as

(A2.2)

Using expression (A2.2), we can calculate the perturba-
tion  of the total plasma pressure p = (p⊥  + p||)/2:

(A2.3)

For long-wavelength perturbations, we can factor ξ out
of the integral over the trajectory of a trapped particle.
As for passing particles, their contribution to expres-
sion (A2.3) is insignificant (provided that mirror ratio is
not too small) because of the large value of the integral
in the denominator. Therefore, we have

(A2.4)
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Hence, the term  in the expression for the pressure
perturbation is associated only with the trapped parti-
cles. In order to incorporate the term  into the equa-
tion for the oscillations that derives from the condition

— ·  = 0, where  =  +  with  =  · B/B2 is the
perturbed current (see, e.g., [22]), we take into account

the fact that the perturbed pressure enters into 
through the expression (B × )/B2. In this case, the
additional term that arises in Eq. (7) and is associated
with  turns out to be proportional to — · ((B ×

)/B2) and has the form . As a result,

we arrive at the equation

(A2.5)

Here, the term with  is nonzero only along those

portions of the magnetic field line where there are
trapped particles; in this case, in a nonparaxial cell, we
have κ* = κ.

The stabilization condition for perturbations whose

wavelength is much longer than the period length  can
be written as

(A2.6)

The lower estimate of the second integral on the left-
hand side of condition (A2.6) can be obtained using the
Schwarz inequality:

(A2.7)
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Conditions (A2.6) and (A2.7) yield the following suffi-
cient stability condition:

(A2.8)

In the case of a large mirror ratio, which was consid-
ered in the body of the paper, condition (A2.8) passes
over to condition (23).

REFERENCES
1. B. B. Kadomtsev, in Reviews of Plasma Physics, Ed. by

M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1966), Vol. 2.

2. A. Hasegava, L. Chen, and M. E. Mauel, Nucl. Fusion
30, 2405 (1990).

3. M. E. Mauel and D. T. Garnier, T. Sunn Pedersen, et al.,
in Proceedings of the 18th IAEA Fusion Energy Confer-
ence, Sorrento, 2000, Paper IAEA-CN-77/THP2/05.

4. A. I. Morozov, V. P. Pastukhov, and A. Yu. Sokolov, in
Proceedings of the Workshop on D–3He Based Reactor
Studies, Moscow, 1991, Paper 1C1; in Proceedings of the
International Sherwood Fusion Energy Conference,
Santa Fe, 1992, Paper 2C44.

5. P. A. Popovich and V. D. Shafranov, Fiz. Plazmy 26, 519
(2000) [Plasma Phys. Rep. 26, 484 (2000)].

6. D. D. Ryutov and G. V. Stupakov, Fiz. Plazmy 12, 1411
(1986) [Sov. J. Plasma Phys. 12, 815 (1986)].

7. G. I. Dimov, Preprint No. 82-150 (Institute of Nuclear
Physics, Siberian Division, USSR Acad. Sci., Novosi-
birsk, 1982); G. I. Dimov and P. B. Lysyanskiœ, Preprint
No. 86-102 (Institute of Nuclear Physics, Siberian Divi-
sion, USSR Acad. Sci., Novosibirsk, 1986).

8. B. Lane, R. S. Post, and J. Kesner, Nucl. Fusion 27, 227
(1987).

9. V. P. Pastukhov and A. Yu. Sokolov, Fiz. Plazmy 17,
1043 (1991) [Sov. J. Plasma Phys. 17, 603 (1991)].

10. J. A. Casey, B. G. Lane, J. H. Irby, et al., Phys. Fluids 31,
2009 (1988).

11. Y. Yasaka, N. Takano, and H. Takeno, Trans. Fusion
Technol. 39 (1T), 350 (2001).

12. T. D. Akhmetov, V. S. Belkin, E. D. Bender, et al., Fiz.
Plazmy 23, 988 (1997) [Plasma Phys. Rep. 23, 911
(1997)].

13. J. Kesner, L. Bromberg, M. Mauel, et al., in Proceedings
of the 17th IAEA Fusion Energy Conference, Yokohama,
Japan, 1998 (IAEA, Vienna, 1999), Vol. 3, p. 1165.

14. V. V. Arsenin, E. D. Dlougach, V. M. Kulygin, et al.,
Nucl. Fusion 41, 945 (2001).

15. M. M. Berdnikova, S. V. Vaœtonis, A. M. Vaœtonene, et al.,
Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 22
(2003).

16. B. B. Kadomtsev, in Plasma Physics and the Problem of
Controlled Thermonuclear Reactions, Ed. by M. A. Leon-
tovich (Pergamon Press, New York, 1960), Vol. 4.

17. V. V. Arsenin and L. V. Mikhaœlovskaya, Fiz. Plazmy 14,
1015 (1988) [Sov. J. Plasma Phys. 14, 596 (1988)].

p'U '
5
3
--- p

2 1 B/Bmax– 1 B/4Bmax–( )κ ld
—ψ B

---------------------------------------------------------------------------∫° 
 

2

1 B/Bmax– ld
B

----------------------------------∫°
--------------------------------------------------------------------------------------- 0.≥+
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005



STABILIZATION OF BALLOONING MODES BY NONPARAXIAL CELLS 13
18. V. V. Arsenin, Itogi Nauki Tekh. Ser.: Fiz. Plazmy 8, 49
(1988).

19. S. V. Kuz’min, Fiz. Plazmy 16, 992 (1990) [Sov. J.
Plasma Phys. 16, 576 (1990)].

20. S. V. Kuz’min and P. B. Lysyanskiœ, Fiz. Plazmy 16,
1001 (1990) [Sov. J. Plasma Phys. 16, 581 (1990)].

21. J. W. Connor and R. J. Hastie, Phys. Rev. Lett. 33, 202
(1974).

22. A. B. Mikhailovskii, Instabilities in a Confined Plasma
(IOP, Philadelphia, 1998), Chap. 18.

23. V. D. Pustovitov and V. D. Shafranov, in Reviews of
Plasma Physics, Ed. by B. B. Kadomtsev (Énergoat-
omizdat, Moscow, 1987; Consultants Bureau, New York,
1990), Vol. 15.

24. V. V. Arsenin, E. D. Dlougach, V. M. Kulygin, et al.,
Trans. Fusion Sci. Technol. 43 (1T), 147 (2003).

25. V. V. Arsenin, Fiz. Plazmy 28, 843 (2002) [Plasma Phys.
Rep. 28, 776 (2002)].

26. A. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R.
M. Kulsrud, Proc. R. Soc. London A244, 17 (1958).

27. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic
Methods in the Theory of Nonlinear Oscillations
(Nauka, Moscow, 1974; Gordon & Breach, New York,
1962).
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
28. A. B. Mikhailovskii, Theory of Plasma Instabilities
(Atomizdat, Moscow, 1971; Consultants Bureau, New
York, 1974)., Vol. 2.

29. M. D. Kruskal and C. R. Oberman, Phys. Fluids 1, 275
(1958).

30. M. N. Rosenbluth and N. Rostoker, Phys. Fluids 2, 23
(1959).

31. L. S. Hall and B. McNamara, Phys. Fluids 18, 552
(1975).

32. A. F. Walstead, Phys. Fluids 25, 1358 (1982).

33. V. V. Drozdov and A. A. Martynov, Fiz. Plazmy 12, 1429
(1986) [Sov. J. Plasma Phys. 12, 826 (1986)].

34. V. V. Drozdov and A. A. Martynov, Fiz. Plazmy 14, 1308
(1988) [Sov. J. Plasma Phys. 14, 765 (1988)].

35. A. N. Simakov, R. J. Hastie, and P. J. Catto, Phys. Plas-
mas 7, 3309 (2000).

36. V. V. Arsenin and A. Yu. Kuyanov, Fiz. Plazmy 27, 675
(2001) [Plasma Phys. Rep. 27, 635 (2001)].

37. A. A. Skovoroda, Fiz. Plazmy 31 (2005) (in press).

Translated by O.E. Khadin



  

Plasma Physics Reports, Vol. 31, No. 1, 2005, pp. 46–56. Translated from Fizika Plazmy, Vol. 31, No. 1, 2005, pp. 52–63.
Original Russian Text Copyright © 2005 by Ignatov.

      

DUSTY 
PLASMA

       
Basics of Dusty Plasma
A. M. Ignatov

Prokhorov Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991 Russia
Received June 30, 2004

Abstract—The paper presents an introductory review of the basic physical processes in dusty plasmas. The
topics to be addressed are dust charging, forces acting on dust grains, interaction between dust grains, and dust–
plasma structures. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Dusty plasma (also called complex, colloidal, or
aerosol plasma) is an ordinary plasma contaminated
with a certain amount of condensed (solid or liquid)
particulates (grains). To start with, such a definition is
quite sufficient because there is currently no exact def-
inition of plasma in general. The main objective of the
present review is to provide a clearer insight to some
aspects of the problem.

Aerosols in gas discharges were observed under lab-
oratory conditions as early as the beginning of the
twentieth century. In 1912, A. F. Joffe measured the ele-
mentary charge with the help of metallic grains that
were synthesized in a gas discharge and acquired an
electric charge. The grains then fell down into a capac-
itor with a dc electric field counterbalancing gravity so
that each grain steadily held its position over a long
period. This experimental setup anticipated many mod-
ern installations.

Astronomical observations of various objects such
as nebulae or Saturn’s rings had began much earlier. We
now realize that these are also examples of dusty
plasma. However, dusty plasma physics is a very young
science. When the first issue of Plasma Physics Reports
was published, the term “dusty plasma” had not yet
come into use. Although astrophysicists always under-
stood the importance of dust grains in space, only a few
papers on this subject were published annually.

About thirty years ago, the first experiments on
plasma with a condensed disperse phase (CDP) were
performed. Such a plasma is actually a hot flame with
an admixture of aerosol particles emitting electrons. In
addition, water solutions of charged colloids have been
investigated for a long time. Many phenomena in CDP
plasmas and in colloidal solutions have analogues in
gas-discharge dusty plasma, so it is sometimes pro-
posed that a single term to unify all these physical sys-
tems be used. For example, the terms “colloidal” or
“complex” are applied. However, there are important
distinctions between all these systems; therefore, in
what follows, the term “dusty plasma” will be used in
its narrow sense to designate a low-temperature plasma
1063-780X/05/3101- $26.000046
containing aerosols. A medium composed of electrons,
ions, and neutral atoms is called, for simplicity, a pure
plasma. The more formal term “complex plasma” is
regarded as a synonym for dusty plasma. Aerosol par-
ticulates are commonly called dust grains. When speak-
ing about colloidal plasma, we imply just water colloi-
dal solutions, which are not addressed here.

Tremendous advances in dusty plasma physics were
made in the late 1980s and were triggered mainly by the
needs of plasma surface treatment, where the formation
of dust plays a major and, as a rule, harmful role. On the
other hand, synthetic dust grains produced in plasma
allow one to create new materials with numerous bene-
ficial properties. From the physical standpoint, the most
stimulating discovery was the theoretical prediction of
dust condensation and, in particular, the formation of
Coulomb crystals composed of dust grains. Experimen-
tal observations of dust–plasma crystals have given
impetus to thorough investigations on this subject.

Since the early 1990s, the number of papers on
dusty plasma has grown exponentially without any ten-
dency to saturation. A few thousand papers on this sub-
ject are now published annually. It seems that it is time
to strike a balance. This is why many review papers
have been written during the last few years. Plasma
Physics Reports has recently published an encompass-
ing series of articles on dusty plasmas [1–4]. The basic
physical processes are discussed in the reviews [5, 6]
and in the monograph [7]. Processes in chemically
active dusty plasmas are addressed in [8–11]. Astro-
physical aspects are discussed in [12], and the state of
the art in colloidal plasma physics is described in
[13, 14].

In the present paper, I try to briefly describe a few
physical processes occurring in dusty plasmas that are
most important in my opinion. Considerations of space
preclude a comprehensive account of the problem. The
list of references is minimal; a much more complete
bibliography may be found in the above reviews.
 © 2005 Pleiades Publishing, Inc.
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2. TYPICAL EXPERIMENT

Most of the dusty plasma experiments have been
performed with a discharge chamber like that sketched
in Fig. 1. The plasma is produced by applying a voltage
to electrodes 1 and 2. With an rf discharge, there may
be only one (lower) electrode. Various gases with pres-
sures varying over a very wide range are used. In esti-
mating the characteristic plasma parameters, we will
imply that the buffer gas is argon at a relatively low (<1
torr) pressure. There are also a lot of other means to
produce plasma; the details may be found in the
reviews cited above.

Dust grains may form spontaneously from the gas-
eous or plasma phase or appear due to sputtering of the
electrodes. The grains thus produced are polydisperse
and have very different dimensions and properties.
Artificial grains with well-controlled dimensions are
also often injected into plasma. The total number of
grains, in this case, may vary from one to a few tens of
thousands.

Grains with a size larger than a few microns can eas-
ily be observed by optical methods. The relatively slow
grain motion may be recorded with a video camera. By
processing the video record, one can determine the
velocity and position of each grain. This yields unique
information about the dust component as a whole. For
example, one may observe various structures formed by
dust grains, study phase transitions, etc. However, mea-
suring the plasma parameters in the region occupied by
dust is a much more difficult task; therefore, many
experimental works deal only with estimated values of
these parameters.

A distinctive feature of dusty plasma is that various
nonelectric forces can play a very important role in it.
In ground-based experiments, gravity dominates for
grains with a size larger than a few microns, so these
grains fall. Near the lower electrode, the weight of rel-
atively light grains is counterbalanced by the electric
field and they gather in the electrode sheath (see Fig. 1).

There are various ways to confine grains in the bulk
of the plasma. First, Brownian motion is capable of sus-
pending submicron-size grains; however, it is rather
difficult to observe the motion of such grains by optical
means. The second way is to use thermophoresis in a
neutral gas. Cooling the upper electrode (or/and heating
the lower one) creates a heat flux in a neutral gas, which
supports grains in the bulk of the plasma. In a stratified
dc discharge, potential wells in the central part of the
plasma column are formed; this also results in the trap-
ping of grains. Finally, the most radical way to get rid
of the gravity force is to place the experimental cham-
ber on a ballistic missile or on an aircraft flying over a
parabolic trajectory or to perform the experiments
onboard the orbital space station. All these ways of
embedding grains in the main plasma have been suc-
cessfully used (in particular, in experiments performed
onboard the International Space Station).
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Obviously, the physical conditions in the plasma
bulk and in the sheath region are quite different and,
accordingly, different processes may dominate in them.
As a result, dust structures formed in the plasma bulk
differ from those formed in the sheath. This issue will
discussed below in more detail.

3. DUST CHARGING

The main difference between dusty plasmas and
aerosols in a neutral gas lies in the huge charges of the
dust grains. A neutral grain placed in plasma acquires a
negative charge since the electron flux onto its surface
exceeds the ion flux due to the higher electron mobility.
The negative charge reduces the electron flux and
increases the flux of positive ions. The steady state is
achieved when the net electric current at the grain sur-
face becomes zero,

I = Ie(Q) + Ii(Q) + … = 0, (1)

where Ie, i are the electron and ion currents, which
depend on the grain charge Q, and the ellipsis stands for
other currents (e.g., those of negative ions), which
sometimes are also of importance. This process is sim-
ilar to the charging of a floating probe; however, the
charge of the probe is of little interest for plasma diag-
nostics, while in dusty plasmas, the grain charge plays
the major role.

In order to evaluate the equilibrium grain charge, we
have to solve Eq. (1); i.e., it is necessary to know the
explicit dependence of the currents on the grain charge.
As applied to probes, this problem has been discussed
for a number of decades; nevertheless, comprehensive
analytical theory of charging is still lacking. To esti-
mate the equilibrium grain charge in an isotropic
plasma, the so-called orbital motion limited (OML)
model is often used. This approximation is based on the
following assumptions: First, collisions between elec-
trons, ions, and neutral atoms are ignored. Second, it is

QE

mg

Fig. 1. Sketch of the discharge chamber in which most of
ground-based dusty plasma experiments have been per-
formed.
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supposed that a charged plasma particle hitting the
grain is either absorbed by the grain or recombines on
its surface, thus producing a neutral atom. Finally, it is
assumed that, if the laws of conservation of energy and
angular momentum allow a particle to reach the grain
surface, then it does reach this surface. This is enough
to evaluate the currents at the grain surface:

(2)

(3)

Here, it is assumed that the plasma consists of electrons
and one ion species; me, i , Te, i, and ne, i are the electron
and ion masses, temperatures, and densities, respec-
tively; and ϕ0 is the surface electric potential of a spher-
ical grain of radius a. Substituting these expressions
into Eq. (1), one may calculate the equilibrium surface
potential ϕ0. However, knowing currents (2) and (3) is
yet insufficient to evaluate the grain charge or, equiva-
lently, the electric field on its surface; it is also neces-
sary to know the self-consistent distribution of the elec-
tric potential around the grain. It was found that the
capacitance of a sufficiently small grain (a ! λDe ≡

) in plasma is close to its vacuum value;
i.e., Q = aϕ0. Moreover, a rigorous analysis shows that
the basic assumptions of the OML model are satisfied
in this limit only. In evaluating currents (see expres-
sions (2), (3)), it was supposed that the grain charge is
negative; i.e., it repels electrons and attracts ions. The
difference between expressions (2) and (3) is due to the
additional assumption that there are no trapped ions
(i.e., ions with a negative total energy), which follow
finite orbits around the grain. If, for some reason, the
grain charge becomes positive, then expressions (2) and
(3) should be interchanged. It should also be stressed
that for the OML model of charging to be applicable,
the grain size should not be too small. We may regard a
grain as a solid body and plasma as a continuous

medium only if a @ . Otherwise, the dust should
be treated as an additional microparticle species.

It follows from balance equation (1) and expressions
(2) and (3) for the currents that the equilibrium charge
may be represented in the form Q = –zaTe/e, where the
dimensionless coefficient z depends weakly on the
plasma parameters and usually ranges from 2 to 5. For
typical plasma parameters and micron-size grains, the
normalized grain charge Zd = |Q |/e may be as large as
Zd ≈ 104–105. It could be even larger; however, at Zd ≈
105–106, the negative electric field pressure at the grain
surface becomes comparable to the ultimate strength of
the grain material and the grain is destroyed.

As was noted above, a negatively charged grain
forms a potential well for positive ions. In the idealized
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collisionless model, the potential well is empty. How-
ever, even at an arbitrarily low collision frequency, the
well is gradually filled with ions and the resulting
potential distribution may substantially differ from that
given by the OML model. In particular, numerical sim-
ulations show that the equilibrium charge may be
halved as compared to the OML model.

Plasma absorption by the grain surface leads to a
specific distribution of the electric field around the
grain. Since electrons and ions are absorbed, there
exists a converging plasma flow in the vicinity of the
grain and the plasma density perturbation δne, i at large
distances from the grain behaves as δne, i ~ 1/r2.
Accordingly, the electric potential also decreases in
inverse proportion to the distance squared, ϕ(r) ~ 1/r2.
Therefore, due to plasma absorption, the grain electric
field penetrates into the ambient plasma to a depth
much exceeding the Debye length.

In order to evaluate the currents at the grain surface,
the effective charging (or absorption) cross section is
often introduced. In the OML model, this cross section
can be easily calculated for an arbitrary spherically
symmetric distribution of the electric potential, assum-
ing that all the plasma particles approaching the grain
center a distance smaller then a are absorbed:

(4)

Here, α = e, i; v  is the particle velocity at infinity; and
eα = ±e is the charge of a plasma particle. The Heavi-
side step function θ applies here to the repulsive poten-
tial only, i.e., to the plasma species some particles of
which cannot reach the grain surface. The current den-
sity of the particles absorbed by the grain surface is
given by the integral

(5)

where fα(v, r) is the distribution function of the parti-
cles of the α species at the grain location. Evaluating
integral (5) with a Maxwellian distribution, one obtains
expressions (2) and (3). Absorption cross section (4) is
also often used to evaluate the grain charge in more
complicated anisotropic situations, e.g., when the
plasma drifts relative to the grain. It should be stressed
that such an approach is groundless. In anisotropic
plasmas, we cannot assume that the potential distribu-
tion around the grain is spherically symmetric, and the
analysis of the conservation laws underlying the OML
model fails. The influence of the deviations from spher-
ical symmetry on the dust charge has not yet been esti-
mated even in the case of weakly anisotropic plasmas.
Thus, we may accept as a reasonable estimate that the
grain charge is equal to Zd = zaTe/e2, where the factor z
is on the order of unity and depends on the properties of
the ambient plasma; however, the accuracy with which
this factor is evaluated in various theoretical models
should not be exaggerated.
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It follows from the above estimates that a single
grain absorbs nearly all the electrons from a plasma
region with a characteristic size of L0, defined by

 ~ Zd, i.e, L0 ~ . If a ! λDe, then the size
of this region is much larger than the grain radius.
Strictly speaking, it is only to this case that the dusty
plasma concept is applicable. Otherwise, we are deal-
ing with an absorbing body that changes the density of
the surrounding plasma only near its surface.

For a sufficiently high dust concentration, when the
average distance between grains is about L0, a consid-
erable part of plasma electrons is absorbed by the dust.
Since, on average, plasma is quasineutral, the condition
of the zero net charge, Zdnd + ne = ni , where nd is the
dust density, is satisfied. The relative dust concentration
is conveniently characterized by the dimensionless
parameter P = Zdnd/ni, which indicates what fraction of
electrons is absorbed by the dust. Under experimental
conditions, P may be close to unity. The average elec-
tron density and the grain charge are then considerably
reduced. This happens at a relatively small dust concen-
tration, nd/ni ~ 10–6–10–5. The difference between the
electron and ion densities influences the dispersion of
some plasma oscillations (e.g., Alfvén waves) whose
frequency is much higher than the characteristic fre-
quency of dust motion.

The grain charge also varies over time. The rate of
charge relaxation toward its equilibrium value is deter-
mined by the derivative of current (1) with respect to
the charge. If the charge is close to its equilibrium
value, Q = Q0 + δQ, where I(Q0) = 0, then we have
dδQ/dt = –νchδQ, where the charging frequency is νch =
–I '(Q0). In the OML model, from Eqs. (2) and (3) we
obtain

(6)

where τ = Ti/Te (as a rule, τ ! 1) and ωpi is the ion
plasma frequency. Under typical laboratory conditions,
the charging frequency substantially exceeds the char-
acteristic frequency of dust motion, which is usually
about a few hertz. For this reason, the charge of a dust
grain moving through an inhomogeneous plasma is per-
manently changing. This results, e.g., in the specific
damping of dust waves. The character of the electric
interaction between dust grains may also change [15].

Fluctuations of the grain charge are of great impor-
tance. Since the charging is a discrete Markovian pro-
cess, the charge fluctuations are proportional to the
square root of the grain charge, i.e., 〈δZd〉2 ~ Zd. For suf-
ficiently small grains with Zd ~ 10, this leads to a ran-
dom change in the sign of the grain charge; this effect
plays an important role in the coagulation and synthesis
of dust grains from the plasma phase. At larger values
of Zd, the charge fluctuations correlate with the fluctua-
tions of the ambient plasma and the grain velocity.
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Therefore, the grain charge must be considered as an
additional inner degree of freedom.

Besides the charging due to plasma absorption,
there are also other mechanisms for dust charging. This
is, e.g., photoemission, which is often dominant under
space conditions and results in a positive grain charge.
If the temperature of the grain surface is sufficiently
high (as is the case with grains in flame), the thermal
electron emission becomes efficient. The surface heat-
ing may also be caused by plasma recombination; in
this case, the equilibrium charge is determined by both
the current and heat balance [16].

For comparison, we also mention the charging in
colloidal suspensions. Colloidal particles in water
acquire an electric charge due to electrochemical reac-
tions at their surface. Although the charge of colloidal
particles (Zd ~ 100) is smaller than the grain charge in a
gas-discharge plasma, colloidal plasma is a more non-
linear medium. The ratio eϕ0/Te in a dusty plasma is on
the order of unity, while in a colloidal plasma at room
temperature, the characteristic surface potential of a
particulate is about one volt, i.e., eϕ0/T @1. Another
important distinction that does not allow one to con-
sider dusty and colloidal plasmas from a common
viewpoint is that colloidal systems are in thermody-
namic equilibrium, while dusty plasmas are always far
from equilibrium.

4. FORCES ACTING ON A GRAIN
IN PLASMA

Unlike pure plasmas, there are many different forces
acting on a grain in dusty plasma. A characteristic effect
is the so-called ion drag. In low-pressure gas-discharge
plasmas, surface recombination occurs predominantly
at the chamber wall; as a result, there are always
directed plasma flows that drag dust grains. Evidently,
interaction with ions plays the governing role. In the
central part of the discharge, the flow velocity may be
much smaller than the thermal velocity, while near the
wall or the electrodes, it can exceed the ion sound
velocity.

Ion drag arises due to both the ion absorption by a
grain and the ion scattering in its electric field. Accord-
ingly, the ion wind force is a sum of two parts, the first
of which is related to the momentum flux of the ions
absorbed by the grain and the second is related to the
momentum flux of the scattered ions. The net force act-
ing on the grain may be written as

(7)

where σi(v ) is the ion absorption (or collection) cross
section given, e.g., by Eq. (4) and σs(v ) is the scattering
cross section. The latter may be evaluated analytically
only for a Coulomb potential by cutting off the diver-
gent integrals at large and small scales. Since the cut-
off parameters are somewhat arbitrary, the resulting
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drag force may vary by many times [17]. When the flow
velocity u is much smaller than the thermal velocity, the
drag force is written as

(8)

where Ka and Ks are dimensionless coefficients corre-
sponding to absorbed and scattered ions, respectively.
Under the conditions typical of a gas-discharge plasma,
both coefficients in Eq. (8) are large, Ka, s @1. By using
different approximations, different authors obtain dis-
similar results. For example, when the ion scattering
with impact parameters exceeding the Debye length is
taken into account, it turns out that the scattering dom-
inates, Ks @Ka [17], while ignoring such scattering
yields Ks ~ Ka. Although there are experimental indica-
tions in favor of the second alternative [18], the ques-
tion about the drag force still remains open even for low
drift velocities. The situation with drift velocities
exceeding the ion thermal velocity is much more inde-
terminate. Thus, the possibility of a negative friction
force directed opposite to the ion flow was discussed in
[19] and was recently confirmed by numerical simula-
tions [20].

In this context, it is worth returning to the discussion
of the grain charge. As was already pointed out, dust
grains in a low-temperature plasma acquire a negative
charge. It is sometimes reasonable to regard the grain
and the accompanying perturbation of the ambient
plasma as a whole, i.e., as a quasi-atom. Due to
quasineutrality, the net charge of a quasi-atom is nearly
zero. When an external electric field is applied to the
plasma, two forces act on the grain: the electric field
force, directed against the field, and the ion drag force,
directed along the field. It follows from the above esti-
mates that the ion drag force is much larger than the
electric field force. In other words, the net force acting
on a quasi-atom, i.e., the electrophoretic force, is
directed along the external electric field. In physics, the
charge is usually defined as a force-to-field ratio; if we
accept this definition, then we should consider dust
grains as positively charged objects.

In low-temperature plasmas, the degree of ioniza-
tion is small and the interaction of dust grains with a
neutral gas influences their motion. Two processes are
most important here. First, the friction on the neutral
buffer gas affects the grain motion. The friction force
may be approximately found from Eq. (8) by substitut-
ing Ka = Ks = 1 and replacing the ion density and the ion
thermal velocity with the corresponding parameters of
the neutral gas. Under typical laboratory conditions, the
friction force is comparable to the grain weight; as a
result, after several centimeters of free fall, the grain
moves uniformly.

The thermophoretic force produced by the neutral
gas also can play an important role. In the free-molecu-
lar regime, thermophoresis is caused by the heat flux
that distorts the atom velocity distribution. The thermo-

Fd a
2
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phoretic force is Fth = –8a2nnλ—Tn, where nn and Tn are
the density and temperature of the neutral gas, respec-
tively, and λ is the mean free path. This force pushes the
grains toward a colder gas regions. Producing the
proper temperature gradient in the neutral gas, one may
easily counterbalance the grain weight and hold the
grains in the plasma bulk.

Experimentalists often use laser radiation to control
the motion of individual grains [21]. Using a laser
beam, one can push a grain in an ordered structure (e.g.,
in a crystal), thus exciting a sound wave. The light may
influence the grain motion via two mechanisms. First,
the grain may drift toward the maximum of the electro-
magnetic field due to the ponderomotive force that acts
across the laser beam. Second, when the grain is illumi-
nated by a laser, a force acting along the laser beam
appears. Although this force is usually attributed to the
light pressure, in most cases the photophoresis pro-
vided by the radiometric force dominates. The latter
arises because the grain surface is headed nonuniformly
by the laser and the neutral gas pressure at the hotter
side is larger than at the colder one.

Since both thermophoresis and photophoresis are
provided by the heat exchange between the grain sur-
face and the ambient medium, the presence of plasma
may drastically influence these processes. In an aniso-
tropic medium, the heat flux Φ at the grain surface can
be represented as Φ = 〈Φ〉 + δΦ, where 〈Φ〉  is the heat
flux averaged over the grain surface. In a steady state,
the condition of the zero net flux, 〈Φ〉  = 0, determines
the average equilibrium temperature of the grain, while
the anisotropic part δΦ is responsible for nonuniform
heating. A dust grain exchanges its energy with both the
plasma and the neutral gas. With reasonable accuracy,
we may suppose that, when a neutral atom hits the grain
surface, its energy is completely accommodated, i.e.,
the atom wastes its energy on the grain heating and
leaves the grain with the energy corresponding to the
local surface temperature. An ion hitting the grain sur-
face recombines, and a considerable amount of energy
that is on the order of the ionization potential (10–
20 eV) is transferred to heat. Moreover, due to the large
grain charge, the ions falling on the grain surface gain
additional kinetic energy. All this increases the energy
flux from the ion component by two or even four orders
of magnitude. As a result, the average grain temperature
may achieve a few hundred degrees. The anisotropic
plasma heat flux may also result in the nonuniformity of
the surface temperature. For example, when the plasma
anisotropy is caused by the ion heat flux, the plasma
thermophoretic force is directed along the ion tempera-
ture gradient and a grain drifts to the hotter plasma
region [22]. Seemingly, the presence of plasma may
also influence the photophoresis but, so far, this prob-
lem has not been investigated.
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5. INTERACTION BETWEEN GRAINS

Above, we discussed various macroscopic forces
acting on a single grain. Analogous forces also result in
the interaction between grains. Two ultimate cases
should be distinguished. At a sufficiently low dust con-
centration, the dust has little effect on the parameters of
the ambient plasma. In this case, one can talk about
pairwise interactions between grains. In contrast, at a
high dust concentration, the dust determines the dis-
charge structure and the plasma parameters, thereby
resulting in collective interactions.

We start with pairwise interactions. Evidently, the
electrostatic interaction between grains is of great
importance. In an isotropic plasma, the electric field of
an external charge is screened on the spatial scale on the
order of the Debye length. This leads to the repulsion
interaction between grains at intermediate distances
between them. As was already mentioned above,
plasma absorption at the grain surfaces results in a
power-law radial profile of the grain potential. How-
ever, this effect yields a rather weak interaction force,
so other (nonelectric) forces dominate at large inter-
grain distances.

At intergrain distances smaller than the Debye
length and comparable to the grain size, the interaction
is more complicated. In this case, the grains can no
longer be considered as point charges and their electric
field is described by essentially nonlinear equations
that cannot be solved analytically. Moreover, the grain
charge depends on the distance to the neighboring
grain. It should be noted that there have been many
attempts to derive the attraction between like charges
due to the nonlinear electrostatic interaction. However,
a rigorous analysis of the momentum balance in colli-
sionless plasmas shows that this is impossible [23].
Attraction may arise due to some other nonelectric
forces, e.g., those caused by plasma absorption by
grains.

In an anisotropic plasma, the situation is quite dif-
ferent. Supersonic ion flows are always present near the
electrodes and the chamber wall. The dielectric permit-
tivity of a homogeneous plasma under these conditions

has the form e(ω, k) = 1 – /(ω + kzu – i0)2 +

1/ , where it assumed that the ions move along the
u axis and their directed velocity u points downward.
Since the static dielectric function e(0, k) may change
its sign, a point charge at rest produces an ion sound
wake with a spatially alternating electric potential. Fig-
ure 2 shows a typical potential distribution around a
unit charge located at z = 0 and x = 0; here, the darker
regions correspond to the lower electric potential. The
potential oscillates in the region located below the
charge and confined by the Mach cone. Outside the
Mach cone the electric potential decays exponentially
with increasing distance from the charge.

Downstream from a negatively charged grain a local
maximum of the ion density is formed. This effect,
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which is often called ion focusing, results in interesting
features of the grain interaction. A bounded pair forms
when the second grain is placed in the wake excited by
the first grain [24]. This interaction is asymmetric: if
one push the upper grain with the help of a laser pulse,
the lower grain will follows the upper one. However,
the lower grain acts on the upper one through a
screened Coulomb potential; therefore, when the lower
grain is shifted, the position of the upper grain remains
unchanged. This elegant experiment demonstrates that
the pairwise interaction provided by the ion focusing is
essentially nonpotential and, moreover, Newton’s third
law is violated in this case.

In a homogeneous plasmas, grains situated at the
same altitude repel one another. However, if they are
placed near a conducting wall, the electrostatic images
of their Mach cones may provide attractive interaction
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Fig. 2. (a) Two-dimensional distribution of the electric
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Fig. 3. Shadow interaction between two dust grains. The ions with velocities lying within the shadow cones do not reach the grains.

1 2 3

Fig. 4. Shadow interaction among three dust grains.
[25, 26]. In this case, the interaction force between the
grains is an oscillating function of distance.

In addition to the electric forces, the forces caused
by the ion wind also affects the grain interaction. As
was mentioned above, the plasma is absorbed by a grain
and there is a converging plasma flow around it. Using
Eq. (3), one can readily estimate the flow velocity far
from the grain (r @ λDe): v r ~ v sza2/r2, where v s =

 is the ion sound velocity. If another grain is
placed a certain distance r from the first one, then it is
dragged by the ion wind force (8). This drag force is
estimated as F ~ zTeniKa4/r2, where K = Ka + Ks is the
net dimensionless coefficient in Eq. (8). Such an inter-
action results in attraction between grains. The origin of
this attraction is sketched schematically in Fig. 3. Since
grains absorb the plasma, part of the ions moving
toward, e.g., the left grain are trapped by the right one.
As a result, the ion velocity distribution function at the
grain surface is zero inside a certain cone. This, in turn,
reduces the plasma pressure in the gap between grains.

Attraction provided by plasma absorption is called
the shadow force or the LeSage gravity, after the French
scientist who proposed a similar explanation of univer-
sal gravitation in the 18th century [27]. Although the
shadow force is caused by the redistribution of the ion
momentum flux, its magnitude is proportional to the
electron temperature. The reason is that the electron

Te/mi
temperature determines the grain charge and, accord-
ingly, the net current of the absorbed ions. As was men-
tioned above, the electric potential of the grain behaves
asymptotically as 1/r2 (i.e., the electric field decreases
with radius as E ~ 1/r3); hence, at large distances, the
electric repulsion changes with the shadow attraction.

To the best of my knowledge, the attraction between
two isolated grains has not yet been observed experi-
mentally; however, experiments demonstrated the
attraction of grains toward more massive bodies. Thus,
in [28], a negatively biased wire was placed in a dusty
plasma. The grains placed near the wire were repelled,
while the grains situated at larger distances were
attracted. This effect was interpreted as an attraction
caused by the ion wind, i.e., as the LeSage force.

The shadow force exemplifies nonpairwise interac-
tion. Let us suppose that there are three neighboring
grains (Fig. 4). The force acting on grain 1 is then inde-
pendent of the position of grain 3. The change in the
plasma momentum flux that results in the shadow force
is provided by the second grain only, while the third
grain is invisible from the surface of the first grain. This
example shows that the LeSage force may be screened
by other grains.

At a sufficiently high dust concentration, the
shadow forces become collective. In the absence of
dust, the transport processes in a discharge plasma are
mainly governed by the collisions of charged particles
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
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with neutral atoms. The cross section for ion–dust col-
lisions is very large. Under typical experimental condi-
tions, cross section (4) for thermal ions is σi ~ 10–5–
10−4 cm2, which exceeds characteristic collisional cross
sections in pure plasmas by approximately ten orders of
magnitude. Therefore, even a moderate dust concentra-
tion is sufficient for the gas-discharge structure to be
governed by the ion–dust collisions, rather than ion–
neutral or ion–ion collisions; in this case, the plasma
mainly recombines in the bulk of the discharge rather
than on the discharge chamber wall. The theory of grain
interaction [4] under these conditions takes into
account the plasma production by an external source,
the bulk recombination, and the electric forces. Accord-
ing to the theory, the characteristic spatial scale (analo-
gous to the Debye length in pure plasmas) above which

collective processes become important is Lcr = /aP.

A number of other mechanisms of grain interaction
have been discussed in the literature: the thermophore-
sis provided by the heat exchange between dust grains
and the neutral gas, the polarization forces analogous to
van der Waals forces acting between neutral atoms, and
others. Under typical laboratory conditions, all these
forces are much smaller than the electric or shadow
forces, but one cannot exclude that they may manifest
themselves somewhere.

6. STRUCTURES IN DUSTY PLASMAS

As is well known, the degree to which a pure plasma
is nonideal is characterized by the so-called coupling
parameter Γ = U(n–1/3)/T, which is the ratio of the aver-
age interparticle potential energy to the average kinetic
energy. For charge particles (with the charge eZ) inter-
acting via the Coulomb potential, the coupling parame-
ter is equal to Γ = e2Z2n1/3/T. A pure plasma is regarded
as nonideal if Γ > 1; as a rule, the coupling parameter
for pure plasmas does not substantially exceed unity.

The main difference between dusty and pure plas-
mas is the large variety of the interaction processes in
the former. As was already pointed out, the interaction
between dust grains is often nonpotential and nonpair-
wise and, strictly speaking, there is no exact analogue
of the coupling parameter for dust. Nevertheless, the
coupling parameter is often used to characterize dusty
plasma. It is usually introduced by assuming that the
interaction between grains is described by the Debye–

Hückel or Yukawa potential, U(r) = exp(–r/λD)/r.
For the dust grains in the plasma bulk, the predictions
of this model are in qualitative agreement with experi-
mental data. Dusty plasmas are characterized by very
large values of Γ (up to tens of thousands). For this rea-
son, the dust is often strongly correlated and the grains
form various ordered structures.

The grain ordering depends the plasma parameters
and the method for the gain trapping. Three-dimen-
sional crystalline dust structures were observed in
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standing striations of a dc discharge in [5]. As the dis-
charge current grows, the crystal melts and a phase
transition to a short-range order fluid state occurs. As
the current grows further, a transition to a gaseous state
is observed. An interesting feature of the gaseous state
is the anomalous heating of dust. The dust temperature
defined as the average kinetic energy of grains may
exceed the electron plasma temperature. The reasons
for this are not quite understood, and a number of theo-
ries has been proposed to explain this phenomenon.
Anyway, the temperature difference between the dust
and the ambient plasma shows that the traditional con-
cepts of Brownian motion are inapplicable to dusty
plasmas.

Another interesting feature is the structural instabil-
ity of dust in a gaseous state, as is depicted in Fig. 5. Let
us suppose that the gravity force is insignificant, the
plasma is produced by an external ionizer, and the dust
homogeneously fills a spherical chamber. At a suffi-
ciently high dust concentration, the plasma density is
determined by the balance between ionization and bulk
recombination on dust grains. Let there accidentally
appear a region with a reduced dust concentration. The
plasma density in this region then increases, and the ion
flows extruding the dust arise. This leads to a further
reduction in the dust concentration. However, the dust
cannot settle down at the chamber wall since the latter
is negatively charged. As a result, a peculiar plasma
bubble (void) forms (see Fig. 5). The void is character-
ized by a sharp interface between the pure plasma and
the region occupied by the dust. When a grain is at the
void boundary, the electric field force pushing it toward
the center is counterbalanced by the ion drag force and
by the excess plasma pressure. The thickness of the
transition layer is determined by the dust temperature,
which should be small, otherwise no void blows up.
The void formation is related to the universal instability

u

QE

Fig. 5. Formation of a dust void.
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of dusty plasma [4] and is eventually provided by the
above collective shadow force.

Under the action of the Earth’s gravity, heavy grains
settle down near the lower electrode. Curve 1 in Fig. 6
schematically shows the spatial distribution of the elec-
tric field at a distance of a few Debye lengths from the
floating electrode. Qualitatively, electrons in the elec-
trode sheath obey a Boltzmann distribution; i.e., the
electron density is inhomogeneous. Hence, the grain
charge also depends on the distance to the electrode. If
the mass md of a grain is not too large, there is an equi-
librium height at which the electric field compensates
for the grain weight, mdg + Qd(z0)E(z0) = 0.

As the number of grains of equal masses increases,
they gather at the same height. Ions drift toward the
electrode at a velocity that is larger or comparable to
the ion sound velocity. Under these conditions, the
electrostatic forces repel the grains from one another in
the horizontal direction (Fig. 2). Apparently, in most
experiments, there are no intergrain forces that might
confine grains in a horizontal plane. In order to prevent
grains from pushing out from the electrode, the latter
is made a little concave or, as is shown in Fig. 1, a con-
ducting ring is placed along the electrode perimeter.
This forms a potential well that prevents grains from
flying away.

By investigating the horizontal motion of a single
grain, one can measure the parameters of the potential
well and the friction force acting on the grain. With one
grain placed at the bottom of the well, one can throw
another grain and follow the process of scattering. This
allows one to find in the dependence of the intergrain
force on the distance. Evidently, such experiments
require extremely proficient technique.

A small number of grains (N ≤ 5) in equilibrium
form a regular polygon in a horizontal plane. When N
= 6, 7, or 8, one grain settles in the center and others

z0 z1 z
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u = v s

Fig. 6. Electric field profile near a floating electrode (1) in
the absence of dust and (2) in the presence of a dust layer
with a sufficiently high dust concentration. Here, E0 =
−mdg/Qd and the vertical dashed line shows the Bohm
boundary of the electrode sheath, where the directed ion
velocity is u = v s.
arrange in an (N – 1)-sided polygon. As the number of
grains increases, more complex clusters consisting of
a set of concentric polygons are formed. This resem-
bles the filling of the electron shells in an atom and
there exist an analogue of the periodic table for dust
clusters [29]. Investigating oscillations of dust clus-
ters, one can get more precise information on the grain
interaction.

A large number of grains (N @ 1) arrange in a layer
with a hexagonal ordering; i.e., a two-dimensional
plasma crystal appears. Such a crystal has all the
attributes of a solid. For example, waves of different
polarization (and, accordingly, different dispersion)
may propagate through the crystal. When the number of
grains reaches a certain critical value and the average
distance between grains becomes small enough, the
crystal melts. The second layer situated above the first
one then starts to grow. Curve 2 in Fig. 6 shows the field
distribution near the electrode at a sufficiently large sur-
face charge density of the dust layer. It can be seen that,
near the dust layer, there are two additional equilibrium
positions for a single grain. Only the upper position
(z = z1) is stable; it is this position where the second
layer starts to grow. By adding grains to the discharge
chamber, it is possible to grow a multilayer dust crystal
consisting of more than ten layers. Due to the above
discussed anisotropy of the electric forces in the sheath,
the grains arrange in vertical chains, while in the hori-
zontal plane, hexagonal symmetry is conserved.

In most models implemented so far to describe two-
dimensional dust crystals, grains situated at the same
height were assumed to interact via the Debye–Hückel
potential. This assumption usually agrees with experi-
mental data. However, there have been experiments
indicating that some other forces may play an important
role in the sheath. In [30], a void in a two-dimensional
dust layer was observed. The origin of this phenome-
non is still unclear: it may be attributed to some external
influence or to an alternating interaction potential.

Until now, we have discussed various structures in
dusty plasmas under the Earth’s gravity conditions.
Under microgravity conditions, a much more fascinat-
ing picture is observed that has not yet been studied in
detail. The PKE-Nefedov facility (named in honor of
A.P. Nefedov, one of the pioneers and developers of the
project) has been operating onboard the International
Space Station since 2001. Although most of the results
obtained are still being processed, the first papers have
already appeared (see, e.g., [5, 31, 32]). As in ground-
based experiments, the central part of the plasma turned
out to be free of dust. The dust boundary sometimes
performs periodic anharmonic oscillations resembling
the heartbeats of the central void. Closer to the elec-
trodes, the dust may be in various phase states. Unlike
conditions on Earth, three different crystalline phases
with pronounced interfaces between them have been
observed. Moreover, there are regions filled with dust in
a liquid state. Finally, dust vortices are formed in spite
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
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of the absence of considerable plasma flows. Although
several theories have already been proposed to explain
the latter phenomenon, there is still no complete under-
standing of the vortex generation.

7. CONCLUSIONS

So, what is dusty plasma? The answer depends on
the level of description and on the kind of phenomena
with which we are dealing. In the simplest definition, it
is a customary plasma with an additional ion species
carrying a huge mass and charge. Although this
approach allows one to describe some effects, many
important phenomena are omitted.

In studying the processes evolving on electron or ion
time scales, the presence of dust results in unequal elec-
tron and ion densities, which may lead to observable
phenomena. In this case, it may be assumed that dusty
plasma is a customary plasma with an admixture of a
heavy electronegative gas.

The distinctive features of dusty plasmas are most
clearly pronounced in the processes evolving on the
characteristic time scale of an individual grain’s
motion. In this case, a dusty plasma should be regarded
as a complex open system with an energy flux supplied
from an external ionizer and dissipated on the grains. In
order to properly describe these processes, it is insuffi-
cient to consider grains as huge ions, because the inner
degrees of freedom also must be taken into account.
The most important degree of freedom is the grain
charge, which varies as a grain moves. Besides the
charge, other quantities may be of significance. For
example, the average surface temperature (i.e., the
grain’s thermal energy) and the temperature gradients
can play a decisive role when there are heat fluxes in the
plasma. The rotational degrees of freedom are impor-
tant for nonspherical grains. In the kinetic description
of the dust, all these quantities act as additional coordi-
nates in phase space. As any other open system, dusty
plasma exhibits self-organization. Bearing in mind the
experiments performed onboard the ISS, the idea of the
self-organization of a dust cloud to the stage of a ratio-
nal being [4] does not seem so fantastic.

The present paper has excluded from consideration
many interesting and important issues that can only be
briefly outlined here. In the physics of dusty plasma,
considerable attention is devoted to the investigation of
waves and oscillations. We have described the phenom-
ena occurring with spherical grains. In many experi-
ments that deal with rodlike grains, structures analo-
gous to liquid crystals emerge. Sometimes the orienta-
tion oscillations of the rods become unstable. Applying
an external magnetic field leads to very rich physics.
Also, nothing has been said about the synthesis of
grains from a gaseous plasma and about dusty plasmas
in space. The quoted reviews address these and many
others issues.
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Abstract—A new mathematical model is proposed for the probability distributions of the characteristics of the
processes observed in turbulent plasmas. The model is based on formal theoretical considerations related to
probabilistic limit theorems for a nonhomogeneous random walk and has the form of a finite mixture of Gaus-
sian distributions. The reliability of the model is confirmed by the results of a statistical analysis of the experi-
mental data on density fluctuations in high-temperature plasmas of the L-2M, LHD, and TJ-II stellarators and
the local fluctuating flux in the TAU-1 linear device and in the edge plasma of the L-2M stellarator with the use
of the estimation–maximization algorithm. It is shown that low-frequency structural turbulence in a magnetized
plasma is related to non-Brownian transport, which is determined by the characteristic temporal and spatial
scales of the ensembles of stochastic plasma structures. Mechanisms that could be responsible for the random
nature of time samples of the local turbulent flux in TAU-1 are indicated. A new physical concept of the inter-
mittence of plasma turbulent pulsations is developed on the basis of the statistical separation of mixtures in
terms of the model proposed. The intermittence of plasma pulsations is shown to be associated with the gener-
ation of plasma structures (solitons and vortices) and their nonlinear interaction, as well as with their damping
and drift. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION. 
STRONG STRUCTURAL PLASMA

TURBULENCE

One of the fundamental problems in creating a con-
trolled fusion reactor is plasma instability resulting in
anomalous particle and energy losses. For this reason,
much effort has been devoted to studying plasma insta-
bilities and searching for methods of their suppression.
Low-frequency (LF) plasma turbulence caused by these
instabilities is an important loss channel.

Studies of LF turbulence in closed magnetic con-
finement systems have become very common in recent
years. The 30th EPS Conference on Plasma Physics and
Controlled Fusion (St. Petersburg, 2003) [1] showed
that such experimental studies are presently being car-
ried out in all of the existing tokamaks and stellarators,
such as T-10, LHD, TJ-II, DIII-D, JET, CASTOR, and
FT-2 (see, e.g., report nos. P-2.56, P-3.121, P-4.5,
O-2.1A, and P-179). The same trend was also noted at
the XXXI Zvenigorod Conference on Plasma Physics
and Controlled Fusion (Zvenigorod, 2004) [2], where
studies on LF turbulence in toroidal devices were sup-
plemented with reports on experiments in linear
devices and gas discharges. It is not surprising that
almost one-half of the papers presented at the last Toki
Conference dedicated to progress in plasma theory [3]
were devoted to various turbulent phenomena of this
1063-780X/05/3101- $26.000057
kind: blobs, streamers, zonal flows, solitons, vortices,
etc. (see, e.g., report nos. PL-1, I-01, I-02, I-04, I-06,
O-6, and O-7). It should be noted that not all of these
theoretical concepts have been confirmed experimen-
tally. The studies of this plasma state attract particular
attention because there are many experimental facts
pointing to the influence of LF turbulence on the mac-
roscopic plasma characteristic in closed magnetic con-
finement systems. For example, LF turbulence governs
anomalous transport in the edge plasma [4, 5], the
changes in its parameters correlate with observations of
internal and external transport barriers in plasma [6–8],
and the statistical parameters of the turbulent particle
flux in the edge plasma correlate with the gas influx
from the chamber wall [9]. Note that the question of the
frequency at which large-amplitude random events of
“catastrophic” type occur in long-term and steady-state
discharges still remains open [10]. An important factor
is that the computerization of experiments has made it
possible to accumulate large arrays of statistical data
(temporal and spatial samples) and then calculate
steady-state and transient characteristics (spectral, cor-
relational, probabilistic, dimensional, etc.) of LF
plasma turbulence. This stimulated experimental stud-
ies on LF turbulence and provided a great body of new
information requited for its theoretical description and
analysis.
 © 2005 Pleiades Publishing, Inc.
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In many toroidal and linear devices, LF turbulence
in the plasma core and at the plasma periphery has the
form of strong structural (SS) turbulence [11–13]. The
term strong structural turbulence means that there are
ensembles of stochastic, nonlinearly interacting plasma
structures against the background of well-developed
steady-state plasma turbulence. SS plasma turbulence
was first discovered in the TAU-1 linear device with a
longitudinal magnetic field [14] and was then observed
in the L-2M, LHD, and TJ-II stellarators [15]. Measure-
ments of the fluctuation parameters in most toroidal
devices indicate that LF SS turbulence may be present
in these devices. Let us consider the characteristic fea-
tures of this phenomenon using as an example the L-
2M stellarator, in which turbulence has been studied
over the entire plasma volume [9].

Time samples of any fluctuating plasma parameter
are bursty in character. Such time samples are more
adequately described by finite-duration oscillating
wavelets rapidly decaying in time. The observed wave-
let spectra contain quasi-harmonics, and their correla-
tion functions have oscillating tails. The LF SS turbu-
lence has been observed over the entire plasma volume
in L-2M, although, in different plasma regions, differ-
ent instabilities are responsible for its excitation: drift-
dissipative instability, MHD resistive ballooning insta-
bility [9], and trapped-electron-driven instability [3].
Nonlinear structures comprise a considerable fraction
(from 10 to 30% in different plasma regions) of the tur-
bulence energy. Turbulent fluctuations in LF SS turbu-
lence are correlated over the entire plasma volume via
ensembles of stochastic plasma structures. The main
characteristic feature of LF SS turbulence is that the
probability density functions (PDFs) of the fluctuating
parameters differ from a normal distribution: the
observed PDFs are leptokurtic and are characterized by
heavier tails. Non-Gaussian PDFs of stochastic plasma
processes point to the non-Brownian (anomalous)
motion of particles in stochastic fields [16]. In a plasma
with LF SS turbulence, the role of rare events with mag-
nitudes far exceeding the average values substantially
increases and needs to be estimated.

Thus, the fundamental problem of describing the
nature (state) of LF SS turbulence leads us to the
applied problem of describing anomalous plasma trans-
port in closed magnetic configurations.

So far, the methods for modeling particle diffusion
in a plasma with LF SS turbulence described by non-
Gaussian statistics have been poorly developed. Such a
modeling is closely related to the problem of describing
non-Brownian particle motion in the probability theory.
The key question is whether the classical Fokker–
Planck–Kolmogorov (FPK) equation can be used to
analyze the motion of ensembles of plasma particles in
stochastic plasma fields. It is well known [17] that the
FPK equation was derived from the stochastic differen-
tial equation only for the stochastic term representing a
random Gaussian process. The diffusion coefficient in
this approximation has a form familiar to plasma phys-
icists [18]. A general analytic solution to the stochastic
differential equation for the stochastic non-Gaussian
term is still lacking. Therefore, no universal prescrip-
tion has been devised for making corrections in the
FPK equation and determining the terms and factors
into which they are to be introduced.

In this paper, we propose a new mathematical model
for probability distributions of the characteristics of the
processes observed in turbulent plasmas. The model is
based on formal theoretical considerations related to
probabilistic limit theorems for a nonhomogeneous
random walk and has the form of a finite mixture of
Gaussian distributions. The reliability of the model is
confirmed by the results of a statistical analysis of the
experimental data on plasma density fluctuations in
high-temperature plasmas of the L-2M, LHD, and TJ-II
stellarators and the local fluctuating flux in the TAU-1
linear device and in the edge plasma of the L-2M stel-
larator with the use of the estimation–maximization
(EM) algorithm. It is shown that LF SS turbulence is
related to anomalous transport in a magnetized plasma.
A new physical concept of the intermittence of plasma
turbulent pulsations is developed on the basis of the sta-
tistical separation of mixtures in terms of the model
proposed. The intermittence of plasma pulsations is
shown to be associated with the generation of plasma
structures and their nonlinear interaction, as well as
with their damping and drift.

2. MATHEMATICAL MODEL

2.1. Nonhomogeneous Continuous-Time Random Walk

There have been many attempts to explain the
observed leptokurtic PDFs. The most progress in solv-
ing this problem has been achieved with the use of the
limit theorems for a homogeneous random walk with
discrete or continuous time. According to these theo-
rems, the so-called stable or fractionally stable PDFs
characterized by power-law tails can be used as an
alternative to a Gaussian distribution [19–21]. As
applied to plasma turbulence, such models were con-
sidered in [22–25]. However, stable or fractionally sta-
ble models sometimes fail to provide an adequate
description of plasma turbulence. First, a basic assump-
tion underlying these models is the absence of the sec-
ond moment (variance) of the distribution of random
particle jumps and/or the absence of the first moment
(mathematical expectation) of the distribution of time
intervals between the jumps. For this assumption to be
valid, it is necessary that, at the least, these random
variables with positive probabilities could take arbi-
trary large values. It is evident that this assumption fails
to be valid in practice, because the recorded processes
are always limited in space and time, so the above ran-
dom variables possess all the moments. Second, a sta-
tistical analysis of experimental data shows that,
although the tails of the observed PDFs are heavier than
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
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those described by a Gaussian law, they are much
lighter than the tails of stable or fractionally stable non-
Gaussian PDFs, which decrease as O(x–α) with 0 < α < 2
at x  ∞ [16].

In contrast to traditional models, our mathematical
models are based on limit theorems for a nonhomoge-
neous continuous-time random walk. This walk differs
from a homogeneous walk in that the distributions of
the random time intervals between successive jumps of
a walking particle are, in general, different. The
assumption of the nonhomogeneity (different distribu-
tions of the time intervals between successive jumps) of
a random walk is consistent with a concept that the rate
of the coordinate increment of a particle that undergoes
Brownian motion in a turbulent medium is essentially
nonhomogeneous.

Let N(t) be the number of jumps of a walking parti-
cle over the time interval [0, t], where t ≥ 0. The instants
of jumps form a chaotic point random process on the
time axis. However, by virtue of the above concept, this
chaotic random process is nonhomogeneous. As is well
known [26], the most reasonable stochastic models of
nonhomogeneous chaotic point processes are doubly
stochastic Poisson processes, which are also referred to
as Cox processes. They are defined as follows:

Let N1(t) (t ≥ 0) be a homogeneous Poisson process
with a unit intensity, whereas Λ(t) (t ≥ 0) is a stochastic
process that is independent of N1(t) and possesses the
following properties: Λ(0) = 0 and P(Λ(t) < ∞) = 1 for
any time t ≥ 0 and the trajectories Λ(t) do not decrease
and are continuous from the right. A doubly stochastic
Poisson process (a Cox process) is defined as a super-
position of N1(t) and Λ(t):

In this case, we will say that the Cox process N(t) is
controlled by the process Λ(t). In particular, if the pro-
cess Λ(t) admits the representation

in which λ(t) is a positive stochastic process with inte-
grable trajectories, then λ(t) can be interpreted as an
instantaneous stochastic intensity of the process N(t).
For this reason, the process Λ(t) controlling the Cox
process N(t) is called the accumulated intensity of the
process N(t).

The properties of Cox processes are described in
detail in [27, 28].

The objective of this section is to formulate the
problem of the modeling of nonhomogeneous chaotic
flows of events in a turbulent plasma with the use of
compound Cox processes and to demonstrate that the
departure of the observed distributions of the processes
from normal can be attributed to substantial variations

N t( ) N1 Λ t( )( ), t 0.≥=

Λ t( ) λ τ( ) τ , td

0

t

∫ 0,≥=
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in the intensity of nonhomogeneous chaotic flows of
events described by Cox processes.

Let X1, X2, … be identically distributed random vari-
ables. We assume that, for any t ≥ 0, the random vari-
ables N(t), X1, X2, … are independent of one another.
The process

(1)

describes the coordinate of a particle that undergoes a
nonhomogeneous random walk at a time t; this process
will further be referred to as a compound Cox process

(for definiteness, we assume that ).

As was noted above, general processes S(t) of form

(1) with a random intensity dλ(t) =  are adequate

models of real random walks (in particular, those gov-
erned by plasma turbulence), for which the property of
homogeneity is rather an exception than a rule. The
parameters of turbulent plasma fluctuations observed in
tokamaks and stellarators are nonhomogeneous in both
space and time.

Hereinafter, we will assume that the random quanti-
ties {Xj}j ≥ 1 have at least first two moments. We denote
EX1 = a and DX1 = σ2, where 0 < σ2 < ∞. It will be
shown below that, even under these assumptions, the
limit distributions of compound Cox processes can
have arbitrary heavy tails. In this section, as an illustra-
tive example, we will consider a situation in which
a = 0. The reasons for this are as follows: First, our
object here is to describe the principles of constructing
adequate stochastic models of plasma turbulence, with-
out going into details. Second, as will be demonstrated
in the subsequent sections, the actual values of the
parameter a turn out to be close to zero.

We will formulate the necessary and sufficient con-
ditions for the convergence of the one-dimensional dis-
tributions of compound Cox processes with jumps that
possess the above properties, without imposing any
moment restrictions on the control process. We will
demonstrate that the asymptotic behavior of the process
S(t) is completely determined by the asymptotic behav-
ior of the accumulated intensity Λ(t). Furthermore, we
will see that the heavy (e.g., Pareto-type) tails of distri-
butions that are limit for sums (1) can be caused by an
extremely wide spread in the values of the control pro-
cess Λ(t) rather than by the “misbehavior” of sum-
mands (e.g., by the absence of their moments).

In what follows, the symbol ⇒  designates the con-
vergence in distribution. The standard normal (Gauss-

S t( ) X j, t
j 1=

N t( )

∑ 0≥=

 = 0
j 1=

0

∑

Λ t( )
dt

-----------
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ian) distribution function will be denoted as Φ(x):

The symbol E denotes the mathematical expectation
with respect to the probabilistic measure P.

Let d(t) > 0 be an auxiliary normalization (scaling)
function increasing without bound at t  ∞.

Theorem 1. Let Λ(t ) increase without bound at
t  ∞. Then, for a one-dimensional distribution of a
normalized compound Cox process to converge to a
distribution of some random variable Z,

  ∞),

it is necessary and sufficient that there exist a nonnega-
tive random variable U such that

  ∞).

See the proof in [29, 30].
Note that condition (ii) of Theorem 1 can be inter-

preted as the requirement for the accumulated intensity
to be statistically regular: the limit of the ratio Λ(t)/d(t)
at t  ∞ can be random, but it must exist. Another
interpretation of this condition is that, at large t, the dis-
tribution of the random variable Λ(t)/d(t) depends only
slightly on t. In this case, condition (i) implies that the
limit distribution of a compound Cox process is a scale
mixture of normal distributions that has heavier (in gen-
eral, arbitrarily heavier) tails in comparison to a normal
distribution (see below).

From Theorem 1 and the identifiability of a family
of scale mixtures of normal distributions, the following
corollary immediately follows:

Corollary 1. Under the conditions of Theorem 1, we
have

  ∞)

if and only if

  ∞).

In other words, the limit distribution of a compound
Cox process can be normal if and only if the random
variable Λ(t)/d(t) is asymptotically (at t  ∞) non-
random.

Φ x( ) 1

2π
---------- e

u
2
/2–

u, –∞d

∞–

x

∫ x ∞.< <=

S t( )
σ d t( )
------------------ Z      ( t ⇒

(i) P Z x<( ) Φ x

u
------- 

  P  U y<( )d

0

∞

∫=

≡EΦ x

U
-------- 

 
 
  , –∞ x ∞;< <

(ii)
Λ t( )
d t( )
----------- U   (t⇒

P
S t( )

σ d t( )
------------------ x< 

  Φ x( )   ( t ⇒

Λ t( )
d t( )
----------- 1  (t⇒

                        
Another corollary of Theorem 1 is a criterion for the
convergence of one-dimensional distributions of com-
pound Cox processes with a zero average and finite dis-
persions to stable distributions. We will show that one-
dimensional distributions of compound Cox processes
with the properties described above are asymptotically
stable if and only if their control processes are asymp-
totically stable.

Let Gα, θ(x) be a stable distribution function with an
index α and a parameter θ. As is well known, such a
distribution function is defined by its characteristic
function

where –∞ < t < ∞, 0 < α 

 

≤

 

 2,

 

 and 

 

|θ |
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 =
min(1, 2/
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−
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 (see, e.g., [22]).
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) in probability.
Then, for

it is necessary and sufficient that

(see the proof in [29]).
Let us now consider a situation with a discrete time

 

t

 

 = 

 

n

 

 = 1, 2, …
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n
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has the form

(2)

where {

 

Z

 

i

 

} are independent and uniformly distributed
random quantities: 
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i
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 1

 

. Such a representation is
possible when 

 

Λ

 

(

 

t

 

)

 

 is a homogeneous process with
independent increments and a compound Cox process
is observed at equidistant instants of time, i.e., 

 

Z

 

i

 

 are
increments of the control process 

 

Λ

 

(

 

t

 

)

 

 on time inter-
vals between observations. In accordance with defini-
tion (1), we assume that

(3)

In this situation, in view of Theorem 2 of this paper and
Theorem 2 of Section 35 from [31], we arrive at the fol-
lowing theorem:
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In other words, heavy tails often observed in stable
distributions that are limiting for compound Cox pro-
cesses as the intensity increases can arise not only in
situations where the distributions of jumps are charac-
terized by heavy tails. As is seen from Theorem 3, even
at arbitrary light tails of the distributions of jumps,
heavy tails of the limiting laws may arise due to heavy
(Pareto) tails of the distributions of increments of the
control process.

2.2. Leptokurtocity of Scale Mixtures 
of Normal Distributions

Mixtures EΦ(x/ ) are always more leptokurtic
and, consequently, possess heavier tails in comparison
to a normal distribution. Indeed, scale mixtures of nor-
mal distributions correspond to the product of a sto-
chastically independent normal random variable X and

nonnegative random variable Y = . As a numerical
characteristic of leptokurtocity, we consider the excess
factor κ(Z), which, for a random variable Z with
EZ4 < ∞, is defined as

.

If P(X < x) = Φ(x), then we have κ(X) = 3. For densities
that are more leptokurtic (and, accordingly, possess
heavier tails) in comparison to normal densities, we
have κ > 3, whereas for densities that are less leptokur-
tic, we have κ < 3. From the statements formulated
below, it follows that scale mixtures of normal distribu-
tions are more leptokurtic in comparison to a normal
distribution.

Lemma 1. Let X and Y be independent random
quantities with finite fourth moments. If EX = 0 and
P(Y ≥ 0) = 1, then we have κ(XY) ≥ κ(X). Furthermore,
κ(XY) = κ(X) if and only if P(Y = const) = 1.

Therefore, if X is a standard normal random variable
and U is a nonnegative random variable independent of

X, with EU2 < ∞, then we have κ( ) ≥ 3;

κ( ) = 3 if and only if U is nonrandom.

Using Jensen’s inequality, we obtain another ine-
quality that directly relates the tails of scale mixtures of
normal distributions to the tails of the normal distribu-
tions themselves.

Lemma 2. Let a nonnegative random variable U sat-
isfy the normalization condition EU–1/2 = 1. We then
have

(4)

It follows from Lemma 2 that, if X is a standard nor-
mal random variable and U is a nonnegative random

U

U

κ Z( ) E
Z EZ–

DZ
----------------- 

  4

=

X U

X U

1 EΦ x

U
-------- 

 – 1 Φ x( ), x– 0.>≥
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
variable independent of X, with EU–1/2 = 1, then, for any
x ≥ 0, we have

(5)

i.e., scale mixtures of normal distributions are always
more leptokurtic than a normal distribution and, conse-
quently, possess heavier tails. For more details on the
properties of mixtures of normal distributions, see [32,
33].

2.3. Specific Features of the Statistical Analysis
of Scale Mixtures of Normal Distributions

The class of scale mixtures of normal distributions
with a zero average is very extensive. In particular, it
includes Cauchy, Student, and symmetric strictly stable
distributions (see, e.g., [32, 33]).

It follows from the above considerations that the sta-
tistical analysis of the distribution of the increments of
turbulent plasma processes reduces to the separation of
mixtures, i.e., to the statistical determination of the
mixing distribution of the control process, which is an
unknown parameter of the statistical problem under
consideration. Without any additional assumptions, the
parametric set of mixing distributions coincides with
the set of all the distributions concentrated on the non-
negative semiaxis. The choice of an appropriate distri-
bution is a very laborious statistical problem. There-
fore, it is desirable to reduce the parametric set (i.e., the
class of admissible mixing distributions) by adopting
some additional assumptions.

In this section, we propose one possible approach to
solving this problem. According to this approach, a dis-
crete distribution with a finite number of jumps can be
used a mixing distribution. The approach is based on
the following considerations:

(i) Any probability distribution concentrated at the
nonnegative semiaxis can be approximated arbitrarily
closely by a discrete distribution with a finite number of
jumps. Therefore, there are reasons to believe that, con-
sidering a finite mixture of normal distributions, we are
dealing with a convenient approximation of an actual
distribution.

(ii) It follows from Theorem 1 that, when compound
Cox processes are used as models of a nonhomoge-
neous random walk describing the observed turbulent
plasma process, the form of the mixing distribution in
the limiting law is completely determined by the char-
acter of the accumulated intensities and, hence, by the
statistical features of changes in the instantaneous
intensities of elementary processes. The instantaneous
intensities of continuous-time random walks are natu-
rally related to the diffusion coefficients. In turn, the
diffusion coefficients characterize the types of dynamic
structures formed in a turbulent plasma (in other words,

P X U x≥( ) P X x≥( ) =2 1 Φ x( )–[ ]( ),≥
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Table 1

Device L-2M LHD TJ-1I TAU-1

Major radius R, cm 100 800 150

Average minor radius r, cm 11.5 60 10–22 2

Magnetic field B, T 1.3–1.4 <3 <1.2 <0.06

Input microwave power P0, kW 150–200 600 200–400

Average density 〈n〉 , 1013 cm–3 1.0–1.3  ~1.0 <1.0 0.001

Central electron temperature Te(0), eV 400–800 ≥1000 500–800 4–7

Relative fluctuation level in the edge plasma (δn/n)edge 0.2–0.25 0.2–0.25 0.2–0.3
each type of structure is characterized by its own rate of
change). In mixtures of the form

the scale parameter σ also has the meaning of the diffu-

sion coefficient, whereas dP(  < σ) signifies a frac-
tion of structures characterized by diffusion from a
small interval [σ, σ + dσ) in the general picture of
plasma turbulence. Hence, replacing the mixture

EΦ  with its finite discrete approximation

and statistically estimating the parameters σ1, σ2, …, σk

and p1, p2, …, pk, we can distinguish typical structures
and describe their contributions to the general picture.

Without going into analytical details, we note that,
using the general limit theorems for compound Cox
processes (see, e.g., [27, 30]), it is possible to theoreti-
cally justify models for the distributions of the incre-
ments of turbulent plasma processes in the form of
more general finite shift-scale (drift-diffusion) mixtures
of normal distributions as

where aj is the drift coefficient and σj is the diffusion
coefficient of the jth component. It is this approach that
we used in statistically analyzing the processes
observed.

3. EXPERIMENTAL DEVICES AND METHODS 
FOR INVESTIGATING TURBULENCE

3.1. Experimental Devices

Studies and modeling of LF SS plasma turbulence
were performed for four devices: the L-2M, TJ-II, and
LHD stellarators and the TAU-1 linear device. The
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main parameters of these devices are listed in Table 1.
The densities, temperatures, and diameters of the plas-
mas vary from n ~ 1010 cm–3, Te ~ 5 eV, and D ~ 4 cm
for a low-temperature plasma of the TAU-1 linear
device to n ~ 1013–1014 cm–3, Te ~ 103–104 eV, and D ~
150 cm for the high-temperature plasma of the most
advanced LHD superconducting stellarator. Irrespec-
tive of the type of plasma device and even the kind of
plasma instability, LF turbulence in a magnetized
plasma exhibits general features that allow one to com-
pare the results obtained under so different conditions.
It is well known that, to describe the probability param-
eters of turbulence in any medium, it is of primary
importance to study steady turbulent states, since only
in this case one might expect that ergodic condition
would be satisfied and the results obtained would be
statistically consistent. The typical duration of the
steady-state phase of a discharge is 10 ms in L-2M,
300 ms in TJ-II, 1 s in LHD (at present, the maximum
discharge duration of a few minutes has been achieved
in this device), and three to five hours in TAU-1.

The L-2M device is an l = 2 stellarator, its parame-
ters are described in detail in [34]. In the edge plasma,
at a radius of r/a = 0.9 (here, a is the separatrix radius),
the plasma density is n = (1–2) × 1012 cm–3 and the
electron temperature is Te = 30–40 eV. The plasma is
produced and heated by a 75-GHz gyrotron under the
electron cyclotron resonance (ECR) conditions at the
second harmonic of the electron gyrofrequency.

The TJ-II device is an l = 4 stellarator [35]. The aver-
age plasma radius varies along the torus from 10 to
22 cm. In the experiments under consideration, the
plasma was produced and heated by a single 53.2-GHz
gyrotron at the second harmonic of the electron gyrof-
requency.

The LHD device is the largest superconducting
heliac with a divertor [36]. In the experiments under
consideration, the plasma was produced and heated by
several 168-GHz and 84-GHz gyrotrons under the ECR
conditions at the fundamental and second harmonics of
the electron gyrofrequency.

The TAU-1 device was specially designed for study-
ing and modeling nonlinear processes in a low-temper-
ature plasma [37]. In TAU-1, a cylindrical argon plasma
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Table 2

Device L-2M LHD TJ-1I TAU-1

Measurements in the edge plasma Probes Probes

Measurements near the mid-radius of the plasma column 2-mm scattering 2-mm scattering Probes

Measurements near the center of the plasma column Gyrotron radiation scattering Probes
column of diameter 4 cm and length 100 cm was pro-
duced in a uniform magnetic field of strength ≤0.06 T
by a steady low-energy (Eb = 60–150 eV) electron
beam at an argon pressure of p = (2–4) × 10–4 torr. The
plasma density was maintained at a level of n = (0.9–
1.2) × 1010 cm–3. The electron temperature was Te = 4–
7 eV, and the ion temperature was Ti ≈ 0.1Te.

3.2. Measurements of Plasma Fluctuations

Plasma fluctuations were measured by probe diag-
nostics [38] and microwave scattering diagnostics [39,
40]. Depending on the type of radiation source, the
microwave diagnostics used were subdivided into the
diagnostics measuring the scattered radiation of the
heating gyrotron and the 2-mm scattering diagnostics.
Table 2 describes the types of diagnostics used to mea-
sure plasma fluctuations in different plasma regions of
the above devices.

Fluctuations on the plasma density, floating poten-
tial, and particle flux in the edge plasma of L-2M and
the low-temperature plasma of TAU-1 were measured
by Langmuir probes of different type [38]. Plasma den-
sity fluctuations were measured by correlation probes,
the local turbulent particle flux was measured by three-
pin probes, and electric-field fluctuations were mea-
sured by double probes.

Fluctuations at the edge of the high-temperature
plasma (at the mid-radius of the plasma column) in L-
2M and TJ-II were measured by 2-mm microwave scat-
tering diagnostics [39, 41]. These measurements
allowed us to determine the parameters of turbulent
fluctuations with specified spatial scales corresponding
to given components of the wave vector k. In TJ-II, we
measured turbulent fluctuations with wavenumbers of
k = 3 and 6 cm–1.

Fluctuations in the microwave heating region (at the
axis of the plasma column) in L-2M and LHD were
measured from the scattering of the heating gyrotron
radiation. In these devices, the heating radiation was
launched into the vacuum chamber as a linearly polar-
ized Gaussian beam. The linearly polarized wave was
split at the plasma boundary into an extraordinary and
an ordinary waves. At densities typical of modern tor-
oidal devices, the plasma is transparent for the ordinary
wave but is optically thick for the extraordinary wave.
The fact that the incident radiation excites two waves in
the plasma is unfavorable for ECR plasma heating,
because this leads to a reduction of the single-pass
absorption of the heating extraordinary microwave
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
[40–42]. However, the ordinary wave can serve as a
probing wave in scattering diagnostics. Measurements
of this kind allowed us to determine the parameters of
turbulent fluctuations with narrow k spectra: k ≈ 20 and
40 cm–1 in L-2M and k ≈ 25–34 cm–1 in LHD.

3.3. Processing of the Experimental Results

Experimental data were acquired in the same way
for all of the above diagnostics. After amplification and
filtering, signals from detectors (probes and microwave
detectors) were fed to the inputs of analog-to-digital
converters (ADCs) and then into the local computer
network. For example, in the L-2M and TJ-II experi-
ments, CAMAC ADCs with 512-KB buffers were used
to record signals with a sampling rate of up to 1 MHz.
In the L-2M and TAU-1 experiments, we used OS-2
direct-access ADCs to record signals with a length of
up to 256 KB with a sampling rate of up to 40 MHz. In
all of the above stellarators, the ADCs were incorpo-
rated into data acquisition systems.

The results of measurement in all of the experiments
were digital files of the magnitudes of fluctuations of
the plasma parameters in the form of time samples. The
time samples comprised up to a few hundred thousands
of data points. To preliminarily examine the signal
characteristics, in all of the devices, we used a common
software devised for analyzing random time sequences
(see [12, 43] for details). The data processing included
spectral Fourier analysis, correlation analysis, spectral
wavelet analysis, construction of histograms, and the
computation of the moments of random variables and
the Herst parameter (R/S analysis). We also used auxil-
iary programs for smoothing, filtering, and averaging of
signals.

Statistical models in the form of mixtures of normal
distributions were used for the first time to analyze the
data obtained (see Section 2). In these models, the PDF
of a random process has the form

(6)

being a finite mixture of k normal components. Here,
the probabilities pj, which are referred to as weights,
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satisfy the condition  = 1 and the function φ(x, µ, σ)

is the PDF of a normal distribution with a mathematical
expectation µ and dispersion σ2.

To fit a mixture of normal distributions to a data
sample, we must solve the problem of separating the
mixture of distributions. This problem consists in find-
ing statistical estimates for the number k of the mixture
components, their specific weights p1, …, pk – 1 (pk = 1 –

), and the parameters of the components them-

selves (θ1 = (µ1, σ1), …, θk = (µk, σk)). When the num-
ber k of the mixture components is fixed, the parame-
ters of the model can be efficiently estimated by the EM
algorithm (see, e.g., [44]).

The application of the EM algorithm to analyzing the
time samples of the magnitudes of plasma density fluc-
tuations in L-2M, LHD, and TJ-II and the particle flux
in TAU-1 and in the edge plasma of L-2M allowed us to
model the increments of the fluctuation magnitudes by
three- and four-component mixtures of normal distribu-
tions. Taking the first-order differences (i.e., passing to
the samples of increments ∆Xt = X(t) – X(t – 1)) is nec-

p j
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k

∑

pi

i 1=

k 1–
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Fig. 1. Autocorrelation coefficients of (1) the magnitudes
and (2) the increments of magnitudes of plasma density
fluctuations in the heating region of the plasma column in
(a) LHD (shot no. 22016) and (b) L-2M (shot no. 54468).

(a)

(b)
essary to remove the intrinsic nonhomogeneity of the
original sample X(t).

4. MODELING OF LF SS TURBULENCE 
IN HIGH-TEMPERATURE STELLARATOR 

PLASMAS

Let us consider time samples of plasma density fluc-
tuations obtained from the central high-temperature
plasma regions of the three stellarators. We studied LF
plasma turbulence in the microwave heating regions of
L-2M and LHD and in the high-temperature plasma
outside the heating region of TJ-II. Previous experi-
ments revealed the SS nature of turbulence in these
devices [40–42, 46]. Note that, although we performed
PDF modeling for all the above devices, the plots of
autocorrelation coefficients and the histograms of LF
SS turbulent processes will be presented only for some
of these devices, because these plots are similar for dif-
ferent devices.

Figure 1 shows the autocorrelation functions
(ACFs) of the magnitudes and the increments of mag-
nitudes of plasma density fluctuations in L-2M (k =
40 cm–1) and LHD (k ≈ 30 cm–1). Original time samples
of the signal magnitudes are not homogeneous and
independent.1 The ACFs of magnitudes demonstrate
long-lived tails (Fig. 1a). In contrast, the increment pro-
cesses in LF SS turbulence turn out to be independent,
which is confirmed by the absence of long-term corre-
lation of the ACFs of increments (Fig. 1b).

Figure 2a shows non-Gaussian PDFs of the magni-
tudes of plasma density fluctuations measured in suc-
cessive time intervals 130–140 ms (curve 1) and 140–
150 ms (curve 2) during the steady-state phase of an
LHD discharge. Note that the non-Gaussian PDFs of
magnitudes vary appreciably within the same station-
ary sample. Unlike the PDFs of magnitudes, the PDFs
of increments within the same successive time intervals
vary insignificantly (Fig. 2b) but remain non-Gaussian.

The independence and homogeneity (the invariabil-
ity of the probability densities) of the samples of incre-
ments of the fluctuation magnitudes allows us to use
conventional statistical procedures for their analysis.

The longest stationary sample of plasma density fluc-
tuations with a duration of up to 200 ms (2 × 105 data
points acquired at a sampling rate of 1 MHz) was
obtained in TJ-II. Figure 3 presents the first four statis-
tical moments of a sample of magnitudes and the time
behavior of the average density in a discharge with a
boronized chamber wall. The boronization of the cham-
ber wall improves the reproducibility of the discharge
parameters (including the parameters of turbulence)
from shot to shot.

Plasma fluctuations in TJ-II were measured in the
most quiescent plasma region: far from the microwave

1 This fact is closely related to the presence of ensembles of sto-
chastic plasma structures in LF SS turbulence.
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heating region (where energy is deposited in the
plasma) and also far from the chamber wall and the
edge plasma (where energy is dissipated). This region
may be considered as an inertial interval for the nonlin-
ear turbulent state of the entire plasma column. It is pri-
marily in this region that energy is redistributed among
different nonlinear states under steady-state conditions.
Figure 4 shows time samples of the magnitudes of
plasma density fluctuations with k = 6 cm–1 and their
increments in the steady-state phase of a discharge (the
sample consists of 6 × 105 data points). In this region of
the TJ-II plasma (i.e., far from energy sources and
sinks), the probability densities of the increments of the
fluctuation magnitudes seem to be closest to a normal
distribution (Figs. 5, 6). However, even in this case, the
hypothesis of the normal distribution of the increments
of the magnitudes of plasma density fluctuations is dis-
carded for the number of observations more than 104

because the P value in the Kolmogorov–Smirnov good-
ness-of-fit test is less than 0.05. As is well known, the
P value shows the degree of assurance that the adopted
model is realistic. The hypothesis of the form of a dis-
tribution is not discarded if the P value computed for
statistical packages is higher than a given confidence
level α (which is usually taken to be 0.05).
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Fig. 2. Probability densities of (a) the fluctuation magni-
tudes and (b) their increments in two successive time inter-
vals in the steady-state phase of an LHD discharge (shot
no. 22016): (1) 130–140 ms and (2) 140–150 ms.

(a)

(b)
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The increments of the fluctuation magnitudes in
TJ-II were analyzed using time samples of different
length. A short sample consisting of 5000 data points,
even though its histogram looks normal, is best fitted by
a three-component mixture of normal distributions with
a PDF of form

(7)

where pk > 0 and p1 + p2 + p3 = 1. The parameters of this
mixture are p1 = 0.0987, µ1 = –0.0413, σ1 = 0.5206; p2 =
0.6523, µ2 = –0.07, σ2 = 0.3426, p3 = 0.2490, µ3 =
0.1999, and σ3 = 0.2983, and the P value is 0.99. Note
that the P value for the hypothesis of a normal distribu-
tion of the same sample is 0.44. Figure 5 shows a histo-
gram of the increments of the magnitudes of plasma
density fluctuations for this sample and the PDFs of the
normal distributions for each of the component of the
mixture (with account for the weights pk), and for the
mixture itself (its PDF is the sum of PDFs 1, 2, and 3).
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Fig. 3. Time behavior of the plasma density and four statis-
tical moments (mathematical expectation M1, dispersion
M2, skewness M3, and excess M4) of a time sample of the

magnitudes of density fluctuations with k = 6 cm–1 in TJ-II
(shot no. 8192).
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Fig. 4. Time samples of the magnitudes of plasma density fluctuations (k = 6 cm–1) and their increments in the steady-state phase
of a TJ-II discharge (shot no. 8227).
For a long sample of 3 × 104 data points acquired
over 60 ms (i.e., over almost the entire discharge), the
histogram of increments is fitted with a good accuracy
by a mixture of four Gaussian distributions (Fig. 6):

(8)
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Fig. 5. Modeling of the PDF of a time sample of the incre-
ments of plasma density fluctuations in TJ-II (shot
no. 8227) by a scale mixture of three Gaussian distributions
marked by 1, 2, and 3.
where pk > 0 and p1 + p2 + p3 + p4 = 1. The parameters
of this mixture are p1 = 0.0007, µ1 = 0.0759, σ1 =
0.0205, p2 = 0.0729, µ2 = –0.0934, σ2 = 0.2970,
p3 = 0.4362, µ3 = 0.0172, σ3 = 0.3082, p4 = 0.4902,
µ4 = −0.0015, σ4 = 0.4288, and the P value is 0.8385. It
can be seen from Fig. 6 that the contribution of the
fourth component is insignificant. Note that the positive
(negative) values of the mathematical expectations may
be related to the growth (decay) rates of LF instabilities.
This matter requires further investigation.
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Fig. 6. Modeling of the PDF of a time sample of the incre-
ments of plasma density fluctuations in TJ-II (shot
no. 8227) by a scale mixture of four Gaussian distributions
marked by 1, 2, 3, and 4.
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Fig. 7. (a) R/S dependence, (b) Fourier spectrum, and (c) wavelet spectrum for the magnitudes of LF fluctuations with k = 6 cm–1

in TJ-II. The plots are averaged (summed) over seven successive discharges (shot nos. 8227–8233).
The R/S analysis of long time samples (with the
number of data points more than 105) in TJ-II is more
sensitive to long-lived components than to the analysis
of the tails in histograms and ACFs. This method allows
one to estimate the Herst parameter H, which character-
izes the dependence between events occurring with a
long time delay.2 The following criteria in terms of the
Herst parameter are usually used: H = 1 for regular pro-
cesses, H = 0.5 for Gaussian processes, H > 0.5 for self-
similar processes with a positive correlation, and H <
0.5 for self-similar processes with a negative correla-
tion. Figure 7 shows (a) the R/S dependence (incre-
ments of the fluctuation magnitudes versus delay time,
plotted on a log–log scale), (b) Fourier spectrum, and
(c) wavelet spectrum of plasma density fluctuations; the
plots are averaged (summed) over seven successive dis-
charges with the same macroscopic plasma parameters.

For LF SS turbulence under consideration, the Herst
parameter is equal to 0.78. This unambiguously indi-
cates that the time samples of the magnitudes of plasma

2 Stationary probability processes for which the dispersion of the
average decreases as n–α at any α between 0 and 2 were discov-
ered by A.N. Kolmogorov in 1941. These processes are known as
self-similar processes. In the mid 1960s, A. Mandelbrot applied
the concept of self-similar processes to some fields of statistical
analysis and justified their application in hydrology and geophys-
ics. The self-similarity parameter H = 1 – α/2, or the parameter of
long-range dependence, was called by Mandelbrot the Herst
parameter.
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density fluctuations at the mid-radius of the plasma col-
umn are described by a self-similar process with a pos-
itive correlation. This self-similar process corresponds
to LF SS turbulence in which memory is determined by
the stochastic generation of plasma structures and the
nonlinear interaction between them. It should be noted
that the Herst parameter is the most stable (robust)
characteristic of LF SS turbulence because it varies
only slightly from shot to shot. The averaged spectra
clearly exhibit the presence of quasi-harmonics that are
typical of LF SS turbulence.

Thus, LF SS turbulence in the high-temperature
plasma of TJ-II is a random self-similar process with
memory and the PDF of the increments of this process
is adequately modeled by three-component mixtures of
Gaussian distributions.

The scattered signal from the microwave heating
region (the region of energy deposition in plasma,
including the deposition of energy in LF plasma turbu-
lence) in LHD seems to be less homogeneous than the
time sample of fluctuations from TJ-II. Figure 8 shows
time samples of the magnitudes of plasma density fluc-
tuations and their increments in the heating region. The
data acquired over two time intervals were modeled by
mixtures of normal distributions. For the sample of
increments from the 9400th to 11000th data point (i.e.,
for an intermediate time interval corresponding to
2000 data points), the hypothesis of the normal distri-
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Fig. 8. Time samples of the magnitudes of plasma density fluctuations and their increments in the heating region in the steady-state
phase of an LHD discharge (shot no. 22016).
bution of the sample was no discarded (the P value is
0.1412, and the parameters of the normal distribution
are µ = –0.000049 and σ = 0.009742). A good fit can be
achieved by separating the distribution into two compo-
nents with p1 = 0.4147, µ1 = 0.0003, σ1 = 0.0061, p2 =
0.5853, µ2 = –0.0003, and σ2 = 0.0116, the P value
being 0.9935. The sample of increments from 14000th
to 16000th data point (which corresponds to a time
interval with a large spread in the data) is not described
by a normal distribution (the P value is 0.0017, µ =
0.00014, and σ = 0.02943). However, this sample is
modeled with a probability of 98% by a three-compo-
nent mixture of normal distributions with the parame-
ters p1 = 0.5731, µ1 = –0.0006, σ1 = 0.0352; p2 =
0.3072, µ2 = 0.0006, σ2 = 0.0134; p3 = 0.1197, µ3 =
0.0003, and σ3 = 0.0291. Figure 9 shows the histogram
of increments for this time interval.

Fluctuations in the microwave heating region were
also measured in L-2M. The modeling of the incre-
ments of the fluctuation magnitudes in this device gives
almost the same result as in LHD. We studied the incre-
ments of density fluctuations with k = 40 cm–1 (second-
harmonic gyrotron scattering with a 1-MHz sampling
rate) in the steady-state phase of a discharge (2000 data
points). These data also do not obey a normal distribu-
tion. However, even a three-component mixture of nor-
mal distributions (see Eq. (7)) with the parameters p1 =
0.1521, µ1 = –0.0037, σ1 = 0.0013; p2 = 0.6497, µ2 =
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−0.0001, σ2 = 0.0023; p3 = 0.1982, µ3 = 0.0031, and
σ3 = 0.0034 fairly well describes this time sample: the
P value is 0.9688. Figure 10 presents a histogram of the
increments for a time sample of plasma density fluctu-
ations in L-2M and the corresponding model distribu-
tions.

Time samples of the increments of the fluctuation
magnitudes in high-temperature plasmas of L-2M,
LHD, and TJ-II are adequately modeled by finite mix-
tures of normal distributions. Variances and mathemat-
ical expectations of the normal distributions of these
samples are proportional to the characteristic autocor-
relational and incremental times in LF SS plasma tur-
bulence.3 Such a presentation of LF SS turbulent fluc-
tuations allows us to estimate the contribution of differ-
ent diffusion mechanisms to anomalous transport in
stellarators.

5. SS PLASMA TURBULENCE 
AND ANOMALOUS NON-BROWNIAN 

DIFFUSION: ANALYSIS OF TURBULENT 
FLUXES

Plasma experiments provide a unique possibility of
studying the diffusion of ensembles of particles by
directly measuring turbulent plasma fluxes. Such mea-
surements can be carried out in low-temperature
plasma. In experiments, the local fluctuating particle

3 Signals from 2-mm scattering in TJ-II are proportional to density-
fluctuation signals. For the scattering signals of the gyrotron radi-
ation in other devices, this dependence is more complicated.
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Fig. 9. Modeling of the PDF of a time sample of the incre-
ments of plasma density fluctuations in LHD (shot
no. 22016) by a scale mixture of three Gaussian distribu-
tions marked by 1, 2, and 3.
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flux across the magnetic field is measured using a set of
Langmuir probes. This flux is defined as [47]

(9)

where B is the longitudinal magnetic field, n~ is the
density fluctuation, E is the fluctuation of the poloidal
electric fields, and c is the speed of light. Local fluxes
in the edge plasma have been measured in many toka-
maks and stellarators. In the FT-2 tokamak, the total
(through the entire closed magnetic surface) particle
flux caused by plasma fluctuations was measured [48].

Local fluxes were measured in the edge plasma of
the L-2M stellarator and in the low-temperature plasma
of the TAU-1 linear device. The local particle flux was

determined from the formula  = (δne · δv r) [47],
where δne is the plasma density fluctuation and δv r =
cδEΘ/B is the fluctuation of the radial drift velocity
(here, δEΘ = (δϕ1 – δϕ2)/∆Θr is the fluctuation of the
poloidal electric field, δϕ is the fluctuation of the float-
ing potential, Θ is the poloidal angular coordinate, and
r is the mean radius of the magnetic surface). Local
fluxes were measured by probe systems consisting of
three single cylindrical probes measuring plasma den-
sity fluctuations δn and fluctuations of the floating
potential δϕ.

The values of the local particle flux measured in suc-
cessive instants constitute a time sample of a stochastic
diffusion process, which can be studied by the same
methods of spectral, correlation, and probability analy-

Γ c
n~E B×
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Fig. 10. Modeling of the PDF of a time sample of the incre-
ments of plasma density fluctuations in L-2M (shot
no. 54215) by a scale mixture of three Gaussian distribu-
tions marked by 1, 2, and 3.
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sis as any other stochastic process. The PDF of the local
flux in all the experiments was leptokurtic and had
heavier tails as compared to a Gaussian distribution [9,
16, 49].

Similarly to time samples of density fluctuations in
a high-temperature plasma, time samples of the magni-
tudes of local fluxes in TAU-1 and L-2M are not homo-
geneous and independent (see [9, 16]). In contrast, time
samples of the increments of local fluxes are indepen-
dent. For this reason, when analyzing local fluxes, it is
reasonable to use time samples of the increments of
local fluxes rather than time samples of their magni-
tudes. Stationary time samples of local fluxes consisted
of 5 × 103 data points for the edge plasma of L-2M and
of up to 105 data points for TAU-1.

Figure 11 shows the histogram of a time sample of
the flux increments measured in L-2M; the sample con-
sists of 2000 data points. The hypothesis of a normal
distribution with µ = –0.000786 and σ = 7.379012 is
discarded because the P value equals zero. The histo-
gram is fitted with a probability of 97% (the P value is
0.9747) by a mixture of three normal components with
p1 = 0.3955, µ1 = 0.1416, σ1 = 1.8930, p2 = 0.5171,
µ2 = –0.3335, σ2 = 6.0149; p3 = 0.0874, µ3 = 1.3239,
and σ3 = 19.7521. However, in contrast to the modeling
of density fluctuations in stellarators, we failed to fit the
measured distribution by a mixture of two normal com-
ponents. This may be explained by the presence of the
third component with a large average and a dispersion
that is significant in spite of the small weight of the
component (≈0.09).
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Fig. 11. Modeling the PDF of a time sample of the incre-
ments of the local flux in the low-temperature plasma of
L-2M (shot no. 44487) by a scale mixture of three Gaussian
distributions marked by 1, 2, and 3.
Figures 12 and 13 show histograms of the incre-
ments of the local flux in a steady TAU-1 discharge for
samples consisting of 500 and 20000 data points
(which corresponds to time intervals of 0.5 and 20 ms,
respectively). Both samples can be adequately
described by mixtures of four normal components with
P values of 0.9975 and 0.9986, respectively.

Investigations of LF SS turbulence in the low-tem-
perature plasma of TAU-1 have shown that there are
two types of turbulence that are coupled to each other
through ensembles of stochastic structures: drift turbu-
lence with wave packets and ion-acoustic turbulence
with solitons [12–14, 50]. We have measured the char-
acteristic temporal parameters (incremental, autocorre-
lational, etc.) of all the plasma processes in LF SS tur-
bulence. Note that, for the above two types of turbu-
lence, these parameters turned out to differ by one order
of magnitude or more. As is well known, the increments
of the local flux in the frequency range below 500 kHz
(this frequency range is determined by the 1-MHz sam-
pling rate used in this series of experiments) are com-
pletely determined by LF SS turbulence. Therefore, in
view of the fact that the probability distributions of the
time samples of the increments of the local flux in
TAU-1 are well fitted by mixtures of four normal distri-
butions, we can relate the Brownian motion of plasma
particles to plasma processes with certain time scales.
In analyzing this relation, we will use the mathematical
expectations and root-mean-square deviations of the
processes described by mixtures of normal distribu-
tions for two samples of the flux increments of different
length (see Table 3).
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of the increments of the local flux in TAU-1 (discharge
no. 47) by a scale mixture of four Gaussian distributions
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It can be assumed that variations in increments that
occur on the characteristic times of the plasma pro-
cesses determine the inertia (memory) of these pro-
cesses. On the other hand, the rate of these variations is
proportional to the root-mean-square deviations of the
mixture components. The difference between the char-
acteristic times of the plasma processes in LF SS turbu-
lence (such as inverse growth rates of instabilities, the
lifetimes and drift times of nonlinear plasma structures,
etc.) can be related to the root-mean-square deviations
of the mixture components. On the other hand, the
number of rare events (i.e., events with abnormally fast
rise/drop of the local flux) increases with increasing
sample length or, in other terms, with increasing inten-
sity of the control process Λ(t).

It should be noted that only in process no. 1 do the
root-mean-square deviations increase with increasing
sample length; this indicates that the number of rare
events in LF SS turbulence increases. A sample of
length 0.5 ms is clearly insufficient to obtain a statisti-
cally consistent result for this process of normal ran-
dom walk. Only one process with a characteristic time
exceeding 1–2 ms was previously identified in SS tur-
bulence—the process of nonlinear interaction between
ion-acoustic solitons corresponding to the direct and
inverse stages of tree-wave (three-structure) interac-
tion. Since this process possesses a kind of memory, it
was previously assumed that its contribution to anoma-
lous diffusion might be significant because the random
particle walk can be rather intense due to the particle
exchange between the structures.

In the mixture of process nos. 2 and 3, an increase in
the sample length does not change the root-mean-
square deviations, but the average tends to zero as the
sample length increases. This can be explained the par-
ticle walk over ensembles of ion-acoustic solitons with
a characteristic correlation time of 50–100 µs or over
ensembles of drift wave packets with a characteristic
correlation time of 5–10 µs. As the sample length
increases and, accordingly, the statistical estimate is
improved, a tendency is observed for the balance of the
processes of increments for a random walk related to
the trapping/detrapping of particles by the structures.
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Note that the root-mean-square deviations of the com-
ponents also differ by one order of magnitude.

Finally, we consider mixture no. 4, which is charac-
terized by a negative mathematical expectation in both
the short and long samples. This process corresponds to
a negative average increase in the particle number in the
flux and may be interpreted, e.g., as the trapping of par-
ticles by a soliton and their subsequent transverse drift
(the characteristic time of the process is 10–30 µs,
depending on the soliton length). This process calls for
additional analysis.

6. DISCUSSION AND INTERPRETATION 
OF THE RESULTS OF A STATISTICAL ANALYSIS

(i) Nonhomogeneous (over time) continuous-time
random walks (e.g., those described by compound Cox
processes) turn out to be convenient and adequate
mathematical models for describing the processes
under consideration on a microscopic level. These
models make it possible to apply Gaussian processes
(e.g., Wiener processes) with a random time (the so-
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Table 3

Number
of the process 

(see Figs. 12, 13)

Length of the sample of increments
of the local flux is 0.5 ms (500 data points)

Length of the sample of increments
of the local flux is 20 ms (20000 data points)

p (probability
of a process

in the mixture)

µ (mathematical 
expectation)

σ
(dispersion)

p (probability
of a process

in the mixture)

µ (mathematical 
expectation)

σ
(dispersion)

1 0.2036 0.6844 1.2284 0.1847 0.2656 8.6550

2 0.2192 –0.7849 3.0276 0.4742 0.0146 4.3499

3 0.0483 5.9305 0.6541 0.0693 0.0588 0.8016

4 0.5289 –0.4877 6.6860 0.2718 –0.2217 2.1183
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called subordinated Gaussian processes) to describing
the observed processes. Since the one-dimensional dis-
tributions of the increments of these processes are mod-
eled by finite mixtures of normal distributions, the sub-
ordinated processes describing the intensity of local
events have discrete distributions. This means that, in
the processes observed in LF SS plasma turbulence, a
finite number of characteristic processes can be distin-
guished, each of which is characterized by its own
intensity of the local events.

(ii) In this study, we used the EM algorithm to model
the increments of density fluctuations of high-tempera-
ture plasmas of L-2M, LHD, and TJ-II and the incre-
ments of the local fluctuating flux in TAU-1 and in the
edge plasma of L-2M. Distributions of the increments
are well fitted by finite mixtures of normal distributions
with the same number of the mixture components in
L-2M, LHD, and TJ-II, which have different magnetic
field configurations. In the high-temperature central
plasma and the low-temperature edge plasma of L-2M,
LF SS turbulence is well described by scale mixtures of
normal distributions with the same number of mixture
components. This allows us to assume that the common
features of turbulent fluctuations in a toroidal magnetic
confinement system are associated with the existence of
ensembles of interacting stochastic structures over the
entire plasma volume.

(iii) It follows from the asymptotic properties of
compound Cox processes (see Theorems 1 and 2) that
the observed heavy non-Gaussian tails of the PDFs of
the increments of turbulent processes can exist only if
the relative accumulated intensity of local events is ran-
dom. Hence, the intermittence of plasma turbulent pul-
sations can be explained on the basis of a physical
model that is alternative to the model explaining such
an intermittence by variations in the local plasma den-
sity gradient, governing the growth rate of the original
instability [23, 51, 52]. According to the former model,
the intermittence should be accompanied by the heavy
tails of the distributions of the signal magnitudes, as is
actually observed in experiments. On the other hand,
variations in the local gradient have not yet been
observed experimentally; therefore, the latter model
can only be regarded as a theoretical guess not sup-
ported by experiment. In the steady-state phase of dis-
charges in toroidal confinement systems, slightly vary-
ing canonical profiles of the density and temperature
are usually observed [53, 54]. Moreover, the intermit-
tence of turbulent signals in our experiments has the
same form not only in the edge plasma, where the den-
sity and temperature gradients are maximal, but also at
the mid-radius of the plasma column, where the gradi-
ents are considerably smaller, and in the central region,
where the density profile is flat and the temperature pro-
file is peaked (see [55], Fig. 16). Heavy tails are
observed in the PDFs of homogeneous and independent
time samples of increments of LF SS turbulence over
the entire plasma volume, and a large spread in incre-
ments is seen even from their time samples. This means
that the combined effect of three to four normal pro-
cesses estimated in this paper, which specify the
ensembles of increments in turbulence (the control dis-
crete process), can naturally lead to heavy tails in the
PDF of their aggregate increment. Our model implies
that the local gradient resulting in the onset of plasma
instabilities in the steady-state phase of a discharge
remains constant, and the instability threshold is always
exceeded. Mixed processes that govern the develop-
ment of turbulence—the generation and nonlinear
interaction of plasma structures, as well as their damp-
ing and drift—lead to the observed intermittence of tur-
bulent signals. It is evident that this mechanism can be
triggered by any type of LF instability when its thresh-
old is exceeded, thereby resulting in the formation of
stochastic plasma structures. We recall that this model
is intended to explain the intermittence of steady-state
LF SS turbulence. We do not consider here transient pro-
cesses, such as discharge disruptions or transitions from
one confinement mode to another [56, 57] (L–H transi-
tions, the generation of internal transport barriers, etc.),
which are accompanied by experimentally observed
changes in the plasma density and temperature profiles.

(iv) Since the distributions of the increments of the
LF SS turbulent processes are well fitted by finite mix-
tures of normal distributions, the local (in time and
space) character of these processes is described by clas-
sical normal (Gaussian) diffusion. This does not mean,
however, that the resulting motion of particles will also
be Brownian. The increments of these processes are
associated with a finite number of types of diffusion.
Since each type of dynamic structures in plasma turbu-
lence is characterized by its own diffusion coefficient,
the separation of the mixture into a finite number of
components means that the stochastic character of the
observed plasma turbulence is related to a finite number
of dynamic structures (a finite number of the main
interacting processes). This is confirmed by the model-
ing of the local particle flux in LF SS turbulence by
finite mixtures of normal distributions. In TAU-1, a
relationship is established between the mixture of four
normal distributions modeling the time sample of incre-
ments of the local flux and four plasma processes: sto-
chastic convection of particles by nonlinear drift waves,
their stochastic convection by solitons, random particle
walk in the field of drift wave packets and ion-acoustic
solitons, and random particle walk accompanying the
nonlinear interaction of solitons in ion-acoustic turbu-
lence.

7. CONCLUSIONS

In this paper, we have proposed a mathematical
model for the probability distributions of the character-
istics of the processes observed in turbulent plasmas.
The model is based on formal theoretical consider-
ations related to probabilistic limit theorems for a non-
homogeneous stochastic walk and has the form of a
finite mixture of Gaussian distributions. The reliability
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of the model is confirmed by the results of a statistical
analysis of the experimental data on density fluctua-
tions in high-temperature plasmas of the L-2M, LHD,
and TJ-II stellarators and the local fluctuating flux in
the TAU-1 linear device and in the edge plasma of the
L-2M stellarator with the use of the EM algorithm. An
efficient new method for the statistical analysis of SS
plasma turbulence has been developed on the basis of
the statistical separation of mixtures. The use of this
method allows us (i) to show that LF SS turbulence in a
magnetized plasma is related to anomalous transport,
which is determined by the characteristic temporal and
spatial scales of the ensembles of stochastic plasma
structures, and (ii) to indicate mechanisms that can be
responsible for the random nature of time samples of
the local turbulent flux. A new physical concept of the
intermittence of plasma turbulent pulsations has been
developed. The intermittence of plasma pulsations is
shown to be associated with the generation of plasma
structures (solitons and vortices) and their nonlinear
interaction, as well as with their damping and drift.
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Abstract—The interaction between the lightning leader and the space charge accumulated near the top of a
ground object in the atmospheric electric field is considered using analytical and numerical models developed
earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona dis-
charge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Con-
ditions for the development of an upward lightning discharge from a ground object and for the propagation of
an upward-connecting leader from the object toward a downward lightning leader (the process determining the
point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space
charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Lightning discharges are the most frequent and most
dangerous effect of atmospheric electricity on ground
objects. During the lightning season, each square kilo-
meter of the Earth’s surface suffers one to ten lightning
strikes (two to four strikes in moderate-climate regions
of Russia). Intracloud lightning discharges occur three
to four times more frequently. The frequency of light-
ning strikes increases with the height of a ground
object. On the flat ground near Moscow, narrow objects
~30 m in height (like radio masts or towers) suffer, on
average, one lightning strike every ten years; a 100-m
high building undergoes a strike nearly every year; and
such an extremely high structure as the Ostankino TV
tower suffers 25–30 lightning strikes every year.

Unlike Benjamin Franklin, modern experts on light-
ning protection are acquainted with mechanisms for the
development of lightning; however, the means that are
at their disposal differ little from Franklin’s lightning
rods. Being above an object to be protected, the light-
ning rods intercept the approaching lightning channel.
However, conventional methods of lightning protection
often do not meet the needs of modern practice. Light-
ning rods are capable of efficiently protecting a certain
point of the object, e.g., its easily flammable or explo-
sive element. It is this purpose for which they were pro-
posed by Franklin two and a half centuries ago. Modern
buildings, however, contain almost no flammable ele-
ments. Precast or monolithic concrete does not burn,
whereas its metal armature efficiently conducts the
lightning current to the ground. In this respect, modern
buildings need no lightning protection. The most dan-
gerous effect for them is the electromagnetic field
excited by the lightning current, rather than its thermal
effect. The lightning current increases at a rate of more
1063-780X/05/3101- $26.000075
than 1011 A/s and gives rise to dangerous overvoltages
in the electric circuits of the object under protection.
Among the elements that are in most danger are low-
voltage control and automation circuits and microelec-
tronic devices, as well as channels for information
transfer and processing.

It makes little sense to set lightning rods on the roof
to protect a building from electromagnetic strays. After
intercepting the lightning discharge, the rod will any-
way direct the current into the building armature; as a
result, the overvoltage level will be almost the same as
in the case of an unprotected roof. To significantly
reduce electromagnetic strays, it is necessary to elimi-
nate lightning strikes in the close proximity of the pro-
tected object. For this purpose, lightning discharges
must be either intercepted (or redirected) far away from
the object. In principle, distant lightning interception is
feasible. This requires the creation of long-range light-
ning protectors covering a sufficiently large area. Gen-
eral considerations naturally lead to the idea of using
very tall lightning rods. However, mounting such rods
is rather expensive. Moreover, the radius of the pro-
tected region increases rather slowly with the height of
the lightning conductor. For example, lightning strikes
to the ground were observed at distances as short as
200 m from the 540-m-high Ostankino TV tower,
which can be regarded as an extremely tall lightning
rod. For ordinary lightning rods, the radius of the pro-
tected region (at the ground level) is close to the rod
height, whereas in the case of the Ostankino TV tower,
it is nearly three times smaller. Obviously, substantially
increasing the height of conventional lightning rods
would have no significant effect. This is why methods
for actively influencing lightning discharges have been
searched over the last few decades.
 © 2005 Pleiades Publishing, Inc.
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Two approaches that yield diametrically opposite
effects have been developed concurrently. The aim of
the first approach is to increase the attraction of light-
ning to the lightning rod as much as possible, whereas
the aim of the second approach is to hinder the propa-
gation of lightning toward the protected object. Both
approaches are based on Golde’s hypothesis about the
lightning attachment (the place of the lightning strike)
[1, 2]. According to this hypothesis, lightning propa-
gates toward a ground object because of the develop-
ment of a highly conducting plasma channel (the so-
called upward-connecting leader) from its top. The
upward leader channel is produced in a strong electric
field of a thundercloud enhanced by the approaching
leader of downward lightning. The mutual attraction
between these leaders of opposite polarities results in
their merging, thereby determining the point of strike.

All methods for controlling lightning discharges
with the aim of lightning protection can be ultimately
reduced to either exciting (as early as possible) an
upward-connecting leader from the lightning rod or,
alternatively, hampering its development from the pro-
tected object. However, the development of these seem-
ingly clear ways of affecting lightning discharges
encounters great difficulties and is thus far from being
complete. The point is that Golde’s hypothesis has not
yet been confirmed theoretically. For a number of prin-
cipal issues, the process of mutual attraction between
the leaders and the problem of the lightning attachment
are still poorly understood even at a qualitative level.
Laboratory experiments fail to shed light on these phe-
nomena because of the significant difference in the spa-
tial scales and the absence of justified scaling laws.
Until recently, theory was not able to estimate the effi-
ciency of nonconventional approaches to lightning pro-
tection. It is only in recent years that certain progress
has been made owing to the parallel use of experimen-
tal data on laboratory spark discharges, theoretical
models (often semi-empirical) of such discharges, and
results from natural lightning observations and com-
puter simulations of different stages of the lightning
formation. However, this problem is still the subject of
vigorous debate among practical engineers and also
“pure” geophysicists (see, e.g., [3–6]). The fact that the
authors of the present review are involved in this dis-
pute might to a certain extent deprive the text of the
paper of its chronicle neutrality.

The focus of our review is one aspect of the problem
of the lightning attachment: the interaction of the light-
ning leader with the corona space charge that is accu-
mulated near the top of the protected object in the atmo-
spheric electric field. Based on the results of analytical
considerations and numerical simulations, we analyze
different ways of affecting the lightning trajectory and
demonstrate the feasibility of their practical implemen-
tation with the help of specially designed corona sys-
tems.
The problem can be divided into several more or less
independent physical tasks. First, it is necessary to
understand to what extent the attachment of the leader
channel of downward lightning is related to the origin
and stable development of an upward leader from the
top of the protected object. Second, there is a need for
a quantitative description of a nonstationary corona that
is first formed in the thundercloud electric field and
then in the field of a downward leader with quite a large
channel charge. Third, one must find out to what extent
the redistribution of the electric field in the vicinity of
the corona electrode is able to affect the origin and sta-
ble development of the upward leader that gives rise to
an upward lightning discharge. As is well known, sky-
scraper objects with a height of 200 m and more are
mainly subject to upward lightning flashes. Finally, it is
necessary to reveal a possible mechanism for the influ-
ence of the corona space charge on the downward light-
ning leader. Here, the point is either the delayed origin
(or termination) of an upward-connecting leader or
such a change in its trajectory that eliminates the strike
to the protected object. At present, the above issues are
at different stages of their development and require fur-
ther investigation. The general picture, however, is
clear enough to predict prospects of new lightning pro-
tection technologies.

2. ATTACHMENT OF LIGHTNING
TO A GROUNDED OBJECT IN THE CASE 
OF A CONVENTIONAL LIGHTNING ROD

2.1. Development of a Leader from a Grounded Object 
in the Atmospheric Electric Field

The development of a leader from a grounded object
due to the enhancement of the atmospheric electric field
by the charge of the approaching channel of a down-
ward leader is a real phenomenon. It can easily be mod-
eled under laboratory conditions [7, 8]. The leader
starts after the initial flash of a pulsed corona—a bunch
of streamers with a common stem. It is the streamer
flash from which the leader channel begins to develop.
The streamer-flash current flowing through the stem
delivers an energy sufficient for the heating of the cold
streamer plasma to the temperature of ~5000 K. Elec-
trons are then produced mainly due to the processes
whose rate depends slightly on the electric field, and a
longitudinal electric field of ~102 V/cm is quite suffi-
cient to maintain the channel in the conducting state
over a fairly long time [9–11]. Theoretical predictions
and experimental data show that, under normal atmo-
spheric conditions, the necessary gas heating in the
stem can be achieved if the voltage drop over the
streamer branch is no lower than ∆Ucr ≈ 400 kV [8, 12].
Such a voltage drop is sufficient to form a branch of
cathode-directed streamers with a length lst of about 1 m.

The formal criterion for initiating a leader in the
stem of the streamer flash can be written as

∆U(lst) > ∆Ucr ≈ 400 kV. (1)
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This criterion can easily be satisfied under real condi-
tions even for relatively low grounded objects without
assistance of the electric field of the downward leader.
For example, when the thundercloud electric field near
the ground is E0cl = 20 kV/m (which is quite realistic),
a grounded rod of height h = 20 m enables a voltage
drop of ∆U = E0clh ~ 400 kV near the top of the rod.
Nevertheless, no one has ever observed leader develop-
ment from such a low grounded object located on flat
ground in the absence of a close cloud-to-ground light-
ning discharge. The reason is that the leader develop-
ment must be preceded by a streamer flash starting from
the rod top. There is no problem in exciting a streamer
flash under laboratory conditions when the rise time of
a pulsed voltage is from a few microseconds to a few
milliseconds. However, the actual thundercloud electric
field increases very slowly between the lightning dis-
charges (over tens to hundreds of seconds). In such a
field, a quiet streamerless corona occurs over a long
period of time. This kind of corona has also been
observed under laboratory conditions. Such a corona
consists of a thin (less than a few millimeters) ioniza-
tion zone and the outer region occupied by the drifting
ions [13]. The length of the outer zone can be very
large—up to tens or even hundreds of meters.

The most important feature of the streamerless
corona (it is sometimes called an ultra corona [14]) is
the stabilization of the electric field at the surface of the
corona electrode at the level of corona ignition, Ecor. For
the simplest electrode configurations, this field can be
calculated by the empiric Peek formula [15]. This cir-
cumstance and the fact that the ionization zone is nar-
row allowed one to develop a simple and widely used
numerical model of a corona in a long air gap (see [13,
16]). The model assumes that the ions are emitted
directly from the surface of the corona electrode of
radius r0 and the boundary condition E(r0) = Ecor =
const is satisfied on the electrode surface. This allows
one to ignore the processes occurring in the ionization
zone and to restrict oneself with an analysis of the ion
drift in the outer region. For this purpose, the continuity
equation for the density of the ions, which drift with a
given mobility,

 

is solved together with Poisson’s equation for electric
field E,

Here, ρ = eΣnj is the space charge density, nj and µj are
the density and mobility of the jth ion species, and S is
the term describing the production and loss of ions in
ion–molecular reactions.

Analytic solutions to these equations were earlier
obtained for the simplest electrode systems with a
spherically symmetric or an axisymmetric electric field
(concentric spheres or coaxial cylinders of unlimited

∂n j

∂t
-------- — n jµ jE( )⋅+ S,=

— E r( )⋅ ρ/ε0.=
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length) and one ion species. The solutions were
obtained for a steady-state operating mode, assuming
that the discharge voltage was constant and the drifting
ions had time to cross the discharge gap.

Steady-state solutions cannot be used to analyze the
corona in an atmospheric electric field because the field
itself varies significantly over time, whereas the ions
have time to cover only a minor fraction of the gap
between the grounded electrode and the cloud over the
characteristic time of the electric field variations. As the
electric field increases, the space charge front propa-
gates away from the top of the corona electrode; this
clearly indicates that the discharge is nonstationary.

An approximate analytical description of a nonsta-
tionary corona performed in [17, 18] is in good agree-
ment with the results of numerical simulations carried
out for conditions typical of a streamerless corona in a
thundercloud field [18]. The details of analytical stud-
ies and numerical simulations are beyond the scope of
the present study. Below, we will consider only those
features of a nonstationary corona that are important for
analyzing the conditions for the origin and stable devel-
opment of the leader from a grounded object.

2.2. Features of a Nonstationary Corona

A nonstationary corona can be observed in gaps of
any length. The discharge remains nonstationary until
the space charge front reaches the opposite electrode
and the applied voltage ceases to change. All other fac-
tors being the same, the duration of the transient regime
is a function of the gap length. In the ground–cloud gap,
steady-state regime may not be established at all. The
main difference between nonstationary and stationary
coronas is that, in the former, the current is determined
not only by the instantaneous value of the applied volt-
age but also its growth rate [17, 18]. As a result, the cur-
rent in a nonstationary corona can be many times higher
than that in a stationary corona. This is illustrated in
Fig. 1, which shows the results of the numerical solu-
tion of the above equations for a 5-m-long laboratory
gap. The unsteady current exceeds its steady-state value
when the voltage rise time is much shorter than the
propagation time of the space charge front across the
gap. The approximate analytical theory gives similar
results [17, 18]. It will be shown below that the depen-
dence of the current on the field growth rate is of crucial
importance for the initiation of a leader from the
grounded electrode.

A nonstationary corona is also characterized by a
much weaker dependence of the current on the ion
mobility µ. Instead of the direct proportionality
between the steady-state corona current icor and µ, the
functional dependence of the current on the ion mobil-
ity in a nonstationary corona is determined by the gap
geometry: icor ~ µ1/2 for spherical geometry and icor ~
ln(µ1/2) for cylindrical geometry. For the limiting case
of plane geometry, the current does not depend on the
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mobility at all [19]. The weak dependence on the
mobility allows one to simplify the calculation model
of a corona in a thundercloud field; in this case, the
lightning protection can almost always be calculated
with allowance for only one ion species.

To sustain the current of a nonstationary corona at a
fixed level, one has to continuously increase the gap
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Fig. 1. Numerical simulations of the current of a transient
corona in a gap between concentric spheres with radii of
1 cm and 5 m. The voltage increases linearly to 300 kV over
a time tf and is kept constant at t > tf .
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Fig. 2. Time evolution of the corona current from a 50-m-
high rod electrode in a thundercloud field linearly increas-
ing to 20 kV/m over 10 s.
voltage (the thundercloud electric field). The law
according to which the field should increase over time
is again determined by the geometry of the corona sys-
tem. For a spherical electrode, the corona current will
remain constant if the electric field increases as E0(t) ~
t1/3, and in the limiting case of a plane system, it should
vary as E0(t) ~ t. A long conductor of small radius occu-
pies an intermediate place between these cases [19]. In
a constant electric field E0, the more uniform the field
of the corona electrode, the faster the decrease in the
corona current. In the limiting case of a plane electrode
whose own electric field is uniform, the current almost
instantaneously drops to zero. The decay of the corona
current at E0(t) = const impedes the accumulation of a
significant space charge near the top of the corona
electrode.

Analytical studies and numerical simulations show
that, if the thundercloud electric field significantly
exceeds the external field E0cor required for corona
onset, then the corona current icor depends weakly on
the electrode radius. According to the calculated time
dependences icor(t) presented in Fig. 2, the fivefold
increase in the radius of the rod electrode leads to the
15% decrease in the current amplitude. The main cause
for the decrease in the current is an increase in the
threshold field E0cor for corona onset. Even if one
increases the electrode radius to a few meters, provided
that the condition E0cor ! E0max is satisfied (e.g., by
placing short needles over the electrode top), then the
corona current changes by no more than a few tens of
percent. According to analytical estimates and numeri-
cal simulations performed for grounded electrodes a
few tens of meters high (such as conventional lightning
conductors and protected objects), the maximum
corona current in a thundercloud field is about 10−4 A.
Therefore, over a corona lifetime of ~10 s, a charge of
~10–3 C is injected into the atmosphere. Although the
front of the charged ion cloud can propagate from the
corona surface over a distance of up to 102 m, the ion
density exceeds the natural background of ~103 cm–3

only at distances of shorter than ~10 m from the top of
the grounded electrode [18].

The approaching downward leader intensifies the
corona due to a significant increase in the field growth
rate dE0/dt, rather than to the amplification of the atmo-
spheric electric field by the leader charge. This is illus-
trated by the results of numerical simulations presented
in Fig. 3. The calculations were performed for a 5-cm-
radius rod with a height of h = 50 m. The downward
leader started from the height of 3000 m, when a lin-
early increasing thundercloud field had already reached
a value of 20 kV/m over 10 s. The radial deviation of the
downward leader with respect to the grounded rod was
r = 150 m. The electric charge per unit length of the
downward leader was assumed to be constant and equal
to 0.5 mC/m, which corresponded to an ordinary light-
ning. It can be seen that, even for a significant radial
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
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deviation of the leader (r/h = 3), the corona current
increases by nearly three orders of magnitude. How-
ever, this does not result in a significant increase in the
corona charge because of the short development time of
the downward leader, which propagates with an aver-
age velocity of 2 × 105 m/s and reaches the ground over
15 ms. In the case under consideration, the total corona
charge increases by only 10%. Nevertheless, this addi-
tional charge plays an important role. Since this charge
has no time to propagate far from the electrode, it is
concentrated near the surface of the corona electrode,
thereby greatly increasing the local ion density (Fig. 4).
As a result, the point at which the electric field is max-
imal leaves the corona surface and begins to propagate
into the gap. This effect can be regarded as the propa-
gation of an ionization wave. From this instant, the
corona discharge cannot be treated as streamerless and
the model used fails to be adequate.

The condition for the termination of a streamerless
corona can be derived from the relation  ≥ 0
using the approximate solution for the electric field in a
spherical corona system [17, 18]

(2)

The critical current is [17]

(3)

For the above case of an electrode with a top radius of
r0 = 5 cm and for a typical ion mobility of µ = 1.5 cm2/V s,

dE/dr( )r r0=

E Ecor
r0

4

r
4

----
i r
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3
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6πε0µr
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Fig. 3. Time evolution of the corona current during the
propagation of the downward leader with a linear charge of
0.5 mC/m. The time is reckoned from the instant of the
leader start.
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we have icr ≈ 15 mA, which is comparable to the critical
current of 10 mA obtained in numerical simulations for
a rod electrode with the same radius.

Inequality (1), which determines the conditions for
the development of an upward leader, can be applied
only after the termination of the streamerless corona
and the onset of a streamer flash.

2.3. Viability of an Upward Leader

We are interested here in viable upward leaders that
are capable of growing in the external electric field after
emitting from the top of a grounded electrode. For a
leader to grow, it is necessary that the field in the leader
channel be weaker than the undisturbed external elec-
tric field [20, 21]. Only in this case will the increase in
the length lL of a vertically growing leader be accompa-
nied by an increase in the difference ∆Utip = Utip – U0
between the potential of the leader tip Utip = –ELlL and
the potential of the undisturbed external electric field
U0 = –E0(h + lL) at the position of the leader tip. It is
∆Utip that determines the growth rate of the charge of
the propagating leader and, consequently, its current iL
and velocity vL.

If we ignore the disturbance of the external electric
field by the corona space charge, then the viability con-
dition for the nascent leader can be found from the
charge conservation law

iL = τLvL = C1∆UtipvL, (4)

0 0.5
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109
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of the electrode’s top

Fig. 4. Ion density near the top of a corona electrode for the
conditions of Fig. 3 as a function of the distance from the
top.
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and following semi-empiric formulas [8]:

EL = ; b = 300 V/(cm A), (5)

vL = a(∆Utip)1/2; a = 1500 cm/(s V1/2), (6)

where τL and C1 are the charge and capacitance per unit
length of the leader channel, respectively. These formu-
las were shown to adequately describe leaders in long
laboratory gaps with lengths of up to 100 m [8, 20, 22].
Substituting expressions (4)–(6) into the inequality
E0 > EL, we obtain an estimate for the external electric
field that is necessary to sustain a leader propagating
from a grounded electrode of height h [23]:

 V/m. (7)

Under the thundercloud, near the ground, the electric
field undisturbed by the corona space charge of
grounded objects can be as high as 20 kV/m. According
to criterion (7), this field is able to sustain a nascent
upward leader propagating from an object whose height
is no less than h = 130 m. For ordinary objects with a
height of h = 20–30 m, the required external field must
be much higher, E0cr = 50–60 kV/m. Such a strong field
cannot be produced by a thundercloud.

The actual critical field is significantly higher than
that predicted by criterion (7) because of the influence
of the corona space charge (Fig. 5). Thus, computer
simulations [23] show that, for a leader to grow from a
corona electrode in an external field of 20 kV/m, the
electrode must be higher than 225 m. In the absence of
a corona, a height of 135 m is quite enough.
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Fig. 5. The height of a ground object at which a viable
leader can develop from the top of the object vs. external
electric field.

for corona
These estimates allow us to conclude that the main
cause for the propagation of an upward leader from the
top of a moderately high grounded object is the field of
the approaching channel of a downward lightning
leader, whereas an upward leader starting from a sky-
scraper object can develop even in a weaker thunder-
cloud field. The effect of a corona on the emission of a
viable leader under the action of the thundercloud field
has been confirmed by experiments with lightning trig-
gered by rockets drawing a grounded wire [24].

2.4. Phenomenology of the Downward Lightning 
Attachment

Observations of lightning and experiments with
long laboratory sparks have shown that the discharge
channel undergoes many accidental deflections. Never-
theless, on the average, it propagates along the external
electric field. Hence, in order to deflect the leader of
downward lightning from the vertical direction, the dis-
turbing field must be comparable to the thundercloud
field E0. This is also true for an upward leader propagat-
ing from a grounded object. Therefore, if the field gen-
erating the upward leader is mainly produced by the
downward leader (rather than the thundercloud charge),
then the attachment of downward lightning, which ends
in the lightning strike to the object, indeed begins with
the emission of a viable upward leader. In this case, the
nascent upward channel will propagate toward the
downward leader and, sooner or later, will direct it to
the object top. According to the above estimates, this
takes place for moderately high grounded objects near
which the thundercloud field is a few times lower than
E0cr and the necessary field is mainly produced by the
charge of the approaching downward leader.

It should be noted that the direct influence of the
charge of a grounded object on downward lightning is
significantly weaker than that required for the deflec-
tion of the channel trajectory toward this object. Indeed,
a linear charge τel(z) that is induced on the surface of a
grounded electrode with a height h and radius r0 ! h in
a uniform external field E0 linearly increases from the
base of the electrode to its top:

Even if all the charge of the grounded electrode 

were concentrated at its top, the horizontal component
of the field induced by this charge at the position of the
downward leader tip (with a height H and radial devia-
tion r) would not exceed

τel z( )
4πε0zE0

2h
r0
------ln 2–

---------------------.=

qel
2πε0h

2
E0

2h
r0
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For example, if H = r = 3h and h/r0 = 103, we then have
∆Ehor ≈ 0.01E0, which is much lower than the thunder-
cloud field. Such a disturbance is too weak to deflect the
downward leader toward the grounded electrode.
Hence, the lightning attachment is indeed provoked by
the emission of an upward leader directed towards the
downward leader tip. As the leaders approach one
another, the disturbing effect of the upward leader on
the downward one increases in an avalanche manner; as
a result, the latter gets redirected toward the grounded
object.

For skyscraper-type objects, the situation is different.
Here, the thundercloud field can be quite enough to
maintain a viable upward leader that has started from the
top of a grounded object. It follows from criterion (7)
that, for E0 ≈ 20 kV/m, this becomes possible for
grounded objects higher than h ≈ 130 m. The nascent
leader will not necessarily develop toward the down-
ward leader, whose influence is yet weak. There is no
reason to call it an upward-connecting leader since,
being controlled by the thundercloud field, the leader
channel will propagate mainly upward, thereby form-
ing a ground-to-cloud lightning discharge, rather than
toward the downward leader.

Note that, in this case, the downward lightning dis-
charge also is not affected by the upward leader. The
disturbance of the external electric field near the tip of
the downward leader is much smaller than the thunder-
cloud field and is not able to deflect the leader channel
toward the grounded object. On the average, the down-
ward leader keeps propagating downward.

Thus, Golde’s hypothesis is not applicable to sky-
scraper-type grounded objects, because, in this case,
the downward leader does not control the propagation
of the nascent upward leader. According to the results
of numerical simulations presented in Fig. 5, this is the
case for objects higher than 200 m. Observations show
that it is these objects that most often undergo upward
lightning strikes [25].

Nevertheless, the emission of an upward leader is
hardly possible without a downward lightning dis-
charge because the slowly varying thundercloud field is
not able to increase the corona current from the top of a
grounded object to the threshold value icr corresponding
to the excitation of a streamer flash. To show this, it suf-
fices to consider an approximate analytical solution for
an isolated sphere of radius r0 [17, 18]. According to
this solution, the current of a nonsteady corona with a
linearly increasing voltage U(t) = AUt is

(8)
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This formula holds for the quite high effective voltage
U(t) @ r0Ecor that is usually observed during a thunder-
storm. In this case, the corona current is almost inde-
pendent of the sphere radius. The critical current, deter-
mined by formula (3), is reached at a voltage amplitude
of Umax = U(tf) = AUtf, which is equal to

(9)

For a typical critical current of icr = 10 mA, we have
Umax ≈ 18.5 MV. Even for such an extremely high
object as the Ostankino TV tower (h = 540 m) and for
the maximum possible regeneration rate of the thunder-
cloud charge (tf ≈ 10 s), the required voltage drop can
be reached in an external field as high as E0max = Umax/h ≈
34.5 kV/m. Such a high field is hardly expected to fre-
quently occur during a thunderstorm without involving
downward lightning discharges.

2.5. The Frequency of Lightning Strikes
to a Grounded Object

Here, we consider lightning strikes to an isolated
grounded object whose height is much larger than its
transverse dimensions, e.g., a conventional lightning
rod. The frequency of lightning strikes can be most eas-
ily determined for relatively low objects that do not
excite upward lightning discharges and suffer only
downward lightning strikes. As was shown above, the
attachment of downward lightning proceeds via the
development of an upward-connecting leader. Hence,
the main problem is to find the instant at which the
upward leader starts and to test its viability taking into
account the design features of the grounded object and
the space charge injected from its top into the atmo-
sphere under the action of a corona discharge. As soon
as the start instant of a viable upward leader has been
found, the height H0 of the tip of the downward light-
ning channel at the beginning of the attachment process
can be determined by solving a purely electrostatic
problem. The radius of the attraction zone can then be
found using the equidistance principle [20]. As a result,
we obtain an estimate for the frequency of lightning
strikes to an object of a given height and configuration.

Note that, in spite of its primitivity, the equidistance
principle is widely used for estimates in lightning pro-
tection. According to this principle, a downward light-
ning leader does not feel the ground until its tip comes
down to a certain height H0 called the attractive height.
The lightning channel then propagates along the shorter
of the two paths: along the path of length H0 toward the

ground or along the path of length 
(where r is the radial deviation of the downward leader
tip with respect to the top of the object of height h)
toward the grounded object. The equality of these

Umax
3icr
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t f
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lengths determines the attractive radius of a downward
lightning,

(10)

The calculation algorithm is as follows:
(i) Determining the characteristics of a nonstation-

ary corona at the top of a grounded rod electrode first in
a thundercloud field that varies in a specified way and
then in the field of a downward leader approaching the
ground.

(ii) Calculating the position of the downward leader
tip at the instant when the corona current becomes
equal to the critical value that is necessary for a
streamer flash to occur.

(iii) Checking whether condition (1) for the origin of
an upward leader in the stem of the initial streamer
branch is satisfied.

(iv) Calculating the parameters of the upward leader
propagating in the space charge layer of the corona and
checking its viability.

The computer code developed [18] allowed us to
calculate the corona current from a rod electrode in an
arbitrarily varying thundercloud electric field. When
simulating a corona in the sum of the thundercloud field
and the field produced by a downward leader, the leader
was represented by an infinitely thin vertical charged
channel. The propagation velocity of the leader was
assumed to be constant. In the simplest version of the
code, the distribution of the linear charge density along
the leader channel was also assumed to be constant,
τL(z) = const. However, the code also allowed us to per-
form calculations with an arbitrary distribution τL(z),
e.g., with a charge density linearly increasing from the
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Fig. 6. Current and propagation velocity of an upward
leader starting from a 30-m-high electrode as functions of
the leader length.
base to the tip of the leader channel (such a distribution
corresponds to the polarization of an ideal conductor in
a uniform electric field). To check the viability of the
nascent upward leader, we used the above simplified
semi-empiric theory, which relates the leader current,
the leader propagation velocity, and the longitudinal
electric field in the channel to the difference ∆Utip
between the leader tip potential and the potential of the
undisturbed external field at the position of the leader
tip. In calculations, the nascent upward leader was rep-
resented by a straight charged channel. At every time
step, the charge distribution along the channel was
determined by solving a set of integral equations with
potential coefficients. The equations related the poten-
tial of each channel segment with its charge, the
charges of all the other channel segments, the space
charge in the gap, and the external field created by the
thundercloud and the downward leader. The images of
the charges in the ground were taken into account. The
obtained charge distribution was used to find the poten-
tial of the upward leader tip. Using this potential, the
running values of the leader current, the leader propa-
gation velocity, and the field in the leader channel were
then determined.

Figure 6 presents the result of simulations (similar
to those described in [26]) of the development of an
upward leader from a 30-m-high grounded electrode
with a hemispherical 2-cm-radius top. The downward
leader started at a height of 3000-m at the instant when
the linearly increasing (over 10 s) thundercloud field
reached 20 kV/m near the ground. The downward
leader propagated toward the ground with a velocity of
2 × 105 m/s. The radial deviation of the downward
leader with respect to the grounded electrode was 90 m.
The density of a uniformly distributed linear charge
was 0.5 mC/m. The corona current exceeded its critical
value 13.7 ms after the start of the downward leader,
when its tip had already propagated down to a height of
225 m and the voltage drop across the streamer zone
was nearly three times higher than ∆Ucr ≈ 400 kV, which
was required for the emission of an upward leader. The
leader was stable since the very beginning of its propa-
gation. The propagation velocity of the upward leader
and its current increased relatively slowly only over the
first several meters of its path, where the corona space
charge was maximum. Over 1 ms, the leader passed
about 30 m, went beyond the space charge layer, and
then propagated freely.

Figure 7 shows the calculated height Htip of the
downward leader tip at the start instant of a viable
upward leader as a function of the radial deviation r.
The calculations were performed for a grounded elec-
trode with a height h = 30 m for the same conditions as
in Fig. 6. The solution to the equidistance equation
Htip = [r2 + (Htip – h)2]1/2 determines the limiting radial
deviation r = Rat at which downward lightning is yet
attached towards the object and the height Htip(r = Rat) =
H0 from which it starts to be attached. In Fig. 7, H0 = 8h
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and Rat ≈ 3.8h, which corresponds to an attraction area

of Sat = π  ≈ 0.04 km2 (one lightning strike per twelve
years of operation for a lightning strike frequency of
about two strikes per year per kilometer squared, which
is characteristic of central Russia). Similar calculations
for a 100-m-high object with a 2-cm-radius top give
H0 = 5h and Rat ≈ 3h. The ratio Rat /h decreases with
increasing h over the entire range of the practically
important heights and for different densities of the lin-
ear charge of the downward lightning leader used in the
model.

The above method for determining the start instant
of an upward leader is applicable to objects with
heights from a few tens of to a few hundred meters.
Numerical simulations allow one unambiguously
determine the conditions for the origin of a viable
upward leader. Quite another matter is the role it plays
in the lightning attachment. Our results show that the
development of an upward leader from a sky-scraper
object does not necessarily affects the downward light-
ning discharge. There may be a situation in which the
upward and downward leaders will not sense one
another, i.e., there will be no attraction between them.
The leader of the downward lightning discharge will
propagate towards the ground or some another
grounded object. The evolution of the excited upward
leader is not known in advance. It can decay or convert
into an upward lightning flash. Since upward lightning
is almost as dangerous as downward lightning, it is
important to find the conditions under which it can
develop from different objects.

As was shown above, an upward leader can arise
from objects as low as 10–20 m owing to the amplifica-
tion of the electric field by a nearby downward leader.
There may be a situation in which downward lightning
does not strike a grounded object but, nevertheless,
stimulates the development of an upward leader from it.
For low objects, such a leader will develop as long as
the strong electric field of the downward leader exists.
This field disappears when the downward leader
touches the ground and the current wave of the return
stroke is excited. This wave propagates upward from
the ground at a velocity of about 30% of the speed of
light. It recharges the lightning channel and substan-
tially reduces its electric field [20]. As a result, the
upward leader ceases to propagate. In Fig. 8, the leader
starting from a 30-m-high object stops developing as
early as 3 µs after the downward lightning leader has
reached the ground.

For sky-scraper objects, the situation is quite differ-
ent. We simulated the development of an upward leader
from a 200-m-high grounded rod electrode with a top
radius of 2 cm [27]. The process was induced by a
downward leader with a linear charge density of
0.5 mC/m. The radial deviation of the downward leader
was 750 m. The upward leader started when the tip of
the downward leader came down to a height of 520 m
and was at a distance of 860 m from the electrode top.

Rat
2
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Such a distant lightning discharge was not able to strike
the electrode; however, it efficiently sustained the
development of the upward leader. By the instant when
the return stroke of the downward lightning discharge
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Fig. 7. Height of the downward leader tip at the instant of
the excitation of an upward leader from a grounded elec-
trode of height 30 m and radius 2 cm as a function of the
radial deviation of the downward leader with respect to the
electrode. The downward leader charge is uniformly distrib-
uted along the leader channel with a linear density of τL =
0.5 mC/m. The dashed curve shows the locus of points cor-
responding to the equal distances from the downward leader
tip to the ground and to the object top.
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began, the upward leader had grown to approximately
80 m, i.e., it had gone beyond the cloud of the corona
space charge. For a freely propagating leader, the pres-
ence of the corona charge leads to the amplification
(rather than the attenuation) of the external field. No
longer restrained, the upward leader continues to
develop even after the neutralization of the charge of
the downward leader during the return stroke of light-
ning. The only effect is that the propagation velocity
and current of the upward leader decrease for a short
time, after which these again begin to increase (Fig. 9).
This process finally results in the origin of upward
lightning, which strikes the ground object.

Because of the lack of data on the attachment mech-
anism, it is impossible to predict with certainty the fur-
ther evolution of an upward leader starting from a high
grounded object. It can either be attracted to the down-
ward leader (in this case, the development of a down-
ward lightning leader completes with a strike to the
object) or, as was shown above, continue to propagate
toward the cloud, thus converting into an upward light-
ning discharge. If one does not distinguish between
downward and upward lightning strikes, the total fre-
quency of strikes can be found using computer simula-
tions. As long as one searches for the maximum possi-
ble radial deviation of the downward leader at which a
viable leader can develop from the top of a grounded
object of a given height, the algorithm for solving this
problem is identical to that discussed above. This devi-
ation determines the effective interaction radius Reff—
the radius of the area within which any downward light-
ning either strikes the grounded object or induces an
upward lightning discharge from its top. Figure 10
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Fig. 9. Current and propagation velocity of an upward
leader vs. leader length. The radial deviation of the down-
ward leader with a linear charge of τL = 0.5 mC/m is 750 m,
and the height of the grounded object is 200 m.
shows the calculated values of Reff [27] for two different
linear charges of the leader of downward lightning.

The number of lightning strikes estimated from the

effective interaction radius (Nlightn = n0π , where n0

is the number of lightning strikes per unit area of the
ground surface) can be verified experimentally. In par-
ticular, one can use the representative data from obser-
vations over the Ostankino TV tower [25]. For the aver-
age yearly number of lightning strikes to the ground
near Moscow of n0 = 2.5–3.0 km–2, the tower suffers
about 30 lightning strikes over the lightning season.
Our calculations provide a similar result for the Reff
value corresponding to that shown in Fig. 10 for a linear
charge of a downward leader of ~1 mC/m.

3. PROSPECTS FOR CONTROLLING
THE FREQUENCY OF LIGHTNING STRIKES

TO A GROUNDED OBJECT

As was mentioned in the Introduction, there are two
approaches to the problem of lightning protection that
yield diametrically opposite effects: the reduction of
the number of lightning strikes to the protected object
and, alternatively, the increase in the attraction of light-
ning to the lightning rod. The implementation of these
approaches should not be related to the use of such
exotic, expensive, and not quite reliable means as a
high-power laser that lengthens the grounded electrode
with a long plasma channel or chemical reagents
destroying the thundercloud. It seems that the only
acceptable means may be a counter discharge that is
formed in a relatively weak electric field, is character-
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Fig. 10. Effective interaction radius Reff of a grounded
object as a function of its height.
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ized by a moderate voltage drop, and can operate in a
controllable regime, e.g., a streamer or streamerless
corona discharge.

Attempts to excite an early counter discharge with
the aim of emitting an upward-connecting leader that
should intercept downward lightning are described in
[5, 28, 29]. On the other hand, the grounded corona sys-
tems have been considered that should delay or almost
completely prevent the emission of an upward-connect-
ing leader [30]. Such systems are supposed to guaran-
tee that downward lightning will not notice the object
under protection.

Below, both these approaches are analyzed using the
results of numerical simulations.

3.1. Lightning Protection Systems Based 
on the Early Streamer Emission

The concept of lightning protection on the basis of
early streamer emission (ESE) is very simple. The top
of the lightning rod is shaped in such a way as to enable
the earliest excitation of a streamer flash; i.e., the radius
of curvature of the electrode top is made as small as
possible. It is assumed that the early initiation of a
streamer flash stimulates the early development of an
upward-connecting leader. As it propagates toward the
downward lightning leader, it intercepts the channel of
the latter. To boost this effect, extra voltage (usually, a
few tens of kilovolts) is applied to the top of the corona
electrode. To obtain this extra voltage without employ-
ing an external power supply, the current flowing
through the electrode top in the early stage of the
counter discharge can be used. For example, this cur-
rent may charge a storage capacitance, which then dis-
charges through the forming LC circuit. The extra volt-
age thus obtained is applied to the top of the corona
electrode (for this purpose, the top is insulated from the
ground). The efficiency of ESE lightning rods is
claimed to be many times higher than that of conven-
tional lightning rods.

Unfortunately, there are no reliable statistical data
on the efficiency of ESE lightning rods in the literature.
Moreover, there are no works on laboratory studies that
could clarify (at least at a qualitative level) the relation
between the conditions for the excitation of a counter
discharge from a grounded electrode and the probabil-
ity of striking this electrode by a long downward spark.
Nevertheless, as early as in the mid 1970s, a series of
experimental studies aimed at determining the so-
called critical radius of a high-voltage electrode in long
air gaps were carried out in [31, 32]. It was shown that,
when a positive pulsed voltage with a rise time of sev-
eral hundred microseconds was applied to a rod–plane
or sphere–plane gap, the electrical strength varied only
slightly with increasing anode radius r0 until the radius
exceeded a certain critical value rcr. The critical radius
was found to be fairly large and to be a function of the
interelectrode distance. For example, in a gap of length
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
~10 m, the critical radius is as large as rcr ≈ 30 cm. The
explanation of this effect was given in [33]. In brief, the
essence of the effect is that the too early excitation fails
to provide the required viability of the leader. It first
forms in the so-called flash mode (with long pauses
between the flashes) [34], and its stable continuous
propagation begins only after increasing the applied
voltage (Fig. 11).

The fact that the critical radius rcr is rather large
casts some doubt on the concept of ESE lightning pro-
tection. In [26], numerical simulations were performed
of the excitation of a counter discharge from a
grounded electrode of given height, starting with the
generation of a nonstationary corona in a slowly
increasing thundercloud field up to the initiation of a
streamer flash due to the field amplification by the
charge of an approaching downward leader. The proba-
bility of emitting an upward leader and the viability of
the nascent leader while it propagates in the cloud of
the corona space charge were estimated. The calcula-
tions were performed for different top radii of the
grounded electrode. The results presented in Fig. 12
show that varying the electrode top radius within the
range r0 = 0.1–1 cm (which is typical of the lightning
protection practice) affects the conditions for the exci-
tation of a streamer flash but does not influence the via-
bility of the upward leader.

The above effect of the electrode top radius r0 on the
excitation of a streamer flash is quite expectable
because, according to formula (3), the critical current
nearly linearly depends on r0 for spherical electrodes as
long as the corona threshold field Ecor can be considered
constant. However, for small electrode top radii, just
after the excitation of a streamer flash, either condition (1)
for the origin of an upward leader is not met or the

200 400 600 800 µs+U

Fig. 11. Streak image of a leader in a 8-m-long rod–plane
gap after a positive voltage pulse with a rise time of about
3 ms is applied to the rod.
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nascent leader is not able to penetrate through the layer
of the corona space charge in a still relatively weak
external field. Hence, the sharpening of the electrode
does not increase the efficiency of the lightning rod. In
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leader propagating from the top of a 50-m-high lightning
rod vs. top radius. The downward leader with a linear
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leader starts at the instant when a thundercloud field linearly
increasing over 10 s has reached a value of 20 kV/m.
this respect, it worth noting the results of field experi-
ments [35, 36], which did not reveal any advantage of
lightning rods with a pointed top against those with a
blunt top (on a number of principal issues, those exper-
iments need a more thorough analysis, which is beyond
the scope of this study).

Besides a decrease in the top radius, ESE from the
top of a grounded electrode can also be provoked by
applying an additional voltage between the top of the
electrode and its grounded base. There is no doubt in
the efficiency of this method. The only problem is to
determine the required value of this controlling voltage.
Attempts to resolve this problem experimentally were
made several decades ago. In recent years, numerical
simulations have been used for this purpose.

The results of numerical simulations presented in
Fig. 13 demonstrate how an upward leader developed
from a 150-m-high grounded electrode grows under the
combined action of a thundercloud field that increases
to 20 kV/m over 10 s near the ground surface and the
field produced by applying an additional (controlling)
voltage Umax to the electrode top. The full width at half-
maximum of the additional voltage pulse is 1 ms. It was
shown that, for the leader to propagate without bound,
the amplitude Umax of the additional voltage pulse
should exceed 2 MV, which is much higher than the 20–
30 kV voltage that can be obtained by accumulating
energy from the atmospheric electric field due to the
corona current (as is assumed to happen in ESE light-
ning rods).

To qualitatively estimate the effect of the increase in
the potential of the lightning electrode top by this quite
a moderate value provided by the internal scheme of an
ESE lightning rod, it is necessary to consider the fol-
lowing circumstances. First, this value is less than 10%
of the threshold voltage drop ∆Ucr ≈ 400 kV required to
enable the leader emission from a grounded electrode.
Second, it is quite easy to increase the voltage drop by
20–30 kV in a natural way. For this purpose, it is
enough to increase the height of the lightning rod by
only 1.0–1.5 m in a thundercloud field of ~20 kV/m.
Finally, to produce an electric field comparable to the
above controlling field due to the effect of an approach-
ing downward leader, it is quite sufficient that the leader
pass a relatively short additional distance toward the
ground. Indeed, in the first approximation, the leader
field near the ground, just under the leader tip, can be
estimated as follows:

where Htip is the height to which the leader came down.
The drop between the zero potential of the top of a
grounded lightning rod of height h and the potential

EL

τL

2πε0H tip
--------------------,≈
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005



THE EFFECT OF A CORONA DISCHARGE ON A LIGHTNING ATTACHMENT 87
induced at the position of the top by the charge of the
downward leader is

For example, if Htip /h = 5, which is typical for the initial
stage of lightning attachment, and τL = 0.5 mC/m, then
we have ∆UL ≈ 1.8 MV. The controlling voltage pro-
vided by the internal scheme of an ESE lightning rod is
less than 2% of this value. To increase ∆UL by 2%, it is
sufficient that the length of the downward leader
increase by approximately the same amount, which is
too small to lead to any significant consequences.

Finally, let us consider the experience acquired in
the use of electric-power transmission lines. The ener-
gized wires of these lines are at a certain potential with
respect to the shield wires, the wires of dc power trans-
mission lines having potentials of opposite polarities.
Nevertheless, no difference in using lightning wires to
protect ground objects and high-voltage power trans-
mission lines (at least, up to voltages of 500 kV) has
been observed. Moreover, no difference has been
observed in the number of lightning strikes to the posi-
tive and negative wires of a dc power transmission line,
although about 90% of all downward lightning dis-
charges carry a negative charge.

According to the above, the increase in the potential
of the lightning rod by a few tens of kilovolts cannot
significantly affect its protecting ability. Thus, to date,
there are no experimental data or theoretical predictions
indicating the increased efficiency of ESE lightning
rods against conventional ones.

3.2. Lightning Protection Systems Based 
on Suppressing the Upward-Connecting Leader

Systems of this kind are being actively discussed
now [5, 6]. These are multipoint corona systems with a
total radius of up to 10 m. The corona needles with a
height of about 10 cm and radius rndl ~ 1 mm (or less)
uniformly fill a surface that has the shape of an
umbrella. The total number of the needles can be as
high as several thousands. The corona space charge is
assumed to suppress the emission of an upward leader
and thus to prevent lightning strikes to the object above
which the system is placed.

The main objection to employing this method is that
the increase in the number of the corona points slightly
affects the space charge injected into the atmosphere by
a well-developed corona. Indeed, if the atmospheric
electric field greatly exceeds the threshold level E0cor
corresponding to corona onset, then a continuous
corona is formed over the surface of the system so that
the corona space charge covers the entire system. As
was noted above, under these conditions, the corona
current depends slightly on the radius of the corona sur-
face. This is also true if the surface of the system is
divided into many separate corona sites. Figure 14

∆UL

τLh
2πε0H tip
--------------------.≈
PLASMA PHYSICS REPORTS      Vol. 31      No. 1      2005
shows the calculated time evolution of the corona cur-
rent from an isolated hemispherical 2-cm-radius elec-
trode and from a multipoint corona system of radius
2 m in a thundercloud electric field. The needle dimen-
sions are chosen such that the coronas from these nee-
dles are excited at the same value of the thundercloud
electric field (about 1.4 kV/m), which increases linearly
to 20 kV/m over 10 s. One can see that, in a well-devel-
oped corona, the corona current through the rod differs
from that through the multipoint system by no more
than 15%.

However, the increase in the injected charge is of
minor importance for the protection ability of a multi-
point corona system. The most important point is that
the corona current is nearly uniformly distributed over
the needles. Therefore, the current flowing through a
needle decreases in proportion to the needle number
Nndl; as a result, it does nor reach the critical value icr
corresponding to the excitation of a streamer flash. To
illustrate, for a needle radius of rndl = 0.1 cm (which
corresponds to Ecor ≈ 75 kV/cm and icr ≈ 2 mA) and for
Nndl = 5000 (which is quite realistic), the total corona
current must exceed 10 A for a streamer flash to be
excited at any needle tip. To compare, for a single elec-
trode with a typical radius of 2 cm, this would occur at
a corona current as low as 10 mA.

Figure 15 shows the total corona current from a mul-
tipoint corona system as a function of the height of the
downward leader tip for a radial deviation of r = 50 m
with respect to the grounded electrode. As before, the
leader is represented by an infinitely thin vertical
charged channel with a linear charge of τL = 0.5 mC/m.
The propagation velocity of the leader is assumed to be
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Fig. 14. Time evolution of the corona current through an
isolated rod electrode and from a multipoint corona system
of radius 2 m at the same corona threshold field E0cor.
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2 × 105 m/s. Simulations show that, under these condi-
tions, the current flowing through a single needle can-
not exceed the critical value. For this to occur, the tip of
the downward leader should more closely approach the
corona electrode. By choosing the size of the corona
system and the number of needles, it is always possible
to keep the current flowing through the corona points

below the critical level icr = 8πε0µrndl  and thus to
prevent streamer emission. The only exception is the
case of the zero radial deviation of the downward
leader, when its tip is just above the corona system.

The situation becomes critical when the ionization
condition is satisfied not only at the needles but also at
the surface of the system. In this case, the streamer flash
may be excited at any point on the surface or even at a
point near the surface where the electric field can be
much higher than that on the surface. Such an anoma-
lous disturbance of the electric field is caused by an
intensely accumulated space charge. As was mentioned
above, this charge does not have time to propagate by a
significant distance during the development of a down-
ward lightning leader and is thus accumulated near the
grounded top. Figure 16 shows the electric field
between the needles on the surface of a multipoint
corona system as a function of the height of the down-
ward leader tip. The simulations were performed for a
hemispherical corona system of radius 2 m placed at a
height of h = 50 m. By the start instant of the downward
leader with a linear charge of 1 mC/m (a high-power
lightning discharge), the thundercloud field has
increased to 10 kV/m. For a radial deviation of r = 160 m
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Fig. 15. Total current from a multipoint corona system of
radius 2 m and height 50 m as a function of the height of the
downward leader tip. The linear charge of the downward
leader is 0.5 mC/m, and its radial deviation is 50 m.
of the downward leader with respect to the system axis,
the electric field near the surface of the system does not
exceed 22 kV/cm. This means that no streamer flash
accompanied by a subsequent upward leader can occur
in this case. For r = 80 m (r/h = 1.6), the field near the
surface of the corona system increases to 30 kV/cm as
the downward leader tip comes down to H0 = 90 m
(H0 /h = 1.8). Such a situation corresponds to the
approximate equality of the distances from the down-
ward leader tip to the ground (H0) and to the corona sys-

tem ( ). Recall that this equality deter-
mines the lightning attractive radius Rat. Finally, for r =
30 m, the condition for the emission of an upward
leader is satisfied already at a height of H0 = 125 m,

when H0 > ; this definitely ensures a
lightning strike to the corona system.

Thus, employing a large-radius multipoint corona
system substantially (severalfold) decreases the attrac-
tive height of the leader of downward lightning and,
consequently, the attractive radius Rat as compared to a
conventional lightning rod of the same height. Note that
the number of lightning strikes to a grounded object

decreases in proportion to .

All other factors being the same, the calculated
attractive height H0 depends strongly not only on the
leader linear charge τ but also on its distribution along
the channel. It is these lightning parameters that are still
poorly investigated. To avoid the uncertainty related to

H0 h–( )2
r

2
+

H0 h–( )2
r

2
+

Rat
2

20

0 50

Electric field, kV/cm

Height of the leader tip, m
100 150 200

30

40

50

60

70

80

10

r = 30 m

80 m

160 m

Fig. 16. Maximum electric field on the surface of a hemi-
spherical multipoint corona system of radius 5 m as a func-
tion of the height of the downward leader tip.
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this, it is reasonable to deal with the ratio between the
attractive radius of a conventional lightning rod (Rat0)
and that of a large-radius multipoint corona system (Rat)
rather than with the absolute value of the lightning
attractive radius. Obviously, both Rat0 and Rat should be
determined with allowance for the effect of the corona
space charge as was described in Section 2. Computer
simulations show that the uncertainty in determining
the parameter Kat = Rat0/Rat is much lower than in deter-
mining the attractive radius itself. This parameter is
convenient for an analysis because the lightning attrac-

tion area is proportional to ; hence, the quantity 
is, in fact, the factor by which the number of lightning
strikes to an object is reduced when the object is pro-
tected by a multipoint corona system instead of a con-
ventional lightning rod. Figure 17 shows the protection
efficiency of such a system installed at 50-m height as
a function of the system radius. It can be seen that, for
a system of radius 4–6 m, the number of strikes by
downward lightning discharges can be reduced by one
order of magnitude and more.

The results presented in Fig. 18 give an idea of to
what extent the effective interaction radius Reff
decreases for sky-scraper objects protected by a multi-
point corona system. For example, setting a multipoint
corona system with a radius of 5 m at the top of the
Ostankino TV tower would decrease Reff by a factor of
6.4, which corresponds to a nearly fortyfold decrease in
the total number of lightning strikes.

Such a high expected efficiency of a multipoint pro-
tection systems deserves further thorough investiga-
tion. The main attention should be paid to the experi-
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Fig. 17. Reduction factor of the lightning strike number for
a 50-m-high object as a function of the radius of a multi-
point corona system.
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mental study of the conditions for the conversion of a
streamerless corona into a streamer one that gives rise
to an upward leader propagating from the top of a
grounded electrode. The analytical estimates used in
this paper have not yet been confirmed even under lab-
oratory conditions.

It should be noted that above multipoint corona sys-
tems can in no way be regarded as a panacea that will
resolve the problem of the lightning protection of sky-
scraper objects. Such systems provide only local light-
ning protection. They reduce the number of lightning
strikes onto their own surface and the object compo-
nents directly covered by it. Beyond the protecting
“umbrella,” the protecting effect of a corona charge
decreases very rapidly. This does not allow one to use it
to protect large-area objects. Note that, for extended
corona conductors, the effect of a corona space charge
has not yet been studied.

4. CONCLUSIONS

(i) The development of an upward leader from the
top of a grounded object is determined by the amount
and distribution of the space charge injected into the
atmosphere by a corona discharge in the thundercloud
electric field and the field of a downward lightning
leader.

(ii) Theoretical analysis and computer simulations
have shown that the corona discharge in the atmo-
spheric electric field is nonstationary. In contrast to a
steady corona, its current depends not only on the
instantaneous value of the electric field but also on the
rate of its time variations. This dependence, as well as
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Fig. 18. Effective interaction radius Reff as a function of the
height of an object protected by a lightning rod and that pro-
tected by a multipoint corona system of radius 5 m.
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the dependence of the corona current on the ion mobil-
ity, is strongly affected by the geometry of the dis-
charge gap. The current of a well-developed nonsta-
tionary corona depends only weakly on the radius of the
corona electrode.

(iii) The critical current of a nonstationary corona
above which it cannot occur in a streamerless mode has
been estimated. The formation of a streamer flash from
a grounded electrode can result in the development of
an upward leader if the voltage drop along the streamer
branches exceeds a certain threshold value.

(iv) The corona space charge impedes the propaga-
tion of the nascent upward leader inside the ion cloud
formed by the corona discharge. Consequently, any
simulations of the leader propagation from stationary
grounded objects without allowance for a corona dis-
charge are invalid.

(v) Golde’s hypothesis that the attachment of the
leader of downward lightning is affected by an upward
leader developing from a grounded object is valid only
for moderately high objects that are incapable of excit-
ing upward lightning. Generally, the development of an
upward leader from a grounded sky-scraper object only
slightly affects the attachment of downward lightning,
although it is usually the lightning field that is the rea-
son for the leader origin. The nascent upward leader
propagates toward the thundercloud (in the form of a
separate upward lightning discharge) rather than
toward the leader of downward lightning.

(vi) A numerical model has been developed for esti-
mating the frequency of the lightning strikes to
grounded objects of various heights with allowance for
the effect of the corona space charge. The estimates
obtained agree with the results from observations of
skyscraper-type objects.

(vii) Analytic results and computer simulations
show that ESE lightning rods are unable to provide the
expected manyfold increase in the protecting efficiency.
This is because a substantial decrease in the top radius
of the lightning rod, as well as an additional increase in
the potential of the rod top by a few tens of kilovolts,
does not provoke the early onset of a viable upward
leader.

(viii) Setting a large-radius multipoint corona sys-
tem on the object insignificantly increases both the
corona current and the space charge formed near the
corona top. Nevertheless, the use of such systems can
reduce the frequency of lightning strikes by one order
of magnitude or more. The reason is that the corona
current is nearly uniformly distributed over numerous
corona points; as a result, the current of any point does
not exceed the critical value corresponding to the origin
of a streamer flash followed by the initiation of an
upward leader. In contrast to conventional lightning
rods, the efficiency of multipoint corona systems does
not decrease when placing them on sky-scraper objects.

(ix) Multipoint corona systems provide only local
lightning protection. They reduce the number of light-
ning strikes onto their own surface and the object com-
ponents directly covered by them. The question of
extending the protection area of such systems still
remains open.
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