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Abstract—A study is made of the suppression of neoclassical tearing modes in tokamaks under anomalous
transverse transport conditions when the magnetic well effect predominates over the bootstrap drive. It is
stressed that the corresponding effect, which is called the compound suppression effect, depends strongly on
the profiles of the electron and ion temperature perturbations. Account is taken of the fact that the temperature
profile can be established as a result of the competition between anomalous transverse heat transport, on the
one hand, and longitudinal collisional heat transport, longitudinal heat convection, longitudinal inertial trans-
port, and transport due to the rotation of magnetic islands, on the other hand. The role of geodesic effects is
discussed. The cases of competition just mentioned are described by the model sets of reduced transport equa-
tions, which are called, respectively, collisional, convective, inertial, and rotational plasmophysical models. The
magnetic well is calculated with allowance for geodesic effects. It is shown that, for strong anomalous heat
transport conditions, the contribution of the magnetic well to the generalized Rutherford equation for the island
width W is independent of W not only in the collisional model (which has been investigated earlier) but also in
the convective and inertial models and depends very weakly (logarithmically) on W in the rotational model. It
is this weak dependence that gives rise to the compound effect, which is the subject of the present study. A cri-
terion for the stabilization of neoclassical tearing modes by the compound effect at an arbitrary level of the
transverse heat transport by electrons and ions is derived and is analyzed for two cases: when the electron heat
transport and ion heat transport are both strong, and when the electron heat transport is strong and the ion heat
transport is weak. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION AND GENERAL REVIEW 
OF THE PROBLEM

The problem of suppressing neoclassical tearing
modes (NTMs) in tokamaks is an important issue in the
development of the International Tokamak Experimen-
tal Reactor (ITER) project [1] because these modes
restrict the plasma pressure in long-pulse discharges
[2]. The stability of NTMs is governed by their genera-
tion by the bootstrap current (bootstrap drive) [3, 4] and
also by their response to various effects, in particular,
the magnetic well effect (or the effect of the magnetic
field line curvature) [5–7]. In this context, it is impor-
tant to recall the remark made in [8, 9], namely, that the
anomalous transverse transport [10, 11] reduces the
influence of the magnetic well on NTMs to a lesser
extent than does the bootstrap drive. This remark leads
to the idea that, when the transverse transport is suffi-
ciently strong, the magnetic well effect can become
dominant over the bootstrap drive and thereby com-
pletely stabilize NTMs. The present paper is aimed at
1063-780X/05/3108- $26.00 0621
determining whether such a situation can indeed occur
in actual tokamak plasmas. In what follows, the effect
in question will be called the compound suppression
effect.

The history of the problem at hand is as follows:
Fitzpatrick [10], who was the first to study the influence
of the anomalous transverse heat transport by electrons
on the bootstrap drive of NTMs, introduced the charac-
teristic magnetic island width Wc ~ (χ⊥ /χ||)1/4, which is
determined by the competition between this transport
and the longitudinal heat transport. Here, χ|| and χ⊥  are
the longitudinal and transverse thermal conductivities.
In [10], the coefficient χ⊥  was assumed to be large
enough to be consistent with the assumption that trans-
verse heat transport is anomalous. It was shown that, for
sufficiently strong transverse heat transport, Wc @ W, the
term describing the bootstrap drive in the generalized
Rutherford equation decreases according to the law
(W/Wd)2, where Wd = 1.8Wc is a certain effective critical
© 2005 Pleiades Publishing, Inc.
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width. Fitzpatrick’s paper [10] stimulated the study of
the problem of how much strong transverse heat trans-
port reduces the effect of the magnetic well on the
NTMs. This problem was originally investigated on a
largely intuitive basis [2]. Sauter et al. [2] suggested
that the magnetic well effect in question is reduced
according to the same law as the bootstrap drive and
formulated the suggestion in terms of the coefficient

(1.1)

which should enter the generalized Rutherford equation
through the term with the magnetic well. Here, the
quantity Wd, GGJ is understood as a certain width on the
order of Wd and the subscript GGJ stands for Glasser,
Greene, and Johnson—the authors of paper [12] on the
linear resistive modes. We also supplement coefficient
h1(W) in relationship (1.1) with the superscript S in
order to indicate the name of the first of the authors of
[2]. A dependence of form (1.1) was then used in [13,
14], in which the width Wd, GGJ was taken to be the
effective critical width Wd in the expression for the
bootstrap drive. Dependence (1.1) gave rise to the opin-
ion that the relative roles played by the magnetic well
effect and bootstrap drive are independent of the trans-
verse heat transport. One consequence of this was that,
at an arbitrary level of the transverse heat transport
under the conditions prevailing in a large-aspect-ratio
circular tokamak, the magnetic well effect should be
weaker than the bootstrap drive. It is obvious, however,
that, if this opinion were true, the compound suppres-
sion effect, which is the subject of the present study,
would be impossible.

The above remark of [8, 9] is important because it
implies, in contrast to the assumption made in [2], that,
for strong transverse heat transport, the dependence of
the magnetic well effect on Wd is given by the ratio
W/Wd. Consequently, for sufficiently large values of the
ratio Wd/W, the magnetic well effect can become dom-
inant over the bootstrap drive of NTMs, thereby provid-
ing the compound suppression effect.

There is no need to perform calculations in order to
reach the conclusion that, as the intensity of the trans-
verse heat transport increases, the magnetic well effect
should be weakened to a lesser extent than the bootstrap
drive, because this conclusion can be derived from the
following two circumstances, which stem from the pre-
ceding investigations of the NTMs: First, according to
[10, 11], the perturbed plasma pressure at strong trans-
verse heat transport is an oscillating function of the
cyclic variable of the magnetic islands. Second, the
bootstrap drive is described by averaging the bootstrap
current over this variable [10, 11], while the magnetic
well effect is associated with the oscillating component
of the perturbed plasma pressure (see, e.g., [6, 7]). It is
also necessary to keep in mind that averaging an oscil-
lating function over the magnetic surface of an island
leads to an additional small factor on the order of W/Wc.

h1
S

W( ) W
2
/ W

2
Wd GGJ,

2
+( ),=
It can then be predicted that, since the weakening of the
bootstrap drive is characterized by the square of this
ratio, (W/Wc)2, the magnetic well effect should be
weakened according to the law W/Wc. It is this qualita-
tive result that was obtained in [8, 9].

The paper by Mikhaœlovskiœ [8] was devoted to ana-
lyzing a qualitative dependence of the magnetic well
effect on the transverse heat transport. In contrast to [8],
the paper by Lutjens et al. [9] was aimed at quantitative
investigation of the effect in which we are interested
here. The main result of [9] can be formulated in terms
of the parameter , which is an analogue of the stan-
dard parameter ∆' in the linear theory of tearing modes
[15]. The authors of [9] obtained the following expres-
sion for :

(1.2)

where DR is the “resistive interchange parameter,”
which was introduced in [12], and the superscript LLG
stands for Lutjens, Luciany, and Garbet—the authors of
paper [9]. The above result of [9] was later reproduced
in [16].

From what was said above, it might be concluded
that the problem of interest has been exhaustively
investigated. It is necessary, however, to bear in mind
that, according to [17] and earlier studies (in particular,
[18–20]), the competition between the transverse and
the longitudinal heat transport, which was considered
in [9, 16], is not the only mechanism whereby the per-
turbed temperature profile is established. In addition,
according to [17], this mechanism is merely illustrative
in character and is unlikely to occur in practice. In [17–
20], a number of other mechanisms were considered,
which were called convective, inertial, and rotational
mechanisms. It would be interesting to derive expres-
sions for  for each particular mechanism. This is
one of our purposes here.

In order to investigate the stabilizing compound
effect, we need to know expressions describing the
bootstrap drive and the contribution of the magnetic
well to the generalized Rutherford equation for the
island width evolution in the case of strong transverse
heat transport. The expressions describing the bootstrap
drive for all of the mechanisms of interest, specifically,
those by which the perturbed temperature profile is
established, were obtained earlier (see [17]). This is
why the main objective of our study is to calculate the
magnetic well effect for each of these mechanisms.

In the context of what was said above, it is clear that
our interest lies at the intersection of two lines of
research in the theory of NTMs: the one that studies the
effects of the anomalous transverse heat transport and
the one that deals with the magnetic well effect. In our
studies and calculations, we will appeal primarily to the
first of these lines, whereas the magnetic well will be
treated in terms of a certain free parameter UMI. We will

∆eff'

∆eff'

∆eff' ∆eff'( )LLG ∆' 2
1/2π3/2

DR/Wd,+≡=

∆eff'
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assume that this parameter is positive, UMI > 0, because
it is only in this case that the compound suppression
effect under consideration is possible.

From relationships (1.1) and (1.2) it is seen that, in
[2, 9, 16], the magnetic well effect is described in terms
of the parameter DR, whereas, in the present paper, it is
described in terms of the parameter UMI. This naturally
raises the question of why we are using the parameter
UMI instead of DR. A detailed answer to this question
can be found in [7]; the essence of the problem is as fol-
lows. In the theory of magnetic islands, the parameter
DR has a narrower range of applicability than the
parameter UMI. The reason is that, in terms of the
parameter DR, this theory is adequate only if the influ-
ence of the magnetic shear on the magnetic well effect
is ignored, which corresponds to the equality UMI =
−DR. The effects of the shear of the magnetic field and
of its toroidal character should be taken into account
together with the so-called geodesic effects. In this
case, one has to deal with three kinds of magnetic well
that are described by the parameters UMI , U0, and UR.
The first of these parameters, UMI , is used in the theory
of magnetic islands, and the last two, U0 and UR, are rel-
evant to the problems of the ideal and resistive linear
modes, respectively. This is why, in using the parameter
DR, which corresponds to the so-called “DR-approach,”
the authors of [2, 9, 16] ignored geodesic effects.

It is a mistake to describe the magnetic well in the
theory of magnetic islands in terms of the parameter DR

not only without allowance for geodesic effects, as was
done in [2, 9, 16], but also with allowance for them (see,
e.g., [21]). Meanwhile, turning to the paper by
Kotschenreuther et al. [5], who studied for the first time
the influence of the magnetic field line curvature on
magnetic islands, one can see that the generalized
Rutherford equation derived there does not contain the
parameter DR. Moreover, it was suggested in [5] that
this parameter bears no relation to the physics of mag-
netic islands. The reason is that the parameter DR arises
in problems related to the modes that occur on charac-
teristic spatial scales on the order of the dimension of
the resistive layer [22, 12, 23], while the characteristic
spatial scales of magnetic islands exceed this dimen-
sion. In [7], it was mentioned that, unfortunately, this
physical argumentation was not always taken into
account in analyzing magnetic islands.

According to [7], the relationship between DR and
UMI in terms of the parameter UR ≡ –DR can be repre-
sented in the form

(1.3)

where H is one more Glasser–Greene–Johnson param-
eter [12] and HR is its so-called resistive part (see [7] for
details). Both terms in parentheses on the right-hand
side of representation (1.3) are positive, so this relation-
ship predicts that, with the replacement of UMI by −DR,

UR UMI HR H
2

+( ),–=
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the role of the magnetic well will be less favorable than
it really is.

Following [2], the bootstrap drive in [17] was
described in terms of a three-channel model in which
the quantity ∆bs, characterizing the contribution of the
bootstrap current to the generalized Rutherford equa-
tion for the evolution of the magnetic island width, was
assumed to be the sum of three terms, one being propor-
tional to the plasma density gradient (the density gradi-
ent channel), the others being proportional to the elec-
tron and ion temperature gradients (the electron and ion
temperature gradient channels). A similar representa-
tion can be introduced for the quantity ∆mw , which char-
acterizes the contribution of the magnetic well effect to
the generalized Rutherford equation:

(1.4)

where the subscript A denotes the type of the corre-
sponding channel. In our study, we will take into
account only the electron and ion temperature gradient
channels; i.e., we will consider a two-channel model of
the magnetic well with the representation

(1.5)

In view of the above-said, we propose the following
formulation of the problem concerning the compound
effect in question. Our efforts will be mostly concen-
trated on calculating the magnetic well effect for suffi-
ciently strong transverse heat transport conditions with
allowance for both electron and ion heat transport,
which corresponds to the two-channel model described
above. After calculating the magnetic well effect in the
two-channel model, we will compare the contribution
of this effect to the generalized Rutherford equation
with the contribution of the bootstrap drive that was cal-
culated in [17] in terms of the same model. We will thus
obtain the required information on the stabilizing com-
pound effect. Our analysis will be based on a variety of
plasmophysical models, i.e., transport equations
describing the plasma behavior in the problems con-
cerning magnetic islands. A summary of the basic
transport equations used in our study is given in Appen-
dix A.

In Section 2, we present the basic equations for cal-
culating the magnetic well effect for strong transverse
heat transport conditions. In this section, we generalize
the approach developed in [7] for weak transverse heat
transport conditions. The main result of Section 2 is the
evaluation of the contribution of the magnetic well to
the generalized Rutherford equation in terms of a spa-
tial integral of the perturbed temperature profile, which
is determined by competing effects and thereby
depends on the type of transport model that has been
invoked to describe the NTMs.

∆mw ∆mw A, ,
A ne Te Ti, ,=

∑=

∆mw ∆mw A, .
A Te Ti,=

∑=
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The history of the problem of calculating the per-
turbed temperature profiles is as follows: For the first
time, the temperature profile was calculated numeri-
cally by Fitzpatrick [10] in a collisional model (then
called the Fitzpatrick model). The first analytical calcu-
lation of the temperature profile in the Fitzpatrick
model was made in [18], in which, however, merely an
approximate (model) expression for the temperature
profile was derived. Other results of [18] were a rigor-
ous solution for the temperature profile in the rotational
model and a model solution in the convective model.
The next step—the evaluation of a model temperature
profile in the inertial model—was made in [19]. Finally,
in [17], rigorous analytical profiles of the perturbed
temperature were obtained in the collisional, convec-
tive, and inertial models and also all of the previously
calculated rigorous and model temperature profiles
were systematized. In [17], it was pointed out that the
model expressions for the temperature profiles are far
simpler than the corresponding rigorous expressions
and thus are far more attractive for qualitative analysis.
Note also that, in [18], the problem of finding the tem-
perature profiles was treated in the one-fluid approxi-
mation. The first steps to solve this problem in the two-
fluid approximation were made in [19, 20]. A fuller
treatment of the problem was given in [17]. By analogy
with [17], the analysis of Section 2, too, is carried in the
two-fluid approximation, although it might seem that
some equations from this section were derived using a
one-fluid approach.

In Section 3, we calculate rigorous expressions for
the magnetic well from the rigorous expressions for the
perturbed temperature profiles. The details of these cal-
culations are given in Appendix B. In Appendix C,
model expressions for the magnetic well are derived
from the model expressions for the temperature pro-
files.

It is likely that, in [9, 16] too, the analytic expression
for the magnetic well in the collisional model [10] was
derived using an analytic temperature profile (about
which, however, nothing was said in those papers).

In Section 4, we formulate a two-channel model of
the magnetic well effect, or, in other words, we derive
explicit expressions for the parameters ∆mw, A in for-
mula (1.5). In Section 5, we present expressions that
describe the parameter , which was introduced
above through relationship (1.2), for different mecha-
nisms whereby the electron and ion temperature pro-
files are established. In Section 6, we analyze the stabi-
lizing compound effect. In Section 7, we summarize
and discuss the results obtained and make final
remarks. Our paper also contains Appendix D, in which
we outline the essence of private communication [8].

∆eff'
2. BASIC EQUATIONS FOR CALCULATING
THE MAGNETIC WELL EFFECT UNDER 

STRONG TRANSVERSE HEAT TRANSPORT 
CONDITIONS

2.1. Approach to Describing the Magnetic Well 
Contribution to the Generalized Rutherford Equation

We begin with the following generalized Rutherford
equation for the evolution of the width of a magnetic
island (cf. [7], Eq. (34)):

(2.1)

Here, w is the island half-width; the parameters ∆bs and
∆mw characterize, respectively, the bootstrap drive and
the magnetic well effect; and the parameters ∆p and
∆ECCD account for the polarization current and electron
cyclotron current drive (ECCD) [24]—effects that go
beyond the scope of the present paper.

The parameter ∆mw is expressed in terms of the mag-
netic-well-related current Jmw by the familiar formula
(cf. [7], formula (3.5))

(2.2)

Here, σx = ; x = r – rs is the radial deviation from
a singular equilibrium magnetic surface r = rs, in whose
vicinity a chain of magnetic islands is localized; ξ is the
cyclic variable of the island; Ω is the dimensionless
magnetic flux function of the magnetic islands; q is the
safety factor; R is the major radius of the torus; s is the
magnetic shear; B0 is the equilibrium magnetic field;
and c is the speed of light.

The variables ξ and Ω are introduced through the
relationships

(2.3)

(2.4)

Here, ψ is the magnetic flux function of the islands,

(2.5)

where Ls ≡ qR/s is the shear length,  is a positive con-
stant related to the island half-width by the relationship

(2.6)

θ the ζ are the poloidal and toroidal angles, m and n are
the poloidal and toroidal mode numbers, and ω is the
island rotation frequency.

We restrict ourselves to analyzing a circular or a
slightly noncircular tokamak. In these cases, the func-
tion Jmw satisfies the equation (see [7], Eq. (4.31))

(2.7)

∂w
∂t
------- ∆'

4
---- ∆bs ∆mw ∆p ∆ECCD.+ + + +∼

∆mw
2 2
cs

---------- Rq
wB0
---------- Ω

Jmw ξ ξdcos

Ω ξcos+( )1/2
--------------------------------.∫°d

1–

∞

∫
σx

∑–=

xsgn

ξ mθ nζ– ωt,–=

Ω ψ/ψ̃.–=

ψ ψ̃ ξcos x
2
B0/ 2Ls( ),–=

ψ̃

w 2 Lsψ̃/B0( )1/2,=

∂Jmw

∂ξ
------------ 

 
Ω

σxcsB0UMI

2
3/2πp0' qRw Ω ξcos+( )1/2

-------------------------------------------------------------- ∂p
∂ξ
------ 

 
x

,–=
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where p is the total plasma pressure (i.e., the equilib-
rium pressure p0 plus the pressure perturbation) and the
prime denotes the derivative with respect to the radial
coordinate.

For moderately intense transverse heat transport,
the function p has a flattened profile within the separa-
trix of a magnetic island and turns out to depend solely
on the variable Ω (see [7] for details). In this case, rela-
tionship (2.2) and Eq. (2.7) yield the following well-
known expression for ∆mw (see [7], expression (4.37)):

(2.8)

where UMI is the magnetic well of the magnetic islands
(which was introduced and explained in [7]).

According to [17], if the transverse heat transport is
strong enough, then the main contribution to the param-
eter ∆bs comes from the range Ω @ 1. As will be clear
later, this is also true for the parameter ∆mw . For Ω @ 1,
Eq. (2.7) can be substantially simplified. First of all, we
can make the replacement (Ω + cosξ)1/2  Ω1/2 in the
denominator on its right-hand side. We also take into
account the fact that, in the (x, ξ) variables, the deriva-
tive (∂/∂ξ)Ω has the form

(2.9)

For Ω @ 1, the second term on the right-hand side of
this expression is small in comparison to the first term,
so Eq. (2.7) reduces to

(2.10)

Let us now take into account that the range Ω @ 1 cor-
responds to the linear region of the magnetic islands.
For this region, we can make the replacement p  
(where  is the perturbed plasma pressure) on the
right-hand side of Eq. (2.10) and, moreover, we can use
the representation

(2.11)

where pc(x) and ps(x) are the cosinusoidal and sinusoi-
dal components of the pressure perturbation amplitude.
It should be noted that, in the Fitzpatrick model, the
function ps(x) is identically zero (see [17] for details).
Noting that, according to relationship (2.2), the only
contributor to ∆mw is the function pc(x), we obtain from
Eq. (2.10) the expression

(2.12)

∆mw 1.58UMI/w,–=

∂
∂ξ
------ 

 
Ω

∂
∂ξ
------ 

 
x

w
2

4x
------ ξ ∂

∂x
------ 

 
ξ
.sin–=

∂Jmw

∂ξ
------------ 

 
x

σxcsB0UMI

2
3/2πp0' qRwΩ1/2

--------------------------------------- ∂p
∂ξ
------ 

 
x

.–=

p̃
p̃

p̃ x ξ,( ) pc x( ) ξcos ps x( ) ξ ,sin+=

Jmw

cB0UMI

4πp0' Lsx
--------------------- pc x( ) ξ .cos–=
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Substituting expression (2.12) into relationship (2.2)
and bearing in mind that Ω @ 1, we arrive at the for-
mula

(2.13)

If we calculate the function pc(x) in some particular
plasmophysical model, we can obtain an expression for
the parameter ∆mw in this model for the case of suffi-
ciently strong transverse heat transport. Matching the
resulting expression with formula (2.8) for ∆mw , we can
then evaluate the parameter ∆mw qualitatively for arbi-
trarily intense transverse heat transport.

We consider the plasmophysical models that were
studied in [17] (see Appendix A). These models are
based on the assumptions that the equilibrium plasma
density is uniform, n0 = const, and that the plasma den-
sity perturbation is negligibly small. Under these
assumptions, we can make the following substitution in
expression (2.13):

  (2.14)

where the cosinusoidal component (x) of the elec-
tron or ion temperature perturbation is determined in
essentially the same way as in representation (2.11) and
T0e and T0i are the electron and ion equilibrium temper-
atures. Note that, in [17], use was made not of the vari-
able x but of the dimensionless variable u, which is
related to x by the relationship

(2.15)

where W = 2w is the island width.

With relationships (2.6) and (2.15) and substitu-
tion (2.14), expression (2.13) reduces to

(2.16)

where

(2.17)

the partial αth components  of the parameter UMI

are given by the relationship

(2.18)

and the parameters  characterize partial contribu-
tions to the magnetic well effect.

∆mw

UMIB0

ψ̃Ls p0'
---------------

pc x( )
x

------------- x.d

0

∞

∫=

pc x( )/ p0' Tc
e

x( ) Tc
i

x( )+[ ] / T0e' T0i'+( ),

Tc
α

u 2
3/2

x/W ,=

∆mw ∆mw
α

,
α e i,=

∑=

∆mw
α 16UMI

α

T0α'
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Tc
α
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u
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0
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UMI
α

UMI
α T0α'

T0e' T0i'+
---------------------UMI,=

∆mw
α
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In [17], the functions  were represented as

(2.19)

where the functions yα(u) are different in different plas-
mophysical models; i.e., they are determined by the
mechanism whereby the temperature profile is estab-
lished. Substituting representation (2.19) into expres-
sion (2.17) puts the latter into the form

(2.20)

where

(2.21)

Hence, in each particular plasmophysical model, the

derivation of an expression for  reduces to a calcu-

lation of the integral  with the corresponding func-
tion yα(u). This calculation is the subject of Section 3
(see also Appendices B, C).

2.2. Characteristic Expressions 
for the Magnetic Well

2.2.1. Expressions for UMI without allowance for
geodesic effects. When the geodesic effects are
ignored, the parameter UMI reduces to

(2.22)

where U0 is the magnetic well in the theory of linear

modes [25]. Accordingly, the partial components 
of this parameter are equal to

(2.23)

where  are the partial components of U0. For a
slightly noncircular tokamak characterized by the ellip-
ticity e and triangularity τ, we can then obtain (see [7]
for details)

(2.24)

where ε = r/R is the inverse aspect ratio, βpα are the par-
tial poloidal betas, and LTα = –T0α / .

Note that Lutjens et al. [9] described the parameter DR

by the expression that follows from relationships (2.22)–
(2.24) with e = τ = 0, i.e., by [23]

(2.25)

Tc
α

Tc
α

u( )
T0α' W

2
5/2

--------------y
α

u( ),–=

∆mw
α

2
3/2UMI

α

W
---------kmw

α
,–=

kmw
α y

α
u( )

u
------------- u.d

0

∞

∫=

∆mw
α

kmw
α
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α ε2βpαrs
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q
2

-----– 6
eτ
ε

-----+ 
  ,= =

T0α'

DR U0– ε2βprs 1 1/q
2

–( )/ LTs
2( ),–= =
which, according to [23], agrees with the correspond-
ing expression from [22].

2.2.2. Expressions for UMI with allowance for
geodesic effects. One of the simplest cases in which the
geodesic effects cause the parameters UMI , UR, and U0
to differ from one another corresponds to the second
stability region of the ideal ballooning modes (see [7]
for details). For a circular tokamak with a parabolic
plasma pressure profile, the expressions for these
parameters in the second stability region are presented
in [7].

In the lower part of the second stability region (see
[7] for details), the parameters satisfy the order-of-
magnitude relationships

(2.26)

It should be noted that, in this case, the parameter UR

can be negative, while the parameter UMI is positive.
This implies that the linear resistive interchange modes
can be unstable in the second stability region of the
ideal ballooning modes, whereas the magnetic well has
a stabilizing effect on the NTMs. Thereby, as was
pointed out in [7], the DR approach, which predicts
destabilization, turns out to contradict the predictions
of the ideal NTM theory.

2.2.3. Canonical expressions for UMI . We repre-
sent the parameter UMI in the form

(2.27)

where f(rs) is a form-factor. Without allowance for geo-
desic effects, relationship (2.24) yields

(2.28)

On the other hand, referring to [7], we see that the form-
factor in the second stability region of the ideal balloon-
ing modes is described not by expression (2.28) but by
the expression

(2.29)

where  = 4εβp. Formulas (2.27) with the form-factor
f(rs) given by expressions (2.28) or (2.29) can be called
canonical expressions for UMI .

2.3. Relative Role of the Magnetic Well Effect 
and Bootstrap Drive at Weak Transverse Heat 

Transport

We assume that, for weak transverse heat transport,
the parameter ∆bs exceeds the parameter ∆mw , so we can
write the condition

(2.30)

UMI  . UR . U0 . 1.

UMI

ε1/2βprs

sLT

------------------ f rs( ),=

f rs( ) ε3/2

s
------- 1 1

q
2

-----– 6eτ
ε

--------+ 
  .=

f rs( ) ε3/2

s
------- 1 1

q
2

-----–
α̂
4ε
----- s

3
32
------α̂2+ 

 + ,=

α̂
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0( ) ∆mw

0( )
–( ),>
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where the superscript (0) signifies the parameter values
for weak transverse heat transport. According to [17],

the parameter  is described by the relationship

(2.31)

where

(2.32)

with cbs = 0.79. Using expressions (2.8) and (2.31), we
reduce condition (2.30) to

(2.33)

In the particular case in which T0e = T0i and the param-
eter UMI is given by expression (2.27), condition (2.33)
becomes

(2.34)

where the form-factor f (rs) is described by relation-
ships (2.28) and (2.29). In the first case, namely, when
the form-factor is given by relationship (2.28), assum-
ing that the triangularity τ is sufficiently small and the
shear is sufficiently large, s . 1, we have f(rs) . ε3/2.
This ensures that condition (2.34) is satisfied under the
additional assumption of a sufficiently small ε. The
possibility that this condition may fail to hold with
increasing triangularity and decreasing shear was dis-
cussed in [6]. In the lower part of the second stability
region of the ideal ballooning modes, when βp . 1/ε
and s . ε2/3 (see [7] for details), expression (2.29) yields
the estimate f(rs) . ε–1/6. In this case, condition (2.34) is
violated. This is why the lower part of the second sta-
bility region will be excluded from further analysis, for
simplicity.

3. CALCULATIONS OF THE MAGNETIC WELL 
EFFECT AT STRONG TRANSVERSE HEAT 

TRANSPORT

3.1. Collisional Model

In the collisional model (see Appendix A), two
expressions for the function yα(u) were obtained—
model [18] and rigorous. The rigorous expression was
derived in [17] from the rigorous solution to the corre-
sponding heat conduction equation for the perturbed
temperature. Of course, the rigorous expression for
yα(u) is better suited for our purposes here. At the same

time, calculating the integrals  by using the model
expression for yα(u) produces results fairly close to
those reached with the rigorous expression. This is an
additional argument showing that it is expedient to use
simple analytic expressions for the perturbed tempera-
ture profile in studying the physics of NTMs.

∆bs
0( )

∆bs
0( ) 1

W
----- 0.40βpeCbs e, 0.17βpiCbs i,–( ),=

Cbs α, 2.46 2cbsε
1/2

rs/ sLTα
( ),×=

UMI 1.23
ε1/2

rs

s
------------ 0.40

βpe

LTe

------- 0.17
βpi

LTi

-------– 
  .<

f rs( ) 1.23 0.23×< 0.28,=

kmw
α
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According to [17], the rigorous expression for the
function yα(u) in the collisional model has the form

(3.1)

Here, Ωcol = (Wcol /W)2, where

(3.2)

with ky = m/rs being the poloidal component of the wave
vector. The function λcol(t) is defined by the relationship

(3.3)

where the variable t is defined as t = u2/(2Ωcol) and I1/4(t)
and K1/4(t) are Bessel functions of the imaginary argu-
ments of the first and second kinds, respectively.

With relationships (3.1) and (3.2), expression (2.21)
becomes (see Appendix B for details)

(3.4)

This expression, together with expression (2.20),
justifies and quantitatively refines the qualitative analy-
sis carried out in Appendix D (see formula (D.13)).

3.2. Convective Model

In the convective model (see Appendix A), as in the
collisional model (which was considered in Section 3.1),
we deal with the rigorous expression for the function
yα(u) that was derived in [17] and with the model
expression derived in [18, 20]. Correspondingly, in the
convective model, we can obtain both rigorous and

model expressions for .

According to [17], the rigorous expression for the
function yα(u) has the form

(3.5)

Here,

(3.6)

y
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where t = 21/2(1 + i) /3, αconv = 24/3/Ωconv,
Ωconv = (Wconv/W)2;

(3.7)

and the generalized speed of sound cs is introduced by
the relationship cs = [5T0/(3M)]1/2, with M being the
mass of a particle.

Using expressions (2.21) and (3.5), we find (see
Appendix B for details)

(3.8)

which is qualitatively equivalent to expression (3.4)
with the replacement Wcol  Wconv.

3.3. Inertial Model

In the inertial model (see Appendix A), as in Sec-
tions 3.1 and 3.2, we again have two expressions for the
function yα(u), specifically, the model expression
derived in [19] and the rigorous one, derived in [17].

According to [17], the function yα(u) is given by rig-
orous expression (3.5) with Y(u) of the form

(3.9)

Here, t = au2, a = 2–3/2(1 – i)αi ,  = 21/2π/ , Ωi =

/W2;

(3.10)

and cis is the speed of sound defined as cis = (T0/Mi)1/2,
with Mi being the mass of an ion.

Substituting expression (3.9) into expression (2.21)
and integrating the resulting formula yields (see
Appendix B for details)

(3.11)

which is qualitatively analogous to expressions (3.4)
and (3.8) with the replacement (Wcol, Wconv)  Winert.

3.4. Rotational Model

In the rotational model (see Appendix A), in contrast
to the models considered in Sections 3.1–3.3, we deal
only with the rigorous solution for the function yα(u).
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kmw
α

kmw
inert

1.87/Ωi
1/2

,≡=
According to [17, 18], the rigorous expression for this
function follows from the equation

(3.12)

where Ωr = /W2,

(3.13)

(3.14)

The general expression for the function τ(z), which
is required for calculating the bootstrap drive (see [17]
for details), can be found in [17, 18]. In the problem
under discussion here, this expression reduces to

(3.15)

where z0 . 1/Ωr. Using formulas (2.21), (3.12), (3.14),
and (3.15), we find (see Appendix B for details)

(3.16)

We see that, in contrast to expressions (3.4), (3.8),

and (3.11), the parameter  contains a coefficient
with the squared logarithm of the ratio Wrot /W. This
coefficient arises from the logarithmic dependence of
the right-hand side of Eq. (3.12) on the parameter z0
(see expression (3.15)).

3.5. Model Expressions for 

Along with rigorous expressions (3.4), (3.8), and
(3.11) for the parameter kmw , model expressions for this
parameter can also be derived in the collisional, con-
vective, and inertial models. Using formulas (2.21),
(C.1), (C.4), and (C.7), we obtain

(3.17)

(3.18)

(3.19)

As is seen, formulas (3.17)–(3.19) are in qualitative
agreement with formulas (3.4), (3.8), and (3.11),
respectively.
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3.6. Basic Expressions for  in the Case
of Strong Transverse Heat Transport

In accordance with the above plasmophysical mod-

els, we introduce the parameters , where the super-
script j means j = (col, conv) for α = e and j = (inert, rot)
for α = i. For strong transverse heat transport, these
parameters have the form

(3.20)

where

(3.21)

(3.22)

The quantities Wj are the characteristic island widths
determined by the corresponding competing mecha-
nisms and given by formulas (3.2), (3.7), (3.10), and
(3.13), respectively. The quantities hαj are related to

 by the relationships

(3.23)

where

(3.24)

Using formulas (3.4), (3.8), (3.11), and (3.16), we can
write relationships (3.23) as

(3.25)

Note that the first of relationships (3.25) can be repre-
sented in the form

(3.26)

Hence, the parameters  are determined by formu-
las (3.20), (3.21), and (3.25).

According to the expressions for integrals (3.24),
representations (3.25) for the quantities hαj can be
derived from the rigorous profiles of the temperature
perturbation. In the collisional, convective, and inertial
models, we have not only the rigorous expressions for
integrals (3.24) but also model expressions (3.17)–

(3.19), which were obtained for  from the model
profiles of the temperature perturbation. For such pro-
files, we must use, instead of representations (3.25), the
representations

(3.27)

As is seen, the approximate expressions for the coeffi-
cients (hαj )model calculated from the model temperature
profiles agree qualitatively with the rigorous expres-
sions.

On the whole, formulas (3.20) and (3.25)–(3.27)
show that, for strong transverse heat transport, the
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parameters  are independent of the magnetic island
width W in the collisional, convective, and inertial mod-
els and depend on W logarithmically in the rotational
model.

4. TWO-CHANNEL MODEL 
OF THE MAGNETIC WELL EFFECT

It is obvious that, within the above approximations,
the role of the parameters ∆mw, A in formula (1.5) is

played by the parameters  introduced by expres-
sions (2.16). For weak transverse heat transport, these
parameters can be deduced by using formulas (2.8) and
(2.18). For arbitrarily intense transverse heat transport,
we obtain

(4.1)

Here,

(4.2)

where the summation is carried out over the competing
mechanisms and the subscript means j = (col, conv) for
α = e and j = (inert, rot) for α = i. The quantities Wj, mw

(the subscript α is omitted for brevity) are given by the
expressions

(4.3)

where, in accordance with formulas (3.20)–(3.26), we
have

(4.4)

Here, the quantities Wmw play the same role as Wd, GGJ
in relationship (1.1).

Together with expressions (2.16), formulas (4.1)–
(4.4) determine the parameter ∆mw in the two-channel
model of the magnetic well effect.

5. EXPRESSIONS FOR 

5.1. General Expressions for 

Following [9, 16], we introduce, by analogy with
relationship (1.2), the parameter , which includes
the conventional parameter ∆' and takes into account
the magnetic well effect for strong transverse heat
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transport. According to Eq. (2.1), the expression for
 that generalizes relationship (1.2) has the form

(5.1)

In this case, formula (4.1) reads

(5.2)

so expression (5.1) becomes

(5.3)

For  > 0, we have  < ∆'.

5.2. Expressions for  without Allowance
for Geodesic Effects

Taking into account expressions (2.22) and (2.23) and
ignoring geodesic effects, we reduce expression (5.3) to

(5.4)

In the collisional model (j = col), we ignore the effects
associated with the ions and take into account expres-
sion (2.25) to obtain, instead of expression (5.4), the
expression

(5.5)

A comparison between expressions (5.5) and (1.2)
shows that the parameter ( )col predicted by our anal-
ysis is two times larger than that obtained in [9].

5.3. Estimate of  with Allowance
for Geodesic Effects

Formulas (2.26) and (5.3) yield the estimate

(5.6)

where j stands for the dominant mechanism among the
competing ones. Hence, estimate (5.6) shows that, by
virtue of the relationship ∆' . 1/rs, the renormalization
of the parameter ∆' in the second stability region of the
ideal ballooning modes is essential if, in order of mag-
nitude, we have Wj & rs.
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6. INVESTIGATION OF THE COMPOUND 
SUPPRESSION EFFECT

For the transverse heat transport conditions under
consideration, the generalized Rutherford equation has
the form (cf. Eq. (2.1))

(6.1)

Here, τs is the resistive time [2] and the rest of the nota-
tion has been introduced above. The parameter ∆mw is
given by formulas (2.16) and (4.1), and the parameter
∆bs represents the contribution of the bootstrap current;
according to [17], this contribution is described by the
expression

(6.2)

Here,

(6.3)

where the summation is carried out over j = (col, conv)
for electrons (α = e) and over j = (inert, rot) for ions
(α = i). According to [17], the quantities Wd, j are equal
to

(6.4)

The general criterion for suppression of the NTMs
by the compound effect has the form

(6.5)

Using formulas (2.16), (4.1), and (6.2), we convert cri-
terion (6.5) into the form

(6.6)

where the components  are given by relationship
(2.24) or by the generalized versions of this relationship
that follow from formula (2.18).

6.1. The Case of Strong Electron 
and Ion Heat Transport

In the case of strong heat transport by both of the
plasma particle species, (Wd, α, Wmw, α) @ W, criterion (6.6)
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implies that NTMs are suppressed by the compound
effect when

(6.7)

where

(6.8)

In order to illustrate expression (6.8), we consider
the case T0e = T0i and assume that the electron and ion
temperature perturbation profiles are established via the
competing collisional mechanism. We also assume that
the magnetic well is described by formula (2.27). In this
case, expression (6.8) becomes

(6.9)

The qualitative dependence of the form Wcomp ~
f(rs)Wcol could be predicted in advance. It is somewhat
surprising, however, that, in front of the function f(rs) in
expression (6.9), there is so large a numerical coeffi-
cient (about 30). The reasons for this are as follows:
First, relationship (2.31) implies that, when only the
electron and ion temperature gradient channels are
taken into account and when the ions are not colder
than the electrons, the bootstrap drive even at weak heat
transport is characterized by a small coefficient approx-
imately equal to 1/4 (see the right-hand side of inequal-
ity (2.34)), which produces a coefficient of about 4 on
the right-hand side of expression (6.9). The small coef-
ficient 1/4, in turn, stems from the smallness of the elec-
tron partial contribution (the coefficient 0.40 in rela-
tionship (2.31)) and from the fact that the ion tempera-
ture gradient makes a stabilizing contribution to the
parameter ∆bs. In other words, the ions give rise not to
the bootstrap drive but to the bootstrap suppression of
the NTMs, thereby weakening the total effect of the

bootstrap current. Second, the ratio /Wmw turns out
to be larger than Wcol by a factor of about (1.8)2/0.80 ≈ 4.
Finally, the contribution of the ion temperature gradient
to the magnetic well effect, as well as the contribution
of the electron temperature gradient, is stabilizing,
which leads to an additional coefficient of about 2 on
the right-hand side of expression (6.9).

From expression (2.28) it follows that, under the con-
ditions prevailing in a circular tokamak and for s . 1, the
function f(rs) is on the order of ε3/2. Consequently, if
there were no large coefficient under discussion in
expression (6.9), criterion (6.7) would imply that the
compound effect can lead only to the suppression of
small magnetic islands, W ( ε3/2Wcol. On the other
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hand, even when the values of ε are very small (but are
such that ε > (30)–2/3 . 0.10), the presence of the large
coefficient in expression (6.9) ensures the suppression
of all the islands whose width satisfies the conditions
adopted in deriving this expression, i.e., the islands
with the widths

(6.10)

This indicates that the condition for the heat transport
to be strong is qualitatively equivalent to the condition
for the suppression of the bootstrap drive of NTMs by
the compound effect.

6.2. The Case of Strong Electron Heat Transport
and Weak Ion Heat Transport

Under the assumption that the electron heat trans-
port is strong, (Wd, e, Wmw, e) @ W, and the ion heat
transport is weak, (Wd, i , Wmw, i) ! W, criterion (6.6)
reduces to

(6.11)

This inequality describes the competition between the
stabilizing effects of the ion magnetic well and the
bootstrap suppression by the ions, on the one hand, and
the bootstrap drive by the electrons, weakened by a fac-
tor of (W/Wd, e)2, on the other hand. We can see that the
result of this competition is more favorable than was
presumed in Section 6.1.

7. CONCLUSIONS

Based on the two-fluid MHD equations, we have
developed an approach to calculating the contribution
of the magnetic well to the generalized Rutherford
equation for the evolution of the magnetic island width
∆mw in the problem of suppressing NTMs under strong
transverse heat transport conditions. We have expressed
this contribution in terms of the electron and ion partial

components , (α = e, i). We have shown that the

parameters  depend on the radial profiles of the
electron and ion temperature perturbations and,
thereby, on the mechanisms by which these profiles are
established. Using the results of previous investiga-
tions, we have considered four such mechanisms,
namely, collisional, convective, inertial, and rotational.
We have explained that the first of them is illustrative in
character, the second is associated primarily with the
electrons (α = e), and the last two are governed by the
ions (α = i). We have found that, by analogy with the
collisional model, which was considered in [8, 9], the
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parameters  in the remaining three (convective,
inertial, and rotational) models are independent of the
width W of the magnetic island and are inversely pro-

portional to its critical width,  ~ 1/Wc. In the rota-

tional model, the parameter  also depends weakly
on a logarithmic factor of the form [ln(Wc/W)]2, see
representations (3.25).

Using the expressions derived in our study for the

partial components  (α = e, i) in the limiting case
of strong transverse heat transport and also the known
expressions in the opposite limiting case of weak heat
transport, we have constructed extrapolation formu-
las (4.1)–(4.4) for these parameters at arbitrarily
intense transverse heat transport. With these extrapola-
tion formulas and expressions (2.16), we have devel-
oped a two-channel model of the magnetic well
effect—one that accounts for the competition between
the above four mechanisms whereby the temperature
profiles are established.

In order to obtain physical results using the two-
channel model, the magnetic well effect should be com-
pared to the other effects that are incorporated in the
generalized Rutherford equation for the island width
evolution (see Eqs. (2.1) and (6.1), which are two ver-
sions of the generalized Rutherford equation, written
for the theoretical and practical purposes, respectively).
We think that the most important information has been
gained from a comparison of the parameter ∆mw to the
parameter ∆bs, which characterizes the bootstrap drive
of NTMs. This comparison has been facilitated by the
use of the two-channel model that was developed in
[17] for the bootstrap drive at arbitrarily intense heat
transport. The latter model is based on the same com-
peting mechanisms that were taken into account in con-
structing the model for ∆mw and is characterized by for-
mulas (6.2)–(6.4). Such a comparison allowed us to
derive general criterion (6.6) for suppression of the
NTMs by the compound effect at an arbitrary level of
the transverse heat transport and two particular criteria:
in the case of strong electron and ion heat transport (see
relationships (6.7) and (6.8)) and in the case in which
the electron heat transport is strong and the ion heat
transport is weak (see inequality (6.11)).

The compound effect under investigation turns out
to be enhanced because the ion temperature gradient
channel of the bootstrap current gives rise not to the
bootstrap drive of the NTMs but to their bootstrap sup-
pression and also because of the smallness of the elec-
tron partial component of the parameter ∆bs and the
smallness of the ratio between the critical island
widths, which characterize the influence of strong heat
transport on the magnetic well effect and on the boot-
strap drive (see illustrative formula (6.9) and its subse-
quent discussion). Our calculations yielded criterion
(6.10), which shows that the range of widths of the

∆mw
α

∆mw
α

∆mw
i

∆mw
α

islands stabilized by the compound effect is sub-
stantially wider than one might expect. From expres-
sions (6.9), (2.28), and (2.29), it is clear that the com-
pound effect can be enhanced by the plasma cross sec-
tional shaping (i.e., by the combined influence of the
triangularity and ellipticity of the magnetic surfaces)
and also by accessing the second stability region of the
ideal ballooning modes. When only the electron heat
transport is strong, the compound effect is character-
ized by criterion (6.11), which means physically that
the ion magnetic well effect and the bootstrap suppres-
sion by the ions predominate over the bootstrap drive by
the electrons weakened by the electron heat transport.

It should also be kept in mind that, even when crite-
rion (6.7) for stabilization of the NTMs by the com-
pound effect is not satisfied, the bootstrap drive mecha-
nism for producing moderately wide magnetic islands
operates far less effectively. As a result, the conditions
under which NTMs are suppressed by the electron
cyclotron current drive become less restrictive (see the
term with ∆ECCD in Eq. (2.1) or (6.1)). On the other
hand, it is known that sufficiently large islands can be
suppressed by the effect described by the negative val-
ues of the parameter ∆' in Eqs. (2.1) and (6.1). Thereby,
NTMs can be suppressed for magnetic islands of what-
ever width.

In the present paper, we have considered only one
type of anomalous transverse transport, namely, trans-
verse heat transport. In accordance with [6], however, it
is obvious that the influence of anomalous diffusion on
the compound effect also should to be studied. Another
type of anomalous transverse transport—anomalous
transverse viscosity—was incorporated into the theory
of magnetic islands in [26, 27]. The development of a
theory of NTMs that would include both the compound
effect and the effect of strong transverse viscosity can
be the subject of future studies.

When considering the anomalous transverse heat
transport, we assumed that it is caused by a sort of
small-scale turbulent pulsations, without specifying
their nature. Such turbulence can originate from
microislands that were discussed in [28] and in the
papers cited therein.

Along with the compound effect, the magnetic
islands can be suppressed by the feedback effect (for
details, see [29] and the literature contained therein).

The dynamics of sufficiently narrow magnetic
islands is largely determined by the polarization current
effect, which is incorporated in the general terms in
generalized Rutherford equations (2.1) and (6.1).
Along with the review paper [24] cited above, useful
information about the role of the polarization current
can also be gained from a recent paper [30].
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APPENDIX A

SUMMARY OF THE BASIC 
PLASMOPHYSICAL MODELS

In order to calculate the magnetic well effect with
the help of formulas (2.17)–(2.21), it is necessary to
know the profile of the perturbed temperature of the
corresponding particle species. We find the temperature
profiles by using the reduced transport equations that
were systematized in [17]. In that paper, the model sets
of reduced transport equations were called collisional,
convective, inertial, and rotational plasmophysical
models, depending on the dominant transport processes
that compete with the transverse heat transport. The
essence of these models can be summarized as follows:

A.1. Collisional Model

In the collisional model [10], it is assumed that the
temperature of the corresponding particle species satis-
fies the heat-conduction equation

(Ä.1)

where q is the heat flux defined by the relationship

(Ä.2)

b is a unit vector in the direction of the total magnetic
field, and ∇ || and —⊥  are the longitudinal and transverse
gradient operators with respect to this field.

A.2. Convective Model

In the convective model [20], the perturbed temper-
ature is determined from the equations

(Ä.3)

(Ä.4)

— q⋅ 0,=

q n0 χ||b∇ || χ⊥ —⊥+( )T ,–=

∇ ||q||
3
2
---χ⊥

∂2
p

∂x
2

--------– 0,=

5
M
----- ∇ || pT( ) χ⊥

∂2
q||

∂x
2

----------– 0,=
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where q|| is the longitudinal heat flux, p = nT and n are
the pressure and density of the corresponding particle
species, and M is the mass of a particle.

A.3. Inertial Model

In the inertial model [19], the heat conduction equa-
tion has the form

(Ä.5)

where q⊥  is the transverse heat flux determined by rela-
tionship (A.2) with χ|| = 0, V|| is the longitudinal plasma
velocity, ρ0 = Min0, and cis = (T0/Mi)1/2 is the ion-sound
speed. Equation (A.5) is supplemented with the equa-
tion of longitudinal plasma motion

(Ä.6)

where

(Ä.7)

VE is the E⊥  × B0 drift velocity, and E⊥  is the transverse
electric field of the perturbations.

A.4. Rotational Model

The rotational model [18] is based on the heat con-
duction equation

(Ä.8)

The notation in this equation has been introduced
above.

APPENDIX B

CALCULATION OF THE PARAMETERS 
FOR RIGOROUS TEMPERATURE PROFILES

B.1. Collisional Model

Substituting relationships (3.1) and (3.3) into
expression (2.21) and switching from the variable u to
the variable t, we obtain

(B.1)

where

(B.2)

ρ0cis
2 ∇ ||V ||

2
3
---—– q⊥ ,⋅=

ρ0d0V ||/dt n0∇ ||T ,–=

d0/dt ∂/∂t VE —,⋅+=

n0

d0T
dt

--------- 2
3
---—– q⊥ .⋅=

kmw
α

kmw
α

kmw
col

Icol/ 2
3/2Ωcol

1/2( ),≡=

Icol
td

t
3/2

------ I1/4 t( ) z
1/4

K1/4 z( ) zd

t

∞

∫
0

∞

∫=

+ K1/4 t( ) z
1/4

I1/4 z( ) zd

0

t

∫ .
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Changing the order of integration in the first term on the
right-hand side of this expression, we convert it into the
form

(B.3)

We introduce the function Iµν(t) through the relation-
ship

(B.4)

We expand the function Iν(z) in powers of z2, insert the
result into relationship (B.4), and integrate over z to
find

(B.5)

With allowance for relationship (B.5), expression (B.2)
reduces to

(B.6)

where

(B.7)

According to [31], we have

(B.8)

Expression (B.6) then reads

(B.9)

The summation over k on the right-hand side of this

Icol K1/4 t( ) t
3/4–

z
1/4

I1/4 z( ) zd

0

t

∫
0

∞

∫=

+ t
1/4

z
3/4–

I1/4 z( ) zd

0

t

∫ td .

Iµν t( ) z
µ
Iν z( ) z.d

0

t
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Iµν t( ) t
µ ν 1+ +

2
ν 1+

----------------=

× t
2

4
--- 

 
k Γ k µ ν 1+ +( )/2+[ ]
Γ k µ ν 3+ +( )/2+[ ]Γ k ν 1+ +( )k!
-------------------------------------------------------------------------------------.

k 0=

∞

∑

Icol

=  2
3/2– K3/4 2k+ 1/4,

k!Γ k 5/4+( )2
2k

-------------------------------------- 1
k 3/4+
---------------- 1

k 5/4+
----------------+ 

  ,
k 0=

∞

∑

Kµ ν, t
µ
Kν t( ) t.d

0

∞

∫≡

Kµ ν, 2
µ 1– Γ 1 µ ν+ +

2
---------------------- 

  Γ 1 µ ν–+
2

--------------------- 
  .=

Icol

=  2
3/2– Γ k 1+( )Γ k 3/4+( )

k!Γ k 5/4+( )
---------------------------------------------- 1

k 3/4+
---------------- 1

k 1/4+
----------------+ 

  .
k 0=

∞

∑

equality is carried out with the help of the formula [32]

(B.10)

where

(B.11)

In the case at hand, we have

(B.12)

As a result, the expression becomes

(B.13)

Substituting expression (B.13) into expression (B.1)
yields expression (3.4).

B.2. Convective Model

By analogy with expression (B.1), we substitute
relationships (3.5) and (3.6) into expression (2.21) to
arrive at

(B.14)

where

(B.15)

By analogy with expression (B.3), we have

(B.16)

Using relationships (B.4) and (B.5) with (µ, ν) =
(0, 1/3) and with (µ, ν) = (–2/3, 1/3), we reduce expres-
sion (B.16) to

(B.17)

In order to take the sum of the series in expression (B.17),
we refer to the familiar series expansion of the general-

a( )k b( )k

1 b– a+( )kk!
--------------------------------- a

2
--- k x–+ 

  1– a
2
--- k x+ + 

  1–

+
k 0=

∞

∑

=  
Γ a/2 x–( )Γ a/2 x+( )

Γ 1 b– a/2 x–+( )Γ 1 b– a/2 x+ +( )
----------------------------------------------------------------------------------------

× Γ 1 b– a+( )Γ 1 b–( )
Γ a( )

---------------------------------------------------,

α( )k Γ α k+( )/Γ α( ).≡

a 1, b 3/4, x 1/4.= = =

Icol π3/2/= 2
1/2

.

kmw
α

kmw
conv

2
4/3

Iconv/ 3
7/6Ωconv

1/2( ),≡=

Iconv t
2/3–

t I1/3 t( ) K1/3 x( ) xd

t

∞

∫d

0

∞

∫=

+ K1/3 t( ) I1/3 x( ) xd

0

t

∫ .

Iconv

=  tK1/3 t( ) t
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I1/3 x( ) xd

0

t

∫ x
2/3–

I1/3 x( ) xd

0

t

∫+ .d

0
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∫

Iconv 2
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----------------------------------------------

k 0=

∞

∑=

× Γ k 2/3+( )
Γ k 5/3+( )
------------------------- Γ 1/3( )

Γ k 4/3+( )
-------------------------+ .
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ized hypergeometric function F(a, b, c; d, e; z) with z =
1:

(B.18)

where the quantities (α)k are defined by formula (B.11).
Expression (B.17) then reads

(B.19)

Using the equalities

(B.20)

(B.21)

we transform expression (B.19) to

(B.22)

Substituting expression (B.22) into expression (B.14)
yields expression (3.8).

B.3. Inertial Model

Using relationships (3.5), (3.9), and (2.21), we
obtain

(B.23)

where

(B.24)

with Icol being given by formula (B.2). According to
Section B.1, calculating Icol yields expression (B.13).
Using relationships (B.22), (B.23), and (B.13), we
arrive at expression (3.11).

B.4. Rotational Model

Integrating by parts puts expression (2.21) into the
form

(B.25)

Inserting Eq. (3.12) for dyα/du into this expression and
using formula (3.15), we obtain

(B.26)

F a b c; d e; 1, , ,( )
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rot
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where

(B.27)

Passing over from the variable u to the variable z, we
reduce expression (B.26) to expression (3.16).

APPENDIX C

CALCULATION OF THE PARAMETERS  
FOR MODEL TEMPERATURE PROFILES

C.1. Collisional Model

According to [18], the model expression for the
function yα(u) in the collisional model has the form

(C.1)

where

(C.2)

Substituting expression (C.1) into expression (2.21)
yields expression (3.17).

C.2. Convective Model

By analogy with expression (C.1), the model
expression obtained in [18] for the function yα(u) has
the form

(C.3)

where

(C.4)

By analogy with expression (3.17), expressions (2.21)

and (C.3) lead to model expression (3.18) for .

C.3. Inertial Model

According to [19] (see also [17]), the model expres-
sion for the function yα(u) in the inertial model has the
form

(C.5)

where

(C.6)

Using expressions (2.21) and (C.5) (cf. expres-
sions (3.17), (3.18)), we arrive at expression (3.19)
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APPENDIX D

ANALYSIS OF THE INFLUENCE OF STRONG 
TRANSVERSE HEAT TRANSPORT 
ON THE MAGNETIC WELL IN [8]

The starting point for the analysis carried out in [8]
was the following expression for the magnetic-well-
related current:

(D.1)

The analysis included two steps. In the first step, the
transverse transport was assumed to be sufficiently
weak, and, in the second step, it was assumed to be suf-
ficiently strong. These steps will be described in Sec-
tions D.1 and D.2.

D.1. Weak Transverse Transport Approximation

By switching to the magnetic-island variables (ψ, ξ)
and ignoring the product of the derivative (∂ /∂θ)ξ,
which describes poloidal plasma density oscillations,
with the geodesic curvature, Eq. (D.1) in [8] was
reduced to the equation

(D.2)

where w ' ≡ d〈(  + 8πp0)〉θ/dr and 〈…〉θ denotes aver-
aging over the equilibrium magnetic surface. In [8], the
function w ' was expressed in terms of the parameter U0
(cf. expressions (4.3)).

D.2. Strong Transverse Transport Approximation

In [8], in considering the strong transverse transport,
use was made of Eq. (2.7) rather than of formulas (2.8)
and (2.9). With allowance for Eq. (2.10), Eq. (2.7) was
converted into the form

(D.3)

This was done with the help of the relationship (cf.
expression (2.17))

(D.4)

where (cf. expression (C.1))

(D.5)

Here, the quantity xcol was introduced through the rela-

tionship  = /2 with kcol = (3/2)1/2 and wcol =

∇ ||Jmw c—p– — B

B2
------× .⋅=

p̃

∂Jmw
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------------

2cw 'qRσx

wsB0
3
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Ω ξcos+( )1/2
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∂Ω
-------,=
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Ω

σxcB0U0
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--------------------------------.=

Tc x( ) σxT0' w
2
y x( )/4,–=

y x( ) x

x
2

xcol
2

+
-------------------.=

xcol
2

kcolwcol
2

Wcol /21/2, where Wcol was given by formula (3.2). As a
result, Eq. (D.3) was transformed to

(D.6)

In this step of the analysis in [8], the variable x was
expressed in terms of Ω and ξ with the help of relation-
ships (2.4) and (2.5). Integrating over ξ then led to the
expression

(D.7)

where the symbol 〈…〉  indicates averaging over the sep-
aratrix surface of the island.

Substitution of expression (D.7) into formula (2.2)
yielded the relationship

(D.8)

where

(D.9)

and the subscript F stands for Fitzpatrick (the author of
[10]).

By using formula (D.5), expression (D.9) was
reduced to

(D.10)

The upper limit of integration over Ω was replaced
with Ωeff on the order of Ωeff . (xcol /w)2 and account
was taken of the following approximate equality, which
holds for x ! xcol:

(D.11)

Under the above assumptions, expression (D.10) pro-
duced the estimate

(D.12)

with which relationship (D.8) yielded

(D.13)
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Approximate expression (D.13) is qualitatively

equivalent to expression (2.20) with  given by for-
mula (3.4).
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Abstract—A dispersion relation for the complex frequencies of the E modes excited by a thin-walled annular
low-density beam in a cylindrical plasma waveguide is derived using the methods of perturbation theory. The
cases of an annular and a uniform plasma filling are considered, and the corresponding wave growth rates are
determined. A condition is obtained under which the primary mechanism for the excitation of the waveguide is
the anomalous Doppler effect. The possibility is discussed of suppressing Cherenkov generation in a plasma
resonator at the expense of the normal Doppler effect. © 2005 Pleiades Publishing, Inc.
1. The single-particle and collective Cherenkov
effects are thought to be the main mechanisms for stim-
ulated emission of slowed electromagnetic waves by a
straight electron beam in plasma-filled waveguide sys-
tems. This is confirmed by numerous theoretical and
experimental investigations [1, 2]. In experiments, the
beam can interact with the plasma via the Cherenkov
mechanism only in the presence of a strong external
longitudinal magnetic field. In [3, 5], it was shown that,
when the magnetic field is strong enough, its strength
does not have any significant influence on the Cheren-
kov emission mechanisms, as well as on the spectra of
the plasma waves excited by the beam. This is why, in
relevant theoretical studies, the external magnetic field
was usually assumed to be infinitely strong. On the
other hand, under actual experimental conditions in
plasma relativistic microwave electronics [6], the Lang-
muir frequency of the plasma electrons is comparable
to their gyrofrequency; moreover, when the electron
beam is dense enough, the Langmuir frequency of the
beam electrons may also become close to these two fre-
quencies. As regards the Cherenkov emission mecha-
nisms, this circumstance is not of great importance.
However, the external magnetic field of finite strength
gives rise to a new stimulated emission mechanism—
the anomalous Doppler effect [7–9], which comes into
play under the condition ω – kzu = –Ωe/γ < 0, where
ω > 0 is the frequency, kz > 0 is the longitudinal wave-
number of the emitted wave, u is the beam velocity, Ωe

is the electron gyrofrequency, and γ = (1 – u2/c2)–1/2 is
the relativistic factor of the beam electrons. The ques-
tion then naturally arises of the competition between
the Cherenkov effect and the anomalous Doppler
effect. Indeed, though these effects occur in different
frequency ranges and different wavelength ranges, the
anomalous Doppler effect gives rise to transverse oscil-
lations of the beam electrons and thereby can influence
1063-780X/05/3108- $26.00 0638
the efficiency of Cherenkov emission. The problem of
the excitation of transverse oscillations of the beam
electrons under anomalous Doppler effect conditions is
studied by means of nonlinear theory [10, 11], and we
are going to address it separately in our further studies.
Here, however, we are adopting the linear approxima-
tion, which serves merely to derive dispersion relations
in order to calculate the wave growth rates and compare
them to one another.

We consider a cylindrical waveguide of radius R that
is filled with a plasma homogeneous in the z direction.
The waveguide is placed in an external uniform longi-
tudinal magnetic field and is penetrated by a thin-
walled annular electron beam with a mean radius rb and
wall thickness ∆b ! rb < R. Our objective is to investi-
gate how the beam excites a symmetric (∂/∂ϕ = 0) low-
frequency plasma wave in such a waveguide. It is
known that the external magnetic field has little effect
on the spectrum and electromagnetic field of this wave
[12]; the wave in fact has the same structure as the
E-type ordinary waveguide mode with the electric field
E = {Ez, Er, 0}, such that Eϕ = 0. For instance, for a
thin-walled annular plasma with the mean radius rp and
thickness ∆p ! rp < R, the dispersion relation for the
wave in question (known in the literature as a cable
plasma wave or an E01 wave) depends on the frequency
Ωe only when kz∆p @ 1. Consequently, a thin-walled
plasma can be described in the limit of an arbitrarily
strong external magnetic field. Note that this approach
applies only to the cable plasma wave, rather than to the
entire plasma filling the waveguide. When the plasma is
not thin-walled (e.g., is continuous over the waveguide
cross section), the external magnetic field should be
taken into account more accurately.

Of course, the electron beam perturbs the plasma
wave. However, if the beam density is low (or if the
© 2005 Pleiades Publishing, Inc.
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beam thickness ∆b is small), the perturbation is not
large. Therefore, in considering the electron beam as a
small perturbation, we begin with the following wave
equation for the polarization potential ψ of the E-type
plasma wave [13]:

(1)

where ρp is the plasma charge density perturbation and
ρb is the beam charge density perturbation produced by
the components Ez and Er of the electric field. The field
components are given by the formulas

. (2)

The beam charge density perturbation can be calcu-
lated from the continuity equation

(3)

where jb = {jz, jr, 0} is the beam current density. In
cylindrical coordinates, the components of the beam
conductivity tensor are operators. Using the known for-
mulas [14, 15], we write out the conductivity tensor
components that will be utilized in further analysis:

(4)

Here, Pb(r) is the radial electron beam density profile,
which will be specified below. For a straight beam with
zero radial electron velocities in an unperturbed state,
the tensor components σ⊥ , σ||, and  are given by the
formulas

(5)

where  = (ω – kzu)γ and ωb is the Langmuir frequency
of the beam electrons. In writing formulas (5), we have
taken into account only the terms that describe the
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cyclotron resonances associated with the normal and
anomalous Doppler effects. As for the Cherenkov reso-
nance, it will be taken into account later, in essentially
the same way as in [5, 15]. From continuity equation (3)
with formulas (2), (4), and (5), we obtain

(6)

Substituting Eq. (6) into Eq. (1) yields the following
differential equation for the polarization potential ψ:

(7)

where, for a straight beam, we have

(8)

It can be shown that the plasma charge density per-
turbation at the low-frequency branch of the E waves,
which is of interest to us here, is calculated from the
formula

(9)

where Pp(r) is the radial plasma density profile and ωp

is the Langmuir frequency of the plasma electrons.

If we know the solution ψp(r) to the eigenvalue
problem

(10)

where ψp(r) is the eigenfunction of the plasma waves

and δε⊥ p = – (  – )–1 is the contribution of the
plasma to the transverse component of the dielectric

ρb
i
ω
---- ikzσ⊥ 2kz

2 ω2
/c

2
–( )σ̃– ikzχ0

2σ||–( )–=

× 1
r
--- d

dr
-----rPb r( )dψ

dr
-------.

1
r
--- d

dr
-----r

dψ
dr
------- χ0

2ψ– i4πkz
1– ρp+

=  ADop ω kz,( )1
r
--- d

dr
-----rPb r( )dψ

dr
-------,

ADop ω kz,( ) Q
ωb

2γ 1–

ω kzu–( )2 Ωe/γ( )2
–

-------------------------------------------------,=

Q 1
u

2

c
2

----- ω
kzu
-------.–=

i4πkz
1– ρp

=  
ωp

2

ω2 Ωe
2

–
-------------------1

r
--- d

dr
-----rPp r( )dψ

dr
-------–

ωp
2

ω2
------χ0

2
Pp r( )ψ,+

L̂rψ
1
r
--- d

dr
-----r

dψ
dr
------- δε⊥ p

1
r
--- d

dr
-----rPp r( )

dψ
dr
-------+≡

– χ0
2

1
ωp

2

ω2
------Pp r( )–

 
 
 

ψ 0,=

ψ R( ) 0= 









ψp r( ),

ωp
2 ωp

2 Ωe
2



640 KUZELEV, RUKHADZE
tensor, then the dispersion relation for the plasma
waves can be represented as [11]

(11)

We solve differential equation (7) using perturbation
theory [16], specifically, by applying the methods of
perturbation theory to the beam in order to evaluate the
right-hand side of this equation. We multiply Eq. (7) by
ψp from the left and integrate over r from zero to R to
arrive at the following dispersion relation in the first-
order beam-related perturbation theory:

(12)

In dispersion relation (12), we have already taken into
account the contribution of the Cherenkov resonance
between the beam and the plasma wave excited by it:

(13)

2. Here, we consider important particular cases of
the filling of a waveguide with plasma. For a waveguide
completely filled with a plasma, Pp(r) = 1, we have the
following two relationships, the second of which is a
consequence of dispersion relation (11):

(14)
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where µ0m are the roots of the Bessel function, J0(x) = 0.
In this case, dispersion relation (12) reads

(15)

and the geometric factors of the beam are given by the
formulas

(16)

It is convenient to write dispersion relation (15) in a
more elaborate form:

(17)

For a beam that is continuous over the waveguide
cross section, we have Pb ≡ 1 and GDop = GCher = 1. For
a thin-walled beam (Pb = ∆bδ(r – rb)), the geometric
factors are given by the formulas [15]

(18)

The case of most practical interest is the excitation of
the m = 1 fundamental plasma mode.

Dispersion relation (17) yields the following insta-
bility growth rates:
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Here, ωCher is the Cherenkov resonance frequency and
ωDop and kDop are the frequency and wavenumber of the
resonance associated with the anomalous Doppler
effect. Recall that the resonance frequencies and reso-
nance wavenumbers are determined from the set of
equations

(20)

where Ωp(kz) is the dispersion function of the plasma
wave. For n = 0, Eqs. (20) determine the Cherenkov res-
onance, and, for n = 1, they determine the anomalous
Doppler resonance (in these equations, it is assumed
that ω > 0 and kz > 0). In formulas (19), we have intro-
duced the following notation:

(21)

Since 0 < x < 1, we have 1/2 < S < 1.
Comparing growth rates (19), we determine the con-

dition under which the instability growth rate due to the
anomalous Doppler effect is faster than the growth rate
of the Cherenkov instability. For a plasma with a den-
sity close to the threshold for the onset of the Cheren-

kov effect (  ≈ ), the corresponding condi-
tion has the form

(22)

This condition can be satisfied at fairly strong external
magnetic fields, especially with highly relativistic
beams. Hence, it is quite possible that, in experiments,
the anomalous Doppler effect predominates over the
Cherenkov effect.

3. Let us now consider an important case of a thin-
walled annular plasma with the density profile Pp(r) =
∆pδ(r – rp), the beam again being assumed to be thin-
walled and annular. In this case, the eigenfunction of
the plasma waves is independent of the external mag-
netic field (just because the plasma is thin-walled) and
is given by the formula [3, 4, 11]
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comes from the surface r = rp at which the radial deriv-
ative of function (23) is discontinuous,

(24)

where the symbol [f(x)] stands for the function in the
region of its continuity. The corresponding manipula-
tions (see [3, 4] for details) yield the dispersion relation

(25)

Here, the quantities
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determine the frequency Ωp and transverse wavenum-
ber k⊥ p of the cable wave of a thin-walled annular
plasma. In the case of a thin-walled annular plasma, the
geometric factors of a thin-walled annular beam for
anomalous Doppler effect conditions, GDop, and for
Cherenkov effect conditions, GCher, are described by the
formulas
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Dispersion relation (17), too, can be represented in
the form similar to relation (25),

(28)

where ε⊥ p = 1 + δε⊥ p,

(29)

and the geometric factors GDop and GCher are given by
formulas (18). Consequently, in the case of a thin-
walled annular plasma and a thin-walled annular beam,
the instability growth rates have the same structure as
those in formulas (19). Condition (22) also remain valid
in this case. The resonance frequencies differ from the
above frequencies, but we do not use explicit expres-
sions for them here.

4. Let us further transform the already-derived dis-
persion relations in order to make them far simpler and
far more convenient for obtaining estimates and per-
forming particular calculations. In beam-related pertur-
bation theory, in which the structure of oscillations in
the system is assumed to be determined by the plasma,
we must replace the frequency ω in the numerators on
the right-hand side of dispersion relation (25) by the
corresponding eigenfrequency Ωp. This allows us to
rewrite the dispersion relation in the form that includes

ω2 Ωp
2

– Q
k ⊥ m

2

k ⊥ m
2 ε⊥ p χ0

2
+

----------------------------
GDopω

2ωb
2γ 1–

ω kzu–( )2 Ωe/γ( )2
–

-------------------------------------------------=

+
χ0

2

k ⊥ m
2 ε⊥ p χ0

2
+

----------------------------
GCherω

2ωb
2γ 3–

ω kzu–( )2
---------------------------------,

Ωp
2 ωp

2 χ0
2

k ⊥ m
2 ε⊥ p χ0

2
+

----------------------------,=

–20 10 20

15

10

5

–5

–10

–15

ω

kz

a
b c

d

Fig. 1. Dispersion curves of the waves in a waveguide with
a beam and a plasma in a strong external magnetic field such
that Ωe = 10 × 1010 rad/s and ωp = 6 × 1010 rad/s.

–10 0
the geometric factors of the beam that were calculated
by other methods [5], specifically,

(30)

where

(31‡)

(31b)

It is also convenient to write dispersion relation (28)
in the same approximation:

(32)

The geometric factors in dispersion relation (32) are
again given by formulas (18). Dispersion relations (30)
and (32) are identical in structure, reflecting the fact
that the general physical properties of the beam–plasma
interaction in a waveguide in an external magnetic field
of finite strength are qualitatively independent of the
geometric parameters of the system.

The dispersion curves plotted from dispersion rela-
tions (25) and (28) are especially informative. Let us
consider the most characteristic curves obtained with
the use of dispersion relation (25). As an example, we
present the results that were calculated for the follow-
ing geometric parameters of the waveguide: R = 2 cm,
rb = 1 cm, rp = 1.1 cm, and ∆b = ∆p = 0.1 cm, the Lang-
muir frequency of the beam electrons and beam veloc-
ity being ωb = 2 × 1010 rad/s and u = 2.6 × 1010 cm/s
(γ = 2), respectively. In calculations, we varied the
cyclotron and plasma frequencies. In the figures to fol-
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low, we plot the dispersion curves ω = ω(kz) obtained
by solving dispersion relation (25) numerically. The
frequency is given in units of 1010 rad/s, and the wave-
number is in units of 1 cm–1. Figure 1 illustrates the case
of a strong external magnetic field such that Ωe = 10 ×
1010 rad/s and ωp = 6 × 1010 rad/s. We can see that there
are two instability regions: the one between the vertical
axis kz = 0 and vertical line a, and the other between
vertical lines b and c (the pattern of the dispersion
curves is antisymmetric about the origin of the coordi-
nates). In the region between the vertical axis and ver-
tical line a, the instability is due to the single-particle
Cherenkov effect, and the instability in the region
between vertical lines b and c is associated with the
anomalous Doppler effect. Figure 2 illustrates the
opposite case of a weak external magnetic field such
that Ωe = 6 × 1010 rad/s and ωp = 10 × 1010 rad/s. We see
the same two instability regions, which are now wider,
however. In particular, the instability region associated
with the anomalous Doppler effect becomes wider
because the growth rate given by the second of formu-
las (19) increases as the frequency Ωe decreases. In
Fig. 1, as well as in Fig. 2, the instability regions asso-
ciated with the Cherenkov effect and with the anoma-
lous Doppler effect do not overlap: they are separated
by the interval of wavelengths between vertical lines a
and b. The situation changes when the external mag-
netic field is further decreased, i.e., when the Cheren-
kov effect loses its predominant role in favor of the
anomalous Doppler effect, in accordance with condi-
tion (22). Figure 3 illustrates the case with Ωe = 2 ×
1010 rad/s and ωp = 10 × 1010 rad/s. As may be seen, the
two separate instability regions merge into one. The
question of how this merging will change the dynamics
of the Cherenkov instability can be answered only by
recourse to the nonlinear model.
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Fig. 2. Dispersion curves of the waves in a waveguide with
a beam and a plasma in a weak external magnetic field such
that Ωe = 6 × 1010 rad/s and ωp = 10 × 1010 rad/s.
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A waveguide with a thin-walled annular beam and
plasma has an important property not possessed by a
waveguide with a continuous plasma filling: it can
operate with a spatially separated annular beam and
plasma, thereby weakening the beam–plasma interac-
tion regardless of which of the two effects dominates.
Mathematically, this is expressed by the dependence of
geometric factors (27) or (31) on rb and rp. Moreover,
the higher the frequency, the stronger the dependence;
this circumstance primarily concerns the efficiency of
the anomalous Doppler effect. Figure 4 illustrates the
same case as in Fig. 2, the only difference being that the
plasma radius was increased by an amount as small as
1 mm (rp = 1.2 cm). The pattern of the dispersion curves
is seen to change substantially: the instability regions
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Fig. 3. Illustration of a change in the pattern of the disper-
sion curves from Fig. 2 for a weaker magnetic field such that
Ωe = 2 × 1010 rad/s and ωp = 10 × 1010 rad/s.
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both become narrower, but the instability region associ-
ated with the anomalous Doppler effect reduces to a
greater extent because of the higher frequency of the
emitted radiation. Hence, by increasing the spatial sep-
aration between the beam and the plasma, it is, in prin-
ciple, possible to suppress Cherenkov emission under
anomalous Doppler effect conditions.

In conclusion, we will touch on a problem that bears
no direct relation to the subject of our paper; specifi-
cally, we will say a few words about the existence of a
cutoff frequency band near the frequency of the reso-
nant interaction between the beam and the backward
plasma wave under normal Doppler effect conditions.
In Figs. 1–4, this cutoff frequency band is indicated by
arrow d. The authors of [17] proposed to use the normal
Doppler effect for the suppression of feedback during
the development of the beam instability in a resonator
in order to terminate the generation when the latter is
undesirable. The problem of preventing the self-excita-
tion of the device is important, e.g., for the development
of amplifiers. This problem was considered quite thor-
oughly in [17] in studying a dielectric-filled resonator
penetrated by a straight electron beam in an external
longitudinal magnetic field.

The cutoff frequency band for the feedback wave
can exist under the following resonance conditions:

(33)

The first two of these conditions are the Cherenkov res-
onance condition and the normal Doppler resonance
condition, and the last two are the conditions for the
resonant waves to be the forward and the backward
waves with respect to the beam. From conditions (33),
we find the necessary condition for the external mag-
netic field:

(34)

The Cherenkov resonance frequency ωCher is deter-
mined from the equations ω = Ωp(kz) and ω = kzu (see
the first of Eqs. (20)). In order to terminate the genera-
tion, it is sufficient that the feedback wave be cut off:

(35)

Here, δkCher is the Cherenkov amplification coefficient
for the forward wave, δkDop is the spatial damping coef-
ficient for the backward wave, L is the resonator length,
and κ is the reflection coefficient of the emitting end of
the resonator for waves (|κ| < 1). The amplification and
damping coefficients can easily be found from disper-
sion relation (25) or (28). For estimates, however, it is
sufficient to use formulas (19) because we have δkCher ≈

ωCher kCheru,=

ωDop kDopu Ωe/γ,+=

ωDop ωCher, kDop kCher.–= =

Ωe 2γωCher.=

δkCher δkDop–( )L κ .ln–<
|δωCher | and δkDop ≈ |δωDop |, where Vg ≈ u is the
group velocity of the plasma wave excited by the
beam.1 As a result, even for a high-quality resonator
(|κ|  1), condition (35) reduces to inequality (22),
which is easy to satisfy.

Hence, in plasma relativistic microwave electronics,
the anomalous Doppler effect can in principle be suc-
cessfully used for the suppression of feedback and for
the termination of microwave generation. This conclu-
sion, however, is largely theoretical. From Figs. 1–4, it
can be seen that, under anomalous Doppler effect con-
ditions, the cutoff frequency band for the feedback
wave is fairly narrow. Consequently, condition (34)
should be satisfied by a large margin, a difficult task
when the pulsed magnetic field is strong.
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Abstract—The generation of ion-cyclotron radiation in a plasma resonator formed by an RF discharge in a lin-
ear mirror magnetic confinement system is revealed and investigated. It is shown that the experimental setup
makes it possible to study the composition of a multicomponent discharge plasma and to detect multiply
charged ions. Collisional losses in such a resonator are estimated, and the pressure range within which the
growth rate of the ion-cyclotron instability substantially exceeds the collisional damping rate is determined.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Plasma-wave RF discharge in a magnetic field (see
[1–4]) is a steady-state plasma configuration stretched
out along the magnetic field and localized in the trans-
verse direction. The discharge exists in the form of a
cylindrical plasma channel formed and maintained by
plasma waves emitted by dipole (or quadrupole) RF
sources. Such a discharge has been investigated under
laboratory conditions and has also been produced in
rocket experiments in the Earth’s ionosphere in order to
study its influence on sporadic phenomena occurring in
geomagnetic flux tubes (see [5] and the literature cited
therein). In recent years, a linear mirror magnetic sys-
tem has been employed to examine plasma-wave RF
discharges with the aim of modeling nonequilibrium
magnetospheric processes that accompany the genera-
tion of electromagnetic waves (maser effect) in geo-
magnetic flux tubes. Conditions were determined under
which such a discharge formed a plasma resonator for
waves in the whistler and Alfvén frequency ranges. The
distributions of the plasma density and magnetic field
along the magnetic flux tube in the plasma resonator
were similar to those in a natural magnetospheric reso-
nator with a waveguide duct.1 In this paper, we present
the results from experimental studies of generation of
ion-cyclotron waves in such a resonator. A simplified
electrodynamic model of the resonator with allowance
for collisional losses is proposed. Conditions are deter-
mined under which instabilities lead to the generation
of ion cyclotron harmonics. It is shown that our exper-
imental setup makes it possible to study the composi-

1 Note that, in the presence of a density duct localizing the excited
wave fields, the threshold intensity of the charge particle flux
required for the onset of electromagnetic instabilities is substan-
tially reduced.
1063-780X/05/3108- $26.00 0646
tion of a multicomponent discharge plasma and to
detect multiply charged ions. The possibility of model-
ing magnetospheric maser effects in this device is also
discussed.

2. EXPERIMENTAL CONDITIONS 
AND RESULTS

A schematic of the experimental setup is shown in
Fig. 1. The magnetic field was produced by two sole-
noids (coils 1 and 2) with independent power supplies.
This allowed us to vary the longitudinal profile of the
magnetic induction Bz(z) from quasi-uniform to that
corresponding to a magnetic-mirror configuration. The
distance between the centers of the mirrors was 120 cm.
A steady-state plasma column was produced by a
plasma-wave RF discharge in the whistler frequency
range (ωLH < ω < ωBe, where ωLH is the lower hybrid res-
onance frequency, ωBe is the electron gyrofrequency,
ω = 2πf, and f is the radiation frequency). The dis-
charge was excited in a 150-cm-long 6-cm-diameter
glass tube (3) under conditions of the ionization self-
ducting of waves excited in the above frequency range
by a quadrupole antenna consisting of three copper
rings placed around the tube in its central part, at a dis-
tance of 6 cm from one another. The RF voltage (f0 =
200 MHz, V0 = 50 V) was applied to the exciting rings
from a GST-2 oscillator through a coaxial cable. The
central conductor of the cable was connected to the cen-
tral ring, whereas the outer conductor of the cable was
connected to the side rings. The working gas was air at
a pressure of p ≤ 10–3 torr. The input RF power W was
about 10 W. The plasma density averaged over the
transverse cross section of the discharge column, Ne =
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic of the experimental setup.
 (where R⊥  is the effective radius of the

plasma column), was measured by a microwave inter-
ferometer operating at a frequency of 9.5 GHz and was
also determined from the dispersion characteristics of
surface waves guided by the plasma column [6]. The
energy spectrum of the electrons escaping from the
magnetic confinement system along the z axis was mea-
sured by a multigrid energy analyzer (4) located near
the end of the magnetic confinement system. The spec-
tra of low-frequency electromagnetic radiation emitted
from the plasma were recorded with the help of a DSO
Classic~6000 oscilloscope. We also analyzed
Rogowski coil signals, which were proportional to the
current to the body of the multigrid energy analyzer,
and signals from a symmetric dipole antenna (5), which
was aligned with the system axis and placed near the
surface of the discharge tube, in the gap between the
exciting antenna and the magnetic-mirror coil.

A distinctive feature of the ionization self-ducting of
waves in the whistler frequency range in a nonuniform
magnetic field is the narrowing of the plasma column
and a substantial increase in the plasma density in the
region where the field Bz is strong [4]. As the wave pro-
ducing the plasma column propagates in the increasing
field Bz(z), it transforms from a strongly slowed-down
quasi-potential (plasma) mode excited by a short RF
source in a weak magnetic field (Bz ≤ 500 G) into a
weakly slowed-down whistler mode in the region of a
strong field Bz ≥ 1500 G [4]. Figure 2 shows the longi-
tudinal profiles of the steady-state plasma density Ne(z),
the magnetic induction Bz(z), and the radius R⊥ (z) of the
bright region of the plasma channel for a discharge
excited at an air pressure of p ≈ 5 × 10–5 torr and W ≈
10 W. If we describe the radial profile ne(r) by the
power-law function ne(r, z) = N0(z)/(1 + (r/d)3) (which
coincides with the measured density profile to within
≤10%), then R⊥  is in fact the radius r at which the
plasma density is one-half of its maximum value.

1
R⊥
------ ne r( ) rd

0

a∫
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It should be noted that the profiles Bz(z), Ne(z), and
R⊥ (z) are similar to the longitudinal profiles of these
quantities in a magnetospheric duct with an increased
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Fig. 2. Longitudinal profiles of the magnetic field Bz, the
plasma density Ne, and the effective radius of the plasma

column R⊥  at W = 10 W and p = 5 × 10–5 torr.
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plasma density and are typical of natural magneto-
spheric resonators in the whistler and Alfvén frequency
ranges. This allows us to use our laboratory resonator to
model resonant and nonstationary wave phenomena
occurring in the Earth’s magnetospheric resonators.

Figure 3 shows the electron current (curve 1) to the
collector of the multigrid energy analyzer versus the
retarding field, I(U), for the same conditions as in Fig. 2
and an analogous dependence (curve 2) calculated for
the electron flux from a plasma with an equilibrium
(Maxwellian) electron energy distribution with a tem-
perature of Te = 20 eV.

The evident difference between curves 1 and 2 indi-
cates that the discharge plasma in the magnetic confine-
ment system is nonequilibrium. It is clear that the non-
equilibrium electron and ion distributions can lead to an
enhanced level of quasi-equilibrium and nonequilib-
rium noise emission from the plasma within a wide fre-
quency range. It is also clear that the degree to which
the plasma is far from equilibrium depends on the
power deposited in the discharge and the magnetic field
geometry.

In our experiments, we observed nonequilibrium
spectra of low-frequency electromagnetic radiation in
the ion-cyclotron frequency range characteristic of the
gas mixture filling the discharge chamber. Experiments
show that the spectrum of low-frequency radiation
excited in the RF discharge plasma depends on the
input RF power, the strength and configuration of the
magnetic field, the ion composition of the plasma, and
the pressure in the discharge tube. The most compli-
cated spectra were observed at high input powers (W >
10 W) in composite gas mixtures at pressures of p <
10−4 torr.

Figure 4 presents an example of the spectrum of
low-frequency radiation generated by a plasma-wave
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Fig. 3. (1) Measured and (2) calculated electron current to
the collector of the multigrid energy analyzer vs. retarding
potential for the same conditions as in Fig. 2.
discharge excited in a mixture of air and vacuum oil
vapor at a pressure of p ~ 5 × 10–5 torr and W ~ 10 W
(the other experimental conditions being the same as in
Figs. 2 and 3). The spectrum is averaged over a fairly
large number of realizations arbitrarily chosen at differ-
ent times. The spectrum contains three groups of fairly
narrow lines, which can be attributed to the ion-cyclo-
tron resonances of the main (singly, doubly, and triply
charged) plasma ions. Moreover, one can see rather
wide maxima associated with the generation of magne-
toacoustic (MA) and ion-acoustic (IA) waves by the
plasma wave exciting the discharge in the central region
of the magnetic confinement system. Relatively low (at
the noise level) resonant peaks in Fig. 4 correspond to
the spectral lines of ions of the evaporated vacuum oil,
silicon, and metals. Since the Q factor of the observed
lines increases with frequency, the line of nitric oxide in
the second and third groups of the ion cyclotron lines of
air is clearly seen between the oxygen and nitrogen
lines. As the pressure increases to p > 10–4 torr, the ion-
cyclotron lines disappear, but the lines associated with
the generation of IA waves disappear only at p > 6 ×
10−3 torr. After the magnetic field in the magnetic-mir-
ror region is switched off, the ion-cyclotron lines cease
to be generated.

3. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

As was noted above, the intensities of the generated
lines and their Q factors depend on the RF power
deposited in the discharge, the magnetic field strength,
the magnetic mirror ratio, and the pressure in the vac-
uum chamber. By varying these parameters, we could
control the parameters of the generated lines. For exam-
ple, we could tune to certain lines; as a result, these
lines were distinguished among the other lines in their
intensities and Q factors. For this purpose, the most
convenient parameters were the magnetic field strength
and the magnetic mirror ratio because they could easily
be controlled over a relatively wide range. At high input
RF powers (W > 10 W), the low-frequency spectra
become strongly nonequilibrium. This manifests itself
in a substantial increase in the noise level (the spectrum
pedestal) and the appearance of many new lines in the
spectrum. This indicates the presence of strong nonlin-
ear wave–plasma interaction, including various “para-
sitic” processes, such as nonlinear detection and scat-
tering.

It should also be noted that, at pressures of p ~
10−3 torr and a low magnetic field, the maximum value
of Q (~40) is achieved for the IA line generated in a uni-
form magnetic field (B ~ 200 G) at a frequency of about
70 kHz. This indicates a rather efficient generation of
IA waves via the decay of the plasma wave exciting the
discharge.

It may be assumed that, in the frequency range
under consideration, the excitation of oscillations in the
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
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plasma resonator formed by a discharge column with a
nonuniform longitudinal density profile is related to the
onset of ion-cyclotron instability at frequencies of ωα =

 +  (where  = 2π  is the gyrofre-

quency of the ions of species α,  is the ion thermal
velocity, and k = 2π/λ|| is the wavenumber of the excited
oscillations). In this case (as is confirmed by dipole
antenna measurements), the most pronounced mode is
an axisymmetric quasistatic mode. The electric field of
this mode is localized within the plasma column and
has a radial (Er) and longitudinal (Ez) components. To
provide the resonant excitation of oscillations and the
efficient feedback, the following condition should be
satisfied: 2nλ|| = 2Lp, where Lp is the resonator length
and n = 1, 2, 3, … is an integer. This condition leads to
the requirement that the waves be strongly slowed-
down in the frequency range under consideration. An
analysis of the dispersion of the waves guided by a
plasma waveguide in a magnetic field shows that, under
our experimental conditions, the slowing-down factor
p = λ0/λ|| (where λ0 is the wavelength in free space) of
electromagnetic waves in the frequency range f ≤
1 MHz can be sufficiently large only near ion-cyclotron
resonances. Estimates show that, in this case, correc-
tions related to the ion thermal motion can be ignored.

Figure 5 depicts dispersion curves for a magnetized
plasma waveguide near the ion-cyclotron resonances
for the main molecules of air: O2, N2, and NO. The

ωBiα kv Ti
ωBiα f Biα

v Ti
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curves were calculated for the following parameters:
B = 420 G, p ≈ 3 × 10–5 torr (the electron and ion colli-
sion frequencies are νe ~ 105 s–1 and νi ~ 103 s–1, respec-
tively), R⊥  = 2.5 cm, and Ne = 2 × 1010 cm–3. The curves
show the frequency dependences of the real (p') and
imaginary (p'') parts of the normalized longitudinal
wavenumber p = h/k0, where k0 = ω/c is the wavenum-
ber in free space and h = h' – ih'' is the longitudinal
wavenumber in the waveguide. The dispersion curves
were calculated from the dispersion relation for axi-
symmetric electrostatic waves [7]:

(1)

where Jn(k⊥ r) is the nth-order Bessel function of the
first kind; Kn(pk0r) is the nth-order modified Bessel
function of the second kind;

are the elements of the permittivity tensor of a magne-

tized plasma;  = 4π Nα /mα and ωBα = eαB/cmα are
the plasma frequency and the gyrofrequency of parti-

i ε⊥ ε||( )1/2
J1 k ⊥ R⊥( )K0 pk0R⊥( )

– J0 k ⊥ R⊥( )K1 pk0R⊥( ) 0,=

ε⊥ 1
ωpα

2 ω iνα–( )

ω ω iνα–( )2 ωBα
2

–[ ]
-------------------------------------------------,

α
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cles of species α, respectively; and να is the collision
frequency of particles of species α. The transverse
wavenumber k⊥  in a plasma waveguide is related to the
longitudinal wavenumber h by the relation k⊥  =
i(ε||/ε⊥ )1/2h. The characteristic transverse decay length
of the wave field near the discharge channel at p @ 1 is
equal to h–1.

An important point is that, at frequencies close to (or
somewhat below) the ion-cyclotron frequency, the
wave damping can be small (p'' ! p'). The numerical
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Fig. 5. Calculated frequency dependences of the real and
imaginary parts of the normalized longitudinal wavenum-
ber of axisymmetric electrostatic waves in a magnetized
plasma waveguide near the ion-cyclotron frequencies of
oxygen and nitrogen molecular ions for the parameters cor-
responding to the experimental conditions in the central
region of the magnetic confinement system.

Table

Molecular
ion

Resonance fre-
quency fres, Hz

Damping 
rate γ, s–1

Quality factor
Q = ωres/2γ

Nitrogen N2 22864 1074 67

Oxygen O2 20023 1084 58
solution of a more exact dispersion relation allowing
for the rotational component of the wave field [6, 7] for
several values of the frequency f near and far from res-
onances shows that, under our experimental conditions,
the difference between the exact and approximate solu-
tions for p' and p'' does not exceed 10%.

The resonant properties of a nonuniform plasma res-
onator were analyzed within the approximation of a
piecewise-uniform transmission line. The resonator
region between the maxima of the magnetic field (see
Fig. 2) was divided into 23 equal-length segments with
constant Bz and Ne within each segment. The plasma
density and the magnetic field within each segment
were assumed constant and equal to their measured val-
ues at the center of the segment. The solution was
sought in the form of a superposition of the fields of two
counterpropagating waves satisfying dispersion rela-
tion (1) and the boundary conditions at the ends of the
neighboring segments. The resonance frequencies fres
and the wave damping rates γ were calculated for the
given reflection coefficients at the ends of the resonator
(Γ1, 2 ~ 0.8). The profiles of Bz and Ne corresponded to
those shown in Fig. 2. The results of these calculations,
together with the estimate for the Q factor of the reso-
nator, are summarized in the table.

The theoretical analysis of the ion-cyclotron insta-
bility of a plasma with a nonequilibrium particle distri-
bution over transverse velocities [8] shows that the
instability growth rate γ is large (γ ~ ωBi) when the ion
plasma frequency ωpi is high in comparison to the ion
gyrofrequency ωBi and the ion gyroradius ρi is not small
in comparison to the transverse scale of the field (k⊥ ρi ≥
2.4). Under our experimental conditions, we have
ωpi/ωBi ~ 102 and k⊥ ρi ~ 7. Hence, we can conclude that
the growth rate of ion-cyclotron instability substan-
tially exceeds the collisional damping rate at air pres-
sures of p < 10–4 torr. In this pressure range, the reso-
nance frequencies of hydrogen ions (  = 20023 Hz)

and nitrogen ions (  = 22864 Hz) are close to their
measured values and the oscillation damping rate γ ~
103 s–1 is close to the ion collision frequency.

4. CONCLUSIONS

In our experiments, we have investigated various
nonlinear effects accompanying the generation of low-
frequency radiation near the gyrofrequencies of the
ions of different species. Our experimental device
allows us to study the composition of a multicompo-
nent RF discharge plasma and to detect multiply
charged ions; i.e., it can be used as a peculiar kind of
mass-spectrometer of multiply charged ions. Our
experiments have also shown that the plasma-wave dis-
charge in a linear mirror magnetic system can be used
to model nonequilibrium magnetospheric processes
accompanying the generation of electromagnetic waves

f O2

f N2
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in a geomagnetic flux tube containing a waveguide duct
for these waves.

It should be noted that, in the Earth’s magneto-
spheric resonator, charged particles drift across the
magnetic field due to the finite curvature of the mag-
netic field lines. This drift causes the inflow of resonant
ions from radiation belts and the outflow of used parti-
cles from the excited magnetic flux tube (the so-called
“flow-through” effect [9]). Due to the large dimensions
of the natural resonators and due to collisional and radi-
ative losses, the ion-cyclotron lines in the Earth’s mag-
netosphere are primarily generated at the higher order
modes of the resonator. In our laboratory experiment,
the ions were heated immediately in the discharge
channel, so the resonance lines were primarily excited
at the fundamental mode of the plasma resonator. This
imposes certain restrictions on the modeling of the spe-
cific maser effects in relatively small laboratory
devices. However, we believe that the fundamental
problem of finding the physical mechanisms that gov-
ern the generation of low-frequency waves by a non-
equilibrium plasma in mirror magnetic confinement
systems, as well as the problem of controlling the exci-
tation of these waves, can be resolved with the help of
laboratory experiments similar to those described in
this paper.

ACKNOWLEDGMENTS
This work was supported in part by the Russian

Foundation for Basic Research (project no. 04-02-
16506a), the KTsFE (grant E 02-3.5-478), contract
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
no. 40.020.1.1.1171, the “Solar Wind: Generation and
Interaction with the Earth and Other Planets” program
of the Russian Academy of Sciences, and the “Univer-
sities of Russia” program (grant UR.01.01.024).

REFERENCES
1. G. A. Markov, V. A. Mironov, and A. M. Sergeev, Pis’ma

Zh. Éksp. Teor. Fiz. 29, 672 (1979) [JETP Lett. 29, 617
(1979)].

2. G. A. Markov, V. A. Mironov, A. M. Sergeev, and
I. A. Sokolova, Zh. Éksp. Teor. Fiz. 80, 2264 (1981)
[Sov. Phys. JETP 53, 1183 (1981)].

3. G. A. Markov, Zh. Éksp. Teor. Fiz. 113, 1289 (1998)
[JETP 86, 703 (1998)].

4. V. V. Dobrokhotov and G. A. Markov, Izv. Vyssh.
Uchebn. Zaved., Radiofiz. 46, 392 (2003).

5. Yu. V. Chugunov and G. A. Markov, J. Atmos. Sol.-Terr.
Phys. 63, 1775 (2001).

6. S. B. Bodrov and G. A. Markov, Fiz. Plazmy 28, 1077
(2002) [Plasma Phys. Rep. 28, 992 (2002)].

7. A. N. Kondratenko, Plasma Waveguides (Atomizdat,
Moscow, 1976).

8. A. B. Mikhailovskii, Theory of Plasma Instabilities
(Atomizdat, Moscow, 1971; Consultants Bureau, New
York, 1974), Vol. 1.

9. P. A. Bespalov and V. Yu. Trakhtengerts, in Reviews of
Plasma Physics, Ed. by M. A. Leontovich (Atomizdat,
Moscow, 1980; Consultants Bureau, New York, 1986),
Vol. 10.

Translated by N.F. Larionova



  

Plasma Physics Reports, Vol. 31, No. 8, 2005, pp. 652–664. Translated from Fizika Plazmy, Vol. 31, No. 8, 2005, pp. 707–720.
Original Russian Text Copyright © 2005 by Zukakishvili, Mitrofanov, Grabovski

 

œ

 

, Ole

 

œ

 

nik.

                                                               

PLASMA
DYNAMICS

           
Measurements of the Axial Magnetic Field during the Implosion 
of Wire Arrays in the Angara-5-1 Facility

G. G. Zukakishvili, K. N. Mitrofanov, E. V. Grabovskiœ, and G. M. Oleœnik
Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow oblast, 142190 Russia

Received September 15, 2004; in final form, March 24, 2005

Abstract—Results are presented from measurements of the axial magnetic field during the implosion of tung-
sten wire arrays in the Angara-5-1 facility at currents of 2.5–4.5 MA. The azimuthal structure of the plasma
produced from the wires is examined using the effect of the compression of the axial magnetic flux by this
plasma. It is shown that the plasma starts to penetrate into the axial region of the wire array at the very beginning
of implosion. A mechanism other than the formation of a closed current-carrying shell is proposed for describ-
ing the transfer of the external axial magnetic field to the central region of the array. © 2005 Pleiades Publish-
ing, Inc.
1. INTRODUCTION

Our experiments on the compression of the axial
magnetic flux were aimed on studying the azimuthal
structure of the plasma produced during the implosion
of wire arrays. In contrast to the flux compression
scheme employed in [1–4], in which the initial axial
magnetic field compressed by a liner was used to con-
vert a considerable fraction of the liner kinetic energy
into magnetic energy, the diagnostic axial magnetic
field in our case does not perturb the plasma motion
until the radius of the current-carrying shell decreases
severalfold. It was assumed that, if a homogeneous thin
plasma shell forms during the wire implosion, then, by
virtue of the conservation of the initial magnetic flux

Φz0 = Bz0 , the axial magnetic field should vary

according to the law Bz(t) = Bz0 /R(t)2. From the time
dependence of the axial magnetic field, one can deter-
mine the law of motion of the inner boundary of the
current-carrying shell, as well as the instant at which a
plasma shell capable of compressing the magnetic flux
forms.

It may be that no cylindrical plasma shell forms in
the initial stage of implosion and the plasma produced
from an individual wire moves toward the array axis
without merging with the plasmas produced from the
neighboring wires. (In what follows, the plasma flow
from an individual wire will be referred to as a jet.) In
this case, the axial magnetic field is expected to change
only slightly during the implosion of the wire array.

Experiments show, however, that, in some cases, the
actual behavior of the magnetic field is quite different.
It was found that the axial magnetic flux can be com-
pressed even in the absence of a continuous plasma
shell. The results obtained can be explained more con-
sistently if one assumes that, during the implosion, a
considerable fraction of the initial magnetic flux is fro-

R0
2

R0
2

1063-780X/05/3108- $26.000652
zen in the plasma jets and is transferred with them. The
remaining free magnetic flux either falls outside the
plasma and is compressed only slightly or is captured
and compressed in the initial stage of implosion due to
the merging of individual jets and the formation of a
closed conducting shell at the inner boundary of the
imploding plasma.

2. COMPRESSION OF THE AXIAL 
MAGNETC FLUX BY THE PLASMA 

OF THE WIRE ARRAY

We used two methods for creating an axial magnetic
flux inside a wire array:

(i) The screwing of the wire array [5, 6]. In this case,
the axial magnetic field Bz is determined by the wire
inclination angle α and the discharge current Bz(t) ~
Iz(t)sin α(t).

(ii) The use of a multiturn solenoid placed in the
liner section, as is shown in Fig. 1. The main discharge
through the wire array was produced ≈2.2 ms after the
axial magnetic field reached its maximum. Over this
time, the magnetic field diffused into the electrodes to a
depth of ≈2 cm. During the implosion of the wire array
(≈0.1 µs), this fraction of the magnetic field remained
frozen in the electrodes (see Fig. 1). The initial axial
magnetic field at the location of the wire array was var-
ied from 0 to 15 kG. The axial nonuniformity of the
magnetic field, which was determined by the relative
positions of the solenoid and the wire array and by the
field skinning in the electrodes, did not exceed ≈30%.

In this series of experiments, we used wire arrays
20 mm in diameter. The azimuthal arrangement of the
wires could be varied: the wires were uniformly distrib-
uted along the perimeter of the array or they were
assembled in groups of several wires. The array linear
mass was varied from 300 to 3685 µg/cm, and the num-
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic of the experiment on the compression of an external axial magnetic flux: (1) solenoid for producing the axial mag-
netic field, (2) wire array, (3) B-dot probe, (4) foil, (5) array electrodes, (‡, b) magnetic field lines that are not frozen in the elec-
trodes, and (c) magnetic field lines frozen in the electrodes.
ber of wires was varied from 24 to 670. The spacing
between individual wires or between groups of wires
varied from ≈0.09 mm to ≈25 mm.

The time behavior of the axial magnetic field on the
array axis was measured by a B-dot probe consisting of
two small-size, oppositely wound coils, the bipolar sig-
nals from which (see Fig. 2a, curves 1) were propor-
tional to the time derivative of the axial magnetic field.
The mutual symmetry of the signals indicated that they
actually were of magnetic nature. The magnetic field
was measured both inside the array at a distance of
2 mm from the anode and over the anode behind a NbTi
foil 10 or 15 µm thick (the specific resistance of the foil
was ≈60 µΩ cm). For a typical time of the array implo-
sion, the foil thickness was much less than the skin
depth [7]. The wire array electrodes (Fig. 1) were made
of a dielectric coated with this foil in order to reduce the
skin effect and, thus, to decrease the initial nonunifor-
mity of the axial magnetic field at the array location.

For an axially symmetric current distribution in the
wire array, the normal (with respect to the array axis)
component of the magnetic field on the axis should be
zero. In real experiments, the measured normal compo-
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
nent of the magnetic field may differ from zero because
of an asymmetry of the current distribution and the
imperfect positioning of the probe on the array axis.

In order to test the method, we performed measure-
ments of the axial magnetic field by a B-dot probe posi-
tioned on the array axis in the presence and in the
absence of an external axial magnetic field. The contri-
bution from the azimuthal magnetic flux to the main
signal was found to be as low as 0.8–2%.

In what follows, the experimental results are illus-
trated by the waveforms of the bipolar signals from the
B-dot probe, the axial magnetic field, the total current
through the wire array, and the soft X-ray (SXR) power,
as well as by optical streak images of the discharge
plasma.

3. CYLINDRICAL ARRAY WITH UNIFORMLY 
ARRANGED WIRES

In shot no. 3741, the load was an array with a height
of 10 mm and linear mass of 330 µg/cm. Sixty tungsten
wires 6 µm in diameter were arranged on the radius of
10 mm. The initial axial field at the probe location was
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Fig. 2. Measurements of the axial magnetic field (shot no. 3741): (a) waveforms of (1) the bipolar signals from a B-dot probe located
on the array axis (here and in the subsequent figures, these signals are recalculated to the time derivative of the axial magnetic field),
(2) the axial magnetic field, (3) the total discharge current, (4) the calculated radius of the inner boundary of the azimuthal current Iϕ,
(5) the calculated velocity of the inner boundary of the azimuthal current Iϕ, (6) the average radius of the current Iz calculated from
the discharge inductance, and (SXR) the soft X-ray power; (b) an optical streak image (negative) synchronized in time with the
waveforms shown in plot (a); and (c) the initial azimuthal structure of the wire array.

(a)

(b) (c)
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≈5.0 kG. The probe was positioned on the array axis
and was inserted into the electrode gap to a depth of
2 mm (Fig. 1). Figure 2a shows the bipolar signals from
the B-dot probe (curves 1) (here and in the subsequent
figures, these signals are recalculated to the time deriv-
ative of the axial magnetic field) and the waveforms of
the axial magnetic field (curve 2), the total discharge
current (curve 3), and the SXR power.

The probe signal appeared with a time delay of
∆tc = 30 ns after the beginning of the discharge, when
the total current through the array reached ≈0.3 MA.
This time is interpreted as the beginning of the com-
pression of the free axial magnetic flux within a certain
effective radius Rc. In this phase of the discharge, the
plasma temperature is 20–30 eV [8]. We assume that
the appearance of the probe signal corresponds to the
formation of a current-carrying plasma shell closed in
the azimuthal direction. The azimuthal current Iϕ flow-
ing through the shell leads to the compression of the
magnetic flux. On this time scale, the shell thickness is
larger than the skin depth (δs ≈ 0.2 cm). The radius Rc

can be estimated as Rc = R0 – Vpl(tcap)∆t, where R0 is
the initial radius of the array, Vpl(tcap) is the velocity of
the inner boundary of the current-carrying shell at the
instant at which the axial magnetic flux is captured by
it, and ∆t = 30 ns is the time interval during which the
plasma is accelerated before capturing the axial mag-
netic flux. The velocity Vpl(tcap) ≈ (1–2) × 107 cm/s was
determined in a separate experiment from the change in
the azimuthal magnetic field during the implosion of a
similar wire array. The radius Rc was found to be equal
to ≈0.6R0 ± 0.5δs. At the radius Rc, the plasma jets from
individual wires merge to form a shell capable of com-
pressing the magnetic flux within this radius. In the
course of compression, the plasma density can be mod-
ulated in the azimuthal direction.

Assuming that the axial magnetic flux within the
radius Rc is conserved (Φ = Bzπr2 = const), we con-
structed the time dependences r(t) and v(t) (Fig. 2a;
curves 4 and 5, respectively), which illustrate the law of
motion of the inner boundary of the azimuthal current Iϕ.
These dependences were constructed using the expres-
sions

For comparison, Figs. 2a and 2b also show the time
evolution of the average radius of the axial current Iz

(curves 6). This radius was calculated from the mea-
sured variations in the load inductance, assuming that
the system is axially symmetric. As was expected, the
average radius of the axial current Iz is larger than the
radius of the inner boundary of the azimuthal current Iϕ.

r Rc

Bz0

Bz

-------,=

V dr
dt
-----

1
2
---RcBz0

1/2Bz
3/2– dBz

dt
---------.= =
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Two stages can be distinguished in the time evolu-
tion of the axial magnetic field (Fig. 2a, curve 2): the
slow increase (plateau) over the first 100 ns and the
rapid growth 25 ns before the maximum of the SXR
signal. The axial magnetic field begins to rapidly grow
when the plasma that carries most of the discharge cur-
rent arrives at the array axis. The increase in the axial
magnetic field is also observed over ≈50 ns after the
instant of maximum plasma compression. In this case,
the axial field reaches a value of ≈300 kG (Fig. 2a).
Such a behavior of the axial magnetic field can be
attributed to a fraction of this flux being frozen in the
plasma in the course of plasma formation. After the
instant of maximum compression, the frozen-in mag-
netic field diffuses from the plasma into the B-dot
probe. After the plasma arrives at the probe surface, the
probe measures the axial magnetic field frozen in the
plasma. This time can be estimated by equating the
radius of the inner boundary of the azimuthal current Iϕ
(to within the error in determining δs) to the radius of
the probe shell (Fig. 2a, point A). For the given shot,
this time is ≈60 ns.

Under our experimental conditions, the magnetic
pressure wave propagates with the Alfvén velocity VA =

B/(4πρ)1/2, where B = . In the initial stage of
implosion, the plasma mass within the radius Rc is
small [9], so the Alfvén velocity is sufficiently high to
satisfy the condition

VA∆t @ Rc,

where ∆t is the characteristic time of the process. The
magnetic pressure is uniform in this region, and the
magnetic flux can be described as a free flux in vacuum.

In our experiments, four stages can be distinguished
in the implosion of a wire array with an initial axial
magnetic filed:

(i) The first stage lasts from the beginning of the dis-
charge up to ≈30 ns. In this stage, the plasma that is
generated by the wires and moves toward the array axis
does not form a solid shell in the azimuthal direction.

(ii) The second stage lasts from 30 to ≈70 ns. At the
beginning of this stage, an almost solid shell forms at
the radius ≈0.6Rc, to which the plasma is displaced
from the wires. This plasma compresses the free axial
magnetic flux captured at the radius 0.6Rc. In this case,
the radius of the shell, which comprises only 1% of the
total array mass, decreases from 0.6Rc to 0.2Rc.

(iii) In the third stage, which lasts from ≈70 ns to the
instant of maximum compression (which corresponds
to the maximum of the SXR signal), the axial magnetic
flux residing between 0.6Rc and R0 is transferred to the
axis by the bulk of the wire plasma.

(iv) In the fourth stage (after the instant of maximum
compression), the axial magnetic field at the axis con-
tinues to increase. This may be related to two effects:
the diffusion of the axial magnetic field from the
plasma arriving at the axis into the probe and the

Bϕ
2 Bz

2+
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motion of the peripheral plasma with the frozen-in axial
magnetic flux toward the axis.

Thus, there are two types of axial magnetic flux: the
free flux outside the plasma and the flux frozen in the
plasma.

To clarify the mechanism for the transfer of the axial
flux in the second and third stages, we carried out
experiments with wire arrays in which the wires were
arranged in groups in the azimuthal direction.

4. CYLINDRICAL ARRAY COMPOSED
OF WIRES ARRANGED IN SEVERAL GROUPS

The azimuthal structure of the plasma in the wire
array was varied by dividing the wires into groups
arranged along the perimeter of the array. The total
number of wires, their diameter, and the array diameter
remained the same, and only the number of groups was
varied.

Figures 3–5 show the results of experiments with
arrays consisting of 24 wires 10 µm in diameter that
were arranged on the radius 10 mm and divided into
groups. The interwire distance in each group was
0.26 mm, the linear mass of the wire array was
300 µg/cm, and the array height was 10 mm. The
experiments were performed with different magnitudes
of the initial axial magnetic field. The axial magnetic
field was measured by a B-dot probe positioned at the
array axis. The figures also show the waveforms of the
discharge current and the SXR power.

In short no. 3739, the wires were divided into twelve
groups (two wires in each group), as is shown in
Fig. 3c. The initial axial field was ≈13.8 kG. The SXR
power in this shot was 0.1 TW. The delay time between
the beginning of the discharge and the appearance of
the probe signal was ∆tc ≈ 30 ns. In the optical streak
image shown in Fig. 3b, one can see how the inner
plasma boundary propagates toward the axis. For com-
parison, the figure also shows the r(t) diagram calcu-
lated from the data on the compression of the free axial
magnetic flux.

In shot no. 3744, the wires were divided into eight
groups (three wires in each group), as is shown in
Fig. 4c. The initial axial field was ≈3.4 kG. The SXR
power in this shot was lower than 0.25 TW.

The signal behavior in this shot was similar to that
observed with an array in which the wires were distrib-
uted uniformly. The axial magnetic field continued to
increase after the maximum of the SXR signal. The
delay time between the beginning of the discharge and
the appearance of the probe signal was ∆tc ≈ 60 ns. The
radius Rc at which the free axial magnetic flux was cap-
tured was estimated to be ≈0.25 ± 0.1 cm; i.e., it was
nearly equal to the probe radius (0.15 cm). In this case,
the plasma was probably not closed in the azimuthal
direction (the second stage was absent) and the probe
measured only the axial magnetic field frozen in the
plasma (the third stage).
In shot no. 3792, the wires were divided into two
groups (twelve wires in each group), as is shown in
Fig. 5d. The initial axial field was ≈13.5 kG. In contrast
to the previous shots, the B-dot probe was positioned at
mid-radius of the wire array, in front of one of the wire
groups. With such an array, we did not expect the for-
mation of a closed shell capable of compressing the free
axial magnetic flux.

Eighty nanoseconds after the beginning of the dis-
charge, we observed an SXR burst attributed to the
compression of the plasmas produced from individual
groups of wires. Within this time interval, no radial
plasma motion was observed. This is clearly seen in the
optical streak image (Fig. 5b). During about 35 ns after
the SXR burst, the axial magnetic filed in the region
that is not occupied by the plasma decreases gradually

to almost zero: 1 – /Bz0 ≈ 0.8 (Fig. 5a, curve 3).
When the plasma passes through the probe (see Fig.
5b), the axial magnetic field increases to ≈200 kG. This
indicates that the axial magnetic flux frozen in the wire
plasma is compressed and then is transferred by the two
plasma jets toward the array axis.

Thus, in this shot, up to 80% of the initial magnetic
flux turns out to be frozen in the wire array plasma in
the course of plasma formation and the axial magnetic
flux is compressed in the absence of a uniform current-
carrying shell.

5. INFLUENCE OF THE INITIAL AXIAL 
MAGNETIC FIELD ON THE SXR YIELD

It can be seen from Figs. 6a and 6b that the SXR
power is very sensitive to the magnitude of the initial
axial magnetic field. As the initial axial magnetic field
increases from 0 to 15 kG, the SXR power decreases
from 2.5 TW to less than 0.1 TW. At the same time, the
size of the region near the array axis from which intense
X radiation is emitted somewhat increases (see
Figs. 6c–6f) in discharges with a strong initial axial
magnetic field (Bz0 > 6 kG).

6. INFLUENCE OF THE INTERWIRE DISTANCE 
ON THE INSTANT AT WHICH THE PROBE 

SIGNAL APPEARS

By analyzing the results of experiments with arrays
composed of uniformly distributed wires and with
arrays in which the wires were divided into groups, we
deduced the dependence of the time delay ∆tc between
the beginning of the discharge current and the appear-
ance of the probe signal on the interwire distance ∆ (or
the distance between groups of wires) at an array diam-
eter of 20 mm (see Fig. 7). The value of ∆tc is also
shown in Figs. 2–4. This time delay corresponds to the
beginning of the second stage (for ∆ < 5 mm) or to the
beginning of the third stage (for ∆ > 5 mm). From the
time delay ∆tc of the second stage, we can determine

Bz
min
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Fig. 3. Measurements of the axial magnetic field (shot no. 3739): (a) waveforms of (1) the bipolar signals from a B-dot probe located
on the array axis, (2) the axial magnetic field, (3) the total discharge current, (4) the calculated radius of the inner boundary of the
azimuthal current Iϕ, (5) the calculated velocity of the inner boundary of the azimuthal current Iϕ, (6) the average radius of the cur-
rent Iz calculated from the discharge inductance, and (SXR) the soft X-ray power; (b) an optical streak image (negative) synchro-
nized in time with the waveforms shown in plot (a); and (c) the initial azimuthal structure of the wire array.
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the time tskin required for the formation of a plasma shell
that is closed in the azimuthal direction, whose thick-
ness is larger than the skin length, and that is capable of
compressing the free axial magnetic flux.

As was noted above, the appearance of the probe
signal is determined by two processes:
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
(i) the compression of the free axial magnetic flux in
the second stage and

(ii) the penetration of the axial magnetic field frozen
in the plasma into the probe region in the third stage.

In some experiments (Fig. 7, ∆ > 5 mm), the probe
signal was primarily determined by the second process,
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whereas no contribution from the first process was
detected. In this case, only the frozen-in axial magnetic
field was detected on the array axis stating from 60 ns.
This is why points measured at ∆ > 5 mm differ
strongly in their positions from other points in Fig. 7. In
wire arrays with interwire distances of 1 < ∆ < 5 mm,
the compression of the free axial magnetic flux in the
axial region occurred 30 ns after the beginning of the
discharge. When the distance between wires was
decreased to less than 1 mm, the compression of the
axial magnetic field occurred even sooner (at 20 ns).

7. SCREWED WIRE ARRAY

In shot no. 3632, we used a screwed wire array with
a diameter of 20 mm, height of 10 mm, and linear mass
of 200 µg/cm. The array consisted of 40 tungsten wires
6 µm in diameter. The wire inclination angle was
α ≈ 6°. Figure 8 shows the results of measurements of
the axial magnetic field. The maximum SXR power in
this shot was ≈0.6 TW.

The average radius of the axial current Iz in Fig. 8 (as
in Figs. 2 and 3) was estimated from the array induc-
tance calculated using the results of electric measure-
ments of the current and voltage near the load under the
assumption that the current is axially symmetric and the
active voltage component is absent:

where R0 is the initial radius of the axial current Iz; ∆L
is a change in the inductance over a time interval ∆t =
t – t0 as compared to its initial value L0 = L(t0); h is the
wire length in cm; and Iz(t) and U(t) are the axial cur-
rent and voltage measured at a radius of 55 mm, respec-
tively. One can see that the average radius of the axial
current Iz agrees well with the radius of the outer
boundary of the wire plasma (Fig. 8b).

It can be seen from Fig. 8 that the time derivatives of
the discharge current and the axial magnetic field are
proportional to one another (Fig. 8a; curves 1, 4). The
coincidence between the time derivatives of the mag-
netic field of the main current Iz and the magnetic field
of the azimuthal current Iϕ indicates that the current
channels are inclined to the array axis at a fixed angle

R t( ) R0e
∆L
2h
-------–

, ∆L = L t( ) L0– ,  L t( )

U τ( ) τd

0

t

∫
Iz t( )
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equal to the initial inclination angle of the wires. Such
a coincidence is observed during the first 40 ns of the
discharge (from 760 to 800 ns). This is additional evi-
dence of the existence of the first stage of implosion.
After 820 ns, the time derivative of the magnetic field
of the main current deviates from that of the azimuthal
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
current; this indicates the formation of a current-carry-
ing plasma shell closed in the azimuthal direction.

In the time-resolved X-ray pinhole image of the
wire array (Fig. 9) taken 57 ns after the beginning of the
discharge, the shadows of the wire cores can be seen
against the background of radiation from the forerunner
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plasma that has arrived at the array axis. One can see
that the inclination angle of the plasma channels is
equal to the initial inclination angle of the wires.

Curve 3 in Fig. 8a shows the axial magnetic field
calculated at the location of the B-dot probe (7.5 mm
over the cathode) under the assumption that the azi-
muthal current through the array is equal to Iϕ(t) =
Iz(t)sinα, where Iz(t) is the total discharge current. One
can see that curve 3 agrees well with the time behavior
of the axial magnetic field measured by the probe
(curve 2). This indicates that the axial magnetic field is
generated by the discharge current flowing at the angle α
through the wire plasma.

At later times (90 ns after the beginning of the dis-
charge), when the current time derivative decreases, we
observed a sharp increase in the time derivative of the
axial magnetic field (Fig. 8a; curves 1, 4). This may be
explained by the arrival of the bulk of the wire plasma
with the frozen-in magnetic field at the probe. After the
maximum of the SXR signal, which occurs near the
instant of maximum plasma compression, the axial
magnetic field does not drop, but rather continues to
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MEASUREMENTS OF THE AXIAL MAGNETIC FIELD 661
increase (curve 2). This may be attributed to the diffu-
sion of the frozen-in axial magnetic field into the probe.

Thus, the compression of the axial magnetic flux by
the plasma of a screwed wire array occurs in the same
way as it occurs in arrays composed of vertical wires in
the presence of an external axial magnetic field. The
only difference is that the axial magnetic field is gener-
ated by the discharge current itself in the course of
plasma formation.

8. MODEL OF THE COMPRESSION 
OF THE AXIAL MAGNETIC FLUX 
BY THE WIRE ARRAY PLASMA

Based on the results of our experiments, we propose
the following model of the compression of the axial
magnetic field Bz at the array axis.

In our experiments with a multiturn solenoid, a
quasi-steady axial magnetic field is produced at the
location of a wire array 2 ms before the beginning of the
discharge. Over 2–5 ns after the beginning of the array
implosion, a plasma corona that carries the bulk of the
discharge current forms at the wire surfaces (Fig. 10).
As a result, the array transforms into a heterogeneous
core–corona system. One component is relatively cold
wire cores whose density is close to the solid density.
Another component is the corona plasma with a tem-
perature of several tens of electronvolts. Under the
action of the Ampère force, the plasma moves toward
the array axis and entrains the frozen-in axial and azi-
muthal magnetic fields, whereas the wire cores remain
undisplaced because their diameters are much smaller
than the skin length (the core diameter is ≈20 µm [10],
whereas the skin length for a plasma with Te ≈ 10 eV is
≈1 mm). The magnetic field (both axial and azimuthal)
that was entrained toward the array axis by the plasma
flow is replaced by the azimuthal magnetic field exist-
ing outside the wire array and by the axial magnetic
field existing in the array volume that is not occupied by
the plasma. As a result, the axial magnetic field near the
wire cores decreases with time. A steady-state process
is established: a fresh plasma is steadily produced and
then moves together with the frozen-in magnetic field
toward the array axis. This is a peculiar kind of “mag-
netic pump” that works while the plasma is being pro-
duced, i.e., until the wires become completely evapo-
rated or the axial magnetic field becomes completely
frozen in the plasma.

Plasma jets extended in the radial direction can par-
tially displace the free axial magnetic flux from the
region occupied by them. At a certain radius Rc, the
plasma jets of individual wires merge to form a kind of
shell with a thickness larger than the skin length. The
shell compresses the free axial magnetic flux enveloped
by it. In this case, the plasma density can be strongly
modulated in the azimuthal direction. The efficiency of
compression depends, in particular, on the number of
plasma jets Nf (i.e., on the interwire distance at a fixed
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
array diameter) and on their azimuthal size ∆lf (Fig. 10).
The greater the number of plasma jets at a fixed array
radius, the sooner they merge (see Fig. 7).

The conditions for functioning of the “magnetic
pump” (i.e., the process during which the axial mag-
netic flux is being frozen in the plasma and is then
transferred together with the plasma toward the array
axis) are as follows:

(i) the protracted plasma production,

(ii) the presence of spatial regions with an unmagne-
tized (ωceτei < 1) and a magnetized (ωceτei > 1) plasma,
and

(iii) the radial plasma motion toward the array axis.

To find out whether the magnetic field can be frozen
in the wire cores, corona, and plasma jets (see Fig. 10)
in different stages of implosion, let us estimate the
depth δskin (in m) to which the magnetic field can pene-
trate over the characteristic freezing time t ≈ (3–5) ×
10−9 s:

where σ⊥  is the transverse Spitzer plasma conductivity
(in Ω–1 m–1), Te is the plasma electron temperature

δskin 500 t
σ⊥
------,≈

σ⊥ 4.8 103Te
3/2/z Λ ,ln×≈

1 2 4 6 8 100.09 0.5

670
125

63
32 16 24 24 24

∆, mm

N

0

10

20

30

40

50

60
∆tc, ns

t sk
in

Twelve groups

Eight groups Six groups

A plasma shell closed
in the azimuthal
direction forms

No plasma shell closed
in the azimuthal

direction

Fig. 7. Delay time ∆tc between the beginning of the dis-
charge and the appearance of the probe signal as a function
of the distance ∆ between groups of wires. Here, N is the
number of wires and tskin is the time required for the forma-
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(in eV), z is the ion charge number, and lnΛ is the Cou-
lomb logarithm.

Let us also estimate the Hall parameter (the magne-
tization parameter) ωceτei for the same regions:

where ωce is the electron gyrofrequency, τei is the elec-
tron–electron collision time in the plasma region of
interest, and B is the magnetic field in this region (in G).
The results of these estimates are listed in the table.

It can be seen that, over 3–5 ns, the magnetic field
becomes frozen in the wire core plasma, which is
unmagnetized (ωceτei ! 1). There exists a certain “tran-
sient” region between the corona plasma and the jet
plasma into which the magnetic field can penetrate, be
frozen-in, and be transferred by the plasma toward the
array axis. In the final stage of implosion, a Z-pinch

ωceτei 8.8 1012 BTe
3/2

zne Λln
-----------------,×≈
forms on the array axis. The Z-pinch plasma is rather
hot; according to spectral X-ray measurements, the
electron temperature in this plasma is Te ≈ 100 eV. Such
a high temperature is maintained over ~20–30 ns and
then drops rapidly because of radiative cooling. The
time during which the magnetic field diffuses from this
plasma into the probe is ≈50–80 ns. This is why the
probe signal is longer than the SXR pulse (see, e.g.,
Fig. 3).

Based on the above mechanism for compressing the
axial magnetic flux (“magnetic pump”), we estimated
the fraction of the initial axial magnetic field that is fro-
zen in the plasma jets and is transferred toward the axial
region.

The axial magnetic flux frozen in the plasma jets is
approximately equal to

dΦz1(t) = Bz2(t)Nf∆lfVadt,
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where Bz2(t) is the axial magnetic field outside the
plasma, Va is the plasma velocity in the region near
wires where the axial magnetic field becomes frozen in
the plasma, Nf is the number of plasma jets (the number
of wires), and ∆lf is the plasma jet width (Fig. 10). For
the sake of simplicity, we assume that Va, ∆lf, and Nf

are space- and time-independent.

The area occupied by the plasma jets is defined as

S1(t) = Nf∆lf (R0 – r(t)),

Wires

Anode

Cathode

Fig. 9. Fragment of an X-ray (E > 200 eV) image (negative)
of the wire array at 57 ns after the beginning of the dis-
charge (22.5 kA/wire). The exposure time is ≈3 ns.
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where R0 is the initial radius of the array and r(t) is the
running radius to which the plasma jets penetrate into
the array (this radius was calculated using the results of
measurements of the velocity with which the current-
carrying plasma penetrates into the array [13]). The
area occupied by the free magnetic flux is defined as

We assume that the axial magnetic flux initially pro-

duced inside the array, Φz0 = Bz0π , is conserved and
is equal to the sum of the flux frozen in the plasma jets,
Φz1(t) = Bz1(t)S1(t), and the free magnetic flux Φz2(t) =
Bz2(t)S2(t).

From the above equations, we can find the ratio of
the magnetic flux frozen in the plasma jets Φz1 to the
initial flux Φz0:

It is of interest to find the instant at which the plasma
jets arrive at the axis (r(t) = 0). The above equation can
be reduced to the simpler form

Φz1(t)/Φz0 = 1 – e–t/τ,

where τ = (π Nf∆lf R0)/Nf ∆lfVa.

For typical parameters of our experiments (R0 = 1 cm,
Nf = 40–60, ∆lf ≈ 0.03 cm, and Va ≈ 1 × 107 cm/s), we
find that the ratio of the flux frozen in the plasma jets to
Φz0 is equal to

Φz1(t)/Φz0 ≈ 0.6–0.8.
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Typical plasma parameters in different stages of the wire array implosion

Region ne, cm–3 ni, cm–3 z Te, eV B, kG ωceτei δskin

Wire core (at 75 ns) 
[11]

1021 1021  ~1 0.2–0.5 Bϕ = 300–1000
Bz = 3–10

<10–4 ≈2–3 mm

Plasma corona
(at 75 ns) [8]

≈1019 ≈2 × 1018 ≈5 20–25 Bϕ = 300–1000
Bz = 3–10

~0.5–2
~10–3–10–2

≈300–350 µm

Plasma jet
(at 40–80 ns) [8]

(2 – 5) × 1016 (4–10) × 1015 ≈5 20–25 Bϕ = 120 (r = 0.5 cm)
Bz = 10–50

~102

  ~2–50
≈350–400

3-mm-diameter 
Z-pinch (at 100 ns) 
[12]

(8–20) × 1019 (8–10) × 1018 10–20 ≈100 Bϕ = 1000–2000
Bz = 300–1000

– –
This value agrees well with the above experimental
results (see Fig. 5).

9. CONCLUSIONS

The results from measurements of the axial mag-
netic field can be summarized as follows:

(i) Both the axial and azimuthal magnetic fields are
frozen in the plasma produced during the implosion of
a wire array.

(ii) During the first 30–40 ns, the discharge current
flows through individual plasma channels.

(iii) A kind of plasma shell closed in the azimuthal
direction and capable of compressing the axial mag-
netic flux forms in arrays with a small interwire spac-
ing.

(iv) The axial magnetic flux can be compressed even
in the absence of a uniform current-carrying shell. In
this case, the magnetic field becomes frozen in the
plasma near the wires and is transferred and com-
pressed in the plasma jets flowing toward the array axis
(the so-called “magnetic pump”).

(v) The SXR power decreases from 2.5 to <0.1 TW
as the initial axial magnetic field increases from 0 to
15 kG.

(vi) The diameter of the central plasma region emit-
ting in the SXR spectral range increases with increasing
initial axial magnetic field.
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Abstract—The problem of the tearing instability is solved numerically in cylindrical geometry by using the
unreduced two-fluid MHD model. It is shown that the duration of the nonlinear stage of the tearing instability
in a hot plasma is rather sensitive to such factors as the initial radial density and temperature profiles, the initial
ion-to-electron pressure ratio, and the longitudinal thermal conductivity. Depending on these factors, the two-
fluid effects (primarily, the Hall effect) can either greatly hasten the magnetic reconnection process (in compar-
ison to that in the one-fluid MHD model) or greatly slow it. An illustrative explanation of the results obtained
is given. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Observations of solar flares and experimental data
on sawtooth oscillations in tokamaks show that the
magnetic reconnection time in a highly conducting
(hot) plasma is several orders of magnitude less than
that predicted by the one-fluid MHD model [1–4]. In
order to explain this discrepancy, the models are
invoked that are capable of describing the electron
dynamics more adequately. That the electron dynamics
should be taken into account follows from the picture of
reconnection predicted by the one-fluid MHD model,
according to which the reconnection process at a low
plasma conductivity is accompanied by the onset of
thin current sheets [5]. The one-fluid MHD model is
inapplicable to current sheets whose thickness is
smaller than the ion dispersion length δi = c/ωpi (where
ωpi is the ion plasma frequency). In this case, it is nec-
essary to take into account two-fluid effects.

The mechanisms thought to be responsible for has-
tening the annihilation of magnetic fluxes are, e.g., the
effects of electron viscosity [6] and electron inertia [7–
9]. Both these effects hasten magnetic reconnection
because, in a hot plasma, they disrupt the freezing-in of
the magnetic field lines in the plasma to a larger extent
than does the plasma resistivity. Note that, in this case,
the electron inertia (in contrast to electron viscosity) is
a nondissipative effect.

The reconnection process is also hastened by the
Hall effect, which shows up as the freezing-in of the
magnetic field into the plasma electrons. The Hall
effect is most pronounced in the electron MHD
(EMHD) approximation, in which the ion are treated as
immobile [10]. The EMHD model is applicable to the
study of reconnection processes when the characteristic
length of the system, L, does not exceed the ion disper-
sion length δi [11]. The most interesting result is that, in
1063-780X/05/3108- $26.00 0665
the EMHD approximation, the reconnection time is
independent of the transport coefficients and is equal in
order of magnitude to [11, 12]

(1.1)

where ωi is the ion gyrofrequency. It should be stressed
that the Hall effect itself does not disrupt the freezing-
in of the magnetic field.

Note that, when the electron viscosity and/or elec-
tron inertia is ignored, the solution to the reconnection
problem even for a plasma with a finite conductivity is
singular [12]: the current density approaches infinity in
a finite time. It should be emphasized that, within this
time, only an insignificant portion of the magnetic flux
is subject to reconnection.

The above properties of the reconnection process in
the EMHD theory stem from the types of nonlinearities
in the EMHD equations [12].

The expression for the reconnection time in the
EMHD model that was used in [11, 12], namely,
expression (1.1), is not as illustrative as desired because
it contains the ion-related parameters ωi and δi . In the
EMHD approximation, however, the ion motion is
ignored; hence, on the whole, expression (1.1) carries
no information about the ions (in particular, it does not
contain the mass of an ion). This expression can be
rewritten in the form

(1.2)

where e is the charge of an electron, n is the electron
density, and v c = c|(— × H)|/(4πen) ~ cH/(4πenL) is the
characteristic electron current velocity in the original
magnetic configuration with a characteristic magnetic
field strength H. Formula (1.2) implies that, in the
EMHD model, the reconnection rate is determined by

ωi
1–
L

2
/δi

2
,

L/v c 4πenL
2
/ Hc( ),∼
© 2005 Pleiades Publishing, Inc.
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the characteristic electron current velocity in the origi-
nal magnetic configuration.

The reconnection mechanism in the EMHD theory
can be elucidated as follows. On the one hand, the
EMHD equations describe the transport of the mag-
netic field by the current associated with this field (the
freezing-in of the magnetic field in the current field).
On the other hand, the EMHD equations describe the
rotation of the magnetic field perturbation vector (and,
therefore, the current density perturbation vector) about
the initial magnetic field, whose direction governs the
direction of this rotation. Accordingly, on both sides of
the surface separating regions of oppositely directed
magnetic fields, the current density perturbation vector
rotates in opposite directions. If the magnetic field per-
turbation gives rise to a current transporting the mag-
netic fluxes toward one another, then these magnetic
fluxes will annihilate. Moreover, the magnetic field per-
turbation will then grow. It can be said that, in the
EMHD model, the magnetic fluxes rotate about them-
selves and transport themselves toward one another.

The EMHD model is inapplicable to tokamak plas-
mas and solar flares because, in them, L @ δi . In this
case, it is necessary to take into account the dynamics
of both the ions and the electrons. For tearing instabili-
ties in tokamaks, such investigations were carried out in
[4, 14–17] on the basis of reduced (four-field [13]) two-
fluid MHD models under the assumption that the initial
plasma density distribution is uniform and the temper-
ature does not vary in space and in time. In [4, 14–17],
it was shown that two-fluid effects can substantially
hasten the reconnection processes in the nonlinear
stage of instability. In those papers, however, the case
of spatially nonuniform initial distributions of the tem-
perature and density was not considered at all. In our
study, we show that, in a plasma with nonzero initial
temperature and density gradients, the dynamics of the
reconnection process is essentially different.

The reduced two-fluid MHD models have the same
drawbacks as the one-fluid MHD models [18, 19]. One
more drawback is that two-fluid MHD equations con-
tain derivatives of higher order than those in one-fluid
MHD equations. Since the gradients in reconnection
problems are large, the terms with such higher-order
derivatives are difficult to take into account accurately
when reducing the general two-fluid MHD equations.
In other words, the problem in fact involves a new
parameter—the current sheet thickness.

In the present paper, the development of tearing
instability is investigated numerically in a two-dimen-
sional (helical) geometry corresponding to that of a
straight cylinder with identified ends. For the above rea-
sons, we investigate this problem in terms of an unre-
duced two-fluid MHD model. We consider two differ-
ent relationships between the initial electron and ion
temperatures: Te = 0 and Te = Ti . In studying the case
Te = 0, which is unlikely to be of interest for applica-
tions, we will merely try to determine the role of the
electron pressure gradients in the generalized Ohm’s
law. We also investigate how the initial gradients of the
plasma temperature and density, the electron viscosity
coefficients, and the longitudinal ion thermal conduc-
tivity affect the development of the tearing instability.
We give a simple and illustrative explanation of the
numerical results and discuss how well they correlate
with the experimental data.

2. FORMULATION OF THE PROBLEM

We describe the plasma by two-fluid MHD equa-
tions, assuming that the generalized Ohm’s law has the
form

(2.1)

where M is the mass of an ion, ρ is the plasma density,
σ is the plasma electrical conductivity, and νe is the
electron viscosity. The generalized Ohm’s law (2.1) is
the equation of motion of a gas of inertialess electrons.
It implies that the magnetic field is frozen not in the ion
velocity field V but rather in the electron velocity field
Ve = V – M(eρ)–1j. The first term on the right-hand side
of the generalized Ohm’s law (2.1) describes the Hall
effect, and the second term accounts for the effect of the
electron pressure pe.

For simplicity, the last term with the electron viscos-
ity in Eq. (2.1) is taken in a model form. The exact
expression for this term is rather complicated [20]. The
only important point for our analysis is that, as the spa-
tial scale of the magnetic field perturbation decreases,
the electron viscosity leads to a stronger dissipation
than does the plasma resistivity. As a result, we can
eliminate the singularity that arises in the solution to the
two-fluid MHD equations [12]. This singularity cannot
be avoided by taking into account a low but finite
plasma resistivity; it can be removed, however, by
accounting for a low but nonzero electron viscosity
[12].

Let us switch to dimensionless variables. As a length
scale, we choose the characteristic transverse plasma
dimension a (the tokamak minor radius), and, as the
remaining normalizing factors, we adopt the character-
istic toroidal magnetic field Hz, the density ρ∗ , the

Alfvén speed VA = Hz/  in terms of the toroidal

magnetic field, the time a/VA, and the pressure – /4π.

We consider a helically symmetric MHD flow. In
this case, the scalars and the components of the vectors
in cylindrical coordinates r, ϕ, and z (rather than the x
and y Cartesian components) depend on the coordinates
in such a way that

(2.2)

E
1
c
---V H×+

=  
M

eρc
--------- j H

M
eρ
------— pe– σ 1– j —–+ νe— j×( ),××

4πρ*
Hz

2

∂/∂z R
1– ∂/∂ϕ–=
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and all the functions depend on the combination ϕ – z/R
rather than on the coordinates ϕ and z separately. In
what follows, by ϕ we will mean the quantity ϕ – z/R.
In this way, it is convenient to work with the g and s
vector components, which are related to the ϕ and z
components by the formulas

(2.3)

It is also convenient to introduce the following vector
components (referred to as Cartesian components for
brevity), which are related to the r and ϕ components
by the relationships

Strictly speaking, these are the actual Cartesian compo-
nents of the vectors only in the limit R  ∞, since the
role of the coordinate ϕ is played by the difference ϕ –
z/R.

In view of the above, the two-fluid MHD equations
take the form

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

f s f ϕ r/R( ) f z, f g– f z r/R( ) f ϕ .+= =
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ρ
∂V x
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-----------–+ 
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  R
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------------+ + 
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  R
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∂ψ
∂t
------- V

α
ρ
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  —ψ+
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(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

The explicit expressions for the differential operators in
Eqs. (2.4)–(2.14) are presented in Appendix 1. The rest
of the notation is as follows: ψ is the poloidal magnetic
field flux (the g component of the vector potential), Hg

is the g component of the magnetic field, ρ is the
plasma density, V is the ion velocity, Ve is the electron
velocity, ν and νe are the ion and electron dimensionless
viscosity coefficients, η is the plasma conductivity, the
term Qν describes plasma heating due to the work done
by viscous forces, pi, e and Ti, e are the ion and electron
plasma temperatures and pressures, χ||i, e and χi, e are the
longitudinal and isotropic dimensionless thermal con-
ductivities (the subscripts i and e stand, respectively, for
the ions and electrons), γe = γi = γ = 5/3 are the electron
and ion adiabatic indices, and the coefficient α = δi/a
characterizes the role of the two-fluid effects (in partic-
ular, the Hall effect).

Equations (2.4)–(2.6) for the velocity are written in
terms of the Cartesian components, in which they have
a simple form. In addition, the use of the Cartesian
velocity components is of primary importance for con-
structing a finite difference algorithm with which the
problem under consideration was solved. A detailed
description of this algorithm is given in [24].

The initial conditions are chosen to correspond to an
equilibrium state of an axisymmetric configuration
with a neutral surface and with a small magnetic flux

S VHg– αρ 1–
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perturbation of amplitude ψp that breaks the equilib-
rium:

(2.15)

Hence, in the limit ψp  0, we deal with a neutral
sheet configuration. Near the coordinate axis, we have
Hs = –dψ/dr > 0, and, for large radii, we have Hs < 0.
The position of the neutral surface, Hs = 0, depends on
the quantity q. In what follows, we will discuss the
results of numerically solving the problem in question
that were obtained for R = 4 and q = 3, which corre-
sponds to a neutral surface with the radius rn = 0.5. The
perturbation amplitude ψp was equal to 10–4.

The distributions of the plasma pressure p and mag-
netic field component Hg were chosen so that, for ψp =
0, the total force acting on the plasma vanishes. We
investigated the following three types of distributions
of p, Hg, and ρ (see Fig. 1):

(i) A constant density ρ = 1 and a constant magnetic
field component Hz = 1, which corresponds to Hg = 1 +
(1 – (1 – r2)q + 1)/(qR2). The pressure p was determined
from the equilibrium condition; in this case, p(r = 1) =
β. For calculations, we chose the value β = 10–4, for
which the central plasma pressure was equal to p0 =
0.0212.

(ii) A constant pressure p = p0 and a constant density
ρ = 1. The distribution of Hg was determined from the

V 0, ρ 1, ψ ψ0 ψpr 1 r
2

–( ) ϕ ,cos+= = =

∂ψ0

∂r
--------- 1 1 r

2
–( )

q 1+
–

qr
2

----------------------------------- 1–
 
 
  r

R
---.–=
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1
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3

Fig. 1. Types of initial pressure profiles used in the calcula-
tions. Curves 1, 2, 3 correspond to profiles (i), (ii), and (iii)
in Section 2, respectively. The vertical line shows the posi-
tion of the neutral surface.
equilibrium condition. It was assumed that Hg (r = 1) =
1 + 1/(qR2), which ensures the equality jg(r = 1) = 0.

(iii) The distributions of p and ρ of the form

which are flat in the central regions and are sharply
decreasing in the vicinity of the surface of radius r0. At
the origin of the coordinates, we have p = p0 and ρ = 1,
and, at the boundary r = 1, we have p = p1 and ρ = ρ1.
For calculations, we used the values p1 = p0/5, ρ1 ∈
(0.2 : 0.5), r0 = 0.35 < rn, and d = 0.07. In versions (ii)
and (iii) of the initial conditions, the p0 value was equal
to 0.0212. The distribution of Hg was determined in the
same way as in version (i).

The initial distributions of pe and pi were chosen to
be pe = pi = p/2 or pe = 0 and pi = p.

The problem was solved in the region (0 ≤ r ≤ 1, 0 ≤
ϕ ≤ 2π). At the boundary r = 1, we set

, (2.16)

the tangential components of the electric field being
Ez = Eb and Eϕ = 0. Accordingly, we have

(2.17)

For νe = 0, boundary conditions (2.17) are sufficient
to solve Eqs. (2.9) and (2.10). For νe ≠ 0, the order of
the equations for the magnetic field is higher, so bound-
ary conditions (2.17) for the electric field should be
supplemented with the boundary conditions for the
magnetic field. This is a separate physical problem. In
the case at hand, however, the plasma is essentially
unperturbed at r = 1. This is why we can impose a sim-
ple boundary condition, specifically, we require that the
tangential currents at the boundary be equal to those
following from Eqs. (2.9) and (2.10) with conditions
(2.17) in the one-fluid MHD approximation (α = 0) in
which the electron viscosity is ignored (νe = 0):

For our simulations, we set Eb = 0.
In order to describe the flow, it is convenient to

introduce the parameter Rp as the ratio of the magnetic
flux within the island (see Fig. 2) (i.e., the portion of the
magnetic flux that has undergone reconnection) to the
total magnetic flux within the neutral surface:

Here, ψmax is the value of the magnetic flux ψ at its
greatest local maximum, ψmin is the magnetic flux at its
absolute minimum, and ψsaddle is the value of ψ at the

p p1
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MODELING OF THE TEARING INSTABILITY 669
saddle point with the maximum value of ψ. We are con-
sidering the greatest local maximum because, in the
nonlinear stage of the processes, magnetic islands can
generally form that are not associated with the initial
perturbation. Accordingly, there may be more than one
local maximum and more than one saddle point. At the
initial time, when the island is small, the parameter Rp

is close to zero; at the end of the reconnection process,
it is close to unity, Rp  1.

The duration tn of the nonlinear stage of reconnec-
tion is defined as the time during which the parameter
Rp increases from 1/2 to 1.

3. RESULTS OF NUMERICAL CALCULATIONS

We begin by noting that, in the parameter range
under consideration, namely, η < 10–8 and νe ~ 10–9, the
plasma conductivity η has a minor effect on the flow in
both cases α = 0 and α ≠ 0. For this reason, the partic-
ular value of η will not be specified below. The values
of the coefficients χi and χe that are important from a
practical standpoint are also very small. The results pre-
sented were calculated for χi = χe = 0. Unless stated oth-
erwise, the longitudinal electron thermal conductivity
χ||e is equal to 100. Note also that, in the given numeri-
cal examples, the distributions of T and ρ correspond to
distributions (ii) and (iii).

3.1. One-Fluid MHD Model (α = 0)

For α = 0, reconnection proceeds in the usual way
(Fig. 3) to produce a characteristic pattern of magnetic
field lines with an island (the region corresponding to
the portion of the magnetic flux that has undergone
reconnection) and with a current sheet stretched along
the neutral surface. The distributions of p, ρ, and Hg are
symmetric about the x axis. Note that the plasma den-
sity is elevated inside the island and is depressed inside
the current sheet. This indicates that the plasma outflow
from the current sheet is more intense than the plasma
inflow into it.

For α = 0, the duration tn of the nonlinear stage of
reconnection is determined by the value of the electron

viscosity νe; more precisely, we have tn ~ , where
ξ ≈ 0.23. The dependence of tn on the type of the initial
distributions of T and ρ is far weaker. Thus, for νe =
10−9, tn varies between 130 and 150 Alfvén times,
depending on the type of initial conditions. The depen-
dence of tn on the electron and ion thermal conductivi-
ties is insignificant.

Note that, at the very beginning of the reconnection
process, the toroidal velocity component Vz is much
lower than its poloidal component. However, as time
elapses, the toroidal velocity component becomes on
the order of the poloidal component. Consequently, the
applicability of the reduced MHD (RMHD) model to a

νe
ξ–
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description of tearing instability is, strictly speaking,
limited, because this model implies that the toroidal
component Vz of the velocity should be much lower
than the poloidal component. The reasons for this are
explained in [18, 19].

3.2. Two-Fluid MHD Model:
The Case T(t = 0) = const and ρ(t = 0) = 1

Here, we consider the plasma flow pattern in the
case with α ≠ 0 and with the initial distributions T(t =
0) = const and ρ(t = 0) = 1.

For α ≠ 0, the flow pattern (Fig. 3) differs substan-
tially from that in the case α = 0. We can clearly observe
the characteristic property of reconnection in the
EMHD model: a tendency toward the formation of a
current peak [12, 21] rather than a current sheet, as in
the case α = 0.

The contour lines of the quantities p, ρ, T, and Hg, as
well as of the vorticity ω = (— × V)g, are very similar to
one another. Hence, to a good approximation, it can be
stated that these quantities depend only on one func-
tion. Note that, for α ≠ 0 and α = 0, the distributions of
ω are roughly the same, but such is not the case for the
other quantities in question. In contrast to the symmet-
ric distributions in the case α = 0, the distributions of
the deviations of the quantities p, ρ, T, and Hg from their
equilibrium distributions are nearly antisymmetric
about the x axis.

Let us consider how the duration of the reconnection
process depends on the parameters of the problem.

Numerical calculations show that, for α ≠ 0, the time
tn is much shorter than that for α = 0. Thus, for νe =
10−9, the duration tn of the nonlinear reconnection stage
is equal to 148 and 50 Alfvén times in the cases α = 0
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Fig. 2. A schematic pattern of the magnetic field lines illus-
trating the definition of the parameter Rp. The hatched
region is a magnetic island.
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also shown. The calculations were carried out for p(t = 0) = const, νe = 10–9, χ||i = 5, and pe(t = 0) = 0. The time corresponds to that
at which Rp = 1/2 (t = 632 for α = 0 and t = 444 for α = 0.1). The pattern of the magnetic field lines for α = 0.1 essentially coincides
with that for α = 0. The contour lines of p, T, Hg, and ω for α = 0.1 are similar to the those of ρ.
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and α = 0.1, respectively. In the case α = 0.2, the dura-
tion is shorter: it is equal to tn = 26.

For α = 0 and for a lower value of the electron vis-
cosity, νe = 2.5 × 10–10, the duration is longer, tn = 210.
For α = 0.1, such a decrease in νe does not lead to an
increase in tn but rather reduces it to 38 Alfvén times.
This dependence on the coefficient νe agrees with the
results of [11, 12], in which it was shown that, in the
EMHD approximation, the reconnection time is inde-
pendent of the transport coefficients. Hence, for α ≠ 0,
the duration tn of the nonlinear reconnection stage is
significantly shorter; moreover, as νe  0, the time tn

approaches a finite value.

An analysis of the dependence of tn on the electron
and ion thermal conductivities and on the ratio of the
initial electron and ion pressures, pe(t = 0) and pi(t = 0),
shows that tn slightly increases with increasing thermal
conductivities. The above values of tn were calculated
for the case of χ||e = χ||i = 5 at pe(t = 0) = pi(t = 0) and
for the case of χ||i = 5 and an arbitrary χ||e value at pe(t =
0) = 0. For longitudinal (relative to the magnetic field)
thermal conductivities higher than 100, the time tn

increases to 60 Alfvén times.

The results presented above can be qualitatively
explained in terms of the reduced model to be con-
structed below. Since this RMHD model, which differs
fundamentally from that developed in [13], will serve
merely to give a qualitative explanation of the results
obtained in the two-fluid MHD approximation, it will
be formulated in a fairly simple, unrigorous way, with
particular reference to the results of numerically solv-
ing the two-fluid MHD equations. The main simplifica-
tions are as follows:

(i) In accordance with the conventional order of the
quantities with respect to the parameter R @ 1 in the
RMHD model [13, 18, 19], we obtain from Eq. (2.10)
the equation

Calculations carried out in the two-fluid MHD
approximation show that Vg ! α jg. Consequently, we
can write

(3.1)

(ii) Calculations show that the inequalities

(3.2)

are satisfied not only in the case T(t = 0) = const and
ρ(t = 0) = 1 but in all other cases as well. The conjunc-
tion “and/or” in inequalities (3.2) stands for situations
in which, for example, the gradient of p at the very
beginning of the reconnection process is equal to zero
provided that p(t = 0) = const. At later stages of the pro-

cess, we have ∇ p ~ ∇ /2. Since the magnetic field

— V⋅ H —⋅( ) Vg α jg–( ).=

— V⋅ α H —⋅( ) jg.–=

∇ p Hg
2
/2+( ) ! ∇ p and/or ∇ Hg

2
/2

Hg
2
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component Hg deviates only slightly from unity, ine-
qualities (3.2) yield

(3.3)

Inequalities (3.2) do not result from an expansion in
R but are obtained as follows:

By virtue of the equilibrium condition, the quanti-

ties ∇ p and/or ∇ /2 are on the order of ∇ /2.
Moreover, the magnetic field configuration in a toka-
mak is such that, in the region where the plasma motion
is most intense (i.e., within the surface q = 1), we have
Hs ! Hϕ. At the plasma periphery, the field component
Hs can be on the order of Hϕ, but the plasma in the
peripheral region is essentially unperturbed. The
plasma motion is governed by changes in the field com-
ponent Hs. In particular, the maximum plasma velocity
is on the order of Hsρ–1/2 ~ Hs. The relative order of
different terms in Eqs. (2.4)–(2.7) is such that this

condition can be satisfied only when ∇ (p + /2) ~

∇ /2 ! ∇ /2 ~ ∇ p and/or ∇ /2.

Substituting relationships (3.1) and (3.3) into
Eqs. (2.11)–(2.13) and assuming that ρ and Hg are both
close to unity, we obtain

(3.4)

(3.5)

Note that the velocity V on the right-hand side of
Eq. (3.5) (for both pi and pe) is the ion velocity.

Since the right-hand side of Eq. (3.1) is on the order
of R–2, and since V ~ R–1, we can assume that the plasma
compressibility is low; in this case, in place of the equa-
tion for the velocity, we can use the equation for the
vorticity ω = r–1∂(rVs)/∂r – r–1∂Vr/∂ϕ:

(3.6)

Together with the equation for ψ, which, with allow-
ance for relationship (3.3), can be rewritten as

(3.7)

Eqs. (3.4)–(3.6) constitute a closed set of equations.
We can readily see that, with the initial conditions

T = const and ρ = 1, Eqs. (3.4)–(3.6) are similar in
structure and the initial parameter values for them are
nearly the same. Consequently, with some degree of
accuracy, we can write the relationships ρ ≈ 1 + αω and
pi, e ≈ pi, e (t = 0)(1 + ), where  = γi, eα for χi, e =

χ||i, e = 0 and  = α for χi, e, χ||i, e  ∞ (at a constant
temperature). These relationships, along with relation-
ship (3.3), explain why the contour lines of the quanti-
ties ρ, p, Hg, and ω for α ≠ 0 are essentially identical

—Hg —p.–≈

Hg
2

Hϕ
2

Hg
2

Hs
2

Hϕ
2

Hg
2

∂ρ/∂t V —⋅( )ρ+ α H —⋅( ) jg,=

∂pi e, /∂t V —⋅( )pi e,+ αγ i e, pi e, H —⋅( ) jg=

+ γi e, 1–( )— χ||i e, H H —⋅( )pi e, χ i e, — pi e,+⋅( ).⋅

∂ω/∂t V —⋅( )ω+ H —⋅( ) jg ν∆ω.+=

∂ψ
∂t
------- V α e —p×( )–( )∇ψ+  = –η jg — νe— jg( ),⋅+

α̃ i e, ω α̃i e,

α̃ i e,



672 ZHUKOV
(see Fig. 3). Note that the plasma density deviates only
slightly from its initial distribution; moreover, in the
RMHD approximation, this deviation is proportional
to α. For α = 0, the density in the RMHD approxima-
tion remains constant. That the contour lines of the den-
sity for α = 0 (see Fig. 3) are symmetric stems from the
use of the unreduced MHD model, which automatically
incorporates higher order corrections in R–1 and thereby
has a higher order of accuracy than the RMHD model.

With the above analysis in mind, we can rewrite
Eq. (3.7) as

(3.8)

where

Hence, with the initial conditions p = const and ρ =
const, the magnetic field evolution can be described by
only two equations, namely, Eqs. (3.6) and (3.8). A sim-
ilar model was investigated in [4].

Equation (3.8) provides insight into the mechanism
for hastening the reconnection process at α ≠ 0. The
reconnection time depends on the velocity with which
the oppositely directed magnetic fluxes are transported
toward one another. For the configuration in question
(see Fig. 3), this indicates that the reconnection time is
determined by the derivative ∂Vex/∂x at the reconnec-
tion point (the saddle point of the function ψ). For a
plasma flow that runs into the current sheet in a direc-
tion perpendicular to it and runs out of the sheet in a
direction parallel to it, the vorticity ω is distributed as
shown in Fig. 3. It is obvious that, for α ≠ 0, and for
such a distribution of ω, the value of ∂Vex/∂x at the sad-
dle point is larger than that of ∂Vx/∂x (Fig. 3). The
higher the electron viscosity νe, the smaller the region
of steep gradients of ω but the larger the value of ω and,
consequently, the larger the value of ∂Vex/∂x. Accord-
ingly, as νe decreases, the reconnection rate may not
only be nondecreasing but may even increase.

Equations (3.8) and (3.5) give a clear insight into the
dependence of the reconnection time on the electron
and ion thermal conductivities and on the ratio of the
initial electron and ion pressures, pe and pi. In particu-
lar, that the reconnection time tn increases slightly with
increasing thermal conductivities is attributed to a
decrease in the quantities  in Eq. (3.8).

Note that the mechanism for hastening the recon-
nection process under investigation is associated with
the Hall effect. The properties of the configuration in
question are such that the terms associated with the Hall
effect in the generalized Ohm’s law can be expressed
through the electron and ion pressure gradients. As for
the term with ∇ pe in the generalized Ohm’s law, it turns
out to be unimportant in the RMHD approximation.

∂ψ
∂t
------- Ve —⋅( )ψ+ η jg– — νe— jg( ),⋅+=

Ve V α α̃ i pi t = 0( ) α̃ e pe t = 0( )+( ) e —ω×( ).–≈

α̃ i e,
In addition, note that many of the terms that were
discarded in deriving Eqs. (3.4)–(3.8) are small not
only because of the condition R @ 1 but also because of
the specific features of the plasma flow in the case T(t =
0) = const and ρ(t = 0) = 1. Thus, the fact that the func-
tions ρ, p, and Hg, roughly speaking, depend only on ω
implies that such terms as — · (ρ–1(e × —p) are close to
zero. For T(t = 0) ≠ const and/or ρ(t = 0) ≠ const, agree-
ment between the reduced and unreduced MHD models
is worse because Eqs. (3.4) and/or (3.5) in this case dif-
fer substantially from Eq. (3.6). In fact, calculations
show (see below) that, for T(t = 0) ≠ const and α ≠ 0,
the reconnection time depends strongly on the ratio of
the initial electron and ion pressures, pe and pi, even
when the electron and ion thermal conductivities are
the same. As for the RMHD model, it does not include
this dependence. The reason is that the retention of the
electron pressure gradient ∇ pe in the generalized
Ohm’s law, as well as the retention of the ion velocity
in Eq. (2.12) and of the electron velocity in Eq. (2.13),
goes beyond the accuracy of this reduced model. Also,
for T(t = 0) ≠ const, the plasma density can deviate from
unity by almost 30%, whereas, for p(t = 0) = const, this
deviation does not exceed 10%. All this shows that it is
expedient to solve the problem about the development
of tearing instability in a tokamak by using unreduced
MHD models.

3.3. Two-Fluid MHD Model: 
The Case T(t = 0) ≠ const and ρ(t = 0) = 1

For α  = 0, the poloidal magnetic field and poloidal
plasma velocity in the case T(t = 0) ≠ const and ρ(t =
0) = 1 behave in essentially the same manner as in the
case T(t = 0) = const. But for α ≠ 0, the field, as well as
the velocity, in these two cases exhibits qualitatively
different behaviors.

For α ≠ 0 and for low values of χ||i, the plasma
motion in the nonlinear stage of reconnection is irregu-
lar: new magnetic islands are observed to appear and
disappear (Fig. 4), several local maxima form in the
current distribution within the current sheet, and the
maximum current density varies nonmonotonically
over time. The parameter Rp(t), too, can exhibit a non-
monotonic behavior. In this case, however, the recon-
nection is complete; i.e., on sufficiently long time
scales, we have Rp = 1.

The duration of the nonlinear reconnection stage in
the case T(t = 0) ≠ const is far longer than that in the
case T(t = 0) = const. In certain situations (e.g., in the
case of pe(t = 0) = 0 and of low values of χ||i and νe), the
reconnection time tn for α ≠ 0 can substantially exceed
tn for α = 0. This can be exemplified by reference to the
numerical results.

We consider the case such that pe(t = 0) = 0 and α =
0.1. For νe = 10–9 and χ||i = 5, the reconnection time is
about tn ≈ 209. For one-quarter of this νe value, the tn
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
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Fig. 4. Distributions of the current density jg and total plasma pressure p and contour lines of ψ in the nonlinear stage of reconnection

at T(t = 0) ≠ const for α = 0.1, νe = 2.5 × 10–10, χ||i = 5, and pe(t = 0) = 0.
value is essentially the same. Note that, for these two
values of νe, and for α = 0, the reconnection time tn is
equal to 140 and 193 Alfvén times. The duration of the
nonlinear reconnection stage depends sensitively on the
value of χ||i . For instance, for νe = 10–9 and χ||i = 2, we
have tn ≈ 278, and, for χ||i = 100, we have tn ≈ 95.

For a low χ||i value, the time tn in the case pe(t = 0) =
pi(t = 0) is appreciably shorter than in the case pe(t = 0) =
0. Thus, for α = 0.1, χ||i = 5, and pe(t = 0) = pi(t = 0), the
reconnection time is tn = 100. For χ||i = 100, the reconnec-
tion time is nearly the same as in the case pe(t = 0) = 0.
It should be stressed that, unlike in the case pe(t = 0) = 0,
the reconnection process in the case pe(t = 0) = pi(t = 0)
is also hastened at a low value of the electron thermal
conductivity, χ||e = 5.
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This dependence of the reconnection time tn on the
parameters of the problem can be partially explained by
reference to RMHD equations (3.4)–(3.7). In the case
T(t = 0) ≠ const (in contrast to the case T(t = 0) = const),
an essential role is played by a hot plasma core, which
is transported toward the neutral surface during the evo-
lution of the plasma flow. This gives rise to steep pres-
sure gradients in the vicinity of the saddle point in a
direction perpendicular to the current sheet. Accord-
ingly, the electron velocity Ve acquires a large compo-
nent,

(3.9)

along the lines of constant temperature. This compo-
nent sets an island into rotation (Fig. 4). A more impor-

αρ 1– e —Hg×( ) α e —p×( )–≈
≡ –αρ e —T×( ) αT e —ρ×( ),–
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tant point is that such a velocity field breaks the struc-
ture of a plasma flow in which antiparallel magnetic
fields are transported toward one another to meet at the
saddle point. In some cases, the result is that, for α ≠ 0,
the reconnection process proceeds at a far slower rate
than it does for α = 0. Roughly speaking, the azimuthal
component of the electron velocity Ve acts to expel the
magnetic field from the vicinity of the saddle point,
thereby preventing it from reconnecting.

The rotation of an island and the slowing of recon-
nection are attributed to the temperature gradients. We
emphasize that, in the nonlinear stage of development
of the plasma flow, the values of these gradients are
determined not so much by the initial temperature gra-
dients in the vicinity of the neutral surface as by the dif-
ference between the temperatures at the plasma center
and in the vicinity of the neutral surface at t = 0, i.e., by
the value of the parameter p1.

The effect of the longitudinal thermal conductivity
is to equalize the temperature T along the magnetic
field. Consequently, the higher the coefficient χ||, the
smaller the term –αρ(e × —T) in relationship (3.9) and,
accordingly, the less the extent to which the reconnec-
tion process is slowed. As a result, as νe decreases, the
reconnection time tn increases until it becomes long
enough for the temperature T to be equalized along the
magnetic field. As νe increases further, the duration tn of
the nonlinear reconnection stage changes only slightly.

There is as yet no simple explanation of why the
reconnection time tn for low χ||i values in the case pe(t =
0) = pi(t = 0) is shorter than that in the case pe(t = 0) =
0. It was pointed out earlier that, according to the
RMHD model, these two cases should not differ funda-
mentally from one another. The difference may stem
from the fact that the equation for the electron pressure
contains Ve rather than V. Therefore, the distributions
of p will be different for different ratios between pe(t =
0) and pi(t = 0). Hence, according to approximate equa-
tion (3.7), which is well satisfied for all the parameter
values used in our numerical calculations, the poloidal
magnetic field flux ψ, too, will behave in different
ways. The mechanism for hastening the reconnection
process is again associated with the Hall effect and with
the properties of the flow under consideration that fol-
low from inequalities (3.2). The dependence of tn on the
ratio between pe(t = 0) and pi(t = 0) can also be attributed
to the presence of the electron pressure gradient ∇ pe in
the generalized Ohm’s law with pe(t = 0) ≠ 0. It is
impossible to distinguish between the Hall effect and
the electron pressure gradient effect in the generalized
Ohm’s law.

3.4. Two-Fluid MHD Model: The Case T(t = 0) ≠ const 
and ρ(t = 0) ≠ const

In the case ρ(t = 0) ≠ const, the temperature T and
density ρ behave in the same manner. A high-density
plasma core is transported toward the neutral surface
and acts to slow the reconnection process. The density
of the plasma, however, does not depend on its thermal
conductivity. This is why, as compared to the case α =
0, the reconnection process can also be significantly
slowed when the plasma heat conductivity along the
magnetic field is high. Thus, for χ||i = 100, pe(t = 0) = 0,
and ρ1 = 0.3, we have tn(α = 0.1)/tn(α = 0) = 265/131 >
1, in contrast to the case ρ(t = 0) = 1.

For ρ(t = 0) ≠ const, as well as for ρ(t = 0) = 1, the
time tn in the case pe(t = 0) = pi(t = 0) is less than that in
the case pe(t = 0) = 0. However, in all calculation ver-
sions in which the spatial variation in the plasma den-
sity at the initial time is sufficiently large, the time tn is
characteristically longer than that in the case ρ(t = 0) =
1. Thus, for α = 0.1, νe = 10–9, χ||i = 5, and pe(t = 0) =
pi(t = 0), we have tn = 100 in the case ρ(t = 0) = 1 and
tn = 200 in the case ρ(t = 0) ≠ const (ρ1 = 0.3). More-
over, the lower the peripheral plasma density ρ1, the
longer the time tn.

4. VALUES OF THE DIMENSIONLESS 
PARAMETERS

Here, we examine how well the above numerical
results correlate with the experimental data. To do this,
we consider parameter values typical of tokamaks: Hz =
25 kG, Te ≈ Ti = 1 keV, n = 1014 cm–3, a = 50 cm, and
R0/a = 4. In this case, the Alfvén speed is VA = 5.5 ×
108 cm/s, the electron and ion thermal velocities are
VTe = 1.3 × 109 cm/s and VTi = 3.1 × 107 cm/s, the Alfvén
time is tA = a/VA = 8.4 × 10–8 s, and the Hall parameter
is α = 0.05. The characteristic time of the tearing insta-
bility is ~10–4 s, or ~1200 in dimensionless units. Let us
estimate the dimensionless transport coefficients for
these parameter values.

For a collision frequency equal to that of Coulomb
collisions, the longitudinal (with respect to the mag-
netic field) thermal conductivities χ|| and the longitudi-
nal electron viscosity ν|| are unrealistically high (the
collisionless limit). In [22], these transport coefficients
were estimated in investigating a microinstability of the
drift type. In the case of interest to us, namely, for low
collision frequencies and slow plasma flows, the esti-
mates in dimensional form read ν||j ~ χ||j ~ VTjl||, where
VTj is the thermal velocity of the particles of species j
(j = e for electrons and j = i for ions), and l|| is the char-
acteristic scale length of the perturbation along the mag-
netic field. These estimates correspond to the maximum
possible values of the transport coefficients in question
that were obtained from the following consideration:
The values of ν||j and χ||j should not exceed a certain
value D such that the time required for a perturbation
described by the equation ∂f/∂t = D((H/|H|) · —)2f to
propagate a distance l|| is shorter than the time required
to pass this distance with the thermal velocity.
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In dimensional form, we have  ~ (Hs/Hz) ,
where rn ≈ a/2 is the radius of the neutral surface. The
dimensionless thermal conductivities can then be esti-
mated by

With allowance for the fact that, in the configuration
under analysis, the maximum value of the ratio Hs/Hz in
the region where the plasma motion is most intense is
about 0.013, the dimensionless electron and ion ther-
mal conductivities are approximately equal to χ||e ~ 90
and χ||i ~ 2. In the vicinity of the neutral surface, we
have Hs  0 and the thermal conductivities χ||j are
higher.

Analogously, the dimensionless electron viscosity
can be estimated by

where me is the mass of an electron. In this estimate, we
took into account the fact that the coefficient ν||e corre-
sponds to a viscous force that is proportional to the sec-
ond derivative of j along the magnetic field, whereas in
the present paper, a model expression for viscous terms
is used in which transverse (with respect to the mag-
netic field) derivatives play a governing role. The ratio
between the transverse and longitudinal gradients is
proportional to Hs/Hz. In the vicinity of the neutral sur-
face, we have Hs  0 and the electron viscosity νe is
lower.

It should be noticed that, when the instabilities,
which always increase the effective collision frequency,
are taken into account, the electron viscosity νe can
only be lower. Note also that, in [22], the plasma con-
ductivity was estimated to be two times that in the case
of Coulomb collisions, η ~ 10–8. Accounting for the
anomalous collision frequency can only raise the
plasma conductivity η.

5. CONCLUSIONS

An analysis of the results presented in Sections 3
and 4 shows that, with the electron viscosity taken into
account, the fast rate of reconnection can be explained
even in a one-fluid MHD model. The duration of the
reconnection process was calculated to be about 140
Alfvén times, which is one order of magnitude shorter
than that observed in experiments. We emphasize that
the viscous terms are described here by isotropic model
expressions. It cannot be excluded that the actual value
of the electron viscosity differs substantially from the
νe value used in our study. However, since the depen-
dence of the reconnection time tn on νe is weak (tn ~

), these factors are unlikely to substantially alter
the final results.

l||
1–

rn
1–

χ||j 2 VTj/V A( ) l||/a( ) 2 VTj/V A( ) Hz/Hs( ).∼ ∼

νe me/M( )δi
2ν||etA Hs

2
/Hz

2( )/a
4∼

∼ me/M( )α 2
Hs/Hz( ) VTe/V A( ) 4.2 10

8–
,×∼

νe
1/4–
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In the case T(t = 0) = const and ρ(t = 0) = 1, the Hall
effect greatly reduces the reconnection time. Moreover,
this time is independent of transport coefficients.

In the case T(t = 0) ≠ const and/or ρ(t = 0) ≠ const,
the Hall effect can substantially increase the reconnec-
tion time in comparison to that for α = 0. The particular
value of tn depends on the ratio between the central and
peripheral initial temperatures T, the ratio between the
central and peripheral initial densities ρ, and on the
thermal conductivity. It is notable that, whereas in the
case T(t = 0) ≠ const, the reconnection rate decreases
substantially as χ|| increases, in the case ρ(t = 0) ≠ const,
this rate is independent of the thermal conductivity.
Note also that, in the case T(t = 0) ≠ const and/or ρ(t =
0) ≠ const, the reconnection process is nonuniform
(nonmonotonic) in character: it proceeds through the
generation of magnetic islands and the onset of several
local maxima in the current density within the current
sheet. In addition, the parameter Rp, which character-
izes the portion of the magnetic flux that has undergone
reconnection, behaves as a nonmonotonic function of
time. It may well be that, when the dependence of νe

and η on the plasma temperature is taken into account,
such factors will terminate the reconnection process
(i.e., the reconnection will be incomplete [1–3, 9])
because of the current collection effect [23].
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APPENDIX

The scalar and vector products of the vectors with
components (2.3) have the form

where G = 1 + r2/R2.
The expressions for the differential operators are

a b⋅( ) arbr G
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asbs agbg+( ),+=

a b×( )r G
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The components of the curl operator are given by
the formulas

In terms of a unit vector e such that er = es = 0 and
eg = 1, the r and s components of the curl operator are
written as

Note also the relationship

where
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Abstract—The absolute VUV and soft X-ray (hν > 100 eV) yield from a micropinch discharge is measured for
a fixed current of 150 kA. The current scaling in the range of 30–250 kA is found for a number of the discharge
parameters: the VUV and soft X-ray yield, the electron temperature, the effective temperature of suprathermal
electrons, and the energy of bremsstrahlung emission from thermal electrons. The experimental data are in good
agreement with the simulations performed by using the model of radiative collapse in fast Z-pinches in plasmas
of high-Z elements. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Interest in fast Z-pinches in plasmas of high-Z ele-
ments is related to the formation in them of a dense
(ne > 1019 cm–3), hot (Te ~ 1 keV), multiply ionized
plasma acting as an efficient source of high-power
VUV and soft X-ray (SXR) emission.

A micropinch discharge can be produced in com-
pact devices that are relatively simple in design and
fairly reliable in operation [1–3]; this makes such dis-
charges very attractive for various applications.
Micropinch SXR sources have been used in developing
X-ray lithography for replicating VLSI chips [4] and
contact X-ray microscopy of biological objects [5, 6].
The effect was discovered of polishing high-tempera-
ture superconducting films exposed to VUV radiation
from micropinch plasma [7].

The development of a radiation source for a particu-
lar application necessitates optimization of the dis-
charge parameters in accordance with the required per-
formance data of the source: the source size, the radia-
tion yield, the radiation spectrum, the possibility of
controlling the source parameters, etc. This makes it
necessary to study the source characteristics over a
wide range of the discharge parameters and to develop
a reliable, well-grounded numerical model for describ-
ing the processes occurring in a discharge.

At present, a host of experimental data on highly
emissive plasmas of fast Z-pinches are most adequately
described (at least for currents of <1 MA) by the so-
called radiative collapse model. It was shown in [8]
that, for a plasma focus in hydrogen or deuterium at
currents above 1.6 MA (the Pease–Braginskii critical
current), bremsstrahlung losses lead to a reduction in
the constriction radius (in principle, down to zero).
However, the absorption of radiation and the heating
caused by anomalous resistance can impede radiative
collapse. In [9], this concept was extended to the case
of multiple ionization in the plasma of a low-induc-
1063-780X/05/3108- $26.00 0677
tance vacuum spark. Here, the generation of recombi-
nation and line emission (in addition to bremsstrahlung
emission) leads to a sharp decrease in the critical cur-
rent. Thus, for discharges in iron vapor, both the mea-
sured and theoretically predicted critical currents are
equal to 50 kA [10]. For currents above 50 kA, the dis-
charge plasma column undergoes sausage instability. In
the constrictions, ≤10-µm hot plasma spots arise that
are highly emissive in the X-ray spectral range [11] (the
so-called micropinches [12]).

The aim of this study was to compare the measured
and calculated emissive characteristics of fast Z-pinches
in plasmas of high-Z elements, as well as to determine
how these characteristics depend on the discharge cur-
rent, which is one of the most important discharge
parameters. A comparison between the experimentally
obtained current scaling and theoretical predictions
allows one to better estimate the reliability of the theo-
retical model than does an analysis of experiments per-
formed within a narrow range of parameters.

2. EXPERIMENTAL TECHNIQUE

The experiments were performed in a low-induc-
tance vacuum spark (LIVS) facility powered from a
high-voltage capacitor bank [13]. The current rise time
was T/4 ≈ 2 µs, and the maximum discharge current
was varied from 30 to 250 kA. The discharge chamber
was pumped down to a pressure of 10–4 torr. The work-
ing medium was the erosion products of the iron elec-
trodes (conical anode and plane cathode). The main dis-
charge was triggered by producing an auxiliary low-
current discharge between the electrodes. The
micropinches were observed at the time close to the
maximum of the discharge current.

The discharge radiation energy in a wide spectral
range was measured with a thermocouple calorimeter.
The radiation was received by a 8-mm-diameter plate
© 2005 Pleiades Publishing, Inc.
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made of a blackened lead foil, to the rear side of which
the “hot” ends of a copper–constantan thermocouple
were fastened with a heat-conducting glue. The “cold”
ends were glued to a massive metal brick. An important
advantage of this calorimeter was the linearity of its
characteristic throughout the entire energy range under
study. The calorimeter was calibrated using a pulsed
laser and an IMO-2I standard radiation detector. The
amplitude of the calorimeter signal was measured by a
microvoltmeter.

The radiation detector was placed inside the dis-
charge chamber. To reduce the noise level, a ferrite sta-
bilizer was introduced in the supply circuit of the
microvoltmeter and an LC filter was installed at its
input. The cases of the calorimeter and the discharge
chamber were galvanically decoupled, and the micro-
voltmeter case was grounded through a separate earth
lead that was uncoupled from the main grounding mat
of the facility. The noise level was determined by mea-
suring the calorimeter signal in the course of a test dis-
charge during which the radiation detector was
screened. It was found that the noise level was no
higher than 10–15% of the useful signal in the spectral
range under study.

To study the radiation spectrum, we used a set of
absorption and band-pass filters made of 2- to 20-µm
metal (Al, Cu) foils, 0.25- to 1-µm Zapon films, and
1-mm-thick LiF plates. The filters were set in front of
the radiation detector and were protected from being
damaged by the discharge plasma with a fine-mesh grid
(with a mesh size of 8 µm and transmission coefficient
of 50%) placed near the discharge. The reflected radia-
tion was suppressed using a blind system. The filter
transmittances were calculated by the data from [14,
15].

The radiation spectra within different wavelength
intervals were recovered by the method described in
[16] (a version of the Tarasko iteration algorithm [17]).
An advantage of this method is that filters made of dif-
ferent materials can be used.

The discharge was monitored using the following
diagnostics: a vacuum and an air pinhole camera placed
inside and outside the vacuum chamber, respectively, to
measure the spatial structure of the emitting plasma in
the photon energy ranges of hν ≥ 1 keV and hν ≥ 3 keV;
a B-dot probe to monitor the time derivative of the dis-
charge current; and a planar vacuum photodiode to
monitor radiation in the photon energy range of hν ≥
10 eV.

The measurement data are represented as functions
of the discharge current amplitude.

3. ABSOLUTE VUV AND SXR YIELD

Let us first estimate the expected emissive charac-
teristics of the LIVS plasma and compare them to the
experimental results. It is obvious that it makes no
sense to construct current scalings if there is no satis-
factory agreement between theoretical and experimen-
tal data at least at one value of the discharge current.
Note that the dependence of the VUV and SXR radia-
tion yield on the discharge current changes substan-
tially when the current exceeds its critical value equal
to 50 kA, i.e., when the micropinch regime is achieved.
The estimates will be made for a 150-kA discharge in
Fe vapor, for which there are available literature data
[18–20].

Three stages can be distinguished in the process of
the discharge plasma pinching: the “large” pinch (LP)
of the plasma column before the onset of sausage insta-
bility, a micropinch produced after the first compres-
sion (MP1), and a micropinch produced during the sec-
ond compression (MP2) in the course of the further
development of the constriction. The plasma parame-
ters in these stages are as follows:

Te ≈ 20 eV, ne ≈ 5 × 1019 cm–3, Z ≈ 3, r ≈ 10–1 cm,

h ≈ 5 × 10–1 cm, and τ ≈ 5 × 10–7 s in the LP stage;

Te ≈ 40 eV, ne ≈ 1021 cm–3, Z ≈ 6, r ≈ 10–2 cm, 

h ≈ 10–1 cm, and τ ≈ 4 × 10–8 s in the MP1 stage; 

and Te ≈ 103 eV, ne ≈ 1024 cm–3, Z ≈ 20, r ≈ 5 × 10–4 cm, 
h ≈ 10–3 cm, and τ ≈ 10–10 s in the MP2 stage.

Here, Te is the electron temperature; ne is the elec-
tron density; Z is the average ion charge number; r and
h are the pinch radius and height, respectively; and τ is
the lifetime of the pinch plasma.

We begin by estimating the VUV radiation yield in
the photon energy range 10 < hν < 100 eV. The mean
free path of the line emission photons (hν ≈ (1–3)Te)
emitted from the plasma collapsing with the speed of
sound is on the order of [21]

 [cm]

(here and below, the temperature is in eV and the den-
sity is in cm–3).

The parameter values l/rLP ≈ 10–1 and l/rMP1 ≈ 10–2

indicate that the VUV line emission is trapped. The
integral line emission power per unit length can be esti-
mated by the formula accounting for the self-absorp-
tion of radiation [21]:

where Ql is in W/cm and I is in MA.

The estimated total line emission yield is  ≈ 3 J

and  ≈ 1 J, which is much lower than the measured
VUV yield (EVUV = 22–32 J).

To estimate the specific power of recombination
emission, we use the approximate formula for the pho-
torecombination rate [22] averaged over a Maxwellian

l 10
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ZTe
1.5
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distribution (assuming that the relaxation time of the
electron distribution is short enough):

where  is in cm3/s, A and χ are the parameters of
the analytic approximation,  is the energy of the ion

in the ground state,  is a factor depending on the
quantum numbers of the angular momenta of the γ0
level (here, this factor is close to unity), and Ry is the
Rydberg constant. The approximation parameters and
the  value necessary were taken from [23].

The specific power of recombination radiation was
estimated by the formula [22]

where ni is the density of ions in the ground state. The
bremsstrahlung power was estimated in the Kramers
approximation [24]:

The resulting estimates for the yields of recombination
and bremsstrahlung emission in the VUV spectral

range are  ≈ 30 J,  ≈ 10 J,  ≈ 10 J, and

 ≈ 1 J.
The excess of the calculated VUV yield over the

measured one can be only partially explained by the
inaccuracy of the above estimates because of the too
large discrepancy between the calculated radiation
yield from the LP plasma and the experimentally
observed two- to threefold increase in the radiation
intensity after passing to the micropinch regime
(Fig. 1). The overestimated VUV yield is apparently
related to the overestimation of the LP plasma density
as compared to its actual value [25].

Let us now estimate the SXR yield in the photon
energy range hν ≥ 100 eV. This radiation is mainly
emitted from the micropinch plasma during the second
compression, when the L shell of Fe ions begins to be
ionized. The estimated integral yield of recombination
and bremsstrahlung emission during the second com-

pression is  ≈  ≈ 10–2 J. In this stage, the line
emission is no longer trapped and the mean free path of
the line emission photons is comparable to the
micropinch size lMP2 ≈ 10–3 cm. The integral yield of
line emission in an optically thin plasma can be esti-
mated from the expression for the volume power of
such radiation [21]:

v σr〈 〉 10
14–

Q̃r Eγ0
/Ry

1/2
Gr β( ),≈

β Eγ0
/Te,=
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This estimate gives a line emission energy of  ≈
10 J, which is close to the measured SXR yield, ESXR =
12–20 J. It should be noted that this estimate accounts
not for the entire spectral range hν ≥ 100 eV but only
for the L-sell emission with hν ≥ 600 eV. A certain con-
tribution to the SXR line emission is made by the
micropinch plasma heated after the first compression.
The contribution from a single line can be estimated
from the expression [26]

where BP is the intensity of Planckian radiation into
unit solid angle, (∆ω0)eq is the equivalent width of a
Lorentzian line, Γ ≈ 10–2ω0 is the impact broadening of
the line (here, the Doppler broadening is ~10–4ω0), κ0 ≈
λniγ/Γ is the absorption coefficient in the center of the
resonance line, λ0 = 2πc/ω0, c is the speed of light, r is
the constriction radius, and γ is the intrinsic line width.

The spectral range hν ≈ 100–600 eV embraces the
resonance lines of ten iron ions (from FeVII to FeXVI)
[27], whose total contribution to the SXR yield is on the
order of 5 J.

Thus, we may conclude that the results obtained in
the radiative collapse model [9, 18, 19] agree satisfac-
torily with the measured VUV and SXR yield from a
micropinch discharge for the given value of the dis-
charge current.

4. CURRENT SCALING
In [28], based on the concepts of [9], the problem of

micropinch dynamics that allowed analytic solutions
was formulated and the relations between the discharge
current and the main plasma parameters were derived.

El
MP2

Iω0
4πBP ω0( ) ∆ω0( )eq≈

=  4πBPΓ πκ0r 1 "ω0/Te–( )exp–[ ]{ } 1/2
,

100

10

50050
5

50

I, kA

EVUV, J

Fig. 1. VUV yield from the LIVS plasma vs. discharge cur-
rent amplitude Imax. The measurement result obtained for
Imax = 150 kA is shaded.
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In what follows, we will use the following of these rela-
tions:

where r is the micropinch radius during the second
compression, q is the maximum linear power of line
emission during the second compression, Nc and rc are
the critical linear density N = πr2ni and the pinch radius
at which the constriction region becomes transparent to
the line emission, and τ is the micropinch lifetime in the
second compression.

We will use the above relations to estimate the X-ray
line emission yield during the second compression as a
function of the discharge current. In our experiments,
the parameters of the electrodes and the discharge cir-
cuit were chosen such that the micropinch formed at the
instant of the maximum discharge current. For the
X-ray line emission yield as a function of the discharge
current, we have

Te I
12/17

, ni I
2
, r I

6/17–
, ṙ I

16/17–
,∼ ∼ ∼ ∼

Nc I
22/17

, rc I
16/17

, q I
46/17
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ESXR qrτ I
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.∼≈
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ESXR, J
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~ I28/17

~ I50/17

Fig. 2. SXR yield from the LIVS plasma vs. discharge cur-
rent amplitude Imax. The measurement result obtained for
Imax = 150 kA is shaded.
In [28], it was supposed that the plasma radiation time
corresponds to the compression time determined by the
Alfvén velocity

rather than the micropinch lifetime τ. In this case, we
obtain the following estimate:

which is in better agreement with the measured depen-
dence of the SXR yield on the discharge current (see
Fig. 2). The measurement results indicate that the
increase in the discharge current probably leads to a rel-
ative decrease in the contribution from the final stage of
the second compression, when the plasma density is
maximum.

Let us consider a simplified model of a quasi-equi-
librium pinch under the following conditions [29]:

(i) The Bennet equilibrium condition is satisfied:

where ma is the atomic mass of the plasma-forming ele-
ment and ρ is the plasma mass density in the constric-
tion region.

(ii) There is a balance between Joule heating and
radiative losses:

where a is the Stefan–Boltzmann constant, σ is the
classical plasma conductivity, Λ ≈ 20 is the Coulomb
logarithm, and lR is the Rosseland mean free path.

(iii) The constriction radius is determined by the
Rosseland mean free path in plasma:

 [cm],

where Te is in eV and ρ is in g/cm3.
To close the above set of equations, we supplement

it with an expression relating the average ion charge
number Z to the plasma electron temperature Te. As a
result, we obtain

 [cm],

 [eV],
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where I is in MA.
Substituting Z ≈ 6 and I = 0.15 MA into these rela-

tionships yields r ≈ 100 µm and Te ≈ 50 eV. This agrees
well with both the results obtained in the radiative col-
lapse model for the first compression and the experi-
mental data from [11, 30]. For Z ≈ 20, which corre-
sponds to the second compression, we have r ≈ 10–4 µm
and Te ≈ 105 eV. Such a small value of the constriction
radius contradicts the MHD mechanism for pinching
and disagrees with the predictions of the quasi-equilib-
rium pinch model.

In [31], relationships were derived that allow one to
reliably estimate the Rosseland mean free path in a
dense hot plasma with multicharged ions. The substitu-
tion of the measured parameters of the micropinch
plasma during the second compression [32–34] into
these relations shows that the Rosseland mean free path
is several orders of magnitude larger than the measured
micropinch size [11, 35].

Therefore, a decrease in the plasma transparency to
its own emission during the second compression cannot
suppress the sausage instability and the simplified
model of a quasi-equilibrium pinch is capable of
describing the process of micropinching only until the
onset of anomalous plasma resistivity.

Let us now consider the simplified model of a quasi-
equilibrium pinch with allowance for the measured
dependence of the electron temperature on the dis-
charge current (Fig. 3):

We note that this dependence is close to that predicted
in [28]. In this case, the average ion charge number is

and, accordingly, the X-ray line emission yield from a
micropinch is

which is close to the measured dependence. Appar-
ently, the Z value changes insignificantly with current
during the second compression. Ignoring variations in
Z, we obtain the dependence

which is in better agreement with the dependence
observed at relatively high currents.

It was shown in [36] that, when the recorded
micropinch X-ray emission with hν > 1 keV is inte-
grated over a time interval much longer than the life-
time of the dense hot plasma in the second compres-
sion, the character of the absorption curve is mainly
determined by bremsstrahlung emission. Moreover, the
analysis of the absorption curve in the spectral ranges
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of 1 < hν < 5 keV and 5 < hν < 25 keV gives different
values of the effective plasma electron temperature.
Therefore, it is necessary to use a two-temperature
approximation in which the electron component is
assumed to consist of the thermal and suprathermal
components.

The experimental current scalings for the effective
temperatures of the two electron components were
obtained from the absorption curves in aluminum and
copper (Figs. 3 and 4). We used two sets of absorption
filters such that the cutoff energy of the first set lay in
the photon energy range of 1–5 keV, whereas that of the
second set lay in the photon energy range of 5–25 keV.

It is likely that the effective electron temperature
measured from bremsstrahlung emission in the photon
energy range of 1–5 keV corresponds to the plasma
temperature in the second compression. This is con-
firmed by the results of high-resolution spectroscopic
measurements of emission from multicharged ions
[20, 32].

It is of interest to find out how the bremsstrahlung
yield from the thermal electron component depends on
the discharge current. This will allow better under-
standing of the nature of the emission source observed
with the X-ray pinhole cameras. The bremsstrahlung
yield was determined from the absorption curve at the
point corresponding to the absorption filter of zero
thickness (zero cutoff energy).

Let us consider three possible mechanisms for the
generation of bremsstrahlung emission:

100
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50050

1

I, kA

Te
t, keV

5

0.5

~ I12/17

Fig. 3. Temperature of the thermal electron component
determined from the X-ray bremsstrahlung continuum vs.
discharge current amplitude.
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(i) Bremsstrahlung emission is generated in the
micropinch plasma during the second compression; in
this case, we have

Since the degree of ionization during the second com-
pression is close to its limiting value and dependent
slightly on the current at currents higher than the criti-
cal one, the specific radiation power is

and the bremsstrahlung yield is

(ii) Bremsstrahlung emission is associated with the
hot electrons that are heated in the micropinch during the
second compression and drift in the region where the
plasma parameters correspond to those immediately pre-
ceding the second compression. In this case, we have

(iii) Bremsstrahlung emission is generated by the
hot electrons that escape from the constriction region
after the decay of the micropinch plasma to the cold
peripheral plasma, whose parameters depend slightly
on the current. In this case, we have
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Fig. 4. Effective temperature of the suprathermal electron
component determined from the X-ray bremsstrahlung con-
tinuum vs. discharge current amplitude.
If we also consider the increase in the peripheral plasma
density with increasing discharge current, the depen-
dence of Ebr on I will be even stronger.

A comparison to the measurement data (see Fig. 5)
shows that the second model for the generation of
bremsstrahlung emission best fits the experimental
results. This model also accounts for the fact that the
micropinch size determined from pinhole images
obtained in the same spectral range is sometimes larger
by one order of magnitude than that predicted by theory.

5. CONCLUSIONS

The measured absolute VUV and SXR yield from
the micropinch plasma in an LIVS at a discharge cur-
rent of 150 kA agrees well with the predictions of the
radiative collapse model.

For the first time, the current scaling for the VUV
and SXR yield from the micropinch plasma in an LVS
is determined experimentally.

A comparison between the measured and theoreti-
cally predicted current scalings for the SXR yield
shows that an increase in the discharge current leads to
a decrease in the relative SXR yield in the final stage of
the second compression, i.e., to a decrease in the
plasma density and temperature.

The plasma electron component in the region of
radiative collapse is in a strongly nonequilibrium state.
It is shown for the first time that an increase in the dis-
charge current leads to an increase in the ratio between
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Fig. 5. X-ray bremsstrahlung yield from the thermal elec-
tron component vs. discharge current amplitude.
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the temperature  of the thermal component and the

effective temperature  of the suprathermal compo-

nent. The measured current scaling for  is close to
that predicted by the radiative collapse model.

It is confirmed experimentally that the energy trans-
fer via hot electrons can affect the structure of X-ray
sources in a micropinch [36, 37].
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Abstract—A method for calculating and optimizing the composition of materials for soft X-ray sources used
in research on inertial confinement fusion is described. For a target-converter, a material composition is deter-
mined with which the conversion of laser light into X radiation is highly efficient. A comparative analysis is
carried out of the efficiencies of generation of soft X-ray emission in the plasmas of some composite materials
of thin conductors (wires) used as loads in X- and Z-pinches. Numerical calculations of the optical plasma prop-
erties are reported whose results make it possible to judge the emissivity of plasmas of different materials. The
results obtained are compared to the data from other studies. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Theoretical and experimental research on inertial
confinement fusion (ICF) requires reliable knowledge
about the optical and transport properties of matter
under conditions of extremely high temperatures and
densities, in particular, about such plasma parameters
as thermal conductivities, light-absorption spectral
coefficients, and the Planck- and Rosseland-averaged
radiation mean free paths.

The determination of the optical plasma properties
is one of the most important problem in such lines of
ICF research in which soft X-ray (SXR) pulses are used
as energy pulses acting upon an ignition capsule.
Another important field of applications is the choice of
materials for X-ray sources in order to develop methods
for diagnosing dense plasmas.

From the standpoint of practical applications, the
following two methods for generating high-power SXR
pulses with parameters satisfying the ICF requirements
are now considered to be the most advanced: One of the
methods makes use of the conversion of laser radiation
acting upon a heavy-element target into X radiation.
The line of ICF research that is based on the conversion
of laser light into X radiation is called indirect compres-
sion. An X-ray converter is a separate part of an indirect
compression target—a hohlraum within which there is
a spherical capsule containing a fusion material. Laser
radiation is fed into the target through special holes in
the hohlraum and is focused at the hohlraum’s inner
surface in order that the X radiation produced can ignite
a fusion capsule positioned at the center of the hohl-
raum. The second method makes use of the generation
of an SXR pulse during the electric explosion of a set
of fine wires (a wire array).
1063-780X/05/3108- $26.00 0684
Of course, one of the most important tasks in the
X-ray-based lines of ICF is to choose materials for the
pulsed X-ray source and for the fusion capsule so as to
guarantee the required optical properties of the high-
temperature plasma produced. These properties should
ensure the maximum X-ray yield. The optical proper-
ties of the plasma produced from the fusion capsule
should in turn ensure the absorption of the incident
X radiation over its entire spectral range.

The optical properties of the plasma in different
ranges of its parameters are calculated based on such
theoretical plasma models as the Thomas–Fermi (TF)
model [1], the Hartree–Fock–Slater (HFS) model [2, 3],
the detail configuration accounting (DCA) method [4],
and the ion model (IM) [5]. The applicability ranges of
these models, as well as the accuracy of the results
obtained, were analyzed by Orlov and Fortov [6].

In studying the optical properties of a high-temper-
ature plasma, it was found that the emissive properties
of plasmas can be substantially changed by adding cer-
tain amounts of impurities of different chemical ele-
ments to the main target material. More recently, it was
realized that such additions can also be utilized to
increase the functional efficiency of materials used in
the X-ray-based lines of ICF. Thus, the radiation yield
from hohlraums made of a mixture of gold and gadolin-
ium is significantly higher than that from hohlraums
with a purely gold wall [7].

At the present stage of research, one of the problems
is to choose the composition of the material so as to
provide its optimal functional efficiency in using it for
one or another element of a fusion target. In order to
solve this problem, a method was developed based on
the IM of the plasma [5] and a highly productive com-
© 2005 Pleiades Publishing, Inc.



        

MODELING OF THE COMPOSITION OF MATERIALS 685

                                                                                                                                         
puter code was devised [8]. In [8], it was also proposed
to use a number of composite materials whose absorp-
tion coefficients for radiation in different spectral
ranges are high enough to satisfy the requirements for
the absorbers of X radiation in fusion capsules of indi-
rect compression targets. The method for choosing and
calculating the composition of materials for radiative
plasma targets that was proposed and approved in [8] is
used in the present study to optimize the composition of
materials for X-ray sources. We determine the mate-
rial’s composition for a target-converter of laser light
into X radiation and show that the energy conversion
efficiency of this material is higher than that of the com-
posite material proposed by Orzechowski et al. [7]. We
also carry out a comparative analysis of the energy con-
version efficiencies of a number of composite materials
of fine wires that are used as loads in X- and Z-pinches.
The analysis is performed in the optically thick and
optically thin plasma approximations, in which the
emissive plasma properties are determined, respec-
tively, by the Rosseland, lR, and Planck, lP, mean free
paths. We also present the results of numerical calcula-
tions of the Rosseland and Planck mean free paths in
the plasma of the materials under investigation.

2. THEORETICAL APPROACH

The main requirement for an X-ray source capable
of ensuring the compression of ICF targets is that the
radiation energy yield should be as high as possible.
Consequently, the emitting plasma should be optically
thick. However, in some cases (primarily, those associ-
ated with diagnostic applications), it is necessary to
solve the problem of achieving the maximum yield of
radiation from an optically thin plasma. This problem
arises, e.g., in creating a point source for X-pinch-based
X-ray radiography. In both cases, the spontaneous radi-
ation yield increases as the Rosseland (in an optically
thick plasma) or Planck (in an optically thin plasma)
radiation mean free path decreases in comparison to the
length of the emitting plasma.

Let us consider the main properties of the spontane-
ous radiation yield from optically thick and optically
thin plasmas.

2.1. Optically Thick Plasma

It is well known that the global parameters of the
plasma are related to its atomic composition. Let a
plasma consist of atoms and ions of a chemical element

with the nuclear charge Z and atomic weight  and let
its temperature and density be Θ and  (in g/cm3),
respectively. We are to analyze the optical properties of
a plasma whose length L is much greater than the Ros-
seland mean free path lR, L @ lR, in the case in which
the energy is transported by a radiatively driven heat-
conduction wave against an immobile plasma back-

Ã
ρ̃
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ground. For a semi-infinite plasma in one-dimensional
geometry (when the x coordinate runs through values
from zero to plus infinity), the time-independent heat-
conduction equation has the form

. (1)

The thermal conductivity is given by the formula k =

aclRΘ3, where a = , kB and " are Boltzmann’s

and Planck’s constants, and c is the speed of light. The
Rosseland mean free path is described by the expres-
sion

(2)

where u = "ω/Θ, with "ω being the energy of an X-ray
photon. Hereafter, we use the atomic system of units in
which Planck’s constant and the charge and mass of an
electron are equal to unity, " = 1, e = 1, and m = 1; in
this case, the units of length, time, and energy are equal,
respectively, to "2/(me2), "3/(me4), and me4/"2. The
function lu can be written in the form lu = 1/K(ω), where

(3)

and  is the number of atomic nuclei per cubic centi-
meter. We are describing the plasma in terms of the
Gibbs statistics. As subsystems for this statistical
approach, we can adopt spherical atomic cells of radius
r0, with a nucleus at the center. The subsystems, num-
bered by the index j, differ from each other by the sets
of occupation numbers of the bound (discrete) elec-

tronic states, { }, where α is a double subscript in
which the first index is the principal quantum number n
and the second is the orbital quantum number l. Each
subsystem also contains unbound (continuum) elec-
trons. The states of subsystems are regarded as the
states of plasma atoms and ions. In expression (3), the
notation Wj is used for the density of the atoms and ions

having the electron configuration { }. The value of
Wj is determined by the Gibbs distribution. The total
cross section for photon absorption, σ j(ω), is deter-
mined by the formula

(4)

as the sum of the cross sections for absorption in spec-

tral lines ( (ω)), for photoabsorption ( (ω)), and

for bremsstrahlung absorption ( (ω)). The processes
of scattering and stimulated emission also can be incor-
porated into formula (4). For a plasma containing atoms
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and ions of different chemical elements, the expression
for K(ω) is more complicated [9].

When the energy flux density j at x = 0 is prescribed,
the first boundary condition can be written as

(5)

The second boundary condition can be written at the
point x0 where the function Θ(x) is essentially zero,

(6)

Assuming that the temperature dependence of the Ros-
seland mean free path lR has the form lR(Θ) = AΘα, we

obtain k = CΘα + 3, with C = acA, and arrive at the fol-

lowing solution to heat-conduction equation (1):

(7)

where Θ0 = Θ(0) and  = .

It is obvious that the plasma emissivity B(Θ0) = a
increases with decreasing lR:

(8)

This relationship is valid when the energy lost in
hydrodynamic motion is insignificant, as is the case,
e.g., with the interaction of a short (picosecond) laser
pulse with solid matter of normal density or the interac-
tion of a nanosecond laser pulse with matter of low den-
sity (tens and hundreds of times less than the normal
density of metals [10]).

In order to determine the operation efficiency of an
indirect ICF target-converter based on the interaction of
nanosecond laser pulses with solid matter of normal
density, Orzechowski et al. [7] carried out numerical
hydrodynamic simulations of the emitting plasma of
the hohlraum wall. Based on the results obtained, they
derived an approximate expression, according to which
the spontaneous radiation yield from a hohlraum
increases in inverse proportion to the square root of the
Rosseland opacity kR, which is defined by the relation-
ship kR = 1/(lR ). This result agrees qualitatively with
solution (8) to the above model problem, although, in
[7], the rate of increase in the spontaneous radiation
yield with decreasing mean free path is somewhat
slower because the energy loss due to plasma motion
was taken into account. What is important, however, is
that both these estimates imply that the role of the cri-
terion of efficiency is played by the value of the ratio
between the Rosseland mean free paths in the original
material and in a candidate composite material that is
anticipated to be more efficient.

j k
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2.2. Optically Thin Plasma

The emissivity of an optically thin plasma is
described by introducing another type of the photon
mean free path. Let a one-dimensional plane plasma
slab have the thickness L, and let 0 ≤ x ≤ L. In the
absence of external sources, the energy flux j + coming
out of the slab through its right boundary is given by the
formula [11]

(9)

where the Planck mean free path lP is introduced
through the relationship

(10)

The range of applicability of this approximation is rep-
resented by the inequality L < lP.

We thus see that the plasma emissivity increases
with decreasing Rosseland and Planck mean free paths
in the cases of an optically thick and an optically thick
plasma, respectively. Consequently, the criterion for
comparing the efficiencies of materials for sources in
which the emitted radiation is the spontaneous radia-
tion from an optically thick and an optically thin plasma
can naturally be formulated in terms of the ratios of,
respectively, the Rosseland mean free paths and the
Planck mean free paths.

The Rosseland, lR, and Planck, lP, mean free paths
depend on the quantum-mechanical parameters of the
entire ensemble of plasma atoms and ions. In order to
calculate lR and lP, it is necessary to know the wave
functions and energy levels of all the atoms and ions, in
particular, all their excited states. An analysis of the
recent theoretical models for calculating these parame-
ters was carried out in [6] based on the density func-
tional theory, and a brief review of the models was
given in [12].

3. CALCULATED RESULTS AND DISCUSSION
3.1. Laser Radiation Converters

The first series of results refers to the composition of
materials of the hohlraum wall. We have already men-
tioned that, in order to increase the radiation yield,
Orzechowski et al. [7] proposed to use hohlraums with
walls made of a 50 : 50 gold–gadolinium mixture
instead of those with purely gold walls. Table 1 presents
the results of calculating the Rosseland mean free paths
for different materials on the basis of the IM of the
plasma [5] by the method described in [8]. The calcula-
tions were carried out for the density  = 1 g/cm3 and
for several different values of the temperature T. The
results included in the table refer to Au and to the com-
position Au : W : Gd : Pr : Ba : Sb = 25.7 : 23.1 : 18.1 :
10.0 : 10.4 : 12.7, which was determined by using a

j
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Table 1.  Rosseland mean free paths (in cm) calculated for different material compositions at a density of  = 1 g/cm3

T, eV Au Composition 1 Au55.61/Gd44.39 Au50/Gd50

150 3.21 × 10–4 1.29 × 10–4 2.49 2.46 × 10–4 1.30 2.47 × 10–4 1.29

200 4.57 × 10–4 1.53 × 10–4 2.98 3.29 × 10–4 1.39 3.29 × 10–4 1.39

250 5.01 × 10–4 1.61 × 10–4 3.11 2.88 × 10–4 1.74 2.89 × 10–4 1.73

300 5.75 × 10–4 1.87 × 10–4 3.07 3.76 × 10–4 1.53 3.89 × 10–4 1.48

350 6.35 × 10–4 1.92 × 10–4 3.31 4.25 × 10–4 1.49 4.37 × 10–4 1.45

ρ̃

lR
Au/lR

comp1 lR
Au/lR

comp2 lR
Au/lR

comp3
more elaborate method than that in [8]. Mathemati-
cally, this method ensures that the relevant iteration
scheme converges for essentially all physical condi-
tions. In Table 1, this composite material is denoted as
composition 1. The percentages in the expression for
the composition indicate the mass densities of the
chemical elements. Table 1 also presents the results for
two compositions of Au and Gd. The reason is that the
notation 50 : 50 can be used in different senses. When
there are equal numbers of Au and Gd atoms in a unit
volume, this notation refers to the composition Au :
Gd = 55.61 : 44.39, which is denoted as composition 2.
For equal mass densities of gold and gadolinium, the
composition in question is Au : Gd = 50 : 50, which is
denoted as composition 3. To avoid confusion, the
results of calculations carried out for the last two com-
positions are also included in Table 1.
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Fig. 1. Spectral absorption coefficients K(x) (in cm2/g) cal-
culated for pure Au (heavy curve) and composition 1 (Au :
W : Gd : Pr : Ba : Sb = 25.7 : 23.1 : 18.1 : 10.0 : 10.4 : 12.7)
(light curve) at a density of  = 1 g/cm3 and temperature of
T = 250 eV.

ρ̃
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Note, first of all, that these numerical results agree

well with those of [7]. For instance, the ratio /
obtained in [7] for a temperature of T = 250 eV is equal

to 1.67. Our calculations gave the values /  =

1.74 and /  = 1.73. Figures 1–3 show the spec-
tral absorption coefficients K(x) (in units of cm2/g) cal-
culated in the present paper as functions of x = "ω/T for
different material compositions and for a temperature
of T = 250 eV and density of  = 1 g/cm3. Figure 1 dis-
plays the spectral absorption coefficients calculated for
Au and for composition 1. We can see that, within the
energy range x = 3.5–8.5, the coefficient of spectral
absorption in pure Au is low, whereas, for composition
1, this energy range is superimposed by the spectral
lines of impurities. Figure 2 displays the spectral

lR
Au

lR
AuGd

lR
Au

lR
comp2

lR
Au

lR
comp 3

ρ̃
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x = "ω/T
0

Fig. 2. Spectral absorption coefficients K(x) (in cm2/g) cal-
culated for pure Au (heavy curve) and composition 2 (Au :
Gd = 55.61 : 44.39) (light curve) at a density of  = 1 g/cm3

and temperature of T = 250 eV.
ρ̃
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absorption coefficients calculated for Au and for com-
position 2. This composition is also seen to ensure that
the above energy range is superimposed by the impurity
spectral lines, but to a markedly lesser extent than in the
case of composition 1, as is illustrated by Fig. 3, which
depicts the spectral absorption coefficients calculated
for compositions 1 and 2. This circumstance explains

why the ratio /  decreases at temperatures
higher than and lower than T = 250 eV and why the

ratio /  also decreases in these two cases but to
a much lesser extent. In our opinion, these effects can
significantly influence the efficiency of the material.
Since the temperature in the hohlraum changes in both
time and space, the material should not only ensure the
desired value of the ratio of the mean free paths but
should also keep this value in the widest possible tem-
perature range.

lR
Au

lR
comp2

lR
Au

lR
comp 1
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2 3 4 5 6 7 8 9 10 11 12

x = "ω/T
0

Fig. 3. Spectral absorption coefficients K(x) (in cm2/g) cal-
culated for composition 2 (Au : Gd = 55.61 : 44.39) (heavy
curve) and composition 1 (Au : W : Gd : Pr : Ba : Sb = 25.7 :
23.1 : 18.1 : 10.0 : 10.4 : 12.7) (light curve) at a density  =

1 g/cm3 and temperature of T = 250 eV.

ρ̃

3.2. X- and Z-Pinch-Based Radiation Sources

Another group of results refers to the materials of
the wires for X- and Z-pinches. Table 2 presents the
Rosseland mean free paths calculated for a NiCr com-
position (Ni : Cr = 80 : 20) and a composition known as
Alloy 188 (Cr : Ni : Fe : Co : W = 21.72 : 22.92 : 2.24 :
39 : 13.93), and Table 3 presents the Planck mean free
paths calculated for the same compositions. The calcu-
lations were carried out for the temperature T = 1 keV
and the normal density  = , as well as for the

densities  = 0.1  and  = 10  at the same
temperature. For NiCr, the normal density is equal to
8.49 g/cm3, whereas for Alloy 188, it is equal to
9.05 g/cm3.

Figure 4 shows the spectral absorption coefficients
K(x) (in units of cm2/g) calculated in the present paper
for the NiCr composition and for Alloy 188. The calcu-

ρ̃ ρ̃normal

ρ̃ ρ̃normal ρ̃ ρ̃normal
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101
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Fig. 4. Spectral absorption coefficients K(x) (in cm2/g) cal-
culated for a NiCr composition (Ni : Cr = 80 : 20) (heavy
curve) and for a composition known as Alloy 188 (Cr : Ni :
Fe : Co : W = 21.72 : 22.92 : 2.24 : 39 : 13.93) (light curve)
at a density of  = 0.1  and temperature of T = 1 keV.ρ̃ ρ̃normal
Table 2.  Rosseland mean free paths (in cm) calculated for NiCr and Alloy 188 at a temperature of 1 keV

Density k = 

0.1 × 2.54 × 10–1 1.97 × 10–2 12.89

4.12 × 10–3 1.37 × 10–3 3.01

10 × 1.11 × 10–4 5.81 × 10–5 1.91

lR
NiCr lR

Alloy188 lR
NiCr/lR

Alloy188

ρ̃normal

ρ̃normal

ρ̃normal
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Table 3.  Planck mean free paths (in cm) calculated for NiCr and Alloy 188 at a temperature of 1 keV

Density k = 

0.1 × 1.16 × 10–2 2.83 × 10–3 4.06

2.99 × 10–4 2.16 × 10–4 1.38

10 × 3.29 × 10–5 1.78 × 10–5 1.84

lP
NiCr lP

Alloy188 lP
NiCr/lP

Alloy188

ρ̃normal

ρ̃normal

ρ̃normal
lations were carried out for the temperature T = 1 keV
and the density  = 0.1 . In analogy with the pre-
vious case, the coefficient of spectral absorption in
NiCr within the energy range x = 2.0–5.5 is relatively
low. For Alloy 188, this energy range is covered by the
spectral lines of impurities. Based on the results pre-
sented in Tables 2 and 3 and in Fig. 4, it can be con-
cluded that the composition of Alloy 188 provides a
higher efficiency for radiation yield than that of NiCr.

4. CONCLUSIONS
The results presented above demonstrate the possi-

bility of modeling and optimizing the composition of
materials for SXR sources in solving various problems
in ICF research. Theoretical methods based on calcula-
tions of the optical properties of a plasma of complex
ion composition can help to optimize the conditions of
experimental investigations aimed at choosing materi-
als for SXR sources and to make such experiments far
less expensive.
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Abstract—The problem of screening of the charge acquired by a dust grain in a two-temperature plasma is con-
sidered. The influence of the trapped ions on the screening effect and on the frictional force exerted on a dust
grain by an ion flow is investigated. It is shown that the ions trapped by a grain radically reduce the frictional
force in the ion flow because their distribution is determined by the temperature of the cold buffer gas. The
mechanism for the onset of the reactive force that accelerates the grain in the direction opposite to that of the
flow is explained. It is based on the momentum transfer from the flow of the ions that are additionally acceler-
ated in the grain field to the atoms of the buffer gas. As a result, the momentum carried by the charge-exchange
atoms out of the “ions + grain” system exceeds the momentum they have carried into the system; this gives rise
to a reactive force directed opposite to the ion flow (the negative frictional force). The magnitude of the reactive
force is estimated. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The problem of screening of the charge of a spheri-
cal body (a grain or a probe) in a nonmoving plasma has
been studied for many years, beginning with the pio-
neering papers by Langmuir [1], who obtained results
by using the Debye approximation for the distribution
of plasma particles around an external charge. Further
progress in solving this problem has been achieved with
the use of the orbit motion limited (OML) approxima-
tion, which was first introduced by Bernshtein and
Rabinovitz [2] for the case of monoenergetic ions and
was then thoroughly investigated by Al’pert et al. [3]
and Laframboise and Parker [4]. Recent progress in the
experimental study of a dusty plasma (see, e.g., [5–7])
has necessitated a more detailed analysis of this prob-
lem, especially for the case of a moving plasma. It
should be stressed that this analysis is aimed not at
introducing slight refinements in the existing theory but
rather at revealing the qualitative properties of the
screening effect.

Under certain conditions, a negatively charged dust
grain can trap a cloud of ions, which may have a sub-
stantial impact on the screening of the grain charge. In
recent years, the question of the influence of the weak
collisional relaxation of the ion component in a gas-dis-
charge plasma on the screening of the grain charge has
attracted much attention [8–10], although the possibil-
ity of the appearance of trapped ions was first pointed
out by Bernshtein and Rabinovitz [2]. In this context, it
is important to mention a book by Al’pert et al. [3], who
investigated a wide scope of problems about the inter-
action of a plasma with macroparticles and, in particu-
lar, considered the problem of determining the density
of the ions moving in finite orbits (using, as an example,
the results of solving the problem of satellite motion in
1063-780X/05/3108- $26.000690
a low-density plasma—a problem that was very impor-
tant in the past).

Possible accumulation of trapped (finite-orbit) ions
around a negatively charged grain was considered in
many papers [4, 11–13]. Goree [12] was the first to rec-
ognize that the number of trapped ions (and, accord-
ingly, their influence on the screening effect) is almost
independent of the collision frequency. Consequently,
even in an essentially collisionless plasma, very rare
collisions can lead to the accumulation of a large num-
ber of trapped ions around a dust grain because the low
rate of accumulation of trapped ions is compensated for
by their long lifetime in finite orbits.

Based on the results of self-consistent particle-in-
cell (PIC) simulations, Zobnin et al. [8] quantitatively
investigated the influence of trapped ions on the magni-
tude of the grain charge. They found that, under condi-
tions typical of most experiments on dusty plasmas,
trapped ions play a significant role in grain charging; in
this case, the OML approximation causes large errors.
On the basis of correct calculations, they, however,
came to the erroneous conclusion that the stronger the
collisional relaxation, the weaker the screening effect.

In solving the equations of a self-consistent OML
model, Lampe et al. [9] took into account trapped ions
and obtained a linear integrodifferential equation for
their balance. Their OML model, however, did not
involve any parameter describing the intensity of colli-
sional relaxation; in other words, they worked in the
limit of infinitesimally weak relaxation. They numeri-
cally solved the OML equations by iteration in order to
study the influence of trapped ions on the screening
effect. They realized that even a weak relaxation leads
to a qualitative change in the shape of the screened
potential, so the OML approximation without allow-
 © 2005 Pleiades Publishing, Inc.
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ance for trapped ions fails to be valid. Their numerical
simulations showed that the electron and ion distribu-
tions are close to those in the Debye approximation.

The influence of trapped ions on the screening effect
in a self-consistent OML model was also studied by
Bystrenko and Zagorodny [10], who revealed that,
under conditions typical of dusty plasma experiments,
trapped ions play an important role in the screening of
the grain charge. They took trapped ions into account
by introducing an explicit expression for their density
into Poisson’s equation and numerically solved the
resulting set of equations by a shooting method. In the
model used in that paper, the expression for the density
of the trapped ions as a function of the electric potential
contained a free parameter—the relative amount of these
ions. As in [9], the authors of [10] noted that even a very
weak collisional relaxation causes the grain screened
potential to become close to the Debye potential.

In the present paper, which continues the studies
reported in [14–17] (see also [18, 19]), results are pre-
sented from computer simulations that were carried out
in order to study the screening of the electric charge of
micron-size dust grains (macroparticles) in a dusty
plasma. Under conditions typical of experiments with
gas-discharge plasmas, the electron temperature is usu-
ally governed by the power supplied from an external
source (microwave radiation, discharge current, photo-
ionization, etc.), whereas the ions are in thermal equi-
librium with the cold atoms of the buffer gas. This is
why attention is focused on the case of two-temperature
plasmas (including moving plasmas). Results are
reported from numerical investigations of the screening
of the dust grain charge with allowance for the charge
fluctuations, the losses of charge carriers at the grain
surface, and the stochastization of plasma ions due to
their resonant charge exchange with the atoms of the
buffer gas.

2. FORMULATION OF THE PROBLEM 
AND MAIN APPROXIMATIONS

Let us consider a plasma consisting of singly
charged ions with a positive charge e and mass M and
of electrons with charge –e and mass m. Let there be an
immobile point grain with a negative charge –Z0e < 0 in
the plasma. Note that the grains in a dusty plasma usu-
ally acquire a negative charge, but when the electron
thermal emission is sufficiently intense, they can be
charged positively. In its vicinity, a point charge –Z0e

creates a spherically symmetric charged cloud of ions
and electrons. The plasma density in the cloud depends
only on the distance r from the point charge. Poisson’s
equation for the mean electric potential ϕ(r) of an
immobile point charge has the form

(1)∆ϕ– 4πe ni r( ) ne r( )– Z0δ r( )–[ ] .=
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In equilibrium, the density of the particles of species s
around an immobile charge obeys a Boltzmann distri-
bution,

(2)

where ns0 is the volume-averaged density of the parti-
cles of species s; Ts is their temperature; and zs = –1 and
1 for the electrons for the ions, respectively.

2.1. Debye Approximation

In the weak interaction approximation, zseϕ/Ts ! 1,
we can expand the exponential function in distribu-
tion (2) in a series and, to within first-order corrections,
obtain

(3‡)

(3b)

In this case, the general solution to Poisson’s equa-
tion (1) has the form

(4)

Assuming that the potential vanishes at infinity, we
arrive at a solution in the form of the Yukawa potential:

(5)

where the Debye radius λD = 
defines the screening length for the Coulomb field of an
immobile point charge.

When the charge Q = –Zae is distributed uniformly
over a sphere of radius a, the potential is given by the
expressions

(6‡)

(6b)

For r > a, the potential of a uniformly charged sphere is
equal to Debye potential (5) of a point charge Z0 =

; for r < a, the potential is constant.

Expression (6a) implies that the surface potential of a
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small grain (a ! λD) in the Debye model, ϕaDeb ≈
ϕaCoul(1 – a/λD), is lower in absolute value than the
Coulomb potential ϕaCoul = –Zae/a.

In the problem about the charge distribution inside a
sphere of radius R, with zero total charge, the boundary
condition determining the values of the constants in
solution (4) implies that the electric field at the sphere
is zero. In this case, the solution to Eq. (1) differs from
Debye potential (5). Far from the large sphere (of radius
much greater than the Debye radius, R @ λD), the
potential is close to Debye potential (5), but it differs
considerably from the latter near the sphere. This effect
is especially pronounced in PIC simulations of a system
of charges that is precisely neutral as a whole.

2.2. Orbit Motion Limited Approximation

The OML approximation is based on the following
assumptions: (i) all processes are steady-state; (ii) there
are no electron and ion collisions; (iii) all of the ions
arrive from infinity, where their potential energy is zero
and their total energy is positive; (iv) at an infinite dis-
tance from the grain, the electrons and ions obey Max-
wellian velocity distributions; (v) the electrons and ions
that strike the grain recombine at its surface; and (vi)
the problem is spherically symmetric [1–4, 7, 10, 11].
Under these assumptions and under some additional
assumptions about the rate at which the screened poten-
tial decreases with distance from an absorbing spheri-
cal grain, the electron and ion densities around the grain
can be expressed as functions of the distance from it
and of its potential. Specifically, the electron density is
equal to [3, 9–11]

(7)

and the density of free ions is [3, 9–11]

(8)

where ∆χ = χ(r) – χ(a) and z = a/r. At large distances
from the grain, the density of free ions and the potential
are equal to

(9)
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At small distances, r – a ! λD, the density of free ions
behaves asymptotically [7, 14, 15] as

(11)

An expression for the density of trapped ions in the
OML model in the limit of rare collisions was obtained
by Bystrenko and Zagorodny [10]. In the model used
here, however, the expression describing the depen-
dence of this density on the grain potential contains the
free parameter A, which has the meaning of the fraction
of trapped ions:

(12)

where ∆zψ(r) = ψ(r) – z2ψ(a), and z = a/r.
In the OML model, the ion flux to a grain is given by

the same expression as that derived in the simple Lang-
muir–Mott-Smith model,

(13)

and the electron flux to a grain is determined from the
Boltzmann distribution,

(14)

In the present paper, the OML model was used to ana-
lyze the numerically calculated electron and ion distri-
butions by substituting the calculated values of the
grain potential into expressions (7), (8), and (10).

3. RESULTS FROM SIMULATIONS 
OF THE SCREENING EFFECT

The electron and ion densities, as well as the electric
field distribution and potential, were determined by
self-consistently solving the electron and ion dynamic
equations together with Poisson’s equation by the PIC
method. The initial conditions corresponded to uniform
particle distributions over the computation cell. The
boundary conditions reflected the corresponding phys-
ical processes: the recombination of plasma particles at
the grain surface and the thermostating conditions at
the external boundary. The formulation of the problem
was described in detail in [15–17], the only difference
being the spherical shape of the computation cell in our
simulations. This difference is responsible for the
above-mentioned substantial discrepancy between the
numerical results obtained for the region near the
boundary of the computation cell and those calculated
in the Debye model: in this region, the electric field
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Table 1.  Time-averaged parameters of grain charging, the surface potential ϕPIC(a) normalized to the electron temperature,
and the values of the surface potential in the Debye and Coulomb models for different ion mean free paths λst: –Q/e is the
grain charge in units of the electron charge; Ji, PIC/Ji0 is the numerically calculated ion flux onto the grain surface in units of
the unperturbed ion flux Ji0 = πa2ni0(8Te/πM)1/2; and Ji, PIC/Ji, MS is the ion flux in units of the flux Ji, MS = Ji0[1 – ψPIC(a)],
derived from the Mott-Smith model by using the numerically calculated surface potential ϕPIC(a)

Calculation version 1 2 3 4 5 6

λst, µm ∞ 1000 500 200 100 50
–Q/e 4871 3393 2924 2337 1934 1766
Ji/Ji0 16.6 34.7 45.4 62.3 74.2 85.8
Ji/Ji, MS 0.118 0.372 0.553 0.955 1.379 1.741
–χPIC(a) = –eϕPIC(a)/Te 3.413 2.324 1.997 1.593 1.319 1.211
–χDeb(a) = –eϕDeb(a)/Te 3.331 2.320 1.999 1.597 1.322 1.206
–χCoul(a) = –eϕCoul(a)/Te 3.508 2.444 2.106 1.683 1.392 1.271
should be exactly zero because of the precise electrical
neutrality of the system. Zobnin et al. [8] carried out
computer simulations for the problem stated in a simi-
lar manner, but they described the plasma electrons by
a Boltzmann distribution in terms of an electron fluid
model. It should be kept in mind, however, that this
approach, which is in principle quite reasonable for a
collisionless plasma, greatly underestimates the grain
charge fluctuations.

Let us now discuss the results of simulations carried
out for different plasma parameters and for grains of
different radii. As an example, we consider the results
from numerical calculations of the screening effect for
a 2-µm-radius absorbing spherical grain in a nonmov-
ing two-temperature plasma with z = 1, the ion temper-
ature Ti = 0.025 eV, the electron temperature Te = 1 eV,
and the ion density ni = 109 cm–3. For these values of the
plasma parameters, the total Debye radius is equal to
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
38 µm and there are 207 ions within the Debye sphere.
In the simulation model, the number of ions was Ni =
50000 and the number of electrons was such that the
total charge of the system, including the charge of the
grains, was zero. The radius of the spherical computa-
tion cell depended on the number of particles and, for
the simulations in question, was equal to 230 µm. The
run time of the code corresponded to 34 µs in real time,
or, equivalently, to about 35 Langmuir periods. The
mean values of the parameters of the screening effect
were calculated within a shorter run time: specifically,
the initial stage during which the plasma relaxed from
its original state to a steady state and which lasted about
20% of the total time was not simulated.

Table 1 presents the time-averaged parameters of
the grain charging process calculated for different ion
mean free paths λst. We can see that even rare collisions
strongly affect the charging parameters. Figures 1–5
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Fig. 1. (a) Ion and electron densities around an absorbing spherical grain: the solid and dashed curves are the radial profiles of the
ion and electron densities in the Debye model, and the dots show the profiles obtained from computer simulations. (b) Radial profile
of the field normalized to the Coulomb field of the grain charge: the dots show the profile obtained from computer simulations, and
the solid curve is calculated from the Debye model.
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Fig. 2. Ion and electron densities and electric field strength around an absorbing spherical grain at λst = 1000 µm. The notation is
the same as in Fig. 1.
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Fig. 3. (a) Radial profiles of the potential calculated for the ion mean free path λst = 1000 µm: the circles show the results of com-
puter simulations, the dots show the Coulomb potential of a charged spherical grain, the solid curve is the potential profile calculated
from formula (10) for large distances from the grain in the OML approximation, and the dashed curve is the Debye potential profile
calculated from formula (4) with allowance for a perturbation from the plasma boundary. (b) Deviations of the ion and electron
densities from their mean values around a spherical grain: the dots show the calculated deviations from the mean ion density, the
circles show the calculated deviations (plotted with the opposite sign) from the mean electron density, the dashed curves are the
deviations calculated from the Debye model, and the solid curve is the deviation calculated for large distances from the grain in the
OML approximation.
show the ion and electron density distributions and
potential distribution for calculation versions 1, 2, and
5 from Table 1.

The results presented in Table 1 and Figs. 1–5 indi-
cate that collisional relaxation affects the screening
parameters. The plasma evolves from a distribution cor-
responding to the collisionless OML model (calcula-
tion version 1) to a Debye distribution (in calculation
versions 2–6). The last calculation version demon-
strates a strong effect of collisions in the quasineutral
plasma region. A detailed examination shows that,
because of the weak collisional relaxation, the ion dis-
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
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Fig. 4. Ion and electron densities and electric field strength around an absorbing spherical grain at λst = 100 µm. The notation is the
same as in Fig. 1.
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Fig. 5. (a) Radial profiles of the potential and (b) deviations of the ion and electron densities from their mean values around a spher-
ical grain for λst = 100 µm. The notation is the same as in Fig. 3.
tributions even near the grain surface essentially coin-
cide with distribution (4) in the Debye approximation.

Based on the analysis of the numerical results, we
can conclude that the collisional relaxation, as
expected, enhances the screening effect rather than
reduces it (as was mentioned in [8]). Due to a signifi-
cant increase in the ion flux to the grain surface, the
grain charge decreases in absolute value. As for the
screening effect, it is enhanced even at small distances
from the grain because of the appearance of a large
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
number of trapped ions. Even rare collisions cause the
plasma to evolve from a distribution corresponding to
the collisionless OML model to a Debye distribution.

4. FRICTIONAL FORCE

In the electrode sheath, the ions not only perform
thermal motion but also are subject to directed motion
with a velocity corresponding approximately to the
electron thermal energy [20–22]. The structure of the
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ion flow around dust grains having different shapes (a
spherical and a needle-shaped grain) was considered in
[23, 24] without allowance for the trapped ions. It
would be of great interest to determine the ion drag
force exerted on a grain by an ion flow. In the existing
models, the frictional force is determined only on the
basis of Coulomb interaction. Although there are sev-
eral papers aimed at calculating the ion drag force [25–
27], the final expression for it is still lacking, presum-
ably because of the complexity of the problem of esti-
mating the influence of ion focusing on the ion drag
force. In such circumstances, different theoretical
approaches can be verified by numerical simulations.

4.1. Influence of the Screening 
on the Frictional Force

Above, we have considered the influence of the
trapped ions on the screening effect in a two-tempera-
ture plasma with a cold ion component. An analysis of
this influence inevitably leads to the hypothesis that
trapped ions also play an important role in a moving
plasma. Although the kinetic energy of the ions in the
flow is on the order of the electron temperature, the ions
produced via resonant charge exchange are cold
because they have the temperature of the buffer gas.
Consequently, when trapped ions are present in large
quantities, they can dominate the screening of the grain
charges, thereby having an impact on the frictional
force.

In order to verify this hypothesis, simulations were
carried out for the same parameters as in calculation
version 3 from Table 1, in particular, for the same ion
and electron temperatures, Ti = Te = 1 eV, but the gas
temperature was set to be Ta = 0.025 eV and, accord-
ingly, the temperature of the charge-exchange ions was
set equal to the gas temperature. The results of these
simulations are illustrated in Table 2, in which the sec-
ond row replicates calculation version 3 from Table 1
for comparison. The data given in Table 2, along with
the analysis of the ion and electron density distribu-
tions, show that, at short distances from the grain, the
characteristic screening length is the ion Debye radius
determined by the gas temperature.

The forces acting on a charged dust grain are mainly
governed by the Coulomb interaction with the plasma
particles. However, even rare resonant charge-
exchange collisions of plasma ions with gas atoms can

Table 2.  Time-averaged parameters of grain charging at differ-
ent ion temperatures for an ion mean free path of Lmfp = 500 µm:
the grain charge, the ion flux onto the grain surface, and the
grain potential

–Q/e Ji/Ji0 –χPIC(a) χsDeb

Ti = 1 eV 2805 48.8 1.902 1.996

Ti = 0.025 eV 2924 45.4 1.997 1.999
appreciably change the charge of the grain and strongly
affect both its screening and the force with which the
ion flow drags the grain. It is therefore of great interest
to determine how trapped ions influence the frictional
force exerted by the ion flow on the grain.

4.2. Molecular Dynamics Simulations

The influence of trapped ions on the screening of the
grain charge in a moving plasma was simulated by the
molecular dynamics (MD) method. The problem was
treated in the same formulation and for the same param-
eter values as in [23]. The ion and electron densities and
the distributions of the electric field and of its potential
were calculated by solving the electron and ion
dynamic equations together with Poisson’s equation.
The initial conditions corresponded to uniform particle
distributions over the computation cell. The boundary
conditions reflected the corresponding physical pro-
cesses: the recombination of plasma particles at the
grain surface and the thermostating conditions at the
external boundary. A detailed formulation of the prob-
lem was given in [23], with the only difference being
that the simulations were carried out with allowance for
resonant charge-exchange collisions of ions with atoms
and for the production of ions having the temperature of
the cold gas.

A comparison of the results computed in [23] with
those from analogous simulations carried out with
allowance for ion–atom collisions showed that these
collisions, as expected, produce a large number of
trapped ions, so the calculated ion density distribution
was qualitatively different in shape. In contrast to the
distribution with a typical wake tail caused by ion
focusing [23], the ion density distribution was found to
be close to a spherically symmetric distribution.

The results of calculating the frictional force are
even more impressive. It is found that, with the charge-
exchange processes taken into account, the frictional
force decreases by a factor of almost 100 and even
changes its sign, i.e., becomes negative (the ion flow
velocity is assumed to be positive). In the light of the
results obtained in [25, 26], however, this change in the
sign of the frictional force is in principle not surprising
because, in those papers, the negative friction coeffi-
cient was predicted based on the analysis of kinetic
models for a collisionless plasma. Since, in the simula-
tions reported here, the frictional force was calculated
statistically reliably, it is expedient to consider the
charge exchange of the ions as a possible mechanism
for the change in the sign of the frictional force.

4.3. Reactive Frictional Force

Let us consider the mechanism for the onset of a
reactive force that accelerates a dust grain in the direc-
tion opposite to that of the ion flow (this corresponds to
the negative frictional force). To do this, it is necessary
to stress that the negative frictional force, acting to
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005



INFLUENCE OF THE TRAPPED IONS ON THE SCREENING EFFECT 697
increase the relative velocity of motion, should not be
confused with the negative differential frictional force,
which corresponds to a decrease in the absolute value
of the frictional force with increasing velocity of
motion but acts in the conventional direction of the fric-
tion force.

Under certain conditions, the specific dependence of
the Coulomb frictional force can increase the mean
energy of a dust grain in a potential well [28]. The pos-
sibility for the onset of a negative frictional force in the
case of Coulomb collisions was discussed in [25, 26],
and the ion drag force in the screened-potential region
was considered in [27].

In the present paper, the force arising from charge-
exchange collisions of the ions with atoms is analyzed
for the first time. The mechanism for the onset of this
force can be briefly described as follows. In collisions
of the flow ions with the buffer gas atoms, the ions that
have been additionally accelerated by the grain field
transfer their momentum to the atoms in charge-
exchange collisions. As a result, the momentum carried
by the charge-exchange atoms out of the “ions + grain”
system exceeds the momentum they have carried into
the system, which gives rise to a reactive force directed
opposite to the ion flow (the negative frictional force).
Let us examine this situation in more detail in order to
estimate the magnitude of the frictional force driven by
resonant charge-exchange collisions of the ions with
gas atoms.

4.4. Estimate of the Frictional Force Due to Charge 
Exchange of the Ions near a Grain

Let us consider a flow of ions with charge e > 0 and
mass m that move with the velocity v∞ from infinity
along the x axis and are incident on an immobile, nega-
tively charged, spherical dust grain with radius a and
charge Q = –eZ < 0. We assume that the grain radius,
the screening length, and the mean free path of an ion
before it exchanges an electron with an atom satisfy the
conditions

(15)

and the electron, ion, and gas temperatures satisfy the
conditions

(16)

In experiments on the levitation of dust grains in the
electrode sheath, the kinetic energy of the incident ions
is equal in order of magnitude to the electron tempera-

ture; accordingly, we have K∞ =  @ Ta. The ions

produced from the gas atoms in charge-exchange colli-

sions have a mean kinetic energy of  ! K∞ and

obey a velocity distribution that is determined by the
temperature of the atoms. Consequently, in each

a ! λD ! λ st,
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PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
charge-exchange collision, the total energy of the ion

decreases on the average by an amount of K∞ – ,

which is transferred to the atom.

The charge acquired by a dust grain is usually large
enough to create a substantial Coulomb barrier for elec-
trons. Under conditions (15) and (16), the grain surface
potential is approximately equal to

(17)

As a result, for Te @ Ta, an ion produced from an atom
in a resonant charge-exchange collision within a certain
region of volume V0 around the grain turns out to be
trapped in the grain’s potential well. In this case, the
most probable scenario of the ion evolution is that in
which, after a series of subsequent collisions, the ion
will reach the grain surface and will recombine on it.

The number of collisions that will occur in a small
region of volume ∆V (around a point lying at a distance
r from the grain center) within a time ∆t is equal to
∆Nst(r) = niv∆V∆t/λst, where ni is the ion density, v  is
the ion velocity, and λst is the mean free path of an ion
before a charge-exchange event. The mean momentum
of the ions produced from the gas atoms in charge-
exchange collisions is zero because the velocity distri-
bution function of the atoms is isotropic (the velocity
dependence of the charge-exchange cross section can
be ignored since the atomic velocity is low). Conse-
quently, the ions that have recombined on the surface of
the grain will not change its momentum.

The momentum conservation law implies that the
resulting change in the momentum of a grain is deter-
mined by the difference between the momentum of the
ions at infinity and the momentum of the charge-
exchange atoms: ∆px(r, ∆V) = ∆p1x(r)∆Nst, where
∆p1x(r) = mv∞ – mv x is the momentum transferred to the
grain in one charge-exchange event. From the law of
conservation of the total energy of an ion moving in the
grain potential field, it follows that its kinetic energy is
equal to K(r) = K∞ – eϕ(r). In the approximation in
which the ions move along straight trajectories in the
field with the Coulomb potential ϕ(r) = Q/r, we obtain
the following estimate for the mean momentum trans-
ferred to a grain in one collision event at any point in a
region of volume V0:

(18)

The frictional force is defined as the change in the
momentum in unit time; it is obtained by integrating
over all collision events in a region of volume V0:

(19)
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∆ p1x mv ∞ 2mK r( )– eϕ r( )
v ∞

-------------- .–≈=

Fx

niv
λ st
--------∆ p1x V .d

V0

∫=
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We assume that the volume V0 is that of a sphere of
radius r0 @ a. We also assume that the potential within
the sphere changes according to Coulomb’s law ϕ(r) =
Q/r and the density and velocity variations are given by
the formulas ni(r) ≈ ni0 and v (r) ≈ v∞. Under these
assumptions, expression (19) becomes

(20)

Setting the numerical coefficient in formula (17) equal
to 3, we arrive at the estimate

(21)

4.5. Properties of the Reactive Frictional Force

The main property of the reactive frictional force
that follows from estimate (21) is its sign. The frictional
force is directed opposite to the ion flow incident on a
grain and acts to increase the grain velocity relative to
the flow. Since this situation seems to be somewhat par-
adoxical, it is necessary to obtain a better insight into
the onset of the negative frictional force.

Physically, the principles for the onset of such a
force are equivalent to the principle of motion of a
supersonic jetliner: the jet engine takes air from the
incident airstream, heats the drawn-in air, accelerates it
through a nozzle to a directed velocity higher than the
stream speed, and then ejects it downstream. The fuel is
needed only to heat the air, in contrast to a rocket, in
which the fuel also plays the role of the working
mass—an agent for momentum transfer. For a grain,
the role of the energy source, or of the fuel, is played by
the electrons that overcome the Coulomb barrier and
charge the grain, thereby enabling it to collect and neu-
tralize the slow charge-exchange ions at its surface.

Another interesting consequence of estimate (21) is
that the frictional force is independent of the ion flow
velocity. It should be kept in mind that there is still a
weak dependence because the ion trajectories are bent
near the grain, and more exact calculations are likely to
yield a greater magnitude of the frictional force.

Estimate (21) also implies that the greatest contribu-
tion to the reactive force comes from the ions that fly at
large distances from the grain—a situation analogous to
that with the frictional force due to Coulomb collisions.

4.6. Comparison to Other Forces Acting 
on a Grain in a Dusty Plasma

In order to carry out a comparative analysis, it is
necessary to determine the volume V0. The simplest
estimate can be derived in terms of the radial distance
from the grain at which the potential energy of its field

Fx

ni0v ∞

λ st
------------- eQ

rv ∞
---------4πr

2
rd

a

r0

∫ 2πr0
2
ni0

e
2
Z

λ st
--------.–≈=

Fx πr0
2
ni0Te

6a
λ st
------.–≈
is on the order of the atom temperature. Setting
e |ϕ(a)| ~ 3Te, we obtain

(22)

It should be noted, however, that, when such factors as
the screening effects, the non-Debye behavior of the
potential of a grain at large distances from it, the pres-
ence of an external electric field, and ion focusing are
taken into account, the problem of determining the vol-
ume V0 becomes far more complicated. For instance,
with allowance for a strong screening effect, we get
r0 ~ λD.

Substituting relationship (22) into estimate (21), we
obtain

(23)

For comparison, we also present the expression for the
pressure force exerted on a grain by a flow of neutral
particles (atoms) in inelastic interactions with it,

(24)

and the expression for the single-direction gas-kinetic
pressure force,

(25)

For an absorbing spherical grain whose motion velocity
v  is much lower than the thermal velocity of the atoms
and whose radius is smaller than their mean free path
and for a Maxwellian velocity distribution of the atoms,
the frictional force is equal to

(26)

The frictional force due to the scattering of an ion flow
in the Coulomb potential ϕ(r) = Q/r is given by the
expression

(27)

and the gravitational force is

(28)

A comparison between formulas (23)–(28) shows
that only two of the forces—reactive frictional force
(23) and gravitational force (28)—are proportional to
the grain volume, the remaining forces being propor-
tional to the area of the grain surface. Consequently, in
a gravitational field, the reactive force plays the role of
a correction that changes the grain’s weight. Under
zero-gravity conditions, the reactive force may appear
to be the strongest among the forces acting on a grain.
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Near a vertical electrode, the reactive force can have a
substantial impact on the dust.

5. CONCLUSIONS

The results of numerical simulations made it possi-
ble to check the existing theoretical models and to
examine the kinetic processes that are responsible for
the screening of a dust grain in a gas-discharge plasma
in the case of rare collisions. Numerical and analytical
analyses lead to the following conclusions:

(i) When even weak collisional relaxation is taken
into account, the grain screened potential differs radi-
cally from that in the widely used OML model. The
electric potential distributions calculated with allow-
ance for resonant charge-exchange collisions are very
close to those in the Debye model. The electron distri-
bution is well described by the Boltzmann model with
the Debye screening potential. The particle fluxes onto
the grain surface depend strongly on the frequency of
ion–atom collisions (i.e., on the gas pressure); accord-
ingly, the grain charge cannot be correctly determined
from the Mott-Smith model.

(ii) The distribution of the screening charge around
a dust grain in an ion flow is largely governed by the
temperature of the cold buffer gas. Consequently, under
such conditions, the characteristic screening length
scale is equal to the ion Debye radius determined by the
gas temperature. The ions trapped by a grain in an ion
flow radically reduce the frictional force in comparison
to that predicted by the commonly accepted theory.

(iii) A dust grain in an ion flow is subject to a reac-
tive force that is directed opposite to the flow and
results from resonant charge exchange of the ions with
buffer gas atoms near the grain. The reactive force has
the meaning of the negative frictional force, which is
directed opposite to the flow and tries to accelerate the
grain. Estimates of the magnitude of this force show
that it is proportional to the grain volume and to the rate
of resonant charge exchange of the ions with buffer gas
atoms, while being independent of the flow velocity.
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Abstract—The shock Hugoniot of deuterium at pressures above 1 Mbar is calculated by the path-integral
Monte Carlo method without introducing additional physical assumptions and approximations. The results
obtained are compared to calculations by other authors, various theoretical models, and experimental data. ©
2005 Pleiades Publishing, Inc.
The problem of the shock compressibility of deute-
rium has been attracting much attention since the pub-
lication of the experimental data obtained in the NOVA
laser facility [1, 2]. Studies in this field are of funda-
mental importance because they provide information
about the behavior of materials at extremely high pres-
sures. It is also of interest to find out whether liquid
deuterium under shock compression exhibits the same
properties as other diatomic liquids (e.g., N2 and O2) or
its compressibility is determined by more complicated
effects [3]. Knowledge of thermodynamic properties of
hydrogen and deuterium is also needed to solve various
problems of astrophysics and controlled nuclear fusion.

Our paper presents the results of calculating the
shock Hugoniot of deuterium at pressures above
1 Mbar by the path-integral Monte Carlo method. In
this method, the density matrix and, consequently, the
thermodynamic quantities are represented in the form
of path integrals. The low-temperature density matrix,
for which there are no small physical parameters, is
represented as a product of a great number n of high-
temperature density matrices. This allows one to intro-
duce intermediate coordinates, so integration over tra-
jectories reduces to integration over these intermediate
coordinates by the classical Monte Carlo method [4].
Using perturbation theory, it is possible to find explicit
expressions for high-temperature factors with an error
that is inversely proportional to, at least, the square of
the number of the high-temperature factors. The total
error of the product of the high-temperature density
matrices ε is inversely proportional to the number of
such matrices and, therefore, ε  0 as n  ∞. The
error of the method can be estimated by comparing the
results obtained for different n. Thus, in contrast to
other methods for modeling degenerate nonideal sys-
tems at nonzero temperature, this method does not
employ any additional physical assumptions and
approximations. Since, in this case, the calculation
1063-780X/05/3108- $26.00 0700
accuracy is known in advance, various physical phe-
nomena can be examined from “first principles.”
Below, we present a more detailed description of the
calculation procedure used in our study.

The path-integral Monte Carlo method [4] is based
on the Feynman formulation of the quantum statistical
mechanics in the form of path integrals. All of the ther-
modynamic characteristics of a two-component plasma
of volume V are defined by a statistical sum Z, which,
in the case of Ne negatively charged particles (elec-
trons) and Ni positively charged particles (protons), can
be written in the form

(1)

Here, β = 1/kBT, kB is the Boltzmann constant, T is the
plasma temperature, q ≡ {q1, q2, …, } are the proton

coordinates, r ≡ {r1, …, } are the electron coordi-

nates, and σ = {σ1, …, ; σ1, …, } are the proton
and electron spins. The expression for the density
matrix ρ in Eqs. (1) can be written in the form of a path
integral

(2)

where ρ(i) = ρ(R(i – 1), R(i); ∆β) ≡ 〈R(i – 1)| |R(i)〉  are
the density matrices at a temperature of (n + 1)T or at

an inverse temperature of ∆β ≡ β/(n + 1);  is the per-

Z Ne Ni V β, , ,( ) Q Ne Ni β, ,( )/Ne!Ni!,=

Q Ne Ni V β, , ,( ) q rρ q r σ; β, ,( ).dd

V

∫
σ
∑=

qNi

rNe

σNi
σNe

R 0( ) ρ R 0( ) σ; β,( )
σ
∑d

V

∫ 1–( )
κP

σ
∑

P

∑=

× R 0( )… R n( )ρ 1( )ρ 2( )…ρ n( )S σ P̂σ',( )P̂ρ n 1+( ),dd

V

∫

e ∆βĤ–

P̂
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mutation operator; κP is the permutation parity; S is the

spin matrix;  is the Hamiltonian of the system  =

 + ,  being the kinetic energy; and  is the
potential energy, which is the sum of the Coulomb
interaction energy of electrons (e), protons (p), and pro-

tons and electrons (ep):  =  +  + . The
particle coordinates are designated as follows: R(i) = (qi,
ri), i = 1, …, n + 1, with R(0) ≡ (q, r), R(n + 1) ≡ R(0), and
σ' = σ. Thus, all the particles are represented by closed
loops, which can be designated symbolically as [R] ≡
[R(0); R(1); …; R(n); R(n + 1). The exchange effects for the
Fermi statistics are taken into account by the permuta-

tion operator , which acts on the spatial and spin
coordinates of all of the particles. The transformation of
expression (2) to a form in which the sum over all per-
mutations is replaced with a determinant of the

exchange matrix  allows us to avoid the so-called
“sign problem” [5] and to improve the accuracy of cal-
culations at high degeneration parameters.

For each factor ρ(i) (i = 1, …, n +1) in formula (2),
we may use an explicit expression for the asymptote of
the density matrix in the limit of high temperatures.
Each of these N-particle high-temperature density
matrices, in turn, may be represented as a product of
two-particle density matrices. For a two-particle den-
sity matrix at high temperatures, there is the analytic
solution to the Bloch equation in the first order of the
perturbation theory [6]:

where Φab(ra, , rb, , β) can be approximated by the
half-sum of diagonal pseudopotentials,

(3)

Here, xab = |rab|/λab, erf(x) = 2/ dt is the

error function,  = "2β/2µab, ea and eb are the particle

charges, ma and mb are the particle masses, and  =

(  + )–1 is the reduced mass. The resulting accu-
racy depends on the number of factors n + 1 in the inte-
grand in formula (2), on the temperature T, and on the

degeneration parameter χ = max(ne , ni ): ε ~

Ĥ Ĥ

K̂ ÛC K̂ ÛC

ÛC ÛC
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ÛC
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ÛC
ep
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ψab
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mamb
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(βRy)2χ/(n + 1), where ne = ni are the electron and pro-

ton densities and  = 2π"2β/me, i. In [7], it was shown
that pseudopotential (3) agrees well with the exact
quantum potential at temperatures of T > 2 × 105 K.
This means, in particular, that at a temperature of 104 K,
it is quite sufficient to take n = 20. In this case, the cal-
culation error will be no more than 5%.

All the thermodynamic functions are expressed
through derivatives of the statistical sum Z. In particu-
lar, for the total energy and pressure, we have

Multiple integrals in these expressions are computed by
a standard Metropolice method in a cubic cell with the
use of periodic boundary conditions [4].

The thermodynamic properties of hydrogen and
deuterium plasmas were calculated for temperatures
equal to or higher than 104 K over a wide range of den-
sities. Unlike the previous version of the method devel-
oped in [4], our model allows for the exchange effects
both in the main Monte Carlo cell and in its nearest
periodical images. Such a procedure is necessary when
the thermal electron wavelength is larger than the
Monte Carlo cell. As the thermal electron wavelength
increases, the exchange interaction is taken into
account for the nearest 33, 53, etc., Monte Carlo cells.
To minimize the computation time, we used perturba-
tion theory. The accuracy of calculating the exchange
effects was tested by comparing with analytic depen-
dences for the pressure and energy of an ideal degener-
ate plasma.

Since the path-integral Monte Carlo method is for-
mulated for protons and electrons, the formation of
bound states may be identified only if we introduce a
criterion as to whether several chosen electrons and
protons can be regarded, e.g., as an atom or a molecule.
Within the formalism adopted in our problem, it is
rather difficult to formulate a rigorous criterion of this
kind. It is possible, however, to demonstrate the exist-
ence of bound states by analyzing the pair distribution
functions, as was done in [8, 9]. In particular, it was
found that, at temperatures below 1 Ry (13.6 eV), the
probability density of the electron location was maxi-
mum at the electron-to-proton distance equal to the
Bohr radius aB. Moreover, within a certain interval of
temperatures and densities, a maximum in the probabil-
ity density of the proton location appeared at an inter-
proton distance of 1.4aB (the distance between the pro-
tons in a hydrogen molecule). In the latter case, a peak
corresponding to a bound electron state in a molecule
appeared in the electron–electron pair distribution
function. When the simulation parameters were varied
(e.g., the temperature was increased), the peaks in the
distribution functions disappeared. The pair distribu-
tion functions were calculated by averaging over a great

λ e i,
3

E β ∂ Z/∂βln( )V ,–=

βP ∂ Q/∂Vln( )β.=
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Thermodynamic properties and the shock Hugoniot of deuterium

T, K
rs1 = 1.7 rs2 = 1.86 rs3 = 2

ρH, g/cm3 PH, Mbar
P1, Mbar E1, eV P2, Mbar E2, eV P3, Mbar E3, eV

15625 2.27 –19.00 1.01 –9.69 – – 0.854 1.113

31250 1.86 –9.95 – – 1.34 –6.02 0.837 1.605

62500 – – 3.14 –1.23 2.61 –0.18 0.810 3.067

1.25 × 105 – – 7.96 17.27 6.22 17.07 0.740 7.008

2.5 × 105 – – 15.97 48.22 12.38 46.85 0.720 13.305

5 × 105 – – 32.62 112.73 26.45 114.57 0.708 27.973

106 – – 67.66 245.99 54.40 246.45 0.698 56.722
number of equilibrium configurations; this proves the
stability of the bound states arising in calculations. The
thermodynamic properties calculated by the path-inte-
gral Monte Carlo method were compared to the results
of calculations performed using other methods in their
applicability regions. Most of these methods are based
on the chemical model of plasma, in which the influ-
ence of atoms, molecules, and ions on the plasma prop-
erties is described in the explicit form. Good agreement
between radically different methods (see [10–12]) also

101

100

10–1

0.4 0.6 0.8 1.0 ρ, g/cm3

P, Mbar

1
2
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10
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12

Shock Hugoniot of deuterium. Experimental data: (1) [1, 2],
(2) [15], (3) [16], and (4) [21]; calculations: (5) [17],
(6) [18], (7) [14], (8) [19], (9) [20], (10) [22], (11) [25], and
(12) this study.
indicates that the bound states are correctly taken into
account by the model formulated above.

In the present study, the shock Hugoniot of deute-
rium was determined by calculating its thermodynamic
properties by the path-integral Monte Carlo method.
The pressure (P), the specific volume (V), and the spe-
cific internal energy of matter (E) behind the front of a
shock wave are related to the initial state (P0, V0, E0) by
the Hugoniot equation,

(4)

Following [14], the initial parameters were chosen to be
equal to the parameters corresponding to liquid deute-
rium under the following conditions: P0 = 0, 1/V0 = ρ0 =
0.171 g/cm3, and E0 = –15.886 eV per atom. We then
calculated the pressure Pi and internal energy Ei at a
given temperature T (from 104 to 106 K) and at three
different values of the specific volume Vi corresponding
to rsi = 1.7, 1.86, and 2 (i = 1, 2, 3), where rs = 〈r〉/aB,
with 〈r〉  = (3/4πne)1/3. The results of calculations are
listed in the table. Substituting Pi, Ei, and Vi into
Eq. (4), we determine the range of the specific volumes
in which the function H(V) changes its sign. The value
of the specific volume at the shock Hugoniot was then
calculated by the linear interpolation at the point where
the function H(V) is equal to zero. In the table, the pres-
sure and internal energy are shown only for the specific
volumes such that the shock Hugoniot passes between
them at a given temperature. The last two columns
show the density ρH and pressure PH of deuterium at the
shock Hugoniot.

The figure summarizes the data from different
experimental, theoretical, and numerical studies on the
shock compressibility of deuterium. Measurements
performed in the NOVA facility, where a shock wave
was generated by a laser pulse [1, 2], show that the deu-
terium density behind the shock front can increase by a
factor of more than 6. However, at high pressures, the
maximum compression ratio ρ/ρ0 for an ideal one-atom
gas cannot exceed 4; at the same time, the dissociation
of deuterium in the shock wave occurs at pressures of

H V( ) E E0
1
2
--- V V0–( ) P P0+( )+– 0.= =
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~0.5 Mbar [3]. For this reason, it was concluded in [3]
that the data from [1, 2] cannot be considered reliable.
Experiments with the acceleration of an aluminum foil
by a magnetic field to velocities higher than 20 km/s
[15] show a considerably lower compression ratio in
comparison to [1, 2]. The results obtained in [1, 2] and
[15] disagree within experimental errors. In contrast to
[1, 2] and [15], where targets several hundred microns
thick were used, in [16], the shock compressibility of
solid deuterium was measured in a 4-mm-thick layer
using a hemispherical explosive device. The experi-
mental point obtained at a pressure of about 1 Mbar lies
between the data from [1, 2] and [15].

Since 1997, many studies have been published in
which attempts were made to calculate the shock Hugo-
niot of liquid deuterium by using different theoretical
models. The well-known equation of state [17] ignores
the effect of dissociation; therefore, the compression
ratio behind a shock front turns out to be lower than that
calculated by other methods. It is likely that the semi-
empirical equation of state [18], in which the dissocia-
tion is taken into account by a simple linear-mixing
model, overestimates the dissociation effect; for this
reason, it agrees with the experimental data from [1, 2].
The use of the so-called ab initio methods does not clar-
ify the situation, because almost all of these methods
have their own drawbacks. In most of the papers
devoted to calculating the shock Hugoniot of deuterium
from the “first principles” (in particular, calculations by
the restricted path-integral Monte Carlo method [14]
and by the method of quantum molecular dynamics
[19, 20]) agree with the experimental results of [15].
The shock Hugoniots of deuterium calculated in [19,
20] adequately describe measurements performed in a
gas gun at relatively low pressures [21]. Calculations
[22] performed by the method of molecular dynamics
in which the electrons were regarded as antisymme-
trized localized wave packets also agree with the data
from [21], but, in contrast to [19, 20], show a consider-
ably better agreement with the experiments [1, 2].

The shock Hugoniot of deuterium calculated in this
work by the path-integral Monte Carlo method agrees
well with that calculated in [14] at high pressures and
arrives at a correct asymptote for the compression ratio
in the limit of high pressures; however, at low pres-
sures, it deviates from the curve obtained in [14] toward
higher densities. The reason is that, in [14], a specific
procedure for calculating the sum over all permutations
in expression (2) was used. The authors of [14] took the
sum over positive terms only and simultaneously
reduced the integration region; thereby, the paths deter-
mined by the intermediate integration coordinates R(i),
i = 1, …, n were forbidden from passing through the
nodes of a certain specified density matrix. This proce-
dure, which is not justified theoretically, introduces an
additional repulsion into the system and evidently
makes it less compressible. In [23], it was also shown
that, using the approach proposed in [14] for calculat-
ing the density matrix, it is impossible to correctly
PLASMA PHYSICS REPORTS      Vol. 31      No. 8      2005
derive analytical dependences for the pressure and
energy of an ideal Fermi gas.

Thus, the shock Hugoniot calculated with allowance
for bound states and degeneration effects is shifted
toward higher densities in comparison to the curve cal-
culated in [14], lies to the right of the data obtained in
[15], and passes very close to the experimental point
measured in [16]. At pressures below 1–2 Mbar, the
effect of the phase transition revealed in [24] comes
into play; therefore, a segment of the shock Hugoniot
that lies below 1 Mbar is not quite reliable. It should be
noted that the shock Hugoniot of hydrogen calculated
in this study is closest to the curve calculated in [25] by
the classical reaction ensemble Monte Carlo method. In
this method, the effects of dissociation of deuterium
molecules are taken into account most correctly; this
allows one to achieve good agreement with the experi-
mental data obtained at low temperatures and pressures
[21], as well as with the experimental point obtained in
[16], even if ionization is not taken into account.

To conclude, we note that the measurements of the
shock compressibility of deuterium by three different
methods [1, 2, 15, 16] predict different positions of the
shock Hugoniot in the pressure–density diagram. Nev-
ertheless, for all these cases, there are theoretical mod-
els that agree well with the corresponding experimental
data. For this reason, the problem of the shock com-
pressibility of deuterium requires more thorough inves-
tigation.
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Abstract—Results are presented from experimental and theoretical studies of a glowing plasma object emerg-
ing behind a shock front that propagates through the background gas at a pressure of p0 = 6 torr after laser irra-
diation of a hollow spherical target. The results of calculations are compared to the experimental results
obtained in the MKV-4 device (a component of the Iskra-5 facility). © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Experimental studies of the dynamics of shock
waves (SWs) emerging in the atmosphere surrounding
an evaporating laser target were described in [1, 2]. The
main result of those studies was the determination of
the r–t diagram of the SW front. Such experiments can,
however, provide more extensive information. For
example, in [3], the first experimental and simulation
results were presented on the spatiotemporal character-
istics of the plasma produced behind the shock front.
Those results demonstrated the variety of intense
kinetic and radiative transfer processes in this region.
Moreover, it was shown that the character and scale of
these processes can be controlled using different targets
and varying the parameters of surrounding atmosphere.

In this study, which is a continuation of [3], we
present experimental data on the glow and ionization
behind an SW produced using a higher power laser
pulse. The measurements were carried out with a more
advanced technique than that used in [3]. We also per-
formed simulations by the one-dimensional SND
model [4], which incorporates gas-dynamics and radia-
tive transfer processes.

2. EXPERIMENTAL SETUP AND RESULTS

The parameters of glowing plasma objects (GPOs)
were studied experimentally in the MKV-4 device posi-
tioned in one of the channels of the Iskra-5 iodine laser
facility [5]. MKV-4 is a 1.5-m-long 1-m-diameter
cylindrical vacuum chamber with four windows for
injecting laser beams (see Fig. 1). The device is
equipped with a pumping-out and a gas-feed system
and a number of optical diagnostics. GPOs were pro-
duced by irradiating a target from four sides. We used
4-mm-diameter hollow thin-walled spherical polypar-
axylene ((C8H8)n) targets with a mass of ~10–4 g. Each
target had four openings, through which laser radiation
1063-780X/05/3108- $26.00 0705
was introduced. The targets were placed in air at a pres-
sure of p0 ~ 6 torr. The laser pulse energy and duration
were ~103 J and ≈0.5 ns, respectively.

GPOs were studied by measuring the spectral and
temporal characteristics of the GPO emission, as well
as by taking their interferograms, streak camera
images, and spectrograms.

(i) The spectral and temporal characteristics of the
GPO emission were measured by a filtered detector.
The detector was a system of coaxial photodetectors (3)
operating in the spectral ranges of 0.4 (SDF7) and
0.7 µm (FÉK20). The system was precalibrated in
order to perform absolute measurements of the GPO
emission intensity.

(ii) The formation and development of a GPO were
studied by the method of interference shadowgraphy.
For backlighting, we used the second harmonics of an

4

3

2

1

5

 Laser beam

Probing beam

Fig. 1. Schematic of the experimental setup: (1) vacuum
chamber, (2) target, (3) coaxial detectors of the GPO emis-
sion, (4) streak camera, and (5) interferometer.
© 2005 Pleiades Publishing, Inc.
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iodine laser (λΙΙ = 0.658 µm). The phase shift of the
probing radiation ∆N = ∆ϕ/2π was determined using
interference patterns obtained with the help of a shear-
ing and a Michelson interferometer. The measured
phase shift was then compared to the calculated one.

(iii) The GPO dynamics was studied using a streak
camera recording an r–t diagram of the GPO emission
in the 0.7-µm spectral range.

3.0

0
0

S, 105 W/(sr µm)

t, ns

2.5

2.0

1.5

1.0

0.5

–500 500 1000 1500 2000

Fig. 2. Calculated time evolution of the emission intensity
for the second (Eν = 0.511–1.41 eV; solid curve) and third
(Eν = 1.41–2.71 eV; dashed curve) spectral groups. The dot-
ted curve shows the linear interpolation between the second
and third groups for λ = 0.65 µm. The symbols show the
experimental data obtained with an FEK20 detector for E =
520 J (circles) and 735 J (asterisks).

3.0

0

Rsf, cm

t, ns

2.5

2.0

1.5

1.0

0.5

500 1000 1500

3.5

4.5

Fig. 4. Calculated (solid curve) and measured (circles) time
evolution of the radius of the shock front in air at a pressure
of 6 torr.
(iv) The GPO emission spectrum in the 0.4- to
0.7-µm range was recorded using an ISP-28 spec-
trograph.

Typical time dependences of the GPO emission
intensity at an air pressure of 6 torr are shown in
Figs. 2 and 3. The maximum emission intensity is 8 ×
105 W/(sr µm) in the 0.4-µm range and 2 × 105 W/(sr µm)
in the 0.7-µm range.

8

0

S, 105 W/(sr µm)

t, ns1000

7

6

5

4

3

2

1

2000 3000 4000

Fig. 3. Calculated time evolution of the emission intensity
for the third second (solid curve) and fourth (Eν = 2.71–
4.51 eV; dashed curve) spectral groups. The dotted curve
shows the linear interpolation between the third and fourth
groups for λ = 0.4 µm. The symbols show the experimental
data obtained with an SDF7 detector for E = 520 J (circles)
and 735 J (asterisks).

0

Emission intensity, rel. units
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0.5

–30 10–20 –10 0 20 30

1.5 µs

0.5 µs

Fig. 5. Radial profiles of the GPO emission intensity at t =
0.5 and 1.5 µs.
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Fig. 6. GPO emission spectrum.
A streak image (an r–t diagram) of a GPO is shown
in Fig. 4. The results obtained with a streak camera
agree well with the results of interference shadowgra-
phy.

Figure 5 shows the radial profiles of the GPB emis-
sion intensity recorded with a streak camera at times of
0.5 and 1.5 µs.

Figure 6 shows the spectrum of the GPO emission.
The spectrum is mainly composed of the spectral lines
of the single-ionized components of the surrounding
gas and target material.

An analysis of the interference pattern obtained at a
time of 0.81 µs (Fig. 7) shows that the emerging optical
inhomogeneity is almost spherically symmetric (with a
diameter of 34 mm).The interference shift at a distance
of 2 mm from the edge of the nonuniformity amounts

1 
cm

Fig. 7. GPO interference pattern at t = 0.81 µs.
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to three fringes, which corresponds to a change in the
refractive index of ∆n > 10–4.

3. NUMERICAL SIMULATIONS 
AND THEIR COMPARISON 
WITH THE EXPERIMENT

The above experiments were simulated using the
SND one-dimensional model [4], which incorporates
gas-dynamics and radiative transfer equations (the lat-
ter were written in the multigroup quasi-diffusion
approximation). The emission spectrum was divided
into ten groups extending from the IR (the mean photon
energy in the first group was Eν = 0.25 eV, and the width
of the group was ∆Eν = 0.5 eV) to the X-ray (Eν =
624 eV, ∆Eν = 752 eV) spectral range. The absorption
coefficients for each group were determined by averag-

1.0
Emission intensity, rel. units

0.8

0.6

0.4

0.2

0

–0.2
–40 –20 0 20 40

R, mm

Fig. 8. Measured (solid curve) and calculated (dotted curve)
radial profiles of the GPO emission intensity at t = 1.5 µs.
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ing (over the Planckian distribution) the spectral coeffi-
cients obtained by K.L. Stepanov, G.S. Romanov, and
L.K. Stanchits using the model [6].

A table equation of state for air [7] was used to
describe the thermodynamic properties of hot air.

In simulations, the target radius was assumed to be
R0 = 0.18 cm and the shell thickness was set at ∆ =
2.2 µm. The initial specific density of the shell material
was ρ0 = 1.1 g/cm3. An energy of E = 735 J was released
in the inner region (r1 < r < r2 = R0 – ∆) with a initial
density of ρ2 = 10–3 g/cm3. This region modeled the
evaporated shell substance. The value of r1 was varied
from 0.15 to 0.17 cm, which corresponded to the evap-
orated mass from 10–5 to 3.8 × 10–6 g. In order of mag-
nitude, this corresponded to the estimates in [8]. At r <
r1 and R0 < r < R, the initial density was set at ρ1 =
10−5 g/cm3, which corresponded to a pressure of 6 torr
at room temperature (0.025 eV). At the outer boundary
(r = R), the free-emission condition was imposed.

The calculated GPO emission intensities in the 0.7-
and 0.4-µm spectral ranges are shown in Figs. 2 and 3,
respectively. For the “red” detector (0.65 µm), there is
fair agreement with the experimental data, whereas for
the “blue” detector (0.4 µm), the calculated emission
intensity is much lower than the measured one. Since,
according to our simulations, radiation in these spectral

4.5

50 60
R, mm

403020100

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Fig. 9. Radial profiles of the temperature T (dotted curve)
and α (solid curve) at t = 1.5 µs.

T, eV; α
 ranges is emitted from the region behind the shock
front, this discrepancy may be related to the incorrect
data on the ranges of photons with wavelengths of λ ~
0.4 µm in air.

The calculated size of the region covered by the
shock wave is close to the GPO size measured by a
streak camera (Fig. 8).

The calculated radial profiles of the emission inten-
sity satisfactorily agree with the measured ones (see
Fig. 7).

The calculated radial profiles of the temperature T
and the degree of ionization α in a GPO are shown in
Fig. 9. From these profiles one can estimate the change
∆n(r, t) in the refractive index of the GPO. For t =
0.8 µs and r ≈ 2 cm, we have ∆n ≈ 5 × 10–5, which
agrees with the experimental data.
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