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JUBILEE

 

The 80th Birthday
of Lev Aleksandrovich Shuvalov
On November 15, 2003, an Honorary Scientist of
the Russian Federation, Doctor in Physics and Mathe-
matics Professor Lev Aleksandrovich Shuvalov, will
celebrate his 80th birthday. One can hardly find a scien-
tist engaged in crystal physics, physics of ferroelectrics,
or structural phase transitions who would not know
Professor Shuvalov and his numerous scientific publi-
cations. The recognized authority, he became a teacher
of many generations of scientists working in crystal
physics. The leading role of the Russian science in
physics of condensed matter is associated, to a large
degree, with the works performed by Shuvalov and his
colleagues.

Shuvalov belongs to the generation whose youth
was interrupted by the Great Patriotic War of 1941–
1945. In 1941, almost immediately after graduation
from school, Shuvalov entered the Red Army. From
July 1942, Shuvalov took part in military operations as
a pyrotechnician. In May 1942, these battalions
received a new secret weapon—a heavy analogue of the
famous Katyusha (the soldiers called it Andryusha). It
was a breakthrough weapon and, therefore, its location
1063-7745/04/4901- $26.00 © 20001
and movements were top secret. It was fired by pyro-
technicians. Thus, within less than a year, Shuvalov
fired more than 150 tons of missiles. He learned the
hardship of war, the bitterness of losses and defeats,
and the great joy of more and more frequent victories,
and finally, witnessed the complete defeat of German
fascism. A participant of the battles at Moscow, Stalin-
grad, and Kursk, Guards’ master sergeant Shuvalov
ended the war in Prague. He was awarded the order of
the Red Star and several medals, including the Medal of
Valour. His fate guarded him and he survived the war
without any wounds.

Shuvalov tested through the first semester, and in
March 1946, entered the Faculty of Physics of Moscow
State University; he graduated from it with distinction
in 1951. Then, Shuvalov worked for five years at the
Hydroproject Institute and studied as a post-graduate
student at the Institute of Crystallography under the
guidance of A.V. Shubnikov, who greatly influenced the
formation of Shuvalov’s scientific views and interests.
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In 1956, Shuvalov started working at the Institute of
Crystallography and still works there today. In 1961, he
defended his Candidate thesis, and in 1971, his Doc-
toral thesis. For 20 years Shuvalov headed the Labora-
tory of Phase transitions founded in 1972. He has more
than 700 scientific publications and is the creator of
20 inventions.

In the period from 1956 to 1974, Shuvalov per-
formed the fundamental studies which have played the
key role in the development of the symmetry approach
in crystallography and crystal physics of ferroelectrics.
At the same time, he also performed the first studies of
pulsed switching in dielectrics, very important for use
in various memory devices. Among the studies men-
tioned above, we should like to emphasize the formula-
tion and elegant solution of the problems associated
with the change of the symmetry during ferroelectric,
ferroelastic, and ferromagnetic phase transitions. Shu-
valov’s works associated with the establishment of the
general rules governing the domain structures of ferro-
electrics and their effect on the macroscopic properties
of crystals and the crystallophysical classification of
ferroelectrics have become classical and are considered
in numerous monographs and handbooks. For these
works, Shuvalov was awarded the USSR State Prize in
1976.

We should like to indicate those results obtained by
Shuvalov which formed the basis for new directions in
physics of ferroelectrics and related materials. The pio-
neering complex studies of ferroelastics performed by
Shuvalov and his coworkers played the most important
role in the transformation of physics of ferroelastics
into a new field of condensed matter physics at the junc-
tion of physics of ferroelastics and physics of structural
phase transitions. Shuvalov is not only one of the
founders of this field but is also its recognized leader in
this country.

Shuvalov and his coworkers suggested and devel-
oped practically the first method of direct study of the
statics and dynamics of domains in collinear (pure) fer-
roelectrics with the aid of nematic liquid crystals, now
widely used everywhere. The authors of this method
established the most important features of switching in
ferroelectrics and also the specific features of the geom-
etry of their domain and real structure, which is very
important for the practical use of these crystals in pyro-
vidicons and other devices. Shuvalov’s cycle of works
on crystal physics (studies of ferroelastics, ferroelectric
structural phase transitions, and domains) was awarded
the Fedorov prize of the Russian Academy of Sciences.

Shuvalov and his coworkers discovered and studied
in detail a new large family of ferro- and antiferroelec-
trics—alkali trihydroselenites possessing a number of
unusual physical properties. They also discovered a
number of new ferroelectrics, including those which
are transformed into the ferroelectric phase at helium
temperatures; they also established the most important
C

characteristics of the physical properties of irreversible,
improper, and quasi-one-dimensional ferroelectrics.

One of the most important results obtained in the
two last decades is the discovery and thorough investi-
gation of a new class of crystals with superionic con-
ductivity (superprotonic conductors)—a number of
families of alkali hydrosulfates and hydroselenates and
compounds with quasi-two-dimensional protonic
glassy state. It should be emphasized that these out-
standing results on superprotonic compounds were
obtained in such a short time because Shuvalov man-
aged to create an informal team of Soviet scientists and
scientists from other countries. This was one of the first
examples of the creation and efficient work of informal
research groups.

We should like to mention the studies performed by
Shuvalov and his group on the theory of propagation of
bulk and surface acoustic waves in crystals and layered
systems of different symmetries, the development of
various methods of studying the real structure of ferro-
electrics and ferroelastics, the investigation and practi-
cal applications of the pyroelectric effect in specially
designed devices, and the study of high-temperature
phase transformations in protonic glassy compounds of
the KADP type.

Shuvalov supervized more than 35 Candidate and
8 Doctoral theses. He organized large groups engaged
in the research of ferroelectric and related phenomena
at the University of Tver, Voronezh State Technical
University, Volgograd Architectural and Civil Engi-
neering Academy, Rostov State University, and others.
Shuvalov managed to found a successfully developing
scientific school.

Shuvalov is also engaged in the scientific-organiza-
tional activity. He is the vice-chairman of the section
Physics of ferroelectrics and dielectrics of the Scien-
tific council on Condensed Matter Physics of the Rus-
sian Academy of Sciences, the editor-in-chief of the
journal Kristallografiya, one of the organizers of the
National conferences on ferroelectricity, and the chair-
man of the organizing committees of all the National
seminars on ferroelastics. He is the permanent chair-
man of the organizing committees of the meetings of
students who graduated from the Faculty of Physics of
Moscow State University in 1950.

Shuvalov is very active in establishing international
cooperation with groups and individual scientists in
Japan, the USA, Slovenia, Poland, Czech Republic,
Lithuania, Ukraine, Germany, and other countries. He
is an initiator and organizer of international confer-
ences on physics of domains in ferroelectrics and
related materials, bilateral Soviet (Russian)–Japanese
and Soviet (Russian)–American symposia on ferroelec-
tricity. He is (or was) a permanent member of the Inter-
national and European consultative committees on fer-
roelectricity and a member of the editorial boards of
international journals Ferroelectrics, Ferroelectrics
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Letters, Zeitschrift für Kristallographie, Crystallogra-
phy Reviews, and Condensed Matter News.

Shuvalov, together with V.A. Yurin, J. Stankovsky,
and S. Waplyak, was awarded the Prize in Physics of
the USSR and Polish Academies of Sciences. He is an
honorary doctor of the Martin Luther University in
Halle, Germany, an associated member of the Jozef
Stefan Institute in Lublyana, Slovenia.

Shuvalov’s colleagues, friends, and students highly
estimate not only the scientific and organizational
activity of Professor Shuvalov, they also appreciate his
invariable optimism, interest in new ideas, openness,
benevolence, and readiness to help everybody. He is
always happy for scientific achievements of his col-
leagues, friends, and students. Great respect and affec-
tion of the scientific community was manifested during
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
the time when Shuvalov was seriously ill. A special
International Foundation was created to help Shuvalov
to solve the most difficult problems and, in fact, to save
his life. The activity of this Foundation was highly esti-
mated by the 9th European Conference on Ferroelec-
tricity in Prague in 1999. The support given to Shuvalov
was considered to be a brilliant, although, unfortu-
nately, rather rare example of the mutual international
cooperation of scientists under critical conditions.

The Editorial Board, Shuvalov’s colleagues, friends,
and students wish him excellent health and many years
of fruitful activity.

Translated by L. Man
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Abstract—The ferroelastic phase transitions are investigated in several series of fluoride crystals belonging to

the elpasolite and cryolite families (space group Fm m) with the general formula A2BB'F6 . The influence of
the size and shape of cations and anions on the entropy and the mechanism of structural distortions is discussed.
© 2004 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Perovskite-like compounds have attracted the par-
ticular attention of researchers due to a large variety of
physical properties and their possible use in different
technical devices. The perovskite structure is character-
ized by a relatively simple crystal lattice, on the one
hand, and the striking flexibility that makes it possible
to change the composition of ions forming the lattice
over a wide range and, thus, to achieve the desirable
properties of the material, on the other hand. In this
respect, perovskite compounds play an important role
in solid-state physics and materials science. All unique
(and practically useful) properties predominantly man-
ifest themselves in compounds whose structure differs
from an ideal cubic structure of the ÄÇï3 perovskite
due to different-type distortions, such as polar and anti-
polar displacements of A and (or) B ions from their
positions at the centers of octahedra and cubooctahe-
dra, octahedron rotations, Jahn–Teller distortions, or
magnetic ordering.

Investigations into the mechanisms responsible for
phase transformations and changes in the sequences of
structural distortions occurring in perovskite-like com-
pounds as a result of variations in external (tempera-
ture, pressure) and internal (doping, composition)
parameters are of considerable interest both from the
point of view of elucidation of the composition–struc-
ture–property relations and from the practical stand-
point of searching for the criteria for syntheses of crys-
tals with controlled properties.

Among perovskite-like compounds, the elpasolite
and cryolite families are most representative owing to
the great diversity of possible substitutions for atoms in
1063-7745/04/4901- $26.00 © 20100
crystals of the general formula A2BB'X6 . According to
[1, 2], more than 350 compounds with a similar struc-
ture were known until recently and, as follows from the
crystal chemical analysis, more than 1500 new elpaso-
lites can be obtained only based on halides. In the initial
phase, crystals of this family have cubic symmetry

(space group Fm m – , Z = 4). Unlike the simple
perovskites ABX3 , in which all the octahedra are equiv-
alent, the elpasolites (also referred to as ordered perovs-
kites) contain two types of ionic groups (BX6 , B'X6)
alternating along the three fourfold axes. Therefore, the
elpasolite cubic cell can be treated as a perovskite cell
with double the unit cell parameter. The crystal struc-
ture of the cryolite A3B'X6 , in which the A and B atoms
are chemically equivalent, is a special case of the elpa-
solite structure.

For compounds of these families, the group-theo-
retic analysis of the possible phase transitions from the
initial phase was performed in [3, 4], the symmetry
analysis of the lattice vibrations was carried out in
[5, 6], and the phase transitions were phenomenologi-
cally described in [5]. In the majority of cases, the
phase transformations were treated as displacive transi-
tions. However, there are a large number of experimen-
tal facts indicating a crossover from the displacive-type
mechanism to the order–disorder mechanism of phase
transitions with a change in the type of A, B, and B' ions.
The problem of possible disordering in perovskites,
which was formulated by Comes et al. [7], is still
debated in the literature [8, 9]. The order–disorder
phase transitions most clearly manifest themselves in
compounds with nonspherical cations A and B (for
example, with tetrahedral ammonium ions). It seems
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likely that ordering upon these phase transitions
involves not only ammonium ions but also octahedral
ions, which, upon other phase transitions, execute small
rotations due to softening of the lattice rotational vibra-
tion modes. The role played by the ordering processes
in the mechanisms of phase transformations in these
compounds is still not clearly understood.

In this work, we analyzed the thermal and structural
data obtained for several series of fluorides with elpaso-
lite-like and cryolite-like structures in order to elucidate
how the sizes and shape of cations affect the position
and motion of fluorine ions and the entropy of phase
transitions. It should be noted that, according to the
results of investigations performed in polarized light,
all the studied crystals undergoing displacive and (or)
order–disorder phase transitions are ferroelastic mate-
rials.

ELPASOLITES WITH ATOMIC CATIONS

In Rb2KB3+F6 crystals, a decrease in the size of the
Ç3+ cation (Fig. 1) leads to the change in the sequence

of structural distortions from Fm m  P121/n1

(Ç3+ = Er, Ho, Dy, Y, Tb) to Fm m  I4/m 
P121/nl (Ç3+ = Lu, In, Sc), a decrease in the stability
temperature of the cubic phase, and an increase in the
temperature range of the stability of the intermediate
tetragonal phase from 3 (Ç3+ = Lu) to 30 K (Ç3+ = Sc)
[10]. The triple point with the coordinates  ~

0.88 Å and T0 ~ 370 K is observed in the –T phase

diagram. The transition to the tetragonal phase is char-
acterized by the small entropy ∆S, which is of the order
of 0.2R [10]. This value of ∆S indicates that the above
transformations can be attributed to displacive phase
transitions. The structural distortions in the compounds
under consideration are associated with the crystal lat-
tice instability with respect to small rotations of fluo-

rine octahedra (the rotational modes , ) [5]. The
tetragonal symmetry is caused by the (00ϕ) rotations of
octahedra about one of the fourfold axes of the cubic

cell [5] due to the condensation of the  rotational
mode at the center of the Brillouin zone. The mono-
clinic distortion P121/n1 is associated with the conden-

sation of the  rotational mode and can be treated as
a superposition of the (ψϕϕ) rotations of octahedra
about three principal cubic axes at once. The total
entropy change upon transition from the cubic phase to
the monoclinic phase depends on the size of the triva-
lent ion and decreases from 1.3R (Ho) to 0.7R (Sc) [10].
The maximum value (1.3R) is rather large for purely
displacive transitions but does not allow us to assign
these transformations to order–disorder transitions. In
this case, an increase in the entropy with an increase in
the size of the trivalent cation is associated with the
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increase in the anharmonicity and anisotropy of vibra-
tions of fluorine ions, which is confirmed by the results
of structural investigations [10, 11].

A further decrease in the parameter of the cubic unit
cell of Rb2KB3+F6 crystals (Ç3+ = Fe, Cr, Ga) leads to
only one ferroelastic first-order transition, which is
accompanied by a considerable volume jump and, con-
sequently, results in the failure of single-crystal sam-
ples [10, 12]. Symmetry of the distorted phase in these
crystals is not established uniquely [13–15]. The exper-
imental data cannot be described in the framework of
the models successfully used for rotational phase tran-
sitions and suggest that the phase transitions in crystals
with small-sized trivalent cations proceed through a
mechanism different from the purely rotational mecha-
nism. The –T phase diagram should be complex in

the range between the sizes of the Sc3+ and Fe3+ ions. In
this range, the competition between different mecha-
nisms of phase transitions can be responsible for the
appearance of new distorted phases and triple points
(Table 1).

In order to elucidate the changes in the sequence and
mechanism of structural distortions, Rb2KGaxSc1 – xF6
solid solutions were studied in [13, 16–20]. Figure 2
depicts the composition–temperature phase diagram of
these solid solutions. The temperature dependences of
the heat capacity Cp(T) and the interplanar distance d440
for compounds with ı ≤ 0.6 exhibit two anomalies
associated with the phase transitions from the cubic
phase to the tetragonal phase I4/m and then to the mon-
oclinic phase P121/n1. The entropy change ∆S2/R ~
0.51 upon second phase transition agrees well with that
obtained for the I4/m  P121/n1 transition in pure
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Fig. 1. Dependence of the phase transition temperature Ti
on the parameter a0 of the cubic unit cell for Rb2KB3+F6
elpasolites.
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Table 1.  Thermodynamic characteristics of the phase transitions in haloid elpasolites with atomic cations

A2B+B3+X6
Type of distorted

structure
System of octahe-

dron rotations Ti, K T–1dT/dp, GPa–1 ∆S/R

Rb2KFeF6 ? ? 170 0.78 1.88

Rb2KGaF6 ? ? 123 0.90 1.73

Rb2KGa0.95Sc0.05F6 I4/m ? 00ϕ 130

? ? 123.5

Rb2KGa0.9Sc0.1F6

? ? 117

Rb2KGa0.6Sc0.4F6 I4/m 00ϕ ?

P21/n ψϕϕ 102.5

Rb2KGa0.2Sc0.8F6 I4/m 00ϕ 218

P21/n ψϕϕ 189

Rb2KScF6 I4/m 00ϕ 252 0.07 0.20

P21/n ψϕϕ 223 0.01 0.51

Rb2KInF6 I4/m 00ϕ 283 0.07 0.18

P21/n ψϕϕ 264 0.03 0.59

Rb2KLuF6 I4/m 00ϕ 370 0.06

P21/n ψϕϕ 366 0.05 1.05

Rb2KErF6 P21/n ψϕϕ 395 0.06 0.95

Rb2KHoF6 P21/n ψϕϕ 400 0.05 1.13

Rb2KTbF6 P21/n ψϕϕ 412 0.06

Note: R is the gas constant.
Rb2KScF6. The phase transition from the cubic phase to
the tetragonal phase in compounds with x > 0.4 was not
observed by the calorimetric methods due to the small
entropy of this transition and a possible smearing of
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Fig. 2. x–T phase diagram of Rb2KGaxSc1 – xF6 elpasolites
according to the calorimetric (closed circles) and X-ray dif-
fraction (open circles) data.
C

anomalies in the heat capacity. Therefore, in the solid
solutions (at least, in the range x = 0–0.6), the sequence

of the phase transitions Fm m  I4/m  P121/n1
remains unchanged and corresponds to a sequential
increase in the rotational distortions induced by the lat-

tice vibrational and  modes.

For compounds with ı ≥ 0.8, the temperatures of
two phase transitions become close to each other and
the intermediate phase disappears at a gallium content
close to x = 1. The entropy and the quantity dT/dp con-
siderably exceed the values characteristic of rotational
transitions and are in good agreement with the results
obtained for the Rb2KFeF6 compound [12]. The differ-
ence in the sequences of structural transformations in
compounds with x < 0.6 and x > 0.8 is confirmed by the
X-ray diffraction and elastic neutron scattering data
[18, 20].

An analysis of the structural and Raman scattering
data for compounds with x = 0.8–1.0 [15, 21] demon-
strates that, among all possible space groups, the
groups I4/m, P2/m, and P1121/n are most probable and
consistent with the experimental data. The arising
instability of the cubic cell in these compounds can be
associated not only with the two purely rotational
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modes  and  but also with the low-lying  mode
[15, 21], which is due to the octahedron rotations and
the displacements of Rb ions in holes between octahe-
dra. The interaction of these modes can result in the

triggered Fm m  P1121/n and successive Fm m

 I4/m  P1121/n and Fm m  I4/m  P2/m
 P1121/n phase transitions. These sequences

involve the intermediate tetragonal phase I4/m, which is
observed in other compounds of the solid solutions
under consideration.

Therefore, investigations of a number of Rb2KB3+F6
crystals made it possible to refine the phase diagram
and elucidate the influence of the size of the trivalent
ion on the sequences and mechanisms of phase transi-
tions.

AMMONIUM CRYOLITES (NH4)3B3+F6

In structural investigations of halide compounds,
authors often noted that the thermal parameter of halo-
gen atoms in the cubic phase is rather large and, in this
respect, proposed different variants of possible orienta-
tional disordering of octahedra [11, 22, 23]. However,
the refinement of the structural data in the framework of
these models did not lead to a substantial decrease in
the R factor [11, 23]. Moreover, the thermodynamic
data unambiguously indicate that the phase transforma-
tions in halide compounds with atomic cations are dis-
placive phase transitions associated with the condensa-
tion of lattice modes. This allows us to assume that a
considerable anharmonicity of vibrations rather than
disordering over several positions is characteristic of
fluorine atoms.

A different situation occurs in the case when atomic
cations in the elpasolite structure are replaced by tetra-
hedral ammonium cations. These compounds with
small-sized trivalent cations (Ga, Cr, Fe, V) undergo

phase transitions from the cubic phase Fm m to the tri-

clinic phase P  with a large entropy change, which
suggests that the transformations are associated with
the ordering processes [24–27]. On the other hand,
compounds with large-sized trivalent cations (Sc, In)

are characterized by the successive Fm m 

P1121/n  I12/m1  P  phase transitions [28].
The deuteration of ammonium cryolites does not lead
to noticeable changes in the thermodynamic parame-
ters, which indicates that hydrogen bonds do not play a
significant role in the mechanism of phase transitions
[29]. It is worth noting that the total entropy changes for
all compounds are close to Rln(16) irrespective of
whether a compound undergoes one phase transition or
a sequence of transitions (Table 2). Consequently, these
transformations proceed through the order–disorder
mechanism.

X2
+ Γ4

+ X2
+

3 3

3

3

1

3

1
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In the structure under investigation, ionic groups of
two types, namely, NH4 tetrahedra and fluorine octahe-
dra, are involved in ordering. The ammonium tetrahe-
dra located in the holes between octahedra in the cubic
phase (position 8c, CN = 12) are ordered, because their
symmetry corresponds to symmetry of the occupied
site. The tetrahedra situated at the center of the fluorine
octahedra (position 4b, CN = 6) in the cubic phase can
have two possible orientations. The fluorine ions in the

cubic lattice with symmetry Fm m in the general case
can be distributed over twelve different crystallo-
graphic positions. Among them, only two positions,
24e and 192l, satisfy the conditions of a rigid regular
octahedron [26]. If the fluorine ions are located at the
cubic cell edges (positions 24e), the octahedra are
ordered. When the fluorine ions are distributed over the
192l positions, each fluorine octahedron in the cubic
phase can have eight equally probable orientations
[26]. Complete ordering of the octahedra and tetrahedra
should result in an entropy change of Rln(16), which is
in good agreement with the experimental results.

In the case of single phase transitions, for example,
in the gallium compound, the octahedra and tetrahedra
are ordered simultaneously. This is confirmed by the
nuclear magnetic resonance (NMR) data [33]. It was
found that the spin–lattice relaxation times of both pro-
tons and fluorine ions exhibit jumps upon phase transi-
tion, which indicates a change in the character of their
motion.

For successive phase transitions, for example, in the
scandium cryolite, the first two transitions according to
the calorimetric data [∆S1 = Rln8, ∆S2 = Rln2] can be
associated with the order–disorder processes. The third
phase transition with a small change in the entropy is
the transformation between two completely ordered
distorted phases. We could assume that the first and sec-
ond transitions are due to complete ordering of octahe-
dra and tetrahedra, respectively. However, ordering of
the octahedra should necessarily be accompanied by
the change in symmetry of the position occupied by the
tetrahedra and their forced ordering. Moreover, accord-
ing to the NMR data [33], the spin–lattice relaxation
time of fluorine ions exhibit jumps upon the first and
second transitions. On the other hand, the spin–lattice
relaxation time of protons considerably changes only
upon the first phase transition. It was assumed that the
phase transition from the cubic phase is due to complete
ordering of the tetrahedra and partial ordering of the
octahedra. In the distorted phase, the octahedra can
have two equally probable orientations. The second
phase transition results in complete ordering of the
octahedra.

The analysis of the thermodynamic parameters and
the phase diagrams allows us to construct the general-
ized pressure–temperature (or cell volume–tempera-
ture) phase diagram for the entire series of ammonium
cryolites (Fig. 3). This diagram illustrates a gradual
evolution of the sequences of phase transitions with a

3
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Table 2.  Thermodynamic characteristics of the phase transitions in (NH4)3B3+F6 ammonium cryolites

B3+: Al V Fe Ga Ga0.6Sc0.4 Ga0.4Sc0.6 Sc

G0  G1 ∆S/R 1.63

dT/dp, K/GPa –8.2 –16.4

G1  G2 ∆S/R 0.81

dT/dp, K/GPa 46.4 57.5

G2  G3 ∆S/R 0.08

dT/dp, K/GPa 65.2 59.9

G0  G2 ∆S/R

dT/dp, K/GPa

G0  G3 ∆S/R 2.99 2.77 2.76 2.60

dT/dp, K/GPa –12.1 –15.3 –8.1

G0  G4 ∆S/R

dT/dp, K/GPa 50.4 ± 1.2 101.3

G4  G5 ∆S/R

dT/dp, K/GPa –670 ± 100 ~0

G5  G3 ∆S/R 0.5 ± 0.1

dT/dp, K/GPa –700 ± 100 –22.5

G0  G5 ∆S/R 2.22 ± 0.08

dT/dp, K/GPa –11.8 ± 4 73.1 60.1

References [27, 30] [25] [26] [31, 32] [32] [32] [31, 32]
variation in the parameters. The scandium and gallium
compounds have the following distorted phases with
symmetries determined in [28, 34]: G1(P121/n1, Z = 2),

G2(I12/m1, Z = 16), and G3(I , Z = 16). Symmetries of
the high-pressure phases G4 and G5 in the gallium cry-
olite still remain unknown.

1

Sc

G1

G2

G0

G3

G4

G5

Sc0.6Ga0.4 Sc0.4Ga0.6 Ga Al

Temperature

Pressure

Fig. 3. Generalized phase diagram of (NH4)3B3+F6 ammo-
nium cryolites.
C

AMMONIUM ELPASOLITES

In order to elucidate the role played by the ammo-
nium ions occupying different crystallographic posi-
tions, two types of ammonium elpasolites were exam-
ined in our earlier works [35, 36]. In Cs2NH4GaF6, the
NH4 ions are located at the cubic cell edges at the cen-
ters of fluorine octahedra. In the (NH4)2KGaF6 com-
pound, the ammonium ions occupy the holes between
octahedra.

The Cs2NH4GaF6 elpasolite undergoes one phase
transition with the large entropy change Rln(8) [36].
No high-pressure phases or triple points were found in
the p–T phase diagram [36]. We believe that, like the
transitions in ammonium cryolites, this transition is
accompanied by complete ordering of the NH4 tetrahe-
dra and partial ordering of the octahedra. The complete
ordering of the octahedra can occur at temperatures
below the liquid-nitrogen temperature. Thus, a compar-
ison with the (NH4)2NH4GaF6 compound shows that
the presence of the Cs+ spherical cation in the hole
between octahedra renders the crystal structure more
rigid and stable. This can be judged from the lower tem-
perature of the transition from the cubic phase (162 K)
in Cs2NH4GaF6 and the absence of splitting of the
phase boundary under pressure.
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The assumption regarding the occurrence of the sec-
ond phase transition is supported by the data obtained
for the Cs2NH4ScF6 elpasolite. An increase in the size
of the Ç3+ ion leads not only to an increase in the stabil-
ity temperature of the cubic phase (T1 = 285 K) but also
to the second phase transition (T2 = 195 K).

A quite different situation is observed for the
(NH4)2KGaF6 compound characterized by the
sequence of two transformations [35]. The entropy
change (∆S = 0.12R) upon phase transition from the
cubic phase uniquely indicates that this is the displacive
phase transition associated with the condensation of
lattice modes. According to the structural data, the first
distorted phase has symmetry I4/m. This symmetry is
identical to symmetry of the distorted phase in com-
pounds with atomic cations (see Rb2KB3+F6). In this
case, the fluorine octahedra are ordered in the cubic
phase and the phase transition is due to the condensa-

tion of the  mode.

The large entropy change (∆S = 1.8R) upon the sec-
ond phase transition suggests that this transformation
proceeds through the order–disorder mechanism. When
considering the ammonium cryolites, we assumed that
the NH4 ions in the holes between octahedra are

ordered completely. However, symmetry Fm m is also
retained if the hydrogen ion is shifted from the three-
fold axis and the nitrogen–hydrogen bonds are directed
toward fluorine ions. In this situation, the tetrahedron in
the cubic phase has three equally probable orientations.
This disordering is most pronounced in the ammonium
antifluorite with a similar structure [37]. For com-
pletely ordered tetrahedra, the entropy change should
be equal to 2Rln(3). This value agrees well with the
experimentally determined entropy change ∆S. The
above model of structural distortions is confirmed by
the NMR data [38]. The spin–lattice relaxation time of
fluorine ions remains unchanged upon both the first and
second transitions. The spin–lattice relaxation time of
protons substantially changes only upon the second
phase transition.

The (NH4)2KScF6 elpasolite is characterized by
appreciably higher temperatures of the phase transi-
tions and a considerably narrower temperature range of
the stability of the tetragonal phase (T1 = 367 K, T2 =
361 K). However, as follows from the data on the
entropy change, the structural transformations occur
through the same mechanism.

Therefore, the analysis of the ammonium com-
pounds allows us to make the inference that the replace-
ment of the atomic cations at the center of the fluorine
octahedra by the NH4 tetrahedra results in orientational
disordering of the octahedra and pronounced order–dis-
order phase transitions. The presence of the ammonium
ions in the holes between octahedra does not affect the
character of octahedron motion, and the phase transfor-
mations are the displacive transitions associated with

Γ4
+

3
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the condensation of soft lattice modes. The ammonium
tetrahedra are disordered and undergo ordering at lower
temperatures.

ON THE INTERATOMIC 
BOND STRENGTH

We studied four series of compounds with the elpa-
solite and cryolite structures and revealed that different
sequences and mechanisms of phase transitions can be
observed in these compounds depending on the unit
cell volume and the cation shape. However, the
“closed” elpasolite series (NH4)2NH4–Cs2NH4–Cs2K–
Rb2K–(NH4)2K–(NH4)2NH4, which is formed by
sequential replacements of cations at a constant size of
the B3+F6 octahedron, involves compounds with a Cs2K
combination of cations that are absent among the
objects under consideration. In the studied Cs2KGaF6
and Cs2KScF6 crystals, no phase transitions were found
at temperatures down to 77 K. This circumstance and
the stability of the cubic phase can be explained in
terms of the hypothesis of interatomic bond strength
[39].

According to this hypothesis, the stability of the ini-
tial cubic phase is determined by the ratio between the
ion sizes and the lattice parameter a0, i.e., by the ion
bond strength in the A+–F– and B3+–F––B+–F––B3+

chains. The ratios µA = (  – a0)/  and µB = (ap –

a0)/ap, where ap = 2(  + 2RF + ) and  =

2 (  + RF), can serve as the quantitative measures

of the strength. An increase in the µB value is equivalent
to an increase in the repulsion energy in the crystal
potential and leads to an increase in the anisotropy of
motion of F atoms and, hence, to a decrease in the sta-
bility of the initial phase. An increase in the µA value
causes a hindrance to the octahedron rotation and
results in an increase in the stability of the undistorted
lattice.

ap' ap'

R
B

+ R
B

3+ ap'

2 R
A

+

Table 3.  Strengths µA and µB of interatomic bonds and the
temperatures T1 of transitions from the cubic phase of fluo-
ride compounds

B3+ = Ga3+ B3+ = Sc3+

µA, % µB, % T1, K µA, % µB, % T1, K

Cs2NH4B3+F6 4.7 10.3 162 2.4 10.4 285

(NH4)2NH4B
3+F6 0.4 11.5 250 –2.0 11.5 330

(NH4)2KB3+F6 2.0 12.4 280 –0.1 13.9 367

Rb2KB3+F6 4.3 13 126 1.9 13.0 280

Cs2KB3+F6 7.0 11.7 <77 ? 4.4 11.3 <77 ?
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The validity of this hypothesis for the closed series
of crystals can be illustrated using the examples pre-
sented in Table 3. An increase in the size of the B3+F6
octahedron upon replacement of Ga by Sc in all the
cases primarily leads to a substantial change in the µA

value and, correspondingly, to an increase in the stabil-
ity temperature of the cubic phase. From analyzing the
structural data and the parameters of the phase transi-
tions in compounds with rare-earth elements as the B3+

cation, we established that no phase transitions should
occur in Ga and Sc compounds for the Cs2K combina-
tion of cations. It can be seen from Table 3 that the pre-
dicted absence of phase transitions is associated with
the considerable difference in the µA values for these
crystals. An increase in the temperature T1 is also
observed in the series of the compounds formed upon
replacement of the A cation: Cs2K–Rb2K–(NH4)2K.

Thus, the hypothesis of interatomic bond strength
appeared to be fruitful for describing not only the dis-
placive phase transitions but also the order–disorder
transitions. In ammonium cryolites, an increase in the
unit cell size is attended by a substantial decrease in the
µA value and an increase in the µB value, which results
in an increase in the phase transition temperatures [32].
Furthermore, these data demonstrate that, in ammo-
nium cryolites with successive transformations, the
transition from the cubic phase is predominantly asso-
ciated with ordering of octahedral ionic groups. This
ordering upon order–disorder phase transition can also
be treated as octahedron rotation but through a consid-
erably larger angle. However, when the structural dis-
tortions cannot be described by octahedron rotations,
the hypothesis is invalid, which was shown earlier for
cryolites with atomic cations [40].
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Abstract—The lattice dynamics of PbMg1/3Nb2/3O3 and PbMg1/3Ta2/3O3 relaxor ferroelectrics is investigated
by inelastic neutron scattering. The relaxation mode in these crystals is revealed from an analysis of the
low-frequency part of the vibrational spectrum. The possible reasons for the appearance of this mode are dis-
cussed, and different approaches to the description of the low-frequency spectrum of ferroelectrics are com-
pared. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Perovskite-like relaxor ferroelectrics (relaxors) of
the general formula O3 have attracted the par-
ticular attention of researchers for many years [1].
These compounds differ from classical perovskites of
the formula ABO3 by the presence of heterovalent ions
B' and B'' in the crystallographically equivalent posi-
tions of the B sublattice. A distinguishing feature of the
relaxor ferroelectrics is that their permittivity exhibits a
broad frequency-dependent peak, which is not associ-
ated with the structural phase transition [2].

Crystals of PbMg1/3Nb2/3O3 (PMN) are well-known
model relaxor ferroelectrics [1]. The real part ε' of the
permittivity of the PMN crystal at the frequency ν = 10
kHz exhibits a maximum at T ~ 270 K. In the absence
of an external electric field, the PMN crystal in the
range from approximately 1000 K to the liquid-helium
temperature has macroscopic cubic symmetry Pm3m
[3]. At high temperatures, ions in the PMN crystal are
displaced from equilibrium, highly symmetric posi-
tions of the perovskite cell [4]. Investigations into the
optical properties of the PMN compound (and a num-
ber of other relaxors) in the vicinity of the smeared
phase transition have revealed that the PMN structure
involves regions with local polarization [5, 6], which
also suggests ion displacements from the symmetric
positions. In the PMN crystal, the electric field (E >
2.2 kV/cm2) induces a structural transition to a phase
with rhombohedral symmetry at Të ~ 210 K [7, 8].
Thus, the PMN crystal is characterized by both the lat-
tice instability associated with relaxor behavior over a
wide range of temperatures and the instability at T ~

ABx' B1 x–"
1063-7745/04/4901- $26.00 © 20108
210 K due to the phase transition suppressed in the
absence of an external electric field.

The PbMg1/3Ta2/3O3 (PMT) crystal is a relaxor fer-
roelectric whose properties are very similar to those of
the PMN compound [1]. The real part ε' of the permit-
tivity of the PMT crystal at the frequency ν = 10 kHz
exhibits a maximum at T ~ 190 K. In this case, the per-
mittivity ε' at the maximum for the PMT crystal at com-
parable frequencies is approximately half the permittiv-
ity at the maximum for the PMN crystal. The PMT
crystal, like the PMN crystal, has symmetry Pm3m.
However, the tendency toward ordering of ions in the B
sublattice in the PMT crystal is more pronounced than
that in the PMN crystal [9]. The fundamental difference
between these two materials lies in the fact that no
structural phase transition is induced in the PMT crystal
in external electric fields [10, 11]. Consequently, the
PMT crystal can be treated as a model material for use
in studies of the relaxor behavior without additional
structural instabilities.

The nontrivial ferroelectric state formed in relaxors
at low temperatures has been investigated for a long
time. One of the established facts is the nonergodicity
of the ferroelectric phase. To date, there has been no
agreement among the researchers regarding the mecha-
nism of formation of this nonergodic state. With due
regard for the intimate connection between relaxors of
the O3 family and classical oxygen-contain-
ing perovskites, it could be expected that the soft mode
is responsible for the ferroelectric state in relaxors.
However, attempts to reveal the soft mode in PMN [12–
14] (extensive literature on light scattering in the PMN
materials is reviewed in [14]) and PMT [15] crystals

ABx' B1 x–"
004 MAIK “Nauka/Interperiodica”



        

ON THE EXISTENCE OF THE RELAXATION MODE 109

                                                                                
with the use of optical methods have not been success-
ful.1 It has been found that the light scattering spectra
contain a broad quasi-elastic component, which
strongly depends on the temperature [16, 17] and can
be described by a Lorentzian function centered at zero
frequency [17]. An analysis of the temperature depen-
dence of the quasi-elastic component in the light scat-
tering spectra of the PMN crystal has demonstrated that
there is a correlation between the behavior of the width
of this component and the dielectric anomalies
observed in the PMN crystal [17]. Quasi-elastic scatter-
ing with similar properties has also been observed in
relaxor ferroelectrics PbSc1/2Ta1/2O3 [18] and
Na1/2Bi1/2O3 [19]. One of the main features of quasi-
elastic light scattering in relaxors is an anomalously
large width of this component. For example, the full
width at half-maximum of the Lorentzian correspond-
ing to quasi-elastic light scattering in the PMN crystal
is as large as 25 cm–1 at T = 440 K [17], whereas the
characteristic width for NBT relaxors is approximately
equal to 150 cm–1 at T = 443 K [19]. The use of different
models developed for describing the behavior of the
central peaks observed upon structural phase transi-
tions [20] makes describing the quasi-elastic scattering
with the above properties impossible. The experimental
data on light scattering in the PMN crystal can be com-
pared with those for BaTiO3 and KNbO3 crystals. The
latter crystals belong to a small class of ferroelectric
compounds for which the full widths at half-maximum
of the quasi-elastic component are as large as 10 cm–1

[21]; i.e., they are comparable to those observed for
relaxors. An analysis of the lattice dynamics in the
BaTiO3 and KNbO3 crystals in the framework of the
eight-position model made it possible to assign quasi-
elastic scattering to the relaxation mode and to eluci-
date the origin of the broad central peak. It turned out
that this peak is governed by the ionic displacements in
the B sublattice from ideal positions of the perovskite
structure [21]. Attempts to apply the modified eight-
position model [21] to the description of the tempera-
ture behavior of the parameters of the relaxation mode
in the PMN crystal have led to nonphysical parameters
[17].

All the foregoing demonstrates that the nature of
quasi-elastic light scattering in relaxors remains
unclear; i.e., the low-frequency lattice dynamics in the
crystals under consideration is not understood. In this
situation, complementary information can be obtained
using inelastic neutron scattering, which is an efficient
method for investigating the lattice dynamics in objects
at different magnitudes of the wave vector k of the Bril-
louin zone.

In recent years, many works have been concerned
with the inelastic neutron scattering investigation into

1 Note that the origin of the active modes in the Raman spectra of
the PMN compound and related O3 relaxors is the sub-

ject of considerable discussion (see, for example, [14]).
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the lattice dynamics of the PMN crystal [22–28]. At
temperatures of the order of the Burns temperature, a
narrow central peak whose width is determined by the
spectrometer resolution has been revealed in the vicin-
ity of the (0 0 2) Bragg position [22]. This result was
unexpected, because the spectrometer resolution used
in [22, 23] provided a means for determining the intrin-
sic excitation width of the order of 25 cm–1 (as can be
judged from the data on light scattering in the PMN
compound).

In our earlier work [29], we studied diffuse neutron
scattering in the PMT crystal in the vicinity of the tem-
perature corresponding to a maximum in the dielectric
anomaly. It was revealed that the diffuse scattering
component has a finite width of 0.65 meV (1 meV =
8.04 cm–1) at room temperature. This value is slightly
smaller than that expected for quasi-elastic scattering in
the PMT crystal at room temperature [30]. In the
present work, we thoroughly investigated the low-fre-
quency range of the vibrational spectrum of the PMN
and PMT crystals with the use of inelastic neutron scat-
tering and attempted to solve the problem regarding the
existence of the relaxation mode in relaxors.

EXPERIMENTAL TECHNIQUE AND DATA 
PROCESSING

The neutron scattering experiments were performed
on a TASP three-axis spectrometer (ETHZ and Paul-
Scherrer Institute, Villigen, Switzerland). Pyrolytic
graphite with the (0 0 2) reflection was used as a mono-
chromator and analyzer of neutron beams. The vertical
focusing of the monochromator provided an increase in
the signal intensity. A pyrolytic graphite filter served
for suppressing higher harmonics in a scattered neutron
beam. The spectrum intensity was normalized to the
intensity measured by a monitor placed in a neutron
beam incident on a sample. The measurements were
carried out at the fixed wave vector kF = 1.97 Å–1 with
the following collimation: neutron guide–80'–80'–80'.
The spectrometer resolution measured with a reference
cylindrical vanadium sample was equal to 0.4 meV (the
full width at half-maximum of the Gaussian function)
for the elastic line. A number of experiments were car-
ried out with wave vector kF = 1.64 Å–1. In this case, the
resolution with allowance made for the collimation
(neutron guide–80'–80'–80') was equal to 0.2 meV.

High-quality PMN (volume, ~8 cm3) and PMT (vol-
ume, ~0.05 cm3) single crystals served as the samples.
Both samples were mounted with aluminum holders in
such a way as to ensure the possibility of measuring in
the vicinity of the (hh0), (00l), and (hhl) Bragg posi-
tions. The temperature measurements of neutron scat-
tering for the PMN crystal were performed in a closed-
cycle refrigerator equipped with a small-sized heater. A
standard closed-cycle refrigerator was used for the
PMT crystal. The temperature was controlled accurate
to within 1 K. Prior to measurements, both samples
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Fig. 1. Decomposition of the neutron scattering spectra of
the PMN crystal: (a) T = 450 K, Q = (1 1 –0.05); (b) T =
450 K, Q = (0.05 0.05 1); and (c) T = 300 K, Q = (1 1 0.075).
The thin solid line is the resultant spectrum, the thick solid
line corresponds to the quasi-elastic scattering component,
the dashed line indicates the narrow central peak, and the
dotted line represents the damped-harmonic oscillator func-
tion [relationship (3)]. Details of the decomposition proce-
dure are given in the text.
C

were annealed at a temperature of 450 K for 4 h. In this
work, we will not analyze the measured temperature
dependences and instead focus our attention on the
description of the obtained data within a proposed
model in which the possible existence of the relaxation
mode in the studied crystals is taken into account. The
unit cell parameters at room temperature are as follows:
a = 4.04 Å for the PMN crystal and a = 4.03 Å for the
PMT crystal. Therefore, for both crystals, we have
1 rlu = 1.55 Å–1.

Figure 1a shows the inelastic neutron scattering
spectrum of the PMN crystal at T = 450 K. The peaks
corresponding to acoustic phonons are observed in the
spectrum at energies of the order of 1.5 meV. At nega-
tive energies, the phonon peak is more intense and rel-
atively narrow, which is explained by the focusing
effect (see, for example, [31]). Attempts to approximate
the experimental spectrum only with the use of the
phonon components failed. It is clearly seen from
Fig. 1a that the scattering spectrum contains an addi-
tional intense component at zero imparted energy. Con-
sequently, the model describing the experimental spec-
trum should allow for the additional excitation at zero
imparted energy. This is supported by the fact that an
intense broad central peak is observed in the light scat-
tering spectra at 450 K. The experimental data were
processed under the assumption that the central peak in
the spectrum consists of narrow (intense) and broad
components. The narrow intense central peak was
described by the Gaussian function

(1)

Quasi-elastic scattering was approximated by the
Lorentzian function

(2)

The phonon peaks were modeled by the damped-har-
monic oscillator function

(3)

The calculations included the four-dimensional con-
volution of the DHO and L functions with the spec-
trometer resolution function. The last function was cal-
culated according to the Mfit program [32]. Since the
measurements were carried out at q < 0.1 rlu, the linear
approximation for the dispersion of TA phonons was
used in the convolution with the resolution function. In
all three functions, the parameters are as follows: Γ is
the full width at half-maximum, Ω0 is the position of
the function, A is the area of the function, and ω is the
frequency in energy units. The data were processed
with allowance made for the incoherent scattering
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background at zero imparted energy. This background
approximated by the Gaussian function (1) is not
shown in Fig. 1, because the peak intensity of the back-
ground is less than 100 counts. Note that an attempt to
describe the experimental data according to the
approach proposed in [33] without regard for the Gaus-
sian function for the central peak also has not met with
success.

RESULTS AND DISCUSSION

As can be seen from Fig. 1a, the experimental data
are adequately described in the framework of the pro-
posed model (χ2 ~ 1.6). The Lorentzian function
approximating the quasi-elastic component (depicted
by the thick solid line in Fig. 1) is characterized by the
width Γ = 0.75 meV. This value is in good agreement
with the width Γ = 0.65 meV obtained in our previous
work [29] for the PMT crystal at room temperature. The
intense narrow central peak (the dashed line in Fig. 1)
has no intrinsic width; i.e., the energy width (0.4 meV)
of this peak is completely determined by the spectrom-
eter resolution. This is consistent with the narrow cen-
tral peaks observed earlier for the PMN crystal [22, 23]
and the related compound Pb(Zn1/3Nb2/3)O3 + 8%
PbTiO3 [34].

In recent works [22, 27, 28], as in the well-known
works [35] (BaTiO3) and [36] (KNbO3), the phonon
response of the PMN crystal was interpreted in terms of
the coupled-oscillator function. According to [27], the
response function in the form of coupled oscillators
[35] can lead to a considerable intensity in the vicinity
of zero imparted energy, because transverse optical
phonons with an energy of the order of 10 meV are
strongly damped. In order to elucidate the possible rela-
tion between transverse optical phonons and the relax-
ation mode in the PMN crystal, we investigated quasi-
elastic neutron scattering in the vicinity of the (0 0 1)
and (1 1 0) Bragg positions at T = 450 and 300 K,
respectively. These experimental conditions make it
possible to reduce the contribution of acoustic phonons
to the neutron scattering spectrum and, thus, to reveal
the relation between the relaxation mode and the
phonon subsystem. On the one hand, as follows from
the Bose–Einstein statistics [see Eq. (3)], a decrease in
the temperature leads to a decrease in the intensity of
the acoustic phonon mode. In this case, according to
[17], changes in the intensity of the relaxation mode
should not be very large. On the other hand, the inten-
sity of the acoustic phonon mode is proportional to the
structure factor of the Bragg peak. Therefore, the inten-
sity of the acoustic phonon mode at the (0 0 1) Bragg
position should be approximately ten times lower than
that at the (1 1 0) Bragg position. Moreover, the inten-
sity of neutron scattering by the phonons is propor-
tional to the scattering vector squared. This results in an
additional twofold decrease in the intensity. Conse-
quently, when changing over from the (1 1 0) Bragg
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      200
position to the (0 0 1) Bragg position, the intensity of
the acoustic phonon mode should decrease by a factor
of approximately 20.

The neutron scattering spectrum of the PMN crystal
in the vicinity of the (0 0 1) Bragg position at a temper-
ature of 450 K is depicted in Fig. 1b. It is clearly seen
that, in the vicinity of the (0 0 1) Bragg position, the
intensity of the transverse phonon mode at a relatively
high temperature (T = 450 K) is negligible compared to
the intensity of the quasi-elastic component. The exper-
imental data processing with the aforementioned proce-
dure leads to the width of the quasi-elastic component
Γ = 0.75 meV [as is the case with the (1 1 0) Bragg posi-
tion]. Note that Q = (1 1 –0.05) corresponds to q =
0.078 Å–1, whereas Q = (0.05 0.05 1) corresponds to q =
0.11 Å–1. Consequently, the width of the quasi-elastic
component only weakly depends on the wave vector, at
least, at small values of q. The integrated intensity of
the quasi-elastic component is approximately halved
when changing over from Q = (1 1 −0.05) to Q = (0.05
0.05 1). Now, it is hard to tell whether such a substantial
decrease in the intensity is associated with the change
in the wave vector q within the Brillouin zone, with the
change in the structure factor of the relaxation mode
when changing over from the (1 1 0) Bragg position to
the (0 0 1) Bragg position, or with the contribution of
both these factors.

The neutron scattering spectrum of the PMN crystal
at the (1 1 0.075) Bragg position at a temperature of
300 K is shown in Fig. 1c (the horizontal dotted line
indicates the background intensity). It should be noted
that this spectrum was measured with a higher resolu-
tion (0.2 meV) in the energy range from –1.9 to
8.5 meV. As can be seen from Fig. 1c, the experimental
spectrum is described very well in the framework of the
proposed model. Note also that attempts to describe the
neutron scattering spectrum within the coupled-oscilla-
tor model proposed in [35, 36] failed. The processing of
the experimental data at Q = (1 1 0.075) and a temper-
ature of 300 K in terms of our model leads to the width
of the quasi-elastic component Γ = 0.46 meV, which is
somewhat less than that at T = 450 K. A decrease in the
width of the relaxation mode with a decrease in the
temperature indicates an increase in the relaxation time
τ = 2/Γ. This is consistent with the behavior of quasi-
elastic scattering in the PMN [17], BaTiO3, and KNbO3
[21] crystals. Furthermore, when analyzing diffuse
scattering in the PMT crystal [29], we found that the
diffuse neutron scattering component characterized by
a finite energy width at room temperature becomes
elastic at T = 40 K to within the limits of experimental
resolution. This also suggests an increase in the relax-
ation time with a decrease in the temperature.

A rather unexpected result was obtained in [29]: no
narrow central peak was observed in the neutron scat-
tering spectrum of the PMT crystal. With the aim of
elucidating whether the narrow central peak is actually
observed in the neutron scattering spectra of the PMT
4
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crystal and whether the narrow central peak is associ-
ated with the induced structural phase transition in the
PMN crystal, we investigated the inelastic neutron scat-
tering spectra of the PMT crystal at room temperature.
The neutron scattering spectra of the PMT crystal at
different wave vectors q are depicted in Fig. 2. As is
clearly seen, the spectra consist of a narrow component
(whose intensity considerably varies with an increase in
the wave vector q) and a broad component (with nearly
constant parameters). The narrow component is well
described by the Gaussian function with a width of
0.4 meV. Therefore, the spectra of the PMT crystal
involve a narrow central peak, as is the case with the
PMN crystal. We failed to observe the narrow central
peak in the neutron scattering spectra of the PMT crys-
tal in our earlier work [29], because, directly at the
(1 1 0) position, the narrow central peak overlaps with
the intense Bragg reflection and, moreover, the quasi-
elastic component has a high intensity. In view of the
insufficient statistics, we cannot analyze the depen-
dence of the broad quasi-elastic component on the wave
vector q for the PMT crystal. The inset in Fig. 2 shows
the dependence of the intensity of the central peak on
the wave vector q for the PMT crystal. This dependence
is well approximated by the Lorentzian function with
the width Γ = 0.122 rlu, which corresponds to the cor-
relation length ξ = 10.5 Å. It should be emphasized that,
in [29], we investigated diffuse scattering in the PMT
crystal preliminarily cooled to 20 K, whereas the sam-
ple studied in the present work was annealed before
measurements. It is evident that the 2.5-fold difference
between the values obtained in [29] and in the present
work is associated with the nonergodicity of the PMT
crystal.
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Fig. 2. Neutron scattering spectra of the PMT crystal at T =
300 K and Q = (1) (1 1 0.05), (2) (1 1 0.10), and (3) (1 1
0.15). The inset shows the dependence of the integrated
intensity I of the resolution-limited central peak on the wave
vector q. The approximation is performed by the Lorentzian
function.
C

It should be noted that the choice of the response
function for describing the experimental data is a com-
plicated problem which is not necessarily solved in a
unique way (see, for example, [36, 37]). Without invok-
ing the appropriate model concepts, we cannot argue
that the Lorentzian function completely corresponds to
the line shape of the relaxation mode. However, as was
noted above, it became possible to adequately describe
the experimental data with the use of only an additional
excitation in the form of the Lorentzian centered at zero
frequency. Analysis of the dependences of the parame-
ters of the relaxation mode on the temperature and the
wave vector q can help to elucidate its origin. At
present, it seems likely that the relaxation mode can be
associated with both the relaxation of ions displaced
from equilibrium positions (by analogy with the model
developed in [21]) and phonon density fluctuations
[20]. In these cases, the relaxation mode can be
described by the Lorentzian function and both pro-
cesses are pronounced at high temperatures. We can
also assume that the temperature dependence of the
relaxation time exhibits a thermally activated behavior.
It is of interest to ascertain whether there is a relation
between the relaxation mode in the PMN crystal and
the soft mode observed in [28], because both excita-
tions are considered to be additional to the phonon
spectrum predicted for crystals with a perovskite struc-
ture.

CONCLUSIONS

Thus, we investigated the vibrational spectra of the
PMN and PMT relaxor ferroelectrics. The quasi-elastic
component (relaxation mode) and the resolution-lim-
ited central peak were separated for both compounds
with the use of different procedures of experimental
data processing. The relaxation time of the quasi-elastic
component increases with a decrease in the tempera-
ture. It was found that the correlation length associated
with the elastic central peak in the neutron scattering
spectrum of the PMT crystal strongly depends on the
prehistory of the sample.
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Abstract—A superionic phase transition is investigated in CsHSO4-type crystals. It is demonstrated that the
soft mode of this transition is associated with both an orientational ordering of SO4 tetrahedra and an ordering
of hydrogen ions in the crystal lattice. The phase transition is accompanied by distortions of SO4 tetrahedra and
small rotations of the tetrahedra as a whole. The specific orientational basis of the superionic phase transition
is determined. The experimental verification of the theoretical predictions is proposed. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Crystals of the MeHAO4 type (Me = Cs, Rb, NH4;
A = S, Se) and their deuterated analogues at tempera-
tures T ≥ TC possess high electrical conductivity due to
translational motion of hydrogen (deuterium) ions [1].
The phase transition temperature TC for different com-
pounds falls in the range from ~400 to ~450 K. The
conductivity at the phase transition point abruptly
changes by three or four orders of magnitude and
reaches a value of ~10–2 Ω–1 cm–1 in the high-tempera-
ture phase. In the CsHSO4 compound, the high electri-
cal conductivity is observed in superionic phases I, VI,
and VII (see Fig. 1).

In order to explain the high conductivity provided
by hydrogen ions, it is necessary to investigate the
hydrogen subsystem. Important information on the
physical properties of the hydrogen subsystem can be
obtained by scattering of slow neutrons [9]. In [10], the
hydrogen subsystem of CsHSO4 crystals was analyzed
in the framework of the Slater model and the symmetry
approach was applied to the description of the superi-
onic phase transition. In our earlier works [11, 12], we
developed the phenomenological theory of phase tran-
sitions in the CsHSO4 compound. A model of hydrogen
bonds in all high-pressure phases of this material was
proposed on the basis of the symmetry analysis in [13].

However, the experimental data on the conductivity
[14], nuclear magnetic resonance [15], neutron scatter-
ing [16], and mechanical properties of the superionic
phase [17] indicate that the rotation of SO4 tetrahedra
through large angles should also be taken into account.
In order to correctly describe the superionic phase tran-
sition in the CsHSO4 crystal, it is necessary to analyze
not only the hydrogen subsystem but also the sub-
system of SO4 tetrahedra and the possible interactions
1063-7745/04/4901- $26.00 © 20114
between these subsystems. This raises the question as
to the physical nature of the soft mode of the superionic
phase transition in the CsHSO4 crystal. It is clear that
the soft mode should be associated with the changes
observed in the hydrogen subsystem [12, 13], the sub-
system of SO4 tetrahedra (rotations through large
angles) [16], and the phonon subsystem. The changes
in the phonon subsystem are considered to mean small
atomic displacements, librations of the SO4 tetrahedra
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Fig. 1. Phase diagram of the CsHSO4 crystal in the pres-
sure–temperature coordinates. Roman numerals I, …, VIII
denote different phases. Solid lines show the experimentally
determined phase boundaries [2–4]. Dashed lines represent
the possible extrapolation of the phase boundaries. The dot-
dashed line indicates the boundary of possible new phase
VIII [5]. The hatched region corresponds to low pressures
and temperatures close to T ~ 410 K at which a new superi-
onic phase can be formed in CsHSO4 [6–8].
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as a whole [18], and distortions of SO4 tetrahedra upon
superionic phase transitions.

In this work, the soft mode of the superionic phase
transition I  II (with the symmetry change
I41/amd  P21/c) in the CsHSO4 crystal was investi-
gated using the symmetry analysis.

SOFT MODE OF THE SUPERIONIC PHASE 
TRANSITION I41/amd  P21/c

The crystal structure of CsHSO4 in phases I and II
is shown in Fig. 2. (Note that the structures of CsHSO4
and CsDSO4 crystals in phases I and II are identical.)
The structural symmetry was determined for superionic
phase I in [16, 19, 20] and for phase II in [16, 18, 19,
21, 22].

The phase transition I41/amd  P21/c can be
described by the expansion of the free energy in the fol-
lowing form [11]:

(1)
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(2)

Here, r = a(T – TC); a, u1, u2, ν1, ν2, ν3, α, β, r1, and r2
are the temperature-independent constants; {ϕi} (i = 1–4)
is the four-component order parameter; and ψ and {θi}
(i = 1, 2) are the secondary order parameters. The phase
transition from phase I to one of the four single-domain
states of phase II is described by the following nonzero
order parameter components: ϕ1 = ϕ2 ≠ 0, ψ ≠ 0, and
θ1 ≠ 0. The nonzero order parameter components ϕ3 =
ϕ4 ≠ 0, ψ ≠ 0, and θ2 ≠ 0 describe the phase transition
to another domain. The monoclinic axes of these two
domains lie in the (001) plane (see Fig. 2a) and are per-
pendicular to each other.

The order parameters {ϕi} (i = 1–4), ψ, and {θi} (i =
1, 2) describe the orientational ordering of SO4 tetrahe-
dra. The orientational states of the SO4 tetrahedron with
different symmetries are shown in Fig. 3. Four orienta-
tional bases with different symmetries are possible in
space group I41/amd. These are three special bases with
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internal symmetry and one common basis. The special
bases are represented by one twofold orientational basis
(Fig. 3a) and two fourfold orientational bases
(Figs. 3b–3e). The orientational state of the common
eightfold basis can be obtained from the orientational
state of any special basis (Fig. 3c) by additional rotation
through an arbitrary (small) angle about the axis
orthogonal to the symmetry axes of the special basis.

The primitive cell of phase I (Fig. 2a) contains two
nonequivalent SO4 tetrahedra. Figure 3 presents the ori-
entational states for only one SO4 tetrahedron. Note that
all the orientational states shown in this figure corre-
spond to an angle of π/12. The real angle of rotation of
the SO4 tetrahedron in phase II is determined from the
experimental data (see below).

All the orientational bases can be formally used for
describing the symmetry change I41/amd  P21/c
upon the phase transition: phase I  phase II. How-
ever, the sequence of phase transitions

(3)

cannot be represented in the twofold basis due to its
internal symmetry (for more details, see [5, 23, 24]).
The proper choice of the orientational basis can be

I41/amd phase I( ) Pnma phase VI( ) 
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Fig. 3. Orientational states of an SO4 tetrahedron in phase I. (a)
Twofold orientational basis. The orientational states corre-
spond to rotations of the SO4 tetrahedron about the Z axis.
(b, c) The first fourfold orientational basis. Different orien-
tational states of the SO4 tetrahedron are obtained by rota-

tions of the tetrahedron about the [ ] and [110] crystal-
lographic directions. (d, e) The second fourfold orienta-
tional basis. Different orientational states of the SO4
tetrahedron are obtained by rotations of the tetrahedron
about the X and Y axes. (f) Position of one vertex of the SO4
tetrahedron in the orientational states of two fourfold bases.
Numerals denote four orientational states of the first four-
fold basis.

110
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made from experimental data. It can be seen from
Fig. 2b that the orientations of tetrahedra 1 and 3 corre-
spond to orientations 1 and 3 in Fig. 3f; in this case, the
angle of rotation is approximately equal to 13°. The ori-
entations of tetrahedra 2 and 4 in Fig. 2b correspond to
orientations 2 and 4 in Fig. 3f with additional rotation
through an angle of π/2 due to the translational non-
equivalence of two tetrahedra in phase I (see Fig. 2a).
In addition to the rotations through an angle of ~13°
about the [ ] and [110] crystallographic directions,
the precise orientation of tetrahedra 1–4 in Fig. 2b
requires an additional rotation of these tetrahedra
through an angle of ~6° about the Z axis. As was noted
above, this additional rotation of the tetrahedron leads
to the fact that the fourfold orientational basis (Figs. 3b,
3c) transforms into a common eightfold basis.

Thus, the analysis of the experimental data [16]
demonstrates that the orientational ordering of SO4 tet-
rahedra in phase II (Fig. 2b) is associated with the com-
mon eightfold basis. Specific numerical values of the

angles of rotation (~13° about the [ ] and [110]
crystallographic directions and ~6° about the Z axis)
indicate that the dominant contribution to the orienta-
tion of SO4 tetrahedra is made by the states of the four-
fold orientational basis, which is shown in Figs. 3b
and 3c.

The order parameters describing the ordering of
hydrogen ions in the crystal lattice are identical in sym-
metry to the order parameters representing the orienta-
tional ordering of SO4 tetrahedra. In our previous work
[12], we proposed a scheme of hydrogen bonds in
phase II (Fig. 2b). In phase II, there are two nonequiv-
alent hydrogen bond chains related to each other by a
monoclinic twofold screw axis. Both chains of hydro-
gen bonds (tetrahedra 1–5) are aligned along the cm

crystallographic axis. Note that tetrahedra 3–5 in
Fig. 2a correspond to tetrahedra 3–5 in Fig. 2b and tet-
rahedra 2 are translationally equivalent.

The order parameters describing the ordering of
hydrogen ions in the crystal lattice are denoted as fol-
lows: { } (i = 1–4), { } (i = 1, 2), and ψ'. Both types
of ordering can be represented by the expansion of the
free energy in the following form:

(4)

where

(5)

Then, the terms with the order parameters describing
the changes in the phonon subsystem (in particular,

110

110

ϕ i' θi'

F2 F1 Fϕϕ ' Fϕ ; ψ'θ' Fϕ' ; ψ' ; θ' ,+ + +=

Fϕϕ ' γ ϕ1ϕ1' ϕ2ϕ2' ϕ3ϕ3' ϕ4ϕ4'+ + +( ),=

Fϕ ; ψ'θ' α1 ϕ1
2 ϕ2

2 ϕ3
2

– ϕ4
2

–+( )ψ'=

+ β1 ϕ1ϕ2θ1' ϕ3ϕ4θ2'+( ),

Fϕ' ; ψ' ; θ'
1
2
---r3ϕ'

2 1
2
---r4ψ'

2 1
2
---r5 θ1'

2 θ2'
2

+( ).+ +=
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rotations of the tetrahedra as a whole [18]) are added to
relationship (4). As a result, we obtain

(6)

where

(7)

All the phenomenological constants in formulas (5) and
(7) do not depend on the temperature.

Expression (6) describes all changes in the CsHSO4
crystal upon the superionic phase transition
I41/amd  P21/c.

RESULTS, DISCUSSION, 
AND CONCLUSIONS

Let us summarize the results obtained. The superi-
onic phase transition (phase I  phase II) in the
CsHSO4 crystal results in the symmetry change

I41/amd( )  P21/c( ). This phase transition
can be described by the expansion of the free energy in
the form of relationships (1) and (2). The phase transi-
tion to a single-domain state can be represented by the
following nonzero order parameter components: ϕ1 =
ϕ2 ≠ 0, ψ ≠ 0, and θ1 ≠ 0. Consequently, all the changes
associated with the phase transition I41/amd  P21/c
should also be described by these order parameters. In
the present work, these order parameters are used to
describe the orientational ordering of SO4 tetrahedra in
phase II (Fig. 2b). In [12, 13], the ordering of hydrogen
ions in the crystal lattice was described by analogous
order parameters. In this work, these are primed order
parameters. The changes observed in the phonon sub-
system (small rotations of SO4 tetrahedra and their dis-
tortions) are represented by the order parameters with
two primes. Therefore, the use of expansion (6) of the
free energy makes it possible to describe the fundamen-
tal changes in the CsHSO4 crystal upon the superionic
phase transition I41/amd  P21/c.

The symmetry analysis revealed that the orienta-
tional ordering of SO4 tetrahedra, ordering of hydrogen
ions in the crystal lattice, and small rotations of SO4 tet-
rahedra [18] can equally play the role of a soft mode in
the CsHSO4 crystal. From analyzing the neutron dif-
fraction data [16, 25], we can infer that the softness
arises in the subsystem of SO4 tetrahedra. The soft
mode is taken to mean the fundamental changes in the
crystal due to the phase transition. Therefore, making
allowance for the linear interaction between orderings,
the soft mode of the superionic phase transition should

F3 F2 Fϕϕ '' Fϕ ; ψ''θ'' Fϕ'' ; ψ'' ; θ'' ,+ + +=

Fϕϕ '' γ1 ϕ1ϕ1'' ϕ2ϕ2'' ϕ3ϕ3'' ϕ4ϕ4''+ + +( ),=

Fϕ ; ψ''θ'' α2 ϕ1
2 ϕ2

2 ϕ3
2

– ϕ4
2

–+( )ψ''=

+ β2 ϕ1ϕ2θ1'' ϕ3ϕ4θ2''+( ),

Fϕ'' ; ψ'' ; θ''
1
2
---r6ϕ''

2 1
2
---r7ψ''

2 1
2
---r8 θ1''

2 θ2''
2

+( ).+ +=

D4h
19

C2h
5
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be associated with both the orientational ordering of
SO4 tetrahedra and the ordering of hydrogen ions in the
crystal lattice, especially as the two subsystems are
responsible for the ionic conductivity, which is the
basic parameter of the superionic phase transition. Note
that the phase transition I41/amd  P21/c in the
CsHSO4 crystal is accompanied by substantial distor-
tions of the crystal lattice, and the scheme of hydrogen
bonds in phase II should be constructed with due regard
for the strains exz and eyz (interactions of the order
parameter with the strain tensor components [11]).

The above analysis of the experimental data
obtained in [16] (see Fig. 2b) demonstrated that the ori-
entational ordering of SO4 tetrahedra in phase II should
be described in the eightfold orientational basis. The
orientation of tetrahedron 3 in Fig. 2b can be obtained
first by rotation of this tetrahedron through an angle of

~13° about the [ ] crystallographic direction (this is
orientational state 3 in Fig. 3f) and then by clockwise
rotation through an angle of ~6° about the Z axis. (The
orientations of other nonequivalent tetrahedra, namely,
1, 2, and 4 in Fig. 2b, can be obtained from the orienta-
tion of tetrahedron 3 with the use of the rotation about
a twofold axis, inversion, and reflection in the plane,
respectively.) By assuming that the rotations of SO4 tet-
rahedra through an angle of ~6° about the Z axis can be
assigned to the phonon degrees of freedom and that
these rotations are described by the order parameters
with two primes [see relationship (6)], we obtain the
fourfold orientational basis (Figs. 3b, 3c), which was
found in [16]. However, this inference provokes the fol-
lowing objections. First, in the CsHSeO4 compound
[26], which also undergoes a superionic phase transi-
tion I41/amd  P21/c [19], the change in the entropy
upon the transition was determined to be ∆S =
16.1 J mol–1 K–1. This change in the entropy corre-
sponds to an eightfold basis. Second, the angle of rota-
tion of SO4 tetrahedra in the fourfold orientational basis
[16] is approximately equal to 22° rather than to ~13°,
as follows from examination of the crystal structure of
phase II. Therefore, despite the fact that the fourfold
orientational basis exists in the CsHSO4 crystal and that
the change in the entropy upon the superionic phase
transition is equal to R × 1.32 (where R is the gas con-
stant), the experimental data obtained in [16] for phase I
should be revised. Note that a new superionic phase can
be formed in the CsHSO4 compound (see the hatched
region in Fig. 1). Since the phase transition between
superionic phases results in a change in the number of
orientational states by a factor of at least two, the total
change in the entropy upon two transitions (phase I 
intermediate superionic phase  phase II) is as fol-
lows: ∆S = 16.1 J mol–1 K–1 ~ Rln2 + R × 1.32. This also
indicates the eightfold orientational basis in the
CsHSO4 crystal. We can assume that, as was noted
above, the diffraction data obtained in [16] for phase I
should be fitted using the eightfold orientational basis

110
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with rotations of tetrahedra through angles of ~13° and
~6°. Moreover, it can also be assumed that, in addition
to the above orientational basis, superionic phase I at
temperatures far from the phase transition point TC can
be characterized by other orientational bases, for exam-
ple, the orientational basis relating the so-called 8e
positions [16]. In this case, the phase transition in the
CsHSO4 crystal proceeds through the mechanism pro-
posed for describing phase transitions in fullerenes
[27].

In conclusion, we should note that the complete
understanding of the physical phenomena associated
with the superionic phase transition under consider-
ation calls for further experimental investigation. The
symmetry of the high-pressure phases (theoretically
predicted in [5, 23]) was experimentally verified only
for phases IV and V [24] (see Fig. 1). The schemes of
hydrogen bonds in all high-pressure phases were theo-
retically analyzed in [13]. Unfortunately, experimental
data on the crystal structure of CsHSO4 in high-pres-
sure phases are not available in the literature.
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Abstract—A central peak has been revealed in the Raman spectrum of ferroelectric crystals of lithium niobate
LiNbO3 in the temperature range 80–300 K. It is shown that the extrapolation of the central peak, which man-
ifests itself in inelastic-light-scattering spectra near the ferroelectric transition (íÒ ~ 1400 K), cannot account
for the existence of the central peak so far from the phase transition. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The issues related to the central peak in the Raman
spectra of ferroelectrics near the phase-transition point
(phenomenology, origin, mechanisms of manifestation
in spectra, relationship with the theoretical description
of phase transitions) constitute one of the most interest-
ing problems of solid-state physics [1]. The implied
relationship between the central peak and the phase
transition suggests that the central peak in experimental
spectra should be most pronounced in the temperature
range near the phase-transition temperature. For exam-
ple, in the case of ferroelectric crystals of lithium nio-
bate LiNbO3, the central peak can be clearly seen at
temperatures above 850 K (Tc ~ 1400 K) [2–4] and the
intensity of the peak observed in the Raman spectrum
decreases with decreasing temperature. A relatively
short time ago, it was shown in [5] that the central peak
can be detected in the spectra of LiNbO3 at tempera-
tures as high as ~470 K. The experiments carried out in
[5] demonstrated that the central peak is well pro-
nounced in the scattering geometry with allowed
phonons of symmetry A1 and is absent in the geometry
corresponding to E phonons.

It is shown in this study that the central peak in the
Raman spectrum of LiNbO3 is retained even at very low
temperatures (80 and 300 K) as compared with the fer-
roelectric-transition temperature. However, the experi-
mentally observed features of the low-temperature cen-
tral peak suggest a phenomenology different from that
of the central peak near the phase-transition tempera-
ture.
1063-7745/04/4901- $26.00 © 200119
EXPERIMENTAL

We measured the Raman spectra of optically pol-
ished crystals cut in the form of a parallelepiped with
edges parallel to the crystallographic axes. Nominally
pure congruent crystals [6] and LiNbO3 crystals with a
composition close to stoichiometric were studied.

The Raman spectra were measured on a U1000 dou-
ble-grating spectrometer with excitation at the 458- and
514-nm lines of an argon laser and the 647-nm line of a
krypton laser. A DFS-24 spectrometer was also used to
measure the spectra with excitation at the 1064-nm line
of a neodymium laser. The experiments did not show
any noticeable effect of the excitation wavelength on
the spectra obtained. The effect of the excitation wave-
length on the low-frequency spectrum of lithium nio-
bate was considered in more detail in [7]. Figure 2 in
[7] is rather representative; it should only be noted that
the spectral range investigated here was extended to
lower frequencies up to ~2 cm–1. Hereinafter, the pre-
sented results correspond to an excitation wavelength
of 514 nm and a power of 150 mW. The right-angle
scattering geometry was used. When measuring the
low-frequency part of the spectrum (<50 cm–1), we
used slits with a spectral width of 0.5 cm–1. The contri-
bution of the elastic rescattering of light and the Man-
delshtam–Brillouin lines was completely suppressed at
a frequency of ~2 cm–1. The suppression was controlled
by measuring the dependence of the shape of the low-
frequency spectrum on the spectral width of the slits [8].

In the scattering x(zz)y geometry, the Raman spectra
of congruent LiNbO3 crystals were measured at room
and liquid-nitrogen temperatures. In other cases, the
04 MAIK “Nauka/Interperiodica”
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Fig. 1. Raman spectra of congruent LiNbO3 at T = 300 K for four polarization geometries: (1) x(zz)y, (2) z(xx)y, (3) z(yx)y, and
(4) x(zx)y.
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Fig. 2. Raman spectra of (1) congruent and (2) stoichiometric LiNbO3 crystals at T = 300 K in the x(zz)y geometry.
measurements were performed only at room tempera-
ture.

RESULTS AND DISCUSSION

The Raman spectra of congruent LiNbO3 crystals,
recorded in different polarization geometries, are
shown in Fig. 1. Logarithmic scale is used for the inten-
sity to visualize weak spectral features. The central
peak is pronounced in the low-frequency part of the
C

spectrum, being the main spectral feature in the fre-
quency range <40–50 cm–1. It can be seen from Fig. 1
that, in contrast to the results of [5], the central peak is
present in the spectra obtained in all the polarization
geometries: in both those with allowed A1 phonons and
those with allowed phonons of E symmetry. It is worth
noting that the intensity of the central peak in the
Raman spectra measured in different geometries corre-
lates with the integrated intensity of Raman lines,
whereas the Raman signal in the x(zz)y geometry
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Fig. 3. Bose normalized Raman spectra I/[ν(n + 1)] of congruent LiNbO3 crystals at T = (1) 300 and (2) 80 K. The solid lines rep-
resent the results of fitting by the Lorentz profile.
exceeds Raman signals measured in other geometries
by almost an order of magnitude.

Comparison of the central peak in the spectrum of a
congruent LiNbO3 crystal and in a LiNbO3 crystal with
a composition close to stoichiometric (Fig. 2) shows
that the intensity and shape of the central peak do not
change with increasing concentration of stoichiometric
defects. The spectral intensities for the two samples in
Fig. 2 are normalized to the integrated intensity of the
modes at 250 and 270 cm–1. Thus, we may suggest that
the central peak, which manifests itself in the Raman
spectra of LiNbO3 crystals at low temperatures, is
mainly of internal origin rather than being due to sto-
ichiometric defects.

The main difference between the Raman spectra of
the two crystals shown in Fig. 2 is in the absence of the
defect line in the vicinity of 100 cm–1, which is due to
nonstoichiometric defects [7] (vice versa, the absence
of this peak indicates that the degree of stoichiometry
of a sample is rather high). Note that the multiphonon
contribution, which manifests itself in the spectra in the
form of a background weakly dependent on frequency
[7], is also smaller for the stoichiometric sample (by
approximately 40%). In this case, the central peaks in
the spectra of the two samples coincide accurate
to ~10%.

Figure 3 shows the low-frequency part of the Raman
spectrum of a congruent LiNbO3 crystal at T = 300 and
80 K. In order to exclude a trivial temperature depen-
dence for the first-order Raman spectra, the spectra are
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
presented in the Bose normalized form:

(1)

Here, I(ν, T) is the Stokes part of the spectrum and n =
[exp(hν/kT) – 1]–1 is the Bose factor.

It is reasonable to suggest that the central peak
accounts for the relaxation susceptibility of a material.
When the relaxation behavior of a medium is described
by a correlation function with a single relaxation time,
the relaxation response of the medium leads to the
appearance of the central peak, which is described by
the Lorentz profile in the Bose normalized representa-
tion (1). Notably, the width of the central peak is
inversely proportional to the characteristic relaxation
time. The solid lines in Fig. 3 show the fitting of the
central peak by the Lorentz profile and the frequency-
independent contribution of the multiphonon spectrum:

(2)

The central peak in the spectrum obtained at room tem-
perature (Fig. 3) was fitted with γ = 7 cm–1, which cor-
responds to the relaxation time τ ~ 0.75 ps. It can be
seen that the single-relaxation-time approximation
describes the central peak fairly well. With a decrease
in temperature to 80 K, the central-peak intensity
decreases faster than the Bose factor but the character-
istic peak width does not change noticeably: γ = 10 ±
4 cm–1. Figure 3 shows the fitting of the low-tempera-
ture spectrum with the use of the same profile width
that was applied for the room-temperature spectrum. In

In ν T,( ) I ν T,( )
n 1+( )ν

--------------------.=
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1 ν/γ( )2+
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this case, the integrated intensity of the central peak is
lower by a factor of 5.5–6.

It should be noted that the experimental characteris-
tics of the central peak in the room-temperature and
low-temperature spectra of LiNbO3 differ noticeably
from the behavior of the central peak in the Raman
spectra measured at temperatures close to the ferroelec-
tric-transition temperature. First, in contrast to the case
of high temperatures, the low-temperature central peak
manifests itself in all polarization geometries (Fig. 1)
rather than only in the geometry with the allowed ferro-
electric mode A1 [5]. Second, in the case of high-tem-
perature relaxation, the width of the central peak shows
noticeable temperature dependence and, according to
[5], is described by the expression

(3)

Expression (3) with the parameters described in [5] pre-
dicts the values of the peak width γ ~ 41 and 50 cm–1 at
T = 300 and 80 K, respectively. At low temperatures,
the experimental widths of the central peak differ from
those obtained by extrapolation of the high-temperature
behavior by more than a factor of five.

As a possible alternative to the relaxation descrip-
tion of the low-temperature central peak in the Raman
spectra, a description in terms of entropy fluctuations or
second-order scattering could be used [1]. However, for
the description in terms of entropy fluctuations, the
observed width of the central peak is too large and does
not change noticeably with changing wave vector
(when the excitation wavelength changes from 458 to
1064 nm, the scattering wave vector changes by a factor
of about two) [1]. It is also unlikely that the central peak
is due to the second-order difference Raman spectrum
recorded in the regime described in [9] (the collision-
dominated regime), since one should expect in this case
the width of the central peak with the characteristic
value smaller than 1 cm–1 to be proportional to the
squared wave vector. There is also another possibility,
which consists in the classical variant of the second-
order Raman scattering. In this case, the peak width is
determined by the specific form of the dispersion
curves for optical phonons and weakly depends on the
scattering wave vector in the visible spectral range. For
the second-order Raman scattering, a weak temperature
dependence of the width of the central peak is expected.
However, in this case, the intensity of the peak at zero
frequency is related to the general second-order back-
ground, which depends weakly on frequency (the
examples of such calculations for the second-order
Raman scattering were reported in [10, 11]). As can be
seen from Fig. 2, comparison of the cases of congruent
and stoichiometric crystals shows that there is no corre-
lation between the central-peak intensity with the fre-
quency-independent multiphonon background. For sto-
ichiometric crystals, the multiphonon contribution
(which is mainly two-phonon at low temperatures) is

γ T( ) γ0

T0 T–
T0

---------------.=
C

noticeably smaller than for congruent crystals, whereas
the central-peak intensity is of the same order of mag-
nitude. Thus, it is unlikely that the observed low-tem-
perature central peak is related to the two-phonon
Raman scattering.

The main reason for the appearance of the low-tem-
perature central peak in the Raman spectra of LiNbO3
crystals is the manifestation of the relaxation suscepti-
bility. By analogy with the central peak in spectra of
glasses [12, 13], we may suggest that this is the same
relaxation that manifests itself in the acoustic-wave
damping.
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Abstract—Single crystals of K1 – xTi1 – xNbxOPO4 (KTP : Nb), K1 − xTi1 – xSbxOPO4 (KTP : Sb), and
K1 − xTi1 − xTaxOPO4 (KTP : Ta) solid solutions are grown and their dielectric, conducting, and nonlinear optical
properties are investigated. The maximum contents x of niobium, antimony, and tantalum impurities in the crys-
tals are equal to 0.11, 0.23, and 0.25, respectively. The doping of the KTiOPO4 crystals with niobium, antimony,
and tantalum brings about the formation of additional potassium vacancies and additional potassium positions
and, as a consequence, an increase in the ionic conductivity σ33 . An increase in the doping level leads to a
smearing of the ferroelectric phase transitions and a decrease in the phase transition temperatures. The permit-
tivity of the doped crystals exhibits a broad relaxation peak in the temperature range 200–600°C. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Single crystals of KTiOPO4 (KTP) are well known
as promising materials for use in nonlinear optics.
Moreover, these crystals are of considerable interest
due to their unique combination of ferroelectric proper-
ties and high ionic conductivity. In this respect, KTP
single crystals can be referred to as ferroelectric superi-
onic conductors [1]. The physical properties of KTP
crystals can be modified over a wide range by doping
with different elements. In recent years, a number of
works have appeared dealing with the
K1 − xTi1 − xNbxOPO4 crystals in which Ti4+ ions are
replaced by Nb5+ ions [2–9]. It has been found that the
aforementioned doping leads to an increase in the
intensity of the second harmonic generation (SHG) sig-
nal under laser irradiation and to a shift in the second
harmonic wavelength toward the short-wavelength
range [2–7]. The doping is accompanied by an increase
in the ionic conductivity [9]. X-ray diffraction investi-
gations have revealed that the introduction of Nb5+ ions
brings about the formation of both additional potassium
vacancies in accordance with the composition
K1 − xTi1 − xNbxOPO4 [2, 3] and additional potassium
positions [10, 11]. It has been established that KTP : Nb
solid solutions are limited solutions; however, the data
on the maximum degree of substitution of niobium
1063-7745/04/4901- $26.00 © 20123
atoms for titanium atoms are contradictory. For exam-
ple, the maximum niobium content was determined to
be equal to 25% in [3], 12% in [6, 9], and only 7% in
[8]. According to the X-ray diffraction data [2], nio-
bium atoms occupy positions in Ti(1)O6 octahedra. It
has been demonstrated that the doping of KTP crystals
with niobium substantially affects the crystal morphol-
ogy and leads to the formation of a more developed
{100} face and a platelike habit [4, 7, 8]. At high nio-
bium contents, the quality of crystals deteriorates sig-
nificantly [4–7].

Tantalum impurities are more readily incorporated
into the crystal lattice, because the tantalum atoms can
occupy both Ti(1) and Ti(2) positions [8]. As in the case
of niobium ions, the doping with Ta5+ brings about a
shift in the wavelength of second harmonic generation
of laser radiation toward the short-wavelength range
[3, 8].

The data available in the literature for
K1 − xTi1 − xSbxOPO4 solid solutions in which antimony
atoms substitute for titanium atoms are very scarce. In
[12], titanium was replaced by antimony and phospho-
rus was replaced by silicon in order to retain the elec-
troneutrality of the unit cell. The compounds prepared
in that work were characterized by nonlinear concentra-
004 MAIK “Nauka/Interperiodica”
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Table 1.  Melt compositions, temperature conditions of crystallization, niobium contents in K1 – xTi1 – xNbxOPO4 crystals,
and structural types of crystalline phases

Experi-
ment

Melt composition, mol % Temperature
conditions, °C

Niobium content
in crystals, x Crystalline phase

K2O TiO2 Nb2O5 P2O5

1 40 32.8 0.2 27 1000–875 0.002 KTP

2 40 32.6 0.4 27 1020–880 0.004 KTP

3 40 32 1 27 1020–865 0.01 KTP

4 40 31 2 27 1060–860 0.02 KTP

5 40 30 3 27 1060–770 0.04 KTP

6 40 28 5 27 1100–800 0.05 KTP

7 40 26 7 27 1100–800 0.07 KTP

8 40 23 10 27 1030–800 0.11 KTP

9 40 16.5 16.5 27 1110–920 0.66 K2TiNb2P2O13

10 40 13 20 27 1100–960 0.71 K2TiNb2P2O13

Table 2.  Melt compositions, temperature conditions of crystallization, antimony contents in K1 – xTi1 – xSbxOPO4 crystals,
and structural types of crystalline phases

Experi-
ment

Melt composition, mol % Temperature
conditions, °C

Antimony content
in crystals, x Crystalline phase

K2O TiO2 Sb2O3 P2O5

1 42 24.8 0.2 33 1100–800 0.01 KTP

2 42 24.6 0.4 33 1000–800 0.015 KTP

3 42 24 1 33 1000–900 0.05 KTP

4 42 23 2 33 1000–880 0.07 KTP

5 42 22 3 33 1000–850 0.09 KTP

6 42 21 4 33 1000–880 0.10 KTP

7 42 20 5 33 1000–850 0.17 KTP

8 42 19 6 33 1080–880 0.21 KTP

9 42 15 10 33 1080–800 0.23 KTP

10 42 12.5 12.5 33 1030–800 1 K3Sb3P2O14

Table 3.  Melt compositions, temperature conditions of crystallization, tantalum contents in K1 – xTi1 – xTaxOPO4 crystals,
and structural types of crystalline phases

Experi-
ment

Melt composition, mol % Temperature
conditions, °C

Tantalum content
in crystals, x Crystalline phase

K2O TiO2 Ta2O5 P2O5

1 41 26.8 0.2 32 1130–930 0.02 KTP

2 41 26.6 0.4 32 1130–930 0.05 KTP

3 41 26 1 32 1150–950 0.10 KTP

4 41 25 2 32 1150–950 0.15 KTP

5 41 24 3 32 1145–950 0.19 KTP

6 41 23 4 32 1145–930 0.24 KTP

7 41 22 5 32 1145–930 0.25 KTP
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Fig. 1. Temperature dependences of the permittivity of the
crystals (a) K1 – xTi1 – xNbxOPO4 at x = (1) 0.0, (2) 0.002,
(3) 0.02, (4) 0.05, and (5) 0.11; (b) K1 – xTi1 – xSbxOPO4 at
x = (1) 0.0, (2) 0.01, (3) 0.015, (4) 0.05, (5) 0.07, and
(6) 0.17; and (c) K1 − xTi1 – xTaxOPO4 at x = (1) 0.0,
(2) 0.02, (3) 0.05, (4) 0.10, and (5) 0.25.
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tion dependences of the Curie temperature and the SHG
signal.

The purpose of the present work was to grow
KTP : Nb, KTP : Sb, and KTP : Ta crystals and to inves-
tigate their properties.
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Fig. 3. Temperature dependences of the electrical conduc-
tivity for (1) KTP, (2) K1 – xTi1 – xNbxOPO4 , (3)
K1 − xTi1 − xSbxOPO4 , and (4) K1 – xTi1 – xTaxOPO4 crys-
tals.
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Fig. 4. Temperature dependences of the electrical conduc-
tivity of the K1 – xTi1 – xSbxOPO4 (x = 0.10) crystal at fre-
quencies of (1) 1, (2) 10, (3) 20, (4) 50, (5) 100, and
(6) 1000 kHz.
C

SAMPLE PREPARATION AND EXPERIMENTAL 
TECHNIQUE

Doped KTP crystals were grown through spontane-
ous crystallization from a solution in the melt in the
K2O–TiO2–P2O5–Nb2O5 (Sb2O3, Ta2O5) systems. Mix-
tures of the K2CO3, NH4H2PO4, TiO2, Nb2O5, Sb2O3,
or Ta2O5 components (special-purity grade) were
heated to a temperature of 600°C until the carbonate
and ammonium salts decomposed. Then, the annealed
reactants were mixed in an agate mill and melted in
50-ml platinum crucibles. The melts were allowed to
stand at temperatures of 1000–1050°C for a day and
then were cooled to 850–800°C at a rate of 1 K/h.
Thereafter, the melt was poured out and the crystals grown
were washed with water from the remaining solvent.

Tables 1–3 present the initial compositions of the
melts used for growing the crystals; temperature condi-
tions of crystallization; and the Nb, Ta, and Sb impurity
contents. The phases that first crystallize in the afore-
mentioned systems are also listed in these tables. Single
crystals of compositions K1 − xTi1 − xNbxOPO4,
K1 − xTi1 − xSbxOPO4 , and K1 − xTi1 − xTaxOPO4 were
grown using the method described above. In these crys-
tals, the maximum contents x of Nb, Sb, and Ta dopants
were equal to 0.11, 0.23, and 0.25, respectively. An
increase in the niobium content in the melt resulted in
the growth of K2TiNb2P2O13 monoclinic crystals
[13, 14]. In the second system, the use of the initial
melts containing more than 10 mol % Sb2O3 led to the
formation of hexagonal platelike crystals, which,
according to the X-ray powder diffraction data, corre-
sponded to the K3Sb3P2O14 compound [15]. In the case
of K1 − xTi1 − xTaxOPO4 crystals, an increase in the
impurity content of higher than x = 0.25 brought about
the formation of a phase differing from the KTP phase.
The composition and structure of this phase were not
investigated. The KTP : Nb, KTP : Sb, and KTP : Ta
crystals were transparent and their sizes varied from 3
to 15 mm. The niobium and antimony impurities turned
the doped crystals violet and yellow, respectively. The
KTP : Ta single crystals were colorless. The coloration
disappeared after annealing of the crystals at 600°C in
air. As a rule, the quality of the crystals deteriorated at
high impurity contents in the initial melts, and the crys-
tals contained solvent inclusions and cracks. At high
impurity contents in the crystal of all three systems, the
{110} face disappeared, whereas the {100} face
became most developed, which led to a platelike habit
of the doped crystals.

The chemical composition of the crystals was deter-
mined on a CAMEBAX SX-50 microanalyzer. The
temperature dependences of the permittivity and the
electrical conductivity in the temperature range 20–
900°C were measured with a Tesla BM 431E bridge at
a frequency of 1 MHz and with a P5083 bridge in the
frequency range 10–100 kHz. Electrodes were pro-
duced with the use of silver or platinum pastes. The
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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nonlinear optical properties were investigated using
laser radiation (the Kurtz technique).

RESULTS AND DISCUSSION

The temperature dependences of the permittivity ε33
measured at a frequency of 1 MHz for the KTP : Nb,
KTP : Sb, and KTP : Ta crystals with different impurity
contents are depicted in Fig. 1. It can be seen that, with
an increase in the impurity content, these dependences
change in a similar way for all three types of crystals.
As the impurity content increases, the anomalies asso-
ciated with the ferroelectric phase transitions shift
toward the low-temperature range by 300–400°C and
become smeared at high contents of niobium, anti-
mony, and tantalum. The broad anomalies observed in
the temperature range 100–600°C are due to the relax-
ation processes [1, 16], and their magnitude at the max-
imum is as high as 40000 for the K1 − xTi1 − xNbxOPO4
crystals at x = 0.11, 42000 for the K1 −  xTi1 − xSbxOPO4
crystals at x = 0.015, and 32000 for the
K1 − xTi1 − xTaxOPO4 crystals at x = 0.25. As a rule, the
relaxation anomalies involve two or three additional
maxima, which was previously observed for the KTP :
Nb crystals [17]. At high contents of niobium, anti-
mony, and tantalum impurities, the peak corresponding
to the ferroelectric phase transition lies in the range of
these relaxation anomalies.

Figures 2a–2c show the concentration dependences
of the ferroelectric phase transition temperature deter-
mined from the dielectric data. As can be seen from
these figures, the concentration dependences exhibit a
pronounced nonlinear behavior for the KTP : Nb and
KTP : Sb crystals (Figs. 2a, 2b). The Curie temperature
TC linearly varies at low impurity contents (x = 0.02–
0.05) and remains virtually constant at high contents.

The temperature dependences of the electrical con-
ductivity of the KDP, K1 − xTi1 − xNbxOPO4 (x = 0.002),
K1 − xTi1 − xSbxOPO4 (x = 0.01), and K1 − xTi1 − xTaxOPO4
(x = 0.02) crystals in the range 20–950°C at a frequency
of 1 MHz are plotted in Fig. 3. Over the entire range of
temperatures, the electrical conductivity σ33 of the
doped crystals is one or two orders of magnitude higher
than that of the pure KTP crystals and can be as high as
10–2 Ω–1 cm–1 at 300°C.

Figure 4 depicts the temperature dependences of the
electrical conductivity σ33 of the K1 − xTi1 − xSbxOPO4
(x = 0.1) crystal at different frequencies in the range
from 1 kHz to 1 MHz. These dependences are charac-
terized by a considerable dispersion at low tempera-
tures and frequencies. The temperature–frequency
dependences of the electrical conductivity σ33 of this
crystal are shown in Fig. 5. It can be seen that the elec-
trical conductivity of the crystal at temperatures above
500–700°C becomes independent of the frequency.
Note that the dielectric anomaly also disappears at
these temperatures.
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
The temperature dependences of the electrical con-
ductivity of the K1 − xTi1  − xNbxOPO4 crystal at x = 0.02
in the range 100–400°C exhibit sharp jumps with a pro-
nounced temperature hysteresis (Fig. 6). Similar con-
ductivity jumps were revealed earlier for KTP crystals
doped with tin [18].

Figure 7 shows the temperature dependences of the
SHG signal intensity for the best-studied KTP : Nb and
KTP : Sb crystals. An analysis of these dependences
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Fig. 5. Temperature–frequency dependences of the electri-
cal conductivity of the K1 – xTi1 – xSbxOPO4 (x = 0.10)
crystal.
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demonstrates that an increase in the Nb and Sb content
in the doped crystals leads to the smearing of the ferro-
electric phase transitions and a decrease in their tem-
peratures. This is in complete agreement with the
results of the dielectric measurements. It should be
noted that the intensity of the SHG signal of laser radi-
ation somewhat increases for the crystals with x close
to 0.05.

Niobium, antimony, and tantalum belong to differ-
ent subgroups of Group V in the periodic table and pos-
sess different chemical properties. However, the effect
of these elements on the ferroelectric properties and the
electrical conductivity of the KTP crystals is similar in
character. Actually, the ferroelectric phase transition
temperature TC decreases, the electrical conductivity
increases, the relaxation phenomena become more pro-
nounced, and the intensity of the SHG signal usually
decreases with an increase in the impurity content in the
KTP : Nb, KTP : Sb, and KTP : Ta crystals. A slight
increase in the intensity of the SHG signal at a certain
impurity content (Fig. 7) was also observed in [2, 3].
Wang et al. [19] believe that a similar phenomenon is
characteristic of solid solution crystals of the KTP family.

As is known, a number of potassium vacancies are
formed in pure KTP crystals as a result of their growth

Table 4.  Occupancies of potassium positions in KTP : Nb
structures

Composition K(1) K(2) K(3) K(4)

4 at. % Nb 0.899 (1) 0.858 (2) 0.108 (2)

7 at. % Nb 0.702 (2) 0.773 (1) 0.148 (1) 0.168 (2)

11 at. % Nb 0.610 (1) 0.636 (1) 0.275 (1) 0.228 (2)
C

at high temperatures [20]. The presence of potassium
vacancies in these crystals accounts for their high ionic
conductivity and the relaxation maxima in the temper-
ature dependence of the permittivity ε33 in the range
100–600°C [21, 22].

The results obtained in the present work are in com-
plete agreement with the statement that the doping of
the KTP crystals with Nb5+, Sb5+, and Ta5+ cations, i.e.,
the substitution of pentavalent atoms for tetravalent
titanium atoms, leads to the formation of additional
potassium vacancies according to the general scheme
of heterovalent substitution in K1 − xTi1 − xMexOPO4
(Me = Nb, Sb, Ta). Furthermore, the precision X-ray
diffraction analysis of KTP : Nb crystals revealed addi-
tional potassium positions [10, 11]. As can be seen from
Table 4, the occupancy of all potassium positions sub-
stantially changes with a variation in the niobium con-
tent in the crystal. An increase in the niobium content is
attended by a decrease in the occupancy of the K(1) and
K(2) main positions and an increase in the occupancy
of the K(3) and K(4) additional positions, i.e., by a
more pronounced splitting of the potassium positions.
The formation of the additional potassium positions
can be responsible for the appearance of several max-
ima in the relaxation anomaly.

In the KTP : Nb, KTP : Sb, and KTP : Ta crystals,
the potassium vacancies and additional potassium posi-
tions lead to disordering in the potassium sublattice, an
increase in the mobility of K+ cations and in the electri-
cal conductivity, and an enhancement of relaxation
phenomena due to the formation of additional relax-
ators in the form of “potassium cation–potassium
vacancy” and “potassium cation–additional potassium
position” pairs.
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Abstract—The influence of an internal bias field formed by impurity ions of heavy metals and alpha-alanine
molecules on the dielectric nonlinearity and emission properties of ferroelectric triglycine sulfate crystals has
been studied. It is shown that a role of defects increases near the phase transition, which manifests itself in a
decrease in the maximum values of the effective permittivity and an increase in the emission current with
increasing impurity concentration. © 2004 MAIK “Nauka/Interperiodica”.
The introduction of defects into a ferroelectric crys-
tal in one way or another significantly affects most of its
electric properties. An oriented system of defects
makes a ferroelectric material unipolar. Methods of
defect introduction and, hence, formation of the unipo-
lar state may differ. One of these methods is the intro-
duction of impurities into a crystal during its growth. In
particular, it is well known [1, 2] that the introduction
of L, α-alanine molecules (substitutional impurity) or
ions of heavy metals (interstitial impurity) into trigly-
cine sulfate (TGS) crystals leads to the formation of the
unipolar state, with the degree of unipolarity depending
on the impurity concentration. A similar effect can be
obtained by either irradiating a ferroelectric material or
growing a crystal from unipolar seed [3].

In this study, we analyzed the influence of internal
bias field on the dielectric nonlinearity and electron-
emission characteristics of TGS crystals doped with
either trivalent europium ions or L, α-alanine mole-
cules and TGS crystals grown from X-ray-irradiated
seeds. The samples were prepared by a conventional
technique. A bar ~40 mm in length was cut from a
grown TGS crystal doped with trivalent Eu ions. The
long axis of the bar coincided with the polar Y axis per-
pendicular to the (010) face and the bar cross section
(5 × 5 mm2) was in the XZ plane. Then, the bar was sep-
arated in the cleavage planes into ~1-mm-thick sam-
ples. Electrodes on samples were prepared by deposit-
ing silver in vacuum. The amplitude and sign of the bias
field were evaluated from the shift of the dielectric-hys-
teresis loops along the E axis.

The studies we performed showed that Eu-doped
TGS crystals have a high degree of single-domain
ordering: relatively large domains (3 × 7 mm2 and
larger) of unusual rectangular shape (instead of the len-
1063-7745/04/4901- $26.00 © 20130
ticular shape typical of TGS) are observed visually on
cleavage surfaces. Apparently, the formation of such a
structure (as in the case of TGS crystals doped with
L, α-alanine) may be related to high elastic stresses
caused by the large radius of Eu ions during growth of
Eu-doped TGS crystals.

As is well known, the dependence of the effective
permittivity of a pure TGS crystal on the strength of an
alternating electric field has a characteristic maximum
in the case of fields comparable with coercive fields ÖÒ.
As the temperature approaches the Curie point, the
maximum value of εeff increases and the peak in the
field dependence of the effective permittivity shifts to
weaker fields. The dependences εeff(E~) for TGS crys-
tals with a high concentration of either L, α-alanine
molecules or chromium ions exhibit minima, which
may be caused by internal bias fields [4, 5]. The max-
ima in these dependences for Cr-doped TGS crystals
are observed at fields approximately equal to Eb,
whereas the corresponding dependences for pure TGS
are peaked at Ec.

The dependences εeff(E) for Cr-doped X-ray-irradi-
ated TGS crystals with weak internal fields Eb (30–
40 V/cm) were reported in [6]. These dependences are
qualitatively similar to those obtained at high bias fields
[3, 4]; however, at room temperature, the maxima in the
curves εeff(E) are observed at fields of 300–400 V/cm,
i.e., one order of magnitude stronger as compared to Eb.
The maximum values of εeff for Cr-doped crystals
decrease as temperature approaches the Curie point.
The maximum value of εeff for X-ray-irradiated TGS
crystals first increases, like for pure TGS, and drops
only at a temperature 2 K before the Curie point [6].
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Dependences of the effective permittivity on the ac electric field strength (f = 50 Hz) for a Eu-doped TGS crystal at (1) 19.2,
(2) 34.8, (3) 41.2, (4) 45.0, (5) 47.5, and (6) 48.6°C.
The dependences of εeff on the external electric field
E for TGS crystals doped with trivalent Eu ions (1 mol %
in solution) are shown in Fig. 1. In contrast to pure TGS
crystals, as well as to TGS crystals doped with all the
impurities studied previously, minima are observed in
the dependence εeff(E) at fields comparable with the
internal bias fields, which were determined by the shift
of dielectric-hysteresis loops. Obviously, as long as the
external field is weaker than the internal one, it does not
lead to an increase in the polarization, and εeff
decreases. As soon as the external field exceeds the
internal bias field, εeff begins to increase in a conven-
tional way with increasing E (which is typical of pure
TGS crystals). As temperature approaches the value
corresponding to the phase transition, the range of min-
imum values of εeff narrows and shifts to weaker fields.
This phenomenon is in good agreement with the fact
that internal bias fields decrease with increasing tem-
perature. The maximum values of εeff in the curves
under consideration decrease simultaneously (Fig. 2,
curve 3).

TGS crystals doped with L, α-alanine are character-
ized by a small variation in the maximum values of εeff
with increasing temperature. These values decrease
only in the vicinity of the phase transition (Fig. 2,
curve 4).

The experimental data we obtained show that the
role of defects and the internal bias field increases in the
vicinity of the phase transition. This is also confirmed
by investigations of the behavior of dielectric-hystere-
sis loops for TGS crystals with a low defect concentra-
tion. Both Cr-doped samples and X-ray-irradiated ones
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
show a normal unshifted hysteresis loop at room tem-
perature. At a temperature of about 47°C, a waist arises
in the loop. Then, the loop becomes double and remains
the same until completely disappearing at the Curie
point.

One of the properties of a ferroelectric crystal,
which is most sensitive to introduction of impurities, is
the electron emission induced in different ways. As is
well known, the emission from pure TGS crystals
grown from nonirradiated seeds is characterized by two
maxima in the temperature dependence of the emission
current. One of them is in the range of the domain
restructuring, and the other one is near the phase transi-
tion (hereinafter, the first and second maxima, respec-
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Fig. 2. Temperature dependences of the maximum values of
the effective permittivity of TGS crystals: (1) pure and
doped with (2) chromium ions; (3) europium ions; and
(4) L,α-alanine molecules.
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tively) [7]. The emission current density jem was mea-
sured by a conventional technique (using a secondary-
emission multiplier) [7] in vacuum with a residual pres-
sure of 6.5 × 10–3 Pa. The study of the influence of the
seed irradiation on the temperature dependence of the
emission current for the case when the direction of X
rays coincides with the direction of the macroscopic
(preferred) polarization êM of a seed showed the fol-
lowing results. For the samples of pure TGS grown
from a seed irradiated in the above way, which corre-
spond to the regions adjacent to the seed, two maxima
are also observed in the temperature dependence jem(T)
(Fig. 3, curve 1). In this case, the intensity of the ther-
mionic electron emission in the first maximum exceeds
the emission intensity in the vicinity of the phase tran-
sition.

As can be clearly seen from Fig. 3, a distinctive fea-
ture of these curves is that the current density in the first
maximum almost smoothly increases and both maxima
shift to each other with subsequent merging as the dis-
tance between the region corresponding to a sample
and the seed increases.

The study of electron emission from L, α-alanine-
doped TGS crystals grown from X-ray-irradiated seeds
show different results. The samples corresponding to
the regions close to the seed also show two maxima
(although not clearly pronounced) in the dependence
jem(T). With an increase in the distance between the
region corresponding to a sample and the seed, the first

t, °C

j, 103, pulse/s

2

40 50 60

4

6

1

2

3

Fig. 3. Temperature dependences of the emission current
from a pure TGS crystal grown from a unipolar seed irradi-
ated by X rays in the direction antiparallel to the direction
of macroscopic polarization for the samples from the
regions spaced at (1) 1, (2) 6, and (3) 10 mm from the seed.
CR
maximum decreases and the second one (near the phase
transition) increases. The sample corresponding to the
region most remote from the seed has only one main
maximum (Fig. 4, curve 2).

The study of electron emission from pure and L, α-
alanine-doped TGS crystals, as well as from TGS crys-
tals grown from X-ray-irradiated seeds showed the fol-
lowing. The magnitudes and positions of the two char-
acteristic maxima in the temperature dependence of the
emission current (in the range of domain restructuring
and near the Curie point) depend not only on the type
of impurity introduced into a crystal and the seed irra-
diation but also on the distance between the region cor-
responding to a sample and the seed. A distinctive fea-
ture of a pure TGS crystal grown from a seed irradiated
by X rays antiparallel to the direction of macroscopic
polarization is that the current in the first maximum
increases almost smoothly and both maxima shift to
each other with subsequent merging as the distance
between the region corresponding to a sample and the
seed increases. Such behavior may be caused by the
formation of a strong internal bias field (~75 V/cm) in
a seed during its irradiation under the above conditions
[8]. In this case, the degree of the single-domain order-
ing in the seed increases and, hence, the samples from
the regions close to the seed have a higher degree of sin-
gle-domain ordering. With an increase in the distance
from the seed, the influence of the field Eb weakens. As
a result, the degree of single-domain ordering in TGS

2

40 50 60

4

6

1 2

j, 103, pulse/s

t, °C

Fig. 4. Temperature dependences of the emission current
from a TGS crystal doped with L,α-alanine molecules
(1 mol % in solution) and grown from a unipolar seed irra-
diated by X rays parallel to the direction of macroscopic
polarization for the samples from the regions spaced (1) 8
and (2) 16 mm from the seed.
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samples decreases with a corresponding increase in the
emission current in the range of domain restructuring.
The opposite result is obtained for an L, α-alanine-
doped TGS crystal grown from a seed irradiated by X
rays parallel to the direction of macroscopic polariza-
tion. As the distance between the region corresponding
to a sample and the seed increases, the first maximum
decreases, while the second one (near the phase transi-
tion) increases. Apparently, such behavior is related to
a weaker bias field of the seed (~40 V/cm) and, in addi-
tion, to the increase in the concentration of impurity
introduced during crystal growth.
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Abstract—Reverse dependences of the permittivity ε'(E=) of Pb(Ti0.45Zr0.53W0.01Cd0.01)O3 ferroelectric films
prepared by high-frequency magnetron sputtering on a stainless steel substrate have been studied. The ε'(E=)
dependences and the polarization loops are compared. The mechanisms responsible for the specific features of
the dielectric response in the films under study are discussed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

One of the pressing problems in studying ferroelec-
tric films is the nature of internal fields. In some studies
(see, for example, [1]), it is believed that the internal
field arises due to the difference in the materials of the
top electrode and the substrate electrode. At the same
time, the experimental data of [2] show that the shift of
the polarization loops (which indicates the presence of
an internal field in a sample) is observed even for iden-
tical electrodes. In addition, noble-metal electrodes
(e.g., made of platinum) are used in preparation of fer-
roelectric films to reduce the effect of near-electrode
phenomena. The search for cheaper materials for this
purpose is an urgent problem.

The method of reverse dependences ε*(E=) is used
in studying switching processes in ferroelectrics [3]. In
this method, the response of a material is measured in a
weak ac field when a bias dc field applied to a sample
is varied. With the use of this method, the well-known
antiparallel-domain-clamping effect (the Drougard–
Young effect) was discovered [4]. In the study of
relaxor lead lanthanum zirconate titanate ceramics [5],
the effect of field memory was revealed using the same
method.

The application of the above method to ferroelectric
films has some specific features. The reasons for this
are as follows. First, the measuring fields, which are
weak in measurements of ε'(E) in bulk ferroelectrics,
are rather strong in the case of ferroelectric films. Sec-
ond, the prolonged effect of a dc bias field on a film
may cause its breakdown. Therefore, in studying the
reverse dependences ε*(E=) in ferroelectric films, fields
1063-7745/04/4901- $26.00 © 0134
varying continuously with frequency much lower than
that of the measuring field are used (as, for example, in
[6]) rather than constant fields.

In this paper, we report the results of investigations
of the dielectric response of ferroelectric films by
reversing a dc bias field (E=) and applying a weak mea-
suring field E0 with a frequency of 1 kHz, as well as by
measuring the polarization loops at infralow frequen-
cies with the use of a modified Sawyer–Tower circuit.
The data obtained allow one to compare the dielectric
responses in films and bulk samples of ferroelectric
materials in studies of the effect of domain structure on
polarization or near-electrode phenomena.

EXPERIMENTAL

The permittivity ε' in a weak (V ≈ 0.02 V) measuring
field with bias field E= on a sample was measured in a
wide temperature range by a bridge method. The polar-
ization loops were observed at different magnitudes of
applied voltage (from 10 to 60 V) and different frequen-
cies (1, 10, 100, 1000 Hz) of measuring voltage in a
modified Sawyer–Tower circuit. The polarization loops
and the dependences ε'(E=) were measured in a quasistatic
heating mode at temperatures fixed accurate to ±0.1 K.

Ferroelectric films were prepared in the Research
Institute of Physics of Rostov State University by high-
frequency magnetron sputtering of lead zirconate titan-
ate targets of stoichiometric composition onto a stain-
less steel substrate in oxygen. The film thickness was
2 µm, and the area of the top aluminum electrode
amounted to 1.76 mm2.
2004 MAIK “Nauka/Interperiodica”
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RESULTS AND DISCUSSION

Figure 1 shows the reverse dependences ε'(E=) for a
PZT ferroelectric film measured at –100, 30, and 100°C
with a measuring-signal frequency of 1000 Hz and a
measuring voltage of 0.02 V. It can be seen that the
maxima in the curves are diffuse for both field direc-
tions, while the maximum values of ε'(E=) are virtually
equal. At the same time, at temperatures of 30 and
100°C, the point of intersection of the forward and
reverse parts of the dependences is shifted with respect
to zero field (Figs. 1b, 1c). This shift may indicate the
presence of internal bias field Ei in the sample.

Thus, the shape of the dependence ε'(E=) for the
noted sample suggests the following. (1) There is a
wide distribution of domains over coercive fields.
(2) The unipolarity (which is usually typical of films
[1, 2, 7]) is practically absent. (3) The internal field is
temperature-dependent (Fig. 2). Figure 2 shows the
temperature dependences of the internal field E1(T); the
coercive fields Ec+(T) and Ec–(T), derived from the posi-
tions of the maxima in the reverse dependence ε'(E=);
and the coercive field Ec(T), derived from polarization
loops at a frequency of 1 Hz.

Concerning the shape of the dependence Ei(T)
(Fig. 2), we should note that similar behavior was
reported in [8], where Ei(T) was measured by the shift
of the polarization loops observed for Ni-doped PZT
ceramics. On the basis of the model for the formation
of the internal field Ei(T) in bulk perovskite-like ceram-
ics [9], it was suggested in [8] that the appearance of the
internal field is related to the slow orientation of dipole
defects in ceramics. According to [8], the maximum in
Ei(T) results from two temperature-dependent pro-
cesses: (1) domain-wall pinning and (2) defect diffu-
sion. In our case, the formation of internal field may be
due to the same processes, i.e., the interaction of the
defect structure typical of PZT ceramics (O2 vacancies,
Pb vacancies, or vacancy–impurity defects) with
domains in the film.

The presence of a well-developed defect structure in
the film under study is evidenced by the structural anal-
ysis data [10]. In this context, the local minimum in
ε'(E=) at E= > Ec revealed in this study (Fig. 1b) may
indicate the switching of 180° domains. The minimum
in ε'(E=) at 30°C (Fig. 1b) is most likely due to the well-
known antiparallel-domain-clamping effect reported
by Drougard and Young [4] for bulk ceramic samples.
It is worth noting that the local minimum in the depen-
dence ε'(E=) was also observed in [7] for PZT films
obtained by the sol–gel method [11].

As can be seen from Fig. 2 (curves 2, 3), the values
of Ec+(T) and Ec–(T) for the film under study increase
when temperature exceeds T ~ 50°C (in contrast to the
dependences Ec(T) for bulk samples of PZT ceramics,
in which, as a rule, the coercive field decreases with
increasing temperature). Apparently, the increase
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
observed is related to the specific features of the mech-
anisms of polarization switching in ferroelectric films.
In this case, there should be an significant distinction
(e.g., in the coercive fields) between near-electrode
crystallites (domains) and domains in the central region
of the film (as was noted in [2]). It seems likely that the
switching of the near-electrode (hard) domains also
becomes possible when a certain temperature is
exceeded (the coercive field for near-electrode domains
is much higher than that for domains in the central
region of the film).

In contrast to bulk materials, the number of near-
electrode crystallites in a ferroelectric film is compara-
ble to their number in the central region of a film.
Therefore, analysis of the maxima in the reverse curve
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Fig. 1. Reverse dependences ε'(E=) for a PZT film at T =
(a) –100, (b) 30, and (c) 100°C.
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ε'(E=), which determine the averaged coercive field (Ec+
and Ec–), shows an “increase” in this field. At tempera-
tures exceeding the experimental temperature (i.e.,
when the entire sample is involved in the repolarization
process), the aforementioned increase in Ec+(T) and
Ec−(T) is likely to be replaced by a decrease. However,
the dc-conductivity increases significantly at high tem-
peratures, which may lead to a breakdown. Hence, we
failed to measure such a decrease in Ec+(T) and Ec–(T).
In the dependence Ec(T) derived from the polarization
loops, no increase in this parameter was observed at T >
50°C (Ec(T)) decreases steadily with increasing tem-
perature). This circumstance may indicate that, in ac
fields with amplitudes used in our experiment, near-
electrode domains are not involved in the repolarization
process even at a field frequency of 1 Hz.

The results obtained show that, despite some struc-
tural imperfection, films of sufficiently high quality can
be formed by high-frequency magnetron sputtering on
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Fig. 2. Temperature dependences of (1) the coercive field
Ec(T) derived from the polarization loops at a frequency of
1 Hz; the coercive fields (2) Ec–(T) and (3) Ec+(T) derived
from the maxima of the reverse dependence ε'(E=) for the
negative and positive values of E=, respectively; and (4) the
internal field Ei(T).
C

stainless steel substrates. The characteristics of these
films are similar to those of bulk materials, in which the
basic mechanism of polarization and repolarization is
the motion of domain boundaries.
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Abstract—Dielectric properties of thin Ni/PZT/Pt films grown by the sol–gel method are studied at low and
infralow frequencies over the wide ranges of temperatures and measuring-field amplitudes. Based on the data
obtained, the conclusion is drawn about a considerable contribution of domain boundaries to the dielectric
response of these films. A new refined classification of point defects interacting with domain boundaries is sug-
gested. © 2004 MAIK “Nauka/Interperiodica”.
In recent decades, an ever increasing interest has
been shown in ferroelectric thin films. This is associ-
ated, first and foremost, with the optimistic perspec-
tives of their wide use for microminiaturization and
their high sensitivity, low energy consumption, and fast
operation. These films are also widely used in nonvola-
tile memory [1–9] based on the phenomenon of switch-
ing of spontaneous polarization. The character (and
even possibility) of switching in thin ferroelectric films
and physical nature of their dielectric response and, first
of all, the role of domain boundaries in these processes
are actively discussed [10–12]. In some instances
(especially if one considers dielectric relaxation), the
role of domain boundaries is completely ignored (no
such mechanism is considered at all) because the
authors a priori do not hold this viewpoint [2, 13, 14].
At the same time, recent studies of very thin Langmuir–
Blodgett films [15] indicate the possible coexistence of
the switching mechanism proper and the switching
mechanism associated with the domain-boundary
motion. Although it seems that the question about the
role of domain boundaries in switching in thin films has
already been answered, the existence of the domain-
boundary contribution to the polarization and switching
processes in thin ferroelectric films still gives rise to
some doubts.

We should like to show that domain boundaries in
thin films obtained by the sol–gel method make a con-
siderable contribution to the dielectric response at low
and infralow frequencies of applied sinusoidal electric
fields with different amplitudes and, with this aim,
1063-7745/04/4901- $26.00 © 20137
compare the corresponding characteristics of these
films with the analogous characteristics of macroscopic
ferroelectric samples. As the main criterion in this com-
parison, we use the simplest classifications of the
motion mechanisms of domain boundaries [16–18] and
point defects interacting with these boundaries [19] and
also consider various computer models of polarization
loops created on this basis [18, 20].

SAMPLES AND METHODS 
OF MEASUREMENTS

The samples were thin-film PZT chips with the
upper Ni electrodes with an area of S = 0.03 mm2

obtained by the sol–gel methods [21–23] on
Pt/Ti/SiO2/Si substrates. A film fragment on such a sub-
strate was incorporated into an integrated circuit. Then,
the electrodes were connected with the circuit contacts.
The use of thermal compression in the contact zone
somewhat changed the properties of the PZT–Ni inter-
face, which, in turn, somewhat modified the dielectric-
hysteresis loops obtained in our study in comparison
with the loops observed in [24]. The film thickness was
0.2 µm. The excess in lead (x) in the initial film-forming
solution was 0, 5, 10, 30, and 50 mol % [21]. Below, we
consider the results mainly for samples obtained from
the film-forming solution with a 5 and 10 mol % excess
in lead, i.e., in the final analysis, for film compositions
close to stoichiometric.

Complex permittivity ε* in comparatively weak
fields (U0 = 0.001 V, E0 = 0.05 kV/cm) was measured
004 MAIK “Nauka/Interperiodica”
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using the bridge scheme [25], with ε' and ε" being mea-
sured separately in the frequency range from 10–1 to
104 Hz.

The oscillograms of polarization loops in the same
frequency range were obtained using the modified Saw-
yer–Tower scheme with a C9-8 recording digital oscil-
lograph controlled by an IBM-compatible computer
[26]. The amplitude of the sinusoidal field in this case
was set in the range from 1 kV/cm (0.02 V) to
250 kV/cm (5 V). The Evans impedance criterion [27]
was fulfilled, and, therefore, a nonlinear capacitor (chip
cell) of effective capacitance was replaced by a linear
capacitor of variable capacitance. The temperature
ranged from 100°C (373 K) to the boiling point of
nitrogen. The accuracy of the temperature maintenance
at the given point was not worse than 0.05 K at a mea-
surement sensitivity of 0.001K.

RESULTS AND DISCUSSION
Figure 1 shows polarization loops for a sample with

a 5% excess in lead in the initial solution at a tempera-
ture of –180°C in the field with the frequency 10 kHz
and the voltage at the maximum U0 = 5 V (E0 ~
250 kV/cm). The first measurements of the amplitude
series of polarization loops with a “fresh” cell in the
field (the initial value 5 kV/cm) varying at a step of
5 kV/cm gave the polarization loops of obvious quasi-
Rayleigh shape (Fig. 1a) corresponding to the follow-
ing equation of domain-boundary motion [20]:

. (1)

This equation takes into account the contribution of the
initial value of permittivity .

Upon the attainment of the maximum field (E0 ~
250 kV/cm), which is critical for some domain bound-
aries interacting with point defects (transformation of
some strong defects into moderate ones), the volume of
the repolarized part of the sample (film) under the given

η ẋ kx F ẋ( )sgn+ + 2PsE=

ε0*

2

200

P, arb. units
(a)

5

200

(b)

Ö, kV/cm

Fig. 1. Polarization loops of the sample obtained from a
solution with a 5% excess in lead, all other experimental
conditions being the same, at the (a) initial and (b) subse-
quent stages of measurements.
C

conditions (T = const, ν = const, E0 = const) increased.
This resulted in the transformation of the quasi-Ray-
leigh polarization loops into rhombus-like ones [17, 20,
28]. To obtain the complete picture of the evolution of
polarization loops, we repeatedly measured these loops
using the same cell in the field varying from an initial
value of 5 kV/cm at a step of 5 kV/cm (Fig. 1b). It is
seen from Fig. 1b that, at E0 ≤ 100 kV/cm, the polariza-
tion loops preserved the Rayleigh shape, but, with a fur-
ther increase in the field amplitude E0, they acquired a
rhombus-like shape observed in the first measurements
in the fields with the amplitude E0 ~ 250 kV/cm. In this
case, polarization loops correspond to the same motion
equation of domain boundaries (1) [20] but without
allowance for the contribution of the initial permittivity

, because the domain-boundary contribution to per-

mittivity obeys the inequality  @ .

This statement is confirmed by Fig. 2, which shows
an example of the redistribution of the relative contri-
bution (in percent) of the hysteresis (and, therefore,
relaxation) mechanism of domain-boundary motion to
the real ( ) and imaginary ( ) parts of complex

permittivity ( ). It should be noted that these experi-
mental results can hardly be explained by the influence
of the measuring circuit, interface fields, and volume
charge and, moreover, that similar phenomena are
rather typical of macroscopic ferroelectric samples
[28].

Figure 3 shows polarization loops for a sample with
a 10% excess in lead in the film-forming solution (in
the final analysis, the stoichiometric composition) at a
temperature of +25°C in the fields with the amplitude
up to E0 ~ 250 kV/cm and at frequencies ranging from
0.1 to 10 kHz. One has to pay special attention to the
shape of the polarization loops obtained at 0.1 and
1 Hz. In the former case (ν = 0.1 Hz), the loops are nar-
row concentric ellipses characterizing a linear dielec-
tric response with low losses, which can be explained
by the reversible domain-boundary motion described
by the equation [17, 20]

(2)

At η  ! kx, a considerable number of domain bound-
aries move in accordance with the elastic mechanism
without any losses in accordance with the equation (3)
[17] kx = 2PsE.

In this case, the measuring frequency is much lower
than the relaxation frequency of polarization (ν ! νr).
In the latter case (ν = 1 Hz), polarization loops are con-
centric ellipses only at the initial stage of polarization
(in relatively weak fields); then, in more intense fields,
they are transformed into ovals characterizing the
appearance of a nonlinear dielectric response (irrevers-
ible domain-boundary motion). In this case, the area of
the polarization loops (and, therefore, the losses) dra-

ε0*

εeff* ε0*

εeff-g' εeff-g''

εeff*

η ẋ kx+ 2PsE.=

ẋ
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matically increases in comparison with their area at ν =
0.1 Hz, which indicates that the measuring frequency is
close to the frequency of polarization relaxation (ν ~
νr). It should be emphasized that, if conductivity (vol-
ume charge) also contributes to the polarization, the
losses are always proportional to the reciprocal measur-
ing frequency (  ~ 1/ω, where ω = 2πν) [29], and,
therefore, such evolution of polarization loops becomes
impossible. It should also be noted that the film inho-

εeff-g''

10

50 100 150 200 250
E, kV/cm

20
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80
ε''eff-g, %

(a)

(b)
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ε'eff-g, %

(a)

(b)

Fig. 2. Amplitude dependences of the contributions of
domain-boundary motion by the hysteresis (jumpwise)
mechanism to  and  for a sample obtained from an

initial solution with a 5% excess in lead at the temperature
–180°C. The polarization loops obtained (a) at the initial
stage of measurements and (b) immediately after the initial
stage were processed.

εeff' εeff''
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mogeneity may lead to the Maxwell–Wagner relaxation
[29], where the contribution to polarization ( )
comes not only from domain boundaries but also from
the charge migration associated, e.g., with the interface
structure. However, it cannot lead to any serious
changes in the evolution of polarization loops (it can
only somewhat change the polarization value and

) [29].

At ν = 10 Hz (Fig. 3), we observed constricted hys-
teresis loops, their unipolarity, and slight displacement
along the E axis. At ν = 100 Hz and higher frequencies,
the polarization loops become quasi-saturated, unipo-
lar, and are also displaced. Their dielectric response
acquires pronounced nonlinearity and afteraction
(polarization loops are no longer concentric). This fre-
quency evolution of the polarization-loop shape is char-
acteristic, e.g., of the macroscopic crystalline samples
of the Rochelle salt [30].

The ν values for the polarization loops, which, in
our opinion, reflect reversible and irreversible relax-
ation motion of domain boundaries [15, 16], were
determined to construct the Arrhenius dependences of
the relaxation frequency (Table 1) [31]

(3)

where ν0 is the frequency of the attempts of the relaxor
to overcome the potential barrier Ua, Ua is the energy of
polarization activation, kB is the Boltzmann constant,
and T is the absolute temperature.

One can readily see the pronounced amplitude
dependence of the polarization-relaxation frequency
νr(E0) approximated by the expression

(4)

where ν∞ is the most probable frequency of polarization
relaxation at the measuring-field amplitude E0  ∞
and α is the activation field of polarization (Fig. 4).

We should like to emphasize (see Table 1) that the
activation energy Ua and the preexponential factor ν0 in
Eq. (3) decrease with the amplitude of the measuring
field E0. In other words, the measuring field of a larger

εeff*

εeff*

νr ν0 Ua/kBT–( ),exp=

νr ν∞ α /E0–( ),exp=
100
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Fig. 3. Polarization loops for a sample obtained from the film-forming solution with a 10% excess in lead at several measuring-field
frequencies α: (a) 0.1, (b) 1.0, (c) 10, (d) 100, (e) 1000, and (f) 10 000 Hz.
4
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Table 1.  Approximation of ln(νr) as a function of the reciprocal temperature of the sample with a 10% excess in lead in a
film-forming solution by Arrhenius equation (8) in fields of various amplitudes

Temperature range, °C
(range of relaxation frequencies νr, Hz)

Amplitude of measuring field E0 
(voltage U0), kV/cm (V)

Relaxation frequencies determined from

the maxima of the dependence (ν)

activation
energy, Ua, eV

preexponential factor
ν0, Hz

–130 < T < +25
(0.015 < νr < 0.92)

50 (1) 0.176 ± 0.007 590

125 (2.5) 0.161 ± 0.009 400

250 (5) 0.147 ± 0.006 320

εeff
''
amplitude would reduce the potential barrier which
should be overcome by the relaxor and the number of
its “attempts” to overcome this barrier in order to attain
the effect taking place at lower E0.

Table 2 lists the parameters of Eq. (5) obtained from
the νr(E0) curves shown in Fig. 4 at various tempera-
tures. It shows the change in the activation fields (α)
with an increase of the field E0 and lowering of the tem-
perature and lists the most probable relaxation frequen-
cies (ν∞). On the whole, these changes have the same
tendency as the changes of any macroscopic ferroelec-
tric samples in which switching occurs due to domain-
boundary motion.

We believe that the above examples characterizing
dielectric response of thin sol–gel films at low and
infralow frequencies unambiguously indicate the
domain contribution to their polarization and switch-
ing. Therefore, it is timely to introduce a new classifi-
cation (refined in comparison with the classification

–0.3

10 20 30 40 50
E0

–1, 10–3 (kV/cm)–1

–0.4

–0.2

–0.1

0

0.1

0.2
100 50 33 25 20

E0,  kV/cm

ln
(ν

r)

Fig. 4. Approximation of ln(νr) as a function of reciprocal
energy 1/E0 by the equation νr = ν∞exp(–α/E0) for a sample
obtained from a film-forming solution with a 10% excess in
lead at T = 25°C.
C

given in [19]) of point defects interacting with grain
boundaries. We classify as ultraweak the defects creat-
ing a potential barrier U at the given temperature (T =
const), frequency (ν = const), and amplitude (E0 =
const) of the measuring field that should be overcome
by domain boundaries thermally activated in phase
with the measuring field (in this case, the equation that
describes domain-boundary motion takes the form kx =
2PsE). Weak defects are those which at T = const, ν =
const, and E0 = const, give rise to the barrier U that
should be overcome by domain boundaries but with a
phase delay with respect to the measuring field (in this
case the equation of domain-boundary motion corre-
sponds to Eq. (2)). Moderate defects are those which at
the given T = const and ν = const, create the barrier U,
that should be overcome by domain boundaries in a
jumpwise manner as soon as the field amplitude attains
a certain critical value (E0 = Ecr); in this case, the equa-
tion of domain-boundary motion has the form either of
Eq. (1) or [20]

(5)

And, finally, strong defects, which, at the fixed T =
const, ν = const, and E0 = const, rigidly fix (stop)
domain boundaries vibrating under the action of an
electric field like loaded membranes between the stop-
per line (reversible domain-wall motion obeying
Eq. (2)) [31].

Now, consider in these terms the evolution of the
polarization-loop shape with an increase of the fre-
quency of the measuring (polarizing or repolarizing)
field E (Fig. 3). At ν = 0.1 Hz, the motion is determined
mainly by ultraweak defects (and, partly, by weak and
strong ones). Most of the domain boundaries move in
phase with the external field (reversible elastic domain-
boundary motion and irreversible relaxation domain-
boundary motion). Reversible elastic domain-boundary
motion contributes only to ε' (ε'' = 0) [17], whereas irre-
versible motion by the relaxation mechanism makes
only the small contribution to ε" (because of the elec-
trocaloric effect [32]). A considerably small number of
weak defects give rise to reversible relaxation motion
of grain boundaries described by Eq. (2), which con-
tributes to both ε' and ε'' (narrow concentric ellipses).

kx F ẋ( )sgn+ 2PsE.=
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With an increase in the measuring-field frequency (ν =
1 Hz), ultraweak defects are transformed into weak
ones, and weak defects, into moderate ones. This
results in a considerable increase in losses (the polar-
ization-loop area increases, and the measuring-field
frequency approaches the frequency of the polarization
relaxation, ν  νr). The majority of domain bound-
aries in this case move by the relaxation mechanism
(both reversibly and irreversibly), whereas a small
number of domain boundaries move by the hysteresis
mechanism (in a jumpwise manner), which leads to
nonlinearity (E). At ν = 10 Hz, ultraweak defects
continue transforming into weak ones; weak defects,
into moderate ones; and moderate defects, into strong
ones. As a result, the measuring frequency remains
close to the frequency of polarization relaxation (a large
number of domain boundaries move, both reversibly
and irreversibly, by the relaxation mechanism), the
nonlinearity (E) associated with the hysteresis
mechanism of domain-boundary motion becomes more
pronounced, constricted polarization loops are formed
because the strong defects stop domain boundaries, and
the switching part of the sample volume considerably
decreases (maximum polarization Pmax decreases). A
further increase in the measuring-field frequency (100,
1000, and 10000 Hz) results in the defect transforma-
tion: weak defects become moderate and moderate
defects become strong ones and, therefore, domain
boundaries move mainly irreversibly by the hysteresis
mechanism and reversibly by the elastic and relaxation
mechanism. One also observes considerable nonlinear-
ity of (E), quasi-saturation, aftereffects, displace-
ment of the polarization loops along the E axis, and a
decrease in the switching part of the sample volume
(decrease in Pmax). It should be noted that displacement
of the polarization loops does not influence the effec-
tive coercive filed EC eff [33] and, most likely, is caused
by the bias field formed by the fields of interfaces.

εeff*

εeff*

εeff*

Table 2.  Approximation of ln(νr) as a function of reciprocal
energy 1/E0 of the sample with a 10% excess in lead in a
film-forming solution by Eq. (4)

Tempera-
ture, °C

Range of field 
variation, kV/cm α, kV/cm ν∞, Hz

25 20–36 1.44 0.70

36–87 9.59 0.87

87–253 47.46 1.33

0 26–67 14.67 0.35

67–137 47.17 0.57

137–253 115.57 0.92

–30 15–52 3.58 0.10

52–117 35.20 0.19

117–253 122.13 0.39
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
CONCLUSIONS

Similar to macroscopic ferroelectric samples, polar-
ization and switching in thin films obtained by the sol–
gel method are caused mainly by the motion of domain
boundaries. The character (mechanism) of this motion
depends mainly on the interactions between grain
boundaries and point defects, which are responsible for
potential barriers formed on the paths of domain-
boundary motion. The probability of overcoming these
barriers depends on the sample temperature and the fre-
quency and amplitude of the measuring field. A more
detailed classification of point defects interacting with
domain boundaries (ultraweak, weak, moderate, and
strong defects) is suggested. Depending on the sample
temperature and the frequency and amplitude of the
measuring field, these defects can be successively
transformed into one another.
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Abstract—Optical characteristics of (110) oriented porous silicon films obtained by electrochemical etching
are studied. Dispersion of refractive indices, dichoroism in the visible range of the spectrum, depolarization fac-
tor, and porosity of silicon films are measured. It is shown that the results obtained may be described based on
the generalized Bruggeman model. Possible causes of the established discrepancies between the experimental
data and the model are discussed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The study of properties of nanostructurized semi-
conductor systems is one of the main directions of mod-
ern solid state physics. In particular, great interest is
attracted to silicon nanostructures, including nanostruc-
tures of porous silicon obtained by electrochemical
etching of crystalline silicon. Thus, porous silicon con-
sists of silicon nanocrystals separated by pores with the
size ranging from 1 to 100 nm, depending on the doping
level of the wafer and the preparation conditions.
Although this material has been known since 1956 [1],
it only became popular in 1990 after the establishment
of the fact that the efficient photoluminescence of
microporous silicon consisting of 4-nm nanocrystals,
which was observed in the visible range of the spec-
trum, can be interpreted in terms of the quantum size
effect [2]. Along with remarkable electronic properties
[3, 4], porous silicon also possesses a number of attrac-
tive optical properties to be studied in detail.

The dimensions of silicon nanocrystals are much
less than the optical length of light waves, which allows
one to consider porous silicon as a homogeneous opti-
cal medium with effective permittivity different from
permittivity of crystalline silicon. Experiments show
[4–6] that porous silicon with nanocrystal size ranging
from 10 to 50 nm (mesoporous silicon) can be consid-
ered in the so-called effective-medium approximation
within which permittivity of porous silicon is deter-
mined by permittivity and porosity of silicon and per-
mittivity of the medium filling the pores. The real and
1063-7745/04/4901- $26.00 © 20143
imaginary parts of permittivity of porous silicon are
often described based on the Bruggeman model [4–7].

As is well known, crystalline silicon belongs to the
cubic system and can be considered as an optically iso-
tropic medium. However, the preferable formation of
pores along the 〈100〉 [3] directions gives rise to optical
anisotropy—the so-called shape anisotropy [8].

Comparatively weak birefringence in free porous
silicon films was observed at certain angles of inci-
dence formed with the surface normal of the films pre-
pared by electrochemical etching of (100)-oriented
crystalline silicon wafers [9]. Higher birefringence val-
ues were observed in mesoporous silicon layers on
crystalline-silicon substrates with low-symmetric sur-
faces, e.g., on (211) [10] and (110) [11, 12] wafers, with
the optic axis being located in the surface plane. More-
over, birefringence of porous silicon films is very sen-
sitive to the dielectric medium filling these pores,
which allows one to use these layers in various sensor
devices [11]. Further studies showed [13] that double-
refracting porous-silicon layers had properties similar
to those of uniaxial negative crystals and that their optic
axis coincided with the 〈001〉  directions, whereas the
difference in the refractive indices of the ordinary and
extraordinary waves attained a value of 0.24 in the
infrared wavelength range. The pronounced anisotropy
allows one to reach phase synchronism in the genera-
tion of optic harmonics [14], which, in turn, allows one
to use porous silicon as a phase-matching matrix filled
with a material possessing high quadratic nonlinear
004 MAIK “Nauka/Interperiodica”
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permittivity. The shape anisotropy of silicon nanocrys-
tals and pores is also seen from the anisotropy of optical
absorption in porous silicon layers [15].

Thus, the efficient use of anisotropic nanostructur-
ized silicon requires the detailed study of its parameters
and, first of all, their dispersion. At the same time, the
knowledge of the dispersion properties of double-
refracting porous silicon layers would allow one to
determine the validity the effective-medium model for
porous silicon.

DETERMINATION OF REFRACTIVE INDICES 
OF POROUS SILICON

We studied free porous-silicon films obtained by
anodic electrochemical etching of (110) oriented sin-
gle-crystal silicon wafers with resistivity ranging from
1.5 to 3.0 mΩ cm in fluoric acid mixed with ethanol in
a 1 : 1 ratio. The density of the etching current was
50 mA/cm2. This etching mode gives rise to the forma-
tion of mesoporous silicon. The porous silicon films
were separated from the substrates because of a drastic
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Fig. 1. Transmission spectra of a porous silicon film (d =
10 µm) in the (a) visible and near IR and (b) medium IR
spectrum ranges. Curve 1 and 2 correspond to ordinary and
extraordinary waves, respectively.
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increase in the current density. The film thickness mea-
sured under an optical microscope was 10 µm; the
porosity was about 75%.

The refractive indices were determined from the
transmission spectra of porous silicon films studied in
the visible and near IR range on an MDR-12 monochro-
mator and in the medium IR range (1400–7000 cm–1)
with the use of a Perkin-Elmer Spectrum RX I FT-IR
Fourier spectrometer. The measurements were per-
formed for two types of polarization of the normally
incident light—polarization parallel to the optic axis of
the sample and polarization normal to this axis.

Figure 1 shows the transmission spectra of a porous
silicon film for the normal incidence of the plane-polar-
ized light onto the sample surface. The measured values
ranged from 0.5 to 14.0 µm. The spectra obtained were
typical of light interference in a thin film. Different
spectra clearly showed anisotropy. In the short-wave
range (wave length less than 0.6 µm), no interference
could be observed because of strong absorption of light
in this spectral range. The IR transmission spectra
showed the lines corresponding to Si–Hx bonds and dis-
tortions associated with absorption of light by water
molecules.

Analysis of the spectra shown in Fig. 1 allowed us
to determine the refractive indices of the ordinary and
extraordinary waves. The dispersion of refractive indi-
ces did not allow us to use the simple formula

n = 1/2d∆ν, (1)

where n is the refractive index, d is the film thickness,
and ∆ν is the difference between the wave numbers cor-
responding to two neighboring maxima (minima) of the
spectrum, because it yielded considerably overesti-
mated refractive indices (see Discussion in [16]).
Therefore, when determining refractive indices, one
has to take into account the order of an interference
maximum (minimum), which would allow one to deter-
mine the refractive index from the formula

(2)

where m is the order of the interference maximum
(minimum) and λ is the corresponding wavelength. The
minimum error in the determination of the refractive
index by formula (1) is attained in the medium IR
range, where dispersion has the minimum value. Once
the interference order of the maximum possible wave-
length is determined, one can enumerate all the inter-
ference extrema up to the visible range. Thus, the max-
ima with wave numbers 1669 and 1495 cm–1 for ordi-
nary and extraordinary waves, respectively, have
interference orders 5 and 4.

The results of such a calculation are presented in
Fig. 2. It is seen that, with a decrease in the wavelength,
the refractive index of silicon increases, which is asso-
ciated with an increase of silicon dispersion in this
range. One can also see that the difference between the

n mλ /2d  for maximum( ),=

n m 1/2+( )λ /2d  for minimum( ),=
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refractive indices of the ordinary and extraordinary
waves increases with a decrease in the wavelength.

The refractive indices were approximated using the
formula

(3)

where λ is the wavelength in micrometers. The coeffi-
cients were determined as Ao = 2.249, Ko = 0.135, Bo =
0.042, Co = –9.8 × 10–4, Ae = 1.827, Ke = 0.056, Be =
0.034, Ce = –4.5 × 10−4.

DETERMINATION OF BIREFRINGENCE 
AND DICHROISM OF POROUS SILICON

The measurements necessary for the determination
of the optical parameters of free porous silicon films
were made on a spectropolarimetric modular complex
[17, 18] consisting of a stabilized light source, a diffrac-
tion high-transmission monochromator, a fiber-optical
depolarizer, blocks of a rotating polarizer and a rotating
analyzer, a block of a photodetector, and a sample
holder. The measurements were made in the spectral
range from 0.4 to 0.8 µm. The complex operation and
processing of the experimental results were controlled
with the use of a specially designed package of pro-
grams that enabled one to set the rotation steps of the
analyzer and polarizer separately or to set their syn-
chronous rotation in the range from 0° to 360° and to
vary the wavelength and calculate the anisotropic opti-
cal characteristics of the sample.

The intensity of light transmitted by the polarizer–
sample–analyzer system is written in the form [18]

I = K [a + b1cos2α+ b2sin2α + c1cos4α + c2sin4α], (4)

where α is the angle of sample rotation about the hori-
zontal axis or the simultaneous rotation of the polarizer
and analyzer, with the sample being in the fixed posi-
tion. For a sample possessing dichroism and birefrin-
gence, the coefficients in Eq. (4) are

(5)

where α0 is the angle between the transmission direc-
tion of the polarizer and the principal direction of the
sample (direction of sample extinction in the crossed
polarizer and analyzer), and the quantities δ and ∆ have
the form

∆ = 2πdδn/λ, δ = 2πdδκ/λ. (6)

Here, the complex refractive indices of the ordinary and
extraordinary waves are written as No, e = no, e + iκo, e,
δn = no – ne is birefringence, and δκ = κo – κe is dichro-
ism. Using the package of programs, one can calculate

no e,
2 Ao e, Ko e, / λ2 Bo e,–( ) Co e, λ 2

,+ +=

K 0.25e
2πd κo κe+( )/λ–( )

a, 3 δcosh ∆,cos+= =

b1 2 δ 2α0, b2cossinh 2 δ 2α0,sinsinh–= =

c1 δcosh ∆cos–( ) 4α0,cos=

c2 δcosh ∆cos–( )– 4α0,sin=
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the Fourier coefficients a, b, and c (b2 =  + , c2 =

 + ) and determine the parameters ∆ and δ,

(7)

and also birefringence δn and dichroism δκ. One has to
take into account that ∆ = 2πk + πl ± ∆0 (k = 0, 1, 2, 3…,
and l = 0, ±1 depending on the path difference dδn).

Figure 3 shows the I(α) dependences obtained at
various wavelengths. It is clearly seen that a porous sil-
icon film is doubly refracting (because the I(α) depen-
dences oscillate) and possesses dichroism (because the
extremum I(α) values are not equal to one another).
Thus, at λ = 0.79 µm (curve 1), this dependence has
four maxima having the same amplitudes, which indi-
cates that the sample has no noticeable dichroism at this
wavelength. At λ = 0.55 µm (curve 2), the maxima con-
siderably differ, which indicates the presence of dichro-
ism. At λ = 0.52 µm (curve 3), two of the four maxima
are suppressed, which indicates an increase in dichro-
ism. Finally, at λ = 0.5 µm (curve 4), I(α) also has four
maxima.

The δn and δκ values determined from the above
curves are shown in Figs. 4a and 4b. Birefringence val-
ues determined from formula (3) in the range from 0.6
to 0.8 µm are consistent with the results obtained. With
a decrease in the wavelength, birefringence increases
monotonically and attains the value δn = 0.265 at λ =
0.52 µm, whereas, at λ = 7 µm, we have δn = 0.15. The

b1
2

b2
2

c1
2

c2
2

∆0cos a 3c–( )/ a c+( )2
b2– ,=

e2δ a b c+ +( )/ a b– c+( )=

1.3

10.5 0.7 2 3 4 5 6 7
λ, µm

1.4

1.5

1.6

1.7
n

ne

no

Fig. 2. Dispersion of refractive indices no and ne in porous
silicon. Solid lines indicate approximation by Eq. (3), and
dashed lines, by Eq. (8) at porosity p = 0.74 and depolariza-
tion factor Le = 0.43.
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dependence of dichroism on the wavelength is non-
monotonic and has an extremum at λ = 0.52 µm.

DISCUSSION OF RESULTS 
WITHIN THE FRAMEWORK 

OF THE EFFECTIVE-MEDIUM MODEL

To describe optical anisotropy of porous silicon
films we invoked the generalized Bruggeman model
[19], which allowed us to consider an ensemble of ellip-
soids of rotation with the parallel axes and the rotation
axis of ellipsoids being coincident with the optic axis.
The Bruggeman theory relates the effective permittivity
of such a system, εeff, to the permittivity of silicon, εSi,

0

0 60 120 180 240 300 360
α, deg

0.2

0.4

0.6

0.8
I, arb. units

Fig. 3. Intensity I as a function of the rotation angle I(α) of
a porous silicon film at the wavelengths λ (1) 0.79, (2) 0.55,
(3) 0.52, and (4) 0.5 µm.

1

3

2

4

C

and permittivity of the dielectric material filling its
pores, εd (in our case, air with εd = 1):

 (8)

Here, p is the material porosity and L||, ⊥  is the depolar-
ization factor determined by the semiaxis ratio of the
ellipsoid of rotation. The L||, ⊥  value depends on the
direction of polarization of the electric field of a light
wave. If the electric field is polarized along the ellipsoid
axis, the wave is extraordinary [8, 19] and is given by
the formula [20]

(9)

where x is the ratio of the polar to equatorial semiaxis
of the ellipsoid of rotation.

The depolarization factor L⊥  for the perpendicular
polarization of the ordinary wave is related to L|| by the
formula

(10)

The effective permittivities  and  are deter-
mined from the measured refractive indices [see for-

mula (3)] as  =  and  = . Substituting the
latter values into Eq. (8), we arrive at the formula of the
depolarization factor L|| and porosity p (in this case, the
real part of the refractive index of crystalline silicon
was approximated by the method suggested in [21],
whereas the imaginary part was approximated using the
data from [22]):

p
εd εeff–

εeff L εd εeff–( )+
-------------------------------------- 1 p–( )

εSi εeff–
εeff L εSi εeff–( )+
-----------------------------------------+  = 0.

L||  = 1/(1 x2 ) 1 x–( ) 1 x
2

–( )arcsin( )/ 1 x2–[ ] ,–

2L⊥ L||+ 1.=

εeff
o εeff

e

εeff
o

no
2 εeff

e
ne

2

(11)

L||

εeff
o εeff

e–( )εeff
e εeff

o 0.5 εeff
o 1–( ) εSi εeff

o–( )εeff
e+

εeff
o εeff

e 1–( ) εSi εeff
e–( ) 0.5 εeff

o 1–( ) εSi εeff
o–( )εeff

e+
-----------------------------------------------------------------------------------------------------------------------,=

p
εSi εeff

e–( ) εeff
e L|| εeff

e 1–( )–( )
εSi 1–( )εeff

e
--------------------------------------------------------------------.=
The parameters L||, L⊥ , and p are shown in Fig. 5 as
functions of wavelength. Within the Bruggeman model,
these parameters are independent of the wavelengths.
As follows from our analysis, the values determined by
formulas (10) and (11) really only weakly depend on
the wavelength—the L value varies within 0.427–0.435,
and porosity, within 0.727–0.750. It should also be
noted that, as a rule, the experimental errors in porosity
measured by the gravimetric method are somewhat
higher; the discrepancy in the refractive indices does
not exceed the experimental error. The value L|| ~ 0.43
corresponds to the semiaxis ratio x ~ 0.7. As is seen
from Fig. 5, in the range 0.7–7.0 µm, the value of L||
increases with a decrease in the wavelength. This devi-
ation from the Bruggeman model seems to be associ-
ated with the closeness of the wavelength to the nanoc-
rystal size. At shorter wavelengths, one has to take into
account absorption, which is rather difficult because of
the lack of data on the absolute values of the imaginary
parts of permittivities in a porous silicon layer.

Now, proceed to analysis of dichroism dispersion.
Using the parameters L||, L⊥ , and p determined above
and taking into account the imaginary part of permittiv-
ity for crystalline silicon, we calculated the imaginary
parts of the effective refractive indices of porous silicon
from Eq. (8). The results are presented in Fig. 4b (solid
line). In this case, the model used allows us to describe
the behavior of δκ at λ > 0.55 µm; however, with a
decrease in the wavelength, the experimentally deter-
mined and calculated δκ values become inconsistent.
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It should be noted that the optical properties of
mesoporous silicon in the visible part of the short-wave
range should be studied in more detail, because, with an
approach of the wavelength to the nanocrystal size, the
optical properties of porous silicon can considerably
change. In particular, it was recently established that
the third-harmonic generation (355 nm) in mesoporous
silicon is much more efficient than its generation in
crystalline and microporous silicon [23].

In order to interpret the results obtained, we
assumed that, with a decrease in the wavelength, scat-
tering from silicon nanocrystals becomes more intense
and is probably also anisotropic. It seems that a certain
role in this spectral range is also played by the effects
of light localization [24]. Thus, for silicon nanocrystals
20 nm in diameter and at a wavelength of 0.5 µm, the
estimation of the free paths of photons yields a value of
about 0.8 µm, which indicates the approach to the mode
of light localization. To study dichroism in porous sili-
con films in more detail, one has to perform new exper-

0

0.6 0.70.5 0.8
λ, µm

0.001

0.002

0.003

0.004

0.005
δκ (b)

0.20

0.6 0.70.5 0.8

0.25

0.30

0.35

0.40

0.45
δn

(a)

0.4

Fig. 4. Dispersion of anisotropy parameters in porous sili-
con films: (a) dispersion of birefringence, (d) birefringence
calculated by Eq. (7), solid line indicates approximated
birefringence, (b) dichroism calculated by Eq. (7), solid line
indicates dichroism approximated by Eq. (8).

λ, µm
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iments, including experiments on films with various
porosities.

CONCLUSIONS

Thus, the optical characteristics of porous silicon
films obtained by electrochemical etching of heavily
doped (110) oriented silicon wafers have been studied.
For the first time, the dispersion of the refractive indices
was determined over the wide spectrum range. Disper-
sion of birefringence and dichroism in the visible spec-
trum range up to 0.4 µm were measured. Birefringence
monotonically increases with a decrease in the wave-
length, whereas the dependence of dichroism on the
wavelength is nonmonotonic. The experimental data
obtained were compared with the data calculated based
on the generalized Bruggeman model. It was shown
that dispersion of refractive indices, birefringence, and
dichroism in the red and infrared spectrum ranges are
satisfactorily described within the framework of this
model. The deviation from the Bruggeman model at
shorter wavelengths is explained by the approach of the
wavelength to the size of nanocrystals.

0.71

70.5 6543210.7
0.70

λ, µm

0.72

0.73

0.74

0.75

0.76
p

(b)

0.25

0.30

0.35

0.40

0.46
L⊥ , ||

(a)
L||

L⊥

Fig. 5. (a) Depolarization factor and (b) porosity of a silicon
film obtained from analysis of the experimental data.
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Abstract—The correlation (  + ) = (  + ) has been established for the mean parameters of the reduced

perovskite unit cells, , , , and , of four arbitrary compounds with the perovskite structure having the
compositions (1) ABï3, (2) A'Bï3, (3) AB'ï3, and (4) A'B'ï3, where A, A' and B, B' are the pairs of metal atoms
with equal valences and X is an oxygen or halogen atom. The above correlation is consistent with the model of
harmonic quasi-elastic atomic interactions. © 2004 MAIK “Nauka/Interperiodica”.

a2 a3 a1 a4

a1 a2 a3 a4
INTRODUCTION

The symmetric phases of crystals with the perovs-
kite structure whose chemical composition is described
by the general formula ABX3 (where X is an oxygen or
halogen atom) have a primitive cubic lattice, with the
parameter of each group of crystals (with the given X)
being determined by the “sizes” of the constituent
atoms. Obviously, it is impossible to attain the in-pair
correlation between cationic radii for the whole family
of these crystals, which dictates the introduction of the
notion of deformable interatomic A–X and B–X bonds
[1]. The model based on this notion correlates the equi-
librium unit-cell parameter with the minimum elastic
energy of deformation of interatomic bonds, which
allows us to calculate parameters of the cubic unit cell
from the given compound composition [1–3].

The main assumption underlying the approach sug-
gested states that it is possible to introduce an equilib-
rium length and rigidity for each A–X and B–X bond
equal for all the compounds of the perovskite family.
Note here that these parameters, characterizing the
interaction of each pair of A and X or B and X atoms, are
determined mainly by the coordination number with
respect to X and the valence of an A or B atom, respec-
tively, which allows one to use these parameters in the
solution of similar problems for the compounds of
other structure types if they possess the same coordina-
tion numbers of A and B atoms [4–6].

At room temperature, most of the compounds with
the perovskite structure (described in a large number of
structural data) are in the low-symmetric phase states
characterized by the space groups that are the sub-

groups of the sp. gr.  that describes the symmetricOh
1

1063-7745/04/4901- $26.00 © 20015
phase. These phases are formed as a result of one or
several phase transitions accompanied by the change of
the unit-cell shape. However, experiments show that the
unit-cell volume only weakly depends on temperature
and that the jumps in the volume accompanying the
first-order phase transitions characteristic of the per-
ovskite structures are feebly marked. The ∆V/V value is
determined by the second-order effects (such as the
striction accompanying phase transitions) and is pro-
portional to the squared or higher-degree order param-
eter.

All these changes are the results of small variations
in high energies, which determine the mean unit-cell
parameter and are taken into account by the model of
deformable interatomic bonds. Taking into account the
aforesaid and considering the whole perovskite family,
we can compare the parameters of the reduced cubic
perovskite unit cells of various compounds calculated

as the average parameter  = , where Vcell is the
volume corresponding to one AÇï3 formula unit of a
distorted (in the general case) perovskite unit cell at
room temperature.

FROM THE MODEL TO CRYSTALLOGRAPHIC 
REGULARITY

The search for the method of a priori calculation of
the unit-cell parameters in structure modeling proceeds
from at least three requirements. First, the method
should be internally consistent. Second, it should allow
one to calculate the unit-cell parameters with a suffi-
cient accuracy. And third, the system of bond lengths of
unstrained interatomic A–X and B–X bonds calculated
by this method should include all the distances between

a V cell
3
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Table 1.  Groups of four binary oxides and fluorides with the compositions of the AIIBIVO3 and AIBIIF3 types, the experimental
mean parameters  of the reduced perovskite unit cells, and their sums  and  and ∆ = s23 – s14

Serial 
number 
of the 
group

Composition 
of the oxides
in the group

Parameters , s23, s14, and ∆(Å) Serial 
number 
of the 
group

Composition 
of the oxides
in the group

Parameters , s23, s14, and ∆(Å)

s23 s14 ∆ s23 s14 ∆

OXIDES 1. PbTiO3:  = 3.97; 2. BaTiO3:  = 4.00

AIIBIVO3
16

3. PbHfO3 4.12
8.12 8.14 –0.02

1. CaTiO3:  = 3.822; 2. SrTiO3:  = 3.90 4. BaHfO3 4.17

1
3. CaRuO3 3.84

7.74 7.74 0 17
3. PbZrO3 4.15

8.15 8.16 –0.01
4. SrRuO3 3.92 4. BaZrO3 4.19

2
3. CaSnO3 3.95

7.85 7.85 0
1. PbTiO3:  = 3.97; 2. CaTiO3:  = 3.82

4. SrSnO3 4.03
18

3. PbHfO3 4.12
7.94 7.96 –0.02

3
3. CaHfO3 3.99

7.89 7.89 0
4. CaHfO3 3.99

4. SrHfO3 4.07
19

3. PbZrO3 4.15
7.97 7.98 –0.01

4
3. CaZrO3 4.01

7.91 7.92 –0.01
4. CaZrO3 4.01

4. SrZrO3 4.10 1. PbTiO3:  = 3.97; 2. SrTiO3:  = 3.90

1. CaTiO3:  = 3.82; 2. BaTiO3:  = 4.00
20

3. PbHfO3 4.12
8.02 8.04 –0.02

5
3. CaRuO3 3.84

7.84 7.87 –0.03
4. SrHfO3 4.07

4. BaRuO3 4.05
21

3. PbZrO3 4.15
8.05 8.07 –0.02

6
3. CaSnO3 3.95

7.95 7.93 0.02
4. SrZrO3 4.10

4. BaSnO3 4.11 1. PbTiO3:  = 3.97; 2. CdTiO3:  = 3.90

7
3. CaHfO3 3.99

7.99 7.99 0 22
3. PbHfO3 4.12

7.91 7.93 –0.02
4. BaHfO3 4.17 4. CdHfO3 3.96

8
3. CaZrO3 4.01

8.01 8.01 0
1. CaTiO3:  = 3.82; 2. CdTiO3:  = 3.79

4. SrZrO3 4.19
23

3. CaSnO3 3.95
7.74 7.75 –0.01

1. SrTiO3:  = 3.90; 2. BaTiO3:  = 4.00 4. CdSnO3 3.93

9
3. SrIrO3 3.95

7.95 7.93 0.02 24
3. CaHfO3 3.99

7.78 7.78 0
4. BaIrO3 4.03 4. CdHfO3 3.96

10
3. SrSnO3 4.03

8.03 8.01 0.02
1. SrTiO3:  = 3.90; 2. CdTiO3:  = 3.79

4. BaSnO3 4.11
25

3. SrSnO3 4.03
7.82 7.83 –0.01

11
3. SrHfO3 4.07

8.07 8.07 0
4. CdSnO3 3.93

4. BaHfO3 4.17
26

3. SrHfO3 4.07
7.86 7.86 0

12
3. SrZrO3 4.10

8.10 8.09 0.01
4. CdHfO3 3.96

4. BaZrO3 4.19 1. BaTiO3:  = 4.00; 2. CdTiO3:  = 3.79

13
3. SrPuO3 4.28

8.28 8.26 0.02 27
3. BaSnO3 4.11

7.9 7.9 0
4. BaPuO3 4.36 4. CdSnO3 3.93

14
3. SrCeO3 4.28

8.28 8.29 –0.01 28
3. BaHfO3 4.17

7.96 7.96 0
4. BaCeO3 4.39 4. CdHfO3 3.96

15
3. SrThO3 4.42

8.42 8.39 0.03
4. BaThO3 4.49

aexp s23 a2 a3+= s14 a1 a4,+=

aexp aexp

aexp aexp

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2
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Table 1.  (Contd.)

Serial 
number 
of the 
group

Composition 
of the oxides
in the group

Parameters , s23, s14, and ∆(Å) Serial 
number 
of the 
group

Composition 
of the oxides
in the group

Parameters , s23, s14, and ∆(Å)

s23 s14 ∆ s23 s14 ∆

AIIIBIIIO3
41

3. NaCoF3 3.90
7.91 7.92 –0.01

1. NdMnO3:  = 3.90; 2. LaMnO3:  = 3.94 4. KCoF3 4.07

29
3. NdGaO3 3.86

7.8 7.8 0 42
3. NaCuF3 3.88

7.89 7.92 –0.03
4. LaGaO3 3.90 4. KCuF3 4.07

30
3. NdFeO3 3.89

7.83 7.83 0
1. NaMgF3:  = 3.84; 2. RbMgF3:  = 4.08

4. LaFeO3 3.93
43

3. NaZnF3 3.88
7.92 7.95 –0.03

31
3. NdInO3 4.07

8.01 8.01 0
4. RbZnF3 4.11

4. LaInO3 4.11
44

3. NaCoF3 3.90
7.98 7.96 0.02

32
3. NdScO3 4.01

7.95 7.95 0
4. RbCoF3 4.12

4. LaScO3 4.05
45

3. NaCuF3 3.88
7.96 7.97 –0.01

1. EuMnO3:  = 3.87; 2. LaMnO3:  = 3.94 4. RbCuF3 4.13

33
3. EuGaO3 3.84

7.78 7.77 0.01
1. RbCdF3:  = 4.40; 2. CsCdF3:  = 4.47

4. LaGaO3 3.90
46

3. RbCaF3 4.46
8.93 8.92 0.01

34
3. EuFeO3 3.87

7.81 7.80 0.01
4. CsCaF3 4.52

4. LaFeO3 3.93
47

3. RbHgF3 4.47
8.94 8.97 –0.03

35
3. EuInO3 4.03

7.97 7.98 –0.01
4. CsHgF3 4.57

4. LaInO3 4.11 1. KCdF3:  = 4.34; 2. RbCdF3:  = 4.40

36
3. EuScO3 3.98

7.92 7.92 0 48
3. KZnF3 4.05

8.45 8.45 0
4. LaScO3 4.05 4. RbZnF3 4.11

FLUORIDES
49

3. KCoF3 4.07
8.47 8.46 0.01

1. NaCoF3:  = 3.90; 2. AgCoF3:  = 3.98 4. RbCoF3 4.12

37
3. NaMgF3 3.84

7.82 7.86 0 50
3. KCuF3 4.07

8.47 8.47 0
4. AgMgF3 3.92 4. RbCuF3 4.13

38
3. NaZnF3 3.88

7.86 7.87 –0.01 51
3. KCaF3 4.38

8.78 8.80 –0.02
4. AgZnF3 3.97 4. RbCaF3 4.46

1. NaNiF3:  = 3.85; 2. KNiF3:  = 4.01

39
3. NaMgF3 3.84

7.85 7.82 0.03
4. KMgF3 3.97

40
3. NaZnF3 3.88

7.89 7.90 –0.01
4. SrZnF3 4.05

aexp aexp

aexp aexp

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2

a1 a2
metal atoms in the A or B positions in the crystal lattice
of the compounds with the given structure and the oxy-
gen and halogen atoms.

In perovskite and perovskite-like structures, the
interatomic distances LAX and LBX are considerably dif-

ferent from the corresponding equilibrium  andLAX
0

CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
 distances. It is assumed in the model that the equi-
librium distance corresponds to the minimum elastic
energy of deformation of interatomic distances. In the
harmonic approximation with due regard of twelve A–
X and six B–X bonds per reduced perovskite unit cell of
the composition ABX3, the deformation energy has the

LBX
0
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Table 2.  Groups of four ternary oxides with the compositions

of the  type, experimental mean parameters

 of their reduced perovskite unit-cells, and their sums

 and  and ∆ = s23 – s14

Serial 
number 
of the 
group

Composition of the 
oxides in the group

Parameters ,
s23, s14, and ∆(Å)

s23 s14 ∆

1. PbNb1/2Sc1/2O3:  = 4.08; 2. BaNb1/2Sc1/2O3:  = 4.11

1
3. PbNb1/2Co1/2 O3 4.03

8.14 8.14 0
4. BaNb1/2Co1/2O3 4.06

2
3. PbNb1/2Fe1/2 O3 4.01

8.12 8.12 0
4. BaNb1/2Fe1/2O3 4.04

3
3. PbNb1/2Mn1/2 O3 4.01

8.13 8.16 –0.03
4. BaNb1/2Mn1/2O3 4.04

4
3. PbNb1/2Sc1/2 O3 4.08

8.19 8.19 0
4. BaNb1/2Sc1/2O3 4.11

5
3. PbTa1/2Sc1/2 O3 4.07

8.18 8.19 –0.01
4. BaTa1/2Sc1/2O3 4.11

1. SrW1/2Co1/2O3:  = 3.97; 2. PbW1/2Co1/2O3:  = 4.00

6
3. SrW1/2Mg1/2 O3 3.95

7.95 7.97 –0.02
4. PbW1/2Mg1/2O3 4.00

7
3. SrW1/2Mn1/2 O3 4.00

8.00 8.02 –0.02
4. PbW1/2Mn1/2O3 4.05

1. PbW1/2Mn1/2O3:  = 4.05; 2. SrW1/2Co1/2O3:  = 4.00

8
3. PbW1/2Mg1/2O3 4.00

8.00 8.00 0
4. SrW1/2Mg1/2 O3 3.95

9
3. PbW1/2Co1/2O3 4.00

8.00 8.02 –0.02
4. SrW1/2Co1/2 O3 3.97

10
3. PbW1/2Cd1/2O3 4.14

8.14 8.12 –0.02
4. SrW1/2Cd1/2 O3 4.07

1. SrW1/2Mg1/2O3:  = 3.95; 2. BaW1/2Mg1/2O3:  = 4.06 

11
3. SrMo1/2Ni1/2 O3 3.93

7.99 7.97 0.02
4. BaMo1/2Ni1/2O3 4.02

12
3. SrMo1/2Co1/2 O3 3.97

8.03 8.00 0.03
4. BaMo1/2Co1/2O3 4.05

AIIB1/2
' B1/2

'' O3

aexp

s23 a2 a3+= s14 a1 a4,+=

aexp

aexp

AIIB1/2
V B1/2

III O3

a1 a2

AIIB1/2
VI B1/2

II O3

a1 a2

a1 a2

a1 a2
C

form [1]

(1)

where  and  are the lengths of unstrained A–X
and B–X bonds. The unit-cell parameter is determined
by minimizing this energy:

(2)

Now, consider four compounds of the compositions
(1) ABX3, (2) A'BX3, (3) AB'X3, and (4) A'B'X3, where A
and A' in their chemical formulas should be different
mono-, di-, or trivalent atoms and B and B' should be
different penta-, tetra-, and trivalent atoms. Expressions
(2) written for the compounds thus selected form four
equalities that can be considered as a system of equa-

tions with four unknowns, ; ; ; and

. Excluding these quantities from the system of
equations obtained, we find that

(3)

To verify the validity of this equation, we can find a
large number of groups consisting of four compounds
of types (1)–(4) among the known binary and ternary
oxides (about 800 representatives [3]) and fluorides
(several tens of representatives) with the perovskite
structure with the concrete atoms instead of A, B, A',
and B'. For these groups of compounds (Table 1), the
mean parameters of the reduced perovskite unit cells
calculated from the independent experimental data
obey Eq. (3) with an accuracy not exceeding 1% of the
parameter value.

On the one hand, the formula relating the parame-
ters of four compounds may serve as a criterion of the
internal consistency of the model of deformable inter-
atomic distances, because it is fulfilled for the experi-
mental values of the parameters of the real compounds.
On the other hand, the validity of the formula for prac-
tically any set of four compounds is the crystallo-
graphic regularity independent of the model. As far as
we know, this correlation between the mean parameters
(volumes) of the perovskite unit cells has not been
revealed or discussed earlier.

CONCLUSIONS

The correlation between the parameters of the
reduced cubic unit cells of crystals with the perovskite
structure established above indicates that the atomic
interactions in all the crystals considered can be
described by the harmonic terms of the corresponding
potential energies. This correlation can be considered
as a criterion of the validity of the elastic model used in
the calculation of the unit-cell volumes of crystals with

ε 6kA
a

2
------- LAX

0– 
 

2

3kB
a
2
--- LBX

0– 
  2

,+=

LAX
0 LBX

0

a
4 2kALAX

0 2kBLBX
0+

4kA kB+
--------------------------------------------------.=

kALAX
0 kALA 'X

0 kBLBX
0

kBLB 'X
0

a2 a3+( ) a1 a4+( ).=
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the perovskite structure. The allowance for nonlinear
interactions is necessary for the interpretation and
quantitative description of fine characteristics of crys-
tals and the phenomena observed in these crystals and,
in particular, the structural phase transitions. On the
other hand, correlation (3) is of importance irrespec-
tively of the assumptions underlying the model,
because it contains no model parameters and can be
established empirically.

It is also possible to show that rule (3) derived from
the model should also be valid for ternary oxides with
the perovskite structure and isovalent atomic composi-
tions. This is confirmed by the parameters of ternary
oxides calculated from the known X-ray diffraction
data at room temperature. Possibly, the compounds
with more complicated compositions would also obey
this correlation for unit-cell parameters.
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Abstract—Thirty five low-symmetry tilting phases of the octahedra in which the atoms located at the initial
octahedral position remain equivalent are derived for the perovskite structure at the k10(X), k11(M), and k13(R)
points of the Brillouin zone. For each low-symmetry phase, structural data are presented and a relationship
between the atomic displacements and the order parameters is deduced. All the low-symmetry phases can be
obtained by considering only one or two order parameters. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In an ideal structure of ABX3 perovskites with space

group Pm3m = , the A, B, and X atoms occupy the a,
b, and c positions, respectively. Each A cation is sur-
rounded by 12 X anions located at equal distances

. The octahedral environment of the B cations
involves six X anions located at a distance a/2. As a
rule, the perovskite structure is represented in the form
of layers consisting of X octahedra. All the octahedra
are shared by vertices. The commonly accepted method
of revealing low-symmetry phases in the perovskite
structure is a simple geometric analysis of the possible
rotations of eight octahedra located in two layers [1–5].
For this analysis, Glazer [1] introduced the following
notation: a±b±c±, where the letters a, b, and c stand for
the magnitudes of rotations about the orthogonal axes
of the cubic coordinate system and the superscripts “±”
specify the sense of rotation of the adjacent octahedra
arranged along the corresponding axis. In the frame-
work of this approach, Glazer [1] derived 23 low-sym-
metry tilting structures, many of which are described by
identical symmetry groups. Refinements and further
elaboration of this method are given in [2–5]. It should
be noted that, in those works, the order parameters were
not considered for a particular low-symmetry phase.

With the aim of describing the lowering of symme-
try, the notion of the order parameter is introduced in
terms of the Landau theory of phase transitions [6]. The
specified order parameter completely determines the
symmetry of a low-symmetry phase. The determination
of the low-symmetry phases for each of the chosen (not
necessarily irreducible) order parameters was
described by Gufan [7]. The complete list of possible
low-symmetry phases in the case when the order
parameter is transformed according to one irreducible
representation at unique symmetry points of the recip-

Oh
1

a/ 2
1063-7745/04/4901- $26.00 © 20020
rocal lattice of space group Pm3m( ) is given in [8].
An analysis of the order parameters that can be trans-
formed according to several irreducible transforma-
tions (several order parameters) leads to a more formi-
dable problem of description of the low-symmetry
phases. For some combinations of order parameters,
this problem was solved by Aleksandrov et al. [9] and
Howard and Stokes [10].

The possible order parameters for describing a dis-
placive phase transition are determined from an expan-
sion of the mechanical representation of the relevant
atomic positions. Such an expansion for all atomic
positions at different points of the Brillouin zone for the
perovskite structure was obtained by Cowley [11].
Since the mechanical representation for the perovskite
structure has a large dimension, many authors have
restricted their consideration to problems with small
dimensions [12, 13]. Moreover, Howard and Stokes
[10] introduced symmetry constraints. Recall that the
choice of the order parameters only in part determines
the mechanism of phase transitions. This means that the
transition to a phase with particular symmetry can be
described by another set of order parameters, especially
when the phase has low symmetry. Within this
approach, the order parameter does not necessarily
describe the structure of the low-symmetry phase. The
complete description requires the inclusion of second-
ary order parameters [14, 15].

In this work, we analyzed the possible low-symme-
try phases for all order parameters with the mechanism
of rotation of octahedra at unique symmetry points of
the Brillouin zone for the perovskite structure. Among
these phases, we considered only the phases for which
all octahedra remain equivalent. A relationship between
the atomic displacements and the order parameters was
derived for the low-symmetry phases.

Oh
1
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ORDER PARAMETERS FOR TILTING 
STRUCTURES

Let us consider the rotation of octahedra whose cen-
ters occupy the positions b = (1/2, 1/2, 1/2) in the per-
ovskite structure. As in [1], we analyze the rotation of
eight octahedra arranged in two layers of four each. In
order to describe these rotations, it is sufficient to solve
the problem involving the unique symmetry points
k10(X), k11(M), k13(R), and k12(Γ) (the notation is given
according to [16]). The rotations of the octahedra at the
b positions are described by a combination of the rep-
resentations T2g for the Γ point (rotation) and the per-
mutation representation of the b position in an extended
unit cell. This representation, which will be referred to
as the rotation representation, consists of the following
irreducible representations:

k10: τ2 + τ10, k11: τ5 + τ9, k13: τ8, k12: τ9. (1)

Rotations of the octahedra in the perovskite struc-
ture can occur only through displacements of X anions
surrounding the b position. Therefore, the order param-
eters for these rotations can include only those repre-
sentations [among representations (1)] which are
involved in the mechanical representation constructed
for displacements of the X anions. The mechanical rep-
resentation for the c position (Pm3m) can be written in
the form

k10: τ1 + τ4 + τ6 + 2τ9 + τ10, 

k11: τ1 + τ3 + τ5 + τ6 + τ7 + τ9 + τ10, (2)

k13: τ4 + τ6 + τ8 + τ10, k12: τ8 + 2τ10.

A comparison of representations (1) and (2) shows that
the order parameters for tilting structures can corre-
spond to the following irreducible representations:

k10: τ10( ), k11: τ5(M3) + τ9(M5), k13: τ8(R25), (3)

where k10: τ10( ) and k11: τ9(M5) are the six-dimen-
sional irreducible representations and the other repre-
sentations are the three-dimensional irreducible repre-
sentations (notation of representations in parentheses is
given according to [17]). The representations k11:
τ5(M3) and k13: τ8(R25) are traditionally included in the
analysis of the octahedron rotations [9] (see also [7]).

Now, we consider an abstract eighteen-dimensional
order parameter involved in set (3). The total number of
all possible low-symmetry distortions with this order
parameter is equal to 122. Among them, there always
exists a phase with the lowest symmetry for which all
18 components of the order parameter are nonzero and
are not related to each other. By symmetry, this phase
can be described not only in terms of set (3) but also by
a larger number of variants of the representations
involved in set (2). Therefore, it is beyond reason to
argue that the phase with the lowest symmetry can be
obtained through the octahedron rotation, even though
this phase is included in the complete list of low-sym-
metry phases. This situation can be explained by a spe-

X5'

X5'
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cific method of examination, namely, group-theoretic
analysis. On the other hand, the inclusion of the ther-
modynamic potential makes it possible to unambigu-
ously separate the required phases from the complete
list, even though the degree of potential necessary for
describing the low-symmetry phase itself may appear
to be very high [18].

As was done by Glazer [1], we examine the tilting
structures, i.e., distortions at which octahedra remain
equivalent. For this purpose, we choose the phases sat-
isfying this requirement from a complete list of
122 low-symmetry phases with order parameters corre-
sponding to irreducible representations (3). The num-
ber of these phases is 35. Their order parameters are
listed in Table 1. The complete description of the low-
symmetry structure involves the determination of all
displacements as functions of the order parameters. In
order to derive a relationship between the order param-
eters and the atomic displacements, it is necessary to
use the symmetrical coordinates in an extended cell,
which, in our problem, is doubled along each of the per-
ovskite axes. The structural parameters for the phases
presented in Table 1 are listed in Table 2. The static
atomic displacements are linearly related to nonzero
symmetrical coordinates in the low-symmetry phases.
The linear relationship between the atomic displace-
ments and the corresponding order parameters is deter-
mined by symmetry. Table 2 contains new order param-
eters, which differ from initial order parameters
involved in set (3). These new order parameters are
referred to as secondary order parameters. They are
included in complete set (2). The dependence of the
secondary order parameters on the initial order param-
eters is determined by the invariants liner in these new
order parameters. The relationships between the new
order parameters and the initial order parameters are
also given in Table 2.

DISCUSSION

For each phase, we analyzed all the symmetrically
equivalent distortions (domains) and chose the orienta-
tion for the most appropriate notation of the rotation
according to [1] (see above). The results obtained are
presented in the last column in Table 1. In the case
where the symmetry and notation coincide with those
described in [1], the number of the phase taken from [1]
is given in parentheses in the last column. It can be seen
from Table 1 that there is no one-to-one correspondence
between the notation introduced in [1] and the symme-
try (structure) of the low-symmetry phases. Moreover,
the Glazer notation [1] cannot be used for phases 5, 23,
27, 31, and 35 (the phase numbering is given according
to Table 1), because the magnitude of rotation of an
adjacent octahedron along one axis proved to be identi-
cal to that of an adjacent octahedron along another axis.
This fact is indicated in Table 1 by the designation a/b,
where a and b are the magnitudes of rotations of the
adjacent octahedra along the same axis.
4
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Table 1.  Low-symmetry tilting phases of the b octahedra in the perovskite structure
Ph

as
e

Order parameters Space group V'/V Translations of the primitive 
cell a, b, and c Tilting notation [1]

1 (0, 0, ϕ) I4/mcm-  (no. 140) 2 a2 – a3, a1 + a2, 2a3 a0 a0 c– (no. 22)

2 (ϕ, ϕ, ϕ) R3c-  (no. 167) 2 a1 + a2, a1 + a3, a2 + a3 a– a– a– (no. 14)

3 (ϕ, –ϕ, 0) Imma-  (no. 74) 2 2a3, a1 – a2, a2 + a3 a0 b– b– (no. 20)

4 (0, ϕ1, ϕ2) C2/m-  (no. 12) 2 a1 + a2, 2a1, a2 – a3 a+ b– c– (no. 19)

5 (ϕ1 ϕ2 ϕ1) C2/c-  (no. 15) 2 a1 + a3, a1 – a3, a1 + a2 a–, b/c, c/b

6 (0 ξ 0 0 –ξ 0) I4/mcm-  (no. 140) 4 2a3, a1 + a2 + a3, 2a2 a0 b– c–

7 (ξ 0 ξ 0 ξ 0) Ia3-  (no. 206) 4 2a3, a1 + a2 + a3, 2a2 a– a– a–

8 (ξ –ξ 0 0 0 0) Pmna-  (no. 53) 2 a3. a1 – a2, a1 + a2 a0 b– b–

9 (0 0 0 ξ 0 0) Cmma-  (no. 67) 2 a1 + a2, a1 – a2, a3 a0 a0 c–

10 (0 0 0 0 ξ1 ξ2) P2/c-  (no. 13) 2 a2 – a3, a1, 2a3 a+ b– c–

11 (0 ξ1 0 ξ2 0 ξ3) Ibca-  (no. 73) 4 2a2, 2a3, a1 + a2 + a3 a– b– c–

12 (0 ψ ψ) I4/mmm-  (no. 139)7 4 2a1, 2a2, a1 + a2 + a3 a0 b+ b+

13 (ψ 0 0) P4/mbm-  (no. 127) 2 a1 – a2, a1 + a2, a3 a0 a0 c+ (no. 21)

14 (ψ ψ ψ) Im3-  (no. 204) 4 2a1, 2a2, a1 + a2 + a3 a+ a+ a+ (no. 3)

15 (ψ1 ψ2 ψ3) Immm-  (no. 71) 4 2a1, 2a2, a1 + a2 + a3 a+ b+ c+ (no. 1)

16 (η 0 0 0 0 0) Pmma-  (no. 51) 2 2a1, a2, a3 a0 b0 c+

17 (η η 0 0 0 0) Cmcm-  (no. 63) 2 a1, a2, 2a3 a0 b+ b+

18 (η 0 0 η 0 0) P4/nmm-  (no. 129) 4 2a3, 2a2, a1 a0 b+ b+

19 (0 0 η1 η2 0 0) P21/m-  (no. 11) 4 a1, 2a2, a3 a+ b+ c+

20 (0 0 0 ξ 0 0)(ϕ 0 0) Ccca-  (no. 68) 4 a1 – a2, a1 + a2, a3 a– b– c–

21 (0 ξ 0 0 ξ 0)(0 ϕ 0) P4/nbc-  (no. 133) 8 2a3, 2a1, 2a2 a– b– c–

22 (0 0 ξ –ξ 0 0)(ϕ 0 –ϕ) Pnna-  (no. 52) 4 2a2, a1 – a3, 2a3 a– b– c–

23 (0 ψ 0)(0 0 ξ –ξ 0 0) P21/c-  (no. 14) 2 a1 + a3, a1 – a3, a2 a+ b/–c c/–b

24 (ψ 0 –ψ)(0 ξ 0 0 –ξ 0) I4/m-  (no. 87) 4 2a1, 2a2, a1 + a2 + a3 a+ b/c c/b

25 (0 ψ 0)(0 0 0 ξ 0 0) C2/m-  (no. 12) 2 a1 + a3, a1 – a3, a2 a+ b+ c–

26 (0 0 ψ)(ξ1 0 0 ξ2 0 0) Ibam-  (no. 72) 4 2a1, 2a2, a1 + a2 + a3 a+ b– c–

27 (0 η 0 0 η 0)(0 ξ 0 0 ξ 0) P4/ncc-  (no. 130) 8 2a3, 2a1, 2a2 a–, b/c, c/b

28 (η 0 0 0 0 0)(0 0 0 ξ 0 0) Pcaa-  (no. 54) 4 2a3, a2, 2a1 a+ b– c–

29 (η1 0 0 0 η2 0)(0 0 ξ 0 0 0) Pbcm-  (no. 57) 4 a2, 2a1, 2a3 a+ b+ c–

30 (η1 0 0 η2 0 0)(0 0 ξ) Pmmn-  (no. 59) 4 2a1, 2a2, a3 a+ b+ c+

31 (0 0 η η 0 0)(0 0 ξ ξ 0 0 ) (0 ϕ 0) Pbcn-  (no. 60) 4 a1 + a3, a1 – a3, 2a2 a–, b/c, c/b

32 (0 0 0 η 0 0)(0 0 ξ 0 0 0) (0 ϕ 0) Cmca-  (no. 64) 4 a1 + a2, a1 – a2, 2a3 a+ b– c–

33 (0 0 0 η 0 0)(0 ψ 0)(ϕ 0 0) Cmcm-  (no. 63) 4 a1 + a2, a1 –a2, 2a3 a+ b+ c– (no. 17)

34 (0 η 0 0 η 0)(ψ 0 –ψ)(0 ϕ 0) P4/nmc-  (no. 137) 8 2a3, 2a1, 2a2 a+ b+ c–

35 (0 0 η η 0 0)(0 ψ 0)(ϕ 0 –ϕ) Pnma-  (no. 62) 4 a1 – a2, a1 + a2, 2a3 a/b b/a c+

Note: Designations for the order parameters are as follows: k10: τ10( ) = η, k11: τ5(M3) = ψ, τ9(M5) = ξ, and k13: τ8(R25) = ϕ. Notation

of representations in parentheses is given according to [17].

D4h
18

D3d
6

D2h
28

C2h
3

C2h
6

D4h
18

Th
7

D2h
7

D2h
21

C2h
4

D2h
27

D4h
1

D4h
5

Th
5

D2h
25

D2h
25

D2h
17

D4h
7

C2h
2

D2h
22

D4h
11

D2h
6

C2h
5

C4h
5

C2h
3

D2h
26

D4h
8

D2h
8

D2h
11

D2h
13

D2h
14

D2h
18

D2h
17

D4h
15

D2h
16

X5'
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e 1 

Secondary order parameters

(Φ', Φ', 0) (Φ'', Φ'', 0)
Φ', Φ'' ~ϕ3, 

,

(0, , ) (0, , )

,  ~ϕ1 ;

,  ~ ϕ2

Ε, (Ε, Ε)(Φ', 0, –Φ')(Φ'', 0, –Φ'')

Ε ~ ϕ2(  – );

Φ', Φ'' ~ ϕ1(  – )

(0, Ξ, 0)
Ξ ~ ξ2

(Ξ1, Ξ2, –Ξ2)
Ξ1 ~ ψ2; Ξ2 ~ ψ3

Φ1' Φ2' Φ1'' Φ2''

Φ1' Φ1'' ϕ2
2

Φ2' Φ2'' ϕ1
2

3

ϕ1
2 ϕ1

2 ϕ2
2

ϕ1
2 ϕ2

2

Table 2.  Atomic displacements and their relation to the order parameters for the low-symmetry phases presented in Tabl
Ph

as
e

Displacement A and B atoms X atoms

1 [1/2, 1/2 ,1/2] A: (b)(0, 1/2, 1/4)
B: (c)(0, 0, 0)

X1: (a)(0, 0, 1/4)
X2: (h)(x, 1/2 + x, 0), x = 1/4 + 1/8ϕ

2 [1/2, 1/2 ,1/2] A: (a)(1/4, 1/4, 1/4)
B: (b)(0, 0, 0,)

X: (e)(x,1/2 – x,1/4), x = 3/4 + 1/4ϕ

3 [0, –1/2, 0] A: (e)(0, 1/4, z), z = 3/4 + /4Φ'
B: (c)(1/4, 1/4, 1/4)

X1: (e) = (0, 1/4, z), z = 1/4 + 1/4ϕ + 1/4Φ''
X2: (f) = (x, 0, 0), x = 1/4 – 1/8 ϕ + 1/8Φ''

4 [0, 1/2, 0] A: (i)(x, 0, z), x = 1/4 + /8  – 1/8 ,

z = /4
B: (b)(0, 1/2, 0)

X1: (g)(0, y, 0), y = 3/4 – 1/8ϕ1 + 1/8

X2: (h)(0, y, 1/2), y = 1/4 + 1/8ϕ2 + 1/8

X3: (i) = (x, 0, z), x = 1/4 – 1/8ϕ1 – 1/8ϕ2 – 1/8  + 1/8

z = 1/2 + 1/4ϕ1 + 1/4

5 [0, 1/2, 0] A: (e)(0, y, 1/4), y = /4Φ'
B: (b)(0, 1/2, 0)

X1: (f)(x, y, z), x = 1/4 – 1/8ϕ2 + 1/4Ε, y = 1/4 – 1/8ϕ2 – 1/4
z = 1/2 + 1/8ϕ1 + 1/8Φ''
X2: (e)(0, y, 1/4), y = 1/4ϕ1 – 1/4Φ''

6 [0, 0, 0] A1: (c)(0, 0, 0)
A2: (d)(0, 1/2, 0)
B: (e)(1/4, 1/4, 1/4 )

X1: (j)(x, 0, 1/4), x = 1/4 + 1/8Ξ
X2: (h)(x, 1/2 + x, 0), x = 3/4 – /8ξ

7 [0, 0, 0] A: (a) (0, 0, 0)
B: (b) (1/4, 1/4, 1/4 )

X: (d)(x 0 1/4), x = 1/4 + /8ξ

8 [0, 0, 0] A: (a)(0, 0, 0)
B: (c)(1/2, 1/2, 0)

X1: (b)(1/2, 0, 0)
X2: (g)( 1/4, y, 1/4), y = 1/2 – /4ξ

9 [0, 0, 0] A: (c)(0, 0, 0)
B: (f)(1/4, 1/4, 1/2 )

X1: (e)(1/4, 1/4, 0 )
X2: (g) (0, 1/4, z), z = 1/2 + /4ξ
X3: (b)(1/4, 0, 1/2 )

10 [0, 0, 0] A: (a)(0, 0, 0)
B: (b)(1/2, 1/2, 0)

X1: (f) = (1/2, y, 1/4), y = 1/2 + /4ξ2
X2: (e) = (0, y, 1/4), y = 1/2 + /4ξ1
X3: (d) = (1/2, 0, 0)

11 [0, 0, 0,] A: (b) (0, 0, 0)
B: (a) (1/4, 1/4, 1/4 )

X1: (c)(x, 0, 1/4). x = 1/4 + /8ξ3
X2: (e)(0, 1/4, z), z = 1/4 + /8ξ1
X3: (d)(1/4, y, 0), y = 1/4 + /8ξ2

12 [–1, 0, 0] A1: (c)(0, 1/2, 0)
A2: (a)(0, 0, 0)
A3: (b)(0, 0, 1/2)
B: (f) (1/4, 1/4, 1/4 )

X1: (h)(x, x, 0), x = 3/4 – 1/8ψ + 1/8Ξ2
X2: (n)(x, 0, z), x = 3/4 + 1/8Ξ1, z = 1/4 – 1/8ψ – 1/8Ξ2

13 [–1/2, –1/2, 0] A: (d)(0, 1/2, 0)
B: (b)(0, 0, 1/2)

X1: (a)(0, 0, 0)
X2: (h)(x, 1/2 + x, 1/2), x = 3/4 + 1/8ψ

2

2 Φ1' Φ2'

2 Φ2'

Φ1''

Φ2''

Φ1'' Φ2''

Φ1''

2

2

2

2

2

2
2

2
2
2
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Secondary order parameters

(0, Ξ, 0)
Ξ ~ ψ2

/8Ξ3
1/8Ξ3
/8Ξ2

(Ξ1, Ξ2, Ξ3)
Ξ1 ~ ψ2ψ3; Ξ2 ~ ψ1ψ3; Ξ3 ~ ψ1ψ2

(Ξ, 0, 0)
Ξ ~ η2

(Φ', 0, 0)(Φ'', 0, 0)
Φ', Φ'' ~ ξ2ϕ

(Ξ, 0, 0)
Ξ ~ ξ2

(Φ', 0, Φ')(Φ'', 0, Φ'')
Φ', Φ'' ~ ξ2ϕ

(0, Ω, 0)
Ω ~ ψξ2

 1/8Ξ1 (Ξ1, Ξ2, Ξ1)(0, Ω, 0)
Ξ1 ~ ψ3, ψξ2; Ξ2 ~ ψ2, ξ2;
Ω ~ ψξ2

(0, Ξ, 0)
Ξ ~ ψξ2
Table 2.  (Contd.)
Ph

as
e

Displacement A and B atoms X atoms

14 [0, 0, 0] A1: (a)(0, 0, 0)
A2: (b)( 0, 1/2, 1/2)
B: (c) (1/4, 1/4, 1/4)

X: (g)(0, y, z), y = 1/4 + 1/8ψ + 1/8Ξ, z = 1/4 – 1/8ψ + 1/8Ξ

15 [0, 0, 0] A1: (a)(0, 0, 0)
A2: (b)(0, 1/2, 1/2)
A3: (d)(1/2, 0, 1/2)
A4: (c)(1/2, 1/2, 0)
B: (k) (1/4, 1/4, 1/4 )

X1: (n)(x, y, 0), x = 1/4 – 1/8ψ2 + 1/8Ξ2, y = 1/4 + 1/8ψ3 + 1
X2: (m)(x, 0, z), x = 1/4 + 1/8ψ1 + 1/8Ξ1, z = 1/4 – 1/8ψ3 + 
X3: (l)(0, y, z), y = 1/4 – 1/8ψ1 + 1/8Ξ1, z = 1/4 + 1/8ψ2 + 1

16 [–1/2, 0, 0] A: (e)(0, 0, z), z = /4η'
B: (d)(0, 1/2, 1/2)

X1: (b)(0, 1/2, 0)
X2: (c)(0, 0, 1/2)
X3: (f)(1/4, 1/2, z), z = 1/2 + /4η''

17 [0, 0, –1/2] A: (c)(0, y, 1/4), y = – /4η'
B: (b)(1/2, 0, 0)

X1: (c)(0, y, 1/4), z = 1/2 – /4η''
X2: (d)(1/4, 1/4, 0)

18 [0, 0, 0] A1: (a)(0, 0, 0)
A2: (c)(0, 1/2, z), z = /2η'
B: (e)(1/4, 1/4, 1/2)

X1: (i)(0, y, z), y = 1/4 + 1/8Ξ, z = 1/2 + /4η''
X2: (d)(1/4, 1/4, 0)

19 [0, 1/2, 0] A: (e)(x, 1/4, z), x = – /4 ,
z = /2
B: (d)(1/2, 0, 1/2)

X1: (b)(1/2, 0, 0)
X2: (e)(x, 1/4, z), x = 1/2 – /4 , z = 1/2 + /4
X3: (c)(0, 0, 1/2)

20 [–1/2, 0, 0] A: (f)(0, y, 0), y = 3/4 + /8Φ'
B: (c) (1/4, 0, 1/4 )

X1: (e)(x, 0, 0), x = 1/4 + 1/8ϕ + 1/8Φ''
X2: (g)(0, 0, z), z = 1/4 – 1/8ϕ + 1/8Φ''
X3: (h)(1/4, 1/4, z), z = 3/4 – /8ξ

21 [–1, 0, 0] A1: (c)(0, 1/2, 0)
A2: (d)(0, 0, 0)
B: (e) (1/4, 1/4, 1/4 )

X1: (h)(x, 0, 1/4), x = 3/4 – 1/8ϕ + 1/8Ξ
X2: (i)(x, 0, 3/4), x = 3/4 + 1/8ϕ + 1/8Ξ
X3: (j)(x, 1/2 + x, 0), x = 3/4 + /8ξ

22 [0, –1/2, 0] A: (c)(1/4, 0, z), z = – /4Φ'
B: (b)(0, 0, 1/2)

X1: (d)(x, 1/4, 1/4), x = /8ξ + 1/8ϕ + 1/8Φ''
X2: (d)(x, 1/4, 1/4), x = 1/2 + /8ξ – 1/8ϕ – 1/8Φ''
X3: (c)(1/4, 0, z), z = 1/2 + 1/4ϕ – 1/4Φ''

23 [0, 0, 0] A: (a)(0, 0, 0)
B: (d)(1/2, 0, 1/2)

X1: (e)(x, y, z), x = 1/2 + /4ξ, y = 1/4 – 1/8ψ +1/8Ω,
z = 1/4 – 1/8ψ – 1/8Ω
X2: (c)(0, 0, 1/2)

24 [0, 0, 0] A1: (a)(0, 0, 0)
A2: (c)(0, 1/2, 0)
A3: (b)(0, 0, 1/2)
B: (f) (1/4, 1/4, 1/4 )

X1: (i)(x, y, z), x = 1/4 + 1/8Ξ2, y = –1/8Ω, z = 1/4 – 1/8ψ +
X2: (h)(x, y, 0), x = 1/4 – /8ξ + 1/8ψ + 1/8Ξ1,
yh = 1/4 + /8ξ + 1/8ψ + 1/8Ξ1

25 [0, 0, 0] A1: (a)(0, 0, 0)
A2: (b)(0, 1/2, 0)
B: (f)(1/4, 1/4, 1/2)

X1: (h)(0, y, 1/2), y = 1/4 – 1/8ψ + 1/8Ξ
X2: (e)(1/4, 1/4, 0)
X3: (i)(x, 0, z), x = 1/4 + 1/8ψ + 1/8Ξ, z = 1/2 + /4ξ

2

2

2 2

2
2

2 η2'
2 η1' 2 η2'' 2 η1''

2

2

2

2 2
2

2

2
2

2
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Secondary order parameters

(Ξ, 0, 0)
Ξ3 ~ ξ1ξ2

'' (Ξ, 0, 0)(Ε, Ε)
Ξ ~ η2, ξ2; Ε ~ ηξ

(Ξ, 0, 0)
Ξ ~ η1η2

Ε, (Ε, Ε)
Ε ~ ηξ

(0, 0, Φ')(0, 0, Φ'')
Φ', Φ'' ~ ηξ , η2ϕ, ξ2ϕ

η'' (Ξ, 0, 0)(0,Φ', 0)(0, Φ'', 0)
Ξ ~ ηξ ; Φ', Φ'' ~ ηψ, η2ϕ, ψ2ϕ

8ψ + 1/8Ξ1
ψ – 1/8Ξ1

(Ξ1, Ξ2, Ξ1)
Ξ1 ~ ηϕ ; Ξ2 ~ η2, ψ2

/8Φ'',
(0, Ω, 0)(Φ', 0, Φ')(Φ'', 0, Φ'')
Ω ~ η2ψ; Φ', Φ'' ~ ηψ, η2ϕ, ψ2ϕ

e list of expansions of the mechanical representation

10 ( ) = η, which is twice included in the mechan-

s for the secondary order parameters are as follows:

cording to [17].

3

3

X5'
Table 2.  (Contd.)
Ph

as
e

Displacement A and B atoms X atoms

26 [0, 0, 0] A1: (c)(0, 0, 0)
A2: (d)(1/2, 0, 0)
B: (e) (1/4, 1/4, 1/4 )

X1: (j)(x, y, 0), x = 1/4 + /8ξ2, y = 1/4 + /8ξ1
X2: (f)(x, 0, 1/4), x = 1/4 + 1/8ψ + 1/8Ξ
X3: (g)(0, y, 1/4), y =  1/4–1/8ψ + 1/8Ξ

27 [0, 1/2, 0] A1: (a)(0, 0, 1/4)
A2: (c)(0, 1/2, z), z = 1/4 – /4 η'
B: (d)(1/4, 1/4, 0)

X1: (g)(x, y, z), x = 1/4Ε, y = 1/4 + 1/8Ξ, z = 1/2 – /8η
X2: (f)(x, x, 1/4), x = 1/4 + /8ξ

28 [1/2, 0, 1/2] A: (d)(1/4, 0, z), z = 1/4 + /8η'
B: (b)(1/2, 1/2, 1/2)

X1: (e)(1/4, 1/2, z), z = 1/2 + /8η''
X2: (a)= (0, 0, 0)
X3: (c)(0, y, 1/4), y = 1/2 – /4ξ

29 [1/2, 0, 1/2] A: (d)(x, y, 1/4), x = /4 ,
yd = 1/4 + /8
B: (b)(1/2, 0, 0)

X1: (d)(x, y, 1/4), x = 1/2 + /2ξ, y = 1/2 + /8
X2: (a)(0, 0, 0)
X3: (c)(x, 1/4, 0), y = 1/2 + /84

30 [0, 0, 0] A1: (a)(0, 0, z), z = /4  – /4

A2: (b)(0, 1/2, z), z = – /4  – /4
B: (d)(1/4, 1/4, 1/2)

X1: (c)(1/4, 1/4, 0)

X2: (f)(x 0 z), x = 1/4 + 1/8ψ + 1/8Ξ, z = 1/2 + /4

X3: (e)(0, y, z), x = 1/4 – 1/8ψ + 1/8Ξ, z = 1/2 – /4

31 [0, 1/2, 0] A: (c)(0, y, 1/4), y = – /4η'
B: (b)(0, 1/2, 0)

X1: (d)(x, y, z), x = 1/4 – 1/8ϕ + 1/4Ε, y = 1/4 –1/8ϕ – 1/4
zd = 1/2 + /8ξ
X2: (c)(0, y, 1/4), y = 1/2 – /4η''

32 [0, 0, –1/2] A: (f)(0, y, z), y = – /8η',
z = 3/4 + /8Φ'
B: (c)(1/4, 1/4, 0)

X1: (e)(1/4, y, 1/4), y = 3/4 + /8η''
X2: (d)(x, 0, 0), x = 1/4 + 1/8ϕ + 1/8Φ''
X3: (f)(0, y, z), y = 1/4 –1/8ϕ + 1/8Φ'', z = /8ξ

33 [0, 0, –1/2] A1: (c)(0, y, 1/4), y = /8η' – /8Φ'
A2: (c)(0 y 1/4), y = 1/2 + /8η' + /8Φ'
B: (d)(1/4, 1/4, 0)

X1: (g)(x, y, 1/4), x = 1/4 + 1/8ϕ – 1/8Φ2, y = 1/4 + /8
X2: (e)(x, 0, 0), x = 1/4 + 1/8ψ + 1/8Ξ
X3: (f)(0, y, z), y = 1/4 –1/8ψ + 1/8Ξ, z = 1/8ϕ + 1/8Φ''

34 [0, 0, 0] A1: (a)(0, 0, 0)
A2: (b)(0, 0, 1/2)
A3: (d)(0, 1/2, z), z = – /4η'
B: (e)(1/4, 1/4, 1/4)

X1: (g)(0, y, z) , y = 1/4 – 1/8ϕ + 1/8Ξ2, z = 1/4 – /8η'' – 1/
X2: (g)(0, y, z), y = 1/4 + 1/8ϕ + 1/8Ξ2, z = 3/4 – /8η'' + 1/8
X3: (f)(x, x, 0), x = 1/4 + 1/8ψ + 1/8Ξ1

35 [0, 1/2, 0] A: (c)(x, 1/4, z), x = – /4η',
z = /4Φ'
B: (b)(0, 0, 1/2)

X1: (c)(x, 1/4, z), x = – /4η'', z = 1/2 – 1/4ϕ + 1/4Φ''
X2: (d)(x, y, z), x = 1/4 – 1/8ψ + 1/8Ω, y = 1/2 + 1/8ϕ + 1
z = 1/4 – 1/8ψ – 1/8Ω

Note: The last column contains the remaining order parameters (not presented in Table 1 and nonzero in each phase) from the complet
in terms of irreducible representations (1) for the X position in the perovskite structure. For the irreducible representation k10: τ
ical representation, the order parameters are designated as η' and η''. In the last column, η denotes both η' and η''. Designation

k13: (R15) = Φ', Φ'', τ6 ( ) = E, k11: τ1(M1) = Ξ, and τ3(M3) = Ω. Notation of representations in parentheses is given ac

2 2

2
2

2

2 2

2

2 η2'
2 η1'

2 2 η1''

2 η2''

2 η1' 2 η2'

2 η1' 2 η2'
2 η1''

2 η2''

2
2

2

2
2

2

2

2 2
2 2

2

2

2
2

2
2

2

τ10
1 2,

R12'



26 SHIROKOV, TORGASHEV
Table 3.  Phases of tilting about the b position which cannot be described as displacements of oxygen atoms 

Phase Order parameters Space group V'/V Translations of the 
primitive cell

Tilting notation
according to [1]

1 (0 µ µ) P4/nbm-  (no. 134) 4 2a1, 2a2, a3 a0 b– b–

2 (µ µ µ) Pn3n-  (no. 222) 8 2a1, 2a2, 2a3 a– a– a–

3 (0 µ 0) P4/mcc-  (no. 124) 2 a1, 2a2, a3 a0 a0 c–

4 (0 λ 0) P4/m-  (no. 83) 1 a1, a2, a3 a0 a0 c+

5 (λ λ λ) R =  (no. 148) 1 a1, a2, a3 a+ a+ a+

6 (λ λ 0) C2/m-  (no. 12) 1 a1, a2, a3 a0 b+ b+

7 (λ1 λ2 λ3) P -  (no. 2) 1 a1, a2, a3 a+ b+ c+

8 (µ µ 0)(η 0 0 –η 0 0)(λ 0 0) P4/n-  (no. 85) 4 a1, 2a2, 2a3 a+ b/c c/b

9 (µ 0 0)(η 0 0 0 0 0)(λ 0 0) P2/c-  (no. 13) 2 a1, a2, 2a3 a+ b+ c–

10 (µ1 0 µ2)(0 ψ 0) Pcna-  (no. 50) 4 2a1, a2, 2a3 a+ b– c–

11 (µ1 µ2 µ1)(ψ 0 –ψ) P4/nnc-  (no. 126) 8 2a1, 2a2, 2a3 a– b/–c c/–b

12 (0 µ 0)(0 0 η η 0 0)(λ 0 –λ) C2/c-  (no. 15) 2 a1, 2a2, a3 a+ b+ c–

Note: Designations for the order parameters are as follows: k10: τ2( ) = µ, k10: τ10 ( ) = η, k11: τ5(M3) = ψ, and k12 = 0: τ9 ( ) = λ.
Notation of representations in parentheses is given according to [17]. 

D4h
12

Oh
2

D4h
1

C4h
1

3 C3i
2

C2h
3

1 Ci
1

C4h
3

C2h
4

D2h
4

D4h
4

C2h
6

X1' X5' Γ15'

Table 4.  Order parameters calculated for phase 35 (space group Pnma) from structural data obtained by different authors (the
phase numbering is the same as Tables 1, 2) 

Crystal
Order parameter

ϕ ψ η ' η'' Ξ Φ' Φ''

CdTiO3–300 K [21] 0.369 0.384 –0.109 0.079 0.009 –0.024 0.008

GdGaO3 [22] 0.386 0.396 –0.168 0.078 0.005 –0.042 0.006

LaTiO3 [23] 0.326 0.332 –0.133 0.019 –0.072 –0.021 0.010

CaTiO3–298 K [24] 0.283 0.267 –0.093 0.03 –0.0064 –0.020 –0.006

SrHfO3–300 K [25] –0.26 0.24 0.0453 –0.0396 0.0088 0.0113 –0.008

SrZrO3–273 K [26] –0.283 0.273 0.068 –0.038 0.004 0.011 –0.008

PrNiO3 [27] 0.283 0.231 –0.083 0.015 –0.032 –0.011 –0.013

SrRuO3–300 K [20] 0.182 0.213 –0.046 0.010 –0.001 –0.004 –0.022

SrRuO3–573 K [19] 0.002 –0.157 –0.037 0.004 0.001 0.001 –0.190

SrRuO3–673 K [19] 0.002 0.002 0.008 0.017 –0.164 0.002 –0.178

SrRuO3–773 K [19] 0.005 –0.008 0.0003 0.006 –0.001 0.002 –0.157

Note: Designations for the order parameters are as follows: k10: ( ) = η', η'', k11: τ1 (M1) = Ξ, τ5(M3) = ψ, k13: τ8(R25) = ϕ,

(R15) = Φ', Φ''. Capital letters stand for the secondary order parameters. Notation of representations in parentheses is given

according to [17].

τ10
1 2,

X5'

τ10
1 2,
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A similar analysis of the rotations was performed on
the basis of the complete set of order parameters (1)
instead of set (3). In this case, we revealed 12 additional
low-symmetry phases whose parameters are listed in
Table 3. These phases are described by the order param-
eters not included in set (2). Consequently, the rotations
associated with these phases cannot occur through dis-
placements of oxygen atoms in the perovskite structure.
However, these phases can also be treated as phases of
tilting about the b position. This is confirmed by the tilt-
ings presented in the last column of Table 3 and deter-
mined using the method proposed in [1]. Moreover, this
circumstance indicates the ambiguity of the Glazer
notation [1], as applied to the description of the possi-
ble low-symmetry tilting phases.

Phases 1–19 are described by the order parameters
transformed according to one irreducible representa-
tion. An analysis of phases 26, 29, and 30 demonstrates
that they can also be considered as phases with one
order parameter. In this case, the order parameters ϕ, ξ,
and ψ, respectively (see Table 1), should be treated as
secondary order parameters. The remaining phases are
described by two order parameters. It was also estab-
lished that, among the three order parameters given in
Table 1, any pair of parameters can be chosen for
phases 31–35. This implies that the order parameter
consisting of any two irreducible representations for
phases 31–35 (Table 1) is sufficient for describing the
symmetry of phases. The third order parameter for
these phases is the secondary order parameter.

Let us now illustrate the results obtained. For this
purpose, we consider the order parameters for the phase
with space group Pnma. The order parameters calcu-
lated according to Table 2 from structural data are listed
in Table 4. As can be seen from Table 4, the largest val-
ues are obtained for the order parameters ϕ and ψ; it is
these parameters that are commonly used as order
parameters [9]. For CdTiO3, GdGaO3, and LaTiO3
crystals, the order parameter η1 is large compared to the
secondary order parameters. Although, as was noted
above, these two order parameters are sufficient for
describing the symmetry of the phase, the large contri-
bution of the order parameter η1 can lead to qualita-
tively new results in the description of the properties of
these crystals under external actions. It should be noted
that there is a considerable scatter in the order parame-
ters determined for SrRuO3 crystals from the results
obtained by Kennedy and Hunter [19]. These values of
order parameters are not typical of the phase with space
group Pnma. Most likely, this can be explained by the
large error in determining the structural characteristics
(compare with the order parameters calculated for
SrRuO3 crystals from the data reported by Chakouma-
kos et al. [20] and also with the order parameters for
other crystals in Table 4).

The tilting structures in perovskites can be consid-
ered a manifestation of the cooperative Jahn–Teller
effect in the following context. Local octahedral sym-
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
metry of the central atom B leads to splitting of the
atomic levels of d electrons into the T2g and Eg levels. In
the case when the number of d electrons involved in the
formation of a bond is no more than four, the T2g state
has the lowest energy [28]. Symmetry T2g corresponds
to symmetry of rotation about the b position in the per-
ovskite structure. For a triply degenerate T2g level, the
interaction with atomic vibrations results in the
removal of the degeneracy; i.e., the Jahn–Teller effect
manifests itself in the form of a structural distortion.
For energy levels of the phonon subsystem, which are
described by irreducible representations (3), the inter-
action with d electrons is strongest due to the linear
invariants. The data on the possible lowering of sym-
metry are presented in Table 1. For phases 1 and 13, the
local states of electrons in the octahedral environment
can be doubly degenerate (the position has symmetry
C4h). For these states, the structure will undergo a fur-
ther distortion; i.e., these phases are intermediate. The
remaining irreducible representations, namely, τ2(k10)
and τ9(k12), which are involved in representations (1),
do not describe the phonon subsystem. The states asso-
ciated with these energy levels can arise without a dis-
tortion of the perovskite structure. However, the above
interpretation of the tilting structures in each specific
case should be used with caution, because, within this
approach, the role played by the A atom in the forma-
tion of the low-symmetry phases is disregarded. Most
likely, this transformation can occur with distortions in
which the B atoms become nonequivalent [4].
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Abstract—The critical temperatures and thermodynamic characteristics for the displacive phase transition

   in crystals of the elpasolite family Rb2KBF6 (B = Sc, In, Lu) and for the successive phase tran-

sitions     I   (I is the incommensurate phase) in crystals of the selenate potassium
family have been calculated. The calculations were carried out using the effective Hamiltonian method. The
Hamiltonian parameters for the elpasolite-like crystals were determined from ab initio calculations, and those
for the crystals of the selenate potassium family were found using a small number of fitting parameters. © 2004
MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Investigation of structural phase transitions is a fun-
damental problem of solid-state physics. Although a
large number of experimental and theoretical studies
were devoted to this problem, it is still of interest.

It is generally accepted to divide structural phase
transitions in crystals into two groups characterized by
different mechanisms: displacive and order–disorder
transitions. At displacive transitions in the low-temper-
ature phase, atoms are slightly displaced relative to
their equilibrium positions in the high-temperature
phase. In the middle of the last century, Cochran and
Anderson [1, 2] attributed such phase transitions to the
instability of crystals with respect to some of their nor-
mal vibrational modes in the high-temperature phase
(the so-called soft modes). The soft-mode frequency is
characterized by a critical temperature dependence and
becomes zero at the transition point. The displacements
of atoms in the low-temperature phase represent “fro-
zen” displacements of soft-mode vibrations.

Order–disorder phase transitions are caused by the
ordering in the low-temperature phase of some atoms
or molecules, which are disordered in high-temperature
phase with respect to several equiprobable equilibrium
positions. In this case, displacements of atoms with
respect to the equilibrium positions cannot be consid-
ered small, and the concept of the soft mode of lattice
vibrations is less useful. Ising-like models are more
1063-7745/04/4901- $26.00 © 20029
appropriate for describing order–disorder phase transi-
tions. In these models, a new variable (the pseudospin)
is assigned to a structural element subjected to order-
ing, which describes the motion of this element in the
crystal potential.

Most microscopic models describing structural
phase transitions use the model Hamiltonian

(1)

where H1 = (ui) is the one-particle Hamiltonian
and Hint is the interaction Hamiltonian. The properties
of a system described by the Hamiltonian H1 depend on
the form of the single-particle potential V(ui). The
model Hamiltonian can be characterized by two energy
parameters: the height of the local potential barrier ∆
(in the single-particle potential) and the binding energy
J for atoms located in different potential wells. In this
case, the type of system under study is determined by
the dimensionless parameter S = ∆/J. The case S @ 1
corresponds to order–disorder transitions. Each atom is
located near the bottom of some potential well until the
temperature becomes of the same order of magnitude as
∆ and jumps between wells become possible. A phase
transition in such a system is related to collective well-
to-well motion, whereas the motion of atoms in poten-
tial wells can be disregarded. This is the situation con-
sidered in the Ising model. On the contrary, in the case
corresponding to displacive transitions (S ! 1),

H H1 H int,+=

V∑
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intrawell motion of atoms is dominant and their collec-
tive behavior has a phonon character.

The two above cases (single- and double-minimum
potentials) are extreme ones. Other situations may
occur in the case of real compounds when the single-
particle potential may be, for example, multiminimum.
Such a situation can be described in terms of an Ising-
like model, where the pseudospin variable takes several
(more than two) values, in accordance with the number
of potential minima. Crystals of the selenate potassium
family with the general formula ÄëÇï4 present an
example of such systems. In these compounds, the ion
groups Çï4 are regular tetrahedra, which have up to 12
equiprobable equilibrium positions in the high-temper-
ature phase. In crystals of this family, successive phase
transitions are realized via partially ordered phases,
including incommensurate ones. This is the feature that
attracts the attention of researchers. ÄÇï3 crystals with
perovskite structure, as well as related Ä2ÇÇ3+ï6 crys-
tals with elpasolite structure, are examples of systems
with displacive transitions.

We present below the calculations of the static prop-
erties and the thermodynamics of the displacive phase
transition by an example of Rb2KB3+F6 (B = Sc, In, Lu)
crystals and the order–disorder transition by an exam-
ple of three crystals of the selenate potassium family:
Rb2ZnCl4, K2SeO4, and K2SO4.

DISPLACIVE PHASE TRANSITIONS

Phase transitions in Ä2ÇÇ3+ï6 crystals, which
belong to the elpasolite family, are due to the instability
of crystal lattice in the high-symmetry cubic phase; the
soft mode of normal vibrations is related in most crys-
tals either to the rotation of the Çï6 octahedron or to
the combination of the octahedron rotations and dis-
placements of ion A. Apparently, such an instability of
lattice with respect to normal vibrations is a character-
istic feature of perovskite-like compounds.

80i
XΓ W K Γ L

60i

40i

20i

0
ω, cm–1

Fig. 1. Unstable part of the spectrum of Rb2KB3+F6 crys-
tals. B = Sc (solid line), In (dotted line), and Lu (dot-dashed
line).
C

The equilibrium properties, lattice dynamics, and
phase transitions for a number of crystals of the elpaso-
lite family were calculated in [3–6] in terms of the gen-
eralized Gordon–Kim model [7], with regard to the
deformability and dipole polarizability of ions. We rep-
resent here more detailed results of such calculations
for three isomorphous crystals Rb2KB3+F6 (B = Sc, In,
Lu). The structure of these crystals in the high-temper-

ature phase is cubic with the sp. gr.  and with one
molecule in the unit cell. Under cooling, crystals
undergo two successive structural phase transitions:

first, to the tetragonal phase with the sp. gr.  without
changing the unit-cell volume and, second, to the mon-

oclinic phase with the sp. gr.  and two molecules
per unit cell. As the structural investigations of low-
temperature phases show [8], distortions of the cubic
structure in the tetragonal phase are related mainly to
rotations (uniform over the total crystal volume) of
Ç3+ï6 octahedra. Distortions in the monoclinic phase
are due to nonuniform rotations of octahedra and dis-
placements of Rb ions from equilibrium positions of
the tetragonal phase.

The entire spectrum of lattice vibrations for these
crystals was calculated in [5, 6]. The vibrational spectra
of all three crystals contain soft modes. Figure 1 shows
the unstable part of the spectra of the crystals. As can be
seen, the most unstable modes belong to the vibrational
branch between the points Γ(q = (0, 0, 0)) and X(q =
(2π/a0, 0, 0)) of the Brillouin zone. At the point Γ, the
mode T1g of this branch is triply degenerate. Along the
directions Γ–X, Γ–Y, and Γ–Z, including the boundary
points, the low-lying modes are nondegenerate. Vibra-
tions in which fluorine ions are displaced correspond to
the triply degenerate mode at q = 0 and to the nonde-
generate modes along the directions Γ–X, Γ–Y, and Γ–

Z. The displacements of fluorine ions  in these
modes are related as follows:

(2)

These displacements lead to the rotation of the Ç3+ï6
octahedron.

Under cooling, the transition to the tetragonal phase
occurs first in the crystals under consideration. This
transition is related to the condensation of one compo-
nent of the triply degenerate soft mode T1g at the center
of the Brillouin zone, which corresponds to the rotation
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of the Ç3+ï6 octahedron around one of the principal
axes of the cubic lattice. The calculated spectrum of the
frequencies of lattice vibrations in the tetragonal phase,
with the coordinates of fluorine ions corresponding to
their displacements along the eigenvector of the T1g

mode (2), also contains unstable modes. Analysis of the
eigenvectors of unstable modes shows that there are no
vibrational modes in the tetragonal phase, in which dis-
placements of ions would correspond only to rotation
of the Ç3+ï6 octahedron. In the most unstable mode at
the boundary point X of the Brillouin zone, four F– ions
and Rb+ ions are displaced:

(3)

These displacements lead to monoclinic distortion of
the tetragonal phase with doubling of the unit-cell vol-
ume, which corresponds to the second experimentally
observed phase transition to the monoclinic phase

(   ). The calculated spectrum of the fre-
quencies of lattice vibrations for the monoclinic phase
with the coordinates of ions, corresponding to the dis-
placements described by (3), contains no unstable
vibrational modes. Thus, the calculation of the phonon
spectra for the crystals under consideration shows that
the phase transitions in these crystals are related to rota-
tions of Ç3+ï6 octahedra.

In order to calculate the temperature behavior of
Rb2KB3+F6 crystals, we will write the effective Hamil-
tonian in accordance with the scheme proposed in [9],
taking into account only the degrees of freedom related
to unstable modes (2) (the local-mode approximation).
The local mode we use can be written as

(4)

where  is the amplitude of displacement of the kth F
atom from (2) and a0 is the calculated lattice parameter
for the cubic phase. The symmetry operations of the
cubic phase transform the local mode (Sx, Sy, Sz) as a
pseudovector. The pseudovector is placed at the sites of
the fcc lattice. Now, taking into account the transforma-
tion properties of the local mode and the fcc lattice,
which are subjected to the symmetry operations of the
cubic phase, we can write the microscopic effective
Hamiltonian. The expression for the total effective
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Hamiltonian is given in [3–6]. For brevity, we present
here the formal expression:

(5)

Here, the anharmonic terms are included only into the
single-particle Hamiltonian; all the fourth-order terms
(the coefficients B and C) and some of the sixth-order
terms (the coefficient D) are taken into account. A is the
coefficient at the harmonic terms of the single-particle
Hamiltonian. The pair interactions between the local
modes are taken into account within the first (coeffi-
cients a1, a2, a3) and second (coefficients b1, b2) coordi-
nation spheres. The interaction between the local mode
and uniform strains en (coefficients g1 and g2) is also
taken into account. Cnn are the elastic constants of the
crystal. It should be noted that the local mode S is non-
polar. Hence, long-range dipole–dipole interactions can
be disregarded. The procedure of determining the
parameters of Hamiltonian (5) is described in detail in
[5, 6]. Table 1 lists the parameters of the effective
Hamiltonian for all three crystals under consideration.

The thermodynamics of the phase transition with
the derived effective Hamiltonian was studied by the
Monte Carlo method [3–6]. The conventional Metrop-

H1 A Siα
2{ } B Siα

4{ } C Siα
2 Siβ

2{ } D Siα
6{ } ,+ + +=

H ak SiαSi 1β+{ } bk SiαSi 1β+{ }+=

+ gk enSiαSiβ{ } Cnn' enen'{ } .+

Table 1.  Parameters of the effective Hamiltonian (eV)

Rb2KScF6 Rb2KInF6 Rb2KLuF6

One-site parameters

A 4.10 3.09 13.82

B 2.44 × 103 1.40 × 103 1.35 × 103

C 2.63 × 103 2.25 × 103 2.21 × 103

D –40.70 × 103 –0.73 × 103 –1.16 × 103

Interstitial parameters

a1 –4.33 –5.39 –7.59

a2 –0.03 –0.05 0.10

a3 1.87 0.63 2.71

b1 –0.00 –1.35 –1.90

b2 –2.17 –1.35 –1.90

Coefficients of coupling with uniform strains

g1 118.5 39.88 53.00

g2 –23.6 –15.92 –21.20

Elastic constants

C11 50.0 53.6 68.6

C12 12.8 11.7 18.7

C44 18.2 9.5 3.4

Transition temperature

Tcalcd (K) 250 550 660

Texper (K) 252 283 360
4
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olis procedure [10] for the fcc 10 × 10 × 10 lattice in
size with periodic boundary conditions was used. A
three-component pseudovector (Sx, Sy, Sz) was located
in each lattice site, the entire lattice being in a field of
uniform strains (e1, e2, e3). The calculated temperature
dependences of the components Sx, Sy, Sz and the spe-
cific heat are shown in Fig. 2. The phase-transition tem-
peratures, determined from the peak positions on the
temperature dependences of the specific heat (Fig. 2b),
amounted to íÒ = 250, 550, and 660 K for Rb2KScF6,
Rb2KInF6, and Rb2KLuF6, respectively. At these tem-
peratures, the second-order phase transition to the dis-
torted phase with the pseudovector Sz = S, Sx = Sy = 0
(Fig. 2a) occurs in the crystals under study. This phase
has the tetragonal symmetry, the same unit-cell volume

as the cubic phase, and the sp. gr.  (which is
observed experimentally in these crystals). The calcu-
lated value of the transition temperature for Rb2KScF6
is almost the same as the experimental value (252 K
[8]), whereas the calculated transition temperatures for
Rb2KInF6 and Rb2KLuF6 exceed the corresponding
experimental values (283 and 360 K, respectively [8])
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Fig. 2. Calculated temperature dependences for Rb2KB3+F6
crystals: (a) order parameter in the tetragonal phase and
(b) specific heat. B = Sc (solid line), In (dotted line), and Lu
(dot-dashed line). The filled circle indicates the experimen-
tal value of Sz from the structural data on Rb2KScF6 at T =
240 K [8].
C

by nearly a factor of two. Primarily, the discrepancy
may be related to the insufficient accuracy of the
method of calculating the total energy of a crystal and
the spectrum of lattice vibrations, which was used in
this study. In the above approach, the error in calculat-
ing these values is about 5%, which exceeds the error of
ab initio methods. At the same time, the phase-transi-
tion temperature is very sensitive to specific features of
microscopic interactions. The parameters of the effec-
tive Hamiltonians for somewhat varied structures of
Rb2KInF6 crystals were calculated in [5, 6], and the
phase-transition temperatures were found with the use
of these Hamiltonians. It was shown in [5, 6] that small
changes (~4%) in the positions of ions in a crystal lat-
tice significantly change the value of TÒ.

Figure 3 shows the experimental and calculated
temperature dependences of the components of the
elastic-strain tensor e1 = e2, e3 in the tetragonal phase.
The quantitative agreement between the calculated and
experimental values is quite satisfactory.

In our calculations of the thermodynamics of
Rb2KB3+F6 crystals by the Monte Carlo method, the tet-
ragonal phase remains stable at temperatures as low as
T = 0 K, whereas the second-order phase transition to

the monoclinic phase  with doubling of the unit-cell
volume is observed in experiments with these crystals.
The results of structural analysis of the monoclinic
phase [8] and the eigenvector of the mode that is most
unstable in the tetragonal phase (3) show that this tran-
sition, along with the rotation of the Ç3+ï6 octahedron,
is related to displacements of Rb ions. This fact indi-
cates that displacements of Rb ions play an important
role in the stabilization of the monoclinic phase in these
crystals. Thus, in order to describe the structural phase

transition   , one should take into account
in the effective Hamiltonian, along with pure rotation of
an octahedron, the vibrational modes corresponding to
these degrees of freedom.

Nevertheless, these results indicate that the phase

transition    in Rb2KB3+F6 crystals is mainly
due to uniform (with respect to the lattice) rotations of
the Ç3+ï6 octahedron, whereas the other degrees of
freedom contribute only insignificantly to both the
mechanism and the thermodynamics of this phase tran-
sition.

ORDER–DISORDER PHASE TRANSITION

A family of crystals with the general formula
ÄëÇï4 (the selenate potassium family) is an example
of systems characterized by another type of structural
phase transition: order–disorder transition. It was found
experimentally [11] that the phase transitions in crys-
tals of this family are related to ordering of tetrahedral
groups Çï4 and, in most cases, the following sequence
of phase transitions is observed: disordered phase 
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partially ordered phase  incommensurate phase 
completely ordered phase. The high-temperature phase
has the structure of the α-K2SO4 type with the sp. gr.

. The unit cell is hexagonal and contains two mol-
ecules. This structure may exist if Çï4 tetrahedra are
orientationally disordered. This was observed in some
crystals at temperatures much higher than room tem-
perature. Under cooling to Tc1, a partial ordering of Çï4

groups occurs and the hexagonal phase  transforms
into another structural phase, most often into the
orthorhombic phase of the β-K2SO4 type with four mol-

ecules in the unit cell, described by the sp. gr. . As
the crystal is cooled further to Tc2, tetrahedral groups
become completely ordered. The low-temperature
phase may be both ferroelectric and ferroelastic, and
the phase transition into this phase may occur both with
and without changing the unit-cell volume. In many
crystals of this family (Rb2ZnCl4, Rb2LiSO4, K2SeO4,
and others), the phase transition into another intermedi-
ate (incommensurate) phase is observed at the temper-
ature Ti. In addition, phase transitions between com-
pletely ordered phases may occur in a number of crys-
tals.

Thus, this family is characterized by a rich phase
diagram, which includes, among others, incommensu-
rate phases. It is no wonder that a large number of stud-
ies, both experimental and theoretical, were devoted to
this family. It is of importance that all known structures
of ÄëÇï4 crystals have a general property: they are

D6h
4

D6h
4

D2h
16
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
derivatives of the high-symmetry hexagonal phase

, in which tetrahedral groups Çï4 are necessarily
disordered with respect to several equiprobable equilib-
rium positions. Thus, it is reasonable to assume that
phase transitions in these compounds are related to uni-
form or nonuniform orderings of these groups rather
than to the instability of a crystal with respect to some
lattice vibrational mode.

A statistical model of phase transitions in crystals of
the selenate potassium family was proposed in [12]. It
is assumed in terms of this model that, in the high-tem-

perature phase , Çï4 tetrahedra are disordered with
respect to four equilibrium positions and the phase tran-
sitions are related to partial or complete ordering of
these groups. In addition, only orientational degrees of

D6h
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D6h
4

1
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3

4

Fig. 4. Four positions of Çï4 tetrahedra in the phase .D6h
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Table 2.  Effective interaction constants (K)

R
Rb2ZnCl4 K2SeO4 K2SO4

V11 V12 V13 V14 V11 V12 V13 V14 V11 V12 V13 V14

325 432 –746 –640 711 764 –1018 –966 794 839 –1127 –1081

a0 435 494 –249 –188 572 604 –490 –458 623 623 –575 –576

100 53 136 89 96 83 65 52 89 83 147 141

c0 –73 –56 90 106 –12 –4.4 53 60 32 39 103 110

a0 17 16 –6.9 –7.7 17 16 –13 –14 16 15 –11 –12

8.8 –7.5 53 37 13 2.8 47 37 28 11 136 119

114 116 84 86 81 79 53 51 90 67 93 70

2a0 1.4 –0.3 –7.2 –8.9 3.9 3.6 –7.7 –7.9 –0.7 –0.9 –8.1 –8.2

–44 –23 –42 –21 –27 –20 –31 –24 –31 –27 –43 –38

4.6 3.8 0.5 –0.3 3.7 3.4 –1.2 –1.5 4.4 3.9 3.2 2.8

116 92 18 –5.9 86 79 15 7.8 148 145 11 7.5

–72 –44 –57 –30 –43 –35 –41 –33 –50 –46 –61 –56

1.0 0.8 –0.3 –0.5 1.4 1.4 –1.0 –1.0 0.9 0.9 0.7 0.8

–12 2.4 –44 –30 –7.0 –3.0 –25 –21 3.7 5.6 –18 –16

–26 –39 5.2 –18 –16 –19 4.8 –7.4 –22 –15 –5.4 2.3

a0 –4.4 –6.1 5.6 3.8 –2.2 –2.7 2.1 1.6 –4.0 –4.6 2.8 2.2

–22 –30 –31 –38 –14 –18 –18 –22 –14 –13 –14 –14

2c0 18 15 –32 –35 8.6 7.4 –27 –28 3.9 2.9 –61 –62

a0
2/3 c0

2/4+

4 a0
2/3( ) c0

2/4+

3

a0
2 c0

2+

7a0
2/3 c0

2/4+

13 a0
2/3( ) c0

2/4+

3a0
2 c0

2+

a0
2/3 9c0

2/4+

16 a0
2/3( ) c0

2/4+

4a0
2 c0

2+

4a0
2/3 9c0

2/4+

19 a0
2/3( ) c0

2/4+

7

7a0
2/3 9c0

2/4+
freedom of tetrahedral groups were taken into account
in the model Hamiltonian:

(6)

where Vij are the effective interaction constants for Çï4
groups. The effective interaction constants were calcu-
lated in [13] in terms of the electrostatic model [14]. It
was assumed in [13] that Çï4 groups are regular rigid
tetrahedra and their interaction includes both the direct
octupole–octupole interaction and the indirect interac-
tion via vibrations of A and C metal ions; the latter were
considered as polarizable ions, and their dipole–dipole

H Vij r r'–( )Ci r( )C j r'( ),∑=

Ci r( )
1 if the BX4  group,
occupies position i

0 in the opposite case,,





=

C

interaction was taken into account. The dipole
moments of ions A and C, dÄ and dë, respectively, are
defined as sums of the electron and ion dipoles (the lat-
ter appear due to displacements of A and C ions from
the equilibrium positions of the hexagonal phase). In
this case, the polarizabilities of A and C ions, αÄ and
αë, respectively, serve as fitting parameters. In addi-
tion, such an approach allows one to take into account
implicitly the short-range dipole–dipole interaction,
which leads to renormalization of the electronic polar-
izability [7]. We present below the results of calculation
of the effective constants and the thermodynamics of
phase transitions for the crystals Rb2ZnCl4, K2SeO4,
and K2SO4 of the selenate potassium family.

At high temperatures, Rb2ZnCl4 has the structure of
the β-K2SO4 type and undergoes a phase transition at
302 K into an incommensurate phase with the modula-
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Table 3.  Energies and structures of the ordered low-temperature phases

Phase
Structures of ordered phases Energy (K)

1 2 3 4 5 6 Rb2ZnCl4 K2SeO4 K2SO4

a ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ → ← → ← ← → ← → → ← → ← –702 –1225 –904

↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ← → ← → → ← → ← ← → ← →
b ← → ← → ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ← → ← → → ← → ← –410 –1083 –867

↑ ↓ ↑ ↓ → ← → ← → ← → ← ← → ← → ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑
c ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ –658 –1206 –863

↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑
d ← ← ← ← ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ← ← ← ← → → → → –644 –1163 –870

← ← ← ← ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ← ← ← ← → → → →
e ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ –601 –1146 –829

↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓
f → ↑ → ↑ ← ↓ ← ↓ → ↑ → ↑ ← ↓ ← ↓ → ↑ → ↑ ← ↓ ← ↓ –556 –1148 –913

↑ → ↑ → ↓ ← ↓ ← ↑ → ↑ → ↓ ← ↓ ← ↑ → ↑ → ↓ ← ↓ ←
g ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ –620 –1208 –899

↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓
h ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ –1150 –948

→ → ← ← ← ← → → → → ← ← → → ← ← → → ← ← → → ← ←
i ↑ ↑ ← ← ↓ ↓ → → ↑ ↑ ← ← ↓ ↓ → → ↑ ↑ ← ← ↓ ↓ → → –1185 949

→ → ↓ ↓ ← ← ↑ ↑ → → ↓ ↓ ← ← ↑ ↑ → → ↓ ↓ ← ← ↑ ↑
Note: The directions of arrows correspond to the positions of the BX4 tetrahedron in Fig. 4. The figures in the second row indicate the

number of a layer perpendicular to the hexagonal axis.
tion vector q = (1 – δ)h/3, where h is the first vector of
the reciprocal lattice in the hexagonal direction. As a
crystal is cooled further, δ decreases, and the second-
order phase transition into the commensurate ferroelec-

tric phase with the sp. gr.  occurs at 189 K. In this
phase, the pseudohexagonal axis is tripled in compari-

son with the  phase and the unit cell contains 12
molecules. If the temperature decreases even more,
Rb2ZnCl4 undergoes one more phase transition at 74 K
into the monoclinic phase, whose space group has not
been identified.

K2SeO4 and K2SO4 are rare representatives of this

family of crystals, in which the hexagonal phase  is
observed experimentally at high temperatures. The

phase transition into the orthorhombic phase 
occurs in K2SeO4 and K2SO4 crystals at 860 and 745 K,
respectively. As a crystal is cooled further, K2SeO4

undergoes the same sequence of phase transitions as
Rb2ZnCl4, whereas K2SO4 either undergoes no other
phase transitions in accordance with some data or,
according to other data, undergoes a phase transition at
56 K [15] into a phase whose structure has not been
identified (it is only suggested that this phase is neither
ferroelectric nor incommensurate).

C2v
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D2h
16

D6h
4

D2h
16
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The effective interaction constants for tetrahedral
groups Çï4 were calculated within the model in which
these groups have four equilibrium positions in the

high-temperature phase  (Fig. 4). In this case, the
matrix of interaction constants has four independent
components (according to the position symmetry and
the crystal symmetry):

The values of the polarizabilities αÄ and αë for
Rb2ZnCl4 and K2SeO4 were chosen on the basis of the
condition of lowest energy of the ferroelectric phase at
low temperatures. For K2SO4, the corresponding values
were chosen so as to satisfy the condition of existence

of the  phase in a wide temperature range [13,
16, 17].

The interaction constants calculated for all three
crystals under consideration are listed in Table 2. The
energies of some structures at T = 0 K, calculated with
the use of these constants, are listed in Table 3. The

D6h
4

Vij

V11 V12 V13 V14

V12 V11 V14 V13

V13 V14 V11 V12

V14 V13 V12 V11 
 
 
 
 
 
 

.=

D2h
16
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effective constants oscillate with distance in both mag-
nitude and sign. Therefore, there is a strong competi-
tion of interactions in these compounds. Moreover, the
strongest interaction between Çï4 groups has an anti-
ferromagnetic nature. This specific feature of interac-
tions, in combination with the hexagonal symmetry of
the disordered phase (which allows frustration), may be
the reason for the existence of incommensurate phases
in the above compounds.

As can be seen from Table 3, some phases have very
close energies. Moreover, the phases with closest ener-
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K2SO4

K2SeO4

Rb2ZnCl4

T/Tc1

Fig. 5. Temperature dependence of the specific heat: Monte
Carlo data (circles) and experimental results for Rb2ZnCl4
[18], K2SeO4 [19], and K2SO4 [15] (solid line). R is the uni-
versal gas constant.

C/R T/Tc1

T/Tc1
C/R
C

gies are characterized by different multiplications of
the unit cell along the pseudohexagonal axis in
Rb2ZnCl4 and K2SeO4 and the same multiplication in
K2SO4. It is probable that such a character of interac-
tions in these crystals leads to the appearance of an
incommensurate phase at finite temperatures in some
crystals (Rb2ZnCl4, K2SeO4) and to the existence of a
partially ordered phase in a very wide temperature
range in other crystals (K2SO4). Similar calculation for
another representative of this family, CsLiSO4 (which
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1.0
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0.6

0.8

1.0

0.2

20 40 60 80 100

0.4

0.6

0.8
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T = 172 K

T = 143 K

T = 126 K

Fig. 6. Spatial dependence of the degree of layer ordering in
the incommensurate phase of K2SeO4. The open and filled
circles, triangles, and squares indicate the ↑↓↑↓ , ↓↑↓↑ ;
→←, ← →← →; and ↓↑↓↑ , ↑↓↑↓  ordering, respectively.
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undergoes one phase transition    without
changing the unit-cell volume), showed that the energy

of the  phase (phase f in Table 3) is significantly
lower than the energies of other phases [16, 17].

The temperature behavior of the crystals under con-
sideration was studied by the Monte Carlo method. We
used the conventional Monte Carlo method applicable
to the Ising models [10], where it is taken into account
that the pseudospin variable takes four values. The cal-
culations were performed for the three-dimensional
hexagonal lattice 16 × 16 × 24. Both periodic boundary
conditions and boundary conditions with “phantom
spins” were used [16, 17]. We report here the results of
simulation obtained only with the second type of
boundary conditions. The reason is that the results of
calculation for commensurate phases depend only
slightly on the type of boundary conditions; at the some
time, boundary conditions with phantom spins are more
appropriate for incommensurate phases. As was men-
tioned above, the periodic boundary conditions impose
their period on the system, whereas, when conditions
with phantom spins are used, the system chooses the
modulation period itself.
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K2SeO4 [22] (solid line).
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The phase-transition temperatures were determined
from the peaks in the temperature dependence of the
specific heat (Fig. 5) and from the inflection in the tem-
perature dependence of the internal energy. The tem-
perature of the transition into the partially ordered

orthorhombic phase  for Rb2ZnCl4 crystals (Tc1 =
700 K) greatly exceeds the decomposition temperature
of this crystal (550 K). For K2SeO4 and K2SO4 crystals,
the temperatures of the high-temperature transitions
were used to determine the octupole moment of the

Çï4 group; therefore,  =  (860 and 745 K
for K2SO4 and K2SeO4, respectively). In this phase,
Çï4 tetrahedra have two equiprobable equilibrium
positions, and such a structure is observed experimen-
tally at high temperatures in all three types of crystals.
Furthermore, in Rb2ZnCl4 and K2SeO4 crystals, at íi =

302 K (  = 302 K) and íi = 177 K (  = 129 K),
respectively, a transition into the incommensurately
modulated phase occurs.

The structure of the incommensurate phase, simu-
lated for Rb2ZnCl4 and K2SeO4 crystals by the Monte
Carlo method, is spatially modulated along the
pseudohexagonal axis. The ordering of Çï4 tetrahedra
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Fig. 8. Temperature dependence of the spontaneous polar-
ization: Monte Carlo data (circles) and experimental results
for Rb2ZnCl4 [23] and K2SeO4 [24] (solid line).
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in the layers perpendicular to this axis is uniform at all
temperatures; however, in the incommensurate phase,
the degree of ordering of tetrahedra changes from layer
to layer. As can be seen from Fig. 6, along with the
long-wavelength modulation, short-wavelength modu-
lation of layer order is also present. The period of this
modulation is equal to the triple unit-cell parameter of
the ferroelectric phase. Along with different orienta-
tions of tetrahedra in layers, a significant difference in
the average values of these orientations from layer to
layer in a triple cell is observed. Experimental studies
of the modulated-phase structure in these crystals
revealed no similar short-wavelength modulation [20].
The calculated long-wavelength structural modulation
is in qualitative agreement with the experimentally
observed one. Figure 7 shows the temperature depen-
dence of δ. As can be seen, the measured maximum
value of δ is almost three times larger than the corre-
sponding calculated value.

At íÒ2 = 192 K (  = 192 K) for Rb2ZnCl4 and

íÒ2 = 115 K (  = 93 K) for K2SeO4, a phase transi-

tion into the phase  occurs. In the low-temperature

phase , these crystals are improper ferroelectrics
and the spontaneous polarization Ps can be considered
as the secondary order parameter. We cannot calculate
the polarization in the ferroelectric phase within this
model since it does not take into account displacements
of ions and distortion of tetrahedra. However, one can
obtain the temperature dependence of Ps. The parame-
ter P is expressed in terms of the occupation numbers as

where R0 = 0, R1 = , R2 = a0, and R3 =

. The parameter P is proportional to the
spontaneous polarization Ps. As can be seen from
Fig. 8, the calculated and experimental temperature
dependences of Ps are in good agreement.

Another low-temperature phase transition into the
monoclinic phase is observed experimentally in the lat-
ter two crystals. This transition cannot be simulated by
the Monte Carlo method since metastable states arise at
low temperatures. The system is frozen in this state and
cannot pass to another state even if the number of
Monte Carlo steps is very large.

In K2SO4 crystals, the partially ordered phase 
exists in a wide temperature range and undergoes a
phase transition into the completely ordered mono-
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clinic phase  with 16 molecules in the unit cell only
at 76 K. The measurements of the specific heat of
K2SO4 [15] (Fig. 5) confirm that a low-temperature
phase transition is possible in this crystal; however, the
structure of the low-temperature phase has not been
determined experimentally.

Thus, the model proposed, despite its evident rough-
ness, correctly describes the sequence of phase transi-
tions in the crystals under investigation. The calculated
transition temperatures and the simulated behavior of
thermodynamic quantities are in satisfactory agreement
with the experimental data.

CONCLUSIONS

In this study, we reported the results of calculation
of the critical temperatures and thermodynamic proper-
ties of crystals undergoing structural phase transitions
of displacive and order–disorder types. The effective
Hamiltonian method was used in the calculations. The
effective Hamiltonian takes into account only the criti-
cal degrees of freedom of a crystal (the local mode in
the case of displacive transitions and the orientation of
ordering ions in the case of order–disorder transitions).
The parameters of the Hamiltonian are derived from the
ab initio calculations of the total energy and the vibra-
tional spectrum of a crystal in the case of displacive
transitions and using a small number of fitting parame-
ters in the case of order–disorder transitions. The calcu-
lated phase-transition temperatures, the thermody-
namic properties, and the structures of the low-symme-
try phases are in satisfactory agreement with the
experimental data.
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Abstract—It is shown that, proceeding from the first principles, it is possible to separate the contributions from
short- and long-range interactions to the lattice dynamics and dielectric properties of crystalline dielectrics. The
cluster calculations of local force constants and potentials for the matrix and impurity atoms in ferroelectrics
with the perovskite structure were made by the Hartree–Fock MOLCAO-SCF method. The parameters of the
Devonshire–Slater–Barrett single-ion model are calculated for barium titanate and potassium niobate. The
influence of the quantum statistics on the Curie temperature in these ferroelectrics and the isotope effect in bar-
ium titanate are also considered. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, great attention in the theory of fer-
roelectrics has been given to consideration of various
phenomena proceeding from the first principles [1, 2].
Material properties weakly dependent on temperature
and properties at the zero temperature can be efficiently
described using both analytical and ab initio numerical
and analytical methods developed to describe the
ground state of multielectron systems. These are, first
of all, the density functional method [3] and the Har-
tree–Fock MOLCAO-SCF method and its generaliza-
tions that take into account electron correlations [4].

King-Smith and Vanderbilt [5] and Resta [6] per-
formed the first-principle-based calculations and
derived the expression for macroscopic electric polar-
ization P induced by the change of the ground state of
a crystal, which allowed one to determine the change in
the electric polarization caused by homogeneous opti-
cal or acoustic deformation of the crystal lattice and the
corresponding response functions (tensors of the Born
effective charge and piezoelectric coefficients).

Thus far, a large number of numerical calculations
based on the first principles have been made for displa-
cive-type ferroelectrics and, first of all, for compounds
with the perovskite structure. Most of these calcula-
tions are made by the methods developed for electronic
structures of crystals, which are based on the theory of
the density functional in the approximation of the local
density [1–3]. To date, this approach has been used to
calculate the equilibrium crystal structure, the matrices
of force constants Φij(st) corresponding to the trans-
verse optical (TO) modes of lattice vibrations, the fre-
1063-7745/04/4901- $26.00 © 20004
quencies of the optical modes and some branches of the
phonon spectrum, components of the tensor of the Born
effective charge, piezoelectric coefficients, and some
other properties of compounds with the perovskite
structure [2, 7–15]. All the studies published up to 1998
were reviewed in [2].

The alternative approach to first-principle-based
calculations of dielectric and ferroelectric properties of
crystals and lattice dynamics was developed in [16–24].
Thus, using the exact formulation of the theory of lat-
tice dynamics [25, 26] and the quantum-mechanical
theory of the polarization electron response [20], Sham
[16], Pick et al. [17], and Kvyatkovskiœ [18–20]
obtained the exact solution of the problem of the influ-
ence of the intercell dipole–dipole interaction on lattice
dynamics and dielectric properties of crystals. They
also found that the matrix of force constants Φij(st, q =
0), the tensors of the Born effective charge, Zij(s), and rf

(electron) permittivity, , can be represented as the
sum of contributions that come from short- and long-
range intercell dipole–dipole interactions, Φij(st) =

(st) + (s, t), Zij(s) = (s) + (s), and  =

1 + 4παsr + ( )dd. This representation and analysis of
the experimental data allow one to clarify the nature of
ferroelectricity in the AIVBVI and other compounds
without the perovskite structure with invocation of any
model representations [21–23]. At the same time, any
of the contributions can be determined from calcula-
tions based on the first principles. Taking into account

that (s, t) is expressed in terms of Zij(s) and ;
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(s), in terms of (s) and ; and, finally, ( )dd,
in terms of αsr, it is sufficient to determine the contribu-
tions to the dielectric parameters that come from short-
range interactions. In principle, this can be done using
the ab initio calculations for appropriate multiatomic
clusters that model certain fragments of a crystal [24].

On the one hand, it is necessary to calculate (st)

and (st) in order to construct the effective Hamilto-
nian for the soft polar TO mode necessary for simulat-
ing the behavior of ferroelectrics at finite temperatures
[13, 27–29]. On the other hand, the results of such cal-
culations would answer a number of important ques-
tions of the microscopic theory arising in the selection
of the model lattice Hamiltonian which adequately
describes a ferroelectric phase transition [30, 31]. There
are two approaches to the construction of this Hamilto-
nian, which take into account the different roles played
by short- and long-range forces in the formation of fer-
roelectric instability. The first approach is based on the
fact that short-range forces in ionic crystals stabilize the
TO modes of lattice vibrations, whereas long-range
(dipole) forces decrease the stability of polar TO
modes. This approach in application to displacive-type
ferroelectrics was developed by Devonshire, Slater,
Barrett, Cochran, et al. [32–35]. The second approach
is based on the assumption that each atom in one of the
sublattices moves in a multiple potential formed by its
nearest environment. In this case, the interactions
between these atoms are of a repulsive nature and are
responsible for ferroelectric ordering. This model is
considered in detail, e.g., in [30, 31] and, according to
these studies, is a universal lattice model that describes
order–disorder and displacive-type phase transitions
depending on the relationship between the model
parameters. This model, in which noncentral atoms of
the B sublattice move in a multiple potential well, was
first suggested by Mason and Matthias [36] for ABO3
ferroelectrics with the perovskite structure and was
repeatedly used for intepreting experimental data
[37−39]. One of the arguments in favor of this model
for perovskites is the fact that covalent chemical bonds
in BO6 octahedra reduce the repulsive interactions
between the transition metal atom and the nearest oxy-
gens [40]. Obviously, within the model description of
the lattice dynamics, it is impossible to make the unam-
biguous choice between these two approaches. A simi-
lar problem also arises for impurity atoms in
Sr1 − xAxTiO3, K1 − xAxTaO3, and KTa1 − xNbxO3 solid
solutions [14, 41, 42], which indicates the necessity of
nonempirical calculation of the short-range forces aris-
ing because of the displacements of the A, B or O atoms
from their equilibrium positions in the cubic perovskite
lattice [24, 43, 44].

The calculations of local atomic force constants
show that the central positions of all the species in the
cubic phases with perovskite structure are stable, i.e.,
each atom moves in single-well local potential if all the
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other atoms are fixed at their lattice sites [24, 43, 44].
The simplest model possessing these properties, which
describes the phase transition in displacive-type ferro-
electrics, is the Devonshire–Slater–Barrett single-ion
model [32–34, 45, 46]. The merit of this model is that
it leads to a simple analytical expression for free energy
whose parameters (including anharmonic coefficients)
can be determined from ab initio cluster calculations.

1. GENERAL THEORY

Consider the free energy F of a displacive-type fer-
roelectric as a function of temperature and sublattice
(homogeneous optical) displacements u(s). The Lan-
dau expansion for a clamped crystal can be represented
in the form [45, 46]

(1)

(2)

where Γ(T) is the generalized matrix of the long-wave
(optical) force constants, which consists of the har-
monic Φ and anharmonic Φah(T) contributions

(3)

Polarization P is determined by the well-known expres-
sion [47]

(4)

1.1. Microscopic Field and Macroscopic Polarization 
in Homogeneously Polarized Crystal Dielectrics

Local electric fields due to induced polarization can
strongly influence the dielectric, optical, and vibra-
tional properties of crystal dielectrics [47] and the sta-
bility of the crystal lattice in proper ferroelectrics
[33, 35]. The classical theory of the local-field effects
(Lorentz field theory) is based on the model of point
dipoles considerably limiting the range of the theory
application to real solids. The classical theory extended
to the case of continuous electron-density of charge dis-
tribution in crystals faces a fundamental difficulty [48].
The point is that the classical theory of local-field
effects for a system of point dipoles is based on the
equality [45, 47]

(5)

where V is the crystal volume and P is the electric
polarization induced by the change in the dipole
moment, δd, of a primitive unit cell with the volume v 0 .
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For the continuous periodic distribution of the charge
density, equality (5) in the classical theory is trans-
formed into the following equation [48]:

(6)

where δdsurf is the contribution of the charge transfer
through the surface s0 of the primitive unit cell. In this
case, only the sum of the bulk and surface contributions
in the right-hand side of Eq. (6) is invariant with respect
to the selection of the unit cell. This difficulty can be
overcome by invoking the quantum-mechanical theory
of polarization response and the method of long waves
[18–20].1

An expression for the force acting on the atomic
nucleus in the wave of long-wave optical displacements
[18, 19] is based on the fundamental Hellman–Feinman
theorem [51, 52], which states that, in the adiabatic
approximation, the forces acting on atomic nuclei in
this case are classical electrostatic forces. Another
important result is that polarization P induced by a
wave of optical atomic displacements ui(s)exp(–iqR)
can be expressed in terms of the induced charge δZe(q)
and dipole moment δd(q) of the primitive unit cell of a
crystal [20]:

(7)

This allows one to obtain the explicit solution of the
problem of local-field effects proceeding from the first
principles [18, 19] and also determine the corrections

for the local field in , Zij(s), and Φij(st; q = 0). The
only limitation of this approach is associated with the
use of the harmonic and adiabatic approximations con-
ventional in lattice dynamics [47].

The solution obtained depends substantially on the
behavior of δZe(q) at q  0 [20]. This situation,
where δZe(q) ∝ q, would correspond to physically unat-
tractive results of the classical consideration of periodic
systems with a continuous charge density [48]. How-
ever, the quantum-mechanical consideration of the
electron polarization response shows that δZe(q) ∝ qβ,
where β ≥ 2 [20], and, therefore, δZe(q) makes no con-

1 In the theory of ionic crystals, one often uses a nonempirical
model based on the Thomas–Fermi–Dirac–Lenz functional
[1, 47] with the continuous electron-density charge distribution,
ρ(r). However, the use of the superpositional approximation for
ρ(r) makes this model equivalent to the model of point dipoles.
Being generalized, the model [49, 50] allows one to describe sat-
isfactorily (both qualitatively and, for some properties, also quan-
titatively) the ground state of many ferroelectrics with the perovs-
kite structure.

P
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tribution to induced polarization P and the long-range
force Flr(s) at q  0 [18, 19]. As a result, we arrive at
[18, 19]

(8)

(9)

(10)

where  =  is the tensor of effective electron
polarizability determined by the short-range interac-

tions, (s) is the contribution to the Born effective
charge for the sublattice s also determined by the short-
range interactions, and A is the tensor of dipole coeffi-
cient, which is determined as

(11)

The contribution of the intercell dipole–dipole interac-
tion to the matrix of the force constants has the form
[18, 19]

(12)

The first term, (st; q), in the right-hand side of
expression (12) related to the macroscopic field E is
responsible for the LO–TO splitting in the phonon
spectrum [1, 45, 47, 53] known from the phenomeno-

logical theory [25, 26, 53]. The second term, (st;
q), is of a microscopic nature and, when q = 0, is deter-
mined by the expression [18, 19]

(13)

where κ0 = 4πe2/v 0 and

(14)

Expressions (9)–(11) and (12)–(14) were first derived
in [16, 17], proceeding from the rigorous formulation
of the theory of lattice dynamics in terms of the micro-
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scopic electron susceptibility [25, 26]. The direct deri-
vation of these expressions based on the solution of the
exact equations for a microscopic electric field in a
polarized crystal dielectric was obtained in [18, 19].

The third term in the right-hand side of expression
(9), the second term in the right-hand side of expression

(10), and the matrix (st) are, in fact, the corrections
for the local field to the tensor of rf permittivity, tensor
of the Born effective charge, and the matrix of force
constants, respectively. As was shown in [21–23], these
corrections are responsible for ferroelectric instability
of the lattice of oxides and AIVBVI compounds with the
perovskite structure.

For cubic crystals (Aij = 1/3δij), we have

(15)

Now, compare rigorous expression (15) with the

model matrix (st; q  0) that follows from the
expression for the energy of intercell dipole–dipole
interaction used in [13, 27–29],

(16)

Comparing expressions (15) and (16), we see that the
matrix components nonanalytically dependent on q,
which describe the LO–TO splitting, are the same, but
the components which are regular at q = 0 and reduce
the frequencies of polar TO modes, are different. The
value of the transverse part of the model matrix used in
[13, 27–29] is lower by a factor of (ε∞ + 2)/3ε∞ than the
value obtained from the rigorous expression. This sig-
nifies that, although the results considered in [13, 27–
29] are nonempirical, they are obtained not from the
first principles but on the basis of an approximate effec-
tive model Hamiltonian, where the absolute value of the
energy of the transverse part of the intercell dipole–
dipole interaction (destabilizing the cubic phase of the
transverse part of the intercell dipole–dipole interac-
tion) is considerably lower (approximately by a factor
of two for ferroelectrics with the perovskite structure
and a factor of three for the AIVBVI compounds) than the
absolute value of the energy obtained from expression
(15) based on the first principles.

1.2. Long-Range Intercell Dipole–Dipole Interaction

To calculate the contribution of the intercell dipole–
dipole interaction to the optical force constants of a
crystal, which correspond to the homogeneous dis-
placements of the sublattices, proceeding from the first
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principles, we use expression (13) for the (st)
matrix. For compounds with perovskite structures
described by the formula ABX3, we have

(17)

Then, expression (10) for the Born tensor of a cubic
perovskite-type structure acquires the form

(18)

where Zii(A) = Z(A), Zii(B) = Z(B), Zxx(XI) = Zyy(XI) =
Zyy(XII) = Zzz(XII) = Zxx(XIII) = Z⊥ (X), and Zxx(XII) =
Zyy(XIII) = Zzz(XI) = ZII(X). For many ferroelectrics with
the perovskite structure, the Z(A), Z(B), Z⊥ (O), and
ZII(O) values are known from the ab initio calculations
[7, 54] and the solution of the inverse problem [55].

1.3. Short-Range Interaction

Consider a crystal in which only one atom is dis-
placed from its equilibrium position, e.g., an atom from
the sth sublattice, whereas all the remaining atoms are
fixed at their equilibrium positions (lattice sites). Now,
determine the matrix of local (on-site) force constants

(s) as a matrix of coefficients before the quadratic
terms of the expansion of the change in the total energy
of the crystal (the local adiabatic potential of the given
atoms) in powers of displacements ui(s) of this atom,

(19)

where the second term in the right-hand side includes
higher terms of the ∆E(u) expansion. Unlike optical

force constants kij(s) ≡ Φij(ss) = (s) + (s) corre-
sponding to the displacement of the second sublattice

as a whole, the local force constants (s) contain
only the contributions from short-range interactions.2

Taking into account the (st) and (s) values
determined, we can write

(20)

2 For a lattice with one displaced atom, the contribution of the
dipole–dipole interaction to the restoring force decreases with the
distance R as R–6, whereas the contribution of the Madelung
force for atoms in the positions A and B of the cubic perovskite
structure is zero.
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where R is the vector of the Bravais lattice of the crys-

tal. Thus, one can consider (s) as the contribution of
the short-range forces to the nondiagonal force constant
kij(s) of the crystal.

A crystal with one displaced atom possesses the
local dipole moment dloc(s), which, in the linear
approximation, can be written as

(21)

The tensor of the local effective charge (s) for an
atom from the sublattice s is a well defined quantity that
can be found from the ab initio calculations. Unlike

(s), it is impossible to describe (s) by a simple
expression convenient for further calculations. How-
ever, taking into account that the intercell dipole–dipole
interaction is of the collective nature, i.e., takes place
only at the simultaneous displacements of all the atoms
of the sublattice s, one can assume that the effective
charges have close values. Then, we can write

(22)

2. CLUSTER APPROXIMATION AND METHOD 
FOR CALCULATING TOTAL ENERGY 

AND SINGLE-ELECTRON PROPERTIES
In order to determine the local adiabatic potential

for an atom at a certain lattice site, one has to calculate
the total energy of the crystal, u, as a function of the dis-
placement of this atom from the equilibrium position at
this site under the condition that all the remaining
atoms occupy the equilibrium positions of the cubic
perovskite lattice. The most convenient methods for
nonempirical calculations of the properties of point
defects in crystals are the method of supercells [14, 15]
and the quasi-molecular cluster method [24, 43, 45].

Below, we use the approach described in [24, 43]. It
is reduced to the following. First, one has to single out
a crystal fragment containing the atom under consider-
ation that would enable one to adequately describe the
chemical bonds and the point symmetry of this atom.
Then, the fragment is modeled by a quasi-molecular
cluster whose geometry repeats the geometry of the
crystal fragment.

For an atom at site B of the perovskite structure, the
minimum cluster reproducing the chemical bond and
the local properties (determined by this bond) is an
octahedral (BO6)n– cluster (cluster I) or a [B(OH)6]n–

cluster in which the dangling B–O bonds are comple-
mented with hydrogen atoms. The next (with respect to
complexity) appropriate cluster for a B -type atom con-
sists of seven BO6 octahedra and eight A-type atoms
occupying the vertices of the primitive cubic unit cell.
In order to reduce the cluster charge, the dangling B–O
bonds are complemented with hydrogen atoms located

kij
loc

di
loc

s( ) Zij
loc

s( )u j s( ).
j

∑=

Zij
loc

Zij
loc

Zij
sr

Zij
sr

s( ) Zij
loc

s( ).≈
C

at distances of 1 Å. As a result, we arrive at positively
charged [B'O6A8B6(OH)30]n+ clusters (clusters VII). For
an atom at site A, the minimum formal cluster is
(AO12)n–. However, in fact, this cluster does not enable
one to describe adequately the local potential of an A-
type atom. Therefore, the minimum cluster for an atom
at site A is a cluster containing seven A-type atoms
(A' in the cluster center and six A-type atoms along the
fourfold axes) and eight BO6 octahedra. To decrease the
cluster charge, the dangled B–O bonds are comple-
mented with hydrogen atoms. As a result, we arrive at
negatively charged [A'O12A6B8(OH)24]n– clusters (clus-
ters VIII).

An oxygen atom in the cubic perovskite structure is

characterized by two force constants, (O) and

(O), parallel and perpendicular to the B–O'' bond,
respectively. The minimum cluster for an oxygen atom
consist of two BO6 octahedra and four A-type atoms
located at the vertices of the cubic unit-cell face normal
to the B–O–B chain; in order to reduce the cluster
charge, the external dangling B–O bonds are comple-
mented with hydrogen atoms. As a result, we arrive at a
positively charged [OB2A4(OH)10]n+ cluster (cluster II).

By definition, the local potential is the difference
between the total energies of the crystal in the distorted
and undistorted configurations, ∆E(u) = E(u) – E(0),
where u is the displacement of the central atom from
the lattice site. The calculations were made in the
approximation ∆E(u) ≈ ∆Ecl(u), where Ecl(u) is the
total energy of the corresponding cluster and dloc(s) ≈
dcl(s). The total energy and the single-electron proper-
ties of the cluster were calculated within the framework
of the restricted ab initio Hartree–Fock MOLCAO SCF
method (RHF) using the PC GAMESS version [56] of
the GAMESS (US) complex of quantum–chemical pro-
grams [57]. The influence of the correlation effects (for
simple octahedral clusters) was taken into account
within the framework of the Möller–Plecet perturbation
theory (MP2) [57]. The calculations were performed
using the extended sets of atomic basis functions
described elsewhere [24, 43].

3. LOCAL ADIABATIC POTENTIALS 
FOR MATRIX AND IMPURITY ATOMS 

IN PEROVSKITES

Table 1 lists the results of ab initio calculations of

the local force constants (s) for B- and A-type atoms
in the BaTiO3, SrTiO3, CaTiO3, PbTiO3, KNbO3, and
KTaO3 perovskites [24, 43]. It is seen that all the rigid-

ities (s) have high values in comparison with the
value of the atomic force constant for perovskites,
kat(s) = e2/r0 ≅  2 eV/Å2 (where r0 . 2 Å is the length of
a B–O bond) and with the kloc(s) value for cations in

k ||
loc

k ⊥
loc

kii
loc

kii
loc
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typical ionic crystals [44], which indicates the stabiliz-
ing effect of the covalent B–O bonds on the stability of
the central positions of these atoms in oxygen BO6 octa-
hedra [24, 43]. These results show that the assumption
about the noncentral position of the B-type atoms in the
cubic phase of ferroelectrics with the perovskite struc-
ture used in the interpretation of the inelastic light scat-
tering [37], XAFS [38], and NMR [39] experiments is
erroneous and that the lattice model with a noncentral
ferroelectrically active ion [30, 31] is inapplicable to
the above compounds. And, finally, the results obtained
also show that the intercell dipole–dipole interaction in
ferroelectrics with the perovskite structure is anoma-
lously high and strongly influences the k(B) and k||(O)
values in BaTiO3, SrTiO3, CaTiO3, PbTiO3, KNbO3,
and KTaO3 and the k(Pb) value in PbTiO3. It consider-
ably decreases the stability of the cubic phase (or makes
it unstable) at T = 0 K.

The ab initio cluster calculations of the force con-
stants kloc(s) were performed for impurity Ca, Ba, Pb,
and Cd atoms replacing Sr atoms in SrTiO3 and for
impurity Nb atoms replacing Ta atoms in KTaO3 [43].
According to [43], the impurity atoms in these solid
solutions move in a single-well potential with the stable
central position, i.e., are “central” impurities. An espe-
cially important result was obtained for a Nb impurity
in KTaO3, because some authors believe that a Nb atom
in this compound occupies a noncentral position
[41, 42]. Thus, Sr1 − xCaxTiO3, Sr1 − xBaxTiO3,
Sr1 − xPbxTiO3, and KT‡1 − xNbxO3 compounds can be
considered as displacive-type ferroelectrics (solid solu-
tions of displacive type). The situation for Mg-, Zn-,
and Li-doped materials is different. Calculations show
[43] that the harmonic force constants kloc(s) for Mg,
Zn, and Li impurity atoms have low negative values
(|kloc | ! kat). This signifies that the Mg and Zn impuri-
ties in SrTiO3 and Li impurity in KTaO3 are “noncen-
tral” and move in a multiwell local potential along the
[001] direction for Mg and Zn atoms (Fig. 1). For com-
parison, Fig. 1 also shows the local adiabatic potential
for Ca, Ba, Pb, and Cd impurity atoms in SrTiO3. The
data on the structure parameters of perovskites were
borrowed from [58].

4. LOCAL EFFECTIVE CHARGES AND BORN 
TENSOR IN PEROVSKITES

Table 2 lists the Born effective charges (s) for the
BaTiO3, SrTiO3, CaTiO3, PbTiO3, KNbO3, and KTaO3
compounds calculated nonempirically by the above
method of separating the contributions of the long- and
short-range interactions described by Eqs. (17) and
(19), (20) with the use of the ab initio cluster calcula-

tions of (s). For comparison, Table 2 also lists the
Born charges Zii(s) calculated by the method suggested
in [5, 6]. The cluster approach described above is

Z̃ii

Zii
loc
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approximate and works better, the larger the cluster
used. With an increase of the cluster size, an ever
increasing number of local (quasi-atomic) dipole
moments induced by the field arising due to the dis-
placement of the central atom are taken into account.
As is seen from Table 2, the most pronounced error
(about 100%) is contained in the results for the B-type
atoms for a cluster consisting of only one octahedron.
For the next (with respect to complexity) cluster con-
sisting of seven octahedra, the error decreases to 40–
50%. For A-type atoms, the error lies at a level of 20–
30%, and for oxygen atoms, at a level of 20–40% for
transverse components and 60–70% for longitudinal
ones. For lead titanate, the errors are higher (by a factor
of about 1.5) than for other materials. It should also be
indicated that the allowance for electronic correlations
somewhat improves the situation. Despite the insuffi-
cient accuracy, the method adequately describes the
differences in the values of the Born charges for various
species and materials and predicts anomalously high Z
values for Ti, Nb, Ta, and Pb atoms and considerable
differences between the longitudinal and transverse
components for oxygen atoms. The simplicity of the
method makes it useful in the search for materials with
high Born effective charges which can be considered as
“candidates to ferroelectrics.”

5. CURIE TEMPERATURE IN THE SINGLE-ION 
MODEL

The simplest microscopic theory that qualitatively
describes the phase transitions in displacive-type ferro-
electrics can be constructed based on the single-ion
(single-sublattice) model in the mean-field approxima-
tion [32–34, 45, 46]. In this model, the atoms of all the
sublattices but one, e.g., the B sublattice, are fixed in
their equilibrium positions so that each atom in the B
sublattice behaves as an independent harmonic oscilla-
tor with a small anharmonic addition to the potential
energy. Oscillators interact only via the internal electric
field induced by the mean displacement of the B sublat-
tice. In this model, the Hamiltonian for an atom in the
position with the cubic symmetry can be represented
[45, 46] as

(23)

(24)

H H0 Wah; H0+ P
2

2M
-------- Wh u( ),+= =

Wh u( ) a
2
--- ui

2
V0u zE+( )u3–

V0

2
------u

2
;+

i

∑=

Wah u( )
b1

4
----- ui

4 b2

4
----- ui

2
u j

2
.

i j≠
∑+

i

∑=
4
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Table 1.  Diagonal force constants  for compounds with the perovskite structure

Compound Atom ii  eV/Å2 Cluster  eV/Å2 kii, eV/Å2

 BaTiO3

Ba –2.8 VIII 14.7 11.9

Ti –19.7
I 23.8 (21.0) 4.1 (1.3)

VII 22.1 2.4

O
|| –12.4

II
21.2 (21.4) 8.7 (9.0) 

⊥ –1.7 9.9 (8.3) 8.2 (6.5) 

SrTiO3

Sr –2.7 VIII 13.5 10.8

Ti –21.4
I 28.1 (24.9) 6.7 (3.5) 

VII 28.5 7.1

O
|| –13.5

II
28.6 (28.6) 15.1 (15.1) 

⊥ –1.8 9.0 (7.5) 7.2 (5.7)

CaTiO3

Ca –2.6 VIII 7.6 5.0

Ti –20.5
I 31.8 (28.3) 11.3 (7.8)

VII 32.0 11.5

O
|| –13.1

II
32.5 (34.6) 22.1 (21.4)

⊥ –1.6 7.4 (6.1) 5.8 (4.2) 

PbTiO3

Pb –4.0 VIII 6.1 2.1

Ti –13.5
I 25.0 (22.1) 11.5 (8.6)

VII 20.1 6.6

O
|| –9.2

II
25.1 (24.8) 15.8 (15.5)

⊥ –1.7 5.8 (3.7) 4.1 (2.0)

KNbO3

K –0.6 VIII 6.2 5.6

Nb –33.4
I 35.7 (35.7) 2.3 (2.3)

VII 30.6 –2.8

O
|| –20.3

II
23.9 (25.3) 3.6 (5.0)

⊥ –1.1 9.2 (7.2) 8.1 (6.1)

KTaO3

K –0.6 VIII 7.0 6.4

Ta –29.4
I 43.7 (43.4) 14.3 (14.0)

VII 39.0 9.6

O
|| –17.7

II
36.2 (36.8) 18.5 (19.2)

⊥ –1.1 8.3 (6.8) 7.1 (5.6)

Note: The  values with due regard for the correlation corrections (RHF + MP2 method) are given in brackets.

kii
dd kii

sr and , kii, kii
sr kii

dd+=

kii
dd, kii

sr,

kii
sr
The free energy in the single-ion model has the form

(25)

where  = (0, 0, ) is the mean displacement of atoms
in the B sublattice. The generalized force constant kf(T)
is determined as

^ T u E, ,( ) ^0 T( )–

=  
1
2
---k f T( )u

2 b1ξ
4

4
----------u

4 ξzuE,–+

u u
C

(26)

where

(27)

and M is the mass of a ferroelectrically active ion.

k f T( ) V0 1 ξ–( ) ξ2
bu

2
T( ),+=

b 3b1 2b2, ξ+
V0

a
------,= =

u
2

T( ) "
2MΩ
------------- "Ω

2T
--------, Ωcoth a

M
-----,= =
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CLUSTER APPROACH IN FIRST-PRINCIPLE CALCULATIONS 11
5.1. Ab initio Calculations of Single-Ion Model 
Parameters

The approach considered above allows one to deter-
mine the model parameters (a, b1, b2, and V0) from ab
initio calculations. The harmonic parameters of the
model for a ferroelectrically active ion from the s sub-
lattice are given by the expressions

(28)

(29)

where kdd(s) and ksr(s) are defined by Eqs. (17) and (20).
The anharmonic parameters b1 and b2 are deter-

mined by short-range interactions because of the fast
convergence of the corresponding lattice sums. Thus,
the a, b1, and b2 parameters can be determined in ab ini-
tio calculations for an appropriate cluster. The V0(s)

value can be determined from Eq. (17) for (s).

5.2. Influence of Quantum Statistics on Curie 
Temperature in BaTiO3 and KNbO3

The Curie temperature is the solution of the equa-
tion

(30)

which, with due regard for Eq. (29), can be represented as

(31)

In the high-temperature region, T ≥ \Ω/2, one can use
the expansion

(32)

Retaining the first quantum correction, one obtains
from Eqs. (30), (31), and (27) the following equation
for T0

(33)

where  is the classical limit of the Curie tempera-

a s( ) = Φxx ss R R' = 0–,( ) = Φyy ss R R' = 0–,( )

=  Φzz ss R R' = 0–,( ) k
sr

s( ),≈

V0 s( ) Φxx ss R R'–,( )
R R'≠
∑–=

=  – Φyy ss R R'–,( )
R R'≠
∑

=  – Φzz ss R R'–,( )
R R'≠
∑ k

dd
s( ),–≈

kii
dd

k f T0( ) 0,=

ξ2
bu

2
T0( ) kh– ξ 1–( )V0= =

or   u
2

T0( ) 1 ξ 1–
–( )a

b
---.=

"
2
--- "z

2
------coth 1

z
--- "

2 z
12
------ "

4 z
3

720
---------– ….+ +=

T0
2

T0
class

T0–
1
12
------ "Ω( )2

+ 0;=

T0
class

1 ξ 1–
–( )a

2
/b 1 ξ 1–

–( )E
sr

,= =

T0
class
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ture in the single-ion model, and the notation Esr = a2/b
is used for the energy characterizing the short-range
interactions. The solution of Eq. (33) has the form

(34)

Equation (33) can be solved if the condition  ≥

\Ω/  is fulfilled. One can readily see that this condi-
tion justifies leaving out all the following terms in
expansion (32).

Equation (33) yields the isotope shift ∆  caused
by the replacement of an atom with the mass M by an
isotope with the mass M + ∆M

(35)

5.3. Results of Calculations

Table 3 presents the results of the ab initio cluster
calculations of the harmonic force constant a for Ti and

T0

1 1
1
3
---δ2

–+

2
-------------------------------T0

class
, δ2 "Ω

T0
class

----------- 
  2

.= =

T0
class

3

T0
iso

∆T0
iso ∂T0

∂M
---------∆M

"Ω( )2

2T0 T0
class

–
-------------------------- ∆M

12M
-----------.= =

0.04

0.02

0

–0.02

–0.4–0.8 0 0.4 0.8
uz, Å

E – E0, eV 12
34

5 6

Local adiabatic potential of Ca, Ba, Pb, Cd, Mg, and Zn
impurity atoms in the A position in SrTiO3 (uz is the dis-
placement of an impurity atom from the central position at
the site of the cubic perovskite lattice along the [001] direc-
tion). (1) Ba, (2) Pb, (3) Ca, (4) Cd, (5) Mg, and (6) Zn.
4
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Table 2.  Effective charges , and Zii(s) for compounds with the perovskite structure

Compound Atom Cluster ii Zii

BaTiO3

Ba VIII 1.4 3.3 2.75

Ti
I 6.2 (5.7) 14.8 (13.8)

7.16
VII 4.6 11.0

O II
|| –4.0 –9.7 –5.69

⊥ –1.2 –2.9 –2.11

SrTiO3 

Sr VIII 1.3 3.1 2.54

Ti
I 6.15 (5.7) 14.7 (13.6) 

7.12
VII 4.5 10.7 

O II
|| –3.9 –9.4 –5.66

⊥ –1.2 –2.9 –2.00

CaTiO3

Ca VIII 1.3 3.4 2.58

Ti
I 6.1 (5.7) 16.0 (14.8)

7.08
VII 4.3 11.2

O II
|| –3.9 –10.1 –5.65

⊥ –1.3 –3.3 –2.00

PbTiO3

Pb VIII 2.2 7.8 3.90

Ti
I 6.2 (5.7) 21.8 (20.2)

7.06
VII 3.5 12.3

O II
|| –2.6 –9.2 –5.83

⊥ –1.4 –4.8 –2.56

KNbO3

K VIII 0.6 1.3 1.14

Nb
I 8.1 18.2 

9.23
VII 6.0 13.3 

O II
|| –4.95 –11.0 –7.01

⊥ –0.92 –2.06 –1.68

KTaO3

K VIII 0.65 1.4 1.2

Ta
I 9.3 19.7 

8.1
VII 5.5 11.6 

O II
|| –4.7 –10.0 –6.3

⊥ –0.95 –2.0 –1.5

Note: The Zii values for KTaO3 are borrowed from [54] and [55]. The  values calculated with due regard for the electronic correlations

(RHF + MP2 method) are given in brackets.

Zii
sr s( ) Z̃ii s( ),

Zii
sr

Z̃ii
ε∞ 2+

3
---------------Zii

sr=

Zii
sr
Nb atoms in cubic BaTiO3 and KNbO3.
3 It is seen that

these constants have positive values considerably
exceeding the atomic force constant for perovskites.

3 All the calculations were performed for [Ti(OH)6]2 and
[Nb(OH)6]1– clusters containing a single octahedron.
C

The lower line of Table 3 lists the V0 values for the Ti
and Nb sublattices determined with due regard for
Eqs. (29) and (17) and the data presented in Table 1.
Table 3 also lists the anharmonic b1 and b2 parameters
obtained in ab initio cluster calculations. Similar to the
harmonic constant, these parameters, with due regard
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Table 3.  Parameters of the single-ion model and the characteristics of BaTiO3 (Ti is a ferroelectrically active atom) and
KNbO3 (Nb is a ferroelectrically active atom) obtained from ab initio calculations

BaTiO3 KNbO3

RHF RHF + MP2 RHF RHF + MP2

a, eV/Å2 19.1 19.4 34.31 36.85

"Ω, K 471 475 454 471

1.034 1.018 1.029 0.958

b1, eV/Å4 99.1 103.5 144.1 147.7

b2, eV/Å4 –35.6 –43.3 –72.2 –85.6

b = 3b1 + 2b2, eV/Å4 224.2 223.7 287.9 271.8

 104 K 1.89 1.95 4.745 5.798

621 345 1337 <0

T0, K 590 277 1324 –

–31 –68 –13 –

48Ti  50Ti 1.4 3.8 – –
48Ti  46Ti –1.4 –3.8 – –

V0, eV/Å2 19.74 35.31

ξ
V0

a
------=

Esr a2

b
-----,=

T0
class 1 ξ 1––( )Esr K,=

∆T0
quant T0 T0

class K,–=

∆T0
iso K,
for electronic correlations, vary only slightly. Compar-
ing the calculated values of the Curie temperature with

the experimental values, (BaTiO3) = 400 K and

(KNbO3) = 700 K [58], we see that these data
agree only qualitatively.

The above approach also allows one to consider the
influence of the quantum statistics on the Curie temper-
ature in ferroelectrics with the perovskite structure.
Taking into account the experimental data on the iso-
tope shift T0 in BaTiO3 after the 48Ti  46Ti or
48Ti  50Ti substitution [59] and the data on the influ-
ence of quantum fluctuations on T0 in BaTiO3 [60] cal-
culated by the Monte Carlo method, these problems are

of considerable interest. Table 3 lists the  and T0

values for BaTiO3 and KNbO3 calculated by Eqs. (33)
and (34) with the use of the data presented in Table 3. It
is seen that the result obtained is in good agreement

with the value ∆  = –30 K determined for BaTiO3

in [60]. At the same time, the values of the isotope shift

∆  calculated by Eq. (35) for BaTiO3 after the
48Ti  46Ti or 48Ti  50Ti substitution from Table 3
are opposite in sign to the data obtained by Hidaka and
Oka [59].

T0
exp

T0
exp

T0
class

T0
quant

T0
iso
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      200
The Curie temperature T0 in perovskites is rather
sensitive to the degree of compensation of the contribu-
tions of different nature that come to the effective force
constant of the sublattice of ferroelectrically active ions
and, therefore, also to the accuracy of the calculations
of these contributions, a and V0. One can avoid this dif-
ficulty by considering T0 as the only fitting parameter of

the theory. Using Eq. (33), one can determine 

and, then, also ∆  and ∆ . The results thus

obtained are as follows. For BaTiO3,  = 446 K
(RHF method) and 447 K (RHF + MP2 method). For

KNbO3,  = 724.5 (RHF method) and 726.5 K

(RHF + MP2 method). Thus, we have  > 47 K for

BaTiO3 and 25 K for KNbO3. The isotope shift ∆
equals 2.2 K for the 48Ti  50Ti substitution and
−2.2 K for 48Ti  46Ti substitution.
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Abstract—The specific features of structural transformations in lanthanum manganite and lithium niobate are
analyzed in terms of the macrosymmetry conservation principle discussed in the papers by L.A. Shuvalov. The
possible mechanisms of phase transformations are proposed reasoning from a sequence of structural transitions,
including the restoration of a virtual configuration of cubic perovskite with double the lattice parameter. The
basic scheme of mutual transformations of two orthorhombic modifications is described for lanthanum manga-
nite. A similar scheme proposed for lithium niobate is used to elucidate the nature of the mechanical twinning
observed upon mutual switching of orientational domains. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The field of research concerned with analyzing sym-
metry properties upon diffusionless structural transfor-
mations includes different modern directions of the
physical materials science. Historically, until the nature
of these phenomena was elucidated, only a small num-
ber of effects associated with metal technology, such as
steel hardening, the “tin pest,” and others, were known
in sufficient detail. The term “martensitic transforma-
tions” is deeply embedded in the literature owing to the
numerous structural investigations of hardened steels.
A generalized characteristic of structural processes is
contained in the term “cooperative transformations.”
This term is taken to mean that the structure of a new
phase is formed from the parent praphase structure
through successive small oriented displacements,
shifts, and rotations of the atomic fragments (planes,
tetrahedra, etc.) as a whole. An important point is that,
in this case, the standard mechanisms of nucleation and
growth of new-phase crystals due to diffusion have
failed. Such diffusionless phase transformations fre-
quently occur, especially at low temperatures and under
high pressures. It should be noted that the list of mate-
rials undergoing diffusionless phase transformations is
not reduced to metal alloys.

Phase transitions from a paraelectric state to a ferro-
electric state have been extensively investigated by dif-
fraction methods. Although, in the course of these tran-
sitions, bulk effects and real atomic displacements, as a
rule, are insignificant, the crystal symmetry can change
substantially, including loss of an inversion center and
1063-7745/04/4901- $26.00 © 20040
a change in the type of Bravais lattice. A large number
of research works performed in the last decade have
demonstrated that the first representatives of high-tem-
perature superconductors and crystals with colossal
magnetoresistance have in many respects inherited
structural problems formulated for related families of
ferroelectric crystals. From this standpoint, the justifi-
cation of structural models and inclusion of symmetry
hierarchy are of particular importance. The same is
especially true in regard to both the search for possible
ways of transforming a given point group into a sub-
group and an analysis of experimental splittings of dif-
fraction peaks.

When solving the aforementioned experimental
problems, it is expedient to use the principle of conser-
vation of generalized symmetry (macrosymmetry of
polysynthetic twins), which was proposed by Zheludev
and Shuvalov [1].

The concept of a discrete set of orientational
domains (orientational states) of a new phase has
assumed a special significance in terms of structural
crystallography. Let us assume that, at a certain temper-
ature, the initial structure should undergo transforma-
tion due to specific atomic displacements in particular
crystallographic directions. The symmetry properties
provide a means for “multiplying” this process. As a
result, there exists a series of equivalent possible ways
of deformation whose number is determined by the
group algebra of the parent praphase. Therefore, the
formation of a new phase occurs through a specified set
of orientational states. Within this approach, which is
based on the principle of conservation of generalized
004 MAIK “Nauka/Interperiodica”
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symmetry, the symmetry of the generalized reciprocal
space for a complete set of orientational states of a dis-
symmetric phase reproduces F2 symmetry of the initial
structure.

Research into crystals of the perovskite family has
revealed different aspects of the macrosymmetry con-
servation principle. For example, a number of interest-
ing features manifest themselves in the sequence of
several structural transformations. In particular, it is
known that, upon cooling, barium titanate crystallizes
from a melt in the K modification (cubic, Pm3m),
which, in turn, undergoes the following sequence of
phase transitions with a decrease in the temperature: at
393 K, K  T (tetragonal, P4mm); at 273 K, K  O
(orthorhombic, Bmm2); and, at 183 K, K  R (rhom-
bohedral, R3m). Formally, each of the subsequent tran-
sitions could result in a jumpwise increase in the total
number of orientational states due to a new transforma-
tion of the already existing domain structure with a
specified multiplicity. However, such an avalanchelike
multiplication of orientational states is not observed in
real experiments. This means that the “memory” of the
lattice of the cubic praphase is an important factor
responsible for the mechanism of the structural trans-
formation. An analysis of the data available in the liter-
ature demonstrates that, in the above sequence of phase
transitions, the mutual orientation of domains and the
number of orientational states in each of the new phases
are governed by the transformation from the praphase,
i.e., K  T, K  O, and K  R. To put it differ-
ently, within this model, each new phase transition (for
example, T  O) necessitates virtual restoration of
the praphase K and a new domain structure is formed in
the coordinate system of the cubic phase:

A similar approach can be used to analyze the
mutual switching of domains involved in a dissymmet-
ric phase, for example, upon polarization switching of
ferroelectric domains, which are conventionally desig-
nated as T1, T2, T3, T4, …, etc. This process can be sche-
matically represented as follows:

 etc.

In other words, the switching involves a (virtual) stage
of returning to the coordinate axes of the crystal lattice
of the cubic praphase.

It is clear that the above approach accounts only for
the general features of transformations. However, as
applied to particular experimental problems, this
approach can provide deeper insight into the mecha-
nism of structural transformations. Below, we will ana-
lyze specific examples of the mechanisms under con-
sideration for a number of representatives of the large
perovskite family.

K
T2 ⇔  O.

⇔

K
T2 ⇔  T3

⇔
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STRUCTURAL TRANSFORMATIONS 
OF LANTHANUM MANGANITE

According to Huang et al. [2] and Mitchell et al. [3],
lanthanum manganite LaMnO3 has several structural
modifications. Among them, the main modifications are

the rhombohedral (R c), two orthorhombic (PnmaI,
PnmaII), and monoclinic (P1121/a) phases. Mutual
transformations between the structural modifications
are observed under special temperature conditions or
small variations in the compositions.

It is significant that, in the framework of the known
hierarchy of crystallographic groups, the point group of
orthorhombic modifications (mmm) is not a subgroup
for the rhombohedral modification (group 3m). At the
same time, all the aforementioned groups are included
in the hierarchic system of m3m cubic symmetry, which
is characteristic of perovskites. Note also that the unit

cell parameters of the R c modification (a = 5.46 Å ≈
3.86 , α = 60.63°) are close to those involved in the
representation of the cubic lattice through a 60° rhom-
bohedron.

Therefore, the model of mutual transformations
through an intermediate stage of restoration of the
cubic configuration seems to be well substantiated.
This is also confirmed by the diffraction patterns. Fig-
ure 1 shows the diffraction pattern of lanthanum man-
ganite at room temperature.

First and foremost, it should be noted that the dif-
fraction pattern is relatively simple and the positions of
the diffraction lines are close to those in the diffraction
pattern of the primitive cubic lattice. The diffraction
pattern of lanthanum manganite is roughly approxi-
mated by the simplest set of the (100), (110), (111),
(200), (210), (211), (220), (300), and (310) lines, as is
the case with barium titanate. Within this model, the
parameter a for a hypothetical cubic lattice is estimated
from the diffraction angles as a ≈ 3.86 Å.

Consequently, the Debye powder diffraction pattern
also indicates that, in the topological model of the

R c  Pnma transformation, it is expedient to use
the sequence of transitions 3m  m3m  mmm,
including a return to the axes of the cubic supergroup.
As was shown in [4], this mechanism proved to be well
justified.

Let us now consider the possible mechanisms of the

structural transformation R c  Pnma in greater
detail. In this case, it is advisable to compare this trans-
formation with the cube–orthorhomb transition occur-
ring in barium titanate BaTiO3. In barium titanate, the
unit cell Pm3m (a = 4.03 Å) contains one formula unit.
The shear deformation of the basis configuration com-
posed of four cubic unit cells leads to the formation of
the base-centered orthorhombic structure Bmm2 with
the lattice parameters a = 5.66 Å, b = 3.99 Å, and c =
5.68 Å and two formula units.

3

3

2

3

3
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Fig. 1. Diffraction pattern of lanthanum manganite at room temperature.
In the case of lanthanum manganite, the resultant
structure is described as a primitive orthorhombic lat-
tice: PnmaI (a = 5.514 Å, b = 7.795 Å, and c = 5.531 Å)
or PnmaII (a = 5.715 Å, b = 7.715 Å, and c = 5.536 Å).
In either variant, the unit cell contains four formula
units. Therefore, it is necessary to modify the mecha-
nisms proposed for perovskites. A parent fragment con-
sisting of eight cubic unit cells of the praphase (Fig. 2)
can be used as a basis configuration subjected to uni-
form shear through a small angle. It is known [5] that a
similar configuration is typical of Sr2FeMoO6 crystals
and other representatives of the perovskite family with
magnetoresistive properties.

This situation can be clearly illustrated by the sche-
matic diagram depicted in Fig. 3. It can be seen from
the diagram that a tilting of the sides of the large unit
cell ABCD through a small angle ϕ results in a transfor-
mation of the initial square lattice into a rectangular lat-
tice with the unit cell EFGH. Upon twinning shear, the
initial structure Pm3m transforms into the primitive
orthorhombic lattice PnmaII with specified increased
lattice parameters a and c. Within this approach, we
obtain the parameter bunit vector ~ 2acube. The schematic
diagram shown in Fig. 4 illustrates the orientational
relationships of the orthorhombic unit cell with the
coordinate axes of the cubic praphase.
C

As can be seen from the diagram depicted in Fig. 3,
the lattice parameter a and the twinning angle ϕ for the
cubic praphase can be determined from experimental
data on the lattice parameters EF = a and FG = c for the
orthorhombic lattice according to the expressions acube =

1/2 , sin(45 + ϕ) = a/acube, and sin(45 – ϕ) =
c/acube. For the above parameters of the orthorhombic
lattice, the tilt angle upon twinning shear is estimated
(by solving the approximate trigonometric problem) as
follows: ϕ ~ –0.1° for PnmaI and ϕ ~ +0.9° for PnmaII
at acube = 3.905 Å.

It should be noted that the inequalities a < c and a >
c, which correspond to variants I and II of the orthor-
hombic structure, manifest themselves in opposite
signs of the tilt angle upon twinning shear. This circum-
stance allows us to elucidate the possible mechanism of
the mutual transformations PnmaI ⇔ PnmaII. From
analyzing the simplest diagram given in Fig. 3, we can
draw the conclusion that the real stage of this transition
involves a (virtual) restoration of the praphase lattice,
and, then, the lattice is tilted toward the opposite direc-
tion with respect to the coordinate axis:

a2 c2+( )

K
PnmaI ⇔  PnmaII.

⇔
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Lanthanum manganite crystals, like barium titanate
crystals, can undergo structural transitions with a
decrease in the temperature. In preliminary experi-
ments, the structure of polycrystalline samples was in
situ investigated on a diffractometer equipped with a
nitrogen cryostat. It was revealed that the diffraction
pattern changes upon cooling of the sample. Specifi-
cally, at temperatures below T ~ 200 K, there appears a
new diffraction line at the midpoint of the angle range
between the (110) and (104) lines attributed to the
rhombohedral phase. The intensity of the new line sub-
stantially increases with a decrease in the temperature.
The angular position of this line at a temperature of
93.4 K corresponds to the parameter d = 2.734 Å. This
value is in close agreement with the parameter d(110)
for the cubic phase with the above parameter acube. Note
that the positions of the lines observed in the initial dif-
fraction pattern remain constant. Figure 5 depicts the
temperature dependences of the peak intensities. It can
be assumed that, upon cooling, the onset of the phase
transformation occurs at a temperature between 200
and 150 K and the transformation is not completed at
93.4 K. In this case, the sample retains the two-phase
composition and an increase in the temperature from
93.4 K to room temperature leads to the recovery of the
initial diffraction pattern. Repeated cycling of the sam-
ples in this temperature range leaves the initial set of
lines in the diffraction pattern unchanged. In the imme-
diate future, we will perform a series of experiments
with the aim of studying the specific features of this
transformation in greater detail. In this paper, we can
only note that the appearance of new lines, their posi-
tions in the diffraction patterns, and the reversible two-
phase composition can be associated with the afore-
mentioned intermediate state with the coordinate axes
of the cubic praphase.

MECHANICAL TWINNING OF LITHIUM 
NIOBATE

An analogy with the structural transformations
occurring in lanthanum manganite can be revealed
from analyzing the results obtained for lithium niobate
single crystals. As is known, the LiNbO3 structure is
described by space group R3c with the unit cell param-

eters a = 5.494 Å ~ 3.885  and α = 55.87°. Note that,
as in the case of lanthanum manganite, the characteris-
tic angle α of the rhombohedral unit cell is also close to
60°, which indicates the relation to the parent cubic lat-
tice.

Barsamian et al. [6] investigated the plastic defor-
mation of lithium niobate single crystals. Oriented sam-
ples in the form of parallelepipeds (2 × 4 × 5 mm3 in
size with different facetings) were subjected to uniaxial
compression along the [111] direction at a constant
deformation rate (from 5 to 50 µm/min) in the temper-
ature range from 20 to 850°C. The experimental results
demonstrated that, at temperatures above t ≈ 300°C, the

2
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deformation predominantly occurs through the forma-
tion of mechanical twins. The geometric characteristics
of the twin slip bands and their angular parameters with
respect to the coordinate axes of single crystals were
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Fig. 2. Schematic diagram illustrating the orientational rela-

tionships of the rhombohedral unit cell R c of the lantha-
num manganite and the parent praphase fragment consist-
ing of eight perovskite cubic unit cells.
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Fig. 3. A model of twinning shear for transforming the par-
ent cubic lattice into an orthorhombic lattice with the (010)
shear plane, the (100) twinning plane, and the [001] twin-
ning direction. ABCD is the square face of the parent frag-
ment, EFGH is the a/c face of the orthorhombic unit PnmaI,
E1F1G1H1 is the a/c face of the orthorhombic unit cell
PnmaII, and ϕ is the tilt angle upon twinning.



44 SHEKHTMAN et al.
La
Mn
O
O2

[001]

[010][100]
Mn

[101]k
–

[100]unit vector

[100]k

[001]k
[010]unit vector

[110]k
[001]unit vector

[010]k

.....
..

........

...
...

...

........
...

...

........

Fig. 4. Schematic diagram illustrating the orientational relationships of the orthorhombic unit cell Pnma with the coordinate axes
of the cubic praphase.
thoroughly analyzed using the results of visual observa-
tions and recording of the Laue diffraction patterns.
The measurements revealed traces of three orienta-
tional states of twin interlayers on the sample faces. In
this case, the twinning planes make an identical angle
(~38°) with the loading axis. In [6], the authors deter-
mined the angles between the slip planes and showed
that the configurations of the three observed orienta-
tions can be brought into coincidence by mutual rota-
tion through an angle of ~120° about the [111] direction
of the compressive deformation. An analysis of the
Laue diffraction patterns made it possible to determine
the indices of the {110}/〈001〉 twinning system in the
crystals and to confirm the inference that the observed
orientations of the twins are related by a threefold rota-
tion axis.

The results obtained can be adequately interpreted
in terms of cube ⇔ rhombohedron “genetic relations.”
However, unlike the preceding case, the case in point is
not related to successive mutual transitions between
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Fig. 5. Temperature dependences of the peak intensities of
the (110) and (104) diffraction lines of the rhombohedral
phase (triangles), the peak intensity of the new diffraction
line (closed circles), and the ratio of the peak intensity of the
new phase to I(104) (open circles). 
C

crystalline modifications. In the experiments under
consideration, the sole orientational state (single-
domain crystal) transforms into three (equivalent) ori-
entational states of the rhombohedral phase. To put it
differently, the lithium niobate crystal is treated as a
single-domain configuration formed after the phase
transition from the cubic praphase. As a simple model,
we can propose the dilatation mechanism of transfor-
mation, namely, an extension of the cubic unit cell
along the direction (one of the four possible 〈111〉 direc-
tions) of the body diagonal. This deformation brings
about a decrease (60°  55.87°) in the angles α
([110]/[101]/[011]); as a result, the lattice becomes
rhombohedral.

Within this approach, the experimental data on the
oriented uniaxial deformation along the [111]rhomb
direction can be described by the two-stage mecha-
nism. Formally, the oriented compression provides
detwinning and the recovery of the initial characteristic
angles in accordance with the (110)/[001] system
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Fig. 6. Schematic diagram illustrating the switching of ori-
entational states upon mechanical twinning of the lithium
niobate crystal.
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through a (virtual) restoration of the praphase lattice.
Then, in a given crystal region, the lattice under the
action of a force couple transforms following the
(110)/[001] system, so that another possible axis,
namely, 〈111〉cube, becomes the [111]rhomb diagonal. In
other regions, an alternative orientational state of the
rhombohedral phase is formed by the same mechanism
under cleavage stresses.

The mechanism of switching of orientational states
is illustrated in the schematic diagram drawn in Fig. 6:
the slip plane coincides with the (110) plane; the shear
occurs along the [001] direction; ABCD is the
pseudocubic cross section (1); AECF is the cross sec-
tion of the rhombohedral orientational state (1); ABC'D'
is the pseudocubic cross section (2); and BE'D'F' is the
cross section of the rhombohedral orientational state
(2). It can be seen that the experimental results indicate
an analogy between mechanical twinning of the lithium
niobate crystals and interdomain transformations in fer-
roelastics. This manifests itself in deformation mecha-
nisms and interactions of the symmetrically justified set
of orientational states.

CONCLUSIONS
Thus, the above analysis of the concrete examples

considered in this work demonstrated that the inclusion
of inherent features of the perovskite family in struc-
tural investigations is of fundamental importance. The
same is also true for other crystalline systems. In partic-
ular, stacking faults and polytypic structures play a cru-
cial role in both systems with the closest packing and
compounds of the diamond-like family. Ordering pro-
cesses are extremely important for metallic com-
pounds. The distribution of oxygen over lattice sites
and incommensurate modulation phenomena substan-
tially affect the properties of high-temperature super-
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
conductors. It was established that manganites with
magnetoresistive properties undergo a sequence of
structural transitions which can be controlled by vary-
ing the temperature and composition of the material.
The proposed approach is based on the inclusion of the
structural hierarchy of the family with allowance made
for the macrosymmetry conservation principle and the
topology of the cubic praphase. Within this approach, it
becomes possible to analyze the influence of structural
transformations on the basic physical characteristics
more consistently.
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Abstract—Results of investigations of changes in the state of a ferroelectric crystal, through which an intense
electromagnetic-energy flux is transmitted, are analyzed. It is found that the main parameters determining
the phase transition change significantly in this case. In addition, some phenomena develop which are charac-
teristic only of open thermodynamic systems (self-assembling dissipative structures arise). These phenomena
manifest themselves upon generation of the second optical harmonic in crystals where natural matching is
absent. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The phenomenological theory of ferroelectric crys-
tals was suggested by Ginzburg and Devonshire on the
basis of the general thermodynamic theory of phase
transitions developed by Landau. After a number of pre-
liminary steps (Slater and Mason), the microscopic the-
ory was reported approximately in 1960 by Ginzburg,
Anderson, and Cochran, who introduced into consider-
ation the model of the so-called soft mode, using the
theory of lattice vibrations developed by Born [1].

Since in the nonlinear optics, as well in the optics of
ferroelectrics in general, the interaction between an
electromagnetic wave and the electron subsystem is
dominant, the problem should be considered by select-
ing the electronic degrees of freedom with subsequent
inclusion of the electron–phonon interaction, which
leads to an instability and a phase transition in the
absence of external fields. Therefore, the interband
model of a ferroelectric [2–4] is optimal for analysis of
changes in the state of a ferroelectric in a powerful
wave.

The following circumstance should be noted, which
is of much importance in view of the further consider-
ation. In all classical studies on ferroelecticity, a ferro-
electic crystal was considered as a thermodynamically
closed system. The mechanical actions and the effect of
electric fields and light of prelaser intensities below the
typical laser intensities only insignificantly affected
this condition. However, at energy-flux densities
through a crystal of about 1 MW/mm2 (laser pulses), a
system cannot be considered closed even in the first
approximation. Thus, the concepts of nonequilibrium
thermodynamics should be used in this case. The first
1063-7745/04/4901- $26.00 © 20046
experimental and theoretical investigations in this area
were performed in the 1960s–1970s [4–6].

The emphasis of this paper is on some recent studies
on the interaction between a powerful electromagnetic
wave and a ferroelectric crystal and the nonlinear optics
of these objects.

2. FERROELECTRIC UNDER CONDITIONS FAR 
FROM THERMODYNAMIC EQUILIBRIUM

2.1. Changes in the Main Parameters 
of the Ferroelectric State

In a weak electromagnetic field, the electronic spec-
trum of a crystal (the band structure) can be considered
as invariable. An external wave changes only the elec-
tron densities in bands and at local energy levels. As a
result, static electric fields arise which only insignifi-
cantly affect the parameters of a ferroelectric [7]. In
strong fields, the band structure of a crystal changes. In
addition, a uniform state may become unstable.

A general theory of changes in the properties of a
ferroelectric in a strong electromagnetic field was
developed in [2–5]. The account of the electromagnetic
field gives rise to a field term with the coupling constant
λαβ, which takes into account the electron–field interac-
tion in the Hamiltonian. A field is considered strong if
induced transitions to the lower levels are more likely
than spontaneous ones: τ ! τsp or λαβτsp @ 1. In this
case, an electron permanently passes from a lower to an
upper band and vice versa due to the action of the field,
thus forming a state in which it exists simultaneously in
both bands. As a result, the electronic spectrum trans-
forms. The bands shift closer to each other by ωL

(Fig. 1). According to the interband model, the instabil-
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ity in the paraelectric phase increases and the critical
oscillation frequency decreases. Hence, the permittivity
increases and the transition temperature increases as
well.

Thus, a strong external field, enhancing the effective
electron–phonon interaction, changes the main param-
eters determining the phase transition.

Note that, in the previous studies on the effect of
illumination of ferroelectrics, when only the increase in
the carrier density was taken into account (the elec-
tronic spectrum was assumed to be invariable), the
result was opposite: the transition temperature
decreased. However, such an approach is valid only in
the case of weak fields.

In strong fields, the renormalization of the interband
electron–phonon interaction by an external field plays a
decisive role. A strong field increases the density of cor-
related electron–hole pairs. Each pair has the dipole
moment

In a strong field, a coherent state of pairs is formed,
which is similar to that formed in the ferroelectric phase
due to the interband electron–phonon interaction. Due
to the coherence, a macroscopic dipole moment arises
in the electron subsystem; i.e., an additional polariza-
tion occurs in the electron subsystem, along with that
arising in a ferroelectric crystal due to the interband
interaction between electrons and polar transverse lat-
tice vibrations.

Some of these effects were observed in [4, 5], where
the permittivity of a crystal ε was measured in a laser
field. In these experiments, the main difficulty was that
the permittivity had to be measured in a short time
interval, shorter than the laser-pulse duration (pulses
with a duration of 5 µs were used; now these measure-
ments can be easily reproduced with pulse durations
shorter than a nanosecond). It was demonstrated in [5]
how this was done and how the analysis of the complex
shape of the response made it possible to reliably dis-
tinguish three components: the result of heating, the
result of the change in the carrier density, and the effect
of the strong field itself. The separation was possible
because the corresponding relaxation times differed
from each other by several orders of magnitude. Only
the zero-lag component of ε, which depends nonlin-
early on intensity at power fluxes exceeding
1 MW/mm2, is related to the issue under consideration.
The appearance of this component represents a new
photoferroelectric effect significantly exceeding in
magnitude those described above. The selection of this
component led to good agreement with the above con-
siderations.

d12 e ψ1*r τ .d∫=
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
2.2. Decomposition into Spatially Inhomogeneous 
Structures

Formation of spatial structures with a period of
about a few micrometers was observed in a ferroelectric
in the field of a powerful electromagnetic wave (under
specific experimental conditions). Figure 2 shows the
corresponding photograph from [6].

It was shown by Girshberg, Trunov, and us that fer-
roelectric crystals indeed become unstable with respect
to the decomposition of a homogeneous phase into
spatially inhomogeneous structures; thus, the homo-
geneous state of the ferroelectric phase becomes
impossible.

The theory of the effect was developed in [4]. The
occurrence of a spontaneous polarization results in the
nonzero order parameter Φ0 , which describes the
reconstruction of the electronic spectrum. In an exter-
nal field, the parameter Φ0 and the electron density in
the upper band are related by a nonlinear equation;
notably, Φ0 decreases as the electron density increases.
The local decrease in Φ0 gives rise to a potential well
for electrons, which leads to a local increase in their

Eg ωL 2λ

(a) (b) (c) (d)

Fig. 1. (a) Initial electronic spectrum and its reconstruction
in an intense light field of frequency ωL ((b) ωL < Eg; (c, d)
ωL > Eg).

Fig. 2. Instability of a spatially homogeneous state of a fer-
roelectric in a powerful electromagnetic wave. The photo-
graph shows a SbSI crystal illuminated by a laser pulse [6].
The period of the observed structure in a field with an
amplitude of about 105 V/cm is close to 8 µm.
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density. This increase gives rise to further decrease in
Φ0 and so on. A dynamic instability is developed in the
system, which leads to appearance of regions with Φ0 =
0 (paraelectric phase) and high nonequilibrium-elec-
tron density. Depending on the relationship between the
parameters, the size of these regions is determined by
the diffusion or correlation length, and a periodic struc-
ture with a relevant period arises in the system. This
process can be described by the effective negative dif-
fusivity.

It should be noted that similar, but somewhat differ-
ent, layering was also observed previously under weak
illumination of photoconductive ferroelectric SbSI [7].
In the immediate vicinity of the phase transition, layer-
ing of the ferroelectric into regions of paraelectric
phase and ferroelectric phase occurred. The tempera-
ture interval in which this phenomenon was observed
did not exceed 1.5–2 K, and the period of the structure
amounted to a few tenths of a millimeter. The above
effect was attributed to the decrease in the transition
temperature with increasing excited-carrier density,
due to which paraelectric phase layers arose in the fer-
roelectric phase. In a strong electromagnetic field, the
effect is qualitatively different: the proximity to the
phase transition is of no importance in this case. The
transition temperature increases in strong fields.

The above process can be considered as a case of
ordering in an open thermodynamically strongly non-
equilibrium system, since all the necessary conditions
are satisfied (a high-density energy flux is passed
through a crystal and the system is nonlinear and rather
complex [8]). The structure formed radically differs
from domain structures, which are known for ferroelec-
trics in states close to equilibrium.

3. FERROELECTRICS IN NONLINEAR OPTICS. 
NEW ASPECTS

Second-harmonic generation (SHG) is widely used
for investigating the properties of ferroelectric crystals:
nonlinear susceptibility, polarization states, various
structures (see, for example, [9]), and so on. This
method is also a promising candidate for studying
structures that arise in ferroelectrics in strong fields.

3.1. Phase Matching upon Generation 
of Secondary Waves

Passing through a crystal, pumping waves of fre-
quency ω generate secondary waves (for example, of
frequency 2ω) at different points of the crystal. The fre-
quency conversion is efficient only in the case of phase
matching of the secondary waves (in other words, when
the law of conservation of momentum for photons is
satisfied). However, this situation cannot be realized in
almost all cases due to the dispersion. Therefore, spe-
cial measures should be taken to ensure the phase
matching.
C

Different techniques are used to match phases: nat-
ural matching (due to the difference in the refractive
indices for ordinary and extraordinary rays), matching
that occurs when operating frequencies lie in the anom-
alous-dispersion region, the use of periodic structures
(scattering from such structures leads to changes in the
phase and, hence, the momentum), and so on. The
method of periodic structures was first proposed by
Miller [10]. This method is based on the compensation
of the phase mismatch by introducing into a crystal a
periodic structure with corresponding spatial frequency

q = k2ω – 2kω, q = 2π/Λ, (1)

where Λ is the space period. Such structures are formed
artificially either by growing layered crystals or by
using periodically spaced electrodes under voltage [11].

The required periodic structure can also be obtained
by interference of light beams from external sources
due to the photorefractive effect.

3.2. Matching by a Domain Structure

A weak SHG is observed in BaTiO3 and PbTiO3
crystals, which have no direction of natural matching.
A small-domain periodic structure can to used for
matching in ferroelectrics [1].

It was shown in [12] how a relatively strong SHG
occurs in Fe-doped BaTiO3 crystals due to a structure
with 90° walls. Figure 3 shows the dependence of the
second-harmonic intensity I2ω on the angle ϕ, which
was obtained by scanning with a moving detector. In all
the cases, the radiation pattern contained two maxima
located at angles of (7° ± 1°) in BaTiO3 and (10° ± 1°)
in PbTiO3 to the direction of the incident radiation kω.

Naturally, the exact correspondence between the
spatial frequency of a domain structure, which is
required by relation (1), to the frequency q is unlikely.
Indeed, when weak continuous radiation of frequency
2ω is scattered by these crystals (i.e., without the con-
version ω  2ω), a virtually continuous band can be
observed on a screen which contains no maxima at
angles in the range 5°–10° (sometimes, separate lines
can be seen against a continuous background, but, as
rule, the spatial frequency of these lines does not corre-
spond to q). In the case of SHG from a relatively wide
spectrum of qdom, only the necessary harmonic is used;
i.e., the spatial-frequency selection is performed.

3.3. Generation in the Absence of Stationary 
Matching Structures

3.3.1. Experimental data. However, it is well
known that, even in the absence of matching structures,
a weak SHG is observed in the directions not coincid-
ing with the direction of natural matching, for example,
in LiNbO3 crystals. SHG is observed even in materials
where the direction of natural matching is completely
absent, for example, in BaTiO3 or PbTiO3 crystals.
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Generally, this phenomenon is attributed to either the
spurious scattering or the generation in a layer near the
output surface with thickness equal to the coherent
length. Let us consider the specific features of this radi-
ation.

First of all, in the experiments with observation of
generation in the directions ±ϕ (Fig. 3), beginning with
some values of the pumping intensity Iω, a generation
forward occurs (ϕ = 0, “the central peak”). Two peaks
are observed for BaTiO3 and PbTiO3 crystals due to the
matching at 90° walls (see Section 3.2). In this case, the
ratio between the values of I2ω in the lateral peaks (or in
one lateral peak) and in the center changes with increas-
ing pumping intensity in favor of the central peak. The
values of I2ω in the lateral peaks increase proportionally

to , as it should be upon SHG. However, the intensity

of the central peak increases differently. At low , up
to some threshold value Ith, generation is absent: I2ω =

0 (Fig. 4). Then, with an increase in , I2ω begins to

increase faster than . Further increase in I2ω gives
rise to an approximately linear dependence of I2ω

on .

As rule, oscillations are observed in this portion of

the curve. The slope of the dependence I2ω( ) period-
ically changes. The amplitude of these oscillations
noticeably exceeds the spread due to measurement
errors and instability of generation (Fig. 4). It is also
noteworthy that, in the case of LiNbO3 crystals, oscilla-
tions are more pronounced for Fe-doped crystals than
for nominally pure samples. Generally, BaTiO3 and
PbTiO3 crystals contain impurities, and oscillations are
almost always observed for these crystals.

The amplitude I2ω of the central peak observed for
BaTiO3 and PbTiO3 increases not only with increasing
pumping-wave intensity Iω but also with increasing
duration of the radiation action, which can be clearly
seen from the dependence of I2ω on pumping-pulse rep-
etition frequency [13]. If the repetition frequency is suf-
ficiently low, the generated second harmonic relaxes to
zero after each pulse. If the pulse repetition period T is
short, the effect of each current pulse is summarized
with the effect of the previous pulse. As a result, the
dependence of the SHG on the on–off time ratio of
pumping pulses is observed. It was shown that the
relaxation time of SHG in barium titanate is about 0.5 s.

3.3.2. Self-matching model. The SHG in the for-
ward direction would be possible if a structure with col-
linear wave vector existed in a crystal, i.e., if there were
layers parallel to the surface. However, no such struc-
tures (domain or some other) are observed in the crys-
tals under consideration. It was suggested in [12–14]
that such structures arise automatically under the action
of intense energy fluxes.
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Fig. 3. Angular distribution of I2ω as a result of participation
of the domain structure in the matching of secondary waves
under generation of the second harmonic.
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Fig. 4. Experimental dependence of the second-harmonic
intensity on the squared intensity of the pumping wave in a
BaTiO3 crystal with high concentration of Fe impurity (the
field pulsations).
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It was mentioned in Section 2.2 that a ferroelectric
crystal in the field of a strong electromagnetic wave is
unstable with respect to self-organization, which con-
sists of the formation of periodic spatial structures. It is
reasonable to use this circumstance in constructing a
model for the case under consideration. We have to

I2ω

0 lc 3lc 5lc 7lc x

Fig. 5. Distribution of the second-harmonic intensity along
an irradiated crystal and the formation of layers due to the
initial instability and the dependence χ(2)(I2ω).

0.2

0.1

0.05 0.10 0.15

I2ω, arb. units

(I0, ω)2, arb. units

n = 10

n = 1

Fig. 6. Theoretical dependence I2ω( ) in the case of irra-

diation by single pulses (n = 1) and by a set of ten pulses,
with regard to the storage of the effect of the previous pulse
during each current pulse (n = 10).

Iω
2

C

assume that the period of arising structures is set by the
generation conditions. The corresponding mechanism
can be derived by taking into account the fact that a fer-
roelectric has a maximum nonlinearity (including the
optical-frequency range) near a phase transition. The
magnitude of the field affects not only the refractive
index but also the nonlinear optical coefficients. Let us
assume χ(2) to be dependent on the wave intensity I2ω.
By analogy with the well-known photorefractive effect,
where the refractive index (or χ(1)) depends on intensity,
the change in χ(2) in a powerful light wave can be called
the second-order photorefractive effect.

In the absence of natural phase matching, the gener-
ated-wave strength obtained by summing all the waves
2ω excited at all points in the interval from 0 to x, is
equal to

(2)

where q is the wave mismatch (1) and Iω is the pumping
intensity at the crystal input. Thus, due to integration,
the field of the second harmonic in a medium is a super-
position of two space modes with the wave vectors k2ω
and k2ω – q. As a result, the spatial distribution I2ω(x)
with a period of Λ = 2π/q (Fig. 5) along the wave path
can be written as

(3)

Specifically such a structure is required for match-
ing all the waves 2ω generated at different points. Thus,
the conditions for formation of a structure due to the
periodic acceleration of the second harmonic I2ω coin-
cide with the conditions necessary for quasi-matching.
The hatched layers in Fig. 5 have a space period of Λ =
2lc (specifically the one required to compensate the
mismatch between k2ω and 2kω).

The variation in χ(2) is very small, but the process is
enhanced by the aforementioned instability (see the
beginning of this section); thus, a weak modulation of
χ(2) plays only the role of a “trigger.”

Thus, a strong wave of frequency 2ω makes its prop-
agation in a ferroelectric crystal with strong nonlinear-
ity easier by forming the relief χ(2)(x) in the crystal.

However, this process requires more careful consid-
eration. The increase in the amplitude E2ω in the rising
portion of the dependence I2ω(x) near x = lc stops due to
the phase shift. However, χ(2) increases simultaneously,
making ∂E2ω/∂x increase and, thus, shifting the maxi-
mum to larger x. As a result, the coherent length
increases, and the maximum value of I2ω increases as
well.
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In the simplest two-wave approximation similar to
(2) (neglecting the waves with wave vectors close to
k2ω – q and so on), we can derive the field of the second
harmonic as a superposition of two waves with the
wave vectors k2ω – Q and k2ω – q in the form

(4)

Here, Is = (4πω2Λ /(kωc2))–2. The shift of the wave
vector Q accounts for the fact that now χ(2) depends on
I2ω, and the wave propagates in a medium whose non-
linearity is governed by the generated harmonic itself.

The gain of the amplitude A and the shift of the wave
vector Q at relatively low pumping intensities are given
by the expressions

(5)

where α ≡  determines the dependence of χ(2)

on I2ω. Then, from (4) we obtain

(6)

Thus, due to the dependence of χ(2) on I2ω, the second
harmonic is amplified by a factor of A2 . The space
period increases simultaneously:

(7)

The amplification of the second harmonic is obtained
due to both the increase in χ(2) and the increase in the
period of coherence (the parametric amplification).
This circumstance makes it possible to significantly
improve the conditions of SHG.

The profile of the field in a medium remains peri-
odic, but the space period now depends on the field
intensity. As a result, the dependence of generation of
the field I2ω at the sample end on the pumping field Iω
should exhibit pulsations which are somewhat similar
to the Maker fringes but are different in origin: they
arise due to the dependence of the coherent length on
intensity rather than the tilt of the sample, and, hence,
the alternate coincidence of the path length with the
sum of either an even or odd number of fixed coherent
lengths. Such pulsations could be referred to as the field
pulsations. Apparently, the oscillations observed in the
experimental dependences I2ω(Iω) are related to field
pulsations.

It should be noted that the increase in I2ω(x) is lim-
ited. Unlike the case of artificial structures, the self-
matching cannot lead to complete matching because it
is due to the spatial dependence of I2ω on x. If this
dependence changes, the induced structure changes as
well. With such a feedback, a steady increase in I2ω(x)
can never be attained since there would be no grounds
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to induce the required structure. As is well known, a
feedback never leads to exact matching.

Nevertheless, let us remember that the mechanism
under consideration only provokes a certain space
period when a system undergoes an abrupt transition
from a uniform unstable state to a more stable periodi-
cally inhomogeneous state. We may suggest that the
threshold observed in the curve I2ω(Iω) corresponds just
to the instant of abrupt transition.

It is possible that the ability of a system to store the
relief specified initially plays a significant role in this
case, which is confirmed by the dependence of this phe-
nomenon on the on–off time ratio for laser pulses and
the found influence of impurities. After a few pulses,
the second-harmonic field in a medium becomes a
superposition of many space modes with different wave
vectors, which deforms the spatial profile of the sec-
ond-harmonic intensity. Indeed, in accordance with the
calculations, flatter portions arise in the dependence
I2ω(Iω) (Fig. 6). For analysis of the correspondence
between the theoretical and experimental results, we
flattened the curves to eliminate the effect of the exper-
imental factors: unevenness of faces, possible reflec-
tions from them, and so on.

As a result of storing the relief, the SHG efficiency
significantly increases. Thus, account for the storage of
the induced structure allows us to obtain better agree-
ment between the theoretical and experimental data.

4. CONCLUSIONS

The efficiency of frequency conversion in arbitrary
directions in the crystals under investigation, obtained
in this stage, is very low (does not exceed 1%). The
generated light can be easily detected and its features
can be studied; however, this effect is still of no practi-
cal importance (except that it may be used in estimating
scattering losses). However, we believe that some mate-
rials can be found in which matching by self-organizing
structures may be useful.

The fact that a self-organizing structure is observed
is of interest itself. In addition, the possibility of esti-
mating high-order optical susceptibilities may be of
interest.

The analysis performed shows that the study of fer-
roelectric phenomena in strongly nonequilibrium con-
ditions, in particular, when a high-power flux of elec-
tromagnetic energy passes through a crystal, may
become one of the most promising lines of investiga-
tion in physics of ferroelectrics in the near future. The
conventional approach (the thermodynamic theory of
closed systems) should be significantly expanded.

We believe that the analysis of nonlinear optical
phenomena (the high-order photorefractive effects, the
induced spatial self-organizing structures, and so on)
will be the dominant method in studying ferroelectrics
in strong electromagnetic fields.
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Abstract—The complete X-ray structure determination of Czochralski grown La3Zr0.5Ga5Si0.5O14 single crys-
tals with the Ca3Ga2Ge4O14 structure is performed (sp. gr. P321, a = 8.226(1) Å, c = 5.1374(6) Å, Z = 1, Mo

radiation, 1920 crystallographically independent reflections, R = 0.0166, Rw = 0.0192). The absolute structure
is determined. It is shown that possible transition of some of La atoms (~1.2%) from the 3e to 6g position may
give rise to the formation of structural defects. © 2004 MAIK “Nauka/Interperiodica”.

Kα1
INTRODUCTION

Single crystals of complex oxides with the
Ca3Ga2Ge4O14 structure (sp. gr. P321) and, in particu-
lar, of La3Ga5SiO14 (langasite), La3Nb0.5Ga5.5O14, and
La3Ta0.5Ga5.5O14, attract particular interest as promis-
ing piezoelectrics that can be used in high-temperature
sensors and devices based on surface and bulk acoustic
waves. These crystals are characterized by rather high
electromechanical characteristics, temperature stabil-
ity, and low acoustic losses. Large La3Ga5SiO14,
La3Nb0.5Ga5.5O14, and La3Ta0.5Ga5.5O14 crystals are
grown by the traditional Czochralski method [1].

At present, about 140 compounds with the
Ca3Ga2Ge4O14 structure are known, some of which are
phases of variable composition [1–3]. Some of these com-
pounds melt congruently; about 15 compounds are grown
as single crystals by the Czochralski method; 15 more
reported compounds are langasite-based solid solutions
with partial or complete replacement of cations [1, 4].

The electroacoustic properties of the La3Ga5SiO14,
La3Nb0.5Ga5.5O14, and La3Ta0.5Ga5.5O14 crystals are
studied in sufficient detail, but the analogous character-
istics of other crystals obtained in various laboratories
are often inconsistent. The corresponding values for
solid solutions are often considerably lower than could
be expected. This is explained by the insufficiently high
quality of the crystals studied and the systematic
measurement errors. At the same time, the study of
electroacoustic properties of solid solutions allows one
to control their properties by varying their composi-
tions.
1063-7745/04/4901- $26.00 © 20053
The present study is aimed at the refinement of the
structural parameters of La3Zr0.5Ga5Si0.5O14 (LZGS)
crystals, determination of their absolute structure, spe-
cific features of their electron density, atomic thermal
vibrations, and cation distribution over the structure
positions.

GROWTH OF La3Zr0.5Ga5Si0.5O14 
CRYSTALS

Unlike La3ZrGa5O14, La3Ga5SiO14, and
La3Ta0.5Ga5.5O14, the La3Nb0.5Ga5.5O14 compound melts
incongruently, and crystals of this compound cannot be
grown by the Czochralski method. However, one can
expect the incorporation of a noticeable amount of Zr
into the solid-solution crystals. The preliminary study
of melting and crystallization of the solid solution of
the 1 : 1 composition in the La3ZrGa5O14–La3Ga5SiO14
system demonstrated the congruent character of its
melting and showed that the melting points of the solid
solution and La3Ga5SiO14 differ by no more than ~5°ë.
This allowed us to grow single crystals from the melt of
the La3Zr0.5Ga5Si0.5O14 composition by the Czochralski
method; the single crystals were up to 28 mm in “diam-
eter” and about 80 mm in length (the boule portion hav-
ing a constant diameter). Crystals were grown in plati-
num crucibles with a diameter of 45 mm (300 g of the
melt) along the 〈0001〉 directions, the pulling rate was
2 mm/h, and the rotation velocity ranged from 30 to
40 rpm. The crystals had no inclusions.

Electron-probe microanalysis of a single crystal of
the nominal composition La3Zr0.5Ga5Si0.5O14 (the frac-
004 MAIK “Nauka/Interperiodica”
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Fig. 1. La3Zr0.5Ga5Si0.5O14 crystal structure; 3e, 1a, 3f, and 2d are the Wyckoff positions of cations.
tion of the crystallized melt amounted to 0.89) showed
that the components were distributed homogeneously
along the boule length, with the average composition,
La3.03(2)Zr0.53(1)Ga5.00(2)Si0.44(1)O13.99(1), being somewhat
different from the expected composition (the numerals
in brackets indicate the scatter in component concentra-
tion along the boule length; the error of the chemical
analysis is somewhat higher). The lattice parameters
were constant along the whole boule length, a =
8.221(1) Å, c = 5.134(1) Å, and were practically the
same as the values of the crystallized residual mother
liquor [a = 8.222(1) Å, c = 5.134(1) Å]. The X-ray dif-
fraction pattern of the latter had weak lines of impurity
phases formed because of different compositions of the
crystal and the initial melt.

CRYSTAL STRUCTURE

The crystal structure of the Ca3Ga2Ge4O14 type can
be described as a mixed framework of two types of oxy-
gen tetrahedra—small 2d tetrahedra (position symme-
C

try 3), larger 3f tetrahedra (position symmetry 2), and
1a octahedra (position symmetry 32). The framework
voids lying at the same z level as the cations in octahe-
dra are occupied by the largest cations located in the 3e
position (symmetry 2) (Fig. 1). The coordination poly-
hedron of large cations (Na+, Ca2+, Sr2+, Ba2+, Pb2+, and
Ln3+) has eight oxygen vertices and can be represented
as a dodecahedron with triangular faces. Depending on
the chemical composition, the cationic positions can be
filled either orderly or by mixed cations; most of the
compounds have a disordered structure, with the corre-
sponding positions being filled with mixed cations.
Proceeding from the main crystallochemical criteria, it
was natural to assume that the La3+ ions in
La3Zr0.5Ga5Si0.5O14 would occupy the 3e positions; the
Zr4+ ions and some Ga3+ ions, the 1a position; and the
remaining Ga3+ and Si4+ ions would be distributed over
the 2d and 3f positions with the smaller Si4+ ions having
the propensity to filling the 2d positions.
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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DIFFRACTION EXPERIMENT

The lattice parameters were refined by the LS
method using 25 reflections in the angular range 2θ =
27°–32° and the SET4 procedure, which allowed us to
choose the angular position of each reflection from four
alternative positions and, thus, increased the accuracy
of the parameter determination. The measurements
were made within the complete sphere of the reciprocal
space. The main characteristics of the crystal, the con-
ditions of the X-ray diffraction experiment, the refine-

Table 1.  Characteristics of experiment and crystallographic
data for an LZGS sample

Composition La3Zr0.5Ga5Si0.5O14

Diffractometer NONIUS CAD 4F

Radiation MoKα, λ = 0.7107 Å

Monochromator Pyrolytic graphite

Scanning method ω/2θ 

Range of hkl variation –17 < h, k < 17, –10 < l <10

Sp. gr. P321

a, Å 8.226(1)

c, Å 5.1374(6)

V, Å3 301(1)

ρcalcd, g/cm3 5.784

Crystal radius, mm 0.14

µMo, mm–1 21.935

max sinθ/λ, Å–1 1.04

Number of reflections
measured

12440 

Rejection criterion I > 1.43σ(I)

Rav, % 3.02

Number of crystallographically 
independent reflections

1920

Weighting scheme 1/(σF)2

Flack parameter 0.02

R/Rw, % 1.66/1.92
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ment procedures used, and the concluding values of the
R/Rw factors are indicated in Table 1.

Analysis of the complete set of experimental data
showed no deviations from the sp. gr. P321. The inten-
sity measurements and all the subsequent crystallo-
graphic computations were performed in the fixed (in
our case, right-hand) coordinate system. The absolute
structure was established by comparing two possible
refined modifications which differed as an image (the
initial model) and its centrosymmetric reflection.

The computations were made using the JANA 98 [5]
and Prometheus [6] crystallographic program pack-
ages. In the computations, the atomic scattering curves
by neutral atoms were used with due regard for the dis-
persion corrections [7]. The correction for secondary
extinction was introduced by the Becker–Coppens for-
malism. The minimum values of the reliability factors
R were obtained based on the second-type extinction
model at r = 0.683 × 10–4 Å with the Lorentzian distri-
bution of mosaic blocks. At the concluding stage, ther-
mal motion of all the atoms (except for the atoms in the
additional La' position) were refined in the anisotropic
harmonic approximation. The coordinates of the basic
atoms, the effective values of thermal parameters, and
the position occupancies are indicated in Table 2; the
characteristics of the ellipsoids of thermal vibrations, in
Table 3; and the interatomic distances, in Table 4.

STRUCTURE REFINEMENT AND STRUCTURE 
CHARACTERISTICS

At the first stage of structure refinement, we used the
positional parameters of the La3Nb0.5Ga5.5O14 structure
as the initial coordinates [8]. In the latter compound, the
1a position is “mixed” and is occupied by Ga3+ and
Nb5+ ions in the ratio 1 : 1, whereas in the
La3Zr0.5Ga5Si0.5O14 compound, there are two mixed
positions—1a and 2d. In the initial model, we placed
0.5 Zr + 0.5 Ga in the 1a position, 1.5 Ga + 0.5 Si, in
the 2d position, and in 3 Ga atoms the 3f position. The
refinement of this model in the isotropic approximation
of atomic thermal vibrations yielded the reliability fac-
tors R/Rw = 5.11/5.76%. The allowance for anisotropic
Table 2.  Coordinates and effective parameters of atomic thermal vibrations of basic atoms in the LZGS structure

Wyckoff position; symmetry Occupancy x/a y/b z/c Beff, Å
2

3e; 2 0.988 La 0.42320(1) 0 0 0.80(1)

6g; 1 0.012 La' 0.418(4) 0.009(4) 0.139(4) 0.80(1)

1a; 32 0.5 Ga1 + 0.5 Zr 0 0 0 0.85(1)

2d; 3 0.75 Ga2 + 0.25 Si 1/3 2/3 0.5310(1) 0.71(1)

3f; 2 Ga3 0.7606(2) 0 0.5 0.90(1)

2d; 3 O1 1/3 2/3 0.188(3) 1.08(2)

6g; 1 O2 0.462(1) 0.312(1) 0.311(2) 1.50(2)

6g; 1 O3 0.146(1) –0.080(4) 0.240(2) 1.62(2)
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Table 3.  Dimensions and orientations of ellipsoids of ther-
mal vibrations of basic atoms in the LZGS structure

Atom and
the point 

symmetry of 
its position

Semiaxis 
length, Å

Orientation of the ellipsoid of
thermal vibrations, angles, deg

<(ia) <(ib) <(ic)

La 0.089 90.00 101.53 13.35

2 0.100 90.00 147.42 103.35

0.112 0.02 120.00 90.00

(Zr, Ga1) 0.085 90.00 90.00 0

32 0.112 150.00 90.00 90.00

0.112 30.00 90.00 90.00

(Ga2, Si) 0.089 90.00 90.00 0

3 0.097 149.99 90.01 90.00

0.097 29.99 90.01 90.00

Ga3 0.085 90.00 51.10 46.48

2 0.100 179.98 60.00 90.00

0.130 90.00 126.61 43.52

O1 0.094 41.57 78.43 90.00

3 0.094 41.57 78.43 90.00

0.151 90.00 90.00 0

O2 0.100 138.61 89.32 59.26

1 0.128 86.69 137.03 125.55

0.173 48.80 132.96 50.72

O3 0.076 95.40 117.63 36.67

1 0.100 9.97 129.95 90.66

0.180 81.65 52.37 53.33
C

atomic thermal vibrations for all the atoms of the initial
composition reduced the R/Rw value to (1.92/2.34)%. It
is seen from Table 3 that the differences in the axes of
the ellipsoids of thermal vibrations are the most impor-
tant for Ga3 and O atoms. For the La and (Ga1, Zr)
atoms, the anisotropy of thermal vibrations is less
important, and the thermal motion of (Ga2, Si) atoms is
almost isotropic.

In order to verify the initial formula of the crystal,
we refined the occupancies q of the positions with cat-
ions. The problem was solved using step-by-step scan-
ning [9]. We assigned a number of fixed values to the
parameters q of cations (with a step of 0.02) and refined
all the other parameters. The anionic positions were
assumed to be fully (100%) occupied. The results of
these refinement procedures were used to construct the
Rw = f(q) dependences. Analysis of such dependences is
often used in order to refine the chemical formulas of
complex minerals. It was shown [10] that this analysis
allows one to fix the q value corresponding to the func-
tion minimum and consider this value as the sought
solution. In LZGS crystals, the allowance for thermal
vibrations of atoms in both isotropic and anisotropic
approximations showed a slight deficit (1.2%) in the 3e
position occupied with La atoms and also slight devia-
tion of the Zr : Si ratio from unity [(0.5 Zr, 0.5 Si) in the
initial chemical formula], namely, 1.13 (0.53 Zr,
0.47 Si).

The existence of mixed cationic positions in the
LZGS structure requires special attention to analysis of
the residual electron density (∆ρ), establishment of the
chemical formula, and refinement of the distribution of
cations over the crystallographic positions at all the
stages of the refinement. The specific features of ∆ρ
Table 4.  Main interatomic distances in the LZGS structure, Å

La polyhedron (Ga2, Si) tetrahedron La'–O distances

La–O1 × 2 = 2.6373(5) Ga2–O1 = 1.761(2) –O1 = 2.47(1)

O2 × 2 = 2.478(1) O2 × 3 = 1.789(1) –  = 2.97(1)

 × 2 = 2.902(1) O1 – O2 × 3 = 3.027(2) –O2 = 2.08(1)

O3 × 2 = 2.376(1) O2 –  × 3 = 2.771(2) –  = 3.00(1)

(Zr, Ga1) octahedron Ga3 tetrahedron –  = 2.56(1)

Ga1–O3 × 6 = 2.049(1) Ga3–O2 × 2 = 1.887(1) –  = 3.35(1)

O3–  × 6 = 2.833(2) O3 × 2 = 1.834(1) –O3 = 2.09(1)

 × 3 = 2.720(1) O2–  = 2.887(2) –  = 2.81(1)

 × 3 = 3.227(1) O3–  = 3.385(1)

O2–O3 × 2 = 2.879(2)

O2–O3 × 2 = 3.000(1)

* Atoms obtained from the basic atoms using the symmetry elements of the P321 group.

O1*

O2*

O2* O2*

O2*

O2*

O3*

O3** O2* O3*

O3*** O3*
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Fig. 2. (x, 0, z) and (x – 2y = 0.760, z) sections of ∆ρ(x, y, z) through the (a, c, e) basic La and (b, d, f) Ga3 atoms constructed at
different stages of the refinement of the LZGS structure. The cross indicates the position of the subtracted atom. The length of the
section edge is 2 Å. Isolines are spaced by 1 e/Å3 in Figs. 2c and 2b, 0.7 e/Å3 in Figs. 2c and 2d, and 0.25 e/Å3 in Figs. 2e and 2f.
characteristic of anisotropic thermal vibrations of
atoms and possible structural disorder of cations are
clearly seen in the vicinity of the positions of La and
Ga3 atoms.
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With allowance for the atomic thermal vibrations in
the harmonic isotropic approximation, the ∆ρ values in
the vicinity of the basic La and Ga3 atoms considerably
exceeded the background values in the x0z and x – 2y =
4
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0.760z sections. Figures 2a and 2b clearly show that, in
these planes, the maxima of the positive electron den-
sity and the minima of the negative electron density are
located at distances of about 0.3 Å from the subtracted
La and Ga3 atoms, with the extremum values reaching
8 e/Å3. It is natural to assume that the ∆ρ distributions
shown in Figs. 2a and 2b can be explained by strong
anisotropy of harmonic thermal vibrations of La and
Ga3 atoms in the planes perpendicular to twofold axes
along which these atoms are located. The allowance for
anisotropy of thermal vibrations of these atoms in the
harmonic approximation results in disappearance of the
residual electron-density maxima around these atoms
(Figs. 2c, 2d) and a considerable decrease in R/Rw value
(according to the Hamilton criterion)—from
(5.11/5.76) down to (2.63/3.23)%. The allowance for
the anisotropy of thermal vibrations of all the cations
decreases the R/Rw value to (2.31/2.19)%, whereas the
allowance for anisotropic thermal vibrations of anions
reduces this ratio even more, R/Rw = (1.80/2.02)%. The
dimensions and orientations of the axes of the ellip-
soids of thermal vibrations indicated in Table 3 are con-
sistent with the specific characteristics of ∆ρ in the
vicinity of each atom with due regard for their thermal
motion in the isotropic approximation.

The second characteristic feature of the ∆ρ distribu-
tions shown in Fig. 2 is the presence of positive maxima
with values up to 3.5 e/Å3 at distances of about 0.7 Å
above and below the subtracted La atoms along the
[001] direction. The values and spread of these maxima
remain practically constant in the transition from the
isotropic to anisotropic thermal motion of atoms. Tak-
ing into account the small deficit in La atoms in the 3e
position observed in the refinement of the occupancies
q of crystallographic positions, we identified one of
these maxima with the additional 6g position with the
coordinates (0.423, 0, 0.138) for La atoms. In the
refinement of this structure model, we assumed that the
unit cell contains three atoms per LZGS formula unit.
The temperature motion of La' was taken into account
in the isotropic approximation under the assumption of
equal BisoLa' and BeqLa. The refined coordinates of the
additional La' position are x = 0.423, y = 0.009, z =
0.143, Biso = 0.83 Å2, and q = 0.012. The allowance for
the additional La' position reduced R/Rw to
(1.66/1.92)% and considerably “purified” the ∆ρ distri-
bution (Figs. 2d, 2f). The syntheses showed no consid-
erable deviations from the background values (about
0.5 e/Å3).

An important argument favoring the displacement
of a small amount of La atoms from the main to addi-
tional position is the maximum with the coordinates (0,
0, 0.14) in the distribution of the Patterson function
P(uvw). The length (0.7 Å) and direction of this vector
correspond to the length and direction of the vector
between the main and additional positions of La atoms
from different unit cells. This vector is translated by
C

P(uvw) = (0.423; 0; 0)ρ(0.423; 0; nc ± 0.14)dV to

the initial cell of the P function, where c is the lattice
parameter and n ≠ 0.

At all the stages of the structure-parameter refine-
ment, the choice of the absolute structure was checked
by calculating the inverted (with respect to the initial
model) twin component with a volume of 0.02 (Flack
parameter). At the concluding stage, we performed the
control refinement of the inverted model, which
resulted in an increase in the R/Rw value to
(2.72/3.28)% and confirmed the adequacy of the chosen
model of the LZGS structure.

As is seen from Table 4, the closest oxygen environ-
ment of the main La position (the 3e position with the
point symmetry 2) consists of eight oxygen atoms
related by the twofold axis along the c axis—four oxy-
gens below this position and four oxygens above it. The
La' atoms displaced with respect to the twofold axis
approach one of these four atoms, thus forming two
reduced La–O distances, La'–O2 = 2.08 and La'–O3 =
2.09 Å. In this connection, it should be noted that, when
estimating the reliability of the interatomic distances,
the true thermal vibrations in some instances may be
complemented with statistical displacements of atoms
from the equivalent positions, which are of a probabi-
listic nature. These displacements in the structure are
responsible for distance “tuning” to the values admissi-
ble in terms of crystal chemistry. For the reliable estab-
lishment of the character of atomic disorder and correct
choice of the model in those instances, where it is nec-
essary to establish what process takes place (thermal
motion of atoms or their disordering), one must analyze
in detail the electron-density distribution also at low
temperatures.

In conclusion, we should like to note that the refined
occupancies of crystallographic positions satisfactorily
agree with the X-ray spectral data and, thus, allow us to
write the formula of the solid solution studied as
La3Zr0.5 + δGa5Si0.5 − δO14 at δ = 0.03(1). The displace-
ments of a small amount of La atoms with respect to the
twofold rotation axis in the LZGS structure can be
caused by various factors, in particular, by some local
(one or several unit cells) ordering of Zr, Ga, and Si
atoms statistically occupying some crystallographic
positions.
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Abstract—Possible structural changes described by the group–subgroup relationships in the Ca3Ga2Ge4O14-
type structure (sp. gr. ê321) are considered. The most probable phase transitions seem to be those accompanied
by lowering of the symmetry to the maximal non-isomorphic subgroups P3 and C2. It is shown that only
destructive phase transitions accompanied by symmetry rise up to the minimal non-isomorphic supergroups for
the given structure type can take place. The change of the trigonal symmetry to monoclinic is revealed in
La3SbZn3Ge2O14, whose crystal structure is refined as a derivative structure of the Ca3Ga2Ge4O14 structure type
within the sp. gr. A2 (C2). At ~250Óë, La3SbZn3Ge2O14 undergoes a reversible phase transition accompanied
by symmetry rise, Ä2  ê321. Similar phase transitions, ê321  Ä2, are also observed in
La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14 under the hydrostatic pressures 12.4(3) and 11.7(3) GPa, respectively.
The mechanisms of compression and phase transition are based on the anisotropic compressibility of a layer
structure. With the attainment of the critical stress level in the structure, the elevated compressibility in the (ab)
plane gives rise to a phase transition accompanied by the loss of the threefold axis. Attempts to reveal low-tem-
perature phase transitions in a number of representatives of the langasite family have failed. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Crystals of the langasite family La3Ga5SiO14
(Ca3Ga2Ge4O14 structure type, sp. gr. P321) are prom-
ising piezoelectric materials widely used in recent
years for designing various frequency-selection devices
and sensors, which have a number of advantages over
those based on piezoelectric materials such as quartz
and lithium niobate and lithium tantalate. Therefore, in
some countries, large La3Ga5SiO14 (LGS),
La3Nb0.5Ga5.5O14 (LNG), and La3Ta0.5Ga5.5O14 (LTG)
crystals are grown by the Czochralski technique on an
industrial scale [1–3].

The first publications on these crystals showed that
the representatives of the langasite family undergo no
phase transitions at temperatures below Tm, which is an
obvious advantage for piezoelectric applications. At the
same time, some elastic and dielectric characteristics of
these crystals show their anomalous temperature behavior.

In particular, it is established that the acoustic-wave
velocity in some crystals of the langasite family shows
1063-7745/04/4901- $26.00 © 0060
an anomalous temperature dependence along some
crystallographic directions, which, in turn, gives rise to
such an important property of piezoelectric materials as
a high temperature stability [1, 4, 5]. Usually, an
increase in some elastic moduli (directly related to
interatomic bonding) with temperature precedes a high-
temperature phase transition (e.g., the α  β phase
transition in quartz crystals).

Some crystals of the langasite family show a dra-
matic increase in permittivity ε33 with lowering of tem-
perature, which, in turn, may indicate a possible occur-
rence of a low-temperature phase transition [5].

Finally, among about 140 known compounds with
the Ca3Ga2Ge4O14 structure, three phases were recently
established with a distorted trigonal lattice—
La3SbZn3Ge2O14 (LSZG), La3SbZn3Si2O14, and
SrLa2Ga4Si2O14 [6].

All the above stated brought us to the development
of a special program of searching for possible phase
transitions and study of their manifestation in structure
2004 MAIK “Nauka/Interperiodica”
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and properties of the compounds of the langasite family
under high pressures and low and high temperatures.
The results obtained up to date are considered below.

CRYSTAL STRUCTURE

The Ca3Ga2Ge4O14 structure (sp. gr. P321) can be
described as a framework formed by 2d (symmetry 3)
and 3f (symmetry 2) tetrahedra and 1a (symmetry 32)
octahedra, with the cavities being occupied by large
cations located in the 3e positions (symmetry 2) and
surrounded by distorted Thomson cubes or triangular
oxygen dodecahedra. The tetrahedra share vertices and
form layers alternating with the layers formed by octa-
hedra and dodecahedra along the c axis (Fig. 1). Inter-
and intralayer bonding is provided by polyhedra shar-
ing their edges and oxygen vertices. The smaller 2d tet-
rahedra share half of their O–O edges with dodecahe-
dra, which results in compression of the polyhedron,
whereas the larger 3f tetrahedra share no edges with
other polyhedra. Octahedra share three edges with
dodecahedra; dodecahedra share four edges with neigh-
boring dodecahedra, one edge with an octahedron, and
two more edges with 2d tetrahedra. In accordance with
their size, small tetrahedral ions occupy the 2d posi-
tions; larger ions, the 3f positions. The Sb5+, Nb5+, Ta5+,
Mo6+, and W6+ ions are located in the octahedral posi-
tions. The Al3+ and Ge4+ ions show a more pronounced
propensity to octahedral coordination than the larger
Ga3+; the Ti4 + ions also show the propensity to octahe-
dral coordination. Despite their layer structure, the
crystals show no cleavage, which indicates strong
bonding both inside and between the layers.

To date, about 20 structures of the compounds of the
langasite family have been solved by single-crystal X-
ray diffraction analysis. Most of these compounds have
disordered structures with the mixed filling of the cat-
ionic positions. The Ca3NbGa3Si2O14 compound and its
analogues and also the Ln3Ga5M4+O14 compounds (M =
Zr and Hf) [1] are characterized by ordered structures
with all the positions being occupied by only one type
of cations.

Thus, the layer structure of the Ca3Ga2Ge4O14 type
consists of a noncentrosymmetric framework with the
cavities filled with large cations. Oxygen tetrahedra
prevail over octahedra (in the ratio 5 : 1). Cation posi-
tions can either be occupied orderly or can be mixed.
The crystal structure is layered. Large number of shared
oxygen edges and location of a considerable number of
atoms along two- and threefold axes make the structure
rather rigid and stable against the action of various
external factors.

POSSIBLE PHASE TRANSITIONS IN CRYSTALS 
OF THE LANGASITE FAMILY

We restrict our consideration to possible phase tran-
sitions associated with the group–subgroup relation-
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
ship in the sp. gr. ê321, characteristic of most of the
known compounds of the langasite family.

The maximal non-isomorphic subgroups of the
sp. gr. P321 with the same lattice metrics are P3 and C2
[7]. The phase transitions accompanied by the forma-
tion of these subgroups and lowering of the symmetry
are characterized by the loss of the two- (P321  P3)
or threefold (P321  C2) axis. If the lattice metrics
is changed, the transitions accompanied by the change
of the sp. gr. ê321 to the sp. gr. ê3121, ê3221 (with tri-
pling of the c parameter and appearance of screw axes),
and ê312 (triple a and b parameters) may take place. In
the phase transitions in the LSZG, LNG, and LTG crys-
tals (see below), no tripling of the a and c parameters
was revealed, so these schemes of phase transitions are
highly unprobable in the langasite family.

The phase transitions occurring with doubling of the
a or c parameter without formation of the maximal iso-
morphic subgroups with low indices ê321 are also pos-
sible. These transitions may correspond to the forma-
tion of a superstructure with disordered positions filled
with ions having pronouncedly different sizes and
valences. An example here is superstructural ordering
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Fig. 1. Structure of a trigonal LNG crystal projected along
the (a) b and (b) c axes. One can see the GaO4 and Ga/NbO6
polyhedra; La atoms are depicted by spheres.
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of Ga3+ and å5+ ions occupying the octahedral posi-
tions in the ratio 1 : 1 in the (ab) plane or along the c
axis in La3M0.5Ga5.5O14 (M = Nb, Ta, and Sb). A phase
transition accompanied by the formation of a super-
structure should have taken place at a temperature high
enough for ion migration and ordering in the structure.
However, the X-ray powder diffraction patterns of these
compounds showed no superstructural lines [8] and,
therefore, the refinement of the LNG [9] and LTG [10]
structures was performed without taking into account
possible superstructural ordering. It may be assumed
that, with due regard for the close ionic radii of Ga3 +

and å5+, the difference in the ion charges is insufficient
for superstructural ordering. In principle, superstruc-
tural ordering with the change of the lattice parameters
by a factor that is not a multiple two is possible, as well
as the formation of modulated (both commensurate and
incommensurate) structures.

Thus, the most probable phase transitions for the
compounds of the langasite family are those which are
accompanied by lowering of the symmetry, i.e.,
P321  P3 and P321  C2.

In high-temperature phase transitions accompanied
by the appearance of a higher symmetry, the minimal
non-isomorphic supergroups of the sp. gr. ê321 are

P m1, P c1, P622, P6322, P 2m, P 2c, P312, and
R32. In [11], the hexagonal pseudosymmetry of the
structure is indicated. The arrangement of cations in

this structure type is described by the sp. gr. ê 2m,
which is “violated” by the coordinate z of the central
atom of the 2d tetrahedron (it slightly differs from the
necessary value 0.5) and arrangement of O atoms. Our
analysis showed that the structure of the Ca3Ga2Ge4O14
type cannot be described by any of the above groups

(including ê 2m) without considerable displacements
of oxygen atoms such that they would destroy the poly-
hedra and distort the respective bonds, i.e., without the
complete rearrangement or even destruction of the
structure. This explains the absence of high-tempera-
ture phase transitions accompanied by the formation of
a higher symmetry in the compounds of the langasite
family. At the same time, isomorphous phase transi-
tions proceeding without a change of the symmetry are
possible, but they should be accompanied by jumpwise
changes of the lattice parameters.

CRYSTAL STRUCTURE AND PHASE 
TRANSITION IN LSZG

Initially, X-ray diffraction patterns of LSZG,
La3SbZn3Si2O14, and SrLa2Ga4Si2O14 were indexed in
the trigonal system with the lattice parameters typical
of the compounds of the langasite family [12]. The
detailed analysis of these X-ray diffraction patterns
showed that the lattice is slightly (presumably orthor-
hombically) distorted [6]. However, none of the orthor-
hombic space groups are subgroups of the sp. gr. ê321.

3 3 6 6

6

6

C

The question about the structure and true symmetry of
these compounds was answered only by X-ray diffrac-
tion study of LSZG single crystals.

Small LSZG and La3SbZn3Si2O14 crystals were
obtained by melting of preliminarily synthesized
phases with a small excess in Sb2O5 in closed platinum
crucibles and subsequent slow cooling of the melt.

X-ray study of an LSZG crystal (8639 reflections
obtained within the complete sphere of the reciprocal
space, CAD-4F diffractometer, MoKα radiation, max
sinθ/λ = 0.97 Å–1) showed that the true symmetry is
monoclinic: a = 5.202 Å, b = 8.312 Å, c = 14.394 Å, β =
90.02°, Z = 2.1 The full-matrix anisotropic refinement
lead to the polar sp. gr. A2 (C2) (R = 5.16 and Rw =
4.63%) which is the maximal non-isomorphic sub-
group of the sp. gr. P321. The refinement performed in
the alternative sp. gr. P3 yielded no satisfactory results
[13]. The LSZG structure is illustrated by Fig. 2. Its
analysis shows that the structure only slightly differs
from the Ca3Ga2Ge4O14 structure type and preserves all
the main features of the latter. The loss of the threefold
axis and two of the three twofold axes results in the
appearance of nonequivalent positions of La and Zn
atoms, of which La1, Zn1, and Sb positions are special.
The remaining atoms are located in the general posi-
tion, whereas the remaining twofold axis becomes
polar and, thus, creates the conditions for the ferroelec-
tric state.

Slight differences (mainly in symmetry) between
the structures of the monoclinic LSZG and trigonal
Ca3Ga2Ge4O14 structures allow us to assume the possi-
ble Ä2  P321 high-temperature phase transition
accompanied by the formation of higher symmetry. The
temperature dependences of the unit-cell parameters of
LSZG [14] (Fig. 3) indicate the existence of a presum-
ably first-order phase transition near 250°C. Single
crystal X-ray diffraction study showed that the symme-
try of an LSZG crystal at 290°C is unchanged, but at
360°C, the symmetry becomes higher—trigonal, sp. gr.
P321. Being cooled, the crystal returns to the initial
state described by the sp. gr. A2. Thus, the phase transi-
tion to LSZG is reversible. The displacements observed
for some O atoms in the phase transition are quite pro-
nounced and reach ~0.9 Å. This results, e.g., in the
reduction of the coordination number of one of the La
atoms (La2) in the monoclinic phase from 8 to 7. In
order to determine the exact value of the phase-transi-
tion temperature and the nature of this transformation,
some additional investigations should be performed.
Similar phase transitions should also be observed in
La3SbZn3Si2O14 and SrLa2Ga4Si2O14.

1 The crystal studied was a polysynthetic twin whose monoclinic
components were related by a threefold rotation axis of the
pseudohexagonal lattice.
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Fig. 2. Monoclinic LSZG unit cell projected along the (a) b and (b) a axes. One can see the GeO4, ZnO4, and SbO6 polyhedra.
PHASE TRANSITIONS IN LNG AND LTG 
UNDER PRESSURE

Compressibility of LGS, LNG, and LTG crystals
was studied with the aim of establishing their structural
stability. The effect of pressure on solids is equivalent
to their compression under a lowered temperature and
may give rise to phase transitions accompanied by low-
ering of their symmetry.

The behavior of langasite under pressure was stud-
ied for the first time in [15]. Under the conditions of
uniaxial compression at P = 0.74 GPa, ferrobielastic
switching of the acoustic frequency of a resonator was
observed, which most likely corresponded to
pseudomerohedral microtwinning. The X-ray diffrac-
tion study of langasite compressibility under a hydro-
static pressure of 10.2 GPa revealed no phase transi-
tions [16].

X-ray diffraction study of LNG and LTG under the
hydrostatic compression, 22.8 and 16.7 GPa, respec-
tively, was performed on single crystals in a high-
pressure chamber with diamond anvils filled with
helium [17].
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
The variation of the relative unit-cell parameters of
LNG and LTG crystals under pressure is illustrated by
Figs. 4 and 5. The kinks on these dependences indicate
the phase transition under pressures of 12.4(3) GPa in
LNG and 11.7(3) GPa in LTG.

The crystal structures of the high-pressure LNG and
LTG phases were determined within the sp. grs. P3 and
C2, the maximal non-isomorphic subgroups of the sp.
gr. P321. The refinement performed by the structural
data for a monoclinic LSZG crystal indicated that the
sp. gr. A2 (C2) is preferable. Figure 6 shows the LNG
structure projected along the b axis. The comparison of
this structure with the LTG structure [17] shows more
pronounced distortion of octahedra in LNG than in
LTG. The scatter in the (Nb,Ga)–O distances in the
octahedra [1.74(7)–2.12(6) Å] is analogous to the scat-
ter in the Ti–O distances in the TiO6 octahedra in the
structure of the well-known nonlinear optical KTiOPO4
(KTP) crystal [18]. The octahedra in the LTG structure
are more regular and the (Ta,Ga)–O distances are close
to 1.98(5) Å. This discrepancy can be explained by
more the pronounced polarization of oxygen atoms sur-
rounded with Nb5+ ions in comparison with the polar-
ization of the oxygen atoms surrounded with Ta5+ ions,
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which is characteristic of many Nb- and Ta-containing
compounds. Thus, the scatter in the Nb–O and Ta–O
distances in LiNbO3 and LiTaO3 ranges within 1.88–
2.13 and 1.91–2.07 Å, respectively [19]. In a mono-
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clinic LSZG crystal, the scatter in the Sb–I distances in
octahedra ranges within 1.98–2.03 Å.

The high-pressure monoclinic LNG and LTG
phases possess trigonal pseudosymmetry. The spatial
arrangements of heavy atoms refined within the mono-
clinic sp. gr. A2 and the trigonal sp. gr. ê321 coincide
within the experimental error. However, the coordinates
of oxygen atoms in the sp. gr. A2 are inconsistent with
the trigonal symmetry. Within the experimental error,
the lattice parameters of LNG and LTG correspond to a
trigonal lattice in the entire pressure range studied; the
diffraction reflections show no broadening up to a pres-
sure of 14 GPa. Noticeable reflection broadening is
observed only at higher pressures and is explained by
the deviation of the angle β from 90° or by an increased
difference between the a and b parameters in the mon-
oclinic domains.

Since the action of the temperature and pressure on
the crystal structure produces changes with opposite
signs, the structures of the high-pressure monoclinic
LNG and LTG phases and the low-temperature mono-
clinic LSZG modification are the same. In a similar
way, the structure of the high-temperature trigonal
LSZG phase is the same as the structure of the low-
pressure LNG and LTG phases.

Both compounds show higher compressibility along
the a axis than along the c axis in the entire pressure
range studied, with the compressibility along the c axis
for LNG and LTG being almost the same in the entire
pressure range (Table 1). The compressibilities along
the a axis are close only for low-pressure phases and
differ considerably above the phase-transition pressure.
Compressibility along the a axis in LNG after the phase
transition is almost two times higher and noticeably
decreases along the c axis. As a result, the anisotropy of
compressibility becomes much more pronounced. The
anisotropy of compressibility in the LTG crystal after
the phase transition slightly increases, whereas com-
pressibilities along the a and c axes decrease. The ther-
mal expansion of the trigonal LNG, LTG, and LSZG
phases is also anisotropic. In the temperature range
from 300 to 850°C, thermal expansion in the (ab) plane
is higher than in the c direction (Table 2).

The behavior of LNG and LTG crystals under
hydrostatic compression show that these crystals may
be used as pressure sensors up to a pressure of ~11 GPa
at room temperature (the application range of LGS
crystals seems to be rather close). With an increase in
temperature, the phase-transition pressure would also
increase in order to compensate thermal expansion, and
the working range of pressure sensors slightly
increases. At sufficiently high temperatures and pres-
sures, the boundary of the stability region is attained,
whose slope is opposite to the slope of the P−T depen-
dence of the phase transition.
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MECHANISMS OF COMPRESSION AND PHASE 
TRANSITION

The mechanisms of compression and phase transi-
tion in LNG and LTG phases crystallized in the trigonal
sp. gr. P321 with a limited number of free positional
parameters are rather complex. Under pressure, the
unit-cell volume may decrease because of compression,
distortion, and rotation of coordination polyhedra. In
the Ca3Ga2Ge4O14-type structures, polyhedra share the
vertices and O–O edges. Distortion and rotation of
polyhedra are “damped” by valence bonds and high lat-
tice symmetry (two- and threefold axes). The structure
consists of alternating layers of tetrahedra and layers of
dodecahedra and octahedra, which are practically pla-
nar and have different compressibilities. The atoms can
be located in special positions with the degrees of free-
dom in the layer (central atoms of the 3e dodecahedra
and 3f tetrahedra on twofold axes) and normally to the
layer (central atoms of the 2d tetrahedra and the O1
atoms on threefold axes). The O2 and O3 atoms occupy
the general positions and can be displaced along any
direction. The octahedral atoms in the position 1a are
fixed by the two- and threefold axes.

The data obtained indicate that compressibility of
the compounds with the Ca3Ga2Ge4O14 structure in the
(ab) plane is higher than compressibility along the x
axis [14, 16, 17]. This can be explained by the layer
structure, the large number of degrees of freedom for
atoms in the layers, and the absence of considerable
deviations of the layers from the plane, which leads to
their corrugation. The structural data for LNG and LTG
under pressures below 12 GPa show that compression
results mainly in a decrease in the volume of LaO8
dodecahedra (mainly ionic weak La–O bonds) and
[Ga,Nb(Ta)]O6 octahedra (ionic–covalent bonds). The
GaO4 tetrahedra, first, “try” to rotate, because rotation
can occur under the action of less intense external fac-
tors than reduction of covalent Ga–O bonds. However,
rotation is hindered by bonds with neighboring polyhe-
dra, and, as a result, the tetrahedra may rotate only
within certain limits. At P > 5 GPa, an increase in pres-
sure gives rise to a more noticeable reduction of the
Ga–O distances in tetrahedra. After the attainment of
the critical stress values at 12(1) GP, an increase in
stresses in the structure results in its deformation,
which is seen from the redistribution of the bond
lengths and disappearance of threefold axes. Upon the
phase transition with lowering of symmetry, the num-
ber of degrees of freedom in the structure increases.
Compressibility in the (ab) plane [(bc) plane in the
monoclinic setting] in LNG increases because the bar-
riers (threefold axes) disappear and compressibility
along the c axis decreases (the remaining twofold axis
reduces compressibility), and the resulting volume
compressibility increases. Comparing Figs. 1 and 6, we
see a more pronounced corrugation of “tetrahedral lay-
ers” in the monoclinic LNG phase because of the pref-
erable compression of the structure in the (ab) plane.
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However, the volume and both linear compressibilities
decrease in the phase transition in LTG, which is incon-
sistent with the phase-transition mechanism accompa-
nied by the loss of the threefold axis.

Monoclinic distortion of the LSZG and
La3SbZn3Si2O14 structures in the absence of high pres-
sures seems to be caused by filling of the 3f tetrahedra
with large Zn2+ ions (riv = 0.60 Å) rather than with
small Ga3+ ions (riv = 0.47 Å). Possibly, a certain role is
also played by the considerable scatter in the cation
valences and the ordered filling of oxygen polyhedra
with cations. The stresses thus formed in the structure
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Fig. 5. a/a0 and c/c0 ratios in LTG as functions of pressure.
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polyhedra are shown.

Table 1.  Compressibilities along the a and c axes of LNG
and LTG crystals under the zero pressure (β0 × 104, GPa–1)

Compound

Low-pressure phase 
(sp. gr. P321)

High-pressure phase 
(sp. gr. A2)

a axis c axis a axis* c axis*

LNG 8.70(18) 6.24(2) 15.6(3) 4.21(3)

LTG 8.91(16) 6.57(8) 6.31(8) 3.74(7)

* In trigonal setting.
4
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exceed the upper level and are “removed” by the mon-
oclinic distortion of the lattice.

The remaining monoclinic phase, SrLa2Ga4Si2O14,
is formed by ions characteristic of splitting, with the
octahedra and tetrahedra being orderly filled with Ga3+

and Si4+ ions. The only feature that distinguishes this
structure from the other structures of the langasite fam-
ily is the mixed filling of dodecahedra with Sr2+ and
La3+ ions in the ratio 1 : 2 characteristic of the 3e posi-
tion in the sp. gr. P321 in the transition to the sp. gr. A2.
In some other compounds analogous with respect to the
position occupancies (e.g., in Na2CaGe6O14), no mono-
clinic lattice distortion was revealed. We assume that
the disorder in the 3e positions (especially disorder
described by the ratio 1 : 2), may reduce the pressure
necessary for the transition to the monoclinic modifica-
tion.

We see that the pressure giving rise to the P321 
Ä2 transition in the compounds with the Ca3Ga2Ge4O14

structure varies over the wide range from 10−4 GPa for
the LSZG to 12(1) GPa for LNG and LTG. It seems that
this pressure can even exceed 12 GPa.

With a further increase in pressure, the following
transitions accompanied by lowering of the symmetry
may take place. The attainment of the compressibility
limit in the (bc) plane makes possible the phase transi-
tion to the triclinic sp. gr. P1 accompanied by the loss
of the twofold axis. This triclinic space group is the
maximal non-isomorphic subgroup of the sp. gr. C2
(A2). In LNG crystals, no similar phase transition is
observed up to a pressure of 22.8 GPa, i.e., the value
two times higher than the pressure in the ê321  Ä2
phase transition. Therefore, in this case, another sce-
nario, explained by the strive of tetrahedral ions to
increase their coordination up to 5 or 6, seems to be
more probable. This should lead to the dramatic rear-
rangement of the tetrahedral layer and the whole struc-
ture (destructive phase transition). An example of such
a structure is monoclinic Ca3Mn2Ge4O14 (sp. gr. I2/c)
characterized by the same stoichiometry, layer charac-
ter of the structure, and lattice metrics, which are close
to those of the high-pressure LNG and LTG phases
whose “tetrahedral” layers incorporate octahedra [20].
Instead of structural rearrangement, the compound can
decompose into several phases. The only study dedi-
cated to the stability of the compounds with the
Ca3Ga2Ge4O14 structure under pressure is, in addition

Table 2.  Average thermal-expansion coefficients of the pa-
rameters of the trigonal unit cell in LSZG, LNG, and LTG
crystals in the temperature range 300–850°C

αL (10–6/K) LSZG LNG LTG

αa 11.35(3) 8.038(13) 8.23(2)

αc 7.36(2) 5.891(16) 5.97(13)

αV 30.2(3) 22.31(23) 22.54(21)
C

to [16, 17], the study of the high-pressure
Na0.9Ca2.95Si6O14 phase decomposing at P > 14 GPa
[21]. The further evolution of the Ca3Ga2Ge4O14-type
structures with an increase in pressure can be exempli-
fied by the LSZG structure having the monoclinic sym-
metry under normal pressure.

SEARCH FOR LOW-TEMPERATURE PHASE 
TRANSITIONS

The discovery of the monoclinic distortion of the
LSZG, La3SbZn3Si2O14, and SrLa2Ga4Si2O14 lattices at
room temperature and the phase transition in LSZG at
~250°C gave an impetus to the search for similar trans-
formations in other compounds of the langasite family
at low temperatures. It is well known that cooling of
solids usually results in a decrease of the unit-cell
parameters, i.e., is equivalent to the effect of pressure.

There are only a few low-temperature studies of
crystals of the langasite family important for both fun-
damental and applied science. We mention here the
spectroscopic studies of doped crystals at helium tem-
peratures [22], measurements of heat conductivity,
dielectric constant, acoustic-wave velocities, thermal
expansion, and thermal conductivity in the LGS, LNG,
and Sr3Ga2Ge4O14 crystals in the temperature range
from 55(77) to 300 K [23]. We should like to emphasize
that permittivity in LNG crystals in the temperature
range from 4.2 to 300 K shows a dramatic increase in
ε33 with a decrease in the temperature and the attain-
ment of the plateau at ~30 K. A similar behavior of ε33
is also characteristic of the quantum paraelectric com-
pound Sr1 − xCaxTiO3 [24]. An increase in ε33 with low-
ering of the temperature was also observed for other
crystals of the langasite family.

We selected as a structure-sensitive property the
heat capacity and measured it for LGS, LNG, LTG,
Ca3Ga2Ge4O14, Sr3Ga2Ge4O14, Ca3TaGa3Si2O14,
Sr3TaGa3Si2O14, and Na2CaGe6O14 single crystals and
LSZG polycrystals in a VNIIFTRI microcalorimeter in
the temperature range from 6 to 270 K (the data for
LGS and Ca3Ga2Ge4O14 are shown in Fig. 7). The tem-
perature curves of heat capacity of all the samples
showed no anomalies (within the method sensitivity)
that could indicate phase transitions. X-ray diffraction
study of LNG crystals at 20 K showed no considerable
changes in the structure in comparison with the struc-
ture at room temperature.

To explain the absence of low-temperature phase
transitions in the above compounds, we considered the
unit-cell parameter ratio c/a in a trigonal LNG crystal
as a function of pressure and temperature (Fig. 8). It is
seen that the temperature range studied (0–850°C) [14]
corresponds to the change in the pressure by ~1.6 GPa.
Compression during cooling in the temperature range
293–4.2 K is equivalent to the effect of a hydrostatic
pressure of ~0.5 GPa; a pressure of 12.4 GPa corre-
sponding to the phase transition is equivalent to cooling
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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by ~6000 K. Since, depending on the stresses in the
structure, the pressure under which the phase transition
takes place in the compounds of the langasite family
ranges from ≤10–4 to pressures exceeding 10 GPa, it is
not astonishing that, among the nine compounds stud-
ied, there is not a single compound in which a phase
transitions takes place during cooling corresponding to
a compression under pressures ê ≤ 0.5 GPa. We believe
that such materials should be found among the
130 remaining compounds.

POSSIBLE HIGH-TEMPERATURE PHASE 
TRANSITIONS

Earlier, we came to the conclusion that no phase
transitions accompanied by the formation of a higher
symmetry can take place in compounds of the langasite
family, because a Ca3Ga2Ge4O14-type structure with the
preserved unit-cell metrics cannot be described within
the corresponding minimal non-isomorphic super-
groups with respect to the sp. gr. P321. Only the iso-
morphous phase transitions (within the sp. gr. P321)
may take place and they should be accompanied by the
jumpwise behavior of the unit-cell parameters
(although sometimes hardly observable). The dramatic
changes in the unit-cell metrics corresponding to an
isomorphous phase transition may take place only if
some noticeable structural changes not violating the
structure symmetry occur. These can be jumpwise
changes of atomic coordinates, formation of new posi-
tions, splitting of positions, partial ordering of disor-
dered positions, ordering of defects, etc.

The change of the lattice parameters with tempera-
ture can be determined by studying thermal expansion
of the unit cell by X-ray diffraction (on both powders
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      200
and single crystals) or dilatometry methods. The ther-
mal-expansion data for compounds of the langasite
family at temperatures higher than room temperature
are rather scarce. Thermal expansion in LGS, LNG, and
LTG crystals is measured in the temperature range from
–100 to +150°C [25]. Thermal expansion data for LNG
and LTG crystals at temperatures up to 850°C [14] are
insufficiently accurate for establishment of possible
weak anomalies in the unit-cell parameters. In [26],
thermal expansion in LGS and La2.7Nd0.3Ga5SiO14 solid
solution was measured both normally and parallel to
the c axis at temperatures up to 1200°C. In LGS, no
anomalies were revealed, but in La2.7Nd0.3Ga5SiO14, the
temperature dependences of the unit-cell parameters
showed a pronounced anomaly in the vicinity of 760°C,
which was explained by structural changes of an
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unknown nature. In order to understand whether the
anomaly revealed for La2.7Nd0.3Ga5SiO14 reflects cer-
tain changes in the structure or is of a random character,
some additional studies are necessary. In this respect, it
seems interesting to perform precision measurements
of thermal expansion in other compounds of the lan-
gasite family at temperatures up to 1000–1400°C.

The precision refinement of the La3Nb0.5Ga5.5O14
and La3Zr0.5Ga5Si0.5O14 structures [27] showed the for-
mation in dodecahedra of a new 6g position character-
ized by a low occupancy (~1.5%) with La atoms
located along the z axis at a distance of ~0.7 Å from the
3e position. The formation of this position at elevated
temperatures could manifest itself on the temperature
dependences of the unit-cell parameters, but it should
hardly be noticed because of the low occupancy of this
position. No such position was revealed in the LGS or
Sr3TaGa3Si2O14 structures.

The difficulties encountered in the attempts to grow
large high-quality crystals of the langasite family were
repeatedly indicated by many researchers. In many
instances, these difficulties are associated with the
absence of sufficiently detailed information about the
homogeneity field of the crystal and insufficient control
of hydrodynamic and thermal growth parameters,
which leads to composition inhomogeneity over the
volume, growth striations, and stresses and block for-
mation in the crystal [28, 29]. However, these are not
the only factors deteriorating the crystal quality. We
should like to emphasize once again the necessity of
studying the behavior of crystal lattices of compounds
of the langasite family at high temperatures.

CONCLUSIONS

The anomalous behavior of some characteristics of
crystals of the langasite family and the existence of
three compounds with the distorted trigonal unit cell
stimulate the further search for phase transitions and
their manifestations in the structure and properties of
the crystals.

Analysis of possible phase transitions related by the
group–subgroup relationships shows that, for the
Ca3Ga2Ge4O14-type structures, the most probable tran-
sitions are those which are accompanied by lowering of
the symmetry from the sp. gr. P321 to the maximal non-
isomorphic subgroups P3 and C2. The high-tempera-
ture phase transitions accompanied by the formation
of a higher symmetry up to the minimal non-isomor-
phic supergroups for the given structure seem to be
impossible.

The LSZG structure is refined within the sp. gr. A2
as a derivative of the Ca3Ga2Ge4O14 structure type. At
~250°C, it undergoes a reversible phase transition with
the formation of a higher symmetry, Ä2  ê321.
Both LNG and LTG crystals undergo analogous phase
transitions P321  A2 under hydrostatic compres-
sion at 12.4(3) and 11.7(3) GPa, respectively. The
C

mechanisms of compression and phase transition are
discussed in terms of the model of anisotropic com-
pressibility of a layer structure. The elevated compress-
ibility in the (ab) plane results in the phase transition
with the loss of the threefold axis after the attainment of
the critical stress level in the structure. A further
increase in pressure can give rise to additional phase
transitions accompanied by lowering of the symmetry
or even structure destruction. The search for the low-
temperature phase transitions in a number of com-
pounds of the langasite family gave no positive results
because of insufficient lattice compression during crys-
tal cooling by ~300 K. Analysis of possible isomor-
phous phase transitions in crystals of the langasite fam-
ily led to the conclusion about the necessity of precision
studies of thermal expansion of these crystals at high
temperatures.
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Abstract—The structure type of hexagonal compounds with the variable composition K6Ta6 + zO15F6(F, O)y,
where Z ≤ 1 and y ≤ 3 (sp. gr. P6/m, a ~ 13.12 Å, c ~ 3.86 Å) has been studied. Based on the structural data for
a crystal of the Ta5+-containing compound and two crystals of Ta(5 – δ)+-containing bronzes formed at the cath-
ode during electrolysis of salt melts containing Ta+ cations, it was established that the bronze formation is asso-
ciated with the interstitial defects of intercalated Ta cations. The scheme of reduction of Ta cations at the cath-
ode is suggested, and the formulas of the compounds are obtained with due regard for partial Ta reduction to
various integral oxidation degrees. The crystals of the colorless transparent Ta5+-containing compound of the

composition , brown semitransparent partly reduced Ta+-containing bronze of the composi-

tion , and dark gray metal-like completely reduced Ta+-containing bronze of the com-

position  are studied experimentally. © 2004 MAIK “Nauka/Interperiodica”.

K6Ta6.27
5+ O15F7.4

K6Ta6.33
5+ Ta0.55

+ O15F8.2

K6Ta6
5+Ta+O15F7
INTRODUCTION

A decrease of the maximum reduction degree of B
elements in perovskite-like and structurally related
A1 − ∆B1 + Z(O, F)3 ± y compounds (where A is an alkali
metal and B is a transition metal from groups V or VI)
gives rise to the properties unusual for complex or flu-
oride oxides, such as metallic or intense color, loss of
transparency, metallic luster, and metallic or semicon-
ductor conductivity [1]. In distinction from the isos-
tructural compounds containing one or several transi-
tion metals in the maximum degree of oxidation, these
compounds are called oxide bronzes, hereafter simply
referred to as bronzes. Usually, to each complex oxide
there correspond several oxide bronzes with different
physical (optical and electric) properties depending on
the degree of reduction of transition metal [1]. As a
rule, the chemical composition of bronzes includes at
least one element from group VI, e.g., W, (W, Nb),
(W, Ta) bronzes, and the average degree of oxidation of
the B element becomes higher than five. The degree of
reduction of the transition metal in these structures is
controlled by partial filling of the alkali-metal positions
[1]. We showed [2] that the positions of the alkali metal
in Ta bronzes with a degree of Ta oxidation less than
1063-7745/04/4901- $26.00 © 20070
five are fully occupied. Since there is no information on
the structural processes explaining the reduction of the
tantalum oxidation degree, we decided to systemati-
cally study the structures of tantalum bronzes and com-
pare the data obtained with the corresponding data for
the isostructural Ta-containing compounds (for brevity,
hereafter simply called Ta5+ compounds). Earlier,
within this program, we studied in detail the cubic per-
ovskite-like structure of the black bronze KTa1 + zO3 (z ~
0.107) possessing semiconductor properties [2]. Com-
paring the data obtained with the structural characteris-
tics of a transparent dielectric KTaO3 crystal [3], we
found that a decrease in the averaged degree of tanta-
lum oxidation in the bronze (partial reduction) results
in the formation of substitutional defects (about 9% K
cations per Ta–Ta dumbbell), which explains the semi-
conductor properties, loss of transparency, and metal-
like appearance of the crystals. The establishment of
these structural characteristics became possible
because of the use of precision experimental and com-
putational methods [2, 3].

The structure of the hexagonal bronze–conductor of
the composition K6Ta6.5O15 + xF6 + y [4] is compared
with the structure of its dielectric analogue
004 MAIK “Nauka/Interperiodica”
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K6Ta6.5O14.5F9.5 [5] refined in a rather crude approxima-
tion. As a result, the conclusions drawn in [4] are not
complete.

The crystals of analogous hexagonal tantalum
bronzes obtained in our study and having different col-
ors and transparencies and the crystals of newly synthe-
sized Ta5+ compound allowed us to perform compara-
tive structural studies by the same methods. As a result,
we obtained new data on the structure type and the
effect of the degree of tantalum oxidation and their
effect on the fine details of the crystal structure and the
optical characteristics of these crystals. The compara-
tive analysis of newly established structural character-
istics was performed based on the data obtained and the
known data [4, 5]. The results of this analysis are con-
sidered below.

EXPERIMENTAL

Synthesis. Two types of tantalum bronzes—dark-
gray metal-like nontransparent crystals with metallic
luster (bronze I) and brown semitransparent crystals
(bronze II)—were obtained from the melted salt
K2TaOF5–(KF + NaF + LiF)eut system with the use of a
soluble TaO anode by electrochemical deposition at a
molybdenum cathode. Electrolysis was performed at
the current density Dc = 0.15 A/cm2 and a temperature
of 750°C. The synthesis of tantalum and Ta-containing
compounds was described in detail elsewhere [3]. Both
types of crystals were formed in one experiment. X-ray
diffraction analysis (DRON-3M diffractometer, MoKα
radiation) of the powder prepared from the cathode
product indicated that all the crystals were hexagonal
tantalum bronzes, one of which was studied in detail
earlier [4]. Both types of crystals had the habit of elon-
gated hexagonal prisms or their fragments. It should be
emphasized that the cathode product consisted of
brown crystals of different shades and degrees of trans-
parency. Against the background of brown crystals,
there were also visually distinguishable homogeneous
dark-gray metal-like nontransparent crystals. The elec-
trolyte crystallized near the cathode also contained
transparent crystals with a similar habit (III) whose dif-
fraction patterns indicated the same structure type. The
formation of crystals III without any contact with the
cathode and their transparency led to the conclusion
that tantalum in their composition has the same degree
of oxidation (5+) as in the K2TaOF5 salt used in elec-
trolysis.

It is also important to note that the formation of hex-
agonal bronzes at the cathode in electrolysis of the
above salt melts is a poorly reproducible process even
if all the controllable parameters of electrolysis, such as
the melt temperature, current density, and concentra-
tion of the K2TaOF5 salt, are maintained constant. In
addition, transparent crystals of this type were also
formed during crystallization on a cathode of tetragonal
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      200
(structure type of tetragonal W-bronze) and cubic (per-
ovskite type) bronzes.

Chemical analysis. Chemical microanalysis (ARL-
SEMQ analyzer (15 kV, 25 nA) equipped with EDAX
(12 kV, 100 nA)) showed that the crystals grown con-
tained K, Ta, F, and O. No traces of Na were revealed.
The accuracy of the microanalysis for each type of
crystal was relatively low because of the varying Ta/K
ratio (Table 1). However, one can clearly see the gen-
eral tendency of an increase in the tantalum content in
the row “transparent crystals III—brown semitranspar-
ent bronze II—dark-gray metal-like bronze I” (Table 1).
Within the experimental accuracy, the fluorine content
(7–8 wt %) is independent of the type of crystal. The
evaluation of the chemical composition based on the
refined structural data (Table 1) confirms these data.

Single-crystal diffraction experiment. The struc-
tural studies were performed on selected I, II, and III
single crystals having the shape of hexagonal prisms
with the well formed {hk0} and {001} crystal faces.
X-ray diffraction experiments on all three types of sin-
gle crystals were performed on a KM4 diffractometer
with a CCD detector (MoKα radiation). The main char-
acteristics of the experiments and the unit-cell parame-
ters of the crystals are indicated in Table 2. The analysis
of the reciprocal-space sections did not reveal any sat-
ellite reflections or reflections that would indicate a
multiple increase of any lattice parameter for any of the
crystals.

STRUCTURE REFINEMENT

All the structural computations were performed
using the JANA2000 program system [6]. The charac-
teristics of the refinement are indicated in Table 2. The
corresponding parameters of the atomic positions are
listed in the upper part of Table 3, and the interatomic
distances, in Table 4.

The refinement method was described in detail in
the structure determination of the analogous com-
pound—black hexagonal bronze [4]. The atomic coor-
dinates of the structure framework borrowed from [4]
[Ta(1), K, O(1), O(2), O(3), and F(1)] were refined in
the full-matrix anisotropic approximation of atomic
thermal vibrations within the sp. gr. P6/m. The F(1)
position of this structure type was unambiguously
established earlier [4] from the balance of valence
strengths at anions (calculated by the methods sug-
gested in [7]) and was confirmed in the present study
(Table 5). The successive refinement of the occupancies
of the Ta(1) and K positions indicated their complete
filling (within the computation accuracy).

The partly occupied Ta(2) position on the sixfold
axis was established from the residual synthesis calcu-
lated from the refined positions of the framework
atoms. Pronounced displacements of Ta(2) atoms along
the z axis were refined either by splitting the atomic
position along this axis or by refining the components
4
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Table 1.  Characteristics of the chemical composition of K6Ta6 + ZO15F6(O, F)y compounds. I indicates crystals of metal-like
bronze; II, crystals of brown semitransparent bronze; and III, colorless transparent crystals of the Ta5+-containing compound

I II III

Microanalysis data
Atomic Ta/K ratio 1.10–1.20 1.08–1.16 1.03–1.10
F content 7–8 wt % (20–23 at. %)

Refined structural data
Chemical formula* K6Ta6 + 0.487 + z1 + z2 + z3O15F6

(O, F)1.1

K6Ta6 + 0.516 + z1 + z2 + z3O15F6
(O, F)2.18

K6Ta6 + 0.271O15F6 + 1.4

Number of atoms Taint in the 
M(1), M(2), and M(3) positions

z1 + z2 = 0.20(8); z3 = 0.36(6);
z = z1 + z2 + z3 = 0.56(14)

z1 + z2 = 0.24(8); z3 = 0.12(6);
z = z1 + z2 + z3 = 0.36(14)

Chemical composition with allow-
ance for interstitial defects, Taint

K6Ta7.05O15F6(O, F)1.1 K6Ta6.88O15F6(O, F)2.18 K6Ta6.27O15F7.4

The most probable composition 
of I and II K6Ta7O15F7 = K6 O15F7

K6Ta6.88O15F8.2 = 

K6 O15F8.2

Atomic Ta/K ratio 1.77 1.15 1.05

* The given values correspond to the refinement of the main positions of the structure with no account for intercalated Ta atoms (see Table 3).

Ta6
5+ Ta+

Ta6.33
5+ Ta0.55

+

Table 2.  Main characteristics of diffraction experiments and refinement of structures I, II, and III

I II III

X-ray experiment

Diffractometer KM4CCD

Radiation MoKα

Range of measurements, sinθ/λmax 0.8 0.8 0.8

Number of measured reflections 30131 30216 29494

Number of crystallographically independent
reflections with I > 6σ(I)

800 780 680

µ, cm–1 31.82 31.73 30.56

Allowance for absorption Numerical integration over the real shape of crystal

Rav 0.097 0.075 0.087

Sp. gr. P6/m P6/m P6/m

Unit-cell parameters a, c (Å), and V (Å3) 13.123(1), 13.132(1), 13.110(1),

3.8622(4); 3.8610(4); 3.8625(4);

575.995 576.606 574.899

dx,  g/cm3 5.457 5.381 5.055

Refinement characteristics*

R(F), wR(F) 0.0333, 0.0447 0.0318, 0.0423 0.0273, 0.0361

Weighting scheme w = 1/σ(F)2

GOF 2.90 2.80 1.32

Parameter of isotropic extinction 0.0169(3) 0.0122(3) 0.0148(2)

ρmax, ρmin, e/Å3 3.83, –1.97 3.51, –1.83 2.11, –2.14

* Values corresponding to the refinement of the main structural positions with no allowance for intercalated Ta atoms (see Table 3).
of the 6th rank tensor of anharmonic vibrations. The
zero values of the C and E tensor components (because
of the position symmetry) added eight parameters that
should be refined independently, with the ratio of the
number of reflections to the number of the parameters
C

to be refined exceeding 15. The characteristics of the
refinement quality of these two variants were practi-
cally equivalent, and the position splitting was very
small (maximum Ta(2)–Ta(2) distance 0.15 Å for crys-
tals III), which did not allow us to select unambigu-
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Table 3.  Atomic parameters in structures I, II, and III

Atomic positions and their 
characteristics I II III

Main structural positions
K [6j (x y 0)]:
p; x, y 1; 0.0.6566(1), 0.9127(1) 1; 0.6568(1), 0.9131(1) 1; 0.6584(1), 0.9128(1)
Ueq 0.0318(5) 0.0332(5) 0.0376(5)
U11, U22 0.0468(7), 0.0209(5) 0.0465(8), 0.0236(6) 0.0562(8), 0.0241(6)
U33, U12, Å2 0.0191(5), 0.0104(5) 0.0198(5), 0.0101(6) 0.0225(5), 0.0124(6)
Ta(1) [6k (x y 0.5)]:
p; x, y 1; 0.36996(1), 0.84413(1) 1, 0.36989(1), 0.84412(1) 1, 0.36986(1), 0.84454(1)
Ueq 0.0093(2) 0.0121(2) 0.0126(2)
U11, U22 0.0099(3), 0.0064(3) 0.0129(3), 0.0099(3) 0.0129(3), 0.0103(3)
U33, U12, Å2 0.0114(3), 0.0040(3) 0.0123(3), 0.0047(3) 0.0148(3), 0.0060(3)
O(1) [6k (x y 0.5)]:
p; x, y 1; 0.4659(2), 0.7774(2) 1; 0.4681(2), 0.7788(2) 1; 0.4667(2), 0.7767(2)
Ueq 0.024(1) 0.026(1) 0.025(1)
U11, U22 0.010(1), 0.012(2) 0.018(1), 0.008(2) 0.014(1), 0.010(2)
U33, U12, Å2 0.050(2), 0.007(1) 0.054(2), 0.009(1) 0.050(2), 0.005(1)
O(2) [3g (0.5 0 0.5)]:
p; Ueq 1; 0.038(2) 1; 0.040(2) 1; 0.032(2)
U11, U22 0.012(2), 0.004(2) 0.015(2), 0.012(2) 0.013(2), 0.003(2)
U33, U12, Å2 0.087(4), –0.004(2) 0.089(4), –0.001(2) 0.067(4), –0.006(2)
O(3) [6j (x y 0)]:
p; x, y 1; 0.6465(3), 0.1513(4) 1; 0.6446(3), 0.1512(4) 1; 0.6465(3), 0.1506(4)
Ueq 0.044(2) 0.045(2) 0.042(2)
U11, U22 0.064(3), 0.081(3) 0.069(3), 0.073(3) 0.061(3), 0.074(2)
U33, U12, Å2 0.000(8), 0.046(2) 0.000(9), 0.042(2) 0.000(5), 0.039(2)
F(1) [6k (x y 0.5)]:
p; x, y 1; 0.6530(2), 0.7412(2) 1; 0.6531(2), 0.7417(2) 1; 0.6547(2); 0.7420(2)
Ueq 0.025(1) 0.026(1) 0.028(1)
U11, U22 0.015(1), 0.023(1) 0.011(1), 0.023(1) 0.020(1), 0.023(1)
U33, U12, Å2 0.038(2), 0.009(1) 0.042(2), 0.006(1) 0.045(2), 0.013(1)
Ta(2)* [1b (0 0 0.5)]:
p; Ueq 0.487(1); 0.0291(1) 0.516(1); 0.0393(1) 0.271(1); 0.066(4)
U11 = U22, U33 0.0104(8), 0.067(2) 0.022(1), 0.073(3) 0.016(2), 0.16(1)
U12, Å2 0.0052(4) 0.0112(7) 0.008(1)
D1111, D1133 –0.0013(1), –0.015(1) –0.0000(5), –0.017(2) –0.0022(6), –0.020(7)
D3333, Å2 –0.21(6) –0.21(11) 4.0(9)
F111111, F111112 –0.00025(3), –0.00011(2) 0.000(1), 0.00004(6) –0.0005(1), –0.00020(8)
F111122 –0.00005(2) 0.00003(5) –0.00014(7)
F111133, F113333 –0.0010(2), –0.020(3) –0.0014(4), –0.024(5) –0.0031(9), –0.02(3)
F333333, Å2 –0.6(2) –0.8(4) 11(4)
F(2) [12l (x y z)]:
p 0.092(2) 0.182(2) 0.113(2)
x, y, z 0.038(2), 0.134(1), 0.188(6) 0.036(2), 0.141(2), 0.195(4) 0.037(2), 0.111(2), 0.100(4)
Uiso 0.08(1) 0.093(8) 0.055(6)

Positions of intercalated Ta atoms
M(1) [2e (0 0 z)]:
p; z; Ueq = 0.01 Å2 0.025(8); 0.127(2) 0.03(1); 0.122(2)
M(2) [6k (x y 0.5)]:
p; x, y; Ueq = 0.01 Å2 0.025(8); 0.121(2), 0.046(2) 0.03(1); 0.115(2), 0.046(2)
M(3) [6k (x y 0.5)]:
p; x, y; Ueq = 0.01 Å2 0.06(1); 0.677(2), 0.888(2) 0.02(1); 0.685(2), 0.892(2)

* Position was refined in the anharmonic approximation of atomic thermal vibrations. The independent values of D × 104 and E × 106 are
given.
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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ously the true variant. The data in Tables 1 and 2 are
given for the variant of the anharmonic approximation
of atomic displacements for all three crystals. However,
we can not exclude possible splitting of the Ta(2) posi-
tion, especially for crystals III.

The F(2) position of the anionic environment of
Ta(2) atoms was determined from the residual electron
densities calculated within two space groups, P6/m and

P . In the sp. gr. P , the distribution of the residual
electron density indicated the existence of a sixfold axis
for all three crystals, which uniquely indicated the sp.
gr. P6/m. Partial delocalization of the F(2) position,
which manifests itself in high values of atomic thermal

6 6

Table 4.  Interatomic distances (Å) in structures I, II, and III

I II III

Framework [Ta(1)O5F] octahedron

Ta–O(1) 1.859(4) 
1.989(3)

1.872(4) 
1.994(3)

1.878(4) 
1.977(3)

Ta–O(2) 1.899(1) 1.915(1) 1.894(1)

Ta–O(3) 1.948(1) × 2 1.944(1) × 2 1.947(1) × 2

Ta–F(1) 2.052(4) 2.055(4) 2.062(4)

Framework [KO4F4] polyhedron

K–O(1) 2.950(2) × 2 2.934(2) × 2 2.958(2) × 2

K–F(1) 2.948(2) × 2 
2.776(2) × 2

2.947(2) × 2 
2.777(2) × 2

2.939(2) × 2 
2.767(2) × 2

K–O(3) 3.19, 3.03 3.19, 3.04 3.20, 3.06

Channel [Ta(2)F6] statistical prism

Ta(2)–F(2) 1.98(2) × 6 2.04(2) × 6 2.00(2) × 6

Framework–channel bonds

K–F(2) 2.82 × 0.18 
2.90 × 0.18

2.92 × 0.36 
2.95 × 0.36

3.01 × 0.22 
3.06 × 0.22

Table 5.  Balance of valence strengths at framework
[K6Ta6O15F6] anions in structures I, II, and III

Anions Ta(1) K Total charge 
at anions

O(1) I 1.179 + 0.830 0.110 × 2 2.229

II 1.139 + 0.819 0.114 × 2 2.186

III 1.120 + 0.857 0.107 × 2 2.191

O(2) I 1.058 × 2 2.116

II 1.014 × 2 2.028

III 1.073 × 2 2.146

O(3) I 0.927 × 2 0.088 + 0.057 1.999

II 0.937 × 2 0.086 + 0.057 2.017

III 0.930 × 2 0.081 + 0.055 1.996

F(1) I 0.628 0.075 × 2 + 0.120 × 2 1.018

II 0.623 0.076 × 2 + 0.120 × 2 1.015

III 0.611 0.077 × 2 + 0.123 × 2 1.011
C

displacements and in the existence of regions with ele-
vated residual electron density, was studied in detail in
[4] and confirmed in this study for all three crystals.
The refinement of the anisotropy of atomic displace-
ments gave the negative U33 components for crystals
III. Therefore, we returned to the isotropic coefficients
for all three crystals. For crystals III, the requirement of
electroneutrality at the known degree of Ta ion oxida-
tion (Ta5+) uniquely indicated the filling of the F(2)
position solely with F ions. One cannot exclude possi-
ble partial replacement of F by O atoms in this position
for crystals I and II, but this would practically not influ-
ence the refinement characteristics and, therefore, can-
not unambiguously be established in the refinement.

RESIDUAL ELECTRON DENSITY

Comparing the residual electron density for crystals
of bronzes I and II with those for transparent crystals
III, we see that the latter are characterized by additional
maxima M(1), M(2), and M(3) (Figs. 1, 2). The elec-
tron-density values at these maxima are ~2.0 e/Å3 at
M(1) for both bronzes, 2.6 and 3.3 e/Å3 at M(2) for
bronzes I and II, and 3.8 and 3.5 e/Å3 at M(3) for
bronzes I and II, respectively. The exact localization of
these maxima with approximately equal coordinates for
both bronzes and their absence for the transparent crys-
tals allowed us to identify the maxima with additional
(intercalated) atoms—interstitial defects.

The requirement of electroneutrality of the com-
pounds with the reduced degree of tantalum oxidation
in I and II excludes anion intercalation. Therefore, the
“intercalated position” might be occupied by either K
or Ta cations. According to the chemical analysis,
(Ta/K)obs > 1.08 (Table 1). For the basic atoms of the
structure, this ratio has the value [Ta(1) + Ta(2)]/K = 1.8
and 1.09 for I and II, respectively. The additional K cat-
ions would decrease this ratio, but this is inconsistent
with the microanalysis data. However, the assumption
about possible intercalation of Ta cations in the bronze
structures would explain the increase in Ta content in
bronzes indicated above in comparison with the Ta con-
tent in transparent Ta5+ compound.

The allowance for the additional atomic positions
with low occupancies with Taint atoms slightly reduces
the reliability factors of the structural refinement of
bronzes I and II and removes the maxima of the resid-
ual electron density from the syntheses. The refined
characteristics of these positions are indicated in the
lower part of Table 3.

The refinement shows that the general formula of all
three crystals studied can be written as
K6Ta6 + ZO15F6(F, O)y. The values of the variable
parameters and their notation are given in Table 1. The
necessary corrections to these data are considered and
discussed in the next section.
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Fig. 1. (xy 0.5) section of the residual electron-density for K6Ta6 + ZO15F6(F, O)y crystals: (a) bronze I, (b) bronze II, and (c) Ta5+-
containing compound. Isolines are separated by 0.5 e/Å3. The M(2) and M(3) maxima are identified with the interstitial defects of
tantalum cations.
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Fig. 2. (x0z) section of the residual electron-density for K6Ta6 + ZO15F6(F, O)y crystals: (a) bronze I, (b) bronze II, and (c) Ta5+-
containing compound. Isolines are separated by 0.25 e/Å3. The Ta(2) position is indicated. The M(1) maximum is identified with
interstitial defects of tantalum cations.
DISCUSSION OF RESULTS

Characteristics of the K6Ta6 + ZO15F6(F, O)y
structure type. Comparing the structures of the three
crystals studied with the structures of two structures
determined earlier [4, 5], we established the main char-
acteristics of the structure type of hexagonal tantalum
bronzes of the variable composition K6Ta6 + ZO15F6(F,
O)y with the unit-cell parameters a ~ 13.12 Å and c ~
3.88 Å, sp. gr. P6/m. Figure 3 shows this structure pro-
jected along the sixfold axis.

The [Ta(1)O5F(1)] octahedra with the central Ta(1)
atom lying in the m plane (z = 0.5) form an open frame-
work with wide (about 6 Å in diameter) hexagonal
channels. The framework is complemented with K
atoms also located in the m plane (z = 0) in the channel
walls and characterized by the trigonal–prismatic envi-
ronment of O and F(1) atoms. The balance of valence
strengths at anions (Table 5) shows that this coordina-
tion is complemented with two, more distant, O(3)
atoms (at distances of ~3.0 and ~3.2 Å). The positions
of all the main atoms [Ta(1), K, O(1), O(2), O(3), and
F(1)] in all the crystals studied have close values of all
the parameters, including the coefficients of anisotropic
atomic displacements. Therefore, they all are consid-
ered as framework atoms. The chemical formula of the
framework can be written as [K6Ta6O15F6]; the frame-
work has the constant composition and structure in all
the crystals studied, including those described in [4, 5].
C

The partially occupied Ta(2) and F(2) positions are
situated in the hexagonal channels of the structure
(Figs. 3, 4). The Ta(2) atom is located on the sixfold
axis of the channel at the same level as the Ta(1) atom,
z = 0.5. The atoms in this position are partly delocalized
(up to splitting of the position, with the maximum
amplitude along the sixfold axis being of about 1 Å
[5]). The F(2) atoms surround the Ta(2) atom statisti-
cally and occupy the positions of the hexagonal prism.
However, this prism cannot exist locally because of too
short F(2)–F(2) contacts (~1.5 Å) in the basis. There-
fore, this prism can be considered as a result of the
superposition of two local trigonal prisms or two
deformed octahedra (trigonal antiprisms). The atoms in
the F(2) position are delocalized more pronouncedly
than atoms in the Ta(2) position, which is seen from too
high values of the atomic-displacement parameters and
the existence of rather large area of elevated residual
electron density, which was indicated in [5] and dis-
cussed in detail in [4]. Despite the fact that the coordi-
nates of the F(2) position differ from crystal to crystal
(Table 3, Fig. 4), the Ta(2)–F(2) distances have the
same values, ~2.0 Å (Table 4). The chemical formula of
the structural unit located in the channel can be written
as [Tax(F, O)y]. It should be noted that this unit does not
necessarily contain oxygen (crystal III). In the crystals
known, 0.27 < x < 0.52 and 1 < y < 2.5. Thus, the chan-
nel has a variable composition and structure.

One of the characteristic features of the structure
type of hexagonal tantalum bronzes is the noticeable
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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x

Fig. 3. K6Ta6 + ZO15F6 + y structure projected along the sixfold axis. The structure framework is built by [Ta(1)O5F(1)] octahedra
and K atoms (depicted by large gray circles). The central atoms of octahedra, Ta(1), are located at a height of z = 0.5; the K atoms
are located at a height of z = 0. The F(1) atoms are shown by black dots. Black circles in the centers of hexagonal channels show
partly occupied Ta(2) positions. The statistical environment of Ta(2) atoms with F(2) atoms (dark gray circles) is shown as the super-
position of the positions found in five crystals: I, II, and III (present study) and two crystals studied earlier [3, 4]. Thin lines show
projections of the coordinate axes of nine unit cells.
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Fig. 4. Channels in the K6Ta6 + ZO15F6 + y structures: (a) bronzes; F(2) positions in crystals I and II (present work) and crystal stud-

ied in [4] are shadowed differently; (b) Ta5+-containing compounds; Ta(2) and F(2) positions are indicated by more intense color
for crystal III and less intense color for a crystal studied in [5].
change in the positions of channel atoms (mobility)
with respect to the framework both within one structure
(partial delocalization of F(2) atoms and anharmonicity
of atomic displacements or splitting of the Ta(2) posi-
tion) and in the transition from one crystal to another
(the change in the coordinates of the F(2) position)
(Figs. 3, 4). This is associated with the fact that the
Ta(2) cations located along the channel axis are not
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
related to the framework anions (the minimum Ta(2)–
F(1) distance is ~4.1 Å), whereas the channel F(2)
anions and the framework cations form K–F(2) bonds
statistically distributed over the channel with the low
probability of their existence (0.1–0.2) determined by
partial filling of the F(2) position (Table 3). Partial delo-
calization of F(2) and splitting of the Ta(2) position
within one crystal are possible because of a possible
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rotation of the K–F(2)–Ta(2) rigid unit: if one end of the
chain (the K atom) is fixed, the other end of the chain
[Ta(2) atom, which is displaced along the channel axis]
and its middle point [F(2) atom] can also change their
positions as was considered in detail elsewhere [4]. The
causes of the variation of the coordinates of the F(2)
atom from crystal to crystal are explained by interstitial
defects considered below.

Thus, the main characteristics of the structure type
considered above—a framework having the constant
composition and structure and the channels of the vari-
able compositions mobile with respect to the frame-
work—are independent of the degree of tantalum oxi-
dation.

Differences in the structures refined. Crystals I,
II, and III and the crystals described earlier [4, 5] have
different compositions, different states of Ta-ion oxida-
tion, and different optical properties (color and trans-
parency). Therefore, it is interesting to consider not
only the common features of the structure type but also
the individual features of various crystals. The differ-
ences in their structures manifest themselves, first of
all, in the statistical filling of hexagonal channels with
Ta(2) and F(2) atoms (Figs. 3, 4).

The occupancies of the Ta(2) positions are 0.487(1)
and 0.516(1) in bronzes I and II, respectively, whereas
in crystal III, the occupancy of this position is almost
two times lower, 0.271(1). There is no one-to-one cor-
respondence between the occupancies of the Ta(2) and
F(2) positions: to the minimum occupancy of the Ta(2)
position there corresponds the intermediate occupancy
of the F(2) position (Table 3). In a crystal of black
bronze studied in [4], the Ta(2) position has the same
coordinates as in bronzes I and II, but its occupancy is
lower, 0.45(1). The coordinates (0.038 0.131 0.171)
and occupancy [p = 0.13(4)] of the F(2) position in the
crystal studied in [4] differ from those obtained in the
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M(2)
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Fig. 5. Space–time cluster of interstitial defects—Taint cat-
ions—with the center in the vacant Ta(2) position in struc-
tures of bronzes (interstitial defects of the first-type).
C

present study (Fig. 4a, Table 3), but the Ta(2)–F(2) dis-
tances are the same, ~2.0 Å.

In transparent crystals studied in [5], the Ta(2) atom
was located in the split position with a Ta(2)–Ta(2) dis-
tance of 1.0 Å and occupancy of 0.5. This value is
approximately two times higher than in analogous
transparent crystals III. The data obtained in this study
show that this position may also be split in crystals III,
but with a much shorter Ta(2)–Ta(2) distance, ~0.15 Å
(Fig. 4b). The F(2) position was more precisely local-

ized in the sp. gr. P  in [5], but we failed to localize this
position in crystals III. However, despite the fact that
the coordinates of this position obtained in [5] do not
coincide with any of the variants in our study (Fig. 4b),
the Ta(2)–F(2) distances are also equal to ~2.0 Å.

The mobility of atoms in channels (high values of
the atomic thermal displacements of Ta(2) and partial
delocalization of F(2) atoms) is a characteristic feature
of all the crystals, although the mobility of Ta(2) atoms
is considerably higher in Ta5+ compounds than in
bronzes (Fig. 4, Table 3). These discrepancies have not
been interpreted because of interstitial defects in the
bronze structures.

Interstitial defects and their influence on struc-
tural characteristics. Now, proceed to the experimen-
tal data which were obtained only in the present study
(no similar data were considered in [4, 5]).

Analysis of residual electron-densities revealed
additional intercalated tantalum atoms (cations), Taint,
in the structures of bronzes I and II [M(1), M(2), and
M(3) positions in Figs. 1a, 1b and 2a, 2b] and showed
their absence in the structure of compound III (Figs. 1c,
2c). The low occupancies of the intercalation positions
(pM(1) = pM(2) ~ 0.03 and pM(3) = 0.02 and 0.06,
Table 3) refined at the fixed value of the of thermal-dis-
placement parameters (Ueq = 0.01 Å2) result in low
accuracy of the concentration of interstitial defects
determined (z = z1 + z2 + z3 in Table 1, where zi is the
number of Taint atoms in the M(i) position per formula
unit). Nevertheless, the Ta/K ratios obtained with due
regard for Taint agree better with the data of chemical
analysis performed without allowance for Taint atoms.

The positions of the interstitial defects Taint can be
divided into two groups having different occupancies
and different crystal-chemical function. The first group
is formed by the M(1) and M(2) positions in the struc-
ture channels. These positions form a hexagonal bipy-
ramidal cluster with the center coinciding with the posi-
tion of the Ta(2) atom (Fig. 5). This cluster can be rep-
resented as the superposition of four Ta–Ta dumbbells
whose centers are located at one point and the Ta–Ta
distances range from 2.7 to 2.9 Å. One dumbbell is ori-
ented along the sixfold axis, whereas the three other
dumbbells are located in the perpendicular plane at an
angle of 60° to one another. The simultaneous presence
of any two dumbbells of the four with the center at the
same local point is low probable because of too short

6
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(less than 1.3 Å) interatomic distances. Therefore, the
cluster configuration of the defects of the first group can
be considered as a result of averaging of the statistical
distribution of Taint atoms over the eight vertices of the
cluster. The location of the atom at the Ta(2) position
excludes the formation of a defect cluster around this
local point. The crystal-chemical features of the inter-
stitial defects of the first group can be formulated in the
following way. (i) Taint atoms do not form anomalously
short distances with atoms from any fully occupied
position of the structure and (ii) Taint atoms form short
distances with the atoms in the partially Ta(2) (~1.3 Å)
and M(3) (~2.3 Å) positions.

The second type of interstitial defects is determined
by the M(3) position. Similar to K atoms, this position
belongs to the framework walls limiting the channel
space and, therefore, can be considered as the frame-
work position complementing the plane of location of
the basic tantalum atoms, Ta(1) and Ta(2), to the con-
figuration of a close packed layer (Fig. 6). The dis-
tances between the main Ta(1) atoms in this plane range
within 3.65–3,82 Å. The M(3)–Ta(1) (3.09–3.77 Å) and
M(3)–Ta(2) (3.64–3.73 Å) distances are comparable to
the Ta(1)–Ta(1) distances in the plane. The centers of
the statistical clusters considered above are also located
in this plane. For further analysis, one should bear in
mind that the positions of the first type of defects, M(2),
are located between the vacant Ta(2) positions and the
position of the interstitial defects of the second type,
M(3) (Fig. 6). The crystal-chemical characteristic of the
interstitial defects of the second type is anomalously
short distances to the completely filled positions of K
atoms, K–M(3) ~ 2.0 Å, which are equal to the sum of
the ionic radii of K+ and Ta5+. We also observed anom-
alously short Ta–Taint distances (1.4 Å) in the crystals of
the β-Ta tetragonal modification of metallic tantalum [8].
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
In the tantalum bronzes under consideration, the inter-
calated atoms in the β-Ta structure complement the
plane of location of the main atoms to a close packed
plane, with the average Ta–Ta distance in the plane
being of about 2.8 Å (the distances range from 2.68 to
2.98 Å). 

The mobility of channel atoms correlates with the
concentration of defects of the second type in bronzes I
and II: the thermal parameters of both Ta(2) and F(2)
are much higher than those in bronze II, where the
occupancy of the M(3) positions is three times lower
than in bronze I (Table 3). This correlation can be
explained in the following way. The framework–chan-
nel interaction may occur only via the formation of K–
F(2) bonds. Thus, the mobility of the channel atoms
depends on the strength of this interaction character-
ized by the corresponding bond lengths. In the Ta5+

compounds, the total charge of the framework of the
K6Ta6O15F6 structure is zero and the lengths of the K–
F(2) bonds exceeding 3.01 Å (crystal III, Table 4) indi-
cate the van der Waals nature of the framework–chan-
nel interaction. Since the balance of the valence
strengths at the framework anions (Table 5) calculated
using the data for Ta5+ does not allow one to distinguish
between bronzes I and II, on the one hand, and com-
pound III, on the other hand, it is possible to draw the
conclusion that tantalum occupying the main positions
of the framework has the maximum oxidation degree
(Ta5+) of all three structures. In this case, the Ta cations
incorporated into M(3) give rise to the total positive
charge of the framework which should be compensated
with the negative charge of the structural unit located in
the channel and an increase in the ionic component of
the interaction between the framework K cations and
the channel F(2) anions, i.e., by shortening of the K–
F(2) distances. Indeed, the bond length shorter in I in
y

x

Ta(1)

M(3)

M(2)

Ta(2)

Fig. 6. Distribution of Taint cations in the (xy0.5) plane. Interstitial defects of the second type (M(3) position) are shown by dark
gray circles and complement the main Ta(1) and Ta(2) positions (black circles) to a close packed layer. Interstitial defects of the first
type (M(2) position shown by light gray circles) are located along the paths of cation migration from the Ta(1) to M(3) position.
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comparison with the bond length formed in II corre-
sponds to a higher concentration of interstitial defects
in M(3) (Table 3). Taking into account the structural
rigidity and the charge balance of the framework and,
in principle, possible dynamics of channel atoms, one
can assume that shortening of K–F(2) distances is
explained by the displacement of F(2), which was
really observed experimentally: at close K coordinates,
the minimum length of the K–F(2) bond decreased
from 3.01 Å in III to 2.82 Å in I and 2.92 Å in II
because of the differences in the coordinates of the F(2)
atoms (Table 3).

Thus, the change in the coordinates of the F(2)
atoms observed in different crystals (Table 3) is the nec-
essary condition for attainment of the optimum K–F(2)
distances for each structure (Table 4) and is determined
by the positive charge of the framework dependent, in
turn, on the concentration of the second-type interstitial
defects in M(3). On the other hand, the lower the num-
ber of these defects (i.e., the lower the occupancy of the
M(3) position), the weaker the framework–channel
interaction (i.e., the longer the K–F(2) bonds) and,
therefore, the higher the mobility of atoms in the chan-
nel (i.e., the higher the values of the atomic-displace-
ment parameters of the channel atoms). The experi-
mental data (Table 3) confirm the above thesis: the
atomic displacements of the Ta(2) atoms are minimal in
I, somewhat more pronounced in II, and may reach the
values resulting in splitting of this position in III.

Thus, the major differences between I, II, and III
crystals—different mobilities and coordinates of Ta(2)
atoms—are associated with the incorporation of posi-
tive interstitial defects Taint into the structure frame-
work. An increase in the displacement parameter of
F(2) atoms in bronzes I and II in comparison with its
value in III can readily be understood if one takes into
account the specific features of reduction of Ta5+ ions at
the cathode considered below.

Characteristics of compounds formed due to
reduction at the cathode. Reduction at the cathode
may take place only at a certain potential corresponding
to the attainment by some ions in the electrolyte of a
certain reduced state. Therefore, all the cathode prod-
ucts obtained as a result of any reduction process in one
experiment may contain a chemical element only in
two oxidation states—one corresponding to the initial
state, and the other corresponding to the reduced state.
For ionic–covalent compounds, only the integral values
of the oxidation degree have physical sense.

We consider the bronze formation associated with
reduction of pentavalent tantalum ions at the cathode.
In the general case, in addition to the initial Ta5+ ion,
one can expect the formation of crystals containing any
of the reduced Ta4+, Ta3+, Ta2+, and Ta+ ions and also
atomic Ta0 .

Taking into account that the crystals of bronzes I
and II were obtained in one electrochemical experi-
ment, we assume that all the reduced Ta(5 – δ)+ ions in
C

both crystals are in the same oxidation degree (the same
integral parameter δ). The possible stoichiometric
bronze compositions are obtained with due regard for
the above characteristics of their formation at the cath-
ode.

Scheme of formation of hexagonal tantalum
bronzes at the cathode. As we have already men-
tioned, transparent crystals III not containing reduced
tantalum ions were obtained simultaneously with crys-
tals of bronzes I and II, which contain partly reduced
tantalum. Under a microscope, among the crystals
obtained in one batch, we also observed some crystals
having the shape of hexagonal prisms with brown faces
and radially colored basis—from the colorless center to
the intense brown perimeter. Cleaving these crystals,
we revealed that their bulk also had similar zonal struc-
ture. The middle parts of other elongated prismatic
crystals had a clear boundary between the colorless
center and brown periphery. These visual observations
led to the conclusion that crystals of these bronzes
could be formed because of reduction of tantalum ions
in the already formed crystals of Ta5+ compounds in
direct contact with the cathode. This reduction seemed
to be possible because of the mobility of reducible tan-
talum ions in the channel. The reduction mechanism
can be represented by the following sequence. Fluctua-
tions of the melt composition in the region near the
cathode give rise to nucleation and subsequent growth
of crystals of the Ta5+ compound. The contact between
the crystal and cathode results in reduction, first of all,
of Ta5+ cations in the structure channels, because these
cations are screened by anions to a lesser degree than
other Ta5+ cations (the statistical character of anion dis-
tribution in the partly occupied F(2) position around
Ta(2) cations). As a result, the channels acquire a nega-
tive charge, which is compensated because some F(2)
anions migrate into the melt, whereas some Ta5+ cat-
ions move from the melt to the channels and also
because partly reduced Ta(5 – δ)+ cations migrate from
the channels to the M(3) position in the framework. The
cations in the M(3) position charge the framework and,
thus, intensify the interaction between the framework
and the channel via formation of K–F(2) bonds. This
results in a lower mobility of F(2) anions and blocking
of their migration to the melt with an increase of the
framework charge, i.e., with an increase in the number
of cations in M(3). The capture of Ta5+ ions from the
melt, their motion along the channel, and their reduc-
tion at the cathode are limited by the unvarying number
of ions. On the other hand, the velocity of Ta5+ migra-
tion (or the rate of electron exchange between oppo-
sitely charged tantalum cations) along the channel axes
is lower, the larger the number of reduced Ta(5 – δ)+ ions
located along this axis. When all the channel cations in
the crystal bulk are reduced to Ta5+, the reduction pro-
cess ceases and the crystal becomes completely reduced
Ta(5 – δ)+ bronze (depending on the conditions of elec-
trolysis, δ may take one of integral values 1, 2, 3, or 4).
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The other limiting parameter of the reduction processes
is the duration of the contact between the cathode and
crystal. If the reduction process is interrupted, the crys-
tals formed can also contain unreduced Ta5+ cations in
the structure channels. Hereafter, these crystals are
called partly reduced Ta(5 – δ)+ bronzes. Obviously, the
degree of completeness of the reduction process can
vary even within one crystal because of the anisotropy
of conductivity (only along the hexagonal axis) and dif-
ferent areas of the crystal–cathode and crystal–melt
contacts in different parts of the crystal. The formation
of bronze crystals with different degree of the com-
pleteness of the reduction process in single experiment
is explained by different influence of each of the param-
eters limiting reduction of randomly oriented growing
crystals.

Within the framework of the above scheme of reduc-
tion, the M(1) and M(2) maxima of the residual electron
density interpreted as interstitial defects of the first type
correspond to the highest probability of encountering
cations on the paths of their migration from the Ta(2)
positions: M(1) indicates migration of tantalum along
the channel axis, and M(2), migration of tantalum into
the framework (into M(3)). Since the multiplicity of the
Ta(2) position is unity and the interstitial defects arise
as a result of redistribution of cations occupying this
position, the total number of cations in the Ta(2), M(1),
M(2), and M(3) positions (Z in Table 1) should not
exceed unity. This is confirmed (within the accuracy of
standard deviations) by the results obtained for bronzes
I (Z = 1.05(14)) and II (Z = 0.88(14)).

The mechanism of tantalum reduction suggested
here allows one to interpret higher Ueq values of F(2)
anions in bronzes in comparison with the analogous
values in the Ta5+ compound and also different occu-
pancies of the M(1), M(2), and M(3) positions, because,
in fact, various stages of the reduction process in these
bronzes are fixed. The following characteristics
obtained for bronze II indicate that the intermediate
stage of the reduction process in this bronze is fixed:

—the concentration of the interstitial defects in
M(3) is lower (hereafter, z3 = 0.12 atoms per unit cell)
than the concentration of atoms in the M(2) and M(1)
positions along the migration paths (z1 + z2 = 0.24);

—the highest possible value of the displacement
parameter of the F(2) atom (Uiso = 0.093 Å), which
reflects its pronounced delocalization at the moment of
cessation of crystal formation;

—the maximum number of F(2) anions (2.2) at a
low number of tantalum cations (6 + Z = 6.88) in the
unit cell.

On the contrary, the state of bronze I was estimated
to be close to the state of complete reduction because of
the following:
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
—a higher defect concentration in M(3) (z3 = 0.36)
than in M(2) and M(1) (z1 + z2 = 0.20);

—a lower value of the displacement parameter of
F(2) (Uiso = 0.08 Å);

—the minimum number of F(2) anions (1.1) at the
maximum possible number of tantalum cations (6 + Z =
7) in the unit cell.

Chemical formula of the compounds with the
variable composition K6Ta6 + ZO15F6(F, O)y (theoret-
ical analysis). The composition of the compounds with
the structure type studied can be considered at several
levels:

(1)

Square brackets show the compositions of the frame-
work and the channel. Hereafter, the curly brackets
indicate Taint atoms whose total number, Taint – z = z1 +
z2 + z3, is represented as a sum of the atoms in the
M(1), M(2), and M(3) positions. The total variable
number of tantalum atoms in the structure, Z = x + z, is,
(x), the sum of the basic atoms in the partially occupied
Ta(2) position, (x), of multiplicity 1 and the total num-
ber of Taint atoms, (z), and y is the number of atoms in
partly occupied F(2) position of multiplicity 12.

Compounds of pentavalent tantalum (d = 0). The
results obtained in the present study show that Ta5+

compounds contain no interstitial defects. Thus, rela-
tion (1) can be written in the simplified form as

(2)

The framework composition [K6Ta6O15F6] is constant
and its total charge is zero. The variable composition of
the compounds is explained by partial occupancy of the
position in the channel [Ta(2) = xTa and F(2) = y(F, O)]
and the chemical composition of its anionic compo-
nent, which admits the above variations.

The ranges of x and y variation can be evaluated pro-
ceeding from the crystal-chemical limitations imposed
on the F(2) position of multiplicity 12 in which the
atoms form the first coordination sphere of Ta(2) with
due regard for the total charge balance of cations and
anions located in the channel. As has already been
noted, in fact, the 12-vertex hexagonal [Ta(2)F(2)12]
prism corresponding to the complete occupancy of the
F(2) position cannot exist because of too short F(2)–
F(2) contacts (~1.3 Å) in its basis. The possible statisti-
cal [Ta(2)F(2)6] polyhedra (trigonal prism and anti-
prism) corresponds to 50% occupancy of this position.
However, these polyhedra can be formed only in every
second unit cell (or even more seldom) because of too
short F(2)–F(2) contacts between the polyhedra

K6Ta6 Z+ O15F6 F O,( )y

=  K6Ta6 x z+ + O15F6 F O,( )y

=  K6Ta6O15F6 Taz3{ }[ ] Tax F O,( )y Taz1 z2+{ }[ ] .

K6Ta6 x+ O15F6 F O,( )y

=  K6Ta6O15F6[ ] Tax F O,( )y[ ] .
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(~1.5 Å). Therefore, the occupancy of this position is
pF(2) ≤ 0.25 and 0 < y = 12 × pF(2) ≤ 3.

The condition of channel electroneutrality is written
as 5x = y + y(O) = 2y(O) + y(F), where the total number
of anions, y = y(O) + y(F), is represented as the sum of
the numbers of O and F ions. It follows from the above
equation that y = 5x – y(O). Considering two possible
limiting chemical compositions of the anionic position
(F or O), we obtain the following condition of electro-
neutrality of the channel valid for any mixed composi-
tion of the F(2) position

(3)

where the lower limit y corresponds to the presence in
the channel solely of divalent O anions, [TaxO2.5x],
whereas the upper limit, solely to the presence of
monovalent F anions, [TaxF5x]. This signifies that the
channel can contain different number y of anions
(depending on their kind) at the same occupancy
Ta(2) = x.

The value of the local coordination number of Ta(2)
atoms averaged in space and time, (cn)av, equal to the
ratio of the number of anions, y, to the number of cat-
ions, x, is obtained from Eq. (3) as 2.5 ≤ [(cn)av = y/x =
5 – y(O)/x] ≤ 5. The latter condition signifies that the
maximum number of anions per Ta(2) atom cannot
exceed five. Therefore, the [Ta(2)F(2)6] polyhedron is
always of a statistical nature. It is logical to assume that
the probability of the structure-type stabilization con-
sidered here is higher, the higher the occupancy of the
vertices of this polyhedron, i.e., the closer the (cn)av
value is to six. Obviously, the minimum possible value
of (cn)av equal to 2.5 corresponds to filling of the
anionic position with only O ions, whereas the maxi-
mum possible value, (cn)av = 5, corresponds to filling of
this position with only F ions at y = y(F) = 5x.

Now, evaluate the occupancies of the Ta(2) position,
x, at which the value of (cn)av is close to the maximum
possible value. It can readily be shown that

—if 0 < x ≤ 0.6, the F(2) position can be filled solely
with F anions irrespectively of the x value, y = y(F) =
5x. The O ions which reduce the (cn)av value can have
any relative concentration ranging from zero [y = y(F) =
5x] to the complete filling of the F(2) position with oxy-
gen [y = y(O) = 5x/2]. At the fixed concentration of O
ions, the higher the x value, the less the influence of the
present oxygen on the (cn)av of Ta(2) atoms;

—if 0.6 < x ≤ 1, this structure type can be formed
without oxygen anions, because 3 < 5x = y + y(O) ≤ 5
and y ≤ 3. In this case, with an increase in x from 0.6 to
1.0, the possible number of F ions decreases from 5 to
zero and, therefore, the maximum possible value of
(cn)av decreases from 5 to 2.5.

The above estimation shows that the probability of
the structure-type stabilization is higher in the range
0 < x ≤ 0.6 and that there is no oxygen in the F(2) posi-
tion; the probability decreases with an increase in x

5x/2 y 5x,≤ ≤
C

from 0.6 to 1.0. The closer x is to 0.6, the higher the
probability that the F(2) position is filled not only with
F ions but also with a small amount of oxygen. Thus,
for the Ta5+ compounds, the limitations imposed on the
stoichiometry in formula (2) are: y ≤ 3, x = [y(F) +
2y(O)]/5 ≤ 1, where y(F) + y(O) = y. The most probable
compositions are K6Ta6 + xO15F6 + 5x =
[K6Ta6O15F6][TaxF5x] with the subscripts x ranging
within 0 < x ≤ 0.6.

It should be emphasized that the formula
K6Ta6.5O14.5F9.5 = [K6Ta6O12.688F8.312][Ta0.5O1.812F1.188]
given in [5] for transparent Ta5+ compounds is some-
what erroneous. This can be explained by the fact that
the balance of the valence strengths at framework
anions, which allows one to unambiguously localize
the F and O atoms (Table 5) and, thus, adequately deter-
mine the framework charge and write its formula, was
not estimated in [5]. According to Eq. (3), the coeffi-
cient pTa(2) = 0.5 (x = 0.5) determined in [5] can cor-
respond to the number of anions in the channel ranging
within 1.25O ≤ y ≤ 2.5F but not to y = (1.812O +
1.188 F) = 3(F, O), as was indicated in [5]. Thus, the
most probable formula of Ta5+ compound studied in [5]
is [K6Ta6O15F6][Ta0.5F2.5] = K6Ta6.5O15F8.5. The refine-
ment of structure III, another example of a Ta5+ com-
pound, showed that the F(2) position did not contain
any oxygen because y ~ 5x and [K6Ta6O15F6][Ta0.27F1.4] =
K6Ta6.27O15F7.4. Thus, the compositions of both Ta5+

compounds confirm the conclusion about the stabiliza-
tion of the structure type in the absence of oxygen in the
channel.

Compounds containing Ta(5 – d)+ ions with
reduced degree of oxidation (bronzes). The variable
composition of bronzes depends not only on the varia-
tions in the channel composition but also on the vari-
able number of Taint atoms, which are absent in the Ta5+

compounds. The composition of the
[K6Ta6O15F6{Taz3}] framework has a variable compo-
nent z3 equal to the number of Taint atoms in the M(3)
position, which is related to the total positive charge of
the framework. Therefore, the charge of the structure
channel [Tax(F, O)y{Taz1 + z2}] is opposite to the charge
of the framework. To estimate the variable parameters
in formulas (1), we have to write the electroneutrality
condition of the structure.

The positive charge of the framework due to

 in the M(3) position equals (5 – δ)z3. The neg-
ative charge of the channel is associated with the com-
plete or partial reduction of Ta5+ in the Ta(2) position

and incorporation of  ions with a reduced oxi-
dation degree into the M(1) and M(2) positions. There-
fore, the equation of compound electroneutrality can be
written as

(4)

Taint
5 δ–( )+

Taint
5 δ–( )+

y y O( )+ 5 δ–( ) Z x'–( ) 5x',+=
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where y(O) ≤ y. The left-hand side of Eq. (4) describes
the total charge of the channel anions that neutralize the
total charge of cations in the partly occupied positions
in the right-hand side of the equation; x' is the number
of unreduced Ta5+ ions in the Ta(2) position.

It is seen from Eq. (4) that the total varying number
Z of cations is controlled, first of all, by the number y of
anions and, at the given y value, depends on the degree
of reduction of tantalum ions, δ, and not on the number
x of reduced Ta5+x' ions in the position Ta(2). Taking
into account that Z ≤ 1, we find from Eq. (4) that y(O) ≤
2.5. Thus, the compositions of bronzes with the struc-
ture type considered here can be written as

(5)

where δ = 1, 2, 3, 4, or 5, y ≤ 3 is the total variable num-
ber of (F, O) anions, including y(O) ≤ 2.5 oxygen ions,
and Z ≤ 1 is the total variable number of tantalum cat-
ions, including x' = (y + y(O) – (5 – δ)Z)/δ unreduced
Ta5+ cations, where 0 ≤ x' < 1. For completely reduced
bronzes, x' = 0 by definition, and the corresponding
bronzes have the composition
K6 O15 + y(O)F6 + y – y(O).

All the variable parameters in the generalized com-
position described by formula (5) depend on the degree
of reduction of tantalum ions (δ) and presence of oxy-
gen anions in F(2). It is also interesting to consider
three additional particular cases: maximum reduction
of some Ta5+ ions up to Ta0 (δ = 5); absence of oxygen
in the structure channels (y(O) = 0); and the combina-
tion of the first two conditions.

If reduction proceeds up to Ta0 (δ = 5), the presence of
anions depends only on the unreduced Ta5+ ions in the
Ta(2) position, x' = y/5 + y(O)/5. Then, formula (5) is sim-
plified to K6 O15 + 5x' – yF6 + 2y – 5x'. In this case,

the completely reduced bronze has no anions in the chan-
nels: K6 O15F6 = [K6 O15F6 ][ ].

This variant differs from Ta5+ compounds only by the
presence of interstitial defects—neutral Taint atoms.
The total charge of the framework is zero, which
explains the high mobility of ions and atoms in the
channel.

The absence of oxygen ions in the channel corre-
sponds to the composition K6 O15F6 + y ,

where δ = 1, 2, 3, 4, or 5; y ≤ 3, Z ≤ 1 is the total variable
number of Ta cations, including x' = (y – (5 – δ)Z)/δ unre-
duced Ta5+ cations, 0 ≤ x' < 1, Z ≤ y/(5 – δ), if δ ≠ 5. With
the same number of anions in the channel (y), the num-
ber of unreduced Ta5+ ions in the Ta(2) position (x') is
less than in the presence of oxygen, which corresponds
to a higher (cn)av of Ta and stabilizes the structure.
Therefore, these compositions are more probable.

At the maximum possible tantalum reduction (δ = 5)
and in the absence of oxygen in the structure channels,

K6Ta6 x'+
5+ TaZ x'–

5 δ–( )+O15 y O( )+ F6 y y O( )–+ ,

Ta6
5+TaZ

5 δ–( )+

Ta6 x'+
5+ TaZ x'–

0

Ta6
5+TaZ

0 Ta6
5+ Taz3

0 TaZ z3–
0

Ta6 x'+
5+ TaZ  – x'

5 δ–( )+
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the composition described by (5) becomes
K6 O15F6 + y = [K6 O15F6{ }] ⋅

[ ]. In terms of crystal chemistry,

the compounds with such compositions are highly
probable because (cn)av = 5, i.e., is close to six for Ta5+

ions in the Ta(2) position and intercalation of neutral Ta
atoms into the structure. Proceeding from the degree of
tantalum reduction, i.e., the δ parameter, the type of
compounds considered here can be related to Ta(5 – δ)+

bronzes, with due regard for the fact that only some tan-
talum ions are reduced.

The occupancies of the Ta(2), F(2), and Taint posi-
tions correspond to the following compositions:
[K6Ta6O15F6{Ta0.36(6)}][Ta0.487(1)(F, O)1.10(2){Ta0.20(8)}] for
bronze I and [K6Ta6O15F6{Ta0.12(6)}][Ta0.516(1)(F,
O)2.18(2){Ta0.20(8)}] for bronze II. With due regard for the
condition Z ≤ 1, the composition of bronze I is
[K6Ta6O15F6{Ta0.34}][Ta0.49(F, O)1.1{Ta0.17}]. The anion
composition in the channels can be refined with an
accuracy of the determination of possible degrees of
oxidation of reduced tantalum ions by Eqs. (4) and (5).

Estimation of oxidation degree of tantalum in
bronzes I and II. First of all, we should like to note that
no reduction of Ta5+ ions to Ta0 (δ = 5) is possible in I
and II, because the shortening of the K–F(2) distances
in comparison with analogous distances in III would
indicate the existence of charges of both channel and
framework, i.e., the presence of cations instead of neu-
tral atoms in the M(3) position. Substitution of x, y, z1,
z2, and z3 values obtained for I (Table 1) into Eq. (4)
with due regard for the fact that y(O) ≤ y = 1.1 yields
δ ≥ 3. Therefore, in order to determine the most proba-
ble degree of tantalum reduction in bronzes I and II,
one has to consider two possible cases of correspon-
dence of formula (5) to the chemical composition
obtained, i.e., δ = 3 and δ = 4.

If δ = 3, some Ta5+ ions are reduced to Ta2+, i.e., I
and II are Ta2+ bronzes. With due regard for the errors in
the determination of the position occupancies, formula (5)

can be written as [K6 O15F6}][ }][ O1.0

{ }] for bronze I and [K6 O15F6{ }]

[ O3x' – 0.42F2.6 – 3x'{ }] for bronze II,
where x' is the number of unreduced Ta5+ ions in the
Ta(2) position ranging from 0.14 (no oxygen in chan-
nels) to 0.52 (mixed anionic composition of channels).
The two limiting compositions of the channels in II are

[ F2.18{ }] and [ O1.13F1.05

{ }]. In this case, I is the completely reduced Ta2+

bronze containing no F anions in the channels and II is
the partly reduced Ta2+ bronze containing at least
1.05 F anions in the channels.

Ta6 0.2y+
5+ TaZ 0.2y–

0 Ta6
5+ Taz3

0

Ta0.2y
5+ TaZ z3– 0.2y–

0 Fy

Ta6
5+ Ta0.34

2+ Ta0.49
2+

Ta0.17
2+ Ta6

5+ Ta0.12
2+

Tax'
5+Ta0.52 x'–

2+ Ta0.24
2+

Ta0.14
5+ Ta0.38

2+ Ta0.24
2+ Ta0.52

5+

Ta0.24
2+
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If δ = 4, some Ta5+ ions are reduced to Ta+, i.e., I and
II are Ta+ bronzes. Bronze I has the composition [K6

O15F6{ }][ O4x' – 0.1F1.2 – 4x'{ }],
where, with an increase in the oxygen content in the
channel from 0 to 1.1, x' varies from 0 (or, more pre-
cisely, from 0.025) to 0.3. The limiting compositions of

the channels are approximately [ F1{ }] and

[ O1.1{ }]. Bronze II has the composi-

tion [K6 O15F6{ }][ O4x' – 1.3

F3.48 – 4x'{ }], where, with an increase in the oxy-
gen content in the channel from 0 to 0.764, x' varies
from 0.325 to 0.516. The limiting compositions of the

channels are [ F2.18{ }] and

[ O0.764F1.416{ }]. In this case, I is the Ta+

bronze with an arbitrary ratio of F anions to O cations
in the channels. This bronze is completely reduced if it
has no oxygen in the channels. Partly reduced Ta+

bronze II contains at least 1.416 F anions in the struc-
ture channel.

Formally, both above variants of tantalum reduction
are possible. However, in Ta2+ bronzes (δ = 4), the
channels of structure I should contain solely O anions.
Since, during reduction, the anions leave the structure,
the initial structure of the crystal should contain no F
anions, which would correspond to the channel compo-

sition [ O2.5x] with the minimum possible averaged
coordination number (cn)av = 2.5, which is hardly prob-
able. Therefore, the variant of existence of Ta+ bronzes I
and II seems to be more probable.

We revealed no qualitative differences between I
and II. At the same time, their optical properties are
obviously different—metal-like crystals I and smoke-
brown semitransparent crystals II. We assume that
these differences should be associated with the pres-
ence in the channels of unreduced Ta5+ ions—there are
no such ions in completely reduced bronze II, but they
are present in partly reduced bronze II. With due regard
for this fact, the most probable composition of I is

[K6 O15F6{ }][ F1{ }] =

K6 Ta+O15F7 = K6Ta7O15F7. Taking into account
that the absence of oxygen anions in the structure chan-
nels is favorable, it is most likely that bronze II has the
composition

[K6 O15F6{ }][ F2.18{ }] =

K6 O15F8.2 = K6Ta6.88O15F8.2.

Effect analogous to the effect of high pressure.
We repeatedly noted [2, 4, 8, 9] that all the compounds
synthesized by electrodeposition at the cathode show
characteristics analogous to the effect of high pressure.

Ta6
5+

Ta0.34
+ Tax'

5+Ta0.49 x'–
+ Ta0.17

+

Ta0.49
+ Ta0.17

+

Ta0.3
5+ Ta0.19

+
Ta0.17

+

Ta6
5+ Ta0.12

+ Tax'
+ Ta0.516 x'–

+

Ta0.24
+

Ta0.325
5+ Ta0.191

+ Ta0.24
+

Ta0.516
5+ Ta0.24

+

Tax
5+

Ta6
5+ Ta0.34

+ Ta0.49
+ Ta0.17

+

Ta6
5+

Ta6
5+ Ta0.12

+ Ta0.325
5+ Ta0.191

+ Ta0.24
+

Ta6.33
5+ Ta0.55

+

C

The present case is no exception. The densities of
bronzes I and II are dX = 5.46 and 5.38 g/cm3, respec-
tively, i.e., are much higher than the density of Ta5+

compound III, dX = 5.06 g/cm3. Moreover, the anoma-
lously short K–Taint distances (for Taint in the M(3) posi-
tion) are equal to ~2 Å, which confirms the analogy
with high pressure.

CONCLUSIONS

The structures of three crystals of the (K, Ta, O, F)
compounds having the same structure type of hexago-
nal bronzes have been studied by single crystal X-ray
diffraction methods. The crystals studied possess dif-
ferent optical characteristics (color and degree of trans-
parency) because of different degree of reduction of
Ta(5 – δ)+ ions. Comparison of the data obtained with the
data published earlier for analogous structures of two
other crystals allowed us to characterize the structure
type of the crystals and establish their specific struc-
tural characteristics during partial reduction of tanta-
lum ions.

The structure of hexagonal tantalum bronzes (sp. gr.
P6/m, a ~ 13.13 Å and c ~ 3.86 Å) is characteristic of
compounds with a variable composition
K6Ta6 + ZO15F6(F, O)y, where Z ≤ 1 and y ≤ 3, which
contains both tantalum oxidized to the highest degree
(Ta5+-containing compounds) and tantalum in two dif-
ferent degrees of oxidation Ta5+ and Ta(5 – δ)+ (Ta(5 – δ)+

bronzes) with δ taking the values 1, 2, 3, 4, or 5.
The Ta5+-containing compounds form colorless

transparent crystals. Crystals of bronzes have visually
different optical characteristics. Their color varies from
light to dark brown, the crystals vary from transparent
to semitransparent, and the luster changes from glassy
to mat finish. Against the background of this continu-
ous spectrum of crystal characteristics, we also
observed crystals of qualitatively different dark gray
metal-like bronzes.

The structure of all the representatives of this struc-
ture type is built by two main structural units—
[K6 O15F6] framework with a stable structure and

composition and [Tax(F, O)y] channels of variable com-
position and structure with Ta cations located along
their hexagonal axes (x ≤ Z). The channel atoms are
highly mobile but form no sublattice with the symmetry
and parameters different from the symmetry and
parameters of the framework.

Unlike Ta5+-containing compounds, the bronzes
contain interstitial defects—reduced tantalum cations,

z , (z + x + Z). All or only some reduced cations
in the channel are in the same reduced state Ta(5− δ)+.
Therefore, one should also distinguish between com-
pletely and partly reduced bronzes. Presumably, com-
pletely reduced bronzes would have metallic proper-
ties.

Ta6
5+

Taint
5 δ–( )+
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Unlike Ta5+-containing compounds, the chemical
composition of the bronzes contain interstitial

defects—reduced tantalum cations, z , (z + x +
Z). Therefore, one should also distinguish between the
completely and partly reduced bronzes. Ta5+-contain-
ing compounds is K6Ta6 + xO15F6(F, O)y =
[K6Ta6O15F6][Tax(F, O)y , where y ≤ 3 and x ≤ 1. In the
square brackets, the compositions of the framework and
the channel are indicated. The most probable composi-
tions are K6Ta6 + xO15F6 + 5x = [K6Ta6O15F6][TaxF5x]
with 0 < x ≤ 0.6 . Both structural units in Ta5+ com-
pounds have no electrostatic charge, which explains
their relatively high mobility. We studied the structures
of colorless transparent crystals of the Ta5+ compound
of the composition [K6Ta6 + xO15F6][Ta0.27F1.4] =
K6Ta6.27O15F7.4.

With due regard for the specific features of the for-
mation of compounds during reduction at the cathode
in the electrolysis of the salt melt, the composition of
Ta(5 – δ)+ bronzes can be written as
K6 O15 + y(O)F6 + y – y(O) with δ = 1, 2, 3, 4,

or 5. Here, y ≤ 3 is the total variable number of (F, O)
anions, including y(O) ≤ 2.5 oxygen ions; Z ≤ 1 is the
total variable number of Ta cations including x' = (y +
y(O) – (5 – δ)Z)/δ unreduced Ta5+ cations, where 0 ≤
x' < 1. We also studied the structure of a metal-like crys-
tal of completely reduced Ta+ bronze of the composi-

tion [K6 O15F6{ }][ F1{ }] =

K6 Ta+O15F7 = K6Ta7O15F7 and a brown semitrans-
parent crystal of partly reduced Ta+ bronze of the com-
position

K6 O15F6{ }][ F2.18{ }] =

K6 O15F8.2 = K6Ta6.88O15F8.2. Curly brackets

show Taint atoms playing the role of interstitial defects.

Analysis of the structural data obtained for one
Ta5+-containing compound and two bronzes formed
during the same electrochemical experiment allowed us
to suggest the scheme of crystal reduction on the cath-
ode in electrolysis of the salt melt. According to this
scheme, the most probable composition of the Ta(5 – δ)+

Taint
5 δ–( )+

Ta6 x'+
5+ TaZ x'–

5 δ–( )+

Ta6
5+ Ta0.34

+ Ta0.49
+ Ta0.17

+

Ta6
5+

Ta6
5+ Ta0.12

+ Ta0.325
5+ Ta0.191

+
Ta0.24

+

Ta6.33
5+ Ta0.55

+
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bronzes is K6 O15F6 + y , where Z ≤ y/(5 –

δ) if δ ≠ 5 and x' = (y – (5 – δ)Z)/δ.
In comparison with Ta5+-containing compounds

obtained by reduction at the cathode, bronzes are char-
acterized by higher density and shorter cation–cation
distances. This confirms our earlier assumption that, in
electrolysis, a behavior analogous to the high-pressure
effect should be observed.
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Abstract—Crystals grown from a solution of dimethylammonium and copper chlorides are studied using elec-
tron paramagnetic resonance (EPR) and X-ray diffraction. The dielectric properties of the crystals grown are
measured. It is established that the crystals have the composition [(CH3)2NH2]2CuCl4[(CH3)2NH2]Cl and, in
phase I at room temperature, are described by the orthorhombic space group Pna21 with the unit cell parameters
a = 11.338 Å, b = 9.981 Å, and c = 15.675 Å. At temperatures of 279 K and 253 K, the crystals undergo jump-
wise phase transitions into the incommensurate modulated ferroelectric phase II and commensurate modulated
phase III, respectively. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Crystals containing dimethylammonium [(DMA)+]
molecular cations, [CH3)2NH2]+, are of interest due to
their ferroic activity, which is associated with the order-
ing of hydrogen bonds and related changes in the
dynamics of (DMA)+ ions. For example, crystals of
(ëç3)2NH2 Al(SO4)2 ⋅ 6H2O and (CH3)2NH2Ga(SO4)2 ⋅
6H2O exhibit ferroelectric properties in the temperature
ranges 152–75 K and 136–106 K, respectively [1, 2]. In
addition, they possess ferroelastic properties above the
Curie point. Crystals of (CH3)2NH2H2PO4 undergo a
ferroelectric phase transition at 259.15 K [3].

The authors of [4, 5] revealed that
[(CH3)2NH2]2CuCl4 crystals exhibit ferroelectric prop-
erties in the temperature range 279.65–253.05 K and
that the incommensurate phase exists in the range 296–
279.5 K. In our recent work [6], we investigated the
temperature dependences of the unit cell parameters
and thermal expansion coefficients along the crystallo-
graphic axes in the [(CH3)2NH2]2CuCl4 crystals. In the
[(CH3)2NH2]2CoCl4 crystals [7], ferroelectric proper-
ties were observed in the temperature range 227–260 K.
Studies of the crystals containing a bivalent metal,
1063-7745/04/4901- $26.00 © 20086
Table 1.  Coordinates (×104) and equivalent thermal parame-
ters Ueq (Å2 × 103) of the non-hydrogen atoms

Atom x y z Ueq

Cu(1) 4704(1) 141(1) 2401(1) 40(1)
Cl(1) 6422(1) –964(1) 2403(1) 56(1)
Cl(2) 4129(1) –389(1) 1080(1) 68(1)
Cl(3) 4121(1) –379(1) 3729(1) 69(1)
Cl(4) 4133(1) 2298(1) 2396(1) 73(1)
C(11) 6297(1) –4705(1) 2476(2) 110(1)
C(12) 4327(1) –3800(1) 2482(2) 121(1)
N(1A) 5428(2) –3751(2) 2838(1) 60(1)
N(1B) 5388(2) –3880(2) 1963(2) 82(1)
C(21) 1949(1) 3104(1) 4024(1) 72(1)
C(22) 2980(1) 1959(2) 5188(1) 83(1)
N(2A) 3091(1) 2719(1) 4473(1) 51(1)
N(2B) 3063(2) 2341(2) 4264(1) 97(1)
C(31) –1967(2) 2950(2) –377(1) 106(1)
C(32) –3087(1) 2002(2) 857(1) 108(1)
N(3A) –1846(1) 2422(1) 452(1) 30(1)
N(3B) –2625(2) 3109(2) 503(1) 65(1)
Cl(5) 5025(2) 4976(1) 4924(2) 157(1)
004 MAIK “Nauka/Interperiodica”



        

CRYSTAL STRUCTURE AND PHASE TRANSITIONS 87

                       
Cu
Cl
C
H
N

b

c

Fig. 1. Projections of the crystal structure of [(CH3)2NH2]2CuCl4[(CH3)2NH2]Cl onto the planes (a) (100), (b) (010), and (c) (001)
at 293 K.
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CRYSTAL STRUCTURE AND PHASE TRANSITIONS 89
chlorine anion, and dimethylammonium cation are of
great interest, since data on the structure of these com-
pounds and mechanisms of phase transitions in them
are not available and data on their dielectric properties
are very scarce.

The purpose of this work was to grow crystals of
copper chloride with organic dimethylammonium cat-
ions and to study their structure and properties.
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Fig. 3. Temperature dependences of the unit cell parame-
ters.
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EXPERIMENTAL

Single crystals were grown at room temperature
through isothermal evaporation of saturated aqueous
solutions containing dimethylammonium chloride
[(CH3)2NH2]Cl and copper chloride. The crystals
obtained were transparent, yellow, and hygroscopic.
For measurements, samples were cut out along the
crystallographic axes in such a way that the crystallo-
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Fig. 4. Temperature dependence of the g factor measured
using electron paramagnetic resonance.
Table 2.  Coordinates (×104) and isotropic thermal parameters Uiso (Å2 × 103) of the hydrogen atoms

Atom x y z Uiso Atom x y z Uiso

H(14) 6097(11) –5597(13) 2661(8) 109 H(31A) –1696(12) 3193(15) 842(9) 22

H(24) 2541(9) 2521(10) 5483(6) 65 H(21B) 3481(16) 1986(18) 3969(10) 40

H(13) 4193(9) –4520(9) 2619(7) 70 H(22B) 2292(15) 1827(19) 4316(11) 40

H(22) 1868(10) 3098(12) 3570(7) 73 H(21A) 3732(11) 3489(13) 4447(8) 9

H(23) 3498(11) 1373(12) 5290(7) 82 H(22A) 3270(16) 2522(18) 4808(11) 40

H(21) 1424(9) 3662(10) 4509(6) 57 H(32A) –1557(15) 2020(16) 267(10) 30

H(11) 6634(12) –4595(14) 2846(7) 100 H(11A) –3225(17) 1039(19) 570(12) 53

H(12) 3987(11) –3221(12) 2706(7) 103 H(12A) 3967(13) 1423(15) 4451(9) 23

H(31) –3091(9) 1715(10) 658(7) 60 H(11B) 4410(2) 3790(2) 3523(15) 88

H(33) –1261(9) 3271(11) –582(7) 66 H(12B) 3440(2) –610(2) 3406(13) 70

H(34) –2197(11) 2398(12) –814(8) 85 H(31B) 5323(18) –4260(2) 3415(13) 63

H(32) –2780(9) 1447(10) 1266(7) 64 H(32B) 4770(2) –210(2) 1450(2) 91
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physical axes X, Y, and Z were directed perpendicular to
the crystallographic axes a, b, and c, respectively. Gold
leaf was used as electrodes.

The X-ray diffraction experiments were performed
on a KM4-CCD four-circle X-ray diffractometer
(KUMA DIFFRACTION Company) (MoKα radiation,
λ = 0.71073 Å) [3]. The structure was solved and
refined with the SHELX97 program package. The
1H NMR studies were performed on a CW Radiopan
spectrometer (ν = 9.4 GHz). The dielectric measure-
ments were performed using an HP 4284A LCR preci-
sion measuring device in the frequency range from
20 Hz to 1 MHz at temperatures ranging from 80 to
300 K. An ITC4 Oxford system was used for tempera-
C

ture control and stabilization. The accuracy in stabiliz-
ing the temperature was 0.5 K.

RESULTS AND DISCUSSION

The X-ray diffraction study revealed that, at 293 K,
the crystals grown are orthorhombic, space group Pna21,
a = 11.338(2) Å, b = 9.981(2) Å, c = 15.675(3) Å, Z =
4, V = 1773.9 Å3, and dcalcd = 1.397 g/cm3. The com-
pound has a complex chemical formula which can be
written as [(CH3)2NH2]3CuCl4Cl or
[(CH3)2NH2]2CuCl4[(CH3)2NH2]Cl. The coordinates
and thermal parameters of the non-hydrogen atoms are
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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tanδY
listed in Table 1. The coordinates of the hydrogen
atoms and the geometric characteristics of the hydro-
gen bonds are given in Tables 2 and 3, respectively. The
structure of the crystals (Fig. 1) is built of CuCl4 tetra-
hedra, three structurally nonequivalent dimethylammo-
nium groups, and individual chloride ions. The struc-
ture consists of two alternating layers parallel to the
(001) plane. One of the layers contains (DMA)+ ions

and CuC  tetrahedra, and the other layer contains
(DMA)+ and Cl(5)– ions. The Cl(5) atoms are bound to
nitrogen atoms of dimethylammonium groups via two
hydrogen bonds (Fig. 2).

The temperature dependences of the unit cell
parameters are shown in Fig. 3. As the temperature

l4
2-
Y REPORTS      Vol. 49      No. 1      200
decreases, the a, b, and c parameters gradually decrease
but, at 279 K, undergo abrupt and significant changes:
the b parameter increases, and the c parameter
decreases. At the same time, the unit cell size along the
a axis triples and an incommensurate modulated struc-
ture is formed. With a further decrease in the tempera-
ture, the b parameter gradually increases and the a and
c parameters decrease. At 253 K, the b and a parameters
jumpwise decrease, the c parameter increases, and the
incommensurate phase disappears.

Figure 4 shows the temperature dependence of the g
factor measured by the EPR method. It is clearly seen
that the g factor abruptly increases at 279 K and jump-
wise decreases at 253 K. Note that the presence of cop-
per makes these crystals interesting for EPR measure-
4
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(c)
ments. The g factor can be represented by the relation-
ship [8]:

g = ge(1 + 8λ/∆), 

where ge is the factor of the free electron and ∆ is the
spacing between the ground and first excited orbital
levels of the copper ion, which is in inverse proportion
to the R distance between the Cu2+ and Cl ligands, i.e.,
∆ ~ 1/R5 . It is obvious that, at 279 and 253 K, the dis-
tances between the copper atom and the nearest neigh-
bors change.

The dielectric characteristics measured at different
frequencies are presented in Fig. 5. A decrease in the
C

temperature leads to a gradual increase in the permittiv-
ities εX and εY of the samples of the X and Y sections
(Figs. 5a, 5b). At 279 K, the permittivity εX significantly
increases, whereas the permittivity εY abruptly
decreases, which is indicative of the improper first-
order phase transition. The sample of the Z section
(Fig. 5c) exhibits only slight anomalies in the tempera-
ture dependences of the permittivity εZ at different fre-
quencies. The dielectric loss  also changes
abruptly in the vicinity of the phase transitions. At
253 K, jumpwise changes in the dielectric characteris-
tics with a temperature hysteresis of about 2 K are

δtan
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Table 3.  Geometric characteristics of the hydrogen bonds

D–H...A (D–H), Å (H…A), Å (D…A), Å <(DHA), deg

N(3A)–H(31A)…Cl(2) 0.997(14) 2.412(15) 3.3106(15) 149.6(11)

N(3A)–H(31A)…Cl(4) 0.997(14) 2.656(14) 3.2544(16) 118.7(10)

N(2B)–H(21B)…Cl(3) 0.751(18) 2.498(18) 3.0841(19) 136.2(17)

N(2B)–H(21B)…Cl(4) 0.751(18) 2.593(17) 3.170(2) 135.1(16)

N(2B)–H(22B)…Cl(5) 1.017(18) 3.279(18) 4.276(3) 166.9(13)

N(2A)–H(21A)…Cl(5) 1.058(13) 2.215(13) 3.222(2) 158.1(10)

N(3A)–H(32A)…Cl(5) 0.594(16) 2.733(17) 3.303(2) 162.0(19)

N(1A)–H(31B)…Cl(5) 1.04(2) 2.51(2) 3.539(3) 168.8(17)
observed. These changes indicate a first-order phase
transition.

CONCLUSIONS

The results of our studies demonstrated that the
crystals obtained have a complex composition. At room
temperature, the crystal structure of phase I is built of
three nonequivalent dimethylammonium groups, CuCl4
tetrahedra, and chloride ions, which are linked via an
extended hydrogen bond system into a three-dimen-
sional framework.

A decrease in the temperature to the liquid-nitrogen
point leads to two improper first-order phase transi-
tions. The first transition is attended by the formation of
the ferroelectric incommensurate modulated phase II.
Upon this transition, the unit cell size along the a axis
triples. After the second transition into phase III, the
incommensurate phase disappears. The dielectric mea-
surements revealed jumpwise changes in the permittiv-
ity and dielectric loss due to the first-order phase tran-
sitions. The shape of the curves indicates that important
relaxation processes take place in the temperature range
studied. They are apparently related to the dynamics of
dimethylammonium ions. The EPR measurements at
the paramagnetic Cu2+(3d9) centers showed that the
phase transitions are accompanied by jumpwise
changes in the lattice parameters, which suggest
changes in the distances between the copper atom and
the ligands (Cu2+–Cl).
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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Abstract—A real structure of lithium niobate single crystals has been studied by the etching method. A rela-
tionship between the real structure and the optical inhomogeneity (revealed by the polarization-optical method)
was established. © 2004 MAIK “Nauka/Interperiodica”.
The set of optical properties of lithium niobate (LN)
single crystals is known to be related to their real struc-
ture. The term “real structure of a crystal” implies the
crystal composition and macro- and microdefects (the
presence of impurities and the defect and domain struc-
ture). A distinguishing feature of niobate crystals is the
violation of stoichiometry in the course of their growth.
This violation results in the formation of various lattice
defects, which significantly affect the properties of
these compounds. Therefore, the ferroelectric, optical,
electrooptical, and nonlinear properties of LN crystals
should be considered in relation to their composition
and real structure.

Optical homogeneity of LN crystals is the character-
istic that is most sensitive to their structural imperfec-
tion. LN crystals belong to the symmetry class 3m.
They are uniaxial ferroelectrics and exhibit no birefrin-
gence along the polar z axis. However, a complex pat-
tern of optical inhomogeneities can be observed by the
polarization-optical method [1, 2]. The manifestation
of these inhomogeneities is related to the variation in
the birefringence in separate regions of crystals (light
propagates along the z axis). Such a birefringence
appears owing to the electrooptical and elastooptical
effects caused by local internal electric fields and
stresses [3]. The main objective of this study was to
investigate the general features of the relationship
between the optical inhomogeneity and the defect
structure. In this context, we studied in detail the real
structure (revealed by the etching method) of LN crys-
tals of different composition and compared the patterns
obtained with the polarization-optical data.

The samples under study were LN crystals grown by
the Czochralski method at the Bogoroditsk Plant of
Techno-Chemical Products (identical pure samples)
and at the Institute of Solid-State and Semiconductor
Physics of the Belarussian Academy of Sciences (pure
1063-7745/04/4901- $26.00 © 20094
samples and impurity samples grown from stoichio-
metric melt). The samples were treated and prepared
for study at the Institute of Solid-State and Semicon-
ductor Physics. During the sample growth, the rotation
axis (and, correspondingly, the pulling direction) corre-
sponded to the polar z axis. The boules obtained were
cut into plane-parallel plates (normal to the z axis) and
then polished to optical quality. We studied nominally
pure and doped lithium niobate crystals grown from
both stoichiometric and congruent melts. Metal oxide
impurities were added to the charge before starting the
crystal growth. Their concentrations (indicated below)
corresponded to the impurity content in the melt. We
studied a wide variety of crystal samples cut from both
the same boule and different boules. The presented
experimental data are typical of all the crystals studied
(both pure and Fe-, Zn-, Mn-, Mg-, and Cu-doped crys-
tals, with the impurity concentration in the range 0.1–
1 at %). It should be noted that the appearance and
shape of the structures revealed by the etching method
have some features related to the crystal composition.

Previously, we found that optically inhomogeneous
regions of a crystal correspond to regions with a higher
concentration of defects, whereas optically homoge-
neous regions correspond to regions with low defect
concentration [4]. When changing the temperature, the
optical inhomogeneity of LN crystals manifests itself
with higher contrast in the range 20–80°C; further
increase in the temperature leads to a decrease and dis-
appearance of the inhomogeneity. Therefore, it was
necessary to find the etchant composition and the etch-
ing technique most suitable for the temperature range in
which the optical inhomogeneity is fairly pronounced.
The etching method allows one to estimate the degree
of imperfection of LN single crystals not only qualita-
tively but also quantitatively. This method offers high-
resolution etching patterns [5] and enables one to deter-
004 MAIK “Nauka/Interperiodica”



        

RELATION BETWEEN THE REAL STRUCTURE 95
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Fig. 1. Domain structure revealed by the etching method on the z-cut surface of an LiNbO3 single crystal: (a, b) pure (mode I) and
(c) iron-doped (mode III) lithium niobate. Here (and in Figs. 5–13), the photographs were taken in reflected light.
mine the main types of crystal defects from these pat-
terns.

The abilities of various alkalis, acids, salts, and their
combinations to etch LN crystals were studied in [6].
The most effective etchant for LN crystals is known to
be the mixture of hydrofluoric and nitric acids at a ratio
of 1 : 2 and temperature of about 110°C. In this case, it
is possible to obtain a well-defined domain LN struc-
ture and etching patterns. The etching of crystals in
fused potassium hydroxide at 360°C makes it possible
to reveal the domain structure at 150°C. The etching
temperature can be reduced by adding 35% solution of
sodium hydroxide [7].

In order to reveal the real structure of the surface of
pure LN crystals, various etchants were used. In the
first case (mode I), we used a primarily 40% NaOH
solution at room temperature and then a mixture of
nitric and hydrofluoric acids at a 2 : 1 ratio at 50°C with
the addition of KBr for 30 min. Such an etching mode
allowed us to reveal the LN structure at a lower temper-
ature. In the second case (mode II), we used an alkaline
etchant composed of 3% KOH solution with the addi-
tion of 30% hydrogen peroxide at a ratio of 1 : 2. The
etching time was 7–10 min. In the third case (mode III),
we used a mixture of nitric and hydrofluoric acids at a
ratio of 1 : 2 with the addition of iron trichloride. The
etching was carried out at 30°C for 40 min. It is worth
noting that the optimal composition of the etchant and
the etching mode were chosen depending on the pres-
ence of dopants and the Li/Nb ratio. We obtained high-
contrast etching patterns at temperatures much lower in
comparison with the conventional method; these pat-
terns allowed us to study both the domain and defect
structures of crystals [4, 8, 9]. In order to increase the
contrast and visualization, we studied the etching pat-
terns using a NEOPHOT-30 microscope.

Etching of the polar cuts of LN single crystals (both
the pure and metal-doped ones) revealed small individ-
ual antiparallel domains with irregular closed bound-
aries on the surface of the main domain (Fig. 1). These
domains range in size from 10 to 400 µm. The domains
within which etching patterns are visualized are posi-
tive; the smoother ones are negative [2]. On the surface
of negative domains, one can observe marks of damage
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      200
caused by mechanical polishing of samples. The
regions with such a domain structure correspond to the
optical inhomogeneity in the form of three-dimensional
figures with dark and light areas (Fig. 2).

Using etchant I, we revealed etching patterns within
the main domain in the form of regular triangles and
hexagons (or in forms close to these geometric figures).
The surface of etching figures in the matrix of a positive
domain was smooth, whereas numerous etch pits were
observed in the case of a negative domain. This fact
indicates that the etch pits are microdomains up to 5–20
µm in size (Fig. 3) [10]. The comparison of the results
of polarization-optical and etching studies showed that
these domains correspond to the optical inhomogeneity
in the form of light spots (Fig. 4).

On the surface of z-cut plates of pure LN, we found
inclined (with respect to the polar z axis) charged
domain walls (Fig. 5). As was noted in [8, 11, 12], these
walls give rise to the electric-field components normal
to the z axis. These patterns were obtained using alka-
line etchant (III).

It is noteworthy that the structure with domains of
regular geometric shape (having the symmetry of the
basic material) is only observed when the domain size
is smaller than a few millimeters (see above). At the
same time, the shape of larger domains is not defined
(Fig. 6).

0.1 mm

Fig. 2. Structure in the form of three-dimensional figures
(the center of the photograph) revealed by the polarization-
optical method on the z-cut surface of a lithium niobate
crystal.
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Fig. 3. Etching patterns revealed on the z-cut surface of a Zn-doped lithium niobate crystal in the form of regular (a) triangles and
(b, c) hexagons (mode I). The photographs were obtained in (a, c) transmitted and (b) reflected light.
Interestingly, the microdomains of regular shape
(Fig. 7) are located along the lines of low-angle misori-
entation. The distribution of microdomains within the
larger domains is similar to the classic distribution of
electric-field lines near protrusions on charged plates.
Figure 7b shows (on the right-hand side) irregular trihe-
dral etching pits, which were interpreted as related to
dislocations emerging to the surface at an angle to the
polar axis. Figure 8 shows ring-shaped domains
revealed on the z-cut surface of a pure LN crystal using
acid etchant (III).

In addition, round-shaped etching patterns that cor-
respond to complexes of point defects were found
(Fig. 9) on the surface of an LN plate. These geometric
figures are mildly sloping and have no well-defined
faces or vertices. Similar etching patterns were
observed for a number of crystalline compounds and
identified as substructures [4]. One can assume that
these etching patterns are associated with the presence
of dopants in LN. The comparison of the etching data
with the results of polarization-optical study suggests
that such etching patterns are observed in optically
homogeneous regions of LN crystals.

Figure 10 shows domains (about 10 µm in size)
located in the regions where the crystal was mechani-
cally damaged. In addition to the domains, dislocations
forming peculiar chains on the crystal surface are also
observed (Fig. 11). Since high internal stresses around

0.1 mm

Fig. 4. Structure in the form of bright spots revealed on the
z-cut surface of a Zn-doped lithium niobate crystal by the
polarization-optical method.
C

the dislocations result in a local increase of the crystal
energy, it is sometimes possible to reveal the ends of the
dislocation lines on the crystal surface using acid
etchants. In this case, well-defined etch pits arise at the
dislocation ends; the shape of these pits yields informa-
tion on the inclination of dislocations with respect to
the crystal surface.

Figure 12 shows nonsymmetrical etch pits, which
indicate that the dislocations emerge at an angle to the
(001) surface. Similar nets of dislocations were
observed in Ge [13], GaAs, and some other compounds
[4]. The attachment of domains to dislocations suggests
a relationship between the domain structure under con-
sideration and the dislocation structure. We also
obtained an interesting pattern of a cleavage of an
LiNbO3 + 0.1 at. % V crystal (z cut). As can be seen
from Fig. 13, the characteristic structure of the cleavage
is associated with the growth layers of the crystal. In
our opinion, the violation of the growth layers is caused
by a chain of dislocations.

In order to compare the results of the etching and the
polarization-optical studies, we investigated various
regions of the crystal (both containing optical inhomo-
geneities and sufficiently homogeneous). Optically
inhomogeneous regions correspond to either polydo-
main areas (in which domains are attached to disloca-
tions) or areas with a higher concentration of micro-
domains. The crystal regions that contained no domains
but, nevertheless, exhibited a weak extremal depen-
dence of the optical inhomogeneity on temperature cor-
responded to the etch structure indicating the presence
of a dislocation net (including dislocations emerging at
an angle to the crystal surface). In optically homoge-
neous regions, only etching patterns in the form of
irregularly shaped pits were observed (we attribute the
formation of these patterns to vacancy complexes and
other complexes of defects).

Thus, the optical inhomogeneity of LN crystals is
associated with their real structure, i.e., with the local
irregularities of the crystal structure. These irregulari-
ties are dislocations, complexes of charged defects, and
charged domain walls, which, as a rule, are also located
at defects of various kinds [8, 9]. The reason for the
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
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1 µm(c)1 µm3 µm (b)(a)

Fig. 5. Structures revealed on the z-cut surface of a lithium niobate crystal by the etching method (mode III).

5 µm(b)5 µm(a)

Fig. 6. Domain structure revealed by the etching method in
different areas on the z-cut surface of an LiNbO3 single
crystal (mode II).

5 µm 5 µm(b)(a)

Fig. 7. Structure revealed by the etching method on the z-cut
surface of an LiNbO3 single crystal (mode II).

5 µm

Fig. 8. Ring-shaped domains revealed by the etching
method (mode II) on the z-cut surface of an LiNbO3 single
crystal.

1 µm

Fig. 9. Round-shaped etching patterns revealed on the z-cut
surface of pure lithium niobate (mode II).
optical inhomogeneity is the local electrooptic effect,
i.e., the electric fields generated at these defects, which
have components normal to the polar axis. The disap-
pearance of the optical inhomogeneity at temperatures
higher than 150°C is due to the thermal activation of
charge carriers and the screening of these fields. This is
evidenced by the dependences of the thermal behavior
of the optical inhomogeneity on the composition of the
crystal and its prehistory and treatment [3].

At the same time, it should be admitted that similar
mechanisms should also manifest themselves in other
materials, including those isomorphic to LN. However,
such a behavior of the optical inhomogeneity is either
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 1      2004
10 µm

Fig. 10. Domain structure revealed by the etching method in
the region of mechanical damage (scratches) on the z-cut
surface of an LiNbO3 single crystal (mode II).
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not observed at all or only weakly pronounced (lithium
tantalate). We believe that the structure of LN crystals
plays an important role in the occurrence of the growth-
induced optical inhomogeneity.

5 µm(d)5 µm

10 µm 1 µm

(c)

(a) (b)

Fig. 11. Dislocations revealed by the etching method
(mode III) on the z-cut surface of (a, b) pure LiNbO3 and
(c, d) LiNbO3 + 0.1 at. % Fe.

1 µm

Fig. 12. Etching patterns revealed on the z-cut surface of
pure lithium niobate (mode II).

1 µm

Fig. 13. The structure revealed on the cleavage of an
LiNbO3 crystal doped with 0.1 at. % V (z cut).
C

The induced optical inhomogeneity was studied in
[14, 15] by nuclear magnetic resonance (NMR) using
93Nb nuclei. A spread of the parameters of the electric-
field gradient tensor was found at the sites where 93Nb
nuclei were located. This spread, only weakly related to
the presence of impurities, reflects the intrinsic proper-
ties of the LN structure and indicates the disorder in the
localization of Nb5+ ions and surrounding oxygen ions.
The random distortion of oxygen octahedra containing
Nb ions gives rise to a component of the unit dipole
moments of the lattice that is normal to the c axis. The
value and direction of this component changes ran-
domly in passing from one unit cell to another. Upon
averaging (summing over the total crystal volume), this
component vanishes. In order to experimentally verify
the models of the defect structure of LN single crystals,
the 7Li NMR study of extra samples was performed.
The latter were samples with different compositions
(RLi/Nb = 0.94–1.15 in melt), samples with congruent
composition, and samples doped with Fe (0.003–
0.6 mol %). It was found that the behavior and param-
eters of the experimentally observed NMR spectra can
only be explained under the assumption that the elec-
tric-field gradient is dynamically disordered at 7Li [16]
nuclei, which indicates active mobility of 7Li nuclei in
a LiO6 octahedron.

In view of the aforesaid, we can assume that a coor-
dinated displacement of niobium and lithium ions in the
bulk of oxygen octahedra occurs near the charged
defects (i.e., at the sites where the electric fields Ex, y
responsible for the growth-induced optical inhomoge-
neity are localized). Such a displacement will be
observed in local regions adjacent to defects of the
crystal structure. Obviously, the displacement direction
is different in different regions and, in turn, can give
rise to the electric-field components normal to the polar
axis. Thus, the occurrence of optical inhomogeneity
due to the electrooptic effect can, to a large extent, be
controlled by the coordinated displacement of niobium
ions located near defects of the crystal structure along
the directions normal to the z axis. In our opinion, this
approach explains the difference in the behavior of the
optical inhomogeneity in LN and materials isomorphic
to this compound.
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