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The effective field, which plays the part of the vierbein in general
relativity, can have topologically stable surfaces, vierbein domain
walls, at which the effective contravariant metric is degenerate. We
consider vierbein walls separating domains with flat spacetime which
are not causally connected at the classical level. The possibility of a
quantum mechanical connection between the domains is discussed.
© 1999 American Institute of Physics.@S0021-3640~99!00123-1#

PACS numbers: 67.57.2z, 74.20.2z, 04.20.Gz

In some classes of superfluids and superconductors there is an effective field a
in the low-energy corner which acts on quasiparticles as a gravitational field. Her
discuss topological solitons representing the vierbein domain wall in superfluids
superconductors. On such a surface in 3D space~or on the 3D hypersurface in 311
space! the vierbein is degenerate, so that the determinant of the contravariant metrigmn

becomes zero on the surface. An example of the vierbein domain was discussed
1 for a 3He-A film. When such a vierbein wall moves, it splits into a black hole/wh
hole pair, which experiences the quantum friction force due to Hawking radiation.1 Here
we discuss a stationary wall, which is topologically stable and thus does not expe
any dissipation. Such domain walls, at which one of the three ‘‘speeds of light’’ cro
zero, can be realized in other condensed matter, too: in superfluid3He-B,2 in chiral
p-wave superconductors,3,4 and ind-wave superconductors.5

In the literature two types of the walls have been considered: with degeneratgmn

and with degenerategmn ~Ref. 6!. The case of degenerategmn was discussed in detail in
Refs. 6 and 7. Both types of wall could be generic. According to Horowitz,8 for a dense
set of coordinate transformations the generic situation is the 3D hypersurface on
the covariant metricgmn has rank 3.

The physical origin of the walls with the degenerate metricgmn in general relativity
has been discussed by Starobinsky.9 They can arise after inflation, if the inflaton field ha
a Z2 degenerate vacuum. The domain walls separate domains with 2 different vac
the inflaton field. The metricgmn can everywhere satisfy the Einstein equations
vacuum, but on the surfaces considered, the metricgmn cannot be diagonalized asgmn

5diag(1,21,21,21). Instead, on such a surface the metric is diagonalized asgmn

5diag(1,0,21,21) and thus cannot be inverted. Though the spacetime can be fla
erywhere, such a surface cannot be removed by a coordinate transformation: it ca
7110021-3640/99/70(11)/6/$15.00 © 1999 American Institute of Physics
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be moved to infinity. Thus the system of such vierbein domain walls divides the sp
time into domains which cannot communicate with each other. Each domain is fla
infinite as viewed by a local observer living in a given domain. In principle, the dom
can have different spacetime topology, as is emphasized by Starobinsky.9

Here we consider the vierbein walls separating flat spacetime domains that c
cally cannot communicate with each other across the wall, and we discuss the qu
mechanical behavior of fermions in the presence of the domain wall.

VIERBEIN DOMAIN WALL

The simplest example of the vierbein walls we are interested in is provided b
domain wall which separates domains having opposite orientations of the unit vectol̂ of
the orbital momentum of Cooper pairs in a superfluid3He-A film: l̂56 ẑ. Here theẑ is
along the normal to the film. The Bogoliubov–Nambu Hamiltonian for fermionic qu
particles is

H5S px
21py

22pF
2

2m D t31e1•pt11e2•pt2. ~1!

Here t a are 232 matrices for the Bogoliubov–Nambu spin;p5 x̂px1 ŷpy is the 2D
momentum~for simplicity we assume that the film is narrow, so that the motion along
normal to the film is quantized and only the motion along the film is free!; the complex
vector

e5e11 ie2 , l̂5
e13e2

ue13e2u
56 ẑ ~2!

is the order parameter. If one considers the first term in Eq.~1! as the mass term, then th
vectorse1 ande2 play the part of the zweibein for the 2D motion in the film. We assu
the following order parameter texture in the wall:

e1~x!5 x̂cx~x!, e25 ŷcy~x!, ~3!

where the ‘‘speed of light’’ is constant for light propagating along they axis, while the
‘‘speed of light’’ changes sign across the wall for light propagating along thex axis:

cy~x!5c0 , cx~x!5c0 tanh~x/d!. ~4!

At x50 the zweibein is degenerate: the vector producte13e250, so that the vectorl̂ is
not determined.

Since the momentum projectionpy is a conserved quantity, we come to pure 111
motion. Further we assume that:~i! py56pF ; and~ii ! the parameters of the system a
such that the thicknessd of the domain wall is large:d@\/mc0 . This allows us to
consider the range of the momentum\/d!px!mc0 , where the termpx

2 can be either
neglected as compared to the linear term or considered in the semiclassical appr
tion. Then, rotating the Bogoliubov spin and neglecting the noncommutativity of thpx

2

term andc(x), one has the following Hamiltonian for the 111 particle:

H5M ~P!t31
1

2
~c~x!P1Pc~x!!t1, ~5!



a-
s

h
for the

ever,
s

d thus

ate

prob-
e do-
on

713JETP Lett., Vol. 70, No. 11, 10 Dec. 1999 G. E. Volovik
M2~P!5P 4/4m21c0
2py

2 , ~6!

where the momentum operatorPx52 i ]x is introduced. If theP 2 term is completely
neglected, one obtains the 111 Dirac fermions

H5Mt31
1

2
~c~x!P1Pc~x!!t1, ~7!

M25M2~P50!5c0
2py

2 . ~8!

The classical spectrum of quasiparticles,

E22c2~x!px
25M2, ~9!

corresponds to the contravariant metric

g0051, gxx52c2~x!. ~10!

The line element of the effective spacetime is

ds25dt22~c~x!!22 dx2. ~11!

The metric elementgxx is infinite atx50.

Equation~11! represents aflat effective spacetime for any functionc(x). However
the singularity atx50, wheregxx5`, cannot be removed by a coordinate transform
tion. If at x.0 one introduces a new coordinatej5*dx/c(x), then the line element take
the standard flat form

ds25dt22dj2. ~12!

However, the other domain – the half space withx,0 – is completely removed by suc
a transformation. The situation is thus the same as that discussed by Starobinsky
domain wall in the inflaton field.9

The two flat spacetimes are disconnected in the relativistic approximation. How
this approximation breaks down nearx50, where the ‘‘Planck energy physics’’ become
important and nonlinearity in the energy spectrum appears in Eq.~6!: The two halves
actually communicate due to high-energy quasiparticles, which are superluminal an
can propagate through the wall.

FERMIONS ACROSS A VIERBEIN WALL

In the classical limit, low-energy relativistic quasiparticles do not communic
across the vierbein wall, because the speed of lightc(x) vanishes atx50. However, a
quantum mechanical connection may be possible. There are two ways to treat the
lem. One approach is to do the coordinate transformation first. Then in one of th
mains, say, atx.0, the line element is Eq.~12!, and one comes to the standard soluti
for a Dirac particle propagating in flat space:

x~j!5
A

A2
exp~ i jẼ!S Q

Q21D 1
B

A2
exp~2 i jẼ!S Q

2Q21D , ~13!

Ẽ5AE22M2, Q5S E1M

E2M D 1/4

. ~14!
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HereA andB are arbitrary constants. In this approach it makes no sense to discus
connection to the other domain, which simply does not exist in this representation

In the second approach we do not make the coordinate transformation and we
with both domains. The wave function for the Hamiltonian~7! at x.0 follows from the
solution in Eq.~13! after restoring the old coordinates:

x~x.0!5
A

A2c~x!
exp~ i j~x!Ẽ!S Q

Q21D 1
B

A2c~x!
exp~2 i j~x!Ẽ!S Q

2Q21D , ~15!

j~x!5Ex dx

c~x!
. ~16!

A similar solution exists forx,0. We can now connect the solutions for the right and
half spaces using~i! the analytical continuation across the pointx50; and~ii ! the con-
servation of the quasiparticle current across the interface. The quasiparticle curr
x.0, for example, is

j 5c~x!x†t1x5uAu22uBu2. ~17!

The analytical continuation depends on the choice of the contour around the
x50 in the complexx plane. Thus, starting from Eq.~16!, we obtain two possible
solutions atx,0. The first solution is obtained when the pointx50 is shifted to the
lower half plane:

x I~x,0!5
2 iAe2Ẽ/2TH

A2uc~x!u
exp~ i j~x!Ẽ!S Q

Q21D
1

2 iBeẼ/2TH

A2uc~x!u
exp~2 i j~x!Ẽ!S Q

2Q21D , ~18!

whereTH is

TH5
\

2p

dc

dx
ux50 . ~19!

Conservation of the quasiparticle current~17! across the pointx50 gives the connection
between parametersA andB:

uAu22uBu25uBu2eẼ/TH2uAu2e2Ẽ/TH. ~20!

The quantityTH looks like the Hawking radiation temperature determined at
singularity. As follows from Ref. 1, it is the limit of the Hawking temperature when
white hole and black hole horizons in the moving wall merge to form the static vier
wall. Note that there is no real radiation if the wall does not move. The param
TH /Ẽ;]l/]x, where l52p/px5(2p/Ẽ)]c/]x is the de Broglie wavelength of th
quasiparticle. Thus the quasiclassical approximation holds ifTH /Ẽ!1.

The second solution is obtained when the pointx50 is shifted to the upper hal
plane:
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x II~x,0!5
iAeẼ/2TH

A2uc~x!u
exp~ i j~x!Ẽ!S Q

Q21D 1
iBe2Ẽ/2TH

A2uc~x!u
exp~2 i j~x!Ẽ!S Q

2Q21D ,

~21!

and the conservation of current gives the following relation between parametersA andB:

uAu22uBu25uBu2e2Ẽ/TH2uAu2eẼ/TH. ~22!

Two solutions, the wave functionsx I andx II , are connected by the relation

x II}t3~x I!* ~23!

which follows from the symmetry of the Hamiltonian

H* 5t3Ht3 . ~24!

The general solution is a linear combination ofx I andx II .

Though on the classical level the two worlds on either side of the singularity
well separated, there is a quantum mechanical interaction between the worlds acro
vierbein wall. The wave functions across the wall are connected by the relationx(2x)
56 i t3x* (x) in spite of the impossibility of communication in the relativistic regime

NONLINEAR „NONRELATIVISTIC … CORRECTION

In the above derivation we relied upon the analytical continuation and on the
servation of quasiparticle current across the wall. Let us justify this using the nonl
correction in Eq.~6!, which was neglected before. We shall work in the quasiclass
approximation, which holds ifẼ@TH . In the purely classical limit one has the dispersi
relation

E25M21c2~x!px
21px

4/4m2, ~25!

which determines two classical trajectories

px~x!56A2m~AẼ21m2c4~x!2mc2~x!!. ~26!

It is clear that there is no singularity atx50—the two trajectories cross the domain wa
continuously in opposite directions, while the Bogoliubov spin continuously change
direction. Far from the wall these two trajectories give the two solutions,x I andx II , in
the quasiclassical limitẼ@TH . The functionx I

x I~x.0!5
1

A2uc~x!u
exp~ i j~x!Ẽ!S Q

Q21D , ~27!

x I~x,0!5
2 i

A2uc~x!u
exp~2 i j~x!Ẽ!S Q

2Q21D , ~28!

describes the propagation of the quasiparticle from the left to the right without refle
at the wall: in the quasiclassical limit reflection is suppressed. The functionx II describes
the propagation in the opposite direction:
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x II~x.0!5
1

A2uc~x!u
exp~2 i j~x!Ẽ!S Q

2Q21D , ~29!

x II~x,0!5
i

A2uc~x!u
exp~ i j~x!Ẽ!S Q

Q21D . ~30!

The quasiparticle current far from the wall does obey Eq.~17! and is conserved across th
wall. This confirms the result of the previous Section as to the presence of a qua
mechanical connection between the spaces.

In the limit of small massM→0, the particles become chiral, with the spin direct
along or opposite to the momentumpx . The spin structure of the wave function in th
semiclassical approximation is given by

x~x!5ei t2
a
2x~1`!, tana5px /2mc~x!. ~31!

Sincea changes byp across the wall, the spin of the chiral quasiparticle rotates byp:
the right-handed particle transforms to the left-handed one when the wall is crosse

It appears that there is a quantum mechanical coherence between the two flat w
which classically do not interact across the vierbein wall. The coherence is establish
the nonlinear correction to the spectrum of the chiral particle:E2(p)5c2p21ap4. The
parametera is positive in the condensed-matter analogy, which allows the superlum
propagation across the wall at high momentap. But the result does not depend on th
magnitude ofa: in the relativistic low-energy limit the amplitudes of the wave functi
on the left and right sides of the wall remain equal in the quasiclassical approxima
even though communication across the wall is classically forbidden in the low-en
corner. Thus the only relevant input of the ‘‘Planck energy’’ physics is the mere p
bility of superluminal communication between the worlds across the wall. That is
coherence between particles propagating in two classically disconnected worlds c
obtained even in the relativistic domain, by using analytical continuation and the co
vation of the particle current across the vierbein wall.

I thank A. Starobinsky for illuminating discussions. This work was supported in
by the Russian Fund for Fundamental Research Grant 96-02-16072 and by the Eu
Science Foundation.
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Quark and gluon condensates in a magnetic field
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The two-loop expression for the vacuum energy density in a constant
magnetic field is obtained on the basis of the chiral perturbation theory.
The dependence of the quark and gluon condensates on the field inten-
sity H is found. © 1999 American Institute of Physics.
@S0021-3640~99!00223-6#

PACS numbers: 12.39.Fe, 12.38.Bx

1. The dependence of the quark condensate on the magnetic fieldH in the Nambu–
Jona–Lasinio model was investigated in Ref. 1. For quantum chromodynamics~QCD!
the single-loop result was obtained in Ref. 2. In both cases it was found that the co
sate grows with increasingH, which shows that the naive analogy with superconductiv
theory, where the Cooper-pair condensate is destroyed by a magnetic field, is in
cable.

In the present letter, on the basis of the chiral perturbation theory~ChPT! for small
~compared with the characteristic hadronic scale! values ofeH, the two-loop approxima-
tion is obtained for the vacuum energy density and the dependence of the quar
gluon condensates on the field intensity is found. We note that although gluons d
carry electric charge, the virtual quarks whcich they generate and which interact w
magnetic field, change the gluon condensate.

2. In the Euclidean formulation the QCD partition function in the presence o
external Abelian fieldAm can be written in the form

Z5expH 2
1

4E d4xFmn
2 J E @DBm

a #@Dq̄f #@Dqf #expH 2E d4xLQCDJ , ~1!

where the QCD Lagrangian in the background field has the form

LQCD5
1

4g0
2 ~Gmn

a !21(
f

q̄ fFgmS ]m2 iQ feAm2 i
la

2
Bm

a D1mf Gqf , ~2!

Qf is the charge matrix of quarks with flavorf 5(u,d), and for simplicity we do not
write here explicitly the ‘‘ghost’’ and gauge-fixing terms.

The energy density of the system is determined by the expressionV4ev(H,mf)
52 lnZ. In a constant magnetic fieldH a quark condensate in the chiral limit (mf→0)
can be written in the form
7170021-3640/99/70(11)/8/$15.00 © 1999 American Institute of Physics
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^q̄fqf&~H !5
]ev~H,mf !

]mf
U

mf50

. ~3!

It follows from Eq. ~1! that the gluon condensate^G2&[^(Gmn
a )2& is determined by the

relation

^G2&54
]ev~H,mf !

]~1/g0
2!

U
mf50

. ~4!

The phenomenon of dimensional transmutation leads to the appearance of a non
bative dimensional parameter

L5M expH E
as(M )

` das

b~as!
J , ~5!

whereM is the ultraviolet-cutoff mass,as5g0
2/4p, andb(as)5das(M )/d ln M is the

Gell-Mann–Low function. The system described by the partition function~1! contains in
the chiral limit (mf50) two dimensional parametersM andH. Since the vacuum energ
density is an observable quantity, it possesses the property of renormalization inva
and its anomalous dimension is zero. Thereforeev possesses only a normal~canonical!
dimension, equal to 4. Using the renormalization invariance ofL, we can write

ev5L4f ~H/L2!, ~6!

wheref is an unknown function. It is easy to obtain from Eqs.~5! and ~6!

]ev

]~1/g0
2!

5
8pas

2

b~as!
S 22H

]

]H D ev . ~7!

Using the expression~4!, we find for the gluon condensate

^G2&~H !5
32pas

2

b~as!
S 22H

]

]H D ev . ~8!

In the absence of an external field we obtain the well-known expression for the no
turbative vacuum energy density in the chiral limit, which in the single-loop approxi
tion (b52b0as

2/2p, b05(11Nc22Nf)/3) has the form

ev52
b0

128p2
^G2&. ~9!

3. The formulas obtained make it possible to find the values of the condensa
the chiral limit as a function ofH, provided the vacuum energy density is known.
calculateev the vacuum loops in an external magnetic field must be examined. For
fields eH!mhadr

2 ;(4pFp)2 the characteristic momenta in the loops are small and
theory is adequately described by an effective low-energy chiral LagrangianLeff ,

3 which
can be represented as a series expansion in the momenta~derivatives! and masses:1!

Leff5L (2)1L (4)1L (6)1••• ~10!
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The leading term in Eq.~10! is similar to the Lagrangian of the nonlinears model in an
external vector fieldVm

L (2)5
Fp

2

4
Tr~¹mU1¹mU !1SReTr~MU1!, ~11!

¹mU5]mU2 i @U,Vm#.

Here U is a unitarySU(2) matrix, Fp593 MeV is the pion decay constant, and th
parameterS is the quark condensateS5u^ūu&u5u^d̄d&u. An external Abelian magnetic
field H directed along thez axis corresponds toVm(x)5e(t3/2)Am(x), where the vector
potentialAm is chosen in the formA1(x)52Hx2 . The mass difference between theu
andd quarks appears in the effective chiral Lagrangian only quadratically. Further,
to obtain an expression for the quark condensate in the chiral limit only the first de
tive with respect to the mass of one of the quarks is used, we can neglect the
difference between theu and d quarks and assume the mass matrix to be diagonaM
5mÎ.

To a first approximation the Lagrangian~11! is identical to the Lagrangian of scala
electrodynamics. The single-loop expression for the magnetic field dependence
vacuum energy in this theory was found by Schwinger4

ev
(1)~H !52

1

16p2E0

`ds

s3
e2Mp

2 sF eHs

sinheHs
21G . ~12!

Using the formulas~3! and ~4! and the Gel-Mann–Oakes–Renner~GMOR! relation
2mS5Fp

2 Mp
2 , we find an expression for the condensates in a magnetic field:

S~H !5SF11
eH ln 2

~4pFp!2G , ~13!

^G2&~H !5^G2&1
as

2

3pb~as!
~eH!2. ~14!

In the chiral perturbation theory in an external field a series expansion is made in p
of the parametereH/(4pFp)2. To find ev in the next order the two-loop diagrams wit
vertices fromL (2), one-loop diagrams with a vertex fromL (4), and a tree contribution
from L (6) must be taken into account. The Feynman diagrams forev

(2) are presented in
Fig. 1.

To calculate the two-loop diagrams~a!, ~b!, and~c! we shall require an expansion o
the chiral LagrangianL (2) up to the four-pion vertices. The matrixU can be parameter
ized in different ways. We employ Weinberg’s parameterization

U5s1
ipata

Fp
, s21

p2

Fp
2

51. ~15!

Then the expansion ofL (2) has the form
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L (2)5
1

2
~]mp0!22

Mp
2 ~p0!2

2
1~]mp11 ieAmp1!~]mp22 ieAmp2!2Mp

2 p1p2

1
1

2Fp
2 @p0]mp01]m~p1p2!#22

Mp
2

8Fp
2 @2p1p21~p0!2#2, ~16!

where we have introduced the chargedp6 and neutralp0 meson fields:

p05p3, p65
1

A2
~p16 ip2!. ~17!

The propagator of charged scalar particles in a magnetic field in a Euclidean metr
the form

DH~x,y!5F~x,y!E d4k

~2p!4
eik(x2y)DH~k!, ~18!

whereF(x,y)5exp$ie*y
xAm(z)dzm% is the Abelian phase and the integral is taken alon

straight line connecting the pointsx and y. The functionD (H)(k) can be written in the
form5

DH~k!5E
0

` ds

cosh~eHs!
expH 2sS ki

21k'
2 tanheHs

eHs
1Mp

2 D J ~19!

andk i
2 5k3

21k4
2 andk'

2 5k1
21k2

2 .

The correction to the vacuum energy density corresponding to the diagram~a! can
be written in the form

FIG. 1. Diagrams for calculating the vacuum energy density in an external magnetic field in second-orde
perturbation theory. A solid line corresponds to a charged pion, a broken line corresponds to a neutral pi
a wavy line corresponds to an external electromagnetic field.
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ev
(2)@diagram~a!#52

Mp
2

8Fp
2

D2~0!, ~20!

whereD(0) is the free propagator of a scalar massive particle at coinciding point
dimensional regularization it is

D~0!5E ddk

~2p!d

1

k21M2
52M2S l1

1

32p2
ln

M2

m2 D , ~21!

wherem is the mass parameter of dimensional regularization and the singular term

l5
md24

16p2 F 1

d24
2

1

2
~ ln 4p2gE11!G ~22!

has been introduced in Eq.~21!. The expression~20! does not change the condensates
simply reduces to renormalization ofev in the absence of a field.

The diagram~b! gives the following contribution inev :

ev
(2)@diagram~b!#5

Mp
2

2Fp
2

D~0!DH~0!, ~23!

whereDH(0)5DH(x,x). In accordance with GMOR, the expression~23! is proportional
to the squared quark mass, and in the chiral limit it does not contribute to the co
sates.

Carrying out the calculations for the diagram in Fig. 1c, we obtain

ev
(2)@diagrm~c!#5

1

Fp
2

DH~0!E ddk

~2p!d
~k21Mp

2 !DH~k!. ~24!

This expression contains a quartic divergence. However, in dimensional regulariz
*ddk50, and this divergence can be dropped.2! Subtracting 1 from the integrand in Eq
~24! and passing to the limitd→4, we find thatev

(2)@diagram~c!#50. Therefore the
two-loop diagrams do not make a contribution linear in the quark mass to the va
energy. Besides the diagrams examined above, in this order the expansi
eH/(4pFp)2 also contains single-loop diagrams with vertices fromL (4). Since an exter-
nal field carries zero momentum, only two terms fromL (4) are important for us:

L (4)52
2l 5

Fp
2 ~eFmn!2p1p22

2i l 6

Fp
2

eFmn@]mp2]np11 ieAm]n~p1p2!#, ~25!

where the constantsl 5 and l 6 are determined in Ref. 3. The corresponding diagrams
presented in Fig. 1d. A direct calculation gives

ev
(2)@diagram~d!#5

2~eH!2

Fp
2 ~2l 52 l 6!DH~0!. ~26!

Although the constantsl 5 and l 6 are infinite, their combination appearing in Eq.~26! is
finite3
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2l 52 l 65
1

96p2
~ l̄ 62 l̄ 5!, ~27!

where l̄ 62 l̄ 5'2.7.

The complete expression forL (6) is quite complicated,7 but for our purposes only
one term is important. This term can be written in a form convenient for us as

L (6)5
80d

9Fp
4 ~eFmn!2S Re Tr$MU1%. ~28!

Hered5dr(m)1const•l andl contains the polem (d24)/(d24). By construction of the
chiral perturbation theory, the divergent part in Eq.~28! cancels with the pole term
arising from the single-loop diagrams with vertices fromL (4). The quantitydr can be
determined using the results obtained in Ref. 8, where the processgg→p0p0 was
considered. Using the notation of Ref. 8, the expression fordr reduces to the form

dr5
9

320
~ ā112ā214b̄!, ~29!

whereā1 , ā2 , andb̄ are coefficients in front of different tensor structures in the am
tude of the processgg→p0p0. The numerical values ofā1 , ā2 , andb̄ were determined
using the explicit saturation of the amplitude of the process by scalar, vector, and t
resonances.8 Calculation shows that only the exchange scalar mesons contribute todr and

dr~m;0.75 GeV!'64•1026. ~30!

The ambiguity in the sign ofdr is due to the fact that the coupling constant of a sca
meson with photons or pions appears quadratically in the experimentally measured
widths, while they appear linearly in the effective Lagrangian and, correspondingly
sign of dr is not determined from experiment.

We now obtain the final result. Assuming that to obtain the quark condensat
must retain terms which are only first order inMp

2 , we obtain

DH~0!5@DH~0!2D~0!#1D~0!'2
eH ln 2

16p2
1

Mp
2

16p2 F ln
eH

Mp
2

1CG
12Mp

2 Fl1
1

32p2
ln

Mp
2

m2 G , ~31!

whereC is a slowly varying functioneH/Mp
2 andC(0)'20.2. Collecting together the

results obtained above, we obtain the final answer for the vacuum energy density

ev~H !5ev~0!1ev
(1)~H !1

1

48p2

~eH!2

~4pFp!2
~ l̄ 62 l̄ 5!

3H 2eH ln 21Mp
2 F ln

eH

m2
1CG J 2

160dr~m!

9Fp
2 ~eH!2Mp

2 . ~32!
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Using the formulas~3! and~8! and the GMOR relation, we find theH dependence of the
quark condensate:

S~H !5SH 11
eH

~4pFp!2
ln 22

1

3

~eH!2

~4pFp!4

3F ~ l̄ 62 l̄ 5!S ln
eH

m2
1CD 2

160~4p!4

3
dr~m!G J . ~33!

For the gluon condensate we have the expression

^G2&~H !5^G2&1
as

2

3pb~as!
~eH!2F112

eH

~4pFp!2
~ l̄ 62 l̄ 5!ln 2G . ~34!

On account of asymptotic freedomb(as),0 and, correspondingly, the gluon condens
decreases with increasing magnetic field. In the single-loop approximation for the
modynamicb function (b(as)52b0as

2/2p) this change is

D^G2&52
2p

3b0
~eH!2F112

eH

~4pFp!2
~ l̄ 62 l̄ 5!ln 2G . ~35!

We introduce the dimensionless variablex5eH/(4pFp)2. Substituting into Eq.~3!
the numerical values presented above, we rewrite the quark condensate as a functx
in the form

S~x!/S511x ln 22ax2ln x2bx2. ~36!

Herea.0.9 andb.0.6561.77 where we have used for the coefficientb the two values
of dr from Eq. ~30!. We note that the behavior of the quark condensate depends fu
mentally on the sign ofdr . For dr.0 the quark condensate starts to decrease for fi
intensitiesx.0.23.

4. In summary, on the basis of chiral perturbation theory, a two-loop approxima
has been obtained for the vacuum energy density and the dependence of the qua
gluon condensates onH was found. We can see that the gluon condensate decrease
increasingH, while the chiral condensateS, depending on the choice of the sign ofdr ,
in the two-loop level of the ChPT either continues to grow~as happens for one loop! or
decreases with increasingH. We note that the decrease of the condensateS occurs in the
region of applicability of ChPT in a magnetic fieldeH/(4pFp)2,1. As discussed above
it is impossible to determine the value ofdr unequivocally by comparing with experi
mental data. We shall not present here the various speculative arguments abo
behavior ofS in a magnetic field. We confine ourselves only to the assertion tha
increase or decrease of the quark condensate withH can be determined only when th
coefficients in the effective chiral Lagrangian are calculated from first principles of Q

In closing, we thank B. L. Ioffe and Yu. A. Simonov for a discussion of the res
and helpful remarks.

This work was supported by the Russian Fund for Fundamental Research~Grant No.
97-02-16131! and CRDF RP2-132.
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1!We note that the passage to the chiral limit means thateH@Mp

2 .
2!For other regularizations the quartic divergence vanishes only if a nontrivial measure of integration is

into account. Examples of explicit two-loop calculations can be found in Ref. 6.
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Amplification of the generation of the sum-frequency
signal in multilayer periodic structures at the edges
of the Bragg band gap

A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, P. Masselin,
I. A. Ozheredov,* ) and A. P. Shkurinov
M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

D. Boucher
Laboratoire de PhysicoChimie de l’Atmosphe`re, Universitédu Littoral, 59140 Dunkerque,
France

~Submitted 20 October 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 11, 718–721~10 December 1999!

A new property of a one-dimensional periodic structure — amplifica-
tion of the sum-frequency signal arising under the simultaneous action
of two laser pulses on this structure with radiation frequencies corre-
sponding to the edges of the fixed Bragg band gap — is experimentally
observed and described. ©1999 American Institute of Physics.
@S0021-3640~99!00323-0#

PACS numbers: 42.70.Qs, 42.65.Ky

1. Investigations of nonlinear-optical phenomena in photonic crystals have
arousing great interest in the last few years.1 A multilayer periodic structure~MPS! is a
particular case of a one-dimensional photonic crystal and is characterized by the
ence of regions of forbidden frequencies where total Bragg reflection occurs.2 In recently
published investigations,3–5 it is shown that a signal at the frequency of the seco
harmonic can be amplified at the edge of the region of selective Bragg reflection
possible mechanism of this amplification, examined in Refs. 3 and 4, is due to the
increase of the energy density of the field at the fundamental frequency.

The subject of the present letter is an investigation of the mechanism of asyn
nous amplification of the signal at the sum frequencyvs f5v11v2 in an MPS. It is
established that the efficiency of the generation of the signal at the sum frequency~SF!
vs f increases substantially if the frequenciesv1 andv2 of the two laser pulses inciden
on the MPS at the same angle are chosen near the opposite edges of a given Brag
gap. We believe that our investigations show that this asynchronous amplificati
largely due to the simultaneous increase of the energy density of the fields in the str
at the frequenciesv1 andv2 . Indeed, under the conditions of our experient the freque
of the sum harmonic lies far from the electronic resonances of the materials use
preparing the MPS and/or Bragg band gaps. This makes it possible to rule out am
cation due to synchronous mechanisms, i.e., amplification arising when additional p
matching conditions are satisfied in the presence of spatial and frequency dispers
7250021-3640/99/70(11)/5/$15.00 © 1999 American Institute of Physics
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2. Let us examine the generation of a signal at the sum frequency in an
consisting of alternating layers with substantially different refractive indices. It is
sumed that the layers with a large refractive index have a large quadratic nonlinea

Since the sum-harmonic signal is weak compared with the intensities of the inc
waves, and taking into account the fact that the duration of the pulses is much longe
the propagation time of light through the sample, we shall seek the spatially ra
varying amplitude of the quasistationary fieldsE(r ,t)5E(r )exp(2ivt) at the fundamen-
tal frequencies, solving the linear wave equation

D2E~r !1~vn~z!/c!2E~r !50.

The exact solution of this equation in an arbitrary layer with numberm has the form of a
sum of the direct and backward~reflected! plane waves

Ejm~z!5Ajm exp~ ik j 0sjmz!1Bjm exp~2 ik j 0sjmz!,

wheresjm5(njm
2 2sin2q)1/2, the indicesj 51,2 correspond to one of the incident wave

njm is the refractive index for thej-th wave in them-th layer,kj 052p/l j , q is the angle
of incidence, andz is the coordinate ‘‘into’’ the structure. To determine the amplitud
Ajm andBjm we used the Parratt’s method of recurrence relations,6 which for the present
problem yields the relations

Aj ,m115AjmQjm

gjm1Rjmgjm
21

11Rj ,m11
, Bjm5RjmAjm , ~1!

Rjm5
Rj ,m111F jm

11Rj ,m11F jm
gjm

2 , F jm5
sjm2sj ,m11Qjm

2

sjm1sj ,m11Qjm
2

,

where gjm5exp(ikj0sjmdm), dm is the thickness of them-th layer, Qjm51 and Qjm

5njm /nj ,m11 , respectively, for thes- and p-polarized waves. The recurrence relatio
~1! are solved for the boundary conditionsAj 05Ej ; the reflection coefficient of theN
11 boundary isRN1150; the vacuum refractive index isn051; g051; Ej are the
amplitudes of the incident waves; and,N is the number of layers. Assuming that th
intensity of the sum-frequency signal in them-th layer is proportional touA1mA2mu2 for
the direct anduB1mB2mu2 for the backward waves, we shall estimate the total intensity
the SF signal as the sum of the corresponding intensities over all layers of the MPS
a large refractive index.

The computed dependences of the linear reflection coefficient of the MPS desc
below are presented in Figs. 1a, b for the two wavelengthsl15812 nm andl2

5733 nm of the incident linearlyp-polarized~i.e., polarized in the plane of incidence!
radiation. The values chosen forl1 andl2 correspond to two edges of the Bragg ba
gap with angle of incidence of the radiation on the medium~MPS! q525°. According to
Eq. ~1!, near this value of the angleq the amplitudes of the waves diffracted in th
medium grow substantially, and the maximum localization of the energy of the inc
radiation in the medium occurs at both wavelengths. This is clearly seen from the
retical angular dependences of the total energy density of the corresponding bac
wavesuB1mu2 anduB2mu2 in layers with a large refractive index~Fig. 1a and 1b!. For this
reason, the efficiency of generation of the reflected SF signal depends on the anq,
and its intensityI s f has a maximum atq525° ~Fig. 1c!, solid line!. If l1 and l2 are
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chosen so that the edges of the reflection curves do not intersect, for exampl1

5812 nm andl25706 nm, the intensity of the SF signal is low, and amplification d
not occur~Fig. 1c, dashed line!. The second maximum of the SF signal atq540° ~Fig.
1c! corresponds to the position of the edge of the reflection curve forl5706 nm.

In summary, for the optimal choice of wavelengthsl1 andl2 amplification of the
generation efficiency of the SF frequency, which does not depend on the satisfact
phase-matching conditions, can be expected.

3. To observe the asynchronous amplification of the SF signal experimentally
used a sample consisting of eight layers of ZnS (n152.316) and seven layers of SrF2

(n251.52), deposited in the form of an MPS on a glass substrate.4 The thickness of each
layer wasdi53l/4ni for wavelengthl5790 nm. In all experimentsl1 was fixed and
equal to 812 nm~first channel,v1), and l2 could vary from 650 to 740 nm~second
channel,v2); the duration of the pulses was less than 200 fs, the pulse repetition
quency was 200 kHz, and the energy could vary from 0 to 20 nJ/pulse. The synchr
detection technique was used to detect the SF signal. Both radiations at the funda
frequencies (v1 andv2) and at the SF were linearlyp-polarized.

The efficiency of generation of radiation at the SF as a function of the angleq of
incidence on the MPS was measured in the experiments.

FIG. 1. a, b. Computed dependences of the reflection coefficientR versus the angle of incidenceq of the
radiation on the MPS for two wavelengthsl15812 nm ~a! and l25733 nm ~solid lines! and the angular
dependences of the total energy density of the corresponding backward wavesSuB1mu2 andSuB2mu2 in non-
linear layers~dot-dashed curves!; c! computed angular dependences of the intensityI s f of the reflected SF signa
with simultaneous incidence of two waves withl15812 nm andl25733 nm ~solid line! on the MPS at an
angleq and for the case wherel15812 nm andl25706 nm~dashed line!.
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The experimental dependences of the SF signal intensity on the angle of inci
on the MPS are shown in Fig. 2a for two values of the wavelengths of the second ch
l2

(1) andl2
(2) . The wavelengthsl2

(1)5736 nm andl2
(2)5703 nm were chosen so that th

edges of the reflection curves corresponding to them andl15812 nm would intersect in
one case (l2

(1)) and not in the other (l2
(2)). For the wavelengthl2

(1) , an at least ten-fold
amplification of the SF signal compared with the casel2

(2) was observed experimentally
this agrees well with the theoretical results~Fig. 1c!. The dependence of the SF sign
amplitude on the angle of incidence on the MPS is presented in Fig. 2b for various v
of the power of the incident radiation. It is evident from the figure that the maximum
q540°, corresponding to an increase in the energy density of the field near the ed
the reflection curve for radiation at the wavelengthl2

(2)5703 nm, increases with the
power of the radiation at the fundamental frequency in the second channel.

4. The good agreement between the theoretical and experimental results show
we have observed experimentally the asynchronous amplification of the generation
SF signal in an MPS. The mechanism of such amplification is an increase in the e
density of the localized fields at two frequencies (v1 , v2) near the opposite edges of
fixed Bragg band gap.

In closing, this work was partially supported by the Russian Fund for Fundam
Research~Project No. 98-02-17544!, the program ‘‘Universities of Russia’’ and th
Learning-Science Center for Fundamental Optics and Spectroscopy. Laborato
PhysicoChimie de l’Atmosphe`re is a member of Center d’Etude et de Recherche La
et Applications, which is supported by Ministe`re de la Recherche, the Re´gion Nord/Pas

FIG. 2. a! Experimental dependences of the SF signal intensityI s f versus the angle of incidenceq on the MPS
for two different wavelengthsl2

(1) and l2
(2) in the second channel; b! Angular dependence of the SF sign

intensityI s f for two different values of the average radiation power (P1 andP2) in the channels. The plots ar
normalized to the signal maximum forq524°.
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Temperature dependence of the spin polarization
of composite fermions
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It is found that at a critical value of the magnetic field in which a
system of composite fermions becomes completely spin-polarized, the
temperature dependence of the electronic spin polarization is a linear
function at low temperatures. It is shown that the slope of this depen-
dence is determined by the Fermi energy of the composite fermions.
This made it possible to measure the Fermi energy and the Zeeman
splitting of the composite fermions. A large amplification of the spin
splitting of composite fermions for complete spin polarization of the
system is found. This makes it possible to measure the strength of the
interaction between composite fermions. ©1999 American Institute
of Physics.@S0021-3640~99!00423-5#

PACS numbers: 05.30.Pr, 71.10.Pm

The concept of new quasiparticles, composite fermions, consisting of an ele
with an even number of attached magnetic-flux quanta, has been proposed to expl
fractional quantum Hall effect.1 New states of compressible quantum liquids, realiz
with fractional fillings of the Landau levels with even denominators, have been pred
on the basis of the composite-fermion picture.2 The existence of composite fermions h
been demonstrated in various experiments in two-dimensional electronic syste
strong magnetic fields.3–5

Composite fermions, having the same charge, spin, and statistics as electrons
from the latter by the fact that in the mean-field approximation they are influenced b
effective magnetic fieldB* 5B22nef0 , whereB is the external field,f05 hc/e is the
magnetic flux quantum, andne is the electron density. For half-filling of Landau leve
7300021-3640/99/70(11)/6/$15.00 © 1999 American Institute of Physics
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composite fermions move in a zero effective magnetic field, since the external mag
field is compensated on the average by the attached magnetic flux quanta of a gaug
A system of such quasiparticles can be characterized by a definite value of the
energy. A deviation of the magnetic field from the value corresponding precise
half-filling of the Landau levels leads to the appearance of a nonzero effective mag
field in which the composite fermions move.

The presence of theg factor leads to spin polarization of composite fermions. Th
arises the interesting question of a transition from a two-component spin-unpola
state of composite fermions into a completely spin-polarized state. Such a transitio
be investigated by keeping the fillingn of the Landau levels fixed and varying th
magnetic field. This can be done, for example, by investigating a system with a
magnetic field, transverse to the sample, and a varying parallel magnetic field. A d
ent, more direct and reliable, method is to keepn fixed and to vary at the same time th
density of the electron gas and the transverse magnetic field. Since the mass of com
fermions is determined by the fluctuations of a gauge field, and the Zeeman splitt
renormalized by them, the values of these parameters, generally speaking, should v
large values of the spin polarization~this question will be investigated in detail in
separate work!. This makes the problem of the spin polarization of a system of compo
fermions interesting and nontrivial.

The present letter is devoted to the experimental and theoretical investigation
temperature dependence of the spin polarization of composite fermions. By comp
the experimental dependences with the results obtained on the basis of a very
model of noninteracting composite fermions, we were able to measure the Fermi e
and the Zeeman splitting of the composite fermions.

We measured the spin polarization of the electronic system by analyzing the d
of circular polarization of the radiative recombination of two-dimensional electrons
photoexcited holes bound on acceptors.6 We note that in this method it is necessary
perform time-resolved measurements of the radiative recombination, specifically
time delays corresponding to complete thermalization of the photoexcited holes rig
to the bath temperature.7 A detailed description of the experimental method can be fo
in Refs. 6 and 7.

The characteristic temperature dependences of the electronic spin polariz
which were measured in various magnetic fields with a fixed filling factor of the low
Landau leveln51/2, are shown in Fig. 1a. As shown in Ref. 6, the critical magnetic fi
at which a transition occurs into a completely spin-polarized state isBc59.3 T. As one
can see from Fig. 1a, forB.Bc and B,Bc the electronic spin polarization exhibit
saturation at low temperatures, while atB5Bc a clearly expressed linear temperatu
dependence is observed in the limitT50. To explain the observed linear temperatu
dependence we shall examine first the very simple case of noninteracting com
fermions.

For fixedn the electron densityne , equal to the densityn* of composite fermions,
is proportional to the magnetic field~here and below all quantities referring to compos
fermions are marked with an asterisk!:

n* 5ne5
eB

2p\c
n. ~1!
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Let us consider a two-dimensional electronic system, whose filling factor is h
constant, equal ton51/2. In this case the motion of the composite fermions is n
quantized and the system of these quasiparticles possesses a Fermi surface chara
by the Fermi energy

«F* 5
2p\2

m*
ne5

e\

2m* c
B, ~2!

wherem* is the effective mass, which in strong fields~similarly to Ref. 6! should be
determined only by the interactions of the electrons and the magnetic field.

The value of the effective mass can be estimated from dimensional analysis2 as

\2

m*
5

C

~4pne!
1/2

e2

e
, ~3!

wheree is the permittivity of the medium andC is a dimensionless constant.

If follows from Eqs. ~1!–~3! that m* ;AB and thereforeeF* ;ne /m* ;AB. Since
the Zeeman splitting increases with increasing magnetic field more rapidly than«F* , there
exists a nonzero critical value of the magnetic fieldBc for which the Fermi energy is
equal to the Zeeman splitting@«F* (Bc)5EZ(Bc)# and the system becomes complete
polarized.

The densities of quasiparticles with different spin orientation are

n65
m*

2p\2E0

` 1

exp$~«7EZ/22m* !/T%11
d«5

m*

2p\2
Tln~11exp$~m* 6EZ/2!/T%!.

~4!

Herem* 5m* (T,B) is the chemical potential of the system of composite fermions i
magnetic fieldB at temperatureT measured in energy units.

Determining next the degree of spin polarization of the system of quasiparticle

FIG. 1. Measured~a! and computed~b! temperature dependences of the electronic spin polarization obta
for n51/2 in various magnetic fields: 12 T, 9.3 T, and 3.3 T. The linear extrapolation forB5Bc , from whose
slope the Fermi energy of composite fermions was determined, is shown in Fig. 1a.
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g* ~T,B!5
n12n2

n21n1
, ~5!

expressing the chemical potentialm* from the condition that the sum of the densities
the quasiparticles with spin parallel and antiparallel to the magnetic field is equal t
total density of the particles in the system in a given fieldB

n21n15ne~B! ~6!

and substituting the expression~4! and the value ofm* from Eq.~6! into Eq.~5!, we find
for the degree of spin polarization of a system of composite fermions

g* ~T,B!512
2T

«F*
lnH 1

2
@12exp~2EZ /T!

1A~12exp~2EZ /T!!214 exp~~«F* 2EZ!/T!#J . ~7!

Plots of the temperature dependence of the degree of spin polarization of the s
of composite fermions, constructed using the formula~7!, are presented in Fig. 1b. Com
paring Figs. 1a and Fig. 1b, we can see that the experimental and theoretical depen
are in good qualitative agreement with one another.

It is of interest to consider various limiting cases of the formula~7!, valid for
arbitrary values ofT andB. We find from Eq.~7!

g* ~T,B!5

¦

EZ

«F*
2

T

«F*
exp~~EZ2«F* !/2T!,

B,Bc , T!«F* , Ez, u«F* 2EZu;

12
2T

«F*
S ln~~A511!/2!2

1

A5
exp~2«F* /T!D ,

B5Bc , T!«F* , EZ ;

12
2T

«F*
expS «F* 2EZ

T D , B.Bc , T!«F* , EZ , u«F* 2EZu;

12
2T

«F*
F lnS 11A5

2 D 2
1

A5
expS 2

EZ

T D1
2

A515

«F* 2EZ

T G ,

u«F* 2EZu!T!«F* , EZ .

~8!

As one can see from Eq.~8!, for B5Bc the temperature dependence of the degree of s
polarization is a linear function at low temperatures and is determined by a singl
rameter — the Fermi energy of composite fermions. By linearly extrapolating the ex
mental dependence measured atB5Bc59.3 T we determined the Fermi energy of com
posite fermions, which was found to be 6.9 K. Since forB5Bc the values of the Ferm
and Zeeman energies are the same, we haveEZ5EF56.9 K. Since the electronic Zee
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man splitting in GaAs forB59.3 T is 2.8 K, we must conclude that a substantial am
fication of the spin splitting~by a factor of 2.5!, due to the interaction of composit
fermions, is observed in our experiment. Thus the characteristic interaction energy
composite fermions is about 4–5 K. The effective mass can be determined from
measured Fermi energy of composite fermions forB5Bc59.3 T: m* 50.92me , where
me is the free-electron mass.

It is evident from Eq.~8! that forB,Bc , in the low-temperature limitg* ;AB. The
dependenceg* (B), calculated atT50 K assuming a constantg factor for composite
fermions (g* 51.1, sinceEZ56.9 K for B59.3 T), is shown in Fig. 2. This dependenc
agrees well with the experimental results of Ref. 6. We obtained the value of the
nomenological parameterC50.0892 from Eq.~3!, knowing the mass of composite fe
mions and their density atB5Bc59.3 T.

A separate work will be devoted to an investigation of Fermi-liquid effects i
system of composite fermions, specifically, the dependence of the effective mass a
Zeeman splitting on the degree of polarization of the system, and the ratio betwee
massm* appearing in the expression for the Fermi energy, and the effective ma
composite fermions, which determines the low-lying excitations of a system of comp
fermions.1! Here we note only that the good agreement between the experimenta
theoretical temperature dependences ofg* attests to the applicability of the picture o
noninteracting compact fermions. However, to explain the temperature dependen
fields differing strongly from the critical field, it must be assumed that the Zee
splitting and the effective mass depend strongly on the degree of polarization o
system.

In summary, in the present work the Fermi energy and the Zeeman splittin
composite fermions were measured from the temperature dependence of the ele
spin polarization forn51/2. It was found that the Zeeman splitting, from which t
interaction energy of composite fermions is determined, is intensified.

We thank the Russian Fund for Fundamental Research, INTAS, and the pro
‘‘Physics of Nanostructures’’ for support.

FIG. 2. Computed dependence of the spin polarization of composite fermions (n51/2) on the magnetic field at
T50 K.
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Ostwald step rule in films of metastable nanocrystalline
alloys Fe–C prepared by pulsed plasma vaporization

R. S. Iskhakov,a) S. V. Komogortsev, S. V. Stolyar, D. E. Prokof’ev,
V. S. Zhigalov, and A. D. Balaev
Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 660036
Krasnoyarsk, Russia

~Submitted 21 October 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 11, 727–732~10 December 1999!

Ferromagnetic nanocrystalline Fe~C! films were prepared by pulsed
plasma vaporization. A comprehensive investigation of the structure
and magnetic properties made it possible to identify the type of short-
range order here and to establish the sequence of structural states oc-
curring in these films in the process of thermal relaxation: fcc-Fe~C!→
hcp-Fe~C!→bcc-Fe1C. On the basis of an analysis of the metastable
phase diagrams using Ostwald’s rule, it is shown that the observed
scenario of the structural transformations in these metastable nanocrys-
talline alloys Fe~C! is a natural phenomenon. ©1999 American In-
stitute of Physics.@S0021-3640~99!00523-X#

PACS numbers: 81.05.Ys, 75.50.Bb, 75.40.2s

It is well-known that crystalline iron exists in three polymorphic modificatio
bcc-Fe (a-Fe, d-Fe!, thermodynamically stable in the temperature range 1183–166
Fe (g-Fe!, and thermodynamically stable at high pressures (;130 kbar! hcp-Fe (e-Fe!.
The latter two modifications of the close-packed structure of Fe in the form of metas
phases can also be obtained at low temperatures and atmospheric pressure. Thes
stable phases are ordinarily prepared in the form of ultrathin~several molecular layers!
films on appropriate substrates1,2 or small coherent inclusions~precipitates! in the appro-
priate materials,3 and in the form of thin films and microwires by fast cooling of th
melt.4,5

A new technological method, called here pulsed plasma vaporization~PPV! in
vacuum, has been developed at the Institute of Physics of the Siberian Branch
ran.6–8 In this technology condensation occurs at a high rate~estimated to be;104 Å/s in
a pulse!, and solidification of the condensate occurs according to the scheme vap→
liquid → crystal. This technology makes it possible to obtain films of a transition m
with a high carbon content (;20 at.%) in a metastable nanocrystalline state.9

The purpose of the present work is to identify the initial and investigate the sequ
of structural states of films of a nanocrystalline alloy Fe~synthesized under ultrafas
condensation conditions!, which appear in the process of thermal relaxation.
7360021-3640/99/70(11)/7/$15.00 © 1999 American Institute of Physics
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EXPERIMENTAL PROCEDURE

The experimental methods used in our work are based on a study of the stat
dynamic magnetic properties of nanocrystalline Fe films, as well as the atomic
chemical structure of this material. Fe films, 200–2000 Å thick, were obtained on di
tric substrates~cover glass, pyrex glass, NaCl, MgO! by PPV in vacuum with residual
gas pressureP0'5.5•1026 mm Hg. The atomic structure of the nanocrystalline Fe fil
prepared by the PPV method was determined by x-ray diffraction of synchrotron r
tion ~SR! ~Institute of Nuclear Physics, Siberian Branch of the Russian Academ
Sciences, Siberian International Center for SR!. The SR wavelength was 1.49 Å. Th
electronic structure and chemical composition of these films were determined fro
vestigations of photoelectron and Auger spectra on a RIBER photoelectron spectro
~a source with an Mg anode and energy of the MgK line hn 51253.6 eV was used! at
the Institute of Semiconductor Physics of the Siberian Branch of the Russian Acade
Sciences.

The dynamical magnetic properties of nanocrystalline Fe films, determining
ferromagnetic resonance~FMR! parameters, was studied in a standard E´PA-2M spec-
trometer with frequencyf 59.2 GHz. The FMR resonance fields were measured in
entire range of angles between the external field and the film plane in order to cal
the effective magnetizationMeff from the equation

H'
r 24pMeff5AH i

r~H i
r14pMeff!, ~1!

whereH'
r and H i

r are the FMR fields with the corresponding experimental geome
The measurements were performed at room temperature.

The static magnetic measurements were performed with an automated vib
magnetometer with fields up to 20 kOe and temperatures ranging from 4.2 to 250 K
temperature dependence of the saturation magnetizationMs(T) of nanocrystalline Fe
films, measured with external fieldH520 kOe in the temperature range 70–210 K
described well by the law

Ms~T!5Ms0~12BT3/2!, ~2!

which made it possible to determine the saturation magnetization and the numerica
of the constantB and to calculate the exchange interaction constantA:

A5
k

8p S gmB

Ms0
D 1/3S 2.612

B D 2/3

. ~3!

The high-temperature dependences of the saturation magnetizationMs(T) were
measured on a torsional anisometer in the temperature range from 273 to 750 K
constant fieldH55.7 kOe. The Curie temperaturesTc of nanocrystalline Fe were dete
mined by extrapolating the temperature dependenceMs(T) to zero magnetization using
the linear dependence ofMs

2 on T nearTc , observed for these materials.

The static magnetic measurements also included measurements of the magne
curve M (H). The local anisotropyHa ~related with the magnetocrystalline anisotro
constant by the relationK5Ha•Ms/2) was calculated from the magnetization curves
to saturation, measured in the film plane atT5250 K.
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In the course of the investigations the initial nanocrystalline Fe films were subje
to thermal annealing. The annealing was performed in a high-vacuum chamber for 1 h at
temperatures 200 and 400 °C.

RESULTS AND DISCUSSION

The results of the analysis of the photoelectron spectra showed that the surf
the films of nanocrystalline Fe is oxidized — the line O1S ~530.4 eV! due to oxygen and
a component attesting to the hydroxyl group (OH2) are observed in the electronic spe
tra. The shape of the Fe 2P3/2 line qualitatively indicates two types of nearest-neighb
environment of the Fe atom. The profile of elements contained in nanocrystalline Fe
the film depth was reconstructed by Auger-electron spectroscopy. The composition
experimental films was as follows: Fe (;75 at.%) and C (;20 at.%! with a uniform
distribution of the elements (xFe/xC) over the film depth.

The results of the magnetic measurements are presented in Table I. It is evide
the initial metastable state~which we callX1), realized in films of the alloy Fe~C!, is
characterized by the following basic magnetic parameters:A50.56•1026 ergs/cm,M0

51540 G,Ha52 kOe, Tc5400 °C. As a result of thermal relaxation, the initial sta
transforms into a different metastable state~which we callX2) with the magnetic param
etersA50.3•1026 ergs/cm,M051200 G,Ha56.1 kOe, andTc5300 °C.

The large difference in the measured magnetic parametersA, M0 , Tc , and Ha

attests to structural differences between the observed metastable states. A transiti
the thermodynamically equilibrium bcc-Fe phase occurs after a 1-h annea
T5600 °C.

The results of x-ray crystallographic analysis performed on the initial Fe fil
(;1000 Å thick! and on the annealed Fe films (Tan5200 °C) are presented in Fig. 1. Th
diffraction curve of the initial films, measured in SR~curve1 in Fig. 1!, contained one
broadened peak centered neard52.04 Å andD(2u)'3° wide. Such a diffraction curve
indicates a nanocrystalline structure of the initial material with a grain size of the ord
40 Å. However, it is impossible to draw a conclusion about the type of atomic lattic
these nanocrystalline grains on the basis of a single reflection. The annealed fil
nanocrystalline Fe were characterized by a diffraction curve~curve2 in Fig. 1! containing
a set of reflections. Five of the reflections with the highest intensities, marked in F
attest to a hexagonal close-packed structure~hcp! for these Fe films.~The fact that a
complete set of reflections characterizing a polycrystalline hcp structure is lacking a
in our view, to a certain degree of texture in these films.! Analysis of these reflections
gives the following values for the lattice parameters of Fe:a52.63 Å, c54.46 Å, c/a

TABLE I.

Initial state Tan5200 °C Tan5400 °C bcc-Fe

Ms0, G 1540 1180 1150 1740
Meff ~FMR!, G 1180 1030 – 1740
Tc , °C 400 300 300 770
A, 1027 ergs/cm 5.5 3.2 3.7 20
Ha , kOe 2.0 5.9 6.1 0.5
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51.696. The volume per Fe atom calculated from these parameters isVat513 Å3. We
note that the computed volumeVat per Fe atom in these Fe films is more than 10% grea
than the analogous quantity in thermodynamically equilibrium hcp-Fe and is close t
valueVat'13 Å3 observed in rapidly quenched metastable alloys hcp-Fe-C.5

The results of x-ray diffraction on SR made it possible to identify the atomic st
ture of the metastable stateX2 and to assert with adequate substantiation that thi
hcp-Fe. Structural investigations using a TEM turned out to be most informative
identifying the initial metastable stateX1. The point is that the transitionX1→X2 can be
obtained not only by isothermal annealing atT5200 °C, t51 h, but also by irradiation
with a beam of electrons in an electron microscope~voltage 150 kV!. Under such actions
the initial ‘‘x-ray amorphous’’ state in the nanocrystalline films transforms into the
solid solution Fe~C!. This process is virtually instantaneous~several seconds!. Careful
analysis of the observed transformations in nanocrystalline films of the alloy Fe~C! es-
tablished that the hcp-Fe reflections arising in the electron diffraction pattern unde
action of an electron beam are secondary. Initially, ordering of the initial ‘‘x-ray am
phous’’ ~nanocrystalline! state occurs. This is indicated by the appearance of reflect
against the background of the initial halo. In the course of the further action of
electron beam on the experimental film, reflections of the hcp phase of Fe appea
reflections of the initial metastable state vanish. We were able to identify the in
metastable phase. This was found to be a state with face-centered cubic packing
The lattice parameter of this fcc state isa53.72 Å and the volume per Fe atom isVat

513.05 Å. Figure 2 shows the diffraction pattern of the initial nanocrystalline state~Fig.
2a! and its transformation under the action of the electron beam. Figure 2b show
interpretation of the metastable structures that arise. Using the well-known relatioDa
; f ~at. %C!, we determined the chemical composition of the fcc solid solution o
microsection from which the diffraction pattern presented in Fig. 2b — Fe82C18 was
obtained.

FIG. 1. X-Ray diffraction patterns of the initial nanocrystalline Fe film~1! and a film ~2! annealed atTan

5200 °C.
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The magnetic order of metastable close-packed phases of iron, fcc and h
determined by the volume per Fe atom. The volume per Fe atomVat511.5212 Å3 in
this material is critical. When this volume is reached the atoms of the close-pa
structures transform from a low- into a high-spin state.1 Nanocrystalline films of the alloy
Fe~C! obtained by PPV are supersaturated solid solutions. The volumes per atom in
structures areVat'13 Å3, which is more than 10% greater than the corresponding
umes per Fe atom in thermodynamically stable close–packed fcc and hcp stru
(Vat'11 Å3). For this reason, the ferromagnetic~high-spin! state of the metastable F
phases which we investigated is a natural state.

Thus, the initial metastable fcc phase Fe~C! is characterized by the following mag
netic parameters:A50.56•1026 ergs/cm,M051540 G,Ha52 kOe, andTc5400 °C.
The basic magnetic characteristics of the metastable phase of hcp-Fe~C! — A50.3
•1026 ergs/cm,M051200 G,Ha56 kOe, andTc5300 °C — are close to the corre
sponding values for cubic tight packing. An exception here is the magnetocrys
graphic anisotropy field, which is three times greater thanHa in the fcc phase of Fe.

We have shown above, by structural investigations and measurement of the
netic characteristics, that in a nanocrystalline iron alloy with the carbon structural t
formations fcc-Fe~C! → hcp-Fe~C! occur as a result of thermal relaxation. A clear u
derstanding of the sequence of the observed states can be obtained using Ostwald
According to this rule, at a transition from a nonequilibrium into an equilibrium state,
system passes through all possible intermediate metastable states. Figure 3 sho
qualitative room-temperature (G,x) phase diagram of iron, where the Gibbs energy
G5H2TS (H is the enthalpy andS is the entropy! andx is the carbon concentration
Here the order of magnitudes of the transition enthalpies areDHg→e'0.11 kcal/mole and

FIG. 2. Electron diffraction patterns of nanocrystalline films Fe~C!: a! initial state; b! annealed by an electron
beam.
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DHg→a50.22 kcal/mole, the stoichiometric compound Fe3C ~cementite! is characterized
by a positive formation energyDH55.4 kcal/mole.10

This phase diagram gives an idea of the possible scenarios realized in the meta
system Fe~C!. The realization of a particular metastable state will be determined by
initial coordinates (G0 ,x0) in the phase plane or, in other words, the stored excess en
DG relative to the stable equilibrium of the mechanical mixture bcc-Fe1 graphite. The
degree of nonequilibriumDG of the Fe~C! condensates obtained is dictated by the te
nological processes of PPV. In the first place, this method makes it possible to o
supersaturated solid solutions Fe~C!, which increases the elastic energy due to an incre
in the interatomic distances; in the second place, the nanocrystalline alloy Fe~C! is char-
acterized by a small grain size (40 Å! and therefore a large energy contribution due to
specific surface areaSn . The contributions enumerated above to the thermodyna
Gibbs potential can be represented asDG5PDV1snSn , whereP is the internal pres-
sure, DV is the change in the molar volume, andsn is the surface energy density
According to the experimental results presented above, the initial state of the nan
talline alloy Fe~C!, obtained by the PPV method, occupies in the (G,x) phase diagram a
location indicated by the dashed rectangle. It is evident that under relaxation of the
state Fe~C!, in this case, the following structural transformations should be observe

fcc-Fe~C!→ hcp-Fe~C!→ bcc-Fe1C.

The fcc and hcp solid solutions Fe~C! in the (G,x) phase diagram are shown to b
in equilibrium with the stoichiometric carbide Fe3C. Structural investigations~TEM! of
separate sections of nanocrystalline Fe~C! films indicate a negligible presence of cemen
ite. However, the high-temperature investigations of the saturation magnetizationMs(T)
of nanocrystalline Fe~C! films did not show the presence of an F3C phase, characterize
by the temperatureTc5210 °C. Therefore the volume fraction of iron carbide Fe3C in
the experimental Fe~C! metastable films, in all probability, does not exceed 10%.

In closing, we thank E. M. Artem’ev for fruitful discussions of the results of
structural investigations.

FIG. 3. Qualitative (G,X) phase diagram of iron.
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Fluctuations in random RL – C networks: nonlinear
s-model description

Yan V. Fyodorov* )

Fachbereich Physik, Universita¨t-GH Essen, D-45117 Essen, Germany

~Submitted 1 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 11, 733–739~10 December 1999!

DisorderedRL–C networks are known to be an adequate model for
describing fluctuations of electric fields in a random metal–dielectric
composite. We show that under appropriate conditions the statistical
properties of such a system can be studied in the framework of Efetov’s
nonlinears model. This fact provides a direct link to the theory of
Anderson localization. ©1999 American Institute of Physics.
@S0021-3640~99!00623-4#

PACS numbers: 81.05.Mh, 72.80.Tm, 84.30.Bv, 05.40.2a, 72.15.Rn

The optical properties of random metal–dielectric films~also known as cermets o
semicontinuous metal films! have attracted a lot of research interest recently, both th
retical and experimental~see Refs. 1–4 and references therein!. It was discovered that for
metal concentrations close to the percolation threshold, the absorption of micro
radiation in such materials fluctuates anomalously. In turn, these anomalous prop
were traced back to high local field fluctuations detected in such compounds. A
insightful approach to the problem1–4 is to represent the system as a large random
work consisting of capacitancesC and inductancesL, the latter being in series with a
weak resistanceR. The network description naturally arises when discretizing the eq
tions satisfied by the scalar potential of the electric field. The capacitors model diel
bridges, while isolated metallic granules are indeed characterized by an almost
inductive response for radiation frequenciesv such thatvt!v&vp , wherevp is the
plasma frequency andvt is the plasmon relaxation rate.1–4

For frequencies close tov051/(LC)1/2 the electromagnetic response of such a n
work is dominated by resonance effects provided that the losses are small, i.e., the
factor Q5(L/C)1/2R21 is large. The resonance frequencies can be determined as~gen-
eralized! eigenvalues of some linear lattice operator arising when solving the syste
Kirchhoff equations( js i j (v i2v j )50 for on-site potentialsv i[v(r i).

4,5 Heres i j is the
conductance between a pair of nodesr i andr j if the two nodes are connected by a dire
bond, ands i j 50 otherwise. In the simplest case, one can think of the network as b
connected to an ac voltage by two external leads attached to lattice nodes wi
coordinatesrA andrB , the corresponding potentials beingvA5e2 ivt andvB50, respec-
tively. Omitting the common time-dependent factor, it is easy to see that the amplitu
the potentialv(r i) at an internal lattice noder i is given by
7430021-3640/99/70(11)/8/$15.00 © 1999 American Institute of Physics
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v~r i!5(
j

~D̂21! i j sA j , ~1!

D̂ i j 5S sAi1sBi1(
j Þ i

s i j D d i j 2~12d i j !s i j .

In a randomRL–C network each nonzero conductances i j at frequencyf 5v/2p is
equal to eithers05 iCv or s15(R1 iLv)21, with specified probabilities~in what fol-
lows we concentrate on the case of equal probabilities of findingL andC bonds in the
network!. Then it is convenient to introduce ‘‘symmetric’’ variableshi j such thathi j

521 if s i j 5s0 and hi j 51 if s i j 5s1 , so thats i j 5ei j
1
2(@s01s1#1@s12s0#hi j ),

with ei j 51 for directly connected nodes andei j 50 otherwise. In terms of these variable
we can writeD5Ĥ2lŴ, where

Ŵi j 5~Z1eAi1eBi!d i j 2~12d i j !ei j , ~2!

Ĥ i j 5S h̃Ai1h̃Bi1(
kÞ i

h̃ikD d i j 2~12d i j !h̃i j , ~3!

with Z5( jei j standing for the coordination number of the lattice andh̃i j 5hi j ei j . The
frequency-dependent parameterl is defined as

l5
s01s1

s02s1
'S v

v0
21D2

i

2Q
[Rel2 i

G

2
, ~4!

where we have made use ofv'v0 andQ@1.

We see that the statistics of the scalar potentialv(r ) ~and hence of the electric field
Ei j , proportional to the voltage differencev(r i)2v(r j ) across the bondi j ) is determined
basically by the properties of the operatorĤ. In Ref. 1 it was suggested that operators
this type acting on a lattice be called Kirchhoff Hamiltonians~KHs!. The off-diagonal
elements of such a Hamiltonian assume random values61 for directly connected nodes
This property makes the KH similar, in a sense, to a tight-binding Hamiltonian descr
the motion of a quantum particle on a disordered lattice with an off-diagonal diso
The latter model is a paradigmatic one in the theory of Anderson localization. That
of analogy, first discussed in Ref. 1, led the authors to relate the anomalous fluctu
of the electric fields to localized properties of the corresponding eigenfunctions. Fu
numerical and experimental work confirmed the quantitative validity of the propo
picture.

At the same time, the extent to which the analogy between the Anderson mode
the KH can be carried is a far from trivial question. Indeed, the KH has a specific fea
the diagonal elementsHii are strongly correlated with the off-diagonal elementsHiÞ j . It
is known that correlations of various kinds can substantially modify the localiza
behavior~see, e.g., Ref. 6!. Therefore, it is highly desirable to find a realistic approa
that will shed more light on the question of equivalence between the models.

The main goal of this paper is to show that the equivalence indeed exists, an
unifying concept is provided by the so-called Efetov supermatrix nonlinears model
~ENSM!.7 The latter model is known to be the most powerful tool in understand
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fluctuation phenomena in disordered conductors in the last decade~see, e.g., Ref. 8!. As
a matter of fact, we derive the ENSM from a version of the KH and thus lay a reg
analytical groundwork for the quantitative description of the statistical properties of s
continuous films.

To derive the ENSM from a microscopic random Hamiltonian one has to ex
some large parameter which physically controls the strength of the disorder. Expe
in dealing with the usual tight-binding models suggests that the role of such a para
can be played, e.g., by a large radius of connectivityb ~i.e., a large coordination numbe
Z;bd).9,10 Formally, we consider ad-dimensional lattice of linear sizeL with unit lattice
spacing and a connectivity radiusb. To facilitate bookkeeping of terms of different orde
it is convenient make the redefinitionei j →ei j Z

21/2, whereei j 51 for ur i2r j u<b and
ei j 50 otherwise. The radius of connectivityb is chosen to satisfy 1!b!L. Both in-
equalities are important:b@1 allows one to map the problem to the ENSM, wh
b!L is necessary to ensure the adequate description of Anderson localization e
Indeed, it has been shown recently5 that a full-connectivityLC network withb5L can be
mapped on the zero-dimensional version of the ENSM, which precludes taking loc
tion effects into account.

To demonstrate the mapping it is instructive to address the simplest nontrivia
relation function of the potentials:Ci(V,G)5^vv1

* (r i)vv2
(r i)&, where we have intro-

duced the frequency differenceV}(v12v2)/2v0!1, and the brackets stand for th
disorder averaging.1!

Our starting expression is:

Ci~V,G!5K (
k1 ,k2

eAk1
eAk2

~ h̃Ak1
2l1* !~ h̃Ak2

2l2!F 1

H2l1WG
ik1

* F 1

H2l2WG
ik2
L . ~5!

To perform the disorder averaging we follow the standard procedure and repr
the matrix element of the resolvent (H2lW)21 in terms of the Gaussian integral

F 1

H2~Rel6 iG/2!WG
ik

56 i E F)
l 51

N

dC l~6 !Gsi* ~6 !sk~6 !expH 6
i

2 (
m,n

N

Cm
† ~6 !

3@Wmn~Rel6 iG/2!2Hmn#Cn~6 !J ~6!

over 4-component supervectorsC l(6),

C l~6 !5S Sl~6 !

hl~6 !
D , Sl~6 !5S sl~6 !

sl* ~6 !
D ,

~7!

hl~6 !5S x l~6 !

x l* ~6 !
D , dC l5

dsldsl*

2p
dx l* dx l ,

where the componentssl(1),sl(2), l 51,2,. . . ,N are complex commuting variables
and x l(1),x l(2) form the corresponding Grassmannian parts of the supervectorC l

(6).
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To facilitate the presentation, it is appropriate to anticipate few facts whose va
can be verified by the same method as presented below. First of all, after averagin
double sum in expression~5! is dominated in the limit 1!b!L by the diagonal terms
with indicesk15k2 . Another fact which is useful to exploit from the very beginning
that all the resonance frequencies are concentrated in an interval of the order ofdv/v0

;Z21/2 aroundv5v0 , so that the typical spacingD between the neighboring reso
nances is of the order ofD;v0 /(NZ1/2), with N;Ld being the total number of reso
nance frequencies. We anticipate nontrivial correlations occurring on a frequency
v12v2;D ~Ref. 5!. For this reason we scale Rel1,25(r 6V/2N)/Z1/2, considering both
r andV to be of the order of unity. By the same reasoning we consider the losses
small enough to ensure thatg5G(NZ1/2) is of the order of unity. Physically this require
ment means that a typical resonance widthv0G is assumed to be comparable to t
typical resonance spacingD.

With these facts in mind, we can easily average the products of the resolvents
h̃i j 561/Z1/2ei j in the limit N@Z@1. All further steps follow the method used in Ref.
~cf. Refs. 10 and 11! adapted to the present model. We have:

Ci~V,g!5
1

Z (
k

eAkE F)
l

dF l Gsi* ~2 !si~1 !sk* ~1 !sk~2 !expH i

4NZ
~V1 ig!

3 (
m,n

emn~Fm
† 2Fn

†!~Fm2Fn!J expH 2
1

16Z (
m,n

emnK~Fm ,Fn!J . ~8!

Here the integration goes over the 8-component supervectorsF l
†5(C l

†(1),C l
†(2)) and

K~Fa ,Fb!524ir ~Fa
†2Fb

†!L̂~Fa2Fb!1@~Fa
†2Fb

†!L̂~Fa2Fb!#2 ~9!

with L̂5diag(1,1,1,1,21,21,21,21). Only those terms are left in the exponent whi
will later on contribute to the final expressions in the limit under discussion.

The next step is to use the following Hubbard–Stratonovich functional transfo
tion ~cf. Refs. 10,11, and 5!:

expH 2
1

16Z (
m,n

emnK~Fm ,Fn!J
5E D~g!expH i

8 (
m51

N

gm~Fm!J expH 2
Z

16 (
mn

@ ê21#mn

3E dFadFbgm~Fa!C~Fa ,Fb!gn~Fb!J ,

where @ ê21# is the matrix inverse to the matrixê5@ei j #u i , j 51, . . . .,N , and the kernel
C(Fa ,Fb) is, in a sense, the inverse of the~symmetric! kernelK(Fa ,Fb):

E dFK~Fa ,F!C~F,Fb!5d~Fa ,Fb!, ~10!

with d(Fa ,Fb) playing the role of ad-functional kernel in a space spanned by t
functionsg(F).
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With the help of these relations one easily brings each term of the sum in Eq.~8! to
the form:

E D~g!F1,2@gi #F2,1@gk#exp@L$g%1dL1$g%#, ~11!

where

F6,7@g#5

*dF s* ~6 !s~7 !expH i

8
g~F!J

E dF expH i

8
g~F!J , ~12!

L$g%5(
m

lnE dF expH i

8
gm~F!J

2
Z

16 (
m,n

@e21#mnE dFadFbgm~Fa!C~Fa ,Fb!gn~Fb!, ~13!

dL1$g%5 i
~V1 ig!

4NZ

3 (
m,n

emn

*dFmdFn expH i

8
@gm~Fm!1gn~Fn!#J ~Fm

† 2Fn
†!~Fm2Fn!

E dFmdFn expH i

8
@gm~Fm!1gn~Fn!#J ~14!

and we have restricted ourselves by the leading-order term indL1$g%, which is only a
small correction toL$g%.

The next step is to evaluate the functional integral overg(F) by the saddle-point
method, which is justified by two large parameters:Z andN. The saddle-point configu
rationgm

(s)(F) can be found by requiring a vanishing variation of the ‘‘action’’L$g% and
satisfies the following system of equations:

Z(
n

@e21#mngn
(s)~Fa!5 i

E dFbK~Fa ,Fb!expH i

8
gm

(s)~Fb!J
E dFb expH i

8
gm

(s)~Fb!J . ~15!

In deriving Eq.~16! we have used Eq.~11!.

Given the form of the kernel~9! and making use of the fact thatZ(n@e21#mn51,
one can find a space-independent solutiongn

(s)(F)[g(s)(F) to equation Eq.~16!:

g(s)~Fa!54~r 2G1!~Fa
†L̂Fa!14iG2~Fa

†Fa!1 i ~Fa
†L̂Fa!2 ~16!

provided that the real coefficientsG1 ,G2 are solutions of the system of two conjuga
equations:
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G26 iG15E
0

`

du expH 6
i

2
u~r 2G16 iG2!2

u2

8 J . ~17!

Hints for verifying such a solution can be found in Ref. 5.

For further analysis it is very important that a solution to equations~18!, such that
G2(r ).0, exists for arbitrary2`,r ,`. Actually, the mean density of resonances

merely given byr(r )5
1
p

G2(r ) ~Ref. 5!.

The most important consequence of the existence of the solutiong(s)(Fa) in the
form ~16! with G2Þ0 is actually the simultaneous existence of a wholecontinuous
manifoldof saddle points parametrized as

gT~Fa!5g(s)~ T̂Fa!, T̂†L̂T̂5L̂. ~18!

If it hadn’t been for the conditionG2Þ0 all these solutions would trivially coincide
gT(F)[g(s)(F) for any T̂ defined as above. In the actual case the presence o
combinationFa

†Fa which is not invariant with respect to a transformationFa→T̂Fa

ensures the existence of the aforementioned manifold. This fact is just a particular
festation of the phenomenon of spontaneous symmetry breaking. Different non
solutions are actually parametrized by the supermatricesT̂ which are elements of a
graded coset spaceUOSP(2,2/4)/UOSP(2/2)^ UOSP(2/2).

As a result, the functional integral overgm(F) is dominated by ‘‘Goldstone modes’
which are slowly changing in space and parametrized asgm

(G)(F)5g(s)(T̂mF), with
matricesT̂m which depend on the lattice site indexm51, . . . ,N. Our next step is to
determine the effective action for these modes, that isL$gm

(G)%1dL 1$gm
(G)%.

First of all we notice that

E dF expH i

8
gm

(G)~F!J 51,

which allows one to perform the following manipulations:

E dFadFbgm
(G)~Fa!C~Fa ,Fb!gn

(G)~Fb!

5 i E dFgn
(G)~F!expH i

8
gm

(G)~F!J 5 i E dFg(s)~ T̂nT̂m
21F!expH i

8
g(s)~F!J

524G2
2Str~ T̂nT̂m

21L̂~ T̂nT̂m
21!21L̂ !524~pr!2Str~ T̂m

21L̂T̂mT̂n
21L̂T̂n!. ~19!

Here we have first exploited the saddle-point equation~16! together with Eq.~11! and
then performed a change of variables:T̂mF→F, which does not effect the measuredF

because of the~pseudo! unitarity of the matricesT̂. Then the integral can be readil
evaluated with help of the explicit form in Eq.~17! ~see, e.g., examples of simila
calculations in Refs. 5 and 11! and brought to the final form by employing the cycl
permutation and the aforementioned relation betweenG2 and the density of resonance
r(r ). In the very same way we also find:
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dL1$g%5
~V1 ig!

4NZ
G2 (

m,n
emnStr~ T̂m

21L̂T̂mL̂1T̂n
21L̂T̂nL̂ !

5pr~V1 ig!
1

4N (
m

Str~ T̂m
21L̂T̂mL̂ !. ~20!

The pre-exponential factorsF1,2@gi # are calculated analogously and are given by

F1,2@gi #5pr@ T̂i
21L̂T̂i #

2,5; F2,1@gk#5pr@ T̂k
21L̂T̂k#

6,1,

where the indices of the supermatrix elements are inherited from the structure o
diadic productF ^ F†.

We see that calculating the correlation function~8! in the limit L@b@1 amounts to
evaluating the following integral over the set of supermatricesQ̂m5T̂m

21L̂T̂m :

Ci5
~pr!2

Z (
k

eAkE F)
l 51

N

dQ̂l GQi
2,5Qk

6,1eL(Q̂), ~21!

L~Q̂!5
Z~pr!2

4 (
m,n51

N

@e21#mnStrQ̂mQ̂n1 i
pr~V1 ig!

4N (
m51

N

Str~Q̂mL̂ !. ~22!

The action in Eq.~23! is actually equivalent to the discretized version of the sup
matrix nonlinears model, well-studied in the context of Anderson localization.7,8 Indeed,
following Ref. 9, we note that the conditionb@1 ensures slow variation of the matrice
Q̂m with index m, so that it is legitimate to pass from the lattice to the continuu
whereupon the action assumes the standard form:

L~Q̂!5
pr

8 E drStrFD~¹Q̂!212i
~V1 ig!

V
Q̂~r !L̂G , ~23!

where D5prZ21( ur u,br2 plays the role of the effective diffusion constant, a
V5*dr . The large value ofD}b2 ensures that the typical spatial scalej of variation of
Q̂(r ) is large:j}b2. Thus over distances of the order ofb the matricesQ̂ do not change,
and therefore

Ci5~pr!2E DQ̂~r !Q2,5~r i !Q
6,1~rA!eL(Q̂). ~24!

In conclusion, we have managed to express the correlation function of the s
potentials in terms of the ENSM. A similar reduction is also possible for other quan
of interest. As is well known,7,8 explicit evaluation of integrals of the type in Eq.~25!
depends crucially on the parameterg52prDLd22. For g→` the integral is dominated
by the constant configuration:Q̂(r )5Q̂0 , and the result for Eq.~25! is very simple:C̃i

52ipr(r )/(V1 ig). This is the so-called ‘‘zero-dimensional’’ limit, corresponding
the infinite-range connectivity model.5 One can take into account weak localization e
fects, finding 1/g corrections in any dimensiond ~see, e.g., Ref. 8!. For a quasi-one-
dimensional lattice one can calculate the integrals exactly in the limitV,h→0 ~Ref. 9!.
One should be able also to study the singular parts of higher correlation functions.
questions are left for further investigations.
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Variational procedure and generalized Lanczos recursion
for small-amplitude classical oscillations

E. V. Tsiper
Department of Physics, SUNY at Stony Brook, Stony Brook, NY 11794, USA
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A variational procedure is developed which yields the lowest frequen-
cies of small-amplitude oscillations of classical Hamiltonian systems.
The genuine Lanczos recursion is generalized to treat related non-
Hermitian eigenvalue problems. ©1999 American Institute of Phys-
ics. @S0021-3640~99!00723-9#

PACS numbers: 45.20.Jj, 02.60.2x

The normal modesj and frequenciesv of small oscillations of a classical syste
about equilibrium are determined by the secular equation1

v2Mj5Kj, ~1!

whereM andK areN3N symmetric positive-definite matrices of the mass coefficie
and spring constants, respectively. In many applications the numberN of degrees of
freedom is large, while only a few lowest frequencies are of interest.2 Equation ~1!
represents a problem more complex than a regular symmetric eigenvalue problem,
M or K is diagonal.

Equation~1! can be transformed into Hamiltonian form by introducing the canon
momentumh5vMj:

Kj5vh, Th5vj, ~2!

where T5M 21. Thus the frequencies of the normal modes are the eigenvalues
2N32N matrix

S 0 T

K 0D . ~3!

The spectrum of this matrix consists of pairs6v, since (j,2h) is also a solution of
~2! that corresponds to2v. The lowest frequencyvmin is the lowestpositiveeigenvalue
of the matrix~3!.

Although the eigenvalues of the matrix~3! are always real, the matrix itself i
non-Hermitian, unlessK5T. Therefore, its diagonalization poses a formidable task.
major problem is that no general minimum principle exists that yields eigenvalue
7510021-3640/99/70(11)/5/$15.00 © 1999 American Institute of Physics
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arbitrary diagonalizable non-Hermitian matrices. This precludes the formulation
variational procedure similar to the Rayleigh–Ritz procedure for Hermitian matrice
K5T, the matrix~3! is Hermitian, and its positive eigenvalues coincide with those oK
andT.

As is known from quantum mechanics, the lowest eigenvalueemin of a Hermitian
matrix H can be obtained from the minimum principle

emin5min
$c%

~cHc!

~cc!
. ~4!

The minimum is to be sought over all vectorsc. The Ritz variational procedure is a
approximation when the set$c% in ~4! is restricted to some subspaceK of dimension
n,N. The best approximation toemin in the sense of~4! is obtained as the lowes
eigenvalue of then3n Rayleigh matrixH̃, obtained by projection ofH onto K.

The special paired structure of the matrix~3! makes it possible to generalize~4! so
as to yieldvmin . In fact,

vmin5min
$j,h%

~jKj!1~hTh!

2u~jh!u
. ~5!

The minimum is to be sought over all possible phase space configurations$j,h%. Before
providing the proof to this equation, let me point out some of its features.

First, it states thatvmin is the minimum arithmetic mean of (jKj) and (hTh) over
all pairs of vectorsj, h with scalar product (jh)51. SinceK andT are both positive-
definite, the right-hand side is strictly positive and so isvmin . Second, Eq.~5! is sym-
metric in K andT, according to the nature of the problem. WhenK5T the minimum is
achieved atj5h, and~5! becomes the same as~4!.

Note that the functional in~5! has no maximum, since the denominator can be m
arbitrarily small. A global minimum, however, always exists. This is not obvious, s
the set of all pairs of vectors with (jh)51 is not compact. Indeed, say, any vect
orthogonal toh can be added toj, makinguju arbitrarily large. However, the functiona
in ~5! grows indefinitely in this case, so that the global minimum is achieved at finiteuju
and uhu.

Variation of ~5! with respect toj andh yields Eq.~2!. Thus the solutions of~2! are
the stationary points of~5!. The global minimum~5!, therefore, indeed givesvmin . The
singularity in the denominator poses no problem, since it corresponds to infinitely
values of the functional, while near the minimum it is analytic.

The minimum principle~5! can, in fact, be obtained from the Thouless minimu
principle,3 derived for non-Hermitian matrices that appear in the random phase app
mation ~RPA!. Equation~5! is transformed into the Thouless minimum principle by t
following substitution:A5(K1T)/2, B5(K2T)/2, x5(j1h)/2, andy5(j2h)/2.
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A variational procedure similar to the Rayleigh–Ritz procedure can be formulat
the coordinatesj and momentah in ~5! are restricted to some subspacesU and V of
dimensionn, respectively.

Let $j i% and $h i% be two sets of vectors that spanU andV, such that (j ih j )5d i j .
Expandingj5(uij i , h5(v ih i and varying~5! with respect toui andv i , we find the
latter to obey a 2n32n eigenvalue equation

S 0 T̃

K̃ 0
D S u

v D 5ṽS u

v D , ~6!

with K̃ i j 5(j iKj j ) and T̃i j 5(h iTh j ). Equation~6! generalizes the Hermitian Rayleigh
Ritz eigenvalue equation forH̃. It has 2n solutions6ṽ, the lowest positive one of which
gives the best approximation tovmin in the sense of Eq.~5!.

The Krylov subspace2 for the matrix ~3! can be constructed by operating with
many times on an arbitrary vector (j1 ,h1):

S j1

h1
D , S Th1

Kj1
D , S TKj1

KTh1
D , . . . . ~7!

The subspace that spans the firstn vectors of this sequence has the property
approximating an invariant subspace of~3!. Thus it is natural to expand the approxim
tion to an eigenvector of~3! as a linear combination of these vectors. In other words,
natural choice for the subspacesU andV for the variational procedure described abo
are the subspacesUn andVn that span the upper and lower components of firstn vectors
of ~7!.

In order to implement the variational procedure, it is necessary to construct a
thogonal basis$j i ,h i%, i 51, . . . , n in Un andVn and compute matrix elements ofK̃ and
T̃. Both tasks can be performed simultaneously using the following recursion:

j i 115b i 11
21 ~Th i2a ij i2b ij i 21! ~8a!

h i 115d i 11
21 ~Kj i2g ih i2d ih i 21!. ~8b!

The four coefficientsa i , b i , g i , andd i are to be chosen at each stepi so as to makej i 11

orthogonal toh i andh i 21 and to makeh i 11 orthogonal toj i andj i 21. This appears to
be enough to ensure global biorthogonality (j ih j )5d i j .

Indeed, assume biorthogonality to hold up to stepi. Multiplying ~8a! by h j , j , i
21, we have (h jj i 11)}(h jTh i)5(h iTh j )50 due to the Hermiticity ofT and the fact
thatTh j is a linear combination of alljk with k< j 11, i . Thus, the biorthogonality also
holds for the stepi 11.

Multiplying ~8a! by h i 21 , h i , andh i 11 and using biorthogonality, we get (j ih i)
51, K̃ ii 5a i , and K̃ i ,i 215K̃ i 21,i5b i . Similarly, T̃ii 5g i and T̃i ,i 215T̃i 21,i5d i . All
other matrix elements ofK̃ and T̃ vanish.

The recursion~8! is a straightforward generalization of the Hermitian Lancz
recursion2,4

c i 115b i 11
21 ~Hc i2a ic i2b ic i 21! ~9!
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applicable to any Hermitian matrixH. When K5T and j15h1, both Equations~8!
coincide with each other and with Eq.~9!, up to notation.

As in the case of the Hermitian Lanczos algorithm, the several lowest freque
can be found by projecting thej andh components of converged eigenvectors out of
Vn andUn subspaces, respectively.

The method was tested on a set of large sparse random matrices of the for~3!.
Symmetric matricesT andK were generated having an average of 40 randomly dist
uted and randomly positioned matrix elements in each row. BothK andT were shifted by
an appropriate constant to ensure positive-definiteness. Figure 1 demonstrates th
vergence results for a matrix of size 2N5200000.

For smaller matrices up to 2N52000, where it was possible to obtain all eigenv
ues with regular methods, the present method has converged to the true lowest fre
in all instances.

In conclusion, we have proposed a method that generalizes the Rayleigh–Ritz
tional procedure and Lanczos recursion to the case of non-Hermitian matrices of the
~3! which determine the normal modes and frequencies of small-amplitude oscillatio
Hamiltonian systems.

Equations~2! have numerous applications beyond purely mechanical problems.
Schrödinger equation in a nonorthogonal basis represents a generalized symmetric
value problem similar to~1!. The RPA and other time-dependent techniques in nuc
physics and quantum chemistry lead to equations similar to~2!.3,5 Last, eigenvectors of
so-called Hamiltonian matrices, of which~3! is a special case, solve the nonlinear alg
braic Riccati equation which appears in the theory of stability and optimal control.6

I would like to acknowledge numerous enlightening discussions with Vlad
Chernyak during my appointment at the University of Rochester.

FIG. 1. Convergence of the generalized Lanczos algorithm for a random matrix of the form~3! and size 2N
5200000.
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Condensed water in superfluid He-II

L. T. Mezhov-Deglin and A. M. Kokotin
Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow Region, Russia

~Submitted 10 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 11, 744–748~10 December 1999!

It was found that when4He gas containing water vapor as an impurity
condenses on the surface of superfluid He-II cooled to;1.4 K, semi-
transparent clouds~icebergs! form in the volume of a glass cell filled
with He-II below the He-II surface. The form of the icebergs extracted
from the superfluid liquid remains virtually unchanged on heating up to
;1.8 K. In the temperature range 1.8–2.2 K the thermometers register
sharp temperature jumps, which are accompanied by jumps in the gas
pressure in the cell and a repeated decrease, by more than two orders of
magnitude, in the total volume of the condensate, i.e., the water content
in the volume of an iceberg does not exceed 1020 H2O molecules per
1 cm3. It can be inferred that porous icebergs, permeated with super-
fluid liquid and containing cores consisting of small clusters surrounded
by a layer of solidified helium, form in the volume of He-II as the gas
mixture condenses. ©1999 American Institute of Physics.
@S0021-3640~99!00823-3#

PACS numbers: 67.40.Yv

In the present letter we report observations of metastable water clouds~icebergs!
that form in superfluid He-II when helium gas containing water vapor as an imp
condenses. Judging from the results of our investigations and the published data1–5 on the
properties of condensates of molecular gases in superfluid helium, it can be inferre
in the process of condensation, porous icebergs permeated with He-II, whose core
sist of small water clusters surrounded by a layer of solidified helium, form in the vol
of the superfluid liquid. The observed water condensate can be called a ‘‘water ge
analogy with aerogel.

We note that the possibility of the formation of a metastable condensate in he
when an impurity gas is introduced into a cryostat containing liquid helium was repo
in Ref. 1, published more than 50 years ago. It was discovered that at temperatures
2.5 K the properties of the impurity particles formed and the character of their intera
depend strongly not only on the composition of the impurity but also on the temper
and the properties of liquid helium. For example, when air impurity was introduced
the cryostat, a fog formed in the vapor above the liquid, i.e., impurity gas molec
joined into small clusters. The rate of settling of air clusters in liquid4He and the form of
the ‘‘flakes’’ formed in the volume of the liquid as a result of the clusters stick
together changed substantially as temperature decreased and a transition from
7560021-3640/99/70(11)/5/$15.00 © 1999 American Institute of Physics
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He-I to superfluid He-II occurred. Moreover, it was found that the flakes containing w
impurity decomposed when the liquid was heated and a transition from He–II to He
occurred. The results of the observations in Ref. 1 served as a basis for the develo
of a method for producing small particles~clusters with average diameter 5–7 nm! by
evaporating metal in helium vapors, which is widely used today for decorating the
tribution of vortices in superconductors~see, for example, Refs. 6 and 7!, as well as
methods for preparing metastable condensed systems containing molecules and
~free radicals!of molecular gases.2 A setup for introducing into a cryostat a helium gas j
containing impurity molecules and atoms of the molecular gas under study~nitrogen, for
example!, directed onto the surface of superfluid He-II and the first results of the in
tigations of the properties of a metastable nitrogen condensate containing nitrogen
ecules and atoms are described in Refs. 2–4. Subsequent x-ray measurement5 have
shown that in the cold vapor above a liquid helium surface most impurity molecules
atoms join into clusters with average diameter;6 nm, so that in accordance with th
results of Refs. 1 and 5–7 primarily a cluster beam enters the liquid helium. The
action between clusters in the He–II volume leads to the formation of a metas
porous condensate, which we mentioned at the outset.

The construction of the apparatus is shown schematically in Fig. 1. The experi
tal cell — a glass tube1 with an inner diameter of 9 mm and a 1.5 mm in diameter e
opening at the bottom of the tube — is placed inside a glass ampul2. The apparatus is
placed inside a glass helium dewar. The ampul and the cell can be periodically filled
superfluid liquid from an external helium bath using a heat pump. The germanium
mometers3, 4, and 5, placed inside the cell and at the bottom of the ampul, mak
possible to monitor the temperature distribution in the apparatus.4He gas with water
vapor impurity enters the cell at the top. As is evident from Fig. 1, in our apparatus
the gas condenses inside the experimental cell, in contrast to the apparatus desc
Ref. 2, where a substantial portion of the entering gas flow is carried off together wit
liquid helium vapors into the evacuation line of the dewar.

A differential manometer~not shown in Fig. 1!, connected with the mixture fee
line, making it possible to measure the difference of the gas pressures between th
and the helium dewar and, if necessary, to connect the cell to the outer helium b
order to equalize the pressures, is used to monitor the rate of inflow of the gas. B

FIG. 1. Diagram of the apparatus.1 — Cell, 2 — ampul,3, 4, 5 — thermometers,6 — iceberg.
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visual observations of the processes occurring in the cell as the impurity accumu
and the condensate heats up, a vidoeo tape recording of the experiment was mad
a camera placed outside the dewar.

Before the experiment started, the dewar was filled with liquid4He and then cooled
to temperatureT51.321.4 K by evacuating the liquid helium vapors. Then, using a h
pump, the ampul and cell were filled with superfluid He-II.4He gas containing about 3%
water vapor impurity entered the cell through the top of the tube, which was connec
the mixture feed line through a fine-adjustment valve. As the observations showe
optimum rate of accumulation of gas was;0.5 cm3/sec at atmospheric pressure, and t
pressure difference between the gas inside the tube and the dewar was mainta
100–200 Pa. The warm gas was cooled as the flow moved along the tube and con
on the He-II surface. The He-II temperature in the cell and ampul increased by less
0.1 K during the accumulation process. Naturally, a substantial portion of the impu
condensed in the form of ice on the glass wall at the top of the tube. For this reaso
water content in the condensate formed in the He-II volume can be judged only o
basis of the experimental results.

Several minutes after condensation commenced, a cloud, which is semitranspa
visible light and possesses a diameter close to that of the cell, appeared above the
of the liquid and slowly slid downward along the wall of the tube. With feed line clo
and a constant temperature in the cellT;1.4 K, the initial shape of the cloud change
with time: from a ‘‘soft’’ cloud with shape varying in the course of the motion to a m
dense~judging from the decrease in light transmission!, virtually stationary, ‘‘iceberg’’
with average diameter close to that of the tube, suspended on the walls inside the
a certain distance from the surface of the liquid. Opening the feed line once agai
were able to prepare two or three icebergs, located one under another inside the ce~Fig.
2a!. Naturally, as the impurity accumulated, some of it condensed on the cell w
directly near the liquid–vapor interface. This resulted in the appearance of a men

FIG. 2. a — Photograph of icebergs located below the He–II surface. b — The dome-shaped top of an
protrudes above the He-II surface in the cell~the level of the liquid in the ampul is lower than the He-II lev
in the cell!.
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with a depth of the order of 1–2 mm on an initially flat He–II surface. If condensatio
stopped and the He-II level in the cell is increased, the liquid surface once again be
flat, i.e., the superfluid helium wets well the water condensate formed, much
strongly than the surface of the glass wall.

As the level of superfluid liquid in the cell was subsequently gradually decreas
shiny upper edge of the iceberg was observed to emerge above the He-II surfac~Fig.
2b!. Then, the iceberg abruptly shifted downwards and stopped once again at
distance below the surface of the liquid. Several successive jumps of the iceberg co
observed as the level of the liquid decreased monotonically. The jumps of the ice
were accompanied by pressure jumps in the cell, but the temperature of the liqu
mained virtually unchanged, i.e., the hops were caused by the efflux of cold gas fro
surface of an iceberg heated by an external light source~an iceberg absorbs visible ligh
much more strongly than liquid helium or the walls of the glass apparatus!.

An even stronger flow of helium gas was observed from the surface of ‘‘d
icebergs, lying at the bottom of the cell, from which liquid helium was just removed
long as the He-II level in the ampul2 ~Fig. 1! was located at a distance of 0.5–2 m
from the exit opening, a distinct,;1 mm deep, cone could be seen on the surface of
liquid; this cone indicated the existence of a strong gas jet emanating from the cell.
helium gas atmosphere, the temperature of the icebergs heated by the externa
source increased monotonically from;1.4 to;1.8 K over a long time~tens of minutes!.
In the range 1.8–2.2 K the thermometers3 and4 recorded sharp temperature jumps w
amplitudeDT;0.3 K ~the time variation of the indications of the upper thermometer
illustrated by the thermogram shown in Fig. 3; the trace was started when the tempe
inside the cell increased to 1.8 K!. The temperature jumps were accompanied by pres
jumps and breakup of the iceberg into small ice particles. The total volume o
condensate decreased by almost two orders of magnitude. Above 2.2 K the jumps c
and the gas temperature inside the cell increased quite rapidly toT>4.2 K. From these
observations it is easy to estimate that the water content inside an iceberg is of the
of 1020 molecules/cm3 and the interaction energy between the clusters formed by
water gel does not exceed tens of K.

It is important to note that the volume of the icebergs in a cell filled with liq
remained essentially unchanged as the temperature increased from 1.4 to 4.2 K. F
reason, the decomposition of the condensate in a gas atmosphere cannot be ex
only by a decrease in the thermal conductivity of the liquid, permeating the po
matter, at a transition from He-II to He-I.

FIG. 3. Temperature jumps accompanying heating of the icebergs in a helium gas atmosphere~top thermom-
eter!. Initial temperatureT51.8 K, the amplitude of the jumps corresponds toDT;0.3 K.
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A large quantity of condensate accumulated in the volume and at the bottom o
cell with prolonged accumulation of the gas mixture. In this case, the pressure jum
a closed cell with a decrease in the He-II level reachedDP;2000 Pa, which led to
extrusion of part of the condensate through the exit opening into the ampul. As a r
a layer of a fine-grain white powder appeared in the liquid at the bottom of the am
this powder remained stable as the temperature of the liquid helium increased from
4.2 K, just as the ice particles formed on the cell walls after the icebergs broke
Therefore, even small, nonuniform mechanical stresses can break up the porous c
sate in a superfluid liquid.

In conclusion, we note that the investigations of the properties of ‘‘soft’’ clo
formed at the moment at condensation and icebergs into which they transform with
are continuing. By analogy with condensates of molecular gases, it is natural to infe
the water condensate in superfluid helium consists mainly of water clusters with av
diameter of the order of 5 nm~i.e., one cluster contains of the order of 104 H2O mol-
ecules!, surrounded by a layer of solidified helium. The interaction between these
ticles results in the appearance of a new porous substance~water gel!, whose properties
vary appreciably with time even at constant temperatureT>1.3 K and/or with a change
in temperature and properties of the liquid helium permeating the porous system.

We thank V. B. Efimov, A. A. Levchenko, G. V. Kolmakov, V. V. Kveder, and Y
A. Osipyan for helpful discussions. This work is performed as part of a GNTP prog
‘‘Current Directions in Condensed-Media Physics,’’ financed by the Ministry of Scie
of the Russian Federation, direction ‘‘Fullerenes and Atomic Clusters.’’
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Magnetoplastic effect in LiF crystals and longitudinal
spin relaxation

V. I. Al’shits* ) and E. V. Darinskaya†)

Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia

~Submitted 11 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 11, 749–753~10 December 1999!

New features of the dependence of the average travel distancel of
dislocations on the magnetic fieldB have been found in an investigation
of the magnetostimulated dislocation mobility in LiF crystals: A tran-
sition has been found from ordinary proportionalityl}B2 to saturation
l' const in high fieldsB. It is shown that the experimental points can
be described satisfactorily by the theoretical dependencel}@(B0 /B)2

11#21 (B0'0.8 T!, typical for the mechanism of longitudinal spin
relaxation in a system of radical pairs, which are supposedly formed
when dislocation nuclei interact with paramagnetic impurity centers.
According to the theory, the level of the fieldB0 is determined by the
characteristic frequency of the oscillations of the internal fields in the
lattice, which forB0;1 T is of the order of 1011s21, which corre-
sponds to the typical frequency of characteristic oscillations of disloca-
tion segments between pinning centers, which, naturally, does not de-
pend on temperature. This in turn explains the fact that the measured
values ofB0 are the same at 293 K and 77 K. ©1999 American
Institute of Physics.@S0021-3640~99!00923-8#

PACS numbers: 75.80.1q, 61.72.Lk

Among the spin effects occurring in nonmagnetic materials there is a grou
phenomena that stands out. These are phenomena that are limited by spin conve
definite centers under the action of an external magnetic field. This conversion pr
terminates with a change in the spin state of the system and corresponding remova
quantum forbiddenness on a possible electronic transition in the system. As a re
sharp transformation of the configuration of the system occurs. This transformati
often accompanied by a radical change in the type and level of interaction of its con
ent elements. In addition, all this occurs with virtually no change in the total energy o
system, since the spin-dependent transitions under consideration are initiated in a
netic field not by adding energy to the system but rather by removing the spin fo
denness on the indicated transitions. Such processes have been described in R
connection with the observation of a magnetic effect on the rate of chemical reac
Later a magnetic influence of the same nature on a variety of diverse processe
observed,2 specifically, on the photocurrent in semiconductors,3 on the viscosity of amor-
phous alloys,4 and so on.
7610021-3640/99/70(11)/6/$15.00 © 1999 American Institute of Physics
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The so-called magnetoplastic effect~MPE! was the last phenomenon to be observ
in this group. The MPE was first observed in Ref. 5 in NaCl crystals and consiste
magnetically stimulated depinning of dislocations from paramagnetic impurities.
the last ten years the magnetic effect on micro- and macroplasticity of nonmag
crystals has been subjected to very intense study in a number of independent group
number of publications on this subject is approaching 100~see, for example, Refs. 6–16!.
At present, there is no doubt that the MPE exists and that it is of a spin-dependent n
However, unfortunately, the specific physical mechanisms on which it is based ar
yet fully understood.

Specifically, it is still necessary to determine the type of process leading to
evolution of spins in a radical pair formed by a paramagnetic center and a dangling
in a dislocation nucleus. In experiments with individual dislocations, their average t
distancel, which is inversely proportional to the average timetdp before depinning of a
dislocation from a local stop~i.e., the characteristic spin conversion time in a pair!, is
usually linear inB2. This is positively observed in NaCl, CsI, Zn, and Al crystals. Su
a dependence has been found earlier also for LiF crystals in measurements of the
cation mobility in magnetic fieldsB<1 T. For sufficiently weak magnetic fields th
linearity of the reciprocal of the evolution time of spins of unpaired electrons of a rad
pair as a function ofB2 is characteristic for the spin relaxation mechanism in an exte
magnetic field associated with the name Brocklehurst~see Ref. 1!. The physical reason
for this spin relaxation mechanism is anisotropy of theg factor ~usually estimated to be
of the order ofDg;102221023), which results in magnetically induced transition
betweenS andT spin states of radical pairs. Here it is necessary to distinguish lon
dinal and transverse spin relaxation, corresponding toS2T6 andS2T0 transitions and
characterized by the timesT1 and T2. In the theory of recombination of radicals i
solutions,1 the rates of intercombination transitions in radical pairs, limited by longitu
nal and transverse relaxations, increase differently with increasing magnetic fieldB:

T1
215t21f ~B2/B0

2!, T2
215t21@aB2/B0

21b f ~B2/B0
2!#, ~1!

where

t215Dg2/5tb , B05\/mBtb , f ~B2/B0
2!5~B0

2/B211!21, ~2!

a and b are coefficients of the order of 1,mB is the Bohr magneton, andtb is the
correlation time of the rotational motion of a radical. In application to the descriptio
spin relaxation in a paramagnetic center — dislocation system, it is natural to repla
parametertb by the characteristic periodtd of the characteristic oscillations of disloca
tion segments pinned by paramagnetic impurities~usuallytd;10211 s!.

As one can see from Eqs.~1! and~2!, for B2/B0
2!1 both functions@T1(B)#21 and

@T2(B)#21 are proportional toB2. However, for high fields (B2/B0
2@1) these depen-

dences are characterized by a much different behavior:@T1(B)#21' const and
@T2(B)#21}aB21b (a andb are constant parameters!. Thus, to make an experimenta
choice between the longitudinal and transverse spin relaxation mechanisms, me
ments must be performed in high magnetic fields. In so doing, it is desirable to use
object of investigation crystals with not too high a fieldB0. As we shall see, from this
standpoint, the crystal LiF is an entirely suitable object for our purposes.
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The experiments were performed on LiF crystals with total impurity concentra
C'1025 moles/mole and yield pointty5300 kPa. Fresh dislocations with avera
densityrd<r were introduced by a light impact into preannealed samples with disl
tion densityrd;104 cm22. Their initial positions were fixed using the standard meth
of selective chemical etching of crystal surfaces. Next, the samples were placed
constant magnetic fieldB50.421.4 T for timet52212 min at room and liquid-nitrogen
temperatures. No mechanical load was applied, so that the driving force for disloca
after their magnetostimulated depinning from local centers was due to long-range in
stresses from other dislocations. In individual experiments, to increase the average
distancel, an additional force on charged edge dislocations was produced usin
external constant electric fieldE5326.1 kV/m, applied simultaneously with a magnet
field. After magnetic treatment, the sample was subjected to repeated chemical etch
determine the new positions of the dislocations. Next, histograms of dislocation t
distances were constructed and the average travel distancel was calculated according t
them.

Figure 1a demonstrates the dependence of the average dislocation travel distl,
scaled to the average distance between dislocations (1/Ar), on the ‘‘magnetization’’ time
t for different fieldsB at 293 K. The background travel distancel 0 at t50 is determined
by etching out near-surface stops and does not depend on the parameters varied. It
to see that the increase in the slope of the linear dependencel (t) with increasing mag-
netic fieldB stops at quite high fields. Lowering the temperature to 77 K decrease
slopedl/dt somewhat, but it does not change the saturation of the average travel dis
l with respect to the magnetic field~see Fig. 1b!. Even more pronounced saturatio

FIG. 1. Normalized average dislocation travel distancelAr versus the holding timet of samples in a magnetic
field for different levels of magnetic inductionB ~a! and two temperatures~b!, D l 5 l 2 l 0.
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appears in the coordinatesl (B) ~Fig. 2a and 2b!. It is significant that the decrease of th
time t from 5 to 3 min~Fig. 2a! also decreases the saturation level, i.e., the latter is
related with the geometric limit typical of relaxation displacements.

Thus, the behavior of the dependencel (B) in relatively high fields suggests that th
observed effect is based on longitudinal spin relaxation processes in a magnetic fie
the depinning timetdp of a dislocation from an impurity center can be identified with t
time T1 ~1!. If this assumption is correct, then all experimental curves in Figs. 2a an
should be described by the dependence

lAr5At~B0
2/B211!21, ~3!

whereA is an adjustable parameter that depends on the temperature and the force
on the dislocation~specifically, on the intensity of the electric field!, and the fieldB0

5\/mBtd , determined by the characteristic frequency of the oscillations of the disl
tion segments, can depend on the impurity concentration but not on the temperat
the electric fieldE. In Fig. 3 the experimental points are the data from Figs. 2a and
replotted in the coordinates (lAr/At–B2/B0

2 ) for four values of the parameterA, and the
solid curve corresponds to the function (B0

2/B211)21 with B050.8 T. This level of the
field B0 corresponds totd5\/mBB0;10211 s, which agrees completely with the gene
ally accepted estimate of the period of the characteristic oscillations of dislocation
ments pinned by point defects. We note that for this scale of the parametertd and

FIG. 2. Saturation of dislocation travel distances in high magnetic fields for different magnetic treatment
t and electric fieldsE ~a! and at two temperatures~b!.
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characteristic values of theg-factor anisotropyDg;102221023, the characteristic time
t corresponding toT1

min as B→` in Eqs. ~1! and ~2! is unexpectedly large and i
estimated as 102421026 s, which, incidentally, agrees fairly well with the estimate
the depinning timetdp presented in Ref. 10 on the basis of completely independ
considerations.

The satisfactory agreement between the theoretical curve and the experim
points attests to the hypothesis that longitudinal spin relaxation plays a determining
The possibility of describing the curvesl (B) for two strongly different temperatures 7
and 293 K using the same parameterB050.8 T also confirms this hypothesis. Th
prediction, following from the scheme considered above, thatB0 increases with the
impurity concentration, resulting in a decrease of the average length of dislocation
ments and hence the characteristic timetd , should also be checked. Unfortunately,
present we do not have the required crystals with different level of doping with the s
impurities, so that this check is postponed for the future.

In closing, we thank A. I. Shushin for helpful suggestions and discussions, L
So�fer for the LiF crystals, and V. P. Kisel’ for assisting in the preparation of the samp
This work is supported by an Russian Fund for Fundamental Research Grant 9
16327.
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Quantum Hall effect in the bulk semiconductors bismuth
and antimony tellurides: proof of the existence of a
current-carrier reservoir

V. A. Kul’bachinski  and A. Yu. Kaminski 
M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

N. Miyajima, M. Sasaki, H. Negishi, M. Inoue, and H. Kadomatsu
Graduate School of Advanced Sciences of Matter, Hiroshima University, 739-8526 Hig
Hiroshima, Japan

~Submitted 11 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 11, 754–758~10 December 1999!

The quantization of the Hall resistivityrxy in the form of plateaus in
the dependence ofrxy on the magnetic fieldB is observed in the semi-
conductors Bi2Te3 and Sb2Te3; the minima of the transverse magne-
toresistivityrxx correspond to the start of the plateaus. The quantization
of rxy is due to the presence of a current-carrier reservoir. An impurity
band with a high density of states or a different band with a much
higher current-carrier effective mass serves as the reservoir. ©1999
American Institute of Physics.@S0021-3640~99!01023-3#

PACS numbers: 72.20.My, 73.40.Hm

1. The quantum Hall effect1,2 still arouses enormous interest among investigato
For an ordinary two-dimensional system~2D!, it consists in the fact that the off-diagon
component of the resistivity tensor~the Hall resistivityrxy) at low temperatures in a
strong perpendicular magnetic field is quantized:rxy5h/ ie2, wherei 51,2,3 . . . In other
words, plateaus appear in the dependence ofrxy on the magnetic fieldB. The diagonal
component~the transverse magnetoresistivityrxx) oscillates in a manner so that th
minima ofrxx correspond to the centers of the plateaus. The presence of localized
between the Landau levels and extended states at the center of each level expla
appearance of plateaus.

In semiconductor superlattices, where the degree of three-dimensionality ca
regulated by preparing layers of different thickness, the presence of current-carrie
persion in the direction of a magnetic field directed perpendicular to the layers still
not destroy the quantum Hall effect, though a number of features appear.3 Surface states
can play a fundamental role in the existence of the quantum Hall effect in th
dimensional objects.4 Oscillations of the Hall coefficient are also observed in bulk In
near the metal–insulator transition.5

We have investigated the quantization of the diagonalrxx and off-diagonalrxy

components of the resistivity tensor of the bulk semiconductors Bi2Te3, Sb2Te3, and
Bi22xSbxTe3 at low temperatures in a strong magnetic field. Plateaus were observ
7670021-3640/99/70(11)/5/$15.00 © 1999 American Institute of Physics
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appear in the dependence of the Hall resistivityrxy on the magnetic field. An importan
feature is that the minima of the oscillations ofrxx coincide with the start of the plateau
in rxy .

2. Bismuth telluride Bi2Te3, like antimony telluride Sb2Te3, belongs to semiconduc
tors with the symmetry groupD3d

5 . Grown with stoichiometric composition, both sem
conductors are alwaysp-type with a high hole density because of the presence of c
talline charged point defects. Ordinarily, these are so-called antistructural defects, i
~or Sb! occupies the Te position in the crystal lattice. The band gapEg in Bi2Te3 and
Sb2Te3 is indirect and is approximatelyEg50.20 meV (Bi2Te3) and Eg50.25 meV
(Sb2Te3) at room temperature, increasing to 0.25 meV and'0.26 meV, respectively, as
temperature decreases to 4.2 K.6 The valence band of both semiconductors is a multiv
ley band and consists of an upper valence band~UVB! and a lower valence band~LVB!.
Both valence bands are hexaellipsoidal. The ellipsoids possess anisotropySmax/Smin

'3.8 and are tilted with respect to the basal plane by the angleu'31.5° andu'50° in
Bi2Te3 and Sb2Te3, respectively. The energy gapDEv between the bands is about 2
meV and 30 meV for Bi2Te3 and Sb2Te3.7,8 The schematic structure of the valence-ba
top in Bi2Te3 and Sb2Te3 is shown in the inset in Fig. 1. Filling of the lower valenc
band starts at hole density exceeding the critical valuep0'5•1018 cm23. An important
feature is the difference of the effective masses in the upper and lower valence b
The cyclotron mass in Bi2Te3 is mc

U'0.08m0 in the upper valence band andmc
L

'0.16m0 in the lower band.7,8 In the mixed crystals Bi22xSbxTe3 the energy spectrum
varies smoothly with increasingx from the Bi2Te3 to the Sb2Te3 spectrum. This is
expressed as a large increase of the effective masses in the lower valence band~to mc

U

'm0). When bismuth telluride was doped with tin, an impurity band,9,10 lying above the
top of the lower valence band against the background of the states of the upper v
band~inset in Fig. 2!, was also observed.

In the present work we investigated samples grown by a modified Bridgman me

FIG. 1. Hall resistivityrxy and transverse magnetoresistivityrxx versus the magnetic fieldB for Bi2Te3 at T
50.3 K. Inset: Structure of the valence band in Bi2Te3 and Sb2Te3 . LVB — lower valence band,UVB — upper
valence band,EF — Fermi level.
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with characteristic dimensions 130.535 mm3 and hole densityp.p0 and Hall hole
mobility at liquid-helium temperaturemH'600027000 cm2/V•s (Bi2Te3 and
Bi22xSnxTe3) andmH'650 cm2/V•s (Sb2Te3 and the mixed crystals Bi22xSbxTe3). The
current was directed along theC2 axis, and the magnetic field was perpendicular to
current in the direction of theC3 axis.

3. Curves ofrxx andrxy for Bi2Te3 and Bi22xSnxTe3 as a function of the magneti
field at T50.3 K are presented in Figs. 1 and 2. As one can see from Fig. 1, pla
appear in the dependence of the Hall resistivityrxy on the magnetic fieldB. The minima
of the resistivity rxx correspond to the start of the plateaus. The broken lines m
features corresponding to the spin splitting of the Landau levels. The frequency o
oscillations ofrxx corresponds to the extremal section of the Fermi surface of the u
hole band~for B i C3 the cross sections of the Fermi surface from all six ellipso
coincide!. Oscillations of the resistivity from the lower valence band in Bi2Te3 are not
observed, since the hole mobility in it is much lower and the quantization of the spec
still does not appear in the magnetic-field range presented. As the temperature inc
to 4.2 K, the effect washes out and the plateaus inrxy(B) vanish completely. The
plateaus are more distinct in Bi22xSnxTe3. This is because a small addition of tin i
Bi2Te3 substantially increases the hole mobility and decreases the Dingle temperat
the Shubnikov–de Haas oscillations.11 As an example, the dependencesrxx(B) and
rxy(B) for Bi1.995Sn0.005Te3 are presented in Fig. 2. As the temperature decreases
4.2 K to 0.3 K, the width of the plateaus increases, the slope of the plateaus decr
and the plateaus corresponding to the spin splitting of the Landau levels~odd numbers in
Fig. 2! become sharper. The substantially higher temperature at which plateaus c
observed in Bi22xSnxTe3 as compared with Bi2Te3 is a consequence of the higher ho
mobility of the upper valence band in Bi22xSnxTe3 than in the initial Bi2Te3 samples.

4. The explanation of the appearance of plateaus inrxy(B) is that in an experimen
oscillations ofrxx(B) can be observed only from holes in the upper valence band, w
the density of these holes varies in a magnetic field. The Fermi level in Bi22xSnxTe3 was
fixed in an impurity band with a high density of states. As the magnetic field incre

FIG. 2. Hall resistivityrxy and transverse magnetoresistivityrxx versus the magnetic fieldB for Bi22xSnxTe3

at T50.3 K. Inset: Structure of the valence band in Bi22xSnxTe3 . LVB — lower valence band,UVB — upper
valence band,IB — impurity band,EF — Fermi level.
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and the next Landau level emerges@which corresponds to a maximum in the depende
rxx(B)], the current carriers flow from the impurity band~IB! into the next Landau leve
~the number of states in which increases in proportion to the magnetic field! in the upper
valence band~UVB!, as shown in the inset in Fig. 1. Since the Hall resistivityrxy(B)
;RHB and the Hall coefficientRH;1/pe, the hole densityp in the upper valence ban
~these are the holes that determine the Hall effect! increases with the magnetic field asB,
RH;1/Be, and rxy(B)5 const up to emergence of the next Landau level. The th
dimensionality of the energy spectrum~the dispersion of the current carriers in the dire
tion of the magnetic field! causes the plateaus to acquire a small slope. We note
plateaus inrxy(B) are observed for any orientation of the magnetic field with respec
the crystallographic axes of the sample, and the frequencies of the oscillations ofrxx(B)
correspond to a hexaellipsoid Fermi surface.

The motion of Landau levels with the numbern6
U in a magnetic field can be calcu

lated using a simple model. The energy levelE6
U 5EF

U2\vc
U(n6

U 11/2)6(1/2)g* mBB
(g* is the effectiveg factor andmB is the Bohr magneton!. The computational results ar
presented in Fig. 3 for the sample Bi1.995Sn0.005Te3. The energy of each level is shown b
a solid or broken line for up and down spin, respectively. The hatched bands sho
broadening of each levelW50.8 meV. The arrows mark the appearance of plateaus
a definite number; these same numbers are presented in Figs. 1 and 2. The compu
results agree well with experiment. A similar calculation for Bi2Te3 also gave good
agreement with experiment. The difference from the preceding case lies in the fact t
Bi2Te3 the lower valence band serves as the current-carrier reservoir.

5. Investigation of Sb2Te3 samples and samples of the mixed crystals Bi22xSbxTe3

with an order of magnitude lower hole mobility than in Bi2Te3 showed that for them a
plateau is also observed in the dependencesrxy(B). All features of the quantum Hal
resistivity described previously remain. However, because of the low hole mobility
cillations ofrxx(B) andrxy(B) start in magnetic fieldsB.10 T. As an example,rxx and
rxy versusB at T54.2 K are presented in Fig. 4 for the sample Bi0.5Sb1.5Te3 with B i C3.

In summary, a quantum Hall effect due to the presence of a current-carrier res
~an impurity band or the lower valence band! is observed in the bulk semiconducto

FIG. 3. Calculation of the motion of Landau levels with up spin (1, solid line! and down spin (2, broken line!
in a magnetic field for Bi22xSnxTe3.
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Bi2Te3, Sb2Ter3, and Bi22xSbxTe3 with a complicated energy spectrum. An importa
feature of the effect is that the minima ofrxx(B) correspond not to the center but rath
to the start of the plateaus inrxy(B).
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FIG. 4. Hall resistivityrxy ~measured from zero! and transverse magnetoresistivityrxx versus the magnetic
field B in Bi0.5Sb1.5Te3 at T54.2 K.
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The widths of single-particle states of anisotropic,
strongly correlated electron systems in solids

V. A. Khodel and M. V. Zverev
Kurchatov Institute, Russian Research Center, 123182 Moscow, Russia

~Submitted 11 November 1999!
Pis’ma Zh. Éksp. Teor. Fiz.70, No. 11, 759–765~10 December 1999!

The dampingg(«) of electron states in crystals is investigated beyond
the phase transition point related to a rearrangement of the Fermi sur-
face. Attention is focused on the alteration of the standard Landau
theory due to the emergence of a flat portion in the spectrumj(p) of
single-particle excitations as a result of the rearrangement. In the limit
«→0, the widthg(«) of the states in the region of the Brillouin zone
where the dispersion ofj(p) is of an ordinary order of magnitude is
found to depend on« almost linearly, in contrast to the Fermi-liquid-
theory resultg(«);«2. © 1999 American Institute of Physics.
@S0021-3640~99!01123-8#

PACS numbers: 71.27.1a

In a number of articles1–5 using the Landau–Migdal quasiparticle picture, a n
phase transition in strongly correlated Fermi systems, called fermion condensatio
been described. Its salient feature is in the appearance of a fermion condensate~FC!, a
group of degenerate single-particle states whose energy at the temperatureT50 coin-
cides with the chemical potentialm. Owing to the degeneracy, the quasiparticle occu
tion numbersn(p,T50) are no longer 1 or 0. They are determined by the variatio
condition

dE0~n!/dn~p!5m, pPV, ~1!

where E0@n(p)# stands for the ground-state energy, whileV denotes the FC region
whose boundaries are determined by Eq.~1! itself. According to Landau, the left-han
side of ~1! is nothing but the quasiparticle energy«(p), and therefore this equatio
implies smearing the Fermi surface — its metamorphosis into a volume in th
dimensional systems or into a surface in two-dimensional ones. The flattening o
single-particle electron spectraj(p) has been experimentally observed in many qua
two-dimensional superconductors~see, e.g., Refs. 6 and 7 and references cited ther!.
The observed single-particle peaks have much larger widthsg than those calculated
employing Fermi liquid~FL! theory~see e.g., Refs. 8 and 9!, a fact which is presumably
due to the flattening ofj(p) near the Fermi surface.

Our purpose is to calculate the imaginary part of the mass operatorS(p,«) in the
presence of a flat portion in the electron spectrumj(p) due to the fermion condensation
In the following we consider a crystal with a cubic or square lattice, assuming the F
7720021-3640/99/70(11)/8/$15.00 © 1999 American Institute of Physics
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be positioned in the vicinity of the van Hove points,4,5 the FC densityrc[hr being
rather small. In regard to the momentum dependence of ImS(p,«), two regions can be
distinguished: i! the FC regionV, which is made up of ‘‘patches’’ adjacent to the va
Hove points, and ii! the normal region, where the dispersion has an ordinary orde
magnitude, i.e.,u¹j(p)u5pF /M* , whereM* is the effective mass of the ordinary qu
siparticle, independent ofT. We neglect possible variations of relevant quantities ins
these regions and use the subscriptc for the FC region and the subscriptn for the
‘‘normal’’ one: Im S(p¹V)[Im Sn .

Without loss of generality, we restrict ourselves to the decay of a particle, h
implying «.0 in all formulas. We focus our attention on the process of the generatio
an additional particle–hole~p–h! pair and neglect contributions from collective mode
e.g., spin fluctuations, which are important for understanding many of the properti
high-Tc superconductors.7 In doing so, we assume thatT exceeds the critical temperatur
Tc of the superfluid phase transition at which thep–p correlations make no differenc
and such contributions may be omitted. In this article, we deal with energies« exceeding
a characteristic FC energyjFC5^ j(pPV) &, which, in turn, exceedsT. With these
restrictions, the dampingg(p,«.0) is evaluated with the help of the formula10

g~p,«.0!5
1

2
Tr E E dt2dt3 E

0

« dv

2p E
0

v d«3

2p
uG~p,«,p1 ,«1 ,p2 ,«2 ,p3 ,«3!u2

3 Im G~p1 ,«1! Im G~p2 ,«2! Im G~p3 ,«3!. ~2!

Here p35q1p2[p2p11p2 ; «35v1«2[«2«11«2 and dt5dnp/(2p)n wheren is
the dimensionality of the lattice. Since we are only interested in clarifying the en
dependence of quantities at issue we shall omit numerical factors in future calcula

If FL theory were applicable to systems with the FC, then the ratior («)
[ug(«)u/« would be small, and ImG(p,«) could be replaced by2p d@«2j(p)#. How-
ever, as we shall see, the damping of single-particle states in systems with the
drastically enhanced compared to the predictions of FL theory. This motivates us to
into account an irregular parts of ReS and to write ImG in the form

Im G~p,«!5
g~p,«!

~«2s~p,«!2j~p!!21g2~p,«!
. ~3!

The connection between the quantitiess andg stems from the usual dispersion relatio
for the mass operator, which implies thats(«)/g(«); ln « at «→0, providedr c;1. For
example, dealing with the marginal Fermi liquid discussed in Ref. 11, one hasg(«
→0);«,s(«→0);« lnu«u.

Since the momentum dependence of quantities in the FC region is neglecte
densityNc(«) of the FC states becomes

Nc~«!52E
V

Im Gc~p,«! dt5hr
ugc~«!u
dc

2~«!
, ~4!

wheredc
2(«)5(«2sc(«)2jFC)21gc

2(«). In the weak-damping limit, Eq.~4! reduces to
Nc(«)5hr d(«). In the strong-damping limitr c.1, the contribution of the FC region
«.jFC , is of no importance, and thendc

2 in Eq. ~4! can be replaced byd2(«)5(«
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2sc(«))21gc
2(«). To avoid unjustified complications we restrict ourselves to

momentum-independent zeroth Landau harmonic in the Legendre expansion of the
action amplitudeG(cosx), where x is the angle between the momenta of incomi
particles. In this approximation, we make the replacementGn1n2

(pi ,« i)→Gn1n2
(v) (1

2s1s2), where the indexn1 (n2) indicates the number of FC states in the initial~final!
state.

The dampingg decomposes into a sum

g~p,«!5g0~p,«!1g1~p,«!1g2~p,«!, ~5!

where the termgk(k50,1,2) accumulates contributions containingk final FC Green
functions. It should be pointed out that for the square or cubic lattice the decay of th
particle into a final state with no less than two FC states unambiguously results i
appearance all three FC final states.

Since we are ignoring collective modes, reserving the analysis of their role
future article, the contributions tog0 overwhelmingly come from the region of momen
tum transferq;pF quite far from the van Hove points. There the functionsG00, G01 are
known to vary slowly enough, and so does thep–h propagatorAn(q,v), the dimension-
less imaginary component of which is generally written as

b~q,v!5
1

Nn~0!
E E

0

v

Im G~p,«! Im G~p2q,«2v! dt
d«

p
, ~6!

where we have introduced the density of statesNn(0);rM* /«F
0 as a normalization

factor,«F
0 is the Fermi energy of a noninteracting gas with densityr. All of them may be

replaced by averaged values:

bn~v!;2v Nn~0!/r, uAn~v!Nn~0!u;1, Nn
2~0! uG00u2;Nn

2~0! uG01u2;1. ~7!

After these values are substituted into Eq.~2!, the integrals cease to depend onp, and we
arrive at the usual result

g0~«!52g0 ~«2/«F
0 !, ~8!

whereg0 is a dimensionless positive constant.

When evaluating the termg1n(«), we combine two ordinary Green functions ente
ing Eq. ~2! into a p–h propagatorAn ~see Fig. 1!, so that

g1n~«!;Nn~0!E
0

«

Nc~«2v! uG01u2 bn~v! dv;
1

r E
0

«

Nc~«1!~«12«! d«1 . ~9!

The magnitude of this integral depends crucially on the value ofr c(«1)5ugc(«1)u/«1. If
this ratio is relatively small, then the integral~9! receives its predominant contribution
~of the order of 1! from the FC region, where«1.jFC andNc(«);d(«). Then, after a
simple integration, we are led to formulas inherent to marginal Fermi liquids:11

g1n~«!52g1nh «, s1n~«!5
2g1nh

p
« ln

u«u
«L

, ~10!

whereg1n is a positive numerical constant of the order of 1. We see that the magn
of the linear in« term is proportional toh,1 and is therefore quite small.
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In the opposite case of strong damping withr c.1, the contribution ofg1n to the
dampingg is minor compared to that ofg2n . In the evaluation of the latter quantity, tw
final FC states come into play~see Fig. 2b!, andg2n is given by

g2n~p,«!;2Nn~0!E
V8
E

0

«

Im Gn~p1 ,«2v! uG02~v!u2 bc~v! dt1 dv. ~11!

Here we have introduced a special notationV8 for the momentum integration region i
~11!, which is determined by the requirement that the momentump1 is appropriate for the
formation of a pair with momentap2 and (p2p11p2) both in the FC region. We omi
the insignificant termsn in Im Gn and assume thath has a value be sufficient fo
satisfying the inequalities«max.ugn(«)u, where«max is the upper energy limit admissibl
for the normal states in the regionV8; this yields

E
V8

Im Gn~p2q,«! dtq;Nn~0!E
0

«max gn~«! dj

~«2j!21gn
2~«!

;2Nn~0!.

As a result, one finds

FIG. 1. The graphical representation for the contributiong1n to the total damping.

FIG. 2. The same forg1c ~a!, g2n ~b! andg2c ~c!.
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g2n~«!;Nn
2~0!E

0

«

uG02~v!u2 bc~v! dv. ~12!

The interaction amplitudeG02 is extracted from the set of algebraic equations

G02~v!5F021F02Ac~v!G22~v!1F00An~v!G02~v!,

G22~v!5F221F22Ac~v!G22~v!1F20An~v!G02~v!. ~13!

This set is easily solved to arrive at

G02~v!5F02/D~v!, G22~v!5@F22~12F00An~v!!1F 20
2 An~v!#/D~v!, ~14!

whereD(v)5(12F00An(v))(12F22Ac(v))2F 02
2 An(v)Ac(v).

Omitting the contributions of ReAc(v), since they are insignificant,12 and replacing
An(v) by 2Nn(0) as before, one finds

uNn~0!G02~v!u2;
h20

2

h00
2 1bc

2~v!
, uNn~0!G22~v!u2;

1

h00
2 1bc

2~v!
, ~15!

where the notation f ab5FabNn(0) and h205 f 20/@ f 22(11 f 00)2 f 20
2 #, h005(1

1 f 00)/@ f 22(11 f 00)2 f 20
2 # is introduced. With these results, Eq.~12! becomes

g2n~«!;h20
2 E

0

« bc~v! dv

h00
2 1bc

2~v!
. ~16!

To take the next step one needs to evaluate the propagatorbc(v), which, in turn,
requires calculating the dampinggc of the FC particles, which is made up of three term
~5!, whereg0(«) is given by Eq.~8!, andg1c(«) andg2c(«), depicted in Figs. 2a and 2c
are written as follows:

g1c~«!;2Nn~0!E
V
E

0

«

Im Gc~«2v! uG20~v!u2 bn~v! dt1 dv

;2
h20

2

r E
0

«v Nc~«2v! dv

h00
2 1bc

2~v!
,

g2c~«!;2Nn~0!E
V
E

0

«

Im Gc~«2v! uG22~v!u2 bc~v! dt1 dv

;E
0

« Nc~«2v! bc~v! dv

Nn~0! @h00
2 1bc

2~v!#
. ~17!

Summing up the various contributions togc , we are finally led to a nonlinea
integral equation

gc~«!52g0

«2

«F
0 1E

0

«gc~«2v! @C1h20
2 h v2C2dFbc~v!#

dc
2~«2v! @h00

2 1bc
2~v!#

dv, ~18!

where C1 ,C2 are positive numerical constants of the order of 1, anddF5hr/Nn(0)
5h«F

0M /M* . The propagatorbc(v) defined by Eq.~6! reads
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bc~v!;
1

Nn~0!
E

V
E

0

v

Im Gc~p,«! Im Gc~p2q,«2v! dt d«

;dFE
0

v gc~«! gc~«2v! d«

dc
2~«! dc

2~«2v!
. ~19!

It is easily verified that the FL solutiongc(«);«2 ~the first term in Eq.~18!! fails in
the low-energy limit«→0. Indeed, if it were valid then the ratiogc(«)/dc

2(«) could be
replaced by2pd(«) and the propagatorbc by a constant. Upon inserting these resu
into the integral~18! and doing a simple integration, we would obtain a constant t
which does not vanish at«→0 as it must, sincegc(«) is supposed to be proportional t
«2.

To find a correct solution at«→0 we employ the scaling approach, assuming

gc~«→0!52gc «n u ln «ub, ~20!

wheregc is a positive constant, whilen andb are critical exponents calculated from th
requirement of cancellation between the leading terms on the right-hand side of Eq~18!
andgc(«) itself. We shall see that at least one solution has the critical exponentn,1. In
this case, the ratior c(«→0)5ugc(«)u/« diverges, and one may therefore retain in t
denominators of Eq.~19! only the termsc(«);gc «n u ln «ub11 together with the analo-
gous termsc(«2v).

Upon substituting them into Eq.~19!, we are led to

bc~v→0!52
dF

gc
2 E

0

v d«

«n ~v2«!n u ln «ub12u ln~v2«!ub12
.

dF

gc
2 v122n u ln vu22b24.

~21!

Inserting this term into Eq.~18!, we find that the term with the factorC2 prevails on the
right-hand side of Eq.~18!. The requirement of its cancellation withgc(«) itself yields

n51/2, b523/2, gc
2.dF /h00. ~22!

Knowing gc(v) andbc(v), one can straightforwardly evaluate the dampingg2n(«)
from Eq.~16!. One obtainsg2n(«);«/ ln «, with the numerical factor proportional to th
ratio h20

2 /h00. In principle this ratio may be rather small, and then the FL term prop
tional to«2 becomes significant; otherwise,gn(«→0) is practically a linear in« function
with a prefactor of the order of 1. Collecting all the results, one finally obtains

gc~«→0!;2AdF

h00

«

u ln «u3
, bc~v→0!;

h00

ln v
, gn~«→0!;2

h20
2

h00

«

u ln «u
1O~«2!.

~23!

It can be verified that this is the single solution of the problem. Thus the dampin
normal excitations at low energies exhibits marginal behavior with a factor of the ord
1, while the damping of the FC states is enormously enhanced. This means th
dealing with the damping of single-particle states beyond the FC phase transition
FL theory fails even in the limit«→0.

Solution of the integral Equation~18! is also greatly facilitated at sufficiently hig
energies that the characteristic values ofr c(«) in the integrals standing on the left-han
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side of Eq.~18! are less than 1. In this case,Nc(«) can be replaced byhr d(«), and we
are left with an algebraic equation, which after utilization of the relation~19! for bc and
some algebra, takes the form

gc~«!F12C2

dF
2 dc

2~«!

g22
2 dc

4~«!1dF
2 gc

2~«!
G52g0

«2

«F
0 2C1h «

g20
2 dc

4~«!

g22
2 dc

4~«!1dF
2 gc

2~«!
. ~24!

In the weak-damping limitr c!1, theC2 term in the square brackets can be omitted, a
then formula~10! is recovered. However, as we have seen above, the smallness ofr c(«)
cannot always hold as« goes down to zero. More precisely, the weak-damping li
persists until the terms in the square brackets on the lelft-hand side of Eq.~24! start to
cancel each other as« goes to 0. A rough estimate for the ‘‘watershed’’«cr separating the
weak-damping from the from the strong-damping limit can be obtained by setting
sum to zero at the pointgc50. As a result, one obtains

«cr.AC2 ~dF /g22!. ~25!

At lower energies, solutions~23! can be applied as a first approximation. At energie«
.«cr , the value ofbc(«);dFgc(«)/«2;h becomes small, and, according to Eq.~12!, so
does the derivativedg2n(«)/d«. Thus the energy dependence of the dampinggn(«
.«cr), given primarily by the term~10!, again turns out to be linear, with a relative
small slope. More precisely,

ugn~«.«cr!u5g2n1g1h «1g0 ~«2/«F
0 !. ~26!

Upon substituting the propagatorbc(«) given by Eq.~23! into Eq. ~16! and integrating
over energy, one findsg2n;dF .

Thus the energy dependence of the dampinggn(«) of the normal states in system
with the FC turns out to be more complicated than in a marginal FL: one linear re
with a slope of the order of 1 transforms into another linear regime with a lower slo
energies«.«cr . This result is consistent with recent precise measurements of the
ewidths of normal states in the compound Bi2212.9

In conclusion, we have analyzed the energy dependence of the dampingg(«) at a
distance from the Fermi surface exceeding the characteristic energyjFC of the FC. We
have concentrated on the coarse features of this phenomenon without specific atten
numerical factors in the quantities of interest. We have demonstrated that for dealing
the damping of single-particle states in these systems there is no room for Landau t
even in the limit«→0 the ratior («)5ug(«)u/« exceeds unity. Our results for the dam
ing gn(«) differ significantly from those obtained in the theory of nearly antiferrom
netic Fermi liquids13 and in the model of marginal FLs considered in Ref. 11.

It became clear some ten years ago11,14 that the analysis of numerous experimen
data on the basis of the Luttinger liquid, characterized by a vanishing of the reno
ization constantz, is an appropriate guide to understanding the properties of stro
correlated electron systems in solids, including transport phenomena dependent
on the damping of the single-particle degrees of freedom. At the same time, other
erties of these systems, including the existence of the Fermi surface itself, are kno
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be successfully treated within Landau theory. What we have demonstrated in this
is that the fermion condensation model serves as a ‘‘bridge’’ connecting the two
proaches.

We acknowledge M. R. Norman, J. W. Clark, H. Ding, and G. Kotliar for valua
discussions of the above topics. We are also grateful to A. M. Bratkovsky, D. De
R. Fisch, P. Schuck, and N. E. Zein. V. A. Khodel thanks Prof. J. W. Clark for k
hospitality at Washington University in St. Louis. M. V. Zverev thanks INFN~Sezione di
Catania! and IPN Orsay for their warm hospitality. This research was supported by
Grant PHY-9900713 and by the McDonnell Center for the Space Sciences~VAK !.
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Asymmetry of the propagation of conformational
excitations in a double-strand DNA molecule
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A very simple model describing the conformational degrees of freedom
of a double-strand DNA molecule is proposed. It is shown that the
characteristic modes of the model consist of an acoustic~longitudinal
with respect to the axis of the double helix! and two transverse optical
modes. The latter modes are directly related with the deformations of
the ideal structure of the double helix, which necessarily leads to soft-
ening of one of the optical modes on a finite wave vector. It is found
that the conformational excitations propagating in DNA are asymmet-
ric. © 1999 American Institute of Physics.@S0021-3640~99!01223-2#

PACS numbers: 87.15.Gg, 87.15.He

1. As is well known,1 the DNA molecule consists of two polynucleotide chai
wound into a double helix. In the last few years~especially in connection with the
impressive experiments of Ref. 2 on the indirect measurement of the deformation
DNA molecule under the action of an external force!, interest has appeared in the elas
properties of DNA, specifically, the conformational vibrations of the double-strand s
ture. In order to neglect polymer entropy effects, attention must be confined to
so-called mesoscales, i.e., small segments of the DNA molecule~not exceeding the per
sistence lengthj;103 Å! must be considered.

Conformational fluctuations of the DNA molecule are characterized by chang
the relative arrangement of the pairs of bases, i.e., they occur on microscopic scales
order of the distance between the neighboring pairs of bases~3.4 Å!. To describe such
processes, we cannot use the macroscopic theory of elasticity, but rather a micro
model must be used. A complete microscopic model should include a description
dynamics in 6N-dimensional phase space~whereN is the number of atoms in the DNA
molecule; the equilibrium arrangement of these atoms is determined by minimizin
total free energy of the system! taking account of the thermal noise from the surround
medium. Such a program cannot be implemented fully even on modern computers.
7800021-3640/99/70(11)/6/$15.00 © 1999 American Institute of Physics
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ever, for a particular approximation of the interactions the numerical simulation o
Brownian dynamics of a DNA molecule is fully realizable~see, for example, Ref. 3!, and
neglecting dissipation of the conformational excitations due to the interaction with
surrounding medium, it does not even require a large numerical computation.4

In the present letter we propose a minimal model of the conformational dynami
a DNA molecule. On the one hand this model can be analyzed analytically, while o
other it takes account of the basic physical features of the phenomena, specifical
presence of two strands forming a helical structure. The justification for our simp
model is that it makes it possible to reproduce certain rough features of the spectr
modes, found earlier by numerical simulation.4,3

The conformational degrees of freedom are important for understanding tran
tion processes occurring in the DNA molecule under the action of enzymes~see, for
example, Ref. 5!. These processes do not reduce to small perturbations of the struct
the double helix, which are the subject of the present letter. Our model can be mo
to describe these phenomena also, for which anharmonic effects describing the br
of the hydrogen bonds must be included in it~see, for example, Ref. 6!. We note,
however, that under natural conditions the number of broken hydrogen bonds is
small (1027, according to Ref. 7, at room temperature!.

2. Following Refs. 4 and 3, we shall use a discrete model of the DNA molecu~a
system of particles with a harmonic pair interaction!. To describe this pair interaction, w
take into account explicitly the equilibrium configuration in the form of an ideal helix.
describe the conformation of a double-strand DNA molecule we employ a vector
yn , determined at the points of the central line of the molecule, wherey50 corresponds
to the unperturbed structure of the ideal duplex~see also Refs. 6 and 8!.

Technically, the Hamiltonian of such a model can be written in the form

Hel5(
n

1

2r
Pn

21(
n

K

2
~¹yn!2. ~1!

Heren enumerates the nodes containing the base pairs,Pn is the generalized momentum
conjugate to the field of conformational displacementsyn , which describes the dynamic
of the conformational degrees of freedom at the siten; r is a coefficient which has the
meaning~and dimensions! of a linear mass density,K is the elastic modulus~ergs/cm!,
corresponding to the harmonic pair potential. The energy in Eq.~1! contains the covarian
derivative (¹yn). A covariant derivative appears because the changes in the fiey
relative to the natural~local or Frenet! system of coordinates and the change in the lo
system itself must be taken into account in the deformation energy of the fieldy ~which
is written in Eq.~1! in the stationary~laboratory! system of coordinates!.

Thus, in the discrete model corresponding to the ideal structure of a double hel
covariant derivative can be represented in the form

1

a
@~yn112yn!1R̂n

21~R̂n112R̂n!yn#[@yn112yn1Vyn#
1

a
, ~2!

where we have denoted byV the matrix

V̂5R̂n
21~R̂n112R̂n![R̂2 Î ~3!
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andR̂n is the matrix describing the rotation from the local coordinate system at the
n to the laboratory system, andR̂ without an index is the matrix describing a rotatio
accompanying a displacement by a distance between the base pairsa53.4 Å .

To find the spectrum of conformational oscillations described by the Hamilto
~1! it is convenient to switch to the Fourier components

yq5
1

AN
(

n
einqayn , ~4!

whereN is the total number of sites~base pairs! in the molecular fragment under con
sideration~of the order of the persistence length!.

The Hamiltonian~1! @taking account of the definition~3!# can be diagonalized by th
standard method using a canonical transformation. This gives the following dispe
laws for the three modes:

l35
2v
a Usin

aq

2 U, ~5!

l1,25
v
a

@ f ~w,qa!62usinw3sinqau#1/2, ~6!

wherev5AK/r is, dimensionally and physically, the characteristic velocity of conf
mational oscillations, the anglew parameterizes an elementary rotationR̂ of the ideal
double helix

R̂5S cosw sinw

2sinw cosw
D ,

and the functionf has the form

f 54S 112 sin2
w

2 D sin2
qa

2
14 sin2

w

2
. ~7!

The dispersion laws for the conformational modes are shown in Fig. 1. There a
acoustic branch of oscillations (l3) and two optically branchesl1,2.1! The optical mode
l1 @corresponding to the minus sign in Eq.~6!# has a quite deep minimum at a finite wav
numbeeq* . The DNA duplex, because of the presence itself of the helix, is chara
ized by an axial anisotropy vector which changes sign at a transition from a right-
left-hand helix~reflection in a plane parallel to the axis of the helix!. The frequency
l1(q* )Þ0, so that the circular polarizations differ by the signs of the rotation in a
of waves corresponding to the characteristic model1.

We also studied the propagation of local disturbances of a double helix, whic
described by the so-called covariant wave equation following from the Hamiltonian~1!.
For this, the initial perturbation must be represented as a superposition of the cha
istic modes found above, and the coefficients in this superposition must be found
the initial and boundary conditions. Leaving to a separate work the detailed investig
of solutions of this equation, here we only formulate the interesting, in terms of
biophysical consequences, qualitative features of the propagating disturbances. T
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variant wave equation describes excitations propagating in both directions along th
of the double helix. Depending on the structure~amplitude and polarization! of the initial
excitation and the parameters of the model, these waves can have either the s
opposite signs of the elliptical polarization of both waves~i.e., in the waves traveling in
both directions the displacementsyn of the polynucleotide chains can rotate in the sa
direction ~in-phase! or in opposite directions, i.e., in antiphase!.

Formally, the reason for such asymmetry in a mirror symmetric~with respect to the
reflection plane perpendicular to the axis of the helix! ideal structure of a double helix
~here we neglect, for simplicity, the dependence of the model parameters on the seq
of the base pairs! is quite obvious. The initial perturbation of the duplex, having differe
amplitudes of displacementsy along arbitrary axes in a plane perpendicular to the axis
the helix ~i.e., elliptical polarization!, excites different superpositions of the optic
modesl1 andl2. When the direction of propagation is reversed~or, equivalently,q→
2q), because of the helical symmetry the relationl1(2q)→l2(q) holds, and for this
reason, in general, the polarizations of the waves propagating in opposite directio
different.

3. Thus, in the present letter we have formulated a very simple model of the do
strand structure of DNA. The proposed model, using a small number of phenomen
cal parameters (K,r,a,w), we hope, adequately describes the conformational degree
freedom of the double-strand DNA molecule.

The parametersa andw are determined by the structure of the DNA molecule a
are well known (a53.431028 cm; w5p/5). The linear mass densityr in all organic
polymers does not vary much, and in order of magnitude it can always be estimate
g/cm33d2'10214 g/cm ~whered'20 Å is the diameter of a polynucleotide chain!.

The recent results of Ref. 9 can be used to estimate the elastic modulusK. In this
work the force required to separate the two polynucleotide chains of DNA to a dist
of the order of 1024 cm was measured directly. Dimensionally~and physically! this force

FIG. 1.
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can serve as an upper limit of the conformational elastic modulusK which we have
introduced. Using the data presented in Ref. 9, we obtainK;1026 ergs/cm.

Thus, all the parameters of our model have been determined, and the charac
propagation velocity of conformational excitations can be calculated from Eqs.~5! and
~6! as v.105 cm/s. These conformational excitations are small~they do not break the
hydrogen bonds between the base pairs! perturbations of the double helix, similar t
phonons in crystal lattices. Taking account of the dissipation will inevitably cause
excitations which we have found to decay. It cannot be ruled out that a purely r
ational dynamics arises instead of propagating waves~as most often happens in proteins!.
However, the DNA molecules on mesoscales are much more rigid than proteins, s
dissipation may not lead to overdamping of the conformational modes. Rough estim5

of the dissipation due to the interaction of the conformational degrees of freedom wi
surrounding medium show that this dissipation can indeed be neglected.

In biology, transcription processes which do not reduce to small perturbations o
duplex play an important role. In Ref. 5 the phenomenon of transcription in theB form of
DNA was studied under conditions where the rotation of the enzyme inducing trans
tion is hindered and, instead, twisting of the DNA molecule itself occurs. This twis
will lead to superspiralling of the DNA molecule. As the enzyme moves, the directio
rotation of the polynucleotide chains in front of it is opposite to that behind it.

An important question is the choice of the direction of motion of the enzyme, w
under certain conditions propagates in the direction of positive superspiralling wh
other cases it propagates in the direction of negative superspiralling. Our results sh
presence of a natural asymmetry of propagation of excitations even in an abso
symmetric conformation of the double helix. This asymmetry is determined primaril
the structure of the initial perturbation of the duplex. The dependence of the m
parameters on the sequence of base pairs gives a second possible reason for asym
propagating excitations.

In summary, depending on the polarization of the initial perturbation and the pa
eters of the model, the perturbation can propagate in the direction of positive and
tive superspiralling, and the relative rotation of the polynucleotide chains in both w
can occur in- or antiphase.
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