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Magnetic flux distribution in type II superconductors with
large demagnetization and a high edge barrier
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Leningrad Region, Russia

S. A. Churin
Institute of Physics of Microstructures, Russian Academy of Sciences, 603600 Nizhny
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The trapped flux distribution in thin wafers of both polycrystalline and
granular superconductors having large demagnetization and edge bar-
riers of different heights is measured by means of polarized neutrons. It
is shown that the nature of the critical state in polycrystalline wafers,
unlike that in a ceramic wafer, is not described by the Bean model.
© 1999 American Institute of Physics.@S0021-3640~99!00124-3#

PACS numbers: 74.80.Bj, 74.60.Ge, 75.20.2g

In situations where demagnetization effects can be ignored, the magnetic respo
type II superconductors is well described by the Bean model1 with the appropriate critical
current densityJC(B,T). In this geometry the flux lines are parallel, and the local curr
densityJ is governed by the gradient of the magnetic inductionB, i.e., J5u¹Bu. On the
other hand, demagnetization effects become significant in a geometry characterize
large demagnetization factor~e.g., thin films in a perpendicular field!. For example, in
situations where the thicknessd of the sample is much smaller than its widthW the
current density is essentially determined entirely by the curvature of the flux lines.
relationship is evident at once from Maxwell’s equation (4p/c)J5¹3B5¹B3b
1B¹3b, whereb5B/B. The first term on the right-hand side of the equation gives
gradient ofB and is proportional to 1/W; the second term characterizes the curvature
the flux lines and is proportional to 1/d.

The influence of demagnetization on the way in which the magnetic flux penet
a type II superconductor has been analyzed theoretically in several papers. In the ex
of a superconducting strip it has been shown2 how the magnetic flux profiles and th
current densities for the Bean model change when demagnetization effects are tak
account. Three prominent features are discernible in this case: 1! Current flows in the
entire sample~even in the part where the magnetic field has not penetrated!; 2! the
magnetic flux profile exhibits divergence at the edges of the sample; 3! the relationJ
5u¹Bu is not satisfied. However, despite all the differences in the distributions of
magnetic flux and the current density, the magnetic flux also begins to penetrate fro
edges of the sample and advances toward the middle as the external field is incre

The structure of the critical state in superconducting samples has been ana
7870021-3640/99/70(12)/5/$15.00 © 1999 American Institute of Physics
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theoretically,3,4 not only with demagnetization effects taken into account, but also w
allowance for the edge barrier. It follows from this analysis that when, for exam
superconducting films are placed in a magnetic field perpendicular to their plane
critical state should be observed to have a structure that differs fundamentally fro
Bean model.1 The main distinguishing feature of this situation is that, without pinni
the magnetic flux immediately penetrates to the very middle of the film and beco
concentrated there. The distribution of the magnetic flux along the width of the sa
~along they axis! in this case is described by the equation

B~y!5H H0A b224y2

W224y2
for uyu,b/2,

0 for b/2,uyu,W/2,

whereH0 is the magnitude of the applied magnetic field, andb is the width of the region
occupied by vortices.

The presence of bulk pinning, on the other hand, has the effect that instead
single region occupied by the magnetic flux, there are two such regions separate
certain distance, which depends on the pinning force~the greater the pinning force, th
greater is this distance!. Both regions broaden as the external magnetic field is increa
Their outer boundaries approach the edges of the sample, and the inner boun
approach the middle, where the two regions merge. For a large pinning force the dis
between the flux-occupied regions can be of the order of the sample width. In this
the structure of the magnetic flux in the sample is essentially indistinguishable from
structure described by the Bean model.

We have attempted to compare the magnetic properties of a ceramic~granular!
sample and a quasi-single-crystalline~nongranular! sample in this geometry. For th
investigation we prepared prism-shaped wafers from these materials (TC592 K!. The
side surfaces of the polycrystalline sample were reasonably smooth after polishin
comprised a mosaic of large single-crystalline grains with surface dimensions of the
of 0.2 cm2 each. Their thickness was obviously much smaller than the thickness o
entire wafer, because the mosaic pattern on the surface of the opposite face was di
Also visible under a microscope, in addition to the large single-crystalline surfaces,
streaks of some kind of inclusions with colors that stood out in sharp contrast wit
single-crystalline grains. We regard the object in question as a coarse polycrys
block. Initially a wafer of thickness 1.3 mm was cut from this block. Once the
distribution had been measured in this wafer, it was ground down to a thickne
0.65 mm, and again the flux distribution was measured. The samples had widt
5–7 mm and a height of 25 mm.

Information on the distribution of the magnetic flux trapped by a superconduc
sample before and after application of an external magnetic field was obtained by
dimensional neutron polarization analysis. This residual distribution exhibits the ma
in which the field penetrates the sample.

We have described the measurement procedure in an earlier paper.5 A neutron beam
was generated by slits of width 0.4 mm and height 7 mm and was directed alon
x axis. After the sample had been cooled to the required temperature (T,TC), a mag-
netic field directed along the thickness of the wafer~along thex axis! was applied and
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then turned off. The sample was oriented across the neutron beam~along they axis!, and
the three projections of the polarization vector of the beam transmitted through
sample were measured at each siteyi of the sample for each initial polarization vecto
The initial polarization vectors were directed in succession along each of the three
tually perpendicular axes (x, y, z). After the nine components of the polarization vecto
had been measured, the sample was heated toT.TC , and the entire procedure wa
repeated with a new magnitude of the external magnetic field.

The angle of rotationw of the polarization vector is proportional to the magne
inductionB (w5g/v•B•L, whereL is the length of the segment of the neutron trajecto
with BÞ0, v is the neutron velocity, andg is the gyromagnetic ratio of the neutron!.
Consequently, the magnetic flux distribution in the superconducting sample can be
mated from the dependence of the angle of rotation on the position of the sample re
to the neutron beam.

FIG. 1. Experimental results for a polycrystalline sample of thickness 1.3 mm in various applied fieldsT
580 K for half the sample:~a! dependence of the angle of rotation of the polarization vector on the coord
y; ~b–d! behavior of the modulus of the polarization vector as the position of the sample is changed.
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The experimental results are shown in Figs. 1 and 2. AtT580 K the field begins to
penetrate the polycrystalline sample in a field of approximately 50 Oe. As the ext
field is increased, the flux begins to concentrate in the middle of the sample (y50 mm!,
the total level increasing slightly throughout the sample~Fig. 1a!.

When the polarization vectorPx was initially directed along thex axis, it remained
unchanged, confirming the alignment of its direction with the field~Fig. 1b!. The vectors
Py and Pz , on the other hand, rotated through the anglew. Their moduli remained
constant only at the edges of the sample; in the middle, where flux concentration
place, depolarization was observed, i.e., the modulus decreased~Figs. 1c and 1d!. The
origin of the depolarization remains an open question. At least two causes are po
The first is inhomogeneity of the scattered field. In all probability, however, this fa
can be ruled out, because reducing the sample thickness by one half~Fig. 2! causes the
depolarization to decrease, even for large sample magnetizations. The second c
associated with the fact that the flux penetrates the sample not only along dire
parallel to they axis, but also along directions parallel to thez axis. The penetration o
vortices along thez axis produces a flux distribution nonuniform in height, whose c
tribution to the depolarization is governed by the height of the slit~7 mm!. It is important
to note that if the flux distribution were described by the Bean model, the he
nonuniform flux distribution could not reach the zone irradiated by the beam. In
opinion, therefore, the depolarization of the beam is further evidence of concentrat
the flux in the middle of the sample.

The distribution pattern of the trapped flux in a ceramic wafer of thickness 0.8
at T560 K differs from the preceding patterns and is shown in Fig. 3. Suppression o
edge barrier, as is typical of high-TC superconductors, and strong pinning probably yi
a distribution described by the Bean model. We have arrived at similar results

FIG. 2. Experimental results for a polycrystalline sample of thickness 0.65 mm in various applied fieldT
580 K for half the sample:~a! dependence of the angle of rotation of the polarization vector on the coord
y; ~b! behavior of the modulus of the polarization vector when the position of the sample is changed.
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analogous investigation of a ceramic sample in a geometry that minimized demagn
tion effects,5 We note that the external field for which flux trapping commenced in R
5 was;4.5 Oe. In experiments with a thin wafer, on the other hand, the field alre
reaches saturation at this magnitude.

In summary, we have used neutron scattering to investigate the magnetic flux
ture formed in superconductors having a large demagnetization factor and a com
tively high edge barrier. The final results corroborate the conclusion of Refs. 3 and
a conceptually new structure of the critical state, manifested by concentration o
magnetic flux in the middle of the sample, occurs in superconductors having a
demagnetization factor and a sufficiently high edge barrier. The nature of these stru
depends on the relation between the parameters of the edge barrier and the avera
pinning force.

The authors are grateful to I. L. Maksimov, who inspired the setup of the repo
experiments, for a discussion of their results and critical comments, along with D
Vodolazov for a discussion of the results of the study.

This work has received support from the Russian State Program ‘‘Neutron St
of Condensed Media’’ and the Russian Fund for Fundamental Research~Grant No.
96-15-96775!.
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Translated by James S. Wood

FIG. 3. Dependence of the angle of rotation of the polarization vector on the position of a ceramic sam
T580 K for various applied fields.
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Monopole, half-quantum vortex, and nexus in chiral
superfluids and superconductors

G. E. Volovik
Helsinki University of Technology, Low Temperature Laboratory, FIN-02015 HUT,
Finland;Landau Institute of Theoretical Physics, Russian Academy of Sciences, 1173
Moscow, Russia

~Submitted 23 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 12, 776–779~25 December 1999!

Two exotic objects are still not identified experimentally in chiral su-
perfluids and superconductors. These are the half-quantum vortex,
which plays the part of the Alice string in relativistic theories@A. S.
Schwarz, Nucl. Phys. B208, 141 ~1982!#, and the hedgehog in thel̂
field, which is the counterpart of the Dirac magnetic monopole. These
two objects of different dimensionality are topologically connected.
They form a combined object which is called a nexus@John M. Corn-
wall, hep-th/9911125; Phys. Rev. D59, 125015~1999!; Phys. Rev. D
58, 105028~1998!# or center monopole@N. N. Chernodub, M. I. Po-
likarpov, A. I. Veselov and M. A. Zubkov, Nucl. Phys. Proc. Suppl.73,
575 ~1999!# in relativistic theories. Such a combination will permit the
observation of half-quantum vortices and monopoles in several realistic
geometries. ©1999 American Institute of Physics.
@S0021-3640~99!00224-8#

PACS numbers: 67.55.Fa, 74.20.2z

In relativistic quantum fields a nexus is a monopole in whichN vortices of the group
ZN meet at a center~nexus! provided that the total flux of vortices adds to zero~mod
N).2–4 In a chiral superfluid with an order parameter of the3He-A type, the analog of the
nexus is the hedgehog in thel̂ field, in which 4 vortices meet, each with the circulatio
quantum numberN51/2. The total topological charge of the four vortices isN52, which
is equivalent toN50 because the homotopy group, which describes the3He-A vortices,
is p15Z4 ~Ref. 5!, and thusN50 ~mod 2!. EachN51/2 vortex plays the part of a 1/4
fraction of the ‘‘Dirac string’’ terminating on the hedgehog, while the hedgehog in tl̂
field plays the part of the Dirac magnetic monopole: The distribution of the ve
potential of the electromagnetic fieldA in the vicinity of the hedgehog in the electricall
charged version of3He-A ~the chiralp-wave superconductor! is similar to that in the
vicinity of a magnetic monopole~see, e.g., Refs. 6–8!.

The order parameter describing the vacuum manifold in a chiralp-wave superfluid/
superconductor (3He-A and also possibly the layered superconductor Sr2RuO4)9 is

Aa i5Dd̂a~ êi
(1)1 i êi

(2)!. ~1!
7920021-3640/99/70(12)/5/$15.00 © 1999 American Institute of Physics
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Hered̂ is the unit vector of the spin-space anisotropy;ê(1) andê(2) are mutually orthogo-
nal unit vectors in the orbital space; they determine the superfluid velocity of the c
condensatevs5(\/2m)êi

(1)¹êi
(2) , where 2m is the mass of the Cooper pair; the orbit

momentum vector isl̂5ê(1)3ê(2). The half-quantum vortex results from the identific
tion of the pointsd̂, ê(1)1 i ê(2) and2d̂, 2(ê(1)1 i ê(2)), which correspond to the sam
order parameter, Eq.~1!. It is a combination of thep vortex andp disclination in thed̂
field:

d̂5 x̂ cos
f

2
1 ŷ sin

f

2
, ê(1)1 i ê(2)5eif/2~ x̂1 i ŷ!, ~2!

wheref is the azimuthal angle around the string.

The hedgehog in the orbital momentum field,l̂5 r̂ , produces the superfluid velocit
field ~or the vector potential in the corresponding superconductor!:

vs5
e

mc
A, A5(

a
Aa, ~3!

whereAa is the vector potential for the Dirac monopole with theath Dirac string with the
topological chargeNa ~the number of quanta of circulation!. Choosing the spherica
coordinate system (r ,u,f) in such a way that the stringa occupies the lower half axis
z,0, the vector potentialAa of such string can be written as:8

Aa5
\c

4er
Naf̂

12cosu

sinu
. ~4!

The superfluid vorticity and the corresponding magnetic field in superconductor ar

¹3vs52
\

4m

r

r 3 (
a

Na1
h

2m (
a

NaE
0

R

dr d~r2ra~r !!, ~5!

B52
\c

4e

r

r 3 (
a

Na1
hc

2e (
a

NaE
0

R

dr d~r2ra~r !!, (
a

Na522. ~6!

Herera(r ) is the position of theath line, assuming that the lines are emanating radia
from the monopole, i.e., the coordinate along the line is the radial coordinate. The re
part of the magnetic field corresponds to a monopole with magnetic chargeg5\c/2e; the
magnetic flux 4pg of the monopole is supplied by the Abrikosov vortices. The low
energy of the monopole occurs when all the vortices emanating from the monopole
the lowest circulation number: this means that there must be four vortices withN15N2

5N35N4521/2.

The half-quantum vortices are accompanied by spin disclinations. Assuming th
d̂ field is confined in the plane, one can characterize the disclinations by the win
numbersna , which have values61/2 in half-quantum vortices. The corresponding sp
superfluid velocityvsp is

vsp5
e

mc (
a51

4

naAa, (
a51

4

na50, ~7!
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where the last condition means the absence of the monopole in the spin sector
order parameter. Thus we haven15n252n352n451/2.

The spin–orbit coupling can be neglected if the size of the bubble is less
spin–orbit length~about 10mm in 3He-A). If it is assumed that the superfluid velocity
everywhere perpendicular tol̂ and has the formvs5 ṽs(u,f)/r , the energy of the nexus
in the spherical bubble of radiusR is

E5E
0

R

r 2drE dVS 1

2
rsvs

21
1

2
rspvsp

2 D5RE dVS 1

2
rsṽs

21
1

2
rspṽsp

2 D
5

1

2
RE dV~~rs1rsp!@~Ã11Ã2!21~Ã31Ã4!2#

12~rs2rsp!~Ã11Ã2!~Ã31Ã4!!,

Ãa~u,f!5
mcr

e
Aa. ~8!

In the simplest case, which occurs in the ideal Fermi gas approximation, whe
Fermi liquid corrections are neglected, one hasrs5rsp.10 In this case the 1/2 vortice
with positive spin current circulationn do not interact with 1/2 vortices with negativen.
The energy minimum occurs when the orientations of two positive-n vortices are oppo-
site, so that these two 1/4 fractions of the Dirac strings form one line along the diam
~see Fig. 1!. The same happens for the other fractions with negativen. The mutual
orientations of the two diameters is arbitrary in this limit. However, in real3He-A one has
rsp,rs ~Ref. 10!. If rsp is slightly smaller thanrs , the positive-n and negative-n strings
repel each other, so that the equilibrium angle between them isp/2. In the extreme case
rsp!rs , the ends of four half-quantum vortices form the vertices of a regular tetr
dron.

Such monopole can be experimentally realized in the mixed4He/3He droplets ob-
tained by the nozzle beam expansion of He gases.11 The 4He component of the mixture
forms the cluster in a central region of the droplet.11 If the size of the cluster is compa
rable with the size of the droplet, the radial distribution of thel̂ vector is stabilized by the
boundary conditions on the surface of the droplet and on the boundary of the cluste~see
Fig. 1!. The4He cluster plays the part of the core of the nexus. The half-quantum vor
emanating from the nexus are well defined if the radius of the droplet exceed
coherence lengthj;200–500 Å.

In a p-wave superconductor such a monopole will be formed in a thin sphe
layer. In Sr2RuO4 superconductor the spin–orbit coupling between the spin vectord̂ and
crystal lattice seems to align thed̂ vector alongl̂ ~Ref. 12!. In this case the half-quantum
vortices are energetically unfavorable, and instead of 4 half-quantum vortices one
have 2 singly quantized vortices in the spherical shell.

A monopole of this kind can also be formed in the so-called ferromagnetic B
condensate in optical traps. Such a condensate is described by a vector or spino
order parameter.13
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There are interesting properties of the system related to the fermionic spectru
such objects. In particular, the number of fermion zero modes on theN51/2 vortex under
discussion is smaller by a factor of two than that on the vortex withN51. This is
because thisN51/2 vortex can be represented as theN51 vortex in one spin componen
with no vortices in another spin component. Thus, according to Ref. 14, in the core o
N51/2 vortex there is one fermionic level~per 2D layer! with exactly zero energy. Since
the zero-energy level can be either filled or empty, there is an entropy (1/2)ln 2 per
related to the vortex. The factor (1/2) appears because the particle excitation coi
with the antiparticle~hole! excitation in superconductors, i.e., the quasiparticle is a M
jorana fermion; see also Ref. 15. Such a fractional entropy also arises in the K
problem.16 According to Ref. 17, theN51 vortex has spinS51/4 per layer, and this
implies a spinS51/8 per layer for theN51/2 vortex. Similarly the anomalous fractiona
charge of theN51/2 vortex is 1/2 of that discussed for theN51 vortex.18

I thank M. Feigel’man and D. Ivanov for discussions. This work was supporte
part by the Russian Fund for Fundamental Research and by the European Science
dation.
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FIG. 1. The outward-pointing arrows show the distribution of the orbital momentuml̂ field and simultaneously
the distribution of superfluid vorticity¹3vs in superfluid3He-A or of the magnetic fieldB in a chiral super-
conductor. The inward-pointing arrows show the direction of the vorticity or magnetic flux concentrated
half-quantum vortices~dashed lines!. The chargen561/2 is the number of quanta of circulation of the sp
current velocityvsp. The stability of the monopole at the center of the droplet is supported by the cluster o
4He liquid, which provides the radial boundary condition for thel̂ vector. The cluster forms the core of th
monopole.
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Observation of fine structure in the photoluminescence
spectrum of an Er 31 ion in an amorphous silicon
matrix

A. A. Andreev, V. G. Golubev,* ) A. V. Medvedev, A. B. Pevtsov,
and N. A. Feoktistov
A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences,
194021 St. Petersburg, Russia

V. F. Masterov†)

St. Petersburg State Technical University, 195251 St. Petersburg, Russia

S. B. Aldabergenova and P. C. Taylor
University of Utah, Salt Lake City, UT 84112-0830, USA

~Submitted 22 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 12, 780–783~25 December 1999!

A multicomponent Stark structure corresponding to a 4I 13/2→4I 15/2

transition in the 4f 11 shell of Er31 ions is observed in hydrogenated
amorphous silicon (a-Si:H! subjected to low-temperature~150 °C! an-
neal. The observation of narrow, strong components indicates that the
erbium ions form a highly ordered local surrounding~Er–O–Sinano-
clusters! in the labile, disordered structural network ofa-Si:H.
© 1999 American Institute of Physics.@S0021-3640~99!00324-2#

PACS numbers: 78.55.Ap, 71.70.Ej

A characteristic feature of the electronic structure of rare-earth elements is s
shielding of the partially filled inner 4f shell with outer-shell electrons. When ions
rare-earth elements are situated in a matrix, the 4f shell interacts weakly with the crysta
field generated by nearest-neighbor atoms. The main splitting of 4f states is the result o
spin-orbit interaction. The crystal field merely lifts the degeneracy of the spin-orbit
levels.

The atomlike spectra of internalf 2 f luminescence in perfect crystalline semico
ductor matrices consist of series of Stark multiplets. A Stark structure is scarcely de
at all in disordered semiconductor matrices, owing to strong, nonuniform broadeni
the individual components of the multiplets.

In the present study the photoluminescence spectrum in a disordered semicon
— erbium-doped amorphous hydrogenated silicon — has been observed to have
ticomponent structure corresponding to an internal 4I 13/2→4I 15/2 transition in the 4f 11

shell of Er31 ions. The minimum width of the Stark components at 77 K attains 2 m
This value is consistent with the usual recorded width of the Stark components i
emission spectra of Er31 centers in crystalline silicon.1,2 The structure is sharply en
7970021-3640/99/70(12)/4/$15.00 © 1999 American Institute of Physics
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hanced by a short-term~10–20 min!, low-temperature (T,200 °C! anneal ofa-Si~Er!:H
films.

Figure 1 shows the photoluminescence spectra of twoa-Si~Er!:H films thermally
annealed at 150 °C in a liquid nitrogen atmosphere. This anneal temperature is
lower than the temperature~400–500 °C! at which the crystallization process is initiate
in a-Si~Er!:H.3 The amorphism of the structural network was monitored by Ram
spectroscopy.4 The films were prepared by the cosputtering of a composite Si–Er ta
with simultaneous decomposition of the reactive gas in a magnetron discharge pl5

and by plasma-enhanced chemical vapor deposition~PECVD!.6 The deposition tempera
ture was 200 °C. The photoluminescence excitation source was an argon laser~4880 Å
and 5145 Å!. The photoluminescence signal was recorded by a cooled germanium
todiode.

The observation of such narrow photoluminescence lines is unequivocal evid
that the erbium ions reside in a highly ordered local surrounding. The dispersion o
lengths of the interatomic bonds and the angles between them in the nearest-ne
local surrounding of Er31 ions should not exceed the characteristic values for crysta
silicon.

Amorphous solids are known to be systems frozen in a metastable state far fro
absolute energy minimum.7 It is possible for metastable, highly ordered local atom
configurations~nanoclusters! to form around Er3 ions imbedded in a labile matrix o

FIG. 1. Photoluminescence spectra, atT577 K, of twoa-Si~Er!:H films subjected to low-temperature~150 °C!
anneal. The films were prepared by magnetron sputtering~a! and PECVD~b!.
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amorphous silicon.8 The observed fine structure of the Stark levels reveals the forma
of such local configurations.

We note that impurity atoms in crystalline silicon are situated at nodes or in in
stices of the lattice, which are characterized by a finite number of specific local sym
tries. For example, in crystalline silicon implanted with erbium (1019Er/cm3) and oxygen
(1020O/cm3) and subjected to appropriate thermal anneals, according to extended
absorption fine structure~EXAFS! data, the nearest-neighbor atoms in the erbium s
rounding are 5.060.5 oxygen ions at an average distance of 2.2660.02 Å. This configu-
ration is very close to the surrounding of erbium in Er2O3 ~six oxygen atoms at a distanc
of 2.26 Å!.9 Also, the most probable local symmetries of sites occupied by Er31 ions are
Td , C3, andD2d ~Ref. 10!.

Recent EXAFS results ina-Si~Er!:H prepared by sputtering11 suggest that the near
est neighbors of an Er31 ion in such an ordered nanocluster could be, for example,
or three oxygen atoms~at an average distance of 2.07–2.14 Å! and silicon atoms~3.10–
3.17 Å!. Consequently, in amorphous silicon under certain conditions~method of prepa-
ration, cooldown temperature, anneal temperature, etc.! the symmetry of the local sur
rounding of Er31 ions, which generates a ligand intracrystalline field, can be lower t
in crystalline silicon. The low symmetry and probably minute dimensions of the resu
Er–O–Si clusters can also significantly alter the hybridization of band and impu
states. Consequently, both the energy spectrum of the luminescence centers a
probabilities of electron transitions change in the highly localizedf-electron system.
These changes explain why the experimental photoluminescence spectra contain
lines having a comparable intensity, but much shorter wavelength then the wave
~15340 Å! of the transition between the lowest sublevels of the 4I 13/2 and 4I 15/2 multip-
lets of the Er31 ions in erbium-doped crystalline silicon.2,12,13The recorded differences in
the ratio between the intensities of the components and in the number of compone
the Stark structure ina-Si~Er!:H films prepared by different technologies~Fig. 1! suggest
the possible existence of several types of low-symmetry erbium-containing centers

Increasing the anneal temperature to 300 °C almost completely eliminated th
structure from the photoluminescence spectra and caused the remaining lines to b
considerably. This behavior is attributed to an increase in the efficiency of getterin
oxygen ions by erbium ions.9 The high efficiency of this process imparts high mobility
the impurity atoms in amorphous silicon at the given temperature.14 First of all, gettering
lowers the density of the lowest-symmetry emission centers, which contain the sm
number of oxygen atoms in the nearest-neighbor surrounding of the Er31 ions. As a
result, transition lines having a wavelength smaller than 15340 Å vanish. The dens
centers containing a large number of oxygen atoms increases accordingly. Secon
tering induces an increase in the static disorder of the as-prepared structural netw
amorphous silicon near the boundaries of the ordered Er–O–Sinanoclusters, which lead
to nonuniform broadening of the emission lines. Third, the process increase
intensity2,9 of the remaining detectable lines, making it possible to observe an essen
unstructured, strong, broad photoluminescence band at room temperature~Fig. 2!.

To summarize, Er31 ions in a disordered matrix of hydrogenated amorphous sili
can function as centers for the nucleation of metastable nanoclusters having a
ordered structure. Observation of the evolution of Stark splitting of the terms of
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highly localizedf-electron system of these ions affords a sensitive investigative prob
studying the formation and destruction of such clusters.

This work has received financial support from the Russian Fund for Fundam
Research~Project No. 98-02-17350!, the International Scientific-Technical Progra
‘‘Physics of Solid-State Nanostructures’’~Project No. 99-1107!, and the United States
National Academy of Sciences.
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FIG. 2. Photoluminescence spectrum, atT5300 K, of ana-Si~Er!:H film deposited by magnetron sputterin
and annealed atT5350 °C.
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Photoinduced transformation of luminescence centers
in C60 crystals at high pressure

V. D. Negri * ) and K. P. Meletov
Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow Region, Russia

~Submitted 22 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 12, 784–788~25 December 1999!

The influence of laser irradiation on the photoluminescence spectra of
perfect C60 crystals in the orientationally disordered phase is investi-
gated. It is shown that irradiation of the crystals with low-power light
for short durations atT5200 K produces radical changes in the lumi-
nescence spectrum. The pressure dependences of the spectral bands of
the phototransformed and initial~without irradiation! spectra differ sig-
nificantly, indicating a photoinduced structural transformation of the X
centers responsible for the luminescence of C60. The phototransformed
C60 crystals are stable against further exposure to light irradiation and
pressure. ©1999 American Institute of Physics.
@S0021-3640~99!00424-7#

PACS numbers: 78.55.Hx, 62.50.1p, 71.35.Aa, 61.80.Ba

The low-temperature photoluminescence spectra of high-quality C60 crystals are
known to have a line structure attributable to the radiative recombination of Fre
excitons localized at so-called X centers.1,2 A C band associated with the radiative r
combination of free Frenkel excitons is also observed in crystals having a relatively
density of X centers and a low luminescence quantum efficiency.3 The properties of X
centers and their relationship to the structure of the luminescence spectrum of C60 crystals
are of considerable interest and have been investigated in a number of papers. Ho
despite significant progress in research on the electronic states of C60, the real nature of
X centers remains elusive for the most part. Studies of the luminescence spectra
purest C60 crystals have shown that the X centers are not associated with impur
rather they are more likely attributable to defects of the crystal structure. Regardle
the degree of structural perfection of the investigated samples, the presence of o
tional defects is a characteristic attribute of fullerite. The occurrence of an orientat
ordering phase transition in C60 crystals atT5260 K and the cessation of random m
lecular rotation below this temperature are well known.4 However, the molecules execut
discrete rotations between two energywise close orientational states down to 80 K,
which each molecular motion is frozen, and a phase of the orientational glass ty
established.5

It is also known that the dimerization of molecules is observed in the orientation
disordered phase of laser-irradiated C60, and polymerization of the as-grown materi
8010021-3640/99/70(12)/6/$15.00 © 1999 American Institute of Physics



nd
om-

umer-
di-

erved
ra-

local

and

77 K

r
lso re-

ul in-
-
ature,
gard.
on of

tem-
otrans-
rans-
e have
t high
tolumi-

omated
oled

ence
cence
ers.
ing a

tical
,

irror
e

ge of
ency,

802 JETP Lett., Vol. 70, No. 12, 25 Dec. 1999 V. D. Negri  and K. P. Meletov
takes place when the laser power is increased.6 Detailed studies of the optical spectra a
crystal structure of C60 have shown that polymerization also takes place under the c
bined influence of pressure and high temperatures, resulting in the formation of n
ous, structurally different phases.7,8 All these transformations are accompanied by a ra
cal change in the initial photoluminescence spectrum.

Modification of the luminescence spectra in laser irradiation has also been obs
in the orientationally ordered phase of C60 crystals at standard pressure and at tempe
tures of 5 K, 77 K and 120 K. This phenomenon was achieved by pre-irradiating
zones of the crystal with a laser beam at power densities ranging from 5 W/cm2 to
50 W/cm2 and then recording the photoluminescence spectra from the irradiated
control zones of the crystal atT;5 K and an excitation power density;1W/cm2. It was
established that irradiation of the crystals at temperatures in the vicinity of 5 K and
induces a relative variation of the intensities of the emission bands of X2 and X3 centers,
and irradiation at 120 K is accompanied by diminution of the X2- and X3-center bands
and enhancement of the intensity of the C band.9 Similar results on the influence of lase
irradiation on the photoluminescence spectra in the low-temperature range are a
ported in Ref. 10.

Consequently, the existing experimental data indicate that light has a powerf
fluence on the spectrum of localized electronic states of C60 crystals. Photoinduced pro
cesses in the orientationally ordered phase of fullerite, in particular, the low-temper
photoinduced structural transformation of X centers, are of major interest in this re
With the latter phenomenon in mind, in the present study we report an investigati
the combined influence of high pressure and laser irradiation on C60 crystals and show
that a radical transformation of the photoluminescence spectra takes place in the
perature range 140–250 K. We confirm that the pressure dependence of the phot
formed and initial photoluminescence spectra differ significantly, and the photot
formed samples are stable against subsequent light irradiation and pressure. W
shown that the photinduced structural transformation of X centers also takes place a
pressure, and when the latter is suddenly dropped to standard pressure, the pho
nescence spectra of the samples transformed at different pressures are identical.

The measurements were carried out on a large series of C60 crystals grown from the
vapor phase. The photoluminescence spectra were recorded by means of an aut
spectrometer incorporating a DFS-12 dual monochromator, a liquid nitrogen-co
FÉU-62 photomultiplier, and a 5S1 photon counting system. All the photoluminesc
spectra were normalized to the calibrated spectrum of a tungsten lamp. Lumines
was excited by a helium-neon laser with its power output limited by optical filt
High-pressure measurements in liquid nitrogen or helium vapor were performed us
miniature diamond anvil cell of the Merrill–Bassett type enclosed in a helium op
thermostat. Pressure was transmitted by means of a 4:1 methanol-ethanol mixture11 and
its value was determined from the position of the ruby luminescenceR1 line within
;0.05-GPa error limits.12 The measurements were performed on crystals having a m
finish and dimensions of 1003100340mm, which are close to the dimensions of th
working volume of the high-pressure cell.

The photinduced structural transformation was investigated over a wide ran
temperatures on crystals with a relatively high photoluminescence quantum effici
whose spectra were dominated by the emission bands of X3, X4, and X5 centers. They
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show that the variations of the photoluminescence spectra takes place in the temp
interval 180–240 K and are appreciable even at a very low excitation l
>531023 W/cm2. The temperature dependence of the phototransformation efficien
standard pressure is bell-shaped with a maximum in the vicinity ofT>200 K. Conse-
quently, atT5200 K laser irradiation of the crystal for>15 min at a power density
'0.2 W/cm2 leads to radical~more than 95%! restructuring of the initial spectrum. It is
important to note that direct measurements of the photoluminescence spectra we
formed atT580 K, i.e., at a temperature where phototransformation is frozen.

Figure 1 shows the initial~a! and phototransformed~e! photoluminescence spectr
determined at a pressure;0.2 GPa under the above-stated irradiation conditions.
measurements show that spectrum~e! is stable in the presence of further irradiation of t
crystal over the entire temperature range up toT5260 K. Temperature cycling of the
samples in the interval 5–300 K without irradiation by any kind of light does not prod
appreciable changes in the high-temperature photoluminescence spectra. On th
hand, the irradiation of these crystals atT5300 K for the sample laser excitation param
eters alters the low-temperature photoluminescence spectrum in connection with fl
and pronounced broadening of the bands of the initial spectrum. Similar effects have
observed in all the C60 crystals at our disposal, but irradiation does not have suc
pronounced influence on their photoluminescence spectra.

Figure 1 also shows the photoluminescence spectra of the as-grown and photo
formed crystals at various pressures. Spectra~a!–~d! refer to the nonirradiated crysta
and spectra~e!–~g! to a crystal preirradiated at a temperatureT5200 K and pressure o
0.2 GPa. It is evident from Fig. 1~a–d! that, apart from an overall shift of the photolu

FIG. 1. Photoluminescence spectra of nonirradiated~a–d! and laser-irradiated~e–g! C60 crystals at a tempera-
ture T580 K and pressures up to 3.0 GPa.
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minescence spectrum into the long-wavelength region, its shape also changes
pressure is increased. AtP>1.2 GPa a band that is scarcely perceptible in the ini
photoluminescence spectrum flares up in the short-wavelength region. On the other
fine structure becomes increasing evident in the broad bands of the initial photolum
cence spectrum as the pressure is increased. Such changes have also been observ
spectra of the preirradiated crystal, but are not nearly as pronounced.

Figure 2 shows the pressure dependence of the positions of the spectral bands
photoluminescence spectra of the as-grown~dark symbols! and phototransformed~light
symbols! crystals. It is evident from Fig. 2 that the pressure variations of the band
preirradiated and nonirradiated crystals differ significantly in the low-pressure range
then they become more alike as the pressure is increased, and atP>1.8 GPa they essen
tially coincide. The difference in the pressure dependence of the photolumines
bands of the as-grown and irradiated crystals in the initial pressure range indicate
what happens during irradiation is not merely a redistribution of the photoluminesc
intensity among different luminescence centers of the as-grown crystal, but a tra
mation of the core structure of the crystal. At the same time, the increasing similar
the photoluminescence spectra of the as-grown and phototransformed samples w
creasing pressure suggests that the latter could be unstable under the influence
pressure and revert to the as-grown state. It is also essential to note that pre
enhanced band in the spectrum of the nonirradiated crystals is in the same positio
exhibits the same pressure dependence as the C band, which we have previously
fied with the emission of free excitons.3

We have carried out an experiment to answer the question of whether the
totransformed samples are stable and whether phototransformation takes place
pressure; the results are shown in Fig. 3. Curves~a! and ~b! in Fig. 3 represent the
photoluminescence spectra of the nonirradiated crystal at a temperatureT580 K and

FIG. 2. Pressure dependence of the band positions in the low-temperature photoluminescence spe
nonirradiated~dark symbols! and irradiated~light symbols! C60 crystals. The dark and light dots represent t
pressure dependence of the position of the C band.
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pressures of 0.2 GPa and 2.3 GPa, respectively. The crystal was then irradiated wit
at the above-indicated power and duration at a pressure of 2.3 GPa and temperaT
5200 K. The photoluminescence spectrum of this crystal atT580 K is shown in Fig.
3~c!. On the whole, its shape is quite close to that of the spectrum of the nonirrad
crystal~b! other than a certain broadening of the bands and diminution of the intens
the short-wavelength C band. After the pressure is dropped back to the standard le
photoluminescence spectrum of this same crystal atT580 K acquires the form~d!. It is
evident from the figure that it is not similar to the initial spectrum~a!, but is more like the
characteristic spectrum~e! for the crystal preirradiated at standard pressure. The obs
able difference between spectra~d! and ~e! is probably attributable to the presence
residual stresses in the crystal and cracking of the crystal after the pressure is drop
the standard level, so that the spectral bands broaden, and the contribution of the
spectrum increases somewhat. The results of the investigations show that spectrum~d! is
stable against further irradiation of the crystal up toT5300 K.

Consequently, the results indicate that when C60 crystals are irradiated by a lase
beam in the temperature interval 180–240 K and at pressures up to 2.3 GPa, the
luminescence spectra undergo a radical transformation as a result of restructuring
radiative recombination X centers. At standard pressure this process attains its ma
efficiency atT>200 K and falls off sharply near the point of transition to the orien
tionally disordered phase. The drop in efficiency of transformation of the centersT
>260 K, when the molecules execute random rotation, is most likely indicative o
definite role played by the orientation of the C60 molecules during photoinduced tran
formation of the X centers.

In closing, the authors are grateful to R. K. Nikolaev for furnishing the C60 crystals,
to the Russian Fund for Fundamental Research for partial financial support of the
~Project #99-02-17555!, and to the NATO Research Committee for its support under

FIG. 3. Luminescence spectra of C60 crystals phototransformed at various pressures.
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Nonlinear interaction of magnetoacoustic waves
in yttrium orthoferrite

B. A. Zon,* ) and G. V. Pakhomov
Voronezh State University, 394693 Voronezh, Russia

~Submitted 11 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 12, 789–792~25 December 1999!

The phenomenon of energy transfer, both monotonic and oscillating,
between the fundamental and higher harmonics of standing acoustic
waves is observed during the laser generation of sound in YFeO3 crys-
tals. An analogous phenomenon for traveling light waves is well known
in nonlinear optics. ©1999 American Institute of Physics.
@S0021-3640~99!00524-1#

PACS numbers: 72.55.1s, 43.35.Rw, 75.50.Dd, 43.25.Gf

Magnetoelastic interaction in weak ferromagnets produces an effective acoust
harmonicity several orders of magnitude stronger than the intrinsic anharmonicity o
crystal. This phenomenon has been mentioned previously1 and confirmed experimentally
by the observation of elementary nonlinear effects: acoustic second-harmonic gene
and demodulation in hematite2,3 and in thulium orthoferrite in the spin-flip region.4 Weak
ferromagnets are therefore attractive for the observation of nonlinear acoustical e
However, if high-power laser pulses are used to generate sound, it is possible to o
more complex nonlinear effects than those investigated in Refs. 2–4. We have use
technique in the present study.

The sound source was a laser beam having a wavelength of 1.064mm, a pulse
duration of 15 ns, and a pulse energy up to 0.03 J. The diameter of the laser bea
1.5 mm. The incidence of the pulsed laser beam on a magnetic crystal wafer pro
very large strains (.1024) in it, which were then converted into a standing acous
wave. Through magnetoelastic and piezomagnetic interactions the elastic vibratio
duced corresponding oscillations of the magnetization of the crystal, which were rec
by an induction technique using a flat coil having a diameter 3.5 mm and consisti
3–10 turns, which was placed directly on the surface of the sample. The laser
passed through the central opening of the coil without touching its turns. This beam
configuration enabled us to record the time derivative of the magnetization incre
DM in the direction of thez axis, which was perpendicular to the surface of the crys
We have used a similar procedure in earlier work to observe the inverse Cotton–M
effect.5

The samples of yttrium orthoferrite single crystals comprised plane-parallel w
cut perpendicular to the@001# axis and perpendicular to the optical axis, with thicknes
L50.05520.96 mm and a base areaS.0.5 cm2. The wafers were placed in an extern
magnetic field perpendicular to the plane of the crystal with an intensityH.500 Oe,
8070021-3640/99/70(12)/4/$15.00 © 1999 American Institute of Physics
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which was sufficient for attaining saturation of the magnetization. The laser beam
directed onto the sample surface at normal incidence. All the measurements wer
formed at room temperature.

The signal from the coil, amplified and displayed on the screen of an oscillosc
consisted of two parts: an initial pulse matching the laser pulse in shape and duratio
an oscillating part associated with the standing acoustic wave. The initial pulse
previously been analyzed in detail6; here we confine our discussion to two remarks. Fi
both longitudinal and transverse acoustic modes can exist in the wafer, which acts
acoustic resonator. For~001!-oriented samples the indicated procedure can be use
record the magnetization variation associated predominantly with longitudinal strain
when the crystal is oriented perpendicular to the optical axis, the variation of the
netization is attributable to both longitudinal and transverse strains.6 Second, if the
sample has the same thickness as the flux linkage with the search coil, the total ma
flux is zero for even-harmonic standing waves. This result is also associated wit
identical boundary conditions on the front and back surfaces of the wafer~both surfaces
can be regarded as free in our case!. Even harmonics can contribute to the observ
signal only when the thickness of the wafer is commensurate with the radius of the

We now analyze the oscillating part of the signal. For test measurements we
thin wafers (L50.055 mm and 0.135 mm, cut perpendicular to the@001# axis; L
50.088 mm and 0.117 mm, cut perpendicular to the optical axis!, in which only the
fundamental acoustic mode was efficiently generated. This condition is readily verifi
light of the fact that for an YFeO3 crystal and our choice of optical wavelength th
absorption coefficient is.80 cm21. It is evident from Fig. 1 that the signal is a sine wa
in this case. It also follows, therefore, that waves propagating parallel to the surface
wafer ~bulk and surface waves! do not contribute significantly to the observed sign
Numerical estimates of the acoustic wave velocitiesv52L/T, whereT is the period of
the sine wave, givev.(760.4)3105 cm/s for the@001# direction andv.(7.860.4)
3105 cm/s for the direction along the optical axis; these estimates are consistent wi
velocities of longitudinal acoustic waves in an YFeO3 crystal in the given directions.7,8

For wafers with thicknessesL50.745 mm, 0.80 mm, and 0.96 mm~cut perpendicu-
lar to the optical axis! several acoustic harmonics are generated with different rela
strengths. As a result, the recorded signal has a complex profile, as exemplified
oscillogram in Fig. 2. Clearly, after initial nonlinear distortions the signal evolves into
almost regular form of monochromatic oscillations, exhibiting a monotonic transfe
energy from the acoustic fundamental into the third harmonic~once again, even harmon
ics are not recorded by the procedure used here!. This behavior is qualitatively describe
by the theory of nonlinear interaction of a finite set of harmonics as set forth in Re

FIG. 1. Magnetoacoustic oscillations in a wafer of thickness 0.088 mm. Sweep 50 ns/div.
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and 10. In our case this phenomenon can be identified both with nonlinear intera
between the transverse acoustic fundamental and second harmonics and with no
interaction between the longitudinal and transverse acoustic fundamentals. In acou
similar phenomenon has been witnessed11 as a monotonic decrease in the ratio of t
intensities of the fundamental at the output and input of a MgO crystal.

An estimate of the wave velocity in the final part of the oscillogram givesv.(4
60.2)3105 cm/s, and a like estimate in the initial part givesv.(4.460.2)3105 cm/s,
which is quite close to the transverse acoustic wave velocity.7,8

The most interesting result from our point of view is the signal obtained for a w
of thicknessL50.58 mm cut perpendicular to the optical axis; see Fig. 3. The sign
seen as alternating oscillations of high and low frequencies. The only possible inte
tation of such a signal is the periodic transfer of acoustic energy between the fundam
and higher harmonics. The transfer period isT.6 ms.

A theoretical analysis shows12 that the nonlinear interaction corresponding to ene
transfer of both the monotonic kind shown in Fig. 2 and the oscillating process show
Fig. 3 is attributable to the interaction of different acoustic modes. We know that
transverse acoustic modes having different polarizations and, in general, different v
ties can propagate together with a longitudinal mode in the given direction in cry
The small but definitely measurable difference in the sound velocities in the initial
final parts of the oscillogram in Fig. 2 cannot be attributed to frequency dispersion
indeed confirms the following interpretation: The nonlinear effects are caused by
action between harmonics associated with different modes. The type of energy tr
— monotonic or oscillating — depends on the difference in the sound velocities o
differently polarized waves and the relative strengths of the fundamental and h
harmonics at the time when they are generated. These facts can account for the d
types of energy transfer observed in Figs. 2 and 3, because wafers having thickne
0.96 mm and 0.58 mm could also have had a small, uncontrollable difference in
orientations.

Unfortunately, the narrow range of variation of the laser intensity, limited by

FIG. 2. Magnetoacoustic oscillations in a wafer of thickness 0.96 mm. Sweep 500 ns/div.

FIG. 3. Magnetoacoustic oscillations in a wafer of thickness 0.58 mm. Sweep 500 ns/div.
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signal-to-noise ratio at one end and by the fracture threshold of the crystal at the
made it impossible to measure the dependence of the type of energy transfer be
acoustic modes on the acoustic power.

The authors are deeply grateful to Prof. N. Bloembergen and Prof. O. V. Rud
for their interest in the study and for helpful comments, and also to L. D. Dorofeev, A
Krivchenkova, and V. Ya. Kupershmidt for many profitable discussions.
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@Sov. Phys. JETP58, 616 ~1983!#.

5B. A. Zon, V. Ya. Kupershmidt, G. V. Pakhomov, and T. T. Urazbaev, JETP Lett.45, 272 ~1987!.
6A. M. Balbashov, B. A. Zon, V. Ya. Kupershmidtet al., Fiz. Tverd. Tela~Leningrad! 29, 1297~1987! @Sov.
Phys. Solid State29, 743 ~1987!#.

7C. H. Tsang and R. L. White, AIP Conf. Proc.24, 749 ~1975!.
8V. G. Bar’yakhtar, B. A. Ivanov, and M. V. Chetkin, Usp. Fiz. Nauk146, 417 ~1985! @Sov. Phys. Usp.28,
563 ~1985!#.

9N. Bloembergen,Nonlinear Optics, W. A. Benjamin, New York-Menlo Park, Calif.~1965!, Chap. 4.
10O. V. Rudenko and S. I. Soluyan,Theoretical Foundations of Nonlinear Acoustics, Consultants Bureau, New

York ~1977!, Chap. 5.
11N. S. Shiren, Appl. Phys. Lett.4, 82 ~1964!.
12D. L. Dorofeev, B. A. Zon, A. A. Krivchenkova, and G. V. Pakhomov, inNonlinear Solid-State Acoustics

(Proceedings of the Eighth Meeting of the Russian Acoustical Society)@in Russian#, Nizhny Novgorod~1998!,
p. 197.

Translated by James S. Wood



ecent
ond
ntion
hese
can

tion of
solid-

ls.
table

cal
e fre-
nds in
of

ved. In
n has
tive-

JETP LETTERS VOLUME 70, NUMBER 12 25 DEC. 1999
Efficient nonlinear-optical frequency conversion
in periodic media in the presence of diffraction
of the pump and harmonic fields

V. A. Belyakov
L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences,
117334 Moscow, Russia

~Submitted 1 July 1999; resubmitted 18 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 12, 793–799~25 December 1999!

It has been predicted by Shelton and Shen@Phys. Rev. A5, 1867
~1972!# and observed by Kajikawaet al. @Jpn. J. Appl. Phys. Lett.31,
L679 ~1992!# and Yamadaet al. @Appl. Phys. B60, 485 ~1995!# that
the efficiency of nonlinear-optical frequency conversion increases sig-
nificantly in a nonlinear periodic medium and, accordingly, the inten-
sity of the generated harmonic increases as the fourth power of the
sample thickness, as opposed to the square law observed in homoge-
neous media. In this paper it is shown that the same enhancement of the
efficiency of nonlinear-optical frequency conversion in a nonlinear pe-
riodic medium can be achieved using an ordinary pump wave in the
form of a plane wave when both the pump wave and the harmonics are
diffracted by the periodic structure of the nonlinear medium. The phe-
nomenon is analyzed quantitatively in the example of second-harmonic
generation. ©1999 American Institute of Physics.
@S0021-3640~99!00624-6#

PACS numbers: 42.65.Ky, 42.70.Nq

1. The nonlinear optics of periodic media has developed at a rapid pace in r
years.1–3 The new possibilities afforded by the nonlinear optics of periodic media bey
those of homogeneous media were first mentioned in Ref. 4. For the first time atte
was focused primarily on the new possibilities of achieving phase matching in t
media by virtue of the fact that the reciprocal lattice vector of a periodic structure
become a part of the phase matching conditions. Experiments on the implementa
such phase matching were reported in papers on second-harmonic generation in a
state periodic structure5 and on third-harmonic generation in cholesteric liquid crysta6

It was later confirmed that the advantages of periodic media are also largely attribu
to the theoretically predicted7,8 substantial increase in the efficiency of nonlinear-opti
frequency conversion in them. Such efficiency improvement can be observed if th
quencies of the wave fields are close to the edges of the selective-reflection ba
periodic structures. It has been shown7–9 that definite relations between the parameters
the nonlinear medium must be established before this phenomenon can be achie
experimental work a major increase in the efficiency of second-harmonic generatio
been observed10 under conditions such that the pump frequency is close to the selec
8110021-3640/99/70(12)/8/$15.00 © 1999 American Institute of Physics
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reflection band edge in an artificially grown structure. Scaloraet al.11,12 have arrived at
the same conclusion of exceedingly large increase in the efficiency of second-har
generation in periodic media. Other authors7,8,12 have also discussed the conditions~re-
lations between the optical parameters of the periodic medium, as well as the
frequency! under which the efficiency of second-harmonic generation increases.
implementation of the necessary conditions poses a complex experimental proble
utmost significance in this light, therefore, is a theoretical paper13 in which it has been
shown that the efficiency of frequency conversion~with a harmonic intensity proportiona
to the fourth power of the sample thickness! can be increased, irrespective of the fr
quency dispersion of the dielectric permittivity~owing to the spatially variable compo
nent of the nonlinear susceptibility!, by using a specially configured pump field~in the
simplest case two counterpropagating waves!.

A significant increase in the efficiency of second-harmonic generation has
observed14–16 in smectic liquid crystals when the harmonic frequency coincided with
band edge of selective light reflection in these chiral liquid crystals. The phase mat
observed in Refs. 14–16 at the selective-reflection band edge was attributed to the
of a standing wave of the pump field in the experiment, and it was postulated that
presence of such a wave phase matching and an increase in the efficiency of non
optical frequency conversion could be achieved at the selective-reflection band
independently of frequency dispersion of the permittivity.13,17,18 Specially designed
experiments16,19 have confirmed the stated mechanism underlying the increased
ciency of nonlinear-optical frequency conversion.

2. The observed14–16,19 increase in the efficiency of nonlinear-optical frequen
conversion should also be manifested in other kinds of periodic media and is of enor
practical interest. This consideration, in particular, lends a certain urgency to the s
for new conditions amenable to the phenomenon in question. The immediate objec
the present study is to call attention to a new mechanism for improving the efficien
nonlinear-optical frequency conversion with the achievement of phase matching
selective-reflection band edge independently of frequency dispersion of the permit
We specifically address the feasibility of implementing the phenomenon in nonl
periodic media in the presence of simultaneous diffraction of both the pump wave an
harmonic wave in the nonlinear medium. For definiteness we discuss the exam
second-harmonic generation in a one-dimensionally periodic medium with harm
modulation of the dielectric permittivity and nonlinear-optical characteristics. An ana
cal solution of the problem, ignoring pump attenuation, is obtained on the bas
dynamic diffraction theory.20

3. We consider second-harmonic generation in a periodic medium with
dimensional modulation of the dielectric permittivitye and a quadratic nonlinear susce
tibility x of the form

e~z!5e0$11d1cos~tz1w1!1d2 cos~2tz1w2!%, ~1!

x~z!5x01x1 cos~tz1wn!%. ~2!

We assume that a plane pump wave of frequencyv with wavevectork(v) is incident at
a grazing angleu on a sample in the form of a plane-parallel plate of thicknessL in a
situation closely approximating the first-order diffraction scattering condition~see Fig. 1!.
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The resulting second-harmonic wave exists under conditions closely approxim
second-order diffraction scattering. The aim of the ensuing analysis is to disclos
conditions under which second-order diffraction occurs in the presence of phase m
ing for second-harmonic generation, knowing7–21 that this situation can lead to enhanc
ment of the efficiency of second-harmonic generation.

To describe second-harmonic generation, it is necessary to solve the equation~which
will be solved below in the two-wave approximation of dynamic diffraction theory20!

¹3¹3E~r ,2v!2~2v/c!2eE~r ,2v!5~2v/c!2x:E~r ,v!E~r ,v!, ~3!

whereE(r ,2v) andE(r ,v) are the second harmonic and pump fields, respectively.

Bearing in mind the above-stated assumption that the pump wave and the s
harmonic are both diffracted, we can seek the harmonic and pump fields in the sam
superpositions of two plane waves, i.e., in the form~for the second harmonic as a
example!

E~r ,2v!5~E1 exp@ ik1•r #1E2 exp@ ik2•r # !exp@2 i2vt#), ~4!

wherek22k152t, andt is the reciprocal lattice vector of the periodic structure. S
stituting Eq.~4! and the corresponding expression for the pump field into Eq.~3!, we
obtain the following system of equations for the amplitudes of the harmonic field:

~12~k1 /k!2!E11d2E252~4p/e!P0d~k122k~v!!,

d2E11~12~k2 /k!2!E252~4p/e!Ptd~k222k~v!!, ~5!

whereP0 andPt are the Fourier harmonics in the expansion of the nonlinear polariza
To simplify the derivation of Eqs.~5!, we have assumed that the pump wave is linea
polarized perpendicular to the scattering plane.

Inasmuch as the pump field in the presence of diffraction is written in a f
analogous to Eq.~4!, to achieve phase matching independent of frequency dispersio
the dielectric characteristics of the sample,13 it is sufficient to assume, by analogy wit
Ref. 13, that only the spatially modulated component of the nonlinear susceptibilit~2!
contributes to the nonlinear polarizations in Eqs.~5!, and plane waves represented
expressions of the type~4! have been substituted into the products of the wave fields
the right-hand side of Eq.~3!. Here the components of the harmonic wavevectors in
same direction as the periodicity in Eq.~4! are very close to6t, implying the occurrence
of second-order diffraction scattering.

FIG. 1. Diagram of second-harmonic generation in the presence of diffraction of the wave fields.
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To investigate the phase matching conditions, we rely on the convenience of
dard parametrization of the solution in solving Eqs.~5! for the fundamental and harmoni
waves. For example, we use the following relations for the pump wave:

k1n~v!52~t/2!~11a1!, n1512@~t/2!21~k'~v!!2#/~k~v!!2, ~6!

where k1n ,(v) and k'(v) are the components of the pump wavevector parallel
perpendicular to the periodicity direction, respectively.

By solving a system of equations analogous to the homogeneous system corre
ing to ~5!, we obtain the following expression fora1:

a1656~n1
22d1

2!1/2/~2~n11sin2u!!, ~7!

Introducing an analogous parametrization for the harmonic (a2 and n2) and the
notationh512ev /e2v , from the condition of continuity of the tangential componen
of the wavevectors we find a relation between the parameters of the pump and har
waves:

n25n1~12h!2h. ~8!

The solution of the system~5! for the harmonic represents the superposition of
particular solution of this system with the normal modes of the corresponding hom
neous system with wavevectors governed by the parametern2. But the wavevector in the
particular solution is governed by thed functions on the right-hand sides of this syste
whence it follows that its component parallel to the periodicity direction is given by
expression

kin52t2~t/2!~a161a16!, ~9!

where all combinations of signs fora16 are admissible on the right-hand side of t
equation.

4. The phase matching condition stipulates that the wavevector~9! of the particular
solution coincide with the wavevector of at least one normal mode, i.e.,

~n2!22~t/k~2v!!4~a161a16!22~d2!250. ~10!

By virtue of Eqs.~6!–~8!, Eq. ~10! gives the value of the parametern1 corresponding to
phase matching, i.e., the deviation of the angle of incidence of the pump wave from
exact Bragg angle or, at a fixed angle of incidence, the deviation of the pump frequ
from its exact Bragg value. To maximize the efficiency of second-harmonic generati
is necessary that phase matching be attained precisely at the selective-reflectio
edge for the harmonic. The corresponding condition is given by the additional req
mentn256d2. This situation occurs, in particular, if the expression in the parenthes
Eqs.~9! and~10! is a111a12 , which is identically zero. The corresponding value of t
pump parametern1 for phase matching is determined from Eq.~8! by substituting
n256d2 therein, i.e., by settingn15(6d21h)/(12h). If the quantitya161a16 in
Eq. ~10! is not identically zero, phase matching with respect to the parametern2 is
achieved, in general, irrespective of selective reflection, and the corresponding va
n1, denoted byn1p , is given by the relation

n1p52~d1
2~12h!22d2

21h2!/~2~12h!h!. ~11!
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It is important to note here that the magnitude of the nonlinear polarization on
right-hand side of Eq.~3! varies considerably in the given situation for small deviatio
of the pump wave from the exact Bragg condition.

5. The nonlinear polarization on the right-hand side of Eq.~3! is proportional to a
quadratic combination of the amplitudes of the normal modes superimposed to for
pump wave in the sample. These amplitudes exhibit different dependences on the
ness of the sample and are given by the equations

C15@E0j12exp~ ia12l /2!#/~j12exp~2 ia12l /2!2j11exp~ ia11l /2!!,

C25@E0j11exp~ ia11l /2!#/~j12exp~2 ia12l /2!2j11exp~ ia11l /2!!, ~12!

whereE0 is the amplitude of the pump wave outside the sample,l 5tL is the dimen-
sionless thickness of the sample,j5E2 /E1 is the ratio of the amplitudes of the two plan
waves comprised in the normal mode,a16 is given by Eq.~7!, the plus sign in subscripts
refers to a normal mode that decays into the depth of the sample, and the minu
refers to a normal mode that grows in the direction from the entrant surface o
sample. As the sample thickness tends to infinity, we haveC15E0 andC250. Since the
phase matching condition~10! involves the quantitiesa161a16 in various combina-
tions, for different phase matching conditions~10! the nonlinear polarizations in Eq.~3!
are proportional to different combinations of the coefficientsC6 . In light of the previ-
ously mentioned appreciable difference in the dependence of the coefficientsC6 on the
thickness, the same is true of the intensity of second-harmonic generation for the se
components of the nonlinear polarization.

6. Finally, we obtain the following equations for the amplitudes of the harmo
emanating from the exit and entrant surfaces of the sample:

E1~z5L !5$e0exp~ i ~a161a16!l /2!1@e0~j12j2!

12ie1sin~a2l !/~j2exp~2 ia2l !2j1exp~ ia2l !!%/D,

E2~z50!5$e11@e1~j12j2!12ie0sin~a2l !#/~j2exp~2 ia2l !

2j1exp~ ia2l !!%/D, ~13!

wherea25(n2
22d2

2)1/2/(2(n21sin2u)), andn2 is related ton1 by Eq. ~8!;

j652d2 /@n26a2#, D5n2
22~t/k~2v!!4~a161a16!22d2

2 ,

n2512@~t!21~2k'~v!!2#/~k~2v!!2],

e052@~n21~t/k~2v!!2~a161a16!!P02Ptd2#,

e152@~n22~t/k~2v!!2~a161a16!!Pt2P0d2#, ~14!

and the quantitiesP0 andPt , according to Eqs.~3! and~5!, are expressed in terms ofx1

and products ofC6 .

7. We now give the results of numerical calculations for specific values of
parameters of the problem. The following values of the parameters are used
calculations:d150.07, d250.057,u5p/6, h50.001, and it is assumed that the perm
tivity outside the sample coincides with the average permittivity of the sample.
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Figures 2~graph2!, 4 ~graph3!, and 5~graph3! show the behavior of the nonlinea
polarizations for deviations of the pump wave from the Bragg condition. The pola
tions P11 , P12 , P22 rise sharply at the selective-reflection band edge of the pu
wave. The calculations of the second-harmonic generation amplitude for the polariz
P12 Figs. 2~graph1! and 3~graph1! show that its maximum occurs near the selectiv
reflection band edge for the doubled frequency independently of frequency dispe
i.e., under conditions conducive to enhancement of the efficiency of second-harm
generation.7–9,13,17,18The graphs of the amplitudes as functions ofn1 can also have
maxima whenn1 corresponds to the selective-reflection band edge for the pump w
The dependence of the second-harmonic generation amplitude on the sample thick
shown in Fig. 3~graph1!, which, as expected, gives a maximum of the second-harm
generation amplitude for a finite sample thickness.

In general, the other phase matching conditions corresponding to the nonline
larizationsP22 and P11 lead to phase matching far from the selective-reflection b
edge~see Fig. 4!. For phase matching to be achieved near the selective-reflection
edge the parameters of the nonlinear periodic medium must satisfy certain rela
deduced from Eqs.~8! and ~11!, between the parameters of the nonlinear periodic m
dium. The coincidence of the phase matching conditions with the selective-refle

FIG. 2. Dependence of the second-harmonic generation amplitudeE1 ~1! and the corresponding nonlinea
polarizationP12 ~2! on the parametern1 /d1 ~at a fixed pump frequency this graph corresponds to the dep
dence on the proximity of the pump wave to the Bragg condition with respect to its angle of incidence! for a
sample of thicknessl 5100 (E2 is equal toE1 in this case!.

FIG. 3. Dependence of the second-harmonic generation amplitude~in arbitrary units! E1 ~1! (E25E1) and the
corresponding nonlinear polarizationP12 ~2! on the sample thickness for the parametern1 /d1520.81.
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FIG. 4. Dependence of the second-harmonic generation amplitudes~in arbitrary units! E1 ~1! andE2 ~2! and the
corresponding nonlinear polarizationsP22 ~3, 4! of the modulus of expression~10! on the parametern1 /d1 for
l 5100.

FIG. 5. Dependence of the second-harmonic generation amplitudes~in arbitrary units! E1 ~1! andE2 ~2! and the
corresponding nonlinear polarizationsP11 ~3, 4! of the modulus of expression~10! on the parametern1 /d1 for
l 5100 and the value of the parameterd250.0691 for phase matching at the selective-reflection band edg
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band edge in this case and the high efficiency of second-harmonic generation are
trated by Fig. 5, which shows the results of calculations for almost identical values o
parametersd1 andd2.

8. The foregoing results demonstrate the possibilities for achieving highly effic
nonlinear-optical frequency multiplication in nonlinear periodic media in the presenc
diffraction of the fundamental and harmonic fields. Despite our investigation of
problem in the example of second-harmonic generation for a simple model of a non
periodic medium, the qualitative results pertaining to the increased efficienc
nonlinear-optical frequency conversion have more general implications and are
cable both to other types of periodic media and to other nonlinear frequency multip
tion processes~see, e.g., Ref. 8!.

1R. L. Byer, Nonlinear Opt.7, 235 ~1999!.
2A. S. Chirkin and V. V. Volkov, J. Russ. Laser Res.19, 409 ~1998!.
3A. V. Andreev, O. A. Andreeva, A. V. Balakinet al., Kvantovaya E´ lektron.28, 75 ~1999!.
4N. Bloembergen and A. J. Sievers, Appl. Phys. Lett.17, 483 ~1970!.
5J. P. van Der Ziel and M. Ilegems, Appl. Phys. Lett.28, 437 ~1976!.
6J. W. Shelton and Y. R. Shen, Phys. Rev. A5, 1867~1972!.
7V. A. Belyakov and N. V. Shipov, Phys. Lett. A86, 94 ~1981!.
8V. A. Belyakov and N. V. Shipov, Zh. E´ksp. Teor. Fiz.82, 1159~1982! @Sov. Phys. JETP55, 674 ~1982!#.
9S. V. Shiyanovskii, Ukr. Fiz. Zh.~Russ. Ed.! 27, 361 ~1982!.

10S. Nakagawa, N. Yamada, N. Mikoshibaet al., Appl. Phys. Lett.66, 2159~1995!.
11M. Scalora, M. J. Bloemer, A. S. Mankaet al., Phys. Rev. A56, 3166~1997!.
12J. W. Haus, R. Viswanathan, M. Scaloraet al., Phys. Rev. A57, 2120~1998!.
13V. A. Belyakov and N. V. Shipov, Pis’ma Zh. Tekh. Fiz.9, 22 ~1983! @Sov. Tech. Phys. Lett.9, 9 ~1983!#.
14K. Kajikawa, T. Isozaki, H. Takezoeet al., Jpn. J. Appl. Phys., Part 231, L679 ~1992!.
15T. Furukawa, T. Yamada, K. Ishikawaet al., Appl. Phys. B60, 485 ~1995!.
16J. Yoo, S. Choi, H. Hoshiet al., Jpn. J. Appl. Phys., Part 236, L1168 ~1997!.
17M. Copic and I. Drevensek-Olenik, Liq. Cryst.21, 233 ~1996!.
18I. Drevensek-Olenik and M. Copic, Phys. Rev. E56, 581 ~1997!.
19D. Chunget al., 1999~in press!.
20V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media, Springer-Verlag, Berlin-New

York ~1992!.
21S. V. Shiyanovskii, SPIE Proc.2795, 2 ~1996!.

Translated by James S. Wood



ow,

non-
ond
e fre-
ncing
light
ashort
lly in-
hieved
the

o
h-

stab-
, pho-

terized
tical
ex in
gnifi-
truc-

JETP LETTERS VOLUME 70, NUMBER 12 25 DEC. 1999
Matched second-harmonic generation of ultrashort laser
pulses in photonic crystals

A. V. Tarasishin, A. M. Zheltikov, and S. A. Magnitski 
International Laser Center, M. V. Lomonosov Moscow State University, 119899 Mosc
Russia

~Submitted 15 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 12, 800–805~25 December 1999!

It is shown that one-dimensional photonic bandgap structures are ca-
pable of simultaneously satisfying the phase and group-velocity match-
ing conditions for second-harmonic generation involving extremely
short light pulses. When these conditions are satisfied, an optical fre-
quency doubler utilizing photonic bandgap structures provides a means
for increasing the rate of growth of the second-harmonic signal as a
function of the nonlinear-optical interaction length relative to structures
designed for quasi-matched interactions and affords possibilities for
enhancing the frequency doubling efficiencies independently of the
matching length in the bulk nonlinear material. ©1999 American
Institute of Physics.@S0021-3640~99!00724-0#

PACS numbers: 42.70.Qs, 42.65.Ky, 42.65.Re

To increase the efficiency of frequency conversion is a long-standing goal of
linear optics.1,2 Today the widespread proliferation of compact, low-cost femtosec
solid-state laser systems and the enormous difficulties encountered in doubling th
quency of ultrashort laser pulses underscore the impact of new possibilities for enha
the efficiency of second-harmonic generation in application to extremely short
pulses. One of the foremost basic problems of second-harmonic generation for ultr
laser pulses is the need to achieve phase and group-velocity matching. Periodica
homogeneous crystals, in which quasi-phase-matched interaction conditions are ac
by modulating the quadratic susceptibility of the medium with a spatial period of
order of the coherent nonlinear-optical interaction length,3,4 are widely used nowadays t
enhance the efficiency of second-harmonic generation~the concept of quasi-phase matc
ing was proposed years ago in a 1962 groundbreaking paper on nonlinear optics5!.

The feasibility of increasing the efficiency of second-harmonic generation by e
lishing phase matching in one-dimensional structures with photonic bandgaps, i.e.
tonic crystals, is a topic of heated discussion at the present time.6,7 In contrast with
crystals used for quasi-matched interaction, photonic bandgap structures are charac
by spatially periodic modulation of the refractive index rather than the nonlinear-op
susceptibility. The characteristic space scale of the variation of the refractive ind
photonic bandgap structures is of the order of the optical wavelength, i.e., it is si
cantly smaller than the modulation period of the nonlinear-optical susceptibility in s
8190021-3640/99/70(12)/7/$15.00 © 1999 American Institute of Physics
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tures used for quasi-matched interaction. The notion of utilizing the dispersion of
odic structures to compensate the material dispersion of the medium as a me
establishing phase matching conditions for second-harmonic generation and non
optical frequency shifting was advanced some time ago.8 At the present stage of nonlin
ear optics, however, the simultaneous implementation of group-velocity and p
matching conditions poses a timely objective in connection with the frequency co
sion problem for ultrashort laser pulses. This paper addresses the solution of the
problem.

To illustrate the concept of second-harmonic generation in a field of ultras
pulses in photonic crystals with phase and group-velocity matched photonic crysta
consider the dispersive properties of a model infinite photonic bandgap structure co
ing of periodically alternating layers with dimensionsa andb and refractive indicesna

and nb , respectively. It will be shown below by comparing the results of analyt
calculations with numerical data that the model of an infinite photonic bandgap stru
affords the capability of adequately reproducing the basic properties of nonlinear-o
interactions involving comparatively short pulses when the number of periods of the
in the pulse is much smaller than the number of periods of the photonic bandgap
ture. We assume that the layers with indexnb are endowed with quadratic nonlinearit
which leads to second-harmonic generation. We first consider the case of se
harmonic generation in a one-dimensional photonic bandgap structure without disp
on the part of the materials constituting the structure; we then generalize these res
photonic bandgap structures with material dispersion taken into account.

The phase matching condition for the wavevectorsk(v0) andk(2v0) of the pump
and second-harmonic waves involved in the process of second-harmonic generat
written in the form

k~2v0!52k~v0!. ~1!

The wavevectors at the fundamental and the second-harmonic frequencies can be
mined from the dispersion relation for the investigated infinite one-dimensional pho
bandgap structure:

cos~k~v0!d!5cosS v0

c
naaD cosS v0

c
nbbD2

na
21nb

2

2nanb
sinS v0

c
naaD sinS v0

c
nbbD , ~2!

cos~k~2v0!d!5cosS 2v0

c
naaD cosS 2v0

c
nbbD2

na
21nb

2

2nanb
sinS 2v0

c
naaD sinS 2v0

c
nbbD .

~3!

Taking Eqs.~2! and ~3! into account, we can write the phase matching condition~1! in
the form

cos2~Ak0!1cos2~Bk0!2cos2~Ak0!cos2~Bk0!51, ~4!

where k05v0 /c, and we have introduced the notationA5naa, B5nbb, N5(na
2

1nb
2)/2nanb .

Equation~4! is satisfied if and only if one of the cosines squared is equal to un
Assuming for definiteness that cos2(Ak0)51, we obtain

a5l l /2na , ~5!
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wherel is an integer.

Consequently, when one of the subsystems of the infinite one-dimensional pho
bandgap structure is a set of half-wave plates, i.e., when the parametera is chosen
according to Eq.~5!, phase matching is always achieved for second-harmonic genera
We now show that the group-velocity matching condition is automatically satisfie
well in this case:

]k~v!

]v U
v5v0

5
]k~v!

]v U
v52v0

. ~6!

When condition~5! holds, the reciprocal group velocities at the fundamental and sec
harmonic frequencies can be written as follows on the basis of Eqs.~2! and ~3!:

]k~v!

]v U
v5v0 , 2v0

5
6~B1AN!

cd
. ~7!

Allowing for the fact that waves transmitted through the photonic bandgap stru
correspond to positive values of the group velocity, we find that the group-velo
matching conditions are also satisfied for a nondispersive photonic bandgap str
with parameters satisfying Eq.~5!.

We now extend the above results to a photonic bandgap structure in which no
the dispersion of the structure, but also the dispersion of the medium must be take
account, and we determine the phase and group-velocity matching conditions fo
case. For simplicity we consider a photonic bandgap structure consisting of laye
thicknessa with a refractive indexna , no nonlinearity, and negligible dispersion, alte
nating with quadratically nonlinear layers of thicknessb with a frequency-independen
refractive indexnb . In this case the wavevectors at the pump and second-harm
frequencies can be written in the form

cos~k~v0!d!5cosS v0

c
naaD cosS v0

c
n1bbD2

na
21n1b

2

2nan1b
sinS v0

c
naaD sinS v0

c
n1bbD , ~8!

cos~k~2v0!d!5cosS 2v0

c
naaD cosS 2v0

c
n2bbD2

na
21n2b

2

2nan2b
sinS 2v0

c
naaD sinS 2v0

c
n2bbD .

~9!

Here n1b and n2b are the refractive indices of the nonlinear medium at the pump
second-harmonic frequencies, respectively. The phase matching condition is the s
before; see Eq.~1!.

The reciprocal group velocities of the pump and second-harmonic pulses are
by the equations

]k~v!

]v U
v5v0

5
1

cd sin~k~v0!d!
~~B11AN1!cos~Ak0!

3sin~B1k0!1~A1B1N1!sin~Ak0!cos~B1k0!!, ~10!
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]k~v!

]v U
v52v0

5
1

cd sin~k~2v0!d!
~~B21AN2!cos~Ak0!

3sin~B2k0!1~A1B2N2!sin~Ak0!cos~B2k0!!, ~11!

whereA5naa, B1,25n1,2bb, andN1,25(na
21n1,2b

2 )/2nan1,2b . The group-velocity match-
ing condition is written in the form~6!.

Consequently, the condition for efficient second-harmonic generation in a
dimensional photonic bandgap structure with material dispersion and negligible g
velocity dispersion stipulates the simultaneous satisfaction of Eq.~1! for the quantities~8!
and~9! and of Eq.~6! for the quantities~10! and~11!. For a given pump wavelength an
given values of the refractive indicesna , n1b , and n2b the indicated system of two
equations~1! and~6! can be solved for the parametersa andb. It is therefore possible for
the phase and group-velocity matching conditions to be satisfied simultaneously
obvious, however, that the transcendental system of equations does not have a s
for all values of the refractive indicesna , n1b , and n2b . In particular, it is readily
verified by direct substitution of the values ofa given by condition~5! into ~10! and~11!
that phase matching is impossible in a photonic bandgap structure in which one
subsystems is a set of half-wave plates and in which the nonlinear medium ex
dispersion of the refractive index.

From the physical standpoint phase and group-velocity matching for sec
harmonic generation in a photonic bandgap structure containing a nonlinear ma
characterized by dispersion of the refractive index is achieved as a result of compen
of the material dispersion by the dispersion of the periodic structure. Consequ
increasing the dispersion of the nonlinear medium to compensate the attendant in
of the phase and group-velocity mismatches requires ever-increasing contrast of
fractive index of the media constituting the photonic bandgap structure. The depen
of the minimum contrastn1b /na of the refractive indices such for the existence of
simultaneous solution of the system of equations~1!, ~6! on the quantity (n2b

2n1b)/n1b , which represents the difference between the refractive indices of the
linear medium at the second-harmonic and fundamental frequencies, normalized
latter index, can be determined by solving the system of equations numerically b
gradient method. This dependence for a photonic bandgap structure withn1b51.5 is
plotted in Fig. 1. It is evident from the results of the calculations shown in this figure
the dispersion of photonic bandgap structures with index contrasts obtainable by ex
technologies can be exploited to compensate the phase and group-velocity mism
for second-harmonic generation over a fairly broad range of dispersion of the non
medium.

The calculation of the amplitude of the second-harmonic field produced by
second-harmonic generation process in a photonic bandgap structure poses a c
physical problem. We have therefore calculated numerically the amplitude of the se
harmonic resulting from the second-harmonic generation process by solving Maxw
equations numerically using the finite-difference time-domain~FDTD! algorithm.9 This
approach is an effective method for the analysis of nonlinear-optical interactions in
ing ultrashort light pulses in photonic crystals.10

The FDTD method for a cubically nonlinear, dispersive medium is described in
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11. We have implemented the FDTD algorithm for a quadratically nonlinear med
with local response of the nonlinearity and dispersion of the dielectric permittivity
scribed by a Lorentzian line profile:e(v)5e`1(es2e`)/(12v2/vL

2), wherevL is the
resonance frequency,e` is the permittivity of the medium in the high-frequency limi
andes is the permittivity of the medium in the low-frequency limit.

Without frequency dispersion the maximum efficiency of second-harmonic gen
tion is attained in a structure with the parameters

a5l/2na , b5l/4nb . ~12!

This result is fully consistent with the above analytical investigation for an infinite o
dimensional structure. The first of the equations~12! establishes phase and group-veloc
matching, and it is readily shown by means of Eqs.~2! and~3! that the second condition
stipulates zero dispersion of the group velocity at the fundamental and second-har
frequencies. A numerical simulation for Gaussian pulses of extremely short dur
propagating in a photonic bandgap structure withna52 andnb51 has shown that when
conditions ~12! are satisfied, the dependence of the second-harmonic generation
ciency~defined as the ratio of the energy of the second-harmonic pulses at the out
the photonic bandgap structure to the pump energy at the input! on the length of the
structure is close to quadratic at wavelengths of the order of 12103 periods of the
structure for pulses having a durationt equal to at least ten periods of the pump fie
~solid curve in Fig. 2!. For shorter durations, such that the width of the pulse spect
becomes of the same order or greater than that of the range of allowed photon en
the second-harmonic generation efficiency increases far more slowly than the squ
the length of the photonic bandgap structure~dashed and dotted curves in Fig. 2!. This
effect is attributable to the inability of the phase and group-velocity matching condi
to be satisfied over such a broad spectral range. Another significant factor for short
is dispersion spreading of the pulse, because the dispersion of higher orders attain
values near the band edge.

As mentioned above, the matching technique for nonlinear-optical interaction
photonic bandgap structures is fundamentally different in nature from the matchi
structures for quasi-phase-matched interactions. The quasi-matched interaction reg
established by changing the sign of the quadratic susceptibility of the nonlinear ma

FIG. 1. Dependence of the minimum contrastn1b /na of the refractive indices for simultaneous satisfaction
the phase and group-velocity matching conditions~1! and ~6! on the quantity (n2b2n1b)/n1b .
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within a characteristic space scale of the order of the coherence length. A typical gra
the second-harmonic generation efficiency as a function of the length of the non
medium for the given frequency conversion regime is represented by the dot-dash
in Fig. 3. Matched second-harmonic generation in photonic bandgap structures is
lished by modulating the refractive index over a characteristic space scale smalle
the optical wavelength, a technique that permits both phase matching and group-ve
matching and affords possibilities for attaining high second-harmonic generation effi
cies independently of the matching length in the bulk nonlinear material. This cons
ation is of utmost importance in regard to practical applications.

A major difference in the phase-locked second-harmonic generation regime
posed in this paper for photonic bandgap structures from the second-harmonic gen
regime discussed in Refs. 6 and 7 for photonic crystals is that the width of the sp
range of efficiency second-harmonic generation in our case is not restricted by the
nance width in the transmission spectrum of a one-dimensional photonic bandgap
ture with a finite number of periods. Because one-dimensional photonic bandgap

FIG. 2. Dependence of the efficiency of second-harmonic generation on the number of periods of a p
bandgap structure for pulses of various durations:t510T0 ~solid curve!; 5T0 ~dashed curve!; 2T0 ~dotted
curve!; (T0 is the period of the pump field!.

FIG. 3. Dependence of the efficiency of second-harmonic generation on the length of the nonlinear m
~expressed in periods of the photonic bandgap structure! for a photonic bandgap structure~solid curve!, a
structure designed for quasi-matched interaction~dot-dash curve!, and a nonlinear medium with an uncompe
sated phase and group-velocity mismatch~dotted curve!. The dashed curve represents a quadratic depend
on the length of the medium, corresponding to matched second-harmonic generation.
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tures subject to the above-determined conditions can be used to satisfy the pha
group-velocity matching conditions simultaneously, the matched second-harmonic
eration regime can be achieved for extremely short~a few periods of the light field!
pulses using long photonic bandgap structures.

In summary, one-dimensional photonic bandgap structures provide a means f
tablishing not only phase matching conditions, but also group-velocity matching c
tions for second-harmonic generation involving light pulses having a duration of a
periods of the optical field. When these conditions are satisfied, optical frequency
blers incorporating photonic bandgap structures can be used to increase the rate of
of the second-harmonic signal as a function of the nonlinear-optical interaction le
relative to structures utilizing quasi-matched interaction, and they offer capabilitie
attaining high frequency doubling efficiencies independently of the matching leng
the bulk nonlinear material.

These investigations are supported by the Constellation Group GmbH, the In
tional Association for the Promotion of Cooperation with Scientists from the Indepen
States of the Former Soviet Union~INTAS Grant #97-0369!, and the Moscow Govern
ment ~Grant #A059!.
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PACS numbers: 42.65.Wi, 42.25.Bs

In a recent paper1 Kuznetsova considered the case of a cylindrical waveguide c
taining an amplifying medium and concluded that there is no frequency cutoff for su
case: for an arbitrary small radiusa of the waveguide~but smaller than the cutoff radiu
acut) and an arbitrary small amplificationd ~thus the complex permittivity of a medium i
x5e2 id), light can propagate through such a waveguide with an amplification.
possibility, if it exists, of course, would be of extreme importance for near-field op
and fiber communications.

But it is not the case, because the analysis given in Ref. 1 is incorrect. The co
sions derived there are based on the use of the cylindrical wave equation to descr
electric fieldE for the spherically symmetric TE mode~in this comment we follow the
notation and concrete example given in Ref. 1; the analysis is similar for all waveg
modes!:

]2E

]z2 1
]

]r S 1

r

]

]r
~rE! D1e

v2

c2 E50 ~1!

whose solution for the boundary condition

E~r5a,z!50 ~2!

for the case of a real permittivity is well known:E5AJ0(qr)exp(pz). Here J0 is the
zero-order Bessel function,q53.83/a, andp can be found from the relation:

p25q22e
v2

c2 . ~3!

Kuznetsova generalized Eq.~3! to the case of a complex permittivity@and thus the
complex coefficientp can be found as the square root of the right-hand side of~3!# and
arrived at the aforementioned conclusions that apropagating and amplifiedwave exists
for such a waveguide. This conclusion is wrong and results from the incorrect sele
8260021-3640/99/70(12)/2/$15.00 © 1999 American Institute of Physics
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of signs of the real and imaginary parts of the coefficientp, made on the unclear basis th
‘‘it is evident that . . . the direction of growth of the wave is the same as the directio
propagation.’’

This mistake can be easily understood from the following example. For the
whena!acut andd is arbitrarily small, Kuznetsova found that the amplification of t
wave inside the waveguide is approximately equal to theq, i.e., the same as the dampin
for the case of small losses or an empty waveguide, and explained that this is due
fact that ‘‘the wave propagates almost perpendicularly to the waveguide walls,’’
acquiring the necessary gain coefficient during this long path in an amplifying med
But does that mean that the damping for the case of positived ~losses! is also due to such
a ‘‘perpendicular’’ propagation? And what does one do when there are no losses at
the damping is the same?

Indeed, the correct selection of signs of the real and imaginary parts of the c
cient p is different from that given in Ref. 1.~This is especially clear if one directly
substitutes the expressionE5AJ(r)exp(p8z1ip9z) into ~1! and then uses the theore
that Bessel functions of order greater than21 have only real zeroes2 to fulfill the
boundary conditions~2!. We will not do it here for lack of space!. There is only one
physically reasonable solution:

~p8!25
1

2 S g21Ag41d2
v4

c4 D , p95
d

2p8

v2

c2

and the negative sign should be used when findingp8 from the square root.~Here g2

5q22e (v2/c2) is the square of the damping constant for an empty waveguide~3!,
which is positive whena,acut.)

This solution describes an evanescent nonpropagating wave decreasing ex
tially as exp(2upu8z! for the case of a waveguide with radius smaller than the cutoff ra
acut. Moreover, the rate of damping of this wave does not depend on the sign ofd and is
larger for both amplifying and absorbing media in comparison with an empty waveg
Indeed, this is not so surprising, because physically the cutoff phenomenon is no
more than areflection of the propagating wave from subwavelength apertures an
governed by the phase relations. The existence of an amplifying medium on the
side of the aperture cannot fundamentally alter the conditions of such a reflection.
it can do is to increase the reflectivity coefficient, which can be higher than unity
happens, for example, in the case of total internal reflection of light from an amplif
medium:3 some amount of energy can be added to the reflected light for such a
Thus, unfortunately, bright subwavelength-size sources of light cannot be produc
small subwavelength-aperture waveguides filled with an amplifying medium, and
ways to solve this fundamental problem for near-field optics must be found.

1T. I. Kuznetsova, JETP Lett.69, 917 ~1999!.
2G. N. Watson,A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge~1958!, p.
482.

3F. Schuller, G. Niehnuis, and M. Ducloy, Phys. Rev. A43, 443 ~1991!.

Published in English in the original Russian journal. Edited by Steve Torstveit.
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Reply to the comment of S. K. Sekatski ¢ and G. Dietler

T. I. Kuznetsova* )
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PACS numbers: 42.65.Wi, 42.25.Bs

In this note additional details and equations are furnished to support the valid
the conclusions drawn in Ref. 1.

1. A wave of the formE5AJ1(qr)exp(pz) ~see footnote1!! is discussed in Ref. 1
The waveguide is assumed to be circular and to have perfectly reflecting walls
observed monochromatic field is characterized by the expression Re$E exp(2ivt)%. With
this choice of time factor and ford.0 the dielectric permittivity«512 id implies
amplification. The quantityp in the argument of the exponential is given by the equat

p[p81 ip95Aq22~v2/c2!1 id~v2/c2!. ~1!

From this equation we can infer at once thatp8 and p9 have the same sign, becau
squaring both sides of Eq.~1! and then comparing the imaginary parts yields 2p8p9
5d(v2/c2). In an amplifying waveguide, therefore, the intensity increases in the d
tion of wave propagation.

We now give more detailed equations forp8 andp9. Denoting byacr the critical~at
the frequencyv) waveguide radius, and bya the instantaneous radius, we set

q
c

v
[

q

qcr
5

acr

a
. ~2!

Using the transformation~2!, we obtain the roots of the complex number~1! in the form

p(1)8
c

v
5AA1

4
S acr

a
D 4

1d21
1

2
S acr

a
D 2

, ~3a!

p(1)9
c

v
5~sgn~d!!AA1

4
S acr

a
D 4

1d22
1

2
S acr

a
D 2

, ~3b!

p(2)8 52p(1)8 , p(2)9 52p(1)9 . ~4!

The arithmetic values of the roots are tacitly understood everywhere in Eqs.~3!. The
resulting solutions~3! and~4! are equally justified in every respect — contrary to wha
stated in the comment — and there is no foundation for assigning preference to
over the other. These are the equations used to plot the graphs in the original
8280021-3640/99/70(12)/3/$15.00 © 1999 American Institute of Physics
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showing the quantitiesp(1)8 c/v and p(1)9 c/v as functions of the dimensionless radi
a/acr . For the sake of brevity the equations themselves are not given in the article
graphs are given for the first solution@Eqs. ~3!#. This choice was simply a matter o
practicality in composing the figures. In the explanatory text relating to the figures
stated that each of the quantitiesp8 andp9 changes sign for the second solution.

The authors of the comment insist that the first solution@Eqs.~3!# must be rejected,
leaving the second solution@Eq. ~4!# as ‘‘the only physically reasonable’’ one. Howeve
it is impossible to distinguish either solution so long as the symmetry of the proble
preserved. The substitutionz→2z maps one solution into the other and maps
waveguide into itself. It is not so remarkable here that one of the waves grows alon
z axis. The important consideration is that for each wave the growth of the intensity
the motion of the constant-phase surface take place in the same direction (p8 andp9 have
the same sign!.

2. The comment touches casually on the coupling of the waveguide with free s
This problem is indeed important; for practical devices not only is wave transmis
along the waveguide important, but so is wave reflection at the junctions of a
segment of the waveguide with contiguous elements of the optical train. These co
erations pose an independent problem and could not be combined with a different
lem within the confines of a short publication. Techniques for matching a supercr
amplifying waveguide with other optical elements are currently under investigatio
should mention that the results of the investigation can affect only the input wave
plitudes in the waveguide, but not the growth rate and motion of the phase front, w
are the topics treated in Ref. 1.

3. In regard to an absorbing waveguide it must be stated, contrary to the misgi
set forth in the comment, that here, as in an amplifying waveguide, the wavevec
almost perpendicular to the walls and has a small longitudinal component. To illus
the matter, consider the electromagnetic energy flux associated with the wave. F
radiated TE01 mode it is equal to

Sz5
c2

16pv
i S E

]E*

]z
2E*

]E

]z D . ~5!

Using the expression forE and Eq.~5!, we find

Sz5
c2

8pv
p9uAu2@J1~qr!#2exp~2p8z!. ~6!

It follows from Eq. ~6! that for p9.0 the flux is positive, i.e., moves in the direction
increasing intensity~signs ofp8 andp9). These directions are the opposite in an abso
ing medium. In both cases the flux is proportional to the small quantityp9, which
contains the small parameterd. The flux becomes equal to zero ford50. The expression
for the flux further emphasizes that the investigated waves propagate and grow
direction of propagation in the amplification case~and decay in this direction in the
absorption case!. Therefore, the properties of the wave modes of an active waveg
have been derived and presented correctly.



.

830 JETP Lett., Vol. 70, No. 12, 25 Dec. 1999 T. I. Kuznetsova
* !E-mail: tkuzn.@sci.lebedev.ru
1!HereJ1 is the first-order Bessel function. The function used in the comment isJ0, which satisfies neither Eq

~1! in the comment nor Eq.~1! in Ref. 1.

1T. I. Kuznetsova, JETP Lett.69, 917 ~1999!.

Translated by James S. Wood
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IN MEMORY OF OUR AUTHORS
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 12, 810~25 December 1999!

@S0021-3640~99!01024-5#

PACS numbers: 01.60.1q, 78.55.Ap, 71.70.Ej

V. F. MASTEROV, contributing author in this issue of the journal to the article
‘‘Observation of fine structure in the photoluminescence spectrum of an Er 31 ion in an
amorphous silicon matrix’’

On January 28, 1999, Professor Vadim Fedorovich Masterov, Doctor of Phy
mathematical Sciences and Chairman of the Experimental Physics Department
Petersburg State Technical University, died unexpectedly at the age of 58. Prof. M
ov’s experimental and theoretical papers on the electronic structure of deep mu
electron centers in semiconductors and the high-temperature superconductivity of
plex metal oxides of copper and metallic fullerenes have earned worldwide recogn
Prof. Masterov’s scientific career has been permanently linked with preeminent sc
centers in Russia and in many foreign countries. He served as a member of orga
committees and program committees of many international and Russian conference
member of the editorial board of the JournalFizika i Tekhnika Poluprovodnikov~pub-
lished in English asSemiconductors!, and as a member of scientific councils of a gre
many state programs. Sixteen candidate’s dissertations have been successfully de
under the sponsorship of V. F. Masterov, and four of his students have defended do
dissertations. The radiant memory of Vadim Fedorovich Masterov — an outstan
scientist and human being — will remain always with his innumerable students,
leagues, and friends.

V. D. NEGRIĬ, contributing author in this issue of the journal to the article ‘‘Photoinduced
transformation of luminescence centers in C 60 crystals at high pressure’’

On November 29, 1999, the gifted experimental physicist, Valeri� Dmitrievich Ne-
gri�, Chief Scientist of the Institute of Solid-State Physics of the Russian Academ
Sciences, died unexpectedly at the age of 60. He has published a vast number of
on the optical spectroscopy of defects in semiconductors and dielectrics. His name
known among scientists engaged in research on wide-gap II-VI semiconductors. O
his achievements in this field was the direct observation of photoluminescence of
vidual dislocations in CdS crystals and the investigation of distinctive characteristi
the motion and multiplication of dislocations in these crystals at low temperatures
cluding the laser stimulation of such processes. The most recent series of investig
reported by V. D. Negri� has been concerned with the photoluminescence of fuller
crystals — a new and intriguing class of organic semiconductors, where he disco
many interesting phenomena associated with photostimulated reactions of defects i
crystals.
8310021-3640/99/70(12)/1/$15.00 © 1999 American Institute of Physics
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