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Abstract—Based on observations of SN 1999em, we determined the physical parameters of this super-
nova using hydrodynamic calculations including nonequilibrium radiative transfer. Taking the distance
to SN 1999em estimated by the expanding photosphere method (EPM) to be D = 7.5 Mpc, we found
the parameters of the presupernova: radius R = 450R�, mass M = 15M�, and explosion energy E =
7 × 1050 erg. For the distance D = 12 Mpc determined from Cepheids, R, M , and E must be increased
to the following values: R = 1000R�, M = 18M�, and E = 1051 erg. We show that one cannot restrict
oneself to using the simple analytical formulas relating the supernova and presupernova parameters to
obtain reliable parameters for type-IIP presupernovae. c© 2005 Pleiades Publishing, Inc.
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INTRODUCTION

Recent years have brought more and more data on
supernovae (SNe) in all ranges of the electromagnetic
spectrum. Studying these objects is important both
for understanding the physics of their explosions and
for cosmology. The construction of computer models
is a modern tool for studying the physics of SNe. The
reliability of a model can be determined by comparing
the model results with observational data. Since, in
general, SNe are observed at great distances (tens
and hundreds of Mpc), comprehensive observational
data (photometry and spectra) are difficult to obtain
for such objects. Particularly detailed observations
can be performed only for nearby SNe. The type-
IIP SN 1999em (Leonard et al. 2001; Elmhamdi
et al. 2003a, 2003b; Pastorello et al. 2005) is among
these thoroughly studied objects. SN 1999em ex-
ploded in the nearby galaxy NGC 1637 at a distance
that was estimated from various measurements to be
between 7.5 and 12.4 Mpc. A wealth of photomet-
ric and spectroscopic data has been accumulated for
this SN through the observations of its explosion from
the very outset and over a wide spectral range. In their
recent studies, Nadyozhin (2003) and Hamuy (2003)
used SN 1999em along with other SNe to deter-
mine the parameters of the presupernovae. Based on
these parameters, they reached conclusions about the
correlation between various quantities, for example,
between the presupernova mass and the observed
plateau luminosity etc.

*E-mail: baklanovp@gmail.com
1063-7737/05/3107-0429$26.00
Nadyozhin (2003) and Hamuy (2003) estimated
the masses M , radii R, and explosion energies E for
a number of SNe II. Based on the observed values
ofMV , ∆t, and uph on the plateau of the light curve,
they determined M , R, and E using relations from
Litvinova and Nadyozhin (1983, 1985). Popov (1993)
analytically derived formulas similar to those obtained
by Litvinova and Nadyozhin (1983, 1985).

In this paper, we focus our attention on
SN 1999em as one of the most extensively observed
SNe. The goal of our study is to construct a detailed
nonevolutionary presupernova model that reproduces
most faithfully the observed U , B, V , I, and R fluxes
from SN 1999em and the photospheric velocity. In
addition, our objective is to ascertain how closely
the results obtained from the simple formulas from
Litvinova and Nadyozhin (1983, 1985) agree with
our much more complex and accurate radiation-
hydrodynamics calculations.

OBSERVATIONS

SN 1999em was discovered on October 29, 1999,
at the Lick Observatory during a search for SNe
(Lacey et al. 1999a, 1999b). SN 1999em exploded
in the galaxy NGC 1637; its measured magnitude
was m ∼ 13m. 5. In the image of the same region
obtained nine days earlier, there is nothing at the
SN location (the limiting magnitude in this image is
m ∼ 19m (Leonard et al. 2001)). This means that the
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Distribution of elements in the presupernova for
the R450_M15_Ni004_E7model.

SN was discovered almost immediately after its ex-
plosion. Photometric and spectroscopic observations
allowed it to be classified as an SN IIP with a distinct
plateau. The early and weak radio emission suggested
a low density of the material surrounding the presu-
pernova. This implies that there was no active mass
outflow from the star before its explosion, and we see
a “pure” SN explosion, without any interaction with
the surrounding interstellar matter.

According to Baron et al. (2000), the reddening
was assumed to be E(B–V ) = 0.1.

The distance to the host galaxy was measured
by several methods. The discrepancy between the
distances determined by different methods is more
than 50%. One group of results clustered near
7.8Mpc. The expanding-photospheremethod (EPM)
yielded 7.5 Mpc (Hamuy et al. 2001) and 8.2 Mpc
(Leonard et al. 2001); 7.8 Mpc was obtained from
the brightest supergiants of the galaxy (Sohn and
Davidge 1998). According to the catalog by Tully
(1988), the distance to NGC 1637 is 8.9 Mpc. An
appreciably larger value of 11.7 Mpc was obtained by
Leonard et al. (2003) from Cepheids.

In this paper, we take a distance to SN 1999em of
7.5 Mpc as the value confirmed by a larger number of
studies than the distance increased by 50% that was
determined by Leonard et al. (2003) from Cepheids.
However, Baron et al. (2004) found the distance to
SN 1999em by the SEAM (Spectral-fitting Expand-
ing Atmosphere Model) method to be 12.48 Mpc,
i.e., close to the value by Leonard et al. (2003). We
additionally studied the SN for this distance. Note in
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Fig. 2. Density versus (a) mass and (b) radius for the
R450_M15_Ni004_E7model.

advance that the presupernovamodel changed toward
a significant increase in the radius and an increase in
the mass and explosion energy.

MODELING

We constructed the presupernova models in hy-
drostatic equilibrium by assuming a power-law de-
pendence of the temperature on the density (cf.
Chugai et al. 2004),

T ∝ ρα. (1)

For complete ionization and homogeneous chem-
ical composition, this hydrostatic configuration is
close to a polytrope with an index 1/α. The deviation
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Table 1. Comparison of the parameters of the models by Nadyozhin (2003) and Hamuy (2003)

Initial parameters Nadyozhin (2003) Hamuy (2003)

D, Mpc 12.38 10.7

MV −16.78m −16.44m

∆t, days 110 124

uph, km s−1 2900 3290

Derived parameters

E, foe 0.63 1.2

M ,M� 13.2 27

R,R� 569 249
from the polytropic model increases in the outer
layers due to ion recombination and inhomogeneous
chemical composition (Fig. 1). At the center of this
configuration, we isolated a heavy gravitating point-
like core (with a radius ofRc = 0.1R�, which is much
larger than the actual core, but is much smaller than
the radial step of the computational grid used in our
hydrodynamic modeling). The computed structure is
shown in Fig. 2. It is similar to the structure of a red
supergiant.

As the shock wave travels from the center of the
presupernova outward, a strong Rayleigh–Taylor in-
stability (Basko 1994) that leads to a mixing of the
SN material arises behind the shock front. In our
modeling, we assumed that all elements, except 56Ni,
were uniformly mixed throughout the expanding SN
envelope. Since the amount and distribution of 56Ni
synthesized during the explosion plays a crucial role
in the SN luminosity, we made its radial distribution
closer to the actual distribution, which falls off log-
arithmically away from the center. An approximate
distribution of elements in the presupernova is shown
in Fig. 1.

The SN explosion was modeled by the release of
thermal energy E in a layer with a mass of 0.06M�
in 0.1 s, which is much shorter than the hydrody-
namic time of the presupernova. As long as the energy
release time is short compared to the hydrodynamic
ASTRONOMY LETTERS Vol. 31 No. 7 2005
time, the resulting light curve does not depend on
the particular features of the explosion mechanism
(Imshennik and Nadyozhin 1982).

The Models by Nadyozhin and Hamuy

Nadyozhin (2003) and Hamuy (2003) determined
the masses M , radii R, and explosion energies E for
a number of SNe II. Based on the observed values
ofMV , ∆t, and uph on the plateau of the light curve,
they obtainedM ,R, andE using relations from Litvi-
nova and Nadyozhin (1983, 1985).

They included SN 1999em in their studies and
obtained the parameters for it given in Table 1.

In their studies, Nadyozhin (2003) and Hamuy
(2003) relied on the papers by Litvinova and Na-
dyozhin (1983, 1985), but their estimates of the pre-
supernova parameters for SN 1999em differ greatly.
Thus, for example, we see from Table 1 that the mass
of the expelled envelope and the explosion energy in
Nadyozhin’s model are a factor of two lower than
those in Hamuy’s model, while the initial radius of
the presupernova is twice as large, although the initial
data differ by about 10%.

The distances D in these two models and, hence,
the values ofMV also differ significantly. According to
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Fig. 3. U, B, V light curves of SN 1999em for
model No. 1. Time from the explosion is along the hori-
zontal axis.

the formulas by Litvinova and Nadyozhin (1985), the
values of E,M , and R depend on the distance as

E ∼ D−0.675, M ∼ D−1.17, R ∼ D2.86. (2)

Therefore, it is crucially important to knowD with the
maximum possible accuracy. However, different val-
ues ofD can account for the difference inR alone, but
not the differences in E andM : theD dependence for
them is too weak. If we look at the UBV light curves
in the paper by Litvinova and Nadyozhin (1983), we
can see that they are very similar and, contrary to the
observations, have the same plateau: actual SNe II
have a clear plateau only in V and longer-wavelength
bands, but not in B and U (see Leonard et al. 2001).
This is because the models from Litvinova and Nady-
ozhin (1983, 1985) were computed in the approxima-
tion of radiative heat conduction.

This implies that more detailed models are re-
quired to reproduce the observed U,B, V fluxes. As
an example, we consider the well-studied SN 1999em
in an effort to determine its parameters using a more
complex multigroup modeling of the SNe-II light
curves. We used our STELLA code (Blinnikov and
Bartunov 1993; Blinnikov et al. 1998; Sorokina and
Blinnikov 2004). The algorithms included in the
STELLA package model SNe with allowance made
for the much richer physics than that in the papers
by Litvinova and Nadyozhin (1983, 1985). Instead
of the radiative heat conduction approximation, we
describe the radiative transfer without assuming
an equilibrium photon spectrum (in the multigroup
approximation). We use much more accurate ex-
pressions for the opacity (including about 150 000
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Fig. 4. Light curves of SN 1999em with the initial
data from Nadyozhin (2003), D = 12.38 Mpc (a), and
Hamuy (2003), D = 7.5 Mpc (b). The heavy-element
abundance is Z = 0.03. Time from the first SN observa-
tion is along the horizontal axis.

spectral lines). This allows us to reproduce with
qualitative faithfulness the faster decline in the B
and U fluxes than that in the V band at the plateau
stage, as observed (Fig. 3). In addition, we take
into account the SN envelope heating through the
56Ni → 56Co → 56Fe decays, including the transfer
of gamma-ray photons. Baklanov (2002) constructed
a theoretical catalog for Mbol and UBV light curves
of SNe II obtained at various M , R, and E of the
presupernovae. In addition to the parameters used by
Litvinova and Nadyozhin (1983, 1985), the massMNi
of radioactive 56Ni was considered.

For SN 1999em, we constructed a nonevolu-
tionary presupernova model with an extended hy-
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Table 2. Basic parameters of the models

No. Model R,R� M,M� E, 1051 erg MNi,M� V ∆t uph

1 R450_M15_Ni004_E7 450 15 0.7 0.04 −15.8 120 3.0

2 R1000_M18_Ni006_E10 1000 18 1 0.06 −16.6 106 2.7

3 HZ_R250_M28_Ni004_E12 250 28 1.2 0.04 −14.8 119 3.3

4 NZ_R569_M15_Ni006_E6 569 15 0.6 0.06 −14.7 99 3.1

5 H_R250_M28_Ni004_E12 250 28 1.2 0.04 −15.5 123 3.2

6 N_R569_M15_Ni006_E6 569 15 0.6 0.06 −15.7 124 2.3

7 R600_M15_Ni008_E10 600 15 1 0.08 −15.5 95 3.0

8 R750_M12_Ni004_E12 750 12 1.2 0.04 −15.4 105 2.6

9 R900_M15_Ni004_E8 900 15 0.8 0.04 −16.6 72 4.0

10 R200_M15_Ni004_E10 200 15 1.0 0.04 −16.3 109 3.9

11 R300_M15_Ni004_E7 300 15 0.7 0.04 −16.8 74 4.5

12 R450_M19_Ni004_E7 450 19 0.7 0.04 −16.5 100 3.2

Note. At the input:R, M , E, and MNi for the presupernova. At the output: V —the absolute V magnitude in the middle of the plateau;
∆t (days)—the plateau duration in V ; and uph (103 km s−1)—the photospheric velocity of the SNmaterial in the middle of the plateau
in V .
drogen envelope, as in the papers by Litvinova and
Nadyozhin (1983, 1985), but more realistic, since
it has a compact massive core and 56Ni mixing
in the envelope, as in the models for SN 1987A
(Blinnikov et al. 1998). Litvinova and Nadyozhin
(1983, 1985) tookZ = 0.044, whileMaciel and Costa
(2003) and Pilyugin et al. (2004) obtained Z = 0.01
for H II regions in NGC1637. In our first models,
the hydrogen mass fraction in the envelope was
X = 0.7; the metallicity was taken for the first models
to be Z = 0.03 (50% higher than the value for the
standard cosmic distribution of elements (Anders and
Grevesse 1989) and 50% lower than that in the papers
by Litvinova and Nadyozhin (1983, 1985)).
ASTRONOMY LETTERS Vol. 31 No. 7 2005
We first constructed two presupernovae with the
radii, masses, and explosion energies suggested by
Hamuy and Nadyozhin. We then modeled the explo-
sion by the release of thermal energy E at the center
(models Nos. 3 and 4 in Table 2).

Figure 4 shows our model light curves computed
with the presupernova (and reddening) parameters
from Nadyozhin (2003) and Hamuy (2003). We see
that the model light curves constructed from the data
by Nadyozhin and Hamuy differ significantly and do
not reproduce the observations very well. For exam-
ple, the differences at the plateau stage are 1m. 5 and
more than 2m in the V and U bands, respectively.
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Fig. 5. U, B, V, R, I light curves of SN 1999em for
model No. 1. Time from the explosion is along the hori-
zontal axis.

The Set of Supernova Models

There is no method that would allow us to solve
the inverse problem, i.e., to determine the parameters
of the presupernova that produced this explosion from
observational data. We can only construct a model
with specified parameters and see how accurately it
reproduces the observations, e.g., as we did for the
data by Nadyozhin and Hamuy.

In our modeling, we varied the parameters that
affected most strongly the SN development over a
wide range: the radius from 200 to 2000R�, the mass
from 6 to 30M�, the 56Ni mass from 0.01 to 0.08M�,
and the explosion energy from 0.6 to 2 × 1051 erg.
As we show below, the distribution of elements (their
percentage abundance in the presupernova) plays a
major role. Subsequently, we constructed the models,
compared them with the observations, adjusted the
initial conditions, and recomputed the models. The
most interesting models are presented in Table 2.
Models Nos. 3 and 4 correspond to the models by
Hamuy and Nadyozhin, respectively.

The R450_M15_Ni004_E7 Model

As a result, we obtained the model that was
closest in its data to the observations; it was called
R450_M15_Ni004_E7 because of its main parame-
ters (model No. 1 in Table 2). Before it exploded, the
presupernova was a star with a mass of 15M� and
a radius of 450R�. Hydrogen, helium, and elements
heavier than He accounted for 70%, 29.6%, and
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Fig. 6.Photospheric velocity formodel No. 1. The crosses
represent the observed values, the solid curve indicates
the velocity obtained from our hydrodynamic modeling
at the τ = 2/3 level, and the dashed line represents the
fit uph ≈ Rph/t. Time from the explosion is along the
horizontal axis.

only 0.4% of the envelope, respectively. The low
metallicity agrees with the modeled spectra by Baron
et al. (2000). The distribution of elements in the
presupernova for model No. 1 is shown in Fig. 1.
The explosion was modeled by the release of energy
E = 7 × 1050 erg near the center.

By fitting the model light curves, we found the
best agreement with the observations (Fig. 3) pre-
cisely for this model at the distance D = 7.5 Mpc
to the supernova (Hamuy et al. 2001). Figure 3
shows the U,B, V light curves for the absolute mag-
nitudes corrected for the reddening E(B–V ) = 0.1.
TheU,B, V,R, I light curves on a longer time interval
and for the observed rather than absolute magnitudes
are shown in Fig. 5.

Comparing the model and observed light curves,
we found that the explosion of SN 1999em occurred
on October 24, 1999, and was detected at the Lick
Observatory 5 days later. Another 2.7 days later, it
reached its maximum light in U .

It is interesting to compare the photospheric ve-
locity uph with its observed values for the same model.
The good agreement between the computed and ob-
served values of uph in Fig. 6 is a weighty indepen-
dent argument for choosing precisely this model. The
dashed curve in Fig. 6 indicates a simple fit, uph ≈
ASTRONOMY LETTERS Vol. 31 No. 7 2005



PARAMETERS OF THE CLASSICAL TYPE-IIP SUPERNOVA 435

 

3.5 4.0 4.5

34

36

38

40

32

lo
g

 
L

 
λ

 
, e

rg
 s

 
–

1
 

 
 

Å
 

–
1

 

3.5 4.0 4.5

34

36

38

40

32

3.5 4.0 4.5

34

36

38

40

32
3.5 4.0 4.5

34

36

38

40

32

log

 

λ

 

, 

 

Å

 

(‡) (b)

(c) (d)

Fig. 7. Spectra for (a) October 30, 1999, (b) November 3, (c) November 9, and (d) November 14, 1999, for model No. 1.
Rph/t, which is applicable at the free (homologous)
expansion stage. We see that uph at the τ = 2/3 level
is equal to Rph/t only starting from day 15. This
suggests that the EPM (Hamuy et al. 2001; Leonard
et al. 2001) can be applied not earlier than this time.

Our model cannot completely reproduce the SN
spectrum, since we do not resolve individual spectral
lines in our calculations. The frequency range was
broken down into a hundred groups in the numerical
ASTRONOMY LETTERS Vol. 31 No. 7 2005
calculations; therefore, such fine features as spectral
lines cannot be reproduced in the spectrum. Nev-
ertheless, it is interesting to see how the computed
spectrum fits the observed spectrum. We also plotted
such curves for seven observing times obtained within
the first two months after the onset of the explosion.
We see from Figs. 7 and 8 that good agreement is
achieved. Data on the observed spectra were retrieved
from the Internet (Hamuy 2000).
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Fig. 8. Spectra for (a) November 19, 1999, (b) December 16, 1999, and (c) December 31, 1999, for model No. 1.
The R1000_M18_Ni006_E10 Model

Baron et al. (2004) estimated the distance to
SN 1999em to be 12.48 Mpc, a value that is close
to 11.7 Mpc (Leonard et al. 2003) determined from
Cepheids, thereby strengthening the long distance
scale to SN 1999em. Nadyozhin (2003) also used a
similar distance, 12.38Mpc.We tookD = 12.38 Mpc
from Nadyozhin (2003) as the basis for the second
series of calculations; accordingly, the distance mod-
ulus for SN 1999em increased by more than 1m. The
model described above is invalid for this distance,
since the observed light curves shifted significantly.

Having done work similar to that described above,
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 9. Distribution of elements in the presupernova for
model No. 2.
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nate) for model No. 2.

we obtained the R1000_M18_Ni006_E10 model
(No. 2 in Table 2).

Before its explosion, the presupernova was a star
with a mass of 18M� and a radius of 1000R�. Ac-
cording toWoosley et al. (2002), a star with an initial
mass between 15 and 25M� at the core silicon burn-
ing stage (i.e., close to the presupernova) can have
a radius between 800 and 1400R�. Hydrogen, he-
lium, and elements heavier than He accounted for 70,
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 11. Light curves of SN 1999em for model No. 2.D =
12.38 Mpc, the heavy-element abundance is Z = 0.004.
Time from the explosion is along the horizontal axis.
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Fig. 12.Photospheric velocity for model No. 2. Time from
the explosion is along the horizontal axis.

29.6, and only 0.4% of the envelope, respectively.
The distribution of elements in the presupernova for
model No. 2 is shown in Fig. 9. The density is plot-
ted against the mass (the Lagrangian coordinate) in
Fig. 10. The explosion was modeled by a release of
energy E = 1051 erg near the center.
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Fig. 13. U,B, V, R, I light curves of SN 1999em for
model No. 2. Time from the explosion is along the hori-
zontal axis.

The explosion began about 12 days before the SN
was discovered on October 29, 1999; i.e., the SN
explosion in this model occurred onOctober 17, 1999.
We could shift the explosion onset back in time for
better agreement between the V,R, I fluxes in the
first 20 days if it were not for the following two re-
strictions: the observations of the galaxy NGC 1637
9 days before the explosion of SN 1999em (Leonard et
al. 2001) and the measured photospheric velocities.

The U,B, V light curves (Fig. 11) and the photo-
spheric velocity (Fig. 12) for this model are in slightly
poorer agreement with the observational data than
those for model No. 1. If, however, the model light
curves and the observations in theU,B, V,R, I bands
are superimposed on one another, then, globally, the
light curves of model No. 2 (Fig. 13) pass more ac-
curately through the observation points than those
for model No. 1 (Fig. 5). However, model No. 1
seems preferred for the first 20 days, particularly from
the uph observations (cf. Figs. 6 and 12). The better
agreement for uph in the case of a shorter distance
scale can be explained by a systematic error in the ob-
served uph. This error could lead to underestimation of
the true EPM distance. At the same time, the short-
wavelength spectra are also in better agreement with
the observations for the short distance scale (Fig. 7).
For the long distance scale, the theoretical spectra
are found to be too soft (Figs. 14, 15), since the long
distance scale corresponds to a larger presupernova
radius, while the maximum achievable color temper-
ature of the explosion produced by the outbreaking
shock wave decreases at a larger radius. Thus, the
larger spectral hardness argues for a shorter distance
scale.

The appreciable deviation of the UBV RI fluxes
from their observed values in the first 20 days can
be caused by the structural peculiarities of the outer
atmospheric layers in the presupernova disregarded
in our model. Note that, in general, the theoretical
continuum spectra for the first days in Fig. 7 deviate
from the observations less than, for example, the V
fluxes, since the flux in this band is affected by spectral
lines.

CONCLUSIONS

Our detailed calculations yielded presupernova
parameters for SN 1999em that differ significantly
from the results obtained by Nadyozhin (2003) and
Hamuy (2003) using simple formulas from Litvina
and Nadyozhin (1983, 1985). This suggests that, to
determine the parameters of the SN IIP, we must
model its light curves in all bands and the photo-
spheric velocity by examining a large set of model
supernovae and achieving the best agreement with
the observations.

Taking the distance to SN 1999em estimated by
the EPM to be D = 7.5 Mpc, we found reason-
able parameters for the presupernova: radius R =
450R�, mass M = 15M�, and explosion energy
E = 7 × 1050 erg. The UBV fluxes are in better
agreement with the observations at a low metallicity
of the presupernova, Z = 0.004. The values of R,M ,
and E for the presupernova must be increased for
the distance D = 12 Mpc determined from Cepheids
to the following values: R = 1000R�, M = 18M�
and E = 1051 erg. Note that this behavior of M
and E with increasing D differ qualitatively from that
predicted by formulas (2) derived by Litvinova and
Nadyozhin (1983, 1985).

For model No. 1, the U,B, V light curves and the
photospheric velocity for D = 7.5 Mpc are in good
agreement with the observations (Figs. 3, 6). In gen-
eral, model No. 2 satisfactorily describes the entire
range of the observations in five bands (Fig. 10) at
D = 12.38 Mpc. The agreement of this model with
the observations for the long distance scale inR and I
is even better than that for model No. 1 for the short
distance scale. At the same time, the poor agreement
of the photospheric velocity with theU,B, V observa-
tions, particularly in the first 20 days, and the overly
soft spectra in the first days for model No. 2 suggest
that the distanceD = 7.5 Mpc to SN 1999em is more
realistic thanD = 12Mpc. This conclusion cannot be
final until the light curves of this SN and its spectra
are modeled in detail by taking into account factors
that have not yet been included in our analysis: the
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 14. Spectra for (a) October 30, 1999, (b) November 3, 1999, (c) November 9, 1999, (d) November 14, 1999, for
model No. 2.
structural features of the outer layers, the nonspheric-
ity, and the departure from local thermodynamic equi-
librium. The value ofD = 8.9Mpc (Tully 1988) is also
closer to our preferred case.

Our modeling showed that SN 1999em reached
the homologous expansion stage not earlier than
15 days after its explosion. Consequently, we can
estimate uph for this SN as Rph/t and, accordingly,
ASTRONOMY LETTERS Vol. 31 No. 7 2005
use the EPM only from this time. Hamuy et al.
(2001) and Leonard et al. (2001) also used earlier
points. The same remark also applies to the paper
by Baron et al. (2004), who used the SEAM. Thus,
a correction must be applied to the results for the
distanceD obtained byHamuy et al. (2001), Leonard
et al. (2001), and Baron et al. (2004) by discarding
the data for the first two weeks.
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Fig. 15. Spectra for (a) November 19, 1999, (b) December 16, 1999, and (c) December 31, 1999, for model No. 2.
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Influence of a Strong Magnetic Field on the Neutrino Heating
of a Supernova Shock
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Abstract—Based on the magnetorotational model of a supernova explosion with core collapse, we investi-
gate the significant processes of neutrino heating of the supernova shock. These processes should be taken
into account in self-consistent modeling, since the neutrino heating mechanism is capable of increasing
the explosion efficiency.We show that, even in the presence of a strong magnetic field (B ∼ 1015 G) in the
shock formation region, the heating rate is determined with good accuracy by the absorption and emission
of neutrinos in direct URCA processes. Moreover, the influence on them of a magnetic field is reduced to
insignificant corrections. c© 2005 Pleiades Publishing, Inc.

Key words: supernovae, neutrino processes, magnetic field.
Explosions of supernovae with core collapse are
known to be generally accompanied by an intense
outward ejection of part of the material. However,
the currently existing models do not offen an effi-
cient explosion mechanism. Thus, for example, in the
standard spherically symmetric supernova explosion
model, the shock stops on a scale on the order of a
hundred kilometers from the center of the remnant.
Attempts to improve this model by applying relativis-
tic corrections and using a self-consistent description
of neutrino propagation (based on the solution of
the Boltzmann equation) do not lead to a significant
modification of the explosion pattern (Liebendoerfer
et al. 2001). The currently existing 2D calculations
including the additional shock heating through con-
vection and interaction with the neutrino flux do not
lead to a successful supernova explosion either (Buras
et al. 2003). On the other hand, the currently avail-
able observational data on several supernovae sug-
gest that their explosions are asymmetric (Wheeler
et al. 2002; Wang et al. 2001); moreover, this asym-
metry can be fairly strong (Leonard et al. 2000). It
would be natural to assume that this asymmetry is
the result of the rapid rotation of the collapse rem-
nant or the presence of a strong magnetic field. Note
that, according to existing models, the generation of a
magnetic field in the remnant is directly related to its
rapid rotation.

At present, the best-known supernova explosion
model with a self-consistent allowance for the mag-
netic field is the so-calledmagnetorotational model by
Bisnovatyi-Kogan (1970). The presence of a primary

*E-mail: gvozdev@univ.uniyar.ac.ru
1063-7737/05/3107-0442$26.00
magnetic field and an angular velocity gradient in
this model leads to the linear growth of a secondary
magnetic field with time to a certain critical value.
Once the latter has been reached, an axially sym-
metric (relative to the equatorial plane) supernova
explosion occurs. However, as recent calculations by
Ardeljan et al. (2004) showed, the linear growth of
the magnetic field is disrupted by the development
of magnetorotational instability. The development of
this instability leads to a rapid growth of magnetic
field perturbations to strengths B ∼ 1015–1016 G,
and to the formation of a shock.

As the magnetorotational instability develops, the
kinetic energy of the rotation of the envelope with an
angular velocity gradient transforms into the kinetic
energy of the outward ejection of material through the
rapidly growing magnetic field perturbations (Balbus
and Hawley 1991, 1998). However, another addi-
tional energy source, shock heating by a neutrino flux,
has long been known (Bethe and Wilson 1985). In
the model under consideration, the neutrino heating
mechanism is capable of increasing the explosion
efficiency and is of particular interest.

The direct URCA processes

νe + n → p + e−, (1)

ν̃e + p → n + e+, (2)

are generally believed to be the dominant neutrino
shock heating reactions. Another popular neutrino–
lepton process,
c© 2005 Pleiades Publishing, Inc.
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νi + ν̃i → e+ + e−, (3)

i = e, µ, τ

is inefficient far from the center, because the angle
between the neutrino and antineutrino momenta is
small. Note that in a medium with a strong magnetic
field, the production processes of an e+e− pair by a
single neutrino,

νi → νi + e+ + e−, (4)

ν̃i → ν̃i + e+ + e−, (5)

i = e, µ, τ

open up kinematically and can be important. In this
paper, we compare the neutrino shock heating effi-
ciencies in the presence of a strong magnetic field
in the standard direct URCA processes and reac-
tions (4)–(5).

The neutrino heating rate per nucleon in the direct
URCA processes (1)–(2) can be calculated as

Qν,ν̃
0 =

1
NN

∫
ωKν,ν̃fν,ν̃(ω, r)

d3k

(2π)3
, (6)

where kα = (ω,k) is the 4-momentum of the
(anti)neutrinos, fν,ν̃(ω, r) is their local distribution
function,NN is the local nucleon number density, and
Kν,ν̃ is the absorption coefficient defined as the rate of
reactions (1)–(2) underintegrated over the neutrinos.
In what follows, we use the natural system of units
with c = � = k = 1.

In the case of a moderate magnetic field where the
e+e− plasma occupies many Landau levels (

〈
ω2
νe

〉
�

2eB), its influence on the direct URCA processes is
rather weak. For the absorption coefficient, we can in
this case use its field-free expression. Assuming that
the e+e− plasma is ultrarelativistic and that the non-
relativistic nucleons have a Boltzmann distribution,
we can represent the absorption coefficient as

Kν,ν̃ =
G2

π
(1 + 3g2

a)Yn,pNN (7)

× ω2

1 + exp[(−ω ± µe)/T ]
.

Here,G = GF cos θc, whereGF is the Fermi constant,
θc is the Cabibbo angle, ga � 1.26 is the axial con-
stant of the charged nucleon current, Yn = Nn/NN,
Yp = 1 − Yn, NN = Nn + Np, where Nn and Np are
the local neutron and proton number densities, re-
spectively, µe is the chemical potential of the elec-
trons, and T is the local temperature.
ASTRONOMY LETTERS Vol. 31 No. 7 2005
It is convenient to while formula (6) for the heating
rate of the medium in the direct URCA processes in
terms of the mean quantities of neutrino radiation

〈
ωnνe

〉
=
(∫

ωn+1fνe(ω, r)
d3k

(2π)3

)
(8)

×
(∫

ωfνe(ω, r)
d3k

(2π)3

)−1

,

〈χνe〉 =
(∫

χωfνe(ω, r)
d3k

(2π)3

)
(9)

×
(∫

ωfνe(ω, r)
d3k

(2π)3

)−1

,

where χ is the cosine of the angle between the neu-
trino momentum and the radial direction and the total
neutrino luminosity

Lνe = 4πr2

∫
χωfνe(ω, r)

d3k

(2π)3
. (10)

Here, r is the distance from the center of the remnant
to a given point.

Under the additional simplifying assumption〈
ω2
νe

〉
Lνe/ 〈χνe〉 =

〈
ω2
ν̃e

〉
Lν̃e/ 〈χν̃e〉 ,

which holds in various supernova explosion mod-
els, we obtain a well-known (see, e.g., Janka 2001)
expression for the shock heating rate in the direct
URCA processes:

Q0 = Qν
0 + Qν̃

0 =
G2

π
(1 + 3g2

a)
Lνe

〈
ω2
νe

〉
4πr2 〈χνe〉

(11)

� 55
(

MeV
nucleon s

)(
Lνe

1052 erg/s

)

×
( 〈

ω2
νe

〉
225 MeV2

)(
107 cm

r

)2

,

where r is the characteristic distance to the shock.

The heating rate of the medium per nucleon in the
additional processes (4)–(5) can be calculated as

Qνi,ν̃i

B =
1

NN

∫
Eνi,ν̃ifνi,ν̃i(ω, r)

d3k

(2π)3
, (12)

where Eνi,ν̃i is the heating rate of the medium per
(anti)neutrino of type i. In the case of a moderate
magnetic field where

〈
ω2
νe

〉
� 2eB, it can be rep-

resented in a logarithmic approximation (Kuznetsov
and Mikheev 1997) as
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Eνi,ν̃i �
7G2

F (c2vi
+ c2ai

)
432π3

(eBω sinϕ)2 (13)

× ln
(
eBω sinϕ

m3
e

)
.

Here, ϕ is the angle between the momentum of the
initial neutrino and the magnetic field, cvi and cai

are the vector and axial constants of the weak elec-
tron current (cve � 0.96, cae = 1/2 for the electron
neutrino; cvi � −0.04, cai = −1/2 for the µ- and
τ-neutrino).

Formula (12) for the neutrino heating rate of the
medium in processes (4)–(5) can also be expressed
in terms of the mean quantities of neutrino radiation
and its total luminosity:

Qi
B = Qνi

B + Qν̃i
B =

7G2
F (c2vi

+ c2ai
)

216π3
(14)

× (eB)2 〈ωνi〉
NN

Lνi

4πr2 〈χνi〉
.

When deriving this formula, we assumed that sinϕ ∼
1, which holds good for the region where the neutrinos
propagate almost freely. Under the additional simpli-
fying assumption

〈ωνi〉Lνi/ 〈χνi〉 = 〈ων̃i〉Lν̃i/ 〈χν̃i〉
= 〈ωνe〉Lνe/ 〈χνe〉 ,

which holds good in various supernova explosion
models, we obtained the following expression for
the ratio of the total neutrino heating rates in pro-
cesses (4)–(5) and (1)–(2):

QB

Q0
� 1.6 × 10−2 (eB)2 〈ωνe〉

NN
〈
ω2
νe

〉 � 15 MeV
〈ωνe〉

(eB)2

ρ
,

(15)

where QB =
∑
i
Qi
B is the total neutrino heating rate

for all types of neutrinos.
In this paper, we considered the most significant

neutrino shock heating processes in the magnetoro-
tational model. For the sake of generality, we derived
the well-known expression for the heating rate in the
URCA processes (11). Note that even this expres-
sion contains a number of simplifying assumptions
discussed in the paper. In addition, the density of the
medium decreases with distance muchmore slowly in
the magnetorotational model than in the spherically
symmetric model. This implies that, even at the char-
acteristic distances where the shock is formed (r ∼
100 km), we must also take into account the neutrino
radiation processes, which can significantly reduce
the total rate of neutrino shock heating. Thus, formula
(11) should be treated with caution, particularly in the
magnetorotational model.
On the other hand, in the magnetorotational
model, a fairly strong magnetic field (B ∼ 1015 G)
can be generated at large distances (r ∼ 100 km).
Therefore, we must consider the effect of such a
strong magnetic field on the neutrino shock heating.
In particular, under these conditions, the new neu-
trino heating reactions (4)–(5) can compete with the
direct URCA processes (1)–(2), which are the main
processes in the spherically symmetric explosion
model.

Our estimate (15) shows that the new neutrino
heating reactions (4)–(5) become significant when
(eB)2 � ρ. However, the strength of the magnetic
field produced by the medium cannot be too large. For
example, in the models with sub-Keplerian rotation
rates (Akiyama et al. 2003; Thompson et al. 2004),
the magnetic field strength reaches saturation when
the field energy density becomes comparable to
the rotation energy density of the medium, B2

sat �
4πρ(rΩ)2 (where Ω is the local angular velocity of
the medium at distance r). Using this estimate, we
can present the ratio of the heating rates (15) as

QB

Q0
� 0.1

(
rΩ
c

)2 15 MeV
〈ωνe〉


 1, (16)

where c is the speed of light in a vacuum. Thus, in all
probability, the new reactions that open up in a mag-
netic field cannot compete with the standard neutrino
shock heating processes. Consequently, even in the
case of a fairly strong magnetic field, B ∼ 1015 G,
the heating is almost completely determined by the
absorption and emission of neutrinos in the direct
URCA processes, with the influence of the magnetic
field on them being reduced to insignificant correc-
tions.
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Abstract—Assuming that the energy gain by cosmic-ray (CR) particles is a stochastic process with
stationary increments, we derive expressions for the shape of their energy spectrum up to energies E ∼
1018 eV. In the ultrarelativistic case under study, the energy is proportional to the momentum, whose time
derivative is the force. According to the Fermi mechanism, a particle accelerates when it passes through
a system of shock waves produced by supernova explosions. Since these random forces act on time scales
much shorter than the particle lifetime, we assume them to be delta-correlated in time. In this case, due
to the linear energy–momentum relationship, the mean square of the energy (increments) is proportional
to the differential scale τ(E) ∼ Eτ(≥E), where τ(≥E) is the cumulative time it takes for a particle to
gain an energy ≥E. The probability of finding a particle with energy ≥E somewhere in the system is
inversely proportional to the time it takes to gain the energy E. To estimate an upper limit for the space
number density of CR particles, we use estimates of the CR volume energy density, a quantity known
for our Galaxy. It is taken to be constant in the range 10 GeV ≤ E ≤ 3 × 106 GeV, where the index of
the energy spectrum was found to be −8/3 ≈ −2.67 against its empirical value of −2.7. In the range
3× 106 GeV ≤ E < 109 GeV, the upper limit for the volume energy density is estimated by using the results
from the previous range to be−28/9 ≈ −3.11 against its empirical value of−3.1. The numerical coefficients
in the suggested shapes of the spectrum can be determined by comparison with observational data. Thus,
the CR energy spectrum is the result of the randomwalks of ultrarelativistic particles in energy/momentum
space caused by the Fermi mechanism. c© 2005 Pleiades Publishing, Inc.

Key words: cosmic rays, nonthermal radiation processes.
INTRODUCTION

The cosmic-ray (CR) energy spectrum at ener-
gies E > 1010 eV = 10 GeV has three power-law
portions with different indices n. No explanation has
been found for these values of n for three decades.
Clearly, different particle acceleration (and destruc-
tion) mechanisms operate over a range of energies E
spanning about ten orders of magnitude. These pro-
cesses are associated mainly with supernova (SN)
explosions and, for energies of ∼1018 eV or more,
with processes in quasars and/or clusters of galaxies
(see Ginsburg (1969), from where we took the main
numerical values).

The latest models for the origin of the shape of
the CR spectrum can be found in the reviews by
Hoerandel (2004) and Erlykin (2004). The models
include various hypotheses and constants; the reli-
ability of the former and the estimates of the latter
have always been open to question. At the same time,

*E-mail: mail_adm@ifaran.ru
1063-7737/05/3107-0446$26.00
the retention of the spectral shape over several or-
ders of magnitude implies that some simple statistical
mechanisms leading to self-similar spectral shapes
are operating. Here, we show that in its simplest
interpretation, the statistical mechanism of CR accel-
eration by SN shock waves in the interstellar medium
suggested by Fermi (1949) is one of the mechanisms
in the evolution of systems in which random forces act
with a correlation time much shorter than the lifetime
of the system itself, or even shorter than the interval
between two successive encounters of CR particles
with shock waves.

Leontovich (1935) showed that the Boltzmann
kinetic equation could be derived by assuming that
the collisions between molecules form a Markovian
chain. The latter is equivalent to assuming a short
correlation time, namely, a delta correlation in time,
compared to the system’s response time. Leon-
tovich (1983) used a similar assumption to derive a
functional equation for the mean square of the dis-
placement of a Brownian particle. The solution of this
equation is proportional to the time, i.e., equivalent to
c© 2005 Pleiades Publishing, Inc.
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formula (9) derived below for the diffusion or random
walks of CR particles in momentum space.

Below, we provide the basic information needed
below about CRs and our Galaxy. The Galactic
disk has a thickness on the order of h = 200 pc
and a radius of 15 kpc (1 pc = 3 × 1016 m). Thus,
the volume of the Galaxy is 1061 m3 = 1067 cm3

(without the halo). The CR volume energy density
is w0 ∼ 0.5 eV cm−3 ≈ 10−13 J m−3, 1 eV = 1.6 ×
10−12 erg = 1.6× 10−19 J. Thus, the total CR energy
is ∼W ≈ 1048 J. The rate of energy release from SNe
exploding two or three times in a century is G ≈
3 × 1033 W at an explosion energy of 1042–1043 J.
These values yield a CR lifetime of τe = W/G =
3 × 1014 s = 107 yr. Thus, about ∼103 СR genera-
tions have changed over the lifetime of our Galaxy,
∼1010 yr. The time τe is approximately four orders of
magnitude longer than the time it takes for a particle
moving at the speed of light с (1 pc = 3.26 light years)
to cross the disk thickness. Particles do not escape
from the Galaxy, as it possesses a magnetic fieldH ≈
5 × 10−6 G whose volume energy density H2/8π
is almost equal to the CR energy density. In the
ultrarelativistic approximation, the particle energy is

E = pc, (1)

where p is the momentum, and c is the speed of
light (recall that the intrinsic energy of the proton is
close to 1 GeV, whereas our particles have energies
E > 10 GeV). The Larmor radius of the proton is
given by the formula

RL = E18/H−6 kpc, (2)

where the energy, the magnetic field, and the ra-
dius are measured in 1018 eV, 10−6 G, and kpc,
respectively. For this energy and a magnetic field
of 5 × 10−6 G, we obtain RL = 1/5 = 0.2 kpc =
200 pc, i.e., the thickness of the Galactic disk. The
knee (steepening) in the spectrum is observed at
E ≈ 3 × 1015 eV = 3 × 10−3E18, where RL = 0.6 ×
10−3 kpc = 0.6 pc, i.e., the dimensionless radius
RL/h ∼ 3 × 10−3. The CR escape from the Galaxy
probably becomes noticeable, starting from the RL

that is a factor of 300 smaller than the disk thickness.

The book by Ginzburg (1969) cited above gives
the shapes of the cumulative CR energy spectra ob-
tained from observational data:
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I(≥E) (3)

=




1 × [E(GeV)]−1.7,

10 GeV ≤ E ≤ 3 × 106 GeV

3 × 10−10[10−6E(GeV)]−2.1,

3 × 106 GeV ≤ E ≤ 109 GeV = 1018 eV.

The quantity on the left means the number of
particles with the threshold energy E per nucleon per
unit area (1 cm2) per unit time (1 s) arriving from a
unit solid angle. The cumulative spectrum I(≥E) is
related to the differential spectrum I(E) by

I(≥E) =

∞∫
E

I(E)dE. (4)

Thus, the differential spectrum I(E), the number
of particles in the energy interval [E,E + dE], is

I(E) = − d

dE
I(≥E). (5)

The two spectra are related to the CR particle
energy distribution function

n(≥E) =

∞∫
E

n(E)dE (6)

=
4π
c

∞∫
E

I(E)dE =
4π
c
I(≥E).

Above E ∼ 1018 eV, the spectrum again flattens
out, although the statistical scatter of its values in-
creases. The detection of CRs with energies above
1020 eV when the Greisen–Zatsepin–Kuzmin effect
(the production of π mesons during the interaction
of CRs with cosmic microwave background photons)
comes into play is still a great puzzle.

DERIVATION OF THE FORMULA
FOR THE FIRST PORTION

OF THE SPECTRUM

We assume that the observed CRs (at least those
with energies below the knee) are produced in the
Galaxy, i.e., their spectrum is formed as they are ac-
celerated by the shock waves (SWs) that the particles
encounter, on average, two or three times in a century
or more frequently, depending on the SW lifetime
and their location in space. The forces f(xi, t) that
produce stochastic acceleration are assumed to act
on time scales much shorter than the CR lifetime
and even the time intervals between successive SWs,
which are randomly distributed in space and in time
and generate random fields that are spatially uniform
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and stationary in time. These forces can then be as-
sumed to be delta-correlated:

Bf (τ) = σ2
fτ0δ(τ) ≡ Gpδ(τ), Gp = σ2

fτ0, (7)

where σ2
f is the variance of the random forces, and τ0

is the correlation time of the random forces in a single
Fermi-type acceleration event during the interaction
with a shock wave. The frequency spectrum corre-
sponding to the correlation function (7) is white noise
with an energy density Gp = const.

The momentum is the time integral of the force,
since

dp/dt = f. (8)

The field of the forces for the correlation function (7)
is statistically stationary in time; themomentum vari-
ation is then a stochastic process with stationary
increments of the first order. It is characterized by the
structure function calculated by integrating (8):

Dp(τ) = 〈[p(t + τ) − p(t)]2〉 = 2Gpτ. (9)

This formula can be interpreted as the CR diffu-
sion in momentum space in view of its clear analogy
with the diffusion of a Brownian particle in coordi-
nate space, for which the linear time dependence of
the mean square of the displacement arises from the
delta correlation between the momenta transferred
to the Brownian particle. In our case, however, the
forces that are the derivatives of the momenta are
delta-correlated; therefore, the diffusion takes place
in momentum space (see Golitsyn (2004), where we
showed how one assumption could explain numerous
statistical distributions in nature). In view of for-
mula (1), we have the diffusion in energy space.

Here, there is a close analogy with the Kolmogorov
turbulence of liquid Langrange particles (LLPs). Ya-
glom (1949) established that, in the inertial range
of turbulence, the frequency spectrum of the LLP
acceleration field is white noise with an energy density
ε, the generation/dissipation rate of kinetic energy per
unit mass. The time correlation function is

Ba(τ) = σ2
aτvδ(τ) = εδ(τ),

where σ2
a = ε3/2ν−1/2 is the mean square of the

acceleration fluctuations, τv = (ν/ε)1/2 is the Kol-
mogorov time microscale, and ν is the kinematic
viscosity. The time structure function of the velocity
u(τ) is

Du(τ) = 〈[u(t + τ) − u(t)]2〉 = 2ετ. (10)

This formula was known to A. M. Obukhov
in 1941. In explicit form (without the coefficient 2),
it was first published in the first edition of the book by
Landau and Lifshitz (1944), where it was derived from
dimension considerations. Subsequently, Obukhov
(1959) called ε in formula (10) the diffusion coef-
ficient in velocity space (for a detailed history and
a more rigorous discussion, see Monin and Yaglom
(1975) and Obukhov and Yaglom (1951)). A paper by
Novikov (1963), who derived formulas of type (10)
using the Langevin equation with random forces
in the limit of short correlation times, should also
be mentioned. Previously (Golitsyn 2001a, 2001b,
2003), we showed how the Kolmogorov–Obukhov
results for turbulence in the inertial range follow from
this.

Recalling that, in the ultrarelativistic case, the
energy is related to the momentum by the linear re-
lation (1), we can rewrite formula (9) as

DE(τ) = 〈[E(t + τ) − E(t)]2〉 = c2Gpτ. (11)

Considering fairly long times τ , such that the ini-
tial energy can be ignored, we rewrite formula (11) as

E2(τ) ≈ c2Gpτ(≥E) (12)

=
d

dt

(
E2

2

)
τ(≥E) =

(
E
dE

dt

)
τ(≥E),

where we removed the averaging symbol and where
only the cumulative waiting time τ(≥E) has the di-
mension of time. Hence,

E(τ) ≈ Gτ(≥E), E(τ) ≈ Gτ(≥E), (13)

whereG = dE/dt is the generation rate of CR energy
in the Galaxy, which was estimated above to be 3 ×
1033 W. Previously (Golitsyn 1997), we derived this
relation from dimension considerations.

The relation between the cumulative time it takes
to gain an energy ≥E and the differential parameter
τ(E) follows from equality

1
τ(≥E)

=

∞∫
E

dEi
τ(Ei)

. (14)

In fact, this relationship between the frequencies
follows from the relation between the cumulative
probability and the probability density function (not
normalized to any long time interval). The latter has
a dimension that are the inverse of its parameter.
It follows from formula (14) that the dimensions of
[τ(≥E)] = [τ(E)][E]−1 and

1
τ(≥E)

≈ E

τ(E)
(15)

to within a numerical coefficient. This coefficient can
be estimated by substituting Ei = Ex in (14) and is

∞∫
1

dx

τ(x)
= O(1)
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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for all moderately slowly decreasing functions [τ(x)]−1

that ensure the convergence of this integral. Below,
we determine the numerical coefficients that establish
the correspondence between the formulas derived in
this paper and the empirical relations (3) by compar-
ing them with measurements. Thus, we obtain from
(13)–(15)

1
τ(≥E)

≈ G

E
,

1
τ(E)

≈ G

E2
, τ(E) ≈ Eτ(≥E).

(16)

These three formulas can also be obtained from di-
mensional considerations, remembering that we do
not claim to be deriving expressions with accurate
numerical coefficients.

Formulas (13)–(16) estimate the frequencies in
the entire system under study (i.e., in the Galaxy),
while the CR measurements are made in an area that
occupies a negligible fraction of the cross section of
the Galaxy. Therefore, it is necessary to estimate the
particle space number density as a function of their
energy and, in addition, via measurable or known
parameters. This can be done by estimating an upper
limit by writing the following system of inequalities for
the CR number density:

n(≥E) =

∞∫
E

n(E)dE =

∞∫
E

E

E
n(E)dE (17)

<
1
E

∞∫
E

En(E)dE =
w(≥E)

E
,

where w(≥E) is the volume energy density of CRs
with energies higher than or equal to E. We will
only reinforce inequality (17) if we substitute w0 ≈
0.5 eV/cm3 for w(≥E) on the right-hand side. This
makes it possible to estimate an upper limit for the
scale of the inverse area to which the CR flux must be
referred via the CR energy

1/S(≥E) = [n(≥E)]2/3 < (w0/E)2/3. (18)

Thus, we have the two main scales given by for-
mulas (16) and (18) that determine the measured
particle flux. These scales may be considered as the
probabilities of finding CRs in space and in time.
Assuming these probabilities to be independent, we
multiply them to obtain the spectrum. The probabili-
ties are normalized when we determine the numerical
coefficients by comparison with observational data;
this determines the phenomenology of our analysis of
the problem. As a result, we obtain

I(E) ≈ 3
5
c1GE

−2
(w0

E

)2/3
=

3
5
c1Gw

2/3
0 E−8/3.

(19)
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The cumulative spectrum can be calculated by in-
tegrating the differential spectrum using formula (4):

I(≥E) = c1Gw
2/3
0 E−5/3. (20)

A comparison of formulas (20) and (3) yields a value
for c1 that is close to 10−37 for the global energy
generation rate G = 3 × 1033 W and the above value
of w0 = 0.5 eV cm−3. Note that the index that we
obtained in (19), n = 8/3 ≈ 2.67, is remarkably close
to its empirical value of 2.7. We disregarded this dif-
ference and determined c1 from the midpoint of the
interval of relations (3).

Note also that the measured indices n decrease
slightly with increasing atomic weight of the CR par-
ticles, being 2.67 for helium and slightly less for iron
(Ginzburg 1969). In our scheme, this corresponds to
some “pinkness” of the spectrum of random forces,
i.e., their slow increase toward the lower frequencies
and the moderately fast decrease of their correlation
function with time, suggesting a relationship to the
large-scale structure of the Galaxy. This is a purely
pro forma remark without any discussion of the pos-
sible physical causes for this effect.

Formula (20) for the cumulative spectrum was
derived previously (Golitsyn 1997) from similarity and
dimension considerations. In this paper, we show the
statistical nature of the result obtained previously by
considering the stochastic gain of energy by ultra-
relativistic CRs under the action of random forces
with a short correlation time, whose action is treated
as a stationary random process. Since we do not go
into the details of the mechanism and operate with
the quantities that characterize the entire Galaxy, we
can determine only the shape of the spectrum. It
proves to be similar to the observed spectral shape,
and the smallness of the numerical coefficient c1 can
be explained by our units of measurement and scales
being tens of orders of magnitude smaller than the
corresponding Galactic ones.

ESTIMATING THE SHAPE
OF THE SPECTRUM IN THE ENERGY

RANGE 3 × 106 GeV < E < 109 GeV

This part of the energy spectrum from the knee
to the ankle begins definitively to feel the CR escape
from theGalactic disk, since, as we showed above, the
Larmor radius of a proton in the Galactic magnetic
field at an upper limit of E = 1018 eV is equal to
the disk thickness; i.e., the magnetic field ceases to
confine the particles. Nevertheless, the fate of the
individual high-energy particles is still described by
formula (13), because the destruction or escape of
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particles does not affect the fate of the remaining par-
ticles, and the energy is still gained by them stochas-
tically through diffusion or random walks in momen-
tum/energy space in the ultrarelativistic case.

However, the escape of particles from the Galaxy
and the shape of the spectrum itself change the num-
ber densities of high-energy CRs. In the previous
section, we estimated an upper limit for their number
density and the separation between them using the
constant quantity w0, the CR volume energy density,
as an analog of their pressure. The quantity w0 is
formed mostly by particles with energies as high as
several hundred GeV, while in the range of energies
considered in this section, their values are higher at
least by four orders of magnitude.

Here, we can again estimate an upper limit for
w(≥E) using formulas (4) and (6) with (20), i.e., by
extending the estimate of the CR number density as a
function of the particle energy from the previous range
of the energy spectrum to the spectrum after the knee:

w(≥E) > En(≥E) =
4π
c
c1

(w0

E

)2/3
G. (21)

This introduces an additional energy dependence of
the CR number density. Expressing the area scale
as [E/w(≥E)]2/3 and relating it to the differential
time scale from formula (16), we obtain the following
formula for the differential spectrum:

I(E) ≈ 9
19

c2
G

E2

(
G

cE

)2/3 (w0

E

)4/9
(22)

=
9
19

c2c
−2/3G5/3w

4/9
0 E−28/9.

Hence, we have for the cumulative spectrum

I(≥E) ≈ c2c
−2/3G5/3w

4/9
0 E−19/9. (23)

A comparison of the latter formula with the ob-
servational data (3) for the values of G and w0 men-
tioned above yields c2 ≈ 5 × 10−37. Note that our
index 28/9 = 3 + 1/9 is close to its empirical value
of 3.1.

If there were several intervals with different slopes
of the CR energy spectrum, then relations of type (21)
would always hold in them. We could then develop a
procedure of successive approximations to estimate
the area scales using each time the estimate from
the previous spectral interval. It is reduced to re-
peatedly taking the power 2/3 of the ratio (w0/E) =
[n(≥E)]2/3. The final index n in the dependence of the
spectrum on energy E for k intervals can be found as

k∑
i=0

(
2
3

)i
= nk,
where i = 1 corresponds to the shape of the spectrum
in the initial interval, in which I(≥E)∞E−5/3. In the
limit k → ∞, the dependence onw0 vanishes, and the
spectrum acquires the shape I(≥E) 
 G3c−2E−3,
which is most likely unattainable in nature. If a third
energy interval of Galactic CRs existed in the spec-
trum above E = 109 GeV, then one could expect its
index to be

n3 = 1 +
2
3

+
4
9

+
8
27

=
65
27

≈ 2.4.

Our procedure shows that the index in the en-
ergy spectrum is determined mainly by the stochastic
CR acceleration mechanism, the diffusion in energy–
momentum space in the ultrarelativistic case, while
the spatial CR distribution affects the shape of the
spectrum to a lesser degree.

Below, we make several remarks about the shape
of the spectrum for energies E > 1018 eV. Here, the
statistics are not very numerous and the scatter is
significant, but the spectrum clearly becomes less
steep and similar in shape to the portion before the
knee. Since the particles here are clearly extragalactic
in origin, the parameters that determine the shape
and magnitude of this spectrummust refer to clusters
of galaxies, quasars, etc. (see, e.g., Ostrowski 2002;
Carilli and Taylor 2002).

CONCLUSIONS

TheCR energy spectrum is the result of a stochas-
tic process with stationary increments, which arises
from the stochastically stationary effects of random
delta-correlated (in time) forces (white noise) on the
CRs. This is the simplest mathematical represen-
tation of the Fermi mechanism, the acceleration of
ultrarelativistic CR particles by random shock waves
from supernova explosions. The CR spatial frequency
(number density) as a function of their energy can
be estimated using the known CR volume energy
density and the system of inequalities. The calculated
spectral indices agree well with their experimental
values. The numerical coefficients can be found from
comparing the indices with the measurements. The
simplest analog of the methodology used here is a
description of the statistical properties of the motion
of Brownian particles, but here the energy is gained
through the randomwalks of ultrarelativistic particles
in energy–momentum space.

The same results, at least those concerning the
first portion of the spectrum, can also be obtained us-
ing the methods of similarity and dimensional theory,
which, however, do not reveal the statistical nature of
the process.
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Abstract—We substantiate the conclusion that the unusual color variability found previously in some
eruptive stars is typical of a broad class of nonstationary objects, manifests itself over a wide temperature
range (from B0 to K3), and can be regarded as a new type of stellar variability. c© 2005 Pleiades Publish-
ing, Inc.
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INTRODUCTION

For the vast majority of eruptive and pulsating
stars, the B–V color index is known to increase with
decreasing brightness of the objects; i.e., the coeffi-
cientK in the equation

V = a+K(B–V ),

which relates the V magnitude and the B − V color
index, is positive (K > 0). This relation holds ir-
respective of whether the brightness variations are
caused by surface-temperature variations (pulsating
variables), flares, or variable dust extinction (eruptive
stars). It is true that some of the irregular Algol-like
variables show a blueing effect, but this is observed
only at deep brightness minima and is basically a sec-
ondary effect, since it is attributable to the scattering
of photospheric emission by the dust of circumstellar
envelopes (Grinin 1988). This effect is not considered
here, since it bears no relation to the color anomaly.
Our analysis of UBV R observations for two F-

type antiflare stars, BO Cep (Sp F2e) and SU Aur
(Sp F5–G2 III), has revealed that the small bright-
ness fluctuations near normal light are accompanied
by unusual color variations during which the coeffi-
cient K is negative; i.e., the emission becomes bluer
rather than redder as the star fades (Pugach 2003,
2004a). The goal of this paper is to search for unusual
color variability (UCV) in other stars.

OBSERVATIONS AND THEIR ANALYSIS

Our analysis of the observations of several stars
preformed previously at the Terskol high-altitude ob-
serving station (Pugach 1996) revealed UCV in stars

*E-mail: pugach@mao.kiev.ua
1063-7737/05/3107-0452$26.00
of spectral types earlier than F. In particular, it was
found in VX Cas (Sp A0 IIIe) and IP Per (Sp A3e)
(see the table). The results of our analysis of the hot
B-type emission-line star LkHα 373, which has been
recorded so far as a variable only in the NSV catalog
(NSV 13395), are also of considerable interest. Fig-
ure 1 shows the observations of LkHα 373 performed
by Kardopolov and Filip’ev (1985). The solid line in
this figure indicates a linear fit to the V –(B–V )
relation for which the coefficient K is negative, sug-
gesting the presence of UCV. In this and all of the
following cases, the coefficient K and its error were
calculated by the least-squares method.
That UCV is found in stars with greatly differ-

ing effective temperatures was the reason why we
searched for the UCV in other stellar objects. We
used data from various published sources to analyze
the color behavior of nonstationary stars of different
types. The results of this analysis are presented in
the table. This table gives the following: the star’s
name; its spectral type; the date of observations or
the whole period during which the UCV persisted;
the number of observations; the amplitude ∆V over
the analyzed time interval; the sought-for coefficient
K; the cross-correlation coefficient Cc, which shows
how closely the quantities being compared are cor-
related; the references to original data; and notes. In
particular, the last column provides information about
the photometric systems used in the observations.
Some of the authors performed their observations
in Strömgren’s uvby system or the seven-band Vil-
nius UPXY ZV S system rather than in the UBV R
system. In these cases, we chose the bands closest
to B (λeff = 445 nm) and V (λeff = 545 nm) for our
analysis. Thus, for example, we took the observations
in the b (λeff = 410 nm) and y (λeff = 547 nm) bands
from the observations performed in the four-band
c© 2005 Pleiades Publishing, Inc.
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Object Sp JD 2400000+ N ∆V K ± σ Cc ± σ Refere

SU Aur G2IIIev 41949 50 0.11 −0.563± 0.110 −0.591± 0.019 1

VX Cas A0IIIe 41072 27 0.22 −0.190± 0.048 −0.359± 0.031 1

BO Cep F2e 42191 23 0.111 −0.879± 0.245 −0.616± 0.035 1

V425 Cyg Bpe 44763–44853 65 0.13 −0.289± 0.056 −0.538± 0.013 2

BN Ori A7–F2pe 46389–46442 24 0.047 −0.150± 0.070 −0.413± 0.004 3

FU Ori F2–G3Iape 45250–46486 65 0.184 −0.060± 0.027 −0.276± 0.010 3,

IU Ori K3III 45265 38 0.137 −0.953± 0.256 −0.526± 0.046 4

V346 Ori A5III 46066–46097 12 0.036 −0.502± 0.214 −0.596± 0.090 3

V372 Ori B9.5V+A0.5 45245–46696 85 0.094 −0.361± 0.033 −0.771± 0.006 3

V380 Ori B8–A2eq 46381–46443 25 0.079 −0.238± 0.065 −0.608± 0.008 3

NX Pup A1–F2IIIе 45246–45324 15 0.408 −0.095± 0.059 −0.406± 0.028 3,

46382–46406 14 0.564 −0.078± 0.045 −0.523± 0.028

46420–46440 14 0.476 −0.053± 0.013 −0.701± 0.008

IP Per A3III 42345 14 0.052 −0.717± 0.278 −0.598± 0.014 1

WWVul A0III 44819 13 0.17 −0.138± 0.081 −0.454± 0.015 6

AS 310 B0e 49577–50308 9 0.092 −0.713± 0.287 −0.684± 0.024 7

LkHα 118 B5Ve 46588–46670 7 0.101 −0.353± 0.356 −0.405± 0.029 3

LkHα 324 A/F 49575–50313 15 0.124 −1.019± 0.184 −0.837± 0.022 7

LkHα 373 B 44763–44853 68 0.25 −0.323± 0.055 −0.588± 0.022 2

MWC 297 O9e 49577–50315 14 0.076 −0.338± 0.453 −0.219± 0.242 7

22 Sco B3V 46658–46694 34 0.045 −0.277± 0.067 −0.590± 0.005 3

References: 1: Pugach (1996); 2: Kardopolov and Filip’ev (1985); 3: Manfroid et al. (1991); 4: Koval’chuk (1986); 5: St
7: Eimontas and Sudzius, 1998.
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Fig. 1.UCV of the star LkHα 373 from the observations by Kardopolov and Filip’ev (1985).
uvby system and in the Y or Z bands (the effective
wavelengths are 466 and 516 nm, respectively) and
the V band (λeff = 544 nm) from the observations in
the Vilnius UPXY ZV S system.

In these cases, of course, the coefficients K de-
rived from slightly differing bands of different photo-
metric systems are not completely identical. We are
interested not in the absolute value of the coefficient
K but in its sign, an indicator of the sought-for
anomaly. Clearly, the noncoincidence of the closely-
spaced bands does not change the sign of the relation
between V and B–V or similar bands.

RESULTS

Figures 2–5 show the diagrams that point to the
presence of a color anomaly in the stars observed by
different authors with different telescopes. UCV is
present in the brightness variations of not only dwarfs
but also giants. Figure 3 shows the color behavior of
one of the best-known stellar objects, the supergiant
FU Ori, the prototype of a whole subtype of variable
stars. The UCV of FU Ori is seen both in the entire
set of observations (see the table) and in individual
seasons (Fig. 3). It follows from the figures and the
table that the UCV manifests itself mainly in small
brightness variations. The amplitude averaged over
all ∆V values from the table (except NX Pup) is
0m. 114. This sheds light on why UCV does not always
manifest itself, why it is observed most commonly
in the state of normal light of the star, and why it
is absent during global fadings: at this time, low-
amplitude UCV is unseen against the background of
large brightness variations.
Figure 4 shows the first published UCV diagram
that presents the observations of BO Cep (Pu-
gach 1996). The solid line corresponds to the main
process, in which the B–V color index increases
with V . The dashed line reflects the presence of a color
anomaly. These two lines are almost perpendicular
and form a kind of a cross. Clearly, when the two
processes act simultaneously, the corresponding data
points in the V –(B–V ) diagram move in different
directions, and the overall pattern becomes ambigu-
ous. UCV priority becomes obvious only when there
are no large-amplitude global fadings. That is why
UCV is mainly observed when the star’s brightness
is near its normal value, i.e., when the main variability
process is absent. Probably for this reason, we failed
to establish the presence of UCV in photometrically
very active stars in which the main process is almost
always present, e.g., in WW Vul (its light curve was
published by Zaı̆tseva (1983)), with the exception of
one not quite characteristic case on JD 2444819 (the
observations by Zaı̆tseva (1983)).
The observations of NX Pup, an irregular vari-

able with Algol-like fadings (Manfroid et al. 1991),
give an even more surprising example of the coexis-
tence of UCV and the main variability process. The
UCV manifestations in this star are noticeable even
at a fairly large variability amplitude, reaching 1m. 6.
If we break down all of the available observations
for NX Pup into seasons, then we easily notice that
the color anomaly was clearly present in some of
them (in our case, seasons 1, 6, and 7 in Fig. 5a),
since fitting precisely these data points yields a slope
of the color–magnitude relation characteristic of the
UCV (Fig. 5b). Of particular interest is that the star’s
brightness was attenuated when the UCV clearly
manifested itself.
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 2. UCV of IU Ori from the observations on JD 2445221 (Koval’chuk 1986). A similar behavior of the B–V and V –R
color indices was also observed on other dates.
Another important characteristic feature of UCV
is worth mentioning. During UCV, the B–V and
V –R variations are often out of phase: whereas one
of the color indices increases, the other decreases
and vice versa. Previously, this phenomenon was ob-
served in BO Cep (Pugach 2003) and SU Aur (Pu-
gach 2004a). It has now been confirmed by observa-
tions of other stars (see, e.g., the relations in Fig. 2),
which are not given here to save space.

DISCUSSION

An analysis of the table suggests that the un-
usual color variability (UCV) discussed in this paper
is typical of a broad class of objects with markedly
different physical parameters. UCV has been found
in dwarfs, giants, and even the supergiant FU Ori;
the photospheric temperatures of these objects range
from around 4000 to 20 000 K. This most likely in-
dicates that the color anomaly is not a peculiarity of
a particular type or class of stars, but is a certain
unstudied physical process that is inherent in stars in
general. We cannot help but note that UCV has been
found in stars whose circumstellar medium contains
dust, as evidenced by the main variability process
accompanied by a reddening or by large IR excesses,
as, e.g., in the objects MWC 297 and FU Ori.
Another unusual peculiarity of UCV is the op-

posite behavior of the B–V and V –R color indices.
Simple reasoning leads us to conclude that this re-
lation between the color indices would observed only
if the anomaly were caused by the variability of light
in the V band or, strictly speaking, if the variability
amplitude in V were larger than that in the adja-
cent bands. The same reasoning is also valid for the
observations in the bands of Strömgren’s or Vilnius
systems. It is not yet clear how this relation between
ASTRONOMY LETTERS Vol. 31 No. 7 2005
B–V and V –R can be reconciled with the well-
known variability mechanisms.
The detected effect is unlikely to have a direct

bearing on the dust that causes global fadings. First,
UCV manifests itself most often precisely when the
photometric activity of circumstellar dust structures
(individual clouds or a disk) is at a minimum or
completely absent. Second, the optical properties of
this dust have recently been shown (Pugach 2004b)
to be almost the same as those for the interstellar
medium. These properties are well known, and there
is no place for UCVmanifestations here. Therefore, it
would be unreasonable to expect the UCV effect from
circumstellar dust, at least in antiflare stars.
The phenomenon of a multitier cross that was

found for NX Pup, and that manifests itself in less
distinct form for several other stars, is a major puzzle
for interpreters. If UCV is assumed to be observed
only when the main variability is absent, we inevitably
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come to the paradoxical conclusion that, at certain
times, the main variability process of NX Pup freezes
at a certain level of brightness to make it possible for
UCV to manifest itself.

A conclusion useful for applications can be drawn
from the aforesaid. It concerns the photometric ob-
servations of many eruptive stars for which no re-
lations between the brightness and color variations
have been clearly established, or whose relations dif-
fered from the standard ones. In these cases, the idea
of two simultaneously acting opposite trends, one of
which must be excluded to separate out the other,
may prove to be useful.
By no means does UCV always manifest itself.
Thus, for example, the observations of the stars
22 Sco and V380 Ori by Sterken et al. (1993) during
the periods JD 2447023–2447771 and JD 2447806–
2448164, respectively, revealed no characteristic
UCV features, despite the absence of the main pro-
cess during these periods and, as a result, the small
variability amplitudes, 0m. 10 and 0m. 15, respectively.

So far it is too early to talk about the nature of
the detected effect. We can say with certainty only
that neither emission lines nor their intensity vari-
ations are responsible for UCV. For the contribu-
tion of an emission line to be 5–10% of the total
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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light in the V photometric band, its equivalent width
must reach several dozen Å. The medium- and low-
dispersion spectra of SU Aur, VX Cas, BO Cep,
BN Ori, WW Vul, and several other objects with
suspected UCV, taken by the author using the 6-m
BTA and 2.6-m ZTSh telescopes, show no such
strong emission lines in the spectral range under
consideration. We can only assume that the UCV is
probably associated with circumstellar dust formation
at the earliest stages of emergence and growth of
the cores of future dust grains. This assumption is
consistent with UCV being observed most commonly
at maximum light, when the main variability process
is absent.

CONCLUSIONS

The numerous observations performed by different
authors with different instruments, at different times,
and for different objects, clearly reveal the existence
of a hitherto unknown type of stellar photometric
variability that manifests itself in an unusual behav-
ior of the B–V color index. This variability has ar-
bitrarily been labeled unusual because the sign of
the V –(B–V ) relation during UCV manifestations
differs from that observed during the brightness vari-
ations caused by temperature variations, flares, or the
dust extinction of starlight. Unusual color variability
is inherent in eruptive objects with a wide range of
physical and geometrical characteristics. These in-
clude dwarfs, giants, and supergiants with photo-
spheric temperatures from 4× 103 to 2× 104 K; there
are many objects with small and/or poorly studied
variability among them.
It follows from a comparison of the color behavior

of these objects in the U , B, V , and R bands that
ASTRONOMY LETTERS Vol. 31 No. 7 2005
the unusual behavior under study is due mainly to the
V light variations. However, we cannot yet say more
about the origin of the UCV, although we have reason
to believe that it is not associated with emission lines.
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Abstract—We investigated the two deepest absorption bands observed in the spectra of stars and
protostars, the water-ice band with the center near 3.1 µmand the silicate bandwith the center near 9.7 µm,
by using a core–mantle confocal spheroid model with various axial ratios and relative volumes of the core
material. We considered the effect of grain size, shape, structure, chemical composition, and orientation
on the central wavelengths of the two bands, their full widths at half maximum (FWHMs), the ratio of the
optical depths at their centers, and the polarization. We found that the observed relationships between the
FWHMs of the bands and the ratio of their optical depths at the band centers could be explained if we chose
slightly oblate or prolate particles (a/b � 2) of small sizes (rV � 0.35 µm) with a silicate core and a thin ice
mantle (Vcore/Vtotal � 0.7). c© 2005 Pleiades Publishing, Inc.

Key words: interstellar medium, gaseous nebulae, infrared absorption bands.
1. INTRODUCTION

The polarization of light in the interstellar medium
suggests the presence of nonspherical dust grains,
since spherical grains do not polarize the directly
transmitted radiation. Infinite circular cylinders, ho-
mogeneous (Greenberg 1968), and core–mantle
(Hong and Greenberg 1980; Voshchinnikov et al.
1986) particles were the first models of nonspherical
particles that were used to interpret the interstellar
polarization. Core–mantle particles were introduced
due to the assumption about grain growth in in-
terstellar clouds if initial condensation nuclei were
present in them (Aannestad and Purcell 1973). In
this case, particles composed of a refractory core and
a volatile mantle are formed. However, the model of
infinite circular cylinders is only an approximation
with unclear validity boundaries. Therefore, another
model of nonspherical particles, spheroidal particles,
has been suggested.
At present, there are many methods for solving the

problem of light scattering by a spheroid, but, in most
cases, the need for solving infinite series or systems
of high-order equations arises. Solving the problem
by the method of the separation of variables is most
convenient for calculations. This method was first
applied to spheroids by Asano and Yamamoto (1975).
Subsequently, Farafonov (1983) suggested a different
solution for a homogeneous spheroid; Voshchinnikov
and Farafonov (1985a–1985c, 1986, 1987) modified

*E-mail: upasika@mail.ru
1063-7737/05/3107-0458$26.00
it to a more convenient form for performing calcu-
lations (for a detailed description of this solution, an
analysis of the optical properties of spheroidal parti-
cles, and their discussion, see Voshchinnikov (1991)).
Farafonov (1994) used the method of the sep-

aration of variables to solve the problem of light
scattering by core–mantle confocal spheroids; the
solution was described in detail by Farafonov et
al. (1996). The optical properties of spheroidal in-
terstellar dust grains have been investigated by
Martin (1978), Rogers and Martin (1979), Onaka
(1980), Mishchenko (1989), Voshchinnikov (1990),
Voshchinnikov and Farafonov (1993), Kim and Mar-
tin (1995), and others. The scattering of light by
core–mantle spheroids was also computed in the
Rayleigh approximation by Lee and Drain (1985),
O’Donnel (1994), and Il’in (1994) when interpreting
the infrared dust bands. Somsikov and Voshchin-
nikov (1999) showed that for small particles, rV �
1 µm (rV is the radius of a sphere with the same
volume as the spheroid), the relative deviation of
the Rayleigh approximation for coated spheroids in
the near infrared from the exact solutions does not
exceed 10% at any relative volume of the material
in the core and the mantle, or at any axial ratio of
the spheroid. They used the Rayleigh approximation
presented by Draine and Lee (1984).
A comparison of the computed extinction, linear,

and circular polarization factors for statically oriented
prolate and oblate homogeneous and core–mantle
spheroidal particles (Somsikov 1996) showed that
c© 2005 Pleiades Publishing, Inc.
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their optical properties differ only slightly if the relative
volume of the silicate core exceeds 0.75 of the total
particle volume, while the appearance of even a small
silicate core in an ice particle changes greatly its op-
tical properties. This author found the equivalent radii
of the core–mantle spheroidal dust grains responsible
for the formation of maximum polarization to be rV ≈
0.15–0.35 µm. A study of two infrared absorption
bands (the ice and silicate bands with the centers
near 3.1 and 9.7 µm, respectively) in many objects in
terms of random grain orientation also showed that
the grain sizes are small, rV � 0.35 µm, and the ice
mantles of the grains are thin (Zinov’eva 2003). All
of the observational data for the ten-micron silicate
band could not be explained in terms of random grain
orientation. A constraint on the thickness of the ice
mantle also follows from a comparison of the observed
and computed silicate band profiles (Zinov’eva 2005).
In this paper, we analyze the dependences of the

parameters of the ice and silicate absorption bands
on the core–mantle spheroid model parameters.
We use both the exact solution of the problem of
light scattering by a confocal core–mantle spheroid
obtained by Farafonov (1994) and the solution in the
Rayleigh approximation. Since we used only small
particles, the differences between the computational
results are insignificant. In both cases, we com-
puted the efficiency factors with the codes written by
Voshchinnikov, Somsikov, and Farafonov for core–
mantle confocal spheroidal particles in 1994–1998
at the Astronomical Institute of the St. Petersburg
State University.
In Section 2, we perform model calculations for

two infrared absorption bands: the 3.1-µm water-
ice and 9.7-µm silicate bands. In Section 2.1, we
briefly analyze the dependences of the extinction ef-
ficiency factors at the centers of the ice and sili-
cate bands and their full widths at half maximum
(FWHMs) on the particle size and shape (spheres,
spheroids with various axial ratios) and the core ma-
terial (olivine, astrosil) for randomly oriented parti-
cles. In Section 2.2, we impose a constraint on the
particle shape in terms of static orientation. In Sec-
tion 2.3, we study the effect of changes in the particle
shape and the angle between the line of sight and the
magnetic field on the parameters of the two bands
for perfect Davies–Greenstein orientation. In Sec-
tion 2.4, the same studies are performed for imperfect
Davies–Greenstein orientation.
The dependences of the profiles for each of the

bands on the model properties and the type of grain
orientation are discussed in Section 3. In Section 4,
we compare our model calculations of the absorption
bands with the observed dependences of the band
parameters and model the two bands for protostellar
objects. In the last section, we reach conclusions
ASTRONOMY LETTERS Vol. 31 No. 7 2005
about the shape, size, structure, and chemical com-
position of the interstellar dust grains that produce
the absorption bands with the centers near 3.1 and
9.7 µm in the spectra of stars and protostellar objects.

2. MODEL CALCULATIONS OF THE BANDS
For nonpolarized incident radiation, the efficiency

factors of a spheroidal particle are defined as follows:

Qext =
QTMext +QTEext

2
,

Qp =
QTMext −QTEext

2
,

where Qext is the extinction efficiency factor, Qp is
the polarization efficiency factor, QTMext is a TM-type
wave whose magnetic vector is perpendicular to the
plane specified by the particle rotation axis and the
direction of propagation of the radiation, andQTEext is a
TE-type wave whose electric vector is perpendicular
to this plane. The model of core–mantle spheroids is
described by the following parameters:
(1) the refractive indices of the core and the man-

tle. We took the refractive indices of the
Mg2yFe2−2ySiO4 olivine with y = 0.4 and 0.5 and
astrosil for the core and H2O ice with impurities for
the mantle. The optical constants for the silicates and
ice were taken from the database of optical constants
(JPDOC; see Henning et al. 1999);
(2) the axial ratio of the mantle a/b, where a

is the semimajor axis, and b is the semiminor axis.
By varying a/b, we can change the particle shape
from spheres (a/b � 1) to needles (extremely prolate
spheroids) and disks (extremely oblate spheroids);
(3) the size parameter 2πrV /λ, where rV is the

radius of a sphere of the same volume as the spheroid);
(4) the ratio of the core volume to the total particle

volume Vcore/Vtotal.

2.1. Choosing Parameters for Randomly Oriented
Particles

The mean cross section for 3D orientation is

〈Cext〉3D =

π/2∫
0

1
2

[
QTMext (α) +QTEext(α)

]
Ḡ(α) sinαdα.

(1)

Here, Ḡ(α) is the mean geometrical cross section of
the spheroid,

Ḡ(α) =
G(α)
πr2V

=

[
(a/b)2 sin2 α+ cos2 α

]1/2
(a/b)2/3
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Fig. 1. (a) Extinction efficiency factor at the center of the
3.1-µm ice band versus effective radius of the spheroidal
particle and (b) ratio of the extinction efficiency factors
at the centers of the silicate and ice bands versus relative
volume of the core material for various axial ratios a/b of
the spheroid.

for prolate spheroids and

Ḡ(α) =
G(α)
πr2V

=

[
(a/b)2 cos2 α+ sin2 α

]1/2
(a/b)1/3

for oblate spheroids, and α is the angle between the
rotation axis and the line of sight. A description of
the 3D oprientation can be found in the review by
Voshchinnikov (2002). We computed integral (1)
using theQANC8D code, an automatic adaptive code
based on the sixth-order Newton–Cotes formula
(Forsythe et al. 1977). The relative computational
error was 10−10. The extinction efficiency factor was
computed with a∆α = 5 step.
Let us investigate the effect of core–mantle

spheroid model parameters on the parameters of the
absorption bands. Increasing the particle size causes
the central wavelength λ0 in both bands to shift to
the longer wavelengths. The lowest value of λ0 in
the three-micron band is 2.95 µm; the more oblate or
prolate the spheroid, the lower the value of λ0. There
is no size dependence in the Rayleigh approximation.
In the ten-micron band, λ0 shifts intangibly if the
particle size does not exceed 1 µm. As the ice mantle
grows, the central wavelength in the ice band can shift
greatly, up to ∆λ0 = 0.1 µm. In the silicate band, it
changes only slightly, by 0.05 µm for a thin mantle.
If the thickness of the ice mantle is large enough, the
9.7-µm silicate band turns into a single combined
band, silicate plus ice, due to the effect of the 12-µm
ice band. In this case, the central wavelength is very
difficult to determine.
The extinction efficiency factors at λ0 depend

strongly on the particle shape, as demonstrated by
Fig. 1a for the ice band. In this figure, the efficiency
factor at the center of the three-micron ice band
is plotted against the effective particle radius (the
calculations were performed by an exact method) for
various axial ratios of the spheroids. The figure is
drawn for prolate spheroids with a very thick mantle,
Vcore/Vtotal = 0.1. We see that Qext for more prolate
particles increases faster with effective particle ra-
dius rV . For oblate spheroids, the extinction efficiency
factor behaves similarly.
The ratio of the extinction efficiency factors at

the centers of the two bands, Qext(9.7 µm)/Qext
(3.1 µm), depends very weakly on the particle shape
(Fig. 1b), particularly for Vcore/Vtotal > 0.95. The
FWHM of the ice band decreases significantly
with increasing mantle thickness, from 0.57 µm
at Vcore/Vtotal ≈ 0.99 to 0.3 µm at Vcore/Vtotal ≈
0.55. In this case, the dependence on the particle
shape is weak; the FWHM for a spheroid with
an axial ratio of a/b = 10 is larger than that for
a spheroid with a/b = 2 by 0.02 µm. For the sili-
cate band, the FWHM depends strongly on both
the mantle thickness and the particle shape. At a
mean band FWHM ≈ 3 µm, it can change from
FWHM ≈ 2.5 µm (a/b � 2 and Vcore/Vtotal � 0.8)
to FWHM ≈ 3.2 µm (Vcore/Vtotal � 0.6 or a/b = 10)
if the Mg0.4Fe1.2SiO4 olivine is taken as the core
material. If the core of the spheroidal particle is
composed of astrosil, then the dependence of the
silicate band FWHM is even stronger; at a/b = 10,
it is about 4 µm. For oblate particles, the increase
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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in the band FWHM with a/b is larger than that for
prolate particles.

2.2. Static Orientation

The simplest orientation is the situation where
all particles point in the same direction (α = 90◦)
and do not rotate. In this case, the polarizability of
a dust grain is at its maximum (in reality, the dust
grains rotate due to the unavoidable collisions with
gas atoms, causing the polarizability to decrease).
This orientation is called a complete static orientation
or a “picket fence.”
The following relationship defining the polarizabil-

ity is used to characterize the optical properties of an
ensemble of aligned nonrotating particles of the same
size:

Qp
Qext

=
QTMext −QTEext
QTMext +QTEext

.

Since the polarization is commonly described in
percentage terms, we rewrite this formula as

P (λ)
τ(λ)

= ± Qp
Qext

× 100% = ±Q
TM
ext −QTEext
QTMext +QTEext

× 100%,

(2)

where the “+” and “−” signs are for prolate and
oblate particles, respectively; P (λ) is the polarization
of light by dust grains (in percent), and τ(λ) is the
optical depth.
In the case of static orientation, it is convenient

to consider the ratio QTMext /Q
TE
ext , which can easily be

derived from formula (2):

QTMext
QTEext

=


1 + P/100%

τ

1 − P/100%
τ



j

,

where j = 1 and −1 for prolate and oblate spheroids,
respectively. If we now assume P/τ to be fixed (e.g.,
taken from observations), we can determine the de-
pendence of this ratio on the particle shape, the value
of P/τ at the band center, and the relative volume of
the mantle and the core and find constraints on the
grain shape and composition for static orientation by
calculating QTMext /Q

TE
ext . Figure 2a shows this depen-

dence ofQTMext /Q
TE
ext on P/τ , given in percent, for pro-

late and oblate particles. Here, the wavelength can be
arbitrary (in the infrared), but, in general, the central
wavelength λ0 in the absorption band is considered.
Knowing P/τ at the centers of the bands, we can
determine QTMext /Q

TE
ext and the set of admissible a/b

for them (Fig. 2b). We see from Fig. 2b that only
nearly spherical particles, a/b ≈ 1–1.5, can be used
ASTRONOMY LETTERS Vol. 31 No. 7 2005
to explain the low polarizations in terms of static
orientation.
Let us consider the dependences of the band

parameters on the model parameters. Figures 2c
and 2d show the shift of the central wavelength λ0

to the longer wavelengths in the three-micron ice
and ten-micron silicate bands as the axial ratio
of the spheroid a/b increases. The figures were
drawn for prolate spheroids with a thin mantle,
Vcore/Vtotal = 0.9; for oblate spheroids, we obtain
the same results. We see from these figures that,
in both bands, the extinction becomes lower, the
efficiency factors decrease, as the axial ratio of pro-
late spheroids increases. For oblate particles, the
efficiency factors increase with a/b. However, as
with randomly oriented dust grains, the ratio of the
extinction efficiency factors at the centers of the bands
for static orientation, Qext(9.7 µm)/Qext(3.1 µm),
depends very weakly on the grain shape, changing by
no more than 0.5 (as the thickness of the ice mantle
increases, this ratio can change significantly, from
Qext(9.7 µm)/Qext(3.1 µm) ≈ 7 at Vcore/Vtotal = 0.99
to Qext(9.7 µm)/Qext(3.1 µm) ≈ 0.3 at Vcore/Vtotal =
0.5). The FWHM of the ice band is virtually inde-
pendent of the grain shape if the grains are statically
oriented. The FWHM of the silicate band for such
orientation depends strongly on the grain shape. Its
minimum value is 2.8 µm at a/b = 1.1; the band
FWHM is 3.3 µm at a/b = 10 and is almost con-
stant as a/b increases further.

2.3. Perfect Davies–Greenstein Orientation

The perfect Davies–Greenstein rotational orien-
tation is a more complex case. For this orientation,
the principal axis of a nonspherical particle (in our
case, a spheroid) always lies in the same plane. This
mechanism has been popular among researchers for
many years. It was first suggested by Davies and
Greenstein (1951) and received the name param-
agnetic relaxation (for a detailed description of this
mechanism, see Bohren and Huffman 1983; van de
Hulst 1957; Greenberg 1968; Spitzer 1978; Dolginov
et al. 1979).
The rotation of a dust grain can be decomposed

into the rotation around the axis perpendicular to
the axis of symmetry and the precession of the an-
gular momentum vector around the magnetic-field
direction. The nutation of the angular velocity vector
around the angular momentum vector is generally
disregarded. For the perfect Davies–Greenstein ori-
entation, only the rotation around the grain axis is
taken into account; the precession of the angular mo-
mentum vector is disregarded. Therefore, the preces-
sion angle is zero, while the angle θ between the line
of sight and the height of the cone that the angular
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ext /QTE

ext versus (a) P/τ and (b) a/b for prolate and oblate spheroids and extinction efficiency factor versus
wavelength in the (c) 3.1-µm ice and (d) 9.7-µm silicate bands.
momentum vector describes about the vector B is
equal to the angle Ω between the line of sight and the
magnetic-field direction, θ = Ω. The efficiency factors
should be averaged only over the rotation angle ϕ:

Q̄ext(m,x, β,Ω) =
2
π

π/2∫
0

Qext(m,x, α)dϕ, (3)

Q̄p(m,x, β,Ω) =
2
π

π/2∫
0

Qp(m,x, α) cos 2ψdϕ,

where

cos 2ψ = 1 − 2 cos2 ϕ sin2 Ω
1 − cos2 ϕ sin2 Ω

, (4)

cosα = sin Ω cosϕ.

Formulas (3) and (4) to calculate the average ex-
tinction and polarization efficiency factors were taken
from the paper by Voshchinnikov (1991).

For oblate particles, Ω = α and the calculations
are simplified significantly; no integration is per-
formed. The chemical composition of the dust grain is
taken to be the same as that in the previous sections:
an olivine core and an impure ice mantle. Since
the Mg0.8Fe1.2SiO4 olivine contains iron atoms, the
grains may be assumed to have paramagnetic proper-
ties. The calculations were performed in the Rayleigh
approximation; the integral (for prolate particles) was
computed using the QANC8D code with a relative
error of 10−10.
For the perfect Davies–Greenstein orientation,

the central wavelengths of the two bands (the ice
and silicate bands with the centers near 3.1 and
9.7 µm, respectively) shift to the shorter wavelengths
as the angle Ω between the line of sight and the
magnetic-field direction increases for both oblate and
prolate particles. An increase in the axial ratio of the
spheroid a/b at fixed Ω causes λ0 to shift to the longer
wavelengths for both bands. Therefore, the shifts to
the shorter and longer wavelengths must be taken
into account when studying the position of the central
wavelength in the absorption band.
At small angles Ω, the extinction efficiency factors

at the centers of the two bands depend weakly on Ω
(Figs. 3a and 3b) for any axial ratio of the spheroid
and any thickness of the ice mantle. The differences
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 3. Extinction efficiency factor at the center of the (a) 3.1-µm ice and (b) 9.7-µm silicate bands, FWHMs of the (c) ice and
(d) silicate bands, and polarization in the (e) ice and (f) silicate bands versus angleΩ between the line of sight and the direction
of the magnetic-field for various axial ratios of an oblate spheroid.
are significant only at Ω > 60◦, with the grain shape
playing a major role here. Whereas Qext(Ω = 90◦) at
a/b = 2 in both the ice and silicate bands is twice
Qext(Ω = 0◦), Qext(Ω = 90◦) at a/b = 10 increases
by a factor of 5. Figure 3 shows the case of an oblate
spheroidal particle with a thin mantle, Vcore/Vtotal =
0.9; for any other values of Vcore/Vtotal, the pattern of
behavior of the efficiency factors is qualitatively the
same. The ratios of the extinction efficiency factors
ASTRONOMY LETTERS Vol. 31 No. 7 2005
at the band centers are sensitive to variations in Ω,
particularly at small a/b. However, their values lie
within a narrow range,Qmaxext −Qminext � 0.7.

The FWHMs of the bands depend very weakly
on the angle Ω; this is especially true for the three-
micron ice band, whose FWHM decreases slightly
with increasing Ω (Fig. 3c). In contrast, the FWHM
of the ten-micron silicate band increases with Ω; this
is particularly noticeable for large axial ratios of the
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spheroid (Fig. 3d). As we see from the figures, the
FWHMs of the two bands depend strongly on a/b,
increasing significantly with it.
The linear polarization depends most strongly on

the angle between the line of sight and the magnetic-
field direction. As we see from Figs. 3e and 3f, when
the incident radiation is absorbed by oblate spheroids,
it depends weakly on Ω only at small Ω or a/b (nearly
spherical particles), particularly in the silicate band.
At Ω > 30◦, oblate spheroidal particles with an axial
ratio a/b > 2 produce a fairly high polarization; it
increases rapidly with Ω and a/b, reaching its max-
imum at Ω = 90◦. The dependence on the mantle
thickness is very weak, especially if the mantle is
thin. In the silicate band, the polarizability varies by
about the same value, changing by no more than 1%
if Vcore/Vtotal > 0.7; as the mantle thickness increases
further, it changes by only a few percent. In the ice
band, the polarizability slowly and monotonically de-
creases by a few percent with growing particle mantle.
For prolate particles, the situation with polariza-

tion is opposite: prolate particles yield the highest
polarizability at Ω = 0◦; its value is one and a half
times lower than that for oblate spheroidal particles.
The behavior of the extinction efficiency factors and
the band FWHMs when the radiation is absorbed by
prolate particles is the same as that for the absorption
by oblate particles, the only difference being that the
dependence on Ω and a/b is weaker.

2.4. Imperfect Davies–Greenstein Orientation

The interaction of the magnetic moment of a dust
grain with a weak magnetic field leads to a precession
of the angular momentum of the grain about the di-
rection of the magnetic field. Paramagnetic relaxation
slows down the rotation of dust grains around the
axes that do not coincide with the magnetic field’s
direction. In this case, the semimajor axis of the grain
tends to become perpendicular to the angular mo-
mentum vector. Precession causes the angle between
the direction of propagation of the radiation and the
direction of the angular momentum vector to change.
For the imperfect Davies–Greenstein orientation,

the efficiency factors should be averaged not only over
the rotation angle, but also over the precession angle.
In this case, formulas (3) and (4) that relate the angles
take a more complex form.
The linear polarization produced by rotating

spheroidal particles of the same size can be written
in general form as

P (λ) =
2
π2

π/2∫
0

π∫
0

π/2∫
0

NdCp(m, rV , λ, a/b, α) (5)
× f(ξ, β) cos 2ψdϕdωdβ × 100%,

whereNd is the particle column density,

Cp(m, rV , λ, a/b, α0) = Ḡ(α)Qp(m, rV , λ, a/b, α)
(6)

is the polarization cross section,

cos 2ψ = cos 2Φ
[

2 cos2 ϕ sin2 θ

1 − cos2 ϕ sin2 θ
− 1
]
, (7)

cos θ = cos Ω cos β + sin Ω sinβ cosω,

cos 2Φ =
2 sin2 β sin2 ω − sin2 θ

sin2 θ
,

cosα = sin θ cosϕ.

Here, Φ is the angle between the x axis and the
projection of the angular momentum vector onto the
xy plane, θ is the angle between the line of sight and
the height of the cone that the angular momentum
vector describes about the vector B, Ω is the angle
between the line of sight and the magnetic field’s
directions, β is the opening angle of the cone that
the angular momentum vector describes about the
vector B, and ω is the precession angle.
The optical depth τ(λ) for the imperfect Davies–

Greenstein orientation of spheroidal particles is

τ(λ) =
(

2
π

)2
π/2∫
0

π/2∫
0

π/2∫
0

Nd (8)

× Cext(m, rV , λ, a/b, α)f(ξ, β)dϕdωdβ.

The imperfect Davies–Greenstein orientation is
described by the function f(ξ, β), which depends on
the orientation parameter ξ and the angle β. In the
simplest case,

f(ξ, β) =
ξ sin β

(ξ2 cos2 β + sin2 β)3/2
. (9)

The orientation parameter ξ is a function that
depends on the grain size, the imaginary part of the
magnetic susceptibility of the grain material χ

′′
=

κωd/Td (ωd is the angular velocity of the dust grain),
the gas density ng, the magnetic field strength B, and
the dust, Td, and gas, Tg, temperatures:

ξ2 =
rV + δIDG0 (Td/Tg)

rV + δ0
, (10)

where

δIDG0 = 8.28 × 1023 κB2

ngT
1/2
g Td

µm. (11)

Formulas (5)–(11), which are needed to compute
the average extinction and polarization efficiency fac-
tors, were taken from the papers by Voshchinnikov
(1991, 2002).
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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The value of κ is generally taken to be κ = 2.5 ×
10−12, and was first obtained by Davies and Green-
stein (1951). The mean interstellar magnetic field
strength is B ≈ 3 µG. Using these values and the
mean parameters that characterize the interstellar
gas and dust, ng = 1 cm−3, Tg = 100 K, and Td =
10 K, we obtain after their substitution into (11)
δIDG0 ≈ 0.19 µm (see Voshchinnikov 1991). In gen-
eral, the silicate dust temperature is slightly higher,
Td ≈ 20 K. In this case, as was noted by Voshchin-
nikov (1986), the dependence of the dust temperature
on the grain size is not strong. Mezger et al. (1982)
found the grain temperatures at a ratio of the grain
radii �103 to differ by less than 20%.
In this paper, we restrict our analysis to the pa-

rameters of the absorption bands produced by silicate
grains coated with ice mantles with the weight func-
tion f(ξ, β) determined by the orientation mechanism
that depends on the fixed orientation parameter ξ.
Greenberg (1968) showed that decreasing the

degree of grain orientation from the perfect Davies–
Greenstein orientation reduces the polarization and
flattens its wavelength dependence. Figures 4a
and 4b show this dependence for the imperfect
Davies–Greenstein orientation for the two infrared
bands under study. Since the grain column densityNd
is generally unknown and can vary from object to
object, it is usually eliminated by studying not the
optical depths and polarization in the bands, but their
ratios: τ(9.7 µm)/τ(3.1 µm), P (9.7 µm)/τ(9.7 µm),
P (3.1 µm)/τ(3.1 µm). Formulas (5) and (8) were
used to calculate these ratios for the imperfect Davies–
Greenstein orientation. We see from the figures
that the grain polarizability in both bands decreases
monotonically by a few percent with an increasing
orientation parameter ξ. The figures were drawn for
oblate spheroidal grains with axial ratios of a/b =
1.1, 2, 5, 10 at Vcore/Vtotal = 0.9 and Ω = 0◦. Similar
results are obtained for any other relative volumes
of the grain core and angles Ω between the line
of sight and the magnetic-field direction. In this
case, the FWHM of the 3.1-µm band increases
slightly, while the FWHM of the 9.7-µm is virtually
constant. The ratio of the optical depths in the bands,
τ(9.7 µm)/τ(3.1 µm), also depends weakly on ξ.
For the imperfect Davies–Greenstein orientation,

just as for any other grain orientation or in its ab-
sence, the grain shape, i.e., the axial ratio a/b (for
a spheroidal grain), has the strongest effect on the
variations in the absorption band parameters. As we
see from Fig. 4, increasing the grain nonsphericity
causes a large increase in the grain polarizability and
a significant broadening of the two bands. In this
case, the ratio τ(9.7 µm)/τ(3.1 µm) depends weakly
on a/b.
ASTRONOMY LETTERS Vol. 31 No. 7 2005
The grain polarizability increases slightly with a
growing ice mantle for the three-micron ice band
(Fig. 4c) and decreases in the silicate band (Fig. 4d).
The FWHM of the ice band depends strongly on the
mantle thickness for a thinmantle, Vcore/Vtotal > 0.85;
here, it decreases rapidly from FWHM ≈ 0.8 µm
to 0.35 µm, and, for Vcore/Vtotal < 0.8, it decreases
slowly to 0.3–0.27 µm (Fig. 4e). The effect of the
grain shape on the band FWHM is also strongest
for a thin mantle; at Vcore/Vtotal < 0.8, it decreases
significantly, FWHM (3.1 µm) changes by no more
than 0.05 µm. In contrast, the FWHM of the silicate
band increases with growing ice mantle; the FWHMs
of the bands produced bymore oblate or prolate grains
depend less strongly on the growth of the grainmantle
(Fig. 4f). As we see from Fig. 4, the dependence of
the FWHM for the ten-micron silicate band on the
grain shape (the axial ratio a/b of the spheroid) is
strongest at Vcore/Vtotal > 0.8 or Vcore/Vtotal < 0.7. At
0.7 < Vcore/Vtotal < 0.8, the grain shape affects the
band FWHM only slightly.
The ratio of the optical depths at the band centers,

τ(9.7 µm)/τ(3.1 µm), monotonically decreases with
growing ice mantle for any a/b, grain type (prolate
or oblate), and angles Ω. The dependence of all pa-
rameters of the bands on the angle between the line
of sight and the magnetic-field direction is presented
in the table. We see from this table that the ratio of
the optical depths and the FWHMs of the two bands
depend very weakly on Ω (only the second decimal
figure changes); their values are at a minimum atΩ =
30◦–50◦ for oblate particles. For prolate particles, the
dependence is also very weak. The grain polarizability
decreases slowly with increasing Ω in both bands.
The central wavelengths λ0 of the two bands de-

pend neither on the orientation parameter ξ nor on the
angle Ω between the line of sight and the magnetic-
field direction and depend weakly on the thickness of
the ice mantle and strongly on its shape, changing
from λ0 = 3.02 µm at a/b = 1.1 to λ0 = 3.07 µm at
a/b = 10 in the ice band and from λ0 = 9.7 µm at
a/b = 1.1 to λ0 = 10.5 µm at a/b = 10 in the silicate
band.

3. DISCUSSION

In the previous section, we studied the effect of
model parameters (the size, shape, and relative core
and mantle volumes) of a nonspherical grain (prolate
and oblate spheroids) and its orientation mechanisms
on the parameters of two infrared absorption bands
(the ratio of the optical depths at the centers of the
bands, their central wavelengths and FWHMs, and
the polarization in the bands). In this section, we
combine the results of our studies for each band and
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Fig. 4.Ratio of the polarization to the optical depth versus orientation parameter ξ in the (a) 3.1-µm ice and (b) 9.7-µm silicate
absorption bands and versus relative core volume in the (c) ice and (d) silicate bands as well as band FWHMs versus relative
core volume in the ice (e) and silicate (f) bands for various axial ratios of an oblate spheroid.
discuss the dependences of their profiles on the model
properties and the type of orientation.

3.1. The Ice Band, λ0 = 3.1 µm

(1) The central wavelength in the three-micron
ice absorption band depends on the grain size and
shape, the relative mantle volume, and the grain ori-
entation. As the equivalent radius rV of the radiation-
absorbing grain increases, the central wavelength in
the band shifts slightly to the longer wavelengths.
As the thickness of the ice mantle increases, λ0 also
shifts to the longer wavelengths for any grain ori-
entation. Changing the grain shape (increasing a/b)
causes the central wavelength to shift to the longer
wavelengths for all grain orientations, except the ran-
dom (3D) orientation for which λ0 shifts to the shorter
wavelengths. The shift to the shorter wavelengths
also takes place as the angle Ω between the line
of sight and the magnetic field’s direction increases
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Dependence of the parameters of the ice and silicate absorption bands on the angle Ω between the line of sight and the
magnetic-field direction at a/b = 2, ξ = 0.9, Vcore/Vtotal = 0.9

Ω
τ(9.7 µm)
τ(3.1 µm)

FWHM(3.1 µm) FWHM(9.7 µm)
P (3.1 µm)
τ(3.1 µm)

P (9.7 µm)
τ(9.7 µm)

0◦ 2.405 0.373 2.869 4.716 20.49

5 2.398 0.373 2.868 4.722 20.80

10 2.387 0.372 2.869 4.728 20.70

15 2.378 0.371 2.868 4.731 20.80

20 2.370 0.371 2.869 4.730 20.97

25 2.363 0.370 2.869 4.729 20.81

30 2.358 0.370 2.869 4.721 20.92

35 2.354 0.369 2.870 4.707 20.79

40 2.352 0.369 2.870 4.697 20.76

45 2.353 0.369 2.869 4.683 20.80

50 2.355 0.369 2.869 4.669 20.83

55 2.358 0.370 2.870 4.653 20.52

60 2.364 0.370 2.869 4.640 20.52

65 2.371 0.371 2.868 4.628 20.50

70 2.378 0.371 2.870 4.612 20.16

75 2.388 0.372 2.869 4.597 20.12

80 2.398 0.373 2.869 4.583 19.97

85 2.410 0.374 2.868 4.570 19.93

90 2.419 0.374 2.868 4.560 19.70
for the perfect Davies–Greenstein orientation. The
central wavelength λ0 is shortest (λmin0 = 2.95 µm)
when the incident radiation is absorbed by very small
(rV ≈ 0.05 µm), extremely prolate or oblate (a/b =
10) randomly oriented grains. The longest central
wavelength in the band is 3.09 µm.

(2) The FWHM of the three-micron ice band
depends weakly on the grain shape if the grain is
randomly or statically oriented. For the complete or
imperfect Davies–Greenstein orientation, the band
FWHM increases greatly with grain axial ratio. The
thickness of the mantle of a core–mantle spheroid
has the strongest effect on the band FWHM (for
any orientation). Grains with a very thin ice man-
tle, Vcore/Vtotal ≈ 0.99, produce the broadest bands:
FWHM ≈ 0.7 µm. The band FWHM decreases
rapidly to FWHM ≈ 0.3–0.4 µm with increasing
mantle thickness for Vcore/Vtotal < 0.8 and changes
only slightly as the mantle thickness increases fur-
ther.
(3) The linear polarization in the band for any type
ASTRONOMY LETTERS Vol. 31 No. 7 2005
of grain orientation depends strongly on the grain
shape, increasing rapidly for a/b > 2. Whereas the
grain polarizability at a/b ≈ 1.1 is a few percent, its
value at a/b = 10 increases to 60%. The dependence
on the mantle thickness is weak for any orientation.
The dependence on the orientation parameter ξ (for
the imperfect Davies–Greenstein orientation) and on
the angle Ω between the line of sight and the mag-
netic field’s direction is weak. For the perfect Davies–
Greenstein orientation, oblate spheroids with a/b >
2 at large Ω (Ω > 30◦) produce a high polarization,
which increases rapidly with Ω. In contrast, prolate
spheroids produce a high linear polarization at small
angles, decreasing rapidly with increasing Ω.

3.2. The Silicate Band, λ0 = 9.7 µm

(1) For a thin mantle, λ0 shifts intangibly, irre-
spective of the type of grain orientation. Noticeable
changes in λ0 begin at Vcore/Vtotal < 0.7. At such a
mantle thickness, the neighboring 12-µm ice band



468 ZINOV’EVA
contributes to the ten-micron silicate band; as a re-
sult, the silicate band broadens, the shape of its profile
changes, and the position of its center shifts. Increas-
ing the axial ratio a/b of spheroidal grains causes the
center of the band produced by them to shift greatly
(to the longer wavelengths). Whereas the centers of
the bands produced by nearly spherical grains (a/b ≈
1.1) are near 9.7 µm, extremely prolate or oblate
grains produce bands with centers near λ0 ≈ 10.5 µm
or longer. This is true for any type of orientation.
For the perfect Davies–Greenstein orientation, the
central wavelength shifts slightly to the shorter wave-
lengths with an increasing Ω when the incident radi-
ation is absorbed by both prolate and oblate grains.
(2) The FWHM of the silicate band for any grain

orientation depends strongly on the shape of the
grain producing it and on the thickness of the ice
mantle. For small a/b (a/b < 2) or thin mantles
(Vcore/Vtotal > 0.8), this dependence is weak; the band
FWHMs are almost constant. Since the ten-micron
silicate band virtually merges with the twelve-micron
ice band, their total FWHM increases rapidly for
Vcore/Vtotal < 0.6. The minimum FWHM when the
radiation is absorbed by oblate or prolate spheroids
with a/b < 2 and a thin mantle is FWHM = 2.5 µm;
in this case, the dust grains are randomly oriented.
Statically or randomly (FWHM = 3.2 µm) ori-
ented spheroids with large a/b (a/b ≈ 10) produce
the broadest bands, FWHM = 3.3 µm. The band
FWHMs do not change as a/b (the grain nonspheric-
ity) increases further. Grains with a thick mantle
produce the same broad bands. The dependence of the
band FWHMon themantle thickness weakens as the
axial ratio of the spheroid increases. If astronomical
silicate (astrosil) is taken as the grain core, then the
bands are even broader, about 4 µm.
The FWHM of the silicate band depends weakly

on all the remaining model parameters of the grain
and its position in space.
(3) The grain shape has the strongest effect on

the linear polarization in the silicate band. Nearly
spherical or slightly oblate (prolate) grains produce
a low polarization for any grain orientation. The
polarizability of spheroidal grains with large a/b can
reach 80%; its value depends weakly on the mantle
thickness. If the mantle is thin, Vcore/Vtotal > 0.7,
then the polarizability Qp/Qext varies near the same
value, changing by no more than 1%. The linear
polarization depends very weakly on the orienta-
tion parameter ξ and the angle Ω (for the imper-
fect Davies–Greenstein orientation). For the perfect
Davies–Greenstein orientation, the polarization in
the silicate band, just as in the ice band, increases
rapidly at Ω > 30◦ (for oblate grains), and the linear
polarization decreases rapidly starting from Ω > 0◦
(for prolate grains).

The ratio of the optical depths in the bands de-
pends weakly on the grain shape, orientation, and
location relative to the line of sight and the direction of
the magnetic field. The value of τ(9.7 µm)/τ(3.1 µm)
depends strongly only on the thickness of the ice
mantle (particularly at Vcore/Vtotal > 0.9), decreasing
severalfold with the growing mantle.
The central wavelengths in the two polarization

bands are shifted slightly (compared to λ0 at the
centers of the absorption bands) to the longer wave-
lengths in all cases. When analyzing the parameters
of the absorption and polarization bands, we consid-
ered τ(9.7 µm)/τ(3.1 µm), P (9.7 µm)/τ(9.7 µm),
and P (3.1 µm)/τ(3.1 µm) computed for the centers
of the absorption bands. The polarizations in them
differ from the central values of the polarization bands
by no more than 0.5%.
The central wavelength in the band and the ratio

of the optical depths are of paramount importance
in studying the absorption bands. The central wave-
length and the ratio of the optical depths determine
the grain shape and the mantle thickness, respec-
tively. For the silicate band, the appearance of its pro-
file, which can also be used to estimate the thickness
of the mantle of the band-producing grains, plays a
major role.

4. COMPARISON WITH OBSERVATIONS

In this section, we compare the results of our
model calculations performed in the previous section
with the infrared absorption bands observed in the
spectra of stars and protostellar objects and estimate
the shape, size, structure, and chemical composi-
tion of the interstellar grains producing these bands.
The observational data were taken from the following
papers: Bowey et al. (1998), Brooke et al. (1999),
Boogert et al. (2000), Gibb et al. (2000, 2001),
Dartois and d’Hendecourt (2001), Palumbo (1997),
Pendleton et al. (1999), Smith et al. (2000), Teixeira
and Emerson (1999), Tielens et al. (1996), Whittet
et al. (1983, 1996), and Hough et al. (1989). For
the silicate band, we also use the observational data
provided by Dr. Smith in electronic form.

4.1. Size

Figure 5 shows how the observed and theoret-
ical FWHMs of the 3.1-µm ice and 9.7-µm sili-
cate band depend on the ratio of the optical depths
τ(9.7 µm)/τ(3.1 µm) at their centers. It follows from
the figures that both the ice and silicate bands with
parameters similar to their observed values are ob-
tained if we take small dust grains whose equivalent
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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radius rV does not exceed 0.35 µm (Figs. 5a and 5b).
Such constraints on the grain size exist for any type of
grain orientation. For ourmodel calculations, we used
the exact solution of the problem of light scattering
by confocal core–mantle spheroids (Farafonov et al.
1996).

4.2. Structure

The observational data for protostellar objects
show that τ(9.7 µm)/τ(3.1 µm) > 1 for most of the
objects. Such ratios of the optical depths are ob-
tained only for thin mantles, Vcore/Vtotal � 0.7–0.75
for spheroids (Figs. 5c–5j) and Vcore/Vtotal � 0.7 for
smooth spheres with uneven surfaces (Zinov’eva
2005). In this case, the grain can be oriented
arbitrarily. For stars in molecular clouds,
τ(9.7 µm)/τ(3.1 µm) > 0.3; the upper limit was not
determined due to the small number of observational
data. In this case, however, it is necessary that
Vcore/Vtotal � 0.5 for spheroids and Vcore/Vtotal � 0.55
for spheres.
The profiles of the 9.7-µm band in the spectra of

protostellar objects can also be considered as evi-
dence for the existence of thin ice mantles in the dust
grains producing the silicate absorption bands. The
12-µm ice band, which affects the appearance of the
profile of the neighboring 9.7-µm silicate band, must
also be always present in sources with the 3.1-µm
absorption band. In general, this band is barely seen
in the observed protostellar objects where it distorts
the 9.7-µm band only slightly. In our previous pa-
per (Zinov’eva 2005), we chose the five profiles of
protostars that were distorted most severely by the
twelve-micron band (its contribution is negligible in
the spectra of other protostars (see, e.g., Smith et al.
2000)) and showed that such profiles are obtained
only in the case of a thin ice mantle, Vcore/Vtotal � 0.5
for the most severely distorted profiles. We used the
model of a radially inhomogeneous sphere with in-
termediate layers that approximated spherical grains
with uneven surfaces (Zinov’eva 2004). For the core–
mantle spheroid used in this paper, the mantle must
be even thinner, Vcore/Vtotal � 0.6. Such profiles are
obtained for any type of grain orientation.

4.3. Shape

The shape of the grains producing the absorp-
tion bands is determined primarily by the central
wavelength. In most cases, the observed bands have
λ0 ≈ 3.00–3.06 µm for the ice band (see van de Bult
and Greenberg 1985; Graham 1998; Dartois and
d’Hendecourt 2001; Ishii et al. 1998; Whittet et al.
1983, 1996) and λ0 ≈ 9.5–9.8 µm for the silicate
band (Bowey et al. 1998; Gillett and Forrest 1973;
ASTRONOMY LETTERS Vol. 31 No. 7 2005
Capps et al. 1978; Smith et al. 2000). Spheroidal
grains with axial ratios a/b ≈ 2 or smaller produce
bands with such a position of the center. Extremely
prolate or oblate spheroids produce absorption bands
with centers shifted greatly to the longer wavelengths
(see Fig. 2) for any grain orientation. This is partic-
ularly noticeable for the silicate band whose center
shifts to λ0 ≈ 10.5 µm. The central wavelength also
shifts greatly with increasing thickness of the grain
ice mantle, which confirms once again the existence
of thin mantles. The polarizability of spheroids with
large a/b is very high, which is also in conflict with
the observational data. We see from Figs. 5e–5j that
all the observed ice bands and most of the silicate
bands can be explained in terms of grains (given their
size) with axial ratios of a/b = 2 and 1.1.

4.4. Chemical Composition
Astronomical silicate (astrosil), a hypothetical

material whose optical constants were constructed
by Drain and Lee (1984) by considering the observed
strength and shape of the silicate bands near 9.7 and
18 µm, is used most commonly as the grain core
material. Which of the actual materials produce the
observed absorption bands is still an unresolved ques-
tion. In this paper, we used olivines, Mg0.8Fe1.2SiO4

and MgFeSiO4, to interpret the silicate bands. The
model calculations of the absorption bands using
Mg0.8Fe1.2SiO4 are in best agreement with the
observational data (Figs. 5 and 6). The observed
silicate absorption bands with a small FWHM,
FWHM = 2.5–2.6 µm, can be explained if we take
Mg0.8Fe1.2SiO4 and MgFeSiO4 in equal amounts
(see Fig. 5j). The central wavelength for some of the
observed 9.7-µm silicate bands is near 9.4–9.6 µm,
suggesting that various pyroxenes (MgyFe1−ySiO3)
are also present in the objects. Pyroxenes produce
narrower absorption bands than do olivines, but an
ensemble of pyroxene and olivine grains can produce
broader absorption bands than can an ensemble of
grains with an olivine core alone. Increasing the
fraction of pyroxene in the ensemble of grains with
pyroxene and olivine cores leads to a shift in the
central wavelength of the 9.7-µm silicate band to
the shorter wavelengths and an increase in the band
FWHM, in good agreement with the observational
data (Bowey et al. 2003).

4.5. Orientation
In Figs. 5c–5j, the FWHMs of the two com-

puted bands are plotted against the ratio of the
optical depths at their centers for four types of grain
orientation: random (3D), static, perfect Davies–
Greenstein, and imperfect Davies–Greenstein ori-
entations. We see from these figures that when
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considering the absorption of the incident radiation
by spheroids in terms of random orientation, we
must take extremely prolate or oblate grains for good
agreement with the observational data to be achieved,
which is in conflict with the above conclusions
about the grain shape. The other types of orientation
mentioned above allow us to choose such values of
a/b � 2 and Vcore/Vtotal � 0.7 at which the computed
parameters of the modeled bands are comparable
to their observed values. The figures were drawn
for oblate spheroids; similar results are obtained for
prolate particles.
The interpretation of the two bands (normalized to

the center) for six observed protostars including all of
the above constraints is illustrated in Fig. 6. We took
the Mg0.8Fe1.2SiO4 olivine as the core material of the
grains producing these bands; the relative volume of
the core is more than 0.7 in all cases, and the axial
ratio a/b is 1.1 and 2. Here, we used the calcula-
tions performed in terms of the imperfect Davies–
Greenstein orientation.

5. CONCLUSIONS

Our main results can be summarized as follows:
(1) We investigated the effect of dust grain size,

shape, structure, and chemical composition on the
parameters of two infrared absorption bands
(the 3.1-µm water-ice and 9.7-µm silicate bands):
the central wavelengths λ0 of the two bands, their
FWHMs, the ratio of the optical depths at the band
centers τ(9.7 µm)/τ(3.1 µm), and the polarization in
the bands. We used the model of a confocal spheroid
composed of a (silicate) core and a (water ice with
impurities) mantle. The calculations were performed
by considering various types of grain orientation: ran-
dom, static, complete rotational, and partial rotational
Davies–Greenstein orientations.
(2) An increase in the axial ratio a/b of the

spheroid or in the thickness of the ice mantle was
found to cause the central wavelength to shift greatly
to the longer wavelengths. The ratio of the optical
depths at the centers of the bands depends primarily
on the thickness of the ice mantle and the grain size.
The FWHMs of the bands are determined by the grain
shape and the mantle thickness, increasing with a/b
or Vcore/Vtotal. The polarization in the bands increases
rapidly with a/b; it depends weakly on the orientation
parameter ξ at small a/b.
(3) The 3.1-µm ice and 9.7-µm silicate bands with

parameters similar to their observed values in the
spectra of protostellar sources and stars were shown
to be obtained for an equivalent grain radius rV �
0.35 µm, an axial ratio a/b � 2, and a relative vol-
ume of the core material Vcore/Vtotal � 0.7. Extremely
prolate or oblate spheroidal grains cannot be used to
interpret the silicate bands, since the positions of their
centers shift to λ0 ≈ 10.5 µm, in conflict with most of
the observational data. The ice mantles of the grains
cannot be thick; the amount of the silicate material
must be at least twice that of the ice material, since
otherwise the silicate band will be strongly distorted
by the 12-µm ice band, which is not the case in most
of the observed protostellar objects.
(4) The Mg0.8Fe1.2SiO4 olivine produces the

9.7-µm silicate bands with profiles, FWHMs, and
positions of the centers similar to the observed ones.
The MgFeSiO4 silicate produces narrower bands.
The broad bands with the centers near 9.5 or 9.6 µm
can be explained by adding pyroxenes in the compo-
sition of the dust that absorbs the incident radiation.
(5) The orientation of dust grains is still an open

question. When modeling the bands in terms of
random orientation (with allowance made for the
above conclusions), we obtained bands narrower than
the observed bands. Static, perfect, and imperfect
Davies–Greenstein orientations equally allow the
model calculations to be compared with observations.
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Abstract—Based on a plane-parallel isothermal model solar atmosphere permeated by a uniformmagnetic
field directed against the action of gravity, we considered the nonlinear interaction between vertically
propagating Alfvén and acoustic-gravity waves. We established that Alfvén waves are efficiently generated
at the difference and sum frequencies. We ascertained that no acoustic-gravity waves are formed at
the corresponding combination frequencies. A horizontal magnetohydrodynamic wind whose direction
changes with height was found to be formed in the solar atmosphere at zero difference frequency.
c© 2005 Pleiades Publishing, Inc.

Key words: Sun, atmosphere, waves, MHD.
INTRODUCTION

At present, considerable attention is being given to
studying the propagation and nonlinear generation of
low-frequency acoustic-gravity waves (AGWs) and
magnetohydrodynamic (MHD) waves in the solar
atmosphere (Roberts 2000; Priest and Wood 1991).
These studies are of great interest largely due to the
development of physical mechanisms for the transfer
of the mechanical energy radiated during the oscilla-
tions of the corresponding boundaries into the upper
atmosphere.

Since the ambient density in the atmosphere de-
creases fairly sharply (in general, exponentially) with
increasing height, the influence of nonlinear effects on
the propagation of AGWs and MHD waves must be
taken into account in certain height ranges due to
an increase in the AGW and MHD wave oscillation
velocity (Priest 1982; Fleck and Schmitz 1998; Sut-
mann and Ulmschneider 1995; Uchida and Kabua-
ki 1974; Cohen and Kulsrud 1974; Tsiklauri et al.
2001, 2002).

As was noted previously (Priest 1982), a nonlinear
profile distortion is not typical of Alfvén waves, and
their damping is low compared to AGWs. This is
why the solar coronal heating by Alfvén waves, which
can reach the coronal heights relatively freely because
the nonlinearity and dissipation mechanisms noted
above are weak, is considered by many authors as the
most likely mechanism (Axford and McKenzie 1996;
Ulmschneider et al. 1991; Narain and Ulmschnei-
der 1996; Sakai et al. 2001). A major difficulty of

*E-mail: petukhov@rf.unn.ru
1063-7737/05/3107-0474$26.00
this heating mechanism is the very weak dissipa-
tion of Alfvén waves as they propagate in the solar
corona due to the low resistivity of the coronal plasma
(Priest 1982). In this case, the nonlinear generation
of acoustic waves by Alfvén waves is assumed to be
the most likely mechanism of Alfvén wave energy
transformation into the thermal energy of the sur-
rounding plasma (Priest 1982; Wentzel 1974; Kudoh
and Shibata 1999; M. Pekukhov and Yu. Petukhov
2002; Moriyasu et al. 2004); in turn, acoustic waves
are affected fairly strongly by the nonlinearity and
dissipation effects (Priest 1982).
Using the nonlinear equation (an analog of the

scalar Cohen–Kulsrud–Burgers equation; Kennel
et al. 1990) that was derived in the short-wavelength
approximation and that describes the propagation of
linearly polarized, spherical Alfvén waves in a solar
coronal hole, Nakariakov et al. (2000) pointed out
that the nonlinear propagation of an Alfvén wave not
only contributes to the generation of acoustic waves,
but is also accompanied by a nonlinear distortion
of its profile. In fact, the formation of high Alfvén
wave harmonics is attributable to the manifestation
of a cubic nonlinearity (Nakariakov et al. 2000). As
a result of the latter, the Alfvén waves during their
nonlinear propagation in the solar corona turn into
shock waves only at fairly large heights, ∼5–10R�
(Nakariakov et al. 2000).
Here, it is important to note that the nonlinear

distortion of the Alfvén wave profile followed by the
formation of a shock front not only is accompanied by
the formation of acoustic waves, but also, as follows
from the results of our studies in terms of a quadratic
nonlinearity of themedium presented below, is a direct
c© 2005 Pleiades Publishing, Inc.
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result of the nonlinear generation of acoustic waves by
the Alfvén wave. An analysis of the latter assertion is
one of our goals.
In this paper, we study the weakly nonlinear in-

teraction of Alfvén waves with AGWs in terms of
a plane-parallel isothermal solar model atmosphere.
We consider the nonlinear generation of Alfvén waves
and AGWs at the corresponding combination fre-
quencies and the formation of an MHD flow at zero
difference frequency.

FORMULATION OF THE PROBLEM

Let us consider the vertical propagation of Alfvén
waves and AGWs in a plane-parallel isothermal at-
mosphere permeated by a uniform, vertically directed
magnetic field. We assume that the z axis is directed
vertically upward against the action of gravity whose
free-fall acceleration is constant and equal to g and
that the magnetic induction vector B0 = (0, 0, B0)
is constant and directed vertically along the z axis.
This atmosphere is characterized by the equilibrium
distributions of density ρ0 and pressure p0 in height z

ρ0 = ρ00 exp(−2ηz), (1)

p0 =
ρ00c

2
s

γ
exp(−2ηz)

and by a constant adiabatic speed of sound cs =√
γp0/ρ0, the scale heightH = c20/γg, and theAlfvén

speed ca = ca0 exp(ηz). Here, ρ00 = ρ0(z = 0) is the
density at the lower z = 0 atmospheric boundary, η =
1/2H , γ is the adiabatic index, ca0 = B0/

√
µ0ρ00,

and µ0 is the magnetic constant.
We also assume that the Alfvén waves are ex-

cited vertically upward at the lower z = 0 atmospheric
boundary at which there exist horizontal (along the
x axis) magnetic field perturbations that lead to hor-
izontal perturbations of the oscillation velocity with
frequency ωa and amplitude Aa:

vx(z = 0) = Aa cosωat, −∞ < t < +∞. (2)

In addition, the lower z = 0 atmospheric boundary
executes time-independent vertical (along the z axis)
oscillations with frequency ωs and amplitude As:

vz(z = 0) = As cosωst, −∞ < t < +∞, (3)

which lead to the generation of AGWs. Note that
the assumption about the existence of a lower atmo-
spheric boundary at z = 0with the specified boundary
conditions (2) and (3) does not affect the generality of
the problem, but serves only to properly describe the
propagation of Alfvén waves and AGWs.
Here, it should also be noted that the model atmo-

sphere used in this paper is most appropriate for the
solar chromosphere for the following reasons: First,
ASTRONOMY LETTERS Vol. 31 No. 7 2005
since the height of the chromosphere is much smaller
than the solar radius, the approximation of a plane-
parallel atmosphere stratified in the field of constant g
is valid. Second, with the exception of the narrow
chromosphere–corona transition layer in which the
ambient temperature changes almost abruptly, we
can also disregard the fact that the chromosphere is
nonisothermal compared to the effects produced by
the atmospheric stratification in the field of gravity.
Indeed, at the distance of the middle solar chromo-
sphere (its height is ∼1000 km), the ambient tem-
perature increases by less than a factor of 2, while
the ambient density decreases by a factor of about e
for every 200 km (see, e.g., Priest 1982). Third, since
the magnetic field strength in the chromosphere de-
creases with height much more slowly than the am-
bient density, it is assumed to be constant. Neverthe-
less, the effects observed during the nonlinear prop-
agation and interaction of Alfvén waves and AGWs,
which are considered below, must also show up in the
solar corona. However, we performed our numerical
calculations using the typical parameters of the mid-
dle solar chromosphere.
To investigate the nonlinear interaction of Alfvén

waves with AGWs, we use the following nonlinear
equations:

∂2vx
∂t2

− c2a
∂2vx
∂z2

= − c2a
B0

∂2

∂z2
(B′vz) −

1
ρ0

∂ρ′

∂t

∂vx
∂t
(4)

− ρ′

ρ0

∂2vx
∂t2

− ∂vz
∂t

∂vx
∂z

− vz
∂2vx
∂z∂t

,

∂2vz
∂t2

− c2s
∂2vz
∂z2

+ γg
∂vz
∂z

=
γ

ρ0

∂

∂z

(
p′
∂vz
∂z

)
(5)

− ρ′

ρ0

∂2vz
∂t2

− 2vz
∂2vz
∂z∂t

− ∂vz
∂t

∂vz
∂z

− 1
2
c2a
B2

0

∂2(B′)2

∂z∂t
.

These equations were derived previously (M. Petu-
khov and Yu. Petukhov 2002) from the system of
equations of ideal magnetohydrodynamics to quanti-
ties of the second order of smallness in perturbations
of the hydrodynamic (ρ′/ρ0, p′/p0, vz/c0, vx/ca) and
magnetic (B′/B0) quantities and describe the verti-
cal propagation of Alfvén waves (4) and AGWs (5).
The perturbations of density ρ′(vz), pressure p′(vz),
and magnetic field B′(vx) on the right-hand sides
of Eqs. (4) and (5) are related to the vertical, vz ,
and horizontal, vx, oscillation velocity components by
linear differential equations:

∂ρ′

∂t
= ρ0

(
1
H

− ∂

∂z

)
vz, (6)

∂p′

∂t
= ρ0c

2
s

(
1
γH

− ∂

∂z

)
vz,

∂B′

∂t
= B0

∂vx
∂z

.
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The following conclusions can be reached by ana-
lyzing the appearance of the nonlinear equations for
Alfvén waves (4) and AGWs (5):
(1) The vertical propagation of AGWs is ac-

companied by a nonlinear distortion of their pro-
file; as was shown previously (M. Petukhov and
Yu. Petukhov 2002), no Alfvén waves are formed at
the corresponding difference and sum frequencies.
Indeed, the first four terms on the right-hand (non-
linear) side of Eq. (5) are the quadratic products
of the linear solutions for AGWs. Consequently,
substituting the linear solutions for AGWs into the
right-hand side of Eq. (5) gives rise to a “driving
force” responsible for the generation of AGWs at the
corresponding combination frequencies: the second
harmonic and the difference and sum frequencies. In
contrast, the right-hand side of Eq. (4) for Alfvén
waves is the sum of the products, in our case, of the
zero linear solution for Alfvén waves by the nonzero
linear solution for AGWs, and, hence, it becomes
equal to zero.
(2) In the approximation of quadratic nonlinearity

under consideration and in the absence of AGWs, the
Alfvén waves propagate without any nonlinear dis-
tortion of their profile; however, as M. Petukhov and
Yu. Petukhov (2002) showed, AGWs are formed at
the corresponding difference and sum frequencies. In-
deed, assuming the existence only of Alfvén waves in
the atmosphere and substituting their linear solutions
into Eqs. (4) and (5), we obtain a zero right-hand
nonlinear side of the equation for Alfvén waves and
a nonzero right-hand nonlinear side of the equation
for AGWs. In the latter case, only the fifth term on
the right-hand side of Eq. (5) is responsible for the
generation of the AGW combination frequencies.
(3) The absence of terms composed of the quadratic

products of the linear solutions of Alfvén waves with
AGWs on the right-hand side of Eq. (5) implies that
the nonlinear interaction of Alfvén waves with AGWs
does not contribute to the AGW generation at the
combination frequencies. However, the correspond-
ing terms exist on the right-hand side of Eq. (4);
hence, the nonlinear interaction of Alfvén waves with
AGWs must contribute to the generation of Alfvén
waves at the difference and sum frequencies. Below,
we focus our attention on the latter process.
Here, it should also be noted that Eqs. (4) and (5)

allow the pattern of generation of the combination
frequencies of Alfvén waves to be traced in higher
orders of the perturbation theory. More specifically, as
can be seen fromEq. (5), the propagation of an Alfvén
wave must be accompanied by the formation of an
AGW at the second harmonic. The latter, in turn, can
interact with the primary Alfvén wave, contributing to
the generation of high Alfvén wave harmonics in the
third approximation (see Eq. (4)).
THE PARAMETRIC GENERATION
OF ALFVÉN WAVES

Let us consider the parametric generation of
Alfvén waves at the difference frequency Ω = ωa −
ωs through the nonlinear interaction between an
Alfvén wave with frequency ωa and an AGW with
frequency ωs.
First, to elucidate some of the peculiar features

that crop up during the nonlinear interaction of an
Alfvén wave with an AGW, let us consider a homoge-
neous medium without dispersion (g → 0). Given the
boundary conditions (2) and (3), the linear solutions
of the equations for Alfvén (4) and acoustic (5) waves
then take the forms, respectively,

v(1)
x = Aa cos(ωat− αaz), (7)

v(1)
z = As cos(ωst− αsz),

where αa = ωa/ca, αs = ωs/cs, ca = const.
Substituting expressions (7) into the right-hand

side of Eq. (4) with the separation of the terms at
the difference frequency and then solving the derived
differential equation with the boundary condition

v(Ω)
x (z = 0) = 0 (8)

yields the following simple solution for Alfvén waves
at the difference frequency:

v(Ω)
x = D

[
cos(Ωt− ξz) (9)

− cos
(

Ωt− Ω
ca

sgn(Ωξ)z
)]

,

where

D =
AaAs

[
w2 + w + w

σ (1 − 2w) − σ
]

2cs[(w − σ)2 − (w − 1)2]
, (10)

w = ωa/ωs, ξ = αa − αs, σ = ca/cs,

sgn(Ωξ > 0) = 1, sgn(Ωξ < 0) = −1.

An analysis of solution (9) suggests that, if one of
the conditions

 Ω > 0

w > σ,


 Ω < 0

w < σ
(11)

is satisfied, then the Alfvén wave at the difference
frequency propagates in the same direction with the
primary waves (along the z axis); if, however, one of
the conditions

 Ω < 0

w > σ,


 Ω > 0

w < σ
(12)
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 1. Normalized function f(z) = csv
(Ω)
x (z, t = 0)/AaAs, which characterizes the solution for the Alfvén waves at the

difference frequency, versus height z at σ = (a) 1, (b) 3, and (c) 0.9. For all dependences, ca = 6 km s−1, ωa = 2 rad s−1,
and ωs = 1 rad s−1.
is satisfied, then the direction of propagation of the
Alfvén wave at the difference frequency is opposite to
that of the primary waves (against the z axis).

In addition, as might be expected (Rudenko and
Soluyan 1975), when the Alfvén speed is equal to
the speed of sound (σ → 1), the phase synchronism
ASTRONOMY LETTERS Vol. 31 No. 7 2005
conditions are satisfied,

ωa − ωs = Ω, (13)

αa − αs =
Ω
ca
,

and an increase in the amplitude of the solution pro-
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portional to z is observed in the medium for the Alfvén
wave at the difference frequency propagating in the
same direction with the primary waves (see Fig. 1a).
It can be shown that it is also possible to satisfy
conditions (13) for the Alfvén waves at the difference
frequency propagating against the z axis (see Fig. 1b)
if the following equality holds:

w = (1 + σ)/2. (14)

In this case, however, the amplitude of the solution
for the Alfvén waves at the difference frequency de-
creases linearly in the direction of their propagation
(see Fig. 1b). If, alternatively, conditions (13) are not
satisfied, then amplitude beats are observed in the
medium (see Fig. 1c).

It should be noted that expressions (9) and (10)
also describe the solution for the Alfvén waves at the
sum frequency Ω+ = ωa + ωs if the following substi-
tutions are made in them:

Ω → Ω+, ξ → ξ+ = αa + αs, w → −w. (15)

In this case, it can be easily shown that, first, the
Alfvén wave at the sum frequency always propagates
along the z axis, and, second, for σ → 1, a linear
increase in the amplitude of the Alfvén waves at the
sum frequency with height is observed, as with the
Alfvén waves at the difference frequency.

After the above remarks, let us consider a stratified
atmosphere in the field of gravity. In this case, the
linear solutions for Alfvén waves and AGWs with
the boundary conditions (2) and (3) are, respectively,
(Ferraro and Plumpton 1958; Lamb 1932)

v(1)
x = Aa cos(ωat)J0(bae−ηz)/J0(ba), (16)

v(1)
z = As


 eηz cos(ωst− αsz), ωs > ωL

e(1−
√

1−ω2
s /ω

2
L)ηz cos(ωst), ωs < ωL.

(17)

Here, J0(bae−ηz) is the zeroth-order Bessel func-
tion of the first kind, ba = βωa/ωL, β = cs/ca0, αs =

η
√
ω2

s /ω
2
L − 1, and ωL = ηcs is the Lamb frequency.

We see from the linear solution (17) that the
AGWs are propagating ones if their frequency is
higher than the Lamb frequency, ωs > ωL

(Lamb 1947). The linear solution (16) for Alfvén
waves is described by the Bessel function J0(bae−ηz).
This is an oscillating function, thereby describing
explicitly the oppositely propagating Alfvén waves
only at fairly high values of its argument, bae−ηz � 1,
and in the range of relatively small heights, z � 2H
(see, e.g., M. Petukhov and Yu. Petukhov 2002):

v(1)
x ≈ Aae

ηz
2

2 cos(ba − π/4)
(18)

×
{

cos
(
ωat− baηz + ba −

π

4

)
+ cos

(
ωat+ baηz − ba +

π

4

)}
.

For bae−ηz � 1 and as z increases, the Bessel
function tends to a constant value (J0(0) = 1), im-
plying the formation of a peculiar oscillatory process
in the atmosphere through the strong linear interac-
tion between the oppositely propagating Alfvénwaves
(M. Petukhov and Yu. Petukhov 2002). In what fol-
lows, it is convenient to introduce the characteris-
tic height zH that corresponds to the first (last in
height z) zero of the Bessel function J0(b̄1) = 0,

zH = 2H ln
ba
b̄1
, b̄1 ≈ 2.4, (19)

and that delimits the region of oscillations (z < zH)
with the region of a monotonic increase (z > zH) as
the function J0(bae−ηz) tends to unity. In particu-
lar, for the Alfvén wave frequency ωa = 0.15 rad s−1

and typical parameters of the middle solar chromo-
sphere, cs = 10 km s−1, ca0 = 6 km s−1, γ = 5/3, g =
275 m s−1, the characteristic height is zH ≈ 660 km.

In addition, as we see from (16), the zeroth-order
Bessel function in the denominator of the solution for
v
(1)
x makes the resonant excitation of Alfvén waves
possible at certain frequencies

ωa = ω̄n = ωL
b̄n
β
, n = 1, 2, . . . ; (20)

the zeros of this function, J0(b̄n) = 0, correspond to
these frequencies at ba = b̄n.

Let us consider the parametric generation of
Alfvén waves at the difference frequency through the
nonlinear interaction of an Alfvén wave with an AGW.
In this case, using (6), (16), and (17), we separate
out the terms at the difference frequency on the right-
hand side of Eq. (4) and then obtain the following
solution for the oscillation velocity of the Alfvénwaves

at the difference frequency v(Ω)
x in integral form by

solving the derived differential equation:
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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v(Ω)
x = Re{eiΩt[S1(z)J0(bΩe−ηz) + S2(z)Y0(bΩe−ηz)]}, (21)

S1(z) =
∫

q1(z)dz + S1, (22)

S2(z) =
∫

q2(z)dz + S2, (23)

q1(z) =
G(z)Y0(bΩe−ηz)

ηbΩс2
a0[J0(bΩe−ηz)Y1(bΩe−ηz) − J1(bΩe−ηz)Y0(bΩe−ηz)]

, (24)

q2(z) =
G(z)J0(bΩe−ηz)

ηbΩс2
a0[J1(bΩe−ηz)Y0(bΩe−ηz) − J0(bΩe−ηz)Y1(bΩe−ηz)]

, (25)

G(z) =
AaAse

2ηz+iαsz

J0(ba)
{G1(z) − iG2(z)}, (26)

G1(z) = −J1(bae−ηz)eηz
c2a0baη

2αs

ωa
+ αsJ0(bae−ηz)

(
c2a0b

2
aη

2

ωa
− ωa

2
+

ω2
a

2ωs

)
, (27)

G2(z) =
ηba
2
J1(bae−ηz)

{
Ωe−ηz +

c2a0e
ηz

ωa
[α2

s − η2(1 − b2ae
−2ηz)]

}
− ΩωaωL

2ωscs
J0(bae−ηz). (28)
Here, bΩ = βΩ/ωL; Y0(bΩe−ηz) and Y1(bΩe−ηz) are
the Neumann functions of the zeroth and first orders,
respectively; S1 and S2 are the constants to be de-
termined from the boundary conditions. Whereas the
first boundary condition is the absence of a difference-
frequency wave on the z = 0 boundary surface (8), the
second boundary condition

S2 = 0 (29)

follows from the impossibility of an increase in the
solution for the oscillation velocity of the Alfvénwaves
at the difference frequency proportional to the zeroth-
order Neumann function Y0(bΩe−ηz), because the en-
ergy conservation law is violated (Ferraro and Plump-
ton 1958).

Note that expressions (21)–(28) also describe the
solution for the Alfvén waves at the sum frequency if
the following substitutions are made in them:

Ω → Ω+, ωs → −ωs, αs → −αs, (30)

bΩ → bΩ+ = βΩ+/ωL.

The following conclusions can be drawn from the
results of our numerical calculations (see Figs. 2–
5) of the oscillation velocity for the Alfvén waves at

the difference, v(Ω)
x (Figs. 2 and 3), and sum, v(Ω+)

x

(Figs. 4 and 5), frequencies:
ASTRONOMY LETTERS Vol. 31 No. 7 2005
(1) The nonlinear interaction of a propagating
Alfvén wave with an AGW leads to an efficient
generation of Alfvén waves at the difference and sum
frequencies. Although the phase synchronism con-
ditions (13) are not satisfied, the oscillation velocity
amplitudes |v(Ω)

x | and |v(Ω+)
x | increase rapidly with

height z (see Figs. 2–5), much more rapidly than the
linear solution (16) for Alfvén waves. The latter stems
from the fact that even the amplitudes of the first three
terms on the right-hand side of Eq. (4), which is the
Alfvén wave generation source at the combination
frequencies, increase with height more rapidly than
the amplitude of the solution for any of the linear
waves (16) and (17). In the special case of z � zH ,
we can show using (4), (6), (16), (17), and (21) that
the amplitude of the Alfvén waves at the difference
frequency increases with height approximately as
∼e2.25ηz , while the amplitudes of the linear Alfvén
waves (at z < zH) and AGWs increase with height as
∼e0.5ηz (see (18)) and ∼eηz (see (17)), respectively.
Here, it should be noted that the generation of

Alfvén waves at the difference and sum frequencies is
possible when an Alfvén wave interacts not only with
a propagating AGW, but also with a nonpropagating
AGW whose frequency is lower than the character-
istic Lamb frequency ωL. In this case, the oscillation
velocity amplitude increases with height more slowly
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Fig. 2. Horizontal oscillation velocity v
(Ω)
x (solid lines) and its amplitude |v(Ω)

x | (dotted lines) versus height z for the Alfvén
waves at the difference frequency for ωa = 0.15 rad s−1 and ωs = 0.1 rad s−1 at times t = (a) 0, (b) 10, and (c) 20 s. For all
dependences,Aa = 100m s−1, As = 100 m s−1, γ = 5/3, g = 275m s−2, ca0 = 6 km s−1, and cs = 10 km s−1.
than that for the interaction with a propagating AGW.
The latter is attributable to different growth rates
of the oscillation velocity amplitude in the primary
AGWs or, more specifically, to a slower increase in
the oscillation velocity amplitude with height for a
nonpropagating AGW than that for a propagating
AGW (see (17)).

(2) As we see from Figs. 2 and 3, the Alfvén wave
at the difference frequency propagating against (see
the position of the minimum marked by a cross at
various times in Fig. 2) and along (see Fig. 3) the
z axis is clearly observed in the range of fairly large z
(z > zH) for ωa > ωs and ωa < ωs, respectively. In
contrast, in the range of fairly small heights (z < zH ),
an interference pattern is formed in which the prop-
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 3. Same as Fig. 2 for ωa = 0.1 rad s−1 and ωs = 0.15 rad s−1.
agating Alfvén waves are more difficult to separate
clearly (see Figs. 2 and 3)
The explanation of this behavior of the Alfvén

waves at the difference frequency can be simplified
significantly if we divide the total solution (21) for
Alfvén waves into the forced solution

v
(Ω)
xforced = Re


eiΩt


J0(bΩe−ηz)

z∫
q1(z)dz (31)

+ Y0(bΩe−ηz)

z∫
q2(z)dz






ETTERS Vol. 31 No. 7 2005
and the eigensolution

v
(Ω)
xeigen = Re{eiΩtS1J0(bΩe−ηz)} (32)

and introduce the wave vector of the linear Alfvén
wave ζ . At large heights, z � zH , the magnitude
of the wave vector virtually approaches zero, ζ → 0,
because the propagating linear Alfvén waves cannot
be separated clearly; in contrast, at small heights,
z � zH , the following approximate equality is valid:
ζ ≈ baη (see (18)).

For z > zH , the forced solution (31) describes
two Alfvén waves at the difference frequency with
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Fig. 4.Horizontal oscillation velocity v
(Ω+)
x (solid lines) and its amplitude |v(Ω+)

x | (dotted lines) versus height z for the Alfvén
waves at the sum frequency forωa = 0.15 rad s−1 andωs = 0.1 rad s−1 at times t = (a) 0, (b) 3, and (c) 6 s. For all dependences,
Aa = 100 m s−1, As = 100 m s−1, γ = 5/3, g = 275m s−2, ca0 = 6 km s−1, and cs = 10 km s−1.
phases Ωt+ (αs ± ζ)z, which degenerate into one
wave with phase Ωt+ αsz in the range of fairly large
heights, z > zH (ζ → 0); in contrast, the eigensolu-
tion (32) makes almost no contribution to the total
solution (21) (see Fig. 6). Therefore, for z > zH , in
fact, there is only one Alfvén wave at the difference
frequency that propagates against or along the z axis,
depending on the satisfaction of the conditions ωa >
ωs or ωa < ωs, respectively (see Figs. 2 and 3). By
analogy, we can show that the Alfvén wave at the
sum frequency for z > zH always propagates along
the z axis for any relation between the frequencies of
the primary waves (see Figs. 4 and 5).
For z < zH , both solutions, (31) and (32) (see

Fig. 6), contribute to the overall interference pattern
of the Alfvén waves at the difference frequency. More
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 5. Same as Fig. 4 for ωa = 0.1 rad s−1 and ωs = 0.15 rad s−1.
specifically, the forced solution (31) describes two
Alfvén waves at the difference frequency with the cor-
responding phasesΩt+ (αs ± ζ)z that can propagate
both in the same direction for ζ < αs (against the
z axis) and in the opposite directions (if ζ > αs). By
analogy with (18), the eigensolution (32) for small z
describes two oppositely propagating Alfvén waves at
the difference frequency. This is why the oppositely
traveling waves are more difficult to separate clearly
TTERS Vol. 31 No. 7 2005
from the results of our numerical solution for the os-
cillation velocity of the Alfvén waves at the difference
frequency in the range z < zH . Similar reasoning is
also valid for the Alfvén waves at the sum frequency,
since the forced solution in this case describes two
Alfvén waves with phases Ω+t− (αs ± ζ)z.

(3) Since expression (21) for the oscillation veloc-
ity does not become identically equal to zero when
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Ω → 0 (see Fig. 7),

V (z) = v(Ω)
x (z, t)

∣∣∣
Ω→0

�= 0, (33)

the latter implies the formation of a horizontal MHD
flow in the atmosphere. We see from Fig. 7 that the
direction of the horizontal flow changes with height.
Since the flow is actually formed by two Alfvén waves
with phases (Ωt+ (αs ± ζ)z)|Ω→0, the variations in
the direction of the flow velocity with height are de-
termined by their respective wave numbers αs ± ζ .
For z > zH , the wave number of the linear Alfvén
waves ζ approaches zero; therefore, the variations in
the direction of the horizontal flow at large heights
are actually determined by the wave number αs of the
primary AGW. The flow velocity, alongwith theAlfvén
wave amplitude for Ω �= 0, increases with height, on
average, fairly rapidly (see Fig. 7).
Here, it should be noted that the magnitude of

the MHD flow approaches zero for a homogeneous
medium (g → 0) (see (9)). Thus, the physical cause
of the formation of such an MHD flow can be treated
as a parametric effect of an inhomogeneous medium
on the nonlinear interaction of an Alfvén wave with
an AGW at zero difference frequency. Since the
parameters of the medium vary nonperiodically both
in time (with a zero frequency) and in space (the equi-
librium density and pressure decrease exponentially
with height), from the viewpoint of the parametric
effect, the medium can efficiently contribute to the
generation of zero-frequency waves whose wave
spatial scale (wave number) is also equal to zero.
Such conditions are achieved during the nonlinear
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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vertical propagation of AGWs in the atmosphere;
as M. Petukhov and Yu. Petukhov (2003) showed,
a vertically downward-directed acoustic wind (flow)
whose velocity increases exponentially with height
is formed in the atmosphere at zero difference fre-
quency. In the case considered here, the wave at zero
difference frequency has a nonzero wave number. The
latter is responsible for the inefficient parametric effect
of the medium on the generation of Alfvén waves at
zero difference frequency, which manifests itself in the
form of spatial oscillations of the flow velocity along
the vertical of the atmosphere.

In addition, in both this and our previous pa-
per (M. Petukhov and Yu. Petukhov 2003), the flow
is formed only by propagating (energy-transferring)
waves. Indeed, as the AGW frequency tends to the
Lamb frequency, ωs → ωL, the AGW wave number
become equal to zero, αs → 0, and, as can be easily
seen from expressions (21)–(28), the flow velocity
also approaches zero, V → 0. The latter implies that
the flow is associated with the wave energy transfer in
the medium.

Here, it should also be noted that the formation
of such a plane-stratified flow does not give rise to
an instability in the atmosphere, because periodic (in
space) variations of the flow velocity lead to the corre-
sponding curvature of the field lines of an initially ver-
tically directed uniform magnetic field. Consequently,
the forces of magnetic tension that are opposite to the
flow direction and that hinder the growth of instability
in the atmosphere along the horizontal axis must
arise. However, the method of a specified field used
here and the method of successive approximations
do not allow the above force of magnetic tension
that must hinder the growth of the flow to be clearly
separated, since, in fact, we assume that the verti-
cal magnetic field component is constant and equal
to B0 at any point in space, i.e., we disregard the
magnetic field being curved under the effect of the
flow. Thus, the above reasoning leads us to conclude
that the initial stage of the simultaneous propagation
and nonlinear interaction of an Alfvén wave and an
AGW, 0 ≤ t ≤ t∗(z), at zero difference frequency in
the actual atmosphere is accompanied by the forma-
tion of plane-stratified MHD flows in it. In the course
of time, a magnetic field configuration such that the
driving force of the flow at a certain time t∗(z) will
be offset by the tension of magnetic field lines will be
established in the atmosphere, and the flowwill disap-
pear. However, t∗(z) cannot be determined using the
formulation of the problem under consideration and
the method of its solution, since this requires solving
a self-consistent problem.
ASTRONOMY LETTERS Vol. 31 No. 7 2005
CONCLUSIONS

Below, we formulate our main results and the con-
clusions that follow from them.
Based on a plane-parallel isothermal solar model

atmosphere permeated by a uniform vertically di-
rected magnetic field, we investigated the pattern of
nonlinear interaction between Alfvén waves and ver-
tically propagating AGWs.
We established that the nonlinear interaction of an

Alfvén wave with a propagating AGW leads to an effi-
cient generation of Alfvén waves at the difference and
sum frequencies; in this case, no AGWs are formed
at the corresponding combination frequencies. We
pointed out that Alfvén waves could also be formed
at the combination frequencies during the nonlinear
interaction of an Alfvén wave with a nonpropagating
AGW, but this process is less efficient.
The nonlinear generation of Alfvén waves at both

the difference and sum frequencies was shown to be
accompanied by the formation of a fairly complex in-
terference wave pattern in the atmosphere. We spec-
ified the range of atmospheric heights where the field
of Alfvén waves at the corresponding combination
frequency is determined by one wave that propagates
against or in the direction of the action of gravity, de-
pending on the frequency ratio of the primary waves.
We found that a horizontal MHD flow is formed

in the atmosphere at zero difference frequency. The
direction of the flowwas shown to change with height.
Thus, our studies suggest that even in the case of a

quadratic nonlinearity of themedium, the propagation
of an Alfvén wave is accompanied by a nonlinear
distortion of its profile. Indeed, the propagation of
an Alfvén wave is accompanied by the formation of
an AGW at the second harmonic (see M. Petukhov
and Yu. Petukhov 2002); interacting with the primary
Alfvén wave, the latter, in turn, leads to the gener-
ation of Alfvén wave combination frequencies in the
third approximation. At the same time, the interaction
of an Alfvén wave with initially existing AGWs in
the solar atmosphere gives rise to new Alfvén wave
harmonics in the second order of the perturbation
theory. Therefore, the distance traveled by an Alfvén
wave before the formation of a shock front decreases
appreciably compared to that obtained by Nakariakov
et al. (2000).
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Abstract—We consider the case of averaging the perturbing function of the Hill problem over the
fastest variable, the mean anomaly of the satellite. In integrable special cases, we found solutions to the
evolutionary system of equations in elements. c© 2005 Pleiades Publishing, Inc.
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INTRODUCTION.
FORMULATION OF THE PROBLEM

The model of a singly averaged restricted circu-
lar problem of three material points was suggested
by N.D. Moiseev in two of its last papers (Moi-
seev 1945a, 1945b). In the celestial mechanics liter-
ature, this model is referred to as Moiseev’s scheme
(Grebenikov and Ryabov 1971; Abalakin et al. 1976).
This scheme is most suitable for satellite problems:
In introducing simplifications, it eliminates only the
fastest variable, the mean anomaly of the satellite,
while retaining the time functions attributable to the
motion of the perturbing body in the equations. In the
commonly used model of a doubly averaged problem,
the influence of the perturbing body during its revolu-
tion cannot be taken into account in principle. At the
same time, such periodic perturbations play a promi-
nent role in the motion of distant satellites of the giant
planets, in particular, Jupiter’s satellite S/2001 J10
(Euporie) (Vashkov’yak and Teslenko 2005).

In the papers mentioned above, Moiseev gave the
most general expression for the singly averaged per-
turbing function for the model considered here, re-
vealed the existence of the first two integrals for the
evolutionary system of differential equations in el-
ements, and pointed out an integrable case of the
problem: satellite orbits lying in the plane of motion of
the perturbing body. Since the singly averaged prob-
lem under consideration is not integrable in the gen-
eral (three-dimensional) formulation, it seems natu-
ral first to analyze its particular solutions (integrable
cases). This is the goal of our work.

Let us consider the problem of the motion of a
planetary satellite perturbed by the attraction from a

*E-mail: vashkov@keldysh.ru
1063-7737/05/3107-0487$26.00
distant external body (Sun). Denote the planetocen-
tric Keplerian orbital elements of the satellite, i.e., the
semimajor axis, eccentricity, inclination, argument
of the pericenter, longitude of the ascending node,
and the mean anomaly, by a, e, i, ω, Ω, and M ,
respectively. The angular variables are referred to the
plane of motion of the perturbing body and to a fixed
direction in this plane. The perturbing body is as-
sumed to move in a circular orbit of radius a′. Let us
also introduce the notation for the mean motions of

the satellite, n =
√
µ

a3/2
, and the perturbing body, n′ =

√
µ+ µ′

a′3/2
, as well as for the dimensionless parameter

of the problem,

ν =
n′

nβ
, (1)

where

β =
3µ′a3

16µa′3
, (2)

µ and µ′ are the products of the gravitational con-
stants by the masses of the planet and the perturbing
body, respectively. Disregarding the small ratio µ/µ′,
which does not exceed ∼0.001 for the planets in the
Solar system, we can assume that

n′2 ≈ µ′

a′3
, β ≈ 3n′2

16n2
, ν ≈ 16n

3n′ .

Since the ratio of the mean motions, n′/n, for the
distant satellites of the giant planets known to date
does not exceed ∼0.16, we find that ν > 100/3 =
33.3333 . . . in actual satellite systems. The hypothet-
ically acceptable lower limit for ν can be determined
from the relationship of this parameter to the semi-
major axis of the satellite orbit and the radius of the
c© 2005 Pleiades Publishing, Inc.
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planet’s Hill sphere with respect to the perturbing
body (Sun),

aH = a′
[

µ

3(µ+ µ′)

]1/3

. (3)

This relationship is

a

aH
= 4

[
4(µ′ + µ)2

3ν2µ′2

]1/3

≈ 4
(
4
3

)1/3

ν−2/3. (4)

Assuming that the restricted planetocentric motion
of the satellite must be within the Hill sphere, i.e.,
a(1 + e) ≤ aH, we obtain νmin ≈ 32(2/3)1/2 ≈ 26.1
at e = 1 and νmin ≈ 16(3)−1/2 ≈ 9.2 at e = 0.

In place of the time t, we use the “normalized” time
as an independent variable,

τ = βn(t− t0), (5)

where t0 is the initial time.
Note that the longitude of the ascending node of

the satellite orbit,Ω, appears in the averaged perturb-
ing function R only as a combination with the mean
longitude of the perturbing body,

λ′ = λ′
0 + n′(t− t0) = λ′

0 + ντ, (6)

where λ′
0 is the initial value of λ′ at τ = 0. Denoting

this combination by

Ω̃ = Ω− λ′
0 − ντ, (7)

let us write the perturbing function R averaged over
the mean anomaly of the satellite and normalized to
the factor µβ/a,

V =
1
2π

2π∫
0

RdM (8)

in the Hill approximation (a(1 + e) � a′),

VH = 4/3 + 2(e2 − sin2 i) (9)

+ e2 sin2 i(5 cos 2ω − 3)

− 10e2 cos i sin 2ω sin 2Ω̃

+ [2 sin2 i+ 10e2 cos 2ω

+ e2 sin2 i(3− 5 cos 2ω)] cos 2Ω,

so that
V = VH +O(a/a′)3. (10)

As was established by Moiseev (1945b), the evo-
lutionary system of differential equations for the singly
averaged restricted circular problem of three material
points admits of the first two integrals:

a = const, (11)

V + ν
√
1− e2 cos i = const. (12)
In the (Hill) approximation used, integral (12) can
be written in explicit form as

VH + ν
√

1− e2 cos i = const, (13)

where the function VH is defined by formula (9).
The evolutionary equations for the singly averaged

Hill problem in the notation used are

da

dτ
= 0,

de

dτ
= 10e

√
1− e2[sin2 i sin 2ω

+ (2− sin2 i) sin 2ω cos 2Ω̃ + 2 cos i cos 2ω sin 2Ω̃],
di

dτ
= − 2 sin i√

1− e2
{5e2 cos i sin 2ω(1− cos 2Ω̃)

− [2 + e2(3 + 5 cos 2ω)] sin 2Ω̃},
dω

dτ
=

2√
1− e2

{4 + e2 − 5 sin2 i (14)

+ 5(sin2 i− e2) cos 2ω

+ 5(e2 − 2) cos i sin 2ω sin 2Ω̃

+ [5(2− e2 − sin2 i) cos 2ω − 2

− 3e2 + 5 sin2 i] cos 2Ω̃},
dΩ̃
dτ

= −ν − 2√
1− e2

{[2 + e2(3

− 5 cos 2ω)] cos i(1− cos 2Ω̃)− 5e2 sin 2ω sin 2Ω̃}.
In the next section, we analyze particular solutions of
system (14).

A PLANE PARTICULAR SOLUTION

As was established by Moiseev (1945a), a par-

ticular solution (sin i = 0,
di

dτ
= 0) also exists in the

general case of the singly averaged problem with
the “total” perturbing function V . Solving this plane
problem is reduced to calculating quadratures. In the
Hill approximation, these quadratures take a specific
form and can be calculated analytically.

At sin i = 0, system (14) can be transformed by
introducing more convenient variables,

ζ =
√

1− e2, (15)

ψ = Ω̃ + σω = Ω+ σω − λ′, (16)

where σ = sgn(cos i0) = ±1. Therefore, physically,
the angular variable ψ means the difference between
the longitude of the pericenter of the satellite orbit,
Ω+ σω, and the mean longitude of the perturbing
body, λ′.
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Written in the new variables, the evolutionary sys-
tem

dς

dτ
= −20σ(1 − ζ2) sin 2ψ, (17)

dψ

dτ
= −ν + 4σζ(1 + 5 cos 2ψ)

has the first integral

ζ +
2σ
ν
(1− ζ2)(1 + 5 cos 2ψ) = c1, (18)

where the constant c1 is determined by the initial
values of ζ0 and ψ0.

Qualitative Analysis

Since the variable ψ enters into integral (18) via
cos 2ψ and since the equalities

dζ

dτ
=

dζ

dψ
= 0 (19)

hold at sin 2ψ = 0, all of the integral curves are sym-
metric relative to the vertical ψ = 0, π/2, π, and 3π/2
straight lines. Therefore, it will suffice to consider
the solution of system (17) only for 0 ≤ ψ ≤ π/2. In
addition, the ζ = 1 boundary line (circular orbits) is
the integral straight line on which equalities (19) hold
for any ψ.

In the ψ, ζ plane, the angular points of the rect-
angular region under consideration have the coor-
dinates А(0, 0), В(0, 1), С(π/2, 1), and D(π/2, 0)
and correspond to the following special values of the
constant c1:

c1(A) =
12σ
ν

, c1(B) = c1(C) = 1,

c1(D) = −8σ
ν

.

The boundaries of the rectangle ABCD also cor-
respond to the special values of c1 that depend on σ,
ζ0, and ψ0:

(1) on the vertical straight line АВ(ψ0 = 0) c1 =

ζ0 +
12σ
ν

(1− ζ2
0 ),

(2) on the horizontal straight line ВС(ζ0 = 1)
c1 = 1,

(3) on the vertical straight line CD(ψ0 = π/2)

c1 = ζ0 −
8σ
ν
(1− ζ2

0 ),

(4) on the horizontal straight line DA(ζ0 = 0) c1 =
2σ
ν
(1 + 5 cos 2ψ0).

It follows from the second equation of (17) that
dψ

dτ
< 0 at ν > 16 if σ = −1 and at ν > 24 if σ =
ASTRONOMY LETTERS Vol. 31 No. 7 2005
1. These conditions are definitely satisfied in actual
satellite systems.

At ζ = 0, we obtain
dζ

dτ
= −20σ sin 2ψ,

dψ

dτ
= −ν;

hence,

dζ

dψ

∣∣∣ζ=0 = −20σ
ν

sin 2ψ. (20)

Therefore, at sin 2ψ �= 0, there exists a set of phase
trajectories inclined to the ζ = 0 axis at a finite an-
gle. Moving along such trajectories, the phase point
reaches this axis in a finite time; i.e., the eccentricity
of the satellite orbit reaches unity, and the satellite
falls to the central planet. In other words, in the plane
case of the problem under consideration, there exists
a set of initial values of ζ0 and ψ0 that correspond
to the so-called “fall trajectories.” Such trajectories
are known in the doubly averaged Hill problem (Li-
dov 1961; Kozai 1962) and in the satellite case of the
doubly averaged plane restricted elliptical three-body
problem (Aksenov 1979a, 1979b).

In the problem under consideration, the set of fall
trajectories is separated from the “regular” trajecto-
ries with limited variations in eccentricity (or vari-
able ζ) by a special integral curve, the separatrix. The
following constant corresponds to it:

c
(s)
1 =

2(σ + 5)
ν

. (21)

The variable ζ varies within a limited range,

0 < ζmin ≤ ζ ≤ ζmax (22)

for c
(s)
1 < c1 ≤ 1 and reaches zero for c1 min =

2(σ − 5)
ν

≤ c1 ≤ c
(s)
1 . Note also that the trajectories

starting (or ending) at the point with the coordinates

ψ =
1
2
arccos

(
−1
5

)
and ζ = 0 (23)

correspond to c1 = 0, while only zero values of ζ
correspond to c1 = c1 min.

Figure 1 shows a family of phase trajectories of
system (17) in the entire ψ range for ν = 100/3 and
prograde orbits (σ = 1), while Fig. 2 corresponds
to retrograde orbits (σ = −1). The values of c1 are
shown on each trajectory. The direction of the motion
along all trajectories corresponds to a monotonic de-
crease in the variable ψ. The maximum values of ζ on
the separatrixes can be determined from the formulas

ζ̄ = (
√

640 + ν2 − ν)/16 at σ = 1, (24)

¯̄ζ = (
√

960 + ν2 − ν)/24 at σ = −1. (25)
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Fig. 1. Family of phase trajectories of system (17) for
ν = 100/3 and σ = 1. The values of c1 are shown on each
trajectory.

The σ = 1 and σ = −1 cases differ not only in the shift
of all trajectories of the families by 90◦, but also in the
parameters ζ̄, ¯̄ζ , and c

(s)
1 . In particular, fall trajectories

for the parameter ν adopted in the figures exist at
c1 ≤ 0.36 (σ = 1) and c1 ≤ 0.24 (σ = −1).

An Analytical Solution
Expressing the variable ψ from integral (18) as a

function of ζ and substituting it into the first equation
of (17) yields

τ =
σ

8
√
6

ζ∫
ζ0

dξ√
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

.

(26)

The roots of the fourth-degree polynomial ξi (i =
1, 2, 3, 4) and the extreme values of ζ are given by the
formulas that are presented in the table and that differ
for σ = 1 and σ = −1.

Below, we consider only the regular trajectories
for which ζmin > 0. Slightly simplifying the prob-
lem, we set ζ0 equal to the minimum value of ζmin

and, accordingly, ψ0 = π(1− σ)/4. Inverting quadra-
ture (26), we can easily express ζ(τ) in terms of
Jacobi elliptic functions,

ζ(τ) =




ξ4 −
ξ1 − ξ4

ξ1 − ξ2
ξ2sn2u

1− ξ1 − ξ4

ξ1 − ξ2
sn2u

, σ = 1

ξ2 −
ξ3 − ξ2

ξ3 − ξ4
ξ4sn2u

1− ξ3 − ξ2

ξ3 − ξ4
sn2u

, σ = −1




, (27)
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where the argument u and themodulus q of the elliptic
function sn are defined by the fomulas

u = 4
√

6(ξ1 − ξ2)(ξ3 − ξ4)τ, (28)

q =

√
(ξ1 − ξ4)(ξ3 − ξ2)
(ξ3 − ξ4)(ξ1 − ξ2)

. (29)

The function ψ(τ) can be found using integral (18),

cos 2ψ(τ) =
1
5

{
1− σν[c1 − ζ(τ)]

2[1 − ζ2(τ)]

}
. (30)

The period of the ζ and ψ variations (in normalized
time τ ) is given by

T1 =
K(q)√

6(ξ1 − ξ2)(ξ3 − ξ4)
, (31)

where K is the complete elliptic integral of the first
kind with the modulus q.

In the simplest case of circular orbits, where e0 =
0, ζ0 = 1, q = 0, and K = π/2, the expression for T1

is simplified, and the frequency of the ζ , ψ variations
can be determined from the formula

ω2
ζψ = (ν + 16σ)(ν − 24σ). (32)

Clearly, this oscillatory motion is possible only at ν >
24 and ν > 16 for σ = 1 and σ = −1, respectively.

A CIRCULAR PARTICULAR SOLUTION

It follows from the second equation of system (14)

that
de

dτ
= 0 at e = 0; i.e., circular orbits serve as its
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Table

σ = 1 σ = −1

ξ1 = (−ν +
√

D
(+)
1 )/16, ξ1 = (ν +

√
D

(−)
1 )/16,

ξ2 = (−ν −
√

D
(+)
1 )/16, ξ2 = (ν −

√
D

(−)
1 )/16,

ξ3 = (ν +
√

D
(+)
2 )/24, ξ3 = (−ν +

√
D

(−)
2 )/24,

ξ4 = (ν −
√

D
(+)
2 )/24, ξ4 = (−ν −

√
D

(−)
2 )/24,

D
(+)
1 = 256 + 32νc(+)

1 + ν2, D
(−)
1 = 256− 32νc(−)

1 + ν2,

D
(+)
2 = 576− 48νc(+)

1 + ν2, D
(−)
2 = 576 + 48νc(−)

1 + ν2,

c
(+)
1 = ζ0 + 2(1− ζ2

0 )(1 + 5 cos 2ψ0)/ν, c
(−)
1 = ζ0 − 2(1− ζ2

0 )(1 + 5 cos 2ψ0)/ν,

ζmin = ξ4, ζmax = ξ1 ζmin = ξ2, ζmax = ξ3
particular solution. By introducing the new variable
z = cos i, we can transform the evolutionary system
at e = 0 to

dz

dτ
= −4(1− z2) sin 2Ω̃, (33)

dΩ̃
dτ

= −ν − 8z sin2 Ω̃

with its first integral

z +
4
ν
(z2 − 1) sin2 Ω̃ = c2, (34)

where the constant c2 is determined by the initial
values of z0 and Ω̃0.

Qualitative Analysis

Since the variable Ω̃ enters into integral (34) via
sin2 Ω̃ (or cos 2Ω̃) and since the equalities

dz

dτ
=

dz

dΩ̃
= 0 (35)

hold at sin 2Ω̃ = 0, all of the integral curves are sym-
metric relative to the vertical Ω̃ = 0, π/2, π, and 3π/2
straight lines. Therefore, it will suffice to consider
the solution of system (33) only at 0 ≤ Ω̃ ≤ π/2. In
addition, the z = ±1 boundary lines (plane orbits) are
the integral straight lines on which equalities (35)
hold for any Ω̃. In the Ω̃, z plane, the angular points of
the rectangular region under consideration have the
coordinates А(0, –1), В(0, 1), С(π/2, 1), and D(π/2,
–1) and correspond to the following special values of
the constant c2:

c2(A) = c2(D) = −1, c2(B) = c2(C) = 1.

The boundaries of the rectangle ABCD also cor-
respond to the special values of c2 that depend on z0:
ASTRONOMY LETTERS Vol. 31 No. 7 2005
(1) on the vertical straight line АВ(Ω̃0 = 0)
c2 = z0,

(2) on the horizontal straight line ВС(z0 = 1)
c2 = 1,

(3) on the vertical straight line CD(Ω̃0 = π/2)

c2 = z0 −
4
ν
(1− z2

0),

(4) on the horizontal straight line DA(z0 = −1)
c2 = −1.

It follows from the second equation of (33) that
dΩ̃
dτ

< 0 at any ν if z > 0 and at ν > 8 if z < 0; this

condition is definitely satisfied in actual satellite sys-
tems. The variation in the variable z is oscillatory in
pattern, while its extreme values are defined by the
formulas

zmin = c2, (36)

zmax = {−ν + [ν2 + 16(4 + νc2)]1/2}/8.
Figure 3 shows a family of phase trajectories of sys-
tem (33) for ν = 100/3 in the entire Ω̃ range. The
values of c2 are shown on each trajectory. The direc-
tion of the motion along all trajectories corresponds
to a monotonic decrease in the variable Ω̃. In addi-
tion to the typical integral curves corresponding to
c2 = ±0.9 and±0.5, Fig. 3 shows two trajectories for
c2 = 0 and c2 = −4/ν = −0.12. For arbitrary ν, these
trajectories bound the domain of variables in which
the type of a nearly orthogonal evolving orbit can
change from prograde (z > 0) to retrograde (z < 0)
and vice versa at −4/ν < c2 < 0.

An Analytical Solution

Expressing the variable Ω̃ from integral (34) as a
function of z and substituting it into the first equation
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of (33) yields

τ =
1

4
√
ν

z∫
z0

dη√
−(η − η1)(η − η2)(η − η3)

. (37)

The roots of the third-degree polynomial ηi (i =
1, 2, 3) are given by

η1 = zmax, η2 = {−ν − [ν2 + 16(4 + νc2)]1/2}/8,
η3 = zmin,

where the extreme values of z are defined by formu-
las (36). Just as in the case of plane orbits, we set,
for simplification, z0 = zmin and, accordingly, Ω̃0 = 0.
Inverting quadrature (37), we can easily express z(τ)
in terms of Jacobi elliptic functions,

z(τ) =
η3 − η2p

2sn2w

1− p2sn2w
,

where the argument w and the modulus p of the
elliptic function sn are defined by the formulas

w = 2
√

ν(η1 − η2)τ, (38)

p =
√

η1 − η3

η1 − η2
. (39)

The function Ω̃(τ) can be found using integral (34),

sin2 Ω̃(τ) =
ν[z(τ)− c2]
4[1− z2(τ)]

. (40)

The period of the z variation (in normalized time τ , Ω̃)
is given by

T2 =
2K(p)√
ν(η1 − η2)

, (41)
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where K is the complete elliptic integral of the first
kind with the modulus p.

In the simplest case of plane orbits, where sin i0 =
0, z0 = cos i0 = σ = ±1, p = 0, and K = π/2, the
expression for T2 is simplified, and the frequency of the
z and Ω̃ variations can be determined from the formula

ω2
zΩ̃

= ν(ν + 8σ). (42)

Clearly, this oscillatory motion is possible at any pos-
itive ν for σ = 1 and only at ν > 8 for σ = −1.

A STATIONARY PARTICULAR SOLUTION

Setting the right-hand sides of Eqs. (14) equal to
zero, we can determine the conditions for the exis-
tence of a formal stationary solution of the evolution-
ary system. It is easy to see that the conditions

de

dτ
=

di

dτ
= 0

are satisfied if
sin 2ω = 0, δ1 = sgn(cos 2ω) = ±1 (43)

and

sin 2Ω̃ = 0, δ2 = sgn(cos 2Ω̃) = ±1.

In this case,
dω

dτ
=

2√
1− e2

{4 + e2 − 5 sin2 i

+ 5δ1(sin2 i− e2) + δ2[5(2 − e2 − sin2 i)δ1

− 2− 3e2 + 5 sin2 i]},
dΩ̃
dτ

= −ν − 2√
1− e2

[2 + e2(3− 5δ1)](1 − δ2) cos i.
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Clearly, there are no stationary solutions at δ2 = 1

(Ω̃ = 0, π), since
dΩ̃
dτ

= −ν < 0. At δ2 = −1 (Ω̃ =

±π/2), we have
dω

dτ
=

4√
1− e2

[3 + 2e2 − 5 sin2 i− 5δ1 cos2 i],

dΩ̃
dτ

= −ν − 4 cos i√
1− e2

(2 + 3e2 − 5δ1e
2).

There are no stationary solutions for δ1 = 1 (ω = 0, π)
and e < 1, since

dω

dτ
= −8

√
1− e2 < 0.

At δ1 = −1 (ω = ±π/2), we have
dω

dτ
=

8√
1− e2

(e2 − 1 + 5 cos2 i),

dΩ̃
dτ

= −ν − 8√
1− e2

(1 + 4e2) cos i,

and the dependences of the stationary values of e
and cos i on ν are expressed by the following formulas,
which are valid in the range

8/
√
5 ≈ 3.6 ≤ ν ≤ 8

√
5 ≈ 17.9, (44)

e =

√
ν
√
5− 8
32

, cos i = −1
2

√
1− ν

√
5

40
. (45)

In addition to these dependences, Fig. 4 shows the
ν dependence of the ratio of the apocenter distance
a(1 + e) to the radius of the Hill sphere aH, where a
is defined by the approximate formula (4). Clearly,
the stationary solution obtained is only formal, since
it corresponds to a ν range in which a(1 + e) > aH.
Nevertheless, our analysis of the evolutionary sys-
tem (14) linearized in small deviations from the sta-
tionary values of the elements e, i, ω, and Ω̃ shows
that this formal stationary solution is stable in the
linear approximation over the entire ν range (44).

CONCLUDING REMARKS

We qualitatively analyzed particular solutions of
the singly averaged Hill problem and derived formulas
ASTRONOMY LETTERS Vol. 31 No. 7 2005
for their analytical description using Jacobi elliptic
functions. A family of “fall trajectories” corresponding
to e → 1, where the satellite collides with the central
planet in a finite time, was found to exist in the plane
solution.

Investigating the stability of the plane solution to
inclination and the circular solution to eccentricity
as well as searching for and constructing periodic
trajectories of the nonintegrable problem under con-
sideration are of considerable interest.

The problem considered here (as any averaged
problem) is only the first approximation of the pertur-
bation theory. To obtain more accurate solutions, it
would probably be appropriate to analyze the problem
using at least the second approximation.
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Original Russian Text Copyright c© 2005 by Orlov.
Evolution of the Velocity Field in Model Potentials
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Abstract—We consider the evolution of the structure of the velocity field formed by the loops of the
trajectory in a generalized Hénon–Heiles model potential. Box-shaped orbits alternating with periodic
trajectories are shown to dominate at low values of the energy integral. Signatures of shell- and tube-
shaped structures appear as the energy increases. Tube-shaped orbits are associated with stable pe-
riodic trajectories with small resonance ratios. Zones of stochastic orbits appear at values of the en-
ergy integral close to its critical value, which corresponds to the opening of the zero-velocity contour.
c© 2005 Pleiades Publishing, Inc.

Key words: velocity field, structural evolution, model potential.
The dynamics of a stellar system is determined by
the orbits that are described by its stars. In galaxies
composed of billions of stars and interstellar matter,
the stellar orbits are determined almost exclusively
by the smoothed regular gravitational field produced
by the combined effect of their constituent objects.
Since the irregular field associated with individual
encounters between stars is generally weak compared
to the regular field, it can be disregarded.

The properties of orbits in the axisymmetric and
triaxial models of galactic gravitational fields are re-
viewed in the monograph by Contopoulos (2002). In
particular, this author points out that periodic orbits
play an important role in forming the phase portrait
of the system. Stable periodic orbits form a kind of a
skeleton on which the main types of orbits rest. At the
same time, unstable periodic orbits produce regions
of stochastic motions. Numerical simulations for a
number of potentials showed (see, e.g., Hénon and
Heiles 1964; Contopoulos 2002) that the relative area
of the regions of stochastic motions increases with
energy. This can be clearly displayed on the Poincaré
section where the points for stochastic trajectories are
scattered randomly. The islands of regularity around
stable periodic trajectories form hierarchical, occa-
sionally nested structures on the Poincaré section.
The initial conditions for regular periodic orbits form
linear Farey-tree-type structures. Irregular periodic
orbits are concentrated toward the asymptotic curves
for unstable periodic orbits and within the “tangles”
of trajectories around homoclinic points (see also the

*E-mail: vor@astro.spbu.ru
1063-7737/05/3107-0494$26.00
paper by Barbanis and Contopoulos (1995) for three-
dimensional systems).
To better understand how the manifolds of orbits

are structured, we consider a model potential that is a
generalization of the standard Hénon–Heiles (1964)
model. The potential is

U(R, z) = −1
2
(
AR2 +Bz2

)
+ εRz2 + µR3, (1)

where (R, z) are the coordinates of the trial point,
and (A,B, ε, µ) are the parameters of the model. We
consider the following set of parameters:

A = 3, B = 2, ε = −1, µ = 1/3. (2)

We are interested in the change in the structure of the
velocity field when varying the initial conditions and
the energy integral I. The velocity field is determined
by the angle f between the system’s R axis of sym-
metry and the tangent to the trajectory at the point
with coordinates (R, z).
The equation for the variation in the angle f is

2 (U + I)
(
∂f

∂R
cos f +

∂f

∂z
sin f

)
(3)

+
∂U

∂R
sin f − ∂U

∂z
cos f = 0.

Agekyan (1972) was the first to derive this equation
using the Boltzmann equation for three-dimensional
fields with rotational symmetry. However, Eq. (3) can
also be obtained directly from the equations of motion

d2R

dt2
=
∂U

∂R
, (4)

d2z

dt2
=
∂U

∂z
.

c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Family of orbits at R0 = −0.15 for the following values of the energy integral: I = (a) 0.2, (b) 0.5, (c) 0.7, (d) 1.0, (e)
1.2, (f) 1.4, (g) 1.6, and (h) 1.9.
This was done by Sidorova (2000) in her senior re-
search project.
The behavior of the velocity field when varying the

initial conditions can be studied by numerically solv-
ing Eq. (3) or the equivalent system (4). Since Eq. (3)
ASTRONOMY LETTERS Vol. 31 No. 7 2005
is a partial differential equation, it seems preferable
to numerically solve system (4) to maintain a higher

accuracy. To this end, we use the classical fourth-

order Runge–Kutta method.
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Fig. 2. Family of orbits atR0 = 0.15. The values of the energy integral are the same as those in Fig. 1.
Figures 1a–1h show how the types of orbits
change with increasing energy integral for fixed initial
conditions—the coordinates of the starting point of
the orbit, (R0, z0) = (−0.15, 0), and the direction of
particle motion, f0 = 90◦. At low I ≤ 1, box-shaped
orbits alternate with periodic trajectories. One of
these is the so-called central orbit. Figure 1b shows a
trajectory close to it.

At higher I > 1, we see new structural elements
of the velocity field—pleats (or folds) of the velocity
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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Fig. 3. Family of orbits at R0 = 0. The values of the energy integral are the same as those in Fig. 1.
field (Fig. 1e), the appearance of tube-shaped orbits

(Fig. 1f), stochasticity signs (Fig. 1g), and new peri-

odic orbits (Fig. 1h).
TRONOMY LETTERS Vol. 31 No. 7 2005
Let us consider the initial conditions that are
symmetric about the coordinate origin (R0, z0) =
(0.15, 0) at f0 = 90◦ (Figs. 2a–2h). At I ≤ 1, the
overall pattern of change in the velocity-field structure
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Fig. 4. Examples of periodic orbits at R0 = –0.15 for various values of the energy integral: I = (a) 0.5351, (b) 1.9136, (c)
1.3926, and (d) 0.1475. Figure 4e shows a periodic orbit with two cuspidal points at R0 = 0.15 for I = 1.5955.
with increasing energy is generally retained: box-
shaped orbits alternating with periodic trajectories
are observed (Figs. 2a–2d). A pleat (fold) is formed
on the right side of the box. The multiplicity of the
velocity field is equal to four inside this fold, while only
two conjugate loops of the trajectory intersect in the
remaining part of the orbit region.

The shape of the orbit region changes with in-
creasing I—curvatures are formed in the left cor-
ners of the box. The orbit acquires the features of
initially a shell-shaped structure and subsequently a
tube-shaped structure produced by the periodic orbit
shown in Fig. 2g. As the energy increases further,
the orbit becomes stochastic (Fig. 2h). At I = Icrit =
11/6 ≈ 1.833 . . . , the zero-velocity contour breaks.
At I > Icrit, the trajectory can go to infinity after a
number of oscillations.
ASTRONOMY LETTERS Vol. 31 No. 7 2005
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We also performed computations for R0 = 0
(Figs. 3a–3h). The behavior of the structure of the
velocity field with increasing I generally remains
the same: box-shaped orbits alternate with periodic
trajectories. In this case, the sizes and curvature of
the box boundaries increase. Structurally, the orbits
at R0 = 0 are intermediate between the orbits at
(R0, z0) = (−0.15, 0) and (R0, z0) = (0.15, 0) for the
same energy integral.
As can be seen from Figs. 1–3, the phase portrait

is largely determined by periodic and nearly peri-
odic orbits. Let us identify the main types of periodic
orbits at the values of R0 under consideration. At
(R0, z0) = (−0.15, 0), the stable central periodic orbit
occupies a special position (Fig. 4a). It is surrounded
by narrow box-shaped orbits. As the energy inte-
gral increases, more complex periodic orbits appear.
Figures 4b and 4c show two examples. These are
the closed orbits that do not reach the zero-velocity
contour. On the other hand, there are also periodic
orbits with the cuspidal points on the zero velocity
contour; Fig. 4d shows one of these orbits.
At other R0, new periodic orbits can appear, while

no other orbits are observed. For example, at R0 =
0 and R0 = 0.15, there is no central periodic orbit
shown in Fig. 4a. At the same time, another simple
periodic orbit with two cuspidal points was found at
R0 = 0.15 (Fig. 4e). This orbit produces a family of
tube-shaped orbits. It is similar to the orbit shown in
Fig. 4b at R0 = −0.15, but its period is a factor of 2
shorter. At certainR0 and I, the orbit shown in Fig. 4e
probably bifurcates (the period doubles). The initial
orbit becomes unstable (see Contopoulos 2002). As
a result, closed orbits that do not reach the zero-
velocity contour appear (see Fig. 4b). Such orbits also
produce tube-shaped orbits (see Figs. 1h and 3h).
Thus, the structure of the field of directions formed

by the trajectory loops depends on the initial con-
ditions. At low energies, the orbits are box-shaped.
They alternate with periodic orbits resembling boxes
in shape. The limiting case of a box is the central
periodic orbit (Fig. 4a) where the lateral sides of the
box shrink into a single line.
The commensurabilities between the oscillation

frequencies along the R and z axes can be arbitrarily
high. Since the set of rational numbers is infinite
and everywhere dense, there is a periodic orbit in an
arbitrarily close neighborhood of any orbit. However,
only some of these orbits (with the frequency ratio
equal to the ratio of small integer numbers) play a
significant role in forming the global structure of the
velocity field and its changes.
It should be noted that the orbits of a particle on

the (R, z) plane are the projections of phase trajecto-
ries in the four-dimensional space. In particular, the
ASTRONOMY LETTERS Vol. 31 No. 7 2005
box-shaped and tube-shaped orbits that we identified
are the projections of the conditionally periodic trajec-
tories wound around the invariant tori in phase space
onto coordinate space. The highlighted features like
folds (see, e.g., Figs. 1e–3e) and curvatures (Fig. 3g)
are examples of the standard features of projecting
an invariant torus onto the coordinate space (see,
e.g., Lichtenberg and Liebermann 1984; Contopou-
los 2002).

The structure of the neighborhoods of periodic
orbits was analyzed in detail in the KAM theory (see,
e.g., the review by Arnold et al. 1985). According to
this theory, a periodic trajectory in dynamical systems
with two degrees of freedom in the phase space is
surrounded by invariant tori with conditionally peri-
odic trajectories. This is clearly seen from comparison
of Figs. 1b and 4a as well as Figs. 1h and 4e. Both
stochastic and periodic orbits can be between the
invariant tori (see Arnold et al. 1985).

Thus, the results presented here clearly illustrate
several patterns known in the theory of dynamical
systems using the generalized Hénon–Heiles model
as a specific example.
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ERRATA
Erratum: “Strong Cosmic-Ray Scattering in an Anisotropic Random
Magnetic Field”

[Astron. Lett. 31 (3), 186 (2005)]

Yu. P. Mel’nikov and I. N. Toptygin

1. On p. 187 (left column), the phrase in line 20 from the top should read as “...the cosmic medium for
R1 ≤ L...”.

2. On p. 189 (left column, line 8 from the top of the first paragraph), J rather than I should be used to denote
the Bessel function in the unnumbered formula and in the subsequent text:

Jn(ρ) exp
[
in
π − β

2

]
=

+∞∑
k=−∞

Jn+k(z)Jk(z) exp[ikβ],

where ρ = 2z sin(β/2) and Jn(ρ) is the nth order Bessed function.
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