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Abstract—A three-dimensional (3D) quasi-lattice (QL) based on a cuboctahedron is obtained by the projection
from a seven-dimensional hypercubic base lattice space to a 3D tile-space. The projection is defined by a lattice
matrix that consists of two projection matrices from the base lattice space to a tile-space and perp-space, respec-
tively. In selecting points in the test window, the method of infinitesimal transfer of the test window is used and
the boundary conditions of the test window are investigated. The QL obtained is composed of four kinds of pro-
totiles, which are derived by choosing triplets out of seven basis vectors in the tile-space. The QL contains three
kinds of dodecahedral clusters, which play an important role as packing units in the structure. A modification
of the lattice matrix making the QL periodic in the z direction is also considered. © 2004 MAIK “Nauka/Inter-
periodica”.
1 INTRODUCTION

The discovery of icosahedral quasicrystal in 1984
[1] stimulated both experimental and theoretical studies
in this field [2, 3]. The theoretical study of quasiperi-
odic tiling, which was developed before the discovery
of quasicrystals by de Bruijn [4] in connection with
Penrose tiling, is based on the projection method. As
methods of generating quasiperiodic tiling, the cut
method and self-similar methods are known. The
former is more general than the projection method and
can generate a wider class of quasiperiodic tilings [5].
In this paper, a three-dimensional (3D) quasiperiodic
tiling, or a quasi-lattice (QL), developed by the authors
is presented and its method of generation and its prop-
erties are explained—based on a 7 × 7 lattice matrix
derived from a cuboctahedron and showing quasi-
eightfold symmetry in one of its two-dimensional (2D)
projections (cf. [6–8]).

BASIS VECTORS, PROTOTILES, 
AND DODECAHEDRAL CLUSTERS

A 3D QL based on a projection from a seven-dimen-
sional (7D) hypercubic lattice (base lattice space) to a
3D space (tile-space) is proposed. The seven basis vec-
tors in the tile-space are derived from the cuboctahe-
dron and grouped into two sets of vectors of different
lengths: three vectors along the fourfold axis of relative

length 1/  and four vectors along the threefold axis

of relative length 1/ . These are chosen so that the

1 This article was submitted by the authors in English.
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projection of vectors onto a plane perpendicular to the
fourfold axis forms an eightfold star with relative

length 1/ , which coincides with the configuration of
basis vectors of a 2D octagonal pattern, or Beenker’s
tiling [9]. The geometry of the seven basis vectors is
shown in Fig. 1.

3

Fig. 1. Seven basis vectors derived from the normal of a
cuboctahedron. They are grouped into two sets—three from
the square facet and four from the triangular one—with a

length ratio of .2/ 3
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Table 1.  Prototile parameters of a 3D quasi-lattice

a b c cosα, (α, deg) cosβ, (β, deg) cosγ, (γ, deg) V

C 1 1 1 0, (90) 0, (90) 0, (90°) 1

S 1 1 0, (90) , (54.7) , (54.7)

P 1 , (70.5) , (54.7) , (54.7) 1

R , (109.5) , (70.5) , (70.5)
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The constituent prototiles of the QL are derived by
choosing three vectors out of seven basis vectors. The
combinations of three basis vectors are restricted to
four cases that make independent prototiles. They are a
cube (C), a square parallelogram parallelepiped (S), a
rhombic parallelogram parallelepiped (P), and a rhom-
bohedron (R), as shown in Fig. 2 by a ball and stick
model. The cell constants of these prototiles are listed
in Table 1.

Three kinds of dodecahedra—a rhombic dodecahe-
dron (RD), a rhombic parallelogram dodecahedron
C

(RPD), and a square parallelogram dodecahedron
(SPD)—that are assembled by different prototiles can
be identified as the constituent clusters of the QL. These
dodecahedra consist of prototiles (RD = 4R, RPD = 2P +
2S, and SPD = C + 3S, respectively). The geometrical
packing arrangements of these dodecahedra are illus-
trated in Fig. 3. The shapes of the facets of the constit-
uent prototiles are identified by small letters: r for the
rhombus, p for the parallelogram, and s for the square,
with parentheses showing the facet as seen from inside.
The number following the letter indicates the shape
C P

S R

Fig. 2. Each figure includes a cuboctahedral star shown by balls and lines, with the prototile shown by dark balls.
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Fig. 3. Three kinds of dodecahedral clusters are shown (from top to bottom) in the right column and the expanded constituent pro-
totiles in the left column.
type, and matching is allowed only with the facet of the
same shape type. The shapes of the facet of contact play
an important role in defining the inflation rules in the
self-similar method of QL construction. This problem
is discussed in detail elsewhere [10, 11].

PROJECTION METHOD AND THE BOUNDARY 
OF THE TEST WINDOW

In the projection method of generating quasiperi-
odic tiling, it is known that overlapping or absence of
prototiles in the tiling is caused when a projected point
in perp-space falls on the boundary of the test window
and the boundary condition (open or closed) is not
properly specified.

Since this problem is avoided by choosing an appro-
priate transfer vector of the window, no discussion is
usually made except in the case of the method of select-
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
ing the proper transfer vector. Pleasants [12] proposed
a method—called the infinitesimal transfer of test win-
dow to avoid overlapping or absence of prototiles—in
which the test window is transferred infinitesimally in a
direction not parallel to any of the facets of the window
and in which the projected points that stay inside both
the original and the transferred window are selected.

Figure 4 shows the case in which a one-dimensional
(1D) tiling is generated by the projection from a 2D lat-
tice space. The axis x is the tile-space and x' is the perp-
space. If the test window obtained by projecting a unit
square into the perp-space retains its initial position
(zero transfer) and both ends are inside, the upper left
and lower right corners of the unit square are inside the
window and overlapping in the prototile occurs in the
tiling. By infinitesimal transfer of the test window
along the axis of the perp-space, shown by an arrow (no
distinction being made in this case between the transfer
4
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and the infinitesimal transfer), the window becomes a
line segment that is closed at the upper end (shown by
a filled circle) and open at the lower end (shown by an
open circle) and the overlapping of prototiles is
avoided.

Figure 5 shows the unit polygon (a), or the projec-
tion of a four-dimensional (4D) unit cube to the tile-
space, and the test window (b) of Beenker’s tiling with
zero transfer. Choose an infinitesimal transfer vector
(shown by the outside arrow) so that all the basis vec-
tors in the perp-space fall within the test window; then,
the boundary condition becomes as is shown by the
thick (inside) and thin (outside) line segments and the
circles. Open and filled circles show points that are out-
side and inside, respectively. It is found that the test
window in the perp-space is mirror symmetric with
respect to the line bisecting the angle between vectors
1' and 4'. The tiling in the tile-space shown in Fig. 5c is
also mirror symmetric with respect to the line bisecting

x

x'

Fig. 4. Test window on perp-space x' for a 1D tiling.
C

the angle between vectors 1 and 4 and not eightfold
symmetric with respect to the origin, although the
shape of the test window is eightfold symmetric.

QUASIPERIODIC LATTICE BASED 
ON A CUBOCTAHEDRON

The 7 × 7 lattice matrix A in a 7D space is given in
(1) in which the upper three rows correspond to the pro-
jection matrix to 3D tile-space (x, y, z) and the lower
four rows correspond to that to 4D perp-space (x', y',
z', w'):

(1)

The seven column vectors by upper three rows of
matrix A represent the basis vectors in the tile-space
shown in Fig. 1, and those by the lower four rows rep-
resent the basis vectors in the perp-space. It is known
that the arrangement of basis vectors in Fig. 1 can be
regarded as a combination of an octahedral star and a
hexahedral star [13], and the projection matrix for tile-
space can be lifted to an orthogonal frame of 7D space

leading to matrix A [14]. The mixing ratio is 1 : ,
and the projected points in the perp-space fill the test
window uniformly, except for the w' axis—as explained
below—and the tiling becomes quasiperiodic.

A = 
1

3
-------

1/ 2 1/ 2 1/ 2– 1/ 2 1 0 0

1/ 2 1/ 2 1/ 2 1/ 2– 0 1 0

1/ 2 1/ 2– 1/ 2 1/ 2 0 0 1

1/2– 1/2– 1/2 1/2– 2 0 0

1/2– 1/2– 1/2– 1/2 0 2 0

1/2– 1/2 1/2– 1/2– 0 0 2

3/2 3/2– 3/2– 3/2– 0 0 0 
 
 
 
 
 
 
 
 
 
 
 
 

.

2

4
3

2

1

1'

2'

3'

4'

(a)

(b) (c)

Fig. 5. Unit polygon (a) and test window (b) for Beenker’s tiling. (c) A Beenker’s tiling by the test window shown in (b) with the
line of mirror symmetry shown by a dotted line.
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The projection matrices P|| and P⊥  defined in [15] for a 3D
Penrose tiling are related, in general, to lattice matrix A as

(2)

or

(3)

P|| A
1–
A||, P⊥ A

1–
A⊥= =

Ã|| P̃||Ã P||Ã, Ã⊥ P̃⊥ Ã P⊥ Ã,= = = =
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
where A|| is a matrix with nonzero rows from the tile-
space part of A, and A⊥  from the perp-space part of A

[7]. , , , and  are transposed matrices of A||,
A⊥ , P||, and P⊥ , respectively. P|| and P⊥  are symmetric

matrices; therefore,  = P|| and  = P⊥ . It is easy to
show that

Ã|| Ã⊥ P̃|| P̃⊥

P̃|| P̃⊥
(4)

(5)

P|| = 
1
3
---

3/2 1/2 1/2 1/2 1/ 2 1/ 2 1/ 2

1/2 3/2 1/2– 1/2– 1/ 2 1/ 2 1/ 2–

1/2 1/2– 3/2 1/2– –1/ 2 1/ 2 1/ 2

1/2 1/2– 1/2– 3/2 1/ 2 1/ 2– 1/ 2

1/ 2 1/ 2 1/ 2– 1/ 2 1 0 0

1/ 2 1/ 2 1/ 2 1/ 2– 0 1 0

1/ 2 1/ 2– 1/ 2 1/ 2 0 0 1 
 
 
 
 
 
 
 
 
 
 
 
 

,

P⊥  = 
1
3
---

3/2 1/2– 1/2– 1/2– 1/ 2– 1/ 2– 1/ 2–

1/2– 3/2 1/2 1/2 1/ 2– 1/ 2– 1/ 2

1/2– 1/2 3/2 1/2 1/ 2 1/ 2– 1/ 2–

1/2– 1/2 1/2 3/2 1/ 2– 1/ 2 1/ 2–

1/ 2– 1/ 2– 1/ 2 1/ 2– 2 0 0

1/ 2– 1/ 2– 1/ 2– 1/ 2 0 2 0

1/ 2– 1/ 2 1/ 2– 1/ 2– 0 0 2 
 
 
 
 
 
 
 
 
 
 
 
 

,

where P|| and P⊥  have the following properties:

(6)

(7)

(8)

where I is the unit matrix and O is the zero matrix of
order 7.

The angles between the two basis vectors given in
Table 1—109.5°, 70.5°, and 54.7°—are approximate,
but the exact values can easily be obtained using the
inner product of the selected two column vectors by the
upper three rows of matrix A. Furthermore, it should be

noted that the four vectors of length 1 :  in the tile-
space are linearly dependent with respect to the integer
coefficient. This is reflected by the fact that the ele-
ments of the bottom row of (1) are 0 or 1/2 and that the
w' coordinates of the projected points make a discrete
set of a multiple of 1/2. Thus, the number of indepen-
dent vectors in the tile-space is six, and the tiling can be
generated by projection from six-dimensional (6D) to
3D space. The lattice matrix for this case is easily

P||
2

P||, P⊥
2

P⊥ ,= =

P|| P⊥+ I ,=

P||P⊥ O,=

2

4

obtained by removing the first column vector corre-
sponding to the basis vectors in (1) and taking the z axis
to coincide with the direction of that vector, so that the
projections of the other six vectors to the xy plane form
two threefold stars. Details will be discussed elsewhere
[16].

The test window is defined as a convex hull by 27

projected points in the perp-space corresponding to ver-
tices of a 7D unit cube of the base lattice space. It has a
boundary facet defined by a number of combinations of
three out of seven basis vectors in the 4D perp-space. If
no degeneracy occurs, all the combinations define the

facets, that is, 70 or 2  facets should appear. How-
ever, degeneracy of the hyperplanes defining the facet
arises in this case, because they have the same normals.

In fact, the polytope generated has 34 facets and
72 vertices in 4D space. The details of a method of find-
ing the projected polytope in the perp-space that uses
the program Qhull [18] is discussed elsewhere [17].
Table 2 shows the component (rounded numerical val-
ues) of normals of facets and the offsets from the center
to each facet of the polytope. Figure 6 shows sections
of the 4D polytope at w' = –1, –1/2, 0, 1/2, and 1 that are

C7
3
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(a) (b) (c) (d) (e)

Fig. 6. Sections of a 4D test window polytope at w' = –1 (a), –1/2 (b), 0 (c), 1/2 (d), and 1 (e).
3D polyhedra of 6, 10, 26, 10, and 6 facets, respec-
tively, as shown in Fig. 6. Circles on the vertices show
inside and outside properties (refer to Fig. 5) of the test
window for the infinitesimal transfer with a direction of
(0.3, –0.5, –0.7, 2.0) and a transfer vector of (0, 0, 0, 0).
In the same way, the unit polyhedron, or the projection
of a 7D unit cube to the 3D tile-space, is obtained as a
truncated rhombic dodecahedron with 18 facets and
32 vertices. It is shown in Fig. 7 with basis vectors.

A 3D quasiperiodic tiling obtained under the test
window conditions shown in Fig. 6 with the domain of
projection of a 7D unit cube is shown in Fig. 8. It con-
sists of one C, eight Ss, eight Ps, and four Rs, of which
six Ss and six Ps constitute three RPD clusters and three
Ss and one C constitute one SPD cluster.

The projection of the 3D QL to 2D surface is shown
in Figs. 9a–11a for the projection direction along the
fourfold, threefold, and twofold symmetry axes of the
unit polyhedron shown in Fig. 7. The original 3D QL is
obtained with the domain of the projection in the base
lattice space as –2 ≤ xi ≤ 2, i = 1, …, 7 and consists of
1404 vertex points.

The diffraction patterns shown in Figs. 9b–11b are
calculated by the standard method using the direct Fou-
rier transform for a 2D mask. Assuming that a Dirac

1

2

3 4

56

7

Fig. 7. A unit polyhedron by the projection of a 7D unit cube
onto the tile-space is shown that is a truncated rhombic
dodecahedron. Basis vectors, which are shown by arrows, are
numbered according to the order of column vectors in (1).
C

measure exists at each vertex x of the 3D QL given
above, the measure associated with the QL is m = ΣKPδx.
The Fourier transform is formally given by m(k) =
ΣKPexp(2πikx), where kx indicates the scalar product
[15]. If k is restricted in plane P perpendicular to the
asymmetry axis, the Fourier transform on the plane can
be given with x replaced by xP, the projection of x to
plane P. This shows that, taking the square of the Fou-
rier transform, the diffraction pattern can be obtained
by using a 2D program. In Fig. 9b, although the pattern
is basically fourfold symmetric, bright spots forming
regular octagons or quasiregular octagons can be
noticed.

DISTORTION OF THE QUASIPERIODIC 
LATTICE

The QL can be deformed so that it is periodic in one
direction and quasiperiodic in the other two directions
by introducing distortion parameter δ into matrix A

Fig. 8. A part of the 3D quasiperiodic tiling corresponding
to the unit polyhedron generated using the test window
shown in Fig. 6. It consists of prototiles: one C, eight Ss,
eight Ps, and four Rs.
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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(‡) (b)

Fig. 9. Projections of a 3D QL to a plane perpendicular to a twofold symmetry axis of the unit polyhedron (a) and the corresponding
diffraction pattern calculated by the direct Fourier transform using 1404 points (b).

(a) (b)

Fig. 10. Projections of a 3D QL to a plane perpendicular to a threefold symmetry axis of the unit polyhedron (a) and the correspond-
ing diffraction pattern calculated by the direct Fourier transform using 1404 points (b).

(a) (b)

Fig. 11. Projections of a 3D QL to a plane perpendicular to a fourfold symmetry axis of the unit polyhedron (a) and the correspond-
ing diffraction pattern calculated by the direct Fourier transform using 1404 points (b).
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Table 2.  Rounded numerical values of normals and offsets of the test window

No. nx' ny' nz' nw' Offset

1 0.547723 –0.547723 0.547723 0.316228 0.987048
2 –0.547723 0.547723 –0.547723 –0.316228 0.987048
3 0.547723 –0.547723 –0.547723 –0.316228 0.987048
4 –0.547723 0.547723 0.547723 0.316228 0.987048
5 0.000000 0.000000 0.866025 0.500000 0.853553
6 0.000000 0.000000 –0.866025 –0.500000 0.853553
7 0.707107 –0.707107 0.000000 0.000000 0.985599
8 –0.707107 0.707107 0.000000 0.000000 0.985599
9 0.547723 0.547723 –0.547723 0.316228 0.987048

10 –0.547723 –0.547723 0.547723 –0.316228 0.987048
11 0.000000 0.707107 –0.707107 0.000000 0.985599
12 0.000000 –0.707107 0.707107 0.000000 0.985599
13 0.866025 0.000000 0.000000 0.500000 0.853553
14 –0.866025 0.000000 0.000000 –0.500000 0.853553
15 0.000000 0.866025 0.000000 0.500000 0.853553
16 0.000000 –0.866025 0.000000 –0.500000 0.853553
17 0.707107 0.000000 –0.707107 0.000000 0.985599
18 –0.707107 0.000000 0.707107 0.000000 0.985599
19 0.547723 0.547723 0.547723 –0.316228 0.987048
20 –0.547723 –0.547723 –0.547723 0.316228 0.987048
21 0.000000 0.866025 0.000000 –0.500000 0.853553
22 0.000000 –0.866025 0.000000 0.000000 0.853553
23 0.707107 0.000000 0.707107 0.000000 0.985599
24 –0.707107 0.000000 –0.707107 0.000000 0.985599
25 0.000000 0.707107 0.707107 0.000000 0.985599
26 0.000000 –0.707107 –0.707107 0.000000 0.985599
27 0.866025 0.000000 0.000000 –0.500000 0.853553
28 –0.866025 0.000000 0.000000 0.500000 0.853553
29 0.000000 0.000000 0.866025 –0.500000 0.853553
30 0.000000 0.000000 –0.866025 0.500000 0.853553
31 0.707107 0.707107 0.000000 0.000000 0.985599
32 –0.707107 –0.707107 0.000000 0.000000 0.985599
33 0.000000 0.000000 0.000000 1.000000 1.000000
34 0.000000 0.000000 0.000000 –1.000000 1.000000
(Eq. (1)). The geometry of the distortion considered is
similar to those proposed for the 2D case [19]. Distort-

ing the basis vector in the z direction, the lattice matrix
A can be QL-modified as

(9)A'
1

3
-------

1/ 2 1/ 2 1/ 2– 1/ 2 1 0 0

1/ 2 1/ 2 1/ 2 1/ 2– 0 1 0

D1/ 2 D1/ 2– D1/ 2 D1/ 2 0 0 D

1/2– 1/2– 1/2 1/2– 2 0 0

1/2– 1/2– 1/2– 1/2 0 2 0

D/2– D/2 D/2– D/2– 0 0 2D1

3/2 3/2– 3/2– 3/2– 0 0 0 
 
 
 
 
 
 
 
 
 
 
 
 

,=
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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(‡) (b)

Fig. 12. xz plane projection of a distorted 3D tiling that is quasiperiodic in the x and y directions and periodic in the z direction (a)
and the corresponding diffraction pattern calculated by the direct Fourier transform using 1282 points (b).
which satisfies the orthonormal condition, where D =

 and D1 = 1 + δ, from which the proper-
ties of the tiling can be derived. For δ ≠ 0 and |δ| < 1,
the basis vectors are grouped into three sets: four vec-
tors from the first four, two from the fifth and sixth, and
one from the last column vectors of (9). The number of
prototiles becomes seven, and that of clusters six. It is

1 4δ 2δ2––
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
interesting to note that, for δ = –1, the elements of the
third row corresponding to the z coordinate are zeroes,
except for the last one, and that the projection of the til-
ing to the xy plane becomes a tiling with prototiles of
Beenker’s tiling. Details will be discussed elsewhere

[20]. As an example, put δ =  – 1 into (9); then,
matrix A' becomes

6/5
(10)A'
1

3
-------

1/ 2 1/ 2 1/ 2– 1/ 2 1 0 0

1/ 2 1/ 2 1/ 2 1/ 2– 0 1 0

3/5 3/5– 3/5 3/5 0 0 3/5

1/2– 1/2– 1/2 1/2– 2 0 0

1/2– 1/2– 1/2– 1/2 0 2 0

3/20– 3/20 3/20– 3/20– 0 0 4 3/20

3/2 3/2– 3/2– 3/2– 0 0 0 
 
 
 
 
 
 
 
 
 
 
 
 

,=
in which the z' coordinate in the perp-space is discrete

(multiples of 1/2 ) in addition to the w' coordinate
(multiples of 1/2). Also, the z coordinate in the tile

space is discrete (multiples of 1/ ). Consequently, the
3D tiling is periodic along the z direction and quasiperi-
odic in the xy plane. A 3D tiling generated under similar
conditions as the QL shown above can be obtained, and
its projection onto the xy plane and the corresponding
diffraction pattern are shown in Figs. 12a and 12b,
respectively.

CONCLUSIONS

As an extension of 2D eightfold symmetric Been-
ker’s tiling, a 3D quasiperiodic tiling based on a cuboc-

5

5

tahedron is considered and its properties are investi-
gated. Since a QL is composed of four kinds of proto-
tiles, the structure appears complicated, but the
symmetry of the QL reflects that of the cuboctahedron,
namely, two-, three-, and fourfold symmetry. It is an
interesting question whether a self-similar method of
generation exists for the QL derived by the projection
method. Ways of constructing a QL by self-similar
method have been successfully found [10], and their
details will be elucidated. The QL can be considered a
quasicrystal model that gives fourfold symmetry. Fur-
thermore, the tiling with the distortion parameters pre-
sented here may be applied to model an octagonal
phase of some metal compounds by introducing an
appropriate distortion parameter. Though, in this paper,
the geometrical aspect is emphasized, further study is
4
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needed to take into account the physical and chemical
aspects.
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Abstract—Lattice models for a two-dimensional octagonal quasicrystal and a three-dimensional icosahedral
quasicrystal with the icosahedral–dodecahedral local order are introduced. It is shown that an octagonal
quasicrystal may be obtained as a result of the local deformation of an ideal square atomic lattice. Possible
paths of structural transformations between various phases of an AlPd crystal are determined. It is
shown that icosahedral quasicrystals of aluminum alloys with transition metals can be considered to be a
result of the local distortions of an ideal fcc lattice of elemental aluminum induced by a transition metal impurity.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is well known, the diffraction pattern from an
icosahedral quasicrystal consists of sharp Bragg peaks
whose positions are completely described by a set of six
integers (and not three, as in a conventional three-
dimensional, crystal) [1–3]. This fact allows one to
describe the structure of a quasicrystal by the methods
of multidimensional crystallography developed for
other types of incommensurate phases, such as, e.g.,
modulated crystals [4, 5]. Nevertheless, there are some
important differences between quasicrystals and modu-
lated crystals associated with their symmetry properties
and methods used to obtain these structures. The main
reason to consider quasicrystals as an individual class
of structures is their unusual point symmetry inadmis-
sible in periodic crystals. Contrary to quasicrystals,
modulated crystals are considered a result of the distor-
tion of the crystal structure under the action of one or
several periodic modulations with periods incommen-
surate with respect to the periods of the initial crystal.
Such a distortion makes the crystal aperiodic, so that it
is necessary to introduce some new vectors into the
basis of its reciprocal lattice—one vector per modula-
tion. The structures in which the dimensionality of the
reciprocal-lattice basis exceeds the dimensionality of
space are called incommensurate or quasiperiodic. The
possibility to single out the initial periodic lattice (so-
called mean lattice) is reflected in the physical proper-
ties of modulated crystals. Thus, it is obvious that the
point symmetry group of a modulated crystal should be
a subgroup of the point group of the initial crystal; in
other words, it cannot have unusual symmetry elements
inherent in quasicrystals such as five-, eight-, ten-, and
twelvefold axes. Another example is the presence in the
diffraction pattern from modulated crystals of a system
of main peaks corresponding to the mean lattice,
1063-7745/04/4904- $26.00 © 20537
whereas, in quasicrystals, all the incommensurate basis
vectors of the reciprocal lattice are equivalent.

Taking what was said above into account, the aim of
this work as declared in the article title, i.e., the descrip-
tion of a quasicrystal formed as a result of the local dis-
tortion of the periodic structure, seems to be unattain-
able. However, there are some facts that indicate that
this is not true. Among these facts is, e.g., the experi-
mental detection of the phase transitions of the crystal–
quasicrystal type. Another purely theoretical example
is the lattice model of a plane dodecagonal tiling of
squares and equilateral triangles [6–8]. This paradox is
explained by the fact that only specific modulations can
give rise to an increase in the point symmetry of a crys-
tal. One may readily find the restrictions imposed on
the main reciprocal-lattice periods of incommensurate
modulations, which, together with the main reciprocal-
lattice periods of the initial crystal, should form the
basis of the reciprocal lattice of a quasicrystal. For
example, in order to obtain a structure with octagonal
symmetry, the reciprocal-lattice basis of a square net,
{(1, 0), (0, 1)}, should be complemented with the vec-

tors (1/ , 1/ ) and (1/ , –1/ ). However, in
order to describe the structure, knowledge of the recip-
rocal-lattice basis is not sufficient—one must also
know the positions of individual atoms. Earlier, some
attempts were made to describe the atomic structure of
a quasicrystal with the aid of periodic structures with
the same dimensionality as in a quasicrystal [9, 10].
Thus, the atomic positions of an octagonal quasicrystal
were considered as those obtained by averaging the
positions of the sites of two square lattices rotated by an
angle of 45° with respect to one another [9]. The possibil-
ity to single out the fcc mean lattice in a three-dimensional
icosahedral Penrose tiling was shown in [10].

The present work aims at the description of the
atomic structure of some quasicrystals formed as a
result of the local distortion of primitive periodic lat-

2 2 2 2
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Fig. 1. Examples of plane periodic tilings composed by squares, regular octagons, and equilateral hexagons with the angles 90° and
135°. The light and dark figures indicate the possibility of the transition from tilings of the given class to lattices consisting of tet-
ragons topologically equivalent to the square net.
tices. As examples, we consider plane octagonal tilings
and, also, the class of structures with the so-called
icosahedral–dodecahedral local order (IDLO).

A QUASIPERIODIC OCTAGONAL TILING
AS A DEFORMED SQUARE LATTICE

As an example, consider a class of tilings on a plane
composed of three types of tiles—squares, regular octa-
gons, and equilateral hexagons with the angles 90° and
135°. Figure 1 shows several of the simplest tilings of
such type. Any tiling of this class possesses one pecu-
liar property—if one supplements the vertices already
existing in the tiling with a site in the centers of all the
octagons, then the system of sites thus obtained can be
used to construct a net topologically equivalent to a
square lattice. Indeed, as is seen from Fig. 1, each tiling
can be divided into tetragons in such a way that each
site of the structure (including the sites in the octagon
centers) would be a vertex shared by four tetragons.
This signifies that all the structures of the given class,
with the atoms being located at square and hexagon
vertices and octagon vertices and centers, can be con-
sidered a result of the local deformation of an ideal
square lattice having no voids and interstitial atoms.
C

A similar property has long been known for another
class of plane structures, namely, for tilings composed
of squares and regular triangles. It has been shown that the
latter are related in a similar way to a triangular net [6].

The tilings shown in Fig. 1 are examples of periodic
structures, but the same tiles can also be used to con-
struct aperiodic (including quasiperiodic octagonal) til-
ings. In order to determine the structure with the mac-
roscopically octagonal symmetry, one may use, e.g.,
the rules of tiling inflation (Fig. 2).

We would like to explain the meaning of the term
inflation related to the self-similarity property of some
tilings, which reduces to the following. All the tiles of a
certain tiling can be divided into similar smaller figures.
Then, uniformly extending this pattern in such a way
that the constituent figures would acquire again their
initial dimensions, we arrive at a structure locally iso-
morphous to the initial one, in other words, the old and
new tilings overlap within arbitrarily large regions. The
inflation rules uniquely determine the class of locally
isomorphous structures and can be used to describe
quasiperiodic mosaics. The multiple inflation of the til-
ing allows one to obtain infinitely large regions of til-
ings, starting this procedure from only one or several
tiles.
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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The tiles in Fig. 2 may be divided into figures simi-
lar to these tiles in accordance with their in-plane orien-
tations. The orientations are indicated by auxiliary tri-
angles on the figure sides. The similarity coefficient of

the tiles for the old and new tilings is α = (1 + ). The
number of squares equals the number of octagons. The
ratio of the number of hexagons to the number of octa-

gons equals (  – 1). The portion of the structure cor-
responding to these inflation laws is shown in Fig. 3.
The tiling thus obtained is not the only possible octag-
onal structure built by squares, regular octagons, and
equilateral hexagons with angles of 90° and 135°
despite the fact that this tiling possesses some peculiar
features [11]. First, all the sites of this structure are
three-connected ones. Moreover, they all have the same
nearest environment. Second, this tiling may also be
obtained from the well-known Ammann–Beenker tiling
[12, 13] constructed of squares and rhombuses with
acute angles of 45° and the removal of some sites.

The octagonal tiling thus obtained may also be
divided into tetragons by the method indicated above
(Fig. 3). Thus, the given structure with the additional
sites in the octagon centers is topologically equivalent
to the square lattice. Decorating this structure with
atoms, we arrive at a plane quasicrystal with octagonal
symmetry (Fig. 4). It is seen that this quasicrystal may
be considered a result of the local deformation of a
plane crystal with the square lattice due to the replace-

ment of some atoms (3 – 2  ~ 17%) by impurity
atoms with a large atomic radius.

The increase in the point symmetry of the crystal
upon its deformation is rather amazing. It is worth men-
tioning the reverse process—lowering of the symmetry
upon the quasicrystal–crystal transition. Similar to any
phase transformation, lowering of the symmetry indi-
cates the nonuniqueness of the transition, which can
occur along different paths. Indeed, the constituent
hexagons and octagons may be divided into tetragons in
two ways that are symmetric with respect to one
another. Each of these ways describes the transition to
its own square lattice. The angle formed by these lat-
tices in the octagonal tiling is 45°.

Thus, we showed that a quasiperiodic octagonal
structure is simply related to a square lattice. Earlier, a
similar property was demonstrated for another class of
quasiperiodic structures, namely, for dodecagonal til-
ings composed by squares and equilateral triangles [8].
It was shown that these tilings can undergo transition to
a triangular lattice, which is accompanied by lowering
of the point symmetry to the hexagonal one. The atomic
structures of quasicrystals are often described with the
aid of the projection method—the atomic positions are
determined as the projections of some sites of a multi-
dimensional periodic lattice onto the physical space. In
this case, the selection of a physical space determines
the local environment of atoms in the structure. The
transition from the quasiperiodic lattice to a periodic

2

2

2
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lattice of the same dimensionality considered here may
also be described as a projection from the multidimen-
sional space onto a subspace different from the physical
one. Up to now, the octagonal tiling described here
(Figs. 3, 4) and the dodecagonal tiling mentioned above
[7] are the only known examples of quasiperiodic struc-
tures for which such projecting can be performed onto
an ideal (without vacancies and interstitials) periodic
lattice. However, if one does not require that the lattice
onto which projection is made be ideal, this approach
may also be applied to a very wide class of substances.
In particular, this is true for the atomic structures of a
number of icosahedral quasicrystals and their periodic
approximants possessing the so-called icosahedral–
dodecahedral local order considered in the following
section. We suggest the method of projecting the
atomic positions of these structures onto a primitive
cubic lattice.

LATTICE MODEL OF STRUCTURES 
WITH ICOSAHEDRAL–DODECAHEDRAL 

LOCAL ORDER

Above, we showed that the atomic positions of a
certain periodic or quasiperiodic structure can be pro-

Fig. 2. Inflation rules for the octagonal tiling consisting of
squares, regular octagons, and equilateral hexagons with the
angles 90° and 135°. The tiles of the initial tiling (thin lines)
are divided into figures similar to the initial ones of a new
tiling (thick lines) in accordance with their in-plane orienta-
tions, indicated by the zigzags on the sides.



 

540

        

CHIZHIKOV

    
Fig. 3. A portion of the octagonal tiling with 3-connected sites obtained with the aid of the inflation rules. One can see the transition
to the lattices consisting of tetragons topologically equivalent to a square net.

Fig. 4. A plane octagonal quasicrystal obtained with the aid of atomic decoration of the tiling shown in Fig. 3.
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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jected onto the sites of a primitive lattice of the same
dimensionality, with the lattice type and the projective
method being determined by the local order in the given
structure. In what follows, the projective method and a
lattice with the atoms thus projected are referred to as a
lattice model. In this section, we introduce the lattice
model for a class of icosahedral quasicrystals and their
periodic approximants characterized by the same icosa-
hedral–dodecahedral local order (IDLO) in the arrange-
ment of atoms.

The nearest neighbors of each atom in an ideal
structure with the IDLO are located at the distances r3,
r5, and r2 (r3 < r5 < r2) along the three-, five-, and two-
fold symmetry axes of an icosahedron. In this case, the
connectivity of the structure with the IDLO is attained
only with the aid of the r3 and r5 vectors. In other words,
one may construct a chain of atoms between any two
atoms of the structure in such a way that the distance
between two neighbors in the chain would be deter-
mined either by a vector of the r3 or the r5 type. The
only exceptions seem to be two simplest structures—
bcc and diamond ones. The IDLO is never rigorously
obeyed in crystals, and yet, for a number of reasons, the
IDLO may be used as an idealized description of a
really existing mutual arrangement of atoms in a num-
ber of substances. Possible interatomic bonds in a
structure are determined by a set of 62 vectors of

approximately equal lengths (r2/r3 = 2/ ) that can be
used to approximate the real interatomic distances in
many real structures. However, the icosahedral symme-
try of this set of vectors makes the use of IDLO espe-
cially convenient for the description of the structures of
icosahedral quasicrystals and their periodic approxi-
mants [14, 15].

It should be noted that the connectivity of the struc-
ture with the IDLO may also be attained by using the
vectors of only one type, r3 or r5. In the first case, we
arrive at the dodecahedral local order (DLO) and, in the
second case, the icosahedral local order (ILO). The
DLO is encountered in some simple crystals, i.e., in bcc
and diamond lattices, crystals of the FeSi type, etc. The
ILO in its pure form is encountered in three-dimen-
sional Penrose tilings [16] and also in a cubic Al12Mn
crystal. There are grounds to believe that real icosahe-
dral quasicrystals and their higher-order crystal approx-
imants are connected DLO structures with a small num-
ber of additional atoms in the positions of the so-called
icosahedral holes related to their nearest environment
by vectors of the r5 type [14, 15].

In conventional length units (r2/2 ≡ 1), 20 r3 vectors
have the form (±1, ±1, ±1) or (±τ, 0, ±1/τ) ; 12 r5 vec-
tors, the form (±τ, ±1, 0) ; and 30 r2 vectors, the form
(±2, 0, 0)  or (±τ, ±1/τ, ±1) , where the plus or minus
signs are selected independently for each coordinate
and the sign  indicates the allowed cyclic permuta-

tions. Here τ = (  + 1)/2 is the golden mean. Thus, the

3
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distance between any two A and B atoms in the IDLO
structure is represented by the vector

rAB = (nxτ + mx , nyτ + my , nzτ + mz), (1)

where ni and mi are integers.
Now, introduce the lattice model for IDLO struc-

tures by making the change

τ  1. (2)

Then, the vector rAB is transformed into the vector 
with the integral coordinates

 = (nx + mx , ny + my , nz + mz), (3)

In other words, we perform projection onto a primitive
cubic lattice. It is interesting to follow how the 62 vec-
tors that describe the positions of the neighboring
atoms are changed after this operation: the vectors r3
are transformed into the (±1, ±1, ±1) and (±1, 0, 0)
vectors, the vectors r5, into the (±1, ±1, 0)  vectors,
and the vectors r2, into the (±2, 0, 0)  and (±1, 0, ±1)
vectors. Here, we used the ratio 1/τ = τ – 1 valid for the
golden mean. It is seen that the atoms of the initial
IDLO structure spaced from one another by the dis-
tances r5 and r2 are projected onto the same fcc sublat-
tice of the primitive cubic lattice, whereas the atoms
spaced by the distance r3, are projected onto the differ-
ent fcc sublattices. This fact will be used in the discus-
sion of the structures of real icosahedral quasicrystals
in the system aluminum–transition metal.

Generally speaking, calling the transition from rAB

to  a projecting, we implicitly assume the use of a
certain multidimensional formalism. Indeed, rAB and

 can be considered as the projections of a six-
dimensional vector, N = (nx , ny , nz , mx , my , mz), onto
various three-dimensional subspaces.

Now, consider possible constraints that may be
imposed onto the lattice model under study. Obviously,
the transition from rAB to  is not a mutually unique
transformation: each of the vectors of type (3) is the
projection of an infinite number of vectors of type (1).
Generally speaking, two IDLO vectors, r1 and r2, are
projected onto the same site of a primitive cubic lattice
then, and only then, if their difference has the form r1 –
r2 = (1/τ)(kx , ky , kz), with ki being integers. Therefore,
the condition for the applicability of the given model
seems to be the absence of interatomic distances of the
(1/τ)(kx , ky , kz) type in an IDLO structure. This condi-
tion is not fulfilled, e.g., for a three-dimensional Pen-
rose tiling in which the short diagonal of a oblate rhom-
bohedron may have the form (1/τ, 1/τ, 1/τ); whence it
follows that, being projected, the vertices located at the
ends of the given diagonal will merge into one point.
However, the length of this diagonal, r3/τ, is consider-
ably shorter than the main distance, r5, between the
sites of this structure. Thus, the condition of the appli-
cability of the suggested lattice model to one or another

rAB*

rAB*

rAB*

rAB*

rAB*
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IDLO structure may coincide with the purely physical
requirement of the absence of interatomic distances in
this structure that are too short.

As was shown above, the (±2, 0, 0)  vectors directed
along the twofold axes of an icosahedron remain intact
when projecting the IDLO structure onto a primitive
cubic lattice. On the one hand, the (±2, 0, 0)  vectors
differ from the other r2 vectors, since they are located
along the coordinate axes of the cubic lattice onto
which projecting is made. However, on the other hand,
the selection of only 3 from the total 15 twofold axes of
an icosahedron is quite arbitrary and depends only on
the initial choice of the coordinate system. Altogether,
there are five possible sets of three twofold axes normal
to one another that are related by the symmetry ele-
ments of the symmetry group of an icosahedron. Each
of these sets has its own coordinate system for the
IDLO structure and, therefore, also its own cubic lattice
onto which the projecting can be made. If the IDLO
structure is an icosahedral quasicrystal, then it is unim-
portant which of the five cubic lattices is used for pro-
jecting, because the symmetry of the initial structure
makes all the projections equivalent. However, if the
initial structure is a periodic approximant, then the pro-
jections onto different cubic lattices are different. In
what follows, this property is used to consider certain
well-known crystals with IDLO.

The application of the above lattice model to real
IDLO crystals is illustrated by several simple examples.

APPLICATION OF THE LATTICE MODEL
TO WELL-KNOWN CRYSTALS WITH IDLO

Cubic Al12M crystal has a bcc lattice. Two manga-
nese atoms occupy the vertex and the center of the
cubic unit cell and are surrounded with the aluminum

(a) (b)

Fig. 5. Transformation of the (a) local environment of an
atom in the fcc structure into (b) an icosahedron. Inter-
atomic bonds indicated by solid lines have the same lengths.
The icosahedron is inscribed in a cube. The cube edges

depicted on the left and on the right are related as /τ. The
dashed lines indicate the interatomic bonds restored in the
transition to an icosahedron.

2

C

icosahedra. The Al12Mn structure is an example of
icosahedral local order and, as was shown above, the
absence of r3 bonds results in the fact that all the atoms
are projected onto the same fcc sublattice of a primitive
cubic lattice. The 12 aluminum atoms surrounding each
manganese atom are projected onto the local environ-
ment of the site of the fcc lattice (cuboctahedron), also
consisting, as is well known, of 12 atoms (Fig. 5). As
was indicated above, the application of the lattice
model described by Eq. (2) to a periodic structure
depends on the choice of the cubic lattice onto which
the projecting is made. Let us consider it using the
example of Al12Mn.

The length of the edge of the cubic unit cell in the
selected conventional units is 2τ2. If the coordinate sys-
tem of the lattice onto which the structure is projected
coincides with the initial coordinate system of the cubic
crystal, the crystal periods (2τ2, 0, 0)  are transformed
into the periods (4, 0, 0)  of the lattice. A cube with an
edge length of 4 has 32 sites in one fcc sublattice,
whereas the unit cell of an Al12Mn crystal contains only
26 atoms. Thus, the projection considered is an fcc lat-
tice with a large number of defects—there is only one
manganese atom and three vacancies per 12 aluminum
atoms. The result would be different if we were project-
ing onto another cubic lattice. Thus, it is possible to
select the coordinate system in which the edges of the
cubic unit cell of an Al12Mn crystal are represented by
the vectors (τ3, –τ, τ2) . They are projected onto the
periods (3, –1, 2)  of the cubic lattice (we used here
the relations τ3 = 2τ + 1 and τ2 = τ + 1). The volume of
a rhombohedron built on these periods equals 52; in
other words, this rhombohedron has exactly 26 sites in
one fcc sublattice.

Thus, the second method of projecting gives an fcc
containing no vacancies, i.e., all its sites are occupied
by aluminum and manganese atoms. This allows us to
consider an Al12Mn crystal as a result of the local defor-
mation of an ideal fcc aluminum lattice accompanied
by the replacement of some sites by manganese impurity.
Indeed, the replacement of an aluminum atom in one of
the sites of the fcc lattice by a manganese atom results in
the distortion of the nearest environment of this site. Since
the Al–Mn bond length is somewhat less than the Al–Al
bond length, the 12 aluminum atoms surrounding the site
strive to approach the central manganese atom, which is
hindered by bonds existing between the aluminum
atoms, whose lengths should remain constant. Never-
theless, deformation without changing the Al–Al bonds
is also possible, unless each of the aluminum atoms
would acquire an additional bond (Fig. 5). In the latter
case, the 12 aluminum atoms form an icosahedron with
the manganese atom in the center.

The distortion of the local environment of impurity
atoms and formation of icosahedral Al12Mn clusters
result in the deformation of the whole structure. In this
case, some Al–Al bonds formed by aluminum atoms
from different clusters are broken, but most of the
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Ideal DLO structures of the crystalline AlPd phases

Sp. gr., lattice parameters Lattice periods Position multiplicity 
and atomic species

Atomic coordinates
of the IDLO structure

Pm m (B2), a = r2 (2, 0, 0) 1(Al) (0, 0, 0)

1(Pd) (1/2, 1/2, 1/2)

P213 (B20), a = τr2 (2τ, 0, 0) 4(Al) (τ–1/4, τ–1/4, τ–1/4)

4(Pd) (1 – τ–1/4, 1 – τ–1/4, 1 – τ–1/4)

R  (26 atoms), a =τ r2, (τ2, –τ3, τ + 2) 1(Al) (0, 0, 0)

cosα = –1/ 1(Pd) (1/2, 1/2, 1/2)

6(Al) (1 – τ–1/4, 1/2 + τ–2/4, 1/2 + τ–3/4)

6(Pd) (1/2 – τ–1/4, τ–2/4, τ–3/4)

6(Al) (1/2 + τ–1/4, τ–2/4, 1/4)

6(Pd) (τ–1/4, 1/2 + τ–2/4, 3/4)

Note: Crystal periods are given in arbitrary length units (r2/2 ≡ 1).

3

3 2 τ+

5

bonds remain unchanged, which allows us to state that
the deformation has a local character. In order to obtain
the sought structure of Al12Mn crystal, manganese
atoms should occupy the sites of the rhombohedral sub-
lattice with the periods (3, 0, –1)  (as earlier, the
period of the fcc lattice is assumed to be equal to two).

It is striking that two cubic structures (fcc aluminum
crystal and bcc Al12Mn crystal) have only one common
threefold axis. This signifies that the lattice transforma-
tion considered above cannot be described within the
framework of the conventional theory of phase trans-
formations, because, in the process of this transition,
the cubic symmetry is first lost and, then, restored
again, with the intermediate phase having the rhombo-
hedral symmetry.

Transitions between AlPd crystalline phases. In
the Al–Pd system, three crystalline phases are revealed
in the vicinity of the point of equal concentrations of
aluminum and palladium atoms. These phases may be
described by the dodecahedral local order—these are
the cubic phases with the B2 and B20 structures

(sp. gr.  and P213, respectively) and the rhom-

bohedral structure (sp. gr.  with 26 atoms per unit
cell) [17]. The table gives the description of the ideal
DLO structures of these crystals. It has been shown [18]
that the ideal atomic positions determined by the DLO
approximation are rather close to the experimental
positions. All the three crystals have similar structural
characteristics. First, aluminum and palladium atoms in
the structure alternate: each aluminum atom is sur-
rounded by palladium atoms and vice versa. Second,
the aluminum and palladium sublattices in each crystal
are related by a certain symmetry transformation. Mak-
ing no distinctions between the atomic species, we

increase the structure symmetry—the  space

group is transformed into ; the P213 space group,

Pm3m

R3

Pm3m

Im3m
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into ; and the  space group, into , with a
corresponding double decrease in the unit-cell volume
[19, 20]. Later, we shall show that the three AlPd phases
can transform into one another via the local structural
transformations, with the transition between the B2 and
B20 structures being simply described within the lattice
model given by Eq. (2).

Writing the atomic coordinates of the B2 structure in
the selected coordinate system natural for a cubic crys-
tal, we avoid the use of τ (see table) and, therefore, in
this case, the lattice model coincides with the structure.
However, it is interesting to consider this crystal in a
rotated coordinate system in which the edges of the
cubic unit cell are set by the vectors (τ, –1/τ, 1) .
These vectors are projected to form the periods (1, 0,
1)  of a simple cubic lattice. A rhombohedron built on
these periods has a volume equal to two, which corre-
sponds to the number of atoms in the cubic unit cell of
the B2 structure. Thus, it is shown that the B2 structure
may be “densely” projected onto a primitive cubic lat-
tice without any vacancies. With due regard made for
the atomic species, the space group of the projection is

. Figure 6 shows (a) a cubic unit cell of the B2
structure and (b) a rhombohedron representing its pro-
jection onto the cubic lattice. It should be emphasized
that, although both structures (initial structure B2 and
its projection) possess the cubic symmetry, they have
only one common threefold symmetry axis.

Lattice model (2), being applied to the B20 struc-
ture, transforms the periods (2τ, 0, 0)  of this crystal
into the periods (2, 0, 0)  of a primitive cubic lattice.
A cube with such edges has a volume equal to eight,
which corresponds to the number of atoms in the unit
cell of the B20 structure. Thus, the B20 and B2 struc-
tures may be densely projected onto a primitive cubic
lattice. With due regard made for the fact that the lattice
model may be considered as the local distortion of a

Pa3 R3 R3

Fm3m
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crystal, we can state that the B2 and B20 phases of an
AlPd crystal may be related by a phase transition
accompanied by the local deformation of the structure.
In this case, the two cubic phases have only one com-
mon threefold axis; in other words, this transition
would occur via the formation of a certain intermediate
phase having rhombohedral symmetry.

A rhombohedral AlPd crystal has the same struc-
tural feature as the B2 phase—the atoms form similar
chains of alternating aluminum and palladium atoms
along the threefold axis. The similar and distinguishing
features of these two phases can readily be illustrated
by the projections of the crystal onto the plane normal

(a) (b)

Fig. 6. (a) Cubic unit cell of the B2 structure and (b) its pro-
jection onto the fcc lattice. The common threefold symme-
try axis is shown.
C

to the threefold axis (Fig. 7). It is seen that the transition
to the rhombohedral phase is associated with the dis-
placement of the projections of atoms from the sites of
the ideal triangular lattice onto which the B2 structure
is projected. Also, the atomic chains show relative dis-
placements along the direction normal to this plane.
Some atomic bonds (not more than one per atom) are
broken. The periods (τ2, –τ3, τ + 2)  of the rhombohe-
dral crystal have corresponding periods (2, –4, 4)  in
the B2 structure. At the same time, the lattice model
described by (2) transforms the period (τ2, –τ3, τ + 2)
into the vector (2, –3, 3) (here, the equations τ2 = τ + 1
and τ3 = 2τ + 1 were used). Thus, it is seen that the tran-
sition from the rhombohedral AlPd crystal to crystals
with the B2 structure cannot be described within the
framework of the suggested lattice model. This seems
to be explained by the fact that, in the course of this
transition, some bond angles are considerably distorted.

Thus, it was shown that all the three phases of an
AlPd crystal are related and that, in principle, the phase
transitions are possible between these phases.

Icosahedral quasicrystals in the system alumi-
num–transition metal. Most of the known quasicrys-
tals were discovered in aluminum alloys with transition
metals (TMs). Among them is the first icosahedral qua-
sicrystal, Al86Mn14, discovered in 1984 [1]. Therefore,
the application of the suggested lattice model to these
systems is of great interest. The experimental data show
that there is a characteristic bond-length ratio, which is
also confirmed by the ab initio pair interaction poten-
tials [21, 22]: the Al–TM bond lengths are slightly
Fig. 7. The structure of the rhombohedral AlPd structure projected onto the plane normal to the threefold axis of the crystal. The
circles indicate the chains of atoms along the threefold axis. Thin lines show the projections of the unit-cell edges (periods), the
solid lines, the projections of the interatomic bonds. Dashed lines indicate the bonds absent in the orthorhombic phase which were
restored during the transition to the B2 structure.
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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(a) (b)

Fig. 8. Comparison of the atomic layers normal to the [100] axis in (a) the fcc structure of elemental aluminum and (b) in cubic
AlPd with the B20 structure. It is seen that the fcc structure of elemental aluminum can be considered a result of the local deforma-
tions of the cubic AlPd structure because of the filling of the atomic voids with palladium atoms.
shorter than the TM–TM and Al–Al bond lengths.
Thus, it has been shown [21] that the main minimum
values of the pair Al-TM potentials are about 2.34 Å for
Al–TM, 2.55 Å for TM–TM, and 2.74 Å for Al–Al
bond lengths. The ratio of these bond lengths equals
lAl−Tå : lTå–Tå : lAl–Al = 1 : 1.09 : 1.17. At the same time,
the ratio of the distances in the IDLO structures is r3 :
r5 : r2 = 1 : 1.10 : 1.15. It is seen that lAl–Tå/lAl–Al ~ r3/r2.
Thus, it is possible to assume that, if the alloy in the
Al−Tm system is characterized by the structure with
IDLO, then the Al–TM bonds correspond to the vectors
r3 and r5; to the TM–TM bonds, the vectors r3, r5, and
r2; and to the Al–Al bonds, the vectors r5 and r2. Obvi-
ously, this assumption is true for the Al12Mn and AlPd
crystals considered above. However, as was shown ear-
lier, the application of the lattice model to the IDLO
structure results in the fact that the atoms spaced by the
distances r5 and r2 are projected onto one fcc sublattice
of a primitive cubic lattice. Thus, within the lattice
model of the alloy in the Al–TM system, aluminum
atoms would occupy the sites of one fcc sublattice,
whereas the transition metal atoms may be located at
the sites of different fcc sublattices. This allows one to
put forward the hypothesis that icosahedral quasicrys-
tals in aluminum alloys with transition metals and their
periodic approximants may be considered as having
structures obtained by distortion of an ideal fcc alumi-
num lattice due to incorporation of transition metal
impurity. In this case, impurity atoms can replace the
aluminum atoms (as in Al12Mn) or be incorporated into
the vacancies of another sublattice dual to the fcc lattice
(as in AlPd). Figure 8 shows the changes in the atomic
layer normal to the [100] axis with the transition from
elemental aluminum to the B20 phase of the AlPd alloy.
Each aluminum atom in the initial fcc lattice is related
to 12 other aluminum atoms, whereas, in the B20 struc-
ture, each aluminum atom has only 6 neighboring alu-
minum atoms. Nevertheless, any two aluminum atoms
in an AlPd crystal can be bound by a chain consisting
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
of aluminum atoms alone, i.e., the connectivity of the
structure with respect to aluminum is preserved. In qua-
sicrystals, where the relative aluminum concentration is
higher, the connectivity of the structure with respect to
aluminum atoms should be more pronounced.

CONCLUSIONS

A simple lattice model of icosahedral quasicrystals
with the icosahedra–dodecahedral local order and their
periodic approximants is suggested. The model allows
one to describe the structures of such substances by set-
ting the function of the displacements of the sites of a
simple cubic structure. It should be noted that the trans-
formation inverse to lattice model (2) is somewhat
ambiguous, because the integral coordinate n related to
the cubic lattice is transformed into the coordinate
(n − m) + mτ of the IDLO structure with the integer m
that can take various values. This ambiguity allows one
to describe a large number of structures by the same
method.

On the other hand, if two different structures are
described by the same lattice model, this model can be
used as a criterion determining the possibility of the
occurrence of the phase transition between these struc-
tures, as was demonstrated using the example of the B2
and B20 phases of an AlPd crystal. In particular, this
criterion seems to be also applicable to the description
of a possible crystal–quasicrystal phase transition
widely discussed in the literature.
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Abstract—The Bragg reflections from icosahedral quasicrystals obtained in the course of a computer experi-
ment on the simulation of crystal growth have been studied. The computer experiments based on the theory
developed earlier allow one to “grow” in a computer the imperfect quasicrystals of nanometer dimensions. It is
shown that the absolute value of the structure factor can be close to the maximum possible one for crystals, i.e.,
to the structure factor in the case where all the atoms scatter in phase. The spectral width of Bragg reflections
is studied, and it is shown that the reflection width depends not only on the quasicrystal dimensions in the phys-
ical space but, also, on the perpendicular component of the reciprocal-lattice vectors. The data obtained are
compared with the known experimental data. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Usually, the formation of Bragg reflections is asso-
ciated with the long range order, i.e., with crystal peri-
odicity. In turn, the periodicity imposes severe restric-
tions onto the crystal symmetry. In particular, the peri-
odicity in a three-dimensional space is incompatible
with the icosahedral symmetry. Therefore, immediately
after the discovery of icosahedral quasicrystals in metal
alloys that yielded diffraction patterns with sharp max-
ima and, at the same time, possessing the icosahedral
symmetry [1], the question arose whether aperiodic
structures can give rise to the formation of Bragg peaks
described by δ functions. The answer turned out to be
positive, although, in the general case, the scattering
patterns from aperiodic structures were rather unusual
and became the subject of intense study.

In terms of mathematics, the construction of an ape-
riodic function in a space meets no difficulties. It is suf-
ficient to use the sum of the harmonic functions with
the number D of linearly independent wave vectors
exceeding the space dimensionality d. Mathematicians
have studied these almost periodic and quasi-periodic
functions for quite a long time [2] and shown that the
quasi-periodic functions (i.e., the functions with finite
D) could be considered irrational sections of
D−dimensional periodic functions. This property is
very useful for description of modulated structures and
computation of their diffraction patterns [3]. The inter-
est in the noncrystallographic symmetry considerably
increased after Penrose publication in which he showed
that it was possible to tile the space with pairs of spe-
1063-7745/04/4904- $26.00 © 20547
cially selected figures only aperiodically. The point
symmetry of such a Penrose tiling turned out to be
decagonal, which cannot be realized in crystals [4, 5].
One of the first studies of Penrose tilings in crystallog-
raphy and computations of the corresponding diffrac-
tion patterns had been made by Mackay prior to the dis-
covery of real quasicrystals [6].

Strictly speaking, quasicrystals are structures in
which aperiodicity is a consequence of a noncrystallo-
graphic point symmetry. In addition to three-dimen-
sional icosahedral quasicrystals, octagonal [7], decago-
nal [8], and dodecagonal [9] quasicrystals were found
in which quasiperiodicity was observed in two dimen-
sions, whereas, along the third dimension, these quasi-
crystals were periodic. The respective point symmetry
groups contain eight-, ten-, and twelvefold rotation or
screw symmetry axes.

The atomic structure of ideal quasicrystals with
icosahedral symmetry can be determined using a spe-
cial projection of a six-dimensional (D = 6) cubic lat-
tice onto a three-dimensional physical space [10], with
the Bragg peaks from such a structure being described
by δ functions. Another approach to the description of
quasicrystal structures is based on the principles of gen-
eralized symmetry [11, 12]. However, the real quasic-
rystals have much more complicated structures: they
differ from the ideal ones by the presence of specific
phason defects. The latter defects manifest themselves
in the diffraction patterns as reflection broadening and
displacements. Unlike the phonon deformations inher-
ent in crystals, the broadening and displacements of
004 MAIK “Nauka/Interperiodica”
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reflections are dependent, not on the reciprocal-lattice
vectors in the physical space, but on the components of
these vectors in the perpendicular space.

Below, we consider the effect of phason defects on
the diffraction patterns from quasicrystals using the
microscopic approach based on simulation of growth of
icosahedral quasicrystals and direct computation of
their spatial Fourier harmonics, i.e., diffraction reflec-
tions. This mode of growth is physically well justified
and, therefore, we hope that phason point defects aris-
ing in this model are close to those formed in real qua-
sicrystals. On the other hand, a priori, this model con-
tains no dislocations and phonon-induced deformations
that may distort the respective diffraction patterns.

SIMULATION OF QUASICRYSTAL
GROWTH

In order to compute the diffraction spectrum, we
must know the positions of all the atoms, because it is
impossible to select a unit cell in quasicrystals. We con-
sidered a rather large quasicrystal (containing slightly
more than 107 atoms) grown in the course of a computer
experiment on growth simulation. Despite the com-
plexity and aperiodicity of the structures of icosahedral
crystals, the model of their growth should be suffi-
ciently simple to be used to describe growth at a rather
high rate and rapid cooling (up to 106 deg/S). At the
same time, this model should be universal, because
quasicrystals are observed in numerous metal alloys.
The latter signifies that the model should not be too sen-
sitive to the choice of the atomic-interaction potential.

Two major assumptions justified in terms of physics
[13, 14] underlie our model.

1. It is assumed that the short range order of atoms
in quasicrystals and their crystalline approximants are
described by the dodecahedral and icosahedral local
order (DLO and ILO, respectively). In other words, the
nearest neighbors of each atom are located at distances
r3, r5, and r2 from this atom along the three-, five-, and
twofold axes, respectively. Some additional geometri-
cal justification of DLO can be found in [14], whereas
the argument in favor of ILO is its high density. Since
the periodic approximants of quasicrystals are charac-
terized by the same type of order, the use of this approx-
imation alone is insufficient. One must exclude (with
the aid of a certain physical mechanism) possible
growth of these approximants.

2. Earlier, we suggested using the oscillations of the
dependence of the atomic-interaction potential on dis-
tance (the so-called Friedel oscillations) as a mecha-
nism for suppression of growth of simple crystal struc-
tures. The point is that the quasicrystals and approxi-
mants are described by different radial distribution
functions of atoms, which is especially clearly seen for
the second coordination sphere [15]. Because of the
screening effect of the conduction electrons, the inter-
action potential between ions in metals acts within a
C

rather short distance, so that its effect is taken into
account at distances of an order of two interatomic dis-
tances, i.e., at about 1.8r2. It is important that the con-
duction electrons form a quantum system and, there-
fore, screening has oscillations depending on the dis-
tance whose period is inversely proportional to the
Fermi momentum and, thus, depends on the electron
concentration. As a result, within some distances, the
interaction potential is positive, so these distances
become energetically disadvantageous and should be
suppressed during growth. In this study, we applied the
model potential used earlier in [15]. The potential oscil-
lations were selected in such a way as to make more
advantageous the distances τr5 and τr2—inherent in the
quasicrystal and related to the so-called Mackay
shell—and to suppress the distances typical of crystals
in the space between the first coordination sphere and
the Mackay shell and immediately beyond this shell.

Once the local order and atomic-interaction poten-
tial are selected, the growth process may be simulated
in different ways. In order to grow a crystal of the max-
imum possible size, we used the simple Eden model
and the following algorithm.

1. A small seed (consisting of less than 100 atoms)
is constructed as a piece of an ideal quasicrystal with
DLO–ILO having an almost spherical shape.

2. In accordance with DLO–ILO, all the possible
new atomic positions (the so-called “waiting posi-
tions”) are calculated.

3. In accordance with the selected potential, the
binding energies of all the waiting positions are calcu-
lated.

4. Then, a new atom is added to the waiting position
with the minimum energy, and the procedure is
repeated beginning with step 2.

Thus, unlike in the Monte Carlo method, new atoms
can be added to the model but cannot be subtracted
from it, which allows one to grow large quasicrystals
for a reasonably short computational time.

MILLER INDICES OF RECIPROCAL-LATTICE 
VECTORS OF AN ICOSAHEDRAL 

QUASICRYSTAL

It is well known that the position of each reflection
of the diffraction pattern from any three-dimensional
periodic crystal is determined by three Miller indices,
which are the coefficients of the decomposition of the
reciprocal-lattice vector corresponding to the chosen
reflection along the three basis vectors. The diffraction
pattern from an icosahedral quasicrystal can be
described mainly by the same method; however, in this
case, the reciprocal-lattice basis consists of six vectors
so that one has to use six, and not three, Miller indices.
The reciprocal-lattice basis of an icosahedral quasicrys-
tal is usually selected as 6 vectors directed along the
fivefold axes and setting 6 of the total 12 vertices of an
icosahedron. The positions of the icosahedron vertices
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004



        

INTENSITY AND WIDTH OF BRAGG REFLECTIONS 549

                                                                          
are written in the most convenient form, with the axes
of the Cartesian coordinate system being directed along
the twofold axes of the icosahedron. In such a setting,
the icosahedron vertices are determined by the vectors

(±τ, 0, ±1) in the arbitrary length units. Here τ = (  +
1)/2 is the golden mean, the plus and minus signs are
selected independently for each coordinate, and all the
cyclic permutations are admissible. With due regard for
the fact that fivefold axes can be indicated in an arbi-
trary order and that two vertices lie on each of these
axes on both sides of the icosahedron center, the recip-
rocal-lattice basis may be chosen by 6! · 26 = 46080
ways, with the Miller indices being dependent on this
choice. We used the following reciprocal-lattice basis:

(1)

Here, q2 is the length of one of the reciprocal-lattice
vectors lying on a twofold axis [the extreme left peak in
Fig. 1b; the Miller indices are (110 000)] and q2 =

2πτ3/( ), where aR = τr5 is the parameter of
the quasi-lattice. The reciprocal-lattice vector thus cho-
sen can be represented as

(2)

Here, H = (h1h2h3h4h5h6), where h1–h6 are the Miller
indices and the sign || indicates the Q|| vector is the pro-
jection of the six-dimensional vector H onto the three-
dimensional space of the reciprocal lattice, hereafter
called the parallel space.

It is also useful to consider the projection of the vec-
tor H onto the three-dimensional subspace orthogonal
to the parallel subspace of the reciprocal lattice. This
additional subspace is termed the perpendicular space
of the reciprocal lattice. An arbitrary vector of the per-
pendicular space can be written in the form

(3)

where , with i = 1–6, are the basis vectors of the per-
pendicular space set by the equations

(4)

5

Q1 q2/2( ) 1 τ 0, ,( ), Q2 q2/2( ) 1 τ– 0, ,( ),= =

Q3 q2/2( ) 0 1 τ, ,( ), Q4 q2/2( ) 0 1 τ–, ,( ),= =

Q5 q2/2( ) τ 0 1, ,( ), Q6 q2/2( ) τ– 0 1, ,( ).= =

aR 1 τ2
+

Q|| H( ) hiQi.
i 1=

6

∑=

Q⊥ H( ) hiQi
⊥
,

i 1=

6

∑=

Qi
⊥

Q1
⊥

q2/2( ) τ 1– 0, ,( ), Q2
⊥

q2/2( ) τ 1 0, ,( ),= =

Q3
⊥

q2/2( ) 0 τ 1–, ,( ), Q4
⊥

q2/2( ) 0 τ 1, ,( ),= =

Q5
⊥

q2/2( ) 1– 0 τ, ,( ), Q6
⊥

q2/2( ) 1 0 τ, ,( ).= =
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
To each Q||, there corresponds one and only one Q⊥ .

ANALYSIS OF DIFFRACTION
PATTERNS

A diffraction spectrum of a quasicrystal (structure
factor) was calculated by the standard formula

(5)

where k and k' are the wave vectors of the incident and
scattered waves, respectively; rj are the atomic posi-
tions; and the summation is performed over all the N
atoms assumed to be of the same species (which allows
us to neglect the atomic scattering factor, also depen-
dent on k' – k). If all the atoms scatter in phase, all the

F H( ) N
1–

i k' k–( )r j[ ] ,exp
j

∑=
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Fig. 1. Diffraction spectra from a quasicrystalline cluster
grown in the computer experiment along the (a) fivefold and
(b) twofold axes. The intensity is given on the logarithmic
scale so as to be able to distinguish weak peaks. The six-
dimensional Miller indices of the reflections are indicated.
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exponents in the above equation are equal to unity, and
the structure factor attains its maximum value—unity.

We studied the reflections with the wave vectors
directed along all the six fivefold symmetry axes and all
the 15 twofold axes of the icosahedral point group of
the quasicrystal. Therefore, the difference between the
wave vectors Q = k' – k was also directed along either
fivefold or twofold axes. The diffraction width of the
reflections in the planes orthogonal to these axes was
not studied, because it would be too time consuming.

Figure 1 shows the diffraction spectra calculated
along the five- and twofold symmetry axes. The wave-
vector lengths measured in arbitrary units, q0 = (2/r2),
are plotted along the abscissa. Since dimensionality D
of the reciprocal-lattice basis is higher than dimension-
ality d of the space of wave vectors, then, generally
speaking, the whole reciprocal space is densely filled
with peaks of various intensities. Nevertheless, as we
see from the plots, there is a discrete set of pronounced
intensity peaks, which, on the whole, is characteristic

0.05

13.9813.96 14.00 14.02 14.04
Q||/q0

0

0.10

0.15

0.20

0.25

0.30

0.35

I/I0

(b)
8.628.60 8.64 8.68

0

0.03

0.04
(‡)

8.66

0.02

0.01

Fig. 2. Diffraction peaks along the fivefold symmetry axes:

(a) (200000) and (b) ( ). The curves are calculated
along all the six fivefold axes.

111111
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of quasicrystals. The seeming controversy is caused by
the fact that the reflection intensities rapidly decrease
with an increase in the modulus of the wave-vector pro-
jection onto the perpendicular reciprocal-lattice space.
The peaks observed on the diffraction pattern corre-
spond to relatively low Q⊥  values, whereas the intensi-
ties of the remaining peaks are negligible.

An inflation property that is important for the anal-
ysis of the diffraction pattern can be understood based
on the following reasoning. If we consider two wave

vectors,  and  = n , which differ by an
integral factor; their Miller indices, and; therefore, the
corresponding vectors in the perpendicular space also

differ by the same factor, H(2) = nH(1) and  = n .
However, an increase in Q⊥  results in a decrease in

reflection intensity. Thus, of the two reflections, 

and , the latter has a lower intensity, with the inten-
sity ratio being the higher, the higher the n value is.
Thus, the intensities of the peaks with the moduli of the
wave vector Q||/q0 equal to 4.32 and 8.65 (Fig. 1a), and
the wave vectors (q2/2)(1, τ, 0) and (q2/2)(2, 2τ, 0) dif-
fer by a factor of two, whereas the peak with the mod-
ulus of the wave vector Q||/q0 equal to 12.98 and the
wave vector (q2/2)(3, 3τ, 0) is so weak that we did not
index it at all.

Another mathematical fact, although it is not so
obvious, can be readily obtained from Eqs. (1)–(4) and
reduces to the fact that, if we have two wave vectors,

 and  = τ , then the situation for the
respective vectors in the perpendicular space is oppo-

site,  = (1/τ) . This signifies that the intensity
of the second peak in this case is higher. Consider, e.g.,
the sequence of peaks with Q||/q0 equal to 4.55, 7.35,
11.90, and 19.26 (Fig. 1b). The absolute values of their
wave vectors are q2, τq2, τ2q2, and τ3q2, respectively,
whereas the intensities of the corresponding peaks
approach the maximum possible intensity. This prop-
erty can, conventionally, be called the τ-inflation.

However, not all the peaks possess this property. For
example, the sequence of reflections along the fivefold
axis (Fig. 1a) begun with the peak at 4.32 has no reflec-
tions corresponding to the wave vectors exceeding that
of the first one by factors of τ and τ2, and the following
peak at 18.32 of this sequence has the wave vector
exceeding that of the first peak by a factor of τ3. This
property can conventionally be called the τ3 inflation.
The absence of some peaks is explained by the fact that
the corresponding wave vectors cannot be represented
as the integral combinations of basis vectors (1). The
properties of the τ and τ3 inflation of the reflections is
the characteristic feature of icosahedral quasicrystals
with a primitive six-dimensional lattice. In particular,
the inflation property allows one to distinguish between

Q||
1( ) Q||

2( ) Q||
1( )

Q⊥
2( ) Q⊥

1( )

Q||
1( )

Q||
2( )

Q||
1( ) Q||
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Q⊥
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RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004



INTENSITY AND WIDTH OF BRAGG REFLECTIONS 551
the icosahedral and crystalline phases using the method
of powder diffractometry.

Figure 2 shows one strong and one weak reflection
located along the fivefold symmetry axes of the diffrac-
tion pattern. To demonstrate the influence of phason
defects, we measured the intensity curves along all the
six axes (reflections with the opposite wave vectors
have the same intensities). For an ideal quasicrystal, all
the curves should have the same shape, but, because of
phason defects, the real reflections are asymmetric and
have different positions and widths.

As has to be expected, the influence of phason
defects is stronger the more pronounced the wave-vec-
tor modulus in the perpendicular space Q⊥  is. The
reflections with comparatively law Q⊥  values have
almost symmetric shapes, and their width is determined
mainly by the finite dimensions of the quasicrystal con-
sidered. A similar behavior is also observed for reflec-
tions along the twofold axis in Fig. 3.
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7.34
0
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0.5 (‡)
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Fig. 3. Diffraction peaks along the twofold symmetry axes:

(a) ( ) and (b) ( ). The curves were calcu-
lated along all the fifteen twofold axes.
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In the general case, the reflection intensity is lower
for the wave vectors with pronounced perpendicular
components. This effect is observed experimentally for
both perfect and imperfect quasicrystals. Theoretically,
this effect is a direct consequence of the finite dimen-
sions of perfect and imperfect quasicrystals in the per-
pendicular space [13–15].

It should also be indicated that the main reflections
also have weak satellites formed alternatively on the
right and left sides of the main reflection (Figs. 2, 3).
Analysis showed that the formation of satellites is asso-
ciated with an inhomogeneous distribution of phason
defects. Indeed, the dimension of a quasicrystal in the
perpendicular space and, therefore, the number of pha-
son defects slightly decreases with an increase in the
quasicrystal radius [13–15]. In other words, the number
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0.021
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Fig. 4. Spectral width of reflections as a function of the
magnitude of the perpendicular wave-vector component Q⊥
for reflections located along the (a) fivefold and (b) twofold
axes. Squares indicate the calculated values, and solid and
dashed lines indicate the curves calculated in the

Wph(Q⊥ ) ∝ Q⊥  and Wph(Q⊥ ) ∝  approximations,
respectively.

Q⊥
2
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of defects on the periphery is larger than in the center.
Such an inhomogeneity results in the satellite forma-
tion. Similar satellites also appear in real quasicrystals,
but they are usually associated with the presence of an
additional incommensurate modulation.

It is also interesting to analyze the dependence of
the spectral width on the perpendicular reflection com-
ponent (Fig. 4). It is seen from Fig. 4 that the width reg-
ularly increases with an increase in the perpendicular
component of the reciprocal-lattice vector. The finite
width of the reflection at Q⊥   0 is explained by the
finite dimensions of the “grown” quasicrystal. To con-
firm this statement, we performed diffraction experi-
ments along the two- and fivefold axes using quasicrys-
tals of various dimensions, which explains different
widths of the diffraction peaks at Q⊥   0. It is possi-
ble to assume that the observed broadening is explained
by the finite dimensions of the quasicrystal and the
presence in it of phason defects. These factors give
independent contributions to the reflection width

W(Q⊥ ) = ,

where Wf and Wph(Q⊥ ) are values of broadening due to
the finite dimensions of the quasicrystal and phason
defects, respectively. The solid and dashed lines in

Fig. 4 correspond to Wph(Q⊥ ) ∝ Q⊥  and Wph(Q⊥ ) ∝ .
Obviously, the dependence of W on Q⊥  cannot be
described sufficiently well by such simple functions.

CONCLUSIONS

The simulation of diffraction scattering from quasi-
crystals allows us to draw the conclusion that the pres-
ence of phason defects gives rise to broadening and
asymmetry of diffraction peaks and that these phenom-
ena are strongly dependent on the wave-vector compo-
nents in the perpendicular space. Strong reflections
with low value of the perpendicular component are
characterized by weak asymmetry, whereas the reflec-
tion width is determined mainly by the finite dimen-
sions of the quasicrystal studied. The reflections with
large perpendicular components show a pronounced
asymmetry, and their averaged width increases with an
increase in the value of the perpendicular component.
The displacements of the peaks from the positions dic-
tated by the icosahedral symmetry are much less than
the peak width, and, therefore, they were not analyzed.

Despite the fact that we considered a rather simple
model, it had all the properties of real quasicrystals and
could readily be extended to more complicated situa-
tions. Thus, an Eden model can be replaced by a more

W f
2

Wph
2

Q⊥( )+

Q⊥
2

C

realistic Monte Carlo model [15, 16], but this consider-
ably increases the time necessary for computations,
whereas the results thus obtained are almost the same.
It would also be interesting to see how the presence of
various atomic species would influence the diffraction
pattern and use the experimental data obtained for
determining the positions of the given species in the
physical and perpendicular spaces.
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Abstract—The alphabetical, specific, partial, and complete codes of vertices are determined for diamond crys-
tals and a number of Schlegel projections. The codes obtained are compared with the codes of the types of
atomic environment. © 2004 MAIK “Nauka/Interperiodica”.
In the early 20th century, crystallographers revealed
and described superstructures formed through ordering
of atoms over positions of the closest packings; such
superstructures are also known as ordered isomorphs.
Moreover, a number of structures of layered silicates
consisting of a small number of layers were identified
at that time. These layers, which were subsequently
referred to as “serdechnik” (“core”) and “kol’chuga”
(“chain armor”) by N.V. Belov, are combined to form
mixed layers that alternate with intermediate layers.
This leads to the formation of ordered or disordered iso-
morphs. The design of the possible superstructures on
the basis of the universal law of polarity, the principle
of nonindifference (preference), and the law of small
numbers has offered a small number of models of par-
ent superstructures and limited (or continuous) poly-
type and heteropolytype series between them. A com-
parison of the obtained models with approximately 100
identified structural types and their cationic and anionic
motifs confirmed the view that the phenomenon of
polarity, the principle of nonindifference, and the law of
small numbers are the universal laws governing the
organization of the system of structural types. In the
1950s, the conclusion was drawn that all structural
types are formed through ordered isomorphism (combi-
natorics) of systems of elements (atoms, rods, layers,
frameworks, etc.) with different dimensions ranging
from zero to three [1].

The enumeration and combinatorial analysis of the
variety of crystallographic simple forms and their com-
binations (external forms) for diamond crystals were
carried out by Voytekhovsky [2] in the framework of
the Curie principle. It should be noted that the Curie
principle accounts for the special case of the general
mechanism of interaction between any object and a
medium as two matrices that can have a mutual influ-
ence on each other during interaction [3]. The enumer-
ation enables one to determine the number of theoreti-
cally possible and really existing objects. The set of
really existing objects can be complemented.

The main objective of the present work was to
describe a system of diamond crystals in terms of an
1063-7745/04/4904- $26.00 © 20553
attribute according to which the number of constituents
changes from one to four. The relevant constituents
were considered earlier in [4, 5]. These are triangles,
tetragons, pentagons, and hexagons, which were also
treated in [6]. Hereinafter, these constituents will be
denoted by t, q, p, and h, respectively. Moreover, the
alphabetical and specific codes are introduced for verti-
ces, partial vertexons, and complete vertexons. In what
follows, by a “vertexon” we mean a set of vertices of a
polyhedron with faces shared by these vertices. The
code of a vertex will be considered to mean a combina-
tion of polygons shared by this vertex and their number.
For example, the alphabetical code tqp implies that trig-
onal, tetragonal, and pentagonal faces are shared by the
vertex under consideration. The specific code of a ver-
tex involves not only the type of adjacent faces but also
their numbers. In particular, the specific code tqp〈211〉
means that two trigonal, one tetragonal, and one pen-
tagonal faces are shared by the vertex. The specific
code of a vertex can also be written using only numer-
als. For this purpose, the numerals corresponding to the
numbers of triangles, tetragons, pentagons, and hexa-
gons shared by the vertex are placed in the first, second,
third, and fourth positions, respectively. For example,
the specific code tqp〈211〉  of a vertex can be repre-
sented as 2110 (zero indicates the absence of hexa-
gons). By adding the number of such vertices in an
external form, i.e., 〈2〉 , to the vertex code 2110, we
obtain the code 2110〈2〉  of the partial vertexon. The
vertexon of an external form of a crystal, the vertexon
of a coordination polyhedron, and the vertexon of an
atomic environment and their codes are referred to as
simple when they consist of one partial vertexon and as
complex when they involve several partial vertexons.
The combination of partial vertexons of a simple or
complex vertexon (and their code) is termed the com-
plete vertexon (the complete code). Examples of codes
of vertexons for a tetrahedron, an octahedron, and a
cube are given below. The vertices of a tetrahedron, an
octahedron, and a cube have the alphabetical codes t, t,
and q and the specific codes t〈3〉 , t〈4〉 , and q〈3〉  (or 30,
40, and 03), respectively. The partial vertexons of a tet-
004 MAIK “Nauka/Interperiodica”
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Table 1.  Partial codes of vertices for 31 types of diamond crystals 

Alphabet-
ical ver-
tex code

Number 
of faces 

Ia f

Specific 
vertex 
code

Number of vertices
(indices of specific codes

of partial vertexon)

Number of dif-
ferent vertex-

ons D and total 
number of all 
vertexons A

Number
of all 

vertices 
Ia v

Type of partial vertexon

tqp 3 1110 2, 2, 2, 4, 4, 4 2-6 18 Tetragon, tetragon

tqh 3 1101 1, 2, 2, 4, 6 4-5 15 Hexagon

tqh 3 1011 2, 3, 4, 4, 6, 8 5-6 27 Tetragon, tetragon, hexagon, cube

qph 3 0111 1, 2, 4 3-3 7 Tetrahedron

tq 3 12 1, 1, 2, 3, 4, 4, 6 5-7 21 Tetragon, tetragon, trigonal prism

tp 3 1020 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 6 6-11 36 Tetragon, dihedron, trigonal 
prism, octahedron

th 3 1002 2, 2, 12 2-3 16 Laves polyhedron

qp 3 0120 1, 1, 2, 2, 3, 4 4-6 13 Tetragon

qp 3 0210 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 10 5-11 33 Tetragon, tetragon, pentagonal 
prism

qh 3 0201 1, 2, 2, 4, 12 4-5 21 Tetragon, hexagonal prism

tqp 4 1210 1, 1, 1, 2 2-4 5 Partial vertexon with one or two 
vertices

tqp 4 2110 1, 2, 2 2-3 5 Partial vertexon with one or two 
vertices

tp 4 22 1, 2, 2, 3, 4 4-5 12 Tetragon

h 4 2020 1 1-1 1 Partial vertexon with one vertex

t 3 30 4 1-1 4 Tetrahedron

q 3 03 1, 1, 1, 2, 2, 3, 4, 8, 8 5-9 30 Tetragon, tetragonal prism,
tetragonal prism

p 3 0030 1, 1, 1, 6 2-4 9 Octahedron

tp 4 13 1, 2 2-2 3 Partial vertexon with one or two 
vertices

tp 4 31 3 1-1 3 Triangle

h 4 3010 3 1-1 3 Triangle

t 4 40 6 1-1 6 Octahedron

Σ 68 21 62-95 288

Note: Zeros situated at the last two positions in the codes are not presented. 
rahedron, an octahedron, and a cube are described by
the codes 30〈4〉 , 40〈6〉 , and 03〈8〉 , respectively. The
complete vertexons of a tetrahedron, an octahedron,
and a cube consist of one partial vertexon, and, hence,
their codes are identical to the codes of the partial ver-
texons. The code of faces characterizes a combination
of trigonal, tetragonal, pentagonal, and hexagonal faces
and their number. For example, the face codes of a tet-
rahedron, an octahedron, and a cube can be represented
as 3〈4〉 , 3〈8〉 , and 4〈6〉 , respectively.

Earlier [6], it was demonstrated that atomic environ-
ments can be characterized by 14 theoretically possible
alphabetical codes of vertices that are composed of dif-
C

ferent combinations of letters (t, q, p, and h) and 47 the-
oretically possible specific codes: t〈1, 2, 3, 4, 5〉, q〈1, 2, 3〉,
tq〈(1, 2, 3, 4)1, (1, 2)2, 13〉 , p〈1, 2, 3〉 , tp〈(1, 2, 3, 4)1,
(1, 2)2〉 , qp〈(1, 2)1, 12〉 , tqp〈(1, 2)11, 121〉 , h〈1, 2〉 ,
th〈(1, 2, 3)1, 12〉 , qh〈(1, 2)1, 12〉 , tqh〈(1, 2)11〉 , ph〈(1,
2)1, 12〉 , tph〈(1, 2)11〉 , and qph〈111〉 . In the above nota-
tion, for example, the code qh〈(1, 2)1, 12〉  corresponds
to the combination of codes qh〈11〉 , qh〈21〉 , and qh〈12〉 .
These codes were obtained for triangles, tetragons,
pentagons, and hexagons with angles of 60°, 90°, 109°,
and 120°, respectively. Real crystals can also be charac-
terized by the aforementioned codes. However, in this
case, there can appear additional codes that are differ-
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Table 2.  Complete vertex codes of diamond crystals 

Face code of 
crystals

Point 
group

G

Arity Ar 
of the face 

code of 
vertexons

Number 
Ia of fac-

es and 
vertices

Complete alphabetical
code of crystals Complete specific code of crystals

+3〈4〉 3m 1-1 4-4 1t +30 〈4〉  
+3〈8〉 m3m 1-1 8-6 1t +40 〈6〉  
4〈6〉a 2mm 1-1 6-8 1t +03 〈8〉  
4〈6〉b m 1-1 6-8 1t +03 〈8〉
+3-4〈2-3〉 3m 1-1 5-6 1tq +12 〈6〉
3-4〈4-4〉 mmm 2-2 8-8 2tq 12-22 〈4-4〉
+3-4〈2-4〉 2mm 2-3 6-7 1q2tTe 03-12-22 〈2-4-1〉
3-4〈2-5〉 m 2-3 7-8 1q2tTe 03-12-22 〈4-2-2〉
3-4〈4-3〉 3m 2-3 7-7 1q2tTe 03-12-31 〈1-3-3〉
3-5〈2-6〉 m 2-2 8-12 1t1tp 0030-1020 〈6-6〉
3-5〈5-3〉 3m 2-2 8-9 2tp 1020-3010 〈6-3〉
4-5〈5-2〉 m 2-1 7-10 1qp 0210 〈10〉
3-4-5〈1-3-3〉 m 3-4 7-10 1q1tp2qp 03-1020-0210-0120 〈1-3-3-3〉
3-4-5〈1-5-1〉 3-4 7-9 1q1tq1tp1tqp 03-13-0210-1110 〈3-1-3-2〉
+3-4-5〈2-2-2〉 mm2 3-3 6-8 1tp1qp1tqp 1020-0210-1110 〈2-2-4〉
3-4-5〈3-1-3〉 m 3-4 7-9 1tp1qp2tqp 1020-0120-1110-2110 〈5-1-2-1〉
3-4-5〈3-2-3〉 m 3-5 8-10 1tq1tp2qp1tqp 12-1020-0120-0210-2110 〈1-4-2-1-2〉
3-4-5〈2-2-4〉 m 3-5 8-11 1p1tp1qp2tqp 0030-1020-0120-1110-1210 〈1-3-4-2-1〉
3-4-5〈2-4-2〉 2/m 3-3 8-10 1qp2tqp 0210-1110-1210 〈4-4-2〉
3-4-5〈3-3-1〉 m 3-4 7-8 2tq1qp1tqp 22-12-0210-1110 〈2-1-1-4〉
3-6〈4-4〉 3m 2-1 8-12 1th 1002 〈12〉
4-6〈6-2〉 m 2-1 8-12 1qh +0201 〈12〉
3-4-6〈2-5-1〉 m 3-4 8-10 1q1tq1qh1tqh 03-13-0201-1101 〈2-2-2-4〉
3-4-6〈4-3-1〉 3m 3-2 8-9 1tq11tqh 22-1101 〈3-6〉
3-4-5-6〈1-5-1-1〉 m 4-4 8-11 1qp1tqp1qh1tqh 0210-1210-0201-1101 〈4-1-4-2〉
3-5-6〈3-3-1〉 3m 3-3 7-10 1p1tp1tph 0030-1020-1011 〈1-3-6〉
3-5-6〈4-2-2〉 mm2 3-3 8-11 1tp1th1tph 2020-1002-1011 〈1-2-8〉
3-4-5-6〈4-1-2-1〉 m 4-4 8-10 1tp1tqp1tqh1tph 1020-2110-1101-1011 〈2-2-2-4〉
3-4-5-6〈1-3-3-1〉 m 4-7 8-12 1p1tp2qp1qh1tph1qph 0030-1020-0210-0120-0201-1011-0111

〈1-1-2-2-2-2-2〉
3-4-5-6〈2-2-2-2〉 2mm 4-4 8-12 1qp1th1tph1qph 0210-1002-1011-0111 〈2-2-4-4〉
3-4-5-6〈2-3-2-1〉 1 4-9 9-11 1q1tp2qp1tqp1qh

1tqh1tph1qph
03-1020-0210-0120-1210-0201-1101-1011-0111
〈1-1-1-1-1-1-1-1-3〉

D = 31 D = 10 A (fac-
es) = 79

A (fac-
es) = 226

D = 27 D = 30 

A = 31 A = 31 A (verti-
ces) = 95

A (verti-
ces) = 288

A = 31 A = 31 

Note: D is the number of different objects (symmetry groups, faces, vertices, codes), and A is the number of all objects. 

4

3

3

1

4

3

ent from those listed above, because the corresponding
angles of polygons in real crystals can differ from the
angles in regular polygons.

For diamond crystals, 21 specific vertex codes can
be represented as follows: t 〈+3, +4〉  for a triangle; q
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
〈+3〉 , tq 〈+12, +22, +13, +31〉  for a tetragon; p 〈+3〉 ,
tp 〈+12, 31, 22〉 , qp 〈12, 21〉 , tqp 〈111, 211, 121〉  for a
pentagon; and h, th 〈12〉 , qh 〈+21〉 , ph, tqh 〈111〉 ,
tph 〈111〉 , and qph 〈111〉  for a hexagon. The vertex
codes designated by the plus sign are similar to the
4



556 SMIRNOVA
Table 3.  Codes of partial vertexons of the Schlegel projections of the simplest dodecahedra 

Specific vertex code 25 37 40 42 44 7362 49 54 94 7488 D-A

q〈03〉 1 1-1

p〈0030〉 1 1 2-2

q〈0210〉 2 1 1 2 3 2 6-11

q〈0120〉 2 1 3 1 2 5-9

tqp〈1110〉 1 1-1

h〈0003〉 1 1-1

qh〈0201〉 1 2 1 2 2 2 6-10

qh〈0102〉 2 1 2 3 2 5-10

ph〈0021〉 1 1 2 1 1 1 6-7

ph〈0012〉 2 2 1 2 1 1 1 7-10

tph〈1011〉 4 1-4

qph〈0111〉 6 3 7 3 5 3 3 7-30

s〈00003〉 1 1-1

ts〈10002〉 1 1-1

qs〈02001〉 2 1-2

qs〈01002〉 1 1-1

tqs〈11001〉 1 1-1

ps〈00201〉 3 1-3

ps〈00102〉 1 1-1

tps〈10101〉 4 1-4

qps〈01101〉 1 4 2-5

hs〈00021〉 2 1-2

ths〈10011〉 2 1-2

qhs〈010011〉 1 1-1

phs00111〉 1 1 2-2

ΣD-A 6-13 7-13 6-13 6-13 6-13 5-10 9-13 4-12 8-13 6-9 63-122

Note: The number of the vertexon is given in the upper row, D is the number of different codes, and A is the number of all codes.
codes derived in [6] for the types of atomic environ-
ments. The total number of sets of indices (numerals in
angle brackets) indicating the number of identical and
different faces shared by the vertex under consideration
is equal to seven, namely, 3, 4, 12, 22, 13, 111, and 112.
The number of different types of polygons shared by
one vertex cannot be more than three: the code of the
vertex involves indices 3 and 4 for one type of poly-
gons; indices 12, 22, and 13 for two types of polygons;
and indices 111 and 112 for three types of polygons.
The total number of polygons shared by one vertex can
be equal either to three (indices 3, 12, 111) or four
(indices 4, 22, 13, 112). The polygons shared by verti-
ces with indices 22 and 112 can be located in different
ways and, hence, characterized by different combina-
tions: 22 ttqq, tqtq, 2020 tptp, 211 ttqp, 121 tqqp, tqtp,
and tqpq. In this case, both the combination ttpp and
any combination with two H are not found.

In a crystal, each vertex can be repeated 1, 2, 3, 4, 5,
6, 8, 10, or 12 times, thus forming partial vertexons.
C

These numbers complement the codes of vertices and
form partial specific codes of partial vertexons (for
example, 1110〈2〉). A partial vertexon can be repre-
sented by one point; two points; a triangle; a tetragon;
a hexagon; a trigonal, tetragonal, pentagonal, or hexag-
onal prism; a tetrahedron; an octahedron; and even a
Laves polyhedron. For 31 types of diamond crystals,
there are 62 different partial vertexons and the total
number of all partial vertexons is equal to 95. The total
number of vertices in these vertexons is 288. The spe-
cific codes of partial vertexons, which were determined
for 31 types of diamond crystals, are listed in Table 1.
Table 1 also presents the alphabetical and specific
codes of vertices, the numbers of vertices in partial ver-
texons, the type of partial vertexons (namely, a tet-
ragon; a hexagon; a cube; a dihedron; an octahedron; a
trigonal, tetragonal, pentagonal, or hexagonal prism; a
vertexon with one, two, or three vertices; etc.), the num-
ber of faces shared by one vertex (Ia f), the total number
of all vertexons (A), the number of different vertexons
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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(D), and the total number of vertices in vertexons (Ia
v ).

The complete specific codes of vertexons (external
forms) of diamond crystals are listed in Table 2. The
complete codes involve from one to nine partial specific
codes. The complete code of a crystal can be written as
a combination of partial codes of different vertices (for
example, 12-22-03) and the number of vertices (for
example, 〈4-1-2〉); i.e., it can be represented in the form
12-22-03〈4-1-2〉 . This means that the complete code of
a crystal consists of three partial specific codes, namely,
12〈4〉 , 22〈1〉 , and 03〈2〉 . The simple codes of diamond
crystals (single-arity codes) are composed of one par-
tial code, and the complex codes (n-arity codes) contain
several partial codes. Among the 31 codes, the arity is
equal to 1 for 8 codes, 2 for 4 codes, 3 for 7 codes, 4 for
7 codes, 5 for 2 codes, 7 for 1 code, and 9 for 1 code.
Furthermore, among the eight simple codes of vertices
of the crystals, only six codes are similar to the codes
obtained in [6] for atomic environments (in Table 2,
these codes are denoted by the plus sign).

In [2], the variety of real octahedra corresponding to
30 combinatorially different forms of diamond crystals,
one of which is represented by two affinely nonequiva-
lent species, was characterized by the combinatorial
symmetry, i.e., the point symmetry groups of the most
symmetric representatives of the same combinatorial
type. All these forms were described by the face formu-
las, which were composed of numerals indicating trig-
onal, tetragonal, pentagonal, and hexagonal faces and
indices corresponding to the number of faces of each
type in the crystal (Table 2).

Out of 32 point groups, 10 groups are realized.
Among the 31 crystal types, 3 types are cubic, 8 types
are hexagonal, 6 types are orthorhombic, 12 types are
monoclinic, and 2 types are triclinic.

In [7], a classification was proposed for polyhedra
of structural types according to the type of faces. A
scheme (table) composed of numbers with indices was
made up for different systems. All the face formulas
determined in [2] are consistent with the scheme pro-
posed in [7]. However, among the 31 formulas
obtained, only 5 were known previously, whereas the
other formulas with large indices were derived for the
first time.

Voytekhovsky [2] described the Schlegel projec-
tions of the ten simplest dodecahedra involving faces
with an identical nearest environment. In this case,
polygons are elements. The partial and complete vertex
codes determined for these projections are presented in
Table 3. The vertices located inside the Schlegel projec-
tion were taken into account. The alphabetical codes
include five types of faces, namely, t, q, p, h, and s (hep-
tagon). Each projection involves no more than four dif-
ferent faces. This implies that the Schlegel projections
under consideration obey the law of small numbers. It
should be noted that the law of small numbers also
manifests itself in the fact that any convex polyhedron
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
necessarily has a tetrad, a triad, a pair, or three pairs of
single-type faces [8]. The complete codes include from
4 to 9 different codes and 9, 10, 12, or 13 partial codes.
The data obtained for 10 projections of all 122 vertices
and their partial specific codes (including 63 different
codes) are summarized in Table 3.

An external form of the (Na,K) variety of merlinoite
(Kukisvumchorr, Khibiny) [8] is shown in the figure.
The crystal has the {101} trigonal, {001} tetragonal,
{236} pentagonal, {100} hexagonal, and {110} hexag-
onal faces. The face code of the crystal can be written
in the form 3-4-5-6〈8-2-16-8〉  (the numbers of faces are
given in angle brackets). The vertices are described by
three partial alphabetical codes: tp (vertex a), tqp (ver-
tex b), and ph (vertices c, d, e). Moreover, these vertices
are described by four partial specific codes: tp 〈1020〉
(vertex a), tqp 〈2120〉  (vertex b), ph 〈0012〉  (vertex c),
and ph〈0021〉  (vertices d, e). The crystal is character-
ized by the complete alphabetical vertex code
1tp1tqp2ph and the complete specific code 1020-2120-
0012-0021 〈8-8-16-16〉 . The number of simple vertex
forms with due regard for symmetry is five (vertices a–
e), and the number of partial vertexons without regard
for symmetry is four (vertices a, b, c, and d = e). This
example clearly illustrates the difference between com-
plex forms of vertexons and complex vertexons.

Earlier [6], attempts to reveal the alphabetical codes
qp, tqp, ph, tph, qph, and tqph for real crystals were not
successful. In the present work, all 14 theoretically pos-
sible variants for real crystals are revealed. Moreover,
in [6], the theoretically possible specific codes q 〈02〉 ,
tq 〈+11, +23〉 , p 〈001, 002〉 , tp 〈1010, 2010, +2020〉 ,
qp 〈0110, +0210, +0120〉 , tqp 〈+1110, +1210〉 ,
h 〈0002〉 , th 〈1001, 3001, +1002〉 , qh 〈0101, +0102〉 ,
tqh 〈+1101〉 , ph 〈0011, +0021, +0012〉 , tph 〈+1011,
1021〉 , and qph 〈+0111〉  were not established for crys-
tals. In this work, many of the aforementioned codes
proved to be realized. These codes are denoted by the
plus sign. Among the 47 possible variants, only 12

001 (b)

(e)

(c)

(d)

(a)
101

011

263

110
100

623

010

External form of the (Na,K) variety of merlinoite. The
codes of vertices are as follows: (a) tp 〈1020〉, (b) tqp 〈2120〉,
(c) ph 〈0012〉 , and (d, e) ph 〈0021〉 .
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codes remain nonrealized. The specific codes h 〈+0003〉
and tqp 〈+2120〉  are forbidden theoretically. The sum of
the angles for the former variant is close to the maxi-
mum permissible value (360°). The sum of the ideal
angles for the latter variant is considerably larger
(428°). It should be noted that other codes are also pos-
sible, because the theoretical calculation was per-
formed for regular polygons, whereas real faces can be
distorted significantly.

The alphabetical, specific, partial, and complete
codes derived for diamond crystals, the variety of mer-
linoite, and Schlegel projections, as well as the results
obtained in a number of recent works [9–16], are of par-
ticular interest for the development of the theory of
coordination polyhedra, external crystal forms, and
their symmetry (asymmetry) and can be used for solv-
ing applied problems. This information is of consider-
able importance in studying polyhedra with unknown
symmetry.
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Abstract—A hierarchical approach to the choice of the most probable structural models of a compound with
a specified chemical composition and to the subsequent refinement of these models with the use of different
methods is analyzed. Most attention is given to one of the first stages of the choice of the starting model (on the
basis of the principles of total and local crystal electroneutrality) and to the solution of the problem of construc-
tion and determination of the bond graphs and connectivity matrices. Simple criteria for the most stable config-
urations of chemical bonds are introduced reasoning from the principles of minimum dissymmetrization and
maximum informational entropy. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Despite the considerable advances achieved in many
fields of science and technology at the end of the 20th
century due to intensive computerization of scientific
research, the basic problem of crystal chemistry,
namely, the prediction of the probability of existence
and stability of a particular crystal structure for a spec-
ified chemical composition, remains far from solved.
This is why many researchers have focused their efforts
on this area of investigation. Modern approaches and
methods used for predicting the most probable struc-
ture of a compound with a specified chemical composi-
tion can be grouped in the following hierarchical order:

(i) The topological selection, according to which
only a relatively small number of combinations of main
structural units (coordination polyhedra) are regularly
repeated in different crystal structures. In particular,
according to the Pauling rule of parsimony, the number
of essentially different structural units in a crystal tends
to be minimum.

(ii) Analysis of the symmetry and geometric con-
straints for which the preference of particular space
symmetry groups over other space groups plays an
important but not clearly understood role.

(iii) The use of the principle of closest packing, tol-
erance factor, sorting diagrams of structural types, and
other factors in order to construct the starting structural
model.

(iv) The introduction of the probability criteria for
the existence of the chosen topological configuration
(starting structure) on the basis of the principles of elec-
troneutrality and the best valence and coordination
matching (balance), the construction of the connectiv-
ity matrices and bond graphs and the calculation of the
bond valences and lengths of ideal (unstrained) bonds,
1063-7745/04/4904- $26.00 © 20559
and comparison of different models in the framework
of the concepts of minimum distortion of bonds and
polyhedra and maximum entropy.

(v) The refinement of the most probable topological
configuration with the use of a number of empirical and
semiempirical methods, such as strained-bond, dis-
tance-least-squares, valence-least-squares, and dis-
tance–valence-least-squares methods (see below).

(vi) The search for the atomic configuration corre-
sponding to a minimum cohesive energy of a crystal
and computer simulation of the structure and properties
(elastic, thermodynamic, etc.) in terms of atomistic
potentials of interatomic interaction.

(vii) First-principles (ab initio) quantum-chemical
calculations of the atomic structure, interatomic energy,
electron density distribution, and main properties of the
crystal.

In principle, all the aforementioned stages of the
theoretical analysis and the determination of the struc-
ture and properties of a crystal can be used sequentially,
because each higher level of such an analysis substan-
tially narrows the scope of the search. In this respect,
the purpose of the present work was to develop an algo-
rithm for solving the problem associated with the
choice of the most probable topological characteristics
of a crystalline compound of a specified stoichiometric
composition on the basis of a minimum set of initial
data and the subsequent structure refinement with the
use of modern crystal chemical methods. The princi-
ples of such an algorithm have already been proposed
in a number of recent works (see, for example, [1–3])
and call for further elaboration and refinement.
004 MAIK “Nauka/Interperiodica”
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PRINCIPLES OF TOTAL AND LOCAL VALENCE 
(AND COORDINATION) BALANCES. MODERN 

BOND-VALENCE METHOD

At this stage of constructing the topological model
of a crystal structure, the problem can be solved
through an exhaustive search for all allowable combi-
nations of valences V and coordination numbers of cat-
ions A and anions X in the formula AnXm. Here, An
stands for all cationic components and Xm stands for all
anionic components, including atoms of the same
chemical element in nonequivalent crystallographic
positions (Wyckoff positions). In the course of the
exhaustive search, the following two conditions must
be satisfied: (a) the condition of electroneutrality of the
crystal (or its formula unit),

(1)

where the left-hand side is the sum of the valences over
all cations and the right-hand side is the sum of the
valences over all anions; and (b) the balance of coordi-
nation numbers (bond numbers),

(2)

where νij is the number of the jth anions in the nearest
environment of the ith cation (the coordination number
of the ith cation) and νji is the number of the ith cations
in the nearest environment of the jth anion (the coordi-
nation number of the jth anion). Equality (2) corre-
sponds to the obvious condition that the number of
bonds from the cations to the anions must be exactly
equal to the number of bonds from the anions to the cat-
ions. In this case, more electropositive atoms (cations)
must be surrounded only by more electronegative
atoms (anions). However, the chemical bonds in the
compound do not need to be completely ionic in nature
and the effective charges of cations and anions do not
need to be equal to their formal valences. Therefore,
conditions (1) and (2) are satisfied for the vast majority
of inorganic compounds and minerals. It is evident that
the exceptions are provided by intermetallic and poly-
cationic (polyanionic) compounds.

An exhaustive search for all valences and coordina-
tion numbers even for a specified relatively simple sto-
ichiometric composition (for example, ABX3) requires a
long time if this process is not controlled. A similar
problem was previously solved using the bond graphs
by Rao and Brown [2] and the connectivity matrices in
my earlier work [3]. The most consistent variant of the
latter method was proposed by O’Keeffe [4]. The mod-
ern version of this method [3, 5] makes it possible to
predict the bond lengths in individual coordination
polyhedra and to introduce criteria for the appropriate
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choice of the most probable structures among the large
number of structures that, in principle, are allowed.

As an example, we will analyze the system studied
earlier by Rao and Brown [2], who considered the coor-
dination numbers of cations A[8] (the A atom is located
in the eight-vertex polyhedron AX8) and B[6] (the B
atom resides in the environment of six anions; i.e., it is
involved in the BX6 structural unit). For this system,
from the coordination balance (2), we obtain the fol-
lowing mean coordination number of X anions:

(X) = (8 + 6)/3 = 14/3.

The nonintegral value of  indicates that the anions
should occupy not one but two or even more nonequiv-
alent positions. For example, the sought structure can
involve three nonequivalent anionic positions corre-
sponding to the aforementioned mean coordination
number. In particular, the combinations X1[2]X2[4]X3[8],
X1[3]X2[5]X3[6], X1[3]X2[4]X3[7], and some others do not
contradict the coordination number balance. This situa-
tion will be analyzed below. Now, we consider a sim-
pler case and, as was done in [2], assume that there exist
only two coordinationally nonequivalent types of
anions, namely, X1 and X2. However, in contrast to the
inferences made in [2], we assume that the coordination
number of anions can vary not from two to six but over
a wider range (i.e., from two to ten), because no geo-
metric constraints are imposed at this stage. Further-
more, if we also assume that the valence V(X) is equal
to two (typical valence of oxygen, sulfur, and their ana-
logues), the valence V of cations, according to the elec-
troneutrality condition (1), can vary from one to five.

Let us consider the situation in which the valences
of cations in the specified stoichiometric formula are
equal to two for A atoms and four for B atoms. As a
result, the traditional chemical formula can be written

in the form A2+B4+X X22–, where the plus and minus
signs indicate the electropositive and electronegative
characters of the corresponding particles. In our model,
the construction and solution of the connectivity matrix
is reduced to the following procedure. Initially, we
determine the mean bond valences , which coincide
with the Pauling bond strengths of cations: (A) =
VA/νA = 2/8 = 0.25 and (B) = VB/νB = 4/6 = 0.67. For
the special case when the coordination numbers of the
X1 and X2 anions are equal to four and six, respectively,
Table 1 presents all the possible coordination environ-
ments of both anions and the deviations of the anion
valences from the sum of the bond strengths of the sur-
rounding cations (the deviations from the exact values
determined in the framework of the second Pauling
rule), that is,

(3)
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In turn, according to the sum rule of the bond-valence
model, the true valences of the anions are equal to the
sum of the valences of all unstrained (ideal) bonds:

(4)

As follows from the electroneutrality condition (1)
of the crystal, the allowable combinations of nearest
environments of the anions must satisfy the equality

 = 0. This circumstance considerably restricts
the number of possible crystal chemical formulas and
the number of the corresponding connectivity matrices.
With the values of ∆Vj taken from Table 1, it is easy to
demonstrate that only four variants of the bond distribu-
tion are possible in our case. These variants of the bond
distribution can be represented by the following matri-
ces:

Here, numerals indicate the number of bonds and sij are
the bond valences, which are unknowns. The last two
variants, III and IV, can be immediately rejected,
because they do not provide bonding between AX8 and
BX6 structural units. Indeed, their linkedness L, which
is defined as the fraction of anions common to both
polyhedra (among the total number of anions) [3], is
equal to zero: L = 0. For variant IV, the above result
directly follows from the connectivity matrix. In the
case of matrix III, from three equations for the sums of
the bond valences V = , we obtain the valences
s11 = 0, s12 = 0.33, and s21 = 0.67. Therefore, the value
of L is also equal to zero.

For matrices I and II, each containing four
unknowns sij, the solutions can be found from the three
independent equations for the sums of the bond
valences and one equation of the bond loop (closed
contour) [2, 3]:

s11 – s21 + s22 – s21 = 0. (5)

It should be noted that, in relationship (5), the bond
valences are treated as vectors whose signs can be
reversed depending on the direction of the bonds (from

V j sij.
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cations to anions or from anions to cations). By solving
the system of four linear equations, we obtain the fol-
lowing bond valences: s11 = 0.308, s12 = 0.077, s21 =
1.077, and s22 = 0.461 for variant I and s11 = 0.280, s12 =
0.220, s21 = 0.720, and s22 = 0.560 for variant II.

For variants I and II, the linkednesses proved to be
L = 1, because all three anions are involved in the for-
mation of bonds with both cations. However, in order to
choose the most probable bond distribution between the
remaining variants, it is necessary to introduce a com-
parison criterion. This criterion represents a deviation
(distortion) of bonds from an ideal variant, namely, the
root-mean-square deviation of the calculated bond
valences from their mean Pauling values (distortion
index); that is,

(6)

where ∆sij = sij – . As a result, we find D = 0.22 for
variant I and D = 0.05 for variant II. This implies that
the second distribution mode of bonds between the cat-
ions and anions is substantially more preferential than
the first distribution.

By generalizing all the foregoing, we can argue that
the stable crystal structure should obey the principle of
minimum dissymmetrization. This principle is consid-
ered to mean a minimum deviation of the real bond dis-
tribution from the idealized (most symmetric) model of
bond distribution in all the coordination polyhedra
involved.

SYSTEMATIC ANALYSIS OF THE BOND 
VALENCE DISTRIBUTION AND PREDICTION
OF THE APPLICABILITY OF STRUCTURAL 

MODELS

The results of the calculations carried out according
to the above procedure for all possible sets of valences
of both cations and for all possible sets of coordination
numbers of both anions (z and y) in a compound with

the crystal chemical formula A[8]B[6]X X2[y] are pre-
sented in Table 2. In this table, numerals in parentheses

D ∆sij
2〈 〉

1/2
,=

s

12
z[ ]

Table 1.  Possible cationic environments of X1 and X2 an-

ions for the structural model A2+B4+X X2[6] and the corre-
sponding deviations ∆V from the Pauling rule

X1 ∆V X2 ∆V

4A –1.00 6A –0.50

3A, B –0.58 5A, B –0.08

2A, 2B –0.16 4A, 2B 0.34

A, 3B 0.25 3A, 3B 0.76

4A 0.68 2A, 4B 1.18

A, 5B 1.60

6B 2.00

12
4[ ]
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Table 2.  Bond valences and stability criteria of all allowable structural matrices for compounds of the general crystal chem-

ical formula A[8]B[6]X X  

An+Bm+ z; y s(A–X1) s(A–X2) s(B–X1) s(B–X2) D –S

A+B5+ 2; 10 (2)0.275 (6)0.075 (2)1.725 (4)0.388 0.42 1.529
2; 10 (0) (8)0.125 (4)01.000 (2)0.500 0.15 0.220
4; 6 (6)0.163 (2)0.011 (2)1.511 (4)0.495 0.33 0.887
4; 6 (4)0.133 (4)0.117 (4)0.867 (2)0.765 0.03 0.011
5; 4 (8)0.125 (0) (2)1.5 (4)0.5 0.31 0.744
5; 4 (6)0.123 (2)0.131 (4)0.815 (2)0.869 0.02 0.004
6; 2 (8)0.125 (0) (4)0.750 (2)1.000 0.08 0.050

A2+B4+ 2; 10 (2)0.823 (6)0.059 (2)1.176 (4)0.412 0.35 1.990
3; 8 (4)0.400 (4)0.100 (2)1.200 (4)0.400 0.27 0.978
3; 8 (2)0.374 (6)0.209 (4)0.813 (2)0.374 0.15 0.287
4; 6 (6)0.308 (2)0.077 (2)1.077 (4)0.461 0.22 0.535
4; 6 (4)0.280 (4)0.220 (4)0.720 (2)0.560 0.05 0.041
5; 4 (8)0.250 (0) (2)1.000 (4)0.500 0.15 0.233
5; 4 (6)0.242 (2)0.275 (4)0.637 (2)0.725 0.03 0.003
6; 2 (8)0.250 (0) (4)0.500 (2)1.000 0.15 0.233

A3+B3+ 2; 10 (2)0.971 (6)0.176 (2)1.029 (4)0.235 0.36 1.824
3; 8 (4)0.373 (4)0.176 (2)0.853 (4)0.323 0.22 0.761
3; 8 (2)0.661 (6)0.280 (4)0.670 (2)0.161 0.27 0.677
4; 6 (6)0.432 (2)0.203 (2)0.703 (4)0.318 0.12 0.233
4; 6 (4)0.450 (4)0.300 (4)0.550 (2)0.400 0.07 0.090
4; 6 (2)0.500 (6)0.333 (6)0.500 (0) 0.05 0.052
5; 4 (8)0.375 (0) (2)0.500 (4)0.500 0.00 0.000
5; 4 (6)0.356 (2)0.432 (4)0.466 (2)0.568 0.04 0.038
5; 4 (4)0.250 (4)0.500 (6)0.500 (0) 0.10 0.170
6; 2 (3)0.375 (0) (4)0.250 (2)1.000 0.23 0.693
6; 2 (6)0.167 (2)1.000 (6)0.500 (0) 0.27 1.151

A4+B2+ 2; 10 (2)1.233 (6)0.256 (2)0.767 (4)0.116 0.38 1.989
3; 8 (4)0.731 (4)0.269 (2)0.538 (4)0.231 0.30 0.622
3; 8 (2)1.023 (6)0.326 (4)0.488 (2)0.023 0.27 1.251
4; 6 (6)0.535 (2) 0.395 (2)0.395 (4)0.302 0.05 0.044
4; 6 (4)0.615 (4)0.385 (4)0.385 (2)0.231 0.10 0.131
4; 6 (2)1.000 (6)0.333 (6)0.333 (0) 0.22 0.535
5; 4 (6)0.465 (2)0.605 (4)0.302 (2)0.395 0.05 0.045
5; 4 (4)0.500 (4)0.500 (6)0.333 (0) 0.00 0.000
6; 2 (6)0.333 (2)1.000 (6)0.333 (0) 0.22 0.535

A5+B+ 2; 10 (2)1.602 (6)0.299 (2)0.398 (4)0.051 0.44 2.142
2; 10 (4)1.000 (4)0.250 (0) (6)0.167 0.28 0.964
3; 8 0.873 (4)0.377 (2)0.255 (4)0.123 0.19 0.471
3; 8 1.509 (6)0.330 (4)0.245 (2)0.009 0.39 1.718
4; 6 (2)1.500 (6)1.333 (6)0.167 (0) 0.40 1.369
4; 6 (4)0.802 (4)0.448 (4)0.198 (2)0.104 0.14 0.241
4; 6 (6)0.614 (2)0.659 (2)0.159 (4)0.171 0.01 0.003
5; 4 (6)0.569 (2)0.793 (4)0.114 (2)0.207 0.07 0.062
5; 4 (4)0.750 (4)0.500 (6)0.167 (0) 0.10 0.101
6; 2 (6)0.500 (2)1.000 (6)0.167 (0) 0.16 0.271

12
z[ ] 22

y[ ]
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indicate the numbers of the corresponding bonds. The
bond distributions for which L = 0 and the structural
models cannot be realized are not included in Table 2.
The bond valences sij calculated in this work and in [2]
for identical structural models (except for the models
with the ratios of the coordination numbers of anions
z : y = 2 : 10 and 3 : 8, which were not analyzed in [2])
almost coincide, even though the techniques used for
solving the system of linear equations differ substan-
tially. In [2], the loop equation was written in the form

lns11 – lns12 + lns22 – lns21 = 0 

or

s11/s12 = s21/s22. (7)

This approach (conversion to logarithms of sij) makes it
possible to avoid the appearance of unphysical negative
values of sij for weak bonds in the case of large differ-
ences between the valences of the cations. For the same
purpose, in the present work, we used the weighting
scheme

s11/  – s12/  + s22/  – s21/  = 0, (8)

where  are the mean (Pauling) bond valences for the
corresponding coordination polyhedra. It is evident that
the following equalities are satisfied:  =  and

 = . This approach (introduction of the weighting
scheme) also provides a means for avoiding negative
bond valences that have no physical meaning. Different
methods for solving this problem, which belongs to the
class of ill-posed problems, were compared and ana-
lyzed in my previous work [6]. It was demonstrated
that, in general, different approaches developed to date
have offered consistent solutions. In particular, the dif-
ference between the bond valences sij determined using
the loop equations (7) and (8) does not exceed several
units in the third decimal place. The results obtained
upon solving one of the connectivity matrices by three
different methods [with the use of loop equations (5),
(7), and (8), respectively] are presented in Table 3.
These data confirm the above inference.

s11 s12 s22 s21

sij

s11 s12

s21 s22

Table 3.  Comparison of the bond valences calculated using
three methods for compounds of the crystal chemical formula

A[8](4+)B[6](2+)X X2[6](2–) 

sij

Bond valences calculated according
to relationships

(5) (7) (8)

s11 0.789 0.804 0.802

s12 0.461 0.446 0.448

s21 0.211 0.196 0.198

s22 0.078 0.108 0.104

12
4[ ] 2–( )
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The distortion criteria D and stability criteria S for
each solution are listed in Table 2. The stability crite-
rion (proposed by Rao and Brown [2]) is expressed in
terms of the informational entropy (Shannon–Janes
entropy) of the bond graph, that is,

(9)

where pij are the a priori estimates of the bond valences.
In [2], the values of pij were taken to be equal to unity.
In our calculations, the mean bond valences (Pauling
bond strengths) for cation polyhedra were used as the
initial data: pij = . According to the concept of maxi-
mum entropy [7, 8], the most stable configuration cor-
respond to the smallest magnitude of the entropy |S |
(because S < 0).

It can be seen from Table 2 that the minimum-distor-
tion criteria D and the maximum-entropy criteria S lead
to qualitatively identical results. The most probable
configurations are marked with bold type in Table 2. As
can be seen from Table 2, these configurations do not
contain odd numbers of bonds, because the linkedness
L of configurations with odd numbers of bonds is
always less than unity. In these situations, even at D =
0 and S = 0 (one case for each of the A3+B3+ and A4+B2+

combinations of cation valences), a lower stability
should be expected for the corresponding hypothetical
crystal structures. It can also be seen from Table 2 that,
irrespective of the ratios between the cation valences,
the most stable configurations of bonds correspond to
the minimum difference between the coordination
numbers of anions (4, 6; 5, 4). Therefore, the environ-
ments of two types of anions X1 and X2 tend to be sim-
ilar to each other to a maximum degree, which does not
contradict the principle of minimum dissymmetriza-
tion.

Now, we compare the experimental data with the
aforementioned theoretical predictions. It follows from
Table 2 that, for compounds with the A+B5+ combina-
tion of cation valences, there are two most probable
bond distributions with distortion indices D = 0.03 and
0.02 and configurational entropies –S = 0.011 and
0.004, respectively. The second variant according to
both criteria is more preferential. Actually, sodium
uranate NaUO3 crystallizes in the orthorhombic struc-
ture (space group Pbnm), which is characterized by the
following nearest environments of cations and anions:
Na (6O1 + 2O2); U (4O1 + 2O2); O1 (3Na + 2U); and
O2 (2Na + 2U). This bond distribution is in complete
agreement with our prediction.

For compounds with the A2+B4+ combination of cat-
ion valences, there exist also two most probable bond
distributions with distortion indices D = 0.05 and 0.03
and entropies –S = 0.041 and 0.003, respectively. As
before, it is clear that the second variant is substantially
more appropriate than the first variant. Indeed, many
double oxides, such as CaSnO3, SrSnO3, CaGeO3,
SrZrO3, and CdTiO3 (one out of four polymorphic

S sij sij/ pij( ),ln∑–=

sij
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Table 4.  Bond valences and distortion indices D for allowable combinations of cation valences and coordination numbers of
anions in compounds of the general crystal chemical formula A[8]B[6]X1[x]X2[y]X3[z]

An+Bm+ x; y; z
Numbers of bonds (in parentheses) and bond valences

A–X1 A–X2 A–X3 B–X1 B–X2 B–X3 D 

A+B5+ 2; 4; 8 (0) (2)0.148 (6)0.117 (2)1.000 (2)0.852 (2)0.648 0.09

2; 5; 7 (0) (3)0.134 (5)0.119 (2)1.000 (2)0.800 (2)0.701 0.08

3; 5; 6 (1)0.144 (3)0.126 (4)0.119 (2)0.928 (2)0.810 (2)0.762 0.05

5; 5; 4 (3)0.123 (3)0.123 (2)0.131 (2)0.869 (2)0.815 (2)0.815 0.02
A2+B4+ 3; 5; 6 (0) (3)0.231 (5)0.259 (3)0.667 (2)0.646 (1)0.707 0.01

3; 5; 6 (0) (4)0.294 (4)0.206 (3)0.667 (1)0.823 (2)0.588 0.06

3; 4; 7 (0) (2)0.288 (6)0.237 (3)0.667 (2)0.712 (1)0.576 0.03

3; 4; 7 (1)0.334 (1)0.250 (6)0.250 (2)0.833 (3)0.586 (1)0.575 0.08

3; 4; 7* (0) (1)0.000 (7)0.286 (3)0.667 (3)0.667 (0) 0.07

4; 4; 6 (2)0.280 (2)0.280 (4)0.220 (2)0.720 (2)0.720 (2)0.560 0.05
5; 5; 4 (3)0.242 (3)0.242 (2)0.275 (2)0.637 (2)0.637 (2)0.725 0.03

A3+B3+ 3; 5; 6 (3)0.667 (2)0.455 (3)0.364 (0) (3)0.364 (3)0.303 0.09

4; 4; 6 (2)0.450 (2)0.450 (4)0.300 (2)0.550 (2)0.550 (2)0.400 0.07

4; 4; 6 (1)0.500 (1)0.500 (6)0.333 (3)0.500 (3)0.500 (0) 0.05

5; 5; 4 (4)0.375 (4)0.375 (0) (1)0.500 (1)0.500 (4)0.500 0.00

5; 5; 4 (3)0.356 (3)0.356 (2)0.432 (2)0.466 (2)0.466 (2)0.568 0.04
A4+B2+ 4; 4; 6 (3)0.535 (3)0.535 (2)0.395 (1)0.395 (1)0.395 (4)0.302 0.05

5; 5; 4 (3)0.465 (3)0.465 (2)0.605 (2)0.302 (2)0.302 (2)0.395 0.05
5; 5; 4 (2)0.500 (2)0.500 (4)0.500 (3)0.333 (3)0.333 (0) 0.00

A5+B+ 3; 4; 7 (3)0.667 (3)0.609 (2)0.586 (0) (1)0.172 (5)0.166 0.03

3; 4; 7 (3)0.667 (2)0.780 (3)0.480 (0) (2)0.220 (4)0.140 0.09

3; 5; 6 (3)0.667 (2)0.712 (3)0.525 (0) (3)0.192 (3)0.142 0.06

4; 4; 6 (3)0.614 (3)0.614 (2)0.659 (1)0.159 (1)0.159 (4)0.171 0.01
5; 5; 4 (3)0.569 (3)0.569 (2)0.793 (2)0.147 (2)0.147 (2)0.207 0.07

* Low degree of linkedness L = 1/3 and a decrease in the coordination number of the A cation to seven.
modifications); double sulfides (for example, BaZrS3);
and double fluorides (with halved valences of all
atoms), for example, neighborite NaMgF3, crystallize
in the orthorhombic structure (space group Pbnm) with
a bond distribution identical to that considered in the
preceding case. It is interesting to note that the high-
pressure phase (which is hypothetically stable under
the conditions of the Earth’s lower mantle), the so-
called magnesian silicate perovskite MgSiO3, has the
same crystal structure.

As regards compounds of the A3+B3+X3 type, either
of the two structural configurations marked with bold
type in Table 2 for these compounds is obviously more
preferable in accordance with the criteria D = 0.04 and
–S = 0.038. Actually, there exist many representatives
of such compounds with a GdFeO3 structure (space
group Pbnm), whose coordination number and bond
distributions are identical to those for all the above
examples. In particular, these are heavy rare-earth, rel-
C

atively light rare-earth, and yttrium aluminates; high-
pressure phase ScAlO3; etc.

It seems likely that crystalline compounds of the
A4+B2+X3 and A5+B+X3 types do not exist because of the
geometric hindrances, which will be considered in the
next section.

The exhaustive search for all possible combinations
of three anions nonequivalent in the environment for
the same coordination numbers of the A[8] and B[6] cat-
ions reveals a number of allowable crystal chemical
formulas: X1[2]X2[3]X3[9], X1[2]X2[4]X3[8],
X1[2]X2[5]X3[7], X1[3]X2[4]X3[7], and X1[3]X2[5]X3[6]. It is
also necessary to take into account that identical coor-
dination numbers can be observed for two anions non-
equivalent in symmetry or (and) the nearest environ-
ment, such as X1[5]X2[5]X3[4], X1[4]X2[4]X3[6], etc. The
total number of crystal chemical formulas
A[8]B[6]X1X2X3 allowed according to the electroneu-
trality condition (1) is more than 300, namely, 47 for
the A+B5+ combination of cation valences, 64 for the
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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A2+B4+ combination, 76 for the A3+B3+ combination,
58 for the A4+B2+ combination, and 67 for the A5+B+

combination.

However, the calculated valences sij of individual
bonds for all possible combinations of cation valences
and coordination numbers of anions show that, for the
most part, these variants are characterized by large dis-
tortion indices D. Only a rather small number of com-
binations have D ≤ 0.10, which allows for the possibil-
ity of forming the corresponding crystal structures.
These combinations are given in Table 4.

It is clearly seen from analyzing the data presented
in Table 4 that, among the combinations of coordina-
tion numbers of anions with small distortion indices D,
the four aforementioned configurations (5, 5, 4), (4, 4,
6), (3, 5, 6), and (3, 4, 7) are considerably predominant.
It is easy to see that, as in the previous case (Table 2),
these configurations correspond to closer coordination
numbers of anions. The only exception is provided by
compounds of the A+B5+X3 type with a maximum dif-
ference between the cation valences. In this case, there
appear combinations in which the coordination number
of the X1 anion is equal to two. It is interesting to note
that, in these situations, the X1 anion is not involved in
the environment of the univalent A+ cation but forms a
bridge between pentavalent cations with the maximum
bond valence s = 1.00 for the configurations under con-
sideration. In general, the anion with the lowest coordi-
nation number (two, three) predominantly occurs in
combination with a more multiply charged cation (B5+,
B4+, A5+, A4+). For compounds of the A3+B3+X3 type with
the same cation valences, this anion appears to be com-
pletely or predominantly in the environment of the B3+

cations with a smaller coordination number and a
higher bond valence (these compounds are absent in
Table 4, because their distortion indices D are always
larger than 0.10). As a consequence, the small degree of
linkedness L = 2/3 and even 1/3 is observed for the
majority allowed combinations of coordination num-
bers of anions (the numbers of bonds in the correspond-
ing raw of Table 4 are equal to zero). A structural con-
figurations with nonuniform distributions of bonds
from particular anions to different cations (odd num-
bers of bonds in parentheses) also cannot exist, because
such a distribution is inconsistent with the principle of
minimum dissymmetrization and, hence, strongly
reduces the probability of forming similar crystal struc-
tures. Therefore, a relatively high probability of forma-
tion should be observed only for several combinations
of anions (4, 4, 6) and (5, 5, 4) with the closest coordi-
nation numbers. These combinations are marked with
bold type in Table 4.

An analysis of the ICSD-2000 Database revealed
the sole compound described by one of the structural
configurations marked with bold type in Table 4. This
is the monoclinic polymorphic modification CdTiO3
(space group Pbn21) that has three nonequivalent posi-
tions of oxygen atoms [the coordination numbers of
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
oxygen atoms are equal to five for O1 and O2 (3Cd +
2Ti) and four for O3 (2Cd + 2Ti)] and the following
nearest environments of cations: Cd (3O1 + 3O2 +
2O3) and Ti (2O1 + 2O2 + 2O3). This corresponds to
compounds with an A2+B4+ combination of cation
valences in the last row of Table 4. It is interesting to
note that, despite the lower symmetry, the coordination
numbers and the bounding distribution in coordination
polyhedra under consideration are identical to those
found for all the above examples. The anions with a
coordination number of four form an identical number
of bonds with octahedra and eight-vertex polyhedra,
and the anions with a coordination number of five form
two bonds with octahedra and three bonds with eight-
vertex polyhedra. Consequently, this monoclinic struc-
ture can be assigned to the same GdFeO3 structure type,
which includes all the aforementioned crystal struc-
tures with orthorhombic symmetry.

PRINCIPLE OF MINIMUM 
DISSYMMETRIZATION. PSEUDOSYMMETRY

By generalizing the inferences made above, we can
state that the stable crystal structure should correspond
to the principle of minimum dissymmetrization, which
is considered to mean a minimum deviation of the real
bond distribution from the idealized (most symmetric)
model of bond distribution in all coordination polyhe-
dra. It is assumed that, in the ideal model, all coordina-
tion polyhedra have a regular structure and the lengths
of all similar bonds are equal to each other. This situa-
tion becomes possible in the case when different coor-
dination polyhedra in the crystal structure are topolog-
ically similar to each other, i.e., when they are linked
together in an equivalent manner. Let us now assume
that the oxide structure involves only regular octahedra

with symmetry . There exist only two cubic struc-
ture types that completely satisfy the above condition.
These are the NaCl-type structure for bivalent elements
in which all octahedra are shared by the edges and the
ReO3-type structure in which all oxygen octahedra
around hexavalent cations are joined through all verti-
ces into a framework. In all other cases (trivalent, tet-
ravalent, pentavalent cations), it is impossible to con-
struct a stable structure from topologically equivalent
octahedra [9]. According to the general principles of
the symmetry theory [10], the dissymmetrization
requires an expansion of the system through the break-
ing of its isolation: only material agents that are exter-
nal with respect to the fixed system can lead to a reduc-
tion of the symmetry. In our case, the appearance of A
atoms with a lower valence in large-sized holes of the
framework of the ReO3-type structure and an attendant
decrease in the valence of B atoms within the octahedra
break the “chemical isolation” of the structure and are
predominantly responsible for the typical lowering of
symmetry in the compounds belonging to the perovs-
kite structure type. These compounds can remain cubic

m3m
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only in special cases (especially at high temperatures)
but, as a rule, have pseudocubic structures with tetrag-
onal, trigonal, orthorhombic, or monoclinic symmetry.

Figure 1 shows the ideal structure of cubic perovs-

kite (space group ), the systems of octahedral
tilting according to the Glazer notation [11] (see
below), and a sequence of transitions to tetragonal, trig-
onal, and orthorhombic structures. The pseudocubic
structure of all derivatives of the initial cubic structure
is retained as a result of the minimum permissible dis-
tortion and partial loss of symmetry (minimum dissym-
metrization). The concept of pseudosymmetry can also
be useful for describing similar situations.

Moreover, the analysis of the data presented in
Tables 2 and 4 demonstrates that, according to the prin-
ciple of minimum dissymmetrization, among the
numerous possible structural variants, the most favor-
able structures are as follows:

Pm3m

Cmcm
(a0b+c–)

Pbnm
(a–a–c+)

P4/mbm
(a0a0c+)

I4/mcm
(a0a0c–)

Imma
(a0b–b–)

R-3c
(a–a–a–)

Pm3m
(a0a0a0)

Fig. 1. Sequence of transitions from the parent cubic per-
ovskite structure Pm3m to the orthorhombic distorted struc-
ture Pbnm through the rotations of the octahedra (according
to the Glazer notation [11]).
C

(i) structures with close coordination numbers of
crystallographically nonequivalent atoms (occupying
different Wyckoff positions) of the same chemical ele-
ment;

(ii) structures with the most uniform (and the most
symmetric) distribution of bonds between single-type
nonequivalent atoms of the same chemical element and
geometrically different coordination polyhedra; and

(iii) structures with the highest linkedness of differ-
ent polyhedra (with a maximum degree of participation
of crystallographically different atoms in the bonding
of individual structural units).

It should also be emphasized that the above state-
ments are corollaries to the Pauling rule of parsimony.
According to this rule, the number of nonequivalent
crystallographic positions of atoms of the same chemi-
cal element tends to a minimum. Now, this rule can be
complemented by the following corollary: if atoms of
the same chemical element occupy different Wyckoff
positions, these atoms tend to be crystallographically
similar to each other, i.e., to have identical or close
coordination numbers and symmetries as similar as
possible.

GEOMETRIC CONSEQUENCES
AND CONSTRAINTS. PROBABLE SYMMETRY 

OF THE PREDICTED STRUCTURE

Undeniably, the valence and coordination con-
straints considered above lead to a sharp decrease in the
number of structures that can exist in the crystal form.
However, these constraints themselves are insufficient
for definitive prediction. This can be judged from the
lack of examples of A[8]B[6]X3 compounds with the
A4+B2+ and A5+B+ variants of cation valences, for which
there exist numerous configurations that are allowed in
accordance with the principles of valence and coordina-
tion number balance (Tables 2, 4). This situation can be
simply explained by the fact that multiply charged cat-
ions with sizes larger than these of univalent and biva-
lent cations are either absent or almost absent. As a con-
sequence, small-sized cations cannot occupy positions
with a larger coordination number.

From analyzing the most stable topology of the
bond distribution, which was revealed in the preceding
section, we can make a number of inferences regarding
the geometry of the hypothetical structure. Initially, we
consider the octahedral environment of the B atom.
This environment consists of four X1 anions and two
X2 anions. In turn, anions of each type have two octa-
hedral cations B as their nearest neighbors. Therefore,
this structure should be characterized by a three-dimen-
sional framework formed by vertex-shared octahedra,
as is the case in the ReO3 and CaTiO3 perovskite struc-
ture types (Fig. 1). However, unlike the cubic structures

of ReO3 and perovskite (space group ), whose
frameworks consist of regular octahedra with symme-

Pm3m
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try , our model structure should be composed of
distorted octahedra, because their vertices are occupied
by anions of two different types. Depending on the
mutual arrangement of X1 and X2 anions in octahedron
vertices, the point symmetry of the octahedron can be
either tetragonal (4/m)mm for the trans orientation of
two X2 anions or orthorhombic mm for the cis orienta-
tion of these anions (Fig. 2). According to the principle
of minimum dissymmetrization, we can assume that the
proper symmetry of the octahedra is tetragonal. Fur-
thermore, owing to the difference between the coordi-
nation numbers of the anions, the interatomic distance
R(B-X1) should differ from the distance R(B-X2). Since
the coordination number of five for the X1 anion is
larger than the coordination number of four for the X2
anion, the radius of the former anion is somewhat
greater than the radius of the latter anion and, hence,
R(B – X2) < R(B – X1). In turn, in order to retain the
linkedness of the framework formed by these distorted
octahedra, the adjacent octahedra undergo tilting. As a
result, the cubic symmetry of the initial framework of a
ReO3 type is reduced and becomes no higher than tet-
ragonal symmetry (Fig. 3). It can be seen from Fig. 3
that four neighbors of the central octahedron are rotated
about the [001] axis through the same angle in the
opposite directions with respect to the central octahe-
dron. There are two variants of tetragonal distortions,
which are designated as a0a0c– (Fig. 3b) and a0a0c+

(Fig. 1) according to the Glazer notation [11]. The
superscript 0 indicates that no rotations occur about the
a axes. The superscript “–” and “+” on c signify that the
octahedra lying above or below the layer depicted in the
figure are rotated in the (001) plane in the opposite and
same directions, respectively.

Using this line of reasoning, we can demonstrate
that the symmetry of the framework composed of tilting
octahedra with tetragonal symmetry (4/m)mm should
become orthorhombic. Indeed, Fig. 4 shows the
arrangement of the X2–X2 axial directions of the adja-
cent octahedra, which form a chain along the diagonal
of the tetragonal cell. In order to prevent ineffective

m3m

(4/m)mm mm

Fig. 2. Tetragonal and orthorhombic distortions of the octa-
hedra with two vertices occupied by anions of the other type
(shown by large circles). The B atoms are located at the cen-
ters of the octahedra. The possible shift of the B atom from
the center is indicated by the arrow.
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transformation of the framework structure into a lay-
ered structure, the X1–X1 diagonals of the equatorial
planes of the octahedra in adjacent chains should lie
along the diagonal of the tetragonal cell and the axial
bonds X2–B–X2 should be aligned with the [001] axis
perpendicular to the figure plane. This implies that the
tilting of the octahedra should involve all three axial
directions of the initial cell. Then, the new cell depicted
in Fig. 3c becomes orthorhombic and, according to the
Glazer notation, can be designated as one of the follow-
ing tilting systems: a+b+c–, a+a+c+, a+b–b–, or a+a–a–

[11].
The problem regarding the geometry of coordina-

tion polyhedra around A atoms with larger sizes
requires a comparative analysis of the most commonly
encountered eight-vertex polyhedra, such as a cube, tet-
ragonal antiprism, dodecahedron, and bicapped trigo-
nal prism. A cube as a candidate for the coordination
polyhedron should be rejected, because it has six tet-
ragonal faces that cannot be brought into coincidence
with trigonal faces of adjacent octahedra. Note that,

(a)

(b)

(c)

Fig. 3. Projections of (a) cubic, (b) tetragonal, and
(c) orthorhombic perovskite structures along the [001] axis.
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since two X2 and six X1 anions occupy the cube verti-
ces, the cube is necessarily distorted and its ideal sym-

metry  is lowered to trigonal symmetry  (for
the trans orientation of X2 anions) or orthorhombic
symmetry mm2 (mm).

A dodecahedron has 12 trigonal faces. This exceeds
the number of faces necessary for filing a hole between
eight adjacent octahedra. A bicapped trigonal prism is
not an isometric figure, has one tetragonal and eight
trigonal faces, and, apparently, also cannot fit into the
octahedral three-dimensional framework without gaps.
Consequently, owing only to a very strong distortion,
such a coordination polyhedron around an A atom can
become a probable environment.

A tetragonal antiprism has two tetragonal faces and
eight trigonal faces. Consequently, this polyhedron is a
quite probable candidate for participation in the design
(formation) of the structure. However, it should be
taken into account that, since six X1 and two X2 anions

m3m 3m

a0a0c+

a0a0c–

Fig. 4. Schematic diagram illustrating the formation of the
inclined plane and orthorhombic distortion in two adjacent
layers of the initial tetragonal structure due to a regular
alternation of anions of two types (empty vertices and
closed circles).
C

occupy vertices of the polyhedron in our case, its ideal
tetragonal symmetry (4mm) is lowered either to orthor-
hombic symmetry mm, or to monoclinic symmetry m,
or even to triclinic symmetry 1 (Fig. 5). In the first case
(symmetry mm), both X2 anions should occupy the
trans positions. In the second case (symmetry m), both
X2 anions should be located at the cis positions on one
of the tetragonal faces, which renders the octahedral
structural framework inhomogeneous. Therefore, we
assume that symmetry of this polyhedron is lowered to
triclinic symmetry. In this situation, both X2 anions are
located on the opposite tetragonal faces and different
edges of trigonal faces so as to provide a maximum dis-
tance between each other.

For the variant with proper triclinic symmetry of
eight-vertex polyhedra, chains of octahedra with X2–
X2 axial directions are aligned along the diagonal of the
cell, which can result in the appearance of an inclined
plane. Therefore, the space group Pbnm is the most
probable group. Glazer [11] and Woodward [12]
showed that this space groups is associated with the
system of tilting a+b–b– in three directions with two
identical rotation angles. It should be noted that this
space-group symmetry is observed for all compounds
crystallizing in the GdFeO3 structure type (see the pre-
ceding section). The projection of the high-pressure
perovskite-type structure MgSiO3 with the space group
Pbnm is depicted in Fig. 6. It is interesting to note that
65% of all the known perovskites are described by this
space group [13], which ranks second in occurrence
among all the orthorhombic space groups [14].

One more argument in favor of a considerable dis-
tortion of the cubic initial structure is provided by the
Goldschmidt tolerance factor,

t = (rA + rO)/[21/2(rB + rO)], (10)

where rA and rB are the octahedral radii of cations and
rO is the oxygen radius. Compounds of the perovskite
structure type with different symmetries are character-
ized by a wide range of tolerance factors, namely,
1.05 > t > 0.78. However, cubic structures are stable

4mm m mm

1 1

Fig. 5. Tetragonal antiprism and its orthorhombic and tri-
clinic distortions due to a change in the nature of two verti-
ces (shown by closed circles).
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only at tolerance factors very close to unity: 1.05 > t >
0.99. At tolerance factors in the range 0.99 > t > 0.78,
symmetry is necessarily lowered through the tilting of
octahedra about small-sized A cations. For example, the
magnesian silicate perovskite MgSiO3 has the tolerance
factor t = 0.83, which is close to the lower limit of the
existence of the perovskite structure type (more pre-
cisely, this structure belongs to the orthorhombic
GdFeO3 structure type, which is a derivative of the per-
ovskite type) [15]. Therefore, the MgSiO3 perovskite is
stable only at very high pressures.

STAGES OF REFINING THE CHOSEN 
STRUCTURAL MODEL

Let us consider the methods and procedures used for
refining the starting structural model, which were cho-
sen on the basis of the general crystal chemical princi-
ples described above. At the last stages, it is possible
not only to refine the structure but also to predict many
properties of a crystal. As an example, we will again
analyze the orthorhombic structure of the MgSiO3
magnesian silicate perovskite (which is important from
the geochemical and geophysical standpoints), which,
most likely, represents one of the main crystalline
phases of the Earth’s lower mantle.

Bond-Valence Method

The bond-valence method considered above makes
it possible to determine the interatomic distances Rij
from the calculated valences sij of individual bonds
with the use of the basic equation of the method:

Rij = R1 – blnsij , (11)

where b is the empirical constant, which is usually
equal to a universal (mean) value of 0.37 Å, and R1 is
the standard distance corresponding to the bond with
the unit valence sij = 1. The distances R1 are tabulated
for many bonds [5].

The connectivity matrix for the MgSiO3 perovskite
is written according to the bond distribution for the
GdFeO3 structure type; that is,

The calculated bond valences are as follows: s(Mg–O1) =
0.275, s(Mg–O2) = 0.242, s(Si–O1) = 0.725, and s(Si–
O2) = 0.637. With the use of the distances R1(Mg–O) =
1.693 Å and R1(Si–O) = 1.624 Å and Eq. (11), we find
the bond lengths R(Mg–O1) = 2.171(×2), R(Mg–O2) =
2.218(×6), R(Si–O1) = 1.743(×2), and R(Si–O2) =
1.791 Å(×4). A comparison of the results of calcula-
tions with the experimental data on the interatomic dis-
tances (Table 5) demonstrates that, although they are in
qualitative agreement, the bond-valence method leads

Mg
2+

Si
4+

O1 2O2

2s11 6s12

2s21 4s22.
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to an underestimation of the degree of structural distor-
tion and to higher symmetry of coordination polyhedra.

Distance-Least-Squares and Valence-Least-Squares 
Methods

The empirical distance-least-squares method is
based on the least-squares fitting of interatomic dis-
tances to some preliminarily chosen typical distances.
The function to be minimized has the form

(12)

where ROi are the specified typical interatomic dis-
tances, Ri are the same distances calculated for the cho-
sen model from the atomic coordinates x and the unit
cell parameters, and ωi are the weighting factors
assigned to the ith distance. Table 5 presents the results
of calculations from this method with the experimental
unit cell parameters a = 4.732 Å, b = 4.892 Å, and c =
6.836 Å for the MgSiO3 perovskite and the distances
ROi calculated using the bond-valence method for regu-
lar polyhedra SiO6 (1.774 Å) and MgO8 (2.143 Å). The
equilibrium O–O distance was taken to be equal to
2.500 Å. The weighting scheme is given in Table 5, in
which the atomic coordinates and interatomic distances
are compared with the experimental data. It can be seen
from Table 5 that, although the theoretical and experi-
mental data are in reasonable agreement, the distance-
least-squares method underestimates the degree of dis-
tortion of eight-vertex polyhedra around Mg atoms.

ψ x( ) ωi Ri ROi–( )2
,

i 1=

m

∑=

Fig. 6. Projection of the structure of the orthorhombic mag-
nesian silicate perovskite MgSiO3.
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The valence-least-squares method is based on the
minimization of the functional [formally similar to
functional (12)]

(13)

where Vj =  and VOi is the true valence of the
ith atom. Here, the valences sij are functions of the
interatomic distances or atomic coordinates at specified
(usually experimental) unit cell parameters. This
method should be used with care, at least until the
parameters R1 and b (in the bond-valence method) are
unknown for each type of bonds. For example, our anal-
ysis of a number of recently refined structural data for
the magnesian silicate perovskite (according to the
ICSD-2000 Database) shows that the experimental
sums of the valences of eight Mg–O bonds (2.15–
2.30 valence units) are regularly larger than two
valence units, whereas the sums of the valences of six
Si–O bonds (3.80–3.94 valence units) are regularly
smaller than four valence units. This suggests that, most
likely, it is not sufficiently correct to use the universal
parameter b = 0.37 Å for bonds with such a substantial
difference in strength (rigidity). Actually, when this
parameter is slightly decreased to 0.35 Å for the Mg–O
bond and is increased to 0.40 Å for the Si–O bond, the
bond valence sum rule is almost exactly satisfied for
both cations.

Strained-Bond Model

Energetically, the distance-least-squares method
can be simply justified by expanding interatomic inter-

ϕ x( ) ωi Vi VOi–( )2
,

i 1=

m

∑=

siji 1=
ν∑

Table 5.  Results of the distance-least-squares refinement of
the structure of the magnesian silicate perovskite MgSiO3

Atom
Theoretical coordinates Experimental coordinates

x y z x y z

Mg 0.526 0.605 0.25 0.514 0.557 0.25

Si 0.5 0 0.5 0.5 0 0.5

O1 0.093 0.502 0.25 0.102 0.465 0.25

O2 0.184 0.189 0.547 0.195 0.208 0.555

Bond R(theor), 
Å

R(exp),
Å Bond R(theor), 

Å
R(exp),

Å

Si–O1 (2)1.765 (2)1.784 Mg–O1 2.022 1.999

Si–O2 (2)1.782 (2)1.767 Mg–O1 2.108 2.070

Si–O2 (2)1.785 (2)1.784 Mg–O2 (2)2.139 (2)2.030

Mg–O2 (2)2.196 (2)2.252

Mg–O2 (2)2.295 (2)2.413

Note: The weighting scheme is as follows: ω(Si–O) = 2.0, ω(Mg–O) =
1.5, and ω(O–O) = 1.0.
C

action energy ε into a power series in the vicinity of the
equilibrium position

ε(R) = ε0 + (k/2)(R – R0)2 + …. (14)

Here, R0 is the equilibrium distance and k is the quasi-
elastic constant (bond rigidity), which is equal to the
second derivative of the energy with respect to the dis-
tance at R0; that is,

(15)

By summing changes in the energy over all pair inter-
actions in the crystal, we find in the harmonic approxi-
mation that

(16)

A comparison of relationships (14), (16), and (12) dem-
onstrates that the quantity (k/2) plays the role of a
weighting factor in the distance-least-squares method.
A priori estimations of this quantity involve the most
considerable difficulties. In [16, 17], this quantity was
taken to be proportional to the ratio between the
valence and the coordination number of cations, i.e., to
the Pauling bond strength k ~ γ  ~ = γVi /νi, where γ is
a constant with the dimension of force. Then, the bond
rigidity ratio, for example, for a perovskite of the
A2+B4+X3 type with a coordination number of 12 for A
cations and a coordination number of 6 for B cations is
estimated to be kB /kA . 8. The same ratio can be
obtained using an independent empirical method with
due regard for the fact that, at 0 K, the following ther-
modynamic relationship is satisfied:

ε'' = 9VK/R2, (17)

where V is the molar volume and K is the bulk modulus
of the crystal. With the use of the known experimental
data for periclase MgO and stishovite SiO2, we obtain
ε''(MgO) = 3670 kJ/mol ⋅ Å–2 and ε''(SiO2) =
14800 kJ/mol ⋅ Å–2. In this approximation, the bond
rigidity ratio kB/kA ~ 4, with allowance made for the cor-
rection for an increase in the coordination number of Mg
from six in periclase to eight in the MgSiO3 perovskite
and the corresponding increase in the mean distance,
should increase by no less than 40%: kB/kA ~ 5.5.

In the strained-bond model [16, 17], the mean
parameter 〈a〉  of a pseudocubic perovskite unit cell per
molecular unit can be determined by minimizing the
strain energy of cation–anion bonds:

∆ε = 8kA[(〈a〉/21/2) – R0A]2 + 6kB[(〈a〉/2) – R0B]2. (18)

Here, R0A and R0B are the lengths of ideal (unstrained)
bonds, which were calculated from formula (11) within
the bond-valence method: Si–O = 1.774 Å and Mg–O =
2.143 Å for the regular octahedron and eight-vertex
polyhedron, respectively. The equilibrium unit cell
parameter is determined through the minimization of
the strain energy (18) with respect to 〈a〉; that is,

∂(∆ε)/∂〈a〉  = 0.

k ε'' ∂2ε/∂R
2( )R R0= .= =

∆ε R( ) ε R( ) ε0–[ ]∑ k/2( ) R R0–( )2
.∑= =

si
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As a result, we have

〈a〉  = (16kAR0A/  + 6kBR0B)/ (8kA + 3kB). (19)

Substitution kB . 5.5kA into expression (19) gives 〈a〉  .
3.38 Å and a volume of 38.6 Å3 per molecular unit.
Then, the volume of the unit cell with Z = 4 is equal to
154.6 Å3. The experimental unit cell volume for the
orthorhombic MgSiO3 perovskite is 162.45 Å3. There-
fore, the theoretical and experimental data are in satis-
factory agreement, with due regard for a rough estima-
tion of parameters in the strained-bond model.

Structure and Properties Determined by Minimizing 
the Cohesive Energy of a Crystal

The most advanced crystal chemical approach to the
determination of an equilibrium atomic configuration
and the properties of a crystal consists in finding the
cohesive energy (lattice energy, atomization energy) at
the minimum. The cohesive energy is written as the
sum of pair potentials (in some cases, multiparticle
interactions are also taken into account) in the form

(20)

Here, zi and zj are the atomic charges (valences), f is the
degree of bond ionicity, zi f and zj f are the effective
atomic charges, λ and ρ are the parameters of the repul-
sive potential, and cij is the van der Waals energy
parameter.

The parameters of potential (20) can be a priori
specified and then can be refined together with the
atomic coordinates and unit cell parameters during the
energy minimization. Such potentials [described by
relationship (20)] has been repeatedly used to minimize
the energy and to refine the structure of the orthorhom-
bic MgSiO3 perovskite (no less than six times by the
late 1980s [18]). Since then, there have appeared
approximately ten works devoted to calculations based
on semiclassical potentials similar to that described by
formula (20) [19]. As an example, we present the
results obtained by Oganov in the last work [19]. The
following parameters of the potentials were used at the
last stage of calculations: zfMg = +1.9104, zfSi = +2.9043,
zfO = –1.6049, λMg–O = 1007.526 eV, ρMg–O = 0.2866 Å,
λSi–O = 1108.983 eV, ρSi–O = 0.2827 Å, λO–O = 2023.8 eV,
ρO–O = 0.2674 Å, and cO–O = 13.83 eV Å6. The results
of calculations of the structure (unit cell parameters,
unit cell volume, atomic coordinates) and many proper-
ties (elastic constants Cij , bulk modulus K, shear mod-
ulus G, Debye temperature ϑ , thermal expansion coef-
ficient α, heat capacity CV , entropy S) are compared
with the experimental data in Table 6. The reader can
easily see that the model structural parameters and the
model properties of the crystal under investigation
agree well with the true quantities. This gives grounds
to turn to the determination of thermoelastic properties
of the crystal and the construction of the equation of
state at high temperatures and pressures, which pro-

2

Uij Rij f,( ) ziz j f
2
/Rij λ Rij/ρ–( )exp cij/Rij

6
.–+=
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
vides a way of solving a number of fundamental prob-
lems associated with the geophysics and geochemistry
of the Earth’s depth.

First-Principles (Ab Initio) Calculations 
of the Structure and Properties of Crystals 

In recent years, increased interest has been
expressed by researchers in calculations of the structure
and properties of crystals with the use of modern ab ini-
tio (first-principles) quantum-mechanical methods.

Table 6.  Comparison of the structural parameters and prop-
erties simulated by the semiclassical (atomistic) potentials
and first-principles (ab initio) methods and experimental data
for the magnesian silicate perovskite MgSiO3

Property Atomistic
Potentials Ab initio Experiment

V0, Å3 162.31 157.87 162.45
a0, Å 4.7822 4.7272 4.7747
b0, Å 4.8960 4.8889 4.9319
c0, Å 6.9322 6.8311 6.8987
Mg x 0.5056 0.5160 0.5143

y 0.5267 0.5576 0.5556
z 1/4 1/4 1/4

Si (x, y, z) (0; 1/2, 0) (0; 1/2, 0) (0; 1/2, 0)
O1 x 0.1026 0.1044 0.1037

y 0.4620 0.4654 0.4655
z 1/4 1/4 1/4

O2 x 0.1982 0.1969 0.1974
y 0.2014 0.2015 0.2011
z 0.5526 0.5539 0.5538

C11 GPa 500 499 482
C22 509 561 537
C33 398 466 485
C12 116 123 144
C13 210 137 147
C23 188 142 146
C44 174 217 204
C55 189 186 186
C66 102 160 147
K, GPa 270.4 258.3 264.0
G, GPa 146.3 187.3 178.4
CV 80.88 80.6
α 2.09 1.57 : 2.2
C1, m/s – 10953 11042
S 61.81 57.2
θn, K 984 1097 1078

Note: The thermal expansion coefficient α is expressed in terms of
10–5 K–1, and the quantities CV and S are given in terms of
J/(mol K).
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Among them, the Hartree–Fock self-consistent field
method and the density-functional theory method used
in different variants (beginning with the local-density
approximation to more exact generalized gradient
approximations) are the most universally employed
techniques. It is evident that these methods are beyond
the scope of crystal chemical approaches; hence, the
predictions and inferences made in the framework of
the crystal chemistry can be only tentatively useful
when choosing the most probable structural models.

In this respect, without going into the description of
the comparative capabilities and computational proce-
dures of the ab initio methods, we can illustrate their
applicability by using the results of the calculations of
the structure and many properties of the MgSiO3
orthorhombic perovskite (Table 6), which were per-
formed within the simplest local-density approxima-
tion of the density-functional theory [19]. As can be
seen from Table 6, the structure and properties calcu-
lated within this approach are in good agreement with
the experimental data, which, undeniably, suggest an
excellent future for ab initio methods as applied to
structural calculations. Moreover, the use of molecular-
dynamics methods offers strong possibilities for pre-
dicting the behavior of crystals over the entire range of
their stability, which, in turn, makes it possible to con-
struct the complete equation of state and to investigate
the conditions for stability of crystalline phases.

CONCLUSIONS

After reading the last sections of this paper, the
impression can arise that classical methods and proce-
dures of the crystal chemistry have already given way
to more precise techniques for solving the basic struc-
tural chemical problem concerning the prediction of the
structure and properties of a crystal with a known
chemical composition. However, this is by no means
the case, because the necessity of limiting the number
of examined models, as before, remains an important
problem. This can be explained by the fact that the time
required to perform calculations with the use of semi-
classical (atomistic) methods for minimizing the
energy and, especially, first-principles calculations
remains long and expensive. On the other hand, the
simple methods and approaches developed in the
framework of the classical crystal chemistry are consid-
erably more economical and, which is particularly
important, can be readily automated using personal
computers. Thus, it is my opinion that only the use of
an appropriate combination of all currently available
methods, procedures, and approaches can provide the
most efficient and economical way to achieve the main
objective of crystal chemistry.
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Abstract—The short-range order and microinhomogeneity structure of laboratory samples of glasses belong-
ing to the diopside–orthoclase–apatite system with different percentages of components were investigated by
X-ray diffraction and small-angle scattering. A correlation between a change in the chemical composition of a
glass, causing its segregation, and the short-range order parameters was ascertained: an increase in the apatite
content leads to a change in the short-range order parameters. The use of the X-ray small-angle scattering tech-
nique made it possible to reveal inhomogeneities of electron density in the glasses under study and the depen-
dence of the sizes of inhomogeneities on the glass composition. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, the field of application of basalt
fibers and casting has been significantly widened. In
particular, they can be used for production of heat-insu-
lating mats and cords and sound-absorbing and filter
materials. Due to its high chemical durability, basalt
casting can be used in the chemicals industry. The
application of mining-industry waste significantly
reduces the cost of such materials. The development of
industrial technologies in this field depends on obtain-
ing glasses with the desired properties. In this context,
prediction of these properties—depending on the
chemical composition of a glass and conditions of its
preparation—plays an important role. In particular,
multicomponent glasses are of interest. Information on
the structure of these glasses is important both from the
scientific point of view and for their practical use in
new material production technologies. To date, infor-
mation obtained in this field is rather scarce.

In this paper, we report the results of investigations
of the short-range order and microinhomogeneities in
diopside–orthoclase–apatite glasses by X-ray diffrac-
tion analysis. Previous studies [1] showed that, when
the content of apatite in the glasses of this system is
increased to a certain value, a transition from the homo-
geneous state to a state characterized by two immisci-
ble phases occurs. It is of interest to find out how this
phenomenon is related to changes in the microstructure
of the objects studied.

EXPERIMENTAL SAMPLES

Figure 1 shows the phase diagram of the diopside–
orthoclase–apatite system, where points 1, 2, 3, and 4
1063-7745/04/4904- $26.00 © 20573
denote the chemical composition of the studied glass
samples. The curve in the diagram represents the
boundary, below which (at a corresponding concentra-
tion of the components) the glass structure is homoge-
neous; above this boundary, the glass separates into two
immiscible phases.

Samples of apatite (Ca3(PO4)3F), diopside
(CaMgSi2O6), and orthoclase (KAlSi3O8) were pre-
pared, respectively, from apatite concentrate (AO
Apatite), a monomineral fraction of diopside
extracted from phlogopite–diopside rocks of the

1

23

4

80

60

40

20 80

60

40

20

Apatite

20 40 60 80 DiopsideOrthoclase

Fig. 1. Solubility of apatite in the apatite–orthoclase–diop-
side system. (s) Homogeneous melt at 1400°ë, (r) two liq-
uid immiscible phases, (j) melt and crystals at the same
temperature.
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Kovdor phlogopite deposit [1], and a monomineral
fraction of potassium feldspar from the Kovdor
deposit. The chemical compositions of diopside and
potassium feldspar (orthoclase) somewhat differ
C

from ideally stoichiometric (Table 1). Based on the
percentages of oxides in the minerals under investi-
gation, we calculated the formula compositions of
the samples:
1: O0.608Si0.184Al0.012K0.008Ti0.0008Ca0.092Fe0.0077P0.0155F0.0052Mg0.0631Na0.0024

2: O0.6108Si0.1645Al0.0116K0.008Ti0.00077Ca0.099Fe0.0067P0.031F0.01Mg0.055Na0.0023

3: O0.6121Si0.1545Al0.0113K0.008Ti0.00072Ca0.102Fe0.0063P0.039F0.013Mg0.0514Na0.0022

4: O0.6134Si0.1446Al0.011K0.0081Ti0.00066Ca0.105Fe0.0058P0.047F0.016Mg0.048Na0.0021 
With regard to the effect of temperature on the solu-
bility of apatite in aluminosilicate melts, the blend was
prepared in corundum crucibles at the same tempera-
ture (1400°ë) [1]. The melt was kept at this tempera-
ture for 3 h for complete homogenization. In order to
relieve stresses, the prepared glass was annealed at
600°ë. The glass-transition temperature was approxi-
mately the same for all the samples (in the vicinity of
750°ë).

EXPERIMENTAL AND CALCULATION 
TECHNIQUES

The short-range order parameters were determined
by X-ray diffraction analysis on a DRON-3.0 auto-
mated diffractometer in MoKα radiation with mono-
chromatization of the primary and diffracted beams in
reflection geometry and in the s range (s = 4πsinθ/λ,
where s is the diffraction vector, θ is the diffraction
angle, and λ is the radiation wavelength) from 0.35 to
16.6 Å–1. Fused quartz was used as a reference. The
experimental values of the reflection intensities were
corrected to scattering from air, polarization, and
Compton scattering, after which the short-range order
parameters were calculated by the Warren–Finback
method.

Table 1.  Chemical compositions of diopside and orthoclase

Oxide
Weight content, %

diopside orthoclase

SiO2 55.36 62.93

TiO2 0.40 –

Al2O3 1.30 17.75

FeO + Fe2O3 3.50 –

MgO 14.51 0.02

CaO 24.63 0.16

Na2O 0.20 2.65

K2O 0.10 16.76
According to Warren [2, 3], the distribution of pair
functions is constructed in the form

(1)

where Nij is the number of atoms of type j on the ith
coordination sphere; rij is the radius of the ith coordina-
tion sphere for j-type atoms; ρe is the electron density;
Zj is the atomic number of the elements forming a mate-
rial; Ii(s) is the interference function of the i-type

atoms; exp(– ) is the decay factor, the action of
which manifests itself in the reduction of the influence
of experimental errors; and g–2(s) is the sharpening fac-
tor, which ensures a higher contrast of the interference
pattern at large values of s. The pair functions have the
form

(2)

where fi fj are the atomic scattering functions of the i-
and j-type atoms.

The pair function characterizes the distribution of
the electron density of a particular pair of atoms and
depends on the types of atoms forming the pair. The
left-hand side of (1) is calculated from the experimental
intensities. Let us denote it as D(r) and the integrand as

H(s). Then, D(r) = 2π2rρe  + (s)sin(sr)ds.

D(r) is the distribution of the sum of pair functions
Pij(r) and characterizes the distribution of electron den-
sity in a material. The positions of peaks on the curve
D(r) give the corresponding interatomic distances. In
real noncrystalline materials, the widths of the maxima
of the pair functions Pij(r) increase due to the disper-
sion σij of interatomic distances with respect to the
average value of rij . These values are fitted by the
method of successive approximations; the criterion is a
sufficiently good coincidence between the left- and the

Nij
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j
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Fig. 2. Dependence of the scattering intensity I on the diffraction vector s for samples (j) 1, (m) 2, and (r) 3 and the bar graphs for
diopside and apatite crystals.
right-hand sides of Eq. (1). The coordination numbers
for the chosen pairs of atoms were determined by the
least-squares method. The Warren–Finback method,
being fairly informative, makes it possible to analyze
the differences in the short-range order structure on a
large number of coordination spheres with high accu-
racy [4–6]. The error in determining the short-range
order parameters amounted to 3–5%.

The microinhomogeneous structure of the glass sam-
ples was investigated by the method of small-angle scat-
tering (SAS) of X-rays in a KRM-1 X-ray chamber using
copper, Ni-filtered, radiation. Glassy carbon was used as
a reference. The angle dependences of the scattering
intensity were obtained in the range of angles ε from
7 min of arc to 7° with step dε = 1–10 min of arc. The
values of the scattering intensity measured from different
samples were normalized to the same thickness. The por-
tion of the curve I(ε) on which the scattering intensity
becomes angle-independent was used to determine the
intensity of thermal diffuse scattering with subsequent
subtraction of the found value from the total scattering
intensity for each sample. In addition, in calculating the
intensity, we introduced a collimation correction using
the method proposed by Filipovich [7] in the approxima-
tion of an infinite X-ray beam. The radii of gyration of
inhomogeneities of electron density were calculated by
the Guinier method [8]. According to this method, the
logarithmic dependence lnI(ε) = f(ε2) for a monodisperse
system is a straight line with the slope α, for which

(3)αtan
4π2

3λ 2
--------R0

2
,–=
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where R0 is the radius of gyration of a void and λ is the
X-ray radiation wavelength.

Then, the radius of gyration of an inhomogeneity
can be written as

(4)

The value of R0 can be easily determined by plotting
the dependence lnI(ε) = f(ε2) and measuring its slope.
In the case of a polydisperse system with a small num-
ber of fractions of inhomogeneities, this dependence is
a polygonal line. With an increase in the number of
fractions, it becomes smoother. In this case, the so-
called method of tangents is used, in which portions of
a curve are approximated by tangents. It should be
noted that the accuracy of this method is rather low;
thus, it allows one only to estimate the presence and
sizes of inhomogeneities in a sample. In order to mini-
mize experimental error, the SAS data were averaged
over several X-ray diffraction patterns. The error in the
values of the quantitative parameters obtained by the
SAS method was 5–10%.

RESULTS AND DISCUSSION
Figure 2 shows the distributions of the scattering

intensity I(s) for samples 1, 2, and 3 and, for compari-
son, the bar graphs of diopside and apatite crystals. It is
obvious that the samples of the minerals under study
are amorphous and that the form of the first maximum
in the I(s) curve is well described by the corresponding
maxima characteristic of the crystalline modifications

R0
λ

2π
------ 3 αtan .=
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of these minerals. The differences in the diffraction pat-
terns are more pronounced in the curves H(s) (Fig. 3).
The calculated values of the function H(s) were used to
obtain the distributions of the pair functions D(r) in the
studied samples (Fig. 4). The positions of the first max-
ima for samples 1 and 2 are close to each other and lie
in the vicinity of r ~ 1.6 Å (Fig. 4), which is character-
istic of the interatomic distance Si–O in a silicon–oxy-
gen tetrahedron. For large values of r, the difference in
the shape of the curves D(r) can be clearly seen, which
indicates the difference in the short-range order for
samples with different chemical compositions. For
samples 3 and 4, the first maximum is shifted somewhat
to the left as compared to samples 1 and 2, which is
indicative of the decrease in the corresponding inter-
atomic distance.

The simulation of the short-range order in glasses 1
and 2 was performed by the method of smearing the

1

–5

H(s) × 10

–10

0

5

10

2 3 4 5 6 7 8 9 10
s, Å–1

Fig. 3. Dependences H(s) for samples (m) 1, (j) 2, (r) 3,
and (dashed line) 4.

Table 2.  Short-range order parameters: rij , Nij ± ∆Nij , and
σij for sample 1; and rij , Nij , and ∆rij for diopside crystals

Type of 
sphere

Sample 1 Diopside crystal

rij,
Å

Nij ± ∆Nij, 
atoms

σij,
Å

rij,
Å

Nij,
atoms

∆rij,
Å

Si–O 1.65 3.9 ± 0.1 0.005 1.63 4.0 0.00

Fe–O 1.83 5.6 ± 0.5 0.25 1.76 6.0 0.04

Ca–O 2.31 8.0 ± 0.2 0.28 2.31 8.0 0.04

O–O 2.67 4.1 ± 0.1 0.3 2.67 4.0 0.05

Si–Si 2.89 4.1 ± 0.2 0.2 3.15 4.2 0.01

Ca–Si 3.26 8.1 ± 0.4 0.25 3.32 8.1 0.02

Ca–Mg 3.56 2.8 ± 0.2 0.1 3.54 2.5 0.05
C

diopside lattice, since the percentage of diopside signif-
icantly exceeds that of apatite in these samples. Stoichi-
ometric diopside belongs to the chain silicates; it has a
monoclinic structure (sp. gr. C2/c) with the unit cell
parameters a = 9.799 Å, b = 9.029 Å, c = 5.274 Å, and
β = 106°. The atomic coordinates, lattice constants, and
angles between the X, Y, and Z axes were used to calcu-
late the weighted mean values of the interatomic dis-
tances and coordination numbers for diopside crystals
(Table 2). The results obtained for sample 1 (listed in
the same table) suggest that the interatomic distances
corresponding to the coordination spheres Si–O, Ca–O,
O–O, and Ca–Mg in the glasses under study correspond
to similar coordination spheres in crystalline diopside.
At the same time, the radii of the coordination spheres
of the Si–Si and Ca–Si types decrease. The change in
the length of the Si–Si bond indicates a decrease in the
Si–O–Si angles. In addition, a significant increase in
the dispersion of interatomic distances in the vitreous
state in comparison with the crystalline phase is
observed. Figure 5 shows the function D(r) for sample 1,
the first seven contributions from the corresponding
spheres, and the theoretical curve D(r) calculated for
the final fitting (Table 2). Simulation of the short-range
order for sample 2, the chemical composition of which
corresponds to the homogeneity region, showed that
the short-range order parameters differ insignificantly
from the corresponding parameters for sample 1.

The short-range order in samples 3 and 4, the chem-
ical composition of which corresponds to the segrega-
tion region, significantly differs from that in samples 1
and 2. Simulation of the function of radial distribution
of the electron density D(r) by smearing the diopside
lattice led to a considerable disagreement between the
theoretical and experimental dependences. The reason

D(r) × 102

r, Å × 10–1

–1
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Fig. 4. Dependences D(r) for samples (1) 1, (2) 2, (3) 3, and
(4) 4.
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for this is the contribution of atomic pairs (which were
previously ignored) to the dependence D(r). When the
apatite content in a glass exceeds 20 wt %, the largest
contribution to the function D(r) is from the P–O pairs,
for which r1j = 1.55 Å and N1j = 6.2 atoms. According
to the calculations, 1 P–O band is for 16 Si–O bonds. In
addition, the dispersion of interatomic distances
decreases. The final results of calculation of the short-
range-order parameters of samples 3 and 4 are listed in
Tables 3 and 4. The listed values of the Si–O distance
are averaged for cation–oxygen polyhedra with Si, Al,
and P cations; therefore, it should be considered the real
interatomic distance in a silicon–oxygen tetrahedron.
The values of rij , Nij, and ∆rij for diopside and apatite
crystals were calculated by combining the coordination
spheres similar in rij. The data of Tables 3 and 4 suggest
that, with a change in the chemical composition of a
glass in the segregation region, the radii of the coordi-
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10 15 20 25 30 35 40 45 50 55

D(r) × 102

r, Å × 10–1

1
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7
9
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64

53

Fig. 5. Experimental dependence D(r) and partial distribu-
tion functions for sample 1: (1) Dexper(r), (2) Si–O, (3) Fe–
O, (4) Ca–O, (5) O–O, (6) Si–Si, (7) Ca–Si, (8) Ca–Mg, and
(9) Dtheor(r).

Table 3.  Short-range order parameters rij , Nij ± ∆Nij , and σij
for sample 3 and theoretically calculated and combined pa-
rameters for diopside and apatite crystals

Type of 
sphere

Sample 3 Diopside and apatite 
crystals

rij,
Å

Nij ± ∆Nij, 
atoms

σij,
Å

rij,
Å

Nij,
atoms

∆rij,
Å

Si–O 1.61 4.53 ± 0.10 0.005 1.62 4.85 0.01

Fe–O 1.83 6.1 ± 0.2 0.02 1.76 6.0 0.08

Ca–O 2.37 7.5 ± 0.1 0.2 2.33 8.2 0.09

O–O 2.68 3.9 ± 0.1 0.02 2.67 4.1 0.05

Si–Si 2.95 3.8 ± 0.3 0.09 3.15 4.2 0.01

Ca–Si 3.24 8.0 ± 0.1 0.25 3.28 8.3 0.03

Ca–Mg 3.60 4.4 ± 0.4 0.08 3.54 2.5 0.08
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nation spheres do not change significantly, while the
dispersion σij continues to decrease. This is indicative
of the increase in the degree of ordering with increasing
the apatite content in the glass.

Figure 6 shows the dependences of the logarithm of
the SAS intensity on the squared scattering angle. The
shape of the scattering curves indicates the presence of
a polydisperse system of electron-density inhomogene-
ities in the samples under investigation. Two size frac-
tions of inhomogeneities can be selected from the SAS
curves with a large degree of reliability (Table 5). On
the basis of the above results, we can conclude that the
radius of gyration of inhomogeneities belonging to the
small-size fraction R1 is approximately the same for all
the glass samples, whereas, for the large-size fraction
R2, the radius of gyration increases from samples 1 and
2 to samples 3 and 4 by about a factor of three. Appar-
ently, the limited solubility of apatite in the diopside-
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Fig. 6. Dependences of the logarithm of small-angle scatter-
ing intensity on the squared scattering angle for samples
(e) 1, (h) 2, (n) 3, and (×) 4.

Table 4.  Short-range order parameters rij, Nij ± ∆Nij , and σij
for sample 4

Type of 
sphere

Sample 4 Diopside and apatite 
crystals

rij,
Å

Nij ± ∆Nij, 
atoms

σij,
Å

rij,
Å

Nij,
atoms

∆rij,
Å

Si–O 1.62 4.88 ± 0.15 0.005 1.62 4.85 0.01

Fe–O 1.79 6.2 ± 0.1 0.01 1.76 6.0 0.08

Ca–O 2.37 7.7 ± 0.1 0.31 2.33 8.2 0.09

O–O 2.70 4.9 ± 0.1 0.005 2.67 4.1 0.05

Si–Si 2.94 4.1 ± 0.2 0.05 3.15 4.2 0.01

Ca–Si 3.24 6.5 ± 0.12 0.05 3.28 8.3 0.03

Ca–Mg 3.60 4.7 ± 0.3 0.01 3.54 2.5 0.08
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containing silicate melt leads to the occurrence (at an
apatite content of more than 20 wt %) of a “glass-in-
glass” structure. Since diopside and apatite have differ-
ent densities (3.3 and 4.1 g/cm3, respectively), we can
suggest that the found inhomogeneities are regions with
a composition similar to the composition of apatite and
are distributed in the matrix of supercooled silicate
melt.

CONCLUSIONS

It has been ascertained that multicomponent diop-
side–orthoclase–apatite glasses based on mining-
industry waste have an amorphous structure similar to
the structure of diopside when the content of the latter
in a glass exceeds 65 wt %. An increase in apatite con-
tent by more than 20 wt % significantly affects the char-
acter of the short-range ordering of atoms in the glass.
In samples 3 and 4, the increase in the influence of
phosphor–oxygen bonds and the decrease in the disper-
sion of interatomic distances within the coordination
spheres under consideration are pronounced. Appar-

Table 5.  Radii of gyration of inhomogeneities in small-size
and large-size fractions, R1 and R2

Sample no. R1 ± ∆R, Å R2 ± ∆R, Å

1 10 ± 2 83 ± 5
2 18 ± 2 76 ± 5
3 14 ± 2 210 ± 10

4 16 ± 2 230 ± 10
C

ently, the decrease in the dispersion is related to the
occurrence of a more ordered structure in segregated
glasses. The short-range order in these glasses corre-
sponds to the positions of atoms in crystalline apatite.

The studied glasses have a microinhomogeneous
structure, which manifests itself in the SAS depen-
dences. With an increase in the apatite content of more
than 20 wt %, the radii of gyration of electron-density
inhomogeneities belonging to the large-size fraction
increase noticeably.
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Abstract—The refined data on the crystal structure of Zn3P2 (I) provide evidence for a tetrahedral coordination
of metal atoms, which is characteristic of covalent structures with sp3-hybridized orbitals. Deformation-elec-
tron-density maps for crystal I, which were constructed from high-precision X-ray diffraction data, confirm the
predominantly covalent character of bonds in this compound. The deformation-density maps clearly show cova-
lent bridges with their peaks shifted toward electronegative phosphorus atoms. The longer the bond, the larger
the shift. The presence of delocalized electrons indicates that the bonding mechanism is partially metallic.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The Zn–P phase diagram is a simple system contain-
ing two chemical compounds [1]. One of these com-
pounds, which has formula composition Zn3P2, satisfies
the normal rules of valence. Another compound, with
composition ZnP2, follows the rule of four electrons
and is an analogue of the Group IV elements. The struc-
ture of the ZnP2 compound, which has two polymorphs,
has been studied repeatedly [2, 3]. The chemical inter-
actions in both polymorphs have been analyzed in
detail [4]. The structure of Zn3P2 has not been refined
since 1935 [5]. In terms of properties, this compound
belongs to the indirect-gap semiconductors; the band-
gap width is ~1.20 eV.

Previously, it was assumed [6] that Zn3P2 can be
assigned to compounds with a predominantly ionic
bond character. The bonding scheme for compound I is
shown in Fig. 1. According to this scheme, zinc and
phosphorus atoms acquire positive and negative
charges, respectively (two 4s2 valence electrons pass
from each of three zinc atoms to two phosphorus atoms,
giving rise to a 3s23p6 configuration of their valence
shells). The ionic component of the chemical bond
makes the major contribution to the chemical interac-
tion.

However, data on the crystal structure (a tetrahedral
coordination of metal atoms) and semiconducting prop-
erties of Zn3P2 are indicative of a substantial contribu-
tion made by the covalent component to the chemical
bond.

With the aim of studying the characteristic features
of the chemical interaction between atoms in Zn3P2
crystals on the basis of high-precision X-ray diffraction
data, we constructed deformation-electron-density
maps at Zn–P bonds of different lengths.
1063-7745/04/4904- $26.00 © 20579
EXPERIMENTAL

Prismatic Zn3P2 single crystals were grown by
vapor-phase deposition and ground to ~0.3-mm
spheres. X-ray diffraction data (30 115 reflections)
were collected on an automated Smart-CCD diffracto-
meter (MoKα radiation, graphite incident-beam mono-
chromator, θ < 75°, full sphere of reciprocal space) at
173 K (at the Center of X-ray Diffraction Studies of the
Nesmeyanov Institute of Organoelement Compounds
of the Russian Academy of Sciences, Moscow). The I
crystals are tetragonal, sp. gr. P42/nmc, Z = 8, a = b =
8.0785(2) Å, c = 11.3966(4) Å. The structure was

Zn

P

Zn

P

Zn

XX XX XX XX

XX XX XX XX

Fig. 1. Bonding scheme in the Zn3P2 crystal on the assump-
tion of an ionic bonding character.
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solved by the heavy-atom method and refined anisotro-
pically by the full-matrix least-squares method with the
use of a SHELXTL PLUS 4.2 software package [7]

(refinement against ). An empirical absorption cor-
rection was applied using Smart-CCD software. The
absolute structure was confirmed by calculation of the
Flack parameter [8]. The final R factor was 2.67%
(based on 2158 independent reflections with F > 4σ(F).
The atomic coordinates, bond lengths, and bond angles
are listed in Tables 1, 2, and 3, respectively. The struc-
ture of crystal I was described in detail in [9].

RESULTS AND DISCUSSION

Chemical analysis of Zn3P2 crystals [9] has shown
that phosphorus atoms form a cubic close packing in
which three-quarters of the tetrahedral sites are occu-
pied by zinc atoms. The figure of merit calculated from
positions corresponding to the sites of the ideal close
packing is 60%. This structure can be considered an
imperfect antifluorite structure from which one-quarter
of the metal atoms have been removed. In the real struc-
ture, phosphorus atoms are located in the centers of
weakly distorted cubes (Fig. 2). Six out of eight vertices
of each cube are occupied by three independent zinc
atoms—Zn(1), Zn(2), and Zn(3) (two atoms of each
type)—located in the 8g sites of the space group
P42/nmc. Metal atoms of each independent type occupy
two vertices of the coordination cube on the face diag-
onals. Two unoccupied vertices are also located at the
ends of the face diagonal of this coordination polyhe-
dron. The P(1) (4c site) and P(3) (4d site) atoms each
form two long bonds with the Zn(1) and Zn(3) atoms
(2.7606(4) and 2.7676(3), respectively) and four very
short bonds with other zinc atoms. The latter bond lengths
(2.3346(4)–2.3765(4) and 2.3320(3)–2.3662(3) Å; the
average values are 2.3556(4) and 2.3491(3) Å, respec-
tively; see Table 2) are smaller than the sum of the tet-
rahedral radii of these elements (2.41 Å, according to
[6]). Taking into account the nearly identical coordina-
tion environment (two long and four short bonds with
zinc atoms) and a good correlation between the bond
angles (see Tables 2, 3), these two independent P atoms
in the structure of I can be considered analogous atoms.
The atom P(2) (8 f site) differs substantially from the

F0
2

Table 1.  Atomic coordinates and isotropic thermal parame-
ters (Å2) for the crystal structure of I

Atom x y z Uiso

Zn(1) 0.53251(2) 0.75000 0.13336(2) 0.002

Zn(2) 0.25000 0.50333(2) 0.10381(2) 0.002

Zn(3) 0.46763(2) 0.75000 –0.14323(2) 0.003

P(1) 0.25000 0.75000 –0.00292(5) 0.001

P(2) 0.49572(3) 0.50428(3) 0.25000 0.001

P(3) 0.75000 0.75000 –0.00571(4) 0.001
C

two aforementioned phosphorus atoms and is charac-
terized by the presence of six “balanced” bonds, their
lengths (2.4058(2)–2.5916(2) Å; the average value is
2.4683(2) Å) being approximately equal to the sum of
the tetrahedral radii.

Analysis of the coordination polyhedra demon-
strated that Zn3P2 crystals have a highly ordered struc-
ture (many planar sections containing numerous atoms
can be distinguished). In each coordination polyhedron
(pseudocube) of a phosphorus atom, one can construct
a (110)-type plane containing five atoms simulta-
neously, four zinc atoms and a central phosphorus atom
(see Fig. 2). The deviations of the atoms from the plane
are smaller than 0.008 Å. The sum of the bond angles
around the central phosphorus atom is 360°. For the
analogous P(1) and P(3) atoms, both the longest and
shortest bonds are located in this plane.

The zinc atoms are located in weakly distorted tetra-
hedra formed by phosphorus atoms (Fig. 3). Each of
three independent zinc atoms forms two bonds with a
P(2) atom (their lengths being approximately equal to
the sum of the tetrahedral radii), one bond with a P(1)
atom, and one bond with a P(3) atom. The Zn(1)–P(3)
and Zn(3)–P(1) bonds are short and have nearly identi-
cal lengths (2.3662(3) and 2.3765(3) Å, respectively).
The Zn(1)–P(1) and Zn(3)–P(3) bonds are also similar
in length (2.7606(4) and 2.7676(3) Å, respectively) and
are the longest of all the Zn–P bonds. The bond angles
at these two atoms also correlate well with each other.

Table 2.  Bond lengths d (Å) in the Zn3P2 crystal structure

Bond d Bond d

Zn(1)–P(3) 2.3662(3) P(1)–Zn(3) 2.3765(4)

Zn(1)–P(2a) 2.4074(2) P(1)–Zn(1c) 2.7606(4)

Zn(1)–P(2j) 2.4074(2) P(1)–Zn(1) 2.7606(4)

Zn(1)–P(1) 2.7606(4) P(2)–Zn(3) 2.4058(2)

Zn(2)–P(3f) 2.3320(3) P(2)–Zn(3g) 2.4058(2)

Zn(2)–P(1) 2.3346(4) P(2)–Zn(1d) 2.4074(2)

Zn(2)–P(2a) 2.5916(2) P(2)–Zn(1h) 2.4074(2)

Zn(2)–P(2n) 2.5916(2) P(2)–Zn(2d) 2.5916(2)

Zn(3)–P(1) 2.3765(4) P(2)–Zn(2h) 2.5916(2)

Zn(3)–P(2) 2.4058(2) P(3)–Zn(2e) 2.3320(3)

Zn(3)–P(2l) 2.4058(2) P(3)–Zn(2h) 2.3320(3)

Zn(3)–P(3) 2.7676(3) P(3)–Zn(1) 2.3662(3)

P(1)–Zn(2c) 2.3346(4) P(3)–Zn(1b) 2.3662(3)

P(1)–Zn(2) 2.3346(4) P(3)–Zn(3b) 2.7676(3)

P(1)–Zn(3c) 2.3765(4) P(3)–Zn(3) 2.7676(3)

Note: The atoms labeled by letters are generated from the basis
atoms by the following symmetry transformations: a = 1/2 – y,
x, –1/2 + z; f = 1/2 + x, 1 – y, – z; b = 1/2 – x, 1/2 – y, z;
g = 1/2 + y, –1/2 + x, 1/2 – z; c = 3/2 – x, 1/2 – y, z; h = 1 – x,
–1/2 + y, –z; d = y, 1/2 – x, 1/2 + z; l = 1/2 + y, 1 – x, 1/2 – z;
e = –1/2 + x, 1 – y, –z; n = 1/2 + x, 1/2 + y, –z. 
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Table 3.  Bond angles (deg) in an I crystal

P(1)–Zn(1)–P(3) 103.70(3) P(1)–Zn(1)–P(2a) 102.04(2) P(1)–Zn(1)–P(2j) 102.04(2)
P(3)–Zn(1)–P(2a) 117.49(1) P(3)–Zn(1)–P(2j) 117.49(1) P(2a)–Zn(1)–P(2j) 111.07(2)
P(1)–Zn(2)–P(2a) 109.40(2) P(1)–Zn(2)–P(3f) 119.98(3) P(1)–Zn(2)–P(2n) 109.40(2)
P(2a)–Zn(2)–P(3f) 108.12(2) P(2a)–Zn(2)–P(2n) 99.98(2) P(3f)–Zn(2)–P(2n) 108.12(2)
P(1)–Zn(3)–P(2) 115.54(1) P(1)–Zn(3)–P(3) 103.23(3) P(1)–Zn(3)–P(2l) 115.54(1)
P(2)–Zn(3)–P(3) 100.66(2) P(2)–Zn(3)–P(2l) 117.29(2) P(3)–Zn(3)–P(2l) 100.66(2)
Zn(1)–P(1)–Zn(2) 72.96(2) Zn(1)–P(1)–Zn(3) 76.52(1) Zn(1)–P(1)–Zn(1c) 111.53(3)
Zn(1)–P(1)–Zn(2c) 72.96(2) Zn(1)–P(1)–Zn(3c) 171.95(3) Zn(2)–P(1)–Zn(3) 110.52(1)
Zn(2)–P(1)–Zn(1c) 72.96(2) Zn(2)–P(1)–Zn(2c) 117.21(4) Zn(2)–P(1)–Zn(3c) 110.52(1)
Zn(3)–P(1)–Zn(1c) 171.95(3) Zn(3)–P(1)–Zn(2c) 110.52(1) Zn(3)–P(1)–Zn(3c) 95.43(3)
Zn(1c)–P(1)–Zn(2c) 72.96(2) Zn(1c)–P(1)–Zn(3c) 76.52(1) Zn(2c)–P(1)–Zn(3c) 110.52(1)
Zn(3)–P(2)–Zn(1d) 105.98(2) Zn(3)–P(2)–Zn(2d) 168.16(2) Zn(3)–P(2)–Zn(3g) 92.62(2)
Zn(3)–P(2)–Zn(1h) 114.18(1) Zn(3)–P(2)–Zn(2h) 76.48(1) Zn(1d)–P(2)–Zn(2d) 75.06(1)
Zn(1d)–P(2)–Zn(3g) 114.18(1) Zn(1d)–P(2)–Zn(1h) 120.57(2) Zn(1d)–P(2)–Zn(2h) 73.93(2)
Zn(2d)–P(2)–Zn(3g) 76.48(1) Zn(2d)–P(2)–Zn(1h) 73.93(2) Zn(2d)–P(2)–Zn(2h) 114.73(2)
Zn(3g)–P(2)–Zn(1h) 105.98(2) Zn(3g)–P(2)–Zn(2h) 168.16(2) Zn(1h)–P(2)–Zn(2h) 75.06(1)
Zn(1)–P(3)–Zn(3) 76.55(1) Zn(1)–P(3)–Zn(1b) 95.87(3) Zn(1)–P(3)–Zn(3b) 172.42(3)
Zn(1)–P(3)–Zn(2e) 108.72(1) Zn(1)–P(3)–Zn(2h) 108.72(1) Zn(3)–P(3)–Zn(1b) 172.42(3)
Zn(3)–P(3)–Zn(3b) 111.03(3) Zn(3)–P(3)–Zn(2e) 74.26(2) Zn(3)–P(3)–Zn(2h) 74.26(2)
Zn(1b)–P(3)–Zn(3b) 76.55(1) Zn(1b)–P(3)–Zn(2e) 108.72(1) Zn(1b)–P(3)–Zn(2h) 108.72(1)
Zn(3b)–P(3)–Zn(2e) 74.26(2) Zn(3b)–P(3)–Zn(2h) 74.26(2) Zn(2e)–P(3)–Zn(2h) 122.74(4)
Zn(3h)

Zn(3d)

Zn(1c)

Zn(2)

Zn(1)

Zn(2b)

P(2)

Fig. 2. Coordination polyhedron of the P(2) atom in the
structure of I.

P

Hence, the Zn(1) and Zn(3) atoms in this structure can
be considered analogous. Unlike these atoms, the Zn(2)
atom forms the two shortest bonds with the P(3) and
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
P(1)

Zn(2)

P(3d)

P(2c)

(2)

Fig. 3. Coordination polyhedron of the Zn(2) atom in the
structure of I.

P(1) atoms (2.3320(3) and 2.3346(4) Å, respectively)
and two bonds with the P(2) atom (2.5916(2) Å). Four
of the six bond angles at the Zn(2) atom are virtually
4
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equal to the tetrahedral angle (109.3°), whereas the two
other angles have the maximum and minimum values
(119.98° and 99.98°, respectively) of all the P–Zn–P
bond angles.

Reasoning from the tetrahedral coordination of zinc
atoms and nearly tetrahedral coordination of two of the
three independent phosphorus atoms in Zn3P2 (which
are typical of covalent structures with sp3-hybridized
orbitals), we propose a new bonding scheme for this
compound based on sp3-hybridized orbitals (see
Fig. 4).

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

Zn

P

Zn

Zn

P

Fig. 4. Bonding scheme in the Zn3P2 crystal on the assump-
tion of the covalent bonding character.
C

This scheme accounts for the nonequivalence of the
zinc atoms that occupy the same 8g sites but differ in
the geometry of their chemical bonds and explains the
nearly tetrahedral coordination of atoms and pro-
nounced semiconducting properties of this compound.
An increase in the coordination number of the Zn(1)
and Zn(2) atoms from two to four (according to the
number of occupied and unoccupied orbitals) and an
increase in the coordination number of the phosphorus
atoms from four to six can be attributed to the reso-
nance between the unoccupied and occupied orbitals
[10]. Unoccupied metal orbitals of atoms do not impart
the metallic properties to a compound if these atoms do
not interact with each other in the compound structure.
Actually, Zn(1) and Zn(2), as well as Zn(3) and Zn(2),
atoms may be considered as interacting because the
interatomic distances are 3.0098–3.0489(3) and
3.0967(3) Å, respectively. These atoms occupy adja-
cent tetrahedral sites in the cubic close packing. By
contrast, the Zn(1) and Zn(3) atoms occupy tetrahedral
sites in a diamond pattern and, hence, cannot interact
with each other. The distance between these atoms is no
less than 3.1954(5) Å (the sum of the metallic radii
being ~2.8 Å).

In order to analyze in detail the chemical interac-
tions between zinc and phosphorus atoms in the Zn3P2
crystal with the use of the X-ray diffraction data, we
constructed maps of deformation-electron-density dis-
tribution at the Zn–P bonds of different lengths. To
obtain the most informative valence-electron-density
maps at the bonds, the small-angle scattering limit was
chosen empirically. The chemical bonding was ana-
lyzed using deformation-density maps devoid of
atomic asymmetry. For the I structure and the experi-
P(1)

P(2)

Zn(1)

Fig. 5. Deformation electron density in the plane through the P(1)–Zn(1)–P(2) bonds.
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P(3)
P(2)

Zn(1)

Fig. 6. Deformation electron density in the plane through the P(2)–Zn(1)–P(3) bonds.

P(1)

Zn(3)

P(3)

Fig. 7. Deformation electron density in the plane through the P(1)–Zn(3)–P(3) bonds. 
mental data obtained in this study, this condition was
met in the (sinθ)/λ range from 0.85 to 1.34 Å–1.

In the longest Zn–P bonds, i.e., Zn(1)–P(1)
(2.7606(4) Å) and Zn(3)–P(3) (2.7676(3) Å), well-
formed bond bridges can clearly be seen. These bridges
shift toward the electronegative phosphorus atoms, so
that the distance between the electron-density peaks
and the phosphorus atoms are equal to one-third of the
Zn–P bond length (Fig. 5), which may be indicative of
an ionic component of the bond.
PHY REPORTS      Vol. 49      No. 4      2004
The lengths of the Zn(1)–P(2) and Zn(3)–P(2)
bonds (2.4074(2) and 2.4058(2) Å, respectively) are
almost equal to the sum of the tetrahedral radii. These
bonds (see Fig. 6) exhibit high deformation-electron-
density peaks shifted toward the electronegative phos-
phorus atom.

For the shortest bonds involving the analogous
atoms, i.e., Zn(1)–P(3) (2.3662(3) Å) and Zn(3)–P(1)
(2.3765(4) Å), the covalent bridges are located in the
bond lines. The corresponding electron-density peaks
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P(1)

P(2)

Zn(2)

Fig. 8. Deformation electron density in the plane through the P(1)–Zn(2)–P(2) bonds.
are high (Fig. 7), well-formed, and located virtually
midway between the zinc and phosphorus atoms.

A small negative charge in the vicinity of the zinc
atom is observed in the Zn(2)–P(2) bond (2.5916(4) Å)
with a length larger than the sum of the tetrahedral radii
of these elements. The main covalent bridge is well-
formed, rather high, and shifted toward the electroneg-
ative phosphorus atom (Fig. 8). All other Zn(2)–P
bonds are also typically covalent with a substantial
ionic-component contribution, the peaks in the shortest
Zn(2)–P bonds being shifted to the midpoints of the
bonds.

It should be noted that all the deformation-density
maps clearly show the presence of delocalized elec-
trons, which in places are accumulated to form weak
peaks. This indicates that a metallic component makes
a substantial contribution to the bonds, which results in
smoothing of the lattice potential and a decrease in the
band gap width.

CONCLUSIONS

Analysis of deformation-density maps confirmed
the predominantly covalent character of chemical
bonding in Zn3P2 and, consequently, the bonding
scheme we proposed on the basis of this assumption.

In most of the deformation-density maps, the peaks
of covalent bridges shift toward the electronegative
phosphorus atoms, which is indicative of the presence
of an ionic component of the bond. For the crystallo-
graphically independent analogous Zn(1) and Zn(3)
atoms, the longer the Zn–P bond, the larger this shift
and, consequently, the ionicity. In the shortest Zn–P
bonds, the deformation-density peaks are located virtu-
C

ally midway between the zinc and phosphorus atoms,
which is characteristic of purely covalent bonding.
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Abstract—The crystal structure of monoclinic La3SbZn3Ge2O14 crystals from the langasite family is deter-
mined by X-ray diffraction analysis [a = 5.202(1) Å, b = 8.312(1) Å, c = 14.394(2) Å, β = 90.02(1)°, sp. gr. Ä2,
Z = 2, and R/Rw = (5.2/4.6)%]. The structure is a derivative of the Ca3Ga2Ge4O14-type structure (a = 8.069 Å,
c = 4.967 Å, sp. gr. P321, Z = 1). The crystal studied is a polysynthetic twin with the twin index n = 2, whose
monoclinic components are related by pseudomerohedry by a threefold rotation axis of the supergroup P321.
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Piezoelectric crystals of the langasite family with
the Ca3Ga2Ge4O14 structure (a = 8.069 Å, c = 4.967 Å,
sp. gr. P321, and Z = 1) attract an ever-increasing inter-
est because of the possibility of their use in frequency-
selective devices and detectors [1]. Recently, it has
been established that some compounds of this family
undergo phase transitions both under high pressures
and high temperatures [2]. One of these compounds is
La3SbZn3Ge2O14 (LSZG) [3].

The X-ray powder diffraction pattern of an LSZG
crystal was first indexed in a trigonal system with unit
cell parameters characteristic of the compounds of the
langasite family, a = 8.305 Å and c = 5.199 Å [4]. A
more detailed study of the X-ray powder diffraction
pattern of this crystal showed that the lattice has a
slight, presumably orthorhombic, distortion [5]. In
terms of possible phase transitions with lowering of the
symmetry in the crystals of the langasite family [2], one
of the most probable space groups of LSZG crystals
seems to be sp. gr. A2. Below, we consider the results of
the complete X-ray diffraction study of LSZG single
crystals.

EXPERIMENTAL

Small, needlelike LSZG crystals were obtained by
melting of the phase with a small excess of Sb2O5 pre-
liminarily synthesized in closed platinum crucibles and
subsequent slow cooling of the melt.

The X-ray diffraction experiments were performed
on small rather isometric pieces of a crystal. The mea-
surements were made on a CAD-4F diffractometer
1063-7745/04/4904- $26.00 © 20585
(MoKα radiation). An automated search for diffraction
reflections and their indexing yields the hexagonal met-
rics of a lattice whose refined parameters are a = b =
8.312(1) Å and c = 5.202(1) Å. No considerable distor-
tions of the reflection profiles and the angles between
the basis lattice vectors indicating deviations from the
trigonal to the monoclinic symmetry characteristic of
the langasite family were revealed at this stage.

An experimental array consisting of 9636 diffrac-
tion reflections with sinθ/λ ≤ 0.97 Å–1 was collected
within the complete sphere of the reciprocal space.
After rejection of the reflections whose intensities did
not satisfy the conditions I > 2σ(I), the initial set
reduced to 8536 reflections. To introduce the absorption
correction, the sample was approximated by a sphere
with a diameter of 0.12 mm. Thermal motion of all the
atoms was described in the anisotropic harmonic
approximation. The calculation of the extinction cor-
rections according to the isotropic Becker model
showed a slight prevalence of the first type of extinc-
tion. We used, in our calculations, the atomic scattering
curves for neutral atoms. Processing of the experimen-
tal data and all the subsequent computations were per-
formed using the JANA 2000 crystallographic complex
of programs [6].

Averaging of the symmetrically equivalent reflec-

tions within the Laue group  (characteristic of the
crystals of the langasite family) yielded a rather high
reliability factor, Rav(I) = 10.6%. The transition from the
trigonal ê to the monoclinic A unit cell with the param-
eters a = 5.202(1) Å, b = 8.312(1) Å, c = 14.394(2) Å,
and β = 90.02(1)° with the use of the matrix (00–
1/010/210) and the subsequent averaging of the reflec-
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tion intensities within the Laue group 2/m did not con-
siderably reduce the R factor of averaging, Rav(I) =
9.4%.

The results of averaging did not give sufficient evi-
dence in favor of monoclinic symmetry, but indicated
the existence of pseudosymmetry along axis 3 and pos-
sible twinning of the crystal by the same symmetry ele-
ment (axis 3) in the presumed Laue group 2/m. The
final choice of monoclinic symmetry was dictated by
the comparison of the refined structure model of an
LSZG crystal within the sp. gr. ê321 (trigonal model)
and Ä2 (monoclinic model, pseudoorthohexagonal unit
cell) with and without allowance made for twinning.
The structure models were refined using the non aver-
aged set of structure factors.

Table 1.  Characteristics of X-ray diffraction experiment
and crystallographic data for LSZG crystals

Chemical formula La3SbZn3Ge2O14

Diffractometer CAD-4F

Radiation MoKα λ = 0.71069 Å

Monochromator Pyrolytic graphite

Scanning mode ω/2θ
Ranges of h, k, l variation –10 ≤ h ≤ 10; –16 ≤ k ≤ 16;

–28 ≤ l ≤ 28

Sp. gr. A2

a, Å 5.2022(6)

b, Å 8.312(1)

c, Å 14.394(2)

β, deg 90.02(1)

V, Å3 622.4(1)

Number of formula units 2

ρX-ray, g/cm3 5.88

Crystal radius, mm 0.06

µMo, mm–1 22.69

Max sinθ/λ (Å–1) 0.97

Number of measured
reflections

9636

Number of reflections used
in refinement

8536

Extinction coefficient, ρ 0.0053(1)

Criterion of significance I > 2σ(I)

Weighting scheme 1/(σF)2

Number of independent
parameters

108

R/Rw, % 5.2/4.6

GOOF, % 2.6/2.9

Flack parameter 0.012

Note: The Flack parameter shows the relative volume of the invert-
ed component and characterizes the reliability of the deter-
mination of the absolute structure model.
C

The main crystallographic characteristics of the
crystal, the experimental parameters, and the final val-
ues of the reliability factors for the monoclinic model
are indicated in Table 1.

TRIGONAL STRUCTURE MODEL

The Ca3Ga2Ge4O14-type structure can be described
as a mixed framework of two kinds of oxygen tetrahe-
dra [small 2d tetrahedra (position symmetry 3) and
larger 3f tetrahedra (position symmetry 2)] and 1a octa-
hedra (position symmetry 32). The coordination poly-
hedron of large cations (Na+, Ca2+, Sr2+, Ba2+, Pb2+, and
Ln3+) occupying the framework voids has eight oxygen
vertices and can be represented as a dodecahedron with
triangular faces.

Most compounds of the langasite family have disor-
dered structures with the crystallographic positions
being occupied by mixed cations. Similar to
Sr3TaGa3Si2O14, an LSZG crystal should possess an
ordered structure with the positions being occupied by
one cation species. It is natural to assume that the La3+

ions in the trigonal model of the LSZG structure would
occupy the 3Â position; the Sb5+ ions, the 1a position;
the Zn2+ ions, the 3f position; and the Ge4+ ions, the 2d
position. To refine the LSZG model, we used this cation
distribution and the positional parameters from [7].

At the first stage of the refinement, we established a
considerable deficit of oxygen in the O(2) position (q ~
0.66). The difference electron-density syntheses
showed the additional oxygen position é(2–1) with the
residual electron density 4.7 e/Å3 (Fig. 1). The simulta-
neous independent refinement of the main and addi-
tional positions showed that the sum of their occupan-
cies (q ~ 0.66 and ~0.33, respectively) was close to
unity. The final R/Rw values, with due regard for the
thermal motion of all the atoms of the trigonal model in
the anisotropic approximation, were (7.5/6.2)%. The
shortest O–O distance between the O(2) and O(2–1)
positions was about 0.9 Å, and the distance between the
O(2) positions related by the threefold rotation axis was
~2 Å. The corresponding coordinate and thermal
parameters are listed in Table 2.

MONOCLINIC STRUCTURE MODEL

Obviously, the coefficients of oxygen distribution
over the O(2) and O(2–1) positions indicate that the
transition from the statistical trigonal structure model
of an LSZG crystal (sp. gr. ê321) to the ordered model
(sp. gr. Ä2) should result in the loss of the threefold
symmetry axis and, as a result, in lowering of the sym-
metry to monoclinic. In the monoclinic model, one of
the faces of a Ge tetrahedron (parallel basal plane in
the trigonal model) should be formed with the partic-
ipation of two oxygen atoms from the main O(2) posi-
tion (q = 0.66) and one oxygen atom from the new
O(2–1) position (q = 0.33). Thus, the Ge tetrahedron
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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can have three orientations, which creates the condi-
tions for merohedral twinning.

In the transition to the monoclinic model, the axes of
the direct lattice of the trigonal model are transformed to
the centered pseudoorthohexagonal Ä lattice with the use
of the (00–1/010/210) matrix, and the coordinates of the
points are transformed with the use of the (001/–
1/210/1/200) matrix. The monoclinic model was refined
both without and with allowance made for twinning.
Finally, after the comparison of the results of the above
two refinements, we made the choice in favor of mero-
hedral twinning in the crystal.

At the stage of analysis of the difference electron-
density synthesis and the refinement of the position
occupancies, we localized a system of maxima corre-
sponding to the mean statistical trigonal model of the
LSZG structure. The R/Rw value for this monoclinic
model, (7.4/6.4)%, is practically the same as for the
trigonal model. These results confirmed, once again,
our assumption that the crystal studied is a pseudomer-
ohedral twin with the monoclinic components being
related by a threefold rotation axis.

The refinement of the monoclinic model with due
regard made for twinning resulted in a considerable
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
reduction of the R/Rw value [down to (5.2/4.6)%]. The
difference and residual electron-density synthesis
showed no traces of the statistical distribution of anions

0
0.4 0.6 0.8 1.0 x

0.2

0.4

0.6
y

z = 0.380

Fig. 1. The (x, y, 0.380) section of the difference electron-
density synthesis constructed by the coordinates of the trig-
onal model and showing the maxima of the additional
O(2−1) position (4.7 e/Å3). The isolines are spaced by
0.5 e/Å3. The filled circles indicate the atoms in the O(2)
position in the section z = 0.29.
Table 2.  Positional and thermal parameters of the atoms of two structure models of LSZG crystals
The average trigonal model (sp. gr. P321, Z = 1)

Atom Wyckoff position Occupancy, q x/a y/b z/c Beq, Å2

La 3e 1 0.42277(5) 0 0 0.46(1)
Sb 1a 1 0 0 0 1.49(1)
Ge 2d 1 1/3 2/3 0.5381(2) 1.48(1)
Zn 3f 1 0.75968(9) 0 1/2 1.55(2)
O(1) 2d 1 1/3 2/3 0.1991(9) 1.9(1)
O(2) 6g 0.66 0.4622(7) 0.2897(9) 0.2909(8) 2.1(2)
O(2–1) 6g 0.33 0.5184(12) 0.4067(16) 0.3774(17) 1.9(1)
O(3) 6g 1 0.2274(5) 0.0896(5) 0.7850(5) 1.5(3)

Monoclinic model with allowance for twinning (sp. gr. A2, Z = 2)

Atom Wyckoff position Occupancy, q x/a y/b z/c Beq, Å2

La(1) 2a 1 0 0.4227(3) 0 1.23(2)
La(2) 4c 1 –0.0015(2) 0.2888(3) 0.28857(5) 1.87(1)
Sb 2a 1 0 0.0 0 1.63(2)
Zn(1) 2b 1 1/2 0.7614(4) 0 1.66(5)
Zn(2) 4c 1 0.5013(3) 0.1218(3) 0.1201(1) 1.39(3)
Ge 4c 1 0.4618(1) 0.5004(4) 0.1665(1) 1.59(2)
O1 4c 1 0.8030(9) 0.493(2) 0.1697(8) 2.4(2)
O(2)2 4c 1 0.708(2) 0.826(1) 0.3610(6) 1.4(1)
O(3)2 4c 1 0.712(1) 0.118(1) 0.4230(5) 2.4(2)
O(4)2–1 4c 1 0.625(1) 0.142(1) 0.2500(5) 2.6(2)
O(5)3 4c 1 0.217(2) 0.970(1) 0.1105(6) 1.6(2)
O(6)3 4c 1 0.202(2) 0.334(1) 0.4299(7) 2.1(2)
O(7)3 4c 1 0.225(2) 0.683(2) 0.4536(8) 2.4(2)

Note: The superscripts in the notation of oxygen atoms correspond to the O(2), O(2–1), and O(3) positions of the trigonal model.
4
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Table 3.  Interatomic distances (Å) in the LSZG structure

Anionic environment of La atoms Sb octahedron

La(1)–O(7) (×2) 2.40(1) La(2)–O(6) 2.32(1) Sb–O(5) (×2) 1.96(1) 

O(3) (×2) 2.47(1) O(4) 2.36(1) O(6) (×2) 2.01(1) 

O(2) (×2) 2.64(1) O(5) 2.37(1) O(7) (×2) 2.03(1) 

O(1) (×2) 2.71(1) O(1) 2.62(1) average distance 2.00(1)

average distance 2.55(1) O(2) 2.66(1)

O(1') 2.73(1)

O(3) 2.82(1)

average distance 2.55(1)

Zn(1) tetrahedra Zn(2) tetrahedra Ge tetrahedra

Zn(1)–O(6) (×2) 1.94(1) Zn(2)–O(7) 1.85(1) Ge–O(2) 1.74(1)

O(3) (×2) 1.96(1) O(5) 1.95(1) O(4) 1.74(1)

average distance 1.95(1) O(4) 1.98(1) O(1) 1.777(5)

O(2) 2.04(1) O(3) 1.85(1)

average distance 1.95(1) average distance 1.78(1)

O(3)–O(6) (×2) 2.81(2) 

O(6') (×2) 3.20(1) 

O(3)–O(3') 3.13(1) O(4)–O(2) 2.81(1) O(1)–O(2) 3.03(1)

O(6)–O(6') 3.70(2) O(7) 3.05(1) O(4) 2.80(1)

O(5) 3.25(1) O(3) 3.17(1)

O(2)–O(5) 3.01(1) O(2)–O(4) 3.10(1)

O(7) 3.08(1) O(3) 2.59(2)

O(5)–O(7) 3.53(1) O(3)–O(4) 2.54(1)
characteristic of the previous models. The relative vol-
umes of the monoclinic twin components related by a
threefold axis were equal to 0.29, 0.32, and 0.39, which
agreed with the results of averaging performed within
the framework of the trigonal space group at the first
stages of the analysis of experimental data. The posi-
tional and thermal parameters of the monoclinic model
are indicated in Table 2 and the interatomic distances in
Table 3.

RESULTS AND DISCUSSION

Comparing the results of the refinement of the struc-
ture models of LSZG crystals in the trigonal and mon-
oclinic space groups, we see that LSZG crystals are
crystallized in the monoclinic system with the pseu-
doorthohexagonal lattice metrics. This indicates mero-
hedral twinning of these crystals. In addition to consid-
erably lower R factors, the refinement in the monoclinic
space group with due regard for twinning allowed us to
reduce the extinction factor. It also improved the con-
vergence of the results obtained after the refinement
and considerably “purified” the residual electron-den-
sity syntheses. At the concluding stage of the refine-
ment, the maximum heights of the residual density
C

amounted to 1.7 e/Å3, whereas, in the trigonal structure
model, this indicator of the quality of the structure
model was higher by a factor of 4.3; for the monoclinic
model without allowance for twinning, it was higher by
a factor of 2.

The structure of a monoclinic LSZG crystal is a
derivative of the trigonal Ca3Ga2Ge4O14-type structure,
with the preservation of all the main characteristics of
the latter (Fig. 2). Lowering of the symmetry is accom-
panied by considerable displacements of O atoms up to
1 Å (the displacements of cations are considerably
less). This results in a decrease of the coordination
number of La(2) atoms from 8 to 7 and in certain
changes in the character of polyhedron connection.
Figure 3 compares the geometric characteristics of the
layer of Sb octahedra and two types of La polyhedra
(eight- and seven-vertex polyhedra) in the monoclinic
LSZG crystals and, also, of the layer of (Nb,Ga) octa-
hedra and eight-vertex La polyhedra in the trigonal
La3Nb0.5Ga5.5O14 crystals [8].

In the transition from the trigonal to monoclinic
model (Table 2), each of the 3Â and 3f positions of the
sp. gr. P321 in the LSZG structure generates the special
[La(1) and Zn(1) on the 2 axis] and general [La(2) and
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Fig. 2. Projection of the LSZG crystal structure onto the xz plane.
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Fig. 3. (a) The polyhedral layer consisting of SbO6 octahedra and two types of La polyhedra in a monoclinic LSZG crystal and
(b) the layer consisting of (Nb,Ga)é6 octahedra and Laé8 polyhedra in the trigonal La3Nb0.5Ga5.5O14 crystals.
Zn(2)] positions. The O and Ge atoms are located in the
general position, and the Sb atoms occupy the special
position with the symmetry 2. The oxygen polyhedron
around La(1) is a distorted Thomson cube with flat
bases in distinction from a triangular dodecahedron in
the trigonal Ca3Ga2Ge4O14-type structure. The scatter
in the La(1)–O distances (0.31 Å) is less than in the
dodecahedra of the trigonal structure of the known
compounds of the langasite family. The polyhedron
around the La(2) atom is a seven-vertex polyhedron
that can be described as a considerably distorted pen-
tagonal bipyramid with the axial O(4) and O(6) verti-
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
ces. The eighth atom, O(4), shared by the dodecahedron
and the GeO4 tetrahedron, is spaced 3.52 Å from La(2).
As a result of the displacement of O(4), the Ge tetrahe-
dron shares only two short O–O edges with La(1)é8
and La(2)é7 polyhedra, whereas the third edge
increases to a value of 3.10 Å. The La(1)é8 polyhedron
shares edges with four neighboring La(2)é7 polyhedra.
The environment of La(2)é7 is built by two La(1)é8
(which share edges) and two La(2)é7 (which share ver-
itices). The SbO6 octahedron shares three edges with La
polyhedra, with the Sb–O distances being almost con-
stant. The Zn–O and Ge–O distances in the tetrahedra
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correspond to the ionic radii of Zn2+ and Ge4+ and con-
firm the ordered occupancy of tetrahedra with these
ions. As earlier, the tetrahedra in the tetrahedral layer
share oxygen vertices. The O(1) atom is shared by the
Ge tetrahedron and three La polyhedra and, as in the
trigonal structure, does not participate in condensation
of tetrahedra inside the layer.

Concluding this article, we should like to indicate
that, probably, the results obtained are not final. This is
indicated by the insufficiently low R/Rw values, consid-
erable errors in the atomic coordinates and interatomic
distances, high Bj values for the cationic part of the
structure (comparable with the thermal parameters of
anions), and some features of the diffraction patterns
that require a more detailed study.
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Abstract—The structures of the CdF2 and Cd0.90Tb0.10F2.10 crystals, the first representatives of the family of
nonstoichiometric CdF2-based Cd1 – xRxF2 + x phases (R = La–Lu, Y), are determined by X-ray diffraction anal-
ysis. The structures belong to the CdF2 structure type. The nonstoichiometric CaF2 phases have structural
defects—interstitial fluorine atoms and vacancies in the main anionic motif. The structural data allowed us to
establish for the first time the simultaneous presence in Cd0.90Tb0.10F2.10 of two types of clusters—electrically
neutral [CdTb3F26] and charged [Cd2Tb2F26]1–—and to determine their structure. The cluster charge is com-
pensated with the vacancies in the positions of the main fluorine atoms, which may give rise to superionic con-
ductivity in Cd1 – xRxF2 + x crystals. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The present publication continues a series of publi-
cations dedicated to the synthesis and study of CdF2
single crystals and Cd1 – xRxF2 + x fluorite phases (R =
RE and In) [1]. The second part is devoted to the meth-
ods of localization of structural defects in Cd1 − xRxF2 + x
phases by X-ray diffraction using the example of a
Cd0.90Tb0.10F2.10 crystal.

X-ray diffraction studies of the atomic structure of
nonstoichiometric fluorite phases of the composition
M1 – xRxF2 + x (M = Ca, Sr, Ba) were started long ago.
The methods of analysis of the experimental X-ray dif-
fraction data are well developed. The specific feature of
these heterovalent solid solutions is association of RE
into complexes called clusters. Elementary clusters
have nanometer dimensions, which allowed one to con-
sider fluorite phases as nanostructural crystals [2].

The history of the concept of association of struc-
tural defects in nonstoichiometric fluorite phases is
considered elsewhere [3]. It is based on an assumption
[4] of the isostructurality of the Ca8 – δR5 + δF31 + δ phases
and Na7Zr6F31 [5], a compound in which the [M6F37]
group was first found. The core of this group is a {F12}
cuboctahedron surrounded with six square [MF8] anti-
prisms. The center of a fluorine cuboctahedron is occu-
pied by a fluorine atom. Later, [R6F36(37)] groups, which
are called octahedral rare earth clusters (because of the
arrangement of RE ions at the octahedron vertices),
were found experimentally in the form of structurally
1063-7745/04/4904- $26.00 © 20591
ordered blocks in the Ca2RF7 [6] and some other
phases.

Comprehensive study of the changes in the defect
structures of the fluorite M1 – xRxF2 + x phases along the
cationic series M = Ca, Sr, Ba, Cd, Pb and R = Y, La-Lu,
with RF3 content ranging within 10–50 mol % (ı = 0.1–
0.5), by X-ray and neutron diffraction analysis was
started at the Institute of Crystallography in 1969 [7].
The data known by 1985 and the changes in the defect
structures of the M1 – xRxF2 + x phases with M = Ca, Sr,
and Ba were analyzed and generalized in [8]. In [8], the
two simplest cluster configurations in the M1 − xRxF2 + x
solid solutions were considered. One of them is the well
known octahedral configuration in which RE cations
are located according to the octahedral motif. The cen-
ter of the cationic octahedron is occupied by an empty
{F12} cuboctahedron whose fluoride anions occupy the
position with multiplicity 48 at the twofold symmetry
axis. This configuration was confirmed by structural
studies of the ordered Ca2RF7 and Ba4R3F17 phases (R =
Y, Yb). The second configuration is a tetrahedron of
four RE ions and, therefore, is called a tetrahedral clus-
ter. The core of this cluster is the tetrahedral group of
fluoride anions occupying the 32f position on the three-
fold axis in sp. gr. Fm3m. In the ordered phases pos-
sessing structure derived from the fluorite one, no tetra-
hedral RE configurations were found. However, inter-
stitial fluoride ions in the 32f position were observed in
some nonstoichiometric fluorites.
004 MAIK “Nauka/Interperiodica”
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It turned out that, in the first approximation, the
transition from octahedral to tetrahedral clusters
depends on the ratio of the ionic radii of isomorphously
substituted M2+ and R3+ cations with different valences:
at r(R2+)/r(M3+) < 0.95, octahedral clusters are
observed, whereas at r(R2+)/r(M3+) > 0.95, tetrahedral
ones are established [8].

Later, the cluster evolution in the Ca0.68R0.32F2.32
phases was studied by the neutron powder diffraction
method [9]. The EXAFS method was used to study
Ca0.90R0.10F2.10 [10] and, later, also Ca0.68R0.32F2.32 [11].
The properties of the fluorite-type phases with the com-
position M1 – xRxF2 + x, and, first of all, their spectro-
scopic properties were interpreted based on various
cluster configurations, whose total number amounts to
30. The most detailed review of the clusters suggested
for the interpretation of the properties of the fluorite
phases (known by 1991) was made in [12]. Energy con-
sideration of the stable cluster configurations in
M1 − x RxF2 + x solid solutions was started in [13–15].
The problem was generalized in [16]. The variations in
the defect structure of Ba1 − xRxF2 + x crystals along the
row of the cerium subgroup (from La to Nd) were stud-
ied by neutron diffraction in [17–19]. The short review
of the evolution of the defect structure in the fluorite
phases of the composition M1 − xRxF2 + x with M = Ca,
Sr, and Ba can be found in Chapter 7 of the book written
by Sobolev [20]. Unfortunately, there are no structural
data on the fluorite Cd1 − xRxF2 + x phases. The present
series of publications aims to fill this gap.

The association of RE ions in Cd1 − x RxF2 + x solid
solutions is indirectly confirmed by nonuniform broad-
ening of the luminescence spectra of Nd3+ in
Cd1 − xYxF2 + x crystals observed in [21], but no spec-
trum analysis aimed at the determination of possible
new configurations and structures of the associates was
performed.

The determination of the cluster structure of
Cd1 − xRxF2 + x based on the structural data known for
these phases reduces to the localization of interstitial
fluoride anions compensating the difference in the cat-
ion valences of the fluorite matrix (Cd2+) and the impu-
rity (R3+) and, also, of the vacancies in the main anionic
motif and the fluorine atoms pushed out from the main
positions into interstitials.

The coordinates of the positions occupied by inter-
stitial anions and their occupancies allow one to draw
conclusions about the structure of nanodimensional
clusters of structural defects in the matrix of the initial
CdF2 structure. It is more reliable to refine low occu-
pancies of the interstitial-fluorine positions by neutron
diffraction data. However, it is impossible to use neu-
tron diffraction for the structural study of the
Cd1 − xRxF2 + x phases because of extremely pronounced
neutron absorption by the natural mixture of cadmium
isotopes.
C

Below, we consider the method used for the refine-
ment of the structure of the Cd1 − xRxF2 + x phases from
the X-ray diffraction data. The main shortcoming of the
analysis of the structural experiment on the nonstoichi-
ometric fluorite M1 − xRxF2 + x phases, in general, and on
Cd1 − xRxF2 + x, in particular, is the strong correlations
between the parameters to be refined. The analysis of
possible cluster configurations is performed based on
the data obtained, and the atomic model of the struc-
tures of two nanodimensional defect clusters in
Cd1 − xRxF2 + x crystals is suggested.

EXPERIMENTAL

The Cd0.90Tb0.10F2.10 single crystals were grown
from melt in an atmosphere of helium and the products
of tetrafluoroethylene pyrolysis by the Bridgman
method. The 3-mm-thick disks were cut out from the
middle part of a crystalline boule normally to the
growth axis. After optical polishing, the disks were
studied in polarized light. The growth methods, crystal
morphology, and methods of sample preparation are
described elsewhere [1].

Homogeneous regions of the disks were used to pre-
pare spherical samples with a diameter of about 150 µm
for X-ray analysis. The spheres were glued to glass
fibers with a solution of polystyrene in isoamyl acetate.
The experiment was performed on an automated CAD-4
(Enraf Nonius) diffractometer (MoKα radiation) with a
graphite monochromator at the temperature 295 K.
Reflections with sinΘ/λ ≤ 1.2 from a Cd0.90Tb0.10F2.10
crystal were recorded over the whole reflection sphere.
Reflections with sinΘ/λ ≤ 1.2 from a CdF2 crystal were
recorded within 3/4 of the reflection sphere. The stabil-
ity of the diffractometer operation was periodically
checked (after recording of each 300 reflections) by
measuring the intensities of the three control reflec-
tions. The orientation matrix of the sample was checked
after every hour of the diffractometer operation. The
lattice parameters were refined by the least squares
method using 24 symmetry-related 337-type reflec-
tions.

The structural computations were performed by the
JANA2000 programs [22]. The array of the experimen-
tal intensities was corrected for absorption in a spheri-
cal sample, polarization, and the Lorentz factor. The
analysis of the diffraction experiment from CdF2 and
Cd0.90Tb0.10F2.10 single crystals revealed no deviations
from cubic symmetry. The systematic extinctions
uniquely indicated a F Bravais lattice and the diffrac-
tion class m3mF corresponding to the space groups

Fm3m, F432, and .
The data obtained uniquely indicated the CaF2

structure type and, therefore, the further structure anal-
ysis was performed within the sp. gr. Fm3m. The
refined structural data confirmed the choice of this
space group. Averaging of the symmetry-equivalent
squared structure factors is characterized by the reli-

F43m
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ability factors Rav = 2.41 and 2.03% for CdF2 and
Cd0.90Tb0.10F2.10, respectively. In the course of the
refinement, we also introduced the correction for iso-
tropic secondary extinction in the Becker–Coppens
approximation (type I, the Lorentzian angular distribu-
tion of mosaics blocks) [23]. In the refinement of the
anharmonic thermal atomic vibrations, we expanded
the temperature factor into the Gram–Charlier series
[24]. The refinement of the structural parameters by the
least squares method was made using the |F | moduli
and the atomic scattering curves and corrections for
anomalous scattering [24]. The parameters of the dif-
fraction experiment for the CdF2 and Cd0.90Tb0.10F2.10
crystals are listed in Table 1.

It was very important to determine the chemical
composition of a Cd1 – xTbxF2 + x single crystal because
the Cd0.90Tb0.10F2.10 compound melts incongruently
(with decomposition), which may result in nonuniform
terbium distribution along the crystalline boule.

Earlier, the compositions of the single crystals of the
fluorite phases of the M1 − ı RxF2 + x family selected for
structural studies were determined using the concentra-
tion dependence of the unit-cell parameter. For the
Cd1 – xRxF2 + x solid solutions, the RE content was deter-
mined from the equation x = (a – a0)/k, where x is the
molar fraction of RF3, ‡ is the lattice parameter of the
solid solution, and ‡0 is the lattice parameter of CdF2.
The values of coefficient k for the Cd1 – xRxF2 + x solid
solutions were taken from [25]. For the Cd1 – xTbxF2 + x
sample, the TbF3 content calculated from the estab-
lished lattice parameter of the crystal studied [a =
5.433(4) Å] amounts to 13 mol %.

To refine the terbium content in the fragment of the
single crystal boule used to cut out the sample for struc-
tural studies, we analyzed this fragment by atomic
emission spectroscopy with inductively coupled
plasma (ICP–AES). This analysis showed that the ter-
bium fluoride content in the sample amounted to 10 ±
0.5 mol % or x = 0.10 ± 0.005 mole fractions. Thus,
within the accuracy of the analysis, the composition of
the crystal coincided with the charge composition. This
is the first determination of the composition in the mid-
dle part of the boule made by chemical analysis for the
phases of the Cd1 – xRxF2 + x family. It shows that, simi-
lar to some other crystals of the M1 – ıRxF2 + x composi-
tion (M = Ca, Sr, and Ba), the growth process in the
middle part of the boule becomes stationary and the
content of the RF3 impurity is close to its content in the
charge.

Taking into account the approximate values of coef-
ficient k in the concentration dependence of the lattice
parameter, we used in the calculations the composition
Cd0.90Tb0.10F2.10 obtained by spectroscopic analysis.
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
REFINEMENT OF CdF2 AND Cd0.90Tb0.10F2.10 
STRUCTURES

Refinement of the CdF2 structure. Figure 1 shows
the (110) sections of residual electron-density for a
CdF2 crystal. For fluorite phases, this is the most infor-
mative section, because all the basis and interstitial
atoms of the structure are located in this section. Here-
after, we always consider these sections in the process
of structure refinement. The residual electron-density
synthesis shown in Fig. 1a is constructed after the sub-
traction of Cd and F atoms in the harmonic approxima-
tion of the atomic thermal vibrations. In the vicinity of
the fluorine position, one can see the characteristic
electron-density maximum and minimum indicating
the deviation of the thermal vibrations of fluorine atoms
from the harmonic law along the [111] direction. The
introduction of third-order anharmonism of thermal
vibrations of fluorine atoms removes these features of
the electron-density synthesis. The corresponding sec-
tion is shown in Fig. 1b. The structural parameters and
the reliability factor obtained after the concluding
refinement are shown in Table 2. The syntheses in
Fig. 1 show the residual electron density at the point
with the coordinates (0.5, 0.5, 0.5), which corresponds
to the center of the empty cube of the structure.
Detailed analysis showed that this maximum is due to
the series termination.

In the CdF2 structure, the Cd atoms occupy the cen-
ters of fluorine cubes. The Cd–F distances are equal to
2.335 Å, the cube edges F–F are equal to 2.697 Å, and
the Cd–Cd distances are equal to 3.813 Å.

Refinement of the Cd0.90Tb0.10F2.10 structure. The ini-
tial model for the refinement of this solid solution was
the CdF2 structure with due regard for the (Cd,Tb) and
F atoms and 100% position occupancies. For the iso-

Table 1.  Main characteristics of diffraction experiments on
CdF2 and Cd0.90Tb0.10F2.10 single crystals

Sample CdF2 Cd0.90Tb0.10F2.10

Diffractometer CAD-4 Enraf Nonius

Radiation, λ, Å MoKα, λ = 0.71069

T, K 295

Radius of spherical sample, 
µm

205(5) 156(5)

Absorption coefficient, mm–1 13.37 16.24

Range of ω/2θ scanning, deg 0.80 + 0.35tan(θ)

Maximum sinθ/λ, Å–1 1.2

Number of measured reflec-
tions

1601 2394

Number of independent
reflections

88 88

Rav(Int), % 2.41 2.03

Sp. gr. Fm3m

Lattice parameter, Å 5.393(3) 5.433(4)
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morphous mixture (Cd,Tb), one mixed scattering curve
was used. The difference electron-density synthesis
obtained after the refinement of this model is shown in
Fig. 2a. The synthesis was constructed using all the
reflections of the experimental array except for 111 and
220. These most intense reflections were excluded from
the least square procedure because the Becker–Cop-
pens extinction correction for them did not eliminate
the extinction effect and the moduli |Fobs | of these
reflections were considerably less than |Fcalcd |.

The next variant of the difference electron-density
synthesis is shown in Fig. 2b. It is constructed after the
refinement of the occupancy of the position of the main
fluorine. The details of this synthesis indicate the exist-
ence of the anharmonic component in the thermal
vibrations of both cations (Cd, Tb) and fluorine. The

0.1

0.10 0.2
(a + b)/4

0.2

0.3

0.4

[110]

[001]

0.10 0.2

(‡) (b)

Fig. 1. The (110) section of the residual electron-density
synthesis of the CdF2 structure with removed Cd and F
atoms. Isolines are separated by 0.1 e/Å3. Solid lines indi-
cate positive electron density; dotted lines, negative electron
density; and the dashed line indicates the zero level. The
synthesis is constructed (a) in the harmonic approximation
of atomic thermal vibrations and (b) with due regard for the
third-order anharmonicity of thermal vibrations of fluorine
atoms.

Table 2.  Results of the structure refinement for a CdF2 crys-
tal with allowance for third-order anharmonicity of thermal
vibrations of F atoms

Atom Parameters to be 
refined Parameter values

Cd (0, 0, 0) Biso, Å2 0.598(2)

F (1/4, 1/4, 1/4) B11, Å2 0.00841(5)

C123 103, Å2 0.0009(2)

Number of independent structure factors 88

Number of parameters to be refined 5

R, % 0.59

Rw, % 0.43
C

allowance for the fourth-order anharmonicity in the
thermal vibrations of (Cd, Tb) (synthesis in Fig. 2c) and
third-order anharmonicity in the thermal vibrations of
fluorine atoms (synthesis in Fig. 2d) considerably
improves the synthesis.

The difference synthesis in Fig. 2d has two pro-
nounced electron-density maxima at the threefold sym-
metry axis in the position 32f of the sp. gr. Fm3m. These
maxima are attributed to fluorine atoms of the tetrahe-
dral core of the cluster and some of fluorine atoms
relaxed (displaced) from the main positions along the
threefold axis toward the centers of the empty cubes of
the structure. The fluorine atoms in the main position
are hereafter denoted as Fmain and the relaxed ones, as
Frel. The position occupied by the fluorine atoms of the
cluster core are called the additional position, and the
fluorine atoms in this position are denoted as Fadd. One
should bear in mind that only some of these atoms are
really additional to the CdF2 stoichiometry. The coordi-
nates of the Fadd – (w, w, w) atoms are w, w, w, while
those of the Frel atoms are u, u, u, with u < w. The Frel
peak in Fig. 2d is approximately twice as high as the
Fadd peak.

The interstitial fluorine atoms detected by the X-ray
diffraction method indicate the defect structure of
Cd0.90Tb0.10F2.10 crystals. The positions on threefold
axes occupied by these atoms unambiguously indicate
the tetrahedral configuration of the anionic core of the
cluster described in [8].

The tetrahedral anionic core of the cluster is formed
in the following way. One Fmain atom leaves its position,
and the cavity thus formed by the four adjacent empty
cubes incorporates the tetrahedral group of four Fadd
atoms. One of these atoms compensates for the Fmain
atom that left its position, whereas the three other atoms
should compensate for the difference in the valences
between the cations of the Cd2+ matrix and the Tb3+

impurity. The formation of such a tetrahedral anionic
core of the cluster is illustrated by Fig. 3.

Four cationic polyhedra around the anionic core of
the cluster may incorporate two, three, or four Tb
atoms. Thus, the composition of the tetrahedral clusters
can be represented as [Cd4 – nTbnF22 + 4] (n = 2, 3, 4).

The cluster of the composition [Cd2Tb2F26]–1 (n = 2)
has a negative charge that can be compensated for only
with the vacancies in the main fluorine position. If the
cluster has three Tb atoms, its composition is
[CdTb3F26] (n = 3). This cluster is electrically neutral.
If we admit the existence of clusters with the composi-
tion [Tb4F26]+1 (n = 4), then the excessive positive
charge of the crystal would require the presence of four,
and not three, additional fluorine atoms per cluster.

Studying the structure of the C‡1 – xRxF2 + x phases
(from the lattice geometry of the phases close to
Cd1 − xRxF2 + x), one often assumes that a low electron-
density peak in the center of the cubic void (Fig. 2d)
should be attributed to an additional fluorine atom. This
position has the coordinates (0.5, 0.5, 0.5) and is
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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equally spaced from six heavy (Cd,Tb) atoms of the
structure located around the void over the vertices of a
regular octahedron. To check whether this peak is due
to the series termination, we increased the real temper-
ature factor in the experimental array by 25%. This pro-
cedure improved the series convergence and resulted in
the complete disappearance of the peak indicated
above. Thus, the Cd0.90Tb0.10F2.10 solid solution has no
[Tb4F26] clusters.

At the next stage of the structure refinement, we
constructed the section of the difference electron-den-
sity synthesis with the removed Fmain and Fadd atoms.
This difference synthesis is shown in Fig. 4a.

At the final stage of the refinement, we also took
into consideration the relaxed fluorine atoms Frel. In this
case, the total occupancy of all the fluorine positions
was recorded in accordance with the chemical analysis
of the solid solution at a level of 8.40 atoms per unit

0.1

0.10 0.2

(a + b)/4

0.2

0.3

0.4

[110]

[001]
(‡)

0.5

0.10 0.2

Fadd

Cd(Tb)

Frel

Fmain

0.1

0.10 0.2

0.2

0.3

0.4

0.10 0.2

(b)

(d)(c)

Fig. 2. The (110) section of the difference electron-density
synthesis for the Cd0.90Tb0.10F2.10 structure. Isolines are
spaced by 0.05 e/Å3. The synthesis is constructed (a) with
the subtracted (Cd,Tb) atoms and fluorine atoms in the main
structure position with 100% occupancy, (b) after the refine-
ment of the occupancies of the main structural fluorine posi-
tion, (c) after the allowance for the fourth-order anharmon-
ism of (Cd,Tb) thermal vibrations, and (d) after the addi-
tional allowance for the third-order anharmonism of
thermal vibrations of fluorine atoms.
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cell. The final difference synthesis of the electron density
after the refinement of this model is shown in Fig. 4b.
The structural parameters and the reliability factors
obtained after this stage of the refinement are listed in
Table 3.

DISCUSSION OF RESULTS

The main result obtained in our study is the determi-
nation of the total occupancy for the main and relaxed
fluorine atoms, 6.90 + 0.96 = 7.86 atoms per unit cell.
The multiplicity of the main fluorine position equals
eight, which signifies that these positions contain up to
2% of the vacancies. It is these vacancies that may give
rise to superionic conductivity of the Cd1 − xRxF2 + x
solid solutions. The ionic transport in these crystals will
be considered in one of the following publications of
this series.

Fmain

Fadd

Frel

[Cd4F23]

[CdTb3F26]

[Cd2Tb2F26]

Fig. 3. Schematic of formation of [Cd4 − nTbnF22 + 4] clusters
(n = 2, 3) in the crystal structure of the Cd0.90Tb0.10F2.10
solid solution.
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The determination of the occupancy of the position
with Fadd atoms allows us to obtain the additional infor-
mation on the nature of the clusters of structural defects
in the single crystal studied. Irrespective of the Cd/Tb
ratio, each tetrahedral cluster has an anionic core
formed by four interstitial fluorine atoms. It was shown
above that there are no [Tb4F26] clusters in the

0.1

0.10 0.2
[110] (a + b)/4

0.2

0.3

0.4

[001]

0.10 0.2

(‡) (b)

Fig. 4. The (110) sections of the difference electron-density
syntheses for the Cd0.90Tb0.10F2.10 structure. Isolines are
spaced by 0.05 e/Å3. (a) Difference synthesis constructed
with the subtraction of (Cd,Tb), Fmain, and Fadd atoms;
(b) difference synthesis constructed with the subtraction of
all the atoms of the structure. One can see only the maxi-
mum due to series termination.

Table 3.  Results of the final refinement of the structure of a
Cd0.90Tb0.10F2.10 single crystal

Atom Parameters to be 
refined Parameter values

(Cd0.90Tb0.10) B11, Å2 0.00695(2)

(0, 0, 0) D1111 × 104, Å2 0

D1122 × 104, Å2 –0.000060(8)

Fmain Q, at/unit cell 6.90(7)

(1/4, 1/4, 1/4) B11, Å2 0.0117(1)

C123 × 103, Å2 0.0029(3)

Frel Q, at/unit cell 0.96(7)

(u, u, u) u 0.305(2)

Biso, Å2 2.1(2)

Fadd Q, at/unit cell 0.54(7)

(w, w, w) w 0.418(2)

Biso, Å2 1.4(2)

Number of independent structure
factors

88

Number of parameters to be refined 13

R, % 0.25

Rw, % 0.28
C

Cd0.90Tb0.10F2.10 solid solution. So, we have only to con-
sider the general case—the simultaneous presence of
the [CdTb3F26] and [Cd2Tb2F26] clusters in a single
crystal.

The number of Fadd atoms per unit cell obtained after
the refinement of the structure of the Cd0.90Tb0.10F2.10
single crystal equals 0.54. In this case, one cluster is
shared by 4/0.54 = 7.41 unit cells. Proceeding from the
chemical analysis, 7.41 unit cells contain 2.96 Tb
atoms. We assume that the fraction of the [CdTb3F26]
clusters equals q and, respectively, the fraction of the
[Cd2Tb2F26] clusters equals (1 – q). After the solution of
the equation 3q + 2(1 – q) = 2.96, we obtain that the
Cd0.90Tb0.10F2.10 solid solution has 96% neutral clusters
of the composition [CdTb3F26] and 4% clusters of the
composition [Cd2Tb2F26] with the negative unit charge.
The vacancies in the main fluorine position are formed
to compensate this negative charge and give rise to
superionic conductivity with respect to fluorine.

The ratio of the number of fluorine atoms relaxed
from the main positions to the number of the additional
fluorine atoms obtained after the final refinement of the
Cd0.90Tb0.10F2.10 structure is ~1.8 : 1. Proceeding from
the analysis of the interatomic distances in the
Cd0.90Tb0.10F2.10 structure, one may assume that it is the
fluorine atoms of the main position that would be first
to relax from this position. These atoms belong to the
cluster and have no direct contact with additional fluo-
rine atoms. The cluster has four such atoms and four
additional fluorine atoms (Fig. 3). Since the number of
relaxed fluorine atoms is higher than the number of the
additional ones by a factor of 1.8, the other fluorine
atoms related to the cluster also relax. Which these
relaxing atoms are depends which cluster cations (Cd
or Tb) they contact. The X-ray diffraction data cannot
directly answer this question, because, in this case, one
is dealing with one unit cell averaged over the whole
single crystal.

All the interatomic distances related to the unit cell
averaged over the crystal have admissible values. The
distances between the (Cd, Tb) cation and the fluorine
atoms in the main positions are 2.352 Å, and the dis-
tances of these cations to the additional fluorine atoms
are 2.357 Å. The relaxed fluorine atoms are spaced from
three cations by somewhat reduced distances of 2.234 Å
and spaced from one cation by a longer distance of
2.870 Å. One may assume that, in the Tb polyhedron,
the distances to the three additional fluorine atoms are
equal to 2.357 Å and, to the six fluorine atoms in the
main position, 2.352 Å. In this case, the tenth fluorine
atom (a relaxed one) is spaced from terbium by a longer
distance of 2.870 Å. This atom can be excluded from
the polyhedron, and, then, the coordination number of
Tb3+ in the Cd0.90Tb0.10F2.10 structure becomes 9. This
agrees with the conclusions drawn in [26] about the
reduced coordination number of RE cations because of
a decrease in their ionic radii in the row from La to Lu
in the series of RE trifluorides. Three reduced
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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(Cd,Tb)–Frel distances are equal to 2.234 Å and seem
to be the distances to the Cd atoms surrounding the Tb
polyhedron. The distances between the main fluorine
atoms are 2.716 Å; those between the additional ones
are 2.581 Å. The latter distances seem to be reduced,
because these edges are shared by Tb polyhedra. The
intercationic (Cd, Tb)– (Cd,Tb) distance equals 3.841 Å.

CONCLUSIONS

It is established by X-ray diffraction analysis that
CdF2 and Cd0.90Tb0.10F2.10 crystals belong to the fluorite
structure type. The refinement of the structure of
Cd0.90Tb0.10F2.10 single crystals using difference elec-
tron-density syntheses showed the presence of Fadd flu-
orine atoms in the 32f (w, w, w) position on the threefold
axis with the coordinates w = 0.418 of the sp. gr. Fm3m.
The existence of relaxed Frel fluorine atoms (displaced
from the main positions along the threefold axes) is also
established. These atoms occupy the position 32f
Fm3m (u, u, u) with u = 0.305. The number of fluorine
atoms per unit cell localized in the main Fmain positions is
6.90, that in the relaxed Frel positions is 0.96, and that in
the additional Fadd positions is 0.54. The considerable
prevalence (by a factor of about 1.8) of relaxed fluorine
Frel atoms over the additional fluorine Fadd atoms is estab-
lished in the fluorite M1 – xRxF2 + x phases (M = Ca, Sr, Ba,
Cd; R = RE) for the first time. This seems to be the char-
acteristic feature of the Cd1 – xRxF2 + x solid solutions.

The possible cluster configurations in the
Cd0.90Tb0.10F2.10 solid solution are analyzed. It is shown
that the single crystal studied contains 96% electrically
neutral clusters with the composition [CdTb3F26] and
4% the charged clusters with the composition
[Cd2Tb2F26]–1. The formation of these clusters is
accompanied by the formation of vacancies with a con-
centration up to 2% in the main anionic motif of the
structure. These vacancies may give rise to superionic
conductivity with respect to fluorine in Cd1 – xRxF2 + x
single crystals.
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Abstract—The crystal structure of the K2[(NpO2)2(CrO4)3(H2O)] · 3H2O compound was established. The

structure consists of anionic layers [(NpO2)2(CrO4)3(H2O) , between which K+ ions and crystallization
water molecules are located. The coordination polyhedra of Np atoms are distorted pentagonal bipyramids. All
chromate ions are bound in a tridentate-bridging fashion. © 2004 MAIK “Nauka/Interperiodica”.

]n
2n–
Many uranyl chromates have been synthesized, and
the structures of the majority of these compounds have
been determined [1]. The H2O–Cs2CrO4–UO2CrO4
system appeared to be rather simple, and, in this sys-
tem, the formation of only two complexes with compo-
sitions Cs2[(UO2)2(CrO4)3] and Cs2[UO2(CrO4)2(H2O)]
was observed [2].

In solutions of potassium chromate, uranyl under-
goes hydrolysis to form the K[UO2CrO4OH] · 1.5H2O
complex [3]. The synthesis of complex uranyl chro-
mates with the use of potassium bichromate gave rise to
K2[(UO2)2(CrO4)3(H2O)2] · 4H2O [4] and
K2[UO2(CrO4)2(H2O)] · 3H2O [5]. Of chromate com-
pounds of transuranium elements in the oxidation state
+6, only the neptunyl chromate carbamide complex
[NpO2CrO4{OC(NH2)2}2] has been described [6]. In
this complex, the chromate ion is coordinated in a tri-
dentate-bridging fashion. It has also been noted that the
behavior of hexavalent U, Np, and Pu is substantially
different with respect to polymerization in the course of
their hydrolysis, whereas these valence forms have very
similar first hydrolysis constants [7]. However, this
observation has found no explanation. Hence, it was of
interest to study the behavior of neptunium(VI)
(at least) in solutions of potassium chromate and com-
pare it with the behavior of uranyl, because, under these
conditions, the complex formation is accompanied by
hydrolysis. In principle, these “yl” ions can be expected
to show somewhat different behavior under the same
conditions.

Chromate compounds of transuranium elements in
the oxidation state +6 are also of interest from the view-
point of crystal chemistry, because chromate ions in
some uranyl chromates [8–10] are in an anomalous
bidentate-chelating-bridging coordination mode. In
1063-7745/04/4904- $26.00 © 20598
this case, one of the oxygen atoms of the chromate ion
serves as a bridge between two uranium atoms. As a
result, the coordination polyhedra of the uranium atoms
(pentagonal bipyramids) are linked by sharing an equa-
torial edge. This coordination mode is as yet unknown
for other doubly charged tetrahedral oxo anions in ura-
nyl compounds. The linking of coordination polyhedra
by sharing equatorial edges through the bridging oxy-
gen atoms is typical of Np(V) compounds. However,
chromate ions in these compounds are also highly
prone to chelating-bridging coordination [11–13].

EXPERIMENTAL

Synthesis

The starting solutions and instrumentation have
been described previously [14].

A 0.4 M K2CrO4 solution was added dropwise to a
0.4 M solution of neptunyl nitrate devoid of free acid,
which gave rise to a finely crystalline precipitate. This
precipitate was dissolved upon vigorous stirring. When
kept at room temperature even for a short time (~1 h), a
solution containing equimolar amounts of chromate
and neptunyl yielded small crystals, which slowly (for
20–30 h) recrystallized into relatively large rectangular
plate-like dark red crystals. Their composition was
determined as K2[(NpO2)2(CrO4)3(H2O)2] · 8H2O by
X-ray diffraction. The crystal structure of this com-
pound will be described elsewhere. It should be noted
that the formation of crystalline products from a solu-
tion of neptunyl nitrate substantially slows down in the
presence of even small amounts (0.05–0.1 M) of nitric
acid. Under analogous conditions, uranyl forms the
K2[(UO2)2(CrO4)3(H2O)2] · 4H2O complex, which has
been established by powder X-ray diffraction analysis [4].
004 MAIK “Nauka/Interperiodica”
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Prolonged storage of K2[(NpO2)2(CrO4)3(H2O)2] ·
8H2O under a layer of a supernatant led to the slow for-
mation of yet another crystalline compound. Its compo-
sition was determined by X-ray diffraction analysis and
is described by the formula K2[(NpO2)2(CrO4)3(H2O)] ·
3H2O (I). In this study, we report the results of an X-ray
diffraction study of complex I.

X-ray Diffraction Analysis

X-ray diffraction data were collected from a single
crystal 0.25 × 0.14 × 0.08 mm3 in size on an automated
CAD4 diffractometer (λMoKα radiation, graphite
monochromator). The monoclinic unit-cell parameters
were determined based on 16 reflections with 2θ > 26°
at 20°C: a = 10.797(5), b = 10.492(6), c = 16.121(7) Å,
β = 90.61(4)°, sp. gr. P21/c, Z = 4, and dcalcd =
3.707 g/cm3. A total of 2362 reflections (2θmax = 48°),
of which 1965 independent reflections were with
I > 2σ(I), were measured. The experimental intensities
were corrected for absorption using azimuthal scan
curves [15] for seven reflections (µ = 13.33 mm–1;
the maximum and minimum transmittances are
0.846 and 0.412, respectively). The structure was
solved by a direct method (SHELXS86 [16]) and
refined by the full-matrix least-squares method on F2

(SHELXL93 [17]) with anisotropic thermal parameters
for all non-hydrogen atoms. The hydrogen atoms of
three out of four water molecules were located using a
difference Fourier synthesis and refined isotropically
with the fixed O–H distances. The final refinement
(268 parameters) converged to R(F) = 0.0255 and
wR(F2) = 0.0631 (based on reflections with I > 2σ(I)).
The atomic coordinates for the structure of I are given
in Table 1. Selected interatomic distances and bond
angles are listed in Table 2.

RESULTS AND DISCUSSION

The coordination polyhedra of both crystallograph-
ically independent Np atoms in the structure of I are
distorted pentagonal bipyramids. The apical positions
of the bipyramids are occupied by the “yl” O atoms.
NpO2 groups are almost linear and symmetrical, and all
Np–O distances in these groups have close values
(Table 2). One of the positions in the equatorial envi-
ronment around the Np(1) atom is occupied by the
coordinated water molecule Ow(1). All other positions
in the equatorial environment around both NpO2 groups
are occupied by the O atoms of three crystallographi-
cally independent tridentate-bridging CrO4 groups and
the symmetrically related groups (Fig. 1). The Np–O
distances in the equatorial planes of the neptunyl
groups vary from 2.318(7) to 2.408(6) Å for the O
atoms of chromate ions and are equal to 2.498(7) Å for
the coordinated water molecule.

Each NpO2 group is linked to six other NpO2 groups
through chromate ions, forming anionic layers
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
Table 1.  Atomic coordinates (×104) and equivalent (isotropic)
thermal parameters (Å2, ×103) for the structure of I

Atom x y z Ueq(iso)

Np(1) 3901(1) 4645(1) 7684(1) 15(1)

Np(2) 9120(1) 5665(1) 8211(1) 15(1)

Cr(1) 6018(1) 6779(1) 8779(1) 17(1)

Cr(2) 2084(2) 7645(1) 7658(1) 19(1)

Cr(3) 992(1) 4173(1) 6534(1) 18(1)

K(1) 3168(3) 3967(3) 4022(2) 52(1)

K(2) 1067(3) 7345(3) 5073(2) 54(1)

O(1) 2721(6) 4330(6) 8375(4) 26(2)

O(2) 5100(6) 4958(6) 7012(4) 27(2)

O(3) 9858(6) 5138(6) 9113(4) 29(2)

O(4) 8373(6) 6194(7) 7312(4) 29(2)

O(11) 4850(6) 5749(6) 8758(4) 21(2)

O(12) 7303(6) 5958(6) 8957(4) 24(2)

O(13) 6087(6) 7521(6) 7881(4) 26(2)

O(14) 5819(7) 7762(7) 9523(4) 34(2)

O(21) 3309(6) 6742(6) 7459(4) 25(2)

O(22) 900(6) 6723(6) 7735(5) 34(2)

O(23) 1899(6) 8665(6) 6886(4) 30(2)

O(24) 2274(7) 8397(7) 8501(4) 40(2)

O(31) 2463(6) 4534(6) 6623(4) 25(2)

O(32) 340(6) 4263(6) 7443(4) 25(2)

O(33) 809(6) 2680(5) 6188(4) 22(2)

O(34) 363(7) 5114(7) 5894(5) 36(2)

Ow(1) 5116(7) 3084(7) 8520(4) 28(2)

Ow(2) 3323(8) 8747(7) 5156(5) 32(2)

Ow(3) 1352(10) 2321(8) 4437(6) 68(3)

Ow(4) 3306(12) 5823(10) 5196(6) 70(3)

H(1A) 5460(80) 3210(90) 8960(30) 20(30)

H(1B) 5460(80) 2610(70) 8190(50) 20(30)

H(2A) 3770(110) 8870(160) 4760(60) 90(60)

H(2B) 3250(100) 9410(50) 5410(60) 30(30)

H(4A) 3240(130) 5430(110) 5630(50) 60(50)

H(4B) 3940(80) 6160(150) 5030(100) 80(60)
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Table 2.  Selected interatomic distances (d) and bond angles (ω) in compound I

Distance d, Å Angle ω, deg

Np(1)–O(1) 1.748(7) O(1)–Np(1)–O(2) 178.8(3)

Np(1)–O(2) 1.745(7)

Np(1)–O(11) 2.321(6) O(11)–Np(1)–O(21) 76.5(2)

Np(1)–O(21) 2.321(6) O(21)–Np(1)–O(31) 75.2(2)

Np(1)–O(31) 2.318(7) O(11)–Np(1)–Ow(1) 72.1(2)

Np(1)–Ow(1) 2.498(7) O(31)–Np(1)–O(13A) 71.4(2)

Np(1)–O(13A) 2.408(6) Ow(1)–Np(1)–O(13A) 65.9(2)

Np(2)–O(3) 1.747(6) O(3)–Np(2)–O(4) 179.6(3)

Np(2)–O(4) 1.748(6)

Np(2)–O(12) 2.360(6) O(12)–Np(2)–O(23A) 75.5(2)

Np(2)–O(22B) 2.382(6) O(22B)–Np(2)–O(32B) 69.4(2)

Np(2)–O(23A) 2.382(6) O(23A)–Np(2)–O(32B) 71.6(2)

Np(2)–O(32B) 2.351(6) O(12)–Np(2)–O(33C) 72.2(2)

Np(2)–O(33C) 2.327(6) O(22B)–Np(2)–O(33C) 71.7(2)

Cr(1)–O(11) 1.677(6) O(11)–Cr(1)–O(12) 108.3(3)

Cr(1)–O(12) 1.675(7) O(11)–Cr(1)–O(13) 109.3(3)

Cr(1)–O(13) 1.645(6) O(11)–Cr(1)–O(14) 108.6(4)

Cr(1)–O(14) 1.599(6) O(12)–Cr(1)–O(13) 110.3(3)

O(12)–Cr(1)–O(14) 108.9(4)

O(13)–Cr(1)–O(14) 111.3(4)

Cr(2)–O(21) 1.679(7) O(21)–Cr(2)–O(22) 108.8(3)

Cr(2)–O(22) 1.625(7) O(21)–Cr(2)–O(23) 108.3(3)

Cr(2)–O(23) 1.652(6) O(21)–Cr(2)–O(24) 110.3(4)

Cr(2)–O(24) 1.584(7) O(22)–Cr(2)–O(23) 110.6(4)

O(22)–Cr(2)–O(24) 109.2(4)

O(23)–Cr(2)–O(24) 109.7(4)

Cr(3)–O(31) 1.664(7) O(31)–Cr(3)–O(32) 110.0(3)

Cr(3)–O(32) 1.641(7) O(31)–Cr(3)–O(33) 110.7(3)

Cr(3)–O(33) 1.674(6) O(31)–Cr(3)–O(34) 109.3(4)

Cr(3)–O(34) 1.581(7) O(32)–Cr(3)–O(33) 107.4(3)

O(32)–Cr(3)–O(34) 110.8(4)

O(33)–Cr(3)–O(34) 108.5(4)

Note: The coordinates of the atoms labeled by additional letters A, B, and C are related to those listed in Table 1 by the symmetry trans-
formations (1 – x, 0.5 – y, 1.5 – z), (1 + x, y, z), and (1 – x, 0.5 + y, 1.5 – z), respectively.
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Fig. 1. Environment around Np atoms in the structure of I. The thermal ellipsoids are drawn at the 50% probability level. Hydrogen
atoms are shown by spheres of arbitrary radius.

b

a0

Fig. 2. Anionic layer [(NpO2)2(CrO4)3(H2O)  in the structure of I.]n
2n–
[(NpO2)2(CrO4)3(H2O)  (Fig. 2), between which K+

ions and crystallization water molecules are located.
The mean planes of the anionic layers coincide with the
gliding planes (y = 1/4 and y = 3/4). The equatorial
planes of the coordination polyhedra of Np atoms are
not parallel to the mean plane of the anionic layer. The
corresponding dihedral angles are 52.8° [Np(1)] and
34.6° [Np(2)]. It is probable that a large angle of rota-
tion of the coordination polyhedron of the Np(1) atom
is related to the presence of a hydrogen bond between
the coordinated water molecule Ow(1) and the water
molecule Ow(2) of crystallization located between the
layers. The characteristics of this and other hydrogen

]n
2n–
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bonds are listed in Table 3. The adjacent anionic layers
are linked by hydrogen bonds in which the crystalliza-
tion water molecules, Ow(2) and Ow(3), serve as pro-
ton donors.

It should be emphasized that the coordination mode
of the chromate ions in complex I is analogous to that
observed in many uranyl compounds. However, the
composition and structure of I differ substantially from
those of the uranyl chromates studied earlier.

The environment around K atoms is formed by the
O atoms of the chromate ions, NpO2 groups, coordi-
nated water molecules, and crystallization water mole-
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Table 3.  Characteristics of hydrogen bonds in the structure of I

D(–H)···A d(D–H) d(H···A) d(D···A) DHA, deg Symmetry operation for A

Ow(1)–H(1A)···Ow(2) 0.82(2) 2.02(4) 2.810(11) 164(10) –x + 1, y – 0.5, –z + 1.5

Ow(1)–H(1B)···O(21) 0.82(2) 1.94(3) 2.742(9) 164(9) –x + 1, y – 0.5, –z + 1.5

Ow(2)–H(2A)···O(11) 0.82(2) 2.06(2) 2.872(10) 178(17) x, –y + 1.5, z – 0.5

Ow(2)–H(2B)···O(12) 0.81(2) 2.02(3) 2.815(10) 168(11) –x + 1, y + 0.5, –z + 1.5

Ow(3)···O(1) 2.871(10) x, –y + 0.5, z – 0.5

Ow(3)···O(33) 2.916(11) x, y, z

Ow(4)–H(4A)···O(31) 0.82(2) 2.05(5) 2.832(12) 160(14) x, y, z
cules. The coordination numbers of K atoms are
7 [K(1)] and 10 [K(2)]. The K–O distances vary from
2.72 to 3.05 Å and from 2.80 to 3.39 Å, respectively.
The coordination polyhedra of K atoms are linked to
each other by shared edges and vertices. The “yl” O(3)
atom, the Ow(3) and Ow(4) atoms of the crystallization
water molecules, and two of the three “free” atoms of
the CrO4–O(24) tetrahedra [O(24) and O(34)] serve as
bridges.

In conclusion, let us compare the structure of I with
the structures of other actinide complexes. Of com-
pounds containing dioxo cations of actinides and tetra-
hedral doubly charged anions, a complex anion with a
similar composition was found only in the structure of
(H3O)2[(UO2)2(SeO4)3(H2O)] · 5H2O [18]. All the sel-
enate ions in this structure are also coordinated in a tri-
dentate-bridging mode, but the complex anion has a
three-dimensional structure.

The X-ray diffraction study was carried out at the
X-ray Structural Center of the Nesmeyanov Institute of
Organoelement Compounds of the Russian Academy
of Sciences, headed by M.Yu. Antipin.
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Abstract—Crystals of new rare earth borates of the composition Ln[B6O9(OH)3] (Ln = Sm–Lu), sp. gr. R3c are
synthesized under hydrothermal conditions. Their crystal structures are determined on single crystals with
Ln = Ho, Gd without preliminary determination of their chemical formulas. The polar anionic framework of the
crystals consists of Çé3 triangles and Çé4 tetrahedra and has wide channels along the threefold axis of the
structure, which are similar to the channels along the a, b, and c axes in cubic Li4[B7O12]Cl boracite with
Li conductivity. Rare earth atoms are arranged in the structure over the cubic F pseudolattice, whereas the anal-
ogous positions in Li boracites are filled with Cl anions. The squared optical nonlinearity of the new crystals is
comparable with the nonlinearity of quartz, whereas the electrical conductivity in borates at 300°C exceeds
10−6 S/cm. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The continuing demand in technology for new
effective nonlinear-optical and lasing materials is stim-
ulating the further synthesis of noncentrosymmetric
crystals in complex borate systems with rare earth ele-
ments and the study of their structures and properties.
Some promising dehydrated rare earth borates have
already been discovered in these systems [1, 2]. At
present, only three aqueous borates are known—min-
eral braitshite (complicated calcium- and Ln-contain-
ing borate) with unknown structure [3], synthetic
LiNd[BO3(OH)] crystals [4], and recently synthesized
and studied Ln[B4O6(OH)2]Cl (Ln = Pr, Nd) borates [5]
showing high optical nonlinearity. Below, we describe
the study of the structure and dielectric and nonlinear
optical properties of Ho and Gd borates (denoted as I
and II, respectively).

SYNTHESIS OF CRYSTALS 
AND THEIR PROPERTIES

Single crystals of new Ln borates were obtained dur-
ing the study of phase formation in Ln2O3–B2O3–H2O
systems (Ln = Sm, Eu, Gd, Ho, Tm, Yb, and Lu). The
experiments were performed in standard 5–6-cm3-large
Teflon-futerated autoclaves. The synthesis parameters
were t = 270–280°ë, P ~ 70 atm; the lowest temperature
was limited by the kinetics of the hydrothermal reac-
tion, and the highest temperature, by the apparatus
used. The experiment duration (18–20 days) was
selected to ensure the reaction completion. The filling
coefficient of the autoclave was selected in such a way
as to maintain a constant pressure during the whole
1063-7745/04/4904- $26.00 © 20603
experiment. The weight ratio of the oxides was Ln2O3 :

B2O3 = 1 : 1. The mineralizers were Cl– and ë  ions.
The highest transparency was recorded for 4-mm-long
pale yellow or colorless Ho- and Gd-containing crystals
with a cubic habit.

The diffraction patterns of all the phases with the Ln
elements indicated above were identical and had no
analogues in the PDF database, which allowed us to
consider these crystals as new crystals. To determine
the composition of crystals I, qualitative X-ray spectral
analysis of the crystals was performed on a CAM-
SCAN 4DV scanning electron microscope with an
attachment for energy-dispersive analysis (LINK Co.)
at the Department of Petrography of the Geology Fac-
ulty of Moscow State University. The presence of Ho
atoms in crystals I indicated the formation of a new
borate, whereas the phases isostructural to this borate
were borates containing the elements from the middle
and end parts of the Ln series.

The powder samples were tested for noncentrosym-
metricity by the method of second harmonic genera-
tion. The measurements on I and II crystals performed
with the use of the pulsed Nd-activated YAG laser
(backscattering scheme) [6] showed that, depending on
the powder dispersion, the second-harmonic yield
ranged within one to three and five to ten units of the
quartz standard for crystals I and II, respectively. This
uniquely indicated the absence of center of inversion in
the structure. A more pronounced signal from crystals
II in comparison with that from crystals I correlates
with a higher transparency of crystals II in the green
range of the spectrum at the wavelength of the second

O3
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harmonic, λ2ω = 0.532 µm. The comparable intensities
of the second-harmonic generation obtained on very
fine powders of compounds I and II and on a quartz
powder with the same dispersion (3–5 µm) allows us to
state that the effective optical nonlinearity of newly
synthesized borates is close to the value of nonlinear
coefficient d11 of quartz, 0.364 pm/V. A relatively weak
increase in the effect of the second-harmonic genera-
tion in the transition from finely-dispersed powders to
powders with coarse particles (up to 30 µm) indicates
the absence of the phase synchronism of neodymium-
activated YAG laser radiation.

With an increase in temperature up to 300°ë, the
nonlinear optical activity of crystals I and II decreases,
then attains a constant value, and, finally, at tempera-
tures exceeding the critical temperature, tcr (~610°C for
I and 630°C for II), it irreversibly disappears (Fig. 1).
Heating to the temperatures higher than Tc results in
crystal turbidity and cracking, i.e., in effects usually
accompanying the decomposition of hydrated com-
pounds.

The electrical conductivity was measured on a poly-
crystalline sample of compound I having the form of a
dense intergrowth of randomly oriented small single
crystals. The intergrowth was used to prepare a 2.1 ×
2.4 × 0.8-mm-plate with large surfaces metallized at
room temperature by the application of Degussa silver-
containing paste. The electrical measurements were
made in the temperature range 20–400°C using an
E7−12 a.c. bridge at a frequency of 1 MHz. Grown
crystals I showed an elevated conductivity of the order
of 10–6 S/cm characteristic of numerous ionic and, in
particular, protonic conductors. An important fact is
that crystals I showed elevated conductivity in the
above temperature range only after the first cycle of
heating (Fig. 2). The following heating–cooling cycles

200

2

t, °C

I2ω/I2ω(SiO2)

400 600

4

I

II

Fig. 1. Intensity of the second-harmonic generation in the
units of quartz standard for grinded HoB6O9(OH)3 (I) and
GdB6O9(OH)3 (II) crystals during heating and cooling (the
direction of the temperature variation is indicated by arrows).
C

did not result in such a high conductivity in the low-
temperature range, but the conductivity was preserved
above 300°ë. The temperature dependence of conduc-
tivity was similar to the temperature dependence char-
acteristic of ionic conductors with low activation ener-
gies (~0.2 eV).

STRUCTURAL STUDY

The parameters of as-grown I and II crystals were
determined and refined on a Syntex P-1 diffractometer
(λMoKα, graphite monochromator). Of all the possible
vectors, we chose three mutually perpendicular vectors
with the length ~11.9 Å corresponding to a possible
cubic unit cell. The refinement of angles showed that
the differences between the a, b, and c values exceed
the standard deviations and that the angles between the
vectors considerably differ from 90° (in tenths of a
degree), which indicates the pseudocubicity of the crys-
tals and that the true symmetry of the crystals is lower
than cubic (hexagonal, orthorhombic, or, probably,
monoclinic). In experiments with an Sm-containing
crystal, its habit corresponded to a half-cube with a
fused base and the body diagonal being parallel to the
threefold axis. This brought us to the assumption that
the lattice has a trigonal distortion. Single crystal I
selected for the diffraction experiment also corre-
sponded to a half-cube with the edge ~0.125 mm.
A single crystal of compound II was selected for the
diffraction experiment under a polarization micro-
scope, where most of the crystals examined showed a
twin boundary along the diagonal of the cube face. The
dimensions of the selected crystal having the appropri-
ate quality and the shape of a flattened cube were
~0.175 × 0.175 × 0.1 mm. In the pseudocubic F lattice
of crystals I and II, some vectors corresponded to the
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1000/T, 1/K

logσ [S/cm]

2.0 2.4
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–5.5 300°ë
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2

3

Fig. 2. Conductivity of the HoB6O9(OH)3 polycrystal at a
frequency of 1 MHz in different modes: (1) the first heating,
(2) cooling, and (3) subsequent heating.
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Table 1.  Crystallographic data for Ln[B6O9(OH)3], where Ln = Ho (I) and Gd (II), and the characteristics of the experiment

I II

Brutto formula H3O12B6Ho H3O12B6Gd

Sp. gr., Z R3c, 6

a, Å 8.385(9) 8.410(4)

c, Å 20.71(4) 20.72(1) 

V, Å3 1261(5) 1269(2)

ρcalcd, g/cm3 3.35(1) 3.296(5)

µ, cm–1 98.39 95.49

Weighting scheme 1/[σ(F) + 0.001(F)]2

Number of the parameters to be refined 58 58

2θ, sinθ/λmax 100.25 & 1.080 100.37 & 1.081

Number of reflections with F > 4σ(F) 2740 2516

R(F), Rw 0.0267, 0.0291 0.0485, 0.0521

S 0.970 1.690

Absolute scale 0.583(3) 0.569(6)
hexagonal (rhombohedral) lattice in which the direc-
tion of the trigonal distortion of the unit cell is the three-
fold axis, which coincides with one of the body diago-
nals of the cube [7]. In a number of variants, some vec-
tors corresponded to an orthorhombic unit cell. The
refinement of possible hexagonal parameters for sev-
eral body diagonals of the cube revealed the unique
direction of the trigonal distortion and the true axes.
In all the cases (except for one), the scatter in the a and
b parameters exceeded the standard deviations and the
angles considerably differed from 90° and 120° (tenths
of a degree). For Gd borate (II), the unit-cell parame-
ters were slightly larger than those for the Ho borate (I)
(Table 1), which is explained by the different ionic radii
of these rare earth elements associated with the lan-
thanide contraction.

The experimental three-dimensional array of Ihkl
used for the structure determination of compounds I
and II was obtained in the reciprocal-space region 0 ≤
h ≤ 16, –16 ≤ k ≤ 16, and 0 ≤ l ≤ 41. The processing of

intensities and their conversion into  was made
using the PROFIT program [8], with all further compu-
tations being performed by the CSD complex. The
extinction rules were: for hkl reflections, –h + k + l = 3n,
and, for  reflections, l = 2n. With due regard for the
crystal noncentrosymmetricity, these extinctions

uniquely determined the polar space group R3Ò – .
The structure of Ho borate (I) was determined by the
heavy-atom method. The analysis of the Puv w function
revealed Ho atoms in the special 000 position (the ori-
gin of the space group was fixed by the z coordinate).
The refinement of the thermal parameters with due
regard for the scale factor yielded Rhkl ~ 12.5%. The
remaining two B and four O atoms were localized from

Fhkl
2

hhl

C3v
6
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the difference Fourier syntheses. The balance of
valence strengths showed that the most “underloaded”
atom is O(1); therefore, it was assumed to be an OH
group, which allowed us to write the electrically neutral
formula of new borate I as Ho[B6O9(OH)3]. The least
square refinement (using F(hkl)) of the positional and
anisotropic thermal parameters with due regard for
anomalous scattering of the Mo radiation, the varia-
tions of the weighting scheme, and the correction for
absorption introduced by the DIFABS program [9]
resulted in the final values listed in Table 1. The struc-
ture model of compound II was confirmed by computa-
tions (Tables 1, 2, and 3). This indicates the isostructur-
ality of the compounds studied. A higher reliability fac-
tor for II is explained by the fact that crystal I had larger
dimensions and an anisotropic shape, which hindered
the correct allowance for absorption.

To determine the position of the H atom in com-
pound I, we calculated the residual electron-density
synthesis, which revealed a maximum with the coordi-
nates x = 0.24, y = 0.00, and z = 0.00 and the O(1)–H
distance 1.64 Å. This distance is larger than the conven-
tional O–H distance and indicates the cationic function
of hydrogen. The O(2)–H distance was 1.84 Å, which
may be interpreted as the existence of the second O–H
bond. The O(3)–H distance was 1.88 Å. The refinement
of the H position results in its displacement [x =
0.24(1) Å, y = –0.02(1) Å, z = – 0.028(3) Å] toward the
donor O(1) atom up to the attainment of the distance
1.1 Å, with the distance to the acceptor O(4) atom
being 1.84 and the bond angle O(1)–H···O(4) being
107.3(6)°. However, it should be indicated that the
refinement of the H positions in the structures of inor-
ganic compounds by X-ray diffraction data often
requires their displacement of H toward donor atoms,
and the atomic coordinates obtained from high-resolu-
4
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tion syntheses are often more correct than the refined
coordinates.

Powder diffraction patterns of the samples annealed
at 350 and 600°ë were the same as the patterns from

Table 2.  Coordinates of basis atoms and their thermal pa-
rameters for Ln[B6O9(OH)3], where Ln = Ho (I) and Gd (II)

Atom x/a y/b z/c Beq

Ho 0 0 0.00000 0.317(3)

Gd* 0 0 0 0.311(8)

O(1) 0.4322(5) 0.1612(4) 0.2577(2) 0.57(7)

0.425(1) 0.158(1) 0.2603(4) 0.5(2)

O(2) 0.4238(4) 0.0111(5) 0.8497(2) 0.58(7)

0.4243(9) 0.009(1) 0.8531(3) 0.6(2)

O(3) 0.0887(5) 0.2241(5) 0.0807(2) 0.59(7)

0.0915(9) 0.225(1) 0.0841(4) 0.5(1)

O(4) 0.1348(5) 0.3335(5) 0.2991(2) 0.63(7)

0.138(1) 0.334(1) 0.3015(3) 0.6(2)

B(1) 0.3701(6) 0.0401(7) 0.9148(2) 0.46(9)

0.370(1) 0.037(1) 0.9176(5) 0.4(1)

B(2) 0.2445(7) 0.0101(6) 0.1328(3) 0.54(10)

0.240(1) 0.007(1) 0.1355(5) 0.3(2)

* The second line in the entries indicates the atomic coordinates in
    the structure of Gd borate (II).
    T = exp[–1/4(B11a*2h2 + … + 2B23b*c*kl)],

    Beq = 1/3[B11a*2a2 + … + 2B23b*c*bccosα].
C

the as-grown crystals. The diffraction pattern of com-
pound I annealed at 650°ë showed worse crystallin-
ity—it contained some reflections corresponding to the
RbVF3- and TlGaF6-type phases (PDF database).

The X-ray diffraction study of a single crystal
annealed at 350°ë showed that the unit-cell parameters
correspond to the trigonal system and practically coin-
cide with the unit-cell parameters of the initial sample.
The refinement of the model obtained earlier in the
same sp. gr. R3c in the anisotropic approximation of
atomic thermal vibrations and with due regard for
absorption yielded the reliability factors R = 0.0326 and
Rw = 0.0336 at S = 0.98. The residual electron-density
synthesis had no peak corresponding to the position of
the H atom, but, proceeding from the principle of elec-
trical neutrality, the model of the structure of the new
borate requires the presence of this atom.

To establish the existence of the proton–oxygen
bonds in I and to determine the state of the crystals after
heating above tcr, we studied the corresponding IR spec-
tra of these crystals. The spectra were recorded on a
Specord-75 IR spectrophotometer by the method of
fine-disperse films on KBr substrates in the frequency
ranges of 3800–3000 and 1800–400 cm–1 (Fig. 3).

The valence vibrations of the B–O and B–O–B
bonds of condensed BO3 and BO4 ions are responsible
for the 1400–1250 and 1030–930 cm–1 bands (Fig. 3a).
These bands have the same intensities; therefore, it is
possible to assume that there are the same numbers of
triangular and tetrahedral groups in the structure. The
bands in the range 750–500 cm–1 are related to the
deformation vibrations of the BO3 and BO4 ions. In the
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Fig. 3. Infrared spectrum of (a) the as-grown Ho[B6O9(OH)3] crystal and (b) product of its decomposition.
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Table 3.  Main interatomic distances d between cations and anions in the Ln[B6O9(OH)3] structures, where Ln = Ho (I) and Gd (II)

Nine-vertex polyhedron

Bond d, Å Bond d, Å Bond d, Å

Ho–O(1) 2.359 × 3 Ho–O(2) 2.462 × 3 Ho–O(3) 2.341 × 3
2.368 × 3* 2.491 × 3 2.399 × 3

B(1) tetrahedron B(2) triangle

Bond d, Å Bond d, Å

B(1)–O(1) 1.451(13) B(2)–O(2) 1.37(3)

1.43(1) 1.37(1)

B(1)–O(2) 1.48(4) B(2)–O(3) 1.39(3)

1.47(2) 1.37(1)

B(1)–O(3) 1.506(10) B(2)–O(4) 1.369(10)

1.51(1) 1.37(1)

B(1)–O(4) 1.48(3)

1.48(2)

* The second line in the entries indicate the interatomic distances in the structure of Gd borate (II).
range of vibrations of O–H bonds in the borate spec-
trum, there is an intense band at 3350 cm–1 and a weak
band at 3450 cm–1 with the shoulder at 3480 cm–1. The
band at 1100 cm–1 corresponds to the in-plane deforma-
tion vibrations of B–OH, and the band at ~835 cm–1

corresponds to the out-of-plane deformation vibrations.
The existence of two additional weak bands in addition
to the main intense band of OH vibrations indicates a
certain misorientation of OH bonds. For crystals
annealed at temperatures slightly lower than 600°ë, the
band structure of the spectra and the band intensities
remain unchanged.

The IR spectrum of the product of decomposition of
Ho-containing borate is shown in Fig. 3b. It is charac-
teristic of holmium borate glass. A broad diffuse band
with the maximum at 1390 cm–1 corresponding to the
B–O vibrations of triangular ions is much less intense
than the band of BO4 vibrations at 1080 cm–1. The
vibration band of BO3 ions (~800 cm–1) is diffuse and
has a low intensity. The change of the triangular coor-
dination to the tetrahedral one is characteristic of borate
glasses with an elevated content of cations, e.g., of
alkali, alkali earth, or Pb ions [10]. The shift of the band
to higher frequencies due to vibrations of tetrahedral
ions can be explained by an increase in the electron-
density contribution of trivalent holmium to the B–O
bond because of the bond polarization.

RESULTS AND DISCUSSION

In crystal structures I and II, the Ln atoms (Ho, Gd)
are coordinated by nine oxygen atoms (Table 3) at dis-
tances of 2.5 Å, of which six atoms [three O(3) and
three O(1)] form a trigonal prism whose side faces are
centered by O(2) atoms. Such a polyhedron is called a
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
tricapped prism and is well known for Ln cations. The
Ln polyhedra in the structure are isolated. In accor-
dance with the ionic radii of Ho and Gd, the average
interatomic Gd–O distances in II are larger by 0.065 Å
than the corresponding Ho–O distances in I (2.419 and
2.354, respectively).

The anionic part of the structure consists of boron
atoms in the triangular and tetrahedral coordination.
Two independent polyhedra, the B(1) tetrahedron and
B(2) triangle, are multiplied by the symmetry elements
of the structure (threefold axes, Ò planes, and lattice
translations R) and share their vertices to form the
[B6O9(éç)3]3– framework. This framework consists of
hexagonal [B6O12(éç)3]9– rings with symmetry 3
formed by alternating tetrahedra and triangles, which
share the O(3) and O(4) vertices (altogether, three tetra-
hedra and three triangles). The tetrahedra and triangles
have a polar orientation along the Ò axis (Figs. 4a, 4b).
The polar rings are connected along the Ò axis via the
O(2) oxygen vertices and form the polar framework.
The O(1) atoms form dangling vertices of tetrahedra
looking outside the rings. Their charge is compensated
with B(1) and Ho and H atoms. The framework has six
z-levels: ~0.10, ~0.27, ~0.44, ~0.60, ~0.77 and ~0.94
(Fig. 4b), at which the rings are located. The framework
has through channels with ditrigonal section along the
Ò axis (Fig. 4c) whose centers are occupied by Ln
atoms. The channels are formed by the above rings
(narrower in the cross section) and three pairs of trian-
gles and tetrahedra that form open rings (wider in the
cross section) (Fig. 4a). In addition to the vertical chan-
nels, the framework also has narrower horizontal chan-
nels (Fig. 4b), which allows us to relate the compound
framework to the so-called zeolite-type open frame-
works. Figure 4d shows the structure in the pseudocu-
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~0.94
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~0.44

~0.27

~0.10
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O(1)

O(1)O(1)

a

b

(a)
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Fig. 4. Crystal structure of Ln[B6O9(OH)3] (Ln = Sm–Lu),B] compounds (Ln = Ho and Gd). One can see B tetrahedra and B tri-
angles; the Ho and H atoms are indicated by larger and smaller circles, respectively. (a) The ab projection showing two framework
levels along the Ò axis and boron-oxygen rings, (b) side projection of the framework showing six levels of the rings along the x axis,
(c) the ab projection, and (d) the trigonal unit cell in the pseudocubic setting.
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(c)
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Fig. 4. (Contd.)
bic setting. The Ho atoms satisfy the law of the cubic f
lattice, but the anionic boron–oxygen framework does
not obey the cubic symmetry.

According to the classification principles described
in [11], new Ln borates should be related to hexabo-
LLOGRAPHY REPORTS      Vol. 49      No. 4      2004
rates. Their structures are based on the hexaborate fun-
damental building blocks in the shape of rings, 6[3n +
3T] – [B6O12(éç)3]9–. For the first time, such a block
incorporated into the framework was revealed in the
structures of synthetic Li boracites of the composition
Li4[B7O12]Cl (Figs. 5a, 5b).
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a

b

c

a

b

c

(a)

(b)

Fig. 5. Crystal structure of the Li4[B7O12]Cl compound showing B tetrahedra and B triangles; Cl and Li atoms are shown by large
and small circles, respectively. (a) Structure fragment in the hexagonal setting, (b) side projection of the framework in a setting sim-
ilar to that shown in Fig. 4b, (c) the ab projection. 
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Fig. 5. (Contd.) 
New Ln hexaborates show obvious similarity to Li
boracites. As was indicated above, one can single out
pseudocubic parameters ~12 Å in their lattices. The
positions of Ln elements correspond to the positions of
Cl anions (Fig. 5c). The framework of the cubic γ phase
of Li boracite is somewhat different from the frame-
works of new borates—the through channels are
directed along the coordinate axes, and all the oxygen
vertices are shared by B tetrahedra and B triangles.
Thus, cubic boracite has no dangling vertices compen-
sated in I and II with protons. A higher cationic con-
ductivity with respect to Li is characteristic of the high-
temperature cubic γ phase formed from the tetragonal
and rhombohedral Li4[B7O12]Cl modifications as a
result of several successive displacive-type phase tran-
sitions [12].

As was indicated in [12], the structures of synthetic
Mg3[B7O13]Cl, Cr3[B7O13]Cl, and Ni3[B7O13]Cl borac-
ites have additional O atoms lying in the centers of
rings. As a result, the B triangles share the O vertex and
the B coordination increases to tetrahedral. If the block
topology is preserved, its formula can be written as
6[6T]. The block is connected with the framework via
the additional B triangle. Such a block was found not
only in synthetic but also in natural boracites—cubic,
trigonal, rhombohedral (congolite), and orthorhombic
(chambersite).
GRAPHY REPORTS      Vol. 49      No. 4      2004
There exists a third variety of the hexaborate block
with such a topology. In this block, three tetrahedra
share one common oxygen atom and three end B tetra-
hedra are replaced by B triangles, so that the block for-
mula is written as 6[3n + 3T]. This block is the basis of
the structures of a number of natural and synthetic
hexaborates [13, 14]. The existence of a large family of
minerals based on the 6[3n + 3T] block seems to be
associated with its high stability, rigidity, low charge,
and, thus, energetically advantageous structure.

Among the compounds with the open zeolite frame-
work, there is the well-known orthorhombic rubidium
beryllosilicate [15], in which one can single out six-
membered Rb2[Be2Si2O7] rings composed of three
(Si4+) tetrahedra and three ([Be3Si3O10.5]3–) triangles
similar to those observed in borates considered above,
in which these positions are occupied by Be2+ ions. In
other words, we encounter here the classical scheme of
heterovalent isomorphism. The framework projections
of both structures are similar. One can see wide chan-
nels centered either by Ho (in borate) or Rb (in beryllo-
silicate) atoms. The frameworks have different topolo-
gies because of the polar orientation of the B tetrahedra
in new borate, whereas, in beryllosilicates, Si tetrahe-
dra are oriented with their vertices alternatively up and
down and the Be triangles are in the planes of the trian-
gular bases of Si tetrahedra (Figs. 6a, 6b). Both struc-
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tures have different metrics and belong to different sys-
tems.

At the same time, the frameworks built by tetrahedra
in the structures of kalsilite and, especially, beryllonite
types (Fig. 7) [15] are topologically close to the frame-
work of compound I. It is possible to represent the
structural transformation of the framework of I (con-
sisting of tetrahedra and triangles) under pressure into
the purely tetrahedral framework. This transformation
should be accompanied by the compression of open
rings and small displacement of the O(1) atom (the dan-
gling vertex of the B tetrahedron) and its incorporation
into the coordination of the B triangle accompanied by
the transformation of triangles into tetrahedra (Fig. 4a).
In this case, the positions of Ln atoms and H cations are
preserved. The metrics of the unit cells of beryllonite
NaBePO4 and new borate correlate with one another.
Indeed, three parameters along the monoclinicity axis b
of beryllonite (7.818 Å) form the Ò parameter of new
borate; the pseudohexagonal axes Ò with the lattice
parameter ~8.18 Å (the a axis of beryllonite) can
readily be selected in the perpendicular plane.

CONCLUSIONS

The analysis of the temperature studies of the sec-
ond-harmonic generation, the structural data, and the
IR spectra shows their consistency and indicates the

b

a

b

c

Fig. 6. Crystal structure of the Rb2Be2Si2O7 compound.
(a) The ab projection and (b) the bÒ projection.

(a)

(b)
C

stability of new holmium and gadolinium borates over
wide temperature ranges with the preservation of H
atoms and their bonds mainly with O(1) atoms and, to
a lesser degree, also with O(2) atoms at temperatures up
to tcr = 610 (630)°C. The decomposition of the above
compounds at temperatures above tcr results in the for-
mation of borate glass in which the Ho concentration is
higher than its concentration in the as-grown crystal.
The Ho distribution in borate glass is close to the
arrangement of Rb and Tl atoms in the compounds indi-
cated above. This process is accompanied by a change
of the triangular coordination of B atoms to the tetrahe-
dral coordination.

The enhanced thermal vibrations of ç+ ions
revealed at 350°ë give rise to diffusion of the proton
position, but not to its removal. The indicated partial
proton delocalization at high temperatures manifests
itself in weakening of the second-harmonic generation
effect and in a rather high conductivity and a low acti-
vation energy. The first indications of the structural dis-
order of protons in the frameworks of HoB6O9(OH)3
and GdB6O9(OH)3 crystals require detailed study of
proton transport in larger single-crystal and polycrystal
samples.
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Abstract—New orthophosphates of potassium, zirconium, and rare earth elements K2LnZr(PO4)3 (Ln = Ce–
Yb, Y) that crystallize in a langbeinite structure (cubic system, sp. gr. P213, Z = 4) were prepared and investi-
gated by X-ray diffraction and IR spectroscopy. The structure of the K2PrZr(PO4)3 phosphate was refined by
the Rietveld method using neutron powder diffraction data (DN-2 time-of-flight diffractometer, Joint Institute
for Nuclear Research, Dubna). This structure is characterized by a mixed framework [PrZr(PO4)3] with large
cavities in which potassium cations are located. Pr3+ and Zr4+ cations are distributed in order over two indepen-
dent crystallographic positions. The limits of the incorporation of lanthanide cations into the anionic framework
in phosphates with sodium–zirconium phosphate and langbeinite structures are considered. © 2004 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Crystalline compounds with a framework structure
of the [T2(PO4)3]n– type (T are elements with an oxida-
tion state from +1 to +5, and n is the framework charge)
constitute a significant part of a large number of inor-
ganic orthophosphates. The number of structural types
into which compounds with these frameworks crystal-
lize is limited and is determined by the possible charac-
ter of the connection between discrete PO4 and TO6
polyhedra (the discreteness of these two kinds of poly-
hedra is due to the ratio T : P = 2 : 3 [1]) and depends
on the types of T cations and cations compensating the
framework charge, as well as on their combination in
the compound composition. Among the well-known
structural types, the sodium–zirconium phosphate
NaZr2(PO4)3 (NZP or NASICON) is most widespread;
however, depending on the nature of the cations and
their ratio, other structural types may also arise.

One of the structural modifications of the [T2(PO4)3]
framework is a cubic structure of langbeinite type. The
mineral langbeinite, K2Mg2(SO4)3, forms a family of
isostructural analogs—sulphates described by the gen-

eral formula (SO4)3, where M+ = K, Rb, Cs, Tl,
and NH4 and M2+ = Mg, Ca, Mn, Co, Ni, Zn, Cd,
and Fe.

At present, phosphates with a langbeinite structure
are only represented by separate compounds. In most of
them, the framework is formed by small multiply
charged Ti3+, Ti4+, Cr3+, and Fe3+ cations (although Y,
Gd [2], and Bi [3] cations, which are larger in size, can
also form the framework), while cavities are occupied
by large low-charge cations Na+, K+, and Ba2+ cations:

M2
+
M2

2+
1063-7745/04/4904- $26.00 © 20614
KTi2(PO4)3 [4], K1.75Ti2(PO4)3 [5], K2Ti2(PO4)3 [5, 6],
Na2CrTi(PO4)3, Na2FeTi(PO4)3 [7], KBaFe2(PO4)3 [8],
and KBaCr2(PO4)3 [9]. The number of similar represen-
tatives containing zirconium or hafnium is smaller (the
NZP type is more typical of them). In this case, along
with zirconium cations, yttrium, gadolinium, or bis-
muth cations of larger size are also involved in the
framework formation: K2YZr(PO4)3, K2GdZr(PO4)3
[2], and K2BiHf(PO4)3 [3].

The combination of zirconium and trivalent lan-
thanides is not typical of framework compounds with
relatively high concentrations of the latter: in phos-
phates with an NZP structure, the fraction of frame-
work positions occupied by lanthanides does not
exceed 0.5 for the smallest lanthanide cation and signif-
icantly decreases with an increase in the REE-cation
radius [10]. At the same time, the phosphate
K2GdZr(PO4)3 is known, and it crystallizes in a lang-
beinite structure. In this structure, REE cations occupy
half of the framework positions (for comparison, in
phosphates of the Na1 + xGdxZr2 – x(PO4)3 series, the
maximum gadolinium content is xmax = 0.3). The exist-
ence of the K2GdZr(PO4)3 phosphate suggests the exist-
ence of isoformula phosphates with a langbeinite struc-
ture containing other lanthanides. The synthesis and
properties of these compounds are of interest from the
point of view of crystal chemistry, since they supple-
ment ideas of the isomorphism of trivalent lanthanides
in framework structures and provide new information
on their anion-forming function in phosphates with a
framework structure.

The purpose of this study was to synthesize and
study phosphates of potassium, zirconium, and trivalent
004 MAIK “Nauka/Interperiodica”
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Table 1.  Unit-cell parameters of K2LnZr(PO4)3 phosphates

Ln RLn, Å Sample color a, Å V, Å3

Pr 0.99 Light green 10.3528(10) 1109.61

Sm 0.96 Light yellow 10.324(4) 1100(1)

Eu 0.95 White 10.328(4) 1101(1)

Gd 0.94 White 10.306(4) 1094(1)

Dy 0.91 White 10.323(4) 1100(1)

Ho 0.90 White 10.297(4) 1091(1)

Y 0.90 White 10.296(4) 1092(1)

Er 0.89 Light pink 10.271(4) 1083(1)

Tm 0.88 White 10.266(4) 1081(1)

Yb 0.87 White 10.266(4) 1081(1)

Lu 0.86 White 10.249(4) 1077(1)

Table 2.  Crystallographic data and refinement parameters
for the structure of the K2PrZr(PO4)3 phosphate

Space group P213

Z 4

d range, Å 0.75–3.79

Number of reflections 290

Rexp 2.45

Rwp 2.34

Rp 2.7

χ2 3.6

Number of refined parameters 39

Table 3.  Coordinates and thermal factors Biso of atoms in the structure of the K2PrZr(PO4)3 phosphate

Atom Position x y z Biso, Å2

K(1) 4a 0.0416(16) 0.0416(16) 0.0416(16) 3.5

K(2) 4a 0.2907(14) 0.2907(14) 0.2907(14) 3.5

Pr 4a 0.5705(12) 0.5705(12) 0.5705(12) 2.6

Zr 4a 0.8547(7) 0.8547(7) 0.8547(7) 2.5

P 12b 0.6243(9) 0.4658(6) 0.2582(10) 0.2

O(1) 12b 0.6682(10) 0.5180(7) 0.3801(11) 2.7

O(2) 12b 0.7352(10) 0.4658(7) 0.1629(9) 2.8

O(3) 12b 0.5883(9) 0.3281(6) 0.2615(7) 1.7

O(4) 12b 0.5217(7) 0.5566(8) 0.1975(9) 2.0
lanthanides with the general formula K2LnZr(PO4)3
(Ln = Ce–Lu) by X-ray powder diffraction and IR spec-
troscopy and refine the structure of the K2PrZr(PO4)3
phosphate by neutron powder diffraction.

EXPERIMENTAL

The samples were synthesized by the sol–gel
method. One-molar aqueous solutions of KCl, ZrOCl2,
Ln(NO3)3, and H3PO4 were used as starting reagents. In
the initial stage of synthesis, a calculated amount of
orthophosphoric acid was slowly added, with stirring,
to solutions of metal salts taken in a stoichiometric
ratio. The sol obtained was dried at 95°C, dispersed in
an agate mortar, and heated successively at 400, 600,
800, 1000, 1100, and 1200°C with intermediate disper-
sion in each stage.

The samples were investigated by X-ray powder dif-
fraction on a DRON-2.0 X-ray diffractometer using fil-
tered CoKα radiation (Fe filter, λ = 1.78892 Å) in the
range of reflection angles 2θ = 10°–60°. IR spectra
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
were recorded on a Specord-75IR spectrophotometer in
the range of wave numbers from 1400 to 400 cm–1

(samples were prepared by deposition of a fine-dis-
persed suspension in isopropyl alcohol on a KBr sub-
strate with subsequent drying).

The neutron diffraction pattern of a powder sample
placed in a cylindrical container (d = 10 mm) was mea-
sured at room temperature on a DN-2 time-of-flight dif-
fractometer installed in the base of the IBR-2 pulsed
fast neutron reactor (Joint Institute for Nuclear
Research, Dubna). The structure was refined by the
Rietveld method using the Mria program [11].

RESULTS AND DISCUSSION

The samples obtained were either white or colored
powders (Table 1). The X-ray diffraction patterns of all
the samples heated at 800°C contained reflections char-
acteristic of the K2YZr(PO4)3 phosphate, which crystal-
lizes in the langbeinite structure. In the case of lantha-
num-, cerium-, or neodymium-containing samples,
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along with the reflections from the langbeinite phase,
we also observed reflections from the double potas-
sium–zirconium phosphate KZr2(PO4)3 and the simple
phosphate of the corresponding lanthanide, LnPO4.
Further heating at 1000 and 1100°C resulted in an
increased crystallinity of the samples and made it pos-
sible to obtain them in the form of single-phase prod-
ucts (except for the La-, Ce-, and Nd-containing sam-
ples).

The X-ray diffraction data indicate that, at 1200°C,
partial decomposition of the compounds occurs with
formation of the simple phosphate LnPO4 and ZrO2.
Heating at 1300°C led to the complete decomposition
of the phosphates under study. Using the K2YZr(PO4)3
phosphate as a structural analog, we performed analyt-
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Fig. 1. IR spectra of the K2LnZr(PO4)3 phosphates: Ln =
(1) Pr, (2) Sm, (3) Eu, (4) Gd, (5) Dy, (6) Ho, (7) Y, (8) Er,
(9) Tm, (10) Yb, and (11) Lu.
C

ical indexing of the X-ray diffraction patterns of the
compounds obtained and calculated the unit-cell
parameters (Table 1).

The IR spectroscopy data indicates that the com-
pounds obtained belong to the orthophosphate class
(Fig. 1). The spectra of the compounds contain all the
absorption bands that can be predicted by the theory of
groups for phosphorus tetrahedra in a crystal lattice
with the sp. gr. P213. Asymmetric stretching and bend-
ing vibrations (ν3 and ν4) of phosphorus tetrahedra give
rise to three bands per each type in the frequency ranges
1120–990 and 640–560 cm–1, respectively; symmetric
stretching vibrations (ν1) give rise to one band (985–
960 cm–1); and symmetric stretching vibrations (ν2)
give rise to a weak band at ~440 cm–1. In going from the
praseodymium-containing phase to the lutetium-con-
taining one, a systematic shift of all the spectral bands
(especially bands due to stretching vibrations) to higher
frequencies is observed, which is related to the decrease
in the REE-cation radius. In the IR spectra of the com-
pounds containing REEs from Ho to Lu (Fig. 1, curves 6–
11), an additional shoulder (or a weak band) arises in
the region of bending ν4 vibrations at 545 cm–1.

The structure of the K2PrZr(PO4)3 phosphate was
refined using the neutron powder diffraction data. The
values of the coordinates of atoms in the K2YZr(PO4)3
phosphate reported in [8] were used as a starting model
to refine the structural characteristics. The unit-cell
parameters and the results of refining the structure of
K2PrZr(PO4)3 are listed in Table 2. The experimental
and theoretical profiles of the neutron diffraction pat-
tern of a sample under study and the difference curve,
normalized to the standard deviation at a point, are
shown in Fig. 2. The calculated positional and thermal
parameters, as well as the corresponding values of
interatomic distances and the bond angles, are listed in
Tables 3 and 4.

A fragment of the structure of K2PrZr(PO4)3 is
shown in Fig. 3. It is based on the mixed anionic frame-
work [PrZr(PO4)3] constructed from discrete PrO6,
ZrO6, and PO4 polyhedra. A characteristic fragment of
this framework is a group (dimer) formed of two octa-
hedra linked by three bridge tetrahedra {M2(PO4)3}2–.
Sharing oxygen atoms, these dimers form a three-
dimensional network with large cavities.

Pr3+ and Zr4+ cations are distributed over two non-
equivalent structural positions 4c, being located in dis-
torted MO6 octahedra. Potassium cations completely
occupy framework cavities and are coordinated by nine
oxygen atoms. In comparison with the analog, the com-
pound under study shows greater distortion of the phos-
phate tetrahedron, which is, apparently, due to the
incorporation of large praseodymium cations into the
framework and the corresponding significant strains.

In contrast to the isoformula phosphates
K2LnZr(PO4)3 and K2GdZr(PO4)3, for which the statis-
tical characters of distribution of zirconium cations and
the trivalent element have been ascertained [2],
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Fig. 2. Experimental (circles), theoretical (solid line), and difference (experiment minus calculation) profiles, normalized to the
standard deviation at point, of the neutron diffraction pattern of a K2PrZr(PO4)3 sample. Vertical bars are the calculated positions
of diffraction peaks.
praseodymium and zirconium cations are completely
ordered over the framework positions in the compound
under study. Such a distribution of these cations seems
to be very likely if we take into account the significant
difference in their nature (the electronic shell struc-
ture), as well as the significant difference in their sizes
(37.5%).

Thus, the data obtained indicate that all the phos-
phates of potassium, zirconium, and trivalent REE,
described by the general formula K2LnZr(PO4)3, are
crystallized in the cubic langbeinite structure. Lan-
thanide cations, along with zirconium ones, are
involved in the formation of the complex anionic
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
framework. Lanthanide cations have an octahedral
environment in LnO6 polyhedra, which is not typical of
them. It should be noted that, in the case of isoformula
sodium compounds Na2LnZr(PO4)3, only one phos-
phate with Ln = Yb (R = 0.87 Å), crystallizing in the
NZP structure [10], was obtained as a single-phase
product. Thus, the highest molar fraction of trivalent
lanthanides involved, along with zirconium, in the
framework formation is obtained for the potassium
compounds K2LnZr(PO4)3, which are formed for all
REEs independent of their ionic radii. Obviously, the
type of alkali compensating cations significantly affects
the character of the obtained structure.
Table 4.  Selected interatomic distances (Å) and bond angles (deg) in the structure of the K2PrZr(PO4)3 phosphate

K(1)O9 polyhedron K(2)O9 polyhedron PO4 tetrahedron

K(1)–O(1) 3.12 × 3 K(2)–O(2) 3.40 × 3 O(1)–P–O(2) 109.3

K(1)–O(2) 2.92 × 3 K(2)–O(3) 3.12 × 3 P–O(1) 1.45 O(1)–P–O(3) 114.9

K(1)–O(4) 2.68 × 3 K(2)–O(4) 3.11 × 3 P–O(2) 1.51 O(1)–P–O(4) 110.0

〈K–O〉 〈 2.91〉 〈 K–O〉 〈 3.21〉 P–O(3) 1.47 O(2)–P–O(3) 101.9

MO6 octahedron P–O(4) 1.55 O(2)–P–O(4) 104.8

Pr–O(1) 2.28 Zr–O(3) 2.20 〈P–O〉 〈 1.50〉 O(3)–P–O(5) 115.0

Pr–O(2) 2.26 Zr–O(4) 2.03 〈O–P–O〉 〈 109.3〉

〈Pr–O〉 〈 2.27〉 〈 Zr–O〉 〈 2.12〉
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Abstract—Analysis of the interatomic Ti–O distances in the asymmetric Ti–O···Ti bridges in the ferroelectric
barium titanate phases showed that the rhombohedral, orthorhombic, and tetragonal BaTiO3 phases consist of

Ti , TiO2, and TiO2+ groups, respectively. The groups show strong electrostatic interaction and, so, orient
along one direction, which gives rise to spontaneous polarization of these phases. In each phase, polarization
switching under the action of a rather strong electric field proceeds via transfer of the oxygen atoms from one
titanium atom to another with simultaneous change of the group orientation to the opposite one. © 2004 MAIK
“Nauka/Interperiodica”.

O3
2–
INTRODUCTION

Interatomic Ti–O bonds in some Ti–O–Ti bridges of
the ferroelectric barium titanate phases have different
lengths. However, the asymmetry of the Ti–O–Ti
bridges has not received enough attention from
researchers. The analysis made in the present study
showed that the ferroelectric barium titanate phases are
formed by groups of atoms possessing dipole moments.
These groups are bound to one another by strong elec-
trostatic forces giving rise to unidirectional orientations
of these groups and, thus, spontaneous polarization of
these phases.

ASYMMETRIC Ti–O···Ti BRIDGES

The structures of ferroelectric barium titanate
phases are rather well studied. The structures of rhom-
bohedral [1], orthorhombic [2], and tetragonal [3, 4]
phases were studied by neutron diffraction on barium
titanate single crystals. The structure of single crystals
of the tetragonal phase was also studied by the X-ray
diffraction method [4–7]. Finally, the structures of all
1063-7745/04/4904- $26.00 © 20619
the three BaTiO3 phases were studied by neutron dif-
fraction on polycrystals, with the structure of each
phase being determined at several temperatures [8].
Table 1 summarizes the data obtained in the above stud-
ies and shows that, despite some scatter in the inter-
atomic distances, the Ti–O distances in the ferroelectric
phases of barium titanate may be divided into three
groups—short distances ranging within 1.83–1.90 Å,
long distances ranging within 2.11–2.21 Å, and inter-
mediate distances ranging within 2.00–2.03 Å. The
intermediate bonds form symmetric Ti–O–Ti bridges
that are found in the orthorhombic and tetragonal
phases but absent in the rhombohedral phase. The short
and long bonds form only asymmetric Ti–O···Ti
bridges recorded in all the three phases.

To make the representation clear, we indicate short
bonds by solid line, as is usually done for chemical
bonds; the bonds with the intermediate lengths, by the
broken line and the long ones, by the dotted line. Then,
the nearest environment of a titanium atom (six bridg-
ing Ti–O–Ti bonds in the ferroelectric BaTiO3 phases)
has the form shown in Fig. 1. It is seen that each barium
O Ti
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Fig. 1. Schematic representation of the nearest environment of a titanium atom in (a) rhombohedral, (b) orthorhombic, and (c) tet-
ragonal phases.
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Table 1.  Ti–O bond lengths (d, Å) and their numbers (N) in ferroelectric barium titanate phases

Phase T, K

Type of bond

short intermediate long

d N d N d N

R[1] 132 1.890 3 – – 2.122 3

R[8] 130 1.874 3 – – 2.136 3

O[2] 263 1.90 2 2.00 2 2.11 2

O[8] 270 1.863 2 1.999 2 2.157 2

T[3] 295 1.877 1 2.001 4 2.166 1

T[4] 295 1.862 1 2.030 4 2.172 1

T[5] 298 1.860 1 2.002 4 2.174 1

T[7] 298 1.87 1 2.004 4 2.15 1

T[8] 300 1.829 1 2.000 4 2.206 1

Note: R indicates rhombohedral, O, orthorhombic, and T, tetragonal phases; the corresponding references are given in square brackets.

Table 2.  Interatomic d(M–X) and d(M···X) distances (in Å) and asymmetry coefficients Ka (in %) of the M–X···M bridges in
molecular crystals and barium and lead titanates

Type of
crystal Compound Type of bridge

Bridge
Ka Reference

d(M–X) d(M···X)

OM Hydrocarbons C–H···C 1.09 2.90 166 [9]

C–C···C 1.54 3.40 120 [9]

CH HIO3 O–H···O 0.99 1.78 80 [9]

H2O O–H···O 1.01 1.75 73 [9]

B(OH)3 O–H···O 1.02 1.70 67 [9]

SH NaHC2O4 · H2O O–H···O 1.036 1.537 48 [10]

KD2AsO4 O–D···O 1.03 1.49 45 [9]

KH2AsO4 O–H···O 1.06 1.46 38 [9]

KH2PO4 O–H···O 1.12 1.47 31 [11]

KH(HCO2)2 O–H···O 1.16 1.28 10 [10]

HCl · 2H2O O–H···O 1.19 1.28 8 [10]

HBr · 2H2O O–H···O 1.17 1.22 4 [10]

IM SbCl3 Sb–Cl···Sb 2.34 3.46 48 [11]

HgI2 Hg–I···Hg 2.62 3.51 44 [12]

I2 I–I···I 2.72 3.50 29 [11]

BT BaTiO3 R* Ti–O···Ti 1.874 2.136 14 [8]

BaTiO3 O* Ti–O···Ti 1.863 2.157 16 [8]

BaTiO3 T* Ti–O···Ti 1.829 2.206 21 [8]

PbTiO3 T* Ti–O···Ti 1.78 2.38 34 [11]

Note: OM—organic molecular crystals, CH—molecular crystals with conventional hydrogen bonds, SH—crystals with strong hydrogen
bonds, IM—inorganic molecular crystals, and BT—barium and lead titanates.
titanate phase has groups of atoms strongly bound with
one another and much weaker bounds with the atoms of
the neighboring groups. These are TiO3, TiO2, and TiO
groups, encountered in the rhombohedral, orthorhom-
bic, and tetragonal phases, respectively.
C

It is expedient to compare this structure with analo-
gous structures with intragroup bonds shorter than
intergroup ones. These structures have characteristic
asymmetric M–X···M bridges, where M–X is the short
distance between the atoms of one group and X···M is
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Table 3.  Interatomic Ti–O and O–H distances (in Å) in the free (df) and crystalline (db) states and their relative differences
(in %) for the corresponding compounds

Compound Molecule
Distance Difference

df db (db – df)/df

BaTiO3–T TiO 1.620* [14] 1.829 [8] 13

BaTiO3–O TiO2 1.62** [14] 1.863 [8] 15

ROH H2O 0.9567* [14] 0.97–1.16*** [10, 15] 1.5–22

      * Spectroscopic study in the gas phase.
    ** Study by the molecular beam.
  *** Neutron diffraction study of crystals with hydrogen O–H···O bonds.
the long distance between the atoms of the neighboring
groups. To compare the compounds having different
compositions and structures, it is expedient to introduce
asymmetry coefficient Ka for a M–X···M bridge, which
is defined as the ratio of the difference between the
interatomic distances in the asymmetric å–ï···å
bridge to the short interatomic distance in percentage
points

Ka = [d(M···X) – d(M – X)]/d(M – X).

Table 2 lists the interatomic distances and the asymme-
try coefficients for å–ï···å bridges in barium and lead
titanates and for crystals of four types—(1) molecular
crystals with van der Waals bonds, (2, 3) crystals with
conventional and strong intermolecular hydrogen
bonds, and (4) crystals of inorganic molecular com-
pounds. It is seen that crystals of type 1 have the asym-
metry coefficient exceeding 100%; crystals of type 2,
the asymmetry coefficient ranging within 100–50%;
crystals of type 3, the asymmetry coefficient ranging
within 50–4%; and the crystals of type 4, the asymme-
try coefficient ranging within 48–29%. The close max-
imum values of the asymmetry coefficients for crystals
of types 3 and 4 indicate that inorganic compounds of
type 4 are molecular crystals with strong intermolecu-
lar bonds. This confirms the conclusion about strong
intermolecular interactions in crystalline I2 [11], which
is based on the fact that the intermolecular distance
between the iodine atoms from neighboring molecules
is less than the sum of the van der Waals radii of iodine
atoms. The asymmetry coefficients in barium and lead
titanates range within 34–14%, i.e., they lie in the same
ranges as the asymmetry coefficients of the molecular
crystals of inorganic compounds. This allows us to
draw the conclusion that the strong interaction between
the atomic groups in barium and lead titanate crystals is
similar to the intermolecular interaction in molecular
crystals with strong hydrogen bonds and in molecular
crystals of the inorganic compounds considered above.

The strong interaction between the atomic groups in
the barium titanate phases can be interpreted based on
the concept of the repulsion of electron pairs of the
valence shell [13]. According to this concept, an atom
in a compound has a core consisting of a nucleus and
the electrons of the inner shells and binding electrons
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
and lone electron pairs of the external valence shell. If
the atomic core is sufficiently large (as in the case of
titanium, in which the core radius equals 0.68 Å), then
this core is weakly screened by the binding electron
pairs. As a result, the positively charged atomic core
attracts the negatively charged lone electron pair of the
oxygen atom from the neighboring atomic group,
which results in strong bonding between the groups,
mainly of an electrostatic nature.

It is important to note that the compounds with
strong hydrogen bonds include such well-known ferro-
electrics indicated in Table 2 as potassium dihydro-
phosphate, dihydroarsenate, and dideuteroarsenate

with H2P , H2As  and D2As  groups bound by
strong hydrogen bonds. This shows the close structural
relation of the barium titanate phases and the above fer-
roelectrics—all these structures are formed by strongly
interacting atomic groups.

TiO AND TiO2 MOLECULES 
IN THE ISOLATED STATE AND IN CRYSTALS

As is well known, the transition from free molecules
to molecules related by hydrogen bonds is accompa-
nied by a considerable decrease in the frequency of the
stretching vibrations of the intramolecular O–H bond
and a certain increase in its bond length. Analogous

O4
–

O4
–

O4
–

Table 4.  Frequencies of stretching vibrations of the Ti–O
and O–H bonds in the free (νf) and crystalline (νb) states

Compound Phase Mole-
cule

Frequency, cm–1
(νf – νb)/νf,

%νf νb

BaTiO3 T TiO 1008 725 26

BaTiO3 O TiO2 962 720 25

ROH [15] H2O 3650 3000–2000 18–45

Note: The data for the TiO molecules (gas phase) and TiO2 (iso-
lated molecules in the neon matrix) are borrowed from [14];
the data for the tetragonal and orthorhombic phases are bor-
rowed from [16] and [17], respectively.
4
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effects should also be expected for the barium titanate
phases if these phases, like the compounds with hydro-
gen bonds, are formed by strongly interacting groups.
Indeed, Tables 3 and 4 confirm the existence of these
effects in the barium titanate phases. These effects
show good qualitative and quantitative agreement with
the analogous effects in molecular compounds with
hydrogen bonds.

SYMMETRIC Ti–O···Ti BRIDGES 

Up to now, we have restricted our consideration to
asymmetric Ti–O···Ti bridges observed in all the three
ferroelectric BaTiO3 phases. However, the orthorhom-
bic and tetragonal phases have, in addition to asymmet-
ric bridges, also symmetric Ti···O···Ti bridges. To
understand the difference between the asymmetric and
symmetric bridges, one has to consider the thermal
motion of oxygen atoms in these bridges. Table 5 lists
the Ueq values equal to one third of the spur of the tensor
of the anisotropic thermal vibration for an oxygen
atom. Each Ueq value is averaged over the temperatures
at which the structure determinations of these phases
were made. Comparing the Ueq values for oxygen
atoms in the asymmetric and symmetric bridges of the
orthorhombic and tetragonal phases, we see that oxy-
gen atoms in the symmetric bridges of both phases
vibrate with a higher amplitude than in the asymmetric
bridges.1 

Above, we established the analogy between the bar-
ium titanate phases and the structures of compounds
with strong hydrogen bonding; therefore, we may also
expect that the potential energy of an oxygen atom in
the Ti–O···Ti bridge will be close to the potential
energy of a proton in the hydrogen O–H···O bridge. In
other words, the potential energy of an oxygen atom is
the symmetric W-like curve with two minima separated
by a low potential barrier [10]. The oxygen atom in an
asymmetric bridge is located in the vicinity of one of
the Ti atoms. In the rhombohedral phase, which has
only asymmetric bridges, three oxygen atoms are
located in the vicinity of each titanium atom. At the
temperature of the transition from the rhombohedral to

1 Negative Ueq values show that the determination of these quanti-
ties was insufficiently accurate.

Table 5.  Parameters of atomic thermal vibrations Ueq (Å2,
×103) in the barium titanate phases [8]

Phase Ueq (Ba) Ueq (Ti) Ueq (Oas) Ueq (Os)

R –0.6 2.8 2.6

O 1.0 5.0 3.4 5.3

T 3.4 5.9 –1.7 8.7

Note: The Oas and Os are oxygen atoms in the asymmetric and
symmetric Ti–O–Ti bridges, respectively. R indicates rhom-
bohedral, O indicates orthorhombic, and T indicates tetrag-
onal phases.
C

the orthorhombic phase, one of the three oxygen atoms
in the potential well starts jumping between the neigh-
boring wells. Such a behavior of the oxygen atom is
equivalent to the bridge symmetrization and an increase
in the amplitude of its thermal vibrations. In the transi-
tion from the orthorhombic to the tetragonal phase, one
more oxygen atom starts jumping between the neigh-
boring wells, which is also equivalent to the bridge
symmetrization and an increase in the amplitude of its
thermal vibrations. Thus, in the vicinity of a titanium
atom, one can always find one, two, and three oxygen
atoms in the tetragonal, orthorhombic, and rhombohedral
phases, respectively. Moreover, in the orthorhombic and
tetragonal phases, there are also one or two jumping
oxygen atoms that can be found in the vicinity of the
given titanium atom only for a certain period of time.

The structure of the barium titanate phases consist-
ing of atomic groups and the existence of two types of
oxygen atoms should also be reflected in the chemical
formulas of barium titanate, which should be written as
Ba(TiO3) for the rhombohedral phase, Ba(TiO2)O for
the orthorhombic phase, and Ba(TiO)O2 for the tetrag-
onal phase. The oxygen atoms from the groups are indi-
cated in brackets, i.e., they can be found in the vicinity
of the titanium atom at all times, whereas the oxygen
atoms outside the brackets can be found alternatively
either in the vicinity of one or another titanium atom.

RHOMBOHEDRAL PHASE

Rhombohedral barium titanate is described by the
sp. gr. R3m, Z = 1. The unit-cell parameters of the
rhombohedral unit cell at 132 K are a = 4.004 Å and
α = 89.87° [1]; the parameters of the corresponding
hexagonal unit cell are a = 5.649 Å and c = 6.942 Å
[18]. The structure of the rhombohedral barium titanate

is shown in Fig. 2 [1]. A complex Ti  anion has the
shape of a pyramid with the OTiO angle equal to
95.23°.

In Fig. 2, a titanium atom located at the z axis lies
above three oxygen atoms strongly bound to it. This
titanium is bound to three titanium atoms of the three
complex anions lying below the initial one via these
three oxygen atoms. In turn, this titanium atom is
weakly bound to three oxygen atoms of the above

Ti  anions. As a result, the structure has a three-

dimensional framework consisting of Ti  anions
bound by strong electrostatic interactions. The frame-
work voids are occupied by Ba2+ cations, which neu-
tralize the negative charge of the framework.

Since each complex anion has a dipole moment
associated with the polarity of the titanium–oxygen
bond, the equal orientations of these anions result in
spontaneous polarization of the crystal. Thus, sponta-
neous polarization is the result of the equivalent orien-

tations of the complex Ti  anions with dipole

O3
2–

O3
2–

O3
2–

O3
2–
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moments and is a result of strong electrostatic interac-
tion giving rise to the parallel orientation of all complex

Ti  anions along the threefold axis.

ORTHORHOMBIC PHASE

Orthorhombic barium titanate is described by the
sp. gr. Amm2, Z = 2. The unit cell parameters at 263 K
are a = 3.990 Å, b = 5.669 Å, and c = 5.682 Å [2]. The
structure of the orthorhombic phase [2] is shown in
Fig. 3, where TiO2 groups are indicated. A bent TiO2
group has the OTiO angle equal to 94.9°. 

Each TiO2 group is bound by Ti···O bonds to four
neighboring in-plane TiO2 groups. The O atoms partic-
ipating in different bridges are located above and below
the Ti atoms and, together with the Ba2+ cations, form
the planes alternating with the planes of TiO2 groups.
Spontaneous polarization of the orthorhombic phase
along the c axis is explained by the same orientation of
the TiO2 groups with dipole moments along the Ò axis
associated with the interactions between these groups.

TETRAGONAL PHASE

Tetragonal barium titanate is described by the
sp. gr. P4mm, Z = 1. The unit-cell parameters deter-
mined at 295 K are a = 3.99095 Å and c = 4.0352 Å [4].
The structure of the tetragonal phase [4] is shown in
Fig. 4. Each of the [TiO]2+ groups is bound by Ti···O

O3
2–

0

‡

0

00

2/3

1/31/3

2/3 2/3

1/3

Fig. 2. Structure of the rhombohedral barium titanate phase
projected onto the (001) plane of the hexagonal unit cell.
Small filled circles indicate titanium atoms; medium white
ones, oxygen atoms; and large empty ones, barium atoms.
Solid lines show the intragroup and broken lines the inter-
group titanium–oxygen bonds. The numbers indicate the
heights of the titanium atoms in fractions of parameter Ò of
the hexagonal unit cell.
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bonds with two other similar groups. Thus, the linear
chains are formed along the Ò axis. Each chain is
located inside a channel built by symmetry-related oxy-
gen atoms and Ba2+ cations and having the square cross
section. The same orientation of the dipole [TiO]2+

groups along the Ò axis is explained by the forces acting
between the groups along this axis. Similar chains
formed by the [TiO]2+ groups whose Ti and O atoms are
bound by strong covalent bonds are also revealed in
another ferroelectric—KTiOPO4 [19]. The ferroelec-
tric properties of the latter seem to be associated with
these chains. Linear chains consisting of diatomic TiO
groups, with the atoms being related by covalent bonds,
were also found in the narsarsukite, a silicate of the
composition Na2TiOSi4O10 [20]. 

SWITCHING OF POLARIZATION 
IN THE PHASES

As was indicated above, the potential energy of oxy-
gen atoms in the Ti–O···Ti bridge is represented by a

b

c

(a)

(b)

Fig. 3. Structure of the orthorhombic phase of barium titan-
ate projected onto the (100) plane. (a) Arrangement of TiO2
groups in the yz plane at a height x = 1/2 and (b) arrange-
ment of jumping oxygen atoms and Ba2+ cations in the
same plane at the height x = 0. For notation, see Fig. 2.



624 SIDOROV
symmetric W-like curve with two minima separated by
a low potential barrier. The application of an electric
field directed opposite to the spontaneous-polarization
vector decreases the height of the low barrier, and, if the
field intensity is sufficiently high, the oxygen atom is
detached from one titanium atom and is attached to
another titanium atom. As a result, the intragroup bonds
are transformed into the intergroup ones and the inter-
group bonds are transformed into the intragroup ones,
which results in the reversal of the sign of spontaneous
polarization, i.e., polarization switching.

As is well known, the crystalline potassium niobate
phases, KNbO3, have structures similar to the structure
of the corresponding barium titanate phases [21–23].
Using arguments similar to those considered for barium
titanate, we may assume that the potassium niobate

‡

Ò

0 1/2 0

0

1/2 1/2

0 01/2

1/2

Fig. 4. Structure of the tetragonal barium titanate phase pro-
jected onto the (010) plane. The numbers indicate the
heights of the atoms in fractions of unit-cell parameter b.
For notation see Fig. 2.
C

phases are also formed by the Nb , Nb , and
NbO3+ groups in the rhombohedral, orthorhombic, and
tetragonal phases, respectively.

CONCLUSIONS
Comparing the relative differences between the long

and short Ti–O distances in the asymmetric Ti–O···Ti
bridges revealed in all the ferroelectric BaTiO3 phases
with relative differences between the O···ç and O–H
bonds in the asymmetric O−H···O bridges in com-
pounds with strong hydrogen bonds, we came to the
conclusion that the ferroelectric BaTiO3 phases may be
described in a way similar to phases consisting of

Ti , TiO2, and TiO2+ groups in the rhombohedral,
orthorhombic, and tetragonal phases, respectively.
These groups are bound by strong intergroup bonds and
form a three-dimensional framework in the rhombohe-
dral phase, layers in the orthorhombic phase, and
chains in the tetragonal phase. Strong interactions
between the groups orient these groups in one direction
in each phase, and, since each of these groups has a
dipole moment (because the titanium–oxygen bonds
are polar), each phase shows spontaneous polarization.
In an intense electric field opposite to the direction of
the spontaneous-polarization vector, the oxygen atom
(located between two titanium atoms) is detached from
one titanium and attached to another titanium atom
because of a low barrier between these titanium atoms.
This results in the transformation of the intragroup
bonds to intergroup ones and vice versa and the change
of the group orientation to the opposite one, i.e., switch-
ing of the crystal polarization. The above description of
the barium and potassium niobate structures reveals
their similarity to the structures of other ferroelectrics,
e.g., potassium dihydrophosphate, which also consists
of strongly bound atomic groups, which are related by
weaker bonds.
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Abstract—Perovskites Bi0.5D0.5MnO3 (D = Pb, Ba) were prepared under high pressure (4 GPa) at 1200–
1300°C. According to the X-ray diffraction data, crystalline Bi0.5Pb0.5MnO3 has a tetragonal unit cell with the
parameters a = 3.940 Å and c = 3.800 Å, whereas Bi0.5Ba0.5MnO3 crystals are cubic with a = 3.940 Å. It is
concluded from magnetic studies that lead-containing manganite is an antiferromagnet with TN = 120 K,
whereas Bi0.5Ba0.5MnO3 is a spin glass with spin-freezing temperature Tf = 38 K. Both compounds are decom-
posed upon heating in air at temperatures above 500°C. With the use of synthesis in air, Bi0.5Ca0.5 – xDxMnO3
solid solutions with x as high as 0.25 were obtained. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The manganites Bi1 − xDxMnO3 (D = Ca, Sr) have
attracted much of the attention of researchers due to the
effect of charge ordering, which manifests itself at
unusually high temperatures [1]. Charge ordering is a
phenomenon of crucial importance for understanding
the relationship between the magnetic and electrical
properties of manganites, as well as the effect of giant
magnetoresistance, which, in some cases, manifests
itself as an effect of “melting” of the charge-ordered
state in an external magnetic field. In this case, the sam-
ple resistivity may change by seven to nine orders of
magnitude in an external field of 3–4 T [2]. It is well
known that the charge ordering in the rare-earth manga-
nites R0.5Sr0.5MnO3 and R0.5Ca0.5MnO3 (R is a rare-
earth ion) occurs at temperatures of 150–250 K as a
first-order phase transition. At an ordering of Mn3+ and
Mn4+ ions in a 1 : 1 ratio, the stripes containing Mn3+

and Mn4+ ions alternate along the a axis simultaneously

with the ordering of the  orbitals of Mn3+ ions [3].
Models describing the commensurate ordering of Mn3+

and Mn4+ stripes were also proposed for x = 2/3 and 3/4
[4]. For x = 2/3, one Mn3+ stripe alternates with two
Mn4+ stripes, whereas, for x = 3/4, one Mn3+ stripe
alternates with three Mn4+ stripes. Incommensurate
ordering of these stripes has been observed for irratio-
nal values of x [4].

Recently, it has been established by the neutron- and
electron-diffraction methods that the charge-ordering
temperatures for the bismuth manganites
Bi0.5Ca0.5MnO3 and Bi0.5Sr0.5MnO3 are 335 and 500 K,
respectively; i.e., much higher than the corresponding
temperatures for rare-earth manganites [1]. For
Bi0.5Sr0.5MnO3, a model of charge ordering was pro-

dz
2
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posed, in which two stripes of Mn3+ ions alternate with
two Mn4+ stripes [5]. This is one of the possible reasons
for the high stability of the charge-ordered phase.
Anomalous magnetic properties are another specific
feature of bismuth-containing manganites. It is well
known that lanthanide manganites are antiferromag-
nets, whereas bismuth manganite is a ferromagnet [6–
8]. The substitution of lanthanide ions by rare-earth
ions leads to the appearance of magnetic properties,
while a similar substitution for systems based on bis-
muth manganites destroys ferromagnetic ordering. To
better understand the anomalous properties of bismuth
manganites, the properties of new perovskite-like sys-
tems based on BiMnO3 should be studied. In this paper,
we report the preparation of new Bi0.5D0.5MnO3 (D =
Pb2+, Ba2+) compounds with the use of a high-pressure
technique.

EXPERIMENTAL

Samples of Bi0.5DxCa0.5 – xMnO3 solid solutions (D =
Pb2+ or Ba2+, x ≤ 0.25) were prepared using conven-
tional ceramic technology at t = 900–1100°C. The tem-
perature of synthesis decreased with increasing con-
tents of Ba and Pb, which is, obviously, caused by the
decrease in the stability in air of the solid solutions
under study. We failed to prepare single-phase samples
with x > 0.25 in air despite a wide variety of the synthe-
sis conditions. The Bi0.5Ba0.5MnO3 and Bi0.5Pb0.5MnO3
samples were prepared by synthesis under a high pres-
sure of 4 GPa at a temperature near 1200°C. X-ray dif-
fraction analysis was performed on a DRON-3 diffrac-
tometer (CrKα radiation, graphite monochromator).
The error in determining the unit-cell parameters did
not exceed ±0.002 Å. The magnetization was measured
on a QI-3001 commercial magnetometer in the temper-
004 MAIK “Nauka/Interperiodica”
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Fig. 1. X-ray powder diffraction patterns of the Bi0.5Ca0.5 – xPbxMnO3 samples, measured at room temperature.
ature range of 4.2–300 K. Resistivity was measured
using a standard four-probe method on 2 × 2 × 10 mm3

samples. The contacts were formed by ultrasonic depo-
sition of indium.

RESULTS AND DISCUSSION

X-ray diffraction analysis showed that
Bi0.5Ca0.5MnO3 has a monoclinically distorted unit cell
(a = 3.866 Å, b = 3.764 Å, c = 3.897 Å, and β = 90.5°),
which corresponds to the data in [9]. The substitution of
calcium by lead leads to a gradual stabilization of tet-
ALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
ragonal distortions (sp. gr. P4/mmm). The samples of
Bi0.5Ca0.5Pb0.15MnO3 and Bi0.5Ca0.25Pb0.25MnO3 had a
tetragonally distorted unit cell (a = 3.865 Å, c = 3.805 Å,
and a/c = 1.016 and a = 3.929 Å, c = 3.795 Å, and a/c =
1.035, respectively). The sample of Bi0.5Pb0.5MnO3,
which was prepared under high pressure, showed a fur-
ther increase in the tetragonal distortions: a = 3.940 Å,
c = 3.800 Å, a/c = 1.037 (Fig. 1). The sample of
Bi0.5Ca0.25Ba0.25MnO3, which was prepared in air, was
characterized by broad lines in its X-ray diffraction pat-
tern. The value of the unit-cell parameter a = 3.868 Å
was obtained, if we assume a pseudocubic symmetry.
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The Bi0.5Ba0.5MnO3 sample that was grown under high
pressure showed narrow unsplit lines, which unambig-
uously indicated a cubic symmetry with the unit-cell
parameter a = 3.940 Å. The substitution of Ca2+ ions by
either Ba2+ or Pb2+ ions leads to a significant increase in
the unit-cell volume, which is caused by the much
larger ionic radii of Pb2+ and Ba2+ in comparison with
Ca2+. Indeed, according to [10], the ionic radius of Ca2+

is 1.48 Å for the coordination number 12, whereas the
ionic radii of Pb2+ and Ba2+ are 1.63 and 1.75 Å, respec-
tively.

The temperature dependences of the magnetization
of Bi0.5Ca0.5 – xPbxMnO3 manganites, measured after
either cooling in a magnetic field (field cooling (FC)) or
cooling in the absence of a field (zero-field cooling
(ZFC)), are shown in Fig. 2. For the Bi0.5Ca0.5MnO3
sample, the FC dependence has a clearly pronounced
peak near 140 K. At T = 270 K, the magnetization
begins to increase again with increasing temperature,
which indicates a phase transition occurring somewhat
above room temperature. According to [1], this transi-
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Fig. 2. Temperature dependences of magnetization for the
Bi0.5Pb0.5MnO3 samples (filled and open symbols stand for
the FC and ZFC magnetizations, respectively).
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tion is due to a charge ordering at T = 335 K. The sub-
stitution of Ca2+ ions by Pb2+ ions results in the disap-
pearance of the magnetization peak near 140 K. How-
ever, a slightly pronounced anomalous behavior of
magnetization was observed near TN = 120 K. The ZFC
dependences show a peak near Tf = 40 K. Below this
temperature, the ZFC and FC dependences of magneti-
zation diverge even in rather high magnetic fields
(about 10 kOe), which suggests a high magnetic anisot-
ropy. For the Bi0.5Pb0.5MnO3 sample, the FC and ZFC
dependences almost coincide. Near 120 K, a break is
observed in the FC and ZFC curves. It should be noted
that the Bi0.5Ca0.35Pb0.15MnO3 sample also showed
anomalous FC dependence behavior near room temper-
ature (caused by the charge ordering): the magnetiza-
tion increased with increasing temperature (Fig. 2).
Unfortunately, we could not study the behavior of the
magnetization above 300 K for technical reasons. The
field dependences of magnetization are almost linear at
liquid-helium temperatures (Fig. 3), which is character-
istic of paramagnets and antiferromagnets. However, a
very low spontaneous magnetization (about 0.01 µB per
formula unit) was observed for Bi0.5Ca0.25Pb0.25MnO3.

The substitution of calcium by barium ions in the
Bi0.5Ca0.5 – xBaxMnO3 system led to the complete disap-
pearance of the anomalous magnetization behavior
near both 140 K and room temperature (Fig. 4). How-
ever, the peak of magnetic susceptibility at Tf = 38 K
observed upon heating in a magnetic field of 100 Oe
after zero-field cooling is much more clearly pro-
nounced than in the case of the lead system. As for lead-
containing perovskites, the difference between the ZFC
and FC curves below 40 K is retained in high fields,
which suggests a high magnetic anisotropy. The depen-
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Fig. 3. Field dependences of magnetization at T = 7 K for
Bi0.5Ca0.5 – xPbxMnO3 (x = 0.25, 0.5) samples, measured
after cooling in field H = 15 kOe.
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dences of magnetization on an external magnetic field
at T = 7 K are nonlinear in the field range 0–15 kOe.

However, it is very difficult to evaluate the sponta-
neous magnetization because of the high magnetic
anisotropy. Figure 5 shows a minor hysteresis loop for
the Bi0.5Ca0.25Ba0.25MnO3 sample obtained after cool-
ing from room temperature in field H = 5 kOe. It turned
out that a field of 15 kOe is too weak to induce magne-
tization reversal in the sample. It should be noted that
the magnetic susceptibility at low temperatures
increases with increasing the barium content, whereas,
at high temperatures, the compounds with a high cal-
cium content have a high susceptibility.

The Bi0.5D0.5MnO3 (D = Pb, Ba) samples have a
rather high resistivity (about 102 Ω cm) at room temper-
ature. With a decrease in temperature, the resistivity
increases sharply, as it does in the case of semiconduc-
tors.

At the current time, compounds doped with calcium
and strontium are the most studied manganites. The
reason for this is the existence of complete series of
both RMnO3–CaMnO3 and RMnO3–SrMnO3 solid
solutions, as well as a thoroughly developed technique
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Fig. 4. Temperature dependences of magnetization for the
Bi0.5Ca0.5 – xBaxMnO3 samples (filled and open symbols
stand for the FC and ZFC magnetizations, respectively).
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of preparing high-quality samples. The magnetic and
electric properties of lead-doped manganites have been
studied much less. It is well known that lead ions may
substitute for lanthanide ions under synthesis at normal
pressure, forming R1 − xRbxMnO3 (R  = La, Pr, Nd) solid
solutions, at least, up to x = 0.45 [11]. The compounds
with x = 0.45 are ferromagnetic metals below the Curie
temperature. The manganites with R = Sm and Eu show
properties intermediate between those of ferromagnets
and spin glasses, whereas the samples with heavy rare-
earth ions are spin glasses [11]. Apparently, the region of
existence of solid solutions becomes somewhat nar-
rowed with decreasing the lanthanide ionic radius. The
main magnetic state of Bi0.5Pb0.5MnO3 appears to be
antiferromagnetic, which sharply distinguishes the prop-
erties of this compound from those of the other com-
pounds in the R0.5Pb0.5MnO3 series. The crystal struc-
tures also strongly differ, since the R1 − xPbxMnO3 sam-

ples have, as a rule, either O-orthorhombic (a < c/  < b)
or rhombohedral distortions. The Néel temperature
seems to be approximately 120 K, where a slightly pro-
nounced anomalous magnetization behavior was
observed. In our opinion, the appearance of very weak
spontaneous magnetization in Bi0.5Ca0.5 – xPbxMnO3

solid solutions below 40 K is due to a chemical inhomo-
geneity of these compounds. Fragments of these com-
pounds containing an excess of bismuth ions appear to
reveal spin-glass properties. It is well known that
BiMnO3 is a ferromagnet, but doping with alkaline-
earth Ca and Sr ions suppresses the ferromagnetic com-
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Fig. 5. A minor hysteresis loop for Bi0.5Ca0.25Ba0.25MnO3,
obtained after cooling in field H = 15 kOe.
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ponent and stabilizes the spin-glass properties until a
charge-ordered stripe structure begins to form.

It is interesting to note that the tetragonal distortion
in Bi0.5Pb0.5MnO3 exceeds that in Bi0.5Sr0.5MnO3.
Indeed, the ratio c/a = 1.03 and 1.037 for
Bi0.5Sr0.5MnO3 and Bi0.5Pb0.5MnO3, respectively.
Therefore, the transition into the cubic phase for the
lead-containing compound should occur at a higher
temperature as compared to the strontium-containing
one. The transition from the tetragonal to the cubic
phase at 500 K in Bi0.5Sr0.5MnO3 is related to charge
ordering. This solid solution showed the highest charge
ordering temperature among transition-metal oxides.
The similarity of the unit-cell parameters of
Bi0.5Sr0.5MnO3 and Bi0.5Pb0.5MnO3 suggests that the
charge ordering also occurs in Bi0.5Pb0.5MnO3, and the
temperature of the charge-order–disorder transition in
the lead compound should be even higher than in the
strontium one.

In barium-doped manganites R1 − xBaxMnO3, the
transitions from the antiferromagnetic to the ferromag-
netic state (R = La, Pr, Nd; x ~ 0.1) and direct transitions
from the antiferromagnetic state to the spin-glass state
(R = Sm, Eu, Gd, Tb; x ~ 0.1) were observed [12]. It is
noteworthy that the compounds with a high barium
content (x > 0.4) have a cubic structure despite the large
difference in the ionic radii of lanthanides and barium.
In contrast to Bi0.5Pb0.5MnO3, the crystal structure and
magnetic properties of Bi0.5Ba0.5MnO3, obviously, do
not differ radically from the corresponding characteris-
tics of R0.5Ba0.5MnO3 solid solutions, where R = Sm,
Eu, or a heavy rare-earth element. A long-range order
in Bi0.5Ba0.5MnO3 appears to be absent, as in the afore-
mentioned lanthanides, and the spin-glass component
shows up at temperatures below 40 K. It should be
noted that Tf ~ 40 K is the characteristic temperature at
which a spin-glass-like state evolves in manganites
independently of the type of distortions of the crystal
structure and the ratio of the average ionic radii of the
ions occupying positions A and B in the perovskite
structure ABO3. At present, the difference in the radii of
ions in A positions is considered to be of critical impor-
tance for the magnetic properties of manganites. The
magnetic state of manganites can be predicted to some
extent by the formula

where xi is the number of ith ions in the A sublattice and
ri is the corresponding ionic radius [13, 14]. The critical
temperature TC decreases with decreasing σ2. The
greater the difference between the ionic radii, the more
likely the spin-glass-like magnetic state is. It seems that
the large difference in ionic radii also leads to the stabi-

σ2
xiri

2
rA〈 〉 2

,–∑=
C

lization of the cubic structure, since the R0.5Ba0.5MnO3
(R = Sm, Eu, Gd, Tb) manganites have a cubic structure
[15]. In the case of bismuth compounds, apart from the
value of the ionic radius, which for Bi3+ ions is closer to
that of lanthanum than that of samarium ions, the capa-
bility of bismuth ions to form anisotropic sp-covalent
bonds plays an important role. In particular, this spe-
cific feature invalidates the interpretation of the mag-
netic properties and crystal structure of bismuth man-
ganites based on the values of ionic radii and their
ratios.
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Abstract—The structure of amorphous aluminum oxide was simulated by the molecular-dynamics method. A
random distribution of Al3+ and O2– ions over the volumes of cubes with sides of 21 and 24 Å was used as a
starting configuration. The character of the distribution of cations in the anion subsystem was analyzed. It was
shown that formation of voids in model clusters is possible when the average electron density is underestimated
© 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

To date, a large amount of experimental data on the
structure of amorphous Al2O3 has been stored [1–6].
The experimental results require theoretical justifica-
tion. One of the methods for simulation of the atomic
structure is the molecular-dynamics method.

It was noted in [1] that the short-range order charac-
ter in amorphous anodic Al2O3 films is most similar to
the structure of γ'-Al2O3, where Al3+ cations are ran-
domly distributed over octahedral and tetrahedral posi-
tions of the oxygen fcc sublattice in the ratio 70 : 30. It
was shown later that the ratio of the numbers of cations
in different positions depends on the conditions of for-
mation of anodic aluminum oxide films; the distribu-
tion of cations differs from equiprobable and has a large
correlation range [5]. In addition, the character of
ordering in the cation subsystem of amorphous alumi-
num oxide differs from both the character of location of
cations in well-known crystalline modifications of
Al2O3 [7] and the distribution of cations in the case of
random occupation of octahedral and tetrahedral posi-
tions, when the occupation of neighboring tetrahedral
and octahedral voids of fcc oxygen packing by alumi-
num ions is forbidden [8].

Thus, the purposes of this study were as follows:

(i) Using the molecular-dynamics method, to con-
firm or disprove the presence of cations located at dis-
tances smaller than 2 Å from one another in clusters.
Here, we mean the distances between the centers of
neighboring octahedral and tetrahedral positions
(1.71 Å) and between the centers of neighboring tetra-
hedral positions (1.975 Å) in the fcc oxygen packing in
crystalline phases of aluminum oxide.

(ii) To analyze the features of the atomic structure of
clusters formed as a result of the molecular dynamic
experiment.
1063-7745/04/4904- $26.00 © 20631
TECHNIQUE OF THE EXPERIMENT 
AND PROCESSING OF THE RESULTS

Computer simulation of the ordering of a system of
randomly located aluminum and oxygen ions was per-
formed by the molecular-dynamics method. In the ini-
tial state, 1000 ions (400 cations and 600 anions, which
corresponds to the composition of Al2O3) were ran-
domly distributed in a cubic volume. The only con-
straint imposed on the positions of ions relative to each
other in the starting configuration was that the distance
between any two ions must not be smaller than 1.5 Å.
Periodic boundary conditions were used. Calculations
were performed for cubic cells with sides of 21 and
24 Å. The average electron density for such cubes is
equal to 0.72 and 1.08 electron/Å3, respectively. The
latter value corresponds to the electron density of amor-
phous aluminum oxide.

The interaction potential was chosen in the form of
the Born–Higgins–Mayer potential [9]:

(1)

where rij is the distance between ions of the i and j
types; qi and qj are the charges (in elementary charge
units e0) of ions of the i and j types, respectively; and
Aij, ρij, and Cij are coefficients, the values of which were
taken from [9] (table).

The cutoff radii of the interaction potential came to
11 and 10 Å for cells 24 and 21 Å in size, respectively.
The time step was 10–15 s; the temperature at which the
experiments were performed (300 K) was maintained

U rij( ) qiq je0
2
/rij Aij rij/ρij–( )exp Cij/rij

6
,–+=

Coefficients of the interaction potential [9]

Aij, eV ρij Cij, eV Å–6

Al3+–O2– 1460.3 0.29912 0

O2––O2– 22764.0 0.149 27.88
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Pair correlation functions: experimental data (solid line) and the results obtained by the molecular-dynamics method for clus-
ters with sizes of 24 (circles) and 21 Å (crosses).
by the corresponding normalization of the atomic
velocities. The molecular-dynamics experiment was
performed using 10000 steps.

The functions of radial distribution D(r) were calcu-
lated for the obtained clusters. With this purpose, we
calculated the angular distribution of X-ray scattering
intensity I(s) by the Debye formula (on the assumption
that scattering occurs from a set of identical clusters
that are randomly oriented with respect to each other):

(2)

Here, s is the magnitude of the diffraction vector, rpq is
the distance between paired atoms with indices p and q
in a cluster, N is the total number of atoms, and fp and fq
are the atomic scattering amplitudes. Then, from the
dependences I(s), the pair-interaction function D(r) and
the pair correlation functions gl(r) were calculated [10]
and, then, compared with the corresponding experi-
mental curves.

RESULTS AND DISCUSSION

Figure 1 shows the curves g(r) for model clusters 21
and 24 Å in size and the experimental curve for an
anodic aluminum oxide film formed in an oxalate elec-
trolyte [5]. For all the three curves, the first peaks,
which are due to the Al and O atoms located at shortest
distances from each other, have identical positions. The
second maximum on the curve g(r) for 21-Å clusters is
significantly shifted to smaller interatomic distances,
whereas the second maximum on the curve correspond-

I s( ) f p f p*
p 1=

N

∑=

+ f q f p* f p f q*+( ) srpq( )/srpq.sin
q p 1+=

N

∑
p 1=

N 1–

∑

CR
ing to 24-Å clusters is closer to that on the experimental
curve.

Analysis of the arrangement of atoms in clusters
showed that, when atoms are located in a cube with a
side of 24 Å, fairly large voids arise in the model vol-
ume (Fig. 2). The obtained result is in agreement with
the data in the literature: it is known that Al2O3 films
have a high porosity [11]. Investigations of Al2O3
oxides by small-angle X-ray scattering showed that
their porosity may be as high as 11% and that voids are
formed specifically in the stage of oxide growth [11].

Fig. 2. Voids in a cluster. Projection of a layer 6 Å thick of
a model 24-Å cluster on the xy plane. Aluminum cations
(RAl = 0.6 Å) and oxygen anions (RO = 1.4 Å) are shown by
circles.
YSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Fig. 3. Dependence of the number of Al–Al pairs per formula unit (Al2O3) on the interatomic distance (a) in the initial cluster and
(b) after the molecular-dynamics experiment.

(a)

(b)
We plotted the dependences of the number of Al–Al
cation pairs on the distance between paired atoms at the
beginning (Fig. 3a) and end (Fig. 3b) of the computer
experiment. The behavior of the curve in Fig. 3a shows
that the number of pairs of Al atoms steadily increases
with an increase in the interatomic distance, which is
quite reasonable for random distribution of atoms over
the volume. The curve obtained after the molecular-
dynamics experiment exhibits well-formed peaks at
3.2, 6.0, and 8.6 Å. Provided the oxygen subsystem
contains cations in neighboring tetrahedral positions
(these oxygen tetrahedra, containing Al cations, share
edges), the first peak in the dependence of the number
of Al–Al pairs on distance would be observed in the
vicinity of 2 Å. In the case of location of cations in the
octahedral and tetrahedral voids sharing a face, we
would observe a peak near 1.7 Å. The curve shown in
Fig. 3b indicates that the number of pairs of Al atoms is
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
zero in the range 0–2.5 Å; therefore, Al cations are
located in neither neighboring tetrahedral nor neighbor-
ing tetrahedral and octahedral positions, which is in
agreement with the interpretation of the experimental
data for amorphous aluminum oxides given in [5].

For both clusters, we performed an analysis of dis-
tribution of anions around cations in a spherical layer
between 1.6 and 2.2 Å before and after the molecular-
dynamics experiment. As the analysis showed, cations
in the initial cluster (for random and uniform volume
distribution) may have any number of neighboring
anions within a range of from one to six. Most cations
have only two neighboring oxygen atoms. After the
molecular-dynamics experiment, the number of alumi-
num cations with one or two neighboring oxygen
anions is zero.

In a 24-Å cluster, cations have three, four, five, or six
neighboring anions, which is indicative of the forma-
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tion of tetrahedral and octahedral environment. How-
ever, most cations are surrounded by four neighboring
oxygen atoms. The presence of three oxygen neighbors
means that the formation of a tetrahedron is not com-
pleted; i.e., some fraction of the tetrahedra are either
distorted or incomplete. In the case of five oxygen
neighbors, we have incomplete octahedra. Obviously,
the presence of voids in a cluster affects the average
characteristics of the nearest ionic environment, since
the ions located at the walls of voids have a smaller
number of neighbors.

In the cube with a side of 21 Å, the number of Al cat-
ions with three, four, or five neighbors is smaller than in
the cube with a side of 24 Å, while the number of Al
cations in the octahedral environment is much larger.
However, cations with seven of eight neighbors arise.
Thus, in a cluster with electron density corresponding
to the experimental value for amorphous aluminum
oxides, the oxygen environment of cations is inconsis-
tent with the entire set of well-known experimental data
since, as is well known, aluminum cations cannot have
more than six neighbors.

Thus, a decrease in the average electron density of a
cluster leads to the following: (i) no more than six oxy-
gen anions can be observed in the environment of alu-
minum cations and (ii) voids arise in the model volume.
During the model relaxation, voids become stable
inside a cluster, leading to the formation of some num-
ber of incomplete oxygen tetrahedra and octahedra
around aluminum cations. 
C
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Abstract—The crystal structure of a 12-layer tounkite-like mineral of the cancrinite group was determined for the
first time by single-crystal X-ray diffraction analysis (the unit-cell parameters are a = 12.757 Å, c = 32.211 Å).
The structure was refined in the space group ê3 to R = 0.035 using 3834 reflections with |F| > 2σ(F). Si and Al
atoms occupy tetrahedral framework positions in an ordered fashion. The average distances in the tetrahedra are
〈Si–O〉 = 1.611 Å and 〈Al–O〉 = 1.723 Å. The stacking sequence of the layers is described as CACACBCBCACB,
where Ä, Ç, and ë are six-membered rings arranged around the [2/3 1/3 z], [1/3 2/3 z], and [0 0 z] axes,
respectively. In the structure of the mineral, the columns along the [0 0 z] axis are composed of cancrinite
cages. The columns along the [2/3 1/3 z] and [1/3 2/3 z] axes contain alternating cancrinite, bystrite, and liot-
tite cages. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The mineral tounkite was discovered as bottle-green
crystals in the Malo-Bystrinskoe lazurite deposit (Lake
Baikal region, Russia) and described in [1]. However,
we failed to obtain a reliable structural model of this
mineral because of structural disorder, as evidenced by
the diffusion character of the hkl reflections with l ≠ 3n.
Later, a tounkite-like mineral, which we tentatively
named ordered tounkite [2], was discovered in lazurite-
bearing rocks of the Tultuœskoe deposit in association
with calcite, diopside, afghanite, and anisotropic lazur-
ite. This mineral forms more perfect columnar bluish
crystals up to 1 cm long. The aim of this study was to
establish the structure of these crystals.

EXPERIMENTAL

The chemical composition of a specimen was
studied by electron-probe X-ray microanalysis on a
JCXA-733 microanalyzer. The empirical formula
calculated for 12 (Si + Al) and Z = 6 is
(Ca2.58Na5.18K0.15)7.91(Si5.99Al6.01)12O24 (SO4)1.79Cl1.33.

The unit-cell parameters a = 12.755(3) Å and c =
32.218(5) Å were determined by the photographic
method and refined on an automated Bruker Platform
diffractometer equipped with a CCD detector (Toledo,
1063-7745/04/4904- $26.00 © 20635
United States). X-ray diffraction data were collected on
the same diffractometer. The X-ray data set corre-
sponded to the trigonal system. However, the choice of
the space group presented difficulties because of sev-
eral alternatives. Of these space groups, only the space
group P31c has translational symmetry elements. How-
ever, 86 reflections with intensities |F | > (3–10)σ are in
contradiction with systematic absences of the hhl
reflections with l = 2n, which should be observed for
the space group P31c. Therefore, we rejected this space
group in subsequent calculations. The best results were
obtained within the space group P3 (the diffraction

class ). The principal characteristics of the crystal and
details of the X-ray diffraction study are listed in Table 1.
All calculations were carried out using the AREN crys-
tallographic software package [3].

We failed to determine the structure of the mineral
by direct methods due to the presence of a strong
pseudotranslation (most hkl reflections are those with
l = 6n). A structural model containing 114 independent
atoms was constructed based on the analysis of the
structures of tetrahedral frameworks of minerals
belonging to the cancrinite group (bystrite, liottite, and
afghanite), in which discrete six-membered rings form
a close packing [4]. The cages in the framework were
filled with extraframework cations and anions accord-

3
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ing to the distribution found in the structures of cancrin-
ite-like minerals and taking into account the real chem-
ical composition of the mineral under study. Several
refinement cycles confirmed the validity of the model.
Then, the calculated difference electron density maps
additionally revealed two Ca and Cl positions, oxygen
atoms coordinated to sulfur, and several split sodium
positions. The compositions and occupancies of the
extraframework positions were refined, taking into
account the mixed atomic scattering curves. The struc-
tural model was refined with anisotropic atomic dis-

Table 1.  Characteristics of the crystal and details of X-ray
diffraction study

Characteristic Data and conditions

Trigonal unit-cell parameters, Å a = 12.757(3)

c = 32.211(5)

Unit-cell volume, Å3 V = 4539.75

Space group P3

Radiation; λ, Å MoKα; 0.71073

ρcalcd, g/cm3 2.48

Crystal dimensions, mm 0.15 × 0.3 × 0.4

Diffractometer Bruker 

Ranges of indices of measured
reflections

–14 < h < 14;

0 < k < 17;

0 < l < 44

sinθ/λ <0.699

Total number of reflections 29457 F > 3σ(F)

Number of independent reflections 3834 F > 3σ(F)

R factor for merging 0.019

R factor upon refinement 0.035

Program for structure refinement AREN [3]

Program for absorption correction SADABS

(a) (b) (c) (d)

Fig. 1. Cages in the frameworks of the minerals of the can-
crinite group: (a) a sodalite cage (cuboctahedron), (b) a can-
crinite cage (hexagonal cuboctahedron), (c) a bystrite cage,
and (d) a liottite cage.
C

placement parameters to R = 0.035. Details of the X-ray
diffraction study are given in Table 1. The final coordi-
nates and thermal parameters of the framework and
extraframework atoms are listed in Tables 2 and 3,
respectively. The interatomic distances for sulfur atoms
are given in Table 4.

RESULTS AND DISCUSSION

Complete X-ray diffraction analysis of the tounkite-like
mineral gave the crystal-chemical formula (Z = 1)
[Si36Al36O144] [Na31.1Ca3.94K0.96(SO4)9.3(SO3)0.7][Ca12Cl8],
where the compositions of the framework and cages are
enclosed in brackets. Silicon and aluminum atoms
occupy tetrahedral framework positions in an ordered
fashion, as evidenced by the average cation–anion dis-
tances in the tetrahedra (〈Si–O〉  = 1.611 Å, 〈Al–O〉  =
1.723 Å).

The aluminosilicate framework of the mineral under
study, like the frameworks of other cancrinite-like min-
erals, consists of six-membered rings of (Si,Al) tetrahe-
dra arranged in layers. The layers are shifted with
respect to each other along the Ò axis. Cancrinite and
related minerals [5–10] differ in both the number of
layers, labeled by letters Ä, Ç, and ë, and their stacking
sequence. For uniformity and to avoid ambiguity when
comparing the stacking sequences of layers in different
minerals, it was suggested [10] that the six-membered
rings around the [2/3 1/3 z], [1/3 2/3 z], and [0 0 z] axes
[10] to be denoted by A, B, and C, respectively. Then,
the stacking sequences of layers in the structures of the
minerals can be described as follows: a two-layer AB
sequence in cancrinite, a four-layer ACBC sequence in
bystrite, a six-layer ACBCBC sequence in liottite, an
eight-layer ACACBCBC sequence in afghanite, and a
ten-layer ABCABACABC sequence in franzinite. In
these minerals, the parameter Ò ~ 5n (n = 1–5) varies
correspondingly from 5.1 to 26.5 Å. The order in which
the layers alternate determines the shapes and positions
of cages in the structure. The cancrinite, bystrite, and
liottite structures have three types of cages—the so-
called cancrinite, bystrite, and liottite cages (Fig. 1)—
linked in columns. The cancrinite cage is the smallest
one. This cage is formed in structures, where only one
layer is sandwiched between two identical layers. In
such structures, the medium layer differs from the two
other layers in orientation and is present either singly or
in combination with other layers. In the sodalite cage,
two layers, which are shifted with respect to each other,
are located between two identical layers. The bystrite
cage appears in structures in which three layers are
sandwiched between two identical layers. The bulky
liottite cage contains five differently oriented layers.
The afghanite structure consists of alternating liottite
and cancrinite cages. By contrast, the columns along
the [0 0 z] axis in bystrite, liottite, and afghanite are of
the same type and are composed of cancrinite cages.
Sodalite cages are involved in the formation of columns
in the franzinite structure. In this structure, sodalite and
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Table 2.  Coordinates and equivalent atomic displacement parameters for the tetrahedral framework positions

Atom x/a y/b z/c Beq, Å2 Atom x/a y/b z/c Beq, Å2

Si(1) 0.2570(1) 0.0019(1) 0.0000(1) 0.4(1) O(13) 0.5479(5) 0.4521(4) 0.2483(1) 1.3(5)

Si(2) 0.9245(1) 0.5856(1) 0.0840(1) 0.5(1) O(14) 0.7733(5) 0.2039(4) 0.2473(1) 1.4(4)

Si(3) 0.0036(1) 0.2553(1) 0.1659(1) 0.4(1) O(15) 0.3407(6) 0.3418(6) 0.2865(1) 1.9(5)

Si(4) 0.9249(1) 0.5854(1) 0.2477(1) 0.5(2) O(16) 0.6728(4) 0.6744(5) 0.2912(1) 1.3(5)

Si(5) 0.0003(1) 0.2543(1) 0.3318(1) 0.7(1) O(17) 0.8852(5) 0.1194(5) 0.3324(1) 1.9(4)

Si(6) 0.3409(1) 0.4152(1) 0.4156(1) 0.7(1) O(18) 0.1178(5) 0.8872(5) 0.3291(1) 1.5(5)

Si(7) 0.2552(1) 0.0039(1) 0.4975(1) 0.5(2) O(19) 0.3434(5) 0.3482(5) 0.3734(1) 1.8(5)

Si(8) 0.3390(1) 0.4140(1) 0.5803(1) 0.6(2) O(20) 0.6650(5) 0.6695(5) 0.3704(1) 1.4(5)

Si(9) 0.2532(1) –0.0024(1) 0.6642(1) 0.7(2) O(21) 0.4511(5) 0.5474(5) 0.4131(2) 2.0(4)

Si(10) 0.9249(2) 0.5866(1) 0.7477(1) 0.9(2) O(22) 0.2091(4) 0.7696(4) 0.4181(1) 0.9(4)

Si(11) 0.2534(1) 0.0001(1) 0.8319(1) 0.7(1) O(23) 0.3480(5) 0.3384(5) 0.4535(1) 0.9(4)

Si(12) 0.5870(1) 0.9236(2) 0.9165(1) 0.8(2) O(24) 0.6744(5) 0.6603(5) 0.4574(2) 2.0(6)

Al(1) 0.7405(2) –0.0005(2) –0.0014(1) 0.86(6) O(25) 0.1266(5) 0.8875(5) 0.4979(2) 1.7(4)

Al(2) 0.4026(2) 0.0779(2) 0.0838(1) 0.53(5) O(26) 0.8853(4) 0.1151(5) 0.4978(2) 1.5(6)

Al(3) 0.2627(2) 0.2601(2) 0.1650(1) 0.71(6) O(27) 0.3449(5) 0.3354(5) 0.5401(1) 1.4(5)

Al(4) 0.4025(2) 0.0780(2) 0.2476(1) 0.43(5) O(28) 0.6734(5) 0.6631(5) 0.5369(1) 1.4(6)

Al(5) 0.2597(2) 0.2599(1) 0.3319(1) 0.65(5) O(29) 0.4564(5) 0.5476(5) 0.5820(2) 1.9(5)

Al(6) 0.0772(2) 0.4020(2) 0.4154(1) 0.75(5) O(30) 0.2153(5) 0.7763(4) 0.5774(2) 1.5(5)

Al(7) 0.0033(2) 0.7405(2) 0.4982(1) 0.70(5) O(31) 0.3441(4) 0.3476(6) 0.6216(1) 1.4(5)

Al(8) 0.0773(2) 0.4021(2) 0.5805(1) 0.69(5) O(32) 0.6681(5) 0.6743(4) 0.6235(2) 1.4(5)

Al(9) 0.7423(2) 0.0005(2) 0.6661(1) 1.05(5) O(33) 0.1163(4) 0.8878(5) 0.6648(2) 1.5(4)

Al(10) 0.4020(2) 0.0767(1) 0.7483(1) 0.74(5) O(34) 0.8844(5) 0.1209(5) 0.6643(1) 2.0(4)

Al(11) 0.7399(1) 0.0005(1) 0.8319(1) 0.58(4) O(35) 0.3443(6) 0.3451(5) 0.7047(2) 2.2(6)

Al(12) 0.0786(1) 0.4030(2) 0.9160(1) 0.37(5) O(36) 0.6705(4) 0.6772(5) 0.7042(1) 1.2(6)

O(1) 0.1205(5) 0.8817(5) 0.0020(2) 1.6(5) O(37) 0.5465(5) 0.4578(5) 0.7489(2) 2.6(5)

O(2) 0.8903(5) 0.1134(5) –0.0017(2) 1.8(6) O(38) 0.7739(5) 0.2146(5) 0.7474(2) 1.9(5)

O(3) 0.3495(6) 0.3463(5) 0.0398(2) 1.8(5) O(39) 0.3432(6) 0.3412(5) 0.7883(1) 1.7(5)

O(4) 0.6730(5) 0.6657(5) 0.0367(2) 1.6(5) O(40) 0.6707(6) 0.6664(6) 0.7902(2) 2.3(6)

O(5) 0.5501(5) 0.4530(5) 0.0857(2) 1.7(5) O(41) 0.1213(5) 0.8869(5) 0.8329(1) 1.8(4)

O(6) 0.7777(5) 0.2118(5) 0.0855(1) 1.4(5) O(42) 0.8882(4) 0.1196(5) 0.8349(1) 1.3(4)

O(7) 0.3336(5) 0.3455(5) 0.1206(1) 1.4(4) O(43) 0.3420(5) 0.3416(6) 0.8734(1) 1.4(5)

O(8) 0.6633(5) 0.6756(6) 0.1237(2) 2.0(5) O(44) 0.6690(5) 0.6695(5) 0.8698(1) 1.8(5)

O(9) 0.8841(4) 0.1239(4) 0.1659(1) 0.8(4) O(45) 0.4577(5) 0.5481(5) 0.9196(2) 2.0(4)

O(10) 0.1154(5) 0.8833(5) 0.1670(1) 1.3(4) O(46) 0.2108(5) 0.7774(5) 0.9174(2) 1.7(4)

O(11) 0.3407(5) 0.3454(5) 0.2076(1) 1.4(5) O(47) 0.3432(5) 0.3436(5) 0.9555(2) 1.8(6)

O(12) 0.6638(4) 0.6710(5) 0.2031(1) 1.3(5) O(48) 0.6761(5) 0.6704(4) 0.9564(1) 1.0(5)
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Table 3.  Coordinates and equivalent atomic displacement parameters of the framework atoms, multiplicities (Q), and occu-
pancies (q) of positions

Position x/a y/b z/c Beq, Å2 Q q

Ca(1) 0 0 0.0010(1) 1.21(7) 1 1

Ca(2) 0 0 0.1667(1) 0.81(7) 1 1 

Ca(3) 0 0 0.3314(1) 1.21(6) 1 1 

Ca(4) 0 0 0.4988(1) 0.67(7) 1 1 

Ca(5) 0 0 0.6660(1) 1.08(7) 1 1 

Ca(6) 0 0 0.8331(1) 1.15(6) 1 1 

Ca(7) 0.6667 0.3333 0.0864(1) 1.60(7) 1 1 

Ca(8) 0.6667 0.3333 0.2497(1) 1.92(7) 1 1 

Ca(9) 0.6667 0.3333 0.7489(1) 3.17(6) 1 1 

Ca(10) 0.3333 0.6667 0.4163(1) 1.19(6) 1 1 

Ca(11) 0.3333 0.6667 0.9255(1) 1.85(6) 1 1 

Ca(12) 0.3333 0.6667 0.5778(1) 1.63(6) 1 1 

Cl(1) 0 0 0.0844(1) 5.5(5) 1 1 

Cl(2) 0 0 0.2498(1) 6.5(5) 1 1 

Cl(3) 0.3333 0.6667 0.4976(1) 5.4(5)** 1 1 

Cl(4) 0 0 0.4162(1) 4.9(3) 1 1 

Cl(5) 0 0 0.5805(1) 5.3(4) 1 1 

Cl(6) 0.6667 0.3333 0.1711(4) 5.8(1)** 1 1 

Cl(7) 0 0 0.7481(1) 4.5(3) 1 1 

Cl(8) 0 0 0.9171(2) 4.9(3) 1 1

Na(1) 0.5056(3) 0.5036(3) –0.0009(1) 2.8(1) 3 1

Na(2a) 0.2181(5) 0.4271(6) 0.0827(1) 3.84(7) 3 0.86

Na(2b) 0.169(2) 0.334(3) 0.0767(9) 3.2(3) 3 0.14

Na(3) 0.4783(4) 0.5307(3) 0.1629(1) 3.4(1) 3 1 

Na(4) 0.2208(4) 0.4395(4) 0.2458(1) 3.6(1) 3 1 

Na(5)* 0.5049(5) 0.4996(5) 0.3319(2) 3.79(7) 3 1 

Na(6) 0.4326(4) 0.2180(3) 0.4153(1) 2.87(9) 3 1 

Na(7)* 0.5260(3) 0.4818(3) 0.4964(1) 3.87(7) 3 1 

Na(8) 0.4415(4) 0.2245(4) 0.5789(1) 3.53(8) 3 1 

Na(9)* 0.4987(3) 0.5099(3) 0.6652(1) 3.52(6) 3 1 

Na(10a)* 0.2265(4) 0.4460(4) 0.7509(1) 3.63(7) 3 0.80

Na(10b) 0.213(2) 0.411(2) 0.7398(9) 4.5(3) 3 0.20

Na(11) 0.5040(5) 0.5075(5) 0.8328(2) 2.92(6) 3 1 

Na(12a)* 0.4413(4) 0.2238(4) 0.9156(1) 3.65(6) 3 0.75

Na(12b) 0.360(3) 0.186(2) 0.9129(6) 6.6(3) 3 0.25

S(1) 0.3333 0.6667 0.0213(2) 5.24(1) 1 1 

O(49) 0.220(1) 0.614(1) 0.0510(4) 5.6(2) 3 0.70

O(50) 0.237(3) 0.615(3) 0.9951(9) 3.6(4) 3 0.30

O(51) 0.3333 0.6667 0.062(3) 6.8(4)** 1 0.30

S(2) 0.3333 0.6667 0.1713(2) 4.0(1) 1 1 

O(52) 0.235(2) 0.618(3) 0.2023(7) 7.4(4) 3 0.50

O(53) 0.3333 0.6667 0.129(2) 7.9(4)** 1 0.50

O(54) 0.272(2) 0.559(1) 0.1550(8) 8.9(1) 3 0.50

O(55) 0.3333 0.6667 0.215(2) 6.8(4)** 1 0.50
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Table 3.  (Contd.)

Position x/a y/b z/c Beq, Å2 Q q

S(3) 0.6667 0.3333 0.4991(1) 2.59(8) 1 1 
O(56) 0.558(1) 0.280(2) 0.4774(4) 4.6(1) 3 0.50
O(57) 0.6667 0.3333 0.5443(8) 6.6(4)** 1 0.50
O(58) 0.5705(2) 0.253(3) 0.5239(9) 5.4(3)** 3 0.50
O(59) 0.6667 0.3333 0.4544(8) 6.2(4)** 1 0.50
S(4) 0.6667 0.3333 0.6382(1) 3.39(8) 1 1 
O(60) 0.600(1) 0.390(1) 0.6313(4) 8.3(1) 3 1 
O(61) 0.6667 0.3333 0.681(1) 6.4(2)** 1 1
S(5) 0.6667 0.3333 0.8492(1) 3.02(8) 1 1 
O(62) 0.627(1) 0.407(2) 0.8701(8) 4.7(2)** 3 1 
O(63) 0.6667 0.3333 0.805(1) 6.7(2)** 1 1
S(6) 0.3333 0.6667 0.3068(1) 3.3(1) 1 1 
O(64) 0.212(1) 0.603(1) 0.2885(5) 7.6(2) 3 1 
O(65) 0.3333 0.6667 0.3471(7) 7.5(1)** 1 1
S(7) 0.3333 0.6667 0.6846(1) 3.07(1) 1 1 
O(66) 0.211(1) 0.597(2) 0.6969(9) 5.8(2)** 3 1 
O(67) 0.3333 0.6667 0.647(1) 7.2(2)** 1 1 
S(8) 0.3333 0.6667 0.8141(1) 2.99(9) 1 1 
O(68) 0.2075(9) 0.592(1) 0.8019(4) 7.6(2) 3 1
O(69) 0.3333 0.6667 0.8553(5) 8.7(1) 1 1 
S(9) 0.6667 0.3333 0.3575(1) 2.44(8) 1 1 
O(70) 0.609(1) 0.399(1) 0.3669(6) 5.7(3)** 3 1 
O(71) 0.6667 0.3333 0.3166(5) 5.8(3)** 1 1 
S(10) 0.6667 0.3333 0.9786(1) 2.63(7) 1 1 
O(72) 0.610(1) 0.396(1) 0.9634(4) 6.9(1) 3 1 
O(73) 0.6667 0.3333 0.0214(7) 5.0(1)** 1 1

Note: The occupancies of the positions were determined with an accuracy of 0.01.
  * The positions with mixed composition Na0.65Ca0.35; the composition of the Na(10a) position is Na0.6K0.4.
** Isotropic thermal parameters.
cancrinite cages alternate along the [0 0 z] axis, and
sodalite and bystrite cages alternate along two other
axes.

The structure of the new member of the cancrinite
group is more complicated and is formed by the rings
packed in the sequence CACACBCBCACB (Fig. 2),
which produces three types of cages comprising col-
umns. The columns along the [0 0 z] axis, like those in
the above-described structures, consist only of cancrinite
cages. Two other columns along the [1/3 2/3 z] (Fig. 3)
and [2/3 1/3 z] (Fig. 4) axes are characterized by sets of
cancrinite, bystrite, and liottite cages and differ in the
order in which they alternate with each other. There-
fore, the crystal structure of the tounkite-like mineral
determined in this study has features in common with
the afghanite structure that also manifest themselves in
the IR spectrum (this spectrum was recorded by
N.V. Chukanov). In both minerals, the columns along
the [0 0 z] direction consist of cancrinite cages. In the
afghanite structure, the cancrinite and liottite cages
alternate along two other axes, whereas bystrite cages
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
Table 4.  Interatomic distances in the SO groups

S(1)–O(49) 1.57(1) × 3 S(5)–O(62) 1.44(2) × 3
〈1.57〉 –O(63) 1.42(2)

–O(50) 1.35(3) × 3 〈1.44〉
–O(51) 1.31(3) S(6)–O(64) 1.46(1) × 3

〈1.34〉 –O(65) 1.29(2)
S(2)–O(52) 1.47(2) × 3 〈1.42〉

–O(53) 1.36(2) S(7)–O(66) 1.40(1) × 3
〈1.44〉 –O(67) 1.21(3)

–O(54) 1.30(1) × 3 〈1.35〉
–O(55) 1.41(2) S(8)–O(68) 1.45(1) × 3

〈1.33〉 –O(69) 1.32(1)
S(3)–O(56) 1.38(1) × 3 〈1.42〉

–O(57) 1.46(1) S(9)–O(70) 1.40(1) × 3
〈1.40〉 –O(71) 1.31(1)

–O(58) 1.39(3) × 3 〈1.38〉
–O(59) 1.44(1) S(10)–O(72) 1.40(1) × 3

〈1.40〉 –O(73) 1.37(2)
S(4)–O(60) 1.38(1) × 3 〈1.39〉

–O(61) 1.38(2)
〈1.38〉



640 ROZENBERG et al.
are additionally involved in the formation of analogous
columns in the tounkite-like mineral.

Large cations, anions, and anionic groups occupy
the cages of all three types of columns in different fash-
ions. In the cancrinite cages arranged along the [0 0 z]
direction, calcium atoms are located at the centers of
six-membered rings and large chlorine atoms occupy
the centers of the cages to form infinite –Ca–Cl–Ca–
chains. Fragments of these chains are also retained in
discrete cancrinite cages of the columns.

The hexagonal bases of the cages forming columns
along the [2/3 1/3 z] axis contain Ca(7), Ca(8), and
Ca(9) atoms. Three SO4 groups, one of which is statis-

C

A

B

B

B

C

C

C

C

C

A

A

Fig. 2. Aluminosilicate framework projected onto the
(casinγ) plane. The Si tetrahedra are hatched. The layers
perpendicular to the z axis are labeled with letters.
C

tically disordered over two orientations, occupy the
liottite cage. The liottite cage contains the Na(6) and
Na(8) positions, as well as mixed positions occupied by
Na and Ca atoms, which are denoted as Na(5)*, Na(7)*,
and Na(9)* and belong simultaneously to a column that
extends along another axis. In the bystrite cage, two
Sé4 groups are located on the threefold axis. The split
Na(12a)* and Na(12b) positions in this cage, as well as
the Na(1) and Na(11) positions shared with the adjacent
column, are arranged around the threefold axis.

In the liottite cages arranged along the [1/3 2/3 z]
axis, the S(1) atoms statistically occupy tetrahedral
sites and have, in part, a triangular coordination

S(8)

S(7)

S(6)

S(2)

S(1)

Ca(11)

Ca(10)

Ca(12)

Na(11)
Na(10a)

Na(10b)

Na(9)

Na(7)Cl(13)

Na(5)

Na(4)

Na(3)

Na(2a)

Na(2b)

Na(1)

Fig. 3. Column of cages along the [1/3 2/3 z] axis. The SO4
tetrahedra are shaded gray. Large cations and Cl are repre-
sented by circles.
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[(SO4)0.3 and (SO3)0.7, respectively]. One of the SO4 tet-
rahedra has two orientations relative to the threefold
axis with statistically disordered arrangement of O
atoms. The Na(1), Na(2a), Na(2b), Na(3), and Na(4)
positions, as well as the mixed Na(5) position (occu-
pied by Na and Ca atoms), are located within the liottite
cage around the [1/3 2/3 z] axis. The Na(1), Na(3), and
Na(5)* positions are shared with the adjacent columns.
Ca atoms lie in the hexagonal bases of the cage. In the
cancrinite cage, the Cl(3) atom is located on the three-
fold axis and the Ca(10) and Ca(12) atoms occupy the
bases. The mixed Na(7)* positions are located around
the axis and belong simultaneously to the liottite cages
of the adjacent columns. The bystrite cage contains two
SO4 tetrahedra on the threefold axis, which are ran-
domly oriented in opposite directions. The Na(10a)
position occupied by Na and K atoms, the Na(10b)
position, and the mixed Na(9)* position occupied by
Na and Ca atoms are arranged around the axis. The lat-
ter position is shared with the liottite cage of an adja-

S(10)

Na(12a)

Na(12b)
Na(11)

S(5)

Ca(9)

S(4) Na(9)

Na(8)

Na(7)

Na(6)

Na(5)
S(9)

Ca(8)

Cl(16)

Ca(7)

Na(3)

Na(1)

S(3)

Fig. 4. Column of cages along the [2/3 1/3 z] axis. The nota-
tions are the same as in Fig. 3.
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cent column. The Na(11) position is also shared with
the bystrite cage of an adjacent column.

Thus, the chemical composition of the tounkite-like
mineral (as regards to the framework atoms) deter-
mined by X-ray diffraction analysis is in complete
agreement with the results of chemical analysis. The
missed sulfur atoms (0.75 atom per unit cell) belong,
apparently, to sulfide groups and are spread over frame-
work anionic positions. On the whole, the cages are
identically occupied. However, it should be noted that
the liottite cage in the column along the [2/3 1/3 z] axis
contains a larger number of Ca atoms. On the contrary,
the bystrite and cancrinite cages in the column along
the [1/3 2/3 z] axis are more enriched in Ca than the cor-
responding cages in the above-mentioned column. In
addition, S4+ is located in the liottite cage of the same
column. These differences underline the low symmetry
of the structure as a whole.

CONCLUSIONS

Like the tounkite and tounkite-like minerals, the new
mineral marinellite [11] is characterized by a 12-layer
stacking sequence of tetrahedral rings (Ò = 31.761 Å).
The latter mineral is similar in chemical composition to
the tounkite-like mineral. However, it differs in its
lower Ca and S contents and higher K content, as well as
in the presence of water with chlorine. Marinellite differs
from the tounkite-like mineral in symmetry (ê31Ò) and
the layer stacking sequence (CABABACBABAB). The
preliminary data [11] showed that marinellite also dif-
fers from tounkite. In the marinellite structure, liottite
cages are arranged along the [0 0 z] axis and sodalite
and cancrinite cages alternate along the [1/3 2/3 z] and
[2/3 1/3 z] axes. At the same time, the IR spectra indi-
cate substantial structural differences between the toun-
kite and tounkite-like minerals. Therefore, both miner-
als of the cancrinite group, characterized by a 12-layer
stacking sequence, have different crystal structures and
are, apparently, polymorphs of tounkite.
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Abstract—The crystal structure of the SrFe(Edta)Cl · 5H2O (I) complex is determined. The crystals are mon-
oclinic, a = 7.530(4) Å, b = 10.575(3) Å, c = 23.308(10) Å, β = 95.75(4)°, Z = 4, and space group P21/c. The
structural units of I are infinite ribbons of the molecular type that are formed by tetranuclear fragments. A tet-

ranuclear fragment involves the centrosymmetric positively charged dimer group [Sr(H2O)4ël  at the center

and the [Fe(Edta)(H2O)]– anionic complexes, which compensate for the positive charge of the dimer group, at
the periphery. These constituents are bound via bridging oxygen atoms of the Edta ligands. The coordination
number of the Sr atom is nine. The Sr–O bond lengths lie in the range between 2.552 and 2.766 Å, the Sr–Cl
bond length is 3.216(3) Å, and the Sr···Sr distance is 4.371(1) Å. The parameters of the [Fe(Edta)(H2O)]– group
are within the range of values observed in such complexes: Fe–O, 1.996–2.086(3) Å; Fe–O(w), 2.110(4) Å; and
Fe–N, 2.289(4) and 2.327(4) Å. Separate ribbons are linked by hydrogen bonds involving all ç2é molecules
and terminal oxygen atoms of the Edta ligand. © 2004 MAIK “Nauka/Interperiodica”.

]2
2+
INTRODUCTION

Among the large number of structurally character-
ized compounds that contain ethylenediaminetetraace-
tic acid (H4Edta) as a ligand, there are many ethylene-
diaminetetraacetates with the central Fe(III) atom. A
series of complexes consisting of the [Fe(Edta)(H2O)]–

anion and a singly charged counterion (such as Li+ [1],
Na+ [2–4], K+ [4], Rb+ [1, 5], Ag+ [3], Tl+ [3],
[(C2H5)4N]+ (organic) [6], or (CN3H6)+ (organic) [1, 7])
has been investigated to date. All of them form mono-
nuclear cationic–anionic structures of the island type,
in which the [Fe(Edta)(H2O)]– anion is the hexadentate
seven-coordinate complex with symmetry close to C2.

It is known that the changeover from singly charged
cations to doubly or more multiply charged cations
encourages cation–anion bonding and, as a conse-
quence, the formation of heteronuclear polymeric
structures through bridging atoms of the aminopolycar-
boxylate ligand. A similar situation is observed, for
example, in calcium ethylenediaminetetraacetates with
doubly charged cations, namely, Ca[Ca(Edta))] · 7H2O
[8] and Sr[Ca(Edta)] · 5H2O [9].

The crystal structure of barium ethylenediaminetet-
raacetatoaquaferrate BaFe2(Edta)2 · 6H2O [10] is of the
same polymeric type as that of the above complexes
with doubly charged cations.
1063-7745/04/4904- $26.00 © 20643
It is of interest to answer the questions as to
(i) whether this situation is typical of other compounds,
(ii) whether it is retained in compounds with other dou-
bly charged cations, and (iii) how the introduction of
additional ligands affects the crystal structure.

For this purpose, we performed an X-ray diffraction
study of the SrFe(Edta)Cl · 5H2O (I) complex.

EXPERIMENTAL

Synthesis. Compound I (empirical formula,
C10H22ClFeN2O13Sr) was prepared by the reaction of
aqueous solutions of Sr[Fe(Edta)(H2O)]2 and
HFe(Edta) in the presence of SrCO3 and an excess
amount of SrCl2. Slow evaporation of the solution due
to heating resulted in the precipitation of a mixture of
small-sized yellow prismatic crystals of I and large-
sized brown aggregates of Sr[Fe(Edta)(H2O)]2.

X-ray diffraction analysis. Crystals I are mono-
clinic, a = 7.530(4) Å, b = 10.575(3) Å, c = 23.308(10) Å,
β = 95.75(4)°, V = 1846.8(1.4) Å3, M = 557.2, F(000) =
1124, ρcalcd = 2.00 g/cm3, µMo = 3.89 mm–1, Z = 4, and
space group ê21/c.

The X-ray experimental reflections were collected
on an Enraf–Nonius CAD4 diffractometer at room tem-
perature (λåÓäα, graphite monochromator, θ/2θ scan
mode, 2θmax = 56°).
004 MAIK “Nauka/Interperiodica”
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Table 1.  Atomic coordinates and thermal parameters in structure I

Atom x y z Ueq/Uiso,
Å2 Atom x y z Ueq/Uiso,

Å2 

Sr(1) 0.3768(1) 0.9784(0) 0.0804(0) 0.0217(1) C(6) 1.1723(7) 1.3151(5) 0.1786(2) 0.023(1) 

Fe(1) 0.7718(1) 1.2643(1) 0.1775(0) 0.0138(2) C(7) 0.6521(6) 1.1836(5) 0.0597(2) 0.0186(9) 

Cl(1) 0.2242(2) 1.2430(2) 0.0285(1) 0.0429(4) C(8) 0.7438(7) 1.3032(5) 0.0448(2) 0.023(1) 

N(1) 1.0174(5) 1.3922(4) 0.1916(2) 0.0179(8) C(9) 0.9930(7) 1.5066(5) 0.1549(2) 0.020(1) 

N(2) 0.7634(5) 1.3892(4) 0.0951(2) 0.0166(8) C(10) 0.9270(7) 1.4681(5) 0.0943(2) 0.024(1) 

O(1) 0.8750(5) 1.2380(3) 0.2618(1) 0.0246(7) H(22) 1.14(1) 1.456(6) 0.265(3) 0.04(2) 

O(2) 1.0418(5) 1.3039(4) 0.3393(2) 0.0326(9) H(41) 0.49(1) 1.425(7) 0.078(3) 0.05(2) 

O(3) 0.6301(5) 1.4149(3) 0.1977(1) 0.0215(7) H(42) 0.616(9) 1.544(6) 0.077(3) 0.03(2) 

O(4) 0.4680(6) 1.5828(4) 0.1700(2) 0.0339(9) H(61) 1.24(1) 1.313(7) 0.211(3) 0.05(2) 

O(5) 0.9618(4) 1.1527(3) 0.1515(1) 0.0204(7) H(62) 1.233(8) 1.353(6) 0.150(3) 0.03(2) 

O(6) 1.2478(5) 1.1024(3) 0.1623(2) 0.0238(7) H(81) 0.670(7) 1.341(5) 0.009(2) 0.02(1) 

O(7) 0.6137(4) 1.1720(3) 0.1118(1) 0.0196(7) H(82) 0.849(9) 1.271(6) 0.040(3) 0.04(2) 

O(8) 0.6156(5) 1.1015(3) 0.0227(1) 0.0246(8) H(91) 0.924(6) 1.558(4) 0.169(2) 0.00(1) 

O(w1) 0.2529(7) 0.7479(5) 0.0929(2) 0.055(1) H(92) 1.08(1) 1.551(7) 0.154(3) 0.05(2) 

O(w2) 0.0344(7) 0.9632(6) 0.0574(3) 0.062(1) H(101) 0.890(7) 1.549(5) 0.067(2) 0.01(1) 

O(w3) 0.4816(8) 0.8813(5) 0.1859(2) 0.055(1) H(102) 1.016(6) 1.416(4) 0.083(2) 0.00(1) 

O(w4) 0.6411(6) 0.8264(5) 0.0873(2) 0.041(1) H(1w1) 0.32(2) 0.70(1) 0.13(1) 0.13(4) 

O(w5) 0.5838(6) 1.1553(4) 0.2173(2) 0.0301(9) H(2w1) 0.13(2) 0.76(1) 0.11(1) 0.13(4) 

C(1) 0.9836(7) 1.3155(5) 0.2882(2) 0.022(1) H(1w3) 0.44(1) 0.889(9) 0.214(4) 0.08(3) 

C(2) 1.0330(7) 1.4266(5) 0.2531(2) 0.023(1) H(1w4) 0.75(1) 0.830(6) 0.111(3) 0.04(2) 

C(3) 0.5660(6) 1.4932(4) 0.1599(2) 0.0198(9) H(2w4) 0.69(1) 0.806(9) 0.064(4) 0.06(3) 

C(4) 0.6033(7) 1.4668(5) 0.0978(2) 0.023(1) H(1w5) 0.597(8) 1.130(6) 0.248(3) 0.03(2)

C(5) 1.1265(6) 1.1789(5) 0.1636(2) 0.0185(9) H(2w5) 0.493(9) 1.143(5) 0.201(3) 0.02(2)
The structure was solved by direct methods. The
hydrogen atoms [except for the H(1w2), H(2w2), and
H(2w3) atoms] were located from difference Fourier
syntheses. The least-squares refinement was performed
using 4194 unique nonzero reflections. The non-hydro-
gen atoms were refined in the anisotropic approxima-
tion, and the hydrogen atoms were refined isotropically.
The final discrepancy factors are as follows: R1 =
0.0420 and wR2 = 0.1072 for 3087 reflections with Fo ≥
4σ(Fo), R1 = 0.0740 and wR2 = 0.1220 for all
4194 reflections, GééF = 1.014; and ∆ρmax = 1.386 e/Å3

and ∆ρmin = –0.637 e/Å3.

All the calculations were performed with the
SHELXS86 [11] and SHELXL93 [12] program pack-
ages.

The coordinates and thermal parameters of atoms in
structure I are listed in Table 1.
C

RESULTS AND DISCUSSION

The structural units of crystal I are infinite ribbons
of the molecular type that are aligned along the shortest
axis a of the crystal. A ribbon is composed of cen-
trosymmetric tetranuclear fragments consisting of the

central doubly charged dimer fragment [Sr(H2O)4Cl
and two terminal anionic complexes [Fe(Edta)(H2O)]–

(Fig. 1).

In structure I, the multifunctional ligand Edta4–

(O210001, according to the notation proposed by Serezh-
kin and coauthors [13]) is coordinated to the central Fe
atom via the N(1), N(2), O(1), O(3), O(5), and O(7)
atoms and to two Sr atoms via the O(7) and O(8) atoms.
One of the acetate arms of Edta plays a dominant role
in the formation of the tetranuclear fragment and fulfills
the function of a triple bridge. The distances from the
Sr atom to the terminal O(8) atom and its centrosym-
metric analogue, namely, O(8)', are equal to 2.689(3)

]2
2+
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Fig. 1. Tetranuclear fragment of structure I in the projection onto the plane close to the mean plane of nine central rings formed by
two Edta4– ligands with the Fe and Sr atoms.
and 2.554(3) Å, respectively. The bond between the Sr
atom and the other bridging O(7) atom (coordinated to
Fe) is significantly elongated [2.766(3) Å]. Apart from
the aforementioned atoms [O(7), O(8), O(8)'], the coor-
dination sphere of the Sr atom includes the bridging O(6)
atom [Sr–O, 2.583(3) Å]; the Cl atom [Sr–Cl, 3.216(2)
Å]; and the O(w1), O(w2), O(w3), and O(w4) atoms of
four water molecules. The Sr–O(w1), Sr–O(w2), Sr–
O(w3), and Sr–O(w4) bond lengths fall in the range
2.552(5)–2.718(5) Å. In this case, the water molecules
are located in one part of the nine-vertex coordination
polyhedron. No immediate interaction between the
strontium atoms in the dimer occurs: the Sr···Sr dis-
tance is 4.371(1) Å.
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In structure I, the [Fe(Edta)(H2O)]– anionic frag-
ment, like the other ethylenediaminetetraacetates, has a
local symmetry close to C2. The bond lengths are as fol-
lows: Fe–N, 2.289 and 2.327(4) Å; Fe–O(Edta), 1.996–
2.086(3) Å; and Fe–O(H2O), 2.110(4) Å. As usual, the
five metallocycles are closed and all the four acetate
arms are involved in the chelate formation. The ethyl-
enediamine chelate ring (En) has an asymmetric
gauche structure: two C atoms deviate from the
Fe(1)N(1)N(2) plane by 0.16 and –0.51 Å. The glyci-
nate G rings (in the plane of the En ring) form angles of
9° and 21° with the Fe(1)N(1)N(2) plane, and the R
rings (perpendicular to the En plane) form angles of 96°
and 90° with the same plane.
Table 2.  Geometric parameters of hydrogen bonds in structure I

No. O–H···A bond
Distances, Å OHA angle, 

deg
Symmetry codes
for the A atomO···A O–H H···A

1 O(w1)–H(1w1)···O(4) 2.888(7) 1.1(1) 1.8(1) 157(9) 1 – x, –0.5 + y, 0.5 – z

2 O(w1)–H(2w1)···O(2) 2.910(7) 1.1(1) 1.9(1) 162(9) 1 – x, –0.5 + y, 0.5 – z

3 O(w2)···O(w2) 2.778(9) 1 – x, 2 – y, 0.5 – z

4 O(w2)···Cl(1) 3.427(6)  –x, 2 – y, 0.5 – z

5 O(w3)–H(1w3)···O(3) 2.935(6) 0.8(1) 2.15(9) 161(9) 1 – x, –0.5 + y, 0.5 – z

6 O(w3)···O(w5) 3.064(7) x, y, z

7 O(w4)–H(1w4)···O(2) 2.803(6) 0.95(7) 1.86(7) 150(8) 2 – x, –0.5 + y, 0.5 – z

8 O(w4)–H(2w4)···Cl(1) 3.066(5) 0.70(9) 2.38(9) 165(9) 1 – x, 2 – y, 0.5 – z

9 O(w5)–H(1w5)···O(4) 2.800(5) 0.75(7) 2.10(7) 157(9) 1 – x, –0.5 + y, 0.5 – z

10 O(w5)–H(2w5)···O(6) 2.776(5) 0.76(7) 2.02(7) 175(8) x – 1, y, z
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Fig. 2. Comparison of structures I and II. (a) Infinite ribbons of the molecular type in structure I. Dashed lines indicate hydro-
gen bonds (the numbering corresponds to that in Table 2). (b) Structure of the layer in II. A fragment of the ribbon is shown
by heavy lines.
This does not exhaust the structural function of
the Edta4– ligand. The terminal O(6) atoms bridge
the tetranuclear units to form hexanuclear
Fe···Sr···Sr···Fe···Sr···Sr rings, which, in turn, share the
Sr···Sr sides to form infinite ribbons (Fig. 2a). The Sr–
O(6) distance [2.583(3) Å] is one of the shortest dis-
tances in this structure.

The polymeric structural units are additionally sta-
bilized by inner hydrogen bonds (Table 2). Hydrogen
bonds 6, 8, and 10 strengthen the tetranuclear fragment:
hydrogen bonds 6 and 10 link the coordination spheres
of the Sr and Fe atoms, whereas the centrosymmetric
pair of hydrogen bond 8 links two halves of the tetranu-
clear fragment at their center. This bond lies in the
plane perpendicular to the plane of the tetranuclear
fragment, which includes nine rings (in Fig. 1, this
plane is almost parallel to the plane of the figure). The
centrosymmetric pairs of hydrogen bonds 4 and 3 link
adjacent tetranuclear fragments at the centers of hexa-
nuclear rings inside the ribbons. The basal planes of the
adjacent tetranuclear fragments are inclined with
respect to the direction of extension of the ribbons, and
C

the hexanuclear (···Fe···Sr···) rings are nonplanar; there-
fore, the ribbons are puckered.

According to our considerations in [14], the com-
pounds with the same conformation of complexes are
expected to form closely similar crystal structures. The
conformation of I (Λλ or ∆δ for the complex related by
the inversion center) is the same as in Ca[Ca(Edta)] ·
7H2O (II) [8]. The alternative conformation (Λδ or ∆λ)
is observed in Sr[Ca(Edta)] · 5H2O (III) [9]. The simi-
larity can be revealed even if other important parame-
ters are different.

In structures I and II under comparison, the coordi-
nation numbers (CNs) of metal atoms are essentially
different: CNFe = 7 and CNSr = 9 in structure I and CNCa =
8 and 7 in structure II. Moreover, the coordination
sphere of the Sr(1) atom additionally includes the large-
sized Cl(1) atom, which forms a hydrogen bond with
the é(H2O) atom of the neighboring tetranuclear dimer.
Nonetheless, the ribbons in I are analogous to the frag-
ments distinguished in structure II (Fig. 2b). In II, sim-
ilar six-membered rings are formed by components of
the tetranuclear associates. The ribbon fragments in I
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Fig. 3. Hydrogen bonds and packing of ribbons in structure I.
and II are formed in the same manner. The difference
between the structures is in the packing of the ribbons
in the crystal.

In I, the ribbons are packed according to the parquet
motif (Fig. 3). The contacts between the ribbons are due
to hydrogen bonds (hydrogen bonds 1, 2, 3, 5, 7, and 9).
No other short contacts are observed in the structure. In
the structural regions where van der Waals interactions
could be expected, there exist relatively wide channels
(4.7 Å in diameter).

In distinction to I, in which the ribbons are linked
only by hydrogen bonds, the ribbons in II are associ-
ated into layers. The mechanism of association is very
similar to the hypothetical mechanism discussed in
[15]. The terminal ethylenediamine complexes of tetra-
nuclear fragments are bound into dimeric associates.
In II, the formation of the coordination (rather than
hydrogen) bonds between the dimers brings about the
formation of layers. In III (with a different conforma-
tion of the ethylenediamine complexes), the polymer-
ization leads to the formation of a framework structure.

A comparison between structures I and II revealed
that the hypothetical transition considered in [15],
ALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
which is accompanied by the transformation of the dis-
crete complex into the dimer, takes place in the con-
crete morphotropic transition and that the energy
expended for forming the contact due to the totality of
hydrogen bonds can be equivalent or comparable to that
due to traditional coordination bonds.

In conclusion, it should be noted that the formation
of heteronuclear polymeric structures frequently occurs
via bridging atoms of aminopolycarboxylate ligands.
This situation is typical of different doubly charged cat-
ions. The introduction of additional ligands (in our
case, chlorine) does not produce an essential effect on
the general strategy of crystal construction.
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Abstract—A product of the insertion, namely, trans-tetrachloro(C,C-dichloro-C-phenyl-methyl-nitrido)(phe-
nylnitrilo)tungsten(VI), trans-[WCl4(NCCl2Ph)(NCPh)] (I), is synthesized by the reaction of WCl6 with
PhCN in CCl4 under refluxing for 2 h. Judging from the characteristic IR bands ν(ë≡N) and ν(W≡N), the
complex synthesized is identical to the compound prepared earlier at room temperature. The crystal structure
of complex I is determined using X-ray diffraction analysis. It is revealed for the first time that the coordination
polyhedron of the tungsten atom in complex I is a distorted octahedron with four chlorine atoms in
the equatorial plane. The axial positions are occupied by the N(1) atom [W–N(1), 2.265(13) Å] of the coordi-
nated benzonitrile group and the N(2) atom [W–N(2), 1.732(13) Å] of the multiply bonded ligand
NCCl2Ph. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is known [1], the addition of nitriles to tungsten
hexachloride is accompanied by the transfer of two
chlorine atoms to the carbon atom of the nitrile group
with the formation of products of the insertion, namely,
[WCl4(NCCl2R)(NCR)]. It should be noted that deriva-
tives of this type with R = CH3– and CH3CH2– are rel-
atively unstable and represent intermediate products in
the reactions of reduction of tungsten hexachloride and
the formation of nitrile adducts [WCl4(NCR)2].
According to Fowles et al. [1], the formation of
[WCl4(NCR)2] nitrile adducts is promoted by heat treat-
ment of the reaction mixture. In other works, insertion
reactions resulting in the formation of stable complexes
have been investigated only at room temperature. How-
ever, among the 11 known products of the insertion of
nitriles into tungsten hexachloride, only the
[WCl4(NC2Cl5)(NCCl3)] complex with trichloroaceto-
nitrile was structurally characterized by Drew et al. [2].

In this respect, it was of interest to perform the reac-
tion of tungsten hexachloride with benzonitrile at high
temperatures and then to compare the obtained results
with the available data in order to elucidate how the
temperature conditions of the synthesis affect the crys-
tal structure (in the case of the formation of a crystalline
product) and composition of the product.

EXPERIMENTAL

Synthesis. The reactions were carried out with the
following reactants: (i) tungsten hexachloride WCl6
(commercial grade) purified from impurities through
1063-7745/04/4904- $26.00 © 20649
vacuum distillation at a temperature of 90°ë and
(ii) benzonitrile PhCN (chemically pure) and carbon
tetrachloride CCl4 (chemically pure) purified from
impurities by distillation over P4O10. All the procedures
were performed in a dry argon atmosphere.

The elemental composition of the reaction product
was determined using a Carlo Erba EA 1108 C,H,N,S-
microanalyzer. The IR absorption spectra were
recorded on a Specord 75 IR spectrophotometer in the
range 4000–400 cm–1 (KBr pellets). Samples were pre-
pared as suspensions in vaseline oil.

Benzonitrile PhCN (1.21 ml) was added to a sus-
pension of tungsten hexachloride (5.91 mmol, 2.34 g)
in carbon tetrachloride (20 ml). The reaction mixture
was boiled in a flask on an oil bath for 2 h. The flask was
equipped with a reflux condenser and a tube with
CaCl2. Immediately after cooling, brown crystals of the
[WCl4(NCCl2Ph)(NCPh)] compound (I) precipitated
from the solution. The solid phase was isolated from the
mother solution through decantation, washed several
times with carbon tetrachloride, and dried under vac-
uum.

For C8.75Cl6H6.25N1.25W, anal. calcd. (%): N, 3.33; C,
20.00; H, 1.20.

Found (%): N, 3.22; C, 20.22; H, 1.05.
IR (cm–1): 2256 s, 1282 s, 1154 m b, 992 m b, 872 w,

818 w, 784 m, 754 m, 716 s, 680 m, 634 w, 548 s,
498 m.

X-ray diffraction analysis. The X-ray experimen-
tal reflections were collected according to a standard
procedure [3] on a Bruker AXS SMART 1000 diffrac-
004 MAIK “Nauka/Interperiodica”
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tometer equipped with a CCD detector (ω scan mode;
scan step, 0.3°; exposure time per frame, 30 s; 2θmax =
60°).

Semiempirical correction for absorption was intro-
duced with the SADABS software package [4]. The
structure was solved by direct methods with the
SHELXS97 software package [5] and refined using the
least-squares procedure in the full-matrix anisotropic
approximation (the calculated positions of the hydro-
gen atoms were kept constant; UH = 0.08 Å2) with the
SHELXL97 software package [6]. The standard meth-
ods, as applied to the solution and refinement of the

Table 1.  Crystal data, data collection, and refinement pa-
rameters for the crystal structure of complex I

Empirical formula C14H10Cl6N2W

Molecular weight 602.79

Crystal size, mm 0.05 × 0.08 × 0.15 

Crystal system Monoclinic

Space group P21/n

Unit cell parameters:

a, Å 10.286(7)

b, Å 15.493(14)

c, Å 12.471(10)

β, deg 109.25(3)

V, Å3 1876(3)

Z 4

ρcalcd, g/cm3 2.134

µ, cm–1 7.008

F(000) 1136

Diffractometer SMART

T, K 110

Radiation (λ, Å) MoKα (0.71073), graphite 
monochromator

Scan mode ω
θ range, deg 2.17–30.00

Index ranges –14 ≤ h ≤ 14,

–21 ≤ k ≤ 21,

–12 ≤ 1 ≤ 17

Total number of reflections 
measured

9476

Number of unique reflections 7241 [Rint = 0.1000]

Tmin, Tmax 0.99, 0.54

Number of parameters
refined

139

Goodness-of-fit on F2 1.000

R [I > 2σ(I)] Rl = 0.1062, wR2 = 0.2685

R (for all reflections) Rl = 0.1144, wR2 = 0.2816

Maximum and minimum resid-
ual electron densities, eÅ–3

11.900 and –3.817
C

crystal structure, led to a very large discrepancy factor
(~16%). The repeated analysis of the experimental dif-
fraction reflections (collected on the same diffractome-
ter) with the use of the RLATT and GEMENI programs
[7] revealed that the crystal is a twin (more precisely,
the crystal is twinned along the b axis). The F2 array
was obtained by subtracting the contribution from part
of the overlapping reflections. The structure refinement
with this data array led to the following final factors:

R1 = 0.1062 and Rw( ) = 0.2685 for reflections with
Fo > 4σ(Fo). Apparently, the large discrepancy factor
can be explained by the insufficiently correct inclusion
of the crystal twinning in the calculation.

The crystal data, data collection, and refinement
parameters for the crystal structure of complex I are
presented in Table 1. The coordinates of the non-hydro-
gen atoms and their equivalent isotropic thermal param-
eters are given in Table 2. The selected interatomic dis-
tances and the bond angles are listed in Table 3.

Fo
2

Table 2.  Coordinates of the non-hydrogen atoms (×104) and
their equivalent isotropic thermal parameters Ueq (Å2 × 103)
for the crystal structure of complex I

Atom x y z Ueq, Å

W(l) –2932(1) 3472(1) 7480(1) 19(1)

Cl(l) –2078(4) 2493(2) 8963(4) 26(1)

C1(2) –2858(4) 2387(2) 6227(4) 26(1)

Cl(3) –4243(4) 4271(3) 5935(4) 29(1)

Cl(4) –3592(4) 4385(3) 8691(4) 29(1)

C1(5) 887(4) 4234(3) 9274(4) 32(1)

C1(6) –708(4) 5605(2) 7835(4) 28(1)

N(1) –4977(13) 2857(8) 7344(13) 25(3)

N(2) –1368(13) 3959(9) 7623(14) 28(3)

C(l) –6014(15) 2557(10) 7308(16) 25(4)

C(2) –7336(14) 2203(10) 7300(14) 19(3)

C(3) –7703(16) 2276(11) 8281(16) 26(4)

C(4) –8944(15) 1905(10) 8308(17) 28(4)

C(5) –9711(17) 1455(11) 7373(16) 27(4)

C(6) –9400(16) 1381(10) 6399(16) 24(4)

C(7) –8122(15) 1756(10) 6356(16) 26(4)

C(8) –176(14) 4471(10) 7867(14) 18(3)

C(9) 593(13) 4377(9) 7013(14) 17(3)

C(10) 1912(14) 4682(11) 7263(16) 27(4)

C(11) 2543(15) 4594(10) 6434(15) 24(4)

C(12) 1907(14) 4226(9) 5397(15) 22(3)

C(13) 622(15) 3890(10) 5188(15) 24(3)

C(14) –79(16) 3966(11) 5961(16) 27(4)
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Table 3.  Selected bond lengths d (Å) and angles ω (deg) for the crystal structure of complex I

Bond d Bond d

W(1)–N(2) 1.732(13) W(1)–N(1) 2.265(13)

W(1)–C1(3) 2.313(5) W(1)–C1(2) 2.314(4)

W(1)–C1(1) 2.329(4) W(1)–C1(4) 2.327(4)

C1(5)–C(8) 1.773(16) C1(6)–C(8) 1.837(16)

N(1)–C(1) 1.151(19) N(2)–C(8) 1.406(18)

C(1)–C(2) 1.46(2) C(8)–C(9) 1.53(2)

Angle ω Angle ω

N(2)–W(1)–N(1) 178.2(7) N(2)–W(1)–Cl(3) 96.8(5)

N(1)–W(1)–Cl(3) 83.7(4) N(2)–W(1)–Cl(2) 98.6(5)

N(1)–W(1)–Cl(2) 83.1(4) Cl(3)–W(1)–Cl(2) 88.04(17)

N(2)–W(1)–Cl(1) 96.2(5) N(1)–W(1)–Cl(1) 83.3(4)

Cl(3)–W(1)–Cl(1) 166.87(15) Cl(2)–W(1)–Cl(1) 88.58(16)

N(2)–W(1)–Cl(4) 97.4(5) N(1)–W(1)–C1(4) 80.9(4)

Cl(3)–W(1)–Cl(4) 90.04(17) C1(2)–W(1)–C1(4) 164.01(14)

Cl(1)–W(1)–Cl(4) 89.71(16) C(1)–N(1)–W(1) 177.7(14)

C(8)–N(2)–W(1) 169.0(13) N(1)–C(1)–C(2) 177.4(18)

N(2)–C(8)–C(9) 114.2(13) N(2)–C(8)–C1(5) 107.9(11)

C(9)–C(8)–Cl(5) 112.2(9) N(2)–C(8)–Cl(6) 107.6(10)

C(9)–C(8)–Cl(6) 107.1(10) Cl(5)–C(8)–Cl(6) 107.5(8)
RESULTS AND DISCUSSION

Our investigations demonstrated that the interaction
of tungsten hexachloride with benzonitrile (taken in
twofold excess) in carbon tetrachloride under refluxing
for 2 h results in the formation of a product of the inser-
tion, namely, complex I. According to the IR spectro-
scopic data, this product is similar to the compound
synthesized at room temperature without heating.
Actually, the IR absorption spectrum of complex I con-
tains the ν(ë≡N) band at a frequency of 2256 cm−1,
which is associated with the stretching vibrations of the
coordinated benzonitrile group, and the ν(W≡N) band
at a frequency of 1282 cm–1, which is attributed to the
stretching vibrations of the imido ligand. Similar bands
were observed (at frequencies of 2262 and 1282 cm–1,
respectively) in the IR absorption spectrum of the
[WCl4(NCCl2Ph)(NCPh)] complex synthesized at
room temperature [1]. This allows us to assume that, in
the case under consideration, the temperature condi-
tions do not affect the final product of the reaction,
unlike the reaction of tungsten hexachloride with ethyl
isocyanate studied in our previous works [8, 9], in
which we revealed thermal isomerization of the result-
ant ligand.

In complex I, the coordination polyhedron of the
tungsten atom is a distorted octahedron with four chlo-
rine atoms in the equatorial plane (figure). The axial
positions of the octahedron are occupied by the N(1)
atom [W–N(1), 2.265(13) Å] of the coordinated ben-
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
zonitrile group and the N(2) atom of the multiply
bonded ligand NCCl2Ph. The distortion manifests itself
in a displacement of the W atom from the equatorial
plane to the N(1) atom by 0.29 Å. The angles formed by
the Cl(1)–Cl(4) plane with the planes of the phenyl
groups are equal to 91.4° and 83.4°. The angle between
the planes of the phenyl groups is equal to 8.4°.

The W–N(2) distance [1.732(13) Å] in structure I
lies in the range of the W–N(imido) distances (1.703–
1.749 Å; mean distance, 1.726 ± 0.023 Å) in structures
of five compounds of the general formula
[WCl4(NCR1)(NR2)] (where R1 = Me; R2 = C6Cl2F6N,
SO2NH2, Cl, SCH3 [10–13]; and R1 = CCl3, R2 = C2Cl5
[2]). The nitrogen atom of the imido ligand in the above
complexes forms a triple bond with the central atom
due to the pπ–dπ interaction of the lone electron pair of
the nitrogen atom with a free d orbital of the metal
atom. The value of the W–N(2)–C(8) angle (169.0°) in
complex I indicates that the lone electron pair of the
nitrogen atom is incompletely involved in the bond
with the tungsten atom. Therefore, the W–N(2) bond
should be more correctly treated as a virtually triple
bond.

A comparison of the data obtained for the products
of low-temperature [1] and high-temperature syntheses
shows that the temperature conditions do not affect the
composition and structure of the resultant compounds.
However, the boiling of the reaction mixture makes it
possible to decrease the reaction time substantially.
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Judging from the elemental analysis data, treatment of
complex I under vacuum results in the formation of a
compound with nonstoichiometric composition. A
decrease in the intensity of the ν(ë≡N) band in compar-
ison with the intensity of the ν(W≡N) band in the IR
spectrum of complex I suggests that, in the course of
treatment under vacuum, the coordinated nitrile groups
are partially displaced from the coordination sphere
with the formation of the WCl4(NCCl2Ph)(NCPh)0.25
compound.

We have now investigated the reactivity of complex
I with respect to organic isocyanates, isothiocyanates,
and sulfur and carbon dioxides.
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Abstract—The structural and dynamical properties of the x–T phase diagram of the system of
Rb1 − x(NH4)xI mixed crystals is of great interest, because such solid solutions are almost free of internal
stresses due to almost equal ionic radii of ammonium and rubidium. The x–T phase diagram of Rb1 – x(NH4)xI
is studied on samples with ammonium concentration ranging from 0.01 to 0.73 over the temperature range from
15 to 300 K by the methods of powder neutron diffraction and inelastic incoherent neutron scattering. The
results obtained by powder neutron diffraction show that the α–β phase transition at low temperature is rather
extended and occurs at the ammonium concentrations x = 0.50 and 0.66. The region of orientational state glass
is determined by inelastic incoherent neutron scattering at the concentrations x = 0.29 and 0.40 at the tempera-
ture T = 20 K. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The study of the x–T phase diagram of
Rb1 − x(NH4)xI mixed crystals is very important for bet-
ter understanding the possible influence of internal
stresses. In the last decade, the x–T phase diagram of
K1 – x(NH4)xI mixed crystals was studied in detail and it
was shown that the specific features of this system at low
temperatures may be explained by the internal stresses
caused by different ionic radii of potassium and ammo-
nium [1–6]. This difference may be responsible for the
formation of the ε phase with a new crystal structure on
the x–T phase diagram of K1 – x(NH4)xI mixed crystals.

Whereas KI undergoes no phase transitions prior to
the attainment of low temperatures, NH4I undergoes a
number of following phase transitions with lowering of
the temperature [7, 8]:

α-phase ⇔ 255.4 K ⇔ β-phase 
231.4 K ⇔ γ-phase. (1)

The crystal structures of these phases were studied by
both X-ray and neutron diffraction methods [9, 10]. The

cubic α phase is described by the sp. gr. Fm3m- ,
Z = 4; the ammonium ions in this phase are orientation-
ally disordered. The cubic β phase is described by the

Oh
5

1063-7745/04/4904- $26.00 © 20653
sp. gr. Pm3m- , Z = 1; in this phase, ammonium ions are
also orientationally disordered. The tetragonal γ phase has
a structure with ordered ammonium ions and is

described by the sp. gr. P4/nmm- , Z = 2.

Depending on the ammonium concentration, the
x−T phase diagram of K1 – x(NH4)xI mixed crystals at
low temperatures is represented by the following
phases

(2)

The x–T phase diagram of K1 – x(NH4)xI mixed crystals
at low temperatures also has the phase of orientational
glass located between the α and ε phases. The crystal
structure of the ε phase, determined by single crystal
neutron diffraction at í = 14 K, is described by the sp.
gr. R3m, Z = 4 [4].

The ionic radii of rubidium and ammonium are
practically the same. RbI and KI crystals are isomor-
phous. Like KI, the RbI crystal does not undergo any
phase transitions up to the attainment of low tempera-
tures. RbI and NH4I form solid solutions over the whole
concentration range at room temperatures [11].

Oh
1

D4h
7

KI ⇔ α-phase ⇔ phase Oë ⇔ ε-phase 
⇔ β-phase ⇔ β-phase ⇔ NH4I.
004 MAIK “Nauka/Interperiodica”
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Below, we present the results of powder neutron dif-
fraction and inelastic incoherent neutron scattering
studies of the characteristics of the x–T phase diagram
of Rb1 – x(NH4)xI mixed crystals. These studies were
undertaken to reveal the ε phase and the shift of the
phase boundaries in comparison with those on the x–T
phase diagram of K1 – x(NH4)xI mixed crystals.

EXPERIMENTAL STUDIES AND RESULTS

The powder samples of Rb1 – x(NH4)xI mixed crys-
tals with various ammonium concentrations were pre-
pared by slow evaporation of aqueous solutions with
the corresponding stoichiometric concentrations. The
concentrations in the prepared powder samples were
controlled by special chemical methods and X-ray
phase analysis.

The crystal structure of Rb1 – x(NH4)xI mixed crys-
tals and the dynamics of ammonium ions were studied

4000

2
0

3 d, Å

0

100

0

0
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40

80
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Al Al
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x = 0.06
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Fig. 1. Neutron powder diffraction spectra of
Rb1 − x(NH4)xI crystals at various concentrations of ammo-
nium ions obtained on a NERA-GH time-of-flight spec-
trometer at 20 K.
C

by powder neutron diffraction (PND) and inelastic
incoherent neutron scattering (IINS). This complex
method allows one not only to study the properties of
Rb1 – x(NH4)xI mixed crystals, but also the specific fea-
tures of the x–T phase diagram, and establish general
relations between the crystal structure, the lattice
dynamics, and structural relaxation of individual lattice
complexes. For Rb1 − x(NH4)xI mixed crystals, it is also
possible to examine the influence of various types of
disorder on the crystal structure and ammonium
dynamics in different phases by the methods of inelas-
tic incoherent neutron scattering.

Diffraction Studies

The crystal structure of Rb1 – x(NH4)xI mixed crys-
tals was refined depending on ammonium-ion concen-
tration and temperature using the data of spectrometric
and diffractometric measurements (NERA-PR spec-
trometer and the DN-12 diffractometer (IBR-2, LNF,
JINR, Dubna) by the time-of-flight method [12, 13] and
also the data obtained on the diffractometer of a station-
ary reactor (CTU, Rzhezh, Czech Republic) by the con-
ventional method [14]. The x–T phase diagram of the
Rb1 – x(NH4)xI mixed crystals was studied on the sam-
ples with different ammonium concentrations, x = 0.01,
0.02, 0.06, 0.10, 0.16, 0.29, 0.40, 0.50, 0.66, and 0.77,
in the temperature range from room temperature to
10 K.

The neutron diffraction experiments on a DN-12
diffractometer [13] with the scattering angle being 2θ =
45° were performed on ~20-mm3-large powder sam-
ples. The diffractometer resolution was ∆d/d = 0.022
for d = 2 Å. To create low temperatures on samples, we
used a special cryostat designed on the basis of a
helium refrigerator with a closed helium cycle. The typ-
ical time of measuring a diffraction spectrum at each
temperature point was 3 h.

The x–T phase diagram of the Rb1 – x(NH4)xI mixed
crystals was studied along the concentration cut at a
temperature ranging within 10–20 K for various dif-
fraction spectra. The studies of the ı–T phase diagram
of Rb1 – x(NH4)xI mixed crystals by the powder neutron
diffraction are illustrated by figures.

The results of the powder neutron diffraction study
of the dependence on the ammonium concentration at
20 K made on an NERA-PR spectrometer are shown
in Fig. 1. It is seen that the crystal structure of
Rb1 − x(NH4)xI mixed crystals at x = 0.0, 0.06, 0.16, and
0.40 has a long-range order corresponding to the α
phase. It should be noted that the α–β phase transition
has no sharp boundary and is observed within the con-
centration range ~0.50 < x < 0.66 in which both these
phases coexist (the PND spectrum obtained at x = 0.50
is not shown in Fig. 1). For the sample with x = 0.66,
the NPD spectrum has a small contribution of the α
phase.
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Fig. 2. (a) Portion of the diffraction spectrum of a Rb0.71(NH4)0.29I crystal at 283 K (sp. gr. Fm3m) and 15 K (sp. gr. Fm3m).
(b) Portion of the diffraction spectrum of Rb0.23(NH4)0.77I crystals at 283 K (sp. gr. Fm3m) and 25 K (sp. gr. Pm3m).
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Fig. 3. Lattice parameter of the (a) cubic Rb1 – x(NH4)xI unit cell as a function of the concentration of N  ions at room tempera-

ture, (b) Rb0.71(NH4)0.29I crystals as a function of temperature, and (c) Rb0.23(NH4)0.77I crystals as a function of temperature. The
linear interpolation was performed by the least squares method. The experimental errors do not exceed the symbol dimensions (b, c).

H4
+

The samples of the Rb1 – x(NH4)xI mixed crystals
with the ammonium concentrations x = 0.29, 0.40, 0.66,
and 0.77 were studied at room and low temperatures on
a DN-12 diffractometer. The refinement of the NPD
spectra was usually performed by the MRIA program
[15]. The portions of the diffraction spectra of the sam-
ples with x = 0.29 and 0.77 and the results of their
Rietveld full profile analysis are shown in Figs. 2a and
2b, which show the experimental points, the calculated
profile, and the difference curve for various phases. The
dependences of the lattice parameters on the tempera-
ture and concentration for various phases are shown in
Figs. 3a–3c. The crystal structure of the Rb1 − x(NH4)xI
mixed crystals was studied on a CTU diffractometer at
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
the ammonium concentrations x = 0.01, 0.02, 0.06,
0.10, 0.16, 0.40, and 0.66 in the temperature range from
10 to 300 K. The results of the structural studies of the
samples with various ammonium concentrations at sev-
eral temperatures are listed in the table.

Studies by Inelastic Incoherent 
Neutron Scattering 

The IINS spectra from Rb1 – x(NH4)xI mixed crystals
were measured on a NERA-PR time-of-flight spec-
trometer of the inverted geometry (IBR-2 source,
Dubna) [12]. An NERA-PR spectrometer allows one to
measure the IINS spectra in the range of the transferred
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Structural parameters of Rb1 – x(NH4)xI mixed crystals depending on the ammonium concentration and temperature (K)

x 0.29 0.40 0.66 0.77

Temperature 280 280 280 280

Sp. gr. Fm3m Fm3m Fm3m Fm3m

Unit-cell parameter a, Å 7.3130(6) 7.2923(4) 7.2918(6) 7.2849(3)

H1–32(f)–(x) 0.5710(8) 0.5703(9) 0.5743(2) 0.5743(7)

H2–96(k)–(x, z) 0.5164(7) 0.5164(7) 0.5255(9) 0.5367(9)

0.3672(3) 0.3651(6) 0.3421(3) 0.3549(6)

Temperature 200 200

Sp. gr. Fm3m Pm3m

Unit-cell parameter a, Å 7.3074(5) 4.3498(5)

H1–32(f)–(x) 0.5689(5) 0.3685(8)

H2–96(k)–(x, z) 0.5140(2)

0.3604(6)

Temperature 150 150

Sp. gr. Fm3m Pm3m

Unit-cell parameter a, Å 7.2998(6) 4.3475(6)

H1–32(f)–(x) 0.5689(5) 0.3665(6)

H2–96(k)–(x, z) 0.5140(2)

0.3504(9)

Temperature 15 15

Sp. gr. Fm3m Pm3m

Unit-cell parameter a, Å 7.2967(6) 4.3343(7)

H–8(g)–(x) 0.3635(8)

H1–32(f)–(x) 0.5627(8)

H2–96(k)–(x, z) 0.5140(2)

0.3604(9)
energies up to 150 meV using crystals–analyzers from
pyrolytic graphite with a resolution of 0.6 meV at the
elastic-scattering wavelength λ0 = 4.15 Å.

Ammonium dynamics in Rb1 – x(NH4)xI mixed crys-
tals was studied along the concentration section of the
x–T phase diagram at the temperature T = 20 K in the
samples with x = 0.01, 0.02, 0.06, 0.10, 0.16, 0.29, 0.40,
0.50, and 0.66. The IINS spectra obtained for samples
with different ammonium concentrations are shown in
Figs. 4a and 4b. The spectra in Fig. 4a show a pro-
nounced contribution of quasi-elastic incoherent neu-
tron scattering (QENS) on wings of the profile of the
elastic-scattering line from crystals–analyzers. The
IINS contribution increases with an increase in ammo-
nium concentration up to x = 0.06, 0.10, and 0.16. Then,
beginning with the ammonium concentration in the
samples from x = 0.29 to 0.40, the QENS contribution
C

decreases, whereas the contribution from the low-
energy modes becomes more pronounced. This may be
explained as follows. The Rb1 – x(NH4)xI mixed crystals
with the ammonium concentration x = 0.06, 0.10, 0.16
lie inside the dynamically orientationally disordered
α phase, and the QENS contribution corresponds to
neutron scattering caused by reorientation of ammo-
nium ions. An increase in the ammonium concentration
is accompanied by changes of the height of the poten-
tial barriers of reorientation because of stronger ammo-
nium–ammonium interactions. This leads to changes in
the short-range order between ammonium ions, which
start playing the key role in the formation of orienta-
tional state glass. Thus, on the x–T phase diagram, the
Rb1 – x(NH4)xI mixed crystals with the ammonium con-
centrations x = 0.29 and 0.40 are located in the region
of orientational state glass.
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Fig. 4. Portions of the inelastic incoherent neutron scattering (IINS) spectra of (a) Rb1 – x (NH4)xI and (b) Rb0.34(NH4)0.66I crystals
at í = 20 K.
The diffraction study showed that the long-range
order in this concentration range corresponded to the
cubic crystal structure described by the sp. gr. Fm3m.
Although the ammonium ions in the crystal structure of
the β phase are orientationally ordered, there is no
QENS contribution from the sample with such a struc-
ture. This indicates the low frequency of reorientation
in the β phase at low temperatures, which cannot be
observed on an NERA-PR spectrometer because of its
resolution.

Generalized Density of Phonon States

Usually, the measured QENS spectra can be con-
verted into the generalized density of phonon states
G(E) in the single-phonon incoherent approximation
with the aid of a special program [16]. The G(E) spectra
of the Rb1 – x(NH4)xI mixed crystals at 20 K at the
ammonium concentrations x = 0.0, 0.06, 0.16, 0.40, and
0.66 are shown in Fig. 5.
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      200
The comparison of the G(E) spectra shows the appear-
ance of additional modes in the Rb1 – x(NH4)xI mixed crys-
tals with energies higher than the energy of the optical
mode in RbI. In mixed crystals, these modes are called
local and are related to the ammonium dynamics. The
mode with the energy ~20 meV is the local translation
mode ν5, whereas the mode with the energy ~30 meV
is the local libration mode ν6 of ammonium ions. The
G(E) spectra from the samples with the ammonium
concentrations x = 0.06, 0.16, and 0.40 have modes
with energies ~2.5 and 10 meV not observed in RbI, but
appearing in the continuous phonon spectrum of
Rb1 − x(NH4)xI mixed crystals. They are called the reso-

nance modes and are denoted by  and , respec-
tively. The resonance and local modes are observed in
the mixed crystals at low temperatures (Fig. 6) inside
the concentration ranges on the x–T phase diagram that
correspond to the dynamically disordered α phase and
the phase of orientational glass (or the phase of static
disorder). The resonance modes are not observed at
20 K in the G(E) spectrum of Rb1 – x(NH4)xI mixed crys-
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4
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Fig. 5. Generalized phonon density of states G(E) in Rb1 – x(NH4)xI crystals at 20 K.
tals with the concentration x = 0.66 corresponding to
the β phase. It should be noted that the Rb1 − x(NH4)xI
mixed crystals in the β phase at 20 K have the combi-
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Fig. 6. Comparison of the energies of the observed modes
in K1 – x(NH4)xI (circles) and Rb1 – x(NH4)xI (squares)
mixed crystals at 10 and 20 K, respectively.
C

nation mode ν5 + ν6 and the second harmonic of the
libration mode 2ν6 not observed in the α phase. 

CONCLUSIONS

Thus, the combined method of neutron scattering
including powder neutron diffraction and incoherent
inelastic scattering yields great possibilities for detailed
studies. The neutron studies performed allowed us to
determine the concentration ranges of the existence of
orientational state glass, which cannot be made by the
method of powder neutron diffraction. The results
obtained lead to certain conclusions on the properties of
the x–T phase diagram of Rb1 – x(NH4)xI mixed crystals,
namely:

—Rb1 – x(NH4)xI mixed crystals are in the α phase
over the whole concentration range 0.0 < x < 1.0 at
room temperature;

—the long-range order in the structure of the α-
phase is preserved in the concentration range of ammo-
nium up to ı = 0.29 at temperatures from room temper-
ature to 20 K;

—Rb1 – x(NH4)xI Ò x mixed crystals with x = 0.77 are
characterized by the long-range order of the β phase at
low temperature, which is transformed into the α phase
in the temperature range 200–280 K;
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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—the α–β phase transition has no sharp boundaries,
and the sequence of the transitions has the form

α-phase (0.01 ≤ x ≤ 0.16) 

⇔ phase Oë (0.29 ≤ x ≤ 0.40) ⇔ α-phase (3)

+ β-phase (0.50 ≤ x ≤ 0.66) ⇔ β-phase (x = 0.77);

—in Rb1 – x(NH4)xI mixed crystals, there is no con-
centration range where there exists the crystal structure
of the ε phase established earlier in K1 – x(NH4)xI mixed
crystals.

The x–T phase diagram of Rb1 – x(NH4)xI mixed
crystals is not considered in this article over the whole
concentration range of ammonium ions, because study
of the concentration ranges of the β and γ phases is
under way. The problem of the existence of the ε phase
of Rb1 – x(NH4)xI mixed crystals on the x–T phase dia-
gram is not solved completely. This phase was deter-
mined on the x–T phase diagram of K1 – x(NH4)xI mixed
crystals by the method of single-crystal neutron diffrac-
tion. The absence of the ε phase in Rb1 – x(NH4)xI mixed
crystals may be explained by the absence of internal
stresses typical of K1 – x(NH4)xI crystals.

It should be emphasized that the energy of the libra-
tion mode of ammonium ions in the ε phase should be
close to the energy of the libration mode of ammonium
in the α phase, but should be different from this energy
in the β and γ phases. Different energies of ammonium
libration modes are explained, first of all, by different
numbers of iodine atoms in the nearest environment of
ammonium ions. An ammonium ion interacts with only
six iodine atoms both in the α and ε phases, whereas, in
the β and γ phases, it interacts with eight iodine atoms.
However, it is expedient to continue the search for the
ε phase in the system of Rb1 – x(NH4)xI mixed crystals by
the method of neutron diffraction from single crystals.
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Abstract—The phase transition in the Li0.12Na0.88Ta0.2Nb0.8O3 ceramic solid solution has been studied by
Raman scattering spectroscopy at 350°ë. A considerable broadening of the lines due to translational vibrations
of cations in octahedral and cuboctahedral voids and to vibrations of the oxygen framework, as well as the
decrease to zero of the intensity of the line due to bridge stretching vibrations of oxygen atoms of Çé6 octahe-
dral anions, was revealed as the temperature of the solution approached the transition point from below. It was
found that the solution loses its ferroelectric properties due to the preferential increase in the anharmonicity of
vibrations of cations in octahedral voids. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As was found in [1–6], the concentration structural
phase transitions of a ferroelectric into the centrosym-
metric antiferroelectric state (ferroelectric–antiferro-
electric transitions) that occur at constant temperature
with a change in concentrations ı and Û in systems of
perovskite ceramic solid solutions described by the
general formula LixNa1 − xTayNb1 – yO3 (LNTN) are
accompanied by (1) the broadening of the line in the
Raman scattering spectrum due to bridge stretching
vibrations of oxygen atoms (Ç–é–Ç) in octahedral
Çé6 anions (Ç = Nb, Ta) and (2) the vanishing of this
line in the vicinity of the transition point. It is of interest
to elucidate to what extent the intensity of this line
(which is sensitive to violations of the central symmetry
of the crystal structure) can be a measure of the order
parameter in the system of LNTN solid solutions at
thermal structural phase transitions to the centrosym-
metric state. In this paper, we report the results of a
study of temperature variations in the Raman spectra at
the ferroelectric–antiferroelectric transitions in
Li0.12Na0.88Ta0.2Nb0.8O3 solid solutions.

EXPERIMENTAL

The samples of solid solutions were prepared by the
conventional ceramic technique [1] in the form of pel-
lets from high-purity-grade reagents by double firing
(with intermediate grinding and stirring of the cakes)
and sintering the ceramics at 1200–1280°C. The phase
and chemical composition of the solid solution was
determined from the ratio of the starting components
and controlled by X-ray phase analysis and atomic
absorption analysis. No impurity phases of other com-
pounds were found. In the Raman spectra of the sam-
ples under study, as well, no additional lines corre-
1063-7745/04/4904- $26.00 © 20660
sponding to impurity phases were observed over the
entire temperature range (below and above the transi-
tion point).

Raman spectra were recorded on a modified DFS-24
spectrometer using excitation by the 488.0-nm line
(with power 0.05 W) of an ILA-120 argon laser. The
frequency, width, and intensity of the line were mea-
sured accurate to ±1, ±3 cm–1, and 5%, respectively.
Temperature was maintained constant accurate to ±0.5
K and controlled by a Pt–Pt,Rh thermocouple.

RESULTS AND DISCUSSION

The disordering of the structure of LNTN antiferro-
electrics consists in the antiparallel orientation of the
dipole moments of individual noncentrosymmetric
octahedral Çé6 anions. The total dipole moment of
such a crystal is zero. Thus, the structure of the antifer-
roelectric (consisting of noncentrosymmetric Çé6
anions) can be characterized by an “effective” cen-
trosymmetric octahedral Çé6 anion. In the spectrum of
this anion, transitions related to bridge stretching vibra-
tions of the B–O–B bonds are forbidden [1]. The anti-
ferroelectric character of dipole ordering in the high-
temperature phase is confirmed by the temperature
dependences of the second-harmonic intensity I2ω(T)
and the activation energy of polar clusters in the
medium being centrosymmetric as a whole [1]. In anti-
ferroelectric phases, Ed ~ 0.05–0.2 eV; in paraelectric
“crumpling” phases, Ed ~ 1 eV [7].

The basic properties of solid solutions and ferro-
electric–antiferroelectric phase transitions in LNTN
systems have been studied previously by different
methods [1–6, 8–10]. However, the mechanism of
transformation in Li0.12Na0.88Ta0.2Nb0.8O3 needs clarifi-
cation. Interest in this compound is aroused not only by
004 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Temperature changes in the Raman spectrum of the Li0.12Na0.88Ta0.2Nb0.8O3 ceramic solid solution and (b) the region
of bridge stretching vibrations of oxygen atoms (Ç–é–Ç) in octahedral Çé6 anions. The temperature is (1) 20, (2) 185, (3) 250,
(4) 320, (5) 325, and (6) 530°C.

(a) (b)
the presence of the ferroelectric–antiferroelectric phase
transition—it seems likely that cations in
Li0.12Na0.88Ta0.2Nb0.8O3 crystals are ordered so that the
positions in the alkali metal sublattice that are unoccu-
pied by Na+ ions form peculiar conductivity channels,
which, in turn, offers the prospect of phase transition
into the superionic state at temperatures above the fer-
roelectric–antiferroelectric transition [1, 9, 10]. It is
also worth noting that, at room temperature, the ferro-
electric solid solution Li0.12Na0.88Ta0.2Nb0.8O3 is in the
region of the morphotropic phase transition, where
phases with monoclinic and rhombohedral distortions
of the perovskite subcell coexist (sp. grs. Pbcm and
R3Ò). At a temperature of ~110°C, the phase transition
R3c  Pbcm is observed; at a temperature of ~350°C,
the transition from the structure with orthorhombic
symmetry Pbcm to the centrosymmetric antiferroelec-
tric phase occurs [1]. The structure of the high-symme-
try phase is not known with certainty. By analogy with
the NaTaÛNb1 – ÛO3 solid solution, one can suggest that
the structure of the antiferroelectric phase is described
by the sp. gr. Pmnm [11].
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
Figure 1 shows the temperature changes in the
Raman spectra of the ceramic solid solution
Li0.12Na0.88Ta0.2Nb0.8O3 at the ferroelectric–antiferro-
electric phase transition at ~350°C. This transition
shows up in the spectrum, first of all, in the disappear-
ance of the line at 875 cm–1, which is due to bridge
stretching vibrations of oxygen atoms in Çé6 (Ç =
Nb,Ta) octahedral anions. Simultaneously, the entire
Raman spectrum is broadened considerably (both the
lines due to cation vibrations in octahedral and cuboc-
tahedral voids (0–400 cm–1) and the lines due to vibra-
tions of Çé6 oxygen octahedra (550–900 cm–1). This
broadening indicates substantial thermal disordering of
the structure in the centrosymmetric phase. It can be
inferred that the disordering of the structure caused by
heating and the phase transition to the centrosymmetric
antiferroelectric state in Li0.12Na0.88Ta0.2Nb0.8O3 are, in
this case, due to the increase in the anharmonicity of
several types of lattice vibrations (first and foremost, of
the vibrations of ions in octahedral and cuboctahedral
voids). Since the line due to bridge stretching vibrations
of oxygen atoms in octahedral Çé6 anions is the only
one that disappears above the ferroelectric–antiferro-
electric transition point with the other lines retained
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(see Fig. 1), the anharmonicity of vibrations of cations
in octahedral voids is increased preferentially. How-
ever, the initial peculiarities of the structural disorder-
ing in Li0.12Na0.88Ta0.2Nb0.8O3 should also be taken into
account.

In the case under consideration, we are dealing with
a certain level of the compositional disorder in cation
sublattices of ferroelectric crystals of complex perovs-
kites at isovalent substitution (Na+ to Li+ and Nb5+ to
Ta5+) (when compounds or solid solutions with a mod-
erate degree of compositional long-range order are
formed [12]) rather than with the dipole (electric)
ordering. In such systems, which are characterized by a
high disorder in cation arrangement and by anharmo-
nicity, the structural units of a crystal have several,
rather than one, equilibrium positions in the lattice sites

100 200 300 400
t, °C

0.5

1.0

870

880

22

8

S, cm–1

ν, cm–1

I, η

1

2

3

Fig. 2. Temperature dependences in the vicinity of the fer-
roelectric–antiferroelectric phase transition in the
Li0.12Na0.88Ta0.2Nb0.8O3 ceramic solid solution of the
intensity I (1), width S, and frequency ν of the 875-cm–1

Raman line due to bridge stretching vibrations of oxygen
atoms (Ç–é–Ç) in octahedral Çé6 anions; (2) the order
parameter η calculated from experiment; and (3) the order
parameter η calculated for the second-order phase transi-
tion within the Landau theory.
C

[13–18]. The potential energy of such a crystal exhibits
several minima for a structural unit; the motion of these
units in the lattice is substantially complicated due to
anharmonic jumps between the minima.

In the ceramic solid solution LixNa1 – xTayNb1 – yO3,
according to the vibrational-spectroscopy data, a static
(hard) disordering of cation sublattices and, possibly,
clusterization of cations are initially observed [1–6, 8].
With this disorder, the structural units of the crystal
may have several positions (or orientations) in the lat-
tice. These positions are separated by energy barriers
that are so high that transitions of a structural unit from
one position (orientation) to another are practically
ruled out [15, 16]. In this case, the broadening of the
lines in the spectrum of a statically disordered crystal
may result from both the scattering of phonons by static
defects and the phonon–phonon interaction due to the
increase in the anharmonicity of some types of vibra-
tions [15, 16].

A slight and linear increase in the width of the
875-cm–1 line with increasing temperature (Fig. 2) con-
firms the presence of static (hard) disordering of nio-
bium and tantalum ions in the antiferroelectric phase.
In addition, orientational static disordering (hard disor-
dering) of the oxygen octahedra as a whole is also pos-
sible in the crystal lattice. This disordering manifests
itself in significant broadening and merging (into a
wide band) of the lines due to vibrations of the oxygen
framework of the solid solution in the range 550–
700 cm–1 (Fig. 1).

In terms of the Landau theory of phase transitions,
the properties of a crystal system undergoing a struc-
tural phase transition can be described phenomenolog-
ically with the aid of the order parameter. The latter is
zero above the transition point (in the symmetric phase)
and differs from zero below the point (in the nonsym-
metric phase) [19]. Within the Landau theory, the
nature of the order parameter is not specified; in differ-
ent systems, the order parameter can be associated with
different physical quantities.

Experimental studies of phase transitions in crystal
systems of various natures with the aid of vibrational
spectra (see review in [15]) have shown that not only
the frequency (soft mode), but also the intensity of
some “hard” lines in the spectrum, can serve as a func-
tion of the order parameter of the phase transition. In
[20], the relationship between the line intensity and the
order parameter η was justified theoretically. From the
analysis of the change in the symmetry of normal coor-
dinates, which determines variations in vibrational
spectra, it was found in [20] that, in the close vicinity of
the transition, the intensity of some “hard” vibrational
modes is proportional to the square of the order parame-
ter. Being practically constant in the immediate vicinity
of the phase transition, the frequency of the 875-cm–1

line (Fig. 2) cannot be considered as a soft mode. In this
case, however, the temperature dependence of the
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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intensity of this line can be used as a function of the
order parameter of the phase transition.

As can be seen from Fig. 2, the order parameter η
determined from the temperature dependence of the
intensity of the line at 875 cm–1 in the immediate vicin-
ity of the transition is closely approximated by the for-

mula η =  = (íë – í)β/2, (β = 1.0 ± 0.2). For a second-
order phase transition, β = 1 [15, 19]. Near the phase
transition (t ~ 350°C), there is a rather abrupt decrease

in the dependence (T). These facts, as well as a sig-
nificant temperature hysteresis and heat release at the
phase transition [1], suggest that the ferroelectric phase
transition in Li0.12Na0.88Ta0.2Nb0.8O3 is the first-order
phase transition, which is similar to second-order phase
transitions. This transition is due to the preferential
increase in the anharmonicity of the vibrations of
intraoctahedral cations in a statically disordered
system.
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Abstract—The behavior of a hexagonal lattice of bubble domains in a uniaxial thin film of (BiTm)3(FeGa)5O12
ferrite garnet with a compensation temperature of 120 K was studied experimentally in a range of change in
anisotropy from the easy magnetization axis to the easy magnetization plane. It is shown that the spin reorien-
tation occurs in the temperature range 185–160 K, in which the angular phase (either  or ) and

the axial phase Φ〈111〉 coexist. At 172 K, when the percentages of the angular and axial phases are equal, the
lattice parameters of the bubble domains and the domain-wall width change stepwise. At T < 160 K, only a
plane magnetic phase exists. © 2004 MAIK “Nauka/Interperiodica”.
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When changing temperature, uniaxial thin films of
ferrite garnets undergo spin-reorientation phase transi-
tions (SRPTs) accompanied by a change in the magne-
tization orientation with respect to the 〈111〉  axis. Upon
an SRPT, rearrangement of the film domain structure
occurs. The domain structure near an SRPT was studied
visually in a thin ferrite-garnet film using the magneto-
optical Faraday effect. The parameters of the serpen-
tine-like domain structure were determined by mag-
neto-optical diffraction [1, 2]. It was found that the
magnetization reorientation leads to a stepwise increase
in the period of the domain structure. An SRPT from
the easy-axis to easy-plane anisotropy occurs without
hysteresis but is accompanied by a coexistence of two
phases at temperatures near 3 K.

Except for the SRPT region, significant changes of
the domain structure of ferrite garnets are observed in
the vicinity of the magnetic compensation temperature
(TC). The most interesting situation is observed when
the temperature of the SRPT is close to or coincides
with TC. In [3, 4], the domain structure in the tempera-
ture range including TC and the SRPT temperature was
studied both in the absence of an external magnetic
field (spontaneous transitions) and in magnetic fields of
different strengths (induced transitions). In [3], the
domain structure was studied using the magneto-opti-
cal Faraday effect with a phase identification by the
color-contrast method. Study of the domain structure
revealed that, for Er3Fe5O12, the temperature of the
first-order SRPT between the phases with magnetiza-
1063-7745/04/4904- $26.00 © 20664
tion orientated along the 〈111〉  and 〈100〉  axes coincides
with TC [4]. In [3], it was also established that the tem-
perature ranges of magnetic compensation in a substi-
tuted erbium–iron garnet overlap.

The aim of this work is to study the behavior of the
hexagonal lattice of bubble domains when changing the
film temperature in the range corresponding to spin
reorientation near TC. A uniaxial film of ferrite garnet
(BiTm)3(FeGa)5O12 (4πMs = 160 G), in which a bubble-
domain lattice could be formed, was studied at room
temperature. The 〈111〉  axis was normal to the film
plane. The bubble-domain lattice was formed using a
unipolar pulsed magnetic field with a frequency of
400 Hz and a strength of 60 Oe without a bias field;
then, the field was switched off. The spin reorientation
in the film with the compensation temperature TC = 120 K
occurred in the temperature range 185–160 K. The
domain structure was observed by the Faraday effect.
Color SRPT recording was performed visually.

There are two ways of studying the characteristics
of a bubble-domain lattice. In the first variant, a lattice
is formed at different temperatures to obtain the tem-
perature dependences of the lattice period a and the
bubble-domain diameter d. Both a(T) and d(T) are con-
tinuous functions of temperature. Such lattices are at an
equilibrium at the temperature of formation; i.e., their
parameters correspond to a minimum energy. The
parameter y = d/a = 0.74 remains constant within the
entire temperature range in which the equilibrium lat-
tice may exist [5]. Another character of the a(T) and
d(T) dependences is observed when the bubble-domain
lattice is formed at some fixed temperature and, then,
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Domain structure of a (BiTm)3(FeGa)5O12 film at (a) 300; (b) 215; (c, d) 172; and (e) 205 K.
the film temperature is varied. In this case, the lattice
remains the same in a certain temperature range and,
then, a spontaneous phase transition to a lattice with
new parameters corresponding to an equilibrium lattice
at the transition temperature occurs. The latter variant
was used in this study.

Let us consider phase transitions in a bubble-
domain lattice caused by film cooling. The lattice was
formed at í = 300 K (Fig. 1a). Initially, two collinear
magnetic phases with magnetization vectors normal to
the film plane were observed: the phase Φ1〈111〉  corre-
sponding to bubble domains (orange) and the phase

Φ2〈 〉  (brown background). The lattice with ‡ =
18 µm remained unchanged up to 215 K; i.e., the value
of ‡ remained constant. Then, a transition to a new lat-
tice with a larger parameter occurred. At this transition,

111
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some bubble domains were compressed and disap-
peared, while others increased in diameter and occu-
pied the neighboring sites (Fig. 1b). After an action of
a pulsed field, an equilibrium bubble-domain lattice
with a larger parameter (‡ = 25 µm) and a smaller num-
ber of bubble domains was formed. The magnetic
phases Φ1 and Φ2 were still present. At 185 K, some
background areas changed their color from brown to
green, and some bubble domains changed in color from
orange to white. This phenomenon indicated the begin-
ning of spin reorientation and the appearance of two
new phases with magnetization vectors directed

obliquely to the film plane: the phase Φ3〈 〉  of bub-

ble domains (white) and the phase Φ4〈 〉  (green
background). At 172 K, the bubble-domain lattice col-
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lapsed (Fig. 1c). Then, a lattice with parameter ‡ =
118 µm and a wide, very contrasting, domain wall was
formed by a pulsed field (Fig. 1d). In this case, the bub-
ble domains changed stepwise in size: the diameter
increased threefold with respect to that observed at
185 K. The bubble-domain width also changed step-
wise: it increased fivefold with respect to the corre-
sponding value at 185 K. All the four phases were
observed, and the total area of the Φ3 and Φ4 phases was
equal to the total area of the Φ1 and the Φ2 phases
(Fig. 2). With decreasing temperature, the ratio of areas
changed in favor of the Φ3 and Φ4 phases; the green
background areas increased in size, gradually replacing
the brown ones; and almost all the bubble domains
became white. At T2 = 160 K, large isolated bubble
domains of bright, white color with wide, clearly pro-
nounced, dark walls were observed against a bright
green background, i.e., only two angular phases—Φ3
and Φ4—were present. At 158 K, the bubble domains
became unstable and drifted continuously, changing
their shapes. In this case, the domain-wall width proved
to be different for different domain parts. With a further
decrease in temperature, the contrast becameimpaired
due to the decrease in the Faraday rotation and, at
150 K, the domain structure was no longer observed.
This fact indicates that a plane anisotropy may arise;
i.e., that only the magnetic phase Φ5 was present.

Upon film heating, a large strip domain of uncertain
(somewhat whitish) color appeared at 155 K. As a result
of the action of a pulsed field at 160 K, unstable and iso-
lated white bubble domains were formed against the
green background; i.e., Φ3 and Φ4 phases arose. In this
case, few orange and brown areas of small size (Φ1 and
Φ2 phases) were observed. Upon film heating up to
172 K, the bubble domains lost their shape, transform-
ing into stripes. At 172 K, a bubble-domain lattice with
a smaller parameter (‡ = 166 µm) and narrow domain
walls was formed by a pulsed field. Upon further heat-

150
T3

T, K

0.5

155 160 170 180 185 190
T2 TSRPT T1

Φ5

Φ3〈111〉

Φ4〈111〉

Φ1〈111〉
Φ2〈111〉

S(Φ3 + Φ4)/S(Φ1 + Φ2 + Φ3 + Φ4)

Fig. 2. Temperature dependence of the ratio of the area
occupied by the domain phases Φ3 and Φ4 to the area occu-
pied by the phases Φ1 and Φ2.
C

ing, we observed that some bubble domains changed
their color from white to orange and that the green
background became partially brown; i.e., the total area
of the Φ1 and Φ2 phases increased. At 185 K, white and
green colors were hardly observed, i.e., the angular Φ3
and Φ4 phases tended to disappear, the bubble domains
lost their shape, and the bubble-domain lattice was
destroyed. At 185 K, a new lattice with a smaller
parameter (‡ = 120 µm), which contained only the col-
linear Φ1 and Φ2 phases (orange bubble domains and
brown background), was formed by a pulsed field. This
lattice remained unaltered up to 205 K. Then, the lattice
decomposed into blocks of a new bubble-domain lat-
tice, separated by stripes, with a smaller parameter (‡ =
40 µm), corresponding to the equilibrium lattice at a
given temperature (Fig. 1e). This situation corresponds
to a phase transition upon which the number of
domains does not change. Under the action of a pulsed
field, the lattice with a smaller parameter occupied all
the visible region of the film. As the temperature
decreased from TC, several phase transitions of this
type were observed.

We can generalize the results as follows. In the tem-
perature range above T1, two magnetic collinear

phases—Φ1〈111〉  and Φ2〈 〉 —exist (Fig. 2). In this
range, a hexagonal lattice of bubble domains with the
equilibrium parameter y = 0.74 and narrow Bloch walls
is formed. The lattice remains stable in a certain tem-
perature range. At one end of the range of stability,
when the temperature approaches TC, a phase transition
to an equilibrium bubble-domain lattice with large
parameters, accompanied by a collapse of some
domains, occurs. At the other end of the range of stabil-
ity, when the difference between the film temperature
and the value of TC increases, a phase transition from a
bubble-domain lattice to a two-phase structure con-
sisting of blocks of a new bubble-domain lattice and
areas of stripe domains occurs, with retention of the
total number of domains. Despite a qualitative differ-
ence, both phase transitions in the lattice occur spon-
taneously and stepwise within a temperature range of
2–3 K. In this case, a hysteresis is observed: the tem-
perature and character of decomposition of the bub-
ble-domain lattice are different for heating and cool-
ing.

In the temperature range from T1 to T2 (Fig. 2), four
magnetic phases coexist: collinear phases Φ1〈111〉  and

Φ2〈 〉  and angular phases Φ3〈 〉  and Φ4〈 〉 .
At TSRPT = 172 K, the phases have the same percent-
ages. In this case, a stepwise change in the phase vol-
ume in the bubble-domain lattice occurs, due to the
change in the parameters ‡ and d. The equilibrium
parameter y decreases from 0.74 to 0.45. In the temper-
ature range from T1 to TSRPT, the domain-wall width

111

111 111 111
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gradually increases. At TSRPT, the domain-wall width
changes stepwise, which corresponds to the transition
from the Bloch type of domain wall to the Néel type. If
only the angular Φ3 and Φ4 phases are present (at T2),
the bubble-domain lattice is not formed and only iso-
lated bubble domains are observed.
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Abstract—Possible mechanisms of a number of magnetoplastic effects in magnetically disordered crystals are
analyzed in the context of the chemical kinetics of reactions occurring in a system of structural defects upon
plastic deformation. Particular attention is given to spin-dependent reactions between real-structure elements
containing paramagnetic centers (dislocation cores, impurity centers, electronic excitations, and so on). It is
shown that reactions of several types may occur between these elements, and, in some cases, the relative defor-
mation rate can be related to the rate constants of intracrystalline spin-dependent reactions. © 2004 MAIK
“Nauka/Interperiodica”.
Magnetoplastic effects were first found in ferromag-
netic materials and interpreted as the result of interac-
tion between dislocations and domain walls upon mag-
netization reversal of a crystal [1–3]. Almost at the
same time, the effects of magnetic fields with induction
B up to ~10 T on macroplastic properties of pure dia-
magnetic materials at liquid-helium temperatures íç
were intensively investigated [4–6]. The effects of
strong magnetic fields (at Ç ~ 10 T and íç ~ 4 K, the
following relation µÇÇ @ kTç, where µÇ is the Bohr
magneton and k is the Boltzmann constant, is valid) on
the strain-hardening coefficient were attributed to the
change in the viscosity of an electron gas for disloca-
tions moving in this gas upon active deformation [7].

Occasional attempts to observe the action of weak
magnetic fields with Ç ~ 1 T on magnetically disor-
dered (nonmagnetic) materials at room temperature íR
(µÇÇ ! kTR) [8–10] had been considered for a long
time as having no physical basis, and the results of
these studies were regarded by most experts as artifacts.

A new stage in studying magnetoplastic effects was
opened in 1987 by Alshits et al. [11]. Over the next
decade, a large number of magnetoplastic effects were
revealed in nonmagnetic solids—ionic crystals (NaCl,
KCl, LiF), metals and alloys (Al, Zn, bronze, metal
glasses), covalent and ionic–covalent crystals (Si, ZnS),
molecular crystals (ë60), polymers (polymethyl meth-
acrylate), and other materials (see review [12]). Con-
stant, pulsed, and microwave fields with induction from
several mT to 30 T, as well as various combinations of
them, were used. During the last decade, about 200
works were published that experimentally studied and
theoretically analyzed the effects of magnetic fields on
the characteristics of internal friction, mobility of indi-
vidual dislocations, yield point, hardening coefficient,
creep rate, microhardness, acoustic emission, deforma-
1063-7745/04/4904- $26.00 © 20668
tion luminescence, and other properties of nonmagnetic
materials (see Fig. 1). With respect to their character
and duration, the effects of magnetic fields on physico-
chemical properties of materials can all be divided into
three large groups (Fig. 2): (i) the in situ action of a
magnetic field, arising and vanishing during small frac-
tions of a second at switching on and off a field; (ii) the
irreversible aftereffect of a magnetic field, which is
retained over the full time of observation (at least
months at room temperature); and (iii) the reversible
aftereffect of a field, which is retained for some time
after switching the field off but, gradually (for many
hours or days), relaxes to zero at room temperature.

In recent years, a specific nonadditive action of
magnetic fields in combination with illumination,
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Fig. 1. Methods for studying the effect of magnetic fields on
the physicomechanical properties of solids.
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X-ray irradiation, and irradiation by β particles on the
plastic properties of diamagnetic crystals NaCl, C60,
and other objects has been revealed [13–15].

This abundance and variety of the experimental data
obtained independently by several groups of research-
ers using fundamentally different techniques leave no
doubt that fairly weak magnetic fields have an anoma-
lously large (and paradoxical, at first glance) effect on
the mechanical properties of nonmagnetic materials. In
this context, the nature of these phenomena is of funda-
mental importance. Can they be explained in terms of
one universal mechanism (or, at least, using the same
approach), or are different reasons responsible for these
phenomena in different materials and under different
experimental conditions?

Early attempts to interpret magnetoplastic effects
using the concepts of Lorentz forces exerted by a mag-
netic field on moving charged dislocations, a vortex
electric field accompanying the switching on and off of
magnetic fields, forces caused by magnetization of fer-
romagnetic precipitates in a diamagnetic matrix, forces
related to a gradient of magnetic susceptibility due to
the lattice strain near the dislocation core, and so on had
no success.

All the aforementioned models for magnetoplastic
effects encounter insurmountable difficulties even in
the first stage of consideration. They are related to the
smallness of forces and energies UM ~ µBB transferred
from a field with induction Ç ~ 1 T to any structural ele-
ment in a magnetically disordered medium, due to
which the magnetic field cannot significantly change
the state of a thermodynamically equilibrium system
under these conditions. In particular, a magnetic field
cannot affect the probability of overcoming stoppers by
dislocations, since the activation energy UA of this pro-
cess is UA @ kTR @ µBB. One might expect only effects
of the same order of magnitude as µBB/kTR ~ 10–2 or
(µBB/kTR)2 ~ 10–4 (in different models), whereas the
magnitude of the actually observed effects can be as
high as tens or hundreds of percentage points of the ini-
tial value of the characteristic under study.

Another group of difficulties in the interpretation of
magnetoplastic effects is related to the high complexity
and multistage character of the mechanisms of plastic
flow and a large “spacing” between the generally
recorded macroscopic responses and elementary
events, the dynamics of which could, in principle, be
influenced by a magnetic field. Changes in the state of
electrons (the only objects that can be affected by a
magnetic field) and, for example, the yield point (or
even the mobility of individual dislocations) are sepa-
rated by several poorly studied hierarchical levels of the
dynamics of the defect structure of a solid. Here is a (far
from complete) list of them: changes in the spin and
spatial quantum numbers of electrons in interacting
defects; atomic rearrangement in the quasi-molecule
formed by a stopper and a short dislocation fraction that
comes into contact with the stopper, interacting with it;
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
detachment of the dislocation from the stopper; motion
of the dislocation to another large stopper; multiplica-
tion and interaction of moving dislocations; and macro-
scopic response of a measuring system. The dynamics
of several first stages from the above list, the durations
of which are very short (~10–12–10–6 s), has been very
little studied in the physics of plasticity, if at all,
whereas these dynamics are the only ones that can be
affected by a magnetic field.

The problems related to interpreting magnetoplastic
effects that could not be overcome within the frame-
work of the aforementioned elementary approaches
have caused researchers to appeal to closely related
areas of science: chemical kinetics, chemical physics,
and the theory of catalysis of chemical reactions, which
have been widely and successfully used in the interpre-
tation of strong magnetic effects in nonmagnetic media.
For example, in order to explain some magnetic phe-
nomena in chemistry (the effect of a weak constant
magnetic field on the kinetics and yield of some radical
reactions, the even stronger effect of crossed constant
and microwave magnetic fields satisfying the condition
for appearance of spin resonance on these characteris-
tics, the polarization of electronic and nuclear spins as
a result of chemical reactions, radio emission during
the relaxation of chemically polarized spin subsystems,
spin catalysis, and so on), a powerful theory of spin-
dependent phenomena in chemistry has been developed
[16–19].

As applied to the kinetics of radical reactions, this
theory is based on principles that follow from the law
of conservation of angular momentum in a closed sys-
tem and the Pauli exclusion principle (which forbids
two electrons from occupying the same state):

(i) the total spin of an isolated system should not
change. Therefore, only thermodynamically possible
reactions satisfying this principle may occur;

t, s

Magnitude of magnetic effect, arb. units

1

0

1 2 3

Fig. 2. Three main types of magnetoplastic effects: (1)
in situ effects, (2) irreversible aftereffects, and (3) reversible
aftereffects with delayed kinetics. The shaded rectangles
denote the procedure of exposure of samples in a magnetic
field.
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(ii) the interaction of electrons that have been
located for some time in the reaction cell with the envi-
ronment, including an external magnetic field or intrin-
sic nuclear one, can partially or completely lift the spin
forbiddenness of some possible reaction channels,
which, in turn, may change the rate constants of the
reactions and the yield ratios for individual products;

(iii) a weak magnetic field can act efficiently only on
nonequilibrium systems (spin and molecular ones)
evolving via short-lived excited states in which the mul-
tiplicity can be changed; and

(iv) the reaction should have several possible alter-
native thermodynamically allowed channels.

Thus, a magnetic field can affect a reaction by lifting
the spin forbiddenness rather than changing its energy
(Fig. 3). As a result, the apparent contradiction between
the smallness of the energy of interaction between the
magnetic field and material and the effect scale is
removed.

However, in reality, this can occur only when several
conditions are satisfied simultaneously. First, such
mechanisms should not contradict thermodynamical
principles. Obviously, they cannot be implemented in a
thermodynamically equilibrium system and work only
in situations where there is a gain in the thermodynamic
potential of the final state of the system. Second, signif-
icant changes in the reaction rate and channeling may
occur only as a result of complex interaction between
spin, chemical, and molecular transformations.
Depending on the mutual orientation of spins, the sim-
plest pair of radicals with spins s = ±1/2 in the reaction
cell can be in one of two possible states: singlet state S,

Uex

S

U'a

K 'Magnetic

~µ
B
B

T

1

0

K ''

U''a

S

Fig. 3. Change in the rate constant of spin-selective chemi-
cal reaction K due to the spin conversion in a radical pair
under the action of an external magnetic field.  and 

are the activation energies of the molecule decay from the S
and T states, respectively.

Ua' Ua''

field
C

when  = 0, and triplet state T, when  = 1

(Fig. 4a). The difference in the exchange energies of
these states at distances r0 of the same order of magni-
tude as interatomic distances in condensed media is
about 1 eV. Obviously, a magnetic field with Ç ~ 1 T
cannot change the state of a radical pair in this situation.
At large distances (r @ r0), UT – US = 0; thus, a weak
magnetic field cannot affect anything either. A weak
field can induce spin conversion only at intermediate
distances r0 ≤ r ≤ 2r0, at which UM ~ µBB ~ UT – US. A
pair of radicals may find themselves in this position
only due to the excitation from the ground state under
the action of thermal fluctuations, mechanical bond
deformation, ionizing irradiation, or other external fac-
tors, as well as during the approach of radicals to each
other from infinity. On the one hand, lifetime τ* in this
intermediate state should exceed spin-conversion time
τÒ in the magnetic field to make for it to be possible for
the spin conversion to occur; on the other hand, τ* for
the solid should be shorter than spin–lattice relaxation
time τSL to prevent field-induced population of states
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Fig. 4. Mechanisms of spin conversion in an external mag-
netic field: (a) change in the multiplicity in an excited short-
lived radical pair and (b) ∆g mechanism of spin conversion
in a radical pair. ω1 and ω2 are the precession frequencies of
paramagnetic centers with g factors g1 and g2, respectively.

m
ag

ne
tic
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004



MAGNETOPLASTIC EFFECTS IN CRYSTALS 671
s1

s2 s2

s2

s2 s2

s2 s2

s2

s2 s2

s2

s1

s1

s1

s1

s1 s1 s1

s1

s1

s1

M

M

Obs

D D

D D

τ

τ

(‡) (b) (c)

(d) (e) (f)

+

+

Fig. 5. Plastic deformation as a solid-state chemical reaction: (a–c) monomolecular reactions of detachment of a dislocation from
a stopper, decay of a complex of point defects, and its reorientation, respectively; and (d–f) bimolecular reactions of attachment of
a dislocation at a stopper, formation of a complex of point defects, and recombination of paramagnetic centers in the dislocation
core, respectively. τ are stresses, D is a dislocation, Obs is an obstacle, and å is a quasi-molecule formed by two paramagnetic
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from thermalization. Thus, a weak magnetic field can
significantly affect a reaction only when the condition
τÒ < τ* < τSL is satisfied.

Up to this point, we have only discussed a possible
scheme of the action of a magnetic field on the kinetics
of relaxation from a metastable state (or unstable equi-
librium). However, the question of the specific mecha-
nisms of spin conversion in a magnetic field remains
open. About ten different mechanisms have been pro-
posed at different times in the theory of spin-dependent
chemical reactions. These can be reduced to three main
ones (now referred to as ∆g, HFI, and ∆J mechanisms)
or combinations thereof [20, 21].

In the ∆g mechanism, the spin state of a pair
changes in an external magnetic field due to the differ-
ence in the g factors of the two interacting radicals. The
HFI mechanism, considering the hyperfine interaction,
takes into account the effect of the magnetic moments
of the atomic nuclei of the radicals on the spin state of
electrons. Finally, the ∆J mechanism considers the spin
catalysis of transformations in a pair of radicals
induced by a third spin carrier approaching the pair.

For a number of reasons, the ∆g mechanism of spin
conversion in magnetoplastic effects at Ç ~ 1 T is con-
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
sidered to be the most likely: due to a difference in the
g factors of the two radicals (generally by 10−3–10–4),
the angular velocities of their precessions in a magnetic
field are slightly different and a pair with a frequency
f ~ µB∆gB/h ~ 108–109 s–1 passes from the S to í state
and vice versa (Fig. 4b).

In order to make the spin conversion in a spin sys-
tem irreversible and continuous and prevent saturation
of the system, the reaction product should be quickly
removed from the reaction zone; i.e., the molecular
motion should not lag behind the spin and chemical
transformations.

If at least one of these conditions is not satisfied, a
magnetic field will not act efficiently according to the
above scheme.

In the beginning of the 1990s, Alshits and Molotskiœ
proposed using these concepts in plasticity physics
[22, 23] to explain, in particular, the nature of magneto-
plastic effects. There was not enough justification for
doing so at that time; however, it was known that dislo-
cation cores always contain some paramagnetic centers
(not only in covalent crystals, where this is quite obvi-
ous due to the presence of dangling bonds, but also in
ionic, metal, and ionic–covalent crystals, as a result of
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trapping of electrons at steps, kinks, and other core fea-
tures), the concentration of which generally increases
with strain enhancement [24–31]. Similar data are also
available for paramagnetic centers in impurity–vacancy
complexes in ionic and ionic–covalent crystals, glasses,
and so on. Therefore, these macroscopically diamag-
netic materials always contain a number of paramag-
netic particles (radicals, in terms of chemistry) that may
be involved in the exchange interaction. An active plas-
tic deformation or relaxation of a structure under the
action of internal stresses causes formation, motion,
interaction, annihilation, and other transformations of
the crystal defect structure, which can be considered as
a set of chemical reactions between different reagents
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Fig. 6. Softening under the action of electron spin reso-
nance: (a) resonance increase in the dislocation mobility in
a NaCl:Eu single crystal after preliminary exposure in
crossed constant and microwave magnetic fields and (b) res-
onance macroscopic softening (decrease in the strain-hard-
ening coefficient) in a NaCl:Ca single crystal upon active
deformation and simultaneous action of crossed constant
and microwave magnetic fields. äf is the hardening coeffi-
cient upon joint action of microwave and constant magnetic
fields and ä0 is the hardening coefficient in the absence of
a microwave magnetic field.
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or as a change in the conformation of one giant quasi-
molecule (Fig. 5).

The above point of view was first confirmed by dif-
ferent indirect pieces of evidence and modeling [32–
34]. Then, division of the process of field-induced
structure relaxation into separate stages and analysis of
their kinetics made it possible to reveal that, in impurity
ionic crystals containing metastable complexes of point
defects, a magnetic field first initiates monomolecular
reactions of decay of these complexes and, then, bimo-
lecular reactions of their aggregation into new com-
plexes, even in the absence of new dislocations [35].
Finally, at the end of the 1990s, direct experiments were
carried out to reveal the magnetic resonance disorder-
ing predicted in [38] and, thus, to prove the spin-depen-
dent nature of magnetoplastic effects in impurity
NaCl:Eu (with a Eu concentration of 100 ppm) and
NaCl:Ca crystals. The results shown in Fig. 6, related
both to the action of a magnetic field in situ and to its
aftereffect (see, for example, [36–38]), directly indicate
that the magnetic field affects particles with spins 1/2
and 3/2 and that this effect is significantly enhanced
under conditions of spin resonance under joint action of
constant and microwave (ν ~ 9.5 GHz) magnetic fields.
From the point of view of classifying the magnetic
effects accepted in chemical physics, the revealed
effects of resonance softening of crystals in the mag-
netic field can be considered a further expansion of the
terms of reaction yield detected magnetic resonance
(RYDMR) spectroscopy [17, 18]. For a number of rea-
sons, the sensitivity of this method for studying short-
lived paramagnetic states (actually, in this case, a vari-
ation in some plastic characteristic or other—disloca-
tion mobility, strain hardening coefficient, and so on—
serves as a response, rather than the decay of an electro-
magnetic wave in an object) exceeds—by many orders
of magnitude—that of conventional electron spin-reso-
nance spectroscopy. This will be shown below using
simple considerations.

Let us assume that all the stoppers and dislocation
cores have paramagnetic properties. Then, in an area
dSN, the Nth dislocation interacts with dn . adSNC
stoppers, where ‡ is the lattice parameter and ë is the
volume concentration of the stoppers. With regard to
this fact, the relative strain rate can be expressed in
terms of the rate constant K = dn/Cdt of the monomo-
lecular reaction of breaking the bond between a para-
magnetic center in the dislocation core RD and a stopper

RObs(M   + ) as follows:

Here, α = A/‡ is a geometric constant.
Thus, a measurement of the dislocation mobility or

the macroscopic flow velocity is equivalent to the deter-
mination of the rate constant of destruction of quasi-
molecules å formed by dislocations and stoppers.
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SNd
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aC td
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Fig. 7. Step-by-step scheme of a magnetoplastic effect arising due to enhancement of detachment of dislocations from stoppers in
a magnetic field.
Obviously, a stricter consideration should also take into
account the presence of nonparamagnetic stoppers and
the probability of purely elastic interaction of disloca-
tions with these stoppers, as well as the diffusion
mobility of paramagnetic centers both in the crystal
bulk and along the dislocation core. The resolution of
modern methods for measuring the characteristics of
the mobility of individual dislocations is sufficient to
determine the magnetic-field-induced variations in ä in

individual events of the reaction M   + .

Obviously, the conditions for the reactions between
structural defects in a crystal occur, and, between

ṘD ṘS
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reagents in the liquid or gaseous phase, they are signif-
icantly different, for the following reasons.

(i) In contrast to the case of a chemical reaction in a
test tube, a real crystal contains many different reagents
capable of reacting with one another, especially under
conditions of plastic deformation (point defects, their
complexes and aggregates, dislocations of different
types, defects captured by dislocation cores, and so on).
Many cannot be considered invariable, as they are com-
plex quasi-molecules capable of changing their confor-
mation and even composition.

(ii) All the structural defects are in a close environ-
ment, which strongly affects their properties through
4
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changes in the electronic structure and limitation of
possible orientations, positions, and mobility.

(iii) The residence time of two radicals (belonging
to the set of interacting defects) in a reaction cell is
determined to a larger extent by the action of external
and internal stresses rather than chaotic thermal
motion.

(iv) The spin–lattice relaxation in crystals destroys
the spin correlation in pairs more rapidly.

In summing up the above considerations, we can
imagine the following scenario of events in which a
weak magnetic field can significantly affect the
mechanical properties of macroscopically diamagnetic
crystals containing paramagnetic centers in structural
defects (Fig. 7). Some stages, especially those deter-
mined by fast electron–spin interactions, should be pur-
posefully and systematically studied by high-resolution
methods, since their kinetics—and even existence—
manifest themselves only indirectly. This should be
done not only because electron–spin dynamics lies at
the basis of magnetoplasticity physics, but also because
it is involved in the formation of macroscopic proper-
ties of real crystals in the absence of magnetic fields.

The results obtained, along with their fundamental
importance for condensed-matter physics in general
and plasticity physics in particular (where it was shown
for the first time by direct methods that the spin degrees
of freedom of structural defects play an important role
in the formation of mechanical properties of nonmag-
netic materials and the sensitivity of other macroscopic
properties to magnetic fields), may be useful in closely
related fields of knowledge. Thus, the question of the
regularities and physical mechanisms of the effect of
weak magnetic fields on different properties of solids
can be considered a part of the major problem of the
weak influence of irradiation, chemical action, electro-
magnetic fields, and other factors on open nonequilib-
rium systems in animate and inanimate nature, whereas
the influence itself can be regarded as an important
environmental factor. For example, models in geody-
namics and tectonics should, it appears, take into
account the possibility of softening of materials of the
earth’s crust as a result of combined action of the con-
stant magnetic field of the earth and its high-frequency
fluctuations. It is possible that the concepts and physi-
cal models developed and verified for simple crystal-
line systems can also be used in magnetobiology and
biochemistry. In any case, progress in the study of mag-
netoplasticity has already given impetus to investiga-
tions of other magnetosensitive (electric, optical, and
luminescence) properties of diamagnetic materials with
important applications (semiconductors, polymers, ful-
lerites, and so on).
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Abstract—Lithium ionic conductivity and spin-lattice relaxation rates were measured in Li2ZrO3 solid elec-
trolytes with different 6Li and 7Li ratios. It is found that single-isotope electrolytes undergo a transition to the
superionic state in the temperature range of 430–450 K, accompanied by an abrupt increase in conductivity. As
a result of introduction of the other type of the isotope, the conductivity jump disappears in this temperature
range. The transition to the superionic state is attributed to the redistribution of lithium ions over energetically
nonequivalent lattice sites. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Previous measurements of the electrical characteris-
tics of the solid electrolyte Li2ZrO3 [1, 2] revealed a
transition to the superionic state in the temperature
range 430–450°C. The transition is accompanied by a
significant decrease in the activation energy from 88 to
13 kJ/mol. Since this electrolyte is promising for appli-
cations, we continued to study the mechanism of ion
transport in it. The results obtained are discussed here.
We reported the methods of preparing samples and con-
trolling their phase composition in [2].

Thus, we here report experimental data on the ionic
conductivity and the rates of spin-lattice relaxation of
7Li nuclei in Li2ZrO3 samples with different 6Li : 7Li
ratios. We have also refined some structural details at
room and elevated temperatures by neutron diffractom-
etry and measured the NMR spectra.

Conductivity was measured on samples with silver
electrodes using an R-5058 ac bridge at a working fre-
quency of 10 kHz. The temperature dependence was
measured upon both heating and cooling with the inter-
ruptions made that are necessary in performing mea-
surements. The results obtained are shown in Fig. 1.

The NMR spectra and the rates of spin-lattice relax-
ation of 7Li nuclei were measured for Li2ZrO3 on a
pulsed coherent NMR spectrometer at 35 MHz. The
results were processed using the Bloembergen–Pur-
cell–Pound model with a single correlation time. The
1063-7745/04/4904- $26.00 © 20676
obtained data are shown in Fig. 2. The results of neu-
tron diffraction studies are listed in Table 1.

RESULTS AND DISCUSSION

The temperature dependences of the electrical con-
ductivity of Li2ZrO3 samples with different lithium iso-
tope ratios have several characteristic features. In sam-
ples with a maximum content of 7Li or 6Li, high activa-
tion energies are observed at relatively low
temperatures (up to 430°C): 99.2 and 91.5 kJ/mol,
respectively. With a further increase in temperature, the
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Fig. 1. Temperature dependences of the conductivity of
Li2ZrO3 samples with different 6Li : 7Li ratios: (1) 89.5;

(2) 7.5; (3) 25; (4) 50; and (5) 75 at % of 6Li.
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conductivity abruptly increases by about 1.5 orders of
magnitude. This conductivity jump is accompanied by
a drop in the activation energy to 13.2 and 34.1 kJ/mol,
respectively. With an increase in the content of one of
the noted isotopes in the solid electrolyte, the conduc-
tivity jump disappears, at least at temperatures up to
600°ë. In the temperature range in which the drop in
activation energy was observed, this parameter remains
rather high: 81.1, 93.3, and 81.4 kJ/mol for samples
with 25.0, 50.0, and 75.0 at % of 6Li, respectively.
These activation energy values are comparable to those
characteristic of nearly pure Li2ZrO3 samples (with
respect to 6Li or 7Li isotopes) in the low-temperature
range. In other words, an introduction of large amounts
of one of the isotopes into the system of lithium charge
carriers removes the transition to the superionic state.
These facts indicate a strong effect of lithium isotopes
on the dynamics of charge carriers moving in the crys-
tal lattice of Li2ZrO3. Note that the conductivity of
lithium metazirconate with a prevailing 6Li content is
lower than that of Li2ZrO3 with 7Li in the entire temper-
ature range under study. On the other hand, as compared
to the 7Li-containing samples, the activation energy of the
samples with 6Li is slightly lower in the low-temperature
range and greater at high temperatures.

Figure 2, which is typical of all samples with mixed
isotopic composition, shows that the NMR spectrum
has a central peak that narrows with an increase in tem-
perature and two pairs of satellite peaks that disappear
at higher temperatures. This feature is observed at all
concentrations of the isotopes under study. It is well
known that satellites in the spectra of 7Li nuclei, which
have quadrupole moments, are indicative of two non-
equivalent positions in the electrolyte sublattice that are
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
occupied by lithium cations. Indeed, the monoclinic
Li2ZrO3 lattice is characterized by the sp. gr. ë2/Ò,
where lithium cations occupy two different positions,
Li(1) and Li(2). Each lithium site is surrounded by six
oxygen ions forming two types of octahedra having dif-
ferent sizes and characterized by different values of the
electric field gradient at 7Li nuclei. The integrated
intensities of the satellite peaks are nearly the same,
which indicates that the occupancies of positions (1)
and (2) are close to each other. This result is in qualita-
tive agreement with the data of [3].
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Fig. 2. NMR spectrum for 7Li nuclei in Li2ZrO3 at room
temperature.
Table 1.  Neutron diffraction data for Li2ZrO3 samples with a natural content of the 6Li isotope (7.5 at %) and enriched up to
25 at % of 6Li

Parameters
t = 575°C t = 450°C t = 600°C

a, Å 5.4239(9) 5.5208(5) 5.4265(6) 5.5000(9) 5.5260(9)

b, Å 9.0312(1) 9.0759(1) 9.0265(1) 9.067(1) 9.086(1)

c, Å 5.4221(9) 5.4758(5) 5.4267(7) 5.4650(9) 5.4830(9)

β, deg 112.673 112.485 112.722 113.23(1) 113.42(1)

V, Å3 245.07 251.65 245.18 250.44 252.62

Occupancy (N) for 0.90(1) 0.84(4) 0.58(4) 0.62(4) 0.57(4)
6Li, at % 7.5 7.5 29 27 30
7Li, at % 92.5 92.5 71 73 70

Occupancy (N) for 0.92(1) 0.99(3) 0.75(4) 0.75(4) 0.78(4)
6Li, at % 7.5 7.5 22 22 21
7Li, at % 92.5 92.5 78 78 79

* The data correspond to room temperature.
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With an increase in temperature, satellite lines
broaden and disappear at different rates. The pair of
peaks corresponding to the Li(1) positions is the first to
disappear. It means that lithium ions occupying these
sites are more mobile and quadrupole interactions are
averaged out at lower temperatures. The second pair of
satellites disappears only at temperatures exceeding
500°ë. In addition, the spin-lattice relaxation rate of
6Li nuclei decreases with an increase in the 6Li content
(see Fig. 3). To reveal the characteristic features of the
changes in the lattice of Li2ZrO3 with a high 6Li con-
tent, we performed neutron diffraction measurements
supplementing those reported in [4]. The obtained data
are listed in Table 1.

For the Li2ZrO3 samples with a low 6Li content, the
data of Table 1 show that lithium cations pass from
Li(1) to Li(2) positions with an increase in temperature.
As a result, the latter positions are fully occupied. At
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Fig. 3. Spin-lattice relaxation rates for 7Li nuclei in Li2ZrO3

with different contents of 6Li: (1) 90; (2) 75; (3) 50; and
(4) 25 at % of 6Li.

Table 2.  Activation energies for the long-range motion (ac-
cording to the conductivity data) and for the short-range mo-
tion (according to the NMR data) for Li2ZrO3 samples with
different isotope ratios

Content of 6Li,
at % 

Ea, kJ/mol
(according to the 
conductivity data)

Ea, kJ/mol
(according to the 

NMR data)

7.5 13.2 21.00

7.5 13.2 25.84

25 81.1 56.22

50 93.3 80.70

75 81.4 86.74

89.5 34.1 97.26
C

the same time, about 16 at % of vacancies arise at the
Li(1) sites. The transition of lithium cations causes a
sharp increase in the conductivity and reduces the acti-
vation energy in electrolytes with a prevailing content
of one of the isotopes. This manifests itself in the tem-
perature dependences of the conductivity of metazir-
conate samples with a natural content of 6Li and of
those maximally enriched with the 6Li isotope (Fig. 1).
The data obtained suggest the following mechanism of
the ion transport in single-isotope Li2ZrO3 samples
after their transition to the superionic state. Lithium
ions follow the path “octahedron–tetrahedron–empty
octahedron” meeting no significant hindrances and
almost not interacting with each other. Moreover, in
this case, the values of the activation energies for the
long-range motion calculated on the basis of the con-
ductivity measurements are close to those for the short-
range motion determined using the data from Fig. 2.
This is an additional indication of a small contribution
of Coulomb correlations between charge carriers in sin-
gle-isotope electrolytes. Another state of affairs is
observed for a mixture of 6Li and 7Li isotopes that are
both of high concentrations. It can be seen from Table 1
that, in such a mixture, the Li(1) sites are occupied
mainly by 6Li ions and the redistribution of this isotope
between different positions does not occur up to high
temperatures. The motion of charge carriers is hindered
by individual 6Li ions remaining in Li(1) sites. Thus,
the “octahedron–tetrahedron–empty octahedron” chain
of easy motion is broken. The breakage of the migration
path destroys the superionic state of the electrolyte and
leads to the increase in the activation energies for the
short- and long-range motion with an increase in the 6Li
content, as can be seen from Table 2.

The activation energies for these two types of
motion do not coincide. It is probable that this differ-
ence is because the height of the potential barrier for the
short-range motion (i.e., for intersite jumps of charge
carriers) increases with an increase in the content of 6Li
ions remaining in Li(1) sites. For the long-range
motion, statistical effects should be taken into account
that are due to the fact that 6Li ions, on average, occupy
vacant sites more often, preventing mobile charge car-
riers from coming to them.

CONCLUSIONS

The ionic conductivities of Li2ZrO3 solid electrolyte
samples with different lithium isotope ratios were mea-
sured. It was shown that introduction of 6Li into a sys-
tem of charge carriers leads to the breakage of the supe-
rionic state in the electrolyte. The NMR spectra and
spin-lattice relaxation rates were also measured for the
system of lithium charge carriers. It was shown that
lithium ions in Li2ZrO3 occupy two types of energeti-
cally nonequivalent sites and that the spin-lattice relax-
ation rate of 7Li nuclei decreases with an increase in the
6Li content. The structural details of Li2ZrO3 were
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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refined for samples with different 7Li : 6Li ratios at
room and elevated temperatures. It was shown that
heating leads to the redistribution of lithium ions
between Li(1) and Li(2) sites.
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Abstract—The main results of investigations in the fields of modern liquid crystal acoustics that originate from
and continue the pioneering works of Prof. A.P. Kapustin are systematized and generalized. The following
aspects of the problem are considered: acoustooptic phenomena, acoustoelectric interactions, acoustically
induced domains, and effects of acoustical memory in liquid crystals. Acoustic devices based on liquid crystals
are reviewed. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The acoustics of liquid crystals (LCs) are based on
progress in various fields of science (acoustics, crystal
physics, optics, mathematics, chemistry, and electron-
ics). On the one hand, this makes investigation of LCs
a rather complex problem; on the other, this circum-
stance is highly favorable for the appearance of new
and unexpected concepts.

The coming into being and development of modern
LC acoustics are closely connected with the name of
Prof. A.P. Kapustin (1904–1984). In the beginning of
the 1960s, LCs were considered to promise little, and
only a few enthusiasts, such as Kapustin, were carrying
out investigations in this field. Even at that time, Kapus-
tin was able to evaluate the importance of the funda-
mental property of LCs: the presence of an orienta-
tional degree of freedom that gives rise to a unique
mesophase sensitivity to any external effect, including
acoustic ones. For example, it was Kapustin who dis-
covered the phenomenon of oscillation of the director
in an LC under the action of low-frequency mechanical
strains [1], and that he had been the first to see this was
confirmed by an inventor’s certificate (in 1968) [2]. In
the 1990s, this finding stimulated investigations aimed
at developing acoustic LC-based devices for seismol-
ogy, electroacoustics, and hydroacoustics. In his early
studies, Kapustin obtained, for the first time, quantita-
tive data on the interrelation between the optical
response of nematic LCs (NLCs) and a low-frequency
mechanical strain rate and the thickness and tempera-
ture of a mesophase layer [3] and formulated the
hypothesis of the hydrodynamic nature of the mecha-
nism of the destabilizing effect of sound on LCs, which
is generally accepted today. Later, these results gave an
impetus to wide theoretical and experimental investiga-
tions of acoustooptic phenomena in LCs both in our
country and abroad. Kapustin was the first to observe
1063-7745/04/4904- $26.00 © 20680
the effect of acoustically induced dynamic light scatter-
ing in LCs [4], which was discovered anew abroad
almost ten years later [5]. One of the most significant of
Kapustin’s findings is the observation of the transition
of an unordered polycrystalline LC texture into a regu-
lar system of domains in an ultrasonic field [4] that is
similar to the well-known Kapustin–Williams domains
[6, 7] forming in the electric field. Thereafter, this phe-
nomenon also became a subject of intense experimental
and theoretical investigations and made it possible to
reveal many spatially modulated structures. The
description of the effect of acoustical memory in smec-
tic LCs (SLCs) at an action of ultrasound, observed for
the first time by Kapustin [4], stimulated the search for
this effect in mesophases of other types. Kapustin’s
studies devoted to acoustoelectric interactions in NLCs
[8–11] proved to be very promising. At the end of the
1990s, these works attracted a great deal of attention
and stimulated further investigations in this field of LC
acoustics. In the mid-1970s, almost simultaneously
with the American physicist J. Fergason, Kapustin
independently established in an experiment that
mechanical strains affect the wavelength of selective
light reflection in cholesteric LCs (CLCs) [1]. In the
mid-1980s, investigations of this effect were continued
and led to the development of thermooptical ultrasonic
receivers based on CLCs [12]. At present, the cycle of
Kapustin’s works on application of methods of ultra-
sonic spectroscopy to analysis of the properties of LCs
near phase transitions and the pretransition states is no
less promising. Even in the 1960s, a number of anoma-
lies were found that manifest themselves during the
propagation of ultrasonic waves in LCs and are related
to relaxation phenomena in a medium: the dispersion of
phase velocity and deviation of the frequency depen-
dence of the ultrasonic absorption coefficient α from
the classical law α/f 2 = const, where f is the ultrasonic
frequency. It was found that these anomalies are most
004 MAIK “Nauka/Interperiodica”
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pronounced near phase transitions and in the MHz
range. Kapustin was one of the first researchers to carry
out systematic investigations of these anomalies in dif-
ferent LC mesophases. The main results of these stud-
ies were generalized in [13–15].

The purpose of this review is to systematize and
generalize the results of investigations in those fields of
the modern LC acoustics that originate from and con-
tinue the first studies of Kapustin, specifically:

(1) acoustooptic phenomena in LCs,
(2) acoustically induced structural transformations

in LCs accompanied by formation of domains,
(3) acoustoelectric interactions in LCs,
(4) effects of acoustical memory in LCs, and
(5) LC-based acoustic devices.
The most important results and concepts reflecting

the main landmarks in this field of research have been
fully reported in reviews [12, 16, 17–19], monographs
[13–15, 20], and books [21–23] that cover the long
period of time from the early, pioneering studies up to
the 1990s. The studies cited here do not exhaust all the
available data on the subject and are not focused on the
most important problems. However, their results make
it possible to understand the overall state of affairs, ana-
lyze achievements therein, and attempt to formulate a
number of new problems.

ACOUSTOOPTIC PHENOMENA
IN LCS

Structural transformations in LCs in the mechani-
cal-strain field generated by elastic waves of different
types (longitudinal, surface, shear waves) lead to radi-
cal changes in the properties of LC objects. The optical
characteristics of LCs change quite radically [22]. This
circumstance determines the practical viability of such
materials and has led to very rapid development of LC
acoustooptics, which have become a promising line of
development in the modern LC acoustics.

To date, the main regularities and mechanisms of
structural transformations have been established for the
conditions and geometry of experiments differing in the
mutual orientation of the director n and one of the wave
vectors (k, kR, kS) of elastic waves (see the simplified
schematic diagram in Fig. 1). In these experiments, the
optical response of an LC to the effect of elastic waves
was measured in passing or reflected light. A cell with
an LC was placed between crossed polarizers. It was
found that the acoustooptical phenomena that corre-
spond to structural transformations, as well as their
interpretation and theoretical description, depend on
various factors: LC type, layer geometry, initial orien-
tation of molecules, wave-field structure, and so on.
Interpreting experimental results is ambiguous. Gener-
ally, it is sufficient to use the Leslie–Ericksen hydrody-
namical equations to analyze acoustooptical effects at
low frequencies [24]. The explanation of some phe-
nomena observed at high frequencies is beyond the
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
scope of classical hydrodynamics; thus, statistical
methods and the apparatus of nonlinear nonclassical
hydrodynamics should be used for their description. In
this context, it is convenient to choose vibration fre-
quency as one of the criteria in classifying acoustoopti-
cal effects in LCs and introduce a frequency-dependent
parameter—viscous wavelength λv in an LC. Accord-
ing to the relation between the viscous wavelength and
the thickness of an LC layer d, three frequency ranges
are distinguished: high (λv ! d), low (λv @ d), and
intermediate (λv ~ d). In what follows, we will consider
the two physical situations that have been must thor-
oughly studied: the structural transformations and opti-
cal response of a homeotropic NLC layer in an elastic-
wave field at high and low frequencies.

High Frequencies

By generalizing the results of experimental studies
of acoustooptical effects in NLCs at ultrasonic frequen-
cies under the conditions shown in Figs. 1a–1c, we will
formulate the basic principles that reflect the features of
optical response of NLCs in these frequency ranges:

(1) structural transformations have a nonthreshold
nature;
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Fig. 1. Geometry of experiments aimed at studying the
effect of oscillations of different types on LCs: (a) longitu-
dinal (compression) waves, k || n; (b) surface acoustic
waves, kR ⊥ n; (c) longitudinal waves, k || n, θ ≠ 0; (d) shear
vibrations, kS ⊥ n; (e) longitudinal waves, k ⊥ n; and
(f) shear and piston vibrations, kS ⊥ n, k || n. Here, n is the
director, θ is the angle of incidence of an ultrasonic wave on
an LC layer; k, kR, and kS are the wave vectors of longitu-
dinal, surface, and shear waves, respectively. A beam of
polarized light (not shown) is incident normally on the layer
(along the z axis).
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(2) at a certain intensity of elastic waves Jc, the
effect of ultrasound causes clearing of an LC layer [25–
29];

(3) an increase in the layer thickness leads to a
decrease in the value of Jc: Jc ~ 1/d2 [27, 30, 31];

(4) the dependence of Jc on frequency obeys the fol-
lowing law: Jc ~ f –1/2 [16, 28, 30];

(5) the optical transparency m of a layer is nonlin-
early related to the ultrasonic intensity (m =
sin2(constJ2)) and shows a number of maxima deter-
mined by the interference of ordinary and extraordinary
light waves [31, 32]; hereinafter, we regard the optical
transparency as the ratio of intensity I of the light flux
passed through the system to intensity I0 of the light
flux incident on an LC layer after the polarizer;

(6) the optical transparency of a layer depends on
the type of acoustic boundary conditions (a cell with
either free [27] or fixed [31] edges);

(7) the optical pattern of layer clearing consists of
alternating light and dark fringes, the width and con-
trast of which depend on the ultrasonic intensity, and
the spatial period of the fringes correlating with the
ultrasonic wavelength [25, 27–37]; and

(8) the configuration of fringes is determined by the
type of acoustic boundary conditions, the cell geome-
try, and the mutual orientation of the wave vector and
the director [22, 23].

Models for describing the mechanism of the effect
of ultrasound on the structure of a homeotropically ori-
ented NLC layer using the Leslie–Ericksen hydrody-
namical equations, developed in well-known research
centers in France [18, 29, 32], Canada [38, 39], Japan
[29, 30], the United States [26, 31, 35], and Russia [40–
44], are considered and analyzed in detail in [15, 16, 18,
22, 23]. At present, the approach developed in [40–44],
according to which the real strain in such a structure is
attributed to the action of acoustic streamings, seems to
be the most justified. The mechanism of occurrence of
acoustic streamings is related to either inhomogeneity
of a layer compression in an ultrasonic wave or finite
sizes of the layer. The theoretical models developed
within this approach consider the following situations:

(1) an NLC layer with free ends [40];
(2) an NLC layer with fixed ends [41];
(3) a limited ultrasonic beam incident normally on

an NLC layer;
(4) an uniform ultrasonic wave or a limited ultra-

sonic beam with a circular cross section incident
obliquely on an NLC layer [43, 44]; and

(5) an ultrasonic wave, uniform over the cross sec-
tion, incident normally on an NLC layer [45].

Specific features of the cell geometry and the effect
of ultrasound on NLCs account for some differences
between the proposed mechanisms of formation of
acoustic streamings in the models [40–44]. Compres-
sion of a layer with free ends is transformed into a peri-
odic motion of the fluid in the form of longitudinal
C

waves, which, propagating over the layer, generate vis-
cous waves that penetrate the layer bulk. Convective
stresses, proportional to the product of the vibrational
velocity in viscous-wave field by the layer-compression
rate in the initial ultrasonic-wave field, lead to a steady
fluid flow. In a layer with fixed ends, the compression
inhomogeneity caused by inhomogeneity of the plate
deflection near the ends serves as a source of longitudi-
nal waves. When a limited ultrasonic beam is incident
normally on the layer, longitudinal waves arise due to
inhomogeneous compression near the beam bound-
aries; these waves propagate from the beam boundaries
both deeply into and beyond the ultrasound-irradiated
region. However, acoustic streamings arise only in the
irradiated region, where the layer is compressed by the
ultrasonic wave. In the case of oblique incidence of a
uniform ultrasonic wave on an NLC layer, the occur-
rence of viscous waves is due to the difference in the
mechanical properties of the plates (cell and nematic
fluid), while the optical effect depends on the angle of
incidence.

Wave patterns and fields of steady-flow velocities in
NLC layers, strains in the homeotropic macrostructure,
and optical transparencies of NLC layers were calcu-
lated in [40–44] for different cell and ultrasonic beam
geometries. Calculations were performed on the basis
of the above hypotheses in terms of linear hydrodynam-
ics. In the cases under consideration, the optical trans-
parency of an NLC layer and the ultrasonic intensity are
related as

m = sin2{∆nk0d3η1BJ2/K3ρωc2}sin22ϕ, 

where ∆n is the optical anisotropy, k0 is the wave num-
ber of an ordinary light wave, ω = 2πf, ρ is the NLC vis-
cosity density, η1 is the NLC viscosity, K3 is the Frank
elastic constant, c is the speed of sound in the NLC, B
is the numerical parameter determined by the geometry
of the cell and ultrasonic beam, and ϕ is the angle deter-
mining the orientation of polarizers with respect to the
plane of acoustic streamings. The theory yields the fol-
lowing features of the effects under consideration: at
low ultrasonic intensities, m ~ J4; for an ultrasonic
beam with a circular cross section, the effect may be
most pronounced near the layer midpoint, where longi-
tudinal waves are focused and the clearing is highest
(Fig. 2); the typical ultrasonic intensity value at which
the effect can be observed is 1 mW/cm2; and, for
oblique incidence of a uniform ultrasonic wave on a
cell with an LC placed in an immersion medium (which
corresponds to the real conditions of most experi-
ments), the optical and acoustic transparencies of the
layer attain maximum values at the same angle of inci-
dence of ultrasound, and, in the maxima of acoustic
transparency, the optical effect can be observed at an
ultrasonic intensity of 0.01 mW/cm2. The theoretical
pattern of the effect; the calculated dependences of the
layer optical transparency on ultrasonic intensity, angle
of wave incidence, ultrasonic frequency, and layer
thickness; and the lowest values of ultrasonic intensity
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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at which the effect can be observed [40–44] are consis-
tent with the experimental data [18, 26–31], which con-
firms the reliability of the hypothesis of the flow mech-
anism of reorientation of NLC molecules in the ultra-
sonic field. The only exception is in the case of normal
incidence of an ultrasonic wave that is uniform over the
cross section. An attempt to describe the reorientation
of molecules in terms of linear hydrodynamics as a
threshold effect arising in a system with periodically
changing parameters of a medium (an analog of the
Freedericksz transition [24]) was not successful: the
effect is predicted to occur at ultrasonic intensities three
orders of magnitude greater than the experimental ones.
Only by considering this phenomenon in terms of non-
linear hydrodynamics was it possible to explain it:
flows and moments that are quadratic with respect to
the strain of a medium arise in the ultrasonic field and
tend to reorient molecules perpendicularly to the direc-
tion of wave propagation. The joint action of these fac-
tors at ultrasonic intensities above the threshold value
Jth = C(ωτ)2/d2[1 + (ωτ)2] leads to a distortion of the
layer macrostructure [45]. Here, C is a combination of
the parameters of an NLC (weakly dependent on tem-
perature) and τ is the relaxation time of the orienta-
tional order parameter. The conclusions of the theory
regarding strain homogeneity, dependence of the
threshold intensity on layer thickness, and the value of
the threshold intensity (~0.01 W/cm2) are in agreement
with the experimental data [28].

Low Frequencies

The mechanism of reorientation of molecules in
homeotropic NLC layers at low frequencies is deter-
mined by oscillating hydrodynamic flows either at
shear vibrations of one of the cell plates or in the pres-
ence of oscillating gradient pressure on the cell (Cou-
ette and Poiseuille flows, respectively). According to
modern understandings [15, 46], an oscillating flow
“tears” the director from the surface and the latter
begins to oscillate with respect to the initial equilibrium
position (the z axis in Fig. 1) at angles equal to
Φ(t) = (α2ξ0/γd)exp(iωt) (in a Couette flow) [46] and
Φ(t) = α2ξ0(1 – 2z/d)exp(iωt) (in a Poiseuille flow)
[47]. Here, γ is the rotational viscosity, α2 is the Leslie
viscosity coefficient, and ξ0 is the amplitude of oscilla-
tions. The optical transparency of a layer is related to
the phase difference of ordinary and extraordinary
waves by the well-known expression m = sin2(0.5∆).

In generalizing the published theoretical and exper-
imental data, we will note the main features of this opti-
cal effect: the light flux passed through the polarizer–
NLC-layer–analyzer system contains constant (m0) and
variable (m2l) components, the latter being the sum of
even harmonics (l = 1, 2, 3, …); in a cell with fixed
ends, the relation of m0 and m2l with the sound pressure
amplitude P is quadratic under conditions of oblique
incidence of light, and m0 and m2l are proportional to P4
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
in the case of normal incidence [48]; in a cell with free
ends, m0 and m2l nonlinearly depend on the amplitude
of oscillations; when an optical signal is read at angles
equal to ±[π(i + 0.5)/k0∆nd] [46], m0 and ml are propor-
tional to ξ0 and the spectrum of an optical signal con-
tains even and odd harmonics [46] (i = 0, 1, 2, …).

In the context of systematizing and developing a
unified approach to the description of orientational phe-
nomena in NLCs in a field of low-frequency mechani-
cal strains, the generalized model [49] seems to be most
reliable. This model, which was developed in terms of
linear hydrodynamics, predicts a new mechanism of
steady-state distortions of the macrostructure of a
homeotropic layer related to the nonlinear interaction
between the oscillations of the LC director and the
velocity field under the conditions of a binary acousto-
hydrodynamical effect. This effect can be implemented
in the presence of simultaneous excitation of piston
(along the z axis) and shear (along the x axis) plate

z
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Fig. 2. Schematic of the mechanism of director reorienta-
tion for an infinitely wide NLC layer and limited ultrasonic
beam of circular cross section, according to the model [42]:
(1) longitudinal wave, (2) steady flow, (3) ultrasonic beam,
(4) optical transmission curve, (5) pattern of layer clearing
(view from above).
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vibrations in a free-end cell (Fig. 1f) at the same fre-
quency but with a phase shift. If the amplitudes of the
velocities of shear (V0) and piston (βV0) vibrations are
such that β ! 1, the optical response of the layer is
affected by both linear and nonlinear factors. It is
important that specifically nonlinear effects manifest
themselves at high values of the parameter h =
0.1βγωξ0d/K3 and become dominant at h @ 1, while the
optical transparency of the layer is determined by the
expression m = sin2(0.5p0 + p1sinωt) [49]. In this range
of h, the behavior of the constant and variable compo-
nents of an optical signal, m0[p0, J0(p1)] and
ml[p0, Jl(p1)], respectively (the latter being the sum of
the even and odd harmonics) is determined by the
parameters p0 and p1, which depend on the viscoelastic
constants of the NLC, the anchoring energy, the light
wavelength, and the amplitude and frequency of vibra-
tions. At h ! 1, the nonlinear effects disappear and the
optical transparency of the layer is described by the
expression m = sin2[0.5p2(1 – cos2ωt)], while the val-
ues of the constant and variable components, m0[p2, J0(p2)]
and m2l[p2, J2l(p2)], are determined by the parameter
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Fig. 3. Frequency dependence of the constant component of
an optical signal at different values of the ellipticity param-
eter and layer thickness d. Linear range: theory (dotted line)
and experiment for d = (m) 37.5, (⊗ ) 75, ()) 25, and
(+) 60 µm [49]. Nonlinear range: (1–5) theory and experi-
ment: (×) (d = 15 µm, β = 0.02) [49]; (s) (d = 50 µm, β =
0.01) [49]; (j) (d = 15 µm, β = 0.1) [49]; (h) (d = 50 µm,
β = 0.08) [49]; (() (d = 50 µm, β = 0.9) [49]; (d) (d =
55 µm) [50]; (n), (e), (g) (d = 60, 105, and 155 µm, respec-
tively) [51] (the values of β were not measured in [50, 51]).
C

p2 = 0.5∆nk0 (1 – 12β2x2/d2)/d, which is independent
of the vibration frequency. The spectrum of a signal
contains only even harmonics. Calculations show that
situations can be implemented when, at h ! 1, nonlin-
ear effects manifest themselves at smaller vibration
amplitudes than linear ones. This conclusion is con-
firmed by the set of theoretical frequency dependences

of the parameter p2/0.5∆nk0 ~ /d (Fig. 3, curves 1–5)
calculated for x = 0 and the amplitude of oscillations

, for the following values of the ellipticity param-
eter: 0.018 and 0.1 (for d = 15 µm) and 0.01, 0.08, and
0.9 (for d = 50 µm). The dotted line shows the behavior

of the same parameter at β = 0. The amplitude  cor-
responds to the position of the first maximum of the

function m0 = f( /d). The correlation between the
experimental results [49–51] and the theoretical data
confirms the reliability of the generalized theoretical
model [49].

ACOUSTICALLY INDUCED DOMAINS
IN LIQUID CRYSTALS

The problem of orientational instability of the LC
macrostructure in acoustic fields, which is part of the
more general fundamental problem of the effect of elas-
tic waves on dissipative anisotropic systems, deals with
the formation of spatially modulated structures
(domains). This is a threshold effect that is general for
all types of LCs. The scale and configuration of
domains depend on the initial orientation of molecules
in an LC layer, the cell geometry, and the type and fre-
quency of vibrations [15, 16, 22, 23]. In the present
state of the art in this field of LC acoustics, there are
two approaches to analyzing this phenomenon: classi-
cal hydrodynamics and nonequilibrium hydrodynam-
ics. In the former approach, the mechanism of domain
formation in oscillating flows of a nematic fluid,
induced by low-frequency shear or piston vibrations,
has been analyzed for layers with initial homeotropic or
planar orientations of molecules. The latter approach
makes it possible to interpret steady-state distortions in
the form of domains of planar macrostructure in NLCs
and CLCs caused by ultrasound.

Low-Frequency Acoustic Domains

Let us consider the properties of domains arising as
a result of instabilities of different types that exist in
NLCs in the low-frequency range (λv @ d). We will dis-
tinguish several particular cases differing in the initial
orientation of molecules in the layer and the strain type.

Homeotropically oriented layer in an oscillating
Couette flow; planar periodic shear [52–59]. Under
these conditions, a regular system of linear domains
oriented perpendicular to the shear direction is formed
in a layer. A theoretical analysis of this phenomenon
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was given in [53–59]. However, various simplifying
assumptions (in the formulation of either initial equa-
tions [53, 54, 60] or boundary conditions [54]) led to
errors in the estimations of the threshold of appearance
of domains and their period and did not make it possi-
ble to obtain an exact description of the configuration of
streamings and strains in the structures under consider-
ation. In particular, computer simulation of the domain
structure disregarding the inertia of a medium [57] gave
values of the period of domains and the threshold of
their appearance correlating with the experimental data
[57] only at frequencies below 100 Hz. At higher fre-
quencies, there were both qualitative and quantitative
discrepancies. The most complete theoretical descrip-
tion of domains—adequate to the results of experi-
ments known to date—was given in [59]. The analysis
of this phenomenon was based on the linear hydrody-
namical equations, in which the quadratic terms pro-
portional to the product of the angle of rotation of mol-
ecules by the velocity of the fluid are retained. It was
found that steady-state stresses and moments, which
destabilize the initial structure, are nonzero if the veloc-
ity of fluid in vortex oscillating flows is phase-delayed
with respect to the velocity of fluid in the Couette flow.
This lag is determined by the inertial properties of a
medium and the elastic moments acting on the director
in thin (of the same order of magnitude as the wave-
length of the orientational wave) boundary LC layers.
These effects manifest themselves in different fre-
quency ranges (the boundary effects are observed at
low frequencies, whereas the inertia of the medium
manifests itself at higher frequencies) and are charac-

terized by different threshold amplitudes (  ~

1/(ωd2)1/4 and  ~ 1/ωd2 at low and high frequencies,
respectively) and domain periods (Λ ~ 0.6d and
Λ' ~ 1.01d, respectively). Although experimental data
on the threshold characteristics of domains have been
obtained for wide frequency ranges (0.01–200 Hz
[55, 57] and 0.1–100 kHz [52]), their comparison with
the results of calculations encounters certain difficul-
ties. The point is that the data obtained by different
researchers for the same layer thickness not only differ
by several times, but also contradict each other. There-
fore, one cannot draw unambiguous conclusions from
numerical comparison of the theory with experiment.
At the same time, numerical calculation of the depen-
dences of the threshold amplitude on parameter ωτ0

(τ0 = γd2/K3 is the time of relaxation of the perturbed
NLC director to its initial state) is in agreement with the
experimental data [55, 57], but contradicts the results of
previous experiments [52]. Different threshold ampli-
tudes were obtained by different researchers [52, 55,
57] for the same values of ωτ0. For more detailed com-
parison of the theoretical and experimental data, addi-
tional investigations on samples about 100 µm thick at
frequencies above 100 Hz are required. The theoretical
dependence of the reduced domain period Λ/d on ωτ0 is
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consistent with the experimental data [55, 57] only at
higher frequencies. At low frequencies, the theoretical
value of the domain period is smaller than the experi-
mental one by a factor of 1.5. Note that, in the calcula-
tions performed in [59], a real velocity profile for an
unperturbed Couette flow and exact boundary condi-
tions for velocities of vortex oscillating flows were used
for the first time, which made it possible to obtain, at
higher frequencies, values of threshold amplitudes
exceeding those obtained by simplified calculations
[54] threefold. According to the theory [59], in going
from rigid to weak anchoring of molecules, the thresh-
old characteristic of domains change only weakly.
This suggests that the boundary conditions are not deci-
sive in determining the steady angle of rotation of the
director.

Homeotropic structure of an NLC under the con-
ditions of elliptical shear. The cell plates vibrate in the
xy plane in mutually perpendicular directions (along
the x and y axes) with a phase shift of 0.5π [57, 61–65].
Under these conditions, a system of linear domains is
formed with a period that is proportional to the layer
thickness; the domains are located in the xy plane, mak-
ing an angle determined by the ratio of the ellipse com-
ponents with the x axis. The first experimental data on
these domains (often referred to as roll domains) and
their threshold characteristics in the frequency range
from 200 to 500 Hz for layers 20–100 µm thick,
reported in [61], were explained in the theoretical stud-
ies of the Orsay group [62, 63]. The mechanism of
domain formation under these conditions is the same as
in the case of a planar oscillating shear: the enhance-
ment of an initial random orientational distortion at an
interaction of the velocity field with the LC-director
field. The experimental data suggest that the form of the
threshold diagram, which shows the ratios of the ampli-
tudes of the x and y components of motion, depends on
the layer thickness. In thick layers, this diagram can be
approximated by the expression ωξ0x · ξ0y = const [64].
Investigations of the instability dynamics showed that,
at a critical value of the combination of parameters
ωξ0xξ0y/D, roll domains become distorted and a struc-
ture composed of regular (hexagonal and square) ele-
ments arises in the layer [65]. Here, D is the orienta-
tional diffusivity of the NLC [24]. A further increase in
the vibration amplitude results in the melting of these
elements and the formation of a polycrystalline fluctu-
ating structure.

Planar structure of an NLC in an oscillating
Couette flow induced by a planar shift [19, 66–70].
Under these conditions, the formation of a system of
linear domains oriented along the shear direction is
determined by a mechanism known as Guyon–Pieran-
ski roll instability [19, 66, 67]. This type of domain was
first observed and systematically studied for the case of
a director oriented perpendicularly to the velocity vec-
tor of an oscillating flow [66]. These experiments were
focused on the change in the threshold characteristics
of domains in the frequency range 0.4–0.7 Hz under the
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action of stabilizing electric and magnetic fields. This
change is due to the evolution of roll instabilities of dif-
ferent types. Data on the structures forming in planar
NLC layers in the case of parallel orientation of the
director and the velocity vector are very limited [68].
The formation of domains in the case of an arbitrary
angle θ0 between the LC director and the flow direction
was considered for the first time in [69]. Analysis of the
linearized system of equations for the angles between
the director and the flow velocity vector—isolated from
the Leslie–Ericksen equations—for the existence of
periodic undamped solutions leads to following expres-
sion for determination of the domain threshold charac-
teristics:

Here, a1, a2, b1, b2, c1, and c2 are the coefficients
depending on the angle θ0, Frank elastic constants,
Leslie viscosity coefficients, and the distortion wave
numbers q = 2π/Λ, p = 2π/d, and Sth is the threshold
gradient of the flow velocity. The results of numerical
calculation of the threshold characteristics of domains
[69] are in agreement with the experimental data
obtained for NLC layers 10–150 µm thick in the fre-
quency range 1–20 Hz for the angle θ0 varied from 0°
to 90° [70]. Experiments confirmed the predictions of
the theory about the formation of structures of two
types (previously known Guyon–Pieranski domains
with period Λ ~ d [66] and new structures with period
Λ < d), as well as the existence of a critical angle, θ0 =
f(α2, α3, α5), separating the regions where structures of
different types are formed. Note that an unambiguous
conclusion about the universality of the model [69]
requires additional experimental studies in a wider fre-
quency range.

High-Frequency Domains

Let us now consider the domains arising in planar
NLC and CLC layers under the action of ultrasound. As
was mentioned above, in the high-frequency range
(λv ! d), explanation of the phenomenon of orienta-
tional instability is beyond classical hydrodynamics.
We will consider two particular cases that differ in
mesophase type.

Planar NLC layer in the ultrasonic compression
field; the director and wave vector k (Fig. 1d) are
orthogonal [71–73]. Under these conditions, one-
dimensional (1D) domains arise, forming a set of light
and dark fringes perpendicular to the director; the
period of these fringes is determined by the layer thick-
ness and is independent of the ultrasonic frequency
[72]. The mechanism of formation and the threshold
characteristics of this system of domains can only be
described in terms of a new physical approach based on
the concepts of nonequilibrium hydrodynamics. This
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conclusion was substantiated experimentally for the
first time in [72]. The theoretical model [73] developed
within the new approach takes into account two relax-
ation processes (critical and normal [14]) and postu-
lates the following physical mechanism of the domain
formation: at a random and nonuniform along the layer
length (x axis) deviation of molecules from their initial
position in the xz plane at angle Φ, compression of the
medium in an ultrasonic wave causes anisotropic shear
stresses σij(Φ, µ3, ∆E, Uzz, Vzz), which give rise to oscil-
lating vortex flows that are periodic along the layer.
These flows interact with the ultrasonic field, generat-
ing shear stresses 〈σ ij 〉 , which, in turn, give rise to
steady flows that enhance the initial distortion. At the
effect threshold, the action of viscosity moments com-
pensates stabilizing elastic Frank moments. Here, µ3
and ∆E are the second coefficient of viscosity and the
anisotropy of the dynamic modulus of elasticity of an
NLC, respectively, and Uzz and Vzz are the compression
and compression rate in an ultrasonic wave. According
to the theory, the general form of the threshold charac-
teristics of domains can be described by the expressions
Vth = 0.5πc[ηF(smin)K3/γ∆E]1/2/d and Λ = d/(smin)1/2,
where smin is the value of the parameter s = (q/p)2 min-
imizing the function F(s). Numerical calculations yield
smin = 3.7 and 4.8 for low and high ultrasonic frequen-
cies, respectively, and, accordingly, the domain periods
0.52d and 0.48d. The latter values are in good agree-
ment with experiment [72]. It follows from the theory
that the period of domains is frequency-independent
and the threshold vibrational velocity decreases insig-
nificantly with an increase in the layer thickness. In the
frequency range 1–10 MHz, these facts are also consis-
tent with the experimental data [71]. Since domains
were not observed in planar NLC layers at higher ultra-
sonic frequencies, we cannot make an unambiguous
conclusion about the universality of the model [73].

Planar CLC layer in the field of ultrasonic-wave
compression. The helix axis and the wave vector k are
parallel, and the helix pitch is much smaller than the
layer thickness [16, 74–82]. Under these conditions,
two-dimensional (2D) domains arise in the form of a set
of equidistant bright fringes that are parallel and per-
pendicular to the layer director (the so-called square
grid, the period of which correlates with the layer thick-
ness and the helix pitch) [16, 74]. An attempt to
describe this phenomenon in terms of linear hydrody-
namics [75] showed such a significant quantitative dis-
crepancy between the results of calculation and the
experimental data [76, 77] that the necessity of using
other conceptions became evident. Taking into account
the processes of relaxation of the orientational order
parameter in the ultrasonic field, which lead to anisot-
ropy of the dynamic modulus of elasticity of a medium
and change the character of the fluid motion, made
obtaining a more adequate theoretical description pos-
sible [78]. The new approach was developed in [79, 80],
where an even subtler effect (manifesting itself at
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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higher frequencies) was taken into consideration: shear
lag in oscillating flows due to the relaxation in a
medium and the viscoelastic character of the LC strain.
By generalizing the theoretical results [78–80], we can
predict two mechanisms of destabilization of a planar
CLC structure in the ultrasonic field: vortex and relax-
ation ones. The vortex theory is based on the classical
hydrodynamical equations; nevertheless, it takes into
account the above-mentioned shear lag in vortex oscil-
lating flows at ultrasonic frequencies. The mechanism
of domain formation is similar to that described above:
it consists in the enhancement of a random and periodic
over the layer deviation of the director from the equilib-
rium orientation. The vortex mechanism is most effi-
cient in the frequency ranges satisfying the condition

1/a ! ω ! 1/τ, where a = ρ/(ητ ) and q0 is the wave
number of domains with period Λ0 that are formed at a
static stretching of a CLC layer along the helix axis at a
critical value [24, 75]. The threshold characteristics of
vortex domains are determined by the relations

Mth ~ (q0/q){A(3 + b)(1 – δ)/τ∆E}, Λ = Λ0 = 2π/q0. (1)

Here, b = K2/K3, K2 is the Frank elastic constant, A is the
numerical parameter that relates the viscoelastic char-
acteristics of a CLC, Mth is the threshold compression,
and δ is the ratio of the layer stretching to the critical
value δ0. It can be seen that, in the frequency range lim-
ited by the above inequality, the threshold domain
period and the threshold compression are independent
of ultrasonic frequency; beyond this frequency range,
the threshold compression increases with both increas-
ing and decreasing frequency. The nonlinear relaxation
theory of destabilization of a planar CLC structure
takes into account the nonlinear corrections in the
hydrodynamical equations that are related to the pro-
cesses of structural relaxation of the mesophase. The
point is that the Leslie viscosity coefficients depend on
the degree of orientational order and change with a
change in the orientational order when ultrasonic and
viscous waves strain the medium. The relaxation delay
of these changes with respect to the strain of the
medium in an external ultrasonic field leads to the
occurrence of steady stresses and moments that have a
relaxation nature and are not related to the occurrence
of additional vortex flows in the medium. When only
the relaxation nonlinear mechanism works, the expres-
sions for the threshold compression and the domain
period have the form

(2)

Here, B is the combination of the viscoelastic parame-
ters of a CLC and the parameters determined by the cell
geometry. The action of the nonlinear mechanism is
most efficient at frequencies ω > 1/τ. It follows from
comparison of formulas (1) and (2) that two indepen-
dent mechanisms lead to the formation of domains with
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the same frequency-independent period, and, thus, they
cannot be distinguished visually. However, there is a
difference in the relationship between the threshold

instability and the helix pitch: Mth ~  and Mth ~

1/  for the vortex and nonlinear mechanisms,
respectively. This makes it possible to identify the
action of different mechanisms in an experiment. It is
important that these mechanisms, being dominant in
different frequency ranges, supplement each other, this
leading to a weak dependence of the threshold com-
pression on the ultrasonic frequency (Fig. 4) and signif-
icantly expanding the frequency range in which this
effect can manifest itself. The experimental data are in
agreement with the results of numerical calculations.
The value of the boundary frequency separating the
regions where different mechanisms work is ω0 ~
0.023dτ/P0 [80]. As observations show, sometimes
domains arise in CLC layer regions stretched along the
helix axis. In planar layers, these are regions limited by
pair disclinations [24, 74, 81]; in layers with nonparal-
lel boundaries, these are regions near Grangin lines
[24, 76]. The theory takes this factor into account via
the parameter δ.

The correlation of the theory that takes into account
the relaxation processes in a medium with the experi-
mental results indicates that these processes may play a
key role in the formation of domains in CLCs under the
action of ultrasound and should be taken into account in
analysis of orientational phenomena.
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Fig. 4. Comparison of theoretical and experimental depen-
dences of the threshold compression of CLCs in the elastic-
wave field on the reduced ultrasonic frequency: (1) relax-
ation mechanism, (2) vortex mechanism (theory: d =
100 µm, P0 = 10 µm, δ = 0.8, τ = 3 × 10–8); and (d) exper-
imental data for the frequency range 0.35–14.5 MHz, δ =
0.7, d = 80 µm [81].
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A new acoustic method [82] has been developed to
estimate the relaxation time τ, which is simpler than
conventional methods of ultrasonic spectroscopy.

ACOUSTOELECTRIC INTERACTION
IN LIQUID CRYSTALS

Investigations in the field of LC electroacoustics are,
to a large extent, related to the search for methods for
controlling and optimizing the functional characteris-
tics of acoustooptical LC-based devices designed for
information mapping systems. By analyzing the results
of these studies (which are reported in greater detail in
[15]), we can classify according to two criteria: the
geometry of the experiment and the sign of dielectric
anisotropy ∆ε:

(1) the transverse electric field (the director and vec-
tor E are parallel to the z axis), ∆ε > 0 [28, 36, 83–91];

(2) the transverse electric field, ∆ε < 0 [18, 92–94];
and

(3) the longitudinal electric field (the director paral-
lel to the z axis and the vector E parallel to the x axis),
∆ε < 0 [95].

The physics and specific features of orientational
phenomena in NLCs under conditions of the joint effect
of electric and acoustic fields were investigated in [85–
94]. Among these studies, those devoted to secondary
phenomena deserve particular attention. For example,
the effect of local rotation of the director was found
experimentally in homeotropic NLC layers in a trans-
verse electric field under the action of mechanical
strains (in-plane shear [87, 93], elliptical shear [57, 94],
and compression [57]) at sound (50–500 Hz) and ultra-
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Fig. 5. Optical transmittance of an NLC layer 40 µm thick
as a function of the surface-wave amplitude at a frequency
of 6 MHz in a transverse electric field at voltages close to
the Freedericksz transition threshold: (1–3) theory for
(1) zero electric field and voltages of (2) 4.5 and (3) 4.6 V
and (s) experimental data for the same conditions.
C

sonic frequencies (1–100 kHz). From the results of sys-
tematic experimental and theoretical investigations of
the effect of surface acoustic waves (in the frequency
range 6–30 MHz) on NLC layers in a transverse electric
field (with a frequency of ~50 Hz), we report a set of
curves illustrating the relationship between the optical
transparency of an NLC layer and the wave amplitude
in the absence of the electric field and at voltages of 4.5
and 4.6 V (Fig. 5). What is of importance is that, near
the Freedericksz transition [24], the sensitivity of NLCs
to the acoustic effect increases by more than an order of
magnitude. According to the theory in [92], there is a

relation—m(E) = m(0) /π4(E0 – E)4—that is in good
agreement with the experimental data. Here, E0 corre-
sponds to the Freedericksz transition threshold.

EFFECT OF ACOUSTIC MEMORY

Among the effects that are known to date of acoustic
memory in LCs, the following should be noted:

(1) acoustic memory in CLCs—an analog of the
electrooptical effect of dynamic light scattering with
memory [96];

(2) acoustic memory in CLCs, related to the forma-
tion of bubble domains [97–100]; and

(3) acoustic memory at the NLC–SLC phase transi-
tion [10].

Acoustic Dynamic Light Scattering
with Memory

There is only a small amount of experimental data
on this effect [83, 96]. In plane CLC layers with a large
helix pitch, the effect of mechanical strains generated
by ultrasonic waves leads to the occurrence of a resid-
ual strain due to the reconstruction of the initial macro-
structure. The mechanism of this phenomenon is
related to the nonlinear acoustic effect—the occurrence
of acoustic streamings. At high intensities of ultra-
sound, these streamings lead to the formation of a poly-
domain structure that can scatter light intensively
(acoustic dynamic light scattering [27]). The nature of
the slow reconstruction of the planar macrostructure
(this process is referred to as the acoustic memory of an
LC) has not been studied. However, it is known that the
reconstruction of the initial planar orientation can be
enhanced by an ac electric field (~20 kHz). It has been
ascertained experimentally that the residual light scat-
tering is about 0.5K, where K is the coefficient of atten-
uation of a specularly reflected light beam, the value of
which is determined by the ultrasonic intensity [96].
We should note that this effect can be used in acoustic-
information mapping systems if the processes of
recording of an acoustic image and its analysis need to
be separated in time and space [15].

E0
4

RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004



LIQUID CRYSTAL ACOUSTICS 689
Bubble Domains in CLCs

The physical nature of another mechanism of acous-
tic memory is related to the formation of a stable inho-
mogeneous structure in the form of a system of bubble
domains that intensively scatter light in a layer with
homeotropic boundary conditions [97] in the stage of
CLC relaxation after the action of ultrasound. This
effect occurs only if, during the irradiation, the ultra-
sound intensity attains the threshold value correspond-
ing to the occurrence of acoustic dynamic light scatter-
ing [27]. There exists a certain relationship between
diameter D of bubble domains, the layer thickness, and
the helix pitch (Fig. 6a); the change in the ultrasonic
frequency in the range 0.5–3 MHz does not affect the
form of the function D(d, P0). The experimental data
are in good agreement with the theory given in [99],
which attributes the formation and relatively high sta-
bility of bubble domains to the presence of defects (dis-
clinations [24]) that fix bubble domains. The correla-
tion of the theoretical results (curve I) with the experi-
mental data (especially at d/P0 < 1.5) is quite
satisfactory. Some discrepancy at d/P0 > 1.5 is due to
the increase in the packing density of bubble domains
under these conditions and their interaction with each
other, which is disregarded in the theory [99]. The free
energy Fmin of a stable bubble domain fixed by disclina-
tions also depends on d/P0 (curve II). At d/P0 < 0.5, the
homeotropic orientation is more stable than the texture
with a system of bubble domains, since Fmin/Fr > 1 (Fr
is the free energy of the homeotropic macrostructure).
The forced reconstruction of the initial homeotropic
structure is performed by applying an ac electric field.

Acoustic Memory at the Phase Transition
in a Nonuniformly Heated LC layer

If a temperature gradient is formed in a plane LC
layer along the x axis (∂T/∂x = b), the bulk modulus
K(x) will be inhomogeneous along the same direction:
∂K/∂x = b∂K/∂T. A uniform strain in the layer ∆V/V
leads to nonuniform distribution of pressure P(x) over
the layer as a result of the dependence K(x). Here, ∆V is
a change in the volume V with a change in the pressure
by ∆P. Thus, a compression of a nonuniformly heated
CLC layer gives rise to volume force F(x), which
causes motion of the fluid, rotation of the director by an
angle of Φ(x, z) ~ const(0.25d2 – z)zF(x), and clearing
of a certain portion of the layer. This unique effect was
observed in a homeotropic LC layer having a nematic
phase and three smectic phases in the temperature
range of the existence of the nematic phase upon cool-
ing the LC from the isotropic state [10]. If the layer is
subjected to compression at a temperature close to that
of the NLC–SLC A phase transition, the orientational
distortion is retained after the strain removal, manifest-
ing itself as a bright fringe. It is a matter of importance
that, although the layer is compressed over the entire
plane, this fringe arises only in a certain region, the
position of which is set by the temperature distribution
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
over the layer, and changes with time. In this region,
tilted molecules do not return to the initial homeotropic
position due to the increase in the fluid viscosity with
decreasing temperature and, as phase A forms, they are
“frozen” in this state. By using multiple applications
and removals of compression, one can form a system of
parallel bright fringes in a layer, the number of which is
determined by the repetition frequency of compression
cycles and the rate of temperature variation over the
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Fig. 6. Effect of acoustic memory in LCs of different types.
(a) Dependences of the (I) diameter and (II) free energy of
a bubble domain in CLCs on helix pitch; comparison of the
theoretical and experimental data: (1–4) for samples with a
helix pitch of 3, 4.2, 10.5, and 48 µm, respectively, at a fre-
quency of 0.22 MHz; (5), (6) for samples with a helix pitch
of 48 µm at frequencies of 0.5 and 3 MHz, respectively; the
layer thickness was varied within 10–150 µm; dashed
straight line: Fmin = Fr . (b) Optical phase grating formed at
the NLC–SLC-A phase transition in a nonuniformly heated
sample.
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layer. The width of the fringes is determined by the
force and duration of compressions (Fig. 6b). With a
decrease in temperature, the layer, passing successively
through different smectic phases, demonstrates another
texture. However, after the transition between the sec-
ond and third low-temperature smectic phases, the pat-
tern of regular fringes in the layer becomes completely
reconstructed and remains the same even at layer solid-
ification. These effects are interesting and important
from a practical point of view—for development of
phase gratings with a step determined and controlled by
an external acoustic effect.

ACOUSTIC DEVICES BASED
ON LIQUID CRYSTALS

During recent decades, applied aspects of LC acous-
tics have been the focus of the attention of physicists
and engineers. In our opinion, the work that has aimed
at designing LC-based acoustooptical devices for
reception, analysis, transformation, and transfer of
information has been most significant. Since the body
of applied data stored to date is extremely large, we
refer those who are interested to [12, 15, 17, 18] and
restrict ourselves only to a brief description of the
group of devices based on the method of measurement
of perturbations claimed in Kapustin’s invention [2].
These are parametric acoustooptical devices based on
the same physical principle (polarization modulation of
light), with a sensitive element in the form of an NLC
layer with homeotropic or quasi-homeotropic orienta-
tion of molecules. These devices are designed for dif-
ferent purposes but have the same functional scheme
including, along with a sensitive element, a light-emit-
ting diode, a photodiode, a communication line (optical
or electric), and a quantum-electronic module for ana-
log signal processing. Acoustooptical transformation
can be linearized in two ways: by either reading data at
optimum angles (βi = ±π[(i + 0.5)/k0∆nd) for homeo-
tropic orientation of molecules [46, 101] or creating an
initial static distortion of the orientation Φ(z) ~ 2z/d in
the layer, reproducing its dynamic distortion in the
oscillating hydrodynamic flow formed by an external
effect [102]. With a proper design of the sensitive ele-
ment [46, 103, 104], NLC-based acoustooptical devices
can detect variations in the main physical parameters
characterizing the state of environment. Various
devices have been developed to measure variations in
pressure, rates of temperature fluctuations, and angular
and linear vibrational velocities and accelerations.
These devices operate in the dynamic range ~100 dB
and have a planar or descending (as 1/f) amplitude–fre-
quency characteristic. Their advantages are compatibil-
ity with the modern optical element base, the possibil-
ity of using multimode optical fibers and nonmono-
chromatic light sources, simple and universal
constructions, low thresholds of signal detection, wide
frequency ranges (from 0.001 to 100 Hz), the ability to
adapt to changing external conditions within certain
C

limits, and high selectivity to measurable parameters.
The field of application of these devices is very wide:
seismology (including vector seismology), vibrometry,
electroacoustics, navigation (including orientation of a
moving object in space), criminology, acoustic measure-
ments, meteorology (including dynamic microbarome-
try and field temperature measurements), and so on.

REFERENCES
1. A. P. Kapustin, Izv. Vyssh. Uchebn. Zaved., Fiz.,

No. 11, 55 (1967).
2. A. P. Kapustin, Byull. Izobrer., No. 224102, 25 (1968).
3. A. P. Kapustin, Z. Kh. Kuvatov, and A. I. Trofimov, Izv.

Vyssh. Uchebn. Zaved., Fiz., No. 4, 150 (1971).
4. A. P. Kapustin and L. M. Dmitriev, Kristallografiya 7

(2), 332 (1962) [Sov. Phys. Crystallogr. 7, 263 (1962)].
5. L. W. Kessler and S. P. Sawyer, Appl. Phys. Lett. 17

(10), 440 (1970).
6. G. E. Zvereva, in Application of Ultrasonics for Study-

ing Substance (MOPI, Moscow, 1961), Vol. 15, p. 69.
7. R. Williams, J. Chem. Phys. 39, 384 (1963).
8. A. P. Kapustin, Kristallografiya 14 (5), 943 (1969) [Sov.

Phys. Crystallogr. 14, 819 (1969)].
9. A. P. Kapustin and D. Demus, Kristallografiya 23 (2),

430 (1978) [Sov. Phys. Crystallogr. 23, 241 (1978)].
10. A. P. Kapustin and S. A. Pikin, Pis’ma Zh. Éksp. Teor.

Fiz. 33, 332 (1981) [JETP Lett. 33, 316 (1981)].
11. A. P. Kapustin and S. S. Yakovenko, Kristallografiya 28

(3), 609 (1983) [Sov. Phys. Crystallogr. 28, 361 (1983)].
12. F. F. Legusha, Usp. Fiz. Nauk 144 (3), 509 (1984) [Sov.

Phys. Usp. 27, 887 (1984)].
13. A. P. Kapustin, Electrooptical and Acoustic Properties

of Liquid Crystals (Nauka, Moscow, 1973).
14. A. P. Kapustin, Experimental Studies of Liquid Crystals

(Nauka, Moscow, 1978).
15. A. P. Kapustin and O. A. Kapustina, Acoustics of Liquid

Crystals (Nauka, Moscow, 1985).
16. O. A. Kapustina, Mol. Cryst. Liq. Cryst. 112 (1–2), 112

(1982).
17. K. Miyano and J. Ketterson, Phys. Rev. A 12, 615

(1975).
18. J. N. Perbet, M. Harang, S. Le Berre, and B. Mourrey,

Rev. Tech. Thomson–CSF 11, 837 (1979).
19. E. Dubois-Violette, E. Guyon, I. Janossy, et al., J. Mec.

16, 733 (1977).
20. P. Khabibullaev, E. Gevorkyan, and A. Lagunov, Reol-

ogy of Liquid Crystals (Allerton, New York, 1994),
Chaps. 3.2, 6.3, 6.4.

21. Advances in Liquid Crystals, Ed. by G. Brown (Gordon
and Breach, New York, 1978), Vol. 3, p. 163.

22. Handbook of Liquid Crystals, Ed. by D. Demus et al.
(Wiley–VCH, Weinheim, 1998), Vol. 1, p. 549.

23. Physical Properties of Liquid Crystals, Ed. by
D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, and
V. Vill (Wiley, Weinheim, 1999), p. 447.

24. P. de Gennes, The Physics of Liquid Crystals (Claren-
don Press, Oxford, 1974; Mir, Moscow, 1977).
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004



LIQUID CRYSTAL ACOUSTICS 691
25. L. E. Devis and J. Chambers, Electron. Lett. 7, 287
(1971).

26. H. Mailler, L. L. Likins, T. R. Teilor, and J. L. Fergason,
Appl. Phys. Lett. 18, 105 (1971).

27. O. A. Kapustina and V. N. Lupanov, Akust. Zh. 23 (3),
390 (1977) [Sov. Phys. Acoust. 23, 218 (1977)].

28. S. Nagai and K. Iizuka, Jpn. J. Appl. Phys. 13, 189
(1974); Jpn. J. Appl. Phys. 17, 723 (1978); Mol. Cryst.
Liq. Cryst. 45, 83 (1978).

29. S. Nagai, A. Peters, and S. Candau, Rev. Phys. Appl. 12,
21 (1977).

30. T. Hatakeyama and Y. Kagawa, J. Acoust. Soc. Jpn. 32,
92 (1976); J. Sound Vibr. 46, 551 (1976).

31. Ch. Sripaipan, Ch. F. Hayes, and G. T. Fang, Phys. Rev.
A 15, 1297 (1977).

32. I. Lebran, S. Candau, and S. Letcher, J. Acoust. Soc.
Am. 63, 55 (1978); J. Phys. (Paris) 40, 298 (1979).

33. A. P. Kapustin and O. A. Kapustina, Krist. Tech. 8, 237
(1973).

34. O. A. Kapustina and A. A. Talashev, Akust. Zh. 19, 626
(1973) [Sov. Phys. Acoust. 19, 397 (1973)].

35. K. Miyano and Y. R. Shen, Appl. Phys. Lett. 28, 473
(1976); Appl. Phys. Lett. 28, 699 (1976); Phys. Rev. A
15, 2471 (1977).

36. S. Sato and H. Uedo, Jpn. J. Appl. Phys. 20, 511 (1981).
37. D. I. Anikeev, Yu. V. Bocharov, O. A. Kapustina, and

A. D. Vuzhva, Akust. Zh. 35, 966 (1989) [Sov. Phys.
Acoust. 35, 563 (1989)].

38. J. L. Dion and A. D. Jacob, Appl. Phys. Lett. 31, 490
(1977); IEEE Trans. Ultrason. Ferroelectr. Freq. Con-
trol 34, 550 (1987).

39. J. L. Dion, A. Le Blanc, and A. D. Jacob, Acoust. Imag-
ing 10, 151 (1982).

40. E. N. Kozhevnikov, Akust. Zh. 27, 533 (1981) [Sov.
Phys. Acoust. 27, 297 (1981)].

41. E. N. Kozhevnikov and N. K. Gus’kov, Akust. Zh. 29,
38 (1983) [Sov. Phys. Acoust. 29, 21 (1983)].

42. E. N. Kozhevnikov, Zh. Éksp. Teor. Fiz. 82 (1), 161
(1982) [Sov. Phys. JETP 55, 96 (1982)].

43. E. N. Kozhevnikov, Akust. Zh. 28, 136 (1982) [Sov.
Phys. Acoust. 28, 84 (1982)].

44. E. I. Zhukovskaya, E. N. Kozhevnikov, and
V. M. Podol’skiœ, Zh. Éksp. Teor. Fiz. 83, 207 (1982)
[Sov. Phys. JETP 56, 113 (1982)].

45. E. N. Kozhevnikov and N. G. Dolmatova, Vestn. Samar.
Gos. Univ., No. 2(4), 142 (1997).

46. É. L. Vinogradova, O. A. Kapustina, V. N. Reshetov,
et al., Akust. Zh. 31, 101 (1985) [Sov. Phys. Acoust. 31,
10 (1985)].

47. L. M. Blinov, S. A. Davidyan, V. N. Reshetov, and
D. B. Subachyus, Zh. Éksp. Teor. Fiz. 97 (5), 1597
(1990) [Sov. Phys. JETP 70, 902 (1990)].

48. E. N. Kozhevnikov, Akust. Zh. 28, 238 (1982) [Sov.
Phys. Acoust. 28, 143 (1982)].

49. O. A. Kapustina, E. N. Kozhevnikov, and G. N. Yako-
venko, Zh. Éksp. Teor. Fiz. 87 (3), 849 (1984) [Sov.
Phys. JETP 60, 483 (1984)].

50. H. Bruchmuller, Acustica 40, 155 (1978).
51. Y. Kagawa, T. Hatakeyama, and Y. Tanaka, J. Acoust.

Soc. Jpn. 31, 81 (1975).
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
52. G. N. Belova and E. I. Remizova, Akust. Zh. 31, 289
(1985) [Sov. Phys. Acoust. 31, 171 (1985)]; Kristal-
lografiya 31, 517 (1976) [Sov. Phys. Crystallogr. 31,
304 (1976)].

53. E. N. Kozhevnikov, Zh. Éksp. Teor. Fiz. 91, 1346
(1986) [Sov. Phys. JETP 64, 793 (1986)].

54. S. J. Nogan, T. Mullen, and P. Woodford, Proc. R. Soc.
London, Ser. A 441, 559 (1993).

55. T. Borsonyi, A. Buka, A. P. Krekhov, and L. Kramer,
Phys. Rev. E 58, 7419 (1998).

56. O. S. Tarasov and A. P. Krekhov, Kristallografiya 44 (6),
1121 (1999) [Crystallogr. Rep. 44, 1050 (1999)].

57. F. P. Krekhov, T. Borsonyi, P. Totch, et al., Phys. Rep.
337, 171 (2000).

58. A. P. Krekhov and L. Kramer, Phys. Rev. E 53 (5), 4925
(1996).

59. E. N. Kozhevnikov, Vestn. Perm. Univ., Fiz., No. 1, 63
(2002).

60. I. A. Chaban, Akust. Zh. 24, 260 (1978) [Sov. Phys.
Acoust. 24, 145 (1978)]; Akust. Zh. 31, 132 (1985)
[Sov. Phys. Acoust. 31, 77 (1985)].

61. P. Pieranski and E. Guyon, Phys. Rev. Lett. 39, 1280
(1977).

62. F. Rothen and E. Dubois-Violette, J. Phys. (Paris) 38,
1039 (1978).

63. J. Sadik, F. Rothen, and W. Bestgen, J. Phys. (Paris) 42,
915 (1981).

64. J. M. Dreyfus and E. Guyon, J. Phys. (Paris) 42, 283
(1981).

65. E. Guazzelli and E. Guyon, J. Phys. (Paris) 43, 985
(1982); C. R. Acad. Sci. 292, 142 (1981).

66. P. Pieranski and E. Guyon, Solid State Commun. 13,
435 (1973); Phys. Rev. A 9, 404 (1974).

67. P. Manneville and E. Dubois-Violette, J. Phys. (Paris)
37, 285 (1976).

68. M. Clark, F. Saunders, I. Shenks, and F. Leslie, Mol.
Cryst. Liq. Cryst. 70, 195 (1981).

69. V. N. Reshetov, Akust. Zh. 31, 639 (1985) [Sov. Phys.
Acoust. 31, 383 (1985)].

70. D. I. Anikeev and O. A. Kapustina, Zh. Éksp. Teor. Fiz.
110 (4), 1328 (1996) [JETP 83, 731 (1996)].

71. O. A. Kapustina and V. N. Lupanov, Zh. Éksp. Teor. Fiz.
71, 2324 (1976) [Sov. Phys. JETP 44, 1225 (1976)].

72. D. I. Anikeev, O. A. Kapustina, and V. N. Lupanov, Zh.
Éksp. Teor. Fiz. 100, 197 (1991) [Sov. Phys. JETP 73,
109 (1991)].

73. E. N. Kozhevnikov, in Abstracts of VI All-Union Con-
ference on Liquid Crystals (Chernigov, 1988), Vol. 1,
p. 121.

74. O. A. Kapustina and O. V. Romanova, Kristallografiya
46 (1), 112 (2001) [Crystallogr. Rep. 46, 103 (2001)].

75. E. N. Kozhevnikov, Zh. Éksp. Teor. Fiz. 92, 1306
(1987) [Sov. Phys. JETP 65, 731 (1987)].

76. I. N. Gurova and O. A. Kapustina, Akust. Zh. 43 (3),
338 (1997) [Acoust. Phys. 43, 290 (1997)].

77. I. N. Gurova and O. A. Kapustina, Pis’ma Zh. Éksp.
Teor. Fiz. 63 (11), 866 (1996) [JETP Lett. 63, 907
(1996)].

78. E. N. Kozhevnikov, Akust. Zh. 47 (4), 501 (2001)
[Acoust. Phys. 47, 430 (2001)].



692 KAPUSTINA
79. E. N. Kozhevnikov, Akust. Zh. 48 (3), 425 (2002)
[Acoust. Phys. 48, 371 (2002)].

80. E. N. Kozhevnikov, Akust. Zh. 48 (6), 777 (2002)
[Acoust. Phys. 48, 687 (2002)].

81. O. A. Kapustina, N. A. Kolesnikova, and O. V. Roma-
nova, Akust. Zh. 50 (1), 77 (2004) [Acoust. Phys. 50,
66 (2004)].

82. O. A. Kapustina, N. A. Kolesnikova, and O. V. Roma-
nova, Akust. Zh. 48 (4), 512 (2002) [Acoust. Phys. 48,
448 (2002)].

83. I. N. Gurova, O. A. Kapustina, and V. N. Lupanov, in
Advances in Liquid Crystal Research and Applications,
Ed. by L. Bata (Pergamon Press, Oxford, 1980), p. 395.

84. T. F. North and G. F. Britten, in Proceedings of Ultra-
sonic International Conference (London, 1975), p. 120.

85. H. Hakemi, J. Appl. Phys. 53, 6137 (1982).
86. Y. Kagawa, T. Hatakeyama, and Y. Tanaka, J. Sound

Vibr. 36, 407 (1974).
87. D. I. Anikeev, Yu. V. Bocharov, and A. D. Vuzhva, Zh.

Tekh. Fiz. 58, 1554 (1988) [Sov. Phys. Tech. Phys. 33,
933 (1988)]; Liq. Cryst. 6, 593 (1989).

88. S. Ezhov, S. Pasechnik, and V. Balandin, Pis’ma Zh.
Tekh. Fiz. 10, 479 (1984) [Sov. Tech. Phys. Lett. 10,
202 (1984)].

89. C. F. Hayes, in Liquid Crystals and Ordered Fluids
(Plenum, New York, 1978), p. 482.

90. A. Strigazzi and G. Barbero, Mol. Cryst. Liq. Cryst.
Lett. 82, 5 (1982).

91. R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan,
Akust. Zh. 34, 583 (1988) [Sov. Phys. Acoust. 34, 337
(1988)].

92. Yu. V. Bocharov and A. D. Vuzhva, Pis’ma Zh. Tekh.
Fiz. 15 (3), 84 (1989) [Sov. Tech. Phys. Lett. 15, 242
C

(1989)]; Pis’ma Zh. Tekh. Fiz. 14, 1460 (1988) [Sov.
Tech. Phys. Lett. 14, 635 (1988)].

93. A. N. Chuvyrov, Zh. Éksp. Teor. Fiz. 82, 761 (1982)
[Sov. Phys. JETP 55, 451 (1982)].

94. J. M. Dreyfus and P. Pieranski, J. Phys. (Paris) 42, 459
(1981).

95. G. N. Belova, Akust. Zh. 34, 24 (1988) [Sov. Phys.
Acoust. 34, 13 (1988)].

96. O. A. Kapustina, V. N. Lupanov, and G. S. Chilaya,
Akust. Zh. 24 (1), 136 (1978) [Sov. Phys. Acoust. 24, 76
(1978)].

97. I. N. Gurova and O. A. Kapustina, Akust. Zh. 35 (3),
446 (1989) [Sov. Phys. Acoust. 35, 262 (1989)].

98. I. N. Gurova and O. A. Kapustina, Liq. Cryst. 6, 525
(1989).

99. T. Akahane and T. Tako, Mol. Cryst. Liq. Cryst. 38, 251
(1977).

100. M. Kawaachi, O. Koguri, and Y. Kato, Appl. Phys. Lett.
13 (9), 1457 (1974).

101. V. N. Reshetov, I. V. Sytin, and G. N. Yakovenko, in
Problems in Ship Building (TsNII RUMB, Moscow,
1985), No. 20, p. 59.

102. O. A. Kapustina and V. N. Reshetov, Akust. Zh. 37 (3),
497 (1991) [Sov. Phys. Acoust. 37, 254 (1991)].

103. Yu. V. Bocharov, O. A. Kapustina, and V. N. Reshetov,
Akust. Zh. 38 (4), 616 (1992) [Sov. Phys. Acoust. 38,
340 (1992)].

104. Yu. Bocharov, O. Kapustina, and V. N. Reshetov, Mol.
Cryst. Liq. Cryst. 209, 19 (1991).

Translated by Yu. Sin’kov
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004



  

Crystallography Reports, Vol. 49, No. 4, 2004, pp. 693–697. Translated from Kristallografiya, Vol. 49, No. 4, 2004, pp. 773–777.
Original Russian Text Copyright © 2004 by Soboleva, Voloshin.

                                                                                                                                                                                                                                             

CRYSTAL 
GROWTH

    
Me2O–P2O5–H2O Solubility Phase Diagrams and Growth 
of MeH2PO4 Single Crystals (Me = Li, Na, K, Rb, Cs, NH4)

L. V. Soboleva and A. E. Voloshin
Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiœ pr. 59, Moscow, 119333 Russia

e-mail: lab.sol@ns.crys.ras.ru
Received March 28, 2001; in final form, May 15, 2003

Abstract—The Me2O–P2O5–H2O solubility phase diagrams are used to determine the optimum compositions
and the temperatures for growing crystals of MeH2PO4 solid phases (Me = Li, Na, K, Rb, Cs, NH4). The opti-
mum conditions for dynamic growth of dihydrophosphates of the elements of the first group and ammonium
are determined. LiH2PO4, NaH2PO4, NaH2PO4 · 2H2O, NaH2PO4 · H2O, KH2PO4, K(H,D)2PO4, RbH2PO4,
CsH2PO4, and (NH4)H2PO4 single crystals are grown on seed from aqueous solutions by the methods of tem-
perature lowering and isothermal evaporation. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier [1], we suggested a general approach to
selection of the crystallization conditions for growth of
complicated compounds of various chemical classes
based on preliminary analysis of solubility phase dia-
grams of ternary systems. In these systems, each solid
phase is characterized by the corresponding crystalliza-
tion region, with the solubility curve having specific
invariant (eutonic, transient) points. In these regions,
two solid phases with different compositions are crys-
tallized simultaneously. It is shown that a solid phase
may crystallize only if the optimum composition of the
solution is at the maximum distance from the points of
invariant equilibria. In this case, no simultaneous crys-
tallization of adjacent phases or transition to the crys-
tallization region of a solid phase with different compo-
sition can take place.

The characteristic feature of this approach is the
preparation of mother liquors from the simple compo-
nents of the system. This allows one to prepare solution
of any required composition, which is very important
for performing the crystallization process according to
selected (optimum) scheme. Using this approach, we
have already grown the following single crystals:
LiH2PO4 (LiDP) [2], NaH2PO4 (NaDP), NaH2PO4 ·
2H2O (NaDP · 2H2O), NaH2PO4 · H2O (NaDP · H2O)
[3], KH2PO4 (KDP) [4], and K(DxH1 – x)2PO4 (DKDP)
[5], where D is deuterium.

The present study is aimed at (1) the development of
methods for growing RbH2PO4, CsH2PO4, and
NH4H2PO4 crystals using data on the Me2O–P2O5–H2O
phase diagrams (Me = Rb, Cs, and NH4) and growth of
the respective single crystals on seeds in the dynamic
mode and (2) comparative analysis of the solubility
phase diagrams of the ternary Me2O–P2O5–H2O and
K2O–P2O5–(DxH1 – x)2O systems and the conditions for
1063-7745/04/4904- $26.00 © 0693
growth of MeH2PO4 · nH2O and K(DxH1 – x)2PO4 single
crystals (Me = Li, Na, K, Rb, Cs, NH4, n = 0, 1). 

ANALYSIS OF THE PHYSICAL–CHEMICAL 
FEATURES OF THE SOLUBILITY PHASE 

DIAGRAMS OF TERNARY Me2O–P2O5–H2O
(Me = Rb, Cs, NH4) SYSTEMS AND 

COMPOSITIONS OF MOTHER LIQUORS USED 
FOR GROWTH OF THE CORRESPONDING 

MeH2PO4 CRYSTALS

Unlike solubility phase diagrams of the ternary
Me2O–P2O5–H2O systems (Me = Li, Na, K, NH4), sys-
tems with Rb and Cs have been studied only partly. In
the latter systems, the regions of the RbH2PO4 and
CsH2PO4 crystallization are established only partly, so
that the positions of invariant points are not known.

Figure 1 shows the solubility isotherms of RbH2PO4
in the Rb2O–P2O5–H2O system at the temperatures t =
25 and 50°ë. These isotherms are characterized by a
congruent nature of solubility: the RbH2PO4–H2O sin-
gular secant passes through the crystallization region of
rubidium dihydrophosphate. In the whole existence
region, tetragonal RbH2PO4 crystals with a habit simi-
lar to the habit of KH2PO4 crystals are formed in the
whole crystallization region. The specific feature of this
system is the nonlinearity of the acid and alkali
branches of the solubility curve in the region of
RbH2PO4 crystallization. This allows one to vary the
solution composition along the solubility curve practi-
cally at a constant concentration of one of the system
components.

At the same time, the known data on phase forma-
tion in the systems with RbH2PO4 and CsH2PO4 are
inconsistent. Contrary to some data [6], it was estab-
lished [7] that, at t < 85°C RbH2PO4 is crystallized in
the monoclinic system with the lattice parameters ‡ =
2004 MAIK “Nauka/Interperiodica”
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7.06 Å, b = 6.30 Å, Ò = 5.21 Å, β = 107.95°, Z = 2,
whereas, at t > 85°C, tetragonal crystals are formed.
The latter crystals exist for quite a long time during sys-
tem cooling to room temperature [7].

The Cs2O–P2O5–H2O system at t = 25 and 50°C
(Fig. 2) [8] also has the region of the congruently dis-
solving CsH2PO4 solid phase crystallizing in the mon-
oclinic system [7]. The alkali and acid branches of the
solubility curve in the CsH2PO4 crystallization region
are almost linear and have no singular points. The pos-
sibility of growth of tetragonal CsH2PO4 crystals
depending on the solution temperature and CsOH and
H3PO4 content was considered in [7].

It was established that, in the temperature range
−5 < t < +80°C and solution acidity pH = 2–8, only
monoclinic crystals with a habit dependent on the crys-
tallization conditions can grow. The tetragonal phase is
formed only after prolonged heating of CsH2PO4 at
150–160°ë, with the stability of this phase at room
temperature being considerably lower than the stability

10
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Fig. 1. Solubility isotherms of RbH2PO4 in the Rb2O–
P2O5–H2O system at 25°C (dashed line) and 50°C (solid
line). å is the composition of the mother liquor for growth
of RbH2PO4 crystals. The H2O–RbH2PO4 line is a singular
secant.
C

of RbH2PO4. Table 1 indicates the temperatures and the
character of the polymorphous transformations in
RbH2PO4 and CsH2PO4 and, for comparison, also in
KH2PO4 [7].

In accordance with the approach developed in [1–5],
the compositions of the mother liquors for growth of Li,
Na, and K dihydrophosphates were determined from
the compositions of the points on the solubility curve
lying at the maximum distance from the invariant equi-
libria. However, this approach is invalid for the Me2O–
P2O5–H2O systems (Me = Rb, Cs) because the compo-
sitions of the invariant points are unknown. Neverthe-
less, the physical–chemical characteristics of the solu-
bility curves of RbH2PO4 and CsH2PO4 in the
Rb2O(Cs2O)–P2O5–H2O systems (these are the location
of the maxima on the solubility curves or the singular
points in the vicinity of the singular Rb(Cs)H2PO4–H2O
secants) lead to the assumption that the optimum com-
positions of the mother liquors for growth of Rb and Cs
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Fig. 2. Solubility isotherms of CsH2PO4 in the Cs2O–
P2O5–H2O system at 25°C (dashed line) and 50°C (solid
line). M is the composition of the mother liquor for growth
of CsH2PO4 crystals. The H2O–CsH2PO4 line is a singular
secant. 
Table 1.  Temperatures and character of polymorphous transformations in KH2PO4, RbH2PO4, and CsH2PO4

Solid phase Temperature and character of transformations*

KH2PO4 Tetragonal (25°C)  monoclinic

RbH2PO4 Monoclinic (25°C)  tetragonal  monoclinic

CsH2PO4 Monoclinic (25°C)  tetragonal  monoclinic

* The inverse transition requires a long period of time.

192°C

85°C 128°C

150–160°C 186°C
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dihydrophosphates should be close to the solution com-
positions at the point å (Figs. 1, 2).

To grow RbH2PO4 crystals, we used the mother
liquor of the composition (in wt %): Rb2O = 27.00,
P2O5 = 22.00, and H2O = 51.0. To grow CsH2PO4 crys-
tals, we used the mother liquor of the composition (in
wt %): Cs2O = 40.70–43.00, P2O5 = 29.40–19.60, and
H2O = 39.90–37.40. The temperature range of crystalli-
zation was 25 < t < 50°C.

The (NH4)2O–P2O5–H2O system was studied at sev-
eral temperatures t = 25, 50 [9, 10], 75 [11], and 100°ë
[12] (Fig. 3). It should be emphasized that this system
contained lower amounts of hydrates and double salts
than the corresponding systems with Na and K. Figure 4
shows a part of the (NH4)2O–P2O5–H2O diagrams in
which the solubility isotherms of NH4H2PO4 at t = 25,
50°C have linear branches, the singular points at 25°ë,
and a diffuse maximum at 50°ë. In this system, only
one congruently dissolving tetragonal phase of the
composition NH4H2PO4 is crystallized with the habit
typical of KH2PO4. By analogy with data in [1–5], we
may state that the composition of the mother liquor for
growing NH4H2PO4 crystals should correspond to the
point å of the saturated solution (Fig. 4), namely,
P2O5 = 45.40, (NH4)2O = 13.50, and H2O = 41.40 wt %.
The temperature ranges of crystallization varied from
50 to 25°ë. 

EXPERIMENTAL
To prepare the mother liquor we used extra pure

Rb2CO3, Cs2CO3, NH4H2CO3, and H3PO4 chemicals,
reagent grade RbOH and CsOH chemicals, and twice-
distilled water. We added small portions of the H2O
solution into a cooling, constantly stirred Me2CO3 or
MeOH solution, with the reagents being taken in the

20
P2O5, wt %

(NH4)2O, wt %

40 60 800

10

20

30
A

Fig. 3. Solubility isotherms of NH4H2PO4 in the (NH4)2O–
P2O5–H2O system at 25°ë (dashed line), 50°ë (solid line),
75°ë (–×–×–×–), and 100°ë (–s–s–s–). The OA line is the
H2O – NH4H2PO4 singular secant.
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amounts corresponding to the chosen compositions of
the mother liquors.

The interaction between the components in the solu-
tion proceeds according to the exothermal reaction with
the formation of dihydrophosphates, e.g., by the reac-
tion

Rb2CO3(Cs2CO3) + 2H3PO4 

 2RbH2PO4(CsH2PO4) + ↑CO2 + ↑H2O.

The RbH2PO4, CsH2PO4, and NH4H2PO4 crystals
were grown on seed by the methods of isothermal evap-
oration at 50°ë and lowering of temperature (50–
25°ë). The seeds were prepared by spontaneous crys-
tallization from the corresponding mother liquors.

We grew 25 × 20 × 18-mm2-large transparent
RbH2PO4, CsH2PO4, and NH4H2PO4 single crystals.

The crystals grown were identified by their X-ray
diffraction patterns using ASTVL cards. X-ray phase
analysis showed that the RbH2PO4 and NH4H2PO4
crystals were tetragonal, whereas CsH2PO4 crystals
were monoclinic.

SPECIFIC FEATURES OF PHASE FORMATION IN 
DIHYDROPHOSPHATES IN THE Me2O–P2O5–H2O 

SYSTEMS (Me = Li, Na, K, Rb, Cs, AND NH4)

Comparing the physical–chemical characteristics of
the Me2O–P2O5–H2O (Me = Li, Na, K, Rb, Cs, NH4)
and K2O–P2O5–(D,H)2O systems, we see a close rela-
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Fig. 4. Solubility isotherms of NH4H2PO4 in the (NH4)2O–
P2O5–H2O system at 25°C (dashed line) and 50°ë (solid
line). The point å is the composition of the mother liquor
for growth of (NH4)H2PO4 crystals. The H2O–
(NH4)H2PO4 line is a singular secant; Ö1 and Ö2 are the
eutonic points.
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Table 2.  Optimum conditions for growth of  MeH2PO4 · nH2O crystals (Me = Li, Na, K, Rb, Cs, NH4, n = 0–2)

System Grown crystal

Growth conditions Characteristics of crystals

solution composi-
tion, wt % t, °C sp. gr. and symmetry class dimensions, 

mm

Li2O–P2O5–H2O LiH2PO4 Li2O = 6.62 50.00 Pna21 35 × 27 × 30

P2O5 = 43.50 mm2

H2O = 49.88

Na2O–P2O5–H2O NaH2PO4 Na2O = 15.00 60.00 P21|C 25 × 22 × 18

P2O5 = 36.50 2|m
H2O = 48.50

NaH2PO4 · H2O Na2O = 14.66 47.50 Pna21 35 × 30 × 35

P2O5 = 33.62 mm2

H2O = 51.72

NaH2PO4 · 2H2O Na2O = 13.00 35.20 P212121 35 × 30 × 18

P2O5 = 29.80 222

H2O = 57.20

K2O–P2O5–H2O KH2PO4 K2O = 10.00 50.10 1 2d 40 × 30 × 28

P2O5 = 15.00 2m

H2O = 75.00

K2O–P2O5–(D,H)2O K(DxH1 – x)2PO4 KH2PO4 = 36.65 50.00 1 2d 15 × 20 × 10

D2O = 63.35 2m

Rb2O–P2O5–H2O RbH2PO4 Rb2O = 27.00 50.00 1 2d 25 × 20 × 18

P2O5 = 22.00 2m

H2O = 51.00

Cs2O–P2O5–H2O CsH2PO4 Cs2O = 40.00 50.00 P2|m 25 × 18 × 20

P2O5 = 20.00 2|m
H2O = 40.00

(NH4)2–P2O5–H2O (NH4)H2PO4 (NH4)2O = 13.50 50.00 1 2d 28 × 20 × 18

P2O5 = 45.40 2m

H2O = 41.40

4

4

4

4

4

4

4

4

tion of the systems with KH2PO4, K(DxH1 – x)2PO4,
NH4H2PO4 and RbH2PO4, CsH2PO4—they have simi-
lar solubility isotherms, close dimensions of the crys-
tallization fields, congruent nature of solubility, close
concentration and temperature limits of crystallization,
etc.

Above, we indicated the discrepancies in the exist-
ence region of the tetragonal RbH2PO4 phase in [6 and
8]. We also synthesized the tetragonal RbH2PO4 phase
at t = 50–25°C. Our results confirm the conclusions
drawn in [6]. Possibly, the controversy indicated above
is explained by insufficient knowledge on this system
and may be explained by the dependence of the exist-
ence regions of various solid phases on the solution
composition and other crystallization conditions.

The concentration and temperature conditions for
crystallization in the systems of K, Rb, Cs, and NH4
dihydrophosphates are rather favorable and, therefore,
growth of single crystals in these systems meets with no
C

serious difficulties. Single crystals can be grown from
the solutions of both stoichiometric and nonstoichio-
metric compositions over wide temperature ranges. We
should like to emphasize the unique properties of the
K2O–P2O5–H2O system, which possesses extremely
wide and stable temperature and concentration ranges
of the components that ensure the successful KH2PO4
crystallization. To a large extent, this made KH2PO4 an
extremely convenient material for studying growth
from solutions, because it allows the variation of the
growth conditions over the wide ranges.

At the same time, the systems with Li and Na dihy-
drophosphates considerably differ from the above sys-
tems by the incongruent nature of LiH2PO4 solubility at
25°ë and the change of the incongruent NaH2PO4 sol-
ubility at 25 and 40°ë to the congruent solubility at
60°ë. Unlike all the other systems, the system with
sodium forms two new hydrate phases—NaH2PO4 ·
H2O and NaH2PO4 · 2H2O—with different solubility
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Me2O–P2O5–H2O SOLUBILITY PHASE DIAGRAMS 697
natures. The systems with Li and Na are characterized
by narrow concentration and temperature ranges of
dihydrophosphate crystallization. Unlike the systems
with K, Rb, Cs, and NH4, LiH2PO4, NaH2PO4,
NaH2PO4 · H2O, and NaH2PO4 · 2H2O crystals with an
incongruent nature of solubility can be grown only
based on data on their solubility diagrams. This does
not allows one to use the LiH2PO4 and NaH2PO4 solu-
tions for crystal growth and requires thorough selection
not only of the mother-liquor composition the but also
of the crystallization conditions. In these cases, the
approach described above becomes the only method for
growth of lithium and sodium dihydrophosphates.

Table 2 indicates the growth conditions of MeH2PO4 ·
nH2O (n = 0–2 and K(DxH1 – x)2PO4 crystals, the compo-
sitions of the mother liquors, and the initial crystalliza-
tion temperature established from the solubility
diagrams in the Me2O–P2O5–H2O and K2O–P2O5–
(DxH1 – x)2O systems (Me = Li, Na, K, Rb, Cs, and NH4)
as well as the space groups, symmetry classes, and the
dimensions of the crystals grown.

CONCLUSIONS
The present study concludes the cycle of studies on

growth of crystals of the homologous series of alkali
metal and ammonium dihydrophosphates with the use
of the approach based on the consideration of the solu-
bility phase diagrams of ternary systems developed in
[1–5].

We determined the crystallization conditions for
RbH2PO4, CsH2PO4, and NH4H2PO4 in the Me2O–
P2O5–H2O ternary systems (Me = Rb, Cs, and NH4) at
t = 50–25°C and grew single crystals of these com-
pounds, which are the last representatives of the class of
compounds not studied earlier.

As a result, we demonstrated the applicability of the
above approach to the KH2PO4, K(DxH1 – x)2PO4,
RbH2PO4, CsH2PO4, and NH4H2PO4 crystals synthe-
CRYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
sized earlier by other authors by the traditional method.
The high efficiency of the method suggested above is
confirmed by synthesis of new crystals—LiH2PO4,
NaH2PO4, NaH2PO4 · H2O, and NaH2PO4 · 2H2O with
incongruent nature of solubility. All the above facts
allow us to state that the analysis of phase diagrams in
combination with the use of mother liquors having
compositions far from the points of the invariant equi-
libria is a universal approach that can be used for
growth of single crystals of complicated compounds.
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Aleksandr Borisovich Gil’varg
(On the Occasion of His 90th Birthday)
Aleksandr Borisovich Gil’varg, a well-known Rus-
sian expert in the mechanical treatment of crystals and
the oldest employee of the Shubnikov Institute of Crys-
tallography of the Russian Academy of Sciences,
turned 90 on May 1, 2004.

Gil’varg has worked at the Institute of Crystallogra-
phy since the day of its foundation. As a student at a
technical secondary school of optics and mechanics, he
started working as an optical mechanic under the super-
vision of A.V. Shubnikov at the Laboratory of Crystal-
lography of the Lomonosov Institute of the Academy of
Sciences of the Soviet Union in 1935. Shubnikov
appraised his abilities highly and, in June 1938,
Gil’varg was appointed a junior research worker. In
October 1941, Gil’varg, along with some of his col-
1063-7745/04/4904- $26.00 © 20698
leagues, was evacuated to Sverdlovsk oblast (to the vil-
lage of Filatovo, Sukhologskiœ region), where he
worked as a technological engineer in workshops pro-
ducing piezoelectric quarz resonators (which were
main parts of field telephones). After the war, Gil’varg
took part in the development of the technology of fab-
rication of scintillation crystals, narrow-band polariza-
tion interference filters for astrophysics, and analyzing
crystals for X-ray spectroscopy. For successful devel-
opment of the area, Gil’varg was awarded the Prize of
the Presidium of the Academy of Sciences of the Soviet
Union. His contribution in the organization of the pro-
duction of laser crystals can hardly be overestimated.
Gil’varg, with his vast knowledge and experience,
played a key role in the organization of the workshop
for the mechanical treatment of such crystals at the Spe-
cial Design Bureau. That all post graduate students at
the Institute of Crystallography studied crystal treat-
ment directly under Gil’varg’s supervision was a fine
tradition.

Presently, Gil’varg is working as actively as ever on
the problem of improving the mechanical treatment of
leucosapphire crystals. He has many students who are
deeply grateful to him for his help in mastering the pro-
fession of optical mechanic.

Gil’varg is a great authority, not only for his col-
leagues at the Laboratory of High-Temperature Crys-
tallization, but also among all the employees of the
Institute of Crystallography. From time to time, he
consults with researchers from other organizations. As
one of the most skilled experts in the mechanical treat-
ment of crystals for astrophysical experiments, Gil’varg
devotes particular attention to problems of astro-
physics.

The colleagues of Aleksandr Borisovich Gil’varg
from the Institute of Crystallography and the editorial
board of Kristallografiya (Crystallography Reports)
congratulate him on his jubilee and wish him good
health and new creative achievements. We are proud
that we have been so privileged as to know this unique
expert, who has been working continuously and fruit-
fully for the welfare of domestic science for 70 years.

Translated by Yu. Sin’kov
004 MAIK “Nauka/Interperiodica”
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Khachik Saakovich Bagdasarov
(on the Occasion of His 75th Birthday)
 On May 21, 2004, Prof. Khachik Saakovich Bag-
dasarov celebrated his 75th birthday. A Doctor in Phys-
ics and Mathematics, corresponding member of the
Russian Academy of Sciences, and full member of the
Academy of Engineering Sciences, Bagdasarov was
awarded the title of Honorary Scientist of the Russian
Federation and State Prizes of the Soviet Union and the
Russian Federation.

Bagdasarov, a student of Academician Aleksei
Vasil’evich Shubnikov, follows in the traditions of the
Russian school of crystallography. He has made a con-
siderable contribution to both fundamental and applied
research in crystallography.

Bagdasarov started his scientific activity as a
postgraduate student at the Institute of Crystallography
fifty years ago (in December 1953). He established the
influence of ultrasound on crystallization, developed an
original method for detecting dislocations in single
crystals, and discovered the effect of strengthening of
1063-7745/04/4904- $26.00 © 20699
zinc single crystals during their growth in an ultrasonic
field.

Bagdasarov’s main interest is high-temperature
crystallization and development of original growth
methods for synthesis of technologically important sin-
gle crystals. Solving various problems of high-temper-
ature crystallization, Bagdasarov pays his main atten-
tion to high-temperature chemical processes occurring
during melting and crystallization of various materials.
This approach allowed him to elaborate a new method
for growing single crystals—the so-called Bagdasarov
method—now widely used in many countries. This
method allowed Bagdasarov and a group of designers
to develop a number of new crystallization setups now
manufactured by many industrial enterprises of the
Russian Federation and other countries of the Com-
monwealth of Independent States.

Bagdasarov also made an important contribution to
the theory of synthesis of high-quality optical single
crystals. Together with Academician A.M. Prokhorov,
he developed concepts that allowed them to use a ruby
crystal and obtain, within a short time, stimulated radi-
ation in the optical range. The solution of this problem
was extremely important and timely because of serious
attempts to solve this problem made simultaneously by
the scientists in the Soviet Union and United States.
The designed ruby-based optical generator allowed our
scientists to solve a number of important problems
including the design and construction of special rangers
and perform, under the guidance of Academician
N.G. Basov, lunar laser ranging. The latter was impor-
tant not only because it was the first attempt to deter-
mine the distance between the earth and its natural sat-
ellite within a decimeter accuracy, but also because it
proved the great possibilities of optical ranging and
communication. Bagdasarov headed the solution of
other problems of laser technology, such as the creation
of unique lasing elements based on neodymium-acti-
vated yttrium aluminum garnet (YAG) and yttrium alu-
minate, yttrium erbium aluminum garnet (YEAG), etc.
These facts were soon used to start industrial produc-
tion of lasing crystals. The growth apparatus based on
the Bagdasarov method and the respective licenses
were bought by a number of countries, including Japan,
France, Switzerland, South Korea, and Bulgaria.

Bagdasarov also made a great contribution to syn-
thesis of high-quality single crystals, work for which he
was awarded the Soviet Union State Prize in 1972. The
crystals grown by Bagdasarov have record Q-factors in
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the SHF range. He actively studied the radiation stabil-
ity of sapphire and developed an original method of
radiation-induced strengthening of single crystals.

Bagdasarov is a well known organizer of scientific
events and work. He finds new, original technical solu-
tions to growth problems and puts them into practice.
He used sapphire single crystals in systems operating
under the extreme conditions; in particular, he designed
and constructed an optically transparent internal-com-
bustion engine especially important for design and con-
struction of ecologically pure engines.

Bagdasarov played an active role in the organization
of large centers for growing single crystals and manu-
facturing crystallization setups, such as the scientific
and research enterprise Lasernaya Tekhnika in Erevan,
department of technological lasers at the Moscow pro-
duction enterprise Zavod Vladimira Il’icha, Lyumino-
for plant in Stavropol, All-Union Research Institute of
Single Crystals in Kharkov, All-Union Research Insti-
tute of Electrothermal Equipment in Moscow, Plant of
Electrothermal Equipment in Taganrog, and Plant of
Electronic Engineering in Lugansk. The Laboratory of
High-Temperature Crystallization founded by Bag-
dasarov at the Institute of Crystallography in 1964 has
been transformed into a large department solving fun-
damental and applied problems of crystal growth. Bag-
dasarov’s organizational gift has manifested itself espe-
cially clearly in the last decade, a period hard for our
science. He managed to preserve his actively working
research group.

In 2000, Bagdasarov was awarded the State Prize of
the Russian Federation for the development of power-
C

ful technological solid-state lasers and their industrial
manufacture. At present, Bagdasarov is engaged in
growth of very large refractory single crystals. The state
of the art, engineering developments, and new techno-
logical concepts in this field are considered in detail in
his recently published monograph High-Temperature
Crystallization from Melts.

Bagdasarov is a member of the editorial board of the
journal Kristallografiya (Crystallography Reports). For
more than 20 years, he served as an expert of the State
Certifying Commission in Physics. He published 6
monographs and more than 300 other scientific publi-
cations. He has more than 200 Inventor’s Certificates.
Bagdasarov has been awarded several orders and med-
als of the Soviet Union and Russian Federation.

Today, Bagdasarov actively works on synthesis of
new technological single crystals, finds novel fields of
their application, and puts into practice his new ideas.
He has numerous offers to cooperate with many
research centers in the United States, France, China,
Israel, Greece, etc. In 2003, his activity was highly re-
cognized once again—he was awarded the Fedorov
Prize of the Russian Academy of Sciences.

The editorial board of Kristallografiya, Russian
crystallographers, and numerous students and col-
leagues congratulate Prof. Bagdasarov on his 75th
birthday and wish him good health, happiness, and
great success in putting all his plans into practice.

Translated by L. Man
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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Boris Viktorovich Mchedlishvili
(On the Occasion of His 60th Birthday)
Boris Viktorovich Mchedlishvili was born in Lenin-
grad on October 1, 1944. In 1969, he graduated from
the Faculty of Physics and Mechanics of the Kalinin
Leningrad Polytechnical Institute (now, St. Petersburg
State Technical University) with a degree as an engi-
neering physicist. From 1969 to 1984, he worked at the
Chair of Physics of Isotopes and the Chair of Biophys-
ics of this institute.

In 1983, a laboratory for the development of nuclear
filters (track membranes) was organized at the Shubni-
kov Institute of Crystallography by a decree of the Pre-
sidium of the Academy of Sciences of the Soviet
Union, initiated by academicians B.K. Vaœnshteœn,
G.N. Flerov, A.P. Aleksandrov, and A.M. Prokhorov.
Mchedlishvili moved to Moscow in 1984 and, since
then, has headed this department of the Institute of
Crystallography (now, the Department of Membrane
Technologies).
1063-7745/04/4904- $26.00 © 20701
In 1990, Mchedlishvili defended his doctoral disser-
tation in chromatography and became a professor of
biophysics in 1992. From 1997 to 1999, he was the dep-
uty chief for research at the Institute of Crystallo-
graphy.

The range Mchedlishvili’s scientific interests
includes condensed-matter physics, high-energy phys-
ics and chemistry, X-ray diffractometry, problems of
physical and colloidal chemistry related to processes of
separation of complex mixtures by nanomaterials with
calibrated porosity, and problems of biophysics (inter-
action of biopolymers and viruses with a surface and
their spectroscopy).

One of his well-known developments is a new chro-
matographic technique—the exclusive chromatogra-
phy of colloidal particles (first and foremost, viruses).
During its development, it was demonstrated both the-
oretically and experimentally that the essential feature
of this method is its nonequilibrium nature, which
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makes it radically different from conventional chro-
matographic techniques. In 1984, Mchedlishvili and his
colleagues were awarded the Prize of the Council of
Ministers of the Soviet Union for this research and the
practical application of the results obtained.

Being a student of Academician Flerov, Mchedlish-
vili, together with his teacher, has been working since
1973 on the problems of research, production, and
application of track membranes. The laboratory headed
by Mchedlishvili at the Institute of Crystallography is a
unique one both in our country and abroad. Experts in
membranes know the pioneer Mchedlishvili’s works on
the synthesis, structure, and properties of track mem-
branes well. The data obtained by Mchedlishvili are
now widely used in the production of track membranes
and items based on them, as well as in membrane tech-
nologies, in St. Petersburg, Dubna, Obninsk, Novosi-
birsk, and Tomsk. The creation of the track membrane
industry in Russia is one of the results of his scientific
activity over 1984–2004.

Over the past two decades, Mchedlishvili has also
been engaged in research and pedagogical work. The
translation into Russian of the well-known book Mem-
brane Filtration by Brock was edited by Mchedlishvili.
C

Along with Prof. V.M. Kolikov, he published the mono-
graph Macroporous Silicas in Chromatography of
Biopolymers. Mchedlishvili has supervised eight candi-
date’s and eight doctoral dissertations. He is a member
of several scientific and expert councils and committees
of the Russian Academy of Sciences; Ministry of
Industry, Science, and Technology of the Russian Fed-
eration; Mendeleev Russian Chemical Society; and
Ministry of Education of the Russian Federation. Since
1993, Mchedlishvili has been deputy chairman of the
Dissertation Council on Biophysics of the St. Peters-
burg State Technical University. Mchedlishvili also
supervises the Scientific Methodical Laboratory of
Track Membranes and the Russian Seminar on Track
Membranes. He is the author of more than 200 articles
that have been published in leading scientific journals
in Russia and abroad.

The editorial board of Kristallografiya (Crystallog-
raphy Reports), along with all his colleagues and
friends, wish Boris Viktorovich Mchedlishvili good
health and further success in his scientific work.

Translated by Yu. Sin’kov
RYSTALLOGRAPHY REPORTS      Vol. 49      No. 4      2004
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On the Occasion of the 100th Birthday
of Professor A. P. Kapustin

O. A. Kapustina
On August 20, 2004, 100 years had passed since the
birth of the world-renowned scientist Prof. Aleksandr
Pavlovich Kapustin, a doctor of physics and mathemat-
ics and one of the pioneers in the field of the physics of
liquid crystals.

Kapustin was born in Saratov into the family of a
railroad fitter. Because of material difficulties, he failed
to graduate from the higher municipal school and, at the
age of 14, he began to work as a coupon checker in the
Saratov Transport Consumer’s Society. However, his
natural intellectual curiosity, love of books, and keen
interest in technique helped him, despite the hard con-
ditions and instability of his life, to graduate from a pro-
gram of radio-telegraph courses (1923), a rabkor (pro-
letarian correspondent) school (1924), and a school for
adults, after which he managed to obtain the job of head
librarian in the Communication Union Club. This occu-
pation was of greater interest to him. In 1927, he suc-
1063-7745/04/4904- $26.00 © 0703
cessfully passed the entrance examinations for the Fac-
ulty of Physics and Technology of Chernyshevsky
Saratov University. From 1930 to 1933, Kapustin was a
post-graduate student at the Chair of General Physics of
Saratov University. At the same time, he began to work
as a lecturer at the Saratov Pedagogical Institute, and
his lecturing activity at this institute lasted until the end
of his life. After Kapustin graduated from his postgrad-
uate course, he was sent to the Magnitogorsk Pedagog-
ical Institute, where he worked until 1952, first as the
head of the Chair of General Physics and then as a dep-
uty director for research and education. At that time,
Kapustin’s talents manifested themselves in his vigor-
ous and enthusiastic work in a great variety of fields. He
gave lecture courses in general and theoretical physics,
organized and carried out practical studies in physics in
the laboratory, and successfully continued his research
at the Laboratory of Oscillations of the Faculty of Phys-
ics of Moscow State University at the same time as con-
ducting long-term business trips. In 1940, based on the
results of this research, he defended his candidate’s dis-
sertation, Application of the Drude Method to Permit-
tivity Measurements and Determination of Dipole
Moments at Wavelength λ = 10 cm. The range of his
scientific interests constantly expanded. In 1945–1948,
Kapustin performed a series of investigations of the
effect of ultrasound on the kinetics of crystallization of
metals at the Central Plant Laboratory of the Magni-
togorsk Metallurgical Plant. The results obtained
proved to be so promising that Kapustin was sent on to
a doctorate course of study at the Institute of Crystal-
lography of the Academy of Sciences of the Soviet
Union (1948–1951) to continue this work. In October
1951, Kapustin defended his doctoral dissertation in
physics and mathematics at the Institute of Physical
Chemistry of the Academy of Sciences brilliantly.
A year later, in 1952, he was appointed head of the
Chair of General Physics at the Lenin Moscow Peda-
gogical Institute, where he worked until 1959. At the
same time, Kapustin continued his research in Mos-
cow: in 1952, Academician A.V. Shubnikov offered
that he work as a senior researcher at the Institute of
Crystallography, where he was employed until the end
of his life. Kapustin had many new ideas and creative
plans. His main scientific interests dealt with the phys-
ics of liquid crystals. And, along with Shubnikov,
Kapustin was one of the founders of this field of science
in our country. In the 1960–1970s, he carried out a
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series of investigations of the electrooptical properties
of liquid crystals, which led to the discovery of the spa-
tially modulated structures now referred to as Kapus-
tin–Williams domains. This discovery initiated wide
experimental and theoretical investigations of this phe-
nomenon both in our country and abroad. The studies
performed by Kapustin in the 1980s anticipated many
ideas of modern acoustics of liquid crystals. For exam-
ple, his name is associated with the foundation and
development of acoustic spectroscopy of liquid crystals
(one of the most fruitful methods for studying their
structure) in our country. Another fundamental work of
that period, which initiated a new line of investigations
of acoustooptical properties of liquid crystals, was the
study of orientational phenomena in liquid crystals in
ultrasonic fields performed by Kapustin in collabora-
tion with L.M. Dmitriev. It was precisely this, along
with a number of other studies of the effect of mechan-
ical strains generated by acoustic waves on liquid crys-
tals, that made the solution of several problems of
hydroacoustics, seismology, and nondestructive testing
with the use of liquid-crystal sensors possible.

In recent years, Kapustin, along with S.A. Pikin,
studied with much success the effect of periodic
mechanical strains on polymorphic liquid crystals
under certain temperature conditions. The results of
these studies allowed him to propose a new approach to
solving a number of special problems relating to con-
struction of liquid-crystal optical phase gratings with a
controlled period and memory. The results of Kapus-
tin’s investigations in the field of the physics of liquid
crystals have been reported in several monographs
based on the original materials. One of these mono-
graphs was published in the United States.

They say that style is the man, and Kapustin’s style
could not be called anything other than classic: a deep
C

and broad approach, along with accuracy, was charac-
teristic, not only of all his research, but also of his atti-
tude to any problem. Another feature, which is not quite
typical of modern researchers, was his desire to estab-
lish, first of all, qualitative relationships between the
macroscopic characteristics of a phenomenon under
study. He almost always set up experiments himself,
liked to work with his own hands, and understood
where an experimenter may encounter a “perfidy of
nature, error or, probably, miscalculation.”

Kapustin was a brilliant representative of those peo-
ple who participate fully in the life of their country.
Along with his intense scientific and pedagogical activ-
ity, he was continually involved in all the aspects of
public life. His adherence to principles, straightfor-
wardness, keen interest in all scientific developments,
inexhaustible erudition, invariable benevolence and
cordiality, optimism, and rare charm always attracted
other people to him. His extensive international rela-
tions are also indicative of this. Profs. G. Brown,
N. Felici, E. Guyon, S. Chandrasekar, H. Zackmann,
D. Demus, H. Zaschke, A. Derzhanski, A. Petrov, and
I. Myll make up a far from complete list of the well-
known foreign physicists with whom Kapustin commu-
nicated and was in correspondence. He would give lec-
ture courses on the physics of liquid crystals in univer-
sities on our country, Germany, Czechoslovakia, and
Bulgaria and actively participated in international con-
ferences and symposia on liquid crystals. Science was
always a source of the deepest and happiest experiences
for him.

Kapustin passed away on October 27, 1984, in the
81st year of his life, most of which he devoted to the
science of liquid crystals.

Translated by Yu. Sin’kov
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