
  

Plasma Physics Reports, Vol. 31, No. 5, 2005, pp. 347–368. Translated from Fizika Plazmy, Vol. 31, No. 5, 2005, pp. 387–408.
Original Russian Text Copyright © 2005 by Mikhailovskii, Shirokov, Konovalov, Tsypin.

            

TOKAMAKS

                           
An Analytic Approach to Developing Transport 
Threshold Models of Neoclassical Tearing Modes in Tokamaks

A. B. Mikhailovskii1, 2, M. S. Shirokov1, 3, S. V. Konovalov1, 4, and V. S. Tsypin5

1Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
2Moscow Institute of Physics and Technology, Institutskiœ pr. 9, Dolgoprudnyœ, Moscow oblast, 141700 Russia

3Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409 Russia
4Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Ibaraki 3111-0193, Japan

5Institute of Physics, University of São Paulo, Rua do Matão, Travessa R, 187, 05508–900, São Paulo, Brazil
Received February 25, 2004

Abstract—Transport threshold models of neoclassical tearing modes in tokamaks are investigated analytically.
An analysis is made of the competition between strong transverse heat transport, on the one hand, and longitu-
dinal heat transport, longitudinal heat convection, longitudinal inertial transport, and rotational transport, on the
other hand, which leads to the establishment of the perturbed temperature profile in magnetic islands. It is
shown that, in all these cases, the temperature profile can be found analytically by using rigorous solutions to
the heat conduction equation in the near and far regions of a chain of magnetic islands and then by matching
these solutions. Analytic expressions for the temperature profile are used to calculate the contribution of the
bootstrap current to the generalized Rutherford equation for the island width evolution with the aim of con-
structing particular transport threshold models of neoclassical tearing modes. Four transport threshold models,
differing in the underlying competing mechanisms, are analyzed: collisional, convective, inertial, and rotational
models. The collisional model constructed analytically is shown to coincide exactly with that calculated numer-
ically; the reason is that the analytical temperature profile turns out to be the same as the numerical profile. The
results obtained can be useful in developing the next generation of general threshold models. The first steps
toward such models have already been made. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION AND GENERAL 
OVERVIEW OF THE PROBLEM

Transport threshold models of neoclassical tearing
modes (NTMs) [1–11] are an important object of mod-
ern investigations of the MHD phenomena that restrict
the plasma pressure in tokamaks. These investigations
include an analysis of the effect of anomalous trans-
verse plasma transport on the excitation of NTMs by
the bootstrap current (the so-called bootstrap drive).
The transport of the even moments of the particle veloc-
ity distribution functions (i.e., the plasma density and
the electron and ion temperatures) and the transport of
the odd moments (such as the longitudinal plasma
momentum) both can be anomalous. In the first case,
we are dealing with anomalous transverse diffusion and
anomalous transverse heat conduction by electrons and
ions, and, in the second case, with anomalous trans-
verse plasma viscosity. Accordingly, investigations of
transport threshold models of NTMs go in two direc-
tions. The first is centered on the weakening of the
bootstrap drive (compared to that predicted for rela-
tively low transport [12, 13]) at a sufficiently rapid
transverse diffusion or sufficiently high heat conduc-
tion [1–7, 10, 11]. The second is concerned with a mod-
ification of the bootstrap drive at a sufficiently high
transverse plasma viscosity [8, 9].
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The present study follows mainly the first of the
above two trends. We investigate a number of effects
that compete with transverse heat transport, leading to
the establishment of one or another profile of the per-
turbed temperatures of the electrons and ions, and
determine the bootstrap drive corresponding to these
profiles. In the above formulation of the problem, the
weakening of the bootstrap drive at a high transverse
transport can be regarded as a consequence of the fact
that such a transport rules out the possibility of the for-
mation of flattened temperature profiles within the sep-
aratrix of a magnetic island that correspond to the max-
imal level of the bootstrap drive. Flattened profiles do
not form when the magnetic island width W is less than
a certain critical width Wc, which is determined by the
competition mentioned above, i.e., by the estimation
condition W < Wc.

In the original paper on the subject [1], the bootstrap
drive was assumed to be governed by the electron
plasma component. This assumption is reasonable for a
plasma in which the electron temperature is much
higher than the ion temperature (i.e., for a plasma with
hot electrons). Fitzpatrick [1] considered the competi-
tion between the transverse and the longitudinal heat
conduction by electrons in terms of the Braginskii col-
lisional hydrodynamics [14]. The transport threshold
model of NTMs that takes into account only this com-
© 2005 Pleiades Publishing, Inc.
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peting process (mechanism) can be called the Fitz-
patrick model, or the standard electron transport model,
or, for simplicity, the collisional model. This model
yields the following functional dependence for the crit-
ical island width :

(1.1)

where χ⊥ e and χ||e are the transverse and longitudinal
electron thermal conductivities and the subscript Te is
added to Wc to emphasize that a study is made of the
processes that govern the perturbed electron tempera-
ture.

Fitzpatrick [1] also pointed out that the assumption
about the collisional nature of the longitudinal heat
conduction fails to hold when the electron temperature
is not too low because, in this case, the mean free path
of the electrons exceeds the shear length Ls: vTe/Lsνe >
1, where vTe is the electron thermal velocity and νe is
the electron collision frequency. According to [1], the
transverse electron heat conduction in such circum-
stances should compete with the so-called longitudinal
collisionless electron convection rather than with the
longitudinal heat conduction. The idea set forth in [1]
was then taken up by the investigators who carried out
experiments on the COMPASS-D tokamak [3] (see also
[15]). The result was a transport threshold model of
NTMs that can be called the Fitzpatrick–Gates model,
or the electron convective transport model, or, for sim-
plicity, the convective model. In this model, the critical
island width Wc is given by a functional dependence of
the form

(1.2)

The original views about the longitudinal collisionless
convection effect were merely intuitive [1, 3, 15].
A kinetic description of this effect was developed in our
study [7]. In a more recent paper [10], it was explained
that, in order to give a hydrodynamic description of the
longitudinal collisionless convection, it is necessary to
take into account the longitudinal collisionless heat flux
(see Section 2 for details). To do so, the plasma should
be described not by the Braginskii hydrodynamics [14]
but by a more general approach such as, for example,
the Grad hydrodynamics (for a discussion of this issue,
see [10]).

The Fitzpatrick and Fitzpatrick–Gates models can
be referred to as single-channel models in the sense that
it is only the electron temperature gradient that is
assumed to contribute to the bootstrap drive. A more
general formulation of the problem requires the use of
three-channel models in which the bootstrap drive is
assumed to be governed not only by the electron and
ion temperature gradients but also by the plasma den-
sity gradient. The first step in this direction was taken
by Gorelenkov et al. [2]. In this context, it is also
important to mention a paper by Sauter et al. [4], who

Wc Te,

Wc Te, χ⊥ e/χ||e( )1/4
,∼

Wc Te, χ⊥ e
1/3

.∼
showed that the quantity ∆bs, which characterizes the
bootstrap drive, should have the following structure:

(1.3)

Here, A indicates the Ath channel and

(1.4)

where abs, A are certain numerical coefficients and Wd, A
are certain effective critical island widths, which coin-
cide with the critical widths Wc, A to within numerical
factors (see expressions (1.1), (1.2)). In formula (1.3),
the summation over A indicates that the bootstrap drive
can be governed by the following three types of anom-
alous transport: anomalous transverse diffusion (A =
ne), anomalous transverse heat conduction by the elec-
trons (A = Te), and that by the ions (A = Ti).

Turning again to the Fitzpatrick and Fitzpatrick–
Gates models, we can say that these are single-mecha-
nism models in the sense that they account for only one
of the competing processes (mechanisms) whereby the
perturbed temperature profile is established. This is
why, generally speaking, they should be treated as par-
ticular cases (fragments) of more complicated single-
channel models.

Later, the Fitzpatrick model [1] began to be incorpo-
rated into more general (i.e., generalized) models [4,
16] in which the effects of the polarization current [17–
19] and of the magnetic well (the Glasser–Greene–
Johnson effect) [20] were accounted for as a channel
characterizing the entire plasma, i.e., as a certain gen-
eral plasma channel.

The Fitzpatrick model [1] described above was used
both to interpret experimental data and for prediction
purposes in many papers (see, e.g., [16, 21–24]). This
model served as a starting point for constructing more
complex threshold models, which take into account the
influence of the transverse transport on the magnetic
well effect [25, 26] as well as the effective increase in
the transverse heat conductivity due to external helical
fields [6].

It is obvious that the general application of the Fitz-
patrick model in plasma theory could be regarded, to
some extent, as justified if the role of the general
plasma channel were played by the electron heat con-
duction. In many studies, including those oriented
toward applications of the theory to ASDEX-U [23] and
DIII-D [24] experiments, it was assumed, however, that
the ion temperature is as important as the electron tem-
perature. This is why, in those two papers, it was actu-
ally assumed that two-channel processes can be
described in terms of single-channel processes by using

∆bs ∆bs A, .
A ne Te Ti, ,=

∑=

∆bs A, abs A,
W

W
2

Wd A,
2

+
-------------------------,∼
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the following expression for ∆bs (cf. expressions (1.3),
(1.4)):

(1.5)

In other words, it was in fact assumed that, instead of
expressions of the form (cf. expression (1.1))

(1.6)

where A = (e, i), it is possible to use expressions such as

(1.7)

where χ⊥  and χ|| are the transverse and longitudinal
plasma thermal conductivities introduced by the rela-
tionships χ⊥  = max(χ⊥ e, χ⊥ i) and χ|| = max(χ||e, χ||i). As
a rule, however, we have max(χ⊥ e, χ⊥ i) = χ⊥ i and
max(χ||e, χ||i) = χ||e. Consequently, formula (1.7) means
actually that

(1.8)

Formula (1.8) can be considered valid provided that the
electron–ion heat exchange is sufficiently intensive. In
this case, it is possible to describe the plasma in the
one-temperature (common-temperature) approxima-
tion and to obtain a unified heat conduction equation by
adding the electron and ion heat conduction equations.
Under experimental conditions, the electron–ion heat
exchange is slow, however. This is why the existing
general plasma models cannot be considered quite ade-
quate.

The above three-channel models, in which the quan-
tity ∆bs is given by the expressions like formulas (1.3)
or (1.4), are not among the most general transport
threshold models. The reason is that the basic expres-
sion for the perturbed bootstrap current is, on the one
hand, determined by the longitudinal electron viscosity
(see [9] for details) but, on the other hand, it is reduced
to the sum of the contributions from the electron and
ion temperature gradients and plasma density gradient
only when the transverse ion viscosity is ignored. For a
finite (nonzero) transverse ion viscosity, an additional
family of more general transport models comes to light,
which can be called four-channel models (see below for
details) and which were discussed in our earlier papers
[8, 9]. In this case, the role of the fourth channel is
played by the so-called E-channel, which characterizes
the contribution of the perturbed electric field of the
island to the bootstrap drive.

In [1–3], the islands were considered to be nonrotat-
ing, ω = 0, where ω is the island rotation frequency. The
investigation of transport threshold models of rotating
NTMs (ω ≠ 0) was begun in our paper [7], in which we
identified transverse transport with the transverse heat
conduction. In that paper, we did not address the ques-
tion of whether the heat conduction is electronic or
whether it is ionic, but when we analyzed the physical

∆bs abs
W

W
2

Wd
2

+
---------------------.∼

Wc A, χ⊥ A, /χ|| A,( )1/4
,∼

Wc χ⊥ /χ||( )1/4
,∼

Wc χ⊥ i/χ||e( )1/4
.∼
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consequences following from the model developed
there, we pointed out that the heat conduction is ionic.
We assumed that the process competing with transverse
transport is “rotational” heat transport, described by the
term with the time derivative in the heat conduction
equation. The corresponding model was called the rota-
tional transport threshold model. In this model, the
functional dependence of Wc has the form

(1.9)

It was then explained [11] that the model developed
in [7] refers to the so-called supersonic NTMs, i.e., to
the modes that rotate at frequencies ω higher than the
characteristic frequency ωs = csk||eff of acoustic waves,
ω > ωs, where cs is the speed of sound and k||eff is the
characteristic (effective) wavenumber. Accordingly, it
was suggested in [11] to call the rotational transport
model of [7] the supersonic transport threshold model.
In what follows, we will also call it the rotational
model, for simplicity. At lower island rotation frequen-
cies, ω < ωs, the dominant effect that competes with
transverse transport is heat transport described by the
term with the longitudinal gradient of the longitudinal
plasma velocity V|| in the heat conduction equation.
This gave rise to an additional type of transport thresh-
old models of NTMs; in [11], these were called sub-
sonic transport threshold models. In turn, the equation
of longitudinal plasma motion implies that the longitu-
dinal plasma velocity V|| is determined by the balance
between the longitudinal plasma inertia and longitudi-
nal plasma pressure gradient. Therefore, for ω < ωs, the
problem about the weakening of the bootstrap current
should be treated with allowance for the longitudinal
plasma inertia (see Section 2 for details). This is why
the subsonic model can be called the inertial threshold
model. For simplicity, we will also call it the inertial
model. According to [11], this model gives the follow-
ing functional dependence:

(1.10)

The calculation procedure carried out in terms of
each of the above transport threshold models is as fol-
lows. First, the plasma temperature perturbed by the
electromagnetic field of a magnetic island is deter-
mined from one or another version of the heat conduc-
tion equation. Second, some relationships or other that
relate the bootstrap current to the temperature gradient
are used to calculate the perturbed bootstrap current
(see below for details). Third, the bootstrap drive is cal-
culated by integrating the perturbed bootstrap current
over space. Hence, the second and third steps of the cal-
culation procedure are the same in all the models. In
this sense, the models differ only in the expressions for
the perturbed temperature of the electrons or ions.

Generally speaking, the heat conduction equations
can be solved numerically or analytically. The latter is
possible only when they are “solvable.” One of the

Wc χ⊥ /ω( )1/2
.∼

Wc ωχ⊥( )1/4
.∼
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main objectives of our study is to investigate the prob-
lem of the solvability of the equations. One of the main
results of these investigations is that, in all four models
under analysis, the corresponding heat conduction
equations turn out to be solvable. (For the rotational
model, this was shown earlier in [7].) Based on this
remarkable fact, we find analytic solutions for each of
the four models, thereby making the first step of the
above calculation procedure.

Let us explain in more detail what is meant here by
solvability. We carry out the calculations under the sim-
plifying assumption Wc @ W. In our problem, we deal
with two physically different spatial regions, namely,
the near and far regions, which are characterized by
spatial scales on the order of Wc and W, respectively.
The above effects compete in the far region, which is
thus more difficult to describe mathematically. Solv-
ability implies that, in this region, all versions of the
heat conduction equation that will be considered below
have rigorous analytic solutions. As for the near region,
the heat conduction equations in it are fairly simple and
can be solved by standard methods. The complete solu-
tion to one heat conduction equation or another is
obtained by matching the solutions for the far and near
regions.

Originally, the heat conduction equation in the col-
lisional model was solved numerically by Fitzpatrick
[1]. In [7], we found a model (approximate) analytic
solution to this equation. The model analytic solutions
to the heat conduction equation were also derived in
terms of the convective model (in [7, 10]) and the iner-
tial model (in [11]). Hence, using the results that will be
obtained below, we can compare the model and rigor-
ous expressions for the perturbed temperature as well
as the relevant expressions for the bootstrap drive that
correspond to the above transport models. Such a com-
parison is one of the objectives of our study. It turns out
that the rigorous and model results differ only quantita-
tively but not qualitatively. Consequently, in applying
transport threshold models to interpret the experimental
data, to predict the behavior of NTMs in the next gen-
eration of tokamaks, or to test numerical codes, it is
necessary to use rigorous relationships. On the other
hand, for a theoretical analysis of the various aspects of
the physics of magnetic islands, it is preferable to uti-
lize the simpler (model) relationships.

In our analysis, anomalous diffusion is ignored. We
calculate the island width Wd in each of the above four
models without identifying it with  or with ,
i.e., without addressing the question of whether the
bootstrap drive mechanism (channel) is electronic or
ionic. The corresponding identification is made in the
next step of our calculations (i.e., in finding the boot-
strap current).

Considering the results of [11], it is clear that the
subsonic model should bear on the ion channel. This is
largely true for the rotational model, although it may
well refer to the electron channel. As for the convective

Wd Te, Wd Ti,
model, it should bear primarily on the electron channel.
The question of whether this model should involve the
ion channel has not yet been considered.

The question of which of the above channels should
play the dominant role in the collisional model still
remains unclear. Recall that, in Fitzpatrick’s original
analysis [1], this model was assumed to include the
electron channel. In this case, however, in accordance
with what was said above, the collisional model is
unable to compete in reliability with the convective
model [1, 3]. This was taken into account in interpret-
ing experimental data on the NTMs in a plasma with
hot electrons [3, 15, 27, 28]. In [11], the question was
discussed of whether the collisional model can be
applied to describe the ion mechanism for bootstrap
drive at ω ≠ 0. As was mentioned in that paper, in this
case, it is important to evaluate the relative importance
of the collisional and inertial models. According to
[11], the inertial model is more realistic than the colli-
sional one provided that the inertial transport predomi-
nates over the transport due to longitudinal heat con-
duction. The corresponding condition has the form

(1.11)

On the other hand, according to [11], the following esti-
mate is valid for finite ω values:

(1.12)

where νi eff is the effective ion collision frequency. Esti-
mate (1.12) implies that, in collisional hydrodynamics
(νi eff > |ω|), condition (1.11) is satisfied. This indicates
that the collisional model fails to describe the ion chan-
nel for bootstrap drive.

Hence, the collisional model is inapplicable to the
ion mechanism for bootstrap drive of the NTMs and is
unlikely to be applicable to the electron channel (mech-
anism). Nevertheless, it is important to analyze this
model for at least the following two reasons. First, of all
the models in question, this is the only model that has
been analyzed numerically and thus the only one
against which the analytical results can be tested, so it
can be used, to a certain extent, as a reference model.
Second, most of the present-day studies on transport
models deal precisely with this model. Consequently, it
seems inexpedient to ignore the collisional model at the
present stage of research on the subject.

In [11], the conditions to which the inertial and rota-
tional models are applicable were also determined, tak-
ing into account that the minimal width of a magnetic
island, Wmin, is on the order of the width ρb . ρq/e1/2 of
an ion banana orbit, Wmin . ρb (where ρ is the ion gyro-
radius, q is the safety factor, and e is the inverse aspect
ratio), as well as that the characteristic value of the
island rotation frequency is the drift frequency ω∗ . In

χ||i cs
2
/ω.<

χ||i . 
cs

2

ν i eff ω+
----------------------,
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[11], it was shown that the subsonic model for describ-
ing the NTMs should be applicable under the condition

(1.13)

and that the applicability condition for the supersonic
model is

(1.14)

Hence, our main objective here is to derive expres-
sions for the perturbed temperature profiles that are
established as a result of the mechanisms outlined
above, namely, collisional, convective, inertial, and
rotational mechanisms. Having obtained these expres-
sions, we find the corresponding expressions for the
perturbed bootstrap current, calculate the bootstrap
drive, and finally construct the relevant transport
threshold models of the NTMs.

Recall that, knowing the perturbed temperature pro-
file, we should determine the corresponding bootstrap
current, average it over the separatrix surface of the
magnetic island, and then calculate the bootstrap drive
due to this current. In [1], in which only the perturbed

electron temperature  was calculated, it was assumed

that the perturbed bootstrap current  can be found
from the relationship

(1.15)

It is well known that the functional relationships of
form (1.15) relating the bootstrap current to the temper-
ature gradient are valid in the problems in which the
equilibrium magnetic field geometry is characterized
by the only variable, namely, the radial coordinate x; in

this case, we have  = (x) and  = (x). We are,
however, interested in the magnetic island geometry,
which involves two variables: the magnetic flux func-
tion of the magnetic island, ψ, and the cyclic variable of
the island, ξ. A methodologically important question
thus arises of whether quasi-one-dimensional formulas
like (1.15) can be used in the theory of magnetic
islands. This question, too, is to be discussed below. We
will show that such quasi-one-dimensional formulas
also apply to two-dimensional problems about mag-
netic islands.

Formula (1.15) raises the question of whether its
right-hand side should actually contain the numerical
coefficient 1.46. The reason is that the product of this
coefficient times e1/2 is the fraction of trapped particles.
Following [29], Fitzpatrick [1] described the bootstrap
current by the expression containing the same coeffi-
cient. He thereby assumed that the fraction of trapped
particles is the only numerical factor that characterizes
the bootstrap current expressed in terms of the temper-
ature gradient. However, in [30], in accordance with a
general analysis carried out in [31], it was pointed out
that the bootstrap current should be described by the

W /Wmin e
1/2–

,>

1 W /Wmin e
1/2–

.< <

T̂e

Ĵbs

Ĵbs
1.46e

1/2
cn0

Bθ
---------------------------

∂T̂e

∂x
--------.–=

Ĵbs Ĵbs T̂ T̂
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expression that also contains additional factors deter-
mined by a complicated dependence of the Coulomb
collision frequencies on the particle velocities. In this
case, the portion of the bootstrap current that is related

to the electron temperature gradient, , is described
not by expression (1.15) but by the relationship

(1.16)

Analogously, the ion portion of the perturbed bootstrap

current, , which is initiated by the perturbed ion

temperature , is equal to

(1.17)

With allowance for the plasma density perturbation ,

the total perturbed bootstrap current  is given by the
relationship (cf. [30])

(1.18)

The factors 0.40 and –0.17 in relationships (1.16)–
(1.18) can be called the partial factors associated with
the electron and ion temperatures, respectively, or sim-
ply the electron and ion partial factors.

It is important to stress that the ion partial factor is
small and negative. This indicates that, in contrast to the
electron temperature gradient, which leads to the boot-
strap drive of NTMs, the ion temperature gradient sta-
bilizes the NTMs to a certain extent. When the ion tem-
perature does not exceed the electron temperature, such
stabilization is insignificant, but it can be substantial if
the ion temperature is much higher than the electron
temperature.

Note also that, in [8, 10, 11], the following one-fluid
formula was used instead of formulas (1.16)–(1.18):

(1.19)

where by  was meant the perturbed plasma tempera-
ture. In this respect, the analysis carried out below
refines the results of those three papers both quantita-
tively (including the values of the corresponding partial
factors) and qualitatively (in particular, this concerns
the stabilizing role of the ion temperature gradient).

Above, we were dealing with the effects caused by
the anomalous transverse heat transport. According to
[8, 9], however, the bootstrap drive is also substan-
tially affected by the anomalous transverse ion viscos-
ity. In order to give insight into the mechanism by

Ĵbs
e

Ĵbs
e

0.40– 2.46
e

1/2
cn0

Bθ
----------------

∂T̂e

∂x
--------.×=

Ĵbs
i

T̂ i

Ĵbs
i

0.17 2.46
e

1/2
cn0

Bθ
----------------

∂T̂ i

∂x
--------.×=

n̂

Ĵbs

Ĵbs 2.46
e

1/2
c

Bθ
----------–=

× T0e T0i+( )∂n̂
∂x
------ 0.40n0

∂T̂e

∂x
-------- 0.17n0

∂T̂ i

∂x
--------–+ .

Ĵbs
e

1/2
cn0

Bθ
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∂x
------,–=

T̂
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which the transverse ion viscosity influences the boot-
strap current, note in advance that, according to [9],
formula (1.18) can be regarded as a consequence of a

certain, more general, expression for , specifically,

(1.20)

where  is the perturbed longitudinal ion velocity

and  is the radial component of the perturbed electric

field. The expression for  is found from the equation
of longitudinal ion motion, which, however, contains
the transverse viscosity coefficient. When this viscosity
is ignored, the expression in question has the form

(1.21)

Substituting expression (1.21) into expression (1.20)
yields relationship (1.18). On the other hand, when the
transverse ion viscosity is taken into account, we have

 ≠ ; as a result, relationship (1.18) fails to hold
in this case. The expression for the bootstrap current
that accounts for both the anomalous transverse heat
transport and anomalous transverse ion viscosity will
be considered below.

Our paper is organized as follows. In Section 2, we
present the general formulas that characterize the
geometry of the magnetic islands and that are required
for further analysis. We also write out the plasmody-
namic equations that are used to derive the basic equa-
tions for the perturbed temperature. In Section 3, we
convert these basic equations to a form convenient for
their analysis. In Section 4, we find rigorous solutions
to these equations in the far region. In Section 5, we
solve these equations in the near region. Using the pro-
cedure for matching the rigorous solutions obtained for
the far and near regions, we then determine the integra-
tion constants and thereby accomplish the procedure
for finding complete rigorous solutions. In the Appen-
dix, we present the known model solutions and discuss
the degree to which they are rigorous.

In Section 6, the analytic expressions for the per-
turbed temperature profiles that were obtained in Sec-
tions 4 and 5 are used to calculate the bootstrap drive at
a strong transverse heat transport and to construct
expressions extrapolating the bootstrap drive to arbi-
trary values of the ratio between the island width W and
critical length Wc. In Section 7, some versions of the
transport threshold model for NTMs are developed
based on the results derived in Section 6. Section 8 is
aimed at explaining how the bootstrap drive is modified
by the anomalous transverse ion viscosity. In Section 9,
we discuss the results obtained and make final remarks.

Ĵbs

Ĵbs 2.46
e

1/2
c

Bθ
----------–=

× T0e
∂n̂
∂x
------ 0.40n0

∂T̂e
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 + + ,

Û ||i

Êx

Û ||i

Û ||i Û ||i
0( ) c

Bθ
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en0
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∂x
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0.17
e
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  .≡=

Û ||i Û ||i
0( )
2. PRELIMINARY FORMULAS

2.1. Relationships Characterizing
the Magnetic Island Geometry

We consider a chain of magnetic islands localized in
the vicinity of a certain rational (singular) magnetic
surface of radius r = rs (where r is the radial coordi-
nate). We describe the magnetic islands in terms of their
magnetic flux function ψ (see also Section 1) defined by
the relationship

(2.1)

Here, x = r – rs is the radial deviation from the rational
magnetic surface, B0 is the equilibrium magnetic field,
and the perturbation amplitude  associated with the
island width W is introduced by the relationship (see
Section 1)

(2.2)

The function ξ is the above cyclic variable of the island.
It is defined as

(2.3)

where m and n are the poloidal and toroidal wavenum-
bers, θ and ζ are the poloidal and toroidal angles, and
the island rotation frequency ω was introduced in Sec-
tion 1.

Along with the magnetic flux function ψ, we intro-
duce the dimensionless flux function Ω of a magnetic
island:

(2.4)

The range 1 < Ω < ∞ corresponds to the region outside
the separatrix surface of the island, and the range –1 <
Ω < 1 corresponds to the region inside the separatrix.

In terms of Ω, relationship (2.1) reads

(2.5)

In terms of the functions Ω and ξ, the radial deviation x
has the form

(2.6)

where σx =  = ±1. We also use the longitudinal
gradient operator ∇ || ≡ (b · —) and the squared trans-

verse gradient operator , where —⊥  = — – b∇ ||, with
b = B/B being a unit vector pointing along the total
magnetic field B. In terms of (Ω, ξ), we have

(2.7)

(2.8)

ψ ψ̃ ξcos x
2
B0/ 2Ls( ).–=

ψ̃

ψ̃ W
2
B0/ 16Ls( ).=

ξ mθ nζ– ωt,–=

Ω ψ/ψ̃.–=

Ω 8x
2
/W

2 ξ .cos–=

x σx2
3/2–

W Ω ξcos+( )1/2
,=

xsgn

—⊥
2

∇ || k || ∂/∂ξ( )Ω,=

—⊥
2 …( )

=  
32

W
2

------- Ω ξcos+( )1/2 ∂
∂Ω
------- Ω ξcos+( )1/2 ∂

∂Ω
------- …( ) .
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005



AN ANALYTIC APPROACH TO DEVELOPING TRANSPORT THRESHOLD MODELS 353
Here, the longitudinal wavenumber k|| (i.e., the longitu-
dinal component of the wave vector) is defined by the
relationship

(2.9)

where ky = m/rs is the poloidal component of the wave
vector.

2.2. Basic Time-Dependent Plasma Equations

2.2.1. Collisional mechanism. In collisional hydro-
dynamics [1], the plasma temperature T is assumed to
satisfy the heat conduction equation of the form [14]

(2.10)

Here, q is the heat flux defined by the relationship

(2.11)

where n0 is the plasma density and the longitudinal and
transverse thermal conductivities, χ|| and χ⊥ , were intro-
duced in Section 1. The quantities n0, χ||, and χ⊥  are
assumed to be coordinate-independent.

The total temperature is represented as

(2.12)

Here,  is the perturbed temperature and

(2.13)

where  ≡ (dT0/dr , with T0(r) being the equilib-
rium temperature. With representation (2.12), Eq. (2.10)
is transformed into

(2.14)

Here,

(2.15)

where Wcol is a certain characteristic island width that is
determined by the competition between the transverse
and longitudinal transport and is given by the expres-
sion (cf. expression (1.1))

(2.16)

The subscript “col” stands for “collisional,” which
means that we are working in collisional hydrodynam-
ics. Note also that the width Wcol so introduced coin-
cides the width Wc used in [1].

k ||
xky

Ls

--------–
σxWky

2
3/2
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---------------- Ω ξcos+( )1/2
,–≡=

— q⋅ 0.=

q n0 χ||b∇ || χ⊥ —⊥+( )T ,–=

T T
0( )

T̂ ,+=

T̂

T
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T0 rs( ) xT0' ,+=

T0' )r rs=
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-------

+
1

Ωcol
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--------- ∂
∂ξ
------ Ω ξcos+( )1/2∂T̂

∂ξ
------

σxWT0'

2
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----------------- ξcos–
 
 
 

0.=

Ωcol Wcol/W( )2
,=

Wcol 2
3/2 Ls
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ky
2χ||

------------
 
 
 

1/4

.=
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2.2.2. Convective mechanism. In the case of con-
vective mechanism [1, 3], we start with the hydrody-
namic equations that were derived in [10] for particles
of any of the species (i.e., for electrons or ions):

(2.17)

(2.18)

Here, q|| is the longitudinal heat flux associated with
this species of particles (for more detail, see [10]); p =
nT, n and T are their pressure, density, and temperature,
respectively; and M is the mass of a particle.

Instead of q||, we introduce the function X through
the relationship q|| = 3csn0X, where cs is the generalized
speed of sound of the corresponding particle species,
cs = [5T0/(3M)]1/2. Equations (2.17) and (2.18) are then
reduced to the form

(2.19)

(2.20)

Here, 

(2.21)

Wconv is a certain characteristic width determined by the
competition between the transverse transport and the
longitudinal convection and given by the expression
(cf. expression (1.2))

(2.22)

2.2.3. Inertial mechanism. In the case of inertial
mechanism, the plasma temperature is described not by
Eq. (2.10) but by the heat conduction equation (see [11]
for details)

(2.23)

Here, the function q⊥  is given by relationship (2.11)
with χ|| = 0; V|| is the longitudinal plasma velocity intro-
duced in Section 1; ρ0 = Min0 is the plasma mass den-
sity; Mi is the mass of an ion; and cis is the ion acoustic
speed, which is equal in order of magnitude to cis =
(T0/Mi)1/2.
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Equation (2.23) should be supplemented with the
equation of longitudinal plasma motion of the form

(2.24)

Here, the operator d0/dt is defined by the relationship

d0/dt = ∂/∂t + VE · —, where VE = c(E⊥  × B0)/  is drift
velocity in crossed fields and E⊥  = –—φ is the transverse
electric field, with φ being the electrostatic potential.

As in [7, 11], we use the zero longitudinal electric
field approximation, E · B = 0. In this approximation,
the longitudinal Ohm’s law yields

(2.25)

Here, h(ψ) is the electrostatic potential profile function,
which is defined by the relationship

(2.26)

where

(2.27)

(2.28)

with κ = [2/(Ω + 1)]1/2, K(κ) and E(κ) being complete
elliptic integrals of the first and second kinds, respec-
tively.

Using the above formulas, we convert the equation
of motion (2.24) to the form

(2.29)

Combining Eqs. (2.23) and (2.29) leads to the follow-
ing analogue of Eq. (2.14):

(2.30)

Here,

(2.31)

where Winert is a certain characteristic island width that
is determined by the competition between the trans-
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/W
2
,=
verse transport and the longitudinal plasma inertia and
is given by the expression (cf. expression (1.10))

(2.32)

This expression formally implies that Winert  ∞
as ω  ∞. For sufficiently high ω values, however, we
must switch from expression (2.32) for Winert to the
expression Wrot for that will be introduced below.

2.2.4. Rotational mechanism. According to [7], in
the case of supersonic (rotational) mechanism, the
plasma temperature is described not by Eqs. (2.10) and
(2.23) but by the heat conduction equation of the form

(2.33)

Accordingly, in place of Eqs. (2.14) and (2.30), we have
(see [7] for details)

(2.34)

Here,

(2.35)

where Wrot is a certain characteristic island width that is
determined by the competition between the transverse
transport and the rotation of the island and is given by
the expression (cf. expression (1.9))

(2.36)

This expression formally implies that Wrot  ∞ as
ω  0. For sufficiently low ω values, however, we
must switch from expression (2.36) for Wrot to expres-
sion (2.32) for Winert.

3. TRANSFORMATION OF THE EQUATIONS 
FOR THE PERTURBED TEMPERATURE

3.1. Collisional Mechanism

Turning to Eq. (2.14), we assume that the width Ωcol
is a large parameter, Ωcol @ 1. This assumption allows
us to distinguish between two characteristic regions of
the perturbation: the far region

(3.1)

and the near region

(3.2)
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In the far region, Eq. (2.14) is reduced to

(3.3)

where αcol = 1/Ωcol , Ccol = σxW /(25/2 ), and

(3.4)

We set

(3.5)

to cast Eq. (3.3) into the form

(3.6)

For u @ , this equation has the solution

(3.7)

It is thus natural to characterize the temperature pertur-
bation by introducing the dimensionless function y(u)
through the relationship

(3.8)

with which to transform Eq. (3.6) to

(3.9)

In accordance with solution (3.7) and relationship (3.8),

the function y(u) for u @  has the form

(3.10)

Equation (3.9) is the basic equation for calculating
the perturbed temperature profile in the Fitzpatrick
model [1].

3.2. Convective Mechanism

In this case, the far and near perturbation regions are
also introduced by relationships (3.1) and (3.2). In the
far region, Eqs. (2.19) and (2.20) are reduced to

(3.11)

(3.12)

where αconv = 24/3/Ωconv and Cconv = W/(21/2 ).

We now represent  in the form (3.5) and, in place
of X, introduce the function Xs(u) through the relation-
ship

(3.13)

Equations (3.11) and (3.12) then become

(3.14)

(3.15)
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We see that, for u @ , Eqs. (3.14) and (3.15)
have solution (3.7). Consequently, in this case, we can
again introduce the dimensionless function y(u)
through relationship (3.8). We can also pass over from
the function Xs to the dimensionless function κ(u) by
setting

(3.16)

As a result, Eqs. (3.14) and (3.15) are reduced to

(3.17)

(3.18)

These are the dimensionless equations for the per-
turbed temperature profile in the far region in the con-
vective transport threshold model of NTMs.

3.3. Inertial Mechanism

By analogy with Ωcol and Ωconv , we assume that the
parameter Ωi is large, Ωi @ 1, so we, as before, can
introduce the far and near regions of the perturbation. In
the far region, Ω @ 1, relationship (2.27) becomes

(3.19)

with which Eq. (2.30) simplifies to the equation (cf.
Eqs. (3.3), (3.11), (3.12))

(3.20)

where αi = 21/4π1/2/Ωi  and Ci = σxπ W/(4 ) (see
[11] for details).

Instead of formula (3.5), we set

(3.21)

so Eq. (3.20) splits into the equations (cf. Eqs. (3.14),
(3.15))

(3.22)

(3.23)

In the case of inertial mechanism, these two equations
play the same role as Eq. (3.6) in the case of collisional
mechanism and as Eqs. (3.14) and (3.15) in the case of
convective mechanism.

Taking into account that, for u @ , the solution
Tc(u) to Eqs. (3.22) and (3.23) is given by formula (3.7),
we introduced the function y(u) through equality (3.8)
and, by analogy with relationship (3.16), set

(3.24)
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Equations (3.22) and (3.23) are then transformed into
the equations

(3.25)

(3.26)

which are analogous to Eqs. (3.17) and (3.18).

3.4. Rotational Mechanism

By analogy with Ωcol, Ωconv, and Ωi , we assume that
the parameter Ωr is large, Ωr @ 1. Like in the other
models, we can introduce the far and near regions of the
perturbation. In the far region, Eq. (2.34) is reduced to
the form (cf. Eqs. (3.3), (3.11), (3.12), (3.20))

(3.27)

where αr = 27/2/(πΩr) and Cr = 2σxW /(πΩr).

When  is represented by formula (3.21), Eq. (3.27)
splits into the equations

(3.28)

(3.29)

Note that, for u @ , the solution Tc(u) is given by
formula (3.7). Consequently, we can introduce the
dimensionless functions y(u) and κ(u) in the same man-
ner as in the previous sections. In terms of these func-
tions, Eqs. (3.28) and (3.29) reduce to

(3.30)

(3.31)

These equations, which are analogous to Eqs. (3.17)
and (3.18), as well as to Eqs. (3.25) and (3.26), are the
basic equations for calculating the perturbed tempera-
ture in the rotational model.

4. RIGOROUS EXPRESSIONS 
FOR THE PERTURBED TEMPERATURE

IN THE FAR REGION

4.1. Collisional Mechanism

Homogeneous equation (3.9) (with zero on the
right-hand side) has solutions that are expressed in
terms of Bessel functions, so the rigorous solution to
the inhomogeneous equation can be obtained by the
method of variation of constants. As a result, we arrive
at the following expression for the function y(u):

(4.1)
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2 α rκ+ 0,=

d
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2 α ry– α r/u.–=

y u( ) λ col t( )/ 2Ωcol( )1/2
.=
Here,

(4.2)

t = u2/(2Ωcol), and I1/4(t) and K1/4(t) are Bessel functions
of imaginary arguments of the first and second kinds.

For u @ , Eq. (4.1) leads to expression (3.10),

while, for u ! , it yields

(4.3)

where Γ is the gamma function. A direct comparison of
the analytical asymptotic solution (4.3) with the numer-
ical asymptotic solution (34) from [1] shows that the
solutions coincide. The difference between the rigorous
asymptotic solution and model solution (A.2) is illus-
trated by formula (A.3) (see the Appendix).

4.2. Convective Mechanism

Following [10], in place of the real functions y(u)
and κ(u) in Eqs. (3.17) and (3.18), we introduce the
complex function Y(u) through the relationship

(4.4)

We sum up Eq. (3.17) and Eq. (3.18) multiplied by the
imaginary unit to obtain

(4.5)

By analogy with Eq. (3.9), homogeneous equa-
tion (4.5) has solutions that are expressed in terms of
Bessel functions. This allows us to find a rigorous solu-
tion to Eq. (4.5) that is analogous to solution (4.1). We
represent the sought solution in the form

(4.6)

where t = 21/2(1 + i) u3/2/3. In accordance with
relationship (4.4), the functions y(u) and κ(u) are given
by the relationships
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(4.8)
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From representation (4.6) we see that the function u

varies on a characteristic spatial scale equal to .

For u @ , the expression for the function y(u) that
follows from relationships (4.6) and (4.7) coincides
with that determined from Eq. (3.20), whereas the func-
tion κ(u) is as small as Ωconv/u2 in comparison to the

function y(u). In the opposite limit, u ! , relation-
ships (4.7) and (4.8) yield

(4.9)

(4.10)

These asymptotic solutions are rigorous versions of the
model asymptotic solutions that are considered in the
Appendix (see formula (A.5) and subsequent explana-
tions).

4.3. Inertial Mechanism

According to [11], Eqs. (3.25) and (3.26) with rela-
tionship (4.4) lead to the following equation for the
complex function Y:

(4.11)

By analogy with Eqs. (3.9) and (4.5), homogeneous
equation (4.11) has solutions that are expressed in
terms of Bessel functions. Applying the method of vari-
ation of constants and taking into account the corre-
sponding boundary conditions, we obtain the following
solution to Eq. (4.11):

(4.12)

where t = au2 and a = (1 – i)2–5/4π1/2/Ωi.

For u @ , solution (4.12) and relationships (4.7)
and (4.8) lead to expression (3.10) for y(u) and to the
function κ(u) that is as small as Ωi/u2 in comparison to

the function y(u). In the opposite limit, u ! , solu-
tion (4.12) becomes

(4.13)

Turning to relationships (4.7) and (4.8), we obtain from
expression (4.13) the solution

(4.14)
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An analogous model asymptotic solution y(u) is given
by formula (A.10).

4.4. Rotational Mechanism

In [7], two second-order differential equations (3.30)
and (3.31) were reduced to the single fourth-order dif-
ferential equation

(4.15)

The corresponding homogeneous equation has solu-
tions of the form of a plane wave. In [7], it was found
that the rigorous solution to Eq. (4.15) is given by for-
mula

(4.16)

where

(4.17)

(4.18)

The quantity z0 is a small parameter that plays the role
of the integration constant in the far region and should
be determined by matching solution (4.16) with the
solution dy/du obtained for the near region. Note also
that the right-hand side of equality (4.17) from [7],
which leads to solution (4.16) in the present paper, is
misprinted: its correct form should include the factor 4.

Combining Eqs. (3.30) and (3.31) and using defini-
tion (4.4), we arrive at the following second-order dif-
ferential equation for the complex function Y(u):

(4.19)

It is obvious that Eq. (4.19) also leads to expression (4.16)
for the function dy/du, thereby making it possible to
determine the function y(u) and, accordingly, the func-
tion κ(u).

In the region u @ , the expression for the func-
tion y(u) that follows from relationship (3.16) coincides
with expression (3.10), while the function κ(u) in this
region is as small as Ωr/u2 in comparison to y(u). The
asymptotic solutions y(u) and κ(u) coincide qualita-
tively with those predicted by the model that was con-
sidered in Section 4.3.

In the region u ! , the function y(u) turns out to
diverge logarithmically as z0  0. This is why, in
order to use formula (4.16) in this region, it is necessary
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know the parameter z0. This parameter will be calcu-
lated in Section 5.2.

5. TEMPERATURE PERTURBATION
IN THE NEAR REGION

5.1. Collisional, Convective, 
and Inertial Mechanisms

In the near region, Eq. (2.14), which characterizes
the collisional mechanism, reduces to

(5.1)

The solution to this equation can be represented as

(5.2)

where ccol is the integration constant.
For Ω @ 1, solution (5.2) becomes

(5.3)

The integration constant ccol is determined from the
requirement that, in the region Ω @ 1, the solutions for

the perturbed temperature  in the far and near regions
be coincident. Comparing formulas (3.5), (3.7), and

(4.3) for  with formula (5.3), we then find

(5.4)

Analogously, in order to derive an equation that is
analogous to Eq. (5.1) and describes the convective
mechanism in the near region, it is sufficient to take the
limit Ωconv  ∞ in Eqs. (2.19) and (2.20). In doing so,
instead of solution (5.2), we get

(5.5)

(5.6)

where  and  are integration constants. Match-
ing the solutions obtained for the far and near regions

yields the following expressions for  and  (cf.
expression (5.4)):

(5.7)

An analogous approximation can be used to
describe temperature perturbations in the near region in
terms of the inertial model. In this case, instead of using

representations (5.2), (5.5), and (5.6), we represent 
as

(5.8)

∂
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so, instead of expressions (5.4) and (5.7), the inertial
model gives

(5.9)

Analogous expressions for  and  can be
obtained by using model solution (A.9) in the far
region.

In the model description of the perturbed tempera-
ture profile in the far region, expressions (5.5), (5.7),

and (5.9) for the integration constants ccol , , and

 are replaced, respectively, by expressions (A.4),
(A.8), and (A.12).

5.2. Rotational Mechanism

5.2.1. Solution in the near region. According to
[7], the solution to Eq. (2.34) in the near region can be
represented as

(5.10)

where T (1) and T (2) are the sine and cosine components
of the temperature perturbation. For |Ω| . 1, the expres-
sions for T (1) and T (2) were obtained in [7].

In that paper, it was shown that, for Ω @ 1, the func-
tion T (2) satisfies the equation

(5.11)

where  and  are integration constants and the

parameters c(1) and c(2) are defined as

(5.12)

(5.13)

Following [7], we find

(5.14)

This expression follows from equality (4.17) of [7],
provided that it is corrected in the above way.
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5.2.2. Simplification of expression (4.16) for y(u)
in the limit z ! 1. We convert expression (4.17) to the
form

(5.15)

where

(5.16)

(5.17)

and C is Euler’s constant.
Expanding the right-hand side of equality (5.15) in

powers of z, we find

(5.18)

where
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(5.20)

(5.21)

Transforming Eq. (5.11) to Eq. (4.16) gives the fol-
lowing expression for the function τ(z) in the near
region:

(5.22)

where  = 2–3/2πΩr .
5.2.3. Matching of the solutions for the far and

near regions. Expressions (5.18) and (5.22) for the
function τ(z) should coincide with one another. We see
that, in these expressions, the terms with Ω lnΩ are the
same. The conditions for the Ω-independent terms, as
well as for those proportional to Ω1/2, to be the same

determine the integration constants  (see expres-
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ing the terms that are proportional to Ω, we arrive at the
relationship, which should be satisfied by the parame-
ter z0:

(5.23)

Substituting expressions (5.12) and (5.13) for the
parameters c(1) and c(2) into this relationship yields

(5.24)

Since  @ 1, this relationship can be reduced to the
following approximate form:

(5.25)

which can be satisfied only when z0 ! 1. For such z0
values, expression (5.21) simplifies to

(5.26)

Expressions (5.25) and (5.26) yield

(5.27)

which justifies the above assumption that the matching
parameter z0 is small.

6. CALCULATION OF THE CONTRIBUTION 
OF THE BOOTSTRAP CURRENT

TO THE GENERALIZED RUTHERFORD 
EQUATION FOR THE ISLAND WIDTH

6.1. Kinetic Approach to Calculating the Perturbed 
Bootstrap Current at a Strong Transverse

Heat Transport

The perturbed temperature  is related to the per-

turbation of the distribution function  of the corre-
sponding particle species by the familiar relationship

(6.1)

Here, the plus sign indicates the part of  that is even
in the longitudinal particle velocity v ||, F0 is the equilib-
rium distribution function, v  is the absolute value of the
particle velocity, and M is the mass of a particle. In
order to calculate the bootstrap current, however, it is

necessary to know the part of  that is odd in v || (i.e.,

). In this case, in accordance with [8], the basic

expression for the perturbed bootstrap current ,
averaged over the separatrix surface of the magnetic
island, has the form

(6.2)

τ2 Ωrln 2ln–+
3 2

11/2σx×

π2
WT0'

-------------------------c
1( )

c
2( )Ωr

2
.=

τ2 3 Ωr/2( ).ln–=

Ωr

τ2 2 W rot/W( ),ln–=

τ2 z0.ln=

z0 . W /W rot( )2
,

T̂

f̂

f̂ +
Mv

2

2T0
----------- 3

2
---– 

  T̂
T0
-----F0.=

f̂

f̂

f –
ˆ

Jbs

Jbs J ||
α
.

α e i,=

∑=



360 MIKHAILOVSKII et al.
Here,

(6.3)

the index α stands for the particle species, the symbol
〈…〉  indicates averaging over the separatrix surface of
the island, and the symbol 〈…〉θ denotes averaging over
equilibrium poloidal oscillations. The index for the par-

ticle species in the function  is omitted for simplicity.

According to [8, 30], the functions  and  are
related by the formula

(6.4)

Here,

(6.5)

σv = , h' ≡ dh/dψ, and the function  ≡ (v , ψ)
satisfies the kinetic equation

(6.6)

where C is the collision integral.

Based on the analysis carried out in the previous

sections, we represent the perturbed temperature  as

(6.7)

where the constants c (c) differ between the transport

models; i.e., we have c (c) =  with j = (col, conv, inert,
rot).

In place of , we introduce the dimensionless
coefficients µ j through the relationships

(6.8)

which yield

(6.9)

In terms of the coefficients µj, relationship (6.1) reads
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We substitute this relationship into expression (6.5) to
obtain

(6.11)

where ω∗ T = kyc /(eB) is the diamagnetic drift fre-
quency in terms of the temperature gradient. The differ-
ence between expression (6.11) and an analogous
expression for the case of weak transverse transport
[30] consists in the replacement

  (6.12)

where hR is the Rutherford profile function. This is why
the results from calculating the bootstrap current in [30]
can be used here, provided that they are corrected for
this replacement. Thus, using formula (5.47) from [30],
we obtain

(6.13)

where
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According to [30], the parameter ∆bs, which charac-

terizes the bootstrap drive, is related to  by the rela-
tionship

(6.16)

Inserting formulas (6.13)–(6.15) into this relationship
leads to the following expression for ∆bs, which is anal-
ogous to expression (5.51) from [30]:

(6.17)

Here,

(6.18)

(6.19)

where

(6.20)

ĝ–
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with

(6.21)

κ = [2/(Ω + 1)]1/2, and k = [(Ω + 1)/2]1/2. The quantity

 is an analogue of the quantity cbs = 0.79 in the case
of weak transverse transport. We take the integral over
Ω in expression (6.20) to obtain

(6.22)

As a result, we arrive at the following expressions
for ∆bs:

(6.23)

(6.24)

Expressions (6.23) and (6.24) for  and  can
also be derived, on the one hand, from formulas like
(1.15) by choosing the corresponding coefficients on
their right-hand sides and, on the other hand, from rela-
tionship (6.16), in which the perturbed bootstrap cur-

rent  is replaced with the quantities ,  given
by the formulas

(6.25)
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where the integration constants on the right-hand side
are defined by expressions (5.4), (5.7), (5.9), and
(5.14).

6.2. Extrapolation Formulas for ∆bs 
at Arbitrary Transverse Heat Transport

Following [30], we consider the case of weak
transverse heat transport, in which, instead of expres-
sions (6.23) and (6.24), we have

(6.27)

where α = (e, i) and the numbers in parentheses refer to
the electrons and ions, respectively. Pursuing the idea
that was set forth in [1], we can use expressions (6.23),
(6.24), and (6.27) to construct extrapolation formulas
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for the parameters  at arbitrary transverse heat
transport:

(6.28)

(6.29)

where

(6.30)

Quantities (6.30) represent the effective critical island
width corresponding to the jth competing mechanism.
These widths are given by the equalities

(6.31)

The ratio between Wd, col and Wcol , which is determined
by the first of equalities (6.31), was originally found by
Fitzpatrick [1].

6.3. Bootstrap Drive for Model Perturbed 
Temperature Profiles

We now analyze the difference between the quanti-

ties  given by expressions (6.23) and (6.24) and
those following from the model solutions for the per-
turbed temperature profile that are presented in the
Appendix. By the superscript here is meant j = (col,
conv, inert) because, for j = rot, the model solution has
not yet been obtained.

We begin the analysis by making redefinitions in
relationships (6.25). Specifically, in place of the param-
eters cj, we introduce the quantities

(6.32)

which are assumed to be given by formulas (A.4), (A.8),
and (A.12). As a result, instead of expressions (6.23)
and (6.24), we arrive at

(6.33)
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Analogously, instead of extrapolation formulas (6.28)

and (6.29) for  at arbitrary transverse heat trans-
port, we now have

(6.35)

(6.36)

where

(6.37)

Of course, the coefficients in equalities (6.37) differ
from those in equalities (6.31). The difference is seen to
be not too large, however.

7. SOME VERSIONS OF TRANSPORT 
THRESHOLD MODELS

In using the parameter ∆bs, which characterizes the
bootstrap drive (see the above discussion), the equation
for the island width (the generalized Rutherford equa-
tion) is written as [19]

(7.1)

Here, ∆' is the standard parameter in the theory of tear-
ing modes; the ellipsis points denote the contributions
from the polarization current, the magnetic well, the
ECR-driven current, and (possibly) from some other
effects; and the symbol ~ indicates an equality in which
a certain positive factor is omitted.

7.1. Electron Convective Transport Model

Taking into account the results obtained in [10], and
those derived in Section 6, we can show that, in the
electron convective transport model (the Fitzpatrick–
Gates model), the evolution of the magnetic island
width is described by the equation

(7.2)

where τs is the resistive diffusion time and the parame-
ter Cbs, e, which characterizes the electron channel
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(mechanism) for the bootstrap drive of NTMs, is given
by the relationship

(7.3)

In deriving Eq. (7.2) from Eq. (7.1), we have omitted
the ellipses that indicate the contributions from the
polarization current and other effects mentioned above.
This will also be done in further analysis, for simplicity.

In [10], the island width Wd, conv, e was calculated by
using a model expression for cconv; i.e., it was assumed
that cconv = (cconv)model, where (cconv)model is given by
expression (A.8). In this case, we have

(7.4)

In analogy with [10], the right-hand side of this rela-
tionship has the form (cf. equalities (6.37))

(7.5)

which is a refinement to the corresponding result of
[10]. If, instead of (cconv)model, we use the rigorous
expression for cconv (see the first of equalities (3.7)),
then, instead of expression (7.5), we arrive at the fol-
lowing rigorous expression for Wd, conv, e (cf. equali-
ties (6.31)):

(7.6)

Hence, the value of Wd, conv, e given by rigorous expres-
sion (7.6) is somewhat smaller than the value of
(Wd, conv, e)model given by model expression (7.5). In
analogy with [10], we compare the island width

Wd, conv, e to the width  (where the superscript G
stands for Gates), given by the expression

(7.7)

which was constructed in [3] (see also [15]) on an intu-
itive basis and by subsequently fitting the theoretical
results to the experimental observations. With allow-
ance for expression (7.5), this comparison yields

(7.8)

The inequality (Wd, conv, e)model <  was discussed
in [10], where it was noted that this inequality should be
regarded as being consistent with the experimental con-
ditions. The reason is that, in [10], the contribution of
the polarization current was ignored. In [19], it was
shown, however, that, in a plasma with hot electrons (as
was indeed the case in the experiments of [3]), this con-
tribution is destabilizing. It is assumed that the island
rotation frequency is high in comparison to the diamag-
netic drift frequency (see [19] for details). Conse-
quently, the two inequality signs in relationships (7.8)
should be interpreted as indicating that, in the rigorous
formulation of the problem, the polarization current
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plays a more important role than in model calculations
of the island width Wd, conv, e.

One of the parameters that were measured in exper-
iments is the minimum island width Wmin correspond-
ing to the threshold for exciting the NTMs. The expres-
sion for Wminthat was obtained experimentally in [3]
can be represented as

(7.9)

Here,

(7.10)

where a1 = 4 × 0.40 × 2.46 × 1.58, βp is the poloidal
beta, and Lq is the shear length. In the model approach
at hand, Eq. (7.2) and expression (7.5) yield

(7.11)

whereas, in the rigorous approach, Eq. (7.2) and
expression (7.6) give

(7.12)

We can see that the rigorous value of Wmin differs from

 to a greater extent than from (Wmin)model.

The main result of one or another model is the pre-

diction of the maximum possible βp value, , above
which the NTMs are excited. When there is only one of
the competing mechanisms and the polarization current
effect is ignored, the maximum value of the poloidal

beta, , is determined by the expression

(7.13)

Turning to model expressions (7.5) and rigorous
expression (7.6), we find that the rigorous approach

yields a lower  value in comparison to that pre-
dicted by the model approach. On the one hand, as
expected, accounting for the electron partial factor 0.40

leads to a higher  value.

7.2. Inertial Transport Threshold Model

The basic equation for the inertial transport thresh-
old model of NTMs is constructed in the same way as
Eq. (7.2):

(7.14)

In this case, we are dealing not with the bootstrap drive
but rather with the bootstrap suppression of NTMs by
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the ion temperature gradient. Accordingly, Eq. (7.14)
has steady solutions only when ∆' > 0.

7.3. Model for Incorporating Both the Inertial 
and the Electron Dynamics

With allowance for both the inertial and the electron
dynamics, we arrive at the following hybrid of
Eqs. (7.2) and (7.14):

(7.15)

Here, βpi and βpe are the ion and electron poloidal betas
and the coefficients Cbs, α (with α = i, e) are given by the
expressions

(7.16)

where LT, α = –T0α / .

Equation (7.15) implies, in particular, that the iner-
tial dynamics and the electron dynamics can be equally
important even when the island widths Wd, inert and
Wd, conv are markedly different. Such a situation can
occur for comparable values of the ratios βpα /LT, α. Note
also that, as in the models considered above, the elec-
trons lead to bootstrap drive, while the ions lead to
bootstrap suppression.

7.4. Model for Incorporating
the General Ion Dynamics

When the general ion dynamics (i.e., the inertial
dynamics plus the rotational dynamics) is taken into
account, but the electron dynamics is ignored, we arrive
not at Eq. (7.14) but at the equation

(7.17)

where

(7.18)

Relationship (7.18) implies that, for ∆' > 0, the
effective critical island width related to the ion dynam-
ics is determined by the fastest of the possible ion
dynamic processes. This is the main difference between
Eqs. (7.17) and (7.15); recall that, in the latter case, the
subsonic dynamics and the electron dynamics can play
an equally important role.
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7.5. Model for Incorporating both the General Ion
and the General Electron Dynamics

With allowance for both the general ion and the gen-
eral electron dynamics, instead of Eqs. (7.15) and
(7.17), we obtain the equation

(7.19)

in which the island width Wd, i is given by relationship
(7.18).

In Eq. (7.19), as in Eq. (7.17), it is assumed that the
electron dynamics is governed by the competition
between the electron convection and the transverse
electron heat transport. If the electron convection is not
the only process that competes with the electron heat
transport, then, in Eq. (7.19), we must make the substi-
tution

  (7.20)

Here, the width Wd, e accounts for all possible compet-
ing electron processes and is given by a relationship
analogous to relationship (7.18):

(7.21)

where the subscript j denotes the jth competing elec-
tron process. The effective critical island width Wd, e
associated with the electron dynamics (∆' < 0) is deter-
mined by the fastest of the competing electron pro-
cesses, as is the case with the effective critical island
width Wd, e associated with the ion dynamics (∆' > 0).

8. BOOTSTRAP DRIVE MODIFIED
BY ANOMALOUS TRANSVERSE ION 

VISCOSITY

According to [9], the equation of the longitudinal
motion of the ions with allowance for their longitudinal
viscosity has the form

(8.1)

where  is given by expression (1.20) and µ⊥ i is the
transverse ion viscosity coefficient. The numerical
coefficient in the term with e1/2 in Eq. (8.1) is omitted,
for simplicity.
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Û ||i Û ||i
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Using the estimate ∂/∂x . 1/W and ignoring the term
with d0/dt, we obtain from Eq. (8.1) the following qual-
itative expression (cf. expression (1.20)):

(8.2)

where Wµ is the characteristic island width determined
by the transverse ion viscosity,

(8.3)

Formula (1.19) then is reduced to

(8.4)

Here, the electron- and ion-related bootstrap current
components are given by the expressions (cf. expres-
sions (1.16)–(1.18))

(8.5)

(8.6)

and the component  is related to the perturbed radial

electric field  by

(8.7)

It is seen that the transverse ion viscosity gives rise to
two physically different effects. First, according to
expression (8.6), it lowers the ion-related bootstrap cur-

rent component by a factor of (1 + /W2). Second,
according to expression (8.7), it acts to trigger an addi-
tional bootstrap drive mechanism that is associated
with the radial electric field perturbation and was not
incorporated into traditional models based on expres-
sion (1.3). For simplicity, we call this bootstrap drive
mechanism the E-channel for bootstrap drive.

We now consider that the anomalous transverse
transport of heat and particles reduces both the electron
and ion contributions to the bootstrap current; in this
case, the contribution of the ions is also reduced
because of their transverse viscosity. Consequently, as

Wd  ∞ and Wµ  ∞ we have   0 and

  0. On the other hand, according to relationship
(8.7), the E-channel, being insensitive to the transverse
transport of heat and particles, makes a certain (finite)
contribution to the bootstrap current. As a result, in the
limiting case at hand, relationship (8.7) transforms into

(8.8)
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With allowance for the relationship  = –∂φ/∂x, where
φ is described by Eq. (2.25), we obtain from relation-
ship (8.8) the expression

(8.9)

By analogy with formulas (6.14) and (6.15), this
expression leads to the following formula for the aver-
aged perturbed bootstrap current :

(8.10)

where the derivative ∂h/∂Ω is determined by relation-
ships (2.26)–(2.28). Using formula (8.10) and relation-
ship (6.16), we find

(8.11)

where

(8.12)

Relationship (8.11) implies that, when the magnetic
islands rotate in the direction of the diamagnetic ion
drift (ω/ω∗ i > 0) the E-channel leads to the bootstrap
drive (∆bs, E > 0). When the islands rotate in the direc-
tion of the diamagnetic electron drift (ω/ω∗ e > 0), it
leads to stabilization (∆bs, E < 0). This result refines the
corresponding result of [8, 9], which is somewhat
incorrect because of an error in the calculation: in those
papers, the derivative ∂h/∂Ω was described by a rela-
tionship of form (2.26) with the minus sign on its right-
hand side.

The above conclusion concerning the sign of ∆bs, E
can be explained based on the following qualitative
considerations: Because of their high viscosity, the ions
do not contribute to the bootstrap current, which thus
turns out to be purely electronic. The triggering of the
E-channel at a weak transverse particle transport and a
weak transverse electron heat transport indicates quali-
tatively that the expression for the electron-related
bootstrap current component should contain the coeffi-
cient 1– ω/ , where  is the diamagnetic elec-
tron drift frequency in terms of the pressure gradient.
For a strong transport of heat and particles, unity drops
out of this coefficient, so the expression for the param-
eter ∆bs, E differs from the standard expression for the
electron-related bootstrap current component in that it
contains the factor (–ω/ ). If this factor is negative,
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i.e., ω/  > 0, then the parameter ∆bs, E is also nega-
tive, which is reflected by formula (8.11).

From the above, it also follows that, in order to take
the transverse ion viscosity into account, it is necessary
to switch from the three-channel model of the bootstrap
drive, which is based on expression (1.3), to a four-
channel model based on the expression

(8.13)

Here, according to expression (8.7), the quantity ∆bs, E

is determined by the perturbed radial electric field 
and, in the limiting case of high transverse ion viscos-
ity, is given by relationship (8.11).

9. FINAL REMARK AND DISCUSSIONS
OF THE RESULTS

The above analysis has demonstrated that research
on transport threshold models of NTMs occupies a
fairly important place in the general theory of magnetic
islands in tokamaks. Our contribution to this research
consists, first of all, in finding rigorous analytic solu-
tions to the time-independent heat conduction equation
for the cases in which transverse heat transport is suffi-
ciently strong and the temperature profile is established
as a result of the competition between this heat trans-
port, on the one hand, and the longitudinal heat trans-
port, the longitudinal heat convection, and the heat
transport due to the longitudinal gradient of the longi-
tudinal plasma velocity, on the other hand. Together
with the rigorous solution to the heat conduction equa-
tion that was obtained earlier for the competition
between strong transverse heat transport and rotational
heat transport, the above rigorous solutions constitute
the basis for constructing the corresponding versions of
transport threshold models of NTMs with rigorously
defined numerical coefficients, which is important for
the practical application of such models. The transport
threshold models proposed here can in turn serve as
fragments of more general threshold models of NTMs,
which can be referred to as next-generation transport
threshold models. Since, on the whole, the results
obtained have been discussed in sufficient detail in the
body of the paper, we will say a few words about some
questions that lie outside the scope of the present work.

The above formulas for the bootstrap current Jbs

show that, in transport threshold models of NTMs, this
current is independent of the magnetic surfaces of the
island. In other words, the bootstrap current has a com-
ponent that depends on the cyclic variable ξ of the
island. This bootstrap current component should per-
turb the nondissipative component of the longitudinal
electric field of the islands [19] (this effect was ignored
in our analysis). A description of this nondissipative

ω*pe

∆bs ∆bs A, .
A ne Te Ti E, , ,=

∑=

Êx
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electric-field component, as well as of the dissipative
component of the longitudinal electric field that is gen-
erated by the dissipative component of the longitudinal
current [19], could become the subject of an ongoing
investigation.

Assuming that magnetic islands rotate across the
main magnetic field at frequencies on the order of the
drift frequency, we ignored drift effects in the plasma
equations used in our analysis. Incorporating drift
effects into transport threshold models could be another
topic for future research. It is also of interest to gener-
alize transport models to the case in which the NTMs
are suppressed by the helical magnetic field of the
external coils [6].

As was noted previously, one of the factors govern-
ing the evolution of the width of magnetic islands is the
effect of the magnetic field line curvature, or, in other
terminology, the magnetic well effect. This effect was
analyzed in our recent paper [32]. In order to calculate
it, it is necessary to know the perturbed temperatures of
the electrons and ions. In [32], these temperature per-
turbations were assumed to correspond to the tradi-
tional weak transverse heat transport approximation.
From the above analysis, it is clear, however, that strong
transverse heat transport modifies the magnetic well
effect. The first steps in investigating this problem were
taken in [25, 26], where the temperature perturbation
was calculated using the Fitzpatrick model [1]. How-
ever, the above study showed that the Fitzpatrick model
can be used solely for illustrative purposes; the same
can be said about the results obtained in [25, 26]. An
analysis of the magnetic curvature effect in the case of
strong transverse heat transport under more realistic
assumptions than those made in [25, 26] could also be
the subject of subsequent investigations.
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APPENDIX:

MODEL PERTURBED TEMPERATURE PROFILES

A.1. Collisional Mechanism

Following [7], the solution to Eq. (3.9) can be
approximated by the model expression

(A.1)

where the quantity ucol is introduced by the relationship

ucol = 61/4 . For u @ , expression (A.1) passes

over to expression (3.10); for u ! , it becomes

(A.2)

The difference between the asymptotic behavior of
model solution (A.2) and that of analytic solution (4.3)
consists in the substitution

  (A.3)

It can be seen that this difference is not too large,
which justifies the use of model expression (A.1).

Turning to solution (5.2), we can introduce the inte-
gration constant ccol for the near region. Matching solu-
tions (A.2) and (A.3), we then obtain

(A.4)

The superscript “model” indicates that, in deriving
relationship (A.4), we have used the model solution
in the far region. The difference between the coeffi-
cients (ccol)model and ccol can be determined from sub-
stitution (A.3).

A.2. Convective Mechanism

According to [10], the function y(u) that satisfies
Eqs. (3.17) and (3.18) can be approximated by the
model expression (cf. expression (A.1))

(A.5)

where uconv = (5/2)1/6 .

For u @ , expression (A.5) passes over to

expression (3.10); for u ! , it takes the form (cf.
expression (A.2))

(A.6)

We see that expressions (A.6) and (4.10) are quali-
tatively the same, which substantiates the use of model
expression (A.5). By analogy with substitution (A.3),
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the difference between expressions (A.6) and (4.9) can
be illustrated by the substitution

  (A.7)

In describing the temperature perturbation in the
near region, we introduce the integration constants

 and  in accordance with representations (5.5)
and (5.6). Matching the model solution for the far
region with the solution given by representations (5.5)

and (5.6), we find the coefficients ( )model and

( )model, which are analogous to the coefficient
(ccol)model determined by formula (A.4). As a result, we
arrive, in particular, at the expression

(A.8)

The difference between this expression for ( )model

and the rigorous expression for the coefficient  can
be inferred from substitution (A.7).

A.3. Inertial Mechanism

Following [11], the solution to Eq. (4.11) can be
approximated by the model expression

, (A.9)

where ui = 61/4π1/2 .

For u @ , relationships (4.7), (4.8), and (A.9)
imply that the function y(u) is described by expression
(3.10) and the function κ(u) is as small as Ωi/u2 in com-
parison to the function y(u). The behavior of the func-
tion κ(u) is thus analogous to that in the case of convec-
tive mechanism, which was discussed in Section 4.2

(see expression (4.10)). For u ! , relationships (4.7),
(4.8), and (A.9) lead to the expression

(A.10)

This behavior of the function y(u) for u !  is anal-
ogous to that described by expressions (A.2) and (A.6)
in the collisional and convective models, respectively.
At the same time, expression (A.10) predicts that the

behavior of the function κ(u) for u !  is analogous
to that described by expression (4.10) in the convective
model.
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We can see that the only difference between expres-
sions (A.10) and (4.14) consists in the substitution

  (A.11)

Consequently, model expression (A.9) coincides
qualitatively with rigorous expression (4.12).

The solution in the near region is given by represen-
tation (5.8), so, by analogy with expression (A.8), we
find

(A.12)

This expression differs from the rigorous expression

for the integration constant  (see the first of expres-
sions (5.9)) in substitution (A.11).
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Abstract—Particle-in-cell simulations show that the inhomogeneity scale of the plasma produced in the inter-
action of high-power laser radiation with gas targets is of fundamental importance for ion acceleration. In a
plasma slab with sharp boundaries, the quasistatic magnetic field and the associated electron vortex structure
produced by fast electron beams both expand along the slab boundary in a direction perpendicular to the plasma
density gradient, forming an extended region with a quasistatic electric field, in which the ions are accelerated.
In a plasma with a smooth density distribution, the dipole magnetic field can propagate toward the lower plasma
density in the propagation direction of the laser pulse. In this case, the electron density in an electric current
filament at the axis of the magnetic dipole decreases to values at which the charge quasineutrality condition fails
to hold. In electric fields generated by this process, the ions are accelerated to energies substantially higher than
those characteristic of plasma configurations with sharp boundaries. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The problem of the generation of high-energy ions
in the interaction of high-power laser radiation with
solid, cluster, and gas targets has been the focus of con-
siderable interest for many years (see [1–12] and
reviews [13–16]). This is explained by the development
of laser technologies that provide the possibility of gen-
erating multiterawatt or even petawatt femtosecond
radiation pulses [17] and carrying out experiments on
the acceleration of charged particles by such pulses.
Laser accelerators of charged particles possess a num-
ber of obvious advantages: first, the laser facilities
required for such acceleration are widespread because
of their compactness and, accordingly, relatively low
cost; second, there is no need for the radiation protec-
tion of large rooms (in reality, it is sufficient to shield
only the chamber where the target is positioned); and
last, but not least in importance, laser accelerators are
capable of generating high-intensity short-duration fast
particle beams and can be further improved to achieve
high repetition rates of this beams. These advantages
have initiated active discussions about possible applica-
tion of fast ion beams accelerated in a laser-produced
plasma in such areas as controlled fusion research
(within the framework of the concept of fast ignition of
precompressed thermonuclear targets) [18–20], the
hadron therapy of oncological diseases [21–24], the
activation of radioactive sources (in particular, for the
purposes of electron–positron emission tomography in
medicine [25]), proton imaging of ultrafast processes in
laser plasmas [26], the transmutation of radioactive ele-
1063-780X/05/3105- $26.000369
ments [25], and for studying neutrino oscillations [27]
and for creating an ion–ion collider in high-energy
physics [28].

In constructing the theory of ion acceleration by
laser pulses, various acceleration regimes have been
considered that depend on the type of target and the
parameters of laser radiation. In this paper, we restrict
ourselves to studying ion acceleration in the interaction
of laser pulses with gas targets. Because of the high
laser power, the gas of the target is ionized during a
very short time (on the order of the optical period). As
a result, conditions arise that correspond to the interac-
tion of laser radiation with a subcritical plasma, in
which the following inequality holds: n < ncr =
ω2me/(4πe2), where ω is the laser frequency and me and
e are the mass and charge of an electron.

In a number of recent papers, the ion acceleration in
a subcritical plasma was attributed to the so-called
Coulomb explosion [29]. The ion acceleration mecha-
nism proposed in those papers can be described as fol-
low. Coulomb explosion is associated with the disrup-
tion of plasma quasineutrality inside the self-focusing
channel along which the laser pulse propagates. The
plasma quasineutrality is violated because the ponder-
omotive force of the laser radiation expels electrons
from the channel and the resulting charge-separation
electric field accelerates the ions in the radial direction.
Such an acceleration regime usually occurs under con-
ditions in which the plasma slab is much thicker than
the laser pulse depletion length, i.e., when the laser
 © 2005 Pleiades Publishing, Inc.
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pulse in the plasma is damped (by transferring its
energy to the charged particles) before reaching the far-
ther boundary of the plasma slab. The results of com-
puter simulations carried out in [4, 13, 30] showed,
however, that fast ions are generated far more effi-
ciently when the laser pulse penetrates through the
entire finite-thickness plasma slab. The relativistic elec-
trons that have been accelerated within the self-focus-
ing channel accompany the pulse and reach the farther
slab boundary at the same time as the pulse. Fast elec-
trons leave the plasma and then return back into it under
the action of the electric field of an unneutralized elec-
tric charge. In such motion, the electrons form an elec-
tron dipole vortex (or a toroidal vortex in 3D geome-
try). The electric current of this vortex configuration
generates a quasistatic dipole magnetic field. It should
be noted that the current produced by fast electrons in
the self-focusing channel inside the plasma slab also
generates a quasistatic magnetic field [31]. However,
near the farther (with respect to the propagation direc-
tion of the laser pulse) slab boundary, the magnetic field
is generated more efficiently because the current-carry-
ing electrons occupy a larger volume and also because
the electrons are accelerated predominantly in the pulse
propagation direction. Further evolution of the mag-
netic field depends substantially on the scale on which
the plasma density varies. In a highly inhomogeneous
plasma, a cloud of fast electrons and the region of the
magnetic field generated by them expand in a trans-
verse direction along the plasma–vacuum interface.
The magnetic field partially penetrates into the plasma
and displaces the electron plasma component with
respect to the heavy plasma ions, thereby producing a
quasistatic electric field in a wide region. The direction
of the electric field is such that the field simultaneously
accelerates the ions and focuses them to the axis. The
resulting beam of accelerated ions has a form of a dense
thin filament, in which the longitudinal momentum of
the ions is much larger than their transverse momen-
tum. This scenario of ion acceleration corresponds to
the so-called magnetic acceleration mechanism that
was proposed in [30] and was used, in particular, to
explain the acceleration of ions observed experimen-
tally in [32].

Since the ion acceleration process depends on many
parameters (such as the power, intensity, and energy of
the laser pulse; the plasma density; and the plasma slab
thickness), this problem requires further investigation.
It is clear that plasma targets with smooth density dis-
tributions are more suited to conditions of actual exper-
iments.

Although this paper is devoted to studying ion
acceleration processes in the interaction of high-power
electromagnetic pulses with gas targets, the results
obtained can also find application in the problems of the
interaction of laser radiation with solid targets. As was
noted in [32], a terawatt laser pulse with a relatively low
contrast ratio (on the order of 10–5–10–6) has a pedestal
of nanosecond duration (and/or a prepulse), which can
be focused to an intensity on the order of 1013 W/cm2.
This portion of the pulse can completely vaporize the
target material and ionize it before the arrival of the
main (femtosecond) pulse. As a result, the main pulse
begins to interact just with the low-density plasma.
Such a scenario is quite natural because actual laser
pulses always have a pedestal that is very difficult to
eliminate (this is a rather complicated task that has
stimulated a great deal of effort [15]). Note that more
detailed discussion of the regimes in which the material
of a relatively thick solid target evaporates incom-
pletely, giving rise to a plasma corona at the target sur-
face and initiating electron and ion acceleration in it,
goes beyond the scope of our study.

The energy of fast particles in a laser plasma is
uniquely related to the radiation intensity in the focal
plane. In [33], it was pointed out that the relativistic
interaction regimes can be achieved even for laser
pulses with energies as low as several millijoules, pro-
vided that they are focused into a spot with dimensions
comparable to the laser radiation wavelength, which
corresponds to the so-called λ3 regime. In this case, in
order to prevent the laser pulse from breaking into fila-
ments due to transverse instability, it is necessary to
ensure matching between the dimensions of the focal
spot, the position of the focal region relative to the
plasma boundary, and the diameter of the self-focusing
channel. This matching was investigated in detail by
Mourou et al. [33] for plasma targets with sharp bound-
aries at which the plasma density falls from a finite
value to zero across a narrow layer with a thickness less
than or on the order of the laser wavelength. The match-
ing condition implies that the laser input numerical
aperture should correspond to the effective waveguide
numerical aperture. The aperture of the laser beam is
governed by the properties of the optical focusing sys-
tem. The effective waveguide aperture is determined by
the dimensions of the self-focusing channel and the
plasma density, which in turn depend on the laser field
amplitude.

In what follows, we will consider how the character-
istic inhomogeneity scale of the plasma density and the
presence of the background plasma affect charged par-
ticle acceleration in the collisionless plasma approxi-
mation.

2. FORMULATION OF THE PROBLEM 
AND PARAMETERS FOR NUMERICAL 

SIMULATIONS

In the case under consideration, the process of the
interaction of a laser pulse with a finite-thickness
plasma slab can be conditionally divided into three
stages. In the first (initial) stage, laser radiation pene-
trates into the plasma. Depending on whether the
matching condition is satisfied or not, the laser pulse in
the target either takes the form of a directed beam
whose energy is localized within a single channel as a
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
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result of self-focusing or it breaks into several fila-
ments. In the latter case, charged particle acceleration is
very inefficient, so we will assume that the parameters
of the problem satisfy the optimal matching condition.
In the second (intermediate) stage, the laser pulse prop-
agates inside the plasma slab. This stage is accompa-
nied by the generation of fast electron beams, the exci-
tation of a quasistatic magnetic field in the self-focus-
ing channel, and the formation of relativistic
electromagnetic solitons. In the third (final) stage, the
laser pulse reaches the father boundary of the plasma
slab and escapes into a vacuum.

The laser pulse parameters that provide optimal ion
acceleration regimes were chosen such as it was done
in [30]. The simulations were carried out with a 2D ver-
sion of the REMP (Relativistic Electro-Magnetic Parti-
cle-mesh) code, which is based on the particle-in-cell
(PIC) method and on the density decomposition
method for calculating the electric current density [34].
The code activates a so-called 2D3V model, in which
the electromagnetic fields and the charge and current
densities depend on two spatial coordinates and time
and each plasma quasi-particle is described by two
time-dependent spatial coordinates and three time-
dependent momentum components. We considered
only circularly polarized laser pulses. The characteris-
tic length of the laser pulse was assumed to be l|| = 7.5λ.
Here and below, the length of the pulse, its width l⊥ , and
the dimensions of the computation region are expressed
in units of the laser wavelength λ. It makes sense to
speak about the dimensionless amplitude of the focused
laser pulse, a = eE/(meωc), only for a given effective
pulse width l⊥ , because the energy conservation equa-
tion implies that the relationship a2l⊥  = const holds. In
this paper, when speaking about the initial laser pulse
amplitude, we will mean the laser amplitude in the
focal region, where the pulse width is l⊥  = 0.6, which
indicates that the pulse is focused into a spot with
dimensions on the order of one laser wavelength (for a
discussion of the relevant regimes, see [33]). In what
follows, we will present results from numerical simula-
tions in which the dimensionless amplitude is

 = 3 and  = 10. In all simulations, the

convergence angle α of a focused laser pulse with
respect to its optical axis (the x axis) is relatively small:
–π/12 < α < π/12. The geometric center of the focal
spot is at the point (x, y) = (20λ, 30λ). The pulse is mod-
eled by specifying its wave front at the boundary x = 0
of the computation region, assuming that, in the vac-
uum region (on the left from the target), its propagation
is described by geometrical optics. The pulse envelope
(i.e., the distribution of the pulse amplitude along and
across the propagation direction before focusing) is
specified as a product of two cosines, [cos(2πx/l|| full) +
1]cos(2πy/l⊥ full)/4, for |x | < l|| full /2 and |y | < l⊥ full /2,
where l|| full and l⊥ full are the full length of the pulse and
its full width, respectively. For the given distribution of

a l⊥ 0.6= a l⊥ 0.6=
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the pulse amplitude, the effective pulse dimensions are
defined by the formulas l|| = 0.375l|| full and l⊥  =
0.375l⊥ full.

The dimensions of the computation region in the x
and y directions were 60λ × 60λ, the dimensions of
numerical cells were λ/16 × λ/16, and the number of
quasi-particles of each species per cell at the point cor-
responding to the maximal plasma density was equal
to 9. The total number of quasi-particles of each species
depends on the specified density distribution; in our
simulations, it varied from 106 to 2 × 106. The form-fac-
tor of the quasi-particles was described by a second-
order piecewise polynomial [34]. The ion-to-electron
mass ratio was assumed to be that for a proton, mi/me =
1836.15. The time step was dt = 0.025τ, where τ = 2π/ω
is the electromagnetic wave period.

The target was a plasma slab of finite length in the
pulse propagation direction. The slab width was equal
to the transverse size of the computation region, and the
slab length was varied from 20λ to 30λ. The plasma
density profile inside the target was specified as a
superposition of a rectangular and a half-sinusoidal dis-
tribution. For a rectangular distribution, the plasma
density was uniform inside the slab and was equal to
zero outside the slab: n = nmaxθ(x – xmin)θ(xmax – x),
where θ(x) is the Heaviside step function, defined as
zero for x < 0 and as unity for x > 0.

For a smooth plasma slab, the density profile along
the pulse propagation direction within the slab was
described by a half-sinusoidal distribution: n(x) =
nmaxsin[π(x – xmin)/(xmax – xmin)]. In all simulations, the
maximal plasma density at the target center was equal
to nmax = 0.5ncr.

Below, we present results from numerical simula-
tions of laser–plasma interaction for four types of tar-
gets with different plasma density profiles. In the first
version, the plasma density was uniform over the entire
target volume, specifically, it was equal to nmax = 0.5ncr

inside the slab and to zero outside it. In the second ver-
sion, the plasma density profile was described by a half-
sinusoidal distribution and the plasma background was
absent (as in the first version). In the third version, the
central rectangular plasma slab was surrounded by an
external (background) plasma of density nbg = 0.1ncr. In
the fourth version, the central slab of a smoothly inho-
mogeneous plasma (whose density profile was
described by a half-sinusoidal distribution) also was
surrounded by a background plasma of density nbg =
0.1ncr.

The boundary conditions used in simulations corre-
sponded to complete absorption of both the electro-
magnetic field and the particles at the boundary of the
computation region. The field absorption was modeled
using Tajima and Lee’s method from [35].
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3. NUMERICAL RESULTS: EFFECTS 
OF THE TARGET PLASMA INHOMOGENEITY 
SCALE AND OF THE BACKGROUND PLASMA 

ON THE ION ACCELERATION

Recall that we are considering here two laser pulses
with the same effective length but with two different
focal intensities corresponding to the dimensionless
amplitudes  = 3 and  = 10. The pulses

interact with four types of targets: a uniform target with
sharp boundaries and a smoothly nonuniform target,
both with and without a background plasma.

We begin with the case of a laser pulse with the
dimensionless amplitude  = 3 at the focal spot.

For a typical laser wavelength of λ = 1 µm, this corre-
sponds to a radiation intensity in the focal region of
about I ≈ 1.8 × 1019 W/cm2. In this case, the laser power
and laser energy are rather moderate: P ≈ 200 GW and
E ≈ 2 mJ.

3.1. Interaction of a Laser Pulse with a Plasma Target 
with Sharp Boundaries in the Absence 

of a Background Plasma

Here, we consider the interaction between a laser
pulse with an amplitude of  = 3 and a rectangu-

lar plasma slab whose density is n = nmax = 0.5ncr inside
the interval 15.45 < x < 34.55 and is zero outside it. The
laser pulse is focused onto the left boundary of the
plasma slab. For the given plasma density, the laser
radiation power exceeds the threshold for relativistic
self-focusing. As a result, the electromagnetic field
becomes localized in a narrow channel. Over a time of
about 60τ, the laser pulse reaches the farther target
boundary, having lost a considerable portion of its ini-
tial energy. Figure 1 shows the distributions of (a) the
z component of the electric field, (b) the ion density,
and (c) the electron density at the time t = 60τ. We can
see that the pulse self-focusing occurs at the very begin-
ning of the interaction. In the self-focusing channel, rel-
ativistic electromagnetic solitons [13, 36–45] in the
form of local maxima of the electric field are generated
(see Fig. 1a). The ponderomotive pressure of the laser
radiation gives rise to channels in the ion and electron
densities. As a result, the pulse becomes greatly
depleted and, by the time t = 60τ, when the laser radia-
tion approaches the right plasma boundary, the chan-
nels become very narrow.

However, although the laser pulse power at the exit
from the plasma slab is much lower than that at the
entrance to the slab, the spontaneous magnetic field
produced in the laser–plasma interaction creates a suf-
ficiently strong charge-separation electric field at the
right plasma boundary. This electric field accelerates
the ions [30], which form a narrow beam. Such an ion
beam can easily be seen in Figs. 2c and 2d, which dis-
play the ion phase planes (px, x) and (px, y) at the time

a l⊥ 0.6= a l⊥ 0.6=

a l⊥ 0.6=

a l⊥ 0.6=
t = 120τ. In the case at hand, the maximal momentum
acquired by the ions is about px ≈ 0.04mic (Figs. 2c, 2d),
which corresponds to an energy of about E = 0.8 ×
10−3mic2 ≈ 800 keV. Figures 2a and 2b display the ion
and electron density distributions in the (x, y) plane at
the time t = 120τ. We can see that the width of the ion
and electron channels increases with time. In the region
where the solitons have been generated, the electron
and ion densities become depressed, giving rise to
expanding cavities. The origin of the cavities is attrib-
uted to the ponderomotive force of the electromagnetic
radiation trapped inside a soliton, and the cavities them-
selves correspond to the so-called postsolitons (see
[42–44]). Postsolitons were first observed by proton
imaging [26] in experiments on the interaction of high-
intensity laser radiation with plasma [44]. The ions
inside postsolitons are also accelerated, which is illus-
trated by the peaks in the dependence of px on x in the
central region in Fig. 2c. In postsolitons, however, the
ions are usually accelerated to energies that are approx-
imately four times lower than those of the ions gener-
ated at the farther boundary of the target.

The main properties of the regime that has been dis-
cussed in this section correspond to the case investi-
gated in [30], where it was pointed out that the quasis-
tatic magnetic field plays a fundamentally important
role in the ion acceleration at the plasma–vacuum inter-
face.

3.2. Interaction of a Laser Pulse with a Plasma Target 
Having Sharp Boundaries in the Presence 

of a Background Plasma

We now discuss the features of the interaction
between a laser pulse with an amplitude of  = 3

and a plasma target whose density is n = nmax = 0.5ncr
inside the interval 15.45 < x < 34.55 and is equal to
0.1ncr outside it. As in the case considered in Section 3.1,
the laser pulse is focused onto the left boundary of the
dense plasma slab. The simulation results are illustrated
in Fig. 3.

In the presence of a background plasma, the interac-
tion between laser radiation and a highly inhomoge-
neous plasma at the instants just before and just after
the time t = 100τ has interesting properties. As in the
previous case, the laser pulse reaches the right bound-
ary of the dense plasma slab, having formed self-focus-
ing channels, which are clearly seen in the ion and elec-
tron density distributions in Figs. 3b and 3c. At the
interface between the higher density plasma slab and
the lower density background plasma, wide magnetic
field regions are observed (see Fig. 3a, which presents
the distribution of the magnetic field component Bz in
the (x, y) plane). On the opposite sides of the laser pulse
axis, the magnetic field points in opposite directions.
This structure is a magnetic dipole, which, in spite of
the presence of the plasma background, expands along

a l⊥ 0.6=
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Fig. 1. Distributions of (a) the z component Ez of the electric field, (b) the ion density ni, and (c) the electron density ne in the
(x, y) plane at the time t = 60τ. Plot (d) shows the plasma density profile n within the target.
the y axis in a direction orthogonal to the local electron
density gradient. Under the action of the magnetic pres-
sure force, which is proportional to the gradient of the
magnetic field squared, ∝  –—B2/8π, the electron plasma
component (and, after a certain time delay, the ion
plasma component too) is displaced into the plasma
slab, giving rise to a large-scale quasistatic electric
field. The electric field so generated accelerates the ions
from the axial region along the x axis and focuses them
to it. This acceleration scenario corresponds to the ion
acceleration regime described in [30]. The ion phase
plane (px, y) at the time t = 100τ is shown in Fig. 3d. The
maximal ion energy in the beam is equal to E = 0.2 ×
10−3mic2 ≈ 200 keV.

3.3. Interaction of a Laser Pulse with a Smoothly 
Nonuniform Plasma Target in the Absence

of a Background Plasma

Here, we discuss the interaction between a laser
pulse with an effective length of l|| = 7.5λ and amplitude
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
of  = 3 and a smoothly nonuniform target in the

absence of a background plasma. Figure 4 illustrates
typical distributions of (a) the quasistatic magnetic
field, (b) the ion density, and (c) the electron density in
the (x, y) plane at the time t = 120τ and also shows the
ion phase planes (d) (px, x) and (e) (px, y) at the same
time.

Let us consider Figs. 4a–4c. By the time t = 120τ,
the laser pulse has already escaped from the computa-
tion region. It can be seen that, in the electron and ion
density distributions, there is a long-lived plasma fila-
ment at the channel axis, in which the current is pro-
duced by fast electrons. In Fig. 4a, we can see a large-
amplitude spontaneous magnetic field and the electron
vortices associated with it [45–47]. The dimensionless
amplitude of the z component of the magnetic field is
approximately equal to Bz ≈ 0.6. The magnetic field is
normalized to mωc/e; i.e., the ratio of the electron
gyrofrequency to the laser frequency is equal to about
ωBe/ω ≈ 0.6. Taking into account that the maximum

a l⊥ 0.6=
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Fig. 2. Distributions of (a) the ion density ni and (b) the
electron density ne in the (x, y) plane and (c, d) the ion phase
planes (px, x) and (px, y) at the time t = 120τ. Here and in
the subsequent figures, the ion momentum is normalized
to mic.
laser radiation amplitude in the focal region is equal to
 = 3, this indicates that a substantial portion of

the energy of the incident laser pulse is converted into
the energy of the magnetic dipole and the kinetic
energy of the electron vortex motion.

Note that, in the regime under consideration, the
quasistatic magnetic field is localized inside the plasma
(rather than in a vacuum, as in the case with a rectangu-
lar plasma slab). A comparison between the electron
and ion density distributions at the times t = 60τ, t =
120τ, and t = 300τ shows that the electron density
within the magnetic dipole progressively decreases.
The ion density also decreases, but far more gradually
than does the electron density. This process results in
the formation of a thin dense plasma shell, which sepa-
rates the target from the region occupied by the sponta-
neous magnetic field. The region where the magnetic
field is localized expands across the plasma density gra-
dient. The expansion, however, is not as rapid as that in
the regimes discussed above.

The charge-separation electric field that is generated
in the magnetic dipole region accelerates ions in both
forward and backward directions. In the phase planes
(px, x) and (px, y) (see Figs. 4d, 4e), the beams of accel-
erated ions are seen to have the shape of wings. The
maximum momentum of the ions accelerated at the
magnetic dipole axis by the time t = 120τ is equal to
about px ≈ 0.015mic, which corresponds to an energy of
about E = 0.1 × 10–3mic2 ≈ 100 keV. As time progresses,
the plasma filament decays.

By the time t = 300τ, the maximum momentum of
the ions that have formed the filament is approximately
equal to px ≈ 0.02mic. At the magnetic dipole bound-
ary, the ions are accelerated to the same maximum
momentum.

3.4. Interaction of a Laser Pulse with a Smoothly 
Nonuniform Plasma Target in the Presence 

of a Background Plasma

We proceed with the analysis of the interaction
between a laser pulse with an effective length of l|| =
7.5λ and amplitude of  = 3 and a smoothly non-

uniform target in the presence of a background plasma.
The numerical results that were obtained for the time
t = 300τ are presented in Fig. 5.

At all earlier times (e.g., at t = 120τ), the structures
in the plasma develop in much the same way as in the
above regime of the interaction of a laser pulse with a
smoothly nonuniform target in the absence of a back-
ground plasma. In particular, the magnetic dipole forms
in the same region. In the absence of a background
plasma, however, the dipole expands in a transverse
direction along the target boundary. The effect of the
plasma background is to drive the magnetic dipole into
motion along its axis. This difference reflects the funda-
mental properties of the motion of vortex structures

a l⊥ 0.6=

a l⊥ 0.6=
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Fig. 3. Distributions of (a) the z component Bz of the magnetic field, (b) the ion density ni, and (c) the electron density ne in the
(x, y) plane and (d) the ion phase plane (px, y) at the time t = 100τ. Plot (e) shows the plasma density profile n within the target.
[48]. When the plasma target boundary is sharp, the
vortices move along it. In a homogeneous plasma, a
dipole (a pair of vortices) moves along its axis. Hence,
in the case in question, the conditions in a smoothly
nonuniform plasma target in the presence of a back-
ground plasma are close to those characteristic of a
homogeneous medium.

From Fig. 5, which displays the (a) electron and
(b) ion density distributions, we can see that, by the
time t = 300τ, large-scale cavities from which the
plasma is expelled form inside the magnetic dipole. The
process by which the plasma is expelled from the cavi-
ties is similar to that described in [49, 50] for a single
vortex. In contrast to a solitary isolated vortex, a funda-
mental property of the dipole structure is that there is an
electric current that flows along the dipole axis and is
localized in a thin plasma filament. As the dipole vortex
propagates toward the plasma region with a lower den-
sity, the number of particles at the filament axis
decreases. The electrons escape from the current-carry-
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
ing filament faster than do the ions. As a result, the cur-
rent filament becomes electrically charged and under-
goes a Coulomb explosion. The ions expand in a trans-
verse direction with respect to the filament and gain a
certain energy. The energy acquired by the ions in the
vicinity of the point (x = 42, y = 30) in Fig. 5b is the
highest. In the vicinity of this point, the region with a
strong quasistatic electric field forms and starts propa-
gating along the x axis. The beam of fast ions acceler-
ated in this region at the magnetic dipole axis is clearly
seen in Fig. 5d. The maximum ion momentum in such
a spike is equal to about px ≈ 0.056mic, which corre-
sponds to an energy of about E ≈ 1.5 MeV.

3.5. Interaction of a High-Power Laser Pulse
with a Plasma Target

Finally, in analogy with the previous section, we
consider the interaction between a laser pulse with an
amplitude of  = 10 and a smoothly nonuniforma l⊥ 0.6=
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target in the presence of a background plasma. For a
laser wavelength of λ = 1 µm, this corresponds to a
laser intensity in the focal region of I ≈ 2 × 1020 W/cm2

and a power of P ≈ 2 TW.
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
The results of computer simulations for this case are
illustrated in Figs. 6 and 7, which refer to the times t =
120τ and 300τ, respectively. In this case, a decisive role
is played by the generation of a quasistatic magnetic
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field and by the nonlinear evolution of the current-car-
rying vortex structures associated with it. The electron
and ion density distributions in Figs. 6a and 6b clearly
show the formation of the self-focusing channel, the
postsoliton-related cavities, and a dipole current-carry-
ing vortex structure on the right side of the computation
region. In the phase plane (py, x) (Fig. 6c), we observe
the ion beams ejected in the transverse direction from
the postsolitons and the ion spikes in the shell of the
magnetic dipole. One can see the beams of fast ions
accelerated across the self-focusing channel; these
beams are similar to those discussed in [51]. The energy
of the ions generated during the decay of the current fil-
ament at the axis of the magnetic dipole is the highest.
These ions are observed to form a short beam in the
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
vicinity of the point (x = 42, y = 0) (see Fig. 6d). Pre-
sumably, the oppositely directed components of the
magnetic field in this region, annihilate one another:
Fig. 6e clearly shows a highly nonuniform magnetic
field that changes its sign there. The rapidly varying
magnetic field produces a strong electric field (Fig. 6f),
that accelerates the ions. This is followed by the merg-
ing and splitting of the current vortex structures,
accompanied by the formation of a system of thin
plasma filaments at the boundaries of the cavities from
which the plasma has been expelled. These filaments
are seen in the ion density distribution in the (x, y) plane
(Fig. 7a). By the time t = 300τ, fast ions have acquired
an energy of about E ≈ 6 MeV, as can be inferred from
Fig. 7b. Although in this case (as in all the cases consid-
ered above) the ions at the left and right interfaces
between the plasma and vacuum are also accelerated,
the energy of the ions generated during the decay of the
current filament at the axis of the magnetic dipole turns
out to be appreciably higher.

4. CONCLUSIONS

We have presented the results from PIC simulations
of ion acceleration in the interaction of terawatt laser
pulses a subcritical plasma. In simulations, short laser
pulses were focused onto the target surface, into a focal
spot with dimensions comparable to the laser radiation
wavelength. Such interaction conditions correspond to
the so-called λ3 regime, which makes it possible to
achieve unsurpassed laser intensities for given values of
the pulse power and energy [15, 33]. Under these con-
ditions, the interaction of a relativistically strong laser
pulse with the target material is accompanied by the
generation of numerous nonlinear structures. In partic-
ular, a self-focusing channel forms and relativistic elec-
tromagnetic solitons develop and then evolve into post-
solitons. In addition, strong electric fields are generated
at the plasma–vacuum interfaces. In all these structures,
electrical quasineutrality is locally violated. The most
efficient ion acceleration, however, is associated with
the generation of a quasistatic magnetic field. In this
case, the electric current in the plasma is produced by
fast electron beams according to the scenario described
in [31]. In an inhomogeneous plasma, the magnetic
field evolves into a large-scale dipole structure. In a
highly inhomogeneous plasma such that its density var-
ies on a spatial scale less than or on the order of the
characteristic diameter of the self-focusing channel, the
magnetic field region expands along the plasma bound-
ary in a direction perpendicular to the plasma density
gradient. The magnetic pressure displaces the electron
plasma component with respect to the plasma ions,
thereby producing a long-lived large-scale electric field
that accelerates the ions at the plasma–vacuum inter-
face [30]. In a plasma with a smooth density profile (the
density varies on a scale greater than the characteristic
diameter of the self-focusing channel), the magnetic
dipole and the associated electron vortex dipole move
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in the propagation direction of the laser pulse. As the
magnetic dipole propagates toward the lower plasma
density and expands in a transverse direction, the elec-
tron density in the current filament at the dipole axis
decreases to values at which the charge quasineutrality
condition fails to hold. As a result, the current filament
undergoes a Coulomb explosion and the magnetic field
vanishes. The rapid decrease in the magnetic field
induces a strong electric field at the dipole axis, which
accelerates ions to maximal energies. In this respect,
such ion acceleration is analogous to the acceleration of
charged particles in high-current plasma discharges
[52]. Hence, our investigations have further confirmed
the conclusion made earlier in [30, 53] about the funda-
mentally important role of the generation of spontane-
ous magnetic fields in a laser plasma in the relativistic
interaction regime.
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Abstract—Results are presented from experimental studies of the correlation between X-ray and neutron emis-
sions generated in the implosion of a deuteron plasma shell onto an Al wire. The experiments were carried out
on the PF-1000 facility at currents of 1.5–1.8 MA. An Al wire 80 µm in diameter and 7–9 cm in length was
placed at the end of the inner electrode. During the implosion of the plasma shell, Al K-shell X-rays were first
emitted at the dip of the current derivative. After the X-ray pulse, a relatively stable corona with a diameter of
2–3 mm and lifetime of a few hundred nanoseconds formed around the wire. The presence of the wire did not
considerably reduce the total neutron yield (at most 1011 neutrons per shot) in comparison to discharges without
a wire. As a rule, the intensity of neutron emission was maximal a few tens of nanoseconds after the peak of
X-ray emission. A detailed comparison of two shots with low and high neutron yields have shown that the neu-
tron yield depends on the configuration and dynamics of the discharge. The possible influence of the self-gen-
erated axial component of the magnetic field on the development of the plasma focus and the acceleration of
fast deuterons is discussed. © 2005 Pleiades Publishing, Inc.

ń
l

1. INTRODUCTION

Interest in plasma focus (PF) discharges is moti-
vated by the high efficiency of X-ray generation, the
high energy of the accelerated electrons and ions, and
(when deuterium is used as a working gas) the produc-
tion of neutrons in such discharges. In recent years, a
number of interesting results have been obtained in
experiments with PF discharges, e.g., in experiments on
liner implosion carried out on the PF-3 facility [1] at the
Kurchatov Institute of Atomic Energy (Moscow) and in
studies performed under the program of the Interna-
tional Center for Dense Magnetized Plasmas on the PF-
1000 facility at the Institute of Plasma Physics and
Laser Microfusion (Warsaw). PF-1000 experiments are
mainly concentrated on studying the PF dynamics with
the help of comprehensive X-ray and neutron diagnos-
tics. In some experiments performed in recent years, a
fine wire was placed at the end of the inner electrode.
The presence of the wire allows one to study the influ-
ence of the dense plasma formed around the wire on the
generation of high-energy particles and photons. The
wire also serves as an active diagnostic probe in the PF
axial region. The dense cylindrical plasma shell and the
central part of the wire, which remains in a solid state,
also reduce the instability growth rate. In experiments
1063-780X/05/3105- $26.00 0382
carried out on PF 1000, X-ray emission in the K-shell
lines of Al ions [2] was observed. It was demonstrated
that the presence of an Al or a C wire has little effect on
the neutron yield. In [3–6], results from the neutron
measurements were presented and the acceleration of
fast deuterons in different pinch devices was discussed.
In [3], it was supposed that neutrons were produced in
the dense plasma column and a model was proposed for
the acceleration of deuterons by the axial electric field
generated outside the dense plasma in the course of the
m = 0 instability when the pinch radius decreased below
500 µm. It was observed that the neutron yield reduced
in the presence of impurities or a weak external axial
magnetic field. It was also assumed that electrons and
deuterons were accelerated simultaneously. In [4], neu-
tron emission was observed simultaneously with X-ray
emission at the instant at which the current time deriv-
ative dI/dt vanished. This instant also coincided with
the onset of the fast m = 0 instability. In contrast, in [5],
neutron emission was observed after the hot spot phase,
when no rapid pinching or expansion of the plasma
occurred. In this stage, the pinch seemed to be com-
posed of high-density regions interspersed in the axial
direction with tenuous regions (islands), in which the
plasma density was at least two orders of magnitude
lower. The characteristic size of these islands was a few
© 2005 Pleiades Publishing, Inc.
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millimeters. One or two hard X-ray pulses with a pho-
ton energy of above 1 MeV and duration of 20–100 ns
were observed between 120 and 200 ns. Neutrons with
an upper energy of 5 MeV were assumed to be gener-
ated due to the deceleration of the beam in the plasma
target. They were emitted simultaneously with the
beginning of the first hard X-ray (HXR) pulse. Two
conceptual models were proposed to explain the energy
and duration of the HXR and neutron pulses. The first
model supposes that MeV deuterons are accelerated by
the induction field arising due to the rapid pinch con-
traction to a radius of less than 1 µm. According to the
second model, the accelerating electric field is gener-
ated due to the local explosive increase in ∂B/∂t in a ten-
uous plasma region. In this case, however, the question
arises about the duration of the neutron pulses. A detail
study of the fusion processes in the Poseidon PF device
was carried out in [6], in which results from measure-
ments of fast deuterons, as well as fusion protons and
neutrons produced in D–D reactions, were described.
The dissipation of the fast deuterium beam in a pinch-
ing PF discharge was explained by the interaction of the
beam with the target plasma and the gyration of parti-
cles in the self-generated magnetic field. In those exper-
iments, two neutron pulses were observed. The first
pulse was generated in the quiet phase at the drop of
dI/dt, while the second one was detected in the unstable
(disruption) pinch phase, 100 ns after the first pulse.
The authors of [6] noted good agreement between the-
ory and experiment for deuterons with energies of 15–
60 keV in the quiet phase and 40–120 keV in the unsta-
ble phase. Neutrons and protons were assumed to be
generated mainly in the dense plasma in the quiet phase
and in the low-density plasma surrounding the pinch in
the unstable phase. The radial deflection of the protons
trajectories that was detected by a pinhole camera was
explained by the presence of an azimuthal current,
which comprised 40–60% of the axial current. The
absolute number of fast deuterons was about 0.1% of
the initial number of ions in the PF pinch, and their
energy was about 1% of the energy stored in the capac-
itor bank.

At present, mechanisms for fusion reactions and the
generation of fast electrons and deuterons in Z-pinches
are still under discussion. In this paper, we describe
results from the studies of XUV, X-ray, and neutron
emission on the PF-1000 facility and compare them to
the results obtained in [3–6].

2. EXPERIMENTAL SET UP

The experiments were performed on the PF-1000
facility with a stored electrical energy of 600–650 kJ,
voltage of 30–33 kV, and maximal current of 1.5–
1.8 MA. Both the anode and cathode were 600 mm in
length. The outer electrode (cathode) 400 mm in diam-
eter was assembled of 24 stainless-steel rods. The inner
annular electrode (anode) 230 mm in diameter was
made of copper and was mounted on an aluminum insu-
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
lator. An Al wire 80 µm in diameter and 7–9 cm in
length was placed at the end of the anode along its axis
and had no galvanic contact with the anode. The work-
ing chamber was filled with deuterium at a pressure of
3 torr.

The diagnostics used allowed us to measure side-on
radiation in a wide spectral range (from visible to HXR
range) with temporal, spatial, and spectral resolution.
The arrangement of the diagnostics is shown in Fig. 1a.
We employed two soft X-ray (SXR) microchannel-
plate (MCP) detectors (henceforth referred to as MCP1
and MCP2). The sensitive surface of the first detector
was divided into four quadrants and that of the second
detector was divided into four strips. Both detectors
were covered with a 5.2-µm polyester (C8H8) film,
which transmitted photons with energies of 200–
300 eV and above 600 eV [7]. The exposure time and
the time interval between exposures were 2 and 10 ns,
respectively. A PIN silicon diode with a 10-µm Be filter
detected X-ray emission with photon energies above
600 eV. Two optical frame cameras with a gating time
of 1 ns and a time interval between frames of 20 ns
imaged the emitting plasma in the visible spectral
range. A Ne102a scintillator with a 10-µm Al filter
detected X-ray emission with photon energies of 1.0–
1.8 keV and above 3 keV. The slit of the optical streak
camera was oriented perpendicular to the wire and
imaged the plasma region at a distance of 1.5 cm from
the anode end. A 2D time-integrating mica crystal spec-
trograph with a 10-µm Be filter recorded Al K-shell
lines. Fast electrons with energies above 100 keV were
recorded with a Cherenkov detector. Three scintillation
probes (SPs) located a distance of 7 m from the dis-
charge (downstream probe SP1, upstream probe SP3,
and side-on probe SP2) were used to perform time-
resolved measurements of HXR emission (behind a
7.5-cm Pb screen) and neutron emission (see Fig. 1b).
The neutron yield was measured with indium- and sil-
ver-activation counters. The diagnostic setup is
described in more detail in [7].

3. EXPERIMENTAL RESULTS

In order to correctly interpret results obtained in
experiments with Z-pinch discharges (each of which
shows its own specific features), it is necessary to use
comprehensive diagnostics with temporal, spatial, and
spectral resolution. Here, we report on the results from
eight shots with a wire and a few tens of shots without
a wire. Results from shot nos. 2057 and 2074 will be
described in more detail because of the most compre-
hensive data set obtained in these discharges, their suit-
able images, and their interesting specific features: one
discharge with a very low neutron yield and another
with a high neutron yield. The data on shot no. 2057
(with a neutron yield of 109) are presented in Figs. 2–6,
and those on shot no. 2074 (with a neutron yield of 1011)
are presented in Figs. 7–11.
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Fig. 1. Schematic of the experimental facility and diagnostics: (a) end view and (b) side view.
The time positions of the images displayed in
Figs. 3, 4, and 5 (see Table 1) are shown by the markers
in Fig. 2. The instant at which the PIN detector signal
reached its maximum was assumed to be the zero time
(t = 0). The full width at half-maximum (FWHM) of
this signal was 80 ns, and the filtered energy emitted
into the total solid angle was estimated to be 0.35 J. An
appreciable drop in the dI/dt signal was observed 50 ns
after the maximum of the PIN diode signal. This time
delay varied from shot to shot in the range from –50 to
+50 ns. SXR emission with photon energies above
3 keV was recorded with a scintillator covered with a
10-µm Al foil. The signal from this scintillator had a
peak at 30 ns with an FWHM of 50 ns (see Fig. 2).

Figure 3 shows four frames recorded with the MCP1
detector at 84, 94, 104, and 114 ns (at the instant corre-
sponding to the last frame, the PIN diode signal has
already decreased below 15%). Radiation (partially in
the photon energy range from 200 to 300 eV and par-
tially above 600 eV) was emitted only from the plasma
region around the wire (interpreted as the wire corona)
that was in front of the electrodes, at a distance of 4–
8 cm from them. The diameter of this emitting region
varied from 200 to 500 µm.
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Figure 4 shows four frames recorded with the MCP2
detector, which is more sensitive than the MCP1. These
frames correspond to a later time interval than the
frames presented in Fig. 2: they were exposed at 167,
177, 187, and 197 ns, when the PIN signal was almost
zero. In Fig. 3, we can see only a part of the plasma
corona, whereas in Fig. 4, the other two parts of the
emitting corona can be seen. The first is close to the
inner electrode and the second is at a distance of 6–9 cm
from it. Both parts are ≈3 cm in length and ≈2 mm in
diameter. Since the PIN diode signal was small within
this time interval (i.e., the radiation filtered with a
10-µm Be foil was weak), we conclude that the
detected radiation was mostly emitted in the photon
energy range of 200 to 300 eV. The central part of the
wire corona, which was located at 3 to 6 cm from the
anode and which radiated 80 ns before, did not radiate
in the XUV range during this time interval.

In Fig. 5, two visible frames exposed at 200 and
220 ns are displayed. At these instants, the radiation
came from the plasma region 7 cm in length. Therefore,
we may conclude that the corona plasma was created
along the entire Al wire. Moreover, it seems that the
axial part of the wire remained in a solid state till that
time. In the region located a distance of 0 to 3 cm from
the electrode, the visible diameter of the emitting
corona was estimated to be 3–5 mm. In the visible spec-
tral range, the middle part of the wire, whose radiation
was detected only by MCP1 (see Fig. 3), had a two-
layer structure. The first (more intense) layer 2 mm in
diameter formed just around the wire, while the second
layer formed from a sausage-like structure and had
three little light disks ≈2 cm in diameter. Both these lay-
ers remained almost unchanged over a time period of
20 ns. A radial umbrella-like structure that can be seen
in Figs. 3 and 5 at a distance of 7–11 cm from the elec-
trode may be interpreted as the part of the plasma shell
connecting the wire corona with the outer electrode.

Figure 6 shows a time-integrated spectrum recorded
with the X-ray spectrograph, which detected the spec-
tral lines of He-like Al ions and their Li- to F-like satel-
lites. Clearly, the time during which these lines were
emitted should correspond to the duration of the PIN
diode signal. An analysis of the axial and radial struc-
ture of the plasma region emitting these spectral lines
showed that they were emitted from the three disks that
can be seen in the second layer in Fig. 5. It can also be
seen that images obtained in the Heα resonance and
intercombination lines had sharper boundaries than
those obtained in the satellites.

In shot no. 2057, the intensities of neutron emission
and HXR emission with photon energies above 30 keV
were very low, and the total neutron yield (assuming the
neutron emission to be isotropic) was as low as 109.

Figure 7 shows waveforms of the signals recorded in
shot no. 2074 (cf. waveforms recorded in shot no. 2057
and presented in Fig. 2). The SXR signal detected with
the PIN diode consisted of three pulses with a total
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
energy of ~0.3 J. The FWHM of the first pulse was
35 ns. The instant at which the PIN detector signal
reached its first maximum was assumed to be the zero
time. The second and third pulses (both with an FWHM
of 20 ns) reached their maxima at 120 and 160 ns after
the first maximum, respectively. A dip in the current
time derivative dI/dt was detected 30 ns after the peak
of the first pulse. The frames taken with the optical
camera and the MCP1 detector were exposed at the
trailing edge of the first SXR pulse, whereas the frames
taken with the MCP2 detector were exposed during the
second SXR pulse and at the leading edge of the third
pulse. The time positions of the optical and SXR frames
are marked in Fig. 7 are summarized in Table 2.

In shot no. 2074, the neutron yield was as high as
1011. The position of the neutron pulse in Fig. 7 is
shown with a correction for the time of flight (for a neu-
tron energy of 2.45 MeV). Neutrons emission (which
was detected with the Ne102a scintillator and filtered
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Fig. 2. Waveforms of the current derivative dI/dt, PIN diode
signal, and X-ray signal in the photon energy range higher
than 3 keV (shot no. 2057). Three vertical lines mark the
instants at which MCP1, MCP2, and optical frames were
exposed.

Table 1.  Time positions of frames in Figs. 3–5

Diagnostics Figure Frame Time, ns

MCP1 3 1 84

3 2 94

3 3 104

3 4 114

MCP2 4 1 167

4 2 177

4 3 187

4 4 197

Optical frame 5 1 200

5 2 220
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with a 7.5-cm Pb screen, absorbing γ photons) appeared
during the first SXR pulse and reached its maximum
with an FWHM of 140 ns at 170 ns (during the third
SXR pulse).
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Fig. 4. MCP2 frames (shot no. 2057).
Figure 8 shows two frames recorder by the optical
camera at 36 and 56 ns. The plasma corona was
observed along the entire 7-cm-long wire. The corona
diameter was estimated to be ~3 mm. The region with a
larger diameter corresponds to the plasma shell that
connects the corona with the outer electrode (cf.
Figs. 3, 5).

Figure 9 shows frames obtained with the four quad-
rants of the MCP1 detector. The quadrants were gated
at 35, 45, 55, and 65 ns. One can see a radiating plasma
corona 1–1.5 cm in diameter and 7 cm in length, whose
intensity gradually decreases with time.

Figure 10 shows four interesting frames obtained
with the MCP2 detector. The frames were exposed at
114, 124, 134, and 144 ns (i.e., 80 ns later than those
shown in Fig. 9). Both of the radiating structures (the
wire corona and the helical tube winding around it)
were observed during the second and third SXR pulses,
when the intensity of neutron emission rapidly
increased. The period of the helical tube was 5 cm, and
the diameters of both the tube and the wire corona were
estimated to be ~2 mm. No significant evolution of
either structure was observed over 30 ns. Note that such
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
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Fig. 5. Optical frames (shot no. 2057). The anode is on the left.
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Fig. 6. Plasma image in the spectral lines of He- to F-like Al
ions (shot no. 2057).

behavior is not typical of our experiments with a wire
load. During the neutron pulse, we usually failed to
record SXR images of the plasma because of too week
XUV emission. The photograph obtained in this shot is
the only one from which the pinch structure during the
intense neutron pulse can be inferred.

Figure 11 shows a spectrum recorded with the time-
integrating spectrograph. It can easily be seen that the
lines of H- and He-like Al ions were radiated only from
a spot located a distance of 2 cm from the inner elec-
trode. The lines were radiated during the pulses
detected with the PIN diode. From the fact that there
was no imprint of the helical tube in the K-shell spec-
trum, we can infer that the observed tube radiated in the
L-shell lines, i.e., in the 200- to 300-eV transparency
window of the polyester filter. The intensity of K-shell
emission in this shot was probably weaker than in shot
no. 2057.
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signal, and neutron time-of-fly signal (shot no. 2074). The
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optical frames were exposed.

4. DISCUSSION

Our experiments with a deuterium current-carrying
shell imploding onto an Al wire have shown that the
presence of the Al wire does not substantially affect the
neutron yield. Eight-shot statistics is not quite reliable,
but the neutron yield of 1011 per shot was an absolute
maximum also for shots without a wire. The ionization
of the Al wire considerably decreases the temperature
of the wire corona in the axial region of the pinch, and
the long-lived cold plasma with a diameter of 2–3 mm
probably prevent a decrease in the pinch diameter to
lower than 500 µm in accordance with the theoretical
model [3, 5]. For this reason, fast deuterons could not
be generated near the axis and their source was cer-
tainly located outside this region.

As regards X-ray emission, it was not necessarily
generated together with neutrons. X-ray pulses with
photon energies below 10 keV had a smaller FWHM
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+36 ns
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+56 ns

Fig. 8. Optical frames (shot no. 2074). The anode is on the left.
than neutron pulses, and the maximum of neutron emis-
sion was usually reached later than the maximum of
X-ray emission. This confirms the conclusion made in
[5] that neutron emission follows the formation of hot
spots and agrees with the observation of the second
neutron pulse during the unstable phase on the Posei-
don facility [6]. Electrons with energies above 100 keV
were detected only in some shots, as a rule, together
with a high neutron yield and together with one of the
SXR pulses.

Let us discuss two above shots in more detail. First,
we consider shot no. 2057 (with a low neutron yield).
The images recorded by the MCP1 detector spatially
correlated with the corona region that emitted the lines
of He-like Al ions (see Figs. 3, 6). Therefore, the MCP1
detector imaged the plasma during the pulse of K-shell
emission. Taking into account that we used the same fil-
ter with the PIN detector and the X-ray spectrograph,

Table 2.  Time positions of frames in Figs. 8–10

Diagnostics Figure Frame Time, ns

MCP1 9 1 35

Optical frame 8 1 36

MCP1 9 2 45

MCP1 9 3 55

Optical frame 8 2 56

9 4 65

MCP2 10 1 114

10 2 124

10 3 134

10 4 144
we may conclude that the K-shell Al lines were emitted
in the radial direction from a region with a diameter of
2 cm during the SXR pulse detected with the PIN diode
(see Fig. 6). It can be seen in Fig. 5 that this region of
the wire corona corresponds to the outer plasma layer
with a sausage-like configuration, which therefore lasts
from 100 ns to the exposure of frames in Fig. 5, i.e. up
to 200–220 ns. Hence, we may conclude that this struc-
ture was probably created during the PIN-diode pulse
and the emission of intense kiloelectronvolt radiation
caused a substantial decrease in the plasma tempera-
ture. This long-lived (~100 ns) structure with three little
disks is similar to that observed in the spectral lines (see
Fig. 6). As regards the observed spectrum, Al lines were
emitted from plasma regions with an electron tempera-
ture of 100–150 eV and electron density of ~1020 cm–3.
Thus, the energy density in the radiating plasma was
nkT ~ 107–108 Pa. The satellites were presumably gen-
erated by superthermal electron beams propagating in
the recombining plasma [8]. Apparently, the highest
electron energy was a few keV.

Shot no. 2074 was performed under the same initial
conditions as shot no. 2057; however, the time behavior
of the plasma focus in these shots was quite different.
In shot no. 2074, the PIN-diode signal displayed three
pulses. The emission energies measured by the PIN
diode in these shots were almost the same. Since the
intensity of Al K-shell emission in shot no. 2074 was
lower than in shot no. 2057 (cf. Figs. 6 and 11 and SXR
signals in Figs. 2, 7), we may conclude that, in shot
no. 2074, the intensity of XUV radiation in the photon
energy range of 200–300 eV was much higher. During
the first SXR pulse, photons in the energy range of 200–
300 eV were emitted only from the wire corona (see
Fig. 9). Later (from 100 to 150 ns), radiation was emit-
ted from both the wire corona and the helical tube (see
Fig. 10). The radiating helical tube was probably
formed during the expansion of the wire corona
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
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Fig. 9. MCP1 frames (shot no. 2074).
(between 65 and 110 ns). Its origin is not yet com-
pletely understood; we think, however, that it devel-
oped from the wire corona. The helical tube was fairly
uniform in the longitudinal direction over the entire
time interval during which the intensity of neutron
emission increased. A slow radial expansion of its right
edge was only observed (see Fig. 10).

Having described specific features of plasma evolu-
tion in both shots, we will try to find out what is the rea-
son for the very different neutron yields in these shots.
When the pinch configuration remained compact after
the implosion of the plasma shell onto the wire and did
not undergo dramatic changes (shot no. 2074), the neu-
tron yield was high. On the other hand, when the evolu-
tion of the plasma focus exhibited the onset a few rap-
idly evolving instabilities (shot no. 2057), the neutron
yield was substantially lower. This conclusion may not
have general validity; it only indicates the issues to
which particular attention should be paid in future
research.

As was shown earlier (see, e.g., [3]), the neutron
yield reduces considerably when a weak external axial
YSICS REPORTS      Vol. 31      No. 5      2005
magnetic field is applied to the pinch. However, there
are phenomena that can be attributed to the presence of
a self-generated (internal) magnetic field Bz, e.g., the
existence of the above helical tube or the radial deflec-
tion of proton trajectories observed in [6]. As was
shown in [9, 10], the spontaneously generated magnetic
field Bz should increase the neutron yield. Helical mag-
netic plasma structures possess a higher stability than
those with a dominant azimuthal component. They also
are able to store energy with a high density equivalent
to a pressure of 107–108 Pa in the pinch volume. This
corresponds to a mean magnetic field of higher than
20 T.

The conceptual model presented below assumes that
the generation of fast deuterons is related to the trans-
formation and dissipation of the helical magnetic field
inside the plasma focus after the pinch phase. We sup-
pose that deuterons are accelerated by the induction
electric field that is generated by the rapidly varying
magnetic field. The magnetic field B ≈ 20 T induces the
electric field that accelerates a fraction of deuterons to
an energy of (5–10) × 104 eV, which is necessary for the
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D–D fusion reaction. In our case, the typical velocity
with which the plasma moves across the magnetic field
during the development of instabilities is ~105 m/s. The
accelerating electric field E is then

E = |v × B | = 2 × 106 V/m.

According to [6], the most probable energy of the
fast deuterons in the plasma focus is 5 × 104 eV, which
corresponds to the voltage drop of U = 5 × 104 V. The
path l along which they are accelerated to this energy is
equal to
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Fig. 10. MCP2 frames (shot no. 2074).
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The time t during which the deuterons are acceler-
ated to the velocity v  = 2 × 106 m/s (which corresponds
to a kinetic energy of 5 × 104 eV) is

 ns.

Let us now estimate the diffusion time of the mag-
netic field. During deuteron acceleration, the radiation
intensity is maximal in the photon energy range of 50–
100 eV (XUV range). It follows from this that the
plasma temperature is on the order of 10–20 eV. The
Spitzer conductivity of the deuteron plasma is then γ =
(1–3) × 105 Ω–1 m–1. Hence, the diffusion time of the
magnetic field from regions a few millimeters in size is
[11]

 ns.

This value agrees with the time during which the
experimentally observed structure exists. Collisions
between fast and thermal deuterons by the mechanism
considered in [6] in terms of the gyrating particle model
can produce the observed neutron yield.

5. CONCLUSIONS

Our experiments have shown that the presence of an
Al wire at the end of the inner electrode has no appre-
ciable effect on the neutron yield. The acceleration of
fast deuterons is unlikely to occur in the cold dense
axial plasma region with a diameter below 2–3 mm.

X-ray photons with energies above 3 keV were not
necessarily emitted together with neutrons because the
maximum of neutron emission was usually reached a
few tens of nanoseconds after the maximum of X-ray
emission. In order to more exactly determine the time
at which neutron emission reaches its maximum, it is
necessary to estimate the energy distribution of the
emitted neutrons. Electrons with energies above
100 keV were detected only in some shots, as a rule,
together with a high neutron yield and together with
one of the SXR pulses.

In order to explain the results obtained, we have
assumed that an axial magnetic field is generated in
Z-pinch discharges. In terms of this model, we have dis-
cussed the influence of the self-generated axial compo-
nent of the magnetic field on the acceleration of fast
deuterons and the neutron yield.
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Abstract—The conditions for the formation and stability of helical quasi-crystals in a complex plasma con-
taining dust grains of equal size are investigated. A study is made of both the confinement of such helical struc-
tures in a direction transverse to the cylinder axis by means of an external parabolic potential well and the pos-
sibility of their self-confinement. Computer simulations of the helical dust structures were carried for two cases:
for a structure of infinite length along the symmetry axis (or a closed structure in toroidal geometry) and for a
structure of finite length. The dust grains were assumed to interact through a potential that is a superposition of
the non-Debye nonlinear screened potential and the nonscreened noncollective attractive potential (the Lesage
effect). Molecular dynamics simulations showed that, in the presence of dissipation, any initial random distri-
bution of the dust grains interacting through such a potential in cylindrical geometry evolves to an equilibrium
helical structure. When the external control parameter was varied smoothly, the pitch angle of the helix was
observed to bifurcate (i.e., to undergo sharp jumps). The structure of the helix was also observed to bifurcate
when the external parameter was varied: a helix changed into two interwoven helices, which then changed into
three interwoven helices, etc. The smaller the confinement parameter (and, accordingly, the larger the radius of
the helical structures) and the stronger the attractive forces between the grains, the larger the number of bifur-
cations. The results of analytical calculations of the parameters of the equilibrium structures and of their ener-
gies are in complete agreement with numerical results. It is also shown that noncollective attraction between
dust grains makes it probable that helical structures will exists when the external confinement parameter is zero
or even when it is negative. Bifurcations in such systems may provide the possibility of creating new types of
memory elements. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Up to now, the experimental and theoretical efforts
in the relevant line of research on dusty plasmas have
focused mainly on studying two-dimensional (2D)
strongly correlated structures. The formation of 2D
plane Coulomb quasi-crystals of ultracold atomic ions
was observed in different confinement devices (see,
e.g., [1]), in particular, in Penning and Paul traps and
storage rings [1–5]. Simplest three-dimensional (3D)
structures of atomic ions, such as helical structures and
their particular forms—one-dimensional linear chains
(strings)—were also studied in these devices. Interest
in such structures stems primarily from their applica-
tions in microcomputers.

2D quasi-crystals were also observed in colloids [6,
7] and dusty plasmas (see [8–10]). Among the first
papers devoted to a theoretical description of quasi-
crystals on the basis of the Debye screened potential of
the interaction between dust grains was that by Sch-
weigert and Peters [11]. Although the large grain
charges in such complex systems are nonlinearly
screened, the question of whether this screening is of a
Debye nature at that time remained open [10]. A gen-
eral theory of 2D structures with an arbitrary interac-
tion potential between dust grains was developed by
Amiranashvili et al. [12], who determined the condi-
1063-780X/05/3105- $26.00 0392
tions for the existence of 2D quasi-crystals (clusters)
composed of a small number of dust grains and found
the spectra of their small oscillations.

In most experiments, quasi-crystalline structures are
observed to form in an external parabolic confining
potential well. Experiments with plane quasi-crystals
have revealed the following picture of the formation of
shells as the number N of dust grains increases. First, a
single shell (ring) forms. As N increases, this ring
becomes energetically unfavorable, so a second ring
shell forms inside it. The third shell then forms inside
the second, and so on. In some respects, this structure is
analogous to that of an atom.

In recent years, 3D crystalline structures (plasma
crystals) have been produced in RF discharges [13, 14]
and in dc glow discharges [15]. A distinctive feature of
such crystals is that they contain a large number of
grains, the interaction between which is of a collective
nature. 3D structures composed of a small number of
dust grain (3D clusters) differ from plasma crystals in
that the interaction between the grains in them is non-
collective and is determined by all possible combina-
tions of pairwise interactions.

In the present paper, the properties of 3D cluster
structures are studied both theoretically and numeri-
cally for a simple system of identical grains without
© 2005 Pleiades Publishing, Inc.
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allowance for the plasma dynamics, whose only role is
to set up a certain type of intergrain interaction.

Experiments [6, 7] and numerical simulations [11]
showed that the shells in 3D spherical structures form
in a way analogous to that in 2D plane structures. Spe-
cifically, as N increases, a single spherical shell
becomes energetically unfavorable, so a second shell
forms inside it; the third shell then forms inside the sec-
ond; and so on. It is thus possible to speak of an ana-
logue of Mendeleev’s periodic table of elements: for a
given number N of grains, it is possible to establish
exactly how many grains compose each shell for a par-
ticular type of intergrain interaction.

In long cylindrical systems, the dust grains can be
prevented from expanding in a transverse direction by
a simple type of external potential: the grains can be
confined by a parabolic potential well or at the expense
of solid walls. In such systems, the simplest 3D struc-
ture is a helical structure.

A uniform structure consisting of N interwoven heli-
ces is composed of grains lying in planes that are per-
pendicular to the symmetry axis of the cylinder and are
equally spaced along it at a uniform spacing ∆. In each
plane, the grains lie on a circle (the radii of the circles
in the planes being the same) and generally occur at the
vertices of a regular polygon (N-gon). For two interwo-
ven helices, this is a segment of a straight line (digon)
(see Fig. 1). In the general case, this is an N-gon. In
each pair of neighboring planes, the polygons are
turned through the same constant angle ϕ relative to
one another. For N = 2 (Fig. 1), the two interwoven heli-
ces resemble the DNA helix.

Similar structures of ultracold atomic ions have
been observed in linear systems [1] and in spherical and
toroidal traps [2]. In recent years, such structures have
also been observed to form in dusty plasmas. This is
why the problem about the mechanism for their forma-
tion requires a separate study.

The objective of the present paper is to prove that, in
cylindrical and toroidal systems, a steady dust structure
exists for an arbitrary interaction potential between the
grains. The structure has the form of a helical quasi-
crystal with a fixed period, the constant of the lattice
being determined by the mean number of grains per
unit length of the structure. The limiting case of an
extended helical structure is a 1D linear configuration
(a string).

By varying the external control parameter (e.g., the
number of grains per unit length of the helical structure
or the parameters of the confining potential), a wide
variety of equilibrium configurations can be obtained,
from 1D strings to complex structures consisting of
several interwoven helices.

In this paper, we present results from numerical
investigations of the possibility of forming helical
structures in a complex plasma (i.e., a plasma with dust
grains) and of confining them in a direction transverse
to their symmetry axis by an external parabolic poten-
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
tial well. The constant determining the confining poten-
tial can be arbitrary; in particular, it can be negative. In
this case, however, equilibrium helical structures can
exist only when the interaction between the dust grains
is attractive and is sufficiently strong at large distances
between them. The subject of the investigations is the
problem of how various types of intergrain interactions
affect different equilibrium configurations and their
bifurcations. The investigations were carried out under
the assumption that the interaction between dust grains
can be described by summing all the pairwise interac-
tions (the collective interactions being weak). In order
for such an assumption to be valid, the number of grains
in a 3D structure must be small enough for the mean
free path of the plasma particles that take part in the
charging of dust grains to be much larger than the
radius of the helical structure.

Helical structures of finite length were investigated
numerically under the assumption that the confinement
in the transverse direction is far better than that along
the symmetry axis of the structure.

The results of numerical simulations show that,
regardless of the type of pairwise interaction, any ran-
dom distribution of the dust grains evolves into a helical
structure.

We begin by discussing the question about the inter-
action between the grains. We also touch on the ques-
tions concerning numerical simulations of the dust
grains and present results on the effects that were
revealed numerically, namely, bifurcations of the pitch
angle and global bifurcations (the onset of new shells).
Finally, we discuss analytic methods for investigating
equilibrium helical structures and analyze the role of
attraction between the grains in the formation of self-
confining structures.

Fig. 1. Example of N = 2 helical structure.
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2. INTERACTION BETWEEN DUST GRAINS
IN A PLASMA

Here, we consider the distinguishing features of the
interaction between dust grains in a complex plasma
containing (in addition to electrons and ions) an appre-
ciable amount of dust (or aerosol).

Since the electrons and ions have different mobili-
ties and different temperatures, dust grains in a plasma
acquire a significant charge. For instance, grains with a
radius of about 10 µm can carry a charge of about
104 electron charges. The interaction between each pair
of grains with such a large charge is strong and, when
there are many such grains, the correlations between
them are so close that, under certain circumstances,
they can induce gas–liquid–crystal phase transitions,
i.e., can lead to the formation of spatially ordered struc-
tures analogous to those in liquids or solids. Under such
conditions, the electrons and ions remain in a gas state
but exhibit new correlations that are initiated by the cor-
relations between the grains. The interaction potential,
the shape of which can have a considerable impact on
phase transitions in a plasma, can differ markedly from
that in a classical plasma. The interaction between par-
ticles in a Coulomb plasma is usually described by
using the one-component plasma model or the model
with a screened (Debye) potential, which is often called
the Yukawa model. These models are inapplicable to
most experiments with complex plasmas. For the sake
of comparison, however, we will utilize the Yukawa
model in further analysis.

2.1. Debye Screening

If we regard the dust grains simply as heavy ions
with a large charge, then we can assume that the poten-
tial around a grain is determined by the Debye screen-
ing. In this case, for a ! λD (where a is the grain
radius), the potential of the grain can be represented as

(1)

where ψY is the Yukawa screening (Debye screening)
factor, λD is the Debye length, e is an elementary
charge, and Zd is the grain charge number.

The assumption regarding the Debye screening of
the Coulomb potential can be considered approxi-
mately correct if the grain charge is sufficiently small
and the ratio of the grain radius to the screening length,
as well as the ion-to-electron temperature ratio, is not
too small. The applicability conditions for the Debye
interaction approximation can be presented in an
explicit form. They follow naturally from the possibil-
ity of linearizing Poisson’s equation, which describes
the screening of a charge.

ΦY r( ) ψY

Zde
r

--------
Zde

r
-------- r

λD

------– 
  ,exp= =
2.2. Nonexponential (Non-Debye) Screening

The main serious restriction on the applicability of
the assumption regarding the Debye screening of the
Coulomb potential of a dust grain is associated with the
condition for the ion polarization charge to be linear,
eΦ/Ti ! 1, where Φ is the potential around the grain and
Ti is the ion temperature. At the grain surface, we have
eΦ/Ti ≈ (Zde2/aTe)(Te/Ti) = z/τ @ 1, where τ = Ti/Te and
z = Zde2/aTe.

Under actual experimental conditions, the dimen-
sionless charge z is on the order of unity (for xenon,
which is often used in experiments, this charge is on the
order of 4, and, for argon, it is about 2.8) and the tem-
perature ratio τ = Ti/Te is on the order of 10–2. Conse-
quently, the Boltzmann exponent exp(eΦ/Ti) at the
grain surface can be on the order of 400, so the screen-
ing cannot be described by expanding the potential in a
standard fashion. Under the assumption that the poten-
tial decreases away from the grain surface according to
the law 1/r, the distance from the grain over which the
standard expansion of the potential is valid is one thou-
sand times larger than the grain radius, whereas the
Debye screening length is usually larger than the grain
radius by a factor of only six to ten. This example shows
that the Yukawa potential, which is based on this expan-
sion, is inapplicable to the grain charges observed in
actual experiments. Another quantitative estimate can
be derived from the assumption that the condition
eΦ/Ti ! 1 holds at least at a distance from the grain sur-
face equal to the Debye screening length, i.e., that there
exists a certain region (at least, at distances from the
grain surface that are on the order of or larger than the
Debye length) to which the linear approximation is
applicable. As a result, we can arrive at the inequality
Zd ! 3ND, i where ND, i is the total number of ions in the
Debye sphere. This inequality is actually satisfied for
an individual ion in a plasma; in this case, the grain
charge Zd can be replaced by unity and the condition
ND, i @ 1 usually holds (by the definition of a weakly
correlated plasma). For a dusty plasma, the grain charge
Zd is on the order of Zd ≈ 103–105, whereas the quantity
ND, i is about ten, so the inequality in question fails to
hold. In practical units, the applicability condition for the
assumption of the Yukawa screening can be written as

(2)

In experiments, the ion density lies within the range
108 cm–3 < ni < 109 cm–3, so this inequality does not
hold. The solution to the problem about the nonlinear
screening under the inequality opposite to inequality
(2) is known (see [16]); unfortunately, however, it has
often been ignored in describing the screening of the
grain charge. In the present paper, the approach devel-
oped in [16] is simplified and a simpler solution is

Zd ! 52
10

9
 cm

3–

ni

--------------------- 
  .
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obtained that is more suitable for numerical simula-
tions.

We introduce the screening factor ψ(r) into the dust
grain potential Φ = (Zde/r)ψ(r/λDi), where λDi =

 is the ion Debye length, which is equal
to the total Debye screening length in the limit τ ! 1.
Poisson’s equation can then be written as the equation
for the screening factor [16]:

(3)

where the distance r from the grain is normalized to the
ion Debye length. The function R(ψ) describes the non-
linear screened potential. In the Yukawa approximation,
we have R(ψ) ≈ ψ, so solution (3) becomes ψ = exp(–r).
According to [17], the interval of integration over ion
velocities should be restricted by the condition that the
only ions that screen the dust grain potential are those
capable of reaching the grain from infinity, miv 2/2 >
−eΦ. As a result, we obtain

(4)

The last term in parentheses in the first of expres-
sions (4) is the electron contribution, which is on the
order of unity. The limit xi ! 1 corresponds to the
Yukawa approximation. Recall that, at the grain sur-
face, we have xi = z/τ ≈ 400 – 200. Figure 2 shows the
Yukawa approximation R(ψ) ≈ ψ, as well as the poten-

tial I(x) and its asymptotic form Ias(xi) = 2
(which is valid in the limit xi @ 1) over a wide range of
x values, from 0.1 to 400.

According to Fig. 2, the exact expression for the
potential I(x) can be approximated by the function Ias(x)
over a broad range of x values. Equation (3) can then be
simplified by renormalizing the distance r:

(5)

Numerical investigations of this equations show that
its solution differs significantly from the Yukawa solu-
tion. Specifically, at short distances from the grain, the
screening factor ψ is larger than the Yukawa screening
factor (this corresponds to stronger screening), but, at a
finite distance (say, at r0), it becomes zero. This prop-
erty of the screening factor is important for two rea-
sons. First, the Yukawa exponent is usually not too
small when the intergrain interaction is taken into
account. Second, if the screening factor approaches
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zero at a finite distance from the grain, then all other
relatively weak collective effects such as collective
grain attraction become dominant (roughly speaking,
their contributions should be compared to zero rather
than to a small exponent). Solution (5) depends on the
choice of the boundary conditions at the grain surface
r = a. One of the boundary conditions is simply ψ(a) = 1
and the other is that for the magnitude of the derivative
of the screening factor at the surface.

We choose this derivative to be negative and then
adjust its value iteratively in such a way that the
decrease in the solution at short distances does not
become an increase in its value at longer distances and
the solution itself does not fall below zero (i.e., does not
become negative, which is physically meaningless).
The first derivative of ψ at the grain surface, which
determines the screening near the grain, can thus be cal-
culated numerically with an accuracy of six digits to the
right of the decimal point (see Fig. 3, which displays
exact and approximate solutions for the nonlinear
screening). For distances at which the screening factor
ψ becomes close to zero, Eq. (5) fails to hold and its
solution should be matched with the linearized Yukawa
solution.

The main result is that the solutions should be
matched at a finite distance from the grain surface,
namely, at a distance at which the grain charge is
screened almost completely, so the remaining non-
screened charge is only about 10–3 that of the grain.

100

0 100
x

50

200 300 400

Ias(x)

I(x)

Yukawa

Fig. 2. Function I(x) (solid curve) and its analytical approx-
imation Ias(x) (dotted curve, which almost coincides with the
solid curve). The dashed curve corresponds to the Yukawa
approximation and is seen to differ considerably from the
first two curves. The difference between the curves I(x) and

Ias(x) is quite insignificant: it can only be seen at  ! 1.
Such a remarkably close coincidence between the curves
I(x) and Ias(x) over almost the entire range of x values, in
which the nonlinearity of the screening is important, is used
to construct an approximate model of nonlinear screening.

x
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Under these conditions, the Yukawa screened potential
exhibits a tail, whose effect, however, turns out to be
insignificant in comparison to the other effects that
occur in all types of grain–grain interaction and that
were ignored up to this point. In order of magnitude, the
ratio between the attractive interaction potential and the
nonscreened central-force interaction potential is (1–

10)a2/ . For certain degrees of ionization of a plasma
containing a large number of neutral atoms and dust
grains with rough (irregular) surfaces, the coefficient of
attachment of neutrals to grains is fairly large. The ratio
of the contribution from the grain attraction effects to
that from the Coulomb repulsion effects can be as large
as unity or even greater. However, the attraction effects
are usually important at long distances, while the Cou-
lomb effects are essential at short distances. Conse-
quently, in our analysis, the tail of the Yukawa potential
at r @ r0 plays an insignificant role, so we can assume
that the Coulomb screened potential vanishes at dis-
tances longer than the distance r = r0, at which the solu-
tion becomes zero, ψ = 0. The interaction model can be
further simplified by making the replacement r = r0 on
the right-hand side of Eq. (5).

Having made this replacement and having renor-
malized the distances in the above manner, we write
Eq. (5) in the form

(6)

λDi
2

d
2ψ r( )
dr

2
----------------- ψ r( ).=

1 2 3
x

0.5

0

1.0
ψ

Fig. 3. Screening factor ψ as a function of distance x ≡ r
from the grain. The solid curve shows the solution to exact
equation (5) for the screening factor, and the dotted curve
describes the approximate solution (1 – (x – a)/3.4)4, where
the distances are normalized in the same manner as in
expression (7) and the numerical coefficient is obtained
from the condition for the approximate solution to give a
best fit to the exact solution and differs only slightly from
the numerical coefficient that enters expression (7) and is
found by bringing this expression into correspondence with
the asymptotic solution at r  r0.
Equation (6) has analytic solutions that possess the
same qualitative properties as the solution to Eq. (5).
Taking into account the fact that the potential should
decrease with distance and using the boundary condi-
tion ψ(a) = 1 and the asymptotic solution to Eq. (5) at
r  r0, we find

(7)

where the distance is normalized to λDi .

As a result, we arrive at the following approxima-
tion for the screening factor:

(8)

A comparison of solution (8) to solution (7) (see
Fig. 3) yields the numerical coefficient in the expres-
sion for λscr:

(9)

At distances of r > λscr, the attractive forces usually
play a dominant role. Expression (9) means that, under
actual experimental conditions, λscr is about (8–10)λDi .
The quantity λscr is close to the spatial separation
between the grains in a dust plasma crystal.

Solution (8) was used in our numerical simulations.
For comparison, we also carried out calculations for the
Yukawa screening factor

(10)

For the Yukawa interaction, we have DY = 1/λDi , so,
in order to compare the nonlinear screening with the
Yukawa screening, it is necessary to keep in mind the fact
that the screening distance D = 1/λscr in solution (8) is ten
times less than the Yukawa distance DY in solution (10)
(for the actual experiments, at least).

2.3. Noncollective Grain Attraction Model

Since the electrons and ions have different mobili-
ties, dust grains in a plasma rapidly become charged.
Thus, the charge of micron-size grains can be fairly
large, up to about 106 electron charges. For this reason,
the grains should strongly repel each other. Numerous
experimental data, however, give evidence of the exist-
ence of attraction between the grains, which results, in
particular, in the formation of compact dust clouds.

One of the models of long-range forces of attraction
between like charges is the model of noncollective
attraction due to the shadow effect [18].

The model suggests that a plasma flux forms around
an isolated dust grain that converges radially to the
grain surface, where the ions recombine. Any other
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object (e.g., another grain) in the vicinity of the test
grain experiences a drag force that attracts it to the test
one. When the plasma density is sufficiently low, the
volume recombination is negligible, so the conserva-
tion of the total flux implies that the velocity of charged
particles in the converging flux and, accordingly, the
attractive force decrease in inverse proportion to the
square of the distance. This attraction mechanism is
known as the Lesage gravity, because it resembles that
proposed by George Louis Lesage in formulating his
universal law of gravitation.

As may be seen, this attraction model does not
include the screening effects and thereby assumes that
the attractive force is not screened at all. However, in
order to describe the noncollective attraction in terms of
screening, the usual practice is to introduce the screen-
ing factor ψatt through the relationship (Φ(r) ≈
ψatt(Zde/r)). The screening factor ψatt is negative (ψatt =
–α) and constant because the contribution of the
shadow effect is inversely proportional to the shadow
solid angle and the attractive potential is proportional to
1/r. For a shadowed ion flux, the quantity α is equal in

order of magnitude to a2/ . The shadow effects asso-
ciated with a neutral atom flux depend on both the coef-
ficient of attachment of atoms to a grain and the gas
pressure. Under typical experimental conditions
(namely, for an attachment coefficient on the order of
10–4 and a pressure corresponding to a neutral-to-ion
density ratio on the order of 106), the attractive force
driven by the neutral particle flux is of the same order
of magnitude as that driven by the ion flux. When, how-
ever, the attachment coefficient is on the order of 10–2

or even larger (for fractal-shaped grains with irregular
surfaces), the neutral-flux-related attraction is predom-
inant; in this case, the quantity α may be on the order of
unity.

2.4. Interaction Potential Model

In computer simulations, we used the normalized
intergrain interaction potential

(11)

Here, the potential is expressed in units of ,
and the radial coordinate r is given in units of the dis-
tance (spacing) ∆ between the planes of the helical
structure. The approximation used for the nonlinear
screening in this expression implies that the grain size
is much less than the distance between the planes.

In the limiting case D = 0 and α = 0, expression (11)
describes the Coulomb interaction.

We will compare potential (11) with the Yukawa
screened potential of the interaction between the grains
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with (α ≠ 0) and without (α = 0) allowance for attrac-
tion:

(12)

This comparison is meaningful only for the parameter
values such that D ! DY , e.g., for D = 0.1DY .

3. NUMERICAL SIMULATIONS

Here, we describe the results from simulations of a
system of charged dust grains that are initially distrib-
uted in space in a random manner and interact by means
of the above potentials.

We consider a system consisting of a large number
of likely charged dust grains of the same radius a that
are prevented from expanding by an external potential
well U(r⊥ ). Near the bottom of an axisymmetric poten-
tial well, the confining potential can always be approx-

imated by a parabolic potential, Ufoc = – (x2 + y2),

where K is a confinement constant (parameter), which
depends on the parameters of the trap (the case of self-
confinement of dust grains by attractive forces corre-
sponds to K ≤ 0).

In most experiments, the grains are confined by an
external potential well; however, the confinement
parameter K can in principle be varied over a wide
range, including the range of its negative values, K ≤ 0.

In simulations, we utilized the standard technique of
molecular dynamics for a one-component plasma. The
equation of motion of the nth grain has the form

(13)

where rk is the coordinate of the kth grain. This equation
implies that the interaction between the grains is
described by summing all their pairwise interactions
and that the collective interactions are ignored.

3.1. Periodic Boundary Conditions

Let us consider an axisymmetric grain system with
an infinite length along the z axis. It is convenient to
perform simulations for a cylindrical system with peri-
odic boundary conditions. Although the problem so for-
mulated does not allow aperiodic solutions, there are
several arguments supporting this approach. An actual
system (a circular toroidal trap, for example) is always
finite; in the case under consideration, however, the
radius of the torus is assumed to be infinity large, i.e.,
the toroidal curvature is ignored.

The initial grain positions were chosen randomly.
We considered a system of 400 grains and tested the
results obtained against the results calculated for N =
1000. The sums were calculated by a standard method
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Fig. 4. Configurational bifurcations of the structures that occur as the radial confinement parameter is decreased.

Fig. 5. Grain distribution obtained by the molecular dynamics method for a finite system of grains confined in the z direction by a
parabolic potential at a very large value of the radial confinement parameter.
similar to the Ewald method [19, 20]. The temperature
was calculated as the mean kinetic energy. In order for
the system to be capable of evolving to a steady equi-
librium state, we introduced friction into the model.
The case of purely Coulomb interactions was investi-
gated by Hasse and Schiffer [20].

For all the interaction potentials that were consid-
ered in our analysis (namely, those given by expres-
sions (11) and (12) with different values of the param-
eters α, D, and DY), the simulations yielded final one-
shell equilibrium configurations in the form of N inter-
woven helices with a constant pitch angle and a con-
stant spacing between the lattice planes z0. No other
one-shell equilibrium configurations were obtained.

We thus computed a family of steady states for dif-
ferent values of the external parameter K.

For purely Debye screening (α = 0 and z0/λDi = 0.1),
we decreased the value of the confinement parameter K
and observed the following sequence of bifurcations:
helix I  tetrahedral configuration (a limiting case of
an N = 2 helix with the maximum possible turning
angle equal to π/2  helix I  tetrahedral configu-
ration  helix II  helix I  helix III  N = 3
helix with the maximum possible turning angle equal to
π/3 (see Fig. 4).

After this, we observed the formation of a second
shell: first, a string formed within a primary helix; then,
this string also transformed into a helix. Thus, there
were two nested shells, each consisting of several inter-
woven helices.
It should be noted that, for some values of the exter-
nal parameter, helical configurations were observed to
evolve to different shapes, depending on the initial
positions of the grains.

Hence, our computer simulations showed that, in the
3D case under analysis, the simplest configurations are
helices (one helix or two, three, etc., interwoven heli-
ces), which are analogues of the simplest configura-
tions (regular polygons) in 2D plane geometry.

Note that mechanisms for such jumplike transitions
from one type of helix to another are not completely
clear.

It is, however, obvious that, under conditions in
which the repulsive interaction of the grains with their
nearest neighbors is predominant, the turning angle
between two neighboring planes is equal to π/N. Con-
sequently, as the confinement parameter K decreases,
interactions with remote grains begin to play an
increasingly important role, so the bifurcations can be
strongly influenced by the character of screening
(either the Yukawa or nonlinear screening) and also by
the nonscreened attraction. Generally, both these
effects increase the number of bifurcations (i.e.,
decrease the difference between the values of the con-
finement parameter at which two subsequent bifurca-
tions occur); this is indeed confirmed by our numerical
simulations.

3.2. Finite Systems

The results that have been obtained for infinite sys-
tems are, strictly speaking, inapplicable to actual finite
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005



HELICAL STRUCTURES IN COMPLEX PLASMA I: NONCOLLECTIVE INTERACTION 399
(‡)

(c)

(b)
(d)

x

y
R

z

Fig. 6. Results of molecular dynamics simulations for the Yukawa screened potential with DY = 0.1 for K = (a) 3, (b) 1, (c) 0.45, and
(d) 0.3. For illustrative purposes, the scales along the axes in the (x, y) plane are 40 times larger than that along the z axis.
systems; qualitatively, however, the regular features
revealed above are also characteristic to the latter.

In our simulations, we analyzed several different
models of systems of finite dimensions.

3.2.1. Confinement in the z direction by a para-
bolic potential well. As in the case of infinite systems,
we introduced friction into the model in order to
achieve a steady equilibrium state.

We simulated axisymmetric finite grain systems for
which the confining potential well had the form
U ~ −1/2(d(x2 + y2) + z2) and the intergrain interaction
potential was given by expression (11). Figure 5 illus-
trates the results of simulation of a finite chain of
80 grains that is in equilibrium in this potential well at
a large value of the radial confinement parameter (all
the existing analytic formulas for describing the grain
distribution in such a chain are valid only approxi-
mately). It can be seen that the distance between the
grains increases in the region where the axial confine-
ment (along the z axis) becomes essential.

Figure 6 shows how a grain system evolves as the
external parameter (the radial confinement constant) is
decreased.

In this figure, we present the results from simula-
tions of a system of 80 grains interacting through the
Yukawa potential with DY = 0.1. The calculations were
carried out for α = 0 and K ≈ (a) 3, (b) 1, (c) 0.45, and
(d) 0.3. For illustrative purposes, the scales along the
axes in the (x, y) plane are 40 times larger than that
along the z axis.
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We can see from Fig. 6 that the grain system evolves
through all of the above stages: from a string to a sys-
tem of several interwoven helices. Because of the dif-
ferent line densities (the density per unit length in the z
direction), all these stages were often observed to occur
simultaneously.

3.2.2. Solid walls. Let us consider an axisymmetric
grain system in which the confining potential is propor-
tional to U ~ –1/2(d(x2 + y2) + z2L). For L @ 1, we deal
with a system that is bounded in the z direction by solid
walls. In this case, in contrast to the case of confine-
ment by a parabolic potential well, the grain density
near the ends of the cylinder is higher than that in its
center. This is why the bifurcation process starts pre-
cisely at the ends. If we now consider the confinement
potential in the form U ~ –1/2(d(x2 + y2)M + z2L), we
will be dealing with a system bounded by a cylindrical
solid wall in the transverse direction and by solid walls
along z. In such a system, the grains immediately
occupy such positions that the distances between them
are the largest. The calculations were carried out for
L = 40 and M = 40. The cylindrical wall in fact deter-
mines the radius of the structure. Accordingly, the type
of structure is determined by its radius. For a cylinder
of very small radius, we arrive at structures similar to
those shown in Fig. 7.

In the problem as formulated, the structures are
fairly difficult to classify, but it is possible to draw an
analogy with infinite structures. As may be seen, the
system evolves through all of the above stages: a string
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N = 100

N = 80

Fig. 7. Results of molecular dynamics simulations for confinement by solid walls at the cylinder ends (L = 40). The numbers of
grains is N = 80 and 100.
changes into a zigzag, which in turn transforms into a
helix as the external parameter changes. This bifurca-
tion process starts at the point at which the grain density
is higher. For the case of Fig. 5, the bifurcations start at
the center of the string; for the case with solid walls, the
bifurcational evolution begins at the cylinder ends. For
a higher density, at which z0 is smaller and the dimen-
sionless diameter u = 2R0/z0 is larger, the conditions
favorable for bifurcations of such grains are attained
sooner. The values of the external parameter at which a
string bifurcates into a zigzag were estimated for an
infinite grain system with the same density as that at the
center of a finite system; the estimate obtained turns out
to be fairly realistic.

4. HELICES

Since in numerical simulations (as in experiments),
steady configurations are observed that have the form
of a helix with a constant period and a constant pitch
angle, it is reasonable to try to analytically describe
only this type of configurations.
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Let us consider a system of N interwoven helices
with a constant period. To do this, we substitute into the
general equation of motion (13) the coordinates of the
grains that have already formed such a system. In this
case, several different equilibrium states are possible. It
can be shown, however, that, among all possible equi-
librium configurations, the one in which the grains in
the (x, y) plane are at the vertices of a regular polygon
has minimum energy and, accordingly, is most stable.
This is why we restrict ourselves to considering only
such configurations.

The configurations of interest can be represented as
follows:

……………………………………………………

where z1, n = z2, n = z3, n = … = zN, n = z0Nn. Hereinafter,
we assume that the grain density along the z axis is con-
stant; i.e., there are N0 grains over an interval of length L.
For an N = 1 helix, we have z0 = L/N0.

For the same linear grain density as in an N = 1
helix, the charged grains in a system of N interwoven
helices are separated along the z axis by the distance
Nz0.

The rest of the notation is as follows:
R1, n = R2, n = R3, n = … = RN, n = R = const is the

radius of a system of N interwoven helices;
α = 2π/N is the angle between each two neighboring

grains at the vertices of a regular N-gon in the same
(x, y) plane; and

ϕ1, n = ϕ2, n = ϕ3, n = … = ϕN, n = ϕn is the turning
angle of the nth plane (where ϕ is the angle through
which the polygons formed by the grains in the neigh-
boring planes are displaced relative to one another in
the (x, y) plane).

We are considering the equilibrium conditions for a
helical structure that does not rotate as a whole (  = 0)
because it is always possible to pass over to a frame of
reference in which the structure is nonrotating.

The conditions for the existence of a steady equilib-
rium state have the form

(14)

r1 n, x1 n, y1 n, z1 n,, ,( )=

=  R1 n, ϕ1 n,( )cos R1 n, ϕ1 n,( )sin z1 n,, ,( );

r2 n, x2 n, y2 n, z2 n,, ,( )=

=  R2 n, α ϕ 2 n,+( )cos R2 n, α ϕ 2 n,+( )sin z2 n,, ,( );

r3 n, x3 n, y3 n, z3 n,, ,( )=

=  R3 n, 2α ϕ 3 n,+( )cos R3 n, 2α ϕ 3 n,+( )sin z3 n,, ,( );

rN n, xN n, yN n, zN n,, ,( )=

=  RN n, N 1–( )α ϕ N n,+( ),cos(
RN n, N 1–( )α ϕ N n,+( )sin zN n,, );

ϕ̇

∂U
∂ϕn

--------- 0;
∂U
∂Rn

--------- 0;
∂U
∂zn

------- 0.= = =
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As may be seen that there is in fact only one equilib-
rium condition,

because zn and ϕn always satisfy the force balance equa-
tion.

A full analysis of the properties of a helix and its lin-
ear stability is a fairly complicated task and is to be
done separately. This is why we perform here only a
qualitative analysis of the possible types of stable con-
figurations and the evolution from one structure to
another when one or several external parameters are
varied.

In order to study this problem, we utilize the follow-
ing familiar mechanical principle: in a stable equilib-
rium state, the system has a minimal potential energy.
Systems with dissipation naturally evolve into this
state.

When the grains in such configurations interact
through potential (11), the energy of each grain can be
written as

(15)

where

For convenience, we have introduced the notation

u = , where R is the radius of the helix.

Accordingly, for interactions through the Debye
screened potential given by expression (12), the energy
per grain is equal to

(16)

Since the infinite sums in these two expressions for
the grain energy diverge, it is meaningful to calculate
only the difference between the energy of N interwoven
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helices and the energy of a string,  – Estring. This
allows us to set aside problems associated with the
divergence of the infinite sums.

For a helix, the condition under which the energy
takes an extremal value has the form

(17)

The stability analysis requires knowledge not only
of the extremal value of the energy but also of its mini-
mal value. The corresponding criterion has a definite
physical meaning: it gives nothing more than the mini-
mal energy per elementary cell, or, in other words, a
minimum in the Madelung energy.

Equation (17) yields phase diagrams in the (u, ϕ) plane.
The situation in which two or more different values of
the variables (u, ϕ) correspond to one value of the exter-
nal parameter K will be regarded as a bifurcation. As
will be clear later, the smaller the confinement parame-
ter K, the larger the number of possible bifurcations.

On the other hand, the expression for the external
parameter K is determined by the radial force balance
equation. Consequently, the parameter K depends to a
greater extent on the radius of the structure and on the
type of the intergrain interaction potential. In the sim-
plest cases, the parameter K is inversely proportional to
the dimensionless radius u of the structure. This is why
it is convenient to classify structures in terms of their
radius: the larger the radius of the structure, the larger
the number of possible bifurcations. We thus have

(18)

where

In contrast to molecular dynamics simulations, in
which the equilibrium values of the variables (u, ϕ)
were calculated from the preset values of K, it is now
expedient to carry out simulations in exactly the oppo-
site way: to calculate the external parameter K from for-
mula (18) with the preset equilibrium values of (u, ϕ).

Since the intergrain interaction potentials can be not
only repulsive but also attractive (see the above discus-
sion of this latter point), there may also exist equilib-
rium structures for negative K values.

If radial force balance conditions (14) and condi-
tion (17) for the existence of an extremum yield the
equilibrium values of (u, ϕ) at K ≤ 0, then self-confining

EN–helix

∂E
∂ϕ
------ 0.=

K
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  α– .
structures, including those in the absence of any exter-
nal potential (K = 0), are possible too.

The stability condition for a configuration is the
condition for its energy to be minimal. Accordingly, for
a two-parameter equation, the minimum-energy condi-
tions have the form

(19)

For intergrain interaction potential (11), we find

(20)

where

Finally, we obtain

(21)

We thus have determined the minimum of the Made-
lung energy.

5. NUMERICAL SIMULATIONS 
OF EQUILIBRIUM HELICAL STRUCTURES

It is important to emphasize the following general
features of the structures that have been revealed by
both molecular dynamics simulations and numerical
calculations based on analytical formulas:

The results of molecular dynamics simulations
show that any random grain distribution evolves into

Eϕϕ Euu EuϕEϕu– K ' u ϕ,( ) 0,>≡
Eϕϕ F ' u ϕ,( ) 0.>≡

F ' u ϕ,( )

=  
1
2
---V1 ∆rl k,( )u

2
l

2
1 lϕ

2
----- πk

N
------+ 

 sin 
  2

–
l 1=

∞

∑
k 0=

N 1–

∑

+
1
2
---V2 ∆rl k,( ) u

2
l

lϕ
2
----- πk

N
------+ 

  lϕ
2
----- πk

N
------+ 

 cossin
2

,

V2 r( )

=  
3

r
5

---- 1 Dr–( )2
1 2Dr D

2
r

2
+ +( )1

2
--- 1 1 Dr–

1 Dr–
------------------+ 

  α– .

K ' u ϕ,( ) F ' u ϕ,( ) 2K u ϕ,( ) ∫–=

+ u
2

1 δN 1,–( ) V2 ∆r0 k,( ) πk
N
------ 

 sin 
 

4

k 1=

N 1–

∑

+ 2u
2

V2 ∆rl k,( ) lϕ
2
----- πk

N
------+ 

 sin 
  4

l 1=

∞

∑
k 0=

N 1–

∑

– 2V1 ∆rl k,( ) V2 ∆rl k,( )u
2 lϕ

2
----- πk

N
------+ 

 sin 
  2

+
l 1=

∞

∑
k 0=

N 1–

∑

× lu
lϕ
2
----- πk

N
------+ 

  lϕ
2
----- πk

N
------+ 

 cossin

2

.

PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005



HELICAL STRUCTURES IN COMPLEX PLASMA I: NONCOLLECTIVE INTERACTION 403
one of the possible steady helical structures. No finite
configurations other than helical structures were
obtained. On the other hand, it is obvious that, for any
type of interaction potential, there exists a steady heli-
cal configuration with a constant period, the constant of
the lattice of such a quasi-crystal being determined by
the mean number of grains per unit of length along the
symmetry axis. As the depth of the external confining
potential (the confinement parameter) decreases, the
patterns of the grains in the (u, ϕ) plane begin to bifur-
cate. For the same K value, a system of N interwoven
helices can be in one of several possible equilibrium
states. When the interaction between the grains is
attractive, they can form steady helical structures in the
absence of an external confining potential and even in
the presence of a parabolic repulsive potential.

5.1. Dynamics of the Onset of Bifurcations

Figure 8 shows a typical dependence of ϕ on u =
2R/z0. We can see that, for sufficiently large u values, ϕ
can take on several different values, whose number
increases with u. As the parameter u is smoothly
changed, bifurcations occur suddenly. They can serve
as marks in the helical structure and thereby can pro-
vide a method for storing information.

Each type of the interaction potentials under consid-
eration was simulated for different values of the param-
eters D and α. The curves in (u, ϕ) plane that corre-
spond to the minimal Madelung energy are qualita-
tively similar in shape, but the instants at which
bifurcations occur, their number, and their sequence all
depend on the values of these parameters (as a rule, the
number of bifurcations increases with the screening
distance D and with the grain attraction coefficient α).
Even for D ≥ 0.3 and α = 0, the grains in the structure
that has undergone two or three bifurcations are almost
insensitive to their neighbors, so the radius of the struc-
ture becomes uncertain, i.e., the slope of the curve
∂E/∂ϕ in the vicinity of the point where ∂E/∂ϕ = 0
becomes very gentle and small perturbations in equilib-
rium produce large grain displacements. In this case,
the minimum energy states are only slightly pro-
nounced and any state of the system is close to an indif-
ferent equilibrium state. However, when there is even a
weak long-range interaction (for instance, an attractive
interaction such that D ≥ 0.3 and α = 0.001), the energy
states of the system are very different. For D = 0.1, the
attraction effect is far weaker. Consequently, there
exists a certain critical value of the parameter D above
which the attraction is fairly strong. The situation with
the Yukawa screened interaction is analogous: in this
case, the critical value of the parameter DY is equal to
three (a comparative discussion of the Yukawa screen-
ing and nonlinear screening will be given below).

In order to describe the grain system graphically, it
is convenient to plot the bifurcation curves and the fam-
ily of the characteristic curves of the equilibrium equa-
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tion (which are obtained by determining the K values
from formula (18) with the equilibrium values of u and
ϕ) in the same figure. The resulting plot can thus be
conveniently scaled by the value of the external param-
eter K of the system.

Figure 9 illustrates the extremal-energy condition
for a helical structure (the stable branches are given by
heavy solid curves, and the unstable branches are given
by heavy dashed curves) and also shows the contours of
the constant value of the parameter K by light dashed
curves. The calculations were carried out for the
Yukawa screened potential with DY = 0.1 and α = 0. For
such a low screened potential, there are a large number
of branches and many bifurcations.

It is also possible to graphically demonstrate the dif-
ference between the bifurcation curves calculated for
different types of interaction potentials with different
values of D and α. For α > 0, the equilibrium is possible
for the values of the external parameter lying in the
range K ≤ 0 (see Fig. 10). This indicates that the grains
interacting by means of attractive forces can evolve into
steady structures in the absence of an external confining
potential. Nevertheless, in order to obtain a conclusive
answer to the question about the stability of such struc-
tures, it is necessary to conduct a separate study in
which account should be taken not only of criteria (19)
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Fig. 8. Solutions in the phase plane composed of two coor-
dinates: the angle ϕ through which the polygons formed by
the grains in the neighboring (x, y) planes are displaced rel-

ative to one another and the dimensionless diameter u = 

of the helical structure (here, z0 is the spatial separation in
the z direction between the grains in the neighboring planes
and R is the radius of the helix). The Roman numerals I, II,
III, IV, … correspond to different branches of the equilib-
rium solutions describing a helix (zigzag, helix I, helix II,
helix III, etc.). As the external confinement parameter K
decreases, a pair of new equilibrium positions appear, one
of which (as well as the corresponding branch of the solu-
tions) is unstable (dashed curves) and the other is stable
(solid curves). The calculations were carried out for D = 0.1
and α = 0.
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(in the case at hand, they are also satisfied for continu-
ous curves in the range K ≤ 0) but also of the stability
criteria for different modes.
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Fig. 9. Contours of the constant value of the equilibrium
parameters of helical structures in a system of grains that
interact through the Yukawa screened potential and do not
experience attractive forces. The calculations were carried
out for N = 1, DY = 0.1, and α = 0. The stable branches are
shown by heavy solid curves, and the unstable branches are
shown by heavy dashed curves. The contours of the con-
stant value of the parameter K are given by light dotted
curves; curves A, B, C, and D were calculated for K = 0.009,
0.005, 0.0025, and 0.0015, respectively.
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Fig. 10. Contours of the constant value of the equilibrium
parameters of helical structures in a system of grains that
interact through the Yukawa screened potential lower than
that in Fig. 9 and are subject to attractive interactions. The
calculations were carried out for N = 1, DY = 1, and α =
0.01. The stable branches are shown by heavy solid curves,
and the unstable branches are shown by heavy dashed
curves. The light dotted curve is for K = 0.
From Figs. 9 and 10, we can see that several equilib-
rium conditions can be satisfied for the same value of
the external parameter. The smaller the external param-
eter, the larger the number of possible equilibrium con-
ditions. Most likely, the grain system will try to evolve
into a steady configuration that is most favorable from
the energy standpoint, but whether or not this will occur
depends, of course, on the initial grain distribution and
on other parameters of the system. This will inevitably
occur, however, if there is any dissipation in the system.
Figures 9 and 10 also clearly illustrate how one grain
configuration bifurcates into another.

Let us examine in detail all phase transitions that
were revealed in our numerical simulations. To do this,
we analyze the final steady configurations.

We begin our analysis with a string, which is a lim-
iting case of an N = 1 helix.

5.1.1. String. We consider an infinitely long chain
of charged grains separated by the same distance z0. In
this case, the solution to Eq. (13) can be represented as

In Fig. 8, our analysis begins immediately with a
zigzag—a particular case of an N = 1 helix in which
the angle ϕ (i.e. the angle through which two neigh-
boring grains are displaced relative to one another in
the (x, y) plane) is equal to π. Let us estimate the param-
eter values at which a string bifurcates into a zigzag.
From the above analysis, it is logical to conclude that
this bifurcation should occur when the energy per grain
in a string becomes equal to that in a zigzag:

We can obtain from this the stability condition (or,
more correctly, the instability criterion), i.e., the value
of the external parameter K at which the string becomes
unstable (for certain types of interactions, this value can
be explicitly expressed in terms of special functions).

For particular D and α values, it is an easy matter to
compare the K value so obtained with that found from
an analytic formula in accordance with [21].

5.1.2. Zigzag. We have shown above how to derive
the value of the external confinement parameter at
which a string becomes a zigzag. Let us now estimate
the value of this parameter at which a zigzag changes
into a helix of the general form. To do this, we must
determine when the extremum (minimum) point
(EϕϕEuu – EuϕEϕu > 0, Eϕϕ > 0) of the potential energy
becomes a saddle point (EϕϕEuu – EuϕEϕu < 0). Applying
the corresponding formula to each particular type of
interaction, we can then find the values of u and, conse-
quently, the values of the external parameter K, at
which a bifurcation occurs [21] (e.g., for purely Cou-
lomb interaction, we obtain u = 0.965).

5.1.3. N = 1 helix. We can see that an evolving N = 1
helix actually loses its stability only when it undergoes
a Y-type bifurcation, namely, a zigzag  helix I bifur-

rn 0 0 zn, ,( ) 0 0 z0n, ,( ).= =

Ezigzag Estring– 0.=
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cation. In this case, the solution ϕ = π becomes unstable
and splits into two symmetric branches: stable and
unstable. This is most clearly seen by looking at the
evolution of the function F(ϕ) = ∂E/∂ϕ when the
parameter u is increased step by step (see Fig. 11,
which was obtained for the Yukawa screened potential
with DY = 1 and for N = 1 and α = 0, and Fig. 12, which
was obtained for the nonlinear screened potential with
D = 0.1 and for N = 1 and α = 0; recall that, for the same
values of the physical parameters of the system, the
coefficient D is approximately ten times less than the
coefficient DY). Note that, for the chosen examples of
the Yukawa screened potential and nonlinear screened
potential, the state of a homogeneous chain is always
unstable, even for small u values (in contrast to a Cou-
lomb system). This conclusion is logical, since the
derivative of the function just introduced, ∂F/∂ϕ, is pos-
itive at ϕ = 0 and is negative at ϕ = π. However, as the
parameter u increases above a certain critical value, the
function begins to exhibit a small maximum in the
vicinity of ϕ = π, so another stable solution arises such
that the derivative of F(ϕ) in the region ϕ < π is positive,
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Fig. 11. Function F(ϕ) for different values of the parameter u.
The calculations were carried out for the Yukawa screened
potential with DY = 1 and for N = 1 and α = 0. The equilib-
rium points are determined by the condition F = 0. Curve 1
is for u = 0.6 (a stable zigzag with ϕ = π), curve 2 is for u =
1.4 (a stable N = 1 helix with ϕ < π), curve 3 is for u = 2,
curve 4 is for u = 2.8, curve 5 is for u = 3.6, and curve 6 is
for u = 5.
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which corresponds to a zigzag  helix I bifurcation.
As the parameter u increases further, a second maxi-
mum in the function arises that corresponds to the next
bifurcation, and so on. In Figs. 11 and 12, this bifurca-
tional dynamics is followed up to a value of u = 5. One
can clearly see the differences between the cases of
Yukawa screening and nonlinear screening: the bifurca-
tions occur at different critical values of the pitch of the
structure and the equilibrium states in Fig. 12 are more
stable than those in Fig. 11 (the values of the derivative
∂F/∂ϕ at the point where F = 0 are larger, ∂F/∂ϕ > 0).
For comparison, Figs. 13 and 14 show analogous
curves calculated for different values of the Yukawa
screening factor, DY = 1 and 3, and of the attraction
coefficient, α = 0.1 (weak attraction) and α = 0.5
(strong attraction). Figures 15 and 16 show analogous
curves calculated for different values of the nonlinear
screening factor, D = 0.1 and 0.3, and of the attraction
coefficient, α = 0.1 (weak attraction) and α = 0.5
(strong attraction). We can see that attraction has the
strongest effect on bifurcations when the screening fac-
tors are increased (the screening length is decreased)
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Fig. 12. Function F(ϕ) for different values of the parameter u.
The calculations were carried out for the nonlinear screened
potential with D = 0.1 and for N = 1 and α = 0. The equilib-
rium points are determined by the condition F = 0. Curve 1
is for u = 0.6 (a stable zigzag with ϕ = π), curve 2 is for u =
1.4 (a stable N = 1 helix with ϕ < π), curve 3 is for u = 2,
curve 4 is for u = 2.8, curve 5 is for u = 3.6, and curve 6 is
for u = 5.
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and approach the values at which Coulomb repulsion is
substantially suppressed. This situation is quite natural.
An essential point is, however, that the screening dis-
tances D and DY can be controlled experimentally by
varying z0 (because they are normalized to z0) or, equiv-
alently, the number of grains per unit length of the sys-
tem. It is now clear that attraction can radically change
the behavior of a grain system; it can even cause unsta-
ble branches of the solution to become stable (see the
cases u = 5, ϕ = π in Figs. 11 and 12). The difference
between the effects of the Yukawa screening and non-
linear screening is also very pronounced.

Such transitions as the numerically calculated
sequence of helix I  helix II  helix I  helix III,
etc., where the Roman numerals I, II, III, … label the
stable branches of N = 1 helical structures on the (u, ϕ)
plane, are nothing more than jumps of the system from
one stable state to another, provided that the latter is
more favorable energetically. In other words, the sys-
tem tends to change to a configuration that possesses a
minimal energy at a fixed value of the external confine-
ment parameter. However, it is the initial grain distribu-
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Fig. 13. Function F(ϕ) for different values of the grain
attraction coefficient and the parameter u. The calculations
were carried out for the Yukawa screened potential with
DY = 1 and for N = 1 and α = 0 (solid curves), 0.1 (dotted
curves), and 0.5 (dashed curves). Curves 1, 2, and 3 are for
u = 0.6, 2, and 5, respectively.
tion that points to the branch to which of the solution
the system will evolve in molecular dynamics simula-
tions; the subsequent transition to a lower energy state
can be initiated by finite-amplitude perturbations. It
sometimes happens (especially for large values of the
parameter u) that stable branches differ in energy by
less than one percent; therefore, in actual experiments,
there may be several (rather than one) different stable
grain configurations corresponding to the same external
conditions.

We thus have completely explained why, for certain
values of the external confinement parameter, our
numerical simulations yielded different steady configu-
rations of grains, depending on their initial distribution.

5.1.4. N = 2 helix. The next simple equilibrium con-
figuration into which an N = 1 helix bifurcates is an
N = 2 helix.

A particular (limiting) case of an N = 2 helix is a tet-
rahedral configuration, in which the grains in the neigh-
boring planes of the lattice are turned through an angle
of ϕ = π/2 in the (x, y) plane. In this case, two pairs of
grains in the neighboring planes lie at the vertices of a
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Fig. 14. The same as in Fig. 13, but for DY = 3. The attrac-
tion is seen to have a far stronger effect on bifurcations.
Along a substantial portion of solid curve 3, the function F
is close to zero, so the position of the equilibrium point, at
which F = 0, is fairly uncertain. This uncertainty is removed
when even a weak absorption is taken into account (see the
dotted curves).
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tetrahedron. It is expedient to emphasize a direct anal-
ogy between the particular cases of an N = 1 and an
N = 2 helix, namely, a tetrahedral configuration and a
zigzag.

The situation in question is similar to that with a
conventional N = 1 helix. Simulations carried out for
different D and α values showed that grain systems may
suffer Y-type bifurcation: a transition from a tetrahedral
configuration to a general N = 2 helix. One can easily
obtain the critical value of the external parameter at
which the tetrahedral configuration loses its stability,
i.e., the value ucrit, at which the system exhibits an insta-
bility analogous to that of a zigzag.

The solutions in the phase plane {ϕ, u} that were
calculated for two-pole (N = 2) helical structures in the
case of nonlinear screening (D = 0.1) and attractive
interaction (α = 0.01) are shown in Fig. 17, which is
similar to Fig. 10 for N = 1 helical structures. We can
see that, as the external parameter K decreases, two new
equilibrium states (stable and unstable) arise, as is the
case in Fig. 10. The smaller the external parameter, the
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Fig. 15. Function F(ϕ) for different values of the grain
attraction coefficient and the parameter u. The calculations
were carried out for the nonlinear screened potential with
D = 0.1 and for N = 1 and α = 0 (solid curves), 0.1 (dotted
curves), and 0.5 (dashed curves). Curves 1, 2, and 3 are for
u = 0.6, 2, and 5, respectively. The general pattern of the
curves is only slightly affected by absorption. The nonlinear
screened potential differs substantially from the Yukawa
potential for which Fig. 14 was obtained.
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larger the number of possible equilibrium states. For
α > 0, the equilibrium is possible for K ≤ 0. As was
mentioned above, this indicates that a system of grains
interacting by means of attractive forces can evolve into
a steady structure in the absence of an external confin-
ing potential.

The bifurcations of N = 2 helical structures have the
same general qualitative features as the bifurcations of
N = 1 structures, which have been described above (see
Figs. 13–16). The bifurcation process, however, begins
to occur at larger values of the parameter u; for rela-
tively small values of this parameter (on the order of
those for the N = 1 case), the number of bifurcations is
smaller. As before, it is possible to determine the criti-
cal values of the screening factors at which a weak
attraction substantially changes the phase diagrams of
the bifurcations.

5.1.5. N interwoven helices. Of course, structures
consisting of N interwoven helices possess the same
regular features as N = 1 and N = 2 helices. In other
words, the bifurcation process begins with a limiting
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Fig. 16. The same as in Fig. 15, but for D = 0.3. The attrac-
tion is seen to have a far stronger effect on bifurcations.
Along a substantial portion of solid curve 3, the function F
is close to zero, so the position of the equilibrium point, at
which F = 0, is fairly uncertain. This uncertainty is removed
when even a weak absorption is taken into account (see the
dotted curves). The nonlinear screened potential differs sub-
stantially from the Yukawa potential for which Fig. 14 was
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configuration (similar to a zigzag or a tetrahedral con-
figuration), which changes into a helical structure with
a larger number of interwoven helices at a certain value
of the external parameter.

The simplest possible structure into which an N = 2
helical configuration can evolve is three interwoven
helices (N = 3) (see Fig. 18). Similar structures were
observed in experiments that were performed by Birkl
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Fig. 17. Solutions in the phase plane {ϕ, u} for N = 2 helical
structures. The calculations were carried out for the nonlin-
ear screened potential (D = 0.1) and for attractive interac-
tions between the grains (α = 0.01). The stable branches are
shown by heavy solid curves, and the unstable branches are
shown by heavy dashed curves. The curve K = 0 is given by
the light dotted curve; the external parameter is negative
(K < 0) on the right of this curve and is positive (K > 0) on
the left.

Fig. 18. Schematic representation of an N = 3 helical struc-
ture.
et al. [2] with ultracold atomic ions interacting by
means of Coulomb repulsive forces. More precisely,
the structures observed in those experiments were a
limiting case of three interwoven helices: an octahedral
configuration, in which the grains in the neighboring
planes of the lattice are turned through an angle of ϕ =
π/3 in the (x, y) plane (see Fig. 19). In this case, as in
the cases of a string, a zigzag, and a tetrahedral config-
uration, we can also find the value ucrit at which the
octahedral configuration loses its stability.

The results of numerical simulations and the data
from experiments with purely Coulomb systems show
that there are several possible types of helical struc-
tures. The particles often form a two-shell structure that
is energetically more favorable than a one-shell helical
structure. In the planar case, this roughly corresponds
to a transition from five particles at the vertices of a reg-
ular pentagon to four particles at the vertices of a square
and one particle at the center of the square. The situa-
tion with helical dust structures is, in a sense, similar,
the only difference being that, along with N = 2 struc-
tures, the structures with a larger number of interwoven
helices can be energetically favorable. Most frequently,
the results depend strongly on the type of screened
potential and on the efficiency of attraction between the
grains. In the case of Yukawa screening, the final
results differ radically from those in the case of nonlin-
ear screening, especially when the screening parame-
ters are close to their critical values (a situation similar
to that considered above for N = 1 helical structures).
The critical values are determined by the number of
grains per unit length of the system; they can easily be
achieved in actual laboratory experiments and under
microgravity conditions in space.

5.1.6. Formation of the second shell. The second
shell begins to form as a string (a limiting case of an
extended helical structure) inside a helix.

As the control parameter varies, the spatial separa-
tion between grains in the string decreases and the sys-
tem can bifurcate into a configuration consisting of two
helices, one inside the other. In numerical simulations,
such a configuration has not been observed, however.
The external shell in the form of a helix then evolves
into a system of several interwoven helices, or, more
precisely, into a hexagonal shell with a string inside it.
As the external parameter varies further, two nested
shells form, which is followed by the formation of a
string inside them; then, by the formation of three
nested shells; and so on. We thus can again draw an
analogy with the planar case: as the external parameter
varies, a particle appears at the center of the ring, inside
which the second ring then forms, which is followed by
the appearance of a particle at its center and, then, by
the formation of the third ring inside it, and so on.

We are interested here in the formation of the second
shell only from the standpoint of determining the
parameter range in which one-shell structures exist. In
order for the force balance in the z direction to be pro-
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Fig. 19. Schematic representation of an octahedral helical structure.
vided automatically, we restrict ourselves to symmetric
configurations such that Nh is a multiple of Ns. It fol-
lows from general considerations that the spatial sepa-
ration between the grains in a string and in a helix are
uncorrelated (in the general case, they are dispropor-
tionate). Without loss of generally, we can, however,
consider only proportionate chains, i.e., we assume that
the system in question is periodic with a certain charac-
teristic period L. We can try to estimate the energy of
such a configuration by assuming again that the grain
density along the z axis is constant. The above assump-
tion implies that there are N grains within the interval
of length L (z0 = L/N), but now we deal with a situation
in which there are Ns grains of a string and Nh grains of
a helix within the interval of the same length L. In order
to calculate the mean energy of a grain, we calculate the
energy of all the grains within the period L and divide
the result by the total number of grains, N0 = Ns + Nh.
The estimate thus obtained can be somewhat incorrect
because the only symmetric configurations are those in
which the number of grains in the helix, Nh, is a multi-
ple of the number of grains in the string, Ns. Even in this
special case, however, the helix should be deformed,
although to a much lesser extent than when Nh is not a
multiple of Ns.

5.2. Comparison of energies

Figure 20 compares the energies of all the above
grain configurations in the case of interaction with the
parameters D = 0.1 and α = 0. As is seen, these different
configurations are very close in energy. As the external
confinement parameter varies, the structure evolves
through the following configurations: string  zig-
zag  helix I  tetrahedral configuration, etc.
Since the energies of some configurations differ by a
few percent, it is possible to experimentally observe
ICS REPORTS      Vol. 31      No. 5      2005
equilibrium stable configurations whose energies
exceed the minimal energy. This was indeed observed
in numerical simulations: for the same values of the
external parameter, they yielded different configura-
tions, depending on the initial grain positions. The
results of the computations agree quite well with our
analytical estimates, which in turn are physically more
transparent and explain all phase transitions from one
configuration to another. We stress that, for different
configurations, we are comparing the energies per
grain, because the structures under analysis are infi-
nitely long in the z direction and thereby have infinite
total energies. In numerical simulations, as well as in
actual experiments, a study is made of systems with a
finite number of grains (N0), so the difference between
the total energies of different configurations is given by
the product N0∆E. A comparison of the bifurcational
pictures in the phase plane {u, ϕ} for the cases of non-
linear screening and Yukawa screening with the same
physical parameters shows that the bifurcation process
in the case of the nonlinear screened potential with D =
0.1 sometimes resembles that in the case of the Yukawa
screened potential with DY = 1. In order for the compar-
ison to be adequate, it is necessary to keep in mind that
the nonlinear screening parameter D is physically
determined by the screening distance and also by z0,
(i.e., by the number of grains per unit length). Since the
parameter z0 can be controlled experimentally, the
absolute values of D and DY for fixed plasma parame-
ters depend greatly on it. Under actual conditions, how-
ever, the ratio between D and DY , which is independent
of z0, depends on the sizes of the grains and on their
charges. This is why the estimated value of this ratio
(about 0.1) is somewhat arbitrary, because it merely
corresponds to the parameter values close to those
known from the most familiar experiments. With some
other ratio between these parameters, the results
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obtained for the Yukawa screening will differ strongly
from those obtained for the nonlinear screening.

6. ANALYSIS OF THE RESULTS OBTAINED

In the this paper, we have investigated typical equi-
librium configurations of a system of correlated likely
charged dust grains. We have derived stability criteria
for several configurations (such as a string and a zig-
zag) and have given a physical interpretation of transi-
tions from one configuration to another that occur when
the external parameters are varied. It may be said that
transitions of a string into a zigzag and of a zigzag into
N = 1 helix are analogues of first-kind phase transitions,
whereas transitions between different types of helical
configurations resemble second-kind phase transitions.

We have carried out a comparative analysis of the
mean energies of a grain in each of the helical configu-
rations under study. All analytical estimates are fully
confirmed by the results of numerical simulations.

We have shown that systems of finite dimensions
should possess all regular features revealed in our
investigations of infinite systems. We have described
the initial stage of the development of instability. With
the results obtained for an infinitely long string, it is
possible to correctly estimate the values of the external
confinement parameter at which the configuration
undergoes transitions from one state to another.

In actual systems, the kinetic energy of a dust grain
suspended, e.g., in an ion flux increases (oscillations
are excited). Experimental data [22] show that there is
a mechanism whereby a grain oscillates at an increas-
ingly large amplitude and escapes from the potential
well. Molecular dynamics simulations [23] also show
that an initially immobile grain acquires energy and
(due to collisions with plasma ions and electrons)
begins to oscillate about its equilibrium position.
Hence, our results take on a somewhat new meaning.
Specifically, if the system has acquired sufficient
energy, then it evolves into a new steady configuration
with a minimal kinetic energy. If, however, the energy
acquired by the system is insufficient for it to evolve
into another steady configuration, then the grains in it
begin to oscillate about their previous steady-state posi-
tions.

It is important to emphasize the general features that
have been revealed in our numerical simulations:

(i) In all cases, it was found that any random distri-
bution of the grains evolves into one of the possible
steady helical configurations. No final configurations
other than helical ones were observed.

(ii) When the interaction between the dust grains is
attractive, they can form steady helical structures in the
absence of an external confining potential and even in
the presence of a parabolic repulsive potential. This
possibility has a simple physical interpretation: at short
distances, the interaction between the grains is repul-
sive, and only at sufficiently long distances does attrac-
tion become comparable to repulsion. Moreover, non-
linear screening enhances the effect of attraction.
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(iii) In helical configurations, the dust grain distribu-
tion has a shell structure.

(iv) The most characteristic property of the helical
structures under investigation is associated with the
bifurcations of the pitch angle, which result from the
interactions of grains with numerous remote grains
rather than with their nearest neighbors. This is why
long-term nonscreened attraction between the grains
operates to increase the number of bifurcations.

(v) Bifurcational marks in the structures can provide
a method for storing information and can find applica-
tion in computer technology. They can also be used to
study self-sustaining structures in which the grains are
subject to attractive interactions (as is the case in space
dusty plasmas under natural conditions).
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Abstract—The divergence of an ion beam in a cylindrical accelerator with a closed Hall current is considered
under the assumption that the Hall current does not substantially change the external magnetic field. It is shown
that the tangent of the angle of inclination of the ion trajectories to the cylinder axis is on the order of the ratio
of the electron gyroradius in terms of the total energy of an electron to the characteristic radius of the acceler-
ation channel. The beam divergence can be prevented by applying an external magnetic field in a direction par-
allel to the cylinder axis. © 2005 Pleiades Publishing, Inc.
1. The problem of the motion of a quasineutral
plasma in an external magnetic field was considered in
[1, 2] in relation to the theory of magnetic substorms. In
this problem, the field of a magnetic dipole was mod-
eled by an external magnetic field in cylindrical [1] or
in planar [2] geometry. A similar problem about the
structure of the boundary sheath between a cold
quasineutral plasma flow and a uniform magnetic field
was considered in [3].1 It was found that, in a quasineu-
tral boundary sheath, a fairly strong electric field can
exist that is perpendicular to the magnetic field. Under
certain conditions, this field can be used to accelerate
the ions. This problem has substantially contributed to
the development of plasma physics, in particular, to the
theory of electrojet plasma engines with a closed Hall
current [4–8]. In practice, however, Hall accelerators
are always cylindrical in shape; in this case, the mag-
netic field is a radial one and the Hall current is an azi-
muthal current, so electrons move in circles whose radii
are specified by the design of the device. This results in
the onset of a radial electric field and, consequently,
leads to the divergence of an ion beam. In the literature
[4–8], there is no indication that this effect has been
studied earlier.

1 Formula (4.70) on page 123 of monograph [3] was misprinted. Its
correct form is
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The expected divergence of an ion beam can be esti-
mated in the following way: The radial electric field
should act to balance the centrifugal force experienced

by the moving electrons,  ~ m /eR, where vdr ~

c /H0 ~ (2eϕ0/m)1/2 is the electron drift velocity, H0 is
the characteristic strength of the radial magnetic field,

 is the mean strength of the longitudinal electric field
in the boundary sheath, R is the mean radius of the
acceleration channel, ϕ0 is the potential drop across the
sheath, c is the speed of light, and m and e are the mass
and charge of an electron. Consequently, we have

 ~ ρe(ϕ0)/R, where ρe(ϕ0) is the gyroradius of
electrons with the energy eϕ0 or, in other words, the
sheath thickness. For actual devices, this ratio can be as
large as several tenths, so the radial electric field can
give rise to a quite pronounced divergence of the ion
beam. Such divergence can be prevented by applying a
longitudinal magnetic field that satisfies the condition

 ~ Hzv dr/c, or Hz/H0 ~ ρe(ϕ0)/R; i.e., the longitudinal
magnetic field required to keep an ion beam from
diverging is much weaker than the radial magnetic
field H0.

2. In what follows, a problem similar to that consid-
ered by Chapman and Ferraro will be treated in cylin-
drical geometry. With the purpose of practical imple-
mentation, we assume that the ions are produced only
at the surface where the longitudinal and radial veloci-
ties of a monoenergetic electron flow vanish (the elec-
tron cutoff surface). This is why, in order for the bound-
ary sheath to be regarded as quasineutral (in accordance
with [1–3]), we will treat the problem as if there were
two identical ion beams.

In the planar model [3], the charged particles move
in the same plane, so the quasineutrality condition for
the sheath implies that the longitudinal (normal to the
magnetic wall) velocities of the ions and electrons are

Er v dr
2

Ez

Ez

Er/Ez

Er
© 2005 Pleiades Publishing, Inc.
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the same, provided that their fluxes are equal. Conse-
quently, for the cutoff plane z = 0, we have

where the minus sign corresponds to the incident elec-
tron flow and the plus sign corresponds to the reverse
electron flow (from the cutoff plane to the cathode
plasma). We assume that, in cylindrical geometry, the
quasineutral boundary sheath forms in an analogous
manner: the ions and electrons move in nested cylindri-
cal surfaces of radii r(z) (where r, φ, and z are cylindrical
coordinates). In this case, the electrons return along the
same surface back into the cathode plasma, provided
that the following conditions are satisfied at the cutoff
point (r = r0, z = z0):

(1)

where the superior dot denotes differentiation over
time. By analogy with [1–3], we are interested here in
a class of solutions such that, at each point of the
sheath, the ions and electrons have equal longitudinal
and equal radial velocities. In accordance with what
was said above, the ion and electron motion will be
described by assuming that ri(t) = re(t) ≡ r(t) and zi(t) =
ze(t) ≡ z(t).

Let us consider one of the nested surfaces. Let the
coordinates r = rc and z = zc correspond to the cathode
plasma boundary. To write the equations of motion for
electrons and ions in cylindrical coordinates, we take
into account the longitudinal and radial electric fields,
Ez and Er, the longitudinal magnetic field Hz = const,
and the radial magnetic field

(2)

Here, the amplitude H0 = Hr(R0) is assumed to be con-
stant, which indicates that we are considering the case
where the Hall current does not affect the external mag-
netic field. The equations of electron motion can thus
be written as

(3‡)

(3b)

(3c)

With allowance for the fact that the magnetic field has
essentially no impact on the heavy ions, the equations
of ion motion have the form

(4‡)

(4b)

v e z( ) v i z( ),±=

ṙ r0 z0,( ) 0; ż r0 z0,( ) 0,= =

Hr
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r
-------------,=

ṙ̇ rφ̇2
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eEr

m
--------–

e
mc
-------rφ̇Hz,–=

rφ̇̇ 2ṙφ̇+
e

mc
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e
mc
------- ṙHz,+=

ż̇
eEz

m
--------–

e
mc
-------rφ̇Hr.+=

ṙ̇
e
M
-----Er,=

ż̇
e
M
-----Ez,=
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where M is the mass of an ion. By virtue of Eq. (4a), we
can ignore the term  in Eq. (3a), and Eq. (4b) enables
us to ignore the term  in Eq. (3c). From Eq. (3b) we
readily obtain the equation

Since we have  = 0 at the cathode plasma boundary
z = zc, we can reduce this equation to

The electric field components then become

Hence, the sought surface r(z) is described parametri-
cally by the set of Eqs. (4) in the following form:

(5‡)

(5b)

where we have introduced the dimensionless variables

In accordance with relationships (1), Eqs. (5) should be
supplemented with the boundary conditions

(6)

The set of equations (5) has the first integral
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where

(7)

is the dimensionless electric field potential.
We now find the equation for the cutoff surface

ρ0(ζ0). Since the potential at this surface has the form

we obtain

On the other hand, expression (7) gives

Therefore, if the potential distribution over the cutoff
surface, ψ(ζ0), is prescribed, this surface should satisfy
the equation

where

ψ ρ ζ,( ) 1

2ρ2
-------- ζ c ζ–( )

h ρc
2 ρ2

–( )
2

-------------------------–
2

=

ψ ζ0( ) ψ ρ0 ζ0( ) ζ0,[ ] ,=

dψ
dζ0
-------- ∂ψ

∂ρ
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ρ0 ζ0,

dρ0
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-------- ∂ψ

∂ζ
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ρ0 ζ0,
.+=

∂ψ
∂ρ
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ρ
---------------------– h 2ψ ρ ζ,( ),+=

dψ
∂ζ
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2ψ ρ ζ,( )
ρ

--------------------------.–=

ρ0 ζ0( )uc ζ0( ) ζ0
h
2
---ρ0

2 ζ0( )–+ const,=

uc ζ0( ) 2ψ ζ0( )=

0.6
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0.2

0

tanαc

0.2 0.4 0.6 0.8 1.0
u0

Fig. 1. Dependence of the tangent of the angle of inclination
of the ion trajectories at the plasma boundary on the param-
eter u0 for h = 0 (solid curve) and a linear approximation for
this dependence (dashed line).
is the dimensionless ion velocity at the cathode bound-
ary of the sheath. For definiteness, we set

As a result, we obtain

(8)

The equation for the equipotential cutoff surface,
uc(ζ0) = u0, has the form

(9)

Using this equation and also relationship (7), which,
for the equipotential cutoff surface, has the form

we easily arrive at the equation for the plasma bound-
ary:

(10)

3. Let us consider the case h = 0, i.e., the divergence
of an ion beam in the absence of a longitudinal mag-
netic field. Taking into account Eq. (9) for the cutoff
surface and Eq. (10) for the plasma boundary, we see
that the set of equations (5) and (6) exhibits the follow-
ing obvious symmetry property: if, for one trajectory
(e.g., for ρ1(τ) and ζ1(τ)), a solution such that ρ1(0) = 1
and ζ1(0) = 0 is known, then, for ρ0 ≠ 1, the functions

are also solutions to the equations; moreover, the point
(ρ0, ζ(0)) lies in cutoff surface (9). Hence, the trajecto-
ries are similar. The tangent of the angle of inclination
of the ion trajectories at the cutoff surface is equal to

By virtue of the similarity of the trajectories, the angle
of their inclination at the plasma boundary, αc, is inde-
pendent of ρ0 and is a function of u0 alone:

where the time τc is determined from the relationship
ζ1(τc) = u0. In Fig. 1, the solid curve shows the depen-
dence of the tangent of the angle of inclination of the
ion trajectories at the plasma boundary on the parame-
ter u0, calculated by numerically solving Eqs. (5) and
(6) for h = 0. The dashes represent the line
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PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005



GEOMETRY OF A CYLINDRICAL ION BEAM IN A RADIAL MAGNETIC FIELD 415
which is a good approximation for the numerically cal-
culated dependence in the range u0 ≤ 1.

Figure 2 displays the ion trajectories calculated in
dimensionless coordinates by numerically solving
Eqs. (5) with boundary conditions (6) for u0 = 0.3 and
h = 0.

By applying a longitudinal magnetic field in a direc-
tion parallel to the longitudinal ion velocity, it is possi-
ble to prevent the beam divergence. It is sufficient for
this to satisfy the condition h ≈ u0. This is illustrated by
Fig. 3, which presents the ion trajectories calculated in
dimensionless coordinates by numerically solving
Eqs. (5) with boundary conditions (6) for u0 = 0.3 and
h = u0. When the longitudinal magnetic field is applied
in the opposite direction, it leads to additional diver-
gence of the ion beam (Fig. 4).

The main parameter of the problem, u0, determines
the maximum dimensionless ion velocity: it is equal to
the ratio of the gyroradius of electrons with the energy
eϕ0 in a constant magnetic field H0 to the radius R0:

where

u0

ρe ϕ0( )
R0

----------------,=

ρe ϕ0( )
2eϕ0

m
------------

mc
eH0
---------.=

0.2 0.4 0.6 0.8 1.0
ζ

0.6

0.4

0.2

0.8

1.0

1.2

0

ρ

Fig. 2. Ion trajectories for u0 = 0.3 and h = 0.
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In the units in which the potential difference is
expressed in volts, the magnetic field strength is given
in gausses, and the radius is in centimeters, this param-
eter is

u0 3.37
ϕ0

H0R0
-------------.≈

0.2 0.4 0.6 0.8 1.0
ζ

0.6

0.4

0.2

0.8

1.0

1.2

0

ρ

Fig. 3. Ion trajectories for u0 = 0.3 and h = u0.
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0.8

1.0
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0

ρ

Fig. 4. Ion trajectories for u0 = 0.3 and h = –u0.
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Thus, for R0 = 2.6 cm and H0 = 100 G, we have u0 ≈
0.290 for ϕ0 = 500 V and u0 ≈ 0.205 for ϕ0 = 250 V.

4. In this paper, we have shown that, due to the neu-
tralization of the centrifugal force, which causes a
cloud of Hall electrons in a cylindrical accelerator to
expand, a radial electric field arises, which leads to a
substantial (10°–20°) divergence of an ion beam. This
divergence can be prevented by a longitudinal magnetic
field that is applied in a direction parallel to the longi-
tudinal ion velocity and whose strength is 10–30% of
that of the radial magnetic field.

It has been found that the equipotential cutoff sur-
face is not perpendicular to the accelerator axis and
that, in the presence of an external longitudinal mag-
netic field, it has a fairly complicated shape. In practice,
the anodes most often used are those with a planar sur-
face perpendicular to the system axis [4–6]. Such
anodes introduce additional difficulties in exciting dis-
charges of the desired shape in the acceleration chan-
nel. It therefore seems expedient to use inclined anodes.
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Abstract—A systematic description is given of the principles of operation of axisymmetric plasma-optic mass
separators with azimuthators that are compatible with stationary plasma thrusters with closed electron drift.
Two schemes of plasma-optic separators (with electrostatic and with magnetic ion focusing) are considered.
Results are presented from calculations of the parameters of model devices for separating ions whose masses
are on the order of those of xenon ions. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Industrial-scale mass separators are now used for
different purposes, e.g., for obtaining superpure materi-
als for medicine and scientific investigations, for creat-
ing isotopically pure engineering materials for atomic
industry, for processing nuclear wastes, and so on.
There are many mass separation schemes: centrifugal,
diffusive, laser-based, ion resonant, etc. Among these
schemes, the electromagnetic isotope separation
method [1] is notable for its conceptual simplicity, its
single-stage design, and its “panoramic” mode of oper-
ation—the ability to simultaneously separate many iso-
topes with different masses. This method is illustrated
graphically in Fig. 1. The mass separator system con-
sists of three blocks. The natural substance (an isotopic
mixture) is fed into an ion source, where it is ionized to
produce ions and electrons, which are accelerated and
formed into a high-quality quasineutral electron–ion
beam. This beam moves into a separator, where it
becomes subject to a uniform magnetic field oriented
perpendicular to its path. In the strong magnetic field of
the separator, the beam ions revolve along their Larmor
semicircles, while the beam electrons, which neutralize
the ion space charge, are essentially immobile. The
gyroradius of a singly charged ion depends on its mass,

, (1)

where Ua is the accelerating voltage, H0 is the magnetic
field in the separator, and M and e are the mass and
charge of an ion. Finally, the ions are deposited on col-
lectors.

Figure 1 and formula (1) demonstrate that it is, in
principle, possible to create a single-stage separator
capable of operating in a “panoramic” mode (i.e., over
a broad range of ion masses). However, the electromag-
netic separator fabricated in the 1940s has a fundamen-
tal drawback: a very low productivity. The characteris-
tic ion currents are Ji ≤ 0.01–0.1 A. The charge per gram

ρi

Vi

ωHi

--------
Mc
eH0
---------

2eUa

M
------------ M

e
-----∝= =
1063-780X/05/3105- $26.000417
atom is equal to 105 C; consequently, even with a cur-
rent of Ji ≈ 0.1 A, the processing of this amount of mat-
ter will require about 15 days. It is clear that the produc-
tivity should be increased by at least three to four orders
of magnitude.

The low productivity of the classical electromag-
netic separators stems from the fact that there are only
ions in the acceleration gap of the ion source. The elec-
tric field of these ions restricts the current density by the
so-called 3/2 law:

(2)

where d is the distance between the electrodes and g ≈ 1
is a geometrical factor. Attempts to increase the current
density in such sources led to an increase in the accel-
erating voltage and, consequently, in the energy expen-
diture; in this way, however, it is unrealistic to expect

j
g

9π
------ 2e

M
------

Ua
3/2

d
2

---------,=

M2

M1

2

1
3

H

Fig. 1. Artsimovich’s electromagnetic separator: (1) ion
source, (2) separating region, and (3) ion collectors.
 © 2005 Pleiades Publishing, Inc.
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Fig. 2. Schematic of an SPT: (1) magnetic poles, (2) dielectric channel, (3) anode, (4) cathode, (5) gas distributor, and (6) magnetic
conductor.
that the current could be increased by several orders of
magnitude.

Classical electromagnetic separators began to be
built in the mid-1940s; 20 years later (in the 1960s),
plasma accelerators were developed in which the accel-
eration region contained a quasineutral plasma. These
developments were stimulated by the need for space
electrojet engines. The devices most suitable for solv-
ing the separation problem in question are stationary
plasma thrusters (SPTs) [2] and anode-sheath thrusters
(ASTs) [3]. These are axisymmetric systems with ring-
shaped acceleration channels with a quasi-radial mag-
netic field (Fig. 2). Deep in the acceleration channel,
there is an anode in the vicinity of which the working
gas is fed into the channel. A hollow cathode is posi-
tioned outside the channel near its exit end. The poten-
tial difference applied between the anode and the cath-
ode creates an electric field in the channel. When the E
and H fields are switched on and the working gas is
injected, the electrons emitted from the heated cathode
enter the channel and ionize the gas particles. At the
same time, they begin to drift in the azimuthal direction
in the crossed E and H fields and to diffuse slowly
toward the anode. The ionization-produced ions are
accelerated in the E field. By the time they arrive at the
exit end of the channel, they acquire an energy of

(3)ε eφ,≈
where φ∗  is the potential at the point at which the gas
particle was ionized. The cathode potential is assumed
to be zero. The magnetic field strength in the channel is
chosen so as to magnetize the electrons and not to mag-
netize the ions to any significant extent, the correspond-
ing condition being

, (4)

where L is the channel length and ρe, i are the electron
and ion gyroradii.

The magnitude of the ion current at the exit from the
channel is determined primarily by the flow rate of the
working gas injected into the channel. In a well-opti-
mized model channel, the degree of gas ionization is
close to 95%. Consequently, for singly charged ions,
we have

(5)

Hence, there is no restriction on the magnitude of
the ion current density because the plasma in the chan-
nel is quasineutral. In stationary thrusters, the factor
that restricts the current density is simply the heating of
the channel. The typical current density values are
about 0.1–0.2 A/cm2. For a channel with a cross-sec-
tional area of ~20 cm2, the total ion current is about 3–
4 A.

ρe ! L ! ρi

Ji ṁ
e
M
-----.≈
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Fig. 3. Schematic of an A-system (POMS): (1) ion source, (2) azimuthator, (3) separating region, and (4) ion collectors.
At ion energies of ~300–400 eV, such parameters
are achievable in a standard M-70 SPT, in which the
diameter of the outer wall of the channel is 70 mm.
Model SPTs have already been created in which this
diameter is 300 mm and which are capable of produc-
ing ion currents of about 30 A. At present, SPTs and
ASTs are being optimized in two main parameters: the
efficiency and the operation time. In this way, efficien-
cies of about 70% and continuous operation times of
more than 10000 hours have been achieved in labora-
tory experiments. As for space exploration, from 1971
to the present day, about 200 thrusters have operated or
continue to operate onboard more than 30 satellites.

Plasma accelerators for separators must be opti-
mized mainly with respect to other parameters. Specif-
ically, it is necessary to reduce the noise level and to
minimize the beam divergence and the spread in the
particle energy. There is no doubt that, by using SPTs
and ASTs, it will be possible to produce beams with the
desired parameters in the future. Beam divergence
angles of α ~ ±7° have already been achieved, which
are close to those (α ~ ±3°) required for a number of
plasma-optics mass separator (POMS) schemes.

In addition to optimizing a plasma accelerator (PA),
it is necessary to choose a separator scheme in such a
way that the separator would be compatible with the
accelerator; would improve the shortcomings of the
accelerator; and, at the same time, would allow further
modifications to an ultimate physical limit (without
changing the basic principles), i.e., to a panoramic
mode of operation with ∆M = 1. In other words, the sep-
arator scheme should be, on the one hand, analogous to
the electromagnetic mass separator proposed by Artsi-
movich and his collaborators and, on the other hand, it
should have high separating productivity. It is these
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
properties that should be possessed by the POMSs
described below.

2. PRINCIPLES OF A-SYSTEMS (PROTOTYPES 
OF PLASMA-OPTICS MASS SEPARATORS)

The POMS developed here is supposed to be based
on the A-system scheme proposed in [4].1 This system,
which is illustrated graphically in Fig. 3, is axisymmet-
ric and is intended to operate in the quasineutral mode
with electric (E) and magnetic (H) fields. The axisym-
metric geometry of the system makes it possible to
close the electron drift orbits and is consistent with the
annular geometry of the ion beams produced by a PA
with closed electron drift. In the A-system, the ions in
the beam are separated according to mass in a simple
field configuration: a superposition of a uniform longi-
tudinal magnetic field H and a radial electric field E:

(6)

where φ is the electrostatic potential. This field config-
uration possesses an important property: it remains the
same in vacuum operating modes and in operating
modes with a quasineutral plasma (see [3] for details).

Along with the conductors producing the field con-
figuration, the A-system involves a special block that
was called an azimuthator: a coaxial dipole magnet
placed at the entrance to the separating section. In the
region between the poles of the azimuthator, a trans-
verse (radial) magnetic field is created. In crossing this

1 For the most recent results on the subject, see [5, 6].

H H0, φ E0R
r
R
--- 

  ,ln= =
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field, the ions acquire an azimuthal velocity determined
by the angular momentum conservation law:

(7)

where ψ = rAθ is the magnetic flux function, R is the
radius of the particle trajectory in the gap of the azi-
muthator, and Vθ0 is the initial azimuthal ion velocity
at the entrance to the azimuthator. If the gap is suffi-
ciently narrow, then the radius R, as well as the flux
function ψ0, can be assumed to be approximately the
same for all ions. Using relationship (7) and assuming
that the azimuthal ion velocity component is small, we
find the azimuthal velocity of the ions that have passed
through the azimuthator:

(8)

where ψA is the magnetic flux in the azimuthator.
Hence, the projection of the azimuthal ion velocity onto
the (r, θ) plane is independent of the energy spread ε0
of the ions at the exit from the source and depends on
their masses. Since the E and H fields in the focusing
section are independent of z, the longitudinal velocity
Vz of the ions is conserved as they move in the z direc-
tion. We can thus restrict ourselves to considering the
ion focusing only in the (r, θ) plane.

Moreover, by virtue of the azimuthal symmetry, it is
sufficient to consider the ion motion only in the radial
direction (along the radius r) because the motion along
the θ coordinate is in fact described by relationship (7).
The equation for r(t) has the form

(9)

where U = . We choose an ion with a

mass M0 as a reference ion and assume that its trajec-
tory lies at a reference cylindrical surface of radius
r = R. In this case, the following condition should be
satisfied:

(10)

and the motion of an ion near the reference surface is
described by the equation

(11)

We assume that the angular spread of the ions around
the reference ion in the (r, z) plane is small.

MrVθ
e
c
--ψ+ MRVθ0

e
c
--ψ0 D≡+ const,= =

Vθ1

eψA

cMR
------------,=

Mṙ̇
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2
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Taking into account the expression for the electro-
static potential (the second of expressions (6)) and the

relationship ψ = (r2 – R2),2 we can readily verify

that the equilibrium condition has the form

(12)

and that the equation for ρ can be written as

(13)

Here,

(14)

where ωH =  is the gyrofrequency, s =  and

χ2 = . Equation (13) has an obvious solution,

(15)

and the position of the ion focus is determined from the
condition

(16)

Setting tf = θf / , we obtain the azimuthal position of
the ion focus:

(17)

where  is the angular velocity of an ion that moves
along the reference trajectory determined by Eq. (12).

We restrict ourselves to considering two limiting
cases: purely magnetic focusing (E = 0) and purely
electric focusing (when the magnetic field H0 is negli-
gibly weak and serves merely to magnetize the elec-
trons). In these cases, the separators will be referred to
as POMS-H and POMS-E systems, respectively.

3. POMS-H SYSTEM

The POMS-H system is analogous to Artsimovich’s
separator in all respects, including the passive motion
in the z direction. From expression (14) we have
Ω = ωH, and equilibrium equation (12) obviously yields
the relationship Vθ = RωH. On the other hand, expres-
sion (8) gives Vθ = eψA/(cMR), so we have

(18)

2 This choice of expression for ψ corresponds to the pattern of the
closed magnetic fluxes in Fig. 5 and is valid for the vacuum
region around a surface of radius r = R.
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Fig. 4. Ion focusing in a POMS-E for different divergence angles of a beam escaping from the azimuthator (α = ±2.5°, ±5°) and for
M0 = 113, ε0 = 400 eV, and R = 150 cm: (a) projections of ion trajectories onto the (r, z) plane, (b) projections of ion trajectories
onto the (r, θ) plane, and (c) magnified fragment of the focusing region in the (r, z) plane for α = ±2.5°.
Hence, all of the ions are focused at the reference
cylindrical surface. However, the position of the circles
at which the ions are focused, zf, depend on M:

(19)

We assume that all the ions in the source acquire the
same energy ε0, regardless of their masses. Taking into
account expression (8), we can write

(20)
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Accordingly, variations in the mass and energy of an
ion lead to variations in the position of the focal point:

(21)

Hence, in order to separate two ions with masses M and
M + δM, it is necessary to satisfy the inequality

(22)

4. POMS-E SYSTEM

In this system, the ion behavior in the (r, θ) plane is
similar to that in the Hughes–Rozhansky energy ana-
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lyzer. We can easily see from Eq. (12) and expression (14)
that the ions are focused when they move around the

θf  = π/  azimuth, regardless of their masses. The
radial positions at which the ions of different masses
are focused differ by the amount

(23)

This formula was obtained by taking into account the
fact that the ions whose mass M0 + δM differs from the
mass M0 of the reference ion have an angular momen-
tum D differing from that of the reference ion:

(24)

The ions of different masses are focused at different
positions along the z axis:

(25)
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The above formulas for zf were derived under the
assumption that the difference between the mass M and
the reference mass is sufficiently small. In order to
understand how important is the above assumption that
the ion trajectories only slightly differ from the refer-
ence trajectory, we have numerically calculated the tra-
jectories of three ions having unequal masses but the
same energy (ε0 = 400 eV). The ions were modeled to
escape from an azimuthator, starting from the radial
position rA = R = 150 cm, the divergence angles in the
(r, z) plane being α = ±2.5° and ±5°. The reference
mass was accepted to be M0 = 113. The magnetic flux
ψA was chosen such that, in passing through the azi-
muthator, a reference ion acquires an azimuthal energy
equal to one-half the total energy. The calculated results
are illustrated in Figs. 4a–4c, which show the projec-
tions of the ion trajectories onto the (r, z) and (r, θ)
planes and a magnified fragment of the pattern of ion
trajectories in the focal region in the (r, z) plane.

The above analytical and numerical results point to
the following three important properties of the focusing
in a POMS-E: 
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Fig. 5. Design of a POMS-H experimental magnetic system: (a) system geometry and magnetic field lines ((1–3) magnetic coils,
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(i) Over a wide parameter range, ions of different
masses are focused approximately in the plane zf ≈
const. 

(ii) The angle by which the particles are displaced in
the azimuthal direction in moving from the exit from
the azimuthator up to the point at which they are
focused is essentially independent of M,

(26)

(iii) Simulations show that it is in principle possible
to separate isotopes in a panoramic mode of operation
such that ∆M ~ 1; this concerns the elements in the mid-
dle of Mendeleyev’s periodic table (M ~ 80–160). In
our study, however, we will neither consider the ques-
tion about the smearing of the ion focus in the presence
of plasma nor even perform a systematic analysis of
aberrations in the single-particle approximation. Note
only that, since ions of different masses are focused
almost in the same cross section, z ≈ const, the smear-

θ f
π
2

-------.≈
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ing of the ion focus due to the spread in the longitudinal
ion energies in a POMS-E should be less than that in a
POMS-H.

5. CALCULATION OF THE EXPERIMENTAL 
MODELS OF POMS-H AND POMS-E

In order to give a more realistic insight into the
above fundamental separator schemes, we designed a
model version of a POMS-H and carried out a detailed
calculation of its magnetic system. We also estimated
the parameters of the magnetic system of a POMS-E.
The reference mass was chosen to be M = 113.

5.1. POMS-H

The POMS-H magnetic system consists of two
blocks: an azimuthator and a separator. The geometry
of the blocks and the magnetic field lines in them are
shown in Fig. 5. This separator is aimed at experimental
investigations of the beams of ions having a mass on the
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order of 100, with currents in the ampere range. For
simulations, the magnetic field in the azimuthator was
set equal to HA ≈ 5 × 103 Oe, and the field in the work-
ing section of the separator was chosen to be H0 ≈
3400 Oe. The radius of the azimuthator gap was 5.7 cm,
the gap width being 1.5 cm. The distance from the azi-
muthator to the ion focus was about 30 cm, and the
diameter of the separating section was 26 cm. The cur-
rent densities in four magnetic conductors are indicated
in Fig. 5.

The magnetic field was calculated by the Galerkin
version of the second-order finite-element method on a
triangular mesh. We solved the following equation for
the vector potential Aθ (in SI units):

(27)

Here, jθ is the known electric current density (in the
conductors), B is the magnetic induction, µ0 = 4π ×
10−7 H/m is the vacuum magnetic permeability, and
µ(B) is the relative permeability of the iron conductors.
For the relative permeability, we used the simple ana-
lytical dependence

(28)

The results presented in Fig. 5 were calculated for
µ1 = 0, µ2 = 6000, and κ = 150.

5.2. POMS-E

In this version of a separator, two blocks (the PA and
the azimuthator) are the same as those in the POMS-H.
In the POMS-E, the magnetic field is supposed to be
10 to 15 times lower, so the magnetic system will
accordingly be lighter in weight. However, the
POMS-E in question also includes a system of two
coaxial electrodes. For the scales and energies chosen,

∂
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the voltage between the electrodes is determined from
condition (14) and is equal to

, (29)

where ra and rc are the anode and cathode radii, respec-
tively.
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Abstract—An argon plasma produced by a quasi-steady high-energy electron beam was studied experimen-
tally. The plasma density was measured using an open barrel-shaped microwave cavity. The gas temperature
was shown to be a few times higher than room temperature. Electron beam propagation, as well as heat-transfer
and kinetic processes in plasma, is modeled self-consistently for the actual experimental conditions. It is shown
that the plasma density is largely governed by the conversion rate of the atomic ions into molecular ones. The
calculated results are compared to the experimental data. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Weakly ionized plasmas produced in dense gases
irradiated by relativistic electron beams are widely used
in practice, e.g., for pumping gas lasers [1, 2], in plas-
mochemical reactors [3, 4], for surface treatment [5],
for cleaning gases of harmful substances [6], etc.

When considering the irradiation of a gas by pulsed
electron beams, gas heating can usually be ignored. In
some applications, however, it is expedient to use con-
tinuous electron beams; in this case, gas heating should
necessarily be taken into account. This makes plasma
simulations more difficult because nonuniform heating
leads to nonuniformity of the neutral gas, and, accord-
ingly, the beam scattering by the gas and the parameters
of the plasma produced are nonuniform too. An extra
effect to be taken into account is the dependence of the
rate constants for elementary processes on the gas tem-
perature. Thus, the effect of gas heating on the parame-
ters of the beam plasma should be investigated in a self-
consistent manner, by simultaneously taking into
account the gas nonuniformity and the nonuniformities
of electron-beam scattering and the kinetic properties
of the plasma produced. When a plasma is produced in
a small-sized chamber, it is also necessary to incorpo-
rate the beam scattering by the chamber wall, as well as
the accompanying effects of chamber heating and elec-
tron reflection from the wall. The problem as formu-
lated has not yet been considered experimentally or the-
oretically. Though there have been many numerical
studies (generally, by the Monte Carlo method) devoted
to the propagation of electrons through matter, all of
them were restricted mainly to considering either a gas-
eous [7, 8] or a solid medium [9, 10].

In this paper, we present the results from experimen-
tal and theoretical studies of a plasma produced by a
25-keV continuous electron beam in a cylindrical
chamber filled with argon. The severalfold increase in
the gas temperature under the action of the beam affects
1063-780X/05/3105- $26.00 0425
both the scattering of high-energy electrons and the
properties of the plasma produced. In our experiments,
we measured the longitudinal profiles of the plasma
electron density and of the gas temperature at the cham-
ber wall. We also performed calculations for actual
experimental conditions. Electron beam propagation in
the gas and the chamber wall was simulated by the
Monte Carlo method, the plasma composition was
determined by kinetic simulations, and the heating of
the chamber wall and of the gas was calculated by solv-
ing heat conduction equations. The calculated results
are compared to the experimental data.

2. EXPERIMENT

2.1. Experimental Setup

A schematic of the experimental setup is shown in
Fig. 1. A focused continuous electron beam generated
by an electron gun was introduced into the working
chamber through the outlet pipe of the high-vacuum
chamber. Inside the working chamber, a reaction cham-
ber (a 25-cm-long quartz tube with a wall thickness of
2 mm and an inner diameter of 2.6 cm) was placed. The
open end of the reaction chamber faced the outlet pipe,
whereas the other end was closed with a Faraday cup.
In some experiments, the outer surface of the quartz
tube was covered with a multilayer thermal insulation
in order to reach a higher temperature.

The outlet pipe was a gas-dynamic window consist-
ing of a two-stage gate system with the differential
evacuation of the gas leaking into an intermediate
chamber placed between the stages [5]. The input and
output apertures of the gas-dynamic window, through
which the electron beam was injected, were 1-mm-
diameter channels made in 10-mm-thick graphite disks.

The high-vacuum chamber was continuously
pumped out by an oil diffusion pump to balance the
leaking of the gas through the outlet pipe. The pressure
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic of the experimental setup: (1) electron gun, (2) electron beam, (3) high-vacuum chamber, (4) outlet pipe, (5) work-
ing chamber filled with argon, (6) quartz shell, (7) cavity, (8) Faraday cup, (9) inlet valve, (10) vessel with argon, and (11) radio-
transparent ceramics.
in the chamber was maintained at a level of ≤10–4 torr,
required for stable operation of the electron gun. The
working chamber was pumped out by a fore pump.
Argon was supplied to the working chamber from a gas
vessel through a controlled valve.

2.2. Measurement Technique

The main parameter characterizing the plasma prop-
erties in our experiments was the plasma electron den-
sity ne averaged over the chamber cross section at a dis-
tance z from the point of electron beam injection. We
measured ne as a function of the gas pressure p and the
electron-beam current Ib in different cross sections z for
several accelerating voltages U between the cathode
and anode of the electron gun. The initial beam electron
energy Eb, which was determined by the accelerating
voltage, was varied from 20 to 30 keV. The gas pressure
and the beam current were varied in the ranges of 1–
50 torr and 1–50 mA, respectively.

The electron density ne was measured by the multi-
mode probing of the plasma volume with microwave
electromagnetic radiation at a wavelength of λ ≈
0.8 cm. For this purpose, we used an open barrel-
shaped cavity [11] enclosing the quartz tube. The coax-
iality between the tube and the cavity was enabled with
the help of special heat-insulating holders (not shown
in Fig. 1). The space between the tube and the inner
wall of the cavity was filled with ceramic powder that
was radio-transparent in the wavelength range under
study. This enabled reliable heat-insulation of the cav-
ity from the hot wall of the reaction chamber, whose
temperature could be as high as 1000 K (see below).

The open barrel-shaped cavity used in our experi-
ments is described in detail in [11]. The diameter of its
central cross section is 2a = 68 mm, the meridional
radius is r = 204 mm, and the cavity length is L =
70 mm. The inner dimensions of the feeding and
receiving rectangular waveguides are 3.8 × 7.6 mm. To
rarefy the spectrum, we used a spatially distributed cou-
pling (eight coupling openings spaced apart by
11.05 mm) between the cavity volume and the
waveguide both when exciting the cavity and when
recording the signal. The spectrum was additionally
rarefied because the cavity was open and the distributed
coupling resided close to the equatorial plane; in this
case, a number of modes are not excited and recorded.

A fragment of the cavity spectrum without a plasma
is shown in Fig. 2. Mode 1 is the one that was used to
measure the electron density. The frequency of this
mode depends on the plasma density. Mode 2 is a cavity
mode with a large azimuthal number. The electric field
of this mode is located near the cavity surface. In the
middle of the cavity, where the quartz tube is located,
this field is very low; hence, mode 2 does not interact
with electrons and its frequency does not depend on the
plasma density. Therefore, this mode can be used as a
reference point.

The electron density was measured as follows: First,
the microwave generator was switched on when the gas
pressure in the working chamber was minimal (p <
1 torr). Next, the electron beam was switched on and
the gas pressure in the working chamber was slowly
increased. As a result, the frequencies of the modes
excited in the cavity shifted gradually depending on
their coupling with the plasma in the working chamber.
The frequency of the main mode also shifted gradually;
this enabled its identification even at electron densities
as high as 5 × 1012 cm–3 (∆ω = 2 GHz). Indeed, the dis-
tance between modes 1 and 2 in Fig. 2 is about 1.5 GHz,
and there are no modes with an appreciable amplitude
between them. As the electron density increases, the
frequency of mode 1 shifts, whereas its amplitude
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
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decreases because its absorption in the plasma
increases and the frequency of the mode shifts beyond
the bandwidth of the distributed coupling [11]. The
plasma density was increased to a value at which mode 1
overlapped mode 2. Note that these modes did not inter-
act with one another because the fields of the different
modes of a cavity with a nonuniform permittivity distri-
bution were mutually orthogonal.

The electron density ne was determined from the
measured frequency shift ∆ω by the formula

, (1)

where ne is the electron density averaged over the cavity
cross section, Vr is the cavity volume, Vp is the plasma
volume inside the cavity, FV is the cavity form-factor,
and  is the critical electron density.

Formula (1) is applicable when ω @ ν (where ν is
the transport frequency of electron collisions in plasma)
and ne ≤ (0.2–0.3) . These conditions determine the
maximum measurable electron density: (ne)max ≈ (3–5) ×
1012 cm–3.

Besides the electron density, we also measured the
gas pressure in the reaction chamber, the total electron-
beam current (using a water-cooled Faraday cup), and
the temperature of the reaction chamber wall at the
outer surface of the quartz tube. Several thermal detec-
tors were set at different points z; this allowed us to
study the temperature of the outer wall Tw(z) as a func-
tion of the gas pressure p and the electron-beam power.

2.3. Experimental Results

Figures 3–5 show the results from measuring of the
temperature at the outer surface of the chamber wall
and the electron density under different experimental
conditions. The wall temperature is several times
higher than room temperature; this indicates that the
gas in the chamber is significantly heated. Under our
experimental conditions, the electron density was in the
range 1011–1013 cm–3 and was approximately propor-
tional to the electron-beam current Ib. Within any cross
section z, the function ne = ne(p) has a pronounced max-
imum at a certain pressure pm, which depended on the
beam current and the accelerating voltage U: the higher
U or Ib, the higher pm.

3. SIMULATIONS OF THE INTERACTION 
OF A HIGH-ENERGY ELECTRON BEAM 

WITH MATTER

The interaction of an electron beam with matter
under actual experimental conditions can be described
in as follows: A high-energy electron beam is injected
into a quartz tube filled with a gas and propagates along

∆ω
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its axis. The injected electrons undergo elastic, inelas-
tic, and ionizing collisions with gas atoms; the latter
give rise to secondary electrons. In the absence of an
external electric field, the electrons between collisions
move along straight lines. After a collision event, an
electron is assigned a new propagation direction and an
energy loss that depends on the kind of process. As a
result, the electron motion is represented by a broken
line that can cross the tube wall. In this case, the elec-
tron enters another medium and undergoes similar pro-
cesses but with other parameters. The simulation of
electron motion is stopped when its energy becomes
lower than the atomic excitation energy.

To describe the electron trajectory, it is necessary to
define the algorithm for calculating the electron free
path between collisions. Generally, in modeling the
propagation of electrons with an energy E in a homoge-
neous medium, the free path s and, consequently, the
point at which the next collision occurs are determined
from the condition [7, 8]

s = –λ(ε)lnξ,

where λ(ε) = [σ(ε)n(ε)]–1 is the mean free path for a
given electron energy, σ(ε) is the total cross section for
electron scattering, n(ε) is the density of the scattering
particles, and ξ is a random value evenly distributed
within the interval [0, 1]. For an inhomogeneous
medium (e.g., in the case of a nonuniform gas density
or when an electron passes from the gas to a solid wall),
this condition is naturally generalized to

,σ η( )n η( ) ηd

0

s

∫ ξln–=

34 35 36 37 38 f, GHz

1

2

Fig. 2. Fragment of the cavity spectrum without plasma:
(1) mode used to measure the electron density (2) mode
used as a reference point.
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Fig. 3. Longitudinal profile of the temperature at the outer surface of the chamber for the case of an electron beam with a current of
8.8 mA and an electron energy of 25 keV at gas pressures of (a) 5.2 and (b) 11 torr. The solid curves show the simulation results,
and the vertical bars show the experimental results.
where η is the spatial coordinate in the electron propa-
gation direction.

When an electron crosses the interface between two
media, a fraction of the integral is first calculated in the
first medium with its proper parameters and the remain-
ing fraction is then calculated in the second medium
with another parameters. Thus, on crossing the inter-
face, only the medium parameters (rather than the sim-
ulation algorithm) change. In our simulations, many
electrons repeatedly penetrated into the wall and
returned back into the gas.

When calculating electron motion in the gas, we
took into account variations in the gas density due to the
nonuniform heating by the beam. To do this, the gas
density at a given point was determined for a given gas
pressure and calculated temperature using the equation
of state. Self-consistency in simulating the propagation
of electrons was achieved as follows: First, electron
propagation in the gas and in the wall material was cal-
culated using the Monte Carlo method. The acquired
data were then statistically processed and the spatial
distribution of the heat released in the gas and at the
wall surface was simulated. Finally, the temperature
distribution and the gas density were determined
throughout the entire volume. This procedure was
repeated after calculating each ten trajectories. After
100 trajectories, the temperature distribution relaxed to
a quasi-steady state. The temperature relaxation was
also provided by heat conduction and radiative heat
transfer between different parts of the inner surface of
the working chamber (these mechanisms partially bal-
anced the nonuniformity of energy deposition caused
by insufficient statistics). In our simulations, we calcu-
lated from 5000 to 500000 trajectories. Such a large
statistics is necessary, e.g., to obtain smooth spatial dis-
tributions of the ionization rate; at the same time, the
temperature distribution in the working chamber was
already established after calculating 100 trajectories. In
other respects, the Monte Carlo algorithm was the same
as in the previous simulations [7, 8].

In simulations, we sometimes observed the effect of
the so-called burning-through of the gas by the electron
beam because of the elevated temperature and the
reduced gas density in regions with an increased elec-
tron-beam current density. This led to an increase in the
penetration depth of high-energy electrons along the
tube axis.

Based on the gathered statistical data, we deter-
mined the distributions of the ionization and excitation
rates of gas atoms over the quartz tube volume, as well
as the power dissipated per unit gas volume or unit area
of the inner surface of the quartz tube.

4. CROSS SECTIONS FOR ELECTRON 
SCATTERING BY ARGON ATOMS

AND IN A SOLID MEDIUM

4.1. Elastic Collisions

To find the integral and differential cross sections
for elastic scattering at energies higher than 10 keV, the
Rutherford formula with allowance for screening is
usually employed. According to this formula, the dif-
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
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ferential cross section for elastic collisions between
electrons and atoms is

, (2)

where r0 is the classical radius of an electron, Z is the
atomic number,

is the squared ratio of the electron velocity to the speed
of light c, m is the electron mass, E is the electron
kinetic energy before the collision, θ is the polar angle
of scattering with respect to the electron velocity before
the collision, and η is the screening parameter. The
expression for η as a function of Z and β was taken
from [9, 10].

The total cross section for elastic collisions is deter-
mined by integrating (2) over solid angle Ω and is equal
to

(3)

The applicability of formula (2) at low energies is
questionable because it does not include polarization
effects and spin–orbit interaction. Therefore, at low
energies, it is expedient to use experimental data. How-
ever, the differential and integral cross sections for elas-
tic scattering in argon were measured only for energies
E < 100 eV [12, 13]. To bridge the gap between this

dσel

dΩ
---------- r0

2
Z

2 1 β2
–

β4
1 θcos– 2η+( )2

-----------------------------------------------=

β2 E 2mc
2

E+( )
mc

2
E+( )

2
-------------------------------=

σel πr0
21 β2

–

β4
-------------- Z

2

η 1 η+( )
---------------------.=

3.0

2.0

1.0

0.5

ne, 1012 Òm–3

5 10 15 20 25 30
I, mA

0

2.5

1.5

Fig. 4. Electron density as a function of the current of a
29-keV electron beam. The solid lines and symbols show
simulation and experimental results, respectively, for p =
12 torr and z = 9 cm (the upper line, squares) and for p =
8 torr and z = 16.5 cm (the lower line, crosses).
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energy range and the high-energy range where formula
(3) is valid, the energy dependence of σel measured in
[12, 13] was extrapolated by a power-law function σel =
AE–δ toward higher energies up to an energy of ~3 keV,
at which the extrapolated value was equal to that calcu-
lated by formula (3). When calculating electron motion,
σel was determined using the data from [12, 13] (and
their extrapolation) at E < 3 keV and using formula (3)
at E > 3 keV. At high energies (E > 3 keV), the differ-
ential cross section was calculated by formula (2),
whereas for E < 3 keV, the measured electron distribu-
tion function over the scattering angle at E = 100 eV
was used [12, 13].

4.2. Collisional Excitation

We considered only the excitation of the 1s2 state of
Ar because its cross section is significantly larger than
that for any other state [14, 15]. The integral cross sec-
tion was calculated by the formula [16]

(4)

where a0 is the Bohr radius, Eex is the threshold energy
for the transition into the 1s2 state, EH is the ionization
energy for a hydrogen atom, and α = 0.265 is the con-
stant describing the oscillator strength of the transition.

The angular distribution of the electrons after a col-
lisional excitation was taken from the measurements
[17] of the corresponding differential cross section
dσex/dΩ at E < 100 eV. For high energies, we used the

σex 4πa0
2 EH
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Fig. 5. Electron density vs. gas pressure at z = 9 cm for the
case of a 25-keV electron beam. The solid curves and sym-
bols show simulation and experimental results, respectively,
for currents of 15 mA (the upper curve, squares) and 7.5 mA
(the lower curve, crosses).
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angular distribution corresponding to E = 100 eV. Of
course, such an approach introduces an error. Estimates
show however that, when the electron-impact excita-
tion of Ar plays an important role, the angular distribu-
tion is mainly determined by elastic collisions (rather
than inelastic ones); hence, the error introduced by such
an approach is small.

4.3. Ionizing Collisions

The ionization of an atom by an electron with an
energy E leads to the generation of a secondary electron
with an energy of no higher than (E – Ei)/2, where Ei is
the ionization energy (the electron with a higher energy
is regarded as a primary one). To calculate the electron
trajectory, it is necessary to know the ionization cross
section σion(E), the differential cross section σion(E, E2)
for the generation of a secondary electron with an
energy E2 (here, E is the electron energy before the col-
lision), and the angular distribution of the electrons
after the collision.

The ionization processes in Ar were described by
analogy to [16]. We used the analytical formula pro-
posed in [18], in which the parameters were somewhat
changed in order to fit the experimental data on the dif-
ferential cross section from [19] and to bring them
(after integrating over solid angle) into coincidence
with the measured integral ionization cross section in
Ar [20].

After a collision event, the propagation directions of
the primary and secondary electrons with respect to the
velocity of the ionizing electron were determined by
analogy to [7].

4.4. Scattering in a Solid Medium

To describe electron propagation in the chamber
wall, it is necessary to know both the integral and differ-
ential cross sections for elastic and inelastic scattering.
The elastic scattering was described by formula (2),
whereas the electron energy loss for ionization and
excitation were determined using the Bethe–Bloch
approximation for continuous energy losses [21]. The
average loss at SiO2 molecules was determined as a
sum of the losses at Si and O atoms.

To prove the reliability of the approximation used,
energy losses were also calculated using the data
(obtained by processing optical spectra [22]) on the dif-
ferential cross sections for inelastic electron collisions
in quartz. It turned out that, for electron energies higher
than 300 eV, the data obtained using the latter proce-
dure differed from those obtained using the Bethe–
Bloch approximation by no more than 10%.
5. CALCULATIONS OF THE SPATIAL 
DISTRIBUTION OF THE GAS TEMPERATURE

In a two-dimensional, axially symmetric approxi-
mation, the steady-state distribution of the temperature
in the gas and the chamber wall was described by the
heat conduction equation

(5)

where r is the distance from the tube axis, z is the lon-
gitudinal coordinate counted from the beam input win-
dow, λ is the thermal conductivity of a medium, T is the
medium temperature, and q is the power dissipated per
unit volume.

For the gas in the tube, the power q dissipated per
unit volume was determined by the Monte Carlo
method. The penetration depth of the beam electrons
into the chamber wall was small; hence, it was assumed
that q = 0 in the quartz tube. The thermal conductivities
of argon and quartz were taken from [23].

The boundary condition at the inner surface of the
quartz tube, which was in contact with the gas, was
written as

, (6)

where q1 and q2 are the heating powers (per unit area)
of the tube surface by the electron beam and the radia-
tion emitted from the other parts of the tube surface,
respectively. The first term on the left-hand side of
Eq. (6) and the term on the right-hand side describe the
heat flux in the gas and the wall, respectively. The value
of q1 was determined by the Monte Carlo method, and
the value of q2 was determined assuming the wall radi-
ation to be equilibrium.

At the outer surface of quartz tube, we set

(7)

where σ is the Stefan–Boltzmann constant.
The axial and radial temperature profiles were

obtained by numerically solving Eq. (5) with boundary
conditions (6) and (7) using the method of upper relax-
ation with a sweep along the transverse coordinate [24].

6. PLASMA KINETIC MODEL
The main purpose of our kinetic model was to deter-

mine the steady-state distribution of the electron den-
sity in the plasma produced by an electron beam in
argon. The problem was solved for pressures of 1–
50 torr and gas temperatures of 300–1000 K.

The model is based on the kinetic scheme used in
[25, 26] to describe the formation of  excimers and
charged species in argon irradiated by an intense pulsed
electron beam. This scheme allowed the authors of [25,
26] to describe the temporal evolution of the electron
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Reactions and their rate constants. Gas temperature T, K, electron temperature Te , eV

Reaction Rate constant References

1. eb + Ar  eb + e + Ar+ Qion [cm–3 s–1] Monte Carlo

2. eb + Ar  eb + Ar* Qex [cm–3 s–1] Monte Carlo

3. Ar+ + 2Ar   + Ar k3 = 2.5 × 10–31(300/T)0.75 cm6 s–1 [26, 27]

4.  + 2Ar   + Ar k4 = 7 × 10–32(300/T)0.75 cm6 s–1 [26, 27]

5.  + Ar  Ar+ + 2Ar k5 = 9.3 × 10–10(1.4 × 104/T)0.5 × exp(–1.4 × 104/T) cm3 s–1 [28]

6.  + Ar   + 2Ar k6 = 9.3 × 10–10(2.3 × 103/T)0.5 × exp(–2.3 × 103/T) cm3 s–1 [28]

7.  + e  Ar* + Ar k7 = 7.3 × 10–8  cm3 s–1 [26]

8.  + e  Ar* + 2Ar k8 = 1.6 × 10–7  cm3 s–1 [26]

9. Ar+ + 2e  Ar* + e k9 = 2.61 × 10–22(0.086/Te)
4.5 cm6 s–1 [27]

10. Ar* + e  Ar + e k10 = 4.5 × 10–10Te cm3 s–1 [26]

11. Ar* + Ar*   + e k11 = 6 × 10–10 cm3 s–1 [26]

12.  + e  Ar+ + Ar + e k12 = 9 × 10–8exp(–1.2/Te) cm3 s–1 Calculations

13.  + e  Ar+ + 2Ar + e k13 = 9 × 10–8exp(–1.2/Te) cm3 s–1 Calculations

14. Ar+ + N2  Ar + k14 = 5 × 10–11 cm3 s–1 [29]

15. Ar+ + O2  Ar + k15 = 7 × 10–11 cm3 s–1 [29]

16.  + O2  N2 + k16 = 6 × 10–11(300/T)0.5 cm3 s–1 [30]

17. e +   N + N k17 = 4.5 × 10–8  cm3 s–1 [30]

18. e +   O + O k18 = 5.2 × 10–9  cm3 s–1 [30]
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density, as well as the densities of  and  ions

and Ar* and  excited particles. Note that the exper-
imental conditions in [25, 26] differed from our exper-
imental conditions in a higher gas pressure (1 atm and
more), a lower gas temperature (300 K and less), and a
shorter electron-beam pulse duration (a few hundred
nanoseconds). For this reason, we modified the kinetic
scheme. In particular, we included the dependence of
the rate constants for some processes on the gas temper-
ature and ignored the production of , because the
latter process does not affect the formation of charged
species at low gas pressures. Moreover, we included the
effect of a small (~0.1%) air admixture on the electron
density.

The rate constants for the processes taken into
account in our study are listed in the table. The irradia-
tion of argon by a high-energy electron beam leads to
the generation of secondary electrons, Ar+ ions, and

Ar2
+

Ar3
+

Ar2
*

Ar2
*
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excited atoms (processes (1), (2)). The plasma electron
density is determined by both ionization processes and
electron–ion recombination. The recombination of an
electron with an Ar+ atomic ion is a three-body reac-
tion; under our experimental conditions, its rate is sev-
eral orders of magnitude less than the rate of dissocia-

tive recombination with ,  molecular ions.
Hence, it is of importance to include the production of
molecular ions in reactions (3) and (4) and their loss in
collisions with atoms (reactions (5), (6)) and electrons
(reactions (12), (13)). Note that processes (5) and (6)
are of importance only in a hot gas. Therefore, we
should include these processes, although they were not
considered in modeling excimer lasers [25, 26]. The
kinetics of the excited atoms can also be important
because of associative ionization (reaction (11)),
through which charged particles are produced. The
excited atoms are produced in collisions with the beam
electrons (reaction (2)) and via electron–ion recombi-

Ar2
+

Ar3
+
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nation (reactions (7)–(9)) and are lost in collisions with
plasma electrons (reaction (10)). We ignored both the
production of excimer molecules (which was important
under the experimental conditions in [25, 26]) and the
radiation from the excited atoms. Thus, the electron
density in our simulations was somewhat overesti-
mated.

The rates of ionization (Qion) and excitation (Qex) of
atoms at a given point under the action of the beam
electrons were determined by simulating the beam
propagation by the Monte Carlo method. The rate con-
stants for reactions (3) and (4) at T = 300 K were taken
from the experiment [26], whereas their temperature
dependence was taken from the simulation results [27].
The rate constants for reactions (5) and (6) have not yet
been measured; therefore, we estimated them using for-
mulas from [28]. Since no data on the rate constants for
reactions (12) and (13) are available in the literature,
they were calculated by averaging the relevant cross
sections over a Maxwellian electron distribution. The
references to the papers from which we took the rate
constants for the other processes are listed in the table.

In the balance equations for charged particles, we
also included the ambipolar diffusion of the plasma
toward the tube wall. Plasma diffusion plays an impor-
tant role only in the region where the beam is injected
into the chamber, because the plasma radius in this
region is small and, accordingly, the density gradients
of charged particles are large.
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Fig. 6. Calculated densities of charged and excited particles
in pure argon as functions of the temperature at a pressure
of 10 torr for a specific electron-beam energy deposition of
Q = 1017 eV cm–3 s–1.
The densities of charged and excited particles were
determined by numerically solving the corresponding
balance equations using the Gear method. The accuracy
of the solutions obtained was verified using the
quasineutrality condition. When modeling the kinetic
processes in argon with an air admixture, the above set
of equations was supplemented with the equations for

the densities of  and  ions.

7. SIMULATION RESULTS

7.1. Electron Density as a Function of the Gas 
and Beam Parameters

The plasma in our experiments had a number of spe-
cific features as compared to the plasma consisting of
electrons and singly charged positive ions. Let us illus-
trate this using a homogeneous plasma produced by an
electron beam in pure argon at elevated gas tempera-
tures as an example (hereafter, the electron temperature
Te is assumed to be 1 eV, which is close to the temper-
ature calculated in [31] for pure argon).

The calculated densities of charged and excited par-
ticles in such a plasma for a given gas pressure and a
given energy deposited by the electron beam are shown
in Fig 6 versus gas temperature. It can be seen that, as
the temperature increases, the molecular ions decom-
pose because of thermal dissociation; thus, Ar+ atomic
ions become dominant. However, it is seen from the
table that, under our experimental conditions, the rate
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Fig. 7. Calculated densities of charged and excited particles
in pure argon as functions of the gas pressure for a gas tem-
perature of 800 K and specific electron-beam energy depo-
sition of Q = 1017 eV cm–3 s–1.
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constant for the recombination of electrons with atomic
ions (reaction (9)) is approximately seven orders of
magnitude less than the analogous rate constant for

 molecular ions (reaction (7)); this means that the
direct recombination of atomic ions can be ignored.
Therefore, the electron loss rate, which determines the
steady-state electron density, decreases and the elec-
trons are lost in two stages: first, the atomic ions are
converted into molecular ions (reaction (3)), which then
rapidly recombine with electrons (reaction (7)). Under
conditions such that atomic ions prevail and the elec-
trons are lost via recombination with molecular ions,
the effective electron loss rate is largely governed by
the conversion rate of atomic ions into molecular ones.
The properties of such a plasma differ significantly
from the properties of a plasma with one species of pos-
itive ions.

Indeed, ignoring the processes with the participation
of excited particles, the steady-state balance equation
for atomic ions can be written as

Qion = k3[Ar+][Ar]2.

It follows from here that the electron density is

[e] ≈ [Ar+] = Qion/(k3[Ar]2). (8)

Note that in the beam plasma with one species of posi-
tive ions in a molecular gas, the electron density is

[e] = (Qion/krec)1/2, (9)
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Fig. 8. Calculated densities of charged and excited particles
in pure argon as functions of the specific electron-beam
energy deposition for p = 10 torr and T = 800 K.
PLASMA PHYSICS REPORTS      Vol. 31      No. 5      2005
where krec is the rate constant for the dissociative
recombination of electrons with molecular ions.

Figure 7 shows the calculated densities of charged
and excited particles versus gas pressure for a given gas
temperature and given energy deposition. It can be seen
that, up to pressures of ~30 torr, the atomic ions are
dominant. It follows from (8) that the electron density
then decreases in inverse proportion to the pressure
squared. (Note that, in a plasma with one species of
molecular ions, the electron density, according to (9),
does not change with pressure.) This is confirmed by
the calculation results of presented in Fig. 7. It is seen
that the electron density decreases in accordance with
formula (8) at pressures up to 30 torr and reaches a con-
stant value at higher pressures.

Formulas (8) and (9) give different dependences of
the electron density on the energy deposition Q (see
also the calculated electron density as a function of the
energy deposition in Fig. 8). According to formula (8),
the electron density increases linearly with Q, in con-
trast to a weaker (square-root) dependence observed in
the case where molecular ions are dominant.

In argon with a small admixture of air,  and 
ions, which rapidly recombine with electrons, play an
important role. In this case, Ar+ is still the main ion spe-
cies, whereas the electron loss is primarily determined
by charge-exchange processes (8) and (9) (rather than

by the production of  ion, as is in pure argon).
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Fig. 9. Axial profile of the gas temperature (1) on the cham-
ber axis and (2) 1.3 cm away from the axis in pure argon for
a gas pressure of 11 torr, an electron-beam current of
8.8 mA, and an electron energy of 25 keV.
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7.2. Results of Self-Consistent Simulations 
and Comparison with the Experimental Results

When simulating the properties of the plasma pro-
duced by an electron beam under our experimental con-
ditions, it is necessary to take into account the nonuni-
formity of gas heating (which leads to nonuniformities
of the gas density and electron-beam scattering) and the
presence of the chamber wall and a small (~0.01 torr)
admixture of air that enter the chamber because of
imperfect sealing. In this case, the calculated results
somewhat change; however, as was mentioned above,
the dependences remain qualitatively the same.

Our experimental results were compared to the
results of numerical simulations performed with allow-
ance for the above factors. It was shown above that the
electron density depends substantially on the gas tem-
perature. It can be seen from Fig. 3 that the calculated
longitudinal profile of the temperature at the outer sur-
face of the chamber wall coincides with the experimen-
tal results to within the experimental error. The calcu-
lated gas temperature at the chamber axis (see Fig. 9)
reaches 1000 K. Thus, the plasma exists in a strongly
heated gas. Since the chamber diameter is relatively
small, gas heating is mainly caused by the absorption of
the electron beam in the chamber wall. Only 2–3% of
the electron beam energy is absorbed directly in the
gas.

Figure 4 shows the measured and calculated elec-
tron density averaged over the chamber cross section as
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Fig. 10. Axial profile of the electron density (1) on the
chamber axis and (2) 7 mm away from the axis in pure
argon (solid curves) and in the mixture of argon with air at
a partial air pressure of 0.014 torr (dashed curves) for a total
gas pressure of 11 torr, an electron-beam current of 8.8 mA,
and an electron energy of 25 keV.
a function of the electron beam current Ib for different
pressures and different distances z from the point of
beam injection. The calculations were performed for
argon with a small admixture of air (0.014 torr). This
approximately corresponds to actual experimental con-
ditions. In a plasma with one ion species, the electron

density would be proportional to ; however, both the
experiment and simulations show that the electron den-
sity increases with current much faster. This indicates
that the dependence of the effective electron loss rate on
the plasma density is weaker than quadratic.

Figure 5 shows the electron density averaged over
the chamber cross section as a function of the gas pres-
sure. The calculations were also performed for argon
with a 0.014-torr air admixture. It can be seen that the
theory adequately describes the experimental data at
relatively low pressures and fails to account for the
decrease in the plasma density at pressures higher than
10 torr. The simulations also predict the presence of a
maximum in this dependence; however, it occurs at
substantially higher pressures. This discrepancy cannot
be a consequence of our assumption about a constant
electron temperature (whereas the actual temperature
varies throughout the plasma volume). The calculations
[5] show that the dependence of Te on the electron-
beam energy deposition is very weak and the rate of
electron–ion recombination also slightly depends on Te

under our experimental conditions. Estimates show that
taking into account variations in the electron tempera-
ture may change the electron density by no more than
10–20%. The observed discrepancy between the exper-
iment and theory is probably related to the presence in
the plasma of dusty particles produced when the graph-
ite surface of the gas-dynamic window is sputtered by
the electron beam. This question requires separate
investigation.

Figure 10 shows the axial profiles of the electron
density calculated for both pure argon and argon with a
small admixture (~0.1%) of air. It can be seen that even
such a small admixture of air reduces the electron den-
sity by several times. It can also be seen that, at small
distances from the point of beam injection, the plasma
is highly nonuniform over the radius. However, as the
distance from this point increases, the radial nonunifor-
mity of the plasma significantly decreases.

8. CONCLUSIONS
(i) The density of a plasma produced in argon irradi-

ated by a quasi-continuous electron beam has been
measured under conditions where the gas temperature
is a few times higher than room temperature. The
plasma density has been determined as a function of the
gas pressure and beam current.

(ii) A numerical model has been developed that self-
consistently describes gas heating, the propagation of
an electron beam in the gas and the chamber wall, and
the production and loss of charged particles. The calcu-

Ib
1/2
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lated results are in good agreement with the experimen-
tal data.

(iii) An analysis of collisional processes shows that,
under our experimental conditions, the main channel
for electron loss is dissociative recombination with
molecular ions even when their density is lower than
that of atomic ions. The electron loss rate depends lin-
early on the electron density and is determined by the
conversion rate of the atomic ions into molecular ones.

(iv) Gas heating leads to a significant increase in the
electron density in an argon plasma due to the conver-
sion of molecular ions into atomic ones and, accord-
ingly, to a decrease in the electron–ion recombination
rate.
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Abstract—It is shown that, due to the presence of the ponderomotive force, ECR discharges in low-density
gases can be ignited in systems with a single magnetic mirror (i.e., with a flaring magnetic field) when the elec-
tron mean free path substantially exceeds the system length. The discharge ignition conditions are determined.
© 2005 Pleiades Publishing, Inc.
1. Some types of devices for etching microchips, for
isotope separation, etc., make use of ECR discharges in
a flaring magnetic field, i.e., a magnetic field that varies
monotonically along the device axis (see, e.g., [1–4]).
A flaring magnetic field does not provide a magnetic
mirror and thus cannot confine the electrons that are
accelerated in the ECR interaction. Nevertheless, in
such devices, gas breakdown occurs and the discharge
is ignited at pressures that are so low (down to 10–5 torr)
that the electron mean free path is much greater than the
system length (0.1–1 m).

Breakdowns in a low-density gas in a magnetic mir-
ror system were considered by Suvorov and Tokman
[5]. In the present paper, it is pointed out that, in a sys-
tem with a single magnetic mirror (i.e., with a flaring
magnetic field), the escape of electrons from the dis-
charge chamber may be prevented by the ponderomo-
tive force exerted on them by the microwave field. As
the ECR point is approached, the magnitude of this
force increases sharply because of the growth of elec-
tron oscillations in the microwave field. The increase in
the ponderomotive force is accompanied by a decrease
in electron scattering in both elastic and inelastic (ion-
izing) collisions with atoms (see below). As a result, an
avalanche of electrons trapped in the ponderomotive
potential wells can develop.

2. In the initial stage of breakdown (before the
plasma is produced), the microwave power is not
absorbed within the vacuum chamber and a standing
electromagnetic wave is established there. Let us ana-
lyze the electron motion in such a wave. The geometry
of the problem is illustrated in Fig. 1.

For ω ≈ ωe, the right-polarized component of the
electric field has an especially strong effect on the elec-
tron motion. The Hamiltonian that describes the motion
of an electron with allowance for this effect has the
form (see, e.g., [6])

(1)H µ∆ωe

p||
2

2m
-------

eE
ω
------

2ωeµ
m

------------- θ.cos+ +=
1063-780X/05/3105- $26.00 0436
Here, µ = , ∆ωe = ωe – ω, ωe(z) is the electron

gyrofrequency, ω is the microwave field frequency, E(z)
is the amplitude of the right-polarized component of the
microwave field, θ is the phase of electron gyration
with respect to the wave phase, and z is the distance
along a magnetic field line.

We assume that the phase θ varies far more rapidly
than do the quantities ∆ωe(z) and E(z) along the elec-
tron trajectory. Under this assumption, we can intro-
duce the transverse adiabatic invariant through the rela-
tionship

(2)

where the quantity µ is determined from expression (1)
in which the variables p|| and z, describing the longitu-
dinal electron motion, are assumed to be fixed.

Relationship (2) determines the dependence of the
transverse invariant J⊥  on the parameters of the prob-
lem, J⊥  = J⊥ (H, p||, …). Resolving this dependence with
respect to H, we obtain the Hamiltonian for the slow
longitudinal motion of an electron:

(3)

Here, the last term describes the effect of the pondero-
motive potential on an electron in the presence of a
steady magnetic field (see, e.g., [7]).

For electrons produced by the ionization of a neutral
gas, the quantity J⊥  depends on the point z0 where an

p⊥
2

2mωe

--------------

J ⊥
1

2π
------ µ θ,d∫°=

H J ⊥ ∆ωe

p||
2

2m
-------

eE( )2

2mω∆ωe

----------------------.–+=

B0
HF

Fig. 1. Overall schematic of the experiments under discus-
sion.
© 2005 Pleiades Publishing, Inc.
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electron is produced and also on the initial values µ0 =

 and θ0. The energy of the bulk of the ioniza-

tion-produced electrons does not usually exceed the
ionization energy εion. Under the condition εion ≤ εHF ≈

mc2 , the mean energy of the electrons is

close to their oscillatory energy, ε ≈ εHF; accordingly,

we have J⊥  ≈ .

High-frequency electron oscillations in the micro-
wave field give rise to the ponderomotive potential

UHF = – , which is lower than the mean oscil-

latory energy by a factor of . The ponderomotive

force arises because the electric field amplitude E(z) as
well as the electron gyrofrequency ωe(z) depend on the
longitudinal coordinate. The first of these two factors
predominates at sufficiently large distances from the
resonance point, i.e., under the condition

(4)

where L is the characteristic spatial scale on which the
steady magnetic field varies.

In a nonuniform magnetic field, an electron is sub-
ject not only to the ponderomotive force but also to the
diamagnetic force. In expression (3), the diamagnetic
potential is accounted for by the first term. If we assume

that J⊥  ≈  (see above), then we can see that, under

condition (4), the ponderomotive force is stronger than
the diamagnetic force. The total effective potential U =
UHF + J⊥ ∆ωe is shown schematically in Fig. 2 (it is
assumed that the standing wave amplitude is indepen-
dent of the z coordinate and that (z) > 0).

The concept of the ponderomotive potential is valid
only under the adiabaticity condition, which implies
that the variation in the microwave field amplitude E(z)
and in the quantity ∆ωe(z) along the electron trajectory
is slower than that in the phase θ. By virtue of condi-
tion (4), the first of these two requirements is more
stringent. It is satisfied under the inequalities ∆ωe @
(a||ω/c)1/2 and ∆ωe @ v ||ω/c, where a|| is the electron
acceleration along the magnetic field. Since the longi-
tudinal velocity of an electron oscillating in the ponder-
omotive potential well can be estimated in order of
magnitude by v || ≈ (a||c/ω)1/2, these inequalities are
equivalent and can be reduced to a single inequality:

(5)

p⊥ 0
2

2mωe z0( )
-----------------------

E
B0
----- ω

∆ωe

---------- 
  2

εHF

ωe

--------

eE( )2

2mω∆ωe

----------------------

ω
∆ωe

----------

∆ωe

ω
---------- c

ωL
-------,≥

εHF

ωe

--------

ωe'

∆ωe

ω
---------- @ 

E
B0
----- 

  2/3

.
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As the microwave field amplitude increases, the sec-
ondary electrons begin to be trapped in the ponderomo-
tive potential wells in the regions where ∆ωe ≈ ∆ωe, 1
(here, ∆ωe, 1 is the largest of the ∆ωe values satisfying
conditions (4) and (5)). For this to occur, the electric

field should increase to an amplitude such that  ≈

. As the microwave field amplitude

increases further, the secondary electrons are confined
over an increasingly wider region:

(6)

In Fig. 3, the region in which the conditions in ques-
tion hold is hatched. It is assumed that the numerical
values adopted for the parameters of the problem (see

below) satisfy the inequality  > .

3. Let us now discuss the development of an electron
avalanche. To be specific, we consider a breakdown in
argon, which is often used in experiments on discharge
excitation. For estimates, we set B0 = 1 kG, L = 1 m, and
p = 10–4 torr. In the ionization of argon, the energy of
the bulk of the secondary electrons is ≤10 eV [8],
regardless of the energy of the ionizing electrons. We
set the microwave field amplitude equal to 103 V/cm.
Under these conditions, the secondary electrons will be
trapped in the ponderomotive potential wells in the

region where 2 × 10–2 ≤  ≤ 1.

According to [8, 9], the ionization cross section in
the energy range from 30 eV to 1 keV is less than
10−16 cm2. For an electron energy equal to the ioniza-
tion energy, the elastic scattering cross section is about
σs ≈ 2 × 10–15 cm2, and, in the energy range ε ≤ 100 eV,

E
B0
-----

εion

mc
2

---------
∆ωe 1,

ω
------------- 

  1/2

mc
2

εion
--------- E

B0
----- 

  2 ∆ωe

ω
----------

∆ωe 1,

ω
-------------.≥ ≥

c
ωL
-------

εion

mc
2

--------- 
  1/2

∆ωe

ω
----------

U

zzs

Fig. 2. Potential energy of an electron in a nonuniform mag-
netic field in the presence of a standing microwave: zs is the
coordinate of the ECR point.
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it is greater than the ionization cross section. However,
as the energy increases, the elastic scattering cross sec-
tion σs decreases according to the law ∝ 1/ε (see, e.g.,
[10, 11]). As a result, in the energy range ε ≥ 102 eV, the
ionization cross section exceeds the cross section for
elastic scattering. An important point is that the scatter-
ing angle also decreases with increasing energy, ϑ s ≤

. An electron can escape from a ponderomotive

potential well only when ϑ s > . Setting ε = εHF ,

we find that, when the left-hand inequality in condition
(6) holds, elastic scattering does not lead to any signif-
icant escape of the electrons from the ponderomotive
potential wells. The cross section for the excitation of
Ar atoms is approximately one order of magnitude
smaller than the elastic scattering cross section and pos-
sesses the same dependence on energy in the range ε @
εion [8]. As for the scattering in inelastic (in particular,
ionizing) collisions, the author failed to find references
to exhaustive investigations of this subject in the litera-
ture. Based on the momentum conservation law, how-
ever, it can be stated that, since the energy of the sec-
ondary electrons does not exceed the ionization energy
εion, the mean scattering angle in ionization (which is
the main scattering process) should be smaller than

. This is evidenced, in particular, by the results of

calculating the ionization of Ar atoms by electrons with
an energy of 4 keV (see [11]). These calculations show
that, as the scattering angle increases from 0.025 to 0.1,

εion

ε
-------

∆ωe

ω
----------

εion

ε
-------

E/B0

(εion/mc2)1/2 c/ωL

1

2

∆ωe/ω

Fig. 3. Electron trapping region (hatched area) in pondero-

motive potential wells for (1)  =  and (2)  =

.

E
B0
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∆ωe

ω
---------- 

 
3/2 E

B0
------

εion

mc
2

---------
∆ωe

ω
----------

 
 
  1/2
the differential scattering cross section decreases by
about two orders of magnitude.

The above analysis demonstrates that the effect of
electron trapping in the ponderomotive potential wells
can create conditions for breakdown in a low-density
gas. The validity of the theory presented here can be
checked in experiments with a discharge chamber one of
whose ends absorbs microwaves. If the front end of the
chamber is absorbing, the microwave will be a running
wave and the ponderomotive potential will be a mono-
tonic function of the longitudinal coordinate. In this case,
the discharge should not develop. Gas breakdown is,
however, possible in a discharge chamber in which
microwaves are absorbed by the rear end. In this case, a
standing microwave is established in the chamber and an
electron avalanche can develop at its nodes.

Note that, if the secondary electron emission coeffi-
cient of the material of the ends of the discharge cham-
ber is larger than unity, then the breakdown can be asso-
ciated with electron accumulation (see, e.g., [12]). In
this case, however, the ponderomotive potential should
also have a substantial impact on the development of
the discharge.
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