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Abstract—The galaxy Mrk 421 was observed with the GT-48 Cherenkov telescope in 2004. The ob-
servations revealed a very-high-energy gamma-ray flux at a confidence level of 4.8 σ. Comparison with
the constant gamma-ray flux from the Crab Nebula yielded an estimate of the total flux from Mrk 421,
1.7 ± 0.7 Crab (E ≥ 1 TeV). c© 2005 Pleiades Publishing, Inc.
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INTRODUCTION

Among the various objects in the Universe that
emit very-high-energy (VHE, E > 1011 eV)
gamma rays, active galactic nuclei (AGNs) are of
considerable interest. The VHE gamma-ray emission
from these objects presumably originates from the
relativistic jets ejected from their central regions and
directed toward the observer. VHE gamma rays can
be detected on the Earth’s surface by the Cherenkov
radiation of extensive air showers (EASs) generated
by them in the atmosphere, which consist of charged
particles (electrons and positrons). The Cherenkov
radiation of an EAS propagates in a narrow cone
with an angular aperture of ∼1◦ and with the axis
coincident with the arrival direction of the primary
gamma-ray photon; it covers a circle on the order of
several hundred meters in diameter on the Earth’s
surface, which makes it possible to detect low VHE
gamma-ray fluxes.
The possibility of studying AGNs in the VHE

gamma-ray range using ground-based detectors
opens new prospects for understanding the physics
of radiation processes in these objects. Data on the
VHE gamma-ray fluxes from these extragalactic
objects and their variations can be used to construct
new models of radiation processes in AGNs and to
improve existing models (Katarzynski et al. 2003).

VHE gamma-ray emission from the galaxy
Mrk 421 (z = 0.031) was detected for the first time
at Whipple Observatory at a level of 0.3 Crab (units
of the flux from the Crab Nebula) in the energy range
above 0.5 TeV at a confidence level of 6σ (Punch et
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al. 1992). Interest in the observations of this galaxy
was aroused by the variability of its TeV emission on
various time scales with the flux exceeding its qui-
escent level by dozens of times (Gaidos et al. 1996;
Kerrick et al. 1995) and by the correlation with the
X-ray emission (Macomb et al. 1995). Thus, for
example, the almost tenfold increase in the brightness
of Mrk 421 observed for a day in 1994 at TeV energies
was accompanied by a rise in its X-ray flux (Inoue
and Takahara 1996).
Variability on a yearly scale is also characteristic

of the galaxy Mrk 421. Thus, long-term observations
of this object with the CAT Cherenkov telescope in
the French Pyrenees at an altitude of 1650 m showed
that the total gamma-ray flux with an energy above
0.25 TeV changed from the minimum mean value
recorded in 1996–1997 (∼0.18 Crab) to the max-
imum value (∼0.64 Crab) recorded in 1999–2000
(Piron et al. 2001).
In contrast to other AGNs observed by the EGRET

detector onboard the Compton Gamma Ray Obser-
vatory, the gamma-ray (E > 100 MeV) brightness
of Mrk 421 is not dominant (Thompson et al. 1995),
and its optical luminosity, ∼1044 erg s−1, is also
relatively low compared to other gamma-ray sources
(Inoue and Takahara 1996).
The galaxy Mrk 421 has been observed at the

Crimean Astrophysical Observatory (CrAO) since
2002. From December 2 through December 6, 2002,
we detected a VHE gamma-ray burst from this
object with a duration of no longer than a day, which
coincided with the X-ray burst in the 3–25 keV
energy range. From April 4 through May 5, 2003,
we detected a flux from Mrk 421 at a confidence level
of 4.2σ (Fidelis et al. 2004).
c© 2005 Pleiades Publishing, Inc.
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Main parameters of the GT-48 telescope

Parameter Value

Field of view of one cell 0◦.4

Field of view of each camera 2◦.6

Total area

of compound mirrors 36m2

Section tracking accuracy ±0◦.05

Threshold energy 1 TeV

In 2004, the CrAO observations of the galaxy
Mrk 421 continued; the results are presented below.

THE CHERENKOV TELESCOPE
AND OBSERVATIONS

The galaxy Mrk 421 (the coordinates for 2004
are α = 11h04m37s and δ = 38◦11

′
38

′′
) was ob-

served at CrAO with the GT-48 Cherenkov telescope
(Vladimirsky et al. 1994).
The telescope consists of two identical mountings

(sections), northern (N) and southern (S), spaced
20 m apart. Each section of the telescope is equipped
with four cameras (light detectors) operating in the
visible range and consisting of 37 photomultipliers,
which together with their conical optical fibers form
37 cells (channels) (Andreeva et al. 2000). The main
parameters of the telescope are listed in the table.
The observations were performed in the source

tracking mode (ON mode) with a duration of 35 min
followed by a background measurement (OFF mode)
of the same duration with a shift in right ascension α
by 40 min. The observations in these modes were
performed at the same zenith angles. A total of 13 pair
observing sessions were conducted from April 15
through May 21, 2004. The observing sessions under
bad weather conditions were excluded from the data
processing. After excluding two pair sessions due to
a low count rate and its great nonuniformity on the
source or the background, 11 pair observing sessions
fromApril 15 throughApril 22, 2004, were included in
the data processing. The total source exposure time
was 385 min, with the time of background observa-
tion being the same.
After the primary data processing, which was re-

duced to determining the parameters of flashes, elim-
inating the events with poor tracking, introducing
the calibration coefficients, eliminating the flashes
with the maximum amplitude in the outer ring of
the light detectors, 5234 and 4988 Cherenkov flashes
in the source and background observations, respec-
tively, were left for the subsequent analysis.
ANALYSIS OF THE OBSERVATIONAL DATA

EASs produced by VHE gamma rays can be sep-
arated from background EASs produced by cosmic
rays (mainly protons) by selecting the images of
Cherenkov flashes by their shape, sizes, and orien-
tation with respect to the position of the source in the
field of view of the multielement camera. The flashes
from EASs generated by VHE gamma rays have
smaller angular sizes and relatively compact images
elongated toward the source in the field of view of
the camera. The flashes from proton showers have an
isotropic distribution in the field of view of the camera
with respect to the position of the source, much larger
angular sizes, and more fragmented images.
The flashes were selected by position-independent

parameters characterizing the size, amplitude, and
shape of the flash projection and by position-depen-
dent parameters related to the flash image orientation
with respect to the position of the source in the field
of view of the camera (Hillas 1985). The bound-
ary values of the selection parameters were cho-
sen to obtain an optimal signal-to-noise ratio Q =
(Ns −Nb)/

√
Ns+Nb, where Ns and Nb are the

numbers of gamma-ray-like flashes in the source and
background observations, respectively. The difference
(Ns −Nb) = Nγ is interpreted as the number of
gamma-ray photons, and

√
Ns+Nb is the statis-

tical error of this number. The events with selection
parameters outside the specified range were excluded
from our analysis.
Since the parameters of low-energy flashes are

strongly distorted, we imposed a limit on the total
flash energy expressed in terms of the amplitude of
the detected signal. The flashes with a total amplitude
below 125 quantization steps (which is equivalent to
≈90 photoelectrons) for both sections of the telescope
were excluded from our analysis. We selected the
flashes by the shapes of their images using the IPR
parameter, which characterizes the degree of image
fragmentation. We assigned zero values to the IPR
parameter for the most compact flashes (no flash im-
age fragmentation) and 1 to 7 for more fragmented
flashes. For the given selection, this parameter was
IPR = 0 for both sections of the telescope.
The limits on the position-independent parame-

ters characterizing the flash sizes were set for the two
sections of the telescope as follows: 0◦.22 < A(N) <
0◦.32 and 0◦.18 < A(S) < 0◦.33 for the effective length;
0◦.05 < B(N) < 0◦.18 and 0◦.05 < B(S) < 0◦.19 for the
effective width of their images.
The selection by the position-dependent parame-

ters was specified as follows: 0◦.2 < DIST(N) < 0◦.95
and 0◦.25 < DIST(S) < 0◦.95, ALPHA(N, S) < 31◦.
Here, DIST is the angular distance between the
source and the centroid of the flash image, ALPHA
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 1. Stereo image of the distribution of VHE gamma-
ray arrival directions:∆α and∆δ are the deviations from
the source position in right ascension and declination
(in degrees), respectively; the center of the map coin-
cides with the position of Mrk 421; Nγ is the number of
gamma-ray photons.

is the angle between the direction of the source from
the centroid of the flash image and the major axis of
the flash image.
After applying the above selection parameters

with the specified boundary values to the prepro-
cessed observational data set, Ns = 118 and Nb =
55 gamma-ray-like events remained in the source and
background observations, respectively. Accordingly,
the number of detected gamma-ray photons was
Nγ = 63 at a confidence level of Q = 4.8σ. The
resulting gamma-ray photon count rate was 0.164 ±
0.034 photons min −1 (the statistical error).
A three-dimensional histogram of selected gamma-

ray flashes in the field of view of the light detector
(see Fig. 1) was constructed by using the trial source
method (Akerlof et al. 1991; Neshpor et al. 1994).
During the observations, the camera was directed
toward the galaxy Mrk 421. The maximum of the
projected distribution has deviations from the source
position (∆α = −0◦.1, ∆δ = 0◦.2) (see Fig. 2). We
also see from Fig. 2 that the gamma-ray source vir-
tually coincides in position with the galaxy Mrk 421,
within the error limits of the trial source method
(≈0◦.1).
To estimate the flux from the observed object, we

processed the observations of the Crab Nebula in
2002–2004 with a source exposure time of 15 h. We
used the same selection parameters as those for the
observed gamma-ray source. The resulting gamma-
ray photon count rate, corresponding to a unit of the
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 2. Isophotes of the distribution of gamma-ray arrival
directions. The notation is the same as that in Fig. 1. The
outer isophote corresponds to 32 events; the isophote step
is 9 events.

flux from the Crab Nebula (Crab, E ≥ 1 TeV), is
0.099 ± 0.019 photons min−1 (the deviations from the
source position were chosen to be the same as those
for Mrk 421). Accordingly, the flux from the galaxy
Mrk 421, in units of the flux from the Crab Nebula,
was estimated to be 1.66 ± 0.67 Crab. The relative
error of the estimated flux (δ ≈ 0.4) was estimated as
the sum of the relative errors in the count rates for the
two objects δ = δCrab + δMrk 421 (Rumshinskiı̆ 1971).

Figure 3 shows the time dependence of the mean
fluxes from Mrk 421 in the observational periods of
different years as measured on the GT-48 telescope
and on other facilities with similar gamma-ray de-
tection thresholds. The Whipple and HEGRA mea-
surements were carried out at the threshold energy
E = 0.5 TeV. The threshold energy of the HEGRA
CT2 telescope is 1 TeV.

Based on our estimate of the detected VHE flux,
we can assert that the galaxy Mrk 421 was in an
active state in the observational period of 2004. This
is also suggested by the enhanced X-ray activity
of Mrk 421. Thus, for example, the mean flux from
the object in the 2–10 keV energy range in the ob-
servational period was ≈61 mCrab (quick-look re-
sults provided by the ASM/RXTE team). On the last
day of the object’s gamma-ray observations, April 22
(MJD52117.5), the ASM detector onboard the orbit-
ing X-ray observatory Rossi X-ray Timing Explorer
Project (RXTE) recorded a burst from it with an
amplitude of ≈103 mCrab and a confidence level of
≈27σ. It should be noted that Mrk 421 is considered
weak in the 2–10 keV range at a flux of 3 mCrab and
strong at 50 mCrab (quick-look results provided by
the ASM/RXTE team).
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Fig. 3. Mean VHE gamma-ray fluxes from the galaxy
Mrk 421 recorded in the observational periods of different
years: W, Cherenkov telescope of the Whipple Obser-
vatory; H, HEGRA system of Cherenkov telescopes; C,
ST2Cherenkov telescope of theHEGRAsystem;G,GT-
48 Cherenkov telescope. The data were taken from the
following papers: W1 (Punch et al. 1992); W2 and W3

(Kerrick et al. 1995); C (Petry 1997); H (Hermann et
al. 1997); G1 (Fidelis 2005); G2 (Fidelis et al. 2004); G3

(this paper).

CONCLUSIONS

We can assert with a confidence of 4.8σ that the
VHE gamma-ray flux we detected arrives from the
galaxy Mrk 421. By comparing the flux from this
object with the VHE gamma-ray flux from the Crab
Nebula, we were able to estimate the flux from the
observed object as (1.7 ± 0.7) Crab (E ≥ 1 TeV).
The mean flux from Mrk 421 in the observational

period of 2004 was comparable to its flux in 2002,
when X-ray and VHE gamma-ray outburst activity
was observed in the object. It is also close to the
flux from the object during the outburst of May 14–
15, 1994, when it was by a factor of 10 higher than
the mean value in the previous observational period
from December 23, 1993, through May 10, 1994,
detected with the Cherenkov telescope at Whipple
Observatory (Kerrick et al. 1995).
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Abstract—We analyze the statistical distribution of neutron stars at the stage of a supersonic propeller.
An important point of our analysis is allowance for the evolution of the angle of inclination of the magnetic
axis to the spin axis of the neutron star for the boundary of the transition to the supersonic propeller stage.
We have determined the spin period distributions of pulsars at the propeller stage for two models: the model
with hindered particle escape from the stellar surface and the model with free particle escape. As a result,
we have shown that consistent allowance for the evolution of the inclination angle in the region of extinct
radio pulsars for the two models leads to an increase in the total number of neutron stars at the supersonic
propeller stage. This increase stems from the fact that when allowing for the evolution of the inclination
angle χ for neutron stars in the region of extinct radio pulsars and, hence, for the boundary of the transition
to the propeller stage, this transition is possible at shorter spin periods (P ∼ 5−10 s) than assumed in the
standard model. c© 2005 Pleiades Publishing, Inc.
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INTRODUCTION

Previously, we showed (Beskin and Eliseeva 2005)
that the transition to the propeller stage could occur
at much shorter periods than assumed in the standard
model when allowance is made for the evolution of
the angle of inclination of the magnetic axis to the
spin axis of the neutron star. Consequently, allowance
for the evolution of the inclination angle at the stage
of extinct radio pulsars would affect significantly the
statistics of neutron stars at the propeller stage.

As Davies et al. (1979) and Davies and Pringle
(1981) showed, the following two so-called substages
that a neutron star undergoes as its spin period de-
creases must be distinguished: supersonic and sub-
sonic propellers. In both cases, the neutron star spins
down due to the interaction of the stellar magneto-
sphere with the surrounding matter.

As a neutron star spins down, the electrodynamic
processes cease to play a significant role in the pul-
sar’s magnetosphere. When the radius at which the
pressure of the ambient medium is balanced by the
magnetodipole radiation pressure (the Schwarzman
radius) becomes equal to the Alfvén radius, the star
passes to the stage of a supersonic propeller. As the
spin period increases further, the barrier produced by
the rotation of the neutron star’s strong magnetic
field ceases to be efficient and the plasma begins to

*E-mail: beskin@lpi.ru
1063-7737/05/3109-0579$26.00
penetrate into the pulsar’s magnetosphere. Thus, the
pulsar passes to the stage of a subsonic propeller.

Subsequently, due to an even larger spindown, the
accretion rate increases and can reach its maximum
at a certain period P—the neutron star passes to the
stage of a steady accretor. The evolution of a neutron
star at the “supersonic propeller–subsonic propeller–
stable accretor” stages was considered in more detail
in the paper by Ikhsanov (2003), whose results we
used here.

In this paper, we consider the stationary distri-
bution of isolated neutron stars at the supersonic
propeller stage. As previously (Beskin and Elisee-
va 2005), all our calculations were performed for two
basic models: the model with hindered particle es-
cape from the neutron-star surface (Ruderman and
Sutherland 1975; Beskin et al. 1993) and the model
with free particle escape (Arons 1979; Mestel 1999).
We disregard the possibility of magnetic-field evolu-
tion and assume that no neutron stars are born at the
supersonic propeller stage. An important point of our
study is that the boundary of the transition of a neu-
tron star from the ejector stage to the propeller stage
is presented with allowance made for the evolution of
the inclination angle.

As a result, we obtained the distribution of neu-
tron stars at the supersonic propeller stage in spin
period P . We show that the number of neutron stars
at this stage is larger when the evolution of the incli-
nation angle is taken into account for the transition
c© 2005 Pleiades Publishing, Inc.
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Fig. 1.Evolution of neutron stars under the assumption of
hindered particle escape: I, active radio pulsars; II, extinct
radio pulsars; and III, pulsars at the supersonic propeller
stage.

boundary than that in the case where the standard
model is considered. We also show once again that
when the evolution of the inclination angle χ is taken
into account, neutron stars can pass to the propeller
stage even at fairly short periods: P ∼ 5−10 s.

BASIC EQUATIONS

Lipunov and Popov (1995) formulated an impor-
tant assertion: for a constant magnetic field, the ejec-
tor stage at reasonable parameters is always longer
than the propeller stage. Our objective in this part
of the paper is to determine the number of neutron
stars at the propeller stage by disregarding both the
magnetic-field decay and the evolution of the angle of
inclination of the magnetic axis to the spin axis of the
star at this stage.

A neutron star at the propeller stage is known to
spin down due to the transfer of angular momentum
to the surrounding matter (Schwarzman 1970; Illar-
ionov and Syunyaev 1975). There are many formulas
that describe this spindown (see Lipunov 1987;
Lipunov and Popov 1995). Nevertheless, virtually
all of them can be reduced to the form (Popov and
Prokhorov 2002)

dIω

dt
= −kt

µ2

R3
A

.

Here, I ∼ 2/5MR2 is the moment of inertia of the
star, µ is the magnetic dipole moment, kt ≈ 1 is a
dimensionless constant, and RA is the Alfvén radius:

RA =
(

µ2

Ṁ
√

2GM

)2/7

,

where M is the mass of the neutron star. The accre-
tion rate can be estimated as

Ṁ � πR2
αρV∞,

where V∞ is the space velocity of the neutron star
relative to the surrounding interstellar medium, ρ is
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Fig. 2. Evolution of neutron stars under the assumption
of free particle escape. The notation is the same as that in
Fig. 1.

the density of the interstellar medium, and Rα is
the gravitational capture radius, which for spherically
symmetric accretion is

Rα =
2GM
V 2
∞

.

The maximum possible accretion rate onto a iso-
lated neutron star (for spherically symmetric accre-
tion) was determined by Ikhsanov (2003) and can be
specified by the following expression:

Ṁ ≤Mmax � 2.3 × 1011ρ−24m
2V −3

6 g s−1,

where m is the mass of the star expressed in terms
of solar masses, ρ−24 = ρ/10−24 g cm−3, and V6 =
V∞/106 cm s−1. Given all of the factors listed above,
the transfer of angular momentum to the surrounding
interstellar medium is found to cause the neutron star
to spin down at the rate

dP

dt
= 2.5 × 10−11B

2/7
12 P 2. (1)

Further, it should be noted that for the model with
hindered particle escape from the pulsar’s surface, the
transition to the supersonic propeller stage for most
neutron stars can occur only at fairly small angles χ
between the magnetic axis and the spin axis (Fig. 1).
Consequently, in the case of hindered particle escape,
the neutron stars passing to the propeller stage are
almost aligned rotators, and the subsequent evolu-
tion of the inclination angle is unimportant. As a
result, it can be assumed with sufficient accuracy for
the Ruderman–Sutherland model that the inclina-
tion angle does not evolve at the supersonic propeller
stage.

As regards the model with free particle escape from
the neutron-star surface, the characteristic period at
which the transition to the propeller stage occurs is
much longer than the death period. Consequently,
most neutron stars will enter the region of angles
close to 90◦ before the transition of the star to the
supersonic propeller stage (see Fig. 2).
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Thus, we are interested in the statistics of pulsars
at the supersonic propeller stage without considering
the angle of axial inclination. Accordingly, to deter-
mine the stationary distribution function of neutron
stars, let us introduce their distribution N3(P,B) in
period P and magnetic field B. Next, as in the case
of extinct radio pulsars, we assume that the func-
tion N3(P,B) depends on the magnetic field B of the
neutron star only as a parameter; i.e., we disregard
the magnetic-field evolution over the lifetime of the
neutron star. As a result, the kinetic equation for
neutron stars at the supersonic propeller stage can be
written as

∂

∂P

(
N3

dP

dt

)
= F (P,B), (2)

where the source function F (P,B) is determined by
the neutron star flux from the region of extinct radio
pulsars.

Finally, we must specify the boundary periods
for the supersonic propeller stage, i.e., the period
at which the transition from the ejector stage to
the propeller stage occurs and the period at which
the accretion of matter from the interstellar medium
onto the neutron star begins. As we found previously
(Beskin and Eliseeva 2005), the transition from
the ejector stage to the propeller stage occurs for
the model with hindered particle escape from the
neutron-star surface at the spin period

Ppr = PE sin1/2 χ. (3)

At the same time, the following expression holds for
the model with free particle escape:

Ppr = PE cos1/2 χ. (4)

Below, the expression for the limiting period PE
has the standard form (Lipunov et al. 1996)

PE ≈ R

c

(
Rc2

GM

)1/2
v∞
c

(
B2

0

4πρ∞v2
∞

)1/4

×
(
c∞
v∞

)1/2

≈ 102µ
1/2
30 c

1/2
7 v

1/2
7

(Bext)
1/2
−6

s.

Here, ρ∞ and c∞ are, respectively, the density and the
speed of sound in the interstellar medium (c7 and v7
are in units of 107 cm s−1); B2

ext = 8πρ∞c2∞ is the
corresponding magnetic energy density ((Bext)−6 is
in units of 10−6 G); and µ30 is the magnetic moment
of the neutron star in units of 1030 G cm2. In addition,
we assumed that the velocity of neutron stars v∞ is
much larger than the speed of sound in the interstellar
medium.

Next, it is necessary to determine the spin period
at which the star passes to the subsonic propeller
ASTRONOMY LETTERS Vol. 31 No. 9 2005
stage. For this purpose, we recall that a pulsar can
be at the supersonic propeller stage as long as its
angular velocity is large enough, and, accordingly,
the centrifugal acceleration exceeds the free-fall ac-
celeration. Consequently, the condition under which
the accretion of matter from the interstellar medium
onto a isolated neutron star begins can be specified as
follows:

ω2RA =
GM

R2
A

,

where ω = 2π/P is the angular velocity of the neutron
star.

As a result, for the boundary period corresponding
to the transition of a isolated neutron star to the
subsonic propeller stage, we obtain an expression that
is similar to that derived by Ikhsanov (2003):

Peq � 24µ6/7
30 Ṁ

−3/7
15 m−5/7 s,

where Ṁ15 is the accretion rate in units of 1015 g s−1,
and m = M/M�.

Substituting the parameters into the above for-
mula, we can estimate the period at which the neutron
star leaves the supersonic propeller stage:

Peq � 670B6/7
12 s. (5)

Let us now consider the spin period distribution of
neutron stars passed to the supersonic propeller stage
for the standard model, i.e., for the model in which
the evolution of the inclination angle in the region of
extinct radio pulsars is disregarded. In this case, the
kinetic equation can be written as

d

dP

(
N3

dP

dt

)
= 0.

It should also be recalled that N2(P ) = NfP for
the region of extinct radio pulsars in the standard
model, while the derivative of the spin period at
the supersonic propeller stage can be represented
by Eq. (1). As a result, we obtain the following
distribution of neutron stars in spin period P for the
model where the evolution of the angle of inclination
of the magnetic axis to the spin axis is disregarded:

N3(P ) = 4 × 10−5NfP
−2, if P > PE ,

N3(P ) = 0, if P < PE .

In this case, the total number of neutron stars at
the supersonic propeller stage for the model in which
the inclination angle is disregarded can be estimated
as N3 = 4 × 10−5Nf/PE .
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THE MODEL WITH HINDERED PARTICLE
ESCAPE FROM THE NEUTRON-STAR

SURFACE
Let us consider the statistics of pulsars at the

supersonic propeller stage in more detail assuming
that the model with hindered particle escape from
the neutron-star surface is valid. In this case, the
boundary of the transition from the region of extinct
radio pulsars (the ejector stage) to the supersonic
propeller region is defined by Eq. (3).

Thus, the source function F (P,B) in the kinetic
equation (2) can be written as

F (P,B) = F (P,B, χ)|sinχ=P 2P−2
E
,

where
F (P,B, χ) = χ̇N2.

The distribution function N2(P,B, χ) in the latter
expression refers to the region of extinct radio pul-
sars, and we found it previously (Beskin and Eliseeva
2005). Recall that this function for the model with
hindered particle escape from the neutron-star sur-
face can be specified as

N2(P,B, χ) = 0.7kNNfB
8/7
12

× (1 +B12)−3.7G(cos χ/P )
sinχ

,

where

G(ξ) =
1 − c(ξ)
s3(ξ)

(3.5 +
s2(ξ)
c2(ξ)

)c1.7(ξ).

In this case, we used two auxiliary functions:

c(ξ) = B0.75
12 ξ1.4 = cosχ,

s(ξ) = (1 − c2(ξ))1/2 = sinχ.

To determine the derivative of the angle of incli-
nation of the magnetic axis to the spin axis of the
neutron star, we use the integral of motion in explicit
form. If the Ruderman–Sutherland model is valid,
then the plasma in neutron stars at the stage of an
extinct radio pulsar will fill only the inner regions of
the magnetosphere. Consequently, the energy losses
for such pulsars can be assumed to be identical to
the magnetodipole losses. Thus, the quantity I =
cosχ/P is conserved during the evolution. As a re-
sult, we obtain the derivative of the angle of axial
inclination in the region of extinct radio pulsars

χ̇ = − Ṗ
P

cotχ.

The differential equation for the distribution func-
tion N3(P,B) of pulsars at the supersonic propeller
stage then takes the form

d

dP

(
N3P

−2
)

= 3 × 10−5kNNfB
20/7
12
× (1 +B12)−3.7 y

P 2
G
( y
P

)
.

Here, we denoted y = (1 − P 4P−4
E )1/2.

The sought-for distribution function can then be
represented as

N3(P,B) = 3 × 10−5kNNfB
20/7
12

× (1 +B12)−3.7P−2

P∫
Pmin

y

P 2
G
( y
P

)
dP,

where kN ≈ 4.4 is the normalization factor and Nf is
the number of normal radio pulsars far from the death
line (for more detail, see Beskin and Eliseeva (2005)).

Since the death line of normal radio pulsars

Pd(χ) = B
8/15
12 (cosχ)0.29 s (6)

crosses the boundary of the transition to the super-
sonic propeller stage at a fairly small angle χ (sinχ =
P−2
E P 0.125), the point of intersection of the death line

for normal radio pulsars (6) with the sinχ = 0 axis
can be taken with a good accuracy as the point with
the minimum period Pmin (see Fig. 1). It thus follows
that

Pmin = B
8/15
12 s.

Since the period at which a pulsar passes from
the ejector stage to the propeller stage is defined by
Eq. (3) and the period at which a pulsar leaves the
supersonic propeller stage is defined by Eq. (5), we
derive the following expression for the period distri-
bution function of neutron stars at the supersonic
propeller stage:

N3(P,B) = 3 × 10−5kNNfP
−2

×
P 15/8∫

5×10−4P 7/6

B
20/7
12 (1 +B12)−3.7

×
P∫

B
8/15
12

y

P 2
G
( y
P

)
dP.

Figure 3 shows the distribution of pulsars at the
supersonic propeller stage in period P for a value
of PE = 100 s. This distribution was constructed by
assuming that the model with hindered particle es-
cape from the neutron-star surface was valid. In ad-
dition, we assumed that no neutron stars are born at
the supersonic propeller stage and did not consider
the possibility of magnetic-field evolution over the
lifetime of the pulsar at this stage. As we see from
this figure, the number of such neutron stars is much
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 3. Distribution of neutron stars at the supersonic
propeller stageN3(P ) for the model with hindered particle
escape.

smaller than the number of both active and extinct
radio pulsars.

As was noted above, when allowance is made for
the evolution of the angle of inclination of the mag-
netic axis to the spin axis in the region of extinct radio
pulsars (and, accordingly, for the boundary of the
transition to the supersonic propeller stage), the tran-
sition to the propeller stage can occur even at fairly
short spin periods of the neutron star. The numerically
computed distribution of pulsars at the supersonic
propeller stage shown in the figure confirms this con-
clusion. We also see from Fig. 3 that the total number
of neutron stars increases compared to the standard
model when allowance is made for the evolution of the
inclination angle in the region of extinct radio pulsars
and, accordingly, for the boundary of the transition to
the propeller stage.

It should also be noted that if the model with hin-
dered particle escape is valid, the limiting period PE
only slightly affects the distribution of neutron stars
at the supersonic propeller stage. This situation arises
from the fact that most of the neutron stars crossing
the boundary of the region of extinct radio pulsars
sinχ = P 2/P 2

E have short spin periods, P 
 100 s
(Fig. 1).

THE MODEL WITH FREE PARTICLE
ESCAPE FROM THE NEUTRON-STAR

SURFACE

Recall that the boundary of the transition from
the region of extinct radio pulsars to the supersonic
propeller stage for the model with free particle escape
from the neutron-star surface is specified by Eq. (4)
(see Fig. 2). Consequently, the following relation is
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 4. Distribution of neutron stars at the supersonic
propeller stage N3(P ) for the model with free particle
escape.

valid for the source function F (P,B) determined by
the neutron star flux from the region of extinct radio
pulsars:

F (P,B) = F (P,B, χ)|cos χ=P 2P−2
E
. (7)

Therefore, as for the Ruderman–Sutherland model,
the source function F (P,B, χ) can be written as

F (P,B, χ) = χ̇N2. (8)

If the model by Arons (1979) is valid for the exist-
ing neutron stars, then, as was mentioned above, the
neutron-star magnetosphere for extinct radio pulsars
in the case of free particle escape still remains com-
pletely filled with plasma, which screens the magnetic
field. As a result, all of the energy losses are at-
tributable to longitudinal currents, while the magne-
todipole losses are completely screened. In this case,
the quantity Id = sinχ/P is conserved during the
evolution at the ejector stage (including the region of
extinct radio pulsars). It thus follows that the deriva-
tive of the angle of inclination of the magnetic axis to
the spin axis of the neutron star is

χ̇ = − Ṗ
P

tanχ. (9)

Based on our previous results, we use the follow-
ing expression for the distribution function of extinct
radio pulsars

N2(P,B, χ) (10)

= 0.3kNNf
B1.1

12 (1 +B12)−3.7

cosχ[1 + 0.1B1.7
12 (sinχ/P )3.1]0.9

.
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Fig. 5. Distribution of neutron stars at the supersonic
propeller stage N3(P ) for the model with free particle
escape for the limiting period PE = 30 s.

Let us change the variable

y = sinχ = 1 − P 4

108B
1/2
12

.

Substituting (7), (8), (9), and (10) into the ki-
netic equation (2) yields the differential equation
forN3(P,B)

d

dp
(N3P

2) = 1.2kNNfB
2.74
12 (1 +B12)−3.7

× P−27/14 y[
1 + 0.1B1.7

12 (y/P )3.1
]0.9 .

The solution of this equation is the sought-for
distribution function

N3(P,B) (11)

= 1.2 × 10−5PEkNNfB
2.74
12 (1 +B12)−3.7P−2

×
P∫

Pmin

y

P 27/14

dP

[1 + 0.1B1.7
12 (y/P )3.1]0.9

.

To find the minimum spin period of a neutron star
that passed to the supersonic propeller stage, let us
turn to Fig. 2. We see from this figure that the point of
intersection between the line of transition of pulsars
to the region for which the angle of inclination of
the magnetic axis to the spin axis is close to 90◦

(cosχ = (ΩR/c)1/2) and the line of transition from
the region of extinct radio pulsars to the propeller
stage (4), where Ω = 2π/P is the angular velocity of
the neutron star, corresponds to this period. Thus,
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Fig. 6. Same as Fig. 5 for PE = 100 s.

the minimum spin period of a neutron star at the
supersonic propeller stage is

Pmin = 0.184A4/5B
2/5
12 .

Here, we represented the limiting period PE as PE =
AB

1/2
12 .
As a result, we obtain the spin period distribution

of neutron stars at the supersonic propeller stage for
the model with free particle escape from the pulsar’s
surface by taking into account the boundaries of the
transition of the neutron star to the supersonic pro-
peller stage (4) and the subsonic propeller stage (5)
and using the distribution function (11):

N3(P ) = 1.2 × 10−5PEkNNfP
−2

×
69A−2P 5/2∫

5×10−4P 7/6

B2.74
12 (1 +B12)−3.7

×
P∫

0.185P 0.8
E

y

P 27/14

dP

[1 + 0.1B1.7
12 (y/P )3.1]0.9

.

Recall that in this expression, the normalization fac-
tor is kN ≈ 4.4 and Nf is the number of normal radio
pulsars far from the death line.

Figure 4 shows the distribution of neutron stars
at the supersonic propeller stage in spin period P
under the assumption that the model by Arons is valid
for three limiting periods PE : 10, 30, and 100 s. In
addition, Figs. 5 and 6 separately show the distri-
butions for PE = 30 s and PE = 100 s, respectively.
As can be seen from these figures, when allowance
is made for the evolution of the inclination angle χ at
the ejector stage and, accordingly, for the boundary
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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of the transition to the propeller stage, the number
of neutron stars at the supersonic propeller stage
is indeed found to be significant at fairly short spin
periods (P ∼ 5−10 s). Thus, a consistent allowance
for the angle of inclination of the magnetic axis to the
spin axis of the neutron star at the ejector stage leads
to an increase in the number of pulsars that passed to
the supersonic propeller stage.

It should also be noted that, in contrast to the
model with hindered particle escape from the neutron-
star surface, the limiting period PE plays a significant
role in the distribution of neutron stars at the super-
sonic propeller stage for the model by Arons. This
is because the distribution of neutron stars at the
boundary of the transition from the region of extinct
radio pulsars to the propeller stage is virtually uniform
for this model.

CONCLUSIONS

We have determined the distributions of neutron
stars at the supersonic propeller stage in spin pe-
riod P and took into account the fact that a consistent
allowance for the evolution of the angle of inclination
of the magnetic axis to the spin axis for the region
of extinct radio pulsars directly affects the statistics
of neutron stars at the supersonic propeller stage. All
our calculations were performed for two models of the
particle acceleration region: the model with hindered
particle escape from the neutron-star surface (Rud-
erman and Sutherland 1975) and the model with free
particle escape (Arons 1979).

As a result, we have made sure once again that a
consistent allowance for the evolution of the inclina-
tion angle χ in the region of extinct radio pulsars both
for the model with hindered particle escape and for the
model with free particle escape leads to an increase in
the total number of neutron stars at the supersonic
propeller stage. This increase stems from the fact
that when the inclination angle χ for the evolution
of neutron stars in the region of extinct radio pulsars
ASTRONOMY LETTERS Vol. 31 No. 9 2005
and, hence, for the boundary of the transition to the
supersonic propeller stage is included, this transition
is possible at shorter spin periods of the neutron star
(P ∼ 5−10 s) than assumed in the standard model.
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Abstract—The state of a subsonic propeller in the evolutionary tracks of magnetized compact stars is
intermediate between the states of a supersonic propeller and an accretor. We show that neutron stars in
this state would manifest themselves as accretion-powered pulsars of low (or moderate) luminosity. The
criteria that allow subsonic propellers to be distinguished from accretors include a soft X-ray spectrum, a
limited range of admissible spin periods, and a rapid spindown. c© 2005 Pleiades Publishing, Inc.

Key words: pulsars, neutron stars, high-mass binaries.
INTRODUCTION

Neutron stars in high-mass binaries can be in
one of the following four states: an ejector, a super-
sonic propeller, a subsonic propeller, and an accretor
(Davies et al. 1979; Lipunov 1987). Ejectors and
accretors have been identified with radio (ejection)
and accretion-powered pulsars, respectively. Analysis
of the X-ray spectra for a number of Be/X-ray tran-
sients allows the state of the neutron star during the
quiescent phase of the source to be identified with the
state of a supersonic propeller (Campana et al. 2002;
Menou and McClintock 2001). Whether subsonic
propellers can be identified observationally is still an
open question.

A SUBSONIC PROPELLER

The stage of a subsonic propeller in the evolution-
ary tracks of neutron stars is intermediate between
the stages of a supersonic propeller and an accretor.
The spin period of subsonic propellers is limited below
by the condition

Ps > Pcd = 23µ6/7
30 m

−5/7

[
Ṁc

1015 g s−1

]−3/7

s, (1)

under which the corotation radius of the star, Rcor =
(GMP 2

s /4π2)1/3, exceeds the radius of its magneto-
sphere,

Rm =
(

µ2

Ṁc
√

2GMns

)2/7

. (2)

*E-mail: ikhsanov@kasi.re.kr
1063-7737/05/3109-0586$26.00
Here, µ30 and m denote the magnetic moment and
the mass of the neutron star in units of 1030 G cm3

and M�, respectively; Ṁc is the mass of the mat-
ter with which the neutron star moving through the
stellar wind from its massive companion interacts per
unit time:

Ṁc = πR2
Gρ∞Vrel; (3)

ρ∞ is the mean density of the matter surrounding
the neutron star at the distance of its gravitational
radius RG = 2GMns/Vrel; and Vrel is the velocity of
the neutron star relative to the stellar wind from its
massive companion.
At Ps > Pcd, the shape of the surface of the stellar

magnetosphere is described by the solution obtained
by Arons and Lea (1976). The stability condition for
the boundary of this magnetosphere is given by the
inequality

T (Rm) > 0.3Tff = 0.3
GMmp

kRm
, (4)

where T (Rm) is the temperature of the plasma sur-
rounding the stellar magnetosphere, Tff is the free-
fall temperature, and mp and k are the proton mass
and the Boltzmann constant, respectively. This im-
plies that the interchange instabilities of the mag-
netospheric boundary are suppressed as long as the
heating of the plasma surrounding the star dominates
over its cooling. The satisfaction of this condition
defines the upper limit for the spin period of subsonic
propellers (Ikhsanov 2001a)

Ps < Pbr � 450µ16/21
30

[
Ṁc

1015 g s−1

]−5/7

m−4/21 s.

(5)
c© 2005 Pleiades Publishing, Inc.
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As was first shown by Davies and Pringle (1981),
a neutron star at the subsonic propeller stage is sur-
rounded by a hot (T � Tff) quasi-static envelope that
extends from the magnetospheric boundary to its
gravitational radius. According to numerical simu-
lations (Romanova et al. 2003), this approximation
is valid if the star has a fairly strong magnetic field.
The envelope formation prevents the stellar wind from
penetrating under the gravitational capture radius.
During the motion of the star together with the enve-
lope surrounding its magnetosphere, the stellar wind
from its normal companion flows around the outer
boundary of the envelope. The mass of the gas flowing
around the envelope per unit time (the flow rate) is
Ṁc. The interaction between the envelope and the
matter flowing around it removes the excess angular
momentum transferred by the neutron star to the
surrounding plasma at its magnetospheric boundary
and transported by turbulent motions to the outer
boundary of the envelope (see Fig. 1).

ACCRETION ONTO A SUBSONIC
PROPELLER

The interchange instabilities of the magneto-
spheric boundary are not the only mechanism of
plasma penetration into the magnetic field of neutron
stars. Diffusion is an alternative mechanism. Since
the envelope plasma conductivity is finite, a diffusion
layer of plasma and magnetic field interpenetration
(the magnetopause) is formed at the magnetospheric
boundary. The thickness of this layer can be estimated
using the expression δm =

√
Defftdiff, where Deff and

tdiff are the effective diffusion coefficient and time,
respectively. The lower limit for Deff is the Bohm
diffusion coefficient DB � ζVTirhi , where VTi and rhi
are the thermal velocity of the ions and their Larmor
radius, respectively, and the dimensionless parame-
ter ζ lies within the range 0.1–0.25 (Gosling et al.
1991). The upper limit for this parameter depends
on the spectrum of turbulent motions at the magne-
tospheric boundary and can exceed significantly DB
under certain conditions (Anzer and Börner 1983).
The characteristic diffusion time is the time in

which the plasma that diffuses into themagnetopause
can escape from it by moving along the magnetic
field lines toward the magnetic poles. The absolute
lower limit for this quantity is the free-fall time, tff =
R

3/2
m /(GMns)1/2. However, the actual diffusion time

can exceed significantly tff. In particular, such a situ-
ation takes place in the case of a subsonic propeller.
The plasma penetrating into the stellar magnetic

field is isolated from the region of main energy release
via the propeller operation, and its motion inside the
magnetosphere is controlled completely by the mag-
netic field. However, the plasma can move along the
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 1. A neutron star in the propeller state. The stellar
magnetosphere is surrounded by a hot quasi-static en-
velope. During the motion of the star, the surrounding
matter flows around the outer boundary of the envelope
at the rate Ṁc.

magnetic field lines toward the magnetic poles of the
star only after the temperature of the plasma diffusing
into the magnetopause has decreased to a critical
value of∼0.3Tff. Otherwise, the effective acceleration
of a particle in the magnetopause region (Arons and
Lea 1976),

geff =
GMns

R2
m(ψ)

cosψ −
V 2
Ti

(Rm)
Rcurv(ψ)

, (6)

would be negative (the centrifugal acceleration at-
tributable to the curvature of magnetic field lines
and described by the second term on the right-hand
side dominates over the acceleration attributable to
the gravitational potential of the neutron star and
described by the first term on the right-hand side);
therefore, the resultant force applied to this particle is
directed away from the neutron star. Here, ψ denotes
the angle between the radius vector and the normal
to the magnetic field line, and Rcurv(ψ) is the curva-
ture of the magnetic field lines at the magnetospheric
boundary that corresponds to the solution obtained by
Arons and Lea (1976).

The main plasma cooling mechanism under the
conditions of interest is bremsstrahlung (the cooling
through cyclotron radiation and Compton scattering
is inefficient due to the relatively small magnetic field
strength in the magnetopause and the relatively low
X-ray luminosity of the star). The characteristic cool-
ing time can be expressed as

tbr � 5.4 × 104µ
4/7
30 m

6/7

[
Ṁc

1015 g s−1

]−9/7

s (7)

(note that the time it takes for the electron and ion
temperatures to be equalized in the conditions under
consideration is much shorter than the bremsstrah-
lung cooling time. Comparing this time with the free-
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Fig. 2. Ranges of admissible spin periods for subsonic
propellers as a function of their accretion luminosity for
stars with magnetic dipole moments of µ = 1030 G cm3

(sparse hatching) and µ = 1031 G cm3 (dense hatching).
These ranges are limited below and above by the peri-
ods Pcd and Pbr, respectively.

fall time in the magnetopause region, we find that

θ =
tff
tbr

� 5 × 10−5µ
2/7
30 m

−11/7

[
Ṁc

1015 g s−1

]6/7

.

(8)

Thus, the characteristic time of plasma outflow from
the magnetopause along the magnetic field lines
toward the star exceeds significantly the free-fall time.
Consequently, the characteristic time of accretion
onto the surface of a neutron star in the state of a
subsonic propeller is ta � tbr � tff, and, accordingly,
the maximum accretion rate onto the surface of such
an object is limited as follows:

Ṁa � Ṁmax
a � θṀc (9)

� 5 × 1010µ
2/7
30 m

−11/7

[
Ṁc

1015 g s−1

]13/7

g s−1.

It follows from this expression that the accretion lu-
minosity of subsonic propellers can be estimated as

L
sp
x � L

sp
a (10)

� 7 × 1030µ
2/7
30 m

−4/7R−1
6

[
Ṁc

1015 g s−1

]13/7

erg s−1,

where R6 is the radius of the neutron star in units of
106 cm.
The accreting plasma reaches the neutron-star

surface near the magnetic poles. As a result, two
hot spots whose radiation is concentrated in the X-
ray spectral range are formed on the stellar surface.
Assuming that the magnetic and spin axes of the star
are not aligned, we arrive at the classical picture of
an accretion-powered X-ray pulsar. Thus, one may
expect the neutron stars at the subsonic propeller
stage to manifest themselves as accreting pulsars of
low (or moderate) luminosity. At the same time, as
we show in the next section, there are several sig-
nificant differences in the manifestations of subsonic
propellers and accretors.

PECULIARITIES IN THE MANIFESTATIONS
OF SUBSONIC PROPELLERS

One of the criteria for identifying subsonic pro-
pellers is the following constrain imposed on the
range of admissible spin periods: Pcd < Ps < Pbr.
The boundaries of this range depend on two main
parameters: µ and Ṁc. The admissible range of
spin periods as a function of the subsonic-propeller
luminosity (Lx = ṀaGMns/Rns) can be determined
by assuming that the accretion rate onto the surface
of a neutron star in the state of a subsonic propeller
is close to its maximum possible value (see (9)). The
corresponding dependences are shown in Fig. 2. As
we see from this figure, the range of admissible spin
periods narrows significantly as the X-ray luminosity
of the source increases.
The next important criterion that allows subsonic

propellers to be distinguished from accretors of low
(and moderate) luminosity is their relatively soft X-
ray spectrum. The cause of this difference is as fol-
lows. The area of the hot spots near the magnetic
poles of a neutron star in the regime of spherical
accretion can be estimated, to the first approximation,
as Spol � πR3

nsR
−1
m (Lipunov 1987). If the star is in

the state of an accretor, i.e., Ṁc = Ṁa, then the area
of the hot spot can be expressed in terms of its X-ray
luminosity as

Saccpol � 6.4 × 108L
2/7
33 m

1/7µ
−4/7
30 R

23/7
6 cm2, (11)

where L33 is the X-ray luminosity of the source in
units of 1033 erg s−1.
However, in the case of a subsonic propeller,

Ṁc � Ṁa, and, hence, expression (9) should be used
to calculate the function Ssppol(Lx). As a result, we
obtain

S
sp
pol � 1.7 × 1010L

2/13
33 m3/13µ

−8/13
30 R

42/13
6 cm2.

(12)

Comparison of expressions (11) and (12) leads us to
conclude that the area of the hot spot on the surface
of a neutron star in the state of a subsonic propeller
is almost a factor of 30 larger than the spot area on
the surface of a neutron star in the accretor state of
ASTRONOMY LETTERS Vol. 31 No. 9 2005



CRITERIA FOR IDENTIFICATION 589
the same luminosity. A blackbody fit to the X-ray
spectrum suggests that the effective radiation tem-
perature of a subsonic propeller (other things being
equal) is more than a factor of 2 lower than that of
a neutron star in the accretor state. Thus, one may
expect the subsonic propellers to manifest themselves
as X-ray pulsars of low (or moderate) luminosity with
an anomalously soft spectrum.
This difference between subsonic propellers and

accretors is even more significant if matter is accreted
onto the neutron star in the regime of an accretion
disk. In this case, the accretion column is a hollow
cylinder (Basko and Sunyaev 1976), and, accordingly,
the area of the emitting region near the magnetic
poles is smaller that its value given by expression (11).
One of the important criteria for observational

identification of subsonic propellers is their relatively
high spindown rate and regularity. Indeed, following
Davies and Pringle (1981), let us write the rate of
rotational energy loss by a neutron star in the state
of a subsonic propeller as

Lsp = 8 × 1033µ2
30m

−1

(
Ps
5s

)−3

erg s−1. (13)

This implies that the spin period of subsonic pro-
pellers, on average, increases at a rate

Ṗ =
P 3
s L

sp

4π2I
∼ 2.5 × 10−11µ2

30m
−1I−1

45 s s
−1, (14)

where I45 is the moment of inertia of the neutron star
in units of 1045 g cm2.
Finally, since the maximum possible mass capture

rate by a neutron star in the regime of a subsonic
propeller from the stellar wind of the massive com-
panion exceeds significantly the accretion rate onto
its surface, we can make a correction to the method
for identifying the state of a neutron star by its X-ray
luminosity, magnetic field strength, and spin period.
Comparison of the magnetospheric and corotation
radii of the neutron star underlies this method. How-
ever, whereas the corotation radius does not depend
on the state in which the compact star is, the de-
termination of the magnetospheric radius is model-
dependent. The main parameter in calculating this
quantity for stars with an independently determined
magnetic field strength is the mass capture rate from
the stellar wind of the normal companion. In general,
this parameter can be estimated from the observed X-
ray luminosity of the object: Ṁ = LxRns/GMns. At
the same time, this estimate allows us to calculate
the accretion rate onto the stellar surface, i.e., Ṁa,
which can be set equal to the mass capture rate, Ṁc,
only if the star is in the accretor state. In the case
of a subsonic propeller, calculating the mass capture
rate from the X-ray luminosity of the object requires
ASTRONOMY LETTERS Vol. 31 No. 9 2005
allowing for expression (9). The value of Ṁc turns
out to be a factor of θ−1 higher than the accretion
rate onto the neutron-star surface calculated from
its accretion luminosity. Thus, the magnetospheric
radius of a subsonic propeller calculated from the
observed X-ray luminosity is a factor of θ−2/7 smaller
than the magnetospheric radius of a star with the
same luminosity and the same magnetic field, but in
the accretor state. For the parameters of interest, the
correction is

θ−2/7 � 17µ−4/49
30 m22/49

[
Ṁc

1015 g s−1

]−12/49

(15)

for a spherically symmetric accretion flow and a factor
of about 2 lower than that for disk accretion.

Thus, we arrive at yet another possible crite-
rion for identifying stars in the state of a subsonic
propeller. More specifically, pulsars for which the
magnetospheric radius calculated using the equality
Ṁa = Ṁc exceeds the corotation radius are candi-
dates for objects of this class. The application of
this criterion to the X-ray transient A0535+26 of
anomalously low luminosity was discussed previously
(Ikhsanov 2001b).

CONCLUSIONS

The main criteria that allow subsonic propellers to
be distinguished from accretors are:

(1) a limited range of admissible spin periods for
subsonic propellers, which is a function of their lumi-
nosity (see Fig. 2);

(2) a relatively soft X-ray spectrum of subsonic
propellers;

(3) rapid spindown of stars that manifest them-
selves as accretion-powered X-ray pulsars.

These criteria can be used to select candidates for
subsonic propellers from among X-ray pulsars of low
(or moderate) luminosity.
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Region of Anomalous Compression Under Bondi–Hoyle Accretion
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Abstract—We investigate the properties of an axisymmetric gas flow without angular momentum onto a
small compact object, in particular, on a Schwarzschild black hole in the supersonic region; the velocity
of the object itself is assumed to be low compared to the speed of sound at infinity. First of all, we show
that the streamlines intersect (i.e., a caustic is formed) on the symmetry axis at a certain distance rx
from the center on the front side if the pressure is ignored. The characteristic radial size of the region in
which the streamlines emerging from the sonic surface at an angle no larger than θ0 to the axis intersect is
∆r = rxθ20/3. To refine the flow structure in this region, we have numerically computed the system without
ignoring the pressure in the adiabatic approximation. We have estimated the parameters of the inferred
region with anomalously high matter temperature and density accompanied by anomalously high energy
release. c© 2005 Pleiades Publishing, Inc.

Key words: black holes, accretion.
INTRODUCTION

Bondi–Hoyle accretion is the fall of matter onto a
moving compact object. Although this problem was
formulated back in the mid-20th century (Bondi and
Hoyle 1944), many details of this process are still
incomprehensible. In particular, there is virtually no
detailed information about the properties of a flow
in the supersonic region near a gravitating center in
the model of smooth passage of the sonic surface
(Bondi 1952).

The first-order correction to spherically symmetric
accretion was first considered to calculate the ac-
cretion onto a nonrotating compact object moving
through a gas (Beskin and Pidoprygora 1995). In this
case, the ratio of the object’s velocity v∞ to the speed
of sound at an infinite distance from the body c∞ plays
the role of a small parameter:

ε =
v∞
c∞
.

We consider only the first approximation with ε ≤ 1.
This inequality holds for certain astrophysical objects.
Accretion without shock formation is possible in this
case. Since spherically symmetric smooth transonic
accretion was shown (Bondi 1952; Garlick 1979) to
be stable, it has physical meaning. It can then be
assumed that Bondi–Hoyle accretion without shock
formation is also stable at fairly small ε and, hence,
also has physical meaning.

*E-mail: shcher@dgap.mipt.ru,avalon@lpi.ru
1063-7737/05/3109-0591$26.00
Recall the main properties of the smooth spher-
ically symmetric solution denoted by the super-
script (0) and the first approximation to it denoted by
the superscript (1) (Bondi 1952; Beskin and Pidopry-
gora 1995). The solution is sought in the adiabatic
approximation with a constant adiabatic index Γ.
All of the coefficients k with different subscripts
that appear below were calculated by Beskin and
Pidoprygora (1995) and depend only on the adiabatic
index Γ.
(1) The requirement of smoothness, i.e., the ab-

sence of shocks, leads to an additional condition on
the sonic surface that yields r∗ = r(0)∗ + r(1)∗ for the
radius of the sonic surface in the nonrelativistic limit,
where in polar (r, θ, φ) coordinates

r
(0)
∗ =

(
5 − 3Γ

4

)
Gm

c2∞
,

r
(1)
∗ = εr(0)∗

(
Γ + 1
5 − 3Γ

)
k1(Γ) cos θ.

(2) The Grad–Shafranov equation that defines the
stream function Φ(r, θ) has the solution Φ = Φ(0) +
Φ(1), where

Φ(0) = Φ0(1 − cos θ), (1)

Φ(1) = Φ0εg(r) sin2 θ.

Here, 2Φ0 is the accretion rate, the stream function is
defined as nv = ∇Φ × eφ/2πr sin θ, and eφ is a unit
vector along the φ axis.
c© 2005 Pleiades Publishing, Inc.
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(3) The radial function g(r) asymptotically be-
haves as g(r) = K(Γ) (r/r∗)

2 far from the sonic sur-
face, which corresponds to a uniform flow. On the
other hand, in the supersonic region r � r∗,

g(r) = kin(Γ) (r/r∗)
−1/2 , (2)

where r∗ is the radius of the sonic surface.
(4)We see that the perturbationΦ(1) becomes sig-

nificant in the supersonic region, whilemaxθ(Φ(1)/Φ0)
reaches unity at

rx = r∗(εkin)2; (3)

in this case, perturbation theory loses its meaning,
and exact equations need to be solved.
In this paper, we describe the method used and

the simplifications that help to realize it. We prove
that these can be introduced without any significant
loss of estimation accuracy and give basic formulas
and results. Subsequently, we discuss whether this
phenomenon is observable.

DESCRIPTION OF THE METHOD

The essence of the described method is to directly
calculate the streamline, which allows the physically
observable quantities to be easily found. This method
is also the most natural for deriving equations that
become more obvious.
Let us parametrize the streamline as θ = θ(θ0, r).

The initial polar angle θ0 at a certain radius r0 and
the radius r are independent variables. We choose r0
in the supersonic region where it makes sense to
consider the first approximation. The thermodynamic
potentials are functions of the same arguments.
First of all, note that this parametrization is

unique. However, to determine the flow pattern,
we must specify not only the trajectory, but also
the velocity along it v(θ(θ0, r), r). In this case, two
differential equations for the two functions v and θ
are set up, which must then be solved. These are the
energy equation and the continuity equation.
The problem is solved by assuming the absence of

energy release at the stellar boundary; i.e., the object
is actually assumed to be a black hole. There is no
angular momentum along the θ = 0 axis.

SIMPLIFYING ASSUMPTIONS

Let us introduce several simplifications none of
which, as we will see, affects significantly the result.
(1) In our calculations, we use the metric of flat

space.
(2) The radial velocity of the matter vr is much

higher than its nonradial velocity vθ. Therefore, the
tangential components of the gradients for all param-
eters of the system are much smaller than their radial
components.
(3) To determine the radial velocity, we ignore the

enthalpy of the matter compared to the gravitational
energy.
(4) The solution can be represented as a converg-

ing series in θ0 in the form

θ =
∞∑
n=0

θ0
2n+1k2n+1(r)

on the front side of a compact object near the symme-
try axis (θ(0, r) = 0 on the axis).

BASIC EQUATIONS

Let us first solve the problem by disregarding the
pressure in the supersonic region. We go to the frame
of reference in which the body is at rest and the gas
flows on it. Let us write that the angular momentum
of the gas relative to the center of the object is con-
served

d

dt

(
r2
dθ

dt

)
= 0.

Next, we can write the expression for the radial veloc-
ity as

vtot ≈ |vr| = −dr
dt

≈
√
rg
r
, (4)

where rg = 2GM/c2 is the gravitational radius of an
object of massM . By eliminating dt from these equa-
tions, we immediately determine the streamline as

∂

∂r

(
r3/2

∂θ

∂r

)
= 0.

The solution of this equation that satisfies the natural
initial condition θ(θ0, r0) = θ0 is

θ = θ0 −C(θ0)
[(r0
r

)1/2
− 1
]
. (5)

We derive the form of the function C(θ0) from (2),
which yields the same solution for the streamline, but
has a limited validity range as the first approximation.
As a result, we obtain

θ(θ0, r) = θ0 − εkin
√
r∗

(
1√
r
− 1

√
r0

)
sin θ0.

This expression has a nontrivial structure. It de-
fines the caustic near the distance Rball from the
center where

Rball = r∗(εkin)2.
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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For physically meaningful Γ (Γ > 1.25), this caustic
is located on the front side of the object, although
the saddle point with zero gas velocity is always on
the rear side. The characteristic radial size of the
region in which the streamlines emerging from the
sonic surface at an angle no larger than θ0 to the
axis intersect is ∆r = Rballθ20/3. Naturally, the gas
pressure cannot be ignored in a region of significant
compression; the trajectories will not intersect if the
pressure is included.We can qualitatively predict that,
in this case, a certain region of strong compression
will be closer to the object thanRball.
Next, let us perform calculation without ignoring

the pressure. Let us set up a continuity equation for
the gas flow. The area of the cross-sectional element
of the flow in a direction perpendicular to the radius is

δS = 2πr2 sin θδθ. (6)

The continuity equation itself from which we find the
number density n can then be written as

vrnδS = const. (7)

Using (4) and (6), we obtain from (7)

r3/2n sin θδθ = r03/2n0 sin θ0δθ0,

where θ is a function of θ0 at r0. We then get

δθ

δθ0
= ∂θ0θ(θ0, r).

Hence, the number density can be written as

n = n0

(r0
r

)3/2 sin θ0
sin θ

1
∂θ0θ

. (8)

Below, for simplicity, we consider an adiabatic process
on an ideal gas, p = k(s)nΓ, where the entropy s
is constant in the entire space. The pressure, the
temperature, and the speed of sound can then be
expressed using (8).
We can now calculate the curvature of a streamline

under the effect of pressure. The force of gravity and
a force proportional to ∇p act on a point mass of
matter. Let us derive an equation for the change in the
angular momentum of the gas, with the moment of
the force of gravity being equal to zero. By the angular
momentum we mean the vector perpendicular to the
cross-section through the symmetry axis.We will use
assumption (3) and assume that ∇p is perpendicular
to the radius.
The momental equation is

d

dt
∆L = −∆K,

where L is the angular momentum, andK is the mo-
ment of force. Theminus corresponds to the repulsion
of streamlines.
ASTRONOMY LETTERS Vol. 31 No. 9 2005
The force acting on a small element is ∆F =
l∆r∆p, where l is the length of the circumfer-
ence described in the plane perpendicular to the
θ = 0 axis. The corresponding moment of force is
∆K = lr∆r∆p, and the mass of this element is
∆m = mpnlr∆θ∆r, where mp is the mass of a
single particle. Its angular momentum is ∆L =
mpnlr∆θ∆rr2dθ/dt. Finally, we find that

d

dt

(
r2
dθ

dt

)
= − ∆p

∆θmpn
.

At r = const, we obtain p = p(θ0) and θ = θ(θ0);
therefore, ∆p/∆θ = ∂θ0p(θ0, r)/∂θ0θ(θ0, r). We re-
place the differentiation with respect to t by the dif-
ferentiation with respect to r using (4):

∂r

[
r3/2∂rθ(θ0, r)

]
= − ∂θ0p(θ0, r)

√
r

mpn∂θ0θ(θ0, r)rg
. (9)

Substituting the number density from relation (8)
yields

∂r

[
r3/2∂rθ(θ0, r)

]
(10)

= −√
r0
c0

2

rg

(
r

r0

) 3
2( 4

3
−Γ)

×

[
sin θ(θ0,r)

sin θ0
∂θ0θ(θ0, r)

]2−Γ

(∂θ0θ(θ0, r))

× ∂θ0
(

sin θ0
sin θ(θ0, r)

1
∂θ0θ(θ0, r)

)
.

This expression can be written in convenient dimen-
sionless coordinates. Let us denote

x =
c2∗r

4rg
.

Then, x∗ = 1 and x0 = (r0/r∗). As a result, Eq. (10)
takes the form

∂x

[
x3/2∂xθ(θ0, x)

]
= −4

(
x

x0

) 3
2( 4

3
−Γ)

×

[
sin θ(θ0,x)

sin θ0
∂θ0θ(θ0, x)

]2−Γ

(∂θ0θ(θ0, x))

× ∂θ0
(

sin θ0
sin θ(θ0, x)

1
∂θ0θ(θ0, x)

)
.

We have derived a second-order hyperbolic partial
differential equation that is linear in two derivatives.
Let us transform it to a system of ordinary differential
equations. For this purpose, we use assumption (2)
and substitute θ with a finite sum containing the
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Fig. 1. Temperature ratio along the θ = 0 axis ver-
sus r/rg near the peculiarity for the parameters Γ =
7/5, ε = 0.03, c∞ = 0.00001; T0 corresponds to Bondi
(1952) accretion.

terms with the powers of θ0 up to 2N + 1:

θ(θ0, r) =
N∑
n=0

θ0
2n+1k2n+1(r). (11)

We know the function θ(θ0, r) (5) at the radius r0.
This defines the initial conditions for (9). Then,

k1(r0) = 1, k2n+1(r0) = 0, (12)

n = 1, 2, . . . , N.

k′2n+1(r0) = (−1)n
εkin

2(2n + 1)!r0

√
r∗
r0
, (13)

n = 0, 1, . . . , N.

The Cauchy problem is Eq. (10) with the initial
conditions (12) and (13). After substituting (11), we
obtain a system forN + 1 functions of the radius. The
absence of terms with even powers can be explained
by the zero initial conditions for them, while the equa-
tion to be solved is homogeneous.

The apparent complexity of the method of solution
described above can be easily explained when it is
considered that we must separate out a region of a
very small size in both θ � 1 and r when solving the
second-order partial differential equation.
Qualitatively, the behavior of the trajectories can

be described as follows. A plane uniform flow at in-
finity initially transforms into an almost spherically
symmetric flow near the sonic surface. Subsequently,
depending on the adiabatic index, three cases are
possible (Beskin and Pidoprygora 1995):

(1) For Γ → 5/3, the Mach number M , which
defines the ratio of the gravitational forces to the
pressure force, does not tend to infinity, but retains a
value of the order of unity as r tends to zero. It can
be no significant additional compression compared to
that in the spherically symmetric case.
(2) For Γ < 1.25, kin(Γ) is negative at posi-

tive K(Γ) (onflow along the θ = π axis); therefore,
the streamlines converge on the rear side (as can be
seen from (1)).
(3) For Γ > 1.25, the sign of the coefficient kin

is opposite; the streamlines converge on the front
side of the object. After the passage of the region of
maximum streamline convergence near the symmetry
axis, the pressure pushes them apart.
Thus, our region is described by the following

quantities: the radius rx at which there is maximum
additional compression on the axis compared to that
in Bondi accretion; the dimensionless radius xx by
definition (10); the radial size of the region ∆r at
the boundary of which the additional compression de-
creases by a factor of 2; the caustic radius at the same
parameters, but without including the pressure Rball;
the minimum achievable ratio θ/θ0 in this region kx;
and the minimum Mach number Mx in the vicinity
of rx.
Let us make a calculation for two cases: Γ = 4/3,

c∞ = 0.0002 and Γ = 7/5, c∞ = 0.00001. The first
case is nonphysical. It has only a theoretical sig-
nificance as an extension of classical astrophysical
problems. In turn, the sonic surface can be passed in
dense clouds of molecular hydrogen under conditions
corresponding to the second case. The characteristic
radial size of the region is∆r ≈ rx/5. The solution is
stable for r > rx; i.e., the result does not change with
increasing N . Further out, the algorithm is unstable;
therefore, the behavior of the solution cannot be de-
termined at small r � rx.
Let k(r) = k1(r), accordingly, kx = k(rx). Let us

estimate the physical parameters of the system on the
axis. First, the number density can be written as

n(0, r) = n0

(r0
r

)3/2
k(r)−2,

which yields

M =
v

cs
∼ 1√

T
√
r
∼ n(1−Γ)/2

√
r

∼ r(3Γ−5)/4kΓ−1

for the Mach number. Thus, M(0, r) =
(rkr/r)

(5−3Γ)/4k(r)Γ−1 and

Mx ≈
(
Rball
rx

)(5−3Γ)/4

(εkin)(3Γ−5)/2kx
Γ−1.

We have kin = 0.025 for Γ = 4/3 and kin = 0.026
for Γ = 7/5 (Beskin and Pidoprygora 1995). In fact,
the parameter of smallness for Φ(1) is εkin rather
than ε, which is of the order of 0.1−1.
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 2. Temperature versus coordinates in the plane of variables (r/rg, θ0) for the parameters Γ = 7/5, ε = 0.03, c∞ =
0.00001. The light area at the center has the highest temperature.
Figure 1 shows the dependence of the ratio of the
temperatures in our case and the spherically symmet-
ric case on the dimensionless distance to a compact
object calculated for the above parameters.
Figure 2 shows the corresponding bivariate de-

pendence of the temperature on the dimensionless
distance and the angle θ0. The transformation to the
(r/rg, θ) plane near rx was made by a factor of 1/kx
compression along the symmetry axis of the system.
The light spots in the lower corners of the figure have
no physical meaning, but are due to the divergence
of the algorithm. Using Fig. 1, we can associate the
brightness in Fig. 2 with temperature.

VALIDITY OF THE ASSUMPTIONS

To solve the problem, wemademany assumptions.
Let us substantiate them.
For our estimates, we set c∞ = 0.0002.
ASTRONOMY LETTERS Vol. 31 No. 9 2005
(1) In most cases, the needed region is located far
from the event horizon of the object, r � rg, which
allows the metric to be considered flat.

(2) The inclination of the streamline α to the
radial vector is at a maximum precisely near rx.
The solution for n(r) yields ∆r ≈ 5 × 105 cm, rx ≈
107 cm, and kx ≈ 0.03. The region is compressed al-
most identically to θ0 < 0.3, whence we can estimate
α ≈ θ0kxrx/∆r ≈ 0.2; this is the maximum possible
value of α.

(3) To substantiate the possibility of ignoring the
enthalpy of matter compared to the gravitational en-
ergy, we calculated the Mach numberM . The ratio of
the enthalpy to the kinetic energy for a nonrelativistic
gas is 2c2s/v

2(Γ − 1) = 2/M2(Γ − 1), reaching unity
at rx. However, this is true in a small region. This
effect can be easily estimated by solving the equations
with the effective increased coefficient of the term



596 SHCHERBAKOV
responsible for the pressure. When the coefficient in-
creases by a factor of 1.5, rx decreases by approxi-
mately the same factor (1.5), while kx increases by no
more than 10%.
(4) The smallness of θ025k25(rx) compared to

θ0k1(rx) corresponds to θ0 < 0.3 at r = rx = 2.85 ×
107, which corresponds to an area fraction of 0.036 of
the initial one at r0. This implies that much (>1/30)
of the flow is subjected to strong compression. At
a large radius, i.e., larger than rx, each succeeding
term θ2n+1r2n+1 is much smaller than the preceding
term, while this is not the case for r < rx. This is most
likely because the convergence is lost in the method
of solution used.
(5) Note also that the result does not depend on

the chosen r0. Let us make a check for ε = 0.58 and
Γ = 7/5: when r0 doubles, kx decreases by 10% and
rx decreases by 20%. The difference stems from the
fact that the flow becomes slightly compressed while
moving from the sonic surface to r0 and, most impor-
tantly, its direction slightly changes. For smaller ε, the
r0 dependence of the parameters of the region is even
weaker.
Note that the satisfactory accuracy of the results

cannot be improved significantly by abandoning the
assumptions and performing more accurate calcula-
tions. First, we used the first approximation for our
calculations with a finite ε, and, second, we used
its form at small radii where the first approximation
grows compared to the zeroth solution. We cannot
specify any initial conditions near the sonic surface,
since the behavior of formula (4) is asymptotic for
r → 0.
To make progress in this field requires numerically

solving an exact system of two nonlinear partial dif-
ferential equations, one first-order equation and one
second-order equation. In this case, we must reveal
features that are many orders of magnitude smaller
than the outer radius of integration or even the sonic
surface, which can be achieved only by using adaptive
methods with a variable step. In addition, we must
numerically calculate the parameters of the separatrix
surface (the boundary of the causally connected re-
gion) in the case where its smooth passage is realized,
solve the time-dependent problem of establishment
of this regime, show that it will be stable, and find
the percentage of cases in which accretion without
shocks will be realized. Such calculations are far be-
yond the scope of this paper.

PHYSICAL AND OBSERVATIONAL
SIGNIFICANCE OF THE RESULT

Noteworthy among the peculiarities of an axisym-
metric flow on a compact object observed so far is
the tail convergence of streamlines behind a moving
object during accretion in a region of cold dense dust
where star formation takes place.
The effect discussed in this paper has not yet been

observed. The parameter Γ = 7/5 has a very narrow
validity range. For example, it is realized at the initial
stage of accretion onto a compact object from dense
clouds of molecular hydrogen until its dissociation
(the equations with a constant Γ cannot be used at
all when the dissociation is included).
Let us consider in more detail the accretion of a

hot gas from H II regions. Γ = 5/3 far from a massive
object. The value ofΓ is the same on the sonic surface,
since the gas density and temperature at infinity and
on the sonic surface differ by a small factor (Gar-
lick 1979). In this case, the angular momentum of the
gas relative to the stellar center is very low in a stable
regime. Although the electrons become relativistic
and the adiabatic index decreases sharply toΓ = 13/9
starting from a certain distance (Shapiro and Teukol-
sky 1983), no region of anomalous compression is
formed in this case.
Nevertheless, let us calculate the energy release in

the region of streamline convergence for nonphysical
constant values of Γ < 5/3. The calculation will yield
an upper limit for actual astrophysical objects. For our
estimate, we assume that all of the observed radia-
tion in the derived temperature range is only thermal
bremsstrahlung (Shapiro 1973). Its intensity per unit
volume is defined by the nonrelativistic formula Λ =
cn2T 1/2 with the coefficient c that depends weakly
on the number density n and temperature T . The
intensity of the radiation for spherically symmetric
accretion is then

L0 =
∫

Λd3r =
16π

3(Γ − 1)
Cn(Γ+3)/2

x

×
(
rx
rg

)3/4(Γ+3)

rg
3,

where nx corresponds to Bondi accretion. The char-
acteristic radial size of the region in our case is∆r ≈
rx/5, and the tangential size is r⊥ ≈ rxθxkx, where θx
defines the maximum angle at the radius r0 at which
the streamlines are still compressed by a factor of
1/kx. The released energy Lx in our region is

Lx ≈ Λx∆rπr2⊥ = Cn(Γ+3)/2
x πθ2xk

−1−Γ
x r3x/5.

For our estimate, we set θx = 0.5. The ratio of the
released energies can then be written as

Lx
L0

=
3(Γ − 1)

320
k−1−Γ
x

(
rx
rg

)3/4(1−Γ)

. (14)

It follows from (14) and from the table that the ra-
tio of the released energies increases as the radius
at which the streamlines focuse decreases. Let us
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Table

ε xx kx Rball/rx Mx rx/rg ε xx kx Rball/rx Mx rx/rg

Γ = 4/3, c∞ = 0.0002 Γ = 7/5, c∞ = 0.00001

1 2.5 × 10−4 0.036 2.5 2.5 7.8 × 102 1 1.6 × 10−4 0.068 4.1 2.0 1.6 × 105

0.64 1.1 × 10−4 0.029 2.3 2.9 3.6 × 102 0.38 2.7 × 10−5 0.044 3.7 2.3 2.7 × 104

0.4 4.8 × 10−5 0.023 2.1 3.4 1.5 × 102 0.15 5.2 × 10−6 0.031 3.1 2.8 5.2 × 103

0.24 1.9 × 10−5 0.017 1.9 4 59 0.06 8 × 10−7 0.021 2.8 3.5 8 × 102

0.16 8.9 × 10−6 0.014 1.8 4.5 28 0.03 2 × 10−7 0.016 2.6 4.1 2.3 × 102

0.10 3.5 × 10−6 0.011 1.8 5.3 11 0.013 5 × 10−8 0.011 2.5 4.9 46

0.06 1.3 × 10−6 0.008 1.7 6.1 4 0.006 1 × 10−8 0.008 2.4 5.8 10
calculate it for the minimum possible ε at which the
focusing still takes place. We take the lower rows
of the tables of parameters describing the region of
anomalous compression with Γ = 4/3 and Γ = 7/5.
We find from (14) that Lx/L0 reaches 100; i.e., when
the focusing is present, the Bondi–Hoyle accretion
efficiency can increase by up to a factor of 102. For
a physically meaningful value of Γ = 7/5, the calcu-
lated ratio (14) actually specifies only an upper limit
for Lx/L0, since the gas dissociates rapidly and is
subsequently ionized as it heats up, which ensures
a transition to the regime with Γ = 5/3 and is ac-
companied by a significant decrease in Lx. However,
the proper allowance for the change in adiabatic index
in the axisymmetric case is beyond the scope of this
paper. Although the velocity dispersion of compact
objects is much higher than the speed of sound in
the surrounding cloud of gas and dust, the described
regime with ε < 1 can take place in certain cases at a
low relative velocity of the gas cloud and the compact
object. Such a change in energy release and accretion
spectrummust be taken into account when analyzing
experimental data to estimate the parameters of the
ASTRONOMY LETTERS Vol. 31 No. 9 2005
black hole itself moving in regions of gas compression
and its surrounding medium.
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Infrared Photometry for Five Close Binary Systems
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Abstract—We present the JHKLM photometry for five close (W Ser) binary systems obtained in the
period 1996–2004. Positive phase shifts (with respect of the adopted ephemerides) have been found in
the orbital infrared light curves for three binaries, RX Cas, KX And, and β Lyr; the rates of increase in
their periods are ∼3.5 × 10−4, ∼1.6 × 10−3, and ∼1.4 × 10−4 days yr−1, respectively. We have performed
the spectral classification of the components of the binaries under study and estimated their parameters.
c© 2005 Pleiades Publishing, Inc.

Key words: stars—variable and peculiar, close binary systems.
INTRODUCTION

WSer binaries constitute a small group of strongly
interacting binary systems that includes the binary
W Ser itself, RX Cas, V367 Cyg, etc. These are
believed to go through a short evolutionary phase
of rapid mass transfer. The salient feature of these
systems is the existence of circumstellar envelopes
whose radiation in emission lines clearly shows up in
the optical and ultraviolet wavelength ranges. W Ser
binaries seem the natural progenitors of classical
symbiotic stars and a continuation of Algols, but with
shorter and longer orbital periods in the former and
latter cases, respectively.

Near-infrared studies of these systems allow the
parameters of their secondary components, which are
generally cooler than the primary components, and
the gas and dust envelopes in which both stellar com-
ponents are embedded to be estimated.

At present, we are performing JHKLM photom-
etry for threeWSer binaries (RXCas, V367 Cyg, and
β Lyr). This list was supplemented by two peculiar
emission-line binaries, KX And and V360 Lac. Stefl
et al. (1990) classified the former as a strongly inter-
acting binary with a high probability;Hill et al. (1997)
tentatively classified the latter as a semidetached
system at the phase of mass transfer between the
components.

We began our observations of W Ser binaries
in 1981; the results of observations obtained prior
to 1996 were analyzed mainly in papers by Taranova
(1987, 1997) and Taranova and Shenavrin (1997). In
this paper, we analyze the results of our JHKLM
photometry for the above stars obtained in the period
1996–2004.

*E-mail: taranova@sai.msu.ru
1063-7737/05/3109-0598$26.00
OBSERVATIONS

Our photometry of all program stars in the stan-
dard JHKLM system is performed using a pho-
tometer with an indium-antimonide (InSb) detec-
tor cooled with liquid nitrogen. The photometer
is mounted at the Cassegrain focus of a 1.25-m
telescope at the Crimean Station of the Sternberg
Astronomical Institute; the exit aperture is ∼12′′.
The photometric standards were stars from the cat-
alog by Johnson (1966): BS 8860 (for KX And),
BS 8632 (for RX Cas), BS 7949 (for V367 Cyg), and
BS 7178 (for β Lyr). When necessary, we estimated
the HLM magnitudes of the standards from their
spectral types using relations from Koornneef (1983).
In general, the photometric error of a single mea-
surement for stellar photometry did not exceed a few
hundredths of a magnitude.

General information about the stars studied here
is given in Table 1. Its columns list sequentially the
spectral types of the binary components (Kholopov et
al. 1985), the orbital variability periods, the epochs of
primary minima, the color excesses E(B − V ), and
the distances to the systems r. The last column gives
references to the papers from which E(B − V ) and r
were taken.

The results of our JHKLM photometry obtained
in the period1996–2004 are summarized in Table 2.

Table 3 lists the mean JHKLM magnitudes (with
their standard deviations) for the program binaries at
orbital phases near the primary and secondary min-
ima and near maximum light. For the binary RX Cas,
Table 3 also gives its mean UBVR magnitudes cal-
culated using our optical observations of RX Cas
(Taranova and Shenavrin 1997).
c© 2005 Pleiades Publishing, Inc.



INFRARED PHOTOMETRY 599
Table 1.General parameters of the program objects

Object Sp P , days Epoch of primary
minimum, JD 2400000+ r, pc E(B − V ) References

KX And B3pe+K1 III 38.957 42 675.2 700 0.16 Guinan et al. (1984)

RX Cas K1 III+A5eIII 32.33010 46 827.389 600 0.43 Martynov et al. (1980)

V367 Cyg B8peIa+F4 III 18.59773 37 390.855 800 0.85 Akan (1987)

V360 Lac B3 IVeav 10.085408 41 170.285 650 0.26 Hill et al. (1997)

β Lyr B8II-IIIep 12.935 50 001.035 270 0.13 Phillips et al. (1980)
ORBITAL INFRARED BRIGHTNESS AND
COLOR VARIATIONS OF THE BINARIES

RXCas. This is the firstWSer binary for which we
began to perform JHK photometry in 1981. Refer-
ences to our papers in which we analyzed the results
of the binary’s observations before 1996 are given in
Taranova and Shenavrin (1997).

The system consists of a cool component (a G or
K giant) and a hot source surrounded by a dense en-
velope. The binary’s orbital period is∼32.33 days (Ta-
ble 1). It was firmly established that the period of this
binary increases (see, e.g., Kriz et al. 1980; Andersen
et al. 1989; Oh Kyu-Dong 1991). In particular, Kriz
et al. (1980) found that ∆P/P is ∼6.3 × 10−7 and
that the rate of mass transfer between the compo-
nents exceeds 10−6 M� yr−1. In addition to the orbital
period, RX Cas exhibits the brightness variations
attributable to the physical variability of one of the
binary components. The period of these variations is
about 516 days (Kalv 1979).

Figure 1 shows the brightness and color variations
of RX Cas with orbital phase. The phases were com-
puted with the elements Min I = JD 2446827.389 +
32.3301E (Andersen et al. 1989). A phase shift of
the light curves by about 0.02 with respect to the
ephemeris of 1987 is clearly seen in Fig. 1. It would
be natural to associate this shift with a change in the
orbital period, which is P1 = 32.3351 ± 0.0005 days
for the epoch of our observations, and, hence, the rate
of increase in the period over the past ten years was
about 3.5 × 10−4 days yr−1, or 30 s yr−1. For the
components’ masses of 0.5M� and 5M� (Taranova
1987), the mass transfer rate between the compo-
nents is∼2 × 10−6 M� yr−1.

Analysis of the optical and infrared orbital bright-
ness variations of RX Cas shows that only one
minimum, near phase 0.0, is observed in the U and
B brightness variations; the secondary minimum is
almost unseen, and, hence, the cool component does
not contribute noticeably to the total light from the
binary components in the range 0.35–0.45 µm. The
contribution from the cool component increases with
ASTRONOMY LETTERS Vol. 31 No. 9 2005
wavelength, and both minima are seen even at a
wavelength of 0.55 µm, the minima have the same
depth near 1 µm, and the secondary minimum is
deeper than the primary one at longer wavelengths
(Fig. 1). The latter feature of the orbital light curve
was analyzed in detail by Taranova (1987). Figure 1,
which shows the J , M , V brightness variations
and J −K, U −B color variations (Taranova and
Shenavrin, 1997), illustrates the above peculiarities
of the brightness and color variations in RX Cas
with orbital phase. The mean J −K color index is
0.857 ± 0.003, and it may increase by two or three
hundredths of a magnitude only near the primary
minimum (Fig. 1). This implies that, in contrast to
the range 0.36–0.45 µm, where the radiation from the
cool component is almost unseen, in the range 1.25–
5 µm the system’s cool component mainly emits
radiation.
KX And. Based on infrared spectra of the bright

Be star KX And (=HD 218393), Polidan (1976) and
Floquet et al. (1989, 1995) detected the secondary
component in the system, a K(0–1) giant. Analyzing
the spectral energy distribution (SED) for KX And
up to 60 µm, they found the SED to be fitted best
by the combined light from two B2III and K0II stars.
Our scarce infrared observations of the binary in the
period 1989–1996 (Taranova 1997) confirmed the
existence of a K giant in the system. We continued
our JHKLM photometry of the binary in the period
1996–2002 (Table 2).

Figure 2 shows the J brightness and J −K color
variations with orbital phase for KX And. The phases
were computed with the elements derived by Stefl et
al. (1990) from the star’s U brightness variations:
JD = 2442675.26 + 38.957E.

The solid curve in this figure indicates a ninth-
order approximation of the observed J brightness
variations. It can be concluded from Fig. 2 that, on
average, the observed infrared brightness variations
of KX And have the same period as the U bright-
ness variations, although the epochs of minima in the
infrared light curves (the vertical dashed lines) are
shifted in phase by about 0.2. The amplitudes of the
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Table 2. JHKLM photometry for the five close binary systems, 1996–2004

JD 2400000+ J H K L M σ(M) JD 2400000+ J H K L M σ(M)
KX And RX Cas

50361.446 5.88 5.39 5.26 5 4.88 0.11 51452.487 6.6 5.88 5.72 5.48 5.86 0.13
50362.446 5.88 5.39 5.26 5 4.88 0.11 51453.465 6.46 5.79 5.58 5.36 5.5 0.06
51033.564 5.84 5.4 5.16 5.01 51454.476 6.4 5.56 5.31 5.41 0.08
51060.509 5.83 5.3 5.13 4.97 51455.535 6.39 5.72 5.57 5.28 5.58 0.07
51069.516 5.77 5.28 5.1 4.94 4.94 0.08 51475.52 6.31 5.64 5.48 5.22 5.43 0.05
51088.454 5.75 5.31 5.11 4.95 5.03 0.06 51502.403 6.66 5.99 5.8 5.58 5.76 0.08
51095.422 5.81 5.37 5.15 5.02 5.16 0.07 51504.415 6.46 5.79 5.62 5.38 5.55 0.05
51128.343 5.77 5.32 5.16 5.03 5.17 0.05 51525.332 6.28 5.59 5.4 5.18 5.32 0.08
51152.268 5.83 5.36 5.19 5.02 5.06 0.06 51526.424 6.34 5.69 5.5 5.21 5.39 0.09
51184.187 5.7 5.29 5.06 4.93 5.09 0.05 51532.397 6.89 6.26 6.06 5.78 6.08 0.09
51385.557 5.83 5.4 5.18 5.01 5.07 0.03 51548.248 6.7 5.99 5.84 5.65 5.68 0.07
51420.501 5.74 5.33 5.08 4.94 5.08 0.04 51581.234 6.71 6 5.84 5.6 5.89 0.08
51446.471 5.78 5.35 5.13 4.99 5.19 0.09 51779.557 6.4 5.73 5.54 5.29 5.48 0.1
51448.427 5.83 5.38 5.22 5.06 5.16 0.07 51824.544 6.77 6.13 5.94 5.68 5.95 0.08
51449.451 5.86 5.4 5.2 5.02 5.14 0.06 51831.489 6.34 5.66 5.48 5.23 5.46 0.06
51450.431 5.84 5.37 5.18 5.05 5.1 0.08 51832.494 6.27 5.66 5.47 5.19 5.36 0.07
51451.461 5.82 5.35 5.19 4.94 5.16 0.05 51833.497 6.35 5.68 5.54 5.31 5.34 0.08
51452.4 5.81 5.34 5.14 4.99 4.97 0.03 51834.458 6.36 5.68 5.52 5.29 5.48 0.07
51453.385 5.79 5.29 5.14 5.03 4.95 0.07 51848.465 6.32 5.63 5.47 5.23 5.47 0.06
51454.407 5.74 5.36 5.11 4.94 5.09 0.04 51850.427 6.4 5.77 5.58 5.32 5.48 0.07
51455.414 5.71 5.29 5.09 5.08 4.94 0.04 51853.416 6.66 5.99 5.81 5.51 5.61 0.07
51475.381 5.79 5.32 5.12 5 5.13 0.05 51862.388 6.34 5.64 5.49 5.24 5.35 0.05
51520.274 5.8 5.36 5.15 4.98 5.12 0.04 51863.375 6.33 5.68 5.51 5.25 5.51 0.07
51548.191 5.73 5.3 5.12 4.95 5 0.03 51864.346 6.33 5.68 5.52 5.28 5.54 0.07
51552.21 5.76 5.34 5.14 4.95 5.06 0.02 51865.312 6.33 5.68 5.48 5.24 5.58 0.07
51775.525 5.83 5.4 5.21 5 4.8 0.2 51866.355 6.35 5.68 5.5 5.26 5.55 0.08
51779.511 5.86 5.41 5.23 5.03 5.3 0.14 51867.346 6.41 5.72 5.54 5.28 5.5 0.05
51802.463 5.76 5.34 5.14 4.94 5.06 0.04 51868.399 6.44 5.75 5.57 5.32 5.54 0.05
51824.399 5.81 5.36 5.12 4.93 51888.328 6.84 6.15 5.98 5.68 6.06 0.1
51831.421 5.77 5.28 5.15 4.95 5.05 0.04 51901.365 6.42 5.74 5.58 5.32 5.65 0.06
51832.41 5.77 5.3 5.14 4.97 5.03 0.04 51902.252 6.53 5.83 5.66 5.43 5.68 0.05
51833.404 5.72 5.3 5.08 4.95 5.03 0.04 51917.343 6.56 5.91 5.71 5.48 5.69 0.07
51834.386 5.76 5.31 5.13 4.95 4.96 0.05 51918.251 6.73 6.08 5.91 5.59 5.71 0.08
51848.347 5.75 5.3 5.1 4.92 5.03 0.04 51926.226 6.41 5.76 5.56 5.29 5.55 0.04
51853.355 5.85 5.4 5.2 5.02 5.06 0.06 51927.314 6.39 5.7 5.52 5.29 5.49 0.06
51862.327 5.79 5.35 5.16 4.95 5.06 0.03 51934.214 6.51 5.84 5.66 5.41 5.69 0.06
51864.291 5.78 5.33 5.15 4.96 5.06 0.04 51935.197 6.62 5.93 5.76 5.52 5.77 0.07
51866.327 5.78 5.32 5.15 4.97 5.03 0.03 51948.192 6.46 5.81 5.63 5.38 5.5 0.06
51867.302 5.76 5.31 5.11 4.91 4.99 0.04 51950.198 6.69 6.03 5.84 5.58 5.79 0.07
51868.338 5.74 5.32 5.13 4.94 5.06 0.04 51951.237 6.87 6.21 6.02 5.75 5.82 0.07
51888.257 5.69 5.26 5.1 4.91 51976.219 6.35 5.67 5.52 5.3
51888.257 5.67 5.22 5.04 4.87 5 0.03 52187.519 6.3 5.64 5.45 5.27 5.63 0.16
51902.174 5.73 5.28 5.09 4.91 4.97 0.03 52191.451 6.39 5.71 5.5 5.28 5.53 0.07
51917.224 5.75 5.31 5.11 4.94 5.08 0.03 52192.465 6.45 5.79 5.64 5.34 5.61 0.04
52129.541 5.84 5.42 5.22 5.01 5.16 0.05
52154.507 5.72 5.31 5.14 4.96 4.96 0.04
53284.431 5.79 5.38 5.19 4.96 4.96 0.05
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Table 2. (Contd.)

JD 2400000+ J H K L M σ(M) JD 2400000+ J H K L M σ(M)
V360 Lac V367 Cyg

50853.1730 5.74 5.44 5.33 50753.327 5.82 5.52 5.36 5.04 4.72 0.06
50859.1770 5.49 5.31 5.24 50764.88 5.53 5.19 5 4.7 4.53 0.04
51010.5370 5.6 5.4 5.27 5.2 5.07 0.08 50777.331 5.37 5.03 4.85 4.51 4.22 0.04
51033.4920 5.68 5.48 5.41 5.33 50793.165 5.38 5.05 4.88 4.58 4.33 0.04
51036.5110 5.51 5.36 5.27 5.17 5.37 0.1 51008.53 5.26 4.92 4.76 4.47 4.24 0.06
51038.4880 5.56 5.44 5.34 5.24 5.13 0.08 51009.537 5.29 4.97 4.77 4.48 4.32 0.06
51059.5140 5.6 5.46 5.34 5.24 5.64 0.24 51010.509 5.35 5.02 4.83 4.53 4.28 0.06
51067.4700 5.54 5.38 5.27 5.22 5.2 0.22 51033.459 5.57 5.25 5.09 4.77 4.56 0.28
51088.3950 5.6 5.44 5.34 5.24 5.37 0.09 51037.413 5.3 4.97 4.78 4.48 4.28 0.07
51095.3830 5.6 5.44 5.33 5.26 5.25 0.1 51039.444 5.49 5.12 4.92 4.63 4.4 0.09
51121.3650 5.56 5.4 5.29 5.22 5.42 0.14 51060.399 5.93 5.45 5.33 4.98 4.52 0.1
51128.3840 5.57 5.42 5.32 5.26 5.33 0.09 51062.423 5.43 5.08 4.9 4.57 4.59 0.09
51180.1810 5.58 5.44 5.35 5.29 5.2 0.06 51065.372 5.33 4.96 4.78 4.47 4.25 0.07
51205.1670 5.63 5.52 5.38 5.32 5.27 0.12 51067.345 5.46 5.11 4.93 4.61 4.24 0.09
51384.5470 5.57 5.39 5.3 5.21 5.24 0.05 51069.406 5.75 5.42 5.28 4.99 4.58 0.11
51420.4740 5.58 5.39 5.28 5.17 5.2 0.05 51383.509 5.46 5.11 4.96 4.6 4.34 0.03
51446.4480 5.62 5.43 5.38 5.31 5.42 0.05 51384.496 5.58 5.25 5.1 4.73 4.51 0.03
51454.3750 5.51 5.36 5.25 5.19 5.11 0.08 51385.475 5.75 5.46 5.28 4.95 4.7 0.02
51455.3740 5.56 5.38 5.3 5.19 5.3 0.08 51387.479 5.45 5.14 4.96 4.65 4.29 0.05
51475.3420 5.55 5.4 5.3 5.21 5.24 0.05 51421.448 5.49 5.19 4.98 4.64 4.36 0.04
51524.2140 5.61 5.47 5.36 5.24 5.32 0.05 51448.389 5.42 5.06 4.89 4.53 4.25 0.04
51552.1790 5.62 5.48 5.38 5.28 5.17 0.04 51451.374 5.78 5.41 5.18 4.8 4.63 0.04
51774.5420 5.63 5.48 5.38 5.26 5.06 0.24 51452.373 5.54 5.2 5.02 4.76 4.45 0.03
51778.5210 5.63 5.44 5.36 5.31 5.4 0.14 51453.352 5.33 5.05 4.89 4.55 4.18 0.04
51802.4250 5.58 5.44 5.35 5.23 5.37 0.06 51454.343 5.31 4.93 4.79 4.49 4.25 0.03
51824.3680 5.68 5.5 5.42 5.32 51455.35 5.33 4.98 4.78 4.49 4.25 0.04
51831.3540 5.69 5.53 5.37 5.37 51456.331 5.4 5.03 4.78 4.46 4.18 0.05
51832.3350 5.61 5.43 5.33 5.26 5.22 0.03 51707.505 5.37 5.04 4.85 4.56 4.19 0.04
51833.3680 5.56 5.41 5.3 5.24 5.14 0.06 51708.546 5.44 5.1 4.92 4.58 4.32 0.05
51834.3190 5.62 5.46 5.37 5.27 5.18 0.04 51710.507 5.84 5.52 5.32 4.89 4.51 0.11
51853.3220 5.59 5.43 5.33 5.27 5.32 0.07 51711.538 5.82 5.46 5.25 4.9 4.54 0.05
51863.2550 5.59 5.42 5.33 5.25 5.17 0.05 51719.51 5.65 5.32 5.14 4.8 4.45 0.05
51866.3020 5.6 5.47 5.38 5.28 5.19 0.04 51737.537 5.56 5.21 5.02 4.71 4.45 0.04
51868.3100 5.55 5.41 5.32 5.23 5.24 0.06 51738.535 5.74 5.44 5.26 4.92 4.43 0.08
51917.1880 5.57 5.45 5.33 5.24 5.26 0.05 51741.53 5.44 5.12 4.95 4.67 4.38 0.03
52127.5680 5.67 5.51 5.46 5.32 5.31 0.08 51742.499 5.38 5.06 4.87 4.58 4.28 0.05
52153.4960 5.68 5.53 5.45 5.39 5.47 0.07 51774.506 5.48 5.15 4.98 4.67 4.57 0.17

V367 Cyg 51775.416 5.66 5.33 5.13 4.8 – 0.1
50361.327 5.53 5.29 5.1 4.91 4.81 0.13 51776.417 5.79 5.49 5.3 4.93 4.51 0.11
50362.327 5.53 5.29 5.1 4.91 4.81 0.13 51777.418 5.62 5.3 5.1 4.72 4.43 0.09
50625.47 5.47 5.1 4.95 4.63 4.36 0.06 51778.41 5.43 5.12 4.92 4.62 4.37 0.09
50699.412 5.49 5.15 4.98 4.68 4.35 0.03 51779.413 5.33 5.02 4.83 4.5 4.36 0.06
50700.394 5.43 5.09 4.92 4.55 4.35 0.03 51780.443 5.3 5 4.8 4.49 4.26 0.1
50702.423 5.41 5 4.83 4.5 4.34 0.04 51802.366 5.58 5.22 5.01 4.68 4.4 0.05
50704.388 5.47 5.15 4.98 4.64 4.39 0.05 51824.307 5.54 5.21 5.02 4.69
50713.429 5.52 5.09 4.92 4.6 4.42 0.03 51831.291 5.71 5.4 5.18 4.85 4.52 0.05
50714.387 5.56 5.23 5.05 4.79 4.42 0.04 51832.271 5.8 5.5 5.33 4.99 4.68 0.05
50715.37 5.39 5.1 4.73 4.54 0.07 51833.312 5.6 5.28 5.1 4.78 4.47 0.04
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Table 2. (Contd.)

JD 2400000+ J H K L M σ(M) JD 2400000+ J H K L M σ(M)
V367 Cyg β Lyr

51834.272 5.46 5.14 4.92 4.62 4.34 0.03 52840.41 3.66 3.62 3.51 3.26 3.16 0.03
51835.285 5.4 5.16 4.97 4.65 52841.37 3.34 3.28 3.18 2.92 2.87 0.02
51848.257 5.43 5.11 4.92 4.6 4.27 0.03 52842.37 3.23 3.14 3.05 2.77 2.73 0.02
51853.297 5.43 5.1 4.92 4.61 52843.34 3.20 3.12 3.02 2.75 2.77 0.02
51863.231 5.28 4.93 4.75 4.45 4.24 0.03 52866.32 3.64 3.60 3.50 3.24 3.15 0.03
51864.217 5.22 4.9 4.71 4.39 4.08 0.03 52867.36 3.33 3.29 3.18 2.95 2.86 0.02
51865.285 5.29 4.96 4.78 4.43 4.24 0.04 52869.33 3.17 3.11 3.01 2.76 2.67 0.03
51866.224 5.38 5.05 4.85 4.5 4.23 0.04 52891.33 3.55 3.52 3.39 3.17 3.13 0.02
51867.239 5.43 5.12 4.93 4.58 4.22 0.03 52892.30 3.65 3.60 3.51 3.25 3.18 0.03
51868.263 5.62 5.29 5.11 4.78 4.5 0.05 53193.38 3.22 3.15 3.04 2.81 2.78 0.03
51902.151 5.31 4.97 4.77 4.49 4.25 0.02 53194.46 3.39 3.33 3.24 3.02 3.06 0.08
51903.154 5.39 5.04 4.85 4.52 4.28 0.03 53214.33 3.46 3.39 3.30 3.09 3.05 0.03
52125.485 5.4 5.06 4.85 4.52 4.38 0.03 53215.41 3.70 3.65 3.52 3.27 3.17 0.04
52127.48 5.49 5.17 5.02 4.66 4.44 0.04 53216.37 3.45 3.38 3.32 2.97 3.07 0.04
52131.434 5.54 5.2 5.04 4.71 4.37 0.03 53217.39 3.30 3.24 3.12 2.83 2.84 0.04
52153.431 5.36 5.04 4.84 4.53 4.33 0.04 53218.37 3.21 3.17 3.04 2.81 2.84 0.03
52154.444 5.4 5.08 4.88 4.56 4.35 0.04 53219.37 3.30 3.21 3.10 2.85 2.86 0.02
52158.388 5.73 5.36 5.15 4.8 4.56 0.03 53222.29 3.96 3.82 3.64 3.32 3.32 0.03

β Lyr 53223.36 3.44 3.35 3.24 2.98 3.00 0.03
52782.47 3.99 3.62 3.32 3.34 0.06 53224.38 3.25 3.18 3.08 2.82 2.81 0.02
52804.42 3.22 3.14 3.00 2.75 2.71 0.02 53225.33 3.30 3.22 3.12 2.86 2.87 0.02
52809.37 3.35 3.31 3.16 2.88 2.79 0.04 53226.31 3.32 3.29 3.15 2.90
52832.39 3.46 3.39 3.27 3.02 2.96 0.04 53283.21 3.26 3.13 3.04 2.76 2.77 0.04
52834.37 3.68 3.60 3.47 3.16 3.10 0.03 53307.17 3.39 3.29 3.25 3.05 2.98 0.04
52836.41 3.23 3.17 3.06 2.78 2.72 0.02 53311.17 3.48 3.37 3.29 3.00 2.94 0.03
52839.44 3.50 3.46 3.34 3.07 3.08 0.03
phase infrared brightness variations are 0m. 10− 0m. 15.
The phase dependence in the J −K color variations
is also clearly seen from Fig. 2: the binary is slightly
hotter at the secondary J brightness minimum.

If, as with other strongly interacting binaries (e.g.,
RX Cas), we associate the shift of the phase J light
curve relative to the ephemeris used with a change
in the orbital period, then the period at the epoch
of primary minimum JD 2451449.451 (Table 2) was
P = 38.9964 days. In other words, the period has
increased over the past 25 years at a fairly high rate,
no less than 1.6 × 10−3 days yr−1 or∼140 s yr−1. For
the masses of the binary components of about 10M�,
the rate of mass transfer between the components
exceeds ∼6.8 × 10−5 M� yr−1.

V360 Lac. Our list of observations of W Ser bi-
naries includes the binary V360 Lac (HR 8690) with
an orbital period of 10.075 days (Kholopov et al.
1985–1990). According to Hill et al. (1997), the
stellar components of this system are similar in pa-
rameters to B3e and F9IV stars, with the secondary
component (an F9IV star) probably filling its Roche
lobe. These authors provided extensive data on the
object, including those obtained by them from op-
tical photometry and spectroscopy. The authors im-
proved the orbital ephemeris and its elements Min I =
HJD 2441170.285 + 10.085408 E.

The phase light curves for V360 Lac (Fig. 2) were
constructed with these elements. The solid lines are
ninth-order polynomial approximations for the J light
curve. The bottom panel shows the phase J −K color
variations. The primary (Φ ∼ 0) and the secondary
(Φ ∼ 0.5) J brightness minima are clearly seen in
the figure, although their depths do not exceed a few
tenths of a magnitude. A minimum near Φ ∼ 0.5 is
ASTRONOMY LETTERS Vol. 31 No. 9 2005



INFRARED PHOTOMETRY 603
Table 3.Mean magnitudes of the binaries at their orbital maximum and minimum light

Parameter
Min I Max Min II

mean sd N mean sd N mean sd N

RX Cas

U 11.697 0.259 3 10.183 0.100 3 10.115 0.219 2

B 10.973 0.081 3 10.013 0.015 3 10.315 0.021 2

V 9.437 0.025 3 8.763 0.042 3 9.170 0.071 2

R 8.310 0.040 3 7.740 0.036 3 8.195 0.035 2

J 6.658 0.028 4 6.334 0.011 7 6.878 0.015 4

H 5.950 0.028 4 5.663 0.009 7 6.202 0.023 4

K 5.790 0.030 4 5.493 0.010 7 6.030 0.019 4

L 5.563 0.038 4 5.254 0.010 7 5.737 0.030 3

M 5.800 0.047 4 5.487 0.033 7 5.987 0.084 3

KX And

J 5.822 0.042 5 5.742 0.031 5 5.850 0.014 2

H 5.352 0.044 5 5.304 0.025 5 5.415 0.007 2

K 5.168 0.047 5 5.122 0.024 5 5.225 0.007 2

L 5.008 0.052 5 4.948 0.049 5 5.020 0.014 2

M 5.120 0.037 4 5.063 0.077 4 5.230 0.099 2

V360 Lac

J 5.683 0.055 3 5.550 0.021 6 5.655 0.035 2

H 5.480 0.040 3 5.390 0.018 6 5.490 0.014 2

K 5.373 0.040 3 5.293 0.023 6 5.400 0.028 2

L 5.325 0.007 2 5.208 0.016 6 5.290 0.042 2

M 5.270 0 1 5.258 0.101 6 5.060 0 1

V367 Cyg

J 5.863 0.059 3 5.300 0 3 5.803 0.015 3

H 5.477 0.038 3 4.997 0.021 4 5.503 0.015 3

K 5.300 0.044 3 4.820 0.039 4 5.330 0.030 3

L 4.923 0.049 3 4.498 0.017 4 4.987 0.055 3

M 4.523 0.015 3 4.365 0.147 4 4.637 0.112 3

β Lyr

J 3.98 0.02 2 3.20 0.02 5 3.66 0.03 4

H 3.82 0 2 3.13 0.02 5 3.62 0.02 4

K 3.63 0.01 2 3.02 0.02 5 3.51 0.01 4

L 3.32 0 2 2.77 0.03 5 3.25 0.01 4

M 3.33 0.01 2 2.75 0.07 5 3.17 0.01 4
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Fig. 1.Orbital brightness and color variations of RX Cas in the infrared and optical wavelength ranges. The vertical dotted line
marks the phase of the primary minimum. The horizontal dashed lines indicate the levels of the primary minima.
also noticeable in the J −K color variations; i.e. the
hotter component is seen at the secondary minimum.
V367 Cyg. The binary V367 Cyg is a member

of a multiple system in which two optical compo-
nents are known: one is a faint (V ∼ 13m. 7) star at a
distance of about 2′′ from V367 Cyg, and the other
is the star HD 198288 at a distance of less than
0′′
.1. The latter component has not been detected by

speckle interferometry, and its existence is currently
open to question (Zola and Ogloza 2001). Since the
contribution from the faint star to the total infrared
radiation of V367 Cyg does not exceed a few frac-
tions of a percent, all of the observed infrared (along
with optical) radiation was attributed to the W Ser
binary. The W Ser binary has a well-defined shell
spectrum pointing to the existence of gas flows in the
system. The spectrum imitates the radiation from an
A7Ia star and makes it difficult to classify the stellar
components of the binary using optical and infrared
photometry.

In our previous paper (Taranova 1997), we clas-
sified the binary components as B0 and B0.5 giants
and pointed out that there is an appreciable deficit of
radiation in the U and B bands.

Figure 3 shows the phase JM light and J −K
color curves constructed from the 1996–2002 ob-
servations (Table 2) with the elements (Kholopov
et al. 1985) JD(Min I) = 2437390.855 + 18.59773E.
The shown dependences of the infrared brightness
and color on the orbital phase are in good agree-
ment with the ephemeris of 1979. The mean J −K
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 2.Orbital J brightness and J −K color variations in the binaries KX And and V360 Lac. The solid lines are ninth-order
polynomial approximations of the observed J brightness variations.
color indices near the primary and secondary min-
ima (Table 3) corrected for the interstellar extinction
are ∼0m. 15 and ∼0m. 06–0m. 07, respectively. The color
temperatures of such sources are TC1 < 9000 K and
TC2 > 11 000 K. The symbols < and > mean that,
during partial eclipses, an illumination from the pri-
mary, generally hotter component and from the sec-
ASTRONOMY LETTERS Vol. 31 No. 9 2005
ondary, cooler component is possible in the former
and latter cases, respectively.

On the other hand, it follows from the optical
photometry by Heiser (1962) that the U −B and
B − V color variations are within a few hundredths of
a magnitude and that their mean values correspond
to the spectral types A3–A4 and ∼B2. If the pri-
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Fig. 3. Orbital JM brightness and J −K color variations in the binaries V367 Cyg and β Lyr. The notation is the same as
that in Fig. 1.
mary component were classified by the V − J color
index, whose mean value at the secondary minimum
is ∼−0m. 5, then the spectral type of the source would
be ∼B0.5. Such a difference in the classification of
the binary components is evidently attributable to the
existence of a complex shell spectrum. The classifi-
cation by infrared radiation is more correct, since the
contribution from the shell lines to the range 1.25–
5 µm is insignificant; therefore, we estimated the
binary’s parameters mainly from IR photometry, and
their results are given below.

β Lyr. The bright eclipsing binary β Lyr has been
studied intensively for many years by all available
means; nevertheless, it remains one of the most puz-
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zling objects. The primary component of the system
is classified as a B6–B8 giant; the secondary, more
massive component is embedded in an optically thick
accretion disk (Harmanec et al. 1996). Matter ar-
rives to the accretion disk from the primary com-
ponent, which fills its Roche lobe and rotates syn-
chronously with the orbital motion (Harmanec and
Scholz 1993). The orbital inclination is 80◦–90◦. Our
JHKLM photometry of this close binary (Table 2)
was performed in the period 2003–2004.

Figure 3 shows the phase JM brightness and
J −K color variations constructed with the ele-
ments JD(Min I) = 2439935.86 + 12.9327E. These
elements were taken from Jameson and Longmore
(1976), who first performed infrared photometry
(1.25–8.6 µm) of the binary in 1973. They pointed
out that the depths of the minima become equal with
increasing wavelength, and the secondary minimum
becomes deeper than the primary one at wavelengths
longer than 3.6 µm. This effect was not noticeable at
the epoch of our observations (Fig. 3); the primary
minimum remains deeper in the spectral range 1.25–
5 µm.

We see from Fig. 3 that our series of observations
is shifted in phase by about 0.3 with respect to the
epoch of observations by Jameson and Longmore. If
we associate the observed shift with an increase in
the orbital period, then its value in 2003–2004 was
12.937 days; i.e. the increase in the period from 1973
(a mean Julian date of about 2442000) to 2003–2004
(a mean Julian date of about 2453000) was no less
than 0.0043 days, i.e., the orbital period increased at
a rate exceeded 1.4 × 10−4 days yr−1 or ∼25 s yr−1.
Harmanec and Scholz (1993) estimated the mean
rate of increase in the period over 100 years (before
1990) to be 19 s yr−1. The orbital period of β Lyr may
increase with acceleration.

ESTIMATING THE PARAMETER
OF THE BINARY COMPONENTS

We estimated the parameters for the components
of the program binaries from our infrared photometry
(Table 2) using optical photometry from the published
papers of various authors. We made our estimates as
follows.

When fitting the observed SEDs for each binary,
we used the method of successive approximations,
provided that both stellar components of each sys-
tem were similar in photometric characteristics to
normal stars (Johnson 1966; Korneef 1983). We first
corrected all of the observed fluxes from the binary
systems for the interstellar extinction (Table 1).

Initially, by analyzing the SEDs in the range 1.25–
2.2 µm at different orbital phases, we estimated the
color temperatures of the stellar components of the
ASTRONOMY LETTERS Vol. 31 No. 9 2005
binaries, compared their valueswith the effective tem-
peratures of normal stars (Johnson 1966), and deter-
mined the optimal spectral types of the stellar compo-
nents. Based on the established spectral type, we ex-
trapolated the radiation from the stellar components
in the range 1.25–2.2 µm to the optical range and
to wavelengths of 3.5 and 5 µm. Subsequently, the
fluxes derived in the spectra of each stellar component
of the binary in the range 0.36–5 µm were added in
each band, and the result was compared with the ob-
served flux from the binary at the orbital J brightness
maximum.

At the next step, we estimated the total fluxes
(Ftot) from the stellar components. Their values were
calculated from the component’s SED in the range
0.36–5 µm by taking into account the contribution
of this radiation to the component’s total flux. The
contribution was assumed to depend only on the
component’s temperature. As the latter, we took the
color temperature estimated from the SED in the
range 1.25–2.2 µm (see above).

Subsequently, we estimated the parameters of the
binary components using the following relations.

(1) luminosity, L = 4πr2Ftot;

radius, R = r[L/4π(σT 4)]0.5, (1)

where T is the component’s temperature correspond-
ing to its spectral type, and r is the distance to the
system (Table 1);

(2) bolometric magnitude, Mbol = 4.75−
2.5 log(L/L�).
The set of L, R, and Mbol obtained for each of the
components allows their luminosity classes to be es-
timated.

The 0.36–5 µm SEDs for the five binaries are
shown in Fig. 4. All of the fluxes were corrected for
the interstellar extinction (Table 1). Below, we give
a description of the SEDs for each binary and the
conclusions drawn from their analysis.
RX Cas. Our analysis of the 0.36–5 µm radiation

from RX Cas at different orbital phases confirmed
the existence of an ellipsoidal cool component, a K1
giant, in the system. During the orbital motion, its
apparent radius changes by a factor of about 1.35.
We estimated the flux of the hot component from the
flux of RX Cas at the secondary minimum as the
difference between the total flux and the flux from
the cool giant. It turned out that the derived 0.36–
0.7 µm SED of the hot source agrees with a color
temperature of about 10 000 K. The binary’s 0.36–
5µm SEDs are shown in Fig. 4 (RX Cas).

We determined the total flux of the cool star (Ftot)
from its flux in the range 0.36–5 µm, which contains
more than 95% of the total radiation for sources with
temperatures in the range 4000–5000 K. A source
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Fig. 4. Spectral energy distributions for the program
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with a color temperature of ∼10 000 K emits about
60% of its total radiation in the range 0.36–5 µm;
taking into account this fraction, we estimated the
total flux from the hot source. The remaining param-
eters were estimated using relations (1) and are given
in the second and third columns of Table 4.

We assumed in our estimations that the tempera-
ture of the cool component at the primary minimum
and at the maximum was 4600 K (K1) and that the
distance to the systemwas r = 600 pc. It follows from
these estimates that the system’s cool component is a
K1 giant. The luminosity and radius of the hot source
are close to those of a star located slightly below the
main sequence. The light from the gaseous envelope
is visible only at the primary minimum as excess
(against the radiation from the K1 giant) radiation in
the U band (0.36 µm). We see from Fig. 4 that the
total radiation of a K1 giant and a hot source with
TC ∼ 10 000 K describes satisfactorily the radiation
from the binary at maximum light in the spectral
range 0.36–5 µm.

Thus, our analysis of the new series of infrared ob-
servations for RX Cas in the period 1996–2002 gen-
erally confirms the main conclusions reached previ-
ously (Taranova 1987; Taranova and Shenavrin 1997)
and allowed some of the parameters of the individual
components to be improved.
KX And. We attempted to estimate and improve

the parameters of the binary components using our
1996–2004 photometry for the binary (Table 2) and
the UBV photometry by Steftl et al. (1990).

It follows from Table 3 and the UBV photometry
that the light in the range 0.36–0.55 µm comes from
the hotter source compared to the range 1.25–5 µm.
For example, the color index B − V ∼ 0.14 (Steftl
et al. 1990), and, hence, the source’s color tempera-
ture TC ∼ 10 000 K. The color index J −K ∼ 0.5 and
TC ∼ 5000 K.

The observed 0.36–5 µm SED for KX And at
maximum light (the filled circles in Fig. 4 (KX And))
can be optimally represented by the sum of radiations
from two stars, a cool K(1± 1) giant and a hot source
similar in parameters to a B(6 ± 1) giant.

The fourth and fifth columns of Table 4 give our es-
timates of the parameters for the stellar components
of the binary KX And; their values were obtained from
the total fluxes from B6 and K1 stars in the range
0.36–5 µm at a distance to KX And of r = 700 pc.
Classifying the primary component as a hotter star
would lead to a deficit of radiation in the range 0.36–
0.45 µm.

The observed infrared light curves and our esti-
mates of the radii for the stellar components yield an
orbital inclination of no larger than 30◦.
V360 Lac. To estimate the parameters for the

components of this system, we used the technique
described above for KX And. The optical photometry
was taken from Pavlovski et al. (1997). Our analysis
of the 0.36–5 µm SED for V360 Lac at maximum
light (Fig. 4) indicates that the system’s stellar com-
ponents are sources similar to B3 and K2 stars. The
sixths and seventh columns of Table 4 give our esti-
mates of the total fluxes, radii (R), luminosities (L),
and absolute magnitudes (Mbol) for the binary com-
ponents. The cool and hot components are similar
in parameters to giants and supergiants, respectively.
The orbital inclination does not exceed 30◦.
V367 Cyg. Classifying the components of this

binary as normal stars (Johnson 1966; Korneef 1983)
based on our 1996–2002 infrared photometry leads
us to the following conclusion. The system’s primary
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Table 4. Estimated parameters for the components of the binaries

Parameter RX Cas KX And V360 Lac V367 Cyg β Lyr

K1 104 K B6III K1III B3I K2III B2I F0I B3I A0I

Ftot,
erg s−1cm−2

3×10−8 9×10−9 8.2×10−8 3.3×10−8 6.5×10−7 1.1×10−8 6.2×10−7 2×10−7 2.5×10−6 9.4×10−7

L, L� 335 100 1250 500 8500 140 12 200 3700 5700 2100

R, R� 30 3.3 12 35 18 20 20 35 15 17

Mbol −1m. 55 −0m. 25 −3m −2m −5m. 1 −0m. 6 −5m. 5 −4m. 2 −4m. 6 −3m. 5
component is a B(1–3) supergiant, and the secondary
component is a source with a spectrum similar to that
of an F0 supergiant. Extrapolation of the radiation
from these components to the optical range and com-
parison with the UBV photometry by Heiser (1962)
show good agreement with the system’s light in the
U band (0.36 µm), although the fluxes in theB and V
bands (0.45 and 0.55 µm) observed at maximum light
exceed the total flux from the B2 and F0 components.
The SED for V367 Cyg at maximum light is shown
in Fig. 4 (V367 Cyg). The eighth and ninth columns
of Table 4 give the parameters for the binary compo-
nents.

β Lyr. In estimating the parameters of the bi-
nary components, we used the UBV RI photometry
obtained by Bruton et al. in 1992 and 1995 and
accessible at http://www.physics.sfasu.edu/astro/
binstar.html.

At the primary minimum (Table 3), when the
secondary (more compact) component of β Lyr is
eclipsed, the radiation in the range 1.25–1.65 µm
agrees with a blackbody source with a color temper-
ature TC ∼ 8000 K. The color temperature decreases
with increasing wavelength; for example, the color
indexK − L ≈ 0.3 and TC ∼ 3000 K.

Our analysis of the SED for β Lyr in the optical
and infrared ranges (0.36–5 µm) at different orbital
phases shows that the binary components are B3 and
A0 supergiants. The fitting errors for the maximum
light of β Lyr do not exceed 10% of the flux. Figure 4
(β Lyr) presents the observed SED for β Lyr and the
SEDs for the binary components in the range 0.36–
5 µm near maximum light; the last two columns of
Table 4 give our estimates of the parameters for the
system’s components.

EXCESS INFRARED RADIATION

In our studies of close binaries (Taranova and
Shenavrin 1997; Taranova 1997), we detected excess
(with respect to the total light from the systems’
stellar components) radiation in the range 3.5–5 µm
ASTRONOMY LETTERS Vol. 31 No. 9 2005
for the systems KX And, V367 Cyg, and RX Cas:
for the first two systems, this was associated with
the radiation from ionized disklike envelopes with
emission measures of∼6 × 1059 cm−3 (KX And) and
∼8 × 1059 cm−3 (V367 Cyg). The excess infrared
radiation in the binary RX Cas was attributable to
the existence of an optically thin circumstellar dust
envelope.

Figure 5 shows the two-color (J −K) − (K −
L) diagram in which the filled circles indicate the
mean color indices derived from our 1996–2004 data
(Table 2). We see that the color excesses can be
determined reliably only for the binaries V367 Cyg
and β Lyr. Small excesses are probably present in
KX And and RX Cas, and our conclusions regarding
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their nature and our estimates of the parameters for
the sources of excess infrared radiation (Taranova and
Shenavrin 1997; Taranova 1997) remain valid. No
color excess was detected in the infrared radiation
from the binary V360 Lac. The excess infrared radia-
tion for the system V367 Cyg, whose hot component
was classified as a B0 supergiant, was explained by
the radiation of an ionized gas (Taranova 1997). In
this paper, we classify the binary’s hot source as a
B2 supergiant (Table 4), and its radiation could be
insufficient to ionize the gas envelope to the required
level. In this case, the excess infrared radiation from
V367 Cyg can be associated with the radiation from
a circumstellar dust envelope. To reach a firm con-
clusion, we must improve the classification of the
system’s stellar components and to continue the in-
frared photometry of the binary. The same is true for
the binary β Lyr: its infrared excess is determined
with good accuracy, but its interpretation depends on
the spectral classification of the hot component. A
normal B3 supergiant as the hot star cannot provide
the observed excess fluxes at wavelengths of 3.5 and
5 µm.

CONCLUSIONS

Thus, our analysis of the JHKLM photometry for
several close binaries has shown the following.

(1) A phase shift of the light curves by about
0.02 relative to the ephemeris of 1987, which corre-
sponds to an increase in the orbital period by about
0.005 days over recent years, is clearly seen in the
dependences of the infrared brightness of RX Cas on
its orbital phase. The rate of increase in the period
is about 3.5 × 10−4 days yr−1 or 30 s yr−1. At the
components’ masses of 0.5 M� and 5 M�, the rate
of mass transfer between the components is ∼2 ×
10−6 M� yr−1. Our analysis of the radiation from
RX Cas in the range 0.36–5 µm at different orbital
phases confirms the existence of an ellipsoidal cool
component, a K1 giant, in the system. Its apparent
radius changes by a factor of about 1.35 during the or-
bital motion. The 36–0.7 µm SED for the hot source
agrees with a color temperature of∼10 000 K.

(2) The observed infrared brightness variations of
KX And in 1996–2004 were within 0m. 10−0m. 15 and
occurred with the same period as the U brightness
variations prior to 1975, but the epochs of minima
of the infrared light curves were shifted in phase by
about 0.2, and the period increase in almost 30 years
was about 0.049 days. The rate of increase in the
period is ∼1.6 × 10−3 days yr−1 or ∼140 s yr−1. For
the components’ masses of about 10 M�, the mass
transfer rate between the components of the binary
is ∼6.8 × 10−5 M� yr−1. The 0.36–5 µm SED for
KX And at maximum light can be optimally repre-
sented by the sum of radiation from two stars: a cool
K(1 ± 1) giant and a hot source similar in parameters
to a B(6± 1) giant. The observed infrared light curves
and the estimates of the radii for the stellar compo-
nents yield an orbital inclination of no more than 30◦.

(3) The infrared brightness variations of V360 Lac
in 1996–2002 with orbital phase agree with the el-
ements calculated for optical observations prior to
1971. The primary and secondary infrared brightness
minima are clearly seen in the phase light curves,
although their depths do not exceed a few tenths of
a magnitude. A minimum near Φ ∼ 0.5 is also seen
in the J −K color variations; i.e., we see the hotter
component at the secondary minimum. Our analy-
sis of the 0.36–5 µm SED for V360 Lac (Fig. 4)
indicates that the system’s stellar components are
sources similar to B3 and K2 stars. The cool and hot
components are similar in parameters to giants and
supergiants, respectively. The orbital inclination does
not exceed 30◦.

(4) The dependences of the infrared brightness and
color of V367 Cyg on its orbital phase are in good
agreement with the ephemeris of 1979. The mean
J −K color indices near the primary and secondary
minima are ∼0m. 15 and ∼0m. 06 − 0m. 07, respectively.
The color temperatures of such sources are TC1 <
9000 K and TC2

> 11 000 K. The system’s primary
component is a B(1–3) supergiant, and the secondary
component is a source with a spectrum similar to that
of an F0 supergiant.

(5) The observed infrared brightness variations of
β Lyr folded with the orbital elements derived from
observations before 1973 exhibit a phase shift by
about 0.3. The increase in the orbital period from
1973 to 2003–2004 was ∼0.0043 days. The rate of
increase in the orbital period is∼1.4× 10−4 days yr−1

or∼25 s yr−1. Our analysis of the SED for β Lyr in the
optical and infrared ranges (0.36–5 µm) at different
orbital phases shows that the binary components are
B3 and A0 supergiants. The fitting errors for the
maximum light of β Lyr do not exceed 10%of the flux.

(6) Excess radiation (with respect to the radiation
from the stellar components) at wavelengths of 3.5
and 5 µmwas observed in all of the program stars.
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Abstract—Based on an analogy between stellar and solar flares, we investigate the ten-second oscillations
detected in the U and B bands on the star EV Lac. The emission pulsations are associated with fast
magnetoacoustic oscillations in coronal loops. We have estimated the magnetic field, B ≈ 320 G; the
temperature, T ≈ 3.7 × 107 K; and the plasma density, n ≈ 1.6 × 1011 cm−3, in the region of energy
release.We provide evidence suggesting that the optical emission source is localized at the loop footpoints.
c© 2005 Pleiades Publishing, Inc.

Key words: stars—variable and peculiar, stellar flares, coronal loops, oscillations, EV Lac, plasma
diagnostics.
INTRODUCTION

Cool dwarf stars with irregular variability (UV Cet
stars) are estimated (Gershberg 2002) to comprise
from 40 to 90% of all stars in our Galaxy. Observa-
tions show that, in contrast to solar flares, the visual
luminosity of such stars can increase by several orders
of magnitude, while their emission is often at a max-
imum in the optical wavelength range. Nonetheless,
there is currently strong evidence for a common origin
of flare energy release on the Sun and stars (Gersh-
berg 2002).

The main structural elements of solar and red-
dwarf coronae are magnetic loops. A special role
is assigned to loop structures in the overwhelming
majority of current models for flare energy release.
According to the universally accepted scenario of
solar flares, accelerated particles precipitating at
the footpoints of coronal loops through diffusion
are accumulated in the latter during energy release.
The heated dense plasma of the lower atmosphere
emits in Balmer lines and in the optical continuum,
whereas its hottest part, with a temperature of T =
107−108 K, while evaporating, fills the loop structures
and cools radiatively in the ultraviolet and soft X-ray
ranges.

The validity of this approach for the Sun follows
both from the spatial coincidence of the continuum
and hard X-ray emission sources and from the tem-
poral correlation between the time profiles (Matthews

*E-mail: stepanov@gao.spb.ru
1063-7737/05/3109-0612$26.00
et al. 2003; Metcalf et al. 2003; Xu et al. 2004;
Chen and Ding 2005), including the microwave range
(Fang and Ding 1995). This is also evidenced by
Neupert’s effect (Neupert 1968), which suggests a
coincidence in the behavior of the profiles for the
emission attributable to chromospheric plasma evap-
oration with the time-integrated emission generated
by accelerated particles. For red dwarfs, this effect
was found, in particular, by Hawley et al. (1995)
on AD Leo by analyzing the optical and ultraviolet
emission profiles. Since the emission sources can-
not yet be resolved on flare stars due to their great
distances, Neupert’s effect may be considered as a
weighty argument for the scenario described above.

Indirect techniques including a large number of
unknown parameters (Reale 2002) are commonly in-
voked to diagnose stellar loops. Therefore, the re-
sults obtained by different authors differ markedly. For
example, depending on the adopted constraints, the
characteristic lengths of coronal loopsL vary between
several stellar radii R∗ (Benz et al. 1998) and L <
0.1R∗ (Reale 2002), while the flare plasma densi-
ties vary between 107 and 1012 cm−3 (Mullan 1976;
Mathioudacis et al. 2003). Therefore, the methods
for diagnosing the parameters of coronal loops on
flare stars should be developed further. Substantial
progress in this direction can be made by analyzing
the fine temporal structure of the emission from stellar
flares.
c© 2005 Pleiades Publishing, Inc.
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As follows from observations, in certain cases,
quasi-periodic pulsations with periods from sev-
eral seconds (Andrews 1990) to several minutes
(Mathioudacis et al. 2003) are superimposed on
smooth light curves of flare stars. These were first
detected (Rodono 1974) during observations of the
star H II 2411 (dM4e). Oscillations with a mean pe-
riod of P ≈ 13 s and amodulation depth of about 15%
were detected during the flare of November 28, 1972.
Andrews (1990) also managed to distinguish quasi-
periods in the optical (13 and 8 s) oscillations ob-
served in the U band 10 to 15 min after the maximum
of a flare on AT Mic (dM4.5e). Nevertheless, in view
of the possible atmospheric and instrumental effects,
the stellar origin of these pulsations remained an open
question.

Recently, in-phase quasi-periodic oscillations
were detected in the U and B bands with periods
P = 10−30 s during simultaneous observations of
three flares on EV Lac using telescopes at the Terskol
peak (Northern Caucasus), at the StephanionObser-
vatory (Greece), at the Crimean Observatory, and in
Belogradchik (Bulgaria) (Zhilyaev et al. 2000). Their
pulsed fractions in the U and B bands were 10–15
and 2.5%, respectively. Thus, it has been convincingly
shown that the oscillations of flare stellar emission
actually exist.

Mullan (1976) suggested associating the quasi-
periodic oscillations detected by Rodono (1974) with
the propagation of a whistler wave packet in the dipole
magnetic field of the star. Subsequently, based on an
analogy between solar and stellar flares, he developed
the theory by Ionson (1984) about the interaction of
convective motions with coronal magnetic loops in
active regions (Mullan 1984). However, within the
framework of this hypothesis, it is difficult to under-
stand why quasi-periodic oscillations of flare emis-
sion are not observed in all events. In our view, an
approach suggested by Zaitsev and Stepanov (1989)
appears more attractive; according to this approach,
the observed pulsations of solar flares are produced by
flare energy release or chromospheric plasma evapo-
ration, causing a sharp rise in the gas pressure inside
the loop and the excitation of magnetohydrodynamic
(MHD) eigenmodes. This model has been repeatedly
invoked to interpret the minute oscillations observed
on flare stars (Mullan et al. 1992; Mathioudacis et al.
2003). In these papers, the emission modulation was
assumed to be produced by kink coronal loop oscil-
lations. Meanwhile, as we show in the next section,
these wave modes are unlikely to be capable of pro-
ducing large-amplitude emission oscillations.

In this paper, we consider the optical quasi-
periodic oscillations detected byZhilyaev et al. (2000)
during a flare on EV Lac on September 11, 1998.
Using a technique based on the ideas of sausage fast
ASTRONOMY LETTERS Vol. 31 No. 9 2005
magnetoacoustic (FMA) modes of coronal loops, we
estimate the flare plasma parameters and discuss the
localization of the optical emission source of stellar
flares.

THE EIGENMODES OF CORONAL LOOPS

When gravity is ignored, it follows from the lin-
earized system of equations of ideal MHD (Priest
1982) that four principal modes can be excited in
a magnetic loop: torsional, kink, slow magnetoa-
coustic (SMA), and sausage FMA modes (Roberts
et al. 1984; Hollweg 1984; Aschwanden 2003;
Goossens et al. 2002; Roberts 2004). Let us consider
the most important properties of the eigenmodes. We
restrict our analysis to the first harmonics, for which
the number of half-waves that fit along the loop is
q = 1, by assuming that these are excited the most
efficiently.

For the torsional and kink modes, the oscillation
periods are, respectively,

Ptor = 2L/vAi ,

Pkink ≈ 2L/vf , v2f =
ρiv

2
Ai

+ ρev2Ae
ρi + ρe

,

where vAi and vAe are the Alfvén speeds inside (i) and
outside (e) the loop, ρi and ρe are the corresponding
densities.

We note at once that the torsional modes do not
compress a plasma. We show in the Appendix that
the kink modes compress a plasma only slightly. It
thus follows that these modes cannot be responsible
for the pulsations observed on EV Lac. Indeed, if
the torsional modes arose from the increase in the
gas pressure inside the loop due to flare energy re-
lease, then this would cause the longitudinal mag-
netic field Bz to change. For the kink modes, δBz �
δBr and δBϕ (see A.20). Therefore, assuming, for
example, that δBz/Bz ∼ 0.1, we obtain δBr/Bz ∼
δBϕ/Bz ∼ 1. Large amplitudes of the corresponding
magnetic field components suggest large values of the
plasma parameter, β ∼ 1. Under coronal conditions,
β ≈ c2s/v2A � 1, where cs is the speed of sound, and,
hence, the modes under consideration can hardly be
responsible for the observed ten-second oscillations
of the flare emission.

The FMA modes weakly perturb the magnetic
field, and their period is (Aschwanden 2003)

Psound ≈ 2L/cTi , c2Ti =
c2siv

2
Ai

c2si + v
2
Ai

. (1)
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According to (1), the coronal loop length L is

L ≈ csiPsound/2 = 5.86P
√
T .

Assuming that the temperature is T = 107−108 К
and P = 10 s in the latter formula, we obtain L =
(2−6) × 108 cm. The radius of EV Lac is R∗ =
0.39R�, and, hence, L/R∗ = (0.7−2) × 10−2, which
seems unlikely in light of the powerful energetics of
stellar flares.

The sausage modes efficiently modulate both the
plasma density and the magnetic field strength (see
Appendix). Depending on whether these generate
traveling MHD waves in the surrounding medium
or not, leaky or nonleaky modes can be excited in
a coronal loop (see, e.g., Kopylova et al. 2002).
The choice between these is determined by the loop
parameters. In particular, at low values of the plasma
parameter, β � 1, the critical longitudinal wave
number is (Nakariakov et al. 2003)

kc ≈
j0
a

(
v2Ae
v2Ai

− 1

)−1/2

, (2)

where j0 � 2.4 is the first zero of the Bessel func-
tion J0, and a is the radius of the loop cross-section.
Nonleaky and leaky modes are excited at k ≥ kc and
k < kc, respectively. For example, when vAe/vAi = 3,
we obtain a/L ≈ 0.3 from Eq. (2) by setting kc =
π/L. This suggests that the coronal loops must
be fairly thick in the case of excitation of nonleaky
modes. At the same time, TRACE observations show
(Aschwanden et al. 1999) that the solar coronal loops
have a small ratio a/L� 1. Therefore, in our view, the
leaky modes with the period (Kopylova et al. 2002)

Psaus = 2πa/(j0vr), v2r = v2Ai + c
2
si (3)

are most likely responsible for the observed oscilla-
tions on EV Lac.

FLARE PLASMA DIAGNOSTICS

Let the flare energy release in a coronal loop, which
can be represented as a magnetic trap (a coronal
magnetic bottle), lead to the excitation of FMA os-
cillations (see Fig. 1). Since the plasma parame-
ter under solar and stellar coronal conditions is β =
8πp/B2 � 1, followingZaitsev and Stepanov (1982),
we obtain for the amplitude of the magnetic field
perturbation δB, attributable to a rise in the gas pres-
sure p inside the loop,

p+
BδB

4π
= 0, (4)

where we assumed that Bz = B. Writing Eq. (4) as

β = |2δB/B|, (5)
we conclude that the relative perturbation amplitude
δB/B is determined by the parameter β.

The FMAoscillations of a coronal loop are damped
mainly due to the losses through the emission of
MHD waves into the surrounding medium (the
acoustic mechanism) (see, e.g., Kopylova et al. 2002)
as well as the dissipative processes in the loop itself
(Zaitsev and Stepanov 1982; Stepanov et al. 2004).
Papers in which the rapid damping of the kink
oscillations of solar coronal loop observed from the
TRACE satellite is associated either with an Alfvén
resonance (Ruderman and Roberts 2002) or with
phase mixing (Roberts 2000, 2004) have appeared
in recent years. In the former case, the damping
is attributable to the presence of a singularity in
the wave equation at ω = kVA(r). This suggests a
sharp rise in the perturbation amplitude near the
resonance surface. In the latter case, the dissipation
is enhanced appreciably by the transverse gradient in
Alfvén speed, causing the viscous stresses to grow.
However, the physical nature of the Alfvén resonance
has not yet been elucidated (Bellan 1994), while
the phase mixing is efficient only for strongly inho-
mogeneous coronal loops; therefore, below, we will
disregard these dissipation mechanisms. In addition,
based on an analogy with solar flares, we will also
disregard the damping of sausage FMA oscillations
by assuming that the plasma density inside the flare
loop is several orders of magnitude higher than that
outside (Kopylova et al. 2002).

Estimates (Stepanov et al. 2004) indicate that the
ion viscosity (v) and the electron heat conductivity (c)
make a major contribution to the damping of the
FMA oscillations of coronal loops; the total damping
decrement is

γΣ = γv + γc (6)

=
1

12
√

2

√
M

m

ω2

νei
β sin2 θ

(
1 +

√
32M
m

β cos2 θ

)
.

Here, M and m are the ion and electron masses,
respectively, and θ = arctan(k⊥/k||) is the angle be-
tween the direction of the magnetic field B and the
wave vector k, where the longitudinal wave number
k|| ≈ π/L, while the transverse wave number k⊥ ≈
j0/a. The effective electron–ion collision frequency
in (6) is defined as follows (Ginzburg 1970):

νei =
5.5n
T 3/2

ln

(
104T

2/3

n1/3

)
≈ 60

n

T 3/2
s−1.

Since the oscillation Q factor is Q = ω/γΣ, we
derive formulas for the flare plasma parameters (tem-
perature T , particle density n, and magnetic field B)
from Eqs. (2) and (6) using the period P = Psaus, the
Q factor, and the plasma parameter β:
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 1. Schematic view of the model for the pulsations of optical flare emission (left). The global sausage mode of a coronal
loop associated with the axisymmetric variations in its diameter (right).
T ≈ 1.2 × 10−8 r̃
2β

P 2χ
, (7)

n ≈ 3.49 × 10−13 r̃
3κβ5/2Q sin2 θ

P 4χ3/2
, (8)

B ≈ 3.81 × 10−18Q
1/2r̃5/2κ1/2β5/4 sin θ

P 3χ5/4
, (9)

where r̃ = 2πa/j0, κ = 243β cos2 θ + 1.
To find the relationship between the modulation

depth of the optical emission attributable to the flux
of accelerated electrons precipitating at the flare loop
footpoints,

∆ = (Fmax − Fmin)/F = 2δF/F, (10)

where Fmax = F + δF and Fmin = F − δF are the
maximum and minimum fluxes of the modulated
emission, respectively, and the plasma parameter β,
we turn to the model of a coronal magnetic bottle
(Stepanov and Tsap 1999, 2002).

Depending on the escape time T0 of the trapped
electrons from the trap, their diffusion time TD, and
the mirror ratio σ, three regimes of electron pitch-
angle diffusion into the loss cone can be realized in
magnetic traps: weak (TD > σT0), moderate (T0 <
TD < σT0), and strong (TD < T0). The diffusion of
accelerated electrons is determined by Coulomb col-
lisions rather than whistlers if TDc < TDw, where TDc

and TDw are the diffusion time scales on background
plasma particles and waves, respectively (Stepanov
and Tsap 1999). Since

TDc ≈ 4.2 × 109E
3/2

nΛ
,

where the Coulomb logarithm Λ = 24 − ln(n1/2/Te),
Te is the background electron temperature in eV,
and E is the fast electron energy in keV, assuming
that n = 1011 cm−3, Te = 1 keV, and E = 50 keV
in the latter formula (Grinin et al. 1993), we obtain
TDc ≈ 0.8 s. Taking L = 1010 cm for the flare loop
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length and v = 1.3 × 1010 cm s−1 (≈50 keV) for the
electron velocity, we obtain the characteristic parti-
cle escape time from the trap T0 ≈ L/(2v) ≈ 0.4 s.
Consequently, T0 � TDc < σT0 at σ � 10; i.e., the
moderate diffusion regime is realized in stellar coro-
nal loops. As regards the whistlers and the related
regime of strong diffusion, the electron pitch-angle
diffusion on Coulomb collisions appears preferred,
since these undergo strong Landau damping due to
the high background plasma temperature (Stepanov
and Tsap 2002).

In the adopted model, the variations of the opti-
cal emission from the loop footpoints are determined
by the variations in the flux of passing electrons S,
which in the regime of moderate diffusion is S ≈
Nv/(σL), whereN is the number of trapped particles
(Stepanov and Tsap 1999). Since the mirror ratio is
σ = Bmax/B, S ∝ σ−1 ∝ B. It thus follows that the
flux variations δS are determined by the variations
in the magnetic field of the coronal part of the loop
and δS ∝ δB and, therefore, δF/F ≈ δS/S ≈ δB/B;
hence, according to (5) and (10), we obtain for the
modulation depth∆

∆ ≈ β. (11)

As follows from observations (Zhilyaev et al. 2000),
P ≈ 13 s, Q ≈ 50, and ∆ ≈ 0.2 for the event of
September 11, 1998 (Fig. 2). Based on an analogy
between solar and stellar flares and setting a/L = 0.1,
we then obtain θ ≈ arctan[j0L/(πa)] ≈ 76◦. Using
this value and assuming that r̃ = 2.62a ≈ 2.62 ×
109 cm, we find the plasma temperature T = 3.7 ×
107 K, the particle density n = 1.6 × 1011 cm−3, and
the magnetic field B = 320 G from (7)–(11).

We particularly emphasize that, according to our
model for the oscillations of flare loops on EV Lac,
the characteristic loop length is L ≈ 0.4R∗, while on
the Sun L ≈ 0.01R�. If, however, we set the loop
radius a equal to 108 or 1010 cm, then we will obtain
either greatly underestimated (1.6 × 108 cm−3) or
greatly overestimated (1.6 × 1014 cm−3) densities n
from (7)–(11). This result is consistent with the
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Fig. 2. (a) The oscillations of the U (solid line) and B (dotted line) emission with a period P ≈ 13 s separated from the light
curve for EV Lac, the flare of September 11, 1998. (b) The U and B light curves. The amplitude of the relative intensity
of the optical emission Iflare/Istar (Iflare and Istar are the intensities of the flare emission and the background stellar emission,
respectively) in theB band was increased by a factor of 5 in both panels. The figure was taken from Zhilyaev et al. (2000).
direct VLBA/VLA observations of the coronae on
the stars UV Ceti, AD Leo, and YZ CMi (Benz et al.
1998; Pestalozzi et al. 2000) and with other model
calculations (Haisch 1983).

ON THE SOURCE OF OPTICAL EMISSION

Mullan et al. (1992) assumed that the optical
emission from flares could be determined by the
bremsstrahlung of a hot plasma in the coronal part
of the loop. However, an analogy between solar and
stellar flares suggests that the optical emission source
is localized at the loop footpoints. Therefore, let us
make estimates using our model.

The bremsstrahlung fluxes for optically thin and
thick sources, respectively, can be represented as
(Priest 1982)

F1 ∝ n2

√
T
V, F2 ∝ TV, (12)

where V ≈ πa2L is the volume of the emitting region.
Taking into account the adiabatic equation n3/2/T =
const, we obtain in place of (12)

F1 ∝ n5/4V, F2 ∝ n3/2V. (13)

Since the excitation of FMA oscillations causes the
volume of the emitting region to change due to varia-
tions in the loop radius a,

δV

V
=

2δa
a
. (14)
In turn, it follows from the condition for the conserva-
tion of the longitudinal magnetic flux, Ba2 = const,
that

δB

B
= −2δa

a
. (15)

Using (15), we transform Eq. (14) to

δV

V
= −δB

B
. (16)

The following relation holds for the FMA modes
(Braginskiı̆ 1963):

δn

n
=
δB

B
sin θ, (17)

and we obtain from (13), (16), and (17)

δF1

F1
= (1.25 sin θ − 1)

δB

B
, (18)

δF2

F2
= (1.5 sin θ − 1)

δB

B
.

Thus, according to (5), (6), and (18), we have

∆1 ≈ (1.25 sin θ − 1)β, (19)

∆2 ≈ (1.5 sin θ − 1)β.

Substituting the same parameters as those in the
previous case into (7)–(9), we obtain using (19) T ≈
9 × 107 K, n ≈ 1013 cm−3, and B ≈ 2000 G for an
optically thin source and T ≈ 6 × 107 K, n ≈ 1.4 ×
1012 cm−3, and B ≈ 850 G for an optically thick
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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source, whence we find the plasma parameter β1 ≈
0.9, β2 ≈ 0.5.

Coronal loops with large values of the parame-
ter β are very unstable against flute perturbations
(Shibasaki 2001). The hypothesis by Mullan et al.
(1992) that the optical emission source could be lo-
calized in the coronal part of the loop is in poor agree-
ment with the adopted model.

DISCUSSION OF RESULTS
AND CONCLUSIONS

In this paper, we associated the observed ten-
second optical quasi-periodic oscillations detected
during the flare energy release on EV Lac with the
sausage FMAmodes of coronal loops, which produce
the deepest modulation of the emission. This allowed
us to estimate the main parameters of coronal loops
from the observed period P , the modulation depth ∆,
and the pulsation Q factor. Based on the suggested
model, we showed that the hypothesis by Mullan
et al. (1992), in which the optical emission of stars is
determined by a hot flare plasma in the loop volume,
runs into difficulties.

When performing our calculations based on an
analogy between stellar and solar flares, we assumed
that a/L ∼ 0.1. The observations of soft X-ray emis-
sion from the coronae of flare stars in binary sys-
tems argue for the validity of this approach. Thus,
for example, using observational data from the Italian
BeppoSAX orbiting observatory, Schmitt and Fava-
ta (1999) were able to detect an eclipse of the flare
coronal plasma of component A by component B
in the binary Algol. This allowed the characteris-
tic heights h of coronal loops to be estimated. It
turned out that h ≤ 0.6R∗, which is in satisfactory
agreement with our estimates of the loop lengths
on EV Lac (L ≈ 0.4R∗). VLBI observations of the
dMe star UV Ceti, which showed that the coronal
loops could extend to distances of (2–4)R∗ (Benz
et al. 1998), provide further evidence for the larger
sizes of stellar coronal loops than those on the Sun.

According to Zhilyaev et al. (2000), the modula-
tion depth in the U band is several times larger than
that in the B band. In our opinion, this is because
the energy of accelerated particles transforms into the
thermal energy of plasma mainly in the upper layers of
the lower atmospheres of stars. This inevitably leads
to an increase in the role of the smoothed fluxes of heat
and radiation (back-warming) in heating the deeper
and cooler lower layers.

Mullan et al. (1992) also used a model suggested
by Zaı̆tsev and Stepanov (1989) to interpret the
minute oscillations observed on red dwarfs. The
modulation was determined by the kinkmodes, whose
excitation, as we showed, due to a rise in the gas
ASTRONOMY LETTERS Vol. 31 No. 9 2005
pressure in the loop appears rather problematic. We
also emphasize that in performing our analysis, in-
cluding the model byMullan et al. (1992), we ignored
the influence of the evaporating plasma on the loop
oscillations, since the characteristic time it takes for
the loop to be filled with a hot plasma τ considerably
exceeds their period P . Indeed, taking P = 10−30 s
and the loop length L = 1010 cm and assuming the
velocity of the evaporating plasma to be comparable
to the speed of sound, ve = (1−3) × 107 cm s−1, we
obtain τ ≈ L/(2ve) = 3−8min, i.e., τ 
 P .

In conclusion, we would like to note that the
minute oscillations of the optical emission from flare
stars with a modulation depth no larger than a few
percent observed in certain cases can still be gener-
ated by the kink modes of coronal loops. However,
the centrifugal force that arises from the motion of
high-velocity flows of evaporating chromospheric
matter along the curved magnetic field lines is most
likely responsible for their excitation (Zaı̆tsev and
Stepanov 1989). We hope to consider this question
in more detail in our next paper.
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APPENDIX

Wemodel a coronal loop in the form of an axisym-
metric magnetic tube withB0 = (0, 0, Bz(r)). Let us
assume that the system was disturbed from the equi-
librium, i.e., v = v′, ρ = ρ0 + ρ′, p = p0 + p′, B =
Bzez + B′, where we use the standard notation, and
the subscript and the prime denote, respectively, the
equilibrium and perturbed quantities, with the latter
being proportional to δf(r) exp(−iωt+ inϕ+ ikz).
The linearized system of equations of ideal MHD can
then be reduced to

−iωρ0δvr = − ∂

∂r

(
δp +

δBzBz
4π

)
+
ikBz
4π

δBr,

(A.1)
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−iωρ0δvϕ =
in

r

(
δp +

δBzBz
4π

)
+
ikBz
4π

δBϕ,

(A.2)

ωρ0δvz = kδp, (A.3)

δBr = −kBz
ω
δvr, (A.4)

δBϕ = −kBz
ω
δvϕ, (A.5)

−iωδBz = −1
r

∂

∂r
rBzδvr −

inBz
r
δvϕ, (A.6)

iωδρ =
1
r

∂

∂r
rρ0δvr +

in

r
ρ0δvϕ + ikρ0δvz , (A.7)

δp = c2sδρ, (A.8)

where c2s = γp0/ρ0 is the speed of sound. In partic-
ular, when the radial and longitudinal velocity vec-
tor components are δvr = δvz = 0 and the pertur-
bation amplitude of the total pressure is δP = δp +
δBzBz/4π =0, we can easily derive the dispersion
relation for the torsional modes ω = kvA from (A.1)–
(A.8).

Generally, the system of equations that was first
derived by Hain and Lüst (1958) follows from
Eqs. (A.1)–(A.8):

iρ0(ω2 − k2v2A)
1
r

∂

∂r
(rδvr) = ω

(
µ2 − n

2

r2

)
δP,

(A.9)

ω
∂δP

∂r
= iρ0(ω2 − k2v2A)δvr , (A.10)

where vA =
√
B2
z/4πρ0 is the Alfvén speed,

µ2 =
(k2c2s − ω2)(ω2 − k2v2A)
(v2A + c2s )(k2c2T − ω2)

, (A.11)

c2T =
v2Ac

2
s

v2A + c2s
.

According to (A.2) and (A.5), we have

δvϕ =
nωδP

rρ0(k2v2A − ω2)
. (A.12)

As follows from (A.3) and (A.8),
δρ

ρ0
=
ω

kcs

δvz
cs
. (A.13)

Using (A.7), (A.9), (A.12), and (A.13), we then find
that

δvz =
kc2sω

ρ0

δP

(v2A + c2s )(k2c2T − ω2)
. (A.14)
Using (A.9) and (A.14), we obtain from (A.13)

δρ

ρ0
= ir

ω(ω2 − k2v2A)
(v2A + c2s )(k2c2T − ω2)(µ2r2 − n2)

∂

∂r
(rδvr).

(A.15)

The dispersion relation for the kink modes (n = 1)
is (Tsap and Kopylova 2001)

ω2 = k2
ρiv

2
Ai

+ ρev2Ae
ρi + ρe

. (A.16)

Since the plasma parameter under solar coronal con-
ditions is β ≈ c2s/v2A � 1, ρi 
 ρe, and, in addition,
vri ∝ r inside the loop (Tsap and Kopylova 2001), we
find using (A.15) and (A.16) that∣∣∣∣δρiρi

∣∣∣∣ ≈ (kr)
δvr
vf
, (A.17)

where vf ≈ ω/k ≈ vAi . for the kink modes, ka�
1; therefore, the density amplitude δρ, according to
(A.17), has the second order of smallness relative
to ρ0.

Using (A.3) and (A.6)–(A.8), we can easily derive
the equality

δBz
Bz

=
ω2 − k2c2s
ωkc2s

δvz . (A.18)

According to (A.4), (A.10), (A.14), and (A.18), we
then have

δBz
δBr

=
ω2 − k2v2A
kv2A

δP

δP ′ , (A.19)

where δP ′ = ∂δP/∂r. Since δP/δP ′ ≈ r (Tsap and
Kopylova 2001), we obtain from (A.16) and (A.19)

δBz
δBr

≈ kr. (A.20)

Using similar reasoning, we can also easily show that
δBϕ/δBr ∼ 1. Consequently, since r ≤ a, i.e., kr �
1, for the inner part of the loop, we obtain the following
from (A.20): δBz � δBr, δBϕ.

For the sausage FMA modes, for which vri ∝
J1(µr) (Kopylova et al. 2002), where J1 is the Bessel
function of the first kind and ω ≈ vAi/a, we can make
sure that the following relation is valid:

δρ

ρ0
≈ δBz
Bz

≈ δvr
vAi
.
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Abstract—We analyze the electric fields that arise at the footpoints of a coronal magnetic loop from the
interaction between a convective flow of partially ionized plasma and the magnetic field of the loop. Such
a situation can take place when the loop footpoints are at the nodes of several supergranulation cells. In
this case, the neutral component of the converging convective flows entrain electrons and ions in different
ways, because these are magnetized differently. As a result, a charge-separating electric field emerges at
the loop footpoints, which can efficiently accelerate particles inside the magnetic loop under appropriate
conditions.We consider two acceleration regimes: impulsive (as applied to simple loop flares) and pulsating
(as applied to solar and stellar radio pulsations). We have calculated the fluxes of accelerated electrons and
their characteristic energies. We discuss the role of the return current when dense beams of accelerated
particles are injected into the corona. The results obtained are considered in light of the currently available
data on the corpuscular radiation from solar flares. c© 2005 Pleiades Publishing, Inc.

Key words: Sun, solar corona, magnetic loops, electron acceleration.
INTRODUCTION

Much of the energy in solar and stellar flares is
released in the form of energetic particles. The bulk
of the electrons and ions in impulsive solar flares are
accelerated to energies of 100 keV and 100 MeV,
respectively (Miller et al. 1997) and produce hard
X-ray and gamma-ray line emission. In addition, the
continuum gamma-ray emission and the occasion-
ally observed emission from neutral pions suggest
that the electron and ion energies in flares can reach
10 MeV and 1 GeV, respectively. If the hard X-
ray emission in flares were assumed to arise from
the bremsstrahlung of fast electrons in the chromo-
sphere (the nonthermal thick-target model) (Emslie
et al. 1981; McClymont and Canfield 1986; Can-
field and Gayley 1987; Mariska et al. 1989), then an
impulsive solar flare would produce ∼1037 electrons
with energies >20 keV per second during 10–100 s.
This implies that the rate of energy release in the
form of accelerated electrons is Ėe ≈ 3× 1029 erg s−1

during 100 s, which corresponds to a total electron
energyEe(>20 keV) ≈ 3× 1031 erg at a total number
of accelerated electrons Ne(>20 keV) ≈ 1039.

The requirements imposed on the acceleration rate
are slightly reduced if it is assumed that the hard X-
ray spectrum at energies <30 keV is determined by
the emission of a hot (∼3 × 107 K) plasma and that

*E-mail: za130@appl.sci-nnov.ru
1063-7737/05/3109-0620$26.00
the emission at high energies is generated by fast
electrons with a power-law spectrum. This consti-
tutes the content of the hybrid thermal/nonthermal
(T/NT) model (Holman and Benka 1992). In this
case, the required production rate of electrons with
energies >20 keV decreases to Ṅe ≈ 2 × 1035 el. s−1

at a duration of the process ∼100 s, which yields
Ne(>20 keV) ≈ 2 × 1037 el., Ėe(>20 keV) ≈ 6 ×
1027 erg s−1, and Ee(>20 keV) ≈ 6 × 1029 erg.

Bearing in mind a good correlation between im-
pulsive flares and coronal magnetic loops, we will
consider the acceleration of electrons by the large-
scale electric fields generated by convective motions
of photospheric plasma at the footpoints of a coronal
magnetic loop by assuming that other acceleration
mechanisms are also relaized under solar coronal
conditions. The large-scale electric fields in coronal
magnetic loops arise when the loop footpoints are at
the nodes of several supergranulation cells. In this
case, the converging convective plasma flows interact
with the magnetic field at the loop footpoints to gen-
erate a charge-separating electric field, which can ef-
ficiently accelerate particles under certain conditions.
The loop can contain a fairly large store of energy, up
to 1032 − 1033 erg, and can provide the energy release
of an intense flare. This energy is concentrated in the
form of a nonpotential part of the magnetic field that
arises from the existence in the loop of an electric
current up to∼3 × 1012 A generated by photospheric
c© 2005 Pleiades Publishing, Inc.



ELECTRON ACCELERATION BY ELECTRIC FIELDS 621
convection and flowing along the loop (Zaitsev and
Stepanov 1992; Zaitsev and Khodachenko 1997). In
the next section, we discuss the most likely loca-
tion of the acceleration region in a magnetic loop.
Subsequently, we consider the acceleration mecha-
nism and calculate the fluxes of accelerated electrons.
We also consider the impulsive (as applied to simple
flares) and pulsating (as applied to solar and stellar
radio pulsations) acceleration regimes. We discuss
the neutralization of the electric current produced by
accelerated electrons. In conclusion, we formulate our
main results.

THE ACCELERATION REGION: THE
CHROMOSPHERE OR THE CORONA?

A fairly large number of particles must be injected
into the acceleration regime to provide the fluxes of
fast electrons observed during impulsive flares. What
is the reservoir of these particles if the acceleration
takes place in a flare magnetic loop? The total number
of electrons in a flare loop with a plasma density of
1010 cm−3, a cross-sectional area of 1018 cm2, and
a length of (1−5) × 109 cm is (1−5) × 1037 el. If it
is considered that any plausible acceleration mecha-
nism in plasma accelerates only a minor fraction of
particles, then the estimated total number of electrons
contained in the coronal part of a flare loop is evidently
too small to provide acceleration even in the most
favorable case of the hybrid model (∼2 × 1037 el.).

There are two important sources in a magnetic
loop that can, in principle, provide the required num-
ber of particles. The parts of the loop near its foot-
points in the chromosphere constitute the first source.
In the chromospheric part of the loop,∼5 × 1040 par-
ticles are contained in the column from the temper-
ature minimum to the chromosphere–corona tran-
sition region if the cross-sectional area of the loop
in this region is assumed to be ∼1018 cm2. If the
acceleration takes place in the chromospheric part of
the loop, then the above number of particles is large
enough to provide the injection of the required number
of electrons into the acceleration regime.

The second possibility of particle enrichment of
a flare magnetic loop arises when it interacts with
prominences (Zaitsev and Stepanov 1991, 1992). In
this case, the flare process can be triggered by the
flute instability that grows at the loop top and that
causes the dense prominence plasma to penetrate into
the current channel of the magnetic loop. The number
of particles supplied by a prominence in the flare time,
tf ∼ 100 s, can be estimated as N ≈ 2πrrfnpVptf,
where rf is the thickness of the prominence “tongue”
penetrating into the current channel, r ≈ 108 cm
is the loop half-thickness, np ≈ 1012 cm−3 is the
ASTRONOMY LETTERS Vol. 31 No. 9 2005
plasma density in the prominence, and Vp ≈ VTi ≈
2 × 106 cm s−1 is the characteristic plasma inflow
velocity in the current channel of the loop, which is
approximately equal to the thermal ion velocity at
a prominence temperature of ∼5 × 104 K. At these
parameters, we obtain N ≈ 3 × 1038 el. This value is
approximately an order of magnitude larger than that
required for the hybrid T/NT model, but it is several-
fold smaller than that required by the nonthermal
thick-target model. It thus follows that, to satisfy the
demand of the acceleration mechanisms for particles
during the most intense flares, the preferred location
of the acceleration region is the chromospheric part
of the coronal loop. For flares with moderate energy
release, the acceleration region can be located near
the loop top, where the required store of particles is
provided by the plasma flow from a prominence (if it
exists).

THE FLUXES OF ACCELERATED
ELECTRONS

Many acceleration mechanisms have been sug-
gested to explain the generation of fast particles
during flares. These can be arbitrarily divided into
three main classes: (1) stochastic wave acceleration,
(2) shock acceleration, and (3) direct acceleration
in quasi-stationary electric fields. The most efficient
way for particle acceleration in the region of flare
energy release is the direct acceleration by an electric
field, where the large-scale electric field E of the
flare magnetic loop acts as the latter. It is important
that, if there is a magnetic field B in plasma, with
|B| > |E|, then only the electric field component
along the magnetic field,E|| = EB/B, will accelerate
particles. If E|| is smaller than the Dreicer electric
field ED = eΛω2

p/V
2
T , then electrons with velocities

V > (ED/E||)1/2VT, where VT is the thermal electron
velocity, Λ is the Coulomb logarithm, and ωp is the
Langmuir frequency, become involved in the acceler-
ation process (runaway). The kinetic theory yields the
following formula for the electron acceleration rate
(Knoepfel and Strong 1979):

Ṅe = 0.35nνeiVax3/8 exp
(
−
√

2x− x

4

)
, (1)

where x = ED/E||, Va is the volume of the ac-

celeration region, νei = 5.5nΛ/T 3/2 is the effective
electron–ion collision frequency, n is the plasma
electron density, and T is the temperature. In the
coronal part of a magnetic loop even with a large
electric current, I = 1012 A; and typical parameters,
n = 1010 cm−3, a half-thickness of r = 5 × 108 cm,
and T = 106−107 K—the electric field attributable to
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a finite plasma conductivity is too weak to produce
any appreciable acceleration, (x = ED/E|| > 200).
The strongest electric fields are generated in the
dynamo region at the footpoints of a magnetic loop,
where the charges are efficiently separated through a
convective flow of photospheric matter into the flux
tube and different electron and ion magnetizations.
We will estimate the acceleration efficiency using the
self-consistent model of a vertical, homogeneous (in
height) cylindrical tube with a magnetic field B =
(0, Bϕ(r), Bz(r)), an electric field E = (Er(r), 0, 0),
and a radially converging plasma flow Vr(r) (Kho-
dachenko and Zaitsev 2002) as an example. The other
two velocity components in this model, Vϕ(r) and
Vz(r), can be determined from the continuity equation
and do not lead to the generation of azimuthal and
vertical electric fields. The photospheric emf main-
tains the required potential difference and the electric
current in the “coronal magnetic loop–photosphere”
electric circuit (Zaitsev et al. 1998). More general
models of magnetic flux tubes in the dynamo region,
including the radial divergence, were considered by
Henoux and Somov (1991). As was noted above, only
the radial charge-separating electric field component
in our model of a vertical cylindrical tube with a radial
converging plasma flow approximates the part of the
actual flux tube located near the photospheric foot-
points. Since this component is perpendicular to the
magnetic field of the stationary tube (Bϕ, Bz), there
is no acceleration by the charge-separating electric
field under stationary conditions. Acceleration arises
when the magnetic field of the tube is deformed in
such a way that the radial magnetic field Br appears.
In this case, the electric field component along the
magnetic field is (Zaitsev and Khodachenko 1997)

E|| ≈
1 − F

2 − F

σVrB
2

enc2(1 + αB2)
Br
B
. (2)

Here, the radial magnetic field Br � B, F =
nama/(nama + nmi) is the relative density of neu-
tral particles, σ = e2n/me(νei + νea) is the Coulomb
conductivity, α = σF 2/(2 − F )c2nmiνia, νjk is the
effective collision frequency between a particle of
type j and a particle of type k, and Vr is the radial
velocity of the convective plasma motion at the loop
footpoints. The particle acceleration associated with
the charge-separating electric field can arise, for
example, during the growth of a flute instability at
the footpoints of a magnetic flux tube (see below),
when the plasma tongue penetrating into the current
channel at velocity vr is inhomogeneous in height.

In this case, it can be shown that a radial magnetic
field

Br = B
∂

∂z

t∫
0

vr(t
′
)dt

′

is generated, and an accelerating electric field E||
arises. E|| increases when the magnetic loop foot-
points is heated, since heating causes an increase in σ
and a decrease in α. In this case, the relative density
of neutral particles F decreases. Under significant
heating, when there is almost total ionization (F �
1), we may assume that αB2 � 1. Expression (2)
then takes a simple form:

E|| ≈
1
2
Vr
c
B

(
ωe
νei

)
Br
B
, αB2 � 1.

In the opposite limiting case, expression (2) takes the
form

E|| ≈
1 − F

F 2

miVrνia
e

Br
B
, αB2 	 1.

At Vr < 0 (the convective flow is directed into the
tube), the component E|| is directed downward and
accelerates electrons toward the corona and ions to-
ward the photosphere; i.e., energetic ions and elec-
trons will move toward different loop footpoints. This
can lead to a situationwhere the gamma-ray emission
attributable to energetic ions will emanate from one of
the loop footpoints and the X-ray emission associated
with fast electrons will emanate from the other foot-
point.

In the case of strong heating of the tube footpoints,
where αB2 � 1, the ratio x = ED/E|| is defined by
the formula

ED

E||

 7.7 × 10−5 n2

B2VrT 5/2

(
Λ
20

)2 B

Br
(3)


 2.6
( n

1015

)2
(
B

103

)−2( Vr
3 × 104

)−1

×
(
T

106

)−5/2( Λ
20

)2 B

Br
.

Note that x depends strongly on the temperature and
the magnetic field, which can vary over a wide range
in the dynamo region. It follows from (3) that the
accelerating electric field at Br ≈ 0.1B can reach or
even exceed the Dreicer field if the loop footpoints are
heated to a temperature of 3.5 × 106 K. In this case,
all electrons become involved in the runaway pro-
cess, while the electric field reaches 17 V cm−1. This
enables the particles on a scale of ∼108 cm to gain
an extremely high energy, ∼1 GeV. The peculiarities
of the electron acceleration in super-Dreicer electric
fields were considered by Litvinenko (1996).
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Extreme electric fields emerge at the maximum
possible magnetic fields, ∼103 G, and strong heating
of the photospheric footpoints of a magnetic loop,
which, certainly, is realized not in all flares. However,
this demonstrates the ability of current-carrying
magnetic loops to efficiently accelerate particles.
In the case of acceleration at the chromospheric
loop footpoints, the production rate of energetic
electrons exceeds 1035 el. s−1; this is enough for
the hybrid T/NT model if we take n = 1011 cm−3

in the acceleration region, the tube radius 108 cm,
T = 105 K, and the height of the acceleration region
h = 108 cm. In this case, x = ED/E|| = 26, E|| =
2.15 × 10−3 V cm−1, and the energy of the bulk of
accelerated electrons is 200 keV. At the parameters
of the acceleration region chosen as an example, the
losses through optical emission from this region are
2 × 1025 erg s−1, which is much smaller than the
mean flare power. Therefore, it may be assumed that
a flare can provide the heating required for the needed
acceleration rate.

IMPULSIVE AND PULSATING
ACCELERATION REGIMES

The appearance of a radial magnetic field at
the footpoints of a magnetic loop where a strong
charge-separating electric field is localized may be
attributable not only to the growth of a flute instability
here, but also to the excitation of loop eigenmodes.
In the former case, the acceleration is apparently
impulsive, because the flute instability is aperiodic.
In the latter case, a pulsating acceleration regime is
possible, which often manifests itself after a flare in
the form of quasi-periodic sequences of type-III radio
bursts.

Impulsive Acceleration

When a magnetic flux tube goes out from the
photosphere into the chromosphere, it expands due
to a decrease in the ambient pressure; therefore, a
magnetic field curvature directed into the tube ap-
pears. A value on the order of the scale height of
an inhomogeneous atmosphere can be taken as an
estimate of the radius of curvature,

Rc ≈
kBT

µmHg
,

where kB is the Boltzmann constant, mH is the
mass of the hydrogen atom, µ is the mean molecular
weight, and g is the gravity. A centrifugal force
appears due to the magnetic field curvature,

fc =
2nkBT
R2
c

Rc;
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this force acts on plasma with a density of ρ = (n +
na)mH. Therefore, the effective centrifugal accelera-
tion acting on the chromospheric plasma surrounding
the magnetic flux tube near its footpoints is

gc =
fc
ρ

=
2gn

(n + na)mH

Rc

R2
c
.

In the case under consideration, the condition for the
flute instability of the ballooning mode is

gc − g cos Θ ≥ 0,

where Θ is the angle between the direction of the
radius of curvatureRc and the vertical.

When Rc is almost perpendicular to g, the growth
time of the ballooning mode of the flute instability is

τb ≈
1
2
λ

πg

(
n

n+ na

)−1/2

, (4)

where λ is the wavelength of the disturbance. Esti-
mate (4) corresponds to themost unstable case where
the wave vector of the disturbances is perpendicular to
the magnetic field (Priest 1982).

When na � n,

τb ≈ 2 × 10−3λ1/2 (5)

and the disturbances with a wavelength λ ≈ Rc at
T = 105 K grow in a time of ∼35 s. In this time,
the tube-surrounding plasma penetrates inward,
generating a radial magnetic field, which gives rise
to the component of the charge-separating electric
field along the magnetic field that is responsible for
the particle acceleration. To a first approximation,
time (5) can be taken as the characteristic duration
of the impulsive acceleration phase.

A decrease in the radial convection velocity due
to an increase in the gas pressure inside the tube
as the flare process develops or the stoppage of the
flute of ambient plasma penetrating into the mag-
netic loop could be responsible for the termination
of the acceleration process. It should be noted that
time (5) is equal in order of magnitude to the duration
of simple impulsive flares (10−100 s). At the above
plasma parameters in the acceleration region, the
total number of electrons accelerated at the footpoints
of a current-carrying magnetic flux tube in time (5)
is Ne(>200 keV) ≈ Ṅeτb ≈ 3.5 × 1036 el., which is
large enough to explain the observed efficiency of
the acceleration mechanism in terms of the T/NT
model for the generation of hard X-ray emission from
impulsive solar flares (Holman and Benka 1992).
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Pulsating Acceleration

The presence of broadband periodic pulsations in
solar type-IV radio bursts suggests that a pulsating
regime of electron acceleration occasionally arises
immediately after flares; this regime is characterized
by a much lower production rate of fast electrons,
but usually lasts much longer than the main flare.
One example of such events, on October 25, 1994,
was investigated by Aurass et al. (2003). Based on a
combined analysis of spectral and heliographic radio
data as well as optical and X-ray data, these au-
thors reconstructed the spatial structure of the radio
pulsation source, which turned out to be a coronal
magnetic loop. Electrons were periodically injected
at velocities of ∼0.3 c from the loop footpoint with
a stronger magnetic field and subsequently moved
along the trap axis, generating a sequence of type-
III bursts with a rapid frequency drift. The pulsation
period was, on average, 1.33 s, while the duration
of the pulsating phase was about 3.5 min; i.e., the
pulsations had a high Q factor. Analysis of the effi-
ciency of the acceleration mechanism for this event
has shown (Zaitsev et al. 2005) that the mean rate
of electron acceleration in pulsations is approximately
three orders of magnitude lower than that during a
moderate-intensity solar flare, 3 × 1032 s−1. Pulsa-
tions are also found in the radio emission from flares
on late-type stars. For example, a spectral analysis
of the low-frequency modulation of the microwave
emission from the flare of May 19, 1997, on the star
AD Leo revealed two regular components in its ra-
dio spectrum: a periodic modulation whose frequency
decreased smoothly during the flare from ≈2 Hz to
≈0.2 Hz and a periodic sequence of pulses with a
repetition frequency of about 2 Hz (Zaitsev et al.
2004). The rapid negative frequency drift of the ra-
dio pulsations in this flare (Stepanov et al. 2001)
is indicative of a periodic acceleration of particles in
the lower atmosphere followed by their injection into
the stellar corona. A detailed analysis of this event
led us to conclude that the radio emission source in
this case is a current-carrying magnetic loop, while
the pulsations with a gradually decreasing repetition
frequency are attributable to the excitation of loop
eigenmodes as an equivalent (LRC) electric circuit
with the frequency (see Zaitsev et al. 2004)

νLRC ≈ 1
√
πχ

[
1 +

(
cr0Bz
2Iz

)2
]1/2

Iz
2cr2

0

√
πnmi

,

(6)

where

χ = ln
4l
πr0

− 7
4
,

Iz is the total electric current flowing along the loop
through its cross-section, c is the speed of light, r
is the minor radius (half-thickness) of the loop, Bz
is the magnetic field strength along the loop axis,
and l is the length of the coronal part of the loop.
For simplicity, the magnetic loop in the coronal part
is assumed to be homogeneous, with a mean plasma
density n inside the loop. Frequency (6) depends on
the current, because the equivalent capacitance of
the loop is determined by the Alfvén velocity, which
depends not only on the z component, but also on
the ϕ component of the magnetic field in the loop.
The oscillations of a coronal magnetic loop as an
equivalent electric circuit were considered by Zlotnik
et al. (2003) as a possible cause of the appearance
of radio pulsations in solar type-IV radio bursts. The
high Q factor of the observed pulsations, which is
ensured by the loop parameters in the case under
consideration, while the Q factor of the MHD eigen-
modes of the loop is fairly low under coronal condi-
tions, is an argument for this conclusion. We have
already noted above that the efficiency of the pulsating
electron acceleration regime at the post-flare phase
of development of the active region estimated for the
event of October 25, 1994, is approximately three or
four orders of magnitude lower than the mean one
for the impulsive solar flare phase. The energy of the
accelerated electrons in this event (about 40 keV) was
approximately equal to the characteristic energy of
the fast electrons accelerated at the impulsive phase.
As we see from Eqs. (1) and (3), such a situation
arises when the geometrical sizes (volume) of the
acceleration region decrease significantly, while the
parameters of the acceleration process (T , n, B, Br,
Vr) are approximately constant.

THE CURRENT OF ACCELERATED
ELECTRONS

Another important question is being discussed in
the literature in connection with the large electric
current associated with accelerated electrons (Mel-
rose 1991, 1995). If the efficiency of the acceler-
ation mechanism is dNe/dt ≥ 1035 el. s−1, then an
electric current I = eṄe ≥ 1.6 × 1015 A will arise. If
this current flows in a magnetic loop with a cross-
section of∼1018 cm2, then an induced magnetic field
B ≥ 6 × 106 G, which is actually not observed in
coronal structures, will correspond to these values
of the current. Two possibilities for eliminating this
contradiction are commonly considered.

The first possibility is related to the assumption
about filamentation of the current of accelerated elec-
trons, i.e., about a breakup of the current channel
into a set of current filaments with oppositely directed
currents in neighboring filaments; as a result, the
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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total magnetic field of the current channel does not
exceed the observed value (Holman 1985; Van der
Oord 1990). However, it is unclear how a system of
filaments with oppositely directed currents can arise
in a beam of electrons flying apart. As was shown by
Fadeev et al. (1965), current filamentation is indeed
possible under certain conditions; in this case, how-
ever, the current direction is not reversed in neighbor-
ing filaments, and we do not get rid of the problem
of the generation of strong magnetic fields on the
periphery of the current channel.

The other possibility is related to the forma-
tion of a return current in plasma (Hammer and
Rostoker 1970; Cox and Bennet 1970; Lee and
Sudan 1971; Lovelace and Sudan 1971). Let, for
example, an electron beam with radius r0 is injected
into a plasma along the z axis of an external magnetic
field. The field Bϕ at each fixed point of the plasma
will then change with time during the passage of
the beam front. The change in Bϕ gives rise to an
electric field Ez at the front of the electron beam
that acts on plasma electrons in such a way that a
current directed against the injected current emerges.
Consequently, the total current decreases until it is
completely neutralized. If the radius of the electron
beam exceeds the screening length (r0 > c/ωp), then
there is no magnetic field at r > r0. The beam current
is neutralized by the return plasma current, which
flows almost entirely inside the beam. The condition
for total neutralization appears as follows: c/ωp � r0,
νeit < 1, where t is the time after injection. For νeit 	
1, the return current decays, and the neutralization
gradually disappears. However, the decay time scale
of the return current is determined by the magnetic
diffusion time scale tD = πσr2

0/c
2, which exceeds

significantly all of the time scales characteristic of
flare processes at r0 of the order of the loop thickness.
Therefore, it may be assumed that the injection of
accelerated electrons does not change the external
magnetic field. The Lenz law allows the beam of
accelerated electrons to propagate in plasma without
spending energy on modifying the magnetic field.

CONCLUSIONS

We drew attention to the important role of convec-
tive plasma motions in the photospheres and lower
chromospheres of the Sun and late-type stars in gen-
erating large-scale electric fields and in accelerating
particles. The chromospheric footpoints of magnetic
loops, where an acceleration rate of Ṅe > 1035 el. s−1

at a mean electron energy of Ee ≥ 100 keV can be
ensured, while energies of ∼1 GeV can be reached in
the case of strong heating of the loop footpoints, is
the preferred acceleration region (from the standpoint
of the production rate of fast electrons). A large-scale
ASTRONOMY LETTERS Vol. 31 No. 9 2005
charge-separating electric field (with a scale length
of the order of the loop thickness) emerges at the
footpoints of a coronal magnetic loop, because elec-
trons and ions are entrained in different ways by the
converging convective flows of photospheric plasma.
Such a situation takes place when the loop footpoints
are at the nodes of several supergranulation cells.
The acceleration process could be triggered by a flute
instability for which there are appropriate conditions
at the loop footpoints (the magnetic field curvature
here is directed into the loop, because the pressure
of the surrounding plasma decreases with height).
The penetration of the surrounding plasma tongue
into the coronal magnetic loop through the flute in-
stability leads to a distortion of the loop magnetic
field (to the appearance of a small radial magnetic
field component); as a result, a component of the
charge-separating electric field along the magnetic
field emerges, and an impulsive acceleration process
is triggered. In this case, the accelerated electrons
and ions move in opposite directions, which can result
in the localization of the hard X-ray and gamma-ray
emission sources at the opposite loop footpoints if, for
example, the loop is asymmetric and the acceleration
process arises only at one of the footpoints. The data
obtained from the RHESSI satellite suggest that this
situation is possible. The injection of accelerated elec-
trons into the coronal part of the loop does not lead to
the generation of a strong magnetic field, because the
return current neutralizing the current of accelerated
electrons emerges.
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Multiple Resonance in One Problem of the Stability
of the Motion of a Satellite Relative to the Center of Mass
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Abstract—We investigate the stability of the periodicmotion of a satellite, a rigid body, relative to the center
of mass in a central Newtonian gravitational field in an elliptical orbit. The orbital eccentricity is assumed to
be low. In a circular orbit, this periodic motion transforms into the well-known motion called hyperboloidal
precession (the symmetry axis of the satellite occupies a fixed position in the plane perpendicular to the
radius vector of the center of mass relative to the attractive center and describes a hyperboloidal surface
in absolute space, with the satellite rotating around the symmetry axis at a constant angular velocity).
We consider the case where the parameters of the problem are close to their values at which a multiple
parametric resonance takes place (the frequencies of the small oscillations of the satellite’s symmetry axis
are related by several second-order resonance relations). We have found the instability and stability regions
in the first (linear) approximation at low eccentricities. c© 2005 Pleiades Publishing, Inc.

Key words: celestial mechanics, resonance, stability, periodic motion, satellite.
INTRODUCTION

Consider the motion of a satellite relative to the
center of mass in a central Newtonian gravitational
field. The satellite is a rigid body whose central ellip-
soid of inertia is an ellipsoid of revolution. We denote
the equatorial and polar moments of inertia by A
and C, respectively. The linear size of the satellite is
small compared to the size of the orbit of its cen-
ter of mass O. Therefore, the motion of the satel-
lite relative to the center of mass may be assumed
(Beletskiı̆ 1975) to have no effect on the shape of the
orbit. We assume that the center of mass moves in an
elliptical orbit with an eccentricity e.

Let Oxyz be a coordinate system rigidly bound
to the satellite and its Oz axis be directed along the
dynamical symmetry axis of the satellite. We refer the
motion of the satellite to the orbital OXY Z coordi-
nate system; its OX, OY , and OZ axes are directed
along the transversal to the orbit, the binormal, and
the radius vector of the satellite’s center of mass rel-
ative to the attractive center, respectively. We specify
the orientation of the Oxyz trihedron relative to the
orbital coordinate system by the Euler angles ψ, θ,
and ϕ.

Since the satellite is dynamically symmetric, the
r projection of its absolute angular velocity onto the
symmetry axis is constant:

r = ω(ψ̇ cos θ + ϕ̇) = r0 = const,

*E-mail: markeev@ipmnet.ru
1063-7737/05/3109-0627$26.00
ω =
dν

dt
=

ω0

(1 − e2)3/2
(1 + e cos ν)2, ω0 =

2π
T
,

where ν is the true anomaly, T is the orbital period of
the center of mass, and the dot denotes differentiation
with respect to ν.

We denote the momenta corresponding to the an-
gles θ and ψ that were made dimensionless using the
factorAω0(1− e2)−3/2 by pθ and pψ. We take the true
anomaly as an independent variable. TheHamiltonian
that describes the motion of the symmetry axis of
the satellite in the orbital coordinate system is (Mar-
keev 1967)

Γ =
p2
θ

2(1 + e cos ν)2
+

p2
ψ

2(1 + e cos ν)2 sin2 θ
(1)

− pθ sinψ − pψcotθ cosψ

− αβ(1 − e2)3/2

(1 + e cos ν)2
pψ

cos θ
sin2 θ

+ αβ(1 − e2)3/2
cosψ
sin θ

+
α2β2(1 − e2)3

2(1 + e cos ν)2
cot2θ

+
3
2
(α− 1)(1 + e cos ν) cos2 θ,

where

β =
r0
ω0
, α =

C

A
, 0 � α � 2.

In a circular orbit (e = 0), there are families of
satellite motions for which the dynamical symmetry
c© 2005 Pleiades Publishing, Inc.
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axis of the satellite occupies a fixed position in the or-
bital coordinate system, while the satellite precesses
regularly in absolute space (see the monographs by
Beletskiı̆ (1975) and Sarychev (1978) and references
therein). We will consider only one of these families
of satellite motions that came to be known as hy-
perboloidal precessions. The following solution of the
equations of motion corresponds to these:

θ0 =
π

2
, cosψ0 = −αβ, pθ0 = sinψ0, pψ0 = 0.

(2)

For solution (2), the Oz axis of dynamical symmetry
of the satellite lies in the OXY plane that is per-
pendicular to the radius vector of the center of mass
and makes the angle π − ψ0 with the OY normal to
the orbital plane. In this case, the angular velocity of
proper rotation is constant and defined by

dϕ

dt
= ω0

α− 1
α

cosψ0.

In absolute space, the symmetry axis describes a one-
sheet hyperboloid of revolution whose axis passes
through the attractive center and is perpendicular to
the orbital plane.

The hyperboloidal precession is unstable against
perturbations in θ, ψ, pθ, and pψ for a dynamically
prolate (α < 1) satellite and stable for a dynamically
oblate (α > 1) satellite. The assertion about the in-
stability can be proven by considering the charac-
teristic equation of the linearized equations of per-
turbed motion, while the stability follows from the
positive definiteness of Hamiltonian (1) (at e = 0,α >
1) in the neighborhood of solution (2) (Beletskiı̆ 1975;
Sarychev 1978).

We also assume that the set of admissible values of
the parameters α and ψ0 is given by the inequalities

1 < α � 2, 0 < ψ0 <
π

2
. (3)

The frequencies ω1 and ω2 (ω1 > ω2) of the small
oscillations of the symmetry axis in the vicinity of
its stationary position (2) in the orbital coordinate
system obey the equation

ω4 − (3α − 2)ω2 + 3(α− 1) sin2 ψ0 = 0.

The oscillation frequencies in domain (3) can be
shown to obey the inequality

0 < ω2 < 1 < ω1 < 2. (4)

If the center of mass moves in an elliptical orbit,
then the equations of motion do not admit of the
stationary solution (2). Sarychev (1965) showed that
for a weakly elliptical orbit (0 < e� 1) at any α and
ψ0 from domain (3), solution (2) transforms into the
2π-periodic (in ν) solution θ̃(ν), ψ̃(ν), p̃θ(ν), p̃ψ(ν),
which can be represented as a power series of e.
For this solution, the symmetry axis of the satellite
periodically oscillates near its stationary position (2)
with a period equal to the orbital period of the center
of mass.

Let us analyze the stability of these periodic os-
cillations in the first (linear) approximation. We in-
troduce the perturbations qj , pj (j = 1, 2) in a stan-
dard way:

θ = θ̃(ν) + q1, ψ = ψ̃(ν) + q2, (5)

pθ = p̃θ(ν) + p1, pψ = p̃ψ(ν) + p2.

TheHamiltonian F of the perturbedmotion can be
calculated using the formula

F = Γ +
dp̃θ
dν

q1 +
dp̃ψ
dν

q2 −
dθ̃

dν
p1 −

dψ̃

dν
p2, (6)

where Γ is Hamiltonian (1) with the change of vari-
ables (5).

Instability regions (regions of parametric reso-
nance) exist in the space of parameters α, ψ0, e at low
e. At e = 0, they degenerate into curves in the α, ψ0

plane, which we call generating curves. Recalling that
the part of the Hamiltonian of perturbed motion (6)
at e = 0, which is quadratic in qj , pj (j = 1, 2), has
a fixed sign (Beletskiı̆ 1975) and that the frequencies
of the small oscillations obey inequality (4), we find
on the basis of the Krein–Gelfand–Lidskii theorem
(Yakubovich and Starzhinskiı̆ 1987) that three gen-
erating curves exist in domain (3):

(1) 2ω2 = 1, (2) ω1 + ω2 = 2, (3) 2ω1 = 3. (7)

Curves (7) are shown in Fig. 1. They intersect
at point Q∗ with the coordinates α∗ = 3/2, ψ∗

0 =
arcsin(

√
6/4) ≈ 37◦45′. A multiple parametric res-

onance takes place at this point.
The goal of this study is to solve the problem of

the stability of the periodic motion of a satellite’s
symmetry axis in the first (linear) approximation for
low eccentricities e and parameters α, ψ0 close or
equal to α∗, ψ∗

0 . The multiple resonance in linear
Hamiltonian systems has been studied inadequately.
Some of the algorithms for analyzing multiple res-
onances and their applications to the dynamics of
satellites have been published quite recently (Mar-
keev 2005a, 2005b).

PERIODIC MOTION

The functions θ̃(ν), ψ̃(ν), p̃θ(ν), p̃ψ(ν) that specify
the periodic motion of the satellite’s symmetry axis
under study can be found by setting the first-order
form in the expansion of Hamiltonian (6) into a power
series of qj , pj (j = 1, 2) equal to zero. Calculations
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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show that these functions can be represented as the
expansions

θ̃(ν) =
π

2
+

9
2
(α− 1) sinψ0δ1δ2[e2a2,2 sin 2ν (8)

+ e3(a1,3 sin ν + a3,3 sin 3ν)] +O(e4),

ψ̃(ν) = ψ0 −
1
2
tanψ0[4e cos ν + e2(b0,2

+ b2,2 cos 2ν) − 9e3(α− 1)δ1δ2(b1,3 cos ν

+ b3,3 cos 3ν)] +O(e4),

p̃θ(ν) = sinψ0 +
3
2
(α− 1) sinψ0δ1[e2(c0,2

+ c2,2 cos 2ν) − 18e3δ2(c1,3 cos ν

+ c3,3 cos 3ν)] +O(e4),

p̃ψ(ν) =
1
2
tanψ0[4e sin ν − 6e2(α− 1)d2,2 sin 2ν

+ 27e3(α− 1)2δ1δ2(d1,3 sin ν

+ d3,3 sin 3ν)] +O(e4).

Here, we use the following notation:

a2,2 = 2(cos2 ψ0 − 4),

a1,3 = −3(α − 1)δ1(cos2 ψ0 − 2)(cos2 ψ0 − 4),

a3,3 = −3δ3[(α− 1) cos4 ψ0

− 2(35α − 67) cos2 ψ0 + 8(19α − 43)],
b0,2 = 2,

b2,2 = 3δ2[(α− 1) cos2 ψ0 + 2(5α − 9)],

b1,3 = 3(α − 1)δ1[(α − 1) cos6 ψ0 − (8α

− 7) cos4 ψ0 + 2(4α + 1) cos2 ψ0 − 8(3α − 4)],

b3,3 = δ3[(α− 1)2 cos6 ψ0 − (α− 1)(2α

− 1) cos4 ψ0 + 2(104α2 − 519α + 535) cos2 ψ0

− 8(α − 4)(3α + 5)],

c0,2 = 3cos2 ψ0 + 2,

c2,2 = 3δ2[5(α − 1) cos2 ψ0 − 2(3α + 1)],

c1,3 = δ1(α− 1)[(2α − 1) cos4 ψ0

− (11α − 7) cos2 ψ0 + 12(α − 1)],

c3,3 = δ3[(α− 1)(2α − 3) cos4 ψ0

− (29α2 − 50α− 3) cos2 ψ0 + 4(7α2 + 6α− 37)],

d2,2 = δ2(cos2 ψ0 − 4),

d1,3 = δ1[(25α − 34) cos4 ψ0

− 2(4α + 5) cos2 ψ0 + 8(3α − 4)],

d3,3 = 3δ3[(9α − 20) cos4 ψ0

− 6(4α − 11) cos2 ψ0 + 8(α− 4)],

δn = [(ω2
1 − n2)(ω2

2 − n2)]−1, n = 1, 2, 3.
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 1.Generating curves: (1) 2ω2 = 1, (2) ω1 + ω2 = 2,
(3) 2ω1 = 3.

Expansions (8) take the following form at pointQ∗

of the multiple parametric resonance:

θ̃(ν) =
π

2
+ e2

108
√

6
175

sin 2ν

− e3
2
√

6
55 125

(18 711 sin ν + 12503 sin 3ν) +O(e4),

ψ̃(ν) = arcsin
√

6
4

− e
2
√

15
5

cos ν

− e2
√

15
5

(
1 − 43

70
cos 2ν

)

+ e3
√

15
551 250

(188 307 cos ν − 121 375 cos 3ν)+O(e4),

p̃θ(ν) =
√

6
4

− e2
√

6
1400

(1085 − 1208 cos 2ν)

− e3
8
√

6
55 125

(1701 cos ν + 2626 cos 3ν) +O(e4),

p̃ψ(ν) = e
2
√

15
5

sin ν + e2
27
√

15
175

sin 2ν

− e3
4
√

15
91 875

(22 533 sin ν − 485 sin 3ν) +O(e4).

CONSTRUCTING THE STABILITY AND
INSTABILITY REGIONS IN THE SPACE OF

PARAMETERS α, ψ0, e

At e = 0, the surface that separates the stability
and instability regions in the space of α, ψ0, e degen-
erates into the multiple resonance point Q∗. Let the
Q∗e axis be orthogonal to the α, ψ0 plane. Consider a
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family of planes that are orthogonal to the α, ψ0 plane
and pass through the Q∗e axis. Any plane from this
family intersects with the α, ψ0 plane along a straight
line that makes an angle whose tangent we denote
by k (−∞ < k <∞) with the horizontal line. We
represent the equation for the sought-for boundary
surface in parametric form by taking the eccentricity
e and slope k as the parameters.

Retaining the first-order terms in e, we write the
equation for the sought-for boundary surface as

α =
3
2

+ es, ψ0 = arcsin
√

6
4

+ eks, (9)

where s is a function of the parameter k. Below, we
determine this function from the condition that the
point with coordinates (9) lie on the boundary surface
at given e and k.

We substitute formulas (9) for α and ψ0 into the
part F2 of Hamiltonian (6) of perturbed motion, which
is quadratic in qj , pj (j = 1, 2), and expand it into a
power series of e to obtain

F2 = F
(0)
2 + eF

(1)
2 +O(e2), (10)

where

F
(0)
2 =

3
4
q21 +

1
2
q22 −

√
10
4
q2p1 +

1
2
p2
1 +

1
2
p2
2,

F
(1)
2 =

6s− cos ν
4

q21 − 3
√

10 sin ν
10

q1q2

+
4
√

10 cos ν
5

q1p2 +
5
√

6ks− 6
√

10 cos ν
20

q2p1

− cos νp2
1 − cos νp2

2.

Let us make a linear periodic (in ν) canonical
transformation that eliminates ν from all terms of
Hamiltonian (10) up to the first order in e inclusive
according to an algorithm from Markeev (2005b).
We construct this substitution using Kamel’s modi-
fication of the Deprit–Hori method (Markeev 1978).
To simplify the calculations, we should first make a
canonical change of variables q1, q2, p1, p2 → x1, x2,

X1,X2 that eliminates the “unperturbed” part F (0)
2

from Hamiltonian (10). This change of variables can
be specified by the equality

(q1, q2, p1, p2)
t = X(ν) (x1, x2,X1,X2)

t , (11)

where the superscript “t” denotes transposition and
X(ν) is the fundamental matrix of solutions of the

system with the Hamiltonian F (0)
2 . The matrix ele-

ments xmn(ν) can be calculated using the formulas

x11 =
1
8
(3 cos

ν

2
+ 5 cos

3ν
2

),

x12 =
√

10
16

(sin
ν

2
− 3 sin

3ν
2

),
x13 =
1
8
(sin

ν

2
+ 5 sin

3ν
2

),

x14 = −
√

10
8

(cos
ν

2
− cos

3ν
2

),

x21 = −
√

10
8

(3 sin
ν

2
− sin

3ν
2

),

x22 =
1
8
(5 cos

ν

2
+ 3 cos

3ν
2

),

x23 =
√

10
8

(cos
ν

2
− cos

3ν
2

),

x24 =
1
4
(5 sin

ν

2
+ sin

3ν
2

),

x3n =
√

10
4
x2n +

dx1n

dν
,

x4n =
dx2n

dν
, n = 1, 2, 3, 4.

The Hamiltonian in variables x1, x2,X1, andX2 is
still 2π-periodic in ν and can be written as

H = H0 + eH1(x1, x2,X1,X2, ν; k, s) +O(e2),
(12)

where H0 ≡ 0, а H1 is the function F
(1)
2 from expan-

sion (10) with the change of variables (11).

Let us now make the linear canonical 2π-periodic
(in ν) transformation x1, x2,X1,X2 → y1, y2, Y1, Y2

that eliminates ν from the terms of the new Hamilto-
nian up to the first order in e. We obtain the following
formula for the new HamiltonianK:

K = eK1 +O(e2), (13)

where the functionK1 is defined by the equality (Mar-
keev 2005b)

K1 =
1
2π

2π∫
0

H1(y1, y2, Y1, Y2, ν; k, s)dν.

Calculations show that this function can be written as

K1 =
1

1024
(88

√
15ks+ 408s − 81)y2

1 (14)

− 1
2560

(1000
√

6ks− 120
√

10s+ 657
√

10)y1Y2

+
1

2048
(24

√
15ks+ 600s + 309)y2

2

+
1

5120
(600

√
6ks− 840

√
10s− 483

√
10)y2Y1

− 1
1024

(8
√

15ks− 312s + 255)Y 2
1

+
1

512
(56

√
15ks+ 120s + 483)Y 2

2 .
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We drop the terms higher than the first order in
e in Hamiltonian (13) to obtain an approximate sys-
tem whose motion can be described by a linear au-
tonomous system of differential equations of the form

dyj
dτ

=
∂K1

∂Yj
,

dYj
dτ

= −∂K1

∂yj
, j = 1, 2, (15)

where τ = eν is taken as an independent variable.
The characteristic equation of system (15) is

λ4 + aλ2 + b = 0, (16)

where

a =
1

128
(75k2 − 6

√
15k + 117)s2 +

3357
20 480

,

b =
9

65 536
(
√

15 − k)2(15k +
√

15)2s4

− 27
5 242 880

(
√

15 − k)(23 645k + 11203
√

15)s2

+
96059 601
419 430 400

.

At low e, a sufficient condition for stability is the
satisfaction of the system of inequalities

a > 0, b > 0, d = a2 − 4b > 0. (17)

If at least one of inequalities (17) is satisfied with the
opposite sign, then instability takes place.

The fact that the coefficient of s2 in the formula for
the coefficient a is positive at any k implies that the
ASTRONOMY LETTERS Vol. 31 No. 9 2005
first inequality in (17) is always satisfied. Therefore,
the values of s = s(k) corresponding to the bound-
aries of the stability and instability regions can be
found from the equation b = 0 or d = 0.

The formula for d can be written as

d =
9

25 600
(5k −

√
15)2(5k + 3

√
15)2s4

− 27
409 600

(895k − 1268
√

15)(5k + 3
√

15)s2

− 74 593 791
83 886 080

.

Both equations b = 0 and d = 0 do not change
when −s is substituted for s. It follows from this and
from equalities (9) that, to a first approximation in e,
the stability and instability regions in the α, ψ0 plane
(at fixed e) are centrally symmetric, with the pointQ∗

of multiple resonance being the center of symmetry.

Let us introduce the deviations ξ and η from point
Q∗ defined by the formulas ξ = α− 3/2 and η = ψ0 −
arcsin(

√
6/4). In view of the above symmetry, to con-

struct the boundaries of the stability and instability
regions, it will suffice to find them in the first (ξ ≥ 0,
η ≥ 0) and fourth (ξ ≥ 0, η ≤ 0) quadrants of the e =
const plane.

Omitting the details of a simple joint analysis of
the biquadratic equations b = 0 and d = 0, we imme-
diately give the result. We denote
z1(k) =
12(895k − 1268

√
15) + 99sgn(5k + 3

√
15)
√

5(23 495k2 − 15 126
√

15k + 83553)

128(5k + 3
√

15)(5k −
√

15)2
,

z2,3(k) =
3[23 645k + 11203

√
15 ∓ 95

√
(
√

15 − k)(56 315k + 13381
√

15)]

160(
√

15 − k)(15k +
√

15)2
(the upper and lower signs in the last equality cor-
respond to z2 and z3, respectively) and set si(k) =√
zi(k) (i = 1, 2, 3). Here, s1 is the root of the equa-

tion d = 0, while s2 and s3 are the roots of the equa-
tion b = 0 with s3 ≥ s2>s1>0.

At 0 ≤ k < k∗ =
√

15 ≈ 3.873, three regions of
the surface that separates the stability and instability
regions exist in the first quadrant (ξ ≥ 0, η ≥ 0); these
can be specified parametrically by the equalities ξi =
esi(k), ηi = eksi(k), and i = 1, 2, 3. If k∗ ≤ k <∞,
there exists only one region of the boundary surface
specified by the equalities ξ1 = es1(k), η1 = eks1(k).
In the fourth quadrant (ξ ≥ 0, η ≤ 0), there exist
one region of the boundary surface ξ1 = es1(k),
η1 = eks1(k) for k satisfying the inequality −∞ <

< k ≤ k∗∗ = −13 381
√

15/56 315 ≈ −0.920 and three
regions ξi = esi(k), ηi = eksi(k), i = 1, 2, 3 for k∗∗ <
k < 0.

Analysis of the last two inequalities in (17) shows
that if 0 ≤ k < k∗ (in the first quadrant) or k∗∗ <
k < 0 (in the fourth quadrant), then two instability
regions defined by the inequalities 0 ≤ ξ < ξ1 и ξ2 <
ξ<ξ3 exist on the straight line η = kξ. If, however,
k∗ ≤ k <∞ (in the first quadrant) or −∞ < k ≤ k∗∗
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Fig. 2. Stability and instability regions in the e = 0.002
plane.

(in the fourth quadrant), then one instability region
0 ≤ ξ < ξ1 exists on the straight line η = kξ.

Figure 2 shows the stability and instability regions
constructed using the above formulas. We set the
eccentricity equal to 0.002. The instability regions are
hatched.

STABILITY AND INSTABILITY REGIONS IN
TWO SPECIAL CASES

Consider the special cases where one of the pa-
rameters ψ0 or α is fixed (ψ0 = arcsin(

√
6/4) or α =

 

e

 

0 0.003 0.006
1.4968

1.5000

1.5032
 

α

 

1

2
3

4

5
6

Fig. 3. Stability and instability regions at ψ0 = ψ∗
0 =

arcsin

√
6

4
.

3/2). In these special cases, the construction of the
stability and instability regions is simplified greatly.
In contrast to the previous section, where we con-
structed the boundary surfaces in the space of three
parameters α, ψ0, and e, here we need to construct
the boundary curves in the planes of two parameters
e, α or e, ψ0. We constructed these curves using an
algorithm from our previous paper (Markeev 2005b).

In the case of fixed ψ0 (ψ0 = arcsin(
√

6/4) ≈
0.659058), three instability regions exist in the e,
α plane near point (0, 3/2) (Fig. 3). The numbers
1, 2, . . . , 6 in Fig. 3 mark the six boundaries αj =
αj(e), j = 1, 2, . . . , 6 of these regions. Calculations
show that the equations for these boundaries can be
specified, to the third order in e, by the equalities

α1(e) = 1.5 − 5.266907e

+ 58.501637e2 − 653.497628e3 ,
α2(e) = 1.5 − 0.516907e

+ 0.284027e2 + 2.266164e3 ,
α3(e) = 1.5 − 0.476119e

+ 0.044143e2 + 0.821735e3 ,
αi+3(e) = αi(−e), i = 1, 2, 3.

In the case of fixed α (α = 3/2), one insta-
bility region exists in the e, ψ0 plane near point
(0, arcsin(

√
6/4)) (Fig. 4). Its boundaries can be

specified, to the third order in e (7, 8 in Fig. 4), by
the equations

α7(e) = 0.659058 − 1.670926e

+ 3.971639e2 − 23.007582e3 , α8(e) = α7(−e).

 

e

 

0 0.0030 0.0064
0.648

0.659

0.670
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8

Fig. 4. Stability and instability regions at α = α∗ =
3

2
.
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The instability regions in Figs. 3 and 4 are
hatched.

CONCLUSIONS

We analyzed the motion of a dynamically symmet-
ric satellite, a rigid body, relative to the center of mass
in an elliptical orbit.We found a periodic (in the orbital
coordinate system) motion of the symmetry axis of the
satellite, to the third order in eccentricity, that arises
from the stationary position of the axis in a plane per-
pendicular to the radius vector of the center of mass in
a circular orbit. We constructed the instability regions
of this motion for parameters of the problem close
or equal to their values corresponding to a multiple
parametric resonance (when the frequencies ω1 and
ω2 of the small oscillations of the symmetry axis in a
circular orbit simultaneously obey the two resonance
relations 2ω1 = 3 and 2ω2 = 1).
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Original Russian Text Copyright c© 2005 by Martynova, Orlov.
Search for and Study of Nearly Periodic Orbits in the Plane Problem
of Three Equal-Mass Bodies

A. I. Martynova1 and V. V. Orlov2*

1St. Petersburg Forestry Engineering Academy, Institutskiı̆ per. 5, St. Petersburg, 194022 Russia
2Sobolev Astronomical Institute, St. Petersburg State University, Universitetskiı̆ pr. 28, St. Petersburg, Peterhof,

198504 Russia
ReceivedMarch 14, 2005

Abstract—We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by
numerically simulating the dynamics of triple systems.We identify families of orbits in which all three points
are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the
set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and
identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial
values at certain times (which are approximately multiples of the period). We classify the nearly periodic
orbits by the structure of trajectory loops over one period. We have found the families of orbits generated
by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found
families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with
prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with
retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are
identified among the families found. c© 2005 Pleiades Publishing, Inc.

Key words: celestial mechanics, periodic orbits, three-body problem.
INTRODUCTION

Periodic solutions play an important role in the
dynamics of many systems encountered in study-
ing various natural phenomena. In particular, ac-
cording to the KAM theory, stable periodic orbits
are surrounded by a nonzero-measure set of tra-
jectories with finite motions (see, e.g., Contopou-
los 2002). In this paper, we call these orbits nearly
periodic. These orbits largely determine the phase
portrait of a dynamical system. For example, the or-
bit by von Schubart (1956) in the rectilinear three-
body problem (Hietarinta and Mikkola 1993) plays
such a role. An exponential divergence of neighboring
phase trajectories that generates stochastic motions
(see, e.g., Lichtenberg and Lieberman 1982) can be
observed in the vicinity of unstable periodic orbits.

Recently, several new families of periodic orbits
have been found in the general plane three-body
problem (see, e.g., Moore 1993; Simo 2002; Van-
derbei 2003). The best-known family is the solution
in the form of a figure eight where all three equal-
mass bodies move one after another along the same
closed curve of the corresponding shape (Chenciner
and Montgomery 2000). This kind of periodic orbits
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was called choreography. The figure eight is the
only known choreography in the problem of three
equal-mass bodies the stability of which has been
established.

Minimization of the action functional is occa-
sionally used to find periodic solutions (see, e.g.,
Moore 1993; Vanderbei 2003). As a result, a periodic
orbit is obtained as the solution of the optimization
problem.

The figure-eight orbit has a zero angular mo-
mentum and is intermediate between the other two
stable periodic orbits found by von Schubart (1956)
and Broucke (1979) in the two extreme cases of
the three-body problem, rectilinear and isosceles.
Orlov et al. (2004) showed that these three orbits
are connected by a kind of a bridge of long-lived, but
breaking-up trajectories. These trajectories exhibit
the properties of different periodic orbits at different
times and can change these properties during their
evolution; i.e., the phase trajectory “sticks” alter-
nately to the neighborhood of a particular periodic
orbit.

All three bodies in these three periodic orbits are
sometimes on one straight line (the so-called syzy-
gies take place). Searching for other families of pe-
riodic orbits with syzygies is of considerable interest.
This is the goal of our study.
c© 2005 Pleiades Publishing, Inc.
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THE TECHNIQUE

Consider the following method of specifying initial
conditions. Let all three bodies be on one straight
line at the initial time. Let us make this straight line
coincident with the OX axis and place the coordinate
origin at the center of mass of the triple system.
Since we consider only two-dimensional motions, we
assume that the bodies are always in theXOY plane;
i.e., the bodies have zero coordinates and velocities in
the Z direction.

Let us choose the following system of units: the
gravitational constant is G = 1, the masses of the
bodies are equal to unity, and the total energy of
the triple system is E = −1. We take the maximum
separation between the components M1M3 = 1 as
the unit of length (see Fig. 1). Let the central bodyM2

be closer to the extreme bodyM3 and lie at a distance
δ ≥ 0 from pointO at the initial time. The quantity δ ∈
[0, 1/3) is a dimensionless parameter of the problem if
it is expressed in terms of the separationM1M3 = 1.
The coordinates of the bodiesM1 andM3 are

x1 = −1 + δ

2
, (1)

x3 =
1 − δ

2
.

Consider the magnitudes of the velocity vectors
of the bodies (V1, V2, V3) and the angles (ϕ1, ϕ2,
ϕ3) that the velocity vectors form with the OX axis.
We will analyze the motions of the bodies in a fixed
nonrotating coordinate system associated with the
center of mass O of the triple system. The center-of-
mass integrals would then hold:

V1 cosϕ1 + V2 cosϕ2 + V3 cosϕ3 = 0, (2)

V1 sinϕ1 + V2 sinϕ2 + V3 sinϕ3 = 0.

In addition, the total energy of the system would be
conserved,

E = −1 =
1
2
(V 2

1 + V 2
2 + V 2

3 ) (3)

− 1 − 2
1 − 3δ

− 2
1 + 3δ

.

Hence,

V 2
1 + V 2

2 + V 2
3 =

8
1 − 9δ2

. (4)

We find the magnitudes of the velocity vectors of all
three bodies from Eqs. (2) and (4):

V1 = A| sin(ϕ3 − ϕ2)|, (5)

V2 = A| sin(ϕ3 − ϕ1)|,
V3 = A| sin(ϕ2 − ϕ1)|,
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Fig. 1. Choice of initial conditions.

where

A =
2
√

2√
1 − 9δ2

[sin2(ϕ2 − ϕ1) (6)

+ sin2(ϕ3 − ϕ1) + sin2(ϕ3 − ϕ2)]−1/2.

Imposing additional constraints on the total en-
ergy E (or the separationM1M3) causes the magni-
tudes of the velocity vectors of the bodies to be scaled.
This bounds the set of possible solutions, since, in
fact, we consider only a four-dimensional section (δ,
ϕ1, ϕ2, ϕ3) of the five-dimensional manifold of initial
conditions.

To find nearly periodic solutions, we scan the sec-
tions [0 ≤ δ < 1/3; 0◦ ≤ ϕ1, ϕ2, ϕ3 < 360◦] at steps
of ∆δ = 0.001 and ∆ϕ = 1◦. To avoid double colli-
sions, we do not consider the case

sin(ϕi − ϕj) = 0 (7)

at i �= j (i, j = 1, 2, 3).
There are combinations of angles (ϕ1, ϕ2, ϕ3) that

yield symmetric trajectories, which can be used to
check the calculations.

To find nearly periodic trajectories in the fixed co-
ordinate system, we calculate the functional

Φ =
|r − r0|
|r0|

+
|ṙ− ṙ0|
|ṙ0|

, (8)

where r and ṙ are the current values of the coordinate
and velocity vectors for all three bodies; r0 and ṙ0 are
their initial values. For each set of initial conditions (δ,
ϕ1, ϕ2, ϕ3), the calculations were continued for 100τ ,
where τ is the mean crossing time:

τ =
G(M1 +M2 +M3)5/2

(2|E|)3/2
=

9
√

3
2
√

2
. (9)

Here, Mi are the masses of the bodies. We chose
trajectories in which the minimum of functional (8)
was less than 0.1. One may expect the motions in
these systems to be nearly periodic.

The calculations were performed using the
TRIPLE code written by Sverre Aarseth (University
of Cambridge, Great Britain). The code uses the
integrator by Bulirsch and Stoer (1966) and the
regularization of the equations of motion by a method
developed by Aarseth and Zare (1974).
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Fig. 2. Initial conditions for nearly periodic trajectories in
the following sections: (a) δ, ϕ1; (b) δ, ϕ2; and (c) δ, ϕ3.
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correspond to chainlike, leafed, and looplike orbits, re-
spectively; the triangle denotes a ducati-type orbit.
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Fig. 4. Three-dimensional distribution of points in (ϕ1, ϕ2, ϕ3) space at δ ∈ [0, 0.29].
RESULTS AND DISCUSSION

The initial conditions for nearly periodic trajecto-
ries with minΦ < 0.1 can be represented on sections
of four-dimensional (δ, ϕ1, ϕ2, ϕ3) parameter space.

Figure 2 shows the (δ, ϕi) sections at i = 1, 2, 3.
All figures are symmetric relative to the ϕi = 180◦
straight lines. There are concentrations of points near
ϕi = 90◦ and ϕi = 270◦. These sets are elongated
along the δ axis and become denser as δ → 1/3.
Small clusters near the points (δ, ϕi) = (0.075, 180◦)
are also observed in the (δ, ϕ1) and (δ, ϕ3) diagrams.
Variously shaped zones of reduced concentration of
points are observed along with their clusters. The
boundaries of these zones can be both sharp and
blurred.

Figure 3 shows the (ϕi, ϕj) sections at i < j.
These distributions of points are symmetric relative
to the bisectors ϕi = ϕj rotated through 180◦. There
ASTRONOMY LETTERS Vol. 31 No. 9 2005
are no points on the bisector itself, because we do not
consider equal angles, ϕi = ϕj . Note that the sets of
points are roughly mirror-symmetric relative to the
ϕi = ϕj diagonal and the ϕi = 360◦ − ϕj diagonal
orthogonal to it. The (ϕ1, ϕ3) diagram contains three
compact sets near the points ϕ1 = ϕ3 = 0◦ = 180◦ =
360◦ (these do not show up on the other two sections).
These sets correspond to small δ. Weak, elongated
clusters of points along the ϕ1 = 180◦ and ϕ3 = 180◦
straight lines are seen in Figs. 3a and 3c. At small
fixed δ, the clusters of points are isolated in the three-
dimensional space of angles (ϕ1, ϕ2, ϕ3). The total
three-dimensional section for δ ∈ [0, 0.29] shown in
Fig. 4 illustrates this result. These clusters join as δ
increases.

Consider the main types of nearly periodic orbits
that we found by the scanning method described
above. We chose only the orbits with relatively short
periods P < 10τ . These were separated into several
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Fig. 5. (a) Ducati-type orbit with the initial conditions
δ = 0.031, (ϕ1, ϕ2, ϕ3) = (51◦, 286◦, 81◦); (b) evolution
of the orbit during t = 10τ .

families according to P . The shortest period for the
orbits under consideration is P ≈ 1.3τ . A total of
26 families were identified. Some of the families are
isolated, while others are joined in periods. The sep-
arations between the periods of neighboring families
are different at P < 3.5τ and approximately equal,
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Fig. 6. Chainlike orbit with the initial conditions δ =
0.055, (ϕ1, ϕ2, ϕ3) = (174◦, 159◦, 169◦).

∼0.3τ , at longer periods. The width of each family is
also ∼0.3τ .

The table lists themain parameters of the identified
families of nearly periodic orbits at δ ≤ 0.23. The fol-
lowing data are given in the table: the family number;
the mean period of a given family P̄ in units of the
mean crossing time τ (9); the number of trajectories
in the family with the periods that differ from the
mean P̄ by no more than 0.15τ ; the values of (δ, ϕ1,
ϕ2, ϕ3) for individual trajectories—representatives of
various types of orbits within a given family; the pe-
riod P (in units of τ ); the minima of the functional Φ
(8) and the Lagrangian L for these orbits; and a brief
description of the structure of trajectory loops. The
Lagrangian

L = T − U, (10)

where T and U are the kinetic and potential energies
of the triple system, respectively, was calculated at the
time the functional Φ reached its deepest minimum.

Basically, three types of structure can be identified:
leafed, looplike, and chainlike. The leafed structures
correspond to retrograde motions, where the inner
and outer binaries rotate in the opposite directions.
The looplike structures correspond to prograde mo-
tions, where these binaries rotate in the same direc-
tion. The chainlike trajectories are generated by a
stable periodic orbit found by von Schubart (1956)
in the rectilinear three-body problem. In these triple
systems, one of the bodies (central body) undergoes
successive encounters with each of the extreme bod-
ies without any encounter between the latter.

In addition to the main types of structures, we
observe certain peculiar orbits marked by asterisks
in the first column of the table. The Lagrangian L
of these systems is small compared to other systems
from the same family with the same period P̄ . The
peculiarities of these orbits will be discussed below.

The number of loops and leaves increases with
period. Systems with different numbers of loops or
leaves are observed for some of the families at the
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 7. Precession of a chainlike orbit during about 100 periods. The initial conditions are δ = 0.020; (ϕ1, ϕ2, ϕ3) =
(5◦, 45◦, 10◦).
same period. In general, within the same family of
nearly periodic orbits, the Lagrangian L increases
with increasing parameter δ (i.e., hierarchy of the
system’s initial configuration) at the time the func-
tional Φ reaches its minimum. Note also that the
situation where two of the three values ϕi(i = 1, 2, 3)
are close, while the third value differs significantly
from these, is typical. At short periods, the number
of orbits n with Φ < 0.1 is relatively small. At P̄ =
3.6, the number n reaches its maximum probably
through an increase in the number of chainlike orbits
generated by von Schubart’s orbit. As the period P̄
increases further, n does not change greatly.

Let us consider examples of nearly periodic or-
bits. Figure 5a shows a ducati-type orbit (see, e.g.,
Moore 1993; Vanderbei 2003). The trajectories of the
bodies form a crosslike structure: one of the bodies
moves along a nearly circular curve, while the other
two bodies move along elongated, mutually orthog-
onal closed curves. As the orbit evolves further, it
becomes chainlike (Fig. 5b) in a time≈(3−4)τ (about
3 periods).
ASTRONOMY LETTERS Vol. 31 No. 9 2005
Figure 6 shows an example of a chainlike or-
bit. The central body oscillates between the extreme
bodies. The orbits of the bodies become alternately
elongated and circular. As the orbit evolves further,
it begins to smear and precess. An example of a
precessing chainlike orbit is shown in Fig. 7.

An example of an eight-leaf orbit is shown in
Fig. 8a. As the computational time increases, the
structure exhibits libration and precession (Fig. 8b).
As a result, an original fan-shaped pattern is formed
inside the ring formed by the trajectory loops of the
third body. With the passage of time, this pattern
becomes symmetric about the center of mass of the
triple system.

An example of a looplike orbit is shown in Fig. 9a.
The trajectory loops of each of the bodies without
precession become thicker with time (Fig. 9b).

Let us consider the locations of our identified tra-
jectories (see the table) in the region of initial con-
ditions. For this purpose, we plot the initial values of
the parameters (ϕ1, ϕ2, ϕ3) for these trajectories in
Fig. 3. The stars, circles, and crosses correspond to
chainlike, leafed, and looplike orbits, respectively. The
triangle marks a ducati-type trajectory. The clusters
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Parameters of the families of nearly periodic orbits

N P̄ , τ n δ ϕ1, deg ϕ2, deg ϕ3, deg P, τ Ф L Notes

1� 1.3 1 0.031 51 286 81 1.32 0.049 8.38 Ducati

2 1.8 8 0.055 174 159 169 1.80 0.043 5.76 Chain

0.030 272 78 285 1.76 0.051 8.24 6 leaves

3 2.2 7 0.096 93 247 106 2.14 0.059 7.76 8 leaves

4 2.5 28 0.087 275 81 285 2.53 0.034 8.37 10 leaves

5 2.9 27 0.025 201 97 86 2.90 0.067 6.51 10 loops

0.156 228 115 208 2.89 0.070 7.96 (5 + 1) + (4 + 2) leaves,
hierarchy

0.137 276 62 290 2.88 0.047 8.67 12 leaves

6 3.2 67 0.073 342 54 80 3.24 0.014 6.74 12 loops

0.055 256 101 226 3.25 0.068 8.21 14 leaves

0.166 115 265 123 3.23 0.088 8.61 16 leaves

7 3.6 516 0.057 335 87 91 3.60 0.040 6.50 14 loops

0.075 181 82 176 3.62 0.017 6.66 Chain

0.145 86 283 78 3.59 0.022 8.98 16 leaves

8 3.9 133 0.114 14 312 286 3.94 0.016 7.05 16 loops

0.170 95 243 106 3.93 0.021 9.13 18 leaves

9 4.3 167 0.106 13 303 282 4.28 0.017 6.98 20 loops

0.126 167 227 257 4.28 0.016 7.25 18 loops

0.173 264 112 254 4.27 0.025 9.29 20 leaves

10 4.6 186 0.127 186 124 103 4.61 0.022 7.06 20 loops

0.197 97 258 101 4.60 0.023 9.92 22 leaves

0.204 270 266 115 4.60 0.025 10.18 18 loops

11 5.0 192 0.140 332 276 286 4.94 0.005 7.11 22 loops

0.221 91 324 87 4.93 0.021 10.80 24 leaves

12 5.3 226 0.152 332 275 287 5.27 0.012 7.28 24 loops

0.163 85 273 81 5.27 0.020 9.56 26 leaves

0.226 90 93 220 5.26 0.027 11.11 22 loops

13 5.6 259 0.146 317 274 280 5.60 0.008 7.24 26 loops

0.210 93 231 102 5.60 0.013 10.54 28 leaves

14 5.9 222 0.147 10 308 284 5.93 0.009 7.54 28 loops

0.171 118 93 98 5.92 0.012 7.60 30 loops

0.179 296 276 270 5.92 0.019 7.72 28 leaves

0.197 273 103 270 5.92 0.012 10.36 30 leaves

15 6.3 224 0.166 338 277 291 6.25 0.008 7.41 30 loops

0.220 261 125 253 6.24 0.015 11.02 32 leaves

16 6.6 245 0.165 49 86 80 6.57 0.016 7.59 32 loops

0.200 266 64 273 6.57 0.014 10.49 34 leaves
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Table. (Contd.)

N P̄ , τ n δ ϕ1, deg ϕ2, deg ϕ3, deg P, τ Ф L Notes

17 6.9 222 0.210 10 71 46 6.89 0.011 9.02 34 loops

0.201 96 306 86 6.89 0.019 10.54 36 leaves

0.229 97 104 230 6.89 0.019 11.78 32 loops

18 7.2 209 0.178 323 285 275 7.21 0.011 7.89 36 loops

0.191 90 101 243 7.21 0.015 10.28 34 loops

0.220 109 259 108 7.21 0.025 11.62 38 leaves

19 7.5 230 0.183 317 274 283 7.53 0.013 8.03 38 loops

0.199 215 248 261 7.53 0.012 8.48 38 leaves

0.217 278 56 289 7.53 0.015 11.29 40 leaves

20 7.9 196 0.186 28 80 68 7.85 0.010 8.15 40 loops

0.211 86 280 82 7.84 0.014 11.12 42 leaves

0.229 84 75 311 7.84 0.015 11.76 38 loops

21 8.2 201 0.178 150 97 107 8.17 0.008 7.99 42 loops

0.221 79 67 305 8.16 0.021 11.32 40 loops

0.232 92 227 100 8.16 0.010 12.02 44 leaves

22 8.5 177 0.188 48 92 105 8.48 0.011 8.28 44 loops

0.192 269 58 283 8.48 0.020 10.44 46 leaves

0.223 89 84 291 8.48 0.015 11.66 42 loops

23 8.8 183 0.163 41 91 86 8.80 0.012 7.74 46 loops

0.186 197 258 244 8.80 0.008 8.24 48 loops

0.202 278 290 67 8.79 0.018 10.65 44 loops

0.218 265 47 276 8.79 0.016 11.39 48 leaves

24� 9.1 189 0.001 326 276 346 9.01 0.039 6.08 Chain, three
compressed figures eight

0.225 126 105 95 9.11 0.012 9.58 50 leaves

0.232 89 102 73 9.10 0.010 9.79 48 loops

25 9.4 168 0.213 162 205 244 9.42 0.010 9.75 52 loops

0.184 259 119 237 9.42 0.019 10.02 52 leaves

0.224 272 265 120 9.42 0.009 11.76 48 loops

26 9.8 169 0.007 336 216 316 9.92 0.076 6.71 Chain

0.226 218 262 247 9.73 0.010 9.74 54 loops

0.225 98 237 109 9.73 0.011 11.74 54 leaves
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 8. (a) Eight-leaf orbit with the initial conditions δ =
0.096; (ϕ1, ϕ2, ϕ3) = (93◦, 247◦, 106◦); (b) evolution of
the orbit during t = 15τ .

and filaments formed by these points are observed.
These points concentrate toward the ϕi = ϕj , ϕi +
ϕj = 360◦ (i, j = 1, 2, 3; i �= j) diagonals. In Figs. 3a
and 3c, the groups of points corresponding to the
initial conditions for orbits with looplike structures
concentrate toward the ϕ1 = ϕ2 and ϕ2 = ϕ3 diag-
onals. For orbits with leafed structures, the points
are located mostly near the ϕ1 + ϕ2 = 360◦ and ϕ2 +
ϕ3 = 360◦ diagonals. In Fig. 3b, the points of initial
conditions for both types of structures are located
mostly near the ϕ1 = ϕ3 diagonal. Some of the initial
conditions for von Schubart’s chainlike orbits (and
only these) are near the centers of the squares (ϕi ≈
180◦, i = 1, 2, 3).
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Fig. 9. (a) Looplike structure with the initial conditions
δ = 0.127; (ϕ1, ϕ2, ϕ3) = (186◦, 124◦, 103◦); (b) evolu-
tion of the orbit during t = 20τ .

The trajectories presented above (see the table
and Figs. 5–9) were analyzed during one period. As
the computational time increases, the periodic pat-
tern is blurred by the precession and/or libration of
orbits relative to the equilibrium orbit. Depending
on how close the initial conditions are to the exact
periodic solution and on the stability of this solution,
the following changes in the pattern of motion can
be observed: (1) thickening of the regions filled with
the orbits of the bodies and the formation of ribbon
structures (Fig. 10a); (2) libration of the trajecto-
ries of the bodies (Fig. 10b); and (3) precession of
the orbits (Fig. 10c). By precession and libration we
mean, respectively, the systematic rotation of the orbit
around the center of mass of the triple system and
ASTRONOMY LETTERS Vol. 31 No. 9 2005
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Fig. 10. Change in the pattern of motion with time:
(a) ribbon structure (the initial conditions are δ =
0.127; (ϕ1, ϕ2, ϕ3) = (186◦, 124◦, 103◦)); (b) libration
(δ = 0.096; (ϕ1, ϕ2, ϕ3) = (93◦, 247◦, 106◦)); (c) pre-
cession (δ = 0.020; (ϕ1, ϕ2, ϕ3) = (5◦, 45◦, 10◦)).
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the oscillations of the trajectory loops within certain
limits. A combination of these evolutionary scenarios
(e.g., the combination of libration and precession) is
possible. In those cases where the periodic orbit is
unstable or the initial conditions are far from being
periodic, the ejections of bodies begin after a certain
time, and the evolution of the triple system eventually
ends with its breakup, the escape of one of the bodies
in a hyperbolic orbit.

Two types of symmetry are observed in the nearly
periodic orbits we found: axial (Fig. 6) and central
(Figs. 8 and 9). There are both nonhierarchical sys-
tems (Fig. 6) and hierarchical systems (in these sys-
tems, the center of mass of the close pair is displaced
relative to the center of mass of the triple) among the
trajectories with axial symmetry.

CONCLUSIONS

We analyzed the families of nearly periodic orbits in
the general plane problem of three equal-mass bodies
in a fixed coordinate system. We considered a four-
dimensional section of the space of initial conditions
at fixed total energy of the triple system, E = −1. We
restricted our analysis to orbits with syzygies, where
all three bodies are on one straight line at the initial
time.

We identified three main types of nearly periodic
orbits:

(1) Chainlike orbits generated by von Schubart’s
stable orbit (von Schubart 1956) (Fig. 6).

(2) Leafed orbits for the retrograde motions of the
inner and outer binary subsystems (Fig. 8).

(3) Looplike orbits for the prograde motions of
these binaries (Fig. 9).

In general, the leafed and looplike structures are
inside the oval region that is bounded by the ring filled
with the trajectory loops of the third distant body. The
orbital period, the Lagrangian at the time the func-
tionalΦ (8) reaches its deepest minimum, the number
of loops (leaves), and the complexity of the orbital
structure, on average, increase with parameter δ, i.e.,
with the hierarchy of the initial configuration.

The following questions are of considerable inter-
est:

(1) Studying the dependences of the functional Φ
(8) on the initial conditions (δ; ϕ1, ϕ2, ϕ3) as well as
the period P on these parameters and the functional.

(2) Investigating the topology of orbits in velocity
space.

(3) Analyzing the structures (including the clus-
ters and filaments found) on various sections of the
space of initial conditions as a function of the number
of leaves and loops and as a function of the size and
shape of chainlike orbits;
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(4) Localizing the exact periodic orbits when the
total energy of the triple system (the fifth parameter)
is varied.

(5) Determining the stability or instability of the
periodic orbits found depending on the geometry of
the trajectory loops.

(6) Analyzing the various evolutionary scenarios
(precession, libration, ribbon structure, etc.).

(7) Investigating the changes in the structure
of orbits when going to three-dimensional physical
space.

(8) Studying other types of periodic orbits, includ-
ing those in rotating coordinate systems.

Note that the trajectory loops of the components
of the inner pair can form the winding of a cylinder
in the three-dimensional case. One may expect the
orbits of the components of this binary in projection
onto a certain plane when rotating the cylinder axis to
be topologically identical to the trajectories obtained
in the two-dimensional case.

In addition, other families of periodic orbits, in-
cluding choreographies, can alsomanifest themselves
when varying the total energy (see, e.g., Simo 2002).

Apart from the case of equal masses, considering
nearly periodic orbits in triple systems with com-
ponents of different masses, including those in the
extreme cases where one or two masses approach
zero, is also of interest. Such problems can be of great
importance for both stellar dynamics and celestial
mechanics.
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