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The effective field, which plays the part of the vierbein in general
relativity, can have topologically stable surfaces, vierbein domain
walls, at which the effective contravariant metric is degenerate. We
consider vierbein walls separating domains with flat spacetime which
are not causally connected at the classical level. The possibility of a
guantum mechanical connection between the domains is discussed.
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In some classes of superfluids and superconductors there is an effective field arising
in the low-energy corner which acts on quasiparticles as a gravitational field. Here we
discuss topological solitons representing the vierbein domain wall in superfluids and
superconductors. On such a surface in 3D sp@aceon the 3D hypersurface in+3L
spacg the vierbein is degenerate, so that the determinant of the contravariant gtetric
becomes zero on the surface. An example of the vierbein domain was discussed in Ref.
1 for a®He-A film. When such a vierbein wall moves, it splits into a black hole/white
hole pair, which experiences the quantum friction force due to Hawking radiati@mne
we discuss a stationary wall, which is topologically stable and thus does not experience
any dissipation. Such domain walls, at which one of the three “speeds of light” crosses
zero, can be realized in other condensed matter, too: in supeffigeB,? in chiral
p-wave superconductofs, and ind-wave superconductops.

In the literature two types of the walls have been considered: with degergrate
and with degeneratg,,, (Ref. 6. The case of degeneragg,, was discussed in detail in
Refs. 6 and 7. Both types of wall could be generic. According to Horoitz,a dense
set of coordinate transformations the generic situation is the 3D hypersurface on which
the covariant metrig,,, has rank 3.

The physical origin of the walls with the degenerate majtt€ in general relativity
has been discussed by StarobinSKhey can arise after inflation, if the inflaton field has
a Z, degenerate vacuum. The domain walls separate domains with 2 different vacua of
the inflaton field. The metrig”” can everywhere satisfy the Einstein equations in
vacuum, but on the surfaces considered, the megtticcannot be diagonalized ag"”
=diag(1-1,-1,—1). Instead, on such a surface the metric is diagonalized*&s
=diag(1,0;-1,— 1) and thus cannot be inverted. Though the spacetime can be flat ev-
erywhere, such a surface cannot be removed by a coordinate transformation: it can only
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be moved to infinity. Thus the system of such vierbein domain walls divides the space-
time into domains which cannot communicate with each other. Each domain is flat and
infinite as viewed by a local observer living in a given domain. In principle, the domains
can have different spacetime topology, as is emphasized by StaroBinsky.

Here we consider the vierbein walls separating flat spacetime domains that classi-
cally cannot communicate with each other across the wall, and we discuss the quantum
mechanical behavior of fermions in the presence of the domain wall.

VIERBEIN DOMAIN WALL
The simplest example of the vierbein walls we are interested in is provided by the
domain wall which separates domains having opposite orientations of the unit {ettor

the orbital momentum of Cooper pairs in a superfitite-A film: 1= =2z Here thez is
along the normal to the film. The Bogoliubov—Nambu Hamiltonian for fermionic quasi-
particles is

pi+ps—pE
2m

+e . prtt+e pri. (1)

Here 72 are 2x2 matrices for the Bogoliubov—Nambu spip,=§<px+§/py is the 2D
momentum(for simplicity we assume that the film is narrow, so that the motion along the
normal to the film is quantized and only the motion along the film is)fréee complex
vector

=+7 2

is the order parameter. If one considers the first term in(Bcas the mass term, then the
vectorse; ande, play the part of the zweibein for the 2D motion in the film. We assume
the following order parameter texture in the wall:

e1(X) =XCx(X), €=YCy(X), 3)

where the “speed of light” is constant for light propagating along yrexis, while the
“speed of light” changes sign across the wall for light propagating alongkthris:

Cy(X)=Cp, Cyx(X)=Cqtanhx/d). (4)

At x=0 the zweibein is degenerate: the vector prodyete,=0, so that the vectaris
not determined.

Since the momentum projectiqa, is a conserved quantity, we come to purell
motion. Further we assume théi} p,= * pg; and(ii) the parameters of the system are
such that the thickness of the domain wall is larged>7%/mc,. This allows us to
consider the range of the momentuind<p,<mg¢,, where the terrrp)% can be either
neglected as compared to the linear term or considered in the semiclassical approxima-
tion. Then, rotating the Bogoliubov spin and neglecting the noncommutativity qﬁihe
term andc(x), one has the following Hamiltonian for thetll particle:

1
H=M(P)7>+ E(C(X)P-l—'PC(X))Tl, (5)
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M?(P)=P*4m?+cgp;, (6)

where the momentum operat®t,= —id, is introduced. If theP? term is completely
neglected, one obtains thet1 Dirac fermions

H=M7'3+%(C(X)73+’PC(X))7'1, (7)

M2=M2(P=0)=cjp;. (8)
The classical spectrum of quasiparticles,

E?—c?(x)p2=M?, 9
corresponds to the contravariant metric

9%=1, g¥=—c*(x). (10
The line element of the effective spacetime is

ds’=dt?—(c(x)) 2dx% (1)

The metric elemeng,, is infinite atx=0.

Equation(11) represents #at effective spacetime for any functiar(x). However
the singularity atx=0, whereg,,=, cannot be removed by a coordinate transforma-
tion. If at x>0 one introduces a new coordindte [dx/c(x), then the line element takes
the standard flat form

ds’=dt?—dé&2. (12)

However, the other domain — the half space with0 — is completely removed by such
a transformation. The situation is thus the same as that discussed by Starobinsky for the
domain wall in the inflaton field.

The two flat spacetimes are disconnected in the relativistic approximation. However,
this approximation breaks down neax 0, where the “Planck energy physics” becomes
important and nonlinearity in the energy spectrum appears in(@g.The two halves
actually communicate due to high-energy quasiparticles, which are superluminal and thus
can propagate through the wall.

FERMIONS ACROSS A VIERBEIN WALL

In the classical limit, low-energy relativistic quasiparticles do not communicate
across the vierbein wall, because the speed of ki) vanishes ak=0. However, a
quantum mechanical connection may be possible. There are two ways to treat the prob-
lem. One approach is to do the coordinate transformation first. Then in one of the do-
mains, say, ak>0, the line element is Eq12), and one comes to the standard solution
for a Dirac particle propagating in flat space:

A _[ Q) B _[ @
x(€)= ZeiE)| g 1| + e -iE)| —g1). (19
1/4
E=JE?-M?, Q= Etm (14
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Here A andB are arbitrary constants. In this approach it makes no sense to discuss any
connection to the other domain, which simply does not exist in this representation.

In the second approach we do not make the coordinate transformation and we work
with both domains. The wave function for the Hamiltoni@h at x>0 follows from the
solution in Eq.(13) after restoring the old coordinates:

A (9 B o _ [ R
x(x>0)= 2C(X)eX|0(|§(x)E) Q! +mexp(—|§(x)E) —Q 1. (15
x dx
S(X)ZJ ) (16)

A similar solution exists fox<<0. We can now connect the solutions for the right and left
half spaces using) the analytical continuation across the poit 0; and(ii) the con-
servation of the quasiparticle current across the interface. The quasiparticle current at
x>0, for example, is

i=cox)x'rx=|Al2=|B|2 (17)

The analytical continuation depends on the choice of the contour around the point
x=0 in the complexx plane. Thus, starting from Eq16), we obtain two possible
solutions atx<<0. The first solution is obtained when the point0 is shifted to the
lower half plane:

| _iAe BTy _ ( Q )
Xx<0)= ——expi é&(X)E -1
Kx<0)= — oS exmlié0E)| @

—iBeE2TH ( Q )

+ mexq—lg(X)E) _Q—l

(18)

whereTy is

i dc

H= 5 d_x|x=0- (19

Conservation of the quasiparticle curréb?) across the point=0 gives the connection
between parametes and B:

|A|2—|B|2=|B|2eE/TH—|A|Ze_E/TH. (20)

The quantityT, looks like the Hawking radiation temperature determined at the
singularity. As follows from Ref. 1, it is the limit of the Hawking temperature when the
white hole and black hole horizons in the moving wall merge to form the static vierbein
wall. Note that there is no real radiation if the wall does not move. The parameter
Ty /E~0oNdx, where=27/p,=(27/E)dclox is the de Broglie wavelength of the
quasiparticle. Thus the quasiclassical approximation holds, fE<1.

The second solution is obtained when the poirtO is shifted to the upper half
plane:
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i AeE/2Th Q iBeE/2Ty Q
“ . i . i
X (X<0)=—=—=expié(X)E)| Q-1 | + —=—===exp(—i&(XE)| —q-1],
V2[e(x)] Q v2[c(x)] Q
(21
and the conservation of current gives the following relation between paranieseidB:

A1~ |B|?=|B|%e ETu—|A[25 T, (22

Two solutions, the wave functiong and y", are connected by the relation

x"oe7a(x)* (23)
which follows from the symmetry of the Hamiltonian

H* = r3H 3. (29

The general solution is a linear combinationydfand x"".

Though on the classical level the two worlds on either side of the singularity are
well separated, there is a quantum mechanical interaction between the worlds across the
vierbein wall. The wave functions across the wall are connected by the rejgtion)
= *irgx*(x) in spite of the impossibility of communication in the relativistic regime.

NONLINEAR (NONRELATIVISTIC) CORRECTION

In the above derivation we relied upon the analytical continuation and on the con-
servation of quasiparticle current across the wall. Let us justify this using the nonlinear
correction in Eq.(6), which was neglected before. We shall work in the quasiclassical

approximation, which holds £ T, . In the purely classical limit one has the dispersion
relation
E?= M2+ c?(x)p2+ pg/dm?, (29

which determines two classical trajectories

pu(X)==* \/ 2m(VEZ+m2c*(x) —mc&(x)). (26)

It is clear that there is no singularity at= 0—the two trajectories cross the domain wall
continuously in opposite directions, while the Bogoliubov spin continuously changes its
direction. Far from the wall these two trajectories give the two solutighgnd x", in

the quasiclassical limiE>T,,. The functiony'

Q
. _ Y isoB]
X (x>0) 2|C(X)|9XFJ(|§(X)E) Q1 (27
[ i ; = Q
X(X<0)—mexﬂ—|§(X)E) Q1 (28)

describes the propagation of the quasiparticle from the left to the right without reflection
at the wall: in the quasiclassical limit reflection is suppressed. The fungtiatescribes
the propagation in the opposite direction:
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Q
1 ~
——2|C(x)| exp —i&(x)E) Q1

- Q
i ~
1l — H
X (X<0)=———=expié(X)E)| o-1]. (30
V2le(x)] ©
The quasiparticle current far from the wall does obey ®d@) and is conserved across the
wall. This confirms the result of the previous Section as to the presence of a quantum
mechanical connection between the spaces.

x"(x>0)= (29

In the limit of small mass — 0, the particles become chiral, with the spin directed
along or opposite to the momentum . The spin structure of the wave function in the
semiclassical approximation is given by

X(x)=e”2%X(+oc), tana = p, /2mc(x). (31

Sincea changes byr across the wall, the spin of the chiral quasiparticle rotatesrby
the right-handed patrticle transforms to the left-handed one when the wall is crossed.

It appears that there is a quantum mechanical coherence between the two flat worlds,
which classically do not interact across the vierbein wall. The coherence is established by
the nonlinear correction to the spectrum of the chiral partiEfp) =c?p?+ap*. The
parametes is positive in the condensed-matter analogy, which allows the superluminal
propagation across the wall at high momepteéBut the result does not depend on the
magnitude ofa: in the relativistic low-energy limit the amplitudes of the wave function
on the left and right sides of the wall remain equal in the quasiclassical approximation,
even though communication across the wall is classically forbidden in the low-energy
corner. Thus the only relevant input of the “Planck energy” physics is the mere possi-
bility of superluminal communication between the worlds across the wall. That is why
coherence between particles propagating in two classically disconnected worlds can be
obtained even in the relativistic domain, by using analytical continuation and the conser-
vation of the particle current across the vierbein wall.
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The two-loop expression for the vacuum energy density in a constant
magnetic field is obtained on the basis of the chiral perturbation theory.
The dependence of the quark and gluon condensates on the field inten-
sity H is found. © 1999 American Institute of Physics.
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1. The dependence of the quark condensate on the magnetitifialthe Nambu—
Jona—Lasinio model was investigated in Ref. 1. For quantum chromodyn&@@is)
the single-loop result was obtained in Ref. 2. In both cases it was found that the conden-
sate grows with increasirtg, which shows that the naive analogy with superconductivity
theory, where the Cooper-pair condensate is destroyed by a magnetic field, is inappli-
cable.

In the present letter, on the basis of the chiral perturbation th@m?T) for small
(compared with the characteristic hadronic sgabdues ofeH, the two-loop approxima-
tion is obtained for the vacuum energy density and the dependence of the quark and
gluon condensates on the field intensity is found. We note that although gluons do not
carry electric charge, the virtual quarks whcich they generate and which interact with a
magnetic field, change the gluon condensate.

2. In the Euclidean formulation the QCD partition function in the presence of an
external Abelian fieldA,, can be written in the form

1 _
z:exp[—zf d4fow“ [Dsz][qu][qu]exp[—f d4XLQCD], (1)
where the QCD Lagrangian in the background field has the form

a

: A
’y#<o7#—leeAM—l?BZ

+mg Q¢ 2

1 —
Loco=——(G3,)2+
Qcb 493( uv) Z s

Qs is the charge matrix of quarks with flavée= (u,d), and for simplicity we do not
write here explicitly the “ghost” and gauge-fixing terms.

The energy density of the system is determined by the expredsjey(H,m;)
=—InZ. In a constant magnetic field a quark condensate in the chiral limin{—0)
can be written in the form

0021-3640/99/70(11)/8/$15.00 717 © 1999 American Institute of Physics



718 JETP Lett., Vol. 70, No. 11, 10 Dec. 1999 N. O. Agasian and I. A. Shushpanov

&EV(H,mf)

(aran) (H)=—7

3

m¢=0

It follows from Eq. (1) that the gluon condensa{&?)=((G?,)?) is determined by the
relation

&EV(H,mf)

2:
<G>4ww®

(4)

m;=0

The phenomenon of dimensional transmutation leads to the appearance of a nonpertur-
bative dimensional parameter

A=M fm das 5
“Mexp | Bag |’ ©

whereM is the ultraviolet-cutoff massys= g§/47-r, and B(as)=dag(M)/dInM is the
Gell-Mann-Low function. The system described by the partition fundtigrcontains in

the chiral limit (m{=0) two dimensional parametek$ andH. Since the vacuum energy
density is an observable quantity, it possesses the property of renormalization invariance
and its anomalous dimension is zero. Therefgygossesses only a norm@anonical
dimension, equal to 4. Using the renormalization invariancd ofve can write

e,=A*f(H/A?), (6)
wheref is an unknown function. It is easy to obtain from E¢. and (6)
e _ SW§< —Hi)e . @)
a(1g3)  Blas) oH| ™
Using the expressiofd), we find for the gluon condensate
. 32mal ]
@xm-m%ﬂkHﬁww ®

In the absence of an external field we obtain the well-known expression for the nonper-
turbative vacuum energy density in the chiral limit, which in the single-loop approxima-
tion (8= —bga2/27, by=(1IN.—2N;)/3) has the form

by )

€ 128772<G )- 9)

3. The formulas obtained make it possible to find the values of the condensates in
the chiral limit as a function oH, provided the vacuum energy density is known. To
calculatee, the vacuum loops in an external magnetic field must be examined. For weak
fields eH<,uﬁadr~(47-rFW)2 the characteristic momenta in the loops are small and the
theory is adequately described by an effective low-energy chiral Lagrahgjafwhich
can be represented as a series expansion in the morfusmieatives and masse$:

Leg=L@+L®+ 1O 4. .. (10)
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The leading term in Eq.10) is similar to the Lagrangian of the nonlinearmodel in an
external vector field/,,

F2
L(Z)ZT’TTr(Vﬂu+vﬂu)+EReTr(/\/lU+), (12)

V,U=3,U-i[U,V,].

Here U is a unitarySU(2) matrix, F,=93 MeV is the pion decay constant, and the
parametel, is the quark condensate=|(uu)|=|(dd)|. An external Abelian magnetic
field H directed along the axis corresponds t¥,(x) =e( 73/2)AM(X), where the vector
potential A, is chosen in the fornfA,(x) = —HXx,. The mass difference between the
andd quarks appears in the effective chiral Lagrangian only quadratically. Further, since
to obtain an expression for the quark condensate in the chiral limit only the first deriva-
tive with respect to the mass of one of the quarks is used, we can neglect the mass
difference between the andd quarks and assume the mass matrix to be diagaral
=ml.

To a first approximation the Lagrangiahl) is identical to the Lagrangian of scalar
electrodynamics. The single-loop expression for the magnetic field dependence of the
vacuum energy in this theory was found by Schwittger

1 =ds
—e
1672Jo s°

eHs
sinheHs

EVEN

l

e(H)=- (12

Using the formulas(3) and (4) and the Gel-Mann—Oakes—Renn@&@MOR) relation
2m3 =F2MZ2, we find an expression for the condensates in a magnetic field:

z(m:z[ﬁﬂ , a3
(4mF )2
2

(G)(H)=(G)+ 35 (eH)”. (19

In the chiral perturbation theory in an external field a series expansion is made in powers
of the parameteeH/(47F ,)2. To find €, in the next order the two-loop diagrams with
vertices fromL(?), one-loop diagrams with a vertex frobf*), and a tree contribution
from L(®) must be taken into account. The Feynman diagrams:fdrare presented in

Fig. 1.

To calculate the two-loop diagranta), (b), and(c) we shall require an expansion of
the chiral Lagrangiah.(®) up to the four-pion vertices. The matrix can be parameter-
ized in different ways. We employ Weinberg'’s parameterization

imard 5 4
o+ —=1. (15

U=o+ F F727

Then the expansion df(® has the form
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() (d)

FIG. 1. Diagrams for calculating the vacuum energy density in an external magnetic field in second-order chiral
perturbation theory. A solid line corresponds to a charged pion, a broken line corresponds to a neutral pion, and
a wavy line corresponds to an external electromagnetic field.

1 M2 (79)2
L(Z):z(o?#wo)z— T+(o7#77++ieAM7T+)((9MW7—ieA#W7)— l\/lf,ﬂ'+ T
1 2
+?[7TO(9M7TO+O7#(7T+777)]2— E[2W+7T7+(7TO)2]2, (16

where we have introduced the charged and neutrakr® meson fields:
=3, mt=—(mlxind). (17)

The propagator of charged scalar particles in a magnetic field in a Euclidean metric has
the form

ek=MpH(k), (18

d*k
)

H =@
D™(x,y) (x,y)f(2

whereCD(x,y)zexp{ieff,AM(z)dqi} is the Abelian phase and the integral is taken along a
straight line connecting the pointsandy. The functionD(")(k) can be written in the
form®

DH(k —fm—ds i s e 19
(k)= ocosr(eHs)eX SUTKL T RS ™ (19

andkf =k3+k; andki =k;+kj3.

The correction to the vacuum energy density corresponding to the diaggyaran
be written in the form
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M2
e[ diagrania)]= — ﬁDZ(O), (20)

ko

whereD(0) is the free propagator of a scalar massive particle at coinciding points. In
dimensional regularization it is

d 1
D(O)zf 2M?

—_— = A+
(27)9 kK?+M?

2In—2

327 u

where . is the mass parameter of dimensional regularization and the singular term

, (21)

/‘Ld_4

A =
1672

1 1
—=(Indm—7ye+1)

a4 2 @

has been introduced in ER1). The expressiol20) does not change the condensates; it
simply reduces to renormalization ef in the absence of a field.

The diagram(b) gives the following contribution ire, :
M2
e[ diagrantb)] =~ D(0)D"(0), (23

m

whereD"(0)=D"(x,x). In accordance with GMOR, the expressi@3) is proportional
to the squared quark mass, and in the chiral limit it does not contribute to the conden-
sates.

Carrying out the calculations for the diagram in Fig. 1c, we obtain

d
d’k (k2+M2)D"(k). (24)
)

) 1
e diagrmio))= =, D*0) | 5

F d

This expression contains a quartic divergence. However, in dimensional regularization
fd%=0, and this divergence can be droppe8ubtracting 1 from the integrand in Eq.
(24) and passing to the limid—4, we find thate\(,z)[diagran(c)]=0. Therefore the
two-loop diagrams do not make a contribution linear in the quark mass to the vacuum
energy. Besides the diagrams examined above, in this order the expansion in
eH/(4=F _)? also contains single-loop diagrams with vertices fioff¥. Since an exter-
nal field carries zero momentum, only two terms fraff) are important for us:
2lg _ 2ilg
LW=——(eF,,)m 7 =

ko w

eFW[(?#'n'_&V'n'J’-I-ieA#&V(ﬂ'er_)], (25)

where the constantg andlg are determined in Ref. 3. The corresponding diagrams are
presented in Fig. 1d. A direct calculation gives

2
@ diagranid)]= Z(E—ZH)(ZI5—I6)DH(O). (26)

m

Although the constantls; andlg are infinite, their combination appearing in E86) is
finite®
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1 -
2'5_|6:@(|6_|5)- (27

WhereI_G—I_S~2.7.

The complete expression far® is quite complicated,but for our purposes only
one term is important. This term can be written in a form convenient for us as

80d
L(6>:F(e|:,”)22 Re T{EMU™L. (28)

w

Hered=d"(u) +const A and\ contains the pole.(~%)/(d—4). By construction of the
chiral perturbation theory, the divergent part in Eg8) cancels with the pole terms
arising from the single-loop diagrams with vertices fraif). The quantityd’ can be
determined using the results obtained in Ref. 8, where the progess#°#° was
considered. Using the notation of Ref. 8, the expressiomfareduces to the form

d'= 2 a,+2a,+4b) 29

Wheregl, 52, andb are coefficients in front of different tensor structures in the ampli-
tude of the procesgy— 7°#°. The numerical values a; , a,, andb were determined

using the explicit saturation of the amplitude of the process by scalar, vector, and tensor
resonance® Calculation shows that only the exchange scalar mesons contribftetal

d'(u~0.75GeVj~*+4.10°, (30)

The ambiguity in the sign ofl" is due to the fact that the coupling constant of a scalar
meson with photons or pions appears quadratically in the experimentally measured decay
widths, while they appear linearly in the effective Lagrangian and, correspondingly, the
sign ofd" is not determined from experiment.

We now obtain the final result. Assuming that to obtain the quark condensate we
must retain terms which are only first orderM? , we obtain

D"(0)=[D"(0)—D(0)]+D(0) eH|n2+ M3 | eH+c
= _— _~ — n_
1672 1672 2
MZ
+2M2| A+ In—|, (31)
7 32w u?

whereC is a slowly varying functiore H/MfT andC(0)~ —0.2. Collecting together the
results obtained above, we obtain the final answer for the vacuum energy density

ey(H)=€,(0)+eM(H)+ Lﬂ(T—T)
Y Y v 4872 (47F )2 ° °

eH
In—2+C
M

x{—eHIn2+Mf, ]—%(eH)zMi. (32)

F2
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Using the formulag3) and(8) and the GMOR relation, we find the dependence of the
quark condensate:

S(H)=3{1+ et In2 L _(eH?
e —n —_——,—
( (47F )2 3 (4mF )"
— [ eH 160(4m)*
x| (Ig—15) |nE+c —Tdr(u) . (33

For the gluon condensate we have the expression

2
s

(64 H P
37B(ay o

(G%)(H)=(G?)+ : (34)

eH - —
1+2—)2(I6—I5)In2

(4nF .

On account of asymptotic freedoB{as) <0 and, correspondingly, the gluon condensate
decreases with increasing magnetic field. In the single-loop approximation for the chro-
modynamicgB function (B(as) = —b0a§/277) this change is

A(GY) = — 27 (eH)?

3b, . (35

1+42 e (Ig—15)In2
———(lg—Is)In
(4mF )2 % °°

T

We introduce the dimensionless variakle eH/(47F )2, Substituting into Eq(3)
the numerical values presented above, we rewrite the quark condensate as a function of
in the form

S (x)/E=1+xIn2—ax’inx—bx2. (36)

Herea=0.9 andb=0.65+1.77 where we have used for the coefficibrihe two values

of d" from Eq. (30). We note that the behavior of the quark condensate depends funda-
mentally on the sign ofl". Ford">0 the quark condensate starts to decrease for field
intensitiesx>0.23.

4. In summary, on the basis of chiral perturbation theory, a two-loop approximation
has been obtained for the vacuum energy density and the dependence of the quark and
gluon condensates dth was found. We can see that the gluon condensate decreases with
increasingH, while the chiral condensaf®, depending on the choice of the signaif
in the two-loop level of the ChPT either continues to gr@s happens for one loppr
decreases with increasimty We note that the decrease of the condenSatecurs in the
region of applicability of ChPT in a magnetic fiedtH/(47F ,)2<1. As discussed above,
it is impossible to determine the value df unequivocally by comparing with experi-
mental data. We shall not present here the various speculative arguments about the
behavior of in a magnetic field. We confine ourselves only to the assertion that the
increase or decrease of the quark condensate kvittlan be determined only when the
coefficients in the effective chiral Lagrangian are calculated from first principles of QCD.

In closing, we thank B. L. loffe and Yu. A. Simonov for a discussion of the results
and helpful remarks.
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97-02-16131 and CRDF RP2-132.
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A new property of a one-dimensional periodic structure — amplifica-
tion of the sum-frequency signal arising under the simultaneous action
of two laser pulses on this structure with radiation frequencies corre-
sponding to the edges of the fixed Bragg band gap — is experimentally
observed and described. €999 American Institute of Physics.
[S0021-364(99)00323-7

PACS numbers: 42.70.Qs, 42.65.Ky

1. Investigations of nonlinear-optical phenomena in photonic crystals have been
arousing great interest in the last few yehss.multilayer periodic structuréMPS) is a
particular case of a one-dimensional photonic crystal and is characterized by the exist-
ence of regions of forbidden frequencies where total Bragg reflection otturecently
published investigations;® it is shown that a signal at the frequency of the second
harmonic can be amplified at the edge of the region of selective Bragg reflection. One
possible mechanism of this amplification, examined in Refs. 3 and 4, is due to the linear
increase of the energy density of the field at the fundamental frequency.

The subject of the present letter is an investigation of the mechanism of asynchro-
nous amplification of the signal at the sum frequergy= w,+ w, in an MPS. It is
established that the efficiency of the generation of the signal at the sum freq(&Hfcy
wg¢ increases substantially if the frequencies and w, of the two laser pulses incident
on the MPS at the same angle are chosen near the opposite edges of a given Bragg band
gap. We believe that our investigations show that this asynchronous amplification is
largely due to the simultaneous increase of the energy density of the fields in the structure
at the frequencies, andw, . Indeed, under the conditions of our experient the frequency
of the sum harmonic lies far from the electronic resonances of the materials used for
preparing the MPS and/or Bragg band gaps. This makes it possible to rule out amplifi-
cation due to synchronous mechanisms, i.e., amplification arising when additional phase-
matching conditions are satisfied in the presence of spatial and frequency dispersions.

0021-3640/99/70(11)/5/$15.00 725 © 1999 American Institute of Physics
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2. Let us examine the generation of a signal at the sum frequency in an MPS
consisting of alternating layers with substantially different refractive indices. It is as-
sumed that the layers with a large refractive index have a large quadratic nonlinearity.

Since the sum-harmonic signal is weak compared with the intensities of the incident
waves, and taking into account the fact that the duration of the pulses is much longer than
the propagation time of light through the sample, we shall seek the spatially rapidly
varying amplitude of the quasistationary fielér,t) = E(r)exp(~iwt) at the fundamen-
tal frequencies, solving the linear wave equation

A%E(r)+ (wn(z)/c)?E(r)=0.

The exact solution of this equation in an arbitrary layer with nunmbéias the form of a
sum of the direct and backwafceflected plane waves

Ejm(2) =Ajm exp(iKjoSjm2) + Bjm exp( —iKoSjm2),

wheres;, = (nf,—sirt9)™2, the indicesj=1,2 correspond to one of the incident waves,
Njm is the refractive index for thpth wave in them-th layer,k;o=27/\;, 9 is the angle

of incidence, and is the coordinate “into” the structure. To determine the amplitudes
Ajm andB;,, we used the Parratt’s method of recurrence relaffomkich for the present
problem yields the relations

-1
gjm+ijgjm
Ajme1=AnQm B R A W
j,m+ im~<jm 1+Rj,m+l jm jmAjm
2
R — Rjm+1tFjm 92 _Sjm_sj,m+1Qjm
im=1+R F 9im FimT o o
1+Rj,m+1F]m Sjm+sj,m+1Qj2m

where gjm=expkjoSmdy), dn is the thickness of themth layer, Q;,=1 and Qjy,
=Njm/Nj m+1, respectively, for thes- and p-polarized waves. The recurrence relations
(1) are solved for the boundary conditioAs,=E;; the reflection coefficient of thal

+1 boundary isRy;,=0; the vacuum refractive index is,=1; go=1; E; are the
amplitudes of the incident waves; and,is the number of layers. Assuming that the
intensity of the sum-frequency signal in theth layer is proportional tdA; Ayl for

the direct andB;,B,|? for the backward waves, we shall estimate the total intensity of
the SF signal as the sum of the corresponding intensities over all layers of the MPS with
a large refractive index.

The computed dependences of the linear reflection coefficient of the MPS described
below are presented in Figs. 1a, b for the two wavelengths 812 nm and\,
=733 nm of the incident linearlyp-polarized(i.e., polarized in the plane of incidence
radiation. The values chosen fag and\, correspond to two edges of the Bragg band
gap with angle of incidence of the radiation on the medi{ii®S) 9= 25°. According to
Eqg. (1), near this value of the angl§ the amplitudes of the waves diffracted in the
medium grow substantially, and the maximum localization of the energy of the incident
radiation in the medium occurs at both wavelengths. This is clearly seen from the theo-
retical angular dependences of the total energy density of the corresponding backward
waves|B, 5|2 and|B,|? in layers with a large refractive indd¥ig. 1a and 1p For this
reason, the efficiency of generation of the reflected SF signal depends on thedangle
and its intensityl ;s has a maximum aty=25° (Fig. 10, solid line. If A; and\, are
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FIG. 1. a, b. Computed dependences of the reflection coeffiftergrsus the angle of incidenc of the
radiation on the MPS for two wavelengthhs =812 nm(a) and \,=733 nm (solid lineg and the angular
dependences of the total energy density of the corresponding backward M@gg? and 3 |B,y|? in non-
linear layergdot-dashed curvégsc) computed angular dependences of the intergjtpf the reflected SF signal
with simultaneous incidence of two waves with=812 nm and\,=733 nm(solid line) on the MPS at an
angled and for the case whene; =812 nm and\,=706 nm(dashed ling

chosen so that the edges of the reflection curves do not intersect, for example,
=812 nm and\,= 706 nm, the intensity of the SF signal is low, and amplification does
not occur(Fig. 1c, dashed line The second maximum of the SF signakat 40° (Fig.

1¢) corresponds to the position of the edge of the reflection curva for¥06 nm.

In summary, for the optimal choice of wavelengthgsand\, amplification of the
generation efficiency of the SF frequency, which does not depend on the satisfaction of
phase-matching conditions, can be expected.

3. To observe the asynchronous amplification of the SF signal experimentally, we
used a sample consisting of eight layers of Zm$=2.316) and seven layers of SrF
(n,=1.52), deposited in the form of an MPS on a glass substrake thickness of each
layer wasd;=3\/4n; for wavelengthA =790 nm. In all experiments; was fixed and
equal to 812 nnfirst channel,w;), and\, could vary from 650 to 740 nnisecond
channel,w,); the duration of the pulses was less than 200 fs, the pulse repetition fre-
quency was 200 kHz, and the energy could vary from 0 to 20 nJ/pulse. The synchronous
detection technique was used to detect the SF signal. Both radiations at the fundamental
frequencies ¢, and w,) and at the SF were linearly-polarized.

The efficiency of generation of radiation at the SF as a function of the ahge
incidence on the MPS was measured in the experiments.
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FIG. 2. @ Experimental dependences of the SF signal interigjtyersus the angle of incidendeon the MPS
for two different wavelengtha $) and\{? in the second channel; tAngular dependence of the SF signal
intensity| ; for two different values of the average radiation pow; @ndP,) in the channels. The plots are
normalized to the signal maximum fdr=24°.

The experimental dependences of the SF signal intensity on the angle of incidence
on the MPS are shown in Fig. 2a for two values of the wavelengths of the second channel
AP andn§?) . The wavelengtha V=736 nm anch$)=703 nm were chosen so that the
edges of the reflection curves corresponding to them\gred812 nm would intersect in
one caseX$Y) and not in the otherX$?)). For the wavelength (Y, an at least ten-fold
amplification of the SF signal compared with the cagé was observed experimentally;
this agrees well with the theoretical resuliSg. 19. The dependence of the SF signal
amplitude on the angle of incidence on the MPS is presented in Fig. 2b for various values
of the power of the incident radiation. It is evident from the figure that the maximum near
9=40°, corresponding to an increase in the energy density of the field near the edge of
the reflection curve for radiation at the wavelengtf’=703 nm, increases with the
power of the radiation at the fundamental frequency in the second channel.

4. The good agreement between the theoretical and experimental results shows that
we have observed experimentally the asynchronous amplification of the generation of the
SF signal in an MPS. The mechanism of such amplification is an increase in the energy
density of the localized fields at two frequencies, ( w,) near the opposite edges of a
fixed Bragg band gap.

In closing, this work was partially supported by the Russian Fund for Fundamental
Research(Project No. 98-02-17544 the program “Universities of Russia” and the
Learning-Science Center for Fundamental Optics and Spectroscopy. Laboratoire de
PhysicoChimie de I'Atmosphe is a member of Center d’Etude et de Recherche Lasers
et Applications, which is supported by Ministede la Recherche, the §en Nord/Pas
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It is found that at a critical value of the magnetic field in which a
system of composite fermions becomes completely spin-polarized, the
temperature dependence of the electronic spin polarization is a linear
function at low temperatures. It is shown that the slope of this depen-
dence is determined by the Fermi energy of the composite fermions.
This made it possible to measure the Fermi energy and the Zeeman
splitting of the composite fermions. A large amplification of the spin
splitting of composite fermions for complete spin polarization of the
system is found. This makes it possible to measure the strength of the
interaction between composite fermions. 1®99 American Institute

of Physics[S0021-364(19)00423-5

PACS numbers: 05.30.Pr, 71.10.Pm

The concept of new quasiparticles, composite fermions, consisting of an electron
with an even number of attached magnetic-flux quanta, has been proposed to explain the
fractional quantum Hall effect.New states of compressible quantum liquids, realized
with fractional fillings of the Landau levels with even denominators, have been predicted
on the basis of the composite-fermion pictéEhe existence of composite fermions has
been demonstrated in various experiments in two-dimensional electronic systems in
strong magnetic field$:®

Composite fermions, having the same charge, spin, and statistics as electrons, differ
from the latter by the fact that in the mean-field approximation they are influenced by the
effective magnetic field* =B—2n.¢y, whereB is the external fieldg,= hc/e is the
magnetic flux quantum, and, is the electron density. For half-filling of Landau levels

0021-3640/99/70(11)/6/$15.00 730 © 1999 American Institute of Physics
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composite fermions move in a zero effective magnetic field, since the external magnetic
field is compensated on the average by the attached magnetic flux quanta of a gauge field.
A system of such quasiparticles can be characterized by a definite value of the Fermi
energy. A deviation of the magnetic field from the value corresponding precisely to
half-filling of the Landau levels leads to the appearance of a nonzero effective magnetic
field in which the composite fermions move.

The presence of thg factor leads to spin polarization of composite fermions. There
arises the interesting question of a transition from a two-component spin-unpolarized
state of composite fermions into a completely spin-polarized state. Such a transition can
be investigated by keeping the filling of the Landau levels fixed and varying the
magnetic field. This can be done, for example, by investigating a system with a fixed
magnetic field, transverse to the sample, and a varying parallel magnetic field. A differ-
ent, more direct and reliable, method is to keefixed and to vary at the same time the
density of the electron gas and the transverse magnetic field. Since the mass of composite
fermions is determined by the fluctuations of a gauge field, and the Zeeman splitting is
renormalized by them, the values of these parameters, generally speaking, should vary for
large values of the spin polarizatidthis question will be investigated in detail in a
separate work This makes the problem of the spin polarization of a system of composite
fermions interesting and nontrivial.

The present letter is devoted to the experimental and theoretical investigation of the
temperature dependence of the spin polarization of composite fermions. By comparing
the experimental dependences with the results obtained on the basis of a very simple
model of noninteracting composite fermions, we were able to measure the Fermi energy
and the Zeeman splitting of the composite fermions.

We measured the spin polarization of the electronic system by analyzing the degree
of circular polarization of the radiative recombination of two-dimensional electrons with
photoexcited holes bound on acceptdile note that in this method it is necessary to
perform time-resolved measurements of the radiative recombination, specifically, for
time delays corresponding to complete thermalization of the photoexcited holes right up
to the bath temperatureA detailed description of the experimental method can be found
in Refs. 6 and 7.

The characteristic temperature dependences of the electronic spin polarization,
which were measured in various magnetic fields with a fixed filling factor of the lowest
Landau levelv=1/2, are shown in Fig. 1a. As shown in Ref. 6, the critical magnetic field
at which a transition occurs into a completely spin-polarized staB:.4s9.3 T. As one
can see from Fig. la, foB>B. and B<B, the electronic spin polarization exhibits
saturation at low temperatures, while Bi=B, a clearly expressed linear temperature
dependence is observed in the liflit=0. To explain the observed linear temperature
dependence we shall examine first the very simple case of noninteracting composite
fermions.

For fixed v the electron densitp., equal to the density* of composite fermions,
is proportional to the magnetic fielthere and below all quantities referring to composite
fermions are marked with an astenisk

eB

n*=ng==——v.
€ 2xhc

@



732 JETP Lett., Vol. 70, No. 11, 10 Dec. 1999 Kukushkin et al.

1

0.8 (b)
% 0.6+

>‘04- 12T
] 9.3T
021 v=1/2 3.3T
0 AL T T 1 T L) M 1 M 1 T T T

0 1 2 3 4 5 6 7 8

T(K)

FIG. 1. Measureda) and computedb) temperature dependences of the electronic spin polarization obtained
for v=1/2 in various magnetic fields: 12 T, 9.3 T, and 3.3 T. The linear extrapolatioB$dB_., from whose
slope the Fermi energy of composite fermions was determined, is shown in Fig. 1a.

Let us consider a two-dimensional electronic system, whose filling factor is held
constant, equal tav=1/2. In this case the motion of the composite fermions is not
quantized and the system of these quasiparticles possesses a Fermi surface characterized
by the Fermi energy

_27Tﬁ2 eh

* —
Ne=
m* 2m*c

EF

B, 2

wherem* is the effective mass, which in strong fiel¢smilarly to Ref. § should be
determined only by the interactions of the electrons and the magnetic field.

The value of the effective mass can be estimated from dimensional afalgsis

h? c ¢ @
m* (4mny)Y? €’
wheree is the permittivity of the medium an@ is a dimensionless constant.

If follows from Egs. (1)—(3) that m* ~ B and thereforet ~n,/m* ~ \B. Since
the Zeeman splitting increases with increasing magnetic field more rapidly fhatiere
exists a nonzero critical value of the magnetic fi@ld for which the Fermi energy is
equal to the Zeeman splitting:§ (B.) =Ez(B.)] and the system becomes completely
polarized.

The densities of quasiparticles with different spin orientation are

m F ! d m TIn(1+exp{(u* £ E/2)/T})
n+= E= n ex - .
T 27h?Jo exp{(e FEL2— u*)ITH+1 27h? # z

(4)

Here u* = u*(T,B) is the chemical potential of the system of composite fermions in a
magnetic fieldB at temperaturd measured in energy units.

Determining next the degree of spin polarization of the system of quasiparticles as
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n+_n_

Y (TB)= ®)

expressing the chemical potentjaf from the condition that the sum of the densities of
the quasiparticles with spin parallel and antiparallel to the magnetic field is equal to the
total density of the particles in the system in a given fiBld

n_+n,=ngB) (6)
and substituting the expressi¢f) and the value ofu* from Eq.(6) into Eqg.(5), we find

for the degree of spin polarization of a system of composite fermions

. 2T |1
y*(T,B)=1-—In E[l—exp(—EZ/T)
€F

+\(1—exp(—E5/T))?+4 exp (e —Ex)/T)]{. 7)

Plots of the temperature dependence of the degree of spin polarization of the system
of composite fermions, constructed using the form@a are presented in Fig. 1b. Com-
paring Figs. 1a and Fig. 1b, we can see that the experimental and theoretical dependences
are in good qualitative agreement with one another.

It is of interest to consider various limiting cases of the form(@1y valid for
arbitrary values ofl andB. We find from Eq.(7)

r E, T
— — 7 eXp(Ez—&f)/2T),
ef  &f

B<B., T<ef, E, |ef—Ez;

1- 2( In((\5+1)/2)— %exr(—a’,é/T)

et V5 ’
7*(T,B)=< B=B;, T<er, Ez; (8)

2T  [ef—Ey . .

1—8—*ex T B>B., T<ef, Ez, |ef—Ey;
F

L 2T 1+y5| 1 p( Ez)+ 2 ef-E,

——1In -——=exp - =|+t—=—— ,
ef 2 V5 T/ B+5 T

k|8§_Ez|<T<8§, Ez.

As one can see from E), for B=B_ the temperature dependence of the degree of spin
polarization is a linear function at low temperatures and is determined by a single pa-
rameter — the Fermi energy of composite fermions. By linearly extrapolating the experi-
mental dependence measuredatB.=9.3 T we determined the Fermi energy of com-
posite fermions, which was found to be 6.9 K. Since Bor B, the values of the Fermi

and Zeeman energies are the same, we ligveE=6.9 K. Since the electronic Zee-
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FIG. 2. Computed dependence of the spin polarization of composite fermien$/2) on the magnetic field at
T=0K.

man splitting in GaAs foB=9.3T is 2.8 K, we must conclude that a substantial ampli-
fication of the spin splittingby a factor of 2.5, due to the interaction of composite
fermions, is observed in our experiment. Thus the characteristic interaction energy of the
composite fermions is about 4-5 K. The effective mass can be determined from the
measured Fermi energy of composite fermionsBerB.=9.3 T: m* =0.92n,, where

m, is the free-electron mass.

It is evident from Eq(8) that forB<B,, in the low-temperature limig* ~ \B. The
dependencey* (B), calculated aff=0 K assuming a constamj factor for composite
fermions @* =1.1, sinceE;=6.9K for B=9.3T), is shown in Fig. 2. This dependence
agrees well with the experimental results of Ref. 6. We obtained the value of the phe-
nomenological paramet&=0.0892 from Eq(3), knowing the mass of composite fer-
mions and their density #=B.=9.3T.

A separate work will be devoted to an investigation of Fermi-liquid effects in a
system of composite fermions, specifically, the dependence of the effective mass and the
Zeeman splitting on the degree of polarization of the system, and the ratio between the
massm* appearing in the expression for the Fermi energy, and the effective mass of
composite fermions, which determines the low-lying excitations of a system of composite
fermions? Here we note only that the good agreement between the experimental and
theoretical temperature dependencesybfattests to the applicability of the picture of
noninteracting compact fermions. However, to explain the temperature dependences in
fields differing strongly from the critical field, it must be assumed that the Zeeman
splitting and the effective mass depend strongly on the degree of polarization of the
system.

In summary, in the present work the Fermi energy and the Zeeman splitting of
composite fermions were measured from the temperature dependence of the electronic
spin polarization forv=1/2. It was found that the Zeeman splitting, from which the
interaction energy of composite fermions is determined, is intensified.

We thank the Russian Fund for Fundamental Research, INTAS, and the program
“Physics of Nanostructures” for support.
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DThe latter determine, specifically, the Pauli paramagnetism, the specific heat, and so on in a system of
composite fermions.
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Ferromagnetic nanocrystalline (& films were prepared by pulsed
plasma vaporization. A comprehensive investigation of the structure
and magnetic properties made it possible to identify the type of short-
range order here and to establish the sequence of structural states oc-
curring in these films in the process of thermal relaxation: foE&ke
hcp-F€C)—bhcc-Fet-C. On the basis of an analysis of the metastable
phase diagrams using Ostwald’s rule, it is shown that the observed
scenario of the structural transformations in these metastable nanocrys-
talline alloys F¢C) is a natural phenomenon. @999 American In-
stitute of Physicg.S0021-364(109)00523-X]

PACS numbers: 81.05.Ys, 75.50.Bb, 75486.

It is well-known that crystalline iron exists in three polymorphic modifications,
bce-Fe @-Fe, 5-Fe), thermodynamically stable in the temperature range 1183-1667 K
Fe (y-Fe), and thermodynamically stable at high pressured 30 kbay hcp-Fe €-Fe).
The latter two modifications of the close-packed structure of Fe in the form of metastable
phases can also be obtained at low temperatures and atmospheric pressure. These meta-
stable phases are ordinarily prepared in the form of ultratb@veral molecular layers
films on appropriate substratésor small coherent inclusiorprecipitateyin the appro-
priate material$,and in the form of thin films and microwires by fast cooling of the
melt*®

A new technological method, called here pulsed plasma vaporizaB&Y) in
vacuum, has been developed at the Institute of Physics of the Siberian Branch of the
ran®~81n this technology condensation occurs at a high festimated to be-10* A/s in
a pulse, and solidification of the condensate occurs according to the scheme vapor
liquid — crystal. This technology makes it possible to obtain films of a transition metal
with a high carbon content~20 at.%) in a metastable nanocrystalline state.

The purpose of the present work is to identify the initial and investigate the sequence
of structural states of films of a nanocrystalline alloy @gnthesized under ultrafast
condensation conditioipswhich appear in the process of thermal relaxation.

0021-3640/99/70(11)/7/$15.00 736 © 1999 American Institute of Physics
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EXPERIMENTAL PROCEDURE

The experimental methods used in our work are based on a study of the static and
dynamic magnetic properties of nanocrystalline Fe films, as well as the atomic and
chemical structure of this material. Fe films, 200—2000 A thick, were obtained on dielec-
tric substrategcover glass, pyrex glass, NaCl, Mg®y PPV in vacuum with residual-
gas pressur®,~5.5-10"° mm Hg. The atomic structure of the nanocrystalline Fe films
prepared by the PPV method was determined by x-ray diffraction of synchrotron radia-
tion (SR (Institute of Nuclear Physics, Siberian Branch of the Russian Academy of
Sciences, Siberian International Center for)SRhe SR wavelength was 1.49 A. The
electronic structure and chemical composition of these films were determined from in-
vestigations of photoelectron and Auger spectra on a RIBER photoelectron spectrometer
(a source with an Mg anode and energy of the Kiine hy =1253.6 eV was usedt
the Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of
Sciences.

The dynamical magnetic properties of nanocrystalline Fe films, determining the
ferromagnetic resonand&MR) parameters, was studied in a standaRIAE2M spec-
trometer with frequency =9.2 GHz. The FMR resonance fields were measured in the
entire range of angles between the external field and the film plane in order to calculate
the effective magnetizatioll o from the equation

H —47Mgg= VH(H[+47M ), (1)

whereH' and HrH are the FMR fields with the corresponding experimental geometry.
The measurements were performed at room temperature.

The static magnetic measurements were performed with an automated vibrating
magnetometer with fields up to 20 kOe and temperatures ranging from 4.2 to 250 K. The
temperature dependence of the saturation magnetizMig(iT) of nanocrystalline Fe
films, measured with external field =20 kOe in the temperature range 70-210 K is
described well by the law

M¢(T)=Mg(1-BT%), 2

which made it possible to determine the saturation magnetization and the numerical value
of the constanB and to calculate the exchange interaction constant

1/3 261 2/3
— . 3

Al K
87w

Jug
Mso

B

The high-temperature dependences of the saturation magneti2dtion) were
measured on a torsional anisometer in the temperature range from 273 to 750 K with
constant fieldH=5.7 kOe. The Curie temperatur&s of nanocrystalline Fe were deter-
mined by extrapolating the temperature dependevig€l) to zero magnetization using
the linear dependence Mg onT nearT., observed for these materials.

The static magnetic measurements also included measurements of the magnetization
curve M(H). The local anisotropyH, (related with the magnetocrystalline anisotropy
constant by the relatioK =H_- M¢/2) was calculated from the magnetization curves up
to saturation, measured in the film planeTat 250 K.
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TABLE I.

Initial state Tan=200°C Ta=400°C bce-Fe
Mg, G 1540 1180 1150 1740
Mei (FMR), G 1180 1030 - 1740
T, °C 400 300 300 770
A, 1077 ergs/cm 5.5 3.2 3.7 20
H,. kOe 2.0 5.9 6.1 0.5

In the course of the investigations the initial nanocrystalline Fe films were subjected
to thermal annealing. The annealing was performed in a high-vacuum chamiieh fat
temperatures 200 and 400 °C.

RESULTS AND DISCUSSION

The results of the analysis of the photoelectron spectra showed that the surface of
the films of nanocrystalline Fe is oxidized — the line £X530.4 eV} due to oxygen and
a component attesting to the hydroxyl group (OQHare observed in the electronic spec-
tra. The shape of the FeP3,, line qualitatively indicates two types of nearest-neighbor
environment of the Fe atom. The profile of elements contained in nanocrystalline Fe over
the film depth was reconstructed by Auger-electron spectroscopy. The composition of the
experimental films was as follows: Fe-{75at.%) and C {-20 at.% with a uniform
distribution of the elementsxg./xc) over the film depth.

The results of the magnetic measurements are presented in Table I. It is evident that
the initial metastable stat@vhich we callX;), realized in films of the alloy RE), is
characterized by the following basic magnetic paramet&rs0.56 10~ ° ergs/cm,M
=1540 G,H,=2 kOe, T.=400°C. As a result of thermal relaxation, the initial state
transforms into a different metastable statdich we callX,) with the magnetic param-
etersA=0.3-10"° ergs/cm,M,=1200 G,H,=6.1 kOe, andl ;=300 °C.

The large difference in the measured magnetic paraméteid,, T., and H,
attests to structural differences between the observed metastable states. A transition into
the thermodynamically equilibrium bcc-Fe phase occurs after a 1-h anneal at
T=600°C.

The results of x-ray crystallographic analysis performed on the initial Fe films
(~1000 A thick and on the annealed Fe filmE =200 °C) are presented in Fig. 1. The
diffraction curve of the initial films, measured in SBurvel in Fig. 1), contained one
broadened peak centered ndar2.04 A andA(26)~3° wide. Such a diffraction curve
indicates a nanocrystalline structure of the initial material with a grain size of the order of
40 A. However, it is impossible to draw a conclusion about the type of atomic lattice in
these nanocrystalline grains on the basis of a single reflection. The annealed films of
nanocrystalline Fe were characterized by a diffraction cirueve2 in Fig. 1) containing
a set of reflections. Five of the reflections with the highest intensities, marked in Fig. 1,
attest to a hexagonal close-packed structinep) for these Fe films(The fact that a
complete set of reflections characterizing a polycrystalline hcp structure is lacking attests,
in our view, to a certain degree of texture in these fijndsalysis of these reflections
gives the following values for the lattice parameters of &e:2.63 A, c=4.46 A, c/a
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FIG. 1. X-Ray diffraction patterns of the initial nanocrystalline Fe fiilp and a film (2) annealed afl,,
=200°C.

=1.696. The volume per Fe atom calculated from these paramet¥tg=i43 A>. We

note that the computed volunvg; per Fe atom in these Fe films is more than 10% greater
than the analogous quantity in thermodynamically equilibrium hcp-Fe and is close to the
valueV,~13 A2 observed in rapidly quenched metastable alloys hcp-Ee-C.

The results of x-ray diffraction on SR made it possible to identify the atomic struc-
ture of the metastable stade, and to assert with adequate substantiation that this is
hcp-Fe. Structural investigations using a TEM turned out to be most informative for
identifying the initial metastable sta¥¢,. The point is that the transitiod; — X, can be
obtained not only by isothermal annealingTat 200 °C,t=1 h, but also by irradiation
with a beam of electrons in an electron microscogstage 150 kY. Under such actions
the initial “x-ray amorphous” state in the nanocrystalline films transforms into the hcp
solid solution F€C). This process is virtually instantaneo(several seconglsCareful
analysis of the observed transformations in nanocrystalline films of the all@) Es-
tablished that the hcp-Fe reflections arising in the electron diffraction pattern under the
action of an electron beam are secondary. Initially, ordering of the initial “x-ray amor-
phous” (nanocrystalling state occurs. This is indicated by the appearance of reflections
against the background of the initial halo. In the course of the further action of the
electron beam on the experimental film, reflections of the hcp phase of Fe appear, and
reflections of the initial metastable state vanish. We were able to identify the initial
metastable phase. This was found to be a state with face-centered cubic packing fcc-Fe.
The lattice parameter of this fcc stateas=3.72 A and the volume per Fe atom\i,
=13.05 A. Figure 2 shows the diffraction pattern of the initial nanocrystalline &tige
23 and its transformation under the action of the electron beam. Figure 2b shows the
interpretation of the metastable structures that arise. Using the well-known rededion
~f (at. %0, we determined the chemical composition of the fcc solid solution of a
microsection from which the diffraction pattern presented in Fig. 2b —,G7g was
obtained.
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FIG. 2. Electron diffraction patterns of nanocrystalline filmg®e a) initial state; b annealed by an electron
beam.

The magnetic order of metastable close-packed phases of iron, fcc and hcp, is
determined by the volume per Fe atom. The volume per Fe agm11.5-12 A% in
this material is critical. When this volume is reached the atoms of the close-packed
structures transform from a low- into a high-spin stalanocrystalline films of the alloy
Fe(C) obtained by PPV are supersaturated solid solutions. The volumes per atom in these
structures ar&/,~13 A%, which is more than 10% greater than the corresponding vol-
umes per Fe atom in thermodynamically stable close—packed fcc and hcp structures
(V=11 A3). For this reason, the ferromagnefttigh-spin state of the metastable Fe
phases which we investigated is a natural state.

Thus, the initial metastable fcc phase(€gis characterized by the following mag-
netic parametersA=0.5610"° ergs/cm,M,=1540 G,H,=2 kOe, andT.=400°C.
The basic magnetic characteristics of the metastable phase of Cp-Fe A=0.3
-107° ergs/cm,M,=1200 G,H,=6 kOe, andT.=300°C — are close to the corre-
sponding values for cubic tight packing. An exception here is the magnetocrystallo-
graphic anisotropy field, which is three times greater tHann the fcc phase of Fe.

We have shown above, by structural investigations and measurement of the mag-
netic characteristics, that in a nanocrystalline iron alloy with the carbon structural trans-
formations fcc-FEC) — hcp-F€C) occur as a result of thermal relaxation. A clear un-
derstanding of the sequence of the observed states can be obtained using Ostwald’s rule.
According to this rule, at a transition from a nonequilibrium into an equilibrium state, the
system passes through all possible intermediate metastable states. Figure 3 shows the
qualitative room-temperatures(x) phase diagram of iron, where the Gibbs energy is
G=H-TS (H is the enthalpy an& is the entropy andx is the carbon concentration.

Here the order of magnitudes of the transition enthalpiea&&~ <~ 0.11 kcal/mole and
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FIG. 3. Qualitative G,X) phase diagram of iron.

AHY7*=0.22 kcal/mole, the stoichiometric compound;Ed¢cementite is characterized
by a positive formation energgH=5.4 kcal/mole®

This phase diagram gives an idea of the possible scenarios realized in the metastable
system FEC). The realization of a particular metastable state will be determined by the
initial coordinates Gg,X;) in the phase plane or, in other words, the stored excess energy
AG relative to the stable equilibrium of the mechanical mixture bcerFgraphite. The
degree of nonequilibrium G of the F&C) condensates obtained is dictated by the tech-
nological processes of PPV. In the first place, this method makes it possible to obtain
supersaturated solid solutions(Eg which increases the elastic energy due to an increase
in the interatomic distances; in the second place, the nanocrystalline all6y iBechar-
acterized by a small grain size (40 And therefore a large energy contribution due to the
specific surface are8&,. The contributions enumerated above to the thermodynamic
Gibbs potential can be representeddS=PAV+ S, whereP is the internal pres-
sure, AV is the change in the molar volume, awlg, is the surface energy density.
According to the experimental results presented above, the initial state of the nanocrys-
talline alloy Fe€C), obtained by the PPV method, occupies in tleX) phase diagram a
location indicated by the dashed rectangle. It is evident that under relaxation of the initial
state F€C), in this case, the following structural transformations should be observed:

fcc-Fg C)— hcp-F&€C)— bee-FetC.

The fcc and hep solid solutions &) in the (G,x) phase diagram are shown to be
in equilibrium with the stoichiometric carbide fe. Structural investigation€TEM) of
separate sections of nanocrystalliné®efilms indicate a negligible presence of cement-
ite. However, the high-temperature investigations of the saturation magnetik&s{(arn
of nanocrystalline RE) films did not show the presence of apd-phase, characterized
by the temperaturd@ =210 °C. Therefore the volume fraction of iron carbide;€Een
the experimental RE) metastable films, in all probability, does not exceed 10%.

In closing, we thank E. M. Artem’ev for fruitful discussions of the results of the
structural investigations.
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DisorderedRL—C networks are known to be an adequate model for
describing fluctuations of electric fields in a random metal—dielectric
composite. We show that under appropriate conditions the statistical
properties of such a system can be studied in the framework of Efetov’s
nonlinearo model. This fact provides a direct link to the theory of
Anderson localization. ©1999 American Institute of Physics.
[S0021-364(99)00623-4

PACS numbers: 81.05.Mh, 72.80.Tm, 84.30.Bv, 05-40.72.15.Rn

The optical properties of random metal—dielectric filfatso known as cermets or
semicontinuous metal filmd$ave attracted a lot of research interest recently, both theo-
retical and experimentdsee Refs. 1—4 and references thexdinwas discovered that for
metal concentrations close to the percolation threshold, the absorption of microwave
radiation in such materials fluctuates anomalously. In turn, these anomalous properties
were traced back to high local field fluctuations detected in such compounds. A very
insightful approach to the problénf is to represent the system as a large random net-
work consisting of capacitancés and inductanceg, the latter being in series with a
weak resistanc®. The network description naturally arises when discretizing the equa-
tions satisfied by the scalar potential of the electric field. The capacitors model dielectric
bridges, while isolated metallic granules are indeed characterized by an almost purely
inductive response for radiation frequenciessuch thatw,<w=w,, wherew, is the
plasma frequency and, is the plasmon relaxation rate?

For frequencies close @,=1/(LC)*? the electromagnetic response of such a net-
work is dominated by resonance effects provided that the losses are small, i.e., the quality
factor Q= (L/C)Y?R ! is large. The resonance frequencies can be determinégeas
eralized eigenvalues of some linear lattice operator arising when solving the system of
Kirchhoff equations>;o; (v; —v;) =0 for on-site potentialg;=v(r;).*° Hereo; is the
conductance between a pair of nodgandr; if the two nodes are connected by a direct
bond, ando;; =0 otherwise. In the simplest case, one can think of the network as being
connected to an ac voltage by two external leads attached to lattice nodes with the
coordinates , andrg, the corresponding potentials being=e~'“' andvy=0, respec-
tively. Omitting the common time-dependent factor, it is easy to see that the amplitude of
the potentialv(r;) at an internal lattice node is given by

0021-3640/99/70(11)/8/$15.00 743 © 1999 American Institute of Physics



744 JETP Lett., Vol. 70, No. 11, 10 Dec. 1999 Yan V. Fyodorov
— A -1
v(r)=2, (D Yo, &)
J

Dij= UAi+UBi+; gij | 6ij— (1= &) aij .

In a randomRL—-C network each nonzero conductangg at frequencyf = /27 is
equal to eithewr,=iCw or o;=(R+iLw) !, with specified probabilitiesin what fol-
lows we concentrate on the case of equal probabilities of fintimgd C bonds in the
network. Then it is convenient to introduce “symmetric” variablég such thath;
=—1 if O'ij =0y and h”:l if O'ij:(Tl, SO that(rij=eij%([0’0+0'1]+[01—0'0]h”),
with e;;=1 for directly connected nodes aeg=0 otherwise. In terms of these variables
we can writeD=H—\W, where

Wij=(Z+eaitegi)dj—(1—6)ej, ¥l

Hij:

EAi+EBi+gi Eik>5ij_(l_5ij)ﬁij : ©)

with Z=2,g; standing for the coordination number of the lattice imjd= hije;. The
frequency-dependent paramekers defined as

B o9t oy

Op— 01

i r
— ——=Re\—i5 (4)

where we have made use of~ w, and Q> 1.

We see that the statistics of the scalar potent{@) (and hence of the electric field
&;j ,» proportional to the voltage differenegr;) —v(r;) across the bond ) is determined
basically by the properties of the operatdr In Ref. 1 it was suggested that operators of
this type acting on a lattice be called Kirchhoff Hamiltonigikds). The off-diagonal
elements of such a Hamiltonian assume random vatukdor directly connected nodes.
This property makes the KH similar, in a sense, to a tight-binding Hamiltonian describing
the motion of a quantum particle on a disordered lattice with an off-diagonal disorder.
The latter model is a paradigmatic one in the theory of Anderson localization. That kind
of analogy, first discussed in Ref. 1, led the authors to relate the anomalous fluctuations
of the electric fields to localized properties of the corresponding eigenfunctions. Further
numerical and experimental work confirmed the quantitative validity of the proposed
picture.

At the same time, the extent to which the analogy between the Anderson model and
the KH can be carried is a far from trivial question. Indeed, the KH has a specific feature:
the diagonal elements;; are strongly correlated with the off-diagonal elemetifs; . It
is known that correlations of various kinds can substantially modify the localization
behavior(see, e.g., Ref.)6 Therefore, it is highly desirable to find a realistic approach
that will shed more light on the question of equivalence between the models.

The main goal of this paper is to show that the equivalence indeed exists, and the
unifying concept is provided by the so-called Efetov supermatrix nonliseanodel
(ENSM).” The latter model is known to be the most powerful tool in understanding
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fluctuation phenomena in disordered conductors in the last désadee.g., Ref.)8 As

a matter of fact, we derive the ENSM from a version of the KH and thus lay a regular
analytical groundwork for the quantitative description of the statistical properties of semi-
continuous films.

To derive the ENSM from a microscopic random Hamiltonian one has to exploit
some large parameter which physically controls the strength of the disorder. Experience
in dealing with the usual tight-binding models suggests that the role of such a parameter
can be played, e.g., by a large radius of connectivitie., a large coordination number
Z~b%.91%Formally, we consider d-dimensional lattice of linear sidzewith unit lattice
spacing and a connectivity radibsTo facilitate bookkeeping of terms of different orders
it is convenient make the redefiniticmpjaeijzfl’z, wheree;;=1 for |ri—r]-|$b and
;=0 otherwise. The radius of connectivityis chosen to satisfy £b<L. Both in-
equalities are importanth>1 allows one to map the problem to the ENSM, while
b<L is necessary to ensure the adequate description of Anderson localization effects.
Indeed, it has been shown recentlyat a full-connectivity. C network withb=L can be
mapped on the zero-dimensional version of the ENSM, which precludes taking localiza-
tion effects into account.

To demonstrate the mapping it is instructive to address the simplest nontrivial cor-
relation function of the potentialfi(Q,l“)=<vj)1(ri)va,2(ri)), where we have intro-
duced the frequency differend®@ «(w;— w5)/2wy<<1, and the brackets stand for the
disorder averaging.

Our starting expression is:

~ T~ 1 ¥ 1
G(Q,IN= hak, = A1) (ha, =N O
|( ) <k§(2 eAkleAkz( Akq l)( Ak, 2)[H—)\1W ikl[H_)\ZWLk2> ( )

To perform the disorder averaging we follow the standard procedure and represent
the matrix element of the resolvertl  A\W) ~! in terms of the Gaussian integral

1 N
[H—(Re)\tiF/Z)WLk:i'f Lﬂl dv (=)

. N
si*(i)sk(i)exp{t'E mEn wl(+)

X[Wmn(Re}\iiTIZ)—Hmn]\lfn(i)] (6)

over 4-component supervectots(=),

§(=) si()
~If|<t>=( ) s<r>=(sli(i)),

(=)
(7)
O T L
7I|(—)— Xik(i) ’ \P|_? XI Xl

where the componentg(+),s(—), 1=1,2,...,N are complex commuting variables,
and y,(+),x;(—) form the corresponding Grassmannian parts of the supervedtors

(x).
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To facilitate the presentation, it is appropriate to anticipate few facts whose validity
can be verified by the same method as presented below. First of all, after averaging, the
double sum in expressiofd) is dominated in the limit ¥b<L by the diagonal terms
with indicesk;=k,. Another fact which is useful to exploit from the very beginning is
that all the resonance frequencies are concentrated in an interval of the or@ef «f
~Z7" Y2 around w=wy, so that the typical spacing between the neighboring reso-
nances is of the order af~ wy/(NZ*?), with N~L¢ being the total number of reso-
nance frequencies. We anticipate nontrivial correlations occurring on a frequency scale
w;— wy~A (Ref. 5. For this reason we scale Rg,= (r +Q/2N)/Z*2, considering both
r and() to be of the order of unity. By the same reasoning we consider the losses to be
small enough to ensure that=T'(NZ?) is of the order of unity. Physically this require-
ment means that a typical resonance widtfl" is assumed to be comparable to the
typical resonance spaciny.

With these facts in mind, we can easily average the products of the resolvents over

hj;=+1/zY%,; in the limit N>Z> 1. Al further steps follow the method used in Ref. 5
(cf. Refs. 10 and 1)jladapted to the present model. We have:

1'|[ do,

. |
Q=53 en si*<—>si<+>s:<+>sk<—)exp[L”;—Z<Q+iy)

X X enn(®p= ) (Pm— ) exp[—%z emn/cubm,(bn)]. ®

Here the integration goes over the 8-component superve@ﬁhis(\lfr(wt),\lff(—)) and
K(®q,®p)=—4ir (- PHA(P,— p) +[(P]- PDHA(P,— D)) 9

with A =diag(1,1,1,1-1,—1,—1,—1). Only those terms are left in the exponent which
will later on contribute to the final expressions in the limit under discussion.

The next step is to use the following Hubbard—Stratonovich functional transforma-
tion (cf. Refs. 10,11, and)5

1
exp[ T mEn emnIC(CDm,CI)n)}
i< Z o -,
=JD(g)ex g 2, In(®m) [exp = 75 >, [

XJ dq)adq)bgm(q)a)c(q)avq)b)gn((bb)],

where[e™1] is the matrix inverse to the matri&z[eij]h,j:l,____N, and the kernel
C(d,,dy) is, in a sense, the inverse of tkeymmetrig kernel (D, ,Py):

f dOK(P,,D)C(D, D)= 6(P,,Py), (10

with §(®,,Py) playing the role of ad-functional kernel in a space spanned by the
functionsg(®P).
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With the help of these relations one easily brings each term of the sum i{8)8q.
the form:

| D@7 1017 ladexicio)+ sLaiah ay

where

[dd s*(t)s(l)exp[lgg(d))]

F. zl9]= i ) (12
f dd exp[gg((b)]
i

£{g}=§m: InJ do explggm((b)]

Z -1

- 1_6 % [e ]mnf dq)adq)bgm(q)a)c(q)a:q)b)gn(q)b)a (13)

(Q+iy)

5»61{9}:' 4Nzy
fdcbmdcbnexp{'g[gm@rnwgn(@nnj(cbin—cbl)(cbm—cbn)
X 2, €mp (14)

f dc1>md<1>nexp{'g[gm@mwgn@n)]]

and we have restricted ourselves by the leading-order ter&Cifg}, which is only a
small correction taZ{g}.

The next step is to evaluate the functional integral ay@b) by the saddle-point
method, which is justified by two large parametetsand N. The saddle-point configu-
rationg{?(®) can be found by requiring a vanishing variation of the “actiofi{g} and
satisfies the following system of equations:

fd@b/c(q>a,q>b)exp['§g(n?(<l>b)}

fd%exp,"gga?(@b)]

In deriving Eq.(16) we have used Eq11).

Given the form of the kernel9) and making use of the fact that [e ],,,=1,
one can find a space-independent solug{ﬁi(tl))zg(s)(@) to equation Eq(16):

Z2 [e U@ (D) =i (15)

gO(D) =4(r—Gy)(PIAD,) +4iG,(P]D,) +i(PIAD,)? (16)

provided that the real coefficienG,,G, are solutions of the system of two conjugate
equations:
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2

o [ u
GziiGl=f duexp[tiu(r—GliiGz)—E . (17
0

Hints for verifying such a solution can be found in Ref. 5.

For further analysis it is very important that a solution to equatid®s, such that
G,(r)>0, exists for arbitrary—co<r <, Actually, the mean density of resonances is

1
merely given byp(r)= ;Gz(r) (Ref. 5.

The most important consequence of the existence of the solgfR{d,) in the
form (16) with G,#0 is actually the simultaneous existence of a whotatinuous
manifold of saddle points parametrized as

gr(®)=g®(Td,), TAT=A. (18)

If it hadn’t been for the conditiorG,#0 all these solutions would trivially coincide:
gr(®)=g®(®) for any T defined as above. In the actual case the presence of the

combination(I)ZCIDa which is not invariant with respect to a transformatidh, —T®,
ensures the existence of the aforementioned manifold. This fact is just a particular mani-
festation of the phenomenon of spontaneous symmetry breaking. Different nontrivial

solutions are actually parametrized by the supermatriceshich are elements of a
graded coset spad¢OSH2,2/4)MOSRH2/2) @ UOSR2/2).

As a result, the functional integral ovgg,(®P) is dominated by “Goldstone modes”
which are slowly changing in space and parametrizedy&&®)=g®(T,®), with
matricesT,, which depend on the lattice site index=1,... N. Our next step is to
determine the effective action for these modes, that{ig\>)} + 62 ,{g{}.

First of all we notice that

i_ (G) —
f dCDexp{S (c (CD)]—l,

which allows one to perform the following manipulations:

| dv,gag® @ e, 2000 @y

i - i
=ifd<bg<ne>(q>)exp{§ §$’(<b)]:ifdcbg@(TnTr;lcb)expl’gg@(cb)]
= —4G3S(T, T AT, T tA) = —4(mp)2St(T AT, T, *AT,). (19)

Here we have first exploited the saddle-point equatits) together with Eq(11) and
then performed a change of variabl@s;®— ®, which does not effect the measut®

because of thépseudo unitarity of the matricesi. Then the integral can be readily
evaluated with help of the explicit form in Eq17) (see, e.g., examples of similar
calculations in Refs. 5 and 1&nd brought to the final form by employing the cyclic
permutation and the aforementioned relation betw@&erand the density of resonances
p(r). In the very same way we also find:
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O+i A dmA A A daA A
oL{g}= uGZE emnSt(T AT A+ T, P AT A)
ANZ men

o1 PP
=mp(Q+iy)— > ST AT,A). (20)
AN “F
The pre-exponential factots,. _[g;] are calculated analogously and are given by
Fo - Lil=mp[ TP AT?S Fo ilgd=mp[ T "AT I,

where the indices of the supermatrix elements are inherited from the structure of the
diadic productb @ d.

We see that calculating the correlation functi@nin the limit L>b>1 amounts to
evaluating the following integral over the set of supermatridgs=T, *AT,,:

2 N .
=23 e[ |11 00 |Qrpes?, (21)
=1
o Z(mp)? S i a A Tp(QFY) & A -
£Q)=—7— X [ mStQnQu+i —5y— 2 SWQni). (22

The action in Eq(23) is actually equivalent to the discretized version of the super-
matrix nonlinearo- model, well-studied in the context of Anderson localizatiGindeed,
following Ref. 9, we note that the conditidi® 1 ensures slow variation of the matrices
Q,, with index m, so that it is legitimate to pass from the lattice to the continuum,
whereupon the action assumes the standard form:

L(Q)=%f drStr{D(VQ)vaZimTW)Q(r)f\ , 23)

where D= pr*12|r|<br2 plays the role of the effective diffusion constant, and
V=[dr. The large value obx<b? ensures that the typical spatial scglef variation of
Q(r) is large:£xb?. Thus over distances of the ordertothe matrice€) do not change,
and therefore

G Z(Wp)zf DQ(NQ*r)Q(ra)ec@. (24)

In conclusion, we have managed to express the correlation function of the scalar
potentials in terms of the ENSM. A similar reduction is also possible for other quantities
of interest. As is well knowr;? explicit evaluation of integrals of the type in E(5)
depends crucially on the parametgr 2mpDLY"2. Forg— o the integral is dominated
by the constant configuratio®(r)=Q,, and the result for Eq(25) is very simple:C;
=2imp(r)/(Q2+ivy). This is the so-called “zero-dimensional” limit, corresponding to
the infinite-range connectivity modelOne can take into account weak localization ef-
fects, finding 1¢ corrections in any dimensiod (see, e.g., Ref.)8 For a quasi-one-
dimensional lattice one can calculate the integrals exactly in the dmit— 0 (Ref. 9.

One should be able also to study the singular parts of higher correlation functions. These
questions are left for further investigations.
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DActually, the lowest correlation function of the electric fielelg(w) =v,,(r;) —v,(r;) amounts to the local
correlations of the scalar potential, since, in fact, in the present rfedét;)v(r;))>(v*(r;)v(r;)) for any
i#]j.
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Variational procedure and generalized Lanczos recursion
for small-amplitude classical oscillations
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A variational procedure is developed which yields the lowest frequen-
cies of small-amplitude oscillations of classical Hamiltonian systems.
The genuine Lanczos recursion is generalized to treat related non-
Hermitian eigenvalue problems. @999 American Institute of Phys-
ics.[S0021-364(19)00723-9

PACS numbers: 45.20.Jj, 02.6&x

The normal modeg and frequencies of small oscillations of a classical system
about equilibrium are determined by the secular equétion

w’ME=KE, ()

whereM andK areNXN symmetric positive-definite matrices of the mass coefficients
and spring constants, respectively. In many applications the nuiber degrees of
freedom is large, while only a few lowest frequencies are of intér&juation (1)
represents a problem more complex than a regular symmetric eigenvalue problem, unless
M or K is diagonal.

Equation(1) can be transformed into Hamiltonian form by introducing the canonical
momentumzn=wM §:

Ké=wn, Tn=wé, 2

where T=M 1. Thus the frequencies of the normal modes are the eigenvalues of a
2N X 2N matrix

0 T)
(K 0/ @

The spectrum of this matrix consists of paitsv, since ¢, — ») is also a solution of
(2) that corresponds te- w. The lowest frequency i, is the lowestpositiveeigenvalue
of the matrix(3).

Although the eigenvalues of the matr{8) are always real, the matrix itself is
non-Hermitian, unlesK=T. Therefore, its diagonalization poses a formidable task. The
major problem is that no general minimum principle exists that yields eigenvalues of

0021-3640/99/70(11)/5/$15.00 751 © 1999 American Institute of Physics
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arbitrary diagonalizable non-Hermitian matrices. This precludes the formulation of a
variational procedure similar to the Rayleigh—Ritz procedure for Hermitian matrices. If
K=T, the matrix(3) is Hermitian, and its positive eigenvalues coincide with thosK of
andT.

As is known from quantum mechanics, the lowest eigenvalyg of a Hermitian
matrix H can be obtained from the minimum principle

€min=Min (gHY) (4)

AT

The minimum is to be sought over all vectafsThe Ritz variational procedure is an
approximation when the sét/} in (4) is restricted to some subspakeof dimension
n<N. The best approximation te,,, in the sense of4) is obtained as the lowest

eigenvalue of thexx n Rayleigh matrixH, obtained by projection off onto K.

The special paired structure of the mat(8 makes it possible to generalizé) so
as to yieldw,,- In fact,

(EKE)+(nTn)
®min= Min

(&7} 2|(&n) ®

The minimum is to be sought over all possible phase space configuréfioms Before
providing the proof to this equation, let me point out some of its features.

First, it states thaby,;, is the minimum arithmetic mean o£K¢) and (T %) over
all pairs of vectorst, » with scalar product{z)=1. SinceK andT are both positive-
definite, the right-hand side is strictly positive and savis;,. Second, Eq(5) is sym-
metric inK andT, according to the nature of the problem. Wh€r T the minimum is
achieved at= 5, and(5) becomes the same &%).

Note that the functional i5) has no maximum, since the denominator can be made
arbitrarily small. A global minimum, however, always exists. This is not obvious, since
the set of all pairs of vectors withéf)=1 is not compact. Indeed, say, any vector
orthogonal toy can be added tg, making|£| arbitrarily large. However, the functional
in (5) grows indefinitely in this case, so that the global minimum is achieved at fijite
and|7|.

Variation of (5) with respect tc¢€ and 7 yields Eq.(2). Thus the solutions of2) are
the stationary points of5). The global minimum(5), therefore, indeed gives,;,. The
singularity in the denominator poses no problem, since it corresponds to infinitely large
values of the functional, while near the minimum it is analytic.

The minimum principle(5) can, in fact, be obtained from the Thouless minimum
principle? derived for non-Hermitian matrices that appear in the random phase approxi-
mation (RPA). Equation(5) is transformed into the Thouless minimum principle by the
following substitution:A=(K+T)/2, B=(K—T)/2, x=(&(+ 1)/2, andy=(¢— 7)/2.
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A variational procedure similar to the Rayleigh—Ritz procedure can be formulated if
the coordinateg and momentay in (5) are restricted to some subspaéésand )V of
dimensionn, respectively.

Let {&} and{ 7} be two sets of vectors that spahand V), such that £ 7;) = &;; .
Expandingé=2u;&;, »=2v;#n; and varying(5) with respect tay; andv;, we find the
latter to obey a 8 2n eigenvalue equation

[ oll-=L) ®

with K;; = (&K &) andT;;= (7T #;). Equation(6) generalizes the Hermitian Rayleigh—
Ritz eigenvalue equation ft. It has 4 solutions* w, the lowest positive one of which
gives the best approximation te,,, in the sense of Eq5).

The Krylov subspacefor the matrix(3) can be constructed by operating with it
many times on an arbitrary vectoé;(, 74):

( fl) (T7}1> ( TK§1) )
)’ Kéi)' KTy

The subspace that spans the finstectors of this sequence has the property of
approximating an invariant subspace(8f. Thus it is natural to expand the approxima-
tion to an eigenvector df3) as a linear combination of these vectors. In other words, the
natural choice for the subspaddsandV for the variational procedure described above
are the subspacés, and)/, that span the upper and lower components of firgectors
of (7).

In order to implement the variational procedure, it is necessary to construct a bior-
thogonal basi$&, , 7}, i=1,...,nin U, andV, and compute matrix elements ifand
T. Both tasks can be performed simultaneously using the following recursion:

&= Bi(Tyi—ai&i—Bi&ioy) (8a)

Mis1= 6 1 (K&—vimi— Simiq). (8b)

The four coefficientsy;, B;, i, andd, are to be chosen at each steyp as to maké; , ;
orthogonal ton; and »; 4 and to maker, , ; orthogonal to&; and&; _,. This appears to
be enough to ensure global biorthogonality«;) = &;; .

Indeed, assume biorthogonality to hold up to steplultiplying (8a) by #;, j<i
—1, we have ;& 1)< (7 T7)=(%T»n;)=0 due to the Hermiticity off and the fact
thatT »; is a linear combination of alf, with k<j+ 1<i. Thus, the biorthogonality also
holds for the step+1.

Multiplying (8@ by 7;_1, 7;, and 5,1 and using biorthogonality, we get;;)
=1, Rii =«qj, and Ri,i*lzRifl,i :Bi . Slmllarly, 7Fii =i and :'I'i'i,1=:|"i,1qi = 5i . All
other matrix elements df andT vanish.

The recursion(8) is a straightforward generalization of the Hermitian Lanczos
recursiod

Yiv1=Bra(Hii— aithi— Bithi— 1) 9
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FIG. 1. Convergence of the generalized Lanczos algorithm for a random matrix of thg3pand size N
=200000.

applicable to any Hermitian matriki. When K=T and &;= »;, both Equationg8)
coincide with each other and with E(R), up to notation.

As in the case of the Hermitian Lanczos algorithm, the several lowest frequencies
can be found by projecting thieéand » components of converged eigenvectors out of the
V, andl,, subspaces, respectively.

The method was tested on a set of large sparse random matrices of thé€3jorm
Symmetric matrice§ andK were generated having an average of 40 randomly distrib-
uted and randomly positioned matrix elements in each row. BahdT were shifted by
an appropriate constant to ensure positive-definiteness. Figure 1 demonstrates the con-
vergence results for a matrix of sizé\2200000.

For smaller matrices up toN=2000, where it was possible to obtain all eigenval-
ues with regular methods, the present method has converged to the true lowest frequency
in all instances.

In conclusion, we have proposed a method that generalizes the Rayleigh—Ritz varia-
tional procedure and Lanczos recursion to the case of non-Hermitian matrices of the form
(3) which determine the normal modes and frequencies of small-amplitude oscillations of
Hamiltonian systems.

Equationg2) have numerous applications beyond purely mechanical problems. The
Schralinger equation in a nonorthogonal basis represents a generalized symmetric eigen-
value problem similar tq1). The RPA and other time-dependent techniques in nuclear
physics and quantum chemistry lead to equations simil#R)d° Last, eigenvectors of
so-called Hamiltonian matrices, of whi¢B) is a special case, solve the nonlinear alge-
braic Riccati equation which appears in the theory of stability and optimal cdntrol.

| would like to acknowledge numerous enlightening discussions with Vladimir
Chernyak during my appointment at the University of Rochester.



JETP Lett., Vol. 70, No. 11, 10 Dec. 1999 E. V. Tsiper 755

1L. D. Landau and E. M. LifshitzMechanics Butterworth—Heinemann, Oxford.996.

2B. N. Parlett,The Symmetric Eigenvalue ProblgRrentice Hall, Londor{1980.

3D. J. Thouless, Nucl. Phy&2, 78 (1961).

4C. Lanczos, J. Res. Natl. Bur. Starth, 255 (1950.

5J.-P. Blaizot and G. Ripk&Quantum Theory of Finite SystemMIT Press, Cambridge, Mas&1986.
6s. Bittanti, A. J. Laub, and J. C. Willen(gds), The Riccati EquationSpringer-Verlag, Berli(1991).

Published in English in the original Russian journal. Edited by Steve Torstveit.



JETP LETTERS VOLUME 70, NUMBER 11 10 DEC. 1999

Condensed water in superfluid He-lI

L. T. Mezhov-Deglin and A. M. Kokotin

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow Region, Russia

(Submitted 10 November 1999
Pis'ma Zh. Ksp. Teor. Fiz70, No. 11, 744—-74810 December 1999

It was found that whefiHe gas containing water vapor as an impurity
condenses on the surface of superfluid He-II cooled-th4 K, semi-
transparent cloudéceberg$ form in the volume of a glass cell filled
with He-1l below the He-Il surface. The form of the icebergs extracted
from the superfluid liquid remains virtually unchanged on heating up to
~1.8 K. In the temperature range 1.8—2.2 K the thermometers register
sharp temperature jumps, which are accompanied by jumps in the gas
pressure in the cell and a repeated decrease, by more than two orders of
magnitude, in the total volume of the condensate, i.e., the water content
in the volume of an iceberg does not exceed’18,0 molecules per

1 cnt. It can be inferred that porous icebergs, permeated with super-
fluid liquid and containing cores consisting of small clusters surrounded
by a layer of solidified helium, form in the volume of He-Il as the gas
mixture condenses. €999 American Institute of Physics.
[S0021-364(99)00823-3

PACS numbers: 67.40.Yv

In the present letter we report observations of metastable water clasiergs
that form in superfluid He-ll when helium gas containing water vapor as an impurity
condenses. Judging from the results of our investigations and the publish&d datthe
properties of condensates of molecular gases in superfluid helium, it can be inferred that
in the process of condensation, porous icebergs permeated with He-Il, whose cores con-
sist of small water clusters surrounded by a layer of solidified helium, form in the volume
of the superfluid liquid. The observed water condensate can be called a “water gel” by
analogy with aerogel.

We note that the possibility of the formation of a metastable condensate in helium
when an impurity gas is introduced into a cryostat containing liquid helium was reported
in Ref. 1, published more than 50 years ago. It was discovered that at temperatures below
2.5 K the properties of the impurity particles formed and the character of their interaction
depend strongly not only on the composition of the impurity but also on the temperature
and the properties of liquid helium. For example, when air impurity was introduced into
the cryostat, a fog formed in the vapor above the liquid, i.e., impurity gas molecules
joined into small clusters. The rate of settling of air clusters in lidideé and the form of
the “flakes” formed in the volume of the liquid as a result of the clusters sticking
together changed substantially as temperature decreased and a transition from normal

0021-3640/99/70(11)/5/$15.00 756 © 1999 American Institute of Physics
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FIG. 1. Diagram of the apparatuk— Cell, 2 — ampul,3, 4, 5 — thermometers6 — iceberg.

He-I to superfluid He-l1l occurred. Moreover, it was found that the flakes containing water
impurity decomposed when the liquid was heated and a transition from He—II to He—I to
occurred. The results of the observations in Ref. 1 served as a basis for the development
of a method for producing small particléslusters with average diameter 5—7 nhy
evaporating metal in helium vapors, which is widely used today for decorating the dis-
tribution of vortices in superconductofsee, for example, Refs. 6 and, As well as
methods for preparing metastable condensed systems containing molecules and atoms
(free radicalgof molecular gase5A setup for introducing into a cryostat a helium gas jet,
containing impurity molecules and atoms of the molecular gas under &titdygen, for
example, directed onto the surface of superfluid He-1l and the first results of the inves-
tigations of the properties of a metastable nitrogen condensate containing nitrogen mol-
ecules and atoms are described in Refs. 2—4. Subsequent x-ray measuYdraeats
shown that in the cold vapor above a liquid helium surface most impurity molecules and
atoms join into clusters with average diamete6 nm, so that in accordance with the
results of Refs. 1 and 5-7 primarily a cluster beam enters the liquid helium. The inter-
action between clusters in the He—Il volume leads to the formation of a metastable
porous condensate, which we mentioned at the outset.

The construction of the apparatus is shown schematically in Fig. 1. The experimen-
tal cell — a glass tubé& with an inner diameter of 9 mm and a 1.5 mm in diameter exit
opening at the bottom of the tube — is placed inside a glass agpihe apparatus is
placed inside a glass helium dewar. The ampul and the cell can be periodically filled with
superfluid liquid from an external helium bath using a heat pump. The germanium ther-
mometers3, 4, and5, placed inside the cell and at the bottom of the ampul, make it
possible to monitor the temperature distribution in the apparétds.gas with water
vapor impurity enters the cell at the top. As is evident from Fig. 1, in our apparatus all of
the gas condenses inside the experimental cell, in contrast to the apparatus described in
Ref. 2, where a substantial portion of the entering gas flow is carried off together with the
liquid helium vapors into the evacuation line of the dewar.

A differential manometefnot shown in Fig. 1, connected with the mixture feed
line, making it possible to measure the difference of the gas pressures between the tube
and the helium dewar and, if necessary, to connect the cell to the outer helium bath in
order to equalize the pressures, is used to monitor the rate of inflow of the gas. Besides
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(a) (b)

FIG. 2. a — Photograph of icebergs located below the He—Il surface. b — The dome-shaped top of an iceberg
protrudes above the He-Il surface in the ddfle level of the liquid in the ampul is lower than the He-Il level
in the cel).

visual observations of the processes occurring in the cell as the impurity accumulattes
and the condensate heats up, a vidoeo tape recording of the experiment was made using
a camera placed outside the dewar.

Before the experiment started, the dewar was filled with lididé and then cooled
to temperaturd = 1.3— 1.4 K by evacuating the liquid helium vapors. Then, using a heat
pump, the ampul and cell were filled with superfluid He?Hle gas containing about 3%
water vapor impurity entered the cell through the top of the tube, which was connected to
the mixture feed line through a fine-adjustment valve. As the observations showed, the
optimum rate of accumulation of gas wa®.5 cn¥/sec at atmospheric pressure, and the
pressure difference between the gas inside the tube and the dewar was maintained at
100-200 Pa. The warm gas was cooled as the flow moved along the tube and condensed
on the He-ll surface. The He-ll temperature in the cell and ampul increased by less than
0.1 K during the accumulation process. Naturally, a substantial portion of the impurities
condensed in the form of ice on the glass wall at the top of the tube. For this reason, the
water content in the condensate formed in the He-Il volume can be judged only on the
basis of the experimental results.

Several minutes after condensation commenced, a cloud, which is semitransparent in
visible light and possesses a diameter close to that of the cell, appeared above the surface
of the liquid and slowly slid downward along the wall of the tube. With feed line closed
and a constant temperature in the ¢elt 1.4 K, the initial shape of the cloud changed
with time: from a “soft” cloud with shape varying in the course of the motion to a more
dense(judging from the decrease in light transmisgiovirtually stationary, “iceberg”
with average diameter close to that of the tube, suspended on the walls inside the cell at
a certain distance from the surface of the liquid. Opening the feed line once again, we
were able to prepare two or three icebergs, located one under another inside (Regcell
23). Naturally, as the impurity accumulated, some of it condensed on the cell walls
directly near the liquid—vapor interface. This resulted in the appearance of a meniscus
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FIG. 3. Temperature jumps accompanying heating of the icebergs in a helium gas atmdésghérermom-
etep. Initial temperaturel =1.8 K, the amplitude of the jumps correspondsAté~0.3 K.

with a depth of the order of 1—-2 mm on an initially flat He—II surface. If condensation is
stopped and the He-Il level in the cell is increased, the liquid surface once again becomes
flat, i.e., the superfluid helium wets well the water condensate formed, much more
strongly than the surface of the glass wall.

As the level of superfluid liquid in the cell was subsequently gradually decreased, a

shiny upper edge of the iceberg was observed to emerge above the He-Il S&itace

2b). Then, the iceberg abruptly shifted downwards and stopped once again at some
distance below the surface of the liquid. Several successive jumps of the iceberg could be
observed as the level of the liquid decreased monotonically. The jumps of the icebergs
were accompanied by pressure jumps in the cell, but the temperature of the liquid re-
mained virtually unchanged, i.e., the hops were caused by the efflux of cold gas from the
surface of an iceberg heated by an external light so(anaceberg absorbs visible light
much more strongly than liquid helium or the walls of the glass apparatus

An even stronger flow of helium gas was observed from the surface of “dry”
icebergs, lying at the bottom of the cell, from which liquid helium was just removed. As
long as the He-ll level in the amp@ (Fig. 1) was located at a distance of 0.5—-2 mm
from the exit opening, a distinct; 1 mm deep, cone could be seen on the surface of the
liquid; this cone indicated the existence of a strong gas jet emanating from the cell. In the
helium gas atmosphere, the temperature of the icebergs heated by the external light
source increased monotonically froml.4 to~ 1.8 K over a long timétens of minutes
In the range 1.8—-2.2 K the thermomet8rand4 recorded sharp temperature jumps with
amplitudeAT~0.3 K (the time variation of the indications of the upper thermometer are
illustrated by the thermogram shown in Fig. 3; the trace was started when the temperature
inside the cell increased to 1.8 KThe temperature jumps were accompanied by pressure
jumps and breakup of the iceberg into small ice particles. The total volume of the
condensate decreased by almost two orders of magnitude. Above 2.2 K the jumps ceased,
and the gas temperature inside the cell increased quite rapidl®#2 K. From these
observations it is easy to estimate that the water content inside an iceberg is of the order
of 10°° molecules/cr and the interaction energy between the clusters formed by the
water gel does not exceed tens of K.

It is important to note that the volume of the icebergs in a cell filled with liquid
remained essentially unchanged as the temperature increased from 1.4 to 4.2 K. For this
reason, the decomposition of the condensate in a gas atmosphere cannot be explained
only by a decrease in the thermal conductivity of the liquid, permeating the porous
matter, at a transition from He-Il to He-I.



760 JETP Lett., Vol. 70, No. 11, 10 Dec. 1999 L. T. Mezhov-Deglin and A. M. Kokotin

A large quantity of condensate accumulated in the volume and at the bottom of the
cell with prolonged accumulation of the gas mixture. In this case, the pressure jumps in
a closed cell with a decrease in the He-Il level reacAd®~2000 Pa, which led to
extrusion of part of the condensate through the exit opening into the ampul. As a result,
a layer of a fine-grain white powder appeared in the liquid at the bottom of the ampul;
this powder remained stable as the temperature of the liquid helium increased from 1.4 to
4.2 K, just as the ice particles formed on the cell walls after the icebergs broke up.
Therefore, even small, nonuniform mechanical stresses can break up the porous conden-
sate in a superfluid liquid.

In conclusion, we note that the investigations of the properties of “soft” clouds
formed at the moment at condensation and icebergs into which they transform with time
are continuing. By analogy with condensates of molecular gases, it is natural to infer that
the water condensate in superfluid helium consists mainly of water clusters with average
diameter of the order of 5 nrfi.e., one cluster contains of the order of*18,0 mol-
ecules, surrounded by a layer of solidified helium. The interaction between these par-
ticles results in the appearance of a new porous substarater geJ, whose properties
vary appreciably with time even at constant temperalurel.3 K and/or with a change
in temperature and properties of the liquid helium permeating the porous system.

We thank V. B. Efimov, A. A. Levchenko, G. V. Kolmakov, V. V. Kveder, and Yu.
A. Osipyan for helpful discussions. This work is performed as part of a GNTP program
“Current Directions in Condensed-Media Physics,” financed by the Ministry of Science
of the Russian Federation, direction “Fullerenes and Atomic Clusters.”
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New features of the dependence of the average travel distante
dislocations on the magnetic fieRlhave been found in an investigation

of the magnetostimulated dislocation mobility in LiF crystals: A tran-
sition has been found from ordinary proportionalityB? to saturation

|~ const in high fieldsB. It is shown that the experimental points can
be described satisfactorily by the theoretical dependén¢éB,/B)?2
+1]71 (By=0.8 T), typical for the mechanism of longitudinal spin
relaxation in a system of radical pairs, which are supposedly formed
when dislocation nuclei interact with paramagnetic impurity centers.
According to the theory, the level of the fieR}, is determined by the
characteristic frequency of the oscillations of the internal fields in the
lattice, which forBy~1 T is of the order of 18s !, which corre-
sponds to the typical frequency of characteristic oscillations of disloca-
tion segments between pinning centers, which, naturally, does not de-
pend on temperature. This in turn explains the fact that the measured
values of B, are the same at 293 K and 77 K. ®99 American
Institute of Physicg.S0021-364(09)00923-9

PACS numbers: 75.88.q, 61.72.Lk

Among the spin effects occurring in nonmagnetic materials there is a group of
phenomena that stands out. These are phenomena that are limited by spin conversion in
definite centers under the action of an external magnetic field. This conversion process
terminates with a change in the spin state of the system and corresponding removal of the
quantum forbiddenness on a possible electronic transition in the system. As a result, a
sharp transformation of the configuration of the system occurs. This transformation is
often accompanied by a radical change in the type and level of interaction of its constitu-
ent elements. In addition, all this occurs with virtually no change in the total energy of the
system, since the spin-dependent transitions under consideration are initiated in a mag-
netic field not by adding energy to the system but rather by removing the spin forbid-
denness on the indicated transitions. Such processes have been described in Ref. 1 in
connection with the observation of a magnetic effect on the rate of chemical reactions.
Later a magnetic influence of the same nature on a variety of diverse processes was
observed specifically, on the photocurrent in semiconductbos, the viscosity of amor-
phous alloyd, and so on.

0021-3640/99/70(11)/6/$15.00 761 © 1999 American Institute of Physics
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The so-called magnetoplastic effd MPE) was the last phenomenon to be observed
in this group. The MPE was first observed in Ref. 5 in NaCl crystals and consisted in
magnetically stimulated depinning of dislocations from paramagnetic impurities. Over
the last ten years the magnetic effect on micro- and macroplasticity of honmagnetic
crystals has been subjected to very intense study in a number of independent groups. The
number of publications on this subject is approaching (@@, for example, Refs. 616
At present, there is no doubt that the MPE exists and that it is of a spin-dependent nature.
However, unfortunately, the specific physical mechanisms on which it is based are not
yet fully understood.

Specifically, it is still necessary to determine the type of process leading to the
evolution of spins in a radical pair formed by a paramagnetic center and a dangling bond
in a dislocation nucleus. In experiments with individual dislocations, their average travel
distancel, which is inversely proportional to the average timg before depinning of a
dislocation from a local stofii.e., the characteristic spin conversion time in a pag
usually linear inB2. This is positively observed in NaCl, Csl, Zn, and Al crystals. Such
a dependence has been found earlier also for LiF crystals in measurements of the dislo-
cation mobility in magnetic field8<1 T. For sufficiently weak magnetic fields the
linearity of the reciprocal of the evolution time of spins of unpaired electrons of a radical
pair as a function oB? is characteristic for the spin relaxation mechanism in an external
magnetic field associated with the name Brockleh(see Ref. L The physical reason
for this spin relaxation mechanism is anisotropy of ¢hiactor (usually estimated to be
of the order ofAg~102—10"2), which results in magnetically induced transitions
betweenS andT spin states of radical pairs. Here it is necessary to distinguish longitu-
dinal and transverse spin relaxation, corresponding-td .. andS— T, transitions and
characterized by the times; and T,. In the theory of recombination of radicals in
solutions! the rates of intercombination transitions in radical pairs, limited by longitudi-
nal and transverse relaxations, increase differently with increasing magneti8field

T, '=7"(B%B?), T,'=r {aB¥B3+Bf(B%B?)], )
where
7 1=Ag%57,, Bo=hlugm,, f(B%B3)=(B3/B2+1)7}, 2

a and B are coefficients of the order of g is the Bohr magneton, and, is the
correlation time of the rotational motion of a radical. In application to the description of
spin relaxation in a paramagnetic center — dislocation system, it is natural to replace the
parameterr, by the characteristic periogy of the characteristic oscillations of disloca-
tion segments pinned by paramagnetic impuritiesually 74~10 1 s).

As one can see from Egél) and(2), for BZ/B§<1 both functiond T,(B)] ! and
[T,(B)] ! are proportional td32. However, for high fields %/B3>1) these depen-
dences are characterized by a much different behayids(B)] 1~ const and
[To(B)] *xaB?+b (a andb are constant paramet&rdhus, to make an experimental
choice between the longitudinal and transverse spin relaxation mechanisms, measure-
ments must be performed in high magnetic fields. In so doing, it is desirable to use as the
object of investigation crystals with not too high a fildg. As we shall see, from this
standpoint, the crystal LiF is an entirely suitable object for our purposes.
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FIG. 1. Normalized average dislocation travel distah¢§ versus the holding timeof samples in a magnetic
field for different levels of magnetic inductida (a) and two temperatured), Al=1—1,.

The experiments were performed on LiF crystals with total impurity concentration
C~10° moles/mole and yield point, =300 kPa. Fresh dislocations with average
densitypy=<p were introduced by a light impact into preannealed samples with disloca-
tion densitypy~10* cm™2. Their initial positions were fixed using the standard method
of selective chemical etching of crystal surfaces. Next, the samples were placed in a
constant magnetic fielB=0.4—1.4 T for timet=2— 12 min at room and liquid-nitrogen
temperatures. No mechanical load was applied, so that the driving force for dislocations
after their magnetostimulated depinning from local centers was due to long-range internal
stresses from other dislocations. In individual experiments, to increase the average travel
distancel, an additional force on charged edge dislocations was produced using an
external constant electric fiel=3—6.1 kV/m, applied simultaneously with a magnetic
field. After magnetic treatment, the sample was subjected to repeated chemical etching to
determine the new positions of the dislocations. Next, histograms of dislocation travel
distances were constructed and the average travel distamas calculated according to
them.

Figure 1a demonstrates the dependence of the average dislocation travel distance
scaled to the average distance between dislocatioR®}16n the “magnetization” time
t for different fieldsB at 293 K. The background travel distarigeatt=0 is determined
by etching out near-surface stops and does not depend on the parameters varied. It is easy
to see that the increase in the slope of the linear dependét)ceith increasing mag-
netic field B stops at quite high fields. Lowering the temperature to 77 K decreases the
slopedl/dt somewhat, but it does not change the saturation of the average travel distance
| with respect to the magnetic fielee Fig. 1h Even more pronounced saturation
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FIG. 2. Saturation of dislocation travel distances in high magnetic fields for different magnetic treatment times
t and electric field€ (a) and at two temperature®).

appears in the coordinatéB) (Fig. 2a and 2] It is significant that the decrease of the
timet from 5 to 3 min(Fig. 23 also decreases the saturation level, i.e., the latter is not
related with the geometric limit typical of relaxation displacements.

Thus, the behavior of the dependeth¢B) in relatively high fields suggests that the
observed effect is based on longitudinal spin relaxation processes in a magnetic field, and
the depinning timery, of a dislocation from an impurity center can be identified with the
time T4 (2). If this assumption is correct, then all experimental curves in Figs. 2a and 2b
should be described by the dependence

IJp=At(B3/B?+1)" 1, )

whereA is an adjustable parameter that depends on the temperature and the force acting
on the dislocation(specifically, on the intensity of the electric fi¢lcand the fieldB,
=hlugty, determined by the characteristic frequency of the oscillations of the disloca-
tion segments, can depend on the impurity concentration but not on the temperature or
the electric fieldE. In Fig. 3 the experimental points are the data from Figs. 2a and 2b
replotted in the coordinatei;\(E/At—BZ/B%) for four values of the parametd; and the

solid curve corresponds to the functioB3(B2+ 1)~ * with B;=0.8 T. This level of the

field By corresponds toy=7%/ugBo~10"11s, which agrees completely with the gener-

ally accepted estimate of the period of the characteristic oscillations of dislocation seg-
ments pinned by point defects. We note that for this scale of the parametend
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FIG. 3. Experimental points from Fig. 2, replotted in the coordinatﬂs/E/At—(B/Bo)z), in comparison with
the theoretical dependenfeB,/B)%+ 1]~ (solid curve, B,=0.8 T.

characteristic values of thg-factor anisotropyAg~10~2—10 "3, the characteristic time

7 corresponding tol" as B— in Egs. (1) and (2) is unexpectedly large and is
estimated as 10— 10 ° s, which, incidentally, agrees fairly well with the estimate of
the depinning timery, presented in Ref. 10 on the basis of completely independent

considerations.

The satisfactory agreement between the theoretical curve and the experimental
points attests to the hypothesis that longitudinal spin relaxation plays a determining role.
The possibility of describing the curvééB) for two strongly different temperatures 77
and 293 K using the same paramei®y=0.8 T also confirms this hypothesis. The
prediction, following from the scheme considered above, Bgtincreases with the
impurity concentration, resulting in a decrease of the average length of dislocation seg-
ments and hence the characteristic time should also be checked. Unfortunately, at
present we do not have the required crystals with different level of doping with the same
impurities, so that this check is postponed for the future.

In closing, we thank A. I. Shushin for helpful suggestions and discussions, L. M.
Saifer for the LiF crystals, and V. P. Kisel’ for assisting in the preparation of the samples.
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The quantization of the Hall resistivity,, in the form of plateaus in
the dependence i, on the magnetic fiel@ is observed in the semi-
conductors BiTe; and ShTe;; the minima of the transverse magne-
toresistivity p,, correspond to the start of the plateaus. The quantization
of pyy is due to the presence of a current-carrier reservoir. An impurity
band with a high density of states or a different band with a much
higher current-carrier effective mass serves as the reservoirl 999
American Institute of Physic§S0021-364(09)01023-3

PACS numbers: 72.20.My, 73.40.Hm

1. The quantum Hall effetf still arouses enormous interest among investigators.
For an ordinary two-dimensional systd@D), it consists in the fact that the off-diagonall
component of the resistivity tenséthe Hall resistivityp,,) at low temperatures in a
strong perpendicular magnetic field is quantized:= h/ie?, wherei=1,2,3 ... In other
words, plateaus appear in the dependencg,pbn the magnetic field. The diagonal
component(the transverse magnetoresistivipy,) oscillates in a manner so that the
minima of p,, correspond to the centers of the plateaus. The presence of localized states
between the Landau levels and extended states at the center of each level explains the
appearance of plateaus.

In semiconductor superlattices, where the degree of three-dimensionality can be
regulated by preparing layers of different thickness, the presence of current-carrier dis-
persion in the direction of a magnetic field directed perpendicular to the layers still does
not destroy the quantum Hall effect, though a number of features apSeaface states
can play a fundamental role in the existence of the quantum Hall effect in three-
dimensional object$ Oscillations of the Hall coefficient are also observed in bulk InSb
near the metal—insulator transition.

We have investigated the quantization of the diaggnal and off-diagonalp,,
components of the resistivity tensor of the bulk semiconductos3eBj Sh,Te;, and
Bi, ,ShTe; at low temperatures in a strong magnetic field. Plateaus were observed to

0021-3640/99/70(11)/5/$15.00 767 © 1999 American Institute of Physics
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FIG. 1. Hall resistivityp,, and transverse magnetoresistivity, versus the magnetic field for Bi,Te; at T
=0.3 K. Inset: Structure of the valence band inBd; and ShTe;. LVB— lower valence band/)VB — upper
valence bandEr — Fermi level.

appear in the dependence of the Hall resistiyity on the magnetic field. An important
feature is that the minima of the oscillations@f, coincide with the start of the plateaus
in pyy-

2. Bismuth telluride BjTe;, like antimony telluride SpTe;, belongs to semiconduc-
tors with the symmetry grouﬂgd. Grown with stoichiometric composition, both semi-
conductors are alwayg-type with a high hole density because of the presence of crys-
talline charged point defects. Ordinarily, these are so-called antistructural defects, i.e., Bi
(or Sh occupies the Te position in the crystal lattice. The band g Bi,Te; and
Sh,Te; is indirect and is approximatel£y=0.20 meV (BpTe;) and Eg=0.25 meV
(Sh,Te;) at room temperature, increasing to 0.25 meV an@l26 meV, respectively, as
temperature decreases to 4.2 Khe valence band of both semiconductors is a multival-
ley band and consists of an upper valence b@hdB) and a lower valence bar{dVB).
Both valence bands are hexaellipsoidal. The ellipsoids possess anis&rQ\Bmin
~3.8 and are tilted with respect to the basal plane by the afrglgdl.5° andd~50° in
Bi,Te; and ShTe;, respectively. The energy gabE, between the bands is about 20
meV and 30 meV for BiTe; and ShTe,.”® The schematic structure of the valence-band
top in Bi,Te; and SBTe; is shown in the inset in Fig. 1. Filling of the lower valence
band starts at hole density exceeding the critical valgre 5- 10" cm™ 2. An important
feature is the difference of the effective masses in the upper and lower valence bands:
The cyclotron mass in Bie; is m{~0.08n, in the upper valence band ands
~0.16m, in the lower band:® In the mixed crystals Bi_,Sh,Te; the energy spectrum
varies smoothly with increasing from the BpTe; to the ShTe; spectrum. This is
expressed as a large increase of the effective masses in the lower valendgobafid
~mp). When bismuth telluride was doped with tin, an impurity bdn8lying above the
top of the lower valence band against the background of the states of the upper valence
band(inset in Fig. 2, was also observed.

In the present work we investigated samples grown by a modified Bridgman method
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FIG. 2. Hall resistivityp,, and transverse magnetoresistivity, versus the magnetic fiel for Bi,_,SnTe;
at T=0.3 K. Inset: Structure of the valence band in BiSnTe;. LVB — lower valence bandJVB — upper
valence band|B — impurity band,Er — Fermi level.

with characteristic dimensionsx10.5x5 mnt and hole densityp>p, and Hall hole
mobility at liquid-helium temperatureu,~6000-7000 cni/V-s (Bi,Te; and
Bi,_,SnTe;) anduy~650cnf/V-s (ShTe; and the mixed crystals Bi,Sh,Te;). The
current was directed along t®, axis, and the magnetic field was perpendicular to the
current in the direction of th€, axis.

3. Curves ofp,, andp,, for Bi,Te; and B, _,SnTe; as a function of the magnetic
field at T=0.3 K are presented in Figs. 1 and 2. As one can see from Fig. 1, plateaus
appear in the dependence of the Hall resistiyity on the magnetic fiel@. The minima
of the resistivity p,, correspond to the start of the plateaus. The broken lines mark
features corresponding to the spin splitting of the Landau levels. The frequency of the
oscillations ofp,, corresponds to the extremal section of the Fermi surface of the upper
hole band(for B|| C; the cross sections of the Fermi surface from all six ellipsoids
coincide. Oscillations of the resistivity from the lower valence band ipT8% are not
observed, since the hole mobility in it is much lower and the quantization of the spectrum
still does not appear in the magnetic-field range presented. As the temperature increases
to 4.2 K, the effect washes out and the plateausp,if(B) vanish completely. The
plateaus are more distinct in Bi,SnTe;. This is because a small addition of tin in
Bi, Te; substantially increases the hole mobility and decreases the Dingle temperature of
the Shubnikov—de Haas oscillatioHsAs an example, the dependences(B) and
Pxy(B) for Biy g955my o5l €3 are presented in Fig. 2. As the temperature decreases from
4.2 K to 0.3 K, the width of the plateaus increases, the slope of the plateaus decreases,
and the plateaus corresponding to the spin splitting of the Landau l@dgshumbers in
Fig. 2 become sharper. The substantially higher temperature at which plateaus can be
observed in Bi_,Sn Te; as compared with Bil'e; is a consequence of the higher hole
mobility of the upper valence band in Bi,Sn,Te; than in the initial BjTe; samples.

4. The explanation of the appearance of plateays, B) is that in an experiment
oscillations ofp,,(B) can be observed only from holes in the upper valence band, while
the density of these holes varies in a magnetic field. The Fermi levebin8n Te; was
fixed in an impurity band with a high density of states. As the magnetic field increases
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FIG. 3. Calculation of the motion of Landau levels with up spin, (solid line) and down spin , broken ling
in a magnetic field for Bi_,SnTe;.

and the next Landau level emerdeghich corresponds to a maximum in the dependence
pxx(B)], the current carriers flow from the impurity baxiB) into the next Landau level
(the number of states in which increases in proportion to the magnetit ifieflde upper
valence bandUVB), as shown in the inset in Fig. 1. Since the Hall resistiyify(B)
~RyB and the Hall coefficienRy~ 1/pe, the hole density in the upper valence band
(these are the holes that determine the Hall effiectreases with the magnetic field Bs
Ry~1/Be, andp,,(B)= const up to emergence of the next Landau level. The three-
dimensionality of the energy spectrutthe dispersion of the current carriers in the direc-
tion of the magnetic fieldcauses the plateaus to acquire a small slope. We note that
plateaus irp,,(B) are observed for any orientation of the magnetic field with respect to
the crystallographic axes of the sample, and the frequencies of the oscillatippg Bf
correspond to a hexaellipsoid Fermi surface.

The motion of Landau levels with the numhe! in a magnetic field can be calcu-
lated using a simple model. The energy le@l=Ef - o! (nY +1/2)+ (1/2)g* ugB
(g* is the effectiveg factor andug is the Bohr magnetgnThe computational results are
presented in Fig. 3 for the sample;BisShy oosT €3. The energy of each level is shown by
a solid or broken line for up and down spin, respectively. The hatched bands show the
broadening of each lev&/=0.8 meV. The arrows mark the appearance of plateaus with
a definite number; these same numbers are presented in Figs. 1 and 2. The computational
results agree well with experiment. A similar calculation for,Bi; also gave good
agreement with experiment. The difference from the preceding case lies in the fact that in
Bi,Te; the lower valence band serves as the current-carrier reservoir.

5. Investigation of Shre; samples and samples of the mixed crystals BSb Te;
with an order of magnitude lower hole mobility than in,Be; showed that for them a
plateau is also observed in the dependenggéB). All features of the quantum Hall
resistivity described previously remain. However, because of the low hole mobility os-
cillations of p,(B) andp,,(B) start in magnetic field8>10 T. As an examplep,, and
pxy VersusB atT=4.2 K are presented in Fig. 4 for the samplg &b, sTe; with B|| C3.

In summary, a quantum Hall effect due to the presence of a current-carrier reservoir
(an impurity band or the lower valence barid observed in the bulk semiconductors
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FIG. 4. Hall resistivityp,, (measured from zejaand transverse magnetoresistivily, versus the magnetic
field B in Big sSh, sTe; at T=4.2 K.

Bi,Te;, ShTer;, and By _,ShTe; with a complicated energy spectrum. An important

feature of the effect is that the minima pf,(B) correspond not to the center but rather
to the start of the plateaus jn,(B).
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The dampingy(e) of electron states in crystals is investigated beyond
the phase transition point related to a rearrangement of the Fermi sur-
face. Attention is focused on the alteration of the standard Landau
theory due to the emergence of a flat portion in the spect(m of
single-particle excitations as a result of the rearrangement. In the limit
e—0, the widthy(g) of the states in the region of the Brillouin zone
where the dispersion of(p) is of an ordinary order of magnitude is
found to depend om almost linearly, in contrast to the Fermi-liquid-
theory resulty(s)~?. © 1999 American Institute of Physics.
[S0021-364(99)01123-9

PACS numbers: 71.2%a

In a number of articlés® using the Landau—Migdal quasiparticle picture, a new
phase transition in strongly correlated Fermi systems, called fermion condensation, has
been described. Its salient feature is in the appearance of a fermion condé&i®ata
group of degenerate single-particle states whose energy at the tempdratQreoin-
cides with the chemical potential. Owing to the degeneracy, the quasiparticle occupa-
tion numbersn(p,T=0) are no longer 1 or 0. They are determined by the variational
condition

SEq(n)/on(p)=pn, pe, (1)

where Eg[ n(p)] stands for the ground-state energy, whiledenotes the FC region,
whose boundaries are determined by EL.itself. According to Landau, the left-hand
side of (1) is nothing but the quasiparticle energyp), and therefore this equation
implies smearing the Fermi surface — its metamorphosis into a volume in three-
dimensional systems or into a surface in two-dimensional ones. The flattening of the
single-particle electron spectégp) has been experimentally observed in many quasi-
two-dimensional superconductofsee, e.g., Refs. 6 and 7 and references cited therein
The observed single-particle peaks have much larger wigitlikan those calculated
employing Fermi liquid(FL) theory(see e.g., Refs. 8 and, & fact which is presumably

due to the flattening of(p) near the Fermi surface.

Our purpose is to calculate the imaginary part of the mass opeXdmi) in the
presence of a flat portion in the electron spectig(p) due to the fermion condensation.
In the following we consider a crystal with a cubic or square lattice, assuming the FC to

0021-3640/99/70(11)/8/$15.00 772 © 1999 American Institute of Physics
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be positioned in the vicinity of the van Hove poiftthe FC densityp.=7p being
rather small. In regard to the momentum dependence & (pe), two regions can be
distinguished: )i the FC region(), which is made up of “patches” adjacent to the van
Hove points, and )ithe normal region, where the dispersion has an ordinary order of
magnitude, i.e.|V&(p)|=pg/M*, whereM* is the effective mass of the ordinary qua-
siparticle, independent af. We neglect possible variations of relevant quantities inside
these regions and use the subscidpfor the FC region and the subscriptfor the
“normal” one: ImX(p&Q)=Im%,.

Without loss of generality, we restrict ourselves to the decay of a particle, hence
implying e>0 in all formulas. We focus our attention on the process of the generation of
an additional particle—holg—h) pair and neglect contributions from collective modes,
e.g., spin fluctuations, which are important for understanding many of the properties of
high-T superconductorsin doing so, we assume thaitexceeds the critical temperature
T, of the superfluid phase transition at which txep correlations make no difference
and such contributions may be omitted. In this article, we deal with enesgeaseeding
a characteristic FC energgc=( £&(pe ) ), which, in turn, exceedd. With these
restrictions, the damping(p,s>0) is evaluated with the help of the formifla

1 e do (o dej )
7’(p,8>0):§T" f fd72d7'3 fo Zfo Z|F(p,s,p1,sl,pz,sz,p3,83)|

X ImG(py,e1) IMG(p2,&2) IMG(p3,&3). 2

Hereps=q+p,=p—p1+pP2; e3=w+e,=e—g,+¢&, andd7=d"p/(2#7)" wheren is
the dimensionality of the lattice. Since we are only interested in clarifying the energy
dependence of quantities at issue we shall omit numerical factors in future calculations.

If FL theory were applicable to systems with the FC, then the raiie)
=|vy(e)|/e would be small, and Ins(p,s) could be replaced by 7 & £ — &(p)]. How-
ever, as we shall see, the damping of single-particle states in systems with the FC is
drastically enhanced compared to the predictions of FL theory. This motivates us to take
into account an irregular pact of Re> and to write ImG in the form

¥(p,€)
(e—a(p,e)—&P)*+7*(p.e)
The connection between the quantitesnd y stems from the usual dispersion relation
for the mass operator, which implies thate)/y(¢)~Ine ate—0, providedr.~1. For

example, dealing with the marginal Fermi liquid discussed in Ref. 11, oneylas
—0)~e,0(s—0)~elnlel.

ImG(p,e)= ()

Since the momentum dependence of quantities in the FC region is neglected, the
densityN.(g) of the FC states becomes

Nq(e)=- Jﬂlm Ge(p,e) d7= np%, @

whered?(e) = (e — 0¢(8) — £rc) 2+ ¥2(&). In the weak-damping limit, Eq4) reduces to
Nc(e)=np 6(e). In the strong-damping limit.>1, the contribution of the FC region
e=¢ec, is of no importance, and thetnf in Eq. (4) can be replaced by?(e)= (e
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— o (€))>+ ;@(g). To avoid unjustified complications we restrict ourselves to the
momentum-independent zeroth Landau harmonic in the Legendre expansion of the inter-
action amplitudel’(cosy), where y is the angle between the momenta of incoming
particles. In this approximation, we make the replacenﬁqu(pi ,Si)ﬂrnlnz(w) (1

— 0,05), where the index; (n,) indicates the number of FC states in the initiaal)

state.

The dampingy decomposes into a sum

‘y(pis):’YO(p!S)—’_‘}/l(p!S)—i_‘)/Z(p:S): (5)

where the termy,(k=0,1,2) accumulates contributions containikdinal FC Green
functions. It should be pointed out that for the square or cubic lattice the decay of the FC
particle into a final state with no less than two FC states unambiguously results in the
appearance all three FC final states.

Since we are ignoring collective modes, reserving the analysis of their role for a
future article, the contributions tg, overwhelmingly come from the region of momen-
tum transferq~ pg quite far from the van Hove points. There the functidhyg, 'y, are
known to vary slowly enough, and so does flxeh propagatoA (g, ), the dimension-
less imaginary component of which is generally written as

1 w de
b(q,w)=m J Jo ImG(p,s)ImG(p—q,s—w)dr?, (6)

where we have introduced the density of sta‘t&ﬁO%pM*/eg as a normalization
factor,eg is the Fermi energy of a noninteracting gas with dengitjll of them may be
replaced by averaged values:

ba(@)~ =@ Ny(0)/p,  [An(@)Np(0)[~1, N(0) [Tog*~N&(0) [[oy*~1. (7)

After these values are substituted into E2), the integrals cease to dependmrand we
arrive at the usual result

Yo(e) == Yo (s/ep), ®
where vy, is a dimensionless positive constant.

When evaluating the term,,(¢), we combine two ordinary Green functions enter-
ing Eq. (2) into ap—h propagatorA,, (see Fig. 1, so that

€ 1 (e
71n(8)~Nn(0)f0 Ne(&— ) [T oyl? bp(w) dwN; fo Nc(eg)(e1—¢) dey. 9

The magnitude of this integral depends crucially on the value,@f,) =|y.(s1)|/e1. If
this ratio is relatively small, then the integr@) receives its predominant contributions
(of the order of 1 from the FC region, where;=¢&:c andN¢(g)~ &(g). Then, after a
simple integration, we are led to formulas inherent to marginal Fermi ligfdids:

2 e
7;“’78 In u, (10)

Yin(&)=—vime, o1(e)=
gL

where vy, is a positive numerical constant of the order of 1. We see that the magnitude
of the linear ine term is proportional top<<1 and is therefore quite small.
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FIG. 1. The graphical representation for the contributigp to the total damping.

In the opposite case of strong damping wit{»1, the contribution ofy,,, to the
dampingy is minor compared to that of,,,. In the evaluation of the latter quantity, two
final FC states come into plagee Fig. 2h andy,, is given by

72n(p78)~_Nn(0)JQ,J’:|m Gn(P1,6— ) [T oA @)|* be(w) d7; do. 11

Here we have introduced a special notatidh for the momentum integration region in
(11), which is determined by the requirement that the momergyis appropriate for the

formation of a pair with momentp, and (p—p;+p,) both in the FC region. We omit
the insignificant termo,, in ImG, and assume thay has a value be sufficient for
satisfying the inequalities ., | vn(&)|, Wheree .« is the upper energy limit admissible
for the normal states in the regidn’; this yields

Emax yn(s) df
ImG,(p—dq,e) dry~N Of ——————~—N,(0).
[, mup-ae) dr=Ny(0) | "B N0
As a result, one finds
'::\\ Iy ™ : Ly h
on rzz
a) ‘Y']c b) an C) y20

FIG. 2. The same foly,. (8), yon (b) and y,. (C).
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an(S)NNﬁ(O)LS T o )] be(w) dw. (12

The interaction amplitud&'y, is extracted from the set of algebraic equations

Lo @) = Foot FooAc( @) 2o @) + FooAn(@) oz @),

Do @) = Foot FooAc( @)l oo @) + FooAn(@) gy w). (13
This set is easily solved to arrive at

Tox )= Fo2/D(®), Tl @) =[Foo 1= FooAn(®)) + F5An(@) /D (w), (14)

whereD (@) = (1~ FooAn(@)) (1= F22Ac(®)) = FoAn( @) Ag(®).
Omitting the contributions of RA.(w), since they are insignificant,and replacing
An(w) by —N,(0) as before, one finds

2
h2o

h3o+bi(w)’ hgo+bi(w)

where the notation f,,=F,,N,(0) and h20=fzo/[f22(1+f00)—fgo], hoo= (1
+ foo)/[f22(1+f00)—f§o] is introduced. With these results, E42) becomes

INK(O)T g @) |2~ INR(O)T o @) |2~ (15

¢ bo(w)dw
)~h3 f —
Y2n( 20 |, h§o+ bg(w)
To take the next step one needs to evaluate the propalggte), which, in turn,
requires calculating the damping of the FC particles, which is made up of three terms
(5), whereyy (&) is given by Eq(8), andy,.(g) andy,.(&), depicted in Figs. 2a and 2c,
are written as follows:

(16)

nc<s>~—Nn<0>fgf:|mec<s—w> I )2 by() dry do

h%o ewNy(e—w)dw

pJo hi+bi(w)

Vase) N0 [ [ 1Mo ) M) () 0,

~f€ N¢(e—w) be(w) dw
0 Ny(0) [h5e+b2(w)]

Summing up the various contributions tg., we are finally led to a nonlinear
integral equation

17

&? jwc(s—w) [C1h30n @ —Cyeby(w)] do 18

(&)= ot | d2(s— w) [hZs+ b2(w)]

€F
where C,,C, are positive numerical constants of the order of 1, @aeF np/N,(0)
= ne2M/M* . The propagatob,(w) defined by Eq(6) reads
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bc(w)~® fﬂ fow IM G(p, ) IM Ge(p— 0.6 — ) drde

@ 70(8) 70(8_(”) de
~5 .
Ffo d?(e) d¥(e — )

It is easily verified that the FL solutiop(e) ~ &2 (the first term in Eq(18)) fails in
the low-energy limite—0. Indeed, if it were valid then the ratipc(s)/dg(s) could be
replaced by— 7 8(e) and the propagatds. by a constant. Upon inserting these results
into the integral(18) and doing a simple integration, we would obtain a constant term
which does not vanish at—0 as it must, since/(¢g) is supposed to be proportional to

g2,

(19

To find a correct solution at—0 we employ the scaling approach, assuming
Ye(e—0)=—1yce"[Ingl?, (20

wherey, is a positive constant, while and 8 are critical exponents calculated from the
requirement of cancellation between the leading terms on the right-hand side @B8Eg.
andvy.(¢) itself. We shall see that at least one solution has the critical exporeft In
this case, the ratio.(e—0)=|y.(e)|/e diverges, and one may therefore retain in the
denominators of Eq(19) only the termog(e)~ . &”|In&/?*! together with the analo-
gous termo.(e — w).

Upon substituting them into Eq19), we are led to

5|: J“’ d8 5|:
b.(w—0)=—— =~ — w0 ?|Inw| %4
ol ) Ye 0e’(w—e)"|Ing|P 2|In(w—g)|P*? Ye | |
(21
Inserting this term into Eq.18), we find that the term with the fact@, prevails on the
right-hand side of Eq(18). The requirement of its cancellation with.(e) itself yields

v=1/2, B=-312, y2=5¢Ihq. (22)

Knowing y.(w) andb.(w), one can straightforwardly evaluate the damping(e)
from Eq.(16). One obtainsy,,(g) ~ ¢/In g, with the numerical factor proportional to the
ratio hg(,/hoo. In principle this ratio may be rather small, and then the FL term propor-
tional toe? becomes significant; otherwisg,(¢ — 0) is practically a linear ir: function
with a prefactor of the order of 1. Collecting all the results, one finally obtains

0 OF _® p(w0)~ o0 S L
vele =0T N e Pl @0 i, Yale O™ gy T O(EY)
23

It can be verified that this is the single solution of the problem. Thus the damping of
normal excitations at low energies exhibits marginal behavior with a factor of the order of
1, while the damping of the FC states is enormously enhanced. This means that for
dealing with the damping of single-particle states beyond the FC phase transition point,
FL theory fails even in the limit—0.

Solution of the integral Equatiofl8) is also greatly facilitated at sufficiently high
energies that the characteristic values dfz) in the integrals standing on the left-hand
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side of Eq.(18) are less than 1. In this cag¥,(e) can be replaced byp §(¢), and we
are left with an algebraic equation, which after utilization of the relai® for b, and
some algebra, takes the form

o2 d3(e) ., &2 Come Y3oda(e)
— Yo 0 “1 .
y5,de(e) + 2 vi(e) eF y5,de(e) + 82 ¥i(e)

Ye(e)| 1-C; (29)

In the weak-damping limit.<1, theC, term in the square brackets can be omitted, and
then formula(10) is recovered. However, as we have seen above, the smallnegs pf
cannot always hold as goes down to zero. More precisely, the weak-damping limit
persists until the terms in the square brackets on the lelft-hand side ¢R#&cgstart to
cancel each other asgoes to 0. A rough estimate for the “watershesl,; separating the
weak-damping from the from the strong-damping limit can be obtained by setting this
sum to zero at the poing,=0. As a result, one obtains

ea=1\Cz (8¢ ¥20). (25)

At lower energies, solution@3) can be applied as a first approximation. At energies
> g, the value obg(&) ~ 8¢ y.(g)/e2~ 1 becomes small, and, according to EtR), so
does the derivativady,,(¢)/de. Thus the energy dependence of the damping@e
>e.), given primarily by the tern(10), again turns out to be linear, with a relatively
small slope. More precisely,

| Ya(e>ec)| = Yant vam e+ vo (e%eD). (26)

Upon substituting the propagatbg(e) given by Eq.(23) into Eq. (16) and integrating
over energy, one findg,,~ 6k .

Thus the energy dependence of the dampip€:) of the normal states in systems
with the FC turns out to be more complicated than in a marginal FL: one linear regime
with a slope of the order of 1 transforms into another linear regime with a lower slope at
energiess =¢. This result is consistent with recent precise measurements of the lin-
ewidths of normal states in the compound Bi2912.

In conclusion, we have analyzed the energy dependence of the dam@ihat a
distance from the Fermi surface exceeding the characteristic egergyf the FC. We
have concentrated on the coarse features of this phenomenon without specific attention to
numerical factors in the quantities of interest. We have demonstrated that for dealing with
the damping of single-particle states in these systems there is no room for Landau theory:
even in the limits — 0 the ratior (¢) =|y(e)|/e exceeds unity. Our results for the damp-
ing v,(&) differ significantly from those obtained in the theory of nearly antiferromag-
netic Fermi liquid$® and in the model of marginal FLs considered in Ref. 11.

It became clear some ten years Hgl§ that the analysis of numerous experimental
data on the basis of the Luttinger liquid, characterized by a vanishing of the renormal-
ization constantz, is an appropriate guide to understanding the properties of strongly
correlated electron systems in solids, including transport phenomena dependent mainly
on the damping of the single-particle degrees of freedom. At the same time, other prop-
erties of these systems, including the existence of the Fermi surface itself, are known to
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be successfully treated within Landau theory. What we have demonstrated in this article
is that the fermion condensation model serves as a “bridge” connecting the two ap-
proaches.
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A very simple model describing the conformational degrees of freedom
of a double-strand DNA molecule is proposed. It is shown that the
characteristic modes of the model consist of an acouktimitudinal

with respect to the axis of the double heland two transverse optical
modes. The latter modes are directly related with the deformations of
the ideal structure of the double helix, which necessarily leads to soft-
ening of one of the optical modes on a finite wave vector. It is found
that the conformational excitations propagating in DNA are asymmet-
ric. © 1999 American Institute of Physid$0021-364(09)01223-3

PACS numbers: 87.15.Gg, 87.15.He

1. As is well known! the DNA molecule consists of two polynucleotide chains
wound into a double helix. In the last few yea®specially in connection with the
impressive experiments of Ref. 2 on the indirect measurement of the deformation of a
DNA molecule under the action of an external foraaterest has appeared in the elastic
properties of DNA, specifically, the conformational vibrations of the double-strand struc-
ture. In order to neglect polymer entropy effects, attention must be confined to the
so-called mesoscales, i.e., small segments of the DNA molécateexceeding the per-
sistence lengtlE~ 10> A) must be considered.

Conformational fluctuations of the DNA molecule are characterized by changes in
the relative arrangement of the pairs of bases, i.e., they occur on microscopic scales of the
order of the distance between the neighboring pairs of bésdsA). To describe such
processes, we cannot use the macroscopic theory of elasticity, but rather a microscopic
model must be used. A complete microscopic model should include a description of the
dynamics in &N-dimensional phase spat@hereN is the number of atoms in the DNA
molecule; the equilibrium arrangement of these atoms is determined by minimizing the
total free energy of the systertaking account of the thermal noise from the surrounding
medium. Such a program cannot be implemented fully even on modern computers. How-

0021-3640/99/70(11)/6/$15.00 780 © 1999 American Institute of Physics
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ever, for a particular approximation of the interactions the numerical simulation of the
Brownian dynamics of a DNA molecule is fully realizakikee, for example, Ref)3and
neglecting dissipation of the conformational excitations due to the interaction with the
surrounding medium, it does not even require a large numerical computation.

In the present letter we propose a minimal model of the conformational dynamics of
a DNA molecule. On the one hand this model can be analyzed analytically, while on the
other it takes account of the basic physical features of the phenomena, specifically, the
presence of two strands forming a helical structure. The justification for our simplified
model is that it makes it possible to reproduce certain rough features of the spectrum of
modes, found earlier by numerical simulatibh.

The conformational degrees of freedom are important for understanding transcrip-
tion processes occurring in the DNA molecule under the action of enzysees for
example, Ref. b These processes do not reduce to small perturbations of the structure of
the double helix, which are the subject of the present letter. Our model can be modified
to describe these phenomena also, for which anharmonic effects describing the breaking
of the hydrogen bonds must be included in(see, for example, Ref.)6We note,
however, that under natural conditions the number of broken hydrogen bonds is very
small (10 7, according to Ref. 7, at room temperature

2. Following Refs. 4 and 3, we shall use a discrete model of the DNA moldaule
system of particles with a harmonic pair interacjioho describe this pair interaction, we
take into account explicitly the equilibrium configuration in the form of an ideal helix. To
describe the conformation of a double-strand DNA molecule we employ a vector field
Vs, determined at the points of the central line of the molecule, wher@ corresponds
to the unperturbed structure of the ideal dup{s&e also Refs. 6 and.8

Technically, the Hamiltonian of such a model can be written in the form
1 K
— T p2 - 2
Ho=2 5 Pat 2 5 (Vv ®

Heren enumerates the nodes containing the base Rjrs the generalized momentum
conjugate to the field of conformational displacemeptswhich describes the dynamics
of the conformational degrees of freedom at the Bjte is a coefficient which has the
meaning(and dimensionsof a linear mass density is the elastic modulugergs/cm,
corresponding to the harmonic pair potential. The energy ifBaontains the covariant
derivative (Vy,). A covariant derivative appears because the changes in theyfield
relative to the naturallocal or Frenetsystem of coordinates and the change in the local
system itself must be taken into account in the deformation energy of theyfigitiich

is written in Eq.(1) in the stationarylaboratory system of coordinates

Thus, in the discrete model corresponding to the ideal structure of a double helix the
covariant derivative can be represented in the form

1 L . 1
5[(Yn+1_yn) + Rn 1(Rn+1_ Rn)yn]E[yn+1_yn+Qyn]51 (2)

where we have denoted l§y the matrix

O=R,Y(R,;1—Ry=R-1 )
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andR, is the matrix describing the rotation from the local coordinate system at the site
n to the laboratory system, arfi®l without an index is the matrix describing a rotation
accompanying a displacement by a distance between the basepdrd A .

To find the spectrum of conformational oscillations described by the Hamiltonian
(1) it is convenient to switch to the Fourier components

1 )
Ya= 5 2 enady, @)

whereN is the total number of sitebase pairsin the molecular fragment under con-
sideration(of the order of the persistence length

The Hamiltonian(1) [taking account of the definitiof8) | can be diagonalized by the
standard method using a canonical transformation. This gives the following dispersion
laws for the three modes:

2v| . aq

)\32? sm?, (5)
v - - 12

)\1,2=5[f(<p,qa)i2|smgo><smqa|] : (6)

wherev=+/K/p is, dimensionally and physically, the characteristic velocity of confor-

mational oscillations, the angle parameterizes an elementary rotati@rof the ideal
double helix

. Cosp  Sing
—sing CcoSse

and the functiorf has the form

f=4

. L,P) . ,0a .o P

1+2 stE S|n27+4smz§. (7

The dispersion laws for the conformational modes are shown in Fig. 1. There are an
acoustic branch of oscillations §) and two optically branchezslvz.l) The optical mode
N1 [corresponding to the minus sign in E§)] has a quite deep minimum at a finite wave
numbeeq, . The DNA duplex, because of the presence itself of the helix, is character-
ized by an axial anisotropy vector which changes sign at a transition from a right- to a
left-hand helix (reflection in a plane parallel to the axis of the hgliXhe frequency
N1(q,) #0, so that the circular polarizations differ by the signs of the rotation in a pair
of waves corresponding to the characteristic magle

We also studied the propagation of local disturbances of a double helix, which are
described by the so-called covariant wave equation following from the Hamiltgfhjan
For this, the initial perturbation must be represented as a superposition of the character-
istic modes found above, and the coefficients in this superposition must be found from
the initial and boundary conditions. Leaving to a separate work the detailed investigation
of solutions of this equation, here we only formulate the interesting, in terms of the
biophysical consequences, qualitative features of the propagating disturbances. The co-
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variant wave equation describes excitations propagating in both directions along the axis
of the double helix. Depending on the struct(@enplitude and polarizatigrof the initial
excitation and the parameters of the model, these waves can have either the same or
opposite signs of the elliptical polarization of both waves., in the waves traveling in

both directions the displacements of the polynucleotide chains can rotate in the same
direction (in-phase or in opposite directions, i.e., in antiphase

Formally, the reason for such asymmetry in a mirror symmétith respect to the
reflection plane perpendicular to the axis of the heideal structure of a double helix
(here we neglect, for simplicity, the dependence of the model parameters on the sequence
of the base paijds quite obvious. The initial perturbation of the duplex, having different
amplitudes of displacemenysalong arbitrary axes in a plane perpendicular to the axis of
the helix (i.e., elliptical polarizatiolh excites different superpositions of the optical
modeshk; and\,. When the direction of propagation is reverged, equivalently,g—
—q), because of the helical symmetry the relatiof{ —q) —X\,(q) holds, and for this
reason, in general, the polarizations of the waves propagating in opposite directions are
different.

3. Thus, in the present letter we have formulated a very simple model of the double-
strand structure of DNA. The proposed model, using a small number of phenomenologi-
cal parametersi,p,a,¢), we hope, adequately describes the conformational degrees of
freedom of the double-strand DNA molecule.

The parametera and ¢ are determined by the structure of the DNA molecule and
are well known &=3.4X10 8cm; ¢=x/5). The linear mass densify in all organic
polymers does not vary much, and in order of magnitude it can always be estimated as 1
glen?x d2~10"* g/cm (whered~20 A is the diameter of a polynucleotide chiin

The recent results of Ref. 9 can be used to estimate the elastic md€lulnghis
work the force required to separate the two polynucleotide chains of DNA to a distance
of the order of 10* cm was measured directly. Dimensionalnd physically this force
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can serve as an upper limit of the conformational elastic modklwshich we have
introduced. Using the data presented in Ref. 9, we otiairl0 © ergs/cm.

Thus, all the parameters of our model have been determined, and the characteristic
propagation velocity of conformational excitations can be calculated from (Bgsnd
(6) asv=10> cm/s. These conformational excitations are srithkey do not break the
hydrogen bonds between the base papsrturbations of the double helix, similar to
phonons in crystal lattices. Taking account of the dissipation will inevitably cause the
excitations which we have found to decay. It cannot be ruled out that a purely relax-
ational dynamics arises instead of propagating waassnost often happens in proteins
However, the DNA molecules on mesoscales are much more rigid than proteins, so that
dissipation may not lead to overdamping of the conformational modes. Rough estimates
of the dissipation due to the interaction of the conformational degrees of freedom with the
surrounding medium show that this dissipation can indeed be neglected.

In biology, transcription processes which do not reduce to small perturbations of the
duplex play an important role. In Ref. 5 the phenomenon of transcription iB fbem of
DNA was studied under conditions where the rotation of the enzyme inducing transcrip-
tion is hindered and, instead, twisting of the DNA molecule itself occurs. This twisting
will lead to superspiralling of the DNA molecule. As the enzyme moves, the direction of
rotation of the polynucleotide chains in front of it is opposite to that behind it.

An important question is the choice of the direction of motion of the enzyme, which
under certain conditions propagates in the direction of positive superspiralling while in
other cases it propagates in the direction of negative superspiralling. Our results show the
presence of a natural asymmetry of propagation of excitations even in an absolutely
symmetric conformation of the double helix. This asymmetry is determined primarily by
the structure of the initial perturbation of the duplex. The dependence of the model
parameters on the sequence of base pairs gives a second possible reason for asymmetry of
propagating excitations.

In summary, depending on the polarization of the initial perturbation and the param-
eters of the model, the perturbation can propagate in the direction of positive and nega-
tive superspiralling, and the relative rotation of the polynucleotide chains in both waves
can occur in- or antiphase.
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YThe vibrational modes of a mechanical model of DNA were first analyzed in Ref. 4.
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