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Abstract—A review is given of the main ideas regarding self-organization of a tokamak plasma. The analysis
begins with a simple model of canonical profiles that was proposed by Kadomtsev for a plasma column with a
circular cross section. Kadomtsev’s model is then generalized to a tokamak plasma with an arbitrary cross sec-
tion in toroidal geometry. In the generalized model, the canonical profiles are determined by the minimum of
the plasma energy functional under the additional condition that the total current is conserved. The Euler equa-
tion for the energy functional leads to a second-order differential equation for the canonical profile of the func-
tion µ = 1/q. Transport models are constructed on the basis of a concept of critical gradients defined in terms of
the canonical profiles. The structures of the heat and particle fluxes in the Ohmic heating regime and in the con-
ventional L-mode are discussed. Examples of plasma self-organization in experiments are presented and are
illustrated by the results of calculations based on the transport models developed. The expressions for the heat
and particle fluxes are then generalized to regimes with improved confinement and with transport barriers. L−H
transitions and approximate formulas for the transport barrier parameters are discussed in detail. Some unre-
solved problems are also discussed, namely, those concerning a description of the formation of internal trans-
port barriers in terms of the canonical profile model. In the Appendix, the ranges of variations in the plasma
parameters within which the temperature profiles remain stiff are considered. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The strange property of plasma to conserve the
shape of the spatial profiles of the temperature and pres-
sure in response to external actions has been known for
a long time. B. Coppi [1] was apparently the first to pre-
cisely formulate the idea of optimal, or “canonical,”
profiles of the plasma parameters. Now that a much bet-
ter knowledge of plasma behavior has been gained, we
can reformulate the profile consistency principle
(PCP), proposed by Coppi [1], in the following manner:
the spatial distributions of some plasma parameters in
many regimes tend to have their shapes close to certain
specific profiles, which are called canonical profiles.
The evolution of the plasma from arbitrary initial distri-
butions to canonical profiles is usually called relax-
ation. The physical meaning of the PCP is that the
plasma behaves as if it “remembers” a canonical profile
and “directs” the relaxation process in the “desired”
way by appropriately changing the transport coeffi-
cients.

Adopting the PCP, we rule out many conventional
concepts of the energy and particle transport. The
energy and particle fluxes can be nonlinear functions of
the gradients. The transport coefficients can be nonlocal
functions of the plasma parameters and can depend on
the distribution of the sources. Moreover, in the above
formulation, the PCP itself raises more questions than
it can answer, e.g.: What are the plasma parameters that
obey the PCP? What is the shape of the canonical pro-
files? And what are the mechanisms that govern the
relaxation rate?
1063-780X/05/3107- $26.00 0529
It is often assumed that canonical profiles are deter-
mined by the extremum of a certain functional, such as
the plasma energy [2–5], or the rate of entropy genera-
tion [6–7]. Another assumption is that canonical pro-
files can be determined from the instability conditions
for different drift modes, such as the ion temperature
gradient (ITG) mode, the electron temperature gradient
(ETG) mode, and the trapped electron mode (TEM) [8–
10]. It is not quite clear, however, what type the func-
tional or the drift mode should be. But even if the type
of the functional is chosen, there is no unique way to
find the shape of the canonical profile. As a rule, the
number of unknown functions involved is larger than
the number of Euler equations; consequently, the
canonical profile can only be determined uniquely by
making additional assumptions.

The physical interpretation of the PCP also remains
fairly uncertain. It is impossible to single out only one
physical mechanism that governs the canonical profile
shape and relaxation rate. It can only be supposed that
the feedbacks between the instabilities occurring at dif-
ferent radii play an important role. Recently, J. Taylor
[11] originated the new idea that the current filamenta-
tion, being a statistical process, can lead to the estab-
lishment of canonical profiles. The process of directed
relaxation controlled by stochastic fluctuations is usu-
ally called self-organization.

In this study, we develop the ideas of B.B. Kadomt-
sev [3, 12] and of other authors [4–5] that the canonical
profiles are determined by the minimum of the plasma
energy functional under the additional condition that
© 2005 Pleiades Publishing, Inc.
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the total current is conserved. This formulation of the
problem implies that there are two unknown functions:
one describing the poloidal magnetic field and one
describing the plasma pressure. The problem is closed
by the additional assumption that the canonical profiles
of the plasma current and plasma pressure coincide. In
this case, a unique solution to the problem of canonical
profiles can be constructed by imposing reasonable
boundary conditions.

A transport model based on canonical profiles was
developed in our earlier papers [13–19]. In this model,
canonical profiles are used to determine the critical gra-
dients in the structure of the heat and particle fluxes
under the assumption that the canonical profiles of the
ion and electron temperatures are the same. If the tem-
perature gradient exceeds a certain critical value, then
the corresponding term in the expression for the heat
flux is large. If the temperature gradient is less than its
critical value, then this term equals zero. The particle
flux is described in terms of the canonical pressure pro-
file. The problem so formulated is suitable for describ-
ing Ohmically heated discharges and L-mode dis-
charges.

In order to describe regimes of improved confine-
ment, we introduce the concept of the second critical
gradient. In Ohmic or L-mode discharges, the tempera-
ture gradient is usually larger than the first critical gra-
dient but is smaller than the second critical gradient. If
the temperature gradient in a certain region becomes
larger than the second critical gradient, then the plasma
in this region “forgets” the canonical profile and the
corresponding term in the expressions for the heat and
particle fluxes vanishes. This indicates that a transport
barrier appears there. Within the remaining part of the
cross section of the column, the plasma continues to
remember the canonical profile and the structure of the
heat and particle fluxes there does not change.

Note that the forgetting effect is analogous to the
nonlinear Hooke’s law of elasticity. When a solid body
is stretched, the elastic force is proportional to exten-
sion until the plastic limit is overcome. When this hap-
pens, the elastic force decreases and the solid body for-
gets its original shape.

Since the transport model under consideration is
phenomenological in essence, it does not unambigu-
ously dictate the choice of the structure of the heat and
particle fluxes. This choice can be justified a posteriori,
by comparing the calculated results with the experi-
mental data. However, there are a number of favorable
factors that reduce possible large errors due to the poor
choice of the structure of the fluxes. Thus, the final
results of calculations do not depend radically on the
shape of the canonical profile in the L-mode. The rea-
son is that, in the L-mode, the temperature profile dif-
fers markedly from the canonical one. In addition, the
transport model chosen for analysis is stiff because the
transport coefficient in front of the difference between
the temperature gradients and the critical gradient is
large. Therefore, a twofold change in this transport
coefficient leads merely to a 20–30% change in the glo-
bal plasma parameters (such as the energy confinement
time).

Our goal here is to construct the simplest possible
model, i.e., a model that involves the minimum number
of empirical parameters. An additional requirement is
that, for a conventional L-mode discharge, the model
should be linear in the temperature and density gradi-
ents.

At this point, we should say a few words about the
use of other variational principles. In [6, 7], it was
assumed that, in the relaxed state, the magnetic entropy
S is time-independent, dS/dt = 0. The condition for this
assumption to be consistent with the equilibrium Grad–
Shafranov equation leads to a second-order differential
equation that describes the toroidal current density and
contains two arbitrary functions. The solution to this
equation supplemented with Ohm’s law determines the
canonical profiles of the plasma current and electron
temperature. For a fixed magnetic configuration, the
pressure profile depends only on one parameter. In [6],
the peakedness of the experimental profiles of the elec-
tron temperature Te in the TCV tokamak was compared
to that calculated numerically for a steady-state Ohmic
regime. In [7], a comparison was made between the
measured and calculated Te profiles in an ECRH dis-
charge. Note that the condition that the magnetic
entropy be steady-state naturally leads to the PCP.

Tamano et al. [20] analyzed discharges in which the
kinetic energy of toroidal plasma rotation is compared
to the plasma thermal energy. They assumed that, dur-
ing relaxation, the total energy of the plasma is con-
served and only the relationship between its thermal
and kinetic energies changes. Another assumption was
that, in the relaxed state, the thermal energy of the
plasma is minimum, i.e., the kinetic energy of its rota-
tion is maximum. They constructed the Euler equation
for the maximum kinetic energy under the condition
that the total angular momentum of toroidal rotation
and the number of particles are conserved. An analytic
two-parameter solution to this equation relates the pro-
files of the plasma density and rotation velocity. When
applied to the steady-state regimes with an internal
transport barrier (ITB) in the DIII-D and JT-60U toka-
maks, the formulas obtained in [20] produce reasonable
results. Note that, in [6, 7], as well as in [20], no
attempts were made to construct a transport model and
to trace the evolution of the discharge parameters.

In the present paper, we review the main ideas about
the self-organization of tokamak plasmas. In Section 2,
we consider Kadomtsev’s model of canonical profiles
for a plasma cylinder with a circular cross section. In
Section 3, we generalize the idea of canonical profiles
to a tokamak plasma with an arbitrary cross section in
toroidal geometry. In particular, we derive a second-
order differential equation for the canonical profile of
the function µ = 1/q. In Section 4, we construct trans-
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port models on the basis of the concept of critical gra-
dients defined in terms of the canonical profiles. We
analyze the structures of the heat and particle fluxes in
Ohmic discharges and in conventional L-mode dis-
charges. We also present examples of plasma self-orga-
nization in experiments and illustrate them by the cal-
culations based on the set of transport equations
obtained. In Section 5, we examine regimes with
improved confinement and with transport barriers and
discuss in detail the L–H transition, the conditions
under which this transition occurs, and the approximate
formulas for the parameters of the transport barrier. At
the end of the section, we discuss some unresolved
problems concerning a description of the ITB forma-
tion in terms of the canonical profile model. Finally, in
Section 6, we summarize the main results of applying
the idea of plasma self-organization to the description
of transport processes. In the Appendix, we analyze the
ranges of variations in the plasma parameters within
which the temperature profiles remain stiff.

2. CANONICAL PROFILES FOR A CIRCULAR 
PLASMA CYLINDER

2.1. Euler Equation

Our main hypothesis is that, under the action of dif-
ferent instabilities, the plasma parameters will slowly
and steadily relax to canonical profiles. Since the driv-
ing force for instabilities is the plasma energy, the shape
of the canonical profiles is determined by the minimum
of the plasma energy functional under the condition
that the total current is conserved. If this condition is
not imposed, then the minimum of the energy func-
tional will be zero.

The toroidal magnetic field in a tokamak stabilizes
large-scale MHD instabilities, which develop on char-
acteristic time scales much shorter than the relaxation
time. The plasma in turn has an insignificant impact on
the toroidal magnetic field. Consequently, the energy of
this field can be excluded from the energy reservoir of
the transport processes in the plasma. As a result, the
energy functional for a plasma column with a circular
cross section assumes, in cylindrical geometry, the fol-
lowing form:

(1)

Here, r and θ are the radial and poloidal coordinates,
a is the minor plasma radius, Bθ = Bθ(r) is the poloidal
magnetic field, p = p(r) is the plasma pressure, j = j(r)
is the current density, λ is the Lagrange multiplier, and
γ is the adiabatic index.

We assume that, in the vicinity of the minimum of
the functional F, the functions Bθ/r, p, and j are mutu-
ally interdependent, so the function µ = 1/q can be used

F 2π Bθ
2
/8π p/ γ 1–( ) λ j+ +[ ] r r.d

0

a

∫=
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as an independent variable. This assumption implies
that

p = p(µ), j = j(µ), Bθ/r = (B0/R)µ, (2)

where B0 is the toroidal magnetic field and R is the
major radius of the plasma column. For a plasma cylin-
der with a circular cross section, we have q = rB0/RBθ.

For convenience in varying the functional F, we
introduce the magnetic field potential ψ = ψ(r) through
the relationship Bθ = (1/(2πR))dψ/dr. We denote the
variation of ψ by δψ and assume that δψ(0) = 0 and
δψ(a) = 0. We also set

(3)

We can now vary the functional F and determine its
minimum by equating the variation to zero:

(4)

where

(5)

Formula (4) yields the Euler equation for the func-
tional F:

dΦ/dr = 0. (6)

We also take into account the fact that the functions j
and µ are related by Maxwell’s equation

j = B0/(µ00R)1/rd/dr(r2µ), (7)

where µ00 is the vacuum magnetic permeability. As a
result, we have arrived at a set of two equations
(Eqs. (6) and (7)) for the three functions µ, j, and p. As
the third equation, we will use the profile consistency
principle; in other words, we assume that the current
and pressure profiles are the same:

(8)

Using Eq. (7) and relationships (8), we eliminate the
current density and pressure in Eq. (6) and obtain the
Euler equation for the function µ

(9)

where µ' = dµ/dr and λ1 is the renormalized Lagrange
multiplier. In what follows, the solutions to Eq. (9) will
be called canonical profiles and will be denoted by µc =
µc(r).

2.2. Boundary Conditions

Equation (9) is a third-order differential equation
and contains the parameter λ1. Consequently, in order

δp dp/dµ( )δµ, δj dj/dµ( )δµ,= =

δµ 1/ 2πB0r( )( )d/dr δψ( ).=

δF 2πR/B0 δψ Φ/ rdd( ) rd

0

a

∫– 0,= =

Φ B0
2
r

2µ/ 4πR
2( ) 1/ γ 1–( )dp/dµ λdj/dµ.+ +=

j µ( )/ j0 p µ( )/ p0, j0 j µ0( ),= =

p0 p µ0( ), µ0 µ 0( ).= =

d/dr B0µ00/4πR( ) r
2
/µ'( )d/dr µ2 λ1dµ/d r

2( )+( )[ ]
=  0,



532 DNESTROVSKIJ et al.
to single out the unique solution to this equation, we
need four boundary conditions. The symmetry condi-
tion at the magnetic axis r = 0 implies that (0) = 0.
The requirement for the total current to be conserved
gives µc(a) = µa = 0.2IR/(a2B0). These conditions are
written in practical units: the current is in MA, the
length is in m, and the magnetic field is in T. In a paper
by Kadomtsev [3], the remaining two conditions were
chosen to be µc(0) = µ0 ~ 1 and µc(r)  0 as r  ∞.
This set of four boundary conditions can thus be writ-
ten as

(0) = 0, 

(10)

µc(r)  0 as r  ∞.

Integrating Eq. (9) yields

(r2/µ')d/dr[µ2 + λ1dµ/d(r2)] = C1. (11)

In order to determine the constant C1, we consider how
the solution to Eq. (11) behaves in the vicinity of the
magnetic axis r = 0. The first two of conditions (10)
lead us to the following representation of the solution in
this vicinity:

µ = µ0(1 + α2r2 + α4r4 + …). (12)

With solutions of type (12), the left-hand side of
Eq. (11) approaches zero as r  0. This gives C1 = 0.
Hence, the Euler equation for µc(r) has the form

d/dr[µ2 + λ1dµ/d(r2)] = 0. (13)

For the solutions to Eq. (13), the first of boundary con-
ditions (10) is satisfied automatically. We are thus left
with the remaining three conditions, which play an
essential role in further analysis:

µc(0) = µ0 ~ 1, 

µc(a) = µa = 0.2IR/(a2B0), (14)

µc(r)  0 as r  ∞. 

The solution to Eq. (13) that satisfies boundary condi-
tions (14) was obtained by Kadomtsev in [3]. Hereafter,
we will denote this solution by the superscript K:

 = µ0/(1 + r2/ ), (15)

where

(16)

Function (15) is usually called the Kadomtsev canoni-
cal profile. Using Maxwell’s equation (7) and relation-

µc'

µc'

µc 0( ) µ0 1,∼=

µc a( ) µa 0.2IR/ a
2
B0( ),= =

µc
K

a j
2

a j a µa/ µ0 µa–( )[ ] 1/2
,=

λ1 µ0a j
2 µaa

2
1 µa/µ0–( ) 1–

.= =
ships (8), one can easily find the Kadomtsev canonical
profiles of the current and pressure:

(17)

Using the obtained solution to Eq. (13) with boundary
conditions (14), we can now easily reformulate the last
of these boundary conditions by replacing it with a
boundary condition at the plasma surface. To do this, it
is convenient to introduce the surface impedance

X = ia/2µa, (18)

where the dimensionless current i is given by Eq. (7)
and has the form

i = 1/rd/dr(r2µ), ia = i(a). (19)

Using expressions (15) and (19), we can readily find the
impedance for the Kadomtsev canonical profile:

XK = µa/µ0. (20)

Hence, in the Kadomtsev problem, we can use the fol-
lowing boundary conditions, which are equivalent to
conditions (14):

µc(0) = µ0 ~ 1, 

µc(a) = µa = 0.2IR/(a2B0), (21)

Xc = XK = µa/µ0.

Boundary conditions (14), one of which is imposed
at infinity, can naturally be called “soft,” since they
incompletely reflect the physical processes at the
plasma surface. Now, we consider a plasma exposed to
a strong external action that changes its boundary tem-
perature, density, and edge radiation loss. Such action
can be provided, e.g., by pulsed gas puffing, impurity
seeding, peripheral injection of hydrogen pellets, and
surface current drive. It is obvious that boundary condi-
tions (14) or (21) do not reflect such processes. On the
other hand, many experiments show that the plasma
responds rapidly over its entire cross section to the
peripheral action. It is apparent that the boundary con-
ditions for the canonical profiles should be somehow
related to the boundary conditions for the actual
plasma parameters. As an example of such a relation,
we can mention the “rigid” boundary conditions pro-
posed in [21]:

µc(a) = µ(a), 

(a) = µ'(a), (22)

(a) = µ''(a).

Here, µ(r) is the solution to the set of transport equa-
tions for the actual (rather than canonical) profiles of
the temperature, density, and poloidal magnetic field.
All boundary conditions (22), in contrast to conditions
(21), are imposed at the plasma surface. Such a problem
is usually called the Cauchy problem. Boundary condi-
tions (22) have the following physical meaning: it is
actually assumed that the canonical profiles µc(r) in a

jc
K

j0 µc
K

/µ0( )
2
, pc

K
p0 µc

K
/µ0( )

2
.= =

µc'

µc''
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thin boundary layer satisfy both Maxwell’s equation (7)
and Ohm’s law. This follows from the fact that the func-
tion µ(r) satisfies the equation and the law over the
entire plasma cross section and from the fact that the
first and the second derivatives of µc(r) and µ(r) at the
plasma boundary are equal.

It is an easy matter to determine how the parame-
ter λ1 is related to the function µ and its derivatives at
the plasma boundary. To do this, we consider Eq. (13)
at the boundary. It is legitimate to do so because bound-
ary conditions (22) contain the second derivative of this
function. After simple manipulations, we obtain

λ1 = 4µaa2(1 – aµ''(a)/µ'(a)). (23)

Like conditions (21), boundary conditions (22) can
be written in terms of the surface impedances:

µc(a) = µa,

Xc = X, (24)

Yc = Y.

Here, the impedance X is determined by formula (18)
and Y is the second-order surface impedance, which is
defined as

(25)

For the Kadomtsev problem, we have YK = µa/µ0.
The third of boundary conditions (24) contains the

second derivative of the function µ(r), i.e., the third spa-
tial derivative of the function ψ(r) at the boundary of
the plasma column. In transport models, however, the
function ψ is usually described by a second-order para-
bolic differential equation, so it is incorrect to solve for
the third derivative of this function. The problem can be
made regular by using Ohm’s law

j = σE (26)

(where σ is the plasma conductivity) and the assump-
tion that the current diffusion in the edge plasma is
quasi-steady,

dE/dr(r = a) = 0 (27)

(where E is the toroidal electric field). This assumption
is valid for a low edge electron temperature and slow
variations in the total current. By virtue of Eqs. (26) and
(27), we have

which leads to the following approximate expression
for the second-order impedance:

(28)

This expression does not contain third-order derivatives
and can be used in boundary conditions (24).

The question naturally arises about the ranges of
applicability of soft boundary conditions (21) and rigid
boundary conditions (24). A comparison with the

Y ia' /4µa' .=

ja' / ja ia' /ia σa' /σa,≈=

Y ia' / 4µa'( ) σa' /σa( ) ia/4µa'( ).≈=
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experimental data [21] shows that the applicability
ranges are distinguished by the inequality

Y < YK = µa/µ0. (29)

Using approximate expression (28), we can rewrite this
inequality as

(30)

Hence, the rigid boundary conditions should be used
when the electron temperature gradient in the edge
plasma is sufficiently small, .

3. CANONICAL PROFILES FOR A TOROIDAL 
PLASMA WITH AN ARBITRARY 

CROSS SECTION

3.1. Euler Equation

We assume that the equilibrium problem (i.e., the
Grad–Shafranov equation for the poloidal magnetic
flux function ψ) with prescribed boundary conditions
has been solved for given distributions of the currents
and pressure in a toroidal plasma column with an arbi-
trary cross section. The solution ψ = const to this prob-
lem determines the magnetic surfaces.

We denote by r, z, and ϕ polar coordinates whose
axis coincides with the symmetry axis of the torus. We
also introduce the natural coordinates ρ, θ, and ζ such
that ρ is the coordinate of the magnetic surface in terms
of the toroidal magnetic field flux Φ,

(31)

with B0 being the vacuum toroidal magnetic field at the
center of the chamber, θ is the poloidal angle, and ζ =
rϕ. The plasma surface is determined by the equation
ρ = ρmax = aeff, where aeff is the effective plasma radius.
For a low pressure and large aspect ratio A = R/a, we

have aeff = , where a is the minor plasma radius and
k = b/a is the ellipticity (elongation) of the plasma cross
section (the ratio between its major and minor semi-
axes). We denote by the angle brackets 〈…〉  the opera-
tion of averaging over a magnetic surface,

(32)

where V ' is the plasma volume and g is the determinant
of the metric tensor in the polar coordinates,

(33)

σa' /σa( ) ia/4µa'( ) µa/µ0.<

σa' /σa 3/2 Ta' /Ta( )∼

πρ2
B0 Φ, Φ B S,d

S

∫= =

ka

f〈 〉 2π/V ' g f θ,d

0

2π

∫=

g r
D r z,( )
D ρ ϑ,( )
-------------------.=
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We assume that, as in the case of a circular plasma cyl-
inder, the canonical profiles are determined by the min-
imum of the free energy functional,

(34)

where the last term reflects the conservation of the total

plasma current Ip = .

In order to reduce the problem of minimizing func-
tional (34) to a one-dimensional one, we utilize profile
consistency conditions (8), where

µ = ∂ψ/∂Φ = 1/(2πB0ρ)∂ψ/∂ρ. (35)

The equation µ = const determines the magnetic sur-
faces. Conditions (8) should be satisfied for the whole
class of functions in which functional (34) is to be min-
imized, but they are of course not necessary for the
actual current and pressure profiles.

Functional (34) can now be represented as a sum of
one-dimensional integrals,

F = FB + Fp + Fj . (36)

Here, [22]

(37)

(38)

(39)

where λ11 is the renormalized Lagrange multiplier,

V '(ρ) ≡ ∂V/∂ρ =  (40)

Bθ = (|∇ρ| /2πr)∂ψ/∂ρ, jϕ is the averaged current density,
V ' and

G = R2〈(∇ρ )2/r2〉 , G2 = GV ' (41)

are the metric coefficients, and G is a dimensionless
coefficient. From Maxwell’s equation we obtain

jϕ = (B0/(µ00V 'R)∂/∂ρ(V 'Gρµ). (42)

For a circular plasma cylinder, we have V  2π2Rρ2,
V '  4π2Rρ, G  1, and G2  4π2Rρ.

F Bθ
2
/8π p/ γ 1–( )+( )dV

V

∫ λ jϕ S,d

S

∫+=

jϕ Sd
S∫

FB Bθ
2
/8π Vd

V

∫=

=  1/ 8π4π2
R

2( ) V ' ∂ψ/∂ρ( )2
G ρ,d

0

ρmax

∫

Fp V ' p/ γ 1–( ) ρ,d

0

ρmax

∫=

F j λ11 V ' jϕ ρ,d

0

ρmax

∫=

2π g θ,d

0

2π

∫

We vary the functional F with respect to the poten-
tial ψ, treating the latter as an independent variable. As
a result, we obtain

(43)

This yields the following Euler equation for func-
tional (34):

(44)

In deriving this equation, we used Eq. (42), introduced
the notation µ' = ∂µ/∂ρ, and again renormalized the
Lagrange multiplier. As in the case of a circular plasma
cylinder, Euler equation (44) is a third-order differen-
tial equation containing the parameter λ1. Integrating
Eq. (44) yields a second-order equation with an arbi-
trary constant C:

(45)

Equation (45) was first derived in [18]. It corresponds
to Eq. (11) for a circular plasma cylinder. Conse-
quently, the constant C can be found in essentially the
same manner, by using expansion (12) for the solution
near the magnetic axis ρ = 0 and by comparing the
terms in Eq. (45). It is also necessary to use the expan-
sions of the metric coefficients V ' and G:

(46)

Substituting expansions (12) and (46) into Eq. (45) and
equating the coefficients of the same powers of ρ, we
obtain

3G'(0) = 0 (ρ0), (47)

(48)

For a circular plasma cylinder, we have G = const = 1,
which gives G'(0) = 0 and G''(0) = 0. Numerical calcu-
lations show that these equalities remain also valid for
a toroidal plasma column. As a result, Eq. (47) is satis-
fied automatically and Eq. (48) is homogeneous in α2.
The value of the constant C should be chosen so as to
satisfy the condition α2 ≠ 0. This requires that the fol-
lowing equality be met:

C = 4(λ1/2)G(0)V ''(0). (49)

δF δψ∂/∂ρ V '/ρ B0
2ρ2

/ 4πR
2( )Gµ({

0

ρmax

∫–=

+ ∂p/∂µ/ γ 1–( ) λ11∂ jϕ /∂µ+ ) } dρ 0.=

∂/∂ρ V '/ ρµ'( ) ρ2
G∂µ2

/∂ρ[{
+ λ1/2( )∂/∂ρ 1/V '( )∂/∂ρ G2ρµ( )( ) ] } 0.=

ρ2
G∂µ2

/∂ρ
+ λ1/2( )∂/∂ρ 1/V '( )∂/∂ρ G2ρµ( )( ) Cρµ'/V '.=

V ' V '' 0( )ρ 1 O ρ2( )+( ),=

G ρ( ) 1 G ' 0( )ρ 1/2G '' 0( )ρ2
.+ +=

λ1/2( ) 8α2G 0( ) G '' 0( )+( ) 2α2C/V '' 0( ) ρ1( ).=
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We substitute this equality into Eq. (45) and take
into account expansions (46) to arrive at the final equa-
tion for the canonical profile [18]:

(50)

For a circular plasma cylinder, Eq. (50) takes the form

(51)

which is equivalent to Eq. (13).

3.2. Boundary Conditions

Let us consider whether Kadomtsev boundary con-
ditions (14) can be applied to a toroidal plasma with an
arbitrary cross section. In this case, the plasma region
with closed magnetic surfaces is bounded by a separa-
trix, so the radial coordinate ρ cannot be defined on a
semi-infinite interval. This is why the third of boundary
conditions (14) should be reformulated to refer to the
plasma surface. As in the case of a circular plasma cyl-
inder, this can be conveniently done by introducing the
first-order surface impedance for a toroidal plasma col-
umn:

X = iS/(2GSµS), (52)

where i = i(ρ) is the dimensionless current, 

i = (1/V ')∂/∂ρ(V 'Gρµ), (53)

and the subscript S stands for the values of the quanti-
ties at the plasma surface.

We assume that the boundary conditions for a toroi-
dal plasma column with an arbitrary cross section have
the same form as boundary conditions (21), which sin-
gle out the special Kadomtsev solutions for a circular
cylindrical plasma:

µc(0) = µ0 ~ 1, 

µc(ρmax) = µS, (54)

Xc = µS/µ0,

where µS is the value of the function µ at the plasma
surface S that was obtained from the solution to the
equilibrium problem.

In order to determine the Lagrange multiplier λ1, we
rewrite Eq. (50) in terms of dimensionless current (53),

(55)

Taking the limit ρ  ρmax in Eq. (55), we arrive at the
following expression relating the parameter λ1 to the
boundary values of the functions µ and i and their deriv-
atives:

(56)

L µ[ ] ρ 2
G∂µ2

/∂ρ≡
+ λ1/2( )∂/∂ρ 1/V '( )∂/∂ρ V 'Gρµ( )( )

– 4 λ1/2( )V '' 0( )ρµ'/V ' 0.=

ρ2∂µ2
/∂ρ λ1/2( ) ∂µ/∂ρ– ρ∂2µ/∂ρ2

+( )+ 0,=

ρ2
G∂µ2

/∂ρ λ1/2( )i ' 4 λ1/2( )V '' 0( )ρµ'/V ' = 0.–+

λ λ 1/ ρmax
2 µS( )≡

GS

ξ 1 Y–( )
--------------------,=
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where

(57)

is the second-order impedance and ξ = ρmaxV''(0)/ ,
(ξ ≥ 1).

Let us say a few words about the numerical algo-
rithm for solving the problem given by Eqs. (50) and
(54). With soft boundary conditions (54), the right-hand
side of relationship (56) is undefined because the quan-
tity Y is unknown. Accordingly, the quantity λ is
unknown too. Boundary conditions (54), however,
determine the values µcS and (∂µc/∂ρ)S. Consequently,
the boundary-value problem for Eq. (50) can be solved
by applying a shooting method that assumes integration
from the plasma surface to the plasma center and by
adjusting the parameter λ1 so as to fit the first of bound-
ary conditions (54). Figure 1 shows the canonical pro-
file µc(ρ) calculated for a small-aspect-ratio tokamak

(A = 1.5) and the Kadomtsev canonical profile (ρ)
calculated for qS = 7. We can see that the canonical pro-
file µc(ρ) is markedly wider than the Kadomtsev profile

(ρ). As the aspect ratio increases, the canonical pro-
file becomes narrower and approaches the Kadomtsev
profile, which is independent of A.

With rigid boundary conditions (24), namely,
µc(ρmax) = µS,

Xc(ρmax) = XS, (58)

Yc(ρmax) = YS, 

Y iS' / 4ξµS'( )=

VS'

µc
K

µc
K

1.5

1.0

0.5

0

µ

µ0

µc

0.2 0.4 0.6 0.8 1.0
ρ/ρmax

Fig. 1. Canonical profile µc(ρ) for a toroidal plasma with the
aspect ratio A = 1.5 for qS = 7, the elongation and triangu-
larity being k = 1.6 and δ = 0.3, respectively. The dashed

curve shows the Kadomtsev canonical profile (ρ).µc
K

µc
K
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the quantity Y is known and the parameter λ1 is deter-
mined from formula (56). In this case, Eq. (50) is
defined and thus can be readily solved by direct numer-
ical integration, because the functions µcS and (∂µc/∂ρ)S

are given in boundary conditions (58).

3.3. Difficulties in Numerical Solution 
of the Above Problems

If the plasma surface S coincides with the separatrix,
then the value of q at this surface is formally equal to
infinity and the value µS vanishes there, so a question
arises about the physical meaning of boundary condi-
tions (54) and (58) and, accordingly, about the neces-
sity of their regularization. Note, however, that expres-
sions (42) and (53) for the current density and definition
(52) of the impedance contain not the function µ but the
product Gµ, which is regular and does not vanish at the
separatrix. Consequently, the second of boundary con-
ditions (54) and the first of boundary conditions (58)
should be regularized by equating to its boundary value
the product Gµ rather than the function µ. In practice,
however, the required regularization is performed in
solving the equilibrium equation. If the Grad–Shafra-
nov equation is solved in finite differences, then the
separatrix containing corner points is approximated by
a smooth closed curve at which the value of q is
bounded. In the ASTRA code, the Grad–Shafranov
equation is solved by the method of moments, in which
the plasma boundary, too, is approximated by a smooth
curve. This numerical regularization turns out to be suf-
ficient for boundary conditions (54) and (58) to be used
without any corrections.

0.2 0.4 0.6 0.8 1.0
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2

1

Ω = –RT'/T

ΩTc

ΩK
Tc

0
ρ/ρmax

Fig. 2. Profiles of the critical temperature gradient ΩTc =
−(R/Tc)dTc/dρ (solid curve) and the Kadomtsev critical gra-

dient  = –(R/ )d /dρ (dashed curve) for a toka-

mak plasma with the same parameters as in Fig. 1.

ΩTc
K

Tc
K

Tc
K

Real difficulties associated with Eq. (50) arise in the
vicinity of the magnetic axis ρ = 0. The reason is that
the functions V '(ρ) and G(ρ), as well as their deriva-
tives, are calculated by solving the two-dimensional
equilibrium equation and thereby inevitably contain
errors. We determined the constant C in Eq. (45) by
using the condition G ''(0) = 0. In differentiating the
function G(ρ) numerically, however, this condition can
be violated. As a result, in numerical integration of
Eq. (50) from the surface of the plasma to its center, the
boundary symmetry condition at the magnetic axis,

(0) = 0, may fail to hold.
In order to overcome this difficulty, it is necessary to

return from Eq. (50) to Eq. (45), which contains two
parameters, λ1 and C, and to supplement boundary con-
ditions (54) with the condition (0) = 0. The problem
in question can then be solved by employing a shooting
method that assumes integration from the plasma sur-
face inward and by adjusting these two parameters so as
to satisfy two boundary conditions at the magnetic axis,
µc(0) = µ0 and (0) = 0. In this way, formula (49) can
be used as an initial approximation. Of course, errors in
calculating the function G ''(ρ) also will show up in the
solution obtained by using a two-parameter algorithm.
For instance, the function (ρ) can falsely change
sign in the vicinity of the magnetic axis ρ = 0. In this
case, the function µc(ρ) has to be smoothed to a greater
extent by additional numerical procedures.

3.4. Temperature and Density Canonical Profiles
and Critical Gradients

Knowing the canonical profile µc(ρ), we can con-
struct the canonical profile of the temperature Tc(ρ) in
the following way: In a relaxed quasi-steady state, the
profiles of the current and electron temperature are
close to their canonical profiles,

jϕ(ρ) ≈ jc(ρ), Te(ρ) ≈ Tc(ρ). (59)

On the other hand, the profiles jϕ(ρ) and Te(ρ) are
related by Ohm’s law,

jϕ(ρ) ~ (ρ). (60)

By virtue of the consistency of profiles (8), as well as of
profiles (59) and (60), we have

pc(ρ) = nc(ρ)Tc(ρ) ~ jc(ρ) ~  ~ , (61)

which yields the relationships

(62)

We introduce the dimensionless critical gradients of the
temperature, density, and pressure through the formulas

(63)

µc'

µc'

µc'

µc''

Te
3/2

Te
3/2

Tc
3/2

Tc jc
2/3

, nc Tc
1/2

jc
1/3

.∼ ∼ ∼

ΩTc RTc' /Tc, Ωnc– Rnc' /nc,–= =

Ωpc R pc' / pc f ' = ∂f /∂ρ( ),–=
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and, by virtue of relationships (62), obtain

ΩTc = 2/3Ωj , Ωnc = 1/3Ωj , Ωpc = Ωj , (64)

where

(65)

Figure 2 shows the profile of the critical temperature
gradient ΩTc for a small-aspect-ratio tokamak (A = 1.5)
and also the Kadomtsev canonical profile of the critical

temperature gradient  for qS = 7, which can be cal-
culated from solution (15)–(17). We can see that, in the
gradient zone 0.2 < ρ/ρmax < 0.8, these two profiles
deviate substantially from one another. Figure 3 shows
the profiles of the critical temperature gradient calcu-
lated for three different values of the aspect ratio, A =
1.5, 3, and 5, and for k = 1.6, δ = 0.3, and qS = 7. It is
seen that, in the gradient zone, the critical gradients
computed for A = 1.5 and 5 differ by a factor of 8–10.
Figure 4 presents the values of the critical temperature
gradient ΩTc at mid-radius, ρ/ρmax = 0.5, calculated for
many shots on seven different tokamaks. The parame-
ters of the shots were chosen from the ITER database
[23]. As an independent argument, we use the value of

 at mid-radius divided by the vertical elongation k
of the plasma; the argument so defined is equal to
Aq/(k(q + 4)). We can see that the values of the critical
temperature gradient at mid-radius vary over a wide
range, 1 < ΩTc < 12. In subsequent sections, the critical
gradients are used in the expressions for the heat and
particle fluxes in the transport equations.

4. SET OF TRANSPORT EQUATIONS

4.1. Transport Equations

To simplify the analysis, we assume that the vac-
uum toroidal magnetic field does not change with time.
Under this assumption, the set of transport equations
for the plasma density n, the electron and ion tempera-
tures Te and Ti , and the potential ψ of the poloidal mag-
netic field in the above natural coordinates has the
form [22]

∂n/∂t + divρ(G1Γn) = Sn, (66)

3/2∂(nTk)/∂t + divρ(G1Γk) = Pk, (67)

σ||∂ψ/∂t = 1/(µ00B0ρ)∂/∂ρ(V 'G∂ψ/∂ρ). (68)

Here, Γn is the particle flux, Γk (k = e, i) are the electron
and ion heat fluxes, Sn is the particle source term, Pk are
the heat source terms and the ion–electron energy
exchange terms,

divρ(.) = (1/V ')∂/∂ρ(V '(.)) (69)

is the radial component of the operator of divergence,
σ|| is the longitudinal plasma conductivity, and G1 =
〈(∇ρ )2〉  is the metric coefficient. The metric coefficients
V' and G were defined above by formulas (40) and (41).

Ω j R jc' / jc.–=

ΩTc
K

ΩTc
K
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Equations (66) and (67) describe the conservation of
the number of particles and heat conservation, respec-
tively. Equation (68) represents Ohm’s law. In order to
close the set of equations (66)–(68), it is necessary to
determine the relationships between the fluxes and the
unknown functions n, Tk, and ψ.

4.2. Heat and Particle Fluxes in Ohmic 
and L-mode Discharges

The structures of the heat and particle fluxes were
chosen based on the following experimental facts:
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Fig. 3. Profiles of the critical temperature gradient for three
different values of the aspect ratio, A = 1.5, 3, and 5, and for
k = 1.6, δ = 0.3, and qS = 7.
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Fig. 4. Critical temperature gradient at mid-radius, ρ =
ρmax/2, calculated for a set of shots on seven different toka-
maks. The straight line is the approximating linear function
that is determined by the Kadomtsev canonical profile and
is divided by the elongation k of the plasma cross section.
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(i) In Ohmic and L-mode discharges, the profiles of
the electron and ion temperatures Te and Ti , as well as
the profiles of the plasma pressure p = n(Te + Ti), are
conserved when the plasma is exposed to external
actions. The profile of the plasma density n is more sen-
sitive to the experimental conditions.

(ii) In a steady state, the profiles of the temperatures
and pressure are close to their canonical profiles.

(iii) The heat pinch, if it ever exists, is very small.

Hence, the structure of the fluxes should be such that
the dominant terms in the expressions for the fluxes
lead to the relaxation of the electron and ion tempera-
tures and plasma pressure to canonical profiles. This
can be conveniently achieved by using critical gradients
(63). If the relative temperature and pressure gradients
are larger than the critical gradients, then the fluxes
should increase considerably; in this case, the profiles
will be close to the canonical ones. If the relative gradi-
ents are smaller than the critical gradients, then the flux
associated with the canonical profiles should vanish by
virtue of the smallness of the heat pinch. Supplement-
ing these conditions with the requirement for the fluxes
to depend linearly on the temperature and density gra-
dients, we can almost unambiguously determine the
structure of the heat fluxes. As a result, the electron and
ion heat fluxes (which will be denoted by the subscripts
e and i, respectively) have the form

(70)

where H(x) is the Heaviside step function, defined as
H(x) = 1 for x > 0 and H(x) = 0 for x < 0.

An unambiguous expression for the particle flux is
still lacking. The steady states, as well as transient pro-
cesses occurring during pulsed gas puffing or during
the injection of hydrogen pellets, can be described by
using the following simple expression for the particle
flux:

(71‡)

where Ωn = –R(∂n/∂ρ)/n and nv neo is the Ware pinch.
However, in order to describe the transient processes
that occur during plasma heating, it is necessary to uti-
lize an additional “off-diagonal” term. The form of this
term can be chosen with allowance for the conservation
of the pressure profile,

–Γnp = –Dpn/R(Ωp – Ωpc), (71b)

so we can write

–Γn = –(Γnn + Γnp) + D0∂n/∂ρ. (71c)

Γ e i,– κ e i, Te i, /R( ) ΩTe Ti, ΩTc–( )–=

× H ΩTe Ti, ΩTc–( ) κ0e 0i, ∂Te i, /∂ρ 3/2Te i, Γn,–+

Γn– Γnn– D0∂n/∂ρ nv neo,–+=

Γnn Dnn/R Ωn Ωnc–( ),–=
Here,

(72)

and ΩTc, Ωnc, and Ωpc are the critical gradients given by
formulas (63). Expressions (71a)–(71c) for the particle
flux do not contain the Heaviside function. This indi-
cates that, under the condition Ωn < Ωnc or Ωp < Ωpc, a
particle pinch appears. The second term in expres-
sion (70) accounts for the “background” heat flux. It
contains both neoclassical fluxes and possible turbulent
fluxes, which are independent of the canonical profiles.
The third term in expression (70) accounts for the con-
vective heat flux driven by the particle flux. Expres-
sions (71a)–(71c) for the particle flux have a similar
structure.

Note that Eqs. (66)–(68) and expressions (70) and
(71) for the fluxes have a paradoxical property. In the
previous sections, the canonical profiles to which the
plasma relaxes were obtained for the parameters of the
poloidal magnetic field µc and jc. At the same time,
transport equation (68) for ψ does not contain canonical
profiles and the conductivity σ|| is normal (i.e., classical
or neoclassical). In contrast, expressions (70) and (71)
for the heat and particle fluxes are largely dominated by
the terms with the turbulent fluxes, i.e., those contain-
ing the critical gradients ΩTc and Ωpc. Consequently,
during the evolution of the temperatures and density,
the functions µ and j relax to their canonical profiles µc

and jc through the influence of the normal conductivity,
which depends on the electron temperature.

4.3. Transport Coefficients

The heat transport coefficients, κe, i and κ0e, 0i, and
particle transport coefficients, Dn, p and D0, determine
the relaxation rate; they have to be found from a com-
parison of calculations with experiment. The ratio
κe, i /κ0e, 0i is usually large and lies in the range
κe, i /κ0e, 0i = 6–15. This indicates that the set of equa-
tions (66)–(68) is stiff because the parameter in front of
the difference ΩTe, Ti – ΩTc is large. The diffusion coef-
ficients Dn, p are usually several times lower than the
coefficients κe, i , and little is yet known about the coef-
ficient D0.

We will describe the coefficients κ by the expression
adopted in [16, 19]:

(73)

Here, it is assumed that the coefficients κe, i are inde-
pendent of ρ. Expression (73) is written in the following
practical units: κe, i are in 1019 m–1 s–1, αe = 3.5, αi = 5,

ΩTe Ti, R ∂Te i, /∂ρ( )/Te i, ,–=

Ωp R ∂p/∂ρ( )/ p, Ωp– Ωn ΩT ,+= =

ΩT R ∂ Te Ti+( )/∂ρ( )/ Te Ti+( ) ),–=

κ e i, α e i, /M 1/A( )3/4
q ρmax/2( )qcyl ρmax( )=

× Te i,
1/2 ρmax/4( )n/B 3/R( )1/4

.
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M is the relative mass of an ion, the temperatures Te, i

are in keV, the chord-averaged plasma density  is in
1019 m–3, the magnetic field Ç is in T, and the major
plasma radius R is in m. For moderate-aspect-ratio
tokamaks, we have A = R/a = 3–5 and κe, i ~ 5–15. For
devices with a small aspect ratio A and weak magnetic
field B (spherical tokamaks), we have κe, i ~ 20–30.

The coefficients κ0 can be estimated from the
expression

, (74)

where C0 = 2–3. Finally, the approximate values of the
coefficients Dn, p can be deduced from the estimate

Dn = (0.1–0.2)κe, i Dp = (0.05–0.1)κe, i , (75)

where the coefficients κe, i are given by formula (73).
Note that formulas (73)–(75) satisfy the invariance con-
ditions for a quasineutral plasma [24].

For discharges with on-axis heating, the dominant
term in expression (70) for the heat flux is the first term,
which contains the product κe, i(ΩTe, Ti – ΩTc). It is this
term that is responsible for the conservation (stiffness)
of the temperature profile under changes of the total
deposited power, plasma density, and boundary temper-
ature. When the power is mainly deposited in the edge
plasma (and, accordingly, the deposited power profile is
hollow), the temperature profile may lose its stiffness
because of the presence of the Heaviside function in the
expression for the heat flux. In the Appendix, this point
will be considered in more detail.

4.4. Structure of the Complete Transport Model

The structure of a complete model for describing
transport processes in a tokamak is illustrated in Fig. 5.
The model consists of three parts. The first part is rep-
resented by the set of transport equations for the elec-
tron and ion temperatures Te and Ti , plasma density n,
function µ, and current density j. If the values of these
parameters and the shape of the plasma column at a cer-
tain time are prescribed, then the geometry of the mag-
netic surfaces and the values of the coordinate ρ and of
the required metric coefficients V ', G, and G1 are deter-
mined by solving the Grad–Shafranov equation in the
second part of the model. Finally, in the third part of the
model, the functions µc and jc and the critical gradients
are found by solving Eqs. (45) or (50) for the canonical
profiles. The evolution of the plasma parameters is cal-
culated by repeating this procedure as many times as
necessary.

We stress that, in this model, the canonical profiles
(i.e., the final profiles to which the plasma tends to
relax) change during relaxation. The relaxation rate,
however, is much faster than the rate of change of the
canonical profiles; consequently, the actual profiles of
the plasma parameters sooner or later will approach
their canonical profiles. Because of the presence of

n

κ0e 0i, C0Te i,
1/2 ρ( )n/ BR

1/4( )=
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energy and particle sources, and because of the differ-
ence in the boundary conditions, the actual profiles will
not exactly coincide with the canonical profiles.

Initial
conditions

Transport
equations:

Te, Ti, n, µ, j

Canonical
profiles:

µc, jc, T'c /Tc

Equilibrium:
ρ, V ', G

Fig. 5. Structure of the complete transport model.
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4.5. Examples

The next four figures exemplify the results obtained
by numerically solving Eqs. (67) and (68) with heat
fluxes (70). In order to simplify the problem, we did not
integrate Eq. (66) for the plasma density but instead
used experimental density profiles. The calculated
results were compared to the ITER database [25]. Fig-
ures 6a and 6b show the measured and calculated pro-

files of the electron and ion temperatures, Te, i and 
for DIII-D shot no. 71384. The characteristic features
of this shot are a high chord-averaged plasma density,

 = 9.6; a high power of neutral beam injection (NBI),
PNB ~ 14 MW; and a moderate boundary value of the
parameter q, qS = 3.7, the elongation and triangularity
also being moderate (k = 1.6 and δ = 0.16). The profiles
of the power deposited in the electrons and ions that are
shown in Figs. 6a and 6b were also taken from the ITER
database. Since the plasma density is high, the neutral
beam does not penetrate deep into the plasma, so the
profile of the power deposited in the electrons is peaked
at the plasma edge.

Figures 7a and 7b show the same profiles but for
DIII-D shot no. 78 283. In this shot, the plasma density
and NBI power are both low,  = 1.2 and PNB ~
0.46 MW, while the qS value and triangularity are large,
qS ~ 12 and δ ~ 0.6. From Figs. 6 and 7, we can see that,
although the parameters of the two shots are very dif-
ferent, the model reliably describes the experiment. It
should be emphasized that the model does not contain
any adjustable parameters. In order to make better esti-
mates of the reliability of the simulation results, it is
also necessary to take into account the following fac-
tors:

(i) The experimental errors in measuring the elec-
tron and ion temperatures are difficult to estimate from
the ITER database because it typically contains
smoothed data and does not provide direct information
about the measurement errors.

(ii) In the ITER database, the profiles of the NBI
power deposited in the plasma were obtained from
complicated computations carried out by the investiga-
tors of the discharges with allowance for the geometry
of neutral beams, the tokamak geometry, a large num-
ber of beams in tokamaks (e.g., more than ten beams in
the JT-60U device), multispecies composition of the
beams, losses of hot ions that follow “bad” trajectories
and their losses due to the secondary charge exchange
with cold neutrals, etc. Since the error in such involved
calculations of the deposited power is difficult to esti-
mate, it is not, as a rule, included in the database. In
addition, it is impossible to check the calculated results
because the required information is lacking.

It has become common practice to quantitatively
characterize heat transport in terms of the so-called

Te i,
exp

n

n
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effective thermal diffusivity,

(76)

Figure 8 shows the profiles of  for both of the shots
in question. We can see that, for both shots, χeff ~ 0.4–
0.6 m2/s in the central plasma region (ρ/ρmax < 0.3). In
the gradient zone (0.3 < ρ/ρmax < 0.8), the effective ther-
mal conductivity χeff increases monotonically toward
the plasma edge, where it reaches values of χeff ~ 4–
8 m2/s at a low plasma density and values of χeff ~ 2–
4 m2/s at a high density. In other tokamaks, the thermal
conductivity χeff in the L-mode discharges is observed
to exhibit similar behavior.

Up to this point, we have compared calculation and
experiment only for one tokamak. A comparison made
for many devices with different plasma geometries is
illustrated in Fig. 9, which presents the measured and cal-
culated values of the relative electron temperature gradi-

ent,  = –(R/ )∂ /∂ρ and ΩTe = –(R/Te)∂Te/∂ρ,
at mid-radius, ρ = ρmax/2. For one of the ASDEX-U
shots, a typical experimental error is shown [26]. This
error is seen to be fairly large because, in calculating

, we had to differentiate the experimental data.
Nevertheless, Fig. 9 shows that the calculated tempera-
ture gradients, too, satisfactorily agree with the mea-
sured ones.

5. SET OF TRANSPORT EQUATIONS
FOR IMPROVED CONFINEMENT REGIMES

5.1. Regimes of Improved Confinement

By improved confinement regimes we will mean
those during which transport barriers form. A regime
with a transport barrier in the edge plasma—a so-called
edge transport barrier (ETB)—is usually referred to as
the H-mode. During the L–H transition, transport coef-
ficients inside the barrier decrease by a factor of 5–10
and, outside the barrier, they decrease by a factor of
1.5–2. A transport barrier can form in the plasma inte-
rior (ITB formation). A special name for the regime
with an ITB is still lacking. Inside the ITB, transport
coefficients usually decrease severalfold.

In order to describe regimes of improved confine-
ment in the canonical profile model, we introduce the
concept of the second critical gradient. Experiments
show that this gradient exists for the plasma pressure
profile. If the pressure gradient in a certain plasma
region is larger than the second critical gradient, then
the plasma in this region undergoes a bifurcation to a
new state, which is accompanied by the formation of
transport barriers. In this case, the plasma behaves as if
it has forgotten the canonical profile within the barrier.

During the discharge evolution, a barrier forms not
immediately after the required power is switched on but
with a certain time delay, when the pressure gradient

χe i,
eff Γ e i, / n∂Te i, /∂ρ( ).–=

χe i,
eff

ΩTe
exp

Te
exp

Te
exp

ΩTe
exp
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has become larger than the second critical gradient. The
time delay depends on the extent to which the deposited
power exceeds a certain threshold power. If this extent
is small, the barrier can build up after a significant time
delay.

In the H-mode, ETBs form simultaneously for the
electron and ion temperatures and plasma density, pre-
sumably because of a strong coupling between the ions
and electrons when the latter have a low temperature.
As for ITBs, they develop differently in different toka-
maks. For instance, in the TFTR tokamak, the existence
of an ITB was confirmed only for the ion temperature
and plasma density (iITB and nITB, respectively),
whereas the electron ITB (eITB) was not revealed. In
other tokamaks, an ITB for the electron temperature
also formed. When the heating power is sufficiently
high, ITBs can build up for all three main transport
parameters: the electron and ion temperatures and
plasma density. It was established that the iITB, eITB,
and nITB occur in the same place, which, however, can
vary with time. In some cases, two ITBs for the ion
temperature were observed. It was also found that an
internal and an edge transport barrier may exist simul-
taneously. In this case, it is common to speak of the
H-mode with an ITB.

5.2. Heat and Particle Fluxes in Improved Confinement 
Regimes

The fact that barriers can exist separately for the
electron and ion heat transport channels necessitates a
proper reformulation of the transport model. We
assume that the second critical gradients exist sepa-
rately for the electron and ion pressures, pe = nTe and
pi = nTi . We also assume that the canonical profiles of
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Fig. 9. Comparison between the experimental and calcu-
lated values of the relative electron temperature gradient at
midradius for a set of shots on seven different tokamaks.
The vertical bar shows the measurement error for one of the
shots.
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the partial electron and ion pressures, pec and pic, coin-
cide with canonical profile (61) of the total pressure pc.

We introduce the deviations of the partial pressure
profiles from the canonical profiles through the rela-
tionship

zpk = (ρmax/(Aρ))(Ωpk – Ωpc) (k = e, i), (77)

where

Ωpk = –R /pk (78)

and the critical gradient Ωpc is defined in formulas (63).
In relationship (77), we use the normalizing factor
ρmax/ρ in order for the deviations zpk not to vanish at the
magnetic axis ρ = 0. We suppose that a transport barrier
forms in a certain plasma region where deviation (77)
exceeds the second critical gradient z0k,

|zpk | > z0k. (79)

Here, z0k = z0k(ρ) are positive functions that should be
determined by comparing the calculated results to the
experimental data. The functions z0k(ρ) may be related
to the profile of the function q(ρ), but this relationship
has not yet been established. Below, we will say a few
words about this point.

Let us introduce the “forgetting” factor,

Fk = exp(– ). (80)

We note that Fk ≈ 1 inside the region in which the
plasma forgets the canonical pressure profile (below,
such a region will be referred to as the forgetting zone,
for brevity) and Fk ! 1 outside this region. Inside the
forgetting zone, the first terms in expressions (70),
(71a), and (71c) for the fluxes should be small. This

pk'

zpk
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Fig. 10. Dependence of the heat fluxes ΓPC, Γ0, and Γ =
ΓPC + Γ0 on the deviation zT of the temperature profile from
the critical one. The range Γ > Γmax corresponds to the L–
H transition, and the range Γ < Γmin corresponds to the H–
L back transition.
indicates that the electron and ion heat fluxes and the
particle flux can now be written as

(81)

–Γn = –(Γnn + Γnp)FeFi + D0∂n/∂ρ – nv neo. (82)

Here, in accordance with experiment, we assume that
the transport barrier for the density appears together
with barriers for the electron and/or ion heat transport.

Let us consider how expression (81) for the heat
fluxes depends on the temperature gradients. For sim-
plicity, we omit the subscripts e and i, as well as the
convective term, and denote the first and second terms
in expression (81) by ΓPC (with the subscript PC being
an abbreviation of “profile consistency”) and Γ0,

ΓPC = κ(T/R)(ΩT – ΩTc)H(ΩT – ΩTc)F, (83)

Γ0 = –κ0∂T/∂ρ. (84)

We also assume that the density profile coincides with
its canonical profile. As a result, we obtain

zp = zT = (ρmax/ρ)(ΩT – ΩTc)/A, (85)

and arrive at the following expression for the heat flux:

(86)

where the functions C1 = ρT/(ρmaxR) and C2 = – /Tc

are independent of the temperature gradient. As an
example, Fig. 10 shows the dependence of the fluxes Γ,
ΓPC, and Γ0 on the deviation zT at the plasma boundary
ρ = ρmax. We can see that the flux Γ depends on zT non-
monotonically: it has a maximum near the point zT = z0
and a minimum in the range zT > z0. Within the interval
between the maximum and minimum, the derivative
dΓ/dzT is negative, so the corresponding quasi-steady
solution to heat conduction equation (67) is unstable. In
the initial stage, when the total deposited power is low
(zT < z0), the flux Γ is less than Γ(z0) = Γmax and the
plasma evolves along the left branch, corresponding to
the L-mode. If the total deposited power Ptot increases,
then, at a certain time at which it becomes equal to the
threshold power (Ptot = Pthr), the flux Γ reaches its max-
imum value Γmax. At this time, the solution makes a dis-
continuous transition from the left to the right branch
(Fig. 10), the deviation zT increases in a jumplike man-
ner from z0 to a value z1 @ z0, and the temperature gra-
dient in the vicinity of the magnetic surface ρmax
increases sharply. This corresponds to a transition to the
H-mode and to the formation of a temperature pedestal
at the plasma edge. We also see that, in the model
adopted, the plasma exhibits a hysteresis effect with
respect to H–L and L–H transitions. As the deposited

Γ e i,– κ e i, Te i, /R( ) ΩTe Ti, ΩTc–( )–=

× H ΩTe Ti, ΩTc–( )Fe i, κ0e 0i, ∂Te i, /∂ρ+

+ 3/2Te i, Γn,

Γ Γ PC Γ0+ κ T /R( ) ρ/ρmax( )zT= =

× zT
2
/2z0

2
–( )H zT( )exp κ0 C1zT C2+( ),+

Tc'T
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power decreases, the transition from the H-mode back
to the L-mode occurs at a power lower than its thresh-
old value, Ptot < Pthr, when the flux decreases to its min-
imum value, Γ = Γmin (Fig. 10). The formation of an
ITB is accompanied by a similar process.

5.3. Approximate Analytic Criterion
for the L–H Transition

Hence, during the L–H transition, a transport barrier
appears at the plasma edge. The qualitative behavior of
the temperature profiles and effective thermal diffusiv-
ity (76) (in which the electron and ion heat fluxes are
denoted by Γ) in the L- and H-modes is illustrated in
Figs. 11a and 11b, where TL and TH are the temperature
profiles in the L- and H-modes, Tc is the canonical tem-

perature profile, and  and  are the effective ther-
mal diffusivities in the L- and H-modes. In the L-mode,
the deviation zT (see expression (85)) of TL from Tc in
the outer part of plasma column is large because the
profile T(ρ) is more peaked than the canonical profile
Tc(ρ) and the boundary temperature T(ρmax) in the
experiment is low. Because of the large deviation zT in
the outer part of plasma column, the flux ΓPC is large
there and the effective thermal diffusivity χeff is high.
During the L–H transition, a narrow transport barrier
(the forgetting zone) builds up near the plasma bound-
ary and, in the remaining region of plasma column, the
temperature profile T(ρ) approaches the canonical pro-
file Tc(ρ) and the deviation zT decreases. As a result, the
effective thermal diffusivity decreases both inside and
outside the transport barrier. Inside the barrier, the ther-

mal diffusivity  is four to ten times lower than 
and ΓPC = 0. On the temperature profile T(ρ), there is a
pedestal with the temperature Tped, which takes on very
different values depending on the discharge conditions:
it varies from Tped ~ 150 eV in MAST to 7 keV in JET.

In the plasma core, the ratio /  is typically equal
to 1.5–2.

Since the transport barrier appears nearby the
plasma boundary, the condition for its onset at zpk > 0
has the form

zp(ρmax) > z0. (87)

Here, we omit the e and i subscripts for the electron and
ion temperatures because, near the plasma boundary,
the electrons and ions are strongly coupled, Te ≈ Ti = T,
and, accordingly, the transport barriers develop simul-
taneously for all the transport parameters. By virtue of
definition (77) for zp, condition (87) can be rewritten as

– aT '/T > z0 + (Ωpc – Ωn)/A. (88)

In the L-mode, the temperature profile at the edge dif-
fers strongly from the canonical one (ΩT @ Ωc, see

χL
eff χH

eff

χH
eff χL

eff

χL
eff χH

eff
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Fig. 11a), so heat flux (70) can be approximately repre-
sented as

Γ = 2κ(T/R)ΩT = – 2κT '(ρmax) = Ptot /S. (89)

Here, Ptot is the total deposited power and S is the area
of the plasma surface. Resolving relationship (89) with
respect to T ' and substituting the results into inequality
(88), we obtain the following condition for the transi-
tion to the H-mode:

Ptot > Pthr, (90)

where

Pthr = 2κTS(S/a)(z0 + (Ωpc – Ωn)/A)S. (91)

The subscript S implies that all the quantities on the
right-hand side of formula (91) should be treated in
terms of their values at the plasma boundary ρ = ρmax.
In the practical units adopted in the ITER project, for-
mula (91) reads

Pthr = 0.0032κTS(S/a)(z0 + (Ωpc – Ωn)/A)S, (91‡)
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Fig. 11. Behavior of the profiles of (a) the electron temper-
ature and (b) the effective thermal diffusivity in the L- and
H-modes (Tped is the pedestal temperature).
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where Pthr is in MW, κ is in 1019 m–1 s–1, T is in keV, S is
in m2, and a is in m. Since the parameter κ defined by
expression (73) is independent of radius, we have

(92)

where TS is the boundary temperature and l is the length
of the boundary of the meridional plasma cross section.
This relationship does not contradict the ITER scaling
[23]

Pthr = 0.7 B0.8R2.12, (93)

because the powers of the density in scalings (92) and
(93) are essentially the same, the factor in the square
brackets of scaling (92) increases with magnetic field,
and the factor in parentheses increases sharply with the
geometric dimensions of the device. Scaling (92), how-
ever, also involves dependence on the boundary tem-
perature, the density gradient at the plasma edge
(through the critical gradient ΩnS), and the shape of the
plasma cross section (through the ratio l/2πa). In scal-
ing (93), the symbol n20 denotes the mean plasma den-
sity in units of 1020 m–3.

5.4. Estimates of the Transport Barrier Parameters
in the H-Mode

For H-mode discharges, we can distinguish between
two regions of plasma column:

(I) the main inner plasma region, 0 < ρ < ρmax – ∆,
in which Fe, i ≈ 1, and

(II) the ETB zone, ρmax – ∆ < ρ < ρmax, in which
Fe, i ! 1.

Here, ∆ is the width of the transport barrier. At the
edge, we have Te ~ Ti = T. To simplify the estimates, we
assume that, at the edge, the electron and ion heat fluxes
are also the same, κe = κi = κ. In the expression for the
forgetting factor, we use the quantity zp in place of zT

and ignore specific features of the density profile in the
H-mode. As a result, expression (70) for the heat flux at
the periphery of region (I), i.e., near the transport bar-
rier, takes the form

Γ– = –κT∂/∂ρln(T/Tc) = 1/2Ptot /S, T = Tped. (94)

Here, the numerical factor 1/2 stands for the power
deposited in the electrons or in the ions. Within the
transport barrier, the heat fluxes are as follows:

Γ+ = –κ0∂T/∂ρ = 1/2Ptot /S, Γ+ = Γ– = Γ. (95)

At the boundary between regions (I) and (II), we have
zT = z0S/2, or –ad/dρln(T/Tc) = z0S/2, (96)

where z0S is the value of the function z0 at the plasma
boundary. Substituting relationships (96) into formula
(94), we obtain

Tped = aPtot /(Sκz0S), (97)

Pthr n q ρmax/2( ) qS/B( )[ ] R
3/4

T
1/2 ρmax/4( ){ }∼

× TS z0 Ωpc Ωn–( )S/A+( ) l/2πa( ),

n20
0.94
or, in practical units,

Tped [keV] = 16Ptot [MW](2πa/l)/(Rκz0S). (98)

Note that the pedestal temperature does not depend on
how the temperature behaves inside the barrier. Inte-
grating formula (95) over the transport barrier taking
into account the inequality TS/Tped ! 1 yields

κ0Tped ≈ 1/2∆Ptot /S. (99)

Using expression (97), we find

∆/a = 2κ0/(κz0S). (100)

Formulas (98) and (100) give upper estimates for the
pedestal temperature and barrier width in a steady-state
discharge. For discharges with edge localized modes
(ELMs), the pedestal temperature Tped will be lower.

In some experimental situations, the pressure or
temperature gradient within the barrier can be some-
how restricted, e.g., by ballooning instabilities. If the
absolute value of the temperature gradient is restricted
by the value  > 0, then we should distinguish
between two possible cases.

(i) The temperature gradient inside the barrier is
smaller in absolute value than ; i.e.,

Γ/κ0 < . (101)

In this case, formulas (95) and (100) remain valid.
(ii) The inequality opposite to inequality (101)

holds,

Γ/κ0 > . (102)

In this case, formulas (95) and (100) fail to hold, but
formula (97) for Tped remains valid. Consequently, the
barrier width ∆ should be described by the obvious
expression

∆/a = Tped/(a ) = Ptot /(Sκz0S ). (103)

We thus see that the width of the transport barrier is
proportional to the deposited power. This behavior of
the barrier parameters was observed in Alcator C-Mod
[27].

5.5. Some Remarks about the Second Critical 
Gradient z0k

In our model, the first critical temperature gradient
ΩTc is determined in terms of the canonical pressure
profile in accordance with formulas (63)–(65), specifi-
cally, ΩTc = 2/3Ωpc. We have derived differential equa-
tion (50) for the canonical profiles and have formulated
boundary conditions (54). Hence, the first critical gra-
dient is determined by means of a closed theory. Noth-
ing of this kind has been done for the second critical
gradient. Even the general question of whether it is pos-
sible to describe the physics of the complex process of
transport barrier formation by a relatively simple phe-
nomenological model with forgetting remains open.

Tb'

Tb'

Tb'

Tb'

Tb' Tb'
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We will discuss this issue in two steps. First, we con-
sider the problem of finding the two functions z0e(ρ)
and z0i(ρ) by comparing the calculated results to the
experimental data. To do this, we parameterize these
functions and then determine their parameters by simu-
lating discharges with improved confinement. Second,
knowing how the functions z0e(ρ) and z0i(ρ) behave in
space, we compare their behavior to the spatial behav-
ior of different parameters of the poloidal magnetic
field in order to establish whether there is a relation
between these functions and the poloidal field.

We begin by considering whether the functions z0e

and z0i  at the very edge of the plasma can be determined
by analyzing the L–H transition. Since the transport
barrier is narrow and occurs near the boundary, its for-
mation is described in the model only by the quantities
z0e(ρmax) and z0i(ρmax). Since the electrons and ions at
the edge are strongly coupled, it is natural to assume
that z0e(ρmax) = z0i(ρmax). For brevity, the quantities on
both sides of this equality have been denoted by z0S.
Consequently, in our model, the L–H transition is
described in terms of only one quantity, which has to be
determined by comparing the calculations to experi-
ment. This comparison was carried out in [15], where it
was shown that z0S = 8–9 for DIII-D and z0S = 6–7 for
JET. Our simulations for the MAST small-aspect-ratio
tokamak (A ~ 1.5), yielded the values z0S = 5–6. We thus
can conclude that the quantity z0S lies in the range 6 <
z0S < 8, within which it probably increases slightly with
increasing aspect ratio.

The behavior of the functions z0e(ρ) and z0i(ρ) in the
plasma core and in the gradient zone can be determined
by analyzing discharges with ITBs. Such an analysis
was carried out in [15] for JET and in [28, 29] for
JT-60U. It was shown that the functions z0e(ρ) and
z0i(ρ) within the plasma column are markedly smaller
than z0S; this especially concerns the ion component.
The results of the analysis can conveniently be repre-
sented in the form of a continuous piecewise linear
function of radius:

(104)

where

z0e(0) = αe1 = 4–5, z0i(0) = αi1 = 2–3,

αe2 = αi2 = z0S = 6–8, 

ρ1/ρmax = 0.5–0.6, ρ2/ρmax = 0.8–0.9. 

Examples of the functions z0e(ρ) and z0i(ρ) for JET are
presented in Figs. 12a and 12b.

α k1 for 0 ρ ρ1,< <
z0k ρ( ) α k1 α k2 α k1–( ) ρ ρ1–( )/ ρ2 ρ1–( )+=

for    ρ1 ρ ρ2,< <
α k2 for   ρ2 ρ ρmax,< <
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Let us compare the conditions for the formation of
an ITB and an ETB. General condition (79) for the
build-up of a barrier can be rewritten in the form

(105)

This condition implies the following three require-
ments for the development of the transport barrier:

(i) the peak in deposited power profile should be
sharp enough,

(ii) the power deposited within an ITB should
exceed a certain threshold value, and

(iii) the increase in the plasma density gradient
inside the barrier favors a decrease in the threshold
power.

For the L–H transition, as well as for the buildup of
an ETB, the first condition is not necessary. The fact
that the pressures pk at the plasma boundary are rela-
tively low and remain essentially unchanged makes
condition (ii) easier to satisfy. However, the threshold

aρmax/ρ pk' / pk pc' / pc– z0k.>
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Fig. 12. Profiles of the deviations of the (a) electron temper-
ature gradient and (b) ion temperature gradient from the
second critical gradients z0e and z0i and profiles of the func-
tions (a) Ce + s and (b) Ci + s.
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gradient at the boundary, z0S, is two to three times larger
than the gradients z0k in the gradient zone. This is why
the onset of an ITB is not necessarily accompanied by
the onset of an ETB, and vice versa. Of course, in some
discharges, both of the barriers (ITB and ETB) can
arise simultaneously.

Now, we discuss the physical mechanisms that can
govern the behavior of the functions z0k(ρ) (k = e, i). At
the present stage of research, most attention is focused
on the following two effects: first, the toroidal and
poloidal plasma rotation in a narrow zone inside the
barrier and, second, a negative or a small positive mag-
netic shear s = (ρ/q)∂q/∂ρ in the plasma interior.

In order to find out how plasma rotation is related to
transport processes, we consider the force balance
equation for the ion component, ignoring the viscosity
and omitting the term proportional to the velocity
squared:

∂pi/∂ρ = enEρ + en/c(v iθBϕ – v iϕBθ), (106)

where pi = nTi is the ion pressure, Eρ is the radial elec-
tric field, Bθ and Bϕ are the poloidal and toroidal mag-
netic-field components, and v iθ and v iϕ are the poloidal
and toroidal ion velocities. Equation (106) is a relation-
ship between the four unknown functions (pi , Eρ, v iθ,
v iϕ) and therefore can only be used for a qualitative
description. From this equation we see that the large
pressure gradient inside the barrier inevitably produces
a strong radial electric field and can force the plasma
ions to move with high velocities v iθ and v iϕ; the strong
radial electric field, in turn, can set the plasma into drift
motion with the velocity vd = c(E × B)/B2, which gen-
erates a highly sheared poloidal flow. This poloidal
rotation is usually thought to be the major cause of the
suppression of turbulence and of the associated reduc-
tion in anomalous transport.

In this connection, many experiments were aimed at
revealing the internal mechanisms for the L–H transi-
tion. The underlying logic behind such investigations
was quite simple: if one event occurs before the other,
then this first event was thought to be a cause, and the
other, a consequence. However, there is no unique
answer to the question of what happens earlier—the L–
H transition or the onset of the poloidal plasma rotation.
The strong coupling between the L–H transition and the
radial electric field was confirmed in biasing experi-
ments, in which charged electrodes were inserted into
the plasma to a depth of 1–2 cm. In such experiments,
observations revealed effects resembling the L–H tran-
sition. The L–H transitions, however, can also be artifi-
cially triggered by other means, provided that the
plasma (in the parameter space) is near the threshold for
the transition. For instance, a transition to the H-mode
can be initiated by a low-intensity pulsed hydrogen
puffing (as in Tuman-3M) or even by displacing the
plasma column toward the high-field side (as in T-10).
At this point, we focus attention on what is impor-
tant for the modeling of the L–H transition. The exper-
iments have not yet revealed any immediate cause of
the transition. The complex processes whereby the
plasma parameters changes during the transition pro-
ceed almost simultaneously. The experimental criterion
for the transition, Ptot > Pthr, contains only one parame-
ter, Ptot, and coincides in structure with criterion (90).
We thus can conclude that, although the canonical pro-
file model does not involve the parameters of the
plasma motions, it is likely to provide a consistent
description of the L–H transition.

The problem of ITB formation is more complicated.
Already in the early stage of research (1993–1995), it
was shown that the criterion for ITB formation depends
on the profile q(ρ) and on the magnetic shear s. When
the shear in the plasma core is negative, s < 0, an ITB
forms at a lower deposited power. Moreover, such an
ITB is a strong boxlike narrow barrier with very low
transport coefficients. The strength of the barrier is usu-
ally characterized by the relative temperature gradient
(72), i.e., by the value of the ratio R/LT = –RT '/T = ΩT,
within it. For a strong barrier, we have ΩT = 30–40.

When the shear in the plasma core is positive but
low, 0 < s < 0.2, an ITB can form too, but presumably
at a higher level of the deposited power. In this case, the
ITB is, as a rule, weak and wide, the characteristic rel-
ative temperature gradient being smaller, ΩT = 20–25.

There is evidence that ITBs develop near the reso-
nant magnetic surfaces q = m/n with small n and m (q =
1, 3/2, 2, 3). This is clear from a very elegant JET exper-
iment in which, during the evolution of a nonmonotonic
current profile, the q = 2 magnetic surface was split into
two resonant surfaces, and a single ITB, which was ini-
tially close to the q = 2 surface, was split into two bar-
riers, each confined to its own q = 2 surface. Measure-
ments of the plasma rotation velocity near ITBs showed
the presence of zonal plasma flows. After the transport
barrier has appeared, it can be somewhat displaced
toward the edge, but, as a rule, it stops moving in the
vicinity of the magnetic surface ρ/ρmax ~ 0.65–0.7.

Summarizing the above remarks, we can draw the
following conclusions:

(i) At the plasma boundary, the magnetic shear is
large. At the edge of a plasma column with a large
aspect ratio, A = 5, and a circular cross section (as in
T-10), the shear is equal to s = 2. For A = 1.5 and an
elongation of k ~ 2 (as in MAST), the shear at the
plasma edge is s = 5–6. For such a large shear, the
details of its behavior, as well as the presence of reso-
nant magnetic surfaces in the edge plasma, are likely to
be of secondary importance. A key role in the formation
of an ETB is played by the radial electric field and by
the zonal flow nearby the plasma boundary. With allow-
ance for these factors, the canonical profile model
developed above can provide a reliable description of
the L–H transition and the radial electric field can be
estimated from Eq. (106), provided that the ion pres-
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
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sure gradient ∂pi/∂ρ is known. In order to close the
model, it is necessary to determine only one parameter,
z0S, by comparing the calculations with experiment.
This parameter can depend on the plasma geometry.

(ii) The development of an ITB within the plasma
column and its position there are governed by the mag-
nitude and sign of the magnetic shear s, the positions of
the resonant magnetic surfaces (rs1, rs3/2, rs2, …), and
also by the magnitude and profile of the deposited
power. In our model, the criterion for the onset of an
ITB is given by inequality (105). The magnitude and
profile of the deposited power are contained on the left-
hand side of this inequality. The remaining depen-
dences should enter the right-hand side of inequality
(105); i.e., they should be taken into account in choos-
ing the functions z0k(ρ) (k = e, i) for the plasma core. In
doing so, it is expedient to compare the behavior of the
functions z0k(ρ) with that of the shear s of the poloidal
magnetic field. Figures 12a and 12b show the behavior
of the function s(ρ) for one of the JET operating modes.
We can see that both of the functions, z0k(ρ) and s(ρ),
increase sharply in the same region. This allows the
function z0k(ρ) to be approximated by

z0k(ρ) ≈ Ck + Dks(ρ). (107)

Function (107) contains four parameters, which are to
be determined from experiment. Good approximations
to these parameters are provided by the estimates pro-
posed above:

Ce = 4–5, Ci = 2–3, De = Di = 1–2. (108)

Model function (107), in particular, reliably describes
the possible displacement of a fully developed ITB.
From Fig. 12 it is seen that, in the vicinity of the mag-
netic surface ρ/ρmax ~ 0.7, the shear increases abruptly
and thereby stops the motion of the barrier.

Let us estimate the difference between the first and
the second critical gradients. The first critical gradient
is given by the formula ΩT1 = ΩTc (see Eqs. (64), (65)).
The second critical gradient is determined by inequality
(79) and approximate expression (85) for zp,

ΩTk – ΩTc > (ρ/ρmax)Az0k. (109)

As a result, we obtain

ΩTk > ΩT2 = ΩT1 + (ρ/ρmax)Az0k. (110)

We thus see that the difference between the second and
the first critical gradients, ΩT2 and ΩT1, is equal to
(ρ/ρmax)Az0k. For instance, for an iITB (z0k = 3) formed
at mid-radius in JET (with A = 3), we have ΩT2 – ΩT1 =
4.5. From Figs. 3 and 4 it follows that ΩT1 ≈ 5; conse-
quently, ΩT2 ≈ 9.5, so ΩT2/ΩT1 ~ 1.9. In this case, the
second critical gradient is almost two times larger than
the first one.

It is expedient to compare the above estimates with
the empirical criterion for ITB formation in JET [30]:

ρS/LT ≥ 0.014, LT = –T/T ', (111)
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where, in practical units,

ρS = 0.0046 . (112)

Criterion (111) can be rewritten in the form

ΩT = –R/LT > , (113)

where  = 3RB0/ .

Substituting the typical values of the JET parame-
ters (Te = 9 keV, B0 = 3 T) into criterion (113) yields the
following experimental estimate for the second critical

gradient:  = 9. Our model gives ΩT2 = 9.5; this
value deviates from the experimental value by less than
10%. Up to this point, we have assumed that the func-
tions z0k are independent of the plasma parameters. The
JET experiments, however, show that the functions z0k

can be proportional to B0/ .

The question then arises: how can the model pro-
posed (the set of equations (66)–(68) with fluxes (81)
and (82)) be generally capable of reliably describing
discharge modes with a nonmonotonic current profile

Te/B0

ΩT2
JET

ΩT2
JET

Te

ΩT2
JET

Te

0.2 0.4 0.6 0.8 1.0

15

10

5

0
ρ/ρmax

(b)

T, keV

30

20

10

0

101

100

10–1

10–2

χi

χe

D

χi

χ, D, m2/s

0

(‡)

n, 1019 m–3

Ti

Te

n

Fig. 15. Measured and calculated profiles of (a) the electron
and ion temperatures and plasma density and of (b) the
effective diffusivities for JT-60U shot no. E27 302 with
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Experiment
(a negative magnetic shear), especially in view of our
assumption that profile consistency principle (8) is sat-
isfied for the canonical profile problem?

In Section 3.1, we have already shown, however,
that only the canonical profiles of the current and pres-
sure (targets of relaxation) should coincide. As for the
actual current and pressure profiles, they can differ
appreciably from one another. Equation (68), which
describes the evolution of the current profile, does not
contain the parameters of the canonical profiles. On the
other hand, the actual current profile is incorporated in
the equilibrium Grad–Shafranov equation and thereby
is taken into account through the plasma geometry and
metric coefficients. The canonical profiles are included
only in the expressions for the heat and particle fluxes
through the critical gradients. The discharge modes
with a nonmonotonic current profile are unstable, but
the plasma of such discharges relaxes toward canonical
profiles; however, the current relaxes very slowly.

5.6. Examples

Here, we present the results obtained by numerically
solving the set of transport equations (67) and (68) with
heat fluxes (81) for H-mode discharges and discharges
with ITBs. The calculated results were tested against
discharges from the ITER database [25]. All simula-
tions were carried out for z0S = 6.

Figures 13a and 13b show the experimental and cal-
culated profiles of the electron and ion temperatures for
JET shot no. 26087 with moderate parameter values:

 = 3.2, PNB = 12.8 MW, and qS ~ 4.1. Unfortunately,
the ITER database contains no information about the
temperature within the ETB and about the barrier
width. From Fig. 13 we can see that the calculated and
experimental values of the pedestal temperature are
nearly the same and are approximately equal to 2 keV.
The calculated and experimental central temperatures
are also close to one another.

In Fig. 14, we compare the calculated and measured
pedestal temperatures in a steady state for four DIII-D
shots and for two JET shots. The parameters of these
six shots are very different. We can see that the pedestal
temperatures differ by no more than 10%. It should be
emphasized that the relevant model calculations were
carried out without any adjustable parameters.

Figure 15 illustrates the results of calculating all the
three main parameters (the electron and ion tempera-
tures and plasma density) for JT-60U shot no. E27302
with an ITB. In this shot, the NBI power deposited in

the electrons was  = 4 MW and that deposited in

the ions was  = 9 MW. Figure 15a shows the
numerical and experimental steady-state profiles of Te,
Ti, and n, and Fig. 15b shows the calculated profiles of
the transport coefficients. The calculations were per-
formed using the complete model given by Eqs. (66)–(68),

n

PNB
e

PNB
i
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including the equation for the plasma density, and by
formula (104) for z0k. We can see that, on the whole, the
model reasonably well describes the position of the
inner side of the ITB (the foot point), as well as the
behavior of the electron and ion temperature profiles
and the central electron and ion temperatures. Within

the barrier, the effective diffusivities  and Deff

decrease by a factor of more than 10. The experimen-
tally measured barrier width, however, is markedly less
than the calculated one. A possible reason for this is that
formula (104) is too rough: it does not reflect such fea-
tures of the magnetic field as nonmonotonic behavior of
q(ρ), negative shear s(ρ) in the plasma core, and the
positions of resonant magnetic surfaces q(ρ) = m/n.

6. CONCLUSIONS

About 25 years ago, it became clear that a tokamak
plasma is well self-organized in the sense that the tem-
perature and pressure profiles are conserved when the
deposited power or the plasma density changes,
whereas the profile shape itself depends on the q value
at the plasma boundary. The greater the q value and the
plasma density, the stiffer the shape of the profiles.
Such plasma behavior, which is often called the “profile
consistency,” has been confirmed experimentally in
many tokamaks.

Self-organization processes are attributed to the
plasma turbulence. In the present study, transitions to
different turbulent regimes are described by means of
such a control parameter as the relative temperature
gradient ΩT = –RT '/T. When this parameter exceeds a
certain critical value, the mode of transport changes.
For low values of ΩT (flat temperature profiles), such
that ΩT < ΩT1 (where ΩT1 = –R /Tc is the first critical
gradient), the plasma is in a low-transport mode, which
usually takes place in the plasma core during off-axis
heating. For ΩT > ΩT1, the discharge is in the L-mode,
in which the profile self-consistency is very pro-
nounced and the plasma is subject to self-organization.
Consequently, it is the discharges with enhanced trans-
port of energy and particles that are well self-organized.
As the parameter ΩT further increases and becomes
greater than the second critical gradient ΩT2, the dis-
charge undergoes a transition to an improved confine-
ment regime. In this case, a barrier in which the trans-
port is reduced forms in a certain layer within the
plasma or at the plasma edge, while the transport in the
remaining part of the plasma is still as large as that
before the transition.

In order to describe self-organization of the plasma,
different variational principles have been repeatedly
offered in the literature. Among these are the principle
of minimum magnetic or free energy [2–5], the princi-
ple of the stationarity of entropy [6–7], and the princi-
ple of maximum kinetic energy [20]. The most highly
developed of them is the principle of minimum free

χe i,
eff

Tc'
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energy, which has been discussed in the present paper.
Studies in this way succeeded in constructing the Euler
equation for the canonical profiles that minimize the
free energy functional provided that the total current is
conserved (see Section 3), as well as in developing the
relevant transport model. For a fully self-organized
plasma (in the L-mode), the model contains critical gra-
dients calculated in terms of the canonical profiles
(Section 4). Many calculations carried out on the basis
of this model [16–19, 21] have confirmed its predict-
ability.

In Section 5, a mathematical apparatus has been
worked out for describing the partial violation of the
profile consistency principle and the transition to a
regime of improved energy confinement. The transport
model constructed in that section contains the second
critical gradient. It provides a reasonable description of
the L–H transition in terms of bifurcation in a nonlinear
system and also in terms of ETB formation. However,
the attempt to describe the formation of ITBs with this
model encounters difficulties. The second critical gra-
dient in the inner plasma layers is obtained by compar-
ing the calculated results to the experimental data. The
model seems to be of limited predictability. Its further
development requires considering the dependence of
the second critical gradient on the profiles q(ρ) and s(ρ)
and on the position of the resonant magnetic surfaces
q(ρmn) = m/n.
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APPENDIX

STIFFNESS OF THE TEMPERATURE 
PROFILE IN A TOKAMAK

It was noted above that, in experiment, the tempera-
ture profiles are conserved in spite of changes in the
external influence on the plasma. This property is often
called the stiffness of the temperature profiles. Now, we
consider in more detail how this property manifests
itself in the temperature profiles that are solutions to
Eq. (67) with heat fluxes (70).

In order to give a more exact definition of the profile
stiffness, we introduce the peakedness coefficient

S = (T(0.4ρmax) – Ta)/(T(0.8ρmax) – Ta), (A.1)

where T is the electron or ion temperature and Ta =
T(ρmax) is the value of this temperature at the plasma
boundary. The temperature profile is called stiff if ratio
(A.1) depends weakly on the plasma density n, the total
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deposited power Ptot, and the boundary temperature Ta.
Of course, the temperature profile can depend on the
profile of the deposited power.

We begin by performing analytic estimates. As an
example, we consider how a plasma cylinder with a cir-
cular cross section of radius ‡ is described by Eq. (67),
in which the heat flux Γ is given by simplified expres-
sion (70) with H = 1 and Γn = 0:

–Γ = κ[dT/dr – (dTc/dr)T/Tc] + κ0dT/dr. (A.2)

Collecting the terms with the derivative dT/dr, we
obtain

–Γ = ((κ + κ0)/a)[dT/dρ + λT]. (A.3)

Here,

(A.4)

where ρ = r/a and A = R/a is the aspect ratio. The
parameter λ describes the rate of exponential growth of
the solution from the boundary of the plasma toward its
center.

We will assume that the functions κ, κ0, and λ are
constant over the cross section of the plasma cylinder
and are independent of T. Under this assumption, the
temperatures are described by a linear time-indepen-
dent equation

–(1/ρ)d/dρ{ρ(κ + κ0)/a2[dT/dρ + λT]} = P, (A.5)

which can be solved analytically. In this equation, P =
P(ρ) = P0 f(ρ) is the density of the deposited power,
f(ρ) is a dimensionless function, P0 = Ptot /(2VF(1)),

(A.6)

and Ptot is the total deposited power. Integrating Eq. (A.5)
once yields

dT/dρ + λT = –T*, (A.7)

where

(A.8)

The last of these relationships is the power deposited
within a magnetic surface of radius ρ.

We consider the boundary-value problem for
Eq. (A.7) with the boundary condition

T(ρ = 1) = Ta. (A.9)

λ κ / κ κ 0+( )( )λ0, λ0 Ωc/A λ λ 0<( ),= =

F ρ( ) f ρ'( )ρ' ρ',d

0

ρ

∫=

T* T* ρ( ) Ta*g ρ( ),= =

Ta* Ptot/ R κ κ 0+( ) 2π( )2( ),=

g ρ( ) Ptot ρ( )/ ρPtot( ), g 0( ) = 0 g 1( ) = 1,( ),=

Ptot ρ( ) P Vd

Vρ

∫ PtotF ρ( )/F 1( ).= =
Since Eq. (A.7) is linear, the solution to the boundary-
value problem can be represented as the sum

T = T1 + T2, (A.10)

where

T1 = Taexp(λ(1 – ρ)) (A.11)

(A.12)

The solution T1 depends linearly on the boundary tem-
perature and its profile nearly (to within the replace-
ment of κ + κ0 by κ) coincides with the canonical tem-
perature profile Tc = exp(λ0(1 – ρ)). That this solution
increases toward the plasma center is attributed to the
presence of the heat pinch. The solution T2 depends on
the magnitude and profile of the deposited power and is
independent of the boundary temperature.

Substituting relationships (A.10)–(A.12) into
expression (A.1), we obtain the peakedness parameter:

S = exp(0.4λ)S0, (A.13)

where

(A.14)

(A.15)

Formula (A.15) is written in practical units. Expres-
sions (A.13) and (A.14) for S contain two independent
physical parameters, λ and γ. The first of them, λ, given
by formulas (A.4), depends on the plasma geometry
and on the parameter q. The second parameter, γ,
depends on the total deposited power, on the boundary
temperature, and on the plasma density (through the
thermal conductivity). By the definition of stiffness, the
temperature profile is stiff if the parameter S is indepen-
dent of γ. Since the numerator and denominator in
expression (A.14) are linear in the parameter γ, the γ
dependence of the parameter S is, generally speaking,
weak. In the L-mode, the boundary temperature is low,
so we have γ @ 1. In this case, the parameter γ drops out
of the expression for S. For the H-mode, the parameter
γ may decrease to values on the order of unity or even
less, provided that by the boundary temperature is
meant the pedestal temperature. In this case, the heat
flux should be described by an expression more general
than expression (A.2). To do this, we write expression
(A.2) in terms of the Heaviside step function:

(A.16)

T2 Ta*G ρ( ),=

G ρ( ) λ ρ' ρ–( )( )g ρ'( ) ρ'dexp

ρ

1

∫ 0.≥=

S0 1 0.6λ–( )exp–{=

+ γG 0.4( ) 0.6λ–( )exp } / 1 0.2λ–( )exp–{
+ γG 0.8( ) 0.2λ–( )exp } ,

γ Ta*/Ta 15.6Ptot/ R κ κ 0+( )( )/Ta.= =

Γ– κ dT /dr dTc/dr( )T /Tc–[ ]=

× H dT /dr( )/T dTc/dr( )/Tc–[ ]–( ) κ0dT /dr.+
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This expression for the heat flux is strongly nonlinear.
However, in the region where H = 1, Eq. (A.7) remains
linear. In what follows, we denote the normalized argu-
ment of the Heaviside function by ∆ = [ΩT – Ωc].

If we everywhere have

∆ > 0, (A.17)

then the Heaviside function H in expression (A.16) is
equal to unity over the entire plasma column. If ine-
quality (A.17) fails to hold in a certain region, ΩT < Ωc,
then, in this region, the temperature profile is not stiff
because it is flatter than the canonical profile. Using the
definitions of ΩT and Ωc, we can reduce inequality
(A.17) to

T*(ρ)/T(ρ) > λ/β, (A.18)

where

β = κ/κ0 @ 1. (A.19)

We substitute expressions (A.8) and (A.10)–(A.12)
for T* and T into inequality (A.18) and resolve it in
terms of the parameter γ. We thus arrive at a new ine-
quality that is equivalent to inequality (A.17):

γ > γmin(ρ), (A.20)

where

γmin(ρ) = λ exp(λ(1 – ρ))/[g(ρ)β – λG(ρ)]. (A.21)

At the plasma boundary (ρ = 1), we have g = 1, G =
0, and γmin(1) = λ/β, so inequality (A.20) takes the form

γ > λ/β. (A.22)

This inequality is usually satisfied for the H-mode. This
indicates that, at the edge, the temperature gradient
exceeds its critical value and the Heaviside function in
this region is equal to unity. 

For sufficiently large values λ > 1, the function
γmin(ρ) increases exponentially toward the plasma cen-
ter; therefore, within a certain magnetic surface of
radius ρ = ρ0, inequality (A.20) should fail to hold. In
the region ρ < ρ0, the Heaviside function is equal to
zero, H = 0, and the temperature profile becomes flatter.
It is obvious that, for this effect to be pronounced, the
magnetic surface ρ0 should occur in the gradient zone
(typically, at ρ = 0.5). This is why we consider the value
of γmin(ρ) precisely at this radius:

(A.23)

For γ < γmin, the temperature profile fails to be stiff.
Hence, the stiffness condition for the profile is given by
the inequality

γ > γmin. (A.24)

The values of the parameters S, given by formula
(A.13), and γmin, given by formula (A.23), depend on
the deposited power profile through the functions g(ρ)

γmin
0.5( ) γmin≡

=  λ λ /2( )/ g 0.5( )β λG 0.5( )–[ ] .exp
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and G(ρ). We consider four characteristic types of pro-
files: a localized profile,

(A.25)

and three power-law profiles,

f = fj = ρ j – 2 (0 < ρ < 1, j = 1, 2, 3). (A.26)

The corresponding functions g(ρ) have the form

gl(ρ) = ρ/ (ρ < ρ0), gl(ρ) = 1/ρ (ρ > ρ0),

gj = ρ j – 1 (0 < ρ < 1, j = 1, 2, 3). 

Note that the dimensionless parameter

ξ = 2P(1)V/Ptot (A.27)

characterizes the deposited power profile and is equal
to zero for a localized profile and to j for power-law
profiles.

Formula (A.23) contains the parameter β. Here, we
assume that the coefficient β is constant over the plasma
cross section and is equal to β = κ/κ0 = 6. Note that this
assumption does not contradict the experimental data.
The value of λ can be estimated with the help of Fig. 4.
For JET discharges, we have Ωc ~ 4, A ~ 3, and, conse-
quently, λ ~ 1.5. The dependence of γmin on the param-
eter ξ for the β and λ values chosen above is shown in
Fig. 16, in which the range γ > γmin corresponds to stiff
temperature profiles. Accordingly, the range γ < γmin is
that of “flexible” profiles. In this case, in the plasma
core, the Heaviside function is equal to zero and
thereby nullifies the term with the critical gradient, so
the profiles in this region are flat.

f f l 1 ρ ρ0<( ),= =

f l 0 ρ ρ0>( ), ρ0 0.1 ! 1,∼=

ρ0
2

8

6

4

2

0

γ

1 2 3
Localized Hyperbolic Flat Increasing

ξ  (deposited power profile)

Flexible
profiles

Stiff profiles

γmin

Fig. 16. Dependence of γmin on the parameter ξ for the
adopted values β = 6 and λ = 1.5.
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Now, we describe the results obtained by numeri-
cally solving Eqs. (67) and (68) with heat fluxes (70).
The central value of the plasma density and its profile
were assumed to be known from experiment. The
results of calculating an H-mode JET discharge (specif-
ically, shot no. 52 022 with I = 2.48 MA, density of

  =  8.93 × 1019 m–3, and PNB = 14.2 MW at the time
t = 60.44 s [25]) are illustrated in the subsequent fig-
ures. Figure 17 shows the calculated and experimental
electron temperature profiles and the profile of the spe-

cific power  deposited in the electrons. We can see
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Fig. 17. Measured and calculated electron temperature pro-

files and profile of the density of the power  deposited
in the electrons for JET shot no. 52022.
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e

e

that the deposited power profile  is peaked at the
plasma edge, because the high pedestal in the plasma
density, nped ~ 5.5 × 1019 m–3, prevents the neutral beam
from penetrating into the plasma core. Figure 18 shows
the profiles of the relative gradients ΩTe, ΩTex, and ΩTc.
It can be seen that, in the region ρ < ρ1 ~ 0.6, ΩTe and
ΩTex lie below that of the critical gradient ΩTc. In this
region, the Heaviside function is equal to zero and the
temperature profile is not stiff.

Hence, experiments confirm the formation of flexi-
ble temperature profiles when the pedestal temperature
is sufficiently high and when the deposited power pro-
files are either flat or peaked at the plasma edge. In turn,
the existence of flexible profiles confirms that there is
no substantial heat pinch.
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Abstract—Results are presented from measurements of the plasma rotation velocity and plasma density fluctu-
ations in the L-2M stellarator by the method of Doppler reflectometry. Specific problems that arise when apply-
ing this diagnostics to the stellarator are revealed. The poloidal plasma velocity at the periphery of the plasma
column is determined. The results of measurements are well reproducible. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, increased interest in anomalous
transport mechanisms in tokamaks and stellarators has
stimulated the development of Doppler [1–5] and cor-
relation [6–8] reflectometry for measuring the plasma
rotation velocity and plasma density fluctuations. In
this paper, we present results from experiments on the
use of Doppler reflectometry in the L-2M stellarator in
the ohmic heating (OH) and electron cyclotron reso-
nance heating (ECRH) regimes. The results of mea-
surements in these two regimes were found to differ
qualitatively. In the course of experiments, some gen-
eral physics and engineering problems, as well as those
1063-780X/05/3107- $26.00 0554
related to the specific stellarator geometry, were
revealed.

2. LAYOUT OF THE DIAGNOSTICS 
AND THE SPECIFIC FEATURES

OF THE STELLARATOR PLASMA GEOMETRY

The geometry and parameters of the L-2M stellara-
tor were described, e.g., in [9, 10]. The diagnostic facil-
ity was mounted in the standard diagnostic cross sec-
tion, where the plasma column was turned by certain
angles with respect to the major and minor axes of the
vacuum chamber (see Fig. 1). The quadrature scheme
of signal detection [1, 11] employed in our experiments
included an 8-mm microwave oscillator (MO) with an
L-2M chamber

Plasma
L

H

F DC1 DC2
FI3

MO
FI1 FI2

D1 D2

Ä2

SCP2SCP1

WA2

WA1

A
D

C

y

x

Ä1

L
H

Fig. 1. Schematic of the reflectometry diagnostics in the L-2M stellarator.
© 2005 Pleiades Publishing, Inc.
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output power of 5 mW, a waveguide transmission line,
two directional couplers (DC1, DC2) with short-cir-
cuited plugs (SCP1, SCP2), two 3-dB attenuators (A1,
A2), and two detector units (D1, D2). Three ferrite iso-
lators (FI1, FI2, FI3) served to suppress standing waves
in the measuring system. The probing microwave beam
was launched into the plasma by a horn antenna (H)
through a teflon lens (L) mounted on the diagnostic port
of the stellarator. The horn–lens system formed a
slightly converging Gaussian beam with a diameter (at
the half-height of the radial power profile) of about
3 cm; the waist of the beam lay at a distance of 20 cm
from the lens. The scattering region was located at a
distance of 6–10 cm from the lens. Provision was made
for linear and angular displacements of the antenna
horn in the toroidal and poloidal directions; for this rea-
son, the transmission line was ended near the horn with
a flexible (annealed copper) waveguide (FW). The horn
was displaced so that its axis always passed through the
center of the diagnostic window. For this purpose, a
laser pointer was used. The microwave beam was inci-
dent normally onto the plasma when the horn axis was
inclined at an angle of about 12° to the horizontal plane
and its projection onto this plane was inclined at an
angle of 12° to the major radius. To suppress the stray
signal from the heating gyrotron radiation, a waveguide
resonance filter (F) with an attenuation of 30 dB at a
frequency of 75.3 GHz was used. The polarization of
the probing radiation in the plasma corresponded to an
ordinary wave. The signals from microwave diodes
were fed to wideband amplifiers (WA1, WA2) with an
amplification factor of 10 and were recorded by a 10-bit
analog-to-digital converter (ADC) with a sampling rate
of 2.5 MHz. The time resolution of the diagnostic sys-
tem was 400 ns.

The use of this diagnostics in the stellarator is ham-
pered by the complicate shape of the stellarator mag-
netic surfaces. It can be seen from Fig. 1 that the pro-
jection of the wave vector of the probing radiation onto
a stellarator magnetic surface depends on both the
poloidal and toroidal tilt angles of the antenna and also
on the radial position of the scattering region. This
makes it rather difficult to determine the components of
the wave vector and complicates the interpretation of
the experiment.

3. MEASUREMENT TECHNIQUES

The diagnostics operated during several experimen-
tal campaigns in the L-2M stellarator under OH and
ECRH conditions. The radial plasma density profile
was measured by an HCN interferometer [12]. Using
the interferometric data, we calculated the location of
the critical plasma density (Fig. 2). The radial and
angular resolutions of the diagnostics were estimated
from the average magnitudes of the plasma parameters
and the widths of their distributions along the ray tra-
jectories calculated with the help of a code developed in
[13]. The microwave beam was modeled by a set
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
(bunch) of elementary beams. When averaging over the
trajectory of an elementary beam, the quantity

1/ , approximately proportional to the
local beam intensity, was used as a weighting function
(here, ωpe is the electron plasma frequency and ω0 is the
probing frequency). Assuming that the spatial distribu-
tion of the magnitudes of plasma density fluctuations
was uniform, this function approximated the intensity
of radiation scattered from an elementary plasma vol-
ume on the beam path. For each trajectory, we also
introduced an additional weighting factor correspond-
ing to the fraction of the incident power carried by an
elementary beam. Estimates showed that the spread in
the poloidal wavenumbers of the probing radiation (i.e.,
the resolution in poloidal wavenumbers) was
(0.15…0.3)k0, depending on the radial plasma density
profile and the angle of incidence of the microwave
beam. The radial size of the scattering region was 0.2–
1 cm. The angular resolution was also estimated exper-
imentally from a change in the reflectometer signal
when varying the antenna tilt angle. Thus, the wave-
form of the recorded signals and their spectrum
changed appreciably when the tilt angle was changed
by 1°–2°. However, the low-frequency spectral compo-
nent corresponding to the radiation reflected from the
plasma disappeared completely only when the devia-
tion of the antenna from its normal position exceeded
8°–12° (depending on the stellarator operating regime).
This is consistent with the above theoretical estimate
for the resolution in poloidal wavenumbers.

The poloidal velocity was calculated by the formula

1 ωpe/ω0( )2
–

v θ ∆f / 2kθ( ),=

0.2

0 0.1

ne, 1013 cm–3

r/rs
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Fig. 2. Radial profiles of the electron density in the quasi-
steady phase of an OH discharge and an ECRH discharge.
The circles show the positions of the critical density nc for
probing frequencies of (1) 30.2 and (2) 34.6 GHz and for an
angle of incidence of the microwave beam of 4°.
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Fig. 3. Scattered spectra for an average plasma density of 1.6 × 1013 cm–3 and probing frequencies of (a) 34.6 and (b) 30.2 GHz in
the OH regime with a plasma current of 21 kA (shot nos. 57 078–57 098). The angle is counted from the normal to the magnetic
surface. The frequency of the complex signal (the difference between the frequency of the scattered signal and the probing fre-
quency) is plotted on the abscissa.
where ∆f is the Doppler shift and kθ is the average
(along the ray trajectory) poloidal component of the
wave vector of the probing wave.

The Doppler shift ∆f was determined from the shift
of the Fourier spectrum of the complex signal [1, 11]

where x and y are the readings of the first and second
channels of the reflectometer (Fig. 1) and i is the imag-
inary unit.

The Doppler shift was also determined from the rate
of change of the phase of the complex signal:

where ∆ϕ is the increment in the argument of z over a
time ∆t.

4. OH REGIME

Experiments in the OH regime were performed at an
average plasma density of 1.6 × 1013 cm–3 and a plasma
current of 21 kA. We used three probing frequencies:
30.2, 34.6, and 35.9 GHz, which corresponded to the

z x iy,+=

∆f ∆ϕ / 2π∆t( ),=
critical plasma densities of 1.1 × 1013, 1.5 × 1013, and
1.6 × 1013 cm–3, respectively.

The scattered spectra were rather simple in structure
and had only one pronounced peak (Fig. 3). The spec-
trum was similar in shape to a Gaussian. When the
antenna was inclined at a small angle with respect to its
normal position, the spectrum also contained an intense
low-frequency component. As the deviation of the
antenna from its normal position increased, the spec-
trum broadened and shifted over frequency nearly in
proportion to the deviation angle. From this shift and
also from the rate of change of the phase of the complex
signal (Fig. 4), we determined the poloidal plasma
velocity (see table). Positive velocities in the table cor-
respond to the drift in an electric field directed toward
the axis of the plasma column.

It can be seen from the table that the poloidal plasma
velocity deduced from the spectral shift differs quanti-
tatively from that deduced from the rate of change of
the phase of the complex signal but has a similar depen-
dence on the antenna tilt angle. The reason for this
quantitative difference is that the spectra are asymmet-
ric and that the location of the scattering region depends
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
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Fig. 4. Phase of the complex signal normalized to the doubled wavenumber of the probing wave in vacuum for probing frequencies
of (a) 34.6 and (b) 30.2 GHz in the OH regime (shot nos. 57078–57098). The time is counted from the beginning of the discharge.
on the tilt angle. The spread in velocities for different
tilt angles characterizes the measurement accuracy and
the spatial resolution of the diagnostics. Judging from
this spread, the calculation of the poloidal velocity from
the spectral shift is more reliable. The monotonic vari-
ation in the phase during a discharge (Fig. 4), as well as
an almost linear dependence of its growth rate on the
antenna tilt angel, indicates the correct and rather reli-
able operation of the diagnostics and allows a relatively
simple interpretation of the results obtained. This is
also confirmed by the change in the sign of the phase at
a certain tilt angle. Since the shape of a stellarator mag-
netic surface depends on its average radius, this angle is
different for different probing frequencies (different
probing radii). Thus, for a frequency of 34.6 GHz, this
angle is 0°–1°, whereas for 30.2 GHz it lies within the
interval from –2° to –1°.
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
5. ECRH REGIME
ECRH experiments were performed at average

plasma densities of 1.6 × 1013 and 2.5 × 1013 cm–3 and
heating powers of 190 and 300 kW, respectively.

Typical spectra of the complex signals are shown in
Fig. 5. These spectra differ markedly from those
observed in the OH regime. Typically, the spectrum has
three local maxima (peaks): one lies near the zero fre-
quency, and two others are shifted almost symmetri-
cally from the zero frequency by 100–200 kHz. As the
antenna tilt angle varies within ±4°, only the magni-
tudes of these three peaks change, whereas their posi-
tions vary only slightly. At large deviations of the
antenna from its normal position, a considerable frac-
tion of the spectrum falls in the high-frequency range.
Only the two side peaks shift over frequency (the shift
not being proportional to the angle of incidence of the
Poloidal plasma velocities calculated from the growth rate of the phase of the complex signal and from the shift of the scat-
tered spectrum in the OH regime for an average plasma density of 1.6 × 1013 cm–3 and a plasma current of 21 kA (shot
nos. 57078–57098)

34.62-GHz probing frequency 30.20-GHz probing frequency

antenna tilt angle, 
degree

poloidal velocity, 105 cm/s antenna tilt angle, 
degree

poloidal velocity, 105 cm/s

from phase from spectrum from phase from spectrum

12 3.7 5.0 12 5.0 8.4

4 1.9 5.0 4 5.2 7.0

2 0.87 4.3 2 7.2 9.4

0 0.49 – 0 11 1.5

–2 1.59 3.8 –2 0.27 –

vθ = (4.5 ± 0.6) × 105 cm/s vθ = (8.3 ± 1.0) × 105 cm/s
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different antenna tilt angles (shot nos. 57 371–57 396). The spectra were measured over the time interval 58–59 ms after the begin-
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n

probing beam onto the plasma), while the central (low-
frequency) component of the spectrum changes only
slightly. This indicates that the formation of the central
component is apparently unrelated to the backscatter-
ing of the microwave beam by small-scale fluctuations
drifting in the poloidal direction. The presence of this
component may be attributed to the finite width of the
directional pattern of the horn antenna and the large
curvature of the magnetic flux surfaces. Under these
conditions, a fraction of the probing radiation is always
reflected backward to the antenna. This is also con-
firmed by ray-tracing calculations. Thus, the central
component is merely stray radiation and must be
ignored when calculating the poloidal plasma velocity
from the shift of the spectrum. For the same reason, we
failed to determine the poloidal plasma velocity from
the growth rate of the phase of the complex signal
because its time behavior was irregular. To eliminate
the stray component, the spectra were approximated by
a sum of Lorentzian functions (see Fig. 6) and only the
satellites were taken into account in calculating the
shift of the spectrum. We analyzed various versions of
calculating this shift. The most reliable (stable) results
were obtained when the Doppler shift was calculated
by the formula

where fs = 2.5 MHz is the ADC sampling rate and A( f )
is the absolute value of the Fourier component (in our
case, the value of the approximating Lorentzian func-
tion). Figure 7 shows the frequency shifts calculated in
this way for several instants during a stellarator dis-
charge. It can be seen from Fig. 7 that the frequency
shift varies over a wide rage with time and that the Dop-
pler shift is not proportional to the antenna tilt angle.
The radial location of the scattering region was esti-
mated using the ray-tracing method. The estimates
show that, when the axis of the probing beam is
inclined at an angle of 12°–18° with respect to the nor-
mal to the magnetic surface, the reflection region is dis-
placed by 3–5 mm toward the plasma boundary. The
change in the frequency from 34.6 to 30.2 GHz corre-
sponds to a displacement of 10–12 mm. Figure 8 shows
the velocities calculated for small (±4°–5°) and large
(12°–18°) antenna tilt angles for two probing frequen-
cies. It can be seen that the velocity decreases toward

∆f f A
2

f( ) f / A
2

f( ) f ,d

f s/2–

f s/2

∫d

f s/2–

f s/2

∫=
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the plasma boundary. Figure 9 shows the time evolution
of the radius of the critical surface for the same shots as
in Fig. 8. The relative position of the critical surface
was determined with the help of the reflectometer at
small angles of incidence of the probing beam, whereas
the absolute position was determined with the help of
an HCN laser interferometer. A comparison of Figs. 8
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Fig. 7. Doppler shift of the scattered spectra for different
antenna tilt angles for a probing frequency of 34.62 GHz,

 = 1.6 × 1013 cm–3, and PECRH = 190 kW (shot
nos. 57390–57396). The shift is averaged over two shots
for each angle.
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and 9 shows that the poloidal plasma velocity varies
both when the density profile is quasi-steady (the veloc-
ity increases by the end of the heating pulse) and when
it varies. The latter may be related to the radial displace-
ment of the scattering region. Figure 10 shows the time
evolution of the poloidal plasma velocity in a stellarator
discharge with a higher plasma density and higher heat-
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Fig. 8. Poloidal plasma velocities measured at four different
radii for  = 1.6 × 1013 cm–3 and PECRH = 190 kW (shot
nos. 57 371–57 396). The position of the scattered region is
varied by varying the probing frequency and the antenna tilt
angle.

n
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Fig. 9. Time evolution of the radial position of the critical surface calculated from the interferometric (squares) and reflectometric
data for two probing frequencies (shot nos. 57371–57396). The reflectometric data are normalized to the interferometric data at t =
60 ms; rs is the radius of the last closed magnetic surface.
ing power. It can be seen that, in this case, the spa-
tiotemporal behavior of the poloidal velocity remains
qualitatively the same as in the previous case.

Unfortunately, the very large plasma density gradi-
ent in the edge plasma and an insufficiently high accu-
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Fig. 10. Poloidal plasma velocities measured at three differ-
ent radii for  = 2.5 × 1013 cm–3 and PECRH = 300 kW (shot
nos. 57 498–57 520). The position of the scattered region is
varied by varying the probing frequency and the antenna tilt
angle.

n

racy of measurements of the plasma density profile (see
Fig. 9) did not allow us to exactly determine the loca-
tion of the scattering region and the corresponding
poloidal wavenumbers of the scattered radiation. The
measured poloidal velocities, as well as probe measure-
ments, show the presence of a strongly inhomogeneous
radial electric field (i.e., a large velocity shear) in the
edge plasma. It is interesting that, according to our
measurements, the sign of the velocity shear is different
in the OH and ECRH regimes. Another problem
(already mentioned in this paper) is that the mechanism
for the formation of the recorded spectrum is not yet
completely understood. It is likely that the antenna
receives not only the backscattered radiation, but also
the radiation repeatedly reflected from the plasma and
the construction elements of the stellarator chamber.
Note that the reflected radiation provides information
about radial plasma fluctuations (in particular, fluctua-
tions of the critical surface).

6. CONCLUSIONS

Our experiments have demonstrated the possibility
of using Doppler reflectometry in the L-2M stellarator.
The time evolution of the poloidal velocity in the edge
plasma has been measured in the OH and ECRH
regimes at several different radii. An analysis of the
scattered spectra has shown that the plasma density
fluctuations and the radial profile of the poloidal plasma
velocity in these two regimes differ qualitatively.
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
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The experiments have revealed that the use of this
diagnostics in L-2M is hampered by the complicated
topology of the stellarator magnetic field and by the
presence of strong spatial inhomogeneities of the elec-
tric field and plasma density in the edge plasma.
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Abstract—Conditions are considered under which quasi-two-dimensional extended structures are formed con-
sisting of charged dust grains that are suspended in a gravitational field by an external electric field. Formulas are
derived that describe the relationships between the parameters of the intergrain interaction potential, the number
of dust grains, and the gradients of the linear electric field of the device. A criterion is proposed that determines
the onset of a new dust layer in a quasi-two-dimensional dust system. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Laboratory plasma, with its unique features, is an
excellent experimental model for studying the proper-
ties of a strongly nonideal plasma and for providing a
deeper understanding of the processes of the self-orga-
nization of matter in nature. Most of the experiments on
the properties of dusty plasmas are carried out with dis-
charges in gases (usually, in noble gases) at pressures P
of 0.03–3 torr [1–7]. Such a plasma is a partially ion-
ized gas in which the ion temperature (Ti ~ 0.03 eV) is
much lower than the electron temperature (Te ~ 1–7 eV)
and the ion and electron densities, ni and ne, are on the
order of 108–109 cm–3. The radii of the dust grains that
are usually used in terrestrial laboratory experiments lie
in the range ad = 0.5–5 µm, and the radii of the polymer
or glass spherical grains are ad ≈ 30–40 µm. Owing to
the high electron mobility, nonemitting dust grains
introduced into a gas-discharge plasma acquire a sub-
stantial negative charge of Zd ≈ (2–4)adTe/e2 (about
103–105 times the elementary charge e) and can form
liquid-like or solid-like quasi-steady dust structures
with a dust number density nd of 103–105 cm–3. Depend-
ing on the experimental conditions, such structures
either can be nearly uniform three-dimensional config-
urations or can be strongly anisotropic one-dimensional
or quasi-two-dimensional configurations similar, e.g.,
to the chains of dust grains observed in a dc glow dis-
charge plasma [6, 7] or to individual dust layers (usu-
ally, from one to ten layers) observed in the electrode
region of an rf discharge [1–4, 8]. (For fixed discharge
parameters, the maximum number of dust layers
depends on the number of grains introduced into the
discharge and on their equilibrium density within the
layer.) The formation of such one-dimensional or
quasi-two-dimensional structures is largely governed
by the anisotropic nature of the distribution of electric
fields in a (usually cylindrical) gas-discharge chamber.
1063-780X/05/3107- $26.000562
Gas-discharge chambers are widely used to study
the properties of a dusty plasma because the electric
fields in them are capable of suspending negatively
charged grains in the Earth’s gravitational field and of
confining grains in the radial direction (perpendicular
to the gravitational field). Since discharges in noble
gases are usually dominated by ambipolar diffusion
processes, the gas-discharge plasma has a small excess
of positive charge (δn = (ni – ne) > 0, δn/ni u10–2),
which balances the repulsion between negatively
charged grains [9]. In dc discharges, a radial electric
trap confining a cloud of dust grains in a direction per-
pendicular to the Earth’s gravitational field is formed at
the expense of the space charge distribution of plasma
electrons and ions that is established as a result of their
ambipolar diffusion toward the wall of the gas-dis-
charge chamber. In gas-discharge chambers for initiat-
ing rf capacitive discharges, the rf electrodes are often
positioned at fairly large distances from the chamber
wall; this is why, in such discharges, a radial trap is
formed by using a lower electrode that has a dip on its
surface or is equipped with a metal ring several milli-
meters in height [1–4]. Experimental investigations
show that, in the axial region of a gas-discharge cham-
ber, r < 0.6R*, the radial electric field strength E(r)
depends almost linearly on the distance r from the axis,
whereas, at shorter distances from the chamber wall, it
obeys the dependence E(r) ∝  r3 [10] (here, R* is a char-
acteristic spatial scale of the device, e.g., the radius of
the electrode above which the dust grains are sus-
pended or the radius of the gas-discharge tube). The
grains are suspended in the positive space charge sheath
just above the lower electrode (in an rf capacitive dis-
charge plasma) or in the electric field of a striation (in a
dc glow discharge plasma), mainly at the expense of the
balance between the gravitational and electric forces.
The role of other forces (namely, the thermophoretic
force and the ion drag force) in the formation of a trap
for negatively charged dust grains was considered in a
 © 2005 Pleiades Publishing, Inc.
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number of theoretical papers, where it was shown that,
in most terrestrial laboratory experiments with dusty
plasmas, the balance of forces acting in the system is
almost completely governed by the electric field of the
space charge of the surrounding plasma and by the
gravitational force mdg [10, 11].

It is now generally accepted that the dust grains in a
plasma interact through a screened Coulomb potential
U = (eZd)2exp(–l/λ)/l (where l is the distance and λ is
the screening length). This suggestion is well supported
by the data from measurements of the radial interaction
forces between two dust grains in an rf discharge cham-
ber [12] and also by the results of numerical calcula-
tions of the structure of the screening cloud [13] at
small distances from the grain, l < 4–5λD (where λD is
the Debye length). The larger the distance l from the
grain, the weaker the screening effect; at distances l @
λD, the potential U(l) behaves as a power function, U ∝
l–2 [14]. Existing studies deal with solitary grains in a
plasma. For extended plasma–dust structures, the pair
additivity principle, which implies that the interaction
potential in a system of particles is the sum of the
potentials of interaction between two particles in iso-
lated pairs, can fail to hold because of the processes that
affect the spatiotemporal distribution of the grain den-
sity, i.e., various collective effects, perturbations of the
external fields, etc. There is as yet no final explanation
of how the shape of the intergrain interaction potential
U(l) is affected by the presence of other particles in a
dust cloud, ionization processes in the surrounding
plasma, collisions of electrons and ions with the neutral
gas particles, and a host of other factors. The only way
to solve this problem is to use model interaction poten-
tials that should be modified to best fit those under
actual experimental conditions (and, accordingly, can
be checked experimentally by comparing theoretical
predictions with the measurement data).

Based on an analytic model, Hebner et al. [15] con-
structed the equation of state for a quasi-two-dimen-
sional crystal of dust grains interacting by means of a
screened Coulomb potential in the linear electric field
of a radial trap. The model proposed in that paper made
it possible to determine the relationship between the
gradient of the radial electric field, the number of dust
grains, and the parameters of the intergrain interaction
potential and to achieve good agreement between the
calculated parameters of a dust layer forming in the
electrode sheath of an rf discharge and the experimental
data. This model has a number of drawbacks, however.
Thus, its predictions are in rather poor agreement with
the results of numerical simulations of systems in
which the dust grains interact through a screened poten-
tial (Yukawa systems) such that κ < 1, where κ = ld/λ is
the screening parameter and ld is the characteristic dis-
tance between the grains [16]. This model is also inca-
pable of predicting the onset of a new dust layer in the
system under analysis.
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
The processes of the formation of extended layers of
dust grains interacting through a screened potential in a
gravitational field and a one-dimensional linear electric
field were investigated by Totsuji et al. [17]. They
found that a new dust layer forms when the dust density
(the number of grains) in the original layer grows, the
electric field gradient becomes gentler, and the screen-
ing length and dust charge increase. However, they did
not propose an analytic condition that would combine
these parameters into a criterion for the formation of a
new dust layer.

2. TWO GRAINS

Before proceeding to an analysis of the formation of
extended dust structures, we consider the problem
about a horizontal or a vertical stable position of a pair
of interacting dust grains of equal mass md and equal
negative charge Q = –eZd, staying in a cylindrical trap a
distance l from one another, in a gravitational field and
in a linear electric field E(r, z) with a radial component

Er = αr and a vertical component Ez =  + βz (see
Fig. 1). Here, r ≡ (x 2 + y 2)1/2 is the radial coordinate,
z  is the vertical coordinate in the direction of the grav-
itational field, α and β are the electric field gradients,

and the field  is determined by the balance of the
forces acting in the system. Analogous investigations
were carried out by Vladimirov and Samarian [18],
who, however, gave no insight into some important
aspects of the stability of a vertical and a horizontal
configuration of two grains.
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r r
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ld

Er Er

Ez

r r
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mdg mdg

(‡) (b)

Fig. 1. Schematic illustration of (a) a vertical and (b) a hor-
izontal configuration of two grains in the field of a trap.



564 VAULINA et al.
We denote by U12 the potential of the force exerted
on the first grain by the second one (the potential of the
force exerted on the latter by the former being U21,
accordingly), so this force is equal to F21 = –dU21/dl
(the force acting on the second grain being F12 =
−dU12/dl). For an isotropic pair interaction, we have
U12 = U21 and F21 ≡ F12; in the case of attractive inter-
action, the forces F21 and F12 are positive. The pair
interaction can be anisotropic (F21 ≠ F12) in a vertical
configuration of two grains in the electrode sheath of an
rf discharge because of the attractive forces associated
with ion focusing effects [19, 20].

We assume that, in the field of the trap, a vertical
configuration of two dust grains separated by a distance
l from one another is stable (Fig. 1a). Under this
assumption, we consider the response of the system to
small deviations (r1, z1) and (r2, z2) of grains 1 and 2
from their equilibrium positions in the z direction,

(1‡)

(1b)

and in the radial direction,

(2‡)

(2b)

Here, νfr is the grain friction coefficient. The equations
describing the response of a horizontal configuration of
two grains to their deviations from equilibrium posi-
tions can be written in a similar form. (To do this, in
Eqs. (1a) and (1b), the derivatives dF21/dl and dF12/dl
should be replaced by the ratios F21/l and F12/l and,
accordingly, in Eqs. (2a) and (2b), the ratios F21/l and
F12/l should be replaced by the derivatives dF21/dl and
dF12/dl.) Thereby, the investigation of the stability of
the two (vertical and horizontal) configurations of a
pair of grains can be reduced to an analysis of the sta-
bility problem given by the following set of ordinary
differential equations:

d2r1/dt2 = –νfrdr1/dt + a11r1 + a12r2, (3)

d2r2/dt2 = –νfrdr2/dt + a22r2 + a21r1, (4)

where aij are the corresponding coefficients of the terms
describing the radial (r1, r2) and vertical (z1, z2) dis-
placements of the grains. Note that a number of prob-
lems about the stable position of grains in an extended
dust cloud can be reduced to differential equations sim-
ilar to Eqs. (3) and (4) [21]. A dust system described by
Eqs. (3) and (4) can become unstable because of the

mdd
2
z1/dt

2
mdνfrdz1/dt– eZdβz1–=

+ z1 z2–( )dF21/dl,

mdd
2
z2/dt

2
mdνfrdz2/dt– eZdβz2–=

+ z2 z1–( )dF12/dl,

mdd
2
r1/dt

2
mdνfrdr1/dt– eZdαr1–=

+ r1 r2–( )F21/l,

mdd
2
r2/dt

2
mdνfrdr2/dt– eZdαr2–=

+ r2 r1–( )F12/l.
onset of dissipative or dispersive instabilities, whose
development depends on the sign of the quantity

δ = (a22 – a11)2 + 4a12a21. (5)

The condition for the onset of a dissipative instability
(δ > 0) can be written as

(a22 + a11) + {(a22 – a11)2 + 4a12a21}1/2 > 0. (6)

A dispersive instability develops when δ < 0, or, equiv-
alently, under the condition

–2(a22 + a11)  + (a22 – a11)2 + 4a12a21 < 0. (7)

Let us examine the stability of a vertical and a hori-
zontal configuration of two grains by substituting the
values of the corresponding coefficients aij into condi-
tions (6) and (7). Since, in the problem in question, the
quantity δ is always positive, the dispersive instability
can be excluded from consideration. As for the origi-
nally equilibrium vertical grain configuration described
by Eqs. (1a) and (1b) (see Fig. 1a), it may be subject to
a dissipative instability under the condition

eZdβ – d(F21 + F12)/dl < 0. (8)

This condition implies that, being slightly displaced
(∆z ! l) from its equilibrium position in the z direction,
the grain does not experience a restoring force. In the
problem given by Eqs. (2a) and (2b), the condition for
the onset of a dissipative instability can be written in the
form

eZdα – (F21 + F12)/l < 0. (9‡)

Under this condition, a charged grain that undergoes
radial displacement does not experience a restoring
force; accordingly, a vertical configuration of dust
grains changes into a qualitatively new one—a horizon-
tal stable configuration. With allowance for the fact
that, according to the balance equations for the electric
forces in a gravitational field, the distance between the
grains in a vertically oriented configuration is equal to
l = (F12 + F21)/(β|eZd |), condition (9a) takes the form

α < β. (9b)

An analysis of the above relationships shows that
two dust grains experiencing an attractive force, F12 +
F21 < 0, can form a vertical configuration only for β <
0. Such a situation is unlikely to occur in the electrode
region of an rf discharge, but it can take place in a dc
discharge. Since the gas-discharge plasma in this case
is usually electropositive (δn = (ni – ne) > 0, — · E > 0),
we can readily see that, for a cylindrical trap, the fol-
lowing inequality should hold:

2α + β > 0. (10)

For an initially equilibrium horizontal configuration
of dust grains (see Fig. 1b), the conditions for the onset
of a dissipative instability have the form

eZdα – d(F21 + F12)/dl < 0, (11)

eZdβ – (F21 + F12)/l < 0. (12‡)

νfr
2
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Since, for such a configuration, the distance between
two grains can be expressed as l = (F12 + F21)/(α|eZd |),
condition (12a) can be rewritten as

α > β. (12b)

Condition (11) implies that a grain that is displaced
from its equilibrium position in the radial direction
(∆r ! l) does not experience a restoring force. Condi-
tion (12a) describes a qualitative change of a horizontal
configuration of dust grains into a new (vertical) stable
configuration. In the presence of an attractive force
between two grains, F12 + F21 < 0, the configuration can
be horizontal only when α < 0. This indicates that the
radial electric field is negative, which is impossible in
discharges dominated by ambipolar plasma diffusion.

Hence, the conditions for the existence of a certain
equilibrium configuration of two interacting dust grains
are independent of the shape of the potential of pair
interaction between them. The stability criterion for a
vertical configuration of two grains can be written as
β < α; the opposite inequality, β > α, is the stability cri-
terion for a horizontal configuration. These consider-
ations are confirmed by numerical simulations. When
the linear field gradients are the same, α = β, the two
configurations in question are neutrally stable. Numer-
ical simulations with α = β show that the system will
not reach a steady state but rather will undergo a con-
tinuous sequence of bifurcations.

3. FORMATION 
OF A QUASI-TWO-DIMENSIONAL 

DUST LAYER IN A LINEAR ELECTRIC FIELD

It was pointed out above that, in numerical and lab-
oratory experiments, a new dust layer forms when the
vertical electric field gradient becomes gentler, the dust
density grows, and the screening length and dust charge
increase. Hence, when these parameters change, the
configuration of a dust cloud can lose its stability and
can evolve into a new stable configuration having a dif-
ferent number of dust layers. The stability problem for
a uniform dust layer in a linear electric field can be
solved in much the same way as the problem of the sta-
bility of a horizontal configuration of two dust grains.
For a system with an isotropic pair interaction, the con-
dition for the position of an individual grain 1 in a sin-
gle dust layer to become unstable can be written in a
form analogous to condition (12a):

(13)

where Fi is the force of interaction between two dust
grains separated by distance li (i = 1–Nd, with Nd being
the total number of grains).

Let us consider a discrete problem for a plane
extended crystalline system of dust grains interacting

eZdβ 2 Fi li( )/li[ ]
i 1=

Nd

∑– 0,<
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by means of a screened Coulomb potential. We assume
that the system is axisymmetric and that the probability
for a second grain to occur at the distance lj = jld from
a first one is equal to 2πjld/N, where ld is the character-
istic distance between two neighboring grains and N =
R/ld ∝  (Nd/π)1/2 is the number of characteristic dis-
tances along the radius R of the dust layer. Such a sys-
tem can be regarded as being extended if N @ 2 or,
accordingly, if Nd @ 4π. In this case, the second term in
condition (13) can be written approximately as

(14)

where κ = ld/λ is the characteristic value of the screen-

ing parameter, j = 1–N, and the coefficient 1/
accounts for the probability for the grains to be dis-
placed from the position of the center of mass of the
dust layer. Since the sum of the series in relationship
(14) cannot be represented by a single analytic expres-
sion, we introduce the notation

ΣE(N, κ) ≡ 

and rewrite condition (13) for the formation of a new
(second) dust layer in the form

β < 4πeZdΣE(N, κ)/( ). (15)

Note that condition (15) also holds for a nonlinear
electric field distribution Ez, provided that the quantity
β is understood as the gradient of this field at the posi-
tion where the dust layer is suspended. For a linear
dependence of the field Ez on the z coordinate, condi-
tion (15) can easily be rewritten in a form suitable for
describing the onset of any new layer of dust grains
regardless of the initial number of dust layers. For
instance, the criterion for the formation of a third layer
in an equilibrium configuration consisting of two dust
layers can be obtained by taking the sum of the gradient
β in inequality (15) and the quantity (βlc/λ) ≡
−(2dFc/dlc)/ |eZd |. Here lc is the distance between the
neighboring layers and Fc is the force exerted by one
dust layer on the dust grains of another layer. For a uni-
form extended layer of dust grains interacting through
a Yukawa potential, this force can be written as Fc =
2π(eZd/ld)2exp(–lc/λ); in this case, the distance
between the layers can be obtained from the relation-
ship lc = 2Fc/(β|eZd |).

For the values of the screening parameter such that
κ > 2–3, which are typical of most terrestrial experi-
ments with dusty plasmas, it is sufficient to take into
account only the first term in the sum ΣE(N, κ). In this

2 Fi li( )/li[ ]
i 1=

Nd

∑

≈ 4π eZd( )2
1 jκ+( ) κ j–( )/ j

2
exp[ ] / 2ld

3( ),
j 1=

N

∑

2

1 jκ+( ) κ j–( )/ j
2

exp[ ] ,
j 1=

N

∑

2ld
3
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case, condition (15) can be rewritten in a simple ana-
lytic form,

β < 4πeZd(1 + κ)exp(–κ)/( ). (16)

For a fairly extended, radially bounded, equilibrium
dust layer in the form of a disk, the relationship
between the radial gradient α of the external electric
field and the parameters of the intergrain interaction
potential can be obtained from the equation of state of
the layer,

(17)

The left-hand side of this equation is a virial
describing the action of the external forces on the ith
grain at the radial position ri , and the right-hand side is
the sum of the kinetic energy of a two-dimensional
grain system and the virial of the intergrain interaction
forces.

For a circularly symmetric crystalline dust layer in
which the grains do not execute thermal motion (Td 
0), this equation has the form

(18)

Using analytic expressions for the sums in this equa-
tion, we can write the radial charge gradient as

(19‡)

If we then introduce the notation ΣW(N, κ) for the factor
that depends on the parameters N and κ, we obtain

α ≈ 2πeZdΣW(N, κ)/ . (19b)

For a system of grains interacting by means of a Cou-
lomb potential (κ  0), relationship (19a) reduces to

(20)

and, for Nκ @ 1, it becomes

(21)

If the characteristic distance ld is approximately equal
to the most probable distance lm between the neighbor-

2ld
3

αri
2
/2

i 1=

Nd

∑ 2NdTd Nd Fili[ ] /4.
i 1=

Nd

∑+=

2παeZd j
3
ld

2
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N

∑

≈ πNeZd( )2
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  .≈
ing grains at the points of a hexagonal lattice, ld ≈ lm =

[2πR2/(Nd )]1/2, then we have (N – 1)2 ≈ R2/  =

/(2π) and formula (21) corresponds to the rela-
tionship that was proposed in [15] for the radial charge
gradient in a disk-shaped dust cloud. If the characteris-
tic distance ld is close to the mean intergrain distance 〈l 〉
(ld ≈ 〈l 〉  = (S/Nd)1/2, where S = πR2 is the area of the
structure), then we have (N – 1)2 ≈ Nd/π. In both these
cases, expression (21) has a singularity at κ  0.
Accordingly, when this formula is used for small values
of the screening parameter, κ < 0.1, it produces signifi-
cant errors and leads to a deviation, δ, from the results
of solving the problem numerically (for κ  0.02, the
deviation is as large as δ  50–100%) [16]. Hence,
for small values of the screening parameter (κ < 0.1), it
is necessary to utilize a more exact formula (19a).

As a result, for a uniform quasi-two-dimensional
system, condition (15) for the formation of a new dust
layer can be represented as

β < α ΣE(N, κ)/ΣW(N, κ) ∝  α/Nd. (22)

For the range κ > 2–3, the rapid convergence of the
above series expansions allows this condition to be
rewritten in the form

β < α π/Nd. (23)

We conclude this section with the following remark.
Numerical simulations of quasi-two-dimensional
finite-size dust structures in a linear electric field show
that the mean distance between the grains changes
(increases) in the radial direction (from the center of the
dust disk toward its edge) [16]. A similar situation is
observed in laboratory experiments [15]. Hence, crite-
rion (22) for the formation of a new dust layer should
be modified to include the nonuniformity of the dust
density distribution within the system. This can be done
with the help of numerical simulations.

4. SIMULATION OF THE DYNAMICS 
OF THE FORMATION

OF QUASI-TWO-DIMENSIONAL
DUST STRUCTURES

The conditions for the formation of quasi-two-
dimensional dust structures were investigated by the
molecular dynamics method based on solving a set of
ordinary differential equations that consists of Nd equa-
tions of motion (where Nd is the number of grains) and
takes into account the Langevin force Fbr, which drives
the grains into stochastic (thermal) motion with a given
kinetic temperature Td. In numerical simulations,
account was taken of the pair intergrain interaction
force Fint, the external electric forces Fext = eZdE(r, z) of
a cylindrically symmetric trap, and the gravitational

3 ld
2

3Nd

2

2
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force |Fg | = mdg acting on the grains in a dust cloud in
the z direction,

(24)

where l = |lk – lj | is the intergrain distance, Fint(l) =
−eZd∂ϕ/∂l, and ϕ = eZdexp(–l/λ)/l is the screened Cou-
lomb potential.

The problem given by Eqs. (24) was solved numer-
ically for two different cases: (i) for a system bounded
in the radial direction by the linear electric field Er =
αr ≠ 0 and (ii) for a uniform extended dust layer with
periodic boundary conditions in the x and y directions
(Er = 0). In both cases, the grains were assumed to be
suspended in a gravitational field Fg = mdg by a linear

electric field Ez =  + βz (where  = mdg/(eZd)) and
the kinetic temperature of the grain was chosen so that
the coupling parameter of the system satisfied the ine-
quality Γ* = (eZd)2(1 + κ + κ2/2)exp(–κ)/(ldTd) @ ,

where  = 106 is the melting point of a three-dimen-
sional Yukawa system [22].

In the first series of simulations (Er ≠ 0), the number
of grains Nd was varied from 125 to 2500, the screening
parameter was varied from 0 to about 9, and the exter-
nal electric field gradients α and β were varied from
~100 V/cm2 to ~10–4 V/cm2. The formation of a new
layer in a finite-size dust system is illustrated in Fig. 2,
which shows the positions of the grains calculated for

β i βc ≡ 4πeZdΣE(N, κ)/( 〈l 〉3) (see condition (15)),
β = 0.8βc, and β = 0.45βc. We can see that the formation
of a new layer begins with the separation of grains in
the central region of the structure. As the parameter β
further decreases, the structure evolves into two para-
bolic layers consisting of approximately the same num-
ber of grains.

An analysis of the numerical results shows that, in
this case, the condition for the formation of a new dust
layer is close to condition (15) and the best agreement
between the analytical and numerical results is
achieved when the characteristic distance between the
grains is chosen to be equal to the mean intergrain dis-
tance, ld = 〈l 〉  ≡ (πR2/Nd)1/2 (see Fig. 3). It was also
found that formula (19a) describes well the relationship
between the number of grains in the system and the
radial electric field gradient; in this case, however, the
characteristic distance between the grains in the layer is
determined by the most probable distance between

them, ld = lm ≡ [2πR2/(Nd )]1/2 (see Fig. 4). The fact
that approximating formulas (15) and (19a) should be
used with different characteristic intergrain distances
stems primarily from the aforementioned nonunifor-
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mity of the dust density in the linear electric field of a
cylindrical trap. This is why the relationship between
the electric field gradients that corresponds to the con-
ditions for the formation of a new layer in a quasi-two-
dimensional dust system bounded by external radial
electric fields differs from condition (22) and can be
written as

(25)

For κ > 2–3, we can take into account only the interac-
tion between the nearest neighboring grains (see
Figs. 3, 4) and reduce condition (25) to

(26)

β α 2ΣE N  = Nd/π( )1/2
,(<

κ  = l〈 〉 /λ ) /ΣW N  = 3Nd/2π( )1/2 κ  = lm/λ,( ).

β α2 2π 1 l〈 〉 /λ+( )<

× l〈 〉 /λ–( )/ 3Nd 1 lm/λ+( ) lm/λ–( )exp( ).exp

(‡) (b)

(c)

(d)

Fig. 2. Schematic illustration of the formation of a new
layer in a finite-size system of grains for Nd = 125 and κ =
0: (a) the top view of the grain system for β i βc and a cross
section of the system along its axis for (b) β i βc, (c) β =
0.8βc, and (d) β = 0.45βc.
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Fig. 3. The ratio of the vertical electric field gradient β on
the line of the formation of a new dust layer in a finite-size
dust system to the analytic parameter βc defined by βc =

4πeZdΣE(N, κ)/( ) (circles), according to condition

(15), and by βc = 4πeZd(1 + κ)exp(–κ)/( ) (trian-
gles), according to condition (16), as a function of the
screening parameter κ = 〈l 〉/λ.
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(a) (b)

(c)

(d)

Fig. 5. Schematic illustration of the formation of a new
layer in a uniform system of grains for Nd = 100 and κ ≈ 0.6:
(a) the top view of the grain system for β i βc and a cross
section of the system along its axis for (b) β i βc, (c) β =
0.8βc, and (d) β = 0.45βc.
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Fig. 6. The ratio of the vertical electric field gradient β on
the line of the formation of a new dust layer in a uniform
extended dust system to the analytic parameter βc defined

by βc = 4πeZdΣE(N, κ)/( ) (circles), according to

condition (15), and by βc = 4πeZd(1 + κ)exp(–κ)/( )
(triangles), according to condition (16) as a function of the
screening parameter κ = 〈l 〉/λ.
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Fig. 4. The ratio of the radial electric field gradient α on the
line of the formation of a new dust layer in a finite-size dust
system to the analytic parameter αc defined by αc =

2πeZdΣW(N, κ)/  (circles), according to relationships (19a)

and (19b), and by αc = 2πeZd(1 + κ)exp(−κ)/( )

(triangles) as a function of the screening parameter κ =
lm/λ.
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The equilibrium processes occurring in one-dimen-
sional and three-dimensional extended dust systems are
modeled by imposing periodic boundary conditions in
the x, y, and z directions. In this case, the intergrain
interaction potential is often cut off at a distance l = lcut,
which is determined by the condition for an electrically
neutral system to be perturbed only slightly. Such a sys-
tem has an excess of positive energy and the relevant
problem is equivalent to that of the confinement of dust
grains in a trap created by external electric fields or by
other forces ensuring that a constant number of grains
are trapped within a volume V at a pressure P [23], in
accordance with the virial equation for the external
forces.

Recall that we simulated a uniform extended dust
layer by imposing periodic boundary conditions only in
the x and y directions and by assuming that a gravita-
tional force mdg acting on the grains in the z direction
is balanced by the electric field force. The number of
independent grains Nd in a computational cell was var-
ied from 50 to 1000, the screening parameter κ was var-
ied from about 0.6 to about 6, the cutoff distance for the
interaction potential lcut was varied from 5〈 l 〉  to 25〈 l 〉 ,
and the external electric field gradient β was varied
from about 100 V/cm2 to about 10–2 V/cm2. In contrast
to the formation of quasi-two-dimensional dust struc-
tures in a radial electric field, the characteristic inter-
grain distance was found to be the same for all grains
(the crystalline grain structure corresponds to a regular
hexagonal lattice) and the separation of one dust layer
into two similar layers (with a regular hexagonal struc-
ture) was found to occur simultaneously over the entire
area of the computational cell (see Fig. 5). The relation-
ship between the parameters of the system under the
conditions of the formation of a new dust layer is shown
in Fig. 6. The results obtained agree with those calcu-
lated for a nonuniform dust layer bounded by a radial
electric field. Hence, in both cases, the criterion for the
formation of a new dust layer is represented by condi-
tion (15) in which the characteristic distance between
the grains is close to the mean distance between them:
ld = 〈l〉 ≡ (S/Nd)1/2, where S is the area of the computa-
tional cell in the case of an extended system or S = πR2

is the area of a disk-shaped structure with a finite
radius R.

5. CONCLUSIONS

We have considered the conditions for the existence
of a vertical and a horizontal equilibrium configuration
of a pair of interacting dust grains in the Earth’s gravi-
tational field and in the external electric field of a trap
and have found that these conditions are independent of
the shape of the potential of pair interaction between
the grains and are governed exclusively by the relation-
ship between the gradients of the external electric field.
We have shown that it is the onset of dissipative insta-
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
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bility that causes one configuration of two grains to
change into another configuration.

We have analyzed the conditions for the formation
of quasi-two-dimensional extended layers of charged
dust grains that are suspended in a gravitational field by
an external electric field and have determined the rela-
tionships between the parameters of the intergrain
interaction potential, the number of grains, and the gra-
dients of the linear electric field in the trap. We have
also proposed a criterion for the onset of a new dust
layer in a quasi-two-dimensional system of dust grains.
The results obtained can readily be generalized to any
modified analytic pair interaction potential and may be
useful for passive diagnostics of the intergrain interac-
tion parameters in quasi-two-dimensional structures
forming in the electrode sheath of an rf discharge.
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Abstract—Results are presented from experimental and theoretical investigations of the behavior of dust grains
in a track plasma produced by a beam of accelerated protons. The dynamic ordered dust structures in a proton-
beam-produced plasma are obtained for the first time. The processes leading to the formation of such structures
are simulated numerically. The experimentally obtained dynamic vortex dust structures in a track plasma of a
proton beam are explained theoretically, and the theoretical model developed to describe such a plasma is ver-
ified experimentally. Numerical investigations carried out by the method of Brownian dynamics made it possi-
ble to qualitatively explain the characteristic features of the formation of vortex dust structures. © 2005 Pleia-
des Publishing, Inc.
1. INTRODUCTION

A fundamental property of a plasma produced by
accelerated ions is its track structure [1–3]. When
charged particles with initial velocities much higher
than the Bohr velocity vB = 2.18 × 108 cm/s pass
through matter, they create electron–ion pairs in a very
narrow region around their trajectories. The energy of
an ion during its deceleration decreases in an essen-
tially continuous fashion because, every time the ion
collides with an atom, it loses a small fraction of its
energy. As a result, the intensity of a beam of monoen-
ergetic ions remains essentially unchanged along their
entire path length. The production of plasma by ion
beams from accelerators provides radically new exper-
imental conditions: in this case, the divergence of a
beam of ionizing particles due solely to their numerous
collisions with atoms is small and the beam current can
be made high enough for the ion tracks to overlap sub-
stantially during their lifetime and thereby to produce a
quasi-homogeneous plasma.

The objective of the present paper is to experimen-
tally investigate the behavior of dust grains in a track
plasma created by a beam of accelerated protons, to
obtain dynamic ordered dust structures in a proton-
beam-produced plasma, and to numerically simulate
the processes leading to the formation of such struc-
tures.

The results of these investigations made it possible
to reveal for the first time new effects related to collec-
tive phenomena in plasma–dust structures. Studying
these phenomena may be of interest not only for funda-
mental science but also for their practical applications
in rapidly developing plasma and beam technologies.
1063-780X/05/3107- $26.00 0570
The experimentally obtained dynamic vortex dust
structures in a track plasma produced by a proton beam
are explained theoretically, and the theoretical model of
such a plasma is verified experimentally. Numerical
investigations carried out by the method of Brownian
dynamics make it possible to explain the characteristic
features of the formation of vortex dust structures. The
results of calculations agree qualitatively with the
experimental data.

2. EXPERIMENTAL INVESTIGATIONS

The experiments were performed on the ÉG-2.5
accelerator at the Leœpunskiœ Research Institute for
Physics and Power Engineering (Obninsk, Russia). A
schematic of the experimental setup is shown in Fig. 1.
A 2-MeV proton beam was injected into the experi-
mental cell along a horizontal path through a 1.2-cm-
diameter window, which was covered by a 10-µm tita-
nium foil and served also as a diaphragm and as a ref-
erence electrode. The beam current was I = 1 µA. In
passing through the foil, the protons lost about 0.5 MeV
of their energy and heated the foil to a temperature of
150°C.

The experimental cell had the form of a rectangular
parallelepiped with a base of 8 cm and a height of
12 cm. The side faces of the cell were made of glass.
The cell was irradiated by a planar laser ray with a waist
of width from 100 to 200 µm. The laser light scattered
by the grains was recorded by a charge-coupled device
(CCD) camera and was converted into video images.

Inside the experimental cell, there was a 3-cm-diam-
eter high-voltage electrode, positioned a distance of
7 cm from the reference electrode. The high-voltage
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic of the experimental device: (1) servomotor, (2) proton beam, (3) ground, (4) laser, (5) container with dust grains,
(6) container with a plasma-producing gas, (7) vacuum pump, (8) dc power supply, (9) voltmeter, (10) ammeter, (11) negative elec-
trode, (12) experimental cell, (13) CCD camera, (14) video recorder, and (15) titanium foil.
electrode had three main functions. First, when a con-
stant (positive or negative) potential was applied to the
electrode, it created the electric field in the experimen-
tal cell. Second, it was used to measure the proton cur-
rent in the evacuated cell. Finally, it was used as a probe
to estimate the plasma floating potential in the gas-
filled cell. For the gases under investigation (He, Kr,
and Xe), the floating potential Uf in the absence of the
applied external electric field was found to lie within
the range from –0.5 to –0.4 V. The charge q of a dust
grain was estimated from the formula

(1)

where C is the grain capacitance. The experiments were
carried out with polydisperse cerium dioxide grains

q CU f ,=

Fig. 2. Formation of a void in a dust structure. The experi-
mental parameters and conditions are as follows: the work-
ing gas is krypton at a pressure of 870 torr, the dust grains
are made of CeO2, the electrode potential is –300 V, the
energy of the beam protons is 2 MeV, and the beam current
is 1 µA.
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
having a mean diameter of 1 µm. The negative grain
charges calculated for the mean diameter from for-
mula (1) were found to range from 140 to 170 units of
the electron charge.

The gas–dust mixture was created by a pulsed injec-
tion of a gas jet from a fixed-volume injector into a
metal-grid-bottomed container precontaminated with
dust grains.

The results of experiments with krypton at two dif-
ferent pressures are illustrated in Figs. 2 and 3. In the
first case (Fig. 2), the pressure (870 torr) was chosen so
that the protons in their decelerated motion did not fly
to the high-voltage electrode, which produced the
external electric field. In Fig. 2, we clearly see the vol-

Fig. 3. Vortex in a dust structure. The experimental param-
eters and conditions are as follows: the working gas is kryp-
ton at a pressure of 128 torr, the dust grains are made of
CeO2, the electrode potential is –200 V, the energy of the
beam protons is 2 MeV, and the beam current is 1 µA.
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ume occupied by the recombining track plasma, which
emits radiation characteristic of krypton. When the
high-voltage electrode is held at a negative potential of
several hundred volts (from –100 to –500 V), an
extended void is seen to form, which is more pro-
nounced at a higher negative potential. When the elec-
trode potential is zero or when the electrode is held at a
positive potential, the void is seen to become contami-
nated with dust grains.

At lower pressures (100–400 torr), protons reach the
high-voltage electrode. In this case, after the injection
of a gas–dust mixture, dust grains form a vortex near
the high-voltage electrode and below the proton beam
(Fig. 3); the higher the absolute value of the applied
potential, the greater the rotation velocity of the vortex.
At higher dust densities, the dust grains group together
into a cloud with sharp boundaries (Fig. 4); this process
takes several minutes. The cloud has a smooth, stream-
lined shape; the instabilities that occur periodically
within the cloud change its shape and again restore it.
An important point is that the grains in the vortex and
those in the cloud do not strike the electrode but rather
flow around it a distance of several millimeters near the
plane part of its surface and move away from its ends.
All the structures persist for several tens of minutes; in
the absence of an external electric field, the dust plasma
component becomes stratified, as was mentioned in [4].

In a low-temperature plasma with a relatively low
degree of ionization, such as, for example, a nuclear-
track plasma or a track plasma, the main mechanism for
neutralizing charged particles is dissociative recombi-
nation. During a time interval on the order of 1 ns, the
atomic ions of inert gases become molecular ions, and
the recombination proceeds via the reaction

e +   A + A*, (2)A2
+

Fig. 4. Dust grain cloud. The experimental parameters and
conditions are as follows: the working gas is helium at a
pressure of 523 torr, the dust grains are made of CeO2, the
electrode potential is –200 V, the energy of the beam pro-
tons is 2 MeV, and the beam current is 1 µA.
where A is the atom of a noble gas,  is its molecular
ion, and A* is the atom in an excited state. Under
steady-state conditions, the number of electron–ion
pairs produced by protons is equal to the number of
recombination events. This leads to the following equa-
tion for the electron and ion densities:

(3)

where I is the proton current, E is the proton energy,
e is the charge of a proton, w is the energy required for
a fast ion to produce an electron–ion pair (for all gases,
this energy is approximately equal to 30 eV), α is the
dissociative recombination coefficient, n± are the elec-
tron and ion densities (which were set at equal magni-
tude), and V is the volume occupied by the plasma. In
the experimental cell, this plasma volume was observed
visually because the electron–ion recombination
excites the emission of radiation characteristic of the
gas under investigation. Estimates of the electron and
ion densities from Eq. (3) give n+ ≈ n– ≈ 1011 cm–3. The
electron temperature was estimated from the magnitude
of the floating potential using the relationship [5]

Te (eV) ≈ e |Uf |/10. (4)

The ion temperature was set equal to the room temper-
ature. We numerically solved the following equation for
the charging of dust grains:

. (5)

The currents of positive ions and electrons to a
grain, I+ and I–, were calculated in the same way as in
[6]. The grain charges calculated for the mean grain
diameter were found to lie in the range from 130 to 160
units of the electron charge, which correlates well with
the estimate obtained from formula (1).

In order to explain the behavior of dust grains in a
track plasma, the following circumstances should be
kept in mind. First, protons deposit energy in the exper-
imental cell at a rate of about 2 J/s; second, the convec-
tive gas flow drags the dust grains upward; and finally,
the ions accelerated by the electric field transfer their
momentum to the gas atoms in numerous collisions
with them and thereby cause the gas to move toward the
negative electrode [7, 8]. In addition, each of the grains
is penetrated by a proton within a time of about 10 µs;
in this case, two to five secondary electrons with an
energy of ~2 eV are knocked out of it, and each proton
can pass through several grains. This grain charging
mechanism plays a role at low gas pressures, whereas,
under actual experimental conditions, the main mecha-
nism for grain charging is that described by Eq. (5).

Estimates show that, in experiment, the external
electric field near the high-voltage electrode can be as
strong as several thousands of V/m. The electric field

A2
+

IE
ewV
----------- αn–n+,=

dq
dt
------ I+ I––=
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produced by the high-voltage electrode in its function
as a probe when it is held at a negative potential expels
negatively charged dust grains from the axial region of
the experimental cell (Fig. 2). When the grains come
into the proton beam, they are moved upward by con-
vection. If the proton beam occupies the entire axial
region of the experimental cell, then, far from the high-
voltage electrode, the main mechanisms that cause the
dust grain to move (together with the gas) toward the
electrode are the acceleration of the gas by ions and the
drag of the grains. This is evidenced by the increase in
the velocity of the grains as the negative potential is
increased in absolute value. Near the high-voltage elec-
trode, however, the field becomes strong enough to
repel the grains, which is confirmed by the presence of
a grain-free layer near the electrode; the width of the
layer is maximum near the electrode ends, where the
field is the strongest. In the external electric field, the
convective flows put the grains into vertical motion.

Hence, our experiments made it possible to reveal
for the first time a new effect: the collective motion of
cerium dioxide dust grains in a plasma produced during
the deceleration of a proton beam from an accelerator.
We observed compact vortex structures consisting of
many dust grains and rotating about their axes. We also
observed evolving dense dust clouds with sharp bound-
aries. Under fixed conditions, both types of dust struc-
tures were found to persist for several tens of minutes.
The behavior of the dust grains was found to depend
substantially on the strength of the external electric
field.

3. COMPUTER SIMULATIONS 
OF THE FORMATION OF DYNAMIC DUST 

STRUCTURES

In the present paper, we make the first attempt to
describe the formation of vortex dust structures in a
track plasma produced by a proton beam. This is why
the theoretical approach adopted for these purposes
cannot pretend to completely describe the dust behavior
under the conditions of our experiments. Our main aim
here is to choose a reasonable model for describing the
most characteristic features of the behavior of dust
grains in a track plasma and to reveal the main physical
mechanisms that ensure the levitation of the grains.
Therefore, it is expedient to carry out computer simula-
tions for the experimental conditions under which vor-
tex structures in the gases under investigation (such as
Kr) at the pressures of interest to us (e.g., at 128 torr)
are stable. Such structures are shown in Fig. 3.

In order to investigate the levitation of dust grains
and their mutual interactions, it is necessary not only to
establish the mechanism for their charging but also to
reveal the nature of the forces acting upon them. At
present, several different mechanisms are being dis-
cussed in the literature that affect both the balance
between the gravitational and electrostatic forces expe-
rienced by the levitated dust grains and the interactions
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
between them (see [9–11] for details). Here, because of
the complexity of the dynamic problem in question, we
utilize a simplified approach that makes it possible to
trace the formation of dynamic vortex structures and
their evolution using a reasonable amount of computer
time.

Dust grain motion was described by a set of Lan-
gevin equations that involve a stochastic force and take
into account random collisions of plasma particles with
dust grains. We also account for such factors as regular
forces of interaction among the grains, the interaction
of grains with the electrode bombarded by the beam
protons, the ion drag force, the heat-convection-driven
force, and the gravitational force. The resulting set of
Langevin equations has the form

where md is the mass of a dust grain, Fint(|qk – qj |) is the
force of the pair interaction between the grains, v fric is

the characteristic friction rate,  is the force of inter-

action of the grains with the electrode,  is the

force exerted on the grains by heat convection,  is
the stochastic Langevin force originating from colli-
sions of plasma particles with a dust grain, and mdg is
the gravitational force.

Although the negative charge of dust grains is rela-
tively small and the characteristic distances between
them are comparatively large, the coupling between the
grains through a Coulomb screened potential was com-
pletely taken into account in solving the equations of
their motion because the intergrain interaction parame-
ter under the conditions of our experiments was on the
order of unity. As was mentioned above, the grains also
interacted with the electrode bombarded by the beam
protons; in our simulations, this electrode was at a neg-
ative potential and thus repelled the oncoming dust
grains.

Since the power of the proton beam was sufficiently
high and since the degree of ionization of the plasma
produced by it was low, we took into account the drag

force  exerted on dust grains by drift ion flows and
by the flows of neutrals dragged by the ions. According

to [12], the drag force  is described by the expres-
sion

,

where z is the charge number of a dust grain, Ti is the
ion temperature, M is the mass of an ion, n is the unper-
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turbed ion density,  is the ion thermal velocity, U is
the ion drift velocity, lnΛ = ln(λ/Rc) is the Coulomb log-

arithm, λ is the ion Debye radius, and Rc = |z|2e2/mi

is the Coulomb length. Because of the closed (finite)
volume of the experimental cell and the continuity of
the neutral fluxes within it, the lines of the force field

 are closed: inside the beam, they are predomi-
nantly directed toward the electrode and, outside the
beam (at distances on the order of several beam diame-
ters from it), they point in the opposite direction. The

force field  is axisymmetric about the axis of the
proton beam. In numerical simulations, we used the fol-
lowing approximating formula:

where σb is the beam radius; ρ is the distance from a
grain to the beam axis in a perpendicular plane; σc is the

sum of the beam and vortex radii;  =  = 0;
α ≈ (σc/σb)2 is the coefficient of attenuation of the
reverse flow; and the indices x, y, and z stand for the cor-
responding projections of the force Fdrag on the coordi-
nate axes.

Recall that the heat released from the proton beam
gives rise to heat convection, which is described in our

model by the vector field . By virtue of the
closed volume of the experimental cell and the continu-
ity of neutral fluxes, the stream lines of this vector field
are also closed. The lines of the heat-convection-driven
drag force are directed upward in the middle (axial)
region of the horizontally passed proton beam; in the
peripheral region (near the vertical side walls of the
experimental cell and near the electrode surface), they
are directed downward. For numerical simulations, the

characteristic magnitude of the force  was

VTi

v Ti
2

Fdrag

Fdrag

Fy
drag Fk

drag ρ/σb( )4
–( )exp[=

– α 1 ρ/σb( )4
–( )exp–( ) ρ/σc( )2

–( )exp ] , 

Fx
drag Fz

drag

Fconvec

Fconvec

Fig. 5. Initial configuration (t = 0) of a dust cloud before the
formation of a vortex.
adjusted in such a manner that, in an infinite free space,
the grains of a given weight moved upward with the
experimentally observed characteristic velocity (on the
order of 1 cm/s). The vector field of the convective

force  in the closed experimental cell was
described by the approximating formula

where x and z are the corresponding distances from a
grain to the beam axis in a perpendicular plane, y is the
coordinate of the grain on the beam axis, β is the coef-
ficient of attenuation of the reverse flow, ζ is a numeri-

cal coefficient on the order of unity,  =  =
0, and L is the distance from the diaphragm to the elec-
trode.

The set of Langevin equations describing the motion
of dust grains was solved numerically by the standard
Brownian dynamics method. This method usually
assumes calculations for a finite number N of particles
in a computational cell of size L with periodic boundary
conditions. In order for the computations to take a rea-
sonable amount of time on the available computers, we
restricted our simulations to N = 200–1000. Note that,
for a smaller size L, as well as for a smaller number of
dust grains in comparison to that in the experiments, the
requirements on computational resources can be sub-
stantially reduced; this made it possible to reduce the
run time of the code to about ten hours. The initial spa-
tial distribution of dust grains and their initial velocities
were specified with the help of a random-number gen-
erator.

4. DISCUSSION 
OF THE CALCULATED RESULTS

Here, we discuss the results from numerical simula-
tions carried out by the standard method of Brownian
dynamics. Figures 5–9 show the configurations of dust
grains inside a thin planar vertical axial layer, calcu-
lated for three successive times.

Initially, the grains are distributed uniformly over
the computational cell and move chaotically within it.
As time elapses, the forces considered above, first,
cause the motion of the grains to become more regular
and then gradually put them into vortex circulation just
below the proton beam. This vortex motion entrains a
progressively larger number of grains that come down
from the upper part of the cell to its lower part, where a
stable vortex forms. Let us consider the motion of dust
grains and the forces acting on them in more detail.

In Figs. 5–9, the proton beam propagates from left
to right in the immediate vicinity of a horizontal axis.
Recall that, in this region, the grains are subject to a

Fconvec

Fz
convec Fconvec

x/σb( )2 ζ 0.5 y/L–( )2
+( )

2
–[ ]exp{=

– β 1 – x/σb( )2 ζ 0.5 y/L–( )2
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2
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–( ),exp
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drag force, which drives them into rapid rightward
motion. Simultaneously, the dust grains in the central
region of the cell experience an upward-directed heat
convection force, which, however, does not have
enough time to considerably affect the dust grains in
their rapid rightward motion through this central
region. As the grains approach the electrode (which is
positioned perpendicularly to the beam axis in the
peripheral region on the right side of the cell and is held
at a negative potential), they are decelerated and begin
moving downward under the action of three equidirec-
tional forces, namely, the gravitational force, the pro-
ton-beam-driven drag force, and the heat convection
force (which is directed downward in the cell’s periph-
eral region in question). The grains that have come
down to the lower part of the cell begin to experience
the leftward-directed proton-beam-driven drag force.
Under the action of this force, the dust grains continue
moving downward and simultaneously they begin mov-
ing leftward and escape from the peripheral region of
the cell. In the central part of the cell, the convection
force is directed from bottom to top and causes the dust

Fig. 6. Intermediate stage (t = 0.5 s) of the developing dust
cloud during the formation of a vortex.

Fig. 8. Evolution of a dust vortex (t = 1.5 s).
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grains to rise upward. As the upwardly moving grains
enter the proton beam region, they rapidly begin mov-
ing from left to right under the action of the drag force.
This cycle of the grain’s motion then repeats itself,
resulting in the formation of a dust vortex. The grains
that occur initially in the upper part of the cell are sub-
ject to forces similar to those described above. How-
ever, when these grains come into the region near the
electrode (on the right side of the cell), they begin mov-
ing downward because the upward-directed proton-
beam-driven drag force is not strong enough to counter-
balance the downward-directed gravity and heat con-
vection forces. As a result, almost all of the grains from
the upper part of the cell fall progressively into its lower
part and are entrained in the formation of the vortex.

It should be emphasized that, in numerical simula-
tions, such dust motion results from solving the set of
Langevin equations with allowance for the transfer of
kinetic energy between grains and plasma particles.
The mean kinetic energy of dust grains is determined
by their mass and size, as well as by the proton beam
intensity and the plasma viscosity. When the beam is

Fig. 7. Evolution of a dust vortex (t = 1 s).

Fig. 9. Evolution of a dust vortex (t = 2 s).
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absent, the mean kinetic energy of the grains is deter-
mined by the kinetic energy of the plasma particles and
is equal to 3kT/2. However, under the action of the drag
force in the proton beam, the kinetic energy of the
grains increases appreciably. With increasing distance
from the beam-dominated region, the drag force acting
on a grain that has escaped from this region decreases
abruptly, and the total force exerted on the grain also
decreases. As a result, the grain is decelerated by the
plasma viscosity and its kinetic energy decreases. Fig-
ure 10a shows how the kinetic, potential, and total ener-
gies depend on time (which is given in seconds). The
temporal variations in the kinetic and potential energies
provide evidence for the presence of irregular oscilla-
tions. Figure 10b shows the pair correlation functions
for the dust grains. The shape of the correlation func-

(a)

(b)
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Fig. 10. (a) Time evolution of the kinetic (K), potential (U),
and total (E) energies (in units of kT) of the dust plasma
component for T = 300 K. (b) Pair correlation function as a
function of the distance r between the grains.

t, s

r, mm
tions indicates that, despite the vortex motion, dust
grains have short-range order in their spatial positions.
In Fig. 10, the distances are given in millimeters.
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Abstract—A closed set of reduced dynamic equations is derived that describe nonlinear low-frequency flute
MHD convection and resulting nondiffusive transport processes in weakly dissipative plasmas with closed or
open magnetic field lines. The equations obtained make it possible to self-consistently simulate transport pro-
cesses and the establishment of the self-consistent plasma temperature and density profiles for a large class of
axisymmetric nonparaxial shearless magnetic devices: levitated dipole configurations, mirror systems, compact
tori, etc. Reduced equations that are suitable for modeling the long-term evolution of the plasma on time scales
comparable to the plasma lifetime are derived by the method of the adiabatic separation of fast and slow
motions. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The problem of anomalous transport of particles and
energy is one of the central concerns of research on the
magnetic confinement of high-temperature plasmas. In
most theoretical papers on the subject, anomalous
transport processes are attributed to the plasma temper-
ature and density fluctuations driven by different types
of drift instabilities (see, e.g., [1, 2]). In view of the fact
that the transverse scales of such fluctuations are small,
the anomalous transport problem is traditionally dis-
cussed in terms of the diffusion approximation with
local transport coefficients. Numerous recent experi-
ments have shown, however, that anomalous transport
may often be of a different physical nature, which can-
not in principle be described in the diffusion approxi-
mation.

In speaking about nondiffusive transport, note first
of all that low-frequency plasma oscillations and result-
ing transport fluxes observed in many magnetic sys-
tems with very different magnetic field topologies and
plasma parameters share fairly general regular features
[3]. Thus, in tokamaks [4], stellarators [5, 6], tandem
mirror systems [7], straight systems with a uniform
magnetic field [8–10], and others, the spectra of the
low-frequency fluctuations of the electric field and
plasma density contain not only individual peaks asso-
ciated with drift instabilities but also the so-called
broadband component—a stochastically irregular spec-
tral component that extends to very low frequencies and
decreases according to a power law at higher frequen-
cies. The spectra of this type are characteristic of a
strong turbulence dominated by nonlinear structures
(e.g., vortices) arising stochastically in the plasma.
Accordingly, such turbulence is often called structural
turbulence [5, 6, 8]. Fairly long radial and poloidal cor-
1063-780X/05/3107- $26.00 0577
relation lengths of the turbulence [4, 6], which are
sometimes even comparable to the plasma radius (espe-
cially, for the low-frequency part of the broadband
component), indicate that the expected nonlinear struc-
tures are large-scale and, accordingly, the resulting
transport processes are nonlocal and nondiffusive in
character.

The statistical properties of fluctuations observed in
different magnetic systems (except for some specific
details) are also rather similar [5, 6, 8]. For instance, the
probability distribution functions (PDFs) that describe
the increments of fluctuations and that were obtained
by processing experimental data from different devices
turn out to be non-Gaussian and to have heavy tails.
This circumstance indicates that large-amplitude fluc-
tuations make an enhanced contribution to the PDF and
provides additional evidence for the nondiffusive
nature of the transport processes.

Finally, in connection with the development of more
sophisticated diagnostics, it became possible to clearly
detect the presence of relatively long-lived macro-
scopic structures in some experiments. A striking
example of such structures is the so-called blobs, which
were first discovered in the scrape-off-layer (SOL)
plasma in the DIII-D tokamak [11] and later in many
other devices. Moving ballistically or semi-ballistically
across the magnetic field, the blobs can carry the bulk
of the global particle and energy flux in the SOL.

Hence, nondiffusive transport processes associated
with the onset of one or another type of structural tur-
bulence are fairly typical phenomena in the physics of
magnetic plasma confinement; hence, they should be
thoroughly studied both experimentally and theoreti-
cally. The difficulties standing in the way of experimen-
tal investigations of structural turbulence are quite
© 2005 Pleiades Publishing, Inc.
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obvious. Of course, they will be overcome step by step
with the development of more advanced diagnostics. At
the same time, in research on such complicated turbu-
lent phenomena, an important task is to provide an ade-
quate theoretical basis, which would make it possible to
reveal the fundamental features of the expected turbu-
lence and to develop specific recommendations con-
cerning the ways of controlling this turbulence and the
resulting nondiffusive transport.

The presence (and even predominance) of large-
scale structures in low-frequency turbulence in various
magnetic systems presumably stems from the fact that
the structures in a magnetized plasma should be highly
stretched out along the magnetic field (as follows from
theory and is confirmed by experiment [5–11]). As a
result, the turbulence turns out to be two-dimensional
(2D) or quasi-two-dimensional and is thereby charac-
terized by both direct and inverse cascade processes, in
which the energy is redistributed over the spectrum
toward both small and large transverse scales. When
dissipation is weak, the strong 2D turbulence should
lead to the establishment of fairly universal spectra that
decrease according to a power law toward the small
scales and are almost independent of the spatial scale of
the instability supplying them.

In view of the relatively large-scale and low-fre-
quency nature of the expected dominating structures, a
very fruitful approach to the theoretical study of 2D tur-
bulence in a magnetized plasma seems to be that based
on direct simulation of the nonlinear plasma dynamics
in terms of the hydrodynamic moment equations
(namely, the continuity equations, the equations of
motion, the energy transport equations, etc.). These
equations are a finite set of integral consequences of the
basic kinetic equations, supplemented with certain con-
ditions that make the set closed. Although this approach
requires smaller amounts of computer time than does
the kinetic approach, it is expected to provide a fairly
complete self-consistent description of the evolution of
the main macroscopic plasma parameters (such as the
plasma density, the plasma velocity, and the tempera-
tures of different plasma components). At the same
time, it will lead to a better qualitative understanding of
the dynamic processes under investigation and will
greatly simplify their numerical simulation.

It should be emphasized that, with this approach, the
dynamic modeling of the low-frequency turbulence can
be further simplified. The reason is that even the afore-
mentioned moment equations describe too many col-
lective degrees of freedom, including stable fast (high-
frequency) collective degrees of freedom (such as mag-
netosonic waves). Since these fast degrees of freedom
have very high characteristic frequencies, they are not
excited by the low-frequency turbulence under analysis
and can be excluded from consideration by appropri-
ately reducing the basic set of moment equations.

The reduced MHD equations for describing the
plasma dynamics in tokamaks were originally proposed
by B.B. Kadomtsev and O.P. Pogutse [12, 13]. Later on,
this idea was developed in [14–16] and in many subse-
quent papers associated mostly with the name of
H. Strauss. In all these papers, the magnetosonic waves
were eliminated in one way or another from the equa-
tions of the nonlinear low-frequency plasma dynamics
in tokamaks and stellarators with the help of the small
parameter Bp/BT (the ratio of the poloidal to the toroidal
magnetic field). Later, in my papers [17, 18], a varia-
tional method for the adiabatic separation of fast and
slow motions in continuous Lagrangian systems was
developed. This method makes it possible to remove
from consideration fast stable collective degrees of
freedom of a dynamic system by using various small
parameters and without violating the kinematic and
dynamic conservation laws of the basic (unreduced) set
of equations. This latter circumstance is important for
simulating the long-term dynamic plasma evolution on
time scales comparable to the plasma lifetime. This
method will serve as a basis for the present study.

That the adiabatically reduced equations hold prom-
ise for modeling the nonlinear plasma dynamics was
demonstrated in [19, 20], which were devoted to simu-
lating the nonlinear 2D plasma convection that devel-
ops near the marginal stability of the plasma against a
flute MHD mode in a simple cylindrical nonparaxial
magnetic system (an equilibrium Z-pinch configuration
with an internal levitated conductor). It was shown that
the auxiliary heating and the local transport processes
initially present in the plasma can modify the margin-
ally stable plasma pressure profile to make it slightly
unstable and to give rise to low-frequency turbulent
convection and resulting nondiffusive transport pro-
cesses. The frequency and spatial spectra of the nascent
turbulent convection, as well as its statistical properties,
were found to be similar to those observed experimen-
tally [4–10]. In addition, the resulting nondiffusive
transport processes calculated in terms of the model
proposed in [19, 20] have exhibited some properties
that are called, in different experiments, the internal
transport barrier, L–H transitions, and impurity pinch.

The magnetic configuration that was discussed in
[19, 20] is a simple model of a fairly wide class of
highly nonparaxial magnetic confinement systems
based on an alternative approach to the problem of
MHD plasma stability [19]. This alternative approach
utilizes plasma self-organization and assumes neither
an absolute nor average minimum B in the plasma con-
finement region. Typical examples of the class of sys-
tems in question are levitated dipole configurations
with an internal levitated current-carrying ring [21–23]
(see Fig. 1) and straight [24] or toroidally linked [25]
systems of mirror cells with so-called “divertor stabili-
zation” (see Fig. 2). Although these two types of mag-
netic systems are different in appearance, the plasma in
them is confined on the basis of the same principles,
namely, those associated with the existence of a mar-
ginally stable pressure profile that drops to zero at the
external separatrix [19]. Because of a growing interest
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
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in such systems and with regard to a number of planned
experiments, it is desirable that the dynamic model of
nonlinear convection developed in [19, 20] be general-
ized in order to adequately take into account the high
nonuniformity of the magnetic field configurations in
actual devices.

In the present work, the method of the adiabatic sep-
aration of fast and slow motions [18] is used to con-
struct reduced equations for describing the nonlinear
convection and resulting transport processes in weakly
dissipative plasmas of magnetic systems based on an
alternative principle of MHD plasma stabilization. By
analogy with [19, 20], as well as with most of the
papers on the equilibrium and MHD stability of toroi-
dal plasmas, the analysis is carried out in terms of a
simple one-fluid MHD model with an isotropic plasma
pressure. The equations derived make it possible to
simulate the low-frequency flutelike plasma dynamics
in arbitrary axisymmetric shearless magnetic systems
with closed or open magnetic field lines. It can be
expected that the results obtained by means of this gen-
eralized dynamic model will provide a more detailed
comparison with the experimental data from various
magnetic systems and will contribute to the develop-
ment of the general theory of nondiffusive transport
processes in a magnetized plasma.

This paper is organized as follows. The questions of
the equilibrium and MHD stability of a plasma in the
class of magnetic systems under consideration are dis-
cussed in Section 2. The adiabatically reduced equa-
tions of motion are derived in Section 3 in terms of the
one-fluid MHD model with an isotropic plasma pres-
sure. The reduced equations for the plasma density and
plasma temperature are obtained in Section 4. In Sec-
tion 5, the complete set of reduced equations is trans-
formed into a final form consisting of two subsets of
equations describing slow transport processes and rela-
tively faster turbulent fluctuations. The main results of
the work are briefly summarized in Section 6.

2. EQUILIBRIUM AND MHD PLASMA 
STABILITY IN AXISYMMETRIC SHEARLESS 

MAGNETIC SYSTEMS

The first stage of the analysis of any magnetic sys-
tem consists in the investigation of the equilibrium and
MHD stability of the plasma. For the magnetic systems
under consideration, the discussion of these problems
will enable us to correctly determine the basic plasma
state near which the dynamic and transport processes of
interest to us develop. As was mentioned above, the
well-known one-fluid MHD model with an isotropic
plasma pressure will serve as the basic dynamic plasma
model. Being relatively simple and highly illustrative,
this model can be conveniently used as a first step in
investigating the self-consistent plasma dynamics. At
the same time, it should be noted that a more adequate
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
bounce-averaged Kruskal–Oberman model leads to
more optimistic marginally stable pressure profiles [26,
27].

Under the assumptions that the magnetic systems in
question are axisymmetric and the plasma pressure is

2
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2

Fig. 1. Configuration of the magnetic field lines in a con-
finement system with an internal levitated ring: (1) internal
ring, (2) external field coils, and (3) separatrix.

2L

rs

Fig. 2. Configuration of the magnetic field lines in a mirror
cell with divertor stabilization.
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isotropic, we can describe the plasma equilibrium with
the Grad–Shafranov equation

(1)

where r, φ, and z are cylindrical coordinates and ψ(r, z)
is the poloidal magnetic flux function. It is convenient
to relate this flux function to the system axis for mirror
devices (Fig. 2) and to the toroidal magnetic axis for
tokamaks and for systems with an internal conductor
(Fig. 1). The purely poloidal (and, accordingly, shear-
less) magnetic field of the system can be represented as

(2)

The class of systems under analysis allows equilibrium
plasma states with β = 8πp/B2 ~ 1 [28, 29].

It is convenient to analyze the stability of the static
equilibrium plasma states by using a variational mini-
mum-energy principle [30, 31], according to which
arbitrary plasma displacements x from equilibrium
should satisfy the condition

(3)

where γ is the adiabatic index, the subscript ⊥  refers to
a direction perpendicular to the magnetic field, and the
rest of the notation is standard. By minimizing the
expression for δ2W with allowance for the fact that the
first two terms in this expression are positive definite,
we can single out two families of the most dangerous
modes. The first family is characterized by the condi-
tion δB = — × (x⊥  × B) = 0, which corresponds to flute
interchange modes, and the second family is character-
ized by the condition — · x = 0, which corresponds to
incompressible Alfvén modes.

In the shearless magnetic systems under consider-
ation, the condition for plasma stability against flutelike
modes is easily satisfied for any β value and leads to the
following expression for x⊥ :
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In this case, the second, positive definite, term in
expression (3) can be minimized with respect to x|| to
yield the relationship

(5)

Here and below, the angle brackets 〈…〉  denote averag-
ing over the specific volume U of a magnetic flux tube.
The integration in relationship (5) is carried out over
the entire closed magnetic field line or along the entire
length of the magnetic field line within the plasma
region in an open system.

With expressions (4) and (5), condition (3) gives the
following criterion for plasma stability against flute
modes [31]:

(6)

which implies that, in the absence of an average mag-
netic well (i.e., for U'(ψ) > 0), the plasma is stable only
when its pressure decreases sufficiently gradually with
radius. The marginally stable pressure profile has the
form

(7)

where S is a single-valued function of the entropy den-
sity of a magnetized plasma [19, 20]. In contrast to the
flute modes, incompressible Alfvén modes in typical
shearless systems are unstable only for β > βcr ~ 1 (see
[19, 32–34]).

The existence of a marginally stable pressure profile
creates conditions for relatively quiescent confinement
based on the self-organization of the plasma according
to the following scenario: the auxiliary heating and the
initial (e.g., classical) heat conduction distort the origi-
nal pressure profile to make it weakly unstable, and the
resulting instability excites and maintains the nonlinear
MHD convection, which tends to restore the marginally
stable pressure profile and gives rise to an anomalous
nondiffusive transport of heat and plasma particles. In
accordance with the above analysis of the MHD plasma
stability, it can be concluded that, in shearless magnetic
systems with β < βcr, the most dangerous type of plasma
motions that is responsible for nondiffusive transport
processes is represented by nonlinear flute modes
developing near their marginal stability. Due to the
closeness to the instability threshold, the frequencies of
these modes should be relatively low. In this case,
higher-frequency stable modes, such as magnetosonic
and Alfvén waves, can be excluded from consideration
in further analysis.
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3. DERIVATION OF ADIABATICALLY REDUCED 
EQUATIONS OF MOTION

In accordance with the conclusions reached in the
previous section, the task now is to study the nonlinear
plasma convection driven by a flute MHD mode near a
plasma state with a marginally stable pressure profile
S = const. We assume that β < βcr ~ 1; in this case,
Alfvén modes are stable. We also assume that, during
the development of self-consistent convection, the
deviation from the marginally stable pressure profile is
on the order of the small parameter e2 ! 1. In other
words, we assume a|—S | ~ e2S, where a is the character-
istic transverse plasma size. In this case, the character-
istic frequencies of the nonlinear flute convection are
on the order of ω ~ ek⊥ cs, where cs is the speed of sound.
These frequencies are much lower than the characteris-
tic frequencies of the stable magnetosonic (ω ~ k⊥ cA)
and incompressible Alfvén (ω ~ k||cA) waves. It is rea-
sonable to expect that the kinetic energy of this self-
consistent convection should saturate at a level of the
free potential plasma energy, which in turn is related to
the deviation from the marginally stable pressure pro-
file. For this reason, the kinetic energy should be on the
order of e2.

In order to exclude from consideration the fast
(high-frequency) collective degrees of freedom of the
basic set of dynamic equations, we use the variational
method of the adiabatic separation of fast and slow
motions (the ASM method) [18]. To do this, we repre-
sent the variation of the Lagrangian of the ideal one-
fluid MHD model in the form

(8)

where, unlike in condition (3), x is the plasma displace-
ment from an arbitrary dynamic state.

The ASM method begins with searching for an adi-
abatic transformation xa(r, t) that leaves the Lagrangian
unchanged to within terms on the order of e2. Accord-
ing to [18], this transformation has the meaning of an
approximate relabeling symmetry transformation with
respect to fast motions. In accordance with the above
order-of-magnitude estimates, the first three terms in
representation (8) for δ+ are on the order of e2, while
for arbitrary displacements x, the last two terms are on
the order of unity. Consequently, the transformation
that converts δ+ into δa+ ~ O(e2) should satisfy the
conditions

(9)

δ+ d
3r ρv δv

v
2

2
------δρ 1

U
γ------x —S⋅

γ 1–
---------------+ +⋅



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∫=

–
1

4π
------B — x⊥ B×( )×[ ]⋅ γpU
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
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

,
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The first of these conditions requires that the magnetic
field be unperturbed and makes it possible to exclude
from analysis magnetosonic and Alfvén modes. The
second imposes additional restrictions on the displace-
ment xa|| and, as can be readily seen, enables us to
exclude from consideration stable longitudinal acoustic
waves with characteristic frequencies of ω ~ k||cs. It is
easy to see that these two conditions are equivalent to
conditions (4) and (5), which determine the functional
structure of the most unstable flute perturbations.

In order to write an explicit expression for xa, it is
convenient to supplement the coordinates ψ and ϕ with
the third independent flux coordinate ζ satisfying the
following two conditions: (i) the Jacobian should be
nondegenerate (J = (—ψ × —ϕ) · —ζ ≠ 0), and (ii) the
increment in ζ along the entire magnetic field line
should not depend on ψ and ϕ (ζ+ – ζ– = const). For sys-
tems with closed magnetic field lines, these two condi-
tions imply that the role of ζ can be played by any
monotonically varying poloidal angular function; in
this case, we have ζ+ – ζ– = 2π. For mirror systems, it is
convenient to choose ζ = z, so we have J = Bz. In terms
of the three new coordinates, the integration over the
flux tube volume becomes

and the adiabatic transformation xa(r, t) satisfying con-
ditions (9) can be represented as

(10)

Hereafter, we assume for simplicity that the system is
symmetric with respect to ζ = 0, so the functions B, J,
and r are even in ζ. The generalization to an asymmetric
system is a simple matter but leads to more involved
expressions. The dependence on time in the form et
symbolizes the slow variation in the corresponding
functions in comparison to the characteristic time
scales of the fast stable oscillations.

One of the most important principles of the ASM
method is the following: the “adiabatic” velocity field
va that does not perturb fast stable degrees of freedom
and makes it possible to describe the relatively slow
(reduced) dynamics of the system should have the same
functional structure as the adiabatic transformation xa,
specifically,

(11)
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It should be stressed that, according to relationship (11),
the three-dimensional vector field va is completely
described by one 2D scalar function Φ(et, ψ, ϕ), which
coincides with the electric field potential to within a
constant factor.

In accordance with the logic of the ASM method, it
is natural to slightly extend and generalize the notions
of the adiabatic transformation and adiabatic velocity
by adding to expressions (10) and (11) a complemen-
tary small displacement xs ~ e2xa and complementary
low velocity vs ~ e2va. In particular, the displacement xs

can be represented in the following general form:

(12)

where fψ, fϕ, and ξs|| are arbitrary functions on the order
of e2. In this case, the variation of the Lagrangian δ+ is
small only due to the smallness of xs; this circumstance
does not impose any restriction on the coordinate
dependence of the functions fψ, fϕ, and ξs||. On the other
hand, in deriving the sought reduced equations of
motion, we can use the smallness of the functions xs

and vs to ignore all inertial terms associated with them.
In essence, it is in the ignoring of such inertial terms
that the reduced equations of motion differ from the
basic complete equations.

Allowance for the inertialess velocity field vs indi-
cates that, in the basic equations, we eliminate fast sta-
ble oscillations, while keeping slow variations in quasi-
steady plasma parameters, associated mainly with dis-
sipative processes. Since the adiabatic velocity field va

does not perturb the magnetic field, we can take into
account the finite resistivity to reduce the well-known
frozen-in equation to the form

(13)

where D = c2/4πσ is the classical resistive diffusion
coefficient. From Eq. (13) we see that the velocity vs

should vary on time scales characteristic of the dissipa-
tive processes. At this point, it is appropriate to note
that, according to the results of [19, 20], the value of the
small parameter e2, determining the order of magnitude
of the plasma deviation from a marginally stable equi-
librium state, also results from the competition between
the ideal convection and the dissipative processes,
which are characterized by the thermal diffusivity χ,
the viscosity coefficient η, and the resistive diffusion
coefficient D. Consequently, in accordance with [19,
20], we set

which leads to the estimate ∂tv s ~ e3kcsv s.
In the previous section, the equilibrium magnetic

field was represented as B = —ψ × —ϕ. The form of the
function Φ(et, ψ, ϕ) implies in fact that this representa-

xs
1

B
2

------ f ψ B —ψ×( ) f ϕ B —ϕ×( )+( ) B
B
----ξ s||,+=

∂tB — vs B×( ) D — B×( )–( )× ,=

e χ/acs( )1/3
 ! 1,∼
tion is conserved throughout the magnetic field evolu-
tion. For this to be the case, it is necessary to introduce
the functions ψ(t) and ϕ(t) in an appropriate manner.
The plasma should evolve in a way that does not break
the axial symmetry of the magnetic field. It is, there-
fore, reasonable to assume that the ϕ coordinate does
not change with time,

and to satisfy Eq. (13) only at the expense of temporal
variations in ψ(t),

(14)

In this case, the velocity vs can be represented as

(15)

Moreover, it is also convenient to choose the ζ coordi-
nate to be time-independent, ∂tζ = 0. With representa-
tion (15), Eq. (14) takes the form

(16)

It should be stressed that Eq. (16) in essence determines
the function uψ(e3t, ψ, ζ) because the function ψ(t, r) is
determined by the quasi-equilibrium condition, as will
be shown below. The function u||(e3t, ψ, ζ) in represen-
tation (15) will be determined when discussing the
reduced equation for the plasma density.

Let us now proceed immediately to the derivation of
the reduced equations of motion. The basic equation of
motion in ideal one-fluid magnetohydrodynamics can
be obtained from Hamilton’s principle of least action
written in the form

(17)

where the variation of the Lagrangian δ+ is given by
formula (8) and the symbol {EoM} stands for the
expression resulting from the integration of δ+ by
parts. Since x is an arbitrary function of t and r, the cor-
responding equation of motion has the form {EoM} = 0.

In applying the ASM method to derive the reduced
equations, we must switch from an arbitrary displace-
ment x(t, r) to a displacement of the form x = xa + xs

with arbitrary functions fψ, fϕ, ξs||, and δα(et, ψ, ϕ); sub-
stitute the latter displacement into Hamilton’s principle
(17); and equate to zero the expressions in front of these
functions, keeping in mind that xs ~ O(e2). Conse-
quently, in the expressions in front of the functions fψ,
fϕ, and ξs||, we can retain only the terms of the zero order
in the small parameter e. In accordance with relation-
ship (11), the inertial terms should be on the order of e2.
For states close to a marginally stable state, we can rep-
resent the entropy density function S as a sum of the
main (quasi-equilibrium) and fluctuating components,

∂tϕ vs —ϕ⋅( )– 0,= =

∂tψ vs —ψ⋅( )– Dr
2 — —ψ/r

2( )⋅( ).+=

vs uψ e
3
t ψ ζ, ,( )—ψ u|| e

3
t ψ ζ, ,( )B.+=

∂tψ r
2
B

2
uψ– Dr

2— —ψ/r
2( ).⋅+=

δ! tδ+d∫ td
3r x EoM{ }⋅( )d∫⇒≡ 0,=
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S = S0 + , where the fluctuations are on the order of

 ~ e2S0. Hence, we must omit the inertial terms and
the terms with the entropy fluctuations in the expres-
sions in front of the functions fψ, fϕ, and ξs|| to obtain the
equations determining the balance of the main forces to
zero order in e2. As a result, we arrive at the following
equations, which have the meaning of the quasi-equi-
librium conditions:

(18)

where p0(t, ψ) is the main quasi-equilibrium plasma
pressure component. These equations coincide in struc-
ture with Grad–Shafranov equation (1), the only differ-
ence being that the pressure component p0 = S0(t, ψ)/Uγ

can vary slowly with time in accordance with the trans-
port equations that will be derived below. From
Eqs. (18) we see that, in this case, the flux function ψ
can also vary slowly with time.

The main equation for the low-frequency (reduced)
plasma dynamics is obtained by equating to zero the
expression in front of the function δα(et, ψ, ϕ) in
Hamilton’s principle (17). Since the function δα(et, ψ, ϕ)
enters the expression for xa through the term —δα and
is independent of ζ, the sought equation can be derived
from Hamilton’s principle (17) by integrating by part,
by expressing the volume element in terms of the flux
coordinates (d3r = dψdϕdζ/J), and by averaging over
the specific volume of the flux tube. As a result of these
manipulations, the reduced equation of motion, which
has the meaning of the Euler–Lagrange equation corre-
sponding to the generalized coordinate α(et, ψ, ϕ) of
the adiabatic motion, takes the form

(19)

This equation is an exact consequence of the basic
equation of motion {EoM} = 0. In order to complete the
procedure of derivation of the reduced adiabatic equa-
tion of motion in ideal magnetohydrodynamics, we
must substitute the sum of the velocities va + vs for the
velocity v in Eq. (19) and retain the terms of the zero
and first orders in vs. In accordance with the derivation
procedure described in [18, 19], the generalized
reduced equation of motion with allowance for dissipa-
tive processes can be obtained from Eq. (19) by substi-
tuting into it the expression for {EoM}, which includes
the corresponding dissipative terms, such as the viscos-
ity tensor, the external momentum source term (associ-
ated, e.g., with the charge exchange of a fast neutral
beam), etc. It is also necessary to take into account the
resistive term in Eq. (16) for uψ and the dissipative

S̃

S̃

∂ϕ p0 0, B — p0⋅ 0,= =

∆*ψ 4πr
2∂ψ p0 t ψ,( )+ 0,=
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terms (in particular, the source terms) in the equation
for the plasma density.

The reduction procedure, specified by the operator
5{EoM} in Eq. (19), leads to an equation for the quan-
tity , which can be called the specific dynamic vortic-
ity of a magnetic flux tube. This quantity has the form

(20)

and, to within a sign, coincides with the generalized
momentum Pα = – , which is canonically conjugate to
the adiabatic coordinate α(et, ψ, ϕ). In Section 4, it will
be shown that, in the case under analysis, the plasma
density can be assumed to be uniform along the mag-
netic field lines and can be represented as ρ = /U ≡
〈ρ〉 . This allows us to explicitly perform the procedure
of averaging over the specific volume of the flux tube in
expression (20) in order to convert it into the form

(21)

The procedure of calculating the remaining terms in
Eq. (19) consists in carrying out fairly involved identity
transformations with allowance for the relationship ρ =

/U and the useful formulas presented in the Appen-
dix. As a result, these transformations put Eq. (19) into
the form

(22)

The left-hand side of this equation contains the terms
describing the ideal plasma dynamics and the symbol
{DT} on the right-hand side stands for the dissipative
terms. In what follows, the symbol ∂t |ψ, which denotes
the partial time derivative at fixed ψ and ϕ, and the sym-
bol

will be used as standard symbolic notations.
Equation (22) is an essentially 2D equation, although

it describes convection with 3D velocity field (11).
Moreover, the flux coordinates ψ and ϕ in Eq. (11) are
Eulerian ones, even though the coordinate ψ in actual
space can depend on time. These properties of the equa-
tion obtained substantially simplify numerical simula-
tion of the low-frequency turbulent convection. In
accordance with the ordering of the quantities that were
introduced above, all the terms on the right-hand side of
Eq. (22) are on the order of e2. The order of the dissipa-
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tive terms on the right-hand side of this equation is
higher, {DT} ~ O(e4). However, since these terms can
contain higher order spatial derivatives, they should be
retained in order to provide a description of the sup-
pression of small-scale vortices. The explicit form of
the dissipative terms in question will be determined
below, after the discussion of the reduced equations for
the plasma density and temperature.

4. EQUATIONS FOR THE DENSITY 
AND TEMPERATURE

The basic equation for the plasma density is an exact
zeroth moment of the kinetic equation, namely, the con-
tinuity equation with a local mass source term Qρ.
Inserting the velocity field v = va + vs into this equation
puts it in the form

Averaging this equation over the specific volume of the
flux tube converts it into a 2D equation similar to
Eq. (22),

(23)

Here, the term  involves the volume plasma source
as well as longitudinal plasma losses (for open confine-
ment systems),

where Mi is the mass of an ion. The magnitude of the
longitudinal plasma losses [dn/dt]|| in different types of
open devices was discussed in detail in [35]. The quan-
tity  ≡ 〈ρ〉U is the plasma mass within the specific flux
tube volume and, in the set of reduced equations pro-
posed here, it plays the same role as the Lagrangian
density function introduced in [19].

Equation (23) describes the 2D function  (or 〈ρ〉 ),
averaged over the flux tube volume. Expression (20) for

, however, contains the local (unaveraged) density,
which should be determined from the basic unaveraged
equation for the plasma density. The local density can
be represented as ρ = (t, ψ, ϕ)/U + ρ1(t, ψ, ϕ, ζ),
where 〈ρ1〉  = 0. The form of the functions ρ1 and u|| is
generally governed by the transport processes along the
magnetic field lines. It should be noted, however, that
we are primarily interested in the case in which the col-
lision frequencies of the plasma particles and the char-
acteristic frequencies of the processes under consider-
ation are much lower than the bounce frequencies of the
particles in their longitudinal motion. In this case, the
kinetic approach implies that, in the isotropic-pressure
plasma model considered here, the plasma density
should be uniform along the magnetic field lines (i.e.,
ρ1 = 0). Actually, in considering the difference between

∂tρ ∇ ρ va( ) ∇ ρ uψ∇ψ( ) J∂ζ ρu||( )+⋅+⋅+ Qρ.=

∂t ψρ̂ Φ ρ̂,[ ]+  = 4π∂ψ ρ̂ r
2
D〈 〉 ∂ ψ p0 ψ( )( ) Qρ*U .+

Qρ*

Qρ* Qρ〈 〉 ρ u|| –
+
/U– Qρ〈 〉 Mi dn/dt[ ] ||,+= =

ρ̂

ρ̂

ŵ

ρ̂

the basic unaveraged equation for the density and
Eq. (23), we can show that the solvability condition for
the function u||(e3t, ψ, ϕ, ζ) can be satisfied when ρ1 =
0. In other words, the function u||(e3t, ψ, ϕ, ζ) in repre-
sentation (15) is determined by the condition for the
plasma density to be smoothed out along the magnetic
field lines; in the case in question, this smoothing-out
condition is satisfied not only for the equilibrium state
but also for states with a developed low-frequency tur-
bulent convection. The essential point is that the func-
tion u||(e3t, ψ, ϕ, ζ), as well as the other auxiliary func-
tion uψ(e3t, ψ, ϕ, ζ), which is defined by Eq. (16), drops
out of the final set of equations.

Since the plasma density is longitudinally uniform
(ρ = /U ≡ 〈ρ〉), 2D equation (23) has the meaning of a
reduced mass transport equation. Recall that the assump-
tion of the longitudinal uniformity of ρ has already
enabled us to substantially simplify expression (20) for

 and to reduce it to expression (21), which should
now be regarded as an equation with which the function
Φ can be reconstructed from the given functions  and

. In turn, the functions  and  are determined from
Eqs. (22) and (23). It is essential that the problem of
determining the specific character of a particular non-
uniform magnetic configuration has been reduced to
that of calculating the form factors 〈r2〉 and 〈r–2B–2 +
λ2B2〉, which enter into Eq. (21) and depend on (e3t) and
ψ. A rather interesting point is that, in nonparaxial mag-
netic systems, the inertia of the radial plasma motion is
larger because of the inertia of the longitudinal plasma
redistribution, i.e., at the expense of the form factor
〈λ 2B2〉  in Eq. (21).

It should be noted that the resistive diffusion term on
the right-hand side of Eq. (23) is somewhat incomplete,
because the one-fluid MHD model traditionally makes
use of a simplified form of Ohm’s law, j = σE. In order
to provide a more adequate description of the dissipa-
tive processes, the transport equations for the plasma
density should be supplemented with the generalized
Ohm’s law that follows from the two-fluid MHD model
and accounts for the Hall effect and electron pressure
gradient. The two-fluid description of the plasma is,
however, beyond the scope of the present study. The
corresponding generalization is supposed to be done in
subsequent papers.

The continuity equation and the equation of motion
are, respectively, the zeroth and first moments of the
kinetic equation. The next (third) equation to be
obtained should correspond to the second moment.
This equation is usually derived under additional
assumptions that would make it possible to close the set
of moment equations. In the case under discussion, one
such assumption is that the pressure is isotropic, which
reduces the second moment of the distribution function
to the scalar pressure. Another assumption is that the
third moments, corresponding to the heat fluxes, can be

ρ̂

ŵ

ŵ
ρ̂ ŵ ρ̂
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expressed in terms of the zeroth, first, and second
moments; this makes it possible to close the set of
moment equations. In accordance with the classic
review by Braginskii [36], the basic equation for the
plasma pressure in the one-fluid MHD model can be
represented as

where QE is the energy density source term. The trans-
verse heat flux q⊥  in this equation is determined by the
initial local thermal diffusivity χ⊥  (e.g., by the classical
ion thermal diffusivity in a magnetized plasma). On the
other hand, in the low-collisional limit, the longitudinal
heat flux q|| remains a free function, as is the function u||
in the basic equation for ρ.

In deriving the reduced heat transport equation, it is
reasonable to suppose that, in the isotropic-pressure
plasma model, the temperature T, as well as the density
ρ, should be constant along the magnetic field lines not
only in the equilibrium state but also in states with a
developed low-frequency turbulent convection. It is
easy to show that the conditions for the temperature T
to be constant along the magnetic field lines and the
same condition for the entropy density function S,
S = 〈S〉 , are consistent with the solvability condition for
the function q||(t, ψ, ϕ, ζ). In this case, the condition
S = 〈S〉  determines the form of the function q||(t, ψ, ϕ, ζ)
in the same way as the constancy of  determines the
form of the function u||. As a result, instead of the basic
equation describing the plasma pressure variations, we
can use the corresponding equation averaged over the
specific volume of the flux tube. In doing so, it is con-
venient, following [19], to switch to the function S,
which plays the role of the Lagrangian pressure func-
tion. After substituting v = va + vs into the above equa-
tion for the plasma pressure, we arrive at the following
resulting equation for S, which is similar in form to
Eq. (23):

(24)

The left-hand side of this equation contains the terms
describing the ideal convection, while the terms on the
right-hand side describe various dissipative processes.
The effective energy source term  is given by the
expression

,

which accounts for both the volume energy source and
the longitudinal energy losses (see [35]).

Under the assumption that the electron-to-ion tem-
perature ratio is constant over the entire plasma vol-
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ume, Te/Ti = const, the components of the classical
transverse heat flux have the form

Here, XM is a constant having the meaning of the renor-
malized thermal diffusivity,

where the subscript M labels the values of the quantities
at a certain arbitrarily chosen point (e.g., at the point of
intersection of the axis with the midplane of the mirror
cell) that is convenient for the subsequent transforma-
tion of the set of equations under analysis into a dimen-
sionless form. By analogy with the thermal diffusivity,
the classical resistive diffusion coefficient D, which is

proportional only to  and, therefore, is constant
along the magnetic field lines, can also be conveniently
renormalized by introducing a constant coefficient dM:

It is easy to see that the classical heat flux is propor-
tional to —(p/ρ) = —(S/ Uγ – 1). Recall that, for small
deviations from the marginally stable pressure profile,
the function S can be represented as S = S0(e3t, ψ) +

(et, ψ, ϕ), where the term S0 =  is the

quasi-steady part of S and the term  ~ e2S0 describes
small but relatively fast fluctuations. The function 
can be represented in a similar manner:  = (e3t, ψ) +

(et, ψ, ϕ), where  ~ e2 . Since the functions  and

 are small, the expression for the classical heat flux
can be linearized in them. However, the linearization of
the classical heat flux with respect to  leads to a “neg-
ative-diffusion” term, which may lead to certain diffi-
culties in numerical modeling. In order to avoid them,

we introduce a new function  = S/ , which, in analogy
to , has the meaning of the Lagrangian temperature
function and is related to the actual electron and ion tem-

peratures by the relationship  = (Te + Ti)U(γ – 1)/Mi.
Representing this function as a sum of the main (quasi-

steady) and fluctuating components,  = (e3t, ψ) +

(et, ψ, ϕ), we can linearize the ratio p/ρ in  ~ e2 ,
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instead of linearizing it separately in  and in . In

terms of the function , Eq. (24) reads

(25)

where, for convenience, we have introduced the effec-
tive temperature source term

5. FAST AND SLOW SUBSETS 
OF THE REDUCED EQUATIONS

Equations (23) and (25) describe both the main
(slowly varying) components of the density and tem-
perature and relatively fast fluctuations of these plasma
parameters. This is why it is natural to separate the set
of Eqs. (23) and (25) into a “slow” and a “fast” subset.
By virtue of the axial symmetry of the magnetic config-
urations under discussion, the main density and temper-
ature components are independent of the angle ϕ; this
allows us to separate the equations by averaging them
over ϕ. In addition, keeping in mind further applica-
tions of the resulting reduced equations to practical cal-
culations, we set the adiabatic index equal to γ = 5/3.

Averaging Eq. (23) over ϕ yields the 1D equation

(26)

which describes the evolution of the main density com-
ponent (e3t, ψ). According to the traditional termi-
nology, this equation should be called the density trans-
port equation. The second term on the right-hand side
of Eq. (26) accounts for fluctuations of the radial
plasma velocity and plasma density and describes the
mean convective density flux, which is just the nondif-
fusive turbulent transport flux whose fundamental role
was discussed in the Introduction. Hereafter, a bar
above one or another expression indicates its average
over ϕ. In accordance with the above ordering of the
quantities, all the terms on both sides of Eq. (26) are on
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ρ̂0
the order of e3. In terms of the functions  and  intro-
duced above, the main quasi-equilibrium plasma pres-

sure component has the form p0 = /Uγ, provided
that the terms on the order of e4 are ignored.

Subtracting from Eq. (23) its component that is uni-
form in ϕ (i.e., Eq. (26)), we obtain the equation for the
plasma density fluctuations,

(27)

As in Eq. (26), all the terms on the left-hand side of
Eq. (27) are on the order of e3. The resistive diffusion
term on the right-hand side of Eq. (27) is on the order
of e5 (because D ~ e3 and  ~ e2) and contains the spa-
tial derivatives of  of an order no higher than one. The
latter circumstance results from the use of the simpli-
fied Ohm’s law and is a drawback of the one-fluid MHD
model applied here; as a result, the suppression of
small-scale density fluctuations by dissipation in the
model will be weaker than in actuality.

Averaging Eq. (25) over ϕ, we arrive at the 1D heat
transport equation,

(28)

in which the quantity q⊥  has been substituted by the
expression for the classical heat flux and the rest of the
notation was introduced above. As in Eq. (26), all the
terms in Eq. (28) are on the order of e3. The second term
on the left-hand side of Eq. (28) describes the convec-
tive heat flux, which may be turbulent and nondiffusive,
as is the case with the convective density flux.

Subtracting from Eq. (25) its averaged component
yields the following equation for the fluctuations of the
temperature function:

(29)

where  is the component of the effective tempera-
ture source  that is nonuniform in ϕ. As in Eq. (27),
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all the terms on the right-hand side of Eq. (29) are on
the order of e3. The first term on the right-hand side of
Eq. (29) accounts for the classical thermal conductivity.
Although this term is on the order of e5 (by virtue of

χ ~ e3 and  ~ e2), it plays an important role because it

contains second-order spatial derivatives of  and
describes the suppression of the small-scale fluctua-
tions of the temperature function. In Eq. (29), the resis-

tive diffusion terms that involve spatial derivatives of 
of an order no higher than one are omitted, in contrast
to the term with the thermal conductivity.

Transport equations (26) and (28), supplemented
with quasi-equilibrium equation (18), constitute a sub-
set of slow reduced equations describing the evolution
of the main macroscopic plasma parameters. Equa-
tions (26) and (28) contain the averaged convective
fluxes, which are determined by the fluctuations of the
plasma density, temperature, and radial velocity. These
fluctuations are in turn determined from 2D nonlinear
equations (22), (27), and (29), which, together with
Eq. (21), constitute a subset of fast reduced equations,
whose solution depends substantially on the magnetic
field configuration and also on the profiles of the mac-
roscopic plasma parameters. In particular, the last terms
on the right-hand sides of Eqs. (22), (27), and (29) are
responsible for the development of flute instability.
These subsets of slow and fast equations constitute a
complete set of the adiabatically reduced equations for
describing low-frequency MHD plasma convection. In
order to accomplish the derivation of the full set of
reduced equations, we are left with the problem of find-
ing an explicit form of the dissipative terms in Eq. (22).

The dissipative terms on the right-hand side of
Eq. (22) originate from the divergence of the viscous

stress tensor, — · , and the term ρ((va · —)vs + (vs · —)va)
in the basic equation of motion as well as from the dis-
sipative right-hand side of Eq. (23). Recall that all the
terms on the left-hand side of Eq. (22) are on the order
of e2, while the dissipative terms on the right-hand side
of this equation are on the order of e4. In other words,
the dissipative terms in Eq. (22) are of a higher order of
magnitude than the “ideal” terms on its right-hand side,
as in Eqs. (27) and (29) for the density and temperature
fluctuations. It is therefore necessary to preferentially
retain those dissipative terms that include the higher
spatial derivatives. In particular, such terms are con-
tained in the viscous stress tensor.

The contribution of the viscous stress tensor to

Eq. (22) comes through the operation 5{— · },
which leads to a very involved and complicated expres-
sion containing various combinations of the spatial
derivatives of Φ from the first to the fourth order. How-

T̃

T̃

T̃

p
↔

p
↔
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ever, proceeding in a manner analogous to that in [19]
and using the classical expression for the viscous stress
tensor that was obtained in [36], we can write the fol-

lowing approximate representation for 5{— · }:

(30)

which has the same divergence form as the basic repre-
sentation for this operation and in which we explicitly
keep all the terms with the highest spatial derivatives of
Φ and retain the terms with the lower spatial derivatives
in such a way that the potential Φ enters only into the
function , defined by expression (21). In representa-
tion (30), we have also introduced the characteristic
spatial scale a2(ψ) = 〈r4〉/〈r2〉  and the classical kinematic
viscosity coefficient η = 3χ/20. Representation (30)
was derived with allowance for the fact that the product
ηB2 is constant along the magnetic field lines. In
Eq. (22), viscous term (30) plays the same role as the
viscous term in the Navier–Stokes equation in conven-
tional hydrodynamics. In particular, it is responsible for
the dissipation of small-scale vortices generated in
flows with a high Reynolds number.

It can be shown that the remaining dissipative terms
on the right-hand side of Eq. (22) contain spatial deriv-
atives of Φ of an order no higher than two. These terms
can be discarded because, in contrast to viscous term
(30), their contribution is small both for long and short

spatial scales. Also, in expressing the function , which
stands on the left-hand side of Eq. (22), in terms of the

functions  and , it is sufficient to take into account

only linear terms:  ≈  + .

It is easy to see that Eq. (22) without dissipative
terms implies the conservation law for the dynamic
plasma vorticity. Therefore, even a relatively weak
source of the transverse momentum of the plasma can
significantly change the nonuniform profile of the
plasma rotation velocity and thereby can have a strong
impact on the development of plasma turbulence. In
experiments, the momentum source can be provided,
e.g., by the charge exchange and ionization of the
injected neutral beams or by controlling the radial elec-
tric field with the help of end-plates in open devices.

With allowance for the above estimates and
remarks, we arrive at the following final form of
Eq. (22):
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(31)

where  is the effective source of the specific
dynamic vorticity, which is calculated according to the
same rules as the above source terms  and . For
completeness, we also present an explicit expression

for ,

Hence, we have completed the derivation of the
closed set of reduced dynamic equations under discus-
sion. The equations have been represented in a form
convenient for designing appropriate computer codes
for simulations of the self-consistent nonlinear plasma
dynamics and resulting transport processes.

6. CONCLUSIONS

In the present paper, the ASM method has been used
to derive a closed set of adiabatically reduced dynamic
equations for describing nonlinear low-frequency
MHD plasma convection and resulting transport pro-
cesses in weakly dissipative plasmas of axisymmetric
shearless magnetic systems with closed or open mag-
netic field lines. The equations have been obtained on
the assumption that the plasma is maintained near a
marginally stable state against pressure-gradient-driven
flute interchange modes. It has also been assumed that
the plasma pressure is below the instability threshold
for Alfvén modes (β < βcr ~ 1). Under these assump-
tions, the ASM method makes it possible to exclude
from consideration relatively high-frequency stable
collective degrees of freedom corresponding to magne-
tosonic, Alfvén, and longitudinal acoustic modes of
oscillations. The remaining nonlinear low-frequency
convection can be self-consistently generated as a
result of the development of a flute interchange instabil-
ity (similar to the Rayleigh–Taylor instability) and also
of a secondary instability associated with the presence
of nonuniform plasma flows (similar to the Kelvin–
Helmholtz instability). The ASM method preserves the
invariant properties of the basic ideal MHD equations,
thereby making it possible to use the resulting set of
reduced equations to simulate the long-term evolution

∂t ψŵ Φ ŵ,[ ] ρ̂
v a

2

2
------,–+

+
1

U
γ------∂ψU∂ϕ ρ̂0T̃ T̂0ρ̃+( ) UQw*=

+
3XM

20
----------

Ti Te+
2Ti

---------------- 
  ∂ψ ρ̂ r

2〈 〉 ∂ ψ
1

U
2/3

T0

------------------- a
2

r
2〈 〉

----------ŵ
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of the plasma on time scales comparable to its lifetime
or even longer.

The final set of reduced equations consists of two
subsets of equations: slow and fast. The subset of slow
equations, which is represented by quasi-equilibrium
equation (18) and transport equations (26) and (28),
describes a relatively slow evolution of the main mac-
roscopic plasma parameters. In the quasi-steady (or
quasi-Eulerian) flux coordinates {ψ, ϕ, ζ}, transport
equations (26) and (28) have a traditional 1D form, the
only difference from traditional equations being that
they contain the averaged convective flux terms
accounting for the plasma density, temperature, and
radial velocity fluctuations. These fluctuations are in
turn described by 2D nonlinear equations (22), (27),
and (29), which, together with Eq. (21), constitute the
subset of fast equations.

The set of equations constructed here is a generali-
zation of the set of reduced equations obtained in [19]
for a simpler model magnetic configuration. The pro-
posed equations make it possible to simulate transport
processes and establishment of the self-consistent
plasma temperature and density profiles for a broad
class of axisymmetric nonparaxial shearless magnetic
systems, such as levitated dipole configurations, mirror
devices, and compact tori. The essential point is that the
specific character of a particular magnetic system is
fully described by a finite number of functions that
depend on the ψ coordinate and either vary only slowly
with time or do not vary at all, namely, the functions U,
〈r2〉, 〈r4〉, 〈r–2B–2〉, and 〈λ 2B2〉, which play the role of form
factors in the final reduced equations. In the approach
developed here, quasi-equilibrium equation (18) should
be solved only for sufficiently high β values, such that
the magnetic configuration differs substantially from a
vacuum one. For lower plasma pressures, it can be
assumed that β ! 1 and the form factors just indicated
can be calculated for a vacuum magnetic field configu-
ration, because quasi-equilibrium equation (18) has
already been taken into account in deriving the trans-
port equations and the equations for the fluctuations of
plasma parameters.

That the adiabatically reduced MHD equations pro-
vide an efficient tool for modeling the nonlinear low-
frequency MHD convection and resulting transport
processes in a weakly dissipative plasma was demon-
strated in [19, 20]. It was shown that the resulting trans-
port fluxes are turbulent, nonlocal, and nondiffusive.
Computer simulations revealed that transport processes
possess specific properties that are qualitatively similar
to those of some experimentally observed phenomena,
such as the internal transport barrier, L–H transition,
and impurity pinch. A generalized dynamic transport
model based on the above set of reduced equations is
expected to provide a more adequate simulation of the
low-frequency plasma turbulence and resulting trans-
port processes, to yield the results that can then be used
for a detailed comparison with the experimental data
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obtained from various magnetic systems, and also to
contribute to the development of the general theory of
nondiffusive transport processes in a magnetized
plasma.

As was mentioned above, the use of the simplest
MHD model with isotropic plasma pressure may be
considered merely as a first step in simulating the self-
consistent low-frequency plasma dynamics. In further
investigations, it is proposed to utilize a more adequate
bounce-averaged collisionless Kruskal–Oberman
model. Nevertheless, the results obtained in the present
study, together with the results of computer simulations
carried out in [19, 20], suggest that the set of adiabati-
cally reduced equations in the Kruskal–Oberman
model should yield qualitatively the same basic proper-
ties of the nonlinear low-frequency plasma dynamics.
Thus, the conclusion that the plasma tends to maintain
a marginally stable state should remain valid, as well as
the conclusion that fast stable degrees of freedom can
be removed from consideration. The main quantitative
difference from the above results will be associated
with the two new adiabatic functions that will charac-
terize the longitudinal and transverse plasma pressures
and will appear in the equations in place of the entropy
density function defined by Eq. (7). This will lead to the
corresponding modification of the marginally stable
pressure profile as well as of the form factors describing
the specific character of a magnetic system. At the same
time, the Kruskal–Oberman model should give approx-
imately the same spatial scales of the self-consistent
fluctuations and of the resulting transport processes as
those in the model with isotropic plasma pressure.
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APPENDIX

Here, a number of useful formulas are presented that
are required to carry out the averaging over the specific
flux tube volume in deriving Eqs. (22), (23), and (25)
and in performing some other manipulations. The time
derivatives of the quantities related to the flux coordi-
nates are as follows:

The operation of divergence in the flux coordinates is
given by the relationship
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Finally, the expressions related to the averaging of the
fluxes associated with adiabatic velocity field (11) have
the form

REFERENCES
1. B. B. Kadomtsev and O. P. Pogutse, in Reviews of

Plasma Physics, Ed. by M. A. Leontovich (Atomizdat,
Moscow, 1967; Consultants Bureau, New York, 1970),
Vol. 5.

2. W. Horton, in Basic Plasma Physics, Ed. by A. A. Galeev
and R. N. Sudan (North-Holland, Amsterdam, 1984;
Énergoatomizdat, Moscow, 1984), Vol. 2.

3. J. W. Connor, P. Buratti, J. D. Cordey, et al., Plasma
Phys. Controlled Fusion 41, 693 (1999).

4. M. V. Ossipenko and T-10 Team, in Proceedings of the
19th IAEA Fusion Energy Conference, Lyon, 2002
(IAEA, Vienna, 2003), Report OV/5-2.

5. G. M. Batanov, L. V. Kolik, A. E. Petrov, et al., Fiz.
Plazmy 29, 395 (2003) [Plasma Phys. Rep. 29, 363
(2003)].

6. G. M. Batanov, V. E. Bening, V. Yu. Korolev, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 78, 974 (2003) [JETP Lett.
78, 502 (2003)].

7. T. Cho, M. Yoshida, H. Higaki, et al., J. Plasma Fusion
Res. 80, 81 (2004).

8. V. V. Abrakov, A. E. Petrov, K. A. Sarksyan, and
N. N. Skvortsova, Fiz. Plazmy 20, 1069 (1994) [Plasma
Phys. Rep. 20, 959 (1994)].

9. G. Y. Antar, S. I. Krasheninnikov, P. Devynck, et al.,
Phys. Rev. Lett. 87, 065001 (2001).

10. N. Ohno, D. Nishijima, S. Takamura, et al., Nucl. Fusion
41, 1055 (2001).

11. J. A. Boedo, D. L. Rudakov, R. Moyer, et al., Phys. Plas-
mas 8, 4826 (2001).

12. B. B. Kadomtsev and O. P. Pogutse, Zh. Éksp. Teor. Fiz.
65, 575 (1973) [Sov. Phys. JETP 38, 283 (1974)].

13. B. B. Kadomtsev and O. P. Pogutse, Zh. Éksp. Teor. Fiz.
66, 2067 (1974) [Sov. Phys. JETP 39, 1017 (1974)].

14. R. White, D. Monticello, M. N. Rosenbluth, et al., in
Proceedings of the 5th International Conference on
Plasma Physics and Controlled Nuclear Fusion
Research, Tokyo, 1974 (IAEA, Vienna, 1975), Vol. 1,
p. 495.

15. H. Strauss, Phys. Fluids 19, 134 (1976).
16. H. Strauss, Phys. Fluids 20, 1354 (1977).
17. V. P. Pastukhov, Pis’ma Zh. Éksp. Teor. Fiz. 67, 892

(1998) [JETP Lett. 67, 940 (1998)].
18. V. P. Pastukhov, Fiz. Plazmy 26, 566 (2000) [Plasma

Phys. Rep. 26, 529 (2000)].
19. V. P. Pastukhov and N. V. Chudin, Fiz. Plazmy 27, 963

(2001) [Plasma Phys. Rep. 27, 907 (2001)].
20. V. P. Pastukhov and N. V. Chudin, in Proceedings of the

19th IAEA Fusion Energy Conference, Lyon, 2002
(IAEA, Vienna, 2003), Report TH/2-5.

21. A. Hasegava, L. Chen, and M. E. Mauel, Nucl. Fusion
30, 2405 (1990).

— va/U( )⋅ 0, — vaF( )⋅〈 〉 U
1– Φ U F〈 〉( ),[ ] .= =



590 PASTUKHOV
22. A. I. Morozov, V. P. Pastukhov, and A. Yu. Sokolov, in
Proceedings of the Workshop on D-3He-Based Reactor
Studies, Moscow, 1991, p. 1C1.

23. J. Kesner, L. Bromberg, D. T. Garnier, and M. E. Mauel,
in Proceedings of the 17th IAEA Fusion Energy Confer-
ence, Yokohama, 1998 (IAEA, Vienna, 1999), Vol. 3,
p. 1165.

24. V. P. Pastukhov and A. Yu. Sokolov, Fiz. Plazmy 17,
1043 (1991) [Sov. J. Plasma Phys. 17, 603 (1991)].

25. V. V. Arsenin, E. D. Dlougach, V. M. Kulygin, et al.,
Nucl. Fusion 41, 945 (2001).

26. A. Yu. Sokolov, Fiz. Plazmy 18, 657 (1992) [Sov. J.
Plasma Phys. 18, 343 (1992)].

27. V. V. Arsenin and A. Yu. Kuyanov, Fiz. Plazmy 27, 675
(2001) [Plasma Phys. Rep. 27, 635 (2001)].

28. P. A. Popovich and V. D. Shafranov, Fiz. Plazmy 26, 519
(2000) [Plasma Phys. Rep. 26, 484 (2000)].

29. V. V. Arsenin and A. Yu. Kuyanov, Fiz. Plazmy 26, 793
(2000) [Plasma Phys. Rep. 26, 741 (2000)].
30. A. Bernstein, in Basic Plasma Physics, Ed. by A. A. Galeev
and R. N. Sudan (North-Holland, Amsterdam, 1984;
Énergoatomizdat, Moscow, 1983), Vol. 1.

31. B. B. Kadomtsev, in Reviews of Plasma Physics, Ed. by
M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1966), Vol. 2.

32. S. Krasheninnikov, P. Catto, and R. D. Hazeltine, Phys.
Rev. Lett. 82, 2689 (1999).

33. D. T. Garnier, J. Kesner, and M. E. Mauel, Phys. Plasmas
6, 3431 (1999).

34. V. V. Arsenin, Fiz. Plazmy 28, 843 (2002) [Plasma Phys.
Rep. 28, 776 (2002)].

35. V. P. Pastukhov, in Reviews of Plasma Physics, Ed. by
B. B. Kadomtsev (Énergoatomizdat, Moscow, 1984;
Consultants Bureau, New York, 1987), Vol. 13.

36. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by
M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1965), Vol. 1.

Translated by I.A. Kalabalyk
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005



  

Plasma Physics Reports, Vol. 31, No. 7, 2005, pp. 591–595. Translated from Fizika Plazmy, Vol. 31, No. 7, 2005, pp. 642–646.
Original Russian Text Copyright © 2005 by Nikulin, Polukhin, Tikhomirov.

                           

PLASMA
DYNAMICS

           
A Simple Criterion for the Snowplowing Efficiency 
of the Working Gas in a kJ Plasma Focus

V. Ya. Nikulin, S. N. Polukhin, and A. A. Tikhomirov
Lebedev Physical Institute, Russian Academy of Sciences, Leninskiœ pr. 53, Moscow 117924 Russia

Received December 15, 2003; in final form, October 22, 2004

Abstract—Correlation between the appearance of the second peculiarity in the current-derivative signal and
the drop in the neutron yield is observed experimentally in a plasma focus discharge. The time-resolved photo-
graphs of the current sheath lead to the conclusion that, at the instant of maximum compression, the main cur-
rent is shunted by the second current sheath, which is formed from the rest of the gas after the passage of the
first one. It is also suggested that the generation of the second current sheath is a consequence of two competing
processes: filamentation of the first sheath, which thus becomes transparent to the working gas, and magneti-
zation of the residual plasma by the field of the main discharge current. © 2005 Pleiades Publishing, Inc.
1. INTODUCTION

It has been found experimentally that the neutron
yield from a plasma focus (PF) is proportional to the
square of the stored energy only in the energy range of
1–100 kJ. For MJ devices, the neutron yield remains at
a level of 1011–1012 n/pulse instead of the expected
1013 n/pulse.

It is commonly accepted that reduced neutron yield
is related to the shunting of the current by the residual
plasma surrounding the discharge column or by the
low-density plasma at the periphery of the discharge.
The first effect is peculiar to all high-power Z-pinch
discharges and is of fundamental importance for
plasma physics [1], whereas the second is typical of
plasma focus discharges and is directly related to the
efficiency of gas snowplowing by the current sheath
moving from the insulator.

In the present paper, based on an analysis of the cur-
rent-derivative signal, electron-optical photographs of
the discharge, and the data on the neutron yield, we for-
mulated a criterion for determining the snowplowing
efficiency. With this criterion, the effect of the parasitic
shunting of the discharge current by the residual plasma
at the periphery of the discharge may be easily esti-
mated from the behavior of the current-derivative sig-
nal.

2. EXPERIMENTAL SETUP

Experiments were carried out in a PF device with
hemispheric electrodes 25 and 50 mm in diameter
(Fig. 1) [2, 3]. The electrodes were powered from a
20-µF capacitor bank up to 12–16 kV, which corre-
sponded to a stored energy of 1.5–2.5 kJ. The current
rise time was 1.6 µs, and the current amplitude was
Imax ≅ 3 × 105 A. The working gas was deuterium at a
pressure of P ≅  1–3 torr.
1063-780X/05/3107- $26.00 0591
In each shot, we recorded the current-derivative sig-
nal with a Tektronix TDS210 oscillograph, measured
the total neutron yield using the neutron-activation
technique (paraffin + In + Geiger counter), and took
photographs of the current sheath using an image con-
verter operating in the single-frame mode with a time
resolution of 3–10 ns and spatial resolution of 0.1–
0.2 mm. The images were recorded by a Nikon Coolpix
700 digital camera and then were stored in a PC. The
image converter was placed perpendicular or parallel to
the PF axis at a distance of 15–20 cm from the electrode
ends.

3. EXPERIMENTAL RESULTS

Figure 2 shows typical oscilloscope traces of the
current-derivative signal measured during the initial ten
to twenty shots before stable operation of the device is

Fig. 1. Photograph of a PF with hemispheric electrodes.
© 2005 Pleiades Publishing, Inc.
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Fig. 2. Evolution of the current-derivative signal at the course of training shots. The time scale is 1 µs/division in the first oscillogram
and 0.5 µs/division in the other.
achieved. In these shots, peculiarities in the current-
derivative signal initially appear in the third half-period
of the discharge current, then in the second half-period,
and finally in the first one. Thereafter, the peculiarities
in the second and third half-periods disappear, whereas
the peculiarity in the first half-period becomes more
pronounced. After the peculiarity amplitude exceeds
the amplitude of the current-derivative signal, the first
neutrons (~106 neutrons per shot) appear. A further
increase in the amplitude of the peculiarities is accom-
panied by an increase in the neutron yield to 107.
Finally, there remains only one large-amplitude pecu-
liarity with an acute peak, and the neutron yield
increases to 108.

Figure 3 shows photographs taken across the cham-
ber axis near the instant at which a peculiarity in the
current-derivative signal appears. The time is counted
from the appearance of the peculiarity. It is clearly seen
that the current sheath slips along the anode surface.
Before the sheath collapses on the chamber axis, its
radial velocity reaches a value on the order of 107 cm/s.
As a result, a cumulative plasma jet is produced that
propagates along the chamber axis with a velocity of
2 × 107 cm/s.

Pinch objects are rather difficult to reveal in visible-
light photographs because the optical electronic levels
in the fully ionized deuterium plasma have already been
depleted almost completely (according to [4], a plasma
with a density of ~4 × 1014 cm–3 at a temperature of sev-
eral electronvolts has the maximum brightness in this
spectral region). However, in some shots, millimeter-
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
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–100 ns +40 ns +100 ns

Fig. 3. Typical discharge photographs taken across the chamber axis. The time is counted from the appearance of the first peculiarity.

1 Òm

10 ns–20 ns–70 ns

Fig. 4. Filamentation of the current sheath at different stages of the discharge. The photographs were taken along the discharge axis.
size pinches (or more precisely, their “coats”) can be
seen near the anode.

Figure 4 shows typical discharge photographs taken
from the end of the PF at different times. A filamentary
structure of the sheath is clearly seen. It was found that,
when this structure is asymmetric, the peculiarity in the
current-derivative signal is usually small and the neu-
tron yield is low.

4. DISCUSSION OF THE RESULTS

It is well known that the amplitude of the peculiarity
in the current-derivative signal correlates with the neu-
tron yield. The new result is that the appearance of the
second peculiarity in the first half-period of a discharge
(or in other half-periods) usually correlates with a
decrease in the amplitude of the first peculiarity and
with a substantial decrease in the neutron yield. A com-
parison of oscilloscope traces with discharge photo-
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
graphs shows that the appearance of the second pecu-
liarity in the first half-period correlates with the appear-
ance of the second current sheath (rather than with the
time evolution of the plasma column, as in large
devices). In this case, the sheaths resemble nested hats
(see Fig. 5). It is interesting that even three peculiarities
are sometimes observed in the first half-period.

It is evident that considering (even roughly) the pro-
cess of the formation of the first sheath [4, 5] can fur-
nish insight into the mechanism for the formation of the
second sheath. After the voltage is applied to the elec-
trodes, the following processes occur: (i) the working
gas in the chamber is ionized; (ii) the skinning of the
current near the insulator leads to the formation of a
current sheath and its subsequent filamentation;
(iii) and, finally, the sheath separates from the insulator.
The merging of the filaments into a continuous current
sheath begins after the separation of the sheath [4, 6]
and continues up to the pinch compression phase [7–9].
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Fig. 5. Discharges with (a) one, (b) two, and (c) three current sheaths.
In our experiments, the filamentary structure was
observed in each shot throughout the first half-period of
the discharge current until the produced cumulative jet
obstructed the field of view of the electron-optical shut-
ter 300–500 ns after the first peculiarity.

The material for the formation of the secondary cur-
rent structure was probably the gas remaining after the
passage of the first sheath, because other possible
sources, namely, the gas expelled upward by the current
sheath and the gas evaporated from the insulator have
no time to fill the discharge gap (their velocity is on the
order of the thermal velocity, i.e., 104–105 cm/s,
whereas the characteristic time of the process is 10–6–
10–7 s).

It is known [4] that a 1-cm-thick homogeneous
(without filaments) current sheath with a density of 3 ×
1014 cm–3 plows the neutral gas almost completely; i.e.,
the sheath becomes “opaque” in an early stage of the
discharge, when the degree of ionization is as low as
10–2. However, when the sheath separates from the
insulator, there remains an undragged gas layer with a
thickness comparable to the sheath thickness. Another
(probably more important) cause of the existence of the
residual gas is the filamentary structure of the current
sheath, which leads to an incomplete snowplowing of
the working gas. The characteristic diameter of the fil-
aments is limited from above by the skin depth [4]. It is
clear that, in a thin layer, filaments are located more
closely to one another and a smaller amount of gas
passes through the sheath. In any case, the contributions
from these two gas sources are proportional to the
thickness of the current sheath.

For the second current sheath to form, it is necessary
that the shunting current flow through the residual
plasma in the magnetic field of the main current. The
current in the residual plasma flows without substantial
losses when this plasma is weakly magnetized, i.e.,
when νei > ωBe. For simplicity, we assume that the resid-
ual plasma is fully ionized and its temperature T is no
higher than 10 eV. Substituting the electron–ion colli-
sion frequency νei = 2 × 10–5n/T3/2 [10] (where n is the
electron density of the residual plasma) and the mag-
netic field of the axial current B = 0.2I/R into the above
inequality, we obtain

n > 1011I/R,

where R is the average radius of the discharge gap
(in cm) and I is the discharge current (in A). When this
condition is satisfied, the residual plasma density is
high enough to shunt the axial current.

In our experiments, the threshold value for the resid-
ual plasma density at a current of 105 A and discharge
gap radius of ~1 cm is ~1016 cm–3, which corresponds
to nearly 10% of the initial density of the working gas
in the discharge chamber. Hence, in order to efficiently
shunt the discharge current, no less than 10% of the
working gas should penetrate through the first current
sheath. Note, that this lower estimate is obtained under
the assumption that the residual plasma is fully ionized.

The snowplow model assumes that the current
sheath is impenetrable; this is confirmed by the large
cross section for the ion–neutral resonance charge
exchange [4, 10]. According to this model, the time at
which the sheath arrives at the axis depends slightly on
the initial gas density (it is proportional to the fourth
root of the initial gas density). For this reason, although
the 10% transparency of the sheath has little effect on
its motion, it has a substantial effect on the degree of the
current shunting in the stage of maximum compression.

The working gas most easily penetrates through the
sheath when the current filaments are distributed non-
uniformly in the azimuthal direction. Such a nonunifor-
mity may by caused by two effects: the overheating of
the sheath and the presence in it of impurities arriving
from the constructional elements of the discharge
chamber. The impurities decrease the conductivity of
the sheath and enlarge and loosen its skin layer; this
leads to the onset of large-scale instabilities. The sheath
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
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overheating means that the ratio of the energy stored in
the capacitor bank to the initial area of the plasma
sheath surface (which coincides with the working area
of the insulator surface) exceeds the threshold value
above which instabilities develop and the sheath
breaks. For the Speed-2 device (300 kV, 180 kJ), this
threshold was estimated experimentally at ~100 J/cm2

[11]. Therefore, a substantial decrease in the insulator
radius with the aim of improving magnetic insulation
can lead not only to an increase in the inductance and a
decrease in the total current, but also to the destruction
of the current sheath already in the initial phase of the
discharge.

The above considerations allow us to explain why
the peculiarity in the current-derivative signal passes
from the third and second half-periods of the discharge
current to the first half-period as the number of shots
increases. In the first discharges, a considerable amount
of impurities is evaporated from the insulator surface;
this leads to the formation of the subsequent sheaths.
Each subsequent sheath carries away a portion of gas
from the discharge gap until the residual plasma density
decreases to a value satisfying the condition for plasma
magnetization. Thereafter, the current flowing through
the sheath is no longer shunted and the plasma column
is even compressed tightly; this is accompanied by a
sharp increase in the discharge inductance and the
appearance of a peculiarity in the current-derivative
signal. The number of sheaths arising during one shot
depends on their transparency, which is determined by
the content of impurities affecting the sheath filamenta-
tion. The impurity concentration in the sheath
decreases from shot to shot; therefore, starting from a
certain shot, the working gas can be efficiently snow-
plowed by the first sheath and a peculiarity in the cur-
rent-derivative signal appears already in the first half-
period of the discharge current.

5. CONCLUSIONS

Based on the experimental data, a criterion for the
snowplowing efficiency of the working gas in a plasma-
focus discharge can be formulated as follows: The pres-
ence of the second peculiarity in the current-derivative
signal indicates that the snowplowing of the gas by the
current sheath is inefficient. This leads to the shunting
of the discharge current by the residual plasma and to a
decrease in the neutron yield. The criterion is formu-
lated based on the results from experiments with 1- to
2-kJ plasma focus discharges, in which the current-
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
derivative signal has the shape of a damping sinusoid.
In large devices with a stored energy of higher than
100 kJ, the current-derivative signal is much more com-
plicated and the peculiarity in the current-derivative
signal lasts over a few hundred nanoseconds. In this
case, the effect of shunting by the residual plasma is
less pronounced.
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Abstract—A study is made of the dispersion properties of waveguides filled with a magnetized plasma. It is
shown that the eigenmodes of the waveguides filled with a low-density magnetized plasma fall into two fami-
lies, which are weakly coupled to one another at all frequencies, in particular, in the cyclotron resonance fre-
quency range. These families differ in transverse wavenumbers and the modes in them have hybrid polarization.
Attention is focused on the study of the modes that have predominantly TE polarization at frequencies close to
the cutoff frequency. The dependence of the critical frequencies of the TE modes on the plasma frequency, as
well as the influence of the plasma on the energy flux and energy density of these modes, is investigated. The
effect of mode crowding (the existence of an arbitrarily large number of dispersion curves in a finite frequency
range between the cyclotron frequency and the upper hybrid frequency) is examined in detail. The results
obtained are used to analyze how the plasma affects the electromagnetic properties of the cavity of the 1-MW
140-GHz continuous-wave gyrotron developed at the Institute of Pulsed and Microwave Technology of the
Research Center in Karlsruhe, Germany (Institut für Hochleistungsimpuls- und Mikrowellentechnik Fors-
chungszentrum Karlsruhe) for plasma heating in the W7-X stellarator, which is being constructed in Greif-
swald, Germany. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Investigation of the electromagnetic properties of
plasma waveguide structures is very important for a
number of technological applications, such as the gen-
eration of high-power electromagnetic radiation, the
transport of high-current charged particle beams, and
the development of efficient methods for charged parti-
cle acceleration. The waveguide structures that are
most widely used in such applications are those based
on circular plasma-filled waveguides with constant or
periodically varying radii in a longitudinal magnetic
field.

To efficiently use plasma waveguide structures in
various applications, it is necessary to have reliable
information about the spectra of their eigenmodes and
the details of the field distributions in them.

Most theoretical studies of plasma waveguides are
carried out by assuming that the magnetic field is infi-
nitely strong; this makes it possible to substantially
simplify the analysis. In some cases, however, this sim-
plification is undesirable and even inappropriate. In
particular, this concerns the description of such topics
as cyclotron modes of a plasma waveguide, electro-
magnetic modes of plasma waveguides at frequencies
close to the cyclotron frequency, and cyclotron mecha-
nisms for the interaction of a beam with the eigenmodes
of a plasma waveguide structure. The dispersion prop-
erties of plasma-filled waveguide structures in a finite
magnetic field have received insufficient study, even in
their simplest form and for the simplest plasma models.
1063-780X/05/3107- $26.00 0596
The key problem in investigating plasma waveguide
structures in a finite magnetic field is that of a cylindri-
cal waveguide filled with a homogeneous cold colli-
sionless plasma and placed in a longitudinal magnetic
field. A detailed and comprehensive analysis of this ide-
alized problem is necessary, because it provides basic
knowledge and facilitates the examination of more real-
istic (and, accordingly, more complicated) problems
about the influence of the finite magnetic field on the
electromagnetic properties of periodic plasma
waveguide structures, about waveguide structures filled
with an inhomogeneous plasma, etc. By now, however,
despite numerous efforts [1–5], even this simplest prob-
lem has not been investigated in full measure. It is
known (see, e.g., [1]) that, in a finite magnetic field,
modes with different polarizations are mutually cou-
pled and there are hybrid waves whose electromagnetic
field has all six nonzero components. In this case, the
spatial field distribution, as well as the dispersion rela-
tion, becomes far more complicated. The transverse
field structure is described by two terms containing dif-
ferent transverse wavenumbers. The relevant dispersion
relation was obtained in analytic form rather a long
time ago (see, e.g., [1, 2]); however, it is so complicated
that many its properties still remains unclear. At
present, the best studied cases are those in which the
wave fields can be approximately divided according to
their polarization into TE- and TM-type fields [3–5],
i.e., those in which the effects related to the finite mag-
netic field are weak and can be considered using pertur-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Dispersion curves for a waveguide filled with a magnetized plasma: (a) the dispersion curves for the first (EH) and second
(HE) mode families, D1, 2(ω, kz) = 0, and (b) the dispersion curves described by the simplified dispersion relation (7).
bation theory. For this to be the case, it is necessary that
the plasma density be sufficiently low and the perturba-
tion frequency be sufficiently different from the elec-
tron-cyclotron frequency,

, (1)

where ωp = (4πe2n/m)1/2 is the electron plasma fre-
quency, ωH = eH/mc is the cyclotron frequency of the
plasma electrons, e and m are the charge and mass of an
electron, n is the electron plasma density, and c is the
speed of light in vacuum.

In the case of an arbitrary plasma density, too, the
modes with different polarizations can be approxi-
mately divided into two families provided that the lon-
gitudinal wavenumber kz is small, (kzc/ω)2 ! 1. For
kz = 0, the modes can be divided into two completely
different families and it is possible to obtain analytic
expressions for the cutoff frequencies of the TE and TM
modes. In this case, in the frequency range ωH < ω <

(  + )1/2, there are an infinite number of cutoff fre-
quencies for the TE modes and, accordingly, there are
an infinite number of dispersion curves. The effect of
the crowding of dispersion curves has received insuffi-
cient study, so its physical nature and essence are not
quite clear as yet. Since the dispersion relation in the
general case is rather complicated and can be analyzed
only numerically and since numerical methods cannot
provide an exhaustive description of the crowding of

ωp
2
/ ω2 ωH

2
–( ) ! 1

ωp
2 ωH

2
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dispersion curves, new results can be obtained only by
applying novel analytic techniques.

It should be noted that the dispersion curves at fre-
quencies sufficiently different from the electron cyclo-
tron frequency ω ~ ωH were investigated numerically
by Kuzelev et al. [6]. They found that, unlike in vacuum
waveguides, the dispersion curves of waveguides filled
with a magnetized plasma have unusual, meandering
shapes, which are rather difficult to interpret. In [4], it
was shown that such an unusual shape of the dispersion
curves is attributed to the existence of an opaque
region, which expands with increasing plasma density
and has the effect of expelling the dispersion curves and
of deforming them (see, e.g., [4], Fig. 3). Onishchenko
and Sotnikov [7], however, showed that, within these
opaque regions, there also may be dispersion curves.
On the other hand, at low plasma densities, such that an
opaque region is essentially absent, the dispersion
curves are nonetheless appreciably deformed in com-
parison to those for a vacuum waveguide. Therefore,
the mechanism for the formation of dispersion curves
that was proposed in [4] is not unique.

In what follows, based on analytical and numerical
investigations, we obtain some new results on the dis-
persion properties of plasma-filled waveguides in a
finite magnetic field. In contrast to earlier studies, in
which the main attention was paid to slow TM waves,
we focus on fast TE modes. In particular, we show that
the expressions for the cutoff frequencies of the TE
modes differ from those obtained earlier and depend on
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the sign of the azimuthal mode number. We qualita-
tively investigate the effect of the crowding of disper-
sion curves and also the mechanism by which the dis-
persion curves of the waveguides filled with a magne-
tized plasma are deformed. We concentrate primarily
on the case of a plasma of comparatively low density,

/ω2 ! 1. However, we do not rule out the possibilityωp
2
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Fig. 2. Critical frequencies of the TE modes of a waveguide
filled with a magnetized plasma vs. plasma density for B =
5.56 T and R = 2.045 cm.

ωH/ωp
that inequality (1) may fail to hold, i.e., that the waves
under consideration may be, in essence, hybrid waves
that comprise strongly coupled perturbations of the TE
and TM types. We will show that, in this case, the anal-
ysis of the dispersion relation can be significantly sim-
plified. The solutions to the dispersion relation describe
two families of hybrid modes that are weakly coupled
to one another at all frequencies, in particular, in the
cyclotron resonance frequency range ω ≈ ωH. The only
exception is the immediate vicinities of the points
where the dispersion curves of one family intersect
those of the other family (the dispersion curves of the
same family are nonintersecting). In other words, these
are points of “reconnection” of the dispersion curves. It
is this reconnection that acts as a mechanism for the
deformation of the dispersion curves, in addition to the
mechanisms that were proposed earlier (see, e.g., [4]).
The higher the plasma density, the larger the reconnec-
tion regions and the more conditional the division of the
modes into two families. Note, however, that the hydro-
dynamic description developed here remains qualita-
tively valid for arbitrary plasma densities; its applica-

bility is limited by the condition /(ω – ωH)2 ! 1
(where vT is the thermal velocity of the plasma elec-
trons), which is routinely used in studies of a magne-
tized plasma.

Our paper is organized as follows. In Section 2, we
describe the method for simplifying the dispersion rela-
tion for a cylindrical waveguide filled with a homoge-

neous low-density ( /ω2 ! 1) cold plasma in a longi-
tudinal magnetic field of finite amplitude. We show that
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the dispersion relation refers to two families of modes
that are weakly coupled to one another and are
described by simpler dispersion relations, which admit
thorough and illustrative investigations by analytical
and numerical methods. In Section 3, we analyze the
two families of hybrid modes and give insight into the
mechanism for the formation of the dispersion curves
that reconnect at the intersection points and are thus
common to both families. In Section 4, we examine the
influence of the plasma on the redistribution of the
fields over the waveguide cross section. We show that,
in the case of TE modes, the plasma acts to reduce heat
loads to the waveguide wall and to increase the energy
of microwave perturbations in comparison to that in a
vacuum waveguide with the same heat loads to the wall.
In the Conclusions, we summarize and discuss the main
results of our study.

2. DISPERSION RELATION
FOR A CYLINDRICAL WAVEGUIDE FILLED 
WITH A MAGNETIZED PLASMA AND ITS 

SIMPLIFICATION IN THE CASE OF A LOW-
DENSITY PLASMA

The general dispersion relation for a cylindrical
waveguide filled with a magnetized plasma and placed
in a longitudinal magnetic field of arbitrary amplitude
has the form (see, e.g., [1–7])

(2)

where 

k = ω/c is the wave vector in free space, and R is the
waveguide radius.

In deriving this dispersion relation, it was assumed
that the fields are described by the expressions

l = 0, ±1, ±2, ….

However, because of its complexity, dispersion rela-
tion (2) is very difficult to analyze (both analytically
and numerically), especially in the frequency range
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ω ~ ωH. Even when the plasma frequency is much

lower than the perturbation frequency, /ω2 ! 1,

numerous terms proportional to  cannot be dis-
carded, because some of them have the resonant

denominators ω2 –  and the others are proportional

to , so they, too, can increase resonantly as ω 
ωH. Moreover, the rate of increase of kz is not known a
priori and can only be determined after dispersion rela-
tion (2) has been solved. Hence, even with the above
small parameter, it is not obvious how the terms of this
dispersion relation should be grouped according to
their orders of smallness. This is why we will utilize a
comparatively simple analytic technique, which will
make dispersion relation (2) far simpler and, accord-
ingly, far easier to analyze.

In this way, we begin by presenting a few exact rela-
tionships between the elements of the plasma dielectric
tensor:

(3)

With these relationships, which can be readily veri-
fied by direct substitution, the expression for σ can be
transformed to

For  ! , the second term under the square
root symbol is much less than the first term, provided
that any of the following three conditions is satisfied:

(4)

Under conditions (4), this second term can be
ignored in the zeroth approximation, so the expressions
for the transverse wavenumbers k1, 2 can be greatly sim-
plified:

(5)

Dispersion relation (2), too, can be converted into a
much simpler form that makes its properties far easier
to investigate:

, (6)
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In the limit α(ω, kz) ! 1, dispersion relation (6)
describes two families of waves that are weakly cou-
pled to one another and whose dispersion curves satisfy
the dispersion relations D1(ω, kz) = 0 and D2(ω, kz) = 0,
the transverse wavenumbers k1 and k2 being given by

expressions (5). This is true for the range  ! k2 and
also for kz ~ k. In the range kz > k, the function D1(ω, kz)
cannot vanish because the wavenumber k1 is purely
imaginary and only the second wave family can exist.
However, for kz @ k, the dispersion curves of the second
family approach those described by the equation α(ω,
kz) = 0, or equivalently Jl(k2R) = 0, and, in the limit
kz  ∞, they become the dispersion curves of the
potential TM waves that were considered earlier in [3].

Hence, the properties of dispersion relation (6) are
mainly governed by the properties of the two simpler
dispersion relations D1(ω, kz) = 0 and D2(ω, kz) = 0 and
the dispersion curves of relation (6) are close to those
of these two relations, except for the vicinities of the
points where the dispersion curves of one family inter-
sect those of the other, i.e., where the functions
D1, 2(ω, kz) vanish simultaneously.

The dispersion curves of both families can be inves-
tigated in exhaustive detail, both analytically and
numerically.

In the case under consideration, the dispersion
curves of the first family differ insignificantly from
those of the TM modes of a vacuum waveguide and are
very close to the dispersion curves of the TM modes in
a plasma-filled waveguide in an infinitely strong mag-
netic field. The dispersion properties of the last modes
have been studied in sufficient detail (see, e.g., [8] and
the literature cited therein).

The dispersion relation for the waves from the sec-
ond family can be conveniently represented as

(7)

where x = k2R and the function b(ω, kz) is equal to

b(ω, kz) =  for kz < k and for kz ~ k and

approaches zero for kz @ k.
It is known [9] that, for an arbitrary finite value of

the function b(ω, kz), all positive roots of dispersion
relation (7) regarded as an equation for x are simple
(unrepeated) and lie between the roots µl, n (n = 1, 2, …)
of the lth-order Bessel function. In terms of these sim-
ple positive roots, which will be denoted by νl, n(ω, kz),
the equation determining the dispersion curves can be

D2 ω kz,( )
k1

2

kz
2

k
2

+
----------------Jl' k2R( ) l

k2R
---------

ε2

ε1
----Jl k2R( ),+=

α ω kz,( )
k1k2kz

2

k
2

kz
2

k
2

+( )
--------------------------Jl k2R( )Jl' k1R( ).=

kz
2

Jl x( ) b ω kz,( )xJl' x( )+ 0,=

k1
2

k
2

kz
2

+
----------------

ε1

ε2l
------
rewritten in the form k2R = νl, n(ω, kz), whose analysis is
far easier and much more convenient than the direct
analysis of dispersion relation (7) because the roots
νl, n(ω, kz) increase monotonically with n and none of
them is a crowding point. On the other hand, in accor-
dance with [8] and with the examination to follow, the
dispersion curves described by Eq. (7) are subject to
crowding in the (ω, kz) plane; this considerably compli-
cates their analysis. Using formulas (5), we can express
the wavenumber kz in terms of the roots νl, n(ω, kz):

(8)

The qualitative shape of the dispersion curves from
both families is illustrated in Fig. 1a. By comparing
Fig. 1a to Fig. 1b, which presents the dispersion curves
of Eq. (7), we arrive at the following obvious conclu-
sion: the dispersion curves of Eq. (7) are formed by
both of the two families of dispersion curves, which
reconnect at the intersection points. A comparison of
the dispersion curves of the simplified dispersion rela-
tion (7) with those of the exact dispersion relation (2)
shows that, for the parameter values under consider-
ation, they are essentially identical.

In the frequency range ωH < ω < ω1 (where ω1 =

 is the upper hybrid frequency), there is an
infinite number of dispersion curves from the second
family. This fact can be inferred by analyzing expres-
sion (8). As the frequency approaches ωH from below,

the wavenumbers  increase without bound. The
number of branches that asymptotically approach the
straight line ω = ωH is determined by the condition

k2(ε1 – ε3 + ε1ε3) – (ω, kz)/  > 0. By
virtue of the relationship νl, n(ωH, ∞) = µl, n, this condi-
tion can be transformed to

(9)

All the dispersion curves HEl, n of the modes from
the second family (see Fig. 1a) for which l and n satisfy
this condition have two branches, one of which lies
below the frequency ωH and the other lies above the fre-
quency ω1. The number of these modes is always finite.

For (2 – )1/2ωHR/c < µ0, 1, none of the curves lie
below the frequency ωH. The number of modes from
the second family for which the inequality opposite to
inequality (9) is satisfied is always infinite. The disper-
sion curves of such modes, too, have two branches. One
of them lies above the frequency ω1 and essentially
coincides with the corresponding branch for a vacuum
waveguide. The other branch lies within the frequency
range ωH < ω < ω1 and is characterized by an anoma-
lous dispersion. For the case illustrated in Fig. 1, we

have µ1, 6 < (2 – )1/2ωHR/c < µ1, 7; consequently,
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all the dispersion curves HEl, n with n greater than 6 lie
within the range ωH < ω < ω1. In Fig. 1, we plot only
some of these dispersion curves.

Hence, we have clearly demonstrated that, in the
frequency range in question, there is an infinite number
of dispersion curves with the numbers l and n for which
inequality (9) fails to hold.

Let us consider in more detail the cutoff frequencies
of the modes from the second family. Setting kz = 0 in
dispersion relation (7), we see that the cutoff frequen-
cies satisfy the equation

(10)

where x(ω) =  = .

In contrast to Eq. (7), dispersion relation (10) is
exact and is valid for any value of the plasma density.
From dispersion relation (10), we see that the cutoff fre-
quencies of the right-polarized (l > 0) modes differ
from those of the left-polarized (l < 0) modes—the
result that was not mentioned earlier.

The dependence of the cutoff frequencies of the TE
modes on the plasma density is illustrated in Fig. 2,
which shows the results of calculations carried out for
the resonant cavity of the 1-MW íÖ28.8-mode-based
continuous-wave gyrotron developed in Karlsruhe
(Germany) for plasma heating in the W7-X stellarator.
A possible reason for a reduction in the operating fre-
quency of the gyrotron may be the appearance of
plasma in the cavity [10].

As the plasma density increases in the range of its
low values such that ωH/ωp > 2, the cutoff frequencies
of both the right- and left-polarized modes decrease. As
the plasma density increases further, the critical fre-
quencies stop decreasing and begin to increase. For l = 0,
dispersion relation (10) coincides with the correspond-
ing dispersion relation presented earlier in [4].

3. POLARIZATION, FIELD DISTRIBUTIONS, 
ENERGY DENSITY, AND ENERGY FLUX

OF THE ELECTROMAGNETIC WAVES
IN A PLASMA-FILLED WAVEGUIDE 

IN A FINITE MAGNETIC FIELD

In the limit of an infinitely low plasma density, elec-
tromagnetic waves from the first family tend to become
TM waves of a vacuum waveguide. According to the
classification proposed by Liu et al. [11], such waves
should be treated as EH waves. In the same limit, elec-
tromagnetic waves from the second family tend to
become TE modes; consequently, in accordance with
[11], they should be classified as HE waves. It is neces-
sary to note, however, that, for an arbitrarily low (but
finite) plasma density, the second family contains slow
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waves, which disappear completely (in a jumplike man-
ner) only at ωp = 0.

In studying the effect of the plasma on the field dis-
tributions in a plasma-filled waveguide, we restrict our-
selves to considering as an example HE modes with fre-

quencies close to the cutoff frequency (  ! k2) in a

waveguide filled with a low-density plasma ( /ω2 <
1/2). The HE modes in question are polarized in essen-
tially the same manner as the TE waves and thereby can
be conveniently called TE modes of a plasma-filled
waveguide. It is this case that is of primary interest in
studying the effect of the plasma on the operation of
high-power gyrotrons [10] and also in analyzing such
issues as the generation of microwave radiation and the
development of plasma-filled microwave devices
whose operation is based on the cyclotron instability of
an electron beam. It should be emphasized that, in com-
parison to the TM modes of a vacuum waveguide, the
TE modes of a plasma-filled waveguide have a number
of qualitatively new properties. These properties, which
manifest themselves even in the case of a very low
plasma density, can be important for the above applica-
tions. Specifically, the frequencies of the right- and left-
polarized modes are different and the dispersion curve
of each of the TE modes splits into two branches with
different cutoff frequencies. The second cutoff fre-
quency is attributed to the presence of plasma and has
no analogue in vacuum waveguides: it exists at an arbi-
trarily low (but finite) plasma density and disappears
completely (in a jumplike manner) only at ωp = 0. Its
other properties are as follows: it depends weakly on
the radial and axial numbers of the TE modes and
approaches the electron cyclotron frequency ωH as the
plasma density decreases.

When the plasma density is low, the plasma does not
significantly affect the polarization of the fields of TE
modes at frequencies close to the cutoff frequencies, as
well as the distribution of these fields over the
waveguide cross section (see Figs. 3a, 3c). This is, how-
ever, true only for those TE modes whose cutoff fre-
quencies are not close to the cutoff frequencies of the
TM modes with the same azimuthal number. Other-
wise, the polarization and distribution of the fields of
the TE modes can be appreciably distorted even by a
very low-density plasma (see Fig. 3b).

It is of great interest to investigate the effect of the
plasma on the energy density of the TE modes and on
the energy flux in them. Using the general formula for
the density and flux of the electromagnetic energy in an
anisotropic dispersive medium [12],

(11)
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we can obtain analytic representations for the line
energy density (i.e., the energy density per unit length

of the waveguide)  =  and the energy flux

through the waveguide cross section,  = , in
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Fig. 4. Normalized line energy density vs. plasma density
for B = 5.56 T and R = 2.045 cm. Here,  is the line

energy density in a plasma-filled waveguide and  is the
line energy density in a vacuum waveguide.
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the case  ! k2. It is expedient to express these param-
eters in terms of the tangential magnetic field at the
waveguide wall because this field characterizes the heat
loads to it. For illustrative purposes, we present the
expressions obtained for the case of a low-density

plasma with allowance for the terms on the order of :

(12)

(13)

Figures 4 and 5 illustrate the difference between the
line energy density and energy flux in a plasma-filled
waveguide and those in a vacuum waveguide with the
same heat loads to the wall.

4. CONCLUSIONS

The investigation of the dispersion properties of
waveguide structures is the first, the most natural, and a
fairly important step in the analysis of their electromag-
netic properties and their possible practical applica-
tions. The mathematical technique for a description of
the waveguide’s dispersion properties has already been
well developed; however, because of the complexity of
the dispersion relation for a waveguide filled with a
magnetized plasma, the properties of its solutions have
received insufficient study. In plasma-filled
waveguides, a number of new effects are possible in
comparison to vacuum waveguides, in particular, the
effect of mode crowding (the existence of an arbitrarily
large number of dispersion curves in a finite frequency
range). The investigation of the dispersion properties of
waveguides filled with a magnetized plasma is also
complicated because it is necessary to take into account
the coupling between the TM and TE waves and the
appearance of hybrid modes. Moreover, this coupling,
which is attributed to the anisotropy of the dielectric
tensor of a cold magnetized plasma, can be fairly strong
even when the plasma density is low. This is the case in
the cyclotron resonance frequency range ω ~ ωH, in
which the elements of the plasma dielectric tensor
increase resonantly, and in the vicinities of the points
where the branches of the dispersion curves of the TE
modes intersect those of the TM modes.

In the present paper, we have proposed to classify
the modes in terms of their transverse wavenumber
(rather than according to polarization). We have shown

that, for  ! , the solutions to the general disper-
sion relation for the modes over the entire range of fre-
quencies, including those close to the cyclotron reso-
nance frequency, ω ~ ωH, can be divided into two
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weakly coupled families. The modes from these fami-
lies do not necessarily have the same polarization as the
TM or TE modes but they tend to become TM and TE
modes in the limit of an infinitely low plasma density.
According to the classification adopted in [11], the
modes of the first and second families should be treated
as EH and HE modes, respectively. At the points of
their intersection, the dispersion curves of these two
families reconnect to become wavy and more compli-
cated structurally (a situation typical of magnetized
plasma waveguides). We have also rigorously proved

that, in the frequency range ωH < ω < , there
are an infinite number of dispersion curves.

We have investigated the dependence of the critical
frequencies of TE modes on the plasma density and
have shown that these critical frequencies depend on
the sign of the azimuthal mode number and, as func-
tions of plasma density, have a minimum at ωp ≅  0.5ωH
regardless of the radial and azimuthal mode numbers.
We have studied the effect of the plasma on the struc-
ture and distribution of the fields of TE modes with fre-
quencies close to the cutoff frequencies and have shown
that a plasma of low density (such that ωp ≤ 0.5ωH) does
not significantly affect the distribution and structure of
the fields of the TE modes, except when the cutoff fre-
quencies of the TE modes are close to those of the TM
modes (Fig. 3b). The line energy density of the TE
modes in a plasma-filled waveguide can be substan-
tially higher than that in a vacuum waveguide with the
same radius and with the same heat loads to the wall.
On the other hand, the energy flux in a plasma-filled
waveguide is less intense than that in a vacuum
waveguide with the same parameters. At low plasma
densities, however, this difference in the energy flux
intensities is not large.

The results of our investigations can be of interest in
connection with the development of devices for plasma
electronics and interpretation of the operating modes of
high-power gyrotrons that are being developed for use
in fusion devices [10].
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Abstract—A study is made of oblique incidence of a small-amplitude plane electromagnetic wave on a semi-
infinite slab of a collisional turbulent plasma in an external uniform magnetic field. In the small-angle scattering
approximation, the condition for neutralizing the effects of oblique incidence and plasma anisotropy on the sta-
tistical properties of radiation multiply scattered in the absorbing plasma medium is determined by using the
methods of geometrical optics. The validity of this condition was confirmed by numerical calculations based
on the statistical modeling technique. The effect of the shape of the spectrum of the electron density fluctuations
on the shape of the angular power distribution of a multiply scattered radiation is investigated. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION
The analysis of the statistical properties of small-

amplitude electromagnetic waves that have passed
through a plane turbulent plasma slab is very important
in many practical applications associated with both nat-
ural and laboratory plasmas [1–4]. It has been recently
established that the energy loss due to collisions
between plasma particles can lead not only to a
decrease in the amplitude of the electromagnetic waves
with distance from the slab boundary but also to an
appreciable distortion of the angular spectrum of radia-
tion in the events of multiple scattering by random
smooth inhomogeneities of the medium.

In [5–9], it was shown that, when a plane wave is
incident at a small angle on the interface between an
isotropic collisional turbulent plasma and vacuum, the
width of the angular spectrum of the scattered radiation
increases monotonically with distance from the plasma
boundary and approaches a certain asymptotic value
(the so-called deep-penetration regime). Subsequent
papers demonstrated that, at sufficiently large angles of
incidence of radiation, some new effects appear. In [10–
13], it was found that the maximum in the angular spec-
trum shifts monotonically toward the normal to the
plasma boundary, as in the case of small incidence
angles. However, as the distance from the boundary
increases, the spectrum width changes nonmonotoni-
cally. When the absorption is sufficiently strong, there
exists an interval of distances from the boundary within
which the spectrum width substantially exceeds its
asymptotic value. Within this interval, as well as near
the plasma boundary, the width of the angular spectrum
increases with the absorption coefficient, all other con-
ditions being the same (the so-called anomalous broad-
1063-780X/05/3107- $26.00 0604
ening). Moreover, within this interval of distances from
the plasma boundary, the angular spectrum is highly
asymmetric with respect to its maximum (the third cen-
tral moment is essentially nonzero). These effects are a
consequence of the asymmetry of the problem. Such an
asymmetry occurs not only in the case of oblique inci-
dence of radiation on a plasma–vacuum interface; it can
also be an intrinsic property of the plasma in an external
magnetic field. The multiple scattering of waves in a
magnetized plasma has been studied less than the wave
scattering in chaotic isotropic media.

In [14–18], it was shown that, for a fixed collision
frequency between particles, the degree to which the
absorption influences the angular spectrum of the scat-
tered waves depends strongly on the propagation direc-
tion of the original incident wave with respect to the
plasma boundary and also on the strength of the exter-
nal magnetic field, as well as on its inclination angle
(i.e., the angle it makes with the plasma boundary).
Those five papers were aimed mainly at considering
particular examples (for different directions of the wave
vector of the incident wave and the external magnetic
field) in which absorption qualitatively changed the
angular spectrum of the scattered waves in comparison
to that in a collisionless plasma.

In the present work, using the complex geometrical-
optics approximation, we construct a general algorithm
that allows one to estimate the efficiency with which
collisions between the particles in a turbulent plasma
affect the angular spectrum of multiply scattered short
waves at arbitrary angles of refraction at the plasma
boundary and arbitrary angles of inclination of the
magnetic field. In order to confirm the predictions made
in the geometrical-optics approximation, we have car-
© 2005 Pleiades Publishing, Inc.
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ried out Monte Carlo (MC) simulations for the interval
of distances from the plasma boundary within which
the small-angle scattering approximation does not
work.

The numerical method developed here also makes it
possible to investigate the influence of the shape of the
spectrum of turbulent fluctuations of the plasma density
on the shape of the angular spectrum of the scattered
radiation for those values of the plasma parameters at
which the wave absorption is significant. In the above-
cited papers [14–18], no such investigation was per-
formed: the fluctuations of the plasma density were
described either by a Gaussian spectrum or by a power-
law spectrum with a certain value of the spectral index.

2. GEOMETRY OF THE PROBLEM 
AND THE NOTATION ADOPTED

Let a plane electromagnetic wave with frequency ω
be incident from vacuum on a semi-infinite slab of a
collisional magnetized turbulent plasma. We choose a
Cartesian coordinate system such that the xy plane is
the plasma–vacuum interface, the z axis is directed into
the plasma slab, and the xz plane is generated by the
external magnetic field vector B0 and the wave vector k
of the refracted wave. For the angles, we introduce the
following notation (see Fig. 1):

θ0 is the angle between the magnetic field and the
z axis, and

θ is the angle between the vectors B0 and k.

The electron density in the plasma slab is repre-
sented as the sum N(r) = N0 + N1(r), where N0 is a con-
stant density component and N1(r) is a coordinate-
dependent random function describing the electron
density fluctuations. The parameters of the scattered
radiation within the plasma are searched for as func-
tions of the distance H from the plasma boundary.

For the characteristic frequencies of the processes
occurring in the plasma, we introduce the following
notation:

ωp = e(4πN/m)1/2 is the electron plasma frequency,

ωB = eB0/mc is the electron gyrofrequency, and

νeff is the effective electron collision.

In these formulas, e and m are the charge and mass
of an electron, c is the speed of light in vacuum, and B0
is the induction of the external magnetic field.

In addition, we assume that the characteristic spatial
scale on which the plasma density varies is much
greater than the wavelength λ; this assumption will
enable us to utilize the methods of geometrical optics
for determining the parameters of the scattered field in
the plasma at relatively small distances z from its
boundary and to ignore the interaction between the nor-
mal waves.
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3. ANALYSIS OF THE EFFECTS OF ABSORPTION 
IN THE PLASMA AND THE PLASMA 
ANISOTROPY ON THE STATISTICAL 

PROPERTIES OF THE SCATTERED RADIATION 
BY THE METHODS OF COMPLEX 

GEOMETRICAL OPTICS

Let us calculate the electric field  in the xz plane
(here and below, the tilde identifies complex quantities
and the asterisk denotes the complex conjugate). A nor-
mal electromagnetic wave propagating in a smoothly
inhomogeneous plasma can be described by the eikonal
equation [1]

(1)

where (r) = –∇  is the complex wave vector at a
given spatial point,  is the complex wave phase, and

 is the complex index of refraction.

The wave vector of an original plane wave incident
from vacuum on a plasma slab has purely real x and z
components. After refraction at the plasma–vacuum
interface, the wave becomes nonuniform; i.e., accord-
ing to the boundary conditions, the x component kx of

its wave vector remains real while the z component 
becomes complex,

(2)

If the random smooth inhomogeneities of the
plasma are ignored (N1 = 0), then, in the zeroth approx-
imation, it is only this refracted wave that contributes to
the resulting field. Recall that the refracted wave is non-
uniform. An important point for further analysis is that
the only parameter that changes with changing the
angle of incidence of the wave on the plasma–vacuum
interface (i.e., the wave vector component kx) or the
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2

– .=

x

z
k

B0
H

Vacuum

Plasma

θ

θ0

Fig. 1. Geometry of the problem.
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angle of inclination of the external magnetic field (all
other conditions being the same) is the imaginary part

of the wave vector component , i.e., the rate of
decrease of the wave amplitude with distance from
plasma boundary.

The chaotic variations of the electron density in the
plasma slab give rise to the wave field fluctuations at the
observation point. In the case of small-angle scattering,
the statistical parameters of the wave field are mostly
determined by the fluctuations of the complex phase 
of a nonuniform plane wave [19].

The eikonal equation can be rewritten as

(3)

where  = (N(r), ω, ).

Assuming that the electron density fluctuations are
sufficiently small,

(4)

we can use the following series expansions for the
phase and for the wave vector:

(5)

Formula (2) describes the z component of the unper-

turbed wave vector . The fluctuating terms  and
 are proportional to the dimensionless small param-

eter N1/N0. Substituting expansions (5) into eikonal
equation (3) and taking into account only first-order
terms, we obtain

(6)

Differentiating the expression  with respect to the

vector  ·  = ω2( )c–2 , we arrive at the follow-
ing familiar relationship, generalized to the case of an
absorbing medium:

(7)
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ñ2 ñ2 k̃

N N0 N1 r( ), N1 ! N0,+=

k̃ k̃0 k̃1 r( ) …,+ +=

ϕ̃ ϕ̃0 ϕ̃1 ….+ +=

k̃0 k̃1

ϕ̃1

2—ϕ̃0 —ϕ̃1⋅ ω2

c
2

------ ∂ñ2
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∂ñ
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∂ñ

∂k̃0

--------–
ω2

c
2

------ ñ
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With allowance for relationship (7), Eq. (6) in its final
form reads

(8)

For a transparent medium, this is clearly the equation
describing the transport of the wave phase perturba-
tions with the group velocity. In our case (i.e., for an
unperturbed wave propagating in the xz plane, which
contains the magnetic field vector), Eq. (8) can be writ-
ten in the form

(9)

Here and below, the superscript 0 in the components of

the wave vector  is omitted for brevity.
Using the condition that the wave frequency in a sta-

tionary medium is constant,

(10)

we can generalize another familiar relationship to the
case of an absorbing medium. Differentiation of equal-

ity (10) gives ∂ω/∂kx + ∂ω/∂  · ∂ /∂kx = 0, so Eq. (9)
becomes

(11)

We expand the function  in a two-dimensional Fou-
rier integral, substitute the expansion into Eq. (11), and
solve the resulting differential equation with the bound-
ary condition  = 0. After these manipulations,
we obtain

(12)

where the electron density fluctuations are expressed in
terms of their two-dimensional Fourier transform,

(13)

and the following notation is introduced:

(14)
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∂ ñω( )

∂ω
---------------∂ω

∂k̃z

-------
------------------------ ∂ñ
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Let us now calculate the transverse correlation func-
tion of the phase. In the definition of this function,

(15)

we switch to the new variables,

, (16)

and integrate over them with allowance for the correla-
tion scale length of the parameters of the medium being
much less than the penetration depth z of radiation into
the plasma. As a result, we obtain

(17)

where Φ(κx , κy , κz) is the three-dimensional spatial
power spectrum of the statistically uniform electron

density fluctuations and ∂ /∂kx = β + iγ. In the limit of
weak damping of the field over one wavelength, this
expression is close to that for the correlation function of
the real phase. We are interested, however, in the case
in which the wave damping over the entire penetration
distance z is sufficiently strong and the function
exp(2κxγz) appreciably exceeds unity for those values
of κx at which the spectrum Φ(κx , κy , –βκx) of the elec-
tron density fluctuations is essentially nonzero. For
γ  0, expression (17) yields the familiar result [20],
namely, a linear increase in the wave phase dispersion
with distance from the plasma–vacuum interface. It
should also be kept in mind that this expression was
derived by the method of expansion in small perturba-
tions in the small-angle scattering approximation,
which is valid only for finite distances z from the
plasma boundary.

By definition, the correlation function of the com-
plex field (the spatial coherence function) can be writ-
ten as

(18)
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Taking into account the fact that the field is damped
insignificantly over one wavelength, we can ignore the
imaginary part of the perturbed wave phase (  ≈ ϕ1,

 = α). In this case, it should be kept in mind that the

imaginary part of the derivative ∂ /∂kx, equal to γ,
plays an important role because it enters into expres-
sions (12) and (17) through the argument of the expo-
nentials and its contribution to the statistical parameters
of the phase fluctuations increases with distance z from
the plasma boundary.

In the most interesting case of multiple scattering,
the fluctuations of the phase are strong,  @ 1,
so we can as usual [20] assume that they obey a normal
distribution. Since, in this case, the correlation function
decreases sharply as ρx and ρy increase, the argument of
the second exponential in expression (18) can be
expanded in a series,

(19)

where the correlation function  is given by expres-
sion (17). The derivatives in the correlation function of
the phase are taken at the point ρx = ρy = 0.

The spatial (angular) spectrum of the scattered field,
which is of great practical importance for us, is the Fou-
rier transformed correlation function of the field [20]:

(20)

This characteristic of the scattered radiation is equiva-
lent to the ray intensity (brightness), which usually
enters the radiation transport equation [20]. In [19], it
was shown that the solution to the radiation transport
equation that was obtained in the small-angle scattering
approximation and the solution obtained in the geomet-
rical-optics approximation yield the same angular spec-
trum. We think, however, that the second approach is
simpler and more illustrative.

For strong fluctuations of the phase, the spatial
power spectrum is Gaussian in shape,

(21)

Here, S0 is the peak value of the spectral curve; the
quantity ∆κx describes the shift of the peak due to the
random variations in the plasma density; and the quan-

tities  and  describe the widths of the spec-
trum in the xz and yz planes, respectively. The formulas
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for ∆κx , , and  can be derived by taking the
derivatives in expression (19):

(22)

As a result, we obtain

(23)

(24)

(25)

Formulas (23)–(25) imply that the effects men-
tioned in the Introduction, namely, the effect of the
marked shift of the spectral peak and the anomalous
broadening effect, take place when the imaginary part

of the derivative ∂ /∂kx is nonzero. These effects stem
from the fact that the damping of the waves scattered in
a turbulent plasma depends strongly on their propaga-
tion direction because of the oblique incidence of the
original wave on the plasma boundary and also because
of the inclination of the external magnetic field.

Let us analyze the applicability conditions for
expressions (17) and (23)–(25) in more detail. These
expressions have been derived from the eikonal equa-
tion by the method of perturbative expansions in pow-
ers of the small parameter N1/N0. Consequently, the
parameter range in which expressions (17) and (23)–
(25) (when substituted into expression (21)) correctly
describe the spatial power spectrum of the wave is
determined by the inequalities

These three inequalities justify the use of the above
small-angle scattering approximation and make it pos-
sible to keep only the first terms in expansion (5). The
consistency of these inequalities with the condition that
the wave absorption play a significant role, exp(2κxγz)
≥ 1, is ensured by the smallness of the dispersion of the

plasma density fluctuations,  ! , which deter-
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mines the normalization of the spectrum Φ(κx , κy , κz)
in the integral in expression (35) (see below). The
restrictions indicated do not contradict the assumption
that the wave phase fluctuations are strong, because, in
a smoothly inhomogeneous plasma medium, the trans-
verse scale on which the correlation function of the
phase varies corresponds to the mean spatial scale of
the plasma inhomogeneities, l @ λ [20], and the charac-
teristic angle between the random wave front and the

normal to the plasma boundary, ∆θ ≈ / |kz | ≈

, can remain small for  @ 1. The reason is

that formulas (17) and (24) agree with the familiar esti-

mate  ∝  /l; therefore, for  @ 1, the

angle ∆θ ∝  can be small by virtue of the very

strong inequality λ/l ! 1. Analogous estimates are
valid for the quantities given by expressions (23) and
(25) as well. It is also pertinent to note that, in the
region that makes the dominant contribution to the inte-
grals in expressions (17) and (23)–(25), the argument of
the exponential function in these expressions can be

estimated by 2κxγz ∝ Im( ) . Consequently, the ine-

quality 2κxγz ≥ 1 leads to the condition Im( )z ≈

Im( )  @ 1, which implies that, at the distances z

from the plasma boundary that are of interest to us, the
wave amplitude decreases strongly according to an
exponential law. It is this circumstance that makes the
angular radiation spectrum considerably distorted,
because the power is redistributed to the directions
along which the waves are damped relatively more
weakly. As for the exponential dependence of the width
and shift of the spectral peak on z, it is valid only over
a limited range of distances from the plasma boundary
to which the small-angle scattering approximation is
applicable. Numerical calculations show that, for
longer distances z from the plasma boundary, this expo-
nential increase changes into a slower one [18].

For the case in which the external magnetic field is
absent, formulas similar to expressions (23)–(25) were
derived in [10] but in a different way, namely, by solv-
ing the radiation transport equation, i.e., the transport
equation for the angular power distribution of the wave
in a chaotic isotropic absorbing medium. In this case,
the coefficient γ is nonzero for an oblique incidence of
the original wave on the boundary of the medium.

For γ = 0, the spatial (and, accordingly, angular)
power spectrum in the small-angle scattering approxi-
mation is independent of the absorption. In this case,
expression (23) implies that ∆kx = 0 because, for the sta-
tistically isotropic electron density fluctuations in
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which we are interested here, the dependence of
Φ(κx , κy , –βκx) on κx is even. For γ = 0, the quantities

 and  increase linearly with z, as in the case
of a nonabsorbing medium, for which this linear
increase agrees with the familiar decrease in the trans-

verse correlation length, ∝ 1/ , when the wave phase
fluctuations are strong [20]. Of course, formulas (17)
and (23)–(25) cannot be applied to describe the pro-
cesses occurring at sufficiently large distances z from
the boundary of the medium, i.e., at distances for which
the basic small-angle scattering approximation fails to
hold.

Form formula (2) we see that, in the case under con-
sideration, the quantity γ is contributed by the oblique
incidence of radiation (the wave vector component kx)
and also by the anisotropy of the medium itself.
Depending on the conditions in the medium, one or
another of these two factors can predominate. For
instance, when the magnetic field is very strong, the
effects of the anisotropy almost completely predomi-
nate over those of the oblique incidence (see [17]) and
vice versa when the magnetic field is weak or even is
absent. In the latter case, the radiation is scattered in the
plasma in essentially the same manner as in an isotropic
medium (see [12]). However, the scattering of radiation
produces the most interesting effects when the plasma
anisotropy and the oblique incidence are of comparable
importance. It is this case that will be considered below.
The most reliable way of calculating the quantity γ in
this complicated case is as follows.

When a wave is incident obliquely on the boundary
of a magnetized plasma, the components of the wave

vector  = {p, 0, } satisfy the equation [1]

(26)

Here, the coefficients are expressed in terms of p
through the relationships

(27)

and the quantities u, v, and s are introduced to denote
the dimensionless parameters that characterize, respec-
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tively, the influence of the magnetic field, electron den-
sity, and absorption on the plasma properties:

(28)

Since this equation is very difficult to solve analyti-
cally, we analyzed it numerically. As a result of this
analysis, we can plot the dependence of the imaginary
part Im( ) of  on p for both of the normal waves. In
this case, the quantity γ = Im∂ /∂p is defined as the tan-
gent of the angle between the abscissa and a line tan-
gent to the curve. This definition clearly shows that the
quantity γ determines how much the rate of decrease of
the wave amplitude along the z axis depends on p, i.e.,
on the wave propagation direction. As was mentioned
above, it is the dependence of the damping of the wave
on its propagation direction that leads to a substantial
distortion of the angular spectrum of multiply scattered
waves because of their absorption. Near the points
where γ = 0, the wave damping depends on the wave
propagation direction to a much smaller extent. We thus
arrive at the following problem: for particular values of
the different plasma parameters (the electron density,
the magnetic field induction, and the collision fre-
quency), it is necessary to determine those values of the
angle of refraction and the angle of inclination of the
magnetic field at which, for a given type of wave, the
quantity γ vanishes or, conversely, is essentially non-
zero. Formulas (23)–(25) imply that, when the quantity
γ vanishes, the absorption has no impact on the angular
spectrum in the geometrical-optics approximation (the
effects of the oblique refraction and of the anisotropy
neutralize each other). This neutralization effect was
first pointed out in [18], in which, however, the imagi-

nary part of the derivative ∂ /∂kx was calculated using
an approximate expression that is valid only for small
angles between the wave vector and the magnetic field.
In the absence of the neutralization effect, the situation
is as follows: the larger the quantity γ, the more pro-
nounced the anomalous effects of the absorption on the
angular spectrum. There are sound reasons to suppose
that, for a wave that penetrates deeper in the region
where the small-angle scattering approximation fails to
hold and the solution to the equations of geometrical
optics by the perturbation method is invalid, the quali-
tative dependence on the parameter γ will remain the
same; i.e., for γ = 0, the absorption will influence the
angular spectrum in the same fashion as in the case of
normal incidence of a wave on the boundary of an iso-
tropic turbid medium, leading to a narrowing of the
angular spectrum in comparison to that in an analogous
transparent medium [6]. For essentially nonzero values
of γ, it is natural to expect that, at large penetration
depths, the shape of the angular spectrum will be dis-
torted by absorption to a far greater extent.
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In order to confirm this supposition, in subsequent
sections of this paper, we will consider the results of a
numerical solution of the problem by the MC method.

4. SOME SPECIFIC FEATURES OF THE MONTE 
CARLO METHOD AS APPLIED 

TO THE PROBLEM AS FORMULATED

Since the problem has not yet been solved analyti-
cally, it is necessary to utilize numerical methods. One
of the most convenient techniques is that based on MC
simulations, i.e., statistical numerical calculations of
the processes of propagation, scattering, and absorption
of radiation in a chaotically inhomogeneous medium.
The general scheme and mathematical justification of
the MC method have been elucidated in sufficient detail
in [21]. Here, we mention only some specific features
of the MC method that have been used in our work.

Since our main task is to investigate how absorption
influences the angular spectrum of the scattered radia-
tion, the statistical computational scheme should be
capable of adequately describing this influence. In the
classical version of the MC method, the absorption is
accounted for through the so-called “survival probabil-
ity” Λ, which, in quantum-physical language, corre-
sponds to the probability for a photon to be absorbed in
its scattering by the inhomogeneities of the medium.
The photon that has been absorbed is treated as nonex-
istent, so the resulting power distribution is formed
only by those photons that have survived after scatter-
ing. For isotropic media, the following relationship
holds:

(29)

where σs and σa are the extinction coefficients associ-
ated with scattering and absorption, respectively.
Hence, the survival probability provides a relationship
between the scattering and absorbing properties of an
isotropic medium. By assigning specific values to the
survival probability, the wavelength, and the refractive
index, we can derive exhaustive information for model-
ing the scattering properties of isotropic media. The
classical version of the MC method is advantageous in
that it has a clear physical meaning and can relatively
easily be expressed in an algorithmic language. The
drawback of the classical version is that, in the case of
a large number of scattering events, it requires a very
large amount of computer time, even when the survival
probability is close to unity. This is why, in our study,
we used a “weighted” version of the MC method,
which makes it possible to greatly hasten the computa-
tional process in comparison to that based on the clas-
sical version. The essence of the weighted version is
that the random ray trajectory being simulated is
assigned a “weight,” i.e., a fraction of the original radi-
ation energy that remains within the ray tube as the
radiation travels along this trajectory. The resulting

Λ
σs

σs σa+
-----------------,=
angular power distribution is calculated with allowance
for the weight of the radiation coming from different
directions. A detailed discussion of the weighted
scheme can be found in [21].

In statistical simulations of a single scattering pro-
cess, the probability density for the deviation of a ray
trajectory in a given direction is traditionally described
by a function proportional to the differential cross sec-

tion (α, ϕ), where α and ϕ are, respectively, the

zenithal and azimuthal angles through which the ray
deviates from its original direction. The proportionality
coefficient is chosen so that the total integral of the
probability density over all possible scattering direc-
tions is unity.

For a cold magnetized turbulent plasma with statis-
tically isotropic fluctuations, the differential cross sec-
tion is described by the formula [22]

(30)

Here,  is the plasma dielectric tensor and , , and

 are the wave vector, the polarization vector of the
electric field, and the index of refraction of the scattered
wave along its propagation direction, respectively. Sim-

ilar parameters , , and  describe the wave before
it has been scattered. The quantity ∆k denotes the abso-

lute value of the difference  – . Formula (30) is a
generalization of an analogous well-known formula for
isotropic media [20],

(31)

Formula (30) differs from formula (31) not only in
that it contains the proportionality coefficient but
mainly in that it involves the factor F =

, which describes the

dependence of the scattering properties of the plasma
on the wave propagation direction.

It can be shown that, for a single small-angle scatter-
ing event, the expression for F, as well as expression (30)
as a whole, can be substantially simplified. In particu-
lar, one can discard a small error resulting from the use
of the approximate equality  ≈ . This approxima-
tion implies that, for fixed plasma parameters, the func-
tion F depends only on one argument—the angle θ
between the wave vector and the external magnetic
field. The change in the refractive index of the plasma
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3 ẽs* ε̂ 1–( )ẽi⋅
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in a single scattering event can also be ignored; in this
case, we have k ≈ ks ≈ ki (for an isotropic medium, these
approximate relationships would be exact) and arrive at
the following expression for the quantity ∆k in terms of
the zenithal deviation angle α:

(32)

We thus see that the differential cross section for a sin-
gle scattering event is independent of the azimuthal
deviation angle ϕ.

In view of the fact that the function F is independent
of the zenithal scattering angle α, the probability den-
sity for the deviation of the ray is proportional to the
function Φ(ksin(α/2)/2) and is independent of the angle
θ because the factor F(θ) drops out in normalizing the
spectrum. The anisotropy of the medium is taken into
account in the computation stage in which a random
number generator produces the value of the distance the
radiation passes between two successive scattering
interactions with density inhomogeneities. For an iso-
tropic medium, this distance is a random quantity hav-
ing an exponential distribution. The mean value of this

∆k
1
2
---k

α
2
---.sin=
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random quantity is constant and is equal to . For the
magnetized plasma under consideration, the coefficient
of extinction in scattering (or equivalently the total
cross section per unit volume of the scattering medium)
is [20]

(33)

where C1 and C2 are the α- and θ-independent propor-
tionality coefficients, Ωs is the solid angle into which
the radiation can be scattered, and αmax is the maximum
possible zenithal angle of the deviation of the ray in a
single scattering event. This is why the mean distance
between the positions at which the scattering events
occur depends on the angle θ.

For a collisional magnetized plasma, the coefficient
of extinction in scattering can be found from a fairly
simple expression, σa = 2ωc–1Im (θ). In the case in
question, the imaginary part of the refractive index can
be obtained from the formula [1]
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ñ

(34)ñ2 1
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In order to calculate the coefficient C2, the spectrum Φ
should be normalized to the mean square of the electron

density fluctuations, :

(35)

Having made this normalization, we must treat the

quantity  as an independent numerical parameter
and substitute it into the formula for the spectrum.
However, the mean square of the electron density fluc-
tuations is, as a rule, obtained from experimental data
in an indirect way and thus can depend in a fairly com-
plicated manner on a large number of external factors.
This is why, in the present work, we simplify the com-
putational process and make it more illustrative by
assuming that, for given values of the plasma parame-
ters u, v, and s, the coefficient of extinction in scatter-
ing, , along the magnetic field is equal to unity,

(36)

This choice implies in fact that all the distances are
expressed in units of the mean free path Lf of radiation
between two scattering events in its propagation along

N1
2〈 〉

4π κ2Φ κx κ y κ z = 0, ,( ) κd

0

∞

∫ N1
2〈 〉 .=

N1
2〈 〉

σs'

σs' θ( )
σs θ( )
σs 0( )
-------------.=
the magnetic field, because the scale Lf is nothing more
than the reciprocal of σs. In this case, however, in order
for the absorption to be taken into account correctly, the
coefficient σa should be expressed in terms of the same
scale of distances. This can be done in the following
way. Let the quantities  and l ' be expressed in terms
of a scale in which the unit of distance is accepted to be
the mean free path of radiation between two successive
scattering events in the direction along the magnetic
field. For the intensity I of the mean wave field, we can
then write the formula I = I0exp(– ). On the other

hand, this intensity is equal to I = I0exp(–2k0Im( )l),
where l is the total path expressed in the same units of
distance as k0. Consequently, we have

(37)

and, as a result, obtain  = πIm( )Lf /λ. In other
words, in order to calculate the coefficient of extinction
in scattering in units of the reciprocal of the mean free
path, it is necessary to know how many wavelengths fit
along the mean free path of radiation between two suc-
cessive scattering interactions by plasma density inho-
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2k0 Im ñ( )l l
2π
λ

------Im ñ( )=
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mogeneities. This implies that, in the simulation algo-

rithm, the quantity  should be replaced by the
ratio Lf /λ; this makes it possible to calculate the coeffi-
cient σa in terms of the above scale of distances. Of
course, these two parameters are very closely related to
one another: an increase in the fluctuation intensity

 leads to a decrease in the mean free path Lf (and,
accordingly, in the ratio Lf /λ), and, vice versa, a
decrease in the fluctuation intensity leads to an increase
in the ratio Lf /λ.

Having derived expressions for σs and σa in terms of
the same scale of distances, we can calculate the sur-
vival probability Λ in the case of a collisional magne-
tized plasma from the same formula as that used for an
isotropic medium, specifically, from formula (29). For
a plasma, however, the survival probability is not gen-
erally constant and depends on the angle θ.

5. RESULTS OF NUMERICAL SIMULATIONS

All numerical simulations were carried out for the
frequencies ωB ≈ 8.8 × 106 rad/s, ωp ≈ 107 rad/s, and ν ≈
105 s–1, which correspond to the mean values of the
parameters in the F region of the Earth’s ionosphere.
The wavelength was chosen to be 100 m; in this case,
the plasma parameters in question are equal to u = 0.22;
v = 0.28, and s = 0.0053. The plots of the dependence
Im( (p)) for both of the normal waves propagating into
a plasma slab with these parameters, the angle of incli-
nation of the magnetic field being θ0 = 40°, are shown
in Fig. 2, in which the solid and dotted curves refer to
the extraordinary and ordinary normal waves, respec-
tively. By the extraordinary wave we mean a normal
wave for which the refractive index approaches unity as

N1
2〈 〉

N1
2〈 〉

q̃

0.002

0
–0.8

p
–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

0.004

Fig. 2. Dependence Im (p) for an extraordinary (solid
curve) and an ordinary (dotted curve) normal wave in a
plasma with the parameters u = 0.22, v  = 0.28, and s =
0.0053, the angle of inclination of the magnetic field being
θ0 = 40°. The angle between the neutralization direction
and the normal to the slab is ≈23.5° for an ordinary (p ≈ 0.4)
wave and ≈ –14.5° for an extraordinary (p ≈ –0.25) wave.

q̃

Im q̃
 the magnetic field increases, all other parameters being
fixed. Figure 2 clearly shows that each of the normal
waves is characterized by its own neutralization direc-
tion, i.e., the direction along which we have
Im(∂ /∂p) = 0 and along which the neutralization
effect occurs. From the plots we see that, in the cases
under analysis, the neutralization directions correspond
to those values of p and kx for which the waves suffer
the weakest damping over z (the wave vector compo-

nent  is minimum). In order to check our assumptions
about the character of distortion of the angular spec-
trum of the scattered radiation, we carried out a series
of simulations of the propagation of waves in a plasma
slab of thickness  · H = 50 for a ratio Lf /λ of 100.
For the u,  v, and s values chosen above, this corre-
sponds to a plasma slab with a thickness of about
500 km for which the extinction coefficient and sur-
vival probability along the magnetic field are equal to
σs ≈ 0.0001 m–1 and Λ ≈ 0.75, respectively. Note that, for
such penetration depths, the solution obtained by the
perturbation method is inapplicable because the scatter-
ing angles are not small and the inequality k1 ! k0 in
expansion (5) fails to hold. The spatial spectrum of the
electron density fluctuations, Φ(∆k), is given by the
model expression

(38)

where g is the spectral index, ki is the absolute value of
the wave vector of the wave before it has been scattered,
and C is the normalizing coefficient calculated from
formula (35).

The results of simulating the propagation of an ordi-
nary wave for g = 2.6 are illustrated in Fig. 3. We can
see that, at a qualitative level, the geometrical-optics
solution correctly reflects the main properties of the
propagation and scattering of waves in a collisional
magnetized turbulent plasma, namely, the neutraliza-
tion direction and also the anomalous effects of the shift
of the centroid position of the peak in the angular spec-
trum and its broadening. For comparison, Fig. 4 shows
the angular spectra of the scattered radiation in a non-
absorbing plasma that were calculated for the same
parameters of the problem as those in Fig. 3. Our new
result is the realization that the shape of the angular dis-
tribution can always be calculated for any physically
meaningful values of the plasma parameters and of the
angle of refraction and the angle of inclination of the
magnetic field. In earlier studies, the shape of the angu-
lar spectrum was calculated only for a few particular
cases (those of normal incidence on a plasma slab or of
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a plasma in a very strong magnetic field). From Fig. 3
we see that the angular spectrum can sometimes have a
double-humped shape, which stems from the mutual
influences of anisotropy, absorption, and the shape of
the single-scattering indicatrix.

The fact that the angular spectrum can be double-
humped in shape provides a clearer insight into the
cause of anomalous broadening of the asymmetric
spectrum of a multiply scattered wave (see the Intro-
duction). In an asymmetric case, there are two preferen-
tial directions in an absorbing medium: the propagation
direction of the original plane wave and the direction
along which the wave propagates a given distance from
the plasma boundary being damped to the smallest
extent. As the radiation propagates away from the
plasma boundary, it deviates progressively from its
original direction due to multiple scattering (preferen-
tially through small angles) by random smooth inho-
mogeneities. Nevertheless, a relatively small portion of
the scattered waves occurs in a narrow angular interval
along the direction of weakest damping. When the
absorption is sufficiently strong, the amplitude of these
waves decreases far more gradually than the amplitudes
of other waves, so a second peak can form in the angu-
lar power spectrum. This is indeed the case when the
angle between the two preferential directions men-
tioned above is sufficiently large. Under such condi-
tions, the width of the angular spectrum is anomalously
large in comparison to that in a similar nonabsorbing
medium. If the original wave propagation direction
coincides with the direction of weakest damping, then
the problem is symmetric and the absorption does not
lead to anomalous effects.

Let us now examine the influence of the shape of the
single-scattering indicatrix in more detail. As was men-
tioned above (see also [18]), the double-humped shape
of the angular power spectrum stems from the fact that
the waves that have been scattered through large angles
with low probability and propagate nearly along the
neutralization direction can suffer a substantially
weaker damping as the distance z from the plasma
boundary increases. The scattering through large angles
is governed by the asymptotic behavior of the electron
density fluctuation spectrum Φ(∆k) (which yields the
resulting shape of the single-scattering indicatrix) at
relatively large values of ∆k. In order to investigate how
the shape of Φ(∆k) affects the shape of the angular
spectrum of multiply scattered radiation, we performed
numerical simulations for different values of the spec-
tral index g. The plasma parameters were taken to be
the same as in the previous simulation version, the
depth of penetration into the slab was  · H = 60,
the angle of refraction for the wave was 0°, and the
angle of inclination of the magnetic field was 60°. The
resulting angular spectra of multiply scattered radiation
are displayed in Fig. 5. It can be seen that, when the
angle between the direction of refraction and the neu-
tralization direction is sufficiently large, the angular

σs θ 0=
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Fig. 3. Angular spectra of the multiply scattered radiation in
a plasma slab with the parameters u = 0.22, v  = 0.28, and
s = 0.0053 at a distance of  · H = 50 from the plasma

boundary for Lf /λ = 100, the angle of inclination of the
magnetic field being θ0 = 40°. In this and other subsequent
figures, the abscissa represents the parameter Sx = kx/k. All
the spectra are normalized to their peak values. Curves 1, 2,
3, and 4 were calculated for angles of refraction equal to
40°, 23.5° (the neutralization direction for the ordinary
wave in question), 10°, and –10°, respectively.
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Fig. 4. Angular spectra of the multiply scattered radiation in
a plasma slab with the parameters u = 0.22, v  = 0.28, and
s = 0 at a distance of  · H = 50 from the plasma

boundary for Lf /λ = 100, the angle of inclination of the
magnetic field being θ0 = 40°. All the spectra are normal-
ized to their peak values. Curves 1, 2, 3, and 4 were calcu-
lated for angles of refraction equal to 40°, 20°, 10°, and
−10°, respectively.
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spectrum in the transitional and deep-penetration
regimes is formed by the strongly scattered radiation.
The shape of the single-scattering indicatrix determines
not only the shape of the angular spectrum but also the
ranges of depths over which the waves propagate in the
near-surface, transitional, or deep-penetration regimes,
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–0.2 Sx0 0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

1

2

3

4

Fig. 5. Angular spectra of the multiply scattered radiation in
a plasma slab with the parameters u = 0.22, v  = 0.28, and
s = 0.0053 at a distance of  · H = 60 from the plasma

boundary for Lf /λ = 100, the angle of inclination of the
magnetic field being θ0 = 60°. All the spectra are normal-
ized to their peak values. Curves 1, 2, 3, and 4 were calcu-
lated for a wave incident normally on the slab and for the
values g = –3.2, –2.9, –2.6, and –2.3 of the power index of
the electron density fluctuation spectrum.
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Fig. 6. Angular spectra of the multiply scattered radiation in
a plasma slab with the parameters u = 0.22, v  = 0.28, and
s = 0.0053 at a distance of  · H = 60 from the plasma

boundary for Lf /λ = 100, the angle of inclination of the
magnetic field being θ0 = 60°. All the spectra are normal-
ized to their peak values. Curve 1 corresponds to a power-
law electron density fluctuation spectrum with the index g =
–3.5, and curve 2 refers to a Gaussian fluctuation spectrum.
In both cases, the wave is incident normally onto the slab
and the dispersion of the fluctuation spectra is the same.

σs θ 0=
all other conditions being the same. In particular, the
smaller the portion of the strongly scattered radiation in
the single-scattering spectrum, the larger the penetra-
tion depth for which the geometrical-optics solution
obtained perturbatively is valid. To illustrate, Fig. 6
depicts two angular spectra with the same width that
were calculated for a Gaussian single-scattering indic-
atrix and for a single-scattering indicatrix obeying a
power law with the index g = –3.5. Since the tails of the
Gaussian indicatrix decrease very sharply with increas-
ing scattering angle, its half-width at half-maximum is
approximately three times that of the power-law indic-
atrix. As a result, in the Gaussian indicatrix, the portion
of radiation scattered through large angles is very small
in comparison to that in the power-law spectrum. This
is why the resulting spectrum contains no hint of the
anomalous effects and coincides fairly well with the
geometrical-optics solution to first order in the param-
eter N1/N0.

6. CONCLUSIONS

Hence, analytic calculations in the small-angle scat-
tering approximation by the methods of complex geo-
metrical optics and a numerical analysis by statistical
modeling technique have shown that, in a collisional
magnetized turbulent plasma, the degree to which the
absorption of electromagnetic waves influences the
shape of the angular spectrum of a multiply scattered
radiation depends substantially on the original direction
of incidence, the angle of inclination of the magnetic
field to the plasma boundary, and the spatial spectrum
of fluctuations of the plasma density.

We have proposed and tested an algorithm for deter-
mining those propagation directions of the original
wave at which the absorption is either weakened (the
neutralization effect) or, conversely, at which the
absorption is very pronounced. As an example, we car-
ried out numerical simulations for plasma parameters
close to those in the Earth’s ionosphere.

Estimates show that the range of heights corre-
sponding to the F region is not wide enough for the
anomalous effects of the absorption on the angular
spectrum to manifest themselves markedly; moreover,
these effects are unlikely to be observed in the unper-
turbed ionosphere in full measure. Nevertheless, we
think that the neutralization effect may well be detected
in a quiet ionosphere. The shift of the centroid position
of the peak in the angular power distribution of the radi-
ation scattered in the Earth’s ionosphere is also a quite
readily measurable quantity. To be specific, by substi-
tuting the plasma parameters averaged along the ray
trajectory into formulas (26) and (27), one can deter-
mine the direction along which the quantity Im(∂ /∂p)
equals zero. It can be expected that this direction, being
associated with the centroid position of the spectrum of
the scattered radiation from a remote radio-frequency
cosmic source, will coincide with (or will have a mini-

q̃
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mum deviation from) the line of sight toward the
source. The phenomena that have been analyzed above
may also become quite readily observable in the pres-
ence of strong artificial or natural perturbations in the
Earth’s ionosphere when the plasma density and the
collision frequency increase considerably.
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Abstract—The properties of high-current high-pressure gas discharges (I = 60 kA, p = 1 atm, τ1/2 = 1.6 ms,
r ~ 10 cm) just before the end of the discharge are investigated experimentally. It is shown that the anomalously
high rate of gas cooling after the current is switched off is related to the turbulent hydrodynamic processes
induced by the Rayleigh–Taylor instability at the discharge boundary in the stage of volume radiative cooling
of the discharge channel. The turbulent thermal conductivity is estimated using experimental data on the recov-
ery of the electric strength of the discharge gap. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Direct measurements of free high-current high-pres-
sure discharges have shown that the rate of electric-
strength recovery (ESR) in the discharge gap after the
current is switched off exceeds the rate of diffusion pro-
cesses [1, 2] by several orders of magnitude. This effect
finds a natural explanation in the case of low-pressure
(p < 0.1 atm) low-current (I < 1 A) discharges, in which
the plasma is highly nonequilibrium [3] and the fast
ESR is provided by volume recombination. However,
the higher the pressure and current, the closer the
plasma is to equilibrium, and at p ~ 1 atm and I ~ 103 A,
the plasma state is usually close to a local thermody-
namic equilibrium (though it somehow depends on the
gas mixture composition) [3]. For discharges with such
high values of p and I (they are generally called high-
current high-pressure discharges), the electric strength
is recovered due to the cooling of the entire mass of the
gas heated during the discharge. In the absence of cur-
rent and any other forced action (e.g., forced air cool-
ing), the cooling of the gas in the discharge channel is
determined by the state of the gas itself before the cur-
rent is switched off. Hence, it is necessary to examine
the discharge structure and the related physical pro-
cesses just before the end of the discharge. In this paper,
we present and analyze the results of such investiga-
tions.

The preextinction stage can be conveniently exam-
ined by considering so-called “subsonic” free dis-
charges with a characteristic current growth rate of
dI/dt ~ 108 A/s [4]. In such discharges, the hydrody-
namic flow velocities are lower than the speed of sound,
the ponderomotive forces are of minor importance, and
the gas pressure is quite uniform. Under certain condi-
tions, a cylindrically symmetric discharge with a fairly
wide current-carrying channel can be produced. This
allows one to use probe diagnostics; as a result, the reli-
ability of the results obtained increases significantly.

“Slow” discharges display features characteristic of
steady-state free arcs, which are dominated by turbu-
1063-780X/05/3107- $26.00 0616
lent convection at the interface with a cold ambient gas.
Such convection disturbs the shape of the discharge and
significantly complicates its inner structure [5].

In discharges with high current growth rates (dI/dt ≥
1010 A/s), nonlinear hydrodynamic phenomena related
to the formation of intense shock waves become impor-
tant and instabilities caused by the high magnetic pres-
sure arise [6].

2. EXPERIMENTAL SETUP 
AND MEASUREMENT TECHNIQUE

A schematic of the experimental setup is shown in
Fig. 1. The discharge is supplied from capacitor bank C,
which is connected to the discharge circuit via spark gap
SG. Inductance L serves to form a current pulse of
required duration. The discharge chamber is a sealed
stainless-steel cylinder with a diameter of 46 cm. Along
its axis, two electrodes in the shape of truncated cones
with major and minor diameters of 70 and 55 mm are
installed. At the side wall of the chamber, there are open-
ings for probe diagnostics and four viewing windows.

The discharge was ignited by exploding a 0.1-mm-
diameter copper wire set between the electrodes along
their axis. Special experiments showed that perturba-
tions introduced during such ignition into the discharge
structure rapidly decayed. Thorough studies of another
ignition technique with the use of a slipping arc dis-

R

L
C

P

Fig. 1. Schematic of the experimental setup.
© 2005 Pleiades Publishing, Inc.
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charge [7] showed that the discharge features were
almost similar to those observed in our study.

The discharge current was measured using a coaxial
shunt, and the arc voltage was measured using a resis-
tive divider. The spatial distribution of the magnetic
field generated by the discharge current was measured
by magnetic probes, and the electric field was measured
by double passive electric probes (see [8] for details).

The total radiation energy emitted from the dis-
charge was measured with a calorimeter, and the time
evolution of the emission intensity was determined
with the use of an electrodynamic shutter.

The discharge was photographed with a fast framing
camera through the viewing windows of the discharge
chamber. The arc plasma temperature was determined
from spectral measurements by the method of relative
intensities.

The ESR process was studied using a double active
electric probe by a method similar to that used in [1].
The measurements began after the discharge current
was switched off. The voltage applied to the two probe
electrodes was increased until either the probe current
or the voltage reached its critical value, Im or Um,
respectively. As either of these critical values was
achieved, the voltage abruptly (over a time much less
than its rise time) dropped to zero. After a certain pause
needed for the relaxation of the excessive charge
around the probe, the voltage was increased again. This
process was repeated many times. The time during
which the envelope of the voltage pulses arrived at the
plateau U = Um was identified as the time tu required for
the recovery of a given electric strength unambiguously
determined by the Um value. The cutoff current Im was
chosen such that the energy deposited by the probe
voltage pulses was much smaller than the energy stored
in the plasma. An electronic circuit enabling such an
algorithm is described in detail in [9].

The measurements were performed in the central
cross section (equally distant from the discharge elec-
trodes). The probe electrodes were set parallel to the
discharge axis at the same distance r from it. The bare
ends of the electrodes made of 1-mm-diameter wire
were separated by a distance of z = 2 cm. In our exper-
iments, the critical values of the probe voltage and cur-
rent were Um = 18 kV and Im ≈ 2 mA, respectively.

The value of tu depends on the gap length z. For z <
7 mm, an electric breakdown of a cold gas occurred.
For z ≥ 1 cm, the scatter in the times during which the
envelope of the voltage pulses arrived at the plateau did
not exceed the measurement error (~10%). This effect
may be attributed to the fact that the distribution of the
electric field between the probe electrodes is highly
nonuniform. The field is maximum near the electrodes
and depends slightly on the distance between them if
this distance is much larger than the probe radius.
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
3. EXPERIMENTAL RESULTS

Our experiments were performed at C = 1.6 × 10–2 F
and L = 1.6 × 10–5 H. The initial stored energy was
70 kJ, the active resistance of the discharge circuit was
R = 1.5 × 10–2 Ω , and the interelectrode distance was
12 cm. The working gases were nitrogen and air at
atmospheric pressure. The inner structure and current–
voltage characteristics of electric discharges in these
gases are very similar. Thereafter, unless otherwise
indicated, the results from experiments with nitrogen
are presented.

The data obtained with two fast framing cameras
oriented at a right angle to one another in the plane per-
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Fig. 2. Waveforms of discharge current and voltage.
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pendicular to the chamber axis show that the glowing
part of discharge is nearly cylindrical in shape and its
radius increases in time. The axial symmetry of the dis-
charge is also confirmed by the data from magnetic
probes installed in the same plane at an angle of 120° to
one another.

Figure 2 shows waveforms of the discharge current
and voltage. The shape of the current pulse is close to a
sinusoid with an amplitude of 60 kA and a half-period
of 1.6 ms. The voltage spike at the initial instant is
attributable to the breakdown caused by the explosion
of the copper wire. At t ~ 300 µs, the voltage decreases
to 240 V and remains almost constant up to t ~ 1000 µs.
After this, it gradually decreases and then drops to zero
together with the current.

The data from magnetic and passive electric probes
were used to determine the time evolution of the radial
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Fig. 4. Time evolution of the boundaries of plasmas with
different conductivities: σ = (1) 0.9σmax, (2) 0.2σmax, and

(3) 2 × 10–6σmax where σmax = 55 Ω–1 cm–1.
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Fig. 5. Total radiation energy emitted from a discharge vs.
time.
profile of the plasma conductivity σ(r, t) (Fig. 3). The
time evolution of the plasma boundaries with different
σ values is shown in Fig. 4. The upper curve was
obtained by estimating the conductivity near the elec-
trodes of a passive electric probe at the instant when the
probe signal appeared [8].

In an equilibrium plasma, the conductivity is a func-
tion of state: for a fixed pressure, there is a one-to-one
relation between the conductivity and temperature. In
our case, the discharge core conductivity of σmax =
55 Ω–1 cm–1 corresponds to a temperature of T ≈
13000 K. This is in good agreement with the results
from spectroscopic measurements, according to which
the temperature of the copper vapor at the discharge
axis is T ≈ 12500 K.

Figure 5 shows the total radiation energy emitted
from the discharge as a function of the time elapsed
from the beginning of the discharge. The radiation
energy is normalized to the energy measured by the cal-
orimeter without a shutter when the discharge current
flows for only during one half-period.

Figure 6 illustrates the dynamics of the ESR process
for different rates with which the current was switched
to the shunt connected in parallel to the discharge [1].
Curve 1 corresponds to a relatively fast (over a time of
about 100 µs) switching at the instant of the current
maximum, whereas curve 2 corresponds to a relatively
slow decrease in the current during the natural develop-
ment of the discharge. The electric strength of 15 kV is
completely recovered over 4 ms and over about 8 ms
after the fast and slow switching-off of the current,
respectively.

The radial profile of the time required for the recov-
ery of the electric strength of air when the current is
switched off slowly is shown in Fig. 7. As was
expected, the ESR rate is maximum at the discharge
periphery and minimum at the center. For r ≤ 4 cm, this
dependence has an explicit plateau.

4. DISCUSSION OF THE RESULTS

An analysis of the data from Figs. 2 and 3 shows that
the transient processes related to discharge ignition
decay almost completely by the time t ~ 300 µs. Start-
ing from this instant, the discharge can be conditionally
divided into three regions: central, intermediate, and
peripheral. In the central region (r ≈ 3–4 cm), the cur-
rent density; the electric conductivity; and, accordingly,
the temperature are nearly constant over space and
time. The main variations in the current density and
electric conductivity occur in the intermediate region,
whereas in the peripheral region, the temperature
decreases to the temperature of the cold ambient gas.
The dimensions of all the regions increase with time.
The peripheral region expands much faster than the
central one (see Fig. 4). The contributions from differ-
ent transfer mechanisms can be estimated using the
Hellenbaas–Heller energy balance equation. It follows
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
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from these estimates that, in the central region, the main
fraction of the deposited Joule energy is carried away
by freely escaping radiation [8], whereas in the inter-
mediate region, the energy is mainly lost by heat con-
duction. A significant fraction (~50%) of the radiation
emitted from the central region is absorbed in the
peripheral region. The main mechanism for the arc
expansion in this region is convection; i.e., it is related
to the hydrodynamic flow of a relatively cold gas.

The behavior of a discharge in the current-rise stage
was described in [10–13], which were devoted to the
modeling of discharges with a current-carrying channel
transparent to its own emission. In those papers, a self-
consistent analytic physical model was developed that
predicted all the most important discharge parameters
(the electric field, the temperature, and the radius and
the expansion rate of the current-carrying channel) for
any growth rate of the discharge current and without
making any additional assumptions about the tempera-
ture dependence of the transport coefficients. It was
shown that, for each working gas, there is a region in
the (I, dI/dt) phase plane that corresponds to a universal
self-regulating regime of arc operation to which the dis-
charge evolves, whatever the initial conditions were. A
consequence of such self-regulation is stabilization of
the discharge parameters: as the current increases by
one order of magnitude, the temperature and the elec-
tric field vary by only a few tens of percent.

In the current-rise stage, a regime is established in
which Joule heating and radiative cooling nearly bal-
ance one another. A decrease in the current is accompa-
nied by a decrease in the energy deposition; this leads
to a decrease in the temperature due to volume cooling.
However, volume radiative losses may dominate in the
energy balance only at relatively high temperatures. In
atmospheric-pressure nitrogen at T < 8000–9000 K,
this effect is almost absent. This is confirmed by direct
calorimetric measurements of the total radiation energy
emitted from the discharge (see Fig. 5). As was
expected, radiative losses are most intense in the cur-
rent-rise stage and near the current maximum and then
rapidly decrease to zero.

Simple estimates show that, for laminar flows, the
characteristic cooling time of a gas column with a
diameter of about 10 cm and an initial temperature of
8000 K is a few tenths of a second. Hence, the observed
ESR rate can be attributed only to turbulent hydrody-
namic processes.

The reason for such turbulent mixing can be the
onset of Rayleigh–Taylor instability at the interface
between the cold and hot gases. Radiative cooling of
the current-carrying channel after the current is
switched off causes intense reverse gas flow. As the
temperature decreases, the emission power reduces to
zero and the motion of the cold gas towards the center
slows down. As a result, the inertia force directed
toward the center arises. This force is similar to the
force of gravity exerted by a heavy gas on an underlying
PLASMA PHYSICS REPORTS      Vol. 31      No. 7      2005
light gas. In this case, the gradients of the pressure and
density are oppositely directed. This provokes the
development of the Rayleigh–Tailor instability, which
leads to the generation of, first, laminar and, then, vor-
tex flows of the cold gas into the hot one. Finally, the
flow pattern becomes chaotic; i.e., the turbulent mixing
of the hot and cold gases occurs.

The process of cooling depends on which harmonics
dominate during the onset of instability. When the
translational energy of the cold gas is transformed into
the lower harmonics with a wavelength on the order of
the channel radius, the instability substantially disturbs
the geometry of the discharge and leads to its fragmen-
tation. If the energy is transferred to short-wavelength
perturbations, then heat transfer immediately becomes
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Fig. 6. ESR dynamics for two different decay rates of the
discharge current.
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Fig. 7. The radial profile of the time tu, needed for recover-
ing the electric strength of air in the case where the dis-
charge current was switched off slowly.
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diffusive in character and the effective thermal conduc-
tivity λeff substantially exceeds its classical value.

The linear stage of this process was considered in
[14]. The velocity of the reverse flows v  and, conse-
quently, the instability growth rate γ depend on the ini-
tial plasma temperature and the current decay rate.
Under the conditions corresponding to curve 1 in
Fig. 6, the velocity v  reaches a few hundred meters per
second and the deceleration is dv /dt ~ 106 m/s2, which
is 105 times higher than the gravitational acceleration
near the Earth’s surface. The gas density varies by two
orders of magnitude, and the growth rate of the lower
harmonics is γ ~ 104 s–1.

Let us estimate λeff using the data from Fig. 7 and
assuming that the gas cooling in the final stage of ESR
is diffusive in character. The insufficient measurement
accuracy did not allow us to resolve variations in the
ESR rate in the central region (rc ≈ 4 cm). When cooling
is caused by diffusion, the inner region is always cooled
more slowly than the outer one. Hence, the time τ of
heat diffusion through the central region is no longer
than the experimental error δtu ~ 1 ms in determining

the ESR time. On the other hand, we have τ ~ Cpρ/λ
by definition, where Cp and ρ are the specific heat
capacity and specific density of the gas, respectively.
From this, we obtain the lower estimate for the sought

quantity: λeff ~ Cpρ/δtu ≈ 1 W/(cm K), which is more
than 100 times higher than the thermal conductivity of
air in the temperature range in which ESR begins (i.e.,
at T < 4000 K).

5. CONCLUSIONS

In this study, the properties of high-current high-
pressure gas discharges have been examined using an
optimal experimental model. The model incorporates
all the features characteristic of the preextinction stage
of high-current high-pressure discharges, whereas all
the side effects hampering direct measurements and
their interpretation are excluded.

The experimental results have revealed the main
features of a discharge in the current rise stage. The
available literature data on the mechanisms responsible
for the spatiotemporal structure of a discharge are con-
tradictory. This is partially explained by the fact that the
use of optical methods for determining the radial pro-
files of the arc parameters is impeded by the large
uncertainty in the spectral characteristics of the work-
ing mixture and by the difficulty of accounting for the
absorption of radiation in cold gas layers. The fairly
large dimensions of the discharge produced allowed us
to use probe diagnostics, which, together with high-
speed photorecording, calorimetric measurements, and
parallel measurements of the gas temperature by the
relative intensities of the spectral lines, furnished a
clear insight into the discharge. With these data, it is
much easier to study the decay stage, which begins

rc
2

rc
2

immediately after the current is switched off, because
the initial conditions of the problem are well defined.

An analysis of the data obtained has shown that the
anomalously high cooling rate of the gas stems prima-
rily from the fact that, at the very beginning of the cool-
ing process, the radiation escapes from the central
region of the discharge within a relatively short time
interval. Thereafter, the instability that develops at the
interface between the hot and cold gases provokes their
turbulent mixing.

The data obtained have lain the basis for the devel-
opment of an adequate physical model of the discharge
decay. Hopefully, further experimental studies in com-
bination with theoretical analysis and numerical simu-
lations will provide a deeper insight into this compli-
cated phenomenon.

The results obtained go beyond the scope of gas dis-
charge physics and are related to an important branch of
contemporary hydrodynamics—turbulent mixing.
They can also be applied to the development of new
types of arc switches.
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