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Abstract—Results are presented from experimental studies of the generation of high-energy neutrals during a
major disruption in the T-11M tokamak. Fast-neutral fluxes from the plasma, magnetic perturbations, and the
neutral-hydrogen and impurity radiation from the plasma core are measured simultaneously in the course of
disruption. A high (~1 µs) temporal resolution of the recording system (the characteristic disruption time being
about 100 µs) makes it possible to thoroughly investigate the time behavior of the processes that occur during
a disruption. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The generation of fast (with energies far exceeding
the plasma temperature) neutrals during major disrup-
tions was first observed in early tokamaks [1] and is still
attracting interest of physicists (see, e.g., [2, 3]). Evi-
dently, two successive processes underlie this phenom-
enon: first, the acceleration of ions in electric fields
generated during a disruption and, second, the charge
exchange of fast ions with neutrals arriving from the
tokamak wall during a disruption (i.e., the conversion
of the accelerated ions into fast neutrals).

Note that fast electrons (which may be expected to
be generated by analogy to ions) either are not observed
at all or are detected only in the initial phase of disrup-
tion by observing accompanying effects, such as radia-
tion bursts in the GHz frequency range (see, e.g., [4]).

An example of such a burst at a frequency of 1 GHz
is given in Fig. 1.1 The figure also shows a negative
voltage pulse Up, which serves as an indicator of a
major disruption (the signal is saturated at a level of
−10 to −15 V). It can be seen that the radiation burst (an
indicator of fast electrons [4]) first closely follows the
Up signal and then is suddenly cut off. The latter effect
may be associated with the onset of MHD turbulence or
with the arrival of impurities from the wall. Thus, in the
fast phase of disruption, which is of most interest to us,
runaway electrons are in fact absent. Note that, in large
tokamaks, fast electrons sometimes appear again in the
current-decay phase, when the plasma is already
cooled. In this case, their appearance merely indicates
the onset of the final phase of a major disruption.

Hence, the study of the behavior of fast ions and
neutrals escaping from the plasma column is one of a
few ways of obtaining information about the process of

1 We thank V.I. Poznyak for providing us with the data presented in
Fig. 1.
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plasma column destruction in all of the disruption
phases.

In our experiments in the T-11M tokamak, fast-neu-
tral fluxes from the plasma, magnetic perturbations, and
neutral-hydrogen and impurity radiation from the
plasma core were simultaneously measured in the
course of disruption. A high (~1 µs) time resolution of
the recording system (the characteristic disruption time
being about 100 µs) allowed us to thoroughly investi-
gate the time behavior of the processes that occur dur-
ing a disruption.

2. EXPERIMENT

The experiments were carried out in the T-11M
tokamak with R = 0.7 m, a = 0.2 m, BT = 1 T, Ip = 70–
100 kA, Ti = 100–150 eV, Te = 300–450 eV, and ne =

66.0 66.1 66.2 66.3 66.4 66.5 66.6 66.7
Time, ms

Up, arb. units

U(1 GHz),
arb. units

Fig. 1. Negative voltage pulse Up and the waveform of the
plasma radiation intensity at a frequency of 1 GHz [4] dur-
ing a disruption in the T-11M tokamak (shot no. 9181).
© 2005 Pleiades Publishing, Inc.
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Fig. 2. Arrangement of the recording system: (a) the positions of the PCAs (PCA1, PCA2, and PCA3), the Lakmus and Akkord
NPAs, and the MRLMS and (b) the observational diagram of the Lakmus NPA, the MRLMS channels, and the IR radiometer.
1.3 × 1019 or 1.9 × 1019 m–3 in a regime with a Li limiter.
The isotopic composition of the hydrogen–deuterium
plasma was nH/nD = 10–12%. The arrangement of the
recording system is shown in Fig. 2.

The flux of charge-exchange neutrals escaping from
the T-11M tokamak in the radial direction across the
toroidal magnetic field (transverse neutrals) were mea-
sured by a Lakmus charge-exchange neutral particle
analyzer (NPA) [5] (Fig. 3). The Lakmus NPA was
located in front of the lithium limiter in the equatorial
plane of the tokamak and measured the energy distribu-
tion of deuterium atoms in the energy range of 0.2–
2 keV with a pulse counting rate of up to 1 MHz. Deu-
terium atoms were separated by applying a magnetic or
electric field. VEU-6 vacuum multiplier tubes were
used as a detector. The maximal solid angle of the NPA
collimator was 3 × 10–4 sr, and the viewing field at the
plasma axis was 5 × 5 cm. In parallel to the main
(count) mode, the neutral fluxes in the NPA channels
were also measured in the current mode. For this pur-
pose, RC integrating circuits with τRC ≈ 8 µs were
installed at the outputs of the NPA channels.
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
When measuring the particle flux with a microsec-
ond time resolution, it is necessary to take into account
the time during which the neutrals move from the emit-
ting plasma region to the NPA detector. This time is
defined as

where i is the number of the NPA channel, Li is the dis-
tance from the emitting plasma region to the ith NPA
detector, mD is the deuteron mass, and Ei is the energy
of a particle detected by the ith NPA channel. Strictly
speaking, the distance Li is different for different chan-
nels; however, for the third and fifth channels, which
detect particles with energies of E3 = 640 eV and E5 =
1477 eV (it is these channels the data from which are
considered in this paper), the distances differ by no
more than 10 cm and can be assumed to be L = 140 cm
for both channels. Hence, the neutrals are detected by
the NPA and the fast data acquisition system with a
time delay of ∆t = 5.7 µs for the third channel and ∆t =
3.7 µs for the fifth channel.
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The radiation from the plasma column was mea-
sured with the help of a multichannel radiation loss
measurement system (MRLMS) consisting of sixteen
AXUV photodiodes with a time resolution of no worse
than 2 µs [6]. The AXUV diodes had a nearly constant
sensitivity in the 100- to 5000-eV photon energy range
and a somewhat lower (by a factor of 3–4) sensitivity in
the visible range. Since the intensity of the tokamak
plasma radiation was maximal in the ultraviolet (UV)
and soft X-ray (SXR) regions, these diodes could serve
as a fast bolometer. The area viewed by an MRLMS
channel was 5 × 2.6 cm2. The plasma column was
observed in the direction parallel to the toroidal axis of
the tokamak in the cross section where a rail-type lith-
ium limiter (the main source of lithium incoming to the
plasma) was installed (Fig. 2). In contrast to a conven-
tional transverse observational scheme, our scheme
allowed us to avoid errors that are inherent to the Abel
procedure when applying it to an asymmetric radiation
source (as is the case under the disruption conditions).
It was expected that, during the first 30–50 µs after the
impurity injection, when the impurities had not yet dif-
fused appreciably along the torus, the photodiodes
would receive the radiation from local (with respect to
r) regions lying on vertical chords in their viewing
fields (rather than the radiation averaged over the
chords in the vicinity of the lithium limiter). Note that,
according to calculations, the time it takes for a lithium
ion to make one complete turn around the torus is about
100 µs under our experimental conditions.

Magnetohydrodynamic (MHD) measurements were
performed with MHD diagnostic coils [7]. In the exper-
iments, we used three pick-up coil arrays (PCA1,
PCA2, and PCA3) with 24, 32, and 8 coils positioned
in three poloidal cross sections of the tokamak (ϕ = 45°,
88°, and 180°, respectively). The cross section with
ϕ = 0° corresponded to the position of the Li limiter. In
each PCA, the coils were arranged equidistantly along

G
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C10
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CS
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Fig. 3. Schematic of the Lakmus NPA installed in the
T-11M tokamak [5]: (G) gate, (C0) clearing capacitor,
(CS) calibration system, (SC) stripping chamber, (M) mag-
net, (W) window, (S1–S10) windows for deflected particles,
(C1–C10) calibrating capacitors, (D1–D10) diode amplifiers,
and (P) pump duct.
the poloidal circumference of the torus and detected the
poloidal component of the magnetic field. The upper
operating frequency of PCA1 and PCA3 was deter-
mined by the time constant of the protecting stainless-
steel tubes (with a wall thickness of δ = 0.3 mm) in
which the coils were placed (τ tb ≈ 2 µs).

In addition to the above measurements, we also
measured SXR (hν > 2000 eV) emission from the
plasma core with a time resolution of about 30 µs. The
power deposited in the limiter was measured by an IR
detector with a time resolution of about 0.5 ms. The
data acquisition system provided the simultaneous
recording of 72 signals with a time resolution from 1 to
20 µs.

Figures 4 and 5 show the time behavior of the main
plasma parameters during a typical T-11M major dis-
ruption: the discharge current ∆Ip, the Shafranov shift
∆R, the distribution of the magnetic perturbations Bθ
over the poloidal angle θ, the distribution of the inte-
grated plasma radiation intensity along a vertical chord
(the MRLMS signals; see Fig. 2), and the time-inte-
grated (τRC ~ 8 µs) NPA signals for energies of E3 =
640 eV and E5 = 1477 eV.

An analysis of the results obtained by processing
18 similar T-11M discharges with major disruptions
shows that, in some discharges, the flux of neutrals with
intermediate energies (E ≅ 5Ti) increases substantially
against the background level 100–200 µs before the
disruption (Fig. 5). This coincides in time with the fast
thermal quench and is accompanied by a more intense
plasma–wall interaction (Figs. 4, 5). The disruption
(i.e., the generation of a positive current pulse ∆Ip and a
negative pulse Up; see Fig. 1) is accompanied by
intense bursts of neutrals with energies E ≅ 5Ti–15Ti.
The latter effect has always been regarded as an indica-
tor of the transverse acceleration of primary ions during
a disruption [1–3]. Note that the beginning of the neu-
tral burst coincides in time with the reconnection of the
outer modes of helical magnetic perturbations Bθ (from
m/n = 2/1 to (3–4)/1) in the current rise phase. This
means that the transverse acceleration of the primary
ions is probably caused by the outer magnetic recon-
nection acting as a generator of a turbulent electric
field.

However, the picture appears to be even more intri-
cate. Recent studies in the MAST tokamak [2] showed
that internal magnetic reconnections can result in the
efficient longitudinal acceleration of ions. In classical
tokamaks, internal reconnections precede a major dis-
ruption (fast thermal quench). Hence, it may be
expected that, by the instant of outer reconnections, a
large number of longitudinally accelerated ions will be
accumulated at the axis of the plasma column. Since the
major disruption in classical tokamaks is accompanied
by the onset of turbulence at the axis of the plasma col-
umn and by the penetration of impurities into this
region from the periphery [8], the scattering of fast ions
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
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Fig. 4. Time behavior of the main plasma parameters during a typical major disruption in T-11M: (a) propagation of impurity radi-
ation along the vertical chord near the Li limiter, (b) time evolution of MHD perturbations, (c) waveform of the plasma current,
(d) variations in the Shafranov shift, and (e) time-integrated (τRC ~ 8 µs) NPA signals for energies of E3 = 640 eV and E5 = 1477 eV.
by turbulent fluctuations leads to their isotropization.
This, in turn, can result in the appearance of an addi-
tional transverse flux of high-energy neutrals from the
plasma core after a short delay time.
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
The behavior of impurities (lithium) can be inferred
from the character of the MRLMS signal. Figure 5
shows the time evolution of impurity radiation during a
typical major disruption, the waveform of the plasma
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Fig. 5. Time evolution of (a) the impurity radiation intensity (the MRLMS signals) and (b) the plasma current ∆Ip and the Lakmus
NPA signal for E3 = 640 eV.

(a)

(b)
current ∆Ip, and the behavior of the 640-eV neutral flux
measured by the Lakmus NPA. One can see that the
radiation from the plasma core passes through two
characteristic phases, namely, the fast (A) and slow (B)
phases. In the fast phase, the radiation burst appears
almost simultaneously (within 1 µs) both at the plasma
periphery and in the plasma core. The slow phase can
be interpreted as the propagation of the emitting parti-
cles into the plasma core with a velocity of up to 5 km/s.
This may be associated with the flux of impurities from
the limiter toward the plasma axis [8]. It can be sup-
posed that the fast phase of radiation is related to the
generation of fast neutrals in the course of outer mag-
netic reconnection at the plasma periphery.

If this were so, then the NPA signal would coincide
(to within the time during which a particle moves from
the plasma axis to the NPA) with the time derivative of
the MRLMS signal from the plasma core. Figure 6
compares this derivative and the NPA signals for E5 =
1477 eV and E3 = 640 eV. The fact that these signals are
similar to one another is a qualitative argument in favor
of our model. Hence, it may be expected that the peaks
of the radiation intensity of impurity ions from the
plasma core will appear in the descending order of the
ion charge (from the upper to lower ionization states),
in contrast to the normal order (from the lower to upper
ionization states) during breakdown and ionization.
Indeed, this effect is sometimes observed experimen-
tally during major disruptions [9] and is widely used to
determine the energies of impurity ions in the course of
their charge exchange with a neutral beam. This
method may also be used to measure the ion tempera-
ture from the Doppler broadening of the impurity lines
during a disruption. We note that, in Fig. 6, another
interesting effect can be seen: the neutral flux with
energies of E5 = 1477 eV is delayed with respect to that
with E3 = 640 eV. This discrepancy between the exper-
imental results and the predictions of the simple transit-
time model may be regarded as an argument in favor of
the above assumption about different ion acceleration
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
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Fig. 6. Waveforms of the plasma current ∆Ip, the derivative of the central MRLMS signal (channel no. 1), and the intensities of the
neutral fluxes with energies of E3 = 640 eV and E5 = 1477 eV. The waveforms of the neutral fluxes are shifted to the left by the time
during which a particle moves from the plasma axis to the NPA detector: ∆t = 5.7 µs for the third channel and ∆t = 3.7 µs for the
fifth channel.
mechanisms in the plasma core and at the plasma
periphery.

3. CONCLUSIONS

(i) The time at which fast neutrals are detected by
the NPA almost coincides with the spontaneous transi-
tion of an MHD perturbation from the m = 2 to the m =
3 or 4 mode. This allows us to suggest that the energy
source of fast neutrals is the magnetic reconnection
accompanying a major disruption.

(ii) The appearance of a radiation burst from the
central region of the plasma column is probably due to
the penetration of fast neutrals (a fraction of the total
flux that is geometrically symmetric to the outward flux
measured by the NPA) into the plasma core.
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Abstract—The effect of very small rotational transform on the plasma stability in three-dimensional closed
magnetic configurations with closed magnetic field lines, stabilized by the magnetic hill (i.e., by the plasma
compressibility), is considered using ideal MHD theory. It is shown that, for infinitely small values of the rota-
tional transform, the Suydam–Mercier criterion predicts the onset of acoustic instability with a finite growth
rate, provided that the Bernstein–Kadomtsev criterion is satisfied. Consequently, for a vanishingly small rota-
tional transform, the limiting transition from the Suydam–Mercier criterion to the Bernstein–Kadomtsev crite-
rion is impossible. Taking into account the finite Larmor radius allows this limiting transition to be made. The
Bernstein–Kadomtsev criterion ensures MHD stability at rotational transform values below a certain critical
value determined by the ratio of the ion Larmor radius to the plasma minor radius. Under experimental condi-
tions, this critical value is larger than that expected to be produced by the actual magnetic perturbations. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

In most magnetic confinement systems, the MHD
stability of a hot plasma is ensured by the magnetic well
and/or magnetic shear. It is also known, however, that
MHD stabilization by plasma compressibility is possi-
ble in configurations with a magnetic hill and without a
rotational transform [1–3]. Examples of such configu-
rations can be found, e.g., in [4–6].

In toroidal systems without a rotational transform
and magnetic well, a necessary and sufficient condition
for the stability of flute oscillations (those with a zero
longitudinal wavenumber, k|| = 0) is given by the Bern-
stein–Kadomtsev (BK) criterion [1–3]

(1)

Here, p is the equilibrium plasma pressure, γ0 is the adi-

abatic index, and U =  = const is the label of the

equilibrium magnetic surface. For configurations with a
magnetic hill, we have ∇ U · ∇ p < 0, and there exists a

neutrally stable decreasing pressure profile p ~ . In
practice, such pressure profiles are achieved with toroi-
dal magnetic divertors in which the magnetic well/hill
U has a singularity at the separatrix. There are sound
reasons to suggest that the plasma relaxes to a state with
a neutrally stable pressure profile in a self-consistent
fashion [7].

Since the assumption that the magnetic field lines
are closed is a theoretical idealization, the question nat-

—p —U
γ0 p —U( )2

U
------------------------- 0.≥+⋅

ld
B
----∫°

U
γ0–
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urally arises of how the presence of a small rotational
transform will affect the plasma stability under the BK
criterion. The answer might seem obvious: the plasma
will be unstable. Indeed, for a nonzero rotational trans-
form, the fundamental Suydam–Mercier (SM) crite-
rion predicts the onset of strong MHD instabilities in
configurations with a magnetic hill and small shear.
The objective of the present paper is to investigate the
question of the actual range of applicability of the
BK criterion.

To answer this question, it is necessary to under-
stand the relation between two fundamental criteria for
ideal MHD stability: the SM and BK criteria. In [8], it
was shown that, when BK condition (1) is satisfied and
the SM criterion fails to hold because of the smallness
of the magnetic shear, the instability growth rates
become appreciably slower. The reason for this is that
the instability changes from one type to another: in the
expression for the instability growth rate, the Alfvén
speed is replaced with the acoustic speed. It is presum-
ably this circumstance that can explain, e.g., the
observed positive features in the behavior of the plasma
in small-aspect-ratio tokamaks. In [9], in which the
studies were carried out for cylindrical geometry, it was
pointed out that the acoustic instability occurs at a very
small rotational transform. In ideal MHD theory, this
instability is found to grow fairly rapidly even at arbi-
trarily small values of the rotational transform µ
because of a decrease in the wavelength of the pertur-
bations (or, equivalently an increase in the mode num-
ber, m ~ µ–1  ∞).

In the present paper, the results of [9] are extended
to three-dimensional configurations such as toroidal
© 2005 Pleiades Publishing, Inc.



        

MHD STABILIZATION BY THE MAGNETIC HILL 111

                                                                                       
mirror systems [10]. It is shown that, in the one-fluid
ideal MHD approximation, a continuous transition
from the SM to the BK criterion in the limit of zero
rotational transform is impossible.

In order to make this limiting transition possible, it
is necessary to take into account the finite Larmor
radius (FLR) of the ions. For the displacement of the
magnetic field line making one turn in the toroidal
direction around the circumference of the torus to be
less than the ion Larmor radius ρi, the rotational trans-
form should satisfy the condition µ ~ ρi/a ! 1, where a
is the plasma minor radius. In the ideal MHD approxi-
mation, the modes for which mρi/a = k⊥ ρi ~ 1 are unsta-
ble. It is well known, however, that, because of the FLR
effects, such small-scale MHD modes are, as a rule,
stable.

In what follows, FLR effects will be incorporated
into the ideal ballooning equations, which will then be
solved in order to determine the critical value of the
rotational transform below which the BK criterion
guarantees MHD plasma stability.

2. STABILITY AT µ  0
We begin this section with the familiar equations for

local ideal ballooning modes in toroidal confinement sys-
tems of arbitrary geometry (see, e.g., [11], Eqs. (6.137)
and (6.138)):

(2)

Here, ξ and τ are, respectively, the plasma displacement
components normal to the magnetic surface and along

the magnetic field line; k =  = —⊥ (p +

B2/2)/B2 is the curvature vector of the magnetic field
line; k⊥  = —⊥ S is the normal component of the wave

vector (see Appendix 1); kb =  · k⊥  is the azi-

muthal component of the wave vector; a is the label
(radius) of the magnetic surface; ρ is the mass density;
ω is the frequency; and the prime denotes the derivative
with respect to a. We introduce the notation R–1 = (B ×
k) · k⊥ /Bkb and take into account the expression for the
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divergence of the displacement vector X = —, · x, X =

 ·  –  [11] to rewrite

Eqs. (2) as

(3)

where cs =  is the speed of sound. According to
Eqs. (3), we always have ω ≠ 0 provided that — · x ≠ 0.
Note that Eqs. (2) and (3) are valid for arbitrary values
of the rotational transform, in particular, at zero value.

It is convenient to analyze Eqs. (3) in magnetic flux
coordinates (a, β, ζ) with straightened field lines
(SFLs). Such coordinates can be introduced through the
representations of the magnetic field with SFLs for cur-
rentless confinement systems in terms of the flux and of
the current (see, e.g., [11]):

(4)

Here, Φ and F(a) are the toroidal magnetic flux and the
external azimuthal current; β = θ – µζ, with θ and ζ
being the azimuthal and toroidal angular (Boozer)
coordinates, which vary within the range 0–2π; µ =
−Ψ'/Φ' is the rotational transform; Ψ is the external
poloidal magnetic flux; and ν is a periodic function of
the coordinates θ and ζ, which is determined by the
equation (— × B) × B = —p, namely,

(5)

In the coordinates so chosen, we have

and Eqs. (3) take the form

(6)
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where cA =  is the Alfvén speed. We also present
the form that Eq. (5) assumes in the flux coordinates:

(7)

Note that the coordinate β labels the magnetic field line:
the derivatives in Eqs. (6) and (7) are taken at β = const.

If the equations involve the rotational transform,
then they, as a rule, also involve the shear, µ' ≠ 0. Con-
sequently, Eqs. (6) can contain secular terms of the
form —β = —θ – µ—ζ – µ'ζ—a, which enter, e.g., into
the quantity A. It turns out, however, that the main con-
clusions regarding the stability behavior at µ  0 can
be drawn by considering a simpler shearless case, µ =
const ! 1. The general case with a nonzero shear is
considered in Appendix 2.

In the shearless case, Eqs. (6) do not contain secular
terms and we can employ a simple technique of
expanding in Fourier series. Since the displacement of
the magnetic field line is a periodic function of the
coordinate θ, we can expand ξ in a Fourier series in the
azimuthal coordinate:

(8)

Here, the function (ζ) = ξm(ζ)exp(–imµζ), in con-
trast to the function ξm(ζ), is nonperiodic at irrational
values of µ. In turn, expanding the periodic function

ξm(ζ) in a Fourier series, ξm(ζ) = , and tak-

ing the integral Fourier transform of the function (ζ)
yields a discrete spectrum of the latter function, which
is characterized by the dimensionless longitudinal
wavenumbers

(9)

Let us consider perturbations with m @ 1. In [9], it
was shown that, for small µ values (i.e., when the mag-
netic field lines are unclosed only slightly), the most
dangerous perturbations are those localized predomi-
nantly in the azimuthal direction. Hence, assuming that
∂S/∂β @ a∂S/∂a in Eqs. (6) and using Fourier series
expansion (8) for X, we arrive at equations for the Fou-

rier components (ζ) and (ζ). These equations
have the same form as Eqs. (6), but they are simpler
because A ~ |—β|2. For clarity, we will work in the nota-
tion adopted in Eqs. (6).

We will consider many-period toroidal mirror sys-
tems with closed magnetic field lines and without a

B
2
/ρ
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B
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ξ ξ m ζ( )e
imθ–
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ξmne
inζ

n ∞–=

∞

∑
ξm

kzn n µm.–=

ξm Xm
magnetic well [10]. For such systems, Eqs. (6) can be
solved by an asymptotic procedure [12]. This possibil-
ity stems from the fact that the characteristic longitudi-
nal scale of variation of the amplitude of the ballooning
modes differs substantially from the spatial scale on
which the geometric parameters of the equilibrium
magnetic field vary. We call such ballooning perturba-
tions quasi-flute perturbations [9, 13].

We introduce the “fast” (ζ) and “slow” (z = εζ,
where ε ! 1) coordinates. In the representation ξ =
ξ0(ζ, z) + εξ1(ζ, z) + ε2ξ2(ζ, z) of the displacement ξ, we
single out the periodic part in accordance with the con-
dition ξi(ζ, z) = ξi(ζ + 2π, z) (see, e.g., [14]). The peri-
odic part in the corresponding representation of the dis-
placement vector X is singled out in the same manner.
Here, the role of the small quantity ε is played by the
quantities µ and N–1, where N is the number of periods
of the toroidal confinement system. In fact, this aver-
aging procedure serves to filter all the harmonics out of
spectrum (9) except for those with small mode num-
bers n.

To zero order in ε, we obtain from Eqs. (6) the equa-
tions

(10)

Taking into account the fact that the functions ξ0 and X0
are periodic in the fast coordinate ζ, we arrive at a
solution to Eqs. (10) in the form ξ0(ζ, z) = ξ0(z) and
X0(ζ, z) = X0(z).

To first order, we obtain from Eqs. (6) the equations

(11)

With allowance for the periodicity of the functions ξ1
and X1, we obtain the following solution to Eqs. (11):

(12)

Here, the integration is carried out along the magnetic
field line over one turn in the toroidal direction around
the entire circumference of the torus. For this reason,
the integral in the first of Eqs. (12) depends on the azi-
muthal coordinate of the initial point on the magnetic
field line. We will ignore this dependence, however,
because doing so is justified by the smallness of the
rotational transform and the isometry property used in
[10] to construct the magnetic configurations of toroi-
dal mirror systems.

∂
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In the second approximation, we take into account
Eqs. (12) to transform Eqs. (6) to

(13)

With the periodicity of the functions ξ2 and X2 in mind,
we obtain the solution

(14)

In relationship (14), we switch from the frequency ω to
the growth rate γ, ω2 = –γ2. As a result, taking the Fou-

rier transformation ξ0(z) =  (and the

analogous transformation for X0), we arrive at the dis-
persion relation

(15)

Here, we have introduced conventional notation for the
terms describing the magnetic well/hill, U0, and plasma
compressibility, U1 (see Appendices 2, 3),

(16)
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and those describing the characteristic acoustic and
Alfvén wavenumbers, kzs and kzA [8, 15],

(17)

Ignoring the term  in dispersion relation (15) in

comparison to  (  !  for small β values) and
taking into account the inequality U0 + U1 ≥ 0 (which
means that BK condition (1) holds) yields

(18)

Dispersion relation (18) implies that the conditions for
the onset of acoustic instability are satisfied (i.e., the
growth rate is positive) when

(19)

Recall that we are investigating the stability of a system
with a magnetic hill, U0 < 0. Since, in accordance with

spectrum (9), we have  = (n – µm)2, we can rewrite
instability criterion (19) as

(20)

For closed magnetic field lines (µ = 0), the flute
oscillations (n = 0) are stable. They can become unsta-
ble only above the instability threshold for ballooning
modes in terms of β values (the parameter β is mini-
mum for n = 1):

(21)

For any arbitrarily small value of the rotational trans-
form, µ ! 1, there always exists a large mode number
m @ 1 such that µ ~ n/m ! 1 and an instability for
which there is essentially no threshold becomes possi-
ble. The maximum wavenumber (which corresponds to
the maximum growth rate) of this instability,

, (22)

occurs at large mode numbers m such that

(23)

The result just obtained agrees with the conclusions
of [9].

Hence, at arbitrarily small values of the rotational
transform µ, the plasma stability depends upon the
restrictions on the azimuthal wavenumber. In ideal
MHD theory, there are no such restrictions and, conse-
quently, a continuous transition from the SM to the BK
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criterion is impossible. The restrictions in question are
naturally introduced by the FLR effects, which are
ignored in the ideal MHD approximation.

3. STABILITY AT µ  0 WITH ALLOWANCE 
FOR THE FINITE LARMOR RADIUS

We begin by writing the equations for small-scale
ideal modes with allowance for FLR effects (see
Appendix 1):

(24)

Equations (24) are valid for small values of k⊥ ρi . They
differ from Eqs. (3) in that the terms with ω2 are supple-
mented with the diamagnetic drift frequency ω* =

 and magnetic drift frequency ωM = ωB + ωR. Here,

ωR =  and ωB = , with  =

 and ωci being the ion gyrofrequency.
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Under the BK condition, all drift frequencies are of the
same order of magnitude.

We first consider a local dispersion relation that can
be derived from Eqs. (24) in the quasiclassical approx-
imation, in which the perturbations are represented as

(25)

where C1, 2 are functions slowly varying along the mag-
netic field lines. The relationship between the functions
C1 and C2 follows from the second of Eqs. (24),

(26)

and the sought local dispersion relation can be obtained
by substituting relationship (26) into the first of
Eqs. (24),

(27)

Let us compare dispersion relation (27), which was
derived in the hydrodynamic approximation, to an anal-
ogous equation derived by Mikhailovskii [16] for a lon-
gitudinally uniform curvilinear magnetic field in the
kinetic approximation. For an isotropic isothermal
plasma with a uniform temperature at low β values, this
equation takes the form
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where J0 and J1 are Bessel functions of the argument z =
k⊥ V⊥ /ωc, the angular brackets 〈 〉  indicate integration
over velocities with a Maxwellian distribution function,

ωd =  + , ω∆ = , and ωp is

the plasma frequency. Note that, unlike Eq. (27),
Eq. (28) is valid for arbitrary values of k⊥ ρi .

Since we have ze ! 1 for electrons, we can use
power-series expansions of the Bessel functions to
obtain

kbV ⊥
2

B'
2ωcB

-----------------
kbV ||

2

ωcR
-----------

kBV ⊥
2

2ωc

------------ B'
B
---- 1

R
---– 

 
 (29)

where we have ignored the compressibility of the elec-
tron gas, k||VTe/ω @ 1. As can be seen, the sole contri-
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bution of the electrons is to the term that contains the
curvature and describes the instability growth.

We consider Eq. (29) in the limit zi ! 1 in order to
make a limiting transition to hydrodynamic dispersion
relation (27). Again using power-series expansions of
the Bessel functions, we find

(30)

Averaging the first term in expression (30) with allow-
ance for the electron contribution to Eq. (29) leads to

the expression  for the term describing the

instability growth in the dispersion relation. Recall that
the total plasma pressure is equal to 2p, where p = pi = pe.
Averaging the second term in expression (30) leads to
an expression that can be represented with sufficient
accuracy (by appropriately adjusting the value of the
adiabatic index γ0) as

. Averaging the third

term in which the quantity ω∆ and the last summand are
ignored leads to the expression

. One can readily verify that

inserting these three expressions into dispersion rela-
tion (29) yields dispersion relation (27).

An analysis of the local dispersion relation shows
that, under the BK condition, D−1 = p'R/(2γ0p) < 1, and
for k|| = 0, it has only nonzero real roots. The imaginary
part of the roots is nonzero only for k||values larger than

that given by the equality  = Cω*2/ , where the
quantity C is on the order of unity. The figure shows
how C generally depends on the extent to which the BK
criterion is satisfied, D > 1. Hence, the zero in inequal-
ities (19) should be replaced with a certain finite quan-
tity corresponding to a nonzero rotational transform
below which instability occurs under the BK condition.

The general dispersion relation can be derived from
Eqs. (24) in the same way as that in Section 2 for the
shearless case,
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where we have introduced the following notation for
the averaged frequencies:

(32)

Dispersion relation (31) has the same structure as
local dispersion relation (27). Under the BK condition,
U0 + U1 > 0, and for kz = 0, it has only nonzero real
roots. In this case, the roots can be imaginary (i.e., the

instability can occur) only when  > . The bifurca-
tion point for the solution to dispersion relation (31) is
easy to calculate numerically. As far as an analytic esti-

mate of the value of  is concerned, it can be derived
from dispersion relation (31) by ignoring all the terms
except for those with U0 and U1. Thus, under the condi-
tion (U0 + U1)/U1 < 1, we obtain

(33)

Since, for a nonzero rotational transform, we have  =
(n – µm)2, the instability under the BK condition can
occur only when
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For n = 0, the instability is impossible up to rotational
transform values of about

(35)

where R1 is the characteristic major radius of the toroi-
dal mirror system. For n ≠ 0, formula (35) gives a lower
estimate for the rotational transform. We can see that,
even when the rotational transform is fairly large, the
BK condition also is a sufficient condition for the sta-
bility of quasi-flute oscillations in a plasma with hot
ions confined in a large-aspect-ratio device.

4. CONCLUSIONS

The above analysis confirms the conclusions of [9]
on the impossibility of a limiting transition from the
SM criterion to the BK criterion when the rotational
transform approaches zero. Under the BK condition,
the SM criterion predicts the onset of an acoustic insta-
bility with a finite growth rate when the extent to which
the magnetic field lines are unclosed is vanishingly
small. Taking into account the finite ion Larmor radius
allows this limiting transition to be made. The BK cri-
terion ensures MHD stability at rotational transform
values below a certain critical value determined by the
ratio of the ion Larmor radius to the plasma minor
radius. Under experimental conditions, this critical
value is far larger than the one expected to be produced
by actual magnetic perturbations. In toroidal mirror
systems, the plasma with hot electrons and cold ions is
more sensitive to magnetic perturbations than the
plasma with hot ions.
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APPENDIX 1

Derivation of the Equations for Ideal Ballooning 
Modes with Allowance for the Finite Larmor Radius

The FLR is taken into account as follows. The equa-
tions of fluid motion (see Eqs. (A1.1) below) are sup-
plemented with the ion magnetic viscosity tensor [17,

18]  = − {(  × b) + Tr}, which contains the ten-

sor  = 3b ⊗ (b × (— × V⊥ )) + 6b ⊗ (b · —)V + (— ⊗  V +
Tr) and in which b = B/B and the symbol ⊗  stands for
the tensor product. It is also necessary to account for the

diamagnetic ion drift velocity VD = . The
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invariant form of the magnetic viscosity tensor that was
presented in [17] is convenient for deriving the general
equations. For simplicity, we consider a plasma with
uniform temperature (i.e., without heat fluxes) and
assume that the plasma is dominated by the ion pressure
(so the subscript in the pressure will be dropped). Thus,
the equations of fluid motion have the form

(A1.1)

Here, the velocity is equal to V = VD – iωx⊥  – iωx||,

where x⊥  = , x|| = , and the tilde

marks the perturbed quantities. The use of the adiabatic
equation (the third of Eqs. (A1.1)) in place of the heat
balance equation is a fairly good approximation (pro-
vided that the γ0 value is chosen appropriately), which
makes it possible to reveal the main changes in the ideal
MHD equations. Note that, once the diamagnetic drift
velocity is taken into account, the procedure of linear-
izing Eqs. (A1.1) should be performed with allowance
for the steady-state fluid velocity VD0. The perturbed
magnetic field is given by the relationship

(A1.2)

The perturbations x whose wavelengths in the direc-
tion transverse to the magnetic field B are short and
those in the longitudinal direction are long can be con-
veniently considered in the eikonal approximation

(A1.3)

where k⊥  = —⊥ S and k⊥  · B = 0. The parameter ε ! 1
reflects the fact that the perturbations are small-scale,

|B × —ln | @ |B × —ln f |, |B · | ! |B × |. The
magnetoacoustic perturbations are ignored; this corre-

sponds to the condition k⊥  ·  = 0, which leads to the
representation [11]

(A1.4)

where ξ is the component of the displacement vector 
that is normal to the magnetic surface and kb =

 · k⊥ . Note that B ·  = 0 [11].

The first of Eqs. (3) is derived by linearizing the cur-
rent-continuity equation — · j = 0 in the following way
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[15]. Representing the current as a sum of the longitu-
dinal and transverse components, j = αB + j⊥ , where

yields

(A1.5)

By virtue of the small scales of the perturbations under
consideration, the expression for the divergence of the

current component  =  +  –

2  can be simplified to

(A1.6)

Using the relationships — ×  =  + 2  –

 and —p · (— × ) ≈ —p ·  and replac-

ing the quantity —(B · ) in the last term of Eq. (A1.6)
by –  (that this replacement can be made is a conse-
quence the perturbed equilibrium equation; see, e.g.,
[15]) leads to the relationship

(A1.7)

With representation (A1.4), the divergence of the

vector  = (B × ρd /dt)/B2 is described by the
expression

(A1.8)

where the diamagnetic drift frequency is equal to ω* =
kbp'/(ωciρ). The presence of the factor 2 multiplying the
diamagnetic drift frequency in expression (A1.8)
should not lead to confusion because, in the resulting
equation, it will be canceled by the same factor, stem-
ming from the contribution of the term with the viscos-
ity. In fact, using the expression for the viscosity tensor

reduces the term with the divergence of  to

(A1.9)
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where the magnetic drift frequency is equal to ωR =

 because it takes into account the curvature of

the magnetic field lines.

In order to derive the expression for B · , where

 = B · (— × )/B2, it is necessary to substitute rela-
tionship (A1.4) and the relationships k⊥  = —⊥ S and

B · —  = 0 into expression (A1.2). Doing this yields

(A1.10)

Relationship (A1.10) makes it possible to represent 

in the form  = –  · —ξ and, accordingly, to

obtain

(A1.11)

Since the term  · —α in expression (A1.5) can be
ignored (see, e.g., [15]), the only thing that remains to
be done in deriving the sought equation is to express the
perturbed pressure  in terms of the transverse dis-
placement ξ and the divergence of the displacement

vector X = — · . This expression can be obtained by

linearizing the last of Eqs. (A1.1). Taking into account
the second of Eqs. (A1.1) gives

(A1.12)

where the finite divergence of the steady-state fluid
velocity is ignored. The second and third terms in
expression (A1.12) cancel one another, thus yielding

(A1.13)

Substituting all these relationships into Eq. (A1.5) and
multiplying by B/kb leads to the first equation for ideal
ballooning modes with allowance for the FLR:

(A1.14)

The second equation, which relates the divergence
of the displacement vector to its transverse component,
can be derived from the longitudinal component of the
equation of motion. For this, it is necessary to know the
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expression for the divergence of the perturbed diamag-
netic velocity:

(A1.15)

The expression for the divergence of x⊥  can also be
written in a form analogous to expression (A1.15).
Representing — · x⊥  as

and making, with an accuracy sufficient for the deriva-

tion, the replacement  –  ~ – (— · x⊥  +

— · x||) yields

(A1.16)

Using relationships (A1.15) and (A1.16) puts the diver-
gence of the displacement into the form

(A1.17)

Taking the scalar product of the equation of motion
with B and linearizing the resulting equation gives

(A1.18)

With allowance for relationships (A1.13) and (A1.2),
the last two terms here are transformed as B ·  +

 · —p = –γ0pB · —X. It can be shown that the second
term in Eq. (A1.18) can be reduced to

(A1.19)
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nent of the divergence of the viscosity tensor along the
magnetic field direction has the form (see, e.g., [17]):

(A1.20)

Introducing the notation x = x⊥  + x|| and using the rela-

tionship (— × ) = ω(k⊥  × x) gives

(A1.21)

Taking into account the relationship B · (VD0 · —)  =
ωω*(B · x||) leads to relationship (A1.19). As a result,
with relationship (A1.18), the longitudinal displace-
ment can be represented as

(A1.22)

Inserting representation (A1.22) into expression (A1.17)
leads to the second equation for ideal ballooning modes
with allowance for the FLR:

(A1.23)

Ignoring the drift frequencies in Eqs. (A1.14) and
(A1.23) reduces them to the familiar equations for the
ideal ballooning modes. The equations derived are
valid for any values of the rotational transform and of
the shear, in particular, for a zero rotational transform.

APPENDIX 2

Stability at µ, µ'  0

When the shear is finite (nonzero), Eqs. (6) contains
secular terms. Consequently, it is necessary to use a
special ballooning representation [19–21]. We employ
here a somewhat modified representation, namely,

(A2.1)

In the limit µ = 0, representation (A2.1) yields a
periodic solution, characteristic of closed magnetic
field lines. The slight difference between representa-
tion (A2.1) and the widely used ballooning representa-
tion [19–21] lies precisely in the fact that the former
permits a transition to the limit at hand.

The choice of the form (A2.1) for the ballooning
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siderations. Expansion (8) leads to discrete spectrum (9)

of the function (ζ). This indicates that, for small val-

ues of the rotational transform, the function (ζ) is
almost periodic and, consequently, can be approxi-
mated (at N @ 1) by a trigonometric polynomial [22]

(A2.2)

Substituting polynomial (A2.2) into expansion (8) and

approximating the series  = 2π (ζ –

η – 2πk) by δ functions, we arrive at representation

(A2.1). Here,  is an aperiodic function of ζ over an

infinite interval –∞ < ζ < ∞; in the limit   ∞, it
approaches zero, |ζ|  0.

Using ballooning representation (A2.1) and singling
out the secular terms in explicit form, —β = M – µ'ζ—a,
we obtain equations analogous to Eqs. (6):
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We apply the same averaging procedure as in Sec-
tion 2. Without going into the details of the derivation,
we immediately write out the resulting equation:

(A2.4)

where y = . In order to sim-

plify the analytic solution of Eq. (A2.4), we replace the
integral terms containing A2 with approximate expres-
sions in which the dependence of z is explicitly taken
into account:

(A2.5)
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first of representations (4) of the magnetic field in terms
of the flux into the resulting expression, and (iii) taking
its scalar product with —β yields the relationship
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equation, we take the vector product of the second of
representations (4) of the magnetic field in terms of the
current with —a and substitute the result into the
expression for S:

(A2.7)

We can see that the quantity S averaged over the mag-
netic surface is related to the shear µ' of the magnetic
field lines. It is for this reason that we have introduced
the term local shear. For µ = const, the averaged local
shear is equal to zero and, moreover, its maximum
value is, as a rule, small. Consequently, the right-hand
side of Eq. (A2.7) is dominated by the second term.
However, for small values of the rotational transform,
this second term is also small; therefore, we are justi-
fied in ignoring the element g12 of the metric tensor in
relationship (A2.6). As a result, in accordance with the
asymptotic behavior of A2 at large and small z values,
we arrive at approximate expressions (A2.5).

Taking into account expressions (A2.5), we convert
Eqs. (A2.4) into the form
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At this point, we should say a few words about the
boundary conditions with which to solve Eq. (A2.9).
Taking into account the fact that flute oscillations with
kz = 0 are suppressed by the plasma compressibility (the
Kadomtsev condition U0 + U1 ≥ 0 is satisfied), we are
considering the displacements X(kz = 0) = 0 of an
incompressible plasma. In this case, the second of
Eqs. (14) yields the first boundary condition

(A2.10)

The second boundary condition has the form

  0 for kz  ∞. (A2.11)

Since Eq. (A2.9) essentially coincides with Eq. (3.1)
from [8], the dispersion relation may be derived in a
general way, i.e., by matching the solutions obtained
for different ranges of the wavenumber kz, namely, the
Alfvén range, the acoustic range, and the range of its
infinite values (the characteristic values of the wave-
number are given by expressions (17)). But here we use

the smallness of the shear,  ! 1. Making the replace-

ment y = , we reduce Eq. (A2.9) to

the standard form of a differential equation with a small
coefficient in front of the highest order derivative:

(A2.12)

Note that, under BK condition (1), U0 + U1 ≥ 0, we
have F(kz = 0) > 0. We also have F(kz  ∞) = 1. Since
the magnetic well is absent, U0 < 0, there exists a max-

imum growth rate (a maximum value of ) below

which the function F vanishes at two points,  and

. In Eq. (A2.12), we ignore the Alfvén wavenumber
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Using the familiar asymptotic solutions to
Eq. (A2.12) in the ranges kz1 ≤ kz ≤ kz2, kz < kz1, and
kz > kz2 and also boundary conditions (A2.10) and
(A2.11), we obtain the dispersion relation

(A2.14)

or, in another form,

(A2.15)

Here, j = 1, 2, 3, …. Noting that the growth rates are
maximum at minimum values of j, we arrive at the max-
imum growth rate determined by relationship (23).

We thus have obtained the same results as those in
the absence of shear.

APPENDIX 3

Expressions for  and 

In order to calculate the quantity  =

− , we use the general expression for
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(A3.1)

and using the notation U = , we obtain

(A3.2)

Recall that we are analyzing an isometric toroidal mir-
ror system for which the above contour integrals along
the magnetic field line in one turn in the toroidal direc-
tion around the circumference of the torus are indepen-
dent of the azimuthal coordinate of the initial point of
integration.

REFERENCES
1. I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and

R. M. Kulsrud, Proc. R. Soc. London A 244, 17 (1958).
2. B. B. Kadomtsev, in Plasma Physics and the Problem of

Controlled Thermonuclear Reactions, Ed. by
M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow,
1958; Pergamon Press, New York, 1960), Vol. 4.

3. V. V. Arsenin, E. D. Dlougach, V. M. Kulygin, et al.,
Trans. Fusion Sci. Technol. 43 (1T), 17 (2003).

4. A. I. Morozov, V. P. Pastukhov, and A. Yu. Sokolov, in
Proceedings of the Workshop on D–3He Based Reactor
Studies, Moscow, 1991, Paper 1C1.

5. A. Hasegava, L. Chen, and M. E. Mauel, Nucl. Fusion
30, 2405 (1990).

6. V. V. Arsenin, E. D. Dlougach, V. M. Kulygin, et al.,
Nucl. Fusion 41, 945 (2001).

7. V. P. Pastukhov and N. V. Chudin, Fiz. Plazmy 27, 963
(2001) [Plasma Phys. Rep. 27, 907 (2001)].

8. A. B. Mikhailovskii and A. Skovoroda, Plasma Phys.
Controlled Fusion 44, 2033 (2002).

9. A. V. Zvonkov and A. A. Skovoroda, Fiz. Plazmy 30, 269
(2004) [Plasma Phys. Rep. 30, 241 (2004)].

=  –
4π2

FΦ'
---------

g—β — B
B
----× 

 ⋅

B
----------------------------------------

=  –
2π
FΦ'
--------- g

B
2

-------—β F ' —a —ζ×( ) —ν —a×( ) -–
⋅

– F
—B —ζ×

B
---------------------- ν—B —a×

B
----------------------+ 



=  
2π
FΦ'
--------- 1

B
2

------ F ' ∂ν
∂ζ
------

F
B
---∂B

∂a
------–

ν
B
---∂B

∂ζ
------–+ 

 

=  
2π
FΦ'
--------- 1

B
2

------ F '
1
2
---∂ν

∂ζ
------ F

B
---∂B

∂a
------–+ 

  1
2
---∂ ν/B

2( )
∂ζ

-------------------+

=  
π

FΦ'
--------- ∂ F/B

2( )
∂a

-------------------- F p'

B
4

--------– ∂ ν/B
2( )

∂ζ
-------------------+ 

 

dl/B∫°
dζ

B
2
R

----------∫°
π
F
--- U' p' dl

B
3

------∫°– 
  ,–=

1
γ0 p

B
2

--------+ 
  dζ

B
2

------∫°
2π
F

------ U γ0 p
ld

B
3

------∫°+ 
  .=



122 SKOVORODA
10. A. V. Zvonkov, A. Yu. Kuyanov, J. Nuehrenberg, et al.,
Fiz. Plazmy 28, 822 (2002) [Plasma Phys. Rep. 28, 756
(2002)].

11. V. D. Pustovitov and V. D. Shafranov, in Reviews of
Plasma Physics, Ed. by B. B. Kadomtsev (Énergoat-
omizdat, Moscow, 1987; Consultants Bureau, New York,
1990), Vol. 15.

12. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic
Methods in the Theory of Nonlinear Oscillations
(Nauka, Moscow, 1974; Gordon & Breach, New York,
1962).

13. V. V. Ilgisonis, Fiz. Plazmy 14, 529 (1988) [Sov. J.
Plasma Phys. 14, 309 (1988)].

14. L. J. Zheng and M. Tessarotto, Phys. Plasmas 1, 2956
(1994).

15. A. B. Mikhailovskii, Instabilities in a Confined Plasma
(IOP, Bristol, 1998).

16. A. B. Mikhailovskii, Electromagnetic Instabilities in a
Nonuniform Plasma (Énergoatomizdat, Moscow, 1991),
p. 300.
17. V. I. Ilgisonis, Fiz. Plazmy 16, 1046 (1990) [Sov. J.
Plasma Phys. 16, 607 (1990)].

18. A. B. Mikhailovskii, Theory of Plasma Instabilities
(Atomizdat, Moscow, 1971; Consultants Bureau, New
York, 1974).

19. J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev.
Lett. 40, 396 (1978).

20. M. S. Chance, R. L. Dewar, E. A. Frieman, et al., Nucl.
Fusion Suppl. 1, 677 (1979).

21. O. P. Pogutse and É. I. Yurchenko, in Reviews of Plasma
Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev
(Atomizdat, Moscow, 1982; Consultants Bureau, New
York, 1986), Vol. 11.

22. B. M. Levin and V. V. Zhikov, Almost-Periodic Func-
tions and Differential Equations (Izd. MGU, Moscow,
1978).

Translated by O.E. Khadin
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005



  

Plasma Physics Reports, Vol. 31, No. 2, 2005, pp. 123–132. Translated from Fizika Plazmy, Vol. 31, No. 2, 2005, pp. 146–156.
Original Russian Text Copyright © 2005 by Starostin, Leonov, Petrushevich, Rerikh.

                                                                                       

PLASMA 
KINETICS

           
Quantum Corrections to the Particle Distribution Function
and Reaction Rates in Dense Media

A. N. Starostin*, A. G. Leonov**, Yu. V. Petrushevich*, and Vl. K. Rerikh*
*Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow oblast, 142190 Russia

**Moscow Institute of Physics and Technology, Institutskiœ pr. 9, Dolgoprudnyœ, Moscow oblast, 141700 Russia
Received May 19, 2004; in final form, June 18, 2004

Abstract—Quantum mechanics predicts the existence of power-law tails in the momentum distribution func-
tion of particles in dense media even under conditions of thermodynamic equilibrium. The generalized expres-
sions allowing for the effect of the medium density show that quantum corrections lead to a sharp increase in
the reaction rates of threshold exothermic processes (such as fusion and chemical reactions and vibrational–
translational relaxation). The accompanying modification of the distribution function changes the wings of the
emission and absorption lines. The profiles of the absorption lines in dense gaseous media are shown to be
asymmetric with respect to the line center. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Because of frequent particle collisions, a kinetic
description of dense gases and plasmas should be based
on the generalized energy and momentum distribution
function f(E, p, r, t), where E and p are the particle
energy and momentum [1]. For an ideal gas (i.e., in the
case of a low gas density) under conditions of thermo-
dynamic equilibrium, the particles obey a Maxwellian
distribution over momenta. Because of the finite life-
time of the excited energy states, the tails of the
momentum distribution function in dense collisional
media are substantially larger than those of the expo-
nentially decaying Maxwellian distribution. Quantum
uncertainty in the particle energy also contributes to
these non-Maxwellian tails. As a result, the tails of the
distribution function acquire a power-law form.

The effect of quantum uncertainty on the velocity
distribution function was first pointed out by Kardanoff
and Baym [2] in 1932. They calculated the leading non-
vanishing term in the expansion of the distribution
function in series in Planck’s constant ". The resulting
correction to the temperature led to a Maxwellian
velocity distribution function with the effective temper-
ature

(1)

where U is the particle interaction energy and mi and qi

are the mass and coordinate of a particle of the ith spe-
cies. As was first noted in [3], due to quantum effects,
the equilibrium momentum distribution function differs
from a Maxwellian one and has power-law tails.
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The kinetic equation for the generalized distribution
function of the particles in an external field has the form

(2)

This equation can be solved using the well-known two-
term approximation

(3)

where ε is the particle kinetic energy, f0(E, ε, r, t) is the
spherical part of the distribution function, and f1(E, ε, r, t)
describes weak anisotropy caused by the external force
(for example, for electrons in an external electric field,
this force determines the current density). The kinetic
coefficients (such as the drift velocity and diffusion
coefficient) are calculated using the spherical part of
the generalized distribution function.

In [1], the spherical part of the generalized particle
distribution function was represented in the form

(4)

In the simplest cases, such a representation enables
one to obtain explicit expressions for this spherical part.

For an ideal gas, δγ(E – ε) is a Dirac delta function
and, for a nonideal gas, it is a Lorentzian function [3, 4],

(5)

where n(E) is the occupation number and ΣR(E, ε) is the
retarded mass operator. Thus, the imaginary part of the
mass operator determines the width of the Lorentzian
function, whereas its real part determines the shift of
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the resonance. By denoting γ(E, ε) = ImΣR(E, ε) and
∆(E, ε) = ReΣR(E, ε), it is possible to reduce expres-
sion (5) to

(6)

There is a relation between the shapes of the spectral
line wings and the tails of the particle momentum dis-
tribution function. Indeed, the line profile is determined
by the convolution of Lorentzians (6) and by averaging
over the velocities of he emitting (absorbing) atoms. In
the resonance, the particle energy is a sum of the kinetic
energy of the center of mass and the internal energy of
the particle state.

The asymptotic behavior of the momentum distribu-
tion function can be expressed via the imaginary part of
the retarded mass operator ImΣR(E, p) ≡ γ(E, p):

(7)

Note that, in the absence of an external field, the dis-
tribution function is spherically symmetric and the
index 0 can be omitted. For the Lorentz gas of electrons
in plasma, the following approximate formula was
obtained in [4]:

(8)

Here, N is the gas density, σtot(ε) is the total cross sec-
tion for electron scattering by the gas atoms (ions), and
me is the electron mass. From Eqs. (7) and (8), one can
obtain the quantum correction to the distribution func-
tion related to the Coulomb interaction:

(9)

It was shown in [3] that, for the unscreened Cou-
lomb interaction, f(p) ~ "N/p8. The power-law tails of
the distribution function can significantly affect the
rates of nonresonant fusion reactions. On a qualitative
level, the emergence of such tails can be explained by
the fact that, due to the interaction of a particle with the
surrounding medium, its motion is spatially limited as
compared to a free particle. According to the uncer-
tainty principle, such a spatial limitation enlarges the
phase volume of a particle in momentum space.

For the spectral line profile, an analogue of non-
Maxwellian tails of the momentum distribution func-
tion is the Lorentzian asymptote of the line wings
against the background of the central Doppler core.
However, in contrast to the conventional interpretation
of the spectral line profiles, the presence of a power-law
tail in the momentum distribution function is of funda-
mentally quantum nature since, in classical statistics,
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the equilibrium particle distribution remains Max-
wellian for any gas density because of the commutativ-
ity of the kinetic and potential energies.

The spherical part of a nonequilibrium distribution
function formed under the action of an external force
also has a power-law tail but with a different power
index. Along with the change in the reaction rates (as is
the case with an equilibrium distribution function), this
also leads to a change in kinetic transport coefficients.
In the case of a nonequilibrium distribution function,
the occupation numbers should be calculated in accor-
dance with the specific conditions of the problem under
study.

The spectral intensity of radiation is determined by
the distribution function of photons over frequencies.
At low temperatures, when the equivalent linewidth
exceeds the temperature, "∆ωe ≥ T, the line shape dif-
fers significantly from the Planck formula and the radi-
ation intensity can substantially exceed the Planck
intensity. Resonance radiation transfer in dense gas
media was studied in [5, 6] both theoretically and
experimentally. In [5], equations for resonant radiation
transfer were derived in terms of the generalized spec-
tral intensity J(ω, k), where the frequency ω and the
wave vector k are independent variables.

The conventional theory of resonant radiation trans-
fer, which was developed for the case of low gas densi-
ties, is inapplicable at very high pressures, because, in
this case, the permittivity ε can differ substantially from
unity and the photon mean free path becomes compara-
ble to the radiation wavelength. When the photon mean
free path with respect to the absorption in the center of
the resonance line becomes comparable to the radiation
wavelength (for sodium vapor, this occurs at gas densi-
ties of N ≥ 1017 cm–3), the theory has to be modified. It
can easily be shown that, in a dense medium, a photon
is a rather “bad” quasi-particle for which the dispersion
relation (ε')1/2ω = ck is not satisfied (here, c is the speed
of light in vacuum and k is the wavenumber). In this
case, the problem of resonant radiation transfer can be
resolved using an equation for the Fourier components
of the correlation functions of the electromagnetic field.
Such an equation can be formulated in terms of the
Green’s kinetic functions. This allows one to introduce
the generalized spectral intensity of radiation J(ω, k),
where the frequency ω and the wave vector k are inde-
pendent variables. In the general case, J(ω, k) is not
necessarily positive and only some of its moments (i.e.,
integrals over k with different weighting functions)
have physical meaning. The spectral radiation intensity
Jω—a measurable quantity that is dealt with in the con-
ventional transfer theory—is related to J(ω, k) by the
relation

(10)

where W is the unit vector directed along k.
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Fig. 1. Astrophysical factor in the cross section for the fusion reaction of deuterons as a function of the particle energy in the center-
of-mass frame (the figure is taken from [8]). The experimental results are shown by the vertical bars. The theoretical dependences
are obtained for bare deuterium nuclei (curve 1) and for nuclei screened by the free electrons of the target metal at Ue = (2) 28 and
(3) 309 eV.
The generalized transfer theory shows that, in the
line center, the intensity of radiation emitted from a
nonuniformly heated medium is by many orders of
magnitude higher than the radiation intensity predicted
by the conventional theory of resonant radiation trans-
fer. Another consequence of the generalized transfer
theory is the feasibility of obtaining (under definite
conditions) anomalously high radiation intensity on the
far red wing of a spectral line; this effect is determined
by the Boltzmann spectral factor arising in the expres-
sion for the intensity of spontaneous emission from a
thermodynamically equilibrium medium.

2. REACTION RATES

The rates of nonresonant reactions (in particular,
fusion reactions) are determined by the energy of the
interacting particles in the center-of-mass frame. At
moderate temperatures, the main contribution to fusion
reactions is made by the particles with energies a few
times higher than the plasma temperature [7].

Recent experiments [8, 9] showed that, at low ener-
gies, the measured dependence of the rates of nonreso-
nant fusion reactions on the particle energy differs from
that predicted by theory. Figure 1 (taken from [8])
shows the measured energy dependence of the astro-
physical factor in the cross section for a fusion reaction
occurring in the interaction of a deuteron beam with
deuterons imbedded into the crystal lattice of the target
metal. It was found that the reaction rate in the range of
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
low energies (<5 keV) of the beam particles was much
higher than the calculated one. To explain this effect, a
hypothesis about the screening of the target ions by an
electron cloud was proposed in [8]. The theoretical
dependences of the astrophysical factor obtained in [8]
for bare and screened (with different screening poten-
tials) deuterium nuclei are shown in Fig. 1. For a
screening potential of 28 eV, which is quite reasonable
under the given conditions, the theoretical curve dis-
agrees with the experimental one. It can be seen that
agreement between them in the range of low beam
energies can be achieved only if the screening potential
were 309 eV, which is nonrealistic under these experi-
mental conditions. Obviously, the current theoretical
models must be refined in order to adequately interpret
the experimental results.

In [4, 10], it was shown that quantum corrections
lead to a significant deviation of the distribution func-
tion from a Maxwellian one. The resulting power-law
tails of the distribution function affect the reaction rates
with the participation of these particles, thus leading to
a nonexponential temperature dependence of the cross
sections for inelastic processes.

In this study, we examine how quantum corrections
to the distribution function influence fusion reactions
under actual experimental conditions, calculate the
rates of the interaction reactions between the beam and
target particles, and compare them to the results of
measurements performed in [8, 9].



126 STAROSTIN et al.
The reaction rate K of particles of species a and b
can be found from the collision integral in Eq. (2). In
the general case, the problem is reduced to the calcula-
tion of

(11)

where Ea and pa are the energy and momentum of an
a-species particle;  = Ea + Qa – ω,  = Eb + ω + Qb,
εp is the particle kinetic energy in the center-of-mass
frame; µ is the reduced mass of the colliding particles;
C is a normalization constant, which is determined by
comparing with the results of calculations performed
for a low density and high temperature;

In Eq. (11), the minus and plus signs refer to fermions
and bosons, respectively.

For endothermic reactions (Qa < 0), the factors (1 
n(E ')) are exponentially small. This means that, for the
concerned mechanism for intensifying fusion reactions
by the power-law tails of the distribution function to
operate, the plasma temperature should not be too low
because the colliding particles are already ionized and
the ionization rate is an exponential function of the tem-
perature. In a solid matrix, ionization occurs due to the
presence of conduction electrons.

For exothermic reactions (Qa > 0) in the nondegen-
erate case, n(E ') is much less than unity and thus can be
ignored. The particle occupation numbers n(E) depend
on the system statistics. For deuteron reactions, in
which we are interested here, the Bose statistics is
valid:

(12)

For a nonideal plasma, the dependence of the distri-
bution function on the kinetic energy ε is described by
a Lorentzian:

(13)

The linewidth is determined by the relation [10]
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where N is the density of the scattering particles.

When passing to an ideal plasma (e.g., by decreas-
ing the plasma density), the parameter γ(E, ε) tends to
zero and the function δγ(E – ε, ε) tends to a δ function.

In the center-of-mass frame, the reaction cross sec-
tion as a function of the kinetic energy εp can be repre-
sented in the form

(15)

where η(εp) =  is the Sommerfeld parameter.

The astrophysical factor S(εp) varies slightly with
energy. The influence of the potential Ue (which arises
due to the screening of an atom by electrons) on the
reaction cross section can be taken into account by add-
ing it to the collision energy:

(16)

The reaction rates were calculated numerically under
conditions close to the experimental ones: the particle
density was na = 5 × 1023 cm–3 and the masses of the
interacting particles were ma = mb = 2 amu. We consid-
ered a reaction between the ‡-species target particles
and b-species incident particles. In expression (14) for
the linewidth, the value of N was taken to be equal to the
density of the scattering ions in a metal matrix.

Taking into account the high multiplicity of integral
(11), it was calculated using the Monte Carlo method.
The distribution function over kinetic energies corre-
sponded to a particle temperature of T = 2.44 × 10–2 eV.
The energy of the b-species (beam) particles was also
specified.

Note that, for a monoenergetic particle beam, the
computation of the reaction rate by formula (11) can be
reduced to calculating a simpler integral:

(17)

where a(E – ε, ε) stands for Lorentzian (13). For an
ideal plasma, the influence of the wings of the Lorentz-
ian function can be ignored and the expression for the
reaction rate simplifies to

(18)
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Table 1

Eb , keV K1 K2 K3 K K/K1

15 4.38 × 104 4.045 × 104 7.393 × 104 4.38 × 104 1.00 × 100

10 4.073 × 103 3.762 × 103 6.877 × 103 4.11 × 103 1.01 × 100

5 1.711 × 101 1.580 × 101 2.892 × 101 1.77 × 101 1.03 × 100

2 2.615 × 10–4 2.421 × 10–4 4.487 × 10–4 2.85 × 10–4 1.09 × 100

1.8 5.038 × 10–5 7.223 × 10–5 1.344 × 10–4 5.62 × 10–5 1.12 × 100

1.5 2.339 × 10–6 3.850 × 10–6 7.343 × 10–6 3.34 × 10–6 1.43 × 100

1.2 3.613 × 10–8 7.474 × 10–8 2.265 × 10–7 7.84 × 10–7 2.17 × 101

1 8.252 × 10–10 7.711 × 10–10 5.678 × 10–8 2.82 × 10–7 3.42 × 102

Table 2

Eb , keV K1 K2 K3 K3/K1

15 4.474 × 104 4.133 × 104 7.552 × 104 1.6879937

10 4.237 × 103 3.914 × 103 7.152 × 103 1.6880552

5 1.911 × 101 1.766 × 101 3.232 × 101 1.69143

2 4.059 × 10–4 5.370 × 10–4 9.931 × 10–4 2.4466201

1.8 8.433 × 10–5 1.184 × 10–4 2.197 × 10–4 2.6056397

1.5 4.605 × 10–6 7.336 × 10–6 1.383 × 10–5 3.0034846

1.2 9.315 × 10–8 1.819 × 10–7 4.320 × 10–7 4.6383085

1 2.863 × 10–9 6.951 × 10–9 7.386 × 10–8 25.801192
By comparing the results of calculations by formu-
las (18) and (11), one can estimate the effect of the tails
of the distribution function on the reaction cross sec-
tion. Moreover, these results may also be compared to
the calculations of the reaction rate by the formula K1 =
σv  using expression (15). This allows one to estimate
the factor S(εp) and the difference between of theoreti-
cal and experimental results.

To estimate the effect of the tails of the distribution
function on the rate of reaction (17), it is necessary to
take into account the deviations of the distribution func-
tion from a Maxwellian one. It was shown in [4] that
quantum corrections lead to the appearance of power-
law tails in the distribution function over kinetic
energies:

(19)

Substituting this expression in formula (17), we cal-
culate the reaction rate with allowance for the deviation

f ε( ) C ' Ean Ea( )a Ea εa– εa,( )d

0

∞

∫=

∼
εa

T
----–

 
 
 

exp
Ca T( )

εp
4

--------------.+
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of the distribution function over kinetic energies from
Maxwellian:

(20)

The results of these calculations are presented in Table 1.
These results allow us to conclude that the reaction

rates calculated using different models are in good
agreement for beam energies higher than 2 keV. In the
1- to 2-keV energy range, the K1 and K2 values are still
close to one another, whereas the reaction rate K is
much higher than these values. We also note satisfac-
tory agreement between the K and K3 values. Therefore,
we can conclude that the reaction rates can be quite sat-
isfactorily estimated by formula (17). The results of
these calculations show that the tails of the momentum
distribution function significantly contribute to the
reaction rates. The last column of Table 1 shows the ratio
between the reaction rate K calculated by formula (11)
and that calculated for an ideal plasma.

It is of interest to consider the effect of screening on
the reaction rate with allowance for the influence of
non-Maxwellian tails of the distribution function. For
this purpose, we performed calculations for a screening

K3 C3 εa f εa( )
2εaεp

µ
-------------σ εp( ).d

0

∞
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potential of Ue = 28 eV, which was taken into account
in accordance with formula (16). Such a value of the
screening potential is quite realistic under the experi-
mental conditions of [8]. The results of calculations are
presented in Table 2.

In these calculations, we did not use general expres-
sion (11) because a fairly accurate estimate can be
obtained using Eq. (17). The results obtained show that
the influence of a realistic screening potential is weak,
which agrees with the results of [8, 9]. It can be seen,
however, that quantum corrections greatly increase the
calculated value of the reaction rate in the range of low
(from 1 to 2 keV) beam energies.

3. DETAILED BALANCE OF THE ABSORPTION 
AND EMISSION OF RESONANT RADIATION

The effects that were observed in experiments on the
interaction of radiation with dense media (see the Intro-
duction) cannot be explained by the conventional the-
ory of resonant radiation transfer [11]. These effects
can manifest themselves in measuring thermal emis-
sion from a dense medium. The intensity of this radia-
tion can be calculated using the generalized spectral
intensity J(ω, k, W, r). In the steady-state case, the func-
tion J(ω, k, W, r) should satisfy the kinetic equation

(21)

Here, kω is the absorption coefficient,

(22)

and  is the generalized spontaneous spectral emissivity,

(23)

where a(ω, k) is the generalized line profile; ε(ω, k) =
ε'(ω, k) + iε''(ω, k) is the complex permittivity of the
medium (with ε'(ω, k) and ε''(ω, k) being its real and
imaginary parts, respectively); T is the temperature of
an equilibrium medium in energy units; g1, 2 are the sta-

tistical weights of the ground and excited states; 
are their effective populations, which obey a Boltz-
mann distribution under equilibrium conditions or, in a
nonequilibrium state, can be found from the kinetic
equations given in [5]; and d is the matrix element of
the dipole moment operator for the 2  1 transition.

W —J⋅ kωJ– ε̃ ω k W r, , ,( ).+=

kω
ω2ε'' ω k,( )

c
2
k

--------------------------=

=  
4
3
--- g2/g1( ) πdω( )2

"c
2
k

------------------a ω k,( )
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Ignoring spatial dispersion (in this case, a(ω, k) ≈
a(ω) and (ω)dω = 1) and integrating expression (23)

over k, we obtain the following explicit expression for
the spectral intensity of spontaneous emission from an
optically thick medium:

(24)

where A0 is the probability of spontaneous emission in
vacuum.

In the general case, Eq. (21) is insufficient to
uniquely describe the spectral intensity Jω, defined by
formula (10). Thus, in addition to the first-order partial
differential equation (21), the function J(ω, k, W, r)
should also satisfy a nonuniform wave equation, which,
in the steady-state case, has the form

(25)

To close the set of Eqs. (21) and (25), it is necessary
to supplement them with equations for the populations
Ni . In the limit N2 ! N1 ≈ N and with allowance for the
total redistribution over frequencies in a dense medium,
we obtain the following equation for N2:

(26)

The first term in Eq. (26) corresponds to photoab-
sorption, the second is responsible for the spontaneous
decay of the excited atoms, and the third describes the
collisional exchange between states 1 and 2 with a
probability W.

The exponential factor exp[–"(ω – ω0)/T] in expres-
sions (22)–(26) is related to the generalization of the
conventional theory of radiation transfer [12, 13] to the
case of broad lines, which are characteristic of dense
media. This factor was first derived in [5] within the
frame of the Keldysh theory using kinetic Green’s func-
tions [14, 15].
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Fig. 2. Diagrams of atomic emission and absorption.
As was shown in [5], the spectral intensity of spon-
taneous emission εω obtained by integrating the equa-
tions for radiation transfer over the wave vectors k can
be written in the form

(27)

Here, A0 is the probability of spontaneous emission in

vacuum; nω = Re  is the refractive index of the reso-
nance medium (note that, in [5], Eq. (25) was derived

without allowance for spatial dispersion); and (ω) is
the effective spectral population of the upper level,

(28)

where a(ω) is the spectral line profile ( (ω)dω = 1)

and  is the effective population of the excited state.
Under equilibrium conditions, from formulas (27) and
(28), we obtain the spectral Boltzmann distribution

(29)

where gi is the statistical weight of the ith state (i = 1, 2
for a two-level atom) and N1 is the total population of
the lower state. Note that a formula for a low-density
medium (similar to expression (28)) was earlier derived
in [16] from the principle of detailed balance, accord-
ing to which, in equilibrium, the spectral intensity of
radiation is described by the Planck formula

(30)

In the conventional theory of radiation transfer, the
principle of detailed balance leads to expression (30)
with a fixed transition frequency ω0. For large detun-
ings from the resonance (∆ = ω – ω0 ≈ T/"), expressions
(28) and (29) differ appreciably from the corresponding
formulas used in the conventional theory of resonant
radiation transfer [12, 17, 18].

After publications [5, 6], formulas similar to expres-
sion (28) were derived by R. More (private communi-
cation) in a clearer way. He considered the balance
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between the emission and absorption of a moving atom
and took into account conservation of the energy and
momentum of the emitting and absorbing atoms with
allowance for the change in their kinetic energy after
transitions from the ground to excited state and vice
versa (actually, this corresponds to taking into account
the Doppler effect).

An adequate technique for describing resonant radi-
ation transfer in dense media is the method of nonequi-
librium Green’s functions, which was developed in [14]
and applied in [5] to the problems under consideration.

Let us consider the Keldysh diagram (Fig. 2) for the
emission from an atom in the ith state, whose spectral
and kinetic properties are described by the kinetic

Green’s function (p) (see the notation in [15]),
where p = (p, ω). Here, the solid lines correspond to the
Green’s functions of “dressed” particles and the transi-
tion into the ground state j is described by the matrix
element (dl)ij  of the dipole moment with the projection
l. The generation of a photon with a 4-momentum k =
(k, ω) is denoted by the wavy line, which corresponds

to the Green’s function (k) of a transverse photon
in a resonance medium.

The diagrams in Fig. 2 are described by the formulas
(see [15])

(31)

Under conditions of thermodynamic equilibrium, the
Green’s functions in formula (31) are

(32)

where µa is the atomic chemical potential and ai(ω) is
spectral profile of the ith state with an excitation energy
ωi and a translational energy E(p). For simplicity,
Planck’s constant here is set equal to unity. The occupa-
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tion numbers na(ω) of the atomic states in Eq. (31) are
assumed to obey a Fermi distribution,

(33)

where γi is the width of the ith state and ∆i is its shift due
to the interaction of the atom with the medium and radi-
ation (these quantities are described by the imaginary

and real parts of the retarded operator (ω, p), respec-
tively; cf. (5)). The Green’s function of a transverse
photon in a resonance medium is described by the
expression

(34)

where nR(ωk) = 1/(exp[ωk/TR] – 1) are the Bose occupa-
tion numbers for radiation with a temperature TR,
which, in the general case, does not coincide with the
medium temperature T.

It follows from the detailed balance of emission and
absorption that, in the general case, the atomic occupa-
tion numbers obey a two-temperature distribution with
the temperature T and the excitation temperature Tex
(the radiation temperature TR is assumed to be equal to
the translational temperature T):

(35)

In the nondegenerate case (exp[–µa/Tex] @ 1) with
allowance for the generalized formula (35), we find that
the atomic emission rate is

(36)

where  ~ exp  is the density of the

excited atoms. For the absorption rate, we obtain

(37)
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The occupation number of the ground state  is

equal to  ~ exp ; hence, without allow-

ance for degeneracy, we have /  = exp .

Note that, in conventional notation, the power
indexes in formulas (36) and (37) will contain Planck’s
constant ".

4. ASYMMETRY OF THE COEFFICIENT 
OF RESONANT RADIATION ABSORPTION

It follows from Eq. (28) that, strictly speaking, even
under equilibrium conditions, the total effective popu-

lations  do not obey a Boltzmann distribution and
coincide with the true populations only for a narrow
line with "Γ ! T, where Γ is the line width.

For a broad line (see [5, 6, 19–21] for details) due to
the presence of the exponential factor, the intensity of
the far wing of the line can greatly exceed the intensity
predicted by the conventional theory. The bulk of the
radiation energy can be emitted within the nonresonant
red wing rather than within the central resonant part of
the line (in this case, an additional lower frequency
maximum in the emission spectrum of the line can even
appear [20, 21]). Indeed, we experimentally observed
such maxima when studying thermal emission from a
thermal tube filled with sodium vapor at temperatures
of 800–1100 K (see Fig. 3). Note that the vapor density
at these temperatures reaches ~8 × 1016 to 4 × 1018 cm–3.
The measurement results agree qualitatively with the
results of calculations of the radiation emitted from a
nonuniform vapor layer. Moreover, it was found exper-
imentally that the radiation intensity in the IR region
was higher by several (up to four) orders of magnitude
than that calculated by the classical theory. This result
also agrees with the predictions of the generalized the-
ory of radiation transfer [5, 6, 19–21]. It should be
noted, however, that the mechanism for radiation
absorption in the far wing of the line is quite under-
standable up to approximately 0.7 µm. In this wave-
length range, absorption is primarily determined by the
Van der Waals interaction between the excited sodium
atoms and the buffer gas (there is good correlation
between the radiation intensity and the polarizability of
the buffer gas—argon or helium—in this spectral
range). In the wavelength range around 2 µm, the ques-
tion about the absorption mechanism still remains open
(see [6]).

Ignoring corrections for stimulated emission (  !
Nj), we obtain the following expression for the absorp-
tion coefficient:
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Fig. 3. IR spectrum of thermal emission from sodium vapor at temperatures in the thermal tube center of T = (1) 1080, (2) 950, and
(3) 830 K. The vertical lines show the calculated positions of the spectral maxima.
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(38)

Then, using Eqs. (32) and (33) and returning to the con-
ventional notation, we have

(39)

To find the widths of the spectral profiles of the ith and
jth states, we can use estimates like γj(E, p) =

"nσg(p)/2 . Here, σg is the cross section for gas-
kinetic scattering (e.g., by a heavy buffer gas with a
density n) and M is the mass of the resonance atom.
Then, we have

(40)
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where the second term describes the additional broad-
ening of the ith state due to resonant excitation
exchange.

Figure 4 illustrates the total asymmetry of the
absorption coefficient. The asymmetry is caused by the
efficient resonance at high values of the particle
momentum εp = "(ω – ω0). An additional asymmetry is
also introduced by the dependence of the effective
width of the ith state on the frequency ω (see Eq. (40)).
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Abstract—Distributions of the dusty plasma parameters (electron, ion, and dust densities; dust grain charge;
and ion drift velocity) in quasineutral dust structures whose dimensions are much greater than the mean free
path of the ions in their interactions with neutral particles are calculated numerically under conditions such that
ionization sources are located outside the structures. Planar, cylindrical, and spherical structures are investi-
gated. It is shown that static equilibrium structures are governed by a single (basic) parameter: the electrostatic
potential drop between the center of the structure and its boundary. It is found that the maximum value of the
basic parameter (in energy units) does not exceed the electron temperature. The basic parameter also determines
the total number of dust grains in the structure and the power of external ionization sources that are necessary
to sustain this structure. The fact that the basic parameter varies within a limited range allows one to consider
all the possible structures with a given dimensionality (planar, cylindrical, and spherical). © 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION: 
FORMULATION OF THE PROBLEM

At present, much experimental and theoretical effort
is being expended in order to search for and analyze
equilibrium structures in dusty plasmas [1–3], such as
compact dust bunches, dust voids, and dust vortices. A
theoretical analysis of these structures is needed both to
explain experimental observations and to predict the
results of future experiments. According to a general
theoretical concept, an initially homogeneous dusty
plasma is unstable against fragmentation into dust
bunches (in which dust is accumulated) and dust voids
(which contain no dust) [4]. Therefore, the study of
possible equilibrium dust structures is of general inter-
est. Observations and estimates have shown that the
lifetime of the dust structures is long enough for the
balance of all the forces acting on the structure compo-
nents, as well as for the balance of the plasma flows and
the local equilibrium charge of the dust grains, to be
established. As a rule, the size of the structure is greater
than both the ion–dust and ion–neutral mean free paths
The ion–dust mean free path is usually less than or on
the order of the ion–neutral one (the ratio between them
depends strongly on the gas pressure). So far, in the the-
ory of such equilibrium structures, only a few particular
limiting cases have been analyzed in which the struc-
ture size is much less [5, 6] or much greater [7, 8] than
the ion–neutral mean free path. However, a complete
analysis of possible equilibrium structures has not yet
been performed (the calculations have been carried out
only for particular parameters close to the available
observational data).

The aim of the present study is to partially fill this
gap for the case where the structure size is much greater
than both of the above mean free paths and under the
1063-780X/05/3102- $26.000133
conditions such that (i) the plasma is quasineutral and
(ii) the ionization sources sustaining the structure are
located outside it. The second condition requires addi-
tional explanation. By virtue of the strong absorption of
the plasma particles by the dust (the structure size is
assumed to be larger than the electron–dust and ion–
dust mean free paths), equilibrium structures can exist
only if this absorption is balanced by ionization inside
the structure or there are external plasma flows toward
the structure. Spherical structures [8] and planar struc-
tures [9] were considered under the conditions such that
ionization sources were located both inside and outside
the structure. The source intensity was assumed to be
proportional to the local electron density, whose spatial
distribution corresponded to a self-consistent solution
to a complete nonlinear problem. Such a formulation of
the problem for numerical calculations is close to the
experimental conditions in which ionization is pro-
duced by an external microwave field; in this case, the
ionization rate is proportional to the electron density.

This study is partially motivated by the fact that, in
microgravity experiments, it is difficult to create dust
structures without a central void [9]. In [8, 9], condi-
tions were determined under which the dust void was
not formed at the center of the structure. It was shown
that, if the chamber wall is at the floating potential, then
a void adjacent to the wall must exist outside the struc-
ture. It was also shown that, under certain circum-
stances, dust convection can arise, which can hinder the
formation of a structure without a central void. Eventu-
ally, experiments were performed in which the central
void was eliminated (see [9]). Note that experimental
difficulties in achieving a state without a central void
are essentially similar to those in obtaining such a state
in numerical simulations [8, 9]. On the whole, these
simulations fairly correctly (both qualitatively and
 © 2005 Pleiades Publishing, Inc.
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quantitatively) describe the experimental results;
namely, states without a central void arise in numerical
simulations within quite a narrow range of gas pres-
sures and degrees of ionization (microwave power). 

It follows from the results of [8, 9] that the situation
can change radically when other types of ionization
sources are used. The properties of the near-wall void
[8, 9], which contains no dust, differ radically from the
known properties of dust-free gas discharges, because
such voids are bounded by the chamber wall on the
outer side and by the dust structure on the inner side.
The dust structure determines the intensities of the par-
ticle fluxes, the electric field strength, and the electron
and ion densities on its boundary. In this case, the ion
flow in the near-wall void must change its direction: it
must be directed outward in the wall region and inward
near the dust structure. In [8, 9], no equilibrium states
in which the ion flow in the near-wall void does not
change its direction were found. This indicates that, if
there is an ionization source outside the dust structure
and if this source is concentrated, e.g., in the wall
region, then it will be able to provide ion flows directed
toward both the wall and the structure. 

To create an equilibrium structure, it is not neces-
sary that the ionization source be located inside the
structure: it is sufficient to provide an ion flux onto the
surface of the structure. The plasma flows can be pro-
duced either by ionization sources located outside the
structure or by some other methods that do not need to
be specified if the distribution of the parameters is to be
considered only inside the structure. This distribution
determines the plasma flux that is necessary to compen-
sate for plasma absorption in the structure. The struc-
tures can be self-sustained because they themselves can
induce plasma flows that are necessary to sustain the
structure. Such a situation frequently occurs in practice,
because each of the dust grains, being a sink for the
plasma, generates a plasma flux onto its surface. All the
grains constituting the structure create a plasma flux
onto its surface. Here, we analyze just this situation, in
which the ionization sources are located outside the
structure, and consider the distributions of the parame-
ters only inside the structure. The properties of the
external region can be different in the presence of a wall
that is at the floating potential and in the presence of an
external electric field or another ionization source.
Such “gas discharges” outside the structure have noth-
ing to do with a glow discharge or a conventional
microwave discharge because their parameters are
completely determined by the dust structure. The distri-
butions of the parameters inside the structure are also
completely determined by the dust and, as calculations
show, do not depend on the external conditions, which
can only determine the structure size (the size of the
structure is defined as the distance from the center of
the structure to the point at which the dust density van-
ishes) and the plasma flux that is necessary to sustain
the structure. In this paper, such structures (which may
be called free-boundary structures) are analyzed by
solving a self-consistent set of nonlinear balance equa-
tions numerically. It is shown that such equilibrium
structures can indeed exist in a wide range of parame-
ters, without being influenced by the effects related to
the excitation of dust convection. Here, we do not con-
sider methods for creating the necessary external
plasma flux, although there are a number of experimen-
tal schemes for the excitation of such discharges under
microgravity conditions. It is clear that schemes with
external ionization will have advantages from the
standpoint of creating plasma crystals under micro-
gravity conditions; at the same time, such discharges
will differ qualitatively from conventional laboratory
gas discharges.

In solving equilibrium equations for dust structures
with allowance for the above assumptions, we will also
assume that there is a certain symmetry in the system,
namely, the distributions of the parameters in the struc-
tures depend on a single coordinate; i.e., we will con-
sider planar, cylindrical, and spherical structures. In
this paper, we will show that planar, cylindrical, and
spherical compact dust structures are governed by a sin-
gle (basic) parameter and can exist only within a lim-
ited range of this parameter. As a basic parameter, we
can use one of the following parameters, which are
uniquely related to one another: the electrostatic poten-
tial drop between the center of the dust structure and its
boundary, the total number of dust grains in the struc-
ture, or the total plasma flux that is necessary to sustain
the structure. The range in which the basic parameter
governing an equilibrium structure can vary is limited;
this allows one to consider all of the possible equilib-
rium structures and the distributions of the dust density,
the grain charge, the ion and electron densities, and the
ion and diffusive fluxes in them.

The results of this study can be of interest for labo-
ratory experiments in which self-sustained planar dust
structures have already been observed [3] and experi-
ments that are planned to be performed in spherical [3]
and long cylindrical [9] chambers. Astrophysical inter-
est in such structures is motivated by the fact that no
external forces are necessary for their origin because
they are spontaneous self-organizing structures. More-
over, the formulations of the problem of possible equi-
librium dust structures and the problem of possible
equilibrium spherical structures arising in the presence
of pressure and gravitation (e.g., stars) are close to one
another (note that the latter structures too can exist only
within a limited parameter range). Of course, equilib-
rium dust structures are much more complicated
because, besides the electron and ion pressure, the fric-
tion on dust, the processes of dust charging, and the
convective and diffusive plasma circulation play an
important role in them. In a sense, spherical dust struc-
tures may be called dusty stars or dusty planets. Some
estimates are given below, but a detailed astrophysical
analysis of such structures requires special consider-
ation in the relevant literature and, thus, is not presented
here. The main difference between astrophysical and
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laboratory structures lies in the fact that, in the former,
the ratio of the dust grain size to the Debye screening
length is much smaller and that the electron and ion
temperatures are close to one another. The difference in
the degree of ionization is of minor importance
because, in dust–molecular clouds, it is only one order
of magnitude lower than in laboratory plasmas. In lab-
oratory plasmas, the ion temperature is about two
orders of magnitude lower than the electron tempera-
ture. Therefore, in this study, we perform calculations
for two cases: one corresponds to conditions typical of
laboratory plasmas, and the other corresponds to a typ-
ical astrophysical plasma. As a typical example of lab-
oratory plasma, we consider argon plasma. In this case,
the ratio of the grain size a to the Debye screening
length λD is taken to be ≈0.1 and the temperature ratio
is τ = Ti/Te ≈ 0.02. As a typical example of astrophysi-
cal plasma, we consider a hydrogen plasma with τ = 1
and a/λD ≈ 10–7. The dimensionless equations used
below contain the latter ratio only under the logarithm
sign and are applicable to both laboratory and astro-
physical plasmas.

In this study, we also ignore electron–electron, elec-
tron–ion, and ion–ion collisions as compared to elec-
tron–dust and ion–dust collisions, which are more
intense by approximately a factor of ZdPH (here, Zd is
the grain charge normalized to the electron charge and
PH is the ratio between the dust and ion space charge
densities). Therefore, the condition of applicability of
our model is a sufficiently large dust grain charge. Note
that the presence of charged dust makes diffusion non-
ambipolar, and the presence of an electric field in the
structures does not contradict the quasineutrality condi-
tion because the spatial derivatives of the electric field
are sufficiently small.

We recall that, in dissipative systems, the electric
fields related to the finite mobility of the system com-
ponents are always present. The structures under con-
sideration can be classified as self-organized dissipative
structures.

2. BALANCE EQUATIONS

In deriving the balance equations, we assume that all
the quantities depend on a single coordinate: this is the
coordinate y for planar structures, the distance ρ from
the cylinder axis for cylindrical structures, and the
radius r for spherical structures. To generalize the nota-
tion, we introduce the dimensionless coordinate

, (1)

where λin = 1/(nnσ) is the ion–neutral mean free path (as
a rule, σ is determined by the charge-exchange cross
section), with nn being the density of neutral particles.
For the sake of convenience, we introduced the param-
eter τ in normalization (1) because, with this normal-
ization, most of the balance equations in the case where

x y ρ r, ,{ } τ
λ in

------=
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ion–neutral collisions and the friction of ions on dust
are dominant have the same form as in the opposite
limit, in which ions–dust collisions prevail. To normal-
ize the ion and electron densities (ni and ne) and intro-
duce the Havnes parameter P (it is different from PH),
we use the following expression for the critical density

(2)

where n0 is the ion density far from structure and

 is the coefficient in the mean free
path of ions with respect to absorption by dust, λid/P.
Note that this critical density is independent of n0.
Thus, for the normalized ion density n, normalized
electron density ne, and Havnes parameter P, we have

  . (3)

In these variables, the quasineutrality condition
takes the form

. (4)

We also introduce the dimensionless electric field E,
dimensionless dust grain charge z, and dimensionless
ion drift velocity u:

(5)

where .

We also make some additional assumptions that are
not of fundamental importance and are confirmed a
posteriori by the results of our calculations. First, we
assume that the ion flow in dust structures is subsonic
(the Mach number is much smaller than unity, M =

 ! 1) and the electron flow velocity is much
lower than the electron thermal velocity. The friction
force and the electron inertia force are assumed to be
negligibly small as compared to the electron pressure
force, so the electrons adiabatically follow the ions. As
a result, no currents are generated inside the structure
and there is only a plasma flow characterized by the ion
drift velocity. Therefore, we can use the following equi-
librium condition for the electrons:

. (6)

For the ions, it is also necessary to take into account
the forces related to friction on dust and neutrals:

(7)

where the function f(|u|) describes the nonlinearity of
the ion mobility in collisions with neutrals (when the
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mobility can be approximated by a linear function, we
have f(|u |) = 1). It is well known that, at u @ 1, the

mobility is proportional to ; therefore, to a good
accuracy, the above nonlinearity can be approximated
by the function f(|u |) ≈ 1 + αN |u |, where the coefficient
of nonlinear friction αN is close to unity. Here, we will
assume that αN = 1.

The smallness of the parameter 1/Zd ! 1 is also used
in the force balance equation for dust, in which the dust
pressure force is on the order of Tn/(TeZd) (under labo-
ratory conditions, this parameter is small not only due
to the smallness of the parameter 1/Zd ! 1, but also due
to the smallness of Tn/Te ! 1):

(8)

The total ion flux Φ is assumed to be equal to the
sum of the convective flux nu and the diffusive flux. The
expression for the dimensionless flux Φ has the form

, (9)

where the second term describes the diffusive flux. The
normalization of the total flux follows directly from Eq.
(9). Finally, the continuity equation for the flux Φ has
the form

(10)

where s = 0 for planar structures, s = 1 for cylindrical
structures, and s = 2 for spherical structures and the
coefficient αch(z, u, τ) describes the absorption of ions
by dust. The dust grain charge can be found from the
balance equation for electron and ion fluxes absorbed
by a dust grain:

. (11)

The grain charge depends on the sorts of gas
(through the ion mass mi in Eq. (11)). The procedure of
calculating the grain charge is substantially simplified
when the calculation begins from the center of the
structure, i.e., when Eq. (11) is used to find the grain
charge at the center of the structure and the change of
the charge is then determined from the equation for
dz/dx, which is obtained from Eq. (11) by differentia-
tion with respect to x. By combining the above equa-
tions, we obtain a set of equations for the first spatial
derivatives of the electron and ion densities, ion flux,
ion drift velocity, and grain charge. These equations are
then used to calculate equilibrium structures numeri-
cally. Here, we do not write out these equations because
they are simply derived from the above balance equa-
tions. The expressions for the drag coefficient αdr(z, u, τ)
and charging coefficient αch(z, u, τ) with allowance for

E

E αdr z u τ, ,( )nzu.=

Φ nu
τ
3
---dn

dx
------–=

dΦ
dx
-------

s
x
--Φ+ α ch z u τ, ,( )nP,–=

z–( )exp α ch z u τ, ,( )2 πz
me

τmi

--------=
the ion absorption and ion scattering by dust have the
form

(12)

where lnΛ is the effective Coulomb logarithm, which
takes into account both the contribution related to the
charging of the dust grains (see [10]) and the contribu-
tion from the large-angle scattering of ions by them (see
[11]).

3. RESTRICTIONS ON THE PARAMETERS 
OF EQUILIBRIUM STRUCTURES

It is expedient to begin numerical calculations from
the center of the structure, which is below denoted as
x = {y, ρ, r} = 0: this is the central plane y = 0 for planar
structures, the central axis ρ = 0 for cylindrical struc-
tures, and the center r = 0 for spherical structures. We
can find asymptotic solutions to the above balance
equations at x  0. In this limit, the ion drift velocity
should tend to zero. At u = 0, the drag coefficient

(z, τ) = αdr(z, 0, τ) and the charging coefficient

(z, τ) = αch(z, 0, τ) have the form

(13)

The ion density n(0) at the center of the structure can
serve as the basic parameter of the structure. From the
asymptotic expression at x  0, we have u  u(0)x
and, from the condition that the diffusive flux vanishes
at the center of structure, dn/dx  0, we obtain the
relationship between the central electron density ne(0)
and the central ion density n(0). These relationships can
be written using the maximum possible and minimum
possible values of the central ion density, nmax(z, τ) and
nmin(z, τ), which can be obtained from the following
two inequalities:

(14)
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The first of these inequalities indicates that, near the
center of the structure, the ion flow is directed toward
the center; hence, a dusty void cannot be formed there
(the ion flow directed toward the center ensures the con-
finement of dust in the structure). The second inequality
is quite obvious. We write out the expressions for u(0)

and ne(0) in a form from which inequalities (14) can be
directly seen:

(15)

where

(16)

We recall that s = 0 for planar structures, s = 1 for
cylindrical structures, and s = 2 for spherical structures.
The grain charge at the center can be found from the
charging equation

, (17)

which should be solved numerically as an algebraic
equation for each sort of gas (the sort of gas determines
the mass of a singly ionized ion) within the above inter-
val of the possible values of the parameter n(0):

. (18)

Equation (17) yields the value of the grain charge
z(0) at the center of the structure, and inequalities (18)
should be satisfied for z = z(0).

At x  0, the total flux is equal to the convective
flux:

  . (19)

These expressions are sufficient to solve the above
complete set of equations for n, ne , u, Φ, and z, starting
from a coordinate very close to x = 0 and using the
above asymptotic expressions. Such a procedure, in
which calculations begin, e.g., from x = 0.001 (as is
done in this paper), rather than exactly from the center,
allows one to find solutions with a correct asymptote at
the center of the structure.

The results of our study show that it is sufficient to
vary a single parameter, namely, n(0), within the limits
determined by inequalities (18). The final point of
numerical calculations is determined by the condition
that the dust density and the parameter P vanish at this
point. This point determines the structure size x str. The
parameter n(0) is uniquely related to the total electro-
static potential drop between the center of the structure
and its boundary; hence, the structure can be character-
ized by this potential drop. The central ion density n(0)
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is also uniquely related to the total number of grains in
the structure N and the total power Q required to sustain
the structure. The parameter N is equal to

, (20)

where dV = dy for planar structures (in this case,
Eq. (20) determines the number of dust grains per unit
area), dV = 2πρdρ for cylindrical structures (in this
case, Eq. (20) determines the number of dust grains per
unit length along the cylinder axis), and dV = 4πr2dr for
spherical structures (in this case, Eq. (20) determines
the total number of dust grains in the structure). Note
that, in Eq. (20) the number N is in dimensionless units,
but it can easily be written in dimensional units (see
Section 7, devoted to the discussion of the results
obtained).

An important parameter of the structure is the total
power Q absorbed by dust. This parameter determines
the external plasma sources that are necessary to sus-
tain the structure:

. (21)

4. RESULTS FROM THE NUMERICAL SOLUTION 
OF THE EQUILIBRIUM EQUATIONS

FOR DUST STRUCTURES

When solving the balance equations numerically, it
was found that there are computational problems related
to the use of exact expressions (12) for αdr(z, u, τ) and
αdr(z, u, τ) at the center of the structure, because, at the
center, u  0 and expressions (12) contain u3 in the
denominator. Hence, it is necessary to determine the
limit of the ratio of the two small quantities that tend to
zero in both the numerator and denominator of the cor-
responding expressions. In fact, the resolving of the
uncertainty at u  0 leads to analytic expressions (13).
Therefore, expressions (13) (rather than exact expres-
sions (12)) were used in the vicinity of the center until
u became about 0.1. These solutions were then joined
to solutions that were obtained using exact expressions
(12) at larger values of x, the final values of the param-
eters in the central region being used as the initial val-
ues of the parameters in this “outer” region. The numer-
ical results presented below give the total distributions
of the parameters in the structure, including both the
central and peripheral regions. Our calculations show
that u ≈ 1–4 at the boundary of the structure; hence, it
is necessary to use the exact expressions for αdr(z, u, τ)
and αdr(z, u, τ) and to take into account the nonlinearity
of ion friction on the neutral gas. On the other hand, the
Mach number M at the boundary of the structure is

N
P
z
--- Vd

0

x
str

∫=

Q α ch u z τ, ,( )Pn Vd

0

x
str

∫=



138 TSYTOVICH
fairly small; this justifies the assumptions made in
deriving the equilibrium equations.

The results of our numerical calculations show that
the structures under study possess the following quali-
tative features:

(i) Solutions to Eq. (17) for the grain charge z(0) at
the center of the structure exist in the range that is
somewhat narrower than that determined by inequali-
ties (18). This is quite natural because, at the upper
boundary of parameter range (18), the central electron
density vanishes and the dust does not acquire electric
charge. The extent to which the range of existence of
dust structures is narrowed is not great; nevertheless, it
is appreciable and the narrowing takes place at both the
upper and lower boundaries of range (18). This nar-
rower range of n(0), in which equilibrium structures
can exist, should be found separately for each sort of
gas (which is characterized by the ratio mi/me), for each
value of τ, and for each type of structure (planar, cylin-
drical, or spherical).

(ii) It can be seen from inequalities (18) that, in lab-
oratory plasmas, where τ ! 1, the maximum ion den-
sity at the center of the structure is fairly large. Even
with allowance for the narrowing of range (18), the cen-
tral ion density reaches a value of about 50–80, whereas
the minimum value of the ion density at the center of
the structure is on the order of or less than unity.

(iii) In astrophysical plasmas, where τ ≈ 1 but the
Coulomb logarithm is large, the minimum value of the
central ion density can be much less than unity, whereas
its maximum value is on the order of unity.

(iv) For all the n(0) values for which solutions to
Eq. (17) exist, the structures are characterized by a
monotonic decrease (down to zero) in the Havnes
parameter P from the center to the periphery. The point
at which the Havnes parameter vanishes is further
referred to as the structure size x str.

(v) The size of a structure monotonically increases
with increasing n(0). The maximum possible structure
size corresponds to the maximum possible value of
n(0).

(vi) The electrostatic potential drop ∆φ between the
center of the structure and its boundary increases with
increasing n(0) and, at the maximum possible value of
n(0), reaches its maximum value on the order of or less
than Te/e.

(vii) The ion drift velocity increases toward the
periphery, reaching a value of about u ≈ 2–10 for struc-
tures with the maximum potential drop.

(viii) The difference between n and P decreases with
increasing potential drop. In structures with the maxi-
mal potential drop, almost all the electrons are attached
to dust and, for τ ! 1 (laboratory plasma), the Havnes
parameter P at the center of the structures reaches fairly
large values (about 50–80). In this case, the parameter
PH is always close to unity.
(ix) The dimensionless dust grain charge z usually
increases toward the periphery of the structure; how-
ever, in some cases, the spatial derivative of the grain
charge can change its sign.

(x) In most cases, the electron density is low (on the
order of unity both at the center of the structure and at
its periphery). The ion density decreases toward the
periphery and, at the boundary of the structure, is equal
to the electron density.

(xi) Distributions of all the parameters in the struc-
tures are smooth and are not influenced by the effects
related to the excitation of dust convection.

(xii) The dimensionless number of dust grains in the
structure increases with increasing n(0) (or, equiva-
lently, with increasing potential drop between the cen-
ter of the structure and its boundary), reaching a maxi-
mum value of about 2 to 4 for structures with the max-
imal potential drop.

(xiii) The total power of the external ionization
sources increases with increasing structure size (or the
potential drop) and reaches its maximum value for
structures with the maximal potential drop.

(xiv) As a basic parameter of the structure, one can
use the total power of the external ionization sources,
the total number of dust grains in the structure, or the
potential drop between the center of the structure and
its boundary.

The distributions of the parameters in all types of
structures are qualitatively the same; however, the
ranges within which the potential drop, the structure
size, the total number of dust grains, and the plasma
flux absorbed by the structure can vary are different.
Therefore, we will first describe the results obtained for
planar structures for two typical cases: (a) for parame-
ters characteristic of laboratory plasmas and (b) for the
expected parameters of astrophysical plasmas. We will
then describe the basic quantitative differences between
cylindrical and spherical structures, on the one hand,
and planar structures, on the other, and will present
some plots for structures with the maximum possible
values of the potential drop, the number of the confined
dust grains, the structure size, and the plasma flux that is
required to balance the absorption of plasma by dust in
these structures. All the results are given in a dimension-
less form. The relationships between dimensional and
dimensionless parameters are presented in Section 7.

5. PLANAR STRUCTURES
5.1. Laboratory Plasma

The calculations were performed for an argon of
plasma with τ = 0.02 and lnΛ =3. Under these condi-
tions, the upper limit in inequalities (18) is equal to
nmax = 88.6; however, it follows from the charging
equation that n(0) is smaller than ≈74. The lower limit
in inequalities (18) contains the grain charge z; this
limit can only be determined by solving Eq. (17) and is
approximately equal to 0.4. The calculations were per-
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
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Fig. 1. (a) The grain charge z(0) and the electron density ne(0) and (b) the first derivative of the ion drift velocity u(0) and the Havnes
parameter P(0) at the center of a planar structure as functions of n(0) for an argon plasma with τ = 0.02 and lnΛ = 3. (c) The Havnes
parameter P and (d) the dimensionless electrostatic potential φ ≡ eφac/Te as functions of the distance from the center of the structure
for different values of the ratio n(0)/nmax: (1) 0.8, (2) 0.4, (3) 0.1, and (4) 0.02.
formed within the range 0.6 < n(0) < 72.6. Figures 1a
and 1b show the main parameters at the center of the
structure as functions of n(0). It can be seen that,
throughout the entire range of the parameter n(0), the
electron density is close to unity, whereas the dust grain
charge decreases and tends to zero as the maximum
value of n(0) is approached, thus defining the range of
existence of the structures. At the same time, the spatial
derivative u(0) of the ion drift velocity at the center and
the Havnes parameter P(0) rapidly increase with
increasing n(0). The structure size increases from val-
ues close to zero up to x str = 0.112 for the maximum
possible value of n(0). Figures 1c and 1d show the
Havnes parameter and the dimensionless electrostatic
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
potential φ ≡ eφac/Te (here, φac is the dimensional poten-
tial) inside the structure as functions of the distance
from the center of the structure for different values of
the ratio n(0)/nmax: (1) 0.8, (2) 0.4, (3) 0.1, and (4) 0.02.
In the subsequent figures, we will also qualitatively
examine how the distributions of the parameters change
as the basic parameter of the structure varies (no anom-
alies in the distributions were observed; hence, for
intermediate values of the basic parameter, the distribu-
tions can be interpolated using the plots presented
below).

It can be seen that the Havnes parameter and the
potential drop are maximum for structures with the
maximum value of n(0). Each of the curves in Figs. 1c,
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Fig. 2. (a) Electric field E, (b) total ion flux Φ, (c) grain charge z, and (d) ion drift velocity as functions of the distance from the
center of a planar structure for an argon plasma with τ = 0.02 and lnΛ = 3 at the same values of n(0)/nmax as in Fig. 1.
1d, and 2 ends at the point with the coordinate equal to
the corresponding structure size x str. Figure 2a shows
the distribution of the electric field in the structure. It is
seen that the spatial derivative of the electric field
changes its sign; this corresponds to the change of the
sign of the polarization charge. Note that, in this case,
the quasineutrality condition is not disturbed, because
the corresponding space charge density is small by vir-
tue of the smallness of the parameter presented in Sec-
tion 7 (in dimensionless units, this space charge density
is much less than unity). Figures 2b–2d show the distri-
butions of the total ion flux; the grain charge; and the
ion drift velocity, which monotonically increases with
increasing n(0). The structures with the above four val-
ues of the central ion density are characterized by the
following values of the total number of dust grains N
and the power Q that is required to sustain the structure:
(1) N = 2.145 and Q = 11.242, (2) N = 0.434 and Q =
1.951, (3) N = 0.018 and Q = 0.023, and (4) N = 2.8 ×
10–3 and Q = 1.7 × 10–3. For a structure with n(0) close
to its maximum value, we have N = 4.264 and Q =
18.334. The electron density slightly increases with dis-
tance from the center but always remains lower than or
on the order of unity. Figures 3a and 3b show the distri-
butions of the ion and electron densities, the Havnes
parameter, and the ion flux for a structure with an inter-
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ion density (n(0) = 69.6) for an argon plasma with τ = 0.02 and lnΛ = 3.
mediate (between nmin and nmax) value of the central ion
density, n(0) = 27.6. It can be seen that, in this structure,
the ion density is much greater than the electron density
and the convective flux is larger than the total flux (the
diffusive flux is directed opposite to the convective flux
and partially cancels it). Figures 3c and 3d show the
distributions of the same parameters in a structure with
the central ion density close to its maximum value,
n(0) = 69.6.

5.2. Astrophysical Plasma

Calculations were performed for a hydrogen plasma
with τ = 1 and lnΛ = 18.4. It follows from the charging
equation that the maximum value of the central ion den-
sity is n(0) ≈ 0.61. The minimum value is approximately
equal to n(0) = 0.05. The calculations were performed
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
within the range 0.06 < n(0) < 0.60. The structure size
is equal to x str = 0.215 at n(0) = 0.06 and increases to
0.868 with increasing n(0). Within the admissible range
of the central ion density, the total number of dust
grains in the structure, the power required to sustain the
structure, and the potential drop vary in the ranges
4.26 × 10–4 < N < 0.28, 2.58 × 10–5 < Q < 0.082, and
0.037 < φ < 1.285, respectively. Figures 4a and 4b show
the grain charge, the electron density, the spatial deriv-
ative of the ion drift velocity, and the Havnes parameter
at the center of the structure as functions of n(0). It can
be seen that the derivative of the drift velocity increases
with increasing n(0) but not as rapidly as in the case of
a laboratory plasma. The Havnes parameter also
increases but does not reach such large values as in the
laboratory plasma. Figures 4c and 4d show the distribu-
tions of the electric potential and the Havnes parameter.
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It follows from these distributions that the maximum
value of the potentials is larger than in the laboratory
plasma and the profile of the Havnes parameter is not as
flattened as in the laboratory plasma (curves 1, 2, 3, and
4 correspond to n(0) = 0.6, 0.4, 0.2, and 0.06, respec-
tively). Figure 5 shows the distributions of the parame-
ters in a structure corresponding to an intermediate
value of the central ion density, n(0) = 0.4. It can be
seen that the electron and ion densities become equal to
one another at the boundary of the structure, the grain
charge and the absolute value of the ion drift velocity
increase toward the periphery, and the convective flux is
appreciably greater than the total flux (the diffusive flux
is directed opposite to the convective flux and partially
cancels it).
6. CYLINDRICAL 
AND SPHERICAL STRUCTURES

6.1. Cylindrical Structures 
under Typical Laboratory Conditions

We performed calculations for the same conditions
as for planar structures, i.e., for an argon plasma with
τ = 0.02 and lnΛ = 3. It was found that the range of n(0)
values at which compact cylindrical structures can exist
is wider than for planar structures: 0.4 < n(0) < 142. The
corresponding ranges of the other parameters are 0 <
ρstr < 0.082, 0 < N < 1.014, 0 < Q < 4.171, 0 < P(0) <
141, and 0 < ∆φ < 1.5 (note that, in this case, N and Q
are the number of grains per unit length and the power
absorbed by dust per unit length, respectively). Figure 6
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
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presents some results for n(0) = (1) 142, (2) 116.4,
(3) 76.4, (4) 12.4, (5) 4.4, and (6) 0.4.

6.2. Cylindrical Structures 
under Typical Astrophysical Conditions

We performed calculations for the same conditions
as for planar structures, i.e., for a hydrogen plasma with
τ = 1 and lnΛ = 18.4. It was found that the range of n(0)
values at which compact cylindrical structures can exist
is wider than for planar structures: 0.05 < n(0) < 1. The
corresponding ranges of the other parameters are 0 <
ρstr < 0.753, 0 < N < 0.787, 0 < Q < 0.33, and 0 <
P(0) < 1. Figure 7 presents some results for n(0) =
(1) 0.99, (2) 0.59, (3) 0.39, (4) 0.19, and (5) 0.09.

6.3. Spherical Structures 
under Typical Laboratory Conditions

We performed calculations for the same conditions
as for planar and cylindrical structures, i.e., for an argon
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
plasma with τ = 0.02 and lnΛ = 3. It was found that the
range of n(0) values at which compact spherical struc-
tures can exist is wider than for planar and cylindrical
structures: 0.4 < n(0) < 202. The corresponding ranges
of the other parameters are 0 < r str < 0.054, 0 < N <
0.051, 0 < Q < 0.187, and 0 < P(0) < 201 (note that, in
this case, N and Q are the total number of grains in the
structure and the total power absorbed by dust, respec-
tively).

6.4. Spherical Structures 
under Typical Astrophysical Conditions

We performed calculations for the same conditions
as for planar and cylindrical structures, i.e., for a hydro-
gen plasma with τ = 1 and lnΛ = 18.4. It was found that
the range of n(0) values at which compact spherical
structures can exist is wider than for planar and cylin-
drical structures: 0.5 < n(0) < 1.19. The corresponding
ranges of the other parameters are 0 < r str < 0.765,
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0  <  N  < 0.959, 0 < Q < 0.403, 0 < P(0) < 1.18, and
0 < ∆φ < 1.73.

7. DISCUSSION

The main qualitative results of our calculations have
already been discussed above. Here, we will only
emphasize some points that are important for future
experiments:

(i) The main feature of cylindrical and spherical
structures is that these structures can exist in a wider
parameter range than planar structures and that the
potential drop between the center of the structure and
its boundary is greater in them. Therefore, experiments
with cylindrical or spherical geometry are more advan-
tageous as compared to those with planar (or nearly pla-
nar) geometry.

(ii) Previous calculations performed for the case of
spatially uniform ionization [9], as well as experiments
carried out in a nearly planar geometry [3], showed that
the creation of compact structures at the center of the
chamber encounters some difficulties. An important
point of those investigations was that ionization was
spatially uniform. In [3], compact structures arose only
when the degree of ionization at the center of the cham-
ber was small enough; otherwise, a fairly large dust
void was observed at the center. A plasma–dust crystal
was formed only in the wall region both in ground-
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
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based experiments and under microgravity conditions
onboard the International Space Station [3]. In theory
[9], a criterion was found for the degree of ionization
that is necessary for the existence of compact structures
under microgravity conditions, assuming that ioniza-
tion was spatially uniform (as in the experiment of [3]).
When crystals are formed under microgravity condi-
tions, the gravitational force is small, but there is a
fairly large ion drag force near the wall, where plasma–
dust crystals have been observed. Therefore, the main
experimental problem is to avoid the occurrence of
voids at the center of the chamber and to create there a
dust structure that can crystallize as the temperature is
reduced. The results of the present study allows us to
offer a scheme for the future experiments in which
compact dust structures at the center of the chamber are
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
easier to produce. In the above calculations, the ioniza-
tion rate was assumed to be zero within the structure
and the power absorbed by the structure was delivered
from plasma sources located outside it. It was found
that, under these conditions, dust structures can easily
be created within a rather wide parameter range, espe-
cially in laboratory experiments (or in experiments
onboard the International Space Station) in which the
ion-to-electron temperature ratio is small. Thus, to form
a compact structure, it is expedient to use spatially non-
uniform ionization sources operating at the chamber
periphery. For this purpose, one can use, e.g., ionizing
fields with a much higher frequency than that used in
current experiments, in which the wavelength of the
microwave field substantially exceeds the device
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dimensions and, as a result, ionization is spatially uni-
form.

(iii) As was shown above, the electric field in the
structures under study is nonuniform and, accordingly,
the space charge is nonzero. The use of the quasineu-
trality condition is justified only in a first approxima-
tion, when the space charge plays a minor role. The cor-
responding criterion, which follows directly from Pois-
son’s equation, has the form

, (22)

where x str is the size of the structure (in units of λin/τ).
In this criterion, it is necessary to use the x str values that
were obtained above numerically (they are usually on
the order of unity). Thus, the results of the present study
are only applicable to the case of sufficiently small dust
grains.

(iv) To apply the results of the above numerical cal-
culations to experiments, it is necessary to keep in mind
the normalization used in this study. As regards the
dimensionless quantities N and Q, we will present here
their relationships with the dimensional quantities: the
number of dust grains per unit area N1D and the power
absorbed by dust per unit area Q1D for planar structures,
the number of dust grains per unit length N2D and the
power absorbed by dust per unit length Q2D for cylindri-
cal structures, and the total number of dust grains N3D
and the total absorbed power Q3D for spherical struc-
tures:

, (23)

, (24)

. (25)

For example, according to Eqs. (23), a planar structure
with the maximum possible value of N will contain
2.132 × 108 grains per cm2.

(v) In contrast to conventional discharges, the elec-
tric field and the electron density in dust structures are
too low to produce additional ionization. Here, the
main role is played by the absorption of electrons by
dust, which substantially reduces the electron density.
Thus, in structures with the maximum possible value of
N, the electric field reaches its maximal value and the
electron density is almost two orders of magnitude (or
more) lower than the ion density, whereas in structures
with small N, the electric field is much lower. As a
result, an additional flux that is produced by the self-
consistent field of a quasineutral dust structure is
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smaller than the external flux. We recall that the ioniza-
tion rate within the structure is proportional to the elec-
tron density, which is relatively low in structures with
large N, in which almost all the electrons are attached
to dust grains.

As for astrophysical applications, the above calcula-
tions can serve only as preliminary estimates of the pos-
sibility of spontaneous formation of dusty stars and
planets (for dust–molecular clouds, rough estimates
yield the structure mass on the order of the planetary
mass). A series of additional studies must be performed
to confirm these estimates. First of all, it is necessary to
develop a theory of dust structures for the case where
dust grains have different sizes and obey a certain size
distribution (observations show that the grain size dis-
tribution is often described by a power-law function). It
is also necessary to consider the problems of stability of
such structures, to study their small oscillations, and to
investigate the possibility of the excitation of dust con-
vection in them. It is now quite possible to formulate
these problems, but their solution requires an adequate
astrophysical analysis and a large amount of numerical
calculations.
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Abstract—A general method is developed for a numerical analysis of the frequency spectra of internal, inter-
nal–surface, and surface slow waves in a waveguide with transverse plasma density variations. For waveguides
with a piecewise constant plasma filling, the spectra of slow waves are thoroughly examined in the limits of an
infinitely weak and an infinitely strong external magnetic field. For a smooth plasma density profile, the fre-
quency spectrum of long-wavelength surface waves remains unchanged, but a slow damping rate appears that
is caused by the conversion of the surface waves into internal plasma waves at the plasma resonance point. As
for short-wavelength internal waves, they are strongly damped by this effect. It is pointed out that, for annular
plasma geometry, which is of interest from the experimental point of view, the spectrum of the surface waves
depends weakly on the magnetic field strength in the waveguide. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION. 
BASIC MATHEMATICAL ASSUMPTIONS

In studies of plasma-filled waveguides, a great deal
of attention is traditionally devoted to waves whose
phase velocities are lower than the speed of light in vac-
uum. Investigation of slow plasma waves is important
for solving many challenging problems in plasma phys-
ics, plasma electronics, electrodynamics of electron
beams, and some other branches of physics. The prop-
erties of slow plasma waves depend on the transverse
distribution of the plasma over the waveguide, the
strength of the external magnetic field, and the charac-
ter of interfaces between plasmas of different densities
and between plasmas and other media. Slow plasma
waves are usually classified on the basis of the structure
of their electromagnetic fields into internal waves,
internal–surface waves, and surface waves. They are
also classified according to their dispersion relations
into waves with a normal and an anomalous dispersion.
Slow plasma waves have very different properties in
weak and strong external magnetic fields. Surface
waves localized near the plasma boundary are com-
monly treated as a special type of surface waves. In
what follows, all the above types of waves are investi-
gated for different transverse plasma density profiles in
the limits of an infinitely weak and an infinitely strong
external magnetic field as well as in the very important
particular case of a weak (but finite) external magnetic
field.

We consider a waveguide with a circular cross sec-
tion that is filled with a plasma whose dielectric tensor
has the form [1]
1063-780X/05/3102- $26.00 0147
(1)

where r, ϕ, and z are cylindrical coordinates (such that
the z axis is the symmetry axis of the waveguide). For a
plasma in an infinitely strong external magnetic field,
we have ε⊥ (r) = 1 and

(2)

where ωp(r) is the radius-dependent electron plasma
frequency. For a zero external magnetic field, the trans-
verse dielectric function of the plasma has the form

(3)

and the longitudinal dielectric function is again given
by formula (2).

The components Ez , Er , and Bϕ of the electromag-
netic field of a symmetric E wave in the waveguide
under consideration satisfy the set of equations [1]

(4)
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where ω is the frequency of the wave and kz is its longi-
tudinal wavenumber. Eliminating the components Er

and Bϕ in Eqs. (4), we obtain a single equation for Ez .
In the limit of an infinitely strong external magnetic
field, this equation has the form

(5)

For a zero external magnetic field, the equation is

(6)

Here,

(7)

and  and  are the differential operators on the left-
hand sides of Eqs. (5) and (6).

Equations (5) and (6) are supplemented with the
standard boundary conditions:

(8)

where R is the waveguide radius. The first of condi-
tions (8) implies that the electromagnetic field compo-
nents Er and Bϕ vanish at the waveguide axis and is
equivalent to the requirement for the field to be finite at
the axis, |Ez(0)| < ∞.

For further analysis, it is necessary to specify the

quadratic forms ( , Ez) (α = ∞, 0), which are
obtained by multiplying Eqs. (5) and (6) by Ez(r) and by
integrating the resulting equations by parts over r from
zero to R [2] with allowance for boundary conditions (8).
For an infinitely strong external magnetic field, the qua-
dratic form is given by the expression

(9)

and for a zero external magnetic field, it is given by the
expression

(10)

The boundary-value problem given by Eq. (5) and
boundary conditions (8) and that given by Eq. (6) and
the same boundary conditions are eigenvalue problems.
The eigenvalues are the functions ω = ω(kz), which
determine the frequency spectra of the eigenmodes in

d
dr
----- r

dEz

dr
-------- 

  rχ0
2ε r( )Ez– L̂r

∞
Ez–≡ 0.=

d
dr
----- r

ε r( )
χ2

----------
dEz

dr
-------- 

  rε r( )Ez– L̂r
0
Ez–≡ 0.=

χ0
2

kz
2 ω2

c
2

------, χ2
– kz

2 ω2

c
2

------ε r( )– χ0
2 ωp

2
r( )

c
2

--------------,+= = =

L̂r
∞

L̂r
0

dEz

dr
-------- 0( ) 0, Ez R( ) 0,= =

L̂r
α
Ez

L̂r
∞

Ez Ez,( ) Ezd
rd

--------
2

χ0
2ε r( ) Ez

2
+ 

  r r,d

0

R

∫=

L̂r
0
Ez Ez,( ) 1

χ2
----- Ezd

rd
--------

2

Ez
2

+ 
  ε r( )r r.d

0

R

∫=
the plasma waveguides under investigation. The rela-
tionships

(11)

can be regarded as dispersion relations for determining
the eigenfrequencies ω = ω(kz). In order to write disper-
sion relations (11) in explicit form, we must know con-
tinuous solutions to differential equations (5) and (6)
that satisfy boundary conditions (8). Simple explicit
forms of dispersion relations (11) in the case of a piece-
wise constant radial plasma density profile will be pre-
sented below.

Note that the problem given by Eq. (5) and boundary
conditions (8) and that given by Eq. (6) and the same
boundary conditions are not equivalent to the Sturm–
Liouville problem in its classical formulation [2, 3]. In
fact, in the Sturm–Liouville problem, with boundary
conditions of form (8) or even with more general
boundary conditions, the differential equation has the
form

(12)

where λ is the eigenvalue and U(r) is the eigenfunction.
Moreover, the conditions p(r) ≥ p0 > 0 and q(r) ≥ 0 must
necessarily be satisfied on the radial interval 0 < r < R.
In contrast to Eq. (12), Eqs. (5) and (6) are nonlinear in
the eigenvalue (frequency), which enters into them
through quantities (7) and the dielectric function ε(r).
In turn, the dielectric function can vanish at certain
points of the interval 0 < r < R. For those eigensolutions
to the problem given by Eq. (6) and boundary condi-
tions (8) on which our attention is focused, it is impor-
tant that there be points at which ε(r) = 0. As for the
boundary-value problem given by Eq. (5) and boundary
conditions (8), it in fact reduces to a conventional
eigenvalue problem.

2. SOME FEATURES OF SLOW PLASMA WAVES 
AND METHODS FOR THEIR INVESTIGATION

We assume that the function ωp(r) is a piecewise
continuous function on the closed interval [0, R] and
that it satisfies the inequalities

(13)

In what follows, we will focus on low-frequency slow
plasma waves whose frequency and wavenumber
ranges are given by the conditions

(14)

To be specific, we assume that ω > 0. Let us determine
what restrictions are imposed by expressions (9) and
(10) for the quadratic form on the frequencies of low-
frequency slow waves, i.e., what solutions to dispersion
relations (11) are possible under conditions (14) and

L̂r
α
Ez Ez,( ) 0, α ∞ 0,= =

L̂rU
d
dr
----- p r( )dU

dr
------- 

 – q r( )U+≡ λU ,=

0 r R,< <

0 ωmin ωp r( ) ωmax.≤ ≤ ≤

ω kzc, ω ωmax.≤ ≤
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what solutions are certainly impossible. To do this, we
take into account the following inequalities and asser-
tions, which follow from expression (3) and condi-
tions (13) and (14):

(i)  > 0 and χ2 > 0;

(ii) if ω ∈ (0, ωmin), then ε(r) < 0 for all r ∈ [0, R];
and

(iii) for ω ∈ (ωmin, ωmax), there are finite intervals
along the r direction in which the dielectric function
ε(r) has different signs.

For an infinitely strong external magnetic field, the
first term in the integrand in expression (9) is positive and
the second term either is negative or necessarily changes
sign. This structure of the integrand makes it possible in

principle to satisfy the equality ( , Ez) = 0 for any
frequency ω over the range from 0 to ωmax. Conse-
quently, the frequency range of slow plasma waves that
can exist in an infinitely strong external magnetic field
is given by the inequalities 0 ≤ ω < ωmax.

For a zero external magnetic field, the integrand in
expression (10) and the dielectric function ε(r) are of
the same sign. Therefore, in the absence of an external
magnetic field, low-frequency slow plasma waves in
the frequency range 0 ≤ ω < ωmin, over which the
dielectric function ε(r) does not change sign, cannot
exist. In this case, the only possible slow plasma waves
are those whose frequencies lie in the range ωmin < ω <
ωmax. This, however, does not imply that such waves are
indeed possible.

If the function ωp(r) is not a piecewise constant
function, then the problem given by Eq. (5) and bound-
ary conditions (8) and that given by Eq. (6) and the
same boundary conditions cannot be solved analyti-
cally. An approximate method for solving these prob-
lems can be as follows [4, 5]: For arbitrary values of ω
and kz, the solutions to Eqs. (5) and (6) cannot simulta-
neously satisfy both of boundary conditions (8). We fix
a certain value of kz and solve the Cauchy problem for
Eqs. (5) and (6) with the following initial conditions at
r = 0:

The value of the constant in the second condition is
unimportant because Eqs. (5) and (6) and boundary
conditions (8) are linear and homogeneous. When solv-
ing the Cauchy problem, the frequency ω is adjusted to
satisfy the second of boundary conditions (8). The fre-
quency (or frequencies, if there are several waves)
adjusted in such a manner is the sought-for eigenfre-
quency ω = ω(kz), and the corresponding solutions to
Eqs. (5) and (6) are the sought-for eigenfunctions. The
correctness of the solutions obtained by this method
can be checked by substituting them into the integrals

χ0
2

L̂r
∞

Ez

dEz

dr
-------- 0( ) 0, Ez 0( ) const.= =
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in expressions (9) or (10): if the solutions are correct,
then the integrals should vanish.

Equation (5) is fairly easy to solve numerically.
Physically, this stems from the fact that slow plasma
waves in a fully magnetized waveguide are actually
internal–surface waves. For the waveguide regions
determined by the inequality ωp(r) > ω, Eq. (5) has the
form

with σ > 0.

Here, it is assumed that inequalities (14) are satisfied.
The solution to this equation is expressed in terms of
oscillating functions (such as Bessel and Neumann
functions of the real argument [3]). In other words, the
solution describes a standing internal wave or an inter-
nal wave running in the radial direction. For waveguide
regions in which ωp(r) < ω, the form of Eq. (5) differs
from that in the previous case:

with σ > 0.

The solution to this equation is expressed in terms of
monotonic functions (such as first- and second-kind
modified Bessel functions of the real argument [3]) and
thus describes a surface wave that is damped in the
radial direction. Figure 1 illustrates the characteristic
structure of the solution Ez(r) to Eq. (5). In the region
r < r*, the function Ez(r) describes a surface wave, and,
for r > r*, it describes an internal wave. Here, r = r* =
r*(ω) is the solution to the equation ωp(r) = ω. This par-
tially internal nature of the waves described by the solu-
tion to Eq. (5) indicates that the problem given by
Eq. (5) and boundary conditions (8) has an infinite
number of eigenvalues and eigenfunctions. Each solu-
tion to this problem describes an eigenmode of a
plasma waveguide in an infinitely strong external mag-
netic field. Such waves are commonly denoted as Els,
where l is the azimuthal wavenumber (here, we are con-
sidering only symmetric waves with l = 0) and s = 1, 2,
… is the radial wavenumber [6, 7], which characterizes
the number of oscillations (i.e., the number of zeros) of

rEz'( )' rσ r( )Ez+ 0,=

rEz'( )' – rσ r( )Ez 0,=

Ez = (r)

r

r = r*

Fig. 1. Field structure of an internal–surface wave.
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the function Ez(r) in the closed interval [0, R] (see
Fig. 1).

Equation (6) is more difficult to solve because it has
a singularity at the radius r = r*, at which ε(r) = 0, i.e.,
ω = ωp(r). Let us rewrite Eq. (6) in a form convenient
for qualitative analysis of its solutions:

(15)

Under inequalities (14) (and by virtue of the inequality
χ2 > 0), the solution to Eq. (6) on both sides of the sur-
face r = r* is expressed in terms of monotonic func-
tions, which indicates that it describes a surface plasma
wave. It is the singularity ε(r) = 0 with which is associ-
ated the very existence of surface waves in a waveguide
with an unmagnetized plasma inhomogeneous in the
r direction. At r = r*, there is a “layer” of resonant elec-
trons whose oscillations constitute the essence of the
wave motion in a surface wave. The relationship ω =
ωp(r) is the plasma resonance condition. At the resonant
surface, the electromagnetic field component Ez has a
singularity, the component Bϕ is continuous, and the
component Er undergoes a jump.

Let us examine the qualitative behavior of the field
of a surface wave in an unmagnetized plasma
waveguide near a surface of radius r*, at which trans-
verse dielectric function (3) vanishes. In the vicinity of
this surface (whose radius is assumed to be nonzero),
we can retain only the lowest order terms in Eq. (15) to
obtain

(16)

Integrating this equation yields [5]

(17)

where C is an arbitrary constant. The last two of relation-
ships (17) were derived using Eqs. (4). In the vicinity of
the resonant surface of radius r*, we represent the plasma
electron frequency as ωp(r) = ωp(r*) + (r*)(r – r*); in
this case, the first of relationships (17) yields the fol-
lowing representation near the resonant radius r*:

(18)

It can be seen that, as r  r*, the field component Ez

diverges logarithmically and the component Er has a

d
2
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dr
2

-----------
χ2

ε
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dr
----- ε

χ2
----- 

  1
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---+

dEz

dr
-------- χ2
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dEz

dr
--------.= =
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--------– iC
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ω ωp r( )–[ ]
----------------------------,–≈=
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--------
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--------– iC
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1– ωp r( )
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ωp'

Ez r r*≈( ) C
ωp r*( )
ωp' r*( )
----------------- r r*–ln– const.+≈
nonremovable discontinuity. Note that the presence of
a singularity in one of the solutions at the surface r = r*
at which p(r) = 0 is a general property of equations of
form (12). Usually, the point r = r* is a boundary point
of the closed interval on which the Sturm–Liouville
problem for Eq. (12) is solved [2, 3]. In the case under
analysis, the singular point lies within the interval of
integration.

If we substitute asymptotic expression (18) into
quadratic form (10) and take into account the relation-
ship ε(r) ~ r – r*, which holds in the vicinity of the sur-
face of radius r*, then we arrive at a diverging integral.
This circumstance indicates that, when considering
waves in an unmagnetized plasma waveguide, the fre-
quency ω should be regarded as complex. The only
exception is the case of a piecewise constant function
ωp(r); it is this case that will be investigated in detail
below. However, even when the plasma density is not
piecewise constant, the frequency ω can be assumed to
be real under certain conditions and asymptotic for-
mula (18) can then be applied. In this case, the integrals
should be understood in terms of the Cauchy principal
value. This point will be discussed in more detail in the
final section of our paper.

3. INTERNAL PLASMA WAVES
IN THE ABSENCE OF AN EXTERNAL 

MAGNETIC FIELD

Along with solutions corresponding to surface
waves (which will be thoroughly analyzed below), the
problem given by Eq. (6) and boundary conditions (8)
has solutions describing internal plasma waves in an
unmagnetized plasma waveguide. In fact, let us assume
that, in a certain region G0 that is continuous in the r
direction, the plasma density is constant, i.e., ωp(r) =
ωp0 = const for r ∈ G0. If we set ω = ωp0, then we can
see that, in the region G0, Eq. (6) is identically satisfied

for Ez(r) = (r), where (r) is an arbitrary function.
Outside the region G0, Eq. (6) is satisfied by the func-

tion Ez(r) ≡ 0. If we have  = 0 at the boundaries of G0,
then the function Ez(r) is continuous over the closed
interval [0, R] and satisfies boundary conditions (8).
Thus, for the problem given by Eq. (6) and boundary
conditions (8), we have constructed the solution that
determines the structure of the simplest internal plasma
waves in an unmagnetized plasma waveguide. The dis-
persion of such waves is described by the formula
ω = ωp0.

Any smooth function ωp(r) can be approximated by
a piecewise constant function. Specifically, for r ∈ Gj

(j = 1, 2, …), we can write ωp(r) = ωpj = const, where Gj

are nonoverlapping continuous subintervals of the
closed interval [0, R]. It has been shown above that, for
a piecewise constant function ωp(r), there exist internal

Ẽz Ẽz

Ẽz
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waves whose eigenfrequencies and eigenfunctions are
given by the relationships

(19)

where j = 1, 2, ….
Taking the limit |Gj |  0, j = 1, 2, … in relation-

ships (19), we obtain the expressions

(20)

which determine the frequencies and the field of the
waves in a plasma waveguide in a zero external mag-
netic field. Such waves can be called local internal

waves. In expressions (20), (x) is an arbitrary function
that is nonzero only at the point x = 0, e.g., the Dirac δ
function.

4. DISPERSION RELATIONS FOR DETERMINING 
THE SPECTRA OF WAVES IN A WAVEGUIDE 

WITH A PIECEWISE CONSTANT 
PLASMA FILLING

In order to investigate the simplest internal–surface,
surface, and internal waves, we consider a waveguide in
which the piecewise constant plasma filling is specified
by the formulas

(21)

For a piecewise constant function ε(r), Eqs. (5) and (6)
are solved separately for the regions r < rp and r > rp and
then the solutions obtained are matched at r = rp. One
of the matching conditions follows from the continuity
of the function Ez(r), and the other is obtained by inte-
grating Eqs. (5) and (6) over r in the vicinity of the
point r = rp. For an infinitely strong external magnetic
field, the conditions for matching the solutions have the
form

(22)

For an infinitely weak external magnetic field, the
matching conditions are

(23)

Solving Eqs. (5) and (6) in the regions r < rp and
r > rp and substituting the solutions obtained into
boundary conditions (8) and (22) or into boundary con-
ditions (8) and (23), we arrive at dispersion relations for

ω ωpj,=
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dEz
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0.= =
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 
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 

rp

0.= =
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determining the frequency spectra of waves in the
waveguide under consideration. For an infinitely strong
external magnetic field, the dispersion relation has the
form [8]

(24)

and, for a zero external magnetic field, the dispersion
relation is [8]

(25)

Here, ε1, 2 = 1 – /ω2 and Il(x) and Kl(x) are lth-
order modified Bessel functions of the first and the sec-
ond kind, respectively.

Dispersion relations (24) and (25) can also be derived
by appropriately transforming quadratic forms (11) in
the following way. For a piecewise constant plasma fill-
ing, the continuous solutions to Eqs. (5) and (6) that sat-
isfy boundary conditions (8) have the form

(26)

where  =  for an infinitely strong external mag-

netic field and  =  for a zero external magnetic
field. Substituting functions (26) into quadratic forms (9)
and (10), performing simple but rather laborious inte-
gration, and equating the results to zero yields disper-
sion relations (24) and (25). Of course, these dispersion
relations are much easier to derive by inserting func-
tions (26) into the second relationships in matching
conditions (22) and (23). However, the method of
matching solutions is effective only for a piecewise
constant function ε(r). As for dispersion relations (11),
they are meaningful for arbitrary dielectric functions.
Moreover, for a zero external magnetic field, a disper-
sion relation of form (11) is more general than a disper-
sion relation of form (25). In fact, when deriving solu-
tion (26) in the region where ε(r) is constant, we
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divided Eq. (6) by ε(r) and thereby excluded from con-
sideration internal waves for which ε(r) = 0.

5. SPECTRA OF WAVES IN A WAVEGUIDE
WITH A PIECEWISE CONSTANT PLASMA 

FILLING IN AN INFINITELY STRONG 
EXTERNAL MAGNETIC FIELD

Now, we consider solutions to dispersion rela-
tions (24) and (25). Figure 2 shows the dispersion
curves for a plasma waveguide in an infinitely strong
external magnetic field. The curves were calculated by
solving dispersion relation (24) numerically for the fol-
lowing parameter values: R = 2 cm, rp = 1 cm, ωp1 =
10 × 1010 rad/s, and ωp2 = 2 × 1010 rad/s. In this case, we
have ωmax = ωp1 and ωmin = ωp2 (see conditions (13)). In
this and similar subsequent figures, the frequency is
expressed in units of 1010 rad/s, the wavenumber being
given in units of cm–1. The dashed line in the figures is
used to represent the “light” straight line ω = kzc. Fig-
ure 2 displays the dispersion curves of slow plasma
waves with the highest frequencies (see five branches
below the line ω = kzc). The figure also shows the dis-
persion curves of the electromagnetic waves that were
captured by the relevant numerical calculations (see
two branches above the light straight line). The plasma
waves are seen to fall into two groups: those whose fre-
quencies approach the frequency ωp1 as kz  ∞ and
those whose frequencies approach ωp2 as kz  ∞.
This follows from the fact that, in the short-wavelength
limit, the coupling between the neighboring plasma
species is weak.

The waves whose frequencies and wavenumbers are
marked by the points in the dispersion curves in Fig. 2
can be described as follows. Points 1 and 3 refer to an

1

0 2

ω, 1010 rad/s

kz, cm–1

1

2

3

4
52

3

4

5

6

7

8

9

10

4 6 8 10 12

Fig. 2. Dispersion curves of the internal–surface and inter-
nal waves in a plasma waveguide in an infinitely strong
external magnetic field.
E01 wave belonging to a group of waves whose frequen-
cies approach the frequency ωp1 as kz  ∞. Since ω1, 3
> ωp2, the eigenfunctions corresponding to points 1 and
3 describe an internal wave in the region r < rp and a
surface wave in the region rp < r < R. Points 2 and 5
refer to an E01 wave belonging to a group of waves
whose frequencies approach the frequency ωp2 as kz

 ∞. Since ω2, 5 < ωp2, the eigenfunctions corre-
sponding to points 2 and 5 describe a purely internal
wave. Finally, point 4 refers to an E02 wave belonging
to a group of waves whose frequencies approach the
frequency ωp1 as kz  ∞. Since ω4 > ωp2, the eigen-
function corresponding to point 4 describes an internal
wave in the region r < rp and a surface wave in the
region rp < r < R.

The frequency spectra and eigenfunctions of waves
in a waveguide with a piecewise constant plasma filling
in an infinitely strong external magnetic field are fairly
simple in structure. We touch on this point merely in
order to make our description more complete (see [8]
for details). In particular, if the positions of the higher
and lower density plasma species are interchanged, i.e.,
if ωp1 < ωp2, then we arrive at approximately the same
pattern of dispersion curves as shown in Fig. 2. For a
homogeneous plasma filling such that ωp1 = ωp2 = ωp0

and ε1 = ε2 = ε0 = 1 – /ω2, dispersion relation (24)
reduces to a much simpler form:

The solution to this dispersion relation is determined

from the relationship  +  = 0, where µ0s are the
roots of the Bessel function, J0(x) = 0. In the frequency
range given by inequalities (14), these solutions
describe the spectra of an infinite number of slow inter-
nal plasma waves, and, in the frequency range given by
inequalities opposite to inequalities (14), they describe
the spectra of electromagnetic waves.

6. SPECTRA OF WAVES IN A WAVEGUIDE 
WITH A PIECEWISE CONSTANT PLASMA 

FILLING IN A ZERO EXTERNAL 
MAGNETIC FIELD

Here, we consider dispersion relation (25), which
determines the eigenfrequencies of a plasma
waveguide in the absence of an external magnetic field.
It is easy to see that, in the frequency range given by
inequalities (14) and in the limit kz  ∞, dispersion
relation (25) reduces to the equation

(27)

The solution to this equation,

(28)

ωp0
2

I0 κ0R( ) 0, κ0
2 χ0

2ε0.= =

κ0
2
R

2 µ0s
2

ε1 ε2+ 0.=

ω
ωp1

2 ωp2
2

+
2

------------------------,=
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describes how the dispersion curve of the only surface
wave in the waveguide under consideration behaves in
the short-wavelength range. In the opposite (long-
wavelength) limit, kz  ∞, dispersion relation (25) is
difficult to investigate analytically. However, a qualita-
tively correct behavior of the frequencies of plasma
waves in the range given by inequalities (14) can be
derived in the potential approximation, which is valid
under the condition

(29)

Under this condition, and in the limit kz  0, disper-
sion relation (25) has the form

(30)

The only solution to dispersion relation (30),

(31)

determines the long-wavelength asymptotic behavior
of the only surface wave in a plasma waveguide in a
zero external magnetic field.

When the inequality ωp2 < ωp1 is satisfied (an impor-
tant point here is that the electron plasma frequencies
are numbered in accordance with formulas (21)), fre-
quency (31) increases with kz and, as kz  ∞,
approaches solution (28) from below. For ωp1 < ωp2,
frequency (31) decreases with increasing kz (this indi-
cates that the dispersion of the surface wave is anoma-
lous, in contrast to the case ωp2 < ωp1, in which the wave
dispersion is normal) and approaches solution (28)
from above as kz  ∞. Note that, for ωp2 = ωp1 = ωp0,
formula (31) becomes ω = ωp0. It is clear that the latter
relation corresponds to an internal wave because, at a
constant electron plasma frequency, there is no surface
of radius r at which a surface wave structure can be
localized. On the other hand, if we set ωp2 = ωp1 = ωp0
and ω = ωp0 in formula (26), then we arrive at a solution
typical of a surface wave, i.e., that in which the deriva-
tive dEz/dr is discontinuous at r = rp. This, however,
does not cause confusion because, for ωp(r) = ωp0 =
const, Eq. (6) with ε ≡ 0 (i.e., with ω = ωp0) is satisfied
by any function Ez(r), in particular, by function (26).

Let us discuss some other features of dispersion
relation (30) and its solution (31). Recall that disper-
sion relation (30) is a direct consequence of exact dis-
persion relation (25). It follows from solution (31) that,
for rp  R, there are waves with the frequencies ω =
ωp2 and there are no waves with the frequencies ω =
ωp1. Looking at formulas (21), however, one may
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decide that the converse is true. The reason is that, for
rp = R, the relation ω = ωp1 for an internal wave follows
not from dispersion relation (25) but rather from differ-
ential equation (6), which is identically satisfied for
ε1 = 0. In other words, differential equation (6) contains
more information than the dispersion relation derived
by the method of matching solutions. As for the dis-
persion relation ω = ωp2 (whose presence in the case
rp  R appears at first glance to be strange because
the thickness of a plasma with the electron plasma fre-
quency ωp2 is zero, i.e., there is no plasma at all), it cor-
responds to a surface wave localized at the waveguide
boundary. The structure of such “boundary” surface
waves will be considered below.

Another distinctive feature of dispersion relation (30)
is that it is not symmetric in the two electron plasma
frequencies. As a consequence, for kz  0, solution
(31) yields ω ≈ ωp2 rather than ω ≈ ωp1 (this asymmetry
was pointed out above). This is attributed to the specific
properties of cylindrical geometry, in which the point
r = 0 is a singular point. In the planar case, the disper-
sion relation is symmetric in the electron plasma fre-
quencies. If, in cylindrical geometry, the inner plasma
terminate at a certain finite distance from the
waveguide axis (i.e., if there were a vacuum axial
region in a cylindrical waveguide), then, as will be
shown below, a surface wave with ω ≈ ωp1 would also
exist in the limit kz  0.

For a plane waveguide that is formed by two metal
plates at x = –L1 and x = L2 and in which ωp(x) = ωp1 at
x < 0 and ωp(x) = ωp2 at x > 0, the dispersion relation has
the form

For kz  ∞, the solution to this dispersion relation
coincides with that to dispersion relation (28). For
kz  0, we have ε1L2 + ε2L1 = 0, which yields

We can see that the dispersion relation and its solutions
are both symmetric in the two electron plasma frequen-
cies. Also, if there is only one boundary between two
plasmas of different densities, then there is a single sur-
face wave, as is the case in cylindrical geometry.

In the case ωp2 = 0, in which solution (31) is invalid,
dispersion relation (30) requires separate consideration.
In this case, (ωmin = 0), the dispersion of waves at small
kz is described by the formula

(32)
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We can see that, as kz increases, the frequency

approaches the value ωp1/ .

On the whole, we can conclude that, under condi-
tions (14), the solutions to dispersion relation (25) (and,
accordingly, to the boundary-value problem given by
Eq. (6) and boundary conditions (8)) differ qualitatively
from those to dispersion relation (24) (and, accord-
ingly, to the problem given by Eq. (5) and boundary
conditions (8)). Physically, this is explained by the fact
that, under conditions (14), there is no more than a
finite number of surface waves in a plasma waveguide
in the absence of an external magnetic field. As for the
internal plasma waves occurring in such a waveguide,
they are closer to waves with a continuous spectrum
(see formulas (19), (20)) than they are to conventional
discrete waveguide Els modes in an infinitely strong
external magnetic field. The mathematical structure of
plasma waves (both surface and internal) in a zero
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Fig. 3. Dispersion curves of the surface waves in a
waveguide with a two-step plasma density profile in a zero
external magnetic field: (1) ωp1 = 5 and ωp2 = 0, (2) ωp1 = 5
and ωp2 = 2, (3) ωp1 = 0 and ωp2 = 5, and (4) ωp1 = 2 and
ωp2 = 5. The curves were calculated for (a) R = 1.5 cm and
rp = 0.75 cm and (b) R = 2.2 cm and rp = 1.1 cm (in this case,
inequality (40) is satisfied).

(a)

(b)
external magnetic field is far more complicated than
that of plasma waves in a waveguide in an infinitely
strong external magnetic field.

Now, we analyze the results of numerically solving
dispersion relation (25), which describes the frequency
spectra of waves in a plasma waveguide in a zero exter-
nal magnetic field. First, we consider the results
obtained for a waveguide with the following parame-
ters: R = 1.5 cm, rp = 0.75 cm, ωp1 = 5 × 1010 rad/s, and
ωp2 = 0. In Fig. 3a, the dispersion curve of the only pos-
sible surface wave in this waveguide is shown by curve 1.
For small kz values, the dispersion curve is described by
formula (32), and, for large wavenumbers, it asymptot-

ically approaches the value ωp1/  ≈ 3.536 × 1010 rad/s
(dashed line α). If we choose the above values of the
waveguide radii and of the frequency ωp1 and set ωp2 =
2 × 1010 rad/s, we arrive at dispersion curve 2. In the fre-
quency range ω < ωp2 = ωmin, there are no waves at all.
For small kz values and for ωp2 < ωp1, dispersion curve 2
is described by formula (31); as kz increases, the curve
asymptotically approaches solution (28), ω ≈ 3.808 ×
1010 rad/s, from below (dashed line β). Dispersion
curves 1 and 2 correspond to waves with a normal dis-
persion.

Further, we keep the above values of the waveguide
radii and interchange the positions of the two plasma
species; i.e., we set ωp1 < ωp2. Recall that, for an infi-
nitely strong external magnetic field, the wave pattern
in a waveguide in which the two plasma species are
interchanged remains qualitatively the same. For ωp1 = 0
and ωp2 = 5 × 1010 rad/s, the dispersion curve of a sur-
face wave is shown by curve 3 in Fig. 3a. For small kz

values, the dispersion curve is described by formula
(31) and, as kz increases, the curve asymptotically

approaches the value ωp2/  ≈ 3.536 × 1010 rad/s
(dashed line α). For ωp1 = 2 × 1010 rad/s and for the
above value ωp2 = 5 × 1010 rad/s, the dispersion curve is
represented by curve 4, which is seen to behave like
curve 3 but lies somewhat above the latter because, at
large kz values, it asymptotically approaches the limit
given by solution (28) and shown by dashed line β. Dis-
persion curves 3 and 4 correspond to waves with an
anomalous dispersion.

Figure 3a also shows dispersion curves of the elec-
tromagnetic waves (E01 modes) of a plasma waveguide
in a zero external magnetic field. These dispersion
curves, which were obtained by the relevant numerical
calculations, lie in the upper left of the figure above the
inclined dashed line corresponding to the light line ω =
kzc. Since we are not interested here in electromagnetic
waves, we do not even identify to which of the above
four plasma configurations in question these dispersion
curves correspond.

2

2
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7. DETERMINATION OF THE SPECTRA
OF INTERNAL PLASMA WAVES

IN THE ABSENCE OF AN EXTERNAL 
MAGNETIC FIELD

In Fig. 3a, the dashed lines ω = ωp1 and ω = ωp2
serve not merely as a graphical illustration of the char-
acteristic frequencies but describe the dispersion of the
actual internal plasma waves whose eigenfrequencies
and eigenfunctions are given by relationships (19).
However, the solutions ω = ωp1 and ω = ωp2 cannot be
derived from dispersion relation (25) because it has no
solutions describing waves with eigenfrequencies and
eigenfunctions (19). Recall that solution (19), instead
of being derived as a solution to the eigenvalue problem
in a mathematically precise way, was in fact con-
structed artificially.

We regularize the problem given by Eq. (6) and
boundary conditions (8) in such a way that the solutions
describing internal plasma waves with eigenfrequen-
cies and eigenfunctions (19) can indeed be its eigenso-
lutions, i.e., that they represent certain sets of eigenval-
ues and the corresponding eigenfunctions. To do this,
we assume that the external magnetic field is nonzero.
In this case, the transverse dielectric function of the
plasma is described not by formula (3) but by the
expression

where Ωe is the electron gyrofrequency. As for the lon-
gitudinal dielectric function, it is, as before, given by
formula (2). For Ωe ≠ 0, plasma dielectric tensor (1)
becomes far more complicated: its off-diagonal ele-
ments εrϕ = –εϕr become nonzero (for Ωe ! ω, they are
proportional to Ωe), which implies that the E and H
modes of the waveguide are coupled to each other. The
mode coupling effect is proportional in magnitude to
Ωe/c [1, 8]. Since we are going to take the limit Ωe  0,
we ignore the mode coupling and immediately set εrϕ = 0.
From Eqs. (4), which remain valid in this case, we
obtain, instead of Eq. (6), the following more general
equation:

(33)

where  =  – ε⊥ (r)ω2/c2 and the dielectric functions
ε||(r) and ε⊥ (r) were defined above. Equation (33) is also
supplemented with boundary conditions (8). To take the
limit Ωe  0 in the problem given by Eq. (33) and
boundary conditions (8) is not a trivial matter.

Let us solve the problem given by Eq. (33) and
boundary conditions (8) for the case in which the elec-
tron plasma frequency is described by formula (21).
We integrate Eq. (33) over r in the vicinity of the point
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r = rp to obtain, instead of matching conditions (23), the
conditions

Substituting solution (26) into these matching condi-
tions yields the following dispersion relation for deter-
mining the eigenfrequencies of a plasma waveguide in
a finite external magnetic field:

(34)

Recall that Eq. (34) is valid only for a weak external
magnetic field such that the coupling between the E and
H modes is unimportant.

Although, for Ωe = 0, Eq. (34) coincides exactly
with dispersion relation (25), it has in addition some
other, essentially different solutions. It is these solu-
tions in which we are interested now. Since we are
going to take the limit Ωe  0, we assume that Ωe <
ω, ωpj, where ωpj is any of the nonzero electron plasma
frequencies of the plasma species of the piecewise con-
stant plasma filling. For ω < kzc, the signs of the quan-
tities

are determined by the signs of the ratios of the dielec-

tric functions (  > 0):

(35)

In the frequency range

(36)

we have Sj < 0, in which case the quantities  change

from zero to minus infinity. For  < 0, the following
relationships are satisfied: Il(qj) = Il(i |qj |) = CJl(|qj |)
and Kl(qj) = Kl(i |qj |) = CNl(|qj |), where C are complex
constants and Jl(x) and Nl(x) are Bessel and Neumann
functions. Consequently, in frequency range (36), solu-
tion (26) describes an internal wave.
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For Ωe ! ω, ωpj, the inequalities |ε⊥ j | <  ! 1
hold in frequency range (36); therefore, dispersion rela-
tion (34) can be represented as

(37)

where the constants Cj are finite in frequency range (36)
for any Ωe value and the dispersion functions Dj are
given by the formulas

(38)

In this case, it follows from dispersion relations (37)
and (38) and solution (26) that, in the limit Ωe  0,
the boundary-value problem given by Eq. (33) and
boundary conditions (8) for a waveguide in which the
piecewise constant plasma filling is described by for-
mulas (21) has the following eigenvalues and the corre-
sponding eigenfunctions:

(39‡)

(39b)

Here, νj = , the functions ξs(x) and ζs(x)
approach zero as x  0, µ0s is the root of the equation
J0(x) = 0,  is the root of the equation J0(λx)N0(x) –
N0(λx)J0(x) = 0, and λ = rp/R. In a waveguide with a
piecewise constant plasma filling, the structure of any
other internal plasma wave (see relationships (19)) is
analogous to that given by formulas (39). It follows
from formulas (39) that, for Ωe  0, all the eigenfre-
quencies are the same, ωs = ωpj , and there are an infinite
number of different eigenfunctions corresponding to
the same eigenfrequency. In this sense, it is possible to
speak of an arbitrary transverse structure of the field of
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internal plasma waves in a plasma waveguide in a zero
external magnetic field.

8. SOME DISTINCTIVE FEATURES
OF THE SURFACE WAVES IN THE ABSENCE

OF AN EXTERNAL MAGNETIC FIELD

We turn now to surface waves in a waveguide with a
piecewise constant plasma filling (21) in a zero external
magnetic field. In discussing the dispersion curves
shown in Fig. 3a, we used formulas (31) and (32), which
were obtained from exact dispersion relation (25) in the
potential approximation, i.e., under condition (29).
For the dispersion curves illustrated in Fig. 3a, inequal-
ity (29) fails to hold. Nevertheless, these two formulas
provide a qualitatively correct description of the disper-
sion of the surface waves. However, in a waveguide
with higher electron plasma frequencies ωpj and with a
larger radius R, the situation is qualitatively different,
especially when a lower density plasma species in the
waveguide is surrounded by a higher density plasma
species, ωp2 > ωp1. From Fig. 3a and formula (31), we
can see that, in the limit kz  0, the frequency of the
surface wave is equal to ωp2. This is always true for
ωp2 < ωp1. However, for ωp2 > ωp1 and under the ine-
quality

, (40)

the frequency of the surface wave in the limit kz  0
is lower than ωp2. Moreover, the dispersion of this wave
in the long-wavelength range can become normal. In
condition (40), we have used the positive parameter
p(rp), which, usually, differs insignificantly from unity
but cannot be calculated analytically in the general
case. Inequality (40) indicates that the electron plasma
frequency of a denser plasma species is higher than the
cutoff frequency of an internal electromagnetic wave in
a waveguide filled with a lower density plasma.

Figure 3b shows the dispersion curves of the surface
and internal waves in a plasma waveguide in the
absence of an external magnetic field. In the figure, the
electron plasma frequencies are the same as those in
Fig. 3a and the waveguide radii are somewhat larger,
namely, R = 2.2 cm and rp = 1.1 cm. For a plasma
waveguide in which ωp1 = 5 × 1010 rad/s and ωp2 = 0, the
dispersion curves of a surface and an internal wave are
shown by the lower and the upper curves 1, respec-
tively. Curves 2 show the dispersion curves of the same
waves for ωp1 = 5 × 1010 rad/s and ωp2 = 2 × 1010 rad/s.
In both cases, we have ωp2 < ωp1; hence, the dispersion
curves in question are, on the whole, similar to the cor-
responding curves in Fig. 3a. For a waveguide in which
ωp1 = 0 and ωp2 = 5 × 1010 rad/s, the dispersion curves
of a surface and an internal wave are shown by the
lower and the upper curves 3, respectively. Curves 4 are
the dispersion curves of the same waves for ωp1 = 2 ×

ωp2
2 µ01

2 c
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2

------ p rp( )ωp1
2
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PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005



THEORY OF SLOW WAVES 157
1

0 2

ω, 1010 rad/s

kz, cm–1
1 3 4 5

2

3

4

5

6 (c)

1

0 21 3 4 5

2

3

4

5

6 (d)

2

0 10

4

6

8

10 (‡)

5 0 1.5

0

(b)

0.5 1.0

Ez, r, arb. units

r
ω, 1010 rad/s

kz, cm–1

kz

ω, 1010 rad/s

Fig. 4. Some particular cases of surface plasma waves in a zero external magnetic field: (a) the dispersion curve of a boundary sur-
face wave (the lower curve), (b) the structure of the electric field components Ez (upper curve) and Er (lower curve) in a boundary
surface wave, and (c, d) the dispersion curves of the surface waves in a waveguide with two plasma species and with a vacuum axial
region. In plot (c), the inner plasma species is denser than the outer plasma species; in plot (d), the converse situation is shown.
1010 rad/s and ωp2 = 5 × 1010 rad/s. Since, in this case,
the condition ωp2 > ωp1 holds and inequality (40) is sat-
isfied, the dispersion curves in question differ from the
corresponding curves in Fig. 3a. Thus, as kz  0, the
frequencies of the surface waves approach a frequency
lower than the electron plasma frequency ωp2. As for
the cutoff frequencies of the electromagnetic waves,
they, on the contrary, become exactly equal to ωp2 (on the
scale adopted in Fig. 3b, the upper dispersion curves 3
and 4 for the electromagnetic waves coincide almost
entirely with one another). For brevity, we do not
present here a more detailed analysis of the coupling
between electromagnetic and surface waves in the case
in which inequality (40) is satisfied by a larger margin.

To conclude the analysis of a waveguide in which
the piecewise constant plasma filling is given by formu-
las (21) and the external magnetic field is absent, we
consider the following two particular cases. In the
above discussion of dispersion relation (30) and its
solution (31), we have introduced the notion of the
boundary surface waves. Such waves, with the fre-
quency ω ≈ ωp2, exist in a waveguide in which a plasma
of small (and even infinitely small) thickness is adja-
cent to a metal wall. In order to give a clearer insight
into the physical meaning of these waves and their
structure, we consider numerical results obtained for a
waveguide with the parameters ωp1 = 5 × 1010 rad/s,
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
ωp2 = 2 × 1010 rad/s, R = 1.5 cm, and rp = 1.45 cm. Fig-
ure 4a shows the dispersion curve of the boundary sur-
face wave in such a waveguide, and Fig. 4b illustrates
the structure of the electric field components Ez(r) and
Er(r) of this wave that were calculated at the point (kz =
2.1086 cm–1, ω = 2.1409 × 1010 rad/s) of the dispersion
curve. The shorter the distance from the interface
between the two plasma species to the waveguide wall
(rp  R), the closer the dispersion curve to the
straight line ω = ωp2 and the narrower the plasma
region near the wall, rp < r < R, where the field is local-
ized. Moreover, in the limit rp  R, we have
|Ez(r)/Er(r)|max  0. In this limit, the field distribution
can be described by the relationships

,

δ  +0,

which clearly conveys the physical meaning of the
boundary surface wave.

Also, in discussing dispersion relation (30), we have
pointed out the fact that it is not symmetric in the two
electron plasma frequencies and, in particular, that for
kz ≈ 0 it has no solutions describing waves with the fre-
quency ω ≈ ωp1 (recall that the electron plasma frequen-
cies are numbered in accordance with formulas (21)).
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As was mentioned above, the reason for this is that, in
cylindrical geometry, the point r = 0 is a singular point.
If we assume that there is no plasma at the waveguide
axis, then we arrive at new solutions describing new
surface waves. Figures 4c and 4d show dispersion
curves for two waveguides with the same radii R =
1.5 cm and rp = 0.75 cm but with different piecewise
constant plasma fillings: ωp1 = 5 × 1010 rad/s and ωp2 =
2 × 1010 rad/s (Fig. 4c) and ωp1 = 2 × 1010 rad/s and ωp2 =
5 × 1010 rad/s (Fig. 4d). The inner plasma species occu-
pies the region r ∈ [r1, rp], where r1 = 0.1 cm; i.e., there
is a vacuum axial region in the waveguide. We can see
that, although the radius of the vacuum region is small,
new branches arise in the frequency spectra, namely,
the branch ω ≈ ωp1 = 5 × 1010 rad/s in Fig. 4c and the
branch ω ≈ ωp1 = 2 × 1010 rad/s in Fig. 4d. Cylindrical
waveguides possess the following fundamental prop-
erty: in the long-wavelength range, there can never be
branches ω ≈ ωp(r = 0), where ωp(r = 0) is the electron
plasma frequency at the waveguide axis. If this fre-
quency is equal to zero, then, in the long-wavelength
limit, there are no waves with frequencies ω  0. We
emphasize that these conclusions do not refer to
waveguides in a strong external magnetic field.

9. WAVEGUIDE WITH A THREE-STEP
PLASMA FILLING

We turn now to the investigation of a waveguide with
a three-step plasma filling—a case that is more compli-
cated than the previous one but is more important from a
practical point of view. Specifically, we assume that the
function ωp(r) is given by the relationships

(41)

We focus primarily on a waveguide in a zero external
magnetic field. We solve Eq. (6) for adjacent waveguide
regions filled with different plasma species and match
the solutions at the surfaces r1, 2 with the help of condi-
tions (23) to obtain the following dispersion relation:
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In the limit kz  ∞, dispersion relation (42) trans-
forms into the relation

(43)

For r2 ≠ r1, this dispersion relation has the solutions

(44)

which are analogous to solution (28) and stem from the
interaction between neighboring plasma species. For
r2  – r1  0, dispersion relation (43) yields other
eigenfrequencies:

(45)

The first of relations (45) is analogous to relation (44).
The second is an analogue of the dispersion relation for
a boundary surface wave. Note that this second relation
is valid over the entire wavenumber range such that
kz(r2 – r1) ! 1.

Figure 5 illustrates the results of solving dispersion
relation (42) numerically for R = 3 cm, r1 = 1 cm, and
r2 = 2 cm. The figure shows the dispersion curves of
only two surface waves that, in the case at hand, occur
at the two interfaces between three different plasma
species. The three electron plasma frequencies were
taken to be 0, 2 × 1010, and 5 × 1010 rad/s, and all their
possible combinations were considered. The triples of
the values of the electron plasma frequencies (in units
of 1010 rad/s) arranged in order of increasing distance
from the waveguide axis are presented at the top of each
frame of Fig. 5. Figure 6 presents the dispersion curves
of surface waves in the same waveguide but with elec-
tron plasma frequencies that differ somewhat from
those in Fig. 5, namely, 1 × 1010, 3 × 1010, and 5 ×
1010 rad/s. Figures 5 and 6 clearly demonstrate all the
above regular features of the behavior of solutions to
the problem given by Eq. (6) and boundary conditions
(8) in the case of a piecewise constant function ωp(r).

We again stress the following fundamental property
of the spectra of surface waves in a waveguide with a
piecewise constant plasma filling in a zero external
magnetic field: in the long-wavelength limit kz  0,
there are no branches corresponding to waves whose
frequency is equal to the electron plasma frequency at
the waveguide axis. This property, which is fully con-
firmed by Figs. 5 and 6, holds not only for waveguides
in the absence of an external magnetic field but also for
waveguides in a weak external magnetic field. An anal-
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2 ω2
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Fig. 5. Dispersion curves of the surface waves in a waveguide with two plasma species and with a vacuum axial region in a zero
external magnetic field (ωp is given in units of 1010 rad/s).
ysis shows that the external magnetic field can be
regarded as sufficiently weak under the inequality (see
conditions (13))

(46)

In this case, the surface plasma waves generally possess
the same features as those in a zero external magnetic
field. Under the inequality

(47)

the external magnetic field is strong and slow waves in
a plasma waveguide are fully analogous to waves in a
plasma waveguide in an infinitely strong external mag-
netic field.

Function (41) models a so-called annular plasma
filling, which is important for experimental investiga-
tions. Let us consider two more examples of
waveguides with annular plasma filling that are fre-
quently used in experiments. Figure 7 illustrates the
results calculated numerically for a plasma waveguide
with the parameters R = 3 cm, r1 = 1 cm, r2 = 2 cm,
ωp0 = ωp2 = 0, and ωp1 = 5 × 1010 rad/s in a zero external
magnetic field. The dashed lines show the dispersion
curves of surface waves in the absence of the plasma

Ωe ωmin.<

Ωe ωmax,>
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background, ωp0 = ωp2 = 0, and the solid lines show
those of the same surface waves in the case of a uniform
plasma background, ωp0 = ωp2 = 1010 rad/s. The presence
of the plasma background is seen to seriously affect the
structure of the spectrum: there is no surface wave in
the low-frequency range. Note that the results illus-
trated in Fig. 7 do not contradict the fact that, in the
limit kz  0, the frequency spectrum does not contain
a branch corresponding to a wave whose frequency is
equal to the electron plasma frequency at the
waveguide axis. For the case to which Fig. 7 refers, we
have ωp0 = ωp2, and, in the long-wavelength limit
kz  0, a wave with the electron plasma frequency
near the waveguide wall (in Fig. 7, this frequency is
ωp2) is inevitably present in the spectrum.

In a waveguide in an infinitely strong external mag-
netic field, the presence of the background plasma
affects the spectra of slow waves in another way: addi-
tional branches corresponding to internal waves with a
frequency ω < ωp0 = ωp2 appear in the low-frequency
range (as is the case in Fig. 2). The effect of the back-
ground plasma on the frequency spectra in a plasma
waveguide in a strong external magnetic field was
investigated in detail in [9].
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Fig. 7. Characteristic dispersion curves of the surface waves
in a waveguide with an annular plasma filling in a zero
external magnetic field. The dispersion curves in the
absence of the plasma background are shown by the dashed
lines, and those for a uniform plasma background are shown
by the solid lines.
10. PLASMA FILLING WITH SMOOTH PLASMA 
BOUNDARIES

When the plasma boundaries in the waveguide are
not sharp, slow plasma waves have far more compli-
cated properties, especially in a weak external magnetic
field. The waves in such a plasma were considered in
our earlier paper [5]. Above, we have already men-
tioned these waves in discussing formulas (16)–(18)
and solution (20). Now, we are going to investigate
these waves in more detail: a task that is of considerable
physical interest and of great importance in solving
problems of microwave electronics [8, 10].

We begin with a model problem that has an analytic
solution and permits a simple limiting transition to the
case of a plasma with a sharp boundary. We go over to
plane waveguide geometry (i.e., switch from the coor-
dinate r to the coordinate x) and restrict ourselves to the
potential approximation (c  ∞). We assume that the
external magnetic field is absent and that the plasma
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
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distribution over the region x ∈  (–∞, +∞) is given by the
formulas

(48)

A limiting transition to the case of a plasma with a
sharp boundary is obvious: it is necessary to reduce L
in formulas (48) to zero. For convenience, we nondi-
mensionalize the coordinate and introduce the follow-
ing notation:

(49)

In the region of constant plasma density, the electric
field component Ez satisfies the equation

(50)

In the region where the plasma density varies, the cor-
responding equation has the form

(51)

The solutions to Eq. (50) that are bounded at infinity are
given by the formulas

(52)
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where A and B are constants. The solutions to Eq. (51)
are expressed in terms of the modified Bessel functions
I0 and K0 of the argument z = κ(ξ – α):

(53)

In discussing formula (18), in which the field com-
ponent in question diverges logarithmically, we have
pointed out that the frequency ω should be regarded as
complex. Consequently, the argument in solution (53)
is also complex: z = x + iy. For small absolute values of
the complex argument, the function K0 has a logarith-
mic singularity [11],

(54)

while the function I0 has no singularity. At a certain
point of the interval –1 < ξ < 1 on the real axis ξ, we
have x = 0 (ξ = Reα) and y ≠ 0. In this case, in moving
along the real axis from the point ξ = 1 to the point
ξ = −1, the arctangent function in formula (54) changes
by ±π, depending on the sign of y. Consequently, if
solution (53) is used near the boundary ξ = 1, then the
solution near the boundary ξ = –1 should be written as

(55)

We insert solutions (52), (53), and (55) into the
matching conditions,

(56)

and eliminate the constants A, B, C, and D to obtain the
following dispersion relation for determining the com-
plex frequencies ω:
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Note that the last two of conditions (56) imply that the
normal components of the electric induction vector
should be continuous; this follows from the continuity
of the plasma dielectric function ε⊥ (x) at ξ = ±1, the
plasma distribution being given by formulas (48). Note
also that dispersion relation (57) can be derived only
from solution (53); in this case, however, it is necessary
to use the following familiar formulas of the theory of
analytic continuation [11]:

(58)
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iνmπ
Iν z( ),=
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In the long-wavelength limit

(59)

dispersion relation (57) transforms to

(60)

Taking into account inequality (59) and using the
expression for α (see formulas (49)), we obtain from
dispersion relation (60) the sought-for expression for
the complex frequency:

(61)
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For L = 0 (i.e., for a sharp plasma boundary), formula (61)
determines the well-known frequency of a surface wave
at the boundary of a plasma half-space. The surface
wave also exists in the case of a smooth plasma bound-
ary (L ≠ 0); moreover, under condition (59), it is
damped only weakly. Presumably, this damping is
caused by the conversion of the surface wave into local
internal waves (see solution (20)) at the plasma reso-
nance point ω = ωp(x).

In long-wavelength limit (59), the surface waves can
be investigated analytically not only for a plasma den-
sity distribution given by formulas (48) but in a more
general case as well. Let the transverse dielectric func-
tion ε(x) of the plasma be continuous and constant at
x < x1 (ε = ε1) and at x > x2 (ε = ε2). When integrating
the equation (see Eq. (15))

(62)

over the region x ∈ [x1, x2] in the long-wavelength limit

|kz(x2 – x1)| ! 1, we can ignore the term . As a
result, we obtain the following general solution (see
formulas (16), (17)):

(63)

We match functions (63) in a conventional manner and
eliminate the constants A, B, C, and D to arrive at the
dispersion relation

(64)

where the symbol Vp denotes the principal value of the
integral and x0 is a point at which ε(x) = 0. Dispersion
relation (64) and formulas (48) immediately yield rela-
tion (61).

It follows from formulas (52) that the quantity λ ~

 determines the characteristic transverse spatial
scale on which the surface wave is localized. Therefore,
inequality (59) implies that the scale on which the
plasma density varies is short in comparison to the
transverse scale on which the wave field is localized,
L ! λ. However, this is obviously a natural condition
for the existence of a surface wave. When inequality
(59) fails to hold, the surface wave ceases to exist, or,
more precisely, it degenerates into an internal wave
whose field is localized just in the region where the
plasma is inhomogeneous. When the inequality oppo-
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site to inequality (59) is satisfied, dispersion relation (57)
reduces to

(65)

The function W(z) defined by this dispersion relation is
known as the Lambert function, which was thoroughly
investigated and tabulated [12]. Dispersion relation (65)
yields the following expression for the frequency of the
wave that is damped at the slowest rate:

(66)

This expression implies that |ω| ! ωp and that the imag-
inary part of the frequency is on the order of its real
part. Since the inequality opposite to inequality (59) is
satisfied, the wave field is localized in the region where
the plasma is inhomogeneous (as if there were metal
walls at x = ±L). Such strongly damped internal (unnat-
ural) oscillations of an inhomogeneous plasma were
studied in [13, 14].

In the long-wavelength limit, the damping of surface
waves by plasma density variations is weak. This indi-
cates that, in deriving the dispersion relations ω = ω(kz),
the damping can be ignored to a first approximation. On
the other hand, by taking into account weak damping, it
is possible to eliminate divergences in the components
of the electric field of surface waves (see formulas (17)
and (18)) and, thereby, to overcome difficulties in
numerically solving the boundary-value problem given
by Eq. (6) and boundary conditions (8) for a smooth
plasma density profile in a waveguide. The difficulties
in carrying out integration were overcome in the fol-
lowing way: First, Eqs. (4) were solved over the inter-
val from zero to r* – h/2, where ε⊥ (r*) = 0 and h is the
mesh spacing of the difference grid. Second, the same
equations were solved in the interval from r* + h/2 to
R. The equations were integrated under the assump-
tions Ez(r* + h/2) = Ez(r* – h/2) and Bϕ(r* + h/2) =
Bϕ(r* – h/2); this is equivalent to the integration over
the vicinity of the singular point r* in terms of the
Cauchy principal value. Recall that, in the case of a
strong external magnetic field, numerical solution of
the boundary-value problem given by Eq. (5) and
boundary conditions (8) presents no difficulty. In con-
clusion, we consider the results of numerical calcula-
tion of the frequency spectra of waves in a waveguide
with a thin-walled annular plasma—an important issue
in plasma microwave electronics.

Figure 8 shows the profiles of the function ωp(r) for
which the calculations were carried out. We investi-
gated four plasma density profiles: a step profile in the
absence of the plasma background (Fig. 8a), a Gaussian
profile in the absence of the plasma background
(Fig. 8b), a step profile in the presence of the plasma
background (Fig. 8c), and a Gaussian profile in the
presence of the plasma background (Fig. 8d). In all four

W W( )exp z, z
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2
---i, W± 2κ 1 α–( ).= = =
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2 kz L
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cases, the waveguide radius was R = 2.05 cm, the mean
radius of a thin-walled annular plasma was rp =
1.05 cm, and the maximum electron plasma frequency
(see conditions (13)) was ωmax = 22 × 1010 rad/s. In the
case of a step profile, the plasma thickness was ∆p =
0.1 cm, the maximum electron plasma frequency in the
presence of the plasma background being ωmin = 6.96 ×
1010 rad/s. The Gaussian profile (r) = exp(–(r –

rp)2/ ) was chosen (δp = 0.0564 cm) so that the line
density of a thin-walled annular plasma was the same in
all the cases under analysis. For the profiles chosen,
long-wavelength limit (59) implies that δpkz ~ ∆pkz ! 1;
it is this inequality that is satisfied over almost the entire
wavenumber range kz < ωmax/c, which is important for
plasma microwave electronics. Note that the cases of a
step plasma density profile (Figs. 8a, 8c) can be inves-
tigated analytically by the method of dispersion rela-
tions (see Section 9, Eq. (42)). Here, we present only
the results of numerical solution in finite differences of
the boundary-value problem given by Eq. (5) and
boundary conditions (8) and that given by Eq. (6) and
the same boundary conditions. A comparison of numer-
ical results with the solutions to the dispersion relations
(in the cases of a step plasma density profile) confirms
the efficiency and reliability of numerical methods used
in our simulations. The parameters of the plasma
waveguides (such as the waveguide radii, the electron
plasma frequencies, and the plasma thicknesses) that
were chosen for simulations correspond to those in
actual physical experiments [15].

Figure 9 depicts the dispersion curves for a
waveguide free of the plasma background. In the figure,
the dispersion curves of the slow plasma waves and of
the E- and H-type fast electromagnetic waves are
shown. The straight line emanating from the origin of
the coordinates is the light line ω = kzc. Figures 9a and
9c were calculated for an infinitely strong external
magnetic field and for a step and a Gaussian plasma
density profile, respectively. It can be seen that the dis-
persion curves in the figures are essentially identical. In
other words, in the case of a strong external magnetic
field, the dispersion curves are insensitive to the shape
of the plasma density profile. This conclusion stems
from the internal nature of the wave field within the
plasma and is valid only for thin-walled annular plasma
columns with the same line densities.

Figures 9b and 9d display the dispersion curves cal-
culated for a zero external magnetic field and for a step
and a Gaussian plasma density profile, respectively. In
both figures, the lower curves, which are the dispersion
curves of a low-frequency slow plasma wave, are seen
to have essentially the same shape. This indicates that
the dispersion of such waves is insensitive to the shape
of the plasma density profile, in agreement with disper-
sion relation (61), which was obtained in the long-
wavelength limit. It is of course necessary to take into
account that formula (61) was derived in the potential

ωp
2 ωmax

2

δp
2
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approximation for a plasma half-space rather than for
a waveguide plasma. Moreover, the lower curves in
Figs. 9b and 9d are identical to the corresponding
curves in Figs. 9a and 9c. This indicates that the disper-
sion of a long-wavelength low-frequency slow plasma
wave in a waveguide with a thin-walled annular
plasma is independent of the strength of the external
magnetic field [16].

In Fig. 9b, we can also see the dispersion curve of a
high-frequency slow plasma wave (the upper curve).
For small kz values, this curve describes an electromag-
netic wave (ω/kz > c). As kz increases, the wave
becomes slower and, as kz  ∞, its frequency

approaches ωp/ , the wave dispersion being anoma-
lous. Waves of this type have been discussed in detail in
Section 9. In order for the two surface plasma waves—
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Fig. 8. Density profiles of a thin-walled annular plasma for
which the simulations were performed: (a) a step profile in
the absence of the plasma background, (b) a Gaussian pro-
file in the absence of the plasma background, (c) a step pro-
file in the presence of the plasma background, and (d) a
Gaussian profile in the presence of the plasma background.



164 KUZELEV et al.
2

0 14

ω, 1010 rad/s

kz, cm–1
12108642

4

6

8

10

12

14

16

18

20

22

(c)

1412108642

(d)

0

2

4

6

8

10

12

14

16

18

20

22

(a) (b)

0

Fig. 9. Dispersion curves of the waves in a waveguide with (a, b) a steplike and (c, d) a Gaussian annular plasma in (a, c) an infinitely
strong and (b, d) an infinitely weak external magnetic field in the absence of the background plasma.
low-frequency and high-frequency—to exist simulta-
neously, the plasma in the waveguide should have two
free surfaces (boundaries). In particular, for a high-fre-
quency plasma wave, it is of fundamental importance
that there be the inner boundary r = rp – ∆p/2. In Fig. 9d,
there is no dispersion curve of a high-frequency slow
plasma wave. More precisely, the long-wavelength
electromagnetic branch of this dispersion curve is
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
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Fig. 10. Dispersion curves of the waves in a waveguide with (a, b) a steplike and (c, d) a Gaussian annular plasma in (a, c) an infi-
nitely strong and (b, d) an infinitely weak external magnetic field in the presence of the background plasma.
present, but there is no indication that the wave is
slowed and its dispersion becomes anomalous. Hence,
in a plasma with a Gaussian density profile, a high-fre-
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quency slow plasma wave cannot exist. The reason is
that such a wave is generated by opposite electric
charges induced on the boundaries of the annular
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plasma column [16]. Moreover, the penetration depth
of the wave field into the plasma should exceed the
transverse size of the region where the surface charges
are localized. In the case of a step plasma density pro-
file, the surface charges are localized in an infinitely
thin region. For a Gaussian profile, this is not the case
in the long-wavelength range, while short-wavelength
plasma waves should be considered with allowance for
their strong damping.

The dispersion curves for a waveguide with a thin-
walled annular plasma and a background plasma are
shown in Fig. 10, which demonstrates the same regular
features of the frequency spectrum as those in the pre-
vious figure. A new feature is the appearance of internal
waves in the plasma background in a strong external
magnetic field (see Figs. 10a, 10c, and also Fig. 2) and
the disappearance of a low-frequency slow plasma
wave with a frequency ω < ωmin in a zero external mag-
netic field (see Figs. 10b, 10d, and also Figs. 3, 6).

In our opinion, it is of interest to investigate, in both
its theoretical and practical respects, the problem of
how the dispersion of waves in a plasma waveguide is
influenced by the shape of the plasma density profile.
For a waveguide filled entirely with a plasma, this prob-
lem was investigated in [5] (see also [8]). A much more
complicated case of an annular plasma requires a sepa-
rate study. Note that in this case the Gaussian plasma
density profile is not optimal in the sense that it does not
permit a limiting transition to a step profile. In subse-
quent papers, we will continue our work on the effect of
the shape of the plasma density profile on the dispersion
properties of plasma waveguides, including those in a
finite external magnetic field.
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Abstract—Space-resolved X-ray spectra and electron emission spectra from a micropinch discharge are mea-
sured with the help of tracking detectors. Results from measurements of the discharge optical emission with a
high temporal and spatial resolution are also presented. © 2005 Pleiades Publishing, Inc.
In this paper, we present the results from experimen-
tal studies of micropinch discharges by untraditional
diagnostic methods. The experiments were carried out
in a low-inductance vacuum spark (LIVS) facility (the
parameters and design of the facility are described in
[1]) at discharge currents of up to 150 kA. The working
medium was iron plasma.

The most widespread method for determining the
spectrum of X-ray emission is to measure the extinction
curve [2]. The determination of the emission spectrum
from the extinction curve is a rather complicated prob-
lem and, in some cases, requires prior information
about the spectrum. In the present study, X-ray spectra
were measured with the help of nuclear photoemul-
sions that allowed us to detect X-ray photons from the
tracks of secondary electrons. This method ensures
much higher accuracy than the extinction curve
method; moreover, it allows one to reveal the fine struc-
ture of the spectrum, which cannot be measured by the
filter method.

Another advantage of the tracking method is that it
allows one to measure X-ray spectra from different
regions of the emitting plasma by forming a plasma
image (e.g., with the help of a pinhole camera) in the
detector.

In this study, thick photoemulsions were also used
as tracking detectors in a magnetic analyzer of elec-
trons [3]. To study the particle emission spectra from a
short-lived hot plasma, X-ray films are most frequently
used as particle detectors. The main difficulty in using
these films is that it is necessary to know their absolute
spectral sensitivity, i.e., the dependence of the film
blackening on the number of incident particles per unit
area of the detector surface throughout the entire energy
range under study. For this purpose, fragmentary exper-
imental data on separate spectral intervals and the cal-
culated spectral sensitivities are usually used. This can
introduce substantial errors into the measurement
results.
1063-780X/05/3102- $26.00 0167
The use of a tracking detector, first, increases the
sensitivity of measurements (because, in this case, it is
possible to detect individual electrons); second, it
allows one to determine the energy of the detected elec-
tron from the measured track length; and, third, it sub-
stantially increases the reliability of the calibration of
the spectrometric system as a whole.

To take the advantages of the tracking method, it is
necessary to know the main spectral characteristic of
the nuclear photoemulsion—the instrumental line
shape, i.e., the response of the detector to the flux of
monoenergetic electrons throughout the entire energy
range under study. Since the energy of an individual
electron (either primary or secondary) can be conve-
niently determined by counting the number of grains in
its track [4], the instrumental line shape in our case
describes the distribution of the primary or secondary
electrons over the number of developed grains in the
track, provided that the recorded particles (electrons or
X-ray photons) are monoenergetic.

In our measurements, we used a 200-µm-thick
P-type (relativistic) nuclear photoemulsion without a
substrate. The photoemulsion efficiently detected parti-
cles with a relatively low ionizing power, such as hard
X-ray photons and high-energy electrons.

The instrumental line shape for X-ray emission was
measured in the photon energy range from a few to
160 keV. For this purpose, the photoemulsion was
exposed to the emission of gamma-active isotopes and
the characteristic X-ray emission of foils of different
elements. The photoabsorption of monoenergetic pho-
tons is accompanied by the formation of a series of
monoenergetic groups (lines) of photoelectrons emitted
from the K and L shells of Ag and Br ions that enter into
the composition of the emulsion microcrystals. It was
found that the yield ratio of the different groups of pho-
toelectrons only slightly depends on the energy of
X-ray photons in the energy range of 10–150 keV.
Moreover, in the exposed photoemulsion, the groups of
photoelectrons corresponding to the characteristic Ag
© 2005 Pleiades Publishing, Inc.
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and Br emission, as well as Compton and Auger elec-
trons, were observed.

The results obtained show that the leading role in the
interaction of X-ray emission in the photon energy
range of hν > 10 keV (which is of interest to us) with a
photoemulsion is played by photoabsorption. The con-
tribution from Compton absorption turns out to be neg-
ligibly small. The Auger electrons leave tracks of a few
grains in a nuclear photoemulsion; in this case the
beginning of the track coincides with the beginning of
the primary photoelectron track. Such an elongated
track can be erroneously interpreted as the track of an
electron with a somewhat higher energy.

The part of the response function that corresponds to
photoelectrons can be represented in the form

(1)

where n is the number of the developed grains in a sec-
ondary electron track; (E) is the position of the most
intense photopeak for secondary electrons with an
energy E; σ = 1.5 is the rms deviation; A is the normal-
izing coefficient; and ∆n1 = 3 and ∆n2 = 6 are the shifts
of the second and third photopeaks relative to the most
intense photopeak, respectively.

The photoabsorption of monoenergetic X-ray pho-
tons with an energy Eph is accompanied by the genera-
tion of photoelectrons from the K and L shells of Ag and
Br atoms with energies

(2)

where EK, L is the electron binding energy at the K or L
shell (EK(Ag) = 25.5 keV, EK(Br) = 13.5 keV, and EL(Ag) =
3.5 keV) [5].

To determine the instrumental line shape with
respect to electrons, the photoemulsion was irradiated
by electrons with energies 40, 60, 80, and 100 keV. The
distributions of the tracks of primary electrons with the
above energies over the number of grains were approx-
imated by a Gaussian distribution, and the position of
the maximum of the distribution for a given electron
energy and the distribution width (which determines
the energy resolution) were then found. The results
obtained from the photoelectron tracks and the primary
electron tracks agree well with one another. This allows
us to derive a general calibration relationship between
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the electron energy and the number of grains in an elec-
tron track:

(3)

where ω = 1.67 keV/grain is the energy spent by an
electron on the formation of a developed grain, n0 = 17,
and E0 = 28.5 (the energy is measured in kiloelectron-
volts) [6].

The procedure of recovering the energy distribu-
tions of the electrons and X-ray photons from the mea-
sured instrumental electron spectra was described in
detail in [7, 8]. In the present study, we used a some-
what simpler procedure of recovering the spectrum of
primary electrons. The experimental distribution of the
number of tracks over the number of grains in them,
N(n), was first determined. The energy range of the
recorded electrons (from Emin to Emax) was then divided
into intervals ∆Ei , and the parameter

(4)

was calculated for each interval. Thereafter, the set of
the algebraic equations

(5)

was solved. Here, m < nmax – nmin is the number of the
above spectral intervals and ∆Ni is the sought number of
primary electrons within the energy interval ∆Ei. This
set allowed us to find the linear combination ∆Ni corre-
sponding to the minimal deviation of the calculated dis-
tribution of the number of tracks over the number of
grains in them from the experimentally determined
value of N(n). The obtained spectrum of primary elec-
trons, which had the form of a histogram

(6)

was then approximated by a continuous function. The
error in determining the energy spectrum was statistical
in character and was governed by the number of pri-
mary electrons in the above spectral intervals.

X-ray emission from different regions of a
micropinch discharge was recorded on a nuclear photo-
emulsion using a pinhole camera with a 100-µm-diam-
eter hole covered by a 100-µm beryllium foil. An image
of the radiating plasma was simultaneously produced
on an X-ray film with the help of a similar pinhole cam-
era. The extinction curve of the X-ray emission from of
the discharge plasma was measured with a multichan-
nel scintillation spectrometer [9], and the energy spec-
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trum was then determined by the method of effective
energies [10].

X-ray pinhole images vary from shot to shot; how-
ever, they always contain three characteristic spatially
separated regions (Fig. 1): a hot spot (micropinch), the
electrode plasma, and the surface of the external elec-
trode (cathode). Figure 2 shows the measured emission
spectra from different regions of the same discharge.

Let us note the main features of the measured spec-
tra. The X-ray spectra have a characteristic inflection in
the energy range hν ≈ 10–15 keV. For comparison, the
dotted line shows the thermal spectra with temperatures
of 3 and 10 keV. In the photon energy range of 10–
30 keV, the shape of the spectrum is approximately the
same for all of the emitting regions of the discharge.
This means that the energy spectra of the electrons
accelerated in the micropinch plasma and electrode
plasma are similar to the spectrum of the electrons
bombarding the electrode surface.

Figure 2b shows the integrated (over the entire dis-
charge gap) X-ray spectrum restored from the extinc-
tion curve measured with the help of a scintillation
spectrometer. This spectrum is very similar to the spec-
trum obtained with the help of a nuclear photoemul-
sion.

The measured X-ray spectrum lies in the photon
energy range hν = 10–30 keV. At lower energies, the
accuracy of measurements with the help of a nuclear
photoemulsion is substantially aggravated. On the side
of higher energies (at least up to 300–400 keV), there
are no fundamental restrictions on the spectral mea-
surements. In this case, the 30-keV upper bound was
determined by the exposure conditions of the nuclear
photoemulsion. These conditions (the material and
thickness of the foil, the hole diameter of the pinhole
camera, and the distance between the source and detec-

3

2 1

Fig. 1. X-ray (hν > 3 keV) pinhole image of the discharge
region: (1) hot spot, (2) electrode plasma, and (3) electrode
surface.
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tor) were, in turn, determined by the desire, on the one
hand, to compare the results obtained by the nuclear
photoemulsion and scintillation spectrometer methods
and, on the other hand, to facilitate the process of
adjusting the recording system (i.e., to provide the pos-
sibility of comparing the structure produced in the
nuclear photoemulsion with images of the emitting

1
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dN/d(hν), arb. units

1
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2

1
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1
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2

3

4

5

2

(b)

(‡)

Fig. 2. X-ray spectra (a) measured with the help of a nuclear
photoemulsion for different regions of a micropinch dis-
charge (the triangles and circles refer to the hot spot and the
electrode surface, respectively) and (b) recovered from the
extinction curve obtained by the attenuation filter method
with the help of a scintillation spectrometer. Segments 1 and
2 of the fitting dotted lines correspond to electron tempera-
tures Te of ≈3 and ≈10 keV, respectively.
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plasma produced on an X-ray film in each discharge in
the same spectral range). Under chosen exposure con-
ditions, most of the photoemulsion sensing area was
occupied by the tracks of electrons with relatively low
energies and it was impossible to analyze and measure
the parameters of the longer tracks of high-energy elec-
trons.

The spectrum of the fast electrons emitted from the
discharge plasma was measured with the help of a com-
pact permanent-magnet analyzer and a nuclear photo-
emulsion [3]. The entrance slit of the analyzer was
placed coaxially with an orifice in the external elec-
trode in the immediate vicinity of it. The exposure was
produced in a single-shot mode.

Figure 3 shows two typical electron spectra in the
energy range of 50–80 keV. The difference between
these spectra indicates that there is a random shot-to-
shot scatter in the acceleration conditions in the
micropinch plasma. The spectra are nonmonotonic,
which is probably due to either the specific dynamics of
the acceleration process or the presence of several dif-
ferent acceleration mechanisms. The shapes of the
spectra agree qualitatively with the data from [11].

In order to confirm that the time evolution of the
acceleration processes in the discharge is determined
by the process of micropinching, we also recorded
X-ray emission in the photon energy range of hν >

1

0

dN/dε, arb. units

2

3

4

5

80706050
ε, keV

Fig. 3. Characteristic electron spectra obtained in two dif-
ferent discharges.

Table

Element Ag Br C D N

Content, g/cm3 1.83 1.36 0.28 0.28 0.09
3 keV and electron emission in the energy range of 50–
80 keV by scintillation detectors with a time resolution
of no worse than 10 ns [12]. The X-ray and electron
beams were spatially separated into two synchronized
recording channels with the help of a magnetic analyzer.
Our experiments unambiguously show that the forma-
tion of a micropinch region [13] is always accompanied
by the generation of intense high-energy electron
beams. It was earlier shown that, in a micropinch dis-
charge, there are also electron acceleration mechanisms
that are not related to the micropinch formation [1].

The method for recovering the X-ray spectrum from
the measured distribution of the ranges of the second-
ary electrons generated in the interaction of X-ray pho-
tons with a nuclear photoemulsion allows one to record
X-ray photons with energies of hν ≥ 5 keV [5]. For pho-
tons with energies of hν ≤ 5 keV, the electron tracks
consist of only one or two developed grains; as a result,
the energy spectrum can hardly be determined from the
distribution of tracks over the number of grains [7].

In the present study, X-ray spectra in the photon
energy range of 1–20 keV were measured by the filter
method (see [14] for details). In our case, the nuclear
emulsion itself served as a filter. This allowed us to
obtain information about the spatial structure of X-ray
sources.

The element composition of the 50-µm-thick P-type
photoemulsion used the this series of experiments is
given in the table.

To measure the distribution of the recorded photons
over the photoemulsion depth, the photoemulsion was
divided into identical 8.8-µm-thick horizontal layers
with an area of 300 µm2. The number of photons passed
through each layer was determined from the number of
the developed grains. Using these data, we constructed
the extinction curves from which the X-ray spectrum
from the discharge plasma was evaluated. The plasma
emission transmitted through the entrance window cov-
ered by a 100-µm beryllium foil formed images in the
nuclear photoemulsion with the help of five identical
pinhole cameras with 350-µm-diameter holes made in
a 180-µm lead foil and covered by 200-, 400-, 600-,
800-, and 1000-µm beryllium foils. Among five images
obtained with different foils, we chose one image in the
upper layer of which the number of tracks was about
100. The extinction curve of X-ray emission was then
constructed for different regions of the plasma image
(the hot spot, the electrode plasma, and the electrode
surface).

From the measured extinction curves, we deter-
mined the plasma temperature Te. It was assumed that
the emission spectrum was thermal and was completely
determined by one parameter—the temperature Te:

(7)
dN
dE
------- E

Te

-----– 
  , Eexp∼ hν .=
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The choice of a one-parameter model of the spec-
trum is based on our earlier results on the recording of
X-ray emission from the plasma of a micropinch dis-
charge [13, 15]. These results show that such an
approach is quite justified in the photon energy range of
1–20 keV.

The temperature Te was determined by minimizing
the deviation S of the measured extinction curve from
that calculated for the plasma emission spectrum with a
temperature Te:

(8)

(9)

(10)

where Ni is the total number of tracks in the ith layer

(signal + background),  is the number of back-
ground tracks in the ith layer, and f is the number of
points in the extinction curve (the superscript “ex” and
“th” refer to experiment and calculation, respectively).

The expected number of tracks in the ith layer was
calculated from the following formulas:

(11)

(12)

(13)

(14)

where N0 is the total number of the photons that are
emitted into the solid angle at which the working area
of the photoemulsion is seen; µj(E), ρj(E), and xj are the
photoeffect cross section, specific density, and effective
thickness of the entrance window and foil for the ele-
ments that enter into the composition of the entrance
window and foil; µL(E) and ρL(E) are the photoeffect
cross section and specific density of the photoemulsion
components; and K0(E) and K(E) are the fractions of the
photons that have not interacted with the entrance win-
dow, the foil, and the photoemulsion. The data on the
photoeffect cross section µE were taken from [16].

The summation over k was performed in the elec-
tron energy range of 1–20 keV. The extension of the
energy range toward smaller energies does not influ-

ence the calculated values of (E), since the low-
energy photons are completely absorbed in the entrance
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window and foil. The extension of the energy range
toward higher energies also does not influence the
results of calculations, since the fraction of high-energy
photons in the emission spectrum is small. The main
contribution comes from photons with energies of 3–
10 keV.

To find the error in determining Te, we performed a

series of calculations with different sets of Ni and 
obtained by processing different regions of the image of
the radiating plasma within the same discharge.

The size of the micropinch region was estimated by
measuring the width of the edge fuzziness of the
micropinch image. We observed two groups of
micropinches with sizes of ≤5 µm and ≈150 µm and
temperatures of 1.8 ± 0.3 and 1.1 ± 0.3 keV, respec-
tively. The characteristic electron temperature of the
plasma was 2.4 ± 0.3 keV at the electrode surface and
1.3 ± 0.3 keV near the electrode (see Fig. 4). Note that
the effective temperature characterizes the energy of
fast electrons bombarding the cold peripheral plasma.

The available literature data show that the optical
and X-ray emissions from a micropinch plasma corre-
late well with one another [17]. This led us to the idea
of investigating the spatiotemporal characteristics of
the visible and near UV emission from a micropinch
discharge by using a small-size FÉR-7 streak camera.
An apparent advantage of this device (in addition to the
nanosecond time resolution) is that it can operate in a
continuous mode (in contrast, e.g., to photography with
pulsed laser illumination).

An optical scheme for investigating the visible
plasma glow is shown in Fig. 5.

The radiation of adjusting He–Ne laser 1 (λ =
633 nm) with an initial beam diameter of ~3 mm was
expanded to a diameter of ~15 mm by two-lens
expander 2; as a result, interelectrode gap 3 was
entirely covered by the laser beam. Lens 4 and dia-
phragm 5 served to cut off the scattered radiation. Two-
prism system 7 allowed one to obtain 90°-rotated lon-
gitudinal slit images of the radiating plasma at different
distances from the discharge axis. The necessity of the
image rotation was related to the vertical orientation of
the entrance slit of the streak camera. Otherwise, it
would be necessary to rotate the streak camera itself by
90° in the vertical plane, which would obviously be
inconvenient from the operational standpoint. Slit
images were cut off by vertical slit 8 and, after passing
through lens 9, which magnified the slit image by a fac-
tor of about 4 in order to improve the spatial resolution,
got onto the entrance of the FÉR-7 streak camera. By
shifting lens system 7 in the horizontal plane, it was
possible to either vary the distance from the discharge
axis when obtaining longitudinal streak images of the
plasma glow in different cross sections parallel to the
discharge axis or choose the position of the transverse
cross section between the anode and cathode when
obtaining transverse streak images.

Ni
b
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Fig. 4. Measured (closed circles) and calculated (open circles) extinction curves of a nuclear photoemulsion for X-ray emission
from different discharge regions.
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Fig. 5. Schematics of (a) the optical system for studying the plasma emission with the help of an FÉR-7 streak camera: (1) adjusting
He–Ne laser (λ = 633 nm), (2) two-lens expander, (3) electrode system of a micropinch discharge, (4) lens (F = 500 mm), (5) dia-
phragm, (6) optical bench, (7) two-prism system, (8) 0.5-mm slit, (9) lens (F = 500 mm), and (10) FÉR-7 and (b) the system for
laser shadowgraphy of LIVS discharges: (1) ILGI-503 nitrogen laser (λ = 337 nm), (2) two-lens expander, (3) electrode system of
a micropinch discharge, (4) quartz lens (F = 500 mm), (5) diaphragm, (6) interference filter (λ = 337 ± 5 nm), and (7) photographic
camera.
An analysis of the streak images obtained with a slit
oriented along the discharge axis allowed us to study
the spatiotemporal evolution of the plasma glow
throughout the entire interelectrode gap (Fig. 6). At a
discharge current amplitude of Imax = 150 kA, the pat-
tern of the processes occurring at the discharge axis and
near it (up to a radius of ~0.75 mm) is fairly reproduc-
ible: the brightest plasma glow is observed within the
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
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time intervals 1.0–1.2, 1.4–1.8, and 2.0–2.4 µs at a dis-
tance of 2.75–3.85 mm from the cathode surface (the
first two intervals are marked in Fig. 6 as regions B and
C, respectively). In region C, at a distance of about
3.30 mm from the cathode surface, a fine double-hump
temporal structure of the plasma glow with a time inter-
val of 40–60 ns between the humps is observed. This
structure disappears as either of the electrodes is
approached. Moreover, regions B and C are displaced
toward both the cathode and the anode with initial
velocities of V0 ≈ 5 × 106 cm/s and V0 ≈ 3.5 × 106 cm/s,
respectively. The propagation velocities of these
regions decrease as the electrodes are approached. In
addition to the axial propagation, we also observed the
radial propagation of the above glow regions with
velocities of V0 ≈ 1.5 × 106 cm/s in the middle of the
gap and near the cathode and V0 ≈ 4 × 106 cm/s near the
anode.

In the electrode regions, the character of the plasma
glow is nearly the same as in the middle of the gap, but
its brightness is much lower.

At distances from the discharge axis larger than
1.0 mm, the glow pattern described above is smeared
out: regions B and C merge together and form a
smoothly varying glow in the time interval 1.5–3.7 µs,
on the background of which spikes with a duration
300–400 ns can spontaneously arise.

An interesting result is the observation of a fine dou-
ble-hump temporal structure of the plasma glow at the
discharge axis (with a time interval of ~50 ns between
the humps) at the instant when the discharge current
reaches its first maximum. This structure disappears
with increasing distance from the place where the con-
striction develops and the micropinch forms.

Streak images obtained with a slit oriented perpen-
dicularly to discharge axis give an idea of the dynamics
of the radial distribution of the plasma glow. An analy-
sis of these streak images show that, in the cross section
in which the constriction develops, the compression of
the plasma near the instant at which the discharge cur-
rent reaches its first maximum proceeds in two stages
divided by a time interval of ~70 ns.

To obtain information about the spatiotemporal
plasma dynamic in the interelectrode gap of the LIVS
facility, we developed a system for optical shadowgra-
phy (Fig. 5b).

The radiation of nitrogen laser 1 with an initial beam
diameter of ~3 mm was expanded with the help of
expander 2 consisting of two quartz lenses with focal
lengths of 50 and 250 mm (the positions of the focal
points of the lenses coincided with one another). As a
result, the diameter of the laser beam increased by a
factor of about 5, which was sufficient to entirely cover
interelectrode gap 3. The radiation passed through the
plasma was gathered by quartz lens 4, in the focal point
of which diaphragm 5 was placed. The diaphragm com-
pletely transmitted the radiation that was not deflected
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
by the plasma. By varying the diameter of the dia-
phragm orifice, it was possible to substantially reduce
the parasitic effect of the spontaneous plasma emission.
For this purpose, we also used interference filter 6,
tuned to the laser wavelength (λ = 337 ± 5 nm). The
images of the discharge region were recorded on the
MIKRAT 300 film with the help of a ZENIT photo-
graphic camera operating in the released-shutter mode.
By choosing the optimal distances between the ele-
ments of the optical system and by varying the diameter
of the diaphragm orifice 5, we achieved a contrast
shadow pattern with a minimal background illumina-
tion from the spontaneous plasma emission.

The LIVS discharge was photographed starting
from the instant of discharge initiation up to the stage
of plasma decay. The amplitude of the discharge cur-
rent was varied in the range Imax = 40–150 kA. During
each discharge, one shadow image was taken at a defi-
nite instant. To increase the reliability of the results
obtained (taking into account variations in the plasma
behavior in each discharge), the shadow image statis-
tics (over about five images) was gathered for the above
instant.

Images produced by the laser radiation in the
absence of a discharge and by the background plasma
emission are presented in Figs. 7a and 7b, respectively.
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Fig. 6. Densitograms of streak images obtained with a
detector slit oriented along the discharge: (A) cross section
corresponding to the region in which the constriction devel-
ops and the micropinch forms, (B) contraction of the cur-
rent-carrying shell toward the axis, and (C) formation of the
constriction. The distance from the cathode is plotted on the
vertical axis.
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Fig. 7. Series of shadow images of the LIVS discharge region at Imax = 150 kA.
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By the instant τ = 1.1 µs, which corresponds to the time
interval between the instant of discharge initiation and
the instant of triggering the nitrogen laser, localized
plasma structures consisting of the ionized vapor of the
electrode material appear near the electrodes (Fig. 7d):
a round “cap” of width 0.5 mm near the anode and a
similar structure with a diameter and width of about
4 mm near the cathode. The propagation of the elec-
trode plasmas toward one another (Fig. 7e) with veloc-
ities of ~106 cm/s results in their collision in the central
region of the interelectrode gap at the instant τ = 1.5 µs
(Fig. 7f), their compression toward the discharge axis
(Fig. 7g), and the formation of a plasma column with a
diameter of about 1 mm (Figs. 7h, 7i). The column is
subject to the onset of sausage instability (the m = 0
mode) over a time interval τ = 1.8–2.0 µs near the max-
imum of the discharge current. In some shots, the onset
of kink instability (the m = 1 mode) was also observed.
Starting from τ = 2.1–2.2 µs (Figs. 7j, 7k), the plasma
channel expands with a velocity of ~106 cm/s. By the
instant τ ≈ 2.6 µs, a funnel-shaped plasma structure
expanding toward the cathode is formed in the dis-
charge gap (Figs. 7l, 7m, 7n, 7o). This structure disap-
pears by the end of the first half-period of the discharge
current, τ = 4.0 µs (Fig. 7p). Thereafter, there are no
distinct plasma structures with appreciable electron
density gradients in the discharge region (Fig. 7q).

On the whole, shadow images of the interelectrode
gap taken at different energies deposited in the dis-
charge are qualitatively the same as those obtained at
the maximum amplitude of the discharge current
(Imax = 150 kA). A decrease in the current amplitude is
accompanied by the shrinking of the region with appre-
ciable (for probing radiation) electron density gradi-
ents: this region is mainly concentrated near the dis-
charge axis.

A comparative analysis of shadow images of the dis-
charge gap and streak images of the emitting plasma of
a LIVS discharge allows us to draw the following con-
clusions:

At the axis of the discharge and near it, region B cor-
responds to the compression of the current-carrying
shell toward the axis and region C corresponds to the
onset of the sausage instability of the plasma column,
which results in the formation of micropinches (this
stage manifests itself in the appearance of a fine double-
hump temporal structure of the plasma glow). Thereaf-
ter, the plasma in the interelectrode gap decays. The
fact that the above regions are smeared out as the dis-
tance from the discharge axis increases may be related
to the propagation of the different plasma regions in the
axial and radial directions with velocities of ~106 cm/s.
The same (on the order of magnitude) plasma propaga-
tion velocities in both the longitudinal and transverse
(with respect to the discharge axis) directions were
recorded by particle diagnostics in [18].
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(i) Direct evidence that there are two successive
compressions of the constriction region in a micropinch
discharge (as predicted by the model of radiative com-
pression for currents above the critical one [19]) has
been obtained for the first time in experiments with a
continuous recording of plasma emission with high
temporal and spatial resolution. Note that, in streak
images, the plasma surrounding the micropinch (rather
than the micropinch itself) is probably observed. Previ-
ously, the hypothesis about the presence of two com-
pressions (a slow compression followed with a fast one)
have been invoked to explain the discrepancy among
the results from different diagnostics: multiframe pho-
tographing of the micropinch plasma with the help of
pulsed laser illumination, measurements of the deriva-
tive of the discharge current, and recording of the X-ray
emission from multiply charged ions [20]. In accor-
dance with the above hypothesis, the first two diagnos-
tics allow one to observe the first compression, while
the latter allows one to observe the formation of a hot
dense plasma, which is a consequence of the second
compression.

In this study, it has been found that the development
of a constriction in the plasma column results in the for-
mation of a contracted glowing region that propagates
along the discharge axis toward both the cathode and
anode with an initial velocity of ~106 cm/s. The propa-
gation velocity of the glowing region decreases as the
electrodes are approached. Such a pattern can be inter-
preted as the plasma outflow from the constriction
region or the formation of a shock wave in this region
[21].

(ii) Space-resolved measurements of the X-ray
spectra from the three regions of a micropinch dis-
charge (the micropinch itself, the electrode plasma, and
the electrode surface) with the help of tracking detec-
tors in the photon energy range of 10–30 keV have
shown that these spectra are clearly nonequilibrium and
closely coincide with one another. This indicates that
the energy spectra of the accelerated electrons in the
micropinch plasma and electrode plasma are similar to
the spectra of the electrons bombarding the electrode
surface. Simultaneous measurements of X-ray emis-
sion in the photon energy range of hν > 3 keV and elec-
tron emission in the electron energy range of 50–
80 keV in the axial direction with the help of scintilla-
tion detectors have shown that the formation of a
micropinch is accompanied by the generation of high-
energy electrons. In other words, it is shown experi-
mentally for the first time that the region where the
micropinch forms is a source of superthermal electrons
propagating in the axial direction and bombarding the
electrode plasma and electrode surface.

Measurements of the spectrum of high-energy elec-
trons with the help of a magnetic analyzer and tracking
detectors have shown that the spectrum is nonmono-
tonic. This is probably due to either the specific dynam-
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ics of the micropinch plasma or the presence of several
different acceleration mechanisms. The reliability of
the previous measurements of the spectra of high-
energy electrons with the help of a photofilm in the
multipulse exposure mode has been confirmed. There-
fore, our results support the conclusion that the high-
energy electrons in a micropinch discharge in the vapor
of high-Z elements are generated in electrostatic fields
and that the electron emission spectrum is threshold in
character; i.e., it changes substantially when passing
from subcritical to supercritical currents.

(iii) Space-resolved measurements of X-ray spectra
in the photon energy range of hν ≈ 1–20 keV by the fil-
ter method and with the help of tracking detectors have
made it possible to estimate not only the electron tem-
perature in the micropinch but also its size. Two groups
of micropinches were observed with characteristic
sizes of ≤5 µm and ≈150 µm and temperatures of 1.8 ±
0.3 and 1.1 ± 0.3 keV, respectively. According to the
theoretical model [22], the regime of strong radiative
compression terminates when the plasma is com-
pressed to the radius (in cm)

(15)

where the discharge current I is in MA and the plasma
electron temperature Te is in keV. At a current of
150 kA, temperatures of 1.8 keV and 1.1 keV corre-
spond to the minimum possible micropinch sizes (i.e.,
the sizes at which radiative compression terminates) of
~1 µm and ~15 µm, respectively. A micropinch size of
~150 µm corresponds to the so-called first compres-
sion. Due to an increase in radiative losses, the first
compression is followed by the second compression
[19]. The first of the recorded micropinches is appar-
ently formed in the regime of strong radiative compres-
sion, whereas the second micropinch is formed in the
regime of the spontaneous heating of the pinch plasma
between the first and the second compressions because
of a decrease in the number of charged particles per unit
length and the development of anomalous plasma resis-
tivity in the constriction region [23].

The above theoretical model was previously used to
explain the specific features of the X-ray spectra of
multicharged ions measured in different micropinch
experiments by the method of high-resolution diffrac-
tion spectroscopy. However, in those studies, the effect
of polarization of the emitted radiation, which is now
being actively discussed in the literature (see, e.g.,
[24]), was not taken into account; this can throw doubt
on the correctness of the interpretation of the data
obtained. Thus, the experimentally observed relation

between the limiting values of  and rmin in a
micropinch with allowance for the Bennet equilibrium
condition

(16)

r 10
9
I

2
/Te

3.5
,=

Te
max

ni

µ0I
2

8π2
Te 1 z+( )r

2
------------------------------------=
(where ni is the ion density of the micropinch plasma
and z is the average degree of ionization) can be
regarded as a first direct confirmation of the fact that the
higher the micropinch temperature, the higher the
micropinch plasma density. For the two observed
micropinches, the plasma densities differ by approxi-
mately three orders of magnitude; this should inevita-
bly manifest itself in the line emission spectrum from
multiply charged ions [25].

REFERENCES

1. M. A. Gulin, A. N. Dolgov, N. N. Kirichenko, and
A. S. Savelov, Zh. Éksp. Teor. Fiz. 108, 1309 (1995)
[JETP 81, 719 (1995)].

2. N. G. Basov, Yu. A. Zakharenkov, N. N. Zorev, et al.,
Itogi Nauki Tekh., Ser. Radiotekhnika 26 (1) (1982).

3. V. V. Kushin, V. K. Lyapidevskiœ, N. V. Maslennikova,
and G. Kh. Salakhutdinov, in Proceedings of the Second
All-Union School on Solid Tracking Detectors and Auto-
radiography, Odessa, 1989, Abstracts of Papers, p. 44.

4. G. I. Kazarinov, V. V. Kushin, V. K. Lyapidevskiœ, and
I. V. Posysaeva, Prib. Tekh. Éksp., No. 4, 211 (1980).

5. N. A. Klyachin, V. V. Kushin, V. K. Lyapidevskiœ, and
N. B. Khokhlov, in Diagnostic Methods in Plasma Stud-
ies (Énergoatomizdat, Moscow, 1983), p. 59.

6. V. V. Averkiev, M. A. Gulin, A. N. Dolgov, et al., Preprint
No. 014-90 (Moscow Engineering Physics Institute,
Moscow, 1990).

7. V. Ya. Arsenin, S. M. Knopova, V. V. Kushin, et al., in
Hardware and Software for Automatic Systems of
Nuclear Physics Experiments (Énergoatomizdat, Mos-
cow, 1982), p. 25.

8. V. V. Kushin, V. K. Lyapidevskiœ, and L. B. Samoœlov, in
Experimental Methods in Medium- and Low-Energy
Nuclear Physics (Énergoatomizdat, Moscow, 1986),
p. 3.

9. V. V. Averkiev, A. N. Dolgov, V. K. Lyapidevskiœ, et al.,
Prib. Tekh. Éksp., No. 2, 173 (1991).

10. S. A. Zverev, M. P. Kalashnikov, V. K. Lyapidevskiœ,
et al., Preprint No. 96 (Lebedev Physical Institute,
USSR Acad. Sci., Moscow, 1980).

11. A. A. Gorbunov, M. A. Gulin, A. N. Dolgov, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 50, 320 (1989) [JETP Lett.
50, 355 (1989)].

12. V. V. Averkiev, A. N. Dolgov, V. A. Kaplin, et al., Prib.
Tekh. Éksp., No. 5, 158 (1992).

13. V. V. Averkiev, A. N. Dolgov, V. K. Lyapidevskiœ, et al.,
Fiz. Plazmy 18, 724 (1992) [Sov. J. Plasma Phys. 18, 374
(1992)].

14. M. A. Gulin, A. N. Dolgov, N. N. Kirichenko, et al., Prib.
Tekh. Éksp., No. 6, 82 (1996).

15. A. N. Dolgov, N. N. Kirichenko, V. K. Lyapidevskiœ,
et al., Fiz. Plazmy 19, 97 (1993) [Plasma Phys. Rep. 19,
50 (1993)].

16. M. A. Blokhin and N. G. Shveœtser, Handbook of X-ray
Spectroscopy (Nauka, Moscow, 1982).

17. H. Chuaqui, M. Favre, E. S. Wyndham, et al., Phys. Plas-
mas 2, 3910 (1995).
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005



STUDIES OF THE STRUCTURE AND DYNAMICS 177
18. A. N. Dolgov, D. E. Prokhorovich, and A. S. Savelov, in
Proceedings of the XXX Zvenigorod Conference on
Plasma Physics, Zvenigorod, 2003, p. 126.

19. V. V. Vikhrev, V. V. Ivanov, K. N. Koshelev, and
Yu. V. Sidel’nikov, Dokl. Akad. Nauk SSSR 262, 1361
(1982) [Sov. Phys. Dokl. 27, 153 (1982)].

20. V. A. Veretennikov, S. N. Polukhin, O. G. Semenov, and
Yu. V. Sidel’nikov, Fiz. Plazmy 7, 1199 (1981) [Sov. J.
Plasma Phys. 7, 656 (1981)]; V. A. Veretennikov,
A. I. Isakov, O. N. Krokhin, et al., Preprint No. 59 (Leb-
edev Physical Institute, USSR Acad. Sci., 1983).

21. A. N. Dolgov, Fiz. Plazmy 22, 629 (1996) [Plasma Phys.
Rep. 22, 569 (1996)].
PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
22. E. V. Aglitskiœ, P. S. Antsiferov, K. N. Koshelev, and
A. M. Panin, Fiz. Plazmy 12, 1184 (1986) [Sov. J.
Plasma Phys. 12, 683 (1986)].

23. P. V. Sasorov, Fiz. Plazmy 18, 275 (1992) [Sov. J. Plasma
Phys. 18, 143 (1992)].

24. E. O. Baronova, V. V. Vikhrev, A. E. Gureœ, et al., Fiz.
Plazmy 24, 25 (1998) [Plasma Phys. Rep. 24, 21 (1998)].

25. K. N. Koshelev, Yu. V. Sidel’nikov, V. V. Vikhrev, and
V. V. Ivanov, in Spectroscopy of Hot Multicharged-Ion
Plasma (Nauka, Moscow, 1991), p. 163.

Translated by A.S. Sakharov



  

Plasma Physics Reports, Vol. 31, No. 2, 2005, pp. 178–183. Translated from Fizika Plazmy, Vol. 31, No. 2, 2005, pp. 203–208.
Original Russian Text Copyright © 2005 by Bychenkov, Kovalev.

                                                                         

NONLINEAR
PHENOMENA

         
Coulomb Explosion in a Cluster Plasma
V. Yu. Bychenkov* and V. F. Kovalev**

*Lebedev Institute of Physics, Russian Academy of Sciences, Leninskiœ pr. 53, Moscow, 117924 Russia
e-mail: bychenk@sci.lebedev.ru

**Institute for Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, Moscow, 125047 Russia
e-mail: kovalev@imamod.ru

Received April 22, 2004; in final form, June 11, 2004

Abstract—The energy spectra of particles in a cluster plasma produced during the Coulomb explosion of
spherically symmetric clusters with an arbitrary initial density distribution are investigated. A relationship is
found between the energy spectrum of the ions and the density profile of the atoms in the cluster. © 2005 Ple-
iades Publishing, Inc.
At present, high-intensity ultrashort laser pulses are
widely used in experiments on the interaction of high-
power laser radiation with cluster plasmas [1]. A char-
acteristic feature of cluster plasma is its ability to
strongly (almost entirely) absorb laser radiation [2].
This property makes it possible to build high-brightness
X-ray sources [3]. Moreover, the expansion of clusters
results in ion acceleration to high energies [1, 4–6]. In
the case of deuteron clusters, ion–ion collisions pro-
duce fusion neutrons [7]; this provides an opportunity
to create subnanosecond neutron sources for use in
materials science, defectoscopy, etc.

If the laser field is strong enough, it almost instanta-
neously knocks electrons out of a cluster, thereby creat-
ing conditions for the subsequent Coulomb explosion
of a positively charged microplasma. The ions of the
exploding clusters are accelerated to high energies and
give rise to a macroplasma with a high effective ion
temperature. So far, the Coulomb explosion of a cluster
and the spectrum of the accelerated ions have been
described in the simplest “ideal cluster” model, in
which the exploding cluster is treated as an exploding
homogeneous spherical bunch with a given initial
radius rc and which predicts a square-root ion energy

spectrum  with a sharp energy cutoff at the maximal

energy εmax ∝   [5, 6, 8]. Similar energy spectra were
obtained in three-dimensional particle-in-cell simula-
tions [5] and also were observed in experiments on the
interaction of high-power laser radiation with cluster
targets [9]. At the same time, in some experiments, ion
energy spectra were found to differ from the above
square-root spectrum with a sharp energy cutoff. This
difference may be attributed to, e.g., the radial nonuni-
formity of the ion density in a cluster or to the initial
spread in the cluster radii. Such a nonuniformity can
lead to a smoothing of the energy spectrum of the accel-
erated ions (see [8, 9] for details). Currently, there are
no reliable data on the relation of the initial density dis-

ε
rc

2
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tribution in the clusters to the methods for producing
them and to the parameters of the laser prepulse, which
virtually always precedes the main laser pulse in actual
experiments and affects the initial cluster density pro-
file. In the present paper, we develop a theory of cluster
plasma for clusters with an arbitrary initial ion density
distribution and establish the relation between this dis-
tribution and the ion energy spectrum. Obviously, the
ideal cluster model implies that the atomic density in a
cluster is uniform and that the contrast of the laser pulse
intensity is very high. The latter requirement is needed
in order to prevent the cluster from expanding under the
action of the prepulse, but it is hard to achieve in prac-
tice [10]. In connection with this, Kaplan et al. [11]
investigated the expansion dynamics of an individual
cluster with an initially nonuniform density in terms of
the test ion model. In cluster plasma theory, however,
the question of how to describe the ion energy spectrum
as a function of the initial ion density profile has
remained open. A discussion of this question is the
main objective of our paper.

Let us consider a cluster affected by a high-power
laser pulse such that the kinetic energy mc2a2/2
acquired by an electron in a strong laser field is much
higher than the energy ZNe2/rc of its Coulomb interac-
tion with the cluster and the amplitude max{1, a}(c/ω0)
of its oscillations is much larger than the characteristic
cluster radius rc. Here, m and e are the mass and charge
of an electron, c is the speed of light, a = eE0/(mω0c) is
the dimensionless amplitude of the vector potential of
the electromagnetic field with the electric field strength
E0 and frequency ω0, Z is the ion charge number, and N
is the number of atoms in the cluster. We assume that
the laser field is strong enough to ionize the cluster and
to knock the electrons out of it. The subsequent Cou-
lomb explosion will occur as an expansion of the clus-
ter into vacuum, provided that the pressure of the sur-
rounding electron gas nemc2a2/2 is much lower than the
© 2005 Pleiades Publishing, Inc.
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characteristic pressure e2Z2Nn/rc of the expanding clus-
ter. Here, ne is the electron density in the intercluster
space and n is the atomic density in the cluster. In what
follows, we will assume that these conditions are met
and will study the parameters of the plasma produced
during Coulomb explosions of spherically symmetric
clusters.

We describe the expansion dynamics of an individ-
ual spherically symmetric cluster under the action of
Coulomb repulsive forces by the one-dimensional col-
lisionless cold hydrodynamic equations for the ions and
Poisson’s equation for the electrostatic field E:

(1)

where M is the mass of an ion and u is the radial expan-
sion velocity of the cluster. This set of equations is well
known in the theory of charged plasma (see, e.g., [12]).
At the same time, an analogous set of equations in
which the right-hand side of Poisson’s equation has the
opposite sign describes the dynamics of particles mov-
ing in a self-consistent gravitational field (see, e.g.,
[13], Section 81).

The initial conditions for Eqs. (1) specify the spatial
profiles of the ion density and velocity, n |t = 0 = nc(r) and
u |t = 0 = U(r) (and, consequently, of the electric field

E |t = 0 = (4πZe/r2) ), at the time t = 0.

The  boundary conditions for the electric field imply
that it vanishes at r = 0 and decreases to zero at infinity,
r  ∞.

With such initial conditions, Eqs. (1) can be solved
analytically in Lagrangian variables [13, 14] or in
hodograph variables [15]; they can also be solved by
using the energy and charge conservation laws [11, 16].
For initially immobile ions (U = 0), the solution to
Eqs. (1) has the form

(2)
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where ωL(r) = (4πZ2e2nc(r)/M)1/2. Here and below, we
work in dimensionless variables in which the time is
normalized to the inverse ion Langmuir frequency
ωL(0) calculated in terms of the initial density nc(0) at
the center of the cluster; the coordinates r and h, the
Langmuir frequency ωL(0), the densities n and nc, the
velocity u, and the variable w are expressed in units of

rc, ωL(r), nc(0), ωL(0)rc, and (0) , respectively; and
the electric field E is in units of 4πZenc(0)rc. Given the
initial cluster density profile, the function q(t, h) is
determined from the first of relationships (2). Substitut-
ing the function q(t, h) so obtained into the remaining
relationships yields an implicit solution for an expand-
ing cluster.

It should be noted that the condition for the nonneg-
ative function n(t, r) ≥ 0 to be finite at an arbitrary time
is not satisfied for an arbitrary initial density distribu-
tion. Specifically, at a time t = ts determined from the
condition

(3)

the density given by the last of relationships (2)
becomes infinite at a certain radius; in other words, the
density has a singularity at t = ts. In this case, the radial
derivative of the ion velocity, ∂u/∂r, also becomes infi-
nite, which corresponds to the breaking of the Coulomb
explosion wave, followed by the ion multistream
motion at t > ts. For a smooth initial density profile
whose curvature passes through zero as r increases,
such as, e.g., the Gaussian density profile nc(r) =
exp(−r2), the radius of the spherical surface at which the
explosion wave breaks corresponds to the vanishing of
each of the derivatives ∂ur and ∂uur at a fixed time t and
is determined from Eq. (3) and the equation

(4)

When the initial density profile does not have an inflec-
tion point, as is the case, for instance, with the parabolic
profile nc(r) = (1 – r2)θ(1 – r)), where θ(r) is the Heavi-
side step function, the Coulomb explosion wave breaks
at the cluster’s outer boundary. In this case, since the
density of the cluster equals zero at its outer boundary,

(1) = 0, the time at which the solution becomes mul-
tivalued is determined by the root of an algebraic equa-
tion for the quantity qs ≡ q(ts, 1):
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(5)

The solution qs ≈ 0.6232 to this equation gives the fol-
lowing universal formula for the time at which the solu-

tion becomes multivalued: ts ≈ 1.237/ . For all
similar clusters having the same total number of ions
and differing only in the manner in which the density
decreases monotonically with radius, the value of the
quantity w(1) is the same, w(1) = 1/3; i.e., a singularity
arises at the time ts ≈ 2.142.

Hence, the description of cluster expansion on the
basis of solution (2) to Eqs. (1) on time scales longer
than ts becomes meaningless; hence, the discontinuity
that arises at the explosion front should be described by
means of a kinetic approach. The onset of the disconti-
nuity is similar to the onset of a singularity in a self-
gravitating gas [15, 17, 18]. Such discontinuities are
also subjects of the gas dynamics of simple waves in
which some portions of the density profile are decreas-
ing in the propagation direction of the wave. It is only
for some idealized density distributions (such as radi-
ally nondecreasing density profiles nc(r) with a cutoff at
a certain radius r = rc) that the discontinuities do not
arise. In particular, this is the case for an initial step
density profile (an ideal cluster) [6, 8].

In spite of the presence of a singularity, which, in the
hydrodynamic limit, corresponds to a spherical shock
wave, Kaplan et al. [11] extended the hydrodynamic
solution to the problem of the Coulomb explosion of a
cluster beyond the instant at which the singularity
arises. In contrast to that paper, we will not go beyond
the limits of single-stream hydrodynamics and will
consider how the accelerated ions are distributed over
energies, which is an important problem for experi-
ments with cluster plasmas. Integrating the ion energy
distribution function dN/dε = 4πr2n(t, r)/(dε/dr) over
energy gives the total number of ions in the cluster.
Accordingly, solution (2) yields
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where N is expressed in units of nc(0) , and ε is nor-

malized to M (0) /2. The fact that distribution
function (6) is the sum of two terms is related to the
possible nonmonotonic dependence of ε on r: the
superscript plus and minus signs indicate the contribu-
tions of the particles whose energy increases and
decreases with r, respectively. Depending on the shape
of the profile nc(r), there may be several radial regions
with different signs of the derivative dε/dr. For clusters
with a parabolic and an exponential initial density pro-
file, examples of such regions occurring at ts > t > 0 will
be presented below. At the points at which the radial
derivative of the ion velocity vanishes, a singularity
arises in Nε and, accordingly, in the energy spectrum
dN/dε. This singularity, however, is integrable. For
instance, if the singular point εm of the spectrum arises
at a nonzero second derivative of the velocity, then, in

the vicinity of this point, we have dN/dε ∝ 1/ .
For a monotonic velocity profile (e.g., for an ideal clus-
ter), the ion energy spectrum is nonsingular. Let us
present the solution and the ion energy spectrum that
correspond to this case.

For an ideal cluster such that nc = nc(0)θ(rc – r),
solution (2) has the form

(7)

Here, the radius of the front of an expanding plasma,
rf(t), is given by the same formula as that in the model
of a test ion occurring at the spherical surface of an
expanding cluster [6]:

(8)

i.e., we have rf ≈ 1 + t2/6 for t ! 1 and rf ≈  for
t @ 1. These formulas imply that the velocity of the
cluster ions and the electric field within the cluster
increase linearly with r and reach their maxima at r = rf;
ahead of the front (r ≥ rf), the electric field decreases
monotonically with radius, E = (1/3)r–2. The ion density
profile in the cluster keeps its initial shape: it continues
to have the form of a step, whose width and height,
however, change with time. The expansion front veloc-

ity v f =  increases with time, v f = ,

and approaches its limiting value vm = . Formula (7)
for the ion energy spectrum yields a square-root depen-
dence on energy ε = Mu2/2 [5],

(9)
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Fig. 1. Radial profiles of the ion velocity (top) and ion density (middle) and the ion energy spectrum (bottom) in clusters with the
same total number of particles and with different initial profiles of the atomic density, (a) nc = θ(1 – r), (b) nc(r) = 2.5(1 – r2)θ(1 – r),

and (c) nc(r) = (4/3 ) , in the initial stage of expansion, t = 0.2ts (curves 1), and in its final stage, t = 0.99ts (curves 2) (at a
time close to the instant at which the front of the Coulomb explosion wave breaks in the cases of decreasing density profiles).

π e
r

2
–

with a cutoff at the front, i.e., at εf = . The max-

imal cutoff energy is εmax = M (0) /3.

In order to illustrate solution (2) and spectrum (6),
Fig. 1 presents the radial profiles of the ion density and
ion velocity and also the ion energy spectra for different
initial radial profiles of the cluster density: a step profile
(an ideal cluster), a quadratic profile nc(r) ∝  1 – r2, and
an exponential profile nc(r) ∝  exp(–r2), the total number
of particles in the cluster being the same. In contrast to
the case of a step ion density profile, the velocity, den-
sity, and energy spectrum of the ions in an expanding
cluster with a decreasing density profile behave in a
qualitatively different manner. Thus, since the ions in
the inner regions of an expanding cluster catch up with
the peripheral ions, the ion density progressively equal-
izes in such a way that the ions are then accumulated at
the outer boundary of the cluster. Over a finite time, a
monotonically decreasing ion density evolves to a com-
paratively uniform profile in the form of a step but with
a sharp increase in the ion density at the front of the
expanding cluster. For a decreasing initial density pro-
file, the ion energy spectrum differs from a square-root
one (characteristic of an ideal cluster) and exhibits a
sharp peak near the cutoff energy.

In actual experiments, the ion energy spectrum is
smoother than the theoretical spectrum dN/dε because
of the spread in the cluster radii. Moreover, in the case
of clusters produced during the cooling of a gas jet, this
spread is quite large [8] and the distribution of clusters
over their dimensions is close to a Gaussian distribu-

Mv f
2
/2

ωL
2

rc
2
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tion, G(rc) ∝  rcexp[–(rc – r0)2/d2], with d ~ r0. Accord-
ingly, the averaged ion energy distribution is deter-
mined by the convolution

(10)

Figure 2 shows averaged ion energy distributions (10)
calculated for d = r0 and for the same initial density pro-
files as those in Fig. 1. We can see that the height and
width of the spectral peak, as well as its position at a
fixed time, depend on the atomic density distribution
within the cluster. It would be worthwhile to verify this
result experimentally.

Let us now discuss the “temperature” of the cluster
plasma, i.e., the ion energy averaged over an ensemble
of clusters, 〈 〉 . In order to find the cluster plasma tem-
perature, we first use the definition of the mean energy

in an individual cluster,  = (1/N)

(where the upper limit of integration, εm, is determined
by the maximal velocity), and then average this energy
over cluster radii with the help of the above distribution
function G(rc). For example, for an ideal cluster such
that d = r0 and for t @ 1, we have  = (3/5)εmax and

〈 〉  = 0.9798M (0) /2. The time evolution of the

cluster plasma temperature 〈 〉  calculated in units of

M (0) /2 for d = r0 is shown in Fig. 3 for the above
three density distributions in the cluster. It can be seen
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(b) nc(r) = 2.5(1 – r2)θ(1 – r), and (c) nc(r) = (4/3 ) , at the times t = 0.2ts (curves 1) and t = 0.99ts (curves 2).π e
r

2
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that the cluster plasma temperature increases with time.
On long time scales, the temperature has a tendency to
saturate. For decreasing density profiles, this feature
requires further investigation because, in order for the
model used here to be capable of correctly describing
such time scales (on which a singularity arises), it
should be extended to include the ion multistream
motion. For clusters with different initial density pro-
files, the cluster plasma temperature exhibits qualita-
tively the same behavior but has somewhat different
numerical values. In particular, for the initial density
profiles nc = const, nc(r) = 2.5(1 – r2), and nc(r) =

(4/3 ) , the ion temperature ratios at t = 2 are
equal, respectively, to 1 : 1.548 : 0.314; in other words,
sharply decreasing density profiles ensure maximal
cluster plasma temperatures, whereas, in the case of
smooth profiles, the temperature is substantially lower.

The above analysis has shown that the problem of
investigating the spectrum of accelerated ions during a
spherically symmetric Coulomb explosion of a cluster
admits an analytic solution in the hydrodynamic

π e
r

2
–

0.6

0.5

〈ε–〉

t

0.4

0.2

1.0 1.5 2.0

‡

b

c

Fig. 3. Normalized ion temperature 2〈 〉 /M (0)  in

cluster plasmas with different initial profiles of the atomic
density in the cluster: (a) nc = θ(1 – r), (b) nc(r) = 2.5(1 –

r2)θ(1 – r), and (c) nc(r) = (4/3 ) .
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2
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π e
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2
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approximation. For monotonically decreasing profiles
of the atomic density in a cluster, the ion trajectories
eventually become self-intersecting, which corre-
sponds to the onset of a singularity in the solution. In
this case, the solution obtained and, accordingly, the ion
spectra calculated from it are valid only over a finite
time. The behavior of the solution after the time at
which it has become singular (i.e., the ion motion has
become multistream) should be investigated by means
of a kinetic approach. This is the subject of our further
studies. Note that the radial position of the maximum in
the ion energy spectrum and the radius at which the ion
density becomes singular are separated in space. This
permits us to suggest that the evolution of the ions to
multistream motion will not eliminate the peak in the
ion spectrum but rather will change the peak shape. In
addition, it is important to point out a qualitative agree-
ment between our results, which have been obtained in
the hydrodynamic approximation, and the characteris-
tic features of the expansion of clusters that were
observed experimentally and were revealed numeri-
cally. Thus, the ion energy spectrum measured by
Zweiback et al. [8] has a pronounced peak and
decreases gradually in the high energy range, as do the
spectra shown in Fig. 2. It is also possible that the dis-
crepancies between the results calculated numerically
by Nishihara et al. [5] and those obtained in the ideal
cluster model (such as a local increase in the ion density
leading to the appearance of a peak in the ion density
profile or the formation of a local region where the ion
spectrum is concave upward and is peaked near the
energy cutoff) can be attributed to the fact that, in the
initial stage of the cluster evolution, the ion density dis-
tribution near the cluster boundary is smeared out by
the electrons that escape from the cluster under the
action of a strong laser field. The behavior of the cluster
plasma parameters that has been revealed in the present
paper can be checked experimentally and is of practical
interest for experiments on the interaction of high-
power short laser pulses with cluster media.
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Abstract—The effect of the density gradient of high-energy ions moving in large magnetic drift orbits is stud-
ied analytically in the context of the problem of toroidal Alfvén eigenmodes (TAEs) in a tokamak. It is found
that, when the population of such ions is not too small, this effect can substantially modify standard TAEs and
give rise to new types of TAEs, which are called TAEs-H, TAEs-H+s, and TAEs-H–s. The continual dissipation
of TAEs is investigated with allowance for the effect in question. It is shown that the dissipation acts to dampen
all the TAE types under consideration. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The study of Alfvén eigenmodes in a tokamak is of
interest in connection with the problem of instabilities
driven by their interaction with high-energy ions (see
[1], Sections 29–31, and the literature cited therein).
Earlier, it was found that, in discharges with a mono-
tonic safety factor profile (i.e., with a positive shear),
the most important of such modes are toroidal Alfvén
eigenmodes (TAEs) and kinetic toroidal Alfvén eigen-
modes (KTAEs) (see [1, 2] and the references therein).
That these types of modes do indeed exist is confirmed
by experimental investigations, in particular, those con-
ducted in the TFTR [3], DIII-D [4], JT-60U [5], and
JET [6] tokamaks.

In recent years, experiments have been carried out
not only with discharges with a positive shear but also
with reversed-shear discharges, i.e., those with a non-
monotonic safety factor profile [7]. Observations of
discharges with reversed shear revealed the generation
of so-called Alfvén cascades (ACs) [8, 9], i.e., Alfvén
waves whose properties differ considerably from those
of TAEs and KTAEs. Berk et al. [10] (see also [11])
suggested that ACs are a new type of Alfvén eigen-
modes and that an important role in their formation is
played by the Berk–Breizman–Sharapov (BBS)
effect—the effect of the density gradient of high-energy
ions moving in large magnetic drift orbits. The mecha-
nism underlying this effect was explained in [12, 13], in
which it was suggested that it is attributed to the drift
motion of the electrons neutralizing the electric charge
of high-energy ions and that it is unrelated to the reso-
nant interaction of these ions with the waves. (This
interaction, which, in particular, gives rise to the so-
called “energetic particle modes,” was investigated in
[14] and in some earlier papers cited there.) To simulate
1063-780X/05/3102- $26.00 ©0093
MHD modes with allowance for the effect in question,
a specially developed MISHKA-H computer code was
developed [13].

The effect of the density gradient of high-energy
large-orbit ions is typical not of reversed-shear dis-
charges alone; it may also manifest itself in discharges
with positive shear. This is why it is of interest to exam-
ine its role in the problem of TAEs. This subject will be
taken up in the present paper. It should be noted that the
first step in this direction was made in [15] in consider-
ing TAEs in the case in which the shear s is less than the
inverse aspect ratio e: s < e. In contrast to [15], we
assume here that s > e. However, setting s > e, we nev-
ertheless use the low shear approximation (s < 1). Thus,
the shear lies within the range

(1.1)

The TAEs were first investigated analytically by
Rosenbluth et al. [16], who calculated, among other
things, the frequency of these modes and their damping
by continual dissipation in the case corresponding to
condition (1.1), in which we are interested here. Breiz-
man and Sharapov [2] derived the expression for the
frequency of TAEs in a simpler way than it was done in
[16]. They considered the spatial structure of the TAEs
and obtained an expression for their energy. Our analy-
sis can be regarded as a generalization and extension of
the analyses carried out in [2, 16] to the scope of prob-
lems outlined above, including the BBS effect. We
show, in particular, that this effect can give rise to new
types of TAEs and clarify how they are influenced by
continual dissipation. In our examination, the BBS
effect is characterized by the parameter H, introduced
through Eq. (2.8). For this reason, the BBS effect will
also be referred to as the H effect.

e s 1.< <
 2005 Pleiades Publishing, Inc.
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Our paper is organized as follows. In Section 2, we
present the basic equations. In Section 3, we derive the
dispersion relation for TAEs with allowance for the
BBS effect and without allowance for continual dissi-
pation. Section 4 presents an analysis of this dispersion
relation. In Section 5, we consider the spatial structure
and energy of the perturbations under consideration. In
Section 6, we take into account the continual dissipa-
tion, and, in Section 7, we analyze its role in the pertur-
bations in question. In Section 8, we discuss the results
obtained. Finally, in Appendix A, we present the deriva-
tion of the basic equations, and in Appendix B, we
explain some aspects of solving the perturbed equa-
tions.

2. BASIC EQUATIONS 
AND THEIR PRELIMINARY 

TRANSFORMATIONS

2.1. Basic Equations

The derivation of the basic equations for TAEs in the
absence of high-energy ions can be found in Section 29.1
of [1]. The basic equations for our problem can be
derived by incorporating the effect of the density gradi-
ent of high-energy ions into those equations. This will
be done in Appendix A. The resulting set of basic equa-
tions has the form

(2.1)

(2.2)

Equations (2.1) and (2.2) differ from Eqs. (29.16) and
(29.17) of [1] only in that they contain the terms with

 and , which account for the effect at hand.
According to Appendix A, in the approximation m @ 1,
which will be used below, we have

(2.3)

The notation introduced here is explained in Appendix A.
By analogy with [1, 2], we switch from the coordi-

nate r to the new radial variable

(2.4)

Carrying out the same manipulations as in Section 29.2
of [1], we reduce Eqs. (2.1) and (2.2) to the form
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where s is the shear and

(2.7)

(2.8)

In what follows, we will consider a standard case,
namely, that in which the density of high-energy ions is
radially decreasing: κh < 0. In this case, we also set
Ωh > 0 to obtain

(2.9)

The frequency range ω > 0 corresponds to perturbations
propagating in the direction of the equilibrium mag-
netic field, and the range ω < 0 refers to perturbations
propagating in the opposite direction.

Equation (2.7) gives

(2.10)

Consequently, in our formulation of the problem,
which goes back to the formulation developed in [1, 2],
the procedure of finding the frequency of the eigen-
modes reduces to that of calculating the parameter g.

2.2. Simplification of the Basic Equations
in Inertialess Regions

Assuming that s ! 1, we first consider Eqs. (2.5)
and (2.6) in inertialess regions, i.e., those in which the

terms with  can be ignored. In these regions, we also
ignore toroidal effects, i.e., the terms with e. In our
problem, there are three singular points on the x axis,
x = (0, ±1); there also are two singular points at minus
and plus infinity, x  ±∞. As in [1, 2], the inertialess
region of primary interest for us is the vicinity of the
point x = 0, i.e., the Alfvén gap region: it is only in this
region that the behavior of the perturbation should be
considered in order to determine the real part of the
oscillation frequency ω. In this region, Eqs. (2.5) and
(2.6) reduce to

(2.11)
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(2.12)

Note that the x-dependent coefficients of the first deriv-
atives dφm/dx and dφm – 1/dx in Eqs. (2.11) and (2.12)
are correction terms (see [1, 2] for details). In the termi-
nology of [1, 2], the inertialess region is merely the
external region of the mode.

In the vicinity of the point x = 1, it is sufficient to
know the behavior of the mth field harmonic and in the
vicinity of the point x = –1, it is sufficient to know the
behavior of the m – 1th harmonic. In analogy with
Eqs. (2.11) and (2.12), we obtain from Eqs. (2.5) and
(2.6) the set of equations

(2.13)

(2.14)

We must also know the behavior of the mth and
(m − 1)th harmonics of the perturbed field in regions far
from the singular points in question. In these regions,
Eqs. (2.5) and (2.6) have the form

(2.15)

(2.16)

Equations (2.13)–(2.16) differ from the corresponding
equations of [16] in that they contain the terms with H.

2.3. Simplification of the Basic Equations
in Inertial Regions

We distinguish between three inertial regions: the
main region, which is the vicinity of the point x = 0, and
two dissipative regions, which are the vicinities of the
points x = ±1. In the main inertial region, we ignore the
terms with x/s2 and H and also corrections on the order
of x. Equations (2.5) and (2.6) can then be reduced to
Eqs. (29.35) and (29.36) of [1]:

(2.17)

(2.18)
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where

(2.19)

In dissipative regions, we ignore not only the correc-
tion terms containing the combination x  1 and the
terms containing (x  1)/s2 and H but also toroidal
effects. In this case, Eqs. (2.5) and (2.6) yield the equa-
tions

(2.20)

(2.21)

Accounting for the terms with φm + 1 in Eq. (2.20)
and for the terms with φm – 2 in Eq. (2.21) leads to cor-

rections on the order of .

3. DERIVATION OF THE DISPERSION RELATION 
WITHOUT ALLOWANCE FOR CONTINUAL 

DISSIPATION

According to Appendix B, the solution to Eqs. (2.11)
and (2.12) is represented in terms of confluent hyper-
geometric functions (cf. [1], Eqs. (29.28), (29.29)):

(3.1)

(3.2)

where Dm and Dm – 1 are constants and the parameter 
is defined by the relationship

(3.3)

For |x|/s ! 1, the asymptotic behavior of solutions (3.1)
and (3.2) is given by the expressions

(3.4)

(3.5)

where γ is Euler’s constant. For H = 0, solutions (3.4)
and (3.5) pass over to solutions (29.33) and (29.34)
of [1].

Consider perturbations with

(3.6)

According to expression (2.10), such perturbations
occur in the Alfvén gap region (see [16] for details). In
this case, in accordance with [1, 2], the solutions to
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Eqs. (2.17) and (2.18) have the form (cf. [1], formu-
las (29.42), (29.43))

(3.7)

(3.8)

where Cm and Cm – 1 are the constants that are important
for further analysis and “const” stands for those whose
role is unimportant. For |z | @ 1, solutions (3.7) and
(3.8) take the form (cf. [1], formulas (29.44), (29.45))

(3.9)

(3.10)

In writing formulas (3.7)–(3.10), we have corrected for
misprinted formulas (29.42)–(29.45) from [1].

Asymptotic expressions (3.9) and (3.10) coincide
with expressions (3.4) and (3.5) when the parameter g
satisfies the relationship

(3.11)

which plays the role of the dispersion relation. For H = 0,
this relationship gives

(3.12)

where δ is a small positive quantity equal to

(3.13)

Relationships (3.12) and (3.13) characterize standard
TAEs [1, 2].

Relationship (3.11) can be converted into the form

(3.14)

In transforming relationship (3.11) into relationship (3.14),
the operation of squaring was used, which generally
introduces redundant roots. Consequently, the solutions
obtained with the help of relationship (3.14) should be
tested against relationship (3.11).

From relationship (3.14) we obtain

(3.15)
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In using this relationship, the roots should also be tested
in the above manner.

4. TYPES OF TOROIDAL ALFVÉN EIGENMODES 
IN THE PRESENCE OF THE H EFFECT

According to relationship (3.3), we have

(4.1)

for

H > 1/2. (4.2)

In this case, the perturbations under consideration have
very different properties from the standard TAEs. Thus,
in the interval

(4.3)

dispersion relation (3.11) has no solutions with g < 0,
which correspond to standard TAEs (cf. relation-
ships (3.12), (3.13)). Instead, it has solutions with

(4.4)

where

(4.5)

For  ! 1, the parameter δ is small, δ ! 1, and,
according to dispersion relation (3.11), it is determined
by relationship

(4.6)

The solutions that correspond to H values within inter-
val (4.3) and are characterized by relationships (4.4)–
(4.6) will be referred to as TAEs-H solutions.

For large positive values of the parameter H,
namely, those above the upper limit of interval (4.3),

(4.7)

the only solutions to dispersion relation (3.11) are those
with g < 0, in which case relationship (3.15) gives

(4.8)

In the limit sH @ 1, this result can be represented in the
form of relationship (3.12) with

(4.9)

The perturbations characterized by relationships (4.8),
(3.12), and (4.9) will be called TAEs-H+s.

For moderately large negative H values and for pos-
itive H values lying in the interval 0 < H < 1/2, i.e., for
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we are dealing with perturbations with g < 0, which
are analogous to standard TAEs. In this case, relation-
ship (3.15) gives

(4.11)

For small  values, relationship (4.8) passes over to
relationship (3.12) with the parameter δ given by for-
mula (4.6). When

(4.12)

we see from relationship (3.15) that dispersion rela-
tion (3.11) has solutions with g > 0; in this case, the
parameter g is given by formula (4.11). For |H |s @ 1,
relationship (4.11) reduces to relationship (4.4) with δ
satisfying relationship (4.9). The relevant perturbations
will be called TAEs-H–s.

5. SPATIAL STRUCTURE AND ENERGY
OF PERTURBATIONS

5.1. Internal Dimension of Perturbations

From solutions (3.7) and (3.8) it is clear that the
quantity (1 – g2)1/2 is a characteristic spatial scale of the
internal layer in the z space. Using relationships (2.19)
and (2.4), we find that, in ordinary space, this character-

istic dimension, denoted by , is determined by the
relationship

(5.1)

From relationship (3.14) we see that, for the perturba-
tions under analysis, the relationship generally means

(5.2)

For H = 0, this gives the following shear-independent
dimension [1, 2]:

(5.3)

For finite H values satisfying the condition |H | ! 1/s,
i.e., for  ! 1, relationship (5.2) reduces not to rela-
tionship (5.3) but rather to the relationship

(5.4)

For 1 ! |H | ! 1/s, we have

(5.5)
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so the dimension  increases linearly with H. For
|H |s @ 1, relationship (5.2) reads

(5.6)

We recall that the parameter H is defined by Eq. (2.7)
and rewrite relationship (5.6) as

(5.7)

In the limiting case in question, the dimension  is
shear-independent (cf. formula (5.3)).

5.2. Perturbation Parity Invariant

By analogy with [1, 2], we introduce the parameter
µ, which is called the perturbation parity invariant,
through the relationship

(5.8)

By matching the internal and external solutions, we
obtain the following expression for µ:

(5.9)

From this expression we see that each type of TAEs
considered in Section 4 is characterized by only one of
the two values of the parameter µ: either µ = 0 or |µ| = ∞.
In the first case, we have Cm – 1 = Cm and Dm – 1 = Dm

and, accordingly, are dealing with even parity modes.
In the second case, we have Cm – 1 = –Cm and Dm – 1 =
−Dm, which corresponds to odd parity modes. The situ-
ation with particular types of TAEs may be described in
the following way:

For 0 ≤ H < 1/2 and for negative H values in inter-
val (4.10) (which corresponds to solutions with g < 0,
analogous to standard TAEs), expression (5.9) gives
|µ| = ∞ and, therefore, refers to odd parity modes,

(5.10)

For positive H values in interval (4.3) (which corre-
sponds to TAEs-H with g > 0), we have µ = 0 and are
thus dealing with even parity modes,

(5.11)

For large positive H values satisfying inequality (4.7)
(which corresponds to TAEs-H+s), we also have µ = 0
and are again dealing with even parity modes (see
equality (5.11)). Finally, for large negative H values
satisfying inequality (4.12) (which corresponds to
TAEs-H–s with g > 0), the parameter µ is infinite, |µ| = ∞,
and refers to odd parity modes (see equality (5.10)).
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5.3. Even- and Odd-Parity Components
of the Electrostatic Potential

In place of the functions φm and φm – 1, we introduce
the functions φ± through the relationships

(5.12)

Based on what was said above about the parameter H,
we take into account solutions (3.7) and (3.8) to find
that, for standard TAEs and for TAEs-H–s, the functions
φ± in the internal layer have the form

(5.13)

(5.14)

As for TAEs-H and TAEs-H+s, we otherwise arrive at
the function φ+ of form (5.14) and at the function φ– of
form (5.13), with the replacement g + 1  g – 1.

5.4. TAEs Energy for Finite H Values

According to [1, 2], we can begin with the following
expression for the energy of the TAEs:

(5.15)

In terms of the poloidal harmonics φm and φm – 1 and
radial variable z, this expression reads [1, 2]

(5.16)

Using the results obtained in Section 5.3, we obtain

, (5.17)

where

(5.18)

We can see that IW > 0; consequently, in agreement with
the initial expression (5.15), all the TAE types under
consideration possess positive energy: W > 0.

We take the integral on the right-hand side of
expression (5.18) to find

(5.19)
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ẽ
----------------------- c

2

v A
2

------- Cm
2
IW=

IW
zd

z
2

1 g
2

–+( )
2

-------------------------------
g 1+( )2

z
2
, µ+ ∞,=

g 1–( )2
z

2
, µ+ 0.=




∫=

IW
π

1 g
2

–
------------------

1 g–( ) 1–
, µ ∞,=

1 g+( ) 1–
, µ 0.=




=

For standard TAEs (H = 0), this yields

(5.20)

Substituting relationship (5.20) into expression (5.16),
we arrive at the result that was obtained in [2] and was
also presented in [1]. As for TAEs-H with  ! 1,
expression (5.19) leads, instead of relationship (5.20),
to the relationship

(5.21)

Using expression (5.19), we can also show that the
energy of the TAEs-H+s and TAEs-H–s can appreciably
exceed that of the standard TAEs: for the former two
types of eigenmodes, the right-hand side of this expres-
sion is proportional to (s |H |)3.

6. ACCOUNT OF CONTINUAL DISSIPATION 
FOR FINITE H VALUES

6.1. Solutions to the Perturbed Equations 
in the Vicinities of the Points x = ±1

In the vicinities of the points x = ±1, we are faced
with inertialess equations (2.13) and (2.14) and inertial
equations (2.20) and (2.21). We begin by working with
Eqs. (2.13) and (2.14). The approach of Appendix B
leads us to solutions analogous to solutions (3.1) and
(3.2):

(6.1)

(6.2)

Here, M is a confluent hypergeometric function; θ(t) is
the Heaviside step function defined as

(6.3)

and , , , and  are constants.
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Now, we solve Eqs. (2.20) and (2.21). The technique
of solving Eq. (2.20) can be illustrated as follows: We
integrate Eq. (2.20) over x, make the standard replace-
ment ω  ω + i∆ (where ∆ > 0), and take the limit
∆  0. As a result, we obtain

(6.4)

where the symbol P stands for the principal value of the

integral and  is a constant of integration. We again
integrate over x to arrive at a solution similar to solution
(3.9):

(6.5)

where const is a constant of integration, which is unim-
portant for further analysis. Analogously to the deriva-
tion of solution (6.5), solving Eq. (2.21) yields

(6.6)

where  is a constant of integration.

Now, we expand the right-hand sides of solutions (6.1)
and (6.2) in powers of the small argument and match
the resulting expressions with solutions (6.5) and (6.6).
This, in particular, yields the following expressions

for the constants of integration  and  in solu-
tions (6.1) and (6.2):

(6.7)

For H = 0, the results just given agree with those
obtained in [16].

6.2. Matching the Solutions in the Vicinities 
of the Points x = ±1 with the Solutions 

in the Vicinity of the Point x = 0

In analogy with solutions (6.1) and (6.2), we modify
solutions (3.1) and (3.2) by taking into account the con-
tribution of the functions M:

(6.8)
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(6.9)

Here, Gm and Gm – 1 are constants. In order to determine
them, we solve Eqs. (2.15) and (2.16) and match the
solutions obtained with solutions (6.1) and (6.2) in the
vicinities of the points x = ±1 and with solutions (6.8)
and (6.9) in the vicinity of the point x = 0.

Solving Eqs. (2.15) and (2.16) in the quasiclassical
Wentzel–Kramers–Brillouin (WKB) approximation
(with 1/s2 being the large parameter), we arrive at the
following expression for the mth harmonic:

(6.10)

where Em and Fm are constants and x lies within the
range 0 < x < 1. An analogous result is obtained for the
m – 1th harmonic in the range –1 < x < 0.

Assuming that the argument of the functions U and
M on the right-hand side of solution (6.1) is large, we
find
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Matching solutions (6.11) and (6.10) gives
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Taking into account expressions (6.12) and (6.13), we
reduce Eq. (6.10) in the vicinity of the point x = 0 to 
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On the other hand, for large values of the argument of
the functions U and M on the right-hand side of solu-
tion (6.8), we find

(6.15)

Assuming that solution (6.14) coincides with solu-
tion (6.15), we obtain the relationship between Em and
Dm (in further analysis, however, this relationship will
not be used) and the expression for the coefficient Gm:

(6.16)

The coefficient Gm – 1 is found in an analogous way.
It turns out that

(6.17)

6.3. Dispersion Relation with Allowance
for Continual Dissipation

For |x |/s ! 1, solutions (6.8) and (6.9) lead to the fol-
lowing generalization of solutions (3.4) and (3.5):
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In deriving these solutions, we took into account the
relationship
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Matching solutions (6.18) and (6.19) with solutions (3.9)
and (3.10), we arrive at a dispersion relation of the form
of (3.11) with the replacement

  (6.21)

where the coefficient Gm is given by formulas (6.16)
and (6.7).

We are interested only in the imaginary (dissipative)

part of the parameter Gm. We denote this part by 
and, from the above formulas, obtain

(6.22)
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where

(6.23)

In terms of , replacement (6.21) reads

  (6.24)

In this case, instead of relationship (3.11), we arrive at
the relationship

(6.25)

With allowance for , the eigenvalue g is complex,
so we have

(6.26)

where g0 is the real part of g. In these terms, relation-
ship (6.25) implies that the quantity g0 satisfies disper-
sion relation (3.11) with the replacement g  g0 and
yields the following expression for the imaginary part
Img:

(6.27)

For H = 0, this expression gives

(6.28)

which coincides with the corresponding results
obtained in [16].

7. ANALYSIS OF THE ROLE OF CONTINUAL 
DISSIPATION FOR FINITE H VALUES

In analogy with expression (6.26), we set

ω  (7.1)

where ω0 is the real part of the oscillation frequency ω.
Using expression (2.10), we find that Imω is related to
Img by

(7.2)
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Taking into account the relationship | |ω0 | ≈ vA/2qR (see
expression (2.10)) and using relationships (6.27) and
(3.11), we obtain

(7.3)

We thus see that continual dissipation acts to dampen
all the TAE types under investigation.

In accordance with [16], relationship (7.3) for stan-
dard TAEs (H = 0) has the form

(7.4)

In contrast, for TAEs-H (  ! 1), relationship (7.3)
becomes

(7.5)

8. DISCUSSION OF THE RESULTS

We have shown that TAEs are significantly modified
by the effect of the density gradient of high-energy ions
moving in large magnetic drift orbits (an effect that was
mentioned in [10] and was called above the BBS
effect). It is of course clear that, for this effect to be pro-
nounced, the population of high-energy ions should not
be too small; i.e., the parameter H, introduced here
through Eq. (2.8), should be large enough in compari-
son to unity: |H | ≥ 1. An approximate estimate of the
required H values can be obtained from Eq. (2.8) by set-
ting Mh = Mi, rmκh . 1, s . 0.3, m = 3, nh/nc . 10–3, and
Ωh/ω . 103 (cf. [13]). These parameter values yield
H . 1. Note that Eq. (2.8) gives H ~ 1/s2; i.e., the
parameter H increases substantially as the shear
decreases. Consequently, for a sufficiently low shear, we
have H @ 1. Our analysis also makes use of the param-
eter sH. Since sH ~ 1/s, the situations with |sH| @ 1,
which have been examined above, can occur when the
shear is sufficiently low.

The effect we have investigated is highly sensitive to
the sign of the parameter H; i.e., in accordance with
(2.9), it is sensitive to the propagation direction of the
perturbations relative to the direction of the equilibrium
magnetic field. We have shown that, depending on the
sign and magnitude of the parameter H, high-energy
ions can give rise not only to perturbations like standard
TAEs but also to new types of TAEs, which have been
called above TAEs-H, TAEs-H+s, and TAEs-H–s (see
Section 4 for details). As in the case of standard TAEs,
the frequencies of TAEs-H–s lie in the lower part of the
Alfvén gap, whereas the frequencies of TAEs-H and
TAEs-H+s lie in its upper part. These new types of
TAEs also differ from standard TAEs in spatial struc-
ture and energy (see Section 5 for details). It is shown
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PLASMA PHYSICS REPORTS      Vol. 31      No. 2      2005
that all the TAE types under consideration possess pos-
itive energy. It is pointed out that, like standard TAEs,
the TAEs-H–s are odd parity modes; in contrast, the
TAEs-H and TAEs-H+s are of even parity. Note also
that the question about the parity of TAEs was the sub-
ject of an experimental investigation by Kramer et al.
[17]. In that paper, however, the BBS effect was not
taken into account, so it would be interesting to exam-
ine this problem in further experiments.

In order to take into account the continual dissipa-
tion of TAEs at finite H values, we have developed an
approach similar to that taken in [16]. Using this
approach, we have derived dispersion relation (6.25), in
which the continual dissipation is characterized by the

parameter , introduced through equality (6.23). It is
shown that this dissipation acts to dampen all the TAE
types under discussion.

The effect of the density gradient of a thermal
plasma was studied in a recent paper by Konovalov et
al. [18] in connection with the problem of Alfvén cas-
cades in tokamaks. In the context of our analysis, it
seems worthwhile to examine the effect of this gradient
on the TAEs.

The analytic formulas that have been derived above
display the regular features characterizing the role of
the BBS effect in the behavior of the TAEs. The fea-
tures that have been revealed, on the one hand, can
serve as a basis for numerical analysis of these modes
with the MISHKA-H code [13] and analogous MHD
computer codes capable of describing the effects of
high-energy large-orbit ions, and, on the other hand,
they should be taken into account in developing ITER-
type fusion reactors.
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APPENDIX A

Derivation of the Basic Equations

The derivation begins with the current continuity
equation

(Ä.1)

where  and  are the perturbed current densities
along and across the equilibrium magnetic field B0 and

∆̂

∇ || j̃|| —⊥ j̃⊥⋅+ 0,=

j̃|| j̃⊥
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∇ || and —⊥  are the longitudinal and transverse compo-
nents of the gradient operator. In Eq. (A.1), the term

( /B0)—⊥ j||0 (where  is the perturbed magnetic
field and j||0 is the equilibrium longitudinal current den-
sity) is ignored because it is unimportant for the prob-
lem under analysis (for details, see [1], Sections 4, 7).

The term with  in Eq. (A.1) can be expressed
through the perturbed electrostatic potential φ by means
of the same transformations as in Section 29.1 of [1].
The transverse current j⊥  is represented as a sum of the
inertial current given by expression (29.5) from [1] and

the current  of the electrons that drift in crossed
fields and neutralize the electric charge of high-energy
large-orbit ions, so we have (see [13] for details)

(Ä.2)

where VE = c(B0 × —φ)/  is the drift velocity in
crossed fields, nh and eh are the density of high-energy
ions and their electric charge, and c is the speed of light.
In this case, Eq. (A.1) yields the following generaliza-
tion of Eq. (29.8) from [1]:

(Ä.3)

where

(Ä.4)

Here, ω is the frequency of the mode (the perturbed
quantities are assumed to depend on time as exp(–iωt)),
Ωh and Mh are the gyrofrequency of high-energy ions
and their masses, nc is the density of the thermal
plasma, Mi is the mass of the thermal ions, r is the radial
coordinate, and θ is the poloidal angle.

Equation (A.3) is transformed under the assumption
that the electrostatic potential depends on the radius as

(Ä.5)

where ζ is the toroidal angle, n is the toroidal mode
number, and m is a set of poloidal mode numbers. The

operators  and B0 · — are transformed according to
the same rules as in Section 29.1 of [1]. In this case, the

operator  in Eq. (2.1) has the form

(Ä.6)
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(Ä.7)

q is the safety factor, and R is the major radius of the

torus. The operator  is given by the same for-
mula but with the replacement m  m – 1. Applying

the operator  to expression (A.5) for the potential φ
yields expression (2.3) with κh ≡ dlnnh/dr. Accounting

for the toroidal geometry leads to the terms with  in

Eqs. (2.1) and (2.2); here,  = 5e/2, with e being the
inverse aspect ratio.

APPENDIX B

Solution of the Perturbed Equations
in the Inertialess Region

Equations (2.11) and (2.12) can be solved as fol-
lows. We assume that

(B.1)

Substituting representation (B.1) into Eq. (2.11) and
requiring that the parameter α satisfy the relationship

(B.2)

yields the following equation for the function y:

(B.3)

Equation (B.3) has a solution of the form

(B.4)

where U is a confluent hypergeometric function, b = 1,
and

(B.5)

(B.6)

For s ! 1, relationship (B.2) gives the approximate
expression

(B.7)

In this case, we have

(B.8)

where  is given by relationship (3.3).

Taking into account representation (B.1) and relation-
ships (B.4)–(B.8) leads to solution (3.1). Solution (3.2) is
derived in an analogous way.
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