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Abstract—We present the results of experimental investigations of atoms perturbed by laser radiation under
conditions when the energy of a Stark-shifted level becomes close to the energy of a neighboring level. © 2000
MAIK “Nauka/Interperiodica”.

PACS numbers: 32.60.+i, 32.80.–t
1 This paper presents the results of experimental stud-
ies of atoms perturbed by laser radiation under condi-
tions when the change δEn in the energy of some level
n is comparable with the difference ∆Enk between the
energy of the considered level n and the neighboring
level k (∆Enk), i.e., δEn ≈ ∆Enk. Note that this effect was
theoretically predicted in [1, 2], but no experimental
observation of this effect has been reported until
recently.

We experimentally studied the perturbation of
6s5d3D1 and 6s5d3D2 metastable states of Ba atoms. To
perturb these levels, we employed radiation of a color-
center laser (CCL) with a frequency tunable within the
range ω1 = 8650 – 8900 cm–1. The field strength of laser
radiation in our experiments was equal to e1 = 5 ×
105 V/cm. The duration of laser pulses was τ = 4 × 10−8 s.
This radiation strongly perturbs the 6s5d3D2 state of Ba
atoms, since the frequency range covered by our laser
includes the frequency ωnm = 8845 cm–1, which corre-
sponds to a one-photon transition from the 6s5d3D2

state to the 6s6p  state. Under these conditions, the
dynamic polarizability αn of the 6s5d3D2 state should
be large, and its frequency dependence can be repre-
sented as [2]

(1)

where dnm is the matrix element of the 6s5d3D2 

6s6p  transition and Γm is generally defined as the

maximum among the width of the 6s6p  level and
the line width of CCL radiation. As it follows from for-
mula (1), the dynamic polarizability of the 6s5d3D2
state is positive for frequencies ω1 ≤ ωnm. Due to the ac
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Stark effect, the change in the energy of this state
(δE = –αne

2/4, where e is the strength of the CCL radi-
ation field) should be negative in the considered spec-
tral range. In particular, as the CCL field strength grows
within a laser pulse, the energy of the 6s5d3D2 state
decreases, approaching the energy of the neighboring
6s5d3D1 state.

Note that, within the range of frequencies ω1 ≤ ωnm,
the dynamic polarizability of the 6s5d3D1 level (ak) is
described by a formula similar to (1). This polarizabil-
ity is also positive due to the fact that the condition
ω1 ≤ ωkm, where ωkm is the frequency of a one-photon

transition from the 6s5d3D1 state to the 6s6p  state
(ωkm = 9027 cm–1), is satisfied for frequencies from the
above-specified range. In other words, similar to the
energy of the 6s5d3D2 level, the energy of the 6s5d3D1
level also decreases under the action of CCL radiation.

However, according to our estimates, the dynamic
polarizability of the 6s5dD2 state in the above-specified
spectral range is much higher than the dynamic polar-
izability of the 6s5d3D1 state. This difference between
the polarizabilities of the considered states is due to two
factors. First, within the studied frequency range, the
detuning ω1 – ωkm for the 6s5d3D1 level is greater than
the detuning ω1 – ωnm for the 6s5d3D2 level. Second, as
follows from [3], the matrix element dnm for the

6s5d3D2  6s6p  transition is 5.5 times higher
than the matrix element dkm for the 6s5d3D1 

6s6p  transition. Our estimates show that the
dynamic polarizability of the 6s5d3D1 state in the
above-specified spectral range is approximately
80 times lower than the dynamic polarizability of the
6s5d3D2 state.

Note that the condition δEn ≈ ∆Enk can be satisfied
for perturbed 6s5d3D2 levels under our experimental
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conditions if the dynamic polarizability of the consid-
ered state is equal to a ≈ 5 × 103 au. Such a value of
dynamic polarizability is quite realistic for triplet states
of Ba atoms in the neighborhood of frequencies ωnm

corresponding to triplet–singlet transitions [4].
Thus, as the CCL field strength grows within a laser

pulse under our experimental conditions, the shift of
the 6s5d3D2 level exceeds the shift of the 6s5d3D1 level,
and the energies of these two states may become
approximately equal to each other with some CCL field
strength.

The results of perturbation by a laser field were
studied in our experiments by means of ionization res-
onance spectroscopy. We determined the frequencies of
maxima in the yield of Ba+ ions emerging from the ion-
ization of perturbed states. Perturbed states of Ba atoms
in these experiments were excited by the joint action of
CCL radiation with the above-specified parameters and
radiation of a dye laser (DL) with a fixed frequency
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Fig. 1. The yield of Ba+ ions produced under the joint action
of CCL and DL beams on Ba atoms as a function of the fre-
quency of CCL radiation.
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Fig. 2. Diagram of perturbation and excitation of Ba atoms.
The left-hand part of the diagram corresponds to an unper-
turbed Ba atom, while the right-hand part corresponds to
perturbed atoms. The dashed line shows the way the ener-
gies of 6s5d3D1 and 6s5d3D2 states change with the
increase in e.

Yield, arb. units
 (ω2 = 17735 cm–1). The field strength of DL radiation
was equal to e2 = 4 × 106 V/cm. The duration of DL
pulses was equal to the duration of CCL pulses, τ = 4 ×
10–8 s. Our analysis shows that the perturbation of Ba
atoms (including the perturbation of 6s5d3D1 states)
due to the action of DL radiation is much weaker than
the perturbation of these atoms due to the action of
CCL radiation.

The joint action of CCL and DL radiation on Ba
atoms may give rise to a stimulated Raman scattering
(SRS) process, when a Ba atom absorbs one photon of
DL radiation and emits one photon at the frequency of
CCL radiation. This process leads to the excitation of
perturbed 6s5d3D1 and 6s5d3D2 states. These states
were then ionized by CCL radiation and DL light. We
brought light beams of these lasers into a spatial coin-
cidence and focused them into the center of Ba atoms.
Both laser beams were linearly polarized, and the vec-
tors of the light fields in these beams were parallel to
each other. Except for the parameters specified above,
the arrangement of our experiments was identical to the
experimental scheme described elsewhere [5].

The results of our measurements are shown in
Fig. 1. As can be seen from these data, three resonance
maxima are observed in the yield of Ba+ ions. The fre-
quencies of CCL radiation corresponding to these max-
ima are equal to 8705, 8715, and 8725 cm–1. Note that
none of these maxima coincides in frequency with
maxima that could arise due to the excitation of Ba
atoms by CCL radiation alone (see, e.g., the data pre-
sented in [6, 7]). Thus, all the three maxima in Fig. 1 are
due to the excitation caused by the joint action of CCL
and DL radiation on Ba atoms. Our analysis shows that
only one of these maxima can be attributed to the exci-
tation of an unperturbed state: the maximum at the fre-
quency ω1 = 8705 cm–1 (maximum A in Fig. 1) is
related to the excitation of the unperturbed 6s5d3D1
state through the above-described SRS process (the rel-
evant excitation scheme is shown in Fig. 2). The fre-
quency of CCL radiation corresponding to this process
is equal to ω1 = 8702 cm–1. The formation of Ba+ ions
contributing to this maximum occurs in the area where
the field strength of CCL radiation interacting with a
beam of Ba atoms is rather low.

We should note that, in accordance with selection
rules for transitions in the presence of two radiation
fields [8], the excitation of the 6s5d3D1 state is forbid-
den in the case of parallel light field vectors. The
appearance of a resonance maximum in this case can be
explained by deviations from the parallel orientation of
light field vectors and a large interaction volume, where
the unperturbed 6s5d3D1 state is populated in the pres-
ence of CCL radiation with a moderate field strength.
Note that this effect was observed earlier in our study
[5], where SRS was implemented for other states of Ba
atoms.
JETP LETTERS      Vol. 71      No. 1      2000
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Now, let us consider the resonance maxima B and C
in Fig. 1. Our analysis shows that these maxima are
related to the excitation of perturbed 6s5d3D1 and
6s5d3D2 states in a situation when the shift of the
6s5d3D2 state meets the condition δEn ≈ ∆Enk. The cor-
responding excitation schemes are labeled as B and C
in Fig. 2. The formation of Ba+ ions in this case occurs
in the interaction area where the field strength of CCL
radiation interacting with a beam of Ba atoms is high.
Note that the volume of this area is small as compared
to the total volume of the area where CCL and DL
beams are brought into a spatial coincidence.

In accordance with the theory presented in [1], the
specific features of the perturbation of two levels n and
k with a difference of total angular momenta ∆J not
exceeding 2 are determined in the case when δEn ≈ ∆Enk

by the interaction of these two states with the field of
laser radiation. In particular, the shifts of each of these
levels in such a situation depend on the dynamic polar-
izabilities of both levels (n and k) and the matrix ele-
ment of the two-photon transition between these states,

 = (ω) + (–ω). Therefore, even states with
low dynamic polarizabilities may be subject to consid-
erable shifts. In addition, the interaction of such states
with the field of laser radiation cannot lead to the inter-
section of these states. The difference in the energies of
such states under these conditions is determined by the
relevant two-photon matrix element.

The experimentally observed dependences corre-
sponding to the processes B and C are consistent with
the above-described scenario of perturbation. Specifi-
cally, the frequencies of both maxima differ from the
frequencies corresponding to the excitation of unper-
turbed 6s5d3D1 and 6s5d3D2 states. A small frequency
difference characteristic of the considered maxima B
and C (∆ω ≈ 10 cm–1) may be due to the smallness of

the relevant two-photon matrix element .

The fulfillment of the condition δEn ≈ ∆Enk also
implies that the states n and k are mixed. The wave
function of each of these states in such a situation can
be represented as a superposition of the wave functions
of both unperturbed states. The fact that the amplitudes
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of the considered maxima are approximately equal to
each other indicates that the effect described above
plays a noticeable role in our experiments. If the levels
under study were not mixed, the amplitudes of the rel-
evant maxima would considerably differ from each
other, since, in accordance with selection rules for par-
allel polarizations of light field vectors, excitation is
allowed for the 6s5d3D2 state and forbidden for the
6s5d3D1 state [8]. Note that this alternative scenario of
excitation was observed in our earlier studies [9], where
the dynamic polarizabilities of the states being excited
were equal to zero. The amplitude of the resonance
maximum related to the excitation of the 6s5d3D2 state
in this case is two orders of magnitude higher than the
amplitude of the maximum associated with the excita-
tion of the 6s5d3D1 state.

Thus, the structure of resonances B and C can be sat-
isfactorily described in terms of the mixing of 6s5d3D1

and 6s5d3D2 states under conditions when δEn ≈ ∆Enk.
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Intermittence Phenomena in the Burgers Equation 
Involving Thermal Noise
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Abstract—Leading terms of the asymptotic behavior of the pair and higher order correlation functions for
finite times and large distances have been calculated for the Burgers equation involving thermal noise. It is
shown that an intermittence phenomenon occurs, whereby certain correlation functions are much greater than
their reducible parts. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.27. Ak
1 Considerable deviation of the statistics of fluctuat-
ing fields from the Gaussian form is usually referred to
as the intermittence. This property is typical of the
hydrodynamic systems in the state of developed turbu-
lence [1–3]. Under such strongly nonequilibrium con-
ditions, the intermittence is manifested, in particular, as
the dominance of the irreducible parts of the fourth-
order correlation functions for certain quantities over
the corresponding reducible parts. As a rule, the simul-
taneous correlation functions were considered in the
papers cited above.

In thermodynamic equilibrium, the simultaneous
correlation functions for the local fluctuating fields, as
the functions of distances between points, are of the
order of their reducible parts even in the critical region,
provided that these reducible parts are nonzero. This is
the foundation for the renormalization group method
taking into account interaction between fluctuations
through renormalization of the local fields and the
effective Hamiltonian [4].

Recently, Lebedev [5] showed that the behavior can
be substantially different for different-time correlation
functions for the equilibrium fluctuating quantities. He
demonstrated that different-time correlation functions
for the density of vortex charges may be much larger
than their Gaussian parts in the low-temperature phase
of two-dimensional Berezinskii–Costerlitz–Towless
systems. The following physical explanation for such
behavior was proposed in [5]: different-time correla-
tion functions of all orders in the vicinity of a given
space point at low temperature are determined by a sin-
gle rare fluctuation. This interpretation concludes that
the intermittence phenomena must be manifested by
features in the equilibrium dynamics of a wide class of
systems.

1 e-mail: kolokolov@inp.nsk.su
0021-3640/00/7101- $20.00 © 20012
In this study, we consider evolution of a one-dimen-
sional velocity field u(t, x) according to the following
Burgers equation involving thermal noise:

(1)

Here, ν is the dissipation constant that is assumed to be
small and ξ(t, x) is the random noise described by the
Gaussian statistics and by the pair correlation function

(2)

The parameter β plays the role of inverse temperature
and the simultaneous steady-state velocity distribution
function 3[u] has the form

(3)

where 1 is the normalization constant. The equality

, (4)

which follows from expression (3), corresponds to the
total absence of correlation between the velocity values
in different points at the same time instant. We have cal-
culated certain asymptotes of the different-time pair,
triple, and quadruple correlation functions for the field
u(t, x). The obtained results indicate that the intermit-
tence phenomena in fact occur in the equilibrium
dynamics of a system described by equation (1).

A dynamic scaling exponent of z = 3/2 for problem
(1)–(2) was found in [6] based on dimensional esti-
mates and Galilean invariance. Considering the spec-
trum ω ∝  k3/2, Lebedev and L’vov [7] demonstrated the
absence of logarithmic divergences in each order of the
perturbation theory with respect to translation. There-
fore, the ratio βx3/T2 is a dimensionless argument of the
function F2(T, x) = 〈u(T, x)u(0, 0)〉 . First, we determine
an unknown leading term of the asymptotic behavior F2

at βx3/T2 @ 1 and ν  0. It follows from the latter

ut uux νuxx–+ ξ t x,( ).=

ξ t x,( )ξ t1 x1,( )〈 〉 νβ 1– δ'' x x1–( )δ t t1–( ).–=

3 u[ ] 1 β^ u[ ]–{ } , ^ u[ ]exp dxu2 x( ),∫= =

u t x,( )u t x',( )〈 〉 2β( ) 1– δ x x'–( )=
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relationship that contribution of the diffusion mecha-
nism to establishing correlation between points 0 and x
during the time interval T is negligible. The fact that T
is also small means that we can neglect the effect of
noise on the dynamics in the time interval (0, T). In this
case, u(0, y) is a functional u(T, x) (or vice versa) and a
Gaussian form of statistics of the velocity field at the
time instant T makes it possible to represent the differ-
ent-time pair correlation function in the form

(5)

For ν  0, the variational derivative Θ(t, y) = δu(t,
u)/δu(T, x) satisfies the continuity equation

(6)

and the condition Θ(T, y) = δ(x – y). A solution to this
Cauchy problem is found by the method of characteris-
tic curves and the correlation function F2(T, x) is deter-
mined in the form [8]

(7)

Here, y(T, ζ) is the position of a Lagrangian particle
leaving the point with the coordinate ζ at the moment
t = 0

(8)

where y(T) = y(T, 0). If u(t, y) is discontinuous, equation
(8) requires an extension of the definition. Bauer and
Bernard [9] formally justified a physically obvious con-
dition that the velocity of a Lagrangian particle at a dis-
continuity is equal to the velocity of motion of the dis-
continuity itself.

We conclude from expression (7) that the correla-
tion function F2 in the limit under consideration is
determined by the most probable initial fluctuation of
the velocity u0(y) that, evolving, transfers the particle
from the point 0 to the point x in a time T. The proba-
bilities of the initial distributions of the velocity field
are specified by functional (3). We demonstrate that the
desired optimum fluctuation u0(y), minimizing ^[u0]
under the condition y(T) = x, has the form of a linear
profile

(9)

Indeed, it is obvious that the function u0(y) must attain
the maximum at y = 0. The zero value of the function
u0(y) at y < 0 and y > x is easily explained: nonzero val-
ues of the function u0(y) beyond the interval (0, x) do
not affect the trajectory y(t), but increase the ^[u0]
value. The left edge of the derived distribution u(t, x) is
a straight line characterized by the slope σ = 1/t at any

F2 T x,( ) 2β( ) 1– δu 0 0,( )
δu T x,( )
-------------------- .=

Θt uΘy uyΘ+ + 0=

F2 T x,( ) 2β( ) 1– Θ 0 0,( )〈 〉=

=  2β( ) 1– δ x y T( )–( ) ∂y T ζ,( )
∂ζ

-------------------- 
 

ζ 0=

.

ẏ u t y,( ), y 0 ζ,( ) ζ ,= =

u0 y( ) u0* x/T y/T , 0 y x,< <–≡=

u0 y( ) 0, y 0 y x.>,<=
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time instant in the limit ν  0. This time dependence
is easily verified by direct substituting into the Burgers
equation (see also [10]). The coordinate of the fastest
point of the profile at t = T is equal to x. The coordinates
of all other points become the same. Therefore, for the
initial data u0(y) belonging to the class described above,
the plot of the function u(T, y) has the form of the
triangle

(10)

Note now that the Burgers equation leads to the relation

(11)

which yields

(12)

This inequality is strict even in the limit ν  0, pro-
vided that shock waves are formed during the evolution.
Therefore, the minimum value of the functional ^ is

(13)

The functional ^ value for the function (y) coin-
cides with value (13) and the condition of forbidded
formation of the shock waves during the time interval
from 0 to T provides that expression (9) is the only pos-
sible form for u0(y).

The probability of initial fluctuation (9), being
equal to exp(–β^[u0(y)]), determines the exponential
part of the asymptotic behavior of the pair correlation
function F2

(14)

Note that the factor (∂y(T, ζ)/∂ζ)ζ = 0 entering into for-
mula (7) at the δ function vanishes for configuration
(9), but it is nonzero at a small variation of u0(y). In
other words, this factor, as well as the unknown pre-
exponential factor in expression (14) as a whole, is
determined by integration over the deviations δu of the
initial velocity field with respect to (y). The typical

δu values are small as compared to (y) with respect
to the parameter βx3/T2. Nevertheless, the integration
over δu is not reduced to the Gaussian form even in the
limit βx3/T2 @ 1. The reason is that the functional ^[u]
is nonanalytic in the limit ν  0 for the class of func-
tions u(y) such that y(T) = x. The variation δ^ is of
the first-order smallness in δu although the inequality
δ^ ≥ 0 is still fulfilled. The functional ^[u] can be
expanded in the functional Taylor series in terms of δu
only for δu ! ν/x. Corresponding analysis will be per-
formed elsewhere and we restrict this consideration to
exponential accuracy.

u T y,( ) y/T , 0 y x, u0 y( )< < 0,= =

y 0, y x.><

d^ u t y,( )[ ] /dt 2ν dyuy
2 0,≤∫–=

^ u0 y( )[ ] ^ u T y,( )[ ] .≥

^ u T y,( )[ ] x3/3T2.=

u0*

F2 T x,( ) βx3

3T2
---------– 

  .exp∼

u0*

u0*
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Noting that linear profile (9) transfers all points
belonging to the interval (0, x) to the point x by the time
instant t = T, we obtain to within the exponential accu-
racy that

(15)

where 0 < y1 < y2 … < yn. The reducible part of this cor-
relation function at n ≥ 1 is obviously equal to zero. The
same fluctuation (y) determines the following lead-
ing asymptotic behavior of the correlation function
Φ4 = 〈u(T, x)u(T, x + a1)u(0, a)u(0, 0)〉  for 0 < a < x and
0 < a1 ! a

(16)

Here, Φ4, Gauss is the reducible part of the correlation
function Φ4. To find the correlation function Φ4 as a
function of the parameter a, it is necessary to consider
evolution of the perturbed linear profile; during this
evolution, the reversal inevitably occurs and the prob-
lem becomes substantially more complex. We note also
that dependence of the correlation function Φ4 on a is
related directly to the distribution function of the veloc-
ity field gradients; the latter function is determined, as
was shown in [11, 12], by the shock waves being
formed. Coincidence of the leading asymptotic terms
of the pair and higher order correlation functions is typ-
ical of the turbulence problems, as was originally indi-
cated for these problems in [13].

The correlation functions for the filed u(t, x) can be
represented in the form of functional integrals (see, for
example, [14]). These integrals are calculated, in
essence, by the saddle point method, where the saddle-
point parameter βx3/T2 @ 1 is determined by the aver-
aged quantity rather than by the action. This approach
was originally proposed by Lifshits [15]. More
recently, it was generalized to determine higher order
correlation functions for both equilibrium [16] and sub-
stantially nonequilibrium systems [12, 17–22]. The
optimal fluctuation is also referred to as instanton, the
term generally accepted in the quantum field theory.
The long-term asymptotic behavior of the autocorrela-
tion function of the current through the disordered con-
tact was calculated in [23], where large observation
time interval was used as a saddle-point parameter
determining the instanton.

Fn 2+ u T x,( ) u 0 y j,( )u 0 0,( )
j 1=

n

∏=

∼ F2 T x,( ) βx3

3T2
---------– 

  ,exp∼

u0*

Φ4
βx3

3T2
---------– 

   @ Φ4 Gauss,
2βx

3

3T2
------------– 

  .exp∼exp∼
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Abstract—It is shown that a similarity relationship of the type (K0V0/E0) ≅  const (where K0, V0, and E0 are the
bulk modulus, the volume, and the total energy at P = 0) exists for the elements of the carbon family, including
C, Si, Ge, Sn, and Pb. This fact rules out the possibility of significant covalent effects on the compressibility of
the corresponding substances. The record bulk modulus value of diamond is associated with its extreme atomic
density. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.20.Dc
It is commonly argued that covalent interaction is
responsible for the formation of a substance that pos-
sess a high modulus of elasticity. Diamond is fre-
quently used in this case as a typical example. It is a
“perfect” covalent crystal and can be characterized as
the least compressible substance in the available part of
the Universe. Below, I will show using the carbon fam-
ily elements as an example that this statement is not
true in the general case. It turns out that the bulk mod-
ulus in the C–Si–Ge–Sn–Pb series of the carbon family
elements is directly proportional to the energy density
with a virtually universal factor of proportionality.
Generally speaking, this fact is not favorable to the idea
of a significant contribution of covalent effects to the
compressibility of the corresponding substances.

Let us obtain a relationship between the bulk modu-
lus K and the total energy Et in the case of a general
Et(V) dependence. The total energy of a substance at
T = 0 may be written as

(1)

where E0 and V0 are the total energy and the volume of
the substance at P = 0 and T = 0. Hence, the bulk mod-
ulus can be written as follows:

(2)

At P = 0, this expression is reduced to

(3)

or
(4)

From (1) and (4), it follows that, if the function f(V/V0)
is universal for a certain set of substances, then the ratio
K0V0/E0 transforms to the similitude relationship
(K0V0/E0) = const. It is easy to calculate the correspond-
ing values with the help of tabulated data, which is what
I will do below. However, I will first indicate that, in
line with the physical description of the structure of
metals and semiconductors (a system of ions embedded
in the liquid of valence electrons), the total energy in

Et E0 f V /V0( ),=

K V ∂2Et/∂V2( )T E0/V0( ) V /V0( ) f '' V /V0( ).= =

K0 E0/V0( ) f 0'' V /V0( )V V0==

K0V0/E0( ) f '' V /V0( )V V0= .=
0021-3640/00/7101- $20.00 © 20015
this case is assumed to be equal to the difference
between the ground-state energy and the energy of the
system of noninteracting fourfold ionized ions and the
corresponding number of electrons. According to the
aforesaid, the total energy E0 at P = 0 may be calculated
as E0 = Ec + EI, where Ec is the cohesive energy and EI
is the fourfold ionization energy.

Figure 1 demonstrates the behavior of the value of
K0V0/E0 as a function of the atomic number of the car-
bon family elements. The table presents the corre-
sponding numerical data. It is seen in the figure that the
value of K0V0/E0 varies only slightly as the atomic num-
ber of the element changes.1 It is surprising that no dis-
continuity is observed in passing from covalent crystals
(C, Si, Ge, and α-Sn) to good metals (β-Sn and Pb).
Moreover, both white and gray tin, which represent
“covalent” and metallic modifications of the same sub-
stance, are characterized by the same value of the
K0V0/E0 ratio. With regard to relationship (4), this means
that the form of the function Et(V) describing the total
energy of the carbon family elements does not change sig-
nificantly within the group and that the similitude relation-
ship of the form (K0V0/E0) ≅  const holds true for the entire
group as a whole. This conclusion is also based on the fact
that the potential energy curves of all substances have, in
some sense, a universal form that provides their stability.
In this case, the equality of the second derivatives allows
the conclusion, at least as a rather probable suggestion,
that the function Et(V) is a universal function.2 

1 Note that the quantity  = K0V0/E0 is rather sensitive to the form
of the function Et(V). For example, it is easy to show that, for the

function Et(V) of the form Et = (E0/n – m)[m(V0/V)n – n(V0/V)m],
the ratio (K0V0/E0) = mn. In particular, for noble gases, it must be
expected that (K0V0/E0) ≈ 8, which is observed in reality.

2 In the case when the energy can be written as a combination of
power functions, the second derivative of the energy with respect
to the reduced volume at V/V0 = 1 is expressible through the cor-
responding exponents (see footnote 1) and, hence, characterizes
the entire potential curve as a whole.

f 0''
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16 STISHOV
Atomic volumes (V0), bulk moduli (K0), and total energies (E0) for the carbon family elements at atmospheric pressure (values
of V0 and K0 correspond to room temperature)

Substance Atomic number V0 [1], cm3/g-atom K0, Mbar E0 , eV* K0V0/E0

C (diamond) 6 3.42 4.43 [2] 155.4 0.101

Si 14 12.06 0.977 [3] 107.8 0.112

Ge 32 13.63 0.749 [3] 107.6 0.094

β-Sn 50 16.30 0.55 [3] 102.2 0.091

α-Sn 50 21.31 0.42 [4] 102.2 0.087

Pb 82 18.26 0.45 [1] 98.7 0.086

* The total energy E0 was calculated as the sum E0 = Ec + EI, where Ec is the cohesive energy [3, 6], and EI is the fourfold ionization energy [5].
Finally, the material presented here leads to the con-
clusion that specific covalent effects are not manifested
in uniform deformation. The table and Fig. 1 demon-
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C (diamond)
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Fig. 1. Dependence of the K0V0/E0 ratio on the atomic num-
ber of the carbon family elements.

Fig. 2. Bulk modulus K0 as a function of the energy density
E0/V0 for the carbon family elements.
strate that the bulk modulus K0 of the carbon family ele-
ments may be written as

(5)

where c ≈ 0.1, and (E/V)0 is the energy density at P = 0.
Relationship (5) is illustrated in Fig. 2. I emphasize that
the exceptionally high value of the energy density in
diamond is achieved to a great extent because the
extremely small value of the atomic volume of carbon
(see table). Consequently, the record bulk modulus
value of diamond is due to its extreme atomic density,
which, in its turn, is associated with the electronic con-
figuration of the carbon atom and is completely unre-
lated to covalent effects (also see discussion in [7]).

Note in conclusion that, in the light of the above, the
possibility of creating carbon materials with a bulk
modulus and a hardness exceeding the diamond values
seems unlikely.

The author is grateful to V.V. Brazhkin and
A.G. Lyapin for their help in work and numerous dis-
cussions.
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Abstract—The hopping conductivity σ3 has been studied in samples of slightly counterdoped crystalline Si : B
with a boron concentration of 2 × 1016 cm–3 < N < 1017 cm–3 and a compensation of 10–4 ≤ K ≤ 10–2. It is found
that at K ≤ 10–3 the activation energy ε3 is not lower (as it must be according to classical notions at finite K) but
larger than the value εN = e2N1/3/κ, where e is the electronic charge and κ is the dielectric constant. With decreas-
ing N, the energy ε3 drops slower and, with decreasing K, grows faster than follows from the standard theory.
At K ≤ 10–4, ε3 is higher than εN by a factor of 1.5–2. The result is explained by the effect of the overlap between
wave functions of neighboring impurity centers on the structure of the impurity band. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 72.20.E, 72.80.Jc
1 1. Impurity conduction in slightly doped crystalline
semiconductors (σ) at low temperatures (T) occurs by
electron hopping over the ground states of impurity
centers. At a low compensation K = N/NK ! 1 (N and
NK are the concentrations of the majority and compen-
sating impurities), it is convenient to speak about
vacancy hopping. (We will put forth the presentation
with reference to an n-type material.) The σ(T) depen-
dence corresponds to an activation process. The activa-
tion energy is conventionally designated as ε3. If the
ground-state energy of an isolated donor is taken as
zero, then the energy ε3 at T  0 coincides with the
Fermi energy µ. In the case of shallow donors at K  0,

(1)

where e is the electronic charge and κ is the dielectric
constant of the crystal. With increasing K, the value of
ε3 slightly decreases: ε3 = εN(1 – 0.29K1/4) [1]. The
results of measurements on samples with 0.01 ≤ K ! 1
agree with the pattern described in [1]. Note that K is a
small parameter in the standard theory of hopping con-
duction. With decreasing K, agreement between the
theory and experiment must improve.

When studying the hopping conductivity in a great
number of Si : B samples with 2 × 1016 cm–3 < N <
1017 cm–3, we found that a discrepancy between the
experiment and the theory arises at K ≤ 10–2, which
become greater with decreasing K. Below, we will
restrict our consideration to the description of results

1 e-mail: melnikov@rpl.mpgu.msk.su

µ ε3 εN e2N1/3/κ ,≡≈=
0021-3640/00/7101- $20.00 © 20017
obtained in low electric fields, where σ3(E) = const.
Figure 1 displays the dependence ε3(K) at N = const =
3.6 × 1016 cm–3 (a set of samples with transmutation
doping). In the same figure, the dashed line represents
the dependence ε3(K) according to [1]. It is seen that
agreement with the calculation is observed only at
K > 10–2. Note that, according to the theory, the ratio
ε3/εN < 1 and  1 at K  0 (see above). The exper-
imental results indicate that, in samples with K < 3 ×
10–3 ε3/εN < 1 and the dependence on K is completely
different. Figure 2 shows the dependence ε3(N) for
samples with close values of K (K ≈ 10−3). The dashed
line shows dependence (1). The calculated values for
our K differ from (1) by no more than 5%. Note that the
dependence ε3(N) at K . const turns out to be weaker
than (1).

2. Let us discuss the results obtained for samples
with K > 5 × 10–4. In the theory of ε3-conduction, it is
suggested that the structure of the impurity band is of
purely classical origin and is determined exclusively by
fluctuations of the Coulomb potential. At K ! 1 and
low T, all the acceptors are negatively charged. A
vacancy is located in the vicinity of almost each accep-
tor. This is a neutral 1-complex (concentration N1 ~
NK). In the vicinity of some acceptors, vacancies are
absent. These are negative 0-complexes (concentration
N0). There are acceptors binding two vacancies. These
are positive 2-complexes (concentration N2). The value
µ = ε3 is determined from the neutrality equation

(2)N0 µ( ) N2 µ( ).=
000 MAIK “Nauka/Interperiodica”



18 MEL’NIKOV et al.
The ratio rµ/  ≡ z is the characteristic parameter of the
problem. Here, rµ = e2/κµ is the distance at which the
additional Coulomb contribution to the energy of a neu-
tral donor in the field of the acceptor equals µ, and  =
(4πN/3)–1/3 is the average distance between donors. The
equation for N0(µ) takes the form

(3)

where ν = z3 is the average number of donors in the
sphere of radius rµ. Equations for N2(µ) are given in [1].
Equality (1) is the solution of equation (2). It turns out
that N0 = N2 ≈ 0.02NK.

This theory completely neglects the quantum
effects, that is, the overlap between the wave functions
of neutral centers. However, Coulomb fluctuations
decrease at K  0, and the overlap effects become
significant. Complexes of several neighboring neutral

r

r

N0 NK ν–( ),exp=
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Fig. 1. (1) Dependence ε3(K) for Si:B samples with N =

3.6 × 1016 cm–3. (2) Calculated dependence ε3(K). Dashed
line shows the value ε3 = εN.
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Fig. 2. Dependence ε3(N) for Si:B samples with K ≈ 10–3.
Dashed line shows the calculated dependence ε3(N) at
K  0.
centers arise in this case. The first ionization energy of
such complexes may differ from the first ionization
energy of an isolated donor. This will result in a change
in the shape of the density of states of the impurity band
g(ε) and in the appearance of charged formations of a
different kind. As NK decreases or N increases, it
becomes necessary to give primary consideration to the
most probable complexes of two neutral donors
(D2-complexes).

The first ionization energy of a D2-complex depends
on the distance ρ between donors. The difference of the
first ionization energies of an isolated donor and a
D2-complex ∆(ρ) has a maximum at ρ = ρm . 4a0, equal
to ∆(ρm) ≡ ∆m ≈ 0.065ε1, which makes up ≈3 meV for
Si : B. Here, a0 is the effective Bohr radius, and ε1 =
e2/2κa0 is the effective Rydberg constant. The depen-
dence ∆(ρ) is shown in Fig. 3 [2, 3]. Below, D2-com-
plexes for which ∆(ρ) is comparable with ∆m will be
named molecules. We denote their concentration by M.

Now, we are to discuss the effect of molecules on
the density of states of the impurity band g(ε). Let us
mentally switch off the overlap. In this case, we will
have a set of noninteracting neutral centers, to which
the standard theory of ε3-conduction can be applied. In
this case, the density of states of the impurity band has
a sharp peak at ε = 0. Now, we switch on the overlap
again. Molecules whose first ionization energies are
lower than that of a neutral center will appear. This
decrease means that part of states (of order M per unit
volume) pass from the major peak to the region ε ≤ ∆m.
An additional peak in g(ε) will form in this region [3].

It is convenient to consider the effect of molecules
on µ separately for the cases εN < ∆m and εN > ∆m. In the
first case, as the overlap is switched on, part of states
pass from the region ε < µ = εN to the region ε ≈ ∆m > µ.
It is evident that this must lead to an increase in µ at
constant N and NK. At large M/NK, the level µ  ∆m.
We will not consider this case in detail, because the ine-
quality εN < ∆m is obeyed for Si : B (a0 = 23 × 10–8 cm)
at N < 2 × 1015 cm–3. When N is so small, the hopping
conductivity in Si:B cannot be measured.

Consider the case of εN > ∆m. Under this condition,
almost all molecules are neutral. An exception is pro-
vided by molecules whose distance from an acceptor is
less than rµ – ∆ = e2/κ(µ – ∆(ρ)). Almost all such mole-
cules will be ionized. An acceptor can bind two vacan-
cies, vacancy and an ionized molecule, or two ionized
molecules. Thus, as the overlap is switched on, the con-
centration of positively charged complexes increases.
At the same time, the overlap decreases the concentra-
tion of negatively charged complexes N0. In fact, the
exponent in equation (3) is the probability that the
sphere of radius rµ contains no donor. However, an ion-
ized molecule may occur in the vicinity of an acceptor
in a spherical layer between rµ and . In this case,
a 1-complex (a negatively charged acceptor plus an ion-

rµ ∆m–
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ized molecule) rather than 0-complex will form. Con-
sequently, the concentration N0 will be lower than in the
absence of the overlap.

Thus, the switching-on of the overlap violates the
neutrality condition (2): the left-hand side decreases,
and the right-hand side increases. The equality will be
restored through an increase of µ. (From physical con-
siderations, it is clear that, with increasing µ, the num-
ber of negatively charged complexes increases and the
number of positively charged complexes decreases.)

3. It is easy to estimate the value of µ from the
above. To do this, let us replace all neutral centers by
molecules and suppose that ∆(ρ) = ∆m for all molecules.
Then, we may apply the impurity band theory for small
K to noninteracting molecules. As a result, instead
of  the equality µ = εN, we obtain µ – ∆m = εN. Thus,
µ < εN + ∆m.

4. Let us crudely estimate, as applied to Si : B
(p-type), the values of N and NK at which molecules
affect µ. We start from the determination of the lower
bound by N, Nmin. First, we found N0 with regard to
molecules. For simplicity, we will consider that ∆(ρ) =
∆m for all molecules and that the center-to-center dis-
tance lies within the range (  ± 0.5δρ), where  = 4a0
and δρ = 2a0. Under this assumption, the product ∆mδρ
approximately equals the area under curve (Fig. 3). A
certain reason for such a choice is the fact that it is the
area under curve that determines the number of mole-
cules in the layer at δρ <  and ∆m ! µ (see below). It
is easy to see that  ! rµ. Therefore, we will consider
molecules as points.

At ( )3 ! ( )3, the concentration of molecules is

(4)

Note that the inequalities NK ! M ! N are obeyed in
our samples. The number of pairs in the layer (rµ,

) is ν' = (4π/3)M(  – ). To calculate N0 in
the presence of molecules, expression (3) should be
multiplied by the probability that the layer exp(–ν')
contains no molecule:

(5)

The right-hand side of equation (2) should be supple-
mented by the concentrations of 2-complexes contain-
ing one or two molecules; these terms are of orders ν'/ν
and (ν'/ν)2, respectively. At N = Nmin, the ratio ν'/ν is
small, and these terms may be omitted. However, gen-
erally speaking, the quantity ν' cannot be omitted in the
exponent (2). Thus, as N increases, the contribution of
molecules should be taken into account primarily in the
calculation of N0 (M ~ N2). Assuming that ν' ~ 1 at N =
Nmin, we obtain Nmin . 4 × 1015 cm–3. To obtain this esti-
mation, it should be assumed that µ = εN and taken into

ρ ρ

ρ
ρ

ρ ρ

M 1/2( ) 4πN2 ρ( )2δρ× .=

rµ ∆m– rµ ∆m–
3

rµ
3

N0 NK ν– ν'–( ).exp=
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account that, under this condition, (4πN/3)  = z3 and
z = (1.63)3 [1].

Fluctuations of the potential shield the field of the
acceptor at a distance [1]

(6)

A molecule that resides in the layer (rµ, ) can be

ionized if rs @ . Assuming for estimation that rs ≥
10 , we obtain that the effect of pairs in our sam-

ples must become appreciable at NK/N = K ≤ Kmax ≤ 10–2,
which is reasonably consistent with the experimental
data (see Fig. 1).

The concentration N at which the approximation of
isolated molecules is valid is bounded from the above
N < Nmax. Actually, at sufficiently large N, the effect of
the third nearest neighboring neutral center separated
by a distance r @  from the molecule should be taken
into account. The interaction of the center with a neu-
tral molecule can be neglected. The interaction energy
δε of the third center with the electron of an ionized

molecule can be estimated [4] at δε(r) = e2 /(2κ2r4)

(the polarizability of a neutral center ≈ ). The effect
of the third center can be neglected if δε(r) ! ∆m. We
determine the critical value r = rc by the condition
δε(rc) = 0.1∆m. The model of isolated molecules is

applicable if the probability exp(–(4π/3)N ) that the
sphere of radius rc around the molecule contains no
center is close to unity. From here, using the rc value
defined above, we obtain N < Nmax ≈ 1017 cm–3. The
experimental upper bound, as was mentioned above, is
close to this value.

5. Thus, the model that takes into account the effect
of the interaction of neutral centers on the energy dis-
tribution of states provides a complete qualitative
explanation of experimental results. This model gives
estimations for Nmin, Nmax, and Kmax. Among these val-
ues, Nmax and Kmax are observed experimentally. As to

rµ
3

rs 0.58NK
1/2– N1/6 N /NK( )1/2r.≈=

rµ ∆m–

rµ ∆m–

rµ ∆m–

ρ

a0
3

a0
3

rc
3

∆, meV
3

0

–3

2 3 4 5 6
ρ, arb. units

Fig. 3. Dependence of the change in the first ionization
energy of an impurity molecule on the center-to-center dis-
tances.
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the lower bound Nmin, its existence cannot be verified
experimentally, because the conductivity is too small at
such small N.

We emphasize once again that our estimates are
rather approximate. In this connection, note that the
rightfulness of using the light-hole radius a0 = 23 ×
10−8 cm, which determines the overlap of wave func-
tions, is far from evident. Nevertheless, the estimates of
Nmax and Kmax are in a reasonable agreement with the
experimental values.

In conclusion, we are to make two comments. The
discrepancy between the classical theory and experi-
ment for the samples under discussion relates not only
to the ε3 values. A radical disagreement is also observed
for the dependence on E and on the magnetic field H.
Thus, as E increases, a decrease in σ3 with E is
observed not only at high T (in the region of σ3 deple-
tion [5]) but in the entire range of T; depending on T and
E, a magnetic field H leads to either a gigantic increase
in σ3 (by a factor of 2–2.5 [6]) or a significant drop (by
a factor of 2–3) even at values negligibly small for sili-
con (H . 15 kOe). These results call for a special con-
sideration.

At an even smaller compensation K ≤ 5 × 10–4, even
higher values of ε3 are observed (see Fig. 1). These val-
ues exceed the upper bound obtained for ε3 in the
approximation of two-center molecules. We believe
that this fact is associated with molecules of three and
more centers. The probability of the formation of such
molecules is small. Therefore, their effect is revealed at
smaller NK. Note in this connection that the first ioniza-
tion energy of three hydrogen atoms separated from
each other by distances of order several Bohr radii in
various configurations turns out to be considerably
lower than the first ionization energy of an isolated
hydrogen atom (to 0.4 Ry at R/a0 . 1.5 [7]).

The authors are grateful to Ya.E. Pokrovskii for the
possibility of performing experiments on sets of sam-
ples with transmutation doping. 
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Abstract—On soft magnetic amorphous specimens, a rapid decrease in the surface amplitude of 180° domain
wall oscillations relative to the bulk amplitude is observed with increasing frequency of the magnetizing field.
The dynamics of the domain wall is studied by a magnetooptical method at the specimen surface and by the
induction method in the bulk. The results of the experiment disagree with the theory, which takes into account
the effect of eddy currents and predicts that, with increasing frequency, the surface amplitude of the domain
wall oscillations should decrease slower than the bulk amplitude. The observed behavior of the domain wall is
explained by its interaction with macroscopic defects at the specimen surface. This interaction gives rise to
unsteady chaotic surface wall displacements, which lead to an increase by several orders of magnitude in the
effective surface damping parameter in the Landau–Lifshits equation. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.60.Ch, 75.50.Kj
1 According to the theory developed by a number of
authors (see, e.g., [1]), the effect of eddy currents
should lead to changes in the shape of a moving domain
wall (DW) in a ferromagnetic material. The density of
eddy currents caused by the DW motion is lower near
the surface and higher in the bulk of the specimen;
therefore, in the bulk, the deceleration of the DW due to
the eddy currents should be more substantial than at the
surface. Thus, the surface amplitude of the DW oscilla-
tions in an alternating magnetic field should be higher
than the bulk one, and the difference between these
amplitudes should increase with increasing frequency
of magnetic field. This effect was observed experimen-
tally in iron silicide [2, 3].

In the studies of the oscillations of 180° DW in iron
whiskers, which are specimens with a nearly perfect
crystal structure both in the bulk and at the surface, a
different result was obtained [4]. It was found that, with
increasing frequency, the surface amplitude of the DW
oscillations in iron whiskers decreased much more rap-
idly than the bulk one. The experiment showed that
such an anomalous behavior of the DW is a result of the
physical adsorption of air molecules at the surface of
iron crystals [4]. The adsorption causes an increase in
the magnetic defect density and, hence, an increase in
the effective deceleration of the DW at the surface.

This paper presents a study of the oscillations of
180° DW both at the surface and in the bulk of the spec-
imens of an amorphous ferromagnet, i.e., a material
characterized by the most disordered structure. The
amorphous ferromagnetic specimens of composition
FeCuNbSiB were obtained by the spinning method.
Before amorphization, the melt was subjected to spe-

1 e-mail: kudakov@adk.phys.msu.su
0021-3640/00/7101- $20.00 © 20021
cial time–temperature treatment to obtain a uniform
distribution of doping elements and, as a result, an
improvement of the soft magnetic properties of the
alloy [5]. The specimens were 25–30 µm thick,
0.55 mm wide, and 15–20 mm long. In what follows,
the specimens and the results of the experiment are
described by using the coordinate system with the
x-axis and y-axis being directed along the specimen
length and width, and the direction of the z-axis corre-
sponding to the shortest dimension, i.e., the specimen
thickness. In the middle of each specimen, a 180° DW
oriented along the yz-plane was formed. The DW
divided the specimen into two domains with the mag-
netization along the y-axis. The effective width of the
DW at the surface and the coercive force of the DW
were determined by the magnetooptic method and
proved to be equal to 7 µm and 0.01 Oe, respectively.

The surface properties of the DW were studied by a
magnetooptic method with the use of the equatorial
Kerr effect. The surface oscillations of the DW were
studied by measuring the equatorial Kerr effect caused
by the change in the magnetization of part of the spec-
imen in the course of the DW motion. The slit of a pho-
tomultiplier tube scanned the surface along the x-axis
normally to the DW. The magnetooptic signal was
observed only in the region of the DW oscillations. The
amplitude of the DW oscillations in the bulk of the
specimen was determined by the induction method. A
displacement of the DW causes a change in the total
magnetic flux in the specimen, and this change is pro-
portional to the DW displacement. To obtain a signal
proportional to the amplitude of the DW oscillations in
the bulk, a small measuring coil was fitted on the spec-
imen and positioned in the immediate vicinity of the
region of magnetooptic measurements. The signal
000 MAIK “Nauka/Interperiodica”
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excited in the measuring coil by the external magnetic
field was cancelled by an additional coil.

Figure 1 presents the distributions of the equatorial
Kerr effect, δ(x)/δmax, caused by the magnetization of
the domains and observed owing to the oscillations of
the DW. The distributions are plotted along the x-axis
for a magnetic field of amplitude 0.6 Oe and for dif-
ferent frequencies from 20 Hz to 15 kHz. The peak-to-
peak amplitude of the DW oscillations at the surface
is determined as the width of the equatorial Kerr effect
curve at its base minus the width of the DW [4]. Fig-
ure 2 presents the dependence of ∆s/∆0s on frequency
(curve 1), where ∆s is the amplitude of the DW oscilla-
tions and ∆0s = ∆s at f  0. From this figure, it fol-
lows that the relaxation frequency (fr), which corre-
sponds to a 30% decrease in the amplitude of the DW

oscillations relative to , is about 6 kHz (see Fig. 2).
The measurements showed that, in the frequency range
from 20 Hz to 15 kHz, the amplitude of the DW oscil-
lations in the bulk (∆v) is invariant.
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Fig. 1. Distributions of the equatorial Kerr effect, δ(x)/δmax,
caused by the oscillations of a 180° domain wall in a speci-
men in an alternating magnetic field with an amplitude of
0.6 Oe; f = (1) 0.02, (2) 2, (3) 10, and (4) 15 kHz.

Fig. 2. Frequency characteristics of the amplitude of the
domain wall oscillations (1) at the surface and (2) in the bulk
of the specimen; fr is the relaxation frequency for the
domain wall oscillations at the surface.
The results obtained in our experiments disagree
with the theoretical predictions based on taking into
account the effect of eddy currents and testify that the
effective deceleration experienced by a moving DW in
the near-surface region far exceeds that in the bulk.

The frequency dependences of the amplitude of the
180° DW oscillations observed both at the surface and
in the bulk of amorphous magnetic specimens qualita-
tively agree with the corresponding dependences
obtained for single-crystal iron whiskers for which the
enhanced surface deceleration of the DW is caused by
the formation of surface defects due to the adsorption
of air molecules. Therefore, it would appear reasonable
to assume that the enhanced surface deceleration of
DW in amorphous specimens is also caused by some
surface defects. The fast cooling of the melt used for the
preparation of amorphous specimens leads to the for-
mation of a microrelief at the specimen surface as well
as a macrorelief visible to the unaided eye. Another
specific feature of the specimens is that the width of the
DW observed in amorphous specimens is an order of
magnitude greater than that observed in iron, and it is
of macroscopic dimensions. It is well known that a DW
most strongly interacts with the crystal defects whose
dimensions are close to the DW width [6]. Therefore,
the enhanced deceleration of the DW in amorphous
specimens can be explained by the interaction of the
DW with macroscopic surface defects.

The disagreement between the results of our exper-
iments and the theoretical predictions (see [1]) can be
explained by taking into account the mechanism of the
anomalously high energy loss experienced by a moving
DW in the near-surface region [7]. The mechanism con-
sists of an unsteady chaotic motion of the near-surface
part of the DW, this motion being initiated by the sur-
face defects of the specimen. The effective surface
damping parameter involved in the Landau–Lifshits
equation and determined on the basis of the developed
theory proves to be several orders of magnitude higher
than the corresponding parameter for the specimen
bulk, which explains the enhanced surface deceleration
of the DW. The unsteady chaotic displacements of the
DW cause an increase in the eddy current density in the
surface region, which leads to an additional decelera-
tion of the DW. On the basis of the mechanism of the
unsteady surface displacements of the DW, one also
can explain the results obtained in the experiments with
iron silicide [2, 3]. Such an explanation is supported by
the fact that, in one of these experiments [3], the surface
amplitude of the DW oscillations was much less than
the amplitude predicted by the theory on the basis of
effect of eddy currents, while, in the other experiment
[2], the dynamical bowing of the DW was found to
depend on the amount of defects in the specimens. In
addition, in both these experiments [2, 3], an unsteady
motion of the DW at the specimen surface was
observed.
JETP LETTERS      Vol. 71      No. 1      2000



        

ANOMALOUS SURFACE DECELERATION OF A DOMAIN WALL 23

                             
We are grateful to V.S. Tsepelev for supplying us
with the amorphous magnetic specimens. 

This work was supported by the Russian Foundation
for Basic Research (grant no. 97-03-32409a) and a
grant from the Ministry of Education of the Russian
Federation (the St. Petersburg Competition Center).

REFERENCES
1. B. N. Filippov and A. P. Tankeev, Dynamical Effects in

Ferromagnets with Domain Structure (Nauka, Moscow,
1987).

2. N. K. Esina, V. F. Tiunov, and V. A. Zaœkova, Fiz. Met.
Metalloved. 53, 281 (1982).
JETP LETTERS      Vol. 71      No. 1      2000
3. M. Celasco, A. Masoero, P. Mazzetti, et al., IEEE Trans.
Magn. MAG-22, 502 (1986).

4. V. E. Zubov, A. D. Kudakov, N. L. Levshin, et al.,
J. Magn. Magn. Mater. 140–144, 1895 (1995).

5. Yu. N. Starodubtsev, L. D. Son, V. S. Tsepelev, et al.,
Rasplavy 4, 76 (1992).

6. G. S. Krinchik, Physics of Magnetic Phenomena (Mosk.
Gos. Univ., Moscow, 1985).

7. V. E. Zubov, A. D. Kudakov, N. L. Levshin, et al., Pro-
ceedings of Moscow International Symposium on Mag-
netism, Moscow, 1999, Part 1, p. 61.

Translated by E. Golyamina



  

JETP Letters, Vol. 71, No. 1, 2000, pp. 24–26. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 71, No. 1, 2000, pp. 38–41.
Original Russian Text Copyright © 2000 by Gladki

 

œ

 

, Kirikov, Nekhlyudov, Volk, Ivleva.

                                                              

CONDENSED
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Abstract—With a strontium barium niobate crystal used as an example, it is experimentally demonstrated
that relaxor ferroelectrics exhibit pronounced polarization anomalies, which manifest themselves in the dif-
ference between the trajectories of the dielectric hysteresis observed in several repeated cycles of a varying
external electric field. These anomalies originate from the nonuniformity of the relaxor composition, local
symmetry lowering, local internal electric field, and a wide distribution of potential barriers in energy for the
polarized regions. The anomalies can be observed only in slowly varying (quasistatic) or constant electric fields.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 77.80.Fm, 77.22.Ej
Relaxor ferroelectrics include a large group of solid
solutions with a perovskite or tungsten bronze struc-
ture. In contrast to ordinary ferroelectrics whose phys-
ical properties are adequately described by the Landau–
Ginzburg–Devonshire theory, relaxors possess the fol-
lowing specific features [1]. They have a disordered
structure, because some ions can occupy different posi-
tions, and the chemical composition of a relaxor varies
over the crystal volume. Because of the composition
fluctuations, the phase transition from nonpolar to polar
state and the anomalies of the physical properties are
spread over a wide temperature range called Curie
region. In this region, the inhomogeneous macroscopic
structure consists of a nonpolar matrix containing
small-size polar regions ~100 Å (nanodomains), the
dielectric permittivity exhibits a weak spread maxi-
mum at some temperature Tm, as well as a dispersion at
low radio frequencies, and the dielectric hysteresis loop
slowly degrades with heating above Tm [2]. In proper-
ties and structure, relaxors are similar to ferroelectrics
at temperatures well below the Curie region and to
dielectrics at temperatures above this region. The
piezoelectric, pyroelectric, and electrooptic character-
istics of relaxors are characterized by high values and
high nonlinearity. Relaxor ferroelectrics show consid-
erable promise for the applications in piezoelectric
technology, electronics, nonlinear optics [1], and
holography [3].

The dielectric properties of relaxors had usually
been studied in alternating electric fields of frequency
~100 Hz [1, 2]. This paper presents the results obtained
by measuring the polarization P in a slowly varying
(quasistatic) electric field E, which made it possible to
study the evolution of long-lived metastable states in
this type of crystals.

The measurements were performed by precision
electrometry using an equal-arm bridge with a voltage
0021-3640/00/7101- $20.00 © 0024
sensitivity of 20 µV and an electric charge sensitivity of
4 × 10–6 µC. The voltage compensation in the bridge
diagonal was performed with the help of an IBM PC
and controlled peripheral units in steps of 0.15 mV. The
polarization P was continuously recorded in the real-
time mode and could be observed on the display of a
PC [4]. The electric field E was generated by a B5-50
voltage source with the output voltage within 0–300 V,
with a varied polarity. The voltage source was con-
trolled by a programmed unit. The experimental setup
allowed one to measure several successive cycles of the
specimen repolarization with a step being a multiple of
1 V and a time interval being a multiple of 1 s. The max-
imum number of steps was 1200. The magnitude of the
step in voltage, the step duration, and the maximum
voltage magnitude could be varied in the course of the
experiment.

For our studies, we selected a Sr0.61Ba0.39Nb2O6
(SBN) single crystal doped with 0.44 mol % La and
0.023 mol % Ce. The crystal was grown by the Czo-
chralski method at the General Physics Institute of the
Russian Academy of Sciences [5]. The introduction of
Ce was necessary for the concurrent studies of photore-
fractive effects in this crystal as a promising material
for dynamical holography [3]. Among all known mate-
rials of this kind, the selected crystal has the lowest
temperature corresponding to the maximum dielectric
permittivity: Tm = 37°C. Therefore, in this crystal, the
anomalous behavior of P, which is expected in relaxors
near Tm, can be more easily observed by electrometry
owing to the relatively high resistance: ~1013 Ω at 0°C.

The specimens were grinded plates of polar Z-cuts
of the crystal with the dimensions 2.5 × 3 × 0.7 mm.
The larger faces were covered with silver paint. The
temperature of the specimen was stabilized in a con-
stant-temperature cabinet to an accuracy of no lower
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. Hysteresis loops in the dependence of the polarization P (µC/cm2) on the electric field E (V/cm) for an SBN crystal at T =
(a, b) 274, (c) 250, and (d) 236 K; (e) schematic representation of the local free energy F as a function of the polarization P.
than 0.03 K. Prior to every measurement run, the spec-
imen was heated above Tm and then cooled to the given
temperature.

Figure 1 presents the quasistatic loops of the dielec-
tric hysteresis observed in the dependence of P on E in
several repeated cycles of the field variation at three dif-
ferent temperatures. The duration of one cycle is 1 h.
The beginning of the repolarization process is indicated
by black squares. The first loop (Fig. 1a) corresponds to
the case of opposite directions of the polarization P
induced by the field E at the beginning of the process
and the initial polarization P0 (unipolarity) (P0 < 0); the
other three loops (Figs. 1b–1d) correspond to the case
of coincident directions of these polarizations. In con-
trast to the loop of an ordinary homogeneous ferroelec-
tric, these loops have a common specific feature,
namely, the difference between the values of P at the
beginning and at the end of a complete cycle of the
electric field variation and the difference between the
trajectories of P in different cycles. The boundary val-
ues of P reached at the maximum fields E = ±Emax are
indicated in the figure by black circles, and their
sequence in time is shown by numbers. This specific
feature is most pronounced for the first cycles. As the
cycles are repeated many times, the trajectories of P
approach each other and merge into one common loop,
so that the loops take their usual form observed in the
case of fast multiple periodic variations of E [2]. This
process is accompanied by a considerable decrease in
the amplitude of P and a displacement of the loop
toward nonzero values of P, which is an indication of
the unipolarity peculiar to the specimen in the state of
JETP LETTERS      Vol. 71      No. 1      2000
equilibrium. As the temperature is reduced, the ampli-
tude of P decreases, and the width of the loop and the
unipolarity are increased. With a decrease in the ampli-
tude of E, the amplitude of P also decreases, but the
form of the loop remains virtually unchanged (the
shaded region in Fig. 1c).

The specific features of the quasistatic hysteresis
loops obtained for the crystal under study can be easily
explained, and presumably, they can serve as a direct
verification of the existing concepts of the macroscopic
polar structure of relaxors. The random distribution of
Sr in two nonequivalent cation positions [1] should give
rise to a gradient of their concentration as well as to a
local symmetry lowering and an internal electric field
Ei. As a result, the local free energy F = –αP2 + βP4 –
(Ei + E)p should be an asymmetric two-minimum func-
tion of P [2]. Since the direction and magnitude of Ei

are random variables, the depths of the minima are also
random variables. Figure 1e shows an example of the
local free energy F for the case Ei < 0. At Ei > 0, the
positions of the deep and shallow minima are inter-
changed. If the directions of the internal field Ei and the
external field E coincide, the height of the barriers sep-
arating the shallow minima from the deep ones is
reduced and the process of polarization from the local
metastable states to the stable ones is accelerated. If the
directions of Ei and E are opposite, this process is
decelerated and the reverse polarization begins at |E| >
|Ei|. In a field E with alternating sign, a total repolariza-
tion of the whole crystal is possible only when the con-
dition |E| > |Ei| holds within the entire crystal volume.
Evidently, in the SBN crystal under study, the follow-
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ing situation takes place. The metastable and stable
states are, firstly, long-lived ones because of the high
barriers separating them; secondly, the lifetimes of
these states are distributed over a wide range of values.
As a result, at E = 0, the crystal remains for a long time
in a mixed state with part of the crystal being metasta-
ble and the other part being stable. The field E of both
signs converts some regions of the crystal to the stable
states with P > 0 and P < 0. The volume of these regions
increases with increasing E. At the same amplitudes of
E, an inverse transition of these regions to the initial
states is practically impossible because of the high bar-
riers. Therefore, these regions do not participate in the
following repolarization process, and only the lesser
part of the regions, i.e., the regions where |E| > |Ei|, con-
tribute to the repolarization. As a result, the dielectric
hysteresis loops take the anomalous form shown in
Fig. 1. The measure of the relative volume of the
regions that do not take part in the following repolariza-
tion can be the difference between the polarization val-
ues at the end of the cycle of the electric field variation
(e.g., the difference in P between points 1 and 3 of the
first cycle). As the temperature of the crystal decreases,
all barriers grow; hence, at the same field amplitude,
the relative volume of the regions taking part in the
repolarization process decreases. If the temperature of
the crystal increases, the barriers become lower and the
stable polarized state of the crystal is easily erased.

More information on the heights of the barriers and
their distribution in energy can be derived from the
measurements of the relaxation of the polarization P
that occurs when a constant external electric field E is
abruptly turned on and off. The results of our prelimi-
nary experiments offer the following conclusions. At
any value of E below or above the half-width of the
loop, the polarization variation ∆P first occurs as a
jump (an above-barrier process without a distinct coer-
cive field) and then by the thermal activation mecha-
nism obeying the universal power law ∆P ~ (1 + t/a)n,
where t is time and a and n are parameters depending
on E and temperature (as in the case of ordinary ferro-
electrics). From the measured ∆P(t), one can determine
the equilibrium polarization Pe and, in the framework
of the model with independent relaxation centers,
reconstruct the continuous spectrum characterizing the
distribution of barriers in energy [4]. In ordinary ferro-
electrics, the polarization P relaxes to the value Pe =
Ps = const at any low electric field E, and, when the
field E is turned off, the polarization relaxes to Pe = 0
[1]. In an SBN crystal, in the Curie region, we always
have Pe ≠ const, and the value of this quantity is the
greater the higher the electric field E in both polariza-
tion and depolarization processes. Such a dependence
should be retained up to some critical field correspond-
ing to the polarization saturation, this field being pre-
sumably fairly high. As the temperature increases, the
spectra characterizing the distribution of barriers in
energy are shifted toward lower energy values, while
the jump ∆P and the equilibrium polarization Pe are
decreased. According to our data, the relaxation times
of the polarization P in SBN are about 1 min and over.
No wonder that the anomalies of polarization observed
in our experiments could not manifest themselves in
alternating electric fields of frequency ~100 Hz [2].

The data presented above testify that, in the wide
Curie region, the SBN crystals are strictly speaking no
ferroelectrics, because they have no definite values of
coercive field and equilibrium polarization. Presum-
ably, similar specific features of polarization are char-
acteristic of all compounds called relaxor ferroelectrics
and providing an example of a clearly defined noner-
godic system.

This work was supported by the Russian Foundation
for Basic Research (project no. 99-02-17303).
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Abstract—The conductivity of a two-dimensional electron gas in a parallel magnetic field is calculated. We
take into account the magnetic-field-induced spin-splitting, which changes the density of states, the Fermi
momentum, and the screening behavior of the electron gas. For impurity scattering, we predict a positive mag-
netoresistance for low electron density and a negative magnetoresistance for high electron density. The theory
is in qualitative agreement with recent experimental results found for Si inversion layers and Si quantum wells.
© 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.50.Jt, 71.30.+h
1 In recent experiments [1–9], the transport properties
of the two-dimensional electron gas (2D EG) in Silicon
inversion layers and GaAs heterostructures have been
studied by applying a parallel magnetic field. The moti-
vation to study transport properties came from a
renewed interest into the metal-insulator transition in a
2D EG [10–12]. In the experiments, a strong positive
magnetoresistance has been found in the metallic
phase. The experimental fact that the magnetoresis-
tance saturates above the magnetic field Bc, correspond-
ing to a totally polarized electron system, was inter-
preted as a manifestation for the importance of the spin-
polarization [8, 9]. At electron densities where a strong
magnetoresistance is found, it was shown experimen-
tally that the conductivity increased with decreasing
temperature [5, 9, 13, 14]. This temperature depen-
dence was successfully described by a temperature
dependant screening behavior [15–17].

One expects that the transport properties of the
metallic phase of a 2D EG, depending on temperature
and magnetic field, are explained in the frame of a sin-
gle theory. For a weakly disordered EG, we propose in
the present paper an explanation of the large magne-
toresistance in the metallic phase due to the magnetic
field induced changes of the screening properties of the
2D EG. The corresponding temperature dependence is
also described. The effect of the parallel magnetic field
is to provide the spin-polarization of the EG. In the
fully polarized system, the spin degeneracy is lifted
and the Fermi energy increases by a factor two
together with a reduction of the density of states by a
factor two compared to the two-dimensional EG in
zero magnetic field. In fact, we shall show that these
ingredients are already sufficient to describe a positive

1 This article was submitted by the authors in English.
0021-3640/00/7101- $20.00 © 20027
magnetoresistance at low and intermediate electron
density and a negative magnetoresistance at high elec-
tron density.

We use a minimal model in order to describe the
effects of the parallel magnetic field. The term parallel
means that the magnetic field is in the plane of the EG.
First, we assume that the two-dimensional EG has zero
width in the direction perpendicular to the interface.
Second, we consider only charged impurity scattering
without spin-flip processes. Screening effects are taken
into account within the random-phase approximation
including many-body effects described by the local-
field correction.

The electron density N defines the Fermi wave num-

ber kF of the 2D EG via N = gsgv /4π. Here, gv and gs

are the valley and the spin degeneracy factors, respec-
tively, and kF is the Fermi wave number. The Fermi

energy εF = /2m* is given by the Fermi wave number
and the effective mass m*. For Si inversion layers and
Si quantum wells, gv = 2, while for GaAs/AlGaAs het-
erostructures the valley degeneracy factor is gv = 1. For
zero field, the spin degeneracy is gs = 2, while for large
magnetic field the degeneracy factor is given by gs = 1.
For intermediate fields, the system is partially spin-
polarized. We assume that the disorder is due to
charged impurities of density Ni located in the plane of
the EG. The magnetic field applied parallel to the 2D
EG plane leads to a Zeeman energy ∆E = ±g*µBB/2.
Here g* is the effective Landé g-factor. The system will
be total spin-polarized if ∆E is larger than εF. This con-
dition defines a critical magnetic field Bc for complete
spin-polarization and given by Bc = 2εF/g*µB.

kF
2

kF
2
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For charged impurity scattering, the scattering time
τ is given by [16, 18]

(1)

Here, G(2kF, gs) is the local-field correction which
describes many-body effects and depends on the spin
degeneracy. Within the random-phase approximation,
the local-field correction G(2kF, gs) = 0 is neglected.
Most important is that the Fermi wave number kF =
(4πN/gsgv)1/2, the screening wave number qs = gsgv/a*,

and the Fermi energy εF ∝   ∝  1/gsgv depend on the
spin degeneracy.

In fact, there are three factors which are important
for the scattering time: (i) the density of states ρF at the
Fermi energy, which leads to 1/τ ∝  ρF ∝  gs; (ii) the
Fermi wave number (due to backscattering processes

up to 2kF) with kF ∝  1/ ; and (iii) the screening wave
number qs ∝  gs, which enters, together with 2kF, the
screening function ε(q) and contributes as 1/ε2(q = 2kF) ∝
1/(1 + qs/2kF)2, which leads for qs @ 2kF (low density)

to [1/ε(q = 2kF)]2 ∝  1/  and for qs ! 2kF (high density)
to [1/ε(q = 2kF)]2 = 1. Consequently, for qs @ 2kF the

conductivity, σ is given by σ ∝  , and for qs ! 2kF one
finds σ ∝  1/gs. We conclude that, for qs @ 2kF , the resis-
tivity ρ increases with increasing field ρ(B = Bc)/ρ(B =
0) = 4, while for qs ! 2kF the resistivity decreases with
increasing field ρ(B = Bc)/ρ(B = 0) = 0.5.

We introduce the partially spin-polarized 2D EG by
the densities N± given by N± = N(1 ± ξ)/2, where the
spin-polarization parameter is ξ = (N+ – N–)/N with
0 ≤ ξ ≤ 1. In terms of the magnetic field, the polari-
zation parameter is given by ξ = g*mBB/2εF. For the
partially spin-polarized system, we argue as follows:
qualitatively the spin-polarization leads to different

h
τ
---

2π( )2

gsgv
-------------εF

Ni

N
----- 1

1 G 2kF gs,( ) 2kF/qs+( )–[ ] 2
--------------------------------------------------------------------.=

kF
2

gs
1 2/

gs
3

gs
2

Relative screening parameter

1.0

0.5

0 2kF– 2kF+

ξ = 0.5

Fig. 1. Effective screening parameter for the partially spin-
polarized 2D EG as function of the wave number.

Wave number
kF-vectors for spin-up [kF+ = kF(1 + ξ)1/2] and spin-
down [kF–= kF(1 – ξ)1/2] electrons (or holes). The effec-
tive screening parameter [18] for finite spin-polari-
zation as a function of the wave number is shown in
Fig. 1. Note that, for kF– ≤ q ≤ kF+, the screening param-
eter is strongly wave-number dependent. By taking into
account this effective screening parameter for the par-
tially polarized electron gas, we get for the conductivity
in the case of qs @ 2kF a positive magnetoresistance

(2)

with

(3)

and

(4)

The function f(ν) has the correct limits f(ν = 0) = π/2,
which implies ρ(B = 0)/ρ(B = 0) = 1, and f(ν = 1) = π/8,
which implies ρ(B = Bc)/ρ(B = 0) = 4.

In Si inversion systems, the electron density corre-
sponding to qs = 2kF is quite high: N = 2.8 × 1013 cm–2.
In GaAs the density corresponding to qs = 2kF is much
lower: N = 1.6 × 1011 cm–2. We obtain for qs ! 2kF– a
negative magnetoresistance:

(5)

We mention that the predicted magnetoresistance is
insensitive to the angle between the electric current and
the magnetic field in the 2D EG plane. This fact allows
one to separate the magnetoresistance caused by spin
effects from the magnetoresistance caused by orbital
motion in a 2D EG with finite width. The orbital effect
was discussed recently and depends on the width of the
2D EG [19].

For the 2D EG, we expect the same increase of the
resistance in a magnetic field normal to the 2D EG
plane if the magnetic field is smaller than the quantiz-
ing one (for instance, B < 0.4 T for high mobility Si
inversion layers). With the magnetic field normal to the
2D EG plane, the positive magnetoresistance due to the
spin will be in competition with the negative magne-
toresistance due to weak localization. This means that,
for a correct interpretation of the weak localization
contribution, it is not enough to compare the resistance
values without a field and in a weak normal field, as it
is done in the literature. We suggest that spin dependent
effects should be measured in a parallel magnetic field
and the corresponding correction has to be introduced
to describe the magnetoresistance in the normal mag-
netic field. We expect that the correction due to spin-
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polarization has the same order of magnitude as the
weak localization contribution.

For the temperature dependence, using our analyti-
cal results for charged impurity scattering [16], we pre-
dict for B = 0 and B ≥ Bc

(6)

Note that, for gs = 1, the Fermi energy increases by a
factor 2 compared to gs = 2. Correspondingly, the tem-
perature dependence is weaker for a spin-polarized EG
compared to an unpolarized one.

It is not straightforward to apply (1)–(6) to remote
doping with a large spacer width α, because one cannot
ignore the form factor, which enters the theory [18, 20].
Remote doping is important in GaAs/AlxGa1 – xAs het-
erostructures. For 2kFα @ 1 we predict that the magne-
toresistance is always positive and given by ρ(B ≥
Bc)/ρ(B = 0) = 21/2 and the linear temperature depen-
dence of the conductivity will disappear due to a form
factor, which enters the theory as exp(–4αkF) [21]

We briefly discuss the limitations of our approach.
We assume a 2D EG with zero thickness in the direc-
tion normal to the plane of the EG. Our theory is formu-
lated for weak disorder and low temperature. There-
fore, (1)–(6) cannot be applied near the metal-insulator
transition and the Fermi energy should exceed the tem-
perature significantly. In silicon inversion layers, inter-
face-roughness scattering is important for intermediate
and high electron density [18]. For interface-roughness
scattering, we expect the same results as found for
impurity scattering.

In (2)–(5), we have ignored many-body effects
described by a local-field correction. For a low electron
density, where 2kF/qs ! 1, we get, in fact,

(7)

Numerical results concerning G(2kF, gs) for gs = 2 and
gs = 1 [22] indicate that the magnetoresistance might
increase by using a finite local-field correction.

At the present time, detailed experimental results
for the conductivity of the good metallic phase in a par-
allel magnetic field are missing. Below, we compare
results of our calculation with some experimental data
from the literature. In Fig. 2, we compare curves from
(2)–(4) with experimental points obtained from the
high-mobility silicon inversion 2D EG of [8]. The
agreement between theory and experiment is quite
good for the maximal electron density N = 2.1 ×
1011 cm–2. However, for an electron density of N = 1.7 ×
1011 cm–2, the experimental magnetoresistance exceeds
the theoretical one nearly twice. We believe that at this
density the sample is already close to the metal-insula-
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tor transition, which occurs for this sample near N ~ 1 ×
1011 cm–2.

The ratio ρ(B > Bc)/ρ(B) found in [3] for the two
highest electron densities N = 2.2 × 1011 cm–2 and N =
2.6 × 1011 cm–2 is very close to the result of our calcu-
lation ρ(B > Bc)/ρ(B) = 4.

For 2kF/qs ! 1, we conclude that the coefficient of
the linear temperature dependence in (6) should be
4  = 2.77 for B = 0 and B > Bc, independent of the
magnetic field. This prediction is in good agreement
with experiments [9], where ρ(T) = ρ(T = 0)[1 +
2.9kBT/εF] was found for Si quantum wells for B = 0
and B > Bc = 9 T. The ratio ρ(B ≥ Bc)/ρ(B = 0) = 2, also
observed in [9], might be explained by a finite spacer
effect.

We emphasize that, for 2kF/qs ! 1, the coefficient of
the linear temperature dependence is universal and does
not depend on the local-field correction. Such a univer-
sal behavior as the function of the carrier density was
already verified in experiments with GaAs heterostruc-
tures using holes [5].

The crossover point for the transition from a posi-
tive magnetoresistance to a negative magnetoresistance
is given by 2kF = qs with qs ∝  1/a* and with the corre-
sponding carrier density N ∝  1/a*2. With increasing
mass, this density increases. Assuming that charged
impurities are located in the GaAs, we expect in
GaAs/AlxGa1 – xAs heterostructures for N = 3 ×
1011 cm–2 a positive magnetoresistance for holes, as
already seen in experiment [5], and a negative magne-
toresistance for electrons. In conclusion, we presented
a theory for the magnetoresistance of a parallel field
and for the temperature dependent resistance based on
the spin-polarization of the two-dimensional EG. A
very important ingredient in our approach is the screen-
ing behavior of the spin-polarized system. Recent

2ln

10

5

0 0.5 1.0

ρ, 103 Ω

Ns = 1.73 × 1011 cm–2

Ns = 2.12 × 1011 cm–2

B/Bs

Fig. 2. Resistivity as function of the parallel magnetic field
(in units of the critical magnetic field Bc for complete spin-
polarization) for parameters corresponding to silicon. The
solid points are experimental results [8] for two different
electron densities taken from experiments. 
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experimental results support our theoretical predic-
tions.
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Energy Relaxation of Two-Dimensional Electrons
in the Quantum Hall Effect Regime

K. V. Smirnov, N. G. Ptitsina, Yu. B. Vakhtomin,1 A. A. Verevkin, 
G. N. Gol’tsman, and E. M. Gershenzon

Moscow State Pedagogical University, Moscow, 113567 Russia
Received November 19, 1999

Abstract—The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation
times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B = 0–4 T under quasi-equilibrium
conditions at T = 4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high

B and low values of the filling factor ν, the energy relaxation rate  oscillates. The depth of these oscillations

and the positions of maxima depend on the filling factor ν. For ν > 5, the relaxation rate  is maximum when
the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the

relaxation rate  is maximum at half-integer values of ν when the Fermi level is coincident with the Landau

level. The characteristic features of the dependence (B) are explained by different contributions of the intra-
level and interlevel electron–phonon transitions to the process of the energy relaxation of 2D electrons. © 2000
MAIK “Nauka/Interperiodica”.

PACS numbers: 73.50.Jt, 73.40.Hm
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1 1. In the last decade, the electron–phonon interac-
tion and the mechanisms of the energy relaxation of hot
carriers were one of the most important problems of the
physics of 2D structures. For the case of the scattering
by acoustic and optical phonons in a wide temperature
range in the absence of magnetic field, this problem has
been solved by many authors, both theoretically (e.g.,
[1, 2]) and experimentally (e.g., [3, 4]). For a magnetic
field perpendicular to the 2D layer, the electron–
phonon interaction becomes essentially different
because of the quantization of the carrier energy in the
2D plane.

A number of theoretical publications present the
calculation of the energy relaxation rate of electrons in
a real situation with allowance for the broadening of the
Landau levels, as well as the appearance of a region of
delocalized states near the center of the Landau level
and localized states between the levels in the electron
energy spectrum [5–8]. It was shown that, in a quantiz-
ing magnetic field, the spectrum of phonons involved in
the interaction with electrons is essentially altered,
which should result in a change in the energy relaxation
rate.

Because of the dependence of the density of elec-
tron states on magnetic field, the energy relaxation rate
should experience oscillations similar to the resistance
oscillations in the Shubnikov–de Haas effect.

1 e-mail: vachtomin@mail.ru
0021-3640/00/7101- $20.00 © 20031
The energy relaxation may occur at the expense of
the transitions both between the Landau levels and
within them. The conditions of the experiment deter-
mine which of these two processes prevails. The object
of most experimental studies is the spectrum of
phonons involved in the interaction with electrons in
magnetic field, as well as their angular distribution [6–
9]. The measurements of the Landau level population
by magnetic tunneling spectroscopy [10] provided the
estimates of the energy relaxation time τe for the inter-
level electron transitions. In magnetic fields B ≥ 4 T,
this quantity was found to be equal to ≈100 ns, which
far exceeds the values of τe corresponding to zero mag-
netic field. As for the direct measurements of the energy
relaxation times in magnetic field, no such experiments
had been described in the literature.

2. We studied the inelastic relaxation of two-dimen-
sional electrons in GaAs/AlGaAs geterostructures at
the temperature T = 4.2 K in magnetic field 0–4 T per-
pendicular to the 2D plane. The measurements were
performed under the weak heating conditions when the
free carriers could be considered as quasi-equilibrium
ones. We measured the relaxation time of the mm-wave
photoconductivity caused by the nonresonance absorp-
tion of electromagnetic radiation in the regime of Shub-
nikov–de Haas oscillations of the resistance (the energy
of the radiation quantum "ω = 0.6 meV was much less
than "ωC for B > 1 T, where ωC is the cyclotron
frequency). For the measurements, we used
GaAs/AlGaAs structures with the concentration ns ≈
000 MAIK “Nauka/Interperiodica”
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5 × 1011 cm–2 and the mobility µ = 2 × 105 cm2/Vs at T =
4.2 K. As in our previous experiments [4], for the direct
measurements of the energy relaxation time, we used
the mm-wave spectroscopy with high temporal resolu-
tion.

The specific feature of the case under study is that in
magnetic field the energy relaxation time varies over
wide limits, from 10–9 to 10–7 s. To measure small relax-
ation times τe < 10–8 s, we used a mm-wave spectrome-
ter in which the electromagnetic radiation was incident
on the sample from two backward-wave tube oscilla-
tors shifted in frequency by ∆f. The absorption of elec-
tromagnetic radiation by free carriers or bonded carri-
ers in the region of localized states leads to a variation
in the sample resistance ∆R and the appearance of a
photoconductivity signal ∆U at the frequency ∆f. The
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Fig. 1. (d) Photoconductivity signal in the mm-wave range
∆U and (h) the oscillatory contribution to the resistance of
the sample R' versus the magnetic field B. R' = R – ∆R(B),
where ∆R(B) is the contribution of the magnetoresistance to
the resistance of the sample; ∆R(B) linearly increases with
increasing B.
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Fig. 2. Dependence of the signal magnitude on the modula-
tion frequency for two close values of magnetic field: B =
2.75 and 2.71 T. For low frequencies ∆f, the values of ∆U are
normalized to the photoconductivity signal at a frequency of
1 kHz.
relaxation time of the mm-wave photoconductivity sig-
nal is equal to the energy relaxation time of the carriers
in the absence of the bolometric effect, and it is deter-
mined by the frequency dependence of the quantity ∆U:

The frequency stability of the backward-wave tube
oscillators allows one to perform such measurements at
frequencies ∆f > 107 Hz (τe < 10–8 s). To measure large
relaxation times, the electromagnetic radiation of a
backward-wave tube oscillator is modulated by supply-
ing a modulating voltage at the frequency ∆f to the
anode circuit of the tube.

The measurements of τe in quasi-equilibrium condi-
tions impose stringent requirements on the sensitivity
of the measuring equipment because of the weak
dependence of the resistance of the structure R on the
electron temperature. The sensitivity of the equipment
used in our experiments allowed us to perform the mea-
surements with the minimum electromagnetic radiation
power incident on the sample and the dc power Pe min ≈
5 × 10–17 watt per electron, which corresponds to an
increase in the temperature of free two-dimensional
carriers by ∆Te ≈ 0.1–0.3 K; this value is quite suitable
for the measurements at the temperature T = 4.2 K.

3. The measurements of the nonresonant mm-wave
photoconductivity ∆U showed that, in a magnetic field,
the quantity ∆U exhibits oscillations similar to the
Shubnikov–de Haas oscillations of the resistance
(Fig. 1). The measured values of ∆U shown in the fig-
ure correspond to the low-frequency modulation of the
mm-wave radiation (∆f = 2 kHz). The signal is a bipolar
one: in the vicinity of the resistance minimum in the
Shubnikov–de Haas oscillations, ∆U corresponds to the
growth of resistance with the absorption of electromag-
netic radiation, and in the vicinity of the maximum in
the resistance R it corresponds to a decrease in the resis-
tance. The first maximum observed in the signal at B ≈
0.4 T corresponds to the cyclotron resonance at the fre-
quency of the mm-wave radiation. The signal ∆U is
asymmetric about zero: it is considerably greater at the
minimum in the resistance R. The bipolarity of the sig-
nal is related to different mechanisms of photoconduc-
tivity (the electron gas heating near the resistance max-
imum and the hopping mechanism at the resistance
minimum), and it was also observed in other experi-
ments (e.g., [11]).

The photoconductivity signal ∆U was measured as a
function of the frequency ∆f in magnetic fields from 0
to 3.6 T. As an illustration, in Fig. 2 we present the
dependences of the photoconductivity signal ∆U on ∆f
for two close values of B (B1 = 2.75 T and B2 = 2.71 T)
corresponding to the vicinity of the minimum in R. One
can see that the frequency dependences noticeably dif-
fer from each other. From the measurements of ∆U(∆f),

∆U ∆f( ) ∆U ∆f 0=( )

1 2π∆f τe( )2
+

--------------------------------------.=
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we obtained the values of (B) (Fig. 3). The absence

of the experimental values of  for B = 2.9–3.3 and
2.3–2.5 T is related to the insufficient sensitivity of the
experimental setup at high frequencies ∆f > 106 Hz (in
these intervals of magnetic fields B, the photoconduc-
tivity signal is too weak; see Fig. 1).

The experiment shows that, with increasing B, the
electron–phonon interaction becomes less efficient

(  decreases), and, at B ≈ 1.2 T, the energy relaxation
rate decreases by an order of magnitude relative to its
value at B = 0. In the quantum Hall effect regime (B >
1 T, the filling factor ν = eF/"ωc < 8), the dependence

(B) exhibits oscillations. The depth of these oscilla-
tions increases with increasing B. In Fig. 3, the arrows
indicate the values of B corresponding to the maximum
photoconductivity signal (the minimum R). One can

see that, for B > 2.5 T, the quantity  is minimum in
magnetic fields B corresponding to the resistance min-

imum, while, for B < 2 T, the minimum  corre-
sponds to the resistance maximum.

4. We begin the analysis of our experimental results
with some estimates. The measurements are performed
at T = 4.2 K. The prevailing component of the electron–
phonon interaction is the scattering due to the deforma-
tion potential; the wave vector of a thermal phonon q =
kT/"S is of the order of the wave vector of a two-dimen-
sional electron at the Fermi surface kF (kT/"S ≈ kF). In
the absence of magnetic field, the wave vectors of the
phonons that take part in the electron–phonon interac-
tion are limited in the direction perpendicular to the 2D
layer by the transverse dimension of the layer a0: q⊥  <
1/a0, and, in the layer plane, according to the conserva-
tion laws, we obtain the limitation q|| < 2kF. Thus, all
phonon states fill a cylinder of height 1/a0 ≈ 106 cm–1

for typical GaAs/AlGaAs 2D structures and of radius q||
(for the concentration of two-dimensional carriers nS ≅
5 × 1011 cm–2, we obtain q|| ≈ 4 × 106 cm–1 ≈ 1/a). In a
magnetic field, only the radius of the cylinder is
changed; namely, q|| is limited by the magnetic length

lB = : q|| < 1/lB (1/lB = 3.9 × 105 T–0.5 cm–1). For
magnetic fields B < 4 T, we have q||B ≠ 0 ! q||B = 0. These
estimates show that, in the absence of magnetic field,
the energy relaxation rate is determined by the emission
of phonons with the energy ≈kT, while, in magnetic
field, such phonons can be emitted only at low angles to
the magnetic field direction, which considerably
reduces the electron energy relaxation rate. Hence, the

substantial decrease in  observed in the experiment
in magnetic field can be attributed to the change in the
spectrum of phonons involved in the electron–phonon
interaction.
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In a major part of the magnetic field range, the val-

ues of  obtained from our experiments describe the
inelastic relaxation related to the electron transitions
within the Landau levels. In fact, the energy of the mm-
wave radiation quantum is "ω = 0.6 meV. For the max-
imum value of B, we obtain the estimate "ωC ≈ 6 meV;
then, for magnetic fields B > 1 T, we have "ω @ "ωC.
In the experiment, the temperature was T = 4.2 K, and
kT ≈ 0.4 meV. Since kT ! "ωC, in this magnetic field
range the electrons occupy only the Landau levels with
the energy e ≤ eF. Therefore, the absorption of a radia-
tion quantum with the energy "ω ! "ωC can be accom-
panied only by the electron transitions within the last
occupied Landau level. These transitions lead either to
the carrier heating when eF is coincident with the
energy of the Landau level in the region of delocalized
states, or to nonresonant hopping between localized
states when eF falls between the Landau levels in the
region of localized states. In this case, the energy relax-
ation of excited carriers may occur only at the expense
of the electron transitions within the Landau level.
According to Kent et al. [9], the energy relaxation rate
for the intralevel relaxation strongly depends on the
density of states; i.e., the energy relaxation rate is max-
imum when the Fermi level coincides with the Landau
level, and it is minimum when eF falls in the region of
localized states. Only in low magnetic fields, in the
transient region of B where kT < "ωC, interlevel transi-
tions are possible owing to the presence of several par-
tially filled Landau levels. As a result of the absorption
of electromagnetic radiation, the heated carriers may
emit phonons of both low energies eph ! "ωC and high
energies eph ≈ "ωC (the interlevel ones). Although the
probability of the emission of high-energy phonons is
much less than that of the low-energy phonons, the
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100
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Fig. 3. Dependence of the inverse relaxation time of the

photoconductivity signal  on the magnetic field B. The
arrows indicate the values of B at which R takes its mini-
mum values. The numbers near the arrows show the values
of the filling factor ν corresponding to the given magnetic
fields.
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former make a substantial contribution to the relaxation
because of the large change in the electron energy in
every event of emission. The energy relaxation rate for
to these transitions is maximum when the Fermi level is
in the region of localized states between the Landau
levels [9]. In this case, the probability of the emission
of phonons with the energy eph ! "ωC is increased,
since, for kT < "ωC, the delocalized states at the Landau
level with the energy e > eF are filled to a greater extent,
and the delocalized states at the Landau level with the
energy e < eF are filled to a lesser extent, as compared
to the case of the Fermi level lying in the region of delo-
calized states.

The conditions corresponding to the energy relax-
ation at the expense of the intralevel transitions are
fully realized in our experiment for B > 2 T: the quantity

 exhibits two deep minima at the magnetic fields
corresponding to the minima in the resistance R (ν = 3,

4). At B = 3.6 T, the value of  is an order of magni-
tude less than that corresponding to the maximum in R.
Evidently, the depth of the oscillations should grow
with increasing B (at lower filling factors ν) and with

decreasing T. The oscillations of the quantity  are
also observed for intermediate magnetic fields 1 T <
B < 2 T. However, at the values of B corresponding to

the minimum resistance R, a maximum in  is
observed, which presumably testifies to the substantial
contribution of the interlevel electron–phonon transi-
tions to the energy relaxation of two-dimensional elec-
trons. In this interval of magnetic fields B, the depth of
the oscillations is much less than at low values of ν.

Thus, we measured the energy relaxation times of
2D electrons in quasi-equilibrium conditions, in mag-
netic fields corresponding to the quantum Hall effect
regime. We have shown that the quantization of the
electron energy in magnetic field leads to a sharp
decrease in the energy relaxation rate and to oscilla-
tions of the energy relaxation time that are similar to the

τe
1–

τe
1–

τe
1–

τe
1–
Shubnikov–de Haas oscillations. Under weakly non-
equilibrium conditions, the energy relaxation in high
magnetic fields is determined by the electron–phonon
transitions within the Landau level. The contribution of
the electron–phonon transitions between the Landau
levels manifests itself in intermediate magnetic fields.
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Abstract—Results of a study of magnetic and magnetooptical properties of Fe/Pt double-layer and Fe/Pt/Fe
three-layer thin-film magnetic structures are presented. A strong effect of the Pt layer on magnetic properties
of the studied samples was revealed. It was established that the saturation field of three-layer magnetic struc-
tures has an oscillating magnitude with varying Pt layer thickness, and the oscillation period is a function of the
Fe layer thickness. The data obtained are explained by the presence of exchange interaction between the Fe lay-
ers via the Pt layer. A strong effect of Pt on spectral dependences of the equatorial Kerr effect in the thin-film
structures under study is revealed. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Cn, 75.70.Ak, 78.20.Ls
1 In recent years, a great number of experimental and
theoretical works were devoted to the investigation of
magnetic anisotropy, remagnetization processes, and
kinetic and magnetooptical properties of thin-film mag-
netic structures (TFMS). This is determined by the fact
that a number of new phenomena such as giant magne-
toresistance [1], oscillating exchange interaction
between ferromagnetic layers via a nonmagnetic layer
[2], and quantum dimensional effects [3] were revealed
in these samples at the end of 1980s and at the begin-
ning of 1990s. The results of previous studies were
found to be very useful in solving several problems in
magnetic phenomena physics. In particular, significant
information was obtained concerning the influence of
the interface between a magnetic film and a substrate
(as well as between magnetic and nonmagnetic layers)
on the formation of kinetic, magnetic, and magnetoop-
tical properties of TFMS. However, studying the effect
of the thickness and composition of magnetic and non-
magnetic layers on these properties of TFMS still
deserves attention. Note that the results of these studies
are of practical importance, because they can be used
for the development of new thin-film systems for mod-
ern spin microelectronics. It is obvious that, for the cor-
rect solution of this problem, the first step should be a
study of double-layer and three-layer samples with
alternating magnetic and nonmagnetic layers.

The objective of this investigation was to study the
influence of the thickness of magnetic and nonmagnetic
layers on the magnetic and magnetooptical properties
of Fe/Pt and Fe/Pt/Fe thin-film structures.

The samples under study were obtained with the
magnetron sputtering technique. After the adhesion at
the temperature T = 150°C, the basic pressure in the

1 e-mail: shal@magn.phys.msu.su
0021-3640/00/7101- $20.00 © 20035
vacuum chamber was 10–9 Torr. Argon was the working
gas. Its pressure was ~10–4 Torr. The magnetic layer
thickness tFe in double-layer structures was varied from
2 to 100 nm, and the thickness tPt of the nonmagnetic
layer deposited between the magnetic film and sub-
strate was 0–20 nm. In three-layer structures, tFe and tPt
were varied from 2.5 to 10 nm and from 0.4 to 4 nm,
respectively. Samples were coated with a 10-nm carbon
layer in order to avoid oxidation. Structural features of
the samples under study were investigated with an
X-ray diffractometer. The data of X-ray diffraction
scattering showed the presence of pronounced inter-
faces between magnetic and nonmagnetic layers.

The magnetic characteristics (hysteresis loops, satu-
ration fields, coercive force) of the studied samples
were measured on a magnetooptical magnetometer by
using the equatorial Kerr effect (EKE) δ. Here, δ = (I –
I0)/I0, where I and I0 are the intensities of the light
reflected from the magnetized and nonmagnetized sam-
ples, respectively. An external magnetic field was
applied in the sample plane perpendicular to the light
incidence plane. The magnetooptical properties of the
TFMS under study were investigated on a magnetoop-
tical setup based on a DMP-4 double monochromator.
Dispersion dependences of the EKE were measured in
an energy range of the incident light quanta of 1.5 <
"ω < 4.2 eV. The angle of light incidence on the sample
was 65°. A detailed description of the facilities is pre-
sented in [4, 5]. All measurements were performed at
room temperature in air.

The data obtained in measurements of magnetic
characteristics indicated that all the samples under
study are characterized by planar magnetic anisotropy
(the easy magnetization axis lies in their plane). The
hysteresis loops along the easy magnetization axis for
double-layer samples had an almost rectangular shape.
000 MAIK “Nauka/Interperiodica”
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The ratio to the residual magnetization to the saturation
magnetization (MR/MS) was 0.95–0.98. The MR/MS

value increased with a decrease in the Fe layer thick-
ness.

Figure 1 shows the saturation field HS of the double-
layer samples under study as a function of the (a) Fe
film and (b) Pt layer thicknesses tFe and tPt at fixed tPt
and tFe, respectively. Figure 2 shows typical depen-
dences of the saturation field HS on the nonmagnetic
layer thickness at fixed tFe for Fe/Pt/Fe structures. As
we see in Fig. 1a, at fixed tPt, HS rises with tFe increasing
up to 35 nm, and then decreases when tFe changes from
40 to 100 nm. At a fixed Fe layer thickness, the satura-
tion field HS has a maximum at tPt ≈ 10 nm (b). Note
that the behavior of the coercive force HS as a function
of tFe and tPt of double-layer samples coincides with the
functions HS(tFe) and HS(tPt). The results obtained can
be explained by using data of the structural analysis of
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Fig. 1. Saturation field HS of Fe/Pt double-layer samples as
a function of the thickness of (a) a Fe film and (b) a Pt layer
deposited between the film and substrate at fixed thick-
nesses of nonmagnetic and magnetic layers, respectively.
The energy of the incident light quanta is constant ("ω =
2.0 eV).
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Fig. 2. Saturation field HS of Fe/Pt/Fe three-layer samples as
a function of the Pt layer thickness: (a) tFe = 2.5 nm; and (b)
tFe = 5 and 10 nm (curves 1 and 2, respectively).
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samples. X-ray diffraction studies have shown that the
double-layer samples have a polycrystalline structure
with a predominant {111} texture parallel to the sample
surface. It was established that the degree to which
samples are textured depends on both the Fe film and Pt
layer thicknesses. It is known [6] that the samples tex-
tured to a higher degree are characterized by a higher
saturation field and coercive force. We observed pre-
cisely such a relationship between the magnetic and
structural properties of the studied Fe/Pt double-layer
samples.

Figure 2 shows that the saturation field of Fe/Pt/Fe
samples oscillates as a function of tPt, and the oscilla-
tion period Λ depends on tFe. In particular, Λ is 0.8, 1.2,
and 2 nm at tFe = 2.5, 5, and 10 nm, respectively. As the
thicknesses of both Fe films and Pt separating layer
increase, the saturation field of the samples under study
decreases. The data obtained can be explained by the
existence of exchange interaction between ferromag-
netic layers via the nonmagnetic layer and by its oscil-
latory behavior with changing thickness of the non-
magnetic layer [7, 8]. Rather high experimental Λ val-
ues show that this parameter should be estimated
theoretically taking into account the quantum dimen-
sional effect [3]; i.e., changes in the electron structure
of an ultrathin layer (the appearance of so-called quan-
tum well states) as compared to a bulk material should
be taken into consideration. As shown in [8], in this
case, Λ differs from π/κF (κF is the Fermi wave vector),
which is ~0.3 nm for most of metals. The photoelectron
emission technique is a direct method for observing
quantum well states in ultrathin films. Unfortunately, as
far as we know, photoemission studies of Pt layers on
magnetic and nonmagnetic substrates were not per-
formed. As a result, we could not compare the obtained
Λ values with data of other studies. As to changes in Λ
with increasing magnetic layer thickness, the following
facts can be mentioned. Calculations performed in
recent years [9] have shown that Λ must increase with
increasing magnetic layer thickness. In fact, we
observed experimentally such a change in Λ. A
decrease in HS with increasing tFe and tPt is determined
by the weakening of the exchange interaction between
magnetic layers.

Figure 3 shows dispersion dependences of the EKE
of (a) Fe/Pt double-layer and (b) Fe/Pt/Fe three-layer
samples with tFe = 2.5 nm and various thicknesses of the
Pt layer. Figure 4 shows dispersion dependences of the
EKE of Fe/Pt double-layer samples with tFe = 5 nm (a)
and 10 nm (b) with tPt = 0 and 2 nm. As we see in Fig. 3,
the peak of δ("ω) in an energy range of the incident
quanta of 1.8–1.9 eV, which is typical of the spectral
dependence of the EKE for bulk iron, decreases with
increasing tPt, and a new peak appears in the UV. These
spectra are modified as compared to bulk iron. This can
be explained by the effect of Pt on magnetooptical
properties of the thin-film structures under study. Neu-
tron diffraction studies show [10] that Pt may have a
JETP LETTERS      Vol. 71      No. 1      2000
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magnetic moment of ~0.3 – 0.4µB in alloys with, for
example, Co. The spin-orbital energy of the Pt 5d-states
is fairly high. As a result, the electron wave functions of
the Fe 3d- and Pt 5d-states overlap at the interface of
adjacent Fe and Pt layers. This electron interface effect
(3d–5d hybridization) determines the exchange-
induced spin polarization of platinum, thus resulting in
a significant contribution of Pt to the nondiagonal com-
ponent of the permittivity tensor of the sample under
study. This results in a strong modification of the dis-
persion dependences of the EKE in Fe/Pt and Fe/Pt/Fe
structures in comparison with bulk Fe. According to the
data [11], the strongest effect of Pt on magnetooptical
properties of multilayer thin film structures and alloys
with Pt must be manifested in the near UV region. This
is confirmed by our results. Note that the presence of
spin-polarized Pt actually determines oscillatory
dependences of the saturation field and coercive force
of three-layer samples with changing tPt.

The electron interface effect described above must
obviously depend on the thicknesses of both the Fe and
Pt layers. The following fact should also be taken into
consideration. It is known [12] that a magnetooptical
signal (in particular, related to the EKE) may depend on
the sample thickness t, if t < tinf, where tinf is the infor-
mation depth of the magnetooptical signal (i.e., the
depth at which the magnetooptical signal forms). In
[13], it was shown experimentally that tinf = 15–20 nm
for Fe for incident light quanta with energies of 1.5 <
" < 4.2 eV. The total thickness of the double- and three-
layer samples studied by us was smaller than tinf. Thus,
at equal Fe layer thicknesses, the EKE in three-layer
structures must exceed that in double-layer structures
(approximately, by a factor of two). The data in Fig. 3
confirm this inference. The quantitative comparison of
the EKE values for double- and three-layer samples
shows that the influence of the Pt layer on the EKE in
the second case is stronger than in the first one; i.e., the
presence of two Fe/Pt interfaces in three-layer struc-
tures should be taken into consideration.

The comparison of the data obtained for double-
layer structures (Figs. 3a and 4) shows that the values
of δFe(tPt = 0) – δFe/Pt(tPt = 2 nm) are virtually the same
for tFe = 2.5, 5, and 10 nm, while the EKE magnitudes
increase with increasing thickness of the Fe film. Sim-
ilar results were obtained for samples with another Pt
layer thickness. However, we see in Figs. 3 and 4 that
the Pt layer effect on the EKE is enhanced with the
growth of its thickness. It was established that this
enhancement holds up to tPt ≈ 4 nm.

Hence, magnetic and magnetooptical properties of
Fe/Pt and Fe/Pt/Fe thin film structures were studied. An
oscillatory dependence of the saturation field HS of
three-layer structures on the Pt layer thickness was
revealed. The period of HS oscillations was determined
to be dependent on the Fe film thickness. The data
obtained were explained by the presence of exchange
JETP LETTERS      Vol. 71      No. 1      2000
interaction between ferromagnetic layers via a non-
magnetic layer in three-layer systems.

A strong effect of the Pt layer on dispersion depen-
dences of the EKE in Fe/Pt and Fe/Pt/Fe thin film struc-
tures was revealed. This fact was explained by the
exchange-induced (3d–5d hybridization) spin polariza-
tion of Pt. It was established that the modification of
EKE spectra of the studied samples is enhanced with
increasing thickness of the Pt layer up to tPt ≈ 4 nm, and
the influence of Pt in three-layer samples is approxi-
mately twice as strong as in double-layer structures.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 99-02-
16595.
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Abstract—In order to produce a supercooled liquid phase of molecular hydrogen that may possibly change at
a sufficiently low temperature to a superfluid state, it is suggested to reduce the temperature of its equilibrium
coexistence with the solid phase by means of developing different pressures in these phases through the use of
linear mechanical pressure on the solid phase or of external electric field. The thermodynamic functions of
hydrogen are calculated in both the stable and metastable regions; its phase diagram and the region of possible
transition to a superfluid state are also found. The values of excess pressure on the solid phase and of external
electric field intensity are estimated, which are necessary for the stabilization of this state. © 2000 MAIK
“Nauka/Interperiodica”.

PACS numbers: 05.70.Fh, 05.70.Ce, 05.30.Ip, 67.40.Kh
1 Ginzburg and Sobyanin [1] predicted that liquid
hydrogen supercooled to a sufficiently high degree rel-
ative to its normal freezing point might transform to a
superfluid state. In order to reach such states, they sug-
gested in [1] to use negative pressures causing a
decrease of the melting point. This could not be accom-
plished experimentally because of the low cavitation
strength of liquid hydrogen [2]. In so doing, it is still
not quite clear whether this is due to hard-to-eliminate
external effects or to the fundamental impossibility of a
higher degree of extension of liquid because of reach-
ing the parameters of the line of loss of thermodynamic
stability of a uniformly extended liquid relative to the
gas phase (spinodal). In recent years, a rebirth of inter-
est in this problem is observed [3, 4]; however, even
today, both the relative position of the spinodal (of the
liquid–solid melting line and of the line of possible
λ-transition on the phase diagram) and the possible
ways of attaining these states remain unclear.

We used the method of [5] to calculate the thermo-
dynamic functions of hydrogen. The indeterminate
functions contained in this method were found from the
condition of agreement between the thermodynamic
functions calculated by this method and the thermody-
namic functions of hydrogen given in the reference
book [6] and taking into account all of the presently
available experimental data. The thus-calculated iso-
therms of pressure for the liquid state are in good agree-
ment with the experimental data, and the accuracy of
this method is quite sufficient for finding the thermody-
namic functions at low temperatures for both the stable
and metastable states.

The phase diagram for hydrogen is given in Fig. 1.
In this diagram, the melting curve is continued into the
region of negative pressures and temperatures lying

1 e-mail: vrvb@mail.ru
0021-3640/00/7101- $20.00 © 20039
below the triple point temperature. Fine lines indicate
the family of isochors of liquid hydrogen in the regions
of stable and metastable states. It is well known that the
envelope of this family gives the boundary of absolute
stability of the liquid state with respect to the gas state,
i.e., liquid-gas spinodal. Such a spinodal is evident in
Fig. 1; one can see that it limits the possibility of
extending the melting curve into the negative pressure
region by values of the order of p ≈ –90 atm. A line cor-
responding to a possible transition of liquid hydrogen
to a superfluid state may be plotted in this diagram. For
this purpose, we will use the recent data on the temper-
ature of λ-transition Tλ of Bose’s liquid, obtained by
Apenko [7], with the effective diameter of the molecule
equal to 2.7 Å [8]. The respective line is plotted on the
P–T plane (line 5). One can see that this line divides the
states corresponding to supercooled liquid in the P–T
plane into normal and superfluid regions at a transition
temperature of 1–2 K. Note the existence of a positive
pressure region, in which supercooled liquid hydrogen
may become superfluid. At the same time, it is funda-
mentally impossible to attain the λ-transition by mov-
ing along the melting curve in the negative pressure
region, because melting curve 4 continued into the neg-
ative pressure region reaches the spinodal before reach-
ing the intersection with the line of λ-transition.

The dependence of the chemical potentials of
phases on pressure at constant temperature is given in
Fig. 2 for the temperature T = 13.8 K (triple point tem-
perature) and T = 1 K. Lines 1 in this and subsequent
figures indicate the solid phase, with lines 2 indicating
the liquid phase and lines 3, the gas phase. One can see
that, in the case of T = 13.8 K, all three lines intersect
at a single point at a low positive pressure correspond-
ing to the experimentally obtained value of pressure at
the triple point pT = 0.07 atm. In the case of T = 1 K, the
chemical potential of the liquid phase in the entire
000 MAIK “Nauka/Interperiodica”
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range of its existence is higher than that of the solid
phase, and the point of intersection of isotherms is
absent.

In order to attain the λ-transition in liquid hydrogen,
we suggest to make use of the fact that, in the case of
phase equilibria under conditions of unequal pressures
in the phases, one of the phases may stably exist with
the parameters corresponding to those of metastable
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Fig. 1. The P–T diagram for hydrogen. Bold lines: (1) sub-
limation curve, (2) evaporation curve, (3) melting curve,
(4) melting curve continued into the metastable region,
(5) boundary of the superconductivity region (d = 2.7 Å); Tr,
triple point; Cr, critical point. Fine lines: family of isochors
for the values of ν varying from 12.5 (uppermost isochor) to
31 cm3/g (lowermost isochor). The envelope of these isoch-
ors forms the spinodal.

Fig. 2. The chemical potentials for the solid phase (line 1),
liquid phase (line 2), and gas phase (line 3) as functions of
pressure: (a) at T = 13.8 K, (b) at T = 1 K. Line 4 in (b) gives
the value of chemical potential for different pressures of the
phases.
states in the absence of external effects. In particular, if
excess pressure is somehow developed on the solid
phase, its equilibrium coexistence is possible with
supercooled liquid at lower pressures.

We will estimate the excess pressure to be exerted
on the solid phase of hydrogen at T ≈ 1 K for the latter
phase to find itself in equilibrium with the supercooled
liquid phase at pressures which rule out the possible
formation of the gas phase. For the liquid phase, this is
actually accomplished at very low positive pressures
p > pT. We find in Fig. 2b that the pressure difference
must be about 30 atm. In this case, a liquid which is
superfluid may coexist in equilibrium with the solid
phase. Without discussing the concrete methods of
developing additional mechanical pressure on the solid
phase, we will just note that a serious obstacle in the
way may be provided by the low mechanical strength of
solid hydrogen. According to the data of [9], Young’s
modulus and the elongation corresponding to the ulti-
mate strength at this temperature are equal to 3300 atm
and 0.08, respectively. Hence, it follows that solid
hydrogen is capable of withstanding, without changing
its form, a pressure of the order of 26 atm. Within the
accuracy of our calculations, this value coincides with
that of required excess pressure.

Another way of developing different pressures in
the phases is by exposing a two-phase system to the
effect of external electric field [10]. We will define the
conditions in which, because of the presence of exter-
nal field, hydrogen will not crystallize at temperatures
corresponding to the λ-transition. We will treat a two-
phase system of (1) a solid and (2) a liquid at constant
temperature in an external electric field. The condition
of phase equilibrium may be written as

(1)

where µ1(p1) and µ2(p2) are the chemical potentials of
the material of the phases at pressures p1 and p2, E is the
electric field intensity, and e is the dielectric constant.
The plus sign indicates the case when the field is gen-
erated by constant charges; the minus sign, the case
when the field is generated by constant potentials. We
expand µ2(p2) in (1) in series at the point p2 = p1 and
take into account that the chemical potential of the con-
densed phase is in fact proportional to pressure to
derive

(2)
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where p0 is the pressure corresponding to the phase
equilibrium in the absence of field.

We will once again turn to Fig. 2b. We wish to
obtain the liquid state in the presence of a field in the
pressure region left of the curve of the pressure depen-
dence of chemical potential (curve 3), that is, at p1 >
pg ≈ 0. We assume the Clausius-Mosotti relation is
valid, as well as that the field is generated by constant
potentials and the phase boundary is parallel to the lines
of intensity, to derive from (2) the intensity of electric
field supporting the existence of the liquid phase at
small positive pressures,

(3)

For hydrogen, the values borrowed from [6] are e1 =
1.3, e2 = 1.25, ρ1 = 0.087 g/cm3, and ρ2 = 0.078 g/cm3.
The value of the difference of the chemical potentials of
the phases at T = 1 K and p = 0, taken from the graph of
Fig. 2b, is –10 K. We substitute all of these values into
(3) to obtain the value of E = 4 × 107 V/cm. In so doing,
hydrogen will remain liquid and may transform to a
superfluid state. However, this value of intensity may
exceed those of intensity of dielectric breakdown. No
direct data are available on the electric strength of
hydrogen under these conditions. According to the data
of Gerhold [11], the values of intensity of breakdown at
a normal temperature of boiling in liquid helium do not
exceed 1 × 106 V/cm; in liquid nitrogen, 1 × 107 V/cm.
These values are lower than required for our purposes.
However, a decrease in temperature may cause an
increase in the intensity of breakdown. The latter may
also be increased by using pulse voltage [11].

If a system is subjected to mechanical stimulation,
an instability of the compressed crystal–liquid interface
may be observed. As is shown theoretically in [12], the
effect of indefinitely small nonhydrostatic components
of the field of stresses inside an elastic crystal may
cause the transformation of indifferent equilibrium into
unstable one. We assume the surface tension of solid
hydrogen to be σ ≅  5 dyn/cm and the velocity of longi-
tudinal and transverse sound waves to be 2.2 × 105 and
1.2 × 105 cm/s, respectively [9], to derive the value of
the critical wavelength estimated by formula of [12] of
the order of 0.2 µm. The instability may lead to the sys-
tem transition to a disperse state. In order to overcome
this instability, a certain complication of the method of
compression of solid hydrogen is required, for exam-
ple, exerting one-sided pressure on the solid phase with
the aid of a porous piston with the pore size of less than

E
24π µ1 0( ) µ2 0( )–( )ρ1ρ2–

e1
2

4e1 2– 3e2–+( ) ρ1 ρ2–( )
---------------------------------------------------------------------.=
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the critical wavelength. For superfluid hydrogen, this
piston will be absolutely permeable. The question of
whether a similar instability arises under electrostatic
stimulation still remains unclear.

Note further that, in the case of both mechanical and
field compression of crystal, the intensity of external
effect on the liquid–solid two-phase system, which is
required to attain the parameters of expected λ-transi-
tion in liquid hydrogen, proves to be close to the limits
of its mechanical or electric strength, and the possibil-
ity of practical realization of the suggested methods
depends on how surmountable are the difficulties
involved.

We are grateful to V.L. Ginzburg, A.A. Sobyanin,
and S.M. Apenko for bringing this problem to our
attention.

This study received support from the Russian Foun-
dation for Basic Research (grants 99-02-16596 and
99-02-16619).
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NUCLEI
Inertial Parameters and Superfluid-to-Normal Phase Transition 
in Superdeformed Bands1
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Abstract—The quasiclassically exact solution for the second inertial parameter @ is found in a self-consistent
way. It is shown that superdeformation and nonuniform pairing arising from the rotation-induced pair density
significantly reduce this parameter. The new signature for the transition from pairing to normal phase is sug-
gested in terms of the variation @/! versus spin. Experimental data indicate the existence of such a transition
in the three SD mass regions. © 2000 MAIK “Nauka/Interperiodica”.

PACS numbers: 21.10.Gv, 21.10.Re, 21.60.Fw, 23.20.Lv, 27.60.+j
1 One of the amazing features of superdeformed (SD)
rotational bands is the extreme regularity of their rota-
tional spectra: an SD nucleus is the best quantum rotor
known in nature. In spite of the fact that numerous the-
oretical calculations successfully reproduce the mea-
sured intraband γ-ray energies (see, e.g., [1, 2]), the
underlying microscopic mechanism of this phenome-
non is still not understood well. To explain this regular-
ity, we use in the present paper the parameterization of
its rotational energy by the two-term formula

(1)

which is valid for an axially symmetric deformed
nucleus with K = 0. The inertial parameters ! =
"2/2I(1) (I(1) is the kinematic moment of inertia) and
@ are the objects of our investigation. The coefficient
@ characterizes the nonadiabatic properties of a band
and is very sensitive to its internal structure. The ratio
@/! determines the convergence radius [3] of the two-
parameter formula (1), which is of the order of 100 for
the bands in the 80 and 150 mass regions, and 40 in the
130 and 190 ones. Faster convergence is obtained with
the Harris formula,

(2)

which is based on the fourth-order cranking expansion

(3)

where ρ(n) is the nth correction to the nucleus density
matrix, lx is the single-particle orbital angular momen-
tum projection on the rotational axis x perpendicular to

1 This article was submitted by the author in English.
2 e-mail: pavi@cerber.polyn.kiae.su
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the symmetry axis z, and ω is the rotational frequency.
For simplicity, we will deal with the parameter β.

The problem of the microscopic calculation of the
parameter @ for normal deformed (ND) nuclei has
attracted considerable attention. This value is formed
mainly by four effects: vibration–rotation interaction,
centrifugal stretching, perturbation of the quasiparticle
motion, and attenuation of pair correlation by the Cori-
olis force (Mottelson–Valatin effect). The last two are
dominant for well-deformed nuclei, as has already been
shown in the first attempts at obtaining @ [4, 5]. Unfor-
tunately, the results of these and many other works can-
not be used for the superdeformation. The formulas of
[5] have been obtained in the limit of the monopole
pairing interaction (the uniform pairing), which is not
adequate at SD shapes as shown in [6]. In the more
sophisticated work [4], the gauge invariant pairing
interaction allows one to study the effect of nonuniform
pairing. However, this approach is also limited because
it neglects the coupling between major shells (the limit
of close transitions in Migdal’s terminology [7]). Thus,
despite a number of publications on the subject, the
correct cranking self-consistent solution for the @
coefficient has not been found.

We used the quasiclassical method of [4] to derive
the following expression for the β parameter in the
superfluid phase:

(4)

where the summation indices i = 1, 2, 3, 4 refer to the
single-particle states i in the nonrotating mean field
with the energy εi. The δ-function means that the sum-
mation over the states 1 is restricted by a small interval
at the Fermi energy εF [7]. The dimensionless values

βs
"

4

4∆2
--------- l12

x l23
x l34

x l41
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× F x12 x23 x34 x41, , ,( )δ ε1 εF–( ),
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xii' = (εi – εi')/2∆, where ∆ is the state-independent pair-
ing gap at ω = 0, correspond to energy differences
between states permitted by the selection rules for the
matrix element of lx. The function F depending on these
values may be written as follows:

(5)

where

(6)

and

(7)

Here,  are permutation operators in the space of four

indices i, i mod4 = i: xi, i' = xi + k, i' + k.

Equation (4) multiplied by ω3 is the third-order
cranking correction to the total angular momentum of
the neutron or proton system. Its derivation will be
described in a forthcoming paper. We now want to
emphasize that (4) represents the first theoretically cor-
rect expression for the high-order effect of the Coriolis-
pairing interaction at fixed deformation. The result is
obtained by taking into account the effect of rotation on
the Cooper pairs in the gauge invariant form. This effect

is described by the first, ∆(1)(r) = –i"2ωD1 /2∆, and the

second, ∆(2)(r) = "4ω2D2 /4∆3, corrections to the pair-
ing energy. The amplitudes D1 and D2 of the nonuni-
form pairing fields are found in a self-consistent way.
The coordinate dependent pairing field is crucial for
conservation of a nucleon current. The theory incorpo-
rating the nonuniform pairing allows one also to con-
sider the different limiting cases for the inertial param-
eters, which make possible the study of an interplay
between rapid rotation, pairing correlations, and mean
field deformation in an SD band.

In order to consider this problem quantitatively, we
will use the axially deformed oscillator potential with

F = P̂kG12 P̂kH13
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the frequencies ωx and ωz on the corresponding axes. In
this model, the matrix element  is nonzero for the
two types of transitions: (i) transitions inside a single
oscillator shell, for which x12 = ±ν1; (ii) transitions over
a shell with x12 = ±ν2. The quantities ν1 and ν2 are the
well-known parameters involved in the moment of iner-
tia [7]:

(8)

where "ω0 = 41A–1/3 MeV. Here and below we use the
axis or frequency ratio k = c/a = ωx/ωz and the volume

conservation condition ωz = . Both the values ν1

and ν2 are large for the superdeformation. The final
expression for the parameter βs in the oscillator poten-
tial is

(9)

where R = 1.2A1/3 fm is the radius of the sphere, the vol-
ume of which is equal to that of the spheroid with the
half-axes a < c, M is the nucleon mass, and A is the
number of nucleons. The function Φ, along with its lim-
iting cases, is shown in Fig. 1. It is seen that nonuni-
form pairing substantially reduces the parameter βs in
agreement with the estimation of [6]. On the other
hand, the contribution of distant transitions is minor for
small ξ. Nevertheless, the latter are necessary to obtain
the hydrodynamic limit (see below). Since Φ ~ 1 for a
reasonable pairing gap, ∆ ~ 0.5 MeV, the order of
the value βs is "4(A/εF)3. This, along with the estimation
! ~ εFA–5/3, gives @/! ~ A–2, which overestimates the
minimal value of this ratio in all the SD mass regions.
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Fig. 1. Plot of the function Φ from (9) against the dimen-
sionless value ξ, for the axis ratio c/a = 2. The solid, dotted,
and dashed lines correspond respectively to the exact value,
the limit of close transitions, and the uniform pairing. The
scale on the abscissa should be multiplied by a factor of
approximately 7.7 for nuclei in the A ~ 150 mass region to
obtain a gap energy in MeV.



6 PAVLICHENKOV
105 @/!
–2

–4

–6

–8

–10

194Hg(3)

192Hg(1)

10 20 30 40

20 30 40 50

0

–1

–2

–3

104 @/!

132Ce(1)

Spin I Spin I

104 @/!

152Dy(1)

5
106 @/!

30 40 50 60

0

–5

–10

–15

84Zr

2

0

–1

–2

–3

10 20 30

Fig. 2. @/! ratio versus spin for the SD (open circles) and ND (full circles) bends with mainly collective behavior. The solid straight
line is the limiting value (11) with the deformation c/a found from the quadrupole moment. Error bars (if they are greater than sym-
bols) include γ-ray energy uncertainties only. 
Thus, a small ∆ and nonuniform pairing do not solve
the problem of the SD band regularity.

Let us consider first the limiting case ∆ = 0. The cor-
rect expression for the β parameter in the normal phase
has the form

(10)

The odd function of the differences εii' = εi – εi' leads to
the cancellation of the main terms in sum (10) that sub-

stantially decreases the value of βn, βn ~ "4A7/3/ . Note
that the centrifugal stretching effect has the same order
βstr ~ βn. Its contribution is small compared to that of βs,
but it should not be overlooked for an unpaired system.
For the oscillator potential, we have the following
expression for a nucleus consisting of z protons and N
neutrons:

(11)

It is seen that this value is positive for the prolate nuclei
with c/a < 3.15, whereas @s is always negative. Thus,
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with an increase of the spin I, the ratio @/! has to
change sign and to approach its limiting value @n/!n ~
A–8/3 (~10–6 for the SD bands in the 80 and 150 mass
region).

One can therefore conclude that there are two dis-
tinct regions in the variation of @/! versus I. The
lower part of an SD band is characterized by a gradual
decrease of the pairing gap ∆. According to (9), the
ratio @/! should exhibit a sharp increase. Then it
changes sign and approaches the plateau (11) at the top
of a band because the deformation c/a depends weakly
on spin in both the superdeformed and normal phase.
Such behavior of the @/! ratio is the signature of the
pairing phase transition.

We have analyzed all the SD bands of [8] with
known or suggested spins of levels. Figure 2 shows the
variation of the @/! ratio with I obtained for bands
with different internal structure and different rotational
frequencies. Apart from the bands 192Hg(1) and
194Hg(3), where frequencies are so low that @/! rises
continuously in the superfluid phase, and 84Zr(1), the
pairing for which is quenched completely and @/! is
close to the limiting value (11), all other bands display
the behavior described above. It is important to note
that such behavior is observed for the ND yrast band of
84Zr, where @/! reaches the same limiting value (11)
JETP LETTERS      Vol. 71      No. 1      2000
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as in the SD band 84Zr(1). There are other ND yrast
bands of 168Yb and 168Hf with the pair phase transition,
the experimental evidence of which has been discussed
previously in terms of the canonical variables [9] and
the spectrum of single-particle states [9, 10]. These
bands exhibit the same features. Thus, the plots of
Fig. 2 demonstrate the universality of the superfluid-to-
normal phase transition for SD and ND bands.

The next limit we want to consider is that of a large
pairing gap ∆. In this case, the nonuniform pairing is
essential and the leading terms in the function Φ are

those proportional to the powers of D1 and . They
result in the limiting expression Φ ~ ("ω0/∆)2. Thus, for
the very strong pairing (∆ @ "ω0), when the size of the
Cooper pair R"ω0/∆ becomes much less than the
nuclear radius, the parameter @s vanishes in agreement
with the hydrodynamic equations of the ideal liquid [3].
In the limit of an extremely large deformation, c/a  ∞,
a needle-shaped nucleus with pairing correlations
rotates as a rigid body, I = Irig, @s = 0. For the finite
but large deformation, the deviations from these values
are proportional to (a/c)4/3. This means that all nucleons
with the exclusion of a small sphere in the center of a
nucleus are completely involved in rotational motion.
Finally, for small deformations we have @s ~ (c/a – 1)–6,
which is comparable to the vibration–rotation interac-
tion [4].

Unlike the limiting value (11), it is impossible to
compare the ratio @s/!s with experiment because the
proton (∆π) and neutron (∆ν) pairing gaps are unknown
for the SD bands. In such a case, we try to solve the
inverse problem. The equations for the two inertial
parameters

(12)

allow, in principle, to find ξπ and ξν if we use the qua-
drupole moment for extraction of the axis ratio k.
Unfortunately, this system does not have a solution

D2
2

αA/Irig Zϕ ξπ k,( ) Nϕ ξν k,( ),+=

βA/β0 ZΦ ξπ k,( ) NΦ ξν k,( ),+=
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because the oscillator potential overestimates the
moment of inertia and, to a greater extent, the β param-
eter. A more realistic potential should be used to solve
this problem.

In summary, the exact solution for the inertial
parameter @ in the superfluid phase allows one to show
that neither superdeformation nor nonuniform pairing
arising from rotation-induced pair density are responsi-
ble for the extreme regularity of the SD rotational spec-
tra. The regularity of the SD bands in the 80 and
150 mass regions is explained by the transition from
the superfluid to normal phase. The new signature of
this transition is manifested in the characteristic depen-
dence of the ratio @/! with the spin I. Application of
this criterion to experimental data indicates the exist-
ence of the phase transition in the SD bands of the three
mass regions.

This work was supported in part by the Russian
Foundation for Basic Research (grant no. 96-02-
16115).
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Abstract—The phenomenon of concentration quenching of the luminescence from donor ions in crystals of
La1 – xCexF3 solid solutions was studied. A cooperative nonradiative energy transfer from a single excited
neodymium ion to a cooperative acceptor representing a couple of cerium ions, as well as from a single erbium
ion to three cerium atoms (also forming a cooperative acceptor center), was observed. © 2000 MAIK
“Nauka/Interperiodica”.

PACS: 32.50.+d, 42.62.Fi, 42.65.–k
1 INTRODUCTION

As is known, the traditional mechanism of nonradi-
ative energy transfer between two particles—energy
donor and acceptor—is operative only in the case of
resonance between electron or electron-vibrational
transitions, which corresponds to a nonzero value of the
overlap integral between the donor emission and accep-
tor absorption spectra [1]. This mechanism results in a
linear relationship between the acceptor concentration
and the rate of luminescence quenching in the initial
and kinetic stages [2, 3]. Until now, a single type of the
cooperative nonradiative energy transfer, called the
cooperative sensitization, was known in the physics of
activated crystals. According to this, the nonradiative
energy transfer takes place simultaneously from two
(or more) ions, representing a cooperative donor, to a
single acceptor ion possessing a higher transition
energy [4–6].

In this work, we have observed and studied the
cooperative energy transfer of a new type (called the
cooperative quenching or cross-relaxation), in which
the nonradiative energy is transferred from a single ion
(donor) simultaneously to two (or more) ions represent-
ing a cooperative acceptor. According to this mecha-
nism, the electron excitation energy initially localized
on a single donor ion is instantaneously shared between
two (or more) acceptor ions, whereby the excitation is
multiplicated and delocalized in space. The concentra-
tion dependence of the rate of this nonradiative energy
transfer in the kinetic stage becomes significantly non-
linear, obeying a quadratic law for the twinned cooper-
ative acceptor and a cubic law, for the triple cooperative
acceptor.

We have studied crystals of the La1 – xCexF3 solid
solution system with the content of Ce3+ ions varied
from 0 to 100% (x = 0–1). The crystals were coacti-

1 e-mail: basiev@lst.gpi.ru
0021-3640/00/7101- $20.00 © 20008
vated by doping with a small concentration of trivalent
ions of neodymium or erbium. A special feature of the
electron structure of cerium is the absence of any elec-
tron levels and optical transitions in a broad range of
energies and frequencies (3500–30000 cm–1). This cir-
cumstance prevents cerium ions from acting as tradi-
tional acceptors or sensitizers in the process of energy
transfer in the visible and near-IR spectral range. The
only optical transition in the 4f electron shell of Ce3+ is
the 2F5/2–2F7/2 transition at a frequency of 1500–
3000 cm–1 falling within the middle IR spectral range.
In contrast, neodymium and erbium ions exhibit a
broad spectrum of luminescent transitions, including
both close to and far from resonance with the 2F5/2–2F7/2

transition in cerium ions. At the same time, Ce3+ ions
possess physicochemical properties that are very close
to those of lanthanum ions (La3+) and may substitute
for up to 100% of the latter ions without any significant
distortion of the crystal lattice and without modification
of the optical properties of the activator ions.

EXPERIMENTAL RESULTS

The crystals of La1 – xCexF3 : Nd and La1 – xCexF3 : Er
were grown by the Bridgman technology in graphite
crucibles under fluorine-containing atmosphere. The
activator concentration was 0.3 at % for Nd3+ ions and
1 at % for Er3+ ions. The Nd3+ and Er3+ donors were
excited by second harmonic of a Q-modulated
GGG : Nd3+ laser or by nanosecond radiation pulses of
a tunable sapphire–titanium laser. The donor lumines-
cence was dispersed by a grating monochromator and
detected using a multiplier phototube (0.8–1 µm wave-
length range) or a germanium photodiode (1.5–1.6 µm).
The decay kinetics of luminescence from Nd3+ and Er3+

ions was measured in a real time mode, with the signal
accumulation and discrimination against noise per-
000 MAIK “Nauka/Interperiodica”
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formed with aid of a TDS-380 two-channel digital
oscillograph linked to a personal computer.

Figure 1 shows diagrams of the energy levels of
Nd3+, Er3+, and Ce3+ ions in LaF3 crystals. The schemes
of energy levels and the spectra of transitions in
La1 − xCexF3 crystals remain virtually unchanged upon
variation of the parameter x, which is explained by
close proximity of the ionic radii of La3+ and Ce3+ as
well as of the crystal lattice parameters of LaF3 and
CeF3. A comparison of energies of the absorption tran-
sition in cerium ion and the luminescent transitions in
erbium and neodymium ions shows that only a four-
micron transition 4S3/2–4F9/2 in erbium exhibits a good
resonance with the 2F5/2–2F7/2 transition in cerium,
which is necessary for a nonradiative donor–acceptor
energy transfer by the traditional mechanism. There are
no resonances with absorption in cerium ion for the
4I13/2–4I15/2 (λ = 1.5–1.6 µm) transition in erbium ion
and the 4F3/2–4I15/2 (λ = 0.89–1.8 µm) transition in
neodymium ion. Another important circumstance is a
“short” phonon spectrum of LaF3 and CeF3 crystals,
which does not extend beyond 400 cm–1. This may pro-
vide for a good resonance in the interaction and optical
excitation energy transfer from a single Nd3+ ion (hνfl =
5500 cm–1) simultaneously to two Ce3+ ions (2hνabs =
4000–6000 cm–1) and from a single Er3+ ion (hνfl =
7000 cm–1) simultaneously to three Ce3+ ions (3hνabs =
6200–8400 cm–1).

At the first stage of this work, we have measured the
decay kinetics of luminescence from the 4S3/2 level of
Er3+ ion in La1 – xCexF3 crystals where the traditional
donor–acceptor energy transfer from erbium to cerium
ion is possible. Figure 2a shows a plot of the lifetime
τ(4S3/2) of erbium ions in the initial (ordered) decay
stage versus their concentration. Figure 2b presents the
corresponding values of the luminescence quenching
rate WEr → Ce(x) = 1/τ(x) – 1/τ(0) in the ordered (kinetic)
stage versus the cerium ion concentration. As seen from
this figure, the observed variation of the quenching rate
is quite well approximated by a straight line, in agree-
ment with the linear concentration dependence antici-
pated for the kinetic limit or the ordered direct energy
transfer: Wm = aW0x, where a us the coordination num-
ber of the cationic sublattice and W0 is the rate of ele-
mentary quenching reaction for a pair of ions at a min-
imum possible distance Rmin [2]. As seen from Fig. 2b,
the maximum quenching rate for pure cerium fluoride
(CeF3) obtained by summation over the whole cerium
sublattice (with all the lattice sites adjacent to the donor
ion being occupied by acceptors) has proved to be

(100%) = 2.7 × 105 s–1. This value is of the
same order of magnitude as the rate of the direct self-
quenching process Nd  Nd in a NdF3 crystal and in

WEr Ce→
m
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a crystal with 100% acceptor concentration, the latter

value being (100%) = 0.72 × 105 s–1 [7].

Within the framework of the model of generalized
coordination spheres proposed and justified in [8], we
may separate 12 nearest neighbor acceptors (a = 12, the
first generalized coordination sphere) in the nearest
environment of an impurity ion in the NdF3 lattice.
These acceptors occur at a minimum distance from the
donor, Rmin = 4.15 ± 0.15 Å. Estimates [8] show that
contribution of the first coordination sphere (i.e., of the
interaction with nearest neighbors) to the total relax-
ation rate is dominating even if the multipole donor–
acceptor interaction is governed by the longest-range

mechanism–the dipole–dipole interaction (W ~ ).
In this case, upon replacing the sum over all cationic
lattice sites of the cerium sublattice by the sum over

WNd Nd→
m
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Fig. 1. Energy level diagram for Nd3+, Er3+, and Ce3+ ions
in LaF3 crystals.
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Fig. 2. The plots of (a) lifetime of the 4S3/2 level of Er3+ ions
versus their concentration and (b) energy transfer rate WEr–Ce

versus Ce3+ ion concentration in crystals of La1 – xCexF3
solid solutions: (circles) experimental points; (solid line)
linear approximation.
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12 nearest neighbor cerium ions in the first coordina-
tion shell of the donor, we may estimate the rate of the
elementary quenching interaction in the ion pair Er 
Ce or Nd  Nd at a minimum possible donor–accep-

tor distance:  ≈ 270000/12 = 22500 s–1,
WNd → Nd ≈ 72000/12 = 6000 s–1.

COOPERATIVE QUENCHING 
OF THE LUMINESCENCE OF NEODYMIUM 

AND ERBIUM IONS IN CRYSTALS 
OF La1 – xCexF3 SOLID SOLUTIONS

The luminescence decay kinetics measured for the
metastable level 4F3/2 of the Nd3+ ion in La1 – xCexF3
solid solution crystals exhibited a single-exponent
character. Figure 3a (open circles) shows the lifetime of
this level as function of the concentration of neody-
mium ions. As seen, the lifetime exhibits a monotonic
decrease with increasing concentration which, pro-
vided a constant rate of the radiative decay, is evidence
of the increasing rate of the concentration lumines-
cence quenching. Figure 3b (black circles) presents the
corresponding values of the rate of nonradiative energy
transfer calculated by the formula WNd → 2Ce(x) =
1/τ(x) – 1/τ(0) using the measured τ(x) values, where
τ(0) is the radiative lifetime of the given metastable
level. Constancy of the τ(0) value and the radiative tran-
sition probabilities for Nd3+ ion in the whole series of
La1 – xCexF3 solid solutions was checked by measured
optical absorption spectra of neodymium and by the
results of calculations according to the Judd–Ofelt the-
ory. The solid curve in Fig. 3b shows approximation of
the experimental data by the quenching rate plotted as
a quadratic function of the concentration of cerium ion,
and the dashed line represents the linear quenching law.
As seen from this figure, the experiment reveals a sig-
nificantly nonlinear (close to quadratic) variation of the
quenching rate WNd → 2Ce with the Ce3+ ion concentra-
tion up to 100% (pure CeF3). This behavior differs from

WEr Ce→
0
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Fig. 3. The plots of (a) lifetime of the metastable 4F3/2 level

of Nd3+ ions versus their concentration and (b) cooperative
energy transfer rate WNd–2Ce versus Ce3+ ion concentration
in crystals of La1 – xCexF3 solid solutions: (circles) experi-
mental points; (dashed line linear approximation; (solid
line) quadratic approximation.
that corresponding to the traditional mechanism of con-
centration quenching described by the linear law,
observed, for example, for the direct energy transfer
Er  Ce or Nd  Nd in highly concentrated solid
solutions of the La1 – xCexF3 : Er and La1 – xCexF3 sys-
tems.

In a random uncorrelated process of substituting
Ce3+ ions for La3– in the LaF3 lattice, a single coopera-
tive acceptor of the Ce2 type is formed when two
cerium ions simultaneously fall within the first (near-
est-neighbor) coordinate sphere of a donor ion (Nd3+ or
Er3+). According to the probability theory, the probabil-
ity of this event is proportional to the product of the cor-
responding probabilities for single Ce3+ ions and,
hence, to the square of the concentration of Ce3+ ions in
the La1 – xCexF3 solid solution. The probability of for-
mation of a triple cooperative acceptor (Ce3) corre-
sponds to still more pronounced deviation from linear-
ity and is proportional to (at least) cubic concentration
of Ce3+ ions. From this, we may conclude that sharp
nonlinearity of the concentration dependence of the
quenching rate at sufficiently large concentration of
cerium ions (when these ions are arranged in an ordered
manner, that is, at a minimum distance) around a donor
ion (Nd3+ or Er3+) is experimental evidence of the fact
that the cooperative quenching mechanism is operative.

The total rate of the cooperative quenching in pure

cerium fluoride (CeF3) was (100%) = 1570 s–1,
which is markedly (tens to hundreds times) lower com-
pared to the value for the traditional linear mechanism
of energy transfer Er  Ce or Nd  Nd (see
above). Considering pairs (Ce2) as independent cooper-
ative acceptors situated in the first (nearest neighbor)
coordination sphere of a donor (neodymium ion) and
assuming their coordination number in CeF3 to be
12/2 = 6, we may estimate the elementary probability
of the cooperative energy transfer from Nd3+ (donor) to

the cooperative pair acceptor (Ce2) as  =

WNd 2Ce→
m

WNd 2Ce→
0
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Fig. 4. The plots of (a) lifetime of the 4I13/2 level of Er3+

ions versus their concentration and (b) energy transfer rate
WEr–3Ce versus Ce3+ ion concentration in crystals of
La1 − xCexF3 solid solutions: (circles) experimental points;
(dashed line) linear approximation; (solid line) cubic
approximation.
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(100%)/6 = 262 s–1, which is lower by a fac-
tor of several tens as compared to the value for the tra-
ditional energy transfer mechanism. According to the-
ory of statistical energy transfer [2, 3], the latter esti-
mate determines a boundary of the time interval t1 =
(W0)–1 = 3.8 ms in which the luminescence decay kinet-
ics has an exponential shape.

A nonlinear concentration quenching, similar to that
described above, was observed upon excitation of the
4I13/2 level of Er3+ ions in La1 – xCexF3 solid solution
crystals, for which the traditional energy transfer is also
forbidden and only the cooperative mechanism can be
operative. Figure 4a (open circles) shows the depen-
dence of the lifetime τ(4I13/2) as function of the concen-
tration of erbium ions. Figure 4b (black circles) pre-
sents the corresponding values of the rate of coopera-
tive quenching WEr → 3Ce(x) = 1/τ(x) – 1/τ(0). The solid
curve in Fig. 4b shows approximation of the experi-
mental data by the quenching rate plotted as a cubic
function of the concentration of cerium ion, and the
dashed line represents the linear quenching law. As
seen from this figure, the cubic curve provides a suffi-
ciently good fit to experiment, showing evidence of the
cooperative nonradiative energy transfer from a single
erbium ion simultaneously to three cerium ions
representing a cooperative acceptor (Ce3). The total rate
of the cooperative energy transfer (CeF3) was

(100%) = 120 s–1, which is by one order of
magnitude lower as compared to the analogous value
for the cooperative quenching Nd  2Ce in the case
of cooperative pair acceptors and by two orders of mag-
nitude as compared to the traditional linear mechanism
of energy transfer Er  Ce or Nd  Nd.

Similarly to the above analysis, by considering tri-
ads of Ce3+ ions as independent cooperative acceptors
forming the nearest environment of an impurity donor
ion (Er3+) in CeF3 lattice and assuming the number of
nearest-neighbor acceptors equal to 12/3 = 4, we may
estimate the elementary probability of the nontradi-
tional cooperative energy transfer from Er3+ (donor) to
the cooperative triple acceptor (Ce3) at a minimum dis-

tance as  = (100%)/4 = 30 s–1.

WNd 2Ce→
m

WNd 3Ce→
m

WEr 3Ce→
0 WEr 3Ce→

m
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CONCLUSION

We have experimentally observed a new phenome-
non–nonlinear cooperative nonradiative energy transfer
(cooperative concentration quenching or cooperative
cross-relaxation) from a single excited neodymium ion
simultaneously to a pair of cerium ions, representing a
cooperative acceptor, and from a single erbium ion
simultaneously to three cerium atoms also forming a
cooperative acceptor center). The macroscopic rates of
the cooperative energy transfer were determined for
various concentrations of pair and triple cooperative
acceptors. It is demonstrated that the total lumines-
cence decay rate for the cooperative pair acceptor

quenching (100%) in CeF3 crystals is lower
by a factor of several tens, and that for the cooperative

triple acceptor quenching (100%), by several
hundreds, as compared to the total macroscopic rates of

energy transfer (100%) is or (100%)
by the traditional mechanism of quenching transitions
involving usual single acceptors. The elementary prob-
ability of the cooperative energy transfer was deter-
mined for the process involving two or three cerium
ions forming cooperative quenchers at a minimum dis-
tance in the CeF3 lattice.
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